
PRECALCULUS



Barnett, Ziegler, and Byleen’s Precalculus Series

College Algebra, Seventh Edition
This book is the same as College Algebra with Trigonometry without the three
chapters on trigonometry.
ISBN 0-07-236868-3

College Algebra with Trigonometry, Seventh Edition
This book is the same as College Algebra with three chapters of trigonometry
added. Comparing College Algebra with Trigonometry with Precalculus, College

Algebra with Trigonometry has more intermediate algebra review and starts
trigonometry with angles and right triangles.
ISBN 0-07-236869-1

Precalculus: Functions and Graphs, Fifth Edition
This book differs from College Algebra with Trigonometry in that Precalculus

starts at a higher level, placing intermediate algebra review in the appendix;
and it starts trigonometry with the unit circle and circular functions.
ISBN 0-07-236871-3

College Algebra: Graphs and Models, Second Edition
This book is the same as Precalculus: Graphs and Models without the three
chapters on trigonometry. This text assumes the use of a graphing utility.
ISBN 0-07-242428-1

Precalculus: Graphs and Models, Second Edition
This book is the same as College Algebra: Graphs and Models with three
additional chapters on trigonometry. The trigonometric functions are introduced
by a unit circle approach. This text assumes the use of a graphing utility. 
ISBN 0-07-242430-3

College Algebra with Trigonometry: Graphs and Models
This book is the same as Precalculus: Graphs and Models except that the
trigonometric functions are introduced by right triangle trigonometry. This text
assumes the use of a graphing utility.
ISBN 0-07-291699-0



PRECALCULUS
G R A P H S A N D M O D E L S

RAYMOND A. BARNETT
Merritt College

MICHAEL R. ZIEGLER
Marquette University

KARL E. BYLEEN
Marquette University



PRECALCULUS: GRAPHS AND MODELS

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights
reserved. No part of this publication may be reproduced or distributed in any form or by any means, 
or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill 
Companies, Inc., including, but not limited to, in any network or other electronic storage or
transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 VNH/VNH 0 9 8 7 6 5 4 3

ISBN 0–07–242430–3

Publisher: William K. Barter

Executive editor: Robert E. Ross

Director of development: David Dietz

Executive marketing manager: Marianne C. P. Rutter

Lead project manager: Susan J. Brusch

Production supervisor: Kara Kudronowicz

Media project manager: Sandra M. Schnee

Senior media technology producer: Jeff Huettman

Design manager: K. Wayne Harms

Cover/interior designer: Rosa & Wesly, Inc.

Lead photo research coordinator: Carrie K. Burger

Supplement producer: Brenda A. Ernzen

Compositor: The GTS Companies/York, PA Campus

Typeface: 10.5/12 Times Roman

Printer: Von Hoffmann Corporation

Cover image: Frank Stella, Eskimo Curlew, 1976. Portland Art Museum, Portland, Oregon. Funds from

Mr. and Mrs. Howard Vollum. © 2004 Frank Stella/Artists Rights Society (ARS), New York

Photo credits:
Chapter Opening Photos: 1: © SS11/PhotoDisc; 2: © Vol. 102/Corbis; 3: © Vol. 8/PhotoDisc; 
4: © Vol. 8/PhotoDisc; 5: © Vol. 6/PhotoDisc; 6: © Vol. 3/PhotoDisc; 7: © Vol. 19/PhotoDisc; 
8: © Vol. 4/PhotoDisc; 9: © Vol. 101/Corbis; 10: © Vol. 7/PhotoDisc; 11: © Vol. 19/PhotoDisc

Library of Congress Cataloging-in-Publication Data

Barnett, Raymond A.
Precalculus : graphs and models / Raymond A. Barnett, Michael R. Ziegler, 
Karl E. Byleen.—1st ed.

p. cm.
Includes index.
ISBN 0–07–242430–3 (acid-free paper)
1. Functions. 2. Functions—Graphic methods. I. Ziegler, Michael R. II. Byleen, Karl. III. Title.

QA331.3.B394 2005 2003059296
515—dc22 CIP

www.mhhe.com



About the Authors

Raymond A. Barnett, a native of and educated in California, received his B.A. in math-
ematical statistics from the University of California at Berkeley and his M.A. in
mathematics from the University of Southern California. He has been a member of
the Merritt College Mathematics Department and was chairman of the department
for four years. Associated with four different publishers, Raymond Barnett has
authored or co-authored 18 textbooks in mathematics, most of which are still in use.
In addition to international English editions, a number of the books have been translated
into Spanish. Co-authors include Michael Ziegler, Marquette University; Thomas
Kearns, Northern Kentucky University; Charles Burke, City College of San Francisco;
John Fujii, Merritt College; and Karl Byleen, Marquette University.

Michael R. Ziegler received his B.S. from Shippensburg State College and his M.S. and
Ph.D. from the University of Delaware. After completing postdoctoral work at the
University of Kentucky, he was appointed to the faculty of Marquette University where
he currently holds the rank of Professor in the Department of Mathematics, Statistics,
and Computer Science. Dr. Ziegler has published more than a dozen research articles
in complex analysis and has co-authored more than a dozen undergraduate mathe-
matics textbooks with Raymond Barnett and Karl Byleen.

Karl E. Byleen received his B.S., M.A., and Ph.D. degrees in mathematics from the
University of Nebraska. He is currently an Associate Professor in the Department of
Mathematics, Statistics, and Computer Science of Marquette University. He has pub-
lished a dozen research articles on the algebraic theory of semigroups and co-authored
more than a dozen undergraduate mathematics textbooks with Raymond Barnett and
Michael Ziegler.

vii





Contents

Preface xiii

To the Student xxix

Functions, Graphs, and Models 1

1.1 Using Graphing Utilities 2

1.2 Functions 17

1.3 Functions: Graphs and Properties 39

1.4 Functions: Graphs and Transformations 57

1.5 Operations on Functions; Composition 73

1.6 Inverse Functions 86

Chapter 1 Review 103

Chapter 1 GROUP ACTIVITY Mathematical Modeling: Choosing a Long Distance 
Calling Plan 111

Modeling with Linear and Quadratic
Functions 113

2.1 Linear Functions 114

2.2 Linear Equations and Models 134

2.3 Quadratic Functions 151

2.4 Complex Numbers 166

2.5 Quadratic Equations and Models 180

2.6 Additional Equation-Solving Techniques 197

2.7 Solving Inequalities 210

Chapter 2 Review 224

Chapter 2 GROUP ACTIVITY Mathematical Modeling in Population Studies 232

Cumulative Review Exercises Chapters 1 and 2 233

Polynomial and Rational Functions 239

3.1 Polynomial Functions and Models 240

3.2 Real Zeros and Polynomial Inequalities 261

3.3 Complex Zeros and Rational Zeros of Polynomials 274

3.4 Rational Functions and Inequalities 288

Chapter 3 Review 308

Chapter 3 GROUP ACTIVITY Interpolating Polynomials 315

ix



Exponential and Logarithmic Functions 317

4.1 Exponential Functions 318

4.2 Exponential Models 332

4.3 Logarithmic Functions 345

4.4 Logarithmic Models 358

4.5 Exponential and Logarithmic Equations 365

Chapter 4 Review 373

Chapter 4 GROUP ACTIVITY Comparing Regression Models 379

Cumulative Review Exercises Chapters 3 and 4 380

Trigonometric Functions 385

5.1 Angles and Their Measure 386

5.2 Trigonometric Functions: A Unit Circle Approach 397

5.3 Solving Right Triangles 408

5.4 Properties of Trigonometric Functions 416

5.5 More General Trigonometric Functions and Models 432

5.6 Inverse Trigonometric Functions 446

Chapter 5 Review 461

Chapter 5 GROUP ACTIVITY A Predator-Prey Analysis Involving 
Mountain Lions and Deer 471

Trigonometric Identities and 
Conditional Equations 473

6.1 Basic Identities and Their Use 474

6.2 Sum, Difference, and Cofunction Identities 483

6.3 Double-Angle and Half-Angle Identities 494

6.4 Product-Sum and Sum-Product Identities 504

6.5 Trigonometric Equations 510

Chapter 6 Review 522

Chapter 6 GROUP ACTIVITY From M sin Bt N cos Bt to 
A sin (Bt C )  A Harmonic Analysis Tool 527

Additional Topics in Trigonometry 529

7.1 Law of Sines 530

7.2 Law of Cosines 541

7.3 Geometric Vectors 549

Contentsx



Contents xi

7.4 Algebraic Vectors 556

7.5 Polar Coordinates and Graphs 566

7.6 Complex Numbers in Rectangular and Polar Forms 581

7.7 De Moivre’s Theorem 588

Chapter 7 Review 594

Chapter 7 GROUP ACTIVITY Conic Sections and Planetary Orbits 604

Cumulative Review Exercises Chapters 5, 6, and 7 607

Modeling with Linear Systems 613

8.1 Systems of Linear Equations in Two Variables 614

8.2 Systems of Linear Equations and Augmented Matrices 627

8.3 Gauss–Jordan Elimination 641

8.4 Systems of Linear Inequalities 656

8.5 Linear Programming 672

Chapter 8 Review 684

Chapter 8 GROUP ACTIVITY Modeling with Systems of Linear Equations 690

Matrices and Determinants 693

9.1 Matrix Operations 694

9.2 Inverse of a Square Matrix 711

9.3 Matrix Equations and Systems of Linear Equations 724

9.4 Determinants 734

9.5 Properties of Determinants 743

9.6 Determinants and Cramer’s Rule 750

Chapter 9 Review 757

Chapter 9 GROUP ACTIVITY Using Matrices to Find Cost, Revenue, and Profit 762

Cumulative Review Exercises Chapters 8 and 9 763

Sequences, Induction, and Probability 767

10.1 Sequences and Series 768

10.2 Mathematical Induction 778

10.3 Arithmetic and Geometric Sequences 787

10.4 Multiplication Principle, Permutations, and Combinations 800

10.5 Sample Spaces and Probability 814

10.6 Binomial Formula 832

Chapter 10 Review 839

Chapter 10 GROUP ACTIVITY Sequences Specified by Recursion Formulas 845



Additional Topics in 
Analytic Geometry 847

11.1 Conic Sections; Parabola 848

11.2 Ellipse 859

11.3 Hyperbola 872

11.4 Translation of Axes 888

11.5 Rotation of Axes 899

11.6 Nonlinear Systems 909

Chapter 11 Review 920

Chapter 11 GROUP ACTIVITY Focal Chords 927

Cumulative Review Exercises Chapters 10 and 11 927

Appendix A Review of Equations and Graphing A-1

A.1 Linear Equations and Inequalities A-2

A.2 Cartesian Coordinate System A-13

A.3 Basic Formulas in Analytic Geometry A-21

Appendix B Special Topics A-35

B.1 Significant Digits A-36

B.2 Partial Fractions A-39

B.3 Descartes’ Rule of Signs A-48

B.4 Parametric Equations A-53

Appendix C Geometric Formulas A-65

Answers A-69

Index I-1

Contentsxii



Preface

A Legacy of Success

We take great satisfaction from the fact that more than 100,000 students have
learned college algebra or precalculus from a Barnett Series textbook. Ray Bar-
nett is one of the masters of college textbook writing. His central approach is
proven and remains effective for today’s students.

The Barnett Series maximizes student comprehension by emphasizing
computational skills, ideas, and problem solving rather than mathematical theory.
Completely worked examples are used to introduce concepts and to demonstrate
problem-solving techniques. These examples are then followed by a similar
matched problem that the student can work. Answers to the matched problems
are located at the end of each section for easy reference. This active involvement
in the learning process helps students develop a thorough understanding of con-
cepts and processes.

Precalculus: Graphs and Models is the second, retitled edition of Precalculus:

A Graphing Approach. The word models was added to better describe the teaching
approach. More than simply a reworking of our widely used Precalculus: Functions

and Graphs, Fifth Edition, this textbook presents an approach grounded in use of
technology and employing data analysis (regression) and modeling techniques.

A Central Theme

In the Barnett Series the function concept serves as a unifying theme. A brief
look at the table of contents will reveal this emphasis. A major objective of this
book is the development of a library of elementary functions, including their
important properties and uses. Employing this library as a basic working tool, stu-
dents will proceed through this book with greater confidence and understanding. 

Balance by Design 

Although technology is employed throughout, we strive to balance algebraic skill
development with use of technology as an aid to learning and problem solv-
ing. Additionally, a major objective of the book is to encourage students to inves-
tigate mathematical principles and processes graphically and numerically, as well
as algebraically. In this way, students gain a broader, deeper, and more useful
understanding.

Side-by-Side Presentation

Many solved examples in the book provide graphical solutions side-by-side
with algebraic solutions. By seeing the same answer result from their symbol
manipulations and from graphical approaches, students gain insight into the
power of algebra and make important conceptual and visual connections. See,
for instance, Example 6 on page 27, Example 4 on page 139, Example 5 on page
369, and Example 3 on page 662. Complementing this graphical perspective, we
take a numerical approach to key concepts when it aids understanding—as in
our discussion of asymptotes on page 292.
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Data Analysis (Regression) and Modeling

Another important purpose of Precalculus: Graphs and Models is to give students
significant experience in data analysis and modeling of real-world problems. Our
accessible presentations of regression and curve fitting, while omitting the theo-
retical background, give students a feel for the relationship between data that arise
in actual situations and the functions they are studying: linear, quadratic, polyno-
mial, exponential, logarithmic, and trigonometric. Enough modeling-oriented
applications are included to convince even the most skeptical student that math-
ematics really is useful—see the Applications Index on the inside back cover, and
examples on pages 141 to 142, 188 to 189, and 339 to 340.

Included within most exercise sets—at the ends of sections and chapters—
are sets of Applications problems and Modeling and Data Analysis problems.
Furthermore, the Group Activity after each chapter usually employs modeling
and/or starts with data. See the annotated sample pages in the Features walk-
through following this preface for information on these features.

Technology Use

The generic term graphing utility is used to refer to any of the various graphing
calculators or computer programs that might be available to a student using this
book. We assume that each student has easy access to a graphing utility that can
perform the following operations:

Simultaneously display multiple graphs in a user-selected viewing window
Explore graphs using trace and zoom
Approximate roots and intersection points
Approximate maxima and minima
Plot data sets and find associated regression equations
Perform basic matrix operations, including row reduction and inversion

Most popular graphing calculators perform all of these operations. The major-
ity of the graphing utility images in this book are “screen dumps” from a Texas
Instruments TI-83 Plus graphing calculator. Students not using that TI calcu-
lator should be able to produce similar results on any calculator or software
meeting the requirements listed. The proper use of such utilities is covered in
Section 1.1.

Explore/Discuss Boxes 

Interspersed throughout each section, Explore/Discuss boxes foster conceptual
understanding by asking students to think about a relationship or process before
a result is stated. Verbalization of mathematical concepts, results, and processes
is strongly encouraged in these explanations and activities.

Review Material

Because the backgrounds and preparation of students in precalculus vary widely,
we have provided extensive and flexible review material both within Appendix A
and on the Online Learning Center that supports this book. Our Basic Algebra
Review provides explanations, examples, and exercises in Adobe Acrobat (PDF)
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Preface xv

format. Additional algorithmically generated practice problems and quizzes and
audiovisual instruction are also available for online study. Topics covered include
properties of numbers, polynomial operations and factoring, operations on rational
expressions, integer and rational exponents, and radicals.

Appendix A of this text reviews basics of linear equations, the Cartesian
coordinate system, and analytic geometry formulas: these topics, which are essen-
tial for a course emphasizing graphing, can be covered systematically before com-
mencing with the rest of the book or reviewed as needed.

A Final Thought

We consider every student enrolling in a precalculus course to be a potential math-
ematics major. We appreciate that many students take this course simply to fulfill
a requirement. However, while we have these students’ attention, we hope to excite
an interest in the larger, wonderful world of mathematics. We hope this text assists
instructors in their efforts to do the same.

Changes for the Second Edition

Based on abundant advice from users of the first edition, and from numerous
reviewers of the book and manuscript, we have made numerous improvements to
the pedagogy, organization, and coverage of Precalculus: Graphs and Models for
this second edition.

Greater Emphasis on Graphing Technology Since we completed the first edition,
we have continued to construct (often with the help of reviewers) new and better
ways of using the power of graphing utilities to enhance learning. Many new
graphing-based teaching approaches, examples, and exercises appear in this
edition.

More Modeling Applications Translating real-world problems into the language
of mathematics—especially, moving from a data set to a function approximation—
is an important skill for any student, whether or not they will move on to a cal-
culus course. This central theme of the text receives greater attention in the second
edition, as evidenced by the many new Mathematical Modeling and Modeling and
Data Analysis subsections. Many sections and chapters in the second edition end
with Modeling and Data Analysis problem sets.

Expanded Coverage of Regression Graphing calculators give students the power
to analyze numerical data to find a function that provides a useful model for a
given data set. New material on curve fitting appears in a number of chapters;
see, for example, the material on logarithmic regression beginning on page 362.
Many exercise sets in the second edition include a group of Data Analysis and
Regression problems, and most of the Modeling and Data Analysis exercises use
regression as well.

Side-by-Side Solutions: Algebraic and Graphical As noted earlier, many solved
examples in the second edition provide graphical solutions next to the algebraic
solutions. See the Features walk-through following this preface.



Chapter 1 This chapter now includes function operations and inverses, better
reflecting the primacy of functions in this course. The Cartesian coordinate sys-
tem is now covered in an appendix (it was formerly Section 1.1).

Chapter 2 Sections 2.2 and 2.5 now place a greater emphasis on modeling, of
linear and quadratic equations, respectively. Linear and quadratic inequalities are
covered in a new Section 2.7 (and here, too, the emphasis is on modeling).

Chapter 3 Sections 3.2 and 3.3, which cover zeros of polynomials, have been
reorganized. We now treat approximate real zeros first, in Section 3.2, applying
the same techniques to solve polynomial inequalities. Rational and complex
zeros of polynomials appear in Section 3.3. Rational inequalities are added to
Section 3.4.

Chapter 4 Sections 4.1 and 4.2 of the first edition are now covered in Chapter 1.
The new Sections 4.2 and 4.4 place a greater emphasis on modeling, as their new
titles—“Exponential Models” and “Logarithmic Models”—imply.

Chapter 5 The first of three chapters on trigonometry, have been reorganized and
streamlined. The nine sections of the first edition are now covered in six sections.
We give an early introduction to the graphs of the trigonometric functions in Sec-
tion 5.2 and present a thorough analysis of properties and graphs of trigonometric
functions in Section 5.4.

Chapters 8 and 9 Because many colleges include determinants and Cramer’s rule
in their precalculus syllabus, we have added these topics to the second edition. This
change necessitated the formation of a new Chapter 9, “Matrices and Determi-
nants,” which includes the new topics combined with the material on matrix
operations from Chapter 8 of the first edition. Note that the material on determi-
nants and Cramer’s rule at the end of Chapter 9 is easily skipped without loss of
continuity.
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Supplements for the Instructor

Instructor’s Testing and Resource CD-ROM This cross-platform CD-ROM pro-
vides a wealth of resources for the instructor. Supplements featured on this CD-
ROM include a computerized test bank using Brownstone Diploma® testing
software to quickly create customized exams. This user-friendly program allows
instructors to search for questions by topic, format, or difficulty level; edit exist-
ing questions or add new ones; and scramble questions and answer keys for mul-
tiple versions of the same test. 



Instructor’s Solutions Manual Prepared by Dave Sobecki of Miami University,
this supplement provides detailed solutions to all the exercises in the text. The
methods used to solve the problems in the manual are the same as those used to
solve the examples in the textbook.

MathZone McGraw-Hill’s MathZone is a powerful new online system for home-
work, quizzing, and testing. The MathZone environment enables assignment of
free-response and multiple-choice exercises over the Internet. Exercises are gener-
ated algorithmically, to allow for extended practice. Using MathZone, instructors
can select algorithmically generated exercises to create multiple versions of assign-
ments and quizzes, with results reported automatically to an online grade book.

ALEKS ALEKS® (Assessment and LEarning in Knowledge Spaces) is an arti-
ficial intelligence–based system for individualized math learning, available over
the World Wide Web. ALEKS® delivers precise, qualitative diagnostic assess-
ments of students’ math knowledge, guides them in the selection of appropriate
new study material, and records their progress toward mastery of curricular goals
in a robust classroom management system. For more information on ALEKS, see
page xxviii.

PageOut PageOut is McGraw-Hill’s unique point-and-click course website tool,
which enables instructors to create a full-featured, professional-quality course
website without knowing HTML coding. With PageOut instructors can post their
course syllabus, assign McGraw-Hill Online Learning Center content, add links
to important off-site resources, and maintain student results in the online grade
book. Instructors can also send class announcements, copy their course site to
share with colleagues, and upload original files.

Supplements for the Student

Student’s Solutions Manual Prepared by Dave Sobecki of Miami University, the
Student’s Solutions Manual provides complete worked-out solutions to all the odd-
numbered section exercises from the text. The procedures followed in the solutions
in the manual match exactly those shown in worked examples in the text.

Online Learning Center Web-based interactive learning is available for students
at the Online Learning Center, located at www.mhhe.com/barnett. Student
resources are located in the Student Center, and include algorithmically generated
practice exams and quizzes, audiovisual tutorials, and web links.

Video Series The video series is composed of a set of videocassettes. An on-
screen instructor introduces topics and works through examples using the meth-
ods presented in the text. The video series is also available on video CD-ROMs.

NetTutor NetTutor is a revolutionary system that enables students to interact
with a live tutor over the World Wide Web. Students can receive instruction from
live tutors using NetTutor’s web-based, graphical chat capabilities. They can also
submit questions and receive answers, browse previously answered questions, and
view previous live chat sessions.
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Features

Polynomial
and Rational 

Functions
O U T L I N E

3.1 Polynomial Functions and Models

3.2 Real Zeros and Polynomial Inequalities

3.3 Complex Zeros and Rational Zeros of Polynomials

3.4 Rational Functions and Inequalities

Chapter 3 R E V I E W

Chapter 3 G R O U P  A C T I V I T Y : Interpolating Polynomials

R
ECALL THAT THE ZEROS OF A FUNCTION f ARE THE SOLUTIONS OR ROOTS

of the equation f(x)  0, if any exist. There are formulas that give the

exact values of the zeros, real or imaginary, of any linear or

quadratic function (Table 1).

Linear and quadratic functions are also called first- and second-
degree polynomial functions, respectively. Thus, Table 1 contains
formulas for the zeros of any first- or second-degree polynomial
function. What about higher-degree polynomial functions such as

p(x)  4x3
 2x2

 3x  5 Third degree (cubic)

q(x)   2x4
 5x2

  6 Fourth degree (quartic)

r(x)  x5
 x 4

 x3
 10 Fifth degree (quintic)

Before getting started on this chapter,

review the following concepts:

 Polynomials
(Basic Algebra Review*, Sec. 2 and 3)

 Rational Expressions 
(Basic Algebra Review*, Section 4)

 Graphs of Functions 
(Chapter 1, Section 3)

 Linear Functions 
(Chapter 2, Section 1)

 Linear Regression 
(Chapter 2, Section 2)

 Quadratic Functions 
(Chapter 2, Section 3)

 Complex Numbers 
(Chapter 2, Section 4)

 Quadratic Formula 
(Chapter 2, Section 5)

T A B L E  1 Zeros of Linear and Quadratic Functions

Function Linear Quadratic

Form f (x)  ax  b, a  0 f (x)   ax2
 bx   c, a  0

Equation ax  b  0 ax2
 bx  c  0

Zeros/Roots
x  

 b  兹b2
 4ac

2a
x   

b

a

*At www.mhhe.com/barnett

Chapter Opener  
Each chapter opens with an outline

showing the section titles of the

chapter, and a chapter introduction

that sets the chapter in the context of

the entire course. The outline and

introduction help students to get their

bearings, and instructors to plan lec-

tures and homework. The Preparing

for this chapter box directs students

to review background material from

previous courses or chapters required

to learn the chapter’s content.
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S O L U T I O N

Algebraic Solution

We use the familiar properties of equality (see Appendix
A, Section A.1) to transform the given equation into an
equivalent equation with an obvious solution.

5x  8  2x  1 Original equation

5x  8  2x  2x  1  2x Subtract 2x from both sides.

3x  8  1 Combine like terms.

3x  8  8  1  8 Add 8 to both sides.

3x  9 Combine like terms.

Divide both sides by 3.

x  3 Simplify.

It follows from the properties of equality that x 3 is also
the solution set of all the preceding equations in our solu-
tion, including the original equation.

3x

3
 

9

3

Graphical Solution

Enter each side of the equation in the equation
editor of a graphing utility (Fig. 1) and use the
intersect command (Fig. 2).

FIGURE 1

 10

 10

10

10

y2   2x   1

y1   5x   8

FIGURE 2

Thus, x  3 is the solution to the original
equation.

Solving an Equation

Solve 5x  8  2x  1.

4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS328

Continuous Compound Interest

If $100 is invested at an annual rate of 8% compounded continuously, what
amount, to the nearest cent, will be in the account after 2 years?

S O L U T I O N

Algebraic Solution

Use the continuous compound interest
formula to find A when P $100,
r  0.08, and t  2:

A  Pert

 $100e(0.08)(2) 8% is equivalent

to r 0.08.

 $117.35

Compare this result with the values
calculated in Table 2.

Graphical Solution

Graphing

A  100e0.08x

and using trace (Fig. 9) shows 
A  $117.35.

FIGURE 9

0

0

200

10

What amount will an account have after 5 years if $100 is invested at an annual
rate of 12% compounded annually? Quarterly? Continuously? Compute answers
to the nearest cent.

1. y  
1
2(4 x)

x y

 3 32.00

 2 8.00

 1 2.00

0 0.50

1 0.13

2 0.03

3 0.01

5 5

40

30

20

x

y

10

1

1 2 3

2.
3. y intercept:  3; x intercept: 1.83; increas-

ing for all x; horizontal asymptote: y   5
4. $2,707.04
5. After 23 quarters
6. Annually: $176.23; quarterly: $180.61;

continuously: $182.21

x   
1
3

  Side-by-Side Solutions: Algebraic
and Graphical
Many solved examples in the book provide graphical

solutions side-by-side with algebraic solutions. By

seeing the same answer result from their symbol

manipulations and from graphical approaches,

students gain insight into the power of algebra and

make important conceptual and visual connections.

Examples and Matched Problems  
Integrated throughout the text, completely worked exam-

ples and practice problems are used to introduce

concepts and demonstrate problem-solving

techniques—algebraic, graphical, and numerical. Each

Example is followed by a similar Matched Problem for

the student to work through while reading the material.

Answers to the matched problems are located at the end

of each section, for easy reference. This active

involvement in the learning process helps students

develop a thorough understanding of algebraic concepts

and processes.
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Vertical and Horizontal Shifts
If a new function is formed by performing an operation on a given function, then
the graph of the new function is called a transformation of the graph of the orig-
inal function. For example, if we add a constant k to f (x), then the graph of 
y  f (x) is transformed into the graph of y  f (x)  k.

E X P L O R E / D I S C U S S  1

The following activities refer to the graph of f shown in Figure 2 and
the corresponding points on the graph shown in Table 1.

x

y

 5

5 5

5

A

B

C

D

E

y   f(x)

FIGURE 2

T A B L E  1

x f (x)

A  4 0

B  2 3

C 0 0

D 2  3

E 4 0

(A) Use the points in Table 1 to construct a similar table and then
sketch a graph for each of the following functions: y  f (x)  2,
y  f (x)  3. Describe the relationship between the graph of 
y  f (x) and the graph of y  f (x)  k for k any real number.

(B) Use the points in Table 1 to construct a similar table and then
sketch a graph for each of the following functions: y  f (x  2),
y  f (x  3). [Hint: Choose values of x so that x  2 or x  3
is in Table 1.] Describe the relationship between the graph of 
y  f (x) and the graph of y  f (x  h) for h any real number.

Vertical and Horizontal Shifts

(A) How are the graphs of y  x2
 2 and y  x2

 3 related to the graph of
y  x2? Confirm your answer by graphing all three functions simulta-
neously in the same viewing window.

13.  3i(2  4i) 14.  2i(5  3i)

15. (3  3i)(2 3i) 16. ( 2  3i)(3 5i)

17. (2  3i)(7 6i) 18. (3  2i)(2 i)

19. (7  4i)(7 4i) 20. (5  3i)(5 3i)

21. 22. 23.

24. 25. 26.
15  3i

2  3i

13  i

2  i

2  i

3  2i

3  i

2  3i

1

3  i

1

2  i

In Problems 1–26, perform the indicated operations and write

each answer in standard form.

1. (2  4i)  (5  i) 2. (3  i)  (4  2i)

3. ( 2  6i)  (7  3i) 4. (6  2i)  (8  3i)

5. (6  7i)  (4  3i) 6. (9  8i)  (5  6i)

7. (3  5i)  ( 2  4i) 8. (8  4i)  (11  2i)

9. (4  5i)  2i 10. 6  (3  4i)

11. (4i)(6i) 12. (3i)(8i)

In Problems 27–34, evaluate and express results in standard

form.

27. 28.

29. 30.

31. 32.

33. 34.

In Problems 35–44, convert imaginary numbers to standard

form, perform the indicated operations, and express answers 

in standard form.

35.

36.

37.

38.

39.

40.

41. 42.

43. 44.
1

3    16

1

2    9

6    64

2

5    4

7

(2    1)(5    9)

(3    4)( 2    49)

( 2    36)  (4    49)

(9    9)  (12    25)

(3    4)  ( 8    25)

(2    4)  (5    9)

  3  12  2  8

 3  12  2 8

  3 12 2  8

 3 12 2 8

Write Problems 45–50 in standard form.

45. 46.

47. 48.

49. (2  3i)2
 2(2  3i)  9

50. (2  i)2
 3(2  i)  5

51. Let f(x)  x2
 2x  2.

(A) Show that the conjugate complex numbers 1  i and
1  i are both zeros of f.

(B) Does f have any real zeros? Any x intercepts? Explain.

52. Let g(x)   x2
 4x  5.

(A) Show that the conjugate complex numbers 2  i and
2  i are both zeros of g.

(B) Does g have any real zeros? Any x intercepts? Explain.

53. Simplify: i18, i32, and i67.

54. Simplify: i21, i43, and i52.

In Problems 55–58, solve for x and y.

55. (2x  1)  (3y  2)i  5  4i

56. 3x  ( y  2)i  (5  2x)  (3y  8)i

2  i

3i

1  3i

2i

1

3i

2

5i

  Exploration and Discussion
Interspersed at appropriate places in every

section, Explore/Discuss boxes encourage

students to think critically about mathemat-

ics and to explore key concepts in more

detail. Verbalization of mathematical

concepts, results, and processes is

encouraged in these Explore/Discuss boxes,

in some matched problems, and in specified

problems in almost every exercise set.

Explore/Discuss material can be used in

class or as an out-of-class activity.

Balanced Exercise Sets  
Precalculus: Graphs and Models, second edition,

contains more than 5,500 problems. Each Exer-

cise set is designed so that an average or below-

average student will experience success and a

very capable student will be challenged. Exercise

sets are found at the end of each section in the

text, and are divided into A (routine, easy

mechanics), B (more difficult mechanics), and C

(difficult mechanics and some theory) levels of

difficulty so that students at all levels can be

challenged. Problem numbers that appear in

blue indicate problems that require students to

apply their reasoning and writing skills to the

solution of the problem.



Featuresxxii

2.6 Additional Equation-Solving Techniques 209

57. Geometry. The diagonal of a rectangle is 10 inches and
the area is 45 square inches. Find the dimensions of the
rectangle, correct to one decimal place.

58. Geometry. The hypotenuse of a right triangle is 12 inches
and the area is 24 square inches. Find the dimensions of
the triangle, correct to one decimal place.

59. Physics–Well Depth. If the splash of a stone dropped into
a well is heard 14 seconds after the stone is released, how
deep (to the nearest foot) is the well?

60. Physics–Well Depth. If the splash of a stone dropped into
a well is heard 2 seconds after the stone is released, how
deep (to the nearest foot) is the well?

61. Manufacturing. A lumber mill cuts rectangular beams
from circular logs that are 16 inches in diameter (see the
figure).

(A) Find a model for the cross-sectional area of the
beam. Use the width of the beam as the independent
variable.

(B) If the cross-sectional area of the beam is 120 square
inches, find the dimensions correct to one decimal
place.

(C) Find the dimensions of the beam that has the largest
cross-sectional area and find this area. Round answers
to one decimal place.

62. Design. A food-processing company packages an as-
sortment of their products in circular metal tins 12 inches
in diameter. Four identically sized rectangular boxes are
used to divide the tin into eight compartments (see the
figure).

(A) Find a model for the cross-sectional area of one of
these boxes. Use the width of the box as the inde-
pendent variable.

(B) If the cross-sectional area of the box is 15 square
inches, find the dimensions correct to one decimal
place.

(C) Find the dimensions of the box that has the largest
cross-sectional area and find this area. Round answers
to one decimal place.

63. Construction. A water trough is constructed by bending a
4- by 6-foot rectangular sheet of metal down the middle
and attaching triangular ends (see the figure). If the vol-
ume of the trough is 9 cubic feet, find the width correct to
two decimal places.

64. Design. A paper drinking cup in the shape of a right
circular cone is constructed from 125 square centimeters
of paper (see the figure). If the height of the cone is 10
centimeters, find the radius correct to two decimal
places.

S   r  r2   h2

h

r

Lateral surface area:

2 feet

6 feet

 

 

Mathematical Modeling: Choosing a 
Long Distance Calling Plan

The number of companies offering residential long distance telephone service has
grown rapidly in recent years. The plans they offer vary greatly and it can be dif-
ficult to select the plan that is best for you. Here are five typical plans:

Plan 1: A flat fee of $50 per month for unlimited calls.

Plan 2: A $30 per month fee for a total of 30 hours of calls and an additional
charge of $0.01 per minute for all minutes over 30 hours.

Plan 3: A $5 per month fee and a charge of $0.04 per minute for all calls.

Plan 4: A $2 per month fee and a charge of $0.045 per minute for all calls;
the fee is waived if the charge for calls is $20 or more.

Plan 5: A charge of $0.05 per minute for all calls; there are no additional fees.

(A) Construct a mathematical model for each plan that gives the total monthly
cost in terms of the total number of minutes of calls placed in a month.
Graph each model on a graphing utility. You may find Boolean expressions
like (x  a) helpful in entering your model in a graphing utility (see
Example 4 in Section 1.6).

(B) Compare plans 1 and 2. Determine how many minutes per month would make
plan 1 cheaper and how many would make plan 2 cheaper.

(C) Repeat part (B) for plans 1 and 3; plans 1 and 4; plans 1 and 5.

(D) Repeat part (B) for plans 2 and 3; plans 2 and 4; plans 2 and 5.

(E) Repeat part (B) for plans 3 and 4; plans 3 and 5.

(F) Repeat part (B) for plans 4 and 5.

(G) Is there one plan that is always better than all the others? Based on your per-
sonal calling history, which plan would you choose and why?

  Applications
One of the primary objectives of this book is

to give the student substantial experience in

modeling and solving real-world problems.

More than 700 application exercises help

convince even the most skeptical student that

mathematics is relevant to everyday life. The

most difficult application problems are

marked with two stars (  ), the moderately

difficult application problems with one star

( ), and the easier application problems are

not marked. An Applications Index is included

following the table of contents to help locate

particular applications.

Group Activities  
A Group Activity is located at the end

of each chapter and involves many of

the concepts discussed in that chapter.

These activities strongly encourage the

verbalization of mathematical concepts,

results, and processes. All of these spe-

cial activities are highlighted to empha-

size their importance.
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1. Match each equation with the graph of f, g, m, or n in the
figure.

(A) y  (0.2)x (B) y  2x

(C) y  (D) y  4x

2. Match each equation with the graph of f, g, m, or n in the
figure.

(A) y  e 1.2x (B) y  e0.7x

(C) y  e 0.4x (D) y  e1.3x

In Problems 3–10, compute answers to four significant digits.

3. 4. 3 兹25兹3

0

 4

6

4

f

g m n

0

 2

6

2

f g m

n

(1
3)x

5. 6.

7. 8.

9. 10.

In Problems 11–18, simplify.

11. 103x 1104 x 12. (43x)2y 13.

14. 15. 16. (2x3y)z

17. 18.

19. (A) Explain what is wrong with the following reasoning
about the expression [1  (1/x)]x: As x gets large,
1  (1/x) approaches 1 because 1/x approaches 0, and
1 raised to any power is 1, so [1  1/x]x approaches 1.

(B) Which number does [1  (1/x)]x approach as x
approaches  ?

20. (A) Explain what is wrong with the following reasoning
about the expression [1  (1/x)]x: If b  1, then the
exponential function bx approaches  as x approaches
 , and 1  (1/x) is greater than 1, so [1  (1/x)]x

approaches infinity as x→  .

(B) Which number does [1  (1/x)]x approach as x
approaches  ?

e4 3x

e2 5x

e5x

e2x 1

冢4x

5y冣
3z5x 3

5x 4

3x

31 x

3  3  

2

2  2  

2

e兹2兹e

e  e 1e2
 e 2

Before graphing the functions in Problems 21–30, classify each

function as increasing or decreasing, find the x and y inter-

cepts, and identify any asymptotes. Round any approximate

values to two decimal places. Examine the graph to check your

answers.

21. y  3x 22. y  5x

23. 24.

25. g(x)   3 x 26. f (x)   5x

y  (1
5)x

 5 xy  (1
3)x

 3 x

27. F(x)  2  e x 28. G(x)  e2x
 3

29. m(t)  e3t
 2 30. n(t)  3  e 2t

In Problems 31–42, solve for x.

31. 53x
 54x 2 32. 102 3x

 105x 6

33. 34.

35. (1  x)5
 (2x  1)5 36. 53

 (x  2)3

45x x2

 4 67x2

 72x 3

  Interpretation 
of Graphs 
A course implementing a true

“graphing approach” to algebra

equips students with the skills

to read and interpret graphs.

Many exercises in this text ask

students to make

determinations about equations

or functions based on graphs.

These exercises are marked

with an icon .

Foundation for Calculus  
Because many students will use this book to prepare

for a calculus course, examples and exercises that are

especially pertinent to calculus are marked with an

icon .

Evaluating and Simplifying a Difference Quotient

For f(x)  x2
 4x  5, find and simplify:

(A) f (2) (B) f (2  h) (C)

(D) f (x  h) (E)

S O L U T I O N S

(A) f (2)  22
 4(2)  5  17

(B) To find f (2  h), replace x with 2  h everywhere it occurs in the
equation that defines f and simplify:

(C) Using parts (A) and (B), we have

(D) To find f(x  h), we replace x with x  h everywhere it appears in
the equation that defines f and simplify:

(E) Using the result of part (D), we get

 
2xh  h2

 4h

h
 

h(2x  h  4)

h
 2x  h  4

 
x2
 2xh  h2

 4x  4h  5  x2
 4x  5

h

f(x  h)  f(x)

h
 

x2
 2xh  h2

 4x  4h  5  (x2
 4x  5)

h

 x2
 2xh  h2

 4x  4h  5
f(x ⴙ h)  (x ⴙ h)2

 4(x ⴙ h)  5

 
h2
 8h

h
 

h(h  8)

h
 h  8

f(2  h)  f(2)

h
 

h2
 8h  17  17

h

 h2
 8h  17

 4  4h  h2
 8  4h  5

f(2 ⴙ h)  (2 ⴙ h)2
 4(2 ⴙ h)  5

f(x  h)  f(x)

h

f(2  h)  f(2)

h

*The symbol             denotes problems that are related to calculus.

Repeat Example 8 for f(x)  x2
 3x  7.

*
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Finding x and y Intercepts

Find the x and y intercepts (correct to three decimal places) of f(x)  x3
 x  4.

S O L U T I O N

From the graph of f in Figure 2, we see that the y intercept is f(0)   4 and that
there is an x intercept between 1 and 2. We use the zero command to find this
intercept. First we are asked to select a left bound (Fig. 3). This is a value of x
to the left of the x intercept. Next we are asked to find a right bound (Fig. 4).
This is a value of x to the right of the x intercept. If a function has more than
one x intercept, you should select the left and right bounds so that there is only
one intercept between the bounds.

FIGURE 2 FIGURE 3 FIGURE 4

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

Finally, we are asked to select a guess. The guess must be between the bounds
and should be close to the intercept (Fig. 5). Figure 6 shows that the x intercept
(to three decimal places) is 1.379.

 10

 10

10

10

FIGURE 5

 10

 10

10

10

FIGURE 6

Figure 3 shows graphs of several rational functions, illustrating the properties of
Theorem 1.

x

y

 15

5 5

15

x

y

 3

3 3

3

x

y

 2

10 10

2

x

y

 2

2 2

2

x

y

 3

3 3

3

x

y

 5

5 5

5

3.4 Rational Functions and Inequalities 291

(a) f(x)  
1

x
(b) g(x)  

1

x2
 1

(c) h(x)  
1

x2
 1

(d) F(x)  
x2
 3x

x  1
(e) G(x)  

 x  1

x3
 4x

(f) H(x)  
x2
 x  1

x2
 1

FIGURE 3 Graphs of rational
functions.

Properties of Graphs of Rational Functions

Use Theorem 1 to explain why each graph is not the graph of a rational function.

x

y

 3

3 3

3

x

y

 3

3 3

3

x

y

 3

3 3

3

(A) (B) (C)

Technology  
The generic term graphing utility is used to refer to

any of the various graphing calculators or

computer software packages that might be avail-

able to students using this book. The use of tech-

nology is integrated throughout the text for visual-

ization, investigation, and verification. The majority

of the graphing utility images in this book are

“screen dumps” from a Texas Instruments TI-83

Plus graphing calculator. Students not using that TI

calculator should be able to produce similar results

on any standard graphing calculator or computer

algebra system.

  Graphs and Illustrations
All graphs in this text are computer generated

to ensure mathematical accuracy. Graphing

utility screens displayed in the text are actual

output from a graphing calculator.
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Complex Numbers and Radicals
Recall that we say that a is a square root of b if a2

 b. If x is a positive real
number, then x has two square roots, the principal square root, denoted by ,
and its negative, . If x is a negative real number, then x still has two square
roots, but now these square roots are imaginary numbers.

 兹x
兹x

D E F I N I T I O N  4
Principal Square Root of a Negative Real Number

The principal square root of a negative real number, denoted by , where a is positive, is

defined by

The other square root of  a, a 0, is . 兹 a   i兹a

兹ⴚ9 ⴝ i兹9 ⴝ 3i兹ⴚ3 ⴝ i 兹3兹 a  i兹a

兹 a

Note in Definition 4 that we wrote and in place of the standard
forms and . We follow this convention whenever it appears that i might
accidentally slip under a radical sign ( , but ). Definition 4
is motivated by the fact that

(i兹a)2
 i2a   a

兹ai  i兹a兹ai  兹ai
兹3i兹ai

i兹3i兹a

Student Aids  
Annotation of examples and developments, in small

colored type, is found throughout the text to help stu-

dents through critical stages. Think Boxes are dashed

boxes used to enclose steps that are usually

performed mentally.

Caution Boxes appear throughout the text to

indicate where student errors often occur.  

Solving an Equation

Solve 
7

2x
  3 

8

3
 

15

x
.

S O L U T I O N

Algebraic Solution

Note that 0 must be excluded from the permissible values of x because divi-
sion by 0 is not permitted. To clear the fractions, we multiply both sides of
the equation by 3(2x) 6x, the least common denominator (LCD) of all
fractions in the equation.

x 0

Multiply by 6x, the LCD.

21  18x 16x 90 The equation is now 

free of fractions.

21   18x  16x  16x   90   16x Subtract 16x from both sides.

21  34x   90 Combine like terms.

21  34x 21   90 21 Subtract 21 from both sides.

 34x    111 Combine like terms.

6x ⴢ

7

2x
 6x ⴢ 3  6x ⴢ

8

3
 6x ⴢ

15

x

6x冢 7

2x
 3冣  6x冢8

3
 

15

x 冣

7

2x
 3  

8

3
 

15

x

Graphical Solution

Enter y1  3 and y2

(Fig. 3) in the equation editor of a
graphing utility. Note the use of
parentheses in Figure 3 to be cer-
tain that is evaluated correctly.
Now use the intersect command
(Fig. 4).

7
2x

 
8
3  

15
x 

7
2x

FIGURE 3

Do not divide both members of an equation by an expression containing the variable for which you

are solving. You may be dividing by 0.

2 MODELING WITH LINEAR AND QUADRATIC FUNCTIONS182

C A U T I O N

1. One side of an equation must be 0 before the zero property can be
applied. Thus

does not imply that x  1   4 or x  5   4. See Example 1,
part B, for the correct solution of this equation.

2. The equations

2x2
 3x and 2x  3

are not equivalent. The first has solution set whereas the sec-
ond has solution set . The root x  0 is lost when each member
of the first equation is divided by the variable x. See Example 1, 
part C, for the correct solution of this equation.

{3
2}

{0, 3
2},

 (x  1)(x  5)   4
x2
 6x  5   4

  Screen Boxes are used to highlight

important definitions, theorems, results, and

step-by-step processes.
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4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS324

Describe the graph of f(x)  2ex/2  5, including x and y intercepts, increasing
and decreasing properties, and horizontal asymptotes. Round any approximate val-
ues to two decimal places.

Compound Interest
The fee paid to use another’s money is called interest. It is usually computed as
a percentage, called the interest rate, of the principal over a given time. If, at the
end of a payment period, the interest due is reinvested at the same rate, then the
interest earned as well as the principal will earn interest during the next payment
period. Interest paid on interest reinvested is called compound interest.

Suppose you deposit $1,000 in a savings and loan that pays 8% compounded
semiannually. How much will the savings and loan owe you at the end of 2 years?
Compounded semiannually means that interest is paid to your account at the end
of each 6-month period, and the interest will in turn earn interest. The interest
rate per period is the annual rate, 8%  0.08, divided by the number of com-
pounding periods per year, 2. If we let A1, A2, A3, and A4 represent the new
amounts due at the end of the first, second, third, and fourth periods, respectively,
then

What do you think the savings and loan will owe you at the end of 6 years?
If you guessed

A  $1,000(1  0.04)12

you have observed a pattern that is generalized in the following compound inter-
est formula:

 $1,000(1  0.04)4

 [$1,000(1  0.04)3](1  0.04)

A4  A3(1  0.04)

 $1,000(1  0.04)3

 [$1,000(1  0.04)2](1  0.04)

A3  A2(1  0.04)

 $1,000(1  0.04)2

 [$1,000(1  0.04)](1  0.04)

A2  A1(1  0.04)

 $1,000(1  0.04)

A1  $1,000  $1,000 0.08

2  
P 1   rn 

P 1   
r

n 
2

P 1   rn 
3

P 1   
r

n 
4

Functional Use of Four Colors improves the

clarity of many illustrations, graphs, and developments,

and guides students through certain critical steps.  

1 FUNCTIONS, GRAPHS, AND MODELS54

75. Computer Science. Let f (x)  10 0.5  x/10 . Evaluate f
at 4,  4, 6,  6, 24, 25, 247,  243,  245, and  246.
What operation does this function perform?

76. Computer Science. Let f (x)  100 0.5  x/100 . Evaluate
f at 40,  40, 60,  60, 740, 750, 7,551,  601,  649, and
 651. What operation does this function perform?

 77. Computer Science. Use the greatest integer function to
define a function f that rounds real numbers to the nearest
hundredth.

 78. Computer Science. Use the greatest integer function to
define a function f that rounds real numbers to the nearest
thousandth.

79. Revenue. The revenue (in dollars) from the sale of x car
seats for infants is given by

R(x)  60x  0.035x2 0  x  1,700

Find the number of car seats that must be sold to
maximize the revenue. What is the maximum revenue (to
the nearest dollar)?

80. Profit. The profit (in dollars) from the sale of x car seats
for infants is given by

P(x)  38x  0.035x2
 4,000 0  x  1,700

Find the number of car seats that must be sold to
maximize the profit. What is the maximum profit (to the
nearest dollar)?

 81. Manufacturing. A box is to be made out of a piece of
cardboard that measures 18 by 24 inches. Squares, x
inches on a side, will be cut from each corner and then the
ends and sides will be folded up (see the figure).

Find the size of the cutout squares that will make the
maximum volume. What is the maximum volume? Round
answers to two decimal places.

 82. Manufacturing. A box with a hinged lid is to be made out
of a piece of cardboard that measures 20 by 40 inches. Six
squares, x inches on a side, will be cut from each corner
and the middle of the sides, and then the ends and sides
will be folded up to form the box and its lid (see the figure).

Find the size of the cutout squares that will make the
maximum volume. What is the maximum volume? Round
answers to two decimal places.

24 inches

1
8

 i
n

ch
e
s

x

x

40 inches

2
0

 i
n

ch
e
s

x

x

Lake

Land

Freshwater
source

Pipe

20 miles

8
 m

ile
s

x 20   x

Island

83. Construction. A freshwater pipe is to be run from a
source on the edge of a lake to a small resort community
on an island 8 miles offshore, as indicated in the figure. It
costs $10,000 per mile to lay the pipe on land and $16,000
per mile to lay the pipe in the lake. The total cost C(x) in
thousands of dollars of laying the pipe is given by

Find the length (to two decimal places) of the land portion
of the pipe that will make the production costs minimum.
Find the minimum cost to the nearest thousand dollars.

0  x  20C(x)  10(20  x)  16 x2
 64

  Boldface Type is used to introduce

new terms and highlight important 

comments.
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10.1 Sequences and Series
A sequence is a function with the domain a set of successive in-
tegers. The symbol an, called the nth term, or general term,
represents the range value associated with the domain value
n. Unless specified otherwise, the domain is understood to be
the set of natural numbers. A finite sequence has a finite do-
main, and an infinite sequence has an infinite domain. A re-
cursion formula defines each term of a sequence in terms of
one or more of the preceding terms. For example, the
Fibonacci sequence is defined by an an 1 an 2 for n 3,
where a1  a2 1. If a1, a2, . . . , an, . . . is a sequence, then the
expression a1 a2     an    is called a series. A finite
sequence produces a finite series, and an infinite sequence pro-
duces an infinite series. Series can be represented using the
summation notation:

where k is called the summing index. If the terms in the series
are alternately positive and negative, the series is called an al-
ternating series.

10.2 Mathematical Induction
A wide variety of statements can be proven using the principle
of mathematical induction: Let Pn be a statement associated
with each positive integer n and suppose the following condi-
tions are satisfied:

1. P1 is true.
2. For any positive integer k, if Pk is true, then Pk 1 is also

true.

Then the statement Pn is true for all positive integers n.
To use mathematical induction to prove statements involving

laws of exponents, it is convenient to state a recursive defini-

tion of an:

a1
 a and an 1

 ana for any integer n 1

To deal with conjectures that may be true only for n  m,
where m is a positive integer, we use the extended principle of
mathematical induction: Let m be a positive integer, let Pn be
a statement associated with each integer n m, and suppose the
following conditions are satisfied:

1. Pm is true.
2. For any integer k  m, if Pk is true, then Pk 1 is also

true.

Then the statement Pn is true for all integers n m.

 
n

k m

ak  am  am 1  
. . .  an

10.3 Arithmetic and Geometric
Sequences

A sequence is called an arithmetic sequence, or arithmetic
progression, if there exists a constant d, called the common
difference, such that

an  an 1 d or an  an 1 d

for every n 1

The following formulas are useful when working with arith-
metic sequences and their corresponding series:

an  a1  (n  1)d nth-Term Formula

Sn  [2a1  (n  1)d ] Sum Formula—First Form

Sn  (a1  an) Sum Formula—Second 
Form

A sequence is called a geometric sequence, or a geometric
progression, if there exists a nonzero constant r, called the
common ratio, such that

or an  ran 1 for every n 1

The following formulas are useful when working with geomet-
ric sequences and their corresponding series:

an  a1rn 1
nth-Term Formula

Sn  r  1 Sum Formula—First Form

Sn  r  1 Sum Formula—Second
Form

S   r  1 Sum of an Infinite 

Geometric Series

10.4 Multiplication Principle,
Permutations, and
Combinations

Given a sequence of operations, tree diagrams are often used to
list all the possible combined outcomes. To count the number of
combined outcomes without actually listing them, we use the
multiplication principle:

a1

1  r

a1  ran

1  r

a1  a1r
n

1  r

an

an 1

 r

n

2

n

2

839Chapter 10 Review

763

(D) How much profit will the distributor make if all these sets are sold? If
there is more than one way to use all the available locomotives and cars,
which one will produce the largest profit?

Using Matrices to Find Cost, Revenue, and Profit

3. Solve by substitution or elimination by addition:

4. Solve by graphing: 
x, y  0

 3x  5y  15

 2x  y  1
 6x  3y  2

Work through all the problems in this cumulative review and check answers in the back of the book.

Answers to all review problems are there, and following each answer is a number in italics indicat-

ing the section in which that type of problem is discussed. Where weaknesses show up, review ap-

propriate sections in the text.

1. Solve using substitution or elimination by addition:

2. Solve by graphing: 
 3x  y   1
 2x  y   4

 2x  3y  1
 3x  5y  11

Chapter Review sections are provided at the

end of each chapter and include a thorough review

of all the important terms and symbols. This recap

is followed by a comprehensive set of review 

exercises. 

  A Cumulative Review Exercise set is

provided after every second or third chapter,

for additional reinforcement.
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To the Student

You are now a student of mathematics. By signing up for this course, whether
you did so because you had to or because you wanted to, you are about to begin
a course of study that requires—and teaches—abstract mathematical thought. The
study of algebra is not merely an exercise in matching equations to examples. It
is not only the study of how mathematical ideas can be better translated into more
common language. It is not simply the study of how these ideas are applicable to
everyday life.

The study of algebra and trigonometry forms the basis for developing new
thought patterns. It involves a different way of using your mind. That in itself has
value. A successful study of algebra can enhance your reasoning skills, problem-
solving abilities, geometric visualization, and creative thought processes. As we
develop the concepts and ideas in this text, we strive to help you to think about
mathematics in a way that mathematicians, engineers, physical and life scientists,
economists and business managers, and other professionals find useful in their
professions.

Mathematics is not a spectator sport. Just as you cannot learn to swim by
watching someone swim, you cannot learn mathematics by simply reading worked
examples. You must work the problems yourself—lots of them. No mathematics
text should be read without a pencil and paper at hand. To learn mathematics, you
must do mathematics.

As you study the text, refer to the “Preparing for this chapter” box on the
opening page. Review the topics covered either in Appendix A or in the Basic
Algebra Review on the text’s Online Learning Center at www.mhhe.com/barnett.
This review will remind you of the prerequisite material you studied in previ-
ous courses, and help you to reinforce the skills learned in those courses. At
the end of each chapter, you will find a Chapter Review, and at the end of every
second or third chapter, Cumulative Review Exercises. These can assist you in
preparing for tests. Then we recommend the following five-step approach:

1. Read the section from beginning to end, making note of the theorems, the
“Cautions,” and “Remarks”; do not get discouraged if you cannot under-
stand everything the first time through

2. Work through the examples provided

3. Work the Matched Problems (the solutions to each are included at the end
of each section)

4. Review the main ideas of the section

5. Work the assigned (and, when you can, the unassigned) exercises

We assume you will have access to a graphing calculator or other utility. We have
included many screen shots from the popular Texas Instruments TI-83 Plus. You
can, however, use any standard graphing calculator to complete this course. If you
are unsure of which calculator to use, ask your instructor. As you read this text,
reproduce each screen shot on your calculator. This will develop the skills nec-
essary to complete the matched problems and exercise sets. For further insight
into using a graphing utility, access the McGraw-Hill Graphing Calculator Work-
shop on the Online Learning Center.
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The following supplemental materials can help you to succeed in the course.

Online Learning Center If you purchased a new copy of this text, you have
access to the OLC that accompanies it. Check it out! 
This site offers many features including:

1. A Basic Algebra Review

2. Practice exercises, sample quizzes, and tests 

3. Audio/visual tutorials

4. McGraw-Hill Graphing Calculator Workshop

5. A variety of additional resources

ALEKS If your instructor has not adopted ALEKS® for this course, consider sub-
scribing to this individualized online tutorial. ALEKS® is an artificial intelligence–
based tutorial that isolates what you know and then teaches what you need to learn
to pass this course. Students who enroll in and complete the course in ALEKS®

demonstrate a 15–20 percent increase in test scores. It is worth your time and
money to assure your success. Learn more at www.highedstudent.aleks.com.

NetTutor Online support is also available in the form of access to a tutor via
the World Wide Web. Receive instruction from live tutors using NetTutor’s web-
based, graphical chat capabilities during normal study hours. You can also submit
questions and receive answers, browse previously answered questions, and view
previous live chat sessions, 24 hours a day. Access NetTutor via the Online Learn-
ing Center.

Student’s Solutions Manual We also encourage you to inquire whether your
instructor has made the Student’s Solutions Manual available in your college book-
store. Within this supplement, you will find the solutions to all the odd-numbered
problems in this text.

Finally, whether your initial plan is simply to make it through this course
alive or whether you are planning on further study in mathematics, we urge you
to keep an open mind. You might find, as so many students have discovered before
you, that once you master algebra, further study in mathematics becomes more
attractive than you anticipate. Learn from your instructor, learn from each other,
and learn from this text. Remember: you can do it!

To the Studentxxx
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1.1 Using Graphing Utilities

1.2 Functions

1.3 Functions: Graphs and Properties

1.4 Functions: Graphs and Transformations

1.5 Operations on Functions; Composition

1.6 Inverse Functions

Chapter 1 R E V I E W

Chapter 1 G R O U P  A C T I V I T Y : Mathematical Modeling—Choosing a Long Distance

Calling Plan

T
HE FUNCTION CONCEPT IS ONE OF THE MOST IMPORTANT

ideas in mathematics. The study of either the theory or the

applications of mathematics beyond the most elementary

level requires a firm understanding of functions and their graphs. In

the first section of this chapter we discuss the techniques involved

in using an electronic graphing device such as a graphing calcula-

tor or a computer. In the remaining sections, we introduce the impor-

tant concept of a function, discuss basic properties of functions and

their graphs, and examine specific types of functions. Much of the

remainder of this book is concerned with applying the ideas intro-

duced in this chapter to a variety of different types of functions, as

is evidenced by the chapter titles following this chapter. Efforts

made to understand and use the function concept correctly from the

beginning will be rewarded many times in this course and in most

future courses that involve mathematics.

Before getting started on this chapter,

review the following concepts:

 Set Notation 
(Basic Algebra Review*, Section 1)

 Polynomials 
(Basic Algebra Review*, Sec. 2 and 3)

 Rational Expressions 
(Basic Algebra Review*, Section 4)

 Square Root Radicals 
(Basic Algebra Review*, Section 7)

 Interval Notation 
(Appendix A, Section A.1)

 Cartesian Coordinate System 
(Appendix A, Section A.2)

 Distance Formula 
(Appendix A, Section A.3)

 Pythagorean Theorem 
(Appendix C)

*At www.mhhe.com/barnett



Using Graphing Utilities

Graphing Utilities  Screen Coordinates  The Trace, Zoom, and Intersect Commands  

Mathematical Modeling

The use of technology to aid in drawing and analyzing graphs is revolutionizing
mathematics education and is the reason for this book. Your ability to interpret
mathematical concepts and to discover patterns of behavior will be greatly
increased as you become proficient with an electronic graphing device. In this
section we introduce some of the basic features of electronic graphing devices.
Additional features will be introduced as the need arises. If you have already used
an electronic graphing device in a previous course, you can use this section to
quickly review basic concepts. If you need to refresh your memory about a par-
ticular feature, consult Graphing Utility Features in the index to locate the text-
book discussion of that feature.

Graphing Utilities
We now turn to the use of electronic graphing devices to graph equations. We will
refer to any electronic device capable of displaying graphs as a graphing utility.
The two most common graphing utilities are handheld graphing calculators and
computers with appropriate software. You should have such a device as you pro-
ceed through this book.

We will discuss graphing utilities only in general terms. Refer to the manual
or to the graphing utility supplement accompanying this text for specific details
relative to your own graphing utility.

An image on the screen of a graphing utility is made up of darkened rectan-
gles called pixels (Fig. 1). The pixel rectangles are the same size, and don't change
in size during any application. Graphing utilities use pixel-by-pixel plotting to pro-
duce graphs.

The accuracy of the graph depends on the resolution of the graphing utility.
Most graphing utilities have screen resolutions of between 50 and 75 pixels
per inch, which results in fairly rough but very useful graphs. Some computer
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FIGURE 1 Pixel-by-pixel plotting
on a graphing utility.

(a) Image on 
     a graphing
     utility.

(b) Magnification to show pixels.



systems can print very high quality graphs with resolutions greater than 1,000
pixels per inch.

Most graphing utility screens are rectangular. The graphing screen on a
graphing utility represents a portion of the plane in the rectangular coordinate
system. But this representation is an approximation, because pixels are not really
points, as is clearly shown in Figure 1. Points are geometric objects without
dimensions, whereas a pixel has dimensions. The coordinates of a pixel are usu-
ally taken at the center of the pixel and represent all the infinitely many geo-
metric points within the pixel. This does not cause much of a problem, as we
will see.

The portion of a rectangular coordinate system displayed on the graphing
screen is called a viewing window and is determined by assigning values to six
window variables: the lower limit, upper limit, and scale for the x axis and the
lower limit, upper limit, and scale for the y axis. Figure 2(a) illustrates the names
and values of standard window variables, and Figure 2(b) shows the resulting
standard viewing window.

The names Xmin, Xmax, Xscl, Ymin, Ymax, and Yscl will be used for the
six window variables. Xscl and Yscl determine the distance between tick marks
on the x and y axes, respectively. Xres is a seventh window variable on some
graphing utilities that controls the screen resolution; we will always leave this vari-
able set to the default value 1. The window variables may be displayed slightly
differently by your graphing utility. In this book, when a viewing window of a
graphing utility is pictured in a figure, the values of Xmin, Xmax, Ymin, and
Ymax are indicated by labels to make the graph easier to read [see Fig. 2(b)].
These labels are always centered on the sides of the viewing window, irrespective
of the location of the axes.

REMARK We think it is important that actual output from existing graphing utili-
ties be used in this book. The majority of the graphing utility images in this book
are screen dumps from a Texas Instruments TI-83 graphing calculator. Occasion-
ally we use screen dumps from a TI-86 graphing calculator, which has a wider
screen. You may not always be able to produce an exact replica of a text figure
on your graphing utility, but the differences will be minor and should cause no
difficulties.

We now turn to the use of a graphing utility to graph equations that can be
written in the form

y  (some expression in x) (1)
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FIGURE 2 A standard viewing
window and its dimensions.

 10

 10

10

10

(b) Standard viewing window

(a) Standard window variable
values

Graphing Equations Using a Graphing Utility

Step 1. Enter the equation.

Step 2. Enter values for the window variables. (A rule of thumb for choosing Xscl and Yscl, unless there

are reasons to the contrary, is to choose each about one-tenth the corresponding variable range.)

Step 3. Press the graph command.

Graphing an equation of the type shown in equation (1) using a graphing utility
is a simple three-step process:
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 5

 5

15

5

FIGURE 3 Graphing is a three-
step process.

(c) Press the graph command.(a) Enter equation. (b) Enter window variables.

Use a graphing utility to graph y   8  x
2 for  5  x  5 and  10  y  10.

REMARK For Example 1, we displayed a viewing window for each step in the
graphing procedure. Generally, we will show only the final results, as illustrated
in Figure 3(c).

The next example illustrates how a graphing utility can be used as an aid to
sketching the graph of an equation by hand. The example illustrates the use of
algebraic, numeric, and graphic approaches, which add considerably to the under-
standing of a problem.

Using a Graphing Utility as an Aid to Hand Graphing—Net Cash Flow

The net cash flow y in millions of dollars of a small high-tech company from
1991–1999 is given approximately by the following equation

y  0.4x3
 2x  1  4  x  4 (2)

where x represents the number of years before or after 1995, when the board of
directors appointed a new CEO.

(A) Construct a table of values for equation (2) for each year from 1991 to
1999, inclusive. Compute y to one decimal place.

(B) Obtain a graph of equation (2) in the viewing window of your graphing util-
ity. Plot the table values from part A by hand on graph paper, then join these
points with a smooth curve using the graph in the viewing window as an aid.

The following example illustrates this procedure for graphing the equation
y  x

2
 4. (See Example 1 of Appendix A, Section A.2 for a hand-drawn sketch

of this equation.)

Graphing an Equation with a Graphing Utility

Use a graphing utility to graph y  x
2
 4 for  5  x  5 and  5  y  15.

S O L U T I O N

Press the Y key to display the equation editor and enter the equation [Fig. 3(a)].
Press WINDOW to display the window variables and enter the values for these vari-
ables [Fig. 3(b)]. Press GRAPH to obtain the graph in Figure 3(c). (The form of
the screens in Figure 3 may differ slightly, depending on the graphing utility used.)

*Answers to matched problems in a given section are found near the end of the section, before the exercise set.

*



(B) To create a graph of equation (2) in the viewing window of a graph-
ing utility, we select values for the viewing window variables that
cover a little more than the values shown in Table 1, as shown in
Figure 5. We add a grid to the viewing window to obtain the graphing
utility graph shown in Figure 6(a). The corresponding hand sketch is
shown in Figure 6(b).
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(a)

(b)

T A B L E  1 Net Cash Flow

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999

x –4 –3 –2 –1 0 1 2 3 4

y (million $) –16.6 –3.8 1.8 2.6 1 –0.6 0.2 5.8 18.6

FIGURE 4

FIGURE 5

S O L U T I O N S

(A) After entering the given equation as y1, we can find the value of y for
a given value of x by storing the value of x in the variable X and
simply displaying y1, as shown in Figure 4(a). To speed up this
process, many graphing utilities can compute an entire table of values
directly, as shown in Figure 4(b). We organize these results in Table 1.

(a) Graphing utility graph

(b) Hand sketch

 20

 5

20

5

x

y

 5 5 5

 20

20

y   0.4x3
   2x   1

FIGURE 6 Net cash flow.

Given the equation y  1  1.9x  0.2x3, complete a table of values for the inte-
gers from  4 to 4, plot these points by hand, and then hand sketch the graph of
the equation with the aid of a graphing utility.

E X P L O R E / D I S C U S S 1

The choice of the viewing window has a pronounced effect on the
shape of a graph. Graph y   x3

 2x in each of the following view-
ing windows:

(A)  1  x  1,  1  y  1

(B)  10  x  10,  10  y  10

(C)  100  x  100,  100  y  100

Which window gives the best view of the graph of this equation, and why?

REMARK Table 1 gives us specific detail and the equation with its graph gives us
an overview. Each viewpoint has its specific use.

Screen Coordinates

We now take a closer look at screen coordinates of pixels. Earlier we indicated
that the coordinates of the center point of a pixel are usually used as the screen
coordinates of the pixel, and these coordinates represent all points within the
pixel. As expected, screen coordinates of pixels change as you change values of
window variables.



Any of the four pixels in Figure 7 can be used to approximate the point 
(2, 2), but it is not possible to find a pixel in this viewing window whose screen
coordinates are exactly (2, 2). It is instructive to repeat this exercise with differ-
ent window variables, say,  7  x  7 and  7  y  7.

The Trace, Zoom, and Intersect Commands
Analyzing a graph of an equation frequently involves finding coordinates of points
on the graph. Using the TRACE command on a graphing utility is one way to
accomplish this. The trace feature places a cursor directly on the graph and only
permits movement left and right along the graph. The coordinates displayed dur-
ing the tracing movement are coordinates of points that satisfy the equation. In
most cases, these coordinates are not the same as the pixel screen coordinates dis-
played using the unrestricted cursor movement discussed earlier.
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E X P L O R E / D I S C U S S 2

Graph the equation y  x in a standard viewing window.

(A) Without selecting the TRACE command, move the cursor to a
point on the screen that appears to lie on the graph of y  x and
is as close to (5, 5) as possible. Record these coordinates. Do these
coordinates satisfy the equation y  x?

 5

 5

5

5

 5

 5

5

5

 5

 5

5

5

 5

 5

5

5

FIGURE 7 Screen coordinates of
pixels near (2, 2).

To find screen coordinates of various pixels, move a cursor around the viewing
window and observe the coordinates displayed on the screen. A cursor is a special
symbol, such as a plus ( ) or times ( ) sign, that locates one pixel on the screen
at a time. As the cursor is moved around the screen, it moves from pixel to pixel.
To see this, set the window variables in your graphing utility so that  5  x  5
and  5  y  5, and activate a grid for the screen. Move the cursor as close as
you can to the point (2, 2) and observe what happens. Figure 7 shows the screen
coordinates of the four pixels that are closest to (2, 2). The coordinates displayed
on your screen may vary slightly from these, depending on the graphing utility used.
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(B) Now select the TRACE command and move the cursor along the
graph of y  x to a point that has the same x coordinate found in
part A. Is the y coordinate of this point the same as you found in
part A? Do the coordinates of the point using trace satisfy the equa-
tion y  x?

(C) Explain the difference in using trace along a curve and trying to
use unrestricted movement of a cursor along a curve.

E X P L O R E / D I S C U S S 3

Figure 9 shows the ZOOM menu on a TI-83.* We want to explore the
effects of some of these options on the graph of y1  x. Enter this
equation in the equation editor and select ZStandard from the ZOOM
menu. What are the window variables? In each of the following, posi-
tion the cursor at the origin and select the indicated zoom option.
Observe the changes in the window variables and examine the coordi-
nates displayed by tracing along the curve.

(A) ZSquare (B) ZDecimal (C) ZInteger (D) ZoomFit
FIGURE 9

The ZOOM menu on a TI-83.

Most graphing utilities have a ZOOM command. In general, zooming in on
a graph reduces the window variables and magnifies the portion of the graph vis-
ible in the viewing window [Fig. 8(a)]. Zooming out enlarges the window vari-
ables so that more of the graph is visible in the viewing window [Fig. 8(b)].

Zoom

out

Original
graph

Original
graph

Zoom

in

FIGURE 8 The zoom operation.

(a) Zooming in (b) Zooming out

*The ZOOM menu on other graphing utilities may look quite different from the one on the TI-83.



Another command found on most graphing utilities is intersect* or isect. This
command enables the user to find the point(s) where two curves intersect without
using trace or zoom.

The use of trace, zoom, and intersect is best illustrated by examples.
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*On the TI-83, intersect is found on the CALC (2nd-TRACE) menu.

FIGURE 10

 10

 10

10

10

FIGURE 11

From Figure 14 we see that y  2.25 when x  5.

(B) Select the TRACE command and move the cursor as close to y  5 as
possible (Fig. 15). This shows that x  7.45 when y  5.13, again not
exactly what we want. We cannot direct the TRACE command to use
the exact value y  5. Instead we press the ZOOM command and select
Zoom In to obtain more accuracy (Fig. 16). Then we select the TRACE
command and move the cursor as close to y  5 as possible (Fig. 17).

FIGURE 13

 10

 10

10

10

FIGURE 12

 10

 10

10

10

FIGURE 14

 10

 10

10

10

Using Trace, Zoom, and Intersect

Let y  0.01x3
 1

(A) Use the TRACE command to find y when x  5.

(B) Use the TRACE and ZOOM commands to find x when y  5.

(C) Use the intersect command to find x when y  5.

Round answers to two decimal places.

S O L U T I O N

(A) Enter y1  0.01x3
 1 in a graphing utility (Fig. 10). In Example 2,

we discussed two ways to find the value of y1 for a given value of x.
Now we want to discuss a third way, the TRACE command. Graph y1

in the standard viewing window (Fig. 11).

Select the TRACE command and move the cursor as close to x  5
as possible (Fig. 12). This shows that y  2.33 when x  5.11, not
quite what we want. However, we can direct the trace command to
use the exact value of x  5 by simply entering 5 (Fig. 13) and
pressing ENTER (Fig. 14).

FIGURE 15

 10

 10

10

10

FIGURE 16 FIGURE 17

3.16

5.45

7.16

9.45
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Now we see that x  7.36 when y  4.99. This is an improvement,
but we can do better. Repeating the Zoom In command and tracing
along the curve (Fig. 18), we see that x  7.37 when y  5.00.

(C) Enter y2  5 in the graphing utility and graph y1 and y2 in the stan-
dard viewing window (Fig. 19). Now there are two curves displayed
on the graph. The horizontal line is the graph of y2  5 and the other
curve is the familiar graph of y1. The coordinates of the intersection
point of the two curves must satisfy both equations. Clearly, the y
coordinate of this intersection point is 5. The x coordinate is the value
we are seeking. We use the intersect command to find the coordinates
of the intersection point in Figure 19. When we select the intersect
command, we are asked to make three choices: the first curve, the
second curve, and a guess. When the desired equation is displayed at
the top of the screen, press ENTER to select it (Figs. 20 and 21). (If
there are more than two curves, use the up and down arrows to dis-
play the desired equation, then press ENTER.)

4.57

6.96

5.37

7.76

FIGURE 18

To enter a guess, move the cursor close to the intersection point
(Fig. 22) and press ENTER (Fig. 23). (We will see a more important
use of entering a guess in Example 4.) Examining Figure 23, we see
that x  7.37 when y  5.

FIGURE 19 FIGURE 20 FIGURE 21

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

FIGURE 22 FIGURE 23

 10

 10

10

10

 10

 10

10

10

Repeat Example 3 for y  1  0.02x3.
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 10

 10

10

10

FIGURE 24

FIGURE 25

Solving an Equation with Multiple Solutions

Solve the equation

x3
 20x2

 60x  200

Round answers to two decimal places.

S O L U T I O N

We are going to solve this equation by graphing both sides in the same viewing
window and finding the intersection points. First we enter y1  x3

 20x2
 60x

and y2  200 in the graphing utility (Fig. 24) and graph in the standard viewing
window (Fig. 25).

Many students always start with the standard viewing window, but in this case
it is a poor choice. Because we are seeking the values of x that make the left
side of the equation equal to 200, we must choose a value for Ymax that is larger
than 200. Changing Ymax to 300 and Yscl to 30 produces a new graph (Fig. 26).
The two curves intersect twice in this window. The x coordinates of these points
are the solutions we are seeking. But first, could there be other solutions that are
not visible in this window? To find out, we must investigate the behavior outside
this window. A table is the most convenient way to do this (Figs. 27 and 28).

Examining Figure 27, we see that the values of y1 are getting very large. It is
unlikely that there will be additional solutions to the equation y1  200 for larger
values of x. Examining Figure 28, we see that there are values of y1 that are less
than 200 so it is likely that there will be additional solutions for more negative
values of x. Based on the table values in Figure 28, we make the following changes
in the window variables: Xmin   20, Xscl  5, Ymax  500, Ymin   200,
Yscl  50. This produces the graph in Figure 29. Examining the values of y1 for
values of x to the left of this window (Fig. 30), we conclude that there are no
other intersection points.

 10

 10

300

10

FIGURE 26

FIGURE 30

FIGURE 27 FIGURE 28

 200

 20

500

5

FIGURE 29



1.1 Using Graphing Utilities 11

The coordinates of the leftmost intersection point are displayed at the bottom of
the screen (Fig. 34). To find the other two intersection points, we repeat the entire
process. When we get to the screen that asks for a guess, we place the cursor near
the point we are looking for and press ENTER (Figs. 35 and 36).

 200

 20

500

5

 200

 20

500

5

 200

 20

500

5

FIGURE 31 FIGURE 32 FIGURE 33

Now we use the intersect command to find the x coordinates of the three inter-
section points in Figure 29. We select the two equations as before (Figs. 31 and 32).
To specify which of the three intersection points we want to locate, we make a
guess that is close to the desired point. We first select the leftmost intersection
point by moving the cursor to that point (Fig. 33) and pressing ENTER.

Thus, we see that the solutions to x3
 20x2

 60x  200 are x   15.18,
x   6.77, and x  1.95.

 200

 20

500

5

 200

 20

500

5

 200

 20

500

5

FIGURE 34 FIGURE 35 FIGURE 36

Solve x3
 10x2

 100x  100. Round answers to two decimal places.

In the solution to Example 4, we had to rely on examining tables and our intu-
ition to conclude that the two curves intersected only three times. One of the major
objectives of this course is to broaden our knowledge base so that we can be more
definitive in our reasoning. For example, in Chapter 3 we will show that any equa-
tion like the one in Example 4 can have no more than three solutions.

Examples 1 through 4 dealt with a variety of methods for finding the value of
y that corresponds to a given value of x and the value(s) of x that correspond to
a given value of y. These methods are summarized in the following box.
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Finding Solutions to an Equation

Assume the equation is entered in a graphing utility as y1 (expression in x).

To find solutions (x, y) given x a, use any of the following methods:

Method 1. Store a in X on the graphing utility and display y1 on the home screen.

Method 2. Set Tblstart to a and display the table.

Method 3. Graph y1, select the trace command, and enter a.

To find solutions (x, y) given y b, use either of the following methods:

Method 1. Graph y1 and use trace and zoom.

Method 2. Graph y1 and y2 b and use intersect.

Mathematical Modeling
Now that we have developed the ability to solve equations on a graphing utility,
there are many applications that we can investigate. The next example develops a
mathematical model for manufacturing a box.

17 in.

1
1

 i
n

.

x x

x x

x x

x x

FIGURE 37 Template for boxes.

Manufacturing

Rectangular open boxes are to be manufactured from 11- by 17-inch sheets of
cardboard by cutting x- by x-inch squares out of the corners and folding up the
sides, as shown in Figure 37.

(A) Write an equation for the volume y of the resulting box in terms of the
length x of the sides of the squares that are cut out. Indicate appropriate
restrictions on x.

(B) Graph the equation for appropriate values of x. Adjust the window variables
for y to include the entire graph of interest.

(C) Find the smallest square that can be cut out to produce a box with a volume
of 150 cubic inches.

S O L U T I O N

(A) The box is shown in Figure 38(b) with the sides folded up and
dimensions added. From this figure we can write the equation of the
volume in terms of x and establish the restrictions on x. No dimen-
sion can be negative; that is,
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FIGURE 38 Box with dimensions
added.

FIGURE 39

17 in.

17   2x

1
1
 i
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.

1
1
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x

x x

x x

x x

x x 17   2x

x

11   2x

x

0 5.5

]

x

0 8.5

]

x

0

x

0 5.5

[ ]

[

x  0 11   2x  0 17  2x  0

11  2x 17  2x

5.5  x 8.5  x

Because x must satisfy all three of the above inequalities, we conclude
that 0   x  5.5. (See Fig. 39. Inequalities and intervals are reviewed
in Appendix A, Section A.1.) Thus, the volume of the box is given by:

y  x(17  2x)(11  2x) 0  x  5.5 (3)

(B) Entering this equation in a graphing utility (it does not need to be
multiplied out) and evaluating it for several integers between 0 and 5
(Fig. 40), it appears that a good choice for the window dimensions for
y is 0  y  200. This choice can easily be changed if there is too
much space above the graph or if part of the graph we are interested
in is out of the viewing window. Figure 41 shows the graph of equa-
tion (3) in the viewing window selected above.

(C) We want to find the smallest value of x for which y  150. That is,
we want to solve the equation

x(17  2x)(11  2x)  150

We choose to solve this equation with the intersect command. Enter-
ing y2  150 in the graphing utility and pressing GRAPH produces
the two curves shown in Figure 42. The curves intersect twice.
Because we are looking for the smallest value of x that satisfies the
equation, we want the intersection point on the left (Fig. 43).

0

0

200

5.5

FIGURE 40

FIGURE 41

0

0

200

5.5

0

0

200

5.5

FIGURE 42 FIGURE 43

From Figure 43 we see that the volume of the box is 150 cubic inches
when x is 1.19 inches.

(a) (b)
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1.

2.

Refer to Example 5. Approximate to two decimal places the size of the largest
square that can be cut out to produce a volume of 150 cubic inches.

3. (A)  1.5 (B)  5.85 (C)  5.85 4.  15.90,  0.92, 6.82 5. 3.32 in.

 10

 5

10

5

 5 5 5

 10

10

x

y
x  4  3  2  1 0 1 2 3 4

y 6.2 0.7  1.2  0.7 1 2.7 3.2 1.3  4.2

you use the cursor to display the coordinates of the
points in the table on the graphing utility screen? Dis-
cuss the differences between the rectangle in the plane
and the pixels displayed on the screen.

8. Repeat Problem 7 for the following table.

x  4 0  2 7 4

y 2  4 0  2 3

In Problems 9–14, graph each equation in a standard viewing

window.

9. y    x 10. y   0.5x

11. y  9  0.4x2 12. y  0.3x2
 4

13. 14. y   2 x  5y  2 x  5

In Problems 1–6, determine if the indicated point lies in the

viewing window defined by

Xmin    7, Xmax  9, Ymin   4, Ymax  11

1. (0, 0) 2. (0, 10) 3. (10, 0)

4. ( 3,  5) 5. ( 5,  3) 6. ( 8, 12)

7. Consider the points in the following table:

x 3 6  7  4 0

y  9  4 14 0 2

(A) Find the smallest rectangle in a Cartesian coordinate
system that will contain all the points in the table.
State your answer in terms of the window variables
Xmin, Xmax, Ymin, and Ymax.

(B) Enter the window variables you determined in part A
and display the corresponding viewing window. Can
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For each equation in Problems 15–20, use the table on a graph-

ing utility to construct a table of values over the indicated inter-

val, computing y values to the nearest tenth of a unit. Plot these

points on graph paper, then with the aid of a graph on a graph-

ing utility, complete the hand sketch of the graph.

15. y  4  4x  x2,  2  x  6 (Use even integers for the
table.)

16. y  2x2
 12x  5,  7  x  1 (Use odd integers for the

table.)

17. (Use odd integers for the
table.)

18. (Use even integers for the
table.)

19. y  0.5x(4  x)(x  2),  3  x  5 (Use odd integers for
the table.)

20. y   0.5x(x   3.5)(2.8  x),  4  x  4 (Use even inte-
gers for the table.)

In Problems 21–24, graph the equation in a standard viewing

window. Approximate to two decimal places the x coordinates

of the points in this window that are on the graph of the equa-

tion and have the indicated y coordinates.

21.

(A) (x, 8) (B) (x,  1)

22.

(A) (x, 8) (B) (x,  6)

23. y   3  x  0.1x3

(A) (x, 4) (B) (x,  7)

24. y   2  0.5x  0.1x3

(A) (x, 7) (B) (x,  5)

The graphs of each pair of equations in Problems 25–34 inter-

sect in exactly two points. Find a viewing window that clearly

shows both points of intersection (there are many windows that

will do this). Then use intersect to find the coordinates of each

intersection point to two decimal places.

25. y  x2
 10x, y  12  5x

26. y  x2
 15x, y  15  10x

27. y  15x  x2, y  10  4x

28. y   x2
 20x, y  10x  15

y  3  4 
3

x  4

y  4  3 
3

x  4

y   8  2x,  4  x  4

y  2 2x  10,  5  x  5

29. y  0.4x2
 5x  10, y  5  9x  0.3x2

30. y  0.2x2
 7x  15, y  9  7x  0.1x2

31. y  y  0.2x  10

32. y  20  y  14  0.1x

33. y  y  0.1x2
 5x  10

34. y  y  0.1x2
 5x

35. (A) Sketch the graph of x2
 y2

 9 by hand and identify
the curve.*

(B) Graph and in the
standard viewing window of a graphing utility. How
does this graph compare to the graph you drew in 
part (A)?

(C) Apply each of the following ZOOM options to the
graph in part (B) and determine which options pro-
duce a curve that looks like the curve you drew in 
part (A):

ZDecimal, ZSquare, ZoomFit 

36. (A) Sketch the graph of x2
 y2

 4 by hand and identify
the curve.

(B) Graph y1  and y2  in the stan-
dard viewing window of a graphing utility. How does
this graph compare to the graph you drew in part (A)?

(C) Apply each of the following ZOOM options to the
graph in part (B) and determine which options pro-
duce a curve that looks like the curve you drew in 
part (A):

ZDecimal, ZSquare, ZoomFit

In Problems 37–40, use the intersection command on a graph-

ing utility to solve each equation for the indicated values of b.

Round answers to two decimal places.

37. 0.1x3
 x2

 5x  100  b

(A) b  25 (B) b  75 (C) b  125

38. 0.1x3
 x2

 7x  100  b

(A) b   125 (B) b   75 (C) b  75

39. 0.01x4
 4x  50  b

(A) b  25 (B) b  75

40. 0.01x4
 3x  50  b

(A) b  25 (B) b  75

  4  x2 4  x2

y2    9  x2y1   9  x2

 5  x,

 x  10,

 5x  5,

 9x  20,

*Graphs of equations of this form are reviewed in Appendix A, Section A.3.



54. Manufacturing. A box with a lid is to be cut out of a 
10-inch by 20-inch sheet of thin cardboard by cutting out
six x-inch squares and folding as indicated in the figure.
What are the dimensions to two decimal places of all pos-
sible boxes that will have a volume of 75 cubic inches?
Check your answers. (Refer to the figure for Problem 53.)
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24 inches

1
2
 i
n

ch
e
s

x

x

*Geometric formulas can be found in Appendix C.

In Problems 41–44, use the intersection command on a graph-

ing utility to solve each equation for the indicated values of b.

Round answers to two decimal places.

41. 1,200x  x3
 b

(A) b  12,000 (B) b  16,000 (C) b  20,000

42. x3
 300x  b

(A) b  1,000 (B) b  2,000 (C) b  3,000

43. x4
 4,000x  b

(A) b  30,000 (B) b   30,000 (C) b   40,000

44. 800x2
 x4

 b

(A) b  100,000 (B) b  160,000 (C) b  200,000

45. The point ( , 2) is on the graph of y  x2. Use trace and
zoom to approximate to four decimal places. Compare
your result with the direct calculator evaluation of .

46. The point is on the graph of y  x3. Use trace and
zoom to approximate to four decimal places. Compare
your result with the direct calculator evaluation of .

47. In a few sentences, discuss the difference between the
mathematical coordinates of a point and the screen coordi-
nates of a pixel.

48. In a few sentences, discuss the difference between the co-
ordinates displayed during unrestricted cursor movement
and those displayed during the trace procedure.

 3
4

 3
4

( 3 4, 4)

 2
 2

 2

49. Manufacturing. An oil tank in the shape of a right circu-
lar cylinder* has a volume of 40,000 cubic feet. If regula-
tions for such tanks require that the radius plus the height
must be 50 feet, find the radius and the height to two
decimal places.

50. Manufacturing. A drinking container in the shape of a
right circular cone* has a volume of 50 cubic inches. If the
radius plus the height of the cone is 8 inches, find the
radius and the height to two decimal places.

51. Manufacturing. A rectangular open-top box is to be con-
structed out of an 8.5-inch by 11-inch sheet of thin card-
board by cutting x-inch squares out of each corner and
bending the sides up, as in Figures 37 and 38 in Example
5. What size squares to two decimal places should be cut
out to produce a box with a volume of 55 cubic inches?
Give the dimensions to two decimal places of all possible
boxes with the given volume. Check your answers.

52. Manufacturing. A rectangular open-top box is to be con-
structed out of a 9-inch by 12-inch sheet of thin cardboard
by cutting x-inch squares out of each corner and bending
the sides up as shown in Figures 37 and 38 in Example 5.
What size squares to two decimal places should be cut out
to produce a box with a volume of 72 cubic inches? Give
the dimensions to two decimal places of all possible boxes
with the given volume. Check your answers.

53. Manufacturing. A box with a lid is to be cut out of a 
12-inch by 24-inch sheet of thin cardboard by cutting out

six x-inch squares and folding as indicated in the figure.
What are the dimensions to two decimal places of all pos-
sible boxes that will have a volume of 100 cubic inches?
Check your answers.



(A) Use the results from Problem 55 to complete the fol-
lowing table of revenues.

y 20 25 30

R

(B) Does the revenue increase or decrease if the price is
increased from $25 to $30? By how much?

(C) Does the revenue increase or decrease if the price is
decreased from $25 to $20? By how much?

(D) If the current price of paper is $25 per case and the
company wants to increase revenue, should it raise the
price $5, lower the price $5, or leave the price
unchanged?

58. Price and Revenue. Refer to Problem 56. The revenue
from the sale of x cases of paper at $y per case is given by
the product R   xy.

(A) Use the results from Problem 56 to complete the fol-
lowing table of revenues.

y 35 40 45

R

(B) Does the revenue increase or decrease if the price is
increased from $40 to $45? By how much?

(C) Does the revenue increase or decrease if the price is
decreased from $40 to $35? By how much?

(D) If the current price of paper is $40 per case and the com-
pany wants to increase revenue, should it raise the price
$5, lower the price $5, or leave the price unchanged?

171.2 Functions

Functions

Definition of Function  Functions Defined by Equations  Function Notation  Modeling
and Data Analysis  A Brief History of the Function Concept

The idea of correspondence plays a central role in the formulation of the func-
tion concept. You have already had experiences with correspondences in every-
day life. For example:

To each person there corresponds an age.

To each item in a store there corresponds a price.

To each automobile there corresponds a license number.

To each circle there corresponds an area.

To each number there corresponds its cube.

55. Price and Demand. A nationwide office supply company
sells high-grade paper for laser printers. The price per case
y (in dollars) and the weekly demand x for this paper are
related approximately by the equation

(A) Complete the following table. Approximate each value
of x to the nearest hundred cases.

x

y 20 25 30

(B) Does the demand increase or decrease if the price is
increased from $25 to $30? By how much?

(C) Does the demand increase or decrease if the price is
decreased from $25 to $20? By how much?

56. Price and Demand. Refer to the relationship between
price and demand given in Problem 55.

(A) Complete the following table. Approximate each value
of x to the nearest hundred cases.

x

y 35 40 45

(B) Does the demand increase or decrease if the price is
increased from $40 to $45? By how much?

(C) Does the demand increase or decrease if the price is
decreased from $40 to $35? By how much?

57. Price and Revenue. Refer to Problem 55. The revenue
from the sale of x cases of paper at $y per case is given by
the product R  xy.

y  100  0.6 x    5,000  x  20,000



Table 1 specifies a function with domain A  { 2,  1, 0, 1, 2} and range 
B  { 5,  3, 0, 3, 5} because to each domain value in A there corresponds
exactly one element in B. Table 2 also specifies a function with domain A and
range C  { 5, 3, 5}. Notice that the range value 3 corresponds to three differ-
ent domain values,  2, 0, and 2. This does not violate the conditions in Defini-
tion 1. On the other hand, Table 3 does not specify a function, because two
different range values, 3 and 5, correspond to the domain value 2.

REMARK Some graphing utilities use the term range to refer to the window vari-
ables. In this book, range will always refer to the range of a function.
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T A B L E  1

A B

–2 –5

–1 –3

0 0

1 3

2 5

T A B L E  2

A B

–2 –5

–1 –3

0 0

1 3

2 5

T A B L E  3

A B

–2 –5

–1 –3

0 0

1 3

2 5

Tables 1 and 2 specify functions, but Table 3 does not. Why not? The definition
of the concept of a function will explain.

D E F I N I T I O N 1
Definition of Function

A function is a correspondence between two sets of elements such that to each element in the first

set there corresponds one and only one element in the second set.

The first set is called the domain and the set of all corresponding elements in the second set is

called the range.

One of the most important aspects of any science (managerial, life, social, phys-
ical, computer, etc.) is the establishment of correspondences among various types of
phenomena. Once a correspondence is known, predictions can be made. A chemist
can use a gas law to predict the pressure of an enclosed gas, given its temperature.
An engineer can use a formula to predict the deflections of a beam subject to dif-
ferent loads. A computer scientist can use formulas to compare the efficiency of algo-
rithms for sorting data stored in a computer. An economist would like to be able to
predict interest rates, given the rate of change of the money supply. And so on.

Definition of Function
What do all the preceding examples have in common? Each describes the match-
ing of elements from one set with elements in a second set. Let’s consider the
correspondences between the sets A and B listed in Tables 1–3.
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E X P L O R E / D I S C U S S  1

Consider the set of students enrolled in a college and the set of faculty
members of that college. Define a correspondence between the two sets
by saying that a student corresponds to a faculty member if the student
is currently enrolled in a course taught by the faculty member. Is this
correspondence a function? Discuss.

Every function can be specified by using ordered pairs of elements, where the
first component represents a domain element and the second element represents
the corresponding range element. Thus, the functions specified in Tables 1 and 2
can be written as follows:

F  {( 2,  5), ( 1,  3), (0, 0), (1, 3), (2, 5)}
G  {( 2, 3), ( 1,  5), (0, 3), (1, 5), (2, 3)}

In both cases, notice that no two ordered pairs have the same first component
and different second components. On the other hand, if we list the set H of ordered
pairs determined by Table 3, we have

H  {( 2, 3), ( 1,  5), (0,  3), (1, 5), (2, 3), (2, 5)}

Notice that the last two ordered pairs, (2, 3) and (2, 5), have the same first
component and different second components. Thus, set H does not specify a
function.

This ordered pair approach suggests an alternative but equivalent way of defin-
ing the concept of function that provides additional insight into this concept.

D E F I N I T I O N  2
Set Form of the Definition of Function

A function is a set of ordered pairs with the property that no two ordered pairs have the same first

component and different second components.

The set of all first components in a function is called the domain of the function, and the set of all

second components is called the range.

Functions Specified as Sets of Ordered Pairs

Determine whether each set specifies a function. If it does, then state the domain
and range.

(A) S  {(1, 4), (2, 3), (3, 2), (4, 3), (5, 4)}

(B) T  {(1, 4), (2, 3), (3, 2), (2, 4), (1, 5)}
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Determine whether each set specifies a function. If it does, then state the domain
and range.

(A) S   {( 2, 1), ( 1, 2), (0, 0), ( 1, 1), ( 2, 2)}

(B) T   {( 2, 1), ( 1, 2), (0, 0), (1, 2), (2, 1)}

Functions Defined by Equations
We can specify or define a particular function in various ways: (1) by a verbal
description; (2) by a table; (3) by a set of ordered pairs; or, if the domain and
range are sets of numbers, (4) by an equation, or (5) by a graph. If the domain
of a function is a large or infinite set, it may be impractical or impossible to actu-
ally list all of the ordered pairs that belong to the function, or to display the func-
tion in a table. Such a function can often be defined by a verbal description of
the “rule of correspondence” (for example, “to each real number corresponds its
square”), that clearly specifies the element of the range that corresponds to each
element of the domain. When the domain and range are sets of numbers, the alge-
braic and graphical analogs of the verbal description are the equation and graph,
respectively. We will find it valuable to be able to view a particular function from
multiple perspectives—algebraic (in terms of an equation), graphical (in terms of
a graph), and numeric (in terms of a table).

Both versions of the definition of function are quite general, with no restriction
on the type of elements that make up the domain or range, and no restriction on
the numbers of elements in the domain or range. We are primarily interested, how-
ever, in functions with real number domains and ranges. In this text, unless oth-
erwise indicated, the domain and range of a function will be sets of real
numbers. For such a function we often use an equation in two variables to spec-
ify both the rule of correspondence and the set of ordered pairs. 

Consider the equation

y  x2
 2x x any real number (1)

This equation assigns to each domain value x exactly one range value y. For
example,

If x   4, then y   (4)2
  2(4)  24

If then y  ( 1
3)2

 2( 1
3)   

5
9x   

1
3,

S O L U T I O N S

(A) Because all the ordered pairs in S have distinct first components, this
set specifies a function. The domain and range are

Domain  {1, 2, 3, 4, 5} Set of first components

Range  {2, 3, 4} Set of second components

(B) Because there are ordered pairs in T with the same first component
[for example, (1, 4) and (1, 5)], this set does not specify a function.
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Thus, we can view equation (1) as a function with rule of correspondence

y   x2
  2x

or, equivalently, as a function with set of ordered pairs

The variable x is called an independent variable, indicating that values can be
assigned “independently’’ to x from the domain. The variable y is called a depen-

dent variable, indicating that the value of y “depends’’ on the value assigned to x
and on the given equation. In general, any variable used as a placeholder for
domain values is called an independent variable; any variable used as a place-
holder for range values is called a dependent variable.

Which equations can be used to define functions?

{(x, y)  y  x2
 2x, x a real number}

x corresponds to x2
 2x

FUNCTIONS DEFINED BY EQUATIONS

In an equation in two variables, if to each value of the independent variable there corresponds exactly 

one value of the dependent variable, then the equation defines a function.

If there is any value of the independent variable to which there corresponds more than one value of the

dependent variable, then the equation does not define a function.

Notice that we have used the phrase “an equation defines a function” rather than
“an equation is a function.” This is a somewhat technical distinction, but it is
employed consistently in mathematical literature and we will adhere to it in this text.

E X P L O R E / D I S C U S S  2

(A) Graph y   x2
 4 for  5  x  5 and  5  y  5 and trace

along this graph. Discuss the relationship between the coordinates
displayed while tracing and the function defined by this equation.

(B) The graph of the equation x2
  y2

  16 is a circle. Because most
graphing utilities will accept only equations that have been solved
for y, we must graph both of the equations and
y2  to produce a graph of the circle. Graph these
equations for  5  x  5 and  5  y  5. Then try different
values for Xmin and Xmax until the graph looks more like a cir-
cle. Use the trace feature to find two points on this circle with the
same x coordinate and different y coordinates.

(C) Is it possible to graph a single equation of the form y   (expres-
sion in x) on your graphing utility and obtain a graph that is not
the graph of a function? Explain your answer.

  16  x2

y1   16  x2
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REMARK If we want the graph of a circle to actually appear to be circular, we
must choose window variables so that a unit length on the x axis is the same num-
ber of pixels as a unit length on the y axis. Such a window is often referred to
as a squared viewing window. Most graphing utilities have an option under the
zoom menu that does this automatically.

Not all equations determine functions. One way to determine if an equation
does determine a function is to examine its graph. The graphs of the equations

y  x
2
 4 and x

2
 y

2
 16

are shown in Figure 1.

The graph in Figure 1(a) is a parabola and the graph in Figure 1(b) is a circle.*
Each vertical line intersects the parabola in exactly one point. This shows that to
each value of the independent variable x there corresponds exactly one value of
the dependent variable y. For example, to the x value 1 there corresponds only the
y value  3 [Fig. 1(a)]. Thus, the equation y  x

2
 4 defines a function. On the

other hand, there are vertical lines that intersect the circle in Figure 1(b) in two
points. For example, the vertical line through x  2 intersects the circle in the
points (2, ) and (2,  ) [Fig. 1(b)]. Thus, to the x value 2 there corre-
spond two y values, and . Consequently, the equation x2

 y
2
 16

does not define a function. These observations are generalized in Theorem 1.
 2 32 3

2 32 3

Refer to Figure 1. Because the expression x2
 4 represents a real number for

all real values of x, the function defined by the equation y   x2
 4 is defined for all

real numbers. Thus, its domain is the set of all real numbers, often denoted by the
letter R or the interval† (  ,  ). On the other hand, the expression  16  x2

x

y

5 5

 5

5
y   x2   4

(1,  3)

x

y

5 5

 5

5

x2   y2   16

(2,  2 3)

(2, 2 3)

(a) (b)

FIGURE 1 Graphs of equations
and the vertical line test.

T H E O R E M  1

Vertical Line Test for a Function

An equation defines a function if each vertical line in the rectangular
coordinate system passes through at most one point on the graph of the
equation.

If any vertical line passes through two or more points on the graph of an
equation, then the equation does not define a function.

*Parabolas and circles are discussed extensively later in the book.
†See Appendix A, Section A.1, for a discussion of interval notation and inequalities.
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represents a real number only if 16  x2
 0. This inequality is equivalent to 

x2
 16 or  4  x  4. Thus, the domain of the function is

or [ 4, 4]. Unless stated to the contrary, we will adhere to the fol-
lowing convention regarding domains and ranges for functions defined by equations.
{x  4  x  4}

y   16  x2

AGREEMENT ON DOMAINS AND RANGES

If a function is defined by an equation and the domain is not indicated, then we assume that the

domain is the set of all real number replacements of the independent variable that produce real

values for the dependent variable. The range is the set of all values of the dependent variable 

corresponding to these domain values.

Finding the Domain of a Function

Find the domain of the function defined by the equation assuming
x is the independent variable.

S O L U T I O N

For to be real, x must be greater than or equal to 0. Thus,

Domain: or [0,  )

Note that in many cases we will dispense with set notation and simply write x  0
instead of {x  x  0}.

{x  x  0}

 x

y  4   x,

Find the domain of the function defined by the equation assum-
ing x is the independent variable.

Function Notation
We will use letters to name functions and to provide a very important and con-
venient notation for defining functions. For example, if f is the name of the func-
tion defined by the equation y  2x  1, then instead of the more formal
representations

f :y  2x  1

or

we simply write

f (x)  2x  1

The symbol f (x) is read “f of x,” “f at x,” or “the value of f at x’’ and represents
the number in the range of the function f that is paired with the domain value x.
Thus, f (3) is the range value for the function f associated with the domain value 3.

f :{(x, y)  y  2x  1}

y  3    x,

Rule of correspondence

Set of ordered pairs

Function notation
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We find this range value by replacing x with 3 wherever x occurs in the function
definition

f (x)  2x  1

and evaluating the right side,

The statement f(3)  7 indicates in a concise way that the function f assigns the
range value 7 to the domain value 3 or, equivalently, that the ordered pair (3, 7)
belongs to f.

The symbol f :x S f (x), read “f maps x into f (x),” is also used to denote the
relationship between the domain value x and the range value f(x) (Fig. 2). When-
ever we write y  f (x), we assume that x is an independent variable and that y

and f (x) both represent the dependent variable.

 7
 6  1

f (3)  2  3  1

Letters other than f and x can be used to represent functions and independent
variables. For example,

g(t)  t2
 3t  7

defines g as a function of the independent variable t. To find g( 2), we replace t
by  2 wherever t occurs in

g(t)  t2
 3t  7

and evaluate the right side:

Thus, the function g assigns the range value 17 to the domain value  2; the
ordered pair ( 2, 17) belongs to g.

It is important to understand and remember the definition of the symbol f (x):

 17
 4  6  7

g( 2)  ( 2)2
 3( 2)  7

DOMAIN

The function f “maps” the domain
value x into the range value f(x).

RANGE

x f(x)

fFIGURE 2 Function notation.

D E F I N I T I O N 3
The Symbol f (x)

The symbol f (x), read “f of x,” represents the real number in the range of the function f corresponding

to the domain value x. The symbol f (x) is also called the value of the function f at x. Symbolically,

f : x S f (x). The ordered pair (x, f (x)) belongs to the function f . If x is a real number that is not in

the domain of f, then f is not defined at x and f (x) does not exist.
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C A U T I O N

Do not confuse function notation with multiplication:

f (x) is the value of the function f at x

2(x)  2x is algebraic multiplication

Evaluating Functions

For

f (x)  g (x)  16  3x  x2 h(x)  

find:

(A) f (6) (B) g( 7) (C) h( 2) (D) f (0)  g(4)  h(16)

6

 x  1

15

x  3

S O L U T I O N S

(A) f (6)   

(B) g( 7)  16  3( 7)  ( 7)2
 16  21  49   54

(C) h( 2)  

But is not a real number. Because we have agreed to restrict
the domain of a function to values of x that produce real values for
the function,  2 is not in the domain of h and h( 2) is not defined.

(D) f (0)  g (4)   h (16)

  5  12  2  5

 
15

 3
 12  

6

3

 
15

0  3
 [16  3(4)  42]  

6

 16  1

  2

6

  2  1

15

3
 5

15

6  3

Use the functions in Example 3 to find

(A) f ( 2) (B) g(6) (C) h( 8) (D)
f(8)

h(9)



1 FUNCTIONS, GRAPHS, AND MODELS26

Finding the Domain of a Function

Find the domain of g(t)  5  2t  3t2.

S O L U T I O N

Because 5  2t  3t2 represents a real number for all replacements of t by real
numbers, the domain of g is R, the set of all real numbers. To express this domain
in interval notation, we write

Domain of g  (  ,  )

Find the domain of h(w)  3w2
 2w  9.

The reasoning used in Example 4 can be applied to any polynomial: The
domain of any polynomial is R, the set of real numbers.

Finding the Domain of a Function

Find the domain of 

S O L U T I O N

Because division by 0 is not defined, we must exclude all values of w that would
make the denominator 0. Factoring the denominator, we can write

Thus, we must exclude w  3 and w   3 from the domain of F. That is,

We often simplify this by writing

F(w)  
5

w2
 9

    w  3, w   3

 (  ,  3) ( 3, 3) (3,  )
 Domain o f F  {w  w  3, w   3}

F(w)  
5

w2
 9

 
5

(w  3)(w  3)

F(w)  
5

w2
 9

.

a
2
 b

2
 (a b)(a b) 

Set notation

Interval notation

Find the domain of G(w)  
5

w2
 1

.
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Algebraic Solution

Because is not a real num-
ber when 3  x is a negative real
number, we must restrict the domain
of s to the real numbers x for which

Thus, we have

Domain of 

or, more informally, 

s(x)   3  x    x  3

 (  , 3]
s  {x  x  3}

 3  x

 3  x  0

 3  x

Graphical Solution

Entering in the equa-
tion editor and graphing in a stan-
dard viewing window produces
Figure 3.

FIGURE 3

Using a table (Fig. 4), we see that
evaluating s at a number greater than
3 produces an error message,
whereas evaluating s for large nega-
tive values produces no errors.

FIGURE 4

Thus, we conclude that the domain
of s is (  , 3].

 10

 10

10

10

y1   3  x

Finding the Domain of a Function

Find the domain of 

S O L U T I O N S

s(x)   3  x.

Find the domain of r(t)   t  5.

Finding the Domain of a Function

Find the domain of f(x)  
2

2   x
.
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S O L U T I O N S

Algebraic Solution

Because is not a real number for
negative real numbers x, x must be a
nonnegative real number. Because
division by 0 is not defined, we must
exclude any values of x that make
the denominator 0. Thus, we solve

and conclude that the domain of f is
all nonnegative real numbers except
4. This can be written as

 [0, 4) (4,  )
 Domain o f f  {x  x  0, x  4}

 4  x

 2   x

 2   x  0

 x

Graphical Solution

Figure 5 shows the graph of
in a standard view-

ing window.

FIGURE 5

The curve starts at x  0, indicating
that f is not defined for x  0. Evalu-
ating f at a negative number confirms
this (Fig. 6). The vertical line on the
graph indicates some strange behav-
ior at x  4. Evaluating f at x  4
(Fig. 6) shows that f is not defined at
x  4. Evaluating f at large positive
numbers produces no errors.

FIGURE 6

Thus, we conclude that 

 [0, 4) (4,  )
 Domain o f f  {x  x  0, x  4}

 10

 10

10

10

y  2/(2   x)

Find the domain of 

Refer to Figure 5. What caused the vertical line in this graph? Explore/Discuss 3
will help you find out.

g(x)  
1

 x  1
.
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E X P L O R E / D I S C U S S  3

Graph in a standard viewing window (see Fig. 5).

(A) Press TRACE and move the cursor as close to x  4 on the left
side of x  4 as possible. What is the y coordinate of this point?

(B) Now move the cursor as close to x  4 on the right side of 4 as
possible. What is the y coordinate of this point?

(C) Change Ymax to a value greater than the y coordinate in (A) and
Ymin to a value less than the y coordinate in (B).

(D) Redraw the graph in the window from part (C) and discuss the
result.

y  2/(2   x)

Your explorations should have produced a graph similar to Figure 7. The nearly
vertical line is produced by connecting the last point on the left of x  4 with
the first point on the right of x  4.

In addition to evaluating functions at specific numbers, it is important to be
able to evaluate functions at expressions that involve one or more variables. For
example, the difference quotient

x and x  h in the domain of f , h  0

is studied extensively in a calculus course.

f(x  h)  f(x)

h

 200

 10

200

10

FIGURE 7

E X P L O R E / D I S C U S S 4

Let x and h be any real numbers.

(A) If f(x)  3x  2, which of the following is correct?

(i) f(x  h)  3x  2  h

(ii) f(x  h)  3x  3h  2

(iii) f(x  h)  3x  3h  4

(B) If f(x)  x2, which of the following is correct?

(i) f(x  h)  x2
 h2

(ii) f(x  h)  x2
 h

(iii) f(x  h)  x2
 2xh  h2

(C) If f(x)  x2
 3x  2, write a verbal description of the operations

that must be performed to evaluate f(x  h).



1 FUNCTIONS, GRAPHS, AND MODELS30

Evaluating and Simplifying a Difference Quotient

For f(x)  x2
 4x  5, find and simplify:

(A) f (2) (B) f (2  h) (C)

(D) f (x  h) (E)

S O L U T I O N S

(A) f (2)  22
 4(2)  5  17

(B) To find f (2  h), replace x with 2  h everywhere it occurs in the
equation that defines f and simplify:

(C) Using parts (A) and (B), we have

(D) To find f(x  h), we replace x with x  h everywhere it appears in
the equation that defines f and simplify:

(E) Using the result of part (D), we get

 
2xh  h2

 4h

h
 

h(2x  h  4)

h
 2x  h  4

 
x2

 2xh  h2
 4x  4h  5  x2

 4x  5

h

f(x  h)  f(x)

h
 

x2
 2xh  h2

 4x  4h  5  (x2
 4x  5)

h

 x2
 2xh  h2

 4x  4h  5
f(x  h)  (x  h)2

 4(x  h)  5

 
h2

 8h

h
 

h(h  8)

h
 h  8

f(2  h)  f(2)

h
 

h2
 8h  17  17

h

 h2
 8h  17

 4  4h  h2
 8  4h  5

f(2  h)  (2  h)2
 4(2  h)  5

f(x  h)  f(x)

h

f(2  h)  f(2)

h

*The symbol             denotes problems that are related to calculus.

Repeat Example 8 for f(x)  x2
 3x  7.

*
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Modeling and Data Analysis
The next example explores the relationship between the algebraic definition of a
function, the numeric values of the function, and a graphical representation of the
function. The interplay between the algebraic, numeric, and graphical aspects of
a function is one of the central themes of this book. In this example, we also see
how a function can be used to describe data from the real world, a process that
is generally referred to as mathematical modeling.

C A U T I O N

1. If f is a function, then the symbol f (x  h) represents the value of f
at the number x  h and must be evaluated by replacing the
independent variable in the equation that defines f with the expression
x  h, as we did in Example 8. Do not confuse this notation with the
familiar algebraic notation for multiplication:

f (x  h)  fx  fh f(x h) is function notation.

4(x  h)  4x  4h 4(x h) is algebraic multiplication notation.

2. There is another common incorrect interpretation of the symbol f(x  h).
If f is an arbitrary function, then

f (x  h)  f (x)  f (h)

It is possible to find some particular functions for which f (x  h)  
f (x)  f (h) is a true statement, but in general these two expressions
are not equal.

T A B L E  4 Revolving-Credit Debt

Total Debt
Year (Billions)

1980 $58.5

1985 $128.9

1990 $234.8

1995 $443.2

2000 $663.8

Source: Federal Reserve System.

Consumer Debt

Revolving-credit debt (in billions of dollars) in the United States over a 20-year
period is given in Table 4. A financial analyst used statistical techniques to pro-
duce a mathematical model for this data:

f (x)  1.2x2
 7.5x  58

where x  0 corresponds to 1980.
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*We used a TI-83 to produce the screen dumps in this section. If you are using a different graphing utility, consult your

manual for the appropriate commands.

0

 5

700

30

FIGURE 10 FIGURE 11 FIGURE 12

Compare the data and the model both numerically and graphically. Use the mod-
eling function f to estimate the debt to the nearest tenth of a billion in 2001 and
in 2005.

S O L U T I O N

Most graphing utilities have the ability to manipulate a list of numbers, such as
the total debt in Table 4. The relevant commands are usually found by pressing
STAT* (Fig. 8). Then select EDIT and enter the data. Enter the years as L1 and
the debt as L2 (Fig. 9). Unlike the TABLE command, which computes a y value
for each x value you enter, the EDIT command does not assume any correspon-
dence between the numbers in two different lists. It is your responsibility to make
sure that each pair on the same line in Figure 9 corresponds to a line in Table 4. 

A graph of a finite data set is called a scatter plot. To form a scatter plot for
the data in Table 4, first press STAT PLOT (Fig. 10) and select Plot1 (Fig. 11).
The Plot1 screen contains a number of options, some of which you select by plac-
ing the cursor over the option and pressing ENTER. First, select ON to activate
the plot. Then select the type of plot you want. The darkened choice in Figure 11
produces a scatter plot. Next use the 2nd key to enter L1 for the Xlist and L2 for
the Ylist. Finally, select the mark you want to use for the plot. Before graphing
the data, we must enter values for the window variables that will produce a win-
dow that contains the points in the scatter plot. Examining the data in Figure 9,
we see that Xmin   5, Xmax  30, Xscl  5, Ymin  0, Ymax  700, and
Yscl  100 should provide a viewing window that contains all of these points.
(We chose Xmin   5 to clearly show the point at x  0.) Pressing GRAPH
displays the scatter plot (Fig. 12).

Now we enter the modeling function in the equation editor (Fig. 13) and use the
TABLE command to evaluate the function (Fig. 14). To compare the data and the
function numerically, we enter the data from Figure 9 and the values from Figure
14 in Table 5. To compare them graphically, we press GRAPH to graph both the
model and the scatter plot (Fig. 15).

0

 5

700

30

FIGURE 13

FIGURE 8

FIGURE 14 FIGURE 15

FIGURE 9
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T A B L E  5

x 0 5 10 15 20

Debt 58.5 128.9 234.8 443.2 663.8

f (x) 58 125.5 253 440.5 688

To estimate the debt in 2001 and 2005, we evaluate f (x) at 21 and at 25:

f (21)  744.7 f (25)  995.5

Thus, the revolving-credit debt should be $744.7 billion in 2001 and $995.5 bil-
lion in 2005.

Credit union debt (in billions of dollars) in the United States is given in Table 6.
Repeat Example 9 using these data and the modeling function

y  f (x)  0.5x2
 5.5x  48

T A B L E  6 Credit Union Debt

Total Debt
Year (Billions)

1970 $48.7

1975 $82.9

1980 $147.0

1985 $245.1

1990 $347.1

Source: Federal Reserve System.

REMARKS

1. Modeling functions like the function f in Example 9 provide reasonable and
useful representations of the given data, but they do not always correctly
predict future behavior. For example, the model in Example 9 indicates that
the revolving-credit debt in 2001 should be about $744.7 billion. But the
actual debt for 2001 turned out to be $689.5 billion, which differs from the
predicted value by more than $55 billion. Proper use of mathematical mod-
els requires both an understanding of the techniques used to develop the
model and frequent reevaluation, modification, and interpretation of the
results produced by the model.

2. In Chapter 2 we will discuss methods for finding a function f that models a
given set of data. It turns out that this is easy to do with a graphing utility.
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A Brief History of the Function Concept
The history of the use of functions in mathematics illustrates the tendency of
mathematicians to extend and generalize a concept. The word function appears to
have been first used by Leibniz in 1694 to stand for any quantity associated with
a curve. By 1718, Johann Bernoulli considered a function any expression made
up of constants and a variable. Later in the same century, Euler came to regard a
function as any equation made up of constants and variables. Euler made exten-
sive use of the extremely important notation f(x), although its origin is generally
attributed to Clairaut (1734).

The form of the definition of function that had been used until well into the
twentieth century (many texts still contain this definition) was formulated by
Dirichlet (1805–1859). He stated that, if two variables x and y are so related that
for each value of x there corresponds exactly one value of y, then y is said to be
a (single-valued) function of x. He called x, the variable to which values are
assigned at will, the independent variable, and y, the variable whose values depend
on the values assigned to x, the dependent variable. He called the values assumed
by x the domain of the function, and the corresponding values assumed by y the
range of the function.

Now, because set concepts permeate almost all mathematics, we have the more
general definition of function presented in this section in terms of sets of ordered
pairs of elements.

1. (A) S does not define a function.

(B) T defines a function with

domain { 2,  1, 0, 1, 2} and
range {0, 1, 2}.

2. x  0
3. (A)  3 (B)  2

(C) Does not exist (D) 1

4. All real numbers or (  ,  )
5. All real numbers except  1

and 1 or (  ,  1)  ( 1, 1)  
(1,  )

6. t  5 or [5,  )
7. x  0, x  1 or [0, 1)  (1,  )

8. (A) 17 (B) h2
 7h  17

(C) h  7 (D) x2
 2xh  h2

 

3x  3h  7 (E) 2x  h  3

x 0 5 10 15 20

Debt 48.7 82.9 147.0 245.1 347.1

f (x) 48 88 153 243 358

0

 5

500

30

The credit union debt is approximately $699 billion in 2001 and $853 billion
in 2005.

9.

3. Domain Range
1 3 4. Domain Range
3 5  1 0

7  2 5
5 9  3 8

Indicate whether each table in Problems 1–6 defines a function.

1. Domain Range 2. Domain Range
 1 1 2 1

0 2 4 3
1 3 6 5
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5. Domain Range 6. Domain Range
 1 2

0
3

3
8

1 4 9
2 5

Indicate whether each set in Problems 7–12 defines a function.

Find the domain and range of each function.

7. {(2, 4), (3, 6), (4, 8), (5, 10)}

8. {( 1, 4), (0, 3), (1, 2), (2, 1)}

9. {(10, 10), (5,  5), (0, 0), (5, 5) (10, 10)}

10. {( 10, 10), ( 5, 5), (0, 0), (5, 5), (10, 10)}

11. {(0, 1), (1, 1), (2, 1), (3, 2), (4, 2), (5, 2)}

12. {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2)}

Indicate whether each graph in Problems 13–18 is the graph of

a function.

13.

14.

15.

x

y

 10

10 10

10

x

y

 10

10 10

10

x

y

 10

10 10

10

16.

17.

18.

In Problems 19 and 20, which of the indicated correspon-

dences define functions? Explain.

19. Let W be the set of residents of Wisconsin and let R and S

be the set of members of the U.S. House of Representa-
tives and the set of members of the U.S. Senate, respec-
tively, elected by the residents of Wisconsin.

(A) A resident corresponds to the congressperson repre-
senting the resident’s congressional district.

(B) A resident corresponds to the senator representing the
resident’s state.

20. Let P be the set of patients in a hospital and let D be the
set of doctors and N the set of nurses, respectively, that are
on the staff of the hospital. 

(A) A patient corresponds to a doctor if that doctor admit-
ted the patient to the hospital.

(B) A patient corresponds to a nurse if that nurse cares for
the patient.

x

y

 10

10 10

10

x

y

 10

10 10

10

x

y

 10

10 10

10

*

*The symbol             denotes problems that require graphical interpretation.
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58. If K(r)  7  4r, find

59. If g(x)  2  x2, find

60. If P(m)  2m2
 3, find

61. If L(w)   2w2
 3w  1, find

62. If D( p)   3p2
 4p  9, find

The verbal statement “function f multiplies the square root of

the domain element by 2 and then subtracts 5” and the alge-

braic statement define the same function. In

Problems 63–66, translate each verbal definition of the func-

tion into an algebraic definition.

63. Function g multiplies the domain element by 3 and then
adds 1.

64. Function f multiplies the domain element by 7 and then
adds the product of 5 and the cube of the domain element.

65. Function F divides the domain element by the sum of 8
and the square root of the domain element.

66. Function G takes the square root of the sum of 4 and the
square of the domain element.

In Problems 67–70, translate each algebraic definition of the

function into a verbal definition.

67. f (x)  2x  3x2 68. g(x)  5x3
 8x

69. 70. G(x)  
x

3x  6
F(x)   x4

 9

f (x)  2 x  5

D( 1  h)  D( 1)

h
.

L( 2  h)  L( 2)

h
.

P(2  h)  P(2)

h
.

g(3  h)  g(3)

h
.

K(1  h)  K(1)

h
.

In Problems 37–52, find the domain of the indicated function.

Express answers informally and formally using interval notation.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

In Problems 53–56, find a function f that makes all three equa-

tions true. [Hint: There may be more than one possible answer,

but there is one obvious answer suggested by the pattern 

illustrated in the equations.]

53. f (1)  2(1)  3 54. f (1)  5(1)2
 6

f (2)  2(2)  3 f (2)  5(2)2
 6

f (3)  2(3)  3 f (3)  5(3)2
 6

55. f(1)  4(1)2
 2(1)  9 56. f(1)   8  5(1)  2(1)2

f(2)  4(2)2
 2(2)  9 f(2)   8  5(2)  2(2)2

f(3)  4(3)2
 2(3)  9 f(3)   8  5(3)  2(3)2

57. If F(s)  3s  15, find
F(2  h)  F(2)

h
.

r(t)  
1

 t  4
s(t)  

1

3   t

N(x)  
 x  3

x  2
M(x)  

 x  4

x  1

K(v)  
v  8

v2
 16

L(v)  
v  2

v2
 16

G(u)  
u

u2
 4

H(u)  
u

u2
 4

j(w)   9  4wk(w)   7  3w

h(t)   6  tg(t)   t  4

k(z)  
z

z  3
h(z)  

2

4  z

g(x)  1  7x  x2f (x)  4  9x  3x2

In Problems 21–24, determine if the indicated equation defines

a function. Justify your answer.

21. x  y  4 22. x2
 y  4

23. x  y2
 4 24. x2

 y2
 4

Problems 25–36 refer to the functions

f(x)  3x  5 g(t)  4  t

F(m)  3m2
  2m   4 G(u)  u  u2

Evaluate as indicated.

25. f ( 1) 26. g(6)

27. G( 2) 28. F( 3)

29. F( 1)  f (3) 30. G(2)  g( 3)

31. 2F( 2)  G( 1) 32. 3G( 2)  2F( 1)

33. 34.

35. 36.
g(5)  g(3)

2

f (4)  f (2)

2

g(4)  f (2)

G(1)

f (0)  g( 2)

F( 3)
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In Problems 71–74, use the given information to write a verbal

description of the function f and then find the equation for f(x).

71.

72.

73.

74.

In Problems 75–82, find and simplify:

(A) (B)

75. f (x)  3x  4 76. f (x)   2x  5

f (x)  f (a)

x  a

f (x  h)  f (x)

h

f (x  h)  2 
3

x  h  6(x  h)  5

f (x  h)  4(x  h)  3 x  h  9

f (x  h)   7(x  h)2
 8(x  h)  5

f (x  h)  2(x  h)2
 4(x  h)  6

77. f(x)  x2
 1 78. f(x)  x2

 x  1

79. f(x)   3x2
 9x  12 80. f(x)   x2

 2x  4

81. f(x)  x3 82. f(x)  x3
 x

In Problems 83 and 84, the domain of the function f is all real

numbers x except x  1. Investigate the behavior of f for x very

close to 1, but not equal to 1. Support your conclusions with

information obtained by exploring the graph of f near x  1,

by examining the numerical values of f near x  1, and by 

algebraically simplifying the expression used to define f.

83. 84. f (x)   
x3

 1

x  1
f (x)  

x2
 1

x  1

85. Physics—Rate. The distance in feet that an object falls in
a vacuum is given by s(t)  16t2, where t is time in seconds.

(A) Find s(0), s(1), s(2), and s(3).

(B) Find and simplify 

(C) Evaluate the expression in part (B) for 
h   1,  0.1,  0.01,  0.001.

(D) What happens in part (C) as h gets closer and closer 
to 0? Interpret physically.

86. Physics—Rate. An automobile starts from rest and trav-
els along a straight and level road. The distance in feet trav-
eled by the automobile is given by s(t)  10t2, where t is
time in seconds.

(A) Find s(8), s(9), s(10), and s(11).

(B) Find and simplify 

(C) Evaluate the expression in part (B) for 
h   1,  0.1,  0.01,  0.001.

(D) What happens in part (C) as h gets closer and closer to
0? Interpret physically.

87. Boiling Point of Water. At sea level, water boils when it
reaches a temperature of 212 F. At higher altitudes, the at-
mospheric pressure is lower and so is the temperature at
which water boils. The boiling point B(x) in degrees Fahren-
heit at an altitude of x feet is given approximately by

B(x)  212  0.0018x

s(11  h)  s(11)

h

s(2  h)  s(2)

h

x 0 5,000 10,000 15,000 20,000 25,000 30,000

B(x)

(A) Complete the following table.

(B) Based on the information in the table, write a brief
verbal description of the relationship between altitude
and the boiling point of water.

88. Air Temperature. As dry air moves upward, it expands
and cools. The air temperature A(x) in degrees Celsius at
an altitude of x kilometers is given approximately by

A(x)  25  9x

(A) Complete the following table.

x 0 1 2 3 4 5

A(x)

(B) Based on the information in the table, write a brief
verbal description of the relationship between altitude
and air temperature.

89. Car Rental. A car rental agency computes daily rental
charges for compact cars with the function

D(x)  20  0.25x

where D(x) is the daily charge in dollars and x is the daily
mileage. Translate this algebraic statement into a verbal
statement that can be used to explain the daily charges to a
customer.
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Table 7 contains the average price of admission (in dollars) to

a motion picture and the total box office gross (in millions of

dollars) for all theaters in the United States. 

T A B L E  7 Selected Financial Data for the Motion Picture Industry

1995 1996 1997 1998 1999 2000 2001

Average Price of $4.35 $4.42 $4.59 $4.69 $5.08 $5.39 $5.66
Admission ($)

Box Office Gross $5,490 $5,910 $6,360 $6,950 $7,450 $7,660 $8,410

($ in millions)

90. Installation Charges. A telephone store computes charges
for phone installation with the function

S(x) 15  0.7x

where S(x) is the installation charge in dollars and x is the
time in minutes spent performing the installation. Trans-
late this algebraic statement into a verbal statement that can
be used to explain the installation charges to a customer.

93. Sales Analysis. A mathematical model for Merck’s sales
is given by

S(t)  6.1t  22

where t is time in years and t 0 corresponds to 1997. 

(A) Compare the model and the data graphically and 
numerically.

(B) Estimate (to two significant digits) Merck’s sales in

2002 and in 2004.

(C) Write a brief verbal description of Merck’s sales from
1997 to 2001. 

94. Income Analysis. A mathematical model for Merck’s net
income is given by

I(t)  0.7t  4.6

where t is time in years and t 0 corresponds to 1997.

(A) Compare the model and the data graphically and 
numerically.

(B) Estimate (to two significant digits) Merck’s net income

in 2002 and in 2004.

(C) Write a brief verbal description of Merck’s net income
from 1997 to 2001. 

95. Research and Development Analysis. A mathematical
model for Merck’s sales as a function of research and 
development (R & D) expenses is given by

S(r)  20r2
 56r  63

where r represents R & D expenditures.

(A) Compare the model and the data graphically and 
numerically.

91. Data Analysis. A mathematical model for the average
price of admission to a motion picture is 

A(t)  0.23t  4.2

where t represents time in years and t 0 corresponds to
1995.

(A) Compare the model and the data graphically and 
algebraically.

(B) Estimate (to the nearest cent) the average price of 
admission in 2002 and 2003.

92. Revenue Analysis. A mathematical model for the total
box office gross is given by 

G(t)  477t  5,460

where t represents time in years and t 0 corresponds to
1995.

(A) Compare the model and the data graphically and 
algebraically.

(B) Estimate (to three significant digits) the total box 

office gross in 2002 and 2003.

Merck & Co., Inc. is the world’s largest pharmaceutical com-

pany. Problems 93–96 refer to the data in Table 8 taken from

the company’s 2001 annual report.

T A B L E  8 Selected Financial Data for Merck & Co., Inc.

($ in billions) 1997 1998 1999 2000 2001

Sales $24 $27 $33 $40 $48

R & D Expenses $1.6 $1.8 $2.1 $2.3 $2.5

Net Income $4.6 $5.2 $5.9 $6.8 $7.3
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Functions: Graphs and Properties

Basic Concepts  Increasing and Decreasing Functions  Local Maxima and Minima  

Mathematical Modeling  Piecewise-Defined Functions  The Greatest Integer Function

One of the primary goals of this course is to provide you with a set of math-
ematical tools that can be used, in conjunction with a graphing utility, to ana-
lyze graphs that arise quite naturally in important applications. In this section,
we discuss some basic concepts that are commonly used to describe graphs of
functions.

Basic Concepts
Each function that has a real number domain and range has a graph—the graph
of the ordered pairs of real numbers that constitute the function. When functions
are graphed, domain values usually are associated with the horizontal axis and
range values with the vertical axis. Thus, the graph of a function f is the same
as the graph of the equation

y  f (x)

where x is the independent variable and the abscissa of a point on the graph of f.
The variables y and f (x) are dependent variables, and either is the ordinate of a
point on the graph of f (Fig. 1).

The abscissa or x coordinate of a point where the graph of a function inter-
sects the x axis is called an x intercept or real zero of the function. The x intercept
is also a real solution or root of the equation f(x)  0. The ordinate, or y coor-
dinate of a point where the graph of a function crosses the y axis, is called the
y intercept of the function. The y intercept is given by f(0), provided 0 is in the
domain of f. Note that a function can have more than one x intercept but can never
have more than one y intercept—a consequence of the vertical line test discussed
in Section 1.2.

In Section 1.1, we solved equations of the form f(x)  c on a graphing util-
ity by graphing both sides of the equation and using the intersect command. Most
graphing utilities also have a zero or root command that finds the x intercepts of
a function directly from the graph of the function. Example 1 illustrates the use
of this command.

(B) Estimate (to two significant digits) Merck’s sales if the

company spends $2.7 billion on research and develop-
ment and if the company spends $3 billion.

96. Research and Development Analysis. A mathematical
model for Merck’s net income as a function of R & D 
expenses is given by

I(r)  0.5r2
 r  1.8

where r represents R & D expenditures. 

(A) Compare the model and the data graphically and 
numerically.

(B) Estimate (to two significant digits) Merck’s net income 

if the company spends $2.7 billion on research and 
development and if the company spends $3 billion.

x

y or f(x)

(x, y) or
(x, f(x))

x intercept

y intercept

y or f(x)

f

FIGURE 1 Graph of a function.
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Finding x and y Intercepts

Find the x and y intercepts (correct to three decimal places) of f(x)  x3
 x  4.

S O L U T I O N

From the graph of f in Figure 2, we see that the y intercept is f(0)   4 and that
there is an x intercept between 1 and 2. We use the zero command to find this
intercept. First we are asked to select a left bound (Fig. 3). This is a value of x
to the left of the x intercept. Next we are asked to find a right bound (Fig. 4).
This is a value of x to the right of the x intercept. If a function has more than
one x intercept, you should select the left and right bounds so that there is only
one intercept between the bounds.

FIGURE 2 FIGURE 3 FIGURE 4

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

Find the x and y intercepts (correct to three decimal places) of f(x)  x3
 x  5.

E X P L O R E / D I S C U S S 1

Let f(x)  x2
 2x  5.

(A) Use the zero command on a graphing utility to find the x inter-
cepts of f.

(B) Find the solutions to the equation x2
 2x  5  0.

(C) Discuss the differences between the graph of f, the x intercepts,
and the solutions to the equation f(x)  0.

Finally, we are asked to select a guess. The guess must be between the bounds
and should be close to the intercept (Fig. 5). Figure 6 shows that the x intercept
(to three decimal places) is 1.379.

 10

 10

10

10

FIGURE 5

 10

 10

10

10

FIGURE 6
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The domain of a function is the set of all the x coordinates of points on the
graph of the function and the range is the set of all the y coordinates. It is instruc-
tive to view the domain and range as subsets of the coordinate axes as in Figure
7. Note the effective use of interval notation* in describing the domain and range
of the functions in this figure. In Figure 7(a) a solid dot is used to indicate that
a point is on the graph of the function and in Figure 7(b) an open dot to indicate
that a point is not on the graph of the function. An open or solid dot at the end
of a graph indicates that the graph terminates there, whereas an arrowhead indi-
cates that the graph continues beyond the portion shown with no significant
changes in shape [see Fig. 7(b)].

][
]

[
x

f(x)

d

b

c

a

Domain f   [a, b]
   Range f   [c, d ]

(

(

d

a

Domain f   (a,  )
   Range f   (  , d)

f(x)

x

FIGURE 7 Domain and range.

(a) (b)

*Interval notation is reviewed in Appendix A, Section A.1.

Find the domain and range of the function f given by the graph in Figure 9.

Finding the Domain and Range from a Graph

Find the domain and range of the function f whose graph is shown in Figure 8.

S O L U T I O N

The dots at each end of the graph of f indicate that the graph terminates at these
points. Thus, the x coordinates of the points on the graph are between  3 and 6.
The open dot at ( 3, 4) indicates that  3 is not in the domain of f, whereas the
closed dot at (6,  3) indicates that 6 is in the domain of f. That is,

Domain:  3   x   6 o r( 3, 6]

The y coordinates are between  5 and 4 and, as before, the open dot at ( 3, 4)
indicates that 4 is not in the range of f and the closed dot at (3,  5) indicates
that  5 is in the range of f. Thus,

Range:  5  y   4 o r[ 5, 4)

FIGURE 8

y   f(x)

x

y or f(x)

 5

 3

63

4

FIGURE 9

x

 4

3

 4

5
1

y or f(x)

y   f(x)
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Graph each function in the standard viewing window, then write a ver-
bal description of the behavior exhibited by the graph as x moves from
left to right.

(A) f(x)  2  x (B) f(x)  x3

(C) f(x)  5 (D) f(x)  9  x2

We now take a look at increasing and decreasing properties of functions. Intu-
itively, a function is increasing over an interval I in its domain if its graph rises
as the independent variable increases (moves from left to right) over I. A func-
tion is decreasing over I if its graph falls as the independent variable increases
over I (Fig. 10).
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x

f(x)

 5

5 5

5

f(x)    x3
g(x)   2x   2

x

g(x)

 5

5 5

5

x

h(x)

 5

5 5

5

h(x)   2

x

p(x)

 5

5 5

5

p(x)   x2   1

FIGURE 10 Increasing, decreas-
ing, and constant functions.

(a) Increasing on (  ,  ) (b) Decreasing on (  ,  )

(c) Constant on (  ,  ) (d) Decreasing on (  , 0]

Increasing on [0,  )

Increasing and Decreasing Functions
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More formally, we define increasing, decreasing, and constant functions as
follows:

D E F I N I T I O N 1
Increasing, Decreasing, and Constant Functions

Let I be an interval in the domain of function f. Then,

1. f is increasing on I and the graph of f is rising on I if f(a)  f (b) whenever a b in I.

2. f is decreasing on I and the graph of f is falling on I if f(a)  f (b) whenever a b in I.

3. f is constant on I and the graph of f is horizontal on I if f (a)  f(b) whenever a b in I.

Refer to Figure 10(a). As x moves from left to right, the values of g increase
and the graph of g rises. In Figure 10(b), as x moves from left to right, the val-
ues of f decrease and the graph of f falls. 

Describing a Graph

The graph of

f (x)  x3
 12x  4

is shown in Figure 11. Use the terms increasing, decreasing, rising, and falling

to write a verbal description of this graph.

S O L U T I O N

The values of f increase and the graph of f rises as x increases from   to  2. The
values of f decrease and the graph of f falls as x increases from  2 to 2. Finally,
the values of f increase and the graph of f rises as x increases from 2 to  .

x

 25

5 5

25

f(x)

( 2, 20)

(2,  12)

FIGURE 11 f(x)  x3
 12x 4.

The graph of 

f(x)   x3
 3x2

 9x  13

is shown in Figure 12. Use the terms increasing, decreasing, rising, and falling

to write a verbal description of this graph.

Local Maxima and Minima
Refer to f(x)  x3

 12x  4 in Example 3 (Fig. 13). At the point ( 2, 20), the
function changes from increasing to decreasing. This implies that the functional
value f( 2)  20 is greater than any of the nearby values of the function. At the
point (2,  12), the function changes from decreasing to increasing. This implies
that the functional value f(2)   12 is less than any nearby values of the func-
tion. These concepts are made more formal in the following definition.

x

 25

5 5

25

f(x)

( 3,  14)

(1, 18)

FIGURE 12

 20

 5

20

5

FIGURE 13 f(x)  x3
 12x  4.
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D E F I N I T I O N 2
Local Maxima and Local Minima

The functional value f(c) is called a local maximum

if there is an interval (a, b) containing c such that

f(x)  f(c) for all x in (a, b)

The functional value f(c) is called a local minimum

if there is an interval (a, b) containing c such that

f(x)  f(c) for all x in (a, b)

The functional value f(c) is called a local extremum

if it is either a local maximum or a local minimum.

bca
x

f(x)

f(c)

Local maximum

c
x

f(x)

f(c)

Local minimum

ba

The location of local extrema plays an essential role in the analysis of func-
tions and graphs. Local extrema are also crucial to the solution of many applied
problems involving the maximum or minimum values of a function. Most graph-
ing utilities have commands that approximate local maxima and minima. Exam-
ples 4 and 5 illustrate the use of these commands.

Finding Local Extrema

Find the domain, any local extrema, and the range of

Round answers to two decimal places.

f(x)  x2
  40 x

E X P L O R E / D I S C U S S 3

Plot the points A  (0, 0), B  (3, 4), C  (7, 1), and D  (10, 5) in
a coordinate plane. Draw a curve that satisfies each of the following
conditions.

(A) Passes through A and B and is always increasing.

(B) Passes through A, B, and C with a local maximum at x  3.

(C) Passes through A, B, C, and D with a local maximum at x  3
and a local minimum at x  7.
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FIGURE 14 FIGURE 15 FIGURE 16

The graph of f is shown in Figure 17. Notice that we adjusted Ymin to provide
space at the bottom of the screen for the text that the graphing utility will display. 

Both the table in Figure 14 and the graph in Figure 17 indicate that f has a
local minimum near x  5. After selecting the minimum command on our graph-
ing utility, we are asked to select a left bound (Fig. 18), a right bound (Fig. 19),
and a guess (Fig. 20).

 120

0

80

15

FIGURE 17

S O L U T I O N

Because represents a real number only if x  0, the domain of f is [0,  ).
First we must select a viewing window. Because the domain of f is [0,  ), we
choose Xmin  0. We construct a table of values on a graphing utility (Figs. 14
and 15) to help select the remaining window variables. From Figure 14 we see
that Ymin should be less than  64.44. Figure 15 indicates that Xmax  15 and
Ymax greater than 70.081 should produce a reasonable view of the graph. Our
choice for the window variables is shown in Figure 16.

 x

 120

0

80

15

 120

0

80

15

 120

0

80

15

FIGURE 18 FIGURE 19 FIGURE 20

The final graph (Fig. 21) shows that, to two decimal places, f has a local mini-
mum value of  64.63 at x  4.64. The curve in Figure 21 suggests that as x

increases to the right without bound, the values of f(x) also increase without
bound. The graph in Figure 22 and the table in Figure 23 support this suggestion.
Thus, we conclude that there are no other local extrema and that the range of f

is [ 64.63,  ).

 120

0

80

15

 120

0

10,000

100

FIGURE 21 FIGURE 22 FIGURE 23
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Summarizing our results, we have
Domain of f  [0,  )
Range of f  [ 64.63,  )
Local minimum: f(4.64)   64.63

Find the domain, any local extrema, and the range of

Round answers to two decimal places.

Refer to Example 4. Calculus techniques are required to be certain that f con-
tinues to increase as x increases to the right. Without calculus, we have to rely on
intuitive arguments involving graphical and numerical techniques, as we did in
the solution to Example 4. As we broaden our experience base and become famil-
iar with a larger variety of functions, we will strengthen our intuition. This is one
of the major objectives of this book.

Mathematical Modeling
In Example 5, we use the maximum command to find the maximum value of a
revenue function.

f(x)  x   5 x

 3,000

0

7,000

1,300

FIGURE 26FIGURE 24 FIGURE 25

Maximizing Revenue

The revenue (in dollars) from the sale of x bicycle locks is given by

R(x)  21x  0.016x2 0  x  1,300

Find the number of locks that must be sold to maximize the revenue. What is the
maximum revenue, to the nearest dollar?

S O L U T I O N

We begin by entering the revenue function as Y1 and constructing a table of val-
ues for the revenue (Fig. 24.) From the limits given in the problem, we select
Xmin  0 and Xmax  1,300. The table in Figure 24 suggests that Ymax  7,000
is a good choice and, as before, we select Ymin so the text displayed by the graph-
ing utility does not cover any important portions of the graph. We enter the win-
dow variables (Fig. 25) and use the maximum command (Fig. 26). (The maximum
command works just like the minimum command used in Example 4. The details
of selecting the bounds and the initial guess are omitted.)
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The results in Figure 26 show that, to two decimal places, the maximum revenue
is $6,890.63 when x  656.25 locks. But this cannot be the answer to the prob-
lem. It is not possible to sell one-fourth of a lock. Examining the values of R at
x  656 and x  657 (Fig. 27), we conclude that the maximum revenue, to the
nearest dollar, is $6,891 when either 656 locks or 657 locks are sold.

FIGURE 27

The profit (in dollars) from the sale of x bicycle locks is given by

P(x)  17.5x  0.016x2
 2,000 0  x  1,300

Find the number of locks that must be sold to maximize the profit. What is the
maximum profit, to the nearest dollar?

Example 5 illustrates an important step in the mathematical modeling process.
Solutions obtained from a model must be interpreted in terms of the original real-
world problem. In the case of Example 5, the revenue function R is defined only
for integer values of x, x  0, 1, 2, . . . , 1,300. However, for the purposes of
mathematical analysis and as an aid in visualizing the behavior of the function R,

we assume that the revenue function is defined for all x, 0  x  1,300. After
finding that the maximum value of the revenue function occurs at x  656.25, we
must remember to interpret this solution to mean either x  656 or x  657.

FIGURE 28 Graph of

f (x)   x  abs(x).

 10

 10

10

10

Piecewise-Defined Functions
The absolute value function is defined by

The graph of is shown in Figure 28. Most graphing utilities use abs or ABS
to denote this function, and the graph is produced directly using y1  abs(x).

The absolute value function is defined by different formulas for different parts
of its domain. Functions whose definitions involve more than one formula are
called piecewise-defined functions. Notice that the graph of the absolute value
function has a sharp corner at (0, 0), a common characteristic of piecewise-
defined functions. As Example 6 illustrates, piecewise-defined functions occur nat-
urally in many applications.

 x 

f(x)   x   
 x if x   0

x if x  0

  4   ( 4)  4

 3  3

Rental Charges

A car rental agency charges $0.25 per mile if the mileage does not exceed 100.
If the total mileage exceeds 100, the agency charges $0.25 per mile for the first
100 miles and $0.15 per mile for any additional mileage.

(A) If x represents the number of miles a rented vehicle is driven, express the
mileage charge C(x) as a function of x.
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Charge for the Charge for the

first 100 miles additional mileage

(B) Piecewise-defined functions are evaluated by first determining which
rule applies and then using the appropriate rule to find the value of
the function. To begin, we enter both rules in a graphing utility and
use the TABLE command (Fig. 29). To complete the table, we use the
values of C(x) from the y1 column if 0  x  100, and from the y2

column if x  100.

x 0 50 100 150 200

C(x) $0 $12.50 $25 $32.50 $40

(C) Using a graph of both rules in the same viewing window as an aid
(Fig. 30). we sketch the graph of y  C(x) and add the points from
the table to produce Figure 31.

Notice the sharp corner at (100, 25).

FIGURE 29

y1   0.25x, y2   10   0.15x.

0

0

50

200

FIGURE 30

y1   0.25x, y2   10   0.15x.

y1   0.25x

y2   10   0.15x

x
500 100 150 200 250

0

20

40

y or C(x)

FIGURE 31 Hand sketch of the

graph of y  C(x).

Another car rental agency charges $0.30 per mile when the total mileage does not
exceed 75, and $0.30 per mile for the first 75 miles plus $0.20 per mile for the
additional mileage when the total mileage exceeds 75.

(A) If x represents the number of miles a rented vehicle is driven, express the
mileage charge C(x) as a function of x.

(B) Complete the following table.

x 0 50 100 150 200

C(x)

(C) Sketch the graph of y  C(x) by hand, using a graphing utility as an aid,
and indicate the points in the table on the graph with solid dots.

S O L U T I O N S

(A) If 0  x  100, then

C(x)  0.25x

If x  100, then

C(x)  0.25(100)  0.15(x  100)
 25  0.15x  15
 10  0.15x

Thus, we see that C is a piecewise-defined function:

C(x)   0.25x if 0  x  100

10  0.15x if x   100
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x
2 2

2

 2

f(x)

FIGURE 32 Graph of

f (x)   x2
 2 for x  1

x for x   1

(B) Complete the following table.

x 0 50 75 100 150

C(x)

(C) Sketch the graph of y  C(x) by hand, using a graphing utility as an aid,
and indicate the points in the table on the graph with solid dots.

Refer to Figures 29 and 31 in the solution to Example 6. Notice that the two
formulas in the definition of C produce the same value at x  100 and that the
graph of C contains no breaks. Informally, a graph (or portion of a graph) is said
to be continuous if it contains no breaks or gaps and can be drawn without lift-
ing a pen from the paper. A graph is discontinuous at any points where there is
a break or a gap. For example, the graph of the function in Figure 32 is discon-
tinuous at x  1. The entire graph cannot be drawn without lifting a pen from
the paper. (A formal presentation of continuity can be found in calculus texts.)

The Greatest Integer Function
We conclude Section 1.3 with a discussion of an interesting and useful function
called the greatest integer function.

The greatest integer of a real number x, denoted by  x , is the integer n such
that n  x  n  1; that is,  x is the largest integer less than or equal to x

(Fig. 33).

  8     8

 3     2.13 3    3.45 

 0    0  7    7

x
0 10 10

FIGURE 33

The greatest integer function f is defined by the equation f (x)   x . A piece-
wise definition of f for  2  x  3 is shown below and a sketch of the graph
of f for  5  x  5 is shown in Figure 34. Since the domain of f is all real num-
bers, the piecewise definition continues indefinitely in both directions, as does the
stairstep pattern in the figure. Thus, the range of f is the set of all integers. The
greatest integer function is an example of a more general class of functions called
step functions.

.

.

.
 2 if  2  x   1

 1 if  1  x  0 0 if 0  x  1

1 if 1  x  2

2 if 2  x  3
.
.
.

f(x)   x  
 5

5 5

5

f(x)    x  

x

f(x)

FIGURE 34 Greatest integer
function.
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FIGURE 35 Greatest integer
function on a graphing utility.

 5

 5

5

5

 5

 5

5

5

(a) Graph of y  int(x) in the

connected mode.

(b) Graph of y  int(x) in the

dot mode.

To avoid misleading graphs, use the dot mode on your graphing utility when graphing a function

with discontinuities.

x f [x]

6 6

1.8 1.8

3.24 3.2

4.582 4.6

 2.68  2.7

Computer Science

Let

Find

(A) f (6) (B) f (1.8) (C) f (3.24) (D) f (4.582) (E) f ( 2.68)

What operation does this function perform?

S O L U T I O N S

(A)

(B)

(C)

(D)

(E)

Comparing the values of x and f (x) in the table, we conclude that this function
rounds decimal fractions to the nearest tenth.

f( 2.68)  
  26.3 

10
 

 27

10
  2.7

f(4.582)  
 46.32 

10
 

46

10
 4.6

f(3.24)  
 32.9 

10
 

32

10
 3.2

f(1.8)  
 18.5 

10
 

18

10
 1.8

f(6)  
 60.5 

10
 

60

10
 6

f(x)  
 10x  0.5 

10

Notice in Figure 34 that at each integer value of x there is a break in the graph,
and between integer values of x there is no break. Thus, the greatest integer func-
tion is discontinuous at each integer n and continuous on each interval of the form
[n, n  1).

Most graphing utilities will graph the greatest integer function, usually denoted
by int, but these graphs require careful interpretation. Comparing the sketch of 
y   x in Figure 34 with the graph of y  int(x) in Figure 35(a), we see that the
graphing utility has connected the endpoints of the horizontal line segments. This
gives the appearance that the graph is continuous when it is not. To obtain a cor-
rect graph, consult the manual to determine how to change the graphing mode on
your graphing utility from connected mode to dot mode [Fig. 35(b)].
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Let f (x)   x  0.5 . Find

(A) f (6) (B) f (1.8) (C) f (3.24) (D) f ( 4.3) (E) f ( 2.69)

What operation does this function perform?

6. (A)

(B)

C(x)   0.3x if  0  x  75

7.5  0.2x if x   75

1. x intercept:  1.516; y intercept: 5
2. Domain:  4  x  5 or ( 4, 5)

Range:  4  y  3 or ( 4, 3]

3. The values of f decrease and the
graph of f is falling on (  ,  3)
and (1,  ). The values of f
increase and the graph of f is
rising on ( 3, 1).

4. Domain: [0,  ];
range: [ 6.25,  );
local minimum: f(6.25)   6.25

5. The maximum profit of $2,785

occurs when 547 locks are sold.

x 0 50 75 100 150

C(x) $0 $15 $22.50 $27.50 $37.50

y1   0.3x

250200150100500
0

10

20

30

40

50

x

C(x)

y2   7.5   0.2x

(C)

7. (A) 6 (B) 2 (C) 3 (D)  4 (E)  3; f rounds decimal fractions to the nearest integer.

Problems 1–6 refer to functions f, g, h, k, p, and q given by the

following graphs. (Assume the graphs continue as indicated

beyond the parts shown.)

1. For the function f, find

(A) Domain

(B) Range

(C) x intercepts

(D) y intercept

(E) Intervals over which f is increasing

(F) Intervals over which f is decreasing

(G) Intervals over which f is constant

(H) Any points of discontinuity

2. Repeat Problem 1 for the function g.

3. Repeat Problem 1 for the function h.

4. Repeat Problem 1 for the function k.

5. Repeat Problem 1 for the function p (see page 52).

6. Repeat Problem 1 for the function q (see page 52) . 

x
5 5

5

k(x)

 5

x

 5

5 5

5

h(x)

x

 5

5 5

5

g(x)

x

 5

5 5

5

f(x)
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In Problems 7–12, examine the graph of the function to deter-

mine the intervals over which the function is increasing, the in-

tervals over which the function is decreasing, and the intervals

over which the function is constant. Approximate the endpoints

of the intervals to the nearest integer.

7.

8.

9.

10.

11.

12. s(x)   x   x   5   x   3 
r(x)   x   4   x   x   4 
q(x)   x   2   x   4 
m(x)   x   3   x   4 
k(x)   x   2  x

f (x)   x   2   5

x

 5

5 5

5

q(x)

x

 5

5 5

5

p(x) In Problems 13–18, find the x intercepts, y intercept, and any

local extrema. Round answers to three decimal places.

13. f (x)  x2
 5x  9 14. g(x)   x2

 7x 14

15. h(x)   x3
 4x  25 16. k(x)  x3

 3x2
 15

17. 18.

In Problems 19–24, sketch by hand the graph of a continuous

function f over the interval [ 5, 5] that is consistent with the

given information.

19. The function f is increasing on [ 5, 2], constant on 
[ 2, 2], and decreasing on [2, 5].

20. The function f is decreasing on [ 5, 2], constant on
[ 2, 2], and increasing on [2, 5].

21. The function f is decreasing on [ 5, 2], constant on
[ 2, 2], and decreasing on [2, 5].

22. The function f is increasing on [ 5, 2], constant on 
[ 2, 2], and increasing on [2, 5].

23. The function f is decreasing on [ 5, 2], increasing on
[ 2, 2], and decreasing on [2, 5].

24. The function f is increasing on [ 5, 2], decreasing on
[ 2, 2], and increasing on [2, 5].

n(x)    x3
  12 m(x)    x2

  12 

In Problems 25–30, sketch the graph of y  f(x) and evaluate

f( 2), f( 1), f(1), and f(2).

25.

26.

27.

28.

29.

30.

In Problems 31–38, find the domain, range, y intercept, and 

x intercepts. Round answers to two decimal places.

f (x)    x2
 2 if x  0

x2
 2 if x  0

f (x)   x2
 1 if x  0

 x2
 1 if x  0

f (x)    x  1 if x  2

 x  5 if x  2

f (x)   x  2 if x   1

x  2 if x   1

f (x)     x if x   1

 x  2 if x  1

f (x)   x  1 if x  0

 x  1 if x  0

31. m(x)  x3
 45x2

 30 32. f (x)  x3
 35x2

 25

33. n(x)  200  200x2
 x4

34. g(x)  200  40x3
 x4

35. 36.

37. 38.

In Problems 39–44, write a verbal description of the graph of

the given function using the terms increasing, decreasing, ris-

ing, and falling, and indicate any local maximum and mini-

mum values. Approximate to two decimal places the

coordinates of any points used in your description.

39. f (x)  x3
 12x2

 3x  10

40. h(x)  x3
 15x2

 5x  15

41.

42.

43.

44. k(x)   x2
 4x  480 

g(x)   x2
 5x  300 

n(x)  15  x  x

m(x)  24 x  x2

t(x)  30 20  x  x2k(x)  x2
 50 x  5

s(x)  x  18 xh(x)  8 x  x
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In Problems 45–50, write a verbal description of the graph of

the given function using increasing and decreasing terminol-

ogy, and indicating any local maximum and minimum values.

Approximate to two decimal places the coordinates of any

points used in your description.

45. f (x)  x2
 4.3x  32

46. g(x)   x2
 6.9x  25

47. h(x)  x3
 x2

 74x  60

48. k(x)   x3
 x2

 82x  25

49.

50.

In Problems 51–56, sketch by hand the graph of a function f

that is continuous on the interval [ 5, 5], except as noted, and

is consistent with the given information.

q(x)   x2
 2x  30 

p(x)   x2
 x  18 

51. The function f is increasing on [ 5, 0), discontinuous at 
x  0, increasing on (0, 5], f( 2)  0, and f (2) 0.

52. The function f is decreasing on [ 5, 0), discontinuous at 
x  0, decreasing on (0, 5], f( 3)  0, and f (3) 0.

53. The function f is discontinuous at x  0, f ( 3)   2 is a
local maximum, and f(2) 3 is a local minimum.

54. The function f is discontinuous at x  0, f ( 3)  2 is a 
local minimum, and f(2)  3 is a local maximum.

55. The function f is discontinuous at x   2 and x  2,
f ( 3)   2 and f (3)  2 are local maxima, and 
f (0) 0 is a local minimum.

56. The function f is discontinuous at x   2 and x  2,
f ( 3)  2 and f (3) 2 are local minima, and f(0) 0 is
a local maximum.

In Problems 57–62, graph y  f(x) in a standard viewing win-

dow. Assuming that the graph continues as indicated beyond

the part shown in this viewing window, find the domain, range,

and any points of discontinuity. (Use the dot mode on your

graphing utility.)

57. 58.

59. 60.

61. 62.

In Problems 63–68, write a piecewise definition of f and sketch

by hand the graph of f, using a graphing utility as an aid. In-

clude sufficient intervals to clearly illustrate both the definition

and the graph. Find the domain, range, and any points of 

discontinuity.

63. f (x)   x/2 64. f (x)   x/3 

65. f (x)   3x 66. f (x)   2x 

67. f (x)  x   x 68. f (x)   x  x

69. The function f is continuous and increasing on the interval
[1, 9] with f(1)  5 and f (9) 4.

(A) Sketch a graph of f that is consistent with the given 
information.

f (x)   x   2x  4 
x  2

f (x)   x   9  3x 
x  3

f (x)  x   2x  2 
x  1

f (x)  x   4x  4 
x  1

f (x)  
4x  12

 x  3 
f (x)   5x  10 

x  2

(B) How many times does your graph cross the x axis?
Could the graph cross more times? Fewer times? Sup-
port your conclusions with additional sketches and/or
verbal arguments.

70. Repeat Problem 69 if the function does not have to be 
continuous.

71. The function f is continuous on the interval [ 5, 5] with
f ( 5)   4, f (1) 3, and f (5)  2.

(A) Sketch a graph of f that is consistent with the given 
information.

(B) How many times does your graph cross the x axis?
Could the graph cross more times? Fewer times? Sup-
port your conclusions with additional sketches and/or
verbal arguments.

72. Repeat Problem 71 if f is continuous on [ 8, 8] with
f ( 8)   6, f ( 4)  3, f (3)  2, and f (8) 5.

73. The function f is continuous on [0, 10], f(5)  5 is a local
minimum, and f has no other local extrema on this interval.

(A) Sketch a graph of f that is consistent with the given 
information.

(B) How many times does your graph cross the x axis?
Could the graph cross more times? Fewer times? Sup-
port your conclusions with additional sketches and/or
verbal arguments.

74. Repeat Problem 73 if f(5) 1 and all other information is
unchanged.
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75. Computer Science. Let f (x)  10 0.5  x/10 . Evaluate f
at 4,  4, 6,  6, 24, 25, 247,  243,  245, and  246.
What operation does this function perform?

76. Computer Science. Let f (x)  100 0.5  x/100 . Evaluate
f at 40,  40, 60,  60, 740, 750, 7,551,  601,  649, and
 651. What operation does this function perform?

 77. Computer Science. Use the greatest integer function to
define a function f that rounds real numbers to the nearest
hundredth.

 78. Computer Science. Use the greatest integer function to
define a function f that rounds real numbers to the nearest
thousandth.

79. Revenue. The revenue (in dollars) from the sale of x car
seats for infants is given by

R(x)  60x  0.035x2 0  x  1,700

Find the number of car seats that must be sold to
maximize the revenue. What is the maximum revenue (to
the nearest dollar)?

80. Profit. The profit (in dollars) from the sale of x car seats
for infants is given by

P(x)  38x  0.035x2
 4,000 0  x  1,700

Find the number of car seats that must be sold to
maximize the profit. What is the maximum profit (to the
nearest dollar)?

 81. Manufacturing. A box is to be made out of a piece of
cardboard that measures 18 by 24 inches. Squares, x
inches on a side, will be cut from each corner and then the
ends and sides will be folded up (see the figure).

Find the size of the cutout squares that will make the
maximum volume. What is the maximum volume? Round
answers to two decimal places.

 82. Manufacturing. A box with a hinged lid is to be made out
of a piece of cardboard that measures 20 by 40 inches. Six
squares, x inches on a side, will be cut from each corner
and the middle of the sides, and then the ends and sides
will be folded up to form the box and its lid (see the figure).

Find the size of the cutout squares that will make the
maximum volume. What is the maximum volume? Round
answers to two decimal places.

24 inches

1
8
 i
n

ch
e
s

x

x

40 inches

2
0
 i
n

ch
e
s

x

x

Lake

Land

Freshwater
source

Pipe

20 miles

8
 m

ile
s

x 20   x

Island

83. Construction. A freshwater pipe is to be run from a
source on the edge of a lake to a small resort community
on an island 8 miles offshore, as indicated in the figure. It
costs $10,000 per mile to lay the pipe on land and $16,000
per mile to lay the pipe in the lake. The total cost C(x) in
thousands of dollars of laying the pipe is given by

Find the length (to two decimal places) of the land portion
of the pipe that will make the production costs minimum.
Find the minimum cost to the nearest thousand dollars.

0  x  20C(x)  10(20  x)  16 x2
 64
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84. Transportation. The construction company laying the
freshwater pipe in Problem 83 uses an amphibious vehicle
to travel down the beach and then out to the island. The
vehicle travels at 30 miles per hour on land and 7.5 miles
per hour in water. The total time T(x) in minutes for a trip
from the freshwater source to the island is given by

Find (to two decimal places) the length of the land portion
of the trip that will make the time minimum. Find the
minimum time to the nearest minute.

T(x)  2(20  x)  8 x2
 64  0  x  20

Table 1 contains daily automobile rental rates from a New 

Jersey firm.

T A B L E  1

Vehicle Type Daily Charge Included Miles Mileage Charge*

Compact $32.00 100/Day $0.16/mile

Midsize $41.00 200/Day $0.18/mile

*Mileage charge does not apply to included miles.

Source: www.gogelauto.com

85. Automobile Rental. Use the data in Table 1 to construct a
piecewise-defined model for the daily rental charge for a
compact automobile that is driven x miles.

86. Automobile Rental. Use the data in Table 1 to construct a
piecewise-defined model for the daily rental charge for a
midsize automobile that is driven x miles.

87. Delivery Charges. A nationwide package delivery service
charges $15 for overnight delivery of packages weighing 
1 pound or less. Each additional pound (or fraction
thereof) costs an additional $3. Let C(x) be the charge for
overnight delivery of a package weighing x pounds.

(A) Write a piecewise definition of C for 0  x  6 and
sketch the graph of C by hand.

(B) Can the function f defined by f(x)  15  3 x be used
to compute the delivery charges for all x, 0  x  6?
Justify your answer.

88. Telephone Charges. Calls to 900 numbers are charged to
the caller. A 900 number hot line for tips and hints for
video games charges $4 for the first minute of the call and
$2 for each additional minute (or fraction thereof). Let
C(x) be the charge for a call lasting x minutes.

(A) Write a piecewise definition of C for 0  x  6 and
sketch the graph of C by hand.

(B) Can the function f defined by f(x)  4  2 x be used
to compute the charges for all x, 0  x  6? Justify
your answer.

 89. Sales Commissions. An appliance salesperson receives a
base salary of $200 a week and a commission of 4% on all
sales over $3,000 during the week. In addition, if the
weekly sales are $8,000 or more, the salesperson receives
a $100 bonus. If x represents weekly sales (in dollars), ex-
press the weekly earnings E(x) as a function of x, and
sketch its graph. Identify any points of discontinuity. Find
E(5,750) and E(9,200).

 90. Service Charges. On weekends and holidays, an emer-
gency plumbing repair service charges $2.00 per minute
for the first 30 minutes of a service call and $1.00 per
minute for each additional minute. If x represents the dura-
tion of a service call in minutes, express the total service
charge S(x) as a function of x, and sketch its graph. Iden-
tify any points of discontinuity. Find S(25) and S(45).
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Table 2 contains the income tax schedule for the state of 

Minnesota in a recent year.

T A B L E  2

Taxable But Of the
Income Not Amount

Status Over Over Tax Is Over

Single $ 0 $ 18,120 ..... 5.35% $ 0
18,120 59,500 $ 969  7.05% 18,120
59,500 ..... 3,887  7.85% 59,500

Married 0 26,480 ..... 5.35% 0
26,480 105,200 1,417  7.05% 26,480

105,200 ..... 6,966  7.85% 105,200

Source: www.taxsites.com/state.html

 91. State Income Tax. Use the schedule in Table 2 to con-
struct a piecewise-defined model for the taxes due for a
single taxpayer with a taxable income of x dollars. Find
the tax on the following incomes: $10,000, $30,000,
$100,000.

 92. State Income Tax. Use the schedule in Table 2 to con-
struct a piecewise-defined model for the taxes due for a
married taxpayer with a taxable income of x dollars. Find
the tax on the following incomes: $20,000, $60,000,
$200,000.

93. Tire Mileage. An automobile tire manufacturer collected
the data in the table relating tire pressure x, in pounds per
square inch (lb/in.2), and mileage in thousands of miles.

x 28 30 32 34 36

Mileage 45 52 55 51 47

A mathematical model for these data is given by

f (x)   0.518x2
 33.3x  481

(A) Compare the model and the data graphically and 
numerically. 

(B) Find (to two decimal places) the mileage for a tire
pressure of 31 lb/in.2 and for 35 lb/in.2.

(C) Write a brief description of the relationship between
tire pressure and mileage, using the terms increasing,

decreasing, local maximum, and local minimum where
appropriate.

94. Automobile Production. The table lists General Motors’s
total U.S. vehicle production in millions of units from
1989 to 1993.

Year 89 90 91 92 93

Production 4.7 4.1 3.5 3.7 5.0

A mathematical model for GM’s production data is 
given by

f (x)  0.33x2
 1.3x  4.8

where x  0 corresponds to 1989.

(A) Compare the model and the data graphically and 
numerically.

(B) Estimate to two decimal places the production in 1994
and in 1995.

(C) Write a brief verbal description of GM’s production
from 1989 to 1993, using increasing, decreasing, local

maximum, and local minimum terminology where 
appropriate.
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Functions: Graphs and Transformations

A Beginning Library of Elementary Functions  Vertical and Horizontal Shifts  Expansions
and Contractions  Reflections in the x and y Axes  Even and Odd Functions

The functions

g(x)  x2
 2 h(x)  (x  2)2 k(x)  2x2

can be expressed in terms of the function f(x)  x2 as follows:

g(x)  f (x)  2 h(x)  f (x  2) k(x)  2f (x)

In this section we will see that the graphs of functions g, h, and k are closely
related to the graph of function f. Insight gained by understanding these relation-
ships will help us analyze and interpret the graphs of many different functions.

A Beginning Library of Elementary Functions
As we progress through this book, we will encounter a number of basic functions
that we will want to add to our library of elementary functions. Figure 1 shows
six basic functions that you will encounter frequently. You should know the defi-
nition, domain, and range of each of these functions, and be able to recognize their
graphs. You should graph each basic function in Figure 1 on your graphing utility.

FIGURE 1 Some basic functions
and their graphs.
[Note: Letters used to designate
these functions may vary from
context to context; R is the set
of all real numbers.]

f(x)

5

 5

 5 5
x

g(x)

5

 5 5
x

h(x)

5

 5 5
x

(a) Identity function

f(x)  x

Domain: R

Range: R

(b) Absolute value function

g(x)   x 
Domain: R

Range: [0,  )

(c) Square function

h(x)  x2

Domain: R

Range: [0,  )

x

 5

5 5

5

m(x)

x

n(x)

 5

5

5

x

p(x)

 5

5 5

5

(d) Cube function

m(x)  x3

Domain: R

Range: R

(e) Square root function

Domain: [0,  )

Range: [0,  )

n(x)   x

(f) Cube root function

Domain: R

Range: R

p(x)  
3 x



Most graphing utilities allow you to define a number of functions, usually
denoted by y1, y2, y3,. . . . You can graph all of these functions simultaneously, or
you can select certain functions for graphing and suppress the graphs of the oth-
ers. Consult your manual to determine how many functions can be stored in your
graphing utility at one time and how to select particular functions for graphing.
Many of our investigations in this section will involve graphing two or more func-
tions at the same time.

Vertical and Horizontal Shifts
If a new function is formed by performing an operation on a given function, then
the graph of the new function is called a transformation of the graph of the orig-
inal function. For example, if we add a constant k to f (x), then the graph of 
y  f (x) is transformed into the graph of y  f (x)  k.
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E X P L O R E / D I S C U S S  1

The following activities refer to the graph of f shown in Figure 2 and
the corresponding points on the graph shown in Table 1.

x

y

 5

5 5

5

A

B

C

D

E

y   f(x)

FIGURE 2

T A B L E  1

x f (x)

A  4 0

B  2 3

C 0 0

D 2  3

E 4 0

(A) Use the points in Table 1 to construct a similar table and then
sketch a graph for each of the following functions: y  f (x)  2,
y  f (x)  3. Describe the relationship between the graph of 
y  f (x) and the graph of y  f (x)  k for k any real number.

(B) Use the points in Table 1 to construct a similar table and then
sketch a graph for each of the following functions: y  f (x  2),
y  f (x  3). [Hint: Choose values of x so that x  2 or x  3
is in Table 1.] Describe the relationship between the graph of 
y  f (x) and the graph of y  f (x  h) for h any real number.

Vertical and Horizontal Shifts

(A) How are the graphs of y  x2
 2 and y  x2

 3 related to the graph of
y  x2? Confirm your answer by graphing all three functions simulta-
neously in the same viewing window.

(B) How are the graphs of y  (x  2)2 and y  (x  3)2 related to the graph
of y  x2? Confirm your answer by graphing all three functions simulta-
neously in the same viewing window.

S O L U T I O N S

(A) The graph of y  x2 + 2 is the same as the graph of y  x2 shifted
upward two units, and the graph of y  x2

 3 is the same as the
graph of y  x2 shifted downward three units. Figure 3 confirms
these conclusions. (It appears that the graph of y  f (x)  k is the
graph of y  f (x) shifted up if k is positive and down if k is
negative.)

 5

 5

5

5

y   x2   2

y   x2   3

y   x2

FIGURE 3 Vertical shifts.
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 5

 5

5

5

y   (x   2)2

y   (x   3)2

y   x2

FIGURE 4 Horizontal shifts.

(A) How are the graphs of y  and y  related to the graph
of ? Confirm your answer by graphing all three functions simulta-
neously in the same viewing window.

(B) How are the graphs of y  and y  related to the graph
of ? Confirm your answer by graphing all three functions simulta-
neously in the same viewing window.

Comparing the graph of y  f (x)  k with the graph of y  f (x), we see that
the graph of y  f (x)  k can be obtained from the graph of y  f (x) by verti-
cally translating (shifting) the graph of the latter upward k units if k is positive
and downward  k units if k is negative. Comparing the graph of y  f (x  h)
with the graph of y  f (x), we see that the graph of y  f (x  h) can be obtained
from the graph of y  f (x) by horizontally translating (shifting) the graph of
the latter h units to the left if h is positive and  h units to the right if h is negative.

y   x
 x  1 x  3

y   x
 x  1 x  3

Vertical and Horizontal Translations [Shifts]

The graphs in Figure 5 are either horizontal or vertical shifts of the graph of 
f (x)   x . Write appropriate equations for functions G, H, M, and N in terms 
of f.

(B) The graph of y  (x  2)2 is the same as the graph of y  x2

shifted to the left two units, and the graph of y  (x  3)2 is
the same as the graph of y  x2 shifted to the right three units. 
Figure 4 confirms these conclusions. [It appears that the graph 
of y  f (x  h) is the graph of y  f (x) shifted right if h is
negative and left if h is positive—the opposite of what you might
expect.]

 5

5 5

5

x

y
G f

H

x

y

5 5

5

M

f

N

FIGURE 5 Vertical and horizontal
shifts.

S O L U T I O N

Functions H and G are vertical shifts given by

Functions M and N are horizontal shifts given by

N(x)   x  3 M(x)   x  2 

G(x)   x  1H(x)   x  3
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The graphs in Figure 6 are either horizontal or vertical shifts of the graph of 
f (x)  x3. Write appropriate equations for functions H, G, M, and N in terms 
of f.

x

y

5 5

5

G f H

x

y

5 5

5

M NfFIGURE 6 Vertical and horizontal
shifts.

E X P L O R E / D I S C U S S  2

The following activities refer to the graph of f shown in Figure 7 and
the corresponding points on the graph shown in Table 2.

(A) Construct a similar table and then sketch a graph for each of the
following functions: . Describe the relationship y  1

2 f(x)y  2f(x),

Expansions and Contractions
We now investigate how the graph of y  f (x) is related to the graph of y  Af (x)
and to the graph of y  f (Ax) for different positive real numbers A.

Comparing the graph of y  Af (x) with the graph of y  f (x), we see that the
graph of y  Af (x) can be obtained from the graph of y  f (x) by multiplying
each ordinate value (y coordinate) of the latter by A. The result is a vertical
expansion of the graph of y  f (x) if A  1 and a vertical contraction of the
graph of y  f(x) if 0  A  1. Likewise, comparing the graph of y  f(Ax) with
the graph of y  f(x), we see that the graph of y  f(Ax) can be obtained from the
graph of y  f (x) by multiplying each abscissa value (x coordinate) of the lat-
ter by . The result is a horizontal expansion of the graph of y  f (x) if1

A

x

y

 5

5 5

5

A

B
C

D
y   f(x)

FIGURE 7

T A B L E  2

x f (x)

A  4 0

B  3 1

C 0 2

D 5 3

between the graph of y  f (x) and the graph of y  Af (x) for A
any positive real number.

(B) Construct a similar table and then sketch a graph for each of the
following functions: . [Hint: Select the x
values for your table so that the multiples of x are in Table 2.]
Describe the relationship between the graph of y  f (x) and the
graph of y  f (Ax) for A any positive real number.

y  f  1
2x y  f(2x),

0  A  1 and a horizontal contraction of the graph of y  f (x) if A  1.
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Expansions and Contractions

(A) How are the graphs of and related to the graph of
Confirm your answer by graphing all three functions simulta-

neously in the same viewing window.

(B) How are the graphs of and related to the graph of
Confirm your answer by graphing all three functions simulta-

neously in the same viewing window.

S O L U T I O N S

(A) The graph of is a vertical expansion of the graph of
by a factor of 2, and the graph of is a vertical

contraction of the graph of by a factor of 0.5. Figure 8 con-
firms this conclusion.

(B) The graph of is a horizontal contraction of the graph of
by a factor of and the graph of is a hori-

zontal expansion of the graph of by a factor of 2. Figure 9
confirms this conclusion.

y   
3
x

y   
3

0.5x1
2,y   

3
x

y   
3

2x

y   
3
x

y  0.5 
3
xy   

3
x

y  2 
3
x

y   
3
x?

y   
3

0.5xy   
3

2x

y   
3
x?

y  0.5 
3
xy  2 

3
x

 5

 5

5

5

y   2 x
3

y   0.5 x
3

y    x
3

 3

 5

3

5

y    2x
3

y    0.5x
3

y    x
3

FIGURE 8 Vertical expansion
and contraction

FIGURE 9 Horizontal expansion
and contraction.

(A) How are the graphs of y  2x3 and y  0.5x3 related to the graph of 
y  x3? Confirm your answer by graphing all three functions simulta-
neously in the same viewing window.

(B) How are the graphs of y  (2x)3 and y  (0.5x)3 related to the graph of 
y  x3? Confirm your answer by graphing all three functions simulta-
neously in the same viewing window.

Refer to Example 3. If then we can write 

where Thus, for certain functions, a horizontal contraction or expansion
can also be interpreted as a vertical contraction or expansion.

Reflections in the x and y Axes
We now investigate how the graphs of y   f (x) and y  f ( x) are related to
the graph of y  f (x).

B   
3
A.

f(Ax)   
3
Ax   

3
A 

3
x  Bf (x)

f(x)   
3
x,
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E X P L O R E / D I S C U S S  3

The following activities refer to the graph of f shown in Figure 10 and
the corresponding points on the graph shown in Table 3.

FIGURE 10

(A) Construct a similar table and then sketch a graph for y   f (x).
Describe the relationship between the graph of y  f (x) and the
graph of y   f (x).

(B) Construct a similar table and then sketch a graph for y  f ( x).
[Hint: Choose x values so that  x is in Table 3.] Describe the
relationship between the graph of y  f (x) and the graph of 
y  f ( x).

(C) Construct a similar table and then sketch a graph for y   f ( x).
[Hint: Choose x values so that  x is in Table 3.] Describe the
relationship between the graph of y  f (x) and the graph of 
y   f ( x).

The graph of y  f ( x) can be obtained from the graph of y  f (x) by chang-
ing the sign of each abscissa (x coordinate). This has the effect of reflecting the
graph of y  f (x) in the y axis. The graph of y   f (x) can be obtained from
the graph of y  f (x) by changing the sign of each ordinate (y coordinate). This
has the effect of reflecting the graph of y  f (x) in the x axis. And finally, the
graph of y   f ( x) can be obtained from the graph of y  f (x) by changing
the sign of each ordinate (y coordinate) and of each abscissa (x coordinate). This
is referred to as reflecting the graph of y  f (x) in the origin and is equivalent to
reflecting in one coordinate axis and then in the other coordinate axis. Figure 11
illustrates these reflections for 

The various transformations considered above are summarized in the box for
easy reference.

f(x)   x.

T A B L E  3

x f (x)

A  2 5

B  1 0

C 1  4

D 3 0

E 4 5

x

y

 5

5 5

5

B

A E

C

D

y   f(x)

FIGURE 11 Reflections of the
graph of y   x

 5

 5

5

5

y    xy     x

y     xy      x
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Graph Transformations (Summary)

Vertical Translation [Fig. 12(a)]:

y  f(x)  k

Horizontal Translation [Fig. 12(b)]:

y  f(x  h)

Vertical Expansion and Contraction [Fig. 12(c)]:

y  Af(x)

Horizontal Expansion and Contraction [Fig. 12(d)]:

y  f(Ax)

Reflection [Fig. 12(e)]:

y   f(x) Reflect the graph of y  f(x) in the x axis

y  f( x) Reflect the graph of y  f(x) in the y axis

y   f( x) Reflect the graph of y  f(x) in the origin

 
A   1 Horizontally contract the graph of y  f (x)

by multiplying each x value by 1A 

0   A   1 Horizontally expand the graph of y  f (x)

by multiplying each x value by 
1
A 

 
A   1 Vertically expand the graph of y  f (x)

by multiplying each y value by A

0   A   1 Vertically contract the graph of y  f (x)

by multiplying each y value by A

 h   0 Shift graph of y  f (x) left h units

h   0 Shift graph of y  f (x) right  h  units

 k   0 Shift graph of y  f (x) up k units

k   0 Shift graph of y  f (x) down  k  units

x

y

 5

5 5

5

g

f

h

x

 5

5 5

5

g f hy

5 5

5

y

x

g

f

h

hfg

x

 5

5 5

5

y

x

 5

5 5

5

g f

hk

y

(a)

Vertical translation

g(x)  f(x)  2

h(x)  f(x)  3

(b)

Horizontal translation

g(x)  f(x  3)

h(x)  f(x  2)

(c)

Vertical expansion and 

contraction

g(x)  2f(x)

h(x)  0.5f(x)

(d)

Horizontal expansion and

contraction

g(x)  f(2x)

h(x)  f(0.5x)

(e)

Reflection

g(x)  f( x)

h(x)   f(x)

k(x)   f( x)

FIGURE 12 Graph transformations.

E X P L O R E / D I S C U S S  4

Use a graphing utility to explore the graph of y   A(x   h)2
  k for

various values of the constants A, h, and k. Discuss how the graph of 
y   A(x   h)2

  k is related to the graph of y   x2.



FIGURE 14

FIGURE 15
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Combining Graph Transformations

The graph of y   g(x) in Figure 13 is a transformation of the graph of y   x2.
Find an equation for the function g.

S O L U T I O N

To transform the graph of y   x2 [Fig. 14(a)] into the graph of y   g(x), we first
reflect the graph of y   x2 in the x axis [Fig. 14(b)], then shift it to the right two
units [Fig. 14(c)]. Thus, an equation for the function g is

g(x)  (x  2)2

y

5 5

5

y   g(x)
x

x

y

5 5

5

y   h(x)

 5

 5

5 5

5

y   x2

x

y

 5

5 5

5

y    x2

x

y y

5 5

5

y    (x    2)2

x

The graph of y   h(x) in Figure 15 is a transformation of the graph of y   x3.
Find an equation for the function h.

Even and Odd Functions
Certain transformations leave the graphs of some functions unchanged. For exam-
ple, reflecting the graph of y   x2 in the y axis does not change the graph. Func-
tions with this property are called even functions. Similarly, reflecting the graph
of y   x3 in the x axis and then in the y axis does not change the graph. Func-
tions with this property are called odd functions. More formally, we have the fol-
lowing definitions.

(a) y  x
2 (b) y   x2 (c) y   (x  2)2

EVEN AND ODD FUNCTIONS

If f(x)   f( x) for all x in the domain of f, then f is an even function.

If f( x)    f(x) for all x in the domain of f, then f is an odd function.

FIGURE 13



FIGURE 17

FIGURE 18

Refer to the graphs of the basic functions in Figure 1. These graphs show that
the square and absolute value functions are even functions, and the identity, cube,
and cube root functions are odd functions. Notice in Figure 1(e) that the square
root function is not symmetric with respect to the y axis or the origin. Thus, the
square root function is neither even nor odd.
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f(x)

x
f( x)    f(x)

Odd function
(symmetric with
respect to origin)

f(x)
 x

x

f

f(x)

x

f( x)   f(x)

Even function
(symmetric with
respect to y axis)

f(x)

 x x

f

The graph of an even function is said to be symmetric with respect to the y axis
and the graph of an odd function is said to be symmetric with respect to the
origin (Fig. 16).

FIGURE 16 Even and odd
functions.

Testing for Even and Odd Functions

Determine whether the functions f, g, and h are even, odd, or neither.

(A) f (x)  x4
 1 (B) g(x)  x3

 1 (C) h(x)  x5
 x

S O L U T I O N S

 10

 10

10

10

(A) Graphical Solution

Enter y1  x4
 1 and y2  y1( x)

(Fig. 17), draw the graph (Fig. 18),
and use the trace command or a table
to see if the graphs are identical.

(A) Algebraic Solution

Therefore, f is even.

 f(x)
 x4

 1
 ( 1)4x4

 1
 [( 1)x]4

 1
f( x)  ( x)4

 1
f(x)  x4

 1



FIGURE 19

FIGURE 20

FIGURE 21

FIGURE 22
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 10

 10

10

10

 10

 10

10

10

(B) Algebraic Solution

Because g( x)  g(x) and 
g( x)   g(x), g is neither even nor
odd.

  x3
 1

 g(x)   (x3
 1)

  x3
 1

 ( 1)3x3
 1

 [( 1)x]3
 1

g( x)  ( x)3
 1

g(x)  x3
 1

(B) Graphical Solution

Enter y1  x3
 1, y2  y1( x), and

y3   y1(x) (Fig. 19), graph (Fig.
20), and observe that no two of these
functions are identical. Thus, g is
neither even nor odd.

(C) Algebraic Solution

Therefore, h is odd.

  h(x)
  (x5

 x)
  x5

 x

h( x)  ( x)5
 ( x)

h(x)  x5
 x

(C) Graphical Solution

Enter y1  x5
 x, y2  y1( x), and

y3   y1(x) (Fig. 21), graph (Fig.
22), and use the trace command or a
table to show that y2 and y3 are iden-
tical. Thus, h is an odd function.
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1. (A) The graph of is the same as the graph
of shifted upward three units, and the graph
of is the same as the graph of 
shifted downward one unit. The figure confirms
these conclusions.

(B) The graph of is the same as the graph
of shifted to the left three units, and the
graph of is the same as the graph of

shifted to the right one unit. The figure
confirms these conclusions.

2. G(x)  (x  3)3, H(x)  (x  1)3, M(x)  x3
 3,

N(x)  x3
 4

y   x

y   x  1
y   x

y   x  3

y   xy   x  1
y   x

y   x  3

 5

 5

5

5

y    x   3

y    x   1

y    x

 5

 5

5

5

y    x   3

y    x   1

y    x

Determine whether the functions F, G, and H are even, odd, or neither:

(A) F(x)  x3
 2x (B) G(x)  x2

 1 (C) H(x)  2x  4

In the solution of Example 5, notice that we used the fact that

It is this property that motivates the use of the terms even and odd when describ-
ing symmetry properties of the graphs of functions. In addition to being an aid
to graphing, certain problems and developments in calculus and more advanced
mathematics are simplified if we recognize the presence of either an even or an
odd function.

( x)n
  xn if n is an even integer

 xn if n is an odd integer

3. (A) The graph of y  2x3 is a vertical expansion of 
the graph of y  x3 by a factor of 2, and the graph
of y  0.5x3 is a vertical contraction of the graph of
y  x3 by a factor of 1/2. The figure confirms these
conclusions.

(B) The graph of y  (2x)3 is a horizontal contraction 
of the graph of y  x3 by a factor of 1/2, and the
graph of y  (0.5x)3 is a horizontal expansion of 
the graph of y  x3 by a factor of 2. The figure
confirms these conclusions.

4. The graph of function h is a reflection in the x axis and 
a horizontal translation of three units to the left of the
graph of y  x3. An equation for h is h(x)   (x  3)3.

5. (A) Odd (B) Even (C) Neither

 5

 5

5

5

y   (0.5)x3y   x3y   (2x)3

 5

 5

5

5

y   0.5x3
y   x3

y   2x3
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Indicate whether each function in Problems 1–10 is even, 

odd, or neither.

1. g(x)  x3
 x

2. f(x)  x5
 x

3. m(x)  x4
 3x2

4. h(x)  x4
 x2

5. F(x)  x5
 1

6. f(x)  x5
 3

7. G(x)  x4
 2

8. P(x)  x4
 4

9. q(x)  x2
 x  3

10.n(x)  2x  3
11. f (x)  2 12. g(x)  1 13. g(x)  2

14. f (x)  1 15. f (x  2) 16. g(x  1)

17. g(x  2) 18. f (x  1) 19.  f (x)

20.  g(x) 21. 2g(x) 22.

23. g(2x) 24. 25. f ( x)

26.  g( x)

f (1
2x)

1
2 f (x)

 5

5 5

5

x

f(x)

x

g(x)

 5

5 5

5

Each graph in Problems 27–34 is the result of applying a

transformation to the graph of one of the six basic functions in

Figure 1. Identify the basic function, describe the transforma-

tion verbally, and find an equation for the given graph. Check

by graphing the equation on a graphing utility.

27.

x

y

 5 5 5

 5

5

28.

 5 5 5

 5

5

x

y

Problems 11–26 refer to the functions f and g given by the

graphs below (the domain of each function is [ 2, 2]). Use the

graph of f or g, as required, to graph each given function.



29.

30.

31.

32.

33.

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

y

 5 5 5

 5

5

x

x

y

 5 5 5

 5

5

34.

In Problems 35–42, the graph of the function g is formed by

applying the indicated sequence of transformations to the

given function f. Find an equation for the function g. Check

your work by graphing f and g in a standard viewing window.

35. The graph is shifted four units to the left and
five units down.

36. The graph of f(x)  x3 is shifted five units to the right and
four units up.

37. The graph of is shifted six units up, reflected
in the x axis, and contracted by a factor of 0.5.

38. The graph of is shifted two units down, re-
flected in the x axis, and vertically expanded by a factor 
of 4.

39. The graph of f(x)  x2 is reflected in the x axis, vertically
expanded by a factor of 2, shifted four units to the left, and
shifted two units down.

40. The graph of is reflected in the x axis, vertically
contracted by a factor of 0.5, shifted three units to the
right, and shifted four units up.

41. The graph of is horizontally expanded by a
factor of 0.5, reflected in the y axis, and shifted two units
to the left.

42. The graph of is horizontally contracted by a
factor of 2, shifted three units up, and reflected in the 
y axis.

In Problems 43–50, indicate how the graph of each function 

is related to the graph of one of the six basic functions in 

Figure 1.

43. f (x)  (x  7)2
 9 44. g(x)  (x  4)2

 6

45. 46.

47. 48.

49. r(x)   4x2 50. s(x)   0.5 x 
q(x)   2   x  3p(x)  3   x

k(x)    x  5 h(x)    x  8 

f (x)   3
x

f (x)   x

f (x)   x 

f (x)   x

f (x)   x

f (x)   3
x

x

y

 5 5 5

 5

5
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55.

56.

57.

58.

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

Each graph in Problems 51–58 is the result of applying a 

sequence of transformations to the graph of one of the six basic

functions in Figure 1. Find an equation for the given graph.

Check by graphing the equation on a graphing utility.

51.

52.

53.

54.

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

1 FUNCTIONS, GRAPHS, AND MODELS70

x

y

 5 5 5

 5

5
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Changing the order in a sequence of transformations may

change the final result. Investigate each pair of transformations

in Problems 59–64 to determine if reversing their order can

produce a different result. Support your conclusions with spe-

cific examples and/or mathematical arguments.

59. Vertical shift, horizontal shift

60. Vertical shift, reflection in y axis

61. Vertical shift, reflection in x axis

62. Vertical shift, expansion

63. Horizontal shift, reflection in x axis

64. Horizontal shift, contraction

Problems 65–68 refer to two functions f and g with domain

[ 5, 5] and partial graphs as shown below.

68. Complete the graph of g over the interval [ 5, 0], given
that g is an even function.

69. Let f be any function with the property that  x is in the
domain of f whenever x is in the domain of f, and let E and
O be the functions defined by

and

(A) Show that E is always even.

(B) Show that O is always odd.

(C) Show that f(x)  E(x)  O(x). What is your 
conclusion?

70. Let f be any function with the property that  x is in the
domain of f whenever x is in the domain of f, and let 
g(x)  xf(x).

(A) If f is even, is g even, odd, or neither?

(B) If f is odd, is g even, odd, or neither?

In Problems 71–74, graph f(x), and in a stan-

dard viewing window. For purposes of comparison, it will be

helpful to graph each function separately and make a hand

sketch.

71. f (x)  0.2x2
 5 72. f (x)  4  0.25x2

73. f (x)  4  0.1(x  2)3 74. f (x)  0.25(x  1)3
 1

75. Describe the relationship between the graphs of f(x) and
in Problems 71–74.

76. Describe the relationship between the graphs of f(x) and
in Problems 71–74.  f(x) 

 f(x) 

  f(x)  f(x) ,

O(x)  
1
2[ f (x)  f ( x)]

E(x)  
1
2[ f (x)  f ( x)]

x

f(x)

 5 5 5

 5

5

x

g(x)

 5 5 5

 5

5

65. Complete the graph of f over the interval [ 5, 0], given
that f is an even function.

66. Complete the graph of f over the interval [ 5, 0], given
that f is an odd function.

67. Complete the graph of g over the interval [ 5, 0], given
that g is an odd function.



 78. Cost Functions. Refer to the variable-cost function f(x) in
Problem 77. Suppose construction of a new production fa-
cility results in a 25% decrease in the variable cost at all
levels of output. If F is the new variable-cost function, use
the graph of f to graph y  F(x).

79. Timber Harvesting. To determine when a forest should be
harvested, forest managers often use formulas to estimate
the number of board feet a tree will produce. A board foot
equals 1 square foot of wood, 1 inch thick. Suppose that
the number of board feet y yielded by a tree can be esti-
mated by

y  f(x)  C  0.004(x  10)3

where x is the diameter of the tree in inches measured at a
height of 4 feet above the ground and C is a constant that
depends on the species being harvested. Graph y  f(x)
for C  10, 15, and 20 simultaneously in the viewing win-
dow with Xmin  10, Xmax  25, Ymin  10, and 
Ymax  35. Write a brief verbal description of this collec-
tion of functions.

80. Safety Research. If a person driving a vehicle slams on
the brakes and skids to a stop, the speed v in miles per
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77. Production Costs. Total production costs for a product
can be broken down into fixed costs, which do not depend
on the number of units produced, and variable costs, which
do depend on the number of units produced. Thus, the 
total cost of producing x units of the product can be 
expressed in the form

C(x)  K  f(x)

where K is a constant that represents the fixed costs and f(x)
is a function that represents the variable costs. Use the graph
of the variable-cost function f(x) shown in the figure to
graph the total cost function if the fixed costs are $30,000.

hour at the time the brakes are applied is given approxi-
mately by

where x is the length of the skid marks and C is a constant
that depends on the road conditions and the weight of the
vehicle. The table lists values of C for a midsize automo-
bile and various road conditions. Graph v  f(x) for the
values of C in the table simultaneously in the viewing 
window with Xmin  0, Xmax  100, Ymin  0, and 
Ymax  60. Write a brief verbal description of this collec-
tion of functions.

Road Condition C

Wet (concrete) 3.5

Wet (asphalt) 4

Dry (concrete) 5

Dry (asphalt) 5.5

81. Family of Curves. In calculus, solutions to certain types of
problems often involve an unspecified constant. For exam-
ple, consider the equation

where C is a positive constant. The collection of graphs of
this equation for all permissible values of C is called a
family of curves. Graph the members of this family corre-
sponding to C  2, 3, 4, and 5 simultaneously in a stan-
dard viewing window. Write a brief verbal description of
this family of functions.

82. Family of Curves. A family of curves is defined by the
equation

where C is a positive constant. Graph the members of this
family corresponding to C  1, 2, 3, and 4 simultaneously
in a standard viewing window. Write a brief verbal 
description of this family of functions.

83. Fluid Flow. A cubic tank is 4 feet on a side and is initially
full of water. Water flows out an opening in the bottom of
the tank at a rate proportional to the square root of the
depth (see the figure). Using advanced concepts from
mathematics and physics, it can be shown that the volume
of the water in the tank t minutes after the water begins to
flow is given by

0   t   CV(t)  
64

C2
 (C  t)2

y  2C  
5

C
x2

y  
1

C
x2

 C

v  f (x)  C x

500 1,000

50,000

100,000

150,000

x

f(x)

V
a
ri

a
b

le
 p

ro
d

u
ct

io
n

 c
o
st

s

Units produced



where C is a constant that depends on the size of the open-
ing. Sketch by hand the graphs of y  V(t) for C  1, 2, 4,
and 8. Write a brief verbal description of this collection of
functions.

84. Evaporation. A water trough with triangular ends is 
9 feet long, 4 feet wide, and 2 feet deep (see the figure).
Initially, the trough is full of water, but due to evaporation,

4 feet

4 feet
4 feet

the volume of the water in the trough decreases at a rate
proportional to the square root of the volume. Using ad-
vanced concepts from mathematics and physics, it can be
shown that the volume after t hours is given by

0   t   6 C 

where C is a constant. Sketch by hand the graphs of 
y  V(t) for C   4,  5, and  6. Write a brief verbal 
description of this collection of functions.

9 feet

4 feet

2 feet

V(t)  
1

C2
(t  6C)2
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Operations on Functions; Composition

Operation on Functions  Composition  Mathematical Modeling

If two functions f and g are both defined at a real number x, and if f(x) and g(x)
are both real numbers, then it is possible to perform real number operations such
as addition, subtraction, multiplication, or division with f(x) and g(x). Further-
more, if g(x) is a number in the domain of f, then it is also possible to evaluate
f at g(x). In this section we see how operations on the values of functions can be
used to define operations on the functions themselves.

Operations on Functions
The functions f and g given by

f (x)  2x  3 and g(x)  x2
 4

are defined for all real numbers. Thus, for any real x we can perform the follow-
ing operations:

For x   2 we can also form the quotient

x   2
f(x)

g(x)
 

2x  3

x2
 4

f(x)g(x)  (2x  3)(x2
 4)  2x3

 3x2
 8x  12

f(x)  g(x)  2x  3  (x2
 4)   x2

 2x  7
f (x)  g(x)  2x  3  x2

 4  x2
 2x  1



Notice that the result of each operation is a new function. Thus, we have

Sum

Difference

Product

x    2 Quotient

Notice that the sum, difference, and product functions are defined for all values
of x, as were f and g, but the domain of the quotient function must be restricted
to exclude those values where g(x)  0.

 f

g (x)  
f(x)

g(x)
 

2x  3

x2
 4

 ( fg)(x)  f(x)g(x)  2x3
 3x2

 8x  12
 ( f  g)(x)  f(x)  g(x)   x2

 2x  7
 ( f  g)(x)  f(x)  g(x)  x2

 2x  1

1 FUNCTIONS, GRAPHS, AND MODELS74

D E F I N I T I O N 1
Operations on Functions

The sum, difference, product, and quotient of the functions f and g are the functions defined by

Sum function

Difference function

Product function

g(x)   0 Quotient function

The domain of each function is the intersection of the domains of f and g, with the exception that

the values of x where g(x)  0 must be excluded from the domain of the quotient function.

 f

g (x)  
f(x)

g(x)

 ( fg)(x)  f(x)g(x)

 ( f  g)(x)  f(x)  g(x)

 ( f  g)(x)  f(x)  g(x)

E X P L O R E / D I S C U S S  1

The following activities refer to the graphs of f and g shown in Figure 1
and the corresponding points on the graph shown in Table 1.

For each of the following functions, construct a table of values, sketch a
graph, and state the domain and range.

(A) ( f  g)(x) (B) ( f  g)(x) (C) ( fg)(x) (D)  f

g (x)

10

10

x

y

y   f(x)

y   g(x)

FIGURE 1

T A B L E  1

x f (x) g(x)

0 8 0

2 7 2

4 6 3

6 5 3

8 4 2

10 3 0
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Finding the Sum of Two Functions

Let and Find f  g and find its domain.g(x)   3  x.f(x)   4  x

Graphical Solution

We enter and in the
equation editor of a graphing utility and graph in a standard viewing
window (Fig. 3). To get a better look at y3, we turn off the graphs of
y1 and y2, and change the viewing window (Fig. 4).

y3  y1  y2y2   3  x,y1   4  x,

x[

Domain of f   g

 3 4

[
0

x[
 3 4

Domain of g

0

x
 3 4

[

Domain of f

0

FIGURE 2

*Intersection of intervals is discussed in Appendix A, Section A.1.

 10

 10

10

10

y3y1 y2

FIGURE 3 Graphs of y1, y2, and y3.

 5

 5

5

5

FIGURE 4 Graph of y3.

 5

 5

5

5

FIGURE 5

Next we press TRACE and enter  3 (Fig. 5). Pressing the left cur-
sor shows that y3 is not defined for x  3 (Fig. 6).

Algebraic Solution

The domains of f and g are

Domain of f: x  4 or (  , 4]
Domain of g: x   3 or [ 3,  )

The domain of f g is the intersec-
tion* of these two sets (Fig. 2):

(  , 4] [ 3,  )  [ 3, 4] 

  4  x   3  x

 ( f  g)(x)  f(x)  g(x)

 5

 5

5

5

FIGURE 6

Figures 7 and 8 show that y3 is not defined for x 4. Thus, the do-
main of y3  f  g is [ 3, 4].

 5

 5

5

5

FIGURE 7

 5

 5

5

5

FIGURE 8

S O L U T I O N S



(1)

The fraction in equation (1) indicates that 1 and 4 must be excluded from the
domain of f/g to avoid division by 0. However, equation (1) does not indicate that
 3 must be excluded also. Although the fraction in equation (1) is defined at 
x   3,  3 is excluded from the domain of g, hence it must be excluded from
the domain of f /g. Thus,

Domain of f /g: All real numbers x except  3, 1, and 4

 
x(x  3)

(x  1)(x  4)

 
x

x  1
 

x  3

x  4

 fg (x)  
f(x)

g(x)
 

x

x  1

x  4

x  3
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Let and . Find f  g and find its domain.g(x)   10  xf(x)   x

Finding the Quotient of Two Functions

Let and Find the function and find its domain.

S O L U T I O N

Because division by 0 must be excluded, the domain of f is all x except x  1
and the domain of g is all x except x   3. Now we find f /g.*

f

g
g(x)  

x  4

x  3
.f(x)  

x

x  1

*Operations on fractions are discussed in The Basic Algebra Review, Sec. 4, www.mhhe.com/barnett.

Let and Find the function and find its domain.

Composition
Consider the functions f and g given by

and g(x)  4  2x

We form a new function h by combining f and g as follows:

Combining two functions in this manner is called composition.

h(x)  f(g(x))  f(4  2x)   4  2x

f(x)   x

f

g
g(x)  

x  5

x
.f(x)  

1

x  2
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E X P L O R E / D I S C U S S  2

Refer to functions f, g, and h above. Complete Table 2.

T A B L E  2

x g(x) h(x)  f (g(x))

0 g(0)  4 h(0)  f (g(0))  f (4)  2

1

2

3

4

A special function symbol is often used to represent the composition of two
functions, which we define in general terms below.

FIGURE 9

Now enter g and h in the equation editor of a graphing utility as shown
in Figure 9 and check your table. The domain of f is {x | x  0} and the
domain of g is the set of all real numbers. What is the domain of h? Sup-
port your conclusion both algebraically and graphically.

D E F I N I T I O N  2
Composition

The composition of function f with function g is denoted by f ° g and is defined by

( f ° g)(x)  f (g(x))

The domain of f ° g is the set of all real numbers x in the domain of g such that g(x) is in the 

domain of f.

Thus, the composition of with g(x)  4  2x is

( f ° g)(x)  f (g(x))  f (4  2x)  

Note that the order of the functions in a composition is important. The composi-
tion of g with f is

(g ° f )(x)  g( f (x))  g  4  

which is not the same as f ° g.
As an immediate consequence of Definition 2, we have (Fig. 10):

The domain of f ° g is always a subset of the domain of g, and the range of f ° g is always a subset

of the range of f.

2 x( x)

 4  2x

f(x)   x



If either function in a composition is not defined for some real numbers, then,
as Example 4 illustrates, the domain of the composition may not be what you first
think it should be.
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Finding the Composition of Two Functions

Find ( f ° g)(x) and (g ° f )(x) and their domains for f(x)  x10 and g(x)  3x4
 1.

S O L U T I O N

( f ° g)(x)  f (g(x))  f (3x4
 1)  (3x4

 1)10

(g ° f )(x)  g( f(x))  g(x10)  3(x10)4
 1  3x40

 1

The functions f and g are both defined for all real numbers. If x is any real num-
ber, then x is in the domain of g, g(x) is in the domain of f, and, consequently, x
is in the domain of f ° g. Thus, the domain of f ° g is the set of all real numbers.
Using similar reasoning, the domain of g ° f also is the set of all real numbers.

Find ( f ° g)(x) and (g ° f )(x) and their domains for f(x)  2x  1 and 
g(x)  (x  1)/2.

If two functions are both defined for all real numbers, then so is their composition.

E X P L O R E / D I S C U S S  3

Verify that if f(x)  1/(1  2x) and g(x)  1/x, then ( f ° g)(x)  x/(x  2).
Because division by 0 is not defined, f ° g is not defined at x  2. Are there
any other values of x where f ° g is not defined? Explain.

Finding the Composition of Two Functions

Find ( f ° g)(x) for and Find the domain alge-
braically and check graphically.

g x   3  x.f x   4  x2

FIGURE 10 Composite functions.

Domain f   g Range f   g

(f   g)(x)   f [g(x)]
f   g

Domain g Range g Range fDomain f

g

x

f

g(x)
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S O L U T I O N

We begin by stating the domains of f and g, a good practice in any composition
problem:

Domain f:  2  x  2 o r[ 2, 2]

Domain g: x  3 o r(  , 3]

Next we find the composition:

Although is defined for all x   1, we must restrict the domain of 
f ° g to those values that also are in the domain of g. Thus,

Domain f ° g: x   1 and x  3 o r[ 1, 3]

To check this, enter and This defines y2 as the 
composition f ° g. Graph y2 and use trace or a table to verify that [ 1, 3] is the
domain of f ° g (Figs. 11–13).

y2   4  y1
2.y1   3  x

 1  x

  1  x

( t)2
 t as long as t  0  4  (3  x)

  4  ( 3  x)2

 ( f  g)(x)  f(g(x))  f( 3  x)

 1

 2

3

4

FIGURE 11

 1

 2

3

4

FIGURE 12 FIGURE 13

Find f ° g for and Find the domain of f ° g alge-
braically and check graphically.

g(x)   x  1.f(x)   9  x2

C A U T I O N

The domain of f ° g cannot always be determined simply by examining
the final form of ( f ° g)(x). Any numbers that are excluded from the
domain of g must also be excluded from the domain of f ° g.



In calculus, it is not only important to be able to find the composition of two
functions, but also to recognize when a given function is the composition of sim-
pler functions.
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E X P L O R E / D I S C U S S  4

Here is another way to enter the composition of two functions in a
graphing utility. Refer to Example 4. Enter 
and y3  y2(y1(x)) in the equation editor of your graphing utility and
graph y3. Does this graph agree with the graph we found in Example
4? Does your graphing utility seem to handle this composition
correctly? (Not all do!)

y2   4  x2,y1   3  x,

Recognizing Composition Forms

Express h as a composition of two simpler functions for 

S O L U T I O N

If we let and g(x)  2  3x4, then

and we have expressed h as the composition of f with g.

h(x)   2  3x4
 f(2  3x4)  f(g(x))  ( f  g)(x)

f(x)   x

h(x)   2  3x4

Express h as the composition of two simpler functions for h(x)  (4x3
 7)4.

The answers to Example 5 and Matched Problem 5 are not unique. For exam-
ple, if and g(x)  x4, then

Mathematical Modeling
You will encounter the operations discussed in this section in many different sit-
uations. The next example shows how these operations are used to construct a
model in economics.

f(g(x))   2  3g(x)   2  3x4
 h(x)

f(x)   2  3x

Modeling Profit

The research department for an electronics firm estimates that the weekly demand
for a certain brand of audiocassette player is given by

x  f(p)  20,000  1,000p 0  p  20 Demand function



1.5 Operations on Functions; Composition 81

where x is the number of cassette players retailers are likely to buy per week at
p dollars per player. The research department also has determined that the total
cost (in dollars) of producing x cassette players per week is given by

C(x)  25,000  3x

and the total weekly revenue (in dollars) obtained from the sale of these cassette
players is given by

R(x)  20x  0.001x2

Express the firm’s weekly profit as a function of the price p and find the price
that produces the largest profit.

S O L U T I O N

The basic economic principle we are using is that profit is revenue minus cost.
Thus, the profit function P is the difference of the revenue function R and the cost
function C. Because R and C are functions of x, we first express P as a function
of x:

Next we use composition to express P as a function of the price p:

Technically, P ° f and P are different functions, because the first has independent
variable p and the second has independent variable x. However, because both func-
tions represent the same quantity, it is customary to use the same symbol to name
each function. Thus,

P(p)   85,000  23,000p  1,000p2

expresses the weekly profit P as a function of price p. To find the price that pro-
duces the largest profit, we must examine the graph of P. To do this, we change
variables from P and p to y1 and x and define

y1   85,000  23,000x  1,000x2 0  x  20

The limits for x were given in the statement of the problem. Examining a table
(Fig. 14) suggests that reasonable limits on y1 are  100,000  y1  50,000.
Graphing y1 and using the maximum command (Fig. 15) shows that the largest
profit occurs when the price of a cassette player is $11.50.

  85,000  23,000p  1,000p2

 340,000  17,000p  400,000  40,000p  1,000p2
 25,000

 17(20,000  1,000p)  0.001(20,000  1,000p)2
 25,000

 P(20,000  1,000p)
 (P  f )( p)  P( f( p))

 17x  0.001x2
 25,000

 20x  0.001x2
 (25,000  3x)

 R(x)  C(x)
P(x)  (R  C)(x)

Revenue Function

Cost Function

FIGURE 14

FIGURE 15

 100,000

0

50,000

20
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Repeat Example 6 for the functions

R(x)  10x  0.001x2C(x)  10,000  2x

0  p  10x  f(p)  10,000  1,000p

1.
domain  [0, 10]

2.

domain all real numbers x except
 2, 0, and 5

 f

g (x)  
x

 x  2  x  5 
;

( f  g)(x)   x   10  x; 3. ( f  g)(x)  x, domain  (  ,  );
(g  f )(x)  x, domain  (  ,  )

4. domain:
x  1 and x  10 or [1, 10]

5. h(x)  ( f  g)(x) where f(x)  x4

and g(x)  4x3
 7

( f  g)(x)   10  x;

6. P(p)   30,000  12,000p  

1,000p2

The largest profit occurs when the

price is $6.

Problems 1–12 refer to functions f and g whose graphs are

shown below.

In Problems 1–4 use the graphs of f and g to construct a table

of values and sketch the graph of the indicated function.

1. ( f  g)(x) 2. (g  f )(x)

3. ( fg)(x) 4. ( f  g)(x)

In Problems 5–12, use the graphs of f and g to find each of the

following:

5. ( f  g)( 1) 6. ( f  g)(2)

7. (g  f )( 2) 8. (g  f )(3)

x

g(x)

 5 5 5

 5

5

x

f(x)

 5 5 5

 5

5

9. f(g(1)) 10. f(g(0))

11. g( f (2)) 12. g( f ( 3))

In Problems 13–18, for the indicated functions f and g, find the

functions f  g, f  g, fg, and f/g, and find their domains.

13. f(x)  4x; g(x)  x  1

14. f(x)  3x; g(x)  x  2

15. f(x)  2x2; g(x)  x2
 1

16. f(x)  3x; g(x)  x2
 4

17. f(x)  3x  5; g(x)  x2
 1

18. f(x)  2x  7; g(x)  9  x2

In Problems 19–24, for the indicated functions f and g, find the

functions f  g, and g  f, and find their domains.

19. f(x)  x3; g(x)  x2
 x  1

20. f(x)  x2; g(x)  x3
 2x  4

21.

22.

23. f(x)  x1/3; g(x)  2x3
 4

24. f(x)  x2/3; g(x)  8  x3

f  x   x  4 ;  g x  3x  2

f  x   x  1 ;  g x  2x  3
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In Problems 25–28, find f  g and g  f. Graph f, g, f  g, and 

g  f in a squared viewing window and describe any apparent

symmetry between these graphs.

25.

26.

27.

28.

In Problems 29–34, for the indicated functions f and g, find the

functions f + g, f  g, fg, and f/g, and find their domains.

29.

30.

31.

32.

33.

34.

In Problems 35–40, for the indicated functions f and g, find the

functions f  g and g  f, and find their domains.

35.

36.

37.

38.

39.

40.

Use the graphs of functions f and g shown below to match each

function in Problems 41–46 with one of graphs (a)–( f ).

x

y

 5 5 5

 5

5

y   f(x)

y   g(x)

f  x   x  1 ;  g x  
1

x

f  x   x ;  g x  
1

x  1

f  x  x  3;  g x  
1

x2

f  x  x  2;  g x  
1

x

f (x)   x;  g(x)  2x  5

f (x)   x;  g(x)  x  4

f  x   8  2x  x2;  g x   x2
 7x  10

f  x   x2
 x  6;  g x   7  6x  x2

f  x  1   x;  g x  2   x

f  x   x  2;  g x   x  4

f  x   x  4;  g x   3  x

f  x   2  x;  g x   x  3

f  x   2x  3;  g x   
1
2x  

3
2

f  x   
2
3x  

5
3;  g x   

3
2x  

5
2

f  x  3x  2;  g x  
1
3x  

2
3

f  x  
1
2x  1;  g x  2x  2

41. ( f  g)(x) 42. ( f  g)(x)

43. (g  f )(x) 44. ( fg)(x)

45. 46.

(a) (b)

(c) (d)

(e) (f)

In Problems 47–54, express h as a composition of two simpler

functions f and g of the form f(x)  xn and g(x)  ax  b,

where n is a rational number and a and b are integers.

47. h(x)  (2x  7)4 48. h(x)  (3  5x)7

49. 50. h x   3x  11h x   4  2x

x

y

 5

5

5 5x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

 5 5 5

 5

5

x

y

x

y

 5 5 5

5

 5

x

y

 5 5 5

5

 5

 g

f   x  f

g  x 



57. Is there a function g that satisfies f  g  g  f  f for all
functions f ? If so, what is it?

58. Is there a function g that satisfies fg  g f  f for all
functions f ? If so, what is it?

51. h(x)  3x7
 5 52. h(x)  5x6

 3

53. 54.

55. Are the functions fg and g f identical? Justify your answer.

56. Are the functions f  g and g  f identical? Justify your
answer.

h x   
2

 x
 1h x  

4

 x
 3
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In Problems 59–62, for the indicated functions f and g, find

the functions f  g, f  g, fg, and f/g, and find their domains.

59.

60.

61.

62.

In Problems 63–68, for the indicated functions f and g, find the

functions f  g and g  f, and find their domains.

63.

64.

65.

66.

67.

68. f (x)   x2
 9;  g(x)   x2

 25

f (x)   25  x2;  g(x)   9  x2

f  x  
x

x  1
;  g x  

2x  4

x

f  x  
x  5

x
;  g x  

x

x  2

f  x   x  1;  g x  x2

f  x   4  x;  g x  x2

f  x  x   x ;  g x  x   x 

f  x  1  
x

 x ;  g x  1  
x

 x 

f  x  x  1;  g x  x  
6

x  1

f  x  x  
1

x
;  g x  x  

1

x

In Problems 69–74, enter the given expression for (f  g)(x)

exactly as it is written and graph on a graphing utility for 

 10  x  10. Then simplify the expression, enter the result,

and graph in a new viewing window, again for  10  x  10.

Find the domain of f  g. Which is the correct graph of f  g?

69.

70.

71.

72.

73.

74.

( f  g)(x)   ( x2
 9)2

 7

f (x)   x2
 7;  g(x)   x2

 9;

( f  g)(x)   ( 9  x2)2
 7

f (x)   x2
 7;  g(x)   9  x2;

( f  g)(x)   ( 4  x2)2
 5

f (x)   x2
 5;  g(x)   4  x2;

( f  g)(x)   ( x2
 4)2

 5

f (x)   x2
 5;  g(x)   x2

 4;

( f  g)(x)   6  ( x  1)2

f (x)   6  x2;  g(x)   x  1;

( f  g)(x)   5  ( 3  x)2

f (x)   5  x2;  g(x)   3  x;

75. Market Research. The demand x and the price p (in dol-
lars) for a certain product are related by

x  f (p)  4,000  200p 0  p  20

The revenue (in dollars) from the sale of x units is given
by

R x  20x  
1

200
x2

and the cost (in dollars) of producing x units is given by

C(x)  2x  8,000

Express the profit as a function of the price p and find the
price that produces the largest profit.

76. Market Research. The demand x and the price p (in dol-
lars) for a certain product are related by

x  f (p)  5,000  100p 0  p  50



The revenue (in dollars) from the sale of x units and the
cost (in dollars) of producing x units are given,
respectively, by

and

Express the profit as a function of the price p and find the

price that produces the largest profit.

77. Pollution. An oil tanker aground on a reef is leaking oil
that forms a circular oil slick about 0.1 foot thick (see the
figure). The radius of the slick (in feet) t minutes after the
leak first occurred is given by

r(t)  0.4t1/3

Express the volume of the oil slick as a function of t.

78. Weather Balloon. A weather balloon is rising vertically.
An observer is standing on the ground 100 meters from
the point where the weather balloon was released.

(A) Express the distance d between the balloon and the ob-
server as a function of the balloon’s distance h above
the ground.

(B) If the balloon’s distance above ground after t seconds
is given by h  5t, express the distance d between the
balloon and the observer as a function of t.

 79. Fluid Flow. A conical paper cup with diameter 4 inches
and height 4 inches is initially full of water. A small hole
is made in the bottom of the cup and the water begins to
flow out of the cup. Let h and r be the height and radius,
respectively, of the water in the cup t minutes after the wa-
ter begins to flow.

r

A   r
2

V   0.1A

C x  20x  40,000R x  50x  
1

100
x2

(A) Express r as a function of h.

(B) Express the volume V as a function of h.

(C) If the height of the water after t minutes is given by

express V as a function of t.

 80. Evaporation. A water trough with triangular ends is 
6 feet long, 4 feet wide, and 2 feet deep. Initially, the
trough is full of water, but due to evaporation, the volume
of the water is decreasing. Let h and w be the height and
width, respectively, of the water in the tank t hours after it
began to evaporate.

(A) Express w as a function of h.

(B) Express V as a function of h.

(C) If the height of the water after t hours is given by

express V as a function of t.

h(t)  2  0.2 t

6 feet

h

w

V   3wh 

4 feet

2 feet

h(t)  0.5 t

h

r

4 inches

4 inches

1

3
V   r

2
h
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Inverse Functions

One-to-One Functions  Inverse Functions  Mathematical Modeling  Graphing Inverse
Functions

Many important mathematical relationships can be expressed in terms of func-
tions. For example,

C   d  f(d) The circumference of a circle is a function of the diameter d.

V  s3
 g(s) The volume of a cube is a function of the edge s.

d  1,000  100p  h(p) The demand for a product is a function of the price p.

In many cases, we are interested in reversing the correspondence determined by
a function. Thus,

The diameter of a circle is a function of the circumference C.

The edge of a cube is a function of the volume V.

The price of a product is a function of the demand d.

Temperature measured in  C is a function of temperature in  F.

As these examples illustrate, reversing the relationship between two quantities
often produces a new function. This new function is called the inverse of the orig-
inal function. Later in this text we will see that many important functions 
(for example, logarithmic functions) are actually defined as the inverses of other
functions.

In this section, we develop techniques for determining whether the inverse
function exists, some general properties of inverse functions, and methods for
finding the rule of correspondence that defines the inverse function. A review of
Section 1.2 will prove very helpful at this point.

One-to-One Functions
Recall the set form of the definition of function:

A function is a set of ordered pairs with the property that no two ordered pairs have the same first

component and different second components.

However, it is possible that two ordered pairs in a function could have the same
second component and different first components. If this does not happen, then
we call the function a one-to-one function. It turns out that one-to-one functions
are the only functions that have inverse functions.

C  
5

9
 F  32 

p  10  
1

100
d  r d 

s   3
V  n(V )

d  
C

 
 m(C)

F  
9

5
C  32 Temperature measured in  F is a function of temperature 

in  C.



1.6 Inverse Functions 87

D E F I N I T I O N  1
One-To-One Function

A function is one-to-one if no two ordered pairs in the function have the same second component

and different first components.

E X P L O R E / D I S C U S S  1

Given the following sets of ordered pairs:

f  {(0, 1), (0, 2), (1, 1), (1, 2)}

g  {(0, 1), (1, 1), (2, 2), (3, 2)}

h  {(0, 1), (1, 2), (2, 3), (3, 0)}

(A) Which of these sets represent functions?

(B) Which of the functions are one-to-one functions?

(C) For each set that is a function, form a new set by reversing 
each ordered pair in the set. Which of these new sets represent
functions?

Determining Whether a Function Is One-To-One

Determine whether f is a one-to-one function for

(A) f(x)  x2 (B) f(x)  2x  1

S O L U T I O N S

(A) To show that a function is not one-to-one, all we have to do is find
two different ordered pairs in the function with the same second com-
ponent and different first components. Because

f(2)  22
 4 and f( 2)  ( 2)2

 4

the ordered pairs (2, 4) and ( 2, 4) both belong to f and f is not one-
to-one.

(B) To show that a function is one-to-one, we have to show that no two
ordered pairs have the same second component and different first
components. To do this, we assume there are two ordered pairs 
(a, f(a)) and (b, f(b)) in f with the same second components and then
show that the first components must also be the same. That is, we
show that f(a)  f(b) implies a  b. We proceed as follows:



Assume second components are equal.

Evaluate f(a) and f(b).

Simplify.

Conclusion: f is one-to-one.

Thus, by Definition 1, f is a one-to-one function.

a  b

2a  2b

2a  1  2b  1

f(a)  f(b)
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Determine whether f is a one-to-one function for

(A) f(x)  4  x2 (B) f(x)  4  2x

The methods used in the solution of Example 1 can be stated as a theorem.

T H E O R E M  1
One-to-One Functions

1. If f(a)  f(b) for at least one pair of domain values a and b, a  b,
then f is not one-to-one.

2. If the assumption f(a)  f(b) always implies that the domain values
a and b are equal, then f is one-to-one.

Applying Theorem 1 is not always easy—try testing f(x)  x3
 2x  3, for

example. However, if we are given the graph of a function, then there is a sim-
ple graphical procedure for determining if the function is one-to-one. If a hori-
zontal line intersects the graph of a function in more than one point, then the
function is not one-to-one, as shown in Figure 1(a). However, if each horizontal
line intersects the graph in one point, or not at all, then the function is one-to-
one, as shown in Figure 1(b). These observations form the basis for the horizon-

tal line test.x

y

a b

y   f(x)

(a, f(a)) (b, f(b))

x

y

a

y   f(x)

(a, f(a))

f(a)  f(b) for a  b 

f is not one-to-one

(a)

Only one point has ordinate

f(a); f is one-to-one

(b)

T H E O R E M  2
Horizontal Line Test

A function is one-to-one if and only if each horizontal line intersects the
graph of the function in at most one point.

The graphs of the functions considered in Example 1 are shown in Figure 2.
Applying the horizontal line test to each graph confirms the results we obtained
in Example 1.

A function that is increasing throughout its domain or decreasing throughout
its domain will always pass the horizontal line test [Figs. 3(a) and 3(b)]. Thus, we
have the following theorem.

FIGURE 1 Intersections of graphs
and horizontal lines.



The converse of Theorem 3 is false. To see this, consider the function graphed
in Figure 3(c). This function is increasing on (  , 0] and decreasing on (0,  ),
yet the graph passes the horizontal line test. Thus, this is a one-to-one function
that is neither an increasing function nor a decreasing function.

Inverse Functions
Now we want to see how we can form a new function by reversing the correspon-
dence determined by a given function. Let g be the function defined as follows:

g  {( 3, 9), (0, 0), (3, 9)} g is not one-to-one.

Notice that g is not one-to-one because the domain elements  3 and 3 both cor-
respond to the range element 9. We can reverse the correspondence determined
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FIGURE 2 Applying the horizon-
tal line test.

x

y

5 5

5

( 2, 4) (2, 4) x

y

 5

5 5

5

f(x)  x2 does not pass 

the horizontal line test; 

f is not one-to-one

(a)

f(x)  2x  1 passes 

the horizontal line test; 

f is one-to-one

(b)

FIGURE 3 Increasing, decreas-
ing, and one-to-one functions.

x

y

x

y

An increasing function 

is always one-to-one

(a)

A decreasing function 

is always one-to-one

(b)

x

y

A one-to-one function 

is not always increasing 

or decreasing

(c)

T H E O R E M  3
Increasing and Decreasing Functions

If a function f is increasing throughout its domain or decreasing through-
out its domain, then f is a one-to-one function.



by function g simply by reversing the components in each ordered pair in g, pro-
ducing the following set:

G  {(9,  3), (0, 0), (9, 3)} G is not a function.

But the result is not a function because the domain element 9 corresponds to two
different range elements,  3 and 3. On the other hand, if we reverse the ordered
pairs in the function

f  {(1, 2), (2, 4), (3, 9)} f is one-to-one.

we obtain

F  {(2, 1), (4, 2), (9, 3)} F is a function.

This time f is a one-to-one function, and the set F turns out to be a function also.
This new function F, formed by reversing all the ordered pairs in f, is called the
inverse of f and is usually denoted by f  1. Thus,

f  1
 {(2, 1) (4, 2), (9, 3)} The inverse of f

Notice that f  1 is also a one-to-one function and that the following relation-
ships hold:

Domain of f  1
 {2, 4, 9}  Range of f

Range of f  1
 {1, 2, 3}  Domain of f

Thus, reversing all the ordered pairs in a one-to-one function forms a new one-
to-one function and reverses the domain and range in the process. We are now
ready to present a formal definition of the inverse of a function.
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D E F I N I T I O N  2
Inverse of a Function

If f is a one-to-one function, then the inverse of f, denoted f  1, is the function formed by reversing

all the ordered pairs in f. Thus,

f  1
 {(y, x)  (x, y) is in f }

If f is not one-to-one, then f does not have an inverse and f  1 does not exist.

C A U T I O N

Do not confuse inverse notation and reciprocal notation:

Reciprocal notation for numbers

Reciprocal notation for functions

Inverse notation is not reciprocal notation.f  1(x)  
1

f(x)

 f x   1
 

1

f x 

2 1
 

1

2



FIGURE 4 Composition of f and
f  1.

The following properties of inverse functions follow directly from the definition.
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T H E O R E M  4
Properties of Inverse Functions

If f  1 exists, then
1. f  1 is a one-to-one function.
2. Domain of f  1

 range of f
3. Range of f  1

 domain of f

Finding the inverse of a function defined by a finite set of ordered pairs is
easy; just reverse each ordered pair. But how do we find the inverse of a function
defined by an equation? Consider the one-to-one function f defined by

f (x)  2x  1

To find f  1, we let y  f (x) and solve for x:

Because the ordered pair (x, y) is in f if and only if the reversed ordered pair 
(y, x) is in f  1, this last equation defines f  1:

(1)

Something interesting happens if we form the composition of f and f  1 in
either of the two possible orders.

and

These compositions indicate that if f maps x into y, then f  1 maps y back into x
and if f  1 maps y into x, then f maps x back into y. This is interpreted schemat-
ically in Figure 4.

Finally, we note that we usually use x to represent the independent variable
and y the dependent variable in an equation that defines a function. It is custom-
ary to do this for inverse functions also. Thus, interchanging the variables x and
y in equation (1), we can state that the inverse of

y  f(x)  2x  1

is

y  f  1 x  1
2x  1

2

( f  f 1)(y)  f( f 1(y))  f(1
2 y  1

2)  2(1
2 y  1

2)  1  y  1  1  y

( f 1
 f )(x)  f 1( f(x))  f 1(2x  1)  1

2 (2x  1)  1
2  x  1

2  
1
2  x

x  f 1(y)  1
2 y  1

2

1
2 y  1

2  x

y  1  2x

y  2x  1

Domain f Range f

f 1(y)

x

Range f 1 Domain f 1

y

f(x)

f 1

f



In general, we have the following result:
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T H E O R E M  5
Relationship Between f and f 1

If f  1 exists, then 
1. x  f  1(y) if and only if y  f (x).
2. f  1( f(x))  x for all x in the domain of f.
3. f ( f  1(y))  y for all y in the domain of f  1 or, if x and y have been

interchanged, f ( f  1(x))  x for all x in the domain of f  1.

If f and g are one-to-one functions satisfying

f (g(x))  x for all x in the domain of g

g( f(x))  x for all x in the domain of f

then it can be shown that g  f  1 and f  g 1. Thus, the inverse function is the
only function that satisfies both these compositions. We can use this fact to check
that we have found the inverse correctly.

E X P L O R E / D I S C U S S  2

Find f(g(x)) and g( f(x)) for

f(x)  (x  1)3
 2 and g(x)  (x  2)1/3

 1

How are f and g related?

The procedure for finding the inverse of a function defined by an equation is
given in the next box. This procedure can be applied whenever it is possible to
solve y  f (x) for x in terms of y.

Finding the Inverse of a Function f

Step 1. Find the domain of f and verify that f is one-to-one. If f is not one-to-one, then stop,

because f  1 does not exist.

Step 2. Solve the equation y  f(x) for x. The result is an equation of the form x  f  1( y).

Step 3. (Optional) Interchange x and y in the equation found in step 2. This expresses f  1 as a

function of x.

Step 4. Find the domain of f  1. Remember, the domain of f  1 must be the same as the range of f.

Check your work by verifying that

f  1( f (x))  x for all x in the domain of f

and

f ( f  1(x))  x for all x in the domain of f  1



FIGURE 5
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Finding the Inverse of a Function

Find 

S O L U T I O N

Step 1. Find the domain of f and verify that f is one-to-one. The domain of f is
[1,  ). The graph of f in Figure 5 shows that f is one-to-one, hence f  1

exists.
Step 2. Solve the equation y  f(x) for x.

Thus,

x  f  1(y)  y2
 1

Step 3. Interchange x and y.

y  f  1(x)  x2
 1

Step 4. Find the domain of f  1. The equation f  1(x)  x2
 1 is defined for

all values of x, but this does not tell us what the domain of f  1 is.
Remember, the domain of f  1 must equal the range of f. From the graph
of f, we see that the range of f is [0,  ). Thus, the domain of f  1 is also
[0,  ). That is,

C H E C K

For x in [1,  ), the domain of f, we have

 

For x in [0,  ), the domain of f  1, we have

 

 x    x for x   0. x

 x
2
    x   for any real number x.  x 

  x2

  (x2
 1)  1

f f 1 x   f(x2
 1)

 x

 x  1  1

 ( x  1)2
 1

f 1 f x   f 1( x  1)

f  1 x  x2
 1   x  0

x  y2
 1

y2
 x  1

y   x  1

f  1 for f x   x  1.

x

y

 5

5

5

y   f(x)

f(x)    x   1, x   1



Mathematical Modeling
Example 3 shows how an inverse function is used in constructing a revenue model.
See Example 6 in Section 1.5.
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Find f  1 for f x   x  2.

E X P L O R E / D I S C U S S  3

Most basic arithmetic operations can be reversed by performing a sec-
ond operation: subtraction reverses addition, division reverses multipli-
cation, squaring reverses taking the square root, and so on. Viewing a
function as a sequence of reversible operations gives insight into the
inverse function concept. For example, the function f(x)  2x  1 can 
be described verbally as a function that multiplies each domain ele-
ment by 2 and then subtracts 1. Reversing this sequence describes a
function g that adds 1 to each domain element and then divides by 2,
or g(x)  (x  1)/2, which is the inverse of the function f. For each 
of the following functions, write a verbal description of the function,
reverse your description, and write the resulting algebraic equation.
Verify that the result is the inverse of the original function.

(A) f (x)  3x  5 (B) (C) f x  
1

x  1
f(x)   x  1

Modeling Revenue

The research department for an electronics firm estimates that the weekly demand
for a certain brand of audiocassette player is given by

x  f ( p)  20,000  1,000p 0  p  20 Demand function

where x is the number of cassette players retailers are likely to buy per week at
p dollars per player. Express the revenue as a function of the demand x.

S O L U T I O N

If x cassette players are sold at p dollars each, the total revenue is

To express the revenue as a function of the demand x, we must express the price
in terms of x. That is, we must find the inverse of the demand function.

 xp

 Revenue  (Number of players)(price of each player)



FIGURE 6

x  20,000  1,000p

x  20,000   1,000p Multiply both sides by 

 0.001(x  20,000)  p

 0.001x  20  p

Thus, the inverse of the demand function is

p  f 1(x)  20  0.001x

and the revenue is given by

R  xp

R(x)  x(20  0.001x)

 20x  0.001x2

 1

1,000
    0.001
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Repeat Example 3 for the demand function

x  f(p)  10,000  1,000p 0  p  10

The demand function in Example 3 was defined with independent variable p
and dependent variable x. When we found the inverse function, we did not rewrite
it with independent variable p. Because p represents price and x represents num-
ber of players, to interchange these variables would be confusing. In most appli-
cations, the variables have specific meaning and should not be interchanged as
part of the inverse process.

Graphing Inverse Functions

E X P L O R E / D I S C U S S  4

The following activities refer to the graph of f in Figure 6 and Tables 1
and 2.

T A B L E  1

x f (x)

 4

 2

 0

 2

T A B L E  2

x f
 1(x)

x

 5

5 5

5

y   f(x)



There is an important relationship between the graph of any function and its
inverse that is based on the following observation: In a rectangular coordinate sys-
tem, the points (a, b) and (b, a) are symmetrical with respect to the line y  x

[Fig. 7 (a)]. Theorem 6 is an immediate consequence of this observation.
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(A) Complete the second column in Table 1.

(B) Reverse the ordered pairs in Table 1 and list the results in Table 2.

(C) Add the points in Table 2 to Figure 6 (or a copy of the figure) and
sketch the graph of f 1.

(D) Discuss any symmetry you observe between the graphs of f and
f  1.

f(x)  2x  1

(b)

f  1(x)  
1
2 x   12

(c)

f  1(x)  x2
 1, x   0

f(x)   x  1(a, b) and (b, a) 

are symmetric with 

respect to the line y  x

(a)

x

y

 5

5 5

5

( 5,  2)

( 2,  5)

( 3, 2)

(2,  3)

(4, 1)

(1, 4)

y   x

 5

5 5

5

x

y y   f(x)

y   f 1(x)

y   x

10

10

x

y

y   f(x)

y   f 1(x) y   x

FIGURE 7 Symmetry 
with respect to the 
line y  x.

Knowledge of this symmetry property allows us to graph f  1 if the graph of
f is known, and vice versa. Figures 7(b) and 7(c) illustrate this property for the
two inverse functions we found earlier.

If a function is not one-to-one, we usually can restrict the domain of the func-
tion to produce a new function that is one-to-one. Then we can find an inverse
for the restricted function. Suppose we start with f(x)  x2

 4. Because f is not
one-to-one, f  1 does not exist [Fig. 8(a)]. But there are many ways the domain
of f can be restricted to obtain a one-to-one function. Figures 8(b) and 8(c) illus-
trate two such restrictions.

T H E O R E M  6
Symmetry Property for the Graphs of f and f 1

The graphs of y  f(x) and y  f 1(x) are symmetrical with respect to
the line y  x.



Recall from Theorem 3 that increasing and decreasing functions are always
one-to-one. This provides the basis for a convenient and popular method of
restricting the domain of a function:

If the domain of a function f is restricted to an interval on the x axis over which f is increasing (or

decreasing), then the new function determined by this restriction is one-to-one and has an inverse.

We used this method to form the functions g and h in Figure 8.
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x

y

 5

5 5

5

y   f(x)

 5

5 5

5

y   g 1(x)

y   g(x)

x

y
y   x

 5

5 5

5

y   h 1(x)

y   h(x) y   x
y

x

FIGURE 8 Restricting
the domain of a
function.

does not exist

(a)

f  1

f(x)  x2
 4

(b)

g 1(x)   x  4, x    4

g(x)  x2
 4, x  0

(c)

h 1(x)    x  4, x    4

h(x)  x2
 4, x  0

E X P L O R E / D I S C U S S  5

To graph the function

on a graphing utility, enter

(A) The Boolean expression is assigned the value 1 if the
inequality is true and 0 if it is false. How does this result in
restricting the graph of 4x  x2 to just those values of x satisfying

?

(B) Use this concept to reproduce Figures 8(b) and 8(c) on a graphing
utility.

(C) Do your graphs appear to be symmetrical with respect to the line 
y  x? What happens if you use a squared window for your
graph?

x  0

 x  0 

y1   4x  x2 / x  0 

x  0g x  4x  x2,
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Finding the Inverse of a Function

Find the inverse of . Graph f, f 1, and y  x in a squared
viewing window on a graphing utility and then sketch the graph by hand, adding
appropriate labels.

S O L U T I O N

Step 1. Find the domain of f and verify that f is one-to-one. We are given that
the domain of f is (  , 2]. Using the Boolean expression 
[Fig. 9(a)] to restrict the graph to this domain produces the graph of f
in Figure 9(b). This graph shows that f is one-to-one.

Step 2. Solve the equation y  f(x) for x.

Rearrange terms.

Add 4 to complete the square on the left side.

Taking the square root of both sides of this last equation, we obtain two
possible solutions:

The restricted domain of f tells us which solution to use. Because 
implies , we must choose the negative square root. Thus,

and we have found

Step 3. Interchange x and y.

Step 4. Find the domain of f  1. The equation is defined
for . From the graph in Figure 9(b), the range of f also is 
(  , 4]. Thus,

The check is left for the reader.
The graphs of f, f  1, and y  x on a graphing utility are shown in Figure 10

and a hand sketch is shown in Figure 11. Note that we plotted several points on
the graph of f and their reflections on the graph of f  1 to aid in preparing the
hand sketch.

x  4f 1 x  2   4  x

x  4
f  1(x)  2   4  x

y  f 1(x)  2   4  x

x  f 1(y)  2   4  y

x  2   4  y

x  2    4  y

x  2  0
x  2

x  2    4  y

 (x  2)2
 4  y

x2
 4x  4   y  4

x2
 4x   y

y  4x  x2

x  2

f x  4x  x2, x   2

 5

 7.6

5

7.6

(a)

(b)

FIGURE 10

FIGURE 11

FIGURE 9

5

5

y   f 1(x)

y   f(x)

y   x

x

y

 5

 7.6

5

7.6



991.6 Inverse Functions

Find the inverse of f(x)  4x  x2, x  2. Graph f, f  1, and y  x in the same
coordinate system.

1. (A) Not one-to-one
(B) One-to-one

2.
3. R(x)  10x  0.001x2

f  1 x  x2
 2, x  0 4. f  1 x  2   4  x, x  4

 5

5 5

5

y   f 1(x)

y   f(x)

y   x

x

y

For each set of ordered pairs in Problems 1–6, determine if the

set is a function, a one-to-one function, or neither. Reverse all

the ordered pairs in each set and determine if this new set is a

function, a one-to-one function, or neither.

1. {(1, 2), (2, 1), (3, 4), (4, 3)}

2. {( 1, 0), (0, 1), (1,  1), (2, 1)}

3. {(5, 4), (4, 3), (3, 3), (2, 4)}

4. {(5, 4), (4, 3), (3, 2), (2, 1)}

5. {(1, 2), (1, 4), ( 3, 2), ( 3, 4)}

6. {(0, 5), ( 4, 5), ( 4, 2), (0, 2)}

Which of the functions in Problems 7–18 are one-to-one?

7. Domain Range 8. Domain Range

 2  4  2
 1  2  1

 3

0 0 0 7
1 1 1 9
2 5 2

9. Domain Range 10. Domain Range

1 1 5
2 2 3
3 7 3 1
4 4 2
5 5 4

11.

12.

x

g(x)

x

f(x)



16.

17.

18.

x

s(x)

x

r(x)

x

n(x)13.

14.

15.

x

m(x)

x

k(x)

x

h(x)
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In Problems 19–24, use Theorem 1 to determine which func-

tions are one-to-one.

19. 20.

21. 22.

23. 24.

In Problems 25–32, use the horizontal line test (Theorem 2) to

determine which functions are one-to-one.

25. 26.

27. 28. f (x)  
 x 3

  x 
x

f (x)  
x3

  x 
x

f (x)  
x2

  x 
x

f (x)  
x2

  x 
x

N(x)  x2
 1M(x)   x  1

K(x)   4  xH(x)  4  x2

G(x)   
1
3x  1F(x)  

1
2x  2

29. 30.

31. 32.

In Problems 33–38, determine if g is the inverse of f.

33.

34.

35.

36. f (x)  (x  3)3
 4;  g(x)   3

x  4  3

f (x)  2  (x  1)3;  g(x)   3 3  x  1

f (x)  2x  4;  g(x)  
1
2x  2

f (x)  3x  5;  g(x)  
1
3x  

5
3

f (x)  
4x  x3

 x2
 4 f (x)  

x3
 9x

 x2
 9 

f (x)  
1  x2

 x  1 f (x)  
x2

 4

 x  2 



37.

38.

In Problems 39–44, write a verbal description of the given

function, reverse your description, and write the resulting alge-

braic equation. Verify that the result is the inverse of the origi-

nal function.

39. 40.

41. 42.

43. 44.

In Problems 45–48, use the graph of the one-to-one function f

to sketch the graph of f 1. State the domain and range of f 1.

45.

46.

47.

y   f(x)

x

y

 5

5 5

5

y   x

y   f(x)

x

y

 5

5 5

5

y   x

x

y

 5

5 5

5

y   f(x)

y   x

t(x)  (2x  7)3s(x)  (3x  17)5

n(x)   
5

2  xm(x)   
3

x  11

k(x)  6  9xh(x)  3x  7

f (x)  
x  1

2x  3
;  g(x)  

3x  1

2x  1

f (x)  
2x  3

x  4
;  g(x)  

3  4x

2  x

48.

In Problems 49–54, verify that g is the inverse of the one-to-

one function f by showing that g( f(x))  x and f(g(x))  x.

Sketch the graphs of f, g, and y  x in the same coordinate sys-

tem and identify each graph.

49.

50.

51.

52.

53.

54.

The functions in Problems 55–74 are one-to-one. Find f  1.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. How are the x and y intercepts of a function and its 
inverse related?

76. Does a constant function have an inverse? Explain.

f (x)  4   5  xf (x)  3   x  2

f (x)   1
3 36  xf (x)  1

2 16  x

f (x)   
3

x  3  2f (x)  4   
5

x  2

f (x)  x5
 2f (x)  x3

 1

f (x)  
5  3x

7  4x
f (x)  

2x  5

3x  4

f (x)  
x  3

x
f (x)  

x

x  2

f (x)  
3

x  4
f (x)  

2

x  1

f (x)   2x  7f (x)  1
10x  3

5

f (x)   1
3x  5

3f (x)  4x  3

f (x)  1
2xf (x)  3x

f(x)  6  x2, x  0;  g(x)    6  x

f (x)    x  2;  g(x)  x2
 2, x  0

f (x)   x  2;  g(x)  x2
 2, x  0

f (x)  4  x2, x  0;  g(x)   x  4

f (x)   1
2x  2;  g(x)   2x  4

f (x)  3x  6;  g(x)  1
3x  2

x

y

 5

5 5

5

y   x

1.6 Inverse Functions 101
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The functions in Problems 77–80 are one-to-one. Find f  1.

77.

78.

79.

80.

In Problems 81–88, find f  1, find the domain and range of f  1,

sketch the graphs of f, f  1, and y  x in the same coordinate

system, and identify each graph.

81.

82.

83.

84.

85.

86.

87.

88.

89. Find f  1(x) for 

90. Find f  1(x) for 

91. Refer to Problem 89. For which a and b is f its own 
inverse?

92. How could you recognize the graph of a function that is
its own inverse?

93. Show that the line through the points (a, b) and (b, a),
a   b, is perpendicular to the line y  x (see the figure
for Problem 94).

f (x)   a2
 x2, a   0, 0  x  a.

f (x)  ax  b, a  0.

f (x)  1   1  x2,  1  x  0

f (x)  1   1  x2,  1  x  0

f (x)  1   1  x2, 0  x  1

f (x)  1   1  x2, 0  x  1

f (x)    9  x2,  3  x  0

f (x)   9  x2,  3  x  0

f (x)   9  x2, 0  x  3

f (x)    9  x2, 0  x  3

f (x)  x2
 8x  7, x   4

f (x)  x2
 2x  2, x   1

f (x)  3  (x  5)2, x  5

f (x)  (x  1)2
 2, x  1

94. Show that the point ((a,  b)/2, (a,  b)/2,) bisects the
line segment from (a, b), to (b, a), a   b (see the figure).

In Problems 95–98, the function f is not one-to-one. Find the 

inverses of the functions formed by restricting the domain of f

as indicated. Check by graphing f, f  1, and the line y  x in a

squared viewing window on a graphing utility. [Hint: To 

restrict the graph of y  f(x) to an interval of the form 

a   x   b, enter y   f(x)/((a  x)*(x  b)).]

95.

(A) x  2 (B) x  2

96.

(A) x   1 (B) x   1

97.

(A) 0  x   2 (B) 2  x   4

98.

(A) 0  x   3 (B) 3  x   6

f (x)   6x  x2:

f (x)   4x  x2:

f (x)  (1  x)2:

f (x)  (2  x)2:

x

y
y   x

a   b
2

a   b
2  ,

(a, b)

(b, a)

99. Price and Demand. The number q of CD players con-
sumers are willing to buy per week from a retail chain at
a price of $p is given approximately by

10   p   70

(A) Find the range of d.

(B) Find p  d 1(q), and find its domain and range.

(C) Should you interchange p and q in part B? Explain.

q  d( p)  
3,000

0.2p  1

100. Price and Supply. The number q of CD players a retail
chain is willing to supply at a price of $p is given ap-
proximately by

10   p   70

(A) Find the range of s.

(B) Find p  s 1(q), and find its domain and range.

(C) Should you interchange p and q in part B? Explain.

q  s(p)  
900p

p  20



101. Revenue. The demand x and the price p (in dollars) for
a certain product are related by

x  f ( p)  2,000  40p 0  p  50

Express the revenue as a function of x.

102. Revenue. The demand x and the price p (in dollars) for
a certain product are related by

x  f ( p)  3,000  30p 0  p  100

Express the revenue as a function of x.

Chapter 1 Review 103

1.1 Using Graphing Utilities
A graphing utility is any electronic device capable of display-
ing the graph of an equation. The smallest darkened rectangular
area that a graphing utility can display is called a pixel. The
window variables for a standard viewing window are

Xmin   10, Xmax  10, Xscl  1, Ymin   10,
Ymax  10, Yscl  1

Other viewing windows can be defined by assigning different
values to these variables. Most graphing utilities will construct
a table of ordered pairs that satisfy an equation. A grid can be
added to a graph to aid in reading the graph. A cursor is used to
locate a single pixel on the screen. The coordinates of the pixel
at the cursor location, called screen coordinates, approximate
the mathematical coordinates of all the points close to the pixel.
The TRACE command constrains cursor movement to the
graph of an equation and displays coordinates of points that sat-
isfy the equation. The ZOOM command enlarges or reduces the
viewing window. The intersect or isect command finds the in-
tersection points of two curves.

1.2 Functions
A function is a correspondence between two sets of elements
such that to each element in the first set, there corresponds one
and only one element in the second set. The first set is called the
domain and the set of all corresponding elements in the second
set is called the range. Equivalently, a function is a set of or-
dered pairs with the property that no two ordered pairs have the
same first component and different second components. The do-

main is the set of all first components and the range is the set of
all second components. An equation in two variables defines a
function if to each value of the independent variable, the
placeholder for domain values, there corresponds exactly one
value of the dependent variable, the placeholder for range val-
ues. A vertical line will intersect the graph of a function in at
most one point. Unless otherwise specified, the domain of a
function defined by an equation is assumed to be the set of all
real number replacements for the independent variable that pro-

duce real values for the dependent variable. The symbol f(x)
represents the real number in the range of the function f that is
paired with the domain value x. Equivalently, the ordered pair
(x, f(x)) belongs to the function f. The STAT editor on a graph-
ing utility is used to enter data and the STAT PLOT command
will produce a scatter plot of the data.

1.3 Functions: Graphs 
and Properties

The graph of a function f is the graph of the equation y  f(x).
The abscissa of a point where the graph of a function intersects
the x axis is called an x intercept or real zero of the function.
The x intercept is also a real solution or root of the equation 
f(x)  0. The ordinate of a point where the graph of a function
crosses the y axis is called the y intercept of the function. The
y intercept is given by f(0), provided 0 is in the domain of f.
Most graphing utilities contain a built-in command, usually
called root or zero, for approximating x intercepts. A solid dot
on a graph of a function indicates a point that belongs to the
graph and an open dot indicates a point that does not belong to
the graph. Dots are also used to indicate that a graph terminates
at a point, and arrows are used to indicate that the graph contin-
ues with no significant changes.

Let I be an open interval in the domain of a function f. Then,

1. f is increasing on I and the graph of f is rising on I if
f(a)  f(b) whenever a  b in I.

2. f is decreasing on I and the graph of f is falling on I if
f(a)  f(b) whenever a  b in I.

3. f is constant on I and the graph of f is horizontal on I if
f(a)  f(b) whenever a  b in I.

The functional value f(c) is called a local maximum if there
is an interval (a, b) containing c such that f(x)  f(c) for all x in
(a, b) and a local minimum if there is an interval (a, b) contain-
ing c such that f(x)  f(c) for all x in (a, b). The functional value
f(c) is called a local extremum if it is either a local maximum or
a local minimum. Most graphing utilities have a maximum
command and a minimum command for finding local extrema.



Reflection:

y   f(x) Reflect the graph of y  f(x) in the x axis
y  f( x) Reflect the graph of y  f(x) in the y axis
y   f( x) Reflect the graph of y  f(x) in the origin

A function f is called an even function if f(x)  f( x) for all x
in the domain of f and an odd function if f( x)   f(x) for all
x in the domain of f. The graph of an even function is said to be
symmetrical with respect to the y axis and the graph of an odd
function is said to be symmetrical with respect to the origin.

1.5 Operations on Functions;
Composition

The sum, difference, product, and quotient of the functions f
and g are defined by

( f  g)(x)  f(x)  g(x) ( f  g)(x)  f(x)  g(x)

( fg)(x)  f(x)g(x) g(x)  0

The domain of each function is the intersection of the domains
of f and g, with the exception that values of x where g(x)  0
must be excluded from the domain of f /g.

The composition of functions f and g is defined by 
( f ° g)(x)  f(g(x)). The domain of f ° g is the set of all real
numbers x in the domain of g such that g(x) is in the domain of
f. The domain of f ° g is always a subset of the domain of g.

1.6 Inverse Functions
A function is one-to-one if no two ordered pairs in the function
have the same second component and different first compo-
nents. A horizontal line will intersect the graph of a one-to-one
function in at most one point. A function that is increasing (or
decreasing) throughout its domain is one-to-one. The inverse of
the one-to-one function f is the function f  1 formed by revers-
ing all the ordered pairs in f.

If f is a one-to-one function, then:

1. f  1 is one-to-one.
2. Domain of f  1

 Range of f.
3. Range of f  1

 Domain of f.
4. x  f  1(y) if and only if y  f(x).
5. f  1 ( f(x))  x for all x in the domain of f.
6. f( f  1(x))  x for all x in the domain of f  1.
7. To find f  1, solve the equation y  f(x) for x. Inter-

changing x and y at this point is an option.
8. The graphs of y  f(x) and y  f  1(x) are symmetrical

with respect to the line y  x.

 f

g (x)  
f (x)

g(x)

A piecewise-defined function is a function whose definition
involves more than one formula. Graphs of piecewise-defined
functions may have sharp corners. The graph of a function is
continuous if it has no holes or breaks and discontinuous at
any point where it has a hole or break. Intuitively, the graph of a
continuous function can be sketched without lifting a pen from
the paper. The greatest integer of a real number x, denoted by
 x , is the largest integer less than or equal to x; that is,  x  n,
where n is an integer, n  x  n  1.

The greatest integer function f is defined by the equation
f(x)   x . Changing the mode on a graphing utility from con-
nected mode to dot mode makes discontinuities on some
graphs more apparent.

1.4 Functions: Graphs 
and Transformations

The first six basic functions in a library of elementary functions
are defined by f(x)  x (identity function), g(x)   x (absolute
value function), h(x)  x2 (square function), m(x)  x3 (cube
function), (square root function), and 
(cube root function) (see Figure 1, Section 1-4). Performing an
operation on a function produces a transformation of the graph
of the function. The basic transformations are the following:

Vertical Translation:

Horizontal Translation:

Vertical Expansion and Contraction:

y  Af(x)

A   1 Vertically expand the graph 
of y  f (x) by multiplying 
each y value by A

0   A   1 Vertically contract the graph 
of y  f (x) by multiplying 
each y value by A

Horizontal Expansion and Contraction:

A   1 Horizontally contract the graph 
of y  f (x) by multiplying

y  f(Ax)
each x value by 

0   A   1 Horizontally expand the graph 
of y  f (x) by multiplying 

each x value by 
1

A

1

A

 h   0 Shift graph of y  f (x) left h units
h   0 Shift graph of y  f (x) right  h  units

y  f (x  h)

 k   0 Shift graph of y  f (x) up k units
k   0 Shift graph of y  f (x) down  k  units

y  f (x)  k

p(x)   3
xn(x)   x
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105Chapter 1 Review Exercises

1. Find the smallest viewing window that will contain all
the points in the table. State your answer in terms of the
window variables.

x  3 5  4 0 9

y 2  6 7  5 1

2. Indicate whether each set defines a function. Indicate
whether any of the functions are one-to-one. Find the do-
main and range of each function. Find the inverse of any
one-to-one functions. Find the domain and range of any
inverse functions.
(A) {(1, 1), (2, 4), (3, 9)}
(B) {(1, 1), (1,  1), (2, 2), (2,  2)}
(C) {( 2, 2), ( 1, 2), (0, 2), (1, 2), (2, 2)}
(D) {( 2, 2), ( 1, 3), (0,  1), (1,  2), (2, 1)}

3. Indicate whether each graph specifies a function:
(A)

(B)

x

y

x

y

(C)

(D)

4. For f(x)  x2
 2x, find:

(A) f(1) (B) f( 4) (C) f(2)  f( 1) (D)

Problems 5–12 refer to the graphs of f and g shown below.

5. Construct a table of values of ( f  g)(x) for x   3,  2,
 1, 0, 1, 2, and 3, and sketch the graph of f  g.

x

g(x)

 5 5 5

 5

5

x

f(x)

 5 5 5

 5

5

f (0)

f (3)

x

y

x

y

Work through all the problems in this review and check answers in the back of the book. Answers to

most review problems are there, and following each answer is a number in italics indicating the

section in which that type of problem is discussed. Where weaknesses show up, review appropriate

sections in the text.



17. Find the intervals over which f is increasing and 
decreasing.

18. Find any points of discontinuity.

Sketch the graph of each of the following,

19. f(x)  1 20. f(x  1) 21.  f(x)

22. 0.5f(x) 23. f(2x) 24.  f( x)

25. Match each equation with a graph of one of the functions
f, g, m, or n in the figure. Each graph is a graph of one of
the equations and is assumed to continue without bound
beyond the viewing window.
(A) y  (x  2)2

 4 (B) y   (x  2)2
 4

(C) y   (x  2)2
 4 (D) y  (x  2)2

 4

26. Let f(x)  x2
 4 and g(x)  x  3. Find each of the fol-

lowing functions and find their domains.
(A) f/g (B) g/f (C) f ° g (D) g ° f

5 5

5

x

yf g

m n

6. Construct a table of values of ( fg)(x) for x    3,  2,
 1, 0, 1, 2, and 3, and sketch the graph of fg.

In Problems 7–10, use the graphs of f and g to find:

7. ( f ° g)( 1) 8. (g ° f )( 2)

9. f [g(1)] 10. g[ f( 3)]

11. Is f a one-to-one function?

12. Is g a one-to-one function?

13. Indicate whether each function is even, odd, or neither:
(A) f(x)  x5

 6x (B) g(t)  t4  3t2

(C) h(z)  z5
 4z2

Problems 14–24 refer to the function f given by the following

graph.

14. Find f( 4), f(0), f(3), and f(5).

15. Find all values of x for which f(x)   2.

16. Find the domain and range of f.

x

f(x)

 5 5 5

 5

5
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Problems 27–33 refer to the function q given by the following

graph. (Assume the graph continues as indicated beyond the

part shown.)

 5

5 5

5

x

q(x)



27. Find y to the nearest integer:
(A) y  q(0) (B) y  q(1)
(C) y  q(2) (D) y  q( 2)

28. Find x to the nearest integer:
(A) q(x)  0 (B) q(x)  1
(C) q(x)   3 (D) q(x)  3

29. Find the domain and range of q.

30. Find the intervals over which q is increasing.

31. Find the intervals over which q is decreasing.

32. Find the intervals over which q is constant.

33. Identify any points of discontinuity.

The graphs of each pair of equations in Problems 34 and 35

intersect in exactly two points. Find a viewing window that

clearly shows both points of intersection. Use intersect to find

the coordinates of each intersection point to two decimal

places.

34. y  x2
  20x, y  4x  15

35. y   0.3x  4

36. Solve the following equation for the indicated values of
b. Round answers to two decimal places.

0.1x3
 2x2

 6x  80  b

(A) b  0 (B) b  100
(C) b   50 (D) b   150

In Problems 37 and 38, determine if the indicated equation de-

fines a function. Justify your answer.

37. x  2y  10 38. x   2y2
 10

39. Find the domain of each of the following functions:

(A) f(x)  x2
 4x  5 (B)

(C)

40. If g(t)  2t2  3t  6, find

41. The function f multiplies the cube of the domain element
by 4 and then subtracts the square root of the domain ele-
ment. Write an algebraic definition of f.

42. Write a verbal description of the function 
f (x)  3x2

 4x  6.

g(2  h)  g(2)

h
.

h(w)  2  3 w

g(t)  
t  2

t  5

y   10x  50,

In Problems 43 and 44, find the x intercepts, y intercept, local

extrema, domain, and range. Round answers to two decimal

places.

43. 44. s(x)  x3
 27x2

 300

45. Let

(A) Sketch the graph of y  f(x).
(B) Find the domain and range.
(C) Find any points of discontinuity.
(D) Find the intervals over which f is increasing, de-

creasing, and constant.

46. Let f(x)  0.1x3
 6x  5. Write a verbal description of

the graph of f using increasing and decreasing terminol-
ogy and indicating any local maximum and minimum
values. Approximate to two decimal places the coordi-
nates of any points used in your description.

47. How are the graphs of the following related to the graph
of y  x2?
(A) y   x2 (B) y   x2

 3
(C) y  (x  3)2 (D) y  (2x)2

48. Each of the following graphs is the result of applying one
or more transformations to the graph of one of the six ba-
sic functions in Figure 1, Section 1.4. Find an equation
for the graph. Check by graphing the equation on a
graphing utility.
(A)

(B)

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

f (x)    x  5 for  4  x   0

0.2x2 for 0  x  5

g(x)  6 x  x2
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55. Which of the following functions are one-to-one?
(A) f(x)  x3

(B) g(x)  (x  2)2

(C) h(x)  2x  3
(D) F(x)  (x  3)2, x   3

In Problems 56–58, find f  1, find the domain and range of f  1,

sketch the graphs of f, f  1, and y  x in the same coordinate

system, and identify each graph.

56. f(x)  3x  7

57.

58. f(x)  x2
 1, x  0

59. Sketch by hand the graph of a function that is consistent
with the given information.
(A) The function f is continuous on [ 5, 5], increasing

on [ 5,  3], decreasing on [ 3, 1], constant on 
[1, 3], and increasing on [3, 5].

(B) The function f is continuous on [ 5, 1) and [1, 5],
f( 2)   1 is a local maximum, and f(3)  2 is a
local minimum.

f (x)   x  1

49. The graph of f(x)   x is expanded vertically by a factor
of 3, reflected in the x axis, shifted four units to the right
and eight units up to form the graph of the function g.
Find an equation for the function g and graph g.

50. The graph of m(x)  x2 is expanded horizontally by a
factor of 2, shifted two units to the left and four units
down to form the graph of the function t. Find an equa-
tion for the function t and graph t.

51. Is u(x)  4x  8 the inverse of v(x)  0.25x  2?

52. Let k(x)  x3
 5. Write a verbal description of k, re-

verse your description, and write the resulting algebraic
equation. Verify that the result is the inverse of the origi-
nal function.

53. Find the domain of 

54. Given and g(x)   x ,
(A) Find f ° g and g ° f.

(B) Find the domains of f ° g and g ° f.

f(x)   x  8

f (x)  
x

 x  3
.

108 1 FUNCTIONS, GRAPHS, AND MODELS

60. Write a verbal description of the function g and then find
an equation for g(t).

g(t  h)  2(t  h)2
 4(t  h)  5

61. Graph in the standard viewing window:

Assuming the graph continues as indicated beyond the
part shown in this viewing window, find the domain,
range, and any points of discontinuity. [Hint: Use the dot
mode on your graphing utility, if it has one.]

62. A partial graph of the function f is shown in the figure.
Complete the graph of f over the interval [0, 5] given
that:
(A) f is an even function.
(B) f is an odd function.

f (x)  0.1(x  2)2
 

 3x  6 
x  2

63. For f(x)  3x2
 5x  7, find and simplify:

(A)

(B)

64. The function f is decreasing on [ 5, 5] with f( 5)  4
and f(5)   3.
(A) If f is continuous on [ 5, 5], how many times can

the graph of f cross the x axis? Support your conclu-
sion with examples and/or verbal arguments.

f (x)  f (a)

x  a

f (x  h)  f (x)

h

x

y

 5

5 5

5



(B) Repeat part A if the function does not have to be
continuous.

65. Let f(x)    x  .
(A) Write a piecewise definition of f. Include sufficient

intervals to clearly illustrate the definition.

(B) Sketch by hand the graph of y  f(x), using a graph-
ing utility as an aid. Include sufficient intervals to
clearly illustrate the graph.

(C) Find the range of f.
(D) Find any points of discontinuity.
(E) Indicate whether f is even, odd, or neither.
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66. Price and Demand. The price $p per hot dog at which q
hot dogs can be sold during a baseball game is given
approximately by

1,000  q  4,000

(A) Find the range of g.
(B) Find q  g 1(p) and find its domain and range.
(C) Express the revenue as a function of p.
(D) Express the revenue as a function of q.

67. Market Research. If x units of a product are produced
each week and sold for a price of $p per unit, then the
weekly demand, revenue, and cost equations are, 
respectively,

x  500  10p

R(x)  50x  0.1x2

C(x)  10x  1,500

Express the weekly profit as a function of the price p and
find the price that produces the largest profit.

68. Physics: Position of a Moving Object. In flight shooting
distance competitions, archers are capable of shooting
arrows 600 meters or more. An archer standing on the
ground shoots an arrow. After x seconds, the arrow is
y meters above the ground as given approximately by

y  55x  4.88x2

(A) Find the time (to the nearest tenth of a second) the
arrow is airborne.

(B) Find the maximum altitude (to the nearest meter)
the arrow reaches during its flight.

p  g(q)  
9

1  0.002q

69. Manufacturing. A box with four flaps on each end is to
be made out of a piece of cardboard that measures 48 by
72 inches. The width of each flap is x inches and the
length of one pair of opposite flaps is 2x inches to ensure
that the other pair of flaps will meet when folded over to
close the box (see the figure). Find the width of the flap
(to two decimal places) that will produce a box with
maximum volume. What is the maximum volume?

y

72 inches

36   2x4
8

 i
n

ch
e
s

x

2x



71. Computer Science. In computer programming, it is 
often necessary to check numbers for certain properties
(even, odd, perfect square, etc.). The greatest integer
function provides a convenient method for determining
some of these properties. Consider the function

f(x)  x  (  )2

(A) Evaluate f for x  1, 2, . . . , 16.
(B) Find f(n2), where n is a positive integer.
(C) What property of x does this function determine?

 x

70. Medicine. Proscar is a drug produced by Merck & Co.,
Inc. to treat symptomatic benign prostate enlargement.
One of the long-term effects of the drug is to increase
urine flow rate. Results from a 3-year study show that

f(x)  0.00005x3
 0.007x2

 0.255x

is a mathematical model for the average increase in urine
flow rate in cubic centimeters per second where x is time
taking the drug in months.

(A) Graph this function for 0  x  36.
(B) Write a brief verbal description of the graph using

increasing, decreasing, local maximum, and local
minimum as appropriate. Approximate to two deci-
mal places the coordinates of any points used in
your description.
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72. Data Analysis. Winning times in the men’s Olympic
400-meter freestyle event in minutes for selected years
are given in Table 1. A mathematical model for these 
data is

f(x)   0.021x  5.57

where x is years since 1900.

(A) Compare the model and the data graphically and 
numerically.

(B) Estimate (to three decimal places) the winning time
in 2008.

73. Use the schedule in Table 2 to construct a piecewise-
defined model for the taxes due for a single taxpayer in
Virginia with a taxable income of x dollars. Find the tax
on the following incomes: $2,000, $4,000, $10,000,
$30,000.

T A B L E  1

Year Time

1912 5.41

1932 4.81

1952 4.51

1972 4.00

1992 3.75

T A B L E  2 Virginia Tax Rate Schedule

Taxable But Of the
Income Not Amount

Status Over Over Tax is Over

Single $ 0 $ 3,000 2% $ 0

$ 3,000 $ 5,000 $ 60  3% $ 3,000

$ 5,000 $17,000 $120  5% $ 5,000

$17,000 ...... $720  5.75% $17,000



Mathematical Modeling: Choosing a 
Long Distance Calling Plan

The number of companies offering residential long distance telephone service has
grown rapidly in recent years. The plans they offer vary greatly and it can be dif-
ficult to select the plan that is best for you. Here are five typical plans:

Plan 1: A flat fee of $50 per month for unlimited calls.

Plan 2: A $30 per month fee for a total of 30 hours of calls and an additional
charge of $0.01 per minute for all minutes over 30 hours.

Plan 3: A $5 per month fee and a charge of $0.04 per minute for all calls.

Plan 4: A $2 per month fee and a charge of $0.045 per minute for all calls;
the fee is waived if the charge for calls is $20 or more.

Plan 5: A charge of $0.05 per minute for all calls; there are no additional fees.

(A) Construct a mathematical model for each plan that gives the total monthly
cost in terms of the total number of minutes of calls placed in a month.
Graph each model on a graphing utility. You may find Boolean expressions
like (x  a) helpful in entering your model in a graphing utility (see
Example 4 in Section 1.6).

(B) Compare plans 1 and 2. Determine how many minutes per month would make
plan 1 cheaper and how many would make plan 2 cheaper.

(C) Repeat part (B) for plans 1 and 3; plans 1 and 4; plans 1 and 5.

(D) Repeat part (B) for plans 2 and 3; plans 2 and 4; plans 2 and 5.

(E) Repeat part (B) for plans 3 and 4; plans 3 and 5.

(F) Repeat part (B) for plans 4 and 5.

(G) Is there one plan that is always better than all the others? Based on your per-
sonal calling history, which plan would you choose and why?
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Modeling with
Linear and
Quadratic
Functions

O U T L I N E

2.1 Linear Functions

2.2 Linear Equations and Models

2.3 Quadratic Functions

2.4 Complex Numbers

2.5 Quadratic Equations and Models

2.6 Additional Equation-Solving Techniques

2.7 Solving Inequalities

Chapter 2 R E V I E W

Chapter 2 G R O U P  A C T I V I T Y : Mathematical Modeling in Population

Studies

Cumulative Review Exercises Chapters 1 and 2

I
N CHAPTER 1 WE INVESTIGATED THE GENERAL CONCEPT OF

function using graphs, tables, and algebraic equations. In this

and subsequent chapters we investigate particular types of func-

tions in more detail. By the time we finish, we will have a library

of elementary functions that form a very important addition to our

mathematical toolbox. These elementary functions are used with

great frequency in almost any place where mathematics is used: the

physical, social, and life sciences; most technical fields; and most

mathematical courses beyond this one. Take a few moments to look

at the chapter titles in the table of contents and observe how the var-

ious types of elementary functions form the structure on which the

course is organized.

Before getting started on this chapter,

review the following concepts:

 Properties of Real Numbers
(Basic Algebra Review*, Section 1)

 Polynomials
(Basic Algebra Review*, Sec. 2 and 3)

 Least Common Denominator
(Basic Algebra Review*, Section 4)

 Rational Exponents
(Basic Algebra Review*, Section 6)

 Square Root Radicals
(Basic Algebra Review*, Section 7)

 Linear Equations and Inequalities
(Appendix A, Section A.1)

 Set Operations
(Appendix A, Section A.1)

 Cartesian Coordinate System
(Appendix A, Section A.2)

 Distance Formula
(Appendix A, Section A.3)

 Functions and Graphs
(Chapter 1, Sec. 2, 3, and 4)

*At www.mhhe.com/barnett



In this chapter we investigate linear and quadratic functions. As you will see, many
significant real-world problems require these functions in their representation and
solution. In addition, to find all solutions to quadratic equations, we need to extend
the real number system to include complex numbers.

Linear Functions

Constant and Linear Functions  Graph of Ax  By  C  Slope of a Line  Equations of
Lines—Special Forms  Parallel and Perpendicular Lines  Mathematical Modeling: Slope
as a Rate of Change

The straight line is a fundamental geometric object and an important tool in math-
ematical modeling. In this section we will add linear functions to our library of
elementary functions and explore the relationship between graphs of linear func-
tions and straight lines. We will also determine how to find the equation of a line,
given information about the line. And we will see how slope is used to model
quantities that have a constant rate of change.

Constant and Linear Functions
One of the elementary functions introduced in Section 1.4 was the identity func-
tion f(x)  x (Fig. 1).
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x

 f(x)

 5 5 5

 5

5

FIGURE 1 Identity function: 
f(x)  x.

E X P L O R E / D I S C U S S  1

Use the transformations discussed in Section 1.4 to describe verbally
the relationship between the graph of f(x)  x and each of the follow-
ing functions. Graph each function.

(A) g(x)  3x  1 (B) h(x)  0.5x  2 (C) k(x)   x  1

If we apply a sequence of translations, reflections, expansions, and/or con-
tractions to the identity function, the result is always a function whose graph is a
straight line. Because of this, functions like g, h, and k in Explore/Discuss 1 are
called linear functions. In general:
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Linear and Constant Functions

A function f is a linear function if

f(x)  mx  b m  0

where m and b are real numbers. The domain is the set of all real numbers and the range is the set 

of all real numbers. If m 0, then f is called a constant function,

f(x)  b

which has the set of all real numbers as its domain and the constant b as its range.

FIGURE 2 Two linear functions
and a constant function.

x

y

 5 5 5

 5

5

x

y

 5 5 5

 5

5

x
 5 5 5

 5

5

y

It can be shown (see Problem 90 in Exercise 2.1 for a sketch of a proof) that

The graph of a linear function is a straight line that is neither horizontal nor vertical. The graph of a

constant function is a horizontal straight line.

What about vertical lines? Recall from Chapter 1 that the graph of a function
cannot contain two points with the same x coordinate and different y coordi-
nates. Because all the points on a vertical line have the same x coordinate, the
graph of a function can never be a vertical line. Later in this section we will
discuss equations of vertical lines, but these equations never define functions.

Recall from Section 1.3 that the y intercept of a function f is f(0), provided
f(0) exists, and the x intercepts are the solutions of the equation f(x)  0.

(a) f(x) 2x  2 (b) g(x)  0.5x   1 (c) h(x)  3

E X P L O R E / D I S C U S S 2

(A) Is it possible for a linear function to have two x intercepts? No x
intercept? If either of your answers is yes, give an example.

(B) Is it possible for a linear function to have two y intercepts? No 
y intercept? If either of your answers is yes, give an example.

(C) Discuss the possible numbers of x and y intercepts for a constant function.

Figure 2 shows the graphs of two linear functions f and g, and a constant func-
tion h.
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Find the x and y intercepts of 

Graph of Ax By C

g(x)   
4
3x  5.

E X P L O R E / D I S C U S S  3

Graph each of the following cases of Ax  By  C in the same coordi-
nate system:

1. 3x  2y  6
2. 0x  3y  12
3. 2x  0y  10

Which cases define functions? Explain why or why not.
Graph each case using a graphing utility (check your manual on how

to graph vertical lines).

Algebraic Solution

x  
9

2
 4.5

2

3
x  3

2

3
x  3  0

f(x)  0
Graphical Solution

 10

 10

10

10

We now investigate graphs of linear equations in two variables:

Ax  By  C (1)

where A and B are not both zero. Depending on the values of A and B, this equa-
tion defines a linear function, a constant function, or no function at all. If A  0
and B  0, then equation (1) can be written in the form

Linear function (slanted line) (2)y   
A

B
x  

C

B

Finding x and y Intercepts

Find the x and y intercepts for .

S O L U T I O N

The y intercept is f(0)   3. The x intercept can be found algebraically using
standard equation-solving techniques, or graphically using the zero command on
a graphing utility.

f(x)  2
3x  3



which is in the form f(x)  mx  b, m  0, hence is a linear function. If A  0
and B  0, then equation (1) can be written in the form

Constant function (horizontal line) (3)

which is in the form g(x)  b, hence is a constant function. If A  0 and B  0,
then equation (1) can be written in the form

Not a function (vertical line) (4)

We can see that the graph of equation (4) is a vertical line because the equation
is satisfied for any value of y as long as x is the constant Hence this form does
not define a function.

The following theorem is a generalization of the preceding discussion:

C
A.

x  
C

A

Ax  0y  C

y  
C

B

  0x  By  C
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T H E O R E M  1
Graph of a Linear Equation in Two Variables

The graph of any equation of the form

Ax  By  C Standard form (5)

where A, B, and C are real constants (A and B not both 0) is a straight
line. Every straight line in a Cartesian coordinate system is the graph of
an equation of this type. Vertical and horizontal lines are special cases of
equation (5):

Horizontal line with y intercept b: y  b

Vertical line with x intercept a: x  a

To sketch the graph of an equation of the form

Ax  By  C or y  mx  b

all that is necessary is to plot any two points from the solution set and use a
straightedge to draw a line through these two points. The x and y intercepts are
often the easiest points to find.

Sketching Graphs of Lines

(A) Describe the graphs of x   2 and y  3 verbally. Graph both equations
in the same rectangular coordinate system by hand and in the same view-
ing window on a graphing utility.

(B) Write the equations of the vertical and horizontal lines that pass through
the point (1,  4).

(C) Graph the equation 3x  2y  6 by hand and on a graphing utility.
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FIGURE 4

 5

 5

5

5

Hand-Drawn Solution

(B) Horizontal line through (1,  4): y   4
Vertical line through (1,  4): x  1

Graphing Utility Solution

FIGURE 5 FIGURE 6

x

y

 5 5 5

 5

5

x intercept is 2

y intercept is  3

 5

 7.6

5

7.6

(C) Graphing Utility Solution

Solve 3x  2y  6 for y, enter the
result in the equation editor, and
graph (Fig. 6).

y  1.5x  3
 2y   3x  6

 3x  2y  6

(C) Hand-Drawn Solution

Find the x intercept by substituting
y  0 and solving for x, and then
find the y intercept by substituting
x  0 and solving for y. Then draw a
line through the intercepts (Fig. 5).

x intercept y intercept

3x  2(0)  6 3(0)   2y  6
3x  6   2y  6
x  2 y   3

FIGURE 3

 5 5 5

 5

5

y   3

x    2
y

x

Note that we used a squared viewing window in Figure 6 to produce units of the
same length on both axes. This makes it easier to compare the hand sketch with
the graphing utility graph.

S O L U T I O N S

(A) The graph of x   2 is a vertical line with x intercept  2 and the
graph of y  3 is a horizontal line with y intercept 3.
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(A) Describe the graphs of x  4 and y   3 verbally. Graph both equations
in the same rectangular coordinate system by hand and in the same view-
ing window on a graphing utility.

(B) Write the equations of the vertical and horizontal lines that pass through
the point ( 7, 5).

(C) Graph the equation 4x  3y  12 by hand and on a graphing utility.

Slope of a Line
If we take two different points P1 (x1, y1) and P2  (x2, y2) on a line, then the ratio
of the change in y to the change in x as we move from point P1 to point P2 is called
the slope of the line. Roughly speaking, slope is a measure of the “steepness’’ of a
line. Sometimes the change in x is called the run and the change in y the rise.

Slope of a Line

If a line passes through two distinct points P1  (x1, y1) 

and P2  (x2, y2), then its slope m is given by the formula

 
Vertical change (rise)

Horizontal change (run)

x1  x2m  
y2  y1

x2  x1

For a horizontal line, y doesn’t change as x changes; hence, its slope is 0. For
a vertical line, x doesn’t change as y changes; hence, x1  x2, the denominator in
the slope formula is 0, and its slope is not defined. In general, the slope of a line
may be positive, negative, zero, or not defined. Each case is illustrated geometri-
cally in Table 1.

x

y

P2   (x2, y2)

P1   (x1, y1)

(x2, y1)
x2   x1

Run

y2   y1

Rise

T A B L E  1 Geometric Interpretation of Slope

Line Slope Example

Rising as x moves from left to right Positive

Falling as x moves from left to right Negative

Horizontal 0

Vertical Not defined

x

y

x

y

x

y

x

y



In using the formula to find the slope of the line through two points, it
doesn’t matter which point is labeled P1 or P2, because changing the labeling
will change the sign in both the numerator and denominator of the slope
formula:

For example, the slope of the line through the points (3, 2) and (7, 5) is

In addition, it is important to note that the definition of slope doesn’t depend
on the two points chosen on the line as long as they are distinct. This follows
from the fact that the ratios of corresponding sides of similar triangles are equal
(Fig. 7).

Finding Slopes

For each line in Figure 8, find the run, the rise, and the slope. (All the horizon-
tal and vertical line segments have integer lengths.)

S O L U T I O N

In Figure 8(a), the run is 3, the rise is 6 and the slope is In Figure 8(b),
the run is 6, the rise is  4 and the slope is .

For each line in Figure 9, find the run, the rise, and the slope. (All the horizon-
tal and vertical line segments have integer lengths.)

 4
6   

2
3

6
3  2.

5  2

7  3
 

3

4
 

 3

 4
 

2  5

3  7

y2  y1

x2  x1

 

y1  y2

x1  x2
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FIGURE 7

 4

 6

4

6

 4

 6

4

6

(a)

(b)

(a) (b)FIGURE 8

FIGURE 9

Finding Slopes

Sketch a line through each pair of points and find the slope of each line.

(A) ( 3,  4), (3, 2) (B) ( 2, 3), (1,  3)

(C) ( 4, 2), (3, 2) (D) (2, 4), (2,  3)

 4

 6

4

6

 4

 6

4

6

a

b

a 

b 

b

a
m  

b 

a 
 



S O L U T I O N S
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x

y

 5

5 5

5

(3, 2)

( 3,  4)

 5

5 5

5

(1,  3)

( 2, 3)

x

y
(A) (B)

x

y

 5

5 5

5

(3, 2)( 4, 2)

x

y

 5

5 5

5

(2, 4)

(2,  3)

(C) (D)

m  
2  ( 4)

3  ( 3)
 

6

6
 1 m  

 3  3

1  ( 2)
 
 6

3
  2

m  
2  2

3  ( 4)
 

0

7
 0

slope is not defined

m  
 3  4

2  2
 
 7

0

T A B L E  2 Graph Properties of Linear and Constant Functions

Linear Functions Constant Function

f(x)  mx  b, m  0 f(x)  mx  b, m  0 f(x)  b

Domain  (  ,  ) Domain  (  ,  ) Domain  (  ,  )

Range  (  ,  ) Range  (  ,  ) Range  {b}

Increasing on (  ,  ) Decreasing on (  ,  ) Constant on (  ,  )

Sketch a line through each pair of points and find the slope of each line.

(A) ( 3,  3), (2,  3) (B) ( 2,  1), (1, 2)

(C) (0, 4), (2,  4) (D) ( 3, 2), ( 3,  1)

The graphs in Example 4 serve to illustrate the following summary:

Equations of Lines—Special Forms
Let us start by investigating why y  mx  b is called the slope–intercept form

for a line.
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E X P L O R E / D I S C U S S  4

(A) Using a graphing utility, graph y  x  b for b   5,  3, 0, 3,
and 5 simultaneously in a standard viewing window. Verbally
describe the geometric significance of b.

(B) Using a graphing utility, graph y  mx  1 for m   2,  1, 0, 1,
and 2 simultaneously in a standard viewing window. Verbally
describe the geometric significance of m.

The slope and the y intercept in a slope–intercept form are unique. Thus, given
the equation y  7x  9, we can conclude that the slope is 7 and the y intercept
is  9.

Using the Slope–Intercept Form

Graph the line with y intercept  2 and slope .5
4

f(x)

x

(1, m   b)
(0, b)

FIGURE 10

Slope–Intercept Form

The equation

y  mx  b m  slope, b  y intercept

is called the slope–intercept form of the equation of a line.

As you see, constants m and b in y  mx  b have special geometric signif-
icance, which we now explicitly state.

If we let x  0, then y  b and the graph of y  mx  b crosses the y axis
at (0, b). Thus, the constant b is the y intercept. For example, the y intercept of
the graph of y  2x  7 is  7.

We have already seen that the point (0, b) is on the graph of y  mx  b. If
we let x  1, then it follows that the point (1, m  b) is also on the graph (Fig.
10). Because the graph of y  mx  b is a line, we can use these two points to
compute the slope:

Thus, m is the slope of the line with equation y  mx  b.

(x1, y1)   (0, b)

(x2, y2)   (1, m   b)
Slope  

y2  y1

x2  x1

 
(m  b)  b

1  0
 m



Graph the line with y intercept 3 and slope by hand and on a graphing
utility.

Suppose a line has slope m and passes through the point (x1, y1). If (x, y) is
any other point on the line (Fig. 13), then

that is,

y  y1  m(x  x1) (6)

Because the point (x1, y1) also satisfies equation (6), we can conclude that equa-
tion (6) is an equation of a line with slope m that passes through (x1, y1).

y  y1

x  x1

 m

 

3
4
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Hand-Drawn Solution

If we start at the point (0,  2) and
move four units to the right (run),
then the y coordinate of a point on
the line must move up five units
(rise) to the point (4, 3). Drawing a
line through these two points pro-
duces the graph shown in Figure 11.

Graphing Utility Solution

To graph the line on a graphing util-
ity, we first use the slope–intercept
form to find the equation of the line.
The equation of a line with y intercept
 2 and slope is

Graphing this equation on a graphing
utility produces the graph in Figure 12.

y  
5

4
x  2

5
4

S O L U T I O N

FIGURE 11

y

x
 5 5 5

 5

5

rise   5

run   4

FIGURE 12

 5

 7.6

5

7.6

y

x

(x, y)

(x, y1)
(x1, y1)

FIGURE 13

Point–Slope Form

An equation of a line with slope m that passes through (x1, y1) is

y  y1  m(x  x1)

which is called the point–slope form of an equation of a line.



If we are given the coordinates of two points on a line, we can use the given
coordinates to find the slope and then use the point–slope form with either of the
given points to find the equation of the line.

Point–Slope Form

(A) Find an equation for the line that has slope and passes through the point
( 2, 1). Write the final answer in the form Ax  By  C.

(B) Find an equation for the line that passes through the two points (4,  1)
and ( 8, 5). Write the final answer in the form y  mx  b.

S O L U T I O N S

(A) If and (x1, y1)  ( 2, 1), then

or

(B) First use the slope formula to find the slope of the line:

Now we choose (x1, y1)  (4,  1) and proceed as in part A:

Verify that choosing (x1, y1)  ( 8, 5), the other given point, produces the same
equation.

(A) Find an equation for the line that has slope and passes through the
point (3,  2). Write the final answer in the form Ax  By  C.

(B) Find an equation for the line that passes through the two points ( 3, 1)
and (7,  3). Write the final answer in the form y  mx  b.

 
2
5

y   
1

2
x  1

y  1   
1

2
x  2

y  ( 1)   
1

2
 (x  4)

y  y1  m(x  x1)

m  
y2  y1

x2  x1

 
5  ( 1)

 8  4
 

6

 12
  

1

2

 2x  3y   7 2x  3y  7

3y  3  2x  4

3( y  1)  2(x  2)

y  1  
2

3
 [x  ( 2)]

y  y1  m(x  x1)

m  
2
3

2
3

2 MODELING WITH LINEAR AND QUADRATIC FUNCTIONS124



The various forms of the equation of a line that we have discussed are sum-
marized in Table 3 for convenient reference. Note that the standard form includes
all the other forms as special cases.
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Parallel and Perpendicular Lines

T A B L E  3 Equations of a Line

Standard form Ax  By  C A and B not both 0

Slope–intercept form y  mx  b Slope: m; y intercept: b

Point–slope form y  y1  m(x  x1) Slope: m; point: (x1, y1)

Horizontal line y  b Slope: 0

Vertical line x  a Slope: undefined

E X P L O R E / D I S C U S S  5

(A) Graph all of the following lines in the same viewing window. Discuss
the relationship between these graphs and the slopes of the lines.

(B) Graph each pair of lines in the same squared viewing window.
Discuss the relationship between each pair of lines and their
respective slopes.

and

and

and y   
5

4
xy  

4

5
x

y  
1

3
xy   3x

y   0.5xy  2x

y  2x  3y  2x  1y  2x  5

From geometry, we know that two vertical lines are parallel and that a hori-
zontal line and a vertical line are perpendicular to each other. How can we tell
when two nonvertical lines are parallel or perpendicular to each other? Theorem 2,
which we state without proof, provides a convenient test.

T H E O R E M  2
Parallel and Perpendicular Lines

Given two nonvertical lines L1 and L2, with slopes m1 and m2, respec-
tively, then

L1   L2 if and only if m1  m2

L1  L2 if and only if m1m2   1



The symbols  and  mean, respectively, “is parallel to” and “is perpendicular
to.” In the case of perpendicularity, the condition m1m2   1 can also be written as

or

Thus:

Two nonvertical lines are perpendicular if and only if their slopes are the negative reciprocals of 

each other.

Parallel and Perpendicular Lines

Given the line L with equation 3x  2y  5 and the point P with coordinates
( 3, 5), find an equation of a line through P that is

(A) Parallel to L (B) Perpendicular to L

S O L U T I O N S

First we write the equation for L in the slope–intercept form to find the slope of L:

Thus, the slope of L is The slope of a line parallel to L will also be and the
slope of a line perpendicular to L will be We now can find the equations of
the two lines in parts A and B using the point–slope form.

(A) Parallel (B) Perpendicular 

Given the line L with equation 4x  2y  3 and the point P with coordinates
(2,  3), find an equation of a line through P that is

(A) Parallel to L (B) Perpendicular to L

Mathematical Modeling: Slope as a Rate of Change
If (x1, y1) and (x2, y2) are two distinct points on the graph of y  mx  b, then

When viewed as the ratio of the change in y to the change in x, the slope of a
linear function is often referred to as the rate of change or average rate of

Change in y

Change in x
m  

y2  y1

x2  x1

y   2
3 x  3 y  3

2 x  
19
2

y  5   2
3 x  2y  5  3

2 x  
9
2

y  5   2
3(x  3)y  5  3

2(x  3)

y  y1  m(x  x1)y  y1  m(x  x1)

(m   2
3):(m  3

2):

 
2
3.

3
2,3

2.

y  3
2 x  

5
2

 2y   3x  5

 3x  2y  5

m1   
1

m2

m2   
1

m1

2 MODELING WITH LINEAR AND QUADRATIC FUNCTIONS126



change of y with respect to x. This interpretation is used widely in everyday life.
For example, if an automobile travels at an average speed of 50 miles per hour
for x hours, then the distance traveled is y  50x miles. If you collect pledges of
$25 for each mile you ride in a charity bicycle event, then the total amount the
charity will receive if you ride x miles is y  25x dollars. The next two exam-
ples illustrate this important application of linear functions.

Cost Analysis

A hot dog vendor pays $25 per day to rent a pushcart and $1.25 for the ingredi-
ents in one hot dog. 

(A) Find the cost of selling x hot dogs in 1 day.

(B) What is the cost of selling 200 hot dogs in 1 day?

(C) If the daily cost is $355, how many hot dogs were sold that day? 

S O L U T I O N S

(A) The rental charge of $25 is the vendor’s fixed cost—a cost that is
accrued every day and does not depend on the number of hot dogs
sold. The cost of ingredients does depend on the number sold. The
cost of the ingredients for x hot dogs is $1.25x. This is the vendor’s
variable cost—a cost that depends on the number of hot dogs sold.
The total cost for selling x hot dogs is

C(x)  1.25x  25 Total Cost  Variable Cost  Fixed Cost

(B) The cost of selling 200 hot dogs in 1 day is

C(200)  1.25(200)  25  $275

(C) The number of hot dogs that can be sold for $355 is the solution of
the equation

1.25x  25  355
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Algebraic Solution

 264 hot dogs

x  
330

1.25

 1.25x  330

 1.25x  25  355
Graphical Solution

Entering y1  1.25x  25 and 
y2  355 in a graphing utility and
using the intersect command (Fig. 14)
shows that 264 hot dogs can be sold
for $355.

FIGURE 14

 200

0

600

400
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Algebraic Solution

 57 feet

d  
25.3

0.445

 25.3

 0.445d  40  14.7

 0.445d  14.7  40
Graphical Solution

Entering y1  0.445x  14.7 and
y2  40 in a graphing utility and us-
ing the intersect command (Fig. 15)
shows that p 40 when d  57 feet.

FIGURE 15

 20

0

80

100

It costs a pretzel vendor $20 per day to rent a cart and $0.75 for each pretzel.

(A) Find the cost of selling x pretzels in 1 day. 

(B) What is the cost of selling 150 pretzels in 1 day? 

(C) If the daily cost is $275, how many pretzels were sold that day? 

Refer to Example 8. The vendor’s cost increases at the rate of $1.25 per hot
dog. Thus, the rate of change of the cost function C(x)  1.25x  25 is the slope
m  1.25. This constant rate can also be viewed as the cost of selling one addi-
tional hot dog. In economics, this quantity is referred to as the marginal cost.

Underwater Pressure

The atmospheric pressure at sea level is 14.7 pounds per square inch. As you
descend into the ocean, the pressure increases linearly at a rate of about 
0.445 pounds per square inch per foot. 

(A) Find the pressure p at a depth of d feet.

(B) If a diver’s equipment is rated to be safe up to a pressure of 40 pounds per
square inch, how deep (to the nearest foot) is it safe to use this equipment?

S O L U T I O N S

(A) Let p  md  b. At the surface, d  0 and p  14.7, so b  14.7.
The slope m is the given rate of change, m  0.445. Thus, the pres-
sure at a depth of d feet is

p  0.445d  14.7

(B) The safe depth is the solution of the equation

0.445d  14.7  40
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The rate of change of pressure in freshwater is 0.432 pounds per square inch per
foot. Repeat Example 9 for a body of freshwater.

1. x intercept: y intercept: 5
2. (A) The graph of x  4 is a vertical line with x intercept 4. The graph of 

y   3 is a horizontal line with y intercept  3.

(B) Vertical: x   7; horizontal: y  5
(C)

3. (A) Run  5, rise  4, slope  

(B) Run  3, rise   6,
4. (A) m  0 (B) m  1

x

y

 5

5 5

5

x

y

 5

5 5

5

slope   6
3   2

4
5  0.8

 5

 7.6

5

7.6
x

y

 5 5 5

 5

5

 5

 5

5

5
x

y

 5 5 5

 5

5

y    3

x   4

15
4  3.75;
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(C) m   4 (D) m is not defined

5.

6. (A) 2x  5y   4 (B) 7. (A) y   2x   1 (B)
8. (A) C(x)  0.75x  20 (B) $132.50 (C) 340 pretzels 9. (A) p  0.432d  14.7 (B) 59 feet

y  1
2 x  4y   

2
5 x  1

5

 5

 7.6

5

7.6
x

y

 5 5 5

 5

5

x

y

 5

5 5

5

 5

5 5

5

x

y

In Problems 1–6, use the graph of each linear function to find

the rise, run, and slope. Write the equation of each line in the

standard form Ax  By  C, A  0. (All the horizontal and

vertical line segments have integer lengths.)

1.

2.

 4

 6

4

6

 4

 6

4

6

3.

4.

 4

 6

4

6

 4

 6

4

6
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10.

11.

12.

Use the transformations discussed in Section 1.4 to describe

verbally the relationship between the graph of f(x)  x and the

graphs of the indicated functions in Problems 13–16.

13. g(x)  3x  7 14. h(x)   2x  9

15. 16.

Which equations in Problems 17–26 define linear functions?

Justify your answer.

17. 18.

19. 20.

21.

22.

23.

24.

25. 26. y  
2

3  x
y  

3

x  5

y  4
3 (2  x)  2

3 (x  2)

y  1
4 (2x  2)  1

2 (4  x)

y   
1
5 (2  3x)  2

7 (x  8)

y  2
3 (x  7)  1

2 (3  x)

y  
3  x

2
y  

x  5

3

y  5  3x3y  2x2

m(x)  2
3 x  3k(x)   

1
2 x  4

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

5.

6.

In Problems 7–12, use the graph of each linear function to find

the x intercept, y intercept, and slope. Write the slope–intercept

form of the equation of each line.

7.

8.

9.

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

 4

 6

4

6

 4

 6

4

6
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In Problems 27–38, find the x intercept, y intercept, and slope,

if they exist, and graph each equation.

27. 28.

29. 30.

31. 2x  3y  15 32. 4x  3y  24

33. 34.

35. x   3 36. y   2

37. y  3.5 38. x  2.5

y

6
 

x

5
 1

y

8
 

x

4
 1

y  2
3 x  3y   

3
4 x

y   
3
2 x  6y   

3
5 x  4

In Problems 39–42, write the slope–intercept form of the equa-

tion of the line with indicated slope and y intercept.

39. Slope  1; y intercept  0

40. Slope   1; y intercept  7

41. y intercept    4

42. y intercept   6Slope  
5
3;

Slope   
2
3;

In Problems 43–56, sketch a graph of the line that contains the

indicated point(s) and/or has the indicated slope and/or has

the indicated intercepts. Then write the equation of the line in

the slope–intercept form y  mx  b or in the form x  c and

check by graphing the equation on a graphing utility.

43. (0, 4); m   3 44. (2, 0); m  2

45. ( 5, 4); 46. ( 4,  2);

47. (1, 6); (5,  2) 48. ( 3, 4); (6, 1)

49. ( 4, 8); (2, 0) 50. (2,  1); (10, 5)

51. ( 3, 4); (5, 4) 52. (0,  2); (4,  2)

53. (4, 6); (4,  3) 54. ( 3, 1); ( 3,  4)

55. x intercept  4; 56. x intercept  4;
y intercept 3 y intercept 5

In Problems 57–68, write an equation of the line that contains

the indicated point and meets the indicated condition(s). Write

the final answer in standard form Ax  By  C, A  0.

57. ( 3, 4); parallel to y  3x  5

58. ( 4, 0); parallel to y   2x  1

59. (2,  3); perpendicular to x

60. ( 2,  4); perpendicular to 

61. (2, 5); parallel to y axis

62. (7, 3); parallel to x axis

63. (3,  2); vertical

64. ( 2,  3); horizontal

65. (5, 0); parallel to 3x  2y  4

66. (3, 5); parallel to 3x  4y  8

67. (0,  4); perpendicular to x  3y  9

y  2
3 x  5

y   
1
3

m  
1
2m   

2
5

68. ( 2, 4); perpendicular to 4x  5y  0

69. Discuss the relationship between the graphs of the lines
with equation y  mx  2, where m is any real number.

70. Discuss the relationship between the graphs of the lines
with equation y   0.5x  b, where b is any real number.

71. (A) Find the linear function f whose graph passes through
the points ( 1,  3) and (7, 2).

(B) Find the linear function g whose graph passes through
the points ( 3,  1) and (2, 7).

(C) Graph both functions and discuss how they are related.

72. (A) Find the linear function f whose graph passes through
the points ( 2,  3) and (10, 5).

(B) Find the linear function g whose graph passes through
the points ( 3,  2) and (5, 10).

(C) Graph both functions and discuss how they are related.

Problems 73–78 refer to the quadrilateral with vertices A(0, 2),

B(4,  1), C(1,  5), and D( 3,  2).

73. Show that AB  DC. 74. Show that DA  CB.

75. Show that AB BC. 76. Show that AD DC.

77. Find an equation of the perpendicular bisector of AD.

78. Find an equation of the perpendicular bisector of AB.

Problems 79–84 are calculus related.

Recall that a line tangent to a circle at

a point is perpendicular to the radius

drawn to that point (see the figure).

Find the equation of the line tangent to

the circle at the indicated point. Write

the final answer in the standard form

Ax  By  C, A  0. Graph the circle

and the tangent line on the same coordinate system.
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79. x2
 y2

 25, (3, 4)

80. x2
 y2

 100, ( 8, 6)

81. x2
 y2

 50, (5,  5)

82. x2
 y2

 80, ( 4,  8)

83. (x  3)2
 (y  4)2

 169, (8,  16)

84. (x  5)2
 (y  9)2

 289, ( 13,  6)

91. Physics. The two temperature scales Fahrenheit (F) and
Celsius (C) are linearly related. It is known that water
freezes at 32 F or 0 C and boils at 212 F or 100 C.

(A) Find a linear equation that expresses F in terms of C.

(B) If a European house thermostat is set at 20 C, what is
the setting in degrees Fahrenheit? If the outside tem-
perature in Milwaukee is 86 F, what is the tempera-
ture in degrees Celsius?

(C) What is the slope of the graph of the linear equation
found in part A? Interpret verbally.

92. Physics. Hooke’s Law states that the relationship be-
tween the stretch s of a spring and the weight w causing
the stretch is linear (a principle on which all spring scales
are constructed). For a particular spring, a 5-pound
weight causes a stretch of 2 inches, whereas with no
weight the stretch of the spring is 0.

(A) Find a linear equation that expresses s in terms of w.

(B) What weight will cause a stretch of 3.6 inches?

(C) What is the slope of the graph of the equation? Inter-
pret verbally.

93. Business–Depreciation. A copy machine was purchased
by a law firm for $8,000 and is assumed to have a depre-
ciated value of $0 after 5 years. The firm takes straight-
line depreciation over the 5-year period.

(A) Find a linear equation that expresses value V in dol-
lars in terms of time t in years.

(B) What is the depreciated value after 3 years?

(C) What is the slope of the graph of the equation found
in part A? Interpret verbally.

94. Business–Markup Policy. A clothing store sells a shirt
costing $20 for $33 and a jacket costing $60 for $93.

(A) If the markup policy of the store for items costing over
$10 is assumed to be linear, write an equation that ex-
presses retail price R in terms of cost C (wholesale price).

(B) What does a store pay for a suit that retails for $240?

(C) What is the slope of the graph of the equation found
in part A? Interpret verbally.

85. (A) Graph the following equations in a squared viewing
window:

3x  2y  6 3x  2y  3
3x  2y   6 3x  2y   3

(B) From your observations in part A, describe the family
of lines obtained by varying C in Ax  By  C while
holding A and B fixed.

(C) Verify your conclusions in part B with a proof.

86. (A) Graph the following two equations in a squared view-
ing window:

3x  4y  12 4x  3y  12

(B) Graph the following two equations in a squared view-
ing window:

2x  3y  12 3x  2y  12

(C) From your observations in parts A and B, describe the
apparent relationship of the graphs of

Ax  By  C and Bx  Ay  C.

(D) Verify your conclusions in part C with a proof.

87. Describe the relationship between the graphs of 
f (x)  mx  b and g(x)   mx  b , m  0, and illustrate
with examples. Is g(x) always, sometimes, or never a 
linear function?

88. Describe the relationship between the graphs of 
f (x)  mx  b and g(x)  m x  b, m  0, and illustrate
with examples. Is g(x) always, sometimes, or never a 
linear function?

89. Prove that if a line L has x intercept (a, 0) and y intercept
(0, b), then the equation of L can be written in the
intercept form

90. Prove that if a line L passes through P1  (x1, y1) and
P2  (x2, y2), then the equation of L can be written in the
two-point form

(y  y1)(x2  x1)  (y2  y1)(x  x1)

x

a
 

y

b
 1    a, b  0



95. Cost Analysis. A doughnut shop has a fixed cost of $124
per day and a variable cost of $0.12 per doughnut. Find
the total daily cost of producing x doughnuts. How many
doughnuts can be produced for a total daily cost of $250?

96. Cost Analysis. A small company manufactures picnic ta-
bles. The weekly fixed cost is $1,200 and the variable cost
is $45 per table. Find the total weekly cost of producing x
picnic tables. How many picnic tables can be produced
for a total weekly cost of $4,800?

97. Cost Analysis. A plant can manufacture 80 golf clubs
per day for a total daily cost of $8,147 and 100 golf
clubs per day for a total daily cost of $9,647.

(A) Assuming that the daily cost function is linear, find
the total daily cost of producing x golf clubs. 

(B) Write a brief verbal interpretation of the slope and 
y intercept of this cost function.

98. Cost Analysis. A plant can manufacture 50 tennis rack-
ets per day for a total daily cost of $4,174 and 60 tennis
rackets per day for a total daily cost of $4,634.

(A) Assuming that the daily cost function is linear, find
the total daily cost of producing x tennis rackets.

(B) Write a brief verbal interpretation of the slope and 
y intercept of this cost function.

99. Medicine. Cardiovascular research has shown that above
the 210 cholesterol level, each 1% increase in cholesterol
level increases coronary risk 2%. For a particular age group,
the coronary risk at a 210 cholesterol level is found to be
0.160 and at a level of 231 the risk is found to be 0.192.

(A) Find a linear equation that expresses risk R in terms
of cholesterol level C.

(B) What is the risk for a cholesterol level of 260?

(C) What is the slope of the graph of the equation found
in part A? Interpret verbally.

Express all calculated quantities to three significant digits.

100. Demographics. The average number of persons per
household in the United States has been shrinking steadily
for as long as statistics have been kept and is approxi-
mately linear with respect to time. In 1900, there were
about 4.76 persons per household and in 1990, about 2.5.

(A) If N represents the average number of persons per
household and t represents the number of years since
1900, write a linear equation that expresses N in
terms of t.

(B) What is the predicted household size in the year 2015?

Express all calculated quantities to three significant digits.

101. Flight Conditions. In stable air, the air temperature drops
about 5 F for each 1,000-foot rise in altitude.

(A) If the temperature at sea level is 70 F and a commer-
cial pilot reports a temperature of  20 F at 18,000
feet, write a linear equation that expresses tempera-
ture T in terms of altitude A (in thousands of feet).

(B) How high is the aircraft if the temperature is 0 F?

(C) What is the slope of the graph of the equation found
in part A? Interpret verbally.

102. Flight Navigation. An airspeed indicator on some air-
craft is affected by the changes in atmospheric pressure at
different altitudes. A pilot can estimate the true airspeed
by observing the indicated airspeed and adding to it about
2% for every 1,000 feet of altitude.

(A) If a pilot maintains a constant reading of 200 miles per
hour on the airspeed indicator as the aircraft climbs
from sea level to an altitude of 10,000 feet, write a lin-
ear equation that expresses true airspeed T (miles per
hour) in terms of altitude A (thousands of feet).

(B) What would be the true airspeed of the aircraft at 
6,500 feet?

(C) What is the slope of the graph of the equation found
in part A? Interpret verbally.

103. Oceanography. After about 9 hours of a steady wind, the
height of waves in the ocean is approximately linearly related
to the duration of time the wind has been blowing. During a
storm with 50-knot winds, the wave height after 9 hours was
found to be 23 feet, and after 24 hours it was 40 feet.

(A) If t is time after the 50-knot wind started to blow and
h is the wave height in feet, write a linear equation
that expresses height h in terms of time t.

(B) How long will the wind have been blowing for the
waves to be 50 feet high?

Express all calculated quantities to three significant digits.
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Linear Equations and Models

Solving Linear Equations  Modeling Distance-Rate-Time Problems  Modeling Mixture
Problems  Data Analysis and Linear Regression

In this section we will discuss methods for solving equations that involve linear
functions. Some problems are best solved using algebraic techniques, whereas
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S O L U T I O N

Algebraic Solution

We use the familiar properties of equality (see Appendix
A, Section A.1) to transform the given equation into an
equivalent equation with an obvious solution.

5x  8  2x  1 Original equation

5x  8  2x  2x  1  2x Subtract 2x from both sides.

3x  8  1 Combine like terms.

3x  8  8  1  8 Add 8 to both sides.

3x  9 Combine like terms.

Divide both sides by 3.

x  3 Simplify.

It follows from the properties of equality that x 3 is also
the solution set of all the preceding equations in our solu-
tion, including the original equation.

3x

3
 

9

3

Graphical Solution

Enter each side of the equation in the equation
editor of a graphing utility (Fig. 1) and use the
intersect command (Fig. 2).

FIGURE 1

 10

 10

10

10

y2   2x   1

y1   5x   8

FIGURE 2

Thus, x  3 is the solution to the original
equation.

others benefit from a graphical approach. Because graphs often give additional
insight into relationships, especially in applications, we will usually emphasize
graphical techniques over algebraic methods. But you must be certain to master
both. There are problems in this section that can only be solved algebraically. And
we are going to introduce an important new tool—linear regression—that requires
computation best done with a graphing utility.

Solving Linear Equations

Solving an Equation

Solve 5x  8  2x  1.

Solve 2x  1  4x  5.

Refer to the solution of Example 1. Note that we used the informal notation
x  3 for the solution set rather than the more formal statement: solution set  {3}.
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Solving an Equation

Solve 
7

2x
  3 

8

3
 

15

x
.

S O L U T I O N

Algebraic Solution

Note that 0 must be excluded from the permissible values of x because divi-
sion by 0 is not permitted. To clear the fractions, we multiply both sides of
the equation by 3(2x) 6x, the least common denominator (LCD) of all
fractions in the equation.

x 0

Multiply by 6x, the LCD.

21  18x 16x 90 The equation is now 

free of fractions.

21   18x  16x  16x   90   16x Subtract 16x from both sides.

21  34x   90 Combine like terms.

21  34x 21   90 21 Subtract 21 from both sides.

 34x    111 Combine like terms.

6x  

7

2x
 6x  3  6x  

8

3
 6x  

15

x

6x 7

2x
 3  6x 8

3
 

15

x
 

7

2x
 3  

8

3
 

15

x

Graphical Solution

Enter y1  3 and y2

(Fig. 3) in the equation editor of a
graphing utility. Note the use of
parentheses in Figure 3 to be cer-
tain that is evaluated correctly.
Now use the intersect command
(Fig. 4).

7
2x

 
8
3  

15
x 

7
2x

FIGURE 3

E X P L O R E / D I S C U S S  1

An equation that is true for all values of the variable for which both
sides of the equation are defined is called an identity. An equation that
is true for some values of the variable and false for others is called a
conditional equation. An equation that is false for all permissible values
of the variable is called a contradiction. Use algebraic and/or graphical
techniques to classify each of the following as an identity, a conditional
equation, or a contradiction. Solve any conditional equations.

(A) 2(x  4)  2x  12 (B) 2(x  4)  3x  12

(C) 2(x  4)  2x  8 (D)

(E) (F)
1

x  1
 1  

x

x  1

1

x  1
 3  

x

x  1

2

x  1
 3  

x

x  1
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Divide both sides by  34.

The solution set is . 111

34  x  
111

34

 34x

 34
 
 111

 34

Solve .

We frequently encounter equations involving more than one variable. For
example, if L and W are the length and width of a rectangle, respectively, the area
of the rectangle is given by (Fig. 5)

A  LW

Depending on the situation, we may want to solve this equation for L or W. To
solve for W, we simply consider A and L to be constants and W to be a variable.
Then the equation A  LW becomes a linear equation in W, which can be solved
easily by dividing both sides by L:

Solving an Equation with More than One Variable

Solve for P in terms of the other variables: A  P  Prt.

S O L U T I O N

A  P  Prt Think of A, r, and t as constants.

A  P(1  rt) Factor to isolate P.

 P Divide both sides by 1  rt.

Restriction: 1  rt  0P  
A

1  rt

A

1  rt

W  
A

L
    L  0

7

3x
 2  

1

x
 

3

5

FIGURE 5 Area of a rectangle.

A   LW W

L

Thus, x 3.2647059 is the solution
of the original equation. Note that 

  3.2647059 to seven decimal
places.

111
34

 10

 10

10

10

y2  
15

x

8

3
 

y1  
7

2x
  3

FIGURE 4



Solve for r in terms of the other variables: A  P  Prt.

Modeling Distance-Rate-Time Problems
To construct models for word problems we translate verbal statements into
mathematical statements. Explore/Discuss 2 will help you review this process.
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E X P L O R E / D I S C U S S  3

A bus leaves Milwaukee at 12:00 noon and travels due west on Inter-
state 94 at a constant rate of 55 miles per hour. A passenger that was
left behind leaves Milwaukee in a taxicab at 1:00 P.M. in pursuit of the
bus. The taxicab travels at a constant rate of 65 miles per hour. Let t
represent time in hours after 12:00 noon.

(A) How far has the bus traveled after t hours?

(B) If t  1, how far has the taxicab traveled after t hours?

(C) When will the taxicab catch up with the bus?

E X P L O R E / D I S C U S S  2

Translate each of the following sentences involving two numbers into
an equation.

(A) The first number is 10 more than the second number.

(B) The first number is 15 less than the second number.

(C) The first number is half the second number.

(D) The first number is three times the second number.

(E) Ten times the first number is 15 more than the second number.

If a quantity Q is changing at a constant rate r with respect to time t, then one
of the most important linear models is

Q  rt

where r and t are expressed in compatible units (miles per hour and hours, gal-
lons per minute and minutes, etc.). The familiar distance equation, d  rt, is a
special case of this model.
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60 miles

A Distance-Rate-Time Problem

An excursion boat takes 1.5 times as long to go 60 miles up a river than to return.
If the boat cruises at 16 miles per hour in still water, what is the rate of the cur-
rent in the river?

S O L U T I O N

Constructing the Model

Let d1, r1, and t1 represent the distance, rate, and time, respectively, for the trip
upstream and d2, r2, and t2 represent the distance, rate, and time, respectively, for
the trip downstream. Because both trips cover the same distance, we know that
d1  d2  60. And because the trip upstream takes 1.5 times as long as the trip
downstream, we also know that t1  1.5t2. Using the basic model, d  rt, we have

d1  r1t1 d2  r2t2

60  r1(1.5t2) 60  r2t2 (1)

We are given that the rate of the boat in still water is 16 miles per hour and we
are asked to find the rate of the current. Let

x  Rate of current (in miles per hour)

r1  16  x  Rate of boat upstream

r2  16  x  Rate of boat downstream

Substituting for r1 and r2 in the distance equations in (1) and solving for t2, we have

60  (16  x)(1.5t2) 60  (16  x)t2

The solution to the problem is the x coordinate of the intersection point of the
graphs of these equations.

60

16  x
 t2    x  16, x   16

40

16  x
 t2

Algebraic Solution

40(16  x)  60(16  x)

640  40x  960  60x

100x  320

x  3.2 miles per hour

40

16  x
 

60

16  x

Graphical Solution

Entering y1   and using the intersect
command (Fig. 6) shows that x  3.2 miles per hour is the
solution.

40
16  x, y2  

60
16  x

0

0

10

10

FIGURE 6

Multiply both sides by

(16 x) (16 x).
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80% solution

x liters

BEFORE MIXING AFTER MIXING

20% solution

  

5 liters

30% solution

(x   5) liters

A jetliner takes 1.2 times as long to fly from Paris to New York (3,600 miles) as
to return. If the jet cruises at 550 miles per hour in still air, what is the average
rate of the wind blowing in the direction of Paris from New York?

Modeling Mixture Problems
A variety of applications can be classified as mixture problems. Although the prob-
lems come from different areas, their mathematical treatment is essentially the same.

A Mixture Problem

How many liters of a mixture containing 80% alcohol should be added to 5 liters
of a 20% solution to yield a 30% solution?

S O L U T I O N

Let x  amount of 80% solution used.

0.8x  0.2(5)  0.3(x  5)

0.8x  1  0.3x  1.5

0.5x  0.5

x  1

Add 1 liter of the 80% solution.

C H E C K

Liters of Liters of 
Solution Alcohol Percent Alcohol

First solution 1 0.8(1)  0.8 80
Second solution 5 0.2(5)  1 20

Mixture 6 1.8 1.8/6  0.3, or 30%

    
Amount of
alcohol in
mixture   

Amount of
alcohol in
second solution  

Amount of
alcohol in
first solution 



A chemical storeroom has a 90% acid solution and a 40% acid solution. How
many centiliters of the 90% solution should be added to 50 centiliters of the 40%
solution to yield a 50% solution?

Data Analysis and Linear Regression
In real-world applications numerical data are often encountered in the form of a
table. The very powerful mathematical tool regression analysis is used to analyze
numerical data. In general, regression analysis is the process of finding a func-
tion that provides a useful model for a set of data points. Graphs of equations are
often called curves and regression analysis is also referred to as curve fitting. In
Example 6, we use linear regression to construct a mathematical model in the
form of a linear function that fits a data set.

Diamond Prices

Prices for round-cut diamonds taken from an on-line trader are given in Table 1. 

(A) Use linear regression on a graphing utility to find a linear model y  f (x)
that fits these data, where x is the weight of a diamond (in carats) and y is
the associated price of that diamond (in dollars). Round the constants a
and b to three significant digits. Compare the model and the data both
graphically and numerically.

(B) Use the model to estimate the cost of a 0.85 carat diamond and the cost of
a 1.2 carat diamond. Round answers to the nearest dollar.

(C) Use the model to estimate the weight of a diamond that sells for $3,000.
Round the answer to two significant digits.

T A B L E  1 Round-Cut Diamond Prices

Weight (Carats) Price

0.5 $1,340

0.6 $1,760

0.7 $2,540

0.8 $3,350

0.9 $4,130

1.0 $4,920

Source: www.tradeshop.com
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S O L U T I O N S

(A) The first step in fitting a curve to a data set is to enter the data in two
lists in a graphing utility, usually by pressing STAT and selecting EDIT
(see Fig. 7 on page 142).* We enter the given values of the independent
variable x in L1 and the corresponding values of the dependent variable y

*Remember, we are using a TI-83 to produce the screen images in this book. Other graphing utilities will produce different

images.



sion options, usually by pressing STAT and selecting CALC (Fig. 12).
Any of options 4 through C in Figure 12 can be used to fit a curve to
a data set. As you progress through this text, you will become famil-
iar with most of the choices in Figure 12. In this example, we are
directed to select option 4 (or, equivalently, option 8), linear regres-
sion (Fig. 13). Notice that we entered the names of the two lists of
data, L1 and L2, after the command LinReg(ax  b) in Figure 13. The
order in which we enter these two names is important. The name of
the list of independent values must precede the name of the list of
dependent values. Press ENTER to obtain the results in Figure 14.
The values r2 and r displayed in Figure 14 are called diagnostics.
They provide a measure of how well the regression curve fits the
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FIGURE 7 FIGURE 8 FIGURE 9

in L2 (Fig. 8). Next, we select a viewing window that will show all the
data (Fig. 9).

 1,000

0

8,000

1.5

FIGURE 10 FIGURE 11

To check that all the data will be visible in this window, we need to
graph the points in the form (x, y), where x is a number in list L1 and
y is the corresponding number in list L2. This is called a scatter
diagram. On most graphing utilities, a scatter diagram can be drawn
by first pressing STAT PLOT and selecting the options displayed in

Figure 10. Then press GRAPH to display the scatter diagram (Fig. 11).

Now we are ready to fit a curve to the data graphed in Figure 11. First
we find the screen on the graphing utility that lists the various regres-

(a) (b)

FIGURE 12
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FIGURE 13 FIGURE 14

data. Values of r close to 1 or  1 indicate a good fit. Values of r
close to 0 indicate a poor fit. 

After rounding a and b in Figure 14 to three significant digits, the
linear regression model for these data is

y  f(x)  7,380x  2,530

Enter this equation in the equation editor (Fig. 15). The graph of the
model and the scatter plot of the data are shown in Figure 16 and a
table comparing the data and the corresponding values of the model is
shown in Figure 17.*

Examining Figures 16 and 17, we see that the model does seem to
provide a reasonable fit for these data.

(B) Because x  0.85 and x  1.2 are not in Table 1, we use the model to
estimate the corresponding prices. From Figure 18 we see that the esti-
mated price of a 0.85-carat diamond is $3,743. Figure 19 shows that
the estimated price of a 1.2-carat diamond is $6,326. Figure 20 shows
how a table can be used in place of Trace to obtain the same results. 

 1,000

0

8,000

1.5

FIGURE 15 FIGURE 17FIGURE 16

*On most graphing utilities, the values of the model displayed as L3 in Figure 17 can be computed in a single operation

by entering y1(L1) → L3 on the home screen.

 1,000

0

8,000

1.5

 1,000

0

8,000

1.5

FIGURE 18 FIGURE 19 FIGURE 20



2 MODELING WITH LINEAR AND QUADRATIC FUNCTIONS144

 1,000

0

8,000

1.5

FIGURE 22

FIGURE 21

(C) This time we are given a value of the dependent variable y and asked
to solve for the independent variable.

y  7,380x  2,530

3,000  7,380x  2,530

To solve this equation, we add y2  3,000 to the equation list (Fig.
21) and use the intersect command (Fig. 22).

From Figure 22 we see that x  0.75 (to two significant digits)
when y  3,000. Thus, a $3,000 diamond should weigh approximately
0.75 carats.

Prices for emerald-cut diamonds taken from an on-line trader are given in Table
2. Repeat Example 6 for this data set.

T A B L E  2 Emerald-Cut Diamond Prices

Weight (Carats) Price

0.5 $1,350

0.6 $1,740

0.7 $2,610

0.8 $3,320

0.9 $4,150

1.0 $4,850

Source: www.tradeshop.com

*Be certain to delete the old values in the lists L1 and L2 before you work Matched Problem 6. CLEARALL is a short

program for TI-83 graphing calculators that will delete all the values in all the lists. This program can be found on the

website for this book.

*

The quantity of a product that consumers are willing to buy during some
period depends on its price. Generally, the higher the price, the lower the demand;
the lower the price, the greater the demand. Similarly, the quantity of a product
that producers are willing to sell during some period also depends on the price.
Generally, a producer will be willing to supply more of a product at higher prices
and less of a product at lower prices. In Example 7 we use linear regression to
analyze supply and demand data and construct linear models.

Supply and Demand

Table 3 contains supply and demand data for broccoli at various price levels.
Express all answers in numbers rounded to three significant digits.

(A) Use the data in Table 3 and linear regression to find a linear supply model
p  f(s), where s is the supply (in thousand pounds) and p is the corre-
sponding price of broccoli (in cents).



(B) Use the data in Table 3 and linear regression to find a linear demand
model p  g(d), where d is the demand (in thousand pounds) and p is the
corresponding price of broccoli (in cents).

(C) Graph both functions in the same viewing window and discuss possible
interpretations of any intersection points.
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S O L U T I O N

(A) First, we enter the data from Table 3 in the statistics editor of a
graphing utility (Fig. 23). Next we select the linear regression com-
mand LinReg(ax b) followed by L2, L1 to make supply the inde-
pendent variable and price the dependent variable. This produces the
results shown in Figure 24. Thus, the linear model for the supply
function is

p  f(s)  0.0344s  50.0

To graph the supply data we use STAT PLOT, setting Xlist to L2 and
Ylist to L1. Figure 25 shows a graph of the supply data and the supply
model.

T A B L E  3 Supply and Demand for Broccoli

Price Supply Demand
(Cents) (Thousand lbs.) (Thousand lbs.)

76.8 853 1,680

81.5 1,010 1,440

85.2 1,040 1,470

87.5 957 1,280

97.2 1,280 1,040

104 1,620 1,130

105 1,600 1,010

FIGURE 23 FIGURE 24

70

800

110

1,700

FIGURE 25

(B) This time we use the command LinReg(ax  b) followed by L3, L1 to
make demand the independent variable and price the dependent
variable. This produces the results shown in Figure 26. Thus, the lin-
ear model for the demand function is 

p  g(d)   0.0416d  145.



Using the intersect command (details omitted), we find that the
constant price line intersects the demand curve at 1,080 thousand
pounds and the supply curve at 1,450 thousand pounds. Because
the supply at a price level  f 100 is greater than the demand, the
producers will lower their prices. Suppose the price drops to 80
cents per pound. Changing the constant function to p  80 pro-
duces the graph in Figure 30. This time the constant price line
intersects the demand curve at 1,560 thousand pounds and the sup-
ply curve at 872 thousand pounds. Now supply is less than demand
and producers will raise their prices. If the producers set the price
at p  93 cents, then, as we saw in Figure 28, the supply and
demand are equal.

Table 4 contains supply and demand data for cauliflower at various prices. Repeat
Example 7 with these data.
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70

800

110

1,700

FIGURE 26 FIGURE 27

70

800

110

1,700

FIGURE 28

70

800

110

1,700

(1,080, 100) (1,450, 100)

FIGURE 29

70

800

110

1,700

(872, 80) (1,560, 80)

FIGURE 30

(C) We graph both models in the same viewing window and use the
intersect command to find the intersection point (Fig. 28). The graphs
intersect at p  93 and s  d  1,250. This point is called the
equilibrium point, the value of p is called the equilibrium price,
and the common value of s and d is called the equilibrium quantity.
To help understand price fluctuations, suppose the current price of
broccoli is 100 cents. We add the constant function p  100 to the
graph (Fig. 29).

To graph the demand data we use STAT PLOT, setting Xlist to L3

and Ylist to L1. Figure 27 shows a graph of the demand data and the
demand model.
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T A B L E  4 Supply and Demand for Cauliflower

Price (Cents) Supply (Thousand lbs.) Demand (Thousand lbs.)

26.5 583 653

27.1 607 629

27.2 596 635

27.4 627 631

27.5 604 638

28.1 661 610

28.6 682 599

1. x   2

2. x     0.5128205

3. r  
A  P

Pt
    Pt  0

 
20

39

4. 50 miles per hour
5. 12.5 centiliters
6. (A) y  7,270x  2,450

(B) $3,730; $6,270
(C) 0.75 carats

7. (A) p  0.0180s  16.3
(B) p   0.0362d  50.2
(C) The price stabilizes at the

equilibrium price of 27.6 cents.

Use the graphs of functions u and v in the figure to solve the

equations in Problems 1–4. (Assume the graphs continue as in-

dicated beyond the portions shown here.)

1. u(x)  0 2. v(x)  0

3. u(x)  v(x) 4. u(x)  v(x)  0

In Problems 5–18, classify each equation as an identity, a con-

ditional equation, or a contradiction. Solve each conditional

equation.

5. 3(x  2)  2(x  1)  x  8

6. 4(x  1)  2(x  2)  2x  7

7. 2(x  1)  3(2  x)  3x  8

x

y

y   u(x)

y   v(x)

e fdc

b

a

8. 4(2  x)  2(x  3)  5x  2

9. 5(x  2)  3(x  1)  2x  4

10. 2(x  1)  3(2  x)  8  x

11. 12.

13. 14.

15. 16.

17. 18.

Solve Problems 19–24.

19. 3(x  2)  5(x  6) 20. 5x  10(x  2)  40

21. 5  4(t  2)  2(t  7)  1

22. 5w  (7w  4)  2  5  (3w  2)

23. 24.
x  3

4
 

x  4

2
 

3

8
5  

2x  1

4
 

x  2

3

1

x  2
 4  

x

x  2

1

x  1
 1  

x

x  1

2

x  2
 3  

x

x  2

 4

x  4
 1  

x

x  2

3

x  3
 4  

x

x  3

1

x  1
 1  

x

x  1

1

x  3
 3  

x

x  3

3

x  2
 1  

x

x  2
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Solve Problems 25–40.

25. 26.

27. 28.

29. (x  2)(x  3)  (x  4)(x  5)

30. (x  2)(x  4)  (x  1)(x  5)

31. (x  2)(x  3)  (x  4)(x  5)

32. (x  2)(x  4)  (x  3)(x  5)

33. (x  2)2
 (x  1)(x  2)

34. (x  3)2
 (x  2)(x   4)

35. 36.

37. 38.

39. 40.

In Problems 41–48, solve for the indicated variable in terms of

the other variables.

41. an a1  (n  1)d for d (arithmetic progressions)

42. for C (temperature scale)

43. for f (simple lens formula)

44. for R1 (electric circuit)
1

R
 

1

R1

 
1

R2

1

f
 

1

d1

 
1

d2

F  9
5C  32

2x

x  4
 7  

8

x  4

2x

x  3
 7  

6

x  3

2x

x  4
 7  

6

x  4

2x

x  3
 7  

4

x  3

2x

x  4
 2  

8

x  4

2x

x  3
 2  

6

x  3

2

3x
 

1

2
 

4

x
 

4

3

1

m
 

1

9
 

4

9
 

2

3m

9

w
 3  

2

w

7

t
 4  

2

t

45. A  2ab  2ac  2bc for a (surface area of a rectangular
solid)

46. A  2ab  2ac  2bc for c

47. for x 48. for y

49. Discuss the relationship between the graphs of y1  x and
.

50. Discuss the relationship between the graphs of y1   x and
.

Problems 51–58 refer to a rectangle with width W and length

L (see the figure). Write a mathematical expression in terms of

W and L for each of the verbal statements in Problems 51–58.

51. The length is twice the width.

52. The width is three times the length.

53. The width is half the length.

54. The length is one-third of the width.

55. The length is three more than the width.

56. The width is five less than the length.

57. The length is four less than the width.

58. The width is ten more than the length.

W

L

y2   x2

y2   x2

x  
3y  2

y  3
y  

2x  3

3x  5

59. Use linear regression to fit a line to each of the following
data sets. How are the graphs of the two functions related?
How are the two functions related?

(A) x y (B) x y

1  1  1 1

5 1 1 5

60. Repeat Problem 59 for the following data sets.

(A) x y (B) x y

 1 0 0  1

3 5 5 3
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78. Chemistry. A fuel oil distributor has 120,000 gallons of
fuel with 0.9% sulfur content, which exceeds pollution
control standards of 0.8% sulfur content. How many gal-
lons of fuel oil with a 0.3% sulfur content must be added
to the 120,000 gallons to obtain fuel oil that complies with
the pollution control standards?

79. Aeronautics. The cruising speed of an airplane is 
150 miles per hour (relative to the ground). You wish to
hire the plane for a 3-hour sightseeing trip. You instruct the
pilot to fly north as far as he can and still return to the air-
port at the end of the allotted time.

(A) How far north should the pilot fly if the wind is blow-
ing from the north at 30 miles per hour?

(B) How far north should the pilot fly if there is no wind?

80. Navigation. Suppose you are at a river resort and rent a
motor boat for 5 hours starting at 7 A.M. You are told that
the boat will travel at 8 miles per hour upstream and 12
miles per hour returning. You decide that you would like to
go as far up the river as you can and still be back at noon.
At what time should you turn back, and how far from the
resort will you be at that time?

81. Earthquakes. An earthquake emits a primary wave and a
secondary wave. Near the surface of the Earth the primary
wave travels at about 5 miles per second, and the second-
ary wave travels at about 3 miles per second. From the
time lag between the two waves arriving at a given seismic
station, it is possible to estimate the distance to the quake.
Suppose a station measures a time difference of 12 sec-
onds between the arrival of the two waves. How far is the
earthquake from the station? (The epicenter can be located
by obtaining distance bearings at three or more stations.)

82. Sound Detection. A ship using sound-sensing devices
above and below water recorded a surface explosion 39
seconds sooner on its underwater device than on its above-
water device. If sound travels in air at about 1,100 feet per
second and in water at about 5,000 feet per second, how
far away was the explosion?

71. Sales Commissions. One employee of a computer store is
paid a base salary of $2,150 a month plus an 8% commis-
sion on all sales over $7,000 during the month. How much
must the employee sell in 1 month to earn a total of $3,170
for the month?

72. Sales Commissions. A second employee of the computer
store in Problem 71 is paid a base salary of $1,175 a month
plus a 5% commission on all sales during the month.

(A) How much must this employee sell in 1 month to earn
a total of $3,170 for the month?

(B) Determine the sales level at which both employees re-
ceive the same monthly income. If employees can se-
lect either of these payment methods, how would you
advise an employee to make this selection?

73. Wildlife Management. A naturalist for a fish and game
department estimated the total number of trout in a cer-
tain lake using the popular capture–mark–recapture tech-
nique. She netted, marked, and released 200 trout. A week
later, allowing for thorough mixing, she again netted 200
trout and found 8 marked ones among them. Assuming
that the ratio of marked trout to the total number in the
second sample is the same as the ratio of all marked fish
in the first sample to the total trout population in the lake,
estimate the total number of fish in the lake.

74. Wildlife Management. Repeat Problem 73 with a first
(marked) sample of 300 and a second sample of 180 with
only 6 marked trout.

75. Chemistry. How many gallons of distilled water must be
mixed with 50 gallons of 30% alcohol solution to obtain a
25% solution?

76. Chemistry. How many gallons of hydrochloric acid must
be added to 12 gallons of a 30% solution to obtain a 40%
solution?

77. Chemistry. A chemist mixes distilled water with a 90% so-
lution of sulfuric acid to produce a 50% solution. If 5 liters of
distilled water is used, how much 50% solution is produced?

In Problems 61–64, solve for x.

61. 62.

63. 64.

65. Find three consecutive integers whose sum is 84.

x  1  
2

x

1  
2

x

 x

x  1  
2

x

1  
1

x

 x  2

x  
1

x

x  1  
2

x

 1

x  
1

x

1  
1

x

 1

66. Find four consecutive integers whose sum is 182.

67. Find four consecutive even integers so that the sum of the
first three is 2 more than twice the fourth.

68. Find three consecutive even integers so that the first plus
twice the second is twice the third.

69. Find the dimensions of a rectangle if the perimeter is 
60 inches and the length is twice the width.

70. Find the dimensions of a rectangle if the perimeter is 
60 inches and the length is half the width.
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83. Earth Science. In 1984, the Soviets led the world in
drilling the deepest hole in the Earth’s crust—more than
12 kilometers deep. They found that below 3 kilometers
the temperature T increased 2.5 C for each additional 
100 meters of depth.

(A) If the temperature at 3 kilometers is 30 C and x is the
depth of the hole in kilometers, write an equation us-
ing x that will give the temperature T in the hole at any
depth beyond 3 kilometers.

(B) What would the temperature be at 15 kilometers? (The
temperature limit for their drilling equipment was
about 300 C.)

(C) At what depth (in kilometers) would the temperature
reach 280 C?

84. Aeronautics. Because air is not as dense at high altitudes,
planes require a higher ground speed to become airborne. A
rule of thumb is 3% more ground speed per 1,000 feet of
elevation, assuming no wind and no change in air tempera-
ture. (Compute numerical answers to three significant digits.)

(A) Let

Vs  Takeoff ground speed at sea level for a particular
plane (in miles per hour)

A  Altitude above sea level (in thousands of feet)

V  Takeoff ground speed at altitude A for the same
plane (in miles per hour)

Write a formula relating these three quantities.

(B) What takeoff ground speed would be required at Lake
Tahoe airport (6,400 feet), if takeoff ground speed at
San Francisco airport (sea level) is 120 miles per hour?

(C) If a landing strip at a Colorado Rockies hunting lodge
(8,500 feet) requires a takeoff ground speed of 
125 miles per hour, what would be the takeoff ground
speed in Los Angeles (sea level)?

(D) If the takeoff ground speed at sea level is 135 miles
per hour and the takeoff ground speed at a mountain
resort is 155 miles per hour, what is the altitude of the
mountain resort in thousands of feet?

In Problems 85–90, use linear regression to construct linear

models of the form y  f(x) ax  b. Round a, b, and your

answers to three significant digits.

85. Ticket Prices. Find a linear model y f (x) for the average
ticket price data given in Table 5 where x is years since
1995 and y is average ticket price (in dollars). Use your
model to predict the average ticket price in 2005.

since 1968 and y is winning time (in seconds). Do the same
for the women’s 100-meter freestyle data. Do these models
indicate that the women will eventually catch up with the
men? If so, when? Do you think this will actually occur?

T A B L E  5 Motion Picture Data

Box Office Revenue
Average Ticket Price (Billion)

1995 $4.35 $5.49

1996 $4.42 $5.91

1997 $4.59 $6.36

1998 $4.69 $6.95

1999 $5.08 $7.45

2000 $5.39 $7.66

2001 $5.66 $8.41

Source: Motion Picture Association of America 

T A B L E  6 Winning Times in Olympic Swimming Events

200-Meter Backstroke
100-Meter Freestyle Men Women

Men Women (Minutes: (Minutes:
(Seconds) (Seconds) Seconds) Seconds)

1968 52.20 60.00 2:09.60 2:24.80

1972 51.22 58.59 2:02.82 2:19.19

1976 49.99 55.65 1:59.19 2:13.43

1980 50.40 54.79 2:01.93 2:11.77

1984 49.80 55.92 2:00.23 2:12.38

1988 48.63 54.93 1:59.37 2:09.29

1992 49.02 54.65 1:58.47 2:07.06

1996 48.74 54.50 1.58.54 2:07.83

2000 48.30 53.83 1:56.76 2:08.16

Source: www.infoplease.com

86. Box Office Revenue. Find a linear model y f(x) for the
box office revenue data given in Table 5 where x is years
since 1995 and y is box office revenue (in billions of dollars).

Use your model to predict the box office revenue in 2005.

87. Olympic Games. Find a linear model y f(x) for the men’s
100-meter freestyle data given in Table 6 where x is years

88. Olympic Games. Find a linear model y f(x) for the men’s
200-meter backstroke data given in Table 6 where x is years
since 1968 and y is winning time (in seconds). Do the same
for the women’s 200-meter backstroke data. Do these mod-
els indicate that the women will eventually catch up with the
men? If so, when? Do you think this will actually occur?
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89. Supply and Demand. Table 7 contains price–supply data
and price–demand data for corn. Find a linear model 
y  f (x) for the price–supply data where x is price (in dol-
lars) and y is supply (in billions of bushels). Do the same
for the price–demand data. Find the equilibrium price for
corn.

90. Supply and Demand. Table 8 contains price–supply data
and price–demand data for soybeans. Find a linear model 
y f(x) for the price–supply data where x is supply (in bil-
lions of bushels) and y is price (in dollars). Do the same for
the price– demand data. Find the equilibrium price for 
soybeans.

T A B L E  7 Supply and Demand for U.S. Corn

Price Supply Price Demand
$/bu (Billion bu) $/bu (Billion bu)

2.15 6.29 2.07 9.78

2.29 7.27 2.15 9.35

2.36 7.53 2.22 8.47

2.48 7.93 2.34 8.12

2.47 8.12 2.39 7.76

2.55 8.24 2.47 6.98

2.71 9.23 2.59 5.57

Source: www.usda.gov/nass/pubs/histdata.htm

T A B L E  8 Supply and Demand for U.S. Soybeans

Price Supply Price Demand
$/bu (Billion bu) $/bu (Billion bu)

5.15 1.55 4.93 2.60

5.79 1.86 5.48 2.40

5.88 1.94 5.71 2.18

6.07 2.08 6.07 2.05

6.15 2.15 6.40 1.95

6.25 2.27 6.66 1.85

6.65 2.53 7.25 1.67

Source: www.usda.gov/nass/pubs/histdata.htm

Quadratic Functions

Quadratic Functions  Completing the Square  Properties of Quadratic Functions and Their
Graphs  Modeling with Quadratic Functions

Quadratic Functions
The graph of the square function h(x)  x2 is shown in Figure 1. Notice that h

is an even function; that is, the graph of h is symmetrical with respect to the y

axis. Also, the lowest point on the graph is (0, 0). Let’s explore the effect of
applying a sequence of basic transformations to the graph of h. (A brief review
of Section 1.4 might prove helpful at this point.)

E X P L O R E / D I S C U S S  1

Indicate how the graph of each function is related to the graph of h(x)  x2.
Discuss the symmetry of the graphs and find the highest or lowest point,
whichever exists, on each graph.

(A) f (x) = (x   3)2
 7 = x2

 6x + 2

(B) g(x) = 0.5(x + 2)2 + 3 = 0.5x2 + 2x + 5

(C) m(x) =  (x  4)2 + 8 =  x2 + 8x  8

(D) n(x)   3(x  1)2
 1   3x2

 6x  4

h(x)

5

 5 5
x

FIGURE 1 Square function
h(x)  x2.



2 MODELING WITH LINEAR AND QUADRATIC FUNCTIONS152

Graphing the functions in Explore/Discuss 1 produces figures similar in shape
to the graph of the square function in Figure 1. These figures are called parabo-

las. The functions that produced these parabolas are examples of the important
class of quadratic functions, which we now define.

Quadratic Functions

If a, b, and c are real numbers with a 0, then the function

f(x)  ax2
 bx  c

is a quadratic function and its graph is a parabola.*

Because the expression ax2
 bx  c represents a real number for all real

number replacements of x,

the domain of a quadratic function is the set of all real numbers.

We will discuss methods for determining the range of a quadratic function later
in this section. Typical graphs of quadratic functions are illustrated in Figure 2.

*A more general definition of a parabola that is independent of any coordinate system is given in Section 8.1.
†See Appendix A, Section A.3, for more examples of completing the square.

FIGURE 2 Graphs
of quadratic 
functions.
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(a) f(x)  x2
 9 (b) g(x)  2x2

 15x  30 (c) h(x)   0.3x2
 x  4

Completing the Square
In Explore/Discuss 1 we wrote each function as two different, but equivalent,
expressions. For example,

f(x)  (x  3)2
 7  x2

 6x  2

It is easy to verify that these two expressions are equivalent by expanding the
first expression. The first expression is more useful than the second for ana-
lyzing the graph of f. If we are given only the second expression, how can we
determine the first? It turns out that this is a routine process, called complet-

ing the square,† that is another useful tool to be added to our mathematical
toolbox.



Given the quadratic expression

x2
 bx

what must be added to this expression to make it a perfect square? To find out,
consider the square of the following expression:

(x  m)2
 x2

 2mx   m2 m2 is the square of one-half the coefficient of x.

We see that the third term on the right side of the equation is the square of one-
half the coefficient of x in the second term on the right; that is, m2 is the square
of (2m). This observation leads to the following rule:1

2
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E X P L O R E / D I S C U S S  2

Replace ? in each of the following with a number that makes the equa-
tion valid.

(A) (x  1)2
 x2

 2x  ?

(B) (x  2)2
 x2

 4x  ?

(C) (x  3)2
 x2

 6x  ?

(D) (x  4)2
 x2

 8x  ?

Replace ? in each of the following with a number that makes the
expression a perfect square of the form (x  h)2.

(E) x2
 10x  ? (F) x2

 12x  ? (G) x2
 bx  ?

Completing the Square

To complete the square of the quadratic expression

x2
 bx

add the square of one-half the coefficient of x; that is, add

or

The resulting expression can be factored as a perfect square:

x2
 bx   b2 

2

  x  b

2 
2

b

4

2

 b2 
2

{{



*This terminology is not universally agreed upon. Some call this the standard form.

Completing the Square

Complete the square for each of the following:

(A) x2
 6x (B) (C)

S O L U T I O N

(A) x2
 6x

x2
 6x  9  (x  3)2 Add ( 3)2; that is, 9

(B)

Add ; that is,

(C)

Add ; that is,

Complete the square for each of the following:

(A) x2
 8x (B) (C)

It is important to note that the rule for completing the square applies to only
quadratic expressions in which the coefficient of x2 is 1. This causes little trou-
ble, however, as you will see.

Properties of Quadratic Functions and Their Graphs
We now use the process of completing the square to transform the quadratic
function

f(x)  ax2
 bx  c

into the vertex form*

f(x)  a(x  h)2
 k

Many important features of the graph of a quadratic function can be determined
by examining the vertex form. We begin with a specific example and then gen-
eralize the results.

Consider the quadratic function given by

f(x)  2x2
 8x  4 (1)

x2
 

2

3
xx2

 
7

4
x

9

64 1

2
 
 3

4  
2

x2
 

3

4
x  

9

64
  x  

3

8 
2

x2
 

3

4
x

4

25 1

2
 

4

5 
2

x2
 

4

5
x  

4

25
  x  2

5 
2

x2
 

4

5
x

x2
 

3

4
xx2

 
4

5
x
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We use completing the square to transform this function into vertex form:

f(x)  2x2
 8x  4

 2(x2
 4x)  4

 2(x2
 4x  ?)  4

 2(x2
 4x  4  4)   4

 2(x2
 4x  4)  2(4)  4

 2(x2
 4x  4)  8  4

 2(x2
 4x  4)  4

 2(x  2)2
 4

Thus, the vertex form is

f(x)  2(x  2)2
 4 (2)

If x  2, then 2(x  2)2
 0 and f(2)   4. For any other value of x, the

positive number 2(x  2)2 is added to  4, making f(x) larger. Therefore,

f(2)   4

is the minimum value of f(x) for all x—a very important result! Furthermore, if
we choose any two values of x that are equidistant from x  2, we will obtain
the same value for the function. For example, x  1 and x  3 are each one unit
from x  2 and their functional values are

f(1)  2( 1)2
 4   2

f(3)  2(1)2
 4   2

Thus, the vertical line x  2 is a line of symmetry—if the graph of equation (1)
is drawn on a piece of paper and the paper folded along the line x  2, then the
two sides of the parabola will match exactly.

The above results are illustrated by graphing equation (1) or (2) and the line
x  2 in a suitable viewing window (Fig. 3).
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 10

 4

10

6

f(x)   2x2   8x   4
  2(x   2)2   4

Axis of symmetry:
x   2

Minimum:
f(2)    4

FIGURE 3 Graph of a quadratic
function.

From the analysis of equation (2), illustrated by the graph in Figure 3, we con-
clude that f(x) is decreasing on (  , 2] and increasing on [2,  ). Furthermore, f(x)
can assume any value greater than or equal to  4, but no values less than  4. Thus,

Range of f: y   4 o r[ 4,  )

Factor the coefficient of x2 out of 

the first two terms.

We add 4 to complete the square inside the

parentheses.

But, because of the 2 outside the parentheses,

we have actually added 8, so we must subtract 8.

Factor the perfect square trinomial.

The transformation is complete and can be

checked by expanding.
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 10

 4

10

6

f(x)   2x2   8x   4

  2(x   2)2   4

g(x)   2x2

FIGURE 4 Graph of f is the
graph of g translated.

E X P L O R E / D I S C U S S  3

Explore the effect of changing the constants a, h, and k on the graph 
of f (x)  a(x  h)2

 k.

(A) Let a  1 and h  5. Graph function f for k   4, 0, and 3
simultaneously in the same viewing window. Explain the effect 
of changing k on the graph of f.

(B) Let a  1 and k  2. Graph function f for h   4, 0, and 5
simultaneously in the same viewing window. Explain the effect 
of changing h on the graph of f.

(C) Let h  5 and k   2. Graph function f for a  0.25, 1, and 3
simultaneously in the same viewing window. Graph function f for
a  1,  1, and  0.25 simultaneously in the same viewing window.
Explain the effect of changing a on the graph of f.

(D) Can all quadratic functions of the form y  ax2
 bx  c be

rewritten as a(x  h)2
 k?

In general, the graph of a quadratic function is a parabola with line of sym-
metry parallel to the vertical axis. The lowest or highest point on the parabola,
whichever exists, is called the vertex. The maximum or minimum value of a quad-
ratic function always occurs at the vertex of the graph. The vertical line of sym-
metry through the vertex is called the axis of the parabola. Thus, for the function
f (x)  2x2

 8x  4, the vertical line x  2 is the axis of the parabola and
(2,  4) is its vertex.

From equation (2), we can see that the graph of f is simply the graph of
g(x)  2x2 translated to the right two units and down four units, as shown in
Figure 4.

Notice the important results we have obtained from the vertex form of the
quadratic function f:

S The vertex of the parabola

S The axis of the parabola

S The minimum value of f (x)

S The range of f

S A relationship between the graph of f and the graph of g

We generalize this discussion in the box:
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Properties of a Quadratic Function and its Graph

Given a quadratic function and the vertex form obtained by completing the square

f(x)  ax2
 bx  c  a(x  h)2

 k a  0

we summarize general properties as follows:

1. The graph of f is a parabola:

x

f(x)

k

h

Axis
x   h

Vertex (h, k)

Min f(x)

a   0
Opens upward

x

f(x)

k

h

Axis
x   h

Vertex (h, k)

Max f(x)

a   0
Opens downward

2. Vertex: (h, k) (parabola rises on one side of the vertex and falls on 
the other).

3. Axis (of symmetry): x  h (parallel to y axis).
4. f(h)  k is the minimum if a  0 and the maximum if a  0.
5. Domain: all real numbers; range: (  , k] if a  0 or [k,  ) if a  0.
6. The graph of f is the graph of g(x)  ax2 translated horizontally 

h units and vertically k units.
7. h   

b
2a , k  c  b2

4a

Analyzing a Quadratic Function

Find the vertex form for the following quadratic function, analyze the graph, and
check your results with a graphing utility:

f (x)   0.5x2
 x  5

S O L U T I O N

We complete the square to find the vertex form:

f (x)   0.5x2
 x  5

  0.5(x2
 2x  ?)  5

  0.5(x2
 2x  1)  5  0.5

  0.5(x  1)2
 5.5

From the vertex form we see that h   1 and k  5.5. Therefore, the vertex is
( 1, 5.5), the axis of symmetry is x   1, the maximum value is f ( 1)  5.5,
and the range is (  , 5.5]. The function f is increasing on (  ,  1] and



decreasing on [ 1,  ). The graph of f is the graph of g(x)   0.5x2 shifted to the
left one unit and upward five and one-half units. To check these results, we graph
f and g simultaneously in the same viewing window, use the built-in maximum
routine to locate the vertex, and add the graph of the axis of symmetry (Fig. 5).

Find the vertex form for the following quadratic function, analyze the graph, and
check your results with a graphing utility:

f(x)   x2
 3x  1

Finding the Equation of a Parabola

Find an equation for the parabola whose graph is shown in Figure 6.

S O L U T I O N

Figure 6(a) shows that the vertex of the parabola is (h, k)  (3,  2). Thus, the
vertex equation must have the form

f (x)  a(x  3)2
 2 (3)

Figure 6(b) shows that f(4) 0. Substituting in equation (3) and solving for a, we have

f (4)  a(4  3)2
 2  0

a  2

Thus, the equation for the parabola is

f (x)  2(x  3)2
 2  2x2

 12x  16

Find the equation of the parabola with vertex (2, 4) and y intercept (0, 2).

Finding the Equation of a Parabola

Find an equation for the parabola whose graph is shown in Figure 7.

S O L U T I O N

Let

f (x)  a(x  h)2
 k

Because f ( 1)  f (3), the axis of symmetry must be the midpoint of the inter-
val [ 1, 3]. Thus,

and f(x)  a(x  1)2
 kh  

 1  3

2
 1
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Now we can use either x intercept to find a relationship between a and k. We
choose f ( 1)  0.

f ( 1)  a( 1  1)2
 k  0

4a  k  0

k   4a

Now we can write

f (x)  a(x  1)2
 4a

and use the y intercept to find a. (We can’t use the other x intercept to find a. Try
it to see why.)

f (0)  a(0  1)2
 4a  1.5

a  4a  1.5

 3a  1.5

a   0.5

Thus,

f (x)   0.5(x  1)2
 2   0.5x2

 x  1.5

Find an equation for the parabola whose graph is shown in Figure 8.

Modeling with Quadratic Functions
We now look at several applications that can be modeled using quadratic
functions.

Maximum Area

A dairy farm has a barn that is 150 feet long and 75 feet wide. The owner has
240 feet of fencing and wishes to use all of it in the construction of two identi-
cal adjacent outdoor pens with the long side of the barn as one side of the pens
and a common fence between the two (Fig. 9). The owner wants the pens to be
as large as possible.
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FIGURE 8

x

x

y

x

150 feet

75 feet

FIGURE 9



(B) Algebraic Solution

A(x)  240x  3x2

  3(x2
 80x  1600)  3   1,600

  3(x  40)2
 4,800

Thus, the maximum combined area of 4,800 ft.2

occurs at x 40 ft.

(B) Graphical Solution

Entering y1  240x  3x2 and using the maximum
command produces the graph in Figure 10. This shows
that the maximum combined area of 4,800 ft.2 occurs at
x  40 ft.

0

0

5,000

80

FIGURE 10
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(A) Construct a mathematical model for the combined area of both pens in the
form of a function A(x) (see Fig. 9) and state the domain of A.

(B) Find the value of x that produces the maximum combined area.

(C) Find the dimensions and the area of each pen.

S O L U T I O N

(A) The combined area of the two pens is 

A  xy

Building the pens will require 3x  y feet of fencing. Thus, 

3x  y  240

y  240  3x

Because the distances x and y must be nonnegative, x and y must
satisfy x  0 and y  240  3x  0. It follows that 0  x  80.
Substituting for y in the combined area equation, we have the follow-
ing model for this problem:

A(x)  x(240  3x)  240x  3x2 0  x  80

(C) Each pen is x by y 2 or 40 feet by 60 feet. The area of each pen is 
40 feet  60 feet  2,400 ft2.

Repeat Example 5 with the owner constructing three identical adjacent pens
instead of two.



Galileo was the first to discover that the distance an object falls is propor-
tional to the square of the time it has been falling. Thus, a quadratic function
is a good model for falling objects. Neglecting air resistance, the quadratic
function

h(t)  h0  16t2

represents the height of an object t seconds after it is dropped from an initial
height of h0 feet. The constant  16 is related to the force of gravity and is depen-
dent on the units used. That is,  16 only works for distances measured in feet
and time measured in seconds. If the object is thrown either upward or downward,
the quadratic model will also have a term involving t (see Problems 69 and 70 in
Exercise 2.3).

Projectile Motion

A thermos bottle is dropped from a hot air balloon that is 200 feet in the air.
When will the bottle hit the ground? Round answer to two decimal places.

S O L U T I O N

Because the initial height is 200 feet, the quadratic model for the height of the bot-
tle is

h(t)  200  16t2

Because h(t)  0 when the bottle hits the ground, we must solve this equation
for t.
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Algebraic Solution

h(t)  200  16t2  0

16t2  200

seconds 3.54

t   12.5

t2  
200

16
 12.5

Graphical Solution

Graphing y1 200 16x2 and using
the zero command (Fig. 11) shows
that h 0 at t 3.54 seconds.

 100

0

200

5

FIGURE 11

A thermos bottle is dropped from a hot air balloon that is 300 feet in the air.
When will the bottle hit the ground? Round answer to two decimal places.
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16.

17.

18.
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5
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5
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5

5

 5

 5

5
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In Problems 1–6, complete the square and find the vertex form

of each quadratic function.

1. f (x)  x2
 4x  5 2. g(x)   x2

 2x  3

3. h(x)   x2
 2x  1 4. k(x)  x2

 4x  4

5. m(x)  x2
 4x  1 6. n(x)   x2

 2x  3

In Problems 7–12, write a brief verbal description of the rela-

tionship between the graph of the indicated function (from

Problems 1–6) and the graph of y  x2.

7. f (x)  x2
 4x  5 8. g(x)   x2

 2x  3

9. h(x)   x2
 2x  1 10. k(x)  x2

 4x  4

11. m(x)  x2
 4x  1 12. n(x)   x2

 2x  3

In Problems 13–18, match each graph with one of the functions

in Problems 1–6.

13.

14.

 5

 5

5

5

 5

 5

5

5
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1. (A) x2
 8x  16  (x  4)2

(B)

(C)

2. Vertex form: f(x)  (x 1.5)2
 1.25.

The vertex is (1.5, 1.25), the 
axis of symmetry is x  1.5, the

x2
 

2

3
x  

1

9
  x  1

3 
2

x2
 

7

4
x  

49

64
  x  7

8 
2

maximum value of f(x) is 1.25, 
and the range of f is (  , 1.25]. 
The function f is increasing on
(  , 1.5] and decreasing on 
[1.5,  ). The graph of f is the
graph of g(x)   x2 shifted one
and a half units to the right and
one and a quarter units upward.

3. f(x)   0.5(x  2)2
 4

  0.5x2
 2x  2

4. f (x)   1.5(x  1)2
 6

  1.5x2
 3x  4.5

5. (A) A(x)  (240  4x)x,
0  x  60

(B) The maximum combined area of
3,600 ft.2 occurs at x  30 feet.

(C) Each pen is 30 feet by 40 feet
with area 1,200 ft2.

6. 4.33 seconds
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For each quadratic function in Problems 19–24, sketch a graph

of the function and label the axis and the vertex.

19. f (x)  2x2
 24x  90 20. f (x)  3x2

 24x  30

21. f (x)   x2
 6x  4 22. f (x)   x2

 10x  30

23. f (x)  0.5x2
 2x  7 24. f (x)  0.4x2

 4x  4

In Problems 25–28, find the intervals where f is increasing, the

intervals where f is decreasing, and the range. Express answers

in interval notation.

25. f(x)  4x2
 18x  25

26. f(x)  5x2
 29x  17

27. f(x)   10x2
 44x  12

28. f(x)   8x2
 20x  16

In Problems 29–36, use the graph of the parabola to find the

equation of the corresponding quadratic function.

29.

30.

31.

32.

33.

34.

35.

36.

In problems 37–42, find the equation of a quadratic function

whose graph satisfies the given conditions.

37. Vertex: (4, 8); x intercept: 6

38. Vertex: ( 2,  12); x intercept:  4

39. Vertex: ( 4, 12); y intercept: 4

40. Vertex: (5, 8); y intercept:  2

41. Vertex: ( 5,  25); additional point on graph: ( 2, 20)

42. Vertex: (6,  40); additional point on graph: (3, 50)

In Problems 43 46, find the inverse of the given function.

43. g(x)  x2
 2x  3, x   1

44. h(x)  x2
 8x  10, x  4

45. p(x)   x2
 2x  3, x  1

46. q(x)   x2
 4x, x   2



50. Let f (x)   (x  2)2
 k. Discuss the relationship be-

tween the values of k and the number of x intercepts for
the graph of f. Generalize your comments to any function
of the form

f (x)  a(x  h)2
 k, a  0

47. Let g(x)  x2
 kx  1. Graph g for several different val-

ues of k and discuss the relationship among these graphs.

48. Confirm your conclusions in Problem 47 by finding the
vertex form for g.

49. Let f (x)  (x  1)2
 k. Discuss the relationship between

the values of k and the number of x intercepts for the graph
of f. Generalize your comments to any function of the form

f (x)  a(x  h)2
 k, a  0
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Recall that the standard equation of a circle with radius r and

center (h, k) is

(x  h)2
 (y  k)2

 r2

In Problems 51–54, use completing the square twice to find the

center and radius of the circle with the given equation.

51. x2
 y2

 6x  4y  36

52. x2
 y2

 2x  10y  55

53. x2
 y2

 8x  2y  8

54. x2
 y2

 4x  12y  24

55. Let f (x)  a(x  h)2
 k. Compare the values of f(h  r)

and f (h  r) for any real number r. Interpret the results in
terms of the graph of f.

56. Complete the square in f(x)  ax2
 bx  c, a  0, to show

that and (Property 7 on page 157).

Problems 57–60 are calculus related. In geometry, a line that

intersects a circle in two distinct points is called a secant line,

as shown in figure (a). In calculus, the line through the points

(x1, f(x1)) and (x2, f(x2)) is called a secant line for the graph of

the function f, as shown in figure (b).

k  c  b2

4ah   
b

2a

In Problems 57 and 58, find the equation of the secant line

through the indicated points on the graph of f. Graph f and the

secant line on the same coordinate system.

57. f (x)  x2
 4; ( 1,  3), (3, 5)

58. f (x)  9  x2, ( 2, 5), (4,  7)

59. Let f (x)  x2
 3x  5. If h is a nonzero real number, then

(2, f (2)) and (2  h, f (2  h)) are two distinct points on
the graph of f.

(A) Find the slope of the secant line through these two
points.

(B) Evaluate the slope of the secant line for h  1,
h  0.1, h  0.01, and h  0.001. What value does
the slope seem to be approaching?

60. Repeat Problem 59 for f(x)  x2
 2x  6.

61. Find the minimum product of two numbers whose
difference is 30. Is there a maximum product? 
Explain.

62. Find the maximum product of two numbers whose sum 
is 60. Is there a minimum product? Explain.

P

Q

Secant line for a circle 

(a)

x

f(x)

(x1, f(x1))

(x2, f(x2))

Secant line for the graph 

of a function 

(b)
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70. Projectile Flight. Repeat Problem 69 if the arrow reaches
a maximum height of 324 feet after 4.5 seconds of flight.

71. Engineering. The arch of a bridge is in the shape of a
parabola 14 feet high at the center and 20 feet wide at the
base (see the figure).

(A) Express the height of the arch h(x) in terms of x and
state its domain.

(B) Can a truck that is 8 feet wide and 12 feet high pass
through the arch?

(C) What is the tallest 8-ft.-wide truck that can pass
through the arch?

(D) What (to two decimal places) is the widest 12-ft.-high
truck that can pass through the arch?

72. Engineering. The roadbed of one section of a suspension
bridge is hanging from a large cable suspended between
two towers that are 200 feet apart (see the figure). The ca-

ble forms a parabola that is 60 feet above the roadbed at the
towers and 10 feet above the roadbed at the lowest point.

(A) Express the vertical distance d(x) (in feet) from the
roadbed to the suspension cable in terms of x and state
the domain of d.

(B) The roadbed is supported by seven equally spaced ver-
tical cables (see the figure). Find the combined total

length of these supporting cables.

200 feet

60 feet

x feet

d(x)

x

20 ft

14 fth(x)

63. Construction. A horse breeder wants to construct a corral
next to a horse barn that is 50 feet long, using all of the
barn as one side of the corral (see the figure). He has 250

feet of fencing available and wants to use all of it.

(A) Express the area A(x) of the corral as a function of x
and indicate its domain.

(B) Find the value of x that produces the maximum area.

(C) What are the dimensions of the corral with the maxi-
mum area?

64. Construction. Repeat Problem 63 if the horse breeder has
only 140 feet of fencing available for the corral. Does the
maximum value of the area function still occur at the ver-
tex? Explain.

65. Falling Object. A sandbag is dropped off a high-altitude
balloon at an altitude of 10,000 ft. When will the sandbag
hit the ground?

66. Falling Object. A prankster drops a water balloon off the
top of a 144-ft.-high building. When will the balloon hit
the ground?

67. Falling Object. A cliff diver hits the water 2.5 seconds af-
ter diving off the cliff. How high is the cliff?

68. Falling Object. A forest ranger drops a coffee cup off a
fire watchtower. If the cup hits the ground 1.5 seconds

later, how high is the tower?

69. Projectile Flight. An arrow shot vertically into the air from
a crossbow reaches a maximum height of 484 feet after 
5.5 seconds of flight. Let the quadratic function d(t) represent
the distance above ground (in feet) t seconds after the arrow
is released. (If air resistance is neglected, a quadratic model
provides a good approximation for the flight of a projectile.)

(A) Find d(t) and state its domain.

(B) At what times (to two decimal places) will the arrow
be 250 feet above the ground?

x

y

Corral

Horse barn

50 feet



Complex Numbers

Introductory Remarks  The Complex Number System  Complex Numbers and Radicals  

Solving Equations Involving Complex Numbers

Introductory Remarks
The Pythagoreans (c. 500 B.C.) found that the simple quadratic equation

x2
 2  0 (1)

had no rational number solution—it is not possible to find the ratio of two inte-
gers whose square is 2. If equation (1) were to have a solution, then a new kind
of number had to be invented—an irrational number. The irrational numbers 
and are both solutions to equation (1). Irrational numbers were not put on
a firm mathematical foundation until the nineteenth century. The rational and irra-
tional numbers together constitute the real number system. Is there any reason to
invent any other kinds of numbers?

  2
 2
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T A B L E  1

Price Demand

$3.55 45,800

$3.95 40,500

$4.13 37,900

$4.85 34,700

$5.19 30,400

$5.55 28,900

$6.15 25,400

T A B L E  2

Price Demand

$4.23 47,800

$4.89 45,600

$5.43 42,700

$5.97 39,600

$6.47 34,700

$7.12 31,600

$7.84 27,800

73. Maximizing Revenue. A company that manufactures
flashlights has collected the price–demand data in Table 1.
Round all numbers to three significant digits. 

(A) Use the data in Table 1 and linear regression to find a
linear price–demand function p d(x) where x is the
number of flashlights (in thousands) that the company
can sell at a price of p dollars.

(B) Find the price that maximizes the company’s revenue
from the sale of flashlights.

74. Maximizing Revenue. A company that manufactures pen-
cil sharpeners has collected the price–demand data in
Table 2. Round all numbers to three significant digits. 

(A) Use the data in Table 2 and linear regression to find a
linear price–demand function p d(x) where x is the
number of pencil sharpeners (in thousands) that the
company can sell at a price of p dollars.

(B) Find the price that maximizes the company’s revenue
from the sale of pencil sharpeners.
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T A B L E  1 Brief History of Complex Numbers

Approximate
Date A.D. Person Event

50 Heron of Alexandria First recorded encounter of a square root of a negative number.

850 Mahavira of India Said that a negative has no square root, because it is not a square.

1545 Cardano of Italy Solutions to cubic equations involved square roots of negative numbers.

1637 Descartes of France Introduced the terms real and imaginary.

1748 Euler of Switzerland Used i for .

1832 Gauss of Germany Introduced the term complex number.

  1

The Complex Number System
We start the development of the complex number system by defining a complex
number and several special types of complex numbers. We then define equality,
addition, and multiplication in this system, and from these definitions the impor-
tant special properties and operational rules for addition, subtraction, multiplica-
tion, and division will follow.

D E F I N I T I O N  1
Complex Number

A complex number is a number of the form

a  bi Standard Form

where a and b are real numbers and i is called the imaginary unit.

Does the simple quadratic equation

x2
 1  0 (2)

have a solution? If equation (2) is to have a solution, x2 must be negative. But the
square of a real number is never negative. Thus, equation (2) cannot have any real
number solutions. Once again, a new type of number must be invented—a num-
ber whose square can be negative. These new numbers are among the numbers
called complex numbers. The complex numbers evolved over a long period, but,
like the real numbers, it was not until the nineteenth century that they were given
a firm mathematical foundation. Table 1 gives a brief history of the evolution of
complex numbers.

E X P L O R E / D I S C U S S  1

Graph g(x)  x2
 1 in a standard viewing window and discuss the

relationship between the real zeros of the function and the x intercepts
of its graph. Do the same for f (x)  x2

 1.



2 MODELING WITH LINEAR AND QUADRATIC FUNCTIONS168

D E F I N I T I O N  2
Names for Particular Kinds of Complex Numbers

Imaginary Unit: i

Complex Number: a bi a and b real numbers

Imaginary Number: a bi b  0

Pure Imaginary Number: 0  bi bi b  0

Real Number: a 0i a

Zero: 0  0i 0

Conjugate of a bi: a bi

The imaginary unit i introduced in Definition 1 is not a real number. It is a
special symbol used in the representation of the elements in this new complex
number system.

Some examples of complex numbers are

Particular kinds of complex numbers are given special names as follows:

0  0i5  0i0  3i

2  1
3i1

2  5i3  2i

Special Types of Complex Numbers

Given the list of complex numbers:

(A) List all the imaginary numbers, pure imaginary numbers, real numbers,
and zero.

(B) Write the conjugate of each.

S O L U T I O N S

(A) Imaginary numbers: 
Pure imaginary numbers: 0  3i  3i

Real numbers: 5  0i  5, 0  0i  0
Zero: 0  0i  0

(B)

Given the list of complex numbers:

(A) List all the imaginary numbers, pure imaginary numbers, real numbers,
and zero.

(B) Write the conjugate of each.

0  0i  0  3  0i    30  2
3i  2

3i

0  i   i 2  1
3i6  7i

0  0i  05  0i  50  3i   3i

2  1
3i1

2  5i3  2i

3  2i, 1
2  5i, 2  1

3i, 3i

0  0i  05  0i  50  3i  3i

2  1
3i1

2  5i3  2i



In Definition 2, notice that we identify a complex number of the form a  0i
with the real number a, a complex number of the form 0  bi, b  0, with the
pure imaginary number bi, and the complex number 0  0i with the real num-
ber 0. Thus, a real number is also a complex number, just as a rational number
is also a real number. Any complex number that is not a real number is called an
imaginary number. If we combine the set of all real numbers with the set of all
imaginary numbers, we obtain C, the set of complex numbers. The relationship
of the complex number system to the other number systems we have studied is
shown in Figure 1.
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To use complex numbers, we must know how to add, subtract, multiply, and
divide them. We start by defining equality, addition, and multiplication.

FIGURE 1

Natural
numbers

(N)

Zero

Negative
integers

Integers
(Z)

Noninteger
rational
numbers

Rational
numbers

(Q)

Irrational
numbers

(I)

Real
numbers

(R) Complex
numbers

(C)Imaginary
numbers

N   Z   Q   R   C

D E F I N I T I O N  3
Equality and Basic Operations

1. Equality: a bi c di if and only if a c and b d

2. Addition: (a bi)  (c di)  (a c)  (b d )i

3. Multiplication: (a bi)(c di)  (ac bd )  (ad bc)i

We can show, using the definitions of addition and multiplication of complex
numbers (Definition 3), that basic properties of the real number system* extend
to the following basic properties of the complex number system.

Basic Properties of the Complex Number System

1. Addition and multiplication of complex numbers are commutative and
associative operations.

2. There is an additive identity and a multiplicative identity for complex
numbers.

3. Every complex number has an additive inverse or negative.
4. Every nonzero complex number has a multiplicative inverse or reciprocal.
5. Multiplication distributes over addition.

As a consequence of these properties you will not have to memorize the defini-
tions of addition and multiplication of complex numbers in Definition 3.

*Basic properties of the real number system are discussed in the Basic Algebra Review, Section R.1, at

www.mhhe.com/barnett



We can manipulate complex number symbols of the form a bi just like we manipulate real bino-

mials of the form a bx, as long as we remember that i is a special symbol for the imaginary unit,

not for a real number.

The first arithmetic operation we consider is addition.

Addition of Complex Numbers

Carry out each operation and express the answer in standard form:

(A) (2  3i)  (6  2i)

(B) ( 5  4i)  (0  0i)

S O L U T I O N S
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Graphical Solutions

FIGURE 2

Algebraic Solutions

(A) We could apply the definition of addition directly, but it is easier to use
complex number properties.

(2  3i)  (6  2i)  2  3i  6  2i Remove parentheses.

 (2  6)  ( 3  2)i Combine like terms.

 8  i

(B) ( 5 4i)  (0  0i)   5  4i  0  0i
  5  4i

Carry out each operation and express the answer in standard form:

(A) (3  2i)  (6  4i) (B) (0  0i)  (7  5i)

Example 2, part B, and Matched Problem 2, part B, illustrate the following
general result: For any complex number a  bi,

(a  bi)  (0  0i)  (0  0i)  (a  bi)  a  bi

Thus, 0  0i is the additive identity or zero for the complex numbers. We antic-
ipated this result in Definition 2 when we identified the complex number 0  0i
with the real number 0.

Not all graphing utilities make use of the a  bi notation for complex num-
bers. For example, on the TI-86, the complex number a  bi is entered as the
ordered pair (a, b). Figure 3 shows the solution to Example 2 on a TI-86.

FIGURE 3 Complex number arithmetic on a TI-86.
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Graphical Solutions

FIGURE 4

Carry out each operation and express the answer in standard form:

(A)  ( 3  2i) (B) (3  5i)   (1  3i) (C) ( 4  9i)  (4  9i)

In general, the additive inverse or negative of a  bi is  a  bi because

(a  bi)  ( a  bi)  ( a  bi)  (a  bi)  0

(see Example 3, part C, and Matched Problem 3, part C).
Now we turn our attention to multiplication. First, we use the definition of

multiplication to see what happens to the complex unit i when it is squared:

(a  bi )(c  di )

(ac  bd)  (ad  bc)i

Thus, we have proved that

i
2
   1 

That is, the square of i is a negative real number and i is a solution to x2
 1  0.

Because i
2
  1, we define to be the imaginary unit i. Thus,

i     1
 

and  i     1
 

  1

  1
  1  0i
 (0  0  1  1)  (0  1  1  0)i

i
2
 (0  1i)(0  1i)

We now turn to negatives and subtraction, which can be defined in terms of
the additive inverse of a complex number. However, because of the already stated
properties of complex numbers, we can manipulate a  bi in the same way we
manipulate the real binomial form a  bx.

Negation and Subtraction

Carry out each operation and express the answer in standard form:

(A)  (4  5i) (B) (7  3i)  (6  2i) (C) ( 2  7i)  (2  7i)

Algebraic Solutions

(A)  (4  5i)  ( 1)(4 5i)   4  5i

(B) (7  3i)  (6  2i)   7  3i  6  2i

 1  5i

(C) ( 2 7i)  (2  7i)  2  7i  2  7i  0

S O L U T I O N S
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Carry out each operation and express the answer in standard form:

(A) (5  2i)(4  3i) (B) 3( 2  6i)

(C) i(2  3i) (D) (2  3i)(2  3i)

For any complex number a  bi,

1(a  bi)  (a  bi)1  a  bi

(see Example 4, part B). Thus, 1 is the multiplicative identity for complex num-
bers, just as it is for real numbers.

Earlier we stated that every nonzero complex number has a multiplicative
inverse or reciprocal. We will denote this as a fraction, just as we do with real
numbers. Thus,

is the reciprocal of a  bi a  bi   0

The following important property of the conjugate of a complex number is
used to express reciprocals and quotients in standard form.

1

a  bi

Just as in the case of addition and subtraction, multiplication of complex
numbers can be carried out using the properties of complex numbers stated on
p. 169. That is, we can manipulate a  bi in the same way we manipulate the
real binomial form a  bx. The key difference is that we replace i2 with  1 each
time it occurs.

Multiplying Complex Numbers

Carry out each operation and express the answer in standard form:

(A) (2  3i)(6  2i) (B) 1(3  5i)

(C) i(1  i) (D) (3  4i)(3  4i)

Algebraic Solutions

(A) (2  3i)(6  2i)  2(6  2i)  3i(6  2i)

 12  4i  18i  6i
2

 12  14i  6( 1) Replace i 2 with  1.

 18  14i

(B) 1(3  5i)  1  3  1  5i  3  5i

(C) i(1  i)  i  i
2
 i  1   1  i

(D) (3  4i)(3  4i)  9  12i  12i  16i
2

 9  16  25

Graphical Solutions

FIGURE 5

S O L U T I O N S



2.4 Complex Numbers 173

T H E O R E M  1
Product of a Complex Number and Its Conjugate

(a  bi)(a  bi)  a
2
 b

2
A real number

We now turn to the fourth arithmetic operation, division of complex num-
bers. Division can be performed by making direct use of Theorem 1. As before,
we can manipulate a  bi in the same way we manipulate the real binomial form
a  bx, except we replace i2 with  1 each time it occurs. Example 5 should make
the process clear.

Reciprocals and Quotients

Carry out each operation and express the answer in standard form:

S O L U T I O N S

(A) (B)
7  3i

1  i

1

2  3i

Algebraic Solutions

(A) Multiply numerator and denominator by the conjugate of the 
denominator:

(B)

 
4  10i

2
 2  5i

 
7  7i  3i  3i2

1  i
2

 

1  i

1   i

7  3i

1  i
 

7  3i

1  i

 
2  3i

13
 

2

13
 

3

13
i

 
2  3i

4  9i2
 

2  3i

4  9
 

2  3i

2   3i

1

2  3i
 

1

2  3i

Graphical Solutions

FIGURE 6

In Figure 6, note that we used the
Fraction command to convert the
decimal form to the fraction form.

In real number arithmetic, we can verify a division with a multiplication. For
example, is correct because . The results in Example 5 are
verified as follows:

(1  i)(2  5i)  2  5i  2i  5i2  7  3i

 
4

13
 

9

13
 1

(2  3i) 2

13
 

3

13
i  4

13
 

6

13
i  

6

13
i  

9

13
i
2

3  19  5757
3  19



Carry out each operation and express the answer in standard form:

(A) (B)

Combined Operations

Carry out the indicated operations and write each answer in standard form:

S O L U T I O N S

(A) (3  2i)2
 6(3  2i)  13 (B)

2  3i

2i

6  7i

2  i

1

4  2i
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Graphical Solutions

FIGURE 7

Algebraic Solutions

(A)

(B) If a complex number is divided by a pure imaginary number, 
we can make the denominator real by multiplying numerator 
and denominator by i.

2  3i

2i
 

i

i
 

2i  3i2

2i2
 

2i  3

 2
  

3

2
 i

 0
 9  12i  4  18  12i  13

(3  2i)2
 6(3  2i)  13  9  12i  4i2  18  12i  13

Carry out the indicated operations and write each answer in standard form:

(A) (3  2i)2
 6(3  2i)  13 (B)

4  i

3i

E X P L O R E / D I S C U S S  2

Natural number powers of i take on particularly simple forms:

i i
5
  i

4
 i   (1)i   i

i
2
   1 i

6
  i

4
 i

2
  1( 1)    1

i
3
  i

2
 i   ( 1)i    i i

7
  i

4
 i

3
  1( i)    i

i
4
  i

2
 i

2
  ( 1)( 1)   1 i

8
  i

4
 i

4
  1  1   1

In general, what are the possible values for in, n a natural number?
Explain how you could easily evaluate in for any natural number n.
Then evaluate each of the following:

(A) i
17 (B) i

24 (C) i
38 (D) i

47

If your graphing utility can perform complex arithmetic, use it to check
your calculations in parts A–D.



Complex Numbers and Radicals
Recall that we say that a is a square root of b if a

2
 b. If x is a positive real

number, then x has two square roots, the principal square root, denoted by ,
and its negative, . If x is a negative real number, then x still has two square
roots, but now these square roots are imaginary numbers.

  x

 x
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D E F I N I T I O N  4
Principal Square Root of a Negative Real Number

The principal square root of a negative real number, denoted by , where a is positive, is

defined by

The other square root of  a, a 0, is .   a   i a

  9  i 9  3i  3  i 3  a  i a

  a

Note in Definition 4 that we wrote and in place of the standard
forms and . We follow this convention whenever it appears that i might
accidentally slip under a radical sign ( , but ). Definition 4
is motivated by the fact that

Complex Numbers and Radicals

Write in standard form:

S O L U T I O N S

(A) (B) (C) (D)
1

1    9

 3    5

2
4    5  4

(i a)2
 i

2
a   a

 ai  i a ai   ai

 3i ai

i 3i a

Algebraic Solutions

(A)

(B)

(C)

(D)

 
1

10
 

3

10
i

 
1  3i

1  9i
2
 

1  3i

10

1

1    9
 

1

1  3i
 

1  (1   3i)

(1  3i)  (1   3i)

 3    5

2
 
 3  i 5

2
  

3

2
 
 5

2
i

4    5  4  i 5

  4  i 4  2i

Graphical Solutions

FIGURE 8

Note that principal square roots like must be 

entered as to indicate that we want to per-
form complex arithmetic rather than real arithmetic.

  4  0i

  4
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E X P L O R E / D I S C U S S  3

From basic algebra, we know that if a and b are positive real numbers,
then

(3)

Thus, we can evaluate expressions like two ways:

and

Evaluate each of the following in two ways. Is equation (3) a valid
property to use in all cases?

(A) (B) (C)   9  4  9 4 9  4

 9 4  (3)(2)  6 9 4   (9)(4)   36  6

 9 4

 a b   ab

Solving Equations Involving Complex Numbers

Equations Involving Complex Numbers

(A) Solve for real numbers x and y:

(B) Solve for complex number z:

(3  2i)z  3  6i  8  4i

(3x  2)  (2y  4)i   4  6i

C A U T I O N

Note that in Example 7, part D, we wrote before
proceeding with the simplification. This is a necessary step because
some of the properties of radicals that are true for real numbers turn out
not to be true for complex numbers. In particular, for positive real num-
bers a and b,

but

(See Explore/Discuss 3.)

  a  b   ( a)( b) a b   ab

1    9  1  3i

Write in standard form:

(A) (B) (C) (D)
1

3    4

 5    2

2
5    7  16



S O L U T I O N S

(A) Equate the real and imaginary parts of each side of the equation to
form two equations:

3x  2   4 2y  4  6
3x   6 2y  10
x   2 y  5

(B)

A check is left to the reader.

(A) Solve for real numbers x and y:

(B) Solve for complex number z:

Early resistance to these new numbers is suggested by the words used to name
them: complex and imaginary. In spite of this early resistance, complex numbers
have come into widespread use in both pure and applied mathematics. They are
used extensively, for example, in electrical engineering, physics, chemistry, sta-
tistics, and aeronautical engineering. Our first use of them will be in connection
with solutions of second-degree equations in Section 2.5.

(1  3i)z  4  5i  3  2i

(2y  7)  (3x  4)i  1  i

 1  4i

 
13  52i

13

 
(11  10i)(3  2i)

(3  2i)(3  2i)

z  
11  10i

3  2i

 (3  2i)z  11  10i

 (3  2i)z  3  6i  8  4i
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1. (A) Imaginary numbers: 6  7i,
Pure imaginary numbers: 
Real numbers:
Zero:

(B)
2. (A) 9  2i (B) 7  5i

3. (A) 3  2i (B) 2  2i (C) 0
4. (A) 26  7i (B)  6  18i (C) 3  2i (D) 13
5. (A) (B) 1  4i

6. (A) 0 (B) 

7. (A) 4i (B) (C) (D) 

8. (A) x   1, y  4 (B) z  2  i

3
13  

2
13i 

5
2  ( 2/2)i5  i 7

 
1
3  

4
3i

1
5  

1
10i

   3, 0  0i  00  2
3i   

2
3i,  3  0i6  7i,  2  1

3i, 0  i  i,
0  0i  0

0  0i  0   3,  3  0i  

0  2
3i  2

3i0  i   i,
0  2

3i  2
3i 2  1

3i, 0  i   i,



13.  3i(2  4i) 14.  2i(5  3i)

15. (3  3i)(2  3i) 16. ( 2  3i)(3  5i)

17. (2  3i)(7  6i) 18. (3  2i)(2  i)

19. (7  4i)(7  4i) 20. (5  3i)(5  3i)

21. 22. 23.

24. 25. 26.
15  3i

2  3i

13  i

2  i

2  i

3  2i

3  i

2  3i

1

3  i

1

2  i

In Problems 1–26, perform the indicated operations and write

each answer in standard form.

1. (2  4i)  (5  i) 2. (3  i)  (4  2i)

3. ( 2  6i)  (7  3i) 4. (6  2i)  (8  3i)

5. (6  7i)  (4  3i) 6. (9  8i)  (5  6i)

7. (3  5i)  ( 2  4i) 8. (8  4i)  (11  2i)

9. (4  5i)  2i 10. 6  (3  4i)

11. (4i)(6i) 12. (3i)(8i)
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In Problems 27–34, evaluate and express results in standard

form.

27. 28.

29. 30.

31. 32.

33. 34.

In Problems 35–44, convert imaginary numbers to standard

form, perform the indicated operations, and express answers 

in standard form.

35.

36.

37.

38.

39.

40.

41. 42.

43. 44.
1

3    16

1

2    9

6    64

2

5    4

7

(2    1)(5    9)

(3    4)( 2    49)

( 2    36)  (4    49)

(9    9)  (12    25)

(3    4)  ( 8    25)

(2    4)  (5    9)

  3  12  2  8

 3  12  2 8

  3 12 2  8

 3 12 2 8

Write Problems 45–50 in standard form.

45. 46.

47. 48.

49. (2  3i)2
 2(2  3i)  9

50. (2  i)2
 3(2  i)  5

51. Let f(x)  x2
 2x  2.

(A) Show that the conjugate complex numbers 1  i and
1  i are both zeros of f.

(B) Does f have any real zeros? Any x intercepts? Explain.

52. Let g(x)   x2
 4x  5.

(A) Show that the conjugate complex numbers 2  i and
2  i are both zeros of g.

(B) Does g have any real zeros? Any x intercepts? Explain.

53. Simplify: i18, i32, and i67.

54. Simplify: i21, i43, and i52.

In Problems 55–58, solve for x and y.

55. (2x  1)  (3y  2)i  5  4i

56. 3x  ( y  2)i  (5  2x)  (3y  8)i

2  i

3i

1  3i

2i

1

3i

2

5i



62. (2  i)z  (1  4i)  ( 1  3i)z  (4  2i)

63. Explain what is wrong with the following “proof’’ that
 1  1:

64. Explain what is wrong with the following “proof’’ that
1/i  i. What is the correct value of 1/i?

1

i
 

1

  1
 

 1

  1
  1

 1
   1  i

 1  i2
   1  1   ( 1)( 1)   1  1
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57.

58.

In Problems 59–62, solve for z. Express answers in standard

form.

59. (2  i)z  i  4i

60. (3  i)z  2  i

61. 3iz  (2  4i)  (1  2i)z  3i

(2  x)  (y  3)i

1  i
  3  i

(1  x)  (y  2)i

1  i
 2  i

In Problems 65–70, perform the indicated operations, and

write each answer in standard form.

65. (a  bi)  (c  di) 66. (a  bi)  (c  di)

67. (a  bi)(a  bi) 68. (u  vi)(u  vi)

69. (a  bi)(c  di) 70.

71. Show that i4k
 1, k a natural number.

72. Show that i4k 1
 i, k a natural number.

73. Show that 2  i and  2  i are square roots of 3  4i.

74. Show that  3  2i and 3  2i are square roots of 5  12i.

75. Describe how you could find the square roots of 8  6i

without using a graphing utility. What are the square roots
of 8  6i?

76. Describe how you could find the square roots of 2i without
using a graphing utility. What are the square roots of 2i?

77. Let Sn  i   i2
  i3

        in, n   1. Describe the possi-
ble values of Sn.

78. Let Tn  i2
  i4

  i6
        i2n, n   1. Describe the pos-

sible values of Tn.

Supply the reasons in the proofs for the theorems stated in

Problems 79 and 80.

79. Theorem: The complex numbers are commutative under
addition.

Proof: Let a  bi and c  di be two arbitrary complex
numbers; then,

Statement
1. (a  bi)  (c  di)  (a  c)  (b  d )i
2.  (c  a)  (d  b)i
3.  (c  di)  (a  bi)

a  bi

c  di

Reason

1.

2.

3.

80. Theorem: The complex numbers are commutative under
multiplication.

Proof: Let a  bi and c  di be two arbitrary complex
numbers; then,

Statement
1. (a  bi) (c  di)  (ac  bd)  (ad  bc)i
2.  (ca  db)  (da  cb)i
3.  (c  di)  (a  bi)

Reason

1.

2.

3.

Letters z and w are often used as complex variables, where 

z   x  yi, w  u  vi, and x, y, u, and v are real numbers.

The conjugates of z and w, denoted by and  , respectively,

are given by   x  yi and  u  vi. In Problems 81–88,

express each property of conjugates verbally and then prove

the property.

81. is a real number. 82. is a real number.

83. if and only if z is real. 84.

85. 86.

87. 88. z/w  z/wzw  z  w

z  w  z  wz  w  z  w

z  zz  z

z  zzz

wz

wz
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Quadratic Equations and Models

Introduction  Solution by Factoring  Solution by Completing the Square  Solution by
Quadratic Formula  Mathematical Modeling  Data Analysis and Regression

Introduction
In this book we are primarily interested in functions with real number domains
and ranges. However, if we want to fully understand the nature of the zeros of a
function or the roots of an equation, it is necessary to extend some of the defini-
tions in Section 1.3 to include complex numbers. A complex number r is a zero
of the function f(x) and a root of the equation f(x)  0 if f(r)  0. As before, if
r is a real number, then r is also an x intercept of the graph of f. An imaginary
zero can never be an x intercept.

If a, b, and c are real numbers, a  0, then associated with the quadratic
function

f(x)  ax2
 bx  c

is the quadratic equation

ax2
 bx  c  0

E X P L O R E / D I S C U S S 1

Match the zeros of each function on the left with one of the sets A, B,

or C on the right:

Function Zeros

f(x)  x2
 1 A  {1}

g(x)  x2
 1 B  { 1, 1}

h(x)  (x  1)2 C  { i, i}

Which of these sets of zeros can be found using graphical approxima-
tion techniques? Which cannot?

A graphing utility can be used to approximate the real roots of an equation,
but not the imaginary roots. In this section we will develop algebraic techniques
for finding the exact value of the roots of a quadratic equation, real or imaginary.
In the process, we will derive the well-known quadratic formula, another impor-
tant tool for our mathematical toolbox.

Solution by Factoring
If ax2

 bx  c can be written as the product of two first-degree factors, then
the quadratic equation can be quickly and easily solved. The method of solution
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Zero Property

If m and n are complex numbers, then

m  n  0 if and only if m  0 or n  0 (or both)

by factoring rests on the zero property of complex numbers, which generalizes
the zero property of real numbers.

Solving Quadratic Equations by Factoring

Solve by factoring:

(A) 6x2
 19x  7  0 (B)  x2

 6x  5   4 (C)  2x2
 3x

S O L U T I O N S

(A) 6x2
 19x  7  0

(2x  7)(3x  1)  0 Factor left side.

2x  7  0 o r3x  1  0

The solution set is .

(B) x
2
 6x  5   4

x
2
 6x  9  0 Add 4 to both sides.

(x  3)2
 0 Factor left side.

x  3

The solution set is {3}. The equation has one root, 3. But because it
came from two factors, we call 3 a double root or a root of multi-
plicity 2.

(C) 2x2
 3x

2x2
 3x  0

x(2x  3)  0

x  0 o r2x  3  0

Solution set: 

Solve by factoring:

(A) 3x2
 7x  20  0 (B)  4x2

 12x  9  0 (C)  4x2
 5x

{0, 3
2}

x  
3
2

{ 1
3, 7

2}

x   
1
3x  

7
2



Do not divide both members of an equation by an expression containing the variable for which you

are solving. You may be dividing by 0.

REMARK It is common practice to represent solutions of quadratic equations infor-
mally by the last equation rather than by writing a solution set using set notation
(see Example 1). From now on, we will follow this practice unless a particular
emphasis is desired.

Solution by Completing the Square
Factoring is a specialized method that is very efficient if the factors can be quickly
identified. However, not all quadratic equations are easy to factor. We now turn
to a more general process that is guaranteed to work in all cases. This process is
based on completing the square, discussed in Section 2.3, and the following square
root property:
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C A U T I O N

1. One side of an equation must be 0 before the zero property can be
applied. Thus

does not imply that x  1   4 or x  5   4. See Example 1,
part B, for the correct solution of this equation.

2. The equations

2x2
 3x and 2x  3

are not equivalent. The first has solution set whereas the sec-
ond has solution set . The root x  0 is lost when each member
of the first equation is divided by the variable x. See Example 1, 
part C, for the correct solution of this equation.

{3
2}

{0, 3
2},

 (x  1)(x  5)   4
x2
 6x  5   4

Square Root Property

If r is a complex number, s is a real number, and r 2
 s, then .r    s

Solution by Completing the Square

Use completing the square and the square root property to solve each of the
following:

(A) (B) x2
 6x   2  0 (C)  2x2

 4x   3  0(x  1
2)2

 
5
4  0



S O L U T I O N S

(A) This quadratic expression is already written in standard form. We
solve for the squared term and then use the square root property:

Apply the square root property.

Solve for x.

(B) We can speed up the process of completing the square by taking
advantage of the fact that we are working with a quadratic equation,
not a quadratic expression.

Complete the square on the left side, and add the

same number to the right side.

(C)

Make the leading coefficient 1 by dividing by 2.

Answer in a bi form.

Solve by completing the square:

(A) (B) (C) 3x
2
 12x  13  0x

2
 8x  3  0(x  1

3)2
 

2
9  0

 1  
 2

2
i

x  1  i 1
2

x  1     1
2

 (x  1)2
  

1
2

x
2
 2x +  1   3

2 + 1

x
2
 2x   

3
2

x
2
 2x  

3
2  0

2x
2
 4x  3  0

x   3   11

x  3    11

 (x  3)2
 11

x
2
 6x +  9  2 +  9

x
2
 6x  2

x
2
 6x  2  0

 
 1   5

2

x   
1

2
 
 5

2

x  
1
2    

5
4

 (x  1
2)2
 

5
4

 (x  1
2)2
 

5
4  0
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Complete the square on the left side and add the

same number to the right side.

Factor the left side.
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Solution by Quadratic Formula
Now consider the general quadratic equation with unspecified coefficients:

ax
2
 bx  c 0 a 0 

We can solve it by completing the square exactly as we did in Example 2, part C.
To make the leading coefficient 1, we must multiply both sides of the equation
by 1 a. Thus,

Adding  c/a to both sides of the equation and then completing the square of the
left side, we have

We now factor the left side and solve using the square root property:

See Problem 81.

 
 b   b2

 4ac

2a

x   
b

2a
 

 b2
 4ac

2a

x  
b

2a
   b2

 4ac

4a2

 x  
b

2a 
2

 
b2
 4ac

4a2

x2
 

b

a
x  

b2

4a2
 

b2

4a2
 

c

a

x2
 

b

a
x  

c

a
 0

E X P L O R E / D I S C U S S  2

Graph the quadratic functions associated with the three quadratic equa-
tions in Example 2. Approximate the x intercepts of each function and
compare with the roots found in Example 2. Which of these equations
has roots that cannot be approximated graphically?

C A U T I O N

Do not confuse completing the square in a quadratic function with com-
pleting the square in a quadratic equation. For functions, we add and 
subtract For equations, we add to both sides of the equation.

Function Equation
f(x)  x2

 6x  4 x2
 6x  4  0

 x2
 6x  9 9  4 x2

 6x  9  4  9
 (x  3)2

 13 (x  3)2
 13

b2

4
b2

4 .



We have thus derived the well-known and widely used quadratic formula:
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T H E O R E M  1
Quadratic Formula

If ax2
 bx  c  0, a  0, then

x   
 b     b2  

  4 ac

2a

The quadratic formula and completing the square are equivalent methods.
Either can be used to find the exact value of the roots of any quadratic equation.

Using the Quadratic Formula

Solve by use of the quadratic formula. Leave the answer in simplest
radical form.

S O L U T I O N

Multiply both sides by 2.

Write in standard form.

a 2, b  4, c  3

 
4   40

4
 

4  2 10

4
 

2   10

2

 
 ( 4)   ( 4)2

 4(2)( 3)

2(2)

x  
 b   b2

 4ac

2a

 2x2
 4x  3  0

 4x  3  2x2

 2x  3
2  x2

2x  3
2  x2

C A U T I O N

1.  42
  ( 4)2

 42
  16 and ( 4)2

 16

2.

3.
4   2 10

4
    

2(2    10)

4
    

2    10

2

4  2 10

4
  2 10

2  
 10

2
   

4   10

2
2  

 10

2
 

2   10

2

Solve using the quadratic formula. Leave the answer in simplest
radical form.

x2
 

5
2   3x



The quantity b2
 4ac in the quadratic formula is called the discriminant and

gives us information about the roots of the corresponding equation and the zeros
of the associated quadratic function. This information is summarized in Table 1.
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E X P L O R E / D I S C U S S  3

Given the quadratic function f(x)  ax2
 bx  c, let D  b2

 4ac.
How many real zeros does f have if 

(A) D  0 (B)  D  0 (C)  D  0

In each of these three cases, what type of roots does the quadratic
equation f(x)  0 have?

Match each of the three cases with one of the following graphs.

y

x

y

x

y

x

(1) (2) (3)

T A B L E  1 Discriminants, Roots, and Zeros

Discriminant Roots of * Number of Real Zeros of *
b2 
 4ac ax 2

 bx c 0 f (x)  ax 2
 bx c

Positive Two distinct real roots 2

0 One real root (a double root) 1

Negative Two imaginary roots, one the 0
conjugate of the other

*a, b, and c are real numbers with a  0.

Mathematical Modeling
Now we want to consider some applications that involve quadratic equations.

Design

A rectangular picture frame of uniform width has outer dimensions of 12 inches
by 18 inches. How wide (to the nearest tenth of an inch) must the frame be to
display an area of 140 square inches?



S O L U T I O N

Constructing the Model

We begin by drawing and labeling a figure:

The width of the frame must be nonnegative, thus x must satisfy x  0. Both the
length and the width of the display area also must be nonnegative. This places
additional restrictions on x.

12  2x  0 18  2x  0
12  2x 18  2x

6  x 9  x

For both inequalities to be true, we must restrict x to satisfy x  6. Because the
area of the display is the product of the length and width, x must satisfy

(18  2x)(12  2x)  140 0  x  6 (1)

18

12 12   2x

18   2x

x
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Graphical Solution

Entering y1 (18  2x)(12 2x) and y2  140 in
the equation editor (Fig. 1) and using the zero com-
mand (Fig. 2) shows that the width of the frame is
x  1.4.

Algebraic Solution

Thus, the quadratic equation has two solutions
(rounded to one decimal place):

and

The first must be discarded because x must satisfy 
x  6. So the width of the frame is 1.4 inches.

x  
15   149

2
 1.4

x  
15   149

2
 13.6

x  
15   149

2

x
2
 15x  19  0

 4x2
 60x  76  0

 216  36x  24x  4x2
 140

 (18  2x)(12  2x)  140

0

0

250

6

FIGURE 1 FIGURE 2
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A 1,200 square foot rectangular garden is enclosed with 150 feet of fencing. Find
the dimensions of the garden to the nearest tenth of a foot.

Data Analysis and Regression
Now that we have added quadratic functions to our mathematical toolbox, we can
use this new tool in conjunction with another tool discussed previously—regres-
sion analysis. In Example 5, we use both of these tools to investigate the effect
of recycling efforts on solid waste disposal.

Solid Waste Disposal

Franklin Associates, Ltd. of Prairie Village, Kansas, reported the data in Table 2
to the U.S. Environmental Protection Agency.

T A B L E  2 Municipal Solid Waste Disposal

Annual Landfill Disposal Per Person Per Day
Year (Millions of Tons) (Pounds)

1960 55.5 1.68

1970 88.2 2.37

1980 123.3 2.97

1985 136.4 3.13

1990 131.6 2.90

1995 118.4 2.50

2000 113.6 2.16

(A) Let x represent time in years with x  0 corresponding to 1950, and let y
represent the corresponding annual landfill disposal. Use regression analy-
sis on a graphing utility to find a quadratic function y  ax2

 bx  c

that models these data. (Round the constants a, b, and c to three signifi-
cant digits.) 

(B) If landfill disposal continues to follow the trend exhibited in Table 2, when
(to the nearest year) will the annual landfill disposal return to the 1960
level?

(C) Is it reasonable to expect the annual landfill disposal to follow this trend
indefinitely? Explain. 

S O L U T I O N S

(A) Because the values of y increase from 1960 to 1985 and then begin to
decrease, a quadratic model seems a better choice than a linear one.
Figure 3 shows the details of constructing the model on a graphing
utility.
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Rounding the constants to three significant digits, a quadratic regres-
sion equation for these data is

y1   0.102x2
 7.69x  15.3

The graph in Figure 3(d) indicates that this is a reasonable model for
these data. It is, in fact, the “best” quadratic equation for these data.

(B) To determine when the annual landfill disposal returns to the 1960
level, we add the graph of y2  55.5 to the graph (Fig. 4).

FIGURE 4 FIGURE 5

The graphs of y1 and y2 intersect twice, once at x  10 (1960), and
again at a later date. Using the intersect command (Fig. 5) shows that
the x coordinate of the second intersection point (to the nearest inte-
ger) is 65. Thus, the annual landfill disposal returns to the 1960 level
of 55.5 million tons in 2015. 

(C) The graph of y1 continues to decrease and reaches 0 somewhere between
2023 and 2024. It is highly unlikely that the annual landfall disposal will
ever reach 0. As time goes by and more data become available, new
models will have to be constructed to better predict future trends.

Refer to Table 2.

(A) Let x represent time in years with x  0 corresponding to 1950, and let y
represent the corresponding landfill disposal per person per day. Use
regression analysis on a graphing utility to find a quadratic function of the
form y  ax2

 bx  c that models these data. (Round the constants a, b,
and c to three significant digits.) 

(B) If landfill disposal per person per day continues to follow the trend exhib-
ited in Table 2, when (to the nearest year) will it fall below 1 pound per
person per day?

0

0

150

80

0

0

150

80

y2   55.5

0

0

150

80

FIGURE 3

(a) Data (b) Regression equation (c) Regression equation
entered in equation 
editor

(d) Graph of data and
regression equation
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(C) Is it reasonable to expect the landfill disposal per person per day to follow
this trend indefinitely? Explain.

Most gasoline engines run more efficiently at a midrange speed than at either
extremely high or extremely low speeds. Example 6 uses quadratic regression to
determine the optimal speed for a speedboat.

Optimal Speed

Table 3 contains performance data for a speedboat powered by a Yamaha outboard
motor. In the work that follows, round all numbers to three significant digits.

(A) Let x be the speed of the boat in miles per hour (mph) and y the associ-
ated mileage in miles per gallon (mpg). Use the data in Table 3 to find a
quadratic regression function y  ax2

 bx  c for this boat. 

(B) A marina rents this boat for $20 per hour plus the cost of the gasoline used.
If gasoline costs $1.50 per gallon and you take a 100-mile trip in this boat,
construct a mathematical model and use it to answer the following questions:

What speed should you travel to minimize the rental charges? 

What mileage will the boat get? 

How long is the trip?

How much gasoline will you use?

How much will the trip cost you?

S O L U T I O N S

(A) Entering the data in the statistics editor (Fig. 6) and selecting the
QuadReg option (Fig. 7) produces the following quadratic function
relating speed and mileage:

y   0.0110x2
 0.522x  0.506

(B) If t is the number of hours the boat is rented and g is the number of
gallons of gasoline used, then the cost of the rental (in dollars) is

C  20t  1.5g

If x is the speed of the boat and y is the associated mileage, then

xt  100 (miles/hour)(hours)  distance

and

yg  100 (miles/gallon)(gallons)  distance

Thus,

t  
100

x

T A B L E  3

mph mpg

4.6 3.07

7.3 3.17

21.0 6.77

29.8 6.62

40.2 2.77

44.6 2.37

Source: www.yamaha-motor.com

FIGURE 6

FIGURE 7



and, using the quadratic regression function from part A,

Returning to the cost equation,

This is the mathematical model for the total cost of the trip. Our first
objective is to find the speed x that produces the minimum cost.
Entering the cost function in the equation editor (Fig. 8) and using
the minimum command (Fig. 9), we see that the minimum cost occurs
when the boat speed is 35.9 miles per hour. Evaluating the quadratic
function in part A at 35.9, we find that the corresponding mileage is 
y  5.07 miles per gallon. The trip will take hours and
consume gallons of gas. We can see from Figure 9 that
the trip will cost $85.30. To check this, we can compute the cost
directly

Rent plus Gasoline
C  20(2.79)  1.5(19.7)  $85.35

The small $0.05 discrepancy between these two costs is caused by
rounding all numbers to three significant digits.

Table 4 contains performance data for a speedboat powered by a Yamaha outboard
motor. In the work that follows, round all numbers to three significant digits.

(A) Let x be the speed of the boat in miles per hour (mph) and y the associ-
ated mileage in miles per gallon (mpg). Use the data in Table 4 to find a
quadratic regression function y  ax2

 bx  c for this boat.

(B) A marina rents this boat for $15 per hour plus the cost of the gasoline used.
If gasoline costs $2 per gallon and you take a 200-mile trip in this boat,
construct a mathematical model and use it to answer the following questions:

What speed should you travel to minimize the rental charges? 

What mileage will the boat get? 

How long does the trip take?

How much gasoline will you use?

How much will the trip cost you?

100
5.07  19.7

100
35.9  2.79

 
2,000

x
 

150

 0.0110x2
 0.522x  0.506

 20
100

x
 1.5

100

 0.0110x2
 0.522x  0.506

C  20t  1.5g

g  
100

y
 

100

 0.0110x2
 0.522x  0.506
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0

0

200

45

FIGURE 8

FIGURE 9

T A B L E  4

mph mpg

4.8 2.67

8.9 2.12

18.5 2.89

34.4 3.78

43.8 3.40

48.6 2.63

Source: www.yamaha-motor.com
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13. 2d 2
 5d  25  0 14. 2u2

 7u  3  0

15. 2v2
 2v  1  0 16. 9x2

 12x  5  0

17. 4y2
 3y  9  0 18. 5t 2

 2t  5  0

In Problems 19–26, solve using the quadratic formula.

19. 20.

21. 22.

23. 24.

25. 26. 7x2
 6x  4  05x2

 2  2x

2m2
 3  6m2x2

 1  4x

y2
 3  2yx2

 8  4x

x2
 6x  3  0x2

 10x  3  0

In Problems 1–6, solve by factoring.

1. 2.

3. 4.

5. 6.

In Problems 7–18, solve by completing the square.

7. x2
 6x  3  0 8. y2

 10y  3  0

9. t2
 4t  8  0 10. w2

 6w  25  0

11. m2
 2m  9  0 12. n2

 8n  34  0

8  10x  3x211x  2x2
 12

16x2
 8x   19y2

 12y  4

3A2
  12A4u2

 8u

For each equation in Problems 27 32, use the discriminant to

determine the number and type of zeros.

27. 2.4x2
 6.4x  4.3  0 28. 0.4x2

 3.2x  6.4  0

29. 6.5x2
 7.4x  3.4  0 30. 3.4x2

 2.5x  1.5  0

31. 0.3x2
 3.6x  10.8  0 32. 1.7x2

 2.4x  1.4  0

For each equation in Problems 33 38, use a graph to deter-

mine the number and type of zeros.

33. 0.2x2
 3.2x  12.8  0 34. 4.5x2

  1.7x  0.4  0

35. 3.4x2
 9.1x  4.7  0 36. 1.3x2

 1.5x  0.8  0

37. 2.4x2
 3.7x  1.5  0 38. 0.6x2

 6x  15  0

In Problems 39–48, solve algebraically and confirm with a

graphing utility, if possible.

39. x2
 6x  3  0 40. y2

 10y  3  0

41. 2y2
 6y  3  0 42. 2d 2

 4d  1  0

43. 3x2
 2x  2  0 44. 3x2

 5x  4  0

45. 12x2
 7x  10 46. 9x2

 9x  4

47. x2
 3x  1 48. x2

 2x  2

In Problems 49–52, solve for the indicated variable in terms of

the other variables. Use positive square roots only.

49. for t 50. a2
 b2

 c2 for a

51. P  EI  RI 2 for I 52. A  P(1  r)2 for r

In Problems 53–68, solve by any algebraic method and confirm

graphically, if possible. Round any approximate solutions to

three decimal places.

53. 54.

55. 56.

57. 58. x2
 2 5x  5  0x2

  3x  4  0

x2
  5x  5  0x2

 2 3x  3  0

x2
  11x  3  0x2

  7x  2  0

s  1
2gt2

1. (A) (B) (a double root) (C) 
2. (A) (B) (C) 
3. 4. 23.1 feet by 51.9 feet 5. (A) y   0.00272x2

 0.178x  0.0896 (B) 2010
6. (A) y   0.00176x2

 0.110x  1.72
(B) The boat should travel at 43.0 miles per hour. The mileage is 3.20 miles per gallon. The trip will take 4.65 hours and

will consume 62.5 gallons of gasoline. The trip will cost $195.

x  ( 3   19)/2
or 2  ( 3/3)ix  (6  i 3)/3x   4   19x  ( 1   2)/3

{0, 5
4}{ 3

2}{ 4, 5
3}
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with

What justifies using 2a in place of  2a ?

82. Find the error in the following “proof’’ that two arbi-
trary numbers are equal to each other: Let a and b be
arbitrary numbers such that a  b. Then

83. Find two numbers such that their sum is 21 and their
product is 104.

84. Find all numbers with the property that when the num-
ber is added to itself the sum is the same as when the
number is multiplied by itself.

85. Find two consecutive positive even integers whose prod-
uct is 168.

86. Find two consecutive positive integers whose product is 600.

a  b

 2a  2b

a  b  b  a

 (a  b)2
 (b  a)2

 (a  b)2
 a2

 2ab  b2
 b2

 2ab  a2

  b2
 4ac/2a

Solve Problems 71–74 and express answer in a  bi form.

71. x2
 3ix  2  0 72. x2

 7ix  10  0

73. x2
 2ix  3 74. x2

 2ix  3

In Problems 75 and 76, find all solutions.

75. x3
 1  0 76. x4

 1  0

77. Can a quadratic equation with rational coefficients have
one rational root and one irrational root? Explain.

78. Can a quadratic equation with real coefficients have one
real root and one imaginary root? Explain.

79. Show that if r1 and r2 are the two roots of ax2
 bx c 0,

then r1r2  c a.

80. For r1 and r2 in Problem 79, show that r1  r2   b a.

81. In one stage of the derivation of the quadratic formula,
we replaced the expression

  (b2
 4ac)/4a2

87. Air Search. A search plane takes off from an airport at
6:00 A.M. and travels due north at 200 miles per hour. A
second plane takes off at 6:30 A.M. and travels due east at
170 miles per hour. The planes carry radios with a maxi-
mum range of 500 miles. When (to the nearest minute)
will these planes no longer be able to communicate with
each other?

88. Navigation. A speedboat takes 1 hour longer to go 24
miles up a river than to return. If the boat cruises at 10
miles per hour in still water, what is the rate of the current?

89. Construction. A gardener has a 30 foot by 20 foot rectan-
gular plot of ground. She wants to build a brick walkway
of uniform width on the border of the plot (see the figure).

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.
6

x  3
 

4

x  3
 3

8

x  5
 

3

x  5
 2

5  
6

x  2
 

4

x  2
3  

5

x  4
 

7

x  4

1  
25

x
2
 

11

x
1  

9

x
2
 

7

x

1  
25

x
2
 

10

x
1  

9

x
2
 

6

x

1  
25

x
2
 

9

x
1  

9

x
2
 

5

x

69. Consider the quadratic equation

where c is a real number. Discuss the relationship between
the values of c and the three types of roots listed in Table 1
on page 186.

70. Consider the quadratic equation

where c is a real number. Discuss the relationship between
the values of c and the three types of roots listed in Table 1
on page 186.

x
2
 2x  c  0

x
2
 4x  c  0



92. Architecture. An architect is designing a small A-frame
cottage for a resort area. A cross-section of the cottage is an
isosceles triangle with a base of 5 meters and an altitude of
4 meters. The front wall of the cottage must accommodate
a sliding door positioned as shown in the figure.

(A) Express the area A(w) of the door as a function of the
width w and state the domain of this function. [See
the hint for Problem 91.]

(B) A provision of the building code requires that door-
ways must have an area of at least 4.2 square me-
ters. Find the width of the doorways that satisfy this 
provision.

(C) A second provision of the building code requires all
doorways to be at least 2 meters high. Discuss the
effect of this requirement on the answer to part B.

93. Transportation. A delivery truck leaves a warehouse
and travels north to factory A. From factory A the truck
travels east to factory B and then returns directly to the
warehouse (see the figure). The driver recorded the

truck’s odometer reading at the warehouse at both the
beginning and the end of the trip and also at factory B,
but forgot to record it at factory A (see the table). The
driver does recall that it was further from the warehouse
to factory A than it was from factory A to factory B. Be-
cause delivery charges are based on distance from the
warehouse, the driver needs to know how far factory A is
from the warehouse. Find this distance.

Factory A Factory B

Warehouse

DOOR DETAIL
Page 1 of 4

5 meters

h

w
4 meters

If the gardener wants to have 400 square feet of ground
left for planting, how wide (to two decimal places) should
she build the walkway?

90. Construction. Refer to Problem 89. The gardener buys
enough brick to build 160 square feet of walkway. Is this
sufficient to build the walkway determined in Problem

89? If not, how wide (to two decimal places) can she
build the walkway with these bricks?

91. Architecture. A developer wants to erect a rectangular
building on a triangular-shaped piece of property that is
200 feet wide and 400 feet long (see the figure).

(A) Express the area A(w) of the footprint of the building
as a function of the width w and state the domain of
this function. [Hint: Use Euclid’s theorem* to find a

relationship between the length l and width w.]

(B) Building codes require that this building have a foot-
print of at least 15,000 square feet. What are the
widths of the building that will satisfy the building
codes?

(C) Can the developer construct a building with a foot-
print of 25,000 square feet? What is the maximum
area of the footprint of a building constructed in this
manner?

Property Line

FIRST STREET

Property
A

R
E
B

E
K

A
H

 D
R

IV
E

400 feet

2
0
0
 f

e
e
t

Proposed
Building

l

w

20 feet

30 feet

x
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*Euclid’s theorem: If two triangles are similar, their corresponding sides are

proportional:

a

a
 

b

b
 

c

c

a 

b 

c a

b

c
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parking, the track must enclose an area of 100,000
square feet. Find the length of the straightaways and the
diameter of the semicircles to the nearest foot. [Recall:
The area A and circumference C of a circle of diameter
d are given by A   d2/4 and C   d.]

100,000 square feet

Odometer Readings

Warehouse 5 2 8 4 6

Factory A 5 2 ? ? ?

Factory B 5 2 9 3 7

Warehouse 5 3 0 0 2

94. Construction. A -mile track for racing stock cars
consists of two semicircles connected by parallel
straightaways (see the figure). To provide sufficient

room for pit crews, emergency vehicles, and spectator

1
4

T A B L E  5 Per Capita Ethanol Consumption (in Gallons)

Year Beer Wine

1960 0.99 0.22

1965 1.04 0.24

1970 1.14 0.27

1975 1.26 0.32

1980 1.38 0.34

1985 1.33 0.38

1990 1.34 0.33

1995 1.25 0.29

Source: NIAAA

T A B L E  6 Cigarette Consumption

Production Per Capita
Year (Billions) Annual Consumption

1950 370 3,550

1955 396 3,600

1960 484 4,170

1965 529 4,260

1970 537 3,990

1975 607 4,120

1980 632 3,850

1985 594 3,370

1990 525 2,830

1995 487 2,520

Source: CDC

In Problems 95–102, unless directed otherwise, round all num-

bers to three significant digits,

95. Alcohol Consumption. Table 5 contains data related to
the per capita ethanol consumption in the United States
from 1960 to 1995. 

(A) Let the independent variable x represent years since
1960. Find a quadratic regression model for the per
capita beer consumption. 

(B) If beer consumption continues to follow the trend
exhibited in Table 5, when (to the nearest year) will
the consumption return to the 1960 level?

(C) What does your model predict for beer consumption
in the year 2000? Use the Internet or a library to com-
pare your predicted results with the actual results.

(B) If wine consumption continues to follow the trend ex-
hibited in Table 5, when (to the nearest year) will the
consumption return to the 1960 level?

(C) What does your model predict for wine consumption
in the year 2000? Use the Internet or a library to com-
pare your predicted results with the actual results.

97. Cigarette Production. Table 6 contains data related to
the total production and per capita consumption of ciga-
rettes in the United States from 1950 to 1995.

(A) Let the independent variable x represent years since
1950. Find a quadratic regression model for the total
cigarette production. 

(B) If cigarette production continues to follow the trend
exhibited in Table 6, when (to the nearest year) will
the production return to the 1950 level?

(C) What does your model predict for cigarette production
in the year 2000? Use the Internet or a library to com-
pare your predicted results with the actual results.

96. Alcohol Consumption. (See page 95.) Refer to Table 5.

(A) Let the independent variable x represent years since
1960. Find a quadratic regression model for the per
capita wine consumption.

  



(A) Let x be the speed of boat A in miles per hour (mph)
and y the associated mileage in miles per gallon
(mpg). Use the data in Table 8 to find a quadratic re-
gression function y  ax2

 bx  c for this boat.

(B) A marina rents this boat for $10 per hour plus the
cost of the gasoline used. If gasoline costs $1.50 per
gallon and you take a 100-mile trip in this boat, con-
struct a mathematical model and use it to answer the
following questions:

What speed should you travel to minimize the rental
charges? 

What mileage will the boat get? 

How long does the trip take?

How much gasoline will you use?

How much will the trip cost you?

98. Cigarette Production. Refer to Table 6. 

(A) Let the independent variable x represent years since
1950. Find a quadratic regression model for the per
capita cigarette consumption. 

(B) If per capita cigarette consumption continues to fol-
low the trend exhibited in Table 6, when (to the near-
est year) will the per capita consumption drop to 500
cigarettes?

(C) What does your model predict for per capita cigarette
consumption in the year 2000? Use the Internet or a
library to compare your predicted results with the
actual results.

99. Stopping Distance. Table 7 contains data related to the
length of the skid marks left by two different automobiles
when making emergency stops.

(A) Let x be the speed of the vehicle in miles per hour.
Find a quadratic regression model for the braking
distance for auto A.

(B) An insurance investigator finds skid marks 200 feet
long at the scene of an accident involving auto A.
How fast (to the nearest mile) was auto A traveling
when it made these skid marks?
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T A B L E  7 Skid Marks

Speed Length of Skid Marks (in feet)
(mph) Auto A Auto B

20 21 29

30 44 53

40 76 86

50 114 124

60 182 193

70 238 263

80 305 332

102. Optimal Speed. Refer to Table 8.

(A) Let x be the speed of boat B in miles per hour (mph)
and y the associated mileage in miles per gallon
(mpg). Use the data in Table 8 to find a quadratic
regression function y  ax2

 bx  c for this boat. 

(B) A marina rents this boat for $15 per hour plus the
cost of the gasoline used. If gasoline costs $2.00 per
gallon and you take a 200-mile trip in this boat, con-
struct a mathematical model and use it to answer the
following questions:

What speed should you travel to minimize the rental
charges? 

What mileage will the boat get? 

How long does the trip take?

How much gasoline will you use?

How much will the trip cost you?

100. Stopping Distance. Refer to Table 7.

(A) Let x be the speed of the vehicle in miles per hour.
Find a quadratic regression model for the braking
distance for auto B.

(B) An insurance investigator finds skid marks 165 feet
long at the scene of an accident involving auto B.
How fast (to the nearest mile per hour) was auto B
traveling when it made these skid marks?

101. Optimal Speed. Table 8 contains performance data for
two speedboats powered by Yamaha outboard motors.

T A B L E  8 Performance Data

Boat A Boat B
mph mpg mph mpg

5.4 2.84 5.1 1.65

12.3 2.86 9.0 1.45

29.3 4.44 23.9 2.30

41.8 3.80 35.0 2.48

53.1 3.28 44.1 2.19

57.4 2.73 49.1 1.81

Source: www.yamaha-motor.com



Additional Equation-Solving Techniques

Equations Involving Radicals  Equations of the Form ax2p
 bx p

 c 0  Mathematical
Modeling

In this section we examine equations that can be transformed into quadratic equa-
tions by various algebraic manipulations. With proper interpretation, the solutions
of the resulting quadratic equations will lead to the solutions of the original
equations.

Equations Involving Radicals
Consider the equation

(1)

Graphing both sides of the equation and using an intersection routine shows that
x  2 is a solution to the equation (Fig. 1). Is it the only solution?

There may be other solutions not visible in this viewing window. Or there may
be imaginary solutions (remember, graphical approximation applies only to real
solutions). To solve this equation algebraically, we square each side of equation
(1) and then proceed to solve the resulting quadratic equation. Thus,

(2)

These are the only solutions to the quadratic equation. We have already seen that
x  2 is a solution to the original equation. To check if  1 is a solution, we sub-
stitute in equation (1):

 1  1

 1 ‚ 1

 1 ‚   1  2

x   x  2

x  2,  1

 (x  2)(x  1)  0

x
2
 x  2  0

x
2
 x  2

x
2
 ( x  2)2

 5

 5

5

5

x   x  2
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FIGURE 1

y1  x,
.y2   x  2



Referring to equations (1) and (2) on page 197, we know that 2 and  1 are
the only solutions to the quadratic equation (2). And we checked that  1 is not
a solution to equation (1). Theorem 1 now implies that 2 must be the only solu-
tion to equation (1). We call  1 an extraneous solution. In general, an extrane-
ous solution is a solution introduced during the solution process that does not
satisfy the original equation.

Every solution of the new equation must be checked in the original equation to eliminate extrane-

ous solutions.

Thus,  1 is not a solution to equation (1). What have we gained by performing
these algebraic manipulations? If we can be certain that all solutions of equation
(1) must be among the solutions of equation (2), then we can rule out the possi-
bility of any additional solutions to equation (1). Theorem 1 provides the necessary
tool to do this.
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E X P L O R E / D I S C U S S  1

Figure 2 shows that x   1 is a solution of the equation

Are there any other solutions? Find any additional solutions both alge-
braically and graphically. What are some advantages and disadvantages
of each of these solution methods?

 x  2  0.01x  1.01

 5

 5

5

5

FIGURE 2

y1   x  2, y2  0.01x  1.01.

T H E O R E M  1
Power Operation on Equations

If both sides of an equation are raised to the same natural number
power, then the solution set of the original equation is a subset of the
solution set of the new equation.

Equation Solution Set

x 3 {3}

x 2
 9 { 3, 3}



 10

 10

10

10
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Solving Equations Involving Radicals

Solve algebraically 

S O L U T I O N

Isolate radical on one side.

Square both sides.

Collect like terms.

Use the quadratic formula.

C H E C K

The check shows that  1  i is a solution to the original equation and  1  i

is extraneous. Thus, the only solution is the imaginary number

Graphing both sides of the equation illustrates that there are no intersection points
in a standard viewing window (Fig. 3). The algebraic solution shows that the equa-
tion has no real solutions, hence there cannot be any intersection points anywhere
in the plane.

Solve algebraically 

Solving Equations Involving Two Radicals

Solve algebraically and graphically  2x  3   x  2  2.

 x2
 2x  2  2x  2.

x   1  i

 1  2i  1

 4  8i  4  8  8i  7  1  i ‚ 1

 4( 1   i)2
 8( 1   i)  7  ( 1   i) ‚ 1

 4x2
 8x  7  x  1

x   1  i

 1 ⁄ 1

 4  8i  4  8  8i  7  1  i ‚ 1

 4( 1   i)2
 8( 1   i)  7  ( 1   i) ‚ 1

 4x2
 8x  7  x  1

x   1  i

  1  i,  1  i

x  
 2    4

2

x2
 2x  2  0

 3x2
 6x  6  0

 4x2
 8x  7  x2

 2x  1

 4x2
 8x  7  x  1

 4x2
 8x  7  x  1

 4x2
 8x  7  x  1.

FIGURE 3

y2   4x2
 8x  7  x.

y1  1,
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Graphical Solution

Graphing
and y2  2 in a standard viewing win-
dow produces a graph that is not very
useful (Fig. 4).

FIGURE 4

Examining a table of values (Fig. 5),
suggests that choosing Xmin 2,
Xmax  14, Ymin  1.5, Ymax  3
would produce a graph that clearly
shows two intersection points.

FIGURE 5

Using the intersect command, the x
coordinates of the intersection points are
x 3 (Fig. 6) and x 11 (Fig. 7).

FIGURE 6

FIGURE 7

1.5

2

3

14

1.5

2

3

14

 10

 10

10

10

y1   2x  3   x  2
Algebraic Solution

C H E C K

Both solutions check. Thus,

x  3, 11 Two solutions

2 ⁄ 22 ⁄ 2

 2(11)  3   11  2 ‚ 2 2(3)  3   3  2 ‚ 2

 2x  3   x  2  2 2x  3   x  2  2

x  11x  3

x  3, 11

 (x  3)(x  11)  0

x
2
 14x  33  0

x
2
 2x  1  16(x  2)

x  1  4 x  2

 2x  3  x  2  4 x  2  4

 2x  3   x  2  2

 2x  3   x  2  2

S O L U T I O N

Isolate one of the

radicals.

Square both sides.

Isolate the remaining

radical.

Square both sides.
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Solve algebraically and graphically 

How do you choose between algebraic and graphical solution methods? It
depends on the type of solutions desired. If you want to find real and complex
solutions, you must use algebraic methods, as we did in Example 1. If you are
only interested in real solutions, then either method can be used, as in Example 2.
As part of your learning experience, we recommend that you solve each equation
algebraically and, when possible, confirm your solutions graphically.

Equations of the Form ax2p
 bxp

 c 0 
We introduce this topic with an example.

Solving an Equation of the Form ax2p
 bx p

 c 0

Solve x2/3
 x1/3

 6  0.

Method I. Direct solution:

Using the properties of exponents from basic algebra, we write x2 3 as (x1 3)2 and
solve by factoring.

Factor left side.

or

Cube both sides.

Solution set: { 8, 27}

Method II. Using substitution:

Let u  x1/3, solve for u, and then solve for x.

Replacing u with x1/3, we obtain

or

Solution set: { 8, 27}

The graph in Figure 8 confirms these results. [Note: In some graphing utilities you
may have to enter the left side of the equation in the form y1  (x2)1/3

 x1/3
 6

rather than y1  x2/3
 x1/3

 6. Try both forms to see what happens.]

x   8 x  27

x1/3
  2 x1/3

 3

u  3,  2

 (u  3)(u  2)  0

u2
 u  6  0

x   8x  27

(x1/3)3
 ( 2)3(x1/3)3

 33

x1/3
  2x1/3

 3

 (x1/3
 3)(x1/3

 2)  0

 (x1/3)2
 x1/3

 6  0

 2x  5   x  2  5.

 10

 15

5

40

FIGURE 8

y1  x2/3
 x1/3

 6.
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S O L U T I O N

Algebraic Solution

The equation is quadratic in x2. We solve
for x2 and then for x.

or
or

Because we did not raise each side of the
equation to a natural number power, we do
not have to check for extraneous solutions.
(You should still check the accuracy of the
solutions.)

x   ix   2
x

2
  1 x2

 4

 (x2
 4)(x2

 1)  0

 (x2)2
 3x2

 4  0

Graphical Confirmation

Figures 9 and 10 show the two real solutions. The imaginary
solutions cannot be confirmed graphically.

FIGURE 9 FIGURE 10

 10

 5

5

5

 10

 5

5

5

Solve algebraically using both Method I and Method II and confirm graphically
x

1/2
 5x1/4

 6  0.

In general, if an equation that is not quadratic can be transformed to the form

where u is an expression in some other variable, then the equation is called an
equation of quadratic type. Equations of quadratic type often can be solved
using quadratic methods.

au
2
 bu  c  0

E X P L O R E / D I S C U S S  2

Which of the following can be transformed into an equation of quad-
ratic type by making a substitution of the form u  x

n? What is the
resulting quadratic equation?

(A) 3x 4
 2x 2

 7  0 (B) 7x5
 3x2

 3  0

(C) 2x5
 4x2

 6  0 (D)

In general, if a, b, c, m, and n are nonzero real numbers, when can an
equation of the form axm  bx

n
 c  0 be transformed into an equa-

tion of quadratic type?

8x 2 x  5x 1 x  2  0 x

Solving Equations of Quadratic Type

Solve algebraically and confirm graphically, if possible x4
 3x2

 4  0.
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Algebraic Solution

The equation 3x
 2/5
 6x

 1/5
 2  0 is

quadratic in x 1/5. We substitute u  x
 1/5

and solve for u:

Thus, the two solutions are

 0.102414, 74.147586

x   3

3   3 
5

  3   3

3  
 5

x  u
 5

 
3   3

3

u  
6   12

6

 3u
2
 6u  2  0

Graphical Solution

The graph of y1  3x
 2/5
 6x

 1/5
 2 is the thick curve 

in Figure 11. The graph crosses the x axis near x 0
and again near x  75. The solution near x  75 is easily
approximated in this viewing window. The solution near 
the origin can be approximated in the same viewing window,
but more insight is gained by changing the limits on the x
axis (Fig. 12).

FIGURE 11 FIGURE 12

 1.5

 0.1

0.5

2

 1.5

 20

0.5

100

Use the quadratic
formula.

Use a calculator.

Solve algebraically and graphically 3x
 2/5

 x
 1/5

 2  0.

Mathematical Modeling
Examples 6 and 7 illustrate the use of radicals in constructing mathematical models.

Depth of a Well

The splash from a stone dropped into a deep well is heard 5 seconds after the stone
is released (Fig. 13). How deep is the well? Round answer to the nearest foot.

S O L U T I O N

Constructing the Model

The time between the instant the stone is released and the instant the splash is heard
can be broken down into two parts:

t1  Time stone is falling through the air
t2  Time sound travels back to surface

Solve algebraically and confirm graphically, if possible, x4
 3x

2
 4  0.

Solving Equations of Quadratic Type

Solve algebraically and graphically 3x
 2/5

 6x
 1/5

 2  0.

S O L U T I O N
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FIGURE 13

If x is the depth of the well in feet and both times are measured in seconds, then

x  16t1
2 and x  1,100t2

We have used the falling body formula for t1 before. The formula for t2 is based
on the principle that sound travels through air at about 1,100 feet per second.
Solving for t1 and t2, we have

If we combine t1 and t2, we have a model for the total time t between releasing
the stone and hearing the splash in terms of the depth of the well x:

We are asked to find x when t  5 seconds.

t  t1  t2  
 x

4
 

x

1,100

t1  
 x

4

t2  
x

1,100
t

2
1  

x

16

 1,100t2  x16t1
2
 x

Algebraic Solution

Let u x
1 2.

Use the

quadratic

formula.

or  293.724998

Because u  x
1/2 > 0, the second solution is dis-

carded. Thus, 

To the nearest foot

The well is 351 feet deep.

 351

 18.7249982

x  u
2

 18.724998

 
 275   97,625

2

u  
 275   2752

 4( 5,500)

2

u
2
 275u  5,500  0

x  275x1/2
 5,500  0

275 x  x  5,500

 x

4
 

x

1,100
 5

Graphical Solution

Enter and y2  5. To determine the
window variables, examine a table of values (Fig. 14)
with fairly large x values (remember, x is the depth of
the well and wells can be thousands of feet deep).

FIGURE 14 

Now graph y1 and y2 and use intersect (Fig. 15).

FIGURE 15

From Figure 15, we see that the well is 351 feet deep.

0

0

7

600

y1  
 x

4  
x

1,100
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FIGURE 16

FIGURE 17

*Circles are reviewed in Appendix A, Section A.3.

The splash from a stone dropped into a deep well is heard 10 seconds after the
stone is released. How deep is the well? Round answer to the nearest foot.

Design

A window in the shape of a semicircle with radius 20 inches contains a rectan-
gular pane of glass as shown in Figure 16. Round all answers to three significant
digits.

(A) Find a mathematical model for the area of the rectangle. Use one-half the
length of the base of the rectangle for the independent variable in your model.

(B) Find the dimensions of the pane if the area of the pane is 320 square
inches.

(C) Find the dimensions and the area of the largest possible rectangular pane
of glass.

S O L U T I O N S

(A) Place a rectangular coordinate system on the window (Fig. 17). Let x be
one-half the base of the rectangle and y be the height of the rectangle.

Because (x, y) are the coordinates of a point on the circle with radius
20 and center (0, 0), x and y must satisfy the equation of the circle.*

(3)

The area of the rectangle is

Thus, a model for the area is

0  x  20

(B) Solve the equation A(x)  320.

A(x)  2x 400  x2

A  2xy  2x 400  x2

y   400  x2

x2
 y2

 400

x

y

20 20

25

x2   y2   400
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Algebraic Solution

Use the quadratic formula to solve for x2:

or

A check shows that neither solution is
extraneous.

x   320  17.9

x   80  8.94

 80, 320

 
400  240

2

 
400   57,600

2

x2
 

400   4002
 4  25,600

2

x4
 400x2

 25,600  0

 400x2
 x4

 25,600  0

 400x2
 x4

 25,600

x2(400  x2)  25,600

x 400  x2
 160

 2x 400  x2
 320

Now that we have determined the solutions to the equation A(x)  320, we use
equation (3) to find the dimensions of the two rectangles: 

and

and

Recalling that x is one-half the base, the dimensions of the rectangles are 

17.9 inches wide by 17.9 inches high or 35.8 inches wide by 8.94 inches high 

Each solution is illustrated in Figure 22.

y   400  320   80  8.94x   320  17.9

y   400  80   320  17.9x   80  8.94

Graphical Solution

To solve the equation A(x) 320, enter both sides in the equation
editor of a graphing utility (Fig. 18).

FIGURE 18

The values of x must satisfy 0  x  20. Examining a table of
values over this interval suggests that 0  y  500 will produce
a usable window (Fig. 19).

FIGURE 19

Graphing y1 and y2 and using the intersect command shows that
the solutions are x 8.94 (Fig. 20) and x 17.9 (Fig. 21).

FIGURE 20 FIGURE 21

0

0

500

20

0

0

500

20
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3. 4.

5. If x3
 2, then x  8 6. If x1/3

 2, then x  8

( x  1)2
 1  x( x  1  1)2

 xIn Problems 1–6, determine the validity of each statement. If a

statement is false, explain why.

1. 2.  25   5If x2
 5, then x    5

FIGURE 22

(C) Using the maximum command (Fig. 23), the largest rectangle has an
area of 400 square inches when x  14.1 inches. The dimensions of
this rectangle are 28.2 inches wide and 14.2 inches high.

A window in the shape of a semicircle with radius 25 inches contains a rectan-
gular pane of glass as shown in Figure 16 in Example 7. Round all answers to
three significant digits.

(A) Find a mathematical model for the area of the rectangle. Use one-half the
length of the base of the rectangle for the independent variable in your model.

(B) Find the dimensions of the pane if the area of the pane is 500 square inches.

(C) Find the dimensions and the area of the largest possible rectangular pane
of glass.

x

y

20 20

25

35.8 in. by 8.94 in.

x

y

20 20

25

17.9 in. by 17.9 in.

1. x  1  i 2. x  2 3. x  16, 81

4. x  ±1, ±2i 5. x  1, 6. 1,256 feet

7. (A) , 0  x  25
(B) 22.4 inches by 22.4 inches or 44.8 inches by 11.2 inches
(C) 35.4 inches by 17.7 inches, area  625 square inches

A(x)  2x 625  x2

 
243
32

0

0

500

20

FIGURE 23
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Solve Problems 45–48 algebraically and confirm graphically, if

possible.

45.

46.

47. 2  3y 4
 6y 2

48. 4m 2
 2  m 4

Solve Problems 49–52 two ways: by squaring and by substitu-

tion. Confirm graphically, if possible.

 2x  3   x  2   x  1

 5  2x   x  6   x  3

49. 50.

51. 52.

In Problems 53–56, solve algebraically and graphically. Dis-

cuss the advantages and disadvantages of each method.

53.

54.

55. 2x 2/5
 5x 1/5

 1  0

56. x 2/5
 3x 1/5

 1  0

3 x  1  0.05x  2.9

2 x  5  0.01x  2.04

x  15  2 xt  11 t  18  0

y  6   y  0m  7 m  12  0

Solve Problems 29–44 algebraically and confirm graphically, if

possible.

29.

30.

31.

32.

33.

34.  3x  6   x  4   2

 7x  2   x  1   3

 2x  1   x  4  2

 3y  2  3   3y  1

 3t  4   t   3

 u  2  2   2u  3

In Problems 7–12, transform each equation of quadratic type

into a quadratic equation in u and state the substitution used in

the transformation. If the equation is not an equation of quad-

ratic type, say so. 

7. 2x 6
 4x 3

 0 8.

9. 3x3
 4x  9  0 10. 7x 1

 3x 1/2
 2  0

11. 12. 3x3/2
 5x1/2

 12  0

Solve Problems 13–28 algebraically and confirm graphically, if

possible.

13. 14.  4
x  3  2 3

x  5  3

10

9
 

4

x2
 

7

x4
 0

4

7
 

3

x
 

6

x2
 0

15. 16.

17. 18.

19. 20.

21. y4
 2y2

 8  0 22. x4
 7x2

 18  0

23. 24.

25. 2x2/3
 3x1/3

 2  0

26. x2/3
 3x1/3

 10  0

27. (m2
 m)2

 4(m2
 m)  12

28. (x2
 2x)2

 (x2
 2x)  6

x   5x2
 93x   x2

 2

 3w  2   w  2 3x  4  2   x

3   2x  1  0 x  5  7  0

m  13   m  7 5n  9  n  1

35.

36.

37. 3n 2
 11n 1

 20  0 38. 6x 2
 5x 1

 6  0

39. 9y 4
 10y 2

 1  0 40. 4x 4
 17x 2

 4  0

41. y1/2
 3y1/4

 2  0

42. 4x 1
 9x 1/2

 2  0

43. (m  5)4
 36  13(m  5)2

44. (x  3)4
 3(x  3)2

 4

6x   4x2
 20x  17  15

 4x2
 12x  1  6x  9
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57. Geometry. The diagonal of a rectangle is 10 inches and
the area is 45 square inches. Find the dimensions of the
rectangle, correct to one decimal place.

58. Geometry. The hypotenuse of a right triangle is 12 inches
and the area is 24 square inches. Find the dimensions of
the triangle, correct to one decimal place.

59. Physics–Well Depth. If the splash of a stone dropped into
a well is heard 14 seconds after the stone is released, how
deep (to the nearest foot) is the well?

60. Physics–Well Depth. If the splash of a stone dropped into
a well is heard 2 seconds after the stone is released, how
deep (to the nearest foot) is the well?

61. Manufacturing. A lumber mill cuts rectangular beams
from circular logs that are 16 inches in diameter (see the
figure).

(A) Find a model for the cross-sectional area of the
beam. Use the width of the beam as the independent
variable.

(B) If the cross-sectional area of the beam is 120 square
inches, find the dimensions correct to one decimal
place.

(C) Find the dimensions of the beam that has the largest
cross-sectional area and find this area. Round answers
to one decimal place.

62. Design. A food-processing company packages an as-
sortment of their products in circular metal tins 12 inches
in diameter. Four identically sized rectangular boxes are
used to divide the tin into eight compartments (see the
figure).

(A) Find a model for the cross-sectional area of one of
these boxes. Use the width of the box as the inde-
pendent variable.

(B) If the cross-sectional area of the box is 15 square
inches, find the dimensions correct to one decimal
place.

(C) Find the dimensions of the box that has the largest
cross-sectional area and find this area. Round answers
to one decimal place.

63. Construction. A water trough is constructed by bending a
4- by 6-foot rectangular sheet of metal down the middle
and attaching triangular ends (see the figure). If the vol-
ume of the trough is 9 cubic feet, find the width correct to
two decimal places.

64. Design. A paper drinking cup in the shape of a right
circular cone is constructed from 125 square centimeters
of paper (see the figure). If the height of the cone is 10
centimeters, find the radius correct to two decimal
places.

S   r  r2   h2

h

r

Lateral surface area:

2 feet

6 feet
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Solving Inequalities

Solving Linear Inequalities  Solving Inequalities Involving Absolute Value  Solving
Quadratic Inequalities  Mathematical Modeling  Data Analysis and Regression

We now consider techniques for solving various types of inequalities and several
applications that involve inequalities.

Solving Linear Inequalities
Any inequality that can be reduced to one of the four forms in (1) is called a linear
inequality in one variable.

mx  b  0

mx  b  0
Linear Inequalities (1)

mx  b  0

mx  b  0

As was the case with equations, the solution set of an inequality is the set of all
values of the variable that make the inequality a true statement. Each element of
the solution set is called a solution. Two inequalities are said to be equivalent if
they have the same solution set.

E X P L O R E / D I S C U S S  1

Associated with the linear equation and inequalities

3x  12  0 3x  12  0 3x  12  0

is the linear function

f (x)  3x  12

(A) Graph the function f.

(B) From the graph of f describe verbally the values of x for which

f (x)  0 f (x)  0 f (x)  0

(C) How are the answers to part (B) related to the solutions of

3x  12  0 3x  12  0 3x  12  0

As you discovered in Explore/Discuss 1, solving inequalities graphically is
both intuitive and efficient. Algebraic solution methods require an understand-
ing of the algebraic operations that can be performed on an inequality to produce
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Graphical Solution

The graph of f(x)  0.5x  1 is shown in Figure 1.
We see from the graph that f(x) is negative to the left
of  2 and positive to the right. Thus, the solution set
of 0.5x  1  0 is x   2 or (  , 2].

FIGURE 1

 10

 10

10

10

Solve 2x  6  0.

T H E O R E M  1
Inequality Properties

An equivalent inequality will result and the sense or direction will remain
the same if each side of the original inequality
1. Has the same real number added to or subtracted from it
2. Is multiplied or divided by the same positive number
An equivalent inequality will result and the sense or direction will reverse
if each side of the original inequality
3. Is multiplied or divided by the same negative number
Note: Multiplication by 0 and division by 0 are not permitted.

Thus, we can perform essentially the same operations on inequalities that we
perform on equations, with the exception that the sense or direction of the
inequality reverses if we multiply or divide both sides by a negative number.
Otherwise the sense or direction of the inequality does not change.

Solving a Linear Inequality

Solve 0.5x  1  0.

S O L U T I O N

an equivalent inequality. The necessary facts are summarized in Theorem 1. (See
Appendix A, Section A.1 for more information on inequalities and interval
notation.)

Algebraic Solution

0.5x  1  0

0.5x  1 – 1  0 – 1 Add  1 to both sides.

0.5x   1

Divide both sides by 0.5.

x   2 o r(  , 2]

0.5x

0.5
 
 1

0.5
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Solve  3  7  2x  7.

Solving Inequalities Involving Absolute Value

E X P L O R E / D I S C U S S  2

Recall the definition of the absolute value function (see Section 1.3)

f (x)   x   x

 x

if x  0

if x   0

Algebraic Solution

To solve algebraically, we perform operations on the com-
bined inequality until we have isolated x in the middle with a
coefficient of 1.

 3  4  7x  18

 3 – 4  4  7x – 4  18 – 4 Subtract 4 from each

member.

 7   7x  14

Divide each member by  7 and

reverse each inequality.

1  x   2 or  2  x  1 o r( 2, 1] (2)

 7

–7
 
 7x

–7
 

14

–7

Graphical Solution

Enter y1   3, y2  4  7x, y3  18, and
find the intersection points (Fig. 2 and 
Fig. 3). It is clear from the graph that y2 is
between y1 and y3 for x between  2 and 1.
Because y2   3 at x  1, we include 1 in
the solution set, obtaining the same solu-
tion as shown in (2).

FIGURE 2

FIGURE 3

 15

 5

30

5

 15

 5

30

5

S O L U T I O N

Solving Combined Inequalities

Solve  3  4  7x  18.
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The absolute value function has a geometric interpretation that is useful for
solving inequalities. The distance between the point P  (x, 0) and the origin
O  (0, 0) is (see Appendix A, Section A.3)

  x 

Thus,  x can be interpreted as the distance between the point with coordinates
(x, 0) and the origin. That is,

 x  p is equivalent to x  p or x   p

 x  p is equivalent to  p  x  p

 x  p is equivalent to x   p or x  p

More generally, we have Theorem 2.
 p 0 p

x) (

x

 p 0 p

)(

x

 p 0 p

  x2

d(P, O)   (x  0)2
 (0  0)2

Solving Inequalities Involving Absolute Value

Solve and write the solution in both inequality and interval notation for 
 2x  1  3.

T H E O R E M  2
Geometric Interpretation of Absolute Value

For p  0
1.  ax  b  p is equivalent to  p  ax  b  p.
2.  ax  b  p is equivalent to ax  b  p or ax  b   p.
3.  ax  b  p is equivalent to ax  b   p or ax  b  p.

(A) Graph the absolute value function f(x)  |x| and the constant func-
tion g(x)  3 in the same viewing window.

(B) From the graph in part A, determine the values of x for which:

|x|  3 |x|  3 |x|  3

(C) Find all the points with coordinates (x, 0) that are

Less than three units from the origin

Exactly three units from the origin

More than three units from the origin

(D) Compare the solutions found in parts (B) and (C).
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Geometric Solution

The solution is the set of points x for
which 2x  1 is less than three units
from the origin. Thus,

 3  2x  1  3

 3  1  2x  1  1  3  1

 2  2x  4

 1  x  2 o r( 1, 2)

 2

2
 

2x

2
 

4

2

Graphical Solution

Enter y1   2x  1 and y2  3 and use intersect to find the inter-
section points (Fig. 4 and Fig. 5).

FIGURE 4 FIGURE 5 

Examining these graphs, we see that the graph of y1 is below the
graph of y2 for  1  x  2.

 2

 2

5

4

 2

 2

5

4

S O L U T I O N

Solve  2x  1  5.

Solving an Inequality Involving Absolute Value

Solve and express the answer in both inequality and interval notation for
 4x  5  2.

Geometric Solution

The solution is the set of points x for which 
4x  5 is two or more units from the origin.
Thus,

4x  5   2 or 4x  5  2

4x  3 or 4x  7

or

The solution set is

{x|x  0.75 or x  1.75}

 {x|x  0.75}  {x|x  1.75}

 ( , 0.75]  [1.75, )* (3)  

x  
7

4
 1.75x  

3

4
 0.75

Graphical Solution

Enter y1   4x 5 and y2  2 and find the intersection points
(Fig. 6 and Fig. 7).

FIGURE 6 FIGURE 7

Examining these graphs, we see that if x 0.75 or x 1.75,
then the graph of y1 is on or above the graph of y2. This is the
same solution given in (3).

 2

 2

5

4

 2

 2

5

4

*The symbol  denotes the union operation for sets. See Appendix A,

Section A.1, for a discussion of interval notation and set operations.

S O L U T I O N
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Solve and express the answer in both inequality and interval notation for 
| x  1| 2. 
2
3

Solving Quadratic Inequalities

E X P L O R E / D I S C U S S  3

Graph f (x)  (x  2)(x  3) and examine the graph to determine the
solutions of the following inequalities:

(A) f (x)  0 (B) f (x)  0 (C) f (x)  0 (D) f (x)  0

Discuss algebraic methods that might be used to solve quadratic
inequalities.

An inequality involving a quadratic function is called a quadratic inequality.
One algebraic technique for solving quadratic inequalities involves factoring and
the following theorem.

T H E O R E M  3
Products of Real Numbers

If a and b are real numbers, then
ab  0 if and only if a and b have the same sign
ab  0 if and only if a and b have opposite sign

Solving a Quadratic Inequality

Solve and express the answer in interval notation for x2
 x  12  0.

S O L U T I O N

Algebraic Solution

Factor the quadratic expression and consider
two cases

x2
 x  12  (x  4)(x 3)  0

Graphical Solution

Enter y1 x2
 x 12. Using the zero command we see that

y1 0 at x  3 (Fig. 8) and at x 4 (Fig. 9).
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Case 1: x 4 0 and x 3 0

x  4 x   3

Because both conditions must be satisfied, we
conclude that the solution for this case is (4,  ).

Case 2: x 4 0 and x 3 0

x  4 x   3

In this case, we conclude that the solution is
(  , 3). Combining the two cases, we have
the solution:

(  , 3) (4,  ) 

FIGURE 8 FIGURE 9

The graph of y1 is above the x axis for x  3 and also for 
x 4. Thus, the solution to the inequality y1 0 is

(  ,  3)   (4,  )

 15

 10

15

10

 15

 10

15

10

Solve and express the answer in interval notation for x2
 x  6  0.

Mathematical Modeling

Projectile Motion

A projectile propelled straight upward from the ground reaches a maximum height of
576 feet above ground level after 6 seconds. Let the quadratic function d(t) represent
the distance above ground level (in feet) t seconds after the projectile is released.

(A) Find d(t).

(B) At what times will the projectile be more than 320 feet above the ground?
Express the answer in inequality notation.

S O L U T I O N S

(A) Because the quadratic distance function d has a maximum value of
576 at t  6, the vertex form for d(t) is

d(t)  a(t  6)2
 576

To determine a we use the fact that d(0)  0.

d(0)  a( 6)2
 576  0

36a   576

a   16

Thus, the model for the flight of this projectile is

d(t)   16(t  6)2
 576

  16t2
 192t
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(B) To determine the times when the projectile is higher than 320 feet, we
solve the inequality

d(t)   16t2
 192t  320

Algebraic Solution

 16t2
 192t  320

 16t2
 192t  320  0

 0

t2
 12t  20  0

(t  2)(t 10)  0

Case 1: t 2 0 and t  10  0

t 2 and t  10

2  t  10

Case 2: t 2 0 and t  10  0

t 2 and t  10

No solution

Thus, the projectile is above 320 feet for 2  t  10.

 16t2

–16
 

192t

–16
 

320

–16

Divide each side by  16

and reverse the direction

of the inequality.

Graphical Solution

Graph y1  16x2
 192x and y2 320 and

find the intersection points (Fig. 10 and Fig. 11).

FIGURE 10

FIGURE 11

From these graphs we see that the projectile 
will be above 320 feet for 2  t  10.

0

0

600

12

0

0

600

12

Refer to the projectile equation in Example 6. At what times during its flight will
the projectile be less than 432 feet above the ground? Express the answer in inequal-
ity notation.

Data Analysis and Regression

Break-Even, Profit, and Loss

A paint manufacturer has weekly fixed costs of $40,000 and variable costs of
$6.75 per gallon produced. Examining past records produces the price–demand
data in Table 1 on page 218. Round all numbers to three significant digits.

(A) Use linear regression to find the price–demand equation p  d(x) for the
data in Table 1. What is the domain of d(x)?
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(B) Find the revenue and cost functions as functions of the sales x. What is the
domain of each function?

(C) Find the level of sales for which the company will break even. Describe
verbally and graphically the sales levels that result in a profit and those
that result in a loss.

(D) Find the sales and the price that will produce the maximum profit. Find
the maximum profit.

S O L U T I O N S

(A) Enter the data in Table 1 and select the LinReg(ax b) option (Fig. 12).

After rounding, the price–demand equation is

p  d(x)  51.0  0.00553x

Because price is always nonnegative, x must satisfy

51.0  0.00553x  0

51  0.00553x

To three significant digits

Because sales are also nonnegative, the domain of the price–demand
equation is 0  x  9,220.

(B) The revenue function is

R(x)  xp

 x(51  0.00553x)

 51x  0.00553x2 0  x  9,220

Note that the domain of R is the same as the domain of d. The cost
function is

C(x)  40,000  6.75x x  0

(C) The company will break even when revenue  cost, that is, when
R(x)  C(x). An intersection point on the graphs of R and C is often
referred to as a break-even point. Graphs of both functions and their
intersection points are shown in Figures 13 and 14.

Examining these graphs, we see that the company will break even if
they sell 1,040 or 6,960 gallons of paint. If they sell between 1,040
and 6,960 gallons, then revenue is greater than cost and the company
will make a profit. If they sell fewer than 1,040 or more than 6,960
gallons, then cost is greater than revenue and the company will lose
money. These sales levels are illustrated in Figure 15.

x  
51

0.00553
 9,220

0

0

150,000

9,220

0

0

150,000

9,220

FIGURE 13

FIGURE 14

T A B L E  1 Price–Demand Data

Weekly Sales Price per Gallon

5,610 $20.50

5,810 $18.70

5,990 $17.90

6,180 $16.20

6,460 $15.40

6,730 $13.80

6,940 $12.90

FIGURE 12
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T A B L E  2 Price–Demand Data

Weekly Sales Price per Gallon

5,470 $18.80

5,640 $17.30

5,910 $15.90

6,150 $14.10

6,380 $13.30

6,530 $12.40

6,820 $10.80

(D) The profit function for this manufacturer is

P(x)  R(x)  C(x)

 (51x  0.00553x2)  (40,000  6.75x)

 44.25x  0.00553x2
 40,000

To find the largest profit, enter y1  P(x) and use the maximum com-
mand (Fig. 16).

Thus, the maximum profit of $48,500 occurs when 4,000 gallons
of paint are sold at a price of

p  d(4,000)  51  0.00553(4,000)

 $28.90

A paint manufacturer has weekly fixed costs of $50,000 and variable costs of
$7.50 per gallon produced. Examining past records produces the price–demand
data in Table 2. Round all numbers to three significant digits.

(A) Use linear regression to find the price–demand equation p  d(x) for the
data in Table 2. What is the domain of d(x)?

(B) Find the revenue and cost functions as functions of the sales x. What is the
domain of each function?

(C) Find the level of sales for which the company will break even. Describe
verbally and graphically the sales levels that result in a profit and those
that result in a loss.

(D) Find the sales and the price that will produce the maximum profit. Find
the maximum profit.

5,000 10,000
x

y

50,000

100,000

150,000

1,040 6,960

Break-even points

Loss LossProfit

y   R(x)   51x   0.00553x2

C(x)   40,000   6.75x

 125,000

0

50,000

9,220

FIGURE 16

FIGURE 15



Use the graphs of functions u and v in the figure to solve the

inequalities in Problems 1–8. (Assume the graphs continue as

indicated beyond the portions shown here.) Express solutions

in interval notation. 

1. u(x)  0 2. v(x)  0

3. v(x)  u(x) 4. v(x)  0

5. u(x)  0 6. u(x)  v(x)  0

7. v(x)  u(x)  0 8. v(x)  u(x)

In Problems 9–16, write each statement as an absolute value

inequality.

9. x is less than five units from 3.

x

y

y   u(x)

y   v(x)

e fdc

b

a
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1. x  3 or [3,  )
2. 0  x  5 or [0, 5)
3.  3  x  2 or ( 3, 2)
4. x   4.5 or x  1.5;

(  ,  4.5] [1.5,  )
5. (  ,  2) (3,  )
6. 0  t  3 or 9  t  12
7. (A) p  d(x)  50.0  0.00577x

0  x  8,670
(B) R(x)  50x  0.00577x2

0  x  8,670
C(x)  50,000  7.5x

x  0
(C) The company will break even if

they sell 1,470 or 5,900 gallons
of paint. If they sell between
1,470 and 5,900 gallons, then
revenue is greater than cost and
the company will make a profit.
If they sell fewer than 1,470 or

 

 

more than 5,900 gallons, then cost is greater than revenue and the company will
lose money.

(D) The company will make a maximum profit of $28,300 when they sell 
3,680 gallons at $28.80 per gallon.

10,000
x

y

50,000

100,000

150,000

1,470 5,900

Break-even
points

Loss LossProfit

y   R(x)   50x   0.00577x2

C(x)   50,000   7.5x

10. w is more than four units from 2.

11. y is more than six units from  1.

12. z is less than eight units from  2.

13. a is no more than five units from 3.

14. c is no less than seven units from  4.

15. d is no less than four units from  2.

16. m is no more than six units from 1.

Solve Problems 17–30 and write answers in both interval and

inequality notation. 

17. 7x  8  4x  7 18. 4x  8  x  1

19.  5t   10 20.  7n  21

21. 3  m  4(m  3) 22. 2(1  u)  5u

23. x2
 10  3x 24. x2

 x  12

25. x2
 21  10x 26. x2

 7x  10  0

27. x2
 8x 28. x2

 6x  0

29. x2
 5x  0 30. x2

 4x



59.  0.2u  1.7  0.5 60.  0.5v  2.5  1.6

61. Discuss the possible signs of the numbers a and b given that

(A) ab  0 (B) ab  0

(C) (D)

62. Discuss the possible signs of the numbers a, b, and c given
that

(A) abc  0 (B)

(C) (D)

In Problems 63–66, replace each question mark with  or  

and explain why your choice makes the statement true.

63. If a  b  1, then a ? b.

64. If u  v   2, then u ? v.

65. If a  0, b  0, and , then a ? b.

66. If a  0, b  0, and , then a ? b.
b

a
  1

b

a
  1

a2

bc
  0

a

bc
  0

ab

c
  0

a

b
  0

a

b
  0
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Problems 67–70 are calculus related. Solve and write answers

in interval notation.

67. 0   x  3  0.1 68. 0   x  5  0.01

69. 0   x  c  2c, c  0 70. 0   x  2c  c, c  0

In Problems 71–74, use the given information concerning the

roots of the quadratic equation ax2
 bx  c  0 to describe

the possible solution sets for the indicated inequality. Illustrate

your conclusions with specific examples.

71. ax2
 bx  c  0, given distinct real roots r1 and r2 with

r1  r2.

72. ax2
 bx  c  0, given distinct real roots r1 and r2 with

r1  r2.

73. ax2
 bx  c  0, given one (double) real root r.

74. ax2
 bx  c  0, given one (double) real root r.

75. Give an example of a quadratic inequality whose solution
set is the entire real line.

76. Give an example of a quadratic inequality whose solution
set is the empty set.

In Problems 31–42, interpret each inequality geometrically

and solve. Write answers in both interval and inequality

notation.

31.  y  7 32.  t  5 33.  w  7

34.  r  5 35.  s  5  3 36.  t  3  4

37.  s  5  3 38.  t  3  4 39.  u  8  3

40.  x  1  5 41.  u  8  3 42.  x  1  5

Solve Problems 43–60 and write answers in both interval and

inequality notation. 

43.  4  5t  6  21 44. 2  3m  7  14

45. 46.

47. 48.

49. x2
 1  2x 50. x2

 25  10x

51. x2
 4x  3 52. x2

 8  2x

53. x2
 21  4x 54. x2

 13x  40   0

55.  3x  7  4 56.  5y  2  8

57.  4  2t  6 58.  10  4s  6

p

3
 

p  2

2
 

p

4
 4

q

7
 3  

q  4

3
 1

24  
2

3
(x  5)   36 12  

3

4
 (2  x)  24
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77. Approximation. The area A of a region is approximately
equal to 12.436. The error in this approximation is less than
0.001. Describe the possible values of this area both with
an absolute value inequality and with interval notation.

78. Approximation. The volume V of a solid is approximately
equal to 6.94. The error in this approximation is less than
0.02. Describe the possible values of this volume both with
an absolute value inequality and with interval notation.

79. Break-Even Analysis. An electronics firm is planning to
market a new graphing calculator. The fixed costs are
$650,000 and the variable costs are $47 per calculator. The
wholesale price of the calculator will be $63. For the com-
pany to make a profit, revenues must be greater than costs.

(A) How many calculators must be sold for the company
to make a profit?

(B) How many calculators must be sold for the company
to break even?

(C) Discuss the relationship between the results in parts A
and B.

80. Break-Even Analysis. A video game manufacturer is plan-
ning to market a 64-bit version of its game machine. The
fixed costs are $550,000 and the variable costs are $120 per
machine. The wholesale price of the machine will be $140.

(A) How many game machines must be sold for the com-
pany to make a profit?

(B) How many game machines must be sold for the com-
pany to break even?

(C) Discuss the relationship between the results in parts A
and B.

81. Break-Even Analysis. The electronics firm in Problem 79
finds that rising prices for parts increase the variable costs
to $50.50 per calculator.

(A) Discuss possible strategies the company might use to
deal with this increase in costs.

(B) If the company continues to sell the calculators for
$63, how many must they sell now to make a profit?

(C) If the company wants to start making a profit at the
same production level as before the cost increase, how
much should they increase the wholesale price?

82. Break-Even Analysis. The video game manufacturer in
Problem 80 finds that unexpected programming problems
increase the fixed costs to $660,000.

(A) Discuss possible strategies the company might use to
deal with this increase in costs.

(B) If the company continues to sell the game machines for
$140, how many must they sell now to make a profit?

(C) If the company wants to start making a profit at the
same production level as before the cost increase, how
much should they increase the wholesale price?

83. Significant Digits. If N  2.37 represents a measurement,
then we assume an accuracy of 2.37  0.005. Express the
accuracy assumption using an absolute value inequality.

84. Significant Digits. If N  3.65  10 3 is a number from
a measurement, then we assume an accuracy of 
3.65  10 3

 5  10 6. Express the accuracy assump-
tion using an absolute value inequality.

85. Profit Analysis. A screen printer produces custom silk-
screen apparel. The cost C(x) of printing x custom T-shirts
and the revenue R(x) from the sale of x T-shirts (both in
dollars) are given by

C(x)  200  2.25x

R(x)  10x  0.05x2

Determine the production levels x (to the nearest integer)
that will result in the printer showing a profit.

86. Profit Analysis. Refer to Problem 85. Determine the pro-
duction levels x (to the nearest integer) that will result in
the printer showing a profit of at least $60.

87. Celsius/Fahrenheit. A formula for converting Celsius de-
grees to Fahrenheit degrees is given by the linear function

Determine to the nearest degree the Celsius range in tempera-
ture that corresponds to the Fahrenheit range of 60 F to 80 F.

88. Celsius/Fahrenheit. A formula for converting Fahrenheit
degrees to Celsius degrees is given by the linear function

Determine to the nearest degree the Fahrenheit range in tem-
perature that corresponds to a Celsius range of 20 C to 30 C.

89. Projectile Motion. A projectile propelled straight upward
from the ground reaches a maximum height of 256 feet
above ground level after 4 seconds. Let the quadratic func-
tion d(t) represent the distance above ground level (in feet)
t seconds after the projectile is released. 

C  
5

9
 (F  32)

F  
9

5
C  32
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the form of oil, gas, or heat. A bore at Windischeschen-
bach in the North German basin has reached a depth of
more than 8 kilometers. The temperature in the bore is
30 C at a depth of 1 kilometer and increases 2.8 C for
each additional 100 meters of depth. Find a mathematical
model for the temperature T at a depth of x kilometers. At
what interval of depths will the temperature be between
150 C and 200 C? Round answers to three decimal
places.

92. Earth Science. A bore at Basel, Switzerland, has reached
a depth of more than 5 kilometers. The temperature is
35 C at a depth of 1 kilometer and increases 3.6 C for
each additional 100 meters of depth. Find a mathematical
model for the temperature T at a depth of x kilometers. At
what interval of depths will the temperature be between
100 C and 150 C? Round answers to three decimal places.

(A) Find d(t).

(B) At what times will the projectile be more than 240 feet
above the ground? Express the answer in inequality
notation.

90. Projectile Motion. A projectile propelled straight upward
from the ground reaches a maximum height of 784 feet
above ground level after 7 seconds. Let the quadratic func-
tion d(t) represent the distance above ground level (in feet)
t seconds after the projectile is released. 

(A) Find d(t).

(B) At what times will the projectile be less than 640 feet
above the ground? Express the answer in inequality
notation.

91. Earth Science. Deeper and deeper holes are being bored
into the Earth’s surface every year in search of energy in

T A B L E  3 Upper-Air Weather Data

North Platte, NE Minneapolis, MN
PRES HGT TEMP PRES HGT TEMP

745 2,574 8 756 2,438 2

700 3,087 5 728 2,743 0

627 3,962  1 648 3,658  4

559 4,877  8 555 4,877  10

551 4,992  8 500 5,680  17

476 6,096  16 400 7,330  28

404 7,315  24 367 7,944  32

387 7,620  27 300 9,330  45

300 9,410  43 250 10,520  55

259 10,363  49 241 10,751  57

Source: NOAA Air Resources Laboratory

*A unit of pressure equivalent to 1 millibar.

Twice each day 70 weather stations in the United States re-

lease high-altitude balloons containing instruments that send

various data back to the station. Eventually, the balloons burst

and the instruments parachute back to Earth to be reclaimed.

The air pressure (in hectopascals*), the altitude (in meters),

and the temperature (in degrees Celsius) collected on the same

day at two midwestern stations are given in Table 3. Round all

numbers to three significant digits.

93. Weather. Let x be the altitude of the balloon released
from North Platte and let y be the corresponding tempera-
ture. Use linear regression to find a linear function 

y  ax  b that fits these data. For what altitudes will the

temperature be between  10 C and  30 C?

94. Weather. Let x be the altitude of the balloon released from
Minneapolis and let y be the corresponding temperature.
Use linear regression to find a linear function y ax b

that fits these data. For what altitudes will the temperature

be between  20 C and  40 C?

95. Weather. Let x be the altitude of the balloon released from
North Platte and let y be the corresponding air pressure. Use
linear regression to find a linear function y ax b that
fits these data. For what altitudes will the air pressure be be-

tween 350 hectopascals and 650 hectopascals?

96. Weather. Let x be the altitude of the balloon released from
Minneapolis and let y be the corresponding air pressure.
Use linear regression to find a linear function y ax b

that fits these data. For what altitudes will the air pressure

be between 350 hectopascals and 650 hectopascals?

97. Break-Even Analysis. Table 4 on page 224 contains
weekly price–demand data for orange juice and grapefruit
juice for a fruit juice producer. The producer has weekly
fixed cost of $20,000 and variable cost of $0.50 per gallon

of orange juice produced.

(A) Use linear regression to find the price–demand equa-

tion p  d(x) for the orange juice data in Table 4.
What is the domain of d(x)?

(B) Find the revenue and cost functions as functions of the
sales x. What is the domain of each function?

(C) Find the level of sales for which the company will break
even. Describe verbally and graphically the sales levels
that result in a profit and those that result in a loss.



98. Break-Even Analysis. The juice producer in Problem 97
has weekly fixed cost of $3,000 and variable cost of $0.40
per gallon of grapefruit juice produced.

(A) Use linear regression to find the price–demand equa-
tion p  d(x) for the grapefruit juice data in Table 4.
What is the domain of d(x)?

(B) Find the revenue and cost functions as functions of the
sales x. What is the domain of each function?

(C) Find the level of sales for which the company will
break even. Describe verbally and graphically the
sales levels that result in a profit and those that result
in a loss.

(D) Find the sales and the price that will produce the maxi-
mum profit. Find the maximum profit.

(D) Find the sales and the price that will produce the maxi-
mum profit. Find the maximum profit.
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T A B L E  4 Fruit Juice Production

Orange Juice Grapefruit Juice
Demand Demand
(Gal.) Price (Gal.) Price

21,800 $1.95 2,130 $2.32

24,300 $1.81 2,480 $2.21

26,700 $1.43 2,610 $2.07

28,900 $1.37 2,890 $1.87

29,700 $1.28 3,170 $1.81

33,700 $1.14 3,640 $1.68

34,800 $0.96 4,350 $1.56

2.2 Linear Equations 
and Models

An equation that is true for all permissible values of the vari-
able is called an identity. An equation that is true for some val-
ues of the variable and false for others is called a conditional
equation. An equation that is false for all permissible values
of the variable is called a contradiction. Linear regression is
used to fit a curve to a data set. A scatter diagram is a graph
of a data set. Diagnostics indicate how well a curve fits a data
set. Supply and demand curves intersect at the equilibrium
point, which consists of the equilibrium price and equilib-
rium quantity.

2.3 Quadratic Functions
If a, b, and c are real numbers with a  0, then the function
f(x)  ax2

 bx  c is a quadratic function and its graph is a
parabola. Completing the square of the quadratic expression
x2
 bx produces a perfect square:

Completing the square for f(x)  ax2
 bx  c produces the

vertex form f(x)  a(x  h)2
 k and the following properties:

x2
 bx   b2 

2

  x  b

2 
2

2.1 Linear Functions
A function f is a linear function if f(x) mx b, m  0, where m
and b are real numbers. The domain is the set of all real numbers
and the range is the set of all real numbers. If m 0, then f is called
a constant function, f(x) b, which has the set of all real numbers
as its domain and the constant b as its range. The standard form
for the equation of a line is Ax  By  C, where A, B, and C are
real constants, and A and B are not both 0. Every straight line in a
Cartesian coordinate system is the graph of an equation of this
type. The slope of the line through the points (x1, y1) and (x2, y2) is

The slope is not defined for a vertical line where x1  x2.

Equations of a Line

m  
y2  y1

x2  x1

  x1  x2

Standard Form Ax  By  C A and B not both 0
Slope–Intercept Form y  mx  b Slope: m; y intercept: b

Point–Slope Form y y1 m (x x1) Slope: m; Point: (x1, y1)
Horizontal Line y  b Slope: 0
Vertical Line x  a Slope: Undefined

Two nonvertical lines with slopes m1 and m2 are parallel if and
only if m1  m2 and perpendicular if and only if m1m2   1.
Slope can be interpreted as a rate of change or an average rate
of change. The y intercept of a linear cost function is called the
fixed cost and the slope is called the variable cost.
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1. The graph of f is a parabola:

2. Vertex: (h, k) (Parabola increases on one side of the
vertex and decreases on the other.)

3. Axis (of symmetry): x  h (parallel to y axis)
4. f(h)  k is the minimum if a  0 and the maximum if 

a  0.
5. Domain: All real numbers

Range: (  , k] if a  0 or [k,  ) if a  0
6. The graph of f is the graph of g(x)  ax2 translated

horizontally h units and vertically k units.

7.

2.4 Complex Numbers
A complex number in standard form is a number in the form
a  bi where a and b are real numbers and i is the imaginary
unit. If b  0 then a  bi is also called an imaginary number.
If a 0 then 0  bi bi is also called a pure imaginary num-
ber. If b  0 then a  0i  a is a real number. The complex

h   
b

2a
, k  c  

b2

4a

x

f(x)

k

h

Axis
x   h

Vertex (h, k)

Max f(x)

a   0
Opens downward

x

f(x)

k

h

Axis
x   h

Vertex (h, k)

Min f(x)

a   0
Opens upward

zero is 0  0i  0. The conjugate of a  bi is a  bi. Equal-
ity, addition, and multiplication are defined as follows:

1. a  bi  c  di if and only if a  c and b  d

2. (a  bi)  (c  di)  (a  c)  (b  d)i
3. (a  bi)(c  di)  (ac  bd)  (ad  bc)i

Because complex numbers obey the same commutative, asso-
ciative, and distributive properties as real numbers, most opera-
tions with complex numbers are performed by using these prop-
erties and the fact that i

2
  1. The property of conjugates,

(a  bi)(a  bi)  a2
 b2

can be used to find reciprocals and quotients. If a 0, then the
principal square root of the negative real number  a is

2.5 Quadratic Equations 
and Models

A quadratic equation is an equation that can be written in the
form 

ax2
 bx  c  0 a  0

where x is a variable and a, b, and c are constants.
Algebraic methods of solution include:

1. Factoring and using the zero property:
m n  0 if and only if m  0 or n  0 (or both)

2. Completing the square and using the square root 
property:

If A is a complex number, C is a real number, and 
A2
  C, then 

3. Using the quadratic formula:

If the discriminant b
2
 4ac is positive, the equation has two

distinct real roots; if the discriminant is 0, the equation has one
real double root; and if the discriminant is negative, the equa-
tion has two imaginary roots, each the conjugate of the other.

2.6 Additional Equation–
Solving Techniques

A radical can be eliminated from an equation by isolating the
radical on one side of the equation and raising both sides of the
equation to the same natural number power to produce a new
equation. The solution set of the original equation is a subset of

x  
 b   b2

 4ac

2a

A    C.

 

  a  i a.



1. Has the same real number added to or subtracted from it.
2. Is multiplied or divided by the same positive number.

An equivalent inequality will result and the sense or direc-
tion will reverse if each side of the original inequality:

3. Is multiplied or divided by the same negative number.

Note that multiplication by 0 and division by 0 are not permitted.
The absolute value function  x can also be interpreted as the
distance between x and the origin. More generally, for p  0:

1.  ax  b  p is equivalent to  p  ax  b  p.
2.  ax  b  p is equivalent to ax  b  p or ax  b   p.
3.  ax  b  p is equivalent to ax  b   p or ax  b  p.

Quadratic inequalities are solved by factoring and considering
cases based on the fact that ab  0 if and only if a and b have
the same sign and ab  0 if and only if a and b have opposite
signs. A break-even point is an intersection point for the graphs
of a cost and a revenue equation.

the solution set of the new equation. The new equation may have
extraneous solutions that are not solutions of the original equa-
tion. Consequently, every solution of the new equation must
be checked in the original equation to eliminate extraneous
solutions. If an equation contains more than one radical, then
the process of isolating a radical and raising both sides to the
same natural number power can be repeated until all radicals are
eliminated. If a substitution transforms an equation into the
form au2

 bu  c  0 where u is an expression in some other
variable, then the equation is an equation of quadratic type,
which can be solved by quadratic methods.

2.7 Solving Inequalities
Linear inequalities in one variable are expressed using the in-
equality symbols  ,  ,  ,  . The solution set of an inequality
is the set of all values of the variable that make the inequality a true
statement. Each element of the solution set is called a solution.
Two inequalities are equivalent if they have the same solution set.
An equivalent inequality will result and the sense or direction will
remain the same if each side of the original inequality:
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3. Write an equation of a line with x intercept 6 and y inter-
cept 4. Write the final answer in the form Ax  By  C,
where A, B, and C are integers with A  0.

4. Write the slope intercept form of the equation of the line
with slope and y intercept 2.

5. Write the equations of the vertical and horizontal lines pass-
ing through the point ( 3, 4). What is the slope of each?

6. Solve algebraically and confirm graphically:
(A) 0.05x  0.25(30  x)  3.3

(B)
5x

3
 

4  x

2
 

x  2

4
 1

 
2
3

1. Use the graph of the linear function in the figure to find
the rise, run, and slope. Write the equation of the line in
the form Ax  By  C, where A, B, and C are integers
with A  0. (The horizontal and vertical line segments
have integer lengths.)

2. Graph 3x  2y  9 and indicate its slope.

 4

 6

4

6

Work through all the problems in this chapter review and check answers in the back of the book. 

Answers to most review problems are there, and following each answer is a number in italics indi-

cating the section in which that type of problem is discussed. Where weaknesses show up, review

appropriate sections in the text.



In Problems 7 and 8,

(A) Complete the square and find the vertex form of the 

function.

(B) Write a brief verbal description of the relationship between

the graph of the function and the graph of y  x2.

(C) Find the x intercepts algebraically and confirm

graphically.

7. f(x)   x2
  2x  3 8. f(x)  x2

  3x  2

9. Perform the indicated operations and write the answers in
standard form:
(A) ( 3 2i) (6 8i) (B) (3 3i)(2 3i)

(C)

In Problems 10–18, solve algebraically and confirm graphi-

cally, if possible.

10. (x  3)(x  5)  (x  2)(x  6)

11. x2
 x  (x  4)(x  5)  20

13  i

5  3i

12. x2
 2x  3  x2

 3x  7

13. 2x2
 7  0 14. 2x2

 4x

15. 2x2
 7x  3 16. m2

 m  1  0

17. 18.

In Problems 19–21, solve and express answers in inequality 

and interval notation.

19. 3(2  x)  2  2x  1

20. x2
 x  20 21. x2

 4x  12

22. Discuss the use of the terms rising, falling, increasing,

and decreasing as they apply to the descriptions of the
following:
(A) A line with positive slope
(B) A line with negative slope
(C) A parabola that opens upward
(D) A parabola that opens downward

 5x  6  x  0y2
 

3
2( y  1)
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23. Find an equation of the line through the points ( 4, 3) and
(0,  3). Write the final answer in the form Ax By  C,
where A, B, and C are integers with A  0.

24. Write the slope–intercept form of the equation of the line
that passes through the point ( 2, 1) and is
(A) parallel to the line 6x  3y  5
(B) perpendicular to the line 6x  3y  5

In Problems 25–27, solve each inequality. Write answers in 

inequality notation.

25. 26.

27.

In Problems 28 and 29, interpret each inequality geometrically

and solve. Write answers in both interval and inequality notation. 

28. 29.

For each equation in Problems 30 32, use the discriminant to

determine the number and type of zeros and confirm graphically.

30. 0.1x2
 x  1.5  0 31. 0.1x2

 x  2.5  0

 t  6   9 y  5  2

 (1  2m)2
 3

 2x  8  3 y  9   5

32. 0.1x2
 x  3.5  0

33. Let f(x)  0.5x2
 4x  5.

(A) Sketch the graph of f and label the axis and the vertex.
(B) Where is f increasing? Decreasing? What is the

range? (Express answers in interval notation.)

34. Find the equations of the linear function g and the quad-
ratic function f whose graphs are shown in the figure.
This line is called the tangent line to the graph of f at the
point ( 1, 0).

x

y

 5 5 5

 5

5

y   g(x)

y   f(x)



(A) x y (B) x y

3 1 1 3
4 3 3 4

45. Can a quadratic function have only imaginary zeros? If
not, explain why. If so, give an example and discuss any
special relationship between the zeros.

46. If a quadratic function has only imaginary zeros, can the
function be graphed? If not, explain why. If so, what is
the graph’s relationship to the x axis?

47. Consider the quadratic equation

x2
 6x  c  0

where c is a real number. Discuss the relationship be-
tween the values of c and the three types of roots listed in
Table 1 in Section 2.5.

Solve Problems 48 and 49 for the indicated variable in terms of

the other variables.

48. P  M  Mdt for M (mathematics of finance)

49. P  EI RI 2 for I (electrical engineering)
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35. Perform the indicated operations and write the final
answers in standard form:
(A) (3  i)2

 2(3  i)  3 (B) i27

36. Convert to a  bi forms, perform the indicated opera-
tions, and write the final answers in standard form:
(A)

(B) (C)

(D)

Solve Problems 37–42 algebraically and confirm graphically, if

possible.

37. 38.

39.

40. 41.

42.

43. Let g(x)  x2
 4x  5, x  2. Find g 1.

44. Use linear regression to fit a line to each of the following
data sets. How are the graphs of the two functions re-
lated? How are the two functions related?

 y  2   5y  1   3

m4
 5m2

 36  02x2/3
 5x1/3

 12  0

2x  3 4x2
 4x  9  1

1  
3

u2
 

2

u
(x  5

2)2
 

5
4

  16   25

4    25

  4

2    1

3    4

(2    4)  (3    9)

50. For what values of a and b is the following inequality
true?

a  b  b  a

51. If a and b are negative numbers and a b, then is a/b
greater than 1 or less than 1?

52. Solve and graph. Write the answer using interval
notation:

53. Evaluate: 

54. Are the graphs of mx  y  b and x  my  b parallel,
perpendicular, or neither? Justify your answer.

(a  bi) a

a2
 b2

 
b

a2
 b2

i ; a, b,  0

0   x  6  d

55. Use completing the square to find the center and radius of
the circle with equation:

56. Refer to Problem 55. Find the equation of the line tangent
to the circle at the point (4, 3). Graph the circle and the
line on the same coordinate system.

57. Solve 3x 2/5
 4x 1/5

 1 0 algebraically and graphically.

58. Find all solutions of x3
 1  0.

59. Find three consecutive integers whose sum is 144.

60. Find three consecutive even integers so that the first plus
twice the second is twice the third.

x2
 4x  y2

 2y  3  0



Problems 61 and 62 refer to a triangle with base b and height h

(see the figure). Write a mathematical expression in terms of b

and h for each of the verbal statements in Problems 61 and 62. 

b

h

61. The base is five times the height.

62. The height is one-fourth of the base.
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63. Geometry. The diagonal of a rectangle is 32.5 inches
and the area is 375 square inches. Find the dimensions of
the rectangle, correct to one decimal place.

64. Falling Object. A worker at the top of a radio tower drops
a hammer to the ground. If the hammer hits the ground
3.5 seconds after it is dropped, how high is the tower?

65. Cost Analysis. Cost equations for manufacturing compa-
nies are often quadratic—costs are high at low and high
production levels. The weekly cost C(x) (in dollars) for
manufacturing x inexpensive calculators is

C(x)  0.001x2
 9.5x  30,000

Find the production level(s) (to the nearest integer) that
(A) Produces the minimum weekly cost. What is the 

minimum weekly cost (to the nearest cent)?
(B) Produces a weekly cost of $12,000.
(C) Produces a weekly cost of $6,000.

66. Break-Even Analysis. The manufacturing company in
Problem 65 sells its calculators to wholesalers for $3
each. How many calculators (to the nearest integer) must
the company sell to break even?

67. Profit Analysis. Refer to Problems 65 and 66. Find the
production levels that produce a profit. A loss. (Express
answers in inequality notation.)

68. Linear Depreciation. A computer system was purchased
by a small company for $12,000 and is assumed to have a
depreciated value of $2,000 after 8 years. If the value is
depreciated linearly from $12,000 to $2,000:
(A) Find the linear equation that relates value V (in

dollars) to time t (in years).
(B) What would be the depreciated value of the system

after 5 years?

69. Business–Pricing. A sporting goods store sells tennis
shorts that cost $30 for $48 and sunglasses that cost $20
for $32.

(A) If the markup policy of the store for items that cost
over $10 is assumed to be linear and is reflected in
the pricing of these two items, write an equation that
expresses retail price R as a function of cost C.

(B) What should be the retail price of a pair of skis that
cost $105?

70. Income. A salesperson receives a base salary of $200
per week and a commission of 10% on all sales over
$3,000 during the week. If x represents the salesperson’s
weekly sales, express the total weekly earnings E(x) as a
function of x. Find E(2,000) and E(5,000).

71. Construction. A farmer has 120 feet of fencing to be
used in the construction of two identical rectangular pens
sharing a common side (see the figure).

(A) Express the total area A(x) enclosed by both pens as
a function of the width x.

(B) From physical considerations, what is the domain of
the function A?

(C) Find the dimensions of the pens that will make the
total enclosed area maximum.

72. Sports Medicine. The following quotation was found in
a sports medicine handout: “The idea is to raise and sus-
tain your heart rate to 70% of its maximum safe rate for
your age. One way to determine this is to subtract your
age from 220 and multiply by 0.7.’’

x
y

y

 



74. Design. A landscape designer uses 8-foot timbers to form
a pattern of isosceles triangles along the wall of a building
(see the figure). If the area of each triangle is 24 square feet,
find the base correct to two decimal places.

75. Architecture. An entrance way in the shape of a parabola
12 feet wide and 12 feet high must enclose a rectangular
door that is 8.4 feet high. What is the widest doorway (to
the nearest tenth of a foot) that can be installed in the en-
trance way?

8 feet

(A) If H is the maximum safe sustained heart rate (in
beats per minute) for a person of age A (in years),
write a formula relating H and A.

(B) What is the maximum safe sustained heart rate for a
20-year-old?

(C) If the maximum safe sustained heart rate for a per-
son is 126 beats per minute, how old is the person?

73. Design. The pages of a textbook have uniform margins
of 2 centimeters on all four sides (see the figure). If the
area of the entire page is 480 square centimeters and the
area of the printed portion is 320 square centimeters, find
the dimensions of the page.

2 2

2 2

2 2

2 2
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T A B L E  1 Marijuana Use: 12 to 17 Years Old

Year Ever Used [%]

1979 26.7

1985 20.1

1990 12.7

1994 13.6

1995 16.2

Source: National Household Survey on Drug Abuse

In Problems 76 80, unless directed otherwise, round all num-

bers to three significant digits,

76. Drug Use. The use of marijuana by teenagers declined
throughout the 1980s, but began to increase during the 1990s.
Table 1 gives the percentage of 12- to 17-year-olds who have
ever used marijuana for selected years from 1979 to 1995.

(A) Find a quadratic regression model for the percentage
of 12- to 17-year-olds who have ever used mari-
juana, using years since 1970 for the independent
variable.

(B) Use your model to predict the year during which the
percentage of marijuana users will return to the 1979
level.

77. Political Science. Association of economic class and
party affiliation did not start with Roosevelt’s New Deal;
it goes back to the time of Andrew Jackson (1767–1845).
Paul Lazarsfeld of Columbia University published an ar-
ticle in the November 1950 issue of Scientific American

in which he discusses statistical investigations of the rela-
tionships between economic class and party affiliation.
The data in Table 2 are taken from this article.

 

 

 



231Chapter 2 Review Exercises

T A B L E  2 Political Affiliations in 1836

Average Assessed Value Democratic 
Ward per Person [in $100] Votes [%]

12 1.7 51

3 2.1 49

1 2.3 53

5 2.4 36

2 3.6 65

11 3.7 35

10 4.7 29

4 6.2 40

6 7.1 34

9 7.4 29

8 8.7 20

7 11.9 23

T A B L E  3 Supply and Demand for Broccoli

Price Supply Demand
$/lb. (lbs.) (lbs.)

0.71 25,800 41,500

0.77 27,400 38,700

0.84 30,200 36,200

0.91 33,500 32,800

0.96 34,900 29,800

1.01 37,800 27,900

1.08 39,210 25,100

79. Break-Even Analysis. The broccoli grower in Problem 78
has fixed cost of $15,000 and variable cost of $0.20 per

pound of broccoli produced.
(A) Find the revenue and cost functions as functions of

the sales x. What is the domain of each function?
(B) Find the level of sales for which the company will

break even. Describe verbally and graphically the
sales levels that result in a profit and those that re-

sult in a loss.
(C) Find the sales and the price that will produce the

maximum profit. Find the maximum profit.

80. Optimal Speed. Table 4 contains performance data for
a speedboat powered by a Yamaha outboard motor.
(A) Let x be the speed of the boat in miles per hour

(mph) and y the associated mileage in miles per
gallon (mpg). Use the data in Table 4 to find a

quadratic regression function y  ax2
 bx  c for

this boat. 
(B) A marina rents this boat for $15 per hour plus the

cost of the gasoline used. If gasoline costs $1.60 per
gallon and you take a 100-mile trip in this boat, con-
struct a mathematical model and use it to answer the
following questions:
What speed should you travel to minimize the rental
charges? 
What mileage will the boat get? 
How long does the trip take?
How much gasoline will you use?
How much will the trip cost you?

T A B L E  4 Performance Data

mph mpg

9.5 1.67

21.1 1.92

28.3 2.16

33.7 1.88

37.9 1.77

42.6 1.49

Source: www.yamaha-motor.com

(A) Find a linear regression model for the data in the
second and third columns of the table, using the av-
erage assessed value as the independent variable.

(B) Use the linear regression model to predict (to two
decimal places) the percentage of votes for democrats
in a ward with an average assessed value of $300.

78. Supply and Demand. Table 3 contains price–supply data
and price–demand data for a broccoli grower. Find a linear
model for the price–supply data where x is supply (in
pounds) and y is price (in dollars). Do the same for the
price–demand data. Find the equilibrium price for broccoli.
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Mathematical Modeling in Population Studies

In a study on population growth in California, Tulane University demographer
Leon Bouvier recorded the past population totals for every 10 years starting at
1900. Then, using sophisticated demographic techniques, he made high, low, and
medium projections to the year 2040. Table 1 shows actual populations up to 1990
and medium projections (to the nearest million) to 2040.

T A B L E  1 California Population 1900–2040

Years After 1900 Date Population [Millions]

0 1900 2

10 1910 3

20 1920 4

30 1930 5

40 1940 5

50 1950 10

60 1960 15

70 1970 20

80 1980 23

90 1990 30

100 2000 35

110 2010 45

120 2020 53 Projected

130 2030 61

140 2040 70

¶
1. Building a Mathematical Model.

(A) Plot the first and last columns in Table 1 up to 1990 (actual popula-
tions). Would a linear or a quadratic function be the better model for
these data? Why?

(B) Use a graphing utility to compute a quadratic regression function to
model the data you plotted in part A.

(C) Graph this function and the data from part A for 0  x  150. The
results should look something like Figure 1.

2. Using the Mathematical Model for Projections.

Use the quadratic regression model to answer the following questions.

(A) Calculate projected populations for California at 10-year intervals,
starting at 2000 and ending at 2040. Compare your projections with
Professor Bouvier’s projections, both numerically and graphically.

0

0

80

150

FIGURE 1

∂Actual
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1. (A) Plot the points in the table in a rectangular coordi-
nate system.

(B) Find the smallest viewing window that will contain
all of these points. State your answer in terms of the
window variables.

(C) Does this set of points define a function? Explain.

x  3 1  2 1 3

y 4  2 4  4 4

2. Given points A  (3, 2) and B  (5, 6), find
(A) Distance between A and B.
(B) Slope–intercept form of the equation of the line

through A and B.
(C) Slope–intercept form of the equation of the line

through B and perpendicular to the line through A
and B.

(D) Standard form of the equation of the circle with cen-
ter at A and passing through B.

(E) Graph the lines from parts B and C and the circle
from part D on the same coordinate system.

3. Graph 2x  3y  6 and indicate its slope and intercepts.

4. For f(x)  x2
 2x  5 and g(x)  3x  2, find

(A) f( 2)  g( 3)
(B) f(1)  g(1)

(C)

5. How are the graphs of the following related to the graph
of y  |x|?
(A) y  2 x 
(B) y   x  2 
(C) y   x  2

g(0)

f (0)

Problems 6–8 refer to the function f given by the graph:

6. Find the domain and range of f. Express answers in inter-
val notation.

7. Is f an even function, an odd function, or neither? 
Explain.

8. Use the graph of f to sketch a graph of the following:
(A) y   f(x  1) (B) y  2f(x)   2

Solve Problems 9–13 algebraically and confirm graphically.

9.

10. 3x2
  12x 11. 4x2

 20  0

12. x2
 6x  2  0 13.

In Problems 14–16, solve and express answers in inequality

and interval notation.

14. 2(3  y)  4  5  y 15.

16. x2
 3x  10

 x  2   7

x   12  x  0

7x

5
 

3  2x

2
 

x  10

3
 2

x

 5

5 5

5

f(x)

(B) During what year would you project that the population will reach 
40 million? 50 million?

(C) For what years would you project the population to be between 
34 million and 68 million, inclusive?

Work through all the problems in this chapter review and check answers in the back of the book. 

Answers to most review problems are there, and following each answer is a number in italics indi-

cating the section in which that type of problem is discussed. Where weaknesses show up, review

appropriate sections in the text.
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18. Perform the indicated operations and write the answer in
standard form:
(A) (2  3i)  ( 5  7i)
(B) (1  4i)(3  5i) (C)

5  i

2  3i

17. Let f(x)  x2
 4x  1.

(A) Find the vertex form of f.
(B) How is the graph of f related to the graph of y  x2?
(C) Find the x intercepts algebraically and confirm 

graphically.

19. Find each of the following for the function f given by the
graph shown.

(A) The domain of f (B) The range of f
(C) f( 3)  f( 2)  f(2)
(D) The intervals over which f is increasing.
(E) The x coordinates of any points of discontinuity.

20. Given f(x)  1/(x  2) and g(x)  (x  3)/x, find f ° g.
What is the domain of f ° g?

21. Find f 1(x) for f(x)  2x  5.

22. Let
(A) Find f 1(x).
(B) Find the domain and range of f and f 1.
(C) Graph f, f 1, and y  x on the same coordinate 

system and identify each graph.

23. Which of the following functions is one-to-one?
(A) f(x)  x3

 x (B) g(x)  x3
 x2

24. Write the slope–intercept form of the equation of the line
passing through the point ( 6, 1) that is
(A) parallel to the line 3x  2y  12.
(B) perpendicular to the line 3x  2y  12.

25. Graph f(x)  x2
 2x  8. Label the axis of symmetry

and the coordinates of the vertex, and find the range, in-
tercepts, and maximum or minimum value of f(x).

f (x)   x  4

x

 5

5 5

5

f(x)

In Problems 26 and 27, solve and express answers in inequal-

ity and interval notation.

26. 27.

28. Perform the indicated operations and write the final an-
swers in standard form.
(A) (2  3i)2

 (4  5i)(2  3i)  (2  10i)

(B) (C) i35

29. Convert to a  bi forms, perform the indicated opera-
tions, and write the final answers in standard form.
(A)

(B) (C)

30. Graph, finding the domain, range, and any points of dis-
continuity.

31. Find the center and radius of the circle given by the equa-
tion x2

 6x  y2
 2y  0. Graph the circle and show

the center and the radius.

32. The graph in the figure is the result of applying a 
sequence of transformations to the graph of y   x .
Describe the transformations verbally and write an equa-
tion for the graph in the figure.

x

y

5

 5

5

f (x)   x  1   if x   0

x2
 1   if x  0

12    64

  4

2  7  25

3    1

(5  2  9)  (2  3  16)

3

5
 

4

5
i  

1

3

5
 

4

5
i

 (3m  4)2
 2 4x  9   3
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33. Find the standard form of the quadratic function whose
graph is shown in the figure.

Solve Problems 34–38 algebraically and confirm graphically, if

possible.

34.

35. 36.

37. 38.

39. Consider the quadratic equation

x2
 bx  1  0

where b is a real number. Discuss the relationship be-
tween the values of b and the three types of roots listed in
Table 1 in Section 2.5.

40. Give an example of an odd function. Of an even function.
Can a function be both even and odd? Explain.

6x   9x2
 48 8t  2  2 t  1

u4
 u2

 12  04x2/3
 4x1/3

 3  0

1  
14

y2
 

6

y

41. Can a quadratic equation with real coefficients have one
imaginary root and one real root? One double imaginary
root? Explain.

42. If g(x)   2x2
 3x  1, find .

43. The graph is the result of applying one or more transfor-
mations to the graph of one of the six basic functions in
Figure 1, Section 1.4. Find an equation for the graph.

44. The total surface area of a right circular cylinder with ra-
dius r and height h is given by

A  2 r(r  h) r  0, h  0

(A) Solve for h in terms of the other variables.
(B) Solve for r in terms of the other variables. Why is

there only one solution?

x

y

 5 5 5

 5

5

g(2  h)  g(2)

h

45. Given f(x)  x2 and find
(A) Domain of g
(B) f/g and its domain
(C) f ° g and its domain

46. Let f(x)  x2
 2x  3, x  1.

(A) Find f  1(x).
(B) Find the domain and range of f  1.
(C) Graph f, f  1, and y  x on the same coordinate 

system.

47. Evaluate x2
 x  2 for .

48. For what values of a and b is the inequality 
a  b  b  a true?

49. Write in standard form: 
a  bi

a  bi
 ; a, b  0

x  
1

2
 

i

2
 7

g(x)   4  x2, Solve Problems 50–53 algebraically and confirm graphically, if

possible.

50.

51.

52.

53.

54. Show that 5  i and  5  i are the square roots of 
24  10i. Describe how you could find these square 
roots algebraically.

55. For f(x)  0.5x2
 3x  7, find

(A) (B)
f (x)  f (a)

x  a

f (x  h)  f (x)

h

3x 2/5
 x 1/5

 1  0

 16x2
 48x  39  2x  3

1  13x 2
 36x 4

 0

3x2
 2 2x  1
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58. Let Write a piecewise definition for f
and sketch the graph of f. Include sufficient intervals to
clearly illustrate both the definition and the graph. Find
the domain, range, and any point of discontinuity.

59. Find all solutions of x3
 8  0.

f (x)  2x   2x .56. The function f is continuous for all real numbers and its
graph passes through the points (0, 4), (5,  3), (10, 2).
Discuss the minimum and maximum number of x inter-
cepts for f.

57. Let Find a piecewise defini-
tion of f that does not involve the absolute value function.
Graph f and find the domain and range.

f (x)   x  2   x  2 .

60. Break-Even Analysis. The publisher’s fixed costs for the
production of a new cookbook are $41,800. Variable
costs are $4.90 per book. If the book is sold to bookstores
for $9.65, how many must be sold for the publisher to
break even?

61. Finance. An investor instructs a broker to purchase a
certain stock whenever the price per share p of the stock
is within $10 of $200. Express this instruction as an ab-
solute value inequality.

62. Profit and Loss Analysis. At a price of $p per unit, the
marketing department in a company estimates that the
weekly cost C and the weekly revenue R, in thousands of
dollars, will be given by the equations

C  88  12p Cost equation
R  15p  2p2 Revenue equation

Find the prices for which the company has
(A) A profit (B) A loss

63. Depreciation. Office equipment was purchased for
$20,000 and is assumed to depreciate linearly to a scrap
value of $4,000 after 8 years.
(A) Find a linear function v  d(t) that relates value v in

dollars to time t in years.
(B) Find t  d 1(v).

64. Shipping. A ship leaves Port A, sails east to Port B, and
then north to Port C, a total distance of 115 miles. The
next day the ship sails directly from Port C back to Port
A, a distance of 85 miles. Find the distance between Ports
A and B and between Ports B and C.

65. Price and Demand. The weekly demand for mouthwash
in a chain of drug stores is 1,160 bottles at a price of
$3.79 each. If the price is lowered to $3.59, the weekly
demand increases to 1,340 bottles. Assuming the rela-
tionship between the weekly demand x and the price per
bottle p is linear, express x as a function of p. How many
bottles would the store sell each week if the price were
lowered to $3.29?

66. Business–Pricing. A telephone company begins a new
pricing plan that charges customers for local calls as fol-
lows: The first 60 calls each month are 6 cents each, the
next 90 are 5 cents each, the next 150 are 4 cents each,
and any additional calls are 3 cents each. If C is the cost,
in dollars, of placing x calls per month, write a piecewise
definition of C as a function of x and graph.

67. Construction. A home owner has 80 feet of chain-link
fencing to be used to construct a dog pen adjacent to a
house (see the figure).
(A) Express the area A(x) enclosed by the pen as a func-

tion of the width x.
(B) From physical considerations, what is the domain of

the function A?
(C) Graph A and determine the dimensions of the pen

that will make the area maximum.

68. Computer Science. Let This function
can be used to determine if an integer is odd or even.
(A) Find f(1), f(2), f(3), f(4).
(B) Find f (n) for any integer n. [Hint: Consider two

cases, n  2k and n  2k  1, k is an integer.]

f (x)  x  2 x/2 .

x

x
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69. Price and Demand. The demand for barley q (in thou-
sands of bushels) and the corresponding price p (in
cents) at a midwestern grain exchange are shown in the
figure.

5010 20 30 40

350

340

330

320

310

P
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e
n
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)

Barley
(thousands of bushels)

q

p

(A) What is the demand (to the nearest thousand
bushels) when the price is 325 cents per bushel?

(B) Does the demand increase or decrease if the price is
increased to 340 cents per bushel? By how much?

(C) Does the demand increase or decrease if the price is
decreased to 315 cents per bushel? By how much?

(D) Write a brief description of the relationship between
price and demand illustrated by this graph.

(E) Use the graph to estimate the price (to the nearest
cent) when the demand is 20, 25, 30, 35, and 40
thousand bushels. Use these data to find a quadratic

regression model for the price of barley using the
demand as the independent variable.

In Problems 70–72 round all values to three significant digits,

unless directed otherwise.

70. Demand. Egg consumption per capita decreased from a
high of about 400 per capita in 1945 to a low of about
230 in 1991, then it began to increase. Table 1 lists the
annual per capita consumption of eggs in the United
States since 1970.

71. Stopping Distance. Table 2 contains data related to the
length of the skid marks left by an automobile when
making an emergency stop. 
(A) Let x be the speed of the vehicle in miles per hour.

Find a quadratic regression model for the braking
distance.

(B) An insurance investigator finds skid marks 220 feet

long at the scene of an accident involving this auto-
mobile. How fast (to the nearest mile per hour) was
the automobile traveling when it made these skid
marks?

T A B L E  1 Per Capita Egg Consumption

1970 1975 1980 1985 1990 1995 2000

309 276 271 255 233 238 258

Source: Department of Agriculture.

(A) Find a quadratic regression equation y  f(x) for the
data in Table 1, where x is the number of years since
1970.

(B) Use the quadratic regression equation to project the
year in which the per capita consumption will return
to the 1970 level; to the 1945 level.

(C) Write a brief description of egg consumption from
1970 to 2000.

T A B L E  2 Skid Marks

Speed Length of Skid Marks
(mph) (in Feet)

20 24

30 48

40 81

50 118

60 187

70 246

80 312
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T A B L E  3 Performance Data

mph mpg

4.8 1.41

8.6 1.65

11.9 1.85

26.7 1.78

35.9 1.51

44.5 1.08

Source: www.yamaha-motor.com

72. Optimal Speed. Table 3 contains performance data for a
speedboat powered by a Yamaha outboard motor.
(A) Let x be the speed of the boat in miles per hour

(mph) and y the associated mileage in miles per gal-
lon (mpg). Use the data in Table 3 to find a quadratic

regression function y  ax2
 bx   c for this boat. 

(B) A marina rents this boat for $10 per hour plus the
cost of the gasoline used. If gasoline costs $1.40 per
gallon and you take a 200-mile trip in this boat, 
construct a mathematical model and use it to answer
the following questions:
What speed should you travel to minimize the rental
charges? 
What mileage will the boat get? 
How long does the trip take?
How much gasoline will you use?
How much will the trip cost you?



Polynomial
and Rational 

Functions
O U T L I N E

3.1 Polynomial Functions and Models

3.2 Real Zeros and Polynomial Inequalities

3.3 Complex Zeros and Rational Zeros of Polynomials

3.4 Rational Functions and Inequalities

Chapter 3 R E V I E W

Chapter 3 G R O U P  A C T I V I T Y : Interpolating Polynomials

R
ECALL THAT THE ZEROS OF A FUNCTION f ARE THE SOLUTIONS OR ROOTS

of the equation f(x)  0, if any exist. There are formulas that give the

exact values of the zeros, real or imaginary, of any linear or

quadratic function (Table 1).

Linear and quadratic functions are also called first- and second-
degree polynomial functions, respectively. Thus, Table 1 contains
formulas for the zeros of any first- or second-degree polynomial
function. What about higher-degree polynomial functions such as

p(x)  4x3
 2x2

 3x  5 Third degree (cubic)

q(x)   2x4
 5x2

  6 Fourth degree (quartic)

r(x)  x5
 x 4

 x3
 10 Fifth degree (quintic)

Before getting started on this chapter,

review the following concepts:

 Polynomials
(Basic Algebra Review*, Sec. 2 and 3)

 Rational Expressions 
(Basic Algebra Review*, Section 4)

 Graphs of Functions 
(Chapter 1, Section 3)

 Linear Functions 
(Chapter 2, Section 1)

 Linear Regression 
(Chapter 2, Section 2)

 Quadratic Functions 
(Chapter 2, Section 3)

 Complex Numbers 
(Chapter 2, Section 4)

 Quadratic Formula 
(Chapter 2, Section 5)

T A B L E  1 Zeros of Linear and Quadratic Functions

Function Linear Quadratic

Form f (x)  ax  b, a  0 f (x)   ax2
 bx   c, a  0

Equation ax  b  0 ax2
 bx  c  0

Zeros/Roots
x  

 b   b2
 4ac

2a
x   

b

a

*At www.mhhe.com/barnett



It turns out that there are direct, though complicated, methods for finding formu-
las for the zeros of any third- or fourth-degree polynomial function. However, the
Frenchman Evariste Galois (1811–1832) proved at the age of 20 that for polyno-
mial functions of degree greater than 4 there is no formula or finite step-by-step
process that will always yield exact values for all zeros.* This does not mean that
we give up looking for zeros of higher-degree polynomial functions. It just means
that we will have to use a variety of specialized methods and sometimes we will
have to approximate the zeros. The development of these methods is one of the
primary objectives of Chapter 3. Throughout this chapter, we will always use the
term zero to refer to an exact value and will indicate clearly when approximate
values of the zero will suffice.

We begin in Section 3.1 by discussing the properties of graphs of polynomial
functions. In Section 3.2 we introduce methods for locating the real zeros of poly-
nomials with real coefficients. Once located, the real zeros are easily approximated
with a graphing utility. In Section 3.3 we study the complex zeros of polynomi-
als with complex coefficients (laying the foundation for the method of partial frac-
tion decomposition discussed in Appendix B, Section B.2), and rational zeros of
polynomials with rational coefficients. Section 3.4 provides a graphical approach
to rational functions and rational inequalities that parallels the earlier development
for polynomials.

Polynomial Functions and Models

Graphs of Polynomial Functions  Polynomial Division  Remainder and Factor Theorems  

Mathematical Modeling and Data Analysis

In this section we extend our work with linear and quadratic functions in Chapter 2
by defining polynomial functions and studying properties of their graphs.
Algebraic tools (division and factorization of polynomials) are introduced to
understand the general properties of graphs of polynomials, and for later use in
analyzing the graphs of specific polynomials. Finally, we show how polynomials
are applied in mathematical modeling and data analysis.

Graphs of Polynomial Functions
In Chapter 2 you were introduced to linear and quadratic functions and their
graphs (Fig. 1):

f(x)  ax  b, a  0 Linear function

f(x)  ax2
 bx  c, a  0 Quadratic function

A function such as 

g(x)  7x4
 5x3

 (2  9i)x2
 3x  1.95

3 POLYNOMIAL AND RATIONAL FUNCTIONS240

*Galois’s contribution, using the new concept of “group,” was of the highest mathematical significance and originality.

However, his contemporaries hardly read his papers, dismissing them as “almost unintelligible.” At the age of 21, involved

in political agitation, Galois met an untimely death in a duel. A short but fascinating account of Galois’s tragic life can

be found in E. T. Bell’s Men of Mathematics (New York: Simon & Schuster, 1937), pp. 362–377.

FIGURE 1 Graphs of linear and
quadratic functions.
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which is the sum of a finite number of terms, each of the form axk, where a is a
number and k is a nonnegative integer, is called a polynomial function. The poly-
nomial function g(x) is said to have degree 4 because x4 is the highest power of
x that appears among the terms of g(x). Therefore, linear and quadratic functions
are polynomial functions of degrees 1 and 2, respectively. The two functions
h(x)  x 1 and k(x)  x1/2, however, are not polynomial functions (the exponents
 1 and are not nonnegative integers).1

2
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D E F I N I T I O N  1
Polynomial Function

If n is a nonnegative integer, a function that can be written in the form

P(x)  anxn
 an 1x

n 1
 . . .   a1x  a0, an  0

is called a polynomial function of degree n. The numbers an, an 1, . . ., a1, a0 are called the

coefficients of P(x).

We will assume that the coefficients of a polynomial function are complex
numbers, or real numbers, or rational numbers, or integers, depending on our
interest. Similarly, the domain of a polynomial function can be the set of com-
plex numbers, the set of real numbers, or an appropriate subset of either, depend-
ing on our interest. In general, the context will dictate the choice of coefficients
and domain. Definition 1 implies that a nonzero constant function has degree 0.
The constant function with value 0 is considered to be a polynomial but is not
assigned a degree.

The zeros of P(x) are thus the solutions of the equation P(x)  0. So if the
coefficients of a polynomial P(x) are real numbers, then the real zeros of P(x) are
just the x intercepts of the graph of P(x). For example, the real zeros of the
polynomial P(x)  x2

 4 are 2 and  2, the x intercepts of the graph of P(x)
[Fig. 2(a)]. However, a polynomial may have zeros that are not x intercepts.
Q(x) x2

 4, for example, has zeros 2i and  2i, but its graph has no x inter-
cepts [Fig. 2(b)].

 10

 10

10

10

 10

 10

10

10

D E F I N I T I O N  2
Zeros or Roots

A number r is said to be a zero or root of a function P(x) if P(r)  0.

FIGURE 2 Real zeros are x intercepts.

(a) (b)



Zeros and x Intercepts

(A) Figure 3 shows the graph of a polynomial function of degree 5. List its real zeros.

(B) List all zeros of the polynomial function

P(x)  (x  4)(x  7)3(x2
 9)(x2

 2x  2)

Which zeros of P(x) are x intercepts?

S O L U T I O N

(A) The real zeros are the x intercepts:  4,  2, 0, and 3.
(B) Note first that P(x) is a polynomial because it can be written in the

form of Definition 1 (it is not necessary to actually multiply out P(x)
to find that form). The zeros of P(x) are the solutions to the equation
P(x)  0. Because a product equals 0 if and only if one of the factors
equals 0, we solve each of the following equations (the last was
solved using the quadratic formula):

x  4  0 (x  7)3
 0 x2

 9  0 x2
 2x  2  0

x  4 x   7 x   3i x  1  i

Therefore, the zeros of P(x), are 4,  7, 3i,  3i, 1  i, and 1  i. Only
two of the six zeros are real numbers and thus x intercepts: 4 and  7.
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FIGURE 3

E X P L O R E / D I S C U S S  1

(A) Graph the polynomials 

f (x)  0.1x4
 0.5x3

 0.7x2
 4.5x  3.1

g(x)   1.1x5
 6.3x3

 8.2x  0.1

h(x)  0.01x8
 x6

 7x4
 11x2

 3

in the standard viewing window.

(B) Assuming that all real zeros of f(x), g(x), and h(x) appear in the stan-
dard viewing window, how is the number of real zeros of a polyno-
mial related to its degree?

 200
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200
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FIGURE 4
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(A) Figure 4 shows the graph of a polynomial function of degree 4. List its
real zeros.

(B) List all zeros of the polynomial function

P(x)  (x  5)(x2
 4)(x2

 4)(x2
 2x  5)

Which zeros of P(x) are x intercepts?

A point on a continuous graph that separates an increasing portion from a
decreasing portion, or vice versa, is called a turning point. The vertex of a
parabola, for example, is a turning point. Linear functions with real coefficients
have exactly one real zero and no turning points; quadratic functions with real
coefficients have at most two real zeros and exactly one turning point. (The
y coordinate of any turning point is a local extremum. It is possible, however, that
f(c) is a local extremum of a continuous function f even though (c, f(c)) is not a
turning point. See Problems 87 and 88 in Exercise 3.1.)
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(C) Assuming that all turning points of f(x), g(x), and h(x) appear in the
standard viewing window, how is the number of turning points of a
polynomial related to its degree?

Explore/Discuss 1 suggests that the graphs of polynomial functions with real
coefficients have the properties listed in Theorem 1, which we accept now without
proof. Property 3 is proved later in Section 3.1. The other properties are estab-
lished in calculus.

Figure 5 shows graphs of representative polynomial functions of degrees 1 through
6, illustrating the five properties of Theorem 1.
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T H E O R E M  1
Properties of Graphs of Polynomial Functions

Let P(x) be a polynomial of degree n  0 with real coefficients. Then
the graph of P(x):
1. Is continuous for all real numbers
2. Has no sharp corners
3. Has at most n real zeros
4. Has at most n  1 turning points
5. Increases or decreases without bound as x S  and as x S   *

*Remember that   and    are not real numbers. The statement the graph of P(x) increases without bound as x S   

means that for any horizontal line y  b there is some interval (  , a]  {x  x ≤ a} on which the graph of P(x) is above

the horizontal line.

(a) f(x) x  2 (b) g(x) x3
 5x (c) h(x) x5

 6x3
 8x  1

(d) F(x) x2
 x  1 (e) G(x) 2x4

 7x2
 x  3 (f) H(x)  x6

 7x4
 12x2

 x  2

FIGURE 5 Graphs of polynomial
functions.



Properties of Graphs of Polynomials 

Explain why each graph is not the graph of a polynomial function by listing the
properties of Theorem 1 that it fails to satisfy.
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(A)
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E X P L O R E / D I S C U S S  2

If n is a positive integer, then y1  xn, y2  xn 1, and y3  xn
 xn 1

are all polynomial functions. Is the shape of y3 more similar to the
shape of y1 or to the shape of y2? Obtain evidence for your answer by
graphing all three functions for several values of n.

S O L U T I O N

(A) The graph has a sharp corner when x  0. Property 2 fails.

(B) There are no points on the graph with x coordinate less than or equal
to 0, so properties 1 and 5 fail.

(C) There are an infinite number of zeros and an infinite number of turn-
ing points, so properties 3 and 4 fail. Furthermore, the graph is
bounded by the horizontal lines y  ±1, so property 5 fails.

Explain why each graph is not the graph of a polynomial function by listing the
properties of Theorem 1 that it fails to satisfy.



Explore/Discuss 2 suggests that the shape of the graph of a polynomial func-
tion with real coefficients is similar to the shape of the graph of the leading term,
that is, the term of highest degree. Figure 6 compares the graph of the polynomial
h(x) x5

 6x3
 8x 1 from Figure 5 with the graph of its leading term p(x) x5.

The graphs are dissimilar near the origin, but as we zoom out, the shapes of the
two graphs become quite similar. The leading term in the polynomial dominates
all other terms combined. Because the graph of p(x) increases without bound as
x S , the same is true of the graph of h(x). And because the graph of p(x)
decreases without bound as x S  , the same is true of the graph of h(x).

The left and right behavior of a polynomial function with real coefficients is deter-
mined by the left and right behavior of its leading term (see Fig. 6). Property 5
of Theorem 1 can therefore be refined. The various possibilities are summarized
in Theorem 2.
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FIGURE 6

h(x)  x5
 6x3

 8x  1.
p(x)  x5,

T H E O R E M  2
Left and Right Behavior of Polynomial Functions

Let P(x)  anx
n
 an 1x

n 1
 . . .   a1x  a0 be a polynomial function

with real coefficients, an  0, n  0.
1. an  0, n even: The graph of P(x) increases without bound as x S 

and increases without bound as x S  (like the graphs of x2, x4, x6,
etc.).

2. an  0, n odd: The graph of P(x) increases without bound as x S 

and decreases without bound as x S  (like the graphs of x, x3, x5,
etc.).

3. an  0, n even: The graph of P(x) decreases without bound as x S 

and decreases without bound as x S  (like the graphs of  x2,
 x4,  x6 etc.).

4. an  0, n odd: The graph of P(x) decreases without bound as x S 

and increases without bound as x S  (like the graphs of  x,  x3,
 x5, etc.).

Case 1 Case 2 Case 3 Case 4
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y

x

y
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y



It is convenient to write P(x) S  as an abbreviation for the phrase the graph of P(x)
increases without bound. Using this notation, the left and right behavior in Case 4
of Theorem 2, for example, is: P(x) S  as x S  and P(x) S  as x S  .
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E X P L O R E / D I S C U S S  3

A student uses the terms slide left, slide right, dome, and bowl to describe
the four cases of Theorem 2. Which term belongs to which case? Explain.

Left and Right Behavior of Polynomials

Determine the left and right behavior of each polynomial.

(A) P(x)  3  x2
 4x3

 x4
 2x6

(B) Q(x)  4x5
 8x3

 5x  1

S O L U T I O N S

(A) The degree n of P(x) is 6 (even) and the coefficient a6 is  2 (negative),
so the left and right behavior is the same as that of  x6 (Case 3 of
Theorem 2): P(x) S   as x S  and P(x) S   as x S   .

(B) The degree n of Q(x) is 5 (odd) and the coefficient a5 is 4 (positive),
so the left and right behavior is the same as that of x5 (Case 2 of
Theorem 2): P(x) S  as x S  and P(x) S   as x S   .

Determine the left and right behavior of each polynomial.

(A) P(x)  4x9
 3x11

 5

(B) Q(x)  1  2x50
 x100

E X P L O R E / D I S C U S S  4

(A) What is the least number of turning points that a polynomial func-
tion of degree 5, with real coefficients, can have? The greatest
number? Explain.

(B) What is the least number of x intercepts that a polynomial function
of degree 5, with real coefficients, can have? The greatest number?
Explain.

(C) What is the least number of turning points that a polynomial func-
tion of degree 6, with real coefficients, can have? The greatest
number? Explain.

(D) What is the least number of x intercepts that a polynomial function of
degree 6, with real coefficients, can have? The greatest number?
Explain.
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FIGURE 7

P(x)  x3
 14x2

 27x  12.

(a) (b)

(a) (b)

FIGURE 8

P(x)  x3
 14x2

 27x  12.

Analyzing the Graph of a Polynomial

Approximate to two decimal places the zeros and local extrema for 

P(x)  x3
 14x2

 27x  12

S O L U T I O N

Examining the graph of P in a standard viewing window [Fig. 7(a)], we see two
zeros and a local maximum near x  1. Zooming in shows these points more
clearly [Fig. 7(b)]. Using familiar commands (details omitted), we find that
P(x)  0 for x  0.66 and x  1.54, and that P(1.09)  2.09 is a local maxi-
mum value.

Have we found all the zeros and local extrema? The graph in Figure 7(a) seems
to indicate that P(x) is decreasing as x decreases to the left and as x increases to
the right. However, the leading term for P(x) is x3. Because x3 increases without
bound as x increases to the right without bound, P(x) must change direction at
some point and become increasing. Thus, there must exist a local minimum and
another zero that are not visible in this viewing window. Examining a table of
values [Fig. 8(a)], we discover a local minimum near x  8 and a zero near x  12.
Adjusting the window variables produces the graph in Figure 8(b). Using famil-
iar commands (details omitted), we find that P(x)  0 for x  11.80 and that
P(8.24)    180.61 is a local minimum. Because a third-degree polynomial can
have at most three zeros and two local extrema, we have found all the zeros and
local extrema for this polynomial.

Approximate to two decimal places the zeros and the coordinates of the local
extrema for 

P(x)   x3
 14x2

 15x  5
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(1.09, 2.09)

0.66 1.54
 10

 10

10
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We have introduced the main properties of graphs of polynomial functions
with real coefficients (Theorems 1 and 2) and have seen their usefulness in ana-
lyzing graphs (Example 4). But to understand why, for example, a polynomial
function of degree n can have at most n real zeros, we must view polynomials
from an algebraic perspective. Polynomials can be factored. We proceed to study
the division and factorization of polynomials.

Polynomial Division
We can divide one polynomial (the dividend) by another (the divisor) by a long-
division process similar to that used in arithmetic. Example 5 illustrates the
process.

Algebraic Long Division

Divide P(x)  2x4
 3x3

 x  5 by x  2.

S O L U T I O N

Remainder

Thus,

C H E C K

Divide 6x2
 30  9x3 by x  2.

 2x4
 3x3

 x  5

 (x  2)(2x3
 x2

 2x  5)  5

 (x  2) 2x3
 x2

 2x  5  
5

x  2 

2x4
 3x3

 x  5

x  2
 2x3

 x2
 2x  5  

5

x  2

5  R

 5x  10

 5x  5

2x2
 4x

2x2
 x

 x3
 2x2

 x3
 0x2

2x4
 4x3

x  2  2x4
 3x3

 0x2
 x  5

2x3
 x2

 2x  5
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Arrange the dividend and the divisor in descending

powers of the variable. Insert, with 0 coefficients, any

missing terms of degree less than 4. Divide the first

term of the divisor into the first term of the dividend.

Multiply the divisor by 2x3, line up like terms, sub-

tract (change the sign and add) as in arithmetic, and

bring down 0x 2. Repeat the process until the degree

of the remainder is less than that of the divisor.



The procedure illustrated in Example 5 is called the division algorithm. The con-
cluding equation of Example 5 (before the check) may be multiplied by the divi-
sor x  2 to give the following form:

2x4
 3x3

 x  5  (x  2)(2x3
 x2

 2x  5)  5
Dividend  Divisor  Quotient  Remainder

This last equation is an identity: it is true for all replacements of x by real or
complex numbers including x   2. Theorem 3, which we state without proof,
gives the general result of applying the division algorithm when the divisor has
the form x  r.
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The long division of Example 5 can be carried out by a shortcut called synthetic

division. The numerals that represent the essentials of the long-division process
are indicated in color here.

2x3
 1x2

 2x  5 Quotient

Divisor x  2 2x4
 3x3

 0x2
 1x  5 Dividend

2x4
 4x3

 1x3
 0x2

 1x3
 2x2

2x2
 1x

2x2
 4x

 5x  5

 5x  10

5 Remainder

The numerals printed in color can be arranged more conveniently as follows:

2

2 2

3 0

4

 1

 2

2 1

 104

 5

 5 5

Dividend coefficients

Quotient

coefficients

Remainder

T H E O R E M  3
Division Algorithm

For each polynomial P(x) of degree greater than 0 and each number r,
there exists a unique polynomial Q(x) of degree 1 less than P(x) and a
unique number R such that

P(x)  (x  r)Q(x)  R

The polynomial Q(x) is called the quotient, x  r is the divisor, and R

is the remainder. Note that R may be 0.

 



Mechanically, we see that the second and third rows of numerals are gener-
ated as follows. The first coefficient, 2, of the dividend is brought down and mul-
tiplied by 2 from the divisor; and the product, 4, is placed under the second
dividend coefficient, 3, and subtracted. The difference,  1, is again multiplied by
the 2 from the divisor; and the product is placed under the third coefficient from
the dividend and subtracted. This process is repeated until the remainder is
reached. The process can be made a little faster, and less prone to sign errors, by
changing  2 from the divisor to  2 and adding instead of subtracting. Thus

2

 2 2

3 0

 4

 1

2

2 1

10 4

 5

 5 5

Dividend coefficients

Quotient

coefficients

Remainder

Synthetic Division

Use synthetic division to divide P(x)  4x5
 30x3

 50x  2 by x  3. Find the
quotient and remainder. Write the conclusion in the form P(x)  (x  r)Q(x)  R

of Theorem 3.

S O L U T I O N

Because x  3  x  ( 3), we have r   3, and

4 0  30 0  50  2

 12 36  18 54  12

 3 4  12 6  18 4  14

The quotient is 4x4
 12x3

 6x2
 18x  4 with a remainder of  14. Thus,

4x5
 30x3

 50x  2  (x   3)(4x4
  12x3

 6x2
 18x   4)  14
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Key Steps in the Synthetic Division Process

To divide the polynomial P(x) by x r:

Step 1. Arrange the coefficients of P(x) in order of descending powers of x. Write 0 as the coeffi-

cient for each missing power.

Step 2. After writing the divisor in the form x r, use r to generate the second and third rows of

numbers as follows. Bring down the first coefficient of the dividend and multiply it by r;

then add the product to the second coefficient of the dividend. Multiply this sum by r, and

add the product to the third coefficient of the dividend. Repeat the process until a product

is added to the constant term of P(x).

Step 3. The last number to the right in the third row of numbers is the remainder. The other

numbers in the third row are the coefficients of the quotient, which is of degree 1 less

than P(x).
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Repeat Example 6 with P(x)  3x4
 11x3

 18x  8 and divisor x  4.

A calculator is a convenient tool for performing synthetic division. Any type
of calculator can be used, although one with a memory will save some keystrokes.
The flowchart in Figure 9 shows the repetitive steps in the synthetic division
process, and Figure 10 illustrates the results of applying this process to Example 6
on a graphing calculator.

FIGURE 9 Synthetic division. FIGURE 10

Remainder and Factor Theorems

Are
there more
coefficients?

Display
result

Add to next
coefficient

Multiply 
by r

Enter first
coefficient

Store r
in memory

Stop

Yes

No

E X P L O R E / D I S C U S S  5

Let P(x)  x3
 3x2

 2x  8.

(A) Evaluate P(x) for

(i) x   2 (ii) x  1 (iii) x  3

(B) Use synthetic division to find the remainder when P(x) is divided by

(i) x  2 (ii) x  1 (iii) x  3

What conclusion does a comparison of the results in parts A and B
suggest?



Explore/Discuss 5 suggests that when a polynomial P(x) is divided by x  r,
the remainder is equal to P(r), the value of the polynomial P(x) at x  r. This
is true because the equation of the division algorithm, P(x)  (x  r)Q(x)  R,
is an identity, valid for all replacements of the variable x by real or complex num-
bers; in particular, if x  r, then:

We have proved the remainder theorem.

 R

 0  R

 0  Q(r)  R

P(r)  (r  r)Q(r)  R
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T H E O R E M  4
Remainder Theorem

If R is the remainder after dividing the polynomial P(x) by x  r, then

P(r)  R

Two Methods for Evaluating Polynomials

If P(x)  4x4
 10x3

 19x  5, find P( 3) by

(A) Using the remainder theorem and synthetic division

(B) Evaluating P( 3) directly

S O L U T I O N S

(A) Use synthetic division to divide P(x) by x  ( 3).

4 10 0 19 5

 12 6  18  3

 3 4  2 6 1 2  R  P( 3)

(B) P( 3)  4( 3)4
 10( 3)3

 19( 3)  5

 2

Repeat Example 7 for P(x)  3x4
 16x2

 3x  7 and x   2.

You might think the remainder theorem is not a very effective tool for evalu-
ating polynomials. But let’s consider the number of operations performed in parts
A and B of Example 7. Synthetic division requires only four multiplications and
four additions to find P( 3), whereas the direct evaluation requires ten multipli-
cations and four additions. [Note that evaluating 4( 3)4 actually requires five mul-
tiplications.] The difference becomes even larger as the degree of the polynomial
increases. Computer programs that involve numerous polynomial evaluations often
use synthetic division because of its efficiency. We will find synthetic division and
the remainder theorem to be useful tools later in this chapter.



The remainder theorem implies that the division algorithm equation,

P(x)  (x  r)Q(x)  R

may be written in the form where R is replaced by P(r):

P(x)  (x  r)Q(x)  P(r)

Therefore x  r is a factor of P(x) if and only if P(r)  0, that is, if and only
if r is a zero of the polynomial P(x). This result is called the factor theorem.
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T H E O R E M  5
Factor Theorem

If r is a zero of the polynomial P(x), then x  r is a factor of P(x).
Conversely, if x  r is a factor of P(x), then r is a zero of P(x).

Factors of Polynomials

Use the factor theorem to show that x  1 is a factor of P(x)  x25
 1 but is

not a factor of Q(x)  x25
 1.

S O L U T I O N

Because

P( 1)  ( 1)25
 1   1  1  0

x  ( 1)  x  1 is a factor of x25
 1. On the other hand,

Q( 1)  ( 1)25
 1   1  1   2

and x  1 is not a factor of x25
 1.

Use the factor theorem to show that x  i is a factor of P(x)  x8
 1 but is not

a factor of Q(x)  x8
 1.

If a polynomial P(x) of degree n has n zeros, r1, r2, . . . ,  rn, then by the factor
theorem,

P(x)  (x  r1)Q1(x), deg Q1(x)  n  1

But P(r2)  0, so Q1(r2)  0. Applying the factor theorem to Q1(x) we obtain

P(x)  (x  r1)(x  r2)Q2(x), deg Q2(x)  n  2

Continuing in this way,

P(x)  (x  r1)(x  r2) . . . (x  rn)Qn(x), deg Qn(x)  0

Because Qn(x) is a nonzero constant, the only roots of P(x) are r1, r2, . . .  ,  rn. We
have proved Theorem 6.
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T A B L E  1 Sturgeon

Length (in.) Weight (oz.)
x y

18 13

22 26

26 46

30 75

34 115

38 166

44 282

52 492

60 796

Source: www.thefishernet.com

T H E O R E M  6
Zeros of Polynomials

A polynomial of degree n has at most n zeros.

Theorem 6 implies that the graph of a polynomial of degree n with real coef-
ficients has at most n real zeros (Property 3 of Theorem 1). The polynomial

H(x)  x6
 7x4

 12x2
 x  2

for example, has degree 6 and the maximum number of zeros [see Fig. 5(f), 
p. 243]. Of course polynomials of degree 6 may have fewer than six real zeros.
In fact, p(x)  x6

 1 has no real zeros. However, it can be shown that the poly-
nomial p(x)  x6

 1 has exactly six complex zeros.

Mathematical Modeling and Data Analysis
In Chapter 2 we saw that regression techniques can be used to construct a linear
or quadratic model for a set of data. Most graphing utilities have the ability to
use a variety of functions for modeling data. We discuss polynomial regression
models in this section and other types of regression models in later sections.

Estimating the Weight of Fish

Using the length of a fish to estimate its weight is of interest to both scientists
and sport anglers. The data in Table 1 give the average weight of North Ameri-
can sturgeon for certain lengths. Use these data and regression techniques to find
a cubic polynomial model that can be used to estimate the weight of a sturgeon
for any length. Estimate (to the nearest ounce) the weights of sturgeon of lengths
45, 46, 47, 48, 49, and 50 inches, respectively. 

S O L U T I O N

The graph of the data in Table 1 [Fig. 11(a)] indicates that a linear regression
model would not be appropriate for these data. And, in fact, we would not expect
a linear relationship between length and weight. Instead, because weight is asso-
ciated with volume, which involves three dimensions, it is more likely that the
weight would be related to the cube of the length. We use a cubic regression poly-
nomial to model these data [Fig. 11(b)]. Figure 11(c) adds the graph of the poly-
nomial model to the graph of the data. The graph in Figure 11(c) shows that this
cubic polynomial does provide a good fit for the data. (We will have more to say
about the choice of functions and the accuracy of the fit provided by regression
analysis later in the text.) Figure 11(d) shows the estimated weights for the
requested lengths.
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T A B L E  2

U.S. Consumption of
Hydroelectric Power

Year (Quadrillion BTU)

1977 2.52

1979 3.14

1981 3.11

1983 3.90

1985 3.40

1987 3.12

1989 2.99

1991 3.14

1993 3.13

1995 3.48

1997 3.88

1999 3.47

2001 2.38

Source: U.S. Department of Energy

0

0

1,000

70

0

0

1,000

70

(a)

(a)

(b) (c) (d)

FIGURE 11

Find a quadratic regression model for the data in Table 1 and compare it with the
cubic regression model found in Example 9. Which model appears to provide a
better fit for these data? Use numerical and/or graphical comparisons to support
your choice.

Hydroelectric Power

The data in Table 2 give the annual consumption of hydroelectric power (in
quadrillion BTU) in the United States for selected years since 1977. Use regres-
sion techniques to find an appropriate polynomial model for the data. Discuss how
well the model is expected to predict annual hydroelectric power consumption in
the first decade of the twenty-first century.

S O L U T I O N

From Table 2 it appears that a polynomial model of the data would have three
turning points—near 1983, 1989, and 1997. Because a polynomial with three turn-
ing points must have degree at least 4, we use quartic regression to find the poly-
nomial of the form

y  ax4
 bx3

 cx2
 dx  e

that best fits the data. Using x  0 to represent the year 1970 and x  40 to rep-
resent 2010, we enter the data [Fig. 12(a)], find the quartic regression model [Fig.
12(b)], and plot both the data points and the model [Fig. 12(c)]. The model is not
expected to be a good predictor of consumption of hydroelectric power in the first
decade of the twenty-first century. In fact, it predicts that consumption will be
negative after the middle of 2003 [as indicated by the zero shown in Fig. 12(c)].

FIGURE 12

 2

5

5

40

(b) (c)



x

y

x

y
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Find the cubic regression model for the data of Table 2. Discuss which model is
a better fit of the data—the cubic model or the quartic model of Example 10.

1. (A)  1, 1, 2
(B) The zeros are  5,  2, 2, 2i,  2i,

 1  2i, and  1  2i; the x intercepts
are  5,  2, and 2.

2. (A) Properties 1 and 5
(B) Property 5
(C) Properties 1 and 5

3. (A) P(x) S   as x S  and P(x) S  as
x S   .

(B) P(x) S  as x S  and P(x) S  as
x S   .

4. Zeros:  12.80,  1.47, 0.27; local maximum:
P( 0.57)  9.19; local minimum:
P( 8.76)   265.71

5.

6. 3x4
 11x3

 18x  8  
(x  4)(3x3

 x2
 4x  2)

7. P( 2)   3 for both parts, as it should
8. P(i)  0, so x  i is a factor of x8

 1;
Q(i)  2, so x  i is not a factor of x8

 1

9x2
 24x  48  

66

x  2

9. The cubic regression model provides a better model for these
data, especially for 18  x  26.

10.

A visual inspection of the two graphs indicates that the quartic
model is a better fit of the data than the cubic model.

 2

5

5

40

In Problems 1–4, a is a positive real number. Match each func-

tion with one of graphs (a)–(d).

1. f(x)   ax3 2. g(x)   ax4

3. h(x)  ax6 4. k(x)   ax5

x

y

x

y

(a) (b)

(c) (d)



In Problems 5–8, list the real zeros and turning points, and

state the left and right behavior, of the polynomial function

P(x) that has the indicated graph.

5.

6.

7.

8.

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

In Problems 9–12, explain why each graph is not the graph of

a polynomial function.

9.

10.

11.

12.

In Problems 13–16, list all zeros of each polynomial function,

and specify those zeros that are x intercepts.

13. P(x)  x(x2
 9)(x2

 4)

14. P(x)  (x2
 4)(x4

 1)

15. P(x)  (x  5)(x2
 9)(x2

 16)

16. P(x)  (x2
 5x  6)(x2

 5x  7)

x

y

 3

3 3

3

x

y

 3

3 3

3

x

y

 5

5 5

5

x

y

 2

2 2

2
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27. (4x2
 10x  9)  (x  3)

28. (2x2
 7x  5)  (x  4)

29. (2x3
 3x  1)  (x  2)

30. (x3
 2x2

 3x  4)  (x  2)

In Problems 31–34, determine whether the second polynomial

is a factor of the first polynomial without dividing or using

synthetic division. [Hint: Evaluate directly and use the factor

theorem.]

31. x18
 1; x  1

32. x18
 1; x  1

33. 3x3
 7x2

 8x  2; x  1

34. 3x4
 2x3

 5x  6; x  1

In Problems 17–24, divide, using algebraic long division. Write

the quotient, and indicate the remainder.

17. (4m2
 1)  (m  1)

18. (y2
 9)  (y  3)

19. (6  6x  8x2)  (x  1)

20. (11x  2  12x2)  (x  2)

21. (x3
 1)  (x  1)

22. (a3
 27)  (a  3)

23. (3y  y2
 2y3

 1)  (y  2)

24. (3  x3
 x)  (x  3)

In Problems 25–30, use synthetic division to write the quotient

P(x) (x r) in the form P(x)/(x  r) Q(x) R/(x r),

where R is a constant.

25. (x2
 3x  7)  (x  2)

26. (x2
 3x  3)  (x  3)

49. (4x4
 2x3

 6x2
 5x  1)  (x  )

50. (2x3
 5x2

 6x  3)  (x  )

51. (4x3
 4x2

 7x  6)  (x  )

52. (3x3
 x2

 x  2)  (x  )

53. (3x4
 2x3

 2x2
 3x  1)  (x  0.4)

54. (4x4
 3x3

 5x2
 7x  6)  (x  0.7)

55. (3x5
 2x4

 5x3
 7x  3)  (x  0.8)

56. (7x5
 x4

 3x3
 2x2

 5)  (x  0.9)

For each polynomial function in Problems 57–62:

(A) State the left and right behavior, the maximum number of 

x intercepts, and the maximum number of local extrema.

(B) Approximate (to two decimal places) the x intercepts and

the local extrema. 

57. P(x)  x3
 5x2

 2x  6

58. P(x)  x3
 2x2

 5x  3

59. P(x)   x3
 4x2

 x  5

60. P(x)   x3
 3x2

 4x  4

61. P(x)  x4
 x3

 5x2
 3x  12

62. P(x)   x4
 6x2

 3x  16

2
3

3
2

1
2

1
2
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Use synthetic division and the remainder theorem in Problems

35–40.

35. Find P( 2), given P(x) 3x2
 x  10.

36. Find P( 3), given P(x) 4x2
 10x  8.

37. Find P(2), given P(x) 2x3
 5x2

 7x  7.

38. Find P(5), given P(x) 2x3
 12x2

 x  30.

39. Find P( 4), given P(x) x4
 10x2

 25x  2.

40. Find P( 7), given P(x) x4
 5x3

 13x2
 30.

In Problems 41–56, divide, using synthetic division. Write the

quotient, and indicate the remainder. As coefficients get more

involved, a calculator should prove helpful. Do not round 

off—all quantities are exact.

41. (3x4
 x  4)  (x  1)

42. (5x4
 2x2

 3)  (x  1)

43. (x5
 1)  (x  1)

44. (x4
 16)  (x  2)

45. (3x4
 2x3

 4x  1)  (x  3)

46. (x4
 3x3

 5x2
 6x  3)  (x  4)

47. (2x6
 13x5

 75x3
 2x2

 50)  (x  5)

48. (4x6
 20x5

 24x4
 3x2

 13x  30)  (x  6)



In Problems 63–66, either give an example of a polynomial

with real coefficients that satisfies the given conditions or

explain why such a polynomial cannot exist.

63. P(x) is a third-degree polynomial with one x intercept.

64. P(x) is a fourth-degree polynomial with no x intercepts.

65. P(x) is a third-degree polynomial with no x intercepts.

66. P(x) is a fourth-degree polynomial with no turning points.
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In Problems 67 and 68, divide, using synthetic division. Do not

use a calculator.

67. (x3
 3x2

 x  3)  (x  i)

68. (x3
 2x2

 x  2)  (x  i)

69. Let P(x)  x2
 2ix  10. Find

(A) P(2  i)

(B) P(5  5i)

(C) P(3  i)

(D) P( 3  i)

70. Let P(x)  x2
 4ix  13. Find

(A) P(5  6i)

(B) P(1  2i)

(C) P(3  2i)

(D) P( 3  2i)

In Problems 71–78, approximate (to two decimal places) the 

x intercepts and the local extrema.

71. P(x)  40  50x  9x2
 x3

72. P(x)  40  70x  18x2
 x3

73. P(x)  0.04x3
 10x  5

74. P(x)   0.01x3
 2.8x  3

75. P(x)  0.1x4
 0.3x3

 23x2
 23x  90

76. P(x)  0.1x4
 0.2x3

 19x2
 17x  100

77. P(x)  x4
 24x3

 167x2
 275x  131

78. P(x)  x4
 20x3

 118x2
 178x  79

79. (A) Divide P(x) a2x
2
 a1x  a0 by x  r, using both

synthetic division and the long-division process, and
compare the coefficients of the quotient and the re-
mainder produced by each method.

(B) Expand the expression representing the remainder.
What do you observe?

80. Repeat Problem 79 for

P(x)  a3x
3
 a2x

2
 a1x  a0

81. Polynomials also can be evaluated conveniently using a
“nested factoring” scheme. For example, the polynomial
P(x)  2x4

 3x3
 2x2

 5x  7 can be written in a
nested factored form as follows:

P(x)  2x4
 3x3

 2x2
 5x  7

 (2x  3)x3
 2x2

 5x  7

 [(2x 3)x  2]x2
 5x  7

 {[(2x 3)x  2]x  5}x  7

Use the nested factored form to find P( 2) and P(1.7).
[Hint: To evaluate P( 2), store  2 in your calculator’s
memory and proceed from left to right recalling  2 as
needed.]

82. Let P(x)  3x4
 x3

 10x2
 5x  2. Find P( 2) and

P(1.3) using the nested factoring scheme presented in
Problem 81.

83. (A) What is the least number of turning points that a poly-
nomial function of degree 4, with real coefficients, can
have? The greatest number? Explain and give examples.

(B) What is the least number of x intercepts that a polyno-
mial function of degree 4, with real coefficients, can
have? The greatest number? Explain and give examples.

84. (A) What is the least number of turning points that a poly-
nomial function of degree 3, with real coefficients, can
have? The greatest number? Explain and give examples.

(B) What is the least number of x intercepts that a polyno-
mial function of degree 3, with real coefficients, can
have? The greatest number? Explain and give examples.

85. Is every polynomial of even degree an even function?
Explain.

86. Is every polynomial of odd degree an odd function?
Explain.

87. Let f (x) = 

(A) Graph f and observe that f is continuous.

(B) Find all numbers c such that f(c) is a local extremum
although (c, f (c)) is not a turning point.

88. Explain why the y coordinate of any turning point on the
graph of a continuous function is a local extremum.

 x2

4

if

if

|x|

|x|

 

 

2

2



92. Manufacturing. A rectangular storage container measur-
ing 2 feet by 2 feet by 3 feet is coated with a protective
coating of plastic of uniform thickness.

(A) Find the volume of plastic V as a function of the thick-
ness x (in feet) of the coating.

(B) Find the thickness of the plastic coating to four decimal
places if the volume of the shielding is 0.1 cubic feet.

Lead shielding

4

2

1
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89. Revenue. The price–demand equation for 8,000-BTU
window air conditioners is given by

p  0.0004x2
 x  569 0  x  800

where x is the number of air conditioners that can be sold
at a price of p dollars each.

(A) Find the revenue function.

(B) Find the number of air conditioners that must be sold
to maximize the revenue, the corresponding price to
the nearest dollar, and the maximum revenue to the
nearest dollar.

90. Profit. Refer to Problem 89. The cost of manufacturing
8,000-BTU window air conditioners is given by

C(x)  10,000  90x

where C(x) is the total cost in dollars of producing x air
conditioners.

(A) Find the profit function.

(B) Find the number of air conditioners that must be sold to
maximize the profit, the corresponding price to the near-
est dollar, and the maximum profit to the nearest dollar.

91. Construction. A rectangular container measuring 1 foot
by 2 feet by 4 feet is covered with a layer of lead shielding
of uniform thickness (see the figure).

(A) Find the volume of lead shielding V as a function of
the thickness x (in feet) of the shielding.

(B) Find the thickness of the lead shielding to three decimal
places if the volume of the shielding is 3 cubic feet.

93. Health Care. Table 3 shows the total national expendi-
tures (in billion dollars) and the per capita expenditures (in
dollars) for selected years since 1960.

(A) Let x represent the number of years since 1960 and
find a cubic regression polynomial for the total na-
tional expenditures.

(B) Use the polynomial model from part A to estimate the
total national expenditures (to the nearest tenth of a
billion) for 2010.

94. Health Care. Refer to Table 3.

(A) Let x represent the number of years since 1960 and
find a cubic regression polynomial for the per capita
expenditures.

(B) Use the polynomial model from part A to estimate the
per capita expenditures (to the nearest dollar) for
2010.

T A B L E  3 National Health Expenditures

Total Expenditures Per Capita
Year (Billion $) Expenditures ($)

1960 26.7 143

1970 73.1 348

1980 245.8 1,067

1990 695.6 2,737

1995 987.0 3,686

1997 1,093.9 4,011

1998 1,210.7 4,358

Source: U.S. Census Bureau.



95. Marriage. Table 4 shows the marriage and divorce rates
per 1,000 population for selected years since 1950.

(A) Let x represent the number of years since 1950 and
find a cubic regression polynomial for the marriage
rate.

(B) Use the polynomial model from part A to estimate the
marriage rate (to one decimal place) for 2008.

96. Divorce. Refer to Table 4.

(A) Let x represent the number of years since 1950 and
find a cubic regression polynomial for the divorce rate.

(B) Use the polynomial model from part A to estimate the
divorce rate (to one decimal place) for 2008.
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T A B L E  4 Marriages and Divorces (per 1,000 Population)

Year Marriages Divorces

1950 11.1 2.6

1960 8.5 2.2

1970 10.6 3.5

1980 10.6 5.2

1990 9.8 4.7

1999 8.6 4.1

Source: U.S. Census Bureau.

Real Zeros and Polynomial Inequalities

Upper and Lower Bounds for Real Zeros  Location Theorem and Bisection Method  

Approximating Real Zeros at Turning Points  Polynomial Inequalities  Application

The real zeros of a polynomial P(x) with real coefficients are just the x intercepts
of the graph of P(x). So an obvious strategy for finding the real zeros consists of
two steps:

1. Graph P(x) on a graphing utility.
2. Use the zero command to approximate each x intercept.

In this section we develop two important tools for carrying out this strategy: the
upper and lower bound theorem, which determines appropriate window variables
for step 1, and the location theorem, which leads to a simple approximation tech-
nique called the bisection method that underpins step 2. We also investigate some
potential difficulties when the strategy is applied to polynomials that have a zero
at a turning point, and we apply the strategy to solve polynomial inequalities.

In this section we restrict our attention to the real zeros of polynomials
with real coefficients.

Upper and Lower Bounds for Real Zeros
A polynomial of degree n has at most n zeros. So if a calculator’s viewing win-
dow displays three x intercepts of a cubic polynomial, then the zero command can
be used to find all zeros of the polynomial.

Approximating Real Zeros

Approximate the zeros of P(x)  x3
 6x2

 9x  3 to three decimal places.



S O L U T I O N

A graph of P(x) in the standard viewing window shows three x intercepts (Fig. 1).
We find each of them by applying the zero command: rounded to three decimal
places they are 0.468, 1.653, and 3.879. Because a polynomial of degree 3 can
have at most three zeros, we have found all of the zeros of P(x).

Approximate the zeros of P(x)  21  10x  3x2
 x3 to three decimal places.

A polynomial of degree 3 has at most three real zeros, but may have exactly
one or exactly two (Fig. 2). If we cannot find a viewing window that displays
more than one zero for a particular cubic polynomial, how long must we search
before we can decide whether the polynomial has one, two, or three real zeros?
Such a dilemma can be resolved by the upper and lower bound theorem. This the-
orem indicates how to find two numbers, a lower bound that is less than or equal
to all real zeros of the polynomial, and an upper bound that is greater than or
equal to all real zeros of the polynomial. Thus, all real zeros are guaranteed to lie
between the lower bound and the upper bound.

 10

 10

10

10

 10

 10

10

10

We sketch a proof of part 1 of Theorem 1. The proof of part 2 is similar, only
a little more difficult.

PROOF If all the numbers in the quotient row of the synthetic division are non-
negative after dividing P(x) by x  r, then

P(x)  (x  r)Q(x)  R
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 10

 10

10

10

FIGURE 1 A zero of 
P(x)  x3

 6x2
 9x  3.

FIGURE 2 Cubic polynomials
having one or two zeros.

T H E O R E M  1
Upper and Lower Bound Theorem

Let P(x) be a polynomial of degree n  0 with real coefficients, an  0:
1. Upper bound: A number r  0 is an upper bound for the real

zeros of P(x) if, when P(x) is divided by x  r by synthetic divi-
sion, all numbers in the quotient row, including the remainder, are
nonnegative.

2. Lower bound: A number r  0 is a lower bound for the real zeros of
P(x) if, when P(x) is divided by x  r by synthetic division, all num-
bers in the quotient row, including the remainder, alternate in sign.

[Note: In the lower-bound test, if 0 appears in one or more places in the
quotient row, including the remainder, the sign in front of it can be consid-
ered either positive or negative, but not both. For example, the numbers 1,
0, 1 can be considered to alternate in sign, whereas 1, 0,  1 cannot.]



where the coefficients of Q(x) are nonnegative and R is nonnegative. If x  r  0,
then x  r  0 and Q(x)  0; hence,

P(x)  (x  r)Q(x)  R  0

Thus, P(x) cannot be 0 for any x greater than r, and r is an upper bound for the
real zeros of P(x).

Theorem 1 requires performing synthetic division repeatedly until the desired
patterns occur in the quotient row. This is a simple, but tedious, operation to carry
out by hand. SYNDIV* is a program that makes this process routine. Figure 3
shows the results of dividing the polynomial P(x)  x3

 6x2
 9x  3 of Exam-

ple 1 by x  r for integer values of r from  1 through 6 using SYNDIV. (When
r  2, for example, the quotient is x2

 4x  1 and the remainder is  1.)
From Figure 3 we see that the positive number 6 is an upper bound for the real

zeros of P(x) because all numbers in the quotient row, including the remainder, are
nonnegative. Furthermore, the negative number  1 is a lower bound for the real
zeros of P(x) because all numbers in the quotient row, including the remainder,
alternate in sign. We conclude that all zeros of P(x) lie between  1 and 6.

Bounding Real Zeros

Let P(x)  x4
 2x3

 10x2
 40x  90. Find the smallest positive integer and

the largest negative integer that, by Theorem 1, are upper and lower bounds,
respectively, for the real zeros of P(x).

S O L U T I O N

We can use SYNDIV or hand calculations to perform synthetic division for 
r  1, 2, 3, . . . until the quotient row turns nonnegative; then repeat this process
for r   1,  2,  3, . . . until the quotient row alternates in sign. We organize
these results in the synthetic division table shown below. In a synthetic division
table we dispense with writing the product of r with each coefficient in the quo-
tient and simply list the results in the table.
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*Programs for TI-83 and TI-86 graphing calculators can be found at the website for this book (see Preface).

FIGURE 3 Synthetic division on
a graphing utility.

1  2  10 40  90

1 1  1  11 29  61

2 1 0  10 20  50

3 1 1  7 19  33

4 1 2  2 32 38

UB 5 1 3 5 65 235

 1 1  3  7 47  137

 2 1  4  2 44  178

 3 1  5 5 25  165

 4 1  6 14  16  26

LB  5 1  7 25  85 335

This quotient row is nonnegative;

hence, 5 is an upper bound (UB).
← {

This quotient row alternates in sign;

hence, 5 is a lower bound (LB).
← {



The graph of P(x)  x
4
 2x3

 10x2
 40x  90 for  5  x  5 is shown in

Figure 4. Theorem 1 implies that all the real zeros of P(x) are between  5 and
5. We can be certain that the graph does not change direction and cross the x axis
somewhere outside the viewing window in Figure 4.

Let P(x)  x
4
 5x3

 x
2
 40x  70. Find the smallest positive integer and the

largest negative integer that, by Theorem 1, are upper and lower bounds, respec-
tively, for the real zeros of P(x).

Approximating Real Zeros

Let P(x)  x
3
 30x2

 275x  720.

(A) Find the smallest positive integer multiple of 10 and the largest negative
integer multiple of 10 that, by Theorem 1, are upper and lower bounds,
respectively, for the real zeros of P(x).

(B) Approximate the real zeros of P(x) to two decimal places.

S O L U T I O N S

(A) We construct a synthetic division table to search for bounds for the zeros
of P(x). The size of the coefficients in P(x) indicates that we can speed up
this search by choosing larger increments between test values.
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FIGURE 4 P(x)  x
4
 2x3

 

10x2
 40x  90.

 200

 5

400

5

1  30 275  720

10 1  20 75 30

20 1  10 75 780

UB 30 1 0 275 7,530

LB  10 1  40 675  7,470

 100

 10

100

30

FIGURE 5 P(x)  x
3
 30x2

 

275x  720.

Thus, all real zeros of P(x)  x
3
 30x2

 275x  720 must lie between
 10 and 30.

(B) Graphing P(x) for  10  x  30 (Fig. 5) shows that P(x) has three zeros.
The approximate values of these zeros (details omitted) are 4.48, 11.28,
and 14.23.

Let P(x)  x
3
 25x2

 170x  170.

(A) Find the smallest positive integer multiple of 10 and the largest negative
integer multiple of 10 that, by Theorem 1, are upper and lower bounds,
respectively, for the real zeros of P(x).

(B) Approximate the real zeros of P(x) to two decimal places.

REMARK One of the most frequently asked questions concerning graphing util-
ities is how to determine the correct viewing window. The upper and lower
bound theorem provides an answer to this question for polynomial functions. As



Example 3 illustrates, the upper and lower bound theorem and the zero approxi-
mation routine on a graphing utility are two important mathematical tools that
work very well together.

Location Theorem and Bisection Method

The graph of every polynomial function is continuous. Because the polynomial
function P(x)  x5

 3x  1 is negative when x  0 [P(0)   1] and positive
when x  1 [P(1)  3], the graph of P(x) must cross the x axis at least once
between x  0 and x  1 (Fig. 6). This observation is the basis for Theorem 2
and leads to a simple method for approximating zeros.

The conclusion of Theorem 2 says that at least one zero of the function is
“located” between a and b. There may be more than one zero between a and b:

if g(x)  x3
 x2

 2x  1, then g( 2) and g(2) have opposite signs and there
are three zeros between x   2 and x  2 [Fig. 7(a)]. The converse of Theo-
rem 2 is false: h(x)  x2 has an x intercept at x  0 but does not change sign
[Fig. 7(b)].

 5

 5

5

5

 5

 5

5

5

 5

 5

5

5
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FIGURE 6 P(x)  x5
 3x  1.

*The location theorem is a formulation of the important intermediate value theorem of calculus.

T H E O R E M  2

Location Theorem*

Suppose that a function f is continuous on an interval I that contains
numbers a and b. If f(a) and f(b) have opposite signs, then the graph of
f has at least one x intercept between a and b.

E X P L O R E / D I S C U S S  1

When synthetic division is used to divide a polynomial P(x) by x  3
the remainder is  33. When the same polynomial is divided by x  4
the remainder is 38. Must P(x) have a zero between 3 and 4? Explain.

FIGURE 7 Polynomials may or
may not change sign at a zero.

(a) (b)



Explore/Discuss 2 provides an introduction to the repeated systematic application
of the location theorem (Theorem 2) called the bisection method. This method
forms the basis for the zero approximation routines in many graphing utilities.

The bisection method is a systematic application of the procedure suggested in
Explore/Discuss 2: Let P(x) be a polynomial with real coefficients. If P(x) has
opposite signs at the endpoints of an interval (a, b), then by the location theorem
P(x) has a zero in (a, b). Bisect this interval (that is, find the midpoint ),
check the sign of P(m), and select the interval (a, m) or (m, b) that has opposite
signs at the endpoints. We repeat this bisection procedure (producing a set of inter-
vals, each contained in and half the length of the previous interval, and each con-
taining the zero) until the desired accuracy is obtained. If at any point in the
process P(m)  0, we stop, because a real zero m has been found. An example
will help clarify the process.

The Bisection Method 

The polynomial P(x)  x4
 2x3

 10x2
 40x  90 of Example 2 has a zero

between 3 and 4. Use the bisection method to approximate it to one-decimal-place
accuracy.

S O L U T I O N

We organize the results of our calculations in a table. Because the sign of P(x)
changes at the endpoints of the interval (3.5625, 3.625), we conclude that a real
zero lies in this interval and is given by r  3.6 to one-decimal-place accuracy
(each endpoint rounds to 3.6).

m  a  b
2
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E X P L O R E / D I S C U S S  2

Let P(x)  x5
 3x  1. Because P(0) is negative and P(1) is positive,

the location theorem implies that P(x) must have at least one zero in
the interval (0, 1).

(A) Is P(0.5) positive or negative? Does the location theorem guarantee
a zero of P(x) in the interval (0, 0.5) or in (0.5, 1)?

(B) Let m be the midpoint of the interval from part A that contains a
zero of P(x). Is P(m) positive or negative? What does this tell you
about the location of the zero?

(C) Explain how this process could be used repeatedly to approximate
a zero to any desired accuracy.

(D) Check your answers to parts A and B by using the zero routine on
a graphing utility.
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FIGURE 8 Nested intervals
produced by the bisection
method in Table 1.

T A B L E  1 Bisection Approximation

Sign of P
Sign Change Interval Midpoint
(a, b) m P(a) P(m) P(b)

(3, 4) 3.5    

(3.5, 4) 3.75    

(3.5, 3.75) 3.625    

(3.5, 3.625) 3.5625    

(3.5625, 3.625) We stop here   

Figure 8 illustrates the nested intervals produced by the bisection method in
Table 1. Match each step in Table 1 with an interval in Figure 8. Note how each
interval that contains a zero gets smaller and smaller and is contained in the pre-
ceding interval that contained the zero.

If we had wanted two-decimal-place accuracy, we would have continued the
process in Table 1 until the endpoints of a sign change interval rounded to the
same two-decimal-place number.

The polynomial P(x)  x4
 2x3

 10x2
 40x  90 of Example 2 has a

zero between  5 and  4. Use the bisection method to approximate it to one-
decimal-place accuracy.

Approximating Real Zeros at Turning Points
The bisection method for approximating zeros fails if a polynomial has a turning
point at a zero, because the polynomial does not change sign at such a zero. Most
graphing utilities use methods that are more sophisticated than the bisection
method. Nevertheless, it is not unusual to get an error message when using the
zero command to approximate a zero that is also a turning point. In this case, we
can use the maximum or minimum command, as appropriate, to approximate the
turning point, and thus the zero.

Approximating Zeros at Turning Points 

Let P(x)  x5
 6x4

 4x3
 24x2

 16x  32. Find the smallest positive integer
and the largest negative integer that, by Theorem 1, are upper and lower bounds,
respectively, for the real zeros of P(x). Approximate the zeros to two decimal places,
using maximum or minimum commands to approximate any zeros at turning points.

S O L U T I O N

The pertinent rows of a synthetic division table show that 2 is the upper bound
and  6 is the lower bound:

43.753.5

3.5625 3.625

3

)))( ( ( x



Examining the graph of P(x) we find three zeros: the zero  3.24, found using
the maximum command [Fig. 9(a)]; the zero  2, found using the zero command
[Fig. 9(b)]; and the zero 1.24, found using the minimum command [Fig. 9(c)].
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1 6 4  24  16 32

1 1 7 11  13  29 3

2 1 8 20 16 16 64

 5 1 1  1  19 79  363

 6 1 0 4  48 272  1600

 40

 6

40

2

 40

 6

40

2

 40

 6

40

2

(a) (b) (c)

FIGURE 9 Zeros of P(x)  
x

5
 6x4

 4x3
 24x2

 16x
 32.

Let P(x)  x
5
 6x4

 40x2
 12x  72. Find the smallest positive integer and

the largest negative integer that, by Theorem 1, are upper and lower bounds,
respectively, for the real zeros of P(x). Approximate the zeros to two decimal
places, using maximum or minimum commands to approximate any zeros at turn-
ing points.

Polynomial Inequalities
We can apply the techniques we have introduced for finding real zeros to solve
polynomial inequalities. Consider, for example, the inequality 

x
3
 2x2

 5x  6  0

The real zeros of P(x)  x
3
 2x2

 5x  6 are easily found to be  2, 1, and
3. They partition the x axis into four intervals

(  ,  2), ( 2, 1), (1, 3), and (3,  )

On any one of these intervals, the graph of P is either above the x axis or below
the x axis, because, by the location theorem, a continuous function can change
sign only at a zero.

One way to decide whether the graph of P is above or below the x axis on a
given interval, say ( 2, 1), is to choose a “test number” that belongs to the inter-
val, 0, for example, and evaluate P at the test number. Because P(0)  6  0,
the graph of P is above the x axis throughout the interval ( 2, 1). A second way
to decide whether the graph of P is above or below the x axis on ( 2, 1) is to
simply inspect the graph of P. Each technique has its advantages, and both are
illustrated in the solutions to Example 6.



Solving Polynomial Inequalities

Solve the inequality x3
 2x2

 5x  6  0.

Algebraic Solution

Let P(x)  x3
 2x2

 5x  6. Then 

P(1)  13
 2(12)  5  6  0

so 1 is a zero of P and x  1 is a factor. Dividing P(x) by
x  1 (details omitted) gives the quotient x2

 x  6.
Therefore

P(x)  (x  1)(x2
 x  6)  (x  1)(x  2)(x  3)

The zeros of P are thus  2, 1, and 3. They partition the x
axis into the four intervals shown in the table. A test num-
ber is chosen from each interval as indicated to determine
whether P(x) is positive (above the x axis) or negative
(below the x axis) on that interval.

Interval (  ,  2) ( 2, 1) (1, 3) (3,  )

Test number x  3 0 2 4

P(x)  24 6  4 18

Sign of P     

We conclude that the solution set of the inequality is

( 2, 1)  (3,  )

Graphical Solution

We graph P [Fig. 10(a)] and find that  2, 1,
and 3 are the zeros of P. They partition the x
axis into four intervals

(  ,  2), ( 2, 1), (1, 3), and (3,  )

By inspecting the graph of P we see that P is
above the x axis on the intervals ( 2, 1) and 
(3,  ). Thus, the solution set of the inequality is

( 2, 1)  (3,  )

FIGURE 10 (a) P(x)  x3
 2x2

 5x  6

(b)

An alternative to inspecting the graph of P is to
inspect the graph of

The function f(x) has the value 1 if P(x) is posi-
tive, because then the absolute value of P(x) is
equal to P(x). Similarly, f(x) has the value  1 if
P(x) is negative. This technique makes it easy to
identify the solution set of the original inequal-
ity [Fig. 10(b)] and often eliminates difficulties
in choosing appropriate window variables.

f(x)  
P(x)

 P(x) 

f (x)  
P(x)

 P(x) 

 10

 10

10

10

 10

 10

10

10
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S O L U T I O N
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Solve the inequality x3
 x

2
 x  1  0.

E X P L O R E / D I S C U S S  3

Explain how Figure 10 may be used to write down the solution set for
each inequality:

(A) x
3
 2x2

 5x  6  0

(B) x
3
 2x2

 5x  6 ≥ 0

(C) x
3
 2x2

 5x  6 ≤ 0

 100

 10

100

10

FIGURE 11

Solving Polynomial Inequalities

Solve 3x2
 12x  4 ≥ 2x3

 5x2
 7 to three decimal places.

S O L U T I O N

Subtracting the right-hand side gives the equivalent inequality

P(x)   2x3
 8x2

 12x  11 ≥ 0

The zeros of P(x), to three decimal places, are  1.651, 0.669, and 4.983 (Fig. 11).
The graph of P is above the x axis on the intervals (  ,  1.651) and

(0.669, 4.983). The solution set of the inequality is thus

(  ,  1.651]  [0.669, 4.983]

The square brackets indicate that the endpoints of the intervals—the zeros of the
polynomial—also satisfy the inequality.

Solve to three decimal places 5x3
 13x  4x2

 10x  5.

Application

Construction

An oil tank is in the shape of a right circular cylinder with a hemisphere at each
end (Fig. 12). The cylinder is 55 inches long, and the volume of the tank is
11,000 cubic inches (approximately 20 cubic feet). Let x denote the common
radius of the hemispheres and the cylinder.
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 70,000

0

70,000

20

FIGURE 13

P(x)  4x3
 165x2

 33,000.

(A) Find a polynomial equation that x must satisfy.

(B) Approximate x to one decimal place.

S O L U T I O N S

(A) If x is the common radius of the hemispheres and the cylinder in
inches, then

Volume Volume Volume
of  of two  of

tank hemispheres cylinder

11,000   x3
 55 x2     Multiply by 3/ .

33,000  4x3
 165x2

0  4x3
 165x2

 33,000

Thus, x must be a positive zero of

P(x)  4x3
 165x2

 33,000

(B) Because the coefficients of P(x) are large, we use larger increments in
the synthetic division table:

4 165 0  33,000

10 4 205 2,050  12,500

UB 20 4 245 4,900 65,000

Graphing y  P(x) for 0  x  20 (Fig. 13), we see that x  12.4
inches (to one decimal place).

Repeat Example 8 if the volume of the tank is 44,000 cubic inches.

4
3

55 inches

x
x

1.  4.190,  1.721, 2.912
2. Lower bound:  3; upper bound: 6
3. (A) Lower bound:  10; upper

bound: 30 (B) Real zeros: 1.20,
11.46, 12.34

4. x   4.1
5. Lower bound:  2; upper bound:

6;  1.65, 2, 3.65
6. (  ,  1)  ( 1, 1)

7. (  ,  1.899)  (0.212, 2.488)
8. (A) P(x)  4x3

 165x2
 

132,000  0 (B) 22.7 inches

FIGURE 12



7. P(x)  0

8. P(x)  0

In Problems 9–12, solve each polynomial inequality to three

decimal places (note the connection with Problems 1–4).

9. x2
 5x  2  0

10. 3x2
 7x  1  0

11. 2x3
 5x  2  0

12. x3
 4x2

 8x  3  0

Find the smallest positive integer and largest negative integer

that, by Theorem 1, are upper and lower bounds, respectively,

for the real zeros of each of the polynomials given in Problems

13–18.

13. P(x)  x3
 3x  1 14. P(x)  x3

 4x2
 4

15. P(x)  x4
 3x3

 4x2
 2x  9

16. P(x)  x4
 4x3

 6x2
 4x  7

17. P(x)  x5
 3x3

 3x2
 2x  2

18. P(x)  x5
 3x4

 3x2
 2x  1
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In Problems 1–4, approximate the real zeros of each polyno-

mial to three decimal places.

1. P(x)  x2
 5x  2

2. P(x)  3x2
 7x  1

3. P(x)  2x3
 5x  2

4. P(x)  x3
 4x2

 8x  3

In Problems 5–8, use the graph of P(x) to write the solution set

for each inequality.

5. P(x)  0

6. P(x)  0

 20

 5

20

5

In Problems 19–26,

(A) Use the location theorem to explain why the polynomial

function has a zero in the indicated interval.

(B) Determine the number of additional intervals required by the

bisection method to obtain a one-decimal-place approxima-

tion to the zero and state the approximate value of the zero.

19. P(x)  x3
 2x2

 5x  4; (3, 4)

20. P(x)  x3
 x2

 4x  1; (1, 2)

21. P(x)  x3
 2x2

 x  5; ( 2,  1)

22. P(x)  x3
 3x2

 x  2; (3, 4)

23. P(x)  x4
 2x3

 7x2
 9x  7; (3, 4)

24. P(x)  x4
 x3

 9x2
 9x  4; (2, 3)

25. P(x)  x4
 x3

 4x2
 4x  3; ( 1, 0)

26. P(x)  x4
 3x3

 x2
 3x  3; (2, 3)

In Problems 27–34,

(A) Find the smallest positive integer and largest negative

integer that, by Theorem 1, are upper and lower bounds,

respectively, for the real zeros of P(x).

(B) Approximate the real zeros of each polynomial to two

decimal places.

27. P(x)  x3
 2x2

 3x  8

28. P(x)  x3
 3x2

 4x  5

29. P(x)  x4
 x3

 5x2
 7x  22

30. P(x)  x4
 x3

 8x2
 12x  25

31. P(x)  x5
 3x3

 4x  4

32. P(x)  x5
 x4

 2x2
 4x  5

33. P(x)  x5
 x4

 3x3
 x2

 2x  5

34. P(x)  x5
 2x4

 6x2
 9x  10



Problems 35–38 refer to the polynomial

P(x)  (x  1)2(x  2)(x 3)4

35. Can the zero at x 1 be approximated by the bisection
method? Explain.

36. Can the zero at x 2 be approximated by the bisection
method? Explain.

37. Can the zero at x 3 be approximated by the bisection
method? Explain.

38. Which of the zeros can be approximated by a maximum
approximation routine? By a minimum approximation
routine? By the zero approximation routine on your graph-
ing utility?

In Problems 39–44, approximate the zeros of each polynomial

function to two decimal places, using maximum or minimum

commands to approximate any zeros at turning points.

39. P(x)  x4
 4x3

 10x2
 28x  49

40. P(x)  x4
 4x3

 4x2
 16x  16

41. P(x)  x5
 6x4

 4x3
 24x2

 16x  32

In Problems 55–64,

(A) Find the smallest positive integer multiple of 10 and

largest negative integer multiple of 10 that, by Theorem 1,

are upper and lower bounds, respectively, for the real

zeros of each polynomial.

(B) Approximate the real zeros of each polynomial to two deci-

mal places.

55. P(x)  x3
 24x2

 25x  10

56. P(x)  x3
 37x2

 70x  20

57. P(x)  x4
 12x3

 900x2
 5,000

58. P(x)  x4
 12x3

 425x2
 7,000

59. P(x)  x4
 100x2

 1,000x  5,000

60. P(x)  x4
 5x3

 50x2
 500x  7,000

61. P(x)  4x4
 40x3

 1,475x2
 7,875x  10,000

62. P(x)  9x4
 120x3

 3,083x2
 25,674x  48,400

63. P(x)  0.01x5
 0.1x4

 12x3
 9,000

64. P(x)  0.1x5
 0.7x4

 18.775x3
 340x2

 

1,645x  2,450

65. When synthetic division is used to divide a polynomial
P(x) by x 4 the remainder is 10. When the same polyno-
mial is divided by x 5 the remainder is  8. Must P(x)
have a zero between  5 and  4? Explain.

66. When synthetic division is used to divide a polynomial
Q(x) by x 4 the remainder is 10. When the same polyno-
mial is divided by x 5 the remainder is 8. Could Q(x)
have a zero between  5 and  4? Explain.

42. P(x)  x5
 6x4

 2x3
 28x2

 15x  2

43. P(x)  x5
 6x4

 11x3
 4x2

 3.75x  0.5

44. P(x)  x5
 12x4

 47x3
 56x2

 15.75x  1

In Problems 45–54, solve each polynomial inequality to three

decimal places.

45. x2
 2

46. x3
  10x

47. x3
  4x2

 7

48. 3x2
  1  5x

49. x2
  7x  3  x3

 x  4

50. x4
  1  3x2

51. x4
 8x3

 17x2
 9x  2

52. x3
 5x  2x3

 4x2
 6

53. (x2
 2x  2)2

 2

54. 5  2x  (x2
 4)2
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Express the solutions to Problems 67–72 as the roots of a polyno-

mial equation of the form P(x)  0 and approximate these solu-

tions to three decimal places.

 67. Geometry. Find all points on the graph of y x2 that are one
unit away from the point (1, 2). [Hint: Use the distance-
between-two-points formula from Appendix A, Section A.3.]

 68. Geometry. Find all points on the graph of y  x2 that are
one unit away from the point (2, 1).

 69. Manufacturing. A box is to be made out of a piece of
cardboard that measures 18 by 24 inches. Squares, x
inches on a side, will be cut from each corner, and then the
ends and sides will be folded up (see the figure). Find the



value of x that would result in a box with a volume of 
600 cubic inches.

 70. Manufacturing. A box with a hinged lid is to be made out
of a piece of cardboard that measures 20 by 40 inches. Six
squares, x inches on a side, will be cut from each corner
and the middle, and then the ends and sides will be folded
up to form the box and its lid (see the figure). Find the
value of x that would result in a box with a volume of 
500 cubic inches.

24 in.

1
8
 i
n

.

x

x

 71. Construction. A propane gas tank is in the shape of a
right circular cylinder with a hemisphere at each end (see

the figure). If the overall length of the tank is 10 feet and
the volume is 20 cubic feet, find the common radius of
the hemispheres and the cylinder.

 72. Shipping. A shipping box is reinforced with steel bands
in all three directions (see the figure). A total of 20.5 feet of
steel tape is to be used, with 6 inches of waste because of a
2-inch overlap in each direction. If the box has a square
base and a volume of 2 cubic feet, find its dimensions.

x

x

y

10 feet

x x
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2
0
 i
n

.

x
x

Complex Zeros and Rational Zeros 
of Polynomials

Fundamental Theorem of Algebra  Factors of Polynomials with Real Coefficients  Graphs
of Polynomials with Real Coefficients  Rational Zeros

The graph of the polynomial function P(x)  x2
 4 does not cross the x axis,

so P(x) has no real zeros. It does, however, have complex zeros, 2i and  2i; by
the factor theorem, x2

 4  (x  2i)(x  2i). The fundamental theorem of alge-

bra guarantees that every nonconstant polynomial with real or complex coeffi-
cients has a complex zero; it implies that such a polynomial can be factored as a
product of linear factors. In Section 3.3 we study the fundamental theorem and
its implications, including results on the graphs of polynomials with real coeffi-
cients. Finally, we consider a problem that has led to profound advances in math-
ematics: When can zeros of a polynomial be found exactly?



Fundamental Theorem of Algebra
The fundamental theorem of algebra was proved by Karl Friedrich Gauss
(1777–1855), one of the greatest mathematicians of all time, in his doctoral the-
sis. A proof of the theorem is beyond the scope of this book, so we will state and
use it without proof.

If P(x) is a polynomial of degree n  0 with complex coefficients, then by The-
orem 1 it has a zero r1. So x  r1 is a factor of P(x) by the factor theorem of
Section 3.1. Thus, 

P(x)  (x  r1)Q(x), deg Q(x)  n  1

Now, applying the fundamental theorem to Q(x), Q(x) has a root r2 and thus a
factor x  r2. (It is possible that r2 is equal to r1.) By continuing this reasoning
we obtain a proof of Theorem 2.

Suppose that a polynomial P(x) is factored as a product of n linear factors. Any
zero r of P(x) must be a zero of one or more of the factors. The number of lin-
ear factors that have zero r is said to be the multiplicity of r. For example, the
polynomial

P(x)  (x  5)3(x  1)2(x  6i)(x  2 3i) (1)

has degree 7 and is written as a product of seven linear factors. P(x) has just four
zeros, namely 5,  1, 6i, and  2 3i. Because the factor x  5 appears to the
power 3, we say that the zero 5 has multiplicity 3. Similarly,  1 has multiplicity

2, 6i has multiplicity 1, and  2 3i has multiplicity 1. Note that the sum of the
multiplicities is always equal to the degree of the polynomial: for P(x) in (1),
3  2  1  1  7.

Multiplicities of Zeros

Find the zeros and their multiplicities:

(A) P(x)  (x  2)7(x  4)8(x2
 1)

(B) Q(x)  (x  1)3(x2
 1)(x  1 i)
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T H E O R E M  1
Fundamental Theorem of Algebra

Every polynomial of degree n  0 with complex coefficients has a com-
plex zero.

T H E O R E M  2
n Linear Factors Theorem

Every polynomial of degree n  0 with complex coefficients can be
factored as a product of n linear factors. 
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S O L U T I O N

(A) Note that x2
 1  0 has the solutions i and  i. The zeros of P(x) are

 2 (multiplicity 7), 4 (multiplicity 8), i and  i (each multiplicity 1).

(B) Note that x2
 1  (x  1)(x  1), so x  1 appears four times as a

factor of Q(x). The zeros of Q(x) are  1 (multiplicity 4), 1 (multi-
plicity 1), and  1 i (multiplicity 1).

Find the zeros and their multiplicities:

(A) P(x)  (x  5)3(x  3)2(x2
 16)

(B) Q(x)  (x2
 25)3(x  5)(x  i)

Factors of Polynomials with Real Coefficients
If p  qi is a zero of P(x)  ax2

 bx  c, where a, b, c, p, and q are real num-
bers, then

Take the conjugate of both sides.

Therefore, p  qi is also a zero of P(x). This method of proof can be applied to
any polynomial P(x) of degree n  0 with real coefficients, justifying Theorem 3.

P(p  qi)  0

a(p  qi)2
 b(p  qi)  c  0

z  z if z is real, p  qi  p  qia (p  qi)2
 b (p  qi)  c  0

z  w  z  w, zw  z wa(p  qi)2
 b(p  qi)  c  0

a(p  qi)2
 b(p  qi)  c  0

P(p  qi)  0

If a polynomial P(x) of degree n  0 has real coefficients and a linear factor
of the form x  (p  qi) where q  0, then, by Theorem 3, P(x) also has the lin-
ear factor x  (p – qi). But

[x  (p  qi)][x  (p – qi)]  x2
 2px  p2

 q2

which is a quadratic factor of P(x) with real coefficients and imaginary zeros. By
this reasoning we can prove Theorem 4.

T H E O R E M  3
Imaginary Zeros of Polynomials with Real Coefficients

Imaginary zeros of polynomials with real coefficients, if they exist, occur
in conjugate pairs.
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T H E O R E M  4
Linear and Quadratic Factors Theorem*

If P(x) is a polynomial of degree n  0 with real coefficients, then P(x)
can be factored as a product of linear factors (with real coefficients) and
quadratic factors (with real coefficients and imaginary zeros).

*Theorem 4 underlies the technique of decomposing a rational function into partial fractions, which is useful in calculus.

See Appendix B, Section B.2.

Factors of Polynomials

Factor P(x)  x
3
 x

2
 4x  4 in two ways:

(A) As a product of linear factors (with real coefficients) and quadratic factors
(with real coefficients and imaginary zeros)

(B) As a product of linear factors with complex coefficients

S O L U T I O N

(A) Note that P( 1)  0, so  1 is a zero of P(x) (or graph P(x) and
note that  1 is an x intercept). Therefore x  1 is a factor of P(x).
Using synthetic division, the quotient is x2

 4, which has imaginary
roots. Therefore

P(x)  (x  1)(x2
 4)

An alternative solution is to factor by grouping:

x
3
 x

2
 4x  4  x

2(x  1)  4(x  1)

 (x2
 4)(x  1)

(B) Because x2
 4 has roots 2i and  2i,

P(x)  (x  1)(x  2i)(x  2i)

Factor P(x)  x
5
 x

4
 x  1 in two ways:

(A) As a product of linear factors (with real coefficients) and quadratic factors
(with real coefficients and imaginary zeros)

(B) As a product of linear factors with complex coefficients



Graphs of Polynomials with Real Coefficients
The factorization described in Theorem 4 gives additional information about the
graphs of polynomial functions with real coefficients. For certain polynomials the
factorization of Theorem 4 will involve only linear factors; for others, only quad-
ratic factors. Of course if only quadratic factors are present, then the degree of
the polynomial P(x) must be even. In other words, a polynomial P(x) of odd
degree with real coefficients must have a linear factor with real coefficients. This
proves Theorem 5.

For polynomials with real coefficients, as suggested by Explore/Discuss 1, you
can easily distinguish real zeros of even multiplicity from those of odd multi-
plicity using only the graph. Theorem 6, which we state without proof, gives dis-
tinguishing criteria.
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T H E O R E M  5
Real Zeros and Polynomials of Odd Degree

Every polynomial of odd degree with real coefficients has at least one
real zero.

T H E O R E M  6
Zeros of Even or Odd Multiplicity 

Let P(x) be a polynomial with real coefficients:
1. If r is a real zero of P(x) of even multiplicity, then P(x) has a turn-

ing point at r and does not change sign at r.
2. If r is a real zero of P(x) of odd multiplicity, then P(x) does not have

a turning point at r and changes sign at r.

E X P L O R E / D I S C U S S  1

The graph of the polynomial P(x)  x(x  1)2(x  1)4(x  2)3 is
shown in Figure 1. Find the real zeros of P(x) and their multiplicities.
How can a real zero of even multiplicity be distinguished from a real
zero of odd multiplicity using only the graph?

 3

 3

3

3

FIGURE 1 Graph of P(x)  x

(x  1)2(x  1)4(x  2)3.



3.3 Complex Zeros and Rational Zeros of Polynomials 279

FIGURE 3

 10

 10

10

10

FIGURE 4 P(x)  x2
 (4  10 9).

 5

 5

5

5

FIGURE 2

Multiplicities from Graphs

Figure 2 shows the graph of a polynomial function of degree 6. Find the real zeros
and their multiplicities.

S O L U T I O N

The numbers  2,  1, 1, and 2 are real zeros (x intercepts). The graph has turn-
ing points at x   1 but not at x   2. Therefore, by Theorem 6, the zeros  1
and 1 have even multiplicity, and  2 and 2 have odd multiplicity. Because the
sum of the multiplicities must equal 6 (the degree), the zeros  1 and 1 each have
multiplicity 2, and the zeros  2 and 2 each have multiplicity 1.

Figure 3 shows the graph of a polynomial function of degree 7. Find the real zeros
and their multiplicities.

Rational Zeros
From a graphical perspective, finding a zero of a polynomial means finding a
good approximation to an actual zero. A graphing calculator, for example, might
give 2 as a zero of P(x)  x2

 (4  10 9) even though P(2) is equal to  10 9,
not 0 (Fig. 4).

It is natural, however, to want to find zeros exactly. Although this is impossi-
ble in general, we will adopt an algebraic strategy to find exact zeros in a special
case, that of rational zeros of polynomials with rational coefficients. We will find
a graphing utility to be helpful in carrying out the algebraic strategy.

First note that a polynomial with rational coefficients can always be written as
a constant times a polynomial with integer coefficients. For example

Because the zeros of P(x) are the zeros of 6x3
 8x2

 21x  60, it is sufficient,
for the purpose of finding rational zeros of polynomials with rational coefficients,
to confine our attention to polynomials with integer coefficients.

We introduce the rational zero theorem by examining the following quadratic
polynomial whose zeros can be found easily by factoring:

P(x)  6x2
 13x  5  (2x  5)(3x  1)

Zeros of P(x): and

Notice that the numerators, 5 and  1, of the zeros are both integer factors of  5,
the constant term in P(x). The denominators 2 and 3 of the zeros are both inte-
ger factors of 6, the coefficient of the highest-degree term in P(x). These obser-
vations are generalized in Theorem 7.

 
1

3
 
 1

3

5

2

 
1

12
(6x3

 8x2
 21x  60)

P(x)  
1

2
x3
 

2

3
x2
 

7

4
x  5

 10

 4

5

4



The proof of Theorem 7 is not difficult and is instructive, so we sketch it here.

PROOF Because b/c is a zero of P(x),

(2)

If we multiply both sides of equation (2) by cn, we obtain

anbn
 an 1b

n 1c      a1bcn 1
 a0cn

 0 (3)

which can be written in the form

anbn
 c( an 1b

n 1
     a0cn 1) (4)

Because both sides of equation (4) are integers, c must be a factor of anb
n. And

because the rational number b/c is given to be in lowest terms, b and c can have
no common factors other than  1. That is, b and c are relatively prime. This
implies that bn and c also are relatively prime. Hence, c must be a factor of an.

Now, if we solve equation (3) for a0c
n and factor b out of the right side, we

have

a0cn
 b( anb

n 1
     a1c

n 1)

We see that b is a factor of a0c
n and, hence, a factor of a0, because b and c are

relatively prime.

an b

c 
n

 an 1 b

c 
n 1

       a1 b

c  a0  0
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T H E O R E M  7
Rational Zero Theorem

If the rational number b/c, in lowest terms, is a zero of the polynomial

P(x)  anxn
 an 1xn 1

      a1x  a0 an  0

with integer coefficients, then b must be an integer factor of a0 and c

must be an integer factor of an.

P(x)  anx n
 an 1 x n 1 

        a1x a0

b
c

c must be a

factor of an

b must be a

factor of a0

E X P L O R E / D I S C U S S  2

Let P(x)  a3x
3
 a2x

2
 a1x  a0, where a3, a2, a1, and a0 are

integers.

1. If P(2)  0, there is one coefficient that must be an even integer.
Identify this coefficient and explain why it must be even.



It is important to understand that Theorem 7 does not say that a polynomial P (x) with integer coef-

ficients must have rational zeros.

It simply states that if P(x) does have a rational zero, then the numerator of
the zero must be an integer factor of a0 and the denominator of the zero must be
an integer factor of an. Because every integer has a finite number of integer fac-
tors, Theorem 7 enables us to construct a finite list of possible rational zeros. Find-
ing any rational zeros then becomes a routine, although sometimes tedious,
process of elimination.

As the next example illustrates, a graphing utility can greatly reduce the effort
required to locate rational zeros.

Finding Rational Zeros

Find all the rational zeros for P(x)  2x3
 9x2

 7x  6.

S O L U T I O N

If b/c in lowest terms is a rational zero of P(x), then b must be a factor of  6
and c must be a factor of 2.

Possible values of b are the integer factors of  6:  1,  2,  3,  6 (5)

Possible values of c are the integer factors of 2:  1,  2 (6)

Writing all possible fractions b/c where b is from (5) and c is from (6), we have

Possible rational zeros for P(x):  1,  2,  3,  6,  ,  (7)

[Note that all fractions are in lowest terms and duplicates like  6/ 2   3 are
not repeated.] If P(x) has any rational zeros, they must be in list (7). We can test
each number r in this list simply by evaluating P(r). However, exploring the graph
of y  P(x) first will usually indicate which numbers in the list are the most likely
candidates for zeros. Examining a graph of P(x), we see that there are zeros near
 3, near  2, and between 0 and 1, so we begin by evaluating P(x) at  3,  2,
and (Fig. 5).1

2

3
2

1
2
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2. If , there is one coefficient that must be an even integer.
Identify this coefficient and explain why it must be even.

3. If a3  a0  1, P( 1)  0, and P(1)  0, does P(x) have any
rational zeros? Support your conclusion with verbal arguments
and/or examples.

P(1
2)  0

 10

 5

10

5

 10

 5

10

5

 10

 5

10

5

(a) (b) (c)

FIGURE 5



Thus  3,  2, and are rational zeros of P(x). Because a third-degree polyno-
mial can have at most three zeros, we have found all the rational zeros. There is
no need to test the remaining candidates in list (7).

Find all rational zeros for P(x)  2x3
 x2

 11x  10.

As we saw in the solution of Example 4, rational zeros can be located by sim-
ply evaluating the polynomial. However, if we want to find multiple zeros, imag-
inary zeros, or exact values of irrational zeros, we need to consider reduced
polynomials. If r is a zero of a polynomial P(x), then we can write

P(x)  (x  r)Q(x)

where Q(x) is a polynomial of degree one less than the degree of P(x). The quo-
tient polynomial Q(x) is called the reduced polynomial for P(x). In Example 4,
after determining that  3 is a zero of P(x), we can write

2 9 7  6

 6  9 6

 3 2 3  2 0

P(x)  2x3
 9x2

 7x  6

 (x  3)(2x2
 3x  2)

 (x  3)Q(x)

Because the reduced polynomial Q(x)  2x2
 3x  2 is a quadratic, we can find

its zeros by factoring or the quadratic formula. Thus,

P(x)  (x  3)(2x2
 3x  2)  (x  3)(x  2)(2x  1)

and we see that the zeros of P(x) are  3,  2, and , as before.

Finding Rational and Irrational Zeros

Find all zeros exactly for P(x)  2x3
 7x2

 4x  3.

S O L U T I O N

First, list the possible rational zeros:

 1,  3,  ,  

Examining the graph of y  P(x) (Fig. 6), we see that there is a zero between
 1 and 0, another between 1 and 2, and a third between 2 and 3. We test the only
likely candidates, and :

Thus, is a zero, but is not. Using synthetic division (details omitted), we
can write

P(x)  (x  3
2)(2x2

 4x  2)

 
1
2

3
2

P( 1
2   1    and P(3

2)  0

3
2 

1
2

3
2

1
2

1
2

1
2
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 5

 5

5

5

FIGURE 6



Because the reduced polynomial is quadratic, we can use the quadratic formula
to find the exact values of the remaining zeros:

Thus, the exact zeros of P(x) are and .*

Find all zeros exactly for P(x)  3x3
 10x2

 5x  4.

Finding Rational and Imaginary Zeros

Find all zeros exactly for P(x)  x4
 6x3

 14x2
 14x  5.

S O L U T I O N

The possible rational zeros are  1 and  5. Examining the graph of P(x) (Fig. 7), we
see that 1 is a zero. Because the graph of P(x) does not appear to change sign at 1,
this may be a multiple root. Using synthetic division (details omitted), we find that

P(x)  (x  1)(x3
 5x2

 9x  5)

The possible rational zeros of the reduced polynomial

Q(x)  x3
 5x2

 9x  5

are  1 and  5. Examining the graph of Q(x) (Fig. 8), we see that 1 is a rational
zero. After a division, we have a quadratic reduced polynomial:

Q(x)  (x  1)Q1(x)  (x  1)(x2
 4x  5)

We use the quadratic formula to find the zeros of Q1(x):

Thus, the exact zeros of P(x) are 1 (multiplicity 2), 2  i, and 2  i.

 
4    4

2
 2  i

x  
4   16  4(1)(5)

2

x2
 4x  5  0

1   23
2

 
2  2 2

2
 1   2

x  
2   4  4(1)( 1)

2

x2
 2x  1  0

 2x2
 4x  2  0
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*By analogy with Theorem 3 (imaginary zeros of polynomials with real coefficients occur in conjugate pairs), it can be

shown that if is a zero of a polynomial with rational coefficients, where r, s, and t are rational but t is not the

square of a rational, then is also a zero.r  s t

r  s t

FIGURE 7

 1

 1

5

5

FIGURE 8

 5

 1

5

5
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Find all zeros exactly for P(x)  x
4

 4x3
 10x2

 12x  5.

REMARK We were successful in finding all the zeros of the polynomials in Exam-
ples 5 and 6 because we could find sufficient rational zeros to reduce the original
polynomial to a quadratic. This is not always possible. For example, the polynomial

P(x)  x
3

 6x  2

has no rational zeros, but does have an irrational zero at x  0.32748 (Fig. 9).
The other two zeros are imaginary. The techniques we have developed will not
find the exact value of these roots.

E X P L O R E / D I S C U S S  3

There is a technique for finding the exact zeros of cubic polynomials,
usually referred to as Cardano’s formula.* This formula shows that the
exact value of the irrational zero of P(x)  x

3
 6x  2 (see Fig. 9) is

(A) Verify that this is correct by expanding and simplifying 

P( )

(B) Cardano’s formula also shows that the two imaginary zeros are

( ) ( )

If you like algebraic manipulation, you can also verify that these are
correct.

(C) Find a reference for Cardano’s formula in a library or on the Inter-
net. Use this formula to find the exact value of the irrational zero of

P(x)  x
3

 9x  6

Check your answer by comparing it with the approximate value
obtained on a graphing utility.

 
3 4   

3 2 3 
1
2i 

3 4   
3 2 

1
2

 
3 4   

3 2

x   
3 4   

3 2

*Girolamo Cardano (1501–1576), an Italian mathematician and physician, was the first to publish a formula for the solu-

tion to cubic equations of the form x3
 ax  b  0 and the first to realize that this technique could be used to solve other

cubic equations. Having predicted that he would live to the age of 75, Cardano committed suicide in 1576.

 50

 5

50

5

FIGURE 9 P(x)  x
3

  6x  2.

1. (A) 5 (multiplicity 3), 
 3 (multiplicity 2), 
4i and  4i (each multiplicity 1)

(B)  5 (multiplicity 4), 
5 (multiplicity 3), 
i (multiplicity 1)

2. (A) (x  1)(x  1)2(x2
 1)

(B) (x  1)(x  1)2(x  i)(x  i)
3.  3 (multiplicity 2), 

 2 (multiplicity 1), 
 1 (multiplicity 1), 
0 (multiplicity 2),
1 (multiplicity 1)

4.  2,  1,

5.
6.  1 (multiplicity 2),  1  2i,

 1  2i

4
3, 1   2, 1   2

5
2



16.

17.

18.

19.

x

P(x)

 15

5 5

15

x

P(x)

 15

5 5

15

x

P(x)

 15

5 5

15

x

P(x)

 15

5 5

15
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Write the zeros of each polynomial in Problems 1–8, and indi-

cate the multiplicity of each if more than 1. What is the degree

of each polynomial?

1. P(x)  (x  8)3(x  6)2

2. P(x)  (x  5)(x 7)2

3. P(x)  3(x  4)3(x  3)2(x  1)

4. P(x)  5(x  2)3(x  3)2(x  1)

5. P(x)  (x2
 4)3(x2

 4)5(x  2i)

6. P(x)  (x2
 7x  10)2(x2

 6x  10)3

7. P(x)  (x3
 9x)(x2

 9)(x 9)2

8. P(x)  (x3
 3x2

 3x  1)(x2
 1)(x i)

In Problems 9–14, find a polynomial P(x) of lowest degree,

with leading coefficient 1, that has the indicated set of zeros.

Leave the answer in a factored form. Indicate the degree of the

polynomial.

9. 3 (multiplicity 2) and  4

10.  2 (multiplicity 3) and 1 (multiplicity 2)

11.  7 (multiplicity 3),  3 ,  3  

12. (multiplicity 2), 5  , 5  

13. (2  3i), (2  3i),  4 (multiplicity 2)

14. (multiplicity 2), (multiplicity 2), and 
4 (multiplicity 3)

In Problems 15–20, find a polynomial of lowest degree, with

leading coefficient 1, that has the indicated graph. Assume all

zeros are integers. Leave the answer in a factored form. Indi-

cate the degree of each polynomial.

15.

x

P(x)

 15

5 5

15

 i 3i 3

 7 71
3

 2 2



In Problems 21–24, factor each polynomial in two ways:

(A) As a product of linear factors (with real coefficients) and

quadratic factors (with real coefficients and imaginary zeros)

(B) As a product of linear factors with complex coefficients

21. P(x)  x4
 5x2

 4

22. P(x)  x4
 18x2

 81

23. P(x)  x3
 x2

 25x  25

24. P(x)  x5
 x4

 x  1

20.

x

P(x)

 15

5 5

15
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For each polynomial in problems 25–30, list all possible

rational zeros (Theorem 7).

25. P(x)  x3
 2x2

 5x  6

26. P(x)  x3
 3x2

 6x  8

27. P(x)  3x3
 11x2

 8x  4

28. P(x)  2x3
 x2

 4x  3

29. P(x)  12x3
 16x2

 5x  3

30. P(x)  2x3
 9x2

 14x  5

In Problems 31–36, write P(x) as a product of linear terms.

31. P(x)  x3
 9x2

 24x  16;  1 is a zero

32. P(x)  x3
 4x2

 3x  18; 3 is a double zero

33. P(x)  x4
 1; 1 and  1 are zeros

34. P(x)  x4
 2x2

 1; i is a double zero

35. P(x)  2x3
 17x2

 90x  41; is a zero

36. P(x)  3x3
 10x2

 31x  26; is a zero

In Problems 37–46, find all roots exactly (rational, irrational,

and imaginary) for each polynomial equation.

37. 2x3
 5x2

 1  0

38. 2x3
 10x2

 12x  4  0

39. x4
 4x3

 x2
 20x  20  0

40. x4
 4x2

 4x  1  0

41. x4
 2x3

 5x2
 8x  4  0

42. x4
 2x2

 16x  15  0

43. x4
 10x2

 9  0

 
2
3

1
2

44. x4
 29x2

 100  0

45. 2x5
 3x4

 2x  3  0

46. 2x5
 x4

 6x3
 3x2

 8x  4  0

In Problems 47–56, find all zeros exactly (rational, irrational,

and imaginary) for each polynomial.

47. P(x)  x3
 19x  30

48. P(x)  x3
 7x2

 36

49.

50.

51.

52.

53.

54.

55. P(x)  3x5
 5x4

 8x3
 16x2

 21x  5

56. P(x)  2x5
 3x4

 6x3
 23x2

 26x  10

In Problems 57–62, write each polynomial as a product of

linear factors.

57. P(x)  6x3
 13x2

 4

58. P(x)  6x3
 17x2

 4x  3

59. P(x)  x3
 2x2

 9x  4

60. P(x)  x3
 8x2

 17x  4

61. P(x)  4x4
 4x3

 9x2
 x  2

62. P(x)  2x4
 3x3

 4x2
 3x  2

P(x)  x4
 5x2

 6

P(x)  x4
 11x2

 30

P(x)  x4
 

13
4 x2

 
5
2 x  1

4

P(x)  x4
 5x3

 
15
2 x2

 2x  2

P(x)  x4
 

7
6 x3
 

7
3 x2
 

5
2 x

P(x)  x4
 

21
10 x

3
 

2
5 x



In Problems 63–68, multiply.

63. [x  (4  5i)][x (4  5i)]

64. [x  (2  3i)][x (2  3i)]

65. [x  (3  4i)][x (3  4i)]

85. P(x)  4x4
 4x3

 49x2
 64x  240

86. P(x)  6x4
 35x3

 2x2
 233x  360

87. P(x)  4x4
 44x3

 145x2
 192x  90

88. P(x)  x5
 6x4

 6x3
 28x2

 72x  48

89. The solutions to the equation x3
 1  0 are all the cube

roots of 1.

(A) How many cube roots of 1 are there?

(B) 1 is obviously a cube root of 1; find all others.

90. The solutions to the equation x3
 8  0 are all the cube

roots of 8.

(A) How many cube roots of 8 are there?

(B) 2 is obviously a cube root of 8; find all others.

91. If P is a polynomial function with real coefficients of de-
gree n, with n odd, then what is the maximum number of
times the graph of y P(x) can cross the x axis? What is
the minimum number of times?

92. Answer the questions in Problem 91 for n even.

93. Given P(x) x2
 2ix  5 with 2  i a zero, show that

2  i is not a zero of P(x). Does this contradict 
Theorem 3? Explain.

94. If P(x) and Q(x) are two polynomials of degree n, and if
P(x)  Q(x) for more than n values of x, then how are P(x)
and Q(x) related?

66. [x  (5  2i)][x (5  2i)]

67. [x  (a  bi)][x (a  bi)]

68. (x  bi)(x  bi)
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In Problems 69–74, find all other zeros of P(x), given the indi-

cated zero.

69. P(x)  x3
 5x2

 4x  10; 3  i is one zero

70. P(x)  x3
 x2

 4x  6; 1  i is one zero

71. P(x)  x3
 3x2

 25x  75;  5i is one zero

72. P(x)  x3
 2x2

 16x  32; 4i is one zero

73. P(x)  x4
 4x3

 3x2
 8x  10; 2  i is one zero

74. P(x)  x4
 2x3

 7x2
 18x  18;  3i is one zero

Prove that each of the real numbers in Problems 75–78 is not

rational by writing an appropriate polynomial and making use

of Theorem 7.

75. 76.

77. 78.

In Problems 79–82, determine the number of real zeros of

each polynomial P(x), and explain why P(x) has no rational

zeros.

79. P(x)  x4
 5x2

 6 80. P(x)  3x4
 x2

 12

81. P(x)  x3
 3x  1 82. P(x)  x3

 5x  3

In Problems 83–88, find all zeros (rational, irrational, and

imaginary) exactly.

83. P(x)  3x3
 37x2

 84x  24

84. P(x)  2x3
 9x2

 2x  30

 5 8 3 5

 12 6

Find all rational solutions exactly, and find irrational solutions

to two decimal places.

95. Storage. A rectangular storage unit has dimensions 1 by
2 by 3 feet. If each dimension is increased by the same
amount, how much should this amount be to create a new
storage unit with volume 10 times the old?

96. Construction. A rectangular box has dimensions 1 by 
1 by 2 feet. If each dimension is increased by the same
amount, how much should this amount be to create a new
box with volume six times the old?

 97. Packaging. An open box is to be made from a rectangu-
lar piece of cardboard that measures 8 by 5 inches, by



 98. Fabrication. An open metal chemical tank is to be made
from a rectangular piece of stainless steel that measures 10
by 8 feet, by cutting out squares of the same size from
each corner and bending up the sides (see the figure for
Problem 97). If the volume of the tank is to be 48 cubic
feet, how large a square should be cut from each corner?

cutting out squares of the same size from each corner and
bending up the sides (see the figure). If the volume of the
box is to be 14 cubic inches, how large a square should be
cut from each corner? [Hint: Determine the domain of x
from physical considerations before starting.]

xx

xx

x x

x x
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Rational Functions and Inequalities

Rational Functions and Properties of Their Graphs  Vertical and Horizontal Asymptotes  

Analyzing the Graph of a Rational Function  Rational Inequalities

In Section 3.4 we apply our knowledge of graphs of polynomial functions to study
the graphs of rational functions, that is, functions that are quotients of polyno-
mials. Although a graphing utility is an important aid in analyzing the graph of
a rational function, a firm understanding of the properties of rational functions is
necessary to correctly interpret graphing utility screens. The final goal is to pro-
duce a hand sketch showing all the important features of the graph.

Rational Functions and Properties of Their Graphs
The number is called a rational number because it is a quotient (or ratio) of
integers. The function

is called a rational function because it is a quotient of polynomials.

f(x)  
x  1

x2
 x  6

7
13

We will assume that the coefficients of p(x) and q(x) are real numbers, and that the domain of f is

the set of all real numbers x such that q(x)  0.

D E F I N I T I O N  1
Rational Function

A function f is a rational function if it can be written in the form

where p(x) and q(x) are polynomials of degrees m and n, respectively.

f (x)  
p(x)

q(x)



If a real number c is a zero of both p(x) and q(x), then, by the factor theorem,
x  c is a factor of both p(x) and q(x). The graphs of 

and

are then identical, except possibly for a “hole” at x  c (Fig. 1).

x

y

 5

5 5

5

x

y

 5

5 5

5

(1, 2)

_
f (x)  

p(x)

q(x)
f (x)  

p(x)

q(x)
 

(x  c) p(x)

(x  c) q(x)

Later in Section 3.4 we will explain how to handle the minor complication caused
by common real zeros of p(x) and q(x). But to avoid that complication now, unless
stated to the contrary, we will assume that for any rational function f we con-
sider, p(x) and q(x) have no real zero in common.

Because the polynomial q(x) of degree n has at most n real zeros, there are
at most n real numbers that are not in the domain of f. Because a fraction
equals 0 only if its numerator is 0, the x intercepts of the graph of f are the
real zeros of the polynomial p(x) of degree m. The number of x intercepts is
thus at most m.

Domain and x Intercepts

Find the domain and x intercepts for .

S O L U T I O N

Because q(x)  0 for x  3 and x   3, the domain of f is

x   3 o r(  ,  3) ´ ( 3, 3) ´ (3,  )

Because p(x)  0 for x  2 and x   1, the zeros of f, and thus the x intercepts
of f, are  1 and 2.

f (x)  
p(x)

q(x)
 

2x2
 2x  4

x2
 9

 
2(x  2)(x  1)

(x  3)(x  3)

f (x)  
2x2
 2x  4

x2
 9
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FIGURE 1

(a) f(x)  
(x  1)(x2

 3)

x  1

(b) f(x)  x2
 3



Find the domain and x intercepts for .

The graph of the rational function 

is shown in Figure 2.

The domain of f consists of all real numbers except x   1, x  0, and x 1
(the zeros of the denominator x3

 x). The dotted vertical lines at x   1 indi-
cate that those values of x are excluded from the domain (a dotted vertical line
at x  0 would coincide with the y axis and is omitted). The graph is discontin-
uous at x   1, x  0, and x  1, but is continuous elsewhere and has no sharp
corners. The zeros of f are the zeros of the numerator x2

 1.44, namely x  1.2
and x  1.2. The graph of f has four turning points. Its left and right behavior is
the same as that of the function (the graph is close to the x axis for very
large and very small values of x). The graph of f illustrates the general properties
of rational functions that are listed in Theorem 1. We have already justified Prop-
erty 3; the other properties are established in calculus.

g(x)  1
x

x

y

 5

5 5

5

f (x)  
x2
 1.44

x3
 x

f(x)  
3x2
 12

x2
 2x  3
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FIGURE 2 .f (x)  
x2
 1.44

x3
 x

T H E O R E M  1
Properties of Rational Functions

Let be a rational function where p(x) and q(x) are
polynomials of degrees m and n, respectively. Then the graph of f(x):
1. Is continuous with the exception of at most n real numbers
2. Has no sharp corners
3. Has at most m real zeros
4. Has at most m  n  1 turning points
5. Has the same left and right behavior as the quotient of the leading

terms of p(x) and q(x)

f (x)  
p(x)

q(x)



Figure 3 shows graphs of several rational functions, illustrating the properties of
Theorem 1.

x

y

 15

5 5

15

x

y

 3

3 3

3

x

y

 2

10 10

2

x

y

 2

2 2

2

x

y

 3

3 3

3

x

y

 5

5 5

5
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(a) f(x)  
1

x
(b) g(x)  

1

x2
 1

(c) h(x)  
1

x2
 1

(d) F(x)  
x2
 3x

x  1
(e) G(x)  

 x  1

x3
 4x

(f) H(x)  
x2
 x  1

x2
 1

FIGURE 3 Graphs of rational
functions.

Properties of Graphs of Rational Functions

Use Theorem 1 to explain why each graph is not the graph of a rational function.

S O L U T I O N

(A) The graph has a sharp corner when x  0, so Property 2 is not
satisfied.

(B) The graph has an infinite number of turning points, so Property 4 is
not satisfied.

(C) The graph has an infinite number of zeros (all values of x between 
0 and 1, inclusive, are zeros), so Property 3 is not satisfied.

x

y

 3

3 3

3

x

y

 3

3 3

3

x

y

 3

3 3

3

(A) (B) (C)



Vertical and Horizontal Asymptotes
The graphs of Figure 3 exhibit similar behaviors near points of discontinuity that
can be described using the concept of vertical asymptote. Consider, for example,
the rational function of Figure 3(a). As x approaches 0 from the right,
the points on the graph have larger and larger y coordinates—that is, 
increases without bound—as confirmed by Table 1. We write this symbolically as 

S  as x S 0 

and say that the line x  0 (the y axis) is a vertical asymptote for the graph of f.

1

x

1
x(x, 1

x)
f (x)  1

x

If x approaches 0 from the left, the points on the graph have smaller and
smaller y coordinates—that is, decreases without bound—as confirmed by Table 2.
We write this symbolically as

S   as x S 0 
1

x

1
x

(x, 1
x)
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Use Theorem 1 to explain why each graph is not the graph of a rational function.

E X P L O R E / D I S C U S S  1

Give an example of a nonconstant rational function that has no zeros
and no turning points. Could such a function be continuous? Explain.

T A B L E  1 Behavior of 1/x as x S 0 

x 1 0.1 0.01 0.001 0.0001 0.000 01 0.000 001 . . . x approaches 0 from the right (x S 0 )

1/x 1 10 100 1,000 10,000 100,000 1,000,000 . . . 1/x increases without bound (1/x S  )

T A B L E  2 Behavior of 1/x as x S 0 

x  1  0.1  0.01  0.001  0.0001  0.000 01  0.000 001 . . . x approaches 0 from the left (x S 0 )

1/x  1  10  100  1,000  10,000  100,000  1,000,000 . . . 1/x decreases without bound (1/x S  )

x

y

 3

3 3

3

x

y

 3

3 3

3

x

y

 3

3 3

3

(A) (B) (C)
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E X P L O R E / D I S C U S S  2

Construct tables similar to Tables 1 and 2 for and discuss the
behavior of the graph of g(x) near x  0.

g(x)  1
x2

D E F I N I T I O N  2
Vertical Asymptote

The vertical line x a is a vertical asymptote for the graph of y f (x) if 

f (x) S  or f (x) S   as x S a or as x S a 

(that is, if f (x) either increases or decreases without bound as x approaches a from the right or from

the left).

T H E O R E M  2
Vertical Asymptotes of Rational Functions

Let f (x) be a rational function. If a is a zero of q(x), then the line
x  a is a vertical asymptote of the graph of f.

p(x)
q(x)

T A B L E  3 Behavior of 1/x as x S  

x 1 10 100 1,000 10,000 100,000 1,000,000 . . . x increases without bound (x S  )

1/x 1 0.1 0.01 0.001 0.0001 0.000 01 0.000 001 . . . 1/x approaches 0 (1/x S 0)

For example,

has three vertical asymptotes, x   1, x  0, and x  1 (see Fig. 2 on p. 290).

The left and right behavior of some, but not all, rational functions can be
described using the concept of horizontal asymptote. Consider As val-
ues of x get larger and larger—that is, as x increases without bound—the points

have y coordinates that are positive and approach 0, as confirmed by Table 3.
Similarly, as values of x get smaller and smaller—that is, as x decreases without
bound—the points have y coordinates that are negative and approach 0, as
confirmed by Table 4. We write these facts symbolically as

S 0 as x S  and as x S   

and say that the line y  0 (the x axis) is a horizontal asymptote for the graph
of f.

1

x

(x, 1
x)

(x, 1
x)

f(x)  1
x.

f (x)  
x2
 1.44

x3
 x

 
x2
 1.44

x(x  1)(x  1)



A rational function has the same left and right behavior as the quo-
tient of the leading terms of p(x) and q(x) (Property 5 of Theorem 1). Conse-
quently, a rational function has at most one horizontal asymptote. Moreover,
we can determine easily whether a rational function has a horizontal asymptote,
and if it does, find its equation. Theorem 3 gives the details.

f(x)  
p(x)

q(x)
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T A B L E  4 Behavior of 1/x as x S   

x  1  10  100  1,000  10,000  100,000  1,000,000 . . . x decreases without bound (x S  )

1/x  1  0.1  0.01  0.001  0.0001  0.000 01  0.000 001 . . . 1/x approaches 0 (1/x S 0)

E X P L O R E / D I S C U S S  3

Construct tables similar to Tables 3 and 4 for each of the following
functions, and discuss the behavior of each as x S  and as x S   :

(A) (B) (C) h(x)  
3x3

x2
 1

g(x)  
3x2

x2
 1

f (x)  
3x

x2
 1

D E F I N I T I O N  3
Horizontal Asymptote

The horizontal line y b is a horizontal asymptote for the graph of y f (x) if 

f (x) S b as x S   or as x S  

(that is, if f (x) approaches b as x increases without bound or as x decreases without bound).

T H E O R E M  3
Horizontal Asymptotes of Rational Functions

Consider the rational function

where am  0, bn  0.
1. If m  n, the line y  0 (the x axis) is a horizontal asymptote.
2. If m  n, the line y  am/bn is a horizontal asymptote.
3. If m  n, there is no horizontal asymptote.
In 1 and 2, the graph of f approaches the horizontal asymptote both as 
x S   and as x S   .

f (x)  
amxm

 . . .  a1x  a0

bnxn
 . . .  b1x  b0



Finding Vertical and Horizontal Asymptotes for a Rational Function

Find all vertical and horizontal asymptotes for

S O L U T I O N

Because q(x)  x2
 9  (x  3)(x  3), the graph of f (x) has vertical asymp-

totes at x  3 and x   3 (Theorem 1). Because p(x) and q(x) have the same
degree, the line

y a2 2, b2 1

is a horizontal asymptote (Theorem 3, part 2).

Find all vertical and horizontal asymptotes for

Analyzing the Graph of a Rational Function

We now use the techniques for locating asymptotes, along with other graphing
aids discussed in the text, to graph several rational functions. First, we outline a
systematic approach to the problem of graphing rational functions.

f(x)  
3x2
 12

x2
 2x  3

 
2

1
 2 

a2

b2

f (x)  
p(x)

q(x)
 

2x2
 2x  4

x2
 9
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Analyzing and Sketching the Graph of a Rational Function: f(x)  p(x)/q(x)

Step 1. Intercepts. Find the real solutions of the equation p(x)  0 and use these solutions to plot

any x intercepts of the graph of f. Evaluate f(0), if it exists, and plot the y intercept.

Step 2. Vertical Asymptotes. Find the real solutions of the equation q(x)  0 and use these solu-

tions to determine the domain of f, the points of discontinuity, and the vertical asymp-

totes. Sketch any vertical asymptotes as dashed lines.

Step 3. Horizontal Asymptotes. Determine whether there is a horizontal asymptote and if so, sketch

it as a dashed line.

Step 4. Complete the Sketch. Using a graphing utility graph as an aid and the information deter-

mined in steps 1–3, sketch the graph.

Graphing a Rational Function

Graph y  f(x)  
2x

x  3
.



S O L U T I O N

Step 1. Intercepts. Find real zeros of p(x)  2x and find f (0):

x intercept

y intercept

The graph crosses the coordinate axes only at the origin. Plot this inter-
cept, as shown in Figure 4.

f(0)  0

x  0

 2x  0

f(x)  
2x

x  3
 

p(x)

q(x)
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x

y

 10

10 10

10

Vertical
asymptote

Horizontal
asymptote

x and y intercepts

Intercepts and asymptotes

FIGURE 4

 10

 10

10

10

FIGURE 5

Step 2. Vertical Asymptotes. Find real zeros of q(x)  x  3:

The domain of f is (  , 3)  (3,  ), f is discontinuous at x  3, and
the graph has a vertical asymptote at x  3. Sketch this asymptote, as
shown in Figure 4.

Step 3. Horizontal Asymptote. Because p(x) and q(x) have the same degree, the
line y  2 is a horizontal asymptote, as shown in Figure 4.

Step 4. Complete the Sketch. Using the graphing utility graph in Figure 5(a), we
obtain the graph in Figure 5(b). Notice that the graph is a smooth con-
tinuous curve over the interval (  , 3) and over the interval (3,  ). As
expected, there is a break in the graph at x  3.

x  3
x  3  0

x

y

 10

10 10

10

f(x)  
2x

x   3

(a) (b)



Proceed as in Example 4 and sketch the graph of .

REMARK Refer to Example 4. When f (x)  2x/(x  3) is graphed on a graphing
utility [Fig. 4(a)], it appears that the graphing utility has also drawn the vertical
asymptote at x  3, but this is not the case. Most graphing utilities, when set in
connected mode, calculate points on a graph and connect these points with line
segments. The last point plotted to the left of the asymptote and the first plotted
to the right of the asymptote will usually have very large y coordinates. If these
y coordinates have opposite signs, then the graphing utility may connect the two
points with a nearly vertical line segment, which gives the appearance of an
asymptote. If you wish, you can set the calculator in dot mode to plot the points
without the connecting line segments [Fig. 6(a)].

Depending on the scale, a graph may even appear to be continuous at a ver-
tical asymptote [Fig. 6(b)]. It is important to always locate the vertical asymp-
totes as we did in step 2 before turning to the graphing utility graph to complete
the sketch.

y  f(x)  
3x

x  2
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 10

 10

10

10

 40

 40

40

40

FIGURE 6 Graphing utility

graphs of .f(x)  
2x

x  3

In the remaining examples we will just list the results of each step in the graph-
ing strategy and omit the computational details.

Graphing a Rational Function

Graph .

S O L U T I O N

x intercept: x  3

y intercept:

Domain: (  ,  2)  ( 2, 1)  (1,  )

Points of discontinuity: x   2 and x  1

Vertical asymptotes: x   2 and x  1

Horizontal asymptote: y  1

y  f(0)   9
2   4.5

f(x)  
x2
 6x  9

x2
 x  2

 
(x  3)2

(x  2)(x  1)

y  f(x)  
x2
 6x  9

x2
 x  2

(a) Dot mode (b) Connected mode
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 10

 10

10

10

x

y

10 10

10 f(x)  
x2   6x   9

x2   x   2

FIGURE 7 FIGURE 8

C A U T I O N

The graph of a function cannot cross a vertical asymptote, but the same
statement is not true for horizontal asymptotes. The rational function

has the line y  2 as a horizontal asymptote. The graph of f in Figure 9
clearly shows that the graph of a function can cross a horizontal
asymptote. The definition of a horizontal asymptote requires f (x) to
approach b as x increases or decreases without bound, but it does not
preclude the possibility that f (x)  b for one or more values of x.

f(x)  
2x6
 x5

 5x3
 4x  2

x6
 1

 5

4

y

x
5

y   2 is a horizontal asymptote

2x6   x5   5x3   4x   2

x6   1
f(x)  

FIGURE 9 Multiple intersections of a graph and a horizontal
asymptote.

Using the graphing utility graph in Figure 7 as an aid, sketch in the intercepts and
asymptotes, then sketch the graph of f (Fig. 8).

Graph .y  f(x)  
x2

x2
 7x  10



Graphing a Rational Function

Graph .

S O L U T I O N

x intercepts: x   1 and x  4

y intercept: y  f (0)  2

Domain: (  , 2)  (2,  )

Points of discontinuity: x  2

Vertical asymptote: x  2

No horizontal asymptote

Although the graph of f does not have a horizontal asymptote, we can still gain
some useful information about the behavior of the graph as x S   and as x S  

if we first perform a long division:

Quotient

Remainder

Thus,

As x S   or x S  , 6/(x  2) S 0 and the graph of f approaches the line
y  x  1. This line is called an oblique asymptote for the graph of f. A graph-
ing utility graph, including the oblique asymptote, is shown in Figure 10, and the
graph of f is sketched in Figure 11.

f(x)  
x2
 3x  4

x  2
 x  1  

6

x  2

 6

 x  2

 x  4

x2
 2x

x  2  x2
 3x  4

x  1

f(x)  
x2
 3x  4

x  2
 

(x  1)(x  4)

x  2

y  f(x)  
x2
 3x  4

x  2
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 10

 10

10

10
x

y

10 10

10

f(x)  
x2   3x   4

x   2

y   x   1

 10

FIGURE 10 FIGURE 11
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T H E O R E M  4
Oblique Asymptotes and Rational Functions

If f (x)  p(x)/q(x), where p(x) and q(x) are polynomials and the degree
of p(x) is 1 more than the degree of q(x), then f(x) can be expressed in
the form

where the degree of r(x) is less than the degree of q(x). The line

y  mx  b

is an oblique asymptote for the graph of f. That is,

[ f (x)  (mx  b)] S 0 as x S   or x S  

f(x)  mx  b  
r(x)

q(x)

Graph, including any oblique asymptotes, .

At the beginning of Section 3.4 we made the assumption that for a rational
function f (x)  p(x)/q(x), the polynomials p(x) and q(x) have no common real
zero. Now we abandon that assumption. Suppose that p(x) and q(x) have one or
more real zeros in common. Then, by the factor theorem, p(x) and q(x) have one
or more linear factors in common. We proceed to cancel common linear factors in

until we obtain a rational function 

in which and have no common real zero. We analyze and graph (x),
then insert “holes” as required in the graph of to obtain the graph of f. Exam-
ple 7 illustrates the details.

Graphing Arbitrary Rational Functions

Graph .

S O L U T I O N

The real zeros of

p(x)  2x5
 4x4

 6x3

(obtained by graphing or factoring) are  1, 0, and 3.

f(x)  
2x5
 4x4

 6x3

x5
 3x4

 3x3
 7x2

 6x

_
f

_
fq(x)p(x)

_
f (x)  

p(x)

q(x)

f(x)  
p(x)

q(x)

y  f(x)  
x2
 5

x  1

Generalizing the results of Example 6, we have Theorem 4.



The real zeros of 

q(x)  x5
 3x4

 3x3
 7x2

 6x

are  1, 0, 2, and 3. The common zeros are  1, 0, and 3. Factoring and cancelling
common linear factors gives

and

We analyze (x) as usual:

x intercept: x  0

y intercept: y  (0)  0

Domain: (  ,  1)  ( 1, 2)   (2,  )

Points of discontinuity: x   1, x  2

Vertical asymptotes: x   1, x  2

Horizontal asymptote: y  2

The graph of f is identical to the graph of except possibly at the common real
zeros  1, 0, and 3. We consider each common zero separately.

x   1: Both f and are undefined (no difference in their graphs).

x  0: f is undefined but (0)  0, so the graph of f has a hole at (0, 0).

x  3: f is undefined but (3) 4.5, so the graph of f has a hole at (3, 4.5).

Therefore, f (x) has the following analysis:

x intercepts: none

y intercepts: none

Domain: (  ,  1)  ( 1, 0)   (0, 2)   (2, 3)   (3,  )

Points of discontinuity: x   1, x  0, x  2, x  3

Vertical asymptotes: x   1, x  2

Horizontal asymptotes: y  2

Holes: (0, 0), (3, 4.5)

Figure 12 shows the graphs of f and .
_
f

_
f

_
f

_
f

_
f

_
f

_
f

(x)  
2x2

(x  1)(x  2)

_
ff(x)  

2x3(x  1)(x  3)

x(x  1)2(x  2)(x  3)
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x

y

 5

5 5

5

x

y

 5

5 5

5

FIGURE 12

(a) f(x)  
2x5

 4x4
 6x3

x5
 3x4

 3x3
 7x2

 6x
(b)

_
f(x)  

2x2

(x  1)(x  2)
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Graph .

Rational Inequalities
A rational function f(x)  p(x)/q(x) can change sign at a real zero of p(x) (where
f has an x intercept) or at a real zero of q(x) (where f is discontinuous), but
nowhere else (because f is continuous except where it is not defined). Rational
inequalities can therefore be solved in the same way as polynomial inequalities,
except that the partition of the x axis is determined by the zeros of p(x) and the
zeros of q(x).

Solving Rational Inequalities

Solve .
x3
 4x2

x2
 4

  0

f(x)  
x3
 x

x4
 x2

Algebraic Solution

Let

The zeros of 

p(x)  x3
 4x2

 x2(x  4)

are 0 and  4. The zeros of 

q(x)  x2
 4  (x  2)(x 2)

are 2 and 2. These four zeros partition the x
axis into the five intervals shown in the table.
A test number is chosen from each interval as
indicated to determine whether f(x) is positive
or negative.

f(x)  
p(x)

q(x)
 

x3
 4x2

x2
 4

Graphical Solution

Let

By graphing or factoring p(x) we find that its zeros are 0 and
 4. Similarly, the zeros of q(x) are 2 and  2. These four 
zeros partition the x axis into five intervals:

(  ,  4), ( 4,  2), ( 2, 0), (0, 2), and (2,  )

By inspecting the graph of f [Fig. 13(a)] or the graph of f/  f  
[Fig. 13(b)], we see that f is below the x axis on the intervals
(  ,  4), ( 2, 0), and (0, 2).

(a) (b)

FIGURE 13

We note that f(0)  0, so x  0 is not a solution to the in-
equality. We conclude that the solution set is 

(  ,  4)  ( 2, 0)  (0, 2)

y2  
y1

 y1 
y1  

x
3
 4x2

x
2
 4

 2

 10

2

10

 20

 10

20

10

f(x)  
p(x)

q(x)
 

x3
 4x2

x2
 4

Interval Test number x f(x) Sign of f

(  ,  4)  5  25/21  

( 4,  2)  3 9/5  

( 2, 0)  1  1  

(0, 2) 1  5/3  

(2,  ) 3 63/5  

We conclude that the solution set of the in-
equality is

(  ,  4)  ( 2, 0)  (0, 2)

S O L U T I O N



Solve .

Solving Rational Inequalities

Solve to three decimal places.

S O L U T I O N

First we convert the inequality to an equivalent inequality in which one side is 0:

Subtract from both sides.

Find a common denominator.

Simplify.

The zeros of x2
 8x  6, to three decimal places, are 0.838 and 7.162. The zeros

of x2
 x  3 are  2.303 and 1.303. These four zeros partition the x axis into

five intervals:

(  ,  2.303), ( 2.303, 0.838), (0.838, 1.303), (1.303, 7.162), and (7.162,  )

We graph 

and

(Fig. 14) and observe that the graph of f is above the x axis on the intervals 
(  , 2.303), (0.838, 1.303), and (7.162,  ). The solution set of the inequality is thus 

(  ,  2.303)  [0.838, 1.303)  [7.162,  )

Note that the endpoints that are zeros of f are included in the solution set of the
inequality, but not the endpoints at which f is undefined.

g(x)  
f(x)

 f(x) f(x)  
x2
 8x  6

x2
 x  3

x2
 8x  6

x2
 x  3

 0

x2
 x  3

x2
 x  3

 
9x  9

x2
 x  3

 0

 1  
9x  9

x2
 x  3

 0

9x   9

x 2 
  x   3

 1  
9x  9

x2
 x  3

1  
9x  9

x2
 x  3

x2
 1

x2
 9

 0
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 10

 10

10

10

 10

 10

10

10

(a) f(x)  
x2
 8x  6

x2
 x  3

(b) g(x)  
f(x)

 f(x) 

FIGURE 14



2.

x

y

 10

10

10

In Problems 1–4, match each graph with one of the following

functions:

1.

x

y

 10

10

10

h(x)  
2x  4

x  2
    k(x)  

4  2x

x  2

f (x)  
2x  4

x  2
    g(x)  

2x  4

2  x
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Solve to three decimal places.
x3
 4x2

 7

x2
 5x  1

 0

1. Domain: (  ,  3)  ( 3, 1)  
(1,  ); x intercepts: x   2,
x  2

2. (A) Properties 3 and 4 are not
satisfied.

(B) Property 1 is not satisfied.
(C) Properties 1 and 3 are not

satisfied.
3. Vertical asymptotes: x   3,

x  1; horizontal asymptote:
y  3

4.

x

y

10 10

10

f(x)  
3x

x   2

5.

6.

x

y

10 10

f(x)  
x2   5

x   1

y   x   1

x

y

 10

10 10

10

f(x)  
x2

x2   7x   10

7.

8. (  ,  3)  [ 1, 1]  (3,  )
9. [ 3.391,  1.773]  

( 0.193, 1.164]  (5.193,  )

x3   x

x4   x2
f(x)  

x

y

 5

5 5

5



3.

4.

In Problems 5–12, find the domain and x intercepts.

5. 6.

7. 8.

9. 10.

11. 12.

In Problems 13–20, find all vertical and horizontal asymptotes.

13. 14.

15. 16.

17. 18.

19. 20. g(x)  
3x

x4
 2x2

 1
t(x)  

6x4

3x2
 2x  5

q(x)  
5x4

2x2
 3x  2

p(x)  
2x

x4
 1

r(x)  
5x2
 7x

2x2
 50

s(x)  
2x2
 3x

3x2
 48

h(x)  
3x

x  5
f (x)  

2x

x  4

G(x)  
x2

x2
 16

F(x)  
x

x2
 4

s(x)  
x2
 x  12

x2
 x  6

r(x)  
x2
 x  6

x2
 x  12

k(x)  
x2
 36

x2
 25

h(x)  
x2
 1

x2
 16

g(x)  
3x  6

x  1
f (x)  

2x  4

x  1

x

y

10 10

10

x

y

 10

10 10

10

In Problems 21–24, explain why each graph is not the graph of

a rational function.

21.

22.

23.

24.

x

y

 5

5 5

5

x

y

 3

3 3

3

x

y

 5

5 5

5

x

y

 5

5 5

5
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48. Real zeros: 1, 2, 3
vertical asymptotes: none
oblique asymptote: y 2  x

In Problems 49–60, solve each rational inequality to three

decimal places.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

In Problems 61–66, find all vertical, horizontal, and oblique

asymptotes.

61. 62.

63. 64.

65. 66.

In Problems 67–70, investigate the behavior of each function

as x S  and as x S   , and find any horizontal asymptotes

(note that these functions are not rational).

67. 68.

69. 70. f (x)  
3 x2

 1

x  1
f (x)  

4 x2
 4

x

f (x)  
2x

 x2
 1

f (x)  
5x

 x2
 1

s(x)  
 3x2

 5x  9

x
r(x)  

2x2
 3x  5

x

q(x)  
x5

x3
 8

p(x)  
x3

x2
 1

g(x)  
3x2

x  2
f (x)  

2x2

x  1

1

x2
 1

 
x2

x4
 1

4

x  1
 

7

x

x

x2
 5x  6

 0.5
3x  2

x  5
  10

x  4

x2
 1

  2
9

x
 

5

x2
 1

3x

x  4
 

x  1

x2
 0

5

x2
 

1

x  3
  0

x3
 4

x2
 x  3

 0
x2
 7x  3

x  2
  0

2x  1

x  3
  0

x

x  4
 0

In Problems 25–44, use the graphing strategy outlined in the

text to sketch the graph of each function.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

In Problems 45–48, give an example of a rational function that

satisfies the given conditions.

45. Real zeros:  2, 1, 1, 2
vertical asymptotes: none
horizontal asymptote: y 3

46. Real zeros: none
vertical asymptotes: x 4
horizontal asymptote: y  2

47. Real zeros: none
vertical asymptotes: x 10
oblique asymptote: y 2x  5

f (x)  
x2
 6x  8

x2
 x  2

f (x)  
x2
 1

x2
 7x  10

f (x)  
7x2

(2x  3)2
f (x)  

12x2

(3x  5)2

f (x)  
x

x2
 1

g(x)  
2

x2
 1

p(x)  
x

1  x2
f (x)  

x

x2
 1

g(x)  
6

x2
 x  6

f (x)  
9

x2
 9

f (x)  
x2
 1

x2
g(x)  

1  x2

x2

f (x)  
3x  3

2  x
f (x)  

2x  4

x  3

p(x)  
3x

4x  4
h(x)  

x

2x  2

f (x)  
3x

x  3
f (x)  

x

x  1

g(x)  
1

x  3
f (x)  

1

x  4
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In Problems 71–76, use the graphing strategy outlined in the

text to sketch the graph of each function. Include any oblique

asymptotes.

71. 72.

73. 74.

75. 76.

If f(x)  n(x)/d(x), where the degree of n(x) is greater than 

the degree of d(x), then long division can be used to write 

f(x) p(x) q(x)/d(x), where p(x) and q(x) are polynomials

with the degree of q(x) less than the degree of d(x). In Problems

77–80, perform the long division and discuss the relationship

between the graphs of f(x) and p(x) as x S  and as x S  .

G(x)  
x4
 1

x3
F(x)  

8  x3

4x2

h(x)  
x2
 x  2

2x  4
k(x)  

x2
 4x  3

2x  4

g(x)  
x2
 1

x
f (x)  

x2
 1

x

77. 78.

79. 80.

In calculus, it is often necessary to consider rational functions

that are not in lowest terms, such as the functions given in

Problems 81–84. For each function, state the domain, reduce

the function to lowest terms, and sketch its graph. Remember

to exclude from the graph any points with x values that are not

in the domain.

81. 82.

83. 84. s(x)  
x  1

x2
 1

r(x)  
x  2

x2
 4

g(x)  
x2
 1

x  1
f (x)  

x2
 4

x  2

f (x)  
x5

x3
 1

f (x)  
x5

x2
 1

f (x)  
x5

x2
 1

f (x)  
x4

x2
 1
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85. Employee Training. A company producing electronic
components used in television sets has established that
on the average, a new employee can assemble N(t) com-
ponents per day after t days of on-the-job training, as
given by

Sketch the graph of N, including any vertical or horizontal
asymptotes. What does N approach as t S  ?

86. Physiology. In a study on the speed of muscle contrac-
tion in frogs under various loads, researchers W. O. Fems
and J. Marsh found that the speed of contraction de-
creases with increasing loads. More precisely, they found
that the relationship between speed of contraction S (in
centimeters per second) and load w (in grams) is given
approximately by

Sketch the graph of S, including any vertical or horizontal
asymptotes. What does S approach as w S  ?

87. Retention. An experiment on retention is conducted in a
psychology class. Each student in the class is given 1 day
to memorize the same list of 40 special characters. The
lists are turned in at the end of the day, and for each

S(w)  
26  0.06w

w
    w  5

N(t)  
50t

t  4
    t  0

succeeding day for 20 days each student is asked to turn
in a list of as many of the symbols as can be recalled.
Averages are taken, and it is found that a good approxima-
tion of the average number of symbols, N(t), retained after t
days is given by

Sketch the graph of N, including any vertical or horizontal
asymptotes. What does N approach as t S  ?

88. Learning Theory. In 1917, L. L. Thurstone, a pioneer in
quantitative learning theory, proposed the function

to describe the number of successful acts per unit time that
a person could accomplish after x practice sessions. Sup-
pose that for a particular person enrolling in a typing class,

where f(x) is the number of words per minute the person is
able to type after x weeks of lessons. Sketch the graph of f,
including any vertical or horizontal asymptotes. What does
f approach as x S  ?

f (x)  
50(x  1)

x  5
    x  0

f (x)  
a(x  c)

(x  c)  b

N(t)  
5t  30

t
    t  1



 91. Construction. A rectangular dog pen is to be made to
enclose an area of 225 square feet.

(A) If x represents the width of the pen, express the total
length L(x) of the fencing material required for the pen
in terms of x.

(B) Considering the physical limitations, what is the
domain of the function L?

(C) Find the dimensions of the pen that will require the
least amount of fencing material.

(D) Graph the function L, including any asymptotes.

 92. Construction. Rework Problem 91 with the added as-
sumption that the pen is to be divided into two sections, as
shown in the figure. (Approximate dimensions to three
decimal places.)

x

x

x

Problems 89–92 are calculus related.

 89. Replacement Time. A desktop office copier has an initial
price of $2,500. A maintenance/service contract costs
$200 for the first year and increases $50 per year there-
after. It can be shown that the total cost of the copier after
n years is given by

C(n)  2,500  175n  25n2

The average cost per year for n years is (n) C(n)/n.

(A) Find the rational function .

(B) When is the average cost per year minimum? (This is
frequently referred to as the replacement time for this
piece of equipment.)

(C) Sketch the graph of C, including any asymptotes.

 90. Average Cost. The total cost of producing x units of a
certain product is given by

The average cost per unit for producing x units is 
(x)  C(x)/x.

(A) Find the rational function .

(B) At what production level will the average cost per unit
be minimal?

(C) Sketch the graph of , including any asymptotes.C

C

C

C(x)  1
5 x2
 2x  2,000

C

C
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3.1 Polynomial Functions 
and Models

A function that can be written in the form P(x)  anx
n
 

an 1x
n 1
 . . .   a1x a0, an 0, is a polynomial function of

degree n. In this chapter, when not specified otherwise, the co-
efficients an, an 1, . . ., a1, a0 are complex numbers and the do-
main of P is the set of complex numbers. A number r is said to
be a zero (or root) of a function P(x) if P(r)  0. The zeros of
P(x) are thus the solutions of the equation P(x)  0. The real
zeros of P(x) are just the x intercepts of the graph of P(x). A point
on a continuous graph that separates an increasing portion from
a decreasing portion, or vice versa, is called a turning point. If
P(x) is a polynomial of degree n 0 with real coefficients, then
the graph of P(x):

1. Is continuous for all real numbers
2. Has no sharp corners
3. Has at most n real zeros

4. Has at most n 1 turning points
5. Increases or decreases without bound as x S  and as 

x S   

The left and right behavior of such a polynomial P(x) is deter-
mined by its highest degree or leading term: As x S   , both
an xn and P(x) approach   , with the sign depending on n and
the sign of an.

Let P(x) be a polynomial of degree n  0 and r a complex
number. Then we have the following important results:

Division Algorithm

P(x)  (x  r)Q(x)  R where the quotient Q(x) and remain-
der R are unique.

Remainder Theorem

P(r)  R

Factor Theorem

x  r is a factor of P(x) if and only if R 0.



Zeros Theorem

P(x) has at most n zeros.

Synthetic division is an efficient method for dividing poly-
nomials by linear terms of the form x  r that is well suited to
calculator use.

3.2 Real Zeros and Polynomial
Inequalities

The following theorems are useful in locating and approximat-
ing all real zeros of a polynomial P(x) of degree n 0 with real
coefficients, an > 0:

Upper and Lower Bound Theorem

1. Upper bound: A number r  0 is an upper bound for the
real zeros of P(x) if, when P(x) is divided by x  r by
synthetic division, all numbers in the quotient row,
including the remainder, are nonnegative.

2. Lower bound: A number r  0 is a lower bound for the
real zeros of P(x) if, when P(x) is divided by x  r by
synthetic division, all numbers in the quotient row,
including the remainder, alternate in sign.

Location Theorem

Suppose that a function f is continuous on an interval I that con-
tains numbers a and b. If f(a) and f(b) have opposite signs, then
the graph of f has at least one x intercept between a and b.

Polynomial inequalities can be solved by finding the zeros
and inspecting the graph of an appropriate polynomial with real
coefficients.

3.3 Complex Zeros 
and Rational Zeros 
of Polynomials

If P(x) is a polynomial of degree  n we have the following im-
portant theorems:

Fundamental Theorem of Algebra

P(x) has at least one zero.

n Linear Factors Theorem

P(x) can be factored as a product of n linear factors. 

If P(x) is factored as a product of linear factors, the number
of linear factors that have zero r is said to be the multiplicity
of r.

Imaginary Zeros Theorem

Imaginary zeros of polynomials with real coefficients, if they
exist, occur in conjugate pairs.

Linear and Quadratic Factors Theorem

If P(x) has real coefficients, then P(x) can be factored as a prod-
uct of linear factors (with real coefficients) and quadratic factors
(with real coefficients and imaginary zeros).

Real Zeros and Polynomials of Odd Degree

If P(x) has odd degree and real coefficients, then the graph of P
has at least one x intercept.

Zeros of Even or Odd Multiplicity

Let P(x) have real coefficients:

1. If r is a real zero of P(x) of even multiplicity, then P(x)
has a turning point at r and does not change sign at r.

2. If r is a real zero of P(x) of odd multiplicity, then P(x)
does not have a turning point at r and changes sign at r.

Rational Zero Theorem

If the rational number b/c, in lowest terms, is a zero of the
polynomial

P(x)  anx
n
 an 1x

n 1
 · · · a1x  a0 an  0

with integer coefficients, then b must be an integer factor of a0

and c must be an integer factor of an.

If P(x) (x r)Q(x), then Q(x) is called a reduced polyno-
mial for P(x).

3.4 Rational Functions
and Inequalities

A function f is a rational function if it can be written in the
form

where p(x) and q(x) are polynomials of degrees m and n, re-
spectively (we assume p(x) and q(x) have no common factor).
The graph of a rational function f(x):

1. Is continuous with the exception of at most n real numbers
2. Has no sharp corners
3. Has at most m real zeros
4. Has at most m  n  1 turning points
5. Has the same left and right behavior as the quotient of

the leading terms of p(x) and q(x)

The vertical line x  a is a vertical asymptote for the graph of
y f (x) if f(x) S  or f (x) S   as x S a or as x S a . If a
is a zero of q(x), then the line x a is a vertical asymptote of the
graph of f. The horizontal line y b is a horizontal asymptote

f (x)  
p(x)

q(x)
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Step 2. Vertical Asymptotes. Find the real solutions of the
equation q(x)  0 and use these solutions to deter-
mine the domain of f, the points of discontinuity,
and the vertical asymptotes. Sketch any vertical
asymptotes as dashed lines.

Step 3. Horizontal Asymptotes. Determine whether there is
a horizontal asymptote and if so, sketch it as a
dashed line.

Step 4. Complete the Sketch. Using a graphing utility graph
as an aid and the information determined in steps
1–3, sketch the graph.

Rational inequalities can be solved by finding the zeros of
p(x) and q(x), for an appropriate rational function f(x) ,
and inspecting the graph of f.

 
p(x)
q(x)

for the graph of y  f(x) if f(x) S b as x S   or as x S  .
The line y mx  b is an oblique asymptote if
[ f (x)  (mx  b)] S 0 as x S    or as x S  .

1. If m  n, the line y  0 (the x axis) is a horizontal
asymptote.

2. If m  n, the line y  am/bn is a horizontal asymptote.
3. If m  n, there is no horizontal asymptote.

Analyzing and Sketching the Graph of a Rational
Function: f(x)  p(x)/q(x)

Step 1. Intercepts. Find the real solutions of the equation
p(x)  0 and use these solutions to plot any x inter-
cepts of the graph of f. Evaluate f(0), if it exists, and
plot the y intercept.

Let f (x)  
amxm

 . . .  a1x  a0

bnx
n
 . . .  b1x  b0

, am  0, bn  0.
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Work through all the problems in this chapter review, and check answers in the back of the book.

Answers to all review problems are there, and following each answer is a number in italics indicat-

ing the section in which that type of problem is discussed. Where weaknesses show up, review ap-

propriate sections in the text.

1. List the real zeros and turning points, and state the left
and right behavior, of the polynomial function that has
the indicated graph.

2. Use synthetic division to divide P(x)  2x3
 3x2

 1
by D(x)  x  2, and write the answer in the form 
P(x)  D(x)Q(x)  R.

x

y

 5

5 5

5

3. If P(x)  x5
 4x4

 9x2
 8, find P(3) using the re-

mainder theorem and synthetic division.

4. What are the zeros of P(x) 3(x  2)(x 4)(x 1)?

5. If P(x)  x2
 2x  2 and P(1  i)  0, find another

zero of P(x).

6. Let P(x) be the polynomial whose graph is shown in the
figure at the top of the next page.
(A) Assuming that P(x) has integer zeros and leading

coefficient 1, find the lowest-degree equation that
could produce this graph.

(B) Describe the left and right behavior of P(x).



7. According to the upper and lower bound theorem, which
of the following are upper or lower bounds of the zeros of 
P(x)  x3

 4x2
 2?

 2,  1, 3, 4

8. How do you know that P(x)  2x3
 3x2

 x  5 has at
least one real zero between 1 and 2?

9. Write the possible rational zeros for

P(x)  x3
 4x2

 x  6.

10. Find all rational zeros for P(x) x3
 4x2

 x  6.

x

P(x)

 5

5 5

5

11. Find the domain and x intercept(s) for:

(A)

(B)

12. Find the horizontal and vertical asymptotes for the func-
tions in Problem 11.

13. Explain why the graph is not the graph of a polynomial
function.

x

y

 5

5 5

5

g x  
3x

x2
 x  6

f  x  
2x  3

x  4

311Chapter 3 Review Exercises

14. Let P(x)  x3
 3x2

 3x  4.

(A) Graph P(x) and describe the graph verbally, includ-
ing the number of x intercepts, the number of turn-
ing points, and the left and right behavior.

(B) Approximate the largest x intercept to two decimal
places.

15. If P(x)  8x4
 14x3

 13x2
 4x  7, find Q(x) and R

such that . What is ?

16. If P(x)  4x3
 8x2

 3x  3, find using the
remainder theorem and synthetic division.

17. Use the quadratic formula and the factor theorem to
factor P(x) x2

 2x  1.

18. Is x 1 a factor of P(x) 9x26
 11x17

 8x11
 5x4

 7?
Explain, without dividing or using synthetic division.

19. Determine all rational zeros of P(x) 2x3
 3x2

 18x 8.

P  1
2 

P 1
4 P x   x  1

4 Q x  R

20. Factor the polynomial in Problem 19 into linear factors.

21. Find all rational zeros of P(x) x3
 3x2

 5.

22. Find all zeros (rational, irrational, and imaginary) exactly
for P(x)  2x4

 x3
 2x  1.

23. Factor the polynomial in Problem 22 into linear factors. 

24. If P(x)  (x  1)2(x  1)3(x2
 1)(x2

 1), what is its
degree? Write the zeros of P(x), indicating the multiplic-
ity of each if greater than 1.

25. Factor P(x) x4
 5x2

 36 in two ways:
(A) As a product of linear factors (with real coefficients)

and quadratic factors (with real coefficients and
imaginary zeros)

(B) As a product of linear factors with complex 
coefficients



(B) Find the vertical and horizontal asymptotes for f.
(C) Sketch a graph of f. Draw vertical and horizontal

asymptotes with dashed lines.

29. Solve each polynomial inequality to three decimal places:
(A) x3

 5x  4  0
(B) x3

 5x  4  2

30. Explain why the graph is not the graph of a rational
function.

x

y

 5

5 5

5

26. Let P(x)  x5
 10x4

 30x3
 20x2

 15x  2.
(A) Approximate the zeros of P(x) to two decimal places

and state the multiplicity of each zero.
(B) Can any of these zeros be approximated with the bi-

section method? A maximum routine? A minimum
routine? Explain.

27. Let P(x)  x4
 2x3

 30x2
 25.

(A) Find the smallest positive and largest 
negative integers that, by Theorem 1 in Section 3.2,
are upper and lower bounds, respectively, for the
real zeros of P(x).

(B) If (k, k  1), k an integer, is the interval containing
the largest real zero of P(x), determine how many
additional intervals are required in the bisection
method to approximate this zero to one decimal
place.

(C) Approximate the real zeros of P(x) to two decimal
places.

28. Let .

(A) Find the domain and the intercepts for f.

f  x  
x  1

2x  2
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31. Use synthetic division to divide P(x)  x3
 3x  2 by

[x  (1  i)], and write the answer in the form 
P(x)  D(x)Q(x)  R.

32. Find a polynomial of lowest degree with leading coeffi-
cient 1 that has zeros (multiplicity 2),  3, and 1
(multiplicity 3). (Leave the answer in factored form.)
What is the degree of the polynomial?

33. Repeat Problem 32 for a polynomial P(x) with zeros 
 5, 2  3i, and 2  3i.

34. Find all zeros (rational, irrational, and imaginary) exactly
for P(x)  2x5

 5x4
 8x3

 21x2
 4.

35. Factor the polynomial in Problem 34 into linear factors.

36. Let P(x)  x4
 16x3

 47x2
 137x  73. Approximate

(to two decimal places) the x intercepts and the local
extrema.

37. What is the minimal degree of a polynomial P(x), given
that P( 1)   4, P(0)  2, P(1)   5, and P(2)  3?
Justify your conclusion.

 
1
2

38. If P(x) is a cubic polynomial with integer coefficients and
if 1  2i is a zero of P(x), can P(x) have an irrational
zero? Explain.

39. The solutions to the equation x3
 27  0 are the cube

roots of 27.
(A) How many cube roots of 27 are there?
(B) 3 is obviously a cube root of 27; find all others.

40. Let P(x)  x4
 2x3

 500x2
 4,000.

(A) Find the smallest positive integer multiple of 10 and
the largest negative integer multiple of 10 that, by
Theorem 1 in Section 3.2, are upper and lower
bounds, respectively, for the real zeros of P(x).

(B) Approximate the real zeros of P(x) to two decimal
places.

41. Graph

Indicate any vertical, horizontal, or oblique asymptotes
with dashed lines.

f  x  
x2
 2x  3

x  1



42. Use a graphing utility to find any horizontal asymptotes for

43. Solve each rational inequality to three decimal places:

(A)  0

(B)  
5

x2

x2
 3

x3
 3x  1

x2
 3

x3
 3x  1

f (x)  
2x

 x2
 3x  4

44. If P(x)  x3
 x2

 5x  4, determine the number of real
zeros of P(x) and explain why P(x) has no rational zeros.

45. Give an example of a rational function f(x) that satisfies
the following conditions: the real zeros of f are 3, 0,
and 2; the vertical asymptotes of f are the lines x  1
and x  4; and the line y 5 is a horizontal asymptote.
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In Problems 46–49, express the solutions as the roots of a

polynomial equation of the form P(x)  0. Find rational solu-

tions exactly and irrational solutions to three decimal places.

46. Architecture. An entryway is formed by placing a rec-
tangular door inside an arch in the shape of the parabola
with graph y 16  x2, x and y in feet (see the figure). If
the area of the door is 48 square feet, find the dimensions
of the door.

47. Construction. A grain silo is formed by attaching a
hemisphere to the top of a right circular cylinder (see the
figure). If the cylinder is 18 feet high and the volume of
the silo is 486 cubic feet, find the common radius of the
cylinder and the hemisphere.

16 y   16   x2

x

y

4 4

 48. Manufacturing. A box is to be made out of a piece of
cardboard that measures 15 by 20 inches. Squares, x
inches on a side, will be cut from each corner, and then
the ends and sides will be folded up (see the figure). Find
the value of x that would result in a box with a volume of
300 cubic inches.

 49. Geometry. Find all points on the graph of y = x2 that are
three units from the point (1, 4).

20 in.

1
5

 i
n

.

x

x

18 feet

x

x



women tend to leave the workforce to marry and have
children, but then reenter the workforce when the children
are grown.
(A) Explain why you might expect cubic regression to

provide a better fit to the data than linear or quad-
ratic regression.

(B) Find a cubic regression model for these data using
age as the independent variable.

(C) Use the regression equation to estimate (to the
nearest year) the ages at which 65% of the women
are in the workforce.

50. Advertising. A chain of appliance stores uses television
ads to promote the sale of refrigerators. Analyzing past
records produced the data in the table, where x is the
number of ads placed monthly and y is the number of
refrigerators sold that month.
(A) Find a cubic regression equation for these data using

the number of ads as the independent variable.
(B) Estimate (to the nearest integer) the number of refrig-

erators that would be sold if 15 ads are placed
monthly.

(C) Estimate (to the nearest integer) the number of ads
that should be placed to sell 750 refrigerators
monthly.

Number of Ads Number of Refrigerators 
x y

10 270

20 430

25 525

30 630

45 890

48 915

51. Women in the Workforce. It is reasonable to conjecture
from the data given in the table that many Japanese
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Women in the Workforce in Japan (1997)

Age Percentage of Women Employed

22 73

27 65

32 56

37 63

42 71

47 72

52 68

57 59

62 42



Interpolating Polynomials

Given two points in the plane, we can use the point–slope form of the equation
of a line to find a polynomial whose graph passes through these two points. How
can we proceed if we are given more than two points? For example, how can we
find the equation of a polynomial P(x) whose graph passes through the points
listed in Table 1 and graphed in Figure 1?

FIGURE 1

The key to solving this problem is to write the unknown polynomial P(x) in the
following special form:

P(x)  a0  a1(x  1)  a2(x  1)(x  2)  a3(x  1)(x  2)(x  3) (1)

Because the graph of P(x) is to pass through each point in Table 1, we can sub-
stitute each value of x in equation (1) to determine the coefficients a0, a1, a2, and
a3. First we evaluate equation (1) at x  1 to determine a0:

1  P(1)
 a0 All other terms in equation (1) are 0 when x 1.

Using this value for a0 in equation (1) and evaluating at x  2, we have

3  P(2)  1  a1(1) All other terms are 0.

2  a1

Continuing in this manner, we have

 3  P(3)  1  2(2)  a2(2)(1)
 8  2a2

 4  a2

1  P(4)  1  2(3)  4(3)(2)  a3(3)(2)(1)
18  6a3

3  a3

We have now evaluated all the coefficients in equation (1) and can write

P(x)  1  2(x  1)  4(x  1)(x  2)  3(x  1)(x  2)(x  3) (2)

x
5

y

 5

5
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T A B L E  1

x 1 2 3 4

P(x) 1 3  3 1
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If we expand the products in equation (2) and collect like terms, we can express
P(x) in the more conventional form (verify this):

P(x)  3x3
 22x2

 47x  27

(A) To check these calculations, evaluate P(x) at x  1, 2, 3, and 4 and com-
pare the results with Table 1. Then add the graph of P(x) to Figure 1.

(B) Write a verbal description of the special form of P(x) in equation (1).

In general, given a set of n  1 points:

the interpolating polynomial for these points is the polynomial P(x) of degree
less than or equal to n that satisfies P(xk)  yk for k  0, 1, . . . , n. The general
form of the interpolating polynomial is

P(x)  a0  a1(x  x0)  a2(x  x0)(x  x1)     

 an(x  x0)(x  x1)      (x  xn 1)

(C) Summarize the procedure for using the points in the table to find the coef-
ficients in the general form.

(D) Give an example to show that the interpolating polynomial can have
degree strictly less than n.

(E) Could there be two different polynomials of degree less than or equal to n
whose graph passes through the given n  1 points? Justify your answer.

(F) Find the interpolating polynomial for each of Tables 2 and 3. Check your
answers by evaluating the polynomial, and illustrate by graphing the points
in the table and the polynomial in the same viewing window.

x x0 x1    xn

y y0 y1    yn

3 POLYNOMIAL AND RATIONAL FUNCTIONS

T A B L E  2

x  1 0 1 2

y 5 3 3 11

T A B L E  3

x  2  1 0 1 2

y  3 0 5 0  3

A surprisingly short program on a graphing utility can be used to calculate the
coefficients in the general form of an interpolating polynomial.* Figure 2 shows
the output generated when we use the program to find the coefficients of the inter-
polating polynomial for Table 1.FIGURE 2

*This program is available at the website for this book (see Preface).



Exponential
and

Logarithmic
Functions

O U T L I N E

4.1 Exponential Functions

4.2 Exponential Models

4.3 Logarithmic Functions

4.4 Logarithmic Models

4.5 Exponential and Logarithmic Equations

Chapter 4 R E V I E W

Chapter 4 G R O U P  A C T I V I T Y : Comparing Regression Models

Cumulative Review Chapters 3 and 4

M
OST OF THE FUNCTIONS WE HAVE CONSIDERED SO FAR

have been polynomial or rational functions, with a few

others involving roots of polynomial or rational func-

tions. Functions that can be expressed in terms of addition, sub-

traction, multiplication, division, and the taking of roots of variables

and constants are called algebraic functions.

In Chapter 4 we introduce and investigate the properties of expo-

nential functions and logarithmic functions. These functions are not
algebraic; they belong to the class of transcendental functions.
Exponential and logarithmic functions are used to model a variety
of real-world phenomena: growth of populations of people, animals,
and bacteria; radioactive decay; epidemics; absorption of light as it
passes through air, water, or glass; magnitudes of sounds and earth-
quakes. We consider applications in these areas plus many more in
the sections that follow.

Before getting started on this chapter,

review the following concepts:

 Exponents
(Basic Algebra Review*, Sec. 5 and 6)

 Functions
(Chapter 1, Section 2)

 Graphs of Functions
(Chapter 1, Section 3)

 Quadratic Equations
(Chapter 2, Section 5)

 Equation-Solving Techniques
(Chapter 2, Section 6)

*At www.mhhe.com/barnett



Exponential Functions

Exponential Functions  Graphs of Exponential Functions  Additional Exponential Properties
 Base e Exponential Function  Compound Interest  Continuous Compound Interest

In Section 4.1 we introduce exponential functions and investigate their properties
and graphs. We also study applications of exponential functions in the mathe-
matics of finance. 

Exponential Functions
Let’s start by noting that the functions f and g given by

f(x)  2x and g(x)  x2

are not the same function. Whether a variable appears as an exponent with a con-
stant base or as a base with a constant exponent makes a big difference. The func-
tion g is a quadratic function, which we have already discussed. The function f is
a new type of function called an exponential function.

The values of the exponential function f(x)  2x for x an integer are easy to
compute [Fig. 1(a)]. If x  m/n is a rational number, then , which
can be evaluated on almost any calculator [Fig. 1(b)]. Finally, a graphing utility
can graph the function f(x)  2x [Fig. 1(c)] for any given interval of x values.

f (m/n)   
n

2m

The only catch is that we have not yet defined 2x for all real numbers. For
example, what does 

mean? The question is not easy to answer at this time. In fact, a precise defini-
tion of must wait for more advanced courses, where we can show that, if b
is a positive real number and x is any real number, then

bx

names a real number, and the graph of f (x)  2x is as indicated in Figure 1. We
also can show that for x irrational, bx can be approximated as closely as we like
by using rational number approximations for x. Because  1.414213 . . . ,
for example, the sequence

21.4, 21.41, 21.414,  . . .

approximates , and as we use more decimal places, the approximation
improves.

2 2

 2

2 2

2 2
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FIGURE 1

f(x)  2x.

(c)(a) (b)

 1

 4

10

4



Thus, the domain of f is the set of all real numbers, and it can be shown that
the range of f is the set of all positive real numbers. We require the base b to be
positive to avoid imaginary numbers such as ( 2)1/2.

Graphs of Exponential Functions

It is useful to compare the graphs of y  2x and y  by plotting
both on the same coordinate system, as shown in Figure 2(a). The graph of

f(x)  bx b  1 Fig. 2(b)

looks very much like the graph of the particular case y  2x, and the graph of

f(x)  bx 0   b  1 Fig. 2(b)

looks very much like the graph of Note in both cases that the x axis is
a horizontal asymptote for the graph.

y  (1
2)x.

(1
2)x

 2 x
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D E F I N I T I O N 1
Exponential Function

The equation

f(x)  bx b  0, b  1

defines an exponential function for each different constant b, called the base. The independent

variable x may assume any real value.

E X P L O R E / D I S C U S S  1

Compare the graphs of f(x)  3x and g(x)  2x by graphing both func-
tions in the same viewing window. Find all points of intersection of the
graphs. For which values of x is the graph of f above the graph of g?
Below the graph of g? Are the graphs of f and g close together as x →  ?
As x →   ? Discuss.

The graphs in Figure 2 suggest that the graphs of exponential functions have the
properties listed in Theorem 1, which we state without proof.

4 4

8

6

4

x

y

y   2xy     x   2 x1

2

x

y

y   bx

0   b   1
y   bx

b   1

DOMAIN   (  ,  ) RANGE   (0,  )

(a) (b)

FIGURE 2

Basic exponential graphs.



Property 4 of Theorem 1 implies that the graph of an exponential function can-
not be the graph of a polynomial function. Properties 4 and 5 together imply that
the graph of an exponential function cannot be the graph of a rational function.
Property 6 implies that exponential functions have inverses; those inverses, called
logarithmic functions, are discussed in Section 4.3.

Graphing exponential functions on a graphing utility is routine, but interpret-
ing the results requires an understanding of the preceding properties.

Graphing Exponential Functions

Let Construct a table of values (rounded to two decimal places) for
f (x) using integer values from  3 to 3. Graph f on a graphing utility and then
sketch a graph by hand.

S O L U T I O N

Set the graphing utility in two-decimal-place mode, construct the table [Fig. 3(a)],
and graph the function [Fig. 3(b)]. The points on the graph of f (x) for x  0 are
indistinguishable from the x axis in Figure 3(b). However, from the properties of an
exponential function, we know that f (x)  0 for all real numbers x and that f (x) → 0
as x →   . The hand sketch in Figure 3(c) illustrates the behavior for x  0 more
clearly. Of course, zooming in on the graphing utility will also illustrate this behavior.

f(x)  
1
2(4x).
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T H E O R E M  1
Properties of Graphs of Exponential Functions

Let f(x)  bx be an exponential function, b  0, b  1. Then the graph
of f(x):
1. Is continuous for all real numbers
2. Has no sharp corners
3. Passes through the point (0, 1)
4. Lies above the x axis, which is a horizontal asymptote
5. Increases as x increases if b  1; decreases as x increases if 0  b  1
6. Intersects any horizontal line at most once (that is, f is one-to-one)

 5

 5

40

5

5 5

40

30

20

10

1

x

y

 1 2 3

(c)(a) (b)

FIGURE 3



Repeat Example 1 for y

Additional Exponential Properties
Exponential functions whose domains include irrational numbers obey the famil-
iar laws of exponents for rational exponents. We summarize these exponent laws
here and add two other important and useful properties.

 
1
2(4 x). 

1
2(1

4)x

Property 2 is another way to express the fact that the exponential function f (x)  ax

is one-to-one (see property 6 of Theorem 1). Because all exponential functions pass
through the point (0, 1) (see property 3 of Theorem 1), property 3 indicates that the
graphs of exponential functions with different bases do not intersect at any other points.

Using Exponential Function Properties

Solve 4x 3
 8 for x.

S O L U T I O N
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Exponential Function Properties

For a and b positive, a 1, b 1, and x and y real:

1. Exponent laws:

axay
 ax y (ax)y

 axy (ab)x
 axbx

2. ax
 a y if and only if x  y. If 64x

 62x 4, then 4x 2x 4, and x 2.

3. For x  0, ax
 bx if and only if a  b. If a4

 34, then a 3.

  2 2x
  25x   7x

25x

27x

ax

ay
 ax y ab 

x

 
ax

bx

Algebraic Solution

Express both sides in terms of the
same base, and use property 2 to
equate exponents.

Express 4 and 8 as

powers of 2.

(a x)y
 axy

Property 2

C H E C K

4(9/2) 3
 43/2

 ( 4)3
 23 ⁄ 8

x  
9
2

 2x  9

 2x  6  3

 22x 6
 23

(22)x 3
 23

 4x 3
 8

Graphical Solution

Graph y1  4x   3 and y2  8. Use the
intersect command to obtain x  4.5
(Fig. 4).

FIGURE 4

 10

 10

10

10



Solve 27x 1
 9 for x.

Base e Exponential Function
Surprisingly, among the exponential functions it is not the function g(x)  2x with
base 2 or the function h(x)  10x with base 10 that is used most frequently in
mathematics. Instead, it is the function f(x)  ex with base e, where e is the limit
of the expression

(1)

as x gets larger and larger.

 1  1

x 
x

By calculating the value of expression (1) for larger and larger values of x
(Table 1), it appears that [1  (1/x)]x approaches a number close to 2.7183. In a
calculus course we can show that as x increases without bound, the value of
[1  (1/x)]x approaches an irrational number that we call e. Just as irrational num-
bers such as  and have unending, nonrepeating decimal representations, e
also has an unending, nonrepeating decimal representation. To 12 decimal places
(see Basic Algebra Review, Sec. 1, www.mhhe.com/barnett),

e  2.718 281 828 459

Exactly who discovered e is still being debated. It is named after the great
Swiss mathematician Leonhard Euler (1707–1783), who computed e to 23 deci-
mal places using [1  (1/x)]x.

The constant e turns out to be an ideal base for an exponential function
because in calculus and higher mathematics many operations take on their sim-
plest form using this base. This is why you will see e used extensively in expres-
sions and formulas that model real-world phenomena.

0 2  1 21 3 4

 2 e

 2
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E X P L O R E / D I S C U S S  2

(A) Calculate the values of [1  (1/x)]x for x  1, 2, 3, 4, and 5. Are
the values increasing or decreasing as x gets larger?

(B) Graph y  [1  (1/x)]x and discuss the behavior of the graph as x
increases without bound.

T A B L E  1

x

1 2

10 2.593 74 . . .

100 2.704 81 . . .

1,000 2.716 92 . . .

10,000 2.718 14 . . .

100,000 2.718 27 . . .

1,000,000 2.718 28 . . .

1   
1

x
  

x



The exponential function with base e is used so frequently that it is often
referred to as the exponential function. The graphs of y  ex and y  e x are
shown in Figure 5.

Analyzing a Graph

Describe the graph of f(x)  4  ex/2, including x and y intercepts, increasing
and decreasing properties, and horizontal asymptotes. Round any approximate
values to two decimal places.

S O L U T I O N

The graph of f is shown in Figure 6(a). The y intercept is f(0)  4  1  3 and
the x intercept is 2.77 (to two decimal places). The graph shows that f is decreas-
ing for all x. Because the exponential function ex/2

→ 0 as x →   , it follows
that f(x)  4  ex/2

→ 4 as x →   . The table in Figure 6(b) confirms this.
Thus, the line y  4 is a horizontal asymptote for the graph.
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D E F I N I T I O N 2
Exponential Function with Base e

For x a real number, the equation

f(x)  ex

defines the exponential function with base e.

y

5 5

10

20

x

y   e x y   ex

FIGURE 5 Exponential functions
with base e.

E X P L O R E / D I S C U S S  3

(A) Graph y1  ex, y2  e0.5x, and y3  e2x in the same viewing
window. How do these graphs compare with the graph of y  bx

for b  1?

(B) Graph y1  e x, y2  e 0.5x, and y3  e 2x in the same viewing
window. How do these graphs compare with the graph of y  bx

for 0  b  1?

(C) Use the properties of exponential functions to show that all of
these functions are exponential functions.

 5

 5

5

5

FIGURE 6

f(x)  4  ex/2.

(a) (b)
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Describe the graph of f(x)  2ex/2
 5, including x and y intercepts, increasing

and decreasing properties, and horizontal asymptotes. Round any approximate val-
ues to two decimal places.

Compound Interest
The fee paid to use another’s money is called interest. It is usually computed as
a percentage, called the interest rate, of the principal over a given time. If, at the
end of a payment period, the interest due is reinvested at the same rate, then the
interest earned as well as the principal will earn interest during the next payment
period. Interest paid on interest reinvested is called compound interest.

Suppose you deposit $1,000 in a savings and loan that pays 8% compounded
semiannually. How much will the savings and loan owe you at the end of 2 years?
Compounded semiannually means that interest is paid to your account at the end
of each 6-month period, and the interest will in turn earn interest. The interest
rate per period is the annual rate, 8%  0.08, divided by the number of com-
pounding periods per year, 2. If we let A1, A2, A3, and A4 represent the new
amounts due at the end of the first, second, third, and fourth periods, respectively,
then

What do you think the savings and loan will owe you at the end of 6 years?
If you guessed

A  $1,000(1  0.04)12

you have observed a pattern that is generalized in the following compound inter-
est formula:

 $1,000(1  0.04)4

 [$1,000(1  0.04)3](1  0.04)

A4  A3(1  0.04)

 $1,000(1  0.04)3

 [$1,000(1  0.04)2](1  0.04)

A3  A2(1  0.04)

 $1,000(1  0.04)2

 [$1,000(1  0.04)](1  0.04)

A2  A1(1  0.04)

 $1,000(1  0.04)

A1  $1,000  $1,000 0.08

2  
P 1   

r

n 

P 1   
r

n 
2

P 1   
r

n 
3

P 1   
r

n 
4



Compound Interest

If you deposit $5,000 in an account paying 9% compounded daily, how much will
you have in the account in 5 years? Compute the answer to the nearest cent.

S O L U T I O N
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Compound Interest

If a principal P is invested at an annual rate r compounded m times a year, then the amount A in the

account at the end of n compounding periods is given by

The annual rate r is expressed in decimal form.

A  P 1  
r

m 
n

Algebraic Solution

We use the compound interest for-
mula with P  5,000, r  0.09,
m  365, and n  5(365)  1,825:

 $7,841.13

 5,000 1  
0.09

365  
1825

A  P 1  
r

m 
n

Graphical Solution

Graphing

and using trace (Fig. 7) shows 
A  $7,841.13.

FIGURE 7

0

0

15,000

3,650

A  5,000 1  
0.09

365  
x

If $1,000 is invested in an account paying 10% compounded monthly, how much
will be in the account at the end of 10 years? Compute the answer to the nearest
cent.

Comparing Investments

If $1,000 is deposited into an account earning 10% compounded monthly and, at
the same time, $2,000 is deposited into an account earning 4% compounded
monthly, will the first account ever be worth more than the second? If so, when?



S O L U T I O N

Let y1 and y2 represent the amounts in the first and second accounts, respectively,
then

y1  1,000(1  0.10/12)x

y2  2,000(1  0.04/12)x

where x is the number of compounding periods (months). Examining the graphs
of y1 and y2 [Fig. 8(a)], we see that the graphs intersect at x  139.438 months.
Because compound interest is paid at the end of each compounding period, we
compare the amount in the accounts after 139 months and after 140 months [Fig.
8(b)]. Thus, the first account is worth more than the second for x  140 months
or 11 years and 8 months.
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0

0

5,000

240

FIGURE 8

(a) (b)

If $4,000 is deposited into an account earning 10% compounded quarterly and, at
the same time, $5,000 is deposited into an account earning 6% compounded quar-
terly, when will the first account be worth more than the second?

Continuous Compound Interest
If $100 is deposited in an account that earns compound interest at an annual rate
of 8% for 2 years, how will the amount A change if the number of compound-
ing periods is increased? If m is the number of compounding periods per year,
then

The amount A is computed for several values of m in Table 2. Notice that the
largest gain appears in going from annually to semiannually. Then, the gains slow
down as m increases. In fact, it appears that A might be tending to something
close to $117.35 as m gets larger and larger.

A  100 1  
0.08

m  
2m



We now return to the general problem to see if we can determine what hap-
pens to A  P[1  (r/m)]mt as m increases without bound. A little algebraic
manipulation of the compound interest formula will lead to an answer and a sig-
nificant result in the mathematics of finance:

Change algebraically.

Let x m/r.

The expression within the square brackets should look familiar. Recall from
the first part of this section that

Because r is fixed, x  m/r →  as m →  . Thus,

and we have arrived at the continuous compound interest formula, a very impor-
tant and widely used formula in business, banking, and economics.

P 1  
r

m 
mt

→ Pert
    as    m →  

 1  
1

x 
x

→ e    as    x →  

   1  
1

x 
x

 
rt

 P 1  
1

m/r 
(m/r)rt

A  P 1  
r

m 
mt
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T A B L E  2 Effect of Compounding Frequency

Compounding Frequency m

Annually 1 $116.6400

Semiannually 2 116.9859

Quarterly 4 117.1659

Weekly 52 117.3367

Daily 365 117.3490

Hourly 8,760 117.3501

A    100 1  
0.08

m

Continuous Compound Interest Formula
If a principal P is invested at an annual rate r compounded continuously, then the amount A in the

account at the end of t years is given by

A  Pert

The annual rate r is expressed as a decimal.

  
2m
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Continuous Compound Interest

If $100 is invested at an annual rate of 8% compounded continuously, what
amount, to the nearest cent, will be in the account after 2 years?

S O L U T I O N

Algebraic Solution

Use the continuous compound interest
formula to find A when P  $100,
r  0.08, and t  2:

A  Pert

 $100e(0.08)(2) 8% is equivalent

to r 0.08.

 $117.35

Compare this result with the values
calculated in Table 2.

Graphical Solution

Graphing

A  100e0.08x

and using trace (Fig. 9) shows 
A  $117.35.

FIGURE 9

0

0

200

10

What amount will an account have after 5 years if $100 is invested at an annual
rate of 12% compounded annually? Quarterly? Continuously? Compute answers
to the nearest cent.

1. y  
1
2(4 x)

x y

 3 32.00

 2 8.00

 1 2.00

0 0.50

1 0.13

2 0.03

3 0.01

5 5

40

30

20

x

y

10

1

1 2 3

2.
3. y intercept:  3; x intercept: 1.83; increas-

ing for all x; horizontal asymptote: y   5
4. $2,707.04
5. After 23 quarters
6. Annually: $176.23; quarterly: $180.61;

continuously: $182.21

x   
1
3
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1. Match each equation with the graph of f, g, m, or n in the
figure.

(A) y  (0.2)x (B) y  2x

(C) y  (D) y  4x

2. Match each equation with the graph of f, g, m, or n in the
figure.

(A) y  e 1.2x (B) y  e0.7x

(C) y  e 0.4x (D) y  e1.3x

In Problems 3–10, compute answers to four significant digits.

3. 4. 3  25 3

0

 4

6

4

f

g m n

0

 2

6

2

f g m

n

(1
3)x

5. 6.

7. 8.

9. 10.

In Problems 11–18, simplify.

11. 103x 1104 x 12. (43x)2y 13.

14. 15. 16. (2x3y)z

17. 18.

19. (A) Explain what is wrong with the following reasoning
about the expression [1  (1/x)]x: As x gets large,
1  (1/x) approaches 1 because 1/x approaches 0, and
1 raised to any power is 1, so [1  1/x]x approaches 1.

(B) Which number does [1  (1/x)]x approach as x
approaches  ?

20. (A) Explain what is wrong with the following reasoning
about the expression [1  (1/x)]x: If b  1, then the
exponential function bx approaches  as x approaches
 , and 1  (1/x) is greater than 1, so [1  (1/x)]x

approaches infinity as x →  .

(B) Which number does [1  (1/x)]x approach as x
approaches  ?

e4 3x

e2 5x

e5x

e2x 1

 4
x

5y 
3z5x 3

5x 4

3x

31 x

3 
 3  

2

2 
 2  

2

e 2 e

e  e 1e2
 e 2

Before graphing the functions in Problems 21–30, classify each

function as increasing or decreasing, find the x and y inter-

cepts, and identify any asymptotes. Round any approximate

values to two decimal places. Examine the graph to check your

answers.

21. y  3x 22. y  5x

23. 24.

25. g(x)   3 x 26. f (x)   5x

y  (1
5)x

 5 xy  (1
3)x

 3 x

27. F(x)  2  e x 28. G(x)  e2x
 3

29. m(t)  e3t
 2 30. n(t)  3  e 2t

In Problems 31–42, solve for x.

31. 53x
 54x 2 32. 102 3x

 105x 6

33. 34.

35. (1  x)5
 (2x  1)5 36. 53

 (x  2)3

45x x2

 4 67x2

 72x 3



In Problems 55–60, describe the transformations that can be

used to obtain the graph of g from the graph of f(x)  ex (see

Section 1.4). Check your answers by graphing f and g in the

same viewing window.

55. g(x)  ex 2 56. g(x)  ex 3

57. g(x)  ex
 2 58. g(x)  ex

 1

59. g(x)  2e (x 2) 60. g(x)  0.5e (x 1)

In Problems 61–64, simplify.

61. 62.

63. (ex
 e x)2

 (ex
 e x)2

64. ex(e x
 1)  e x(ex

 1)

In Problems 65–76, use a graphing utility to find local ex-

trema, y intercepts, and x intercepts. Investigate the behavior

as x →  and as x →   and identify any horizontal asymp-

totes. Round any approximate values to two decimal places.

65. f(x)  2  ex 2 66. g(x)   3  e1 x

67. 68.

69. 70.

71. 72.

73. m(x)  2x(3 x)  2

74. h(x)  3x(2 x)  1

75.

76. g(x)  
3x

 3 x

2

f (x)  
2x

 2 x

2

G(x)  
100

1  e x
F(x)  

200

1  3e x

r(x)  ex2

s(x)  e x2

n(x)  e  x m(x)  e x 

5x4e5x
 4x3e5x

x8

 2x3e 2x
 3x2e 2x

x6

37. 2xe x
 0 38. (x  3)ex

 0

39. x2ex
 5xex

 0 40. 3xe x
 x2e x

 0

41. 42.

43. Find all real numbers a such that a2
 a 2. Explain why

this does not violate the second exponential function
property in the box on page 321.

44. Find real numbers a and b such that a  b but a4
 b4.

Explain why this does not violate the third exponential
function property in the box on page 321.

45. Examine the graph of y  1x on a graphing utility and
explain why 1 cannot be the base for an exponential
function.

46. Examine the graph of y  0x on a graphing utility and
explain why 0 cannot be the base for an exponential func-
tion. [Hint: Turn the axes off before graphing.]

Graph each function in Problems 47–54 using the graph of f

shown in the figure.

47. y  f (x)  2 48. y  f (x)  1

49. y  f (x  2) 50. y  f (x  1)

51. y  2f (x)  4 52. y  3  5f(x)

53. y  2  3f (x  4) 54. y  2f (x  1)  1

x

f(x)

 5 5 5

 5

5

4x2

 2x 39x2

 33x 1
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77. Use a graphing utility to investigate the behavior of 
f(x)  (1  x)1/x as x approaches 0.

78. Use a graphing utility to investigate the behavior of 
f(x)  (1  x)1/x as x approaches  .

It is common practice in many applications of mathematics to

approximate nonpolynomial functions with appropriately se-

lected polynomials. For example, the polynomials in Problems

79–82, called Taylor polynomials, can be used to approximate

the exponential function f(x)  ex. To illustrate this approxima-

tion graphically, in each problem graph f(x)  ex and the indi-

cated polynomial in the same viewing window,  4  x  4

and  5  y  50.

79.

80.

81.

82. P4(x)  1  x  
1
2 x2

 
1
6 x3

 
1
24 x4

 
1

120 x5

P3(x)  1  x  
1
2 x2

 
1
6 x3

 
1
24 x4

P2(x)  1  x  
1
2 x2

 
1
6 x3

P1(x)  1  x  
1
2 x2



83. Investigate the behavior of the functions f1(x)  x/ex,
f2(x)  x2/ex, and f3(x)  x3/ex as x →  and as x →   ,
and find any horizontal asymptotes. Generalize to functions
of the form fn(x)  xn/ex, where n is any positive integer.

84. Investigate the behavior of the functions g1(x)  xex,
g2(x)  x2ex, and g3(x)  x3ex as x →  and as x →   ,
and find any horizontal asymptotes. Generalize to func-

tions of the form gn(x)  xnex, where n is any positive
integer.

85. Explain why the graph of an exponential function cannot
be the graph of a polynomial function.

86. Explain why the graph of an exponential function cannot
be the graph of a rational function.
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87. Finance. A couple just had a new child. How much
should they invest now at 8.25% compounded daily to
have $40,000 for the child’s education 17 years from
now? Compute the answer to the nearest dollar.

88. Finance. A person wishes to have $15,000 cash for a
new car 5 years from now. How much should be placed in
an account now if the account pays 9.75% compounded
weekly? Compute the answer to the nearest dollar.

89. Money Growth. If you invest $5,250 in an account pay-
ing 11.38% compounded continuously, how much money
will be in the account at the end of

(A) 6.25 years? (B) 17 years?

90. Money Growth. If you invest $7,500 in an account pay-
ing 8.35% compounded continuously, how much money
will be in the account at the end of

(A) 5.5 years? (B) 12 years?

91. Finance. If $3,000 is deposited into an account earning
8% compounded daily and, at the same time, $5,000 is
deposited into an account earning 5% compounded daily,
will the first account be worth more than the second? If
so, when?

92. Finance. If $4,000 is deposited into an account earning
9% compounded weekly and, at the same time, $6,000 is
deposited into an account earning 7% compounded
weekly, will the first account be worth more than the
second? If so, when?

93. Finance. Will an investment of $10,000 at 8.9% com-
pounded daily ever be worth more at the end of a quarter
than an investment of $10,000 at 9% compounded quar-
terly? Explain.

94. Finance. A sum of $5,000 is invested at 13% com-
pounded semiannually. Suppose that a second investment
of $5,000 is made at interest rate r compounded daily. For
which values of r, to the nearest tenth of a percent, is the
second investment better than the first? Discuss.

95. Present Value. A promissory note will pay $30,000 at
maturity 10 years from now. How much should you be

willing to pay for the note now if the note gains value at a
rate of 9% compounded continuously?

96. Present Value. A promissory note will pay $50,000 at
maturity 5 years from now. How much should you be
willing to pay for the note now if the note gains value at a
rate of 10% compounded continuously?

97. Money Growth. Barron’s, a national business and finan-
cial weekly, published the following “Top Savings De-
posit Yields” for 2 -year certificate of deposit accounts:

Gill Savings 8.30% (CC)
Richardson Savings and Loan 8.40% (CQ)
USA Savings 8.25% (CD)

where CC represents compounded continuously, CQ
compounded quarterly, and CD compounded daily. Com-
pute the value of $1,000 invested in each account at the
end of 2 years.

98. Money Growth. Refer to Problem 97. In another issue of
Barron’s, 1-year certificate of deposit accounts included:

Alamo Savings 8.25% (CQ)
Lamar Savings 8.05% (CC)

Compute the value of $10,000 invested in each account at
the end of 1 year.

99. Finance. Suppose $4,000 is invested at 11% compounded
weekly. How much money will be in the account in

(A) year? (B) 10 years?

Compute answers to the nearest cent.

100. Finance. Suppose $2,500 is invested at 7% compounded
quarterly. How much money will be in the account in

(A) year? (B) 15 years?

Compute answers to the nearest cent.

3
4

1
2

1
2

1
2

1
2

 

 

 

 

 

 

 

 



Exponential Models

Mathematical Modeling  Data Analysis and Regression  A Comparison of Exponential
Growth Phenomena

In Section 4.2 we use exponential functions to model a wide variety of real-world
phenomena, including growth of populations of people, animals, and bacteria;
radioactive decay; spread of epidemics; propagation of rumors; light intensity;
atmospheric pressure; and electric circuits. The regression techniques introduced
in Chapter 2 to construct linear and quadratic models are extended to construct
exponential models.

Mathematical Modeling
Populations tend to grow exponentially and at different rates. A convenient and
easily understood measure of growth rate is the doubling time—that is, the time
it takes for a population to double. Over short periods the doubling time growth
model is often used to model population growth:

P P02t/d

where P  Population at time t

P0  Population at time t  0

d  Doubling time

Note that when t  d,

P  P02d/d
 P02

and the population is double the original, as it should be. We use this model to
solve a population growth problem in Example 1.

Population Growth

Mexico has a population of around 100 million people, and it is estimated that
the population will double in 21 years. If population growth continues at the same
rate, what will be the population:

(A) 15 years from now? (B) 30 years from now?

Calculate answers to three significant digits.

S O L U T I O N S
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Algebraic Solutions

We use the doubling time growth
model:

P  P02t/d

Graphical Solutions

We graph

P  100(2x/21)

and construct a table of values (Fig. 2).
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Substituting P0  100 and d  21,
we obtain

P  100(2t/21) Figure 1.

(A) Find P when t  15 years:

P  100(215/21)

 164 million people

(B) Find P when t  30 years:

P  100(230/21)

 269 million people

(A) When x = 15 years, 
P  164 million people.

(B) When x  30 years, 
P  269 million people.

FIGURE 2

0

0
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5010 20
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30 40

100
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400

300

200

t

P (millions)

FIGURE 1 P  100(2t/21).

The bacterium Escherichia coli (E. coli) is found naturally in the intestines of
many mammals. In a particular laboratory experiment, the doubling time for 
E. coli is found to be 25 minutes. If the experiment starts with a population of
1,000 E. coli and there is no change in the doubling time, how many bacteria will
be present:

(A) In 10 minutes? (B) In 5 hours?

Write answers to three significant digits.

As an alternative to the doubling time growth model, we can use the equation
y  cekt, where c and k are positive constants, to model population growth. Exam-
ple 2 illustrates this approach.

E X P L O R E / D I S C U S S  1

The doubling time growth model would not be expected to give accu-
rate results over long periods. According to the doubling time growth
model of Example 1, what was the population of Mexico 500 years ago
at the height of Aztec civilization? What will the population of Mexico
be 200 years from now? Explain why these results are unrealistic. Dis-
cuss factors that affect human populations that are not taken into
account by the doubling time growth model.



Medicine—Bacteria Growth

Cholera, an intestinal disease, is caused by a cholera bacterium that multiplies
exponentially by cell division as modeled by

N  N0e1.386t

where N is the number of bacteria present after t hours and N0 is the number of
bacteria present at t  0. If we start with 1 bacterium, how many bacteria will
be present in

(A) 5 hours? (B) 12 hours?

Compute the answers to three significant digits.

S O L U T I O N S

Repeat Example 2 if N  N0e0.783t and all other information remains the same.

Exponential functions can also be used to model radioactive decay, which is
sometimes referred to as negative growth. Radioactive materials are used extensively
in medical diagnosis and therapy, as power sources in satellites, and as power
sources in many countries. If we start with an amount A0 of a particular radioac-
tive isotope, the amount declines exponentially in time. The rate of decay varies
from isotope to isotope. A convenient and easily understood measure of the rate of
decay is the half-life of the isotope—that is, the time it takes for half of a particu-
lar material to decay. We use the following half-life decay model:

  A02
 t/h

A   A0(
1
2)t/h
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Algebraic Solutions

(A) Use N0  1 and t  5:

N  N0e1.386t

 e1.386(5)

 1,020

(B) Use N0  1 and t  12:

N  N0e1.386t

 e1.386(12)

 16,700,000

Graphical Solutions

We graph

N  e1.386x

and construct a table of values (Fig. 3).

(A) When x  5 hours, N  1,020
bacteria.

(B) When x  12 hours, 
N  16,700,000 bacteria.

FIGURE 3

0

0

25,000,000

15



where A  Amount at time t

A0  Amount at time t  0

h  Half-life

Note that when t  h,

and the amount of isotope is half the original amount, as it should be.

Radioactive Decay

The radioactive isotope gallium 67 (67Ga), used in the diagnosis of malignant
tumors, has a biological half-life of 46.5 hours. If we start with 100 milligrams
of the isotope, how many milligrams will be left after

(A) 24 hours? (B) 1 week?

Compute answers to three significant digits.

S O L U T I O N S

A  A02
 h/h

 A02
 1

 
A0

2

Radioactive gold 198 (198Au), used in imaging the structure of the liver, has a
half-life of 2.67 days. If we start with 50 milligrams of the isotope, how many
milligrams will be left after:

(A) day? (B) 1 week?

Compute answers to three significant digits.

1
2
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Algebraic Solutions

We use the half-life decay model:

Using A0  100 and h  46.5, we
obtain

A  100(2 t/46.5) Figure 4.

(A) Find A when t  24 hours:

A  100(2 24/46.5)

 69.9 milligrams

(B) Find A when t  168 hours 
(1 week  168 hours):

A  100(2 168/46.5)

 8.17 milligrams

A  A0(
1
2)t/h

 A02
 t/h

Graphical Solutions

We graph

A = 100(2 x/46.5)

and construct a table of values (Fig. 5).

(A) When x = 24 hours, 
A  69.9 milligrams.

(B) When x = 168 hours, 
A  8.17 milligrams.

FIGURE 5
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FIGURE 4 A  100(2 t/46.5).



As an alternative to the half-life decay model, we can use the equation
y  ce kt, where c and k are positive constants, to model radioactive decay. Exam-
ple 4 illustrates this approach.

Carbon-14 Dating

Cosmic-ray bombardment of the atmosphere produces neutrons, which in turn
react with nitrogen to produce radioactive carbon-14. Radioactive carbon-14
enters all living tissues through carbon dioxide, which is first absorbed by plants.
As long as a plant or animal is alive, carbon-14 is maintained in the living organ-
ism at a constant level. Once the organism dies, however, carbon-14 decays
according to the equation

A  A0e 0.000124t

where A is the amount of carbon-14 present after t years and A0 is the amount
present at time t  0. If 1,000 milligrams of carbon-14 are present at the start,
how many milligrams will be present in

(A) 10,000 years? (B) 50,000 years?

Compute answers to three significant digits.

S O L U T I O N S
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Algebraic Solutions

Substituting A0  1,000 in the decay
equation, we have

A  1,000e 0.000124t Figure 6.

(A) Solve for A when t  10,000:

A  1,000e 0.000124(10,000)

 289 milligrams

(B) Solve for A when t  50,000:

A  1,000e 0.000124(50,000)

 2.03 milligrams

Graphical Solutions

We graph

A  1,000e 0.000124x

and construct a table of values (Fig. 7).

(A) When x  10,000 years, 
A  289 milligrams.

(B) When x  50,000 years, 
A  2.03 milligrams.

FIGURE 7

0

0

300

60,000

t
50,000

1,000

500

A

FIGURE 6

More will be said about carbon-14 dating in Exercise 4.5, where we will be inter-
ested in solving for t after being given information about A and A0.

Referring to Example 4, how many milligrams of carbon-14 would have to be
present at the beginning to have 10 milligrams present after 20,000 years? Com-
pute the answer to four significant digits.



We can model phenomena such as learning curves, for which growth has an
upper bound, by the equation y  c(1  e kt), where c and k are positive con-
stants. Example 5 illustrates such limited growth.

Learning Curve

People assigned to assemble circuit boards for a computer manufacturing com-
pany undergo on-the-job training. From past experience, it was found that the
learning curve for the average employee is given by 

N = 40(1  e 0.12t)

where N is the number of boards assembled per day after t days of training (Fig. 8).

(A) How many boards can an average employee produce after 3 days of train-
ing? After 5 days of training? Round answers to the nearest integer.

(B) How many days of training will it take until an average employee can
assemble 25 boards a day? Round answers to the nearest integer.

(C) Does N approach a limiting value as t increases without bound? Explain.

S O L U T I O N

(A) When t  3,

N  40(1  e 0.12(3))  12 Rounded to nearest integer

so the average employee can produce 12 boards after 3 days of
training. Similarly, when t  5,

N  40(1  e 0.12(5))  18 Rounded to nearest integer

so the average employee can produce 18 boards after 5 days of training.

(B) Solve the equation 40(1  e 0.12t )  25 for t by graphing

y1  40(1  e 0.12t ) and y2  25

and using the intersect command (Fig. 9). It will take 8 days of training.

(C) Because e 0.12t approaches 0 as t increases without bound,

N  40(1  e 0.12t) → 40(1  0)  40

So the limiting value of N is 40 boards per day.

A company is trying to expose as many people as possible to a new product
through television advertising in a large metropolitan area with 2 million poten-
tial viewers. A model for the number of people N, in millions, who are aware of
the product after t days of advertising was found to be

N  2(1   e 0.037t )
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FIGURE 8 Limited growth.
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FIGURE 9

y1  40(1  e 0.12t), y2  25.



(A) How many viewers are aware of the product after 2 days? After 10 days?
Express answers as integers, rounded to three significant digits.

(B) How many days will it take until half of the potential viewers will become
aware of the product? Round answer to the nearest integer.

(C) Does N approach a limiting value as t increases without bound? Explain.

We can model phenomena such as the spread of an epidemic or the propagation
of a rumor by the logistic equation,

where M, c, and k are positive constants. Logistic growth, illustrated in Example 6,
approaches a limiting value as t increases without bound.

Logistic Growth in an Epidemic

A community of 1,000 individuals is assumed to be homogeneously mixed. One
individual who has just returned from another community has influenza. Assume
the community has not had influenza shots and all are susceptible. The spread of
the disease in the community is predicted to be given by the logistic curve

where N is the number of people who have contracted influenza after t days.

(A) How many people have contracted influenza after 10 days? After 20 days?
Round answers to the nearest integer.

(B) How many days will it take until half the community has contracted
influenza? Round answer to the nearest integer.

(C) Does N approach a limiting value as t increases without bound? Explain.

S O L U T I O N S

(A) The table in Figure 10(a) shows that N(10)  20 individuals and
N(20)  288 individuals.

N(t)  
1,000

1  999e 0.3t

y  
M

(1  ce kt)

(B) Figure 10(b) shows that the graph of N(t) intersects the line y  500
after approximately 23 days.

(C) The values in Figure 10(a) and the graph in Figure 10(b) both indi-
cate that N approaches 1,000 as t increases without bound. We can
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FIGURE 10

Logistic growth.



confirm this algebraically by noting that because 999e 0.3t
→ 0 as t

increases without bound,

Thus, the upper limit on the growth of N is 1,000, the total number of
people in the community.

A group of 400 parents, relatives, and friends are waiting anxiously at Kennedy
Airport for a charter flight returning students after a year in Europe. It is stormy
and the plane is late. A particular parent thought he had heard that the plane’s
radio had gone out and related this news to some friends, who in turn passed it
on to others. The propagation of this rumor is predicted to be given by

where N is the number of people who have heard the rumor after t minutes.

(A) How many people have heard the rumor after 10 minutes? After 20 min-
utes? Round answers to the nearest integer.

(B) How many minutes will it take until half the group has heard the rumor?
Round answer to the nearest integer.

(C) Does N approach a limiting value as t increases without bound? Explain.

Data Analysis and Regression
We use exponential regression to fit a function of the form y = abx to a set of
data points, and logistic regression to fit a function of the form

to a set of data points. The techniques are similar to those introduced in Chapter 2
for linear and quadratic functions.

Infectious Diseases

The U.S. Department of Health and Human Services published the data in Table 1.

y  
c

1  ae bx

N(t)  
400

1  399e 0.4t

N(t)  
1,000

1  999e 0.3t
→

1,000

1  0
 1,000
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T A B L E  1 Reported Cases of Infectious Diseases

Year Mumps Rubella

1970 104,953 56,552

1980 8,576 3,904

1990 5,292 1,125

1995 906 128

2000 323 152



(A) Let x represent time in years with x  0 representing 1970, and let y rep-
resent the corresponding number of reported cases of mumps. Use regres-
sion analysis on a graphing utility to find an exponential function of the
form y = abx that models the data. (Round the constants a and b to three
significant digits.)

(B) Use the exponential regression function to predict the number of reported
cases of mumps in 2010.

S O L U T I O N

(A) Figure 11 shows the details of constructing the model on a graphing
utility.

(B) Evaluating y1  91,400(0.835)x at x  40 gives a prediction of 67
cases of mumps in 2010.

Repeat Example 7 for reported cases of rubella.

AIDS Cases and Deaths

The U.S. Department of Health and Human Services published the data in Table 2.

4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS340

 10,000

 5

110,000

45

(a) Data (b) Regression equation (c) Regression equation

entered in equation

editor

(d) Graph of data and

regression equation

T A B L E  2 Acquired Immunodeficiency Syndrome (AIDS)
Cases and Deaths in the United States

Cases Known
Diagnosed Deaths

Year to Date to Date

1985 23,185 12,648

1988 107,755 62,468

1991 261,259 159,294

1994 493,713 296,507

1997 672,970 406,179

2000 774,467 447,648

FIGURE 11



(A) Let x represent time in years with x  0 representing 1985, and let y rep-
resent the corresponding number of AIDS cases diagnosed to date. Use
regression analysis on a graphing utility to find a logistic function of the
form

that models the data. (Round the constants a, b, and c to three significant
digits.)

(B) Use the logistic regression function to predict the number of cases of
AIDS diagnosed by 2010.

S O L U T I O N

(A) Figure 12 shows the details of constructing the model on a graphing
utility.

y  
c

1  ae bx

(B) Evaluating 

at x  25 gives a prediction of approximately 820,000 cases of AIDS
diagnosed by 2010.

Repeat Example 8 for known deaths from AIDS to date.

A Comparison of Exponential Growth Phenomena
The equations and graphs given in Table 3 compare several widely used growth
models. These are divided basically into two groups: unlimited growth and lim-
ited growth. Following each equation and graph is a short, incomplete list of areas
in which the models are used. We have only touched on a subject that has been
extensively developed and that you are likely to study in greater depth in the
future.

y1  
821,000

1  22.2e 0.389x
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1. (A) 1,320 bacteria
(B) 4,100,000  4.10  106 bacteria

2. (A) 50 bacteria (B) 12,000 bacteria
3. (A) 43.9 milligrams (B) 8.12 milligrams
4. 119.4 milligrams
5. (A) 143,000 viewers; 619,000 viewers (B) 19 days

(C) N approaches an upper limit of 2 million, the num-
ber of potential viewers

6. (A) 48 individuals; 353 individuals (B) 15 minutes
(C) N approaches an upper limit of 400, the number of

people in the entire group.

7. (A) y  44,500(0.815)x (B) 12 cases

8. (A)

(B) 470,000 known deaths

y  
470,000

1  23.9e 0.415x
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T A B L E  3 Exponential Growth and Decay

Description Equation Graph Uses

Unlimited growth Short-term population growth (people, bac-
teria, etc.); growth of money at continuous
compound interest

Exponential decay Radioactive decay; light absorption in water,
glass, and the like; atmospheric pressure;
electric circuits

Limited growth Learning skills; sales fads; company growth;
electric circuits

Logistic growth Long-term population growth; epidemics; 
sales of new products; company growth

c, k, M   0

y  
M

1  ce kt

c, k   0
y  c(1  e kt)

c, k   0
y  ce kt

c, k   0
y  cekt

t

y

0

c

t

y

0

c

t

y

0

c

t

y

0

M
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1. Gaming. A person bets on red and black on a roulette
wheel using a Martingale strategy. That is, a $2 bet is
placed on red, and the bet is doubled each time until a win
occurs. The process is then repeated. If black occurs n
times in a row, then L  2n dollars is lost on the nth bet.
Graph this function for 1  n  10. Although the function
is defined only for positive integers, points on this type of
graph are usually joined with a smooth curve as a visual aid.

2. Bacterial Growth. If bacteria in a certain culture double
every hour, write an equation that gives the number of bac-
teria N in the culture after t hours, assuming the culture has
100 bacteria at the start. Graph the equation for 0  t  5.

3. Population Growth. Because of its short life span and fre-
quent breeding, the fruit fly Drosophila is used in some
genetic studies. Raymond Pearl of Johns Hopkins Univer-
sity, for example, studied 300 successive generations of
descendants of a single pair of Drosophila flies. In a labo-
ratory situation with ample food supply and space, the
doubling time for a particular population is 2.4 days. If we
start with 5 male and 5 female flies, how many flies should
we expect to have in

(A) 1 week? (B) 2 weeks?

4. Population Growth. If Kenya has a population of about
30,000,000 people and a doubling time of 19 years and if
the growth continues at the same rate, find the population in

(A) 10 years (B) 30 years

Compute answers to two significant digits.

5. Insecticides. The use of the insecticide DDT is no longer
allowed in many countries because of its long-term ad-
verse effects. If a farmer uses 25 pounds of active DDT,
assuming its half-life is 12 years, how much will still be
active after

(A) 5 years? (B) 20 years?

Compute answers to two significant digits.

6. Radioactive Tracers. The radioactive isotope technetium-
99m (99mTc) is used in imaging the brain. The isotope has
a half-life of 6 hours. If 12 milligrams are used, how much
will be present after

(A) 3 hours? (B) 24 hours?

Compute answers to three significant digits.

7. Population Growth. If the world population is about 6 bil-
lion people now and if the population grows continuously
at an annual rate of 1.7%, what will the population be in
10 years? Compute the answer to two significant digits.

1
2

8. Population Growth. If the population in Mexico is around
100 million people now and if the population grows con-
tinuously at an annual rate of 2.3%, what will the popula-
tion be in 8 years? Compute the answer to two significant
digits.

9. Population Growth. In 1996 the population of Russia
was 148 million and the population of Nigeria was 104
million. If the populations of Russia and Nigeria grow
continuously at annual rates of  0.62% and 3.0%, re-
spectively, when will Nigeria have a greater population
than Russia?

10. Population Growth. In 1996 the population of Germany
was 84 million and the population of Egypt was 64 mil-
lion. If the populations of Germany and Egypt grow con-
tinuously at annual rates of  0.15% and 1.9%,
respectively, when will Egypt have a greater population
than Germany?

11. Space Science. Radioactive isotopes, as well as solar cells,
are used to supply power to space vehicles. The isotopes
gradually lose power because of radioactive decay. On a
particular space vehicle the nuclear energy source has a
power output of P watts after t days of use as given by

P  75e 0.0035t

Graph this function for 0  t  100.

12. Earth Science. The atmospheric pressure P, in pounds per
square inch, decreases exponentially with altitude h, in
miles above sea level, as given by

P  14.7e 0.21h

Graph this function for 0  h  10.

13. Marine Biology. Marine life is dependent upon the micro-
scopic plant life that exists in the photic zone, a zone that
goes to a depth where about 1% of the surface light still
remains. Light intensity I relative to depth d, in feet, for
one of the clearest bodies of water in the world, the Sar-
gasso Sea in the West Indies, can be approximated by

I  I0e 0.00942d

where I0 is the intensity of light at the surface. What per-
centage of the surface light will reach a depth of

(A) 50 feet? (B) 100 feet?

14. Marine Biology. Refer to Problem 13. In some waters
with a great deal of sediment, the photic zone may go
down only 15 to 20 feet. In some murky harbors, the



Find the value that q approaches as t increases without
bound and interpret.

20. Medicine. An electronic heart pacemaker uses the same
type of circuit as the flash unit in Problem 19, but it is de-
signed so that the capacitor discharges 72 times a minute.
For a particular pacemaker, the charge on the capacitor t
seconds after it starts recharging is given by

q  0.000 008(1  e 2t)

Find the value that q approaches as t increases without
bound and interpret.

21. Wildlife Management. A herd of 20 white-tailed deer is
introduced to a coastal island where there had been no
deer before. Their population is predicted to increase ac-
cording to the logistic curve

where N is the number of deer expected in the herd after t
years.

(A) How many deer will be present after 2 years? After 
6 years? Round answers to the nearest integer.

(B) How many years will it take for the herd to grow to 50
deer? Round answer to the nearest integer.

(C) Does N approach a limiting value as t increases with-
out bound? Explain.

22. Training. A trainee is hired by a computer manufacturing
company to learn to test a particular model of a personal
computer after it comes off the assembly line. The learning
curve for an average trainee is given by

(A) How many computers can an average trainee be ex-
pected to test after 3 days of training? After 6 days?
Round answers to the nearest integer.

(B) How many days will it take until an average trainee
can test 30 computers per day? Round answer to the
nearest integer.

(C) Does N approach a limiting value as t increases with-
out bound? Explain.

N  
200

4  21e 0.1t

N  
100

1  4e 0.14t

I

R

V

C

S

intensity of light d feet below the surface is given approxi-
mately by

I  I0e 0.23d

What percentage of the surface light will reach a depth of

(A) 10 feet? (B) 20 feet?

15. AIDS Epidemic. In June 1996 the World Health Organiza-
tion estimated that 7.7 million cases of AIDS had occurred
worldwide since the beginning of the epidemic. Assuming
that the disease spreads continuously at an annual rate of
17%, estimate the total number of AIDS cases that will
have occurred by June of the year

(A) 2005 (B) 2010

16. AIDS Epidemic. In June 1996 the World Health Organiza-
tion estimated that 28 million people worldwide had been
infected with human immunodeficiency virus (HIV) since
the beginning of the AIDS epidemic. Assuming that HIV
infection spreads continuously at an annual rate of 19%,
estimate the total number of people who will have been in-
fected with HIV by June of the year

(A) 2005 (B) 2010

17. Newton’s Law of Cooling. This law states that the rate at
which an object cools is proportional to the difference in
temperature between the object and its surrounding
medium. The temperature T of the object t hours later is
given by

T  Tm  (T0  Tm)e kt

where Tm is the temperature of the surrounding medium
and T0 is the temperature of the object at t  0. Suppose a
bottle of wine at a room temperature of 72 F is placed in
the refrigerator to cool before a dinner party. If the tem-
perature in the refrigerator is kept at 40 F and k  0.4,
find the temperature of the wine, to the nearest degree,
after 3 hours. (In Exercise 4.5 we will find out how to
determine k.)

18. Newton’s Law of Cooling. Refer to Problem 17. What is
the temperature, to the nearest degree, of the wine after 
5 hours in the refrigerator?

19. Photography. An electronic flash unit for a camera is ac-
tivated when a capacitor is discharged through a filament
of wire. After the flash is triggered, and the capacitor is
discharged, the circuit (see the figure) is connected and the
battery pack generates a current to recharge the capacitor.
The time it takes for the capacitor to recharge is called the
recycle time. For a particular flash unit using a 12-volt bat-
tery pack, the charge q, in coulombs, on the capacitor t
seconds after recharging has started is given by

q  0.0009(1  e 0.2t)
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23. Depreciation. Table 4 gives the market value of a mini-
van (in dollars) x years after its purchase. Find an expo-
nential regression model of the form y  abx for this data
set. Estimate the purchase price of the van. Estimate the
value of the van 10 years after its purchase. Round an-
swers to the nearest dollar.

24. Depreciation. Table 5 gives the market value of a luxury
sedan (in dollars) x years after its purchase. Find an expo-
nential regression model of the form y  abx for this data
set. Estimate the purchase price of the sedan. Estimate the
value of the sedan 10 years after its purchase. Round an-
swers to the nearest dollar.

25. Nuclear Power. Table 6 gives data on nuclear power gen-
eration by region for the years 1980–1999.

T A B L E  4

x Value ($)

1 12,575

2 9,455

3 8,115

4 6,845

5 5,225

6 4,485

T A B L E  5

x Value ($)

1 23,125

2 19,050

3 15,625

4 11,875

5 9,450

6 7,125

T A B L E  6 Nuclear Power Generation 

(Billion Kilowatt-Hours)

North Central and
Year America South America

1980 287.0 2.2

1985 440.8 8.4

1990 649.0 9.0

1995 774.4 9.5

1998 750.2 10.3

1999 807.5 10.5

Logarithmic Functions

Logarithmic Functions  From Logarithmic Form to Exponential Form, and Vice Versa  

Properties of Logarithmic Functions  Common and Natural Logarithms  Change of Base

In Section 4.3 we introduce the inverses of the exponential functions—the loga-
rithmic functions—and study their properties and graphs.

(A) Let x represent time in years with x  0 representing
1980. Find a logistic regression model 
for the generation of nuclear power in North America.
(Round the constants a, b, and c to three significant
digits.)

(B) Use the logistic regression model to predict the gener-
ation of nuclear power in North America in 2010.

26. Nuclear Power. Refer to Table 6.

(A) Let x represent time in years with x  0 representing
1980.  Find a logistic regression model 
for the generation of nuclear power in Central and
South America. (Round the constants a, b, and c to
three significant digits.)

(B) Use the logistic regression model to predict the gener-
ation of nuclear power in Central and South America
in 2010.

 y  
c

1  ae bx 

 y  
c

1  ae bx 



Logarithmic Functions
The exponential function f(x)  bx, where b  0, b  1, is a one-to-one func-
tion, and therefore has an inverse. Its inverse, denoted f  1(x)  logb x (read “log
to the base b of x”), is called the logarithmic function with base b. A point (x, y)
lies on the graph of f  1 if and only if the point ( y, x) lies on the graph of f; in
other words, 

y = logb x if and only if x  by

We can use this fact to deduce information about the logarithmic functions from
our knowledge of exponential functions. For example, the graph of f  1 is the
graph of f reflected in the line y  x; and the domain and range of f  1 are, respec-
tively, the range and domain of f.

Consider the exponential function f (x) = 2x and its inverse f  1(x)  log2 x.
Figure 1 shows the graphs of both functions and a table of selected points on
those graphs. Because 

y = log2 x if and only if x  2y

log2 x is the exponent to which 2 must be raised to obtain x: 2log2x
 2y

 x.
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D E F I N I T I O N 1
Logarithmic Function

For b  0, b 1, the inverse of f (x)  b x, denoted f 1(x)  logb x, is the logarithmic function

with base b.

Logarithmic form Exponential form

y  logb x is equivalent to x  by

The log to the base b of x is the exponent to which b must be raised to obtain x.

y  log10 x is equivalent to x  10 y

y  loge x is equivalent to x  e y

Remember: A logarithm is an exponent.
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f 1

x   2y
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y   log2 x

FIGURE 1 Logarithmic function
with base 2.
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It is very important to remember that y  logb x and x  b y define the same
function, and as such can be used interchangeably.

Because the domain of an exponential function includes all real numbers and
its range is the set of positive real numbers, the domain of a logarithmic func-
tion is the set of all positive real numbers and its range is the set of all real num-
bers. Thus, log10 3 is defined, but log10 0 and log10 ( 5) are not defined. That is,
3 is a logarithmic domain value, but 0 and  5 are not. Typical logarithmic curves
are shown in Figure 2.

From Logarithmic Form to Exponential Form, and Vice Versa
We now look into the matter of converting logarithmic forms to equivalent expo-
nential forms, and vice versa.

Logarithmic–Exponential Conversions

Change each logarithmic form to an equivalent exponential form.

(A) log2 8  3 (B) log25 5  (C) log2

S O L U T I O N S

(A) log2 8  3 is equivalent to 8  23.

(B) log25 5  is equivalent to 5  251/2.

(C) log2   2 is equivalent to 1
4  2 2.(1

4 )

1
2

(1
4 )   21

2
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x

y

0 1

y   logb x
0   b   1

DOMAIN   (0,  )
RANGE   (  ,  )

x

y

y   logb x
b   1

DOMAIN   (0,  )
RANGE   (  ,  )

0 1

(a) (b)

FIGURE 2 Typical logarithmic
graphs.

E X P L O R E / D I S C U S S  1

For the exponential function , graph f and y  x

on the same coordinate system. Then sketch the graph of f  1. Use the
Draw Inverse routine on a graphing utility to check your work. Discuss
the domains and ranges of f and its inverse. By what other name is f  1

known?

f  {(x, y)  y  (2
3)x}



Change each logarithmic form to an equivalent exponential form.

(A) log3 27  3 (B) log36 6  (C) log3

Logarithmic–Exponential Conversions

Change each exponential form to an equivalent logarithmic form.

(A) 49  72 (B) (C)

S O L U T I O N S

(A) 49  72 is equivalent to log7 49  2.

(B) is equivalent to log9 3  .

(C) is equivalent to log5 .

Change each exponential form to an equivalent logarithmic form.

(A) 64  43 (B) (C)

To gain a little deeper understanding of logarithmic functions and their rela-
tionship to the exponential functions, we consider a few problems where we want
to find x, b, or y in y  logb x, given the other two values. All values were cho-
sen so that the problems can be solved without a calculator.

Solutions of the Equation y logb x

Find x, b, or y as indicated.

(A) Find y: y  log4 8. (B) Find x: log3 x   2.

(C) Find b: logb 1,000  3.

S O L U T I O N S

(A) Write y  log4 8 in equivalent exponential form.

Write each number to the same base 2.

Recall that bm
 bn if and only if m n.

Thus,  log4 8.

(B) Write log3 x   2 in equivalent exponential form.

Thus, log3   2.(1
9)

 
1

32
 

1

9

x  3 2

3
2

y  
3
2

 2y  3

 23
 22y

 8  4y

1
16  4 22   3 8

(1
5)   11

5  5 1

1
23   9

1
5  5 13   9

(1
9)   21

2
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(C) Write logb 1,000  3 in equivalent exponential form:

Write 1,000 as a third power.

Thus, log10 1,000  3.

Find x, b, or y as indicated.

(A) Find y: y  log9 27. (B) Find x: log2 x   3.

(C) Find b: logb 100  2.

Properties of Logarithmic Functions
The familiar properties of exponential functions imply corresponding properties
of logarithmic functions.

b  10

 103
 b3

 1,000  b3

Several of the powerful and useful properties of logarithmic functions are
listed in Theorem 1.
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E X P L O R E / D I S C U S S  2

Discuss the connection between the exponential equation and the loga-
rithmic equation, and explain why each equation is valid.

(A) 24 27
 211; log2 24

 log2 27
 log2 211

(B) 213/25
 28; log2 213

 log2 25
 log2 28

(C) (26)9
 254; 9 log2 26

 log2 254

T H E O R E M  1
Properties of Logarithmic Functions

If b, M, and N are positive real numbers, b  1, and p and x are real
numbers, then
1. logb 1  0 5. logb MN  logb M  logb N

2. logb b  1 6. logb  logb M  logb N

3. logb bx
 x 7. logb M p

 p logb M

4.  x, x  0 8. logb M  logb N if and only if M  Nblogb x

M

N



The first two properties in Theorem 1 follow directly from the definition of a
logarithmic function:

logb 1  0 because b0
 1

logb b  1 because b1
 b

The third and fourth properties are “inverse properties.” They follow directly from
the fact that exponential and logarithmic functions are inverses of each other.
Recall from Section 1.6 that if f is one-to-one, then f  1 is a one-to-one function
satisfying

f  1( f (x))  x for all x in the domain of f

f ( f  1(x))  x for all x in the domain of f  1

Applying these general properties to f(x)  bx and f  1(x)  logb x, we see that

f  1( f (x))  x f( f  1(x))  x

logb ( f (x))  x  x

logb bx
 x  x

Properties 5 to 7 enable us to convert multiplication into addition, division
into subtraction, and power and root problems into multiplication. The proofs of
these properties are based on properties of exponents. A sketch of a proof of the
fifth property follows: To bring exponents into the proof, we let

u  logb M and v  logb N

and convert these to the equivalent exponential forms

M  bu and N  bv

Now, see if you can provide the reasons for each of the following steps:

logb MN  logb bubv
 logb bu v

 u  v  logb M  logb N

The other properties are established in a similar manner (see Problems 104 and
105 in Exercise 4.3.)

Finally, the eighth property follows from the fact that logarithmic functions
are one-to-one.

Using Logarithmic Properties

Simplify, using the properties in Theorem 1.

(A) loge 1 (B) log10 10 (C) loge e2x 1

(D) log10 0.01 (E) (F)

S O L U T I O N S

(A) loge 1  0 (B) log10 10  1

(C) loge e2x 1
 2x  1 (D) log10 0.01  log10 10 2

  2

(E) (F) eloge x2

 x210log10 7  7

eloge x2

10log107

blogb x

b f  1(x)
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Simplify, using the properties in Theorem 1.

(A) log10 10 5 (B) log5 25 (C) log10 1

(D) loge em n (E) (F) e

Common and Natural Logarithms
John Napier (1550–1617) is credited with the invention of logarithms, which
evolved out of an interest in reducing the computational strain in research in
astronomy. This new computational tool was immediately accepted by the scien-
tific world. Now, with the availability of inexpensive calculators, logarithms have
lost most of their importance as a computational device. However, the logarith-
mic concept has been greatly generalized since its conception, and logarithmic
functions are used widely in both theoretical and applied sciences.

Of all possible logarithmic bases, the base e and the base 10 are used almost
exclusively. To use logarithms in certain practical problems, we need to be able
to approximate the logarithm of any positive number to either base 10 or base e.
And conversely, if we are given the logarithm of a number to base 10 or base e, we
need to be able to approximate the number. Historically, tables were used for this
purpose, but now calculators are used because they are faster and can find far
more values than any table can possibly include.

Common logarithms, also called Briggsian logarithms, are logarithms with
base 10. Natural logarithms, also called Napierian logarithms, are logarithms
with base e. Most calculators have a function key labeled “log” and a function
key labeled “ln.” The former represents the common logarithmic function and the
latter the natural logarithmic function. In fact, “log” and “ln” are both used exten-
sively in mathematical literature, and whenever you see either used in this book
without a base indicated, they should be interpreted as in the box.

 1)
4

(xelog10log10 4
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Logarithmic Functions

y  log x  log10 x Common logarithmic function

y  ln x  loge x Natural logarithmic function

E X P L O R E / D I S C U S S  3

(A) Sketch the graph of y  10x, y  log x, and y  x in the same
coordinate system and state the domain and range of the common
logarithmic function.

(B) Sketch the graph of y  ex, y  ln x, and y  x in the same coor-
dinate system and state the domain and range of the natural loga-
rithmic function.



Calculator Evaluation of Logarithms

Use a calculator to evaluate each to six decimal places.

(A) log 3,184 (B) ln 0.000 349 (C) log ( 3.24)

S O L U T I O N S

(A) log 3,184  3.502 973

(B) ln 0.000 349   7.960 439

(C) log ( 3.24)  Error

Why is an error indicated in part C? Because  3.24 is not in the domain of the
log function. [Note: Calculators display error messages in various ways. Some
calculators use a more advanced definition of logarithmic functions that involves
complex numbers. They will display an ordered pair, representing a complex num-
ber, as the value of log ( 3.24), rather than an error message. You should inter-
pret such a display as indicating that the number entered is not in the domain of
the logarithmic function as we have defined it.]

Use a calculator to evaluate each to six decimal places.

(A) log 0.013 529 (B) ln 28.693 28 (C) ln ( 0.438)

When working with common and natural logarithms, we follow the common
practice of using the equal sign “ ” where it might be more appropriate to use
the approximately equal sign “ .” No harm is done as long as we keep in mind
that in a statement such as log 3.184  0.503, the number on the right is only
assumed accurate to three decimal places and is not exact.
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E X P L O R E / D I S C U S S  4

Graphs of the functions f(x)  log x and g(x)  ln x are shown in the
graphing utility display of Figure 3. Which graph belongs to which
function? It appears from the display that one of the functions may be a
constant multiple of the other. Is that true? Find and discuss the evi-
dence for your answer.

 2

0

2

5

FIGURE 3



Calculator Evaluation of Logarithms

Use a calculator to evaluate each expression to three decimal places.

(A) (B) (C) log 2  log 1.1

S O L U T I O N S

(A)

(B)

(C) log 2  log 1.1  0.260. Note that , but 

log 2  log 1.1 (see Theorem 1).

Use a calculator to evaluate each to three decimal places.

(A) (B) (C) ln 3  ln 1.08

We now turn to the second problem: Given the logarithm of a number, find
the number. To solve this problem, we make direct use of the logarithmic–
exponential relationships.

ln
3

1.08

ln 3

ln 1.08

log
2

1.1
 

log 2

log 1.1
 log 2  log 1.1

log
2

1.1
 0.260

log 2

log 1.1
 7.273

log
2

1.1

log 2

log 1.1

Solving logb x  y for x

Find x to three significant digits, given the indicated logarithms.

(A) log x   9.315 (B) ln x  2.386

S O L U T I O N S

(A) log x   9.315

x  10 9.315 Change to exponential form (Definition 1)

 4.84  10 10

Notice that the answer is displayed in scientific notation in the calculator.

(B) ln x  2.386

x  e2.386 Change to exponential form (Definition 1)

 10.9
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Logarithmic–Exponential Relationships

log x  y is equivalent to x  10y

ln x  y is equivalent to x  ey



Find x to four significant digits, given the indicated logarithms.

(A) ln x   5.062 (B) log x  12.0821

Change of Base
How would you find the logarithm of a positive number to a base other than 10
or e? For example, how would you find log3 5.2? In Example 8 we evaluate this
logarithm using a direct process. Then we develop a change-of-base formula to
find such logarithms in general. You may find it easier to remember the process
than the formula.

Evaluating a Base 3 Logarithm

Evaluate log3 5.2 to four decimal places.

S O L U T I O N S

Let y  log3 5.2 and proceed as follows:

Change to exponential form.

Take the natural log (or common log) of each side.

logb M p
 p logb M

Solve for y.

Replace y with log3 5.2 from the first step, and use a calculator to evaluate the
right side:

Evaluate log0.5 0.0372 to four decimal places.

log3 5.2  
ln 5.2

ln 3
 1.5007

y  
ln 5.2

ln 3

 y ln 3

 ln 5.2  ln 3y

 5.2  3y

log3 5.2  y
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E X P L O R E / D I S C U S S  5

Example 7 was solved algebraically using the logarithmic–exponential
relationships. Use the intersection routine on a graphing utility to solve
this problem graphically. Discuss the relative merits of the two
approaches.



To develop a change-of-base formula for arbitrary positive bases, with neither
base equal to 1, we proceed as above. Let y  logb N, where N and b are posi-
tive and b  1. Then

Write in exponential form.

Take the log of each side to another positive base a, a 1.

logb M p
 p logb M

Solve for y.

Replacing y with logb N from the first step, we obtain the change-of-base formula:

In words, this formula states that the logarithm of a number to a given base is the
logarithm of that number to a new base divided by the logarithm of the old base
to the new base. In practice, we usually choose either e or 10 for the new base
so that a calculator can be used to evaluate the necessary logarithms:

or

We used the first of these options in Example 8.

logb N  
log N

log b
logb N  

ln N

ln b

logb  N   
loga N

loga  b

y  
loga N

loga b

 y loga b

 loga N  loga by

N  by

 logb N  y
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E X P L O R E / D I S C U S S  6

If b is any positive real number different from 1, the change-of-base
formula implies that the function y  logb x is a constant multiple of
the natural logarithmic function; that is, logb x  k ln x for some k.

(A) Graph the functions y  ln x, y  2 ln x, y  0.5 ln x, and 
y   3 ln x.

(B) Write each function of part A in the form y  logb x by finding
the base b to two decimal places.

(C) Is every exponential function y  bx a constant multiple of 
y  ex? Explain.

C A U T I O N

We conclude this section by noting two common errors:

1. logb M logb N logb

cannot be simplified.

2. logb (M  N )  logb M  logb N logb M logb N logb MN;

logb (M N) cannot be simplified.

logb  M

logb  N

M

N
 ;

logb M

logb N
  logb M   logb N



23. log10 0.01 24. log10 100 25. log5

26. log2 27. e 28. e

29. e 30.

In Problems 31–38, evaluate to four decimal places.

31. log 82,734 32. log 843,250

33. log 0.001 439 34. log 0.035 604

35. ln 43.046 36. ln 2,843,100

37. ln 0.081 043 38. ln 0.000 032 4

In Problems 39–46, evaluate x to four significant digits, given:

39. log x  5.3027 40. log x  1.9168

41. log x   3.1773 42. log x   2.0411

43. ln x  3.8655 44. ln x  5.0884

45. ln x   0.3916 46. ln x   4.1083

10 3 log10 uxe2 log

(x 1)elog xelog 8

 3
5Rewrite Problems 1–8 in equivalent exponential form.

1. log3 81  4 2. log5 125  3

3. log10 0.001   3 4. log10 1,000  3

5. log81 3  6. log4 2  

7. log1/2 16   4 8. log1/3 27   3

Rewrite Problems 9–16 in equivalent logarithmic form.

9. 0.0001  10 4 10. 10,000  104

11. 8  43/2 12. 9  272/3

13. 14.

15. 16.

In Problems 17–30, simplify each expression using Theorem 1.

17. log16 1 18. log25 1 19. log0.5 0.5

20. log7 7 21. loge e4 22. log10 105

4   3 647   49

1
8  2 31

2  32 1/5

1
2

1
4
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Find x, y, or b, as indicated in Problems 47–60.

47. log2 x  2 48. log3 x  3

49. log4 16  y 50. log8 64  y

51. logb 16  2 52. logb 10 3
  3

53. logb 1  0 54. logb b  1

55. log4 x  56. log8 x  

57. log1/3 9  y 58.

59. logb 1,000  60. logb 4  
2
3

3
2

log49 (
1
7)  y

1
3

1
2

In Problems 61–68, evaluate to three decimal places.

61. 62.

63. 64.

65. 66.

67. 68. t  
log 200

log 2
t  

ln 150

ln 3

x  
ln 0.1

 0.0025
x  

ln 0.5

 0.21

n  
ln 4

ln 1.2
n  

ln 3

ln 1.15

n  
log 2

log 1.12
n  

log 2

log 1.15

1. (A) 27  33 (B) 6  361/2 (C)

2. (A) log4 64  3 (B) (C) 

3. (A) (B) (C) b  10

4. (A)  5 (B) 2 (C) 0 (D) m  n (E) 4
(F) x4

 1

x  
1
8y  

3
2

log4 ( 1
16)   2log8 2  

1
3

1
9  3 2 5. (A)  1.868 734 (B) 3.356 663 (C) Not possible

6. (A) 14.275 (B) 1.022 (C) 1.022
7. (A) x  0.006 333 (B) x  1.208  1012

8. 4.7486



In Problems 69–76, evaluate x to five significant digits.

69. x  log (5.3147  1012)

70. x  log (2.0991  1017)

71. x  ln (6.7917  10 12)

72. x  ln (4.0304  10 8)

73. log x  32.068 523 74. log x   12.731 64

75. ln x   14.667 13 76. ln x  18.891 143

In Problems 77–80, find f  1. Check by graphing f, f  1, and 

y  x in the same viewing window on a graphing utility.

77. f (x)  2 ln (x  2) 78. f (x)  2 ln x  2

79. f (x)  4 ln x  3 80. f (x)  4 ln (x  3)

4.3 Logarithmic Functions 357

In Problems 81–84, find domain and range, x and y intercepts,

and asymptotes. Round all approximate values to two decimal

places.

81. f (x)   2  ln (1  x2) 82. f (x)  2  ln (1   x )

83. f (x)  1  ln (1  x2) 84. f (x)   1  ln

85. Find the fallacy.

Divide both sides by 27.

Divide both sides by log 

86. Find the fallacy.

Multiply both sides by log 

Multiply both sides by 8.

87. The function f(x)  log x increases extremely slowly as 
x →  , but the composite function g(x)  log (log x)
increases still more slowly.

(A) Illustrate this fact by computing the values of both
functions for several large values of x.

(B) Determine the domain and range of the function g.

(C) Discuss the graphs of both functions.

88. The function f(x)  ln x increases extremely slowly as 
x →  , but the composite function g(x)  ln (ln x)
increases still more slowly.

 1   2

1
8  

1
4

 (1
2)3

  (1
2)2

 log ( 1
2)3

  log (1
2)2

1
2. 3 l og 12   2 log 12

3   2

1
3. 3   2

 3 l og 13   2 log 13

 log ( 1
3)3

  log (1
3)2

 (1
3)3

  (1
3)2

1
27  

1
9

1
27  

3
27

 1   3

( 1  x2 )

(A) Illustrate this fact by computing the values of both
functions for several large values of x.

(B) Determine the domain and range of the function g.

(C) Discuss the graphs of both functions.

In Problems 89–92, use a graphing utility to find the coordi-

nates of all points of intersection to two decimal places.

89. f (x)  ln x, g(x)  0.1x  0.2

90. f (x)  log x, g(x)  4  x2

91. f (x)  ln x, g(x)  x1/3

92. f (x)  3 ln (x  2), g(x)  4e x

The polynomials in Problems 93–96, called Taylor polynomi-

als, can be used to approximate the function g(x)  ln (1  x).

To illustrate this approximation graphically, in each problem,

graph g(x)  ln (1  x) and the indicated polynomial in the

same viewing window,  1  x  3 and  2  y  2.

93.

94.

95.

96.

In Problems 97–100,

(A) Use the graph of y  log2 x (Fig. 1) and graph transforma-

tions to sketch the graph of f.

(B) Find f  1 and use the Draw Inverse routine on a graphing

utility to check the graph in part A.

97. f(x)  log2 (x  2)

98. f(x)  log2 (x  3)

99. f(x)  log2 x  2

100. f(x)  log2 x  3

P4(x)  x  
1
2 x2

 
1
3 x3

 
1
4 x4

 
1
5 x5

P3(x)  x  
1
2 x2

 
1
3 x3

 
1
4 x4

P2(x)  x  
1
2 x2

 
1
3 x3

P1(x)  x  
1
2 x2



103. Explain why the graph of the reflection of the function
y  2|x| in the line y  x is not the graph of a function.

104. Prove that logb (M/N)  logb M  logb N under the
hypotheses of Theorem 1.

105. Prove that logb M p
 p logb M under the hypotheses of

Theorem 1.

101. (A) For , graph f, f  1, and 
y  x on the same coordinate system.

(B) Indicate the domain and range of f and f  1.

(C) What other name can you use for the inverse of f ?

102. Explain why the graph of the reflection of the function 
in the line y  x is not the graph of a function.

f  {(x, y)  y  (1
2)x

 2 x}
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Logarithmic Models

Logarithmic Scales  Rocket Flight  Data Analysis and Regression

In Section 4.4 we study the logarithmic scales that are used to compare intensi-
ties of sounds, magnitudes of earthquakes, and the brightness of stars.  We con-
struct logarithmic models using regression techniques.

Logarithmic Scales

SOUND INTENSITY The human ear is able to hear sound over an incredible range of
intensities. The loudest sound a healthy person can hear without damage to the
eardrum has an intensity 1 trillion (1,000,000,000,000) times that of the softest
sound a person can hear. Working directly with numbers over such a wide range
is very cumbersome. Because the logarithm, with base greater than 1, of a num-
ber increases much more slowly than the number itself, logarithms are often used
to create more convenient compressed scales. The decibel scale for sound inten-
sity is an example of such a scale. The decibel, named after the inventor of the
telephone, Alexander Graham Bell (1847–1922), is defined as follows:

Decibel scale (1)

where D is the decibel level of the sound, I is the intensity of the sound mea-
sured in watts per square meter (W/m2), and I0 is the intensity of the least audi-
ble sound that an average healthy young person can hear. The latter is standardized
to be I0  10 12 watts per square meter. Table 1 lists some typical sound inten-
sities from familiar sources.

D  10 log
I

I0

T A B L E  1 Typical Sound Intensities

Sound Intensity (W/m2) Sound

1.0  10 12 Threshold of hearing

5.2  10 10 Whisper

3.2  10 6 Normal conversation

8.5  10 4 Heavy traffic

3.2  10 3 Jackhammer

1.0  100 Threshold of pain

8.3  102 Jet plane with afterburner

y  3x2



Sound Intensity

Find the number of decibels from a whisper with sound intensity 5.20  10 10

watts per square meter. Compute the answer to two decimal places.

S O L U T I O N

We use the decibel formula (1):

Find the number of decibels from a jackhammer with sound intensity 3.2  10 3

watts per square meter. Compute the answer to two decimal places.

 27.16 decibels

 10 log 520

 10 log 
5.2  10 10

10 12

D  10 log 
I

I0
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E X P L O R E / D I S C U S S  1

Imagine using a large sheet of graph paper, ruled with horizontal and
vertical lines -inch apart, to plot the sound intensities of Table 1 on
the x axis and the corresponding decibel levels on the y axis. Suppose
that each -inch unit on the x axis represents the intensity of the least
audible sound (10 12 W/m2), and each -inch unit on the y axis repre-
sents 1 decibel. If the point corresponding to a jet plane with afterburner
is plotted on the graph paper, how far is it from the x axis? From the y
axis? (Give the first answer in inches and the second in miles!) Discuss.

1
8

1
8

1
8

EARTHQUAKE INTENSITY The energy released by the largest earthquake recorded,
measured in joules, is about 100 billion (100,000,000,000) times the energy
released by a small earthquake that is barely felt. Over the past 150 years several
people from various countries have devised different types of measures of earth-
quake magnitudes so that their severity could be easily compared. In 1935 the
California seismologist Charles Richter devised a logarithmic scale that bears his
name and is still widely used in the United States. The magnitude M on the
Richter scale* is given as follows:

Richter scale (2)M  
2

3
log

E

E0

*Originally, Richter defined the magnitude of an earthquake in terms of logarithms of the maximum seismic wave ampli-

tude, in thousandths of a millimeter, measured on a standard seismograph. Formula (2) gives essentially the same mag-

nitude that Richter obtained for a given earthquake but in terms of logarithms of the energy released by the earthquake.
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T A B L E  2 The Richter Scale

Magnitude on Richter Scale Destructive Power

M  4.5 Small

4.5  M  5.5 Moderate

5.5  M  6.5 Large

6.5  M  7.5 Major

7.5  M Greatest

Earthquake Intensity

The 1906 San Francisco earthquake released approximately 5.96  1016 joules of
energy. What was its magnitude on the Richter scale? Compute the answer to two
decimal places.

S O L U T I O N

We use the magnitude formula (2):

The 1985 earthquake in central Chile released approximately 1.26  1016 joules
of energy. What was its magnitude on the Richter scale? Compute the answer to
two decimal places.

Earthquake Intensity

If the energy release of one earthquake is 1,000 times that of another, how much
larger is the Richter scale reading of the larger than the smaller?

 8.25

 
2

3
 log 

5.96  1016

104.40

M  
2

3
 log 

E

E0

where E is the energy released by the earthquake, measured in joules, and E0 is
the energy released by a very small reference earthquake, which has been stan-
dardized to be

E0  104.40 joules

The destructive power of earthquakes relative to magnitudes on the Richter scale
is indicated in Table 2.



S O L U T I O N

Let

be the Richter equations for the smaller and larger earthquakes, respectively. Sub-
stituting E2  1,000E1 into the second equation, we obtain

log MN log M log N

log 10 x
 x

Distributive property

Thus, an earthquake with 1,000 times the energy of another has a Richter scale
reading of 2 more than the other.

If the energy release of one earthquake is 10,000 times that of another, how much
larger is the Richter scale reading of the larger than the smaller?

ROCKET FLIGHT The theory of rocket flight uses advanced mathematics and physics
to show that the velocity v of a rocket at burnout (depletion of fuel supply) is
given by

Rocket equation (3)

where c is the exhaust velocity of the rocket engine, Wt is the takeoff weight (fuel,
structure, and payload), and Wb is the burnout weight (structure and payload).

Because of the Earth’s atmospheric resistance, a launch vehicle velocity of at
least 9.0 kilometers per second is required to achieve the minimum altitude needed
for a stable orbit. It is clear that to increase velocity v, either the weight ratio
Wt /Wb must be increased or the exhaust velocity c must be increased. The weight
ratio can be increased by the use of solid fuels, and the exhaust velocity can be
increased by improving the fuels, solid or liquid.

Rocket Flight Theory

A typical single-stage, solid-fuel rocket may have a weight ratio Wt /Wb  18.7
and an exhaust velocity c  2.38 kilometers per second. Would this rocket reach
a launch velocity of 9.0 kilometers per second?

v  c ln
Wt

Wb

 2  M1

 
2

3
 (3)  

2

3
 log 

E1

E0

 
2

3  3  log
E1

E0
 

 
2

3  log 103
 log

E1

E0
 

M2  
2

3
 log 

1,000E1

E0

M1  
2

3
 log 

E1

E0

    and    M2  
2

3
 log 

E2

E0
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S O L U T I O N

We use the rocket equation (3):

The velocity of the launch vehicle is far short of the 9.0 kilometers per second
required to achieve orbit. This is why multiple-stage launchers are used—the dead-
weight from a preceding stage can be jettisoned into the ocean when the next
stage takes over.

A launch vehicle using liquid fuel, such as a mixture of liquid hydrogen and liq-
uid oxygen, can produce an exhaust velocity of c  4.7 kilometers per second.
However, the weight ratio Wt /Wb must be low—around 5.5 for some vehicles—
because of the increased structural weight to accommodate the liquid fuel. How
much more or less than the 9.0 kilometers per second required to reach orbit will
be achieved by this vehicle?

Data Analysis and Regression
We use logarithmic regression to fit a function of the form y  a  b ln x to a
set of data points, making use of the techniques introduced earlier for linear, quad-
ratic, exponential, and logistic functions.

Home Ownership Rates 

The U.S. Census Bureau published the data in Table 3 on home ownership rates.

 6.97 kilometers per second

 2.38 ln 18.7

v  c ln 
Wt

Wb
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T A B L E  3 Home Ownership Rates

Year Home Ownership Rate (%)

1940 43.6

1950 55.0

1960 61.9

1970 62.9

1980 64.4

1990 64.2

2000 67.4
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(A) Let x represent time in years with x  0 representing 1900, and let y rep-
resent the corresponding home ownership rate. Use regression analysis on a
graphing utility to find a logarithmic function of the form y  a  b ln x

that models the data. (Round the constants a and b to three significant
digits.)

(B) Use the logarithmic regression function to predict the home ownership rate
in 2010.

S O L U T I O N

(A) Figure 1 shows the details of constructing the model on a graphing
utility.

4.4 Logarithmic Models

0

0

100

120

(B) Evaluating y1   36.7  23.0 ln x at x  110 predicts a home
ownership rate of 71.4% in 2010.

Refer to Example 5. The home ownership rate in 1995 was 64.7%.

(A) Find a logarithmic regression equation for the expanded data set.

(B) Predict the home ownership rate in 2010.

(a) Data (b) Regression equation (c) Regression equation

entered in equation

editor

(d) Graph of data and 

regression equation

FIGURE 1

1. 95.05 decibels
2. 7.80

5. (A)  31.5  21.7 ln x
(B) 70.5%

3. 2.67
4. 1 kilometer per second less

2. Sound. What is the decibel level of

(A) A normal conversation, 3.2  10 6 watts per square
meter?

(B) A jet plane with an afterburner, 8.3  102 watts per
square meter?

Compute answers to two significant digits.

1. Sound. What is the decibel level of

(A) The threshold of hearing, 1.0  10 12 watts per
square meter?

(B) The threshold of pain, 1.0 watt per square meter?

Compute answers to two significant digits.
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3. Sound. If the intensity of a sound from one source is
1,000 times that of another, how much more is the decibel
level of the louder sound than the quieter one?

4. Sound. If the intensity of a sound from one source is
10,000 times that of another, how much more is the deci-
bel level of the louder sound than the quieter one?

5. Earthquakes. The strongest recorded earthquake to date
was in Colombia in 1906, with an energy release of 
1.99  1017 joules. What was its magnitude on the Richter
scale? Compute the answer to one decimal place.

6. Earthquakes. Anchorage, Alaska, had a major earthquake
in 1964 that released 7.08  1016 joules of energy. What
was its magnitude on the Richter scale? Compute the an-
swer to one decimal place.

7. Earthquakes. The 1933 Long Beach, California, earth-
quake had a Richter scale reading of 6.3, and the 1964 An-
chorage, Alaska, earthquake had a Richter scale reading of
8.3. How many times more powerful was the Anchorage
earthquake than the Long Beach earthquake?

8. Earthquakes. Generally, an earthquake requires a magni-
tude of over 5.6 on the Richter scale to inflict serious dam-
age. How many times more powerful than this was the
great 1906 Colombia earthquake, which registered a mag-
nitude of 8.6 on the Richter scale?

9. Space Vehicles. A new solid-fuel rocket has a weight ratio
Wt/Wb  19.8 and an exhaust velocity c  2.57 kilometers
per second. What is its velocity at burnout? Compute the
answer to two decimal places.

10. Space Vehicles. A liquid-fuel rocket has a weight ratio
Wt/Wb  6.2 and an exhaust velocity c  5.2 kilometers
per second. What is its velocity at burnout? Compute the
answer to two decimal places.

11. Chemistry. The hydrogen ion concentration of a sub-
stance is related to its acidity and basicity. Because hydro-
gen ion concentrations vary over a very wide range,
logarithms are used to create a compressed pH scale,
which is defined as follows:

pH   log [H ]

where [H ] is the hydrogen ion concentration, in moles
per liter. Pure water has a pH of 7, which means it is neu-
tral. Substances with a pH less than 7 are acidic, and those
with a pH greater than 7 are basic. Compute the pH of
each substance listed, given the indicated hydrogen ion
concentration.

(A) Seawater, 4.63  10 9

(B) Vinegar, 9.32  10 4

Also, indicate whether each substance is acidic or basic.
Compute answers to one decimal place.

12. Chemistry. Refer to Problem 11. Compute the pH of each
substance below, given the indicated hydrogen ion concen-
tration. Also, indicate whether it is acidic or basic. Com-
pute answers to one decimal place.

(A) Milk, 2.83  10 7

(B) Garden mulch, 3.78  10 6

13. Ecology. Refer to Problem 11. Many lakes in Canada and
the United States will no longer sustain some forms of
wildlife because of the increase in acidity of the water
from acid rain and snow caused by sulfur dioxide emis-
sions from industry. If the pH of a sample of rainwater is
5.2, what is its hydrogen ion concentration in moles per
liter? Compute the answer to two significant digits.

14. Ecology. Refer to Problem 11. If normal rainwater has a
pH of 5.7, what is its hydrogen ion concentration in moles
per liter? Compute the answer to two significant digits.

15. Astronomy. The brightness of stars is expressed in terms of
magnitudes on a numerical scale that increases as the bright-
ness decreases. The magnitude m is given by the formula

where L is the light flux of the star and L0 is the light flux
of the dimmest stars visible to the naked eye.

(A) What is the magnitude of the dimmest stars visible to
the naked eye?

(B) How many times brighter is a star of magnitude 1 than
a star of magnitude 6?

16. Astronomy. An optical instrument is required to observe
stars beyond the sixth magnitude, the limit of ordinary vi-
sion. However, even optical instruments have their limita-
tions. The limiting magnitude L of any optical telescope
with lens diameter D, in inches, is given by

L  8.8  5.1 log D

(A) Find the limiting magnitude for a homemade 6-inch
reflecting telescope.

(B) Find the diameter of a lens that would have a limiting
magnitude of 20.6.

Compute answers to three significant digits.

m  6  2.5 log 
L

L0
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Exponential and Logarithmic Equations

Exponential Equations  Logarithmic Equations

Equations involving exponential and logarithmic functions, such as

23x 2
 5 and log (x  3)  log x  1

are called exponential and logarithmic equations, respectively. Logarithmic
properties play a central role in their solution. Of course, a graphing utility can
be used to find approximate solutions for many exponential and logarithmic equa-
tions. However, there are situations in which the algebraic solution is necessary.
In Section 4.5, we emphasize algebraic solutions and use a graphing utility as a
check, when appropriate.

Exponential Equations
The following examples illustrate the use of logarithmic properties in solving
exponential equations.

Solving an Exponential Equation

Solve 23x 2
 5 for x to four decimal places.

T A B L E  4 United States Corn Production

Yield Total Production
Year x (Bushels per Acre) (Million Bushels)

1950 50 37.6 2,782

1960 60 55.6 3,479

1970 70 81.4 4,802

1980 80 97.7 6,867

1990 90 115.6 7,802

Source: U.S. Department of Agriculture.

17. Agriculture. Table 4 shows the yield (bushels per acre)
and the total production (millions of bushels) for corn in
the United States for selected years since 1950. Let x rep-
resent years since 1900.

(A) Find a logarithmic regression model ( y  a  b ln x)
for the yield. Estimate (to one decimal place) the yield
in 1996 and in 2010.

(B) The actual yield in 1996 was 127.1 bushels per acre.
How does this compare with the estimated yield in
part A? What effect will this additional 1996 informa-
tion have on the estimate for 2010? Explain.

18. Agriculture. Refer to Table 4.

(A) Find a logarithmic regression model ( y  a  b ln x)
for the total production. Estimate (to the nearest mil-
lion) the production in 1996 and in 2010.

(B) The actual production in 1996 was 7,949 million
bushels. How does this compare with the estimated
production in part A? What effect will this 1996 pro-
duction information have on the estimate for 2010?
Explain.
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Algebraic Solution

How can we get x out of the exponent? Use logs!

Take the common or natural log of

both sides.

Use logb Np
 p logb N to get 3x 2

out of the exponent position.

To four decimal places. 1.4406

Remember :
log 5

log 2
   log 5   log 2.x  

1

3  2  
log 5

log 2 
3x  2  

log 5

log 2

(3x  2) log 2  log 5

log 23x 2
 log 5

23x 2
 5

Graphical Solution

Graph y1  23x 2 and y2  5 and use the
intersect command (Fig. 1).

0

 2

8

4

FIGURE 1 y1  23x 2, y2  5.

Solve 351 2x
 7 for x to four decimal places.

Compound Interest

A certain amount of money P (principal) is invested at an annual rate r com-
pounded annually. The amount of money A in the account after t years, assuming
no withdrawals, is given by

m 1 for annual compounding.

How many years to the nearest year will it take the money to double if it is
invested at 6% compounded annually?

A  P 1  
r

m 
n

 P(1  r)n

S O L U T I O N

S O L U T I O N

Algebraic Solution

To find the doubling time, we replace A in A  P(1.06)n with 2P

and solve for n.

Divide both sides by P.

Take the common or natural log of both sides.

Note how log properties are used to get n out of

the exponent position.

To the nearest year. 12 years

n  
log 2

log 1.06

 n log 1.06

 log 2  log 1.06n

 2  1.06n

 2P  P(1.06)n

Graphical Solution

Graph y1  1.06x and y2  2 and use the
intersect command (Fig. 2).

0

0

4

20

FIGURE 2 y1  1.06x, y2  2.
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Repeat Example 2, changing the interest rate to 9% compounded annually.

Atmospheric Pressure

The atmospheric pressure P, in pounds per square inch, at x miles above sea level
is given approximately by

P  14.7e 0.21x

At what height will the atmospheric pressure be half the sea-level pressure? Com-
pute the answer to two significant digits.

Algebraic Solution

Sea-level pressure is the pressure at x 0. Thus,

P  14.7e0
 14.7

One-half of sea-level pressure is 14.7/2  7.35. Now our prob-
lem is to find x so that P 7.35; that is, we solve 
7.35  14.7e 0.21x for x:

Divide both sides by 14.7 to simplify.

Because the base is e, take the natural log of 

both sides.

In ea
 a

To two significant digits. 3.3 miles

x  
ln 0.5

 0.21

  0.21x

 ln 0.5  ln e 0.21x

 0.5  e 0.21x

 7.35  14.7e 0.21x

S O L U T I O N

Graphical Solution
Graph y1  14.7e 0.21x and y2  7.35 and use
the intersect command (Fig. 3).

0

0

20

5

FIGURE 3 y1 14.7e 0.21x, y2 7.35.

Using the formula in Example 3, find the altitude in miles so that the atmospheric
pressure will be one-eighth that at sea level. Compute the answer to two signifi-
cant digits.

The graph of

(1)

is a curve called a catenary (Fig. 4). A uniform cable suspended between two
fixed points is a physical example of such a curve.

y   
e
x

   e
 x

2
x

y

5 5

5

10

y  
ex

   e x

2

FIGURE 4 Catenary.
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Algebraic Solution

Multiply both sides by e x.

This is a quadratic in e x.

Let u  ex, then

Replace u with e x and solve for x.

logb b x
 x.

Note that the algebraic method produces exact solutions, an im-
portant consideration in certain calculus applications (see Prob-
lems 51–54 of Exercise 4.5).

  1.5668, 1.5668

x  ln
5   21

2

ln ex
 ln

5   21

2

ex
 

5   21

2

 
5   21

2

u  
5   25  4(1)(1)

2

u2
 5u  1  0

e2x
 5ex

 1  0

5ex
 e2x

 1

5  ex
 e x

2.5  
ex

 e x

2

y  
ex

 e x

2

Graphical Solution

Graph and y2  2.5
and use the intersect command (Fig. 5).

y1   (ex
 e x)/2

0

 5

5

5

FIGURE 5 .y1  
ex

 e x

2
, y2  2.5

Therefore x  1.5668 is the positive solu-
tion.  The negative solution can be found
similarly using the intersect command. Al-
ternatively, simply observe that the function 

is an even function (that is, f (x)  f ( x)),
so the graph of f is symmetrical with re-
spect to the y axis (see Section 1.4). Be-
cause (1.5668, 2.5) is a point on the graph
of f, so is ( 1.5668, 2.5), and thus 
x   1.5668 is the negative solution.

f (x)  
ex

 e x

2

S O L U T I O N

Given y  (ex
  e x)/2, find x for y  1.5. Compute the answer to three deci-

mal places.

E X P L O R E / D I S C U S S  1

Let y  e2x
 3e

x
 e x

(A) Try to find x when y  7 using the method of Example 4. Explain
the difficulty that arises.

(B) Use a graphing utility to find x when y  7.

Solving an Exponential Equation

Given equation (1), find x for y  2.5. Compute the answer to four decimal places.

Take the natural log of both sides

(both values on the right are positive).
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Algebraic Solution

First use properties of logarithms to express the left side as a
single logarithm, then convert to exponential form and solve
for x.

Combine left side using   

log M log  N log MN.

Change to equivalent 

exponential form.

Write in ax2
 bx c 0 

form and solve.

C H E C K

x   5: log ( 5  3)  log ( 5) is not defined
because the domain of the log function is (0,  ).

x  2: log (2  3)  log 2  log 5  log 2
 log (5  2)  log 10 1

Thus, the only solution to the original equation is x  2. Re-
member, answers should be checked in the original equation 
to see whether any should be discarded.

⁄

x   5, 2

 (x  5)(x  2)  0

x2
 3x  10  0

x(x  3)  101

log [x(x  3)]  1

log (x  3)  log x  1

S O L U T I O N

Graphical Solution

Graph y1  log (x  3)  log x and y2  1
and use the intersect command. Figure 6
shows that x  2 is a solution, and also
shows that y1 (the left side of the original
equation) is not defined at x   5, the
extraneous solution produced by the alge-
braic method.

FIGURE 6 y1  log (x  3)  log x,
y2  1.

Solve log (x  15)  2  log x, and check.

Solving a Logarithmic Equation

Solve (ln x)2
 ln x2.

Logarithmic Equations
We now illustrate the solution of several types of logarithmic equations.

Solving a Logarithmic Equation

Solve log (x  3)  log x  1, and check.
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Algebraic Solution

There are no logarithmic properties for simplifying (ln x)2. How-
ever, we can simplify ln x2, obtaining an equation involving ln x
and (ln x)2.

(ln x)2
 ln x2

 2 ln x This is a quadratic equation in ln x.

Move all nonzero terms to the left and factor.

(ln x)2
 2 ln x  0

(ln x)(ln x  2)  0

ln x  0 or ln x  2  0

x  e0 ln x  2

 1 x  e2

Checking that both x  1 and x  e2 are solutions to the original
equation is left to you.

Graphical Solution

Graph y1  (ln x)2 and y2  ln x2

and use the intersect command to
obtain the solutions x  1 and 
x  7.3890561 (Fig. 7). The second
solution is not exact; it is an approx-
imation to e2.

 4

0

6

10

FIGURE 7

Solve log x2
 (log x)2.

C A U T I O N

Note that

(logb x)2
 logb x2 (logb x)2

 (logb x)(logb x)

logb x2
 2 logb x

Earthquake Intensity

Recall from Section 4.4 that the magnitude of an earthquake on the Richter scale
is given by

Solve for E in terms of the other symbols.

S O L U T I O N

Multiply both sides by .

Change to exponential form.

E  E0103M/2

E

E0

 103M/2

3
2 log 

E

E0

 
3M

2

M  
2

3
 log 

E

E0

M  
2

3
 log 

E

E0

S O L U T I O N



Solve Problems 1–12 algebraically and check graphically.

Round answers to three significant digits.

1. 10 x
 0.0347 2. 10x

 14.3 3. 103x 1
 92

4. 105x 2
 348 5. ex

 3.65 6. e x
 0.0142

7. e2x 1
 405 8. e3x 5

 23.8 9. 5x
 18

10. 3x
 4 11. 2 x

 0.238 12. 3 x
 0.074

Solve Problems 13–18 exactly.

13. log 5  log x  2 14. log x  log 8  1

15. log x  log (x  3)  1

16. log (x  9)  log 100x  3

17. log (x  1)  log (x  1)  1

18. log (2x  1)  1  log (x  2)
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Solve the rocket equation from Section 4.4 for Wb in terms of the other symbols:

v  c ln 
Wt

Wb

1. x  0.2263
2. More than double in 9 years, but

not quite double in 8 years

3. 9.9 miles
4. x  1.195
5. x  20

6. x  1,100
7. Wb  Wte

 v/c

Solve Problems 19–26 algebraically and check graphically.

Round answers to three significant digits.

19. 2  1.05x 20. 3  1.06x

21. e 1.4x
 13 22. e0.32x

 632

23. 123  500e 0.12x 24. 438  200e0.25x

25. 26.

Solve Problems 27–38 exactly.

27. log x  log 5  log 2  log (x  3)

28. log (6x  5)  log 3  log 2  log x

29. ln x  ln (2x  1)  ln (x  2)

30. ln (x  1)  ln (3x  1)  ln x

31. log (2x  1)  1  log (x  1)

32. 1  log (x  2)  log (3x  1)

e x2

 125e x2

 0.23

33. (ln x)3
 ln x4 34. (log x)3

 log x4

35. ln (ln x)  1 36. log (log x)  1

37. xlog x
 100x 38. 3log x

 3x

In Problems 39–40,

(A) Explain the difficulty in solving the equation exactly.

(B) Determine the number of solutions by graphing the func-

tions on each side of the equation.

39. ex/2
 5 ln x 40. ln (ln x)  ln x  2

In Problems 41–42,

(A) Explain the difficulty in solving the equation exactly.

(B) Use a graphing utility to find all solutions to three decimal

places.

41. 3x
 2  7   x  e x 42. ex/4

 5 log x  4 ln x
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Solve Problems 43–50 for the indicated variable in terms of the

remaining symbols. Use the natural log for solving exponential

equations.

43. A  Pert for r (finance)

44.

45.

46.

47.

48. L  8.8  5.1 log D for D (astronomy)

49.

50.

The following combinations of exponential functions define

four of six hyperbolic functions, an important class of func-

tions in calculus and higher mathematics. Solve Problems

51–54 for x in terms of y. The results are used to define inverse

hyperbolic functions, another important class of functions in

calculus and higher mathematics.

S  R
(1  i)n

 1

i
 for n (annuity)

I  
E

R
 (1  e Rt/L) for t (circuitry)

M  6  2.5 log 
I

I0

 for I (astronomy)

t  
 1

k
 (ln A  ln A0) for A (decay)

D  10 log 
I

I0

 for I (sound)

A  P 1  
r

n 
nt

 for t (finance)

51. 52.

53. 54.

In Problems 55–66, use a graphing utility to approximate to

two decimal places any solutions of the equation in the interval

0  x  1. None of these equations can be solved exactly us-

ing any step-by-step algebraic process.

55. 2 x
 2x  0 56. 3 x

 3x  0

57. x3x
 1  0 58. x2x

 1  0

59. e x
 x  0 60. xe2x

 1  0

61. xex
 2  0 62. e x

 2x  0

63. ln x  2x  0 64. ln x  x2
 0

65. ln x  ex
 0 66. ln x  x  0

y  
e x

 e x

e x
 e x

y  
e x

 e x

e x
 e x

y  
e x

 e x

2
y  

e x
 e x

2

Solve Problems 67–78 algebraically or graphically, whichever

seems more appropriate.

67. Compound Interest. How many years, to the nearest year,
will it take a sum of money to double if it is invested at
15% compounded annually?

68. Compound Interest. How many years, to the nearest year,
will it take money to quadruple if it is invested at 20%
compounded annually?

69. Compound Interest. At what annual rate compounded
continuously will $1,000 have to be invested to amount to
$2,500 in 10 years? Compute the answer to three signifi-
cant digits.

70. Compound Interest. How many years will it take $5,000
to amount to $8,000 if it is invested at an annual rate of
9% compounded continuously? Compute the answer to
three significant digits.

71. World Population. A mathematical model for world pop-
ulation growth over short periods is given by

P  P0ert

where P is the population after t years, P0 is the population
at t  0, and the population is assumed to grow continu-
ously at the annual rate r. How many years, to the nearest
year, will it take the world population to double if it grows
continuously at an annual rate of 2%?

72. World Population. Refer to Problem 71. Starting with a
world population of 4 billion people and assuming that the
population grows continuously at an annual rate of 2%,
how many years, to the nearest year, will it be before there
is only 1 square yard of land per person? Earth contains
approximately 1.7  1014 square yards of land.

 



Chapter 4 Review 373

73. Archaeology—Carbon-14 Dating. As long as a plant or
animal is alive, carbon-14 is maintained in a constant
amount in its tissues. Once dead, however, the plant or ani-
mal ceases taking in carbon, and carbon-14 diminishes by
radioactive decay according to the equation

A  A0e 0.000124t

where A is the amount after t years and A0 is the amount
when t  0. Estimate the age of a skull uncovered in an ar-
chaeological site if 10% of the original amount of carbon-
14 is still present. Compute the answer to three significant
digits.

74. Archaeology—Carbon-14 Dating. Refer to Problem 73.
What is the half-life of carbon-14? That is, how long will
it take for half of a sample of carbon-14 to decay? Com-
pute the answer to three significant digits.

75. Photography. An electronic flash unit for a camera is ac-
tivated when a capacitor is discharged through a filament
of wire. After the flash is triggered and the capacitor is dis-
charged, the circuit (see the figure) is connected and the
battery pack generates a current to recharge the capacitor.
The time it takes for the capacitor to recharge is called the
recycle time. For a particular flash unit using a 12-volt bat-
tery pack, the charge q, in coulombs, on the capacitor t
seconds after recharging has started is given by

q  0.0009(1  e 0.2t)

How many seconds will it take the capacitor to reach a
charge of 0.0007 coulomb? Compute the answer to three
significant digits.

I

R

V

C

S

76. Advertising. A company is trying to expose as many peo-
ple as possible to a new product through television adver-
tising in a large metropolitan area with 2 million possible
viewers. A model for the number of people N, in millions,
who are aware of the product after t days of advertising
was found to be

N  2(1  e 0.037t)

How many days, to the nearest day, will the advertising
campaign have to last so that 80% of the possible viewers
will be aware of the product?

77. Newton’s Law of Cooling. This law states that the rate at
which an object cools is proportional to the difference in
temperature between the object and its surrounding medium.
The temperature T of the object t hours later is given by

T  Tm  (T0  Tm)e kt

where Tm is the temperature of the surrounding medium and
T0 is the temperature of the object at t  0. Suppose a bottle
of wine at a room temperature of 72 F is placed in a refrig-
erator at 40 F to cool before a dinner party. After an hour
the temperature of the wine is found to be 61.5 F. Find the
constant k, to two decimal places, and the time, to one deci-
mal place, it will take the wine to cool from 72 to 50 F.

78. Marine Biology. Marine life is dependent upon the micro-
scopic plant life that exists in the photic zone, a zone that
goes to a depth where about 1% of the surface light still
remains. Light intensity is reduced according to the expo-
nential function

I  I0e kd

where I is the intensity d feet below the surface and I0 is
the intensity at the surface. The constant k is called the co-

efficient of extinction. At Crystal Lake in Wisconsin it was
found that half the surface light remained at a depth of
14.3 feet. Find k, and find the depth of the photic zone.
Compute answers to three significant digits.

 

  

 

 

 

 

4.1 Exponential Functions
The equation f(x)  bx, b  0, b  1, defines an exponential
function with base b. The domain of f is (  ,  ) and the range
is (0,  ). The graph of f is a continuous curve that has no sharp
corners; passes through (0, 1); lies above the x axis, which is a

horizontal asymptote; increases as x increases if b  1; de-
creases as x increases if b  1; and intersects any horizontal line
at most once. The function f is one-to-one and has an inverse.
We have the following exponential function properties:
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1. axay
 ax y (ax) y

 axy (ab)x
 axbx

2. a x
 a y if and only if x  y.

3. For x  0, a x
 b x if and only if a  b.

As x approaches  , the expression [1  (1/x)]x approaches the
irrational number e  2.718 281 828 459. The function f (x)  ex

is called the exponential function with base e. The growth of
money in an account paying compound interest is described by
A  P(1  r/m)n, where P is the principal, r is the annual rate,
m is the number of compounding periods in 1 year, and A is the
amount in the account after n compounding periods.

If the account pays continuous compound interest, the
amount A in the account after t years is given by A  Pert.

4.2 Exponential Models
Exponential functions are used to model various types of
growth:

1. Population growth can be modeled by using the dou-
bling time growth model P  P02t/d, where P is popula-
tion at time t, P0 is the population at time t  0, and d is
the doubling time—the time it takes for the population
to double. Another model of population growth, y  cekt,
where c and k are positive constants, uses the exponential
function with base e.

2. Radioactive decay can be modeled by using the half-life
decay model A  A0( )t/h

 A02 t/h, where A is the
amount at time t, A0 is the amount at time t  0, and h
is the half-life—the time it takes for half the material to
decay. Another model of radioactive decay, y  ce kt,
where c and k are positive constants, uses the exponential
function with base e.

3. Limited growth—the growth of a company or profi-
ciency at learning a skill, for example—can often be
modeled by the equation y  c(1  e kt), where c and k

are positive constants.
4. Logistic growth—the spread of an epidemic or sales of a

new product, for example—can often be modeled by the
equation where c, k, and M are posi-
tive constants.

4.3 Logarithmic Functions
The logarithmic function with base b is defined to be the in-
verse of the exponential function with base b and is denoted by
y  logb x. Thus, y  logb x if and only if x  b y, b  0, b 1.

y  M (1  ce kt )

1
2

 ab 
x

 
a x

b x
    

a x

a y
 a x y

The domain of a logarithmic function is (0,  ) and the range is
(  ,  ). The graph of a logarithmic function is a continuous
curve that always passes through the point (1, 0) and has the y
axis as a vertical asymptote. We have the following properties
of logarithmic functions:

1. logb 1  0
2. logb b  1
3. logb bx

 x

4. blog
b

x = x, x  0
5. logb MN  logb M  logb N

6. logb   logb M  logb N

7. logb Mp
  p logb M

8. logb M  logb N if and only if M  N

Logarithms to the base 10 are called common logarithms and
are denoted by log x. Logarithms to the base e are called natu-
ral logarithms and are denoted by ln x. Thus, log x  y is equiv-
alent to x  10 y, and ln x  y is equivalent to x  e y.

The change-of-base formula, logb N  (loga N)/(loga b), re-
lates logarithms to two different bases and can be used, along with
a calculator, to evaluate logarithms to bases other than e or 10.

4.4 Logarithmic Models
The following applications involve logarithmic functions:

1. The decibel is defined by D  10 log (I/I0), where D is
the decibel level of the sound, I is the intensity of the
sound, and I0  10 12 watts per square meter is a stan-
dardized sound level.

2. The magnitude M of an earthquake on the Richter scale
is given by M  log (E/E0), where E is the energy
released by the earthquake and E0  104.40 joules is a
standardized energy level.

3. The velocity v of a rocket at burnout is given by the rocket
equation v  c ln (Wt /Wb), where c is the exhaust velocity,
Wt is the takeoff weight, and Wb is the burnout weight.

Logarithmic regression is used to fit a function of the form
y  a  b ln x to a set of data points.

4.5 Exponential and
Logarithmic Equations

Various techniques for solving exponential equations,
such as 23x 2

 5, and logarithmic equations, such as 
log (x  3)  log x  1, are illustrated by examples.

2
3

M

N



In Problems 6 and 7, simplify.

6. 7.

Solve Problems 8–10 for x exactly. Do not use a calculator or

table.

8. log2 x  3 9. logx 25  2 10. log3 27  x

Solve Problems 11–14 for x to three significant digits.

11. 10x
 17.5 12. ex

 143,000

13. ln x   0.015 73 14. log x  2.013

Evaluate Problems 15–18 to four significant digits using a 

calculator.

15. ln  16. log ( e)

17.  
ln 2 18.

e 
 e  

2

 ex

e x 
x7x 2

72 x
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Work through all the problems in this chapter review and check answers in the back of the book. An-

swers to all review problems are there, and following each answer is a number in italics indicating

the section in which that type of problem is discussed. Where weaknesses show up, review appropri-

ate sections in the text.

Solve Problems 19–29 for x exactly. Do not use a calculator or

table.

19. ln (2x  1)  ln (x  3)

20. log (x2
 3)  2 log (x  1)

21. ex
2
 3

 e2x 22. 4x 1
 21 x

23. 2x2e x
 18e x 24. log1/4 16  x

25. logx 9   2 26. log16 x  
3
2

27. logx e5
 5 28.

29. ln x  0

Solve Problems 30–39 for x to three significant digits.

30. x  2(101.32) 31. x  log5 23

32. ln x   3.218 33. x  log (2.156  10 7)

34. 35. 25  5(2x)x  
ln 4

ln 2.31

10log10 x
 33

1. Match each equation with the graph of f, g, m, or n in the
figure.
(A) y  log2 x (B) y  0.5x

(C) y  log0.5 x (D) y  2x

2. Write in logarithmic form using base 10: m  10n.

3. Write in logarithmic form using base e: x  e y.

Write Problems 4 and 5 in exponential form.

4. log x  y 5. ln y  x

 3

 4.5

3

4.5

f g

m

n
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In Problems 48–51, find domain and range, intercepts, and as-

ymptotes. Round all approximate values to two decimal places.

48. y  2x 1 49. f(t)  10e 0.08t

50. y  ln (x  1) 51.

52. If the graph of y  ex is reflected in the line y  x, the
graph of the function y  ln x is obtained. Discuss the
functions that are obtained by reflecting the graph of 
y  ex in the x axis and the y axis.

53. (A) Explain why the equation e x/3
 4 ln (x  1) has

exactly one solution.
(B) Find the solution of the equation to three decimal

places.

54. Approximate all real zeros of f(x)  4  x2
 ln x to

three decimal places.

55. Find the coordinates of the points of intersection of 
f(x)  10x 3 and g(x)  8 log x to three decimal places.

N  
100

1  3e t

36. 4,000  2,500(e0.12x) 37. 0.01  e 0.05x

38. 52x 3
 7.08 39.

Solve Problems 40–45 for x exactly. Do not use a calculator or

table.

40. log 3x2
 log 9x  2

41. log x  log 3  log 4  log (x  4)

42. ln (x  3)  ln x  2 ln 2

43. ln (2x  1)  ln (x  1)  ln x

44. (log x)3
 log x9 45. ln (log x)  1

In Problems 46 and 47, simplify.

46. (ex
 1)(e x

 1)  ex(e x
 1)

47. (ex
 e x)(ex

 e x)  (ex
 e x)2

e x
 e x

2
 1

Solve Problems 56–59 for the indicated variable in terms of the

remaining symbols.

56.

57.

58. x   
1

k
 ln 

I

I0

 for I (X-ray intensity)

y  
1

 2 
e x2/2 for x (probability)

D  10 log 
I

I0

 for I (sound intensity)

Solve these application problems algebraically or graphically,

whichever seems more appropriate.

64. Population Growth. Many countries have a population
growth rate of 3% (or more) per year. At this rate, how
many years will it take a population to double? Use the

annual compounding growth model P  P0(1  r)t.
Compute the answer to three significant digits.

65. Population Growth. Repeat Problem 64 using the con-
tinuous compounding growth model P  P0ert.

59.

60. Write ln y   5t  ln c in an exponential form free of log-
arithms; then solve for y in terms of the remaining symbols.

61. For f  {(x, y)  y  log2 x}, graph f and f  1 on the same
coordinate system. What are the domains and ranges for f
and f  1?

62. Explain why 1 cannot be used as a logarithmic base.

63. Prove that logb (M/N)  logb M  logb N.

r  P
i

1  (1  i) n
 for n (finance)



66. Carbon 14-Dating. How many years will it take for
carbon-14 to diminish to 1% of the original amount 
after the death of a plant or animal? Use the formula 
A  A0e 0.000124t. Compute the answer to three significant
digits.

67. Medicine. One leukemic cell injected into a healthy
mouse will divide into two cells in about day. At the end
of the day these two cells will divide into four. This dou-
bling continues until 1 billion cells are formed; then the
animal dies with leukemic cells in every part of the body.
(A) Write an equation that will give the number N of

leukemic cells at the end of t days.
(B) When, to the nearest day, will the mouse die?

68. Money Growth. Assume $1 had been invested at an an-
nual rate of 3% compounded continuously at the birth of
Christ. What would be the value of the account in the
year 2000? Compute the answer to two significant digits.

69. Present Value. Solving A  Pert for P, we obtain 
P  Ae rt, which is the present value of the amount A
due in t years if money is invested at a rate r compounded
continuously.
(A) Graph P  1,000(e 0.08t), 0  t  30.
(B) What does it appear that P tends to as t tends to

infinity? [Conclusion: The longer the time until the
amount A is due, the smaller its present value, as we
would expect.]

70. Earthquakes. The 1971 San Fernando, California, earth-
quake released 1.99  1014 joules of energy. Compute 
its magnitude on the Richter scale using the formula 
M  log (E/E0), where E0  104.40 joules. Compute the
answer to one decimal place.

2
3

1
2

71. Earthquakes. Refer to Problem 70. If the 1906 San
Francisco earthquake had a magnitude of 8.3 on the
Richter scale, how much energy was released? Compute
the answer to three significant digits.

72. Sound. If the intensity of a sound from one source is
100,000 times that of another, how much more is the
decibel level of the louder sound than the softer one? 
Use the formula D  10 log (I/I0).

73. Marine Biology. The intensity of light entering water is
reduced according to the exponential function

I  I0e kd

where I is the intensity d feet below the surface, I0 is the
intensity at the surface, and k is the coefficient of extinc-
tion. Measurements in the Sargasso Sea in the West
Indies have indicated that half the surface light reaches a
depth of 73.6 feet. Find k, and find the depth at which 1%
of the surface light remains. Compute answers to three
significant digits.

74. Wildlife Management. A lake formed by a newly con-
structed dam is stocked with 1,000 fish. Their population
is expected to increase according to the logistic curve

where N is the number of fish, in thousands, expected 
after t years. The lake will be open to fishing when the
number of fish reaches 20,000. How many years, to the
nearest year, will this take?

N  
30

1  29e 1.35 t
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75. Medicare. The annual expenditures for Medicare (in bil-
lions of dollars) by the U.S. government for selected years
since 1980 are shown in Table 1 (Bureau of the Census).
Let x represent years since 1980.
(A) Find an exponential regression model of the form 

y  abx for these data. Estimate (to the nearest
billion) the total expenditures in 1996 and in 2010.

(B) When (to the nearest year) will the total expenditures
reach $500 billion?

T A B L E  1 Medicare Expenditures

Year Billion $

1980 37

1985 72

1990 111

1995 181

Source: U.S. Bureau of the Census.



(A) Find a logarithmic regression model of the form 
y  a  b ln x for these data. Estimate (to the nearest 
million) the total consumption in 1996 and in 2010.

(B) The actual consumption in 1996 was 1,583 million
bushels. How does this compare with the estimated
consumption in part A? What effect will this addi-
tional 1996 information have on the estimate for
2010? Explain.

76. Agriculture. The total U.S. corn consumption (in mil-
lions of bushels) is shown in Table 2 for selected years
since 1975. Let x represent years since 1900.
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T A B L E  2 Corn Consumption

Total Consumption
Year x (Million Bushels)

1975 75 522

1980 80 659

1985 85 1,152

1990 90 1,373

1995 95 1,690

Source: U.S. Department of Agriculture.



Comparing Regression Models

We have used polynomial, exponential, and logarithmic regression models to fit
curves to data sets. And there are other equations that can be used for curve fit-
ting (the TI-83 graphing calculator has 12 different equations on its STAT-CALC
menu). How can we determine which equation provides the best fit for a given
set of data? There are two principal ways to select models. The first is to use infor-
mation about the type of data to help make a choice. For example, we expect the
weight of a fish to be related to the cube of its length. And we expect most pop-
ulations to grow exponentially, at least over the short term. The second method
for choosing among equations involves developing a measure of how closely an
equation fits a given data set. This is best introduced through an example. Con-
sider the data set in Figure 1, where L1 represents the x coordinates and L2 rep-
resents the y coordinates. The graph of this data set is shown in Figure 2. Suppose
we arbitrarily choose the equation y1  0.6x  1 to model these data (Fig. 3).

To measure how well the graph of y1 fits these data, we examine the differ-
ence between the y coordinates in the data set and the corresponding y coordi-
nates on the graph of y1 (L3 in Figs. 4 and 5). Each of these differences is called
a residual. The most commonly accepted measure of the fit provided by a given
model is the sum of the squares of the residuals (SSR). Computing this quan-
tity is a simple matter on a graphing utility (Fig. 6).

(A) Find the linear regression model for the data in Figure 1, compute the SSR
for this equation, and compare it with the one we computed for y1.

379

FIGURE 1

FIGURE 4 FIGURE 5 Here is L2 and n is L3. FIGURE 6 Two ways to calculate SSR.

FIGURE 2 FIGURE 3 y1 0.6x  1.

0

0

10

10

0

0

10

10

0

0

10

10
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It turns out that among all possible linear polynomials, the linear regression model
minimizes the sum of the squares of the residuals. For this reason, the linear
regression model is often called the least-squares line. A similar statement can be
made for polynomials of any fixed degree. That is, the quadratic regression model
minimizes the SSR over all quadratic polynomials, the cubic regression model min-
imizes the SSR over all cubic polynomials, and so on. The same statement cannot
be made for exponential or logarithmic regression models. Nevertheless, the SSR
can still be used to compare exponential, logarithmic, and polynomial models.

(B) Find the exponential and logarithmic regression models for the data in
Figure 1, compute their SSRs, and compare with the linear model.

(C) National annual advertising expenditures for selected years since 1950 are
shown in Table 1 where x is years since 1950 and y is total expenditures in
billions of dollars. Which regression model would fit this data best: a
quadratic model, a cubic model, or an exponential model? Use the SSRs to
support your choice.

T A B L E  1 Annual Advertising Expenditures, 1950–1995

x (years) 0 5 10 15 20 25 30 35 40 45

y (billion $) 5.7 9.2 12.0 15.3 19.6 27.9 53.6 94.8 128.6 160.9

Source: U.S. Bureau of the Census.

Work through all the problems in this cumulative review and check answers in the back of the

book. Answers to all review problems are there, and following each answer is a number in italics

indicating the section in which that type of problem is discussed. Where weaknesses show up,

review appropriate sections in the text.

2. Match each equation with the graph of f, g, m, or n in the
figure.
(A) (B)

(C) (D)

 3

 4.5

3

4.5

m

f

n

g

y  (4
3)x

 (3
4)xy  (3

4)x
 (4

3)x

y  (4
3)xy  (3

4)x

1. Let P(x) be the polynomial whose graph is shown in the
figure.
(A) Assuming that P(x) has integer zeros and leading

coefficient 1, find the lowest-degree equation that
could produce this graph.

(B) Describe the left and right behavior of P(x).

x

 5

5 5

5

P(x)



3. For P(x)  3x3
 5x2

 18x  3 and D(x)  x  3, use
synthetic division to divide P(x) by D(x), and write the
answer in the form P(x)  D(x)Q(x)  R.

4. Let P(x)  2(x  2)(x  3)(x  5). What are the zeros of
P(x)?

5. Let P(x)  4x3
 5x2

 3x  1. How do you know that
P(x) has at least one real zero between 1 and 2?

6. Let P(x)  x3
 x2

 10x   8. Find all rational zeros for
P(x).

7. Solve for x.

(A) y  10x (B) y  ln x

11. Explain why the graph in the figure is not the graph of a
polynomial function.

12. Explain why the graph in the figure is not the graph of a
rational function.

13. The function f subtracts the square root of the domain
element from three times the natural log of the domain
element. Write an algebraic definition of f.

14. Write a verbal description of the function 
f(x)  100e0.5x

 50.

15.

(A) Find the domain and the intercepts for f.
(B) Find the vertical and horizontal asymptotes for f.
(C) Sketch the graph of f. Draw vertical and horizontal

asymptotes with dashed lines.

16. Find all zeros of P(x)  (x3
 4x)(x  4), and specify

those zeros that are x intercepts.

17. Solve (x3
 4x)(x  4)  0.

Let f (x)  
2x  8

x  2
.

x

y

 5

5 5

5

18. If P(x)  2x3
 5x2

 3x  2, find P using the
remainder theorem and synthetic division.

19. Which of the following is a factor of

P(x)  x25
 x20

 x15
 x10

 x5
 1

(A) x  1 (B) x  1

20. Let P(x)  x4
 8x2

 3.
(A) Graph P(x) and describe the graph verbally, includ-

ing the number of x intercepts, the number of turn-
ing points, and the left and right behavior.

(B) Approximate the largest x intercept to two decimal
places.

21. Let P(x)  x5
 8x4

 17x3
 2x2

 20x  8.
(A) Approximate the zeros of P(x) to two decimal places

and state the multiplicity of each zero.
(B) Can any of these zeros be approximated with the bi-

section method? A maximum routine? A minimum
routine? Explain.

22. Let P(x)  x4
 2x3

 20x2
 30.

(A) Find the smallest positive and largest negative inte-
gers that, by Theorem 1 in Section 3.2, are upper
and lower bounds, respectively, for the real zeros 
of P(x).

(B) If (k, k  1), k an integer, is the interval containing
the largest real zero of P(x), determine how many
additional intervals are required in the bisection
method to approximate this zero to one decimal
place.

(C) Approximate the real zeros of P(x) to two decimal
places.

(1
2)

8. Simplify.

(A) (2ex)3 (B)

9. Solve for x exactly. Do not use a calculator or a table.
(A) log3 x  2
(B) log3 81  x

(C) logx 4   2

10. Solve for x to three significant digits.
(A) 10x

 2.35 (B) e x
 87,500

(C) log x   1.25 (D) ln x  2.75

e3x

e 2x
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In Problems 40–44, find domain, range, intercepts, and asymp-

totes. Round all approximate values to two decimal places.

40. f(x)  31 x 41. g(x)  ln (2  x)

42. 43. h(x)   2e x
 3

44.

45. If the graph of y  ln x is reflected in the line y  x, the
graph of the function y  ex is obtained. Discuss the
functions that are obtained by reflecting the graph of 
y  ln x in the x axis and in the y axis.

46. (A) Explain why the equation e x
 ln x has exactly one

solution.
(B) Approximate the solution of the equation to two

decimal places.

In Problems 47 and 48, factor each polynomial in two ways:

(A) As a product of linear factors (with real coefficients) and

quadratic factors (with real coefficients and imaginary 

zeros)

(B) As a product of linear factors with complex 

coefficients

47. P(x)  x4
 9x2

 18

48. P(x)  x4
 23x2

 50

N(t)  
6

2  e 0.1t

A(t)  100e 0.3t

23. Find all zeros (rational, irrational, and imaginary) exactly
for P(x)  4x3

 20x2
 29x  15.

24. Find all zeros (rational, irrational, and imaginary) exactly
for P(x)  x4

 5x3
 x2

 15x  12, and factor P(x)
into linear factors.

Solve Problems 25–34 for x exactly. Do not use a calculator or

a table.

25. 26. 2x2e x
 xe x

 e x

27. eln x
 2.5 28. logx 104

 4

29.

30. ln (x  4)  ln (x  4)  2 ln 3

31. ln (2x2
 2)  2 ln (2x  4)

32. log x  log (x  15)  2

33. log (ln x)   1 34. 4 (ln x)2
 ln x2

Solve Problems 35–39 for x to three significant digits.

35. x  log3 41 36. ln x  1.45

37. 4(2x)  20 38. 10e 0.5x
 1.6

39.
ex

 e x

ex
 e x

 
1

2

log9 x   
3
2

2x2

 4x 4

4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS382

49. Graph f and indicate any horizontal, vertical, or oblique
asymptotes with dashed lines:

50. Let P(x)  x4
 28x3

 262x2
 922x  1,083. Approx-

imate (to two decimal places) the x intercepts and the
local extrema.

51. Find a polynomial of lowest degree with leading coeffi-
cient 1 that has zeros  1 (multiplicity 2), 0 (multiplicity
3), 3  5i, and 3  5i. Leave the answer in factored
form. What is the degree of the polynomial?

52. If P(x) is a fourth-degree polynomial with integer coeffi-
cients and if i is a zero of P(x), can P(x) have any irra-
tional zeros? Explain.

53. Let P(x)  x4
 9x3

 500x2
 20,000.

(A) Find the smallest positive integer multiple of 10 and
the largest negative integer multiple of 10 that, by
Theorem 1 in Section 3.2, are upper and lower
bounds, respectively, for the real zeros of P(x).

f (x)  
x2

 4x  8

x  2

(B) Approximate the real zeros of P(x) to two decimal
places.

54. Find all zeros (rational, irrational, and imaginary) exactly
for

P(x)  x5
 4x4

 3x3
 10x2

 10x  12

and factor P(x) into linear factors.

55. Find rational roots exactly and irrational roots to two
decimal places for

P(x)  x5
 4x4

 x3
 11x2

 8x  4

56. Give an example of a rational function f(x) that satisfies
the following conditions: the real zeros of f are 5 and 8; 
x  1 is the only vertical asymptote; and the line y  3 is
a horizontal asymptote.

57. Use natural logarithms to solve for n.

A  P
(1  i)n

 1

i



58. Solve ln y  5x  ln A for y. Express the answer in a
form that is free of logarithms.

59. Solve for x.

y  
ex

 2e x

2

60. Solve  0.

61. Solve (to three decimal places)

 3
4x

x2
 1

x3
 x

x3
 8
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62. Shipping. A mailing service provides customers with
rectangular shipping containers. The length plus the girth
of one of these containers is 10 feet (see the figure). If
the end of the container is square and the volume is 8 cu-
bic feet, find the dimensions. Find rational solutions ex-
actly and irrational solutions to two decimal places.

63. Geometry. The diagonal of a rectangle is 2 feet longer
than one of the sides, and the area of the rectangle is 6
square feet. Find the dimensions of the rectangle. Find
rational solutions exactly and irrational solutions to two
decimal places.

Length

x

x
y

Girth

64. Population Growth. If the Republic of the Congo has a
population of about 40 million people and a doubling
time of 22 years, find the population in
(A) 5 years (B) 30 years

Compute answers to three significant digits.

65. Compound Interest. How long will it take money invested
in an account earning 7% compounded annually to double?
Use the annual compounding growth model P  P0(1  r)t,
and compute the answer to three significant digits.

66. Compound Interest. Repeat Problem 65 using the con-
tinuous compound interest model P  P0ert.

67. Earthquakes. If the 1906 and 1989 San Francisco earth-
quakes registered 8.3 and 7.1, respectively, on the Richter
scale, how many times more powerful was the 1906
earthquake than the 1989 earthquake? Use the formula 
M  log (E/E0), where E0  104.40 joules, and compute
the answer to one decimal place.

68. Sound. If the decibel level at a rock concert is 88, find
the intensity of the sound at the concert. Use the formula 
D  10 log (I/I0), where I0  10 12 watts per square
meter, and compute the answer to two significant digits.

2
3

69. Table 1 shows the life expectancy (in years) at birth for
residents of the United States from 1970 to 1995. Let x

T A B L E  1

Year Life Expectancy

1970 70.8

1975 72.6

1980 73.7

1985 74.7

1990 75.4

1995 75.9

Source: U.S. Census Bureau.

represent years since 1970. Use the indicated regression
model to estimate the life expectancy (to the nearest tenth
of a year) for a U.S. resident born in 2010.
(A) Linear regression
(B) Quadratic regression
(C) Cubic regression
(D) Exponential regression

70. Refer to Problem 69. The Census Bureau projected the
life expectancy for a U.S. resident born in 2010 to be
77.6 years. Which of the models in Problem 69 is closest
to the Census Bureau projection?
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T
RIGONOMETRIC FUNCTIONS SEEM TO HAVE HAD THEIR ORIGINS WITH THE

Greeks’ investigation of the indirect measurement of distances and

angles in the “celestial sphere.” (The ancient Egyptians had used some

elementary geometry to build the pyramids and remeasure lands

flooded by the Nile, but neither they nor the ancient Babylonians

had developed the concept of angle measure.) The word trigonom-

etry, based on the Greek words for “triangle measurement,” was first

used as the title for a text by the German mathematician Pitiscus in

A.D. 1600.

Originally the trigonometric functions were restricted to angles and
their applications to the indirect measurement of angles and dis-
tances. These functions gradually broke free of these restrictions,
and we now have trigonometric functions of real numbers. Modern
applications range over many types of problems that have little or
nothing to do with angles or triangles—applications involving peri-
odic phenomena such as sound, light, and electrical waves; business
cycles; and planetary motion.

In our approach to the subject we define the trigonometric func-
tions in terms of coordinates of points on the unit circle.

Before getting started on this chapter,

review the following concepts:

 Cartesian Coordinate System
(Appendix A, Section A.1)

 Functions
(Chapter 1, Section 2)

 Graphs of Functions
(Chapter 1, Section 3)

 Transformations
(Chapter 1, Section 4)

 Asymptotes
(Chapter 3, Section 4)

 Operations on Functions
(Chapter 1, Section 5)

 Inverse Functions
(Chapter 1, Section 6)

 Significant Digits

(Appendix B, Section B.1)
 Pythagorean Theorem

(Appendix C)



5 TRIGONOMETRIC FUNCTIONS386

Angles and Their Measure

Angles  Degree and Radian Measure  Converting Degrees to Radians and Vice Versa
 Linear and Angular Speed

In Section 5.1 we introduce the concept of angle and two measures of angles,
degree and radian.

Angles
The study of trigonometry depends on the concept of angle. An angle is formed
by rotating (in a plane) a ray m, called the initial side of the angle, around its
endpoint until it coincides with a ray n, called the terminal side of the angle. The
common endpoint V of m and n is called the vertex (Fig. 1).

A counterclockwise rotation produces a positive angle, and a clockwise rota-
tion produces a negative angle, as shown in Figures 2(a) and 2(b). The amount
of rotation in either direction is not restricted. Two different angles may have the
same initial and terminal sides, as shown in Figure 2(c). Such angles are said to
be coterminal.

An angle in a rectangular coordinate system is said to be in standard posi-
tion if its vertex is at the origin and the initial side is along the positive x axis.
If the terminal side of an angle in standard position lies along a coordinate axis,
the angle is said to be a quadrantal angle. If the terminal side does not lie along
a coordinate axis, then the angle is often referred to in terms of the quadrant in
which the terminal side lies (Fig. 3).

FIGURE 1 Angle  or angle PVQ

or ∠ V.

Terminal
side

Initial
side

V

Q

P

n

m

 

FIGURE 2 Angles and rotation.
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rm
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Term
inal side

(a) (b) (c)

FIGURE 3 Angles in standard
positions.
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Degree and Radian Measure
Just as line segments are measured in centimeters, meters, inches, or miles, angles
are measured in different units. The two most commonly used units for angle
measure are degree and radian.

Definition 1 is extended to all angles, not just the positive (counterclockwise)
ones, in the obvious way. So, for example, a negative angle formed by of a com-
plete clockwise rotation has a measure of  90 , and an angle for which the initial
and terminal sides coincide, without rotation, has a measure of 0 .

Certain angles have special names that indicate their degree measure. Figure 4
shows a straight angle, a right angle, an acute angle, and an obtuse angle.

1
4

Two positive angles are complementary if their sum is 90 ; they are supple-
mentary if their sum is 180 .

A degree can be divided further using decimal notation. For example, 42.75 
represents an angle of degree measure 42 plus three-quarters of 1 degree. A degree
can also be divided further using minutes and seconds just as an hour is divided
into minutes and seconds. Each degree is divided into 60 equal parts called
minutes, and each minute is divided into 60 equal parts called seconds. Sym-
bolically, minutes are represented by   and seconds by  . Thus,

12 23 14 

is a concise way of writing 12 degrees, 23 minutes, and 14 seconds.
Decimal degrees (DD) are useful in some instances and degrees–minutes–

seconds (DMS) are useful in others. You should be able to go from one form to
the other as demonstrated in Example 1.
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D E F I N I T I O N 1
Degree Measure

A positive angle formed by one complete rotation is said to have a measure of 360 degrees (360 ). A

positive angle formed by of a complete rotation is said to have a measure of 1 degree (1 ). The

symbol  denotes degrees.

1
360

FIGURE 4 Types of angles.

1

2

Straight angle

 rotation 

180 
90 

1

4

Right angle

 rotation 

 

Acute angle

(0        90 )

Obtuse angle

(90        180 )

 

(a) (b) (c) (d)

Conversion Accuracy

If an angle is measured to the nearest second, the converted decimal form should not go beyond three

decimal places, and vice versa.



From DMS to DD and Back

(A) Convert 21 47 12 to decimal degrees.

(B) Convert 105.183 to degree–minute–second form.

S O L U T I O N S

(A)

(B) 105.183  105 (0.183 60) 

 105 10.98 

 105 10 (0.98 60) 

 105 10 59 

(A) Convert 193 17 34 to DD form.

(B) Convert 237.615 to DMS form.

Some scientific and some graphing calculators can convert the DD and DMS
forms automatically, but the process differs significantly among the various types
of calculators. Check your owner’s manual for your particular calculator. The con-
version methods outlined in Example 1 show you the reasoning behind the
process, and are sometimes easier to use than the “automatic” methods for some
calculators.

Degree measure of angles is used extensively in engineering, surveying, and
navigation. Another unit of angle measure, called the radian, is better suited for
certain mathematical developments, scientific work, and engineering applications.

21°47 12   21  
47

60
 

12

3,600 
°
 21.787°
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D E F I N I T I O N 2
Radian Measure

If the vertex of a positive angle  is placed at the

center of a circle with radius r  0, and the length

of the arc opposite  on the circumference is s,

then the radian measure of  is given by

  radians

If s  r, then 

   1 radian

Thus, 1 radian is the measure of the central angle

of a circle that intercepts an arc that has the same

length as the radius of the circle. [Note: s and r

must be measured in the same units.]

r

r

s

r

r

r

O

 

s

 

r

r

O

s   r

    1 radian



The circumference of a circle of radius r is 2 r, so the radian measure of a
positive angle formed by one complete rotation is

    2  6.283 radians

Just as for degree measure, the definition is extended to apply to all angles; if  
is a negative angle, its radian measure is given by    . Note that in the pre-
ceding sentence, as well as in Definition 2, the symbol  is used in two ways: as
the name of the angle and as the measure of the angle. The context indicates the
meaning.

Computing Radian Measure

What is the radian measure of a central angle  opposite an arc of 24 meters in
a circle of radius 6 meters?

S O L U T I O N

  

What is the radian measure of a central angle  opposite an arc of 60 feet in a
circle of radius 12 feet?

REMARK It is customary to omit the word radians when giving the radian meas-
ure of an angle. But if an angle is measured in any other units, the units must be
stated explicitly. For example, if    17, then     974°.

s

r
 

24 meters

6 meters
 4 radians

 s
r

2 r

r

s

r

Converting Degrees to Radians and Vice Versa
What is the radian measure of an angle of 180 ? Let  be a central angle of 180 
in a circle of radius r. Then the length s of the arc opposite  is the circumfer-
ence C of the circle. Therefore,

s  
C

2
 

2 r

2
  r    and      

s

r
 
 r

r
   radians

1
2
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E X P L O R E / D I S C U S S  1

Discuss why the radian measure of an angle is independent of the size
of the circle having the angle as a central angle.



*The constant  has a long and interesting history; a few important dates are listed below:

1650 B.C. Rhind Papyrus

240 B.C. Archimedes

A.D. 264 Liu Hui   3.14159

A.D. 470 Tsu Ch’ung-chih

A.D. 1674 Leibniz

 3.1415926535897932384626

(This and other series can be used to compute  to any decimal accuracy desired.)

A.D. 1761 Johann Lambert Showed  to be irrational ( as a decimal is nonrepeating and nonterminating)

  4(1  1
3  

1
5  

1
7  

1
9  

1
11       )

  355
113  3.1415929 . . .

310
71     31

7  (3.1408 . . .     3.1428 . . .)

  256
81  3.16049 . . .

Hence, 180 corresponds to  * radians. This is important to remember, because
the radian measures of many special angles can be obtained from this correspon-
dence. For example, 90 is 180  2; therefore, 90 corresponds to   2 radians.

Some key results from Explore Discuss 2 are summarized in Figure 5 for easy
reference. These correspondences and multiples of them will be used extensively
in work that follows.

In general, the following proportion can be used to convert degree measure to
radian measure and vice versa.
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E X P L O R E / D I S C U S S  2

Write the radian measure of each of the following angles in the form 
 , where a and b are positive integers and fraction is reduced to low-

est terms: 15 , 30 , 45 , 60 , 75 , 90 , 105 , 120 , 135 , 150 ,
165 , 180 .

a
b

a
b

FIGURE 5 Radian–degree 
correspondences. 60     /3

45     /4
30     /6

180     

90     /2

360    2 

270    3 /2

Radian–Degree Conversion Formulas

Basic proportion

Radians to degrees

Degrees to radians

[Note: The basic proportion is usually easier to remember. Also we will omit units in calculations until

the final answer. If your calculator does not have a key labeled  , use   3.14159.]

 rad  
  radians

180°
 deg

 deg  
180°

  radians
 rad

 deg

180°
 

 rad

  radians



Some scientific and graphing calculators can automatically convert radian
measure to degree measure, and vice versa. Check the owner’s manual for your
particular calculator.

Radian–Degree Conversions

(A) Find the radian measure, exact and to three significant digits, of an angle
of 75 .

(B) Find the degree measure, exact and to four significant digits, of an angle
of 5 radians.

(C) Find the radian measure to two decimal places of an angle of 41 12 .

S O L U T I O N S

Exact Three significant digits

(A)  1.31

Exact Four significant digits

(B)  286.5 

(C) Change 41°12 to DD first.

To two decimal places

Figure 6 shows the three preceding conversions done automatically on a graph-
ing calculator by selecting the appropriate angle mode.

(A) Find the radian measure, exact and to three significant digits, of an angle
of 240 .

(B) Find the degree measure, exact and to three significant digits, of an angle
of 1 radian.

(C) Find the radian measure to three decimal places of an angle of 125 23 .

REMARK We will write  in place of  deg and  rad when it is clear from the con-
text whether we are dealing with degree or radian measure.

Engineering

A belt connects a pulley of 2-inch radius with a pulley of 5-inch radius. If the
larger pulley turns through 10 radians, through how many radians will the smaller
pulley turn?

 rad  
  radians

180°
 deg  

 

180
 (41.2)  0.72

41°12   41  
12

60 
°
 41.2°

900

 
 deg  

180°

  radians
 rad  

180

 
 (5)  

5 

12
 rad  

  radians

180°
 deg  

 

180
 (75)  
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FIGURE 6 Automatic conversion.



S O L U T I O N

First we draw a sketch (Fig. 7).

When the larger pulley turns through 10 radians, the point P on its circumference
will travel the same distance (arc length) that point Q on the smaller circle trav-
els. For the larger pulley,

For the smaller pulley,

In Example 4, through how many radians will the larger pulley turn if the smaller
pulley turns through 4 radians?

Linear and Angular Speed
The average speed v of an object that travels a distance d  30 meters in time
t  3 seconds is given by

v    10 meters per second

Suppose that a point P moves an arc length of s  30 meters in t  3 seconds
on the circumference of a circle of radius r  20 meters (Fig. 8). Then, in those
3 seconds, the point P has moved through an angle of

    1.5 radians

We call the average speed of point P, given by

v   10 meters per second
s

t

30

20

s

r

30 meters

3 seconds

d

t

  
s

r
 

50

2
 25 radians

s  r  (5)(10)  50 inches

  
s

r
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FIGURE 7

2 in.

5 in.

P

Q

FIGURE 8

 

r   20 m

s   30 m

P



the (average) linear speed to distinguish it from the (average) angular speed that
is given by

    0.5 radians per second

Note that v  r (because s  r ). These concepts are summarized in the box.

1.5

3

 

t

Wind Power

A wind turbine of rotor diameter 15 meters makes 62 revolutions per minute. Find
the angular speed (in radians per second) and the linear speed (in meters per sec-
ond) of the rotor tip.

S O L U T I O N

The radius of the rotor is 15 2  7.5 meters. In 1 minute the rotor moves through
an angle of 62(2 )  124 radians. Therefore, the angular speed is

    6.49 radians per second

and the linear speed of the rotor tip is

v  r  7.5

A wind turbine of rotor diameter 12 meters has a rotor tip speed of 34.2 meters
per second. Find the angular speed of the rotor (in radians per second) and the
number of revolutions per minute.

124 

60
  48.69 meters per second

124  radians

60 seconds

 

t
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Linear Speed and Angular Speed

Suppose a point P moves through an angle  and arc length s, in time t, on the circumference of a

circle of radius r. The (average) linear speed of P is

v  

and the (average) angular speed is

  

Furthermore, v  r .

 

t

s

t
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1. (A) 193.293 (B) 237 36 54 2. 5 radians

3. (A) (B) (C) 2.188
180

 
 57.3°

4 

3
 4.19

In all problems, if angle measure is expressed by a number that

is not in degrees, it is assumed to be in radians.

Find the degree measure of each of the angles in Problems

1–6, keeping in mind that an angle of one complete rotation

corresponds to 360°.

1. 2. 3.

4. 5. 6.

Find the radian measure of a central angle  opposite an arc s in

a circle of radius r, where r and s are as given in Problems 7–10.

7
6 rotations9

8 rotations3
8 rotation

3
4 rotation1

5 rotation1
9 rotation

7. r  4 centimeters, s  24 centimeters

8. r  8 inches, s  16 inches

9. r  12 feet, s  30 feet

10. r  18 meters, s  27 meters

Find the radian measure of each angle in Problems 11–16,

keeping in mind that an angle of one complete rotation corre-

sponds to 2 radians.

11. 12. 13.

14. 15. 16. 11
8  rotations13

12 rotations5
12 rotation

3
4 rotation1

6 rotation1
8 rotation

27. If two positive angles are complementary, then both are
acute.

28. If two positive angles are supplementary, then one is ob-
tuse and the other is acute.

29. If the terminal side of an angle in standard position lies in
quadrant I, then the angle is positive.

30. If the initial and terminal sides of an angle coincide, then
the measure of the angle is zero.

Convert each angle in Problems 31–34 to decimal degrees to

three decimal places.

31. 5 51 33 32. 14 18 37 

33. 354 8 29 34. 184 31 7 

Convert each angle in Problems 35–38 to degree–minute–

second form.

35. 3.042 36. 49.715 

37. 403.223 38. 156.808 

Find the exact radian measure, in terms of  , of each angle in

Problems 17–20.

17. 30 , 60 , 90 , 120 , 150 , 180 

18. 60 , 120 , 180 , 240 , 300 , 360 

19.  45 ,  90 ,  135 ,  180 

20.  90 ,  180 ,  270 ,  360 

Find the exact degree measure of each angle in Problems 21–24.

21. 22.

23. 24.

In Problems 25–30, determine whether the statement is true or

false. If true, explain why. If false, give a counterexample.

25. If two angles in standard position have the same measure,
then they are coterminal.

26. If two angles in standard position are coterminal, then
they have the same measure.

 
 

4
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,
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3
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4. 1.6 radians
5. 5.7 radians per second; 54.43 revolutions per minute
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Find the radian measure to three decimal places for each angle

in Problems 39–44.

39. 64 40. 25 41. 108.413 

42. 203.097 43. 13 25 14 44. 56 11 52 

Find the degree measure to two decimal places for each angle

in Problems 45–50.

45. 0.93 46. 0.08 47. 1.13

48. 3.07 49.  2.35 50.  1.72

Indicate whether each angle in Problems 51–70 is a first-,

second-, third-, or fourth-quadrant angle or a quadrantal

angle. All angles are in standard position in a rectangular

coordinate system. (A sketch may be of help in some problems.)

51. 187 52. 135 53.  200 

54.  60 55. 4 56. 3

57. 270 58. 360 59.  1

60.  6 61. 62.

63. 64. 65.   

66. 67. 820 68.  565 

69. 70.

71. Verbally describe the meaning of a central angle in a cir-
cle with radian measure 1.

72. Verbally describe the meaning of an angle with degree
measure 1.

23 

3

13 

4

 
3 

2

 
3 

4
 

7 

6

2 

3

5 

3

Which angles in problems 79–84 are coterminal with 3  4 if

all angles are placed in standard position in a rectangular

coordinate system?

79. 80. 81. 135 

82.  225 83. 84.  
5 

4

11 

4

 
7 

4
 

3 

4

Which angles in Problems 73–78 are coterminal with 30 if all

angles are placed in standard position in a rectangular coordi-

nate system?

73. 390 74. 330 75.

76. 77.  690 78. 750  
11 

6

 

6

85. Circumference of the Earth. The early Greeks used the
proportion s C     360 , where s is an arc length on a
circle,   is degree measure of the corresponding central
angle, and C is the circumference of the circle (C  2 r).
Eratosthenes (240 B.C.), in his famous calculation of the
circumference of the Earth, reasoned as follows: He
knew at Syene (now Aswan) during the summer solstice
the noon sun was directly overhead and shined on the wa-
ter straight down a deep well. On the same day at the
same time, 5,000 stadia (approx. 500 miles) due north in
Alexandria, sun rays crossed a vertical pole at an angle of
7.5 as indicated in the figure. Carry out Eratosthenes’
calculation for the circumference of the Earth to the near-
est thousand miles. (The current calculation for the equa-
torial circumference is 24,902 miles.)

Earth

Alexandria

Syene

Well

Sun rays

7.5 
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86. Circumference of the Earth. Repeat Problem 85 with the
sun crossing the vertical pole in Alexandria at 7 12 .

87. Circumference of the Earth. In Problem 85, verbally ex-
plain how  in the figure was determined.

88. Circumference of the Earth. Verbally explain how the ra-
dius, surface area, and volume of the Earth can be deter-
mined from the result of Problem 85.

89. Angular Speed. A wheel with diameter 6 feet makes 200
revolutions per minute. Find the angular speed (in radians
per second) and the linear speed (in feet per second) of a
point on the rim.

90. Angular Speed. A point on the rim of a wheel with di-
ameter 6 feet has a linear speed of 100 feet per second.
Find the angular speed (in radians per second) and the
number of revolutions per minute.

91. Radian Measure. What is the radian measure of the
larger angle made by the hands of a clock at 4:30? Ex-
press the answer exactly in terms of  .

92. Radian Measure. What is the radian measure of the
smaller angle made by the hands of a clock at 1:30? Ex-
press the answer exactly in terms of  .

93. Engineering. Through how many radians does a pulley
of 10-centimeter diameter turn when 10 meters of rope
are pulled through it without slippage?

94. Engineering. Through how many radians does a pulley
of 6-inch diameter turn when 4 feet of rope are pulled
through it without slippage?

95. Astronomy. A line from the sun to the Earth sweeps out
an angle of how many radians in 1 week? Assume the
Earth’s orbit is circular and there are 52 weeks in a year.
Express the answer in terms of  and as a decimal to two
decimal places.

96. Astronomy. A line from the center of the Earth to the
equator sweeps out an angle of how many radians in 9
hours? Express the answer in terms of  and as a decimal
to two decimal places.

 97. Engineering. A trail bike has a front wheel with a diam-
eter of 40 centimeters and a back wheel of diameter 60
centimeters. Through what angle in radians does the front
wheel turn if the back wheel turns through 8 radians?

 98. Engineering. In Problem 97, through what angle in radi-
ans will the back wheel turn if the front wheel turns
through 15 radians?

99. Angular Speed. If the trail bike of Problem 97 travels at
a speed of 10 kilometers per hour, find the angular speed
(in radians per second) of each wheel.

100. Angular Speed. If a car travels at a speed of 60 miles per
hour, find the angular speed (in radians per second) of a
tire that has a diameter of 2 feet.

The arc length on a circle is easy to compute if the correspond-

ing central angle is given in radians and the radius of the cir-

cle is known (s  r ). If the radius of a circle is large and a

central angle is small, then an arc length is often used to ap-

proximate the length of the corresponding chord as shown in

the figure. If an angle is given in degree measure, converting to

radian measure first may be helpful in certain problems. This

information will be useful in Problems 101–104.

101. Astronomy. The sun is about 9.3  107 mi from the
Earth. If the angle subtended by the diameter of the sun
on the surface of the Earth is 9.3  10 3 rad, approxi-
mately what is the diameter of the sun to the nearest
thousand miles in standard decimal notation?

102. Astronomy. The moon is about 381,000 kilometers
from the Earth. If the angle subtended by the diameter of
the moon on the surface of the Earth is 0.0092 radians,
approximately what is the diameter of the moon to the
nearest hundred kilometers?

103. Photography. The angle of view of a 1,000-millimeter
telephoto lens is 2.5 . At 750 feet, what is the width of
the field of view to the nearest foot?

104. Photography. The angle of view of a 300-millimeter
lens is 8 . At 500 feet, what is the width of the field of
view to the nearest foot?

r

c   s   r 
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Trigonometric Functions: A Unit Circle
Approach

The Wrapping Function  Definitions of the Trigonometric Functions  Graphs of the
Trigonometric Functions

In Section 5.2 we introduce the six trigonometric functions in terms of the coor-
dinates of points on the unit circle.

The Wrapping Function
Consider a positive angle  in standard position, and let P denote the point of
intersection of the terminal side of  with the unit circle u2  v2  1 (Fig. 1).*
Let x denote the length of the arc opposite  on the unit circle. Because the unit
circle has radius r  1, the radian measure of  is given by

    x radians

In other words, on the unit circle, the radian measure of a positive angle is equal
to the length of the intercepted arc; similarly, on the unit circle, the radian mea-
sure of a negative angle is equal to the negative of the length of the intercepted
arc. Because   x, we may consider the real number x to be the name of the
angle  , when convenient. The function W that associates with each real number
x the point W(x)  P is called the wrapping function. The point P is called a cir-

cular point.

Consider, for example, the angle in standard position that has radian measure
  2. Its terminal side intersects the unit circle at the point (0, 1). Therefore,
W(  2)  (0, 1). Similarly, we can find the circular point associated with any
angle that is an integer multiple of   2 (Fig. 2).

W(0)  (1, 0)

 (0, 1)

W( )  ( 1, 0)

 (0,  1)

W(2 )  (1, 0)

W 3 

2  

W  2  

x

1

x

r
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*We use the variables u and v instead of x and y so that x can be used without ambiguity as an independent variable in

defining the wrapping function and the trigonometric functions.

FIGURE 1

u

v

0

x

(1, 0)

P
 

FIGURE 2 Circular points on the
coordinate axes.
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FIGURE 4
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0
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0
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E X P L O R E / D I S C U S S  1

The name wrapping function stems from visualizing the correspondence
as a wrapping of the real number line, with origin at (1, 0), around the
unit circle—the positive real axis is wrapped counterclockwise, and the
negative real axis is wrapped clockwise—so that each real number is
paired with a unique circular point (Fig. 3).

(A) Explain why the wrapping function is not one-to-one.

(B) In which quadrant is the circular point W(1)? W( 10)? W(100)?

FIGURE 3 The wrapping function.

Given a real number x, it is difficult, in general, to find the coordinates (a, b)
of the circular point W(x) that is associated with x. (It is trigonometry that
overcomes this difficulty.) For certain real numbers x, however, we can find the
coordinates (a, b) of W(x) by using simple geometric facts. For example, consider
x    6 and let P denote the circular point W(x)  (a, b) that is associated with
x. Let P be the reflection of P in the u axis (Fig. 4).

Then triangle 0PP is equiangular (each angle has measure   3 radians or
60 ) and thus equilateral. Therefore b  1 2. Because (a, b) lies on the unit cir-
cle, we solve for a:

a2  b2  1

must be discarded (Why?)

Thus,

W  6     3

2
,

1

2 

a    
 3

2
a   

 3

2

a2  
3

4

a2   1

2 
2

 1
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FIGURE 5
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Coordinates of Circular Points

Find the coordinates of the following circular points:

(A) W(   2)

(B) W(5  2)

(C) W(  3)

(D) W(7  6)

(E) W(  4)

S O L U T I O N S

(A) Because the circumference of the unit circle is 2 ,    2 is the
radian measure of a negative angle that is of a complete clockwise
rotation. Thus, W(   2)  (0,  1) (Fig. 5).

(B) Starting at (1, 0) and proceeding counterclockwise, we count quarter-
circle steps,   2, 2  2, 3  2, 4  2, and end at 5  2. Thus, the
circular point is on the positive vertical axis, and W(5  2)  (0, 1)
(see Fig. 5).

(C) The circular point W(  3) is the reflection of the point 
W(  6)  (  2, 1 2) in the line u  v. Thus, 
W(  3)  (1 2,  2) (Fig. 6).

(D) The circular point W(7  6) is the reflection of the point 
W(  6)  (  2, 1 2) in the origin. Thus,
W(7  6)  (  2,  1 2) (see Fig. 6).

(E) The circular point W(  4) lies on the line u  v, so a  b.

Substitute b  a

Therefore, W(  4)  (1 , 1 ) (Fig. 7).

Find the coordinates of the following circular points:

(A) W(3 )

(B) W( 7  2)

(C) W(5  6)

(D) W(   3)

(E) W(5  4)

Some key results from Example 1 are summarized in Figure 8. If x is any inte-
ger multiple of   6 or   4, then the coordinates of W(x) can be determined eas-
ily from Figure 8 by using symmetry properties.

 2 2

a  
1

 2

a2  
1

2

 2a2  1

a2  b2  1

 3
 3

 3
 3

1
4
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Coordinates of Key Circular Points
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FIGURE 8

E X P L O R E / D I S C U S S  2

An effective memory aid for recalling the coordinates of the key cir-
cular points in Figure 8 can be created by writing the coordinates of
the circular points W(0), W(  6), W(  4), W(  3), and W(  2), keep-
ing this order, in a form where each numerator is the square root of an
appropriate number and each denominator is 2. For example, 
W(0)  (1, 0)  . Describe the pattern that results.( 4 2,  0 2)

D E F I N I T I O N  1
Trigonometric Functions

Let x be a real number and let (a, b) be the coordinates of the circular point W(x) that lies on the

terminal side of the angle with radian measure x. Then:

 tan x  
b

a
  a  0    cot x  

a

b
  b  0

 cos x  a     sec x  
1

a
  a  0

 sin x  b     csc x  
1

b
  b  0

(1, 0)

x rad

W(x)

(a, b)

x units
arc length

Definitions of the Trigonometric Functions
We use the correspondence between real numbers and circular points to define
the six trigonometric functions: sine, cosine, tangent, cotangent, secant, and
cosecant. The values of these functions at a real number x are denoted by sin x,
cos x, tan x, cot x, sec x, and csc x, respectively.



The domain of both the sine and cosine functions is the set of real numbers
R. The range of both the sine and cosine functions is [ 1, 1]. This is the set of
numbers assumed by b, for sine, and a, for cosine, as the circular point (a, b)
moves around the unit circle. The domain of cosecant is the set of real numbers
x such that b in W(x)  (a, b) is not 0. Similar restrictions are made on the
domains of the other three trigonometric functions. We will have more to say
about the domains and ranges of all six trigonometric functions in subsequent
sections.

Note from Definition 1 that csc x is the reciprocal of sin x, provided that
sin x ≠ 0. Therefore sin x is the reciprocal of csc x. Similarly, cos x and sec x are
reciprocals of each other, as are tan x and cot x. We call these useful facts the
reciprocal identities.

In Example 1 we were able to give a simple geometric argument to find, for
example, that the coordinates of W(7  6) are (  2,  1 2). Therefore,
sin (7  6)   1 2 and cos (7  6)    2. These exact values correspond
to the approximations given by a calculator [Fig. 9(a)]. For most values of x, how-
ever, simple geometric arguments fail to give the exact coordinates of W(x). But
a calculator, set in radian mode, can be used to give approximations. For exam-
ple, if x    7, then W(  7)  (0.901, 0.434) [Fig. 9(b)].

 3
 3

Most calculators have function keys for the sine, cosine, and tangent functions,
but not for the cotangent, secant, and cosecant. Because the cotangent, secant, and
cosecant are the reciprocals of the tangent, cosine, and sine, respectively, they can
be evaluated easily. For example, cot (  7)  1 tan (  7)  2.077 [Fig. 9(c)].
Do not use the calculator function keys marked sin 1, cos 1, or tan 1 for this
purpose—these keys are used to evaluate the inverse trigonometric functions of
Section 5.6, not reciprocals.
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Reciprocal Identities

For x any real number:

tan x  0 cot x  
1

tan x

cos x  0 sec x  
1

cos x

sin x  0 csc x  
1

sin x

FIGURE 9

(a) (b) (c)



Calculator Evaluation

Evaluate to four significant digits.

(A) tan 1.5

(B) csc ( 6.27)

(C) sec (11  12)

(D) The coordinates (a, b) of W(1)

S O L U T I O N S

(A) tan 1.5  14.10

(B) csc ( 6.27)  1 sin ( 6.27)  75.84

(C) sec (11  12)  1 cos (11  12)   1.035

(D) W(1)  (cos 1, sin 1)  (0.5403, 0.8415)

Evaluate to four significant digits.

(A) cot ( 8.25)

(B) sec (7  8)

(C) csc (4.67)

(D) The coordinates (a, b) of W(100)

Graphs of the Trigonometric Functions
The graph of y  sin x is the set of all ordered pairs (x, y) of real numbers that
satisfy the equation. Because sin x, by Definition 1, is the second coordinate of
the circular point W(x), our knowledge of the coordinates of certain circular points
(Table 1) gives the following solutions to y  sin x: (0, 0), (  2, 1), ( , 0), and
(3  2,  1).
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As x increases from 0 to   2, the circular point W(x) moves on the circum-
ference of the unit circle from (0, 0) to (0, 1), and so sin x [the second coordi-
nate of W(x)] increases from 0 to 1. Similarly, as x increases from   2 to  , the
circular point W(x) moves on the circumference of the unit circle from (0, 1) to
( 1, 0), and so sin x decreases from 1 to 0. These observations are in agreement
with the graph of y  sin x, obtained from a graphing calculator in radian mode
[Fig. 10(a)].

Figure 10 shows the graphs of all six trigonometric functions from x  0 to
x  2 . The functions y  sin x and y  cos x are bounded; their maximum val-
ues are 1 and their minimum values are  1. The functions y  tan x, y  cot x,
y  sec x, and y  csc x are unbounded; they have vertical asymptotes at the val-
ues of x for which they are undefined. It is instructive to study and compare the
graphs of reciprocal pairs, for example, y  cos x and y  sec x. Note that sec x
is undefined when cos x equals 0, and that because the maximum positive value
of cos x is 1, the minimum positive value of sec x is 1. We will study the prop-
erties of trigonometric functions and their graphs in Section 5.4.

A graphing utility can be used to interactively explore the relationship between
the unit circle definition of the sine function and the graph of the sine function.
Explore/Discuss 3 provides the details.

T A B L E  1

x 0   2  3  2

W(x) (0, 0) (0, 1) ( 1, 0) (0,  1)

sin x 0 1 0  1

FIGURE 10
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(d) y  csc x (e) y  sec x (f) y  cot x



Zeros and Turning Points

Find the zeros and turning points of y  cos x on the interval [   2, 3  2].

S O L U T I O N

Recall that a turning point is a point on a graph that separates an increasing por-
tion from a decreasing portion, or vice versa. A visual inspection of the graph of
y  cos x [Fig. 13(a)] suggests that (0, 1) and ( ,  1) are turning points, and
that    2,   2, and 3  2 are zeros. These observations are confirmed by not-
ing that as x increases from    2 to 3  2, the first coordinate of the circular
point W(x) (that is, cos x) has a maximum value of 1 (when x  0), a minimum
value of  1 (when x   ), and has the value 0 when x     2 ,   2, and 3  2
[Fig. 13(b)].
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E X P L O R E / D I S C U S S  3

Set your graphing utility in radian and parametric modes. Make the
entries as indicated in Figure 11 to obtain the indicated graph (2 is
entered as Tmax and Xmax,   2 is entered as Xscl).

Use TRACE and move back and forth between the unit circle and the
graph of the sine function for various values of T as T increases from 0
to 2 . Discuss what happens in each case. Figure 12 illustrates the case
for T  0.

Repeat the exploration with Y2T  cos (T)

FIGURE 11

FIGURE 12
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FIGURE 14

 3

 5

3

5

Find all zeros and turning points of y  csc x on the interval (0, 4 ).

Solving a Trigonometric Equation

Find all solutions of the equation sin x  0.35x  0.1 to three decimal places.

S O L U T I O N

Graph y1 sin x and y2 0.35x  0.1 and use the intersect command (Fig. 14).
The solutions are x   2.339, 0.155, and 2.132.

Find all solutions of the equation cot x  x on the interval (0, 2 ) to three dec-
imal places.

C A U T I O N

A common cause of error is to forget to set a calculator in the correct
mode, degree or radian, before graphing or evaluating a function. In
radian mode, a calculator will give 1 as the value of sin (  2); in
degree mode, it will give 0.0274 as the value of sin (  2) [because
(  2)  1.5708 ].

FIGURE 13
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0

(a) (b)

1. (A) ( 1, 0)
(B) (0, 1)
(C) (  2, 1 2)
(D) (1 2,   2)
(E) ( 1 ,  1 ) 2 2

 3
 3

2. (A) 0.4181
(B)  1.082
(C)  1.001
(D) (0.8623,  0.5064)

3. Zeros: none; turning points: 
(  2, 1), (3  2,  1), (5  2, 1),
(7  2,  1)

4. 0.860, 3.426
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In Problems 33–38, in which quadrants must W(x) lie so that:

33. cos x  0 34. tan x  0 35. sin x  0

36. sec x  0 37. cot x  0 38. csc x  0

Evaluate Problems 39–48 to four significant digits using a cal-

culator set in radian mode.

39. cos 2.288 40. sin 3.104

41. tan ( 4.644) 42. sec ( 1.555)

43. csc 1.571 44. cot 0.7854

45. sin (cos 0.3157) 46. cos (tan 5.183)

47. cos [csc ( 1.408)] 48. sec [cot ( 3.566)]

Evaluate Problems 49–58 to four significant digits using a

calculator. Make sure your calculator is in the correct mode

(degree or radian) for each problem.

49. sin 25 50. tan 89 

51. cot 12 52. csc 13

53. sin 2.137 54. tan 4.327

55. cot ( 431.41 ) 56. sec ( 247.39 )

57. sin 113 27 13 58. cos 235 12 47 

In Problems 1–16, find the coordinates of each circular point.

1. W(3  2) 2. W( 5 )

3. W( 6 ) 4. W( 15  2)

5. W(  4) 6. W(  3)

7. W(  6) 8. W(   6)

9. W(   3) 10. W(   4)

11. W(2  3) 12. W(11  6)

13. W( 3  4) 14. W( 7  6)

15. W(13  4) 16. W( 10  3)

In Problems 17–32, use your answers to Problems 1–16 to give

the exact value of the expression (if it exists).

17. sin (3  2) 18. tan ( 5 )

19. cos ( 6 ) 20. cot ( 15  2)

21. sec (  4) 22. csc (  3)

23. tan (  6) 24. cos (   6)

25. sin (   3) 26. sec (   4)

27. csc (2  3) 28. cot (11  6)

29. cos ( 3  4) 30. tan ( 7  6)

31. cot (13  4) 32. sin ( 10  3)

In Problems 59–62, find all zeros and turning points of each

function on [0, 4 ].

59. y  sec x 60. y  sin x

61. y  tan x 62. y  cot x

In Problems 63–66, find all solutions of the trigonometric

equation on the interval [0, 2 ] to three decimal places.

63. cos (2x)  x  2.5 64. tan x  10  x2

65. sec x  x2  5 66. sin (x 2)  cos x

Determine the signs of a and b for the coordinates (a, b) of

each circular point indicated in Problems 67–76. First

determine the quadrant in which each circular point lies.

[Note:   2  1.57,   3.14, 3  2  4.71, and 2  6.28.]

67. W(2) 68. W(1) 69. W(3)

70. W(4) 71. W(5) 72. W(7)

73. W( 2.5) 74. W( 4.5) 75. W( 6.1)

76. W( 1.8)
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If W(x)  (a, b), indicate whether the statements in Problems

83–88 are true (T) or false (F). Sketching figures should help

you decide.

83. W(x   )  ( a,  b) 84. W(x   )  (a, b)

85. W( x)  ( a, b) 86. W( x)  (a,  b)

87. W(x  2 )  (a, b) 88. W(x  2 )  ( a,  b)

In Problems 89–92, find the value of each to one significant

digit. Use only the accompanying figure, Definition 1, and a

calculator as necessary for multiplication and division. Check

your results by evaluating each directly on a calculator.

89. (A) sin 0.4 (B) cos 0.4 (C) tan 0.4

90. (A) sin 0.8 (B) cos 0.8 (C) cot 0.8

91. (A) sec 2.2 (B) tan 5.9 (C) cot 3.8

92. (A) csc 2.5 (B) cot 5.6 (C) tan 4.3

In Problems 93–96, in which quadrants are the statements true

and why?

93. sin x  0 and cot x  0 94. cos x  0 and tan x  0

95. cos x  0 and sec x  0 96. sin x  0 and csc x  0

For which values of x, 0  x  2 , is each of Problems

97–102 not defined?

97. cos x 98. sin x 99. tan x

100. cot x 101. sec x 102. csc x

In Problems 77–80, for each equation find all solutions for 

0  x  2 , then write an expression that represents all

solutions for the equation without any restrictions on x.

77. W(x)  (1, 0) 78. W(x)  ( 1, 0)

79. 80. W(x)  (1/ 2,  1/ 2)W(x)  ( 1/ 2, 1/ 2)

81. Describe in words why W(x)  W(x  4 ) for every real
number x.

82. Describe in words why W(x)  W(x  6 ) for every real
number x.

a

b

1
2

3

4

5

6

0.5

0.5

 0.5

 0.5

Unit circle
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0

1

1

cos an
an

If an n-sided regular polygon is inscribed in a circle of radius

r, then it can be shown that the area of the polygon is given by

Compute each area exactly and then to four significant digits

using a calculator if the area is not an integer.

103. n  12, r  5 meters

104. n  4, r  3 inches

105. n  3, r  4 inches

106. n  8, r  10 centimeters

A  
1

2
nr2 sin 

2 

n

Approximating  . Problems 107 and 108 refer to a sequence

of numbers generated as follows:

107. Let a1  0.5, and compute the first five terms of the
sequence to six decimal places and compare the fifth
term with   2 computed to six decimal places.

108. Repeat Problem 107, starting with a1  1.

Solving Right Triangles*

A right triangle is a triangle with one 90 angle (Fig. 1).
If only the angles of a right triangle are known, it is impossible to solve for

the sides. (Why?) But if we are given two sides, or one acute angle and a side,
then it is possible to solve for the remaining three quantities. This process is called
solving the right triangle. We use the trigonometric functions to solve right
triangles.

If a right triangle is located in the first quadrant as indicated by Figure 2, then,
by similar triangles, the coordinates of the circular point Q are (a c, b c).

FIGURE 1

 

c
b

a

 

FIGURE 2

c
b

a
(1, 0)

(a, b)

(a, 0)

Q

 

*This section provides a significant application of trigonometric functions to real-world problems. However, it may be

postponed or omitted without loss of continuity, if desired. Some may want to cover the section just before Sections 7.1

and 7.2.

 
 
 

an 1  an  cos an

a3  a2  cos a2

a2  a1  cos a1

a1



Therefore, using the definition of the trigonometric functions, sin   b c and
cos   a/c. (Calculations using such trigonometric ratios are valid if  is mea-
sured in either degrees or radians, provided your calculator is set in the correct
mode—in this section we use degree measure.) All six trigonometric ratios are
displayed in the box.

Side b is often referred to as the side opposite angle  , a as the side adja-
cent to angle  , and c as the hypotenuse. Using these designations for an arbi-
trary right triangle removed from a coordinate system, we have the following:

The use of the trigonometric ratios for right triangles is made clear in Exam-
ples 1 through 4. Regarding computational accuracy, we use Table 1 as a guide.
(The table is also printed inside the front cover of this book for easy reference.)
We will use  rather than  in many places, realizing the accuracy indicated in
Table 1 is all that is assumed. Another word of caution: when using your calcu-
lator be sure it is set in degree mode.
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Trigonometric Ratios

tan   
b

a
    cot   

a

b

cos   
a

c
    sec   

c

a

csc   
c

b
sin   

b

c
(a, b)

c
b

a



0°       90°

Right Triangle Ratios

tan   
Opp

Adj
    cot   

Adj

Opp

cos   
Adj

Hyp
    sec   

Hyp

Adj

sin   
Opp

Hyp
    csc   

Hyp

Opp
Opp

Hyp

Adj



0       90 

E X P L O R E / D I S C U S S  1

For a given value  , 0    90 , explain why the value of each of the
six trigonometric functions is independent of the size of the right trian-
gle that contains  .

T A B L E  1

Significant
Angle to Digits for
Nearest Side Measure

1 2

10 or 0.1 3

1 or 0.01 4

10 or 0.001 5



Right Triangle Solution

Solve the right triangle with c  6.25 feet and   32.2 .

S O L U T I O N

First draw a figure and label the parts (Fig. 3):

S O L V E  F O R   

  90  32.2  57.8  and  are complementary.

S O L V E  F O R  b

.

S O L V E  F O R  a

.

Solve the right triangle with c  27.3 meters and   47.8 .

In Example 2 we are confronted with a problem of the type: Find  given

sin   0.4196

We know how to find (or approximate) sin  given  , but how do we reverse the
process? How do we find  given sin  ? First, we note that the solution to the
problem can be written symbolically as either

  arcsin 0.4196

or “arcsin” and “sin 1” both represent the same thing.

  sin 1 0.4196

Both expressions are read “ is the angle whose sine is 0.4196.”

 5.29 feet

a  6.25 cos 32.2 

 cos 32.2  
a

6.25

Or use sec     
c

a
 cos   

a

c

 3.33 feet

b  6.25 sin 32.2 

 sin 32.2   
b

6.25

Or use csc     
c

b
 sin   

b

c
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FIGURE 3

b

a

 6.25 ft

32.2 



Fortunately, we can find  directly using a calculator. Most calculators of the
type used in this book have the function keys  sin 1 , cos 1 , and tan 1 or their
equivalents (check your manual). These function keys take us from a trigonometric
ratio back to the corresponding acute angle in degree measure when the calculator
is in degree mode. Thus, if sin   0.4196, then we can write   arcsin 0.4196
or   sin 1 0.4196. We choose the latter and proceed as follows:

  sin 1 0.4196

 24.81 To the nearest hundredth degree

or 24 49 To the nearest minute

C H E C K

sin 24.81  0.4196

5.3 Solving Right Triangles 411

C A U T I O N

It is important to note that sin 1 0.4196 does not mean 1 (sin 0.4196).
The superscript  1 is part of a function symbol, and sin 1 represents
the inverse sine function. Inverse trigonometric functions are developed
in detail in Section 5.6.

E X P L O R E / D I S C U S S  2

Solve each of the following for  to the nearest hundredth of a degree
using a calculator. Explain why an error message occurs in one of the
problems.

(A) cos   0.2044 (B) tan   1.4138

(C) sin   1.4138

Right Triangle Solution

Solve the right triangle with a  4.32 centimeters and b  2.62 centimeters. Com-
pute the angle measures to the nearest 10 .

S O L U T I O N

Draw a figure and label the known parts (Fig. 4):

S O L V E  F O R   

0.2  [(0.2)(60)]  12  10  to nearest 10  31.2  or 31 10 

  tan 1
2.62

4.32

 tan   
2.62

4.32

FIGURE 4

 

 

2.62 cm

4.32 cm

c



S O L V E  F O R   

  90  31 10  58 50 

S O L V E  F O R  c

Or use csc .

or, using the Pythagorean theorem,

Note the slight difference in the values obtained for c (5.05 versus 5.06). This was
caused by rounding  to the nearest 10 in the first calculation for c.

Solve the right triangle with a  1.38 kilometers and b  6.73 kilometers.

Geometry

If a regular pentagon (a five-sided regular polygon) is inscribed in a circle of
radius 5.35 centimeters, find the length of one side of the pentagon.

S O L U T I O N

Sketch a figure and insert triangle ACB with C at the center (Fig. 5). Add the aux-
iliary line CD as indicated. We will find AD and double it to find the length of
the side wanted.

Exact

Exact

If a square of side 43.6 meters is inscribed in a circle, what is the radius of the
circle?

AB  2AD  6.28 centimeters

 3.14 centimeters

 5.35 sin 36 

AD  AC sin (angle ACD)

 sin (angle ACD)  
AD

AC

 Angle ACD  
72 

2
 36 

 Angle ACB  
360 

5
 72 

c   4.322  2.622  5.05 centimeters

c  
2.62

sin 31.2 
 5.06 centimeters

   
c

2.62
 sin   

2.62

c

  89 60  31 10 
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FIGURE 5

A

B

C

D

5.35
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Architecture

In designing a house an architect wishes to determine the amount of overhang of
a roof so that it shades the entire south wall at noon during the summer solstice
(Fig. 6). Minimally, how much overhang should be provided for this purpose?

S O L U T I O N

From the figure we draw the following related right triangle (Fig. 7) and solve
for x:

  90  81  9 

x  11 tan 9  1.7 feet

tan   
x

11

FIGURE 6

81 

32 

Winter solstice sun
(noon)

Summer solstice sun
(noon)

11 ft

FIGURE 7 x

11

81 

 

With the overhang found in Example 4, how far will the shadow of the overhang
come down the wall at noon during the winter solstice?

1.   42.2 , a  20.2 meters, 
b  18.3 meters

3. 30.8 meters
4. 1.1 feet

2.   11 40 ,   78 20 ,
c  6.87 kilometers
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In Problems 1–6, use the figure to write the ratio of sides that

corresponds to each trigonometric function. Do not look back

at the definitions.

1. sin  2. cot  3. csc  

4. cos  5. tan  6. sec  

 

c
b

a

Each ratio in Problems 7–12 defines a trigonometric function

of  (refer to the figure for Problems 1–6). Indicate which func-

tion without looking back at the definitions.

7. a c 8. b a 9. c a

10. b c 11. a b 12. c b

In Problems 13–18, find each acute angle  in degree measure

to two decimal places using a calculator.

13. cos   0.4917 14. sin   0.0859

15.   tan 1 8.031 16.   cos 1 0.5097

17. sin   0.6031 18. tan   1.993

In Problems 19–30, use 

the figure and the given 

information to solve each 

triangle.

19.   17.8 , c  3.45 20.   33.7 , b  22.4

21.   43 20 , a  123 22.   62 30 , c  42.5

23.   23 0 , a  54.0 24.   54 , c  4.3

25.   53.21 , b  23.82 26.   35.73 , b  6.482

27. a  6.00, b  8.46 28. a  22.0, b  46.2

29. b  10.0, c  12.6 30. b  50.0, c  165

In Problems 31–36, determine whether the statement is true or

false. If true, explain why. If false, give a counterexample.

31. If any two angles of a right triangle are known, then it is
possible to solve for the remaining angle and the three sides.

32. If any two sides of a right triangle are known, then it is pos-
sible to solve for the remaining side and the three angles.

33. If  and  are the acute angles of a right triangle, then 
sin   cos  .

34. If  and  are the acute angles of a right triangle, then 
tan   cot  .

35. If  and  are the acute angles of a right triangle, then 
sec   cos  .

36. If  and  are the acute angles of a right triangle, then 
csc   sec  .

Problems 37–42 give a geometric interpretation of the

trigonometric ratios. Refer to the figure, where O is the center

of a circle of radius 1,  is the acute angle AOD, D is the inter-

section point of the terminal side of angle  with the circle, and

EC is tangent to the circle at D.

E

F

O

D

A

cot  

csc  

 

cos  

sec  

sin  

1

tan  

CB

 

c
b

a

 

Figure for Problems 1–6
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43. Show that

  

d

hh  
d

cot   cot  

44. Show that

  

d

h
h  

d

cot   cot  

41. Explain what happens to each of the following as the acute
angle  approaches 0 .

(A) sin  (B) tan  (C) csc  

42. Explain what happens to each of the following as the acute
angle  approaches 0 .

(A) cos  (B) cot  (C) sec  

37. Explain why

(A) cos   OA (B) cot   DE (C) sec   OC

38. Explain why

(A) sin   AD (B) tan   DC (C) csc   OE

39. Explain what happens to each of the following as the acute
angle  approaches 90 .

(A) cos  (B) cot  (C) sec  

40. Explain what happens to each of the following as the acute
angle  approaches 90 .

(A) sin  (B) tan  (C) csc  

45. Surveying. Find the height of a tree (growing on level
ground) if at a point 105 feet from the base of the tree the an-
gle to its top relative to the horizontal is found to be 65.3 .

46. Air Safety. To measure the height of a cloud ceiling over
an airport, a searchlight is directed straight upward to pro-
duce a lighted spot on the clouds. Five hundred meters
away an observer reports the angle of the spot relative to
the horizontal to be 32.2 . How high (to the nearest meter)
are the clouds above the airport?

47. Engineering. If a train climbs at a constant angle of
1 23 , how many vertical feet has it climbed after going 
1 mile? (1 mile  5,280 feet)

48. Air Safety. If a jet airliner climbs at an angle of 15 30 
with a constant speed of 315 miles per hour, how long will
it take (to the nearest minute) to reach an altitude of 8.00
miles? Assume there is no wind.

49. Astronomy. Find the diameter of the moon (to the nearest
mile) if at 239,000 miles from Earth it produces an angle
of 32 relative to an observer on Earth.

50. Astronomy. If the sun is 93,000,000 miles from Earth
and its diameter is opposite an angle of 32 relative to an
observer on Earth, what is the diameter of the sun (to two
significant digits)?

51. Geometry. If a circle of radius 4 centimeters has a chord
of length 3 centimeters, find the central angle that is oppo-
site this chord (to the nearest degree).

52. Geometry. Find the length of one side of a nine-sided
regular polygon inscribed in a circle of radius 4.06 inches.

53. Physics. In a course in physics it is shown that the veloc-
ity v of a ball rolling down an inclined plane (neglecting
air resistance and friction) is given by

v  gt sin  

where g is a gravitational constant (acceleration due to
gravity), t is time, and  is the angle of inclination of the
plane (see the figure on page 416). Galileo (1564–1642)
used this equation in the form

to estimate g after measuring v experimentally. (At that
time, no timing devices existed to measure the velocity of
a free-falling body, so Galileo used the inclined plane to
slow the motion down.) A steel ball is rolled down a glass
plane inclined at 8.0 . Approximate g to one decimal place
if at the end of 3.0 seconds the ball has a measured veloc-
ity of 4.2 meters per second.

g  
v

t sin  
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54. Physics. Refer to Problem 53. A steel ball is rolled down
a glass plane inclined at 4.0 . Approximate g to one deci-
mal place if at the end of 4.0 seconds the ball has a mea-
sured velocity of 9.0 feet per second.

55. Engineering—Cost Analysis. A cable television company
wishes to run a cable from a city to a resort island 3 miles
offshore. The cable is to go along the shore, then to the is-
land underwater, as indicated in the accompanying figure.
The cost of running the cable along the shore is $15,000
per mile and underwater, $25,000 per mile.

(A) Referring to the figure, show that the cost in terms of  
is given by

C( )  75,000 sec   45,000 tan   300,000

(B) Calculate a table of costs, each cost to the nearest dol-
lar, for the following values of  : 10 , 20 , 30 , 40 ,
and 50 . (Notice how the costs vary with  . In a course
in calculus, students are asked to find  so that the cost
is minimized.)

City

Resort
Island

3 miles

20 miles
Shore

 

 

56. Engineering—Cost Analysis. Refer to Problem 55. Sup-
pose the island is 4 miles offshore and the cost of running
the cable along the shore is $20,000 per mile and under-
water, $30,000 per mile.

(A) Referring to the figure for Problem 55 with appropri-
ate changes, show that the cost in terms of  is given
by

C( )  120,000 sec   80,000 tan   400,000

(B) Calculate a table of costs, each cost to the nearest dol-
lar, for the following values of  : 10 , 20 , 30 , 40 ,
and 50 .

57. Geometry. Find r in the accompanying figure (to two sig-
nificant digits) so that the circle is tangent to all three sides
of the isosceles triangle. [Hint: The radius of a circle is
perpendicular to a tangent line at the point of tangency.]

58. Geometry. Find r in the accompanying figure (to two sig-
nificant digits) so that the smaller circle is tangent to the
larger circle and the two sides of the angle. [See the hint in
Problem 57.]

30 
r

2.0 in.

30 2.0 meters
r

 

 

  

  

Properties of Trigonometric Functions

Basic Identities  Sign Properties  Periodic Functions  Reference Triangles

In Section 5.4 we study properties of the trigonometric functions that distinguish
them from the polynomial, rational, exponential, and logarithmic functions. The
trigonometric functions are periodic, and as a consequence, have infinitely many
zeros, or infinitely many turning points, or both.

Basic Identities
The definition of trigonometric functions provides several useful relationships
among these functions. For convenience, we restate that definition.
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Because sin x  b and cos x  a, we obtain the following equations:

(1)

(2)

(3)

(4)

(5)

Because the circular points W(x) and W( x) are symmetrical with respect to
the horizontal axis (Fig. 1), we have the following sign properties:

(6)
(7)

(8)

Finally, because (a, b)  (cos x, sin x) is on the unit circle u2  v2  1, it
follows that

(cos x)2  (sin x)2  1

which is usually written as

sin2 x  cos2 x  1 (9)

where sin2 x and cos2 x are concise ways of writing (sin x)2 and (cos x)2,
respectively.

tan ( x)  
 b

a
  

b

a
  tan x

cos ( x)  a  cos x

sin ( x)   b   sin x

 cot x  
a

b
 

cos x

sin x

 tan x  
b

a
 

sin x

cos x

 cot x  
a

b
 

1

b/a
 

1

tan x

 sec x  
1

a
 

1

cos x

 csc x  
1

b
 

1

sin x

D E F I N I T I O N 1
Trigonometric Functions

Let x be a real number and let (a, b) be the coordinates of the circular point W(x) that lies on the

terminal side of the angle with radian measure x. Then:

cot x  
a

b
 b  0tan x  

b

a
 a  0

sec x  
1

a
 a  0cos x  a

csc x  
1

b
 b  0sin x  b

(1, 0)

x rad

W(x)

(a, b)

x units
arc length

a

b

u

v

(a, b)

(a,  b)

W(x)

W( x)

FIGURE 1 Symmetry property.



Equations (1)–(9) are called basic identities. They hold true for all replace-
ments of x by real numbers for which both sides of an equation are defined. These
basic identities must be memorized along with the definitions of the six trigono-
metric functions, because the material is used extensively in developments that
follow. Note that most of Chapter 6 is devoted to trigonometric identities.

We summarize the basic identities for convenient reference in Theorem 1.

Using Basic Identities

Use the basic identities to find the values of the other five trigonometric functions
given sin x  and tan x  0.

S O L U T I O N

We first note that the circular point W(x) is in quadrant III, because that is the only
quadrant in which sin x  0 and tan x  0. We next find cos x using identity (9):

Pythagorean identity (9)

Because W(x) is in quadrant III. cos x   
 3

2

 cos2 x  3
4

( 1
2)2  cos2 x  1

sin2 x  cos2 x  1

 1
2
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C A U T I O N

(cos x)2  cos x2

(sin x)2  sin x2

T H E O R E M  1
Basic Trigonometric Identities

For x any real number (in all cases restricted so that both sides of an
equation are defined),

Reciprocal identities
(1) (2) (3)

Quotient identities
(4) (5)

Identities for negatives
(6) (7) (8)

sin ( x)   sin x cos ( x)  cos x tan ( x)   tan x

Pythagorean identity
(9)

sin2 x  cos2 x  1

cot x  
cos x

sin x
tan x  

sin x

cos x

cot x  
1

tan x
sec x  

1

cos x
csc x  

1

sin x
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Now, because we have values for sin x and cos x, we can find values for the other
four trigonometric functions using identities (1), (2), (4), and (5):

Reciprocal identity (1)

Reciprocal identity (2)

Quotient identity (4)

Quotient identity (5)

It is important to note that we were able to find the values of the other five
trigonometric functions without finding x.

Use the basic identities to find the values of the other five trigonometric functions
given cos x  and cot x  0.1  2

cot x  
cos x

sin x
 
  3 2

 1
2

  3

tan x  
sin x

cos x
 

 1
2

  3 2
 

1

 3

sec x  
1

cos x
 

1

  3 2
  

2

 3

csc x  
1

sin x
 

1

 1
2

  2

[Note: We could also use identity (3).]

E X P L O R E / D I S C U S S  1

Suppose that sin x   and tan x  0, as in Example 1. Using basic
identities and the results in Example 1, find each of the following:

(A) sin ( x) (B) sec ( x) (C) tan ( x)

Verbally justify each step in your solution process.

1
2

Sign Properties
As a circular point W(x) moves from quadrant to quadrant, its coordinates (a, b)
undergo sign changes. Hence, the trigonometric functions also undergo sign
changes. It is important to know the sign of each trigonometric function in each
quadrant. Table 1 shows the sign behavior for each function. It is not necessary
to memorize Table 1, because the sign of each function for each quadrant is eas-
ily determined from its definition (which should be memorized).

T A B L E  1 Sign Properties

Sign in Quadrant
Trigonometric
Function I II III IV

sin x  b     

csc x  1 b     

cos x   a     

sec x   1 a     

tan x  b a     

cot x  a b     

II I

III IV

v

a   b
( ,  )

a   b
( ,  )

a   b
( ,  )

a   b
( ,  )

u



Periodic Functions
Because the unit circle has a circumference of 2 , we find that for a given value
of x (Fig. 2) we will return to the circular point W(x)  (a, b) if we add any inte-
ger multiple of 2 to x. Think of a point P moving around the unit circle in either
direction. Every time P covers a distance of 2 , the circumference of the circle,
it is back at the point where it started. Thus, for x any real number,

sin (x  2k )  sin x k any integer

cos (x  2k )  cos x k any integer

Functions with this kind of repetitive behavior are called periodic functions.
In general, we have Definition 2.

Both the sine and cosine functions are periodic with period 2 . Once the graph
for one period is known, the entire graph is obtained by repetition. The domain
of both functions is the set of all real numbers, and the range of both is [ 1, 1].
Because b  0 at the circular points (1, 0) and ( 1, 0), the zeros of the sine func-
tion are k , k any integer. Because a  0 at the circular points (0, 1) and (0,  1),
the zeros of the cosine function are   2  k , k any integer. By the basic identity
sin( x)   sin x, the sine function is symmetrical with respect to the origin.

5 TRIGONOMETRIC FUNCTIONS420

FIGURE 2

x units
(arc length)

b

sin x

cos x

x rad

r  
 1

(1, 0)( 1, 0)

(0,  1)

(0, 1)

a

          a        b
P   (cos x, sin x)

0

D E F I N I T I O N 2
Periodic Functions

A function f is periodic if there exists a positive real number p such that

f (x  p)  f (x)

for all x in the domain of f. The smallest such positive p, if it exists, is called the fundamental period

of f (or often just the period of f ).
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Graph of y sin x

Period: 2 Domain: All real numbers Range: [ 1, 1]

Symmetrical with respect to the origin

0

1

 1

x

y

 2 

2 3 4    

FIGURE 3

Graph of y cos x

Period: 2 Domain: All real numbers Range: [ 1, 1]

Symmetrical with respect to the y axis

0

1

 1

x

y

 2 2 3 4    

FIGURE 4

In the terminology of Section 1.4, we say that the sine function is odd (because
it is symmetrical with respect to the origin) and the cosine function is even

(because it is symmetrical with respect to the y axis).

Symmetry

Determine whether the function is even, odd, or neither.f(x )  
sin x

x

Because cos( x)  cos x, the cosine function is symmetrical with respect to the
y axis. Figures 3 and 4 summarize these properties and show the graphs of the
sine and cosine functions, respectively.



S O L U T I O N

Sine function is odd

Therefore f(x) is symmetrical with respect to the y axis and is an even function.
This fact is confirmed by the graph of f(x) (Fig. 5). Note that although f(x) is unde-
fined at x  0, it appears that f(x) approaches 1 as x approaches 0 from either side.

Determine whether the function is even, odd, or neither.

Because the tangent function is the quotient of the sine and cosine functions,
you might expect that it would also be periodic with period 2 . Surprisingly, the
tangent function is periodic with period  . To see this, note that if (a, b) is the
circular point associated with x, then ( a,  b) is the circular point associated
with x   . Therefore,

The tangent function is symmetrical with respect to the origin because 

Because tan x  sin x cos x, the zeros of the tangent function are the zeros of
the sine function, namely, k , k any integer, and the tangent function is undefined
at the zeros of the cosine function, namely,   2  k , k any integer. What does
the graph of the tangent function look like near one of the values of x, say   2,
at which it is undefined? If x    2 but x is close to   2, then b is close to 1
and a is positive and close to 0, so the ratio b a is large and positive. Thus,

tan x S  as x S (  2) 

Similarly, if x    2 but x is close to   2, then b is close to 1 and a is nega-
tive and close to 0, so the ratio b a is large in absolute value and negative. Thus,

tan x S   as x S (  2) 

Therefore the line x    2 is a vertical asymptote for the tangent function and,
by periodicity, so are the vertical lines x    2  k , k any integer. Figure 6
summarizes these properties of the tangent function and shows its graph. The anal-
ogous properties of the cotangent function and its graph are shown in Figure 7.

tan ( x)  
sin ( x)

 cos ( x)
 
 sin x

 cos x
  tan x

tan (x   )  
 b

 a
 

b

a
 tan x

g(x)  
cos x

x

 f(x)

 
sin x

x

 
 sin x

 x

f( x)  
sin ( x)

 x
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 1

 4

1

4

FIGURE 5 y1  
sin x

x
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Graph of y tan x

Period:  

Domain: All real numbers except   2  k , k an integer

Range: All real numbers

Symmetrical with respect to the origin

Increasing function between consecutive asymptotes

Discontinuous at x    2  k , k an integer

1

0

y

x
3 

2

5 

2

 

2

 

2
 

 2 2    

5 

2
 

3 

2
 

 1

FIGURE 6

Graph of y cot x

Period:  

Domain: All real numbers except k , k an integer

Range: All real numbers

Symmetrical with respect to the origin

Decreasing function between consecutive asymptotes

Discontinuous at x  k , k an integer

1

y

 

2

2 3  2    3 

2
 

3 

2

5 

2

 

2
 

x
0

 1

FIGURE 7



Note that for a particular value of x, the y value on the graph of y  cot x is
the reciprocal of the y value on the graph of y  tan x. The vertical asymptotes
of y  cot x occur at the zeros of y  tan x, and vice versa.

The graphs of y  csc x and y  sec x can be obtained by taking the recip-
rocals of the y values of the graphs of y  sin x and y  cos x, respectively. Ver-
tical asymptotes occur at the zeros of y  sin x or y  cos x. Figures 8 and 9
summarize the properties and show the graphs of y  csc x and y  sec x. To
emphasize the reciprocal relationships, the graphs of y  sin x and y  cos x are
indicated in broken lines.
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Graph of y csc x

Period: 2 

Domain: All real numbers except k , k an integer

Range: All real numbers y such that y   1 or y  1

Symmetrical with respect to the origin

Discontinuous at x  k , k an integer

y   sin x

y   csc x  
1

sin x

1

y

 

2

2  2    3 

2
 

3 

2

 

2
 

x
0

 1

FIGURE 8

E X P L O R E / D I S C U S S  2

(A) Discuss how the graphs of the tangent and cotangent functions are
related.

(B) How would you shift and/or reflect the tangent graph to obtain the
cotangent graph?

(C) Is either the graph of y  tan (x    2) or y   tan (x    2)
the same as the graph of y  cot x? Explain in terms of shifts
and/or reflections.
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Graph of y sec x

Period: 2 

Domain: All real numbers except   2  k , k an integer

Range: All real numbers y such that y   1 or y  1

Symmetrical with respect to the y axis

Discontinuous at x    2  k , k an integer

y   cos x

y   sec x  
1

cos x

1

y

2  2    

x
0

 1
3 

2

 

2

 

2
 

3 

2
 

FIGURE 9

Reference Triangles
Consider an angle  in standard position. Let P  (a, b) be the point of inter-
section of the terminal side of  with a circle of radius r  0. Then

a2  b2  r2

so dividing both sides of the equation by r2,

(a r)2  (b r)2  1

Therefore the circular point Q on the terminal side of  has coordinates (a r, b r)
(Fig. 10). By Definition 1,

sin   csc   , b  0

cos   sec   , a  0

tan   , a  0 cot   , b  0
a

b

b

a

r

a

a

r

r

b

b

r



It is often convenient to associate a reference triangle and reference angle with
 , and to label the horizontal side, vertical side, and hypotenuse of the reference
triangle with a, b, and r, respectively, to easily obtain the values of the trigono-
metric functions of  .

If Adj and Opp denote the labels a and b (possibly negative) on the horizon-
tal and vertical sides of the reference triangle, and Hyp denotes the length r of
the hypotenuse, then

sin   csc   

cos   sec   

tan   cot   
Adj

Opp

Opp

Adj

Hyp

Adj

Adj

Hyp

Hyp

Opp

Opp

Hyp
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Reference Triangle and Reference Angle

1. To form a reference triangle for  , draw a perpendicular from a point P  (a, b) on the

terminal side of  to the horizontal axis.

2. The reference angle  is the acute angle (always taken positive) between the terminal side 

of  and the horizontal axis.

(a, b)  (0, 0)

 is always positive
a

b

a

 

b

 

P   (a, b)

r

FIGURE 10

u

v

(1, 0) (r, 0)

Q

P   (a, b)

 



Values of the Trigonometric Functions

If sin   4 7 and cos   0, find the values of each of the other five trigono-
metric functions of  .

S O L U T I O N

Because the sine of  is positive and the cosine is negative, the angle  is in quad-
rant II. We sketch a reference triangle (Fig. 11) and use the Pythagorean theorem
to calculate the length of the horizontal side:

Therefore Adj  , Opp  4, Hyp  7.  The values of the other five trigono-
metric functions are:

cos   

tan   

csc   

sec   

cot   

If tan   10 and sin   0, find the values of each of the other five trigono-
metric functions of  .

  33

4

 7

 33

7

4

 4

 33

  33

7

  33

 72  42   33
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FIGURE 11

4
7

Adj

 

1. sin x  , tan x   1, csc x  , sec x  , cot x   1 2. Odd
3. sin   , cos   , csc   , sec   , cot   1 10  101  101 10 1  101 10  101

 2  2 1  2
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The figure will be useful in many of the problems in this exercise.

0

a

x

b
1

(1, 0)( 1, 0)

(0,  1)

(0, 1)

 /2

 2 

3 /2

          a        b
P   (cos x, sin x)

a

b

Figure for Problems 1–10.

6. What are the x intercepts for the graph of each function
over the interval  2  x  2 ?

(A) y   cos x (B) y   tan x (C) y   sec x

7. For what values of x,  2  x  2 , are the following
functions not defined?

(A) y   cos x (B) y   tan x (C) y   csc x

8. For what values of x,  2  x  2 , are the following
functions not defined?

(A) y   sin x (B) y   cot x (C) y   sec x

9. At what points,  2  x  2 , do the vertical asymp-
totes for the following functions cross the x axis?

(A) y   cos x (B) y   tan x (C) y   csc x

10. At what points,  2  x  2 , do the vertical asymp-
totes for the following functions cross the x axis?

(A) y   sin x (B) y   cot x (C) y   sec x

Answer Problems 1–10 without looking back in the text or

using a calculator. You can refer to the figure.

1. What are the periods of the sine, cotangent, and cosecant
functions?

2. What are the periods of the cosine, tangent, and secant
functions?

3. How far does the graph of each function deviate from the
x axis?

(A) y  cos x (B) y  tan x (C) y  csc x

4. How far does the graph of each function deviate from the
x axis?

(A) y  sin x (B) y  cot x (C) y  sec x

5. What are the x intercepts for the graph of each function
over the interval  2  x  2 ?

(A) y  sin x (B) y  cot x (C) y  csc x

12. (A) Describe a shift and or reflection that will transform
the graph of y   sec x into the graph of y   csc x.

(B) Is either the graph of y    sec (x    2) or
y   sec (x    2) the same as the graph of
y  csc x? Explain in terms of shifts and or reflections.

11. (A) Describe a shift and or reflection that will transform
the graph of y   csc x into the graph of y   sec x.

(B) Is either the graph of y    csc (x    2) or
y   csc (x    2) the same as the graph of
y  sec x? Explain in terms of shifts and or reflections.
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In Problems 13–20, determine whether each function is even,

odd, or neither.  Check your answer by graphing.

13. 14.

15. 16.

17. y  sin x cos x 18. y  x sin x cos x

19. y  x2 sin x 20. y  x3 sin x

Find the value of each of the six trigonometric functions for an

angle  that has a terminal side containing the point indicated

in Problems 21–24.

21. (6, 8) 22. ( 3, 4)

23. 24.

Find the reference angle  for each angle  in Problems

25–30.

25.   300 26.   135 

27. 28.

29. 30.

In Problems 31–36, find the smallest positive  in degree and

radian measure for which

31. 32.

33. 34.

35. 36.

Find the value of each of the other five trigonometric functions

for an angle  , without finding  , given the information indi-

cated in Problems 37–40. Sketching a reference triangle

should be helpful.

37.

38.

39.

40.

41. Which trigonometric functions are not defined when the
terminal side of an angle lies along the vertical axis. Why?

42. Which trigonometric functions are not defined when the
terminal side of an angle lies along the horizontal axis?
Why?

cos     5 3  and  tan    0

cos     5 3  and  cot    0

tan    4
3  and  sin    0

sin   3
5  and  cos    0

sec     2csc   
 2

 3

tan     3sin   
 1

2

sin   
  3

2
cos   

 1

2

   
5 

4
   

5 

3

  
 

4
  

7 

6

( 3, 1)( 1,  3)

y  
cot x

x
y  

csc x

x

y  
sec x

x
y  

tan x

x

43. Find exactly, all  , 0    360 , for which
cos    .

44. Find exactly, all  , 0    360 , for which
cot    .

45. Find exactly, all  , 0    2 , for which tan   1.

46. Find exactly, all  , 0    2 , for which sec   .

Problems 47–52 offer a preliminary investigation into the rela-

tionships of the graphs of y  sin x and y  cos x with the

graphs of y  A sin x, y  A cos x, y  sin Bx, y  cos Bx,

y  sin (x  C), and y  cos (x  C). This important topic is

discussed in detail in Section 5.5.

47. (A) Graph y  A cos x, ( 2  x  2 ,  3  y  3), for
A  1, 2, and  3, all in the same viewing window.

(B) Do the x intercepts change? If so, where?

(C) How far does each graph deviate from the x axis?
(Experiment with additional values of A.)

(D) Describe how the graph of y  cos x is changed by
changing the values of A in y  A cos x?

48. (A) Graph y  A sin x, ( 2  x  2 ,  3  y  3), for
A  1, 3, and  2, all in the same viewing window.

(B) Do the x intercepts change? If so, where?

(C) How far does each graph deviate from the x axis?
(Experiment with additional values of A.)

(D) Describe how the graph of y  sin x is changed by
changing the values of A in y  A sin x?

49. (A) Graph y  sin Bx (   x   ,  2  y  2), for 
B  1, 2, and 3, all in the same viewing window.

(B) How many periods of each graph appear in this view-
ing rectangle? (Experiment with additional positive
integer values of B.)

(C) Based on the observations in part B, how many peri-
ods of the graph of y  sin nx, n a positive integer,
would appear in this viewing window?

50. (A) Graph y  cos Bx (   x   ,  2  y  2), for 
B  1, 2, and 3, all in the same viewing window.

(B) How many periods of each graph appear in this view-
ing rectangle? (Experiment with additional positive
integer values of B.)

(C) Based on the observations in part B, how many peri-
ods of the graph of y  cos nx, n a positive integer,
would appear in this viewing window?

51. (A) Graph y  cos (x  C ),  2  x  2 ,
 1.5  y  1.5, for C  0,    2, and   2, all in the
same viewing window. (Experiment with additional
values of C.)

(B) Describe how the graph of y  cos x is changed by
changing the values of C in y  cos (x  C)?

  2

1  3

 3 2
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52. (A) Graph y  sin (x  C ),  2  x  2 ,
 1.5  y  1.5, for C  0,    2, and   2, all in the
same viewing window. (Experiment with additional
values of C.)

(B) Describe how the graph of y  sin x is changed by
changing the values of C in y  sin (x  C )?

53. Try to calculate each of the following on your calculator.
Explain the results.

(A) sec (  2) (B) tan (   2) (C) cot (  )

54. Try to calculate each of the following on your calculator.
Explain the results.

(A) csc  (B) tan (  2) (C) cot 0

55. Graph f (x)  sin x and g(x)  x in the same viewing win-
dow ( 1  x  1,  1  y  1).

(A) What do you observe about the two graphs when x is
close to 0, say  0.5  x  0.5?

(B) Complete the table to three decimal places (use the
table feature on your graphing utility if it has one):

(In applied mathematics certain derivations, formulas,
and calculations are simplified by replacing sin x with
x for small values of .)

56. Graph h(x)  tan x and g(x)  x in the same viewing win-
dow ( 1  x  1,  1  y  1).

(A) What do you observe about the two graphs when x is
close to 0, say  0.5  x  0.5?

(B) Complete the table to three decimal places (use the
table feature on your graphing utility if it has one):

 x 

(In applied mathematics certain derivations, formulas,
and calculations are simplified by replacing tan x with
x for small values of .) x 

57. If the coordinates of A are (4, 0) and arc length s is 7 units,
find

(A) The exact radian measure of  

(B) The coordinates of P to three decimal places

58. If the coordinates of A are (2, 0) and arc length s is 8 units,
find

(A) The exact radian measure of  

(B) The coordinates of P to three decimal places

59. In a rectangular coordinate system, a circle with center at
the origin passes through the point . What is the
length of the arc on the circle in quadrant I between the
positive horizontal axis and the point ?

60. In a rectangular coordinate system, a circle with center at
the origin passes through the point . What is the
length of the arc on the circle in quadrant I between the
positive horizontal axis and the point ?(2, 2 3)

(2, 2 3)

(6 3, 6)

(6 3, 6)

x  0.3  0.2  0.1 0.0 0.1 0.2 0.3

tan x

x  0.3  0.2  0.1 0.0 0.1 0.2 0.3

sin x

s

A

 

P   (a, b)
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61. Solar Energy. The intensity of light I on a solar cell
changes with the angle of the sun and is given by the for-
mula I  k cos  , where k is a constant (see the figure).

Find light intensity I in terms of k for   0 ,   30 ,
and   60 .

62. Solar Energy. Refer to Problem 61. Find light intensity 
I in terms of k for   20 ,   50 , and   90 .

63. Physics—Engineering. The figure illustrates a piston con-

nected to a wheel that turns 3 revolutions per second;
hence, the angle  is being generated at 3(2 ) 6 radi-
ans per second, or   6 t, where t is time in seconds. If P
is at (1, 0) when t  0, show that

for t  0.

 sin 6 t   16  (cos 6 t)2

y  b   42
 a2

64. Physics—Engineering. In Problem 63, find the position
of the piston y when t  0.2 second (to three significant
digits).

65. Geometry. The area of a regular n-sided polygon circum-
scribed about a circle of radius 1 is given by

(A) Find A for n  8, n  100, n  1,000, and
n  10,000. Compute each to five decimal places.

(B) What number does A seem to approach as n→  ?
(What is the area of a circle with radius 1?)

A  n tan 
180°

n

66. Geometry. The area of a regular n-sided polygon in-
scribed in a circle of radius 1 is given by

(A) Find A for n  8, n  100, n  1,000, and 
n  10,000. Compute each to five decimal places.

(B) What number does A seem to approach as n→  ?
(What is the area of a circle with radius 1?)

67. Angle of Inclination. Recall (Section 2.1) the slope of a
nonvertical line passing through points P1  (x1, y1) and
P2  (x2, y2) is given by slope  m  (y2  y1) (x2  x1).
The angle  that the line L makes with the x axis,
0    180 , is called the angle of inclination of the
line L (see figure). Thus,

Slope m  tan  , 0    180 

A  
n

2
 sin 

360°

n

r   1

n   8




L

L

x

y

x

y

3 revolutions
per second a

b


   6 t

P   (a, b)

4 inches

y

(1, 0)

 



Sun

Solar cell
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(A) Compute the slopes to two decimal places of the lines
with angles of inclination 88.7 and 162.3 .

(B) Find the equation of a line passing through ( 4, 5)
with an angle of inclination 137 . Write the answer in
the form y  mx  b, with m and b to two decimal
places.

68. Angle of Inclination. Refer to Problem 67.

(A) Compute the slopes to two decimal places of the lines
with angles of inclination 5.34° and 92.4°.

(B) Find the equation of a line passing through (6,  4)
with an angle of inclination 106 . Write the answer in
the form y  mx  b, with m and b to two decimal
places.

More General Trigonometric Functions 
and Models

Graphs of y  A sin Bx and y  A cos Bx  Graphs of y  A sin (Bx  C ) and
y  A cos (Bx  C )  Finding an Equation from the Graph of a Simple Harmonic
 Modeling and Data Analysis

Imagine a weight suspended from the ceiling by a spring. If the weight were pulled
downward and released, then, assuming no air resistance or friction, it would move
up and down with the same frequency and amplitude forever. This idealized
motion is an example of simple harmonic motion. Simple harmonic motion can
be described by functions of the form y  A sin (Bx  C) or y  A cos (Bx  C),
called simple harmonics.

Simple harmonics are extremely important in both pure and applied mathe-
matics. In applied mathematics they are used in the analysis of sound waves, radio
waves, X-rays, gamma rays, visible light, infrared radiation, ultraviolet radiation,
seismic waves, ocean waves, electric circuits, electric generators, vibrations, bridge
and building construction, spring–mass systems, bow waves of boats, sonic booms,
and so on. Analysis involving simple harmonics is called harmonic analysis.

In Section 5.5 we study properties, graphs, and applications of simple har-
monics. A brief review of graph transformations (Section 1.4) should prove
helpful.

Graphs of y A sin Bx and y A cos Bx
We visualize the graphs of functions of the form y  A sin Bx or y  A cos Bx,
and determine their zeros and turning points, by understanding how each of the
constants A and B transforms the graph of y  sin x or y  cos x.

Zeros and Turning Points

Find the zeros and turning points of each function on the interval [0, 2 ].

(A) y  sin x

(B) y   2 sin x

1

2



S O L U T I O N S

(A) The function y  sin x is the vertical contraction of y  sin x that
is obtained by multiplying each ordinate value by (Fig. 1). Therefore
its zeros on [0, 2 ] are identical to the zeros of y  sin x, namely
x  0,  , and 2 . Because the turning points of y  sin x are (  2, 1)
and (3  2,  1), the turning points of y  sin x are (  2, 1 2) and
(3  2,  1 2).

(B) The function y   2 sin x is the vertical expansion of y  sin x that
is obtained by multiplying each ordinate value by 2, followed by a
reflection in the x axis (see Fig. 1). Therefore its zeros on [0, 2 ] are
identical to the zeros of y  sin x, namely x  0,  , and 2 .
Because the turning points of y  sin x are (  2, 1) and (3  2,  1),
the turning points of y   2 sin x are (  2,  2) and (3  2, 2).

1
2

1
2

1
2

Find the zeros and turning points of each function on the interval [  2, 5  2].

(A) y   5 cos x

(B) y  cos x

As Example 1 illustrates, the graph of y  A sin x can be obtained from the
graph of y  sin x by multiplying each y value of y  sin x by the constant A.
The graph of y  A sin x still crosses the x axis where the graph of y  sin x

crosses the x axis, because A  0  0. Because the maximum value of sin x is
1, the maximum value of A sin x is |A|  1   |A|. The constant |A| is called the
amplitude of the graph of y  A sin x and indicates the maximum deviation of
the graph of y  A sin x from the x axis.

The period of y  A sin x (assuming A  0) is the same as the period of
y  sin x, namely 2 , because A sin (x  2 )  A sin x.

1

3
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FIGURE 1 y

3 

2

 

2

 2 

1

2

 1

0

 2

x

y   sin x

y    2 sin x

y   
1

2
sin x



Find the period of each function.

(A) y  cos (x 10)

(B) y  cos (6 x)

As Example 2 illustrates, the graph of y  sin Bx, for a positive constant B, com-
pletes one cycle as Bx varies from 

Bx  0 to Bx  2 

FIGURE 2

x

y

 2 3 4 

 1

1

y   sin 2x y   sin x y   sin
x

2

0

Periods

Find the period of each function.

(A) y  sin 2x

(B) y  sin (x 2)

S O L U T I O N S

(A) Because the function y  sin x has period 2 , the function 
y  sin 2x completes one cycle as 2x varies from

2x  0 to 2x  2 

or as x varies from 

x  0 to x   Half the period for sin x.

Therefore the period of y  sin 2x is  (Fig. 2).

(B) Because the function y  sin x has period 2 , the function 
y  sin (x 2) completes one cycle as x 2 varies from

 0 to  2 

or as x varies from 

x  0 to x  4 Double the period for sin x.

Therefore the period of y  sin (x 2) is 4 (see Fig. 2).

x

2

x

2
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or as x varies from

x  0 to x  

Therefore the period of y  sin Bx is . Note that the amplitude of y  sin Bx

is 1, the same as the amplitude of y  sin x. The effect of the constant B is to
compress or stretch the basic sine curve by changing the period of the function,
but not its amplitude. A similar analysis applies to y  cos Bx, for B  0, where
it can be shown that the period is also . We combine and summarize our results
on period and amplitude as follows:

2 
B

2 
B

2 

B

You can either memorize the formula for the period, , or use the reasoning
we used in deriving the formula. Recall, sin Bx or cos Bx completes one cycle as
Bx varies from

Bx  0 to Bx  2 

that is, as x varies from

Some prefer to memorize a formula, others a process.

Amplitude, Period, and Turning Points

Find the amplitude, period, and turning points of y   3 cos ( x 2) on the inter-
val [ 4, 4].

S O L U T I O N

Amplitude    3  3 Period  

Because y  cos x has turning points at x  0 and x    (half of a complete
cycle), y   3 cos ( x 2) has turning points at x  0 and x   2. The turning
points on the interval [ 4, 4] are thus ( 2, 3), (0,  3), and (2, 3). These results
are confirmed by graphing y   3 cos ( x 2) (Fig. 3).

2 

(  2)
 4

x  0    to    x  2 

B

2 
B

Period and Amplitude

For y A sin Bx or y A cos Bx, A 0, B 0:

Amplitude   A Period  

If 0  B 1, the basic sine or cosine curve is stretched.

If B 1, the basic sine or cosine curve is compressed.

2 

B

 4

 4

4

4

FIGURE 3



Find the amplitude, period, and turning points of y  sin (3 x) on the interval
[0, 1].

1
4

Graphs of y A sin (Bx C ) and y A cos (Bx C )
The graph of y  A sin (Bx  C ) is a horizontal translation of the graph of the
function y  A sin Bx. In fact, because the period of the sine function is 2 ,
y  A sin (Bx C ) completes one cycle as Bx  C varies from

Bx  C  0 to Bx  C  2 

or (solving for x in each equation) as x varies from

Phase shift Period

We conclude that y  A sin (Bx  C ) has a period of 2  B, and its graph is the
graph of y = A sin Bx translated | C/B| units to the right if  C B is positive and
| C/B| units to the left if  C B is negative. The number  C B is referred to as
the phase shift.

x   
C

B
    to    x   C

B
 

2 

B

E X P L O R E / D I S C U S S  1

Find an equation of the form y  A cos Bx that produces the following
graph. Check the result with a graphing utility.

Is it possible for an equation of the form y  A sin Bx to produce the
same graph? Explain.

x

y

 4

4

 1 1 2
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Amplitude, Period, Phase Shift, and Zeros

Find the amplitude, period, phase shift, and zeros of y  cos (4x    2).

S O L U T I O N

Amplitude  |A|   

The graph completes one cycle as 4x    2 varies from

4x   0 to 4x   2 

or as x varies from 

x  to x   

Phase shift   Period  

The zeros of y  cos (4x    2) are obtained by shifting the zeros of 
y  cos (4x) to the right by   8 units. Because x    8 and x  3  8 are zeros
of y  cos (4x), x    8    8    4 and x  3  8    8    2 are
zeros of y  cos (4x    2). By periodicity the zeros of y  cos (4x    2)
are x  k  4, k any integer. These results are confirmed by graphing 
y  cos (4x    2) (Fig. 4).

Find the amplitude, period, phase shift, and zeros of y  sin (2x   ).3
4

1
2

1
2

1
2

1
2

1
2

1
2

 

2

 

8

 

2

 

8

 

8

 

2

 

2

1

2 12 

1
2

 1

 

1



FIGURE 4

E X P L O R E / D I S C U S S  2

Find an equation of the form y  A sin (Bx  C ) that produces the
following graph. Check the results with a graphing utility.

Is it possible for an equation of the form y  A cos (Bx  C ) to pro-
duce the same graph? Explain.

y

5

4



4

3

4
 

x

3

2



The graphs of y  A sin (Bx  C )  k and y  A cos (Bx  C )  k are
vertical translations (up k units if k  0, down k units if k  0) of the graphs
of y  A sin (Bx  C ) and y  A cos (Bx  C ), respectively.

Because y  sec x and y  csc x are unbounded functions, amplitude is not
defined for functions of the form y  A sec (Bx  C ) and y  A csc (Bx  C ).
However, because both the secant and cosecant functions have period 2 , the
functions y  A csc (Bx  C ) and y  A sec (Bx  C ) have period 2  B and
phase shift  C B.

Because y  tan x and y  cot x are unbounded functions, amplitude is not
defined for functions of the form y  A tan (Bx  C ) or y  A cot (Bx  C ).
The tangent and cotangent functions both have period  , so the functions 
y  A tan (Bx  C ) and y  A cot (Bx  C ) have period   B and phase shift
 C B.

Our results on amplitude, period, and phase shift are summarized in the box.

Finding an Equation from the Graph of a Simple Harmonic
Given the graph of a simple harmonic, we wish to find an equation of the form
y  A sin (Bx  C ) or y  A cos (Bx  C ) that produces the graph. Example 5
illustrates the process.

Finding an Equation of a Simple Harmonic Graph

Graph y1  3 sin x  4 cos x using a graphing utility, and find an equation of
the form y2  A sin (Bx  C ) that has the same graph as y1. Find A and B exactly
and C to three decimal places.
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Amplitude, Period, and Phase Shift

Let A, B, C be constants such that A 0 and B  0.

For y  A sin (Bx  C ) and y  A cos (Bx  C ):

Amplitude   A Period  Phase shift  

For y  A sec (Bx  C ) and y  A csc (Bx  C ):

Period  Phase shift  

For y  A tan (Bx  C) and y  A cot (Bx  C ):

Period  Phase shift  

Note: Amplitude is not defined for the secant, cosecant, tangent, and cotangent functions, all of

which are unbounded.

 C

B

 

B

 C

B

2 

B

 C

B

2 

B
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S O L U T I O N

The graph of y1 is shown in Figure 5. The graph appears to be a sine curve shifted
to the left. The amplitude and period appear to be 5 and 2 , respectively. (We
will assume this for now and check it at the end.) Thus, A  5, and because
P  2  B, then B  2  P  2  2  1. Using a graphing utility, we find that
the x intercept closest to the origin, to three decimal places, is  0.927. To find
C, substitute B  1 and x   0.927 into the phase-shift formula x   C B and
solve for C:

We now have the equation we are looking for:

y2  5 sin (x  0.927)

C H E C K

Graph y1 and y2 in the same viewing window. If the graphs are the same, it appears
that only one graph is drawn—the second graph is drawn over the first. To check
further that the graphs are the same, use TRACE and switch back and forth
between y1 and y2 at different values of x. Figure 6 shows a comparison at 
x  0 (both graphs appear in the same viewing window).

C  0.927

 0.927   
C

1

x   
C

B

 6

 2

6

2

FIGURE 5 y1  3 sin x  4 cos x.

 6

 2

6

2

FIGURE 6

 6

 2

6

2

Graph y1  4 sin x  3 cos x using a graphing utility, and find an equation of
the form y2  A sin (Bx  C ) that has the same graph as y1. (Find the x inter-
cept closest to the origin to three decimal places.)

Modeling and Data Analysis
A graphing utility can be used to fit a function of the form y  A sin (Bx  C )  k

to a set of data points. This tool, called sinusoidal regression, can be used to
model periodic phenomena.



Temperature Variation

The monthly average high temperatures in Fairbanks, Alaska, are given in Table 1.
Use sinusoidal regression to find the function y  A sin (Bx  C )  k that best
fits the data. Round the constants A, B, C, and k to three significant digits and
use the sinusoidal regression function to estimate the average high temperature on
April 1.

S O L U T I O N

To observe the cyclical behavior of the data, we enter the average high tempera-
tures for two consecutive years, from x  1 to x  24. The data, the sinusoidal
regression function, and a plot of the data and graph of the regression function
are shown in Figure 7. Rounding constants to three significant digits, the sinu-
soidal regression function is

y  37.4 sin (0.523x  1.93)  37.2

To estimate the average high temperature on April 1 we substitute x  3.5, obtain-
ing a temperature of 33.5 . (Note the  slight discrepancy, due to rounding, from
the estimate shown in Figure 7(c).)

The monthly average low temperatures in Fairbanks, Alaska, are given in Table 1.
Use sinusoidal regression to find the function y  A sin (Bx  C )  k that best
fits the data. Round the constants A, B, C, and k to three significant digits and
use the sinusoidal regression function to estimate the average low temperature on
April 1.
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T A B L E  1 Temperatures in Fairbanks, Alaska

Month 1 2 3 4 5 6 7 8 9 10 11 12

Average High ( F) 0 8 25 44 61 71 73 66 54 31 11 3

Average Low ( F)  19  15  3 20 37 49 52 46 35 16  7  15

FIGURE 7

(c)(a) (b)

 30

0

90

25
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1. (A) Zeros:   2, 3  2, 5  2; turning points: ( , 5), (2 ,  5)
(B) Zeros:   2, 3  2, 5  2; turning points: ( ,  1 3), (2 , 1 3)

2. (A) 20 (B) 1 3
3. Amplitude: 1 4; period: 2 3; turning points: (1 6, 1 4), (1 2,  1 4), (5 6, 1 4)
4. Amplitude: 3 4; period:  ; phase shift:    2; zeros: k  2, k any integer
5. y2   5 sin (x  0.644)

6. y   36.7 sin (0.524x  2.05)  16.4; 8.53 F

 6

 2 

6

2 

In Problems 1–12, find the amplitude (if applicable) and

period. Check your answers by graphing.

1. y  3 sin x,  2  x  2 

2. y  cos x,  2  x  2 

3. y  cos x,  2  x  2 

4. y   2 sin x,  2  x  2 

5. y  sin 3x,    x   

6. y  cos 2x,    x   

7. y  2 cot 4x, 0  x    2

8. y  3 tan 2x,    x   

9.

10.

11. y  csc (x 2),  3  x  3 

12. y  sec  x,  1.5  x  3.5

y   1
2 cot 2 x, 0  x   1

y   1
4 tan 8 x, 0  x  1

2

 1
2

1
4

In Problems 13–16, find the amplitude (if applicable), the

period, and all zeros in the given interval. Check your answers

by graphing.

13. y  sin  x,  2  x  2

14. y  cos  x,  2  x  2

15.

16.

In Problems 17–20, find the amplitude (if applicable), the

period, and all turning points in the given interval. Check your

answers by graphing.

17. y  3 cos 2x,    x   

18. y  2 sin 4x,    x   

19. y  2 sec  x,  1  x  3

20. y  2 csc (x 2), 0  x  8 

y  1
2 tan (x 2),    x   3 

y  1
2 cot (x 2), 0  x   4 
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26.

27.

28.

In Problems 29–44, find the amplitude (if applicable), period,

and phase shift. Check your answers by graphing.

29. y  sin (x   ),    x  3 

30. y  cos (x   ),    x  3 

31. y  cos (x    4),    x  3 

32. y  2 sin (x    4),  2  x  2 

33.

34.

35. y  sin [ (x  1)],  2  x  3

36. y  cos [2 (x  )],  1  x  2

37. y  3 cos ( x    2),  2  x  2

38. y  2 sin ( x    4),  1  x  3

39.

40. y  cot (2x   ),  
 

2
 x  

 

2

y  tan (2x   ),  
3 

4
 x  

3 

4

1
2

y  tan  x  
 

2  ,    x   

y  cot  x  
 

2  ,  
 

2
 x  

3 

2

1
2

x

y

0.50.25 0.25

 1

1

x

y

84 4

 0.5

0.5

x

y

 

4

 

8

 

8
 

 0.1

0.1

In Problems 21–24, find the equation of the form y  A sin Bx

that produces the graph shown. Check the results with a graph-

ing utility.

21.

22.

23.

24.

In Problems 25–28, find the equation of the form y  A cos Bx

that produces the graph shown. Check the results with a graph-

ing utility.

25.

x

y

8 4  4 

 5

5

x

y

42

 2

 0.5

0.5

x

y

21

 1

 10

10

x

y

8 

4  4 

 0.25

0.25

x

y

 3

3

 

2

 

4

 

4
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47. y  2 sin2 x 48. y  2 cos2 x

In Problems 49–56, graph at least two cycles of the given

equation in a graphing utility, then find an equation of the form

y  A tan Bx, y  A cot Bx, y  A sec Bx, or y  A csc Bx that

has the same graph. (These problems suggest additional identi-

ties beyond those discussed in Section 5.4. Additional identities

are discussed in detail in Chapter 6.)

49. y  cot x  tan x 50. y  cot x  tan x

51. y  csc x cot x 52. y  csc x cot x

53. y  sin 3x  cos 3x cot 3x

54. y  cos 2x  sin 2x tan 2x

55. 56. y  
sin 6x

1  cos 6x
y  

sin 4x

1  cos 4x

41. y   4 cos (2x  ),    x  3 

42. y   2 cos (4x  ),    x   

43.

44.

Graph each function in Problems 45–48. (Select the dimen-

sions of each viewing window so that at least two periods are

visible.) Find an equation of the form y  k  A sin Bx or 

y  k  A cos Bx that has the same graph as the given equa-

tion. (These problems suggest the existence of further identities

in addition to the basic identities discussed in Section 5.4.)

45. y  cos2 x  sin2 x 46. y  sin x cos x

y  csc   x  
 

2  ,  1  x   1

y  sec   x  
 

2  ,  1  x   1

Problems 57 and 58 refer to the following graph:

57. If the graph is a graph of an equation of the form 
y  A sin (Bx C), 0   C B  2, find the equation.

Check the results with a graphing utility.

58. If the graph is a graph of an equation of the form 
y  A sin (Bx C),  2   C B  0, find the equation.

Check the results with a graphing utility.

Problems 59 and 60 refer to the following graph:

x

y

5 3

1

2
 

1

2

x

y

1

 1

2 3

 4

4

59. If the graph is a graph of an equation of the form 
y  A cos (Bx C), 0   C B  4 , find the equation.

Check the results with a graphing utility.

60. If the graph is a graph of an equation of the form 
y  A cos (Bx C),  2   C B  0, find the equa-

tion. Check the results with a graphing utility.

In Problems 61–64, state the amplitude, period, and phase

shift of each function and sketch a graph of the function with

the aid of a graphing utility.

61.

62.

63. y  50 cos [2 (t 0.25)], 0  t  2

64. y  25 cos [5 (t 0.1)], 0  t  2

In Problems 65–70, graph each equation. (Select the dimen-

sions of each viewing window so that at least two periods are

visible.) Find an equation of the form y  A sin (Bx  C) that

has the same graph as the given equation. Find A and B ex-

actly and C to three decimal places. Use the x intercept closest

to the origin as the phase shift.

65.

66. y   2 sin x   2 cos x

y   2 sin x   2 cos x

y  5.4 sin   2.5
 (t  1) , 0  t  6

y  3.5 sin   2 (t  0.5) , 0  t  10
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67.

68.

69. y  4.8 sin 2x  1.4 cos 2x

70. y  1.4 sin 2x  4.8 cos 2x

Problems 71–76 illustrate combinations of functions that occur

in harmonic analysis applications. Graph parts A, B, and C of

each problem in the same viewing window. In Problems 71–74,

what is happening to the amplitude of the function in part C?

Give an example of a physical phenomenon that might be mod-

eled by a similar function.

71. 0  x  16

(A) (B) (C)

72. 0  x  10

(A) (B) (C) y  
2

x
 cos  xy   

2

x
y  

2

x

y  
1

x
 sin 

 

2
xy   

1

x
y  

1

x

y  sin x   3 cos x

y   3 sin x  cos x 73. 0  x  10

(A) y  x (B) y   x (C)

74. 0  x  10

(A) (B) (C)

75. 0  x  2 

(A) y  sin x (B)

(C)

76. 0  x  4

(A) y  sin  x (B)

(C) y  sin  x  
sin 2 x

2
 

sin 3 x

3

y  sin  x  
sin 2 x

2

y  sin x  
sin 3x

3
 

sin 5x

5

y  sin x  
sin 3x

3

y  
x

2
 cos  xy   

x

2
y  

x

2

y  x sin 
 

2
x

77. Spring-Mass System. A 6-pound weight hanging from the
end of a spring is pulled foot below the equilibrium posi-
tion and then released (see figure). If air resistance and
friction are neglected, the distance x that the weight is
from the equilibrium position relative to time t (in sec-
onds) is given by

State the period P and amplitude A of this function, and
graph it for 0  t   .

78. Electrical Circuit. An alternating current generator gener-
ates a current given by

I  30 sin 120t

where t is time in seconds. What are the amplitude A and
period P of this function? What is the frequency of the
current; that is, how many cycles (periods) will be com-
pleted in 1 second?

W

x  1
3 cos 8t

1
3

79. Spring-Mass System. Assume the motion of the weight in
Problem 77 has an amplitude of 8 inches and a period of
0.5 second, and that its position when t  0 is 8 inches be-
low its position at rest (displacement above rest position is
positive and below is negative). Find an equation of the
form y  A cos Bt that describes the motion at any time 
t  0. (Neglect any damping forces—that is, friction and
air resistance.)

80. Electrical Circuit. If the voltage E in an electrical circuit
has an amplitude of 110 volts and a period of second,
and if E  110 volts when t  0 seconds, find an equation
of the form E  A cos Bt that gives the voltage at any time
t  0.

81. Pollution. The amount of sulfur dioxide pollutant from
heating fuels released in the atmosphere in a city varies
seasonally. Suppose the number of tons of pollutant re-
leased into the atmosphere during the nth week after
January 1 for a particular city is given by

Graph the function over the indicated interval and describe
what the graph shows.

82. Medicine. A seated normal adult breathes in and exhales
about 0.82 liter of air every 4.00 seconds. The volume of
air in the lungs t seconds after exhaling is approximately

V(t)  0.45  0.37 cos 
 t

2
    0  t  8

A(n)  1.5  cos
n 

26
    0  n  104

1
60

 

 



5.5 More General Trigonometric Functions and Models 445

86. Physics—Engineering. If in Problem 85 the disk started
rotating at     2, show that the position of the shadow
at time t (in seconds) is given by

Graph this equation for 0  t  1.

87. A beacon light 20 feet from a wall rotates clockwise at the
rate of 1 4 revolutions per second (rps) (see the figure),
thus,    t 2.

(A) Start counting time in seconds when the light spot is at
N and write an equation for the length c of the light
beam in terms of t.

(B) Graph the equation found in part A for the time inter-
val [0, 1].

(C) Describe what happens to the length c of the light
beam as t goes from 0 to 1.

88. Refer to Problem 87.

(A) Write an equation for the distance a the light spot trav-
els along the wall in terms of time t.

(B) Graph the equation found in part A for the time inter-
val [0, 1].

(C) Describe what happens to the distance a along the wall
as t goes from 0 to 1.

20 
 

N

P

a

c

y  3 sin  6 t  
 

2  

 

 

89. Modeling Sunset Times. Sunset times for the fifth of each
month over a period of 1 year were taken from a tide
booklet for the San Francisco Bay to form Table 2. Day-
light savings time was ignored and the times are for a 24-
hour clock starting at midnight.

(A) Using 1 month as the basic unit of time, enter the data
for a 2-year period in your graphing utility and pro-
duce a scatter plot in the viewing window. Before en-
tering Table 2 data into your graphing utility, convert
sunset times from hours and minutes to decimal hours
rounded to two decimal places. Choose 15  y  20
for the viewing window.

(B) It appears that a sine curve of the form

y  k  A sin (Bx  C)

will closely model these data. The constants k, A, and
B are easily determined from Table 2 as follows: 
A  (max y  min y) 2, B  2  Period, and 
k  min y  A. To estimate C, visually estimate to one
decimal place the smallest positive phase shift from
the plot in part A. After determining A, B, k, and C,
write the resulting equation. (Your value of C may dif-
fer slightly from the answer in the back of the book.)

Graph the function over the indicated interval and describe
what the graph shows.

83. Electrical Circuit. The current in an electrical circuit 
is given by I  15 cos (120 t    2), 0  t  ,
where I is measured in amperes. State the amplitude A,
period P, and phase shift. Graph the equation.

84. Electrical Circuit. The current in an electrical circuit is
given by I  30 cos (120 t   ), 0  t  , where I
is measured in amperes. State the amplitude A, period P,
and phase shift. Graph the equation.

85. Physics—Engineering. The thin, plastic disk shown in the
figure is rotated at 3 revolutions per second, starting at
  0 (thus at the end of t seconds,   6 t—why?). If the
disk has a radius of 3, show that the position of the shadow
on the y scale from the small steel ball B is given by

y  3 sin 6 t

Graph this equation for 0  t  1.

Parallel
light rays

B

Screen

Shadow

0

3 revolutions
per second

 

3
60

2
60
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(C) Plot the results of parts A and B in the same viewing
window. (An improved fit may result by adjusting your
value of C slightly.)

(D) If your graphing utility has a sinusoidal regression fea-
ture, check your results from parts B and C by finding
and plotting the regression equation.

90. Modeling Temperature Variation. The 30-year average
monthly temperature, °F, for each month of the year for
Washington, D.C., is given in Table 3 (World Almanac).

(A) Using 1 month as the basic unit of time, enter the data
for a 2-year period in your graphing utility and pro-
duce a scatter plot in the viewing window. Choose 
0  y  80 for the viewing window.

(B) It appears that a sine curve of the form

y  k  A sin (Bx  C)

will closely model these data. The constants k, A, and
B are easily determined from Table 3 as follows:
A  (max y  min y) 2, B  2  Period, and
k  min y  A. To estimate C, visually estimate to one
decimal place the smallest positive phase shift from
the plot in part A. After determining A, B, k, and C,
write the resulting equation.

(C) Plot the results of parts A and B in the same viewing
window. (An improved fit may result by adjusting your
value of C slightly.)

(D) If your graphing utility has a sinusoidal regression fea-
ture, check your results from parts B and C by finding
and plotting the regression equation.

T A B L E  2

x (months) 1 2 3 4 5 6 7 8 9 10 11 12

y (sunset)* 17:05 17:38 18:07 18:36 19:04 19:29 19:35 19:15 18:34 17:47 17:07 16:51

*Time on a 24-hr clock, starting at midnight.

T A B L E  3

x (months) 1 2 3 4 5 6 7 8 9 10 11 12

y (temp.) 31 34 43 53 62 71 76 74 67 55 45 35

Inverse Trigonometric Functions

Inverse Sine Function  Inverse Cosine Function  Inverse Tangent Function  Summary
 Inverse Cotangent, Secant, and Cosecant Functions (Optional)

A brief review of the general concept of inverse functions discussed in Section
1.6 should prove helpful before proceeding with Section 5.6. In the box we restate
a few important facts about inverse functions from Section 1.6.

Facts About Inverse Functions

For a one-to-one function f and its inverse f 1:

1. If (a, b) is an element of f, then (b, a) is an element of f 1, and con-
versely.

2. Range of f  Domain of f 1

Domain of f  Range of f 1
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All trigonometric functions are periodic; hence, each range value can be asso-
ciated with infinitely many domain values (Fig. 1). As a result, no trigonometric
function is one-to-one. Without restrictions, no trigonometric function has an
inverse function. To resolve this problem, we restrict the domain of each function
so that it is one-to-one over the restricted domain. Thus, for this restricted domain,
an inverse function is guaranteed.

Inverse trigonometric functions represent another group of basic functions that
are added to our library of elementary functions. These functions are used in many
applications and mathematical developments, and will be particularly useful to us
when we solve trigonometric equations in Section 6.5.

Inverse Sine Function
How can the domain of the sine function be restricted so that it is one-to-one?
This can be done in infinitely many ways. A fairly natural and generally accepted
way is illustrated in Figure 2.

3.

4. If x  f 1(y), then y  f (x) for y in the domain of f 1 and x in the
domain of f, and conversely.

5. f ( f 1(y))  y for y in the domain of f 1

f 1( f (x))  x for x in the domain of f

x

y

y   f(x)

x   f 1(y)

f

f 1

f
DOMAIN f RANGE f

f 1(y)

x

RANGE f 1 DOMAIN f 1

y

f(x)

x

y

 4 

 2 

2 0

1

4 

FIGURE 1 y  sin x is not one-
to-one over (  ,  ).



If the domain of the sine function is restricted to the interval [   2,   2],
we see that the restricted function passes the horizontal line test (Section 1.6) and
thus is one-to-one. Note that each range value from  1 to 1 is assumed exactly
once as x moves from    2 to   2. We use this restricted sine function to define
the inverse sine function.

To graph y  sin 1 x, take each point on the graph of the restricted sine func-
tion and reverse the order of the coordinates. For example, because (   2,  1),
(0, 0), and (  2, 1) are on the graph of the restricted sine function [Fig. 3(a)],
then ( 1,    2), (0, 0), and (1,   2) are on the graph of the inverse sine func-
tion, as shown in Figure 3(b). Using these three points provides us with a quick
way of sketching the graph of the inverse sine function. A more accurate graph
can be obtained by using a calculator.
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x

y

 

2

 

2
 

1

0

 1

FIGURE 2 y  sin x is one-to-one
over [   2,   2].

x

y

 

2

 

2
 

1

 1

y   sin x  

2 , 1 

 

2  ,  1 
 

2

 

2
Domain   [ 

Range   [ 1, 1]

, ]

(0, 0)

Restricted sine function

FIGURE 3 Inverse sine function.

x

y

1 1

y   sin 1 x
     arcsin x

 

2  1,   

 

2 1,  

Domain   [ 1, 1]

Range   [ 
 

2

 

2
, ]

(0, 0)

Inverse sine function

D E F I N I T I O N 1
Inverse Sine function

The inverse sine function, denoted by sin 1 or arcsin, is defined as the inverse of the restricted sine

function y  sin x,   2  x    2. Thus,

y  sin 1 x and y  arcsin x

are equivalent to

sin y  x where    2  y    2,  1  x  1

In words, the inverse sine of x, or the arcsine of x, is the number or angle y,   2  y    2,

whose sine is x.

(a) (b)
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We state the important sine–inverse sine identities that follow from the general
properties of inverse functions given in the box at the beginning of Section 5.6.

E X P L O R E / D I S C U S S  1

A graphing calculator produced the graph in Figure 4 for y1  sin 1 x,
 2  x  2, and  2  y  2. (Try this on your own graphing
utility.) Explain why there are no parts of the graph on the intervals
[ 2,  1) and (1, 2].

Sine–Inverse Sine Identities

sin (sin 1 x)  x  1  x  1 f( f  1(x))  x

sin 1 (sin x)  x    2  x    2 f  1( f (x))  x

sin (sin 1 0.7)  0.7 sin (sin 1 1.3)  1.3

sin 1 [sin ( 1.2)]   1.2 sin 1 [sin ( 2)]   2

[Note: The number 1.3 is not in the domain of the inverse sine function, and  2 is not in the

restricted domain of the sine function. Try calculating all these examples with your calculator and see

what happens!]

 2

 2

2

2

FIGURE 4

Exact Values

Find exact values without using a calculator.

(A) (B) sin 1 (sin 1.2) (C)

S O L U T I O N S

(A) y  arcsin is equivalent to

y   
 

6
 arcsin ( 1

2)

 
 

2
 y  

 

2
sin y   

1
2

( 1
2 

cos [sin 1 (2
3)]arcsin ( 1

2)

a
y

Reference triangle
associated with y

 3

 1
2

b
/2

 /2
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a
y

a

3   c

2   b

b
 /2

  /2

[Note: y  11  6, even though sin (11  6)   because y must be
between    2 and   2, inclusive.]

(B) sin 1 (sin 1.2)  1.2 Sine–inverse sine identity, because    2  1.2    2

(C) Let y  sin 1 ; then sin y  ,    2  y    2. Draw the
reference triangle associated with y. Then cos y  cos [sin 1 ] can
be determined directly from the triangle (after finding the third side)
without actually finding y.

Because a 0 in

quadrant I

Thus, cos [sin 1 ]  cos y  .

Find exact values without using a calculator.

(A) (B) sin [sin 1 ( 0.4)] (C)

Calculator Values

Find to four significant digits using a calculator.

(A) arcsin ( 0.3042) (B) sin 1 1.357 (C) cot [sin 1 ( 0.1087)]

S O L U T I O N S

The function keys used to represent inverse trigonometric functions vary among
different brands of calculators, so read the user’s manual for your calculator. Set
your calculator in radian mode and follow your manual for key sequencing.

(A) arcsin ( 0.3042)   0.3091

(B) sin 1 1.357  Error 1.357 is not in the domain of sin 1

(C) cot [sin 1 ( 0.1087)]   9.145

Find to four significant digits using a calculator.

(A) sin 1 0.2903 (B) arcsin ( 2.305) (C) cot [sin 1 ( 0.3446)]

Inverse Cosine Function
To restrict the cosine function so that it becomes one-to-one, we choose the inter-
val [0,  ]. Over this interval the restricted function passes the horizontal line test,

tan [sin 1 ( 1  5)]arcsin ( 2 2)

 5/3(2
3)

  5

a   32  22

a2  b2  c2

(2
3)

(2
3)(2

3)

1
2



5.6 Inverse Trigonometric Functions 451

Figure 6 compares the graphs of the restricted cosine function and its inverse.
Notice that (0, 1), (  2, 0), and ( ,  1) are on the restricted cosine graph.
Reversing the coordinates gives us three points on the graph of the inverse cosine
function.

and each range value is assumed exactly once as x moves from 0 to  (Fig. 5).
We use this restricted cosine function to define the inverse cosine function.

x

1

 1

 

y

0

FIGURE 5 y  cos x is one-to-
one over [0,  ].

D E F I N I T I O N 2
Inverse Cosine Function

The inverse cosine function, denoted by cos 1 or arccos, is defined as the inverse of the restricted

cosine function y  cos x, 0  x   . Thus,

y  cos 1 x and y  arccos x

are equivalent to

cos y  x where 0  y   ,  1  x  1

In words, the inverse cosine of x, or the arccosine of x, is the number or angle y, 0  y   , whose

cosine is x.

y

 

y   cos x

2

  , 0 

(0, 1)

( ,  1)

Domain   [0,  ]
Range   [ 1, 1]

Restricted cosine function

1

0

 1

x

2

 

FIGURE 6 Inverse cosine
function.

(a)

 

 

2

y   cos 1 x
     arccos x  

2 0,  

Inverse cosine function

(1, 0)

( 1,  )

Domain   [ 1, 1]
Range   [0,  ]

x

y

1
0

 1

(b)
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We complete the discussion by giving the cosine–inverse cosine identities:

E X P L O R E / D I S C U S S  2

A graphing calculator produced the graph in Figure 7 for y1  cos 1
x,

 2  x  2, and 0  y  4. (Try this on your own graphing utility.)
Explain why there are no parts of the graph on the intervals [ 2,  1)
and (1, 2].

0

 2

4

2

FIGURE 7

E X P L O R E / D I S C U S S  3

Evaluate each of the following with a calculator. Which illustrate a
cosine–inverse cosine identity and which do not? Discuss why.

(A) cos (cos 1 0.2) (B) cos [cos 1 ( 2)]

(C) cos 1 (cos 2) (D) cos 1 [cos ( 3)]

Cosine–Inverse Cosine Identities

cos (cos 1
x)  x  1  x  1 f(f 1(x))  x

cos 1 (cos x)  x 0  x   f
 1(f (x))  x

Exact Values

Find exact values without using a calculator.

(A) (B) cos (cos 1 0.7) (C) sin [cos 1 ( 1
3)]arccos (  3 2)
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a

y

Reference triangle
associated with y

  3

1
2

b

 

a
a

y

b

b

 

c

a    1
c   3

S O L U T I O N S

(A) is equivalent to

[Note: y   5  6, even though cos ( 5  6)  because y

must be between 0 and  , inclusive.]

(B) cos (cos 1 0.7)  0.7 Cosine–inverse cosine identity, because  1  0.7  1

(C) Let y  cos 1 ; then cos y  , 0  y   . Draw a reference
triangle associated with y. Then sin y  sin [cos 1 ] can be
determined directly from the triangle (after finding the third side)
without actually finding y.

Because b 0

in quadrant II

Thus, sin [cos 1 ]  sin y  .

Find exact values without using a calculator.

(A) (B) cos 1 (cos 3.05) (C) cot [cos 1 ]

Calculator Values

Find to four significant digits using a calculator.

(A) arccos 0.4325 (B) cos 1 2.137 (C) csc [cos 1 ( 0.0349)]

S O L U T I O N S

Set your calculator in radian mode.

(A) arccos 0.4325  1.124

(B) cos 1 2.137  Error 2.137 is not in the domain of cos 1

(C) csc [cos 1 ( 0.0349)]  1.001

( 1  5)arccos ( 2 2)

2 2 3( 1
3)

  8  2 2

b   32  ( 12)

a2  b2  c2

( 1
3)

 1
3( 1

3)

  3 2

y  
5 

6
 arccos    3

2  

0  y    cos y   
 3

2

y  arccos (  3 2)



Figure 9 compares the graphs of the restricted tangent function and its inverse.
Notice that (   4,  1), (0, 0), and (  4, 1) are on the restricted tangent graph.
Reversing the coordinates gives us three points on the graph of the inverse tan-
gent function. Also note that the vertical asymptotes become horizontal asymp-
totes for the inverse function.
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1

0

y

x
3 

2

 

2

 

2
 

 2 

2    

3 

2
 

 1

y   tan x

FIGURE 8 y  tan x is one-to-
one over (   2,   2).

D E F I N I T I O N 3
Inverse Tangent Function

The inverse tangent function, denoted by tan 1 or arctan, is defined as the inverse of the restricted

tangent function y  tan x,   2  x    2. Thus,

y  tan 1 x and y  arctan x

are equivalent to

tan y  x where    2  y    2 and x is a real number

In words, the inverse tangent of x, or the arctangent of x, is the number or angle y,

   2  y    2, whose tangent is x.

Find to four significant digits using a calculator.

(A) cos 1 (0.6773) (B) arccos ( 1.003) (C) cot [cos 1 ( 0.5036)]

Inverse Tangent Function
To restrict the tangent function so that it becomes one-to-one, we choose the inter-
val (   2,   2). Over this interval the restricted function passes the horizontal
line test, and each range value is assumed exactly once as x moves across this
restricted domain (Fig. 8). We use this restricted tangent function to define the
inverse tangent function.
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We now state the tangent–inverse tangent identities.

x

y

 

2

 

2
 

1

 1

y   tan x

 

4 , 1 

 

4  ,  1 

 

2

 

2
Domain     
Range   (  ,  )

,  

Restricted tangent function

0

FIGURE 9 Inverse tangent
function.

 

2

 

2
 

y   tan 1 x
     arctan x

 

4 1,  
 

4  1,   

Domain   (  ,  )

Range      

2

 

2
,  

Inverse tangent function

1 1
x

y

(a) (b)

Tangent–Inverse Tangent Identities

tan (tan 1 x)  x    x   f (f 1(x))  x

tan 1 (tan x)  x    2  x    2 f 1(f(x))  x

E X P L O R E / D I S C U S S  4

Evaluate each of the following with a calculator. Which illustrate a
tangent–inverse tangent identity and which do not? Discuss why.

(A) tan (tan 1 30) (B) tan [tan 1 ( 455)]

(C) tan 1 (tan 1.4) (D) tan 1 [tan ( 3)]

Exact Values

Find exact values without using a calculator.

(A) (B) tan 1 (tan 0.63)

S O L U T I O N S

(A) is equivalent to

y   
 

6
 tan 1  1

 3 

 tan y   
1

 3
     

 

2
 y  

 

2

y  tan 1 ( 1  3)

tan 1 ( 1  3)

a
y

Reference triangle
associated with y

 3

 1

b
 /2

  /2
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2

Domain   [ 1, 1]
Range   [0, ]

x

y

1
0

 1

y   cos 1 x



2



2
 

Domain   (  ,  )

Range     

2



2
,  

1 1
x

y

y   tan 1 x

[Note: y cannot be 11  6 because y must be between    2 and   2.]

(B) tan 1 (tan 0.63)  0.63 Tangent–inverse tangent identity, because 

   2  0.63    2

Find exact values without using a calculator.

(A) (B) tan (tan 1 43)

Summary
We summarize the definitions and graphs of the inverse trigonometric functions
discussed so far for convenient reference.

arctan (  3)

Summary of sin 1, cos 1, and tan 1

y  sin 1 x is equivalent to x  sin y where  1  x  1,    2  y    2

y  cos 1 x is equivalent to x  cos y where  1  x  1, 0  y   

y  tan 1 x is equivalent to x  tan y where    x   ,    2  y    2



2

x

y

1 1



2



2



2

Domain   [ 1, 1]

Range   [ 


2



2
, ]

y   sin 1 x

 

0
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Inverse Cotangent, Secant, and Cosecant Functions [Optional]
For completeness, we include the definitions and graphs of the inverse cotangent,
secant, and cosecant functions.

D E F I N I T I O N 4
Inverse Cotangent, Secant, and Cosecant Functions

y  cot 1 x is equivalent to x  cot y where 0  y   ,
   x   

y  sec 1 x is equivalent to x  sec y where 0  y   ,
y    2,  1

y  csc 1 x is equivalent to x  csc y where    2  y     2,
y  0,  1 x 

 x 

x

y

 

2

1 2 1 2

 

Domain:  All real numbers
Range:  0   y    

y   cot 1 x

0

Domain:  x    1 or x   1
Range:  0   y    , y    /2

y   sec 1 x

x

y

 

2

1 2 1 2

 

0

 

2
 

Domain:  x    1 or x   1
Range:    /2   y    /2, y   0

y   csc 1 x

x

y

 

2

1 2 1 2
0

[Note: The definitions of sec 1 and csc 1 are not universally agreed upon.]

1. (A)   4 (B)  0.4 (C)  1 2
2. (A) 0.2945 (B) Not defined (C)  2.724
3. (A)   4 (B) 3.05 (C)  1 2

4. (A) 0.8267 (B) Not defined (C)  0.5829
5. (A)    3 (B) 43
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In Problems 47–52, find the degree measure of each to two

decimal places using a calculator set in degree mode.

47. cos 1 0.7253 48. tan 1 12.4304

49. arcsin ( 0.3662) 50. arccos ( 0.9206)

51. tan 1 ( 837) 52. sin 1 ( 0.7071)

53. Evaluate sin 1 (sin 2) with a calculator set in radian mode,
and explain why this does or does not illustrate the inverse
sine–sine identity.

54. Evaluate cos 1 [cos ( 0.5)] with a calculator set in radian
mode, and explain why this does or does not illustrate the
inverse cosine–cosine identity.

In Problems 55–62, graph each function in a graphing utility

over the indicated interval.

55. y  sin 1 x,  1  x  1

56. y  cos 1 x,  1  x  1

57. y  cos 1 (x 3),  3  x  3

58. y  sin 1 (x 2),  2  x  2

59. y  sin 1 (x  2), 1  x  3

60. y  cos 1 (x  1),  2  x  0

61. y  tan 1 (2x  4),  2  x  6

62. y  tan 1 (2x  3),  5  x  2

In Problems 19–34, find exact values without using a calculator.

19. 20.

21. 22. tan 1 ( 1)

23. tan (tan 1 25) 24. sin [sin 1 ( 0.6)]

25. cos 1 (cos 2.3) 26. tan 1 [tan ( 1.5)]

27. 28.

29. csc [tan 1 ( 1)] 30.

31. sin 1 [sin  ] 32. cos 1 [cos (   2)]

33. cos 1 [cos (4  3)] 34. sin 1 [sin (5  4)]

In Problems 35–40, evaluate to four significant digits using a

calculator.

35. arctan ( 10.04) 36. tan 1 ( 4.038)

37. cot [cos 1 ( 0.7003)] 38. sec [sin 1 ( 0.0399)]

39. 40.

In Problems 41–46, find the exact degree measure of each

without the use of a calculator.

41. 42.

43. 44. arctan ( 1)

45. cos 1 ( 1) 46. sin 1 ( 1)

arctan (  3)

cos 1 ( 1
2)sin 1 (  2 2)

 2  tan 1  3 5 5  cos 1 (1   2)

cos [sin 1 (  2 2)]

tan [cos 1( 1
2)]sin (cos 1  3 2)

tan 1 (  3)

arccos ( 1
2)arcsin (  2/2)

Unless stated to the contrary, the inverse trigonometric func-

tions are assumed to have real number ranges (use radian

mode in calculator problems). A few problems involve ranges

with angles in degree measure, and these are clearly indicated

(use degree mode in calculator problems).

In Problems 1–12, find exact values without using a calculator.

1. cos 1 0 2. sin 1 0

3. 4. arccos ( 3 2)arcsin ( 3 2)

5. 6. tan 1 1

7. 8.

9. arccos 1 10.

11. 12. tan 1 0

In Problems 13–18, evaluate to four significant digits using a

calculator.

13. sin 1 0.9103 14. cos 1 0.4038

15. arctan 103.7 16. tan 1 43.09

17. arccos 3.051 18. arcsin 1.131

sin 1 (1
2)

arctan (1  3)

cos 1 (1
2)sin 1 ( 2 2)

arctan  3
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64. The identity sin (sin 1 x)  x is valid for  1  x  1.

(A) Graph y  sin (sin 1 x) for  1  x  1.

(B) What happens if you graph y  sin (sin 1 x) over a
larger interval, say  2  x  2? Explain.

63. The identity cos (cos 1 x)  x is valid for  1  x  1.

(A) Graph y  cos (cos 1 x) for  1  x  1.

(B) What happens if you graph y  cos (cos 1 x) over a
larger interval, say  2  x  2? Explain.

In Problems 65–68, write each expression as an algebraic ex-

pression in x free of trigonometric or inverse trigonometric

functions.

65. cos (sin 1 x) 66. sin (cos 1 x)

67. cos (arctan x) 68. tan (arcsin x)

In Problems 69 and 70, find f 1 (x). How must x be restricted

in f 1(x)?

69. f(x)  4  2 cos (x  3), 3  x  (3   )

70. f(x)  3  5 sin (x  1), (1    2)  x  (1    2)

71. The identity cos 1 (cos x)  x is valid for 0  x   .

(A) Graph y  cos 1 (cos x) for 0  x   .

(B) What happens if you graph y  cos 1 (cos x) over a
larger interval, say  2  x  2 ? Explain.

72. The identity sin 1 (sin x)  x is valid for 
   2  x    2.

(A) Graph y  sin 1 (sin x) for    2  x    2.

(B) What happens if you graph y  sin 1 (sin x) over a
larger interval, say  2  x  2 ? Explain.

73. Photography. The viewing angle changes with the focal
length of a camera lens. A 28-millimeter wide-angle lens
has a wide viewing angle and a 300-millimeter telephoto
lens has a narrow viewing angle. For a 35-millimeter for-
mat camera the viewing angle  , in degrees, is given by

where x is the focal length of the lens being used. What is
the viewing angle (in decimal degrees to two decimal
places) of a 28-millimeter lens? Of a 100-millimeter lens?

74. Photography. Referring to Problem 73, what is the view-
ing angle (in decimal degrees to two decimal places) of a
17-millimeter lens? Of a 70-millimeter lens?

 

  2 tan 1
21.634

x

75. (A) Graph the function in Problem 73 in a graphing utility
using degree mode. The graph should cover lenses
with focal lengths from 10 millimeters to 100
millimeters.

(B) What focal-length lens, to two decimal places, would
have a viewing angle of 40°? Solve by graphing 
  40 and   2 tan 1 (21.634 x) in the same view-
ing window and finding the point of intersection using
an approximation routine.

76. (A) Graph the function in Problem 73 in a graphing utility,
in degree mode, with the graph covering lenses with fo-
cal lengths from 100 millimeters to 1,000 millimeters.

(B) What focal length lens, to two decimal places, would
have a viewing angle of 10°? Solve by graphing 
  10 and   tan 1 (21.634 x) in the same viewing 
window and finding the point of intersection using an
approximation routine.

77. Engineering. The length of the belt around the two pul-
leys in the figure is given by

L   D  (d  D)  2C sin  

where  (in radians) is given by

  cos 1
D  d

2C
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Verify these formulas, and find the length of the belt to
two decimal places if D  4 inches, d  2 inches, and 
C  6 inches.

78. Engineering. For Problem 77, find the length of the belt
if D  6 inches, d  4 inches, and C  10 inches.

79. Engineering. The function

represents the length of the belt around the two pulleys in
Problem 77 when the centers of the pulleys are x inches
apart.

(A) Graph y1 in a graphing utility (in radian mode), with
the graph covering pulleys with their centers from 3 to
10 inches apart.

(B) How far, to two decimal places, should the centers of
the two pulleys be placed to use a belt 24 inches long?
Solve by graphing y1 and y2  24 in the same viewing
window and finding the point of intersection using an
approximation routine.

80. Engineering. The function

represents the length of the belt around the two pulleys
in Problem 78 when the centers of the pulleys are x
inches apart.

y1  6  2 cos 1
1

x
 2x sin  cos 1

1

x 

y1  4  2 cos 1
1

x
 2x sin  cos 1

1

x 

(A) Graph y1 in a graphing utility (in radian mode), with
the graph covering pulleys with their centers from 3 to
20 inches apart.

(B) How far, to two decimal places, should the centers of
the two pulleys be placed to use a belt 36 inches long?
Solve by graphing y1 and y2  36 in the same viewing
window and finding the point of intersection using an
approximation routine.

81. Motion. The figure represents a circular courtyard sur-
rounded by a high stone wall. A floodlight located at E
shines into the courtyard.

(A) If a person walks x feet away from the center along
DC, show that the person’s shadow will move a dis-
tance given by

where  is in radians. [Hint: Draw a line from A to C.]

(B) Find d to two decimal places if r  100 feet and 
x  40 feet.

82. Motion. In Problem 81, find d for r  50 feet and 
x  25 feet.

d  2r  2r tan 1
x

r

E

 
r

r

C

Shadow
d

D

A
x 

 

C

d

D

D   d

 

 
 



5.1 Angles and Their Measure
An angle is formed by rotating (in a plane) a ray m, called the
initial side of the angle, around its endpoint until it coincides
with a ray n, called the terminal side of the angle. The common
endpoint of m and n is called the vertex. If the rotation is coun-
terclockwise, the angle is positive; if clockwise, negative.

An angle is in standard position in a rectangular coordinate
system if its vertex is at the origin and its initial side is along the
positive x axis. Quadrantal angles have their terminal sides on
a coordinate axis. An angle of 1 degree is of a complete ro-
tation. An angle of 1 radian is a central angle of a circle sub-
tended by an arc having the same length as the radius.

Radian–degree conversion: 

If a point P moves through an angle  and arc length s, in
time t, on the circumference of a circle of radius r, then the (av-
erage) linear speed of P is

and the (average) angular speed is

   

Because s  r it follows that v  r .

5.2  Trigonometric Functions: 
A Unit Circle Approach

If  is a positive angle in standard position, and P is the point of
intersection of the terminal side of  with the unit circle, then
the radian measure of  equals the length x of the arc opposite  ;
and if  is negative, the radian measure of  equals the negative
of the length of the intercepted arc. The function W that associ-
ates with each real number x the point W(x)  P is called the
wrapping function, and the point P is called a circular point.
The function W(x) can be visualized as a wrapping of the real
number line, with origin at (1, 0), around the unit circle—the
positive real axis is wrapped counterclockwise and the negative
real axis is wrapped clockwise—so that each real number is
paired with a unique circular point. The function W(x) is not
one-to-one: for example, each of the real numbers 2 k, k any in-
teger, corresponds to the circular point (1, 0).

 

t

v  
s

t

 deg

180°
 

 rad

  radians

Radian measure:   
s

r

1
360

The coordinates of key circular points in the first quadrant
can be found using simple geometric facts; the coordinates of
the circular point associated with any multiple of   6 or   4
can then be determined using symmetry properties.

The six trigonometric functions—sine, cosine, tangent,
cotangent, secant, and cosecant—are defined in terms of the
coordinates (a, b) of the circular point W (x) that lies on the ter-
minal side of the angle with radian measure x:

 tan x  
b

a
  a  0     cot x  

a

b
  b  0

 cos x  a     sec x  
1

a
  a  0

 sin x  b     csc x  
1

b
  b  0

 

4  

6

 

2
 

3

(0, 1)

(1, 0)

1

 2
,1

 2
( )

2
,1

2
( ) 3

2
, 1

2
( ) 3

u

v

u

v x

0

(1, 0)

2

1

 1 1 2
 3

 2

u

v x

0

(1, 0)

2

1

 1

3
2 1

 2

u

v x

0

(1, 0)

2

1

 1

 2

x

P  
u

v

0 (1, 0)

Coordinates of Key Circular Points

461Chapter 5 Review



462 5 TRIGONOMETRIC FUNCTIONS

5.4 Properties of Trigonometric
Functions

The definition of the trigonometric functions implies that the
following basic identities hold true for all replacements of x by
real numbers for which both sides of an equation are defined:

Reciprocal identities

Quotient identities

Identities for negatives

Pythagorean identity

A function f is periodic if there exists a positive real number p
such that

f(x  p)  f(x)

for all x in the domain of f. The smallest such positive p, if it ex-
ists, is called the fundamental period of f, or often just the pe-
riod of f. All the trigonometric functions are periodic.

sin2 x  cos2 x  1

tan ( x)   tan x

sin ( x)   sin x    cos ( x)  cos x

tan x  
sin x

cos x
    cot x  

cos x

sin x

csc x  
1

sin x
    sec x  

1

cos x
    cot x  

1

tan x

The trigonometric functions of any multiple of   6 or   4
can be determined exactly from the coordinates of the circular
point. A graphing calculator can be used to graph the trigono-
metric functions and approximate their values at arbitrary angles.

5.3  Solving Right Triangles
A right triangle is a triangle with one 90° angle. To solve a right
triangle is to find all unknown angles and sides, given the mea-
sures of two sides or the measures of one side and an acute angle.

Trigonometric Functions of Acute Angles

Opp
Hyp

Adj

 

tan   
Opp

Adj
    cot   

Adj

Opp

cos   
Adj

Hyp
    sec   

Hyp

Adj

sin   
Opp

Hyp
    csc   

Hyp

Opp

(1, 0)

x rad

W(x)

(a, b)

x units
arc length

a

b Computational Accuracy

Angle to Nearest Significant Digits for Side Measure

1° 2

10 or 0.1° 3

1 or 0.01° 4

10 or 0.001° 5
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Graph of y  sin x:

Period: 2 

Domain: All real numbers

Range: [ 1, 1]

Graph of y  cos x:

Period: 2 

Domain: All real numbers

Range: [ 1, 1]

Graph of y  tan x:

Period:  

Domain: All real numbers except   2  k , k an integer

Range: All real numbers

1

0

y

x
3 

2

5 

2

 

2

 

2
 

 2 2    

5 

2
 

3 

2
 

 1

0

1

 1

x

y

 2 2 3 4    

0

1

 1

x

y

 2 2 3 4    

Graph of y  cot x:

Period:  

Domain: All real numbers except k , k an integer

Range: All real numbers

Graph of y csc x:

Period: 2 

Domain: All real numbers except k , k an integer

Range: All real numbers y such that y  1 or y  1

y   sin x

y   csc x  
1

sin x

1

y

 

2

2  2    3 

2
 

3 

2

 

2
 

x
0

 1

1

y

 

2

2  2    3 

2
 

3 

2

 

2
 

x
0

 1
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5.5 More General Trigonometric
Functions and Models

Let A, B, C be constants such that A 0 and B  0.
If y  A sin (Bx  C) or y  A cos (Bx  C):

Amplitude   A Period  Phase shift  

If y  A sec (Bx  C) or y  csc (Bx  C ):

Period  Phase shift  

If y  A tan (Bx  C) or y  A cot (Bx  C):

Period  Phase shift  

(Amplitude is not defined for the secant, cosecant, tangent, and
cotangent functions, all of which are unbounded.)

Sinusoidal regression is used to find the function of the
form y  A sin (Bx  C)  k that best fits a set of data points. 

5.6 Inverse Trigonometric
Functions

y sin 1 x arcsin x if and only if sin y x,   2 y   2
and  1  x  1.

x

y

1 1

y   sin 1 x
     arcsin x

 

2  1,   

 

2 1,  

Domain   [ 1, 1]

Range   [ 
 

2

 

2
, ]

(0, 0)

Inverse sine function

 C

B

 

B

 C

B

2 

B

 C

B

2 

B

Graph of y sec x:

Period: 2 

Domain: All real numbers except   2  k , k an integer

Range: All real numbers y such that y  1 or y  1

Associated with each angle that does not terminate on a co-
ordinate axis is a reference triangle for  . The reference trian-
gle is formed by drawing a perpendicular from point P  (a, b)
on the terminal side of  to the horizontal axis. The reference
angle  is the acute angle, always taken positive, between the
terminal side of  and the horizontal axis as indicated in the fol-
lowing figure.

a

b

a

 

b

 

P   (a, b)

y   cos x

y   sec x  
1

cos x

1

y

2  2    

x
0

 1
3 

2

 

2

 

2
 

3 

2
 

Reference Triangle

 is always positive
(a, b)  (0, 0)
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y  cos  1 x  arccos x if and only if cos y  x, 0  y   and
 1  x  1.





2

y   cos 1 x
     arccos x 

2 0,  

Inverse cosine function

(1, 0)

( 1, )

Domain   [ 1, 1]
Range   [0, ]

x

y

1
0

 1

y  tan 1 x  arctan x if and only if tan y  x,
   2  y    2 and x is any real number.



2



2
 

y   tan 1 x
     arctan x



4 1,  


4  1,   

Domain   (  ,  )

Range     

2



2
,  

Inverse tangent function

1 1
x

y

Work through all the problems in this chapter review and check answers in the back of the book. 

Answers to all review problems are there, and following each answer is a number in italics indicat-

ing the section in which that type of problem is discussed. Where weaknesses show up, review ap-

propriate sections in the text.

1. Find the radian measure of a central angle opposite
an arc 15 centimeters long on a circle of radius 
6 centimeters.

2. In a circle of radius 3 centimeters, find the length of an

arc opposite an angle of 2.5 radians.

3. Solve the triangle:

20.2 feet
b

a

35.2 

␣

4. Find the reference angle associated with each angle  .
(A)     3 (B)    120 
(C)    13  6 (D)   210 

5. In which quadrants is each negative?
(A) sin  (B) cos  (C) tan  

6. If (4,  3) is on the terminal side of angle  , find

(A) sin  (B) sec  (C) cot  

7. Complete Table 1 using exact values. Do not use a
calculator.
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8. What is the period of each of the following?
(A) y  cos x (B) y  csc x (C) y  tan x

9. Indicate the domain and range of each.
(A) y  sin x (B) y  tan x

10. Sketch a graph of y  sin x,  2  x  2 .

11. Sketch a graph of y  cot x,    x   .

12. Verbally describe the meaning of a central angle in a cir-
cle with radian measure 0.5.

13. Describe the smallest shift of the graph of y  sin x that
produces the graph of y  cos x.

T A B L E  1

 °  rad sin  cos  tan  csc  sec  cot  

0° ND*

30°

45°   4

60°

90°

180°

270°

360°

*ND  Not defined

1  2

14. Change 1.37 radians to decimal degrees to two decimal
places.

15. Solve the triangle:

16. Indicate whether the angle is a quadrant I, II, III, or IV
angle or a quadrantal angle.
(A)  210 (B) 5  2 (C) 4.2 radians

17. Which of the following angles are coterminal with 120 ?
(A)  240 (B)  7  6 (C) 840 

18. Which of the following have the same value as cos 3?
(A) cos 3 (B) cos (3 radians) (C) cos (3  2 )

19. For which values of x, 0  x  2 , is each of the follow-
ing not defined?
(A) tan x (B) cot x (C) csc x

20. A circular point P  (a, b) moves clockwise around the
circumference of a unit circle starting at (1, 0) and stops

c
 

 

13.3 cm

15.7 cm

after covering a distance of 8.305 units. Explain how you
would find the coordinates of point P at its final position
and how you would determine which quadrant P is in.
Find the coordinates of P to three decimal places and the
quadrant for the final position of P.

In Problems 21–36, evaluate exactly without the use of a

calculator.

21. tan 0 22. sec 90 

23. cos 1 1 24.

25. 26. csc 300 

27. 28. sin 570 

29. tan 1 ( 1) 30.

31. 32.

33. cos (cos 1 0.33) 34. csc [tan 1 (  1)]

35. 36. tan  sin 1
 4

5  sin  arccos   1

2  

cos 1    3

2  arcsin   1

2 

cot   4 

3  
arctan  3

sin 1  2

2

cos   3 

4  
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52. Describe the smallest shift and or reflection that trans-
forms the graph of y  tan x into the graph of y  cot x.

53. Simplify each of the following using appropriate basic
identities:
(A) sin ( x) cot (  x) (B)

54. Sketch a graph of y  3 sin [(x 2)  (  2)] over the 
interval  4  x  4 .

55. Indicate the amplitude A, period P, and phase shift for the
graph of y   2 cos [(  2)x  (  4)]. Do not graph.

56. Sketch a graph of y  cos 1 x, and indicate the domain
and range.

57. Graph y  1 (1  tan2 x) in a graphing utility that dis-
plays at least two full periods of the graph. Find an equa-
tion of the form y  k  A sin Bx or y  k  A cos Bx

that has the same graph.

58. Graph each equation in a graphing utility and find an
equation of the form y  A tan Bx or y  A cot Bx that
has the same graph as the given equation. Select the
dimensions of the viewing window so that at least two
periods are visible.

(A) (B)

59. Determine whether each function is even, odd, or neither.
Check your answer by graphing.

(A)

(B)

In Problems 60 and 61, determine whether the statement is true

or false. If true, explain why. If false, give a counterexample.

60. If  and  are the acute angles of a right triangle, then 
sin   csc  .

61. If  and  are the acute angles of a right triangle and
   , then all six trigonometric functions of  are
greater than and less than .3

2
1
2

g(x)  
1

1  tan x

f (x)  
1

1  tan2 x

y  
2 cos2 x

sin 2x
y  

2 sin2 x

sin 2x

sin2 x

1  sin2 x

Evaluate Problems 37–44 to four significant digits using a

calculator.

37. cos 423.7 38. tan 93 46 17 

39. sec ( 2.073) 40. sin 1 ( 0.8277)

41. arccos ( 1.3281) 42. tan 1 75.14

43. csc [cos 1 ( 0.4081)] 44. sin 1 (tan 1.345)

45. Find the exact degree measure of each without a calculator.
(A) (B)

46. Find the degree measure of each to two decimal places
using a calculator.
(A)   cos 1 ( 0.8763) (B)   arctan 7.3771

47. Evaluate cos 1 [cos (  2)] with a calculator set in radian
mode, and explain why this does or does not illustrate the
inverse cosine–cosine identity.

48. Sketch a graph of y   2 cos  x,  1  x  3. Indicate
amplitude A and period P.

49. Sketch a graph of y  2  3 sin (x 2),  4  x  4 .

50. Find the equation of the form y A cos Bx that has the graph
shown below, then check the results with a graphing utility.

51. Find the equation of the form y  A sin Bx that has the
graph shown below, then check the results with a graph-
ing utility.

x

y

1

 1

 1 1 2

x

y

  

2

 

2
 

6

 6

  arccos ( 1
2)  sin 1 ( 1

2)
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71. The accompanying graph is a graph of an equation of the
form y  A sin (Bx  C),  1   C B  0. Find the
equation, and check the results in a graphing utility.

72. Graph y 1.2 sin 2x 1.6 cos 2x in a graphing utility. (Se-
lect the dimensions of the viewing window so that at least
two periods are visible.) Find an equation of the form
y  A sin (Bx  C) that has the same graph as the given
equation. Find A and B exactly and C to three decimal
places. Use the x intercept closest to the origin as the
phase shift.

73. A particular waveform is approximated by the first six
terms of a Fourier series:

(A) Graph this equation in a graphing utility for 
 3  x  3 and  2  y  2.

(B) The graph in part A approximates a waveform that
is made up entirely of straight line segments. Sketch
by hand the waveform that the Fourier series
approximates.

This waveform is called a pulse wave or a square wave,
and is used, for example, to test distortion and to syn-
chronize operations in computers.

sin 7x

7
 

sin 9x

9
 

sin 11x

11  
y  

4

  sin x  
sin 3x

3
 

sin 5x

5
 

x

y

3

4

5

4
 

1

4
 

2

 2

62. If in the figure the coordinates of A are (8, 0) and arc
length s is 20 units, find:
(A) The exact radian measure of  
(B) The coordinates of P to three significant digits

63. Find exactly the least positive real number for which
(A) (B)

64. Sketch a graph of y  sec x,    2  x  3  2.

65. Sketch a graph of y  tan 1 x, and indicate the domain
and range.

66. Indicate the period P and phase shift for the graph of
y   5 tan ( x    2). Do not graph.

67. Indicate the period and phase shift for the graph of 
y  3 csc (x 2    4). Do not graph.

68. Indicate whether each is symmetrical with respect to the
x axis, y axis, or origin.
(A) Sine (B) Cosine (C) Tangent

69. Write as an algebraic expression in x free of trigonomet-
ric or inverse trigonometric functions:

sec (sin 1 x)

70. Try to calculate each of the following on your calculator.
Explain the results.
(A) csc (  ) (B) tan ( 3  2) (C) sin 1 2

csc x    2cos x   1
2

s

A

 

P   (a, b)
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74. Astronomy. A line from the sun to the Earth sweeps out
an angle of how many radians in 73 days? Express the
answer in terms of  .

75. Geometry. Find the perimeter of a square inscribed in a
circle of radius 5.00 centimeters.

76. Angular Speed. A wind turbine of rotor diameter 40 feet
makes 80 revolutions per minute. Find the angular speed
(in radians per second) and the linear speed (in feet per
second) of the rotor tip.

77. Alternating Current. The current I in alternating electrical
current has an amplitude of 30 amperes and a period of 
second. If I  30 amperes when t  0, find an equation of
the form I A cos Bt that gives the current at any time t 0.

78. Restricted Access. A 10-foot-wide canal makes a right
turn into a 15-foot-wide canal. Long narrow logs are to be
floated through the canal around the right angle turn (see
the figure). We are interested in finding the longest log that
will go around the corner, ignoring the log’s diameter.

15 ft

 

L

10 ft

Canal

1
60

(A) Express the length L of the line that touches the two
outer sides of the canal and the inside corner in
terms of  .

(B) Complete Table 2, each to one decimal place, and
estimate from the table the longest log to the nearest
foot that can make it around the corner. (The longest
log is the shortest distance L.)

 

 

T A B L E  2

 (radians) 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L (feet) 42.0

(C) Graph the function in part A in a graphing utility
and use an approximation method to find the short-
est distance L to one decimal place; hence, the
length of the longest log that can make it around the
corner.

(D) Explain what happens to the length L as  ap-
proaches 0 or   2.

79. Modeling Seasonal Business Cycles. A soft drink company
has revenues from sales over a 2-year period as shown by
the accompanying graph, where R(t) is revenue (in millions
of dollars) for a month of sales t months after February 1.
(A) Find an equation of the form R(t)  k  A cos Bt

that produces this graph, and check the result by
graphing.

(B) Verbally interpret the graph

t

R(t)

5

12 24
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T A B L E  3

x (months) 1 2 3 4 5 6 7 8 9 10 11 12

y (temperature) 58 60 61 63 66 70 74 75 74 70 63 58

80. Modeling Temperature Variation. The 30-year average
monthly temperature,  F, for each month of the year for
Los Angeles is given in Table 3 (World Almanac).
(A) Using 1 month as the basic unit of time, enter the

data for a 2-year period in your graphing utility and
produce a scatter plot in the viewing window.
Choose 40  y  90 for the viewing window.

(B) It appears that a sine curve of the form 

y  k  A sin (Bx  C)

will closely model these data. The constants k, A,
and B are easily determined from Table 3. To esti-

mate C, visually estimate to one decimal place the
smallest positive phase shift from the plot in part A.
After determining A, B, k, and C, write the resulting
equation. (Your value of C may differ slightly from
the answer at the back of the book.)

(C) Plot the results of parts A and B in the same viewing
window. (An improved fit may result by adjusting
your value of C slightly.)

(D) If your graphing utility has a sinusoidal regression
feature, check your results from parts B and C by
finding and plotting the regression equation.



A Predator–Prey Analysis Involving Mountain
Lions and Deer

In some western state wilderness areas, deer and mountain lion populations are
interrelated, because the mountain lions rely on the deer as a food source. The
population of each species goes up and down in cycles, but out of phase with
each other. A wildlife management research team estimated the respective popu-
lations in a particular region every 2 years over a 16-year period, with the results
shown in Table 1.

471

(A) Deer Population Analysis

1. Enter the data for the deer population for the time interval [0, 16] in a
graphing utility and produce a scatter plot of the data.

2. A function of the form y  k  A sin (Bx  C ) can be used to model
these data. Use the data in Table 1 to determine k, A, and B. Use the
graph in part 1 to visually estimate C to one decimal place.

3. Plot the data from part 1 and the equation from part 2 in the same
viewing window. If necessary, adjust the value of C for a better fit.

4. If your graphing utility has a sinusoidal regression feature, check your
results from parts 2 and 3 by finding and plotting the regression
equation.

5. Write a summary of the results, describing fluctuations and cycles of
the deer population.

T A B L E  1 Mountain Lion/Deer Populations

Years 0 2 4 6 8 10 12 14 16

Deer 1,272 1,523 1,152 891 1,284 1,543 1,128 917 1,185

Mountain
Lions 39 47 63 54 37 48 60 46 40
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(B) Mountain Lion Population Analysis

1. Enter the data for the mountain lion population for the time interval 
[0, 16] in a graphing utility and produce a scatter plot of the data.

2. A function of the form y  k  A sin (Bx  C ) can be used to model
these data. Use the data in Table 1 to determine k, A, and B. Use the
graph in part 1 to visually estimate C to one decimal place.

3. Plot the data from part 1 and the equation from part 2 in the same
viewing window. If necessary, adjust the value of C for a better fit.

4. If your graphing utility has a sinusoidal regression feature, check your
results from parts 2 and 3 by finding and plotting the regression
equation.

5. Write a summary of the results, describing fluctuations and cycles of
the mountain lion population.

(C) Interrelationship of the Two Populations

1. Discuss the relationship of the maximum predator populations to the
maximum prey populations relative to time.

2. Discuss the relationship of the minimum predator populations to the
minimum prey populations relative to time.

3. Discuss the dynamics of the fluctuations of the two interdependent pop-
ulations. What causes the two populations to rise and fall, and why are
they out of phase with one another?
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Trigonometric
Identities and
Conditional

Equations
O U T L I N E

6.1 Basic Identities and Their Use

6.2 Sum, Difference, and Cofunction Identities

6.3 Double-Angle and Half-Angle Identities

6.4 Product–Sum and Sum–Product Identities

6.5 Trigonometric Equations

Chapter 6 R E V I E W

Chapter 6  G R O U P  A C T I V I T Y : From M sin Bt N cos Bt to A sin (Bt C )—

A Harmonic Analysis Tool

T
RIGONOMETRIC FUNCTIONS ARE WIDELY USED IN SOLVING

real-world problems and in the development of mathematics.

Whatever their use, it is often of value to be able to change

a trigonometric expression from one form to an equivalent more

useful form. This involves the use of identities. Recall that an equa-

tion in one or more variables is said to be an identity if the left side

is equal to the right side for all replacements of the variables for

which both sides are defined.

For example, the equation

sin2 x  cos2 x  1

is an identity, but the equation

sin x  cos x  1

is not. The latter equation is called a conditional equation, because
it holds for certain values of x (for example, x  0 and x    2)
but not for other values for which both sides are defined (for example,

Before getting started on this chapter,

review the following concepts:

 Operations on Polynomials 
(Basic Algebra Review*, Section R.2)

 Factoring Polynomials
(Basic Algebra Review*, Section R.3)

 Rational Expressions 
(Basic Algebra Review*, Section R.4)

 Cartesian Coordinate System 
(Appendix A, Section A.2)

 Quadratic Equations 
(Chapter 2, Section 5)

 Basic Identities 
(Chapter 5, Section 4)

*At www.mhhe.com/barnett
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Basic Identities and Their Use

Basic Identities  Establishing Other Identities

In Section 6.1 we review the basic identities introduced in Section 5.4 and show
how they are used to establish other identities.

Basic Identities
In the box we list for convenient reference the basic identities introduced in Sec-
tion 5.4. These identities will be used very frequently in the work that follows
and should be memorized.

All these identities, with the exception of the second and third Pythagorean
identities, were established in Section 5.4. The two exceptions can be derived from
the first Pythagorean identity (see Explore/Discuss 1 and Problems 87 and 88 in
Exercise 6.1).

Basic Trigonometric Identities

Reciprocal Identities

Quotient Identities

Identities for Negatives

sin ( x)   sin x cos ( x)  cos x tan ( x)   tan x

Pythagorean Identities

sin2 x  cos2 x  1 tan2 x  1  sec2 x 1  cot2 x  csc2 x

tan x  
sin x

cos x
     cot x  

cos x

sin x

csc x  
1

sin x
    sec x  

1

cos x
    cot x  

1

tan x

E X P L O R E / D I S C U S S  1

Discuss an easy way to recall the second and third Pythagorean identi-
ties from the first. [Hint: Divide through the first Pythagorean identity
by appropriate expressions.]

x    4). Sections 1 through 4 of Chapter 6 deal with trigonometric identities, and
Section 6.5 with conditional trigonometric equations.



Establishing Other Identities
Identities are established to convert one form to an equivalent form that may be
more useful. To verify an identity means to prove that both sides of an equation
are equal for all replacements of the variables for which both sides are defined.
Such a proof might use basic identities or other verified identities and algebraic
operations such as multiplication, factoring, combining and reducing fractions,
and so on. Examples 1 through 6 illustrate some of the techniques used to verify
certain identities. The steps illustrated are not necessarily unique—often, there is
more than one path to a desired goal. To become proficient in the use of identi-
ties, it is important that you work out many problems on your own.

Identity Verification

Verify the identity cos x tan x  sin x.

V E R I F I C A T I O N

Generally, we proceed by starting with the more complicated of the two sides, and
transform that side into the other side in one or more steps using basic identities,
algebra, or other established identities. Thus,

Quotient identity

Algebra

Verify the identity sin x cot x  cos x.

 sin x

 cos x tan x  cos x
sin x

cos x

Identity Verification

Verify the identity sec ( x)  sec x.

V E R I F I C A T I O N

Reciprocal identity

Identity for negatives

Reciprocal identity sec x

 
1

cos x

 sec ( x)  
1

cos ( x)

6.1 Basic Identities and Their Use 475

E X P L O R E / D I S C U S S  2

Graph the left and right sides of the identity in Example 1 in a graph-
ing utility by letting y1  cos x tan x and y2  sin x. Use TRACE,
moving back and forth between the graphs of y1 and y2, to compare
values of y for given values of x. What does this investigation illustrate?



Verify the identity csc ( x)   csc x.

Identity Verification

Verify the identity cot x cos x  sin x  csc x.

V E R I F I C A T I O N

Quotient identity

Algebra

Algebra

Pythagorean identity

Reciprocal identity

K E Y  A L G E B R A I C  S T E P S  I N  E X A M P L E  3

Verify the identity tan x sin x  cos x  sec x.

To verify an identity, proceed from one side to the other, or from both sides
to the middle, making sure all steps are reversible. Do not use properties of equal-
ity to perform the same operation on both sides of the equation. Although there
is no fixed method of verification that works for all identities, there are certain
steps that help in many cases.

a

b
  a   b   

a2

b
    b   

a2 
  b2

b

 csc x

 
1

sin x

 
cos2 x  sin2 x

sin x

 
cos2 x

sin x
 sin x

 cot x cos x  sin x  
cos x

sin x
 cos x  sin x

6 TRIGONOMETRIC IDENTITIES AND CONDITIONAL EQUATIONS476

Suggested Steps in Verifying Identities

1. Start with the more complicated side of the identity, and transform it
into the simpler side.

2. Try algebraic operations such as multiplying, factoring, combining
fractions, and splitting fractions.

3. If other steps fail, express each function in terms of sine and cosine
functions, and then perform appropriate algebraic operations.

4. At each step, keep the other side of the identity in mind. This often
reveals what you should do to get there.



Identity Verification

Verify the identity 

V E R I F I C A T I O N

Algebra

Algebra

Pythagorean identity

Algebra

Algebra

Algebra

Reciprocal identity

K E Y  A L G E B R A I C  S T E P S  I N  E X A M P L E  4

Verify the identity 

Identity Verification

Verify the identity 

V E R I F I C A T I O N

Algebra

Pythagorean identity

Algebra

Algebra

K E Y  A L G E B R A I C  S T E P S  I N  E X A M P L E  5

a2
 2a 1  (a 1)2 1  b2

 (1  b)(1  b)

 
1  sin x

1  sin x

 
(1  sin x)2

(1  sin x)(1  sin x)

 
(sin x  1)2

1  sin2 x

sin2 x  2 sin x  1

cos2 x
 

(sin x  1)2

cos2 x

sin2 x  2 sin x  1

cos2 x
 

1  sin x

1  sin x
.

1  cos x

sin x
 

sin x

1  cos x
 2 csc x.

a

b
    

b

a
   

a2 
  b2

ba
    (1   c)2    1   2c   c2    m(a   b)

n(a   b)
   

m

n

 2 sec x

 
2

cos x

 
2(1  sin x)

cos x (1  sin x)

 
2  2 sin x

cos x (1  sin x)

 
1  2 sin x  1

cos x (1  sin x)

 
1  2 sin x  sin2 x  cos2 x

cos x (1  sin x)

1  sin x

cos x
 

cos x

1  sin x
 

(1  sin x)2  cos2 x

cos x (1  sin x)

1  sin x

cos x
 

cos x

1  sin x
 2 sec x.

6.1 Basic Identities and Their Use 477
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Verify the identity sec4 x  2 sec2 x tan2 x  tan4 x  1.

Identity Verification

Verify the identity 

V E R I F I C A T I O N

K E Y  A L G E B R A I C  S T E P S  I N  E X A M P L E  6

Verify the identity cot x  tan x  

Just observing how others verify identities won’t make you good at it. You must verify a large num-

ber on your own. With practice the process will seem less complicated.

2 cos2 x  1

sin x cos x
.

a

b
   

b

a

a

b
   

b

a

   

ab a

b
   

b

a 
ab a

b
   

b

a 
   

a2 
  b2

a2 
  b2

 1  2 cos2 x

 
1  cos2 x  cos2 x

1

 
sin2 x  cos2 x

sin2 x  cos2 x

 

(sin x)(cos x) sin x

cos x
 

cos x

sin x  
(sin x)(cos x) sin x

cos x
 

cos x

sin x  

tan x  cot x

tan x  cot x
 

sin x

cos x
 

cos x

sin x

sin x

cos x
 

cos x

sin x

tan x  cot x

tan x  cot x
 1  2 cos2 x.

Change to sines and cosines (quotient

identities).

Multiply numerator and denominator by

(sin x)(cos x), and use algebra to

transform the compound fraction into a

simple fraction.

Pythagorean identity

Algebra
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In the following identity verifications, other correct sequences of steps are possible—the process is not unique.

1. 2.

3. tan x sin x  cos x  
sin2

x

cos x

 cos x  
sin2

x  cos2
x

cos x

 
1

cos x

 sec x

csc ( x)  
1

sin ( x)
 

1

 sin x

  csc xsin x cot x  sin x

cos x

sin x

 cos x

Testing Identities Using a Graphing Utility

Use a graphing utility to test whether each of the following is an identity. If an
equation appears to be an identity, verify it. If the equation does not appear to be
an identity, find a value of x for which both sides are defined but are not equal.

(A) tan x  1  (sec x)(sin x  cos x)

(B) tan x  1  (sec x)(sin x  cos x)

S O L U T I O N S

(A) Graph each side of the equation in the same viewing window (Fig. 1).
The equation is not an identity, because the graphs do not match.

Try x  0.

Left side: tan 0  1  1

Right side: (sec 0)(sin 0  cos 0)   1

Finding one value of x for which both sides are defined, but are not
equal, is enough to verify that the equation is not an identity.

(B) Graph each side of the equation in the same viewing window (Fig. 2).
The equation appears to be an identity, which we now verify:

Use a graphing utility to test whether each of the following is an identity. If an
equation appears to be an identity, verify it. If the equation does not appear to be
an identity, find a value of x for which both sides are defined but are not equal.

(A) (B)
sin x

1  cos2
x

 sec x

sin x

1  cos2
x

 csc x

 tan x  1

  sin x

cos x

 
cos x

cos x
 

  1

cos x
 (sin x  cos x)

 (sec x) (sin x  cos x)

FIGURE 1

 4

 2

4

2

FIGURE 2

 4

 2

4

2



19. cos2 x  sin2 x  1  2 sin2 x

20. (sin x cos x)2  1  2 sin x cos x

21. (sec t  1)(sec t  1)  tan2 t

22. (csc t  1)(csc t  1)  cot2 t

23. csc2 x  cot2 x  1

24. sec2 u  tan2 u  1

25.

26. sin m (csc m  sin m)  cos2 m

In Problems 27–30, graph all parts of each problem in the

same viewing window in a graphing utility.

27.    x   

(A) y  sin2 x (B) y  cos2 x

(C) y  sin2 x  cos2 x

28.    x   

(A) y  sec2 x (B) y  tan2 x

(C) y  sec2 x  tan2 x

cot x  sec x  
cos x  tan x

sin x

6 TRIGONOMETRIC IDENTITIES AND CONDITIONAL EQUATIONS480

 4

 2

4

2

 4

 2

4

2

Verify that Problems 1–26 are identities.

1. sin  sec   tan  2. cos  csc   cot  

3. cot u sec u sin u  1 4. tan  csc  cos   1

5. 6. cot ( x) tan x  1

7. 8.

9. cot u  1  (csc u)(cos u  sin u)

10. tan u  1  (sec u)(sin u  cos u)

11.

12.

13. 14.

15. 16.

17. (1  cos u)(1 cos u)  sin2 u

18. (1  sin t)(1 sin t)  cos2 t

sin u

1  cos2 u
 csc u

cos x

1  sin2 x
 sec x

cos2 t

sin t
 sin t  csc t

sin2 t

cos t
 cos t  sec t

cos2 x  sin2 x

sin x cos x
 cot x  tan x

cos x  sin x

sin x cos x
 csc x  sec x

tan   
cos   sec  

cot  
sin   

tan   cot  

csc  

sin ( x)

cos ( x)
  tan x

4.

5. sec4 x  2 sec2 x tan2 x  tan4 x  (sec2 x  tan2 x)2  12  1

6.

7. (A) An identity: (B) Not an identity: the left side is not equal to the right 
side for x  1, for example.

sin x

1  cos2 x
 

sin x

sin2 x
 

1

sin x
 csc x

cot x  tan x  
cos x

sin x
 

sin x

cos x
 

cos2 x  sin2 x

sin x cos x
 

cos2 x  (1  cos2 x)

sin x cos x
 

2 cos2 x  1

sin x cos x

2(1  cos x)

sin x (1  cos x)
 2 csc x

1  cos x

sin x
 

sin x

1  cos x
 

(1  cos x)2  sin2 x

sin x (1  cos x)
 

1  2 cos x  cos2 x  sin2 x

sin x (1  cos x)
 



29.    x   

(A) (B) y  1y  
cos x

cot x sin x

30.    x   

(A) (B) y  1y  
sin x

cos x tan x
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In Problems 31–38, is the equation an identity? Explain.

31. 32.

33. 34.

35. sin x  cos x  1 36. sin x  cos x  1

37. sin2 x  cos2 x  1 38. sin3 x  cos3 x  1

Verify that Problems 39–68 are identities.

39.

40.

41.

42.

43.

44.

45. tan2 x  sin2 x  tan2 x sin2 x

46. sec2 x  csc2 x  sec2 x csc2 x

47. 48.

49. ln (tan x) ln (sin x) ln (cos x)

50. ln (cot x) ln (cos x) ln (sin x)

51. ln (cot x)  ln (tan x) 52. ln (csc x)  ln (sin x)

53. 54.
1  csc y

1  csc y
 

sin y  1

sin y  1

1  cos A

1  cos A
 

sec A  1

sec A  1

1  sec  

sin   tan  
 csc  

csc  

cot   tan  
 cos  

1  sin y  
cos2 y

1  sin y

1  cos y

1  cos y
 

sin2 y

(1  cos y)2

sin   cos   
tan   1

sec  

cos   sin   
cot   1

csc  

1  cos2 y

(1  sin y)(1  sin y)
 tan2 y

1  (sin x  cos x)2

sin x
 2 cos x

1

 x
 

 x

|x|
 x2  4x  4  x  2

5x

|x|
 5

x2  9

x  3
 x  3

55. sin4 w  cos4 w  1  2 cos2 w

56. sin4 x  2 sin2 x cos2 x  cos4 x  1

57.

58.

59.

60.

61.

62.

63.

64.

65. 66.

67. 68.

Use a graphing utility to test whether each of the following is

an identity. If an equation appears to be an identity, verify it. If

the equation does not appear to be an identity, find a value of x

for which both sides are defined but are not equal.

69. 70.

71. 72.
cos x

sin ( x) cot ( x)
 1

sin x

cos x tan ( x)
  1

cos ( x)

sin x cot ( x)
 1

sin ( x)

cos ( x) tan ( x)
  1

sin x

1  cos x
 

1  cos x

sin x

1  sin v

cos v
 

cos v

1  sin v

sec4 x  1

tan2 x
 2  tan2 x

csc4 x  1

cot2 x
 2  cot2 x

(cot u  csc u)2  
1  cos u

1  cos u

(sec x  tan x)2  
1  sin x

1  sin x

cos3 u  sin3 u

cos u  sin u
 1  sin u cos u

cos3   sin3  

cos   sin  
 1  sin   cos  

sin2 t  4 sin t  3

cos2 t
 

3  sin t

1  sin t

cos2 z  3 cos z  2

sin2 z
 

2  cos z

1  cos z

csc n  
sin n

1  cos n
 cot n

sec x  
cos x

1  sin x
 tan x



78.

79.

80.
cos x

sin x  1
 

cos x

sin x  1
 2 csc x

tan x

sin x  2 tan x
 

1

cos x  2

cos x

1  sin x
 

cos x

1  sin x
 2 sec x73. 74.

75. 76.

77.
tan x

sin x  2 tan x
 

1

cos x  2

tan2 x  1

1  cot2 x
 tan2 xsin x  

cos2 x

sin x
 csc x

1  tan2 x

1  cot2 x
 tan2 xsin x  

cos2 x

sin x
 sec x
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Verify that Problems 81–86 are identities.

81.

82.

83.

84.

85.

86.

In Problems 87 and 88, fill in the blanks citing the appropriate

basic trigonometric identity.

87. Statement Reason

(A) _______

Algebra

Algebra

(B) _______

Algebra

(C) _______ csc2 x

  1

sin x 
2

 
1

sin2 x

 
cos2 x  sin2 x

sin2 x

 
cos2 x

sin2 x
 1

 cot2 x  1   cos x

sin x 
2

 1

cot   cot  

cot   cot   1
 

tan   tan  

1  tan   tan  

tan   cot   
tan   cot  

tan   cot  

sin x cos y  cos x sin y

cos x cos y  sin x sin y
 

tan x  tan y

1  tan x tan y

tan u  sin u

tan u  sin u
 

sec u  1

sec u  1
 0

3 cos2 z  5 sin z  5

cos2 z
 

3 sin z  2

1  sin z

2 sin2 x  3 cos x  3

sin2 x
 

2 cos x  1

1  cos x

88. Statement Reason

(A) _______

Algebra

Algebra

(B) _______

Algebra

(C) _______

In Problems 89–94, examine the graph of f(x) in a graphing util-

ity to find a function of the form g(x)  k AT(x) that has the

same graph as f(x), where k and A are constants and T(x) is one

of the six trigonometric functions. Verify the identity f(x)  g(x).

89.

90.

91.

92.

93.

94. f (x)  
3 sin x  2 sin x cos x

1  cos x
 

1  cos x

sin x

f (x)  
1  cos x  2 cos2 x

1  cos x
 

sin2 x

1  cos x

f (x)  
tan x sin x

1  cos x

f (x)  
cos2 x

1  sin x  cos2 x

f (x)  
1  sin x

2 cos x
 

cos x

2  2 sin x

f (x)  
1  sin2 x

tan x
 sin x cos x

 sec2 x

  1

cos x 
2

 
1

cos2 x

 
sin2 x  cos2 x

cos2 x

 
sin2 x

cos2 x
 1

 tan2 x  1   sin x

cos x 
2

 1



103. In the radical form a  0, let u  a sin x,
   2  x    2. Simplify, using a basic identity, and
write the final form free of radicals.

104. In the radical form a  0, let u  a cos x,
0  x   . Simplify, using a basic identity, and write the
final form free of radicals.

105. In the radical form a  0, let u  a tan x,
0  x    2. Simplify, using a basic identity, and write
the final form free of radicals.

106. In the radical form a  0, let u  a cot x,
0  x    2. Simplify, using a basic identity, and write
the final form free of radicals.

 a2
 u2,

 a2
 u2,

 a2
 u2,

 a2
 u2,

6.2 Sum, Difference, and Cofunction Identities 483

Each of the equations in Problems 95–102 is an identity in cer-

tain quadrants associated with x. Indicate which quadrants.

95. 96.

97. 98.

99. 100.

101. 102.

In calculus, trigonometric substitutions provide an effective

way to rationalize the radical forms and ,

which in turn leads to the solution to an important class of

problems. Problems 103–106 involve such transformations.

[Recall:  |x| for all real numbers x.] x
2

 a
2
 u

2 a
2
 u

2

sin x

 1  sin2
x
  tan x

sin x

 1  sin2
x
 tan x

 1  cos2
x   sin x  1  sin2

x   cos x 
 1  sin2

x   cos x 1  cos2
x  sin x

 1  sin2
x  cos x 1  cos2

x   sin x

Sum, Difference, and Cofunction Identities

Sum and Difference Identities for Cosine  Cofunction Identities  Sum and Difference
Identities for Sine and Tangent  Summary and Use

The basic identities discussed in Section 6.1 involved only one variable. In Sec-
tion 6.2, we consider identities that involve two variables.

Sum and Difference Identities for Cosine

We start with the important difference identity for cosine:

cos (x  y)  cos x cos y  sin x sin y (1)

Many other useful identities can be readily verified from this particular one.
Here, we sketch a proof of equation (1) assuming x and y are in the interval

(0, 2 ) and x  y  0. It then follows easily, by periodicity and basic identities,
that equation (1) holds for all real numbers x and y.

First, associate x and y with arcs and angles on the unit circle as indicated in
Figure 1(a). Using the definitions of the circular functions given in Section 5.2,
label the terminal points of x and y as shown in Figure 1(a).

FIGURE 1 Difference identity.

1

1

           a        b
A   (cos y, sin y)

           c        d
B   (cos x, sin x)

D   (1, 0)

x

y

x   y

O 1

1

D   (1, 0)

x   y

O

               e                   f
C   [cos (x   y), sin (x   y)]

(a) (b)



Now if you rotate the triangle AOB clockwise about the origin until the ter-
minal point A coincides with D   (1, 0), then terminal point B will be at C, as
shown in Figure 1(b). Thus, because rotation preserves lengths,

d(A, B)  d(C, D)

 

(c  a)2
 (d  b)2

 (1  e)2
 f 2

c2
 2ac  a2

 d2
 2db  b2

 1  2e  e2
 f 2

(c2
 d2)  (a2

 b2)  2ac  2db  1  2e  (e2
 f 2) (2)

Because points A, B, and C are on unit circles, c2
 d2

 1, a2
 b2

 1, and
e2
 f 2

 1, and equation (2) simplifies to

e  ac  bd (3)

Replacing e, a, c, b, and d with cos (x  y), cos y, cos x, sin y, and sin x, respec-
tively (see Fig. 1), we obtain

cos (x  y)  cos y cos x  sin y sin x

 cos x cos y  sin x sin y (4)

We have thus established the difference identity for cosine.
If we replace y with  y in equation (4) and use the identities for negatives (a

good exercise for you), we obtain

cos (x  y)  cos x cos y  sin x sin y (5)

This is the sum identity for cosine.

 (1  e)2
 (0  f )2 (c  a)2

 (d  b)2
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E X P L O R E / D I S C U S S  1

Discuss how you would show that, in general,

cos (x  y)  cos x  cos y

and

cos (x  y)  cos x  cos y

Cofunction Identities

To obtain sum and difference identities for the sine and tangent functions, we first
derive cofunction identities directly from equation (1), the difference identity for
cosine:

cos (x  y)  cos x cos y  sin x sin y

 

 (0)(cos y)  (1)(sin y)

 sin y

cos
 

2
 cos y  sin

 

2
 sin ycos   2  y 



Thus, we have the cofunction identity for cosine:

(6)

for y any real number or angle in radian measure. If y is in degree measure, replace
  2 with 90 .

Now, if we let y    2  x in equation (6), we have

 

cos x  

This is the cofunction identity for sine; that is,

(7)

where x is any real number or angle in radian measure. If x is in degree measure,
replace   2 with 90 .

Finally, we state the cofunction identity for tangent (and leave its derivation
to Problem 10 in Exercise 6.2):

(8)

for x any real number or angle in radian measure. If x is in degree measure, replace
  2 with 90 .

REMARK If 0  x  90 , then x and 90  x are complementary angles. Origi-
nally, cosine, cotangent, and cosecant meant, respectively, “complements sine,”
“complements tangent,” and “complements secant.” Now we simply refer to
cosine, cotangent, and cosecant as cofunctions of sine, tangent, and secant,
respectively.

Sum and Difference Identities for Sine and Tangent
To derive a difference identity for sine, we use equations (1), (6), and (7) as
follows:

 sin x cos y  cos x sin y

 cos   2  x  cos ( y)  sin   2  x  sin ( y)

 cos    2  x  ( y) 

 sin ( x  y)  cos   2  (x  y) 

tan   2    x    cot x

sin   2   x    cos x

sin   2  x 

sin   2  x cos   2    2  x  

cos   2   y    sin y
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Use equation (6).

Algebra

Use equation (1).

Use equations (6)

and (7) and

identities for

negatives.



The same result is obtained by replacing   2 with 90 . Thus,

sin (x y) sin x cos y cos x sin y (9)

is the difference identity for sine.
Now, if we replace y in equation (9) with  y (a good exercise for you), we obtain

sin (x y) sin x cos y cos x sin y (10)

the sum identity for sine.
It is not difficult to derive sum and difference identities for the tangent func-

tion. See if you can supply the reason for each step:

Thus,

(11)

for all angles or real numbers x and y for which both sides are defined. This is
the difference identity for tangent.

If we replace y in equation (11) with  y (another good exercise for you), we obtain

(12)

the sum identity for tangent.

tan (x   y)   
tan x   tan y

1   tan x tan y

tan (x   y)   
tan x   tan y

1   tan x tan y

 
tan x  tan y

1  tan x tan y

 

sin x

cos x
 

sin y

cos y

1  
sin x sin y

cos x cos y

 

sin x cos y

cos x cos y
 

cos x sin y

cos x cos y

cos x cos y

cos x cos y
 

sin x sin y

cos x cos y

 
sin x cos y  cos x sin y

cos x cos y  sin x sin y

 tan ( x  y)  
sin (x  y)

cos (x  y)
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Divide the numerator and

denominator by cos x and cos y.



Summary and Use
Before proceeding with examples illustrating the use of these new identities,
review the list given in the box.
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E X P L O R E / D I S C U S S  2

Discuss how you would show that, in general,

tan (x  y)  tan x  tan y

and

tan (x  y)  tan x  tan y

Summary of Identities

Sum Identities

sin (x  y)  sin x cos y  cos x sin y

cos (x  y)  cos x cos y  sin x sin y

 

Difference Identities

sin (x  y)  sin x cos y  cos x sin y

cos (x  y)  cos x cos y  sin x sin y

 

Cofunction Identities

(Replace  /2 with 90 if x is in degrees.)

tan   2  x  cot xsin   2  x  cos xcos   2  x  sin x

tan x  tan y

1  tan x tan y
tan (x  y)

tan x  tan y

1  tan x tan y
tan (x  y)
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FIGURE 2

 4

 2

4

2

Using the Difference Identity

Simplify cos (x   ) using the difference identity.

S O L U T I O N

cos (x  y)  cos x cos y  sin x sin y

cos (x   )  cos x cos   sin x sin  

 (cos x)( 1)  (sin x)(0)

  cos x

Simplify sin (x  3  2) using a sum identity.

Checking the Use of Sum and Difference Identities on a Graphing Utility

Simplify sin (x   ) using a difference identity. Enter the original form as y1 and
the converted form as y2 in a graphing utility, then graph both in the same view-
ing window.

S O L U T I O N

sin (x  y)  sin x cos y  cos x sin y

sin (x   )  sin x cos   cos x sin  

 (sin x)( 1)  (cos x)(0)

  sin x

Graph y1  sin (x   ) and y2   sin x in the same viewing window (Fig. 2).
Use TRACE and move back and forth between y1 and y2 for different values of
x to see that the corresponding y values are the same, or nearly the same.

Simplify cos (x  3  2) using a sum identity. Enter the original form as y1 and
the converted form as y2 in a graphing utility, then graph both in the same view-
ing window.

Finding Exact Values

Find the exact value of tan 75 in radical form.

S O L U T I O N

Because we can write 75  45  30 , the sum of two special angles, we can
use the sum identity for tangents with x  45 and y  30 :



Sum identity

Evaluate functions exactly.

Rationalize denominator and simplify.

Find the exact value of cos 15 in radical form.

Finding Exact Values

Find the exact value of cos (x  y), given sin x  cos y  x is an angle in
quadrant II, and y is an angle in quadrant I. Do not use a calculator.

S O L U T I O N

We start with the sum identity for cosine,

cos (x  y)  cos x cos y  sin x sin y

We know sin x and cos y but not cos x and sin y. We find the latter two using
two different methods as follows (use the method that is easiest for you).

Given sin x  and x is an angle in quadrant II, find cos x:3
5

4
5,3

5,

 2   3

 
 3  1

 3  1

 
1  (1  3)

1  1(1  3)

 tan ( 45°  30°)  
tan 45°  tan 30°

1  tan 45° tan 30°

 tan ( x  y)  
tan x  tan y

1  tan x tan y
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Multiply numerator and denominator by and

simplify.

 3

Method I. Use a reference triangle:

In quadrant II,

Therefore,  cos x   4
5

a   4

a   4

a2  16

a2  32  52

 cos x  
a

5

a

b

(a, 3)

5
3

a

x

Method II. Use a unit circle:

In quadrant II,

Therefore,  cos x   4
5

a   4
5

a   4
5

a2  16
25

a2  (3
5)2  1

 cos x  a

b

(1, 0)

3

5 x

a

P    a,



cos (x  y)  cos x cos y  sin x sin y

 

Find the exact value of sin (x  y), given sin x  cos y  x is an angle
in quadrant III, and y is an angle in quadrant IV. Do not use a calculator.

Identity Verification

Verify the identity tan x  cot y  

V E R I F I C A T I O N

Difference identity for cosine

Algebra

Quotient identities

Verify the identity cot y cot x  
sin (x  y)

sin x sin y
.

 tan x  cot y

 cot y  tan x

 
cos x cos y

cos x sin y
 

sin x sin y

cos x sin y

cos (x  y)

cos x sin y
 

cos x cos y  sin x sin y

cos x sin y

cos (x  y)

cos x sin y
.

 5 3, 2
3,

( 4
5)(4

5)  (3
5)(3

5)   25
25   1
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Method I. Use a reference triangle:

In quadrant I,

Therefore,  sin y  3
5

b  3

b   3

b2  9

 42  b2  52

 sin y  
b

5

a

b

b

(4, b)

5

4

y

We can now evaluate cos (x y) without knowing x and y:

Method II. Use a unit circle:

In quadrant I,

Therefore,  sin y  3
5

b  3
5

b   3
5

b2  9
25

 (4
5)2  b2  1

 sin y  b

a

b

4

5
, b 

(1, 0)

x
P    

Given cos y and y is an angle in quadrant I, find sin y:4
5
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1.  cos x 2. y1  cos (x  3  2), y2  sin x 3. 4.

5.
sin (x  y)

sin x sin y
 

sin x cos y  cos x sin y

sin x sin y
 

sin x cos y

sin x sin y
 

cos x sin y

sin x sin y
 cot y  cot x

 4

 2

4

2

 4 5 9(1   3) 2 2 or ( 6   2) 4

In Problems 1–8, is the equation an identity? Explain, making

use of the sum or difference identities.

1. tan (x  ) = tan x

2. cos (x  ) = cos x

3. sin (x  ) = sin x

4. cot (x  ) = cot x

5. csc (2  x) = csc x

6. sec (2  x) = sec x

7. sin (x   2) =  cos x

8. cos (x   2) =  sin x

Verify each identity in Problems 9–12 using cofunction identi-

ties for sine and cosine and basic identities discussed in Sec-

tion 6.1.

9. 10.

11. 12.

Convert Problems 13–18 to forms involving sin x, cos x,

and or tan x using sum or difference identities.

13. sin (30  x) 14. sin (x 45 )

15. sin (180  x) 16. cos (x 180 )

17. 18. tan   4  x tan  x  
 

3  

sec   2  x  csc xcsc   2  x  sec x

tan   2  x  cot xcot   2  x  tan x

23. cos 74 cos 44  sin 74 sin 44 

24. sin 22 cos 38  cos 22 sin 38 

25. 26.
tan 110°  tan 50°

1  tan 110° tan 50°

tan 27°  tan 18°

1  tan 27° tan 18°

Use appropriate identities to find exact values for Problems

19–26. Do not use a calculator.

19. sec 75 20. sin 75 

21.

22. cos
 

12  Hint:
 

12
 
 

4
 
 

6 

sin
7 

12  Hint:
7 

12
 
 

3
 
 

4 



41.

42.

43.

44.

Evaluate both sides of the difference identity for sine and the sum

identity for tangent for the values of x and y indicated in Problems

45–48. Evaluate to four significant digits using a calculator.

45. x  5.288, y  1.769 46. x  3.042, y  2.384

47. x  42.08 , y  68.37 48. x  128.3 , y  25.62 

49. Explain how you would show that, in general, 
sec (x y)  sec x  sec y

50. Explain how you would show that, in general, 
csc (x y)  csc x  csc y

In Problems 51–56, use sum or difference identities to convert

each equation to a form involving sin x, cos x, and or tan x.

Enter the original equation in a graphing utility as y1 and the

converted form as y2, then graph y1 and y2 in the same viewing

window. Use TRACE to compare the two graphs.

51. y  sin (x   6) 52. y  sin (x   3)

53. y  cos (x 3  4) 54. y  cos (x 5  6)

55. y  tan (x 2  3) 56. y  tan (x   4)

sin (x  h)  sin x

h
 sin x  cos h  1

h   cos x  sin h

h  

cos (x  h)  cos x

h
 cos x  cos h  1

h   sin x  sin h

h  

tan (x  y)  
cot x  cot y

cot x cot y  1

tan (x  y)  
cot y  cot x

cot x cot y  1
Find sin (x  y) and tan (x  y) exactly without a calculator

using the information given in Problems 27–30.

27. sin x  , sin y  x is a quadrant IV angle, y is a
quadrant I angle.

28. sin x  cos y  x is a quadrant II angle, y is a 
quadrant III angle.

29. tan x  tan y  x is a quadrant III angle, y is a
quadrant IV angle.

30. cos x  , tan y  x is a quadrant II angle, y is a
quadrant III angle.

Verify each identity in Problems 31–44.

31. cos 2x  cos2 x  sin2 x 32. sin 2x  2 sin x cos x

33.

34.

35. 36.

37.

38.

39.

40. tan x  tan y  
sin (x  y)

cos x cos y

cot x  tan y  
cos (x  y)

sin x cos y

sin (u  v)

sin (u  v)
 

tan u  tan v

tan u  tan v

sin (v  u)

sin (v  u)
 

cot u  cot v

cot u  cot v

cot 2x  
cot2 x  1

2 cot x
tan 2x  

2 tan x

1  tan2 x

cot (x  y)  
cot x cot y  1

cot y  cot x

cot (x  y)  
cot x cot y  1

cot x  cot y

1
2, 1

3

 1
2,3

4,

 1
4,2

3,

 8 3, 3
5
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In Problems 57–60, evaluate exactly as real numbers without

the use of a calculator.

57.

58.

59.

60.

61. Express sin (sin 1 x  cos 1 y) in an equivalent form free
of trigonometric and inverse trigonometric functions.

62. Express cos (sin 1 x  cos 1 y) in an equivalent form free
of trigonometric and inverse trigonometric functions.

cos [arccos (  3/2)  arcsin ( 1
2)]

sin [arccos 12  arcsin ( 1)]

cos [sin 1 ( 3
5)  cos 1 (4

5)]

sin [cos 1 ( 4
5)  sin 1 ( 3

5)]

Verify the identities in Problems 63 and 64.

63. cos (x y  z)  cos x cos y cos z  sin x sin y cos z  

sin x cos y sin z  cos x sin y sin z

64. sin (x y  z)  sin x cos y cos z  cos x sin y cos z  

cos x cos y sin z  sin x sin y sin z

In Problems 65 and 66, write each equation in terms of a sin-

gle trigonometric function. Enter the original equation in a

graphing utility as y1 and the converted form as y2, then graph

y1 and y2 in the same viewing window. Use TRACE to compare

the two graphs.

65. y  cos 1.2x cos 0.8x  sin 1.2x sin 0.8x

66. y  sin 0.8x cos 0.3x  cos 0.8x sin 0.3x
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67. Analytic Geometry. Use the information in the figure to
show that

tan  1  Slope of L1  m1

tan  2  Slope of L2  m2

68. Analytic Geometry. Find the acute angle of intersection
between the two lines y 3x  1 and y   1. (Use
the results of Problem 67.)

69. Light Refraction. Light rays passing through a plate glass
window are refracted when they enter the glass and again
when they leave to continue on a path parallel to the enter-
ing rays (see the figure). If the plate glass is M inches
thick, the parallel displacement of the light rays is N
inches, the angle of incidence is  , and the angle of refrac-
tion is  , show that

[Hint: First use geometric relationships to obtain

then use difference identities and fundamental identities to
complete the derivation.]

Plate
glass

M

N

␣

␤

Air

Air

M

sec (90°   )
 

N

sin (   )

tan   tan   
N

M
  sec  

1
2x

L2

L1

2   1

2
1

tan ( 2   1)  
m2  m1

1  m1m2

70. Light Refraction. Use the results of Problem 69 to find  
to the nearest degree if   43 , M  0.25 inch, and 
N  0.11 inch.

 71. Surveying. El Capitan is a large monolithic granite peak
that rises straight up from the floor of Yosemite Valley in
Yosemite National Park. It attracts rock climbers world-
wide. At certain times, the reflection of the peak can be
seen in the Merced River that runs along the valley floor.
How can the height H of El Capitan above the river be de-
termined by using only a sextant h feet high to measure
the angle of elevation,  , to the top of the peak, and the
angle of depression,  , of the reflected peak top in the
river? (See accompanying figure, which is not to scale.)

(A) Using right triangle relationships, show that

(B) Using sum or difference identities, show that the result
in part A can be written in the form

(C) If a sextant of height 4.90 feet measures  to be 46.23 
and  to be 46.15 , compute the height H of El Capi-
tan above the Merced River to three significant digits.

H  h sin (   )

sin (   ) 

H  h 1  tan   cot  

1  tan   cot   

A
B

D

E

E 

H

h ␣
␣

␤

Merced River

El Capitan

C

Yosemite
National Park

␣

  



Double-Angle and Half-Angle Identities

Double-Angle Identities  Half-Angle Identities

Section 6.3 develops another important set of identities called double-angle and
half-angle identities. We can derive these identities directly from the sum and dif-
ference identities given in Section 6.2. Although the names use the word angle,

the new identities hold for real numbers as well.

Double-Angle Identities
Start with the sum identity for sine,

sin (x  y)  sin x cos y  cos x sin y

and replace y with x to obtain

sin (x  x)  sin x cos x  cos x sin x

On simplification, this gives

sin 2x 2 sin x cos x Double-angle identity for sine (1)

If we start with the sum identity for cosine,

cos (x  y)  cos x cos y  sin x sin y

and replace y with x, we obtain

cos (x  x)  cos x cos x  sin x sin x

On simplification, this gives

cos 2x cos2
x sin2

x First double-angle identity for cosine (2)

Now, using the Pythagorean identity

sin2 x  cos2 x  1 (3)

in the form

cos2 x  1  sin2 x (4)

and substituting it into equation (2), we get

cos 2x  1  sin2 x  sin2 x

On simplification, this gives

cos 2x 1 2 sin2
x Second double-angle identity for cosine (5)

Or, if we use equation (3) in the form

sin2 x  1  cos2 x
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and substitute it into equation (2), we get

cos 2x  cos2
x  (1  cos2

x)

On simplification, this gives

cos 2x 2 cos2
x 1 Third double-angle identity for cosine (6)

Double-angle identities can be established for the tangent function in the same
way by starting with the sum formula for tangent (a good exercise for you).

We list the double-angle identities below for convenient reference.

The identities in the second row can be solved for sin2
x and cos2

x to obtain
the identities

These are useful in calculus to transform a power form to a nonpower form.

cos2
x  

1  cos 2x

2
sin2

x  
1  cos 2x

2

Identity Verification

Verify the identity cos .

V E R I F I C A T I O N

We start with the right side:

2x  
1  tan2

x

1   tan2
x
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Double-Angle Identities

sin 2x  2 sin x cos x

cos 2x  cos2
x  sin2

x  1  2 sin2
x  2 cos2

x  1

tan 2x  
2 tan x

1  tan2
x
 

2 cot x

cot2
x  1

 
2

cot x  tan x

E X P L O R E / D I S C U S S  1

(A) Discuss how you would show that, in general,

sin 2x  2 sin x cos 2x  2 cos x tan 2x  2 tan x

(B) Graph y1  sin 2x and y2  2 sin x in the same viewing window.
Conclusion? Repeat the process for the other two statements in
part A.



Quotient identities

Algebra

Algebra

Pythagorean identity

Double-angle identity

K E Y  A L G E B R A I C  S T E P S  I N  E X A M P L E  1

Verify the identity sin 2x  

Finding Exact Values

Find the exact values, without using a calculator, of sin 2x and cos 2x if
tan and x is a quadrant IV angle.

S O L U T I O N

First draw the reference triangle for x and find any unknown sides:

Now use double-angle identities for sine and cosine:

cos 2x  2 cos2 x  1  2(4
5)2  1  7

25

sin 2x  2 sin x cos x  2( 3
5)(4

5)   24
25

 cos x  4
5

 sin x   3
5

r   ( 3)2  42  5

r
 3

4

x   3
4

2 tan x

1  tan2 x
.

1   
a2

b2

1  
a2

b2

   

b2 1   
a2

b2 
b2 1   

a2

b2 
   

b2   a2

b2   a2

 cos 2x

 cos2 x  sin2 x

 
cos2 x  sin2 x

cos2 x  sin2 x

 

cos2 x  1  
sin2 x

cos2 x 
cos2 x  1  

sin2 x

cos2 x 

1  tan2 x

1  tan2 x
 

1  
sin2 x

cos2 x

1  
sin2 x

cos2 x
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Find the exact values, without using a calculator, of cos 2x and tan 2x if sin 
and x is a quadrant II angle.

Half-Angle Identities
Half-angle identities are simply double-angle identities stated in an alternate form.
Let’s start with the double-angle identity for cosine in the form

cos 2m  1  2 sin2 m

Now replace m with x 2 and solve for sin (x 2) [if 2m is twice m, then m is half
of 2m—think about this]:

Half-angle identity for sine (7)

where the choice of the sign is determined by the quadrant in which x 2 lies.
To obtain a half-angle identity for cosine, start with the double-angle identity

for cosine in the form

cos 2m  2 cos2 m  1

and let m  x 2 to obtain

Half-angle identity for cosine (8)

where the sign is determined by the quadrant in which x 2 lies.
To obtain a half-angle identity for tangent, use the quotient identity and the

half-angle formulas for sine and cosine:

Thus,

Half-angle identity for tangent (9)

where the sign is determined by the quadrant in which x 2 lies.
Simpler versions of equation (9) can be obtained as follows:

tan  
x

2
       1  cos x

1  cos x

tan
x

2
 

sin
x

2

cos
x

2

 

  
1  cos x

2

  
1  cos x

2

   
1  cos x

1  cos x

cos  
x

2
       1  cos x

2

sin  
x

2
       1   cos x

2

 sin2
x

2
 

1  cos x

2

 cos x  1  2 sin2
x

2

x  4
5
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(10)

All absolute value signs can be dropped, because it can be shown that tan (x 2)
and sin x always have the same sign (a good exercise for you). Thus,

Half-angle identity for tangent (11)

By multiplying the numerator and the denominator in the radicand in equation
(10) by 1  cos x and reasoning as before, we also can obtain

Half-angle identity for tangent (12)

We now list all the half-angle identities for convenient reference.

tan  
x

2
    

1   cos x

sin x

tan  
x

2
    

sin x

1   cos x

 
 sin x 

1  cos x

 
 sin2

x

 (1  cos x)2

  
sin2

x

(1  cos x)2

  
1  cos2

x

(1  cos x)2

  
1  cos x

1  cos x

 
1  cos x

1  cos x

 tan
x

2   1  cos x

1  cos x
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and 

 1  cos x, because

1  cos x is never negative.

 (1   cos x)2

 sin2 x     sin x 

Half-Angle Identities

where the sign is determined by the quadrant in which x 2 lies.

tan
x

2
   

1  cos x

1  cos x

 
sin x

1  cos x

 
1  cos x

sin x

cos
x

2
   

1  cos x

2

sin
x

2
   

1  cos x

2



E X P L O R E / D I S C U S S  2

(A) Discuss how you would show that, in general,

(B) Graph y1  sin and y2  sin x in the same viewing window. Con-
clusion? Repeat the process for the other two statements in part A.

1
2

x
2

tan
x

2
 

1

2
 tan xcos

x

2
 

1

2
 cos xsin

x

2
 

1

2
 sin x
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Finding Exact Values

Compute the exact value of sin 165 without a calculator using a half-angle identity.

S O L U T I O N

Compute the exact value of tan 105 without a calculator using a half-angle identity.

Finding Exact Values

Find the exact values of cos (x 2) and cot (x 2) without using a calculator if 
sin x    x  3  2.

S O L U T I O N

Draw a reference triangle in the third quadrant, and find cos x. Then use appro-
priate half-angle identities.

cos x   4
5

a    52  ( 3)2   4
a

 3
5

(a,  3)

 3
5,

 
 2   3

2

  1  ( 3/2)

2

  1  cos 330°

2

 sin 165 °  sin
330°

2

Use half-angle identity for sine with a positive radical,

because sin 165° is positive.
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If   x  3  2, then

Divide each member of   x 3  2 by 2.

Thus, x 2 is an angle in the second quadrant where cosine and cotangent are neg-
ative, and

Find the exact values of sin (x 2) and tan (x 2) without using a calculator if
cot x    2  x   .

Identity Verification

Verify the identity .

V E R I F I C A T I O N

Half-angle identity for sine

Square both sides.

Algebra

Algebra

Quotient identity

Verify the identity cos2
x

2
 

tan x  sin x

2 tan x
.

 
tan x  sin x

2 tan x

 
tan x  tan x cos x

2 tan x

 
tan x

tan x
 

1  cos x

2

 sin2
x

2
 

1  cos x

2

 sin 
x

2
   1  cos x

2

sin2
x

2
 

tan x  sin x

2 tan x

 4
3,

   1

10
 or 
  10

10

 
 3

5

1  ( 4
5)
  1

3   1  ( 4
5)

2

 cot 
x

2
 

1

tan (x/2)
 

sin x

1  cos x
 cos 

x

2
   1  cos x

2

 

2
 

x

2
 

3 

4



In Problems 7–10, find the exact value without a calculator us-

ing double-angle and half-angle identities.

7. sin 22.5 8. tan 75 

9. cos 67.5 10. tan 15 

In Problems 11–14, graph y1 and y2 in the same viewing

window for  2  x 2 . Use TRACE to compare the two

graphs.

11. y1  cos 2x, y2  cos2 x  sin2 x

12. y1  sin 2x, y2  2 sin x cos x

13.

14. y1  tan 2x, y2  
2 tan x

1  tan2 x

y1  tan
x

2
, y2  

sin x

1  cos x
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In Problems 1–6, verify each identity for the values indicated.

1. cos 2x  cos2 x  sin2 x, x  30 

2. sin 2x  2 sin x cos x, x 45 

3.

4.

5.

(Choose the correct sign.)

6.

(Choose the correct sign.)

cos
x

2
   1  cos x

2
, x  

 

2

sin
x

2
   1  cos x

2
, x   

tan 2x  
2 tan x

1  tan2 x
, x  

 

6

tan 2x  
2

cot x  tan x
, x  

 

3

Verify the identities in Problems 15–32.

15. (sin x cos x)2  1  sin 2x

16. sin 2x  (tan x)(1 cos 2x)

17. sin2 x  (1  cos 2x) 18. cos2 x  (cos 2x 1)

19. 1  cos 2x  tan x sin 2x

20. 1  sin 2t  (sin t cos t)2

21. 22. cos2
x

2
 

1  cos x

2
sin2

x

2
 

1  cos x

2

1
2

1
2

23. 24.

25. 26.

27. 28.

29. 30.

31. 32. cos 2  
cot   tan  

cot   tan  
cos   

1  tan2 ( /2)

1  tan2 ( /2)

sec 2x  
sec2 x

2  sec2 x
2 csc 2x  

1  tan2 x

tan x

cos 2u

1  sin 2u
 

1  tan u

1  tan u
cos 2u  

1  tan2 u

1  tan2 u

cot
 

2
 

1  cos  

sin  
cot
 

2
 

sin  

1  cos  

cot 2x  
cot x  tan x

2
cot 2x  

1   tan2 x

2 tan x

1.

2. 3. 4.

5. cos2
x

2
 

1  cos x

2
 

tan x

tan x
 

1  cos x

2
 

tan x  tan x cos x

2 tan x
 

tan x  sin x

2 tan x

sin (x/2)  3 10/10, tan (x/2)  3  3  2cos 2x   7
25, tan 2x  24

7

2 tan x

1  tan2 x
 

2 sin x

cos x 
1  

sin2 x

cos2 x

 

cos2 x  2 sin x

cos x  
cos2 x  1  

sin2 x

cos2 x 
 

2 sin x cos x

cos2 x  sin2 x
 2 sin x cos x  sin 2x



student through the solution process using the following ques-

tions. Record the expected correct responses from the student.

(A) The angle 2 is in what quadrant and how do you know?

(B) How can you find sin 2 and cos 2 ? Find each.

(C) What identities relate sin  and cos  with either sin 2 or

cos 2 ?

(D) How would you use the identities in part C to find sin  

and cos  exactly, including the correct sign?

(E) What are the exact values for sin  and cos  ?

47. Find the exact values of sin  and cos  , given 
tan 2  , 0    90 .

48. Find the exact values of sin  and cos  , given 
sec 2  , 0    90 .

Verify each of the following identities for the value of x indi-

cated in Problems 49–52. Compute values to five significant

digits using a calculator.

(A) (B) 

(Choose the correct sign.)

49. x  252.06 50. x  72.358 

51. x  0.934 57 52. x  4

In Problems 53–56, graph y1 and y2 in the same viewing win-

dow for  2  x  2 , and state the intervals for which the

equation y1  y2 is an identity.

53.

54.

55.

56. y1  sin (x/2), y2   1  cos x

2

y1  sin (x/2), y2    1  cos x

2

y1  cos (x/2), y2    1  cos x

2

y1  cos (x/2), y2   1  cos x

2

cos
x

2
   1  cos x

2
tan 2x  

2 tan x

1  tan2 x

 5
4

 4
3
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In Problems 33–38, is the equation an identity? Explain.

33. sin 4x  4 sin x cos x

34. csc 2x 2 csc x sec x

35. cot 2x  

36. tan 4x  4 tan x

37. cos 2x  1  2 cos2 x

38. tan 2x  

Compute the exact values of sin 2x, cos 2x, and tan 2x using

the information given in Problems 39–42 and appropriate

identities. Do not use a calculator.

39. 40.

41.

42.

In Problems 43–46, compute the exact values of sin (x 2),

cos (x 2), and tan (x 2) using the information given and ap-

propriate identities. Do not use a calculator.

43.

44.

45.

46.

Suppose you are tutoring a student who is having difficulties in

finding the exact values of sin  and cos  from the information

given in Problems 47 and 48. Assuming you have worked

through each problem and have identified the key steps in the

solution process, proceed with your tutoring by guiding the

tan x  3
4,    x    /2

cot x  3
4,    x    /2

cos x   1
4,   x   3 /2

sin x   1
3,   x   3 /2

cot x   5
12,   /2  x   0

tan x   5
12,   /2  x   0

cos x   4
5,  /2  x   sin x  3

5,  /2  x   

2

tan x  cot x

tan x (cot2 x  1)

2

In Problems 61–66, find the exact value of each without using

a calculator.

61. 62.

63. 64.

65. 66. sin [1
2 tan 1 ( 4

3)]cos [1
2 cos 1 ( 3

5)]

tan [2 tan 1 ( 3
4)]tan [2 cos 1 ( 4

5)]

sin [2 cos 1 (3
5)]cos [2 cos 1 (3

5)]

Verify the identities in Problems 57–60.

57. cos 3x  4 cos3 x  3 cos x

58. sin 3x  3 sin x  4 sin3 x

59. cos 4x  8 cos4 x  8 cos2 x  1

60. sin 4x  (cos x)(4 sin x 8 sin3 x)
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 73. Indirect Measurement. Find the exact value of x in the
figure; then find x and  to three decimal places. [Hint:

Use cos 2  2 cos2   1.]

T A B L E  1

n 10 100 1,000 10,000

An

x
 

8 m
7 m



x

 

2 feet4 feet

s

s


M

N

(a)

s

s

M

N
/2

/2

(b)

In Problems 67–72, graph f(x) in a graphing utility, find a simpler

function g(x) that has the same graph as f(x), and verify the iden-

tity f(x)  g(x). [Assume g(x)  k A T(Bx) where k, A, and B

are constants and T(x) is one of the six trigonometric functions.]

67. f (x)  csc x  cot x 68. f (x)  csc x cot x

69. 70.

71. 72. f (x)  
cot x

1  cos 2x
f (x)  

1

cot x sin 2x  1

f (x)  
1  2 cos 2x

1  2 cos x
f (x)  

1  2 cos 2x

2 sin x  1

  76. Geometry. In part (a) of the figure, M and N are the mid-
points of the sides of a square. Find the exact value of
cos  . [Hint: The solution uses the Pythagorean theorem,
the definition of sine and cosine, a half-angle identity, and
some auxiliary lines as drawn in part (b) of the figure.]

 74. Indirect Measurement. Find the exact value of x in the
figure; then find x and  to three decimal places. [Hint:

Use tan 2  (2 tan  ) (1 tan2  ).]

 75. Sports—Physics. The theoretical distance d that a shot-
putter, discus thrower, or javelin thrower can achieve on 
a given throw is found in physics to be given approxi-
mately by

where v0 is the initial speed of the object thrown (in feet
per second) and  is the angle above the horizontal at
which the object leaves the hand (see the figure).

(A) Write the formula in terms of sin 2 by using a suit-
able identity.

(B) Using the resulting equation in part A, determine the
angle  that will produce the maximum distance d for
a given initial speed v0. This result is an important
consideration for shot-putters, javelin throwers, and
discus throwers.

d  
2v2

0 sin   cos  

32 feet per second per second

77. Area. An n-sided regular polygon is inscribed in a circle
of radius R.

(A) Show that the area of the n-sided polygon is given by

[Hint: (Area of a triangle)  ( )(base)(altitude). Also,
a double-angle identity is useful.]

(B) For a circle of radius 1, complete Table 1, to five deci-
mal places, using the formula in part A:

1
2

An  
1

2
nR2 sin 

2 

n
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Product–Sum and Sum–Product Identities

Product–Sum Identities  Sum–Product Identities

Our work with identities is concluded by developing the product–sum and
sum–product identities, which are easily derived from the sum and difference iden-
tities developed in Section 6.2. These identities are used in calculus to convert
product forms to more convenient sum forms. They also are used in the study of
sound waves in music to convert sum forms to more convenient product forms.

Product–Sum Identities
First, add left side to left side and right side to right side, the sum and difference
identities for sine:

or

Similarly, by adding or subtracting the appropriate sum and difference identi-
ties, we can obtain three other product–sum identities. These are listed below
for convenient reference.

sin x cos y   12  sin (x   y)   sin (x   y) 

 sin ( x  y)  sin (x  y)  2 sin x cos y

 sin ( x  y)  sin x cos y  cos x sin y
 sin ( x  y)  sin x cos y  cos x sin y

A Product as a Difference

Write the product cos 3t sin t as a sum or difference.

Product–Sum Identities

cos x cos y  1
2[cos (x  y)  cos (x  y)]

sin x sin y  1
2[cos (x  y)  cos (x  y)]

cos x sin y  1
2[sin (x  y)  sin (x  y)]

sin x cos y  1
2[sin (x  y)  sin (x  y)]

(C) What number does An seem to approach as n in-
creases without bound? (What is the area of a circle
of radius 1?)

(D) Will An exactly equal the area of the circumscribed cir-
cle for some sufficiently large n? How close can An be

to the area of the circumscribed circle? [In calculus,
the area of the circumscribed circle is called the limit
of An as n increases without bound. In symbols, for a
circle of radius 1, we would write lim

n→ 
An   . The

limit concept is the cornerstone on which calculus is
constructed.]
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S O L U T I O N

Let x 3t and y t.

Write the product cos 5 cos 2 as a sum or difference.

Finding Exact Values

Evaluate sin 105 sin 15 exactly using an appropriate product–sum identity.

S O L U T I O N

Evaluate cos 165 sin 75 exactly using an appropriate product–sum identity.

Sum–Product Identities
The product–sum identities can be transformed into equivalent forms called
sum–product identities. These identities are used to express sums and differences
involving sines and cosines as products involving sines and cosines. We illustrate
the transformation for one identity. The other three identities can be obtained by
following similar procedures.

We start with a product–sum identity:

(1)

We would like

    x

    y

Solving this system, we have

(2)

Substituting equation (2) into equation (1) and simplifying, we obtain

sin x  sin y  2 sin 
x  y

2
 cos 

x  y

2

  
x  y

2
  

x  y

2

sin   cos   1
2[sin (   )  sin (   )]

 1
2[0  ( 1

2)]  1
4 or 0.25

 1
2[cos 90°  cos 120°]

 sin 105 ° sin 15°  1
2[cos (105°  15°)  cos (105°  15°)]

 sin x sin y  1
2[cos (x  y)  cos (x  y)]

 1
2 sin 4t  1

2 sin 2t

 cos 3 t sin t  1
2[sin (3t  t)  sin (3t  t)]

 cos x sin y  1
2[sin (x  y)  sin (x  y)]



A Difference as a Product

Write the difference sin 7  sin 3 as a product.

S O L U T I O N

Write the sum cos 3t  cos t as a product.

Finding Exact Values

Find the exact value of sin 105  sin 15 using an appropriate sum–product
identity.

S O L U T I O N

 2 1

2  
 2

2    2

2

 2 cos 60° sin 45°

 sin 105 °  sin 15°  2 cos 
105°  15°

2
 sin 

105°  15°

2

 sin x  sin y  2 cos 
x  y

2
 sin 

x  y

2

 2 cos 5  sin 2 

 sin 7   sin 3  2 cos 
7  3 

2
 sin 

7  3 

2

 sin x  sin y  2 cos 
x  y

2
 sin 

x  y

2
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Sum–Product Identities

cos x  cos y   2 sin 
x  y

2
 sin 

x  y

2

cos x  cos y  2 cos 
x  y

2
 cos 

x  y

2

sin x  sin y  2 cos 
x  y

2
 sin 

x  y

2

sin x  sin y  2 sin 
x  y

2
 cos 

x  y

2

All four sum–product identities are listed next for convenient reference.



Find the exact value of cos 165  cos 75 using an appropriate sum–product
identity.
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E X P L O R E / D I S C U S S  1

The following “proof without words” of two of the sum–product identi-
ties is based on a similar “proof ” by Sidney H. Kung, Jacksonville
University, that was printed in the October 1996 issue of Mathematics

Magazine. Discuss how the relationships below the figure are verified
from the figure.

cos   cos  

2
 t  cos

   

2
 cos 

   

2

sin   sin  

2
 s  cos

   

2
 sin 

   

2

  
   

2
  

   

2

1. 2. 3. 2 cos 2t cos t 4.   6/2(  3  2)/41
2 cos 7  1

2 cos 3 

y

(cos ␣, sin ␣)

(cos ␤, sin ␤)

(t, s)

␣

 ␥

x

␤

1 1



In Problems 5–8, write each difference or sum as a product 

involving sines and cosines.

5. sin 3t  sin t 6. cos 7  cos 5 

7. cos 5w  cos 9w 8. sin u  sin 5u
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In Problems 1–4, write each product as a sum or difference 

involving sine and cosine.

1. sin 3m cos m 2. cos 7A cos 5A

3. sin u sin 3u 4. cos 2 sin 3 

Evaluate Problems 9–12 exactly using an appropriate identity.

9. sin 195 cos 75 10. cos 75 sin 15 

11. cos 15 cos 75 12. sin 105 sin 165 

Evaluate Problems 13–16 exactly using an appropriate identity.

13. cos 285  cos 195 14. sin 195  sin 105 

15. cos 15  cos 105 16. sin 75  sin 165 

Use sum and difference identities to verify the identities in

Problems 17 and 18.

17.

18.

19. Explain how you can transform the product–sum identity

into the sum–product identity

by a suitable substitution.

20. Explain how you can transform the product–sum identity

into the sum–product identity

by a suitable substitution.

Verify each identity in Problems 21–28.

21. 22.
cos t  cos 3t

sin t  sin 3t
 tan t

sin 2t  sin 4t

cos 2t  cos 4t
 cot t

cos x  cos y  2 cos 
x  y

2
 cos 

x  y

2

cos u cos v  1
2[cos (u  v)  cos (u  v)]

cos x  cos y   2 sin 
x  y

2
 sin 

x  y

2

sin u sin v  1
2[cos (u  v)  cos (u  v)]

sin x sin y  1
2[cos (x  y)  cos (x  y)]

cos x cos y  1
2[cos (x  y)  cos (x  y)]

23.

24.

25.

26.

27.

28.

In Problems 29–34, is the equation an identity? Explain.

29. sin 3x  sin x = 2 cos 2x sin x

30. 2 sin x cos 2x  sin x  sin 3x

31. cos 3x  cos x  2 sin 2x sin x

32. 2 cos 3x cos 5x  cos 8x  cos 2x

33. cos x  cos 5x  2 cos 2x cos 3x

34. 2 sin 4x cos 2x  sin 8x  sin 2x

Verify each of the following identities for the values of x and y

indicated in Problems 35–38. Evaluate each side to five signifi-

cant digits.

(A)

(B)

35. x  172.63 , y  20.177 36. x  50.137 , y  18.044 

37. x  1.1255, y  3.6014

38. x  0.039 17, y  0.610 52

cos x  cos y  2 cos
x  y

2
cos

x  y

2

cos x sin y  1
2[sin (x  y)  sin (x  y)]

sin x  sin y

sin x  sin y
 

tan [1
2(x  y)]

tan [1
2(x  y)]

cos x  cos y

cos x  cos y
  cot

x  y

2
 cot 

x  y

2

cos x  cos y

sin x  sin y
  tan

x  y

2

cos x  cos y

sin x  sin y
 cot

x  y

2

sin x  sin y

cos x  cos y
 tan

x  y

2

sin x  sin y

cos x  cos y
  cot

x  y

2



41. y  cos 1.7x  cos 0.3x 42. y  sin 2.1x  sin 0.5x

43. y  sin 3x cos x 44. y  cos 5x cos 3x

45. y  sin 2.3x sin 0.7x 46. y  cos 1.9x sin 0.5x
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50. y1  2 sin (24 x) sin (2 x)

y2  2 sin (2 x)

y3   2 sin (2 x)

51. y1  2 sin (20 x) cos (2 x)

y2  2 cos (2 x)

y3   2 cos (2 x)

52. y1  2 cos (16 x) sin (2 x)

y2  2 sin (2 x)

y3   2 sin (2 x)

Problems 53 and 54 involve the phenomenon of sound called

beats. If two tones having the same loudness and close to-

gether in pitch (frequency) are sounded, one following the

other, most people have difficulty in differentiating the two

tones. However, if the tones are sounded simultaneously, they

will interact with each other, producing a low warbling sound

called a beat. Musicians, when tuning an instrument with other

instruments or a tuning fork, listen for these lower beat fre-

quencies and try to eliminate them by adjusting their instru-

ments. Problems 53 and 54 provide a visual illustration of the

beat phenomenon.

53. Music—Beat Frequencies. The equations 
y  0.5 cos 128 t and y   0.5 cos 144 t model sound
waves with frequencies 64 and 72 hertz, respectively. If
both sounds are emitted simultaneously, a beat frequency
results.

(A) Show that

0.5 cos 128 t  0.5 cos 144 t  sin 8 t sin 136 t

(The product form is more useful to sound engineers.)

(B) Graph each equation in a different viewing window for
0  t  0.25:

y  0.5 cos 128 t

y   0.5 cos 144 t

y  0.5 cos 128 t  0.5 cos 144 t

y  sin 8 t sin 136 t

54. Music—Beat Frequencies. The equations 
y  0.25 cos 256 t and y   0.25 cos 288 t model
sound waves with frequencies 128 and 144 hertz, respec-
tively. If both sounds are emitted simultaneously, a beat

frequency results.

(A) Show that

0.25 cos 256 t  0.25 cos 288 t

 0.5 sin 16 t sin 272 t

(The product form is more useful to sound engineers.)

(B) Graph each equation in a different viewing window for
0  t  0.125:

y  0.25 cos 256 t

y   0.25 cos 288 t

y  0.25 cos 256 t  0.25 cos 288 t

y  0.5 sin 16 t sin 272 t

In Problems 39–46, write each as a product if y is a sum or dif-

ference, or as a sum or difference if y is a product. Enter the

original equation in a graphing utility as y1, the converted

form as y2, and graph y1 and y2 in the same viewing window.

Use TRACE to compare the two graphs.

39. y  sin 2x  sin x 40. y  cos 3x  cos x

Verify each identity in Problems 47 and 48.

47.

48.

In Problems 49–52,

(A) Graph y1, y2, and y3 in a graphing utility for 0  x  1

and  2  y  2.

(B) Convert y1 to a sum or difference and repeat part A.

49. y1  2 cos (28 x) cos (2 x)

y2  2 cos (2 x)

y3   2 cos (2 x)

  sin (z  x  y)  sin (x  y  z)]
sin x sin y sin z  1

4[sin (x  y  z)  sin (y  z  x)

  cos (z  x  y)  cos (x  y  z)]
cos x cos y cos z  1

4[cos (x  y  z)  cos (y  z  x)



Trigonometric Equations

Solving Trigonometric Equations Using an Algebraic Approach  Solving Trigonometric
Equations Using a Graphing Utility

Sections 6.1 through 6.4 of this chapter consider trigonometric equations called
identities. These are equations that are true for all replacements of the variable(s)
for which both sides are defined. We now consider another class of trigonomet-
ric equations, called conditional equations, which may be true for some replace-
ments of the variable but false for others. For example,

cos x  sin x

is a conditional equation, because it is true for some values of x, for example,
x    4, and false for others, such as x  0. (Check both values.)

Section 6.5 considers two approaches for solving conditional trigonometric
equations: an algebraic approach and a graphing utility approach. Solving trigono-
metric equations using an algebraic approach often requires the use of algebraic
manipulation, identities, and ingenuity. In some cases algebraic methods lead to
exact solutions, which are very useful in certain contexts. Graphing utility meth-
ods can be used to approximate solutions to a greater variety of trigonometric
equations, but usually do not produce exact solutions. Each method has its
strengths.
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E X P L O R E / D I S C U S S  1

We are interested in solutions to the equation

cos x  0.5

The figure shows a partial graph of the left and right sides of the 
equation.

(A) How many solutions does the equation have on the interval [0, 2 )?
What are they?

(B) How many solutions does the equation have on the interval (  ,  )?
Discuss a method of writing all solutions to the equation.

x

y

420 2 4

y   cos x

y   0.5

1

 1



Solving Trigonometric Equations Using an Algebraic Approach
You might find the following suggestions for solving trigonometric equations
using an algebraic approach useful:

Examples 1–5 should help make the algebraic approach clear.

Exact Solutions Using Factoring

Find all solutions exactly for 2 cos2 x  cos x  0.

S O L U T I O N

Step 1. Solve for cos x.

2 cos2 x  cos x  0 2a2
 a a(2a 1)

cos x (2 cos x  1)  0 ab 0 only if a 0 or b 0

cos x  0 or 2 cos x  1  0

Step 2. Solve each equation over one period [0, 2 ). Sketch a graph of
y  cos x, y  0, and y  in the same coordinate system to provide
an aid to writing all solutions over one period (Fig. 1).

Step 3. Write an expression for all solutions. Because the cosine function is
periodic with period 2 , all solutions are given by:

Find all solutions exactly for 2 sin2 x  sin x  0.

x    
 /3   2k 

 /2   2k 

3 /2   2k 

5 /3   2k 

 
x   /3, 5 /3x   /2, 3 /2

 cos x  1
2 cos x  0

1
2

cos x  1
2
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Suggestions For Solving Trigonometric Equations Algebraically

1. Regard one particular trigonometric function as a variable, and solve
for it.

(A) Consider using algebraic manipulation such as factoring, combin-
ing or separating fractions, and so on.

(B) Consider using identities.

2. After solving for a trigonometric function, solve for the variable.

FIGURE 1

x

y

 2
0

1/2

1

 1

k any integer



Approximate Solutions Using Identities and Factoring

Find all real solutions for 3 cos2 x  8 sin x  7. Compute all inverse functions
to four decimal places.

S O L U T I O N

Step 1. Solve for sin x and or cos x. Move all nonzero terms to the left of the
equal sign and express the left side in terms of sin x:

3 cos2 x  8 sin x  7

3 cos2 x  8 sin x  7  0 cos2
x  1  sin2

x

3(1  sin2 x)  8 sin x  7  0

3 sin2 x  8 sin x  4  0 3u
2

 8u  4  (u  2)(3u  2)

(sin x  2)(3 sin x  2)  0 ab  0 only if a  0 or b  0

sin x  2  0 or 3 sin x  2  0

sin x  2 sin x  

Step 2. Solve each equation over one period [0, 2 ): Sketch a graph of
y  sin x, y  2, and y  in the same coordinate system to provide
an aid to writing all solutions over one period (Fig. 2).

Solve the first equation:

sin x  2 No solution, because  1  sin x  1.

Solve the second equation:

From the graph we see there are solutions in the

first and second quadrants.

First quadrant solution

Second quadrant solution

C H E C K

sin 0.7297  0.6667; sin 2.4119  0.6666
(Checks may not be exact because of roundoff errors.)

Step 3. Write an expression for all solutions. Because the sine function is peri-
odic with period 2 , all solutions are given by:

Find all real solutions to 8 sin2 x  5  10 cos x. Compute all inverse functions
to four decimal places.

x   0.7297   2k 

2.4119   2k 

x    0.7297  2.4119

x  sin 1 2
3  0.7297

 sin x  2
3

2
3

2
3
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FIGURE 2

x

y

2/3

1

2

0

 1

2



k any integer



Approximate Solutions Using Substitution

Find  in degree measure to three decimal places so that 
5 sin (2  5)   3.045, 0  2  5  360 .

S O L U T I O N

Step 1. Make a substitution. Let u  2  5 to obtain

5 sin u   3.045, 0  u  360 

Step 2. Solve for sin u.

Step 3. Solve for u over 0  u  360 . Sketch a graph of y  sin u and
y   0.609 in the same coordinate system to provide an aid to writing
all solutions over 0  u  360 (Fig. 3).

Solutions are in the third and fourth quadrants. If the reference angle is
 , then u  180   or u  360   .

  sin 1 0.609  37.517 Reference angle

u  180  37.517 

 217.517 Third quadrant solution

u  360  37.517 

 322.483 Fourth quadrant solution

C H E C K

sin 217.517   0.609; sin 322.483   0.609

Step 4. Now solve for  :

u  217.517 u  322.483 

2  5  217.517 2  5  322.483 

  111.259°   163.742°

A final check in the original equation is left to the reader.

Find  in degree measure to three decimal places so that 
8 tan (6  15)   64.328,  90  6  15  90 .

Exact Solutions Using Identities and Factoring

Find exact solutions for sin2 x  sin 2x, 0  x  2 .1
2

sin u  
 3.045

5
  0.609
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FIGURE 3

x

y

360 180 

1

0

 0.609

 1



S O L U T I O N

The following solution includes only the key steps. Sketch graphs as appropriate
on scratch paper.

Use double-angle identity.

a2
 ab a(a b)

a(a b)  0 only if a 0 or a b 0

or

Combining the solutions from both equations, we have the complete set of
solutions:

x 0,  4, , 5  4

Find exact solutions for sin 2x  sin x, 0  x  2 .

Approximate Solutions Using Identities and the Quadratic Formula

Solve cos 2x  4 cos x  2 for all real x. Compute inverse functions to four dec-
imal places.

S O L U T I O N

Step 1. Solve for cos x.

cos 2x  4 cos x  2 Use double-angle identity.

2 cos2 x  1  4 cos x  2

2 cos2 x  4 cos x  1  0 Quadratic in cos x. Left side does

not factor using integer coefficients.

Solve using quadratic formula.

cos x  

 1.707107 or 0.292893

4   16  4(2)(1)

2(2)

x   /4, 5 /4

tan x  1

sin x

cos x
 1

sin x  cos xx  0,  

sin x  cos x  0 sin x  0

 sin x (sin x  cos x)  0

 sin2 x  sin x cos x  0

 1
2 (2 sin x cos x)

 sin2 x  1
2 sin 2x
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Step 2. Solve each equation over one period [0, 2 ): Sketch a graph of y  cos x,
y  1.707107, and y  0.292893 in the same coordinate system to pro-
vide an aid to writing all solutions over one period (Fig. 4).

Solve the first equation:

cos x  1.707107 No solution, because  1  cos x  1

Solve the second equation:

cos x  0.292893

Figure 4 indicates a first quadrant solution and a fourth quadrant solu-
tion. If the reference angle is  , then x   or x  2   .

  cos 1 0.292893  1.2735

2    2  1.2735  5.0096

C H E C K

cos 1.2735  0.292936; cos 5.0096  0.292854

Step 3. Write an expression for all solutions. Because the cosine function is
periodic with period 2 , all solutions are given by:

Solve cos 2x  2(sin x  1) for all real x. Compute inverse functions to four dec-
imal places.

Solving Trigonometric Equations Using a Graphing Utility
All the trigonometric equations that were solved earlier with algebraic methods can
also be solved, though usually not exactly, with graphing utility methods. In addi-
tion, there are many trigonometric equations that can be solved (to any decimal accu-
racy desired) using graphing utility methods, but cannot be solved in a finite sequence
of steps using algebraic methods. Examples 6–8 are examples of such equations.

x     1.2735   2k 

5.0096   2k 

x

y

2
0



1

2

 1

0.292893

1.707107
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FIGURE 4

k any integer



Solution Using a Graphing Utility

Find all real solutions to four decimal places for 2 cos 2x  1.35x  2.

S O L U T I O N

This relatively simple trigonometric equation cannot be solved using a finite num-
ber of algebraic steps (try it!). However, it can be solved rather easily to the accu-
racy desired using a graphing utility. Graph y1  2 cos 2x and y2  1.35x  2
in the same viewing window, and find any points of intersection using the inter-
sect command. The first point of intersection is shown in Figure 5. It appears there
may be more than one point of intersection, but zooming in on the portion of the
graph in question shows that the two graphs do not intersect in that region (Fig. 6).
The only solution is

x  0.9639

C H E C K

Left side: 2 cos 2(0.9639)   0.6989
Right side: 1.35(0.9639)  2   0.6987

FIGURE 5 FIGURE 6

Find all real solutions to four decimal places for sin x 2  0.2x  0.5.

Geometric Application

A 10-centimeter arc on a circle has an 8-centimeter chord. What is the radius of
the circle to four decimal places? What is the radian measure of the central angle,
to four decimal places, subtended by the arc?

S O L U T I O N

Sketch a figure with auxiliary lines (Fig. 7).
From the figure,  in radians is

and sin   
4

R
  

5

R

1

3

/2 3/2

 4

 2

4

2
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5 5

44

R R




FIGURE 7



Thus,

and our problem is to solve this trigonometric equation for R. Algebraic meth-
ods will not isolate R, so turn to the use of a graphing utility. Start by graphing
y1  sin 5 x and y2  4 x in the same viewing window for 1  x  10 and
 2  y  2 (Fig. 8). It appears that the graphs intersect for x between 4 and 5.
To get a clearer look at the intersection point we change the window dimensions to
4  x  5 and 0.5  y  1.5, and use the intersect command to find the point
of intersection (Fig. 9).

FIGURE 8 FIGURE 9

From Figure 9, we see that

R  4.4205 centimeters

C H E C K

sin 5 R  sin (5 4.4205)  0.9049; 4 R  4 4.4205  0.9049

Having R, we can compute the radian measure of the central angle subtended by
the 10-centimeter arc:

An 8.2456-inch arc on a circle has a 6.0344-inch chord. What is the radius of the
circle to four decimal places? What is the measure of the central angle, to four
decimal places, subtended by the arc?

Solution Using a Graphing Utility

Find all real solutions, to four decimal places, for tan (x 2)  1 x,    x  3 .

S O L U T I O N

Graph y1  tan (x 2) and y2  1 x in the same viewing window for    x  3 
(Fig. 10). Solutions are at points of intersection.

Central Angle  
10

R
 

10

4.4205
 2.2622 radians

4

1.5

0.5

5

 2

1

2

10

sin
5

R
 

4

R
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Using the intersect command, the three solutions are found to be

x   1.3065, 1.3065, 6.5846

Checking these solutions is left to the reader.

Find all real solutions, to four decimal places, for 0.25 tan (x 2) ln x, 0 x 4 .

Solving trigonometric inequalities using a graphing utility is as easy as solving
trigonometric equations using a graphing utility. Example 9 illustrates the process.

Solving a Trigonometric Inequality

Solve sin x  cos x  0.25x  0.5, using two-decimal-place accuracy.

S O L U T I O N

Graph y1  sin x  cos x and y2  0.25x  0.5 in the same viewing window
(Fig. 11).

Finding the three points of intersection by the intersect command, we see
that the graph of y1 is below the graph of y2 on the following two intervals: 
( 1.65, 0.52) and (3.63,  ). Thus, the solution set to the inequality is 
( 1.65, 0.52)  (3.63,  ).

Solve cos x  sin x  0.4  0.3x, using two-decimal-place accuracy.

6 TRIGONOMETRIC IDENTITIES AND CONDITIONAL EQUATIONS518

 2

 

2

3

FIGURE 10

 2

 2

2

3

FIGURE 11

E X P L O R E / D I S C U S S  2

How many solutions does the following equation have?

sin (1/x)  0

Graph y1  sin (1/x) and y2  0 for each of the indicated intervals in
parts A–G. From each graph estimate the number of solutions that
equation (1) appears to have. What final conjecture would you be will-
ing to make regarding the number of solutions to equation (1)? Explain.

(A) [ 20, 20]; Can 0 be a solution? Explain.

(B) [ 2, 2] (C) [ 1, 1] (D) [ 0.1, 0.1] (E) [ 0.01, 0.01]

(F) [ 0.001, 0.001] (G) [ 0.0001, 0.0001]
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1. x   u 2. x   e 3.  16.318 

4. x  0,   3,  , 5  3 5. x   e 6. x  5.1609

7. R  3.1103 inches; central angle  2.6511 radians 8. x  1.1828, 2.6369, 9.2004 9. ( 1.67, 0.64)  (3.46,  )

k any integer
0.9665  2k 

2.1751  2k 

k any integer
1.8235  2k 

4.4597  2k 
k any integer

0  2k 

  2k 

7  6  2k 

11  6  2k 

Solve Problems 13–18 to four decimal places ( in degrees, 

x real).

13. 7 cos x  3  0, 0  x  2 

14. 5 cos x  2  0, 0  x  2 

15. 2 tan   7 0, 0    180 

16. 4 tan   15 0, 0    180 

17. 1.3224 sin x  0.4732  0, all real x

18. 5.0118 sin x  3.1105  0, all real x

Solve Problems 19–22 to four decimal places using a graphing

utility.

19. 1  x  2 sin x, all real x

20. 2x  cos x  0, all real x

21. tan (x 2) 8  x, 0  x   

22. tan 2x  1  3x, 0  x    4

In Problems 23–34, find exact solutions for x real and  in

degrees.

23. 2 sin2   sin 2  0, all  

24.

25. tan x   2 sin x, 0  x  2 

26. cos x  cot x, 0  x  2 

27. sec (x 2) 2  0, 0  x  2 

cos2   1
2 sin 2 , all  

28. tan (x 2) 1  0, 0  x  2 

29. 2 cos2   3 sin   0, 0    360 

30. sin2   2 cos    2, 0    360 

31. cos 2  cos   0, 0    360 

32. cos 2  sin2   0, 0    360 

33. 2 sin2 (x 2)  3 sin (x 2) 1  0, 0  x  2 

34. 4 cos2 2x  4 cos 2x  1  0, 0  x  2 

In Problems 1–12, find exact solutions over the indicated inter-

vals (x a real number,  in degrees).

1. 2 sin x  1  0, 0  x  2 

2. 2 cos x  1  0, 0  x  2 

3. 2 sin x  1  0, all real x

4. 2 cos x  1  0, all real x

5.

6.

7.

8.

9.

10.

11.

12.  2 sin   1  0, all  

2 cos    3  0, all  

 2 sin   1  0, 0     360 

2 cos    3  0, 0°     360°

 3 tan x  1  0, all real x

tan x   3  0, all real x

 3 tan x  1  0, 0  x   

tan x   3  0, 0  x   



45. 2 sin2 x  1  2 sin x, all real x

46. cos2 x  3  5 cos x, all real x

47. cos 2x  x2  2, all real x

48. 2 sin (x 2)  3  x2, all real x

49. cos (2x 1)  0.5x  2, all real x

50. sin (3  2x)  1  0.4x, all real x

51. esin x 2x  1, all real x

52. e sin x 3  x, all real x

53. Explain the difference between evaluating 
tan 1 ( 5.377) and solving the equation 
tan x   5.377.

54. Explain the difference between evaluating 
cos 1 ( 0.7334) and solving the equation 
cos x   0.7334.

Solve Problems 35–40 (x real and  in degrees). Compute in-

verse functions to four significant digits.

35. 6 sin2   5 sin   6, 0    90 

36. 4 cos2   7 cos   2, 0    180 

37. 3 cos2 x  8 cos x  3, 0  x   

38. 8 sin2 x  10 sin x  3, 0  x    2

39. 2 sin x  cos 2x, 0  x  2 

40. cos 2x  10 cos x  5, 0  x  2 

Solve Problems 41 and 42 for all real number solutions. Com-

pute inverse functions to four significant digits.

41. 2 sin2 x  1  2 sin x

42. cos2 x  3  5 cos x

Solve Problems 43–52 to four decimal places using a graphing

utility.

43. 2 sin x  cos 2x, 0  x  2 

44. cos 2x  10 cos x  5, 0  x  2 
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Find exact solutions to Problems 55–58. [Hint: Square both

sides at an appropriate point, solve, then eliminate extraneous

solutions at the end.]

55. cos x  sin x  1, 0  x  2 

56. sin x  cos x  1, 0  x  2 

57. tan x  sec x 1, 0  x  2 

58. sec x tan x  1, 0  x  2 

Solve Problems 59–60 to four significant digits using a graph-

ing utility.

59. sin (1 x) 1.5  5x, 0.04  x  0.2

60. 2 cos (1 x) 950x  4, 0.006  x  0.007

61. We are interested in the zeros of the function 
f (x)  sin (1 x) for x 0.

(A) Explore the graph of f over different intervals [0.1, b]
for various values of b, b  0.1. Does the function f
have a largest zero? If so, what is it (to four decimal
places)? Explain what happens to the graph of f as x

increases without bound. Does the graph have an 
asymptote? If so, what is its equation?

(B) Explore the graph of f over different intervals (0, b] for
various values of b, 0  b  0.1. How many zeros ex-
ist between 0 and b, for any b 0, however small? Ex-
plain why this happens. Does f have a smallest positive
zero? Explain.

62. We are interested in the zeros of the function 
g(x)  cos (1 x) for x 0.

(A) Explore the graph of g over different intervals [0.1, b]
for various values of b, b  0.1. Does the function g
have a largest zero? If so, what is it (to four decimal
places)? Explain what happens to the graph of g as x

increases without bound. Does the graph have an 
asymptote? If so, what is its equation?

(B) Explore the graph of g over different intervals (0, b]
for various values of b, 0  b  0.1. How many zeros
exist between 0 and b, for any b 0, however small?
Explain why this happens. Does g have a smallest 
positive zero? Explain.



63. Electric Current. An alternating current generator pro-
duces a current given by the equation

I  30 sin 120 t

where t is time in seconds and I is current in amperes. Find
the smallest positive t (to four significant digits) such that
I   10 amperes.

64. Electric Current. Refer to Problem 63. Find the smallest
positive t (to four significant digits) such that I 25
amperes.

65. Optics. A polarizing filter for a camera contains two par-
allel plates of polarizing glass, one fixed and the other able
to rotate. If  is the angle of rotation from the position of
maximum light transmission, then the intensity of light
leaving the filter is cos2  times the intensity I of light en-
tering the filter (see the figure).

Find the smallest positive  (in decimal degrees to two
decimal places) so that the intensity of light leaving the fil-
ter is 40% of that entering.

66. Optics. Refer to Problem 65. Find the smallest positive  
so that the light leaving the filter is 70% of that entering.

67. Astronomy. The planet Mercury travels around the sun in
an elliptical orbit given approximately by

(see the figure). Find the smallest positive  (in decimal
degrees to three significant digits) such that Mercury is
3.09  107 miles from the sun.

r  
3.44  107

1  0.206 cos  

I cos2 



I

Polarizing filter
(schematic)

Light

68. Astronomy. Refer to Problem 67. Find the smallest posi-
tive  (in decimal degrees to three significant digits) such
that Mercury is 3.78  107 miles from the sun.

69. Geometry. The area of the segment of a circle in the fig-
ure is given by

where  is in radian measure. Use a graphing utility to find
the radian measure, to three decimal places, of angle  , if
the radius is 8 inches and the area of the segment is 
48 square inches.

70. Geometry. Repeat Problem 69, if the radius is 
10 centimeters and the area of the segment is 40 square
centimeters.

71. Eye Surgery. A surgical technique for correcting an astig-
matism involves removing small pieces of tissue to change
the curvature of the cornea.* In the cross section of a
cornea shown in the figure, the circular arc, with radius R
and central angle 2 , represents a cross section of the sur-
face of the cornea.

(A) If a  5.5 millimeters and b 2.5 millimeters, find L

correct to four decimal places.

R

R



A  1
2 R2 (  sin  )

Sun

Orbit

Mercury

r
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*Based on the article “The Surgical Correction of Astigmatism” by Sheldon

Rothman and Helen Strassberg in the UMAP Journal, Vol. v, no. 2, 1984.



and giving it a flatter, yet still circular, shape. With
the aid of a graphing utility in part of the solution,
approximate b to four decimal places if a is increased
to 5.5 millimeters and L remains the same as it was in
part A.

Analytic Geometry. Find simultaneous solutions for each sys-

tem of equations in Problems 73 and 74 (0    360 ).

These are polar equations, which will be discussed in

Chapter 7.

73. r  2 sin  74. r  2 sin  
r  sin 2 r  2(1  sin  )

Problems 75 and 76 are related to rotation of axes in analytic

geometry.

75. Analytic Geometry. Given the equation 2xy 1, replace x
and y with

x  u cos   v sin  
y  u sin   v cos  

and simplify the left side of the resulting equation. Find
the smallest positive  in degree measure so that the coef-
ficient of the uv term is 0.

76. Analytic Geometry. Repeat Problem 75 for xy  2.

(B) Reducing the chord length 2a without changing the
length L of the arc has the effect of pushing the cornea
outward and giving it a rounder, yet still a circular,
shape. With the aid of a graphing utility in part of the
solution, approximate b to four decimal places if a is
reduced to 5.4 millimeters and L remains the same as
it was in part A.

72. Eye Surgery. Refer to Problem 71.

(A) If in the figure a  5.4 millimeters and b 2.4 mil-
limeters, find L correct to four decimal places.

(B) Increasing the chord length without changing the arc
length L has the effect of pulling the cornea inward

R



a

b
L

Cornea
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6.1 Basic Identities and 
Their Use

The following 11 identities are basic to the process of changing
trigonometric expressions to equivalent but more useful forms:

Reciprocal Identities

Quotient Identities

cot x  
cos x

sin x
tan x  

sin x

cos x

cot x  
1

tan x
sec x  

1

cos x
csc x  

1

sin x

Identities for Negatives

sin ( x)  sin x cos ( x) cos x

tan ( x)  tan x

Pythagorean Identities

sin2 x  cos2 x  1 tan2 x  1  sec2 x

1  cot2 x  csc2 x

Although there is no fixed method of verification that works for
all identities, the following suggested steps are helpful in many
cases.



Suggested Steps in Verifying Identities

1. Start with the more complicated side of the identity, and
transform it into the simpler side.

2. Try algebraic operations such as multiplying, factoring,
combining fractions, and splitting fractions.

3. If other steps fail, express each function in terms of sine
and cosine functions, and then perform appropriate alge-
braic operations.

4. At each step, keep the other side of the identity in mind.
This often reveals what you should do to get there.

6.2 Sum, Difference, and 
Cofunction Identities

Sum Identities

Difference Identities

Cofunction Identities

(Replace   2 with 90 if x is in degrees.)

6.3 Double-Angle and 
Half-Angle Identities

Double-Angle Identities

 tan 2 x  
2 tan x

1  tan2 x
 

2 cot x

cot2 x  1
 

2

cot x  tan x

 cos 2 x  cos2 x  sin2 x  1  2 sin2 x  2 cos2 x  1

 sin 2 x  2 sin x cos x

 tan   2  x  cot x

 sin   2  x  cos x

 cos   2  x  sin x

 tan ( x  y)  
tan x  tan y

1  tan x tan y

 cos ( x  y)  cos x cos y  sin x sin y

 sin ( x  y)  sin x cos y  cos x sin y

 tan ( x  y)  
tan x  tan y

1  tan x tan y

 cos ( x  y)  cos x cos y  sin x sin y

 sin ( x  y)  sin x cos y  cos x sin y

Half-Angle Identities

6.4 Product–Sum and
Sum–Product Identities

Product–Sum Identities

Sum–Product Identities

6.5 Trigonometric Equations
Sections 6.1 through 6.4 of the chapter considered trigonomet-
ric equations called identities. Identities are true for all re-
placements of the variable(s) for which both sides are defined.
Section 6.5 considered conditional equations. Conditional
equations may be true for some variable replacements, but are
false for other variable replacements for which both sides are
defined. The equation sin x  cos x is a conditional equation.

In solving a trigonometric equation using an algebraic
approach, no particular rule will always lead to all solutions of
every trigonometric equation you are likely to encounter. Solv-
ing trigonometric equations algebraically often requires the use
of algebraic manipulation, identities, and ingenuity.

Suggestions for Solving Trigonometric Equations 
Algebraically

1. Regard one particular trigonometric function as a vari-
able, and solve for it.

 cos x  cos y   2 sin 
x  y

2
 sin 

x  y

2

 cos x  cos y  2 cos 
x  y

2
 cos 

x  y

2

 sin x  sin y  2 cos 
x  y

2
 sin 

x  y

2

 sin x  sin y  2 sin 
x  y

2
 cos 

x  y

2

 cos x cos y  1
2[cos (x  y)  cos (x  y)]

 sin x sin y  1
2[cos (x  y)  cos (x  y)]

 cos x sin y  1
2[sin (x  y)  sin (x  y)]

 sin x cos y  1
2[sin (x  y)  sin (x  y)]

 tan 
x

2
   1  cos x

1  cos x
 

sin x

1  cos x
 

1  cos x

sin x

 cos 
x

2
   1  cos x

2

 sin 
x

2
   1  cos x

2
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In solving a trigonometric equation using a graph-
ing utility approach you can solve a larger variety of
problems than with the algebraic approach. The solutions
are generally approximations (to whatever decimal accu-
racy desired).

(A) Consider using algebraic manipulation such as fac-
toring, combining or separating fractions, and so on.

(B) Consider using identities.

2. After solving for a trigonometric function, solve for the
variable.

Verify each identity in Problems 1–4.

1. tan x  cot x  sec x csc x

2. sec4 x  2 sec2 x tan2 x  tan4 x  1

3.

4.

5. Write as a sum: sin 5 cos 3 .

6. Write as a product: cos 7x cos 5x.

7. .

Solve Problems 8 and 9 exactly ( in degrees, x real).

8. , all  

9. sin x tan x  sin x  0, all real x

 2 cos   1  0

Simplify: sin  x  
9 

2  

cos  x  
3 

2    sin x

1

1  sin x
 

1

1  sin x
 2 sec2 x

Work through all the problems in this chapter review and check answers in the back of the book. An-

swers to all review problems, except verifications, are there, and following each answer is a number

in italics indicating the section in which that type of problem is discussed. Where weaknesses show

up, review appropriate sections in the text.

Verify each identity in Problems 15–23.

15.
1  2 cos x  3 cos2 x

sin2 x
 

1  3 cos x

1  cos x

16. (1  cos x)(csc x  cot x)  sin x

17. 18. cos 2x  
1  tan2 x

1  tan2 x

1  sin x

cos x
 

cos x

1  sin x

Solve Problems 10–13 to four decimal places ( in degrees and

x real).

10. sin x  0.7088, all real x

11. cos   0.2557, all  

12. cot x   0.1692,    2 x    2

13. 3 tan (11  3x)  23.46,    2  11  3x    2

14. Use a graphing utility to test whether each of the follow-
ing is an identity. If an equation appears to be an iden-
tity, verify it. If the equation does not appear to be an
identity, find a value of x for which both sides are
defined but are not equal.
(A) (sin x cos x)2  1  2 sin x cos x

(B) cos2 x  sin2 x  1  2 sin2 x
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Solve Problems 48–50 exactly without the use of a calculator.

48. Given find
(A) sin (x 2) (B) cos 2x

tan x   3
4,  /2  x   ,

49.

50. sin [sin 1 (3
5)  cos 1 (4

5)]

sin [2 tan 1 ( 3
4)]

19. 20.

21.

22.

23.

Evaluate Problems 24 and 25 exactly using appropriate

sum–product or product–sum identities.

24. cos 195 sin 75 25. cos 195  cos 105 

In Problems 26–29, is the equation an identity? Explain.

26. cot2 x  csc2 x  1

27. cos 3x  cos x (cos 2x 2 sin2 x)

28. sin (x 3  2)  cos x

29. cos (x 3  2)  sin x

Solve Problems 30–34 exactly ( in degrees, x real).

30. 4 sin2 x  3  0, 0  x  2 

31. 2 sin2   cos   1, 0    180 

32. 2 sin2 x  sin x  0, all real x

33.

34. 2 sin2   5 cos   1  0, all  

Solve Problems 35–37 to four significant digits ( in degrees, 

x real).

35. tan   0.2557, all  

36. sin2 x  2  4 sin x, all real x

sin 2x   3 sin x, all real x

tan (x  y)  
cot x  cot y

cot x cot y  1

tan m  tan n  
sin (m  n)

cos m cos n

 1  cot x

csc x  
2

 1  sin 2x

cot x  tan x  
4 cos2 x  2

sin 2x
cot

x

2
 

sin x

1  cos x

37. tan2 x  2 tan x  1, 0  x   

Solve Problems 38–41 to four decimal places.

38. 3 sin 2x  2x  2.5, all real x

39. 3 sin 2x  2x  2.5, all real x

40. 2 sin2 x  cos 2x  1  x2, all real x

41. 2 sin2 x  cos 2x  1  x2, all real x

42. Given the equation tan (x y)  tan x  tan y:
(A) Is x  0 and y    4 a solution?
(B) Is the equation an identity or a conditional equation?

Explain.

43. Explain the difference in evaluating sin 1 0.3351 and
solving the equation sin x 0.3351.

44. Use a graphing utility to test whether each of the following
is an identity. If an equation appears to be an identity, verify
it. If the equation does not appear to be an identity, find a
value of x for which both sides are defined but are not equal.

(A)

(B)

45. Use a sum or difference identity to convert 
y cos (x   3) to a form involving sin x and or cos x.

Enter the original equation in a graphing utility as y1,
the converted form as y2, and graph y1 and y2 in the 
same viewing window. Use TRACE to compare the 
two graphs.

46. (A) Solve tan (x 2) 2 sin x exactly, 0  x  2 , using
algebraic methods.

(B) Solve tan (x 2) 2 sin x, 0  x  2 , to four deci-
mal places using a graphing utility.

47. Solve 3 cos (x 1)  2  x2 for all real x, to three deci-
mal places using a graphing utility.

tan x

sin x  2 tan x
 

1

cos x  2

tan x

sin x  2 tan x
 

1

cos x  2
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function f have a smallest zero? If so, what is it (to
four decimal places)? Does the function have a
largest zero? If so, what is it (to four decimal places)?

(B) Explain what happens to the graph as x increases
without bound. Does the graph have an asymptote? If
so, what is its equation?

(C) Explore the graph of f over smaller and smaller inter-
vals containing x 1. How many zeros exist on any
interval containing x 1? Is x 1 a zero? Explain.

51. (A) Solve cos2 2x  cos 2x  sin2 2x, 0  x   ,
exactly using algebraic methods.

(B) Solve cos2 2x  cos 2x  sin2 2x, 0  x   , to
four decimal places using a graphing utility.

52. We are interested in the zeros of f(x) sin for x 0.

(A) Explore the graph of f over different intervals [a, b]
for various values of a and b, 0  a b. Does the

1

x  1

53. Indirect Measurement. Find the exact value of x in the
figure, then find x and  to three decimal places. [Hint:

Use a suitable identity involving tan 2 .]

54. Electric Current. An alternating current generator pro-
duces a current given by the equation

I  50 sin 120 (t 0.001)

where t is time in seconds and I is current in amperes.
Find the smallest positive t, to three significant digits,
such that I 40 amperes.

55. Music—Beat Frequencies. The equations 
y  0.6 cos 184 t and y   0.6 cos 208 t model sound
waves with frequencies 92 and 104 hertz, respectively. If
both sounds are emitted simultaneously, a beat frequency
results.
(A) Show that

0.6 cos 184 t  0.6 cos 208 t

 1.2 sin 12 t sin 196 t





x

6 cm

3 cm

(B) Graph each of the following equations in a different
viewing window for 0  t  0.2.

y  0.6 cos 184 t

y   0.6 cos 208 t

y  0.6 cos 184 t  0.6 cos 208 t

y  1.2 sin 12 t sin 196 t

56. Engineering. The circular arch of a bridge has an arc
length of 36 feet and spans a 32-foot canal (see the figure).
Determine the height of the circular arch above the water
at the center of the bridge, and the radius of the circular
arch, both to three decimal places. Start by drawing aux-
iliary lines in the figure, labeling appropriate parts, then
explain how the trigonometric equation

is related to the problem. After solving the trigonometric
equation for  , the radius is easy to find and the height 
of the arch above the water can be found with a little 
ingenuity.

sin   
8

9
  



From M sin Bt N cos Bt to A sin (Bt C)——
A Harmonic Analysis Tool

In solving certain kinds of more advanced applied mathematical problems—prob-
lems dealing with electrical circuits, spring-mass systems, heat flow, and so on—
the solution process leads naturally to a function of the form

y  M sin Bt  N cos Bt (1)

(A) Graphing Utility Exploration. Use a graphing utility to explore the nature
of the graph of equation (1) for various values of M, N, and B. Does the
graph appear to be simple harmonic; that is, does it appear to be a graph
of an equation of the form y  A sin (Bt  C)?

The graph of y  2 sin ( t)  3 cos ( t), which is typical of the various
graphs from equation (1), is shown in Figure 1. It turns out that the graph in Fig-
ure 1 can also be obtained from an equation of the form

y  A sin (Bt  C ) (2)

for suitable values of A, B, and C.

The problem now is: given M, N, and B in equation (1), find A, B, and C in
equation (2) so that equation (2) produces the same graph as equation (1). The
form of equation (2) is often preferred over (1), because from (2) you can easily
read amplitude, period, and phase shift and recognize a phenomenon as simple
harmonic.

The process of finding A, B, and C, given M, N, and B, requires a little inge-
nuity and the use of the sum identity

sin (x  y)  sin x cos y  cos x sin y (3)

How do we proceed? We start by trying to get the right side of equation (1) to
look like the right side of identity (3). Then we use equation (3), from right to
left, to obtain equation (2).

(B) Establishing a Transformation Identity. Show that

(4)

where C is any angle (in radians if t is real) having P   (M, N ) on its
terminal side. [Hint: A first step is the following:

M sin Bt  N cos Bt

(C) Use of Transformation Identity. Use equation (4) to transform

y1   4 sin (t 2)  3 cos (t 2)

into the form y2  A sin (Bt  C), where C is chosen so that |C| is
minimum. Compute C to three decimal places. From the new equation,
determine the amplitude, period, and phase shift.

 
 M2

 N2

 M2
 N2

 (M sin Bt  N cos Bt)]

y  M sin Bt  N cos Bt   M2
 N2 sin (Bt  C)
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 4

 4

4

4

FIGURE 1

y  2 sin ( t)  3 cos ( t).
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(D) Graphing Utility Visualization and Verification. Graph y1 and y2 from part
C in the same viewing window.

(E) Physics Application. A weight suspended from a spring, with spring
constant 64, is pulled 4 centimeters below its equilibrium position and 
is then given a downward thrust to produce an initial downward velocity 
of 24 centimeters per second. In more advanced mathematics (differential
equations) the equation of motion (neglecting air resistance and friction) 
is found to be given approximately by

y1   3 sin 8t  4 cos 8t

where y1 is the coordinate of the bottom of the weight in Figure 2 at time t
(y is in centimeters and t is in seconds). Transform the equation into the
form

y2  A sin (Bt  C )

and indicate the amplitude, period, and phase shift of the motion. Choose
the least positive C and keep A positive.

(F) Graphing Utility Visualization and Verification. Graph y1 and y2 from
part E in the same viewing window of a graphing utility, 0  t  6. How
many times will the bottom of the weight pass y  2 in the first 6 seconds?

(G) Solving a Trigonometric Equation. How long, to three decimal places, will
it take the bottom of the weight to reach y  2 for the first time?

6 TRIGONOMETRIC IDENTITIES AND CONDITIONAL EQUATIONS

4 cm

y

 5

0

5

W

FIGURE 2 Spring-mass system.
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7.1 Law of Sines

7.2 Law of Cosines

7.3 Geometric Vectors

7.4 Algebraic Vectors

7.5 Polar Coordinates and Graphs

7.6 Complex Numbers in Rectangular and Polar Forms

7.7 De Moivre’s Theorem

Chapter 7 R E V I E W

Chapter 7 G R O U P  A C T I V I T Y : Conic Sections and Planetary Orbits

Cumulative Review Chapters 5–7

I
N CHAPTER 7 A NUMBER OF ADDITIONAL TOPICS INVOLVING

trigonometry are considered. First, we return to the problem of

solving triangles—not just right triangles, but any triangle. Then

some of these ideas are used to develop the important concept of

vector. With our knowledge of trigonometry, we introduce the polar

coordinate system, probably the most important coordinate system

after the rectangular coordinate system. After considering polar

equations and their graphs, we represent complex numbers in polar

form. Once a complex number is in polar form, it will be possible

to find nth powers and nth roots of the number using an ingenious

theorem established by De Moivre.

Before getting started on this chapter,

review the following concepts:

 Rational Exponents 
(Basic Algebra Review*, Section R.6)

 Radicals
(Basic Algebra Review*, Section R.7)

 Complex Numbers 
(Chapter 2, Section 4)

 Inverse Functions 
(Chapter 1, Section 6)

 Solving Right Triangles 
(Chapter 5, Section 3)

 Difference Identities 
(Chapter 6, Section 2)

 Significant Digits 

(Appendix B, Section B.1)

*At www.mhhe.com/barnett



Law of Sines

Law of Sines Derivation  Solving the ASA and AAS Cases  Solving the SSA Case—
Including the Ambiguous Case

In Chapter 5 we used trigonometric functions to solve problems concerning right
triangles. We now consider analogous problems for oblique triangles—triangles
without a right angle.

Every oblique triangle is either acute, all angles between 0 and 90 , or
obtuse, one angle between 90 and 180 . Figure 1 illustrates both types of
triangles.

Note how the sides and angles of the oblique triangles in Figure 1 have been
labeled: Side a is opposite angle  , side b is opposite angle  , and side c is oppo-
site angle  . Also note that the largest side of a triangle is opposite the largest
angle. Given any three of the six quantities indicated in Figure 1, we are inter-
ested in finding the remaining three, if possible. This process is called solving the

triangle.

If only the three angles of a triangle are known, it is impossible to solve
for the sides. (Why?) But if we are given two angles and a side, or two sides
and an angle, or all three sides, then it is possible to determine whether a tri-
angle having the given quantities exists, and, if so, to solve for the remaining
quantities.

The basic tools for solving oblique triangles are the law of sines, developed
in Section 7.1, and the law of cosines, developed in Section 7.2.

Before proceeding with specific examples, it is important to recall the rules in
Table 1 regarding accuracy of angle and side measure. Table 1 is repeated inside
the front cover of the text for easy reference.

␥

b

a

c

␤
␣

␥
b a

c

␤␣
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FIGURE 1 Oblique triangles.

T A B L E  1 Triangles and Significant Digits

Angle to Nearest Significant Digits for Side Measure

1° 2

10 or 0.1° 3

1 or 0.01° 4

10 or 0.001° 5

Acute triangle

(a)

Obtuse triangle

(b)



Law of Sines Derivation
The law of sines is relatively easy to prove using the right triangle properties stud-
ied in Chapter 5. We will also use the fact that

sin (180  x)  sin x

which is readily obtained using a difference identity (a good exercise for you).
Referring to Figure 2, we proceed as follows: Angles  and  in Figure 2(a), and
also in Figure 2(b), satisfy

Solving each equation for h, we obtain

h  b sin  and h  a sin  

Thus,

(1)

Similarly, angles  and  in Figure 2(a), and also in Figure 2(b), satisfy

Solving each equation for m, we obtain

m  c sin  and m  a sin  

Thus,

(2)

If we combine equations (1) and (2), we obtain the law of sines.

sin  

a
 

sin  

c

c sin   a sin  

 sin   
m

c
           and  sin    sin (180°   )  

m

a

sin  

a
 

sin  

b

b sin   a sin  

sin   
h

b
  and      sin   

h

a

7.1 Law of Sines 531

Calculator Calculations

When solving for a particular side or angle, carry out all operations within the calculator and then

round to the appropriate number of significant digits (as specified in Table 1) at the end of the calcula-

tion. Your answers may still differ slightly from those in the book, depending on the order in which

you solve for the sides and angles.

 

b a

c

m

h

  

a
m

c

  
h

 b

180     

FIGURE 2

Acute triangle

(a)

Obtuse triangle

(b)



Suppose that an angle of a triangle and its opposite side are known. Then the
ratio of Theorem 1 can be calculated. So if one additional part of the triangle,
either of the other angles or either of the other sides, is known, then the law of
sines can be used to solve the triangle.

Thus, the law of sines is used to solve triangles, given:

1. Two sides and an angle opposite one of them (SSA), or

2. Two angles and any side (ASA or AAS)

If the given information for a triangle consists of two sides and the included
angle (SAS) or three sides (SSS), then the law of sines cannot be applied. The
key to handling these two cases, the law of cosines, is developed in Section 7.2.

We will apply the law of sines to the easier ASA and AAS cases first, and
then will turn to the more challenging SSA case.

Solving the ASA and AAS Cases

Solving the ASA Case

Solve the triangle in Figure 3.

S O L U T I O N

We are given two angles and the included side, which is the ASA case. Find the
third angle, then solve for the other two sides using the law of sines.

We solve for  :

      180 

  180  (   )

 180  (28 0  45 20 )

 106 40 
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T H E O R E M  1
Law of Sines

In words, the ratio of the sine of an angle to its opposite side is the same
as the ratio of the sine of either of the other angles to its opposite side.

sin  

a
 

sin  

b
 

sin  

c

 
b a

c

  

FIGURE 3

 b a

28 0 45 20 

120 meters



We solve for a:

Law of sines

We solve for b:

Law of sines

Solve the triangle in Figure 4.

Note that the AAS case can always be converted to the ASA case by first solv-
ing for the third angle. For the ASA or AAS case to determine a unique triangle,
the sum of the two angles must be between 0 and 180 , because the sum of all
three angles in a triangle is 180 and no angle can be zero or negative.

Solving the SSA Case—Including the Ambiguous Case
We now look at the case where we are given two sides and an angle opposite one
of the sides—the SSA case. This case has several possible outcomes, depending
on the measures of the two sides and the angle. Table 2 illustrates the various
possibilities.

␥
b

c

65 20 
35

13 0 

 89.1 meters

 
120 sin 45 20 

sin 106 40 

b  
c sin  

sin  

sin  

b
 

sin  

c

 58.8 meters

 
120 sin 28°0 

sin 106°40 

a  
c sin  

sin  

sin  

a
 

sin  

c
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FIGURE 4



It is unnecessary to memorize Table 2 to solve triangles in the SSA case.
Instead, given sides a, b, and angle  , we use the law of sines to solve for the
angle  opposite side b. The number of triangles is equal to the number of solu-
tions  , 0      180 , of the law of sines equation

(3)

that satisfy

(4)

Thus, in practice, we check each solution of equation (3) to determine whether
inequality (4) is satisfied. If it is, we can easily solve for the remaining parts of
the triangle. Examples 2–4 will make the procedure clear.

The SSA Case: One Triangle

Solve the triangle(s) with a  47 centimeters, b  23 centimeters, and   123 .

S O L U T I O N

We solve for  :

Law of sines

sin   
b sin  

a
 

23 sin 123 

47

sin  

b
 

sin  

a

     180 

sin  

b
 

sin  

a
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T A B L E  2 SSA Variations

a Number of
 [h  b sin  ] Triangles Figure Case

Acute 0  a  h 0 (a)

Acute a  h 1 (b)

Acute h  a  b 2 (c)

Acute a  b 1 (d)

Obtuse 0  a  b 0 (e)

Obtuse a  b 1 (f )
a

b  

a

b  

ab

 

b
a

Ambiguous
case

 h
a

 

b
h a

 

b
h

a



This equation has two solutions between 0 and 180 :

   180  24  156 

Because

    123  24  147  180 

     123  156  279  180 

there is only one triangle. [Note that this conclusion is consistent with Table 2.
Because  is obtuse and a  b, we are in Case (f ).]

We solve for  :

We solve for c:

Solve the triangle(s) with a  88 meters, b  62 meters, and   81 .

The SSA Case: No Triangle

Solve the triangle(s) with a  27 inches, b  28 inches, and   110 .

S O L U T I O N

We solve for  :

Law of sines

This equation has two solutions between 0 and 180 :

   180°  77°  103°

  sin 1  28 sin 110°

 27   77°

sin   
b sin  

a
 

28 sin 110 

27

sin  

b
 

sin  

a

c  
a sin  

sin  
 

47 sin 33 

sin 123 
 31 centimeters

sin  

a
 

sin  

c

   180  123  24  33 

      180 

  sin 1 23 sin 123 

47   24 
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Because

    110  77  187  180 

     110  103  213  180 

there is no triangle. [Note that this conclusion is consistent with Table 2. Because
 is obtuse and a  b, we are in Case (e).]

Solve the triangle(s) with a  64 feet, b  79 feet, and   57 .

The SSA Case: Two Triangles

Solve the triangle(s) with a  1.0 meters, b  1.8 meters, and   26 .

S O L U T I O N

We solve for  :

Law of sines

This equation has two solutions between 0 and 180 :

   180  52  128 

Because

    26  52  78  180 

     26  128  154  180 

there are two triangles. [Note that this conclusion is consistent with Table 2. Because
 is acute and h  b sin   a  b, we are in Case (c), the ambiguous case.]

We solve for  and   :

We solve for c and c :

c  
a sin   

sin  
 

1.0 sin 26 

sin 26 
 1.0  meters

c  
a sin  

sin  
 

1.0 sin 102 

sin 26 
 2.2  meters

    180°  26°  128°  26°

  180°  26°    52°  102°

  sin 1  1.8 sin 26 

1.0   52°

sin   
b sin  

a
 

1.8 sin 26 

1.0

sin  

b
 

sin  

a
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In summary:

Triangle I:   52   102 c  2.2 meters

Triangle II:    128    26 c  1.0 meters

Solve the triangle(s) with a  8 kilometers, b  10 kilometers, and   35 .
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E X P L O R E / D I S C U S S  1

Sides a and b and acute angle  of a triangle are given. Explain which
case(s) of Table 2 could apply if, in solving the triangle, it is found that

(A) sin   1

(B) sin   1

(C) sin   1

The law of sines is useful in many applications, as can be seen in Example 5
and the applications in Exercise 7.1.

Surveying

To measure the length d of a lake (Fig. 5), a base line AB is established and mea-
sured to be 125 meters. Angles A and B are measured to be 41.6 and 124.3 ,
respectively. How long is the lake?

A

B

C

124.3 

41.6 

Bas
e 

lin
e

125 m
et

er
s

d

FIGURE 5
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S O L U T I O N

Find angle C and use the law of sines.

In Example 5, find the distance AC.

 341 meters

d  125 sin 41.6°

sin 14.1° 
 14.1°

sin 14.1°

125
 

sin 41.6°

d
Angle C  180°  (124.3°  41.6°)

1.   101 40 , b  141, c  152 2.   44 ,   55 , c  73 meters 3. No solution
4. Triangle I:   46 ,   99 , c  14 kilometers; 

Triangle II:    134 ,    11 , c  2.7 kilometers
5. 424 meters

The labeling in the figure below is the convention we will fol-

low in this exercise set. Your answers to some problems may

differ slightly from those in the book, depending on the order in

which you solve for the sides and angles of a given triangle.

 b a

c

  

Solve each triangle in Problems 1–8.

1.   73 ,   28 , c  42 feet

2.   41 ,   33 , c  21 centimeters

3.   122 ,   18 , b  12 kilometers

4.   43 ,   36 , a  92 millimeters

5.   112 ,   19 , c  23 yards

6.   52 ,   105 , c  47 meters

7.   52 ,   47 , a  13 centimeters

8.   83 ,   77 , c  25 miles

In Problems 9–16, determine whether the information in each

problem allows you to construct zero, one, or two triangles. Do

not solve the triangle. Explain which case in Table 2 applies.

9. a  2 inches, b  4 inches,   30 

10. a  3 feet, b  6 feet,   30 

11. a  6 inches, b  4 inches,   30 

12. a  8 feet, b  6 feet,   30 

13. a  1 inch, b  4 inches,   30 

14. a  2 feet, b  6 feet,   30 

15. a  3 inches, b  4 inches,   30 

16. a  5 feet, b  6 feet,   30 
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33. Let   42.3 and b  25.2 centimeters. Determine a value
k so that if 0  a  k, there is no solution; if a  k, there is
one solution; and if k  a  b, there are two solutions.

34. Let   37.3 and b  42.8 centimeters. Determine a
value k so that if 0  a  k, there is no solution; if a  k,
there is one solution; and if k  a  b, there are two 
solutions.

35. Mollweide’s equation,

is often used to check the final solution of a triangle,
because all six parts of a triangle are involved in the

(a  b) cos 
 

2
 c sin 

   

2

equation. If the left side does not equal the right side after
substitution, then an error has been made in solving a
triangle. Use this equation to check Problem 1. (Because of
rounding errors, both sides may not be exactly the same.)

36. (A) Use the law of sines and suitable identities to show that
for any triangle

(B) Verify the formula with values from Problem 1.

a  b

a  b
 

tan
   

2

tan
   

2

37. Coast Guard. Two lookout posts, A and B (10.0 miles
apart), are established along a coast to watch for illegal
ships coming within the 3-mile limit. If post A reports a
ship S at angle BAS  37 30 and post B reports the same
ship at angle ABS  20 0 , how far is the ship from post
A? How far is the ship from the shore (assuming the shore
is along the line joining the two observation posts)?

38. Fire Lookout. A fire at F is spotted from two fire lookout
stations, A and B, which are 10.0 miles apart. If station B

reports the fire at angle ABF  53 0 and station A reports
the fire at angle BAF  28 30 , how far is the fire from
station A? From station B?

39. Natural Science. The tallest trees in the world grow in
Redwood National Park in California; they are taller than
a football field is long. Find the height of one of these
trees, given the information in the figure on page 540.
(The 100-foot measurement is accurate to three significant
digits.)

 

Solve each triangle in Problems 17–32. If a problem has no 

solution, say so.

17.   118.3 ,   12.2 , b  17.3 feet

18.   27.5 ,   54.5 , a  9.27 inches

19.   67.7 ,   54.2 , b  123 meters

20.   122.7 ,   34.4 , b  18.3 kilometers

21.   46.5 , a  7.9 millimeters, b  13.1 millimeters

22.   26.3 , a  14.7 inches, b  35.2 inches

23.   15.9 , a  22.4 inches, b  29.6 inches

24.   43.5 , a  138 centimeters, b  172 centimeters

25.   38.9 , a  42.7 inches, b  30.0 inches

26.   27.3 , a  244 centimeters, b  135 centimeters

27.   123.2 , a  101 yards, b  152 yards

28.   137.3 , a  13.9 meters, b  19.1 meters

29.   29 30 , a  43.2 millimeters, b  56.5 millimeters

30.   33 50 , a  673 meters, b  1,240 meters

31.   30 , a  29 feet, b  58 feet

32.   30 , a  92 inches, b  46 inches



44. Astronomy. In Problem 43, find the maximum angle  .
[Hint: The angle is maximum when a straight line joining
the Earth and Venus is tangent to Venus’s orbit.]

45. Surveying. A tree growing on a hillside casts a 102-foot
shadow straight down the hill (see the figure). Find the ver-
tical height of the tree if, relative to the horizontal, the hill
slopes 15.0 and the angle of elevation of the sun is 62.0 .

46. Surveying. Find the height of the tree in Problem 45 if
the shadow length is 157 feet and, relative to the horizon-
tal, the hill slopes 11.0 and the angle of elevation of the
sun is 42.0 .

47. Life Science. A cross-section of the cornea of an eye, a
circular arc, is shown in the figure. Find the arc radius R
and the arc length s, given the chord length C  11.8 mil-
limeters and the central angle   98.9 .

48. Life Science. Referring to the figure, find the arc radius R
and the arc length s, given the chord length C  10.2 mil-
limeters and the central angle   63.2 .

s

R

R

 

Cornea

C

40. Surveying. To measure the height of Mt. Whitney in Cal-
ifornia, surveyors used a scheme like the one shown in the
figure in Problem 39. They set up a horizontal base line
2,000 feet long at the foot of the mountain and found the
angle nearest the mountain to be 43 5 ; the angle farthest
from the mountain was found to be 38 0 . If the base line
was 5,000 feet above sea level, how high is Mt. Whitney
above sea level?

41. Engineering. A 4.5-inch piston rod joins a piston to a
1.5-inch crankshaft (see the figure). How far is the base of
the piston from the center of the crankshaft (distance d)
when the rod makes an angle of 9 with the centerline?
There are two answers to the problem.

42. Engineering. Repeat Problem 41 if the piston rod is 
6.3 inches, the crankshaft is 1.7 inches, and the angle is 11 .

43. Astronomy. The orbits of the Earth and Venus are ap-
proximately circular, with the sun at the center. A sighting
of Venus is made from Earth, and the angle  is found to
be 18 40 . If the radius of the orbit of the Earth is 
1.495  108 kilometers and the radius of the orbit of Venus
is 1.085  108 kilometers, what are the possible distances
from the Earth to Venus? (See the figure.)

Earth

Venus

Venus

Sun

Piston
4.5 inches

Crankshaft

1.5 inches

9 

d

37 10 

44 0 

100 feet
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541

Law of Cosines

Law of Cosines Derivation  Solving the SAS Case  Solving the SSS Case

If in a triangle two sides and the included angle are given (SAS), or three sides
are given (SSS), the law of sines cannot be used to solve the triangle—neither
case involves an angle and its opposite side (Fig. 1). Both cases can be solved
starting with the law of cosines, which is the subject matter for Section 7.2.

Law of Cosines Derivation
Theorem 1 states the law of cosines.

7.2 Law of Cosines

b

c

 

b
a

c

(a) SAS case (b) SSS case

FIGURE 1

T H E O R E M  1
Law of Cosines

c2  a2  b2  2ab cos  

b2  a2  c2  2ac cos  

a2  b2  c2  2bc cos  
 

b
a

c

 
 

All three equations

say essentially the

same thing.

The law of cosines is used to solve triangles, given:

1. Two sides and the included angle (SAS), or

2. Three sides (SSS)

We will establish the first equation in Theorem 1. The other two equations then
can be obtained from this one simply by relabeling the figure. We start by locating
a triangle in a rectangular coordinate system. Figure 2 shows three typical triangles.

49. Surveying. The procedure illustrated in Problems 39 and
40 is used to determine an inaccessible height h when a base
line d on a line perpendicular to h can be established (see the
figure) and the angles  and  can be measured. Show that

50. Surveying. The layout in the figure is used to determine
an inaccessible height h when a base line d in a plane per-

  

h

d

h  d sin   sin  

sin (   ) 

pendicular to h can be established and the angles  ,  , and
 can be measured. Show that

h  d sin  csc (   ) tan  

  
 

h

d

 

  



For an arbitrary triangle located as in Figure 2, the distance-between-two-
points formula is used to obtain

Square both sides. (1)

From Figure 2, we note that

b2  h2  k2

Substituting b2 for h2  k2 in equation (1), we obtain

a2  b2  c2  2hc (2)

But

Thus, by replacing h in equation (2) with b cos  , we reach our objective:

a2  b2  c2  2bc cos  

[Note: If  is acute, then cos  is positive; if  is obtuse, then cos  is negative.]

Solving the SAS Case
For the SAS case, start by using the law of cosines to find the side opposite the
given angle. Then use either the law of cosines or the law of sines to find a sec-
ond angle. Because of the simpler computations, the law of sines will generally
be used to find the second angle.

h  b cos  

 cos   
h

b

(c)(b)(a)

(c, 0)

 

b

a

c

k

(h, 0)
h   0

(h, k)

 

b
a

c

k

h
(c, 0)

(h, k)

 

b

a

c

k

h

(h, k)

(c, 0)

 h2  2hc  c2  k2

a2  (h  c)2  k2

a   (h  c)2  (k  0)2
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E X P L O R E / D I S C U S S  1

After using the law of cosines to find the side opposite the angle for an
SAS case, the law of sines is used to find a second angle. Figure 2
shows that there are two choices for a second angle.

FIGURE 2 Three representative

triangles.



The preceding discussion leads to the following strategy for solving the SAS
case:

7.2 Law of Cosines 543

(A) If the given angle is obtuse, can either of the remaining angles be
obtuse? Explain.

(B) If the given angle is acute, then one of the remaining angles may
or may not be obtuse. Explain why choosing the angle opposite the
shorter side guarantees the selection of an acute angle.

(C) Starting with (sin  ) a  (sin  ) b, show that

(3)

(D) Explain why equation (3) gives us the correct angle  only if  is
acute.

  sin 1  a sin  

b  

Strategy for Solving the SAS Case

Step Find Method

1 Side opposite given angle Law of cosines

2 Second angle Law of sines

(Find the angle opposite 

the shorter of the two given 

sides—this angle will 

always be acute.)

3 Third angle Subtract the sum of the measures of the given angle

and the angle found in step 2 from 180 .

␥

␣

b

10.3 cm

6.45 cm

32.4 

FIGURE 3

Solving the SAS Case

Solve the triangle in Figure 3.

S O L U T I O N

We solve for b:

Law of cosines

 5.96 cm

  (10.3)2  (6.45)2  2(10.3)(6.45) cos 32.4°

b   a
2  c

2  2ac cos  

b
2  a

2  c
2  2ac cos  



We solve for  (the angle opposite the shorter side):

Law of sines

Solve for  .

Because  is acute, the inverse sine function gives us  directly.

We solve for  :

  180  (   )

 180  (32.4  35.4 )  112.2 

Solve the triangle with   77.5 , b  10.4 feet, and c  17.7 feet.

Solving the SSS Case
Starting with three sides of a triangle, the problem is to find the three angles. Sub-
sequent calculations are simplified if we solve for the obtuse angle first, if pres-
ent. The law of cosines is used for this purpose. A second angle, which must be
acute, can be found using either law, although computations are usually simpler
with the law of sines.

 35.4°

 sin 1  6.45 sin 32.4°

5.96  

  sin 1  c sin  

b  

 sin   
c sin  

b

sin  

c
 

sin  

b
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E X P L O R E / D I S C U S S  2

(A) Starting with a2  b
2  c

2  2bc cos  , show that

(4)

(B) Does equation (4) give us the correct angle  irrespective of whether
 is acute or obtuse? Explain.

  cos 1  a
2  b

2  c
2

 2bc  

The preceding discussion leads to the following strategy for solving the SSS
case:



Solving the SSS Case

Solve the triangle with a  27.3 meters, b  17.8 meters, and c  35.2 meters.

S O L U T I O N

Three sides of the triangle are given and we are to find the three angles. This is
the SSS case.

Sketch the triangle (Fig. 4) and use the law of cosines to find the largest angle,
then use the law of sines to find one of the two remaining acute angles.

We solve for  :

Law of cosines

Solve for  .

We solve for  :

Law of sines

Solve for  .

 is acute. 49.7°

  sin 1  27.3 sin 100.5°

35.2  
 sin   

a sin  

c
 

27.3 sin 100.5°

35.2

sin  

a
 

sin  

c

 100.5 

 cos 1  (27.3)2  (17.8)2  (35.2)2

2(27.3)(17.8)  

  cos 1  a2  b2  c2

2ab  

 cos   
a2  b2  c2

2ab

c2  a2  b2  2ab cos  
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Strategy for Solving the SSS Case

Step Find Method

1 Angle opposite longest Law of cosines

side—this will take care of

an obtuse angle, if present.

2 Either of the remaining Law of sines

angles, which will be acute. (Why?)

3 Third angle Subtract the sum of the measures of the

angles found in steps 1 and 2 from 180 .

  

 17.8 m 27.3 m

35.2 m

FIGURE 4
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We solve for  :

      180 

  180  (   )

 180  (49.7  100.5 )

 29.8 

Solve the triangle with a  1.25 yards, b  2.05 yards, and c  1.52 yards.

Finding the Side of a Regular Polygon

If a seven-sided regular polygon is inscribed in a circle of radius 22.8 centime-
ters, find the length of one side of the polygon.

S O L U T I O N

Sketch a figure (Fig. 5) and use the law of cosines.

If an 11-sided regular polygon is inscribed in a circle with radius 4.63 inches, find
the length of one side of the polygon.

 19.8 centimeters

d   2(22.8)2  2(22.8)2 cos 
360°

7

d2  22.82  22.82  2(22.8)(22.8) cos 
360°

7

d

Actually, you
only need to
sketch the
triangle:

22.8 22.8
360 

7

FIGURE 5

1. a  18.5 feet,   33.3 ,   69.2 2.   37.4 ,   95.0 ,   47.6 3. 2.61 inches

The labeling in the figure below is the convention we will fol-

low in this exercise set. Your answers to some problems may

differ slightly from those in the book, depending on the order in

which you solve for the sides and angles of a given triangle.

␥b a

c

␤␣

1. Referring to the figure, if   47.3 , b  11.7 centimeters,
and c  6.04 centimeters, which of the two angles,  or  ,
can you say for certain is acute and why?

2. Referring to the figure, if   93.5 , b  5.34 inches, and
c  8.77 inches, which of the two angles,  or  , can you
say for certain is acute and why?



Solve each triangle in Problems 3–6.

3.   71.2 , b  5.32 yards, c  5.03 yards

4.   57.3 , a  6.08 centimeters, c  5.25 centimeters

5.   120 20 , a  5.73 millimeters, b  10.2 millimeters

6.   135 50 , b  8.44 inches, c  20.3 inches
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29. Show, using the law of cosines, that if   90 , then 
c2  a2  b2 (the Pythagorean theorem).

30. Show, using the law of cosines, that if c2  a2  b2, then
  90 .

31. Show that for any triangle,

32. Show that for any triangle,

a  b cos   c cos  

a2  b2  c2

2abc
 

cos  

a
 

cos  

b
 

cos  

c

7. Referring to the figure at the beginning of the exercise set,
if a  13.5 feet, b  20.8 feet, and c  8.09 feet, then, if
the triangle has an obtuse angle, which angle must it be
and why?

8. Suppose you are told that a triangle has sides a  12.5
centimeters, b  25.3 centimeters, and c  10.7 centime-
ters. Explain why the triangle has no solution.

Solve each triangle in Problems 9–12 if the triangle has a solu-

tion. Use decimal degrees for angle measure.

9. a  4.00 meters, b  10.2 meters, c  9.05 meters

10. a  10.5 miles, b  20.7 miles, c  12.2 miles

11. a  6.00 kilometers, b  5.30 kilometers, 
c  5.52 kilometers

12. a  31.5 meters, b  29.4 meters, c  33.7 meters

Problems 13–28 represent a variety of problems involving both

the law of sines and the law of cosines. Solve each triangle. If

a problem does not have a solution, say so.

13.   94.5 ,   88.3 , b  23.7 centimeters

14.   85.6 ,   97.3 , a  14.3 millimeters

15.   104.5 , a  17.2 inches, c  11.7 inches

16.   27.3 , a  13.7 yards, c  20.1 yards

17.   57.2 ,   112.0 , c  24.8 meters

18.   132.4 ,   17.3 , b  67.6 kilometers

19.   38.4 , a  11.5 inches, b  14.0 inches

20.   66.4 , b  25.5 meters, c  25.5 meters

21. a  32.9 meters, b  42.4 meters, c  20.4 meters

22. a  10.5 centimeters, b  5.23 centimeters, 
c  8.66 centimeters

23.   58.4 , b  7.23 meters, c  6.54 meters

24.   46.7 , a  18.1 meters, b  22.6 meters

25.   39.8 , a  12.5 inches, b  7.31 inches

26.   47.9 , b  35.2 inches, c  25.5 inches

27.   13.6 , b  21.6 meters, c  58.4 meters

28.   25.1 , b  53.7 meters, c  98.5 meters



43. Analytic Geometry. If point A in the figure has coordi-

nates (3, 4) and point B has coordinates (4, 3), find the ra-

dian measure of angle  to three decimal places.

44. Analytic Geometry. If point A has coordinates (4, 3) and
point B has coordinates (5, 1), find the radian measure of

 AOB to three decimal places.

45. Engineering. Three circles of radius 2.03, 5.00, and 
8.20 centimeters are tangent to one another (see the
figure). Find the three angles formed by the lines joining

their centers (to the nearest 10 ).

46. Engineering. Three circles of radius 2.00, 5.00, and 
8.00 inches are tangent to each other (see the figure). Find

the three angles formed by the lines joining their centers
(to the nearest 10 ).

47. Geometry. A rectangular solid has sides as indicated in
the figure. Find  CAB to the nearest degree.

48. Geometry. Referring to problem 47, find  ACB to the
nearest degree.

2.8 cm

4.3 cm

8.1 cmA

B

C

␥

␣ ␤

x

y

A

B



0
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 33. Surveying. To find the length AB of a small lake, a 
surveyor measured angle ACB to be 96 , AC to be 
91 yards, and BC to be 71 yards. What is the approximate 
length of the lake?

34. Surveying. Refer to problem 33. If a surveyor finds 

 ACB  110 , AC  85 meters, and BC  73 meters,
what is the approximate length of the lake?

35. Geometry. Find the measure in decimal degrees of a cen-
tral angle subtended by a chord of length 112 millimeters
in a circle of radius 72.8 millimeters.

36. Geometry. Find the measure in decimal degrees of a cen-
tral angle subtended by a chord of length 13.8 feet in a cir-
cle of radius 8.26 feet.

37. Geometry. Two adjacent sides of a parallelogram meet at
an angle of 35 10 and have lengths of 3 and 8 feet. What
is the length of the shorter diagonal of the parallelogram
(to three significant digits)?

38. Geometry. What is the length of the longer diagonal of the
parallelogram in problem 37 (to three significant digits)?

39. Navigation. Los Angeles and Las Vegas are approxi-
mately 200 miles apart. A pilot 80 miles from Los Angeles
finds that she is 6 20 off course relative to her start in Los
Angeles. How far is she from Las Vegas at this time?
(Compute the answer to three significant digits.)

40. Search and Rescue. At noon, two search planes set out
from San Francisco to find a downed plane in the ocean.

Plane A travels due west at 400 miles per hour, and plane
B flies northwest at 500 miles per hour. At 2 P.M. plane A
spots the survivors of the downed plane and radios plane B
to come and assist in the rescue. How far is plane B from
plane A at this time (to three significant digits)?

41. Geometry. Find the perimeter of a pentagon inscribed in
a circle of radius 12.6 meters.

42. Geometry. Find the perimeter of a nine-sided regular
polygon inscribed in a circle of radius 7.09 centimeters.

A

C

B



49. Space Science. For communications between a space
shuttle and the White Sands tracking station in southern
New Mexico, two satellites are placed in geostationary or-
bit, 130 apart relative to the center of the Earth, and
22,300 miles above the surface of the Earth (see the fig-
ure). (A satellite in geostationary orbit remains stationary
above a fixed point on the surface of the Earth.) Radio sig-
nals are sent from the tracking station by way of the satel-
lites to the shuttle, and vice versa. How far to the nearest
100 miles is one of the geostationary satellites from the
White Sands tracking station, W ? The radius of the Earth
is 3,964 miles.

50. Space Science. A satellite S, in circular orbit around the
Earth, is sighted by a tracking station T (see the figure).
The distance TS is determined by radar to be 1,034 miles,
and the angle of elevation above the horizon is 32.4 . How
high is the satellite above the Earth at the time of the sight-
ing? The radius of the Earth is 3,964 miles.

R

S

T

C

Horizon
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Geometric Vectors

Geometric Vectors and Vector Addition  Velocity Vectors  Force Vectors  Resolution of
Vectors into Vector Components

Many physical quantities, such as length, area, or volume, can be completely spec-
ified by a single real number. Other quantities, such as directed distances, veloc-
ities, and forces, require for their complete specification both a magnitude and a
direction. The former are often called scalar quantities, and the latter are called
vector quantities.

In Section 7.3 we limit our discussion to the intuitive idea of geometric vec-
tors in a plane. In Section 7.4 we introduce algebraic vectors, a first step in the
generalization of a concept that has far-reaching consequences. Vectors are widely
used in many areas of science and engineering.

Geometric Vectors and Vector Addition
A line segment to which a direction has been assigned is called a directed line
segment. A geometric vector is a directed line segment and is represented by an
arrow (Fig. 1). A vector with an initial point O and a terminal point P (the end
with the arrowhead) is denoted by     OP. Vectors are also denoted by a boldface let-
ter, such as v. Because it is difficult to write boldface on paper, we suggest that
you use an arrow over a single letter, such as v  , when you want the letter to denote
a vector.

O

v

P

FIGURE 1 Vector     OP, or v.

  

S S

W

C
Earth



The magnitude of the vector     OP, denoted by      OP ,  v   , or  v , is the length of
the directed line segment. Two vectors have the same direction if they are paral-
lel and point in the same direction. Two vectors have opposite direction if they
are parallel and point in opposite directions. The zero vector, denoted by 0  or 0,
has a magnitude of zero and an arbitrary direction. Two vectors are equal if they
have the same magnitude and direction. Thus, a vector may be translated from
one location to another as long as the magnitude and direction do not change.

The sum of two vectors u and v can be defined using the tail-to-tip rule:
Translate v so that its tail end (initial point) is at the tip end (terminal point) of
u. Then, the vector from the tail end of u to the tip end of v is the sum, denoted
by u  v, of the vectors u and v (Fig. 2).

The sum of two nonparallel vectors also can be defined using the parallelo-
gram rule: The sum of two nonparallel vectors u and v is the diagonal of the
parallelogram formed using u and v as adjacent sides (Fig. 3). If u and v are par-
allel, use the tail-to-tip rule.

Both rules give the same sum. The choice of which rule to use depends on
the situation and what seems most natural.

The vector u  v is also called the resultant of the two vectors u and v, and
u and v are called vector components of u  v. It is useful to observe that vec-
tor addition is commutative and associative. That is, u  v  v  u and
u  (v  w)  (u  v)  w.
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If a, b, and c represent three arbitrary geometric vectors, illustrate using
either definition of vector addition that

1. a  b  b  a

2. a  (b  c)  (a  b)  c

W, 270 90 , E

Navigational compass

N, 0 

S, 180 

FIGURE 4

v

u

u   v

FIGURE 3 Vector addition: paral-
lelogram rule.

Velocity Vectors
A vector that represents the direction and speed of an object in motion is called a
velocity vector. Problems involving objects in motion often can be analyzed using
vector methods. Many of these problems involve the use of a navigational compass,
which is marked clockwise in degrees starting at north as indicated in Figure 4.

Apparent and Actual Velocity

An airplane has a compass heading (the direction the plane is pointing) of 85 
and an airspeed (relative to the air) of 140 miles per hour. The wind is blowing
from north to south at 66 miles per hour. The velocity of a plane relative to the
air is called apparent velocity, and the velocity relative to the ground is called
resultant, or actual, velocity. The resultant velocity is the vector sum of the
apparent velocity and the wind velocity. Find the resultant velocity; that is, find
the actual speed and direction of the airplane relative to the ground. Directions
are given to the nearest degree and magnitudes to two significant digits.

u

v
u   v

FIGURE 2 Vector addition: tail-
to-tip rule.



S O L U T I O N

Geometric vectors [Fig. 5(a)] are used to represent the apparent velocity vector and
the wind velocity vector. Add the two vectors using the tail-to-tip method of addition
of vectors to obtain the resultant (actual) velocity vector [Fig. 5(b)]. From the vector
diagram [Fig. 5(b)], we obtain the triangle in Figure 6 and solve for  , c, and  .

S O L V E  F O R   

Because the wind velocity vector is parallel to the north–south line,   85 [alter-
nate interior angles of two parallel lines cut by a transversal are equal—see Fig. 5(b)].

S O L V E  F O R  c

Use the law of cosines:

Speed relative to the ground

S O L V E  F O R   

Use the law of sines:

Actual heading  85    85  26  111 . Thus, the magnitude and direc-
tion of the resultant velocity vector are 150 miles per hour and 111 , respectively.
That is, the plane, relative to the ground, is traveling at 150 miles per hour in a
direction of 111 .

A river is flowing southwest (225 ) at 3.0 miles per hour. A boat crosses the river
with a compass heading of 90 . If the speedometer on the boat reads 5.0 miles
per hour (the boat’s speed relative to the water), what is the resultant velocity?
That is, what is the boat’s actual speed and direction relative to the ground? Direc-
tions are to the nearest degree, and magnitudes are to two significant digits.

 sin 1  66 sin 85

150   26°

  sin 1  a sin  

c  

sin  

a
 

sin  

c

 150 miles per hour

  662  1402  2(66)(140) cos 85°

c   a2  b2  2ab cos  

c2  a2  b2  2ab cos  

(b)(a)

85 

Wind
velocity

Apparent
velocity

N

Actual
velocity

  

N

85 

180 Wind
velocity

Apparent
velocity
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140

c

66

FIGURE 6

FIGURE 5



Force Vectors
A vector that represents the direction and magnitude of an applied force is called
a force vector. If an object is subjected to two forces, then the sum of these two
forces, the resultant force, is a single force. If the resultant force replaced the
original two forces, it would act on the object in the same way as the two origi-
nal forces taken together. In physics it is shown that the resultant force vector can
be obtained using vector addition to add the two individual force vectors. It seems
natural to use the parallelogram rule for adding force vectors, as is illustrated in
Example 2.

Finding the Resultant Force

Two forces of 30 and 70 pounds act on a point in a plane. If the angle between
the force vectors is 40 , what are the magnitude and direction (relative to the 70-
pound force) of the resultant force? The magnitudes of the forces are to two sig-
nificant digits and the angles to the nearest degree.

S O L U T I O N

We start with a diagram (Fig. 7), letting geometric vectors represent the various
forces. Because adjacent angles in a parallelogram are supplementary, the mea-
sure of angle OCB  180  40  140 . We can now find the magnitude of the
resultant vector R using the law of cosines (Fig. 8).

To find  , the direction of R, we use the law of sines (Fig. 9).

Thus, the two given forces are equivalent to a single force of 95 pounds in the
direction of 12 (relative to the 70-pound force).

  sin 1  30 sin 140°

95   12°

 sin   
30 sin 140°

95

sin  

30
 

sin 140°

95

 

70

30140 

 R  

 95 pounds
 R   302  702  2(30)(70) cos 140°

 R 2  302  702  2(30)(70) cos 140°

30 pounds

A

O

B

C

 

70 pounds

40 

R
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FIGURE 7

FIGURE 8

 

70

95

30140 

FIGURE 9



Repeat Example 2 using an angle of 100 between the two forces.

Resolution of Vectors into Vector Components
Instead of adding vectors, many problems require the resolution of vectors into
components. As we indicated earlier, whenever a vector is expressed as the sum
or resultant of two vectors, the two vectors are called vector components of the
given vector. Example 3 illustrates an application of the process of resolving a
vector into vector components.

Resolving a Force Vector into Components

A car weighing 3,210 pounds is on a driveway inclined 20.2 to the horizontal.
Neglecting friction, find the magnitude of the force parallel to the driveway that
will keep the car from rolling down the hill.

S O L U T I O N

We start by drawing a vector diagram (Fig. 10).

The force vector DB    acts in a downward direction and represents the weight
of the car. Note that DB     DC     DA    , where DC    is the perpendicular component
of DB    relative to the driveway and DA    is the parallel component of DB    relative
to the driveway.

To keep the car at D from rolling down the hill, we need a force with the mag-
nitude of DA    but oppositely directed. To find  DA     , we note that  ABD  20.2 .
This is true because  ABD and the driveway angle have the same complement,
 ADB.

 DA        3,210 sin 20.2 

 1,110 pounds

Find the magnitude of the perpendicular component of DB    in Example 3.

sin 20.2   DA     
3,210

B

C

Driveway

3,210 pounds

A
D

20.2 

7.3 Geometric Vectors 553

FIGURE 10



In Problems 1–6, find  u  v and  , given  u and  v in figures

(a) and (b).

1.  u  37 miles per hour,  v  45 miles per hour

2.  u  62 miles per hour,  v  34 miles per hour

3.  u  38 kilograms,  v  53 kilograms

4.  u  48 kilograms,  v  31 kilograms

5.  u  434 kilometers per hour,  v  105 kilometers per hour

6.  u  143 kilometers per hour,  v  57.4 kilometers per
hour

In Problems 7–10, find  u and  v , the magnitudes of the hori-

zontal and vertical components of u  v, given  u  v and  

in figures (a) and (b).

7.  u  v  32 pounds,   22°

8.  u  v  250 pounds,   65 

9.  u  v  230 miles per hour,   72 

10.  u  v  28 miles per hour,   12 

11. If two vectors have the same magnitude, are they equal?
Explain why or why not.

12. Can the magnitude of a vector ever be negative? Explain
why or why not.

Express all angle measures in decimal degrees. In navigation

problems, refer to the figure of a navigational compass.

W, 270 90 , E

Navigational compass

N, 0 

S, 180 
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Problems 1–10 refer to figures (a) and (b) showing vector 

addition for vectors u and v at right angles to each other.

(b)(a)

 

u   v

u

v

Parallelogram rule

 

u   v

u

v

Tail-to-tip rule

Problems 13–20 refer to figures (a) and (b) showing vector ad-

dition for vectors u and v.

(b)(a)

 

Parallelogram rule

u   v

u

v

 
 

u   v

u

v

Tail-to-tip rule

 

In Problems 13–16, find  u  v and  given  u ,  v , and  in

figures (a) and (b).

13.  u  66 grams,  v  22 grams,   68 

14.  u  120 grams,  v  84 grams,   44 

15.  u  21 knots,  v  3.2 knots,   53 

16.  u  8.0 knots,  v  2.0 knots,   64 

1. Resultant velocity: magnitude  3.6 miles per hour, direction  126 2.  R   71 pounds,   25 

3.  DC      3,010 pounds



19.  u  v  223 miles per hour,   42.3 ,   69.4 

20.  u  v  437 miles per hour,   17.8 ,   50.5 
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In Problems 17–20, find  u and  v , given  u  v ,  and  in

figures (a) and (b).

17.  u  v  14 kilograms,   25 ,   79 

18.  u  v  33 kilograms,   17 ,   43 

In Problems 23–26, assume the north, east, south, and west

directions are exact.

23. Navigation. An airplane is flying with a compass heading
of 285 and an airspeed of 230 miles per hour. A steady
wind of 35 miles per hour is blowing in the direction of
260 . What is the plane’s actual velocity; that is, what is its
speed and direction relative to the ground?

24. Navigation. A power boat crossing a wide river has a 
compass heading of 25 and speed relative to the water of 
15 miles per hour. The river is flowing in the direction of
135 at 3.9 miles per hour. What is the boat’s actual velocity;
that is, what is its speed and direction relative to the ground?

25. Navigation. Two docks are directly opposite each other
on a southward-flowing river. A boat pilot wishes to go in
a straight line from the east dock to the west dock in a
ferryboat with a cruising speed in still water of 8.0 knots.
If the river’s current is 2.5 knots, what compass heading
should be maintained while crossing the river? What is the
actual speed of the boat relative to the land?

26. Navigation. An airplane can cruise at 255 miles per hour
in still air. If a steady wind of 46.0 miles per hour is blow-
ing from the west, what compass heading should the pilot
fly for the course of the plane relative to the ground to be
north (0 )? Compute the ground speed for this course.

27. Resultant Force. A large ship has gone aground in a har-
bor and two tugs, with cables attached, attempt to pull it
free. If one tug pulls with a compass course of 52 and a
force of 2,300 pounds and a second tug pulls with a com-
pass course of 97 and a force of 1,900 pounds, what is the
compass direction and the magnitude of the resultant force?

28. Resultant Force. Repeat Problem 27 if one tug pulls with
a compass direction of 161 and a force of 2,900 kilo-
grams and a second tug pulls with a compass direction 
of 192 and a force of 3,600 kilograms.

29. Resolution of Forces. An automobile weighing 4,050
pounds is standing on a driveway inclined 5.5 with the
horizontal.

(A) Find the magnitude of the force parallel to the driveway
necessary to keep the car from rolling down the hill.

(B) Find the magnitude of the force perpendicular to the
driveway.

30. Resolution of Forces. Repeat Problem 29 for a car weigh-
ing 2,500 pounds parked on a hill inclined at 15 to the
horizontal.

31. Resolution of Forces. If two weights are fastened together
and placed on inclined planes as shown in the figure, ne-
glecting friction, which way will they slide?

32. Resolution of Forces. If two weights are fastened together
and placed on inclined planes as indicated in the figure,
neglecting friction, which way will they slide?

31pounds

41

pounds

41 31 

85pounds
110

pounds

35 25 

 

 

 

 

21. Is it correct to say that the zero vector is perpendicular to
every vector? Explain.

22. Is it correct to say that the zero vector is parallel to every
vector? Explain.

 

 



Algebraic Vectors

From Geometric Vectors to Algebraic Vectors  Vector Addition and Scalar Multiplication  

Unit Vectors  Algebraic Properties  Static Equilibrium

Geometric vectors in a plane are readily generalized to three-dimensional space.
However, to generalize vectors further to higher-dimensional abstract spaces, it is
essential to define the vector concept algebraically. This is done in such a way
that the geometric vectors become special cases of the more general algebraic vec-
tors. Algebraic vectors have many advantages over geometric vectors. One advan-
tage will become apparent when we consider static equilibrium problems at the
end of Section 7.4.

The development of algebraic vectors in this book is introductory and is
restricted to the plane. Further study of vectors in three- and higher-dimensional
spaces is reserved for more advanced mathematical courses.

From Geometric Vectors to Algebraic Vectors
The transition from geometric vectors to algebraic vectors is begun by placing
geometric vectors in a rectangular coordinate system. A geometric vector AB    in
a rectangular coordinate system translated so that its initial point is at the origin
is said to be in standard position. The vector OP    such that OP     AB     is said to
be the standard vector for AB    (Fig. 1).

Note that the vector OP     in Figure 1 is the standard vector for infinitely many
vectors—all vectors with the same magnitude and direction as OP    .
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(A) In a copy of Figure 1, draw in three other vectors having OP    as
their standard vector.

(B) If the tail of a vector is at point A   ( 3, 2) and its tip is at 
B   (6, 4), discuss how you would find the coordinates of P so
that OP    is the standard vector for AB    .

Given the coordinates of the endpoints of a geometric vector in a rectangular
coordinate system, how do we find its corresponding standard vector? The process
is not difficult. The coordinates of the initial point, O, of OP    are always (0, 0).
Thus, we have only to find the coordinates of P, the terminal point of OP    . The
coordinates of P are given by

(xp, yp)  (xb  xa, yb  ya) (1)

where the coordinates of A are (xa, ya) and the coordinates of B are (xb, yb). Exam-
ple 1 illustrates the use of equation (1).

B

P

O

A

x

y

Standard
vector

FIGURE 1 OP    is the standard
vector for AB    .



Finding a Standard Vector for a Given Vector

Given the geometric vector AB    with initial point A   (3, 4) and terminal point 
B   (7,  1), find the standard vector OP    for AB    . That is, find the coordinates of
the point P such that OP     AB    .

S O L U T I O N

The coordinates of P are given by

(xp, yp)  (xb  xa, yb  ya)
 (7  3,  1  4)
 (4,  5)

Note in Figure 2 that if we start at A, then move to the right four units and down
five units, we will be at B. If we start at the origin, then move to the right four
units and down five units, we will be at P.

Given the geometric vector AB    with initial point A   (8,  3) and terminal point 
B   (4, 5), find the standard vector OP    for AB    .

The preceding discussion suggests another way of looking at vectors. Because,
given any geometric vector AB    in a rectangular coordinate system, there always
exists a point P   (xp, yp) such that OP     AB    , the point P   (xp, yp) completely
specifies the vector AB    , except for its position. And we are not concerned about
its position because we are free to translate AB    anywhere we please. Conversely,
given any point P   (xp, yp) in a rectangular coordinate system, the directed line
segment joining O to P forms the geometric vector OP    .

This leads us to define an algebraic vector as an ordered pair of real num-
bers. To avoid confusing a point (a, b) with a vector (a, b), we use  a, b to rep-
resent an algebraic vector. Geometrically, the algebraic vector 〈a, b〉 corresponds
to the standard (geometric) vector OP    with terminal point P   (a, b) and initial
point O   (0, 0), as illustrated in Figure 3.

The real numbers a and b are scalar components of the vector 〈a, b〉. The word
scalar means real number and is often used in the context of vectors in reference
to “scalar quantities” as opposed to “vector quantities.” Thus, we talk about “scalar
components” and “vector components” of a given vector. The words scalar and
vector are often dropped if the meaning of component is clear from the context.

Two vectors u  〈a, b〉 and v  〈c, d 〉 are said to be equal if their corre-
sponding components are equal, that is, if a  c and b  d. The zero vector is
denoted by 0  〈0, 0〉.

Geometric vectors are limited to spaces we can visualize, that is, to two- and
three-dimensional spaces. Algebraic vectors do not have these restrictions. The
following are algebraic vectors from two-, three-, four-, and five-dimensional
spaces:

  2, 5  3, 0,  8  5, 1, 1,  2   1, 0, 1, 3, 4 

As we said earlier, the discussion in this book is limited to algebraic vectors in a
two-dimensional space, which represents a plane.

We now define the magnitude of an algebraic vector.

7.4 Algebraic Vectors 557

A   (3, 4)

P   (4,  5)

B   (7,  1)

Standard
vector

x

y

O

FIGURE 2

x

y

v    a, b 

P   (a, b)

O

FIGURE 3 Algebraic vector 〈a, b〉

associated with a geometric
vector OP    .



Geometrically, is the length of the standard geometric vector OP    

associated with the algebraic vector 〈a, b〉 (Fig. 4).
The definition of magnitude is readily generalized to higher-dimensional vec-

tor spaces. For example, if  v   〈a, b, c, d 〉, then the magnitude, or norm, is 
given by . But now we are not able to interpret the result in
terms of geometric vectors.

Finding the Magnitude of a Vector

Find the magnitude of the vector v  〈3,  5〉.

S O L U T I O N

Find the magnitude of the vector v  〈 2, 4〉.

Vector Addition and Scalar Multiplication
To add two algebraic vectors, add the corresponding components as indicated in
Definition 2:

 v   32  ( 5)2   34

 a2  b2  c2  d2

 a2  b2
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D E F I N I T I O N 1
Magnitude of v   a, b 

The magnitude, or norm, of a vector v   a, b is denoted by  v and is given by

 v   a2  b2

D E F I N I T I O N 2
Vector Addition

If u   a, b and v   c, d , then

u  v   a  c, b  d  

x

y

P   (a, b)

O

 v     a2   b2

FIGURE 4 Magnitude of
vector 〈a, b〉 geometrically
interpreted.

Addition of algebraic vectors is consistent with the parallelogram and tail-to-tip
definitions for adding geometric vectors given in Section 7.3, as is investigated in
Explore/Discuss 2 on page 559.



To multiply a vector by a scalar (a real number) multiply each component by
the scalar:

7.4 Algebraic Vectors 559

E X P L O R E / D I S C U S S  2

If u  〈 3, 2〉, v  〈7, 3〉, then u  v  〈 3  7, 2  3〉  〈4, 5〉.
Locate u, v, and u  v in a rectangular coordinate system and interpret
geometrically in terms of the parallelogram and tail-to-tip rules
discussed in Section 7.3.

D E F I N I T I O N 3
Scalar Multiplication

If u   a, b and k is a scalar, then

ku  k a, b   ka, kb 

Geometrically, if a vector v is multiplied by a scalar k, the magnitude of the
vector v is multiplied by . If k is positive, then kv has the same direction as v.
If k is negative, then kv has the opposite direction as v. These relationships are
illustrated in Figure 5.

Vector Addition and Scalar Multiplication

Let u  〈4,  3〉, v  〈2, 3〉, and w  〈0,  5〉. Find

(A) u  v (B)  2u (C) 2u  3v (D) 3u  2v  w

S O L U T I O N S

(A) u  v   4,  3    2, 3    6, 0 
(B)  2u    2 4,  3     8, 6 
(C) 2u   3v   2 4,  3   3 2, 3 

  8,  6     6,  9    2,  15 
(D) 3u   2v   w   3 4,  3   2 2, 3    0,  5 

  12,  9    4, 6    0, 5 
  16, 2 

Let u   〈 5, 3〉, v   〈4,  6〉, and w   〈 2, 0〉. Find

(A) u   v (B)  3u (C) 3u   2v (D) 2u   v   3w

 k 
v

2v

 0.5v
 v

FIGURE 5 Scalar multiplication
geometrically interpreted.



Unit Vectors
If  v    1, then v is called a unit vector. A unit vector can be formed from an
arbitrary nonzero vector as follows:
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A Unit Vector with the Same Direction as v
If v is a nonzero vector, then

is a unit vector with the same direction as v.

u  
1

 v v

Finding a Unit Vector with the Same Direction as a Given Vector

Given a vector v   〈1,  2〉, find a unit vector u with the same direction as v.

S O L U T I O N

C H E C K

And we see that u is a unit vector with the same direction as v.

Given a vector v   〈3, 1〉, find a unit vector u with the same direction as v.

We now define two very important unit vectors, the i and j unit vectors.

 u    1

 5 
2

   2

 5 
2

  1

5
 

4

5
  1  1

  1

 5
,
 2

 5 

u  
1

 v v  
1

 5
 1,  2 

 v   12  ( 2)2   5

The i and j Unit Vectors

i   〈1, 0〉

j   〈0, 1〉

x

y

1

1

j

i0



Why are the i and j unit vectors so important? One of the reasons is that any
vector v   〈a, b〉 can be expressed as a linear combination of these two vectors;
that is, as ai   bj.

v   〈a, b〉   〈a, 0〉   〈0, b〉

 a〈1, 0〉   b〈0, 1〉   ai   bj

Expressing a Vector in Terms of the i and j Vectors

Express each vector as a linear combination of the i and j unit vectors.

(A) 〈 2, 4〉 (B) 〈2, 0〉 (C) 〈0,  7〉

S O L U T I O N S

(A) 〈 2, 4〉    2i   4j

(B) 〈2, 0〉   2i   0j   2i

(C) 〈0,  7〉   0i   7j    7j

Express each vector as a linear combination of the i and j unit vectors.

(A) 〈5,  3〉 (B) 〈 9, 0〉 (C) 〈0, 6〉

Algebraic Properties
Vector addition and scalar multiplication possess algebraic properties similar to
the real numbers. These properties enable us to manipulate symbols representing
vectors and scalars in much the same way we manipulate symbols that represent
real numbers in algebra. These properties are listed here for convenient reference.
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Algebraic Properties of Vectors

A. Addition Properties. For all vectors u, v, and w,

1. u   v   v   u Commutative Property

2. u   (v   w)   (u   v)   w Associative Property

3. u   0   0   u   u Additive Identity

4. u   ( u)   ( u)   u   0 Additive Inverse

B. Scalar Multiplication Properties. For all vectors u and v and all
scalars m and n:

1. m(nu)   (mn)u Associative Property

2. m(u   v)   mu   mv Distributive Property

3. (m   n)u   mu   nu Distributive Property

4. 1u   u Multiplicative Identity



Algebraic Operations on Vectors Expressed in Terms of the i 
and j Vectors

For u  i  2j and v  5i  2j, compute each of the following:

(A) u  v (B) u  v (C) 2u  3v

S O L U T I O N S

(A) u  v  (i  2j)  (5i  2j)

 i  2j  5i  2j  6i  0j  6i

(B) u  v  (i  2j)  (5i  2j)

 i  2j  5i  2j   4i  4j

(C) 2u  3v  2(i  2j)  3(5i  2j)

 2i  4j  15i  6j  17i  2j

For u  2i  j and v  4i  5j, compute each of the following:

(A) u  v (B) u  v (C) 3u  2v

Static Equilibrium
Algebraic vectors can be used to solve many types of problems in physics and
engineering. We complete Section 7.4 by considering a few problems involving
static equilibrium. Fundamental to our approach are two basic principles regard-
ing forces and objects subject to these forces:
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Conditions for Static Equilibrium

1. An object at rest is said to be in static equilibrium.

2. For an object located at the origin in a rectangular coordinate system
to remain in static equilibrium, at rest, it is necessary that the sum of
all the force vectors acting on the object be the zero vector.

Example 7 shows how some important physics and engineering problems can
be solved using algebraic vectors and the conditions for static equilibrium. It is
assumed that you know how to solve a system of two equations with two vari-
ables. In case you need a reminder, procedures are reviewed in Section 8.1.

Tension in Cables

A cable car, used to ferry people and supplies across a river, weighs 2,500 pounds
fully loaded. The car stops when partway across and deflects the cable relative to
the horizontal, as indicated in Figure 6. What is the tension in each part of the
cable running to each tower?



S O L U T I O N

Step 1. Draw a force diagram with all force vectors in standard position at the
origin (Fig. 7). The objective is to find  u and  v .

Step 2. Write each force vector in terms of the i and j unit vectors:

u   u (cos 7 )i   u (sin 7 )j

v   v ( cos 15 )i   v (sin 15 )j

w   2,500j

Step 3. For the system to be in static equilibrium, the sum of the force vectors
must be the zero vector. That is,

u  v  w  0

Replacing vectors u, v, and w from step 2, we obtain

[ u (cos 7 )i   u (sin 7 )j]  [ v ( cos 15 )i   v (sin 15 )j]  2,500j  0i  0j

which upon combining i and j vectors, becomes

[ u (cos 7 )   v ( cos 15 )]i  [ u (sin 7 )   v (sin 15 )  2,500]j  0i  0j

Because two vectors are equal if and only if their corresponding com-
ponents are equal, we are led to the following system of two equations
in the two variables  u and  v :

(cos 7 ) u  ( cos 15 ) v  0

(sin 7°) u  (sin 15 ) v  2,500  0

Solving this system by standard methods, we find that

 u  6,400 pounds and  v  6,600 pounds

Did you expect that the tension in each part of the cable is more than
the weight hanging from the cable?

Repeat Example 7 with 15 replaced with 13 , 7 replaced with 9 , and the 2,500
pounds replaced with 1,900 pounds.

2,500 pounds

River

15 7 
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FIGURE 6

FIGURE 7

x

y

 w    2,500 pounds

u

w

v

15 

7 
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1. P  ( 4, 8) 2. 3. (A) 〈 1,  3〉 (B) 〈15,  9〉 (C) 〈 23, 21〉 (D) 〈 20, 12〉

4. 5. (A) 5i  3j (B)  9i (C) 6j
6. (A) 6i  4j (B)  2i  6j (C)  2i  13j 7.  u  4,900 pounds,  v  5,000 pounds

u   3  10, 1  10 
2 5

9. 〈3,  5〉 10. 〈 5,  2〉

11. 〈 25, 0〉 12. 〈0,  67〉

13. Explain when two algebraic vectors are equal.

14. Explain when two geometric vectors are equal.

In Problems 15–18, find:

(A) u  v (B) u  v (C ) 2u  v  3w

15. u  〈2, 1〉, v  〈 1, 3〉, w  〈3, 0〉

16. u  〈 1, 2〉, v  〈3,  2〉, w  〈0,  2〉

17. u  〈 4,  1〉, v  〈2, 2〉, w  〈0, 1〉

18. u  〈 3, 2〉, v  〈 2, 2〉, w  〈 3, 0〉

In Problems 19–24, express v in terms of the i and j unit vectors.

19. v  〈 3, 4〉 20. v  〈2,  5〉

21. v  〈3, 0〉 22. v  〈0,  27〉

23. v  AB    , where A  (2, 3) and B  ( 3, 1)

24. v  AB    , where A  ( 2,  1) and B  (0, 2)

In Problems 25–30, let u  3i  2j, v  2i  4j, and w  2i,
and perform the indicated operations.

25. u  v 26. u  v

27. 2u  3v 28. 3u  2v

29. 2u  v  2w 30. u  3v  2w

In Problems 31–34, find a unit vector u with the same direction

as v.

31. v  〈 3, 4〉 32. v  〈4,  3〉

33. v  〈 5, 3〉 34. v  〈2,  3〉

35. If exactly three nonzero force vectors with different
directions are acting on an object at rest, how is any one 
of the force vectors related to the other two if the object is
to remain at rest?

36. If exactly two nonzero force vectors are acting on an
object at rest, what can you say about the vectors for the
object to remain at rest?

In Problems 1–6, represent each geometric vector AB    , with end-

points as indicated, as an algebraic vector in the form 〈a, b〉.

1. A  (3,  2), B  (0,  5) 2. A  ( 1, 7), B  (1,  1)

3. A  (6, 0), B  (0, 7) 4. A  (0,  1), B  ( 2, 0)

5. A  (0, 0), B  (3, 5) 6. A  (0, 0), B  ( 2,  1)

In Problems 7–12, find the magnitude of each vector.

7. 〈4,  3〉 8. 〈 3, 4〉



39. u  0  u 40. u  ( u)  0

41. (m  n)u  mu  nu 42. m(u  v)  mu  mv

43. m(nu)  (mn)u 44. 1u  u

7.4 Algebraic Vectors 565

In Problems 37–44, let u  〈a, b〉, v  〈c, d 〉, and w  〈e, f 〉 be

vectors and m and n be scalars. Prove each of the following

vector properties using appropriate properties of real numbers

and the definitions of vector addition and scalar multiplication.

37. u  (v  w)  (u  v)  w

38. u  v  v  u

In Problems 45–52, compute all answers to three significant

digits.

45. Static Equilibrium. A unicyclist at a certain point on a
tightrope deflects the rope as indicated in the figure. If the
total weight of the cyclist and the unicycle is 155 pounds,
how much tension is in each part of the cable?

46. Static Equilibrium. Repeat Problem 45 with the left angle
4.2 , the right angle 5.3 , and the total weight 112 pounds.

47. Static Equilibrium. A weight of 1,000 pounds is sus-
pended from two cables as shown in the figure. What is the
tension in each cable?

45.0 30.0 

1,000
pounds

155 pounds

5.5 6.2 

48. Static Equilibrium. A weight of 500 pounds is supported
by two cables as illustrated. What is the tension in each
cable?

49. Static Equilibrium. A 400-pound sign is suspended as
shown in figure (a) at the top of page 566. The correspond-
ing force diagram (b) is formed by observing the follow-
ing: Member AB is “pushing” at B and is under compression.
This “pushing” force also can be thought of as the force
vector a “pulling” to the right at B. The force vector b
reflects the fact that member CB is under tension—that is,
it is “pulling” at B. The force vector c corresponds to the
weight of the sign “pulling” down at B. Find the magni-
tudes of the forces in the rigid supporting members; that
is, find  a and  b in the force diagram (b).

45.0 20.0 

500
pounds



51. Static Equilibrium. A 1,250-pound weight is hanging
from a hoist as indicated in the figure. What are the mag-
nitudes of the forces on the members AB and BC?

52. Static Equilibrium. A weight of 5,000 kilograms is sup-
ported as shown in the figure. What are the magnitudes of
the forces on the members AB and BC?

5 meters

5,000
kilograms

C

A

B

6 m

1,250
pounds

C

A

B10.6 feet

12.5
feet

50. Static Equilibrium. A weight of 1,000 kilograms is sup-
ported as shown in the figure. What are the magnitudes of
the forces on the members AB and BC?

C

A

B

1 meter
2 meters

1,000
kilograms

x

y

a

b

c

400 pounds

C

A
B1 yard

2 yards
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Polar Coordinates and Graphs

Polar Coordinate System  Converting from Polar to Rectangular Form, and Vice Versa  

Graphing Polar Equations  Some Standard Polar Curves  Application

Up until now we have used only the rectangular coordinate system. Other coor-
dinate systems have particular advantages in certain situations. Of the many that
are possible, the polar coordinate system ranks second in importance to the rec-
tangular coordinate system and is the subject matter of Section 7.5.

Polar Coordinate System
To form a polar coordinate system in a plane (Fig. 1), start with a fixed point
O and call it the pole, or origin. From this point draw a half-line, or ray (usually
horizontal and to the right), and call this line the polar axis.

(a)

(b)

FIGURE 1 Polar coordinate system.

Pole Polar axis

O

O

P   (r,  )

r

 



If P is an arbitrary point in a plane, then associate polar coordinates (r,  )
with it as follows: Starting with the polar axis as the initial side of an angle, rotate
the terminal side until it, or the extension of it through the pole, passes through
the point. The  coordinate in (r,  ) is this angle, in degree or radian measure.
The angle  is positive if the rotation is counterclockwise and negative if the rota-
tion is clockwise. The r coordinate in (r,  ) is the directed distance from the pole
to the point P. It is positive if measured from the pole along the terminal side of
 and negative if measured along the terminal side extended through the pole.

Figure 2 illustrates a point P with three different sets of polar coordinates.
Study this figure carefully. The pole has polar coordinates (0,  ) for arbitrary  .
For example, (0, 0 ), (0,   3), and (0,  371 ) are all coordinates of the pole.

We now see a distinct difference between rectangular and polar coordinates
for the given point. For a given point in a rectangular coordinate system, there
exists exactly one set of rectangular coordinates. On the other hand, in a polar
coordinate system, a point has infinitely many sets of polar coordinates.

Just as graph paper with a rectangular grid is readily available for plotting rec-
tangular coordinates, polar graph paper is available for plotting polar coordinates.

Plotting Points in a Polar Coordinate System

Plot the following points in a polar coordinate system:

(A) A  (3, 30 ), B  ( 8, 180 ), C  (5,  135 ), D  ( 10,  45 )

(B) A  (5,   3), B  ( 6, 5  6), C  (7,    2), D  ( 4,    6)

S O L U T I O N S

(A) (B)

(c)(b)(a)

3 

4  4,   
P

3 

4
 

5

 5

( 4, 225 )
225 

P

5

 5

 

4 4,  
 

4

P

 5

5
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FIGURE 2 Polar coordinates of a
point.
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Plot the following points in a polar coordinate system:

(A) A  (8, 45 ), B  ( 5, 150 ), C  (4,  210 ), D  ( 6,  90 )

(B) A  (9,   6), B  ( 3,   ), C  ( 7, 7  4), D  (5,  5  6)

E X P L O R E / D I S C U S S  1

A point in a polar coordinate system has coordinates (5, 30 ). How
many other polar coordinates does the point have for  restricted to
 360    360 ? Find the other coordinates of the point and explain
how they are found.

Converting from Polar to Rectangular Form, and Vice Versa
Often, it is necessary to transform coordinates or equations in rectangular form
into polar form, or vice versa. The following polar–rectangular relationships are
useful in this regard:

Polar–Rectangular Relationships

We have the following relationships between rectangular coordinates (x, y) and polar coordinates (r,  ):

[Note: The signs of x and y determine the quadrant for  . The angle  is chosen so that 

        or  180     180 , unless directed otherwise.]

 tan   
y

x

 cos   
x

r
    or    x  r cos  

 sin   
y

r
    or    y  r sin  

r2  x2  y2

x

y

O

P   (x, y)
P   (r,  )

r

 

x

y

Many calculators can automatically convert rectangular coordinates to polar
form, and vice versa. (Read the manual for your particular calculator.) Example 2
illustrates calculator conversions in both directions.

Converting from Polar to Rectangular Form, and Vice Versa

(A) Convert the polar coordinates ( 4, 1.077) to rectangular coordinates to
three decimal places.



(B) Convert the rectangular coordinates ( 3.207,  5.719) to polar coordinates
with  in degree measure,  180      180 and r  0.

S O L U T I O N S

(A) Use a calculator set in radian mode.

(r,  )  ( 4, 1.077)

x  r cos   ( 4) cos 1.077   1.896

y  r sin   ( 4) sin 1.077   3.522

Rectangular coordinates are ( 1.896,  3.522).
Figure 3 shows the same conversion done in a graphing calculator

with a built-in conversion routine.

(B) Use a calculator set in degree mode.

 is a third-quadrant angle and is to be chosen so that  180      180 .

Polar coordinates are (6.557,  119.28 ).
Figure 4 shows the same conversion done in a graphing calculator

with a built-in conversion routine.

(A) Convert the polar coordinates (8.677,  1.385) to rectangular coordinates to
three decimal places.

(B) Convert the rectangular coordinates ( 6.434, 4.023) to polar coordinates
with  in degree measure,  180      180 and r  0.

Generally, a more important use of the polar–rectangular relationships is in
the conversion of equations in rectangular form to polar form, and vice versa.

Converting an Equation from Rectangular Form to Polar Form

Change x2  y2  4y  0 to polar form.

S O L U T I O N

Use r2  x2  y2 and y  r sin  .

r  0 or r  4 sin    0

r(r  4 sin  )  0

r2  4r sin   0

x2  y2  4y  0

   180°  tan 1
 5.719

 3.207
  119.28°

 tan   
y

x
 

 5.719

 3.207

r   x2  y2   ( 3.207)2  ( 5.719)2  6.557

 (x, y)  ( 3.207,  5.719)
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FIGURE 3

FIGURE 4



The graph of r  0 is the pole. Because the pole is included in the graph of
r  4 sin   0 (let   0), we can discard r  0 and keep only

r  4 sin   0

or

r  4 sin  The polar form of x 2  y 2  4y  0

Change x2  y2  6x  0 to polar form.

Converting an Equation from Polar Form to Rectangular Form

Change r   3 cos  to rectangular form.

S O L U T I O N

The transformation of this equation as it stands into rectangular form is fairly dif-
ficult. With a little trick, however, it becomes easy. We multiply both sides by r,
which simply adds the pole to the graph. But the pole is already part of the graph
of r   3 cos  (let     2), so we haven’t actually changed anything.

Multiply both sides by r.

r 2  x 2  y 2 and r cos   x

Change r  2 sin    0 to rectangular form.

Graphing Polar Equations
We now turn to graphing polar equations. The graph of a polar equation, such as
r  3 or r  6 cos  , in a polar coordinate system is the set of all points hav-
ing coordinates that satisfy the polar equation. Certain curves have simpler rep-
resentations in polar coordinates, and other curves have simpler representations
in rectangular coordinates.

To establish fundamentals in graphing polar equations, we start with a point-
by-point graph. We then consider a more rapid way of making rough sketches of
certain polar curves. And, finally, we show how polar curves are graphed in a
graphing utility.

To plot a polar equation using point-by-point plotting, just as in rectangular
coordinates, make a table of values that satisfy the equation, plot these points,
then join them with a smooth curve. Example 5 illustrates the process.

x2  y2  3x  0

x2  y2   3x

r2   3r cos  

r   3 cos  
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Point-by-Point Plotting

(A) Graph r  8 cos  with  in radians.

(B) Convert the polar equation in part A to rectangular form, and identify the
graph.

S O L U T I O N S

(A) We construct a table using multiples of   6, plot these points, then
join the points with a smooth curve (Fig. 5).
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 r

0 8.0

  6 6.9

  3 4.0

  2 0.0

2  3  4.0

5  6  6.9

 8.0

Graph repeats
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FIGURE 5

(B)

Multiply both sides by r.

Change to rectangular form.

Complete the square on the left side.

Standard equation of a circle.

The graph in part A is a circle with center at (4, 0) and radius 4 (see
Appendix A, Section A.3).

(A) Graph r  8 sin  with  in degrees.

(B) Convert the polar equation in part A to rectangular form, and identify the
graph.

If only a rough sketch of a polar equation involving sin  or cos  is desired,
you can speed up the point-by-point graphing process by taking advantage of the
uniform variation of sin  and cos  as  moves around a unit circle. This process
is referred to as rapid polar sketching. It is convenient to visualize Figure 6 in
the process. With a little practice most of the table work in rapid sketching can
be done mentally and a rough sketch can be made directly from the equation.

 (x  4)2  y2  42

x2  8x  16  y2  16

x2  8x  y2   0

x2  y2  8x

r2  8r cos  

r  8 cos  



Rapid Polar Sketching

Sketch r  4  4 cos  using rapid sketching techniques with  in radians.

S O L U T I O N

We set up a table that indicates how r varies as we let  vary through each set of
quadrant values:

b

0

a

(1, 0)( 1, 0)

(0,  1)

(0, 1)
(cos  , sin  )

 /2

 
2 

3 /2

 0
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FIGURE 6

FIGURE 7

 cos  4 cos  r  4  4 cos  
Varies from Varies from Varies from Varies from

0 to   2 1 to 0 4 to 0 8 to 4

  2 to  0 to  1 0 to  4 4 to 0

 to 3  2  1 to 0  4 to 0 0 to 4

3  2 to 2 0 to 1 0 to 4 4 to 8

Notice that as  increases from 0 to   2, cos  decreases from 1 to 0, 4 cos  
decreases from 4 to 0, and r  4  4 cos  decreases from 8 to 4, and so on.
Sketching these values, we obtain the graph in Figure 7, called a cardioid.

r   4   4 cos  
Cardioid
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Sketch r  5  5 sin  using rapid sketching techniques with  in radians.

Rapid Polar Sketching

Sketch r  8 cos 2 with  in radians.

S O L U T I O N

Start by letting 2 (instead of  ) range through each set of quadrant values. That
is, start with values for 2 in the second column of the table, fill in the table to
the right, and then fill in the first column for  .
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 2 cos 2 r 8 cos 2 
Varies from Varies from Varies from Varies from

0 to   4 0 to   2 1 to 0 8 to 0

  4 to   2   2 to  0 to  1 0 to  8

  2 to 3  4  to 3  2  1 to 0  8 to 0

3  4 to  3  2 to 2 0 to 1 0 to 8

 to 5  4 2 to 5  2 1 to 0 8 to 0

5  4 to 3  2 5  2 to 3 0 to  1 0 to  8

3  2 to 7  4 3 to 7  2  1 to 0  8 to 0

7  4 to 2 7  2 to 4 0 to 1 0 to 8

As 2 increases from 0 to   2,  increases from 0 to   4, and r decreases
from 8 to 0. As 2 increases from   2 to  ,  increases from   4 to   2, and
r decreases from 0 to  8, and so on. Continue until the graph starts to repeat.
Plotting the values, we obtain the graph in Figure 8, called a four-leafed rose:

FIGURE 8
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0

5

r   8 cos 2

Four-leafed rose

Start with the second column



Sketch r  6 sin 2 with  in radians.

We now turn to graphing polar equations in a graphing utility. Example 8
illustrates the process.

Graphing in a Graphing Utility

Graph each of the following polar equations in a graphing utility (parts B and C
are from Examples 6 and 7).

(A) r  3 , 0      3  2 (Archimedes’ spiral)

(B) r  4  4 cos  (cardioid)

(C) r  8 cos 2 (four-leafed rose)

S O L U T I O N

Set the graphing utility in polar mode and select polar coordinates and radian
measure. Adjust window values to accommodate the whole graph. A squared
graph is often desirable in showing the true shape of the curve, and is used here.
Many graphing utilities, including the one used here, do not show a polar grid.
When using TRACE, many graphing utilities offer a choice between polar coor-
dinates and rectangular coordinates for points on the polar curve. The graphs of
the polar equations above are shown in Figure 9.
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(A) r  3 , 0      3  2

 15

 22.7...

15

22.7...

 10

 15.1...

10

15.1...

 10

 15.1...

10

15.1...

Graph each of the following polar equations in a graphing utility.

(A) r  2 , 0       2 

(B) r  5  5 sin  

(C) r  6 sin 2 

E X P L O R E / D I S C U S S  2

(A) Graph r1  10 sin  and r2  10 cos  in the same viewing
window. Use TRACE on r1 and estimate the polar coordinates 
where the two graphs intersect. Do the same thing for r2. Which
intersection point appears to have the same polar coordinates on
each curve and consequently represents a simultaneous solution to

(B) r  4  4 cos  (C) r  8 cos 2 

FIGURE 9
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both equations? Which intersection point appears to have different
polar coordinates on each curve and consequently does not repre-
sent a simultaneous solution? Solve the system for r and  .

(B) Explain how rectangular coordinate systems differ from polar
coordinate systems relative to intersection points and simultaneous
solutions of systems of equations in the respective systems.

Some Standard Polar Curves
In a rectangular coordinate system the simplest types of equations to graph are
found by setting the rectangular variables x and y equal to constants:

x  a and y  b

The graphs are straight lines: The graph of x  a is a vertical line, and the graph
of y  b is a horizontal line. A glance at Table 1 shows that horizontal and ver-
tical lines do not have simple equations in polar coordinates.

T A B L E  1 Standard Polar Graphs

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Archimedes  spiral:
r   a , a   0

Lemniscate:
r2   a2 cos 2 

Four-leafed rose
r   a cos 2 

Three-leafed rose
r   a cos 3 

Cardioid:
r   a   a sin  

Cardioid:
r   a   a cos  

Circle:
r   a sin  

Circle:
r   a cos  

Circle:
r   a

Horizontal line:
r   a/sin  
    a csc  

Vertical line:
r   a/cos  
   a sec  

Line through origin:
    a

a



Two of the simplest types of polar equations to graph in a polar coordinate
system are found by setting the polar variables r and  equal to constants:

r  a and   b

Figure 10 illustrates the graphs of     4 and r  5.

(a) (b)

Table 1 illustrates a number of standard polar graphs and their equations. Polar
graphing is often made easier if you have some idea of the final form.

Application
Serious sailboat racers make polar plots of boat speeds at various angles to the
wind with various sail combinations at different wind speeds. With many polar
plots for different sizes and types of sails at different wind speeds, they are able
to accurately choose a sail for the optimum performance for different points of
sail relative to any given wind strength. Figure 11 illustrates one such polar plot,
where the maximum speed appears to be about 7.5 knots at 105 off the wind
(with spinnaker sail set).
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FIGURE 10

FIGURE 11 Polar diagram show-
ing optimum sailing speed at
different sailing angles to the
wind.
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1. (A) (B)

2. (A) (1.603,  8.528) (B) (7.588, 147.98 ) 3. r  6 cos  4. x2  y2  2y  0

5. (A)

(B) x2  ( y  4)2  42, a circle with center at (0, 4) and radius 4
6. r  5  5 sin  , cardioid 7. r  6 sin 2 , four-leafed rose
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8. (A) r  2 , 0      2 (B) r  5  5 sin  (C) r  6 sin 2 

 10

 15.1...

10

15.1...

 10

 15.1...

10

15.1...

 10

 15.1...

10

15.1...

Graph Problems 11 and 12 in a polar coordinate system using

point-by-point plotting and the special values 0,   6,   4,

  3,   2, 2  3, 3  4, 5  6, and  for  .

11. r  10 sin  12. r  10 cos  

Verify the graphs of Problems 11 and 12 on a graphing utility.

Graph Problems 13–16 in a polar coordinate system.

13. r  8 14. r  5

15.      3 16.       6

In Problems 17–22, convert the polar coordinates to rectangu-

lar coordinates to three decimal places.

17. (6,   6) 18. (7, 2  3)

19. ( 2, 7  8) 20. (3,  3  7)

21. ( 4.233,  2.084) 22. ( 9.028,  0.663)

Plot A, B, and C in Problems 1–8 in a polar coordinate system.

1. A  (4, 0 ), B  (7, 180 ), C   (9, 45 )

2. A  (8, 0 ), B  (5, 90 ), C   (6, 30 )

3. A  ( 4, 0 ), B  ( 7, 180 ), C   ( 9, 45 )

4. A  ( 8, 0 ), B  ( 5, 90 ), C   ( 6, 30 )

5. A  (8,    3), B  (4,    4), C   (10,    6)

6. A  (6,    6), B  (5,    2), C   (8,    4)

7. A  ( 6,    6), B  ( 5,    2), C   ( 8,    4)

8. A  ( 6,    2), B  ( 5,    3), C   ( 8,    4)

9. A point in a polar coordinate system has coordinates 
( 5, 3  4). Find all other polar coordinates for the point,
 2      2 , and verbally describe how the coordi-
nates are associated with the point.

10. A point in a polar coordinate system has coordinates 
(6,  30 ). Find all other polar coordinates for the point,
 360      360 , and verbally describe how the coordi-
nates are associated with the point.

In Problems 23–28, convert the rectangular coordinates to po-

lar coordinates with  in degree measure,  180    180 ,

and r  0.

23. (3.5, 7.1) 24. (6.9, 4.7)

25. (22,  14) 26. (16,  27)

27. ( 7.33,  2.04) 28. ( 8.33, 4.29)

In Problems 29–38, use rapid graphing techniques to sketch

the graph of each polar equation. Check by graphing on a

graphing utility.

29. r  4 sin  30. r  4 cos  

31. r  10 sin 2 32. r  8 cos 2 



33. r  5 cos 3 34. r  6 sin 3 

35. r  2  2 sin  36. r  3  3 cos  

37. r  2  4 sin  38. r  2  4 cos  

Problems 39–44 are exploratory problems requiring the use of

a graphing utility.

39. Graph each polar equation in its own viewing window: 
r  2  2 sin  , r  4  2 sin  , r  2  4 sin  .

40. Graph each polar equation in its own viewing window: 
r  2  2 cos  , r  4  2 cos  , r  2  4 cos  .

41. (A) Graph each polar equation in its own viewing window:
r  4 sin  , r  4 sin 3 , r  4 sin 5 .

(B) What would you guess to be the number of leaves for 
r  4 sin 7 ?

(C) What would you guess to be the number of leaves for 
r  a sin n , a  0 and n odd?

42. (A) Graph each polar equation in its own viewing window:
r  4 cos  , r  4 cos 3 , r  4 cos 5 .

(B) What would you guess to be the number of leaves for 
r  4 cos 7 ?

(C) What would you guess to be the number of leaves for 
r  a cos n , a  0 and n odd?

43. (A) Graph each polar equation in its own viewing window:
r  4 sin 2 , r  4 sin 4 , r  4 sin 6 .

(B) What would you guess to be the number of leaves for
r  4 sin 8 ?

(C) What would you guess to be the number of leaves for 
r  a sin n , a  0 and n even?

44. (A) Graph each polar equation in its own viewing window:
r  4 cos 2 , r  4 cos 4 , r  4 cos 6 .

(B) What would you guess to be the number of leaves for 
r  4 cos 8 ?

(C) What would you guess to be the number of leaves for 
r  a cos n , a  0 and n even?

In Problems 45–50, change each rectangular equation to polar

form.

45. y2
 5y  x2 46. 6x  x2

 y2 47. y  x

48. x2
 y2

 9 49. y2
 4x 50. 2xy  1

In Problems 51–56, change each polar equation to rectangular

form.

51. r(3 cos   4 sin  )   1

52. r(2 cos   sin  )  4

53. r   2 sin  54. r  8 cos  

55.     4 56. r  4

7.5 Polar Coordinates and Graphs 579

Problems 57 and 58 are exploratory problems requiring 

the use of a graphing utility.

57. Graph r  1  2 sin (n ) for various values of n, n a
natural number. Describe how n is related to the number 
of large petals and the number of small petals on the graph
and how the large and small petals are related to each
other relative to n.

58. Graph r  1  2 cos (n ) for various values of n, n a
natural number. Describe how n is related to the number 
of large petals and the number of small petals on the graph
and how the large and small petals are related to each
other relative to n.

In Problems 59–62 graph each system of equations on the

same set of polar coordinate axes. Then solve the system 

simultaneously. [Note: Any solution (r1,  1 ) to the system must

satisfy each equation in the system and thus identifies a point

of intersection of the two graphs. However, there may be other

points of intersection of the two graphs that do not have any

coordinates that satisfy both equations. This represents a ma-

jor difference between the rectangular coordinate system and

the polar coordinate system.]

59. r  4 cos  60. r  2 cos  
r   4 sin  r  2 sin  
0     0     

61. r  6 cos  62. r  8 sin  
r  6 sin 2 r  8 cos 2 

0      360 0      360 



67. Conic Sections. Using a graphing utility, graph the
equation

for the following values of e (called the eccentricity of the
conic) and identify each curve as a hyperbola, an ellipse,
or a parabola.

(A) e  0.4 (B) e  1 (C) e  1.6

(It is instructive to explore the graph for other positive val-
ues of e. See the Chapter 7 Group Activity.)

68. Conic Sections. Using a graphing utility, graph the equation

for the following values of e and identify each curve as a
hyperbola, an ellipse, or a parabola.

(A) e  0.6 (B) e  1 (C) e  2

69. Astronomy.

(A) The planet Mercury travels around the sun in an ellip-
tical orbit given approximately by

where r is measured in miles and the sun is at the pole.
Graph the orbit. Use TRACE to find the distance from

Mercury to the sun at aphelion (greatest distance from
the sun) and at perihelion (shortest distance from the
sun).

(B) Johannes Kepler (1571–1630) showed that a line joining
a planet to the sun sweeps out equal areas in space in
equal intervals in time (see the figure). Use this informa-

tion to determine whether a planet travels faster or slower
at aphelion than at perihelion. Explain your answer.

Sun

Planet

r  
3.442  107

1  0.206 cos  

r  
8

1  e cos  

r  
8

1  e cos  
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63. Analytic Geometry. A distance formula for the distance
between two points in a polar coordinate system follows
directly from the law of cosines:

Find the distance (to three decimal places) between the
two points P1  (4,   4) and P2  (1,   2).

64. Analytic Geometry. Refer to Problem 63. Find the dis-
tance (to three decimal places) between the two points 
P1  (2, 30 ) and P2  (3, 60 ).

Problems 65–66 refer to the polar diagram in the figure. Polar

diagrams of this type are used extensively by serious sailboat

racers, and this polar diagram represents speeds in knots of a

high-performance sailboat sailing at various angles to a wind

blowing at 20 knots.

65. Sailboat Racing. Referring to the figure, estimate to the
nearest knot the speed of the sailboat sailing at the follow-
ing angles to the wind: 30 , 75 , 135 , and 180 .

66. Sailboat Racing. Referring to the figure, estimate to the
nearest knot the speed of the sailboat sailing at the follow-
ing angles to the wind: 45 , 90 , 120 , and 150 .
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60 

90 
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10 20

20-knot wind

P2   (r2, 2)
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r2 r1
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1

d   r
2
1  r

2
2  2r1r2 cos ( 2   1)

d
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 r

2
1  r

2
2  2r1r2 cos ( 2   1)



Complex Numbers in Rectangular and Polar
Forms

Rectangular Form  Polar Form  Multiplication and Division in Polar Form  Historical
Note

Utilizing polar concepts studied in Sections 7.4 and 7.5, we now show how com-
plex numbers can be written in polar form, which can be very useful in many
applications. A brief review of Section 2.4 on complex numbers should prove
helpful before proceeding further.

Rectangular Form
Recall from Section 2.4 that a complex number is any number that can be writ-
ten in the form

a  bi

where a and b are real numbers and i is the imaginary unit. Thus, associated with
each complex number a  bi is a unique ordered pair of real numbers (a, b), and
vice versa. For example,

3  5i corresponds to (3,  5)

Associating these ordered pairs of real numbers with points in a rectangular
coordinate system, we obtain a complex plane (Fig. 1). When complex numbers
are associated with points in a rectangular coordinate system, we refer to the x

axis as the real axis and the y axis as the imaginary axis. The complex number
a  bi is said to be in rectangular form.

Plotting in the Complex Plane

Plot the following complex numbers in a complex plane:

A  2  3i B   3  5i C   4 D   3i

S O L U T I O N

7.6 Complex Numbers in Rectangular and Polar Forms 581

FIGURE 1 Complex plane.
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y
Imaginary axis

(a, b)
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B    3   5i A   2   3i
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D    3i
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E X P L O R E / D I S C U S S  1

On a real number line there is a one-to-one correspondence between
the set of real numbers and the set of points on the line: each real num-
ber is associated with exactly one point on the line and each point on
the line is associated with exactly one real number. Does such a corre-
spondence exist between the set of complex numbers and the set of
points in an extended plane? Explain how a one-to-one correspondence
can be established.

Polar Form
Complex numbers also can be written in polar form. Using the polar–rectangular
relationships from Section 7.5,

x  r cos  and y  r sin  

we can write the complex number z  x  iy in polar form as follows:

z  x  iy  r cos   ir sin   r(cos   i sin  ) (1)

This rectangular–polar relationship is illustrated in Figure 2. In a more advanced
treatment of the subject, the following famous equation is established:

ei  cos   i sin  (2)

where ei obeys all the basic laws of exponents. Thus, equation (1) takes on the
form

z  x  yi  r(cos   i sin  )  rei (3)

We will freely use rei to denote the polar form of a complex number. In fact,
some graphing calculators display the polar form of x  iy this way (see Fig. 3
where  is in radians and numbers are displayed to two decimal places).

Because cos  and sin  are both periodic with period 2 , we have

cos(  2k )  cos  
k any integer

sin(  2k )  sin  

Thus, we can write a more general polar form for a complex number z  x  iy,
as given in Definition 1, and observe that rei is periodic (with respect to  ) with
period 2k , k any integer.

FIGURE 2 Rectangular–polar
relationship.

FIGURE 3 (1  i)  1.41e0.79i.

Plot the following complex numbers in a complex plane:

A  4  2i B  2  3i C   5 D  4i

x

y
z   x   iy

  r(cos     i sin  )

  re i 

r

 

x

y



From Rectangular to Polar Form

Write parts A–C in polar form,  in radians,       . Compute the modu-
lus and arguments for parts A and B exactly; compute the modulus and argument
for part C to two decimal places.

(A) z1  1  i (B) z2  (C) z   5  2i

S O L U T I O N S

Locate in a complex plane first; then if x and y are associated with special angles,
r and  can often be determined by inspection.

(A) A sketch shows that z1 is associated with a special 45 triangle
(Fig. 4). Thus, by inspection, r  ,      4 (not 7  4), and

(B) A sketch shows that z2 is associated with a special 30 – 60 triangle
(Fig. 5). Thus by inspection, r  2,   5  6, and

z2  2(cos 5  6  i sin 5  6)

 2e(5  6)i

  2 e(   4)i

z1   2[cos (   4)  i sin (   4)]

 2

  3  i
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D E F I N I T I O N  1
General Polar Form of a Complex Number

For k any integer

z  x  iy  r[cos (  2k )  i sin (  2k )]

z  rei(  2k )

D E F I N I T I O N  2
Modulus and Argument for z  x  iy

Never negative

k any integer

where sin   y r and cos   x r. The argument  is usually chosen so that  180    180 

or       .

arg z    2k 

 mod z  r   x2  y2

The number r is called the modulus, or absolute value, of z and is denoted
by mod z or . The polar angle that the line joining z to the origin makes with
the polar axis is called the argument of z and is denoted by arg z. From Figure
2 we see the following relationships:

 z 

FIGURE 4

x

y

 

r
 1

1

1   i

FIGURE 5

y

x

r

  3   i

  3

 1



(C) A sketch shows that z3 is not associated with a special triangle
(Fig. 6). So, we proceed as follows:

To two decimal places

To two decimal places

Thus,

z3  5.39[cos ( 2.76)  i sin ( 2.76)]

 5.39e( 2.76)i
To two decimal places

Figure 7 shows the same conversion done by a graphing calculator with a
built-in conversion routine (with numbers displayed to two decimal places).

Write parts A–C in polar form,  in radians,       . Compute the modu-
lus and arguments for parts A and B exactly; compute the modulus and argument
for part C to two decimal places.

(A)  1  i (B) (C)  3  7i

From Polar to Rectangular Form

Write parts A–C in rectangular form. Compute the exact values for parts A and
B; for part C, compute a and b for a  bi to two decimal places.

(A) z1  2e(5  6)i (B) z2  3e( 60 )i (C) z3  7.19e( 2.13)i

S O L U T I O N S

(A)

(B)

(C)

Figure 8 shows the same conversion done by a graphing calculator
with a built-in conversion routine.

  3.81  6.09 i

 7.19[cos ( 2.13)  i sin ( 2.13)]

x  iy  7.19e( 2.13)i

 
3

2
 

3 3

2
i

 3 1

2  i3   3

2  
 3[cos ( 60 )  i sin ( 60 )]

x  iy  3e( 60 )i

   3  i

 2   3

2   i2 1

2 
 2[cos (5  6)  i sin (5  6)]

x  iy  2e(5  6)i

1  i 3

     tan 1 (2
5   2.76

r   ( 5)2  ( 2)2  5.39
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FIGURE 6
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 r

 5   2i

 5

 2

FIGURE 7

( 5  2i)  5.39e( 2.76)i.

FIGURE 8

7.19e( 2.13)i   3.81  6.09i.
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E X P L O R E / D I S C U S S  2

If your calculator has a built-in polar-to-rectangular conversion routine,
try it on and , then reverse the process to see if you
get back where you started. (For complex numbers in exponential polar
form, some calculators require  to be in radian mode for calculations.
Check your user’s manual.)

 2e(  4)i 2e45 i

Write parts A–C in rectangular form. Compute the exact values for parts A and
B; for part C compute a and b for a  bi to two decimal places.

(A) z1  (B) z2  3e120 i (C) z3  6.49e( 2.08)i 2e(   2)i

E X P L O R E / D I S C U S S  3

Let z1   i and z2  1  i .

(A) Find z1z2 and z1 z2 using the rectangular forms of z1 and z2.

(B) Find z1z2 and z1 z2 using the polar forms of z1 and z2,  in degrees.
(Assume the product and quotient exponent laws hold for ei .)

(C) Convert the results from part B back to rectangular form and com-
pare with the results in part A.

 3 3

Multiplication and Division in Polar Form
There is a particular advantage in representing complex numbers in polar form:
multiplication and division become very easy. Theorem 1 provides the reason.
(The polar form of a complex number obeys the product and quotient rules for
exponents: bmbn  bm n and bm bn  bm n.)

T H E O R E M  1
Products and Quotients in Polar Form

If and , then

1.

2.
z1

z2

 
r1e

i 1

r2e
i 2

 
r1

r2

ei( 1  2)

z1z2  r1e
i 1r2e

i 2  r1r2e
i( 1  2)

z2  r2e
i 2z1  r1e

i 1



We establish the multiplication property and leave the quotient property for
Problem 32 in Exercise 7.6.

 r1r2(cos  1  i sin  1)(cos  2  i sin  2) Multiply.

 r1r2(cos  1 cos  2  i cos  1 sin  2

 i sin  1 cos  2  sin  1 sin  2)

 r1r2[(cos  1 cos  2  sin  1 sin  2) Use sum identities.

 i(cos  1 sin  2  sin  1 cos  2)]

 r1r2[cos ( 1   2)  i sin ( 1   2)]

Products and Quotients

If z1  8e45 i and z2  2e30 i, find

(A) z1z2 (B) z1 z2

S O L U T I O N S

(A)

 16e75 i

(B)

= 4e15 i

If z1  9e165 i and z2  3e55 i, find

(A) z1z2 (B) z1 z2

Historical Note
There is hardly an area in mathematics that does not have some imprint of the
famous Swiss mathematician Leonhard Euler (1707–1783), who spent most of his
productive life at the New St. Petersburg Academy in Russia and the Prussian
Academy in Berlin. One of the most prolific writers in the history of the subject,
he is credited with making the following familiar notations standard:

f (x)  function notation

e natural logarithmic base

i imaginary unit, 

For our immediate interest, he is also responsible for the extraordinary relationship

ei 
 cos   i sin  

  1

 
8
2ei(45  30 )

z1

z2

 
8e45 i

2e30 i

  8  2ei(45  30 )

z1z2  8e45 i
 2e30 i

 r1r2e
i( 1  2)

z1z2  r1e
i 1r2e

i 2
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1. 2. (A)
(B) 2[cos (  3)  i sin (  3)]  2e(  3)i

(C) 7.62[cos ( 1.98)  i sin ( 1.98)]  7.62e( 1.98)i

3. (A) (B) (C) 

4. (A) z1z2  27e220 i (B) z1 z2  3e110 i

 3.16  5.67i 
3

2
 

3 3

2
i i 2

 2[cos (3  4)  i sin (3  4)]   2e(3  4)i

x

y

 5

5 5

5

A   4   2i

B   2   3i

C    5

D   4i

5.

6.

7. A  4e( 150 )i, B  3e20 i, C  5e( 90 )i

8. A  2e150 i, B  3e( 50 )i, C  4e75 i

A  2e(  6)i, B  4e i, C   2e(3  4)i

A  2e(  3)i, B   2e(  4)i, C  4e(  2)i
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If we let    , we obtain an equation that relates five of the most important
numbers in the history of mathematics:

ei 
 1  0

In Problems 1–8, plot each set of complex numbers in a com-

plex plane.

1. A  3  4i, B   2  i, C  2i

2. A  4  i, B   3  2i, C   3i

3. A  3  3i, B  4, C   2  3i

4. A   3, B   2  i, C  4  4i

In Problems 9–12, convert to the polar form rei . For Problems

9 and 10, choose  in degrees,  180     180  ; for Prob-

lems 11 and 12 choose  in radians,       . Compute

the modulus and arguments for parts A and B exactly; compute

the modulus and argument for part C to two decimal places.

9. (A) (B)  1  i (C) 5  6i

10. (A)  1  i (B)  3i (C)  7  4i

11. (A)  i (B)   i (C)  8  5i

12. (A)  i (B)  2  2i (C) 6  5i 3

 3 3

 3

 3  i



19. z1  5e52 i, z2  2e83 i 20. z1  3e67 i, z2  2e97 i

21. z1  3.05e1.76i, z2  11.94e2.59i

22. z1  7.11e0.79i, z2  2.66e1.07i

Simplify Problems 23–28 directly and by using polar forms.

Write answers in both rectangular form and the polar form rei 

( is in degrees).

23. ( 1  i)2 24. (1  i)2

25. ( 1  i)(1  i) 26. (1  i )(  i)

27. (1  i)3 28. (1  i)3

 3 3

In Problems 13–16, change parts A–C to rectangular form.

Compute the exact values for parts A and B; for part C com-

pute a and b for a  bi to two decimal places.

13. (A) 2e(  3)i (B) e( 45 )i (C) 3.08e2.44i

14. (A) 2e30 i (B) e( 3  4)i (C) 5.71e( 0.48)i

15. (A) 6e(  6)i (B) e( 90 )i (C) 4.09e( 122.88 )i

16. (A) e(   2)i (B) e135 i (C) 6.83e( 108.82 )i

In Problems 17–22, find z1z2 and z1 z2 in the polar form rei .

17. z1  7e82 i, z2  2e31 i 18. z1  6e132 i, z2  3e93 i

 2 3

 7

 2

 2
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29. Show that r1 3e(  3)i is a cube root of rei .

30. Show that r1 2e(  2)i is a square root of rei .

31. If z  rei , show that z2
 r2e2 i and z3

 r3e3 i. What do
you think zn will be for n a natural number?

32. Prove

z1

z2

 
r1e

i 1

r2e
i 2

 
r1

r2

ei( 1  2)

33. Forces and Complex Numbers. An object is located at the
pole, and two forces u and v act on the object. Let the
forces be vectors going from the pole to the complex num-
bers 20e

0 i and 10e
60 i, respectively. Force u has a magni-

tude of 20 pounds in a direction of 0 . Force v has a
magnitude of 10 pounds in a direction of 60 .

(A) Convert the polar forms of these complex numbers to
rectangular form and add.

(B) Convert the sum from part A back to polar form.

(C) The vector going from the pole to the complex number
in part B is the resultant of the two original forces.
What is its magnitude and direction?

34. Forces and Complex Numbers. Repeat Problem 33 with
forces u and v associated with the complex numbers 8e

0 i

and 6e
30 i, respectively.

De Moivre’s Theorem

De Moivre’s Theorem, n a Natural Number  nth Roots of z

Abraham De Moivre (1667–1754), of French birth, spent most of his life in Lon-
don doing private tutoring, writing, and publishing mathematics. He belonged to
many prestigious professional societies in England, Germany, and France and was
a close friend of Isaac Newton.

Using the polar form for a complex number, De Moivre established a theo-
rem that still bears his name for raising complex numbers to natural number pow-
ers. More importantly, the theorem is the basis for the nth root theorem, which
enables us to find all n nth roots of any complex number, real or imaginary.



De Moivre’s Theorem, n a Natural Number
We start with Explore Discuss 1 and generalize from this exploration.

7.7 De Moivre’s Theorem 589

E X P L O R E / D I S C U S S  1

By repeated use of the product formula for the polar form rei , discussed
in Section 7.6, establish the following:

1. (x  iy)2  (re i)2  r2e2 i

2. (x  iy)3  (re i)3  r3e3 i

3. (x  iy)4  (re i)4  r4e4 i

Based on forms 1–3, and for n a natural number, what do you think the
polar form of (x  iy)n would be?

If you guessed that the polar form of (x  iy)n is rnen i, you have arrived at
De Moivre’s theorem, which we now state without proof. A full proof of the the-
orem for all natural numbers n requires a method of proof, called mathematical

induction, which is discussed in Section 10.2.

T H E O R E M  1
De Moivre’s Theorem

If z  x  iy  rei , and n is a natural number, then

zn  (x  iy)n  (rei )n  rnen i

The Natural Number Power of a Complex Number

Use De Moivre’s theorem to find (1  i)10. Write the answer in exact rectangu-
lar form.

S O L U T I O N

Convert 1  i to polar form.

By De Moivre’s theorem

Change to rectangular form.

Rectangular form 32i

 32(0  i)

 32(cos 450  i sin 450 )

 32e450 i

 ( 2)10e(10 45 )i

 (1  i)10  ( 2e45 i)10
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Use De Moivre’s theorem to find (1  i )5. Write the answer in exact polar
and rectangular forms.

The Natural Number Power of a Complex Number

Use De Moivre’s theorem to find (  i)6. Write the answer in exact rectan-
gular form.

S O L U T I O N

Convert   i to polar form.

By De Moivre’s theorem

Change to rectangular form.

Rectangular form

[Note:   i must be a sixth root of  64, because (  i)6   64.]

Use De Moivre’s theorem to find (1  i )4. Write the answer in exact polar
and rectangular forms.

nth Roots of z
We now consider roots of complex numbers. We say w is an nth root of z, n a
natural number, if wn  z. For example, if w2  z, then w is a square root of z.

If w3  z, then w is a cube root of z. And so on.

 3

 3 3

  64

 64 ( 1  i0)

 64 (cos 900  i sin 900 )

 64e900 i

 26e(6 150 )i

 3 (  3  i)6  (2e150 i)6

 3

 3

E X P L O R E / D I S C U S S  2

If z  rei , then use De Moivre’s theorem to show that r1 2e(  2)i is a
square root of z and r1 3e(  3)i is a cube root of z.

We can proceed in the same way as in Explore Discuss 2 to show that
r1 ne(  n)i is an nth root of rei , n a natural number:

 re i

 [r1 ne(  n)i]n  (r1 n)nen(  n)i



But we can do even better than this. The nth-root theorem (Theorem 2) shows
us how to find all the nth roots of a complex number.

7.7 De Moivre’s Theorem 591

T H E O R E M  2
nth-Root Theorem

For n a positive integer greater than 1,

r
1 n

e
(  n k360  n)i

k  0, 1, . . . , n  1

are the n distinct nth roots of rei , and there are no others.

The proof of Theorem 2 is left to Problems 31 and 32 in Exercise 7.7.

Finding All Sixth Roots of a Complex Number

Find six distinct sixth roots of  1  i , and plot them in a complex plane.

S O L U T I O N

First write  1  i in polar form:

 1  i  2e120 i

Using the nth-root theorem, all six roots are given by

21 6
e

(120  6 k360  6)i
 21 6

e
(20  k60 )i

k  0, 1, 2, 3, 4, 5

Thus,

w1  21 6
e

(20  0 60 )i
 21 6

e
20 i

w2  21 6
e

(20  1 60 )i
 21 6

e
80 i

w3  21 6
e

(20  2 60 )i
 21 6

e
140 i

w4  21 6
e

(20  3 60 )i
 21 6

e
200 i

w5  21 6
e

(20  4 60 )i
 21 6

e
260 i

w6  21 6
e

(20  5 60 )i
 21 6

e
320 i

All roots are easily graphed in the complex plane after the first root is located.
The root points are equally spaced around a circle of radius 21 6 at an angular
increment of 60 from one root to the next (Fig. 1).

Find five distinct fifth roots of 1  i. Leave the answers in polar form and plot
them in a complex plane.

Solving a Cubic Equation

Solve x3
 1  0. Write final answers in rectangular form, and plot them in a

complex plane.

 3

 3

 3

FIGURE 1

w1

w2

w3

w4

w5

w6

radius 21/6

x

y



S O L U T I O N

x3  1  0

x3   1

We see that x is a cube root of  1, and there are a total of three roots. To find
the three roots, we first write  1 in polar form:

 1  1e180 i

Using the nth-root theorem, all three cube roots of  1 are given by

11 3e(180  3 k360  3)i  1e(60  k120 )i k  0, 1, 2

Thus,

[Note: This problem can also be solved using factoring and the quadratic for-
mula—try it.]

The three roots are graphed in Figure 2.

Solve x3  1  0. Write final answers in rectangular form, and plot them in a
complex plane.

w3  1e300 i  cos 300  i sin 300  
1

2
 i

 3

2

w2  1e180 i  cos 180  i sin 180   1

w1  1e60 i  cos 60  i sin 60  
1

2
 i

 3

2
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1. 32e300 i  16  i16 2. 16e( 240 )i   8  i8

3. w1  21 10e9 i, w2  21 10e81 i, w3  21 10e153 i, w4  21 10e225 i, w5  21 10e297 i 4.

x

y

w2

w1

w3
 1

1

1 1

w1

w2

w3

w4
w5

radius 21/10

x

y

1,  
1

2
 i

 3

2
,  

1

2
 i

 3

2

 3 3

FIGURE 2

x

y

w1

w2

w3
 1

1

1 1



1. (2e30 i)3 2. (5e15 i )3 3.

4. 5. 6. ( 3  i)8(1  i 3)3( 2e15 i)8

( 2e10°i)6

7.7 De Moivre’s Theorem 593

In Problems 1–6, use De Moivre’s theorem to evaluate each.

Leave answers in polar form.

In Problems 7–12, find the value of each expression and

write the final answer in exact rectangular form. (Verify the

results in Problems 7–12 by evaluating each directly on a

calculator.)

7. 8. ( 1  i)4 9. (1  i)8

10. 11. 12.

For n and z as indicated in Problems 13–18, find all nth roots

of z. Leave answers in the polar form rei .

13. z  8e30 i, n  3 14. z  8e45 i, n  3

15. z  81e60 i, n  4 16. z  16e90 i, n  4

17. z  1  i, n  5 18. z   1  i, n  3

For n and z as indicated in Problems 19–24, find all nth roots

of z. Write answers in the polar form rei and plot in a complex

plane.

19. z  8, n  3 20. z  1, n  4

21. z   16, n  4 22. z   8, n  3

23. z  i, n  6 24. z   i, n  5

25. (A) Show that 1  i is a root of x4  4  0. How many
other roots does the equation have?

(B) The root 1  i is located on a circle of radius 
in the complex plane as indicated in the figure.
Locate the other three roots of x4  4  0 on the 
figure and explain geometrically how you found 
their location.

(C) Verify that each complex number found in part B is a
root of x4  4  0.

 2

  1

2
 

 3

2
i 

3

  1

2
 

 3

2
i 

3

(  3  i)5

(  3  i)4

26. (A) Show that  2 is a root of x3  8  0. How many other
roots does the equation have?

(B) The root  2 is located on a circle of radius 2 in the
complex plane as indicated in the figure. Locate the
other two roots of x3  8  0 on the figure and explain
geometrically how you found their location.

(C) Verify that each complex number found in part B is a
root of x3  8  0.

In Problems 27–30, solve each equation for all roots. Write fi-

nal answers in the polar form rei and exact rectangular form.

27. x3  64  0 28. x3  64  0

29. x3  27  0 30. x3  27  0

y

x
 2

x

y

1   i
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31. Show that

[r1 ne(  n k360  n)i]n  rei 

for any natural number n and any integer k.

32. Show that

r1 ne(  n k360  n)i

is the same number for k  0 and k  n.

In Problems 33–36, write answers in the polar form rei .

33. Find all complex zeros for P(x)  x5  32.

34. Find all complex zeros for P(x)  x6  1.

35. Solve x5  1  0 in the set of complex numbers.

36. Solve x3  i  0 in the set of complex numbers.

In Problems 37 and 38, write answers using exact rectangular

forms.

37. Write P(x)  x6  64 as a product of linear factors.

38. Write P(x)  x6  1 as a product of linear factors.

7.1 Law of Sines
An oblique triangle is a triangle without a right angle. An
oblique triangle is acute if all angles are between 0 and 90 and
obtuse if one angle is between 90 and 180 . The labeling con-
vention shown in these figures is followed in Chapter 7.

 

b

a

c

 
 

 
b a

c

  

The objective in Sections 7.1 and 7.2 is to solve an oblique tri-
angle given any three of the six quantities indicated in either fig-
ure, if a solution exists. The law of sines, discussed in Section 7.1,
and the law of cosines, discussed in Section 7.2, are used for this
purpose. Accuracy in computation is governed by Table 1.

The law of sines is given as

and is generally used to solve the ASA, AAS, and SSA cases for
oblique triangles. The AAS case is easily reduced to the ASA
case by solving for the third angle first. The SSA case has a
number of variations, including the ambiguous case. These vari-
ations are summarized in Table 2. Note that the ambiguous case
always results in two triangles, one obtuse and one acute.

sin  

a
 

sin  

b
 

sin  

c

 
b a

c

  

T A B L E  1 Triangles and Significant Digits

Angle to Nearest Significant Digits for Side Measure

1 2

10 or 0.1 3

1 or 0.01 4

10 or 0.001 5

Acute triangle Obtuse triangle
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The point O is called the initial point, and the point P is called
the terminal point.

The magnitude of the vector , denoted by , , or
, is the length of the directed line segment. Two vectors have

the same direction if they are parallel and point in the same di-
rection. Two vectors have opposite direction if they are parallel
and point in opposite directions. The zero vector, denoted by 0
or 0, has a magnitude of zero and an arbitrary direction. Two
vectors are equal if they have the same magnitude and direction.
Thus, a vector may be translated from one location to another
as long as the magnitude and direction do not change.

The sum of two vectors u and v can be defined using the

tail-to-tip rule. The sum of two nonparallel vectors also can be

 v 
 v 
    AB     AB   

O

v

P7.2 Law of Cosines
The law of cosines is given as

a
2  b

2  c
2  2bc cos  

b
2  a

2  c
2  2ac cos  

c
2  a

2  b
2  2ab cos  

and is generally used as the first step in solving the SAS and

SSS cases for oblique triangles. After a side or angle is found
using the law of cosines, it is usually easier to continue the solv-
ing process with the law of sines.

7.3 Geometric Vectors
A scalar is a real number. A geometric vector in a plane is a di-
rected line segment and is represented by an arrow as indicated
in the figure.

␥
b

a

c

␤
␣

T A B L E  2 SSA Variations

 a [h b sin  ] Number of Triangles Figure

Acute 0  a  h 0

Acute a  h 1

Acute h  a  b 2

Acute a  b 1

Obtuse 0  a  b 0

Obtuse a  b 1
a

b ␣

a

b ␣

ab

␣

b
a

Ambiguous
case

␣ h
a

␣

b
h a

␣

b

h

a

Vector , or vOP   
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Note that the vector in the figure is the standard vector
for infinitely many vectors—all vectors with the same magni-
tude and direction as .

Referring to the figure, if the coordinates of A are (xa, ya) and
the coordinates of B are (xb, yb), then the coordinates of P are
given by

(xp, yp)  (xb  xa, yb  ya)

Each geometric vector in a coordinate system can be associ-
ated with an ordered pair of real numbers, the coordinates of the
terminal point of its standard vector. Conversely, every ordered
pair of real numbers can be associated with a unique geometric
standard vector. This leads to the definition of an algebraic vec-
tor as an ordered pair of real numbers, denoted by 〈a, b〉. The real
numbers a and b are scalar components of the vector 〈a, b〉.

Two vectors u  〈a, b〉 and v  〈c, d 〉 are said to be equal if
their corresponding components are equal, that is, if a  c and
b  d. The zero vector is denoted by 0  〈0, 0〉 and has arbitrary
direction.

The magnitude, or norm, of a vector v  〈a, b〉 is denoted
by and is given by

Geometrically, is the length of the standard geomet-
ric vector associated with the algebraic vector 〈a, b〉.

If u  〈a, b〉, v  〈c, d 〉, and k is a scalar, then the sum of u
and v is given by

u  v  〈a  c, b  d 〉

and scalar multiplication of u by k is given by

ku  k〈a, b〉  〈ka, kb〉

If v is a nonzero vector, then

u  
1

 v v

OP   

 a2  b2

 v   a2  b2

 v 

OP   

OP   

B

P

O

A

x

y

Standard
vector

defined using the parallelogram rule. Both forms are shown in
the following figure:

The vector u  v is also called the resultant of the two
vectors u and v, and u and v are called vector components of
u  v. Vector addition is commutative; that is, u  v  v  u.

A vector that represents the direction and speed of an object
in motion is called a velocity vector. The velocity of an airplane
relative to the air is called the apparent velocity, and the veloc-
ity relative to the ground is called the resultant, or actual, ve-
locity. The resultant velocity is the vector sum of the apparent
velocity and wind velocity. Similar statements apply to objects
in water subject to currents.

A vector that represents the direction and magnitude of an
applied force is called a force vector. If an object is subjected to
two forces, then the sum of these two forces, the resultant
force, is a single force acting on the object in the same way as
the two original forces taken together.

7.4 Algebraic Vectors
A geometric vector in a rectangular coordinate system
translated so that its initial point is at the origin is said to be
in standard position. The vector such that  is
said to be the standard vector for . This is shown in the
following figure.

AB   

AB   OP   OP   

AB   

v

u

u   v

u

v
u   v

Vector addition: tail-to-tip rule

Vector addition: parallelogram rule

is the standard vector for AB   OP   



is a unit vector with the same direction as v. The i and j unit
vectors are defined as follows:

Every algebraic vector can be expressed in terms of the i and j
unit vectors:

v  〈a, b〉  ai  bj

The following algebraic properties of vector addition and scalar
multiplication enable us to manipulate symbols representing
vectors and scalars in much the same way we manipulate sym-
bols that represent real numbers in algebra.

x

y

1

1

j

i0

Certain static equilibrium problems can be solved using the ma-
terial developed in Section 7.4. The conditions for static equi-
librium are

1. An object at rest is said to be in static equilibrium.
2. For an object located at the origin in a rectangular coor-

dinate system to remain in static equilibrium, at rest, it is
necessary that the sum of all the force vectors acting on
the object be the zero vector.

7.5 Polar Coordinates and
Graphs

The figure illustrates a polar coordinate system. The fixed point
O is called the pole or origin, and the horizontal arrow is called
the polar axis. We have the following relationships between
rectangular coordinates (x, y) and polar coordinates (r,  ):

[Note: The signs of x and y determine the quadrant for  . The an-
gle  is chosen so that       or  180    180 , un-
less directed otherwise.]

Polar graphs can be obtained by point-by-point plotting
much in the same ways graphs in rectangular coordinates are
formed. Make a table of values that satisfy the polar equation,
plot these points, then join them with a smooth curve.

Graphs can also be obtained by rapid graphing techniques.
If only a rough sketch of a polar equation involving sin  or
cos  is desired, we can speed up the point-by-point graphing
process by taking advantage of the uniform variation of sin  
and cos  as  moves through each set of quadrant values.
Graphing utilities can produce polar graphs almost instantly.

The table shows some standard polar curves with their
equations:

 tan   
y

x

 cos   
x

r
  or  x  r cos  

 sin   
y

r
  or  y  r sin  

r2  x2  y2

x

y

O

P   (x, y)
P   (r,  )

r

 

x

y
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Algebraic Properties of Vectors

A. Addition Properties. For all vectors u, v, and w:

1. u  v  v  u Commutative

Property

2. u  (v  w)  (u  v)  w Associative

Property

3. u  0  0  u  u Additive 

Identity

4. u  ( u)  ( u)  u  0 Additive

Inverse

B. Scalar Multiplication Properties. For all vectors u and

v and all scalars m and n:

1. m(nu)  (mn)u Associative

Property

2. m(u  v)  mu  mv Distributive

Property

3. (m  n)u  mu  nu Distributive

Property

4. 1u  u Multiplicative

Identity

i  〈1,0〉
j  〈0,1〉
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Standard Polar Graphs

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Archimedes  spiral:
r   a , a   0

Lemniscate:
r2   a2 cos 2 

Four-leafed rose
r   a cos 2 

Three-leafed rose
r   a cos 3 

Cardioid:
r   a   a sin  

Cardioid:
r   a   a cos  

Circle:
r   a sin  

Circle:
r   a cos  

Circle:
r   a

Horizontal line:
r   a/sin  
    a csc  

Vertical line:
r   a/cos  
   a sec  

Line through origin:
    a

a

7.6 Complex Numbers in 
Rectangular and Polar
Forms

A complex number is a number of the form

a  bi

where a and b are real numbers and i is the imaginary unit. The
figure shows a complex number a  bi plotted in a complex plane.

When complex numbers are associated with points in a rec-
tangular coordinate system, we refer to the x axis as the real
axis and the y axis as the imaginary axis. The complex number
a  bi is said to be in rectangular form.

Complex numbers can also be written in polar form using
x  r cos  and y  r sin  as shown in the figure:

x

y
Imaginary axis

(a, b)
a   bi

a

b

Real axis

Because of the periodic nature of sine and cosine functions,
we have the more general polar form for a complex number 
z  x  iy:

z  x  iy  r [cos (  2k )  i sin (  2k )]

 re(  2k )i

where

ei  cos   i sin  

and the quadrant for  is determined by x and y.

The number r is called the modulus, or absolute value, of z

and is denoted by mod z or |z|. The polar angle that the line join-
ing z to the origin makes with the polar axis is called the

x

y
z   x   iy

  r(cos     i sin  )

  re i 

r

 

x

y

Complex plane

Rectangular–polar relationship
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argument of z and is denoted by arg z. From the figure illus-
trating the rectangular–polar relationships we have the follow-
ing representations of the modulus and argument for z  x  iy:

Never negative

k any integer

where sin   y r and cos   x r, and  is usually chosen so
that       or  180    180 .

Products and quotients of complex numbers in polar form
are found as follows: If

z1  and z2  

then

1.

2.
z1

z2

 
r1e

i 1

r2e
i 2

 
r1

r2

ei( 1  2)

z1z2  r1e
i 1r2e

i 2  r1r2e
i( 1  2)

r2e
i 2r1e

i 1

 arg z    2k 

 mod z  r   x2  y2

7.7 De Moivre’s Theorem
Section 7.7 discusses the famous De Moivre theorem and the re-
lated nth-root theorem. These theorems make the process of
finding natural number powers and all the nth roots of a complex
number relatively easy. De Moivre’s theorem is stated as fol-
lows: If

z  x  iy  rei 

and n is a natural number, then

zn  (x  iy)n  (rei )n  rnen i

From De Moivre’s theorem, we can derive the nth-root theo-
rem: For n a positive integer greater than 1,

r1 n e(  n k 360  n)i k  0, 1, . . . , n  1

are the n distinct nth roots of rei , and there are no others.

Work through all the problems in this chapter review and check answers in the back of the book. An-

swers to all review problems are there, and following each answer is a number in italics indicating

the section in which that type of problem is discussed. Where weaknesses show up, review appropri-

ate sections in the text.

Problems in this exercise use the following labeling of sides and angles:

 
b

a

c

 
 

In Problems 1–3, determine whether the information in each

problem allows you to construct 0, 1, or 2 triangles. Do not

solve the triangle.

1. a  11 meters, b  3.7 meters,   67 

2. c  15 centimeters,   97 ,   84 

3. a  18 feet, b  22 feet,   54 

4. Referring to the figure at the beginning of the exercise, if
  52.6 , b  57.1 centimeters, and c  79.5 centime-

ters, which of the two angles,  or  , can you say for cer-
tain is acute and why?

In Problems 5–7, solve each triangle, given the indicated infor-

mation.

5.   67 ,   38 , and c  49 meters

6.   15 , b  9.1 feet, and c  12 feet

7.   121 , c  11 centimeters, and b  4.2 centimeters
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13. Plot in a complex plane: A 3 5i, B  1 i, C  3i.

14. A point in a polar coordinate system has coordinates 
(10,  30 ). Find all other polar coordinates for the point,
 360    360 , and verbally describe how the coor-
dinates are associated with the point.

15. Plot in a complex plane: A  5e30 i, B  10e(   2)i,
C  7e(3  4)i.

16. (A) Change 1  i to the polar form rei , r  0,
 180    180 .

(B) Change 4e( 30 )i to exact rectangular form.

17. (A) Find [( 1 2)  i]3 using De Moivre’s theo-
rem. Write the final answer in exact rectangular form.

(B) Verify the results in part A with a calculator.

18. Find (2e15 i)4 using De Moivre’s theorem, and write the
final answer in exact rectangular form.

( 3 2)

 3

8. Given geometric vectors u and v as indicated in the fig-
ure, find and  , given  160 miles per hour
and  55 miles per hour.

9. Write the algebraic vector 〈a, b〉 corresponding to the
geometric vector with endpoints A  (2, 6) and 
B  (5,  1).

10. Find the magnitude of the vector 〈 3,  5〉.

11. Sketch a graph of     6 in a polar coordinate system.

12. Sketch a graph of r  6 in a polar coordinate system.

AB   



v

u

 v 
 u  u  v 

19. Referring to the figure at the beginning of the exercise, if
a  434 meters, b  302 meters, and c  197 meters,
then if the triangle has an obtuse angle which angle must
it be and why?

In Problems 20–23, solve each triangle. If a problem does not

have a solution, say so. If a triangle has two solutions, say so,

and solve the obtuse case.

20.   115.4 , a  5.32 centimeters, c  7.05 centimeters

21.   63.2 , a  179 millimeters, b  205 millimeters

22.   26.4 , a  52.2 kilometers, b  84.6 kilometers

23. a  19.0 inches, b  27.8 inches, c  26.1 inches

24. If four nonzero force vectors with different magnitudes
and directions are acting on an object at rest, what must
the sum of all four vectors be for the object to remain at
rest?

25. Given geometric vectors u and v as indicated in the fig-
ure, find and  , given  75.2 kilograms, 

 34.2 kilograms, and   57.2 . v 
 u  u  v 

26. Express each vector in terms of i and j unit vectors:
(A) u  〈 3, 9〉 (B) v  〈0,  2〉

For the indicated vectors in Problems 27 and 28, find

(A) u  v (B) 3u  v  2w

27. u  〈 2, 3〉, v  〈2,  4〉, w  〈 3, 0〉

28. u  i  2j, v  3i  2j, w   j

29. Find a unit vector u with the same direction as 
v  〈 1,  3〉.

In Problems 30–33, use rapid sketching techniques to sketch

each graph in a polar coordinate system. Check by graphing

on a graphing utility.

30. r  6  4 cos  31. r  8  8 sin  

32. r  10 cos 2 33. r  8 sin 3 

v

␣



u
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54. Let u  〈a, b〉 and v  〈c, d 〉 be vectors and m a scalar;
prove
(A) (u  v)  (v  u)
(B) m(u  v)  mu  mv

55. Given the polar equation r 4  4 cos(  2).
(A) Sketch a graph of the equation using rapid graphing

techniques.
(B) Verify the graph in part A on a graphing utility.

52. For an oblique triangle with   23.4 , b 44.6 millime-
ters, and a the side opposite angle  , determine a value k
so that if 0  a k, there is no solution; if a k, there is
one solution; and if k a b, there are two solutions.

53. Show that for any triangle

a2  b2  c2

2abc
 

cos  

a
 

cos  

b
 

cos  

c

34. Graph r  6 cos for 0    7 .

35. Graph r  6 cos for 0    9 .

36. Graph r  8 (sin  )2n, for n  1, 2, and 3. How many
leaves do you expect the graph will have for arbitrary n?

37. Graph r  3 (1  e cos  ) for the following values of e
and identify each curve as an ellipse, a parabola, or a hy-
perbola:
(A) e  0.55 (B) e  1 (C ) e  1.7

38. Convert x2  y2  6x to polar form.

39. Convert r 5 cos  to rectangular form.

40. Change the following complex numbers to the polar form
rei , r 0, 180    180 : z1  1 i,
z2  1 i , z3  5.

41. Change the following complex numbers to exact rectan-
gular form: z1  e(  4)i, z2  3e210 i, z3  2e( 2  3)i.

42. If z1  8e25 i and z2  4e19 i, find

(A) z1z2 (B) z1 z2

Leave answers in the polar form rei .

43. (A) Write (1  i )4 in exact rectangular form. Use De
Moivre’s theorem.

(B) Verify part A by evaluating (1  i )4 directly on a
calculator.

44. Find all cube roots of i. Write final answers in exact rec-

tangular form, and locate the roots on a circle in the com-
plex plane.

 3

 3

 2

 3

 

9

 

7
45. Find all cube roots of  4  4i exactly. Leave answers

in the polar form rei .

46. Show that 4e15 i is a square root of 8  8i.

47. Change the rectangular coordinates (5.17,  2.53) to
polar coordinates to two decimal places, r 0,
 180    180 .

48. Change the polar coordinates (5.81,  2.72) to rectangu-
lar coordinates to two decimal places.

49. Change the complex number  3.18 4.19i to the polar
form rei to two decimal places, r 0, 180    180 .

50. Change the complex number 7.63e( 162.27 )i to rectangu-
lar form a bi, where a and b are computed to two deci-
mal places.

51. (A) The cube root of a complex number is shown in the
figure. Geometrically locate all other cube roots of
the number on the figure, and explain how they were
located.

(B) Determine geometrically the other cube roots of the
number in exact rectangular form.

(C) Cube each cube root from parts A and B.

x

y

w1   2iw1   2i

 3

 3
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For Problems 59–61, use the navigational compass shown.

Assume directions given in terms of north, east, south, and

west are exact.

59. Navigation. An airplane flies east at 256 miles per hour,
and another airplane flies southeast at 304 miles per hour.
After 2 hours, how far apart are the two planes?

60. Navigation. An airplane flies with an airspeed of 450
miles per hour and a compass heading of 75 . If the wind
is blowing at 65 miles per hour out of the north (from
north to south), what is the plane’s actual direction and
speed relative to the ground? Compute direction to the
nearest degree and speed to the nearest mile per hour.

61. Navigation. An airplane that can cruise at 500 miles per
hour in still air is to fly due east. If the wind is blowing from
the northeast at 50 miles per hour, what compass heading
should the pilot choose? What will be the actual speed of the
plane relative to the ground? Compute direction to the near-
est degree and speed to the nearest mile per hour.

62. Coastal Navigation. The owner of a pleasure boat cruis-
ing along a coast wants to pass a rocky point at a safe dis-
tance (see the figure). Sightings of the rocky point are
made at A and at B, 1.0 mile apart. If the boat continues
on the same course, how close will it come to the point?
That is, find d in the figure to the nearest tenth of a mile.

W, 270 90 , E

Navigational compass

N, 0 

S, 180 

63. Forces. Two forces u and v are acting on an object as in-
dicated in the figure. Find the direction and magnitude of
the resultant force u  v relative to force v.

64. Static Equilibrium. Two forces u and v are acting on an
object as indicated in the figure. What third force w must
be added to achieve static equilibrium? Give direction
relative to u.

v

25 kilograms
u

135 
11 kilograms

v

u

38.3 

75.0 pounds

112 pounds

13.5 

A
B

C

1.0 mile

d

Rocky point

22.4 

 

 

56. (A) Graph r   8 sin  and r  8 cos  , 0     , in
the same viewing window. Use TRACE to deter-
mine which intersection point has coordinates that
satisfy both equations simultaneously.

(B) Solve the equations simultaneously to verify the
results in part A.

(C) Explain why the pole is not a simultaneous solution,
even though the two curves intersect at the pole.

57. Find all solutions, real and imaginary, for x8  1  0.
Write roots in exact rectangular form.

58. Write P(x)  x3  8i as a product of linear factors.
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65. Engineering. A cable car weighing 1,000 pounds is
used to cross a river (see the figure). What is the tension
in each half of the cable when the car is located as indi-
cated? Compute the answer to three significant digits.

River

Cable car

5.0 5.0 

66. Astronomy.
(A) The planet Mars travels around the sun in an ellipti-

cal orbit given approximately by

(1)

where r is measured in miles and the sun is at the
pole. Graph the orbit. Use TRACE to find the dis-
tance (to three significant digits) from Mars to the
sun at aphelion (greatest distance from the sun) and
at perihelion (shortest distance from the sun).

(B) Referring to equation (1), r is maximum when the
denominator is minimum, and r is minimum when
the denominator is maximum. Use this information
to find the distance from Mars to the sun at aphelion
and at perihelion.

r  
1.41  108

1  0.0934 cos  

 



Conic Sections and Planetary Orbits

I Conic Sections in Polar Form
(A) Introduction to Conics. To understand orbits of planets, comets and other

celestial bodies, you must know something of the nature and properties of
conic sections. (Conic sections are treated in detail in Chapter 11. Here
our treatment will be brief and limited to polar representations.) Conic
sections get their name because the curves are formed by cutting a com-
plete right circular cone of two nappes with a plane (Fig. 1). Any plane
perpendicular to the axis of the cone cuts a section that is a circle. Tilt the
plane slightly and the section becomes an ellipse. If the plane is parallel to
one edge of the cone, it will cut only one nappe and the section will be a
parabola. Tilt the plane further to the vertical, then it will cut both nappes
of the cone and produce a hyperbola with two branches. Closed orbits are
ellipses or circles. Open (or escape) orbits are parabolas or hyperbolas.

604

Circle Ellipse Parabola Hyperbola

(B) Conics and Eccentricity. Another way of defining conic sections is in
terms of their eccentricity. Let F be a fixed point, called the focus, and let
d be a fixed line, called the directrix (Fig. 2). For positive values of eccen-
tricity e, a conic section can be defined as the set of points {P} having the
property that the ratio of the distance from P to the focus F to the distance
from P to the directrix d is the constant e. As we will see, an ellipse, a
parabola, or a hyperbola can be obtained by choosing e appropriately.

(C) Polar Representation of Conics. A unified treatment of conic sections can
be obtained by use of the polar coordinate system. Polar equations of con-
ics are used extensively in celestial mechanics to describe and analyze
orbits of planets, comets, satellites, and other celestial bodies.

FIGURE 1 Conic
sections.
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Problem 1: Polar Equation of a Conic. Use the eccentricity definition of a conic
section given in part B to show that the polar equation of a conic is given by

(1)

where p is the distance between the focus F and the directrix d, the pole of the
polar axis is at F, and the polar axis is perpendicular to d and is pointing away
from d (see Fig. 2).

Problem 2: Graphing Utility Exploration, 0  e  1. For 0  e  1, use a
graphing utility to systematically explore the nature of the changes in the graph
of equation (1) as you change the eccentricity e and the distance p. Summarize
the results of holding e fixed and changing p, and the results of holding p fixed
and changing e. For 0  e  1, which conic section is produced?

Problem 3: Graphing Utility Exploration, e  1. For e  1, use a graphing
utility to systematically explore the nature of the changes in the graph of equa-
tion (1) as you change the distance p. Summarize the results of holding e to 1
and changing p. For e  1, which conic section is produced?

Problem 4: Graphing Utility Exploration, e  1. For e  1, use a graphing
utility to systematically explore the nature of the changes in the graph of equa-
tion (1) as you change the eccentricity e and the distance p. Summarize the results
of holding e fixed and changing p, and the results of holding p fixed and chang-
ing e. For e  1, which conic section is produced?

II Planetary Orbits
We are now interested in finding polar equations for the orbits of specific planets where
the sun is at the pole. Then these equations can be graphed in a graphing utility and
further questions about the orbits can be answered. The material in Table 1, found in
the readily available World Almanac and rounded to three significant digits, gives us
more than enough information to find the polar equation for any planet’s orbit.

r  
ep

1  e cos  

Conic Sections and Planetary Orbits

directrix
d

point on
conic

section

polar axis

focus

P   (r,  )Q

F

p

FIGURE 2 Conic sections.

T A B L E  1 The Planets

Maximum Distance from Sun Minimum Distance from Sun
Planet Eccentricity (Millions of Miles) (Millions of Miles)

Mercury 0.206 43.4 28.6

Venus 0.00677 67.7 66.8

Earth 0.0167 94.6 91.4

Mars 0.0934 155 129

Jupiter 0.0485 507 461

Saturn 0.0555 938 838

Uranus 0.0463 1,860 1,670

Neptune 0.00899 2,820 2,760

Pluto 0.249 4,550 2,760
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Problem 5: Polar Equations for the Orbits of Mercury, Earth, and Mars. In
all cases the polar axis intersects the planet’s orbit at aphelion (the greatest dis-
tance from the sun).

(A) Show that Mercury’s orbit is given approximately by

(B) Show that Earth’s orbit is given approximately by

(C) Show that Mars’ orbit is given approximately by

Problem 6: Plotting the Orbits for Mercury, Earth, and Mars. Plot all three
orbits (Mercury, Earth, and Mars) from the equations in parts A, B, and C in the
same viewing window of a graphing utility. Choose the window dimensions so
that Mars’ orbit fills up most of the window.

Problem 7: Finding Distances and Angles Related to Orbits. Figure 3 repre-
sents a schematic drawing showing Earth at two locations during its orbit. Find
the straight-line distance between the position at A and the position at B to three
significant digits. Find the measures of the angles BAO and ABO in degree mea-
sure to one decimal place. The Earth’s orbit crosses the polar axis at aphelion (the
greatest distance from the sun).

r  
1.41  108

1  0.0934 cos  

r  
9.30  107

1  0.0167 cos  

r  
3.44  107

1  0.206 cos  
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Sun

B

A

FIGURE 3 Earth’s orbit.



identity, verify it. If the equation does not appear to be
an identity, find a value of x for which both sides are de-
fined but are not equal.

(A)

(B)

16. If in a triangle, a  32.5 feet, c  77.2 feet, and 
  61.3 , without solving the triangle or drawing any
pictures, which of the two angles,  or  , can you say
for certain is acute and why?

Solve Problems 17 and 18 to four decimal places.

17. sin x  0.3188, 0  x  2 

18. tan    4.076,  90    90 

19. Solve the triangle.

20. Write the algebraic vector 〈a, b〉 corresponding to the
geometric vector with endpoints A  ( 3, 2) and 
B  (3,  1).

21. A point in a polar coordinate system has coordinates
( 5, 150 ). Find all other polar coordinates for the
point,  360    360 , and verbally describe how
the coordinates are associated with the point.

22. Sketch a graph of r  6 cos  in a polar coordinate 
system.

23. Plot in a complex plane: A   3  4i and B  4e60 i.

24. Find (2e10 i)3. Write the final answer in exact rectangu-
lar form.

AB   

13 feet

12 feet
b

 

 121 

sin2 x

cos x
 cos x  sec x

sin2 x

cos x
 cos x  csc x
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Work through all the problems in this cumulative review and check answers in the back of the book.

Answers to all review problems, except verifications, are there, and following each answer is a num-

ber in italics indicating the section in which that type of problem is discussed. Where weaknesses

show up, review appropriate sections in the text.

1. In a circle of radius 6 meters, find the length of an arc
opposite an angle of 0.31 radians.

2. Solve the triangle.

3. In which quadrants is each positive?
(A) sin  (B) cos  (C) tan  

4. If ( 3, 4) is on the terminal side of an angle  , find
(A) cos  (B) csc  (C) tan  

5. Find the reference angle associated with each angle  :
(A)  3  4 (B) 245 (C)  30 

6. Indicate the domain, range, and period of each.
(A) y  sin x (B) y  cos x (C) y  tan x

7. Sketch a graph of y  cos x,    2  x  5  2.

8. Sketch a graph of y  tan x,    2  x  3  2.

9. Describe the meaning of a central angle in a circle with
radian measure 2.

10. Describe the smallest shift of the graph of y  cos x to
produce the graph of y  sin x.

Verify each identity in Problems 11–14.

11. cot  sec   csc  

12. sec x  cos x  tan x sin x

13. sin (x    2)   cos x

14. csc 2x  csc x sec x

15. Use a graphing utility to test whether each of the fol-
lowing is an identity. If an equation appears to be an

1
2

c

a

 

32.7 12.2 cm
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25. Which of the following angles are coterminal with 150 :
30 ,  7  6, 870 ?

26. Change 1.31 radians to decimal degrees to two decimal
places.

27. Which of the following have the same value as cos 8?
(A) cos (8 rad) (B) cos 8 (C) cos (8  4 )

Evaluate Problems 28–37 exactly without a calculator. If the

function is not defined at the value, say so.

28. sin ( 5  6) 29. tan (  2) 30. cot (7  4)

31. sec 330 32. cos 1 ( 1) 33. sin 1 1.5

34. arccos ( ) 35. sin (sin 1 0.55) 36. cos [sin 1 ( )]

37. cos [tan 1 ( 2)]

38. Evaluate to four significant digits using a calculator. If a
function is not defined, say so.
(A) tan 84 12 55 (B) sec ( 1.8409)
(C) tan 1 ( 84.32) (D) cos 1 (tan 2.314)

39. Sketch a graph of y  2  2 cos ( x 2),  1  x  5.

40. (A) Find the exact degree measure of 
  cos 1 ( ) without a calculator.

(B) Find the degree measure of   sin 1 ( 0.338) to
three decimal places using a calculator.

41. Evaluate sin 1 (sin 3) with a calculator set in radian
mode, and explain why this does or does not illustrate a
sine–inverse sine identity.

42. A circular point P  (a, b) moves counterclockwise
around the circumference of a unit circle starting at 
(1, 0) and stops after covering a distance of 11.205
units. Explain how you would find the coordinates of
point P at its final position and how you would deter-
mine which quadrant P is in. Find the coordinates of P
to three decimal places and the quadrant for the final
position of P.

43. Explain the difference in solving the equation 
tan x   24.5 and evaluating tan 1 ( 24.5).

44. Find an equation of the form y  k  a sin Bx that pro-
duces the graph shown at the top of the next column.

 3 2

 4
5

1
2

45. Sketch a graph of y  3 sin (2x   ),    x  2 .
Indicate amplitude A, period P, and phase shift P.S.

46. Sketch a graph of y  2 tan ( x 2    2), 0  x  4.
Indicate the period P and phase shift P.S.

47. Sketch a graph of y  sin x and y  csc x in the same
coordinate system.

48. Describe the smallest left shift and or reflection that
transforms the graph of y  cot x into the graph of
y  tan x.

49. Graph y  1 (cot2 x  1) in a graphing utility that dis-
plays at least two full periods of the graph. Find an
equation of the form y  k  A sin Bx or
y  k  A cos Bx that has the same graph. Graph both
equations in the same viewing window and use TRACE
to verify that both graphs are the same.

50. Graph y  (2  2 sin2 x) (sin 2x) in a graphing utility
that displays at least two full periods of the graph. Find
an equation of the form y  A tan Bx or y  A cot Bx

that has the same graph. Graph both equations in the
same viewing window and use TRACE to verify that
both graphs are the same.

51. Given the equation sin 2x  2 sin x,
(A) Are x  0 and x   solutions?
(B) Is the equation an identity or a conditional equa-

tion? Explain.

x

y

3 1

5

4

3

2

1

21



Verify each identity in Problems 52–57.

52.

53.

54.

55.

56.

57.

[Hint: Use sum–product identities.]

58. Use a graphing utility to test whether each of the fol-
lowing is an identity. If an equation appears to be an
identity, verify it. If the equation does not appear to be
an identity, find a value of x for which both sides are de-
fined but are not equal.

(A)

(B)

59. Find cos (x  y) exactly without a calculator given
sin x  ( 2 ), cos y  ( 2 ), x a quadrant IV
angle, and y a quadrant III angle.

60. Compute the exact value of sin 2x and cos (x 2) without
a calculator, given sin x  ,   2  x   .

Solve Problems 61 and 62 exactly without a calculator,  in de-

grees and x real.

61. 2 sin2   sin   1, 0    360 

62. sin 2x  sin x, all real solutions

63. (A) Solve cot x   2 cos x exactly, 0  x  2 .
(B) Solve cot x   2 cos x to three decimal places

using a graphing utility, 0  x  2 .

64. Solve 2 cos x  x  cos 2x to three decimal places for
all real solutions using a graphing utility.

In Problems 65–67, solve each triangle labeled as in the figure

at the top of the next column. If a problem does not have a 

solution, say so. If a triangle has two solutions, solve the 

obtuse case.

3
5

 5 5

tan x

2 tan x  sin x
 

1

2  cos x

tan x

2 tan x  sin x
 

1

2  sin x

cos x  cos y

sin x  sin y
 cot

x  y

2

2

1  cos 2x
 sec2 x

csc2
x

2
 2 csc x (csc x  cot x)

tan
x

2
 csc x  cot x

sec x  tan x  
cos x

1  sin x

sin u

1  cos u
 cot u  csc u

65. a  21.3 meters, b  37.4 meters, c  48.2 meters

66.   125.4 , b  25.4 millimeters, a  20.3 millimeters

67.   52.9 , b  37.1 inches, a  34.4 inches

68. Assume in a triangle that  is acute, a  92.5 centime-
ters, and b  43.4 centimeters. Which of the angles,  
or  , can you say for certain is acute and why?

69. Given geometric vectors as indicated in the figures, find
and  , given  25.3 pounds,  13.4

pounds, and   48.3 .

(a) (b)

70. Find 2u  v  3w for,
(A) u  〈 1, 2〉, v  〈0,  2〉, w  〈1,  1〉

(B) u  2i  j, v  i  3j, w  2j

71. Convert to polar form: x2  y2  8y.

72. Convert r   4 cos  to rectangular form.

Use rapid sketching techniques to graph Problems 73 and 74

in a polar coordinate system. Check by graphing on a graphing

utility.

73. r  4  4 cos  74. r  6 sin 3 

75. Graph r  5(cos 2 )2n, for n  1, 2, and 3. How many
leaves do you expect the graph will have for arbitrary n?

76. Graph r  e(cos  )  2 cos (4 ) using a squared window
and 0.05 for a step size for  . The resulting curve is of-
ten referred to as a butterfly curve.

77. Change the rectangular coordinates ( 2.78,  3.19) to
polar coordinates to two decimal places, r  0,
 180    180 .

Parallelogram rule

u   v

u

v
 

  

u   v

u

v

Tail-to-tip rule

 

 v  u  u  v 

 
b

a

c
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85. (A) The fourth root of a complex number is shown in
the figure. Geometrically locate all other fourth

roots of the number on the figure, and explain how

they were located.
(B) Determine geometrically the other fourth roots of

the number in exact rectangular form.
(C) Raise each fourth root from parts A and B to the

fourth power.

x

y

w1   1   i

78. Change the polar coordinates (6.22,  4.08) to rectangu-
lar coordinates to two decimal places.

79. Change 2e(   6)i to exact rectangular form.

80. Change z   1  i to the polar form rei ,  in
degrees.

81. Compute (1  i )6 using De Moivre’s theorem and
write the final answer in a bi form.

82. Find all cube roots of  i exactly. Write final answers in

the form a bi, and locate the roots on a circle in the
complex plane.

83. Change the complex number  4.88 3.17i to the polar
form rei to two decimal places, r 0, 180    180 .

84. Change the complex number 6.97e163.87 i to rectangular
form a bi, where a and b are computed to two deci-
mal places.

 3

 3
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86. If, in the figure, the coordinates of A are (1, 0) and arc
length s is 1.2 units, find the coordinates of P to three
significant digits.

87. Sketch a graph of y 1  sec x,  3  2  x  3  2.

88. The accompanying graph is a graph of an equation of
the form y A cos (Bx C), 0   B C  1. Find the
equation by finding A, B, and C exactly. What are the
period, amplitude, and phase shift?

x

y

 3

1 1

3

y

A

 1

1

1 1
x

P   (a, b)

s

89. Graph 1.6 sin 2x 1.2 cos 2x in a graphing utility.
(Select the dimensions of a viewing window so that at
least two periods are visible.) Find an equation of the
form y A sin (Bx C) that has the same graph as the
given equation. Find A and B exactly and C to three dec-
imal places. Use the x intercept closest to the origin as
the phase shift. To check your results graph both equa-
tions in the same viewing window and use TRACE
while shifting back and forth between the two graphs.

90. Write csc (cos 1 x) as an algebraic expression in x free
of trigonometric or inverse trigonometric functions.

Solve Problems 91 and 92 without a calculator.

91. sin [2 cot 1 ( )]  ?

92. Given sec x  5 3,   2  x   , find
(A) sin (x 2) (B) cos 2x

93. (A) Solve 2 sin2 x  3 cos x exactly for all real solu-
tions, 0  x  2 .

(B) Solve 2 sin2 x  3 cos x to four decimal places us-
ing a graphing utility, 0  x  2 .

94. (A) Use rapid sketching techniques to sketch a graph
of the polar equation r2

 36 cos 2 .
(B) Verify the graph in part A using a graphing utility.

95. (A) Graph r1  2  2 cos  and r2  6 cos  in the
same viewing window, 0    2 .

3
4



(B) Use TRACE to determine how many times the graph
of r2 crosses the graph of r1 as  goes from 0 to 2 .

(C) Solve the two equations simultaneously to find the
exact solutions for 0    2 .

(D) Explain why the number of solutions found in part
C does not agree with the number of times r1

crosses r2, 0    2 .

96. Write P(x)  x3  i as a product of linear factors.

Cumulative Review Exercises 611

97. Astronomy. A line from the sun to the Earth sweeps
out an angle of how many radians in 5 days?

98. Meteorology. A weather balloon is released and rises
vertically. Two weather stations C and D in the same
vertical plane as the balloon and 1,000 meters apart
sight the balloon at the same time and record the infor-
mation given in the figure. At the time of sighting, how
high was the balloon to the nearest meter?

99. Geometry. Find the length to two decimal places of
one side of a regular pentagon inscribed in a circle with
radius 5 inches.

100. Geometry. Find  ABC to the nearest degree in the
rectangular solid shown in the figure.

101. Electrical Circuit. The current I in an alternating electri-
cal circuit has an amplitude of 50 amperes and a period
of second. If I  50 amperes when t  0, find an
equation of the form I  A cos Bt that gives the current
at time t  0.

1
110

C

B

A

42 cm

12 cm

14 cm

B

24 37 

h

1,000 meters
DC

102. Navigation. An airplane flies with an airspeed of 
260 miles per hour and a compass heading of 110 . If a
36 mile per hour wind is blowing out of the north, what
is the plane’s actual heading and ground speed? Compute
direction to the nearest degree and ground speed to the
nearest mile per hour.

103. Engineering. A 65-pound child glides across a small
river on a homemade cable trolley (see the figure). What
is the tension on each half of the support cable when the
child is in the center? Compute answer to nearest pound.

104. Geometry. A circular arc of 10 centimeters has a chord
of 8 centimeters as shown in the figure.
(A) Explain how the radius is given by the equation

(B) What difficulties do you encounter in trying to
solve the equation in part A exactly using algebraic
and trigonometric methods?

(C) Show on a graphing utility how to approximate the
radius of the circle R, and find R to three decimal
places.

10 cm

8 cm

R R

sin
5

R
 

4

R

8 8 
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mate C, visually estimate to one decimal place the
smallest positive phase shift from the plot in part
A. After determining A, B, k, and C, write the
resulting equation. (Your value of C may differ
slightly from the answer in the book.)

(C) Plot the results of parts A and B in the same view-
ing window. (An improved fit may result by adjust-
ing your value of C a little.)

(D) If your graphing utility has a sinusoidal regression
feature, check your results from parts B and C by
finding and plotting the regression equation.

105. Modeling Temperature Variation. The 30-year average
monthly temperature, in degrees Fahrenheit, for each
month of the year for Washington, D.C., is given in
Table 1 (from the World Almanac).
(A) Using 1 month as the basic unit of time, enter the

data for a 2-year period in your graphing utility and
produce a scatter plot in the viewing window.
Choose 25  y  80 for the viewing window.

(B) It appears that a sine curve of the form 

y  k  A sin (Bx  C)

will closely model these data. The constants k, A,
and B are easily determined from Table 1. To esti-

T A B L E  1 Monthly Average Temperatures, Washington, D.C.

x (months) 1 2 3 4 5 6 7 8 9 10 11 12

y (temperature) 31 34 43 53 62 71 76 74 67 55 45 35



Modeling with
Linear Systems
O U T L I N E

8.1 Systems of Linear Equations in Two Variables

8.2 Systems of Linear Equations and Augmented Matrices

8.3 Gauss–Jordan Elimination

8.4 Systems of Linear Inequalities

8.5 Linear Programming

Chapter 8 R E V I E W

Chapter 8 G R O U P  A C T I V I T Y : Modeling with Systems of Linear Equations

I
N CHAPTER 8 WE FIRST DISCUSS HOW SYSTEMS OF LINEAR EQUATIONS

involving two variables are solved graphically and algebraically. Because

these techniques are not suitable for linear systems involving larger num-

bers of equations and variables, we then turn to a different method

of solution involving the concept of an augmented matrix, which

arises quite naturally when dealing with larger linear systems.

Finally, we discuss systems of linear inequalities and linear pro-

gramming, a relatively new and powerful mathematical tool that will

be used to solve a variety of interesting practical problems.

Before getting started on this chapter,

review the following concepts:

● Properties of Real Numbers 
(Basic Algebra Review*, Section R.1)

● Linear Equations and Inequalities
(Appendix A, Section A.1)

● Linear Functions 
(Chapter 2, Sections 1 and 2)

*At www.mhhe.com/barnett



8 MODELING WITH LINEAR SYSTEMS614

Systems of Linear Equations 
in Two Variables

Systems of Equations ● Graphing ● Substitution ● Modeling with Systems of Linear
Equations

In Section 8.1 we discuss both graphical and algebraic methods for solving sys-
tems of linear equations in two variables. Then we use systems of this type to
construct and solve mathematical models for several applications.

Systems of Equations
To establish basic concepts, consider the following example. At a computer fair,
student tickets cost $2 and general admission tickets cost $3. If a total of 7 tick-
ets are purchased for a total cost of $18, how many of each type were purchased?

Let

x  Number of student tickets

y  Number of general admission tickets

Then

x  y  7 Total number of tickets purchased

2x  3y  18 Total purchase cost

We now have a system of two linear equations in two variables. Thus, we can
solve this problem by finding all pairs of numbers x and y that satisfy both
equations.

In general, we are interested in solving linear systems of the type

ax  by  h System of two linear equations in two variables

cx  dy  k

where x and y are variables, a, b, c, and d are real numbers called the coefficients

of x and y, and h and k are real numbers called the constant terms in the equa-
tions. A pair of numbers x  x0 and y  y0 is a solution of this system if each
equation is satisfied by the pair. The set of all such pairs of numbers is called the
solution set for the system. To solve a system is to find its solution set.

Graphing
Recall that the graph of a linear equation is the line consisting of all ordered pairs
that satisfy the equation. To solve the ticket problem by graphing, we graph both
equations in the same coordinate system. The coordinates of any points that the
lines have in common must be solutions to the system, because they must satisfy
both equations.



Solving a System by Graphing

Solve the ticket problem by graphing: x  y  7

2x  3y  18

Solve two ways as in Example 1: x  y  3
x  2y   3

It is clear that Example 1 has exactly one solution, because the lines have
exactly one point of intersection. In general, lines in a rectangular coordinate sys-
tem are related to each other in one of three ways, as illustrated in Example 2.

FIGURE 2

FIGURE 3
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 10

 10

10

10

Hand-Drawn Solution

Find the x and y intercepts for each line.

x  y  7 2x  3y  18

x y x y

0 7 0 6

7 0 9 0

Plot these points, graph the two lines, estimate the
intersection point visually (Fig. 1), and check the
estimate.

S O L U T I O N S

x  3 Student tickets

y  4 General admission tickets

C H E C K

 18 ⁄ 187 ⁄ 7

 2(3)  3(4) ‚ 183  4 ‚ 7

 2x  3y  18x  y  7

Graphing Utility Solution

First, solve each equation for y:

Next, enter these functions in the equation editor of
a graphing utility (Fig. 2) and use the intersect com-
mand to find the intersection point (Fig. 3).

y  6  2
3 x

 3y  18  2xy  7  x

 2x  3y  18x  y  7

From Figure 3, we see that the solution is

x  3 Student tickets

y  4 General admission tickets

FIGURE 1

x

y

10

5

5

10

x   y   7

(3, 4)

2x   3y   18
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FIGURE 4

x

y

 5

5 5

5

x

y

 5

5 5

5

(4, 2)

 5

5 5

5

x

y

(a) (b) (c)

Systems of Linear Equations: Basic Terms

A system of linear equations is consistent if it has one or more solutions and inconsistent if no

solutions exist. Furthermore, a consistent system is said to be independent if it has exactly one 

solution (often referred to as the unique solution) and dependent if it has more than one

solution.

Determining the Nature of Solutions

Match each of the following systems with one of the graphs in Figure 4 and dis-
cuss the nature of the solutions:

(A) 2x  3y  2 (B) 4x  6y  12 (C) 2x  3y   6
x  2y  8 2x  3y   6  x   33

2 y

S O L U T I O N S

(A) Graph (b). The lines intersect in a single point. There is exactly one
solution: x  4, y  2.

(B) Graph (c). The lines are parallel and never intersect. There are no
solutions.

(C) Graph (a). The lines coincide. Every point on the line is a solution.
There are an infinite number of solutions.

Solve each of the following systems by graphing:

(A) 2x  3y  12 (B) x  3y   3 (C) 2x  3y  12
x  3y   3  2x  6y  12  x  y   6

We now define some terms that can be used to describe the different types of
solutions to systems of equations illustrated in Example 2.

3
2

Referring to the three systems in Example 2, the system in part A is consis-
tent and independent, with the unique solution x  4 and y  2. The system in
part B is inconsistent, with no solution. And the system in part C is consistent
and dependent, with an infinite number of solutions: all the points on the two
coinciding lines.



By geometrically interpreting a system of two linear equations in two vari-
ables, we gain useful information about what to expect in the way of solutions to
the system. In general, any two lines in a rectangular coordinate plane must inter-
sect in exactly one point, be parallel, or coincide (have identical graphs). Thus,
the systems in Example 2 illustrate the only three possible types of solutions for
systems of two linear equations in two variables. These ideas are summarized in
Theorem 1.

One drawback of finding a solution by graphing is the inaccuracy of hand-
drawn graphs. Graphic solutions performed on a graphing utility, however, pro-
vide both a useful geometric interpretation and an accurate approximation of the
solution to a system of linear equations in two variables.

Solving a System Using a Graphing Utility

Solve to two decimal places using a graphing utility: 5x  3y  13
2x  4y  15

S O L U T I O N

First solve each equation for y:

y   0.5x  3.75y  5
3 x  13

3

 4y   2x  15 3y   5x  13

 2x  4y  15 5x  3y  13

8.1 Systems of Linear Equations in Two Variables 617

E X P L O R E / D I S C U S S  1

Can a consistent and dependent system have exactly two solutions?
Exactly three solutions? Explain.

T H E O R E M  1
Possible Solutions to a Linear System

The linear system

ax  by  h

cx  dy  k

must have
1. Exactly one solution Consistent and independent

or
2. No solution Inconsistent

or
3. Infinitely many solutions Consistent and dependent

There are no other possibilities.



Next, enter each equation in a graphing utility [Fig. 5(a)], graph in an appropri-
ate viewing window, and approximate the intersection point [Fig. 5(b)].

Rounding the values in Figure 5(b) to two decimal places, we see that the solu-
tion is

x  3.73 and y  1.88 or (3.73, 1.88)

Figure 5(c) shows a check of this solution.

Solve to two decimal places using a graphing utility: 2x  5y   25
4x  3y  5

REMARK In the solution to Example 3, you might wonder why we checked a solu-
tion produced by a graphing utility. After all, we don’t expect a graphing utility
to make an error. But the equations in the original system and the equations
entered in Figure 5(a) are not identical. We might have made an error when
solving the original equations for y. The check in Figure 5(c) eliminates this
possibility.

Graphic methods help us visualize a system and its solutions, frequently reveal
relationships that might otherwise be hidden, and, with the assistance of a graph-
ing utility, provide very accurate approximations to solutions.

Substitution
There are a number of different algebraic techniques that can also be used to solve
systems of linear equations in two variables. One of the simplest is the substitution

method. To solve a system by substitution, we first choose one of the two equa-
tions in a system and solve for one variable in terms of the other. (We make a
choice that avoids fractions, if possible.) Then we substitute the result in the other
equation and solve the resulting linear equation in one variable. Finally, we sub-
stitute this result back into the expression obtained in the first step to find the sec-
ond variable. We return to the ticket problem stated on p. 614 to illustrate this
process.

8 MODELING WITH LINEAR SYSTEMS618

FIGURE 5

 10

 10

10

10

(a) Equation definitions (b) Intersection point (c) Check
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Solving a System by Substitution

Use substitution to solve the ticket problem: x  y  7
2x  3y  18

S O L U T I O N

Solve either equation for one variable and substitute into the remaining equation.
We choose to solve the first equation for y in terms of x:

Solve the first equation for y in terms of x.

Substitute into the second equation.

2x  3y  18

2x  3(7 x)  18

2x  21  3x  18

 x   3

x  3

Now, replace x with 3 in y  7  x:

y  7  x

y  7  3

y 4

Thus the solution is 3 student tickets and 4 general admission tickets.

C H E C K

Solve by substitution and check: x  y  3
x  2y   3

Solving a System by Substitution

Solve by substitution and check: 2x  3y  7
3x  y  7

 18 ⁄ 18 7 ⁄ 7

 2(3)  3(4)  18 3  4 ‚ 7

 2x  3y  18x  y  7

y  7  x

x  y  7

u



S O L U T I O N

To avoid fractions, we choose to solve the second equation for y:

Solve for y in terms of x.

Substitute into first equation.

First equation

2x  3(3x 7)  7 Solve for x.

x 2 Substitute x 2 in y 3x 7.

y  3(2)  7

y   1

Thus, the solution is x  2 and y   1.

C H E C K

Solve by substitution and check: 3x  4y  18
2x  y  1

 7 ⁄ 7 7 ⁄ 7

 3(2)  ( 1)  7 2(2)  3( 1) ‚ 7

 3x  y  7 2x  3y  7

y  3x  7

 7x   14

2x  9x  21  7

2x  3y  7

y  3x  7

 y   3x  7

3x  y  7

8 MODELING WITH LINEAR SYSTEMS620

E X P L O R E / D I S C U S S  2

Use substitution to solve each of the following systems. Discuss the
nature of the solution sets you obtain.

x  3y  4 x  3y  4

2x  6y  7 2x  6y  8

Modeling with Systems of Linear Equations
Examples 6, 7, and 8 illustrate the use of systems of linear equations to construct
models for applied problems. Each model can be solved by either graphing or
substitution—the choice is really a matter of personal preference.
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T A B L E  1

Regular Sausage Lite Sausage Total

Pork 72% 22% 2,000

Turkey 28% 78% 2,000

FIGURE 6

 3,000

0

10,000

8,000

(a) (b)

Food Processing

A food manufacturer produces regular and lite smoked sausages. A regular
sausage is 72% pork and 28% turkey and a lite sausage is 22% pork and 78%
turkey. The company has just received a shipment of 2,000 pounds of pork and
2,000 pounds of turkey. How many pounds of each type of sausage should be pro-
duced to use all the meat in this shipment?

S O L U T I O N

First we define the relevant variables:

x  Pounds of regular sausage

y  Pounds of lite sausage

Next we summarize the given information in Table 1. It is convenient to organize
the table so that the quantities represented by variables correspond to columns in
the table (rather than to rows), as shown.

Now we use the information in the table to form equations involving x and y:

  

0.72x  0.22y  2,000

  

0.28x  0.78y  2,000

We will solve this system graphically. Figure 6(a) shows the equations after they
have been solved for y and entered in the equation editor of a graphing utility.
From Figure 6(b), we conclude that producing 2,240 pounds of regular sausage
and 1,760 pounds of lite sausage will use all the available pork and turkey.

Total

turkey

Turkey in y pounds

of lite sausage

Turkey in x pounds

of regular sausage

Total

pork

Pork in y pounds

of lite sausage

Pork in x pounds

of regular sausage  

      

    



8 MODELING WITH LINEAR SYSTEMS622

A food manufacturer produces regular and deluxe rice mixtures by mixing wild
rice with long-grain rice. The regular rice mixture is 5% wild rice and 95% long-
grain rice and the deluxe rice mixture is 10% wild rice and 90% long-grain rice.
The company has just received a shipment of 120 pounds of wild rice and 1,500
pounds of long-grain rice. How many pounds of each type of rice mixture should
be produced to use all the rice in this shipment?

Airspeed

An airplane makes the 2,400-mile trip from Washington, D.C. to San Francisco
in 7.5 hours and makes the return trip in 6 hours. Assuming that the plane trav-
els at a constant airspeed and that the wind blows at a constant rate from west to
east, find the plane’s airspeed and the wind rate.

S O L U T I O N

Let x represent the airspeed of the plane and let y represent the rate at which the
wind is blowing (both in miles per hour). The ground speed of the plane is deter-
mined by combining these two rates; that is,

x  y  Ground speed flying east to west (headwind)

x  y  Ground speed flying west to east (tailwind)

Applying the familiar formula D  RT to each leg of the trip leads to the fol-
lowing system of equations:

2,400  7.5(x  y) From Washington to San Francisco

2,400  6(x  y) From San Francisco to Washington

After simplification, we have

x  y  320

x  y  400

Solve using substitution:

Solve first equation for x.

Substitute in second equation.

Wind rate

Airspeed

C H E C K

 2,400 ⁄ 2,400 2,400 ⁄ 2,400

 2,400 ‚ 6(360  40) 2,400 ‚ 7.5(360  40)

 2,400  6(x  y) 2,400  7.5(x  y)

x  360 miles per hour

x  40  320

y  40 miles per hour

 2y  80

y  320  y  400

x  y  320



A boat takes 8 hours to travel 80 miles upstream and 5 hours to return to its start-
ing point. Find the speed of the boat in still water and the speed of the current.

Supply and Demand

The price–demand and price–supply equations for the sale of cherries each day
in a particular city are

p  0.3q  5 Demand equation (consumer)

p  0.06q  0.68 Supply equation (supplier)

where q represents the quantity in thousands of pounds and p represents the price
per pound in dollars.

(A) Discuss the relationship between supply and demand when cherries are
selling for $1.70 per pound.

(B) Discuss the relationship between supply and demand when cherries are
selling for $1.10 per pound.

(C) Find the equilibrium quantity and the equilibrium price.

S O L U T I O N S

(A) Enter y1   0.3x  5, y2  0.06x  0.68, and y3  1.70. Use the
intersect command to find the supply (Fig. 7) and the demand (Fig. 8)
when the price is $1.70.

From Figures 7 and 8, we find that at a price of $1.70 per pound,
suppliers are willing to supply 17,000 pounds of cherries, but con-
sumers will purchase only 11,000 pounds. The supply exceeds the
demand at this price, and the price will come down.

(B) Changing y3 to y3  1.10 and proceeding as before (details omitted),
we find that at this price consumers will purchase 13,000 pounds of
cherries, but suppliers will supply only 7,000 pounds. Thus, at $1.10
per pound the demand exceeds the supply and the price will go up.

(C) The equilibrium price is the price at which supply will equal demand
(see Section 2.2) and the equilibrium quantity is the common value of
supply and demand. Using the intersect command (Fig. 9), we see
that the equilibrium quantity is 12,000 pounds and the equilibrium
price is $1.40 per pound.

8.1 Systems of Linear Equations in Two Variables 623
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1. x  1, y   2
Check:

 3 ⁄  3

 1  2( 2) ‚  3

x        2y   3

 3 ⁄ 3

 1  ( 2) ‚ 3

x  y  3

2. (A) (3, 2) or x  3 and y  2 (B) No solutions
(C) Infinite number of solutions

3. ( 1.92, 4.23) or x   1.92 and y  4.23
4. x  1, y   2
5. x  2, y   3

6. 840 pounds of regular mix, 780 pounds of deluxe mix
7. Boat: 13 miles per hour; current: 3 miles per hour
8. Equilibrium quantity  9,000 pounds; equilibrium price

 $2.20 per pound

The price–demand and price–supply equations for strawberries each day in a cer-
tain city are

p   0.2q  4 Demand equation

p  0.04q  1.84 Supply equation

where q represents the quantity in thousands of pounds and p represents the price
per pound in dollars.

Find the equilibrium quantity and the equilibrium price.

x

y

 5

5 5

5

x   2y    3

x   y   3

(1,  2)

Match each system in Problems 1–4 with one of the following graphs, and use the graph to solve the system.

x

y

 5

5 5

5

(a)

x

y

 5

5 5

5

(b)

x

y

 5

5 5

5

(d)

x

y

 5

5 5

(c)

 5

 5

5

5
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1. 2x  4y  8 2. x  y  3
x  2y  0 x  2y  0

3. 2x  y  5 4. 4x  2y  10
3x  2y   3 2x  y  5

Solve Problems 5–10 by graphing.

5. x  y  7 6. x  y  2
x  y  3 x  y  4

7. 3x  2y  12 8. 3x  y  2
7x  2y  8 x  2y  10

Solve Problems 17–30 by either method. Round any approxi-

mate values to two decimal places.

17. 4x  3y  26 18. 9x  3y  24
3x  11y   7 11x  2y  1

19. 7m  12n   1 20. 3p  8q  4
5m  3n  7 15p  10q   10

21. y  0.08x 22. y  0.07x

y  100  0.04x y  80  0.05x

23. 0.2u  0.5v  0.07 24. 0.3s  0.6t  0.18
0.8u  0.3v  0.79 0.5s  0.2t  0.54

25.  2 26.  10

  5  6

27. 2x  3y   5 28. 7x  3y  20
3x  4y  13 5x  2y  8

29. 3.5x  2.4y  0.1 30. 5.4x  4.2y   12.9
2.6x  1.7y   0.2 3.7x  6.4y   4.5

2
5 x  4

3 y7
3 x  5

4 y

7
2 x  5

6 y2
5 x  3

2 y

31. In the process of solving a system by substitution, suppose
you encounter a contradiction, such as 0  1. How would
you describe the solutions to such a system? Illustrate your
ideas with the system

x  2y   3
 2x  4y  7

32. Repeat Problem 31 for the following system:

2x  y  4
 4x  2y   7

33. In the process of solving a system by substitution, suppose
you encounter an identity, such as 0  0. How would you
describe the solutions to such a system? Illustrate your
ideas with the system

x  2y   3
 2x  4y  6

34. Repeat Problem 33 for the following system:

2x  y  4
 4x  2y   8

9. 3u  5v  15 10. m  2n  4
6u  10v   30 2m  4n   8

Solve Problems 11–16 by substitution.

11. y  2x  3 12. y  x  4 13. x  y  4
y  3x  5 y  5x  8 x  3y  12

14. 2x  y  3 15. 3x  y  7 16. 2x  y  6
x  2y  14 2x 3y  1 x  y   3

Problems 37 and 38 refer to the system

ax  by  h

cx  dy  k

where x and y are variables and a, b, c, d, h, and k are real

constants.

In Problems 35 and 36, solve each system for p and q in terms

of x and y. Explain how you could check your solution and then

perform the check.

35. x  2  p  2q 36. x   1  2p  q

y  3  p  3q y  4  p  q
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39. Airspeed. It takes a private airplane 8.75 hours to make
the 2,100-mile flight from Atlanta to Los Angeles and 

5 hours to make the return trip. Assuming that the wind
blows at a constant rate from Los Angeles to Atlanta, find

the airspeed of the plane and the wind rate.

40. Airspeed. A plane carries enough fuel for 20 hours of
flight at an airspeed of 150 miles per hour. How far can it

fly into a 30 mile per hour headwind and still have enough

fuel to return to its starting point? (This distance is called
the point of no return.)

41. Rate–Time. A crew of eight can row 20 kilometers per
hour in still water. The crew rows upstream and then
returns to its starting point in 15 minutes. If the river is
flowing at 2 kilometers per hour, how far upstream did the

crew row?

42. Rate–Time. It takes a boat 2 hours to travel 20 miles
down a river and 3 hours to return upstream to its starting
point. What is the rate of the current in the river?

43. Chemistry. A chemist has two solutions of hydrochloric
acid in stock: a 50% solution and an 80% solution. How
much of each should be used to obtain 100 milliliters of a
68% solution?

44. Business. A jeweler has two bars of gold alloy in stock,
one of 12 carats and the other of 18 carats (24-carat gold is
pure gold, 12-carat is pure, 18-carat gold is pure, and
so on). How many grams of each alloy must be mixed to
obtain 10 grams of 14-carat gold?

45. Finance. Suppose you have $12,000 to invest. If part is
invested at 10% and the rest at 15%, how much should 
be invested at each rate to yield 12% on the total amount
invested?

46. Finance. An investor has $20,000 to invest. If part is
invested at 8% and the rest at 12%, how much should be
invested at each rate to yield 11% on the total amount
invested?

47. Production. A supplier for the electronics industry manu-
factures keyboards and screens for graphing calculators at
plants in Mexico and Taiwan. The hourly production rates
at each plant are given in the table. How many hours
should each plant be operated to exactly fill an order for

4,000 keyboards and screens?

18
24

12
24

48. Production. A company produces Italian sausages and
bratwursts at plants in Green Bay and Sheboygan. The
hourly production rates at each plant are given in the table.
How many hours should each plant be operated to exactly
fill an order for 62,250 Italian sausages and 76,500

bratwursts?

49. Nutrition. Animals in an experiment are to be kept on a
strict diet. Each animal is to receive, among other things,
20 grams of protein and 6 grams of fat. The laboratory
technician is able to purchase two food mixes of the
following compositions: Mix A has 10% protein and 6%
fat; mix B has 20% protein and 2% fat. How many grams
of each mix should be used to obtain the right diet for a
single animal?

50. Nutrition. A fruit grower can use two types of fertilizer
in an orange grove, brand A and brand B. Each bag of
brand A contains 8 pounds of nitrogen and 4 pounds of
phosphoric acid. Each bag of brand B contains 7 pounds
of nitrogen and 7 pounds of phosphoric acid. Tests indicate
that the grove needs 720 pounds of nitrogen and 500
pounds of phosphoric acid. How many bags of each brand
should be used to provide the required amounts of nitrogen
and phosphoric acid?

51. Supply and Demand. Suppose the supply and demand
equations for printed T-shirts in a resort town for a particu-
lar week are

p  0.007q   3 Supply equation

p   0.018q  15 Demand equation

where p is the price in dollars and q is the quantity.

Plant Keyboards Screens

Mexico 40 32

Taiwan 20 32

Plant Italian Sausage Bratwurst

Green Bay 800 800

Sheboygan 500 1,000

37. Solve the system for x and y in terms of the constants a, b,
c, d, h, and k. Clearly state any assumptions you must
make about the constants during the solution process.

38. Discuss the nature of solutions to systems that do not
satisfy the assumptions you made in Problem 37.



(A) Find the supply and the demand (to the nearest unit) if
T-shirts are priced at $4 each. Discuss the stability of
the T-shirt market at this price level.

(B) Find the supply and the demand (to the nearest unit) if
T-shirts are priced at $8 each. Discuss the stability of
the T-shirt market at this price level.

(C) Find the equilibrium price and quantity.

(D) Graph the two equations in the same coordinate sys-
tem and identify the equilibrium point, supply curve,
and demand curve.

52. Supply and Demand. Suppose the supply and demand
equations for printed baseball caps in a resort town for a
particular week are

p  0.006q 2 Supply equation

p   0.014q  13 Demand equation

where p is the price in dollars and q is the quantity in
hundreds.

(A) Find the supply and the demand (to the nearest unit) if
baseball caps are priced at $4 each. Discuss the stabil-
ity of the baseball cap market at this price level.

(B) Find the supply and the demand (to the nearest unit) if
baseball caps are priced at $8 each. Discuss the stabil-
ity of the baseball cap market at this price level.

(C) Find the equilibrium price and quantity.

(D) Graph the two equations in the same coordinate sys-
tem and identify the equilibrium point, supply curve,
and demand curve.

★ 53. Supply and Demand. At $0.60 per bushel, the daily sup-
ply for wheat is 450 bushels and the daily demand is 645
bushels. When the price is raised to $0.90 per bushel, the
daily supply increases to 750 bushels and the daily de-
mand decreases to 495 bushels. Assume that the supply
and demand equations are linear.

(A) Find the supply equation. [Hint: Write the supply equa-
tion in the form p aq b and solve for a and b.]

(B) Find the demand equation.

(C) Find the equilibrium price and quantity.

★ 54. Supply and Demand. At $1.40 per bushel, the daily sup-
ply for soybeans is 1,075 bushels and the daily demand is

580 bushels. When the price falls to $1.20 per bushel, the
daily supply decreases to 575 bushels and the daily de-
mand increases to 980 bushels. Assume that the supply
and demand equations are linear.

(A) Find the supply equation. [See the hint in Problem 53.]

(B) Find the demand equation.

(C) Find the equilibrium price and quantity.

★ 55. Physics. An object dropped off the top of a tall building
falls vertically with constant acceleration. If s is the distance
of the object above the ground (in feet) t seconds after its re-
lease, then s and t are related by an equation of the form

s  a  bt2

where a and b are constants. Suppose the object is 
180 feet above the ground 1 second after its release 
and 132 feet above the ground 2 seconds after its release.

(A) Find the constants a and b.

(B) How high is the building?

(C) How long does the object fall?

★ 56. Physics. Repeat Problem 55 if the object is 240 feet
above the ground after 1 second and 192 feet above the
ground after 2 seconds.

★ 57. Earth Science. An earthquake emits a primary wave and a
secondary wave. Near the surface of the Earth the primary
wave travels at about 5 miles per second and the secondary
wave at about 3 miles per second. From the time lag be-
tween the two waves arriving at a given receiving station,
it is possible to estimate the distance to the quake. (The
epicenter can be located by obtaining distance bearings at
three or more stations.) Suppose a station measured a time
difference of 16 seconds between the arrival of the two
waves. How long did each wave travel, and how far was
the earthquake from the station?

★ 58. Earth Science. A ship using sound-sensing devices above
and below water recorded a surface explosion 6 seconds
sooner by its underwater device than its above-water de-
vice. Sound travels in air at about 1,100 feet per second
and in seawater at about 5,000 feet per second.

(A) How long did it take each sound wave to reach the ship?

(B) How far was the explosion from the ship?
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Systems of Linear Equations 
and Augmented Matrices

Elimination by Addition ● Matrices ● Solving Linear Systems Using Augmented Matrices

Most real-world applications of linear systems involve a large number of vari-
ables and equations. Computers are usually used to solve these larger systems.
Although very effective for systems involving two variables, the graphing and



substitution methods discussed in Section 8.1 are not well-suited for computer
use in the solution of larger systems. In Section 8.2, we begin the development
of a method that will work for systems of any size and that lends itself to com-
puter implementation.

Elimination by Addition
We begin with an algebraic solution method called elimination by addition. As
we will see, this method is readily generalized to larger systems. The method
involves the replacement of systems of equations with simpler equivalent systems,

by performing appropriate operations, until we obtain a system with an obvious
solution. Equivalent systems of equations are systems that have the same solu-
tion set. Theorem 1 lists operations that produce equivalent systems.

Any one of the three operations in Theorem 1 can be used to produce an equiv-
alent system, but operations 2 and 3 will be of most use to us now. Operation 1
becomes more important later in the section. The use of Theorem 1 is best illus-
trated by examples.

Solving a System Using Elimination by Addition

Solve using elimination by addition: 3x  2y  8
2x  5y   1

S O L U T I O N

We use Theorem 1 to eliminate one of the variables and thus obtain a system with
an obvious solution.

x   2

19x    38

 4x  10y   2

 15x  10y   40

 2x  5y   1

If we multiply the top equation by 5, the bottom by 2, and then add,

we can eliminate y.

 3x  2y   8
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T H E O R E M  1
Equation Operations Producing Equivalent Systems

A system of linear equations is transformed into an equivalent system if
1. Two equations are interchanged.
2. An equation is multiplied by a nonzero constant.
3. A constant multiple of one equation is added to another equation.



The equation x  2 paired with either of the two original equations produces an
equivalent system. Thus, we can substitute x  2 back into either of the two orig-
inal equations to solve for y. We choose the second equation.

2(2)  5y   1

5y   5

y  1

Solution: x  2, y   1 or (2,  1).

C H E C K

3x  2y  8 2x  5y   1

3(2)  2( 1) ‚ 8 2(2)  5( 1) ‚  1

8 ⁄ 8  1 ⁄  1

Solve using elimination by addition: 6x  3y  3
5x  4y  7

Let’s see what happens in the elimination process when a system either has
no solution or has infinitely many solutions. Consider the following system:

2x  6y   3

x  3y  2

Multiplying the second equation by  2 and adding, we obtain

We have obtained a contradiction. An assumption that the original system has
solutions must be false, otherwise, we have proved that 0   7! Thus, the sys-
tem has no solution. The graphs of the equations are parallel and the system is
inconsistent.

 0   7

 2x  6y   4

 2x  6y   3
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E X P L O R E / D I S C U S S  1

In each of the following systems, compare the results of applying elimi-
nation by addition with the graphical solution and discuss the nature of
the solution sets.

(A) 3x  2y  6 (B) 3x  2y  6
6x  4y  12 6x  4y  13



Now consider the system

x  y  4

 2x  y    8

If we multiply the top equation by 2 and add the result to the bottom equation,
we get

Obtaining 0  0 by addition implies that the two original equations are equivalent.
That is, their graphs coincide and the system is dependent. If we let x  t, where
t is any real number, and solve either equation for y, we obtain y  2t  8. Thus,

(t, 2t  8) t a real number

describes the solution set for the system. The variable t is called a parameter,
and replacing t with a real number produces a particular solution to the system.
For example, some particular solutions to this system are

t   1 t 2 t 5 t 9.4

( 1,  10) (2,  4) (5, 2) (9.4, 10.8)

Example 2 illustrates that elimination by addition provides an efficient method for
solving applied problems.

Diet

A woman wants to use milk and orange juice to increase the amount of calcium
and vitamin A in her daily diet. An ounce of milk contains 41 milligrams of cal-
cium and 59 micrograms* of vitamin A. An ounce of orange juice contains 5 mil-
ligrams of calcium and 75 micrograms of vitamin A. How many ounces of milk
and orange juice should she drink each day to provide exactly 550 milligrams of
calcium and 1,300 micrograms of vitamin A?

S O L U T I O N

First we define the relevant variables:

x  Number of ounces of milk

y  Number of ounces of orange juice

Next we summarize the given information in Table 1.

 0  0

 2x  y   8

 2x  y  8

1
2

*A microgram ( g) is one-millionth (10 6) of a gram.

8 MODELING WITH LINEAR SYSTEMS630

T A B L E  1

Milk Orange Juice Total Needed

Calcium (mg) 41 5 550

Vitamin A ( g) 59 75 1,300



Now we use the information in Table 1 to form equations involving x and y:

  

41x  5y  550

  

59x  75y  1,300

Solve using elimination by addition:

41(12.5)  5y  550

 556x   6,950

Drinking 12.5 ounces of milk and 7.5 ounces of orange juice each day will provide
the required amounts of calcium and vitamin A.

C H E C K

41x  5y  550 59x  75y  1,300

41(12.5)  5(7.5) ‚ 550 59(12.5)  75(7.5) ‚ 1,300

550 ⁄ 550 1,300 ⁄ 1,300

A man wants to use cottage cheese and yogurt to increase the amount of protein
and calcium in his daily diet. An ounce of cottage cheese contains 3 grams of
protein and 15 milligrams of calcium. An ounce of yogurt contains 1 gram of pro-
tein and 41 milligrams of calcium. How many ounces of cottage cheese and yogurt
should he eat each day to provide exactly 62 grams of protein and 760 milligrams
of calcium?

Matrices
In solving systems of equations using elimination by addition, the coefficients of
the variables and the constant terms play a central role. The process can be made
more efficient for generalization and computer work by the introduction of a math-
ematical form called a matrix. A matrix is a rectangular array of numbers writ-
ten within brackets. Two examples are

B   
 5

0

 2

 3

4

1

12

0

11

6

8

 1
 A   1

5

 3

0

7

 4 

x  12.5

y  7.5

 5y  37.5 59x  75y  1,300

 615x  75y   8,250

Total vitamin A 
needed (micrograms)

Vitamin A in y ounces
of orange juice

Vitamin A in x ounces
of milk

Total calcium 
needed (milligrams)

Calcium in y ounces
of orange juice

Calcium in x ounces
of milk
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Each number in a matrix is called an element of the matrix. Matrix A has six ele-
ments arranged in two rows and three columns. Matrix B has 12 elements arranged
in four rows and three columns. If a matrix has m rows and n columns, it is called
an m  n matrix (read “m by n matrix”). The expression m  n is called the size
of the matrix, and the numbers m and n are called the dimensions of the matrix.
It is important to note that the number of rows is always given first. Referring to
matrices A and B on page 631, A is a 2  3 matrix and B is a 4  3 matrix. A
matrix with n rows and n columns is called a square matrix of order n. A matrix
with only one column is called a column matrix, and a matrix with only one row
is called a row matrix. These definitions are illustrated by the following:

3  3 4  1 1  4

Square matrix Column Row matrix

of order 3 matrix

The position of an element in a matrix is the row and column containing the ele-
ment. This is usually denoted using double subscript notation aij, where i is the
row and j is the column containing the element aij, as illustrated:

Note that a12 is read “a one two,” not “a twelve.” The elements a11  1 and 
a22  0 make up the principal diagonal of A. In general, the principal diagonal
of a matrix A consists of the elements a11, a22, a33, . . . .

REMARK Most graphing utilities are capable of storing and manipulating matri-
ces. Figure 1 shows matrix A displayed in the editing screen of a particular graph-
ing calculator. The size of the matrix is given at the top of the screen. The position
and the value of the currently selected element is given at the bottom. Notice that
a comma is used in the notation of the position. This is common practice on graph-
ing utilities but not in mathematical literature.

The coefficients and constant terms in a system of linear equations can be used
to form several matrices of interest to our work. Related to the system

(1)

are the following matrices:

Coefficient Constant Augmented coefficient

matrix matrix matrix

 2

1

 3

2

5

 3   5

 3  2

1

 3

2 

x  2y   3

 2x  3y  5

a11  1, a12  5, a13   3

a21  6, a22  0, a23   4
A   16

5

0

 3

 4 

 2 1
2 0  

2
3  

3

 2

1

0
  

0.5

0.0

0.7

0.2

0.3

0.0

1.0

0.5

0.2
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FIGURE 1 Matrix notation on a
graphing utility.
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The augmented coefficient matrix will be used in this section. The other matrices
will be used in later sections. The augmented coefficient matrix contains the essen-
tial parts of the system—both the coefficients and the constants. The vertical bar
is included only as a visual aid to help us separate the coefficients from the con-
stant terms. (Matrices entered and displayed on a graphing utility will not display
this line.)

For ease of generalization to the larger systems in the following sections, we
are now going to change the notation for the variables in system (1) to a subscript
form (we would soon run out of letters, but we will not run out of subscripts).
That is, in place of x and y, we will use x1 and x2, respectively, and (1) will be
written as

In general, associated with each linear system of the form

(2)

where x1 and x2 are variables, is the augmented matrix of the system:

This matrix contains the essential parts of system (2). Our objective is to learn
how to manipulate augmented matrices in such a way that a solution to system
(2) will result, if a solution exists.

In our earlier discussion of using elimination by addition, we said that two
systems were equivalent if they had the same solution. And we used the opera-
tions in Theorem 1 to transform a system into an equivalent system. Paralleling
this approach, we now say that two augmented matrices are row-equivalent,
denoted by the symbol  between the two matrices, if they are augmented matri-
ces of equivalent systems of equations. And we use the operations listed in The-
orem 2 to transform augmented matrices into row-equivalent matrices. Note that
Theorem 2 is a direct consequence of Theorem 1.

 a11

a21

a12

a22  k1

k2
 

a21x1  a22x2  k2

a11x1  a12x2  k1

x1  2x2   3

 2x1  3x2  5

Column 1 (C1)

Column 2 (C2)

Column 3 (C3)

Row 1 (R1)

Row 2 (R2)

T H E O R E M  2
Row Operations Producing Row-Equivalent Matrices

An augmented matrix is transformed into a row-equivalent matrix if any
of the following row operations is performed:
1. Two rows are interchanged (Ri ↔ Rj).
2. A row is multiplied by a nonzero constant (kRi → Ri).
3. A constant multiple of one row is added to another row

(kRj  Ri → Ri).
[Note: The arrow means “replaces.”]



Solving Linear Systems Using Augmented Matrices
The use of Theorem 2 in solving systems in the form of (2) is best illustrated by
examples.

Solving a System Using Augmented Matrix Methods

Solve, using augmented matrix methods:

(3)

S O L U T I O N

We start by writing the augmented matrix corresponding to system (3):

(4)

Our objective is to use row operations from Theorem 2 to try to transform matrix
(4) into the form

(5)

where m and n are real numbers. The solution to system (3) will then be obvi-
ous, because matrix (5) will be the augmented matrix of the following system:

x1  m x1 0x2 m

x2  n 0x1 x2  n

We now proceed to use row operations to transform (4) into form (5).

Step 1. To get a 1 in the upper left corner, we interchange rows 1 and 2—
Theorem 2, part 1:

R1
4 R2

Now you see why we wanted

Theorem 2, part 1.

Step 2. To get a 0 in the lower left corner, we multiply R1 by  3 and add to
R2—Theorem 2, part 3. This changes R2 but not R1. Some people find
it useful to write ( 3)R1 outside the matrix to help reduce errors in
arithmetic:

( 3)R1
 R2 S R2

 3 6  21

Step 3. To get a 1 in the second row, second column, we multiply R2 by 
—Theorem 2, part 2:

R2
S R2  1

0

 2

1

7

 2  1
10 1

0

 2

10

7

 20  
1

10

 1

0

 2

10

7

 20   1

3

 2

4

7

1  

 1

3

 2

4

7

1   3

1

4

 2

1

7  

 1

0

0

1

m

n  

 3

1

4

 2

1

7  

x1  2x2  7

 3x1  4x2  1

E
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Step 4. To get a 0 in the first row, second column, we multiply R2 by 2 and add
the result to R1—Theorem 2, part 3. This changes R1 but not R2.

0 2  4

2R2  R1 S R1

We have accomplished our objective! The last matrix is the augmented matrix for
the system

x1  3
(6)

x2   2

Because system (6) is equivalent to the original system (3), we have solved sys-
tem (3). That is, x1  3 and x2   2.

C H E C K

3x1  4x2  1 x1  2x2  7

3(3)  4( 2) ‚ 1 3  2( 2) ‚ 7

1 ⁄ 1 7 ⁄ 7

The above process is written more compactly as follows:

R1 4 R2

 ( 3)R1 R2 S R2

 3 6  21

 R2 S R2

0 2  4

 2R2  R1 S R1

 

Therefore, x1  3 and x2   2.

Solve, using augmented matrix methods: 2x1  x2   7
x1  2x2  4

 1

0

0

1
   3

 2 
 1

0

 2

1
   7

 2 

1
10 1

0

 2

10
   7

 20 

 1

3

 2

4
   7

1 

 3

1

4

 2
   1

7 

 1

0

0

1

3

 2   1

0

 2

1

7

 2  
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E
Step 1.

Need a 1 here

Step 2.
Need a 0 here

Step 3.
Need a 1 here

E

EStep 4.
Need a 0 here

'



Solving a System Using Augmented Matrix Methods

Solve, using augmented matrix methods: 2x1  3x2  7
3x1  4x2  2

S O L U T I O N

R1 S R1

 
( 3)R1 R2 S R2

 3

 
R2 S R2

0

 
R2  R1 S R1

 

Thus, x1  2 and x2   1. You should check this solution in the original system.

Solve, using augmented matrix methods: 5x1  2x2  12
2x1  3x2  1

Solving a System Using Augmented Matrix Methods

Solve, using augmented matrix methods: 2x1  x2  4
(7)

 6x1  3x2   12

 1

0

0

1  2

 1 

3
2 1

0

 
3
2

1  7
2

 1 
 

3
2

3
2

2
17

 1

0

 
3
2

17
2  7

2

 
17
2
 

 
21
2

9
2

 1

3

 
3
2

4  7
2

2 

1
2 2

3

 3

4  7

2 
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E X P L O R E / D I S C U S S  2

The summary at the end of Example 3 shows five augmented coeffi-
cient matrices. Write the linear system that each matrix represents,
solve each system graphically, and discuss the relationship between
these solutions.

Step 2.
Need a 0 here

Step 3.
Need a 1 here

Step 4.
Need a 0 here

Step 1.
Need a 1 here



S O L U T I O N

R1 S R1 (This produces a 1 in the upper left corner.)

R2 S R2 (This simplifies R2.)

  
2R1 R2 S R2 (This produces a 0 in the lower left corner.)

2  1 4 

  

The last matrix corresponds to the system

x1 x2 2

0x1 0x2 0

Thus, x1  x2  2. Hence, for any real number t, if x2  t, then x1  t  2.
That is, the solution set is described by

( t  2, t) t a real number (8)

For example, if t  6, then (5, 6) is a particular solution; if t   2, then (1,  2)
is another particular solution; and so on. Geometrically, the graphs of the two
original equations coincide and there are infinitely many solutions.

In general, if we end up with a row of 0s in an augmented matrix for a two-equation–two-variable

system, the system is dependent and there are infinitely many solutions.

C H E C K

The following is a check that (8) provides a solution for system (7) for any real
number t:

2x1  x2  4  6x1  3x2   12

2( t  2)  t ‚ 4  6( t  2)  3t ‚  12

t  4  t ‚ 4  3t  12  3t ‚  12

4 ⁄ 4  12 ⁄  12

Solve, using augmented matrix methods:  2x1  6x2  6
3x1  9x2   9

1
2

1
2

1
2

1
2

1
2

 0  0

1
2x1  

1
2 x2  2

 1

0

 
1
2

0  2

         0 

 1

 2

 
1
2

1  2

 4 

1
3

1
2 2

 6

 1

3  4

 12 
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Solving a System Using Augmented Matrix Methods

Solve, using augmented matrix methods: 2x1  6x2   3
x1  3x2  2

S O L U T I O N

R1 4 R2

( 2)R1 R2 S R2

 2  6  4

R2 implies the contradiction: 0   7

This is the augmented matrix of the system

x1  3x2  2 x1  3x2  2

0   7 0x1 0x2   7

The second equation is not satisfied by any ordered pair of real numbers. Hence,
the original system is inconsistent and has no solution. Otherwise, we have proved
that 0   7!

Thus, if we obtain all 0s to the left of the vertical bar and a nonzero number to the right of the bar

in a row of an augmented matrix, then the system is inconsistent and there are no solutions.

Solve, using augmented matrix methods: 2x1  x2  3
4x1  2x2   1

  1

0

3

0

2

 7  
  1

2

3

6

2

 3  
 2

1

6

3

 3

2  
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E X P L O R E / D I S C U S S  3

Most graphing utilities can perform row operations. Figure 2 shows the
solution to Example 5 on a particular graphing calculator. Consult your
manual to see how to perform row operations, and solve Matched Prob-
lem 5 on your graphing utility.

FIGURE 2 Performing 
row operations on a
graphing utility.



8. Identify all column matrices.

9. Identify all square matrices.

10. How many additional rows would matrix A need to be a
square matrix?

11. For matrix A, find a12 and a23.

12. For matrix A, find a21 and a13.

13. Find the elements on the principal diagonal of matrix B.

14. Find the elements on the principal diagonal of matrix A.

Perform each of the row operations indicated in Problems

15–26 on the following matrix:

15. R1 ↔ R2 16. R2 → R2
1
2

 1

4

 3

 6

2

 8  
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1. ( 1, 3), or x   1 and y  3
2. 16.5 ounces of cottage cheese, 12.5 ounces of yogurt
3. x1   2, x2  3
4. x1  2, x2    1

5. The system is dependent. For t any real number, x2  t,
x1  3t  3 is a solution.

6. Inconsistent—no solution

Summary

The augmented matrix of any system of two linear equations in two variables can be transformed by row

operations into a row-equivalent matrix having one of the following forms, where m, n, and p are real

numbers and p 0:

Form 1: A Form 2: Infinitely Form 3:

Unique Solution Many Solutions No Solution 

(Consistent and (Consistent and (Inconsistent)

Independent) Dependent)

 1

0

m

0

n

p   1

0

m

0

n

0   1

0

0

1

m

n  

Solve Problems 1–4 using elimination by addition.

1. 2x  3y  1 2. 2m  n  10
3x  y  7 m  2n   4

3. 4x  3y  15 4. 5x  2y  1
3x  4y  5 2x  3y   11

Problems 5–14 refer to the following matrices:

5. What is the size of A? Of C?

6. What is the size of B? Of D?

7. Identify all row matrices.

C  [3  2 0]     D    4

7 

A   3

4

 2

1

0

 6     B   
 2

 3

4

8

6

2

0

9

0
 

The process of solving systems of equations described in Section 8.2 is
referred to as Gauss–Jordan elimination. We will use this method to solve larger-
scale systems in Section 8.3, including systems where the number of equations
and the number of variables are not the same.



23. ( 2)R1  R2 → R2 24. ( 3)R1  R2 → R2

25. ( 1)R1  R2 → R2 26. 1R1  R2 → R2

17.  4R1 → R1 18.  2R1 → R1

19. 2R2 → R2 20.  1R2 → R2

21. ( 4)R1  R2 → R2 22. ( )R2  R1 → R1
1
2
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35. 0.5x1 x2   2 36.  x1 0.5x2  1
 x1  2x2  4 2x1   x2   2

37. 0.5x1 x2   2 38.  x1 0.5x2  1
 x1  2x2  8 2x1   x2   4

Solve Problems 39–50 using augmented matrix methods.

39. x1  4x2   2 40. x1  3x2   5
 2x1 x2   3  3x1 x2  5

41. 3x1  x2  2 42. 2x1  x2  0
x1  2x2  10 x1  2x2   5

43. x1  2x2  4 44. 2x1  3x2   2
2x1  4x2   8  4x1 6x2  7

45. 2x1  x2  6 46. 3x1  x2   5
x1  x2   3 x1  3x2  5

47. 3x1  6x2   9 48. 2x1  4x2   2
 2x1 4x2  6  3x1 6x2  3

49. 4x1  2x2  2 50.  6x1 2x2  4
 6x1 3x2   3 3x1  x2   2

51. The coefficients of the three systems below are very 

similar. You might guess that the solution sets to the three
systems would also be nearly identical. Develop evidence
for or against this guess by considering graphs of the 
systems and solutions obtained using elimination by 
addition.

(A) 4x  5y  4 (B) 4x  5y  4
9x  11y  4 8x  11y  4

(C) 4x  5y  4
8x  10y  4

52. Repeat Problem 51 for the following systems.

(A) 5x  6y   10 (B) 5x  6y   10
11x  13y   20 10x  13y   20

(C) 5x  6y   10
10x  12y   20

Solve Problems 53–56 using augmented matrix methods. Use a

graphing utility to perform the row operations.

53. 0.8x1  2.88x2  4 54. 2.7x1  15.12x2  27
1.25x1  4.34x2  5 3.25x1  18.52x2  33

55. 4.8x1  40.32x2  295.2
 3.75x1 28.7x2   211.2

56. 5.7x1  8.55x2   35.91
4.5x1  5.73x2  76.17

Each of the matrices in Problems 27–32 is the result of per-

forming a single row operation on the matrix A shown below.

Identify the row operation. Check your work by performing the

row operation you identified on a graphing utility.

27. 28.

29. 30.

31. 32.

Solve Problems 33–38 using augmented matrix methods. Write

the linear system represented by each augmented matrix in

your solution, and solve each of these systems graphically. Dis-

cuss the relationship between the solutions of these systems.

33. x1  x2  7 34. x1  x2  5
x1  x2  1 x1  x2   3

  1

2

2

5

 3

0   1

6

1

 3

1

12  
 3

6

0

 3

5

12    1

0

2

9

 3

 6  
  2

6

4

 3

 6

12    1

2

2

 1

 3

4  
A    1

6

2

 3

 3

12  



57. Puzzle. A friend of yours came out of the post office hav-

ing spent $19.50 on 32¢ and 23¢ stamps. If she bought 75
stamps in all, how many of each type did she buy?

58. Puzzle. A parking meter contains only nickels and dimes
worth $6.05. If there are 89 coins in all, how many of each
type are there?

59. Investments. Bond A pays 6% compounded annually
and bond B pays 9% compounded annually. If a $200,000
investment in a combination of the two bonds returns
$14,775 annually, how much is invested in each bond?

60. Investments. Past history indicates that mutual fund A
will earn 14.6% annually and mutual fund B will earn
9.8% annually. How should an investment be divided be-
tween the two funds to produce an expected return of
11%?

61. Chemistry. A chemist has two solutions of sulfuric acid:
a 20% solution and an 80% solution. How much of each
should be used to obtain 100 liters of a 62% solution?

62. Chemistry. A chemist has two solutions: one containing
40% alcohol and another containing 70% alcohol. How
much of each should be used to obtain 80 liters of a 49%
solution?

63. Nutrition. Animals in an experiment are to be kept on a
strict diet. Each animal is to receive, among other things,
54 grams of protein and 24 grams of fat. The laboratory
technician is able to purchase two food mixes of the fol-
lowing compositions: Mix A has 15% protein and 10% fat;
mix B has 30% protein and 5% fat. How many grams of
each mix should be used to obtain the right diet for a sin-
gle animal?

64. Nutrition—Plants. A fruit grower can use two types of
fertilizer in his orange grove, brand A and brand B. Each
bag of brand A contains 9 pounds of nitrogen and 
5 pounds of phosphoric acid. Each bag of brand B contains
8 pounds of nitrogen and 6 pounds of phosphoric acid.
Tests indicate that the grove needs 770 pounds of nitrogen
and 490 pounds of phosphoric acid. How many bags of

each brand should be used to provide the required amounts
of nitrogen and phosphoric acid?

65. Delivery Charges. United Express, a nationwide package
delivery service, charges a base price for overnight deliv-
ery of packages weighing 1 pound or less and a surcharge
for each additional pound (or fraction thereof). A customer
is billed $27.75 for shipping a 5-pound package and
$64.50 for shipping a 20-pound package. Find the base
price and the surcharge for each additional pound.

66. Delivery Charges. Refer to Problem 65. Federated Ship-
ping, a competing overnight delivery service, informs the
customer in Problem 65 that it would ship the 5-pound
package for $29.95 and the 20-pound package for $59.20.

(A) If Federated Shipping computes its cost in the same
manner as United Express, find the base price and the

surcharge for Federated Shipping.

(B) Devise a simple rule that the customer can use to
choose the cheaper of the two services for each pack-
age shipped. Justify your answer.

67. Resource Allocation. A coffee manufacturer uses Colom-
bian and Brazilian coffee beans to produce two blends, ro-
bust and mild. A pound of the robust blend requires 
12 ounces of Colombian beans and 4 ounces of Brazilian
beans. A pound of the mild blend requires 6 ounces of
Colombian beans and 10 ounces of Brazilian beans. Cof-
fee is shipped in 132-pound burlap bags. The company has
50 bags of Colombian beans and 40 bags of Brazilian
beans on hand. How many pounds of each blend should it
produce to use all the available beans?

68. Resource Allocation. Refer to Problem 67.

(A) If the company decides to discontinue production of
the robust blend and only produce the mild blend, how
many pounds of the mild blend can it produce and how
many beans of each type will it use? Are there any
beans that are not used?

(B) Repeat part A if the company decides to discontinue
production of the mild blend and only produce the ro-
bust blend.
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Gauss–Jordan Elimination

Reduced Matrices ● Solving Systems by Gauss–Jordan Elimination ● Mathematical Modeling

Now that you have had some experience with row operations on simple augmented
matrices, we will consider systems involving more than two variables. In addi-
tion, we will not require that a system have the same number of equations as vari-
ables. It turns out that the results for two-variable–two-equation linear systems,
stated in Theorem 1 in Section 8.1, actually hold for linear systems of any size.



Reduced Matrices
In Section 8.2 we used row operations to transform the augmented coefficient
matrix for a system of two equations in two variables

into one of the following simplified forms:

Form 1 Form 2 Form 3

(1)

where m, n, and p are real numbers, p  0. Each of these reduced forms repre-
sents a system that has a different type of solution set, and no two of these forms
are row-equivalent. Thus, we consider each of these to be a different simplified
form. Now we want to consider larger systems with more variables and more
equations.

 1

0

m

0

n

p   1

0

m

0

n

0   1

0

0

1

m

n  

 a11

a21

a12

a22

k1

k2
        

a11x1  a12x2  k1

a21x1  a22x2  k2
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Possible Solutions to a Linear System

It can be shown that any linear system must have exactly one solution, no solution, or an infinite

number of solutions, regardless of the number of equations or the number of variables in the system.

The terms unique, consistent, inconsistent, dependent, and independent are used to describe these

solutions, just as they are for systems with two variables.

E X P L O R E / D I S C U S S 1

Forms 1, 2, and 3 above represent systems that have, respectively, a
unique solution, an infinite number of solutions, and no solution. Dis-
cuss the number of solutions for the systems of three equations in three
variables represented by the following augmented coefficient matrices.

(A) (B) (C)  
1

0

0

0

1

0

0

0

1

2

3

4
   

1

0

0

1

0

0

1

0

0

2

0

0
   

1

0

0

1

0

0

1

0

0

2

3

0
  

Because there is no upper limit on the number of variables or the number of
equations in a linear system, it is not feasible to explicitly list all possible “sim-
plified forms” for larger systems, as we did for systems of two equations in two
variables. Instead, we state a general definition of a simplified form called a
reduced matrix that can be applied to all matrices and systems, regardless of size.



Reduced Forms

The matrices below are not in reduced form. Indicate which condition in Defini-
tion 1 is violated for each matrix. State the row operation(s) required to transform
the matrix to reduced form, and find the reduced form.

(A) (B)

(C) (D)

S O L U T I O N S

(A) Condition 4 is violated: The leading 1 in row 2 is not to the right of
the leading 1 in row 1. Perform the row operation R1 ↔ R2 to obtain
the reduced form:

(B) Condition 3 is violated: The column containing the leading 1 in row 2
does not have a 0 above the 1. To obtain the reduced form, perform
the row operation 2R2  R1 → R1

(C) Condition 1 is violated: The second row contains all 0s, and it is
above a row having at least one nonzero element. Perform the row
operation R2 ↔ R3 to obtain the reduced form:

 
1

0

0

0

1

0

 3

 2

0
  

 1

0

2

0

0

1

1

 1  

 1

0

0

1

3

 2  

 
1

0

0

0

2

0

0

0

1

 1

3

 5
   

1

0

0

0

0

1

 3

0

 2
  

 1

0

2

0

 2

1

3

 1   0

1

1

0

 2

3  
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D E F I N I T I O N 1
Reduced Matrix

A matrix is in reduced form* if

1. Each row consisting entirely of 0s is below any row having at least one nonzero element.

2. The leftmost or leading nonzero element in each row is 1.

3. The column containing the leading 1 of a given row has 0s above and below the 1.

4. The leading 1 in any row is to the right of the leading 1 in the preceding row.

*The reduced form we have defined here is often referred to as the reduced row-echelon form to distinguish it from

other reduced forms (see Problems 57–62 in Exercise 8.3). Most graphing utilities use the abbreviation rref to refer to

this reduced form.



(D) Condition 2 is violated: The leading nonzero element in row 2 is not
a 1. Perform the row operation R2 → R2 to obtain the reduced form:

The matrices below are not in reduced form. Indicate which condition in Defini-
tion 1 is violated for each matrix. State the row operation(s) required to transform
the matrix to reduced form and find the reduced form.

(A) (B)

(C) (D)

Solving Systems by Gauss–Jordan Elimination
We are now ready to outline the Gauss–Jordan elimination method for solving
systems of linear equations. The method systematically transforms an augmented
matrix into a reduced form. The system corresponding to a reduced augmented coef-
ficient matrix is called a reduced system. As we will see, reduced systems are easy
to solve.

The Gauss–Jordan elimination method is named after the German mathemati-
cian Karl Friedrich Gauss (1777–1855) and the German geodesist Wilhelm Jor-
dan (1842–1899). Gauss, one of the greatest mathematicians of all time, used a
method of solving systems of equations that was later generalized by Jordan to
solve problems in large-scale surveying.

Solving a System Using Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination: 2x1  2x2  x3  3
3x1  x2  x3  7
x1  3x2  2x3  0

S O L U T I O N

Write the augmented matrix and follow the steps indicated at the right to produce
a reduced form.

R1 4 R32

 3

1

 2

1

 3

1

 1

2

   3

7

0
 

 
1

0

0

2

0

0

0

0

1

3

0

4
   

0

1

0

1

0

0

0

0

1

 3

0

2
  

 
1

0

0

5

1

0

4

2

0

3

 1

0
   1

0

0

3

2

 6  

 
1

0

0

0

1

0

0

0

1

 1
3
2

 5
  

1
2
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Need a 1 here.

Step 1. Choose the leading

nonzero column and get a 1

at the top.



 

 0.1R2 S R2

 

 

 

 

The solution to this system is x1  2, x2  0, x3   1. You should check this
solution in the original system.

x3   1

x2  0

x1     2

 
1

0

0

   0

   1

0

    0

0

1

   2

0

 1
 

1

 0

0

   0

1

0

 0.1

 0.7

1

   2.1

0.7

 1
 

1

 0

0

0

1

    0

 0.1

 0.7

 0.2

   2.1

0.7

0.2
 

1

 0

0

 3

1

4

2

 0.7

 3

   0

0.7

3
 

1

 0

0

 3

10

4

2

 7

 3

   0

7

3
 

1

 3

2

 3

1

 2

2

 1

1

   0

7

3
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Need 0s here.

Need a 1 here.

Need 0s here.

Need a 1 here.

Need 0s here.

Step 2. Use multiples of the

row containing the 1 from

step 1 to get zeros in all

remaining places in the

column containing this 1.

Step 3. Repeat step 1 with

the submatrix formed by

(mentally) deleting the top

row.

Step 4. Repeat step 2 with

the entire matrix.

Step 5. Repeat step 1 with

the submatrix formed by

(mentally) deleting the top

two rows.

Step 6. Repeat step 2 with

the entire matrix.

The matrix is now in

reduced form, and we can

proceed to solve the

corresponding reduced

system.

( 3)R1 R2 S R2

( 2)R1 R3 S R3

3R2 R1 S R1

( 4)R2 R3 S R3

( 5)R3 S R3

0.1R3  R1 S R1

0.7R3  R2 S R2

Gauss–Jordan Elimination

Step 1. Choose the leading nonzero column of an augmented matrix and use appropriate row

operations to get a 1 at the top.

Step 2. Use multiples of the row containing the 1 from step 1 to get zeros in all remaining places

in the column containing this 1.

Step 3. Repeat step 1 with the submatrix formed by (mentally) deleting the row used in step 2

and all rows above this row.

Step 4. Repeat step 2 with the entire matrix, including the mentally deleted rows. Continue this

process until the entire matrix is in reduced form.

[Note: If at any point in this process we obtain a row with all zeros to the left of the vertical line and

a nonzero number to the right, we can stop, because we will have a contradiction: 0  n, n 0. We

can then conclude that the system has no solution.]



R E M A R K S

1. Although each matrix has a unique reduced form, the sequence of steps
(algorithm) presented here for transforming a matrix into a reduced form is
not unique. That is, other sequences of steps (using row operations) can
produce a reduced matrix. (For example, it is possible to use row opera-
tions in such a way that computations involving fractions are minimized.)
But we emphasize again that we are not interested in the most efficient
hand methods for transforming small matrices into reduced forms. Our
main interest is in giving you a little experience with a method that is suit-
able for solving large-scale systems on a computer or graphing utility.

2. Most graphing utilities have the ability to find reduced forms, either
directly or with some programming. Figure 1 illustrates the solution of
Example 2 on a graphing utility that has a built-in command for finding
reduced forms. Notice that in row 2 and column 4 of the reduced form the
graphing utility has displayed the very small number  3.5E-13 instead of
the exact value 0. This is a common occurrence on a graphing utility and
causes no problems. Just replace any very small numbers displayed in sci-
entific notation with 0.

R E M A R K

Most of the graphing calculator screens displayed in the text were produced on a
Texas Instruments TI-83. However, in this chapter there are a few screens that
were produced on a TI-85/86 to display more of the matrix (see Fig. 1).

Solve by Gauss–Jordan elimination: 3x1  x2  2x3  2
x1  2x2  x3  3

2x1  x2  3x3  3

Solving a System Using Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination: 2x1  4x2  x3   4
4x1  8x2  7x3  2
 2x1  4x2  3x3  5
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FIGURE 1 Gauss–Jordan
elimination on a graphing
calculator.

(a) TI-85/86 (b) TI-83



Graphing Utility Solution

Enter the augmented coefficient ma-
trix and use the rref command to
find the reduced form (Fig. 2).

The last row of the reduced form in
Figure 2 indicates an inconsistent
system with no solution. Notice that
the graphing utility program does
not stop when a contradiction first
occurs, as we did in the algebraic 
solution, but continues on to find the
reduced form.
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FIGURE 2

Solve by Gauss–Jordan elimination:  2x1  4x2  x3   8
4x1  8x2  3x3  4
 2x1  4x2  x3  11

Solving a System Using Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination: 3x1  6x2  9x3  15
2x1  4x2  6x3  10
 2x1  3x2  4x3   6

S O L U T I O N

First we find the reduced form of the augmented coefficient matrix.

S O L U T I O N

Algebraic Solution

0.5R1 S R1

 

 

 

 

The system is inconsistent and has no solution.

 
1

0

0

 2

0

0

0

1

0

 3

2

5
  

 
1

0

0

 2

0

0

0.5

1

 2

 2

2

1
  

 
1

0

0

 2

0

0

0.5

5

 2

 2

10

1
  

 
1

4

 2

 2

 8

4

0.5

7

 3

 2

2

5
  

 
2

4

 2

 4

 8

4

1

7

 3

 4

2

5
  

0.2R2S R2 Note that column 3 is the

leading nonzero column in

this submatrix.

We stop the Gauss–Jordan elimination,

although the matrix is not in reduced 

form, because the last row produces a 

contradiction: 0x1  0x2  0x3  5

( 4)R1  R2 S R2

2R1 R3 S R3

( 0.5)R2  R1 S R1

2R2  R3 S R3 



Graphing Utility Method

Enter the augmented coefficient matrix and use
rref (Fig. 3).

Using the reduced form from either of the above methods, we write the corre-
sponding system and solve.

x1  x3   3

x2  2x3  4

Note that the leading variable in each equation appears in one and only one
equation. We solve for the leading variables x1 and x2 in terms of the remaining
variable x3:

x1   x3   3

x2  2x3  4

This dependent system has an infinite number of solutions. We will use a param-
eter to represent all the solutions. If we let x3  t, then for any real number t,

x1   t  3

x2  2t  4

x3  t

You should check that ( t  3, 2t  4, t) is a solution of the original system for
any real number t. Some particular solutions are

t 0 t  2 t 3.5

( 3, 4, 0) ( 1, 0,  2) ( 6.5, 11, 3.5)
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We discard the equation corresponding to the third (all 0) row in the reduced

form, because it is satisfied by all values of x1, x2, and x3.

FIGURE 3

R24 R3 Note that we must

interchange rows 2

and 3 to obtain a

nonzero entry at the

top of the second

column of this

submatrix.

( 2) R1  R2 S R2

2R1  R3 S R3

Algebraic Method

R1 S R1

 

 

  
( 2) R2  R1 S R1 

  
This matrix is now in reduced

form. 
1

0

0

0

1

0

1

 2

0   3

4

0
 

 
1

0

0

2

1

0

 3

 2

0  5

4

0
 

 
1

0

0

2

0

1

 3

0

 2  5

  0

4
 

 
1

2

 2

2

4

 3

 3

 6

4

5

10

 6
  

1
3 

3

2

 2

6

4

 3

 9

 6

4

15

10

 6
  



Solve by Gauss–Jordan elimination: 2x1  2x2  4x3   2
3x1  3x2  6x3   3
 2x1  3x2  x3  7

In general,

If the number of leading 1s in a reduced augmented coefficient matrix is less than the number of

variables in the system and there are no contradictions, then the system is dependent and has infi-

nitely many solutions.

There are many different ways to use the reduced augmented coefficient matrix
to describe the infinite number of solutions of a dependent system. We will always
proceed as follows: Solve each equation in a reduced system for its leading vari-
able and then introduce a different parameter for each remaining variable. As the
solution to Example 4 illustrates, this method produces a concise and useful rep-
resentation of the solutions to a dependent system. Example 5 illustrates a depen-
dent system where two parameters are required to describe the solution.

Solving a System Using Gauss–Jordan Elimination

Solve by using rref on a graphing utility: x1  2x2  4x3  x4  x5  1
2x1  4x2  8x3  3x4  4x5  2

x1  3x2  7x3  3x5   2

S O L U T I O N

The augmented coefficient matrix and its reduced form are shown in Figure 4.
Write the corresponding reduced system and solve.
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E X P L O R E / D I S C U S S  2

Explain why the definition of reduced form ensures that each leading
variable in a reduced system appears in one and only one equation and
no equation contains more than one leading variable. Discuss methods
for determining if a consistent system is independent or dependent by
examining the reduced form.

FIGURE 4



x1  2x3  3x5  7

x2  3x3  2x5   3

x4  2x5  0

Solve for the leading variables x1, x2, and x4 in terms of the remaining variables
x3 and x5.

x1  2x3  3x5  7

x2   3x3  2x5  3

x4  2x5

If we let x3  s and x5  t, then for any real numbers s and t,

x1  2s  3t  7

x2   3s  2t  3

x3  s

x4  2t

x5  t

is a solution. The check is left for you to perform.

Solve by using rref on a graphing utility: 

Mathematical Modeling
Dependent systems of linear equations provide an excellent opportunity to dis-
cuss mathematical modeling in a little more detail. The process of using mathe-
matics to solve real-world problems can be broken down into three steps (Fig. 5):

Step 1. Construct a mathematical model whose solution will provide informa-
tion about the real-world problem.

Step 2. Solve the mathematical model.
Step 3. Interpret the solution to the mathematical model in terms of the origi-

nal real-world problem.

 3x1  3x2  7x3  x4  4x5  6
 2x1  2x2  4x3  x4  x5   5

x1  x2  2x3  2x5  3
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FIGURE 5

Mathematical
solution

Real-world
problem

Mathematical
model

1. Construct3. Interpret

2. Solve



In more complex problems, this cycle may have to be repeated several times to
obtain the required information about the real-world problem.

Purchasing

A chemical manufacturer wants to purchase a fleet of 24 railroad tank cars with
a combined carrying capacity of 250,000 gallons. Tank cars with three different
carrying capacities are available: 6,000 gallons, 8,000 gallons, and 18,000 gal-
lons. How many of each type of tank car should be purchased?

S O L U T I O N

Let

x1  Number of 6,000-gallon tank cars

x2  Number of 8,000-gallon tank cars

x3  Number of 18,000-gallon tank cars

Then

x1  x2  x3  24 Total number of tank cars

6,000x1  8,000x2  18,000x3  250,000 Total carrying capacity

The augmented coefficient matrix and its reduced form are shown in Figure 6.
Write the corresponding reduced system and solve.
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FIGURE 6

x1  5x3   29 or x1  5x3  29

x2  6x3  53 or x2   6x3  53

Let x3  t. Then for t any real number,

x1  5t  29

x2   6t  53

x3  t

is a solution—or is it? Because the variables in this system represent the number
of tank cars purchased, the values of x1, x2, and x3 must be nonnegative integers.
Thus, the third equation requires that t must be a nonnegative integer. The first
equation requires that 5t  29  0, so t must be at least 6. The middle equation
requires that  6t  53  0, so t can be no larger than 8. Thus, 6, 7, and 8 are
the only possible values for t. There are only three possible combinations that
meet the company’s specifications of 24 tank cars with a total carrying capacity
of 250,000 gallons, as shown in Table 1.



The final choice would probably be influenced by other factors. For example,
the company might want to minimize the cost of the 24 tank cars.

A commuter airline wants to purchase a fleet of 30 airplanes with a combined
carrying capacity of 960 passengers. The three available types of planes carry 18,
24, and 42 passengers, respectively. How many of each type of plane should be
purchased?
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T A B L E  1

6,000-Gallon 8,000-Gallon 18,000-Gallon
Tank Cars Tank Cars Tank Cars

t x1 x2 x3

6 1 17 6

7 6 11 7

8 11 5 8

18-Passenger 24-Passenger 42-Passenger
Planes Planes Planes

t x1 x2 x3

14 2 14 14

15 5 10 15

16 8 6 16

17 11 2 17

6.

1. (A) Condition 2 is violated: the 3 in row 2 and column
2 should be a 1. Perform the operation R2 → R2 to
obtain

(B) Condition 3 is violated: the 5 in row 1 and column 2
should be a 0. Perform the operation ( 5)R2  R1

→ R1 to obtain

(C) Condition 4 is violated: the leading 1 in the second
row is not to the right of the leading 1 in the first

row. Perform the operation R1 ↔ R2 to obtain

(D) Condition 1 is violated: the all-zero second row
should be at the bottom. Perform the operation R2

↔ R3 to obtain

2. x1  1, x2   1, x3  0
3. Inconsistent; no solution
4. x1  5t  4, x2  3t  5, x3  t, t any real number
5. x1  s  7, x2  s, x3  t  2, x4   3t  1, x5  t,

s and t any real numbers
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In Problems 1–10, if a matrix is in reduced form, say so. If not,

explain why and indicate the row operation(s) necessary to

transform the matrix into reduced form.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.  1
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0
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0
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In Problems 11–18, classify the system corresponding to each

reduced matrix as consistent and independent, consistent and

dependent, or inconsistent. Write the corresponding system

and solve, if possible.

11. 12.

13. 14.

15. 16.

17. 18.  1

0
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1

 2

 1

3

2

4

 1   1

0
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0

0
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0
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Use row operations to change each matrix in Problems 19–24

to reduced form.

19. 20.

21. 22.

23. 24.

Solve Problems 25–44 using Gauss–Jordan elimination.

25. 2x1  4x2  10x3   2 26. 3x1  5x2  x3   7
3x1  9x2  21x3  0 x1  x2  x3   1
x1  5x2  12x3  1 2x1  11x3  7
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27. 3x1  8x2  x3   18 28. 2x1  7x2  15x3   12

2x1  x2  5x3  8 4x1  7x2  13x3   10
2x1  4x2  2x3   4 3x1  6x2  12x3   9

29. 2x1  x2  3x3  8 30. 2x1  4x2  6x3  10
x1  2x2  7 3x1  3x2  3x3  6

31. 2x1  x2  0 32. 2x1  x2  0
3x1  2x2  7 3x1  2x2  7
x1  x2   1 x1  x2   2

33. 3x1  4x2  x3  1 34. 3x1  7x2  x3  11
2x1  3x2  x3  1 x1  2x2  x3  3
x1  2x2  3x3  2 2x1  4x2  2x3  10

35.  2x1 x2  3x3   7 36. 2x1  5x2  4x3   7
x1  4x2  2x3  0  4x1  5x2  2x3  9
x1  3x2  x3  1  2x1  x2  4x3  3



the system if the reduced form of the augmented coeffi-

cient matrix has

(A) One leading 1 (B) Two leading 1s

(C) Three leading 1s (D) Four leading 1s

46. Consider a system of three linear equations in three vari-
ables. Give examples of two reduced forms that are not
row equivalent if the system is

(A) Consistent and dependent

(B) Inconsistent

In Problems 47–50, discuss the relationship between the num-

ber of solutions of the system and the constant k.

47. x1  x2  4 48. x1  2x2  4
3x1  kx2  7  2x1 kx2   8

49. x1  kx2  3 50. x1  kx2  3
2x1  6x2  6 2x1  4x2  8

37. 2x1  2x2  4x3   2 38. 2x1  8x2  6x3  4
 3x1  3x2  6x3  3  3x1  12x2  9x3   6

39. 4x1  x2  2x3  3
 4x1  x2  3x3   10

8x1  2x2  9x3   1

40. 4x1  2x2  2x3  5
 6x1  3x2  3x3   2
10x1  5x2  9x3  4

41. 2x1  5x2  3x3  7
 4x1  10x2  2x3  6

6x1  15x2  x3   19

42.  4x1  8x2  10x3   6
6x1  12x2  15x3  9
 8x1  14x2  19x3   8

43. 5x1  3x2  2x3  13 44. 4x1  2x2  3x3  3
2x1  x2  3x3  1 3x1  x2  2x3   10
4x1  2x2  4x3  12 2x1  4x2  x3   1

45. Consider a consistent system of three linear equations in
three variables. Discuss the nature of the solution set for
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In Problems 51–56, solve using Gauss–Jordan elimination.

Use rref on a graphing utility to find the reduced forms.

51. x1  2x2  4x3  x4  7
2x1  5x2  9x3  4x4  16
x1  5x2  7x3  7x4  13

52. 2x1  4x2  5x3  4x4  8
x1  2x2  2x3  x4  3

53. x1  x2  3x3  2x4  1
 2x1  4x2  3x3  x4  0.5

3x1  x2  10x3  4x4  2.9
4x1  3x2  8x3  2x4  0.6

54. x1  x2  4x3  x4  1.3
 x1 x2  x3  1.1
2x1  x3  3x4   4.4
2x1  5x2  11x3  3x4  5.6

55. x1  2x2  x3  x4  2x5  2
 2x1  4x2  2x3  2x4  2x5  0

3x1  6x2  x3  x4  5x5  4
 x1  2x2  3x3  x4  x5  3

56. x1  3x2  x3  x4  2x5  2
 x1 5x2  2x3 2x4  2x5  0
2x1  6x2  2x3  2x4  4x5  4
 x1 3x2  x3 x5   3

Most graphing utilities also have a routine that produces the

row-echelon form (ref) of a matrix. Problems 57–62 require a

graphing utility with this routine. In Problems 57–60 use the

row-echelon form to solve the indicated system.

57. x1  2x2  6 58. 3x1  4x2  10
2x1  5x2  3 4x1  2x2  6

59. x1  2x2  x3   7
2x1  x2  2x3   6

 2x1 x2  4x3  14

60. 2x1  x2  3x3  17
 x1  2x2  x3   12
4x1  x2  5x3  3

61. Based on the results in Problems 57–60, discuss the
differences between the row-echelon form and the reduced
row-echelon form of a matrix.

62. Describe a general procedure for using the row-echelon
form to find the solution of a linear system.
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Solve Problems 63–78 using Gauss–Jordan elimination.

★ 63. Puzzle. A friend of yours came out of the post office af-

ter spending $14.00 on 15¢, 20¢, and 35¢ stamps. If she
bought 45 stamps in all, how many of each type did she
buy?

★ 64. Puzzle. A parking meter accepts only nickels, dimes, and
quarters. If the meter contains 32 coins with a total value
of $6.80, how many of each type are there?

★★ 65. Chemistry. A chemist can purchase a 10% saline solution
in 500 cubic centimeter containers, a 20% saline solution
in 500 cubic centimeter containers, and a 50% saline solu-
tion in 1,000 cubic centimeter containers. He needs 12,000
cubic centimeters of 30% saline solution. How many con-
tainers of each type of solution should he purchase to form
this solution?

★★ 66. Chemistry. Repeat Problem 65 if the 50% saline solution
is available only in 1,500 cubic centimeter containers.

67. Geometry. Find a, b, and c so that the graph of the
parabola with equation y a  bx  cx2 passes through
the points ( 2, 3), ( 1, 2), and (1, 6).

68. Geometry. Find a, b, and c so that the graph of the
parabola with equation y a  bx  cx2 passes through
the points (1, 3), (2, 2), and (3, 5).

69. Geometry. Find a, b, and c so that the graph of the circle
with equation x2

 y2
 ax  by  c  0 passes through

the points (6, 2), (4, 6), and ( 3,  1).

70. Geometry. Find a, b, and c so that the graph of the circle
with equation x2

 y2
 ax  by  c  0 passes through

the points ( 4, 1), ( 1, 2), and (3,  6).

71. Production Scheduling. A small manufacturing plant
makes three types of inflatable boats: one-person, two-

person, and four-person models. Each boat requires the
services of three departments, as listed in the table. The
cutting, assembly, and packaging departments have avail-
able a maximum of 380, 330, and 120 labor-hours per
week, respectively.

One- Two- Four-
Person Person Person
Boat Boat Boat

Cutting department 0.5 h 1.0 h 1.5 h

Assembly department 0.6 h 0.9 h 1.2 h

Packaging department 0.2 h 0.3 h 0.5 h

(A) How many boats of each type must be produced each
week for the plant to operate at full capacity?

(B) How is the production schedule in part A affected if
the packaging department is no longer used?

(C) How is the production schedule in part A affected if
the four-person boat is no longer produced?

72. Production Scheduling. Repeat Problem 71 assuming the
cutting, assembly, and packaging departments have
available a maximum of 350, 330, and 115 labor-hours per
week, respectively.

73. Nutrition. A dietitian in a hospital is to arrange a special
diet using three basic foods. The diet is to include exactly
340 units of calcium, 180 units of iron, and 220 units of
vitamin A. The number of units per ounce of each nutrient
for each of the foods is indicated in the table. 

(A) How many ounces of each food must be used to meet
the diet requirements?

(B) How is the diet in part A affected if food C is not
used?

(C) How is the diet in part A affected if the vitamin A re-
quirement is dropped?

74. Nutrition. Repeat Problem 73 if the diet is to include ex-
actly 400 units of calcium, 160 units of iron, and 240 units
of vitamin A.

75. Agriculture. A farmer can buy four types of fertilizer.
Each barrel of mix A contains 30 pounds of phosphoric
acid, 50 pounds of nitrogen, and 30 pounds of potash; each
barrel of mix B contains 30 pounds of phosphoric acid, 75
pounds of nitrogen, and 20 pounds of potash; each barrel
of mix C contains 30 pounds of phosphoric acid, 25
pounds of nitrogen, and 20 pounds of potash; and each
barrel of mix D contains 60 pounds of phosphoric acid, 25
pounds of nitrogen, and 50 pounds of potash. Soil tests in-
dicate that a particular field needs 900 pounds of phos-

phoric acid, 750 pounds of nitrogen, and 700 pounds of
potash. How many barrels of each type of fertilizer should
the farmer mix together to supply the necessary nutrients
for the field?

Units Per Ounce

Food A Food B Food C

Calcium 30 10 20

Iron 10 10 20

Vitamin A 10 30 20



opinion survey using 600 telephone contacts and 400
house contacts. Survey company A has personnel to do 30
telephone and 10 house contacts per hour; survey com-
pany B can handle 20 telephone and 20 house contacts per
hour. How many hours should be scheduled for each firm

to produce exactly the number of contacts needed?

78. Sociology. Repeat Problem 77 if 650 telephone contacts
and 350 house contacts are needed.

76. Animal Nutrition. In a laboratory experiment, rats are to be
fed five packets of food containing a total of 80 units of vita-

min E. There are four different brands of food packets that
can be used. A packet of brand A contains 5 units of vitamin
E, a packet of brand B contains 10 units of vitamin E, a
packet of brand C contains 15 units of vitamin E, and a
packet of brand D contains 20 units of vitamin E. How many
packets of each brand should be mixed and fed to the rats?

77. Sociology. Two sociologists have grant money to study
school busing in a particular city. They wish to conduct an
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Systems of Linear Inequalities

Graphing Linear Inequalities in Two Variables ● Solving Systems of Linear Inequalities ●

Mathematical Modeling with Systems of Linear Inequalities

Many applications of mathematics involve systems of inequalities rather than sys-
tems of equations. A graph is often the most convenient way to represent the solu-
tions of a system of inequalities in two variables. In Section 8.4 we discuss
techniques for graphing both a single linear inequality in two variables and a sys-
tem of linear inequalities in two variables.

Graphing Linear Inequalities in Two Variables
We know how to graph first-degree equations such as

y  2x  3    and    2x  3y  5

but how do we graph first-degree inequalities such as

y  2x  3    and    2x  3y  5

Actually, graphing these inequalities is almost as easy as graphing the equations.
But before we begin, we must discuss some important subsets of a plane in a rec-
tangular coordinate system.

A line divides a plane into two halves called half-planes. A vertical line
divides a plane into left and right half-planes [Fig. 1(a)]; a nonvertical line
divides a plane into upper and lower half-planes [Fig. 1(b)].

FIGURE 1

Half-planes.

y

Left
half-plane

Right
half-plane

x

Upper
half-plane

Lower
half-plane

x

y

(a) (b)



Now let’s investigate the half-planes determined by the linear equation
y 2x 3. We start by graphing y  2x  3 (Fig. 2). For any given value of x,
there is exactly one value for y such that (x, y) lies on the line. For the same x, if
the point (x, y) is below the line, then y  2x  3. Thus, the lower half-plane cor-
responds to the solution of the inequality y  2x  3. Similarly, the upper half-plane
corresponds to the solution of the inequality y 2x 3, as shown in Figure 2.
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E X P L O R E / D I S C U S S  1

Consider the following linear equation and related linear inequalities:

(1) 2x  3y  12    (2) 2x  3y  12    (3) 2x  3y  12

(A) Graph the line with equation (1).

(B) Find the point on this line with x coordinate 3 and draw a vertical
line through this point. Discuss the relationship between the y coor-
dinates of the points on this line and statements (1), (2), and (3).

(C) Repeat part B for x   3. For x  9.

(D) Based on your observations in parts B and C, write a verbal descrip-
tion of all the points in the plane that satisfy equation (1), those that
satisfy inequality (2), and those that satisfy inequality (3).

FIGURE 2

x

y

 5

105 5

5

y   2x   3 

(4, y) y   2(4)   3   5; point in upper half-plane

(4, y) y   2(4)   3   5; point on line

(4, y) y   2(4)   3   5; point in lower half-plane



The four inequalities formed from the equation y  2x  3 by replacing
the  sign by  ,  ,  , and  , respectively, are

y  2x  3 y  2x  3 y  2x  3 y  2x  3

The graph of each is a half-plane. The line y  2x  3, called the boundary line
for the half-plane, is included for  and  and excluded for  and  . In Figure 3,
the half-planes are indicated with small arrows on the graph of y  2x  3 and
then graphed as shaded regions. Included boundary lines are shown as solid lines,
and excluded boundary lines are shown as dashed lines.

Most graphing utilities give the user the option to shade the region above or
below an equation by changing the icon to the left of the equation* [Fig. 4(a)].
Graphing y1 with the shade-above option selected produces the graph in Figure
4(b) and graphing the same function in y2 with the shade-below option produces
the graph in Figure 4(c). Note that although it is possible to graph a dashed line
on a graphing utility, it is not possible to distinguish between a dashed line and
a solid line when using the shading options. We will indicate in words if the
boundary line is not part of a solution graphed on a graphing utility.

*On most graphing calculators, you can select a shading option by moving the cursor to the icon at the left side of the

screen and pressing ENTER repeatedly to toggle through the various choices.
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FIGURE 3
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FIGURE 4
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As a consequence of Theorem 1, we state simple and quick procedures for
graphing a linear inequality by hand and on a graphing utility.

Graphing a Linear Inequality

Graph: 3x  4y  12
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T H E O R E M  1
Graphs of Linear Inequalities in Two Variables

The graph of a linear inequality

Ax  By  C or Ax  By  C

with B  0, is either the upper half-plane or the lower half-plane (but
not both) determined by the line Ax  By  C.

If B  0, then the graph of

Ax  C or Ax  C

is either the left half-plane or the right half-plane (but not both) deter-
mined by the line Ax  C.

Algebraic Procedure for Graphing Linear Inequalities
in Two Variables

Step 1. Graph Ax By C as a dashed line if equality is

not included in the original statement or as a solid

line if equality is included.

Step 2. Choose a test point anywhere in the plane not on

the line and substitute the coordinates into the

inequality. The origin (0, 0) often requires the least

computation.

Step 3. The graph of the original inequality includes the

half-plane containing the test point if the inequality

is satisfied by that point, or the half-plane not

containing that point if the inequality is not satis-

fied by that point.

Graphing Utility Procedure for Graphing Linear
Inequalities in Two Variables

Step 1. Solve the inequality for y.

Step 2. Enter the equation of the boundary line and select a

shading option as follows:

y  mx  b

or Select shade above.
y  mx  b

y  mx  b

or Select shade below.
y  mx  b

Step 3. Graph the solution.

}
}



Algebraic Solution

Step 1. Graph 3x  4y  12 as a solid line,
because equality is included in the orig-
inal statement (Fig. 5).

Step 2. Pick a convenient test point above or
below the line. The origin (0, 0)
requires the least computation. Substi-
tuting (0, 0) into the inequality

produces a true statement; therefore, 
(0, 0) is in the solution set.

Step 3. The line 3x  4y  12 and the half-
plane containing the origin form the
graph of 3x  4y  12 (Fig. 6).

 3(0)  4(0)  0  12

 3x  4y  12

S O L U T I O N
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Graphing Utility Solution

Step 1. Solve the inequality for y.

3x  4y  12

 4y   3x + 12

Step 2. Enter y1  0.75x  3 and select the
shade-above option (Fig. 7).

y  0.75x  3

 4y

 4
 
 3x

 4
 

12

 4

Step 3. Graph the solution (Fig. 8).

The boundary line is part of the solution.

Graph by hand and on a graphing utility: 2x  3y  6

FIGURE 5
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5

3x   4y   12

FIGURE 6
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5

FIGURE 7

FIGURE 8
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FIGURE 9
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FIGURE 10
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Graphing a Linear Inequality

Graph: (A) y   3 (B) 2x  5

S O L U T I O N S

(A) The graph of y   3 is (B) The graph of 2x  5 is 
shown in Figure 9. shown in Figure 10.

Graph: (A) y  2 (B) 3x   8

Solving Systems of Linear Inequalities
We now consider systems of linear inequalities such as

x  y  6 and 2x  y  22

2x  y  0 x  y  13

2x  5y  50

x  0

y  0

We wish to solve such systems graphically—that is, to find the graph of all
ordered pairs of real numbers (x, y) that simultaneously satisfy all the inequali-
ties in the system. The graph is called the solution region for the system. To find
the solution region, we graph each inequality in the system and then take the inter-
section of all the graphs. To simplify the discussion that follows, we will con-
sider only systems of linear inequalities where equality is included in each
statement in the system.



Graphing Utility Solution

Solve each inequality for y:

Enter y1  6  x and select
the shade-above option (Fig.
12). Enter y2 2x and se-
lect the shade-below option
(Fig. 12).

y  2x

 y   2x

 2x  y  0

y  6  x

x  y  6

Graph the inequalities (Fig.
13). The region shaded with
both horizontal and vertical
lines is the solution region.
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FIGURE 12

FIGURE 13
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2x   y   0

x   y   6

Solution
region

(2, 4)

(b)

Graph the solution region for the following system of linear inequalities two ways,
as in Example 3: 3x  y  21

x  2y  0

FIGURE 11

S O L U T I O N

Algebraic Solution

First, graph the line x y  6 and shade the region that satisfies the in-
equality x  y  6. This region is shaded in blue in Figure 11(a). Next,
graph the line 2x y  0 and shade the region that satisfies the inequality
2x  y  0. This region is shaded in red in Figure 11(a). The solution region
for the system of inequalities is the intersection of these two regions. This is
the region shaded in both red and blue in Figure 11(a), which is redrawn in
Figure 11(b) with only the solution region shaded for clarity. The coordi-
nates of any point in the shaded region of Figure 11(b) specify a solution to
the system. For example, the points (2, 4), (6, 3), and (7.43, 8.56) are three
of infinitely many solutions, as can be easily checked. The intersection point
(2, 4) can be obtained by solving the equations x  y  6 and 2x  y  0
simultaneously.

Solving a System of Linear Inequalities

Graph the solution region for the following system of linear inequalities:

x  y  6

2x  y  0
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E X P L O R E / D I S C U S S  2

Refer to Example 3. Graph each boundary line and shade the regions
obtained by reversing each inequality. That is, shade the region of the
plane that corresponds to the inequality x  y  6 and then shade the
region that corresponds to the inequality 2x  y  0. What portion of
the plane is left unshaded? Compare this method with the one used in
the solution to Example 3.

(a)

The method of solving inequalities investigated in Explore/Discuss 2 works
very well on a graphing utility that allows the user to shade above and below a
graph. Referring to Example 3, the unshaded region in Figure 14(b) corresponds
to the solution region in Figure 13.

FIGURE 14

 5

 5

10

10

(b)

The points of intersection of the lines that form the boundary of a solution
region play a fundamental role in the solution of linear programming problems,
which are discussed in Section 8.5.

D E F I N I T I O N 1
Corner Point

A corner point of a solution region is a point in the solution region that is the intersection of two

boundary lines.

The point (2, 4) is the only corner point of the solution region in Example 3;
see Figure 11(b).

Solving a System of Linear Inequalities

Graph the solution region for the following system of linear inequalities, and find
the corner points.

y  0

x  0

 2x  5y  50

x  y  13

 2x  y  22



The corner points (0, 0), (0, 10), and (11, 0) can be 
determined from the graph. The other two corner points
are determined as follows:

Solve the system Solve the system

2x  5y  50 2x  y  22

x  y  13 x  y  13

to obtain (5, 8). to obtain (9, 4).

Note that the lines 2x 5y  50 and 2x  y  22 also in-
tersect, but the intersection point is not part of the solution
region, and hence, is not a corner point.

Graphing Utility Solution

Solve each inequality for y.

Enter the equation of each boundary
line and select the desired shading 
option (Fig. 16).

y  10  0.4x

 5y  50  2x

 2x  5y  50

y  13  x

x  y  13

y  22  2x

 2x  y  22

The nonnegative restrictions, x 0
and y  0, indicate that the solution 
region lies in the first quadrant. To 
restrict the graph on a graphing utility
to the first quadrant, simply choose
Xmin  0 and Ymin  0. The solution
region is the five-sided polygon in the
lower left corner of the screen that is
shaded horizontally, vertically, and 
diagonally (Fig. 17).
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x

y

20

 5

 5 20

(5, 8)

(9, 4)

(0, 0)

(0, 10)

(11, 0)

2x   y   22

2x   5y   50

x   y   13

FIGURE 15

FIGURE 16

FIGURE 17

0

0

25

25

S O L U T I O N S

Algebraic Solution

The inequalities x 0 and y 0, called nonnegative 
restrictions, occur frequently in applications involving sys-
tems of inequalities because x and y often represent quanti-
ties that can’t be negative—number of units produced,
number of hours worked, and the like. The solution region
lies in the first quadrant, and we can restrict our attention to
that portion of the plane. First we graph the lines.

2x  y  22

x  y  13

2x  5y  50

Next, choosing (0, 0) as a test point, we see that the graph
of each of the first three inequalities in the system consists
of its corresponding line and the half-plane lying below it.
Thus, the solution region of the system consists of the
points in the first quadrant that simultaneously lie below all
three of these lines (Fig. 15).

The corner points are (0, 0), (0, 10), 
(11, 0), (9, 4), and (5, 8). The last two
were found by using the intersect 
command (details omitted).

Find the x and y intercepts of each line; then

sketch the line through these points, as shown in

Figure 15.



If we compare the solution regions of Examples 3 and 4, we see that there is
a fundamental difference between these two regions. We can draw a circle around
the solution region in Example 4. However, it is impossible to include all the
points in the solution region in Example 3 in any circle, no matter how large we
draw it. This leads to the following definition.
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FIGURE 18

0

0

25

25

(a) (b)

D E F I N I T I O N 2
Bounded and Unbounded Solution Regions

A solution region of a system of linear inequalities is bounded if it can be enclosed within a circle. If

it cannot be enclosed within a circle, then it is unbounded.

Graph the solution region of the following system of linear inequalities two ways,
as in Example 4.

If you find it difficult to recognize the solution region in Figure 17, you might
want to consider the technique of shading the complement discussed in
Explore/Discuss 2 and illustrated in Figure 18.

y  0

x  0

x  3y  18

x  y  12

 5x y  20

Thus, the solution region for Example 4 is bounded and the solution region
for Example 3 is unbounded. This definition will be important in Section 8.5.

Mathematical Modeling with Systems of Linear Inequalities

Production Scheduling

A manufacturer of surfboards makes a standard model and a competition model.
Each standard board requires 6 labor-hours for fabricating and 1 labor-hour
for finishing. Each competition board requires 8 labor-hours for fabricating and
3 labor-hours for finishing. The maximum labor-hours available per week in the fab-
ricating and finishing departments are 120 and 30, respectively. What combinations



Let

x  Number of standard boards produced per week

y  Number of competition boards produced per week

These variables are restricted as follows:

Fabricating department restriction:

  

6x  8y  120

Finishing department restriction:

  

1x  3y  30

Because it is not possible to manufacture a negative number of boards, x and
y also must satisfy the nonnegative restrictions

x  0

y  0

Thus, x and y must satisfy the following system of linear inequalities:

6x  8y  120 Fabricating department restriction

x  3y  30 Finishing department restriction

x  0 Nonnegative restriction

y  0 Nonnegative restriction

Maximum labor-hours

available per week

Weekly finishing

time for y

competition boards

Weekly finishing

time for x

standard boards

Maximum labor-hours

available per week

Weekly fabricating

time for y

competition boards

Weekly fabricating

time for x

standard boards
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Standard Model Competition Model Maximum
(Labor-Hours (Labor-Hours Labor-Hours
per Board) per Board) Available per Week

Fabricating 6 8 120

Finishing 1 3 30

of boards can be produced each week so as not to exceed the number of labor-
hours available in each department per week?

S O L U T I O N

To clarify relationships, we summarize the information in the following table:



Graphing this system of linear inequalities, we obtain the set of feasible solu-
tions, or the feasible region, as shown in Figure 19. For problems of this type
and for the linear programming problems we consider in Section 8.5, solution
regions are often referred to as feasible regions. Any point within the shaded area,
including the boundary lines, represents a possible production schedule. Any point
outside the shaded area represents an impossible schedule. For example, it would
be possible to produce 12 standard boards and 5 competition boards per week,
but it would not be possible to produce 12 standard boards and 7 competition
boards per week (see Fig. 19).
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FIGURE 19

 5

20

y

x
10 20 5

(12, 7)

(12, 6)

(12, 5)

Fabricating capacity line
6x   8y   120

Feasible
region

Finishing capacity line
x   3y   30

Repeat Example 5 using 5 hours for fabricating a standard board and a maximum
of 27 labor-hours for the finishing department.

REMARK Refer to Example 5. How do we interpret a production schedule of 
10.5 standard boards and 4.3 competition boards? It is not possible to manufac-
ture a fraction of a board. But it is possible to average 10.5 standard and 4.3 com-
petition boards per week. In general, we will assume that all points in the feasible
region represent acceptable solutions, although noninteger solutions might require
special interpretation.

The boundary line is not part of the solution.

x

y

 5

5 5

5

 6

 5

6

5

1.

The boundary line is not part of the solution.
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4.

0

0

30

25

2. (A) (B)

3.

x

y

 5

10

20

10 10

x   2y   0

3x   y   21

(6, 3)

Solution
region  10

 15

30

15

x

y

 5

5 5

5

x

y

 5

5 5

5

The boundary of the solution
region is part of the solution
region.

The boundary of the solution
region is part of the solution
region.

y

x

 5

10

10 5

5x   y   20 x   y   12
x   3y   18

(2, 10)

(9, 3)

(18, 0)

(0, 20)

Solution
region
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5.

x

y

 5

20

10 20 5

5x   8y   120

x   3y   27

144

7

15

7 ,  

x

y

 5

5 5

5

3x   2y   0

x   2y   8

(2, 3)

I

II

III

IV

11. x  2y  8 12. x  2y  8
3x  2y  0 3x  2y  0

13. x  2y  8 14. x  2y  8
3x  2y  0 3x  2y  0

In Problems 15–20, graph the solution region for each system

of linear inequalities.

15. x  5 16. x  4
y  6 y  2

17. 3x  y  6 18. 3x  4y  12
x  4 y   3

19. x  2y  12 20. 2x  5y  20
2x  y  4 x  5y   5

Problems 21–24 require a graphing utility that gives the user

the option of shading above or below a graph.

(A) Graph the boundary lines in a standard viewing window

and shade the region that contains the points that satisfy

each inequality.

(B) Repeat part A, but this time shade the region that contains

the points that do not satisfy each inequality (see

Explore/Discuss 2)

Explain how you can recognize the solution region in each graph.

21. x  y  5 22. x  2y  1
2x  y  1 x  3y  12

23. 2x  y  4 24. 3x  y   2
3x  y  7 x  2y   6

In Problems 1–10, graph the solution region for each inequal-

ity and write a verbal description of the solution region.

1. 2x  3y  6 2. 3x  4y  12

3. 3x  2y  18 4. 3y  2x  24

5. y  x  5 6. y  x  2

7. y  8 8. x   5

9.  3  y  2 10.  1  x  3

In Problems 11–14, match the solution region of each system

of linear inequalities with one of the four regions shown in the

figure.

1
3

2
3
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x

y

 5 10

 5

10

2x   y   16

x   3y   18

(0, 16)

(0, 6)

(0, 0)

(8, 0)

(18, 0)

(6, 4)

I

II

III
IV

In Problems 25–28, match the solution region of each system

of linear inequalities with one of the four regions shown in the

figure below. Identify the corner points of each solution region.

25. x  3y  18 26. x  3y  18
2x  y  16 2x  y  16

x  0 x  0
y  0 y  0

27. x  3y  18 28. x  3y  18
2x  y  16 2x  y  16

x  0 x  0
y  0 y  0

In Problems 29–40, graph the solution region for each system,

and indicate whether each solution region is bounded or

unbounded. Find the coordinates of each corner point.

29. 2x  3y  6 30. 4x  3y  12
x  0 x  0
y  0 y  0

31. 4x  5y  20 32. 5x  6y  30
x  0 x  0
y  0 y  0

33. 2x  y   8 34. x  2y   10
x  3y   12 3x  y   15

x   0 x   0
y   0 y   0

35. 4x  3y   24 36. x  2y   8
2x  3y   18 2x  y   10

x  0 x  0
y  0 y  0

37. 2x  y   12 38. 3x  y   21
x  y   7 x  y   9
x  2y   10 x  3y   21

x  0 x  0
y  0 y   0

39. x  2y   16 40. 3x  y   30
x  y   12 x  y   16

2x  y  14 x  3y  24
x  0 x  0
y  0 y  0

In Problems 41–48, graph the solution region for each system,

and indicate whether each solution region is bounded or un-

bounded. Find the coordinates of each corner point.

41. x  y  11 42. 4x  y  32
5x  y  15 x  3y  30

x  2y  12 5x  4y  51

43. 3x  2y  24 44. 3x  4y  48
3x  y  15 x  2y  24

x  4 y  9

45.  x  y  10 46. 3x  y  1
 3x  5y   15  x  5y   9
 3x  2y   15 x  y   9
 5x  2y   6 y   5

47. 16x  13y   119 48. 8x  4y   41
12x  16y   101  15x 5y   19
 4x  3y   11 2x  6y   37
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49. Manufacturing—Resource Allocation. A manufacturing
company makes two types of water skis: a trick ski and a
slalom ski. The trick ski requires 6 labor-hours for
fabricating and 1 labor-hour for finishing. The slalom ski

requires 4 labor-hours for fabricating and 1 labor-hour for
finishing. The maximum labor-hours available per day for

fabricating and finishing are 108 and 24, respectively. If x

is the number of trick skis and y is the number of slalom
skis produced per day, write a system of inequalities that
indicates appropriate restraints on x and y. Graph the set of
feasible solutions for the number of each type of ski that
can be produced.

50. Manufacturing—Resource Allocation. A furniture manu-
facturing company manufactures dining room tables and
chairs. A table requires 8 labor-hours for assembling and 2
labor-hours for finishing. A chair requires 2 labor-hours

for assembling and 1 labor-hour for finishing. The

maximum labor-hours available per day for assembly and
finishing are 400 and 120, respectively. If x is the number
of tables and y is the number of chairs produced per day,
write a system of inequalities that indicates appropriate
restraints on x and y. Graph the set of feasible solutions for
the number of tables and chairs that can be produced.

★ 51. Manufacturing—Resource Allocation. Refer to Problem
49. The company makes a profit of $50 on each trick ski

and a profit of $60 on each slalom ski.

(A) If the company makes 10 trick and 10 slalom skis per
day, the daily profit will be $1,100. Are there other

feasible production schedules that will result in a daily
profit of $1,100? How are these schedules related to

the graph of the line 50x 60y  1,100?

(B) Find a feasible production schedule that will produce a
daily profit greater than $1,100 and repeat part A for

this schedule.

(C) Discuss methods for using lines like those in parts A
and B to find the largest possible daily profit.

★ 52. Manufacturing—Resource Allocation. Refer to Problem
50. The company makes a profit of $50 on each table and a

profit of $15 on each chair.

(A) If the company makes 20 tables and 20 chairs per day,
the daily profit will be $1,300. Are there other feasible

production schedules that will result in a daily profit of

$1,300? How are these schedules related to the graph
of the line 50x 15y  1,300?

(B) Find a feasible production schedule that will produce a
daily profit greater than $1,300 and repeat part A for

this schedule.

(C) Discuss methods for using lines like those in parts A
and B to find the largest possible daily profit.

53. Nutrition—Plants. A farmer can buy two types of fertil-
izer, mix A and mix B. Each cubic yard of mix A contains
20 pounds of phosphoric acid, 30 pounds of nitrogen, and
5 pounds of potash. Each cubic yard of mix B contains
10 pounds of phosphoric acid, 30 pounds of nitrogen, and
10 pounds of potash. The minimum requirements are 
460 pounds of phosphoric acid, 960 pounds of nitrogen,
and 220 pounds of potash. If x is the number of cubic yards
of mix A used and y is the number of cubic yards of mix B
used, write a system of inequalities that indicates appropri-
ate restraints on x and y. Graph the set of feasible solutions
for the amount of mix A and mix B that can be used.

54. Nutrition. A dietitian in a hospital is to arrange a special
diet using two foods. Each ounce of food M contains
30 units of calcium, 10 units of iron, and 10 units of vita-
min A. Each ounce of food N contains 10 units of calcium,
10 units of iron, and 30 units of vitamin A. The minimum
requirements in the diet are 360 units of calcium, 
160 units of iron, and 240 units of vitamin A. If x is the
number of ounces of food M used and y is the number of
ounces of food N used, write a system of linear inequali-
ties that reflects the conditions indicated. Graph the set of

feasible solutions for the amount of each kind of food that
can be used.

55. Sociology. A city council voted to conduct a study on
inner-city community problems. A nearby university was
contacted to provide sociologists and research assistants.
Each sociologist will spend 10 hours per week collecting
data in the field and 30 hours per week analyzing data in

the research center. Each research assistant will spend 
30 hours per week in the field and 10 hours per week in

the research center. The minimum weekly labor-hour 
requirements are 280 hours in the field and 360 hours in

the research center. If x is the number of sociologists hired
for the study and y is the number of research assistants
hired for the study, write a system of linear inequalities
that indicates appropriate restrictions on x and y. Graph
the set of feasible solutions.

56. Psychology. In an experiment on conditioning, a psychol-
ogist uses two types of Skinner (conditioning) boxes with
mice and rats. Each mouse spends 10 minutes per day in
box A and 20 minutes per day in box B. Each rat spends 
20 minutes per day in box A and 10 minutes per day in box
B. The total maximum time available per day is 800 minutes
for box A and 640 minutes for box B. We are interested in
the various numbers of mice and rats that can be used in
the experiment under the conditions stated. If x is the num-
ber of mice used and y is the number of rats used, write a
system of linear inequalities that indicates appropriate
restrictions on x and y. Graph the set of feasible solutions.
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Compact Model Regular Model Maximum
(Labor-Hours (Labor-Hours Labor-Hours
per Top) per Top) Available per Week

Fabricating 5 4 200

Finishing 2 3 108

Profit per top $40 $50

Linear Programming

A Linear Programming Problem ● Linear Programming—A General Description ●

Mathematical Modeling and Linear Programming

Several problems in Section 8.4 are related to the general type of problems called
linear programming problems. Linear programming is a mathematical process that
has been developed to help management in decision making, and it has become
one of the most widely used and best known tools of management science and
industrial engineering. We will use an intuitive graphical approach based on the
techniques discussed in Section 8.4 to illustrate this process for problems involv-
ing two variables.

The American mathematician George B. Dantzig (1914– ) formulated the
first linear programming problem in 1947 and introduced a solution technique,
called the simplex method, that does not rely on graphing and is readily adaptable
to computer solutions. Today, it is quite common to use a computer to solve
applied linear programming problems involving thousands of variables and thou-
sands of inequalities.

A Linear Programming Problem
We begin our discussion with an example that will lead to a general procedure
for solving linear programming problems in two variables.

Production Scheduling

A manufacturer of fiberglass camper tops for pickup trucks makes a compact
model and a regular model. Each compact top requires 5 hours from the fabri-
cating department and 2 hours from the finishing department. Each regular top
requires 4 hours from the fabricating department and 3 hours from the finishing
department. The maximum labor-hours available per week in the fabricating
department and the finishing department are 200 and 108, respectively. If the com-
pany makes a profit of $40 on each compact top and $50 on each regular top,
how many tops of each type should be manufactured each week to maximize the
total weekly profit, assuming all tops can be sold? What is the maximum profit?

S O L U T I O N

This is an example of a linear programming problem. To see relationships more
clearly, we summarize the manufacturing requirements, objectives, and restrictions
in the table:



We now proceed to formulate a mathematical model for the problem and then
to solve it using graphical methods.

O B J E C T I V E  F U N C T I O N The objective of management is to decide

how many of each camper top model should be produced each week to maximize

profit. Let

x  Number of compact tops produced per week
Decision variables

y  Number of regular tops produced per week

The following function gives the total profit P for x compact tops and y regular
tops manufactured each week:

P  40x  50y Objective function

Mathematically, management needs to decide on values for the decision variables
(x and y) that achieve its objective, that is, maximizing the objective function
(profit) P  40x  50y. It appears that the profit can be made as large as we like
by manufacturing more and more tops—or can it?

C O N S T R A I N T S Any manufacturing company, no matter how large or
small, has manufacturing limits imposed by available resources, plant capacity,
demand, and so forth. These limits are referred to as problem constraints.

Fabricating department constraint:

  

5x  4y  200

Finishing department constraint:

  

2x  3y  108

Nonnegative constraints: It is not possible to manufacture a negative number of
tops; thus, we have the nonnegative constraints

x  0

y  0

which we usually write in the form

x, y  0

Maximum labor-hours

available per week

Weekly finishing

time for y

regular tops

Weekly finishing

time for x

compact tops

Maximum labor-hours

available per week

Weekly fabricating

time for y

regular tops

Weekly fabricating

time for x

compact tops
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M A T H E M A T I C A L  M O D E L We now have a mathematical model for
the problem under consideration:

Maximize P  40x  50y Objective function

Subject to 5x  4y  200

2x  3y  108
Problem constraints

x, y  0 Nonnegative constraints

G R A P H I C A L  S O L U T I O N Graphing the solution region for the system
of linear inequality constraints, as in Section 8.4, we obtain the feasible region
for production schedules, as shown in Figure 1.
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FIGURE 1

x

y

20

20

(0, 36)

Fabricating capacity line
5x   4y   200

Feasible
region

Finishing capacity line
2x   3y   108

All lines are restricted to the
first quadrant because of the
nonnegative constraints x, y   0.

(24, 20)

(40, 0)(0, 0)

By choosing a production schedule (x, y) from the feasible region, a profit can
be determined using the objective function P  40x  50y. For example, if x  24
and y  10, then the profit for the week is

P  40(24)  50(10)  $1,460

Or if x  15 and y  20, then the profit for the week is

P  40(15)  50(20)  $1,600

The question is, out of all possible production schedules (x, y) from the fea-
sible region, which schedule(s) produces the maximum profit? Such a schedule,
if it exists, is called an optimal solution to the problem because it produces the
maximum value of the objective function and is in the feasible region. It is not
practical to use point-by-point checking to find the optimal solution. Even if we
consider only points with integer coordinates, there are over 800 such points in
the feasible region for this problem. Instead, we use the theory that has been devel-
oped to solve linear programming problems. Using advanced techniques, it can
be shown that:

If the feasible region is bounded, then one or more of the corner points of the feasible region is an

optimal solution to the problem.

The maximum value of the objective function is unique; however, there can be
more than one feasible production schedule that will produce this unique value.
We will have more to say about this later in this section.



Because the feasible region for this problem is bounded, at least one of the
corner points, (0, 0), (0, 36), (24, 20), or (40, 0), is an optimal solution. To find
which one, we evaluate P  40x  50y at each corner point and choose the cor-
ner point that produces the largest value of P. It is convenient to organize these
calculations in a table, as shown in the margin.

Examining the values in the table, we see that the maximum value of P at a
corner point is P  1,960 at x  24 and y  20. Because the maximum value
of P over the entire feasible region must always occur at a corner point, we con-
clude that the maximum profit is $1,960 when 24 compact tops and 20 regular
tops are produced each week.

We now convert the surfboard problem discussed in Section 8.4 into a linear pro-
gramming problem. A manufacturer of surfboards makes a standard model and a
competition model. Each standard board requires 6 labor-hours for fabricating and
1 labor-hour for finishing. Each competition board requires 8 labor-hours for fab-
ricating and 3 labor-hours for finishing. The maximum labor-hours available per
week in the fabricating and finishing departments are 120 and 30, respectively. If
the company makes a profit of $40 on each standard board and $75 on each com-
petition board, how many boards of each type should be manufactured each week
to maximize the total weekly profit?

(A) Identify the decision variables.

(B) Write the objective function P.

(C) Write the problem constraints and the nonnegative constraints.

(D) Graph the feasible region, identify the corner points, and evaluate P at
each corner point.

(E) How many boards of each type should be manufactured each week to
maximize the profit? What is the maximum profit?
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Corner Objective
Point Function
(x, y) P 40x 50y

(0, 0) 0

(0, 36) 1,800

(24, 20) 1,960 Maximum
value of P

(40, 0) 1,600

x

y

20

20

(0, 36)

(24, 20)

(40, 0)(0, 0)

P  
 $1,500

P  
 $1,000

FIGURE 2

E X P L O R E / D I S C U S S  1

Refer to Example 1. If we assign the profit P in P  40x  50y a
particular value and plot the resulting equation in the coordinate system
shown in Figure 1, we obtain a constant-profit line (isoprofit line).

Every point in the feasible region on this line represents a production
schedule that will produce the same profit. Figure 2 shows the constant-
profit lines for P  $1,000 and P  $1,500.



Linear Programming—A General Description
The linear programming problems considered in Example 1 and Matched Prob-
lem 1 were maximization problems, where we wanted to maximize profits. The
same technique can be used to solve minimization problems, where, for example,
we may want to minimize costs. Before considering additional examples, we state
a few general definitions.

A linear programming problem is one that is concerned with finding the
optimal value (maximum or minimum value) of a linear objective function of the
form

z  ax  by

where the decision variables x and y are subject to problem constraints in the form
of linear inequalities and to nonnegative constraints x, y  0. The set of points
satisfying both the problem constraints and the nonnegative constraints is called
the feasible region for the problem. Any point in the feasible region that produces
the optimal value of the objective function over the feasible region is called an
optimal solution.

Theorem 1 is fundamental to the solving of linear programming problems.
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T H E O R E M  1
Fundamental Theorem of Linear Programming

Let S be the feasible region for a linear programming problem, and let 
z  ax  by be the objective function. If S is bounded, then z has both
a maximum and a minimum value on S and each of these occurs at a
corner point of S. If S is unbounded, then a maximum or minimum
value of z on S may not exist. However, if either does exist, then it must
occur at a corner point of S.

(A) How are all the constant-profit lines related?

(B) Place a straightedge along the constant-profit line for P  $1,000
and slide it as far as possible in the direction of increasing profit
without changing its slope and without leaving the feasible region.
Explain how this process can be used to identify the optimal solu-
tion to a linear programming problem.

(C) If P is changed to P  25x  75y, graph the constant-profit lines
for P  $1,000 and P  $1,500, and use a straightedge to identify
the optimal solution. Check your answer by evaluating P at each
corner point.

(D) Repeat part C for P  75x  25y.

We will not consider any problems with unbounded feasible regions in this
brief introduction. If a feasible region is bounded, then Theorem 1 provides the
basis for the following simple procedure for solving the associated linear pro-
gramming problem:



Before considering additional applications, we use this procedure to solve a
linear programming problem where the model has already been determined.

Solving a Linear Programming Problem

Minimize and maximize z  5x  15y

Subject to x  3y  60

x  y  10

x  y  0

x, y  0

S O L U T I O N

This problem is a combination of two linear programming problems—a mini-
mization problem and a maximization problem. Because the feasible region is the
same for both problems, we can solve these problems together. To begin, we graph
the feasible region S, as shown in Figure 3, and find the coordinates of each cor-
ner point.
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Solution of Linear Programming Problems

Step 1. Form a mathematical model for the problem:

(A) Introduce decision variables and write a linear objective function.

(B) Write problem constraints in the form of linear inequalities.

(C) Write nonnegative constraints.

Step 2. Graph the feasible region and find the corner points.

Step 3. Evaluate the objective function at each corner point to determine the optimal solution.

FIGURE 3 y

x

5

5

(0, 20)

(0, 10)

(15, 15)

(5, 5)

S

Next, we evaluate the objective function at each corner point, with the results
given in the table:



Examining the values in the table, we see that the minimum value of z on the fea-
sible region S is 100 at (5, 5). Thus, (5, 5) is the optimal solution to the mini-
mization problem. The maximum value of z on the feasible region S is 300, which
occurs at (0, 20) and at (15, 15). Thus, the maximization problem has multiple
optimal solutions. In general,

If two corner points are both optimal solutions of the same type (both produce the same maximum

value or both produce the same minimum value) to a linear programming problem, then any point

on the line segment joining the two corner points is also an optimal solution of that type.

It can be shown that this is the only way that an optimal value occurs at more
than one point.

Minimize and maximize z  10x  5y

Subject to 2x  y  40

3x  y  150

2x  y  0

x, y  0

Mathematical Modeling and Linear Programming
Now we consider another application where we must first find the mathematical
model and then find its solution.

Agriculture

A farmer can use two types of fertilizer, mix A and mix B. The amounts (in
pounds) of nitrogen, phosphoric acid, and potash in a cubic yard of each mix are
given in the table. Tests performed on the soil in a large field indicate that the field
needs at least 840 pounds of potash and at least 350 pounds of nitrogen. The tests
also indicate that no more than 630 pounds of phosphoric acid should be added
to the field. A cubic yard of mix A costs $7, and a cubic yard of mix B costs $9.
How many cubic yards of each mix should the farmer add to the field to supply
the necessary nutrients at minimal cost?

Pounds per
Cubic Yard

Mix A Mix B

Nitrogen 10 5

Potash 8 24

Phosphoric
acid 9 6

8 MODELING WITH LINEAR SYSTEMS678

Corner Point Objective Function
(x, y) z 5x 15y

(0, 10) 150

(0, 20) 300 Maximum value

(15, 15) 300 Maximum value

(5, 5) 100 Minimum value

6 Multiple optimal solutions
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S O L U T I O N

Let

x  Number of cubic yards of mix A added to the field 
Decision variables

y  Number of cubic yards of mix B added to the field

We form the linear objective function

C  7x  9y

which gives the cost of adding x cubic yards of mix A and y cubic yards of mix B
to the field. Using the data in the table and proceeding as in Example 1, we for-
mulate the mathematical model for the problem:

Minimize C  7x  9y Objective function

Subject to 10x  5y  350 Nitrogen constraint

8x  24y  840 Potash constraint

9x  6y  630 Phosphoric acid constraint

x, y  0 Nonnegative constraints

Solving the system of constraint inequalities graphically, we obtain the feasible
region S shown in Figure 4, and then we find the coordinates of each corner point.

6

FIGURE 4 y

x
60

60

(0, 105)

(60, 15)
(21, 28)

(0, 70)

S

Corner Objective
Point Function
(x, y) C 7x 9y

(0, 105) 945

(0, 70) 630

(21, 28) 399 Minimum 

value of C

(60, 15) 555

Next, we evaluate the objective function at each corner point, as shown in the
table.

The optimal value is C  399 at the corner point (21, 28). Thus, the farmer
should add 21 cubic yards of mix A and 28 cubic yards of mix B at a cost of
$399. This will result in adding the following nutrients to the field:

Nitrogen: 10(21)  5(28)  350 pounds

Potash: 8(21)  24(28)  840 pounds

Phosphoric acid: 9(21)  6(28)  357 pounds

All the nutritional requirements are satisfied.
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5

5

x

y

(0, 12)

(7, 9)

(10, 0)

(0, 0)

S

Repeat Example 3 if the tests indicate that the field needs at least 400 pounds of
nitrogen with all other conditions remaining the same.

1. (A) x  Number of standard boards manufactured each week
y  Number of competition boards manufactured each week

(B) P  40x  75y (C) 6x  8y  120 Fabricating constraint
x  3y  30 Finishing constraint

x, y  0 Nonnegative constraints

(D)

(E) 12 standard boards and 6 competition boards for a maximum profit of $930

2. Max z  600 at (30, 60); min z  200 at (10, 20) and (20, 0) (multiple optimal solutions)
3. 27 cubic yards of mix A, 26 cubic yards of mix B; min C  $423

Corner Objective
Point Function
(x, y) P 40x 75y

(0, 0) 0

(0, 10) 750

(12, 6) 930

(20, 0) 800

y

5
x

5 Feasible
region

(0, 10)

(12, 6)

(20, 0)(0, 0)

In Problems 1–4, find the maximum value of each objective

function over the feasible region S shown in the figure.
1. z  x  y 2. z  4x  y

3. z  3x  7y 4. z  9x  3y

Problems 5–8 refer to the feasible region S shown and the

constant-value lines discussed in Explore/Discuss 1. For each

objective function, draw the line that passes through the

feasible point (5, 5) and use the straightedge method from

Explore/Discuss 1 to find the maximum value. Check your an-

swer by evaluating the objective function at each corner point.

5. z  x  2y 6. z  3x  y

7. z  7x  2y 8. z  2x  8y
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5

5

x

y

(12, 0)

(0, 8)

(0, 12)

(4, 3)

T

In Problems 17–30, solve the linear programming problems.

17. Maximize z  3x  2y

Subject to x  2y  10
3x  y  15

x, y  0

18. Maximize z  4x  5y

Subject to 2x  y  12
x  3y  21

x, y  0

19. Minimize z  3x  4y

Subject to 2x  y  88
x  2y  10

x, y  0

20. Minimize z  2x  y

Subject to 4x  3y  24
4x  y  16

x, y  0

21. Maximize z  3x  4y

Subject to x  2y  24
x  y  14

2x  y  24
x, y  0

22. Maximize z  5x  3y

Subject to 3x  y  24
x  y  10
x  3y  24

x, y  0

23. Minimize z  5x  6y

Subject to x  4y  20
4x  y  20

x  y  20
x, y  0

24. Minimize z  x  2y

Subject to 2x  3y  30
3x  2y  30

x  y  15
x, y  0

25. Minimize and maximize z  25x  50y

Subject to x  2y  120
x  y  60
x  2y  0

x, y  0

26. Minimize and maximize z  15x  30y

Subject to x  2y  100
2x  y  0
2x  y  200

x, y  0

In Problems 9–12, find the minimum value of each objective

function over the feasible region T shown in the figure.
9. z  7x  4y 10. z  7x  9y

11. z  3x  8y 12. z  5x  4y

Problems 13–16 refer to the feasible region T shown. For each

objective function, draw the constant-value line that passes

through the feasible point (5, 5) and use the straightedge

method from Explore/Discuss 1 to find the minimum value.

Check your answer by evaluating the objective function at

each corner point. 

13. z  x  2y 14. z  2x  y

15. z  5x  4y 16. z  2x  8y
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Maximum
Trick Ski Slalom Ski Labor-Hours
(Labor-Hours (Labor-Hours Available
per Ski) per Ski) per Day

Fabricating
department 6 4 108

Finishing
department 1 1 24

32. The corner points for the feasible region determined by the
problem constraints

x  y  4
x  2y  6

2x  3y  12
x, y  0

are A  (6, 0), B  (2, 2), and C  (0, 4). If z  ax  by

and a, b  0, determine conditions on a and b that ensure
that the minimum value of z occurs

(A) Only at A (B) Only at B

(C) Only at C (D) At both A and B

(E) At both B and C

31. The corner points for the feasible region determined by the
problem constraints

2x  y  10
x  3y  15

x, y  0

are O  (0, 0), A  (5, 0), B  (3, 4), and C  (0, 5). If
z  ax  by and a, b  0, determine conditions on a and
b that ensure that the maximum value of z occurs

(A) Only at A

(B) Only at B

(C) Only at C

(D) At both A and B

(E) At both B and C

27. Minimize and maximize z  25x  15y

Subject to 4x  5y  100
3x  4y  240

x  60
y  45

x, y  0

28. Minimize and maximize z  25x  30y

Subject to 2x  3y  120
3x  2y  360

x  80
y  120

x, y  0

29. Maximize P  525x1  478x2

Subject to 275x1  322x2  3,381
350x1  340x2  3,762
425x1  306x2  4,114

x1, x2  0

30. Maximize P  300x1  460x2

Subject to 245x1  452x2  4,181
290x1  379x2  3,888
390x1  299x2  4,407

x1, x2  0

33. Resource Allocation. A manufacturing company makes
two types of water skis, a trick ski and a slalom ski. The
relevant manufacturing data are given in the table.

(A) If the profit on a trick ski is $40 and the profit on a

slalom ski is $30, how many of each type of ski should
be manufactured each day to realize a maximum
profit? What is the maximum profit?

(B) Discuss the effect on the production schedule and the
maximum profit if the profit on a slalom ski decreases

to $25 and all other data remain the same.

(C) Discuss the effect on the production schedule and the
maximum profit if the profit on a slalom ski increases

to $45 and all other data remain the same.

34. Psychology. In an experiment on conditioning, a psychol-
ogist uses two types of Skinner boxes with mice and rats.



The amount of time (in minutes) each mouse and each rat
spends in each box per day is given in the table. What is
the maximum total number of mice and rats that can be
used in this experiment? How many mice and how many
rats produce this maximum?

(A) What is the maximum number of computers the com-
pany is capable of producing?

(B) If each desktop computer contributes a profit of $320

and each portable contributes a profit of $220, how

much profit will the company make by producing the

maximum number of computers determined in part A?
Is this the maximum profit? If not, what is the maxi-

mum profit?

39. Pollution Control. Because of new federal regulations on
pollution, a chemical plant introduced a new process to
supplement or replace an older process used in the produc-
tion of a particular chemical. The older process emitted 
20 grams of sulfur dioxide and 40 grams of particulate
matter into the atmosphere for each gallon of chemical
produced. The new process emits 5 grams of sulfur diox-
ide and 20 grams of particulate matter for each gallon pro-
duced. The company makes a profit of 60¢ per gallon and

20¢ per gallon on the old and new processes, respectively.

(A) If the regulations allow the plant to emit no more than
16,000 grams of sulfur dioxide and 30,000 grams of
particulate matter daily, how many gallons of the
chemical should be produced by each process to maxi-
mize daily profit? What is the maximum daily profit?

(B) Discuss the effect on the production schedule and the
maximum profit if the regulations restrict emissions of

sulfur dioxide to 11,500 grams daily and all other data
remain unchanged.

(C) Discuss the effect on the production schedule and the
maximum profit if the regulations restrict emissions of

sulfur dioxide to 7,200 grams daily and all other data
remain unchanged.

★★ 40. Sociology. A city council voted to conduct a study on
inner-city community problems. A nearby university was
contacted to provide a maximum of 40 sociologists and re-
search assistants. Allocation of time and cost per week are
given in the table.

(A) How many sociologists and research assistants should
be hired to meet the weekly labor-hour requirements
and minimize the weekly cost? What is the weekly cost?

(B) Discuss the effect on the solution in part A if the council
decides that they should not hire more sociologists than
research assistants and all other data remain unchanged.
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Minimum
Research Labor-Hours

Sociologist Assistant Needed per
(Labor-Hours) (Labor-Hours) Week

Fieldwork 10 30 280

Research
center 30 10 360

Cost per
week $500 $300

Max. Time
Available

Mice Rats per Day
(Minutes) (Minutes) (Minutes)

Skinner box A 10 20 800

Skinner box B 20 10 640

35. Purchasing. A trucking firm wants to purchase a maxi-

mum of 15 new trucks that will provide at least 36 tons of
additional shipping capacity. A model A truck holds 2 tons
and costs $15,000. A model B truck holds 3 tons and costs
$24,000. How many trucks of each model should the com-
pany purchase to provide the additional shipping capacity
at minimal cost? What is the minimal cost?

36. Transportation. The officers of a high school senior class

are planning to rent buses and vans for a class trip. Each
bus can transport 40 students, requires 3 chaperones, and
costs $1,200 to rent. Each van can transport 8 students,
requires 1 chaperone, and costs $100 to rent. The officers

want to be able to accommodate at least 400 students with
no more than 36 chaperones. How many vehicles of each
type should they rent to minimize the transportation costs?
What are the minimal transportation costs?

★ 37. Resource Allocation. A furniture company manufactures
dining room tables and chairs. Each table requires 8 hours
from the assembly department and 2 hours from the finishing

department and contributes a profit of $90. Each chair re-

quires 2 hours from the assembly department and 1 hour
from the finishing department and contributes a profit of $25.

The maximum labor-hours available each day in the assembly
and finishing departments are 400 and 120, respectively.

(A) How many tables and how many chairs should be
manufactured each day to maximize the daily profit?

What is the maximum daily profit?

(B) Discuss the effect on the production schedule and the
maximum profit if the marketing department of the
company decides that the number of chairs produced
should be at least four times the number of tables
produced.

★ 38. Resource Allocation. An electronics firm manufactures

two types of personal computers, a desktop model and a
portable model. The production of a desktop computer re-
quires a capital expenditure of $400 and 40 hours of labor.
The production of a portable computer requires a capital
expenditure of $250 and 30 hours of labor. The firm has

$20,000 capital and 2,160 labor-hours available for pro-
duction of desktop and portable computers.



★★ 42. Diet. A dietitian in a hospital is to arrange a special diet
composed of two foods, M and N. Each ounce of food M
contains 16 units of calcium, 5 units of iron, 6 units of
cholesterol, and 8 units of vitamin A. Each ounce of food
N contains 4 units of calcium, 25 units of iron, 4 units of
cholesterol, and 4 units of vitamin A. The diet requires at
least 320 units of calcium, at least 575 units of iron, and at
most 300 units of cholesterol. If the dietitian always se-
lects a combination of foods M and N that will satisfy the
constraints for calcium, iron, and cholesterol, discuss the
effects that this will have on the amount of vitamin A in
the diet.

★★ 41. Plant Nutrition. A fruit grower can use two types of fer-
tilizer in her orange grove, brand A and brand B. The
amounts (in pounds) of nitrogen, phosphoric acid, potash,
and chloride in a bag of each mix are given in the table.
Tests indicate that the grove needs at least 480 pounds of
phosphoric acid, at least 540 pounds of potash, and at most
620 pounds of chloride. If the grower always uses a com-
bination of bags of brand A and brand B that will satisfy
the constraints of phosphoric acid, potash, and chloride,
discuss the effect that this will have on the amount of ni-
trogen added to the field.
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8.1 Systems of Linear
Equations in Two Variables

A system of two linear equations with two variables is a system
of the form

ax  by  h
(1)

cx  dy  k

where x and y are variables, a, b, c, and d are real numbers called
the coefficients of x and y, and h and k are real numbers called
the constant terms in the equations. The ordered pair of num-
bers (x0, y0) is a solution to system (1) if each equation is satis-
fied by the pair. The set of all such ordered pairs of numbers is

called the solution set for the system. To solve a system is to
find its solution set.

In general, a system of linear equations has exactly one solu-
tion, no solution, or infinitely many solutions. A system of lin-

ear equations is consistent if it has one or more solutions and
inconsistent if no solutions exist. A consistent system is said to
be independent if it has exactly one solution and dependent if
it has more than one solution.

Two standard methods for solving system (1) were dis-
cussed: graphing and substitution.

8.2 Systems of Linear
Equations and Augmented
Matrices

Two systems of equations are equivalent if both have the same
solution set. A system of linear equations is transformed into an
equivalent system if

1. Two equations are interchanged.
2. An equation is multiplied by a nonzero constant.
3. A constant multiple of one equation is added to another

equation.

These operations form the basis of solution using elimination
by addition.

The method of solution using elimination by addition is
transformed into a more efficient method for larger-scale sys-

tems by the introduction of an augmented matrix. A matrix is a
rectangular array of numbers written within brackets. Each
number in a matrix is called an element of the matrix. If a ma-
trix has m rows and n columns, it is called an m  n matrix
(read “m by n matrix”). The expression m  n is called the size
of the matrix, and the numbers m and n are called the dimen-
sions of the matrix. A matrix with n rows and n columns is

Pounds per Bag

Brand A Brand B

Nitrogen 6 7

Phosphoric acid 2 4

Potash 6 3

Chloride 3 4



called a square matrix of order n. A matrix with only one col-
umn is called a column matrix, and a matrix with only one row
is called a row matrix. The position of an element in a matrix is
the row and column containing the element. This is usually de-
noted using double subscript notation aij, where i is the row
and j is the column containing the element aij.

For ease of generalization to larger systems, we change the
notation for variables and constants in system (1) to a subscript
form:

a11x1  a12x2  k1

(2)
a21x1  a22x2  k2

Associated with each linear system of the form (2), where x1

and x2 are variables, is the augmented matrix of the system:

Two augmented matrices are row-equivalent, denoted by
the symbol  between the two matrices, if they are augmented
matrices of equivalent systems of equations. An augmented ma-
trix is transformed into a row-equivalent matrix if any of the fol-
lowing row operations is performed:

1. Two rows are interchanged.
2. A row is multiplied by a nonzero constant.
3. A constant multiple of one row is added to another row.

The following symbols are used to describe these row
operations:

1. Ri ↔ Rj means “interchange row i with row j.”
2. kRi → Ri means “multiply row i by the constant k.”
3. kRj  Ri → Ri means “multiply row j by the constant k

and add to Ri.”

In solving system (2) using row operations, the objective is
to transform the augmented matrix (3) into the form

If this can be done, then (m, n) is the unique solution of system
(2). If (3) is transformed into the form

 1

0

m

0

n

0  

 1

0

0

1

m

n  

 a11

a21

a12

a22

k1

k2
  

then system (2) has infinitely many solutions. If (3) is trans-

formed into the form

p  0

then system (2) does not have a solution.

8.3 Gauss–Jordan Elimination
In Section 8.2 we were actually using Gauss–Jordan elimina-

tion to solve a system of two equations with two variables. The
method generalizes completely for systems with more than two
variables, and the number of variables does not have to be the
same as the number of equations.

As before, our objective is to start with the augmented ma-
trix of a linear system and transform it using row operations into
a simple form where the solution can be read by inspection. The
simple form, called the reduced form, is achieved if:

1. Each row consisting entirely of 0s is below any row
having at least one nonzero element.

2. The leftmost or leading nonzero element in each row is 1.
3. The column containing the leading 1 of a given row has

0s above and below the 1.
4. The leading 1 in any row is to the right of the leading 1

in the preceding row.

A reduced system is a system of linear equations that corre-
sponds to a reduced augmented matrix. When a reduced sys-
tem has more variables than equations and contains no contra-
dictions, the system is dependent and has infinitely many
solutions.

The Gauss–Jordan elimination procedure for solving a
system of linear equations is given in step-by-step form as
follows:

Step 1. Choose the leading nonzero column of an aug-
mented matrix, and use appropriate row operations
to get a 1 at the top.

Step 2. Use multiples of the row containing the 1 from
step 1 to get zeros in all remaining places in the
column containing this 1.

Step 3. Repeat step 1 with the submatrix formed by (men-
tally) deleting the row used in step 2 and all rows
above this row.

Step 4. Repeat step 2 with the entire matrix, including the
mentally deleted rows. Continue this process until
the entire matrix is in reduced form.

 1

0

m

0

n

p  
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Column 1 (C1)

Column 2 (C2)

Column 3 (C3) (3)

← Row 1 (R1)

← Row 2 (R2)
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Select shade above.

Select shade below.

Step 3. Graph the solution.

We now turn to systems of linear inequalities in two vari-
ables. The solution to a system of linear inequalities in two
variables is the set of all ordered pairs of real numbers that
simultaneously satisfy all the inequalities in the system. The
graph is called the solution region. In many applications the
solution region is also referred to as the feasible region. To find

the solution region, we graph each inequality in the system and
then take the intersection of all the graphs. A corner point of
a solution region is a point in the solution region that is the
intersection of two boundary lines. A solution region is
bounded if it can be enclosed within a circle. If it cannot be en-
closed within a circle, then it is unbounded.

8.5 Linear Programming
Linear programming is a mathematical process that has been
developed to help management in decision-making, and it has
become one of the most widely used and best-known tools of
management science and industrial engineering.

A linear programming problem is one that is concerned
with finding the optimal value (maximum or minimum value)
of a linear objective function of the form z  ax  by, where
the decision variables x and y are subject to problem con-
straints in the form of linear inequalities and nonnegative con-
straints x, y  0. The set of points satisfying both the problem
constraints and the nonnegative constraints is called the feasible

region for the problem. Any point in the feasible region that
produces the optimal value of the objective function over the
feasible region is called an optimal solution. The fundamental
theorem of linear programming is basic to the solving of lin-
ear programming problems: Let S be the feasible region for a
linear programming problem, and let z  ax  by be the objec-
tive function. If S is bounded, then z has both a maximum and a
minimum value on S and each of these occurs at a corner point
of S. If S is unbounded, then a maximum or minimum value of z
on S may not exist. However, if either does exist, then it must oc-
cur at a corner point of S.

y  mx  b

or

y  mx  b
 

y  mx  b

or

y  mx  b
 

If at any point in the above process we obtain a row with all 0s
to the left of the vertical line and a nonzero number n to the
right, we can stop, because we have a contradiction: 0  n,
n  0. We can then conclude that the system has no solution. If
this does not happen and we obtain an augmented matrix in re-
duced form without any contradictions, the solution can be read
by inspection.

8.4 Systems of Linear
Inequalities

A graph is often the most convenient way to represent the solu-
tion of a linear inequality in two variables or of a system of lin-
ear inequalities in two variables.

A vertical line divides a plane into left and right half-
planes. A nonvertical line divides a plane into upper and lower
half-planes. If A, B, and C are real numbers with A and B not
both zero, then the graph of the linear inequality

Ax  By  C or Ax  By  C

with B  0, is either the upper half-plane or the lower half-plane
(but not both) determined by the line Ax  By  C. If B  0,
then the graph of

Ax  C or Ax  C

is either the left half-plane or the right half-plane (but not both)
determined by the line Ax  C. There are two step-by-step pro-
cedures for graphing a linear inequality in two variables:

Algebraic Procedure

Step 1. Graph Ax  By  C as a broken line if equality is
not included in the original statement or as a solid
line if equality is included.

Step 2. Choose a test point anywhere in the plane not on
the line and substitute the coordinates into the
inequality. The origin (0, 0) often requires the least
computation.

Step 3. The graph of the original inequality includes the
half-plane containing the test point if the inequal-
ity is satisfied by that point, or the half-plane not

containing that point if the inequality is not satis-
fied by that point.

Graphing Utility Procedure

Step 1. Solve the inequality for y.

Step 2. Enter the equation of the boundary line and select
a shading option as follows:
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x
5

5

y

(0, 10)

(0, 6)

(6, 4)

(4, 2)

S

Step 2. Graph the feasible region and find the corner points.

Step 3. Evaluate the objective function at each corner point
to determine the optimal solution.

If two corner points are both optimal solutions of the same
type (both produce the same maximum value or both produce
the same minimum value) to a linear programming problem,
then any point on the line segment joining the two corner points
is also an optimal solution of that type.

11. 12.

13. Find the maximum and minimum values of z  5x  3y

over the feasible region S shown in the figure.

 1

0

 1

0
   4

0  1

0

 1

0
   4

1 

Problems with unbounded feasible regions are not consid-
ered in this brief introduction. The fundamental theorem leads
to a simple step-by-step solution to linear programming
problems with a bounded feasible region:

Step 1. Form a mathematical model for the problem:
(A) Introduce decision variables and write a linear

objective function.
(B) Write problem constraints in the form of lin-

ear inequalities.
(C) Write nonnegative constraints.

Work through all the problems in this chapter review and check answers in the back of the book. An-

swers to all review problems are there, and following each answer is a number in italics indicating

the section in which that type of problem is discussed. Where weaknesses show up, review appropri-

ate sections in the text.

Solve Problems 1 and 2 by substitution.

1. y  4x  9 2. 3x  2y  5
y   x  6 4x  y  14

Solve Problems 3–6 by graphing.

3. 3x  2y  8 4. 2x  y  4
x  3y   1  2x  7y  9

5. 3x  4y  24 6. 2x  y  2
x  2y   2

Perform each of the row operations indicated in Problems 7–9

on the following augmented matrix:

7. R1 ↔ R2 8. R2 → R2

9. ( 3)R1  R2 → R2

In Problems 10–12, write the linear system corresponding to

each reduced augmented matrix and solve.

10.  1

0

0

1
   4

 7 

1
3

 1

3

 4

 6
   5

 12 



688 8 MODELING WITH LINEAR SYSTEMS

29. Discuss the number of solutions for the system corre-
sponding to the reduced form shown below if
(A) m  0 (B) m  0 and n  0
(C) m  0 and n  0

 
1

0

0

0

1

0

 3

2

m

   4

5

n
 

27. Solve using Gauss–Jordan elimination:
x1  x2  x3  7,000

0.04x1  0.05x2  0.06x3  360
0.04x1  0.05x2  0.06x3  120

28. Maximize z  30x  20y

Subject to 1.2x  0.6y  960
0.04x  0.03y  36

0.2x  0.3y  270
x, y  0

14. Use Gauss–Jordan elimination to solve the system

x1  x2  4
2x1  x2  2

Then write the linear system represented by each aug-
mented matrix in your solution, and solve each of these
systems graphically. Discuss the relationship between the
solutions of these systems.

Solve Problems 15–20 using Gauss–Jordan elimination.

15. 3x1  2x2  3 16. x1  x2  1
x1  3x2  8 x1  x3   2

x2  2x3  4

17. x1  2x2  3x3  1 18. x1  2x2  x3  2
2x1  3x2  4x3  3 2x1  3x2  x3   3
x1  2x2  x3  3 3x1  5x2   1

19. x1  2x2  1 20. x1  2x2  x3  2
2x1  x2  0 3x1  x2  2x3   3
x1  3x2   2

Solve the systems in Problems 21–23 graphically, and indicate

whether each solution region is bounded or unbounded. Find

the coordinates of each corner point.

21. 2x  y  8 22. 2x  y  8
2x  3 y  12 x  3y  12

x, y  0 x, y  0

23. x  y  20
x  4y  20
x  y  0

Solve the linear programming problems in Problems 24–26.

24. Maximize z  7x  9y

Subject to x  2y  8
2x  y  10

x, y  0

25. Minimize z  5x  10y

Subject to x  y  20
3x  y  15

x  2y  15
x, y  0

26. Minimize and maximize z  5x  8y

Subject to x  2y  20
3x  y  15

x  y  7
x, y  0



30. Business. A container holds 120 packages. Some of the
packages weigh pound each, and the rest weigh pound
each. If the total contents of the container weigh 48 pounds,
how many are there of each type of package? Solve using
two-equation–two-variable methods.

31. Geometry. Find the dimensions of a rectangle with an
area of 48 square meters and a perimeter of 28 meters.
Solve using two-equation–two-variable methods.

32. Diet. A laboratory assistant wishes to obtain a food mix
that contains, among other things, 27 grams of protein,
5.4 grams of fat, and 19 grams of moisture. He has
available mixes A, B, and C with the compositions listed
in the table. How many grams of each mix should be
used to get the desired diet mix? Set up a system of equa-
tions and solve using Gauss–Jordan elimination.

1
3

1
2
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Mix Protein (%) Fat (%) Moisture (%)

A 30 3 10

B 20 5 20

C 10 4 10

33. Puzzle. A piggy bank contains 30 coins worth $1.90.
(A) If the bank contains only nickels and dimes, how

many coins of each type does it contain?
(B) If the bank contains nickels, dimes, and quarters,

how many coins of each type does it contain?

34. Resource Allocation. North Star Sail Loft manufactures
regular and competition sails. Each regular sail takes 
1 labor-hour to cut and 3 labor-hours to sew. Each com-

★

★★

★

petition sail takes 2 labor-hours to cut and 4 labor-hours
to sew. There are 140 labor-hours available in the cutting
department and 360 labor-hours available in the sewing
department.
(A) If the loft makes a profit of $60 on each regular sail

and $100 on each competition sail, how many sails
of each type should the company manufacture to
maximize its profit? What is the maximum profit?

(B) An increase in the demand for competition sails
causes the profit on a competition sail to rise to $125.

Discuss the effect of this change on the number of
sails manufactured and on the maximum profit.

(C) A decrease in the demand for competition sails
causes the profit on a competition sail to drop to

$75. Discuss the effect of this change on the number
of sails manufactured and on the maximum profit.

35. Nutrition—Animals. A special diet for laboratory ani-
mals is to contain at least 800 units of vitamins, at least
800 units of minerals, and at most 1,300 calories. There
are two feed mixes available, mix A and mix B. A gram
of mix A contains 5 units of vitamins, 2 units of minerals,
and 4 calories. A gram of mix B contains 2 units of vita-
mins, 4 units of minerals, and 4 calories.
(A) If mix A costs $0.07 per gram and mix B costs $0.04

per gram, how many grams of each mix should be
used to satisfy the requirements of the diet at mini-
mal cost? What is the minimal cost?

(B) If the price of mix B decreases to $0.02 per gram,
discuss the effect of this change on the solution in
part A.

(C) If the price of mix B increases to $0.15 per gram,
discuss the effect of this change on the solution in
part A.

★
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Modeling with Systems of Linear Equations

In this group activity we consider two real-world problems that can be solved
using systems of linear equations: heat conduction and traffic flow. Both problems
involve using a grid and a basic assumption to construct the model (the system
of equations). Gauss–Jordan elimination is then used to solve the model. In the
heat conduction problem, the solution of the model is easily interpreted in terms
of the original problem. The system in the second problem is dependent, and the
solution requires a more careful interpretation.

I Heat Conduction
A metal grid consists of four thin metal bars. The end of each bar of the grid is
kept at a constant temperature, as shown in Figure 1. We assume that the tem-
perature at each intersection point in the grid is the average of the temperatures
at the four adjacent points in the grid (adjacent points are either other intersec-
tion points or ends of bars). Thus, the temperature x1 at the intersection point in
the upper left-hand corner of the grid must satisfy

Left Above Right Below

x1  (40  0  x2  x3)

Find equations for the temperature at the other three intersection points, and solve
the resulting system to find the temperature at each intersection point in the grid.

1
4

0 40 

20 20 

x2x1

x3 x4
40 

40 

0 

40 

FIGURE 1

II Traffic Flow
The rush-hour traffic flow for a network of four one-way streets in a city is shown
in Figure 2. The numbers next to each street indicate the number of vehicles per
hour that enter and leave the network on that street. The variables x1, x2, x3, and
x4 represent the flow of traffic between the four intersections in the network. For
a smooth flow of traffic, we assume that the number of vehicles entering each
intersection should always equal the number leaving. For example, because 1,500
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vehicles enter the intersection of 5th Street and Washington Avenue each hour and
x1  x4 vehicles leave this intersection, we see that x1  x4  1,500.

(A) Find the equations determined by the traffic flow at each of the other three
intersections.

(B) Find the solution to the system in part A.

(C) What is the maximum number of vehicles that can travel from Washington
Avenue to Lincoln Avenue on 5th Street? What is the minimum number?

(D) If traffic lights are adjusted so that 1,000 vehicles per hour travel from
Washington Avenue to Lincoln Avenue on 5th Street, determine the flow
around the rest of the network.

6th St.

700

x4

x1

x2

x3
400

900

600

600

500
500

5th St.

Lincoln Ave.

800

Washington Ave.

FIGURE 2
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9.1 Matrix Operations

9.2 Inverse of a Square Matrix

9.3 Matrix Equations and Systems of Linear Equations

9.4 Determinants

9.5 Properties of Determinants

9.6 Determinants and Cramer’s Rule

Chapter 9 R E V I E W

Chapter 9 G R O U P  A C T I V I T Y : Using Matrices to Find Cost, Revenue, and Profit

Cumulative Review Chapters 8 and 9

I
N CHAPTER 9 WE DISCUSS MATRICES IN MORE DETAIL. IN THE FIRST THREE

sections we define and study some algebraic operations on matrices, includ-

ing addition, multiplication, and inversion. The next three sec-

tions deal with the determinant of a matrix.

In Chapter 8 we used row operations and Gauss–Jordan elimination
to solve systems of linear equations. Row operations play a promi-
nent role in the development of several topics in Chapter 9. One
consequence of our discussion will be the development of two addi-
tional methods for solving systems of linear equations: one method
involves inverse matrices and the other determinants.

Before getting started on this chapter,

review the following concepts:

● Properties of Real Numbers
(Basic Algebra Review*, Section R.1) 

● Linear Equations
(Appendix A, Section A.1)

● Matrices and Linear Systems
(Chapter 8, Sections 2 and 3)

*At www.mhhe.com/barnett
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Matrix Operations

Addition and Subtraction ● Multiplication of a Matrix by a Number ● Matrix Product

Matrices are both a very ancient and a very current mathematical concept. Ref-
erences to matrices and systems of equations can be found in Chinese manuscripts
dating back to around 200 B.C. Over the years, mathematicians and scientists have
found many applications of matrices. More recently, the advent of personal and
large-scale computers has increased the use of matrices in a wide variety of appli-
cations. In 1979 Dan Bricklin and Robert Frankston introduced VisiCalc, the first
electronic spreadsheet program for personal computers. Simply put, a spreadsheet

is a computer program that allows the user to enter and manipulate numbers, often
using matrix notation and operations. Spreadsheets were initially used by busi-
nesses in areas such as budgeting, sales projections, and cost estimation. How-
ever, many other applications have begun to appear. For example, a scientist can
use a spreadsheet to analyze the results of an experiment, or a teacher can use
one to record and average grades. There are even spreadsheets that can be used
to help compute an individual’s income tax.

In Section 8.2 we introduced basic matrix terminology and solved systems of
equations by performing row operations on augmented coefficient matrices. Matri-
ces have many other useful applications and possess an interesting mathematical
structure in their own right. As we will see, matrix addition and multiplication are
similar to real number addition and multiplication in many respects, but there are
some important differences. 

Addition and Subtraction
Before we can discuss arithmetic operations for matrices, we have to define equal-
ity for matrices. Two matrices are equal if they have the same size and their cor-
responding elements are equal. For example,

2  3 2  3

 if and only if

The sum of two matrices of the same size is a matrix with elements that are the
sums of the corresponding elements of the two given matrices.

Addition is not defined for matrices of different sizes.

Matrix Addition

Add:

(A)    w

y

x

z  a

c

b

d 

 u

x

v

y

w

z  a

d

b

e

c

f 
a  u b  v c  w

d  x e  y f  z



(B)   

(C)   

S O L U T I O N S

(A)    (a  w)

(c  y)

(b  x)

(d  z)  w

y

x

z  a

c

b

d 

 
0

 3

 1

2

5

4
  2

3

1

2

4

 3 

 3

 3

1

2

2

5  2

1

 3

2

0

 5 
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(B) Algebraic Solution

  

  5

 2

 2

4

2

0 

 (2  3)

(1  3)

( 3  1)

(2  2)

(0  2)

( 5  5)  3

 3

1

2

2

5  2

1

 3

2

0

 5 

(C) Algebraic Solution

 

Because the first matrix is 2  3 and the second is 3  2, this sum is not
defined.

 
0

 3

 1

2

5

4
  2

3

1

2

4

 3 

(B) Graphing Utility Solution

FIGURE 1

(C) Graphing Utility Solution

FIGURE 2

Add:  

Because we add two matrices by adding their corresponding elements, it fol-
lows from the properties of real numbers that matrices of the same size are com-
mutative and associative relative to addition. That is, if A, B, and C are matrices
of the same size, then

(A  B)  C  A  (B  C )

A  B  B  A

 
 2

1

2

3

 1

 2
  

3

 1

0

2

 1

3
 

Commutative

Associative



A matrix with elements that are all 0s is called a zero matrix. For example,
the following are zero matrices of different sizes:

[Note: “0” can be used to denote the zero matrix of any size.]
The negative of a matrix M, denoted by  M, is a matrix with elements that

are the negatives of the elements in M. Thus, if

then

Note that M  ( M)  0 (a zero matrix).
If A and B are matrices of the same size, then we define subtraction as

follows:

A  B  A  ( B)

Thus, to subtract matrix B from matrix A, we simply subtract corresponding
elements.

Matrix Subtraction

Subtract:    2

3

2

4  3

5

 2

0 

 M    a

 c

 b

 d 

M   a

c

b

d 

 
0

0

0

0

0

0

0

0

0

0

0

0
  

0

0

0

0
  0

0

0

0 
[0 0 0]
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Graphing Utility Solution

FIGURE 3

Algebraic Solution

   

  5

2

 4

 4 

 2

 3

 2

 4  3

5

 2

0   2

3

2

4  3

5

 2

0 

S O L U T I O N



Subtract: [2  3 5]  [3  2 1]

Multiplication of a Matrix by a Number
The product of a number k and a matrix M, denoted by kM, is a matrix formed
by multiplying each element of M by k.

Multiplication of a Matrix by a Number

Multiply:  2 
3

 2

0

 1

1

 1

0

3

 2
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Graphing Utility Solution

FIGURE 4

S O L U T I O N

Find: 10 
1.3

0.2

3.5
 

E X P L O R E / D I S C U S S  1

Multiplication of two numbers can be interpreted as repeated addition if
one of the numbers is a positive integer. That is,

2a  a  a 3a  a  a  a 4a  a  a  a  a

and so on. Discuss this interpretation for the product of an integer k
and a matrix M. Use specific examples to illustrate your remarks.

Algebraic Solution

 

  
 6

4

0

2

 2

2

0

 6

4
 

 
 2(3)

 2( 2)

 2(0)

 2( 1)

 2(1)

 2( 1)

 2(0)

 2(3)

 2( 2)
  2 

3

 2

0

 1

1

 1

0

3

 2
 



We now consider an application that uses various matrix operations.

Sales and Commissions

Ms. Fong and Mr. Petris are salespeople for a new car agency that sells only two
models. August was the last month for this year’s models, and next year’s mod-
els were introduced in September. Gross dollar sales for each month are given in
the following matrices:

AUGUST SALES SEPTEMBER SALES

Compact Luxury Compact Luxury

 A   B

For example, Ms. Fong had $36,000 in compact sales in August and Mr. Petris
had $216,000 in luxury car sales in September.

(A) What are the combined dollar sales in August and September for each
salesperson and each model?

(B) What was the increase in dollar sales from August to September?

(C) If both salespeople receive a 3% commission on gross dollar sales, compute
the commission for each salesperson for each model sold in September.

 $144,000

$180,000

$288,000

$216,000  $36,000

$72,000

$72,000     $0 
Fong 

Petris
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(A) Graphing Utility Solution

FIGURE 5

(B) Graphing Utility Solution

FIGURE 6

(A) Algebraic Solution

A   B  

Compact Luxury

Fong 

Petris
  $180,000

$252,000

$360,000

$216,000 

 144,000

180,000

288,000

216,000   36,000

72,000

72,000     0 

(B) Algebraic Solution 

B  A  

Compact Luxury

Fong 

Petris
  $108,000

$108,000

$216,000

$216,000 

 36,000

72,000

72,000     0   144,000

180,000

288,000

216,000 

S O L U T I O N S



Repeat Example 4 with

A = and B =

Example 4 involved an agency with only two salespeople and two models. A
more realistic problem might involve 20 salespeople and 15 models. Problems of
this size are often solved with the aid of a spreadsheet on a personal computer.
Figure 8 illustrates a computer spreadsheet solution for Example 4.

 $180,000

$144,000

$216,000

$216,000  $72,000

$36,000

$72,000

$72,000 

Matrix Product
Now we are going to introduce a matrix multiplication that may at first seem rather
strange. In spite of its apparent strangeness, this operation is well-founded in the
general theory of matrices and, as we will see, is extremely useful in many prac-
tical problems.

Historically, matrix multiplication was introduced by the English mathemati-
cian Arthur Cayley (1821–1895) in studies of linear equations and linear trans-
formations. In Section 9.3 you will see how matrix multiplication is central to the
process of expressing systems of equations as matrix equations and to the process
of solving matrix equations. Matrix equations and their solutions provide us with
an alternate method of solving linear systems with the same number of variables
as equations.

We start by defining the product of two special matrices, a row matrix and a
column matrix.
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(C) Graphing Utility Solution

FIGURE 7

FIGURE 8

(C) Algebraic Solution

0.03B

Compact Luxury

Fong 

Petris
  $4,320

$5,400

$8,640

$6,480 

  (0.03)(144,000)

(0.03)(180,000)

(0.03)(288,000)

(0.03)(216,000) 



Note that the number of elements in the row matrix and in the column matrix
must be the same for the product to be defined.

Product of a Row Matrix and a Column Matrix

Multiply: [2  3 0] 
 5

2

 2
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D E F I N I T I O N 1
Product of a Row Matrix and a Column Matrix

The product of a 1  n row matrix and an n 1 column matrix is a 1  1 matrix given by

n 1

[a1 a2
. . . an]   [a1b1  a2b2 

. . .  anbn] 
b1

b2

bn

 1  n

Graphing Utility Solution

FIGURE 9

[ 1 0 3 2 ]

Refer to Example 5. The distinction between the real number  16 and the
1  1 matrix [ 16] is a technical one, and it is common to see 1  1 matrices
written as real numbers without brackets. In the work that follows, we will fre-
quently refer to 1  1 matrices as real numbers and omit the brackets whenever
it is convenient to do so.

 
2

3

4

 1
  ?

S O L U T I O N

Algebraic Solution

[2  3 0] 

 [ 10  ( 6)  0]  [ 16]

 [(2)( 5)  ( 3)(2)  (0)( 2)] 
 5

2

 2
 

.
.
.



It is important to check sizes before starting the multiplication process. If A

is an a  b matrix and B is a c  d matrix, then if b  c, the product AB will
exist and will be an a  d matrix (Fig. 10). If b  c, then the product AB does
not exist.
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D E F I N I T I O N 2
Matrix Product

If A is an m p matrix and B is a p n matrix, then the matrix product of A and B, denoted AB,

is an m n matrix whose element in the ith row and jth column is the real number obtained from

the product of the ith row of A and the jth column of B. If the number of columns in A does not

equal the number of rows in B, then the matrix product AB is not defined.

Must be the same (b   c)

Size of product (a   d)

a   b c   d

FIGURE 10

Production Scheduling

A factory produces a slalom water ski that requires 4 labor-hours in the fabricat-
ing department and 1 labor-hour in the finishing department. Fabricating person-
nel receive $10 per hour, and finishing personnel receive $8 per hour. Total labor
cost per ski is given by the product

If the factory in Example 6 also produces a trick water ski that requires 6 labor-
hours in the fabricating department and 1.5 labor-hours in the finishing depart-
ment, write a product between appropriate row and column matrices that gives
the total labor cost for this ski. Compute the cost.

We now use the product of a 1  n row matrix and an n  1 column matrix
to extend the definition of matrix product to more general matrices.

[4  1] 10

8  [(4)(10)  (1)(8)]  [40  8]  [48] or $48 per ski

The definition is not as complicated as it might first seem. An example should
help clarify the process. For

A   2

 2

3

1

 1

2     and    B   
1

2

 1

3

0

2
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2  3
3  2

 

(A) Graphing Utility Solution

FIGURE 11

(A) Algebraic Solution

AB

 

4

 1

3

 1

 1

3

2

0

4

2

1

 1
 

  
2

1

 1

1

0

2
  1

2

 1

1

0

2

1

0 

3  2 2  4

A is 2  3, B is 3  2, and so AB is 2  2. To find the first row of AB, we take
the product of the first row of A with every column of B and write each result as
a real number, not a 1  1 matrix. The second row of AB is computed in the
same manner. The four products of row and column matrices used to produce the
four elements in AB are shown in the dashed box. These products are usually cal-
culated mentally, or with the aid of a calculator, and need not be written out. The
shaded portions highlight the steps involved in computing the element in the first
row and second column of AB.

2  2

Matrix Product

Given

Find each product that is defined:

(A) AB (B) BA (C) CD (D) DC

S O L U T I O N S

D   1

3

2

6 C   2

 1

6

 3 

B   1

2

 1

1

0

2

1

0 A   
2

1

 1

1

0

2
 

  9

 2

4

 2 

[ 2 1 2 ] 
3

0

2
 [ 2 1 2 ] 

1

2

 1
 

[2 3  1] 
3

0

2
 [2 3  1] 

1

2

 1
 ¥ 2

 2

3

1

 1

2  
1

2

 1

3

0

2
 ¥



Find each product, if it is defined:

(A) (B)

(C) (D)

(E) (F)

In the arithmetic of real numbers it does not matter in which order we multi-
ply; for example, 5  7  7  5. In matrix multiplication, however, it does make
a difference. That is, AB does not always equal BA, even if both multiplications
are defined and both products are the same size (see Example 7, parts C and D).

 
4

2

3
 [3  2   1][3  2   1] 

4

2

3
 

  2

1

4

 2  
1

 1

2

 2  1

 1

2

 2  
 2

1

4

 2 

 
 1

2

1

1

3

0
   1

1

0

2

3

2

 2

0   1

1

0

2

3

2

 2

0  
 1

2

1

1

3

0
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(B) Graphing Utility Solution

FIGURE 12

(C) Graphing Utility Solution

FIGURE 13

(D) Graphing Utility Solution

FIGURE 14

(B) Algebraic Solution

BA   

Because B has four columns and A
has three rows, the product BA is
not defined.

 1

2

 1

1

0

2

1

0  
2

1

 1

1

0

2
 

(C) Algebraic Solution

CD

  20

 10

40

 20 

  2

 1

6

 3  
1

3

2

6 

(D) Algebraic Solution

DC

  0

0

0

0 

  1

3

2

6  
2

 1

6

 3 

2  4 3  2



Thus,

Matrix multiplication is not commutative.

Also, AB may be zero with neither A nor B equal to zero (see Example 7, part
D). Thus,

The zero property does not hold for matrix multiplication.

(The zero property, namely, ab 0 if and only if a  0 or b  0, does hold for
all real numbers a and b.)

Just as we used the familiar algebraic notation AB to represent the product of
matrices A and B, we use the notation A2 for AA, the product of A with itself, A3

for AAA, and so on.
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E X P L O R E / D I S C U S S  2

In addition to the commutative and zero properties, there are other sig-
nificant differences between real number multiplication and matrix mul-
tiplication.

(A) In real number multiplication, the only real number whose square
is 0 is the real number 0 (02

 0). Find at least one 2  2 matrix
A with all elements nonzero such that A2

 0, where 0 is the
2  2 zero matrix.

(B) In real number multiplication, the only nonzero real number that is
equal to its square is the real number 1 (12

 1). Find at least one
2  2 matrix A with all elements nonzero such that A2

 A.

We will continue our discussion of properties of matrix multiplication later in
Chapter 9. Now we consider an application of matrix multiplication.

Labor Costs

Let us combine the time requirements for slalom and trick water skis discussed
in Example 6 and Matched Problem 6 into one matrix:

Labor-hours per ski

Assembly Finishing

department department

Now suppose that the company has two manufacturing plants, X and Y, in differ-
ent parts of the country and that the hourly wages for each department are given
in the following matrix:

 6 h

4 h

    1.5 h    1 h   L
Trick ski 

Slalom ski
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Hourly wages

Plant Plant

X Y

Because H and L are both 2  2 matrices, we can take the product of H and L
in either order and the result will be a 2  2 matrix:

How can we interpret the elements in these products? Let’s begin with the prod-
uct HL. The element 108 in the first row and first column of HL is the product
of the first row matrix of H and the first column matrix of L:

Plant Plant

X Y

Notice that $60 is the labor cost for assembling a trick ski at plant X and $48 is
the labor cost for assembling a slalom ski at plant Y. Although both numbers rep-
resent labor costs, it makes no sense to add them together. They do not pertain to
the same type of ski or to the same plant. Thus, although the product HL hap-
pens to be defined mathematically, it has no useful interpretation in this problem.

Now let’s consider the product LH. The element 72 in the first row and first
column of LH is given by the following product:

Assembly Finishing

where $60 is the labor cost for assembling a trick ski at plant X and $12 is the
labor cost for finishing a trick ski at plant X. Thus, the sum is the total labor cost
for producing a trick ski at plant X. The other elements in LH also represent total
labor costs, as indicated by the row and column labels shown below:

Labor costs per ski

Plant Plant

X Y

Refer to Example 8. The company wants to know how many hours to schedule
in each department to produce 1,000 trick skis and 2,000 slalom skis. These pro-
duction requirements can be represented by either of the following matrices:

LH   $72

$48

$87

$58 
  Trick ski  Slalom ski

 60  12  72

[6  1.5] 10

8 
  Assembly  Finishing

 6(10)  1.5(8)

[10   12] 6

4 
 Trick     Slalom

 10(6)  12(4)  60  48  108

LH   6

4

1.5

1   10

8

12

10   72

48

87

58 

HL   10

8

12

10  
6

4

1.5

1    108

88

27

22 

 $10

$  8

$12

$10  H
Assembly department

Finishing department



Trick Slalom

skis skis

Using the labor-hour matrix L from Example 8, find PL or LQ, whichever has a
meaningful interpretation for this problem, and label the rows and columns
accordingly.

Figure 15 shows a solution to Example 8 on a spreadsheet.

P  [1,000   2,000] Q   1,000

2,000 
  Trick skis  Slalom skis

FIGURE 15 Matrix multiplication
in a spreadsheet.
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C A U T I O N

Example 8 and Matched Problem 8 illustrate an important point about
matrix multiplication. Even if you are using a graphing utility to perform
the calculations in a matrix product, it is still necessary for you to know
the definition of matrix multiplication so that you can interpret the
results correctly.

1. 2. 3.

4. (A) (B) (C)

5. [8] 6.

7. (A) Not defined (B) (C) (D) (E) [11] (F)

8. Assembly Finishing 
PL  [14,000 3,500] Labor hours

 
12

6

9

 8

 4

 6

4

2

3
   6

3

 12

6  0

0

0

0  
2

1

 1

2

6

0

 1

12

3

2

 4

 2
 

[6  1.5] 10

8  [72] or $72

 $5,400

$4,320

$6,480

$6,480  $108,000

$108,000

$144,000

$144,000  $252,000

$180,000

$288,000

$288,000 

 
13

2

35
 [ 1  1   4]

1

 0

2

5

 2

1
 



8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.   2

 1

5

3   3 2

4  1  1

0

 1

 2  2  3

1 2 

  3

4

2

 1   2 5

 1 3  2

1

 3

2  1  1

0  2 

  1

2

1

 3  4

 2  3

 1

4

 2   1

2 

[1  5] 6

2 [2  4] 3

1 

5 1

 3

 2

2

0

 1

4

6 10 2

0

 1

 4

3

5 

 
4

1

1

 5

0

 3
   

 1

6

1

2

 2

 7
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Perform the indicated operations in Problems 1–18, if possible.

1. 2.

3.

4.

5.

6.

7.  6

0

2

 4

 3

5   4

 5

 1

1

2

 2 

 4

2

 1

1

0

3   
2

 6

0

1

3

 5
 

 
 3

2

1

5

0

4
    2

5

1

6

3

 8 

 4

2

 1

1

0

3    2

5

1

6

3

 8 

 
 3

2

1

5

0

4
   

2

 6

0

1

3

 5
 

 2

3

 1

0    3

2

1

 3   1

2

4

 6   1

0

 2

5 

Find the products in Problems 19–26.

19. 20.

21. 22.

23. 24.

25. 26.

Problems 27–44 refer to the following matrices.

C   
 1

4

 2

0

 3

3

2

1

5
     D   

3

0

1

 2

 1

2
 

A   2

0

 1

4

3

 2     B    3

2

1

5 

 
2

 1

1
   [1  2    2] 

1

2

 3
   [3  2  4]

[1  2    2]  
2

 1

1
 [3  2  4]  

1

2

 3
 

 3

 4  [2  1]  5

 3  [4  2]

[2  1]  3

 4 [4  2]   5

 3 

Perform the indicated operations, if possible.

27. CA 28. AC 29. BA

30. AB 31. C 2 32. B2

33. C  DA 34. B  AD 35. 0.2CD

36. 0.1DB 37. 2DB  5CD 38. 3BA  4AC

39. ( 1)AC 3DB 40. ( 2)BA 6CD

41. CDA 42. ACD

43. DBA 44. BAD

In Problems 45 and 46, calculate B, B2, B3,  .. . ,  and AB, AB2,

AB3, . . . .  Describe any patterns you observe in each sequence

of matrices.

45.

46. A  [0.4    0.6] and B   0.9

0.3

0.1

0.7 

A  [0.3    0.7] and B   0.4

0.2

0.6

0.8 
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47. Find a, b, c, and d so that

48. Find w, x, y, and z so that

49. Find x and y so that

50. Find x and y so that

In Problems 51 and 52, let a, b, and c be any nonzero real

numbers, let 

A   a

c

b

 a   and I   1

0

0

1 

 4

 4x

2x

 3    5  3y

5y 3    1 1

1 0 

 3x

 1

5

4x   2y  3

 6  y   7 2

 7 2 

 4

 3

 2

0   w x

y z   2  3

0 5 

 a

c

b

d   2  3

0 1   1  2

3  4 
51. If A2

 0, how are a, b, and c related? Use this relation-
ship to provide several examples of 2  2 matrices with
no zero entries whose square is the zero matrix.

52. If A2
 I, how are a, b, and c related? Use this relationship

to provide several examples of 2  2 matrices with no
zero entries whose square is the matrix I.

Problems 53 and 54 refer to the matrices 

53. If AB  0, how are a, b, c, and d related? Use this rela-
tionship to provide several examples of 2  2 matrices A
with no zero entries that satisfy AB 0.

54. If BA  0, how are a, b, c, and d related? Use this relation-
ship to provide several examples of 2  2 matrices A with
no zero entries that satisfy BA 0.

A   a

c

b

d   and B   1

1

1

1 

55. Find x and y so that

56. Find x and y so that

57. Find a, b, c, and d so that

58. Find a, b, c, and d so that

59. A square matrix is a diagonal matrix if all elements not
on the principal diagonal are zero. Thus, a 2  2 diagonal
matrix has the form

where a and d are any real numbers. Discuss the validity
of each of the following statements. If the statement is al-
ways true, explain why. If not, give examples.

(A) If A and B are 2  2 diagonal matrices, then A B is
a 2  2 diagonal matrix.

A   a

0

0

d 

 1

2

 2

 3  a b

c d   1 0

3 2 

 1

1

3

4  a b

c d   6  5

7  7 

 x

1

 1

0  2 1

4 1   y y

2 1 

 1

 2

3

 2  x 1

3 2   y 7

y  6 
(B) If A and B are 2  2 diagonal matrices, then 

A  B  B  A.

(C) If A and B are 2  2 diagonal matrices, then AB is a 
2  2 diagonal matrix.

(D) If A and B are 2  2 diagonal matrices, then AB BA.

60. A square matrix is an upper triangular matrix if all ele-
ments below the principal diagonal are zero. Thus, a 2  2
upper triangular matrix has the form

where a, b, and d are any real numbers. Discuss the valid-
ity of each of the following statements. If the statement is
always true, explain why. If not, give examples.

(A) If A and B are 2  2 upper triangular matrices, then 
A  B is a 2  2 upper triangular matrix.

(B) If A and B are 2  2 upper triangular matrices, then 
A  B  B  A.

(C) If A and B are 2  2 upper triangular matrices, then
AB is a 2  2 upper triangular matrix.

(D) If A and B are 2  2 upper triangular matrices, then
AB  BA.

A   a

0

b

d 
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61. Cost Analysis. A company with two different plants man-
ufactures guitars and banjos. Its production costs for each
instrument are given in the following matrices:

Plant X Plant Y
Guitar Banjo Guitar Banjo

Find (A  B), the average cost of production for the two
plants.

62. Cost Analysis. If both labor and materials at plant X in
Problem 61 are increased 20%, find (1.2A  B), the new
average cost of production for the two plants.

63. Markup. An import car dealer sells three models of a 
car. Current dealer invoice price (cost) and the retail price 
for the basic models and the indicated options are given 
in the following two matrices (where “Air” means air
conditioning):

Dealer invoice price
Basic AM/FM Cruise
car Air radio control

Model A

Model B

Model C

Retail price
Basic AM/FM Cruise

car Air radio control

Model A

Model B

Model C

We define the markup matrix to be N M (markup is the
difference between the retail price and the dealer invoice
price). Suppose the value of the dollar has had a sharp de-
cline and the dealer invoice price is to have an across-the-
board 15% increase next year. To stay competitive with
domestic cars, the dealer increases the retail prices only
10%. Calculate a markup matrix for next year’s models
and the indicated options. (Compute results to the nearest
dollar.)

64. Markup. Referring to Problem 63, what is the markup
matrix resulting from a 20% increase in dealer invoice
prices and an increase in retail prices of 15%? (Compute
results to the nearest dollar.)

65. Labor Costs. A company with manufacturing plants
located in different parts of the country has labor-hour and
wage requirements for the manufacturing of three types of
inflatable boats as given in the following two matrices:

1
2

1
2

 $30

$60

  $25  $80  A     $36

$54

  $27  $74  B

Labor-hours per boat
Cutting Assembly Packaging

department department department

Hourly wages
Plant I Plant II

(A) Find the labor costs for a one-person boat manufac-
tured at plant I.

(B) Find the labor costs for a four-person boat manufac-
tured at plant II.

(C) Discuss possible interpretations of the elements in the
matrix products MN and NM.

(D) If either of the products MN or NM has a meaningful
interpretation, find the product and label its rows and

columns.

66. Inventory Value. A personal computer retail company
sells five different computer models through three stores

located in a large metropolitan area. The inventory of each
model on hand in each store is summarized in matrix M.
Wholesale (W) and retail (R) values of each model com-
puter are summarized in matrix N.

Model
A B C D E

W R

(A) What is the retail value of the inventory at store 2?

(B) What is the wholesale value of the inventory at store 3?

(C) Discuss possible interpretations of the elements in the
matrix products MN and NM.

(D) If either of the products MN or NM has a meaningful
interpretation, find the product and label its rows and

columns.

N  

$700

$1,400 $1,800

$2,700

$3,500

$840

$1,800

$2,400

$3,300

$4,900
 

M   
4

2

10

2

3

4

3

5

3

7

0

4

1

6

3
 

N   
$8

$10

$5

    $9

$12

$6
 

M  

0.6 h

 1.0 h

1.5 h

  0.6 h

0.9 h

1.2 h

  0.2 h

0.3 h

0.4 h
 

$182

$182

$192
  M

$215

$295

$443

$682

$721

$827

$10,400

$12,500

$16,400
 

$215

$236

$248
  N

$263

$395

$573

$783

$838

$967

$13,900

$15,000

$18,300
 

One-person boat

Two-person boat

Four-person boat

Cutting department

Assembly department

Packaging department

Store 1 

Store 2 

Store 3

A

B

C

D

E

Materials

Labor



69. Politics. In a local election, a group hired a public rela-
tions firm to promote its candidate in three ways: tele-

phone, house calls, and letters. The cost per contact is
given in matrix M:

Cost per
contact

The number of contacts of each type made in two adjacent
cities is given in matrix N:

Telephone House call Letter

(A) Find the total amount spent in Berkeley.

(B) Find the total amount spent in Oakland.

(C) Discuss possible interpretations of the elements in the
matrix products MN and NM.

(D) If either of the products MN or NM has a meaningful
interpretation, find the product and label its rows and

columns.

(E) Discuss methods of matrix multiplication that can be
used to find the total number of telephone calls, house

calls, and letters. State the matrices that can be used,
and perform the necessary operations.

(F) Discuss methods of matrix multiplication that can be
used to find the total number of contacts in Berkeley

and in Oakland. State the matrices that can be used,
and perform the necessary operations.

70. Nutrition. A nutritionist for a cereal company blends two
cereals in different mixes. The amounts of protein, carbo-
hydrate, and fat (in grams per ounce) in each cereal are
given by matrix M. The amounts of each cereal used in the
three mixes are given by matrix N.

N   1,000

2,000

  500

800

  5,000

8,000 

M   
$0.80

$1.50

$0.40
 

(E) Discuss methods of matrix multiplication that can be
used to find the total inventory of each model on hand
at all three stores. State the matrices that can be used,
and perform the necessary operations.

(F) Discuss methods of matrix multiplication that can be
used to find the total inventory of all five models at

each store. State the matrices that can be used, and
perform the necessary operations.

67. Airfreight. A nationwide airfreight service has connect-
ing flights between five cities, as illustrated in the figure.

To represent this schedule in matrix form, we construct a
5  5 incidence matrix A, where the rows represent the
origins of each flight and the columns represent the desti-

nations. We place a 1 in the ith row and jth column of this
matrix if there is a connecting flight from the ith city to the
jth city and a 0 otherwise. We also place 0s on the princi-
pal diagonal, because a connecting flight with the same

origin and destination does not make sense.

Destination
1 2 3 4 5

Now that the schedule has been represented in the mathe-
matical form of a matrix, we can perform operations on
this matrix to obtain information about the schedule.

(A) Find A2. What does the 1 in row 2 and column 1 of A2

indicate about the schedule? What does the 2 in row 1
and column 3 indicate about the schedule? In general,
how would you interpret each element off the principal
diagonal of A2? [Hint: Examine the diagram for possi-
ble connections between the ith city and the jth city.]

(B) Find A3. What does the 1 in row 4 and column 2 of A3

indicate about the schedule? What does the 2 in row 1
and column 5 indicate about the schedule? In general,
how would you interpret each element off the principal
diagonal of A3?

(C) Compute A, A  A2, A  A2
 A3, . . ., until you ob-

tain a matrix with no zero elements (except possibly
on the principal diagonal), and interpret.

68. Airfreight. Find the incidence matrix A for the flight

schedule illustrated in the figure. Compute A, A  A2,
A  A2

 A3,  .. . ,  until you obtain a matrix with no zero
elements (except possibly on the principal diagonal), and
interpret.

0

0 1

0

0

1

0

0

0

0

0

1

0

1

0

1

0

0

0

1

0

0

1  0

0

 A
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1 2

54

3

Atlanta Baltimore

Chicago 

Denver El Paso

1

2

3

4

5

O
ri

gi
n

1 2

54

3

Louisville Milwaukee

Newark

Phoenix Oakland

Telephone

House call

Letter

Berkeley

Oakland



Cereal Cereal
A B

Mix X Mix Y Mix Z

(A) Find the amount of protein in mix X.

(B) Find the amount of fat in mix Z.

(C) Discuss possible interpretations of the elements in the
matrix products MN and NM.

(D) If either of the products MN or NM has a meaningful
interpretation, find the product and label its rows and

columns.

71. Dominance Relation. To rank players for an upcoming
tennis tournament, a club decides to have each player play
one set with every other player. The results are given in the
table.

N   15 oz

5 oz

10 oz

10 oz

5 oz

15 oz 

M   
4 g/oz

20 g/oz

3 g/oz

2 g/oz

16 g/oz

1 g/oz
 

(A) Express the outcomes as an incidence matrix A by
placing a 1 in the ith row and jth column of A if player
i defeated player j and a 0 otherwise (see Problem 67).

Player Defeated

1. Aaron Charles, Dan, Elvis

2. Bart Aaron, Dan, Elvis

3. Charles Bart, Dan

4. Dan Frank

5. Elvis Charles, Dan, Frank

6. Frank Aaron, Bart, Charles

Player Defeated

1. Anne Diane

2. Bridget Anne, Carol, Diane

3. Carol Anne

4. Diane Carol, Erlene

5. Erlene Anne, Bridget, Carol

(A) Express the outcomes as an incidence matrix A by
placing a 1 in the ith row and jth column of A if player
i defeated player j and a 0 otherwise (see Problem 67).

(B) Compute the matrix B A  A2.

(C) Discuss matrix multiplication methods that can be
used to find the sum of each of the rows in B. State the
matrices that can be used and perform the necessary
operations.

(D) Rank the players from strongest to weakest. Explain
the reasoning behind your ranking.

(B) Compute the matrix B A  A2.

(C) Discuss matrix multiplication methods that can be
used to find the sum of each of the rows in B. State the
matrices that can be used and perform the necessary
operations.

(D) Rank the players from strongest to weakest. Explain
the reasoning behind your ranking.

72. Dominance Relation. Each member of a chess team plays
one match with every other player. The results are given in
the table.
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Inverse of a Square Matrix

Identity Matrix for Multiplication ● Inverse of a Square Matrix ● Application: Cryptography

In Section 9.2 we introduce the identity matrix and the inverse of a square matrix.
These matrix forms, along with matrix multiplication, are then used to solve some
systems of equations written in matrix form in Section 9.3.

Protein

Carbohydrate

Fat

Cereal A

Cereal B



Identity Matrix for Multiplication
We know that for any real number a

(1)a  a(1)  a

The number 1 is called the identity for real number multiplication. Does the set
of all matrices of a given dimension have an identity element for multiplication?
That is, if M is an arbitrary m  n matrix, does M have an identity element I

such that IM  MI  M? The answer in general is no. However, the set of all
square matrices of order n (matrices with n rows and n columns) does have an
identity.

For example,

are the identity matrices for all square matrices of order 2 and 3, respectively.
Most graphing utilities have a built-in command for generating the identity

matrix of a given order (Fig. 1).

Identity Matrix Multiplication

(A)

(B)

(C)

(D)  a

d

b

e

c

f  
1

0

0

0

1

0

0

0

1
   a

d

b

e

c

f 

 1

0

0

1  a

d

b

e

c

f   a

d

b

e

c

f 

 
a

d

g

b

e

h

c

f

i
  

1

0

0

0

1

0

0

0

1
   

a

d

g

b

e

h

c

f

i
 

 
1

0

0

0

1

0

0

0

1
  

a

d

g

b

e

h

c

f

i
   

a

d

g

b

e

h

c

f

i
 

 1

0

0

1     and     1

0

0

0

1

0

0

0

1
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D E F I N I T I O N 1
Identity Matrix

The identity matrix for multiplication for the set of all square matrices of order n is the square

matrix of order n, denoted by I, with 1s along the principal diagonal (from upper left corner to lower

right corner) and 0s elsewhere.

FIGURE 1 Identity matrices.
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Multiply:

(A)

(B)

In general, we can show that if M is a square matrix of order n and I is the
identity matrix of order n, then

IM MI  M

If M is an m  n matrix that is not square (m  n), then it is still possible to
multiply M on the left and on the right by an identity matrix, but not with the
same-size identity matrix (see Example 1, parts C and D). To avoid the compli-
cations involved with associating two different identity matrices with each non-
square matrix, we restrict our attention in Section 9.2 to square matrices.

 
1

0

0

0

1

0

0

0

1
  

5

2

6

 7

4

 8
     and     52

6

 7

4

 8
  10 0

1 

 10
0

1  
3

4

 5

6     and     34  5

6  
1

0

0

1 

Inverse of a Square Matrix
In the set of real numbers, we know that for each real number a, except 0, there
exists a real number a 1 such that

a 1a  1

The number a 1 is called the inverse of the number a relative to multiplication,
or the multiplicative inverse of a. For example, 2 1 is the multiplicative inverse
of 2, because 2 1(2)  1. We use this idea to define the inverse of a square matrix.

E X P L O R E / D I S C U S S  1

The only real number solutions to the equation x2
 1 are x  1 and 

x   1.

(A) Show that A  satisfies A2
 I, where I is the 2  2

identity matrix.

(B) Show that B  satisfies B2
 I.

(C) Find a 2  2 matrix with all elements nonzero whose square is the
2  2 identity matrix.

 0

 1

 1

0 

 01
1

0 



The multiplicative inverse of a nonzero real number a also can be written as
1 a. This notation is not used for matrix inverses.

Let’s use Definition 2 to find A 1, if it exists, for

We are looking for

such that

Thus, we write

A A
 1

I

and try to find a, b, c, and d so that the product of A and A 1 is the identity
matrix I. Multiplying A and A 1 on the left side, we obtain

 (2a  3b)

 (a  2b)

(2c  3d)

 (c  2d)    
1

0

0

1 

 21
3

2  
a

b

c

d   
1

0

0

1 

AA 1
 A 1A  I

A 1
  ab

c

d 

A   21
3

2 
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D E F I N I T I O N 2
Inverse of a Square Matrix

If A is a square matrix of order n and if there exists a matrix A 1 (read “A inverse”) such that

A 1A  AA 1
 I

then A 1 is called the multiplicative inverse of A or, more simply, the inverse of A. If no such

matrix exists, then A is said to be a singular matrix.

E X P L O R E / D I S C U S S  2

Let

(A) How are the entries in A and B related?

(B) Find AB. Is B the inverse of A?

(C) Find AC. Is C the inverse of A?

A   42
2

2     B   0.25

0.5

0.5

0.5     C   0.5

 0.5

 0.5

1  



which is true only if

Solving these two systems, we find that a  2, b   1, c   3, and d  2. Thus,

as is easily checked:

A A
 1

I A
 1

A

Unlike nonzero real numbers, inverses do not always exist for nonzero square
matrices. For example, if

then, proceeding as before, we are led to the systems

These systems are both inconsistent and have no solution. Hence, B 1 does not
exist, and B is a singular matrix.

Most graphing utilities can find matrix inverses and can identify singular
matrices. Figure 2 shows the calculation of A 1 for the matrix A discussed ear-
lier. Figure 3 shows the error message that results when the inverse operation is
applied to the singular matrix B discussed earlier.

2a  b  1

4a  2b  0

 2c  d  0  4c  2d 1

B   24
1

2 

 21
3

2  
2

 1

 3

2   
1

0

0

1   
2

 1

 3

2  
2

1

3

2 

A 1
  2

 1

 3

2 

2a  3b  1

a  2b  0

2c  3d  0

c  2d  1

Note that the inverse operation is performed by pressing the x 1 key.  Entering
[A] ^ ( 1) results in an error message (Fig. 4).

Being able to find inverses, when they exist, leads to direct and simple solu-
tions to many practical problems. In Section 9.3, for example, we will show how
inverses can be used to solve systems of linear equations.

The algebraic method outlined for finding the inverse, if it exists, gets very
involved for matrices of order larger than 2. Now that we know what we are look-
ing for, we can use augmented matrices, as in Section 8.3, to make the process
more efficient. Details are illustrated in Example 2.
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FIGURE 2 FIGURE 3

FIGURE 4



Finding an Inverse

Find the inverse, if it exists, of

S O L U T I O N

We start as before and write

A A
 1

I

This is true only if

Now we write augmented matrices for each of the three systems:

First Second Third

Because each matrix to the left of the vertical bar is the same, exactly the same
row operations can be used on each augmented matrix to transform it into a
reduced form. We can speed up the process substantially by combining all three
augmented matrices into the single augmented matrix form

(1)

We now try to perform row operations on matrix (1) until we obtain a row-
equivalent matrix that looks like matrix (2):

I B

(2)

If this can be done, then the new matrix to the right of the vertical bar is A 1!
Now let’s try to transform matrix (1) into a form like that of matrix (2). We follow

 
1

0

0

0

1

0

0

0

1  a

b

c

d

e

f

g

h

i
   I  B 

  A  I  
1

0

2

 1

2

3

1

 1

0

1

0

0

0

1

0

0

0

1
  

 
1

0

2

 1

2

3

1

 1

0

0

0

1
   

1

0

2

 1

2

3

1

 1

0

0

1

0
   

1

0

2

 1

2

3

1

 1

0

1

0

0
  

g  h  i  0

2h  i  0

2g  3h  1

d  e  f  0

2e  f  1

2d  3e  0

a  b  c  1

2b  c  0

2a  3b  0

 
1

0

2

 1

2

3

1

 1

0
  

a

b

c

d

e

f

g

h

i
   

1

0

0

0

1

0

0

0

1
 

A   
1

0

2

 1

2

3

1

 1

0
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the same sequence of steps as in the solution of linear systems by Gauss–Jordan
elimination (see Section 8.3):

A I

( 2)R1 R3S R3

R2S R2

( 5)R2 R3S R3

Converting back to systems of equations equivalent to our three original systems
(we won’t have to do this step in practice), we have

a  3 d  3 g   1

b   2 e   2 h  1

c   4 f   5 i  2

And these are just the elements of A 1 that we are looking for! Hence,

Note that this is the matrix to the right of the vertical line in the last augmented
matrix.

C H E C K

Because the definition of matrix inverse requires that

A 1A  I and AA 1
 I (3)

A 1
  

3

 2

 4

3

 2

 5

 1

1

2
 

~  
1

0

0

0

1

0

0

0

1  3

 2

 4

3

 2

 5

 1

1

2
  [I B]

~  
1

0

0

0

1

0

1
2

 

1
2

1  1

0

 4

1
2
1
2

 5

0

0

2
 

~  
1

0

0

0

1

0

1
2

 

1
2
1
2  1

0

 2

1
2
1
2

 

5
2

0

0

1
 

~  
1

0

0

 1

1

5

1

 

1
2

 2  1

0

 2

0
1
2

0

0

0

1
 

1

2
~  

1

0

0

 1

2

5

1

 1

 2  1

0

 2

0

1

0

0

0

1
 

 
1

0

2

 1

2

3

1

 1

0  1

0

0

0

1

0

0

0

1
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R2 R1S R1

( )R3  R1 S R1 
1

2

R3  R2 S R2

1

2

2R3S R3



it appears that we must compute both A 1A and AA 1 to check our work. How-
ever, it can be shown that if one of the equations in (3) is satisfied, then the other
is also satisfied. Thus, for checking purposes it is sufficient to compute either
A 1A or AA 1—we don’t need to do both.

Let

(A) Form the augmented matrix .

(B) Use row operations to transform into .

(C) Verify by multiplication that B  A 1.

The procedure used in Example 2 can be used to find the inverse of any square
matrix, if the inverse exists, and will also indicate when the inverse does not exist.
These ideas are summarized in Theorem 1.

 I  B  A  I 
 A  I 

A   
3

 1

1

 1

1

0

1

0

1
 

A 1A   
3

 2

 4

3

 2

 5

 1

1

2
  

1

0

2

 1

2

3

1

 1

0
   

1

0

0

0

1

0

0

0

1
  I

Finding a Matrix Inverse

Find A 1, given A   4

 6

 1

2 

9 MATRICES AND DETERMINANTS718

T H E O R E M  1
Inverse of a Square Matrix A

If is transformed by row operations into , then the resulting
matrix B is A 1. If, however, we obtain all 0s in one or more rows to
the left of the vertical line, then A 1 does not exist.

 I  B  A  I 

E X P L O R E / D I S C U S S  3

(A) Suppose that the square matrix A has a row of all zeros. Explain
why A has no inverse.

(B) Suppose that the square matrix A has a column of all zeros.
Explain why A has no inverse.



Find A 1, given 

Finding an Inverse

Find B 1, if it exists, given B   10

 5

 2

1 

A   21
 6

 2 
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S O L U T I O N

Algebraic Solution

R1 S R1

6R1 R2 S R2

2R2 S R2

R2 R1 S R1

Thus,

Check by showing
A 1

  13
1
2

2 

  10
0

1  1

3

1
2

2 

1
4  10

 
1
4

1  1
4

3

0

2 

  10
 

1
4
1
2  

1
4
3
2

0

1 

  1

 6

 
1
4

2  1
4

0

0

1 

1
4 4

 6

 1

2  1

0

0

1 
Graphing Utility Solution

Enter A and use the inverse
key (Fig. 5).

FIGURE 5

From Figure 5, we see that

A 1
  13

0.5

2  
.A 1A  I

S O L U T I O N

Algebraic Solution

We have all 0s in the second row to the
left of the vertical line. Therefore, B 1

does not exist.

  1

0

 
1
5

0  1
10

1
2

0

1 

 10

 5

 2

1 10 0

1   
1

 5

 
1
5

1  1
10

0

0

1 
Graphing Utility Solution

Enter B and use the inverse
key (Fig. 6).

FIGURE 6

From Figure 6, we see that
B is a singular matrix and
B 1 does not exist.
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Find B 1, if it exists, given 

Application: Cryptography
Matrix inverses can be used to provide a simple and effective procedure for encod-
ing and decoding messages. To begin, we assign the numbers 1 to 26 to the let-
ters in the alphabet, as shown below. We also assign the number 27 to a blank to
provide for space between words. (A more sophisticated code could include both
uppercase and lowercase letters and punctuation symbols.)

A B C D E F G H I J K L M N

1 2 3 4 5 6 7 8 9 10 11 12 13 14

O P Q R S T U V W X Y Z Blank

15 16 17 18 19 20 21 22 23 24 25 26 27

Thus, the message I LOVE MATH corresponds to the sequence

9 27 12 15 22 5 27 13 1 20 8

Any matrix whose elements are positive integers and whose inverse exists can be
used as an encoding matrix. For example, to use the 2  2 matrix

to encode the above message, first we divide the numbers in the sequence into
groups of 2 and use these groups as the columns of a matrix B with two rows:

Proceed down the columns, not across the rows.

(Notice that we added an extra blank at the end of the message to make the
columns come out even.) Then we multiply this matrix on the left by A:

The coded message is

117 153 93 120 103 130 147 187 64 85 113 148

This message can be decoded simply by putting it back into matrix form and mul-
tiplying on the left by the decoding matrix A 1. Because A 1 is easily deter-
mined if A is known, the encoding matrix A is the only key needed to decode
messages encoded in this manner. Although simple in concept, codes of this type
can be very difficult to crack.

  117

153

93

120

103

130

147

187

64

85

113

148 

AB   45
3

4  
9

27

12

15

22

5

27

13

1

20

8

27 

B   9

27

12

15

22

5

27

13

1

20

8

27 

A   45
3

4 

B   6

 2

 3

1 



Cryptography

The message

31 54 69 37 64 82 23 50 66 51 69 75 23 30 36 65 84 84

was encoded with the matrix A shown below. Decode this message.

S O L U T I O N

We begin by entering the 3  3 encoding matrix A (Fig. 7). Then we enter the
coded message in the columns of a matrix C with three rows (Fig. 7). If B is the
matrix containing the uncoded message, then B and C are related by C  AB. To
find B, we multiply both sides of the equation C  AB by A 1 (Fig. 8).

A   
0

1

2

  2

2

1

  1

1

1
 

Writing the numbers in the columns of this matrix in sequence and using the
correspondence between numbers and letters noted earlier produces the decoded
message:

23 8 15 27 9 19 27 11 1 18 12 27 7 1 21 19 19 27

W H O I S K A R L G A U S S

The answer to this question can be found in Chapter 8.

The message

46 84 85 55 101 100 59 95 132 25 42 53 52 91 90 43 71 83 19 37 25

was encoded with the matrix A shown below. Decode this message.

A   
1

2

2

  1

1

3

  1

2

1
 

9.2 Inverse of a Square Matrix 721

FIGURE 7 FIGURE 8
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1. (A) (B)

2. (A) (B) (C)

3. 4. Does not exist 5. WHO IS WILHELM JORDAN  1 3

 
1
2 1 

 
1 1  1

1 2  1

 1  1 2
  

3  1 1

 1 1 0

1 0 1
   

1 0 0

0 1 0

0 0 1
  

1 0 0

0 1 0

0 0 1  1 1  1

1 2  1

 1  1 2
  

3  1 1

 1 1 0

1 0 1  1 0 0

0 1 0

0 0 1
 

 
5

2

6

 7

4

 8
  3  5

4 6 

Perform the indicated operations in Problems 1–8.

1. 2.

3. 4.

5.

6.

7.

8.

In Problems 9–18, examine the product of the two matrices to

determine if each is the inverse of the other.

 
 3 0 2

1 1 5

2  1 7
  

1 0 0

0 1 0

0 0 1
 

 
 2 1 3

2 4  2

5 1 0
  

1 0 0

0 1 0

0 0 1
 

 
1 0 0

0 1 0

0 0 1
  
 3 0 2

1 1 5

2  1 7
 

 
1 0 0

0 1 0

0 0 1
  
 2 1 3

2 4  2

5 1 0
 
 4  3

0 2  
1 0

0 1  2  3

4 5  
1 0

0 1 

 1 0

0 1  
4  3

0 2  1 0

0 1  
2  3

4 5 
9. 10.

11. 12.

13. 14.

15.

16.

17.

18.  
1 0  1

3 1  1

0 0 0
 ;  

1 0  1

 3 1  2

0 0 1
 

 
1  1 1

0 2  1

2 3 0
 ;  

3 3  1

 2  2 1

 4  5 2
 

 
1 0 1

 3 1  2

0 0 1
 ;  

1 0  1

3 1  1

0 0 1
 

 
1 2 0

0 1 0

 1  1 1
 ;  

1  2 0

0 1 0

1  1 0
 
 7 4

 5  3 ;  
3 4

 5  7   5 2

 8 3 ;  
3  2

8  5 

 5  7

 2 3 ;  
3 7

2 5  2 2

 1  1 ;  
1 1

 1  1 

  2  1

 4 2 ;  
1  1

2  2  3  4

 2 3 ;  
3 4

2 3 

Given A in Problems 19–28, find A 1, and show that A 1A  I.

19. 20. 21.  1 2

1 3   1 5

0  1  0  1

1 4 

22. 23. 24.  2 1

1 1  1 3

2 7  2 1

5 3 



25. 26.

27. 28.

Find the inverse of each matrix in Problems 29–32, if it exists.

29. 30.

31. 32.   5 4

4  3  2 3

3 5 

 2  4

 3 6  3 9

2 6 

 
1 0  1

2  1 0

1 1  4
  

1 1 0

0 2  1

1 0 1
 

 
1 3 0

1 2 3

0  1 2
  

1  2 0

0 1 1

2  1 2
 

In Problems 33–38, explain how you can determine that each

matrix is singular without performing any calculations.

33. A  34. B  

35. A  36. B  

37. A  38. B   
2 3  2

2 3  2

1  1 4
  

1 2  1

1  1 3

1  1 3
 

 
0 3  2

0 1  3

0  1 4
  

1 0  1

1 0 3

5 0  2
 

 
2 3  2

0 0 0

1  1 4
  

1 2  1

1  1 3

1 2  1
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48. Based on your observations in Problem 47, if A  A 1 for
a square matrix A, what is A2? Give a mathematical argu-
ment to support your conclusion.

49. Find (A 1) 1 for each of the following matrices.

(A) (B)

50. Based on your observations in Problem 49, if A 1 exists
for a square matrix A, what is (A 1) 1? Give a mathemati-
cal argument to support your conclusion.

51. Find (AB) 1, A 1B 1, and B 1A 1 for each of the follow-
ing pairs of matrices.

(A) and

(B) and

52. Based on your observations in Problem 51, which of the
following is a true statement? Give a mathematical argu-
ment to support your conclusion.

(A) (AB) 1
 A 1B 1

(B) (AB) 1
 B 1A 1

B   6 2

2 1 A   1  1

2 3 

B   3 7

2 5 A   3 4

2 3 

A   5 5

 1 3 A   4 2

1 3 

Find the inverse of each matrix in Problems 39–44, if it exists.

39. 40.

41. 42.

43. 44.

45. Discuss the existence of A 1 for 2  2 diagonal matrices
of the form

46. Discuss the existence of A 1 for 2  2 upper triangular
matrices of the form

47. Find A 1 and A2 for each of the following matrices.

(A) (B) A    2  1

3 2 A   3 2

 4  3 

A   a b

0 d 

A   a 0

0 d 

 
1  5  10

0 1 6

1  4  3
  

1 5 1 0

0 1 4

1 6 1 5
 

 
1  1 0

2  1 1

0 1 1
  

2 1 1

1 1 0

 1  1 0
 

 
4 2  1

1 1  1

 3  1 1
  

2 2  1

0 4  1

 1  2 1
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57. Cryptography. Encode the message DWIGHT DAVID
EISENHOWER with the matrix B given.

58. Cryptography. Encode the message JOHN FITZGER-
ALD KENNEDY with the matrix B given.

59. Cryptography. The following message was encoded with
the matrix B given. Decode this message.

41 84 82 44 74 25 56 67 20 54 43
54 89 39 102 44 67 86 44 90 68 135

136 81 149

60. Cryptography. The following message was encoded with
the matrix B given. Decode this message.

22 15 57 5 47 54 58 89 45 84 46
80 87 53 96 51 68 116 39 113 68 135

136 81 149

Problems 53–56 refer to the encoding matrix 

53. Cryptography. Encode the message CAT IN THE HAT
with the matrix A given.

54. Cryptography. Encode the message FOX IN SOCKS
with the matrix A given.

55. Cryptography. The following message was encoded with
the matrix A given. Decode this message.

111 43 40 15 177 68 50 19 116 45 86
29 62 22 121 43 68 27

56. Cryptography. The following message was encoded with
the matrix A given. Decode this message.

99 38 154 58 115 43 121 43 20 7 149
56 86 29 196 73 99 38

Problems 57–60 refer to the encoding matrix

B   
1

0

2

0

1

0

1

1

0

1

1

1

1

1

1

0

0

1

0

2

1

3

1

2

1

 

A   3 5

1 2 

Matrix Equations and Systems of Linear
Equations

Matrix Equations ● Matrix Equations and Systems of Linear Equations ● Application

The identity matrix and inverse matrix discussed in Section 9.2 can be put to
immediate use in the solving of certain simple matrix equations. Being able to
solve a matrix equation gives us another important method of solving a system
of equations having the same number of variables as equations. If the system
either has fewer variables than equations or more variables than equations, then
we must return to the Gauss–Jordan method of elimination.

Matrix Equations
Before we discuss the solution of matrix equations, you will probably find it
helpful to briefly review the basic properties of linear equations discussed in
Appendix A, Section A.1.



Solving simple matrix equations follows very much the same procedures
used in solving real number equations. We have, however, less freedom with
matrix equations, because matrix multiplication is not commutative. In solv-
ing matrix equations, we will be guided by the properties of matrices summa-
rized in Theorem 1.

The process of solving certain types of simple matrix equations is best illus-
trated by an example.

Solving a Matrix Equation

Given an n  n matrix A and n  1 column matrices B and X, solve 
AX  B for X. Assume all necessary inverses exist.

9.3 Matrix Equations and Systems of Linear Equations 725

E X P L O R E / D I S C U S S  1

Let a, b, and c be real numbers, with a  0. Solve each equation for x.

(A) ax  b (B) ax  b  c

T H E O R E M  1
Basic Properties of Matrices

Assuming all products and sums are defined for the indicated matrices
A, B, C, I, and 0, then

Addition Properties
Associative: (A  B)  C  A  (B  C)
Commutative: A  B  B  A

Additive Identity: A  0  0  A  A

Additive Inverse: A  ( A)  ( A)  A  0

Multiplication Properties
Associative Property: A(BC)  (AB)C
Multiplicative Identity: AI  IA  A

Multiplicative Inverse: If A is a square matrix and A 1 exists, 
then AA 1

 A 1A  I.

Combined Properties
Left Distributive: A(B  C )  AB  AC

Right Distributive: (B  C )A  BA  CA

Equality
Addition: If A  B, then A  C  B  C.
Left Multiplication: If A  B, then CA  CB.
Right Multiplication: If A  B, then AC  BC.



S O L U T I O N

We are interested in finding a column matrix X that satisfies the matrix equation
AX  B. To solve this equation, we multiply both sides, on the left, by A 1, assum-
ing it exists, to isolate X on the left side.

AX  B

A 1(AX )  A 1B Use the left multiplication property.

(A 1A)X  A 1B Associative property

IX  A 1B A
 1

A I

X  A 1B IX X

9 MATRICES AND DETERMINANTS726

C A U T I O N

1. Do not mix the left multiplication property and the right
multiplication property. If AX  B, then

A 1(AX )  BA 1

2. Matrix division is not defined. If a, b, and x are real numbers, then
the solution of ax  b can be written either as x  a 1b or as x  .
But if A, B, and X are matrices, the solution of AX  B must be
written as X  A 1B. The expression is not defined for matrices.B

A

b
a

Given an n  n matrix A and n  1 column matrices B, C, and X, solve
AX  C  B for X. Assume all necessary inverses exist.

Matrix Equations and Systems of Linear Equations
We now show how independent systems of linear equations with the same number
of variables as equations can be solved by first converting the system into a matrix
equation of the form AX  B and using X  A 1B as obtained in Example 1.

Using Inverses to Solve Systems of Equations

Use matrix inverse methods to solve the system

x1  x2  x3  1

2x2  x3  1 (1)

2x1  3x2  1

S O L U T I O N

The inverse of the coefficient matrix

A   
1  1 1

0 2  1

2 3 0
 



provides an efficient method for solving this system. To see how, we convert sys-
tem (1) into a matrix equation:

A X B

(2)

Check that matrix equation (2) is equivalent to system (1) by finding the product
of the left side and then equating corresponding elements on the left with those
on the right. Now you see another important reason for defining matrix multipli-
cation as we did.

We are interested in finding a column matrix X that satisfies the matrix equa-
tion AX  B. In Example 1 we found that if AX  B and if A 1 exists, then

X  A 1B

 
1  1 1

0 2  1

2 3 0
  

x1

x2

x3

   
1

1

1
 

Use matrix inverse methods to solve the system (see Matched Problem 2 in Sec-
tion 9.2 for the inverse of the coefficient matrix):

x1  x3  2

 x1  x2  3

 3x1  x2  x3  1
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Algebraic Solution

The inverse of A was found in Example 2
in Section 9.2 to be

Thus,

X A
 1

B

and we can conclude that x1  5,
x2   3, and x3  7. Check this result 
in system (1).

 
x1

x2

x3

   
3 3  1

 2  2 1

 4  5 2
  

1

1

1
   

5

 3

 7
 

A 1
  

3 3  1

 2  2 1

 4  5 2
 

Graphing Utility Solution

To solve this problem on a
graphing utility, enter A
and B (Fig. 1) and simply
type A 1B (Fig. 2).

FIGURE 1

FIGURE 2



At first glance, using matrix inverse methods seems to require the same
amount of effort as using Gauss–Jordan elimination. In either case, row opera-
tions must be applied to an augmented matrix involving the coefficients of the
system. The advantage of the inverse matrix method becomes readily apparent
when solving a number of systems with a common coefficient matrix and differ-
ent constant terms.

Using Inverses to Solve Systems of Equations

Use matrix inverse methods to solve each of the following systems:

(A) (B)

S O L U T I O N S

Notice that both systems have the same coefficient matrix A as system (1) in
Example 2. Only the constant terms have been changed. Thus, we can use A 1 to
solve these systems just as we did in Example 2.

 2x1  3x2   3 2x1  3x2  4

 2x2  x3  2 2x2  x3  1

x1  x2  x3   5x1  x2  x3  3

Use matrix inverse methods to solve each of the following systems (see Matched
Problem 2):

(A) (B)

x1  x3   4x1  x3  2

 x1  x2  1 x1  x2   3

3x1  x2  x3   5 3x1  x2  x3  3
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(A) Algebraic Solution

X A
 1

B

Thus, x1  8, x2   4, and x3   9

 
x1

x2

x3

   
3 3  1

 2  2 1

 4  5 2
  

3

1

4
   

8

 4

 9
 

(B) Algebraic Solution

X A
 1

B

Thus, x1   6, x2  3, and x3  4

 
x1

x2

x3

   
3 3  1

 2  2 1

 4  5 2
  
 5

2

 3
   

 6

3

4
 

(A) Graphing Utility Solution

FIGURE 3

(B) Graphing Utility Solution

FIGURE 4



REMARK What happens if the coefficient matrix does not have an inverse? In this
case, it can be shown that the system does not have a unique solution and is either
dependent or inconsistent. Gauss–Jordan elimination must be used to determine
which is the case. Also, as we mentioned earlier, Gauss–Jordan elimination must
always be used if the number of variables is not the same as the number of
equations.

Application
The application in Example 4 illustrates the usefulness of the inverse method.

Investment Allocation

An investment adviser currently has two types of investments available for clients:
an investment M that pays 10% per year and an investment N of higher risk that
pays 20% per year. Clients may divide their investments between the two to
achieve any total return desired between 10% and 20%. However, the higher the
desired return, the higher the risk. How should each client listed in the table invest
to achieve the indicated return?

9.3 Matrix Equations and Systems of Linear Equations 729

E X P L O R E / D I S C U S S  2

Use matrix inverse methods to solve each of the following systems, if
possible, otherwise use Gauss–Jordan elimination. Describe the types of
systems that can be solved by inverse methods and those that cannot. Are
there any systems that cannot be solved by Gauss–Jordan elimination?

(A) x1  x2  1 (B) x1  x2  x3  1

x1  x2  7 x1  x2  x3  7

3x1  x2  9 3x1  x2  x3  9

(C) x1  x2  x3  1 (D) x1  x2  x3  1

x1  x2  x3  7 x1  x2  x3  7

3x1  x2  x3  8 3x1  x2  2x3  8

Using Inverse Methods to Solve Systems of Equations

If the number of equations in a system equals the number of variables and the coefficient matrix has

an inverse, then the system will always have a unique solution that can be found by using the

inverse of the coefficient matrix to solve the corresponding matrix equation.

Matrix equation Solution

AX  B X  A 1B



S O L U T I O N

We first solve the problem for an arbitrary client k using inverses, and then apply
the result to the three specific clients.

Let

x1  Amount invested in M

x2  Amount invested in N

Then

x1  x2  k1 Total invested

0.1x1  0.2x2  k2 Total annual return

Write as a matrix equation:

A X B

If A 1 exists, then

X  A 1B

To solve each client’s investment problem on a graphing utility, first we enter A
(Fig. 5), then we enter the appropriate values for B and compute A 1B (Fig. 6).

 1 1

0.1 0.2  
x1

x2
   k1

k2
 

From Figure 6, we see that Client 1 should invest $16,000 in investment M

and $4,000 in investment N, Client 2 should invest $25,000 in investment M and
$25,000 in investment N, and Client 3 should invest $7,000 in investment M

and $3,000 in investment N.

Repeat Example 4 with investment M paying 8% and investment N paying 24%.

Client

1 2 3 k

Total investment $20,000 $50,000 $10,000 k1

Annual return desired $2,400 $7,500 $1,300 k2

(12%) (15%) (13%)
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FIGURE 5

FIGURE 6

(a) Client 1 (b) Client 2 (c) Client 3



7. x1  2x2  x3   1 8. 2x1  3x3  5
 x1 x2  2 x1  2x2  x3   4
2x1  3x2  x3  3  x1  3x2  2

In Problems 9–12, find x1 and x2.

9. 10.

11. 12.

In Problems 13–16, find x1 and x2.

13. 14.

15. 16.  1 1

3  2  
x1

x2
   10

20  1 1

2  3  
x1

x2
   15

10 

 1 3

1 4  
x1

x2
   96  1  1

1  2  
x1

x2
   57 

 x1

x2
   3  1

0 2  
 2

1  x1

x2
    2 3

2  1  
3

2 

 x1

x2
    2 1

 1 2  
3

 2  x1

x2
   3  2

1 4  
 2

1 

9.3 Matrix Equations and Systems of Linear Equations 731

1. AX  C  B

AX  B  C

2. x1  2, x2  5, x3  0 3. (A) x1   2, x2   5, x3  4 (B) x1  0, x2  1, x3   4

4. A 1
 ; Client 1: $15,000 in M and $5,000 in N; Client 2: $28,125 in M and $21,875 in N; Client 3:

$6,875 in M and $3,125 in N

 1.5  6.25

 0.5 6.25 

X  A 1(B  C )

IX  A 1(B  C )

 (A 1A)X  A 1(B  C )

A 1(AX )  A 1(B  C )

AX  0  B  C

AX  (C  C )  B  C

 (AX  C )  C  B  C

Write Problems 1–4 as systems of linear equations without

matrices.

1. 2.

3.

4.

Write each system in Problems 5–8 as a matrix equation of the

form AX  B.

5. 4x1  3x2  2 6. x1  2x2  7
x1  2x2  1  3x1  x2   3

 
1  2 0

 3 1  1

2 0 4
  

x1

x2

x3

   
3

 2

5
 

 
 2 0 1

1 2 1

0 1  1
  

x1

x2

x3

   
3

 4

2
 
  3 1

 1 2  
x1

x2
    2

5  2  1

1 3  
x1

x2
   3

 2 
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Write each system in Problems 17–24 as a matrix equation and

solve using inverses.

17. x1  2x2  k1 18. 2x1  x2  k1

x1  3x2  k2 5x1  3x2  k2

(A) k1  1, k2  3 (A) k1  2, k2  13
(B) k1  3, k2  5 (B) k1   2, k2  4
(C) k1   2, k2  1 (C) k1  1, k2   3

19. x1  3x2  k1 20. 2x1  x2  k1

2x1  7x2  k2 x1  x2  k2

(A) k1  2, k2   1 (A) k1   1, k2   2
(B) k1  1, k2  0 (B) k1  2, k2  3
(C) k1  3, k2   1 (C) k1  2, k2  0

21. x1  2x2  k1

x2  x3  k2

2x1  x2  2x3  k3

(A) k1  1, k2  0, k3  2
(B) k1   1, k2  1, k3  0
(C) k1  2, k2   2, k3  1

22. x1  3x2  k1

x1  2x2  3x3  k2

 x2  2x3  k3

(A) k1  0, k2  2, k3  1
(B) k1   2, k2  0, k3  1
(C) k1  3, k2  1, k3  0

23. x1  x2  k1

2x2  x3  k2

x1  x3  k3

(A) k1  2, k2  0, k3  4
(B) k1  0, k2  4, k3   2
(C) k1  4, k2  2, k3  0

24. x1  x3 k1

2x1  x2  k2

x1  x2  4x3  k3

(A) k1  4, k2  8, k3  0
(B) k1  4, k2  0, k3   4
(C) k1  0, k2  8, k3   8

In Problems 25–30, explain why the system cannot be solved

by matrix inverse methods. Discuss methods that could be used

and then solve the system.

25.  2x1 4x2   5 26.  2x1 4x2  5
6x1  12x2  15 6x1  12x2  15

27. x1  3x2  2x3   1 28. x1  3x2  2x3   1
 2x1 6x2  4x3  3  2x1 7x2  3x3  3

29. x1  2x2  3x3  1 30. x1  2x2  3x3  1
2x1  3x2  2x3  3 2x1  3x2  2x3  3
x1  x2  5x3  2 x1  x2  5x3  4

For n  n matrices A and B and n  1 matrices C, D, and X,

solve each matrix equation in Problems 31–36 for X. Assume

all necessary inverses exist.

31. AX  BX  C 32. AX  BX  C

33. AX  X  C 34. AX  X  C

35. AX  C  D  BX 36. AX  C  BX  D

37. Use matrix inverse methods to solve the following system
for the indicated values of k1 and k2.

x1  2.001x2  k1

x1  2x2  k2

(A) k1  1, k2  1
(B) k1  1, k2  0
(C) k1  0, k2  1

Discuss the effect of small changes in the constant terms
on the solution set of this system.

38. Repeat Problem 37 for the following system:

x1  3.001x2  k1

x1  3x2  k2
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*Gustav Kirchhoff (1824–1887), a German physicist, was among the first to apply

theoretical mathematics to physics. He is best known for his development of cer-

tain properties of electric circuits, which are now known as Kirchhoff’s laws.

Solve using systems of equations and matrix inverse methods.

39. Resource Allocation. A concert hall has 10,000 seats and
two categories of ticket prices, $4 and $8. Assume all seats
in each category can be sold.

(A) How many tickets of each category should be sold to
bring in each of the returns indicated in the table?

(B) Is it possible to bring in a return of $9,000? Of
$3,000? Explain.

(C) Describe all the possible returns.

40. Production Scheduling. Labor and material costs for man-
ufacturing two guitar models are given in the following
table:

(A) If a total of $3,000 a week is allowed for labor and ma-
terial, how many of each model should be produced
each week to exactly use each of the allocations of the
$3,000 indicated in the following table?

(B) Is it possible to use an allocation of $1,600 for labor
and $1,400 for material? Of $2,000 for labor and
$1,000 for material? Explain.

★ 41. Circuit Analysis. A direct current electric circuit consist-
ing of conductors (wires), resistors, and batteries is dia-
grammed in the figure.

Concert

1 2 3

Tickets sold 10,000 10,000 10,000

Return required $56,000 $60,000 $68,000

Guitar Model Labor Cost Material Cost

A $30 $20

B $40 $30

Weekly Allocation

1 2 3

Labor $1,800 $1,750 $1,720

Material $1,200 $1,250 $1,280

If I1, I2, and I3 are the currents (in amperes) in the three
branches of the circuit and V1 and V2 are the voltages (in
volts) of the two batteries, then Kirchhoff’s* laws can be
used to show that the currents satisfy the following system
of equations:

I1  I2  I3  0

I1  I2  V1

I2  2I3  V2

Solve this system for

(A) V1  10 volts, V2  10 volts

(B) V1  10 volts, V2  15 volts

(C) V1  15 volts, V2  10 volts

★ 42. Circuit Analysis. Repeat Problem 41 for the electric circuit
shown in the figure.

I1  I2  I3  0

I1  2I2  V1

2I2  2I3  V2

★★ 43. Geometry. The graph of f (x)  ax2
 bx  c passes

through the points (1, k1), (2, k2), and (3, k3). Determine a,
b, and c for

(A) k1   2, k2  1, k3  6

(B) k1  4, k2  3, k3   2

(C) k1  8, k2   5, k3  4

    

1 ohm 1 ohm 2 ohms

V1

I1 I2 I3

V2

    

1 ohm 2 ohms 2 ohms

V1

I1 I2 I3

V2



(B) Is it possible to prepare a diet consisting of 20 ounces
of protein and 14 ounces of fat? Of 20 ounces of pro-
tein and 1 ounce of fat? Explain.

★★ 44. Geometry. Repeat Problem 43 if the graph passes
through the points ( 1, k1), (0, k2), and (1, k3).

Check your answers in Problems 43 and 44 by graphing 

y  f(x) on a graphing utility and verifying that the graph

passes through the indicated points.

45. Diets. A biologist has available two commercial food
mixes with the following percentages of protein and fat:

(A) How many ounces of each mix should be used to pre-
pare each of the diets listed in the following table?

Determinants

Determinants ● Second-Order Determinants ● Third-Order Determinants ● Higher-Order
Determinants

Determinants
In Section 9.4 we are going to associate with each square matrix a real number,
called the determinant of the matrix. If A is a square matrix, then the determi-
nant of A is denoted by det A, or simply by writing the array of elements in A

using vertical lines in place of square brackets. For example,

A determinant of order n is a determinant with n rows and n columns. In this
section we concentrate most of our attention on determining the values of deter-
minants of orders 2 and 3. But many of the results and procedures discussed can
be generalized completely to determinants of order n.

Second-Order Determinants
In general, a second-order determinant is written as

and represents a real number as given in Definition 1.

 a11 a12

a21 a22 

det  
1  2 3

0 5  7

 2 1 6
   1  2 3

0 5  7

 2 1 6 det  2  3

5 1   2  3

5 1 
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Mix Protein (%) Fat (%)

A 20 2

B 10 6

Diet

1 2 3

Protein 20 oz 10 oz 10 oz

Fat 6 oz 4 oz 6 oz



Formula (1) is easily remembered if you notice that the expression on the right
is the product of the principal diagonal, from upper left to lower right, minus
the product of the secondary diagonal, from lower left to upper right.

Evaluating a Second-Order Determinant

Find   1 2

 3  4 
S O L U T I O N

Algebraic Solution

  1    2

 3  4  ( 1)( 4)  ( 3)(2)  4  ( 6)  10

Graphing Utility Solution

Enter the given matrix and use the det
command (Fig. 1).

FIGURE 1
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D E F I N I T I O N 1
Value of a Second-Order Determinant

(1) a11 a12

a21 a22  a11a22  a21a12

Find: 

Third-Order Determinants
A determinant of order 3 is a square array of nine elements and represents a real
number given by Definition 2, which is a special case of the general definition of
the value of an nth-order determinant. Note that each term in the expansion on
the right of equation (2) contains exactly one element from each row and each
column.

 3  5

4  2 
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D E F I N I T I O N  2
Value of a Third-Order Determinant

(2) a11a22a33  a11a32a23  a21a32a13  a21a12a33

 a31a12a23  a31a22a13 a11 a12 a13

a21 a22 a23

a31 a32 a33 

D E F I N I T I O N  3
Cofactor

Cofactor of aij  ( 1)i j(Minor of aij)

Don’t panic! You don’t need to memorize formula (2). After we introduce the
ideas of minor and cofactor below, we will state a theorem that can be used to
obtain the same result with much less trouble.

The minor of an element in a third-order determinant is a second-order deter-
minant obtained by deleting the row and column that contains the element. For
example, in the determinant in formula (2),

Minor of a23  

Minor of a32   a11 a12 a13

a21 a22 a23

a31 a32 a33   a11 a13

a21 a23 
 a11 a12 a13

a21 a22 a23

a31 a32 a33   a11 a12

a31 a32 

A quantity closely associated with the minor of an element is the cofactor of
an element aij (from the ith row and jth column), which is the product of the
minor of aij and ( 1)i j.

Thus, a cofactor of an element is nothing more than a signed minor. The sign
is determined by raising  1 to a power that is the sum of the numbers indicat-
ing the row and column in which the element appears. Note that ( 1)i j is 1 if
i  j is even and  1 if i  j is odd. Thus, if we are given the determinant

 a11 a12 a13

a21 a22 a23

a31 a32 a33 

E X P L O R E / D I S C U S S  1

Write the minors of the other seven elements in the determinant in
formula (2).

Deletions are usually done mentally.
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then

Finding Cofactors

Find the cofactors of  2 and 5 in the determinant

S O L U T I O N

Find the cofactors of 2 and 3 in the determinant in Example 2.

[Note: The sign in front of the minor, ( 1)i j, can be determined rather mechan-
ically by using a checkerboard pattern of  and  signs over the determinant,
starting with  in the upper left-hand corner:

Use either the checkerboard or the exponent method—whichever is easier for
you—to determine the sign in front of the minor.]

Now we are ready for the key theorem of this section, Theorem 1. This theo-
rem provides us with an efficient step-by-step procedure, called an algorithm, for
evaluating third-order determinants.

 

 

 

 

 

 

 

 

 

  [( 2)(2)  ( 1)(0)]  4

 Cofactor of 5  ( 1)2 3  2 0

 1 2     2 0

 1 2 
 ( 6)(0)  (2)(5)   10

 Cofactor o f  2  ( 1)1 1  6 5

2 0    6 5

2 0 
  2 0 3

1  6   5

 1 2 0 

Cofactor of a11  ( 1)1 1 a22 a23

a32 a33   a22 a23

a32 a33 
Cofactor of a23  ( 1)2 3 a11 a12

a31 a32    a11 a12

a31 a32 

T H E O R E M  1
Value of a Third-Order Determinant

The value of a determinant of order 3 is the sum of three products
obtained by multiplying each element of any one row (or each element
of any one column) by its cofactor.
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To prove this theorem we must show that the expansions indicated by the 
theorem for any row or any column (six cases) produce the expression on the right
of formula (2). Proofs of special cases of this theorem are left to the C problems 
in Exercise 9.4.

Evaluating a Third-Order Determinant

Evaluate  2  2 0

 3 1 2

1  3  1 
Algebraic Solution

Expanding the first row, we have

 (2)(5)  (2)(1)  12

 (2)(1)[(1)( 1)  ( 3)(2)]  ( 2)( 1)[( 3)( 1)  (1)(2)]

 2 ( 1)1 1 1 2

 3  1   ( 2) ( 1)1 2  3 2

1  1   0

 a11 Cofactor
of a11

  a12 Cofactor
of a12

  a13 Cofactor
of a13

 
 2  2 0

 3 1 2

1  3  1 
Graphing Utility Solution

Enter the matrix and use the
det command (Fig. 2).

FIGURE 2

S O L U T I O N

Evaluate 

Refer to Example 3. According to Theorem 1, we should get the same value
if we expand any other row or column. Example 4 verifies this for the second
column.

Expanding a Different Row or Column

Expand the second column to evaluate  2  2 0

 3 1 2

1  3  1 

 2 1  1

 2  3 0

 1 2 1 



S O L U T I O N

Expand a row or column different from the one you used to solve Matched
Problem 3 to evaluate

Higher-Order Determinants
Theorem 1 and the definitions of minor and cofactor generalize completely for
determinants of order higher than 3. These concepts are illustrated for a fourth-
order determinant in Example 5.

Evaluating a Fourth-Order Determinant

Given the fourth-order determinant

(A) Find the minor in determinant form of the element 3.

(B) Find the cofactor in determinant form of the element  5.

(C) Find the value of the fourth-order determinant.

 0  1 0 2

 5  6 0  3

4 5  2 6

0 3 0  4 

 2 1  1

 2  3 0

 1 2 1 

 (2)(1)  (1)( 2)  (3)(4)  12

 ( 3)( 1)[(2)(2)  ( 3)(0)]

 ( 2)( 1)[( 3)( 1)  (1)(2)]  (1)(1)[(2)( 1)  (1)(0)]

 ( 3) ( 1)3 2 2 0

 3 2  
 ( 2) ( 1)1 2  3 2

1  1   (1) ( 1)2 2 2 0

1  1  
 a12 Cofactor

of a12
  a22 Cofactor

of a22
  a32 Cofactor

of a32
  2  2 0

 3 1 2

1  3  1 
9.4 Determinants 739

S O L U T I O N S

(A) Minor of 3  

(B) Cofactor of  5  ( 1)2 1  1 0 2

5  2 6

3 0  4     1 0 2

5  2 6

3 0  4 
 0 0 2

 5 0  3

4  2 6 



(C) Algebraic Solution

Generalizing Theorem 1, the value of this fourth-order determinant is
the sum of four products obtained by multiplying each element of 
any one row (or each element of any one column) by its cofactor. The
work involved in this evaluation is greatly reduced if we choose the
row or column with the greatest number of zeros. Because column 3
has three zeros, we expand along this column:

 ( 2)( 5)( 1)( 2)  20

 ( 2) 0  ( 5)( 1)2 1  1 2

3  4  0 

 ( 2) 0  1 2

 5  6  3

0 3  4 
  0  0  ( 2)( 1)3 3 0  1 2

 5  6  3

0 3  4  0 0  1 0 2

 5  6 0  3

4 5  2 6

0 3 0  4 

Graphing Utility Solution

Enter the matrix and use the
det command (Fig. 3).

FIGURE 3
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Expand this

determinant along

the first column.

Repeat Example 5 for the following fourth-order determinant:

 0 4  2 0

 3 3  1 2

0 6 0 0

5  6  5  4 

REMARK. Where are determinants used? Many equations and formulas have par-
ticularly simple and compact representations in determinant form that are easily
remembered. (See Problems 50–54 in Exercise 9.5). Also, in Section 9.6 we will
see that the solutions to certain systems of equations can be expressed in terms
of determinants. In addition, determinants are involved in theoretical work in
advanced mathematics courses. For example, it can be shown that the inverse of
a square matrix exists if and only if its determinant is not 0.

E X P L O R E / D I S C U S S  2

Write a checkerboard pattern of  and  signs for a fourth-order deter-
minant, and use it to determine the signs of the minors in Example 5.



Write the cofactor of each element given in Problems 11–14,

and evaluate each.

11. a11 12. a33

13. a23 14. a12

Evaluate Problems 15–20 using cofactors and using a graph-

ing utility.

15. 16.

17. 18.

19. 20.  0 2  1

 6 3 1

7  9  2   1 2  3

 2 0  6

4  3 2 
 4  2  0

9 5 4

1 2 0  0 1 5

3  7 6

0  2  3 
 2  3  5

0  3 1

0 6 2  1 0 0

 2 4 3

5  2 1 
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1. 14
2. Cofactor of 2  13; cofactor of 3   4
3. 3
4. 3

5. (A) (B) (C)  24  0 4 0

 3 3 2

0 6 0  0  2 0

0 0 0

5  5  4 

Evaluate each second-order determinant in Problems 1–6.

1. 2.

3. 4.

5. 6.

Problems 7–14 pertain to the determinant below:

Write the minor of each element given in Problems 7–10.

Leave the answer in determinant form.

7. a11 8. a33

9. a23 10. a12

 5  1  3

3 4 6

0  2 8 
  0.7  2.3

1.9  4.8  4.3  1.2

 5.1 3.7 
 9  2

4 0  3  7

 5 6 
 8  3

4 1  5 4

2 3 

Evaluate each determinant in Problems 25–34 using cofactors

and using a graphing utility.

25. 26.

27. 28.  3 2 1

 1 5 1

2 3 1  1  4 1

1 1  2

2 1  1 
 4  4 6

2 8  3

0  5 0  3  2  8

 2 0  3

1 0  4 
Given the determinant

write the cofactor in determinant form of each element in

Problems 21–24.

21. a11 22. a44

23. a43 24. a23

 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44 



The determinant of A is given by [compare with formula (2)]

det A p1 p2 p3  p4 p5 p6

 a11a22a33  a12a23a31  a13a21a32  a13a22a31

 a11a23a32  a12a21a33

[Caution: The diagonal expansion procedure works only for 

3  3 matrices. Do not apply it to matrices of any other size.]

Use the diagonal expansion formula to evaluate the determi-

nants in Problems 35 and 36.

35. 36.

A square matrix is called an upper triangular matrix if all

elements below the principal diagonal are zero. In Problems

37–40, determine whether the statement is true or false. If true,

explain why. If false, give a counterexample.

37. If the determinant of an upper triangular matrix is 0, then
the elements on the principal diagonal are all 0.

38. If A and B are upper triangular matrices, then 
det (A B) det A det B.

39. The determinant of an upper triangular matrix is the prod-
uct of the elements on the principal diagonal.

40. If A and B are upper triangular matrices, then 
det (AB) (det A)(det B).

 4 1  5

1 2  6

 3  1 7  2 6  1

5 3  7

 4  2 1 

29. 30.

31. 32.

33.

34.

If A is a 3  3 matrix, det A can be evaluated by the following

diagonal expansion. Form a 3  5 matrix by augmenting A on

the right with its first two columns, and compute the diagonal

products p1, p2, . . . ,  p6 indicated by the arrows:

Diagonal expansion formula

p4 p5 p6 p1 p2 p3

 
a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

 

 2 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 1 0

0 0 0 0 4 
 
 2 0 0 0 0

9  1 0 0 0

2 1 3 0 0

 1 4 2 2 0

7  2 3 5 5
 

 0 1 0 1

2 4 7 6

0 3 0 1

0 6 2 5  2 6 1 7

0 3 0 0

3 4 2 5

0 9 0 2 
 4  6 3

 1 4 1

5  6 3  1 4 3

2 1 6

3  2 9 
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by the first column is the same as its expansion by the

third row.

48. Repeat Problem 47, using the second row and the third
column.

49. If

and

show that det(AB) (det A) (det B).

50. If

and

show that det(AB) (det A) (det B).

B   w

y

x

z A   a

c

b

d 

B    1

2

3

1 A   2

1

3

 2 

In Problems 41–46, all the letters represent real numbers. Find

an equation that each pair of determinants satisfies, and de-

scribe the relationship between the two determinants verbally.

41. 42.

43. 44.

45.

46.

47. Show that the expansion of the determinant

 a11 a12 a13

a21 a22 a23

a31 a32 a33 
 a b

c d ,  a ka  b

c kc  d 
 a b

c d ,  kc  a kd  b

c d  
 a b

c d ,  a b

kc kd  a b

c d ,  ka b

kc d 
 a b

c d ,  b a

d c  a b

c d ,  c d

a b 
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51. 52.

53. 54.  
 2 2 0

 1 1 0

 2 4 2
  

4  4 0

2  2 0

4  8  4
 

 8  6

3  1  5  4

2  1 
If A is an n  n matrix and I is the n  n identity matrix, then

the function f(x)  is called the characteristic poly-

nomial of A, and the zeros of f(x) are called the eigenvalues of

A. Characteristic polynomials and eigenvalues have many

important applications that are discussed in more advanced

treatments of matrices. In Problems 51–54, find the character-

istic polynomial and the eigenvalues of each matrix.

 xI  A 

Properties of Determinants

Discussion of Determinant Properties ● Summary of Determinant Properties

Determinants have useful properties that can greatly reduce the labor in evaluat-
ing determinants of order 3 or greater. These properties and their use are the sub-
ject matter for Section 9.5.

Discussion of Determinant Properties
We now state and discuss five general determinant properties in the form of the-
orems. Because the proofs for the general cases of these theorems are involved
and notationally difficult, we will sketch only informal proofs for determinants of
order 3. The theorems, however, apply to determinants of any order.

PARTIAL PROOF Let Cij be the cofactor of aij. Then expanding by the first row, we
have

Theorem 1 also states that a factor common to all elements of a row (or col-
umn) can be taken out as a factor of the determinant.

 k a11

a21

a31

a12

a22

a32

a13

a23

a33 
 k(a11C11  a12C12  a13C13)

 ka11 ka12 ka13

a21 a22 a23

a31 a32 a33  ka11C11  ka12C12  ka13C13

T H E O R E M  1
Multiplying a Row or Column by a Constant

If each element of any row (or column) of a determinant is multiplied
by a constant k, the new determinant is k times the original.
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Theorem 2 is an immediate consequence of Theorem 1, and its proof is left
as an exercise. It is illustrated in the following example:

 3

0

 1

 2

0

4

  5

0

9   0

A proof of Theorem 3 even for a determinant of order 3 is notationally
involved. We suggest that you partially prove the theorem by direct expansion of
the determinants before and after the interchange of two rows (or columns). The

E X P L O R E / D I S C U S S  1

(A) How are and related?

(B) How are and related? ka

kd

kg

kb

ke

kh

kc

kf

ki   adg b

e

h

c

f

i 
 ka

kc

kb

kd  ac b

d 

T H E O R E M  2
Row or Column of Zeros

If every element in a row (or column) is 0, the value of the determinant
is 0.

T H E O R E M  3
Interchanging Rows or Columns

If two rows (or two columns) of a determinant are interchanged, the new
determinant is the negative of the original.

Taking Out a Common Factor of a Column

where 2 is a common factor of the first column.

Take out factors common to any row or any column:

 3 2 1

6 3  9

1 0  5 

 6 1 3

 2 7  2

4 5 0  2 3 1 3

 1 7  2

2 5 0 



theorem is illustrated by the following example, where the second and third
columns are interchanged:

 1

 2

3

0

1

0

9

5

7    1

 2

3

9

5

7

0

1

0 
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E X P L O R E / D I S C U S S  2

(A) What are the cofactors of each element in the first row of the fol-
lowing determinant? What is the value of the determinant?

(B) What are the cofactors of each element in the second column of the
following determinant? What is the value of the determinant?

 adg b

e

h

a

d

g 
 add b

e

e

c

f

f  

T H E O R E M  4
Equal Rows or Columns

If the corresponding elements are equal in two rows (or columns), the
value of the determinant is 0.

T H E O R E M  5
Addition of Rows or Columns

If a multiple of any row (or column) of a determinant is added to any
other row (or column), the value of the determinant is not changed.

PROOF The general proof of Theorem 4 follows directly from Theorem 3. If we
start with a determinant D that has two rows (or columns) equal and we inter-
change the equal rows (or columns), the new determinant will be the same as the
original. But by Theorem 3,

D   D

hence,

2D  0

D  0



PARTIAL PROOF If, in a general third-order determinant, we add a k multiple of the
second column to the first and then expand by the first column, we obtain (where
Cij is the cofactor of aij in the original determinant)

 (a11  ka12)C11  (a21  ka22)C21  (a31  ka32)C31

The determinant following k is 0 because the first and second columns are equal.

Note the similarity in the process described in Theorem 5 to that used to obtain
row-equivalent matrices. We use this theorem to transform a determinant without
0 elements into one that contains a row or column with all elements 0 but one.
The transformed determinant can then be easily expanded by this row (or col-
umn). An example best illustrates the process.

Evaluating a Determinant

Evaluate the determinant  3

 2

4

 1

4

 2

2

 3

5 

  a11

a21

a31

a12

a22

a32

a13

a23

a33  k a12

a22

a32

a12

a22

a32

a13

a23

a33   a11

a21

a31

a12

a22

a32

a13

a23

a33 
 (a11C11 a21C21 a31C31) k(a12C11 a22C21 a32C31)

 a11  ka12 a12 a13

a21  ka22 a22 a23

a31  ka32 a32 a33 
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S O L U T I O N

Algebraic Solution

We use Theorem 5 to obtain two zeros in the first row, and then expand the
determinant by this row. To start, we replace the third column with the sum
of it and 2 times the second column to obtain a 0 in the a13 position:

2C2  C3S C3
*

Next, to obtain a 0 in the a11 position, we replace the first column with the
sum of it and 3 times the second column:

3C2  C1S C1

Now it is an easy matter to expand this last determinant by the first row to obtain

 0  1 0

10 4 5

 2  2 1  0  ( 1) ( 1)1 2 10 5

 2 1   0  20

 3  1  0

 2 4 5

4  2 1   0  1  0

10 4 5

 2  2 1 
 3  1 2

 2 4  3

4  2 5   3  1  0

 2 4 5

4  2 1 
Graphing Utility Solution

Enter the matrix and use the
det command (Fig. 1).

FIGURE 1

*C1, C2, and C3 represent columns 1, 2, and 3, respectively.
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Evaluate the following determinant by first using Theorem 5 to obtain zeros in
the a11 and a31 positions, and then expand by the first column.

Summary of Determinant Properties
We now summarize the five determinant properties discussed earlier in Table 1 for
convenient reference. Although these properties hold for determinants of any order,
for simplicity, we illustrate each property in terms of second-order determinants.

 312   10

6

3

 5

 3

4 

T A B L E  1 Summary of Determinant Properties

Property Examples

1. If each element of any row (or column) of a 
determinant is multiplied by a constant k,
the new determinant is k times the original.

2. If every element in a row (or column) is 0,
the value of the determinant is 0.

3. If two rows (or two columns) of a
determinant are interchanged, the new 
determinant is the negative of the original.

4. If the corresponding elements are equal in
two rows (or columns), the value of the
determinant is 0.

5. If a multiple of any row (or column) of a
determinant is added to any other row (or 
column), the value of the determinant is not 
changed.  ac b

d   a  kb

c  kd

b

d 
 ac b

d   a

c  ka

b

d  kb 
 ac a

c   0

 aa b

b   0

 ac b

d    bd a

c 
 ac b

d    ca d

b 
 00 b

d   0

 a0 b

0   0

3 ac b

d   3a

3c

b

d 
 2a

c

2b

d   2 ac b

d 

1. 2. 443 321   2

1

0

1

 3

 5 
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For each statement in Problems 1–10, identify the theorem

from Section 9.5 that justifies it. Do not evaluate.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

In Problems 11–14, Theorem 5 was used to transform the de-

terminant on the left to that on the right. Replace each letter x

with an appropriate numeral to complete the transformation.

11. 12.

13.

14.   1

2

1

2

1

3

3

4

2    1

2

1

0

x

5

3

4

2 
  1

2

1

2

1

3

3

4

2    1

2

1

2

1

3

0

10

x 
  1

5

3

 2    1

x

3

13   1

2

3

 4    1

2

x

2 

 35 2

1   3   4

5   2

2

1 
 41 3

2   4   4

1

3   8

2  
 60 9

1    06 1

9  58  1

0     1

0

5

8 
 50  7

0   0 3

 2

0

0   0

4  1

2

3

1    4

2

12

1  2 2

 3

1

4    4

6

1

4 
 10  9

 6   3 10 3

2  16

0

8

 1   8 20 1

 1 
Given that

use the properties of determinants discussed in Section 9.5 to

evaluate each determinant in Problems 15–20.

15. 16.

17. 18.

19. 20.

In Problems 21–24, transform each determinant into one that

contains a row (or column) with all elements 0 but one, if

possible. Then expand the transformed determinant by this row

(or column).

21. 22.

23. 24.  2

 1

1

0

 3

2

  1

4

3  312   5

1

1

0

 2

 1 
  1

2

1

2

1

3

0

10

5   1

2

1

0

5

5

3

4

2 

 a  c

 a

b  d

 b   ac a  b

c  d 
 a  b

c  d

b

d  a  c

c

b  d

d  
 2a

c

2b

d  ca d

b 

 ac b

d   10

For each statement in Problems 25–30, identify the theorem

from Section 9.5 that justifies it.

25.

26.  8

12

4

0

 1

3

  1

0

2   4 231 0

 1

3

  1

0

2 
 2 130 0

 2

1

  2

4

1   1

 6

0

  0

4

1

2

 8

1 
27.

28.   2

1

0

5

7

8

13

12

15    578  2

1

0

  13

12

15 
 1

 1

0

2

3

1

0

0

0   0



29.

30.

In Problems 31–34, Theorem 5 was used to transform the

determinant on the left to that on the right. Replace each letter

x and y with an appropriate numeral to complete the

transformation.

31.

32.

33.

34.  5

3

 4

2

1

 3

  3

2

5   x

3

5

  0

1

0

 1

2

y 
 723   9

3

4

4

1

 2    1

2

7

x

3

y

0

1

0 
 3

 2

1

 1

4

5

  1

3

2   0

10

x

 1

4

5

  0

7

y 
 231   1

4

2

 1

1

 2   0

x

 3

  0

5

y

 1

1

 2 

 7

 3

2

7

 3

2

  1

11

0   0

 4

2

 3

  2

0

5

 1

2

 2   4   4

2   8

 3  8

  2

0

5

 1

2

 2 In Problems 35–42, transform each determinant into one that

contains a row (or column) with all elements 0 but one, if

possible. Then expand the transformed determinant by this row

(or column).

35. 36.

37. 38.

39. 40.

41. 42.  2

3

0

 1

  3

1

5

2

  1

2

4

3

 1

1

0

0  0121 1

 2

1

2

  0

4

5

1

  1

3

4

2 
 2

5

 4

3

4

 6

 1

7

2  369  4

 1

2

  1

2

3 
 5

 1

4

  3

1

3

 6

4

 6  5

 2

1

2

4

 1

 3

4

3 
  1

2

3

5

3

2

1

1

1  143 5

2

1

3

1

2 
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47.

48.

49. Without expanding, explain why (2, 5) and ( 3, 4) satisfy
the equation

50. Show that

is the equation of a line that passes through (2, 3) and 
( 1, 2).

 x

2

 1

y

3

2

1

1

1   0

 x

2

 3

y

5

4

1

1

1   0

 a1

a2

a3

b1

b2

b3

c1

c2

c3   a1  kc1

a2  kc2

a3  kc3

b1

b2

b3

c1

c2

c3 
 a1

a2

a3

b1

b2

b3

c1

c2

c3    b1

b2

b3

a1

a2

a3

c1

c2

c3 Transform each determinant in Problems 43 and 44 into one

that contains a row (or column) with all elements 0 but one, if

possible. Then expand the transformed determinant by this row

(or column).

43. 44.

Problems 45–48 are representative cases of theorems

discussed in Section 9.5. Use cofactor expansions to verify

each statement directly, without reference to the theorem it

represents.

45.

46.  akd

g

b

ke

h

c

kf

i   k adg b

e

h

c

f

i  
 adg b

e

h

a

d

g   0

  1

5

2

 3

4

 1

 1

3

2

 3

 2

3

1

 1

3

3  3324 2

 2

1

5

  3

8

3

4

1

5

1

 3 



53. What can we say about the three points (x1, y1), (x2, y2),
and (x3, y3) if the following equation is true?

[Hint: See Problem 52.]

54. If the three points (x1, y1), (x2, y2), and (x3, y3) are all on
the same line, what can we say about the value of the
determinant below?

 x1

x2

x3

y1

y2

y3

1

1

1 

 x1

x2

x3

y1

y2

y3

1

1

1   0

Determinants and Cramer’s Rule

Two Equations–Two Variables ● Three Equations–Three Variables

Now let’s see how determinants arise rather naturally in the process of solving
systems of linear equations. We start by investigating two equations and two vari-
ables, and then extend our results to three equations and three variables.

Two Equations–Two Variables
Instead of thinking of each system of linear equations in two variables as a differ-
ent problem, let’s see what happens when we attempt to solve the general system

a11x  a12y  k1 (1A)

a21x  a22y  k2 (1B)

once and for all, in terms of the unspecified real constants a11, a12, a21, a22, k1,
and k2.

We proceed by multiplying equations (1A) and (1B) by suitable constants so
that when the resulting equations are added, left side to left side and right side to
right side, one of the variables drops out. Suppose we choose to eliminate y. What
constant should we use to make the coefficients of y the same except for the signs?
Multiply equation (1A) by a22 and (1B) by  a12; then add:

a22(1A):

 a12(1B):

x  
k1a22  k2a12

a11a22  a21a12

    a11a22  a21a12  0

 (a11a22  a21a12)x  k1a22  k2a12

a11a22x  a21a12x   0y  k1a22  k2a12

 a21a12x  a12a22y   k2a12

 a11a22x  a12a22y  k1a22

51. Show that

is the equation of a line that passes through (x1, y1) and
(x2, y2).

52. In analytic geometry it is shown that the area of a triangle
with vertices (x1, y1), (x2, y2), and (x3, y3) is the absolute
value of

Use this result to find the area of a triangle with vertices

( 1, 4), (4, 8), and (1, 1).

1

2  x1

x2

x3

y1

y2

y3

1

1

1 

 xx1

x2

y

y1

y2

1

1

1   0
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What do the numerator and denominator remind you of? From your experi-
ence with determinants in Sections 9.4 and 9.5, you should recognize these
expressions as

Similarly, starting with system (1A) and (1B) and eliminating x (this is left as
an exercise), we obtain

These results are summarized in Theorem 1, Cramer’s rule, which is named
after the Swiss mathematician Gabriel Cramer (1704–1752).

y  
 a11

a21

k1

k2 
 a11

a21

a12

a22 

x  
 k1

k2

a12

a22 
 a11

a21

a12

a22 

The determinant D is called the coefficient determinant. If D  0, then the
system has exactly one solution, which is given by Cramer’s rule. If, on the other
hand, D  0, then it can be shown that the system is either inconsistent and has
no solutions or is dependent and has an infinite number of solutions. We must use
other methods, such as those discussed in Chapter 8, to determine the exact nature
of the solutions when D  0.

9.6 Determinants and Cramer’s Rule 751

T H E O R E M  1
Cramer’s Rule for Two Equations and Two Variables

Given the system

then

x  
 k1

k2

a12

a22 
D

    and    y  
 a11

a21

k1

k2 
D

a11x  a12y  k1

a21x  a22y  k2

    with    D   a11

a21

a12

a22  0



S O L U T I O N

Algebraic Solution

y  
 3

 4

2

 1 
 11

  
5

11

x  
 2

 1

 5

3 
 11

  
1

11

D   3

 4

 5

3   11

Graphing Utility Solution

Store the coefficient matrix in A, the matrix with the constants in the
first column in B, and the matrix with the constants in the second
column in C. Then use the det command to apply Cramer’s rule 
(Fig. 1).

FIGURE 1
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Solve using Cramer’s rule: 
 4x   3y   10
 3x   2y    4

E X P L O R E / D I S C U S S  1

Recall that a system of linear equations must have zero, one, or an
infinite number of solutions. Discuss the number of solutions for the
system

ax  3y  b

4x  2y  8

where a and b are real numbers. Use Cramer’s rule where appropriate
and Gauss–Jordan elimination otherwise.

Solving a System with Cramer’s Rule

Solve using Cramer’s rule: 
 4x   3y   1
 3x   5y  2



You can easily remember these determinant formulas for x, y, and z if you
observe the following:

1. Determinant D is formed from the coefficients of x, y, and z, keeping the
same relative position in the determinant as found in the system of
equations.

2. Determinant D appears in the denominators for x, y, and z.
3. The numerator for x can be obtained from D by replacing the coefficients

of x (a11, a21, and a31) with the constants k1, k2, and k3, respectively. Simi-
lar statements can be made for the numerators for y and z.

9.6 Determinants and Cramer’s Rule 753

Three Equations–Three Variables
Cramer’s rule can be generalized completely for any size linear system that has
the same number of variables as equations. However, it cannot be used to solve
systems where the number of variables is not equal to the number of equations.
In Theorem 2 we state without proof Cramer’s rule for three equations and three
variables.

T H E O R E M  2
Cramer’s Rule for Three Equations and Three Variables

Given the system

then

x  
 k1

k2

k3

a12

a22

a32

a13

a23

a33 
D

    y  
 a11

a21

a31

k1

k2

k3

a13

a23

a33 
D

    z  
 a11

a21

a31

a12

a22

a32

k1

k2

k3 
D

a11x  a12y  a13z  k1

a21x  a22y  a23z  k2

a31x  a32y  a33z  k3

    with    D  a11

a21

a31

a12

a22

a32

a13

a23

a33  0



S O L U T I O N

Algebraic Solution

z  
 101   1

3

0

2

 4

3 
2

  
1

2

y  
 101 2

 4

3

0

 1

1 
2

  
3

2

x  
 2

 4

3

  1

3

0

0

 1

1 
2

 
7

2

D   101   1

3

0

0

 1

1   2

Graphing Utility Solution

Store the coefficient matrix in A, and the matrix with the constants
replacing the coefficients of x, y, and z in B, C, and D, respectively.
Then use the det command to apply Cramer’s rule (Fig. 2).

FIGURE 2
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Solve using Cramer’s rule: 

In practice, Cramer’s rule is rarely used to solve systems of order higher than
2 or 3 by hand, because more efficient methods are available using computer
methods. However, Cramer’s rule is a valuable tool in more advanced theoretical
and applied mathematics.

x  y  1

x  y  z  0

 3x  z  5

1. x  , y   2. x  , y   , z   7
5

1
5

6
5

46
17

8
17

Solving a System with Cramer’s Rule

Solve using Cramer’s rule:

x  z  3

 3y  z   4

x  y  2



9.6 Determinants and Cramer’s Rule 755

Solve Problems 1–8 using Cramer’s rule.

1. x  2y  1 2. x  2y  3
x  3y   1 x  3y  5

3. 2x  y  1 4. x  3y  1
5x  3y  2 2x  8y  0

5. 2x  y   3 6.  3x  2y  1
 x  3y  3 2x  3y   3

7. 4x  3y  4 8. 5x  2y   1
3x  2y   2 2x  3y  2

15. 16.

17. 18.

19. 20.

Discuss the number of solutions for the systems in Problems 21

and 22 where a and b are real numbers. Use Cramer's rule

where appropriate and Gauss–Jordan elimination otherwise. 

21. ax  3y  b 22. 2x  ay  b

2x  4y  5 3x  4y  7

x  y  z  2x  y  2z  4
x  y  z   1x  y  z  2

2x  y  22y  z   3

x  y  z  1x  3y   2
2x  y   3x  2z  3

x  z  33y  z   1

 x  3z  7 y  z  1
2y  z  32y  z  0

x  3y   3x  y  1Solve Problems 9–12 to two significant digits using Cramer’s 

rule.

9. 0.9925x  0.9659y  0
0.1219x  0.2588y  2,500

10. 0.9877x  0.9744y  0
0.1564x  0.2250y  1,900

11. 0.9954x  0.9942y  0
0.0958x  0.1080y  155

12. 0.9973x  0.9957y  0
0.0732x  0.0924y  112

Solve Problems 13–20 using Cramer’s rule:

13. 14.

 x  z  5 x  z   3
2y  z  02y  z   5

x  y   4x  y  0

In Problems 23 and 24, use Cramer’s rule to solve for x only.

23. 24.

In Problems 25 and 26, use Cramer’s rule to solve for y only.

25.

5x  3y  2z  0
15x  7y  9z   13
12x  14y  11z  5

 4x  y  2z  1x  y  z  3
3x  y  z  2 4x  3y  2z   11
x  4y  3z  252x  3y  z   3

26.

In Problems 27 and 28, use Cramer’s rule to solve for z only.

27.

5x  7y  10z  33
 9x  8y  7z   13

3x  4y  5z  18

3x  4y  2z  4
 x  y  2z  5
2x  y  4z  15



Use Cramer’s rule to express cos  in terms of a, b, and c,
thereby deriving the familiar law of cosines from
trigonometry:

cos   
b2  c2  a2

2bc

28.

It is clear that x  0, y  0, z  0 is a solution to each of the

systems given in Problems 29 and 30. Use Cramer’s rule to de-

termine whether this solution is unique. [Hint: If D  0, what

can you conclude? If D  0, what can you conclude?]

29. 30.

31. Prove Theorem 1 for y.

32. (Omit this problem if you have not studied trigonometry.)
The angles  ,  , and  and the sides a, b, and c of a trian-
gle (see the figure) satisfy

a  c cos   b cos  

b  c cos   a cos  

c  b cos   a cos  

 2x  y  3z  0x  y  3z  0
5x  5y  9z  04x  y  6z  0
3x  y  3z  0x  4y  9z  0

8x  5y  4z  4
10x  8y  7z  1
13x  11y  10z  2
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a
b

c␣

␥

␤

b cos ␣ a cos ␤

c  b cos   a cos  

33. Revenue Analysis. A supermarket sells two brands of cof-
fee: brand A at $p per pound and brand B at $q per pound.
The daily demand equations for brands A and B are,
respectively,

(1)

(both in pounds). The daily revenue R is given by

(A) To analyze the effect of price changes on the daily rev-
enue, an economist wants to express the daily revenue
R in terms of p and q only. Use (1) to eliminate x and y

in the equation for R, thus expressing the daily revenue
in terms of p and q.

(B) To analyze the effect of changes in demand on the
daily revenue, the economist now wants to express
the daily revenue in terms of x and y only. Use
Cramer’s rule to solve system (1) for p and q in terms
of x and y and then express the daily revenue R in
terms of x and y.

R  xp  yq

y  300  2p  3q

x  200  6p  4q

34. Revenue Analysis. A company manufactures ten-speed
and three-speed bicycles. The weekly demand equations
are

(2)

where $p is the price of a ten-speed bicycle, $q is the price
of a three-speed bicycle, x is the weekly demand for 
ten-speed bicycles, and y is the weekly demand for three-
speed bicycles. The weekly revenue R is given by

(A) Use (2) to express the daily revenue in terms of x and y

only.

(B) Use Cramer’s rule to solve system (2) for x and y in
terms of p and q, and then express the daily revenue R
in terms of p and q only.

R  xp  yq

q  130  4x  4y

p  230  10x  5y



9.1 Matrix Operations
Two matrices are equal if they are the same size and their cor-
responding elements are equal. The sum of two matrices of the
same size is a matrix with elements that are the sums of the cor-
responding elements of the two given matrices. Matrix addition
is commutative and associative. A matrix with all zero ele-
ments is called the zero matrix. The negative of a matrix M,
denoted M, is a matrix with elements that are the negatives of
the elements in M. If A and B are matrices of the same size, then
we define subtraction as follows: A  B  A  ( B). The
product of a number k and a matrix M, denoted by kM, is a
matrix formed by multiplying each element of M by k. The
product of a 1  n row matrix and an n 1 column matrix is a
1  1 matrix given by

If A is an m p matrix and B is a p n matrix, then the matrix
product of A and B, denoted AB, is an m n matrix whose ele-
ment in the ith row and jth column is the real number obtained
from the product of the ith row of A and the jth column of B. If
the number of columns in A does not equal the number of rows
in B, then the matrix product AB is not defined. Matrix multi-

plication is not commutative, and the zero property does not
hold for matrix multiplication. That is, for matrices A and B,
the matrix product AB can be zero without either A or B being
the zero matrix.

9.2 Inverse of a Square Matrix
The identity matrix for multiplication for the set of all square
matrices of order n is the square matrix of order n, denoted by I,
with ones along the principal diagonal (from upper left corner
to lower right corner) and zeros elsewhere. If M is a square ma-
trix of order n and I is the identity matrix of order n, then

IM  MI  M

If M is a square matrix of order n and if there exists a matrix
M 1 (read “M inverse”) such that

M 1M  MM 1
 I

then M 1 is called the multiplicative inverse of M or, more
simply, the inverse of M. If the augmented matrix [M  I ] is
transformed by row operations into [I  B], then the resulting
matrix B is M 1. If, however, we obtain all zeros in one or more
rows to the left of the vertical line, then M 1 does not exist and
M is called a singular matrix.

[a1 a2       an]  
b1

b2

bn
  [a1b1  a2b2        anbn]

9.3 Matrix Equations and 
Systems of Linear Equations

The following properties of matrices are fundamental to the
process of solving matrix equations. Assuming all products and
sums are defined for the indicated matrices A, B, C, I, and 0,
then:

Addition Properties
Associative: (A B)  C  A  (B  C )
Commutative: A  B  B  A

Additive Identity: A  0  0  A  A

Additive Inverse: A  ( A)  ( A)  A  0

Multiplication Properties
Associative Property: A(BC)  (AB)C
Multiplicative Identity: AI  IA  A

Multiplicative Inverse: If A is a square matrix and A 1

exists, then AA 1
 A 1A  I.

Combined Properties
Left Distributive: A(B C )  AB  AC

Right Distributive: (B  C )A  BA  CA

Equality
Addition: If A B, then A C  B  C.
Left Multiplication: If A  B, then CA CB.
Right Multiplication: If A B, then AC BC.

A system of linear equations with the same number of variables
as equations such as

can be written as the matrix equation

A X B

If the inverse of A exists, then the matrix equation has a unique
solution given by

X  A 1B

After multiplying B by A 1 from the left, it is easy to read the
solution to the original system of equations.

9.4 Determinants
Associated with each square matrix A is a real number called the
determinant of the matrix. The determinant of A is denoted by

 
a11 a12 a13

a21 a22 a23

a31 a32 a33

  
x1

x2

x3

   
k1

k2

k3

 

a31x1  a32x2  a33x3  k3

a21x1  a22x2  a23x3  k2

a11x1  a12x2  a13x3  k1

n 1

1  n 1  1

..
.



5. If a multiple of any 
row (or column) of a
determinant is added to
any other row (or column),
the value of the determi-
nant is not changed.

9.6 Determinants and 
Cramer’s Rule

Systems of equations having the same number of variables as
equations can also be solved using determinants and Cramer’s
rule. Cramer’s rule for three equations and three variables is
as follows: Given the system

then

Cramer’s rule can be generalized completely for any size
linear system that has the same number of variables as equa-
tions. The formulas are easily remembered if you observe the
following:

1. Determinant D is formed from the coefficients of x, y,
and z, keeping the same relative position in the determi-
nant as found in the system of equations.

2. Determinant D appears in the denominators for x, y,
and z.

3. The numerator for x can be obtained from D by replacing
the coefficients of x (a11, a21, and a31) with the constants
k1, k2, and k3, respectively. Similar statements can be
made for the numerators for y and z.

Cramer’s rule is rarely used to solve systems of order higher
than 3 by hand, because more efficient methods are available.

Cramer’s rule, however, is a valuable tool in more advanced the-
oretical and applied mathematics.

x  
 k1

k2

k3

a12

a22

a32

a13

a23

a33 
D

  y  
 a11

a21

a31

k1

k2

k3

a13

a23

a33 
D

  z  
 a11

a21

a31

a12

a22

a32

k1

k2

k3 
D

a11x  a12 y  a13z  k1

a21x  a22 y  a23z  k2

a31x  a32 y  a33z  k3

   with   D  a11

a21

a31

a12

a22

a32

a13

a23

a33  0

det A, or simply by writing the array of elements in A using ver-
tical lines in place of square brackets. For example,

A determinant of order n is a determinant with n rows and n
columns.

The value of a second-order determinant is the real num-
ber given by

The value of a third-order determinant is the sum of three
products obtained by multiplying each element of any one row
(or each element of any one column) by its cofactor. The cofac-
tor of an element aij (from the ith row and jth column) is the
product of the minor of aij and ( 1)i j. The minor of an ele-
ment aij is the determinant remaining after deleting the ith row
and jth column. A similar process can be used to evaluate deter-
minants of order higher than 3.

9.5 Properties of Determinants
The use of the following five determinant properties can greatly

reduce the effort in evaluating determinants of order 3 or
greater:

1. If each element of any row 
(or column) of a determinant 
is multiplied by a constant k,
the new determinant is k
times the original.

2. If every element in a row
(or column) is 0, the value 
of the determinant is 0.

3. If two rows (or two 
columns) of a determinant
are interchanged, the new 
determinant is the negative
of the original.

4. If the corresponding 
elements are equal in two
rows (or columns), the
value of the determinant
is 0.

 a11

a21

a12

a22  a11a22  a21a12

det a11

a21

a12

a22
   a11

a21

a12

a22 
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3 ac b

d   3a3c

b

d 
 2ac 2b

d   2 ac b

d 

 00 b

d   0

 a0 b

0   0

 ac b

d    bd a

c 
 ac b

d    ca d

b 

 ac a

c   0

 aa b

b   0

 ac b

d   a  kb

c  kd

b

d 
 ac b

d   a

c  ka

b

d  kb 
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In Problems 16–21, perform the operations that are defined,

given the following matrices:

16. AD 17. DA 18. BC

E   9

 6

 3

2 D   7

0

 0

8

 5

 2 

C   2 4  1 B   
6

0

 4
 A   

1

4

 3

2

5

 1
 

19. CB 20. DE 21. ED

22. Find the inverse of

Show that AA 1 I.

A   
1

 2

4

0

1

 1

 4

0

4
 

Work through all the problems in this chapter review and check answers in the back of the book.

Answers to all review problems are there, and following each answer is a number in italics indicat-

ing the section in which that type of problem is discussed. Where weaknesses show up, review

appropriate sections in the text.

In Problems 1–9, perform the operations that are defined,

given the following matrices:

1. AB 2. CD 3. CB

4. AD 5. A  B 6. C  D

7. A  C 8. 2A  5B 9. CA  C

10. Find the inverse of

Show that A 1A  I.

11. Write the system

as a matrix equation, and solve using matrix inverse
methods for:
(A) k1  3, k2  5 (B) k1  7, k2  10
(C) k1  4, k2  2

 4x1  3x2  k2

 3x1  2x2  k1

A   4

 1

7

 2 

A   4

0

 2

3  B    1

 4

5

6  C    1 4  D   3

 2 

Evaluate the determinants in Problems 12 and 13.

12. 13.

14. Solve the system using Cramer’s rule:

15. Use properties of determinants to find each of the follow-

ing, given that

(A) (B)

(C)  adg b

e

h

a  b  c

d  e  f

g  h  i  
 adg 3b

3e

3h

c

f

i   gda h

e

b

i

f

c  
 a b c

d e f

g h i   2

x  3y   1

 3x  2y  8

 201 3

5

 4

 4

0

 2  2

 5

 3

 1 
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23. Write the system

as a matrix equation, and solve using matrix inverse
methods for:
(A) k1  1, k2  3, k3  3
(B) k1  0, k2  0, k3   2
(C) k1   3, k2   4, k3  1

Evaluate the determinants in Problems 24 and 25.

24. 25.  2

 3

1

 1

5

 2

  1

2

4   1
4
1
2

3
2
2
3 

x1  2x2  x3  k3

 2x1  3x2  4x3  k2

x1  2x2  3x3  k1

26. Solve for y only using Cramer’s rule:

(Find the numerator and denominator first; then reduce.)

27. Discuss the number of solutions for a system of n equa-
tions in n variables if the coefficient matrix:

(A) Has an inverse (B) Does not have an inverse

28. If A is a nonzero square matrix of order n satisfying
A2  0, can A 1 exist? Explain.

 2x  2y  z  2

y  z  4

x  2y  z   6

32.

33. Show that

34. Explain why the points (1, 2) and ( 1, 5) must satisfy the
equation

Describe the set of all points that satisfy this equation.

 x

1

 1

y

2

5

1

1

1   0

 u

w

v

x   u  kv

w  kx

v

x 
  1

5

2

 3

4

 1

 1

3

  1

2

0

0

1

 1

3

3   ?

29. For n  n matrices A and C and n  1 column matrices B
and X, solve for X assuming all necessary inverses exist:

AX  B  CX

30. Find the inverse of

Show that A 1A  I.

31. Clear the decimals in the system

by multiplying the first two equations by 100. Then write

the resulting system as a matrix equation and solve using
the inverse found in Problem 30.

x1  x2  x3  7,000

 0.04x1  0.05x2  0.06x3  120

 0.04x1  0.05x2  0.06x3  360

A   
4

4

1

  5

5

1

6

 6

1
 



35. Resource Allocation. A Colorado mining company oper-
ates mines at Big Bend and Saw Pit. The Big Bend mine
produces ore that is 5% nickel and 7% copper. The Saw
Pit mine produces ore that is 3% nickel and 4% copper.
How many tons of ore should be produced at each mine
to obtain the amounts of nickel and copper listed in the
table? Set up a matrix equation and solve using matrix 
inverses.

Nickel Copper

(A) 3.6 tons 5 tons

(B) 3 tons 4.1 tons

(C) 3.2 tons 4.4 tons

36. Labor Costs. A company with manufacturing plants in
North Carolina and South Carolina has labor-hour and
wage requirements for the manufacturing of computer
desks and printer stands as given in matrices L and H:

Labor-hour requirements
Fabricating Assembly Packaging
department department department

Hourly wages
North South

Carolina Carolina
plant plant

(A) Find the labor cost for producing one printer stand at
the South Carolina plant.

(B) Discuss possible interpretations of the elements in
the matrix products HL and LH.

Fabricating department

Assembly department

Packaging department

H   
$11.50   $10.00

$9.50 $8.50

$5.00 $4.50
 

Desk

Stand
L   1.7 h       2.4 h      0.8 h

0.9 h 1.8 h      0.6 h 

(C) If either of the products HL or LH has a meaningful
interpretation, find the product and label its rows and

columns.

37. Labor Costs. The monthly production of computer desks
and printer stands for the company in Problem 36 for the
months of January and February is given in matrices J
and F:

January production
North South

Carolina Carolina
plant plant

February production
North South

Carolina Carolina
plant plant

(A) Find the average monthly production for the months
of January and February.

(B) Find the increase in production from January to
February.

(C) Find and interpret.

38. Cryptography. The following message was encoded
with the matrix B shown. Decode the message:

25 8 26 24 25 33 21 41 48 41 30 50
21 32 41 52 52 79

B   
1

1

1

1

0

1

0

1

1
 

J 1

1 

Desks

Stands
F   1,700   1,810

930 740 

Desks

Stands
J   1,500   1,650

850 700 
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The current costs of the components are given in Table 2, and the distributor’s
selling prices for the sets are given in Table 3.

T A B L E  2 Component Costs

Components Cost per Unit ($)

Locomotive 12.52

Car 1.43

Track piece 0.25

Track switch 2.29

Power pack 12.54

Labor (per min) 0.15

T A B L E  3 Selling Prices

Set Price

Limited $54.60

Empire $62.28

Comet $81.15

T A B L E  1 Product Components

Train Sets

Components Limited Empire Comet

Locomotives 1 1 2

Cars 5 6 8

Track pieces 20 24 32

Track switches 1 2 4

Power pack 1 1 1

Labor (min) 15 18 24

T A B L E  4 Customer Order

Set Quantity

Limited 48

Empire 24

Comet 12

The distributor has just received the order shown in Table 4 from a retail toy store.

Using Matrices to Find Cost, Revenue, 
and Profit

A toy distributor purchases model train components from various suppliers and
packages these components in three different ready-to-run train sets: the Limited,
the Empire, and the Comet. The components used in each set are listed in Table 1.
For convenience, the total labor time (in minutes) required to prepare a set for
shipping is included as a component.
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The distributor wants to store the information in each table in a matrix and
use matrix operations to find the following information:

1. The inventory (parts and labor) required to fill the order

2. The cost (parts and labor) of filling the order

3. The revenue (sales) received from the customer

4. The profit realized on the order

(A) Use a single letter to designate the matrix representing each table, and
write matrix expressions in terms of these letters that will provide the
required information. Discuss the size of the matrix you must use to repre-
sent each table so that all the pertinent matrix operations are defined.

(B) Evaluate the matrix expressions in part A.

Shortly after filling the order in Table 4, a supplier informs the distributor that
the cars and locomotives used in these train sets are no longer available. The dis-
tributor currently has 30 locomotives and 134 cars in stock.

(C) How many train sets of each type can the distributor produce using all the
available locomotives and cars? Assume that the distributor has unlimited
quantities of the other components used in these sets.

(D) How much profit will the distributor make if all these sets are sold? If
there is more than one way to use all the available locomotives and cars,
which one will produce the largest profit?

Using Matrices to Find Cost, Revenue, and Profit

3. Solve by substitution or elimination by addition:

4. Solve by graphing: 
x, y  0

 3x  5y  15

 2x  y  1
 6x  3y  2

Work through all the problems in this cumulative review and check answers in the back of the book.

Answers to all review problems are there, and following each answer is a number in italics indicat-

ing the section in which that type of problem is discussed. Where weaknesses show up, review ap-

propriate sections in the text.

1. Solve using substitution or elimination by addition:

2. Solve by graphing: 
 3x  y   1
 2x  y   4

 2x  3y  1
 3x  5y  11



9 MATRICES AND DETERMINANTS764

x

y

5

(0, 10)

(0, 4)

(6, 7)

(5, 0)

S
5

5. Find the maximum and minimum value of z  2x  3y

over the feasible region S: (C)

9. Given the system: x1  x2  3
 x1  x2 5

(A) Write the augmented matrix for the system.
(B) Transform the augmented matrix into reduced form.
(C) Write the solution to the system.

10. Given the system: x1  3x2  k1

2x1  5x2  k2

(A) Write the system as a matrix equation of the form 
AX  B.

(B) Find the inverse of the coefficient matrix A.
(C) Use A 1 to find the solution for k1  2 and k2 1.
(D) Use A 1 to find the solution for k1 1 and k2  2.

11. Given the system: 2x 3y  1
4x  5y  2

(A) Find the determinant of the coefficient matrix.

(B) Solve the system using Cramer’s rule.

12. Use Gauss–Jordan elimination to solve the system

Then write the linear system represented by each aug-
mented matrix in your solution, and solve each of these
systems graphically. Discuss the relationship between the
solutions of these systems.

13. Solve graphically to two decimal places:

 3x  4y  18
 2x  3y  7

2x1  x2   1
x1  3x2  10

 1

0

 2

0   3

1 

6. Perform the operations that are defined, given the follow-

ing matrices:

(A) M  2N (B) P  Q (C) PQ

(D) MN (E) PN (F) QM

7. Evaluate: 

8. Write the linear system corresponding to each augmented
matrix and solve:

(A) (B)  1

0

 2

0   3

0  1

0

 0

1  3

 4 

 0

1

 1

2

3

4

0

2

3 

Q    1

2 P   1 2 

N   1

 1

2

3 M   2

1

1

 3 

Solve Problems 14–16 using Gauss–Jordan elimination.

14. x1  2x2  x3  3 15. x1  x2  x3  2
x2  x3   2 4x2  6x3   1

2x1  3x2  x3  0 6x2  9x3  0

16.

17. Given M  and N  . Find:

(A) MN (B) NM

 
1

 1

2
  1   2  1 

3x1  2x2  x3   5
x1  2x2  x3  1

18. Given

Find, if defined: (A) LM  2N (B) ML  N

19. Graph the solution region and indicate whether the solu-
tion region is bounded or unbounded. Find the coordi-
nates of each corner point.

x, y  0

x  2y  8

 3x  2y  12

N   2

 1

1

0 M   
1

 1

1

2

0

1
 L   2

1

 1

2

  0

1 
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23. Discuss the number of solutions for the system corre-
sponding to the reduced form shown below if
(A) m  0 and n  0 (B) m  0 and n  0
(C) m  0

24. If a square matrix A satisfies the equation A2  A, find A.
Assume that A 1 exists.

25. Which of the following augmented matrices are in re-
duced form?

26. Show that

27. Show that

28. If M  and det M 0, show that

M 1  
1

det M  d

 c

 b

a 
 ac b

d 
 ac b

d   a

c  ka

b

d  kb 

k ac b

d   ka

kc

b

d 

P   1

0

2

0

0

1

2

3   2

1 N   
0

1

0

0

0

1  0

2

 3
 

M   
1

0

0

  0

1

0

3

 2

0   3

2

0
 L   

1

0

0

0

1

0

0

0

1  2

0

 1
 

 
1

0

0

  0

1

0

 5

3

m

   2

6

n
 

Recall that a square matrix is called upper triangular if all el-

ements below the principal diagonal are zero, and it is called

diagonal if all elements not on the principal diagonal are zero.

A square matrix is called lower triangular if all elements

above the principal diagonal are zero. In Problems 29–36, de-

termine whether the statement is true or false. If true, explain

why. If false, give a counterexample.

29. The sum of two upper triangular matrices is upper triangular.

30. The product of two lower triangular matrices is lower 
triangular.

31. The sum of an upper triangular matrix and a lower trian-
gular matrix is a diagonal matrix.

32. The product of an upper triangular matrix and a lower tri-
angular matrix is a diagonal matrix.

33. A matrix that is both upper triangular and lower triangu-
lar is a diagonal matrix.

34. If a diagonal matrix has no zero elements on the principal
diagonal, then it has an inverse.

35. The determinant of a diagonal matrix is the product of
the elements on the principal diagonal.

36. The determinant of a lower triangular matrix is the prod-
uct of the elements on the principal diagonal.

20. Solve the linear programming problem:

Maximize

Subject to

21. Given the system: 

(A) Write the system as a matrix equation in the form 
AX  B.

 2x1  5x2  2x3  k3

 2x1  6x2  3x3  k2

x1  4x2  2x3  k1

x, y  0

 2x  y  16

x  2y  14

z  4x  9y

(B) Find the inverse of the coefficient matrix A.
(C) Use A 1 to solve the system when k1   1, k2  2,

and k3  1.
(D) Use A 1 to solve the system when k1  2, k2  0,

and k3   1.

22. Given the system: 

(A) Evaluate the coefficient determinant D.
(B) Solve for z using Cramer’s rule.

 x   3y    5z    2
 2x   8y  z   2
x   2y  z    1
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37. Finance. An investor has $12,000 to invest. If part is in-
vested at 8% and the rest in a higher-risk investment at
14%, how much should be invested at each rate to pro-
duce the same yield as if all had been invested at 10%?

38. Diet. In an experiment involving mice, a zoologist
needs a food mix that contains, among other things, 
23 grams of protein, 6.2 grams of fat, and 16 grams of
moisture. She has on hand mixes of the following compo-
sitions: Mix A contains 20% protein, 2% fat, and 
15% moisture; mix B contains 10% protein, 6% fat, 
and 10% moisture; and mix C contains 15% protein, 
5% fat, and 5% moisture. How many grams of each mix
should be used to get the desired diet mix?

39. Purchasing. A soft-drink distributor has budgeted
$300,000 for the purchase of 12 new delivery trucks. If a
model A truck costs $18,000, a model B truck costs
$22,000, and a model C truck costs $30,000, how many
trucks of each model should the distributor purchase to
use exactly all the budgeted funds?

40. Manufacturing. A manufacturer makes two types of day
packs, a standard model and a deluxe model. Each stan-
dard model requires 0.5 labor-hour from the fabricating
department and 0.3 labor-hour from the sewing depart-
ment. Each deluxe model requires 0.5 labor-hour from
the fabricating department and 0.6 labor-hour from the
sewing department. The maximum number of labor-hours
available per week in the fabricating department and the
sewing department are 300 and 240, respectively.
(A) If the profit on a standard day pack is $8 and the profit

on a deluxe day pack is $12, how many of each type
of pack should be manufactured each day to realize a
maximum profit? What is the maximum profit?

(B) Discuss the effect on the production schedule and
the maximum profit if the profit on a standard day

pack decreases by $3 and the profit on a deluxe day

pack increases by $3.
(C) Discuss the effect on the production schedule and

the maximum profit if the profit on a standard day

pack increases by $3 and the profit on a deluxe day

pack decreases by $3.

41. Averaging Tests. A teacher has given four tests to a class
of five students and stored the results in the following

matrix:

Tests
1 2 3 4

Discuss methods of matrix multiplication that the teacher
can use to obtain the indicated information in parts A–C
below. In each case, state the matrices to be used and
then perform the necessary multiplications.
(A) The average on all four tests for each student, as-

suming that all four tests are given equal weight
(B) The average on all four tests for each student, as-

suming that the first three tests are given equal

weight and the fourth is given twice this weight
(C) The class average on each of the four tests
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Chapter 10 R E V I E W

Chapter 10 G R O U P  A C T I V I T Y : Sequences Specified by Recursion Formulas

T
HE LISTS

3, 6, 3, 1, 4, 2, 1, 4, . . .

are examples of sequences. The first sequence exhibits a great deal
of regularity. You no doubt recognize it as the sequence of perfect
squares. Its terms are increasing, and the differences between terms
form a striking pattern. You probably do not recognize the second
sequence, whose terms do not suggest an obvious pattern. In fact,
the second sequence records the results of repeatedly tossing a sin-
gle die. Sequences, and the related concept of series, are useful tools
in almost all areas of mathematics. In Chapter 10 they play roles in
the development of several topics: a method of proof called math-

ematical induction, techniques for counting, and probability.

Before getting started on this chapter,

review the following concepts:

● Set Notation 
(Basic Algebra Review*, Section R.1)

● Operations on Polynomials 
(Basic Algebra Review*, Section R.2)

● Integer Exponents 
(Basic Algebra Review*, Section R.5)

● Functions
(Chapter 1, Section 2)

● Set Operations 
(Appendix A, Section A.1)

1, 4, 9, 16, 25, 36, 49, 64, . . .

and

*At www.mhhe.com/barnett
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Sequences and Series

Sequences ● Series

In Section 10.1 we introduce special notation and formulas for representing and
generating sequences and sums of sequences.

Sequences
Consider the function f given by

f(n)  2n  1 (1)

where the domain of f is the set of natural numbers N. Note that

f(1)  1, f(2)  3, f(3)  5 ,. . .

The function f is an example of a sequence. A sequence is a function with domain
a set of successive integers. However, a sequence is hardly ever represented in the
form of equation (1). A special notation for sequences has evolved, which we
describe here.

To start, the range value f(n) is usually symbolized more compactly with a
symbol such as an. Thus, in place of equation (1) we write

an  2n  1

The domain is understood to be the set of natural numbers N unless stated to the
contrary or the context indicates otherwise. The elements in the range are called
terms of the sequence: a1 is the first term, a2 the second term, and an the nth
term, or the general term:

a1 2(1)  1  1

a2 2(2)  1  3

a3 2(3)  1  5

The ordered list of elements

1, 3, 5, . . . , 2n  1 ,. . .

in which the terms of a sequence are written in their natural order with respect
to the domain values, is often informally referred to as a sequence. A sequence
is also represented in the abbreviated form {an}, where a symbol for the nth term
is placed between braces. For example, we can refer to the sequence

1, 3, 5, . . . , 2n  1 ,. . .

as the sequence {2n  1}.
If the domain of a function is a finite set of successive integers, then the

sequence is called a finite sequence. If the domain is an infinite set of suc-
cessive integers, then the sequence is called an infinite sequence. The sequence 
{2n  1} above is an example of an infinite sequence.

First term

Second term

Third term...
...



There are several different ways a graphing utility can be used in the study of
sequences. Refer to Explore/Discuss 1. Figure 2(a) shows the sequence {2n – 1}
entered as a function in an equation editor. This produces a continuous graph [Fig.
2(b)] that contains the points in the graph of the sequence (Fig. 1). Figure 2(c)
shows the points on the graph of the sequence displayed in a table.
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The sequence {2n  1} is a function whose domain is the set of natu-
ral numbers, and so it may be graphed in the same way as any function
whose domain and range are sets of real numbers (Fig. 1).

(A) Explain why the graph of the sequence {2n  1} is not continuous.

(B) Explain why the points on the graph of {2n  1} lie on a line.
Find an equation for that line.

(C) Graph the sequence . How are the graphs of

{2n  1} and related? 2n2
 n  1

n  
 2n2

 n  1

n  

y

x
1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

18

20

FIGURE 1 Graph of {2n  1}.

0

0

20

10

FIGURE 2

(a) (b) (c)



Most graphing utilities can produce the results shown in Figures 2 and 3. The
Texas Instruments TI-83 has a special sequence mode that is very useful for study-
ing sequences. Figure 4(a) shows the sequence {2n  1} entered in the sequence
editor, Figure 4(b) shows the graph of this sequence, and Figure 4(c) displays the
points on the graph in a table.

Examining graphs and displaying values are very helpful activities when work-
ing with sequences. Consult your manual to see which of the methods illustrated
in Figures 2–4 works on your graphing utility.

Some sequences are specified by a recursion formula—that is, a formula that
defines each term in terms of one or more preceding terms. The sequence we have
chosen to illustrate a recursion formula is a very famous sequence in the history
of mathematics called the Fibonacci sequence. It is named after the most cele-
brated mathematician of the thirteenth century, Leonardo Fibonacci from Italy
(1180?–1250?).

Fibonacci Sequence

List the first seven terms of the sequence specified by

a1  1

a2  1

an  an 2  an 1 n  3

FIGURE 3
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0

0

20

10

0

0

20

10

FIGURE 4

(a) (b) (c)

(a) (b) (c)

In Figure 3(a), sequence commands are used to store the first and second coor-
dinates of the first 10 points on the graph of the sequence {2n  1} in lists L1

and L2, respectively. A statistical plot routine is used to graph these points [Fig.
3(b)], and a statistical editor is used to display the points on the graph [Fig. 3(c)].



List the first seven terms of the sequence specified by

a1  1

a2  1

an  an 2  an 1 n  3
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Algebraic Solution

a1  1

a2  1

a3  a1  a2   1  1  2

a4  a2  a3   1  2  3

a5  a3  a4   2  3  5

a6  a4  a5   3  5  8

a7  a5  a6   5  8  13

Graphing Utility Solution

RECUR* is a program that will compute the terms in any 
recursion formula of the form

an = Aan 2 + Ban 1

where A is the coefficient of the first term and B is the 
coefficient of the second term. Entering 1 for an 2, A, an 1,
and B, and requesting seven terms produces the first seven 
terms in the Fibonacci sequence (Fig. 5).

FIGURE 5

E X P L O R E / D I S C U S S  2

A multiple-choice test question asked for the next term in the sequence:

1, 3, 9, . . .

and gave the following choices:

(A) 16 (B) 19 (C) 27

Which is the correct answer?
Compare the first four terms of the following sequences:

(A) an  3n 1 (B) bn  1  2(n  1)2 (C) cn  8n   19

Now which of the choices appears to be correct?

12

n

*Programs for TI-83 and TI-86 graphing calculators can be found at the website for this book.

S O L U T I O N



Now we consider the reverse problem. That is, can a sequence be defined just
by listing the first three or four terms of the sequence? And can we then use these
initial terms to find a formula for the nth term? In general, without other infor-
mation, the answer to the first question is no. As Explore Discuss 2 illustrates,
many different sequences may start off with the same terms. Simply listing the
first three terms, or any other finite number of terms, does not specify a particular
sequence. In fact, it can be shown that given any list of m numbers, there are an
infinite number of sequences whose first m terms agree with these given numbers.

What about the second question? That is, given a few terms, can we find the
general formula for at least one sequence whose first few terms agree with the
given terms? The answer to this question is a qualified yes. If we can observe a
simple pattern in the given terms, then we may be able to construct a general term
that will produce the pattern. The next example illustrates this approach.

Finding the General Term of a Sequence

Find the general term of a sequence whose first four terms are

(A) 5, 6, 7, 8, . . . (B) 2,  4, 8,  1 6 ,. . .

S O L U T I O N S

(A) Because these terms are consecutive integers, one solution is an  n,
n  5. If we want the domain of the sequence to be all natural num-
bers, then another solution is bn  n  4.

(B) Each of these terms can be written as the product of a power of 2 
and a power of  1:

If we choose the domain to be all natural numbers, then a solution is

an  ( 1)n 12n

Find the general term of a sequence whose first four terms are

(A) 2, 4, 6, 8, . . . (B) 1, 

In general, there is usually more than one way of representing the nth term of
a given sequence. This was seen in the solution of Example 2, part A. However,
unless stated to the contrary, we assume the domain of the sequence is the set of
natural numbers N.

 
1
2, 1

4,  1
8, . . .

 16  ( 1)324

 8  ( 1)223

 4  ( 1)122

 2  ( 1)021
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Series
If a1, a2, a3, . . . , an, . . . is a sequence, then the expression 

a1  a2  a3  
. . .  an  

. . .

is called a series. If the sequence is finite, the corresponding series is a finite

series. If the sequence is infinite, the corresponding series is an infinite series.

For example,

1, 2, 4, 8, 16

1  2  4  8  16

We restrict our discussion to finite series in Section 10.1.
Series are often represented in a compact form called summation notation

using the symbol , which is a stylized version of the Greek letter sigma. Con-
sider the following examples:

ak  a1  a2  a3  a4

bk  b3  b4  b5  b6  b7

ck  c0  c1  c2  
. . .  cn

The terms on the right are obtained from the expression on the left by succes-
sively replacing the summing index k with integers, starting with the first num-
ber indicated below and ending with the number that appears above . Thus,
for example, if we are given the sequence

1

2
,

1

4
,

1

8
, . . . , 

1

2n

  

 
n

k 0

 
7

k 3

 
4

k 1
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The sequence with general term is closely related 

to the Fibonacci sequence. Compute the first 20 terms of both sequences
and discuss the relationship. [The first seven values of bn are shown in
Fig. 6(b)].

bn  
 5

5  
1   5

2  
n

FIGURE 6

(a) (b)

Finite sequence

Domain is the set of integers

k satisfying 0  k n.

Finite series



the corresponding series is

Writing the Terms of a Series

Write without summation notation: 

S O L U T I O N

Write without summation notation: 

If the terms of a series are alternately positive and negative, it is called an
alternating series. Example 4 deals with the representation of such a series.

Writing a Series in Summation Notation

Write the following series using summation notation:

(A) Start the summing index at k  1.

(B) Start the summing index at k  0.

S O L U T I O N S

(A) ( 1)k 1 provides the alternation of sign, and 1 k provides the other
part of each term. Thus, we can write

as can be easily checked.

(B) ( 1)k provides the alternation of sign, and 1 (k  1) provides the
other part of each term. Thus, we write

as can be checked.

 
5

k 0

( 1)k

k  1

 
6

k 1

( 1)k 1

k

1  
1

2
 

1

3
 

1

4
 

1

5
 

1

6

 
5

k 0

( 1)k

2k  1

 0  
1

2
 

2

3
 

3

4
 

4

5

 
5

k 1

k  1

k
 

1  1

1
 

2  1

2
 

3  1

3
 

4  1

4
 

5  1

5

 
5

k 1

k  1

k

 
n

k 1

1

2k
 

1

2
 

1

4
 

1

8
 . . .  

1

2n

10 SEQUENCES, INDUCTION, AND PROBABILITY774



Write the following series using summation notation:

(A) Start with k  1. (B) Start with k  0.

1  
2

3
 

4

9
 

8

27
 

16

81
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(A) Find the smallest number of terms of the infinite series

that, when added together, give a number greater than 3.

(B) Enter the function y1   sum(seq(1 N,N,1,X )) in the equation edi-
tor of a graphing utility and examine a table (Fig. 7) to find the
smallest number of terms of the infinite series in part A that, when
added together, give a number greater than 4.

1  
1

2
 

1

3
 . . .  

1

n
 . . .

(C) Find the smallest number of terms of the infinite series

that, when added together, give a number greater than 0.99.
Greater than 0.999. Can the sum ever exceed 1? Explain.

1

2
 

1

4
 . . .  

1

2n
 . . .

FIGURE 7

1. 1, 1, 0, 1,  1, 2,  3

2. (A) an  2n

(B) an  ( 1)n 1 12 
n 1

3.

4. (A)

(B)  
4

k 0

 ( 1)k 23 
k

 
5

k 1

 ( 1)k 1 23 
k 1

1  1
3  

1
5  

1
7  

1
9  

1
11
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Write the first four terms for each sequence in Problems 1–6.

1. an  n  2 2. an  n  3

3. 4.

5. an  ( 2)n 1 6.

7. Write the eighth term in the sequence in Problem 1.

8. Write the tenth term in the sequence in Problem 2.

9. Write the one-hundredth term in the sequence in Problem 3.

10. Write the two-hundredth term in the sequence in Problem 4.

an  
( 1)n 1

n2

an   1  1

n 
n

an  
n  1

n  1

In Problems 11–16, write each series in expanded form with-

out summation notation.

11. 12.

13. 14.

15. 16.  
6

k 1

 ( 1)k 1k 
4

k 1

 ( 1)k

 
5

k 1
 13 

k

 
3

k 1

1

10k

 
4

k 1

k 2 
5

k 1

k

Write the first five terms of each sequence in Problems 17–26.

17. an  ( 1)n 1n2 18. an  ( 1)n 1

19. 20. an  n[1  ( 1)n]

21. an  ( )n 1 22. an  ( )n 1

23. a1  7; an  an 1 4, n  2

24. a1  3; an  an 1 5, n  2

25. a1  4; an  an 1, n  2

26. a1  2; an  2an 1, n  2

In Problems 27–30, write the first seven terms of each se-

quence. Use the program RECUR* to check your answers.

27. a1 = 1, a2 = 2, an  an 2 2an 1, n  3

28. a1 = 1, a2 =  1, an  an 2 an 1, n  3

29. a1 =  1, a2 = 2, an  2an 2 an 1, n  3

30. a1 = 2, a2 = 1, an   an 2 an 1, n  3

1
4

3
2

1
2

an  
1

3  1  
1

10n 
 12n 

In Problems 31–42, find the general term of a sequence whose

first four terms are given.

31. 4, 5, 6, 7, . . . 32.  2,  1, 0, 1, . . .

33. 3, 6, 9, 12, . . . 34.  2,  4,  6,  8 ,. . .

35. 36.

37. 1,  1, 1,  1 ,. . . 38. 1,  2, 3,  4 ,. . .

39.  2, 4,  8, 16, . . . 40. 1,  3, 5,  7 ,. . .

41. 42. x,  x3, x5,  x7, . . .

In Problems 43–46, find nth-term formulas for two different se-

quences with the property that both sequences have identical

terms for n  1, 2, and 3.[Hint: Graph the points (n, an ) and

apply quadratic regression to find one formula.]

43. 1, 2, 4, . . . 44. 1, 4, 16, . . .

45. 1, 8, 27, . . . 46. 1, 16, 81, . . .

In Problems 47–50, use a graphing utility to graph the first 20

terms of each sequence.

47. an  1 n 48. an  2   n

49. an  ( 0.9)n 50. a1   1, an  an 1 
1
2

2
3

x,
x2

2
,

x3

3
,

x4

4
, . . .

1
2, 3

4, 5
6, 7

8, . . .1
2, 2

3, 3
4, 4

5, . . .

*Programs for TI-83 and TI-86 graphing calculators can be found at the web-

site for this book.



In Problems 51–56, write each series in expanded form with-

out summation notation.

51. 52.

53. 54.

55. 56.

In Problems 57–64, write each series using summation nota-

tion with the summing index k starting at k  1.

57. 12
 22

 32
 42 58. 2  3  4  5  6

59. 60. 1  
1

2
 

1

3
 

1

4

1

2
 

1

22
 

1

23
 

1

24
 

1

25

 
4

k 0

( 1)kx2k 1

2k  1 
5

k 1

( 1)k 1

k
x k

 
5

k 1

x k 1 
3

k 1

1

k
x k 1

 
5

k 1

 ( 1)k 1(2k  1)2 
4

k 1

( 2)k 1

k

61.

62.

63. 1  4  9  . . .  ( 1)n 1n2

64.
1

2
 

1

4
 

1

8
 . . .  

( 1)n 1

2n

2  
3

2
 

4

3
 . . .  

n  1

n

1  
1

22
 

1

32
 . . .  

1

n2
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The sequence

n  2, M a positive real number

can be used to find to any decimal-place accuracy de-

sired. To start the sequence, choose a1 arbitrarily from the pos-

itive real numbers. Problems 65 and 66 are related to this

sequence. SQRT* is a program that can be used to investigate

this sequence.

65. (A) Find the first four terms of the sequence

a1  3 n  2

(B) Compare the terms with from a calculator.

(C) Repeat parts A and B letting a1 be any other positive
number, say 1.

66. (A) Find the first four terms of the sequence

a1  2 n  2

(B) Find with a calculator, and compare with the re-
sults of part A.

(C) Repeat parts A and B letting a1 be any other positive
number, say 3.

 5

an  
a2

n 1  5

2an 1

 2

an  
a2

n 1  2

2an 1

 M

an  
a2

n 1  M

2an 1

67. Let {an} denote the Fibonacci sequence and let {bn}
denote the sequence defined by b1  1, b2  3, and 
bn  bn 1 bn 2 for n  3. Compute 10 terms of the
sequence {cn}, where cn  bn an. Describe the terms of
{cn} for large values of n.

68. Define sequences {un} and {vn} by u1  1, v1  0,
un  un 1 vn 1 and vn  un 1 for n  2. Find the first 

10 terms of each sequence, and explain their relationship
to the Fibonacci sequence.

In calculus, it can be shown that

where the larger n is, the better the approximation. Problems

69 and 70 refer to this series. Note that n!, read “n factorial,”

is defined by 0!  1 and n!  1  2  3  . . .  n for n  N.

69. Approximate e0.2 using the first five terms of the series.

Compare this approximation with your calculator evalua-
tion of e0.2.

70. Approximate e 0.5 using the first five terms of the series.

Compare this approximation with your calculator evalua-
tion of e 0.5.

71. Show that 

72. Show that (ak bk)  ak bk 
n

k 1
 

n

k 1
 

n

k 1

 
n

k 1

cak  c  
n

k 1

ak

e x
  
 

k 0

xk

k!
 1  

x

1!
 

x2

2!
 

x3

3!
 . . .  

xn

n!

*Programs for TI-83 and TI-86 graphing calculators can be found at the web-

site for this book.



Mathematical Induction

Introduction ● Mathematical Induction ● Additional Examples of Mathematical Induction
● Three Famous Problems

Introduction
In common usage, the word induction means the generalization from particular
cases or facts. The ability to formulate general hypotheses from a limited num-
ber of facts is a distinguishing characteristic of a creative mathematician. The cre-
ative process does not stop here, however. These hypotheses must then be proved
or disproved. In mathematics, a special method of proof called mathematical
induction ranks among the most important basic tools in a mathematician’s tool-
box. In Section 10.2, mathematical induction will be used to prove a variety of
mathematical statements, some new and some that up to now we have just
assumed to be true.

We illustrate the process of formulating hypotheses by an example. Suppose
we are interested in the sum of the first n consecutive odd integers, where n is a
positive integer. We begin by writing the sums for the first few values of n to see
if we can observe a pattern:

Is there any pattern to the sums 1, 4, 9, 16, and 25? You no doubt observed that
each is a perfect square and, in fact, each is the square of the number of terms
in the sum. Thus, the following conjecture seems reasonable:

Conjecture Pn: For each positive integer n,

1  3  5  . . .  (2n  1)  n2

That is, the sum of the first n odd integers is n2 for each positive integer n.
So far ordinary induction has been used to generalize the pattern observed in

the first few cases listed. But at this point conjecture Pn is simply that—a con-
jecture. How do we prove that Pn is a true statement? Continuing to list specific
cases will never provide a general proof—not in your lifetime or all your descen-
dants’ lifetimes! Mathematical induction is the tool we will use to establish the
validity of conjecture Pn.

Before discussing this method of proof, let’s consider another conjecture:

Conjecture Qn: For each positive integer n, the number n2
 n  41 is a prime

number.

 1  3  5  7  9  25

 1  3  5  7  16

 1  3  5   9

 1  3   4

 1   1
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n 1

n 2

n 3

n 4

n 5



It is important to recognize that a conjecture can be proved false if it fails for
only one case. A single case or example for which a conjecture fails is called a
counterexample. We check the conjecture for a few particular cases in Table 1.
From the table, it certainly appears that conjecture Qn has a good chance of being
true. You may want to check a few more cases. If you persist, you will find that
conjecture Qn is true for n up to 41. What happens at n  41?

412
 41  41  412

which is not prime. Thus, because n  41 provides a counterexample, conjecture
Qn is false. Here we see the danger of generalizing without proof from a few spe-
cial cases. This example was discovered by Euler (1707–1783).

Mathematical Induction
We begin by stating the principle of mathematical induction, which forms the
basis for all our work in Section 10.2.

Theorem 1 must be read very carefully. At first glance, it seems to say that if we
assume a statement is true, then it is true. But that is not the case at all. If the
two conditions in Theorem 1 are satisfied, then we can reason as follows:

P1 is true.

P2 is true, because P1 is true.

P3 is true, because P2 is true.

P4 is true, because P3 is true.

Because this chain of implications never ends, we will eventually reach Pn for any
positive integer n.

10.2 Mathematical Induction 779

T A B L E  1

n n
2
 n 41 Prime?

1 41 Yes

2 43 Yes

3 47 Yes

4 53 Yes

5 61 Yes

E X P L O R E / D I S C U S S  1

Prove that the following statement is false by finding a counterexample:
If n  2, then at least one-third of the positive integers less than or
equal to n are prime.

T H E O R E M  1
Principle of Mathematical Induction

Let Pn be a statement associated with each positive integer n, and sup-
pose the following conditions are satisfied:
1. P1 is true.
2. For any positive integer k, if Pk is true, then Pk 1 is also true.
Then the statement Pn is true for all positive integers n.

...
...

Condition 2

Condition 2

Condition 1

Condition 2



To help visualize this process, picture a row of dominoes that goes on forever
(Fig. 1) and interpret the conditions in Theorem 1 as follows: Condition 1 says
that the first domino can be pushed over. Condition 2 says that if the kth domino
falls, then so does the (k  1)st domino. Together, these two conditions imply
that all the dominoes must fall.

Now, to illustrate the process of proof by mathematical induction, we return
to the conjecture Pn discussed earlier, which we restate below:

Pn: 1  3  5  . . .  (2n  1)  n2 n any positive integer

We already know that P1 is a true statement. In fact, we demonstrated that P1

through P5 are all true by direct calculation. Thus, condition 1 in Theorem 1 is
satisfied. To show that condition 2 is satisfied, we assume that Pk is a true
statement:

Pk: 1  3  5  . . .  (2k  1)  k2

Now we must show that this assumption implies that Pk 1 is also a true statement:

Pk 1: 1  3  5  . . .  (2k  1)  (2k  1)  (k  1)2

Because we have assumed that Pk is true, we can perform the operations on this
equation. Note that the left side of Pk 1 is the left side of Pk plus (2k  1). So
we start by adding (2k  1) to both sides of Pk:

1  3  5  . . .  (2k  1)  k2

1  3  5  . . .  (2k  1)  (2k  1)  k2
 (2k  1)

Factoring the right side of this equation, we have

1  3  5  . . .  (2k  1)  (2k  1)  (k  1)2

But this last equation is Pk 1. Thus, we have started with Pk, the statement we
assumed true, and performed valid operations to produce Pk 1, the statement we want
to be true. In other words, we have shown that if Pk is true, then Pk 1 is also true.
Because both conditions in Theorem 1 are satisfied, Pn is true for all positive
integers n.

Additional Examples of Mathematical Induction
Now we will consider some additional examples of proof by induction. The first
is another summation formula. Mathematical induction is the primary tool for
proving that formulas of this type are true.

Proving a Summation Formula

Prove that for all positive integers n

1

2
 

1

4
 

1

8
 . . .  

1

2n
 

2n
 1

2n
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FIGURE 1 Interpreting mathe-
matical induction.

Condition 1: The first domino
can be pushed over.

(a)

Condition 2: If the kth domino

falls, then so does the (k  1)st.
(b)

Conclusion: All the dominoes
will fall.

(c)

Pk

Add 2k 1 

to both sides.

Pk 1



P R O O F

State the conjecture:

P A R T  1 Show that P1 is true.

Thus, P1 is true.

P A R T  2 Show that if Pk is true, then Pk 1 is true. It is a good practice to
always write out both Pk and Pk 1 at the beginning of any induction proof to see
what is assumed and what must be proved:

We start with the true statement Pk, add 1 2k 1 to both sides, and simplify the
right side:

Thus,

and we have shown that if Pk is true, then Pk 1 is true.

C O N C L U S I O N Both conditions in Theorem 1 are satisfied. Thus, Pn is true
for all positive integers n.

1

2
 

1

4
 

1

8
 . . .  

1

2k
 

1

2k 1
 

2k 1
 1

2k 1

 
2k 1

 1

2k 1

 
2k 1

 2  1

2k 1

 
2k
 1

2k
 

2

2
 

1

2k 1

1

2
 

1

4
 

1

8
 . . .  

1

2k
 

1

2k 1
   

2k
 1

2k
 

1

2k 1

1

2
 

1

4
 

1

8
 . . .  

1

2k
 

2k
 1

2k

Pk 1:  

1

2
 

1

4
 

1

8
 . . .  

1

2k
 

1

2k 1
 

2k 1
 1

2k 1

Pk:  

1

2
 

1

4
 

1

8
 . . .  

1

2k
 

2k
 1

2k

 
1

2

P1:  

1

2
 

21
 1

21

Pn:  

1

2
 

1

4
 

1

8
 . . .  

1

2n
 

2n
 1

2n
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We assume Pk is true.

We must show that 

Pk 1 follows from Pk.

Pk

Pk 1



Prove that for all positive integers n

Example 2 provides a proof of a law of exponents that previously we had to
assume was true. First we redefine an for n a positive integer, using a recursion
formula:

1  2  3  . . .  n  
n(n  1)

2

Proving a Law of Exponents

Prove that (xy)n
 xnyn for all positive integers n.

P R O O F

State the conjecture:

Pn: (xy)n
 xnyn

P A R T  1 Show that P1 is true.

Thus, P1 is true.

P A R T  2 Show that if Pk is true, then Pk 1 is true.

Here we start with the left side of Pk 1 and use Pk to find the right side of Pk 1:

(xy)k 1
 (xy)k(xy)1

 xkykxy

 (xkx)(yky)

 xk 1yk 1

Thus, (xy)k 1
 xk 1yk 1, and we have shown that if Pk is true, then Pk 1 is true.

Pk 1:  (xy)k 1
 xk 1yk 1

Pk:  (xy)k
 xkyk

 x1y1

 (xy)1
 xy
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D E F I N I T I O N 1
Recursive Definition of an

For n a positive integer

a1
 a

an 1
 ana n  1

Definition 1

Assume Pk is true.

Definition 1

Definition 1

Property of real numbers

Use Pk: (xy)k xkyk.

Show that Pk 1 follows from Pk.

Definition 1



C O N C L U S I O N Both conditions in Theorem 1 are satisfied. Thus, Pn is true
for all positive integers n.

Prove that (x y)n
 xn yn for all positive integers n.

Example 3 deals with factors of integers. Before we start, recall that an inte-
ger p is divisible by an integer q if p  qr for some integer r.

Proving a Divisibility Property

Prove that 42n
 1 is divisible by 5 for all positive integers n.

P R O O F

Use the definition of divisibility to state the conjecture as follows:

Pn: 42n
 1  5r for some integer r

P A R T  1 Show that P1 is true.

P1: 42
 1  15  5  3

Thus, P1 is true.

P A R T  2 Show that if Pk is true, then Pk 1 is true.

Pk: 4
2k
 1  5r for some integer r

Pk 1: 42(k 1)
 1  5s for some integer s

As before, we start with the true statement Pk:

Thus,

where s  16r  3 is an integer, and we have shown that if Pk is true, then Pk 1

is true.

C O N C L U S I O N Both conditions in Theorem 1 are satisfied. Thus, Pn is true
for all positive integers n.

42(k 1)
 1  5s

 5(16r  3)

 42(k 1)
 1  80r  15

 42k 2
 16  80r

42(42k
 1)  42(5r)

 42k
 1  5r
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Assume Pk is true.

Pk

Pk 1

Multiply both sides by 42.

Simplify.

Add 15 to both sides.

Factor out 5.

Show that Pk 1 must follow.



Prove that 8n
 1 is divisible by 7 for all positive integers n.

In some cases, a conjecture may be true only for n  m, where m is a posi-
tive integer, rather than for all n  0. For example, see Problems 49 and 50 in
Exercise 10.2. The principle of mathematical induction can be extended to cover
cases like this as follows:

Three Famous Problems
The problem of determining whether a certain statement about the positive inte-
gers is true may be extremely difficult. Proofs may require remarkable insight and
ingenuity and the development of techniques far more advanced than mathemat-
ical induction. Consider, for example, the famous problems of proving the fol-
lowing statements:

1. Lagrange’s Four Square Theorem, 1772: Each positive integer can be
expressed as the sum of four or fewer squares of positive integers.

2. Fermat’s Last Theorem, 1637: For n  2, xn
 yn

 zn does not have
solutions in the natural numbers.

3. Goldbach’s Conjecture, 1742: Every positive even integer greater than 2
is the sum of two prime numbers.

The first statement was considered by the early Greeks and finally proved in 1772
by Lagrange. Fermat’s last theorem, defying the best mathematical minds for over
350 years, finally succumbed to a 200-page proof by Professor Andrew Wiles of
Princeton University in 1993. To this date no one has been able to prove or dis-
prove Goldbach’s conjecture.
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T H E O R E M  2
Extended Principle of Mathematical Induction

Let m be a positive integer, let Pn be a statement associated with each
integer n  m, and suppose the following conditions are satisfied:
1. Pm is true.
2. For any integer k  m, if Pk is true, then Pk 1 is also true.
Then the statement Pn is true for all integers n  m.

E X P L O R E / D I S C U S S  2

(A) Explain the difference between a theorem and a conjecture.

(B) Why is “Fermat’s last theorem” a misnomer? Suggest more accu-
rate names for the result.



1. Sketch of proof. State the conjecture: 

Pn: 1  2  3  . . .  n  

Part 1. 1  . P1 is true.

Part 2. Show that if Pk is true, then Pk 1 is true.

Conclusion: Pn is true.

2. Sketch of proof. State the conjecture: 

Part 1. . P1 is true. xy 
1

 
x

y
 

x1

y1

Pn:  xy 
n

 
xn

yn

 
(k  1)(k  2)

2

 1  2  3  . . .  k   (k   1)  
k(k  1)

2
  (k   1)

 1  2  3  . . .  k  
k(k  1)

2

1(1  1)

2

n(n  1)

2
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Part 2. Show that if Pk is true, then Pk 1 is true.

Conclusion: Pn is true.

3. Sketch of proof. State the conjecture: Pn: 8n
 1  7r

for some integer r
Part 1. 81

 1  7  7  1. P1 is true.
Part 2. Show that if Pk is true, then Pk 1 is true.

Conclusion: Pn is true.

 8k 1
 1  56r  7  7(8r  1)  7s

8(8k
 1)  8(7r)

 8k
 1  7r

 xy 
k 1

  xy 
k

 xy  
x k

y k  xy  
xkx

yky
 

xk 1

yk 1

Pk

Pk 1

Pk

Pk 1

Write Pk and Pk 1 for Pn as indicated in Problems 11–16.

11. Pn in Problem 5 12. Pn in Problem 6

13. Pn in Problem 7 14. Pn in Problem 8

15. Pn in Problem 9 16. Pn in Problem 10

In Problems 17–22, use mathematical induction to prove that

each Pn holds for all positive integers n.

17. Pn in Problem 5 18. Pn in Problem 6

19. Pn in Problem 7 20. Pn in Problem 8

21. Pn in Problem 9 22. Pn in Problem 10

In Problems 1–4, find the first positive integer n that causes the

statement to fail.

1. (3  5)n
 3n

 5n 2. n  10

3. n2
 3n  2 4. n3

 11n  6n2
 6

Verify each statement Pn in Problems 5–10 for n  1, 2, and 3.

5. Pn: 2  6  10      (4n 2)  2n2

6. Pn: 4  8  12      4n 2n(n  1)

7. Pn: a5an
 a5 n 8. Pn: (a5)n

 a5n

9. Pn: 9n
 1 is divisible by 4

10. Pn: 4n
 1 is divisible by 3

In Problems 23–26, prove the statement is false by finding a

counterexample.

23. If n  2, then any polynomial of degree n has at least one
real zero.

24. Any positive integer n 7 can be written as the sum of
three or fewer squares of positive integers.

25. If n is a positive integer, then there is at least one prime
number p such that n p  n  6.



35. aman
 am n; m, n  N [Hint: Choose m as an arbitrary

element of N, and then use induction on n.]

36. (an)m
 amn; m, n  N

37. xn
 1 is divisible by x 1; x  1 [Hint: Divisible means

that xn
 1  (x  1)Q(x) for some polynomial Q(x).]

38. xn
 yn is divisible by x y; x y

39. x2n
 1 is divisible by x 1; x  1

40. x2n
 1 is divisible by x 1; x   1

41. 13
 23

 33
     n3

 (1  2  3  . . .  n)2

[Hint: See Matched Problem 1 following Example 1.]

42.

 
1

n(n  1)(n  2)
 

n(n  3)

4(n  1)(n  2)

1

1  2  3
 

1

2  3  4
 

1

3  4  5
 . . .

26. If a, b, c, and d are positive integers such that 
a2
 b2

 c2
 d2, then a  c or a  d.

In Problems 27–42, use mathematical induction to prove each

proposition for all positive integers n, unless restricted 

otherwise.

27. 2  22
 23

     2n
 2n 1

 2

28.

29. 12
 32

 52
     (2n 1)2

 (4n3
 n)

30. 1  8  16      8(n 1)  (2n  1)2; n  1

31. 12
 22

 32
     n2

 

32. 1  2 2  3 3  4     n(n 1) 

33.  an 3; n  3 34. ; n  5
a5

an
 

1

an 5

an

a3

n(n  1)(n  2)

3

n(n  1)(2n  1)

6

1
3

1

2
 

1

4
 

1

8
 . . .  

1

2n
 1   12 

n
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51. Prove or disprove the generalization of the following two
facts:

52. Prove or disprove: n2
 21n  1 is a prime number for all

natural numbers n.

If {an} and {bn} are two sequences, we write {an}  {bn} if

and only if an  bn, n  N. In Problems 53–56, use mathemat-

ical induction to show that {an}  {bn}.

53. a1  1, an  an 1 2; bn  2n  1

54. a1  2, an  an 1 2; bn  2n

55. a1  2, an  22an 1; bn  22n 1

56. a1  2, an  3an 1; bn  2  3n 1

 33
 43

 53
 63

 32
 42

 52

In Problems 43–46, suggest a formula for each expression, and

prove your hypothesis using mathematical induction, n  N.

43. 2  4  6      2n

44.

45. The number of lines determined by n points in a plane, no
three of which are collinear

46. The number of diagonals in a polygon with n sides

Prove Problems 47–50 true for all integers n as specified.

47. a  1 ⇒ an
 1; n  N

48. 0  a  1 ⇒ 0  an
 1; n  N

49. n2
 2n; n  3

50. 2n
 n2; n  5

1

1  2
 

1

2  3
 

1

3  4
 . . .  

1

n(n  1)
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Arithmetic and Geometric Sequences

Arithmetic and Geometric Sequences ● nth-Term Formulas ● Sum Formulas for Finite
Arithmetic Series ● Sum Formulas for Finite Geometric Series ● Sum Formula for Infinite
Geometric Series

For most sequences it is difficult to sum an arbitrary number of terms of the
sequence without adding term by term. But particular types of sequences, arith-

metic sequences and geometric sequences, have certain properties that lead to con-
venient and useful formulas for the sums of the corresponding arithmetic series

and geometric series.

Arithmetic and Geometric Sequences
The sequence 5, 7, 9, 11, 13, . . . ,  5   2(n  1 ), . . . ,  where each term after the
first is obtained by adding 2 to the preceding term, is an example of an arithmetic
sequence. The sequence 5, 10, 20, 40, 80, . . . ,  5(2)n 1, . . . ,  where each term after
the first is obtained by multiplying the preceding term by 2, is an example of a
geometric sequence.

D E F I N I T I O N 1
Arithmetic Sequence

A sequence

a1, a2, a3, . . . ,  an, . . .

is called an arithmetic sequence, or arithmetic progression, if there exists a constant d, called

the common difference, such that

an  an 1  d

That is,

an  an 1  d for every n  1

D E F I N I T I O N 2
Geometric Sequence

A sequence

a1, a2, a3, . . . ,  an, . . .

is called a geometric sequence, or geometric progression, if there exists a nonzero constant r,

called the common ratio, such that

That is,

an  ran 1 for every n  1

an

an 1

 r



Recognizing Arithmetic and Geometric Sequences

Which of the following can be the first four terms of an arithmetic sequence? Of
a geometric sequence?

(A) 1, 2, 3, 5, . . . (B)  1, 3,  9, 27, . . .

(C) 3, 3, 3, 3, . . . (D) 10, 8.5, 7, 5.5, . . .

S O L U T I O N S

(A) Because 2  1  5  3, there is no common difference, so the
sequence is not an arithmetic sequence. Because , there is no
common ratio, so the sequence is not geometric either.

(B) The sequence is geometric with common ratio  3, but it is not arith-
metic.

(C) The sequence is arithmetic with common difference 0 and it is also
geometric with common ratio 1.

(D) The sequence is arithmetic with common difference  1.5, but it is
not geometric.

Which of the following can be the first four terms of an arithmetic sequence? Of
a geometric sequence?

(A) 8, 2, 0.5, 0.125, . . . (B)  7,  2, 3, 8, . . . (C) 1, 5, 25, 100, . . .

nth-Term Formulas
If {an} is an arithmetic sequence with common difference d, then

a2  a1  d

a3  a2  d  a1  2d

a4  a3  d  a1  3d

This suggests Theorem 1, which can be proved by mathematical induction (see
Problem 63 in Exercise 10.3).

2
1  

3
2
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E X P L O R E / D I S C U S S  1

(A) Graph the arithmetic sequence 5, 7, 9, . . . .
Describe the graphs of all arithmetic sequences with common
difference 2.

(B) Graph the geometric sequence 5, 10, 20, . . . .
Describe the graphs of all geometric sequences with common 
ratio 2.



Similarly, if {an} is a geometric sequence with common ratio r, then

a2  a1r

a3  a2r  a1r2

a4  a3r  a1r3

This suggests Theorem 2, which can also be proved by mathematical induction
(see Problem 69 in Exercise 10.3).

Finding Terms in Arithmetic and Geometric Sequences

(A) If the first and tenth terms of an arithmetic sequence are 3 and 30, respec-
tively, find the fiftieth term of the sequence.

(B) If the first and tenth terms of a geometric sequence are 1 and 4, find the
seventeenth term to three decimal places.

S O L U T I O N S

(A) First use Theorem 1 with a1  3 Now find a50:
and a10  30 to find d:

a50  a1  (50  1)3

 3  49  3

 150

(B) First let n  10, a1  1, a10  4 and use Theorem 2 to find r.

an  a1rn 1

4  1r10 1

r  41 9

Now use Theorem 2 again, this time with n  17.

a17  a1r16
 1(41 9)16

 416 9  11.758

d  3

 30  3  9d

a10  a1  (10  1)d

an  a1  (n  1)d
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T H E O R E M  1
The nth Term of an Arithmetic Sequence

an  a1  (n  1)d for every n  1

T H E O R E M  2
The nth Term of a Geometric Sequence

an  a1rn 1 for every n  1



(A) If the first and fifteenth terms of an arithmetic sequence are  5 and 23,
respectively, find the seventy-third term of the sequence.

(B) Find the eighth term of the geometric sequence 

Sum Formulas for Finite Arithmetic Series
If a1, a2, a3, . . . ,  an is a finite arithmetic sequence, then the corresponding series
a1  a2  a3  

. . .  an is called an arithmetic series. We will derive two sim-
ple and very useful formulas for the sum of an arithmetic series. Let d be the
common difference of the arithmetic sequence a1, a2, a3, . . . ,  an and let Sn denote
the sum of the series a1  a2  a3  

. . .  an.
Then

Sn  a1  (a1  d)      [a1  (n  2)d ]  [a1  (n  1)d ]

Reversing the order of the sum, we obtain

Sn  [a1  (n  1)d ]  [a1  (n  2)d ]      (a1  d )  a1

Adding the left sides of these two equations and corresponding elements of the
right sides, we see that

2Sn  [2a1  (n  1)d ]  [2a1  (n  1)d ]      [2a1  (n  1)d ]
 n[2a1  (n  1)d ]

This can be restated as in Theorem 3.

1

64
,  

1

32
,

1

16
, . . . .
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T H E O R E M  3
Sum of an Arithmetic Series—First Form

Sn  [2a1  (n  1)d ]
n

2

T H E O R E M  4
Sum of an Arithmetic Series—Second Form

Sn  (a1  an)
n

2

By replacing a1  (n  1)d with an, we obtain a second useful formula for
the sum.

The proof of the first sum formula by mathematical induction is left as an
exercise (see Problem 64 in Exercise 10.3).



Finding the Sum of an Arithmetic Series

Find the sum of the first 26 terms of an arithmetic series if the first term is  7
and d  3.

S O L U T I O N

Find the sum of the first 52 terms of an arithmetic series if the first term is 23
and d   2.

Finding the Sum of an Arithmetic Series

Find the sum of all the odd numbers between 51 and 99, inclusive.

S O L U T I O N
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Algebraic Solution

Let n  26, a1   7, d  3, and 
use Theorem 3.

Sn  [2a1  (n  1)d ]

S26 [2( 7) (26  1)3]

 793

26
2

n

2

Graphing Utility Solution

Use the seq command to generate
the sequence of 26 terms, then use
the sum command to compute the
sum of these terms (Fig. 1).

FIGURE 1

Algebraic Solution

First, use a1  51, an  99, and
Theorem 1 to find n:

an  a1  (n  1)d

99  51  (n  1)2

n  25

Now use Theorem 4 to find S25:

Sn  (a1  an)

S25 (51  99)

 1,875

25
2

n

2

Graphing Utility Solution

Use the seq command to generate the
required sequence of odd numbers,
then use the sum command to com-
pute the sum of these terms (Fig. 2).

FIGURE 2



Find the sum of all the even numbers between  22 and 52, inclusive.

Prize Money

A 16-team bowling league has $8,000 to be awarded as prize money. If the last-
place team is awarded $275 in prize money and the award increases by the same
amount for each successive finishing place, how much will the first-place team
receive?

S O L U T I O N

If a1 is the award for the first-place team, a2 is the award for the second-place
team, and so on, then the prize money awards form an arithmetic sequence with
n  16, a16  275, and S16  8,000. Use Theorem 4 to find a1.

Sn  (a1  an)

8,000  (a1  275)

a1  725

Thus, the first-place team receives $725.

Refer to Example 5. How much prize money is awarded to the second-place team?

Sum Formulas for Finite Geometric Series
If a1, a2, a3, . . . ,  an is a finite geometric sequence, then the corresponding series
a1  a2  a3      an is called a geometric series. As with arithmetic series,
we can derive two simple and very useful formulas for the sum of a geometric
series. Let r be the common ratio of the geometric sequence a1, a2, a3, . . . ,  an

and let Sn denote the sum of the series a1  a2  a3      an. Then

Sn  a1  a1r  a1r2
 a1r3

     a1rn 2
 a1rn 1

Multiply both sides of this equation by r to obtain

rSn  a1r  a1r2
 a1r3

     a1rn 1
 a1rn

Now subtract the left side of the second equation from the left side of the first,
and the right side of the second equation from the right side of the first to obtain

Sn  rSn  a1  a1rn

Sn(1  r)  a1  a1rn

Thus, solving for Sn, we obtain the following formula for the sum of a geomet-
ric series:

16
2

n

2
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Because an  a1rn 1, or ran  a1rn, the sum formula also can be written in
the following form:

The proof of the first sum formula (Theorem 5) by mathematical induction is
left as an exercise (see Problem 70, Exercise 10.3).

If r  1, then

Sn  a1  a1(1)  a1(12)      a1(1n 1)  na1

Finding the Sum of a Geometric Series

Find the sum of the first 20 terms of a geometric series if the first term is 1 and
r  2.

S O L U T I O N
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T H E O R E M  5
Sum of a Geometric Series—First Form

Sn  r  1
a1  a1r

n

1  r

T H E O R E M  6
Sum of a Geometric Series—Second Form

Sn  r  1
a1  ran

1  r

Algebraic Solution

Let n  20, a1  1, r  2, and use
Theorem 5.

 
1  1  220

1  2
 1,048,575

Sn  
a1  a1r

n

1  r

Graphing Utility Solution

Use the seq command to generate 
the required sequence of powers of 
2, then use the sum command to
compute the sum of these terms 
(Fig. 3).

FIGURE 3



Find the sum, to two decimal places, of the first 14 terms of a geometric series
if the first term is and r   2.

Sum Formula for Infinite Geometric Series
Consider a geometric series with a1  5 and r  . What happens to the sum Sn

as n increases? To answer this question, we first write the sum formula in the
more convenient form

(1)

For a1  5 and r  ,

Thus,

It appears that becomes smaller and smaller as n increases and that the sum
gets closer and closer to 10.

In general, it is possible to show that, if  1, then rn will get closer and
closer to 0 as n increases. Symbolically, rn

→ 0 as n →  . Thus, the term

in equation (1) will tend to 0 as n increases, and Sn will tend to

In other words, if  1, then Sn can be made as close to

as we wish by taking n sufficiently large. Thus, we define the sum of an infinite

geometric series by the following formula:

a1

1  r

 r 

a1

1  r

a1r
n

1  r

 r 

(1
2)n

S20  10  10 1

1,048,576 

S10  10  10 1

1,024 

S4  10  10 1

16 

S2  10  10 14 

Sn  10  10 12 
n

1
2

Sn  
a1  a1r

n

1  r
 

a1

1  r
 

a1r
n

1  r

1
2

1
64
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If  1, an infinite geometric series has no sum.

Expressing a Repeating Decimal as a Fraction

Represent the repeating decimal 0.454 545 . . .  as the quotient of two inte-
gers. Recall that a repeating decimal names a rational number and that any rational
number can be represented as the quotient of two integers.

S O L U T I O N

 0.45  0.0045  0.000 045     

The right side of the equation is an infinite geometric series with a1  0.45 and
r  0.01. Thus,

S  

Hence, and name the same rational number. Check the result by dividing
5 by 11.

Repeat Example 7 for 0.818 181     .

Economy Stimulation

A state government uses proceeds from a lottery to provide a tax rebate for prop-
erty owners. Suppose an individual receives a $500 rebate and spends 80% of
this, and each of the recipients of the money spent by this individual also spends
80% of what he or she receives, and this process continues without end. Accord-
ing to the multiplier doctrine in economics, the effect of the original $500 tax
rebate on the economy is multiplied many times. What is the total amount spent
if the process continues as indicated?

S O L U T I O N

The individual receives $500 and spends 0.8(500)  $400. The recipients of this
$400 spend 0.8(400)  $320, the recipients of this $320 spend 0.8(320)  $256,
and so on. Thus, the total spending generated by the $500 rebate is

400  320  256  . . .  400  0.8(400)  (0.8)2(400)     

0.81

5
110.45

a1

1  r
 

0.45

1  0.01
 

0.45

0.99
 

5

11

0.45

0.45

 r 
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D E F I N I T I O N 3
Sum of an Infinite Geometric Series

S  
a1

1  r
     r   1



1. (A) The sequence is geometric with r  , but not arithmetic.
(B) The sequence is arithmetic with d  5, but not geometric.
(C) The sequence is neither arithmetic nor geometric.

2. (A) 139 (B)  2 3.  1,456 4. 570 5. $695 6.  85.33 7. 8. $9,0009
11

1
4
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which we recognize as an infinite geometric series with a1  400 and r  0.8.
Thus, the total amount spent is

S  

Repeat Example 8 if the tax rebate is $1,000 and the percentage spent by all recip-
ients is 90%.

a1

1  r
 

400

1  0.8
 

400

0.2
 $2,000

E X P L O R E / D I S C U S S  2

(A) Find an infinite geometric series with a1 10 whose sum is 1,000.

(B) Find an infinite geometric series with a1  10 whose sum is 6.

(C) Suppose that an infinite geometric series with a1  10 has a sum.
Explain why that sum must be greater than 5.

5. a1   3, d  5; a15  ?, S11  ?

6. a1  3, d  4; a22  ?, S21  ?

7. a1  1, a2  5; S21  ?

8. a1  5, a2  11; S11  ?

9. a1  7, a2  5; a15  ?

10. a1   3, d   4; a10  ?

Let a1, a2, a3, . . . ,  an, . . . b e a  geometric sequence. In Prob-

lems 11–16, find each of the indicated quantities.

11. a1   6, r   ; a2  ?, a3  ?, a4  ?

12. a1  12, r  ; a2  ?, a3  ?, a4  ?2
3

1
2

In Problems 1 and 2, determine whether the following can be

the first three terms of an arithmetic or geometric sequence,

and, if so, find the common difference or common ratio and the

next two terms of the sequence.

1. (A)  11,  16,  2 1 ,. . . (B) 2,  4, 8, . . .

(C) 1, 4, 9, . . . (D) , . . .

2. (A) 5, 20, 100, . . . (B)  5,  5,  5 ,. . .

(C) 7, 6.5, 6, . . . (D) 512, 256, 128, . . .

Let a1, a2, a3, . . . ,  an, . . . be an arithmetic sequence. In Prob-

lems 3–10, find the indicated quantities.

3. a1   5, d  4; a2  ?, a3  ?, a4  ?

4. a1   18, d  3; a2  ?, a3  ?, a4  ?

1
2, 1

6, 1
18



13. a1  81, r  ; a10  ?

14. a1  64, r  ; a13  ?1
2

1
3 15. a1  3, a7  2,187, r  3; S7  ?

16. a1  1, a7  729, r   3; S7  ?
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Let a1, a2, a3, . . . ,  an, . . . be an arithmetic sequence. In Prob-

lems 17–24, find the indicated quantities.

17. a1  3, a20  117; d  ?, a101  ?

18. a1  7, a8  28; d  ?, a25  ?

19. a1   12, a40  22; S40  ?

20. a1  24, a24   28; S24  ?

21. a1  , a2  ; a11  ?, S11  ?

22. a1  , a2  ; a19  ?, S19  ?

23. a3  13, a10  55; a1  ?

24. a9   12, a13  3; a1  ?

Let a1, a2, a3, . . . ,  an , . . . b e a  geometric sequence. Find each

of the indicated quantities in Problems 25–30.

25. a1  100, a6  1; r  ? 26. a1  10, a10  30; r  ?

27. a1  5, r   2; S10  ? 28. a1  3, r  2; S10  ?

29. a1  9, a4  ; a2  ?, a3  ?

30. a1  12, a4   ; a2  ?, a3  ?

31. S51   ? 32. S40   ?

33. S7   ? 34. S7   ?

35. Find g(1) g(2) g(3)     g(51) if g(t)  5  t.

36. Find f (1) f (2) f (3)     f(20) if f (x)  2x  5.

37. Find g(1) g(2)     g(10) if g(x)  .

38. Find f (1) f (2)     f(10) if f(x)  2x.

39. Find the sum of all the even integers between 21 and 135.

40. Find the sum of all the odd integers between 100 and 500.

41. Show that the sum of the first n odd natural numbers is n2,
using appropriate formulas from Section 10.3.

42. Show that the sum of the first n even natural numbers is 
n  n2, using appropriate formulas from Section 10.3.

(1
2)x

 
7

k 1

 3k 
7

k 1

 ( 3)k 1

 
40

k 1

 (2k  3) 
51

k 1

 (3k  3)

4
9

8
3

1
4

1
6

1
2

1
3

43. Find a positive number x so that  2 x  6 is a three-
term geometric series.

44. Find a positive number x so that 6  x  8 is a three-term
geometric series.

45. For a given sequence in which a1  3 and an an 1 3,
n  1, find an in terms of n.

46. For the sequence in Problem 45, find Sn  ak in terms
of n.

In Problems 47–50, find the least positive integer n such that

an  bn by graphing the sequences {an} and {bn} with a

graphing utility. Check your answer by using a graphing utility

to display both sequences in table form.

47. an  5  8n, bn  1.1n

48. an  96  47n, bn  8(1.5)n

49. an  1,000(0.99)n, bn  2n  1

50. an  500  n, bn  1.05n

In Problems 51–56, find the sum of each infinite geometric se-

ries that has a sum.

51. 3  1      52. 16  4  1     

53. 2  4  8     54. 4  6  9     

55. 2       56. 21  3      

In Problems 57–62, represent each repeating decimal as the

quotient of two integers.

57.  0.7777    58.  0.5555    

59.  0.545 454    60.  0.272 727    

61.  3.216 216 216    

62.  5.636 363    5.63

3.216

0.270.54

0.50.7

3
7

1
8

1
2

1
3

 
n

k 1
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63. Prove, using mathematical induction, that if {an} is an
arithmetic sequence, then

an  a1  (n  1)d for every n 1

64. Prove, using mathematical induction, that if {an} is an
arithmetic sequence, then

Sn  [2a1  (n  1)d ]

65. If in a given sequence, a1   2 and an   3an 1, n  1,
find an in terms of n.

66. For the sequence in Problem 65, find Sn  ak in terms 
of n.

67. Show that (x2
 xy y2), (z2

 xz x2), and (y2
 yz z2)

are consecutive terms of an arithmetic progression if x, y,
and z form an arithmetic progression. (From U.S.S.R.
Mathematical Olympiads, 1955–1956, Grade 9.)

68. Take 121 terms of each arithmetic progression 
2, 7, 12, . . . and 2, 5, 8, . . . . How many numbers will
there be in common? (From U.S.S.R. Mathematical
Olympiads, 1955–1956, Grade 9.)

 
n

k 1

n

2

69. Prove, using mathematical induction, that if {an} is a geo-
metric sequence, then

an  a1r n 1 n  N

70. Prove, using mathematical induction, that if {an} is a geo-
metric sequence, then

Sn  n  N, r  1

71. Given the system of equations

ax  by  c

dx  ey  f

where a, b, c, d, e, f is any arithmetic progression with a
nonzero constant difference, show that the system has a
unique solution.

72. The sum of the first and fourth terms of an arithmetic se-

quence is 2, and the sum of their squares is 20. Find the
sum of the first eight terms of the sequence.

a1  a1r
n

1  r

73. Business. In investigating different job opportunities, you
find that firm A will start you at $25,000 per year and
guarantee you a raise of $1,200 each year whereas firm B

will start you at $28,000 per year but will guarantee you a
raise of only $800 each year. Over a period of 15 years,
how much would you receive from each firm?

74. Business. In Problem 73, what would be your annual
salary at each firm for the tenth year?

75. Economics. The government, through a subsidy program,
distributes $1,000,000. If we assume that each individual
or agency spends 0.8 of what is received, and 0.8 of this is
spent, and so on, how much total increase in spending re-
sults from this government action?

76. Economics. Because of reduced taxes, an individual has
an extra $600 in spendable income. If we assume that the
individual spends 70% of this on consumer goods, that the
producers of these goods in turn spend 70% of what they
receive on consumer goods, and that this process contin-
ues indefinitely, what is the total amount spent on con-

sumer goods?

★ 77. Business. If $P is invested at r% compounded annually,
the amount A present after n years forms a geometric pro-
gression with a common ratio 1  r. Write a formula for
the amount present after n years. How long will it take a
sum of money P to double if invested at 6% interest com-
pounded annually?

★ 78. Population Growth. If a population of A0 people grows at
the constant rate of r% per year, the population after t
years forms a geometric progression with a common ratio
1  r. Write a formula for the total population after t
years. If the world’s population is increasing at the rate of
2% per year, how long will it take to double?

79. Finance. Eleven years ago an investment earned $7,000
for the year. Last year the investment earned $14,000. If
the earnings from the investment have increased the same
amount each year, what is the yearly increase and how
much income has accrued from the investment over the
past 11 years?



80. Air Temperature. As dry air moves upward, it expands. In
so doing, it cools at the  rate of about 5 F for each 1,000-
foot rise. This is known as the adiabatic process.

(A) Temperatures at altitudes that are multiples of 
1,000 feet form what kind of a sequence?

(B) If the ground temperature is 80 F, write a formula for
the temperature Tn in terms of n, if n is in thousands of
feet.

81. Engineering. A rotating flywheel coming to rest rotates

300 revolutions the first minute (see the figure). If in each

subsequent minute it rotates two-thirds as many times as in
the preceding minute, how many revolutions will the
wheel make before coming to rest?

82. Physics. The first swing of a bob on a pendulum is 

10 inches. If on each subsequent swing it travels 0.9 as far
as on the preceding swing, how far will the bob travel
before coming to rest?

83. Food Chain. A plant is eaten by an insect, an insect by a
trout, a trout by a salmon, a salmon by a bear, and the bear
is eaten by you. If only 20% of the energy is transformed
from one stage to the next, how many calories must be
supplied by plant food to provide you with 2,000 calories
from the bear meat?

★ 84. Genealogy. If there are 30 years in a generation, how
many direct ancestors did each of us have 600 years ago?

By direct ancestors we mean parents, grandparents, great-
grandparents, and so on.

★ 85. Physics. An object falling from rest in a vacuum near the
surface of the Earth falls 16 feet during the first second, 

48 feet during the second second, 80 feet during the third
second, and so on.

(A) How far will the object fall during the eleventh sec-
ond?

(B) How far will the object fall in 11 seconds?

(C) How far will the object fall in t seconds?

★ 86. Physics. In Problem 85, how far will the object fall
during:

(A) The twentieth second? (B) The t th second?

★ 87. Bacteria Growth. A single cholera bacterium divides
every hour to produce two complete cholera bacteria. If
we start with a colony of A0 bacteria, how many bacteria
will we have in t hours, assuming adequate food supply?

★ 88. Cell Division. One leukemic cell injected into a healthy
mouse will divide into two cells in about day. At the end
of the day these two cells will divide again, with the dou-
bling process continuing each day until there are 1 bil-
lion cells, at which time the mouse dies. On which day
after the experiment is started does this happen?

★★ 89. Astronomy. Ever since the time of the Greek astronomer
Hipparchus, second century B.C., the brightness of stars
has been measured in terms of magnitude. The brightest
stars, excluding the sun, are classed as magnitude 1, and
the dimmest visible to the eye are classed as magnitude 6.
In 1856, the English astronomer N. R. Pogson showed that
first-magnitude stars are 100 times brighter than sixth-

magnitude stars. If the ratio of brightness between consec-
utive magnitudes is constant, find this ratio. [Hint: If bn is
the brightness of an nth-magnitude star, find r for the geo-
metric progression b1, b2, b3, . . . , given b1  100b6.]

★ 90. Music. The notes on a piano, as measured in cycles per
second, form a geometric progression.

(A) If A is 400 cycles per second and A , 12 notes higher,
is 800 cycles per second, find the constant ratio r.

(B) Find the cycles per second for C, three notes higher
than A.

1
2

1
2

1
2
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halfway point and at each point that marks the halfway
point of each remaining distance thereafter. A runner run-
ning around the track has to break the first tape before the

second, the second before the third, and so on. From this
point of view it appears that he will never finish the race.

This famous paradox is attributed to the Greek philoso-
pher Zeno (495–435 B.C.). If we assume the runner runs at
440 yards per minute, the times between tape breakings
form an infinite geometric progression. What is the sum of

this progression?

95. Geometry. If the midpoints of the sides of an equilat-
eral triangle are joined by straight lines, the new figure

will be an equilateral triangle with a perimeter equal to
half the original. If we start with an equilateral triangle
with perimeter 1 and form a sequence of “nested” equi-
lateral triangles proceeding as described, what will be
the total perimeter of all the triangles that can be formed
in this way?

96. Photography. The shutter speeds and f-stops on a camera
are given as follows:

Shutter speeds:

f-stops: 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22

These are very close to being geometric progressions. Es-
timate their common ratios.

★★ 97. Geometry. We know that the sum of the interior angles of
a triangle is 180 . Show that the sums of the interior an-
gles of polygons with 3, 4, 5, 6, . . . sides form an arith-
metic sequence. Find the sum of the interior angles for a
21-sided polygon.

1, 1
2, 1

4, 1
8, 1

15, 1
30, 1

60, 1
125, 1

250, 1
500

91. Puzzle. If you place 1¢ on the first square of a chess-

board, 2¢ on the second square, 4¢ on the third, and so on,
continuing to double the amount until all 64 squares are
covered, how much money will be on the sixty-fourth
square? How much money will there be on the whole
board?

★ 92. Puzzle. If a sheet of very thin paper 0.001-inch thick is
torn in half, and each half is again torn in half, and this
process is repeated for a total of 32 times, how high will
the stack of paper be if the pieces are placed one on top of
the other? Give the answer to the nearest mile.

★ 93. Atmospheric Pressure. If atmospheric pressure decreases
roughly by a factor of 10 for each 10-mile increase in alti-
tude up to 60 miles, and if the pressure is 15 pounds per
square inch at sea level, what will the pressure be 
40 miles up?

94. Zeno’s Paradox. Visualize a hypothetical 440-yard oval
racetrack that has tapes stretched across the track at the
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Multiplication Principle, Permutations, and
Combinations

Multiplication Principle ● Factorial ● Permutations ● Combinations

Section 10.4 introduces some new mathematical tools that are usually referred to
as counting techniques. In general, a counting technique is a mathematical
method of determining the number of objects in a set without actually enumerat-
ing the objects in the set as 1, 2, 3, . . . .  Fo r example, we can count the number
of squares in a checkerboard (Fig. 1) by counting 1, 2, 3, . . . ,  64. This is enu-
meration. Or we can note that there are eight rows with eight squares in each row.
Thus, the total number of squares must be 8  8  64. This is a very simple
counting technique.

Now consider the problem of assigning telephone numbers. How many dif-
ferent seven-digit telephone numbers can be formed? As we will soon see, the
answer is 107

 10,000,000, a number that is much too large to obtain by enu-
meration. Thus, counting techniques are essential tools if the number of ele-
ments in a set is very large. The techniques developed in Section 10.4 will be

FIGURE 1



FIGURE 2 Coin and die
outcomes.

Heads Tails

Coin outcomes

Die outcomes

applied to a brief introduction to probability theory in Section 10.5, and to a
famous algebraic formula in Section 10.6.

Multiplication Principle
We start with an example.

Combined Outcomes

Suppose we flip a coin and then throw a single die (Fig. 2). What are the possi-
ble combined outcomes?

S O L U T I O N

To solve this problem, we use a tree diagram:

Thus, there are 12 possible combined outcomes—two ways in which the coin can
come up followed by six ways in which the die can come up.

Use a tree diagram to determine the number of possible outcomes of throwing a
single die followed by flipping a coin.

Now suppose you are asked, “From the 26 letters in the alphabet, how many
ways can 3 letters appear in a row on a license plate if no letter is repeated?”
To try to count the possibilities using a tree diagram would be extremely tedious,
to say the least. The following multiplication principle, also called the fun-
damental counting principle, enables us to solve this problem easily. In addi-
tion, it forms the basis for several other counting techniques developed later in
Section 10.4.
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Die

Outcomes

Combined

Outcomes

StartStart

1

2

3

4

5

6

Coin

Outcomes

H

(H, 1)

(H, 2)

(H, 3)

(H, 4)

(H, 5)

(H, 6)

1

2

3

4

5

6

T

(T, 1)

(T, 2)

(T, 3)

(T, 4)

(T, 5)

(T, 6)



In Example 1, we see that there are two possible outcomes from the first oper-
ation of flipping a coin and six possible outcomes from the second operation of
throwing a die. Hence, by the multiplication principle, there are 2 6  12 pos-
sible combined outcomes of flipping a coin followed by throwing a die. Use the
multiplication principle to solve Matched Problem 1.

To answer the license plate question, we reason as follows: There are 26 ways
the first letter can be chosen. After a first letter is chosen, 25 letters remain; hence
there are 25 ways a second letter can be chosen. And after 2 letters are chosen, there
are 24 ways a third letter can be chosen. Hence, using the multiplication princi-
ple, there are 26 25 24  15,600 possible ways 3 letters can be chosen from
the alphabet without allowing any letter to repeat. By not allowing any letter to
repeat, earlier selections affect the choice of subsequent selections. If we allow
letters to repeat, then earlier selections do not affect the choice in subsequent
selections, and there are 26 possible choices for each of the 3 letters. Thus, if we
allow letters to repeat, there are 26 26 26  263

 17,576 possible ways the
3 letters can be chosen from the alphabet.

Computer-Generated Tests

Many universities and colleges are now using computer-assisted testing proce-
dures. Suppose a screening test is to consist of five questions, and a computer
stores five equivalent questions for the first test question, eight equivalent ques-
tions for the second, six for the third, five for the fourth, and ten for the fifth.
How many different five-question tests can the computer select? Two tests are con-
sidered different if they differ in one or more questions.

S O L U T I O N

O1: Select the first question N1: five ways

O2: Select the second question N2: eight ways

O3: Select the third question N3: six ways

O4: Select the fourth question N4: five ways

O5: Select the fifth question N5: ten ways
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Multiplication Principle

1. If two operations O1 and O2 are performed in order with N1 possible
outcomes for the first operation and N2 possible outcomes for the
second operation, then there are

N1 N2

possible combined outcomes of the first operation followed by the 
second.

2. In general, if n operations O1, O2, . . . , On are performed in order, with
possible number of outcomes N1, N2, . . . , Nn, respectively, then there are

N1 N2 Nn

possible combined outcomes of the operations performed in the given
order.

      

 



Thus, the computer can generate

5 8 6 5 10  12,000 different tests

Each question on a multiple-choice test has five choices. If there are five such
questions on a test, how many different response sheets are possible if only one
choice is marked for each question?

Counting Code Words

How many three-letter code words are possible using the first eight letters of the
alphabet if:

(A) No letter can be repeated? (B) Letters can be repeated?

(C) Adjacent letters cannot be alike?

S O L U T I O N S

(A) No letter can be repeated.

O1: Select first letter N1: eight ways

O2: Select second letter N2: seven ways

O3: Select third letter N3: six ways

Thus, there are

8 7 6  336 possible code words

(B) Letters can be repeated.

O1: Select first letter N1: eight ways

O2: Select second letter N2: eight ways

O3: Select third letter N3: eight ways

Thus, there are

8 8 8  83
 512 possible code words

(C) Adjacent letters cannot be alike.

O1: Select first letter N1: eight ways

O2: Select second letter N2: seven ways

O3: Select third letter N3: seven ways

Thus, there are

8 7 7  392 possible code words  
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Because one letter has

been used

Because two letters have

been used

Repeats are allowed.

Repeats are allowed.

Cannot be the same as 

the first

Cannot be the same as 

the second, but can be 

the same as the first
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How many four-letter code words are possible using the first ten letters of the
alphabet under the three conditions stated in Example 3?

The multiplication principle can be used to develop two additional counting
techniques that are extremely useful in more complicated counting problems. Both
of these methods use the factorial function, which we introduce next.

Factorial
For n a natural number, n factorial—denoted by n!—is the product of the first n
natural numbers. Zero factorial is defined to be 1.

E X P L O R E / D I S C U S S  1

The postal service of a developing country is choosing a five-character
postal code consisting of letters (of the English alphabet) and digits. At
least half a million postal codes must be accommodated. Which format
would you recommend to make the codes easy to remember?

D E F I N I T I O N 1
n Factorial

For n a natural number

n!  n(n  1) 2  1

1!  1

0!  1

     

It is also useful to note that

Evaluating Factorials

(A) 4!  4 3!  4 3 2!  4 3 2 1!  4 3 2 1  24

(B) 5!  5 4 3 2 1  120    

         

T H E O R E M  1
Recursion Formula for n Factorial

n!  n (n  1)! 



(C)

(D)

(E)

Find (A) 6! (B) (C) (D)
10!

7!3!

9!

6!

6!

5!

9!

6!3!
 

9  8  7  6!

6! 3  2  1
 84

8!

5!
 

8  7  6  5!

5!
 336

7!

6!
 

7  6!

6!
 7
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E X P L O R E / D I S C U S S  2

A student used a calculator* to solve Matched Problem 4, as shown in
Figure 3. Check these answers. If any are incorrect, explain why and
find a correct calculator solution.

3 4

C A U T I O N

When reducing fractions involving factorials, don’t confuse the single
integer n with the symbol n!, which represents the product of n consecu-
tive integers.

6!

3!
   

6  5  4  3!

3!
    6  5  4   120

6!

3!
 2!

It is interesting and useful to note that n! grows very rapidly. Compare the
following:

5!  120 10!  3,628,800 15!  1,307,674,368,000

*The factorial symbol ! and related symbols can be found under the MATH-PROB menus on a TI-83 or TI-86.

FIGURE 3



If n! is too large for a calculator to store and display, an error message is dis-
played. Find the value of n such that your calculator will evaluate n!, but not 
(n  1)!.

Permutations
Suppose four pictures are to be arranged from left to right on one wall of an art
gallery. How many arrangements are possible? Using the multiplication principle,
there are four ways of selecting the first picture. After the first picture is selected,
there are three ways of selecting the second picture. After the first two pictures
are selected, there are two ways of selecting the third picture. And after the first
three pictures are selected, there is only one way to select the fourth. Thus, the
number of arrangements possible for the four pictures is

4 3 2 1  4! or 24

In general, we refer to a particular arrangement, or ordering, of n objects
without repetition as a permutation of the n objects. How many permutations of
n objects are there? From the reasoning above, there are n ways in which the first
object can be chosen, there are n  1 ways in which the second object can be
chosen, and so on. Applying the multiplication principle, we have Theorem 2.

   

Now suppose the director of the art gallery decides to use only two of the four
available pictures on the wall, arranged from left to right. How many arrange-
ments of two pictures can be formed from the four? There are four ways the first
picture can be selected. After selecting the first picture, there are three ways the
second picture can be selected. Thus, the number of arrangements of two pictures
from four pictures, denoted by P4,2, is given by

P4,2  4 3  12

Or, in terms of factorials, multiplying 4 3 by 1 in the form 2! 2!, we have

This last form gives P4,2 in terms of factorials, which is useful in some cases.
A permutation of a set of n objects taken r at a time is an arrangement of

the r objects in a specific order. Thus, reasoning in the same way as in the exam-
ple above, we find that the number of permutations of n objects taken r at a time,
0  r  n, denoted by Pn,r, is given by

Pn,r  n(n  1)(n  2) (n  r  1)     

P4,2  4  3  
4  3  2!

2!
 

4!

2!
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T H E O R E M  2
Permutations of n Objects

The number of permutations of n objects, denoted by Pn,n, is given by

Pn,n  n (n  1) 1  n!      



Multiplying the right side of this equation by 1 in the form (n  r)! (n  r)!, we
obtain a factorial form for Pn,r:

Pn,r  n(n  1)(n  2) (n  r  1)

But

n(n  1)(n  2) (n  r  1)(n  r)!  n!

Hence, we have Theorem 3.

     

(n  r)!

(n  r)!
     

Note that if r  n, then the number of permutations of n objects taken n at a
time is

Pn,n   n!

which agrees with Theorem 2, as it should.
The permutation symbol Pn,r also can be denoted by Pn

r, n Pr , or P(n, r). Many
calculators use n Pr to denote the function that evaluates the permutation symbol.

Selecting Officers

From a committee of eight people, in how many ways can we choose a chair and
a vice-chair, assuming one person cannot hold more than one position?

S O L U T I O N

We are actually asking for the number of permutations of eight objects taken two
at a time—that is, P8,2:

P8,2  

From a committee of ten people, in how many ways can we choose a chair, vice-
chair, and secretary, assuming one person cannot hold more than one position?

8!

(8  2)!
 

8!

6!
 

8  7  6!

6!
 56

n!

(n  n)!
 

n!

0!
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T H E O R E M  3
Permutation of n Objects Taken r at a Time

The number of permutations of n objects taken r at a time is given by

Pn,r  n(n  1)(n  2) (n  r  1)

or

Pn,r  0  r  n
n!

(n  r)!

     

r factors

Recall, 0!  1.

y



Evaluating Pn,r

Find the number of permutations of 25 objects taken

(A) Two at a time (B) Four at a time (C) Eight at a time

S O L U T I O N

Figure 4 shows the solution on a graphing utility.

Find the number of permutations of 30 objects taken

(A) Two at a time (B) Four at a time (C) Six at a time

Combinations
Now suppose that an art museum owns eight paintings by a given artist and
another art museum wishes to borrow three of these paintings for a special show.
How many ways can three paintings be selected for shipment out of the eight
available? Here, the order of the items selected doesn’t matter. What we are actu-
ally interested in is how many subsets of three objects can be formed from a set
of eight objects. We call such a subset a combination of eight objects taken three
at a time. The total number of combinations is denoted by the symbol

C8,3 or

To find the number of combinations of eight objects taken three at a time, C8,3,
we make use of the formula for Pn,r and the multiplication principle. We know
that the number of permutations of eight objects taken three at a time is given by
P8,3, and we have a formula for computing this quantity. Now suppose we think
of P8,3 in terms of two operations:

O1: Select a subset of three objects (paintings)

N1: C8,3 ways

O2: Arrange the subset in a given order

N2: 3! ways

The combined operation, O1 followed by O2, produces a permutation of eight
objects taken three at a time. Thus,

P8,3  C8,3 3!

To find C8,3, we replace P8,3 in the preceding equation with 8! (8  3)! and solve
for C8,3:

C8,3  
8!

3!(8  3)!
 

8  7  6  5!

3  2  1  5!
 56

8!

(8  3)!
 C8,3  3!

 

 83 
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FIGURE 4



Thus, the museum can make 56 different selections of three paintings from the
eight available.

A combination of a set of n objects taken r at a time is an r-element sub-
set of the n objects. Reasoning in the same way as in the example, the number
of combinations of n objects taken r at a time, 0  r  n, denoted by Cn,r, can
be obtained by solving for Cn,r in the relationship

 
n!

r!(n  r)!

Cn,r  
Pn,r

r!

Pn,r  Cn,r  r!

The combination symbols Cn,r and also can be denoted by Cn
r , nCr, or 

C(n, r).

Selecting Subcommittees

From a committee of eight people, in how many ways can we choose a subcom-
mittee of two people?

S O L U T I O N

Notice how this example differs from Example 5, where we wanted to know how
many ways a chair and a vice-chair can be chosen from a committee of eight peo-
ple. In Example 5, ordering matters. In choosing a subcommittee of two people,
the ordering does not matter. Thus, we are actually asking for the number of com-
binations of eight objects taken two at a time. The number is given by

How many subcommittees of three people can be chosen from a committee of
eight people?

C8,2   82  
8!

2!(8  2)!
 

8  7  6!

2  1  6!
 28

 nr 
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Pn,r      
n!

(n   r)!

T H E O R E M  4
Combination of n Objects Taken r at a Time

The number of combinations of n objects taken r at a time is given by

Cn,r   nr  
Pn,r

r!
 

n!

r!(n  r)!
    0  r  n



Evaluating Cn,r

Find the number of combinations of 25 objects taken

(A) Two at a time (B) Four at a time (C) Eight at a time

S O L U T I O N

Figure 5 shows the solution on a graphing utility. Compare these results with
Example 6.

Find the number of combinations of 30 objects taken

(A) Two at a time (B) Four at a time (C) Six at a time

Remember: In a permutation, order counts. In a combination, order does not count.

To determine whether a permutation or combination is needed, decide whether
rearranging the collection or listing makes a difference. If so, use permutations.
If not, use combinations.

A standard deck of 52 cards (Fig. 6) has four 13-card suits: diamonds, hearts,
clubs, and spades. Each 13-card suit contains cards numbered from 2 to 10, a
jack, a queen, a king, and an ace. The jack, queen, and king are called face cards.
Depending on the game, the ace may be counted as the lowest and or the high-
est card in the suit. Example 9, as well as other examples and exercises in Chap-
ter 10, refer to this standard deck.

Counting Card Hands

Out of a standard 52-card deck, how many 5-card hands will have three aces and
two kings?
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FIGURE 5

E X P L O R E / D I S C U S S  3

Each of the following is a selection without repetition. Would you consider
the selection to be a combination? A permutation? Discuss your reasoning.

(A) A student checks out three books from the library.

(B) A baseball manager names his starting lineup.

(C) The newly elected president names his cabinet members.

(D) The president selects a delegation of three cabinet members to
attend the funeral of a head of state.

(E) An orchestra conductor chooses three pieces of music for a sym-
phony program.

2
3

4 5 6 7 8 910 J Q K A

A

2
3

4 5
6 7 8 9 10 J Q K A

A

2
3

4 5 6 7 8 910 J Q K A

A

2
3

4 5
6 7 8 9 10 J Q K A

A

FIGURE 6 A standard deck of
cards.



S O L U T I O N

O1: Choose three aces out of four possible

N1: C4,3

O2: Choose two kings out of four possible

N2: C4,2

Using the multiplication principle, we have

Number of hands  C4,3 C4,2  4 6  24

From a standard 52-card deck, how many 5-card hands will have three hearts and
two spades?

Counting Serial Numbers

Serial numbers for a product are to be made using two letters followed by three
numbers. If the letters are to be taken from the first eight letters of the alphabet
with no repeats and the numbers from the 10 digits 0 through 9 with no repeats,
how many serial numbers are possible?

S O L U T I O N

O1: Choose two letters out of eight available

N1: P8,2

O2: Choose three numbers out of ten available

N2: P10,3

Using the multiplication principle, we have

Number of serial numbers  P8,2 P10,3  40,320

Repeat Example 10 under the same conditions, except the serial numbers are now
to have three letters followed by two digits with no repeats.
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Order is not important.

Order is not important.

Order is important.

Order is important.

1. 2. 55, or 3,125

3. (A) 10 9 8 7  5,040 (B) 10 10 10 10  10,000 (C) 10 9 9 9  7,290

4. (A) 720 (B) 6 (C) 504 (D) 120 5. P10,3   720
10!

(10  3)!

         

H T H T H T H T H T H T

1 2 3 4 5 6

Start



In Problems 23 and 24, would you consider the selection to be

a combination or a permutation? Explain your reasoning.

23. (A) The recently elected chief executive officer (CEO) of a

company named three new vice-presidents, of market-
ing, research, and manufacturing.

(B) The CEO selected three of her vice-presidents to at-
tend the dedication ceremony of a new plant.

24. (A) An individual rented four videos from a rental store to
watch over a weekend.

(B) The same individual did some holiday shopping by
buying four videos, one for his father, one for his
mother, one for his younger sister, and one for his
older brother.

25. A particular new car model is available with five choices

of color, three choices of transmission, four types of inte-
rior, and two types of engine. How many different varia-
tions of this model car are possible?

26. A deli serves sandwiches with the following options: three
kinds of bread, five kinds of meat, and lettuce or sprouts.

How many different sandwiches are possible, assuming
one item is used out of each category?

27. In a horse race, how many different finishes among the first

three places are possible for a 10-horse race? Exclude ties.

28. In a long-distance foot race, how many different finishes

among the first five places are possible for a 50-person

race? Exclude ties.

29. How many ways can a subcommittee of three people be
selected from a committee of seven people? How many
ways can a president, vice-president, and secretary be cho-
sen from a committee of seven people?

30. Suppose nine cards are numbered with the nine digits
from 1 to 9. A three-card hand is dealt, one card at a time.
How many hands are possible where:

(A) Order is taken into consideration?

(B) Order is not taken into consideration?

6. (A) 870 (B) 657,720 (C) 427,518,000 7. C8,3   56

8. (A) 435 (B) 27,405 (C) 593,775 9. C13,3 C13,2  22,308 10. P8,3 P10,2  30,240  

8!

3!(8  3)!
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Evaluate Problems 1–12.

1. 9! 2. 10! 3. 11!

4. 12! 5. 6.

7. 8. 9.

10. 11. 12.

13. The figure shows calculator solutions to Problems 5, 7,

and 9. Check these answers. If any are incorrect, explain
why and find a correct calculator solution.

14. The figure shows calculator solutions to Problems 6, 8,

and 10. Check these answers.  If any are incorrect, explain
why and find a correct calculator solution.

Evaluate Problems 15–22.

15. P5,3 16. P4,2 17. P52,4

18. P52,2 19. C5,3 20. C4,2

21. C52,4 22. C52,2

8!

0!(8  0)!

7!

7!(7  7)!

8!

3!(8  3)!

7!

4!(7  4)!

6!

4!2!

5!

2!3!

14!

12!

11!

8!



31. There are 10 teams in a league. If each team is to play
every other team exactly once, how many games must be
scheduled?

32. Given seven points, no three of which are on a straight
line, how many lines can be drawn joining two points at 
a time?
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33. How many four-letter code words are possible from the
first six letters of the alphabet, with no letter repeated? Al-

lowing letters to repeat?

34. How many five-letter code words are possible from the

first seven letters of the alphabet, with no letter repeated?

Allowing letters to repeat?

35. A combination lock has five wheels, each labeled with the

10 digits from 0 to 9. How many opening combinations of
five numbers are possible, assuming no digit is repeated?

Assuming digits can be repeated?

36. A small combination lock on a suitcase has three wheels,
each labeled with digits from 0 to 9. How many opening
combinations of three numbers are possible, assuming no
digit is repeated? Assuming digits can be repeated?

37. From a standard 52-card deck, how many 5-card hands
will have all hearts?

38. From a standard 52-card deck, how many 5-card hands
will have all face cards? All face cards, but no kings? Con-
sider only jacks, queens, and kings to be face cards.

39. How many different license plates are possible if each
contains three letters followed by three digits? How many
of these license plates contain no repeated letters and no
repeated digits?

40. How may five-digit zip codes are possible? How many of

these codes contain no repeated digits?

41. From a standard 52-card deck, how many 7-card hands
have exactly five spades and two hearts?

42. From a standard 52-card deck, how many 5-card hands
will have two clubs and three hearts?

43. A catering service offers eight appetizers, ten main
courses, and seven desserts. A banquet chairperson is 
to select three appetizers, four main courses, and two
desserts for a banquet. How many ways can this be
done?

44. Three research departments have 12, 15, and 18 members,
respectively. If each department is to select a delegate and
an alternate to represent the department at a conference,
how many ways can this be done?

45. (A) Use a graphing utility to display the sequences P10,0,
P10,1, . . . ,  P10,10 and 0!, 1!, . . . ,  10! in table form, and
show that P10,r r! for r 0, 1, . . . , 10.

(B) Find all values of r such that P10,r  r!

(C) Explain why Pn,r  r! whenever 0  r  n.

46. (A) How are the sequences and C10,0,

C10,1, . . . ,  C10,10 related?

(B) Use a graphing utility to graph each sequence and
confirm the relationship of part A.

P10,0

0!
,

P10,1

1!
, . . . , 

P10,10

10!

47. A sporting goods store has 12 pairs of ski gloves of 12 dif-
ferent brands thrown loosely in a bin. The gloves are all
the same size. In how many ways can a left-hand glove
and a right-hand glove be selected that do not match rela-
tive to brand?

48. A sporting goods store has six pairs of running shoes of
six different styles thrown loosely in a basket. The shoes
are all the same size. In how many ways can a left shoe
and a right shoe be selected that do not match?

49. Eight distinct points are selected on the circumference of a
circle.

(A) How many chords can be drawn by joining the points
in all possible ways?

(B) How many triangles can be drawn using these eight
points as vertices?

(C) How many quadrilaterals can be drawn using these
eight points as vertices?



(A) The distinct positions are taken into consideration?

(B) The distinct positions are not taken into consideration?

(C) The distinct positions are not taken into consideration,
but either Mike or Ken, but not both, must start?

54. How many committees of four people are possible from a
group of nine people if

(A) There are no restrictions?

(B) Both Juan and Mary must be on the committee?

(C) Either Juan or Mary, but not both, must be on the
committee?

55. A 5-card hand is dealt from a standard 52-card deck.
Which is more likely: the hand contains exactly one king
or the hand contains no hearts?

56. A 10-card hand is dealt from a standard 52-card deck.
Which is more likely: all cards in the hand are red or the
hand contains all four aces?

50. Five distinct points are selected on the circumference of a
circle.

(A) How many chords can be drawn by joining the points
in all possible ways?

(B) How many triangles can be drawn using these five

points as vertices?

51. How many ways can two people be seated in a row of five

chairs? Three people? Four people? Five people?

52. Each of two countries sends five delegates to a negotiating

conference. A rectangular table is used with five chairs on

each long side. If each country is assigned a long side of
the table, how many seating arrangements are possible?
[Hint: Operation 1 is assigning a long side of the table to
each country.]

53. A basketball team has five distinct positions. Out of eight

players, how many starting teams are possible if

10 SEQUENCES, INDUCTION, AND PROBABILITY814

Sample Spaces and Probability

Experiments ● Sample Spaces and Events ● Probability of an Event ● Equally Likely
Assumption ● Empirical Probability

Section 10.5 provides an introduction to probability, a topic to which whole books
and courses are devoted. Probability involves many subtle notions, and care must
be taken at the beginning to understand the fundamental concepts on which the
subject is based. First, we develop a mathematical model for probability studies.
Our development, because of space, must be somewhat informal. More formal
and precise treatments can be found in books on probability.

Experiments
Our first step in constructing a mathematical model for probability studies is to
describe the type of experiments on which probability studies are based. Some
types of experiments do not yield the same results, no matter how carefully they
are repeated under the same conditions. These experiments are called random
experiments. Familiar examples of random experiments are flipping coins, rolling
dice, observing the frequency of defective items from an assembly line, or observ-
ing the frequency of deaths in a certain age group.

Probability theory is a branch of mathematics that has been developed to deal
with outcomes of random experiments, both real and conceptual. In the work that
follows, the word experiment will be used to mean a random experiment.

Sample Spaces and Events
Associated with outcomes of experiments are sample spaces and events. Our sec-
ond step in constructing a mathematical model for probability studies is to define
these two terms. Set concepts will be useful in this regard.



Consider the experiment, “A single six-sided die is rolled.” What outcomes
might we observe? We might be interested in the number of dots facing up, or
whether the number of dots facing up is an even number, or whether the number
of dots facing up is divisible by 3, and so on. The list of possible outcomes appears
endless. In general, there is no unique method of analyzing all possible outcomes
of an experiment. Therefore, before conducting an experiment, it is important to
decide just what outcomes are of interest.

In the die experiment, suppose we limit our interest to the number of dots fac-
ing up when the die comes to rest. Having decided what to observe, we make a
list of outcomes of the experiment, called simple events, such that in each trial of
the experiment, one and only one of the results on the list will occur. The set of
simple events for the experiment is called a sample space for the experiment. The
sample space S we have chosen for the die-rolling experiment is

S  {1, 2, 3, 4, 5, 6}

Now consider the outcome, “The number of dots facing up is an even num-
ber.” This outcome is not a simple event, because it will occur whenever 2, 4, or
6 dots appear, that is, whenever an element in the subset

E  {2, 4, 6}

occurs. Subset E is called a compound event. In general, we have the following
definition:
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D E F I N I T I O N 1
Event

Given a sample space S for an experiment, we define an event E to be any subset of S. If an event E

has only one element in it, it is called a simple event. If event E has more than one element, it is

called a compound event. We say that an event E occurs if any of the simple events in E occurs.

Choosing a Sample Space

A nickel and a dime are tossed. How will we identify a sample space for this
experiment?

S O L U T I O N S

There are a number of possibilities, depending on our interest. We will consider three.

(A) If we are interested in whether each coin falls heads (H) or tails (T),
then, using a tree diagram, we can easily determine an appropriate
sample space for the experiment:

Nickel Dime Combined
Outcomes Outcomes Outcomes

H
H HH

T HT
Start

T
H TH

T TT



Thus,

S1  {HH, HT, TH, TT}

and there are four simple events in the sample space.

(B) If we are interested only in the number of heads that appear on a
single toss of the two coins, then we can let

S2  {0, 1, 2}

and there are three simple events in the sample space.

(C) If we are interested in whether the coins match (M ) or don’t match
(D), then we can let

S3  {M, D}

and there are only two simple events in the sample space.

An experiment consists of recording the boy–girl composition of families with
two children.

(A) What is an appropriate sample space if we are interested in the sex of each
child in the order of their births? Draw a tree diagram.

(B) What is an appropriate sample space if we are interested only in the num-
ber of girls in a family?

(C) What is an appropriate sample space if we are interested only in whether
the sexes are alike (A) or different (D)?

(D) What is an appropriate sample space for all three interests expressed
above?

In Example 1, sample space S1 contains more information than either S2 or
S3. If we know which outcome has occurred in S1, then we know which outcome
has occurred in S2 and S3. However, the reverse is not true. In this sense, we say
that S1 is a more fundamental sample space than either S2 or S3.

Important Remark: There is no one correct sample space for a given experiment. When specifying a

sample space for an experiment, we include as much detail as necessary to answer all questions of

interest regarding the outcomes of the experiment. If in doubt, include more elements in the sam-

ple space rather than fewer.

Now let’s return to the two-coin problem in Example 1 and the sample space

S1  {HH, HT, TH, TT}

Suppose we are interested in the outcome, “Exactly 1 head is up.” Looking at S1,
we find that it occurs if either of the two simple events HT or TH occurs.* Thus,
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*Technically, we should write {HT} and {TH}, because there is a logical distinction between an element of a set and a

subset consisting of only that element. But we will just keep this in mind and drop the braces for simple events to sim-

plify the notation.



(1, 1)

(2, 1)

(3, 1)

(4, 1)

(5, 1)

(6, 1)

(1, 2)

(2, 2)

(3, 2)

(4, 2)

(5, 2)

(6, 2)

(1, 3)

(2, 3)

(3, 3)

(4, 3)

(5, 3)

(6, 3)

(1, 4)

(2, 4)

(3, 4)

(4, 4)

(5, 4)

(6, 4)

(1, 5)

(2, 5)

(3, 5)

(4, 5)

(5, 5)

(6, 5)

(1, 6)

(2, 6)

(3, 6)

(4, 6)

(5, 6)

(6, 6)

SECOND DIE

F
IR

S
T
 D

IE

to say that the event, “Exactly 1 head is up” occurs is the same as saying the
experiment has an outcome in the set

E  {HT, TH}

This is a subset of the sample space S1. The event E is a compound event.

Rolling Two Dice

Consider an experiment of rolling two dice. A convenient sample space that will
enable us to answer many questions about interesting events is shown in Figure 1.
Let S be the set of all ordered pairs listed in the figure. Note that the simple
event (3, 2) is to be distinguished from the simple event (2, 3). The former indi-
cates a 3 turned up on the first die and a 2 on the second, whereas the latter
indicates a 2 turned up on the first die and a 3 on the second. What is the event
that corresponds to each of the following outcomes?

(A) A sum of 7 turns up. (B) A sum of 11 turns up.

(C) A sum less than 4 turns up. (D) A sum of 12 turns up.
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FIGURE 1 A sample space for
rolling two dice.

S O L U T I O N S

(A) By “A sum of 7 turns up,” we mean that the sum of all dots on both
turned-up faces is 7. This outcome corresponds to the event

{(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6)}

(B) “A sum of 11 turns up” corresponds to the event

{(6, 5), (5, 6)}

(C) “A sum less than 4 turns up” corresponds to the event

{(1, 1), (2, 1), (1, 2)}

(D) “A sum of 12 turns up” corresponds to the event

{(6, 6)}
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Refer to the sample space in Example 2 (Fig. 1). What is the event that corre-
sponds to each of the following outcomes?

(A) A sum of 5 turns up.

(B) A sum that is a prime number greater than 7 turns up.

Informally, to facilitate discussion, we often use the terms event and outcome

of an experiment interchangeably. Thus, in Example 2 we might say “the event
‘A sum of 11 turns up’ ” in place of “the outcome ‘A sum of 11 turns up,’ ” or
even write

E  A sum of 11 turns up  {(6, 5), (5, 6)}

Technically speaking, an event is the mathematical counterpart of an outcome of
an experiment.

Probability of an Event
The next step in developing our mathematical model for probability studies is the
introduction of a probability function. This is a function that assigns to an arbi-
trary event associated with a sample space a real number between 0 and 1, inclu-
sive. We start by discussing ways in which probabilities are assigned to simple
events in S.

D E F I N I T I O N 2
Probabilities for Simple Events

Given a sample space

S  {e1, e2, . . . ,  en}

with n simple events, to each simple event ei we assign a real number, denoted by P(ei), that is called

the probability of the event ei. These numbers may be assigned in an arbitrary manner as long 

as the following two conditions are satisfied:

1. 0  P(ei)  1

2. P(e1)  P(e2)   P(en)  1

Any probability assignment that meets conditions 1 and 2 is said to be an acceptable probability

assignment.

. . .

Our mathematical theory does not explain how acceptable probabilities are
assigned to simple events. These assignments are generally based on the expected
or actual percentage of times a simple event occurs when an experiment is
repeated a large number of times. Assignments based on this principle are called
reasonable.

Let an experiment be the flipping of a single coin, and let us choose a sam-
ple space S to be

S  {H, T}

The sum of the probabilities of all simple events in

the sample space is 1.



If a coin appears to be fair, we are inclined to assign probabilities to the simple
events in S as follows:

P(H)  and P(T)  

These assignments are based on reasoning that, because there are two ways a
coin can land, in the long run a head will turn up half the time and a tail will
turn up half the time. These probability assignments are acceptable, because
both of the conditions for acceptable probability assignments in Definition 2 are
satisfied:

1. 0  P(H)  1, 0  P(T)  1
2. P(H)  P(T)   1

But there are other acceptable assignments. Maybe after flipping a coin 1,000
times we find that the head turns up 376 times and the tail turns up 624 times.
With this result, we might suspect that the coin is not fair and assign the simple
events in the sample space S the probabilities

P(H)  .376 and P(T)  .624

This is also an acceptable assignment. But the probability assignment

P(H)  1 and P(T)  0

though acceptable, is not reasonable, unless the coin has two heads. The assignment

P(H)  .6 and P(T)  .8

is not acceptable, because .6  .8  1.4, which violates condition 2 in Definition 2.
In probability studies, the 0 to the left of the decimal is usually omitted. Thus,

we write .8 and not 0.8.
It is important to keep in mind that out of the infinitely many possible accept-

able probability assignments to simple events in a sample space, we are generally
inclined to choose one assignment over another based on reasoning or experi-
mental results.

Given an acceptable probability assignment for simple events in a sample
space S, how do we define the probability of an arbitrary event E associated
with S?

1
2  

1
2

1
2

1
2
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D E F I N I T I O N 3
Probability of an Event E

Given an acceptable probability assignment for the simple events in a sample space S, we define the

probability of an arbitrary event E, denoted by P(E ), as follows:

1. If E is the empty set, then P(E )  0.

2. If E is a simple event, then P(E ) has already been assigned.

3. If E is a compound event, then P(E ) is the sum of the probabilities of all the simple events in E .

4. If E is the sample space S, then P(E )  P(S)  1. This is a special case of 3.



Finding Probabilities of Events

Let’s return to Example 1, the tossing of a nickel and dime, and the sample space

S  {HH, HT, TH, TT}

Because there are four simple outcomes and the coins are assumed to be fair, it
appears that each outcome should occur in the long run 25% of the time. Let’s
assign the same probability of to each simple event in S:

Simple event, ei HH HT TH TT

P(ei)

This is an acceptable assignment according to Definition 2 and a reasonable
assignment for ideal coins that are perfectly balanced or coins close to ideal.

(A) What is the probability of getting exactly one head?

(B) What is the probability of getting at least one head?

(C) What is the probability of getting a head or a tail?

(D) What is the probability of getting three heads?

S O L U T I O N S

(A) E1  Getting one head  {HT, TH}

Because E1 is a compound event, we use item 3 in Definition 3 and find
P(E1) by adding the probabilities of the simple events in E1. Thus,

P(E1)  P(HT)  P(TH)  

(B) E2  Getting at least 1 head  {HH, HT, TH}

P(E2)  P(HH)  P(HT)  P(TH)

 

(C) E3  {HH, HT, TH, TT}  S

P(E3)  P(S )  1

(D) E3  Getting three heads   Empty set

P( )  0

1
4    

1
4    

1
4    

1
4    1

1
4  

1
4  

1
4  

3
4

1
4  

1
4  

1
2

1
4

1
4

1
4

1
4

1
4
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Steps for Finding Probabilities of Events

Step 1. Set up an appropriate sample space S for the experiment.

Step 2. Assign acceptable probabilities to the simple events in S.

Step 3. To obtain the probability of an arbitrary event E, add the probabilities of the simple events in E.

The function P defined in steps 2 and 3 is called a probability function. The
domain of this function is all possible events in the sample space S, and the range
is a set of real numbers between 0 and 1, inclusive.
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Return to Matched Problem 1, recording the boy–girl composition of families with
two children and the sample space

S  {BB, BG, GB, GG}

Statistics from the U.S. Census Bureau indicate that an acceptable and reasonable
probability for this sample space is

Simple event, ei BB BG GB GG

P(ei) .26 .25 .25 .24

Find the probabilities of the following events:

(A) E1  Having at least one girl in the family

(B) E2  Having at most one girl in the family

(C) E3  Having two children of the same sex in the family

Equally Likely Assumption
In tossing a nickel and dime (Example 3), we assigned the same probability, , to
each simple event in the sample space S  {HH, HT, TH, TT}. By assigning the
same probability to each simple event in S, we are actually making the assump-
tion that each simple event is as likely to occur as any other. We refer to this as
an equally likely assumption. In general, we have Definition 4.

1
4

D E F I N I T I O N 4
Probability of a Simple Event Under an Equally Likely Assumption

If, in a sample space

S  {e1, e2, . . . ,  en}

with n elements, we assume each simple event ei is as likely to occur as any other, then we assign

the probability 1 n to each. That is,

P(ei)  
1

n

Under an equally likely assumption, we can develop a very useful formula for
finding probabilities of arbitrary events associated with a sample space S. Con-
sider the following example.

If a single die is rolled and we assume each face is as likely to come up as
any other, then for the sample space

S  {1, 2, 3, 4, 5, 6}

we assign a probability of to each simple event, because there are six simple
events. Then the probability of

E  Rolling a prime number  {2, 3, 5}

1
6



is

P(E )  P(2)  P(3)  P(5)  

Thus, under the assumption that each simple event is as likely to occur as any
other, the computation of the probability of the occurrence of any event E in a sam-
ple space S is the number of elements in E divided by the number of elements in S.

1
6  

1
6  

1
6  

3
6  

1
2
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T H E O R E M  1
Probability of an Arbitrary Event Under an Equally Likely Assumption

If we assume each simple event in sample space S is as likely to occur
as any other, then the probability of an arbitrary event E in S is given by

P(E)  
Number of elements in E

Number of elements in S
 

n(E)

n(S)

Finding Probabilities of Events

If in rolling two dice we assume each simple event in the sample space shown in
Figure 1 on p. 817 is as likely as any other, find the probabilities of the follow-
ing events:

(A) E1  A sum of 7 turns up (B) E2  A sum of 11 turns up

(C) E3  A sum less than 4 turns up (D) E4  A sum of 12 turns up

S O L U T I O N S

Referring to Figure 1, we see that:

(A) (B)

(C) (D)

Under the conditions in Example 4, find the probabilities of the following events:

(A) E5  A sum of 5 turns up

(B) E6  A sum that is a prime number greater than 7 turns up

P(E4)  
n(E4)

n(S)
 

1

36
P(E3)  

n(E3)

n(S)
 

3

36
 

1

12

P(E2)  
n(E2)

n(S)
 

2

36
 

1

18
P(E1)  

n(E1)

n(S)
 

6

36
 

1

6

E X P L O R E / D I S C U S S  1

A box contains four red balls and seven green balls. A ball is drawn at
random and then, without replacing the first ball, a second ball is
drawn. Discuss whether the equally likely assumption would be appro-
priate for the sample space S  {RR, RG, GR, GG}.



We now turn to some examples that make use of the counting techniques
developed in Section 10.4.

Drawing Cards

In drawing 5 cards from a 52-card deck without replacement, what is the proba-
bility of getting five spades?

S O L U T I O N

Let the sample space S be the set of all 5-card hands from a 52-card deck. Because
the order in a hand does not matter, n(S)  C52,5. The event we seek is

E  Set of all 5-card hands from 13 spades

Again, the order does not matter and n(E )  C13,5. Thus, assuming each 5-card
hand is as likely as any other,

In drawing 7 cards from a 52-card deck without replacement, what is the proba-
bility of getting seven hearts?

Selecting Committees

The board of regents of a university is made up of 12 men and 16 women. If a
committee of six is chosen at random, what is the probability that it will contain
three men and three women?

S O L U T I O N

Let S  Set of all 6-person committees out of 28 people:

n(S )  C28,6

Let E  Set of all 6-person committees with 3 men and 3 women. To find n(E ),
we use the multiplication principle and the following two operations:

O1: Select 3 men out of the 12 available N1: C12,3

O2: Select 3 women out of the 16 available N2: C16,3

Thus,

n(E )  C12,3  C16,3

and

P(E)  
n(E )

n(S )
 

C12,3  C16,3

C28,6

 .327

P(E)  
n(E )

n(S )
 

C13,5

C52,5

 
13! 5!8!

52! 5!47!
 

13!

5!8!
 

5!47!

52!
 .0005
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What is the probability that the committee in Example 6 will have four men and
two women?

Empirical Probability
In the earlier examples in Section 10.5, we made a reasonable assumption about
an experiment and used deductive reasoning to assign probabilities. For example,
it is reasonable to assume that an ordinary coin will come up heads about as often
as it will come up tails. Probabilities determined in this manner are called theo-
retical probabilities. No experiments are ever conducted. But what if the theo-
retical probabilities are not obvious? Then we assign probabilities to simple events
based on the results of actual experiments. Probabilities determined from the
results of actually performing an experiment are called empirical probabilities.
As an experiment is repeated over and over, the percentage of times an event
occurs may get closer and closer to a single fixed number. If so, this single fixed
number is generally called the actual probability of the event.
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Suppose when tossing one of the thumbtacks in Explore Discuss 2, we
observe that the tack lands point up 43 times and point down 57 times. Based on
this experiment, it seems reasonable to say that for this particular thumbtack

Probability assignments based on the results of repeated trials of an experiment
are called approximate empirical probabilities.

P(Point down)  
57

100
 .57

P(Point up)  
43

100
 .43

E X P L O R E / D I S C U S S  2

Like a coin, a thumbtack tossed into the air will land in one of two
positions, point up or point down [Fig. 2(a)]. Unlike a coin, we would
not expect both events to occur with the same frequency. Indeed, the
frequencies of landing point up and point down may well vary from
one thumbtack to another [Fig. 2(b)]. Find two thumbtacks of different
sizes and guess which one is likely to land point up more frequently.
Then toss each tack 100 times and record the number of times each
lands point up. Did the experiment confirm your initial guess?

(a) Point up or point down (b) Two different tacks

FIGURE 2



In general, if we conduct an experiment n times and an event E occurs with
frequency f (E ), then the ratio f (E ) n is called the relative frequency of the
occurrence of event E in n trials. We define the empirical probability of E,
denoted by P(E), by the number, if it exists, that the relative frequency f (E ) n
approaches as n gets larger and larger. Of course, for any particular n, the rela-
tive frequency f (E ) n is generally only approximately equal to P(E). However, as
n increases, we expect the approximation to improve.
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D E F I N I T I O N 5
Empirical Probability

If f (E) is the frequency of event E in n trials, then

P(E)  
Frequency of occurrence of E

Total number of trials
 

f(E)

n

If we can also deduce theoretical probabilities for an experiment, then we
expect the approximate empirical probabilities to approach the theoretical proba-
bilities. If this does not happen, then we should begin to suspect the manner in
which the theoretical probabilities were computed. If P(E ) is the theoretical prob-
ability of an event E and the experiment is performed n times, then the expected
frequency of the occurrence of E is n  P(E ).

Finding Approximate Empirical and Theoretical Probabilities

Two coins are tossed 500 times with the following frequencies of outcomes:

Two heads: 121

One head: 262

Zero heads: 117

(A) Compute the approximate empirical probability for each outcome.

(B) Compute the theoretical probability for each outcome.

(C) Compute the expected frequency for each outcome.

S O L U T I O N S

(A)

(B) A sample space of equally likely simple events is 
S  {HH, HT, TH, TT}. Let

E1  two heads  {HH}

E2  one head  {HT, TH}

E3  zero heads  {TT}

P(zero heads)  
117

500
 .234

P(one head)  
262

500
 .524

P(two heads)  
121

500
 .242



Then

(C) The expected frequencies are

E1: 500(.25)  125

E2: 500(.5)  250

E3: 500(.25)  125

The actual frequencies obtained from performing the experiment are
reasonably close to the expected frequencies. Increasing the number of
trials of the experiment would produce even better approximations.

One die is rolled 500 times with the following frequencies of outcomes:

Outcome 1 2 3 4 5 6

Frequency 89 83 77 91 72 88

(A) Compute the approximate empirical probability for each outcome.

(B) Compute the theoretical probability for each outcome.

(C) Compute the expected frequency for each outcome.

Tossing two coins 500 times is certainly a tedious task and we did not do this
to generate the data in Example 7. Instead, we used a random number generator
on a graphing utility to simulate this experiment. Specifically, we used the com-
mand randInt(i,k,n) on a Texas Instruments TI-83, which generates a random
sequence of n integers between i and k, inclusively. If we let 0 represent tails and
1 represent heads, then a random sequence of 0s and 1s can be used to represent
the outcomes of repeated tosses of one coin (see the first two lines of Fig. 3).
Thus, in six tosses, we obtained two heads and four tails. To simulate tossing two
coins, we simply add together two similar statements, as shown in lines three
through five of Figure 3. We see that in these six tosses zero heads occurred once,
one head occurred four times, and two heads occurred once. Of course, to obtain
meaningful results, we need to toss the coins many more times. Figure 4(a) shows
a command that will simulate 500 tosses of two coins. To determine the frequency
of each outcome, we construct a histogram [Figs. 4(b) and 4(c)] and use the
TRACE command to determine the following frequencies [Figs. 5(a), 5(b), and
5(c)].

P(E3)  
n(E3)

n(S )
 

1

4
 .25

P(E2)  
n(E2)

n(S )
 

2

4
 .50

P(E1)  
n(E1)

n(S )
 

1

4
 .25
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FIGURE 3 Using a random num-
ber generator.



If you perform the same simulation on your graphing utility, you are not likely
to get exactly the same results. But the approximate empirical probabilities you
obtain will be close to the theoretical probabilities.
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FIGURE 4 Simulating 500 tosses
of two coins.

(a) Generating the

random numbers

(b) Setting up the 

histogram

(c) Selecting the

window variables

FIGURE 5 Results of the 
simulation.

(a) 0 heads: 117 (b) 1 head: 262 (c) 2 heads: 121

E X P L O R E / D I S C U S S  3

This discussion assumes that your graphing utility has the ability to
generate and manipulate sequences of random integers.

(A) As an alternative to using the histogram in Figure 5 to count the
outcomes of the sequence of random integers in Figure 4(a), enter
the following function and evaluate it for x  0, 1, and 2:

(B) Simulate the experiment of rolling a single die and compare your
empirical results with the results in Matched Problem 7.

y1  sum(seq(L1(I) X,I,1,dim(L1)))

Empirical Probabilities for an Insurance Company

An insurance company selected 1,000 drivers at random in a particular city to
determine a relationship between age and accidents. The data obtained are listed
in Table 1. Compute the approximate empirical probabilities of the following
events for a driver chosen at random in the city:

(A) E1: being under 20 years old and having exactly three accidents in 1 year

(B) E2: being 30–39 years old and having one or more accidents in 1 year

(C) E3: having no accidents in 1 year

(D) E4: being under 20 years old or having exactly three accidents in 1 year



S O L U T I O N S

(A)

(B)

(C)

(D)

Notice that in this type of problem, which is typical of many realistic prob-
lems, approximate empirical probabilities are the only type we can compute.

Referring to Table 1 in Example 8, compute the approximate empirical probabil-
ities of the following events for a driver chosen at random in the city:

(A) E1: being under 20 years old with no accidents in 1 year

(B) E2: being 20–29 years old and having fewer than two accidents in 1 year

(C) E3: not being over 49 years old

Approximate empirical probabilities are often used to test theoretical proba-
bilities. Equally likely assumptions may not be justified in reality. In addition to
this use, there are many situations in which it is either very difficult or impossible
to compute the theoretical probabilities for given events. For example, insurance com-
panies use past experience to establish approximate empirical probabilities to predict
future accident rates; baseball teams use batting averages, which are approximate
empirical probabilities based on past experience, to predict the future performance
of a player; and pollsters use approximate empirical probabilities to predict outcomes
of elections.

P(E4)  
50  62  53  35  20  40  14  7  28

1,000
 .309

P(E3)  
50  64  82  38  43

1,000
 .277

P(E2)  
68  32  14  4

1,000
 .118

P(E1)  
35

1,000
 .035
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T A B L E  1

Accidents in 1 Year

Age 0 1 2 3 Over 3

Under 20 50 62 53 35 20

20–29 64 93 67 40 36

30–39 82 68 32 14 4

40–49 38 32 20 7 3

Over 49 43 50 35 28 24



6. Under the probability assignments in Problem 3, part C,
what is the probability that the spinner will not land on red
or yellow?

7. A ski jumper has jumped over 300 feet in 25 out of 250
jumps. What is the approximate empirical probability of
the next jump being over 300 feet?

8. In a certain city there are 4,000 youths between 16 and 20
years old who drive cars. If 560 of them were involved in
accidents last year, what is the approximate empirical
probability of a youth in this age group being involved in
an accident this year?

9. Out of 420 times at bat, a baseball player gets 189 hits.
What is the approximate empirical probability that the
player will get a hit next time at bat?

10. In a medical experiment, a new drug is found to help
2,400 out of 3,000 people. If a doctor prescribes the drug
for a particular patient, what is the approximate empirical
probability that the patient will be helped?
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1. (A) S1  {BB, BG, GB, GG}; Sex of Sex of Combined
First Child Second Child Outcomes

B
B BB
G BG

G
B GB
G GG

(B) S2  {0, 1, 2} (C) S3  {A, D}    (D) The sample space in part A.
2. (A) {(4, 1), (3, 2), (2, 3), (1, 4)} (B) {(6, 5), (5, 6)} 3. (A) .74 (B) .76 (C) .5
4. (A) P(E5)  (B) P(E6)  5. C13,7 C52,7  .000013 6. C12,4  C16,2 C28,6  .158

7. (A) P(E1)  .178, P(E2)  .166, P(E3)  .154, P(E4)  .182, P(E5)  .144, P(E6)  .176
(B)  .167 for each (C) 83.3 for each 8. (A) P(E1)  .05 (B) P(E2)  .157 (C) P(E3)  .821

6

1
18

1
9

1. How would you interpret P(E) 1?

2. How would you interpret P(E) 0?

3. A spinner can land on four different colors: red (R), green
(G ), yellow (Y ), and blue (B). If we do not assume each
color is as likely to turn up as any other, which of the fol-
lowing probability assignments have to be rejected, and
why?

(A) P(R)  .15, P(G)   .35, P(Y )  .50, P(B)  .70

(B) P(R)  .32, P(G)  .28, P(Y )  .24, P(B)  .30

(C) P(R)  .26, P(G)  .14, P(Y )  .30, P(B)  .30

4. Under the probability assignments in Problem 3, part C,
what is the probability that the spinner will not land on
blue?

5. Under the probability assignments in Problem 3, part C,
what is the probability that the spinner will land on red or
yellow?

11. A small combination lock on a suitcase has three wheels,
each labeled with the 10 digits from 0 to 9. If an opening
combination is a particular sequence of three digits with
no repeats, what is the probability of a person guessing the
right combination?

12. A combination lock has five wheels, each labeled with the

10 digits from 0 to 9. If an opening combination is a par-
ticular sequence of five digits with no repeats, what is the

probability of a person guessing the right combination?



38. Sum is divisible by 2 and 3.

39. Five thousand people work in a large auto plant. An indi-
vidual is selected at random and his or her birthday
(month and day, not year) is recorded. Set up an appropri-
ate sample space for this experiment and assign acceptable
probabilities to the simple events.

40. In a hotly contested three-way race for governor of Min-
nesota, the leading candidates are running neck-and-neck
while the third candidate is receiving half the support of
either of the others. Registered voters are chosen at ran-
dom and are asked for which of the three they are most
likely to vote. Set up an appropriate sample space for the
random survey experiment and assign acceptable probabil-
ities to the simple events. 

41. A pair of dice is rolled 500 times with the following fre-
quencies:

Sum 2 3 4 5 6 7 8 9 10 11 12
Frequency 11 35 44 50 71 89 72 52 36 26 14

(A) Compute the approximate empirical probability for
each outcome.

(B) Compute the theoretical probability for each outcome,
assuming fair dice.

(C) Compute the expected frequency of each outcome.

(D) Describe how a random number generator could be used
to simulate this experiment. If your graphing utility has a
random number generator, use it to simulate 500 tosses
of a pair of dice and compare your results with part C.

42. Three coins are flipped 500 times with the following

frequencies of outcomes:

Three heads: 58 Two heads: 198

One head: 190 Zero heads: 54

(A) Compute the approximate empirical probability for
each outcome.

(B) Compute the theoretical probability for each outcome,
assuming fair coins.

(C) Compute the expected frequency of each outcome.

(D) Describe how a random number generator could be
used to simulate this experiment. If your graphing util-
ity has a random number generator, use it to simulate
500 tosses of three coins and compare your results
with part C.

43. (A) Is it possible to get 29 heads in 30 flips of a fair coin?

Explain.

(B) If you flip a coin 50 times and get 42 heads, would you

suspect that the coin was unfair? Why or why not? If
you suspect an unfair coin, what empirical probabili-
ties would you assign to the simple events of the sam-
ple space?

Problems 13–18 involve an experiment consisting of dealing 

5 cards from a standard 52-card deck. In Problems 13–16, what

is the probability of being dealt:

13. Five black cards 14. Five hearts

15. Five face cards if an ace is considered to be a face card.

16. Five nonface cards if an ace is considered to be a one  and
not a face.

17. If we are interested in the number of aces in a 5-card hand,
would S  {0, 1, 2 ,3, 4} be an acceptable sample space?
Would it be an equally-likely sample space? Explain.

18. If we are interested in the number of black cards in a 
5-card hand, would S {0, 1, 2 ,3, 4, 5} be an acceptable
sample space? Would it be an equally-likely sample space?
Explain.

19. If four-digit numbers less than 5,000 are randomly formed
from the digits 1, 3, 5, 7, and 9, what is the probability of
forming a number divisible by 5? Digits may be repeated;
for example, 1,355 is acceptable.

20. If code words of four letters are generated at random using
the letters A, B, C, D, E, and F, what is the probability of
forming a word without a vowel in it? Letters may be
repeated.

21. Suppose five thank-you notes are written and five en-

velopes are addressed. Accidentally, the notes are ran-
domly inserted into the envelopes and mailed without
checking the addresses. What is the probability that all five

notes will be inserted into the correct envelopes?

22. Suppose six people check their coats in a checkroom. If all
claim checks are lost and the six coats are randomly re-
turned, what is the probability that all six people will get
their own coats back?

An experiment consists of rolling two fair dice and adding the

dots on the two sides facing up. Using the sample space shown

in Figure 1 (p. 817) and assuming each simple event is as

likely as any other, find the probabilities of the sums of dots

indicated in Problems 23–38.

23. Sum is 2. 24. Sum is 10.

25. Sum is 6. 26. Sum is 8.

27. Sum is less than 5. 28. Sum is greater than 8.

29. Sum is not 7 or 11. 30. Sum is not 2, 4, or 6.

31. Sum is 1. 32. Sum is not 13.

33. Sum is divisible by 3. 34. Sum is divisible by 4.

35. Sum is 7 or 11 (a “natural”).

36. Sum is 2, 3, or 12 (“craps”).

37. Sum is divisible by 2 or 3.
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44. (A) Is it possible to get nine double sixes in 12 rolls of a
pair of fair dice? Explain.

(B) If you roll a pair of dice 40 times and get 14 double
sixes, would you suspect that the dice were unfair?
Why or why not? If you suspect loaded dice, what em-
pirical probability would you assign to the event of
rolling a double six?

An experiment consists of tossing three fair coins, but one of

the three coins has a head on both sides. Compute the proba-

bilities of obtaining the indicated results in Problems 45–50.

45. One head 46. Two heads

47. Three heads 48. Zero heads

49. More than one head 50. More than one tail
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An experiment consists of rolling two fair dice and adding the

dots on the two sides facing up. Each die has one dot on two

opposite faces, two dots on two opposite faces, and three dots

on two opposite faces. Compute the probabilities of obtaining

the indicated sums in Problems 51–58.

51. 2 52. 3

53. 4 54. 5

55. 6 56. 7

57. An odd sum 58. An even sum

An experiment consists of dealing 5 cards from a standard 

52-card deck. In Problems 59–66, what is the probability of 

being dealt the following cards?

59. Five cards, jacks through aces

60. Five cards, 2 through 10

61. Four aces

62. Four of a kind

63. Straight flush, ace high; that is, 10, jack, queen, king, ace

in one suit

64. Straight flush, starting with 2; that is, 2, 3, 4, 5, 6 in one

suit

65. Two aces and three queens

66. Two kings and three aces

67. Market Analysis. A company selected 1,000 households
at random and surveyed them to determine a relationship
between income level and the number of television sets
in a home. The information gathered is listed in the
table:

Televisions per Household

Yearly Income ($) 0 1 2 3 Above 3

Less than 12,000 0 40 51 11 0

12,000–19,999 0 70 80 15 1

20,000–39,999 2 112 130 80 12

40,000–59,999 10 90 80 60 21

60,000 or more 30 32 28 25 20

Compute the approximate empirical probabilities:

(A) Of a household earning $12,000–$19,999 per year and

owning exactly three television sets

(B) Of a household earning $20,000–$39,999 per year and

owning more than one television set

(C) Of a household earning $60,000 or more per year or

owning more than three television sets

(D) Of a household not owning zero television sets

68. Market Analysis. Use the sample results in Problem 67 to
compute the approximate empirical probabilities:

(A) Of a household earning $40,000–$59,999 per year and

owning zero television sets

(B) Of a household earning $12,000–$39,999 per year and

owning more than two television sets

(C) Of a household earning less than $20,000 per year or

owning exactly two television sets

(D) Of a household not owning more than three television sets



Binomial Formula

Pascal’s Triangle ● The Binomial Formula ● Proof of the Binomial Formula

The binomial form

(a  b)n

where n is a natural number, appears more frequently than you might expect. It
turns out that the coefficients in the expansion are related to probability concepts
that we have already discussed.

Pascal’s Triangle
Let’s begin by expanding (a  b)n for the first few values of n. We include n  0,
which is not a natural number, for reasons of completeness that will become
apparent later.

(a  b)0
 1

(a  b)1
 a  b (1)

(a  b)2
 a2

 2ab  b2

(a  b)3
 a3

 3a2b  3ab2
 b3
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E X P L O R E / D I S C U S S  1

Based on the expansions in equations (1), how many terms would you
expect (a  b)n to have? What is the first term? What is the last term?

E X P L O R E / D I S C U S S  2

Refer to Figure 1.

(A) How is the middle element in the third row related to the elements
in the row above it?

(B) How are the two inner elements in the fourth row related to the
elements in the row above them?

(C) Based on your observations in parts A and B, make a conjecture
about the fifth and sixth rows. Check your conjecture by expanding
(a  b)4 and (a  b)5.

Now let’s examine just the coefficients of the expansions in equations (1)
arranged in a form that is usually referred to as Pascal’s triangle (Fig. 1).

1 3

1

3 1

21 1

1 1

FIGURE 1 Pascal’s triangle.
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Many students find Pascal’s triangle a useful tool for determining the coeffi-
cients in the expansion of (a  b)n, especially for small values of n. Figure 2 con-
tains output from a program called PASCAL.* You should recognize the output
in the table—it is the first six lines of Pascal’s triangle. The major drawback of
using this triangle, whether it is generated by hand or on a graphing utility, is that
to find the elements in a given row, you must write out all the preceding rows. It
would be useful to find a formula that gives the coefficients for a binomial expan-
sion directly. Fortunately, such a formula exists—the combination formula Cn,r

introduced in Section 10.4.

The Binomial Formula
When working with binomial expansions, it is customary to use another notation
for the combination formula.

Theorem 1 establishes that the coefficients in a binomial expansion can always
be expressed in terms of the combination formula. This is a very important the-
oretical result and a very practical tool. As we shall see, using this theorem in
conjunction with a graphing utility provides a very efficient method for expand-
ing binomials.

We defer the proof of Theorem 1 until the end of Section 10.6. Because the
values of the combination formula are the coefficients in a binomial expansion,
it is natural to call them binomial coefficients.

Using the Binomial Formula

Use the binomial formula to expand (x  y)6.

FIGURE 2

*Programs for TI-83 and TI-86 graphing calculators can be found at the website for this book.

D E F I N I T I O N 1
Combination Formula

For nonnegative integers r and n, 0  r n,

 n

r  Cn,r  
n!

r!(n  r)!

T H E O R E M  1
Binomial Formula

For n a positive integer

(a  b)n
  

n

k 0
 n

k an kbk



Use the binomial formula to expand (x  1)5.

Using the Binomial Formula

Use the binomial formula to expand (3p  2q)4.
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Compute the Coefficients

FIGURE 4 y1  C4,x3
4 x( 2)x.

Write the Expansion

See Figure 4.

 81p4
 216p3q  216p2q2

 96pq3
 16q4

  
4

k 0
 4

k 34 k( 2)kp4 kqk

  
4

k 0
 4

k (3p)4 k( 2q)k

 (3p  2q)4
 [(3p)  ( 2q)]4

Compute the Coefficients

FIGURE 3

Write the Expansion

See Figure 3.

 x6
 6x5y  15x4y2

 20x3y3
 15x2y4

 6xy5
 y6

  6

0 x6
  6

1 x5y  6

2 x4y2
  6

3 x3y3
  6

4 x2y4
  6

5 xy5
  6

6 y6

(x  y)6
  

6

k 0
 6

k x6 kyk

S O L U T I O N

Use the binomial formula to expand (2m  5n)3.

S O L U T I O N

E X P L O R E / D I S C U S S  3

(A) Compute each term and also the sum of the alternating series

.

(B) What result about an alternating series can be deduced by letting 
a  1 and b   1 in the binomial formula?

 6

0   6

1   6

2  . . .   6

6 



Using the Binomial Formula

Find the term containing x9 in the expansion of (x  3)14.

S O L U T I O N

In the expansion

the exponent of x is 9 when k  5. Thus, the term containing x9 is

x935
 (2,002)(243)x9

 486,486x9

Find the term containing y8 in the expansion of (2  y)14.

Using the Binomial Formula

If the terms in the expansion of (x  2)20 are arranged in decreasing powers of
x, find the fourth term and the sixteenth term.

S O L U T I O N

In the expansion of (a  b)n, the exponent of b in the rth term is r  1 and the
exponent of a is n  (r  1). Thus,

Fourth term: Sixteenth term:

If the terms in the expansion of (u  1)18 are arranged in decreasing powers of
u, find the fifth term and the twelfth term.

Proof of the Binomial Formula
We now proceed to prove that the binomial formula holds for all natural numbers
n using mathematical induction.

PROOF State the conjecture.

Pn: (a  b)n
 an jb j 

n

j 0
 n

j  

  508,035,072x5
  9,120x17

 
20  19  18  17  16

5  4  3  2  1
x5( 32,768) 

20  19  18

3  2  1
x17( 8)

 20

15 x5( 2)15 20

3  x17( 2)3

 14

5  

(x  3)14
  

14

k 0
 14

k  x14 k3k
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P A R T  1 Show that P1 is true.

Thus, P1 is true.

P A R T  2 Show that if Pk is true, then Pk 1 is true.

Assume Pk is true.

Show Pk 1 is true.

We begin by multiplying both sides of Pk by (a  b):

(a  b)k(a  b)  (a  b)

The left side of this equation is the left side of Pk 1. Now we multiply out the
right side of the equation and try to obtain the right side of Pk 1:

We now use the following facts (the proofs are left as exercises; see Problems
59–61, Exercise 10.6).

to rewrite the right side as

  k  1

k  abk
  k  1

k  1 bk 1
  

k 1

j 0
 k  1

j  ak 1 jb j

 k  1

0  ak 1
  k  1

1  akb   k  1

2  ak 1b2
 . . .

 k

r  1   k

r   k  1

r       k

0   k  1

0       k

k   k  1

k  1 

   k

k  1   k

k  abk
  k

k bk 1

  k

0 ak 1
   k

0   k

1  akb    k

1   k

2  ak 1b2
 . . .

   k

0 akb   k

1 ak 1b2
 . . .   k

k  1 abk
  k

k bk 1 

   k

0 ak 1
  k

1 akb   k

2 ak 1b2
 . . .   k

k abk 

 (a  b)k 1
   k

0 ak
  k

1 ak 1b   k

2 ak 2b2
 . . .   k

k bk (a  b)

  
k

j 0
 k

j  ak jb j 

Pk 1:  (a  b)k 1
  

k 1

j 0
 k  1

j  ak 1 jb j

Pk:  (a  b)k
  

k

j 0
 k

j  ak jb j

 
1

j 0
 1

j  a1 jb j
  1

0 a   1

1 b  a  b  (a  b)1
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Because the right side of the last equation is the right side of Pk 1, we have shown
that Pk 1 follows from Pk.

C O N C L U S I O N Pn is true. That is, the binomial formula holds for all
positive integers n.

1. x5
 5x4

 10x3
 10x2

 5x  1 2. 8m3
 60m2n  150mn2

 125n3 3. 192,192y8 4. 3,060u14;  31,824u7

In Problems 1–8, use Pascal’s triangle to evaluate each

expression.

1. 2.

3. 4.

5. C6,3 6. C5,3

7. C7,4 8. C4,3

In Problems 9–16, use a graphing utility to evaluate each

expression.

9. 10.  10

6   9

3 

 7

5  4

2 

 6

4  5

3 

In Problems 29–38, find the term of the binomial expansion

containing the given power of x.

29. (x  1)7; x4 30. (x  1)8; x5 31. (2x  1)11; x6

32. (3x  1)12; x7 33. (2x  3)18; x14 34. (3x  2)17; x5

35. (x2
 1)6; x8 36. (x2

 1)9; x7 37. (x2
 1)9; x11

38. (x2
 1)10; x14

11. 12.

13. 14.

15. 16.

Expand Problems 17–28 using the binomial formula.

17. (m  n)3 18. (x  2)3 19. (2x  3y)3

20. (3u  2v)3 21. (x  2)4 22. (x  y)4

23. (m  3n)4 24. (3p  q)4 25. (2x  y)5

26. (2x  1)5 27. (m  2n)6 28. (2x  y)6

 50

45  50

4  

 20

16  17

13 

 13

8   12

10 

In Problems 39–46, find the indicated term in each expansion

if the terms of the expansion are arranged in decreasing pow-

ers of the first term in the binomial.

39. (u  v)15; seventh term

40. (a  b)12; fifth term

41. (2m  n)12; eleventh term



52. Find the number of terms of the sequence

that are greater than one-half of the largest term.

53. (A) Find the largest term of the sequence a0, a1, a2, . . . ,
a10 to three decimal places, where

(B) According to the binomial formula, what is the sum of
the series a0  a1  a2      a10?

54. (A) Find the largest term of the sequence a0, a1, a2, . . . ,
a10 to three decimal places, where

(B) According to the binomial formula, what is the sum of
the series a0  a1  a2      a10?

ak   10

k   (0.3)10 k(0.7)k

ak   10

k   (0.6)10 k(0.4)k

 40

0  ,  40

1  ,  40

2  , . . . ,  40

40 
42. (x  2y)20; third term

43. [(w 2)  2]12; seventh term

44. (x  3)10; fourth term

45. (3x  2y)8; sixth term

46. (2p  3q)7; fourth term

In Problems 47–50, use the binomial formula to expand and

simplify the difference quotient

for the indicated function f. Discuss the behavior of the simpli-

fied form as h approaches 0.

47. f (x)  x3 48. f (x)  x4

49. f (x)  x5 50. f (x)  x6

In Problems 51–54, use a graphing utility to graph each se-

quence and to display it in table form.

51. Find the number of terms of the sequence

that are greater than one-half of the largest term.

 20

0  ,  20

1  ,  20

2  , . . . ,  20

20 

f (x  h)  f (x)

h
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55. Evaluate (1.01)10 to four decimal places, using the bino-
mial formula. [Hint: Let 1.01  1  0.01.]

56. Evaluate (0.99)6 to four decimal places, using the binomial
formula.

57. Show that: 

58. Show that: 

59. Show that: 

60. Show that: 

61. Show that:  k

k   k  1

k  1 

 k

0   k  1

0  

 k

r  1   k

r   k  1

r  

 n

0   n

n 

 n

r   n

n  r 

62. Show that: is given by the recursion formula

where .

63. Write 2n
 (1  1)n and expand, using the binomial for-

mula to obtain

64. Write 0  (1  1)n and expand, using the binomial for-
mula, to obtain

0   n

0   n

1   n

2  . . .  ( 1)n n

n 

2n
  n

0   n

1   n

2  . . .   n

n 

 n

0  1

 n

r  
n  r  1

r  n

r  1 

 n

r 



10.1 Sequences and Series
A sequence is a function with the domain a set of successive in-
tegers. The symbol an, called the nth term, or general term,
represents the range value associated with the domain value
n. Unless specified otherwise, the domain is understood to be

the set of natural numbers. A finite sequence has a finite do-

main, and an infinite sequence has an infinite domain. A re-
cursion formula defines each term of a sequence in terms of

one or more of the preceding terms. For example, the
Fibonacci sequence is defined by an an 1 an 2 for n 3,
where a1  a2 1. If a1, a2, . . . , an, . . . is a sequence, then the
expression a1 a2     an    is called a series. A finite

sequence produces a finite series, and an infinite sequence pro-

duces an infinite series. Series can be represented using the
summation notation:

where k is called the summing index. If the terms in the series
are alternately positive and negative, the series is called an al-
ternating series.

10.2 Mathematical Induction
A wide variety of statements can be proven using the principle
of mathematical induction: Let Pn be a statement associated
with each positive integer n and suppose the following condi-
tions are satisfied:

1. P1 is true.
2. For any positive integer k, if Pk is true, then Pk 1 is also

true.

Then the statement Pn is true for all positive integers n.
To use mathematical induction to prove statements involving

laws of exponents, it is convenient to state a recursive defini-

tion of an:

a1
 a and an 1

 ana for any integer n 1

To deal with conjectures that may be true only for n  m,
where m is a positive integer, we use the extended principle of
mathematical induction: Let m be a positive integer, let Pn be
a statement associated with each integer n m, and suppose the
following conditions are satisfied:

1. Pm is true.
2. For any integer k  m, if Pk is true, then Pk 1 is also

true.

Then the statement Pn is true for all integers n m.

 
n

k m

ak  am  am 1  
. . .  an

10.3 Arithmetic and Geometric
Sequences

A sequence is called an arithmetic sequence, or arithmetic
progression, if there exists a constant d, called the common
difference, such that

an  an 1 d or an  an 1 d

for every n 1

The following formulas are useful when working with arith-
metic sequences and their corresponding series:

an  a1  (n  1)d nth-Term Formula

Sn  [2a1  (n  1)d ] Sum Formula—First Form

Sn  (a1  an) Sum Formula—Second 
Form

A sequence is called a geometric sequence, or a geometric
progression, if there exists a nonzero constant r, called the
common ratio, such that

or an  ran 1 for every n 1

The following formulas are useful when working with geomet-
ric sequences and their corresponding series:

an  a1rn 1 nth-Term Formula

Sn  r  1 Sum Formula—First Form

Sn  r  1 Sum Formula—Second
Form

S   r  1 Sum of an Infinite 

Geometric Series

10.4 Multiplication Principle,
Permutations, and
Combinations

Given a sequence of operations, tree diagrams are often used to
list all the possible combined outcomes. To count the number of
combined outcomes without actually listing them, we use the
multiplication principle:

a1

1  r

a1  ran

1  r

a1  a1r
n

1  r

an

an 1

 r

n

2

n

2
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by P(ei), that is called the probability of the event ei and satisfies:

1. 0  P(ei)  1
2. P(e1)  P(e2)      P(en)  1

Any probability assignment that meets conditions 1 and 2 is said
to be an acceptable probability assignment.

Given an acceptable probability assignment for the simple
events in a sample space S, the probability of an arbitrary
event E is defined as follows:

1. If E is the empty set, then P(E)  0.
2. If E is a simple event, then P(E) has already been assigned.
3. If E is a compound event, then P(E) is the sum of the

probabilities of all the simple events in E.
4. If E is the sample space S, then P(E)  P(S )  1.

If each of the simple events in a sample space 
S {e1, e2, . . . , en} with n simple events is equally likely to oc-
cur, then we assign the probability 1 n to each. If E is an arbi-
trary event in S, then

P(E)  

If we conduct an experiment n times and event E occurs with
frequency f (E ), then the ratio f (E ) n is called the relative fre-
quency of the occurrence of event E in n trials. As n increases,
f (E ) n usually approaches a number that is called the empirical
probability P(E). Thus, f (E ) n is used as an approximate em-
pirical probability for P(E ).

If P(E) is the theoretical probability of an event E and the ex-
periment is performed n times, then the expected frequency of
the occurrence of E is n P(E ).

The command randInt(i,k,n) on a Texas Instruments TI-83
generates a random sequence of n integers between i and k, inclu-
sively, that can be used to simulate repeated trials of experiments.

10.6 Binomial Formula
Pascal’s triangle is a triangular array of coefficients for the ex-

pansion of the binomial (a  b)n, where n is a positive integer.
New notation for the combination formula is

For n a positive integer, the binomial formula is

(a  b)n
 

The numbers , 0  k  n, are called binomial coefficients. n

k 

 
n

k 0
 n

k an kbk

 n

r  Cn,r  
n!

r!(n  r)!

 

Number of elements in E

Number of elements in S
 

n(E )

n(S )

1. If operations O1 and O2 are performed in order with N1

possible outcomes for the first operation and N2 possible
outcomes for the second operation, then there are

N1  N2

possible outcomes of the first operation followed by the

second.
2. In general, if n operations O1, O2, . . . , On are performed

in order, with possible number of outcomes N1, N2, . . . ,
Nn, respectively, then there are

N1  N2      Nn

possible combined outcomes of the operations performed
in the given order.

A particular arrangement or ordering of n objects without repe-
tition is called a permutation. The number of permutations of n
objects is given by

Pn,n  n  (n  1)      1  n!

and the number of permutations of n objects taken r at a time is
given by

Pn,r 0  r  n

A combination of a set of n elements taken r at a time is an 
r-element subset of the n objects. The number of combinations
of n objects taken r at a time is given by

Cn,r  0  r  n

In a permutation, order is important. In a combination, order is
not important.

10.5 Sample Spaces and
Probability

The outcomes of an experiment are called simple events if one and
only one of these results will occur in each trial of the experiment.
The set of all simple events is called the sample space. Any subset
of the sample space is called an event. An event is a simple event
if it has only one element in it and a compound event if it has more
than one element in it. We say that an event E occurs if any of the
simple events in E occurs. A sample space S1 is more fundamen-
tal than a second sample space S2 if knowledge of which event oc-
curs in S1 tells us which event in S2 occurs, but not conversely.

Given a sample space S  {e1, e2, . . . , en} with n simple
events, to each simple event ei we assign a real number, denoted

 n

r  
Pn,r

r!
 

n!

r!(n  r)!

n!

(n  r)!
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13. Solve Problem 12 using permutations or combinations,
whichever is applicable.

14. In a single deal of 5 cards from a standard 52-card deck,
what is the probability of being dealt five clubs?

15. Betty and Bill are members of a 15-person ski club. If the
president and treasurer are selected by lottery, what is the
probability that Betty will be president and Bill will be
treasurer? A person cannot hold more than one office.

16. A drug has side effects for 50 out of 1,000 people in a
test. What is the approximate empirical probability that a
person using the drug will have side effects?

Verify Problems 17–19 for n  1, 2, and 3.

17. Pn: 5  7  9      (2n 3)  n2
 4n

18. Pn: 2  4  8      2n
 2n 1

 2

19. Pn: 49n
 1 is divisible by 6

In Problems 20–22, write Pk and Pk 1.

20. For Pn in Problem 17 21. For Pn in Problem 18

22. For Pn in Problem 19

23. Either prove the statement is true or prove it is false by
finding a counterexample: If n is a positive integer, then 

the sum of the series is less than 4.1  
1

2
 

1

3
 . . .  

1

n

Work through all the problems in this chapter review and check answers in the back of the book. An-

swers to all review problems are there, and following each answer is a number in italics indicating

the section in which that type of problem is discussed. Where weaknesses show up, review appropri-

ate sections in the text.

1. Determine whether each of the following can be the first

three terms of a geometric sequence, an arithmetic se-
quence, or neither.
(A) 16,  8, 4, . . . (B) 5, 7, 9, . . .
(C)  8,  5,  2, . . . (D) 2, 3, 5, . . .
(E)  1, 2,  4, . . .

In Problems 2–5:

(A) Write the first four terms of each sequence.

(B) Find a10. (C) Find S10.

2. an  2n  3 3. an  32( )n

4. a1   8; an  an 1 3, n  2

5. a1   1; an  ( 2)an 1, n  2

6. Find S in Problem 3.

Evaluate Problems 7–10.

7. 6! 8.

9. 10. C6,2 and P6,2

11. A single die is rolled and a coin is flipped. How many

combined outcomes are possible? Solve
(A) By using a tree diagram
(B) By using the multiplication principle

12. How many seating arrangements are possible with six
people and six chairs in a row? Solve by using the multi-
plication principle.

7!

2!(7  2)!

22!

19!

1
2
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Write Problems 24 and 25 without summation notation, and

find the sum.

24. S10  

25. S7  

26. S  27  18  12      ?

27. Write

using summation notation, and find S .

28. Someone tells you that the following approximate empiri-
cal probabilities apply to the sample space {e1, e2, e3, e4}:
P(e1)  .1, P(e2)   .2, P(e3)  .6, P(e4)  2. There are
three reasons why P cannot be a probability function.
Name them.

29. Six distinct points are selected on the circumference of a
circle. How many triangles can be formed using these
points as vertices?

30. In an arithmetic sequence, a1  13 and a7  31. Find the
common difference d and the fifth term a5.

31. How many three-letter code words are possible using the
first eight letters of the alphabet if no letter can be re-

peated? If letters can be repeated? If adjacent letters can-
not be alike?

32. Two coins are flipped 1,000 times with the following fre-

quencies:

Two heads: 210

One head: 480

Zero heads: 310

(A) Compute the empirical probability for each
outcome.

(B) Compute the theoretical probability for each
outcome.

(C) Using the theoretical probabilities computed in part
B, compute the expected frequency of each outcome,
assuming fair coins.

Sn  
1

3
 

1

9
 

1

27
 . . .  

( 1)n 1

3n

 
7

k 1

16

2k

 
10

k 1

 (2k  8)

33. From a standard deck of 52 cards, what is the probability
of obtaining a 5-card hand:
(A) Of all diamonds?
(B) Of three diamonds and two spades?
Write answers in terms of Cn,r or Pn,r, as appropriate. Do
not evaluate.

34. A group of 10 people includes one married couple. If
four people are selected at random, what is the probabil-
ity that the married couple is selected?

35. A spinning device has three numbers, 1, 2, 3, each as
likely to turn up as the other. If the device is spun twice,
what is the probability that:
(A) The same number turns up both times?
(B) The sum of the numbers turning up is 5?

36. Use the formula for the sum of an infinite geometric se-

ries to write 0.727 272     as the quotient of two
integers.

37. Solve the following problems using Pn,r or Cn,r, as
appropriate:
(A) How many three-digit opening combinations are

possible on a combination lock with six digits if the
digits cannot be repeated?

(B) Suppose five tennis players have made the finals. If

each of the five players is to play every other player

exactly once, how many games must be scheduled?

Evaluate Problems 38–40.

38. 39. 40.

41. Expand (x y)5 using the binomial formula.

42. Find the term containing x6 in the expansion of (x  2)9.

43. If the terms in the expansion of (2x y)12 are arranged
in descending powers of x, find the tenth term.

 11

11  16

12 
20!

18!(20  18)!

0.72



Establish each statement in Problems 44–46 for all natural

numbers, using mathematical induction.

44. Pn in Problem 17

45. Pn in Problem 18

46. Pn in Problem 19

In Problems 47 and 48, find the smallest positive integer n such

that an  bn by graphing the sequences {an} and {bn} with a

graphing utility. Check your answer by using a graphing utility

to display both sequences in table form.

47. an  C50,n, bn  3n

48. a1  100, an  0.99an 1 5, bn 9  7n

843Chapter 10 Review Exercises

49. How many different families with five children are possi-

ble, excluding multiple births, where the sex of each child
in the order of their birth is taken into consideration?
How many families are possible if the order pattern is not
taken into account?

50. A free-falling body travels g 2 feet in the first second,

3g 2 feet during the next second, 5g 2 feet the next, and
so on. Find the distance fallen during the twenty-fifth sec-

ond and the total distance fallen from the start to the end
of the twenty-fifth second.

51. How many ways can two people be seated in a row of
four chairs?

52. Expand (x i)6, where i is the imaginary unit, using the
binomial formula.

53. If three people are selected from a group of seven men
and three women, what is the probability that at least one
woman is selected?

54. Three fair coins are tossed 1,000 times with the following
frequencies of outcomes:

Number of heads 0 1 2 3

Frequency 120 360 350 170

(A) What is the approximate empirical probability of ob-
taining two heads?

(B) What is the theoretical probability of obtaining two
heads?

(C) What is the expected frequency of obtaining two
heads?

Prove that each statement in Problems 55–59 holds for all pos-

itive integers, using mathematical induction.

55.

56. x2n
 y2n is divisible by x y, x  y

57.  an m; n  m, n, m positive integers

58. {an} {bn}, where an an 1 2, a1  3, bn  5 2n

59. (1!)1 (2!)2 (3!)3     (n!)n  (n  1)! 1
(From U.S.S.R. Mathematical Olympiads, 1955–1956,
Grade 10.)

an

am

 
n

k 1

k3
   

n

k 1

k 
2

60. Loan Repayment. You borrow $7,200 and agree to pay
1% of the unpaid balance each month for interest. If you
decide to pay an additional $300 each month to reduce

the unpaid balance, how much interest will you pay over
the 24 months it will take to repay this loan?



Cassettes Purchased Annually

Age 0 1 2 Above 2 Totals

Under 12 60 70 30 10 170

12–18 30 100 100 60 290

19–25 70 110 120 30 330

Over 25 100 50 40 20 210

Totals 260 330 290 120 1,000

Find the empirical probability that a person selected at
random
(A) Is over 25 and buys exactly two cassettes annually.
(B) Is 12–18 years old and buys more than one cassette

annually.
(C) Is 12–18 years old or buys more than one cassette

annually.

★ 65. Quality Control. Twelve precision parts, including two
that are substandard, are sent to an assembly plant. The
plant manager selects four at random and will return the
whole shipment if one or more of the sample are found to
be substandard. What is the probability that the shipment
will be returned?

61. Economics. Due to reduced taxes, an individual has an
extra $2,400 in spendable income. If we assume that the
individual spends 75% of this on consumer goods, and
the producers of those consumer goods in turn spend
75% on consumer goods, and that this process continues
indefinitely, what is the total amount (to the nearest dol-

lar) spent on consumer goods?

62. Compound Interest. If $500 is invested at 6% com-
pounded annually, the amount A present after n years
forms a geometric sequence with common ratio 
1  0.06  1.06. Use a geometric sequence formula to
find the amount A in the account (to the nearest cent) 
after 10 years. After 20 years.

63. Transportation. A distribution center A wishes to dis-
tribute its products to five different retail stores, B, C, D,

E, and F, in a city. How many different route plans can be
constructed so that a single truck can start from A, deliver
to each store exactly once, and then return to the center?

64. Market Analysis. A videocassette company selected
1,000 persons at random and surveyed them to determine
a relationship between age of purchaser and annual
videocassette purchases. The results are given in the
table.
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Sequences Specified by Recursion Formulas

The recursion formula* an  5an 1  6an 2, together with the initial values 
a1  4, a2  14, specifies the sequence {an} whose first several terms are 4, 14,
46, 146, 454, 1394, . . . .  The sequence {an} is neither arithmetic nor geometric.
Nevertheless, because it satisfies a simple recursion formula, it is possible to
obtain an nth-term formula for {an} that is analogous to the nth-term formulas
for arithmetic and geometric sequences. Such an nth-term formula is valuable
because it allows us to estimate a term of a sequence without computing all the
preceding terms.

If the geometric sequence {r n} satisfies the recursion formula above, then 
r n
 5r n 1

 6r n 2. Dividing both sides by r n 2 leads to the quadratic equation 
r2
 5r  6  0, whose solutions are r  2 and r  3. Now it is easy to check

that the geometric sequences {2n}  2, 4, 8, 16, . . . and {3n}  3, 9, 27, 81, . . .
satisfy the recursion formula. Therefore, any sequence of the form {u2n

 v3n},
where u and v are constants, will satisfy the same recursion formula.

We now find u and v so that the first two terms of {u2n
 v3n} are a1  4,

a2  14. Letting n  1 and n  2 we see that u and v must satisfy the follow-
ing linear system:

2u  3v  4

4u  9v  14

Solving the system gives u   1, v  2. Therefore, an nth-term formula for the
original sequence is an  ( 1)2n

 (2)3n.
Note that the nth-term formula was obtained by solving a quadratic equation

and a system of two linear equations in two variables.

(A) Compute ( 1)2n
 (2)3n for n  1, 2, . . . , 6, and compare with the

terms of {an}.

(B) Estimate the one-hundredth term of {an}.

(C) Show that any sequence of the form {u2n
 v3n}, where u and v are con-

stants, satisfies the recursion formula an  5an 1  6an 2.

(D) Find an nth-term formula for the sequence {bn} that is specified by b1  5,
b2  55, bn  3bn 1  4bn 2.

(E) Find an nth-term formula for the Fibonacci sequence.

(F) Find an nth-term formula for the sequence {cn} that is specified by 
c1   3, c2  15, c3  99, cn  6cn 1  3cn 2  10cn 3. (Because 
the recursion formula involves the three terms that precede cn, our method
will involve the solution of a cubic equation and a system of three linear
equations in three variables.)

*The program RECUR, found at the website for this book, evaluates the terms in any sequence defined by this type of

recursion formula.
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Cumulative Review Chapters 10 and 11 

A
NALYTIC GEOMETRY, A UNION OF GEOMETRY AND ALGEBRA,

enables us to analyze certain geometric concepts alge-

braically and to interpret certain algebraic relationships

geometrically. Our two main concerns center on graphing algebraic

equations and finding equations of useful geometric figures. We

have discussed a number of topics in analytic geometry, such as

straight lines and circles, in earlier chapters. In Chapter 11 we dis-

cuss additional analytic geometry topics: conic sections, translation

of axes, and systems of quadratic equations.

René Descartes (1596–1650), the French philosopher–mathematician,
is generally recognized as the founder of analytic geometry.

Before getting started on this chapter,

review the following concepts:

 Graphs and Transformations
(Chapter 1, Section 4)

 Cartesian Coordinate System
(Appendix A, Section A.2)

 Basic Formulas in Analytic
Geometry
(Appendix A, Section A.3)

 Linear Functions
(Chapter 2, Section 1)

 Quadratic Functions
(Chapter 2, Section 3)

 Quadratic Equations
(Chapter 2, Section 5)

 Equation-Solving Techniques
(Chapter 2, Section 6)

 Asymptotes
(Chapter 3, Section 4)
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Conic Sections; Parabola

Conic Sections  Definition of a Parabola  Drawing a Parabola  Standard Equations and
Their Graphs  Applications

In Section 11.1 we introduce the general concept of a conic section and then dis-
cuss the particular conic section called a parabola. In Sections 11.2 and 11.3 we
will discuss two other conic sections called ellipses and hyperbolas.

Conic Sections
In Section 2.1 we found that the graph of a first-degree equation in two variables,

Ax  By  C (1)

where A and B are not both 0, is a straight line, and every straight line in a
rectangular coordinate system has an equation of this form. What kind of graph
will a second-degree equation in two variables,

Ax2
 Bxy  Cy2

 Dx  Ey  F  0 (2)

where A, B, and C are not all 0, yield for different sets of values of the coeffi-
cients? The graphs of equation (2) for various choices of the coefficients are plane
curves obtainable by intersecting a cone* with a plane, as shown in Figure 1.
These curves are called conic sections.

If a plane cuts clear through one nappe, then the intersection curve is called
a circle if the plane is perpendicular to the axis and an ellipse if the plane is not
perpendicular to the axis. If a plane cuts only one nappe, but does not cut clear

*Starting with a fixed line L and a fixed point V on L, the surface formed by all straight lines through V making a con-

stant angle  with L is called a right circular cone. The fixed line L is called the axis of the cone, and V is its vertex.

The two parts of the cone separated by the vertex are called nappes.

FIGURE 1 Conic sections.

Circle Ellipse Parabola HyperbolaL

V

 

Constant

Nappe



FIGURE 2 Examples of conics.

through, then the intersection curve is called a parabola. Finally, if a plane cuts
through both nappes, but not through the vertex, the resulting intersection curve
is called a hyperbola. A plane passing through the vertex of the cone produces
a degenerate conic—a point, a line, or a pair of lines.

Conic sections are very useful and are readily observed in your immediate sur-
roundings: wheels (circle), the path of water from a garden hose (parabola), some
serving platters (ellipses), and the shadow on a wall from a light surrounded by
a cylindrical or conical lamp shade (hyperbola) are some examples (Fig. 2). We
will discuss many applications of conics throughout the remainder of this chapter.

A definition of a conic section that does not depend on the coordinates of
points in any coordinate system is called a coordinate-free definition. In Appen-
dix A, Section A.3 we gave a coordinate-free definition of a circle and developed
its standard equation in a rectangular coordinate system. In Sections 11.1, 11.2,
and 11.3 we will give coordinate-free definitions of a parabola, ellipse, and hyper-
bola, and we will develop standard equations for each of these conics in a rec-
tangular coordinate system.

Definition of a Parabola
The following definition of a parabola does not depend on the coordinates of
points in any coordinate system:

11.1 Conic Sections; Parabola 849

Wheel (circle)
(a)

Water from
garden hose
(parabola)

(b)

Serving platter
(ellipse)

(c)

Lamp light
shadow

(hyperbola)
(d)

D E F I N I T I O N 1
Parabola

A parabola is the set of all points in a plane equi-

distant from a fixed point F and a fixed line L in the

plane. The fixed point F is called the focus, and the

fixed line L is called the directrix. A line through the

focus perpendicular to the directrix is called the axis,

and the point on the axis halfway between the

directrix and focus is called the vertex.

d1   d2

d1

d2

P

F(Focus)
V(Vertex)

Parabola

Directrix

Axis
L



Drawing a Parabola
Using Definition 1, we can draw a parabola with fairly simple equipment—a
straightedge, a right-angle drawing triangle, a piece of string, a thumbtack, and a
pencil. Referring to Figure 3, tape the straightedge along the line AB and place
the thumbtack above the line AB. Place one leg of the triangle along the straight-
edge as indicated, then take a piece of string the same length as the other leg, tie
one end to the thumbtack, and fasten the other end with tape at C on the trian-
gle. Now press the string to the edge of the triangle, and keeping the string taut,
slide the triangle along the straightedge. Because DE will always equal DF, the
resulting curve will be part of a parabola with directrix AB lying along the
straightedge and focus F at the thumbtack.

Standard Equations and Their Graphs
Using the definition of a parabola and the distance-between-two-points formula

(3)

we can derive simple standard equations for a parabola located in a rectangular
coordinate system with its vertex at the origin and its axis along a coordinate axis.
We start with the axis of the parabola along the x axis and the focus at F   (a, 0).
We locate the parabola in a coordinate system as in Figure 4 and label key lines
and points. This is an important step in finding an equation of a geometric figure
in a coordinate system. Note that the parabola opens to the right if a  0 and to
the left if a  0. The vertex is at the origin, the directrix is x   a, and the coor-
dinates of M are ( a, y).

d   (x2  x1)
2
 ( y2  y1)

2

FIGURE 3 Drawing a parabola.
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String

C

D

E

A B

F

E X P L O R E / D I S C U S S  1

The line through the focus F that is perpendicular to the axis of a
parabola intersects the parabola in two points G and H. Explain why
the distance from G to H is twice the distance from F to the directrix
of the parabola.



FIGURE 4 Parabola with center
at the origin and axis the 
x axis.

The point P  (x, y) is a point on the parabola if and only if

Use equation (3).

Square both sides.

Simplify.

(4)

Equation (4) is the standard equation of a parabola with vertex at the origin, axis
the x axis, and focus at (a, 0).

Now we locate the vertex at the origin and focus on the y axis at (0, a). Look-
ing at Figure 5, we note that the parabola opens upward if a  0 and downward
if a  0. The directrix is y   a, and the coordinates of N are (x,  a). The point
P   (x, y) is a point on the parabola if and only if

Use equation (3).

Square both sides.

Simplify.

(5)

Equation (5) is the standard equation of a parabola with vertex at the origin, axis
the y axis, and focus at (0, a).

x2
 4ay

y2
 2ay  a2

 x2
 y2

 2ay  a2

 (y  a)2
 x2

 (y  a)2

 (x  x)2
 (y  a)2

  (x  0)2
 (y  a)2

d(P, N)  d(P, F)

d1  d2

y2
 4ax

x2
 2ax  a2

 x2
 2ax  a2

 y2

 (x  a)2
 (x  a)2

 y2

 (x  a)2
 ( y  y)2

  (x  a)2
 ( y  0)2

d(P, M)  d(P, F)

d1  d2
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x

y

d1

d2

Directrix
x    a

M   ( a, y) P   (x, y)

Focus

F   (a, 0) a
x

y

d1

d2

Directrix
x    a

M   ( a, y)P   (x, y)

Focus

F   (a, 0)  a

a  0, focus on positive x axis
(a)

a  0, focus on negative x axis
(b)

a  0, focus on positive y axis
(a)

a  0, focus on negative y axis
(b)

FIGURE 5 Parabola with center
at the origin and axis the 
y axis.

x

y

 a

d1

d2

Directrix
y    a

P   (x, y)

N   (x,  a)

F   (0, a)
Focus

x

y

 a

d1

d2

Directrix
y    a

P   (x, y)

N   (x,  a)

F   (0, a)
Focus



We summarize these results for easy reference in Theorem 1.

Graphing y2
 4ax

Locate the focus and directrix and draw the graph of y2
 16x.

S O L U T I O N

a

Focus: y2
 16x  4(4)x Directrix: x   a

F   (a, 0)  (4, 0)    4
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T H E O R E M  1
Standard Equations of a Parabola with Vertex at (0, 0)

1. y2
 4ax

Vertex: (0, 0)
Focus: (a, 0)
Directrix: x   a

Symmetric with 
respect to the 
x axis
Axis the x axis

2. x2
 4ay

Vertex: (0, 0)
Focus: (0, a)
Directrix: y   a

Symmetric with 
respect to the 
y axis
Axis the y axis

x

y

F
0

x

y

F
0

x

y

F

0

x

y

F

0

a  0 (opens left) a  0 (opens right)

a  0 (opens down) a  0 (opens up)

Graphing by Hand

To graph y2
 16x, it is con-

venient to assign x values that
make the right side a perfect
square, and solve for y. Note
that x must be greater than or
equal to 0 for y to be a real
number. Because a 0, the
parabola opens to the right
(Fig. 6).

x 0 1 4

y 0  4  8

Graphing Utility Graph

To graph y2
 16x on a graphing utility,

we solve this equation for y.

y2
 16x

This results in two functions, y  4
and y   4 . Entering these functions
in a graphing utility (Fig. 7) and graphing
in a standard viewing window produces
the graph of the parabola (Fig. 8).

 x
 x

y   4 x



Graph y2
  8x, and locate the focus and directrix.

Finding the Equation of a Parabola

(A) Find the equation of a parabola having the origin as its vertex, the y axis
as its axis, and ( 10,  5) on its graph.

(B) Find the coordinates of its focus and the equation of its directrix.

S O L U T I O N S

(A) The parabola is opening down and has an equation of the form 
x2
 4ay. Because ( 10,  5) is on the graph, we have

a   5

 100   20a

 ( 10)2
 4a( 5)

x2
 4ay
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FIGURE 6

FIGURE 7

FIGURE 8

 10

10 10

10

Directrix
x    4 Focus

F   (4, 0)
x

y

 10

 10

10

10

Directrix
x    4

Focus
F   (4, 0)

C A U T I O N

A common error in making a quick sketch of y2
 4ax or x2

 4ay is
to sketch the first with the y axis as its axis and the second with the 
x axis as its axis. The graph of y2

 4ax is symmetric with respect to
the x axis, and the graph of x2

 4ay is symmetric with respect to the 
y axis, as a quick symmetry check will reveal.



Thus, the equation of the parabola is

x2
 4( 5)y

  20y

a

(B) Focus: x2
  20y  4( 5)y

F   (0, a)  (0,  5)

Directrix: y   a

  ( 5)

 5
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(A) Find the equation of a parabola having the origin as its vertex, the x axis
as its axis, and (4,  8) on its graph.

(B) Find the coordinates of its focus and the equation of its directrix.

Applications
Parabolic forms are frequently encountered in the physical world. Suspension
bridges, arch bridges, microphones, symphony shells, satellite antennas, radio and
optical telescopes, radar equipment, solar furnaces, and searchlights are only a
few of many items that use parabolic forms in their design.

Figure 9(a) illustrates a parabolic reflector used in all reflecting telescopes—
from 3- to 6-inch home types to the 200-inch research instrument on Mount Palo-
mar in California. Parallel light rays from distant celestial bodies are reflected to
the focus off a parabolic mirror. If the light source is the sun, then the parallel
rays are focused at F and we have a solar furnace. Temperatures of over 6,000 C

E X P L O R E / D I S C U S S  2

Consider the graph of an equation in the variables x and y. The equation
of its magnification by a factor k  0 is obtained by replacing x and y

in the equation by x k and y k, respectively. (Of course, a magnification
by a factor k between 0 and 1 means an actual reduction in size.)

(A) Show that the magnification by a factor 3 of the circle with equa-
tion x2

 y2
 1 has equation x2

 y2
 9.

(B) Explain why every circle with center at (0, 0) is a magnification of
the circle with equation x2

 y2
 1.

(C) Find the equation of the magnification by a factor 3 of the
parabola with equation x2

 y. Graph both equations.

(D) Explain why every parabola with vertex (0, 0) that opens upward
is a magnification of the parabola with equation x2

 y.



have been achieved by such furnaces. If we locate a light source at F, then the
rays in Figure 9(a) reverse, and we have a spotlight or a searchlight. Automobile
headlights can use parabolic reflectors with special lenses over the light to diffuse
the rays into useful patterns.

Figure 9(b) shows a suspension bridge, such as the Golden Gate Bridge in San
Francisco. The suspension cable is a parabola. It is interesting to note that a free-
hanging cable, such as a telephone line, does not form a parabola. It forms another
curve called a catenary.

Figure 9(c) shows a concrete arch bridge. If all the loads on the arch are to be
compression loads (concrete works very well under compression), then using
physics and advanced mathematics, it can be shown that the arch must be parabolic.

Parabolic Reflector

A paraboloid is formed by revolving a parabola about its axis. A spotlight in the
form of a paraboloid 5 inches deep has its focus 2 inches from the vertex. Find,
to one decimal place, the radius R of the opening of the spotlight.

S O L U T I O N

Step 1. Locate a parabolic cross section containing the axis in a rectangular
coordinate system, and label all known parts and parts to be found. This
is a very important step and can be done in infinitely many ways.
Because we are in charge, we can make things simpler for ourselves by
locating the vertex at the origin and choosing a coordinate axis as the
axis. We choose the y axis as the axis of the parabola with the parabola
opening upward (Fig. 10).
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Parallel
light
rays

Parabolic reflector

F

Suspension bridge

Parabola

Arch bridge

Parabola

FIGURE 9 Uses
of parabolic
forms.

(a) (b) (c)

x

y

5 5

5
(R, 5)

F   (0, 2)

Spotlight

R

FIGURE 10



1. Focus: ( 2, 0)
Directrix: x  2

x 0  2

y 0  4

2. (A) y2
 16x (B) Focus: (4, 0); Directrix: x   4 3. R  20.8 inches
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Step 2. Find the equation of the parabola in the figure. Because the parabola has
the y axis as its axis and the vertex at the origin, the equation is of the
form

x2
 4ay

We are given F  (0, a)  (0, 2); thus, a  2, and the equation of the
parabola is

x2
 8y

Step 3. Use the equation found in step 2 to find the radius R of the opening.
Because (R, 5) is on the parabola, we have

R2
 8(5)

R   6.3 inches 40

Repeat Example 3 with a paraboloid 12 inches deep and a focus 9 inches from
the vertex.

 5

5 5

5

Directrix
x   2

( 2, 0)

F
x

y

In Problems 1–12, graph each equation, and locate the focus

and directrix. Check by graphing on a graphing utility.

1. y2
 4x 2. y2

 8x

3. x2
 8y 4. x2

 4y

5. y2
  12x 6. y2

  4x

7. x2
  4y 8. x2

  8y

9. y2
  20x 10. x2

  24y

11. x2
 10y 12. y2

 6x



Find the coordinates to two decimal places of the focus for

each parabola in Problems 13–18.

13. y2
 39x 14. x2

 58y

15. x2
  105y 16. y2

  93x

17. y2
  77x 18. x2

  205y
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In Problems 19–26, find the equation of a parabola with vertex

at the origin, axis the x or y axis, and

19. Directrix y   3 20. Directrix y  4

21. Focus (0,  7) 22. Focus (0, 5)

23. Directrix x  6 24. Directrix x   9

25. Focus (2, 0) 26. Focus ( 4, 0)

In Problems 27–32, find the equation of the parabola having

its vertex at the origin, its axis as indicated, and passing

through the indicated point.

27. y axis; (4, 2) 28. x axis; (4, 8)

29. x axis; ( 3, 6) 30. y axis; ( 5, 10)

31. y axis; ( 6, 9) 32. x axis; ( 6, 12)

In Problems 33–36, find the first-quadrant points of intersec-

tion for each system of equations to three decimal places.

33. x2
 4y 34. y2

 3x

y2
 4x x2

 3y

35. y2
 6x 36. x2

 7y

x2
 5y y2

 2x

37. Consider the parabola with equation x2
 4ay.

(A) How many lines through (0, 0) intersect the parabola
in exactly one point? Find their equations.

(B) Find the coordinates of all points of intersection of 
the parabola with the line through (0, 0) having slope
m  0.

38. Find the coordinates of all points of intersection of the
parabola with equation x2

 4ay and the parabola with
equation y2

 4bx.

39. The line segment AB through the focus in the figure is
called a focal chord of the parabola. Find the coordinates
of A and B.

40. The line segment AB through the focus in the figure is
called a focal chord of the parabola. Find the coordinates
of A and B.

x

y

0

F   (0, a)

A B

x2   4ay

x

y

F   (a, 0)

0

A

B

y2   4ax

Refer to Explore/Discuss 2. In Problems 41–44, find the magni-

fication of the given equation by the given factor. Graph both

equations.

41. y2
 4x, factor 2

42. y2
  4x, factor 0.25

43. x2
  4y, factor 0.5

44. x2
 4y, factor 4



11 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY858

In Problems 45–48, use the definition of a parabola and 

the distance formula to find the equation of a parabola with

45. Directrix y   4 and focus (2, 2)

46. Directrix y  2 and focus ( 3, 6)

47. Directrix x  2 and focus (6,  4)

48. Directrix x   3 and focus (1, 4)

49. Engineering. The parabolic arch in the concrete bridge in
the figure must have a clearance of 50 feet above the water
and span a distance of 200 feet. Find the equation of the
parabola after inserting a coordinate system with the ori-
gin at the vertex of the parabola and the vertical y axis
(pointing upward) along the axis of the parabola.

50. Astronomy. The cross section of a parabolic reflector
with 6-inch diameter is ground so that its vertex is 
0.15 inch below the rim (see the figure).

0.15 inch
6 inches

Parabolic
reflector

(A) Find the equation of the parabola after inserting an xy

coordinate system with the vertex at the origin and the
y axis (pointing upward) the axis of the parabola.

(B) How far is the focus from the vertex?

51. Space Science. A designer of a 200-foot-diameter para-
bolic electromagnetic antenna for tracking space probes
wants to place the focus 100 feet above the vertex (see the
figure).

(A) Find the equation of the parabola using the axis of the
parabola as the y axis (up positive) and vertex at the
origin.

(B) Determine the depth of the parabolic reflector.

100 ft

200 ft

Radiotelescope

Focus



52. Signal Light. A signal light on a ship is a spotlight with
parallel reflected light rays (see the figure). Suppose the
parabolic reflector is 12 inches in diameter and the light
source is located at the focus, which is 1.5 inches from the
vertex.

(A) Find the equation of the parabola using the axis of the
parabola as the x axis (right positive) and vertex at the
origin.

(B) Determine the depth of the parabolic reflector.

Ellipse

Definition of an Ellipse  Drawing an Ellipse  Standard Equations and Their Graphs  

Applications

We start our discussion of the ellipse with a coordinate-free definition. Using this
definition, we show how an ellipse can be drawn and we derive standard equa-
tions for ellipses specially located in a rectangular coordinate system.

Definition of an Ellipse
The following is a coordinate-free definition of an ellipse:
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Focus

Signal light

D E F I N I T I O N 1
Ellipse

An ellipse is the set of all points P in a plane such that the sum of the distances of P from two fixed

points in the plane is constant. Each of the fixed points, F and F, is called a focus, and together they

are called foci. Referring to the figure, the line segment V V through the foci is the major axis. The

perpendicular bisector B B of the major axis is the minor axis. Each end of the major axis, V and V,

is called a vertex. The midpoint of the line segment F F is called the center of the ellipse.

d1   d2   Constant

V  

F 

B 

B

F

P

V

d1

d2



Drawing an Ellipse
An ellipse is easy to draw. All you need is a piece of string, two thumbtacks, and
a pencil or pen (Fig. 1). Place the two thumbtacks in a piece of cardboard. These
form the foci of the ellipse. Take a piece of string longer than the distance between
the two thumbtacks—this represents the constant in the definition—and tie each
end to a thumbtack. Finally, catch the tip of a pencil under the string and move
it while keeping the string taut. The resulting figure is by definition an ellipse.
Ellipses of different shapes result, depending on the placement of thumbtacks and
the length of the string joining them.

Standard Equations and Their Graphs
Using the definition of an ellipse and the distance-between-two-points formula,
we can derive standard equations for an ellipse located in a rectangular coor-
dinate system. We start by placing an ellipse in the coordinate system with the
foci on the x axis equidistant from the origin at F  ( c, 0) and F  (c, 0), as
in Figure 2.

For reasons that will become clear soon, it is convenient to represent the con-
stant sum d1  d2 by 2a, a  0. Also, the geometric fact that the sum of the lengths
of any two sides of a triangle must be greater than the third side can be applied
to Figure 2 to derive the following useful result:

d(F , P)  d(P, F )  d(F , F )

d1  d2  2c

2a  2c

a  c (1)
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FIGURE 2 Ellipse with foci on 
x axis.

x

y

P   (x, y)

F   (c, 0)F    ( c, 0)

d1 d2

d1   d2   Constant
c   0

0

FIGURE 1 Drawing an ellipse.

d1 d2

FocusFocus
String

Note that d1   d2 always
adds up to the length of the
string, which does not change.

P



We will use this result in the derivation of the equation of an ellipse, which we
now begin.

Referring to Figure 2, the point P   (x, y) is on the ellipse if and only if

d1  d2  2a

d(P, F )  d(P, F )  2a

 2a

After eliminating radicals and simplifying, a good exercise for you, we obtain

(2)

(3)

Dividing both sides of equation (2) by a2(a2
 c2) is permitted, because neither

a2 nor a2
 c2 is 0. From equation (1), a  c; thus a2

 c2 and a2
 c2

 0.
The constant a was chosen positive at the beginning.

To simplify equation (3) further, we let

b2
 a2

 c2 b  0 (4)

to obtain

(5)

From equation (5) we see that the x intercepts are x   a and the y intercepts
are y   b. The x intercepts are also the vertices. Thus,

Major axis length  2a

Minor axis length  2b

To see that the major axis is longer than the minor axis, we show that 2a  2b.
Returning to equation (4),

a, b, c 0

Definition of  

Because b a is positive, b a must be negative.

If we start with the foci on the y axis at F  (0, c) and F  (0,  c) as in
Figure 3, instead of on the x axis as in Figure 2, then, following arguments similar
to those used for the first derivation, we obtain

(6)
x2

b2
 
y2

a2
 1    a > b Length of

major axis   Length of
minor axis 

 2a   2b

 2b   2a

b  a

b  a   0

 (b  a)(b  a)   0

b2
 a2

  0

b2
 a2

b2
 c2

 a2

b2
 a2

 c2

x2

a2
 
y2

b2
 1

x2

a2
 

y2

a2
 c2

 1

(a2
 c2)x2

 a2y2
 a2(a2

 c2)

 (x  c)2
 ( y  0)2

  (x  c)2
 ( y  0)2

11.2 Ellipse 861



where the relationship among a, b, and c remains the same as before:

b2
 a2

 c2 (7)

The center is still at the origin, but the major axis is now along the y axis and
the minor axis is along the x axis.

To sketch graphs of equations of the form of equations (5) or (6) is an easy
matter. We find the x and y intercepts and sketch in an appropriate ellipse. Because
replacing x with  x or y with  y produces an equivalent equation, we conclude
that the graphs are symmetric with respect to the x axis, y axis, and origin. If fur-
ther accuracy is required, additional points can be found with the aid of a calcu-
lator and the use of symmetry properties.

Given an equation of the form of equations (5) or (6), how can we find the coor-
dinates of the foci without memorizing or looking up the relation b2

 a2
 c2?

There is a simple geometric relationship in an ellipse that enables us to get the
same result using the Pythagorean theorem. To see this relationship, refer to
Figure 4(a). Then, using the definition of an ellipse and 2a for the constant sum,
as we did in deriving the standard equations, we see that

Thus,

The length of the line segment from the end of a minor axis to a focus is the same as half the length

of a major axis.

This geometric relationship is illustrated in Figure 4(b). Using the Pythagorean
theorem for the triangle in Figure 4(b), we have

or

Equations (4) and (7)

or

Useful for finding the foci, given a and bc2
 a2

 b2

b2
 a2

 c2

b2
 c2

 a2

d  a

 2d  2a

d  d  2a

FIGURE 3 Ellipse with foci on 
y axis.
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x

y

P   (x, y)

F   (0, c)

F    (0,  c)

d1

d2

d1   d2   Constant
c   0

0



FIGURE 4 Geometric
relationships.

Thus, we can find the foci of an ellipse given the intercepts a and b simply by
using the triangle in Figure 4(b) and the Pythagorean theorem.

We summarize all of these results for convenient reference in Theorem 1.
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x

y

F F

d

b

 b

d

 c c a0 a

x2 y2

a2 b2
   1

a   b   0

x

y

b

 b

a

 c c a0 a

a2
   b2

   c2

(a) (b)

T H E O R E M  1
Standard Equations of an Ellipse with Center at (0, 0)

1. a  b  0

x intercepts:  a (vertices)

y intercepts:  b

Foci: F   ( c, 0), F  (c, 0)

c2
 a2

 b2

Major axis length  2a

Minor axis length  2b

2. a  b  0

x intercepts:  b

y intercepts:  a (vertices)

Foci: F   (0,  c), F  (0, c)

c2
 a2

 b2

Major axis length  2a

Minor axis length  2b

[Note: Both graphs are sym-
metric with respect to the
x axis, y axis, and origin. Also, the major axis is always longer than
the minor axis.]

x2

b2
 

y2

a2
 1

x2

a2
 

y2

b2
 1

x

y

b

 b

a

 c c a0 a
F F

x

y

F

F 

a

 a

0 b b

a

c

 c



Graphing Ellipses

Find the coordinates of the foci, find the lengths of the major and minor axes,
and graph the following equation:

9x2
 16y2

 144

S O L U T I O N

First, write the equation in standard form by dividing both sides by 144 and deter-
mine a and b:

9x2
 16y2

 144

a  4 and b  3

Foci: c2
 a2

 b2

 16  9

 7

c must be positive

Thus, the foci are F  ( , 0) and F  ( , 0).

Major axis length 2(4)  8

Minor axis length 2(3)  6

 7 7

c   7

x2

16
 

y2

9
 1

9x2

144
 

16y2

144
 

144

144
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Hand-Drawn Graph

Locate the intercepts:

x intercepts: 4

y intercepts: 3

Plot the intercepts and sketch in 
the ellipse (Fig. 5).

Graphing Utility Solution

Solve the original equation for y:

This produces the two functions whose graphs are shown in Figure 6.
Notice that we used a squared viewing window to avoid distorting the

y    (144  9x2) 16

y2
 (144  9x2) 16

 9x2
 16y2

 144

E X P L O R E / D I S C U S S  1

The line through a focus F of an ellipse that is perpendicular to the
major axis intersects the ellipse in two points G and H. For each of the
two standard equations of an ellipse with center (0, 0), find an expres-
sion in terms of a and b for the distance from G to H.
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shape of the ellipse. Also note the gaps in the graph at  4. This is
due to the relatively low resolution of a graphing utility screen.

FIGURE 6

 3

 4.5

3

4.5
 3

c 40 4  c

3

x
F F

4

y

FIGURE 5

Find the coordinates of the foci, find the lengths of the major and minor axes,
and graph the following equation:

x2
 4y2

 4

Graphing Ellipses

Find the coordinates of the foci, find the lengths of the major and minor axes,
and graph the following equation:

2x2
 y2

 10

S O L U T I O N

First, write the equation in standard form by dividing both sides by 10 and deter-
mine a and b:

a  and b  

Foci: c2
 a2

 b2

 10  5

 5

c must be positive

Thus, the foci are F  (0,  ) and F  (0, ).

Major axis length 2  6.32

Minor axis length 2  4.47 5

 10

 5 5

c   5

 5 10

x2

5
 

y2

10
 1

2x2

10
 

y2

10
 

10

10

 2x2
 y2

 10



Find the coordinates of the foci, find the lengths of the major and minor axes,
and graph the following equation:

3x2
 y2

 18

Finding the Equation of an Ellipse

Find an equation of an ellipse in the form

M, N  0

if the center is at the origin, the major axis is along the y axis, and

(A) Length of major axis  20 (B) Length of major axis  10
Length of minor axis  12 Distance of foci from center  4

S O L U T I O N S

(A) Compute x and y intercepts and make a rough sketch of the ellipse, as
shown in Figure 9.

a   10 b   6

 1
x2

36
 

y2

100

12

2

20

2

x2

b2
 

y2

a2
 1

x2

M
 

y2

N
 1
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Hand-Drawn Graph

Locate the intercepts:

x intercepts:  ±2.24

y intercepts:   3.16

Plot the intercepts and sketch in the ellipse (Fig. 7).

FIGURE 7

x

F 

F

y

 c

c

 10

 10

  5

  10

 50

 10

 5

Graphing Utility Solution

Solve for y:

2x2
 y2

 10

y2
 10  2x2

y   

Graph y1 and y2  in
a squared viewing window (Fig. 8).

FIGURE 8

 4

 6

4

6

 10  2x2 10  2x2

 10  2x2

 10

10 10

10

x

y

FIGURE 9



FIGURE 10

(B) Make a rough sketch of the ellipse, as shown in Figure 10; locate the
foci and y intercepts, then determine the x intercepts using the special
triangle relationship discussed earlier.

a   5 b2
 52

 42
 25  16  9

b  3

Find an equation of an ellipse in the form

M, N  0

if the center is at the origin, the major axis is along the x axis, and

(A) Length of major axis  50 (B) Length of minor axis  16
Length of minor axis  30 Distance of foci from center  6

x2

M
 

y2

N
 1

x2

9
 

y2

25
 1

10

2

x2

b2
 

y2

a2
 1

Applications
You are no doubt aware of many occurrences and uses of elliptical forms: orbits
of satellites, planets, and comets; shapes of galaxies; gears and cams; some air-
plane wings, boat keels, and rudders; tabletops; public fountains; and domes in
buildings are a few examples (Fig. 11).
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b0 b

5

x

y

 5

5

4

E X P L O R E / D I S C U S S  2

Consider the graph of an equation in the variables x and y. The equa-
tion of its magnification by a factor k  0 is obtained by replacing x
and y in the equation by x k and y k, respectively.

(A) Find the equation of the magnification by a factor 3 of the ellipse
with equation (x2 4)  y2

 1. Graph both equations.

(B) Give an example of an ellipse with center (0, 0) with a  b that is
not a magnification of (x2 4)  y2

 1.

(C) Find the equations of all ellipses that are magnifications of 
(x2 4)  y2

 1.



Johannes Kepler (1571–1630), a German astronomer, discovered that planets
move in elliptical orbits, with the sun at a focus, and not in circular orbits as had
been thought before [Fig. 11(a)]. Figure 11(b) shows a pair of elliptical gears with
pivot points at foci. Such gears transfer constant rotational speed to variable rota-
tional speed, and vice versa. Figure 11(c) shows an elliptical dome. An interest-
ing property of such a dome is that a sound or light source at one focus will
reflect off the dome and pass through the other focus. One of the chambers in the
Capitol Building in Washington, D.C., has such a dome, and is referred to as a
whispering room because a whispered sound at one focus can be easily heard at
the other focus.

A fairly recent application in medicine is the use of elliptical reflectors and
ultrasound to break up kidney stones. A device called a lithotripter is used to gen-
erate intense sound waves that break up the stone from outside the body, thus
avoiding surgery. To be certain that the waves do not damage other parts of the
body, the reflecting property of the ellipse is used to design and correctly posi-
tion the lithotripter.

Medicinal Lithotripsy

A lithotripter is formed by rotating the portion of an ellipse below the minor axis
around the major axis (Fig. 12). The lithotripter is 20 centimeters wide and
16 centimeters deep. If the ultrasound source is positioned at one focus of the
ellipse and the kidney stone at the other, then all the sound waves will pass
through the kidney stone. How far from the kidney stone should the point V on
the base of the lithotripter be positioned to focus the sound waves on the kidney
stone? Round the answer to one decimal place.

FIGURE 11 Uses of elliptical
forms.
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Sun

Planet

Planetary motion Elliptical gears

FF 

Elliptical dome

FIGURE 12 Lithotripter.

16 cm

Ultrasound
source

Base V

Kidney
stone

20 cm

(a) (b) (c)
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S O L U T I O N

From Figure 12 we see that a  16 and b  10 for the ellipse used to form the
lithotripter. Thus, the distance c from the center to either the kidney stone or the
ultrasound source is given by

c   12.5

and the distance from the base of the lithotripter to the kidney stone is 
16  12.5  28.5 centimeters.

Because lithotripsy is an external procedure, the lithotripter described in Exam-
ple 4 can be used only on stones within 12.5 centimeters of the surface of the
body. Suppose a kidney stone is located 14 centimeters from the surface. If the
diameter is kept fixed at 20 centimeters, how deep must a lithotripter be to focus
on this kidney stone? Round answer to one decimal place.

 a2
 b2

  162
 102

  156

1. 2.

3. (A) (B) 4. 17.2 centimeters
x2

100
 

y2

64
 1

x2

625
 

y2

225
 1

20 2

1

 1

F F
x

y Foci:  F     (  3, 0), F   ( 3, 0)
Major axis length   4
Minor axis length   2

  6  6

 18

  18

F 

F

x

y

Foci:  F     (0,   12), F   (0,  12)
Major axis length   2 18   8.49
Minor axis length   2 6   4.90

3. 4.

5. 6. 4x2
 y2

 4x2
 9y2

 9

x2

4
 

y2

9
 1

x2

4
 

y2

25
 1

In Problems 1–6, sketch a graph of each equation, find the co-

ordinates of the foci, and find the lengths of the major and mi-

nor axes. Check by graphing on a graphing utility.

1. 2.
x2

9
 

y2

4
 1

x2

25
 

y2

4
 1
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x

y

 5

5 5

5

x

y

 5

5 5

5

(a) (b) (c) (d)

x

y

 5

5 5

5

x

y

 5

5 5

5

In Problems 11–16, sketch a graph of each equation, find the

coordinates of the foci, and find the lengths of the major and

minor axes. Check by graphing on a graphing utility.

11. 25x2
 9y2

 225

12. 16x2
 25y2

 400

13. 2x2
 y2

 12

14. 4x2
 3y2

 24

15. 4x2
 7y2

 28

16. 3x2
 2y2

 24

In Problems 17–28, find an equation of an ellipse in the form

M, N  0

if the center is at the origin, and

17. The graph is

x

y

 10

10 10

10

x2

M
 

y2

N
 1

In Problems 7–10, match each equation with one of graphs (a)–(d).

7. 9x2
 16y2

 144 8. 16x2
 9y2

 144 9. 4x2
 y2

 16 10. x2
 4y2

 16

18. The graph is

19. The graph is

20. The graph is

x

y

 10

10 10

10

x

y

 10

10 10

10

x

y

 10

10 10

10



21. Major axis on x axis
Major axis length  10
Minor axis length  6

22. Major axis on x axis
Major axis length  14
Minor axis length  10

23. Major axis on y axis
Major axis length  22
Minor axis length  16

24. Major axis on y axis
Major axis length  24
Minor axis length  18

25. Major axis on x axis
Major axis length  16
Distance of foci from center  6

26. Major axis on y axis
Major axis length  24
Distance of foci from center  10

27. Major axis on y axis
Minor axis length  20
Distance of foci from center   70

28. Major axis on x axis
Minor axis length  14
Distance of foci from center  

29. Explain why an equation whose graph is an ellipse does
not define a function.

30. Consider all ellipses having (0,  1) as the ends of the mi-
nor axis. Describe the connection between the elongation
of the ellipse and the distance from a focus to the origin.

Refer to Explore/Discuss 2. In Problems 31–34, find the magni-

fication of the given equation by the given factor. Graph both

equations.

31. 16x2
 9y2

 144, factor 2

32. 9x2
 16y2

 144, factor 0.25

33. x2
 4y2

 16, factor 0.5

34. 4x2
 y2

 16, factor 4

 200
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36. Find an equation of the set of points in a plane, each of
whose distance from (0, 9) is three-fourths its distance
from the line y 16. Identify the geometric figure.

37. Engineering. The semielliptical arch in the concrete bridge
in the figure must have a clearance of 12 feet above the water
and span a distance of 40 feet. Find the equation of the
ellipse after inserting a coordinate system with the center of
the ellipse at the origin and the major axis on the x axis. The
y axis points up, and the x axis points to the right. How much
clearance above the water is there 5 feet from the bank?

Elliptical bridge

38. Design. A 4  8 foot elliptical tabletop is to be cut out of
a 4  8 foot rectangular sheet of teak plywood (see the
figure). To draw the ellipse on the plywood, how far should
the foci be located from each edge and how long a piece of
string must be fastened to each focus to produce the el-
lipse (see Fig. 1 in the text)? Compute the answer to two
decimal places.

F

F 

Elliptical table

String

35. Find an equation of the set of points in a plane, each of
whose distance from (2, 0) is one-half its distance from the
line x 8. Identify the geometric figure.



the trailing edge. In the accompanying figure, the ellipse
containing the keel has a 12.0-foot major axis. The
straight-line leading edge is parallel to the major axis of
the ellipse and 1.00 foot in front of it. The chord is 1.00
foot shorter than the major axis.

(A) Find the equation of the ellipse. Let the y axis lie along
the minor axis of the ellipse, and let the x axis lie
along the major axis, both with positive direction 
upward.

(B) What is the width of the keel, measured perpendicular
to the major axis, 1 foot up the major axis from the
bottom end of the keel?

Compute quantities to three significant digits.

Rudder
Keel

 39. Aeronautical Engineering. Of all possible wing shapes, it
has been determined that the one with the least drag along
the trailing edge is an ellipse. The leading edge may be a
straight line, as shown in the figure. One of the most famous
planes with this design was the World War II British Spit-
fire. The plane in the figure has a wingspan of 48.0 feet.

(A) If the straight-line leading edge is parallel to the major
axis of the ellipse and is 1.14 feet in front of it, and if
the leading edge is 46.0 feet long (including the width
of the fuselage), find the equation of the ellipse. Let the
x axis lie along the major axis (positive right), and let
the y axis lie along the minor axis (positive forward).

(B) How wide is the wing in the center of the fuselage
(assuming the wing passes through the fuselage)?

Compute quantities to three significant digits.

 40. Naval Architecture. Currently, many high-performance
racing sailboats use elliptical keels, rudders, and main
sails for the reasons stated in Problem 39—less drag along

Leading edge

Fuselage Trailing edge

Elliptical
wings and tail
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Hyperbola

Definition of a Hyperbola  Drawing a Hyperbola  Standard Equations and Their Graphs  

Applications

As before, we start with a coordinate-free definition of a hyperbola. Using this
definition, we show how a hyperbola can be drawn and we derive standard equa-
tions for hyperbolas specially located in a rectangular coordinate system.

Definition of a Hyperbola
The following is a coordinate-free definition of a hyperbola:



Drawing a Hyperbola
Thumbtacks, a straightedge, string, and a pencil are all that are needed to draw a
hyperbola (Fig. 1). Place two thumbtacks in a piece of cardboard—these form the
foci of the hyperbola. Rest one corner of the straightedge at the focus F so that
it is free to rotate about this point. Cut a piece of string shorter than the length
of the straightedge, and fasten one end to the straightedge corner A and the other
end to the thumbtack at F. Now push the string with a pencil up against the
straightedge at B. Keeping the string taut, rotate the straightedge about F , keep-
ing the corner at F . The resulting curve will be part of a hyperbola. Other parts
of the hyperbola can be drawn by changing the position of the straightedge and
string. To see that the resulting curve meets the conditions of the definition, note
that the difference of the distances BF and BF is

BF  BF  BF  BA  BF  BA

 AF  (BF  BA)

 

 Constant

 Straightedge
length    String

length 
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D E F I N I T I O N 1
Hyperbola

A hyperbola is the set of all points P in a plane such

that the absolute value of the difference of the dis-

tances of P to two fixed points in the plane is a posi-

tive constant. Each of the fixed points, F and F, is

called a focus. The intersection points V and V of the

line through the foci and the two branches of the

hyperbola are called vertices, and each is called a

vertex. The line segment V V is called the transverse

axis. The midpoint of the transverse axis is the center

of the hyperbola.

F

P

F 
V  

V

 d1   d2    Constant

d1
d2

FIGURE 1 Drawing a hyperbola.

B

A

F 

String

F



Standard Equations and Their Graphs
Using the definition of a hyperbola and the distance-between-two-points formula,
we can derive the standard equations for a hyperbola located in a rectangular coor-
dinate system. We start by placing a hyperbola in the coordinate system with the
foci on the x axis equidistant from the origin at F  ( c, 0) and F  (c, 0),
c  0, as in Figure 2.

Just as for the ellipse, it is convenient to represent the constant difference by
2a, a  0. Also, the geometric fact that the difference of two sides of a triangle
is always less than the third side can be applied to Figure 2 to derive the follow-
ing useful result:

 d1  d2  2c

2a  2c

a  c (1)

We will use this result in the derivation of the equation of a hyperbola, which we
now begin.

Referring to Figure 2, the point P  (x, y) is on the hyperbola if and only if

 d1  d2  2a

 d(P, F )  d(P, F)  2a

   2a

After eliminating radicals and absolute value signs by appropriate use of squar-
ing and simplifying, another good exercise for you, we have

(c2
 a2)x2

 a2y2
 a2(c2

 a2) (2)

 1 (3)

Dividing both sides of equation (2) by a2(c2
 a2) is permitted, because neither

a2 nor c2
 a2 is 0. From equation (1), a  c; thus, a2

 c2 and c2
 a2

 0.
The constant a was chosen positive at the beginning.

To simplify equation (3) further, we let

b2
 c2

 a2 b  0 (4)

to obtain

(5)

From equation (5) we see that the x intercepts, which are also the vertices, are
x   a and there are no y intercepts. To see why there are no y intercepts, let
x  0 and solve for y:

An imaginary numbery     b2

y2
  b2

02

a2
 

y2

b2
 1

x2

a2
 
y2

b2
 1

x2

a2
 

y2

c2
 a2

 (x  c)2
 y2

  (x  c)2
 y2

FIGURE 2 Hyperbola with foci
on the x axis.
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d1
d2

x

y

F    ( c, 0) F   (c, 0)

c   0
 d1   d2    Positive constant

P   (x, y)



FIGURE 3 Hyperbola with foci
on the y axis.

If we start with the foci on the y axis at F  (0,  c) and F  (0, c) as in
Figure 3, instead of on the x axis as in Figure 2, then, following arguments sim-
ilar to those used for the first derivation, we obtain

(6)

where the relationship among a, b, and c remains the same as before:

b2
 c2

 a2 (7)

The center is still at the origin, but the transverse axis is now on the y axis.
As an aid to graphing equation (5), we solve the equation for y in terms of x,

another good exercise for you, to obtain

(8)

As x changes so that  x becomes larger, the expression 1  (a2 x2) within the
radical approaches 1. Hence, for large values of  x , equation (5) behaves very
much like the lines

(9)

These lines are asymptotes for the graph of equation (5). The hyperbola
approaches these lines as a point P  (x, y) on the hyperbola moves away from
the origin (Fig. 4). An easy way to draw the asymptotes is to first draw the rec-
tangle as in Figure 4, then extend the diagonals. We refer to this rectangle as the
asymptote rectangle.

y   
b

a
x

y   
b

a
x 1  

a2

x2

y2

a2
 
x2

b2
 1

Starting with equation (6) and proceeding as we did for equation (5), we obtain
the asymptotes for the graph of equation (6):

(10)

The perpendicular bisector of the transverse axis, extending from one side of
the asymptote rectangle to the other, is called the conjugate axis of the hyperbola.

Given an equation of the form of equations (5) or (6), how can we find the coor-
dinates of the foci without memorizing or looking up the relation b2

 c2
 a2?

Just as with the ellipse, there is a simple geometric relationship in a hyperbola

y   
a

b
x
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x

y

F    (0,  c)

d1

d2

F   (0, c)

P   (x, y)

c   0
 d1   d2    Positive constant

x

y

b

 a a
0

 b

Asymptote
b
a

xy    

Asymptote
b
a

xy   

x2 y2

a2 b2   1

FIGURE 4 Asymptotes.



that enables us to get the same result using the Pythagorean theorem. To see this
relationship, we rewrite b2

 c2
 a2 in the form

c2
 a2

 b2 (11)

Note in the figures in Theorem 1 below that the distance from the center to a
focus is the same as the distance from the center to a corner of the asymptote
rectangle. Stated in another way:

A circle, with center at the origin, that passes through all four corners of the asymptote rectangle also

passes through all foci of hyperbolas with asymptotes determined by the diagonals of the rectangle.

We summarize all the preceding results in Theorem 1 for convenient reference.
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T H E O R E M  1
Standard Equations of a Hyperbola with Center at (0, 0)

1.

x intercepts:  a (vertices)

y intercepts: none

Foci: F  ( c, 0), F  (c, 0)

c2
 a2

 b2

Transverse axis length  2a

Conjugate axis length  2b

2.

x intercepts: none

y intercepts:  a (vertices)

Foci: F  (0,  c), F   (0, c)

c2
 a2

 b2

Transverse axis length  2a

Conjugate axis length  2b

[Note: Both graphs are symmetric with respect to the x axis, y axis, and
origin.]

y2

a2
 

x2

b2
 1

x2

a2
 

y2

b2
 1

b

c

 a a c c

 b

FF 
x

y

a

c

 b b

c

 c

 a

F

F 

x

y

E X P L O R E / D I S C U S S  1

The line through a focus F of a hyperbola that is perpendicular to the
transverse axis intersects the hyperbola in two points G and H. For each
of the two standard equations of a hyperbola with center (0, 0), find an
expression in terms of a and b for the distance from G to H.



Graphing Hyperbolas

Find the coordinates of the foci, find the lengths of the transverse and conjugate
axes, and graph the following equation:

9x2
 16y2

 144

S O L U T I O N

First, write the equation in standard form by dividing both sides by 144 and deter-
mine a and b:

9x2
 16y2

 144

a  4 and b  3

Foci: c2
 a2

 b2

 16  9

 25

c  5

Thus, the foci are F  ( 5, 0) and F  (5, 0).

Transverse axis length  2(4)  8

Conjugate axis length  2(3)  6

x2

16
 

y2

9
 1

9x2

144
 

16y2

144
 

144

144
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Hand-Drawn Solution

Locate the intercepts:

x intercepts: 4

y intercepts: none

Sketch the intercepts, and the asymp-
totes using the asymptote rectangle, then
sketch the hyperbola (Fig. 5).

FIGURE 5

c c
c

FF 
x

y

 5

6 6

5

Graphing Utility Solution

Solve for y:

9x2
 16y2

 144

 16y2
 144  9x2

y2
 (9x2

 144) 16

y   

This produces the functions y1 and

y2  whose graphs are shown in Figure 6.

FIGURE 6

 6

 9

6

9

 (9x2
 144) 16

 (9x2
 144) 16

 (9x2
 144) 16



Find the coordinates of the foci, find the lengths of the transverse and conjugate
axes, and graph the following equation:

16x2
 25y2

 400

Graphing Hyperbolas

Find the coordinates of the foci, find the lengths of the transverse and conjugate
axes, and graph the following equation:

16y2
 9x2

 144

S O L U T I O N

Write the equation in standard form:

16y2
 9x2

 144

a  3 and b  4

Foci: c2
 a2

 b2

 9  16

 25

c  5

Thus, the foci are F  (0,  5) and F  (0, 5).

Transverse axis length  2(3)  6

Conjugate axis length  2(4)  8

y2

9
 

x2

16
 1
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Hand-Drawn Solution

Locate the intercepts:

x intercepts: none

y intercepts: 3

Sketch the intercepts, and the
asymptotes using the asymptote
rectangle, then sketch the 
hyperbola (Fig. 7).

Graphing Utility Solution

Solve for y:

16y2
 9x2

 144

y2
 (9x2

 144) 16

y  

This produces the functions 

y1  and

y2   whose
graphs are shown in Figure 8.

 (9x2
 144) 16

 (9x2
 144) 16

 (9x2
 144) 16
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c

c

 c

F

F 

x

y

 6

6 6

6

FIGURE 7

FIGURE 8

 6

 9

6

9

Find the coordinates of the foci, find the lengths of the transverse and conjugate
axes, and graph the following equation:

25y2
 16x2

 400

Graphing Hyperbolas

Find the coordinates of the foci, find the lengths of the transverse and conjugate
axes, and graph the following equation:

2x2
 y2

 10

S O L U T I O N

2x2
 y2

 10

a  and b  

Foci: c2
 a2

 b2

 5  10

 15

c  

Thus, the foci are F  ( , 0) and F  ( , 0).

Transverse axis length  2   4.47

Conjugate axis length  2  6.32 10

 5

 15 15

 15

 10 5

x2

5
 

y2

10
 1
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Hand-Drawn Solution

Locate the intercepts:

x intercepts: 

y intercepts: none

Sketch the intercepts, and the asymptotes using
the asymptote rectangle, then sketch the hyper-
bola (Fig. 9).

 5

Graphing Utility Solution

Solve for y:

2x2
 y2

 10

y2
 2x2

 10

y   

This produces the functions y1 and

y2   whose graphs are shown in 
Figure 10.

 6

 9

6

9

 2x2
 10

 2x2
 10

 2x2
 10

 c c

c

F F
x

y

 5

5 5

5

FIGURE 9 FIGURE 10

Find the coordinates of the foci, find the lengths of the transverse and conjugate
axes, and graph the following equation:

y2
 3x2

 12

Hyperbolas of the form

and M, N  0

are called conjugate hyperbolas. In Examples 1 and 2 and in Matched Problems
1 and 2, the hyperbolas are conjugate hyperbolas—they share the same asymptotes.

y2

N
 

x2

M
 1

x2

M
 

y2

N
 1

Finding the Equation of a Hyperbola

Find an equation of a hyperbola in the form

M, N  0
y2

M
 

x2

N
 1

C A U T I O N

When making a quick sketch of a hyperbola, it is a common error to
have the hyperbola opening up and down when it should open left and
right, or vice versa. The mistake can be avoided if you first locate the
intercepts accurately.



FIGURE 11 Asymptote rectangle.

if the center is at the origin, and:

(A) Length of transverse axis is 12 (B) Length of transverse axis is 6
Length of conjugate axis is 20 Distance of foci from center is 5

S O L U T I O N S

(A) Start with

and find a and b:

a   6 and b   10

Thus, the equation is

(B) Start with

and find a and b:

a   3

To find b, sketch the asymptote rectangle (Fig. 11), label known parts,
and use the Pythagorean theorem:

b2
 52

 32

 16

b  4

Thus, the equation is

Find an equation of a hyperbola in the form

M, N  0
x2

M
 

y2

N
 1

y2

9
 

x2

16
 1

6

2

y2

a2
 

x2

b2
 1

y2

36
 

x2

100
 1

20

2

12

2

y2

a2
 

x2

b2
 1
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b b

5 3

F 

F

x

y

 5

5



if the center is at the origin, and:

(A) Length of transverse axis is 50 (B) Length of conjugate axis is 12
Length of conjugate axis is 30 Distance of foci from center is 9

Applications
You may not be aware of the many important uses of hyperbolic forms. They are
encountered in the study of comets; the loran system of navigation for pleasure
boats, ships, and aircraft; sundials; capillary action; nuclear reactor cooling tow-
ers; optical and radiotelescopes; and contemporary architectural structures. The
TWA building at Kennedy Airport is a hyperbolic paraboloid, and the St. Louis
Science Center Planetarium is a hyperboloid. With such structures, thin concrete
shells can span large spaces [Fig. 12(a)]. Some comets from outer space occa-
sionally enter the sun’s gravitational field, follow a hyperbolic path around the sun
(with the sun as a focus), and then leave, never to be seen again [Fig. 12(b)].
Example 5 illustrates the use of hyperbolas in navigation.

Navigation

A ship is traveling on a course parallel to and 60 miles from a straight shore-
line. Two transmitting stations, S1 and S2, are located 200 miles apart on the
shoreline (Fig. 13). By timing radio signals from the stations, the ship’s navigator
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E X P L O R E / D I S C U S S  2

(A) Does the line with equation y  x intersect the hyperbola with
equation x2

 (y2 4)  1? If so, find the coordinates of all inter-
section points.

(B) Does the line with equation y  3x intersect the hyperbola with
equation x2

 (y2 4)  1? If so, find the coordinates of all inter-
section points.

(C) For which values of m does the line with equation y  mx

intersect the hyperbola ? Find the coordinates of all

intersection points.

x2

a2
 

y2

b2
 1

FIGURE 12 Uses of hyperbolic
forms.

Sun

Comet

St. Louis Planetarium
(a)

Comet around sun
(b)



FIGURE 13 d1  d2  50.

FIGURE 14

determines that the ship is between the two stations and 50 miles closer to S2

than to S1. Find the distance from the ship to each station. Round answers to one
decimal place.

S O L U T I O N

If d1 and d2 are the distances from the ship to S1 and S2, respectively, then 
d1 – d2  50 and the ship must be on the hyperbola with foci at S1 and S2 and
fixed difference 50, as illustrated in Figure 14. In the derivation of the equation
of a hyperbola, we represented the fixed difference as 2a. Thus, for the hyperbola
in Figure 14 we have:

c  100

a  (50)  25

b  

The equation for this hyperbola is

Substitute y  60 and solve for x (see Fig. 14):

Thus, x   29.41. (The negative square root is discarded, because the
ship is closer to S2 than to S1.)

Distance from ship to S1 Distance from ship to S2

Notice that the difference between these two distances is 50, as it should be.

 92.6 miles 142.6 miles

  8,582.9841  20,346.9841

d2   (29.41  100)2
 602d1   (29.41  100)2

 602

 865

 865

x2
 625

3,600  9,375

9,375

x2

625
 

3,600

9,375
 1

x2

625
 

602

9,375
 1

x2

625
 

y2

9,375
 1

 1002
 252

  9,375

1
2
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S1
S2

d1 d2

200 miles 

60 miles 

100 100

S1 S2
(x, 60)

x

y

200
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Repeat Example 5 if the ship is 80 miles closer to S2 than to S1.

Example 5 illustrates a simplified form of the loran (LOng RAnge Naviga-
tion) system. In practice, three transmitting stations are used to send out signals
simultaneously (Fig. 15), instead of the two used in Example 5. A computer
onboard a ship will record these signals and use them to determine the differ-
ences of the distances that the ship is to S1 and S2, and to S2 and S3. Plotting
all points so that these distances remain constant produces two branches, p1 and
p2, of a hyperbola with foci S1 and S2, and two branches, q1 and q2, of a hyper-
bola with foci S2 and S3. It is easy to tell which branches the ship is on by com-
paring the signals from each station. The intersection of a branch of each
hyperbola locates the ship and the computer expresses this in terms of longitude
and latitude.

FIGURE 15 Loran navigation.

Ship

S1
S2

S3

p1 p2

q1

q2

1.

2.

3.

4. (A) (B) 5. d1  159.5 miles, d2  79.5 miles
x2

45
 

y2

36
 1

x2

625
 

y2

225
 1

c c

c
F F

x2 y2

25 16
   1

Foci:  F     (  41, 0), F   ( 41, 0)
Transverse axis length   10
Conjugate axis length   8

x

y

 10

10 10

10

c

c

 c

F

F 

y2 x2

16 25
   1

Foci:  F     (0,   41), F   (0,  41)
Transverse axis length   8
Conjugate axis length   10

x

y

 10

10 10

10

c

c

 c F 

F

y2 x2

12 4
   1

Foci:  F     (0,  4), F   (0, 4)

Transverse axis length   2 12   6.93
Conjugate axis length   4

x

y

 6

5 5

6



11.3 Hyperbola 885

Sketch a graph of each equation in Problems 5–12, find the co-

ordinates of the foci, and find the lengths of the transverse and

conjugate axes.

5. 6.

7. 8.

9. 4x2
 y2

 16 10. x2
 9y2

 9

11. 9y2
 16x2

 144 12. 4y2
 25x2

 100

y2

25
 

x2

9
 1

y2

4
 

x2

9
 1

x2

9
 

y2

25
 1

x2

9
 

y2

4
 1

In Problems 1–4, match each equation with one of graphs

(a)–(d).

1. x2
 y2

 1 2. y2
 x2

 1

3. y2
 x2

 4 4. x2
 y2

 4

x
5 5

 5

5

y

x
5 5

 5

5

y

x
5 5

 5

5

y

x
5 5

 5

5

y

(a) (b)

(c) (d)

Sketch a graph of each equation in Problems 13–16, find the

coordinates of the foci, and find the lengths of the transverse

and conjugate axes.

13. 3x2
 2y2

 12 14. 3x2
 4y2

 24

15. 7y2
 4x2

 28 16. 3y2
 2x2

 24

In Problems 17–28, find an equation of a hyperbola in the form

or M, N  0

if the center is at the origin, and

y2

N
 

x2

M
 1

x2

M
 

y2

N
 1

17. The graph is

x

y

10 10

 10

10

(5, 4)



25. Transverse axis on x axis
Transverse axis length  18
Distance of foci from center  11

26. Transverse axis on x axis
Transverse axis length  16
Distance of foci from center  10

27. Conjugate axis on x axis
Conjugate axis length  14
Distance of foci from center  

28. Conjugate axis on x axis
Conjugate axis length  10
Distance of foci from center  

29. (A) How many hyperbolas have center at (0, 0) and a focus
at (1, 0)? Find their equations.

(B) How many ellipses have center at (0, 0) and a focus at
(1, 0)? Find their equations.

(C) How many parabolas have center at (0, 0) and focus at
(1, 0)? Find their equations.

30. How many hyperbolas have the lines y  2x as asymp-
totes? Find their equations.

31. Find all intersection points of the graph of the hyperbola
x2
 y2

 1 with the graph of each of the following lines:

(A) y  0.5x (B) y  2x

For what values of m will the graph of the hyperbola and
the graph of the line y mx intersect? Find the coordi-
nates of these intersection points.

32. Find all intersection points of the graph of the hyperbola
y2
 x2

 1 with the graph of each of the following lines:

(A) y  0.5x (B) y  2x

For what values of m will the graph of the hyperbola and
the graph of the line y mx intersect? Find the coordi-
nates of these intersection points.

33. Find all intersection points of the graph of the hyperbola 
y2
 4x2

 1 with the graph of each of the following lines:

(A) y  x (B) y  3x

For what values of m will the graph of the hyperbola and
the graph of the line y mx intersect? Find the coordi-
nates of these intersection points.

34. Find all intersection points of the graph of the hyperbola
4x2
 y2

 1 with the graph of each of the following lines:

(A) y  x (B) y  3x

For what values of m will the graph of the hyperbola and
the graph of the line y mx intersect? Find the coordi-
nates of these intersection points.

 70

 200

18. The graph is

19. The graph is

20. The graph is 

21. Transverse axis on x axis
Transverse axis length  14
Conjugate axis length  10

22. Transverse axis on x axis
Transverse axis length  8
Conjugate axis length  6

23. Transverse axis on y axis
Transverse axis length  24
Conjugate axis length  18

24. Transverse axis on y axis
Transverse axis length  16
Conjugate axis length  22

x

y

10 10

 10

10

(5, 3)

x

y

10 10

 10

10

(3, 5)

x

y

10 10

 10

10

(4, 5)
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35. Find an equation of the set of points in a plane each of
whose distance from (3, 0) is three-halves its distance
from the line x . Identify the geometric figure.

36. Find an equation of the set of points in a plane each of
whose distance from (0, 4) is four-thirds its distance from
the line y . Identify the geometric figure.9

4

4
3

37. Architecture. An architect is interested in designing a
thin-shelled dome in the shape of a hyperbolic paraboloid,
as shown in Figure (a). Find the equation of the hyperbola
located in a coordinate system [Fig. (b)] satisfying the in-
dicated conditions. How far is the hyperbola above the
vertex 6 feet to the right of the vertex? Compute the an-
swer to two decimal places.

(8, 12)

x

y

10 10

10

Hyperbola

Parabola

38. Nuclear Power. A nuclear reactor cooling tower is a
hyperboloid, that is, a hyperbola rotated around its conju-
gate axis, as shown in Figure (a). The equation of the hy-
perbola in Figure (b) used to generate the hyperboloid is

x2

1002
 

y2

1502
 1

Hyperbolic paraboloid
(a)

Hyperbola part of dome
(b)

Nuclear reactor cooling tower
(a)

x

y

 500

500 500

500

Hyperbola part of dome
(b)

Eccentricity. Problems 35 and 36 and Problems 35 and 36 in

Exercise 11.2 are related to a property of conics called eccen-

tricity, which is denoted by a positive real number E. Parabo-

las, ellipses, and hyperbolas all can be defined in terms of E, a

fixed point called a focus, and a fixed line not containing the

focus called a directrix as follows: The set of points in a plane

each of whose distance from a fixed point is E times its dis-

tance from a fixed line is an ellipse if 0  E  1, a parabola if

E  1, and a hyperbola if E  1.



For the receiving antenna shown in the figure, the common
focus F is located 120 feet above the vertex of the parabola,
and focus F (for the hyperbola) is 20 feet above the vertex.
The vertex of the reflecting hyperbola is 110 feet above the
vertex for the parabola. Introduce a coordinate system by
using the axis of the parabola as the y axis (up positive),
and let the x axis pass through the center of the hyperbola
(right positive). What is the equation of the reflecting hy-
perbola? Write y in terms of x.

Radiotelescope

If the tower is 500 feet tall, the top is 150 feet above the
center of the hyperbola, and the base is 350 feet below the
center, what is the radius of the top and the base? What is
the radius of the smallest circular cross section in the
tower? Compute answers to three significant digits.

39. Space Science. In tracking space probes to the outer planets,
NASA uses large parabolic reflectors with diameters equal to
two-thirds the length of a football field. Needless to say,
many design problems are created by the weight of these re-
flectors. One weight problem is solved by using a hyperbolic
reflector sharing the parabola’s focus to reflect the incoming
electromagnetic waves to the other focus of the hyperbola
where receiving equipment is installed (see the figure).

F 

F

Incoming
wave

Common
focus

Hyperbola

Hyperbola
focus

Receiving cone
Parabola
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(a)

(b)

Translation of Axes

Translation of Axes  Standard Equations of Translated Conics  Graphing Equations of the
Form Ax 2

 Cy 2
 Dx Ey F 0  Finding Equations of Conics

In Sections 11.1, 11.2, and 11.3 we found standard equations for parabolas, ellipses,
and hyperbolas located with their axes on the coordinate axes and centered rela-
tive to the origin. What happens if we move conics away from the origin while
keeping their axes parallel to the coordinate axes? We will show that we can obtain
new standard equations that are special cases of the equation 

Ax2
 Cy2

 Dx  Ey  F  0

where A and C are not both zero. The basic mathematical tool used in this
endeavor is translation of axes. The usefulness of translation of axes is not lim-
ited to graphing conics, however. Translation of axes can be put to good use in
many other graphing situations.



Translation of Axes
A translation of coordinate axes occurs when the new coordinate axes have the
same direction as and are parallel to the original coordinate axes. To see how coor-
dinates in the original system are changed when moving to the translated system,
and vice versa, refer to Figure 1.

A point P in the plane has two sets of coordinates: (x, y) in the original sys-
tem and (x , y ) in the translated system. If the coordinates of the origin of the
translated system are (h, k) relative to the original system, then the old and new
coordinates are related as given in Theorem 1.

It can be shown that these formulas hold for (h, k) located anywhere in the
original coordinate system.

Equation of a Curve in a Translated System

A curve has the equation

(x  4)2
 ( y  1)2

 36

If the origin is translated to (4,  1), find the equation of the curve in the trans-
lated system and identify the curve.

S O L U T I O N

Because (h, k)  (4,  1), use translation formulas

x  x  h  x  4

y  y  k  y  1

to obtain, after substitution,

x 2  y 2  36

This is the equation of a circle of radius 6 with center at the new origin. The
coordinates of the new origin in the original coordinate system are (4,  1)
(Fig. 2). Note that this result agrees with our general treatment of the circle in
Appendix A, Section A.3.
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FIGURE 1 Translation of
coordinates.

T H E O R E M  1
Translation Formulas

1. x  x  h 2. x  x  h

y  y  k y  y  k

x 

y 

x

y

0

(x, y)
(x , y )

(0 , 0 )

(0, 0)

(h, k)

0 

y y

x 

x

P



A curve has the equation ( y  2)2
 8(x  3). If the origin is translated to 

(3, 2), find an equation of the curve in the translated system and identify the  curve.

Standard Equations of Translated Conics
We now proceed to find standard equations of conics translated away from the
origin. We do this by first writing the standard equations found in earlier sections
in the x y coordinate system with 0 at (h, k). We then use translation equations
to find the standard forms relative to the original xy coordinate system. The equa-
tions of translation in all cases are

x  x  h

y  y  k

For parabolas we have

x 2  4ay (x  h)2
 4a( y  k)

y 2  4ax ( y  k)2
 4a(x  h)

For circles we have

x 2  y 2  r2 (x  h)2
 ( y  k)2

 r2

For ellipses we have for a  b  0

For hyperbolas we have

Table 1 summarizes these results with appropriate figures and some properties
discussed earlier.

(y  k)2

a2
 

(x  h)2

b2
 1

y 2

a2
 

x 2

b2
 1

(x  h)2

a2
 

(y  k)2

b2
 1

x 2

a2
 

y 2

b2
 1

(x  h)2

b2
 

( y  k)2

a2
 1

x 2

b2
 

y 2

a2
 1

(x  h)2

a2
 

( y  k)2

b2
 1

x 2

a2
 

y 2

b2
 1

FIGURE 2

(x  4)2
 ( y  1)2

 36.
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x

y y  

x 

 5

5

0 

10

5

A   (4,  1)
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T A B L E  1 Standard Equations for Translated Conics

Parabolas

(x  h)2
 4a(y  k) (y  k)2

 4a(x  h)

Circles

(x  h)2
 (y  k)2

 r2

Ellipses

a  b  0

Hyperbolas

x

y

(h, k)

Center (h, k)
Transverse axis 2a
Conjugate axis 2b

a

bx

y

(h, k)

Center (h, k)
Transverse axis 2a
Conjugate axis 2b

a

b

(y  k)2

a2
 

(x  h)2

b2
 1

(x  h)2

a2
 

(y  k)2

b2
 1

x

y

(h, k)

Center (h, k)
Major axis 2a
Minor axis 2b

a

b
x

y

(h, k)

Center (h, k)
Major axis 2a
Minor axis 2b

a
b

(x  h)2

b2
 

(y  k)2

a2
 1

(x  h)2

a2
 

(y  k)2

b2
 1

x

y

C   (h, k)

Center (h, k)
Radius r

r

x

y

V   (h, k)

Vertex (h, k)
Focus (h   a, k)
a   0 opens left
a   0 opens right

F

a

x

y

V   (h, k)

Vertex (h, k)
Focus (h, k   a)
a   0 opens up
a   0 opens down

a
F
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Graphing Equations of the Form 
Ax2
 Cy2

 Dx Ey F 0
It can be shown that the graph of

Ax2
 Cy2

 Dx  Ey  F  0 (1)

where A and C are not both zero, is a conic or a degenerate conic or that there
is no graph. If we can transform equation (1) into one of the standard forms in
Table 1, then we will be able to identify its graph and sketch it rather quickly.
The process of completing the square discussed in Section 2.3 will be our pri-
mary tool in accomplishing this transformation. A couple of examples should help
make the process clear.

Graphing a Translated Conic

Given the equation

y2
 6y  4x  1  0 (2)

(A) Transform the equation into one of the standard forms in Table 1 and iden-
tify the conic.

(B) Find the equation in the translated system.

(C) Graph the conic.

S O L U T I O N S

(A) Complete the square in equation (2) relative to each variable that is
squared—in this case y:

Add 9 to both sides to complete the square on

the left side.

(3)

From Table 1 we recognize equation (3) as an equation of a parabola
opening to the right with vertex at (h, k)  ( 2, 3).

(B) Find the equation of the parabola in the translated system with origin
0 at (h, k)  ( 2, 3). The equations of translation are read directly
from equation (3):

x  x  2

y  y  3

Making these substitutions in equation (3) we obtain

y 2  4x (4)

the equation of the parabola in the x y system.

 (y  3)2
 4(x  2)

y2
 6y           9  4x  8

y2
 6y  4x  1

y2
 6y  4x  1  0



Repeat Example 2 for the equation x2
 4x  4y  12  0.

Graphing a Translated Conic

Given the equation

9x2
 4y2

 36x  24y  36  0

(A) Transform the equation into one of the standard forms in Table 1 and iden-
tify the conic.

(B) Find the equation in the translated system.

(C) Graph the conic.

(D) Find the coordinates of any foci relative to the original system.
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(C) Hand-Drawn Solution

Graph equation (4) in the x y 
system following the process
discussed in Section 11.1. The
resulting graph is the graph of 
the original equation relative to
the original xy coordinate system
(Fig. 3).

FIGURE 3

x 

y 

5

5

x

y

A   ( 2, 3)

0 

Graphing Utility Solution

To graph on a graphing utility, we can solve either equation (2) or
equation (3) for y. Choosing equation (2) has the added benefit of
providing a check of the derivation of equation (3).

Quadratic equation with a 1, b  6, and 

c  4x 1

(5)

Figure 4 shows the graph of the two functions determined by equa-
tion (5) and the vertex of the parabola.

FIGURE 4

 3

 9

9

9

 3  2 2  x

 
6   32  16x

2

y  
6   36  4(1) ( 4x  1)

2(1)

y
2
 6y  4x  1  0



S O L U T I O N S

(A) Complete the square relative to both x and y.

9x2
 4y2

 36x  24y  36  0

9x2
 36x   4y2

 24y  36

9(x2
 4x )  4( y2

 6y )  36

9(x2
 4x  4)  4( y2

 6y  9)  36  36  36

9(x  2)2
 4( y  3)2

 36

 1

From Table 1 we recognize the last equation as an equation of a hyper-
bola opening left and right with center at (h, k)  (2,  3).

(B) Find the equation of the hyperbola in the translated system with ori-
gin 0 at (h, k)  (2,  3). The equations of translation are read
directly from the last equation in part A:

x  x  2

y  y  3

Making these substitutions, we obtain

the equation of the hyperbola in the x y system.

x 2

4
 

y 2

9
 1

(x  2)2

4
 

(y  3)2

9
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(C) Hand-Drawn Solution

Graph the equation ob-
tained in part B in the x y 
system following the
process discussed in Sec-
tion 11.3. The resulting
graph is the graph of the
original equation relative
to the original xy coordi-
nate system (Fig. 5).

FIGURE 5

x 

y 

x

y

5

5

 10

F 

 c c 

F

Graphing Utility Solution

We return to the original equation and use the quadratic formula to solve for y:

Write in the form ay2
 by c 0.

(6)

The two functions determined by equation (6) are graphed in Figure 6.

FIGURE 6

 10

 12

6

12

  3  1.5 x2
 4x

y  
 24  242

 4(4) ( 9x2
 36x 36)

8

 4y2
 24y  ( 9x2

 36x  36)  0

 9x2
 4y2

 36x  24y  36  0



(D) Find the coordinates of the foci. To find the coordinates of the foci in
the original system, first find the coordinates in the translated system:

c 2  22
 32

 13

c  

 c   

Thus, the coordinates in the translated system are

F    ( , 0) and F  ( , 0)

Now, use

x  x  h  x  2

y  y  k  y  3

to obtain

F    (  2,  3) and F  (  2,  3)

as the coordinates of the foci in the original system.

Repeat Example 3 for the equation

9x2
 16y2

 36x  32y  92  0

 13 13

 13 13

 13

 13
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E X P L O R E / D I S C U S S  1

If A  0 and C  0, show that the translation of axes x  x  ,

y  y  transforms the equation Ax2
 Cy2

 Dx  Ey  F  0

into an equation of the form Ax 2  Cy 2  K.

E

2C

D

2A

Finding Equations of Conics
We now reverse the problem: Given certain information about a conic in a rec-
tangular coordinate system, find its equation.

Finding the Equation of a Translated Conic

Find the equation of a hyperbola with vertices on the line x   4, conjugate axis
on the line y  3, length of the transverse axis  4, and length of the conjugate
axis  6.



S O L U T I O N

Locate the vertices, asymptote rectangle, and asymptotes in the original coordi-
nate system [Fig. 7(a)], then sketch the hyperbola and translate the origin to the
center of the hyperbola [Fig. 7(b)].

Next write the equation of the hyperbola in the translated system:

The origin in the translated system is at (h, k)  ( 4, 3), and the translation for-
mulas are

x  x  h  x  ( 4)  x  4

y  y  k  y  3

Thus, the equation of the hyperbola in the original system is

or, after simplifying and writing in the form of equation (1),

4x2
 9y2

 32x  54y  19  0

Find the equation of an ellipse with foci on the line x  4, minor axis on the line
y   3, length of the major axis  8, and length of the minor axis  4.

(y  3)2

4
 

(x  4)2

9
 1

y 2

4
 

x 2

9
 1

FIGURE 7
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x    4

y   3

b   3

a   2

x

y

5 5

5

y 

x 

x

y

5 5

5

(a) Asymptote rectangle (b) Hyperbola

E X P L O R E / D I S C U S S  2

Use the strategy of completing the square to transform each equation to
an equation in an x y coordinate system. Note that the equation you
obtain is not one of the standard forms in Table 1; instead, it is either
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the equation of a degenerate conic or the equation has no solution. If
the solution set of the equation is not empty, graph it and identify the
graph (a point, a line, two parallel lines, or two intersecting lines).

(A) x2
 2y2

 2x  16y  33  0

(B) 4x2
 y2

 24x  2y  35  0

(C) y2
 2y  15  0

(D) 5x2
 y2

 12y  40  0

(E) x2
 18x  81  0

1. y 2  8x ; a parabola
2. (A) (x  2)2

  4( y  4); a parabola (B) x 2   4y (C)

3. (A) ; ellipse (B) (C) 

(D) Foci: F  (  2, 1), F  (  2, 1)

4. , or 4x2
 y2

 32x  6y  57  0
(x  4)2

4
 

(y  3)2

16
 1

 7 7

x 

y y

x
 5

5

F F

x 2

16
 

y 2

9
 1

(x  2)2

16
 

(y  1)2

9
 1

y 

x 

x

y

 5

 5

5( 2, 4)

1. (x  3)2
 (y  5)2

 81; (3, 5)

2. (x  3)2
 8( y  2); (3,  2)

In Problems 1–8:

(A) Find translation formulas that translate the origin to the

indicated point (h, k).

(B) Write the equation of the curve for the translated system.

(C) Identify the curve.



In Problems 9–14:

(A) Write each equation in one of the standard forms listed in

Table 1.

(B) Identify the curve.

9. 16(x  3)2
 9( y  2)2

 144

10. (y  2)2
 12(x  3)  0

11. 6(x  5)2
 5(y  7)2

 30

12. 12(y  5)2
 8(x  3)2

 24

13. (x  6)2
 24(y  4)  0

14. 4(x  7)2
 7( y  3)2

 28

3. ; ( 7, 4)

4. (x  2)2
 ( y  6)2

 36; ( 2, 6)

5. ( y  9)2
 16(x  4); (4,  9)

6. ; ( 5, 9)

7. ; ( 8, 3)

8. ; ( 7, 8)
(x  7)2

25
 

(y  8)2

50
 1

(x  8)2

12
 

(y  3)2

8
 1

(y  9)2

10
 

(x  5)2

6
 1

(x  7)2

9
 

(y  4)2

16
 1
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In Problems 15–22, transform each equation into one of the

standard forms in Table 1. Identify the curve and graph it.

15. 4x2
 9y2

 16x  36y  16  0

16. 16x2
 9y2

 64x  54y  1  0

17. x2
 8x  8y  0

18. y2
 12x  4y  32  0

19. x2
 y2

 12x  10y  45  0

20. x2
 y2

 8x  6y  0

21.  9x2
 16y2

 72x  96y  144  0

22. 16x2
 25y2

 160x  0

In Problems 23–26, complete the square in each equation,

identify the transformed equation, and graph.

23. x2
 2x  y2

 4y  5  0

24. x2
 6x  2y2

 4y  11  0

25. x2
 8x  4y2

 8y  12  0

26. x2
 4x  y2

 6y  5  0

27. If A  0, C  0, and E  0, find h and k so that the trans-
lation of axes x x  h, y y  k transforms the equa-
tion Ax2

 Cy2
 Dx  Ey  F  0 into one of the

standard forms of Table 1.

28. If A  0, C  0, and D  0, find h and k so that the trans-
lation of axes x x  h, y y  k transforms the equa-
tion Ax2

 Cy2
 Dx  Ey  F  0 into one of the

standard forms of Table 1.

In Problems 29–40, use the given information to find the equa-

tion of each conic. Express the answer in the form 

Ax2
 Cy2

 Dx Ey F 0 with integer coefficients

and A  0.

29. A parabola with vertex at (2, 5), axis the line x  2, and
passing through the point ( 2, 1).

30. A parabola with vertex at (4,  1), axis the line y  1,
and passing through the point (2, 3).

31. An ellipse with major axis on the line y   3, minor axis
on the line x  2, length of major axis  8, and length
of minor axis  4.

32. An ellipse with major axis on the line x   4, minor axis
on the  line y 1, length of major axis  4, and length of
minor axis  2.

33. An ellipse with vertices (4,  7) and (4, 3) and foci 
(4,  6) and (4, 2).

34. An ellipse with vertices ( 3, 1) and (7, 1) and foci 
( 1, 1) and (5, 1).

35. A hyperbola with transverse axis on the line x 2, length
of transverse axis  4, conjugate axis on the line y  3,
and length of conjugate axis  2.

36. A hyperbola with transverse axis on the line y  5,
length of transverse axis  6, conjugate axis on the line 
x  2, and length of conjugate axis  6.



37. An ellipse with the following graph:

38. An ellipse with the following graph:

x

y

5 5

 5

5

( 5,  2)
( 1,  2)

( 3,  3)

( 3,  1)

x

y

5 5

 5

5( 2, 4)

( 1, 1)

( 2,  2)

( 3, 1)

39. A hyperbola with the following graph:

40. A hyperbola with the following graph:

x

y

5 5

 5

5

(3, 1)

(3,  3)

(2,  2)

(2, 0)

x

y

 5

 5

5

(4, 4)

(2, 2)

( 2, 4)

(0, 2)
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44. Problem 18

45. Problem 21

46. Problem 22

Rotation of Axes

Rotation of Axes  Rotation Used in Graphing  Identifying Conics

In Section 11.4 we found that when B   0, the graph of

Ax2
 Bxy  Cy2

 Dx  Ey  F  0 A, B, C not all 0 (1)

is a conic or a degenerate conic or there is no graph. What happens if B  0 in
equation (1)? In this case we will show that a suitable rotation of axes can be
used to transform equation (1) into a new equation in x and y with no x y term.

In Problems 41–46, find the coordinates of any foci relative to

the original coordinate system.

41. Problem 15

42. Problem 16

43. Problem 17



Then we can proceed as before to find the standard form and the graph for this
new equation. Thus, except for degenerate cases, the graph of a general second
degree equation in two variables [equation (1)] is always one of the conics: a cir-
cle, a parabola, an ellipse, or a hyperbola.

Rotation of Axes

We now introduce a transformation of coordinates from an xy system to an x y 
system that is accomplished by a rotation of axes. The origin is kept fixed and
the x and y axes are obtained by rotating the x and y axes counterclockwise, as
shown in Figure 1. Referring to Figure 1 and using trigonometry, we have

x  r cos  y  r sin  (2)

and

x   r cos(     ) y   r sin(     ) (3)

Using addition identities from trigonometry for the equations in (3), we obtain

x   r cos(     )

 r (cos  cos   sin  sin  )

 r cos  cos   r sin  sin  

 (r cos  )cos   (r sin  ) sin  

 x cos   y sin  (4)

y  r sin(   )

 r (sin  cos   cos  sin  )

 r sin  cos   r cos  sin  

 (r cos  )sin   (r sin  )cos  

 x sin   y cos  (5)

Thus, equations (4) and (5) together transform the xy coordinate system into the
x y coordinate system.

Equations (4) and (5) can be solved for x and y in terms of x and y to pro-
duce formulas that transform the x y coordinate system back into the xy coordi-
nate system. Omitting the details, the formulas for the transformation in the
reverse direction are

x  x cos   y sin  y   x sin   y cos  (6)

These results are summarized in Theorem 1.
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FIGURE 1

Substitute x   r cos  

and y   r sin  

Substitute x   r cos  

and y   r sin  

x 

y 

x

y

0

(x , y )
(x, y)

r

P



 

0 
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T H E O R E M  1
Rotation Formulas

If the xy coordinate axes are rotated counterclockwise through an angle
of  then the xy and x y coordinates of a point P are related by:

1. x   x cos   y sin  2. x  x cos   y sin  

y   x sin   y cos  y     x sin   y cos  

These formulas hold for P any point in the original coordinate system and  
any counterclockwise rotation.

E X P L O R E / D I S C U S S  1

Let  be the first quadrant angle satisfying sin   and cos   

and let an xy coordinate system be transformed into an x y coordinate
system by a counterclockwise rotation through the angle  .

(A) Sketch the x y coordinate system in the xy coordinate system.

(B) Express x and y in terms of x and y.

(C) Solve x  0 to find the equation of the y axis in the xy
coordinate system.

(D) Solve y  0 to find the equation of the x axis in the xy
coordinate system.

(E) Use the results found in parts C and D to graph the x y 
coordinate system in the xy coordinate system on a graphing util-
ity, using a squared viewing window.

4
5

3
5

Rotation Used in Graphing
We now investigate how rotation formulas are used in graphing. 

Using the Rotation of Axes Formulas

Transform the equation xy   2 using a rotation of axes through 45 . Graph the
new equation and identify the curve. Check by graphing on a graphing utility.
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Use the rotation formulas:

x  x cos 45  y sin 45  (x  y )

y  x sin 45  y cos 45  (x  y )

xy   2

(x  y ) (x  y )    2

(x 
2

 y 
2)   2

 2

This is a standard equation for a hyperbola. Summa-
rizing, the graph of xy   2 in the x y coordinate
system is a hyperbola with equation

and the graph shown in Figure 2.

FIGURE 2

Notice that the asymptotes in the rotated system are
the x and y axes in the original system.

x y 

 
2

 
2

22
45 

x

y

y 
2

4
 

x 
2

4
 1

y 
2

4
 

x 
2

4
 1

x 
2

2
 

y 
2

2
 

1

2

 2

2

 2

2

 2

2

 2

2

Graphing Utility Check

To graph xy    2 on a graphing utility, we must
solve for y:

To find equations for the x and y axes in the xy
coordinate system, we use part 2 of Theorem 1 to
write

x    x cos 45  y sin 45    (x  y)

y   x sin 45  y cos 45  ( x  y)

Equations for the y and x axes in the xy coordi-
nate system can be found by solving the 
equations x    0 and y    0 respectively.

y axis

x axis

Entering y1   2/x, y2   x, and y3   x and
graphing in a squared viewing window produces 
the graph of the rotated hyperbola (Fig. 3).

FIGURE 3

 4

 6

4

6

y  x

 x  y  0

y  
 2

2
 ( x  y)  0

y   x

x  y  0

x  
 2

2
 (x  y)  0

 2

2

 2

2

y   
2

x

xy   2

Transform the equation 2xy  1 using a rotation of axes through 45 . Graph the
new equation and identify the curve. Check by graphing on a graphing utility.

In Example 1, a 45 rotation transformed the original equation into one with
no x y term. This made it easy to recognize that the graph of the transformed

S O L U T I O N



equation was a hyperbola. In general, how do we determine the angle of rotation
that will transform an equation with an xy term into one with no x y term? To
find out, we substitute

x  x cos   y sin  and y  x sin   y cos  

into equation (1) to obtain 

A(x cos   y sin  )2
 B(x cos   y sin  )(x sin   y cos  )

 C(x sin   y cos  )2
 D(x cos   y sin  )

 E(x sin   y cos  )  F  0

After multiplying and collecting terms, we have

A x 2  B x y  C y 2  D x  E y  F   0 (7)

where

B    2(C  A) sin  cos   B(cos2
  sin2

 ) (8)

For the x y term in equation (7) to drop out, B must be 0. We won’t worry about
A , C , D , and E at this point; they will automatically be determined once we
find  so that B    0. We set the right side of equation (8) equal to 0 and solve
for  :

2(C  A) sin  cos   B(cos2
  sin2

 )   0

Using the double-angle identities from trigonometry, sin 2    2 sin  cos  and
cos 2    cos2

  sin2
 , we obtain

(9)

Thus, if we choose  so that cot 2    (A  C)/B, then B    0 and the x y 
term in equation (7) will drop out. There is always an angle  between 0 and 90 
that solves equation (9), because the range of y   cot 2 for 0    90 is the
set of all real numbers (Fig. 4).

 cot 2   
A  C

B

cos 2 

sin 2 
 
A  C

B

B cos 2  (A  C ) sin 2 

 (C  A) sin 2  B cos 2  0
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FIGURE 4

T H E O R E M  2
Angle of Rotation to Eliminate the x y Term

To transform the equation

Ax2
 Bxy  Cy2

 Dx  Ey  F  0

into an equation in x and y with no x y term, find  so that 

cot 2    and 0    90 

and use the rotation formulas in Theorem 1.

A  C

B

y

 5

5

45 90 
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E X P L O R E / D I S C U S S  2

Find a rotation angle  that will eliminate the xy term in each of the
following equations.

(A) x2
 3xy  y2

 15

(B) 5x2
 2xy  3y2

 20

(C) 4x2
 xy  y2

 10 3

Identifying and Graphing an Equation with an xy Term

Given the equation 17x2
  6xy  9y2

 72, find the angle of rotation so that the
transformed equation will have no x y term. Sketch and identify the graph. Check
by graphing on a graphing utility.

S O L U T I O N

17x2
  6xy  9y2

 72 (10)

Thus, 2 is a quadrant II angle, and using the
reference triangle in the figure, we can see that 
cos 2  . We can find the rotation formulas 
exactly by the use of the half-angle identities

and

Using these identities, we obtain

sin    
1  ( 4

5)

2
 

3

 10

cos    
1  cos 2 

2

sin    
1  cos 2 

2

x

y

2

3

⫺4

 
4
5

cot 2  
A  C

B
 

17  9

 6
  

4

3

Graphing Utility Check

First use the quadratic formula to solve 
equation (10) for y:

This produces two functions,

To find equations for the x and y axes in the xy
coordinate system, we use part 2 of Theorem 1 to
write

x  
1

 10
x  

3

 10
y

y2  
6x   2,592  576x2

18

y1  
6x   2,592  576x2

18

 
6x   2,592  576x2

18

y  
6x   ( 6x)2

 4(9)(17x2
 72)

2(9)

9y2
 6xy 17x2

 72  0

17x2
 6xy  9y2

 72

Use a 9,b  6x

and c 17x 2
 72 in 

the quadratic formula.
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and

Hence, the rotation formulas are

and (11)

Substituting equations (11) into equation (10), 
we have

Further simplification leads to

which is a standard equation for an ellipse. To graph,
we rotate the original axes through an angle  deter-
mined as follows:

We could also use either 

to determine the angle of rotation. Summarizing
these results, the graph of 17x2

 6xy  9y2
 72 in

the x y coordinate system formed by a rotation of
71.57 is an ellipse with equation

x 
2

9
 

y 
2

4
 1

sin   
3

 10
  or  cos   

1

 10

  71.57 

 2  143.1301 

 cot 2    
4

3

x 
2

9
 

y 
2

4
 1

9

10
(3x  y )2

 72

17

10
 (x  3y )2

 
6

10
 (x  3y )(3x  y )  

9 3

 10
x  

1

 10
 y  

2

 72

6 1

 10
 x  

3

 10
y   3

 10
 x  

1

 10
 y   

17 1

 10
x  

3

 10
 y  

2

 

y  
3

 10
x  

1

 10
y 

x  
1

 10
x  

3

 10
y 

cos    1  ( 4
5)

2
 

1

 10

and

As before, equations for the y and x axes in the 
xy coordinate system can be found by solving the
equations x    0 and y    0 respectively.

y axis

x axis

Entering y1, y2, and the equations for the x and y 

axes (Fig. 6) and graphing in a squared viewing
window produces the graph of a rotated ellipse 
(Fig. 7).

FIGURE 6

y   3x

1

 10
y  

3

 10
x

y   
3

 10
 x  

1

 10
 y  0

y   
x

3

3

 10
y   

1

 10
x

x  
1

 10
 x  

3

 10
 y  0

y   
3

 10
x  

1

 10
y
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and the graph shown in Figure 5.

FIGURE 5

x

y

 
3

 
2

3

2

x
 

y
 

FIGURE 7

 4

 6

4

6

Given the equation 3x2
 26 xy  23y2

 144, find the angle of rotation so
that the transformed equation will have no x y term. Sketch and identify the
graph. Check by graphing on a graphing utility.

Identifying Conics
The discriminant of the general second-degree equation in two variables
[equation (1)] is B2

 4AC. It can be shown that the value of this expression does
not change when the axes are rotated. This forms the basis for Theorem 3.

 3

T H E O R E M  3
Identifying Conics

The graph of the equation 

Ax2
  Bxy  Cy2

  Dx  Ey  F  0

is, excluding degenerate cases, 

1. A hyperbola if B2
 4AC  0

2. A parabola if B2
 4AC  0

3. An ellipse if B2
 4AC  0

The proof of Theorem 3 is beyond the scope of this book. Its use is best illus-
trated by example.

Identifying and Graphing Conics

Identify the following conics and graph on a graphing utility.

(A) x2
 xy  y2

 5

(B) x2
 xy  y2

 5

(C) x2
 4xy  4y2

 x  5
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S O L U T I O N S

(A) The discriminant is 

B2
  4AC  ( 1)2

 4(1)(1)  1  4   3  0

Thus, this conic is an ellipse. Now we use the quadratic formula to
solve for y.

a 1, b  x, and c x
2
 5

Graphing

produces the rotated ellipse in Figure 8.

(B) B2
 4AC  ( 1)2

 4(1)( 1)  1  4  5  0
This conic is a hyperbola.

a 1, b x, and c 5  x
2

Graphing

produces the rotated hyperbola in Figure 9.

(C) B2
 4AC  ( 4)2

 4(1)(4)  16  16  0
This conic is a parabola.

a 1, b  4x, and c 4x2
 x 5

 
4x   20  4x

2

y  
4x   ( 4x)2

 4(1)(4x2
 x  5)

2

y2
 4xy  4x2

 x  5  0

x2
 4xy  y2

 x  5

y1  
 x   5x2

 20

2
  and  y2  

 x   5x2
 20

2

 
 x   5x2

 20

2

y  
 x   x2

 4(1)(5  x2)

2

y2
 xy  5  x2

 0

x2
 xy  y2

 5

y1  
x   20  3x2

2
  and  y2  

x   20  3x2

2

 
x   20  3x2

2

y  
x   ( x)2

 4(1)(x2
 5)

2

y2
 xy  x2

 5  0

x2
 xy  y2

 5

FIGURE 8

FIGURE 9

 4

 6

4

6

 4

 6

4

6



The graphs of

are shown in Figure 10. Because we know the graph is a parabola, we
must enlarge the viewing window to find the vertex. Adjusting the view-
ing window produces the graph of the rotated parabola in Figure 11.

Identify the following conics and graph on a graphing utility.

(A) x
2

 xy  2y2
 10

(B) x
2

 xy  2y2
 10

(C) x
2

 2xy  y
2

 x  10

y1  
4x   20  4x

2
  and  y2  

4x   20  4x

2
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FIGURE 10

FIGURE 11

1. x 
2

 y 
2

 1; hyperbola 2.

3. (A) Ellipse (B) Hyperbola (C) Parabola

 12

 18

12

18

 4

 6

4

6

 4

 6

4

6

 4

 6

4

6

 2

 3

2

3

x 

y 

 
3

 
2

3
2

x

y

x 

 
1

 
1

11

y 

x

y

x 
2

9
 

y 
2

4
 1;   30 ; hyperbola

 4

 6

4

6

 12

 18

12

18



In Problems 9–12, find the transformed equation when the axes

are rotated through the indicated angle. Sketch and identify the

graph.

9. x2
 y2

 49,   45 10. x2
 y2

 25,   60 

11. 2x2
 xy  y2

 10  0,   30 

12. x2
 8xy  y2

 75  0,   45 

In Problems 13–18, find the angle of rotation so that the trans-

formed equation will have no x y term. Sketch and identify the

graph.

13. x2
 4xy  y2

 12 14. x2
 xy  y2

 6

15. 8x2
 4xy  5y2

 36 16. 5x2
 4xy  8y2

 36

 3

17. x2
 2 xy  3y2

 16 x  16y  0

18. x2
 2 xy  3y2

 8 x  8y  0

In Problems 19–24, use the discriminant to identify each

graph. Graph on a graphing utility.

19. 13x2
 10xy  13y2

 72  0

20. 3x2
 10xy  3y2

 8  0

21. x2
 6 xy  5y2

 8  0

22. 16x2
 24xy  9y2

 15x  20y  0

23. 16x2
 24xy  9y2

 60x  80y  0

24. 7x2
 6 xy  13y2

 16  0 3

 3

 3 3

 3 3
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In Problems 1–4, find the x y coordinates of the given points if

the coordinate axes are rotated through the indicated angle.

1. (1, 0), (0, 1), (1,  1), ( 3, 4),     30 

2. (1, 0), (0, 1), ( 1, 2), ( 2, 5),     60 

3. (1, 0), (0, 1), ( 1,  2), (1,  3),     45 

4. (1, 1), ( 1,  1), (1,  1), ( 1, 1),     90 

In Problems 5–8, find the equations of the x and y axes in

terms of x and y if the xy coordinate axes are rotated through

the indicated angle.

5.     30 6.     60 

7.     45 8.     90 

In Problems 25 and 26, use a rotation followed by a translation

to transform each equation into a standard form. Sketch and

identify the curve.

25. x2
 2 xy  3y2

 8 x  8y  4  0

26. 73x2
 72xy  52y2

 260x  320y  400  0

 3 3

Nonlinear Systems

Solution by Substitution  Solution by Elimination  Modeling with Nonlinear Systems

In Chapters 8 and 9 we considered systems of equations in which each equation
in the system was linear. If a system of equations contains any equations that
are not linear, then the system is called a nonlinear system. In Section 11.6 we



investigate nonlinear systems that involve at least one second-degree quadratic
equation, such as

x
2
 y

2
 5 x

2
 2y2

 2 x
2
 y

2
 5

3x  y  1 xy  2 x
2
 2y2

 17

It can be shown that such systems have at most four solutions, some of which
may be imaginary. Because we are interested in finding both real and imaginary
solutions to the systems we consider, we consider the replacement set for each
variable to be the set of complex numbers.

Solution by Substitution
The substitution method used to solve linear systems of two equations in two vari-
ables is also an effective method for solving nonlinear systems. This process is
best illustrated by examples.

Solving a Nonlinear System by Substitution

Solve the system x2
 y

2
 5

3x  y  1

11 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY910

S O L U T I O N

Algebraic Solution

Solve the second equation for y in terms of x;
then substitute for y in the first equation to 
obtain an equation that involves x alone.

3x  y  1

y  1  3x

x
2
 y

2
 5

x
2
 (1  3x)2

 5

10x2
 6x  4  0

5x2
 3x  2  0

(x  1)(5x 2)  0

x  1,  0.4

If we substitute these values back into the
equation y  1  3x, we obtain two solutions 
to the system:

x  1 x   0.4

y 1 3(1)  2 y 1 3( 0.4) 2.2

A check, which you should provide, verifies that 
(1, 2) and ( 0.4, 2.2) are both solutions to the
system.

Graphical Solution

We enter two equations to graph the circle and one to
graph the line (Fig. 1). Using the intersect command, 
we find two solutions, (1,  2) (Fig. 2) and ( 0.4, 2.2)
(Fig. 3).

 4

 6

4

6

FIGURE 3

 4

 6

4

6

Substitute this expression

for y in the first equation.

Simplify and write in stan-

dard quadratic form.
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Solve the system x2
 y2

 10

2x  y  1

Refer to the algebraic solution of Example 1. If we substitute x  1 and 
x   0.4 back into the equation x2

 y2
 5, we obtain

x  1 x   0.4

12
 y2

 5 ( 0.4)2
 y2

 5

y2
 4 y2

 4.84

y   2 y   2.2

It appears that we have found two additional solutions, (1, 2) and ( 0.4,  2.2).
But neither of these solutions satisfies the equation 3x  y  1, which you should
verify. So, neither is a solution to the original system. We have produced two
extraneous roots, apparent solutions that do not actually satisfy both equations
in the system. This is a common occurrence when solving nonlinear systems.

It is always important to check the solutions of any nonlinear systems to ensure that extraneous roots

have not been introduced.

Solving a Nonlinear System by Substitution

Solve x2
 2y2

 2

xy  2

E X P L O R E / D I S C U S S  1

In Example 1, we saw that the line 3x  y  1 intersects the circle 
x2
 y2

 5 in two points.

(A) Consider the system   x2
 y2

 5

3x  y  10

Are there any real solutions to this system? Are there any complex
solutions? Find any real or complex solutions.

(B) Consider the family of lines given by

3x  y  b b any real number

What do all these lines have in common? Illustrate graphically the
lines in this family that intersect the circle x2

 y2
 5 in exactly

one point. How many such lines are there? What are the corre-
sponding value(s) of b? What are the intersection points? How are
these lines related to the circle?
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Algebraic Solution

Solve the second equation for y, substitute in 
the first equation, and proceed as before.

xy  2

x4
 2x2

 8  0

u2
 2u  8  0

(u  4)(u  2)  0

u  4,  2

Thus,

x2
 4 or x2

  2

x   2

For x  2, y   1

For x   2, y    1

For 

For 

Thus, the four solutions to this system are (2, 1),
( 2,  1), (i ,  i ), and ( i , i ).
You should check that each of these satisfies
both equations in the system.

 2 2 2 2

x   i 2, y  
2

 i 2
 i 2

x  i 2, y  
2

i 2
  i 2

2

 2

2

2

x     2   i 2

x2
 

8

x2
 2

x2
 2 2

x 
2

 2

y  
2

x

Graphical Solution

Solving the first equation for y, we have

x2
 2y2

 2

 2y2
  x2

 2

y2
 0.5x2

 1

We enter these two equations and y 2 x (Fig. 4) in a
graphing utility. Using the intersect command, we find
the two real solutions, (2, 1) (Fig. 5) and ( 2, 1)
(Fig. 6). But we cannot find the two complex solutions.

FIGURE 4

FIGURE 5

FIGURE 6

 4

 6

4

6

 4

 6

4

6

y    0.5x2
 1

Multiply both sides by x2

and simplify.

Substitute u x2 to 

transform to quadratic

form and solve.

Multiply both sides by . 1

 2
  0.5

Solve 3x2
 y2

 6

xy  3

Compare the two solutions in Example 2. The algebraic solution found all four
solution points, two real and two imaginary. But the graphical solution only found

S O L U T I O N
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the two real solution points. This is true in general: Graphical methods can never
be used to find imaginary solutions.

Solution by Elimination
Just as with systems of linear equations, we can add a multiple of one equation
to another equation to produce an equivalent system—a system with the same
solution set. Certain nonlinear systems can be solved in this manner.

Solving a Nonlinear System by Elimination

Solve x2
 y2

 5

x2
 2y2

 17

S O L U T I O N

Algebraic Solution

Multiplying the second equation by
 1 and adding it to the first equa-
tion will eliminate x2:

x2
 y2

 5

 x2
 2y2

  17

 3y2
  12

y2
 4

y   2

Now substitute y2
 4 back into

either original equation to find x.

x2
 y2

 5

x2
 4  5

x2
 9

x   3

Thus, (3,  2), (3, 2), ( 3, 2),
and ( 3, 2) are the four solutions
to the system. The check of the 
solution is left to you.

Graphical Solution

Solving each equation in the origi-
nal system for y produces the four
functions shown in Figure 7. The
graph is shown in Figure 8. Using
intersect four times (details omit-
ted) shows that the solutions are
(3,  2), (3, 2), ( 3, 2),
and ( 3, 2).

FIGURE 7

FIGURE 8

 4

 6

4

6

Solve 2x2
 3y2

 5

3x2
 4y2

 16
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Solving a Nonlinear System by Elimination

Solve x2
 y2

 25

x2
 y2

 7

S O L U T I O N

Algebraic Solution

Adding the second equation to the
first eliminates y2.

x2
 y2

 25

x2
 y2

 7

2x2
 32

x2
 16

x   4

Now substitute x2
 16 back into 

either original equation to find y.

x2
 y2

 7

16  y2
 7

y2
  9

y     3i

Thus, (4,  3i), (4, 3i), ( 4, 3i),
and ( 4,  3i) are the four solu-
tions to the system. The check of 
the solutions is left to you.

  9

Graphical Solution

Solving each equation in the origi-
nal system for y produces the four
functions shown in Figure 9. The
graph (Fig. 10) shows that there are
no real solutions. As before, the
imaginary solutions cannot be
found graphically.

FIGURE 9

FIGURE 10

 6

 9

6

9

Solve y2
 2x2

 25

y2
  x2

 1

Modeling with Nonlinear Systems

Design

An engineer is to design a rectangular computer screen with a 19-inch diagonal
and a 175-square-inch area. Find the dimensions of the screen to the nearest tenth
of an inch.
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Algebraic Solution

Sketch a rectangle letting x be the width and y the height 
(Fig. 11). We obtain the following system using the Pythagorean
theorem and the formula for the area of a rectangle:

x
2
 y

2
 192

xy  175

This system is solved by substitution. We are only interested in
real solutions. We start by solving the second equation for y in
terms of x and substituting the result into the first equation.

Multiply both sides by x2 and simplify.

x
4
 361x2

 30,625  0 Simplify quadratic in x2.

Solve the last equation for x2 using the quadratic formula,
then solve for x:

 15.0 inches or 11.7 inches

Substitute each choice of x into y  175 x to find the corre-
sponding y values:

For x  15.0 inches, For x 11.7 inches,

inches inches

Assuming the screen is wider than it is high, the dimensions
are 15.0 by 11.7 inches.

y  
175

11.7
 15.0y  

175

15
 11.7

x   361   3612
 4(1)(30,625)

2

x
4
 30,625  361x2

x
2
 

1752

x
2
 192

y  
175

x

Graphical Solution

Figure 12 shows the three functions re-
quired to graph this system. The graph is
shown in Figure 13. We are only inter-
ested in the solutions in the first quad-
rant. Zooming in and using intersect
produces the results in Figures 14 and
15. Assuming that the screen is wider
than it is high, its dimensions are 15.0 by
11.7 inches.

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15

10

8

16

18

10

8

16

18

 40

 60

40

60

S O L U T I O N

19 in
ch

es

x

y

FIGURE 11
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An engineer is to design a rectangular television screen with a 21-inch diagonal
and a 209-square-inch area. Find the dimensions of the screen to the nearest tenth
of an inch.

A seismograph is a machine that records the waves generated by an earth-
quake. It can determine the distance from the recording machine to the epicenter
of the quake, but not the direction. A reading from a single station places the epi-
center somewhere on a circle. A reading from a second station places the epi-
center at one of the two intersection points of two circles. A reading from a third
station determines the precise location of the epicenter. This procedure for locat-
ing the epicenter is called triangulation. Example 6 illustrates this process.

Triangulation

Seismographs are located at three stations. Station B is 500 miles east and 100
miles north of station A. Station C is 100 miles east and 600 miles north of sta-
tion A. Readings from the three stations indicate that the epicenter of an earth-
quake is 300 miles from station A, 288 miles from station B, and 425 miles from
station C. Use triangulation and a graphing utility to locate the epicenter of the
earthquake relative to station A. Round answers to the nearest mile.

S O L U T I O N

Because the locations of stations B and C are given in terms of station A, we
introduce a coordinate system with station A at the origin (Fig. 16). Then we add
station B at (500, 100) and station C at (100, 600). The epicenter is located at the
intersection of the following three circles:

x
2
 y

2
 3002 Station A

(x  500)2
 ( y  100)2

 2882 Station B

(x  100)2
 ( y  600)2

 4252 Station C

Solving these equations for y produces six functions (Fig. 17). Graphing the first
four functions in a square viewing window and using intersect shows that the first
two circles intersect at (228, 195) (Fig. 18) and (285,  92) (Fig. 19).

 400

 400

400

800

 400

 400

400

800

400 800
x

y

400

800

C

A
(0, 0)

(100, 600)

(500, 100)
B

FIGURE 16

FIGURE 17

FIGURE 18 FIGURE 19
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Graphing all six functions in a larger window and using trace shows that the third
circle passes through the point (228, 195) (Fig. 20). Thus, the epicenter of the
earthquake is 228 miles east and 195 miles north of station A.

Repeat Example 6 if the epicenter of an earthquake is 410 miles from station A,
310 miles from station B, and 338 miles from station C.

 400

 800

1200

1600

FIGURE 20

1. 2. 3. (2, 1), (2,  1), ( 2, 1), ( 2,  1)

4. 5. 17.1 by 12.2 inches
6. The epicenter is 270 miles east and 308 miles north of station A.

(2i 2, 3), (2i 2,  3), ( 2i 2, 3), ( 2i 2,  3)

( 3,  3), (  3,   3), (i, 3i), ( i, 3i)( 1, 3),  9

5
,  

13

5  

7. y2
 x 8. x2

 2y

x  2y  2 3x  y  2

9. 2x2
 y2

 24 10. x2
 y2

 3
x2
 y2

  12 x2
 y2

 5

11. x2
 y2

 10 12. x2
 2y2

 1
16x2

 y2
 25 x2

 4y2
 25

Solve each system in Problems 13–24.

13. xy  4  0 14. xy  6  0

x  y  2 x  y  4

15. x2
 2y2

 6 16. 2x2
 y2

 18

xy  2 xy  4

Solve each system in Problems 1–12.

1. x2
 y2

 169 2. x2
 y2

 25
x   12 y   4

3. 8x2
 y2

 16 4. y2
 2x

y  2x x  y  

5. 3x2
 2y2

 25 6. x2
 4y2

 32
x  y  0 x  2y  0

1
2



11 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY918

17. 2x2
 3y2

  4 18. 2x2
 3y2

 10
4x2
 2y2

 8 x2
 4y2

  17

19. x2
 y2

 2 20. x2
 y2

 20
y2
 x x2

 y

21. x2
 y2

 9 22. x2
 y2

 16
x2
 9  2y y2

 4  x

23. x2
 y2

 3 24. y2
 5x2

 1
xy  2 xy  2

An important type of calculus problem is to find the area 

between the graphs of two functions. To solve some of these

problems it is necessary to find the coordinates of the points

of intersection of the two graphs. In Problems 25–32, find the

coordinates of the points of intersection of the two given

equations.

25. y  5  x2, y  2  2x 26. y  5x  x2, y  x  3

27. y  x2
 x, y  2x 28. y  x2

 2x, y  3x

29. y  x2
 6x  9, y  5  x

30. y  x2
 2x  3, y  2x  4

31. y  8  4x  x2, y  x2
 2x

32. y  x2
 4x  10, y  14  2x  x2

33. Consider the circle with equation x2
 y2

 5 and the
family of lines given by 2x y  b, where b is any real
number.

(A) Illustrate graphically the lines in this family that inter-
sect the circle in exactly one point, and describe the re-
lationship between the circle and these lines.

(B) Find the values of b corresponding to the lines in part
A, and find the intersection points of the lines and the

circle.

(C) How is the line with equation x  2y  0 related to
this family of lines? How could this line be used to
find the intersection points in part B?

34. Consider the circle with equation x2
 y2

 25 and the
family of lines given by 3x 4y  b, where b is any real
number.

(A) Illustrate graphically the lines in this family that inter-
sect the circle in exactly one point, and describe the re-
lationship between the circle and these lines.

(B) Find the values of b corresponding to the lines in part
A, and find the intersection points of the lines and the

circle.

(C) How is the line with equation 4x 3y 0 related to
this family of lines? How could this line be used to find

the intersection points and the values of b in part B?

35. Consider the system of equations

x2
 y  0

2x  y  b

where b is any real number. Determine the permissible val-
ues of b and describe verbally the graph of the system if:

(A) The system has two distinct real solutions.

(B) The system has one distinct real solution.

(C) The system has two distinct imaginary solutions.

36. Consider the system of equations

x2
 y  0

4x  y  b

where b is any real number. Determine the permissible val-
ues of b and describe verbally the graph of the system if:

(A) The system has two distinct real solutions.

(B) The system has one distinct real solution.

(C) The system has two distinct imaginary solutions.

Solve each system in Problems 37–44.

37. 2x  5y  7xy  8 38. 2x  3y  xy  16
xy  3  0 xy  5  0

39. x2
 2xy  y2

 1 40. x2
 xy  y2

  5
x  2y  2 y  x  3

41. 2x2
 xy  y2

 8 42. x2
 2xy  y2

 36
x2
 y2

 0 x2
 xy  0

43. x2
 xy  3y2

 3 44. x2
 2xy  2y2

 16
x2
 4xy  3y2

 0 x2
 y2

 0
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In Problems 45–50, use a graphing utility to find the real solu-

tions of each system to two decimal places.

45.  x2
 2xy  y2

 1 46.  x2
 4xy  y2

 2
3x2
 4xy  y2

 2 8x2
 2xy  y2

 9

47. 3x2
 4xy  y2

 2 48. 5x2
 4xy  y2

 4
2x2
 2xy  y2

 9 4x2
 2xy  y2

 16

49. 2x2
 2xy  y2

 9
4x2
 4xy  y2

 x  3

50. 2x2
 2xy  y2

 12
4x2
 4xy  y2

 x  2y  9

51. Numbers. Find two numbers such that their sum is 3 and
their product is 1.

52. Numbers. Find two numbers such that their difference is
1 and their product is 1. (Let x be the larger number and y
the smaller number).

53. Geometry. Find the lengths of the legs of a right triangle
with an area of 30 square inches if its hypotenuse is 13
inches long.

54. Geometry. Find the dimensions of a rectangle with an
area of 32 square meters if its perimeter is 36 meters long.

55. Design. An engineer is designing a small portable televi-
sion set. According to the design specifications, the set
must have a rectangular screen with a 7.5-inch diagonal
and an area of 27 square inches. Find the dimensions of
the screen.

56. Design. An artist is designing a logo for a business in the
shape of a circle with an inscribed rectangle. The diameter
of the circle is 6.5 inches, and the area of the rectangle is
15 square inches. Find the dimensions of the rectangle.

57. Television. High-definition television sets have screens
with a width-to-height ratio of 16 to 9. Find the dimen-
sions of a screen with a 60-inch diagonal. Round dimen-
sions to three significant digits.

58. Television. Traditional television sets have screens with a
width-to-height ratio of 4 to 3. Find the dimensions of a
screen with a 32-inch diagonal. Round dimensions to three
significant digits.

6.5 inches

59. Triangulation. Seismographs are located at three stations.
Station B is 400 miles due east of station A. Station C is
500 miles due north of station A. Readings from the three
stations indicate that the epicenter of an earthquake is 200
miles from station A, 320 miles from station B, and 363
miles from station C. Use triangulation and a graphing
utility to locate the epicenter of the earthquake. Express
the answer relative to station A and round values to the
nearest mile.

60. Triangulation. Seismographs are located at three stations.
Station B is 600 miles due east of station A. Station C is
500 miles due north of station A. Readings from the three
stations indicate that the epicenter of an earthquake is 400
miles from station A, 550 miles from station B, and 231
miles from station C. Use triangulation and a graphing
utility to locate the epicenter of the earthquake. Express
the answer relative to station A and round values to the
nearest mile.

 61. Construction. A rectangular swimming pool with a deck 
5 feet wide is enclosed by a fence as shown in the figure.
The surface area of the pool is 572 square feet, and the 
total area enclosed by the fence (including the pool and the
deck) is 1,152 square feet. Find the dimensions of the pool.

Fence

5 ft

5 ft

5 ft

5 ft

Pool
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  63. Transportation. Two boats leave Bournemouth, England,
at the same time and follow the same route on the 75-mile
trip across the English Channel to Cherbourg, France. The
average speed of boat A is 5 miles per hour greater than
the average speed of boat B. Consequently, boat A arrives
at Cherbourg 30 minutes before boat B. Find the average
speed of each boat.

  64. Transportation. Bus A leaves Milwaukee at noon and
travels west on Interstate 94. Bus B leaves Milwaukee 30
minutes later, travels the same route, and overtakes bus A
at a point 210 miles west of Milwaukee. If the average
speed of bus B is 10 miles per hour greater than the aver-
age speed of bus A, at what time did bus B overtake bus A?

 62. Construction. An open-topped rectangular box is formed
by cutting a 6-inch square from each corner of a rectangu-
lar piece of cardboard and bending up the ends and sides.
The area of the cardboard before the corners are removed
is 768 square inches, and the volume of the box is 1,440
cubic inches. Find the dimensions of the original piece of
cardboard.

6 in. 6 in.

6 in. 6 in.

6 in.

6 in. 6 in.

6 in.

11.1 Conic Sections; Parabola
The plane curves obtained by intersecting a right circular cone
with a plane are called conic sections. If the plane cuts clear
through one nappe, then the intersection curve is called a circle
if the plane is perpendicular to the axis and an ellipse if the
plane is not perpendicular to the axis. If a plane cuts only one
nappe, but does not cut clear through, then the intersection
curve is called a parabola. If a plane cuts through both nappes,
but not through the vertex, the resulting intersection curve is
called a hyperbola. A plane passing through the vertex of the
cone produces a degenerate conic—a point, a line, or a pair of
lines. The figure illustrates the four nondegenerate conics.

The graph of

Ax2
 Bxy Cy2

 Dx  Ey  F  0

where A, B, and C are not all 0, is a conic.
The following is a coordinate-free definition of a parabola:

Parabola

A parabola is the set of all points in a plane equidistant from a
fixed point F and a fixed line L in the plane. The fixed point F is
called the focus, and the fixed line L is called the directrix. A
line through the focus perpendicular to the directrix is called the

Circle Ellipse

Parabola Hyperbola



axis, and the point on the axis halfway between the directrix and
focus is called the vertex.

From the definition of a parabola, we can obtain the following
standard equations:

Standard Equations of a Parabola with Vertex at (0, 0)

1. y2
 4ax

Vertex: (0, 0)
Focus: (a, 0)
Directrix: x   a

Symmetric with respect to the x axis
Axis the x axis

2. x2
 4ay

Vertex: (0, 0)
Focus: (0, a)
Directrix: y   a

Symmetric with respect to the y axis
Axis the y axis

x

y

F

0

x

y

F

0

x

y

F
0

x

y

F
0

d1   d2

d1

d2

P

F(Focus)
V(Vertex)

Parabola

Directrix

Axis
L

11.2 Ellipse
The following is a coordinate-free definition of an ellipse:

Ellipse

An ellipse is the set of all points P in a plane such that the sum
of the distances of P from two fixed points in the plane is con-
stant. Each of the fixed points, F and F, is called a focus, and to-
gether they are called foci. Referring to the figure, the line seg-
ment V V through the foci is the major axis. The perpendicular
bisector B B of the major axis is the minor axis. Each end of the
major axis, V and V, is called a vertex. The midpoint of the line
segment F F is called the center of the ellipse.

From the definition of an ellipse, we can obtain the following
standard equations:

Standard Equations of an Ellipse with Center at (0, 0)

1. a  b  0

x intercepts: a (vertices)
y intercepts: b

Foci: F  ( c, 0), F (c, 0)

c2
 a2

 b2

Major axis length  2a

Minor axis length  2b

x

y

b

 b

a

 c c a0 a
F F

x2

a2
 

y2

b2
 1

d1   d2   Constant

V  

F 

B 

B

F

P

V

d1

d2
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a  0 (opens down) a  0 (opens up)



segment V V is called the transverse axis. The midpoint of the
transverse axis is the center of the hyperbola.

From the definition of a hyperbola, we can obtain the following
standard equations:

Standard Equations of a Hyperbola with Center at (0, 0)

1.

x intercepts:  a (vertices)
y intercepts: none
Foci: F  ( c, 0), F  (c, 0)

c2
 a2

 b2

Transverse axis length  2a

Conjugate axis length  2b

b

c

 a a c c

 b

FF 
x

y

x2

a2
 

y2

b2
 1

F

P

F 
V  

V

 d1   d2    Constant

d1
d2

2. a  b  0

x intercepts: b

y intercepts: a (vertices)
Foci: F  (0, c), F  (0, c)

c2
 a2

 b2

Major axis length  2a

Minor axis length  2b

[Note: Both graphs are symmetric with respect to the x axis,
y axis, and origin. Also, the major axis is always longer than the
minor axis.]

11.3 Hyperbola
The following is a coordinate-free definition of a hyperbola:

Hyperbola

A hyperbola is the set of all points P in a plane such that the ab-
solute value of the difference of the distances of P to two fixed
points in the plane is a positive constant. Each of the fixed
points, F and F, is called a focus. The intersection points V and
V of the line through the foci and the two branches of the hyper-
bola are called vertices, and each is called a vertex. The line

x

y

F

F 

a

 a

0 b b

a

c

 c

x2

b2
 

y2

a2
 1
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2.

x intercepts: none
y intercepts;  a (vertices)
Foci: F  (0,  c), F  (0, c)

c2
 a2

 b2

Transverse axis length  2a

Conjugate axis length  2b

[Note: Both graphs are symmetric with respect to the x axis,
y axis, and origin.]

11.4 Translation of Axes
In Sections 11.1, 11.2, and 11.3 we found standard equations for
parabolas, ellipses, and hyperbolas located with their axes on
the coordinate axes and centered relative to the origin. We now
move the conics away from the origin while keeping their axes
parallel to the coordinate axes. In this process we obtain new
standard equations that are special cases of the equation 
Ax2

 Cy2
 Dx  Ey  F  0, where A and C are not both

zero. The basic mathematical tool used is translation of axes.

A translation of coordinate axes occurs when the new co-
ordinate axes have the same direction as and are parallel to the
original coordinate axes. Translation formulas are as follows:

1. x  x  h 2. x  x  h

y  y  k y  y  k

where (h, k) are the coordinates of the origin 0 relative to the
original system.

a

c

 b b

c

 c

 a

F

F 

x

y

y2

a2
 

x2

b2
 1

Table 1 on page 924 lists the standard equations for trans-
lated conics.

11.5 Rotation of Axes
If the xy coordinate axes are rotated counterclockwise through
an angle  into the x y coordinate axes, then the xy and x y co-
ordinate systems are related by the rotation formulas:

1. x  x cos    y sin  2. x  x cos    y sin  
y  x sin   y cos  y   x sin   y cos  

To transform the general quadratic equation

Ax2
 Bxy Cy2

 Dx  Ey F  0

into an equation in x and y with no x y term, choose the angle
of rotation  to satisfy cot 2    (A  C) B and 0º      90º.
The discriminant of the general second-degree equation in two
variables is B2

 4AC and the graph is 

1. A hyperbola if B2
 4AC   0

2. A parabola if B2
 4AC   0

3. An ellipse if B2
 4AC   0

11.6 Nonlinear Systems
If a system contains any equations that are not linear, then the
system is called a nonlinear system. Section 11.6 deals with
systems involving second-degree terms. These systems have at
most four solutions, some of which may be imaginary. These
systems can be solved algebraically using substitution or elim-
ination. Real solutions can also be found using a graphing util-
ity, but imaginary solutions cannot.

x 

y 

x

y

0

(x, y)
(x , y )

(0 , 0 )

(0, 0)

(h, k)

0 

y y

x 

x

P
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T A B L E  1 Standard Equations for Translated Conics

Parabolas

(x  h)2
 4a(y  k) (y  k)2

 4a(x  h)

Circles

(x  h)2
 (y  k)2

 r2

Ellipses

a  b  0

Hyperbolas

x

y

(h, k)

Center (h, k)
Transverse axis 2a
Conjugate axis 2b

a

bx

y

(h, k)

Center (h, k)
Transverse axis 2a
Conjugate axis 2b

a

b

(y  k)2

a2
 

(x  h)2

b2
 1

(x  h)2

a2
 

(y  k)2

b2
 1

x

y

(h, k)

Center (h, k)
Major axis 2a
Minor axis 2b

a

b
x

y

(h, k)

Center (h, k)
Major axis 2a
Minor axis 2b

a
b

(x  h)2

b2
 

(y  k)2

a2
 1

(x  h)2

a2
 

(y  k)2

b2
 1

x

y

C   (h, k)

Center (h, k)
Radius r

r

x

y

V   (h, k)

Vertex (h, k)
Focus (h   a, k)
a   0 opens left
a   0 opens right

F

a

x

y

V   (h, k)

Vertex (h, k)
Focus (h, k   a)
a   0 opens up
a   0 opens down

a
F



7. Find the x y coordinates of the point (3, 4) when the
axes are rotated through

(A) 30º (B) 45º (C) 60º

8. Find the equations of the x and y axes in terms of x and
y if the axes are rotated through an angle of 75º.

In Problems 9–11, solve the system.

9. y  x2
 5x  3

y   x  2

10. x2
 y2

 2
2x  y  3

11. 3x2
 y2

  6
2x2
 3y2

 29

In Problems 1–3, graph each equation and locate foci. Locate

the directrix for any parabolas. Find the lengths of major, mi-

nor, transverse, and conjugate axes where applicable.

1. 9x2
 25y2

 225 2. x2
  12y

3. 25y2
 9x2

 225

In Problems 4–6:

(A) Write each equation in one of the standard forms listed in

Table 1 of the review.

(B) Identify the curve.

4. 4(y  2)2
 25(x  4)2

 100

5. (x  5)2
 12(y  4)  0

6. 16(x  6)2
 9(y  4)2

 144

925Chapter 11 Review Exercises

Work through all the problems in this chapter review and check answers in the back of the book. An-

swers to all review problems are there, and following each answer is a number in italics indicating

the section in which that type of problem is discussed. Where weaknesses show up, review appropri-

ate sections in the text.

12. Find the equation of the parabola having its vertex at the
origin, its axis the x axis, and ( 4, 2) on its graph.

13. Find an equation of an ellipse in the form

M, N  0

if the center is at the origin, the major axis is on the 
y axis, the minor axis length is 6, and the distance of the
foci from the center is 4.

14. Find an equation of a hyperbola in the form

M, N  0

if the center is at the origin, the conjugate axis length is
8, and the foci are 5 units from the center.

y2

M
 

x2

N
 1

x2

M
 

y2

N
 1

In Problems 15–20, solve the system.

15. x2
 4y2

 32 16. 16x2
 25y2

 400
x  2y  0 16x2

 45y  0

17. x2
 y2

 10 18. x2
 y2

 2
16x2

 y2
 25 y2

 x

19. x2
 2xy  y2

 1 20. 2x2
 xy  y2

 8
xy   2 x2

 y2
 0

In Problems 21–23, transform each equation into one of the stan-

dard forms in Table 1 in the review. Identify the curve and graph it.

21. 16x2
 4y2

 96x  16y  96  0

22. x2
 4x  8y  20  0

23. 4x2
 9y2

 24x  36y  36  0



26. Given the equation 3x2
 4xy  2y2

 20  0, identify
the curve and graph on a graphing utility.

27. Use a graphing utility to graph x2
 y and x2

 50y in
the viewing window  10  x, y  10. Find m so that the
graph of x2

 y in the viewing window  m  x, y  m,
has the same appearance as the graph of x2

 50y in
 10  x, y  10. Explain.

24. Given the equation x2
 xy  2y2

 10  0, find the

transformed equation when the axes are rotated through
30º. Sketch and identify the graph.

25. Given the equation 5x2
 26xy  5y2

 72  0, find the

angle of rotation so that the transformed equation will
have no x y term. Sketch and identify the graph.

 3
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34. Solve: x2
 xy  y2

 4
x2

 xy  2y2
 0

In Problems 35 and 36, find all real solutions to two decimal

places.

35. x2
 3y2

 9x  7y  22  0
4x2

 5x  10y  53  0

36. x2
 4xy  y2

 8
5x2

 2xy  y2
 25

28. Use the definition of a parabola and the distance formula
to find the equation of a parabola with directrix x  6
and focus at (2, 4).

29. Find an equation of the set of points in a plane each of
whose distance from (4, 0) is twice its distance from the
line x  1. Identify the geometric figure.

30. Find an equation of the set of points in a plane each of
whose distance from (4, 0) is two-thirds its distance from
the line x  9. Identify the geometric figure.

In Problems 31–33, find the coordinates of any foci relative to

the original coordinate system.

31. Problem 19 32. Problem 20 33. Problem 21

If the reflector has a diameter of 30 feet, how deep is it?
Compute the answer to three significant digits.

40. Triangulation. Seismographs are located at three sta-
tions. Station B is 200 miles due east of station A. Station
C is 300 miles due north of station A. Readings from the
three stations indicate that the epicenter of an earthquake
is 179 miles from station A, 167 miles from station B,
and 194 miles from station C. Use triangulation and a
graphing utility to locate the epicenter of the earthquake.
Express the answer relative to station A and round values
to the nearest mile.

37. Communications. A parabolic satellite television an-
tenna has a diameter of 8 feet and is 1 foot deep. How far
is the focus from the vertex?

38. Engineering. An elliptical gear is to have foci 8 cen-
timeters apart and a major axis 10 centimeters long. Let-
ting the x axis lie along the major axis (right positive)
and the y axis lie along the minor axis (up positive), write
the equation of the ellipse in the standard form

39. Space Science. A hyperbolic reflector for a radiotele-
scope (such as that illustrated in Problem 39, Exercise
11.3) has the equation

y2

402
 

x2

302
 1

x2

a2
 

y2

b2
 1
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Focal Chords

Many of the applications of the conic sections are based on their reflective or
focal properties. One of the interesting algebraic properties of the conic sections
concerns their focal chords.

If a line through a focus F contains two points G and H of a conic section, then
the line segment GH is called a focal chord. Let G  (x1, y1) and H  (x2, y2) be
points on the graph of x2

 4ay such that GH is a focal chord. Let u denote the
length of GF and v the length of FH (Fig. 1).

(A) Use the distance formula to show that u  y1  a.

(B) Show that G and H lie on the line y  a  mx, where 
m  ( y2  y1) (x2  x1).

(C) Solve y  a  mx for x and substitute in x2
 4ay, obtaining a quadratic

equation in y. Explain why y1y2  a2.

(D) Show that 

(E) Show that u  v  4a  . Explain why this implies that 

u  v  4a, with equality if and only if u  v  2a.

(F) Which focal chord is the shortest? Is there a longest focal chord?

(G) Is a constant for focal chords of the ellipse? For focal chords of the 

hyperbola? Obtain evidence for your answers by considering specific
examples.

(H) The conic section with focus at the origin, directrix the line x  D  0,

and eccentricity E  0 has the polar equation . Explain how

this polar equation makes it easy to show that for a parabola. 

Use the polar equation to determine the sum for a focal chord of an

ellipse or hyperbola.

1

u
 

1

v

1

u
 

1

v
 

1

a

r  
DE

1  E cos  

1

u
 

1

v

(u  2a)2

u  a

1

u
 

1

v
 

1

a
.

x

y

G

F
H

u

v

(2a, a)

FIGURE 1 Focal chord GH of
the parabola x2

 4ay.

Work through all the problems in this cumulative review and check answers in the back of the book.

Answers to all review problems are there, and following each answer is a number in italics indicat-

ing the section in which that type of problem is discussed. Where weaknesses show up, review ap-

propriate sections in the text.
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21. Find the equation of the parabola having its vertex at the
origin, its axis the y axis, and (2,  8) on its graph.

22. Find an equation of an ellipse in the form

M, N  0

if the center is at the origin, the major axis is the x axis,
the major axis length is 10, and the distance of the foci
from the center is 3.

x2

M
 

y2

N
 1

23. Find an equation of a hyperbola in the form

M, N  0

if the center is at the origin, the transverse axis length is
16, and the distance of the foci from the center is 

In Problems 24 and 25, solve the system.

24. x2
 3xy  3y2

 1
xy  1

 89.

x2

M
 

y2

N
 1

1. Determine whether each of the following can be the first

three terms of an arithmetic sequence, a geometric se-
quence, or neither.
(A) 20, 15, 10, . . . (B) 5, 25, 125, . . .
(C) 5, 25, 50, . . . (D) 27,  9, 3, . . .
(E)  9,  6,  3, . . .

In Problems 2–4:

(A) Write the first four terms of each sequence.

(B) Find a8.    (C) Find S8.

2. an  2  5n 3. an  3n  1

4. a1  100; an  an 1  6, n  2

5. Evaluate each of the following:

(A) 8! (B) (C)

6. Evaluate each of the following:

(A) (B) C7,2 (C) P7,2

In Problems 7–9, graph each equation and locate foci. Locate

the directrix for any parabolas. Find the lengths of major, mi-

nor, transverse, and conjugate axes where applicable.

7. 25x2
 36y2

 900 8. 25x2
 36y2

 900

9. 25x2
 36y  0

10. What type of curve is the graph of

3x2
 4xy  2y2

 7  0

11. Solve x2
 y2

 2

2x  y  1

 7

2 

9!

3!(9  3)!

32!

30!

12. A coin is flipped three times. How many combined out-
comes are possible? Solve
(A) By using a tree diagram
(B) By using the multiplication principle

13. How many ways can four distinct books be arranged on a
shelf? Solve
(A) By using the multiplication principle
(B) By using permutations or combinations, whichever

is applicable

14. In a single deal of 3 cards from a standard 52-card deck,
what is the probability of being dealt three diamonds?

15. Each of the 10 digits 0 through 9 is printed on 1 of 10
different cards. Four of these cards are drawn in succes-
sion without replacement. What is the probability of
drawing the digits 4, 5, 6, and 7 by drawing 4 on the first
draw, 5 on the second draw, 6 on the third draw, and 7 on
the fourth draw? What is the probability of drawing the
digits 4, 5, 6, and 7 in any order?

16. A thumbtack lands point down in 38 out of 100 tosses.
What is the approximate empirical probability of the tack
landing point up?

Verify Problems 17 and 18 for n  1, 2, and 3.

17. Pn: 1  5  9   . . .   (4n  3)  n(2n  1)

18. Pn: n2
 n  2 is divisible by 2

In Problems 19 and 20, write Pk and Pk 1.

19. For Pn in Problem 15 20. For Pn in Problem 16



25. x2
 3xy  y2

  1
x2
 xy  0

In Problems 26 and 27, find the angle of rotation so that the

transformed equation will have no x y term. Identify the curve

and graph it.

26. 2 xy  2y2
 3  0

27. x2
 2xy y2

 4 x  4 y  0

28. Find all real solutions to two decimal places

x2
 2xy  y2

 1

9x2
 4xy  y2

 15

29. Write without summation notation and find the sum.

30. Write the series using

summation notation with the summation index k starting
at k  1.

31. Find S for the geometric series 108  36 12 4 . . ..

32. How many four-letter code words are possible using the
first six letters of the alphabet if no letter can be re-

peated? If letters can be repeated? If adjacent letters can-
not be alike?

33. A basketball team with 12 members has two centers. If 5
players are selected at random, what is the probability
that both centers are selected? Express the answer in
terms of Cn,r or Pn,r, as appropriate, and evaluate.

34. A single die is rolled 1,000 times with the frequencies of
outcomes shown in the table.
(A) What is the approximate empirical probability that

the number of dots showing is divisible by 3?
(B) What is the theoretical probability that the number

of dots showing is divisible by 3?

Number of
dots facing up 1 2 3 4 5 6

Frequency 160 155 195 180 140 170

35. Let an  100(0.9)n and bn  10  0.03n. Find the least
positive integer n such that an  bn by graphing the se-
quences {an} and {bn} with a graphing utility. Check
your answer by using a graphing utility to display both
sequences in table form.

2

2!
 

22

3!
 

23

4!
 

24

5!
 

25

6!
 

26

7!

 
5

k 1

k k

 2 2

 3

36. Evaluate each of the following:

(A) P25,5 (B) C(25, 5) (C)

37. Expand (a b)6 using the binomial formula.

38. Find the fifth and the eighth terms in the expansion of 
(3x  y)10.

Establish each statement in Problems 39 and 40 for all positive

integers using mathematical induction.

39. Pn in Problem 15 40. Pn in Problem 16

41. Find the sum of all the odd integers between 50 and 500.

42. Use the formula for the sum of an infinite geometric
series to write  2.454 545 . . . as the quotient of
two integers.

43. Let ak (0.1)30 k (0.9)k for k 0, 1, . . . , 30. Use a

graphing utility to find the largest term of the sequence
{ak} and the number of terms that are greater than 0.01.

In Problems 44–46, use a translation of coordinates to trans-

form each equation into a standard equation for a nondegener-

ate conic. Identify the curve and graph it.

44. 4x  4y  y2
 8  0

45. x2
 2x  4y2

 16y  1  0

46. 4x2
 16x  9y2

 54y  61  0

47. How many nine-digit zip codes are possible? How many
of these have no repeated digits?

48. Use mathematical induction to prove that the following
statement holds for all positive integers:

49. Three-digit numbers are randomly formed from the digits
1, 2, 3, 4, and 5. What is the probability of forming an
even number if digits cannot be repeated? If digits can be
repeated?

 
1

(2n  1)(2n  1)
 

n

2n  1

Pn:
1

1  3
 

1

3  5
 

1

5  7
 . . .

 30

k  

2.45

1
2

 25

20 
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59. Economics. The government, through a subsidy pro-
gram, distributes $2,000,000. If we assume that each in-
dividual or agency spends 75% of what it receives, and
75% of this is spent, and so on, how much total increase
in spending results from this government action?

60. Geometry. Find the dimensions of a rectangle with
perimeter 24 meters and area 32 square meters.

61. Engineering. An automobile headlight contains a para-
bolic reflector with a diameter of 8 inches. If the light

source is located at the focus, which is 1 inch from the
vertex, how deep is the reflector?

62. Architecture. A sound whispered at one focus of a whis-
pering chamber can be easily heard at the other focus.
Suppose that a cross section of this chamber is a semi-
elliptical arch which is 80 feet wide and 24 feet high 
(see the figure). How far is each focus from the center of

the arch? How high is the arch above each focus?

24 feet

80 feet

63. Political Science. A random survey of 1,000 residents in
a state produced the following results:

Party Affiliation

Age Democrat Republican Independent Totals

Under 30 130 80 40 250

30–39 120 90 20 230

40–49 70 80 20 170

50–59 50 60 10 120

Over 59 90 110 30 230

Totals 460 420 120 1,000

Find the empirical probability that a person selected at
random:
(A) Is under 30 and a Democrat
(B) Is under 40 and a Republican
(C) Is over 59 or is an Independent

50. Use the binomial formula to expand (x 2i)6, where i is
the imaginary unit.

51. Use the definition of a parabola and the distance formula

to find the equation of a parabola with directrix y  3
and focus (6, 1).

52. An ellipse has vertices ( 4, 0) and foci ( 2, 0). Find the
y intercepts.

53. A hyperbola has vertices (2,  3) and foci (2,  5). Find
the length of the conjugate axis.

54. Seven distinct points are selected on the circumference of
a circle. How many triangles can be formed using these
seven points as vertices?

55. Use mathematical induction to prove that 2n n! for all
integers n 3.

56. Use mathematical induction to show that {an}  {bn},
where a1 3, an 2an 1 1 for n 1, and bn 2n 1,
n  1.

57. Find an equation of the set of points in the plane each of
whose distance from (1, 4) is three times its distance
from the x axis. Write the equation in the form 
Ax2

 Cy2
 Dx  Ey  F  0, and identify the curve.

58. A box of 12 lightbulbs contains 4 defective bulbs. If
three bulbs are selected at random, what is the probabil-
ity of selecting at least one defective bulb?
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Linear Equations and Inequalities

Equations  Solving Linear Equations  Inequality Relations and Interval Notation  

Solving Linear Inequalities

Equations
An algebraic equation is a mathematical statement that relates two algebraic
expressions involving at least one variable. Some examples of equations with x

as a variable are

3x  2  7

2x2
 3x  5  0

The replacement set, or domain, for a variable is defined to be the set of num-
bers that are permitted to replace the variable.

  x  4  x  1

 
1

1  x
 

x

x  2

A S S U M P T I O N
On Domains of Variables

Unless stated to the contrary, we assume that the domain for a variable
is the set of those real numbers for which the algebraic expressions
involving the variable are real numbers.

For example, the domain for the variable x in the expression

2x  4

is R, the set of all real numbers, because 2x  4 represents a real number for all
replacements of x by real numbers. The domain of x in the equation

is the set of all real numbers except 0 and 3. These values are excluded because
the left member is not defined for x  0 and the right member is not defined for
x  3. The left and right members represent real numbers for all other replace-
ments of x by real numbers.

The solution set for an equation is defined to be the set of elements in the
domain of the variable that make the equation true. Each element of the solution
set is called a solution, or root, of the equation. To solve an equation is to find
the solution set for the equation.

Knowing what we mean by the solution set of an equation is one thing; find-
ing it is another. To this end we introduce the idea of equivalent equations. Two
equations are said to be equivalent if they both have the same solution set for a
given replacement set. A basic technique for solving equations is to perform oper-
ations on equations that produce simpler equivalent equations, and to continue the
process until an equation is reached whose solution is obvious.

Application of any of the properties of equality given in Theorem 1 will pro-
duce equivalent equations.

1

x
 

2

x  3



A.1 Linear Equations and Inequalities A-3

T H E O R E M  1
Properties of Equality

For a, b, and c any real numbers,
1. If a  b, then a  c  b  c. Addition Property

2. If a  b, then a  c  b  c. Subtraction Property

3. If a  b, then ca  cb, c  0. Multiplication Property

4. If a  b, then , c  0. Division Property

5. If a  b, then either may replace Substitution Property

the other in any statement without 
changing the truth or falsity of 
the statement.

a

c
 

b

c

Solving Linear Equations
We now turn our attention to methods of solving first-degree, or linear, equations

in one variable.

D E F I N I T I O N 1
Linear Equation in One Variable
Any equation that can be written in the form

ax  b  0 a  0 Standard Form

where a and b are real constants and x is a variable, is called a linear, or first-degree, equation

in one variable.

5x 1  2(x 3) is a linear equation, because it can be written in the standard form 3x 7  0.

Solving a Linear Equation

Solve 5x  9  3x  7 and check.

S O L U T I O N

We use the properties of equality to transform the given equation into an equiv-
alent equation whose solution is obvious.

Original equation

Add 9 to both sides.

Combine like terms.

Subtract 3x from both sides.

Combine like terms.

Divide both sides by 2.

Simplify. x  8

 
2x

2
 

16

2

 2x  16

 5x   3x  3x  16   3x

 5x  3x  16

5x  9   9  3x  7   9

 5x  9  3x  7



The solution set for this last equation is obvious:

Solution set: {8}

And because the equation x  8 is equivalent to all the preceding equations in
our solution, {8} is also the solution set for all these equations, including the orig-
inal equation. [Note: If an equation has only one element in its solution set, we
generally use the last equation (in this case, x  8) rather than set notation to rep-
resent the solution.]

C H E C K

Original equation

Substitute x 8.

Simplify each side.

A true statement

Solve 7x  10  4x  5 and check.

Solving a Linear Equation

Solve 3x  2(2x  5)  2(x  3)  8 and check.

S O L U T I O N

Original equation

Clear parentheses.

Combine like terms.

Subtract 2x and 10 from both sides.

Divide both sides by  3.

C H E C K

Solve 2(3  x)  (3x  1)  8  2(x  2) and check.

Inequality Relations and Interval Notation
Just as we use  to replace the words is equal to, we use the inequality sym-

bols  and  to represent is less than and is greater than, respectively.

 6 ⁄ 6

3(4)  2[2(4)  5] ‚ 2[(4)  3]  8

 3x  2(2x  5)  2(x  3)  8

 x  4

  3x   12

  x  10  2x  2

 3x  4x  10  2x  6  8

3x  2(2x  5)  2(x  3)  8

 31 ⁄ 31

 40  9 ‚ 24  7

5(8)  9 ‚ 3(8)  7

 5x  9  3x  7
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Although it probably seems obvious to you that

2  4    5  0    25,000  1

are true, it may not seem as obvious that

 4   2    0   5     25,000   1

To make the inequality relation precise so that we can interpret it relative to all
real numbers, we need a precise definition of the concept.

A.1 Linear Equations and Inequalities A-5

D E F I N I T I O N 2
a b and b a
For a and b real numbers, we say that a is less than b or b is greater than a and write

a  b or b  a

if there exists a positive real number p such that a p b (or equivalently, b a p).

We certainly expect that if a positive number is added to any real number, the
sum is larger than the original. That is essentially what the definition states.

When we write

a  b

we mean a  b or a  b and say a is less than or equal to b. When we write

a  b

we mean a  b or a  b and say a is greater than or equal to b.

The inequality symbols  and  have a very clear geometric interpretation
on the real number line. If a  b, then a is to the left of b; if c  d, then c is
to the right of d (Fig. 1).

It is an interesting and useful fact that for any two real numbers a and b, either
a  b, or a  b, or a  b. This is called the trichotomy property of real num-
bers.

The double inequality a  x  b means that x  a and x  b; that is, x is
between a and b, including b but not including a. The set of all real numbers x
satisfying the inequality a  x  b is called an interval and is represented by
(a, b]. Thus,

(a, b]  {x  a  x  b}*

The number a is called the left endpoint of the interval, and the symbol ( indi-
cates that a is not included in the interval. The number b is called the right end-

point of the interval, and the symbol ] indicates that b is included in the interval.
Other types of intervals of real numbers are shown in Table 1.

a cd b

FIGURE 1 a  b, c  d.

*In general, {x  P(x)} represents the set of all x such that statement P(x) is true. To express this set verbally, just read

the vertical bar as “such that.”



Note that the symbol  , read infinity, used in Table 1 is not a numeral. When
we write [b,  ), we are simply referring to the interval starting at b and contin-
uing indefinitely to the right. We would never write [b,  ] or b  x   , because
 cannot be used as an endpoint of an interval. The interval (  ,  ) represents
the set of real numbers R, because its graph is the entire real number line.

Graphing Intervals and Inequalities

Write each of the following in inequality notation and graph on a real number line:

(A) [ 2, 3) (B) ( 4, 2) (C) [ 2,  ) (D) (  , 3)

S O L U T I O N S

(A)  2  x  3

(B)  4  x  2

APPENDIX A REVIEW OF EQUATIONS AND GRAPHINGA-6

T A B L E  1 Interval Notation

Interval Inequality
Notation Notation Line Graph Type

[a, b] a  x  b Closed

[a, b) a  x  b Half-open

(a, b] a  x  b Half-open

(a, b) a  x  b Open

[b,  ) x  b Closed

(b,  ) x  b Open

(  , a] x  a Closed

(  , a) x  a Open

C A U T I O N

It is important to note that

5  x   3 is equivalent to [ 3, 5) and not to (5,  3]

In interval notation, the smaller number is always written to the left.
Thus, it may be useful to rewrite the inequality as  3  x  5 before
rewriting it in interval notation.

x

ba
[ ]

x

ba
[ )

x

ba

( ]

x

ba

( )

(
b

x

[
b

x

]
a

x

x)
a

x
0 2 5 3 5

[ )

x
20 4 5 5

( )



Write each of the following in interval notation and graph on a real number line:

(A)  3  x  3 (B) 2  x   1 (C) x  1 (D) x  2

Because intervals are sets of real numbers, the set operations of union and
intersection are often useful when working with intervals. The union of sets A

and B, denoted by A  B, is the set formed by combining all the elements of A
and all the elements of B. The intersection of sets A and B, denoted by A  B,
is the set of elements of A that are also in B. Symbolically:

Graphing Unions and Intersections of Intervals

If A  [ 2, 3], B  (1, 6), and C  (4,  ), graph the indicated sets and write
as a single interval, if possible.

(A) A   B and A  B (B) A   C and A  C

S O L U T I O N S

(A) A  [ 2, 3]

B  (1, 6)

A   B  [ 2, 6)

A  B  (1, 3]

 2 3 61

[ ]

A.1 Linear Equations and Inequalities A-7

E X P L O R E / D I S C U S S  1

Example 3, part C, shows the graph of the inequality x   2. What is
the graph of x   2? What is the corresponding interval? Describe the
relationship between these sets.

D E F I N I T I O N 3
Union and Intersection

Union: A  B  {x  x is in A or x is in B}
{1, 2, 3}  {2, 3, 4, 5}  {1, 2, 3, 4, 5}

Intersection: A   B  {x  x is in A and x is in B}
{1, 2, 3} {2, 3, 4, 5}  {2, 3}

 

(C) x   2

(D) x  3

x
0 2 5 5

[

x
0 5 3 5

)

 2 3 61

)(

 2 3 61

)[

 2 3 61

](



(B) A  [ 2, 3]

C  (4,  )

A   C  [ 2, 3]   (4,  )

A  C   

If D  [ 4, 1), E  ( 1, 3], and F  [2,  ), graph the indicated sets and write
as a single interval, if possible.

(A) D   E (B) D  E (C) E   F (D) E   F

Solving Linear Inequalities
We now turn to the problem of solving linear inequalities in one variable, such as

2(2x  3)  6(x  2)  10 and  3  2x  3  9

The solution set for an inequality is the set of all values of the variable that
make the inequality a true statement. Each element of the solution set is called a
solution of the inequality. To solve an inequality is to find its solution set. Two
inequalities are equivalent if they have the same solution set for a given replace-
ment set. Just as with equations, we perform operations on inequalities that pro-
duce simpler equivalent inequalities, and continue the process until an inequality
is reached whose solution is obvious. The properties of inequalities given in The-
orem 2 can be used to produce equivalent inequalities.
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E X P L O R E / D I S C U S S  2

Replace ? with  or  in each of the following:

(A)  1 ? 3 and

(B)  1 ? 3 and

(C) 12 ?  8 and

(D) 12 ?  8 and

Based on these examples, describe verbally the effect of multiplying
both sides of an inequality by a number.

 
12

 4
 ? 
 8

 4

 
12

4
 ? 
 8

4

  2( 1) ?  2(3)

 2( 1) ? 2(3)

 2 43

[ ]

 2 43

(

 2 43

[ ] (

 2 43



Similar properties hold if each inequality sign is reversed, or if  is replaced
with  and  is replaced with  . Thus, we find that we can perform essentially
the same operations on inequalities that we perform on equations. When working
with inequalities, however, we have to be particularly careful of the use of the
multiplication and division properties.

The order of the inequality reverses if we multiply or divide both sides of an inequality statement by

a negative number.

Now let’s see how the inequality properties are used to solve linear inequali-
ties. Several examples will illustrate the process.

A.1 Linear Equations and Inequalities A-9

T H E O R E M  2
Inequality Properties

For a, b, and c any real numbers,
1. If a  b and b  c, then a  c. Transitive 

Property

2. If a  b, then a  c  b  c. Addition

 2  4  2  3  4  3 Property

3. If a  b, then a  c  b  c. Subtraction

 2  4  2  3  4  3 Property

4. If a  b and c is positive, then ca  cb. Multiplication

 2  4 3( 2)  3(4) Property

5. If a  b and c is negative, then ca  cb. (Note difference

 2  4 ( 3)( 2)  ( 3)(4) between 4 and 5.)

6. If a  b and c is positive, then 

 2  4

7. If a  b and c is negative, then 

 2  4
 2

 2
     

4

 2

a

c
   

b

c
.

 2

2
      

4

2

a

c
   

b

c
.

Division Property

(Note difference

between 6 and 7.)

E X P L O R E / D I S C U S S  3

Properties of equality are easily summarized. We can add, subtract,
multiply, or divide both sides of an equation by any nonzero real num-
ber to produce an equivalent equation. Write a similar summary for the
properties of inequalities.

x
s



Solving a Linear Inequality

Solve 2(2x  3)  10  6(x  2) and graph.

S O L U T I O N

Simplify left and right sides.

Addition property

Subtraction property

or (4,  ) Solution set

Graph of solution set

Solve 3(x  1)  5(x  2)  5 and graph.

Solving a Double Inequality

Solve  1  3  4x  11 and graph.

S O L U T I O N

We proceed as before, except we try to isolate x in the middle with a coefficient
of 1.

 1  3  4x  11

Subtract 3 from each member.

 4   4x  8

1  x   2 or  2  x  1 or ( 2, 1]

Solve  5  10  3x  10 and graph.

 4

 4
 
 4x

 4
   

8

 4

 1   3  3  4x   3   11   3

62 3 4 5 7 8 9

( x

 x   4

 2x

 2
   
 8

 2

  2x    8

4x     6x     6x  8     6x

4x   6x  8

4x  4  4     6x  12  4

 4x  4   6x  12

 4x  6  10   6x  12

2(2x  3)  10   6(x  2)
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Division property—note that 

order reverses because  2 is

negative.

Divide each number by  4 and

reverse each inequality.

x( ]
 2 1



A.1 Linear Equations and Inequalities A-11

1. x  5

3. (A) ( 3, 3]

(B) [ 1, 2]

(C) (1,  )

(D) (  , 2]

5. x   4 or (  ,  4]  

2. x  

4. (A) D E [ 4, 3]

(B) D E ( 1, 1)

(C) E F ( 1,  )

(D) E  F  [2, 3]

6. 5  x  0 

or 

0  x  5 or [0, 5)

1
3

In Problems 23–30, replace each ? with  or  to make the

resulting statement true.

23. 12 ? 6 and 12  5 ? 6  5

24.  4 ?  2 and  4  7 ?  2  7

25.  6 ?  8 and  6  3 ?  8  3

26. 4 ? 9 and 4  2 ? 9  2

27. 2 ?  1 and  2(2) ?  2( 1)

28.  3 ? 2 and 4( 3) ? 4(2)

29. 2 ? 6 and ? 

30.  10 ?  15 and ? 

In Problems 31–40, solve and graph.

31. 7x  8  4x  7 32. 4x  8  x  1

33. 3  x  5(3  x) 34. 2(x  3)  5  5  x

35. 36.

37. 3  m  4(m  3) 38. 2(1  u)  5u

39. 40.
y  3

4
 1   

y

2
 2  

B

4
 

1  B

3

M

 3
  2

N

 2
   4

 15

5

 10

5

6

2

2

2

Solve Problems 1–6.

1. x  5  12 2. x  9   2

3. 2s  7   2 4. 7  3t  1

5. 2m  8  5m  7 6. 3y  5  6y  10

In Problems 7–12, rewrite in inequality notation and graph on

a real number line.

7. [ 8, 7] 8. ( 4, 8)

9. [ 6, 6) 10. ( 3, 3]

11. [ 6,  ) 12. (  , 7)

In Problems 13–18, rewrite in interval notation and graph on a

real number line.

13.  2  x  6 14.  5  x  5

15.  7  x  8 16.  4  x  5

17. x   2 18. x  3

In Problems 19–22, write in interval and inequality notation.

19.

20.

21.

22.

x
0 3 5 3 5

[)

x
0 1 5 2 5

[ ]

x
0 5 1 5

(

x
0 5 2 5

]

 4  1 31

][

 4  1 31

)(

 1 632

(

 1 2 63

[ ]

x
 7  4 0

]

x
 1 650

)[

x
 10 1050 5

[ ]

x
 10 1050 5

]

 10 1050 5

( x

x
 10 1050 5

)[
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55. [2, 3]   (1, 5) 56. [2, 3]  (1, 5)

57. (  , 4)   ( 1, 6] 58. ( 3, 2)   [0,  )

In Problems 59–68, solve and graph.

59. 60.

61.

62.

63.  4  x  32  68 64.  1  A  5  11

65. 16  7  3x  31 66.  1  9  2x  5

67.  6   (1  x)  4 68. 15  7  x  212
5

2
5

2
3

9
5

2

3
 (x  7)  

x

4
   

1

2
 (3  x)  

x

6

2x

5
 

1

2
 (x  3)  

2x

3
 

3

10
 (x  2)

p

3
 

p  2

2
 

p

4
 4

q

7
 3   

q  4

3
 1

Solve Problems 41–46.

41. 42.

43. 0.1(x  7)  0.05x  0.8

44. 0.4(x  5)  0.3x  17

45. 0.3x  0.04(x  1)  2.04

46. 0.02x  0.5(x  2)  5.32

In Problems 47–58, graph the indicated set and write as a sin-

gle interval, if possible.

47. ( 5, 5)   [4, 7] 48. ( 5, 5)  [4, 7]

49. [ 1, 4)  (2, 6] 50. [ 1, 4)   (2, 6]

51. (  , 1)   ( 2,  ) 52. (  , 1)  (2,  )

53. (  ,  1)   [3, 7) 54. (1, 6]   [9,  )

x  2

3
 1  

x

7
3  

2x  3

3
 

5  x

2

69. Indicate true (T) or false (F):

(A) If p q and m  0, then mp  mq.

(B) If p q and m  0, then mp  mq.

(C) If p 0 and q  0, then p  q  q.

70. Assume that m n  0; then

mn  n2

mn  m2
 n2

 m2

m(n  m)  (n  m)(n  m)

m  n  m

0  n

But it was assumed that n 0. Find the error.

Prove each inequality property in Problems 71–74, given a, b,

and c are arbitrary real numbers.

71. If a b, then a  c  b  c.

72. If a b, then a  c  b  c.

73. (A) If a b and c is positive, then ca cb.

(B) If a b and c is negative, then ca  cb.

74. (A) If a b and c is positive, then 

(B) If a b and c is negative, then 
a

c
   

b

c
.

a

c
   

b

c
.



Cartesian Coordinate System

Cartesian Coordinate System  Graphing: Point by Point  Data Analysis

Analytic geometry is the study of the relationship between geometric forms, such
as circles and lines, and algebraic forms, such as equations and inequalities. The
key to this relationship is the Cartesian coordinate system, named after the French
mathematician and philosopher René Descartes (1596–1650) who was the first to
combine the study of algebra and geometry into a single discipline. In Section A.2
we develop some of the basic tools used to graph equations.

Cartesian Coordinate System
Just as a real number line establishes a one-to-one correspondence between the
points on a line and the elements in the set of real numbers, we can form a real

plane by establishing a one-to-one correspondence between the points in a plane
and elements in the set of all ordered pairs of real numbers. This can be done by
means of a Cartesian coordinate system.

Recall that to form a Cartesian or rectangular coordinate system, we select
two real number lines, one horizontal and one vertical, and let them cross through
their origins as indicated in Figure 1. Up and to the right are the usual choices
for the positive directions. These two number lines are called the horizontal axis

and the vertical axis, or together, the coordinate axes. The horizontal axis is usu-
ally referred to as the x axis and the vertical axis as the y axis, and each is labeled
accordingly. Other labels may be used in certain situations. The coordinate axes
divide the plane into four parts called quadrants, which are numbered counter-
clockwise from I to IV (see Fig. 1).

Now we want to assign coordinates to each point in the plane. Given an arbi-
trary point P in the plane, pass horizontal and vertical lines through the point
(Fig. 2). The vertical line will intersect the horizontal axis at a point with coordi-
nate a, and the horizontal line will intersect the vertical axis at a point with coor-
dinate b. These two numbers written as the ordered pair (a, b) form the coordinates

of the point P. The first coordinate a is called the abscissa of P; the second coor-
dinate b is called the ordinate of P. The abscissa of Q in Figure 2 is  10, and the
ordinate of Q is 5. The coordinates of a point can also be referenced in terms of
the axis labels. The x coordinate of R in Figure 2 is 5, and the y coordinate of
R is 10. The point with coordinates (0, 0) is called the origin.

The procedure we have just described assigns to each point P in the plane a
unique pair of real numbers (a, b). Conversely, if we are given an ordered pair of
real numbers (a, b), then, reversing this procedure, we can determine a unique
point P in the plane. Thus:

There is a one-to-one correspondence between the points in a plane and the elements in the set of

all ordered pairs of real numbers.

This is often referred to as the fundamental theorem of analytic geometry.

Because of this correspondence, we often speak of the point (a, b) when we are
referring to the point with coordinates (a, b). We also write P  (a, b) to iden-
tify the coordinates of the point P. Thus, in Figure 2, referring to Q as the point
( 10, 5) and writing R  (5, 10) are both acceptable statements.

Given any set of ordered pairs S, the graph of S is the set of points in the
plane corresponding to the ordered pairs in S.

A.2 Cartesian Coordinate System A-13

FIGURE 1 Cartesian coordinate

system.

FIGURE 2 Coordinates in a

plane.
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Graphing: Point by Point
The fundamental theorem of analytic geometry enables us to look at algebraic
forms geometrically and to look at geometric forms algebraically. We begin by
considering an algebraic form, an equation in two variables:

y  x2
 4 (1)

A solution to equation (1) is an ordered pair of real numbers (a, b) such that

b  a2
 4

The solution set of equation (1) is the set of all these ordered pairs. More formally,

Solution set of equation (1): (2)

To find a solution for equation (1) we simply replace x with a number and cal-
culate the value of y. For example, if x  2, then y  22

 4  0, and the ordered
pair (2, 0) is a solution. Similarly, if x   3, then y  ( 3)2

 4  5, and the
ordered pair ( 3, 5) is also a solution of equation (1). In fact, any real number
substituted for x in equation (1) will produce a solution to the equation. Thus, the
solution set shown in (2) must have an infinite number of elements. We now use
a rectangular coordinate system to provide a geometric representation of this set.

The graph of an equation is the graph of its solution set. To sketch the graph

of an equation, we plot enough points from its solution set so that the total graph
is apparent and then connect these points with a smooth curve, proceeding from
left to right. This process is called point-by-point plotting.

Graphing an Equation Using Point-by-Point Plotting

Sketch a graph of y  x2
 4.

S O L U T I O N

We make up a table of solutions—ordered pairs of real numbers that satisfy the
given equation.

x  4  3  2  1 0 1 2 3 4

y 12 5 0  3  4  3 0 5 12

After plotting these solutions, if there are any portions of the graph that are
unclear, we plot additional points until the shape of the graph is apparent. Then
we join all these plotted points with a smooth curve, as shown in Figure 3. Arrow-
heads are used to indicate that the graph continues beyond the portion shown here
with no significant changes in shape.

The resulting figure is called a parabola. Notice that if we fold the paper along
the y axis, the right side will match the left side. We say that the graph is sym-

metric with respect to the y axis and call the y axis the axis of the parabola. More
is said about parabolas elsewhere in the text.

Sketch a graph of y  8  x2 using point-by-point plotting.

{(x, y)   y  x2  4}

APPENDIX A REVIEW OF EQUATIONS AND GRAPHINGA-14

FIGURE 3
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Graphing an Equation Using Point-by-Point Plotting

Sketch a graph of 

S O L U T I O N

Proceeding as before, we make up a table of solutions:

y   x.

x 0 1 2 3 4 5 6 7 8 9

y 0 1 2 3 8  2.8 7  2.6 6  2.4 5  2.2 3  1.7 2  1.4

For graphing purposes, the irrational numbers in the table were evaluated on a
calculator and rounded to one decimal place. Plotting these points and connect-
ing them with a smooth curve produces the graph in Figure 4.

Notice that we did not include any negative values of x in the table. If x is a
negative real number, then is not a real number. Because the coordinates of
a point in a rectangular coordinate system must be real numbers, when graphing

an equation, we consider only those values of the variables that produce real solu-

tions to the equation. We have more to say about numbers of the form , where
x is negative, elsewhere in this book.

Sketch a graph of .y  4   x

 x

 x

FIGURE 4

E X P L O R E / D I S C U S S 1

To graph the equation y   x3
 2x, we use point-by-point plotting to

obtain the graph in Figure 5.

FIGURE 5

(A) Do you think this is the correct graph of the equation? If so, why?
If not, why?

(B) Add points on the graph for x   2,  0.5, 0.5, and 2.

(C) Now, what do you think the graph looks like? Sketch your version
of the graph, adding more points as necessary.

(D) Write a short statement explaining any conclusions you might draw
from parts (A), (B), and (C).
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As Explore/Discuss 1 illustrates, sometimes it can be difficult to determine
the apparent shape of a graph by simply plotting a few points. One of the major
objectives of this book is to develop mathematical tools that will help us ana-
lyze graphs.

Data Analysis
In applications, numeric data are often collected and presented in graphical form.
A graph illustrates the relationship between two quantities, and estimating coor-
dinates of points on the graph provides specific examples of this relationship, even
if no equation for the graph is available. Example 3 illustrates the analysis of data
presented in graphical form.

Ozone Levels

The ozone level during a 12-hour period in a suburb of Milwaukee, Wisconsin on
a particular summer day is given in Figure 6, where L is ozone in parts per bil-
lion and t is time in hours. Use this graph to estimate the following ozone levels
to the nearest integer and times to the nearest quarter hour:

(A) The ozone level at 6 P.M.

(B) The highest ozone level and the time when it occurs

(C) The time(s) when the ozone level is 90 ppb

APPENDIX A REVIEW OF EQUATIONS AND GRAPHINGA-16

S O L U T I O N

(A) The L coordinate of the point on the graph with t coordinate 6 is
approximately 97 parts per billion (Fig. 7).

(B) The highest ozone level is approximately 109 parts per billion at 3 P.M.

(C) The ozone level is 90 parts per billion at about 12:30 P.M. and again
at 10 P.M.

Source: Wisconsin Department of Natural Resources.

FIGURE 6
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A.2 Cartesian Coordinate System A-17

1. 2. 3. (A) 96 parts per billion

(B) 1:45 P.M. and 5 P.M.

FIGURE 7

Use the graph in Figure 6 to estimate the following ozone level to the nearest
integer and time(s) to the nearest quarter hour.

(A) The ozone level at 7 P.M.

(B) The time(s) when the ozone level is 100 parts per billion.
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In Problems 1–4, plot the given points in a rectangular coordinate system.

1. (5, 0), (3,  2), ( 4, 2), (4, 4) 2. (0, 4), ( 3, 2), (5,  1), ( 2,  4) 3. (0,  2), ( 1,  3), (4,  5), ( 2, 1)

4. ( 2, 0), (3, 2), (1,  4), ( 3, 5)



7.

8.

In Problems 5–8, find the coordinates of points A, B, C, and D.

5.

6.

APPENDIX A REVIEW OF EQUATIONS AND GRAPHINGA-18

For each equation in Problems 9–14, make up a table of solu-

tions using x   3,  2,  1, 0, 1, 2, and 3. Plot these solu-

tions and graph the equation.

9. y  x  1 10. y  2  x

11. y  x2
 5 12. y  4  x2

13. y  3  x  0.5x2 14. y  4  x  0.5x2

In Problems 15–18, use the graph to estimate to the nearest in-

teger the missing coordinates of the indicated points. (Be sure

you find all possible answers.)

15. (A) (8, ?) (B) ( 5, ?) (C) (0, ?)

(D) (?, 6) (E) (?,  5) (F) (?, 0)

16. (A) (3, ?) (B) ( 5, ?) (C) (0, ?)

(D) (?, 3) (E) (?,  4) (F) (?, 0)

17. (A) (1, ?) (B) ( 8, ?) (C) (0, ?)

(D) (?,  6) (E) (?, 4) (F) (?, 0)
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18. (A) (6, ?) (B) ( 6, ?) (C) (0, ?)

(D) (?,  2) (E) (?, 1) (F) (?, 0)

19. (A) Sketch a graph based on the solutions in the following

table.

x  2 0 2

y  2 0 2

(B) Sketch a graph based on the solutions in the following

table.

x  1 0 1

y 2 0  2

(C) Complete the following table for y x3
 3x and

sketch a graph of the equation.

x  2  1 0 1 2

y

(D) Write a short statement explaining any conclusions

you might draw from parts (A), (B), and (C).

20. (A) Sketch a graph based on the solutions in the following

table.

x  1 1 3

y 4 2 0

(B) Sketch a graph based on the solutions in the following

table.

x 0 1 2

y 0 2 4

(C) Complete the following table for y 3x2
 x3 and

sketch a graph of the equation.

x  1 0 1 2 3

y

(D) Write a short statement explaining any conclusions

you might draw from parts (A), (B), and (C).

In Problems 21–28, graph each equation using point-by-point

plotting.

21. y  x1 3 22. y  x2 3

23. y  x3 24. y  x4

25. 26.

27. 28. y  x 1  x2y   1  x2

y   5  xy   x  1

A.2 Cartesian Coordinate System A-19

29. (A) Graph the triangle with vertices A (1, 1), B  (7, 2),

and C  (4, 6).

(B) Now graph the triangle with vertices A  (1,  1), 

B  (7,  2), and C  (4,  6) in the same coordi-

nate system.

(C) How are these two triangles related? How would you

describe the effect of changing the sign of the y coor-

dinate of all the points on a graph?

30. (A) Graph the triangle with vertices A (1, 1), B (7, 2),

and C  (4, 6).

(B) Now graph the triangle with vertices A  ( 1, 1), 

B   ( 7, 2), and C  ( 4, 6) in the same coordi-

nate system.

(C) How are these two triangles related? How would you

describe the effect of changing the sign of the x coor-

dinate of all the points on a graph?

31. (A) Graph the triangle with vertices A (1, 1), B (7, 2),

and C  (4, 6).

(B) Now graph the triangle with vertices A  ( 1,  1),

B  ( 7,  2), and C  ( 4,  6) in the same coor-

dinate system.

(C) How are these two triangles related? How would you

describe the effect of changing the signs of the x and y

coordinates of all the points on a graph?

32. (A) Graph the triangle with vertices A  (1, 2), B  (1, 4),

and C  (3, 4).
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37. Price and Demand. The quantity of a product that con-

sumers are willing to buy during some period depends on

its price. The price p and corresponding weekly demand q

for a particular brand of diet soda in a city are shown in

the figure. Use this graph to estimate the following de-

mands to the nearest 100 cases.

(A) What is the demand when the price is $6.00 per

case?

33. Business. After extensive surveys, the marketing research

department of a producer of popular cassette tapes devel-

oped the demand equation

n   10  p 5  p  10

where n is the number of units (in thousands) retailers are

willing to buy per day at $p per tape. The company’s daily

revenue R (in thousands of dollars) is given by

R   np  (10  p)p 5  p  10

Graph the revenue equation for the indicated values of p.

34. Business. Repeat Problem 33 for the demand equation

n   8  p 4  p  8

35. Physics. The speed (in meters per second) of a ball

swinging at the end of a pendulum is given by

where x is the vertical displacement (in centimeters) of the

ball from its position at rest (see the figure).

v  0.5 2  x

(A) Graph for 0  x  2.

(B) Describe the relationship between this graph and the

physical behavior of the ball as it swings back and

forth.

36. Physics. The speed (in meters per second) of a ball oscil-

lating at the end of a spring is given by

where x is the vertical displacement (in centimeters) of the

ball from its position at rest (positive displacement mea-

sured downward—see the figure).

(A) Graph for  5  x  5.

(B) Describe the relationship between this graph and the

physical behavior of the ball as it oscillates up and down.

v  4 25  x2

v  4 25  x2

v  0.5 2  x

(B) Now graph y x and the triangle obtained by rever-

sing the coordinates for each vertex of the original tri-

angle: A  (2, 1), B  (4, 1), C  (4, 3).

(C) How are these two triangles related? How would you

describe the effect of reversing the coordinates of each

point on a graph?

(B) Does the demand increase or decrease if the price is

increased to $6.30 per case? By how much?

(C) Does the demand increase or decrease if the price is

decreased to $5.70? By how much?

x

x   0

x   0



(D) Write a brief description of the relationship between

price and demand illustrated by this graph.

38. Price and Supply. The quantity of a product that suppliers

are willing to sell during some period depends on its price.

The price p and corresponding weekly supply q for a par-

ticular brand of diet soda in a city are shown in the figure.

Use this graph to estimate the following supplies to the

nearest 100 cases.

(A) What is the supply when the price is $5.60 per case?

(B) Does the supply increase or decrease if the price is in-

creased to $5.80 per case? By how much?

(C) Does the supply increase or decrease if the price is de-

creased to $5.40 per case? By how much?

(D) Write a brief description of the relationship between

price and supply illustrated by this graph.

39. Temperature. The temperature (in degrees Fahrenheit)

during a spring day in the Midwest is given in the figure.

Use this graph to estimate the following temperatures to

the nearest degree and times to the nearest hour:

(A) The temperature at 9:00 A.M.

(B) The highest temperature and the time when it occurs

(C) The time(s) when the temperature is 49 

40. Temperature. Use the figure for Problem 39 to estimate

the following temperatures to the nearest degree and times

to the nearest half hour:

(A) The temperature at 7:00 P.M.

(B) The lowest temperature and the time when it occurs

(C) The time(s) when the temperature is 52 
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Basic Formulas in Analytic Geometry

Distance between Two Points  Midpoint of a Line Segment  Circles

Two basic problems studied in analytic geometry are

1. Given an equation, find its graph.
2. Given a figure (line, circle, parabola, ellipse, etc.) in a coordinate system,

find its equation.

The first problem was discussed in Section A.2. In Section A.3 we introduce
some tools that are useful when studying the second problem.
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Distance between Two Points
Given two points P1 and P2 in a rectangular coordinate system, we denote the
distance between P1 and P2 by d(P1, P2). We begin with an example.

Distance between Two Points

Find the distance between the points P1  (1, 2) and P2  (4, 6).

S O L U T I O N

Connecting the points P1, P2, and P3  (4, 2) with straight line segments forms
a right triangle (Fig. 1).

From the figure, we see that lengths of the legs of the triangle are

d(P1, P3)   4  1  3

and

d(P3, P2)   6  2  4

The length of the hypotenuse is d(P1, P2), the distance we are seeking. Applying
the Pythagorean theorem (see Appendix C) we have

[d(P1, P2)]2
 [d(P1, P3)]2

 [d(P3, P2)]2

 32
 42

 9  16

 25

Thus,

Find the distance between the points P1  (1, 2) and P2  (13, 7).

d(P1, P2)   25  5

APPENDIX A REVIEW OF EQUATIONS AND GRAPHINGA-22

FIGURE 1
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The ideas used in Example 1 can be generalized to any two distinct points in
the plane. If P1  (x1, y1) and P2  (x2, y2) are two points in a rectangular coor-
dinate system (Fig. 2), then

 Because  N 2  
   N

2
.  (x2  x1)

2  ( y2  y1)
2

 [d(P1, P2)]
2   x2  x1 2   y2  y1 2

Using the Distance-between-Two-Points Formula

Find the distance between the points ( 3, 5) and ( 2,  8).

S O L U T I O N

Let (x1, y1)  ( 3, 5) and (x2, y2)  ( 2,  8). Then,

Notice that if we choose (x1, y1)  ( 2,  8) and (x2, y2)  ( 3, 5), then

so it doesn’t matter which point we designate as P1 or P2.

d   [( 3)  ( 2)]2  [5  ( 8)]2   1  169   170

   ( 2  3)2  ( 8  5)2   12  ( 13)2   1  169   170

d   [( 2)  ( 3)]2  [( 8)  5]2

FIGURE 2 Distance between two

points.

T H E O R E M  1
Distance between P1 (x1, y1) and P2 (x2, y2)

d(P1, P2)   (x2  x1)
2  ( y2  y1)

2

x

y

d(P 1
, P 2

)

P2   (x2, y2)

P1   (x1, y1)
(x2, y1)

x1

y2

x2

 y
2
  

 y
1
 

 x2   x1 
y1

Thus,



APPENDIX A REVIEW OF EQUATIONS AND GRAPHINGA-24

Find the distance between the points (6,  3) and ( 7,  5).

E X P L O R E / D I S C U S S  1

(A) Graph the line segment L joining the points (1, 2) and (7, 10).

(B) Find the average a of the x coordinates of these two points.

(C) Find the average b of the y coordinates of these two points.

(D) Plot the point (a, b). Is it on the line segment L?

(E) Find the distance between (1, 2) and (a, b) and the distance between
(a, b) and (7, 10). How would you describe the point (a, b)?

Midpoint of a Line Segment

Note that the coordinates of the midpoint are simply the averages of the
respective coordinates of the two given points.

T H E O R E M  2
Midpoint Formula

The midpoint of the line segment joining P1  (x1, y1) and P2  (x2, y2) is

The point M is the unique point satisfying

d(P1, M)  d(M, P2)  
1

2
d(P1, P2)

M   x1   x2

2
,  

y1   y2

2  

The midpoint of the line segment between two points is the point on the line
segment that is equidistant from each of the points. A formula for finding the mid-
point is given in Theorem 2. The proof is discussed in the exercises.
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S O L U T I O N

Finding the Midpoint

We use the midpoint formula with (x1, y1)  ( 3, 2)
and (x2, y2)  (4,  5) to obtain the coordinates of the
midpoint M.

The fraction form of M is probably more convenient
for plotting the point. The decimal form is more con-
venient for computing distances.

  (0.5,  1.5)

   1

2
,  
 3

2  

    3   4

2
, 

2   ( 5)

2  

 M   x1  x2

2
, 

y1  y2

2  

Plotting and Verifying

Figure 3 shows the three points.

FIGURE 3

Find the distances d(A, M), d(M, B), and d(A, B)

Because d(A, M)  d(M, B)  d(A, B), M is the
midpoint of the line segment joining A and B.

1
2

1

2
d(A, B)  

1

2
 98   98

4
  24.5

  49  49   98

d(A, B)   ( 3  4)2  [2  ( 5)]2

  12.25  12.25   24.5

d(M, B)   (0.5  4)2  [ 1.5  ( 5)]2

  12.25  12.25   24.5

d(A, M)   ( 3  0.5)2  [2  ( 1.5)]2

1
2

x

y

 5

5 5

5

A   ( 3, 2)

B   (4,  5)

M  
1

2  3

2
,  

Find the midpoint M of the line segment joining A  (4, 1) and B  ( 3,  5).
Plot A, B, and M and verify that d(A, M)  d(M, B)  d(A, B).1

2

Using the Midpoint Formula

Find the midpoint M of the line segment joining A  ( 3, 2) and B  (4,  5).
Plot A, B, and M and verify that d(A, M)  d(M, B)  d(A, B).1

2
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Using the Midpoint Formula

If M  (1, 1) is the midpoint of the line segment joining A  ( 3,  1) and 
B  (x, y), find the coordinates of B.

S O L U T I O N

Algebraic Solution

From the midpoint formula, we have

We equate the corresponding coordinates and solve
the resulting equations for x and y

Thus,

B  (5, 3)

3  y 5  x 

2  1   1  y  12  3   3  x  3

2   1  y2   3  x

1  
 1  y

2
1  

 3  x

2

M  (1, 1)    3  x

2
, 
 1  y

2  

Graphical Solution

Plot A and M and draw right triangle ACM as
shown in Figure 4.

FIGURE 4

Now form triangle MDB by shifting triangle ACM

four units to the right and two units up (Fig. 5).

FIGURE 5

Because triangles ACM and MDB are congruent

(see Appendix C), d(A, M)  d(M, B) and M must
be the midpoint of the segment joining A and B.
From the graph we can see that

x  1  4  5 and y  1  2  3

Thus,

B  (5, 3)

4

2
4

2

x

y

 5

5 5

5

A   ( 3,  1) C

D
M   (1, 1)

B   (x, y)

4

2 x

y

 5

5 5

5

A   ( 3,  1) C

M   (1, 1)

If M  (1,  1) is the midpoint of the line segment joining A  ( 1,  5) and
B  (x, y), find the coordinates of B.
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Circles
The distance-between-two-points formula would be helpful if its only use were to
find actual distances between points, such as in Example 2. However, its more
important use is in finding equations of figures in a rectangular coordinate sys-
tem. We start with an example.

Equations and Graphs of Circles

Write an equation for the set of all points that are five units from the origin. Graph
your equation.

Writing the Equation

The distance between a point (x, y) and the origin is

Thus, an equation for the set of points that are five
units from the origin is

We square both sides of this equation to obtain an
equation that does not contain any radicals.

 x2  y2  25

 x2  y2  5

d   (x  0)2  (y  0)2   x2  y2

Graphing the Equation

We make up a table of solutions and plot the points
in the table. Joining these points produces a famil-
iar geometric object—a circle (Fig. 6).

FIGURE 6

S O L U T I O N

x y

 5 0

 4  3

 3  4

0  5

3  4

4  3

5 0

D E F I N I T I O N 1
Circle
A circle is the set of all points in a plane equidistant from a fixed point. The fixed distance is

called the radius, and the fixed point is called the center.

Write an equation for the set of all points that are three units from the origin.
Graph your equation.

In Example 5, we began with a verbal description of a set of points, produced
an algebraic equation that these points must satisfy, constructed a numerical table
listing some of these points, and then drew a graphical representation of this set
of points. The interplay between verbal, algebraic, numerical, and graphical con-
cepts is one of the central themes of this book.

Now we generalize the ideas introduced in Example 5.

(5, 0)( 5, 0)

( 4, 3)

( 4,  3)

( 3, 4)

(4, 3)

(3, 4)

( 3,  4)

(4,  3)

(3,  4)

(0, 5)

(0,  5)

x

y
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Let’s find the equation of a circle with radius r (r  0) and center C at (h, k)

in a rectangular coordinate system (Fig. 7). The circle consists of all points 

P  (x, y) satisfying d(P, C)  r; that is, all points satisfying

or, equivalently,

(x  h)2 
  (y  k)2

 r2  r   0

 (x  h)2 
  ( y  k)2

 r  r   0

FIGURE 7 Circle.

T H E O R E M  3
Standard Equation of a Circle

Circle with radius r and center at (h, k)

(x  h)2 
  (y  k)2

 r2  r   0

Equations and Graphs of Circles

Find the equation of a circle with radius 4 and center at C  ( 3, 6). Graph the

equation.

S O L U T I O N

x

y

P   (x, y)

C   (h, k)

r

Writing the Equation

C  (h, k)  ( 3, 6) and r 4

(x  h)2
 (y  k)2

 r2

[x  ( 3)]2
 (y  6)2

 42

(x  3)2
 (y  6)2

 16

Graphing the Equation

To graph the equation, plot the cen-

ter and a few points on the circle,

then draw a circle of radius 4 (Fig. 8).

FIGURE 8

x

y

10

5

 5

C   ( 3, 6)

r   4

(x   3)2   (y   6)2   16

Find the equation of a circle with radius 3 and center at C  (3,  2). Graph the

equation.
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Refer to the solution of Example 6. If we square both binomials and collect
like terms we obtain the following:

(x  3)2
 (y  6)2

 16

x2
 6x  9  y2

 12y  36  16

x2
 6x  y2

 12y  29  0

With the exception of some degenerate cases, an equation of the form

x2
 Ax  y2

 By  C  0

has a circle as its graph. To find the center and the radius, we use a technique
called completing the square, which is based on the following equation:

In the expanded form on the right, notice that the constant term (b 2)2 is the
square of one-half of the coefficient of the x term.

 x   
b

2 
2

 x2   bx    b

2 
2

E X P L O R E / D I S C U S S  2

Replace ❒ and ❍ with numbers that make each equation true for all x.

(A) (x  ❒)2
 x2

 4x  ❍

(B) (x  ❒)2
 x2

 6x  ❍

(C) (x  ❒)2
 x2

 5x  ❍

Example 7 illustrates the use of the completing-the-square technique.

Finding the Center and Radius of a Circle

Find the center and radius and sketch the graph of the circle with equation

x2
 10x  y2

 8y  40

S O L U T I O N

We apply the completing-the-square technique to the first two terms and then to
the second two terms. Because we are dealing with an equation, we must be cer-
tain to add the required numbers to both sides of the equation.

x2
 10x  y2

 8y  40

x2
 10x  25  y2

 8y  16  40  25  16

(x  5)2
 (y  4)2

 81

x2  10x   10

2  
2

 y2  8y   8

2 
2

 40   10

2  
2

  8

2 
2
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We now have the standard equation of a circle with radius 9 and center (5,  4).
The graph is shown in Figure 9.

Find the center and radius and sketch the graph of the circle with equation

x2
 4x  y2

 6y  12

FIGURE 9

1. 13

2.

3. M ( ,  2) (0.5, 2); d(A, M)  d(M, B)

4. B  (3, 3)

5. x2
 y2

 9

 21.251
2

 173
6. (x  3)2

 (y  2)2
 9

7. Circle with radius 5 and center ( 2, 3)

In Problems 1–8, find the distance between each pair of points

and the midpoint of the line segment joining the points. Leave

distance in radical form.

1. (1, 0), (4, 4) 2. (0, 1), (3, 5)

3. (0,  2), (5, 10) 4. (3, 0), ( 2,  3)

x

y

10

 10 10

(5,  4)

x

y

 5

5 5

5

A   (4, 1)

B   ( 3,  5)

 5

5 5

5

x

y

x

y

 5

5

(3,  2)

C

 10

10 10

10

( 2, 3)

x

y
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In Problems 17–20, replace ❑ and ❍ with numbers that make

the equation true for all x.

17. (x  ❑)2
 x2

 8x  ❍

18. (x  ❑)2
 x2

 10x  ❍

19. (x  ❑)2
 x2

 3x  ❍

20. (x  ❑)2
 x2

 x  ❍

5. ( 6,  4), (3, 4) 6. ( 5, 4), (6,  1)

7. (6, 6), (4,  2) 8. (5,  3), ( 1, 4)

In Problems 9–16, write the equation of a circle with the indi-

cated center and radius.

9. C  (0, 0), r 7 10. C  (0, 0), r  5

11. C  (2, 3), r 6 12. C  (5, 6), r  2

13. C   ( 4, 1), r 14. C  ( 5, 6), r 

15. C  ( 3,  4), r 16. C  (4,  1), r  5 2

 11 7

In Problems 21–26, write an equation for the given set of

points. Graph your equation.

21. The set of all points that are two units from the origin.

22. The set of all points that are four units from the origin.

23. The set of all points that are one unit from (1, 0).

24. The set of all points that are one unit from (0,  1).

25. The set of all points that are three units from ( 2, 1).

26. The set of all points that are two units from (3,  2).

27. Let M be the midpoint of A and B, where

A  (a1, a2), B  (1, 3), and M  ( 2, 6).

(A) Use the fact that  2 is the average of a1 and 1 to find a1.

(B) Use the fact that 6 is the average of a2 and 3 to find a2.

(C) Find d(A, M) and d(M, B).

28. Let M be the midpoint of A and B, where

A  ( 3, 5), B (b1, b2), and M (4,  2).

(A) Use the fact that 4 is the average of  3 and b1 to find b1.

(B) Use the fact that  2 is the average of 5 and b2 to find b2.

(C) Find d(A, M) and d(M, B).

In Problems 29–32, write a verbal description of the graph and

then write an equation that would produce the graph.

29.

30.

31.

 5

5 5

5

x

y

 5

5 5

5

x

y

 5

5 5

5

x

y
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32.

In Problems 33–38, M is the midpoint of A and B. Find the in-

dicated point. Verify that d(A, M)  d(M, B)  d(A, B).

33. A  ( 4.3, 5.2), B (9.6,  1.7), M ?

34. A  (2.8,  3.5), B ( 4.1, 7.6), M ?

35. A  (25, 10), M ( 5,  2), B ?

36. M  (2.5, 3.5), B  (12, 10), A ?

37. M  ( 8,  6), B (2, 4), A ?

38. A  ( 4,  2), M ( 1.5,  4.5), B ?

1
2

In Problems 39–44, find the center and radius of the circle with

the given equation.

39. x2
 y2

 2y  0

40. x2
 2x  y2

 0

41. x2
 2x  y2

 6y  6  0

42. x2
 4x  y2

 8y  16  0

43. x2
 x  y2

 3y  2  0

44. x2
 5x  y2

  3y  5  0

In Problems 45 and 46, show that the given points are the ver-

tices of a right triangle (see the Pythagorean theorem in Ap-

pendix C). Find the length of the line segment from the

midpoint of the hypotenuse to the opposite vertex.

45. ( 3, 2), (1,  2), (8, 5) 46. ( 1, 3), (3, 5), (5, 1)

Find the perimeter (to two decimal places) of the triangle with

the vertices indicated in Problems 47 and 48.

47. ( 3, 1), (1,  2), (4, 3) 48. ( 2, 4), (3, 1), ( 3,  2)

49. If P1  (x1, y1), P2  (x2, y2) and , 

show that d(P1, M)  d(M, P2)  d(P1, P2). (This is one

step in the proof of Theorem 2).

50. A parallelogram ABCD is shown in the figure.

(A) Find the midpoint of the line segment joining A and C.

(B) Find the midpoint of the line segment joining B and D.

(C) What can you conclude about the diagonals of the par-

allelogram?

1
2

M   x1   x2

2
,  

y1   y2

2  Find the equation of a circle that has a diameter with the end

points given in Problems 51 and 52.

51. (7,  3), (1, 7) 52. ( 3, 2), (7,  4)

53. Find the equation of a circle with center (2, 2) whose

graph passes through the point (3,  5).

54. Find the equation of a circle with center ( 5, 4) whose

graph passes through the point (2,  3).

 5

5 5

5

x

y

A   (0, 0)

B   (a, b) C   (a   c, b)

D   (c, 0)
x

y



G

F

E

D

A

B
C

78 feet

18 feet

18 feet

27 feet
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55. Sports. A singles court for lawn tennis is a rectangle 27

feet wide and 78 feet long (see the figure). Points B and F

are the midpoints of the end lines of the court.

(A) Sketch a graph of the court with A at the origin of your

coordinate system, C on the positive y axis, and G on

the positive x axis. Find the coordinates of points A

through G.

(B) Find d(B, D) and d(F, C) to the nearest foot.

56. Sports. Refer to Exercise 55. Find d(A, D) and d(C, G) to

the nearest foot.

57. Architecture. An arched doorway is formed by placing a

circular arc on top of a rectangle (see the figure). If the

doorway is 4 feet wide and the height of the arc above its

ends is 1 foot, what is the radius of the circle containing the

arc? [Hint: Note that (2, r 1) must satisfy x2
 y2

 r2.]

58. Engineering. The cross-section of a rivet has a top that is

an arc of a circle (see the figure). If the ends of the arc are

12 millimeters apart and the top is 4 millimeters above the

ends, what is the radius of the circle containing the arc?

59. Construction. Town B is located 36 miles east and 15

miles north of town A (see the figure). A local telephone

company wants to position a relay tower so that the dis-

tance from the tower to town B is twice the distance from

the tower to town A.

(A) Show that the tower must lie on a circle, find the center

and radius of this circle, and graph.

(B) If the company decides to position the tower on this

circle at a point directly east of town A, how far from

town A should they place the tower? Compute answer

to one decimal place.

60. Construction. Repeat Problem 59 if the distance from the

tower to town A is twice the distance from the tower to

town B.

 

 

x

Arched doorway

(2, r   1)

r

4 feet

y

Rivet

y

x
25

25

Tower
Town B

Town A

(x, y)
(36, 15)
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B.2 Partial Fractions

B.3 Descartes’ Rule of Signs

B.4 Parametric Equations



d
61.3 meters

237.8 meters

Significant Digits

Significant Digits  Rounding Convention

Significant Digits
Most calculations involving problems of the real world deal with numbers that are
only approximate. It therefore seems reasonable to assume that a final answer
should not be any more accurate than the least accurate number used in the cal-
culation. This is an important point, because calculators tend to give the impres-
sion that greater accuracy is achieved than is warranted.

Suppose we wish to compute the length of the diagonal of a rectangular field
from measurements of its sides of 237.8 meters and 61.3 meters. Using the
Pythagorean theorem and a calculator, we find

The calculator answer suggests an accuracy that is not justified. What accuracy is
justified? To answer this question, we introduce the idea of significant digits.

Whenever we write a measurement such as 61.3 meters, we assume that the
measurement is accurate to the last digit written. Thus, the measurement 61.3
meters indicates that the measurement was made to the nearest tenth of a meter.
That is, the actual width is between 61.25 meters and 61.35 meters. In general,
the digits in a number that indicate the accuracy of the number are called signif-

icant digits. If all the digits in a number are nonzero, then they are all signifi-
cant. Thus, the measurement 61.3 meters has three significant digits, and the
measurement 237.8 meters has four significant digits.

What are the significant digits in the number 7,800? The accuracy of this number
is not clear. It could represent a measurement with any of the following accuracies:

Between 7,750 and 7,850 Correct to the hundreds place

Between 7,795 and 7,805 Correct to the tens place

Between 7,799.5 and 7,800.5 Correct to the units place

To give a precise definition of significant digits that resolves this ambiguity, we
use scientific notation.

  245.573 878 . . .

 d   237.82
 61.32
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D E F I N I T I O N 1
Significant Digits

If a number x is written in scientific notation as

an integer

then the number of significant digits in x is the number of digits in a.

1  a   10, nx  a  10n



Thus,

7.8  103 has two significant digits

7.80  103 has three significant digits

7.800  103 has four significant digits

All three of these measurements have the same decimal representation (7,800),

but each represents a different accuracy.

Definition 1 tells us how to write a number so that the number of significant

digits is clear, but it does not tell us how to interpret the accuracy of a number

that is not written in scientific notation. We will use the following convention for

numbers that are written as decimal fractions:

Applying this rule to the number 7,800, we conclude that this number has two

significant digits. If we want to indicate that it has three or four significant dig-

its, we must use scientific notation.

Significant Digits in Decimal Fractions

Underline the significant digits in the following numbers:

(A) 70,007 (B) 82,000 (C) 5.600 (D) 0.0008 (E) 0.000 830

S O L U T I O N S

(A) 70,007 (B) 82,000 (C) 5.600 (D) 0.0008 (E) 0.000 830

Underline the significant digits in the following numbers:

(A) 5,009 (B) 12,300 (C) 23.4000 (D) 0.00050 (E) 0.0012

Rounding Convention
In calculations involving multiplication, division, powers, and roots, we adopt the

following convention:

B.1 Significant Digits A-37

Significant Digits in Decimal Fractions

The number of significant digits in a number with no decimal point is found by counting the digits

from left to right, starting with the first digit and ending with the last nonzero digit.

The number of significant digits in a number containing a decimal point is found by counting

the digits from left to right, starting with the first nonzero digit and ending with the last digit.

Rounding Calculated Values

The result of a calculation is rounded to the same number of significant digits as the number used in

the calculation that has the least number of significant digits.
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Thus, in computing the length of the diagonal of the rectangular field shown

earlier, we write the answer rounded to three significant digits because the width

has three significant digits and the length has four significant digits:

d  246 meters Three significant digits

One Final Note: In rounding a number that is exactly halfway between a larger

and a smaller number, we use the convention of making the final result even.

Rounding Numbers

Round each number to three significant digits.

(A) 43.0690 (B) 48.05 (C) 48.15 (D) 8.017 632  10 3

S O L U T I O N S

(A) 43.1

(B) 48.0

(C) 48.2

(D) 8.02  10 3

Round each number to three significant digits.

(A) 3.1495 (B) 0.004 135 (C) 32,450 (D) 4.314 764 09  1012

1. (A) 5,009 (B) 12,300 (C) 23.4000

(D) 0.00050 (E) 0.0012

2. (A) 3.15 (B) 0.004 14 (C) 32,400

(D) 4.31  1012

7. 80.000 8. 900.0000

9. 0.012 10. 0.0015

11. 0.000 960 12. 0.000 700

In Problems 1–12, underline the significant digits in each 

number.

1. 123,005 2. 3,400,002

3. 20,040 4. 300,600

5. 6.0 6. 7.00

Use the convention of making the digit before the 

5 even if it is odd, or leaving it alone if it is even.

E
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In Problems 23 and 24, find the diagonal of the rectangle with

the indicated side measurements. Round answers to the number

of significant digits appropriate for the given measurements.

23. 25 feet by 20 feet

24. 2,900 yards by 1,570 yards

Partial Fractions

Basic Theorems  Partial Fraction Decomposition

You have now had considerable experience combining two or more rational

expressions into a single rational expression. For example, problems such as

should seem routine. Frequently in more advanced courses, particularly in cal-

culus, it is advantageous to be able to reverse this process—that is, to be able

to express a rational expression as the sum of two or more simpler rational

expressions called partial fractions. As is often the case with reverse processes,

the process of decomposing a rational expression into partial fractions is more

difficult than combining rational expressions. Basic to the process is the factor-

ing of polynomials, so many of the topics discussed in Chapter 3 can be put to

effective use. Partial fraction decomposition is usually accomplished by solving

a related system of linear equations. If you are familiar with basic techniques for

solving linear systems discussed earlier in this book, such as Gauss–Jordan elim-

ination, inverse matrix solutions, or Cramer’s rule, you may use these as you see

fit. However, all of the linear systems encountered in Section B.2 can also be

solved by some special techniques developed here. Mathematically equivalent to

the techniques mentioned, these special techniques are generally easier to use in

partial fraction decomposition problems.

2

x  5
 

3

x  4
 

2(x  4)  3(x  5)

(x  5)(x  4)
 

5x  7

(x  5)(x  4)

In Problems 13–22, round each number to three significant

digits.

13. 3.0780 14. 4.0240

15. 924,300 16. 643,820

17. 23.65 18. 23.75

19. 2.816 743  103 20. 56.114  104

21. 6.782 045  10 4 22. 5.248 102  10 3



We confine our attention to rational expressions of the form P(x) D(x), where

P(x) and D(x) are polynomials with real coefficients. In addition, we assume that

the degree of P(x) is less than the degree of D(x). If the degree of P(x) is greater

than or equal to that of D(x), we have only to divide P(x) by D(x) to obtain

where the degree of R(x) is less than that of D(x). For example,

If the degree of P(x) is less than that of D(x), then P(x) D(x) is called a proper

fraction.

Basic Theorems
Our task now is to establish a systematic way to decompose a proper fraction into

the sum of two or more partial fractions. Theorems 1, 2, and 3 take care of the

problem completely. 

x4
 3x3

 2x2
 5x  1

x2
 2x  1

 x2
 x  1  

 6x  2

x2
 2x  1

P(x)

D(x)
 Q(x)  

R(x)

D(x)

For example, if

Equate the constant terms.

Equate the coefficients of x.

then

Substitute B  3 into the second equation to solve for A.

 A  11

 A  2( 3)  5

 A  2B  5

 B   3

(A  2B)x  B  5x  3
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T H E O R E M  1
Equal Polynomials

Two polynomials are equal to each other if and only if the coefficients 

of terms of like degree are equal.

E



The quadratic formula can be used to determine easily whether a given quadratic

factor ax2
 bx  c, with real coefficients, has imaginary zeros. If b2

 4ac 0,

then ax2
 bx  c has imaginary zeros. Otherwise its zeros are real. Therefore,

ax
2
 bx  c has imaginary zeros if and only if it cannot be factored as a prod-

uct of linear factors with real coefficients.

Partial Fraction Decomposition
We are now ready to state Theorem 3, which forms the basis for partial fraction

decomposition.

B.2 Partial Fractions A-41

E X P L O R E / D I S C U S S  1

If

x  5  A(x  1)  B(x  3) (1)

is a polynomial identity (that is, both sides represent the same polyno-

mial), then equating coefficients produces the system

1  A  B Equating coefficients of x

5  A  3B Equating constant terms

(A) Solve this system graphically.

(B) For an alternate method of solution, substitute x  3 in equation (1)

to find A and then substitute x   1 in equation (1) to find B.

Explain why this method is valid.

T H E O R E M  2
Linear and Quadratic Factors Theorem

For a polynomial of degree n 0 with real coefficients, there always

exists a factorization involving only linear and/or quadratic factors with

real coefficients in which the quadratic factors have imaginary zeros.

The Linear and Quadratic Factors Theorem from Chapter 3 (page 277) under-

lies the technique of decomposing a rational function into partial fractions. We

restate the theorem here.



Let’s see how the theorem is used to obtain partial fraction decompositions in

several examples.

Nonrepeating Linear Factors

Decompose into partial fractions 

S O L U T I O N

We first try to factor the denominator. If it can’t be factored in the real numbers,

then we can’t go any further. In this example, the denominator factors, so we apply

part 1 from Theorem 3:

(2)
5x  7

(x  1)(x  3)
 

A

x  1
 

B

x  3

5x  7

x2
 2x  3
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T H E O R E M  3
Partial Fraction Decomposition

Any proper fraction P(x) D(x) reduced to lowest terms can be decom-

posed into the sum of partial fractions as follows:

1. If D(x) has a nonrepeating linear factor of the form ax  b, then the

partial fraction decomposition of P(x) D(x) contains a term of the

form

A a constant

2. If D(x) has a k-repeating linear factor of the form (ax  b)k, then

the partial fraction decomposition of P(x) D(x) contains k terms of

the form

A1, A2, . . . ,  Ak constants

3. If D(x) has a nonrepeating quadratic factor of the form ax2
 bx  c

that has imaginary zeros, then the partial fraction decomposition of

P(x) D(x) contains a term of the form

A, B constants

4. If D(x) has a k-repeating quadratic factor of the form 

(ax2
 bx  c)k, where ax2

 bx  c has imaginary zeros, then 

the partial fraction decomposition of P(x) D(x) contains k terms of

the form

A1, . . . ,  Ak, B1, . . . ,  Bk constants

A1x  B1

ax2
 bx  c

 
A2 x  B2

(ax2
 bx  c)2

 . . .  
Akx  Bk

(ax2
 bx  c)k

Ax  B

ax2
 bx  c

A1

ax  b
 

A2

(ax  b)2
 . . .  

Ak

(ax  b)k

A

ax  b



To find the constants A and B, we combine the fractions on the right side of equa-

tion (2) to obtain

Because these fractions have the same denominator, their numerators must be

equal. Thus

5x  7  A(x  3)  B(x  1) (3)

We could multiply the right side and find A and B by using Theorem 1, but in

this case it is easier to take advantage of the fact that equation (3) is an identity—
that is, it must hold for all values of x. In particular, we note that if we let x  1,

then the second term of the right side drops out and we can solve for A:

5  1  7  A(1  3)  B(1  1)

12  4A

A  3

Similarly, if we let x   3, the first term drops out and we find

 8   4B

B  2

Hence,

(4)

as can easily be checked by adding the two fractions on the right.

Decompose into partial fractions 
7x  6

x2
 x  6

5x  7

x2
 2x  3

 
3

x  1
 

2

x  3

5x  7

(x  1)(x  3)
 

A(x  3)  B(x  1)

(x  1)(x  3)

B.2 Partial Fractions A-43

E X P L O R E / D I S C U S S  2

A graphing utility can also be used to check a partial fraction decompo-

sition. To check Example 1, we graph the left and right sides of equa-

tion (4) in a graphing utility (Fig. 1). Discuss how the TRACE command



Repeating Linear Factors

Decompose into partial fractions 

S O L U T I O N

Using parts 1 and 2 from Theorem 3, we write

Thus, for all x,

6x2
 14x  27  A(x  3)2

 B(x  2)(x  3)  C(x  2)

If x  3, then If x   2, then

 15  5C 25  25A

C   3 A  1

There are no other values of x that will cause terms on the right to drop out.

Because any value of x can be substituted to produce an equation relating A, B,

and C, we let x  0 and obtain

Substitute A 1 and C  3.

Thus,

6x2
 14x  27

(x  2)(x  3)2
 

1

x  2
 

5

x  3
 

3

(x  3)2

 B  5

  27  9  6B  6

  27  9A  6B  2C

  
A(x  3)2

 B(x  2)(x  3)  C(x  2)

(x  2)(x  3)2

 
6x2
 14x  27

(x  2)(x  3)2
 

A

x  2
 

B

x  3
 

C

(x  3)2

6x2
 14x  27

(x  2)(x  3)2
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on the graphing utility can be used to check that the graphing utility is

displaying two identical graphs.

FIGURE 1

 10

 10

10

10
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Decompose into partial fractions 

Nonrepeating Linear and Quadratic Factors

Decompose into partial fractions 

S O L U T I O N

First, we see that the quadratic in the denominator can’t be factored further in the

real numbers. Then, we use parts 1 and 3 from Theorem 3 to write

Thus, for all x,

5x2
 8x  5  A(x2

 x  1)  (Bx  C )(x  2)

If x  2, then

9  3A

A  3

If x  0, then, using A  3, we have

5  3  2C

C   1

If x  1, then, using A  3 and C   1, we have

2  3  (B  1)( 1)

B  2

Hence,

Decompose into partial fractions 
7x2
 11x  6

(x  1)(2x2
 3x  2)

5x2
 8x  5

(x  2)(x2
 x  1)

 
3

x  2
 

2x  1

x2
 x  1

  
A(x2

 x   1)   (Bx   C)(x  2)

(x  2)(x2
 x   1)

 
5x2
 8x  5

(x  2)(x2
 x  1)

 
A

x  2
 

Bx  C

x2
 x  1

5x2
 8x  5

(x  2)(x2
 x  1)

x2
 11x  15

(x  1)(x  2)2



Repeating Quadratic Factors

Decompose into partial fractions 

S O L U T I O N

Because x2
 2x  3 can’t be factored further in the real numbers, we proceed

to use part 4 from Theorem 3 to write

Thus, for all x,

x3
 4x2

 9x  5  (Ax  B)(x2
 2x  3)  Cx  D

Because the substitution of carefully chosen values of x doesn’t lead to the imme-

diate determination of A, B, C, or D, we multiply and rearrange the right side to

obtain

x3
 4x2

 9x  5  Ax3
 (B  2A)x2

 (3A  2B  C )x  (3B  D)

Now we use Theorem 1 to equate coefficients of terms of like degree:

From these equations we easily find that A  1, B   2, C  2, and D  1.

Now we can write

Decompose into partial fractions 
3x3
 6x2

 7x  2

(x2
 2x  2)2

x3
 4x2

 9x  5

(x2
 2x  3)2

 
x  2

x2
 2x  3

 
2x  1

(x2
 2x  3)2

 3B  D   5

 3A  2B  C  9

 B  2A   4

 A  1

  
(Ax  B)(x2

 2x  3)  Cx  D

(x2
 2x  3)2

 
x3
 4x2

 9x  5

(x2
 2x  3)2

 
Ax  B

x2
 2x  3

 
Cx  D

(x2
 2x  3)2

x3
 4x2

 9x  5

(x2
 2x  3)2
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1x3
 4x2

 9x  5

Ax
3
 (B 2A)x

2 
 (3A 2B C )x  (3B D)

E

E

E

E

E

E

EE

1. 2. 3. 4.
3x

x2
 2x  2

 
x  2

(x2
 2x  2)2

2

x  1
 

3x  2

2x2
 3x  2

3

x  1
 

2

x  2
 

1

(x  2)2

4

x  2
 

3

x  3
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In Problems 1–4, find A and B so that the right side is equal

to the left. After cross-multiplying to produce a polynomial

equation, solve each problem two ways (see Explore/Discuss 1).

First, equate the coefficients of both sides to determine a lin-

ear system for A and B and solve this system graphically.

Second, solve for A and B by evaluating both sides for se-

lected values of x.

1.

2.

3.

4.

In Problems 5–10, find A, B, C, and D, so that the right side is

equal to the left. Check each problem two ways. First, check by

adding the fractions in your decomposition. Second, graph the

x  11

(3x  2)(2x  1)
 

A

3x  2
 

B

2x  1

17x  1

(2x  3)(3x  1)
 

A

2x  3
 

B

3x  1

9x  21

(x  5)(x  3)
 

A

x  5
 

B

x  3

7x  14

(x  4)(x  3)
 

A

x  4
 

B

x  3

original function and your equation in the same window of a

graphing utility and use TRACE or TABLE to verify that the

graphing utility is displaying two identical graphs.

5.

6.

7.

8.

9.

10.
3x3
 3x2

 10x  4

(x2
 x  3)2

 
Ax  B

x2
 x  3

 
Cx  D

(x2
 x  3)2

2x2
 4x  1

(x2
 x  1)2

 
Ax  B

x2
 x  1

 
Cx  D

(x2
 x  1)2

5x2
 9x  19

(x  4)(x2
 5)

 
A

x  4
 

Bx  C

x2
 5

3x2
 x

(x  2)(x2
 3)

 
A

x  2
 

Bx  C

x2
 3

x2
 6x  11

(x  1)(x  2)2
 

A

x  1
 

B

x  2
 

C

(x  2)2

3x2
 7x  1

x(x  1)2
 

A

x
 

B

x  1
 

C

(x  1)2

In Problems 11–22, decompose into partial fractions.

11. 12.

13. 14.

15. 16.
5x2
 36x  48

x(x  4)2

x2
 12x  18

x3
 6x2

 9x

11x  11

6x2
 7x  3

3x  13

6x2
 x  12

 x  21

x2
 2x  15

 x  22

x2
 2x  8

17. 18.

19. 20.

21. 22.
x3
 x2

 13x  11

x2
 2x  15

x3
 7x2

 17x  17

x2
 5x  6

 5x2
 7x  18

x4
 6x2

 9

2x3
 7x  5

x4
 4x2

 4

6x2
 15x  16

x3
 3x2

 4x

5x2
 3x  6

x3
 2x2

 3x

In Problems 23–30, decompose into partial fractions.

23.
4x2
 5x  9

x3
 6x  9

24.
4x2
 8x  1

x3
 x  6



28.

29.

30.
6x5
 13x4

 x3
 8x2

 2x

6x4
 7x3

 x2
 x  1

4x5
 12x4

 x3
 7x2

 4x  2

4x4
 4x3

 5x2
 5x  2

 2x3
 12x2

 20x  10

x4
 7x3

 17x2
 21x  18

25.

26.

27.
 x2

 x  7

x4
 5x3

 9x2
 8x  4

5x2
 18x  1

x3
 x2

 8x  12

x2
 16x  18

x3
 2x2

 15x  36
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Descartes’ Rule of Signs

Variation in Sign  Descartes’ Rule of Signs

In Section B.3 we discuss Descartes’ rule of signs, a theorem that gives infor-

mation about the number of real zeros of a polynomial. When used in conjunc-

tion with the theorems discussed in Sections 3.2 and 3.3, Descartes’ rule of signs

can simplify the search for zeros.

Variation in Sign
When the terms of a polynomial with real coefficients are arranged in order of

descending powers, we say that a variation in sign occurs if two successive terms

have opposite signs. Missing terms (terms with 0 coefficients) are ignored. For a

given polynomial, we are interested in the total number of variations in sign in

both P(x) and P( x).

Variations in Sign

If P(x)  3x4
 2x3

 3x  5, find the number of variations in sign in P(x) and

in P( x).

S O L U T I O N

The signs of the coefficients in

P(x)  3x4
 2x3

 3x  5

are

1 1 1

    

Thus, P(x) has three variations in sign. The signs of the coefficients in

P( x)  3x4
 2x3

 3x  5



are

1

    

P( x) has one variation in sign.

If P(x)  2x5
 x4

 x3
 x  5, find the number of variations in sign in P(x)

and in P( x).

Descartes’ Rule of Signs
The number of variations in sign for P(x) and P( x) gives us useful information

about the number of real zeros of a polynomial with real coefficients. In 1636

René Descartes (1596–1650), a French philosopher and mathematician, gave the

first proof of a simplified version of a theorem that now bears his name. We state

Theorem 1 without proof, because a proof is beyond the scope of this book.

B.3 Descartes’ Rule of Signs A-49

T H E O R E M  1
Descartes’ Rule of Signs

Given a polynomial P(x) with real coefficients and nonzero constant term

1. Positive Zeros. The number of positive zeros of P(x) is never greater

than the number of variations in sign in P(x) and, if less, then always

by an even number.

2. Negative Zeros. The number of negative zeros of P(x) is never

greater than the number of variations in sign in P( x) and, if less,

then always by an even number.

It is important to understand that when we refer to positive zeros and nega-

tive zeros we are referring to real zeros. There are no positive or negative imag-

inary numbers.

Combinations of Zeros

Let P(x)  x3
 x  2. How many real zeros does P(x) have? How many imag-

inary zeros does P(x) have?

S O L U T I O N

We apply Descartes’ rule of signs

P(x)  x3
 x  2    One variation in sign

P( x)   x3
 x  2 No variations in sign

According to Descartes’ rule of signs, P(x) must have at most one positive zero

and the number of positive zeros must differ from one by an even number.



Because 0 does not differ from 1 by an even integer, 0 positive zeros is not a pos-

sibility, and P(x) must have exactly one positive zero. Because P( x) has no vari-

ations in sign, P(x) has no negative zeros. From the fundamental theorem of

algebra (Section 3.3), P(x) must have a total of three zeros. Thus, the two remain-

ing zeros must be imaginary.

Let P(x)  x4
 x3

 2. How many real zeros does P(x) have? How many imag-

inary zeros does P(x) have?

Descartes’ rule of signs enabled us to determine the exact number of real and

imaginary zeros in Example 2. If there is more than zero or one variation in sign,

then there can be more than one possible outcome. A table is a convenient way

to summarize the various possibilities.

Possible Combinations of Zeros

Construct a table showing the possible combinations of positive, negative, and

imaginary zeros of

(A) P(x)  3x4
 2x3

 3x  5

(B) Q(x)  x5
 2x4

 5x3
 7x  9

S O L U T I O N

(A) P(x) has three variations in sign and P( x) has one (see Example 1).

Thus, P(x) has either three positive zeros or one positive zero and

exactly one negative zero. Because P(x) must have a total of four

zeros, any remaining zeros must be imaginary. The table summarizes

the possible combinations of zeros, where   positive,   nega-

tive, I  imaginary. Note that the sum of each row is four, the degree

of P(x) and the total number of zeros.

  I

3 1 0

1 1 2
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E X P L O R E / D I S C U S S  1

Apply Descartes’ rule of signs to each of the following polynomials to

find the maximum possible number of real zeros. Then use a graphing

utility to determine the exact number of real zeros and the exact num-

ber of imaginary zeros for each polynomial.

(A) P(x)  x4
 4x2

 3 (B) Q(x)  x4
 4x2

 5



B.3 Descartes’ Rule of Signs A-51

(B) Apply Descartes’ rule of signs,

Q(x)  x5
 2x4

 5x3
 7x  9   Three variations in sign

Q( x)   x5
 2x4

 5x3
 7x  9 Two variations in sign

Possible combinations of zeros are given in the table.

  I

3 2 0

3 0 2

1 2 2

1 0 4

Construct a table showing the possible combinations of positive, negative, and

imaginary zeros of

(A) P(x)  x4
 3x  1

(B) Q(x)  4x5
 2x4

 x3
 x  5

1. P(x) has two variations in sign and P( x) has three.

2. P(x) has two real zeros and two imaginary zeros.

3. (A) (B)
  I   I

2 0 2 2 3 0

0 0 4 2 1 2

0 3 2

0 1 4

In Problems 1–6, find the number of variations in sign in P(x)

and P( x).

1. P(x)  x3
 2x  7

2. P(x)  x3
 4x  5

3. P(x)  x3
 3x2

 9

4. P(x)  x3
 6x2

 8

5. P(x)  x4
 2x3

 3x  5

6. P(x)  x4
 4x3

 2x  3



9. f (x)  x3
 2x2

 1

10. g(x)  x3
 5x2

 7

11. s(x)  x4
 2x3

 7x  8

12. r(x)  x4
 3x3

 4x  9

In Problems 7–12, use Descartes’ rule of signs to find the num-

ber of real zeros and the number of imaginary zeros for each

polynomial. Check your answer by graphing the polynomial on

a graphing utility.

7. P(x)  x3
 2x  4

8. Q(x)  x3
 3x  6
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In Problems 13–22, construct a table showing the possible

combinations of positive, negative, and imaginary zeros of

each polynomial.

13. P(x)  x3
 3x2

 2x  4

14. Q(x)  x3
 4x2

 3x  5

15. t(x)  x4
 2x3

 4x2
 2x  3

16. s(x)  x4
 2x3

 5x2
 3x  6

17. f (x)  x5
 x4

 3x3
 9x2

 x  5

18. g(x)  x5
 x4

 4x3
 3x2

 x  1

19. P(x)  x6
 12

20. Q(x)  x8
 24

21. r(x)  x7
 32

22. w(x)  x5
 25

In Problems 23–26, discuss the possible combinations of posi-

tive, negative, and imaginary zeros of P(x)  x2
 ax  b for

the indicated values of a and b.

23. a  0, b  0 24. a  0, b  0

25. a  0, b  0 26. a  0, b  0

In Problems 27–32, construct a table showing the possible

combinations of positive, negative, and imaginary zeros of

each polynomial.

27. f (x)  x6
 3x5

 4x4
 3x3

 2x  5

28. g(x)  x6
 4x5

 2x4
 6x3

 5x2
 7

29. s(x)  x7
 3x5

 4x2
 3x  5

30. w(x)  x7
 2x5

 3x2
 2x  7

31. P(x)  x8
 x  1 32. Q(x)  x9

 x  1

In Problems 33–36, discuss the possible combinations of posi-

tive, negative, and imaginary zeros of P(x)  x3
 ax  b for

the indicated values of a and b.

33. a  0, b  0 34. a  0, b  0

35. a  0, b  0 36. a  0, b  0



(a) (b) (c) (d)

 2

 3

10

7

Parametric Equations

Parametric Equations and Plane Curves  Projectile Motion

Parametric Equations and Plane Curves
Consider the two equations

x  t  1
   t    

(1)

y  t2
 2t

Each value of t determines a value of x, a value of y, and hence, an ordered pair

(x, y). To graph the set of ordered pairs (x, y) determined by letting t assume all

real values, we construct Table 1 listing selected values of t and the correspond-

ing values of x and y. Then we plot the ordered pairs (x, y) and connect them with

a continuous curve, as shown in Figure 1. The variable t is called a parameter

and does not appear on the graph. Equations (1) are called parametric equations

because both x and y are expressed in terms of the parameter t. The graph of the

ordered pairs (x, y) is called a plane curve.

B.4 Parametric Equations A-53

FIGURE 1 Graph of x  t  1,

y  t2  2t,     t    .

FIGURE 2 Graphing parametric

equations on a graphing utility.

T A B L E  1

t 0 1 2 3 4  1  2

x 1 2 3 4 5 0  1

y 0  1 0 3 8 3 8

Parametric equations can also be graphed on a graphing utility. Figure 2(a)

shows the Parametric mode selected on a Texas Instruments TI-83 calculator. Fig-

ure 2(b) shows the equation editor with the parametric equations in (1) entered

as x1T and y1T. In Figure 2(c), notice that there are three new window variables,

Tmin, Tmax, and Tstep, that must be entered by the user.

5

10

x

y



In some cases it is possible to eliminate the parameter by solving one of the

equations for t and substituting into the other. In the example just considered, solv-

ing the first equation for t in terms of x, we have

t  x  1

Then, substituting the result into the second equation, we obtain

y  (x  1)2
 2(x  1)

 x
2

 4x  3

We recognize this as the equation of a parabola, as we would guess from Figure 1.

In other cases, it may not be easy or possible to eliminate the parameter to

obtain an equation in just x and y. For example, for

x  t  log t
t  0

y  t  e
t

you will not find it possible to solve either equation for t in terms of functions

we have considered.

Is there more than one parametric representation for a plane curve? The answer

is yes. In fact, there is an unlimited number of parametric representations for the

same plane curve. The following are two additional representations of the parabola

in Figure 1.

x  t  3

y  t
2

 2t
   t    (2)

x  t

y  t
2

 4t  3
    t    (3)

The concepts introduced in the preceding discussion are summarized in

Definition 1.
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E X P L O R E / D I S C U S S 1

(A) Consult the manual for your graphing utility and reproduce 

Figure 2(a).

(B) Discuss the effect of using different values for Tmin and Tmax.

Try Tmin   1 and  3. Try Tmax  3 and 5.

(C) Discuss the effect of using different values for Tstep. Try Tstep  

1, 0.1, and 0.01.



Why are we interested in parametric representations of plane curves? It turns

out that this approach is more general than using equations with two variables as

we have been doing. In addition, the approach generalizes to curves in three- and

higher-dimensional spaces. Other important reasons for using parametric repre-

sentations of plane curves will be brought out in the discussion and examples that

follow.

Eliminating the Parameter

Eliminate the parameter and identify the plane curve given parametrically by

x  

y  
0  t  9 (4)

S O L U T I O N

To eliminate the parameter t, we solve each equation (4) for t:

Equating the last two equations, we have

A circle of radius 3 centered at (0, 0)

Thus, the graph of the parametric equations in equation (4) is the quarter of the

circle of radius 3 centered at the origin that lies in the first quadrant (Fig. 3).

x2
 y2

 9

 x2
 9  y2

 t  9  y2

 y2
 9  t x2

 t

 y   9  t x   t

 9  t

 t

B.4 Parametric Equations A-55

D E F I N I T I O N  1
Parametric Equations and Plane Curves
A plane curve is the set of points (x, y) determined by the parametric equations

x  f (t)

y  g(t)

where the parameter t varies over an interval I and the functions f and g are both defined on

the interval I.

FIGURE 3

(a) (b)

 3

 4.5

3

4.5
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Eliminate the parameter and identify the plane curve given parametrically by 
x  , y  , 0  t  4.

Projectile Motion
Newton’s laws and advanced mathematics can be used to determine the path of

a projectile. If v0 is the vertical speed of the projectile, h0 is the horizontal speed,

and a0 is the initial altitude of the projectile (Fig. 4), then, neglecting air resis-

tance, the path of the projectile is given by

x  h0t

y  a0  v0t  4.9t2 0  t  b (5)

  t 4  t

FIGURE 4 Projectile motion.

The parameter t represents time in seconds, and x and y are distances measured in

meters. Solving the first equation in equations (5) for t in terms of x, substituting

into the second equation, and simplifying produces the following equation:

(6)

You should verify this by supplying the omitted details.

We recognize equation (6) as a parabola. This equation in x and y describes

the path the projectile follows but tells us little else about its flight. On the other

hand, the parametric equations (5) not only determine the path of the projectile

but also tell us where it is at any time t. Furthermore, using concepts from physics

and calculus, the parametric equations can be used to determine the velocity and

acceleration of the projectile at any time t. This illustrates another advantage of

using parametric representations of plane curves.

Projectile Motion

An automobile drives off a 50-meter cliff traveling at 25 meters per second (Fig. 5).

When (to the nearest tenth of a second) will the automobile strike the ground?

How far (to the nearest meter) from the base of the cliff is the point of impact?

y  a0  
v0

h0

x  
4.9

h2
0

x2

FIGURE 5

y

a0

v0

h0

x

50 m
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S O L U T I O N

At the instant the automobile leaves the cliff, the vertical speed is 0, the horizon-

tal speed is 25 meters per second, and the altitude is 50 meters. Substituting these

values in equations (5), the parametric equations for the path of the automobile are

x  25t

y  50  4.9t2

The automobile strikes the ground when y  0. Using the parametric equation

for y, we have

The distance from the base of the cliff is the same as the value of x. Substituting

t  3.2 in the first parametric equation, the distance from the base of the cliff at

the point of impact is x  25(3.2)  80 meters.

A gardener is holding a hose in a horizontal position 1.5 meters above the ground.

Water is leaving the hose at a speed of 5 meters per second. What is the distance

(to the nearest tenth of a meter) from the gardener’s feet to the point where the

water hits the ground?

 t   
 50

 4.9
 3.2 seconds

  4.9t2
  50

 y  50  4.9t2
 0

1. The quarter of the circle of radius 2 centered at the origin that lies in the fourth quadrant. 2. 2.8 meters

1. If x t2 and y  t2  2, then y  x  2. Discuss the dif-

ferences between the graph of the parametric equations

and the graph of the line y  x  2.

2. If x t2 and y  t4  2, then y  x2
 2. Discuss the dif-

ferences between the graph of the parametric equations

and the graph of the parabola y  x2
 2.

In Problems 3 and 4, configure your graphing utility to pro-

duce Figure 2, as in Explore/Discuss 1.

3. Use TRACE to reproduce Table 1 on page A-53.

4. Use TABLE to reproduce Table 1 on page A-53.

5. Under the ZOOM menu, does ZDecimal affect the values

of t or the values of x and y?

6. Under the ZOOM menu, does ZStandard affect the values

of t or the values of x and y?

7. Under the ZOOM menu, does Zoom In affect the values of

t or the values of x and y?

8. Under the ZOOM menu, does ZSquare affect the values of

t or the values of x and y?

In Problems 9–18, the interval for the parameter is the whole

real line. For each pair of parametric equations, eliminate the

parameter t and find an equation for the curve in terms of x

and y. Identify and graph the curve.

9. x   t, y  2t  2 10. x  t, y  t  1



15. x  t2, y  t 16. x  2t, y  t2

17. x  t4, y  t2 18. x  2t2, y  t41
4

1
411. x   t2, y  2t2

 2 12. x  t2, y  t2
 1

13. x  3t, y   2t 14. x  2t, y  t
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In Problems 19–26, obtain an equation in x and y by eliminat-

ing the parameter. Identify the curve.

19. x  t  2, y  4  2t

20. x  t  1, y  2t  2

21. x  t  1, y  , t  0

22. x  , y  t  1, t  0

23. x  , y  , 0  t  162 16  t t

 t

 t

24. x   3 , y  , 0  t  25

25. x  , y  , t  1

26. x  , y  , t  2

27. If A 0, C  0, and E  0, find parametric equations for

Ax2
 Cy2

 Dx  Ey  F  0. Identify the curve.

28. If A 0, C  0, and D  0, find parametric equations for

Ax2
 Cy2

 Dx  Ey  F  0. Identify the curve.

  4  t 2  t

  t  1  t  1

 25  t t

In Problems 29–34, the interval for the parameter is the entire

real line. Obtain an equation in x and y by eliminating the

parameter and identify the curve.

29. x  , y  

30. x  , y  

31. x  , y  

32. x  , y  

33. x  , y  

34. x  , y  
4t 2

t 2
 1

4t

t 2
 1

4t

t 2
 4

8

t 2
 4

3

 t 2
 1

3t

 t 2
 1

2t

 t 2
 1

2

 t 2
 1

 t 2
 1 t 2

 4

 t 2
 9 t 2

 1

35. Consider the following two pairs of parametric equations:

1. x1  t, y1  et,    t    

2. x2  et, y2  t,    t    

(A) Graph both pairs of parametric equations in a squared

viewing window and discuss the relationship between

the graphs.

(B) Eliminate the parameter and express each equation as

a function of x. How are these functions related?

36. Consider the following two pairs of parametric equations:

1. x1  t, y1  log t, t  0

2. x2  log t, y2  t, t  0

(A) Graph both pairs of parametric equations in a squared

viewing window and discuss the relationship between

the graphs.

(B) Eliminate the parameter and express each equation as

a function of x. How are these functions related?

37. Projectile Motion. An airplane flying at an altitude of

1,000 meters is dropping medical supplies to hurricane

victims on an island. The path of the plane is horizontal,

the speed is 125 meters per second, and the supplies are

dropped at the instant the plane crosses the shoreline. How

far inland (to the nearest meter) will the supplies land?

38. Projectile Motion. One stone is dropped vertically from

the top of a tower 40 meters high. A second stone is

thrown horizontally from the top of the tower with a speed

of 30 meters per second. How far apart (to the nearest

tenth of a meter) are the stones when they land?



Geometric 
Formulas



Similar Triangles 
(A) Two triangles are similar if two angles of one triangle have the same

measure as two angles of the other.

(B) If two triangles are similar, their corresponding sides are proportional:

Pythagorean Theorem 
c

2
 a

2
 b

2

Rectangle 
A  ab Area

P  2a  2b Perimeter

Parallelogram
h  Height

A  ah  ab sin  Area 

P  2a  2b Perimeter

Triangle 
h  Height

A  hc Area

P  a  b  c Perimeter

s  (a  b  c) Semiperimeter 

A  Area—Heron’s formula

Trapezoid
Base a is parallel to base b.

h  Height

A  (a  b)h Area
1
2

 s(s  a)(s  b)(s  c)

1
2

1
2

a

a 
 

b

b 
 

c

c 
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ab

c

a b 

c 

b

a
c

a

bh



a

b

ab
h

c

a
b

h

c

a

h

b



Circle
R  Radius

D  Diameter

D  2R

A   R
2
  D

2 
Area

C  2 R   D Circumference

  For all circles

  3.141 59

Rectangular Solid
V  abc Volume

T  2ab  2ac  2bc Total surface area

Right Circular Cylinder
R  Radius of base

h  Height

V   R
2
h Volume

S  2 Rh Lateral surface area

T  2 R(R  h) Total surface area 

Right Circular Cone 
R  Radius of base

h  Height

s  Slant height

V   R
2
h Volume

S   Rs   R Lateral 

surface area 

T   R(R  s)   R(R  ) Total surface area

Sphere 

R  Radius

D  Diameter

D  2R

V   R
3
  D

3
Volume

S  4 R
2
  D

2
Surface area

1
6

4
3

 R
2
 h

2

 R
2
 h

2

1
3

C

D

1
4
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D

R

a
b

c

h

R

s

h

R

D R
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Exercise 1.1

1. Yes 3. No 5. Yes

7. (A) Xmin   7, Xmax  6, Ymin   9, Ymax  14

9. 11.

13.

15.

17.

19.

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

21. (A)  6.37 (B) 0.63

23. (A) 0.92 (B)  3.93

25. (6.77,  21.86), ( 1.77, 20.86)

27. (0.54, 7.83), (18.46,  63.83)

29. (0.36, 8.23), (19.64, 66.05)

31. (18.84, 13.77), (106.16, 31.23)

33. ( 2.43, 2.75), (53.37, 7.96)

 80

 10

20

60

 10

 10

40

130

 10

 10

100

40

 100

 5

60

25

 30

 5

30

15

x  2 0 2 4 6

y  8 4 8 4  8

x  5  3  1 1 3 5

y 0 4 5.7 6.9 8 8.9

x  3  1 1 3 5

y 10.5  2.5 4.5 7.5  17.5

x

y

10 10

10

y

10

5

x
 5 5

x

y

20

 20

 5 5



71. Function f multiplies the square of the input by 2, subtracts 4

times the input, and adds 6. f (x)  2x2  4x  6

73. Function f multiplies the input by 4, subtracts 3 times the square

root of the input, and adds 9. f (x)  4x  3  9

75. (A) 3 (B) 3 77. (A) 2x h (B) x  a

79. (A)  6x  3h  9 (B)  3x  3a  9

81. (A) 3x2  3xh  h2 (B) x2  ax  a2

83. The values of f are very close to 2 when x is close to 1.

85. (A) s(0) 0, s(1) 16, s(2) 64, s(3) 144

(B) 64  16h

(C) Let q(h) [s(2  h)  s(2)] h

h  1  0.1  0.01  0.001 0.001 0.01 0.1 1

q(h) 48 62.4 63.84 63.984 64.016 64.16 65.6 80

(D) q(h), the average velocity from 2 to 2  h seconds, ap-

proaches 64 feet per second

87. (A)

(B) The boiling point drops 9 F for each 5,000-foot increase in

altitude.

 x

41. (A)  38.84, 11.16, 27.69 (B)  40, 20 (C)  41.07

43. (A)  17.84, 6.93 (B)  10 (C) No solution

45. 1.4142

49. There are two solutions: radius  20.93 and height  29.07 or 

radius 43.17 and height  6.83.

51. A 0.89-inch square or a 2.40-inch square can be cut out. Dimen-

sions for smaller square: 0.89 inches  9.23 inches  6.73

inches; dimensions for larger square: 2.40 inches  6.20 inches  

3.70 inches.

53. A 0.93-inch square or a 3.92-inch square can be cut out. Dimen-

sions for smaller square: 0.93 inches  10.14 inches  10.61

inches; dimensions for larger square: 3.92 inches  4.16 inches  

6.12 inches.

55. (A)

(B) Demand decreases 2,000 cases

(C) Demand increases 2,200 cases

57. (A)

(B) Revenue increases $18,000

(C) Revenue decreases $34,000

(D) The company should raise the price $5 to increase the 

revenue.

35. (A) The curve is a circle of radius 3 centered at the origin.

(B) This circle is distorted.

(C) ZDecimal produces a circle that fills the screen. ZSquare 

produces a small circle. ZoomFit produces another distorted

circle.

37. (A)  7.99 (B)  5.85, 3.44, 12.41 (C) 14.60

39. (A) No solution (B)  8.81, 4.86

 10

 10

10

10

x

5

 5

 5 5

y
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x 17,800 15,600 13,600

y 20 25 30

y 20 25 30

R 356,000 390,000 408,000

x 0 5,000 10,000 15,000 20,000 25,000 30,000

B(x) 212 203 194 185 176 167 158

Exercise 1.2

1. A function 3. Not a function 5. A function

7. A function; domain  {2, 3, 4, 5}; range  {4, 6, 8, 10}

9. Not a function

11. A function; domain  {0, 1, 2, 3, 4, 5}; range  {1, 2}

13. A function 15. Not a function 17. Not a function

19. (A) A function (B) Not a function

21. A function 23. Not a function

25.  8 27.  6 29. 1 31. 10 33. 35. 3

37. All real numbers; (  ,  )

39. x  4; (  , 4)   (4,  )

41. t  4; [4,  )

43. w  ; [ ,  ) 45. All real numbers; (  ,  )

47. v  4,  4; (  , 4)   ( 4, 4)   (4,  )

49. x   4, x  1; [ 4, 1)   (1,  )

51. t  0, t  9; [0, 9)   (9,  )

53. f (x)  2x  3 55. f (x)  4x2  2x  9 57. 3

59.  6  h 61. 11  2h 63. g(x)  3x  1

65.

67. Function f multiplies the domain element by 2 and then subtracts

the product of 3 and the square of the domain element.

69. Function F takes the square root of the sum of the fourth power of

the domain element and 9.

F(x)  
x

8   x

 
7
3 

7
3

 
30
17



Exercise 1.3

1. (A) [ 4, 4) (B) [ 3, 3) (C) 0 (D) 0 (E) [ 4, 4)

(F) None (G) None (H) None

3. (A) (  ,  ) (B) [ 4,  ) (C)  3, 1 (D)  3

(E) [ 1,  ) (F) (  , 1] (G) None (H) None

5. (A) (  , 2)  (2,  ) (The function is not defined at x 2.)

(B) (  , 1)  [1,  ) (C) None (D) 1 (E) None

(F) (  , 2]  (2,  ) (G) [ 2, 2) (H) x  2

7. Increasing: [ 2, 10]; decreasing: [ 10, 2]

9. Decreasing: [ 4, 3]; constant: [ 10, 4], [3, 10]

11. Increasing: [ 4, 0], [4, 10]; decreasing: [ 10, 4], [0, 4]

13. x intercepts: 1.405, 6.405; y intercept: 9; local minimum:

f (2.5)  15.25

15. x intercept: 3.377; y intercept: 25; local minimum: 

h( 1.155)  21.921; local maximum: h(1.155) 28.079

17. x intercepts: ; y intercept:

local minima: m

19. One possible answer:

x

5

 5

 5 5

f(x)

m( 12)  0(  12)  0, 12  3.464;

  12   3.464, 12  3.464

89. The rental charges are $20 per day plus $0.25 per mile driven.

91. (A)

t 0 1 2 3 4 5 6

data 4.35 4.42 4.59 4.69 5.08 5.39 5.66

A(t) 4.2 4.43 4.66 4.89 5.12 5.35 5.58

(B) The estimated price of admission is $5.81 in 2002 and $6.04

in 2003.

93. (A)

0

 1

60

5

0

 1

6

7

t 0 1 2 3 4

data 24 27 33 40 48

A(t) 22 28.1 34.2 40.3 46.4

(B) Merck’s estimated sales are $53 billion in 2002 and $65 bil-

lion in 2004.

95. (A)

r 1.6 1.8 2.1 2.3 2.5

data 24 27 33 40 48

S(r) 24.6 27 33.6 40 48

(B) Merck’s estimated sales are $58 billion if they spend $2.7

billion on R & D and $75 billion if they spend $3 billion on

R & D.

0

1.5

60

3
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21. One possible answer:

23. One possible answer:

x

f(x)

5

 5

 5 5

x

f(x)

5

 5

 5 5



45. The graph of f decreases on [ 10, 2.15] to a local minimum

value, f ( 2.15)    36.62, and then increases on [ 2.15, 10].

47. The graph of h increases on [ 10, 4.64] to a local maximum

value, h( 4.64)  281.93, decreases on   4.64, 5.31] to a local

minimum value, h(5.31)   211.41, and then increases on 

[5.31, 10].

49. The graph of p decreases on [ 10, 3.77] to a local minimum

value, p( 3.77)  0, increases on [ 3.77, 0.50] to a local maxi-

mum value, p(0.50) 18.25, decreases on [0.50, 4.77] to a local

minimum value, p(4.77) 0, and then increases on [4.77, 10].

51. One possible answer:

53. One possible answer:

55. One possible answer:

57. Domain: all real numbers except x 2; range: { 5, 5} (a set, not

an interval); discontinuous at x 2

 10

 10

10

10

x

f(x)

5

 5

 5 5

x

5

 5

 5 5

f(x)

x

5

 5

 5 5

f(x)

25. f ( 2)   1, f ( 1)  0, f (1) 0, f (2)  1

27. f ( 2)  0, f ( 1)   3, f (1)  1, f (2) 0

29. f ( 2)  5, f ( 1)  2, f (1)  2, f (2)  5

31. Domain: (  ,  ); range: (  ,  ); y intercept: 30;

x intercepts: 44.99,  0.82, 0.81

33. Domain: (  ,  ); range: (  , 10,200]; y intercept: 200; 

x intercepts: 14.18, 14.18

35. Domain: [0,  ); range: (  , 16]; y intercept: 0; 

x intercepts: 0, 64

37. Domain: [ 5,  ); range: [ 134.02,  );

y intercept: 111.80; x intercepts: 4.79, 14.94

39. The graph of f is rising and f is increasing on (  , 0.13] and

[7.87,  ). The graph of f is falling and f is decreasing on 

[0.13, 7.87]. f (0.13)  9.81 is a local maximum and 

f (7.87)  242.19 is a local minimum.

41. The graph of m is rising and m is increasing on (  , 12] and 

[0, 12]. The graph of m is falling and m is decreasing on [ 12, 0]

and [12,  ). m( 12)  144 and m(12) 144 are local maxima

and m(0) 0 is a local minimum.

43. The graph of g is rising and g is increasing on [ 15, 2.5] and 

[20,  ). The graph of g is falling and g is decreasing on 

(  ,  15] and [2.5, 20]. g(2.5) 306.25 is a local maximum

and g( 15)  0 and g(20) 0 are local minima.

x

g(x)

5

 5

 5 5

x

f(x)

5

 5

 5 5

x

f(x)

1

 1 1
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59. Domain: all real numbers except x 1; range: (  , 3)  (5,  );

discontinuous at x  1

61. Domain: all real numbers except x 3; range: (0,  ); discontinu-

ous at x 3

63. Domain: all real numbers; range: all integers; discontinuous at the

even integers

65. Domain: all real numbers; range: all integers; discontinuous at ra-

tional numbers of the form , where k is an integer.

f (x)  

 

 2

 1

0

1

2

 

    

if

if

if

if

if

    

 

 
2
3  x  

 
1
3  x  

0  x  
1
3  x  
2
3  x  

 

 
1
3

0
1
3
2
3

1

k
3

x

f(x)

5

 5

 5 5

f (x)  

 

 2

 1

0

1

2

 

    

if

if

if

if

if

    

 

 4  x  

 2  x  

0  x  

2  x  

4  x  

 

 2

0

2

4

6

 10

 10

10

10

 10

 10

10

10

67. Domain: all real numbers; range: [0, 1); discontinuous at all 

integers

69. (A) One possible answer:

(B) The graph must cross the x axis exactly once.

71. (A) One possible answer:

(B) The graph must cross the x axis at least twice. There is no

upper limit on the number of times it can cross the x axis.

73. (A) One possible answer:

(B) The graph can cross the x axis zero, one, or two times.

x

f(x)

5

 5

5 10

x

f(x)

5

 5

 5 5

x

f(x)

5

 5

5 10

f (x)  

 

x  2

x  1

x

x  1

x  2

 

    

if

if

if

if

if

    

 

 2  x  

 1  x  

0  x  

1  x  

2  x  

 

 1

0

1

2

3
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x

f(x)

2

 2 2

x

f(x)

2

 2

 3 3

h

h

h



89.

91.

T (10,000) $535; T (30,000) $1,806.54;

T (100,000) $7,066.25

93. (A)

(B) 53.50 thousand miles, 49.95 thousand miles

(C) The mileage increases to a maximum value of 54.18 thousand

miles at a pressure of 32.14 pounds per square inch and then

begins to decrease.

0

25

60

40

T(x)   
0.0535x

0.0705x  308.46

0.0785x  783.75

 if            0  x  18,120

 if   18,120  x  59,500

 if   x   59,500

E(x)

x
10,0005,000

500

E(x)   
200 if  0  x  3,000

80   0.04x  if    3,000  x  8,000

180   0.04x if 8,000  x

75.

77.
79. The maximum revenue is $25,714 when 857 car seats are sold.

81. The maximum volume is 654.98 cubic inches when the side of

each square is 3.39 inches.

83. The minimum cost is $300,000 when the land portion of the pipe

is 13.59 miles.

85.

87. (A)

(B) No, because f(x)  C(x) at x 1, 2, 3, 4, 5, or 6

C(x)   
15 0  x  1

18 1  x  2

21 2  x  3

24 3  x  4

27 4  x  5

30 5  x  6

R(x)   32 if 0  x  100

16   0.16x if x   100

f (x)   100x  0.5  100

f ( 246)  10 0.5  24.6  10( 25)   250

f ( 245)  10 0.5  24.5  10( 24)   240

f ( 243)  10 0.5  24.3  10( 24)   240

f (247)  10 0.5   24.7  10(25)  250

f (25)  10 0.5   2.5  10(3)  30

f (24)  10 0.5   2.4  10(2)  20

f ( 6)  10 0.5  0.6  10( 1)   10

f (6)  10 0.5   0.6  10(1)  10

f ( 4)  10 0.5  0.4  10(0)  0

f (4)  10 0.5   0.4  10(0)  0

ANSWERSA-74

f rounds

numbers

to the tens

place

x

C(x)

$15

$30

0 61 2 3 4 5

E(5,750)  $310;

E(9,200)  $548;

discontinuous at x  8,000

Exercise 1.4

1. Odd 3. Even 5. Neither 7. Even 9. Neither

11. 13.

15. 17.

x

y

2

 2

 2 4
x

y

2

42

 2

x

y

4

2

 2 2
x

y

2

4

 2 2

19. 21.

23. 25.

x

y

2

 2

2
x

y

2

2 2

 2

x

y

2

2 2
x

y

2

 2

2

v



27. The graph of y x2 is shifted two units to the right; y (x  2)2.

29. The graph of y x3 is shifted down two units; y  x3  2.

31. The graph of y is vertically contracted by a factor of 0.25; 

y  0.25 .

33. The graph of y x3 is reflected in the x axis (or the y axis); y  x3.

35. 37.
39. g(x)   2(x  4)2  2 41.
43. The graph of y x2 is shifted seven units left and nine units up.

45. The graph of y is shifted eight units right and reflected in

the x axis.

47. The graph of y is reflected in the x axis and shifted three

units up.

49. The graph of y x2 is vertically expanded by a factor of four and

reflected in the x axis.

51. 53. y 4 55. y 4 (x 1)2

57. y 0.5(x 3)3 1

59. Reversing the order does not change the result.

61. Reversing the order can change the result.

63. Reversing the order does not change the result.

65. 67.

69. Conclusion: any function can be written as the sum of two other

functions, one even and the other odd.

71. Graph of f (x) Graph of 

Graph of 

73. Graph of f(x) Graph of 

 10

 10

10

10

 10

 10

10

10

 f (x) 

 10

 10

10

10

  f (x) 

 10

 10

10

10

 10

 10

10

10

 f (x) 

x

5

 5

 5 5

g(x)

x

5

 5

 5 5

f(x)

 xy   x  2  2

 x

 x 

g(x)    0.5(x  2)

g(x)   0.5(6   x)g(x)   3 x  4  5

 x 
 x 

Graph of 

75. The graph of is the same as the graph of y f (x)

whenever f (x)  0 and is the reflection of the graph of y  f (x)

with respect to the x axis whenever f(x)  0.

77.

79. Each graph is a vertical translation of the graph of 

y  0.004(x  10)3.

81. Each graph is a vertical contraction followed by a vertical transla-

tion of the graph of y x2.

83. Each graph is a portion of the graph of a horizontal translation

followed by a vertical expansion (except for C 8) of the graph

of y  t2.

t

V

2 4 6 8

70

0

 10

 10

10

10

10

10

35

25

500 1,000

50,000

100,000

$150,000

f(x)

T
o
ta

l 
p

ro
d

u
ct

io
n

 c
o
st

s

Units produced

x
0

y   f (x) 

 10

 10

10

10

  f (x) 
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Exercise 1.5

1.

3.

5.  2 7. 1 9.  2 11. 3

13. ( f  g)(x)  5x  1; ( f  g)(x)  3x  1; ( fg)(x)  4x2  4x;

; domain f  g, f  g, fg  (  ,  ); domain of 

f g  (  ,  1)  ( 1,  )

15. ( f  g)(x)  3x2  1; ( f  g)(x)  x2  1; ( fg)(x)  2x4  2x2;

; domain of each function: (  ,  )

17. ( f  g)(x)  x2  3x  4; ( f  g)(x)   x2  3x  6;

( fg)(x)  3x3  5x2  3x  5; ; 

domain f  g, f  g, fg: (  ,  );

domain of f g: (  , 1)  ( 1, 1)  (1,  )

19. ( f  g)(x)  (x2  x  1)3; domain: (  ,  );

(g  f )(x)  x6  x3  1; domain: (  ,  )

21. ( f  g)(x)   2x  4 ; domain: (  ,  );

(g  f )(x)  2 x  1  3; domain: (  ,  )

23. ( f  g)(x)  (2x3  4)1 3; domain: (  ,  );

(g  f )(x)  2x  4; domain: (  ,  )

 fg (x)  
3x  5

x2  1

 fg (x)  
2x2

x2  1

 fg (x)  
4x

x  1

x

y

5

 5

 5 5
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x  3  2  1 0 1 2 3

( f  g)(x) 3 3 1  1  3  3  3

x

y

5

 5

 5 5

x  3  2  1 0 1 2 3

( fg)(x) 2 0  2  2 0 2 2

25. ( f  g)(x)  (g  f )(x)  x; symmetric with respect to the line 

y  x

27. ( f  g)(x)  (g  f )(x)  x; symmetric with respect to the line 

y  x

29. ( f  g)(x)  ;

( f  g)(x)  ; ( fg)(x)  ;

. The domain of the functions f  g, f  g, and 

fg is [ 3, 2]. The domain of is ( 3, 2].

31. ( f  g)(x)   2; ( f  g)(x)  6; ( fg)(x)  x   8;

. The domain of f g, f  g, and fg is [0,  ).

Domain of  [0, 16)  (16,  ).

33. ( f  g)(x)  ;

( f  g)(x)  ;

( fg)(x)  ;

. The domain of the functions 

f  g, f  g, and fg is [2, 7]. The domain of is [2, 7).

35. ( f  g)(x)  ; domain: [4,  );

(g  f )(x)   4; domain: [0,  )

37. ( f  g)(x)  ; domain: (  , 0)  (0,  );

(g  f )(x)  ; domain: (  , 2)  ( 2,  )

39. ( f  g)(x)  ; domain: (  , 1)  (1,  );

(g  f )(x) ; domain: (  , 1)  ( 1, 1)  (1,  )
1

 x  1

1

 x  1 

1

x  2

1

x
 2

 x

 x  4

f

g

 fg (x)   x2  x  6

7  6x  x2

  x4  5x3  19x2  29x  42

 x2  x  6   7  6x  x2

 x2  x  6   7  6x  x2

f

g

 fg (x)  
 x  2

 x  4

2 x2 x

f

g

 fg (x)   2  x

x  3

 6  x  x2 2  x   x  3

 2  x   x  3

 4

 6

4

6

 4

 6

4

6



41. (e) 43. (a) 45. (c)

47. g(x)  2x  7; f (x)  x4; h(x)  ( f  g)(x)

49. g(x)  4  2x; f(x)  x1 2; h(x)  ( f  g)(x)

51. f (x)  x7; g(x)  3x  5; h(x)  (g  f )(x)

53. f (x)  x 1 2; g(x)  4x  3; h(x)  (g  f )(x)

59. ( f g)(x) 2x; ( f g)(x) ; ( fg)(x) x2 ; .

The domain of f g, f  g, and fg is (  , 0)  (0,  ). The 

domain of is (  , 1)  ( 1, 0)  (0, 1)  (1,  ).

61. ( f  g)(x)  2; ( f  g)(x)  ; ( fg)(x)  0;  0.

The domain of f g, f  g, and fg is (  , 0)  (0,  ); domain 

of is (0,  ).

63. ( f  g)(x)  ; domain of f  g is [ 2, 2]; 

(g  f )(x)  4  x; domain of g  f is (  , 4].

65. ( f  g)(x)  ; domain of f  g is (  , 0)  (0, 2)  (2,  );

(g  f )(x)  ; domain of g  f is (  , 0)  (0, 5)  (5,  ).

67. ( f  g)(x)  ; domain of f  g is [ 4, 4]; 

(g  f )(x)  ; domain of g  f is [ 5, 5].

69. ( f  g)(x)  ; domain of f  g is [ 2, 3]; the first graph is

correct.

 10

 10

10

10

 10

 10

10

10

 2  x

 34  x2

 16  x2

x  5

5  x

6x  10

x

 4  x2

f

g

 fg (x)
 2x

 x 

f

g

 fg (x) 
x2  1

x2 1

1

x2

2

x

71. ( f  g)(x)  ; domain of f  g is (  , 2]  [2,  ); the

first graph is correct.

73. ( f  g)(x)  ; domain of f  g is [ 3, 3]; the first graph

is correct.

75. P(p)  4,400p  200p2  16,000; maximum profit occurs when

p  $11.

77. V(t)  0.016 t2 3

79. (A) r(h)  (B) V(h)   h3 (C) V(t)   t3 20.125
12

1
12

1
2h

 10

 10

10

10

 10

 10

10

10

 16  x2

 10

 10

10

10

 10

 10

10

10

 x2  1
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Exercise 1.6

1. The original set and the reversed set are both one-to-one functions.

3. The original set is a function. The reversed set is not a function.

5. Neither set is a function. 7. One-to-one 9. Not one-to-one

11. One-to-one 13. Not one-to-one 15. One-to-one

17. One-to-one 19. One-to-one 21. Not one-to-one

23. One-to-one

25. One-to-one 27. Not one-to-one

 10

 10

10

10

 10

 10

10

10

29. Not one-to-one 31. One-to-one

33. Yes 35. No 37. Yes

39. The function h multiplies the input by 3 and then subtracts 7. The

inverse function adds 7 to the input and then divides by 3. The al-

gebraic equation is h 1(x)  (x  7) 3.

41. The function m adds 11 to the input and then takes the cube root.

The inverse function cubes the input and then subtracts 11. The

algebraic equation is m 1(x)  x3  11.

 10

 10

10

10

 10

 10

10

10



81. f  1(x)  ; domain of f  1 [ 3, 0];

range of f  1 [0, 3] 

83. f  1(x)  ; domain: f  1 [0, 3]; 

range of f  1 [ 3, 0]

85. f  1(x)  ; domain of f  1 [1, 2];

range of f  1 [0, 1]

87. f 1(x)  ; domain of f 1 [0, 1]; 

range of f 1 [ 1, 0]

89. f  1(x)  
x  b

a

x

y

2

 2

 2 2

y   x

f 1

f

  2x  x2

x

y

2

 2

 2 2

y   x

f 1

f

 2x  x2

x

y

5

 5

 5 5

y   x

f 1

f

  9  x2

x

y

5

 5

 5 5

y   xf 1

f

 9  x243. The function s multiplies the input by 3, adds 17, and then raises

this expression to the fifth power. The inverse function takes the

fifth root of the input, subtracts 17, and then divides by 3. The al-

gebraic equation is s 1(x)  (x1 5  17) 3.

45. Range of f  1 [ 4, 4]; domain of f  1 [1, 5]

47. Range of f  1 [ 5, 3]; domain of f  1 [ 3, 5]

49. 51.

53.

55. f  1(x)  57. f  1(x) 59. f  1(x) 10x 6

61. f 1(x) 63. f 1(x) 65. f  1(x) 

67. f  1(x)  69. f  1(x)  (4  x)5  2

71. f  1(x) 16 4x2, x 0 73. f  1(x) (3 x)2 2, x 3

75. The x intercept of f is the y intercept of f  1 and the y intercept of 

f is the x intercept of f  1.

77. f  1(x)  1  79. f  1(x)   1   x  3 x  2

 3 x  1

4x  5

3x  2

2x

1  x

x  2

x

x  3

4
1
3 x

10 10

 10

10

x

y

y   x

f

g

10 10

 10

10

x

y

y   x

f

g

10 10

 10

10

x

y

y   x
f

g

x

y

5

 5

 5 5

y   x

y   f(x)

y   f 1(x)

x

y

5

 5

 5 5

y   f(x)

y   x y   f 1(x)
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16. Domain: [ 4, 5); range: [ 4, 4] (1.3)

17. Increasing: [0, 5); decreasing: [ 4, 0] (1.3)

18. x  0 (1.3)

19. (1.4)

20. (1.4)

21. (1.4)

22. (1.4)

23. (1.4)

x

y

5

 5

 5 5

x

y

5

 5

 5 5

x

y

5

 5

 5 5

x

y

5

 5

 5 5

x

y

5

 5

 5 5

Chapter 1 Review

1. Xmin   4, Xmax  9, Ymin   6, Ymax  7 (1.1)

2. (A) A one-to-one function with domain {1, 2, 3} and range 

{1, 4, 9}. The inverse function is {(1, 1), (4, 2), (9, 3)} with 

domain {1, 4, 9} and range {1, 2, 3}.

(B) Not a function

(C) A function that is not one-to-one. The domain is 

{ 2,  1, 0, 1, 2} and the range is {2}.

(D) A one-to-one function with domain { 2, 1, 0, 1, 2} and

range { 2, 1, 1, 2, 3}. The inverse function is 

{(2, 2), (3,  1), ( 1, 0), ( 2, 1), (1, 2)} with domain 

{ 2,  1, 1, 2, 3} and range { 2,  1, 0, 1, 2}. (1.2)

3. (A) Not a function (B) A function (C) A function 

(D) Not a function (1.2)

4. (A)  1 (B) 24 (C) 0 (D) 0 (1.2)

5. x  3  2  1 0 1 2 3

( f  g)(x) 7 5 3 1 1 1 1

6. x  3  2  1 0 1 2 3

( fg) (x)  12  6  2 0 0 2 6

7. 2 (1.5) 8. 1 (1.5) 9. 0 (1.5) 10. 2 (1.5)

11. No (1.6) 12. Yes (1.6)

13. (A) Odd (B) Even (C) Neither (1.4)

14. f ( 4)  4, f (0)  4, f (3) 0, f (5) is not defined (1.2, 1.3)

15. x   2, x  1 (1.2, 1.3)

91. a  1 and b  0 or a   1 and b arbitrary.

95. (A) f  1(x)  2  (B) f  1(x)  2  

97. (A) f  1(x)  2  , 0  x  2

(B) f  1(x)  2  , 0  x  2 4  x2

 4  x2

 x x
99. (A) 200  q  1,000 (B) ; 

domain: 200  q  1,000; range: 10  p  70

101. R(x)  50x  0.025x2

p  
15,000

q
 5
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y

5

 5 5

x

y

5

 10

 5 5

(1.5)

(1.5)



45. (A)

(B) Domain: [ 4, 5]; range: ( 5, 1]  [0, 5] (C) x 0

(D) Decreasing on [ 4, 0); increasing on [0, 5] (1.3)

46. The graph of f increases on (  , 4.47] to a local maximum value,

f ( 4.47)   22.89, decreases on [ 4.47, 4.47] to a local minimum

value, f (4.47)   12.89, and then increases on [4.47,  ). (1.3)

47. (A) Reflected in x axis (B) Shifted down three units 

(C) Shifted left three units

(D) Contracted horizontally by (1.4)

48. (A)  (x 2)2  4 (B) 4  (1.4)

49. g(x)  8  3 (1.4)

50. (1.4)

51. Yes (1.6)

52. The function k cubes the input and then adds 5. The inverse func-

tion subtracts 5 from the input and then takes the cube root of the

result. (1.6)

53. Domain: x  0, x  9 or [0, 9)  (9,  ) (1.2)

54. (A) ( f  g)(x)   8; (g  f )(x)  

(B) Domain of f  g is the set of all real numbers. The domain of

(g  f ) is [0,  ). (1.5)

55. Functions f, h, and F are one-to-one (1.6)

56. f  1(x)  (x  7) 3;

domain of f  1 range of f  1 (  ,  ) (1.6)

x

y

10

10
y   xf

f  1

  x  8   x 

k 1(x)   3 x  5

 10

 10

10

10

t(x)   0.25x2  x  3

 10

 10

10

10

 x  4 
4 x

1
2

x

y

5

 5

 5 5

24. (1.4)

25. (A) g (B) m (C) n (D) f (1.4)

26. (A) ( f g)(x)  (x2  4) (x  3);

domain of f g (  ,  3)  ( 3,  )

(B) (g f )(x)  (x  3) (x2  4);

domain of g f  (  ,  2)  ( 2, 2)  (2,  )

(C) ( f  g)(x)  x2  6x  5; domain of f  g  (  ,  )

(D) (g  f )(x)  x2  1; domain of g  f  (  ,  ) (1.5)

27. (A) 0 (B) 1 (C) 2 (D) 0 (1.3)

28. (A)  2, 0 (B)  1, 1 (C) No solution

(D) x  3 and x   2 (1.3)

29. Domain (  ,  ); range  ( 3,  ) (1.3)

30. [ 2,  1], [1,  ) (1.3) 31. [ 1, 1) (1.3)

32. (  ,  2) (1.3) 33. x   2, x  1 (1.3)

34. (0.64,  12.43), (23.36, 78.43) (1.1)

35. ( 4.26, 2.72), (88.70, 30.61) (1.1)

36. (A)  6.71, 5.67, 21.04 (B) 22.99 (1.1, 1.3)

(C)  7.97, 8.28, 19.70 (D)  9.84

37. This equation defines a function. For any real number x, the num-

ber y 5  0.5x is the only number that corresponds to x. (1.2)

38. This equation does not define a function. For example, the ordered

pairs (2, 2) and (2,  2) both satisfy the equation. (1.2)

39. (A) All real numbers (B) All real numbers except t  5

(C) w  0 or [0,  ) (1.2)

40. 5  2h (1.2) 41. f (x)  4x3  (1.2)

42. The function f multiplies the square of the domain element by 3,

adds 4 times the domain element, and then subtracts 6. (1.2)

43. x intercepts: 0, 3.30; y intercept: 0; local maximum: 

x  1.31, y  5.15; domain: [0,  ); range: (  , 5.15] (1.3)

44. x intercepts: 26.58,  3.58, 3.15; y intercept: 300; local 

maximum: x   18.00, y  2,616.00; local minimum: x 0.00,

y   300; domain: (  ,  ); range: (  ,  ) (1.3)

 x

0

 10

40

100

 100

 10

100

30

x

y

5

 5

 5 5
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57. f  1(x)  x2  1;

domain of f  1 [0,  ); range of f  1 [1,  ) (1.6)

58. f  1(x)  ;

domain of f  1 [ 1,  ); range of f  1 [0,  ) (1.6)

59. (A) One possible answer: (B) One possible answer: (1.3)

60. The function squares the input, multiplies the result by 2, then

subtracts 4 times the input and adds 5. g(t) 2t2 4t 5 (1.2)

61. Domain: all real numbers except x 2; range: y  3 or ( 3,  );

discontinuous at x  2 (1.3)

62. (A)

x

y

5

 5

 5 5

 10

 10

10

10

x

y

5

 5

 5 5
x

y

5

 5

 5 5

x

y   x

y

5

 5

 5 5

f

f 1

 x  1

x

y

5

 5

 5 5

y   x

f

f  1

(B) (1.4)

63. (A) 6x 5  3h (B) 3x 3a  5 (1.2)

64. (A) The graph must cross the x axis exactly once.

(B) The graph can cross the x axis at most once. (1.3)

65. (A)

(B) (C) Range: nonnegative integers

(D) Discontinuous at all integers except 0 (E) Even (1.3, 1.4)

66. (A) [1, 3]

(B) q  g 1 (p)   500; domain: [1, 3]; 

range: [1,000, 4,000]

(C) R(p) 4,500 500p (D) R(q) 9q (1 0.002q) (1.6)

67. P(p)   6,500  600p  10p2; the maximum profit is $2,500

when the price is $30. (1.5)

68. (A) 11.3 seconds (B) 155 meters (1.3)

69. The maximum value is approximately 10,480 cubic inches when

the flap is 6.8 inches wide. (1.3)

70. (A)

(B) The function increases on [0, 24.8] to a local maximum of 2.8

cubic centimeters per second, and then decreases on [24.8, 36].

(1.3)

71. (A)

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f (x) 0 1 2 0 1 2 3 4 0 1 2 3 4 5 6 0

(B) f (n2)  0

(C) If f(x) 0, then x is a perfect square integer. (1.3)

0

0

3

36

4,500

p

x

y

5

 5 5

f (x)   
2

1

0

1

2

for 3  x   2

for 2  x   1

for 1  x   1

for 1  x   2

for 2  x   3

x

y

5

 5

 5 5
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73.

x $2,000 $4,000 $10,000 $30,000

T(x) $40 $90.00 $370 $1,467.50

(1.3)

T(x)  

0.02x

0.03x  30

0.05x  130

0.0575x  257.5

  

if

if

if

if

  

 0  x  3,000

 3,000  x  5,000

 5,000  x 17,000

17,000  x

72. (A)

x 12 32 52 72 92

Data 5.41 4.81 4.51 4.00 3.75

f (x) 5.32 4.90 4.48 4.06 3.64

(B) 3.302 minutes (1.2)

0

0

6

120
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Exercise 2.1

1. Rise  3, run  5, slope   0.6, 3x  5y   4

3. Rise  2, run  8, slope   0.25, x  4y   8

5. Rise   3, run  5, slope     0.6, 3x  5y   2

7. x intercept: x  2, y intercept: y 2, slope  1, y  x  2

9. x intercept: x  2, y intercept: y  4, slope   2, y  2x 4

11. x intercept: x 3, y intercept: y  1, slope  , y  x  1

13. The graph of f is vertically expanded by 3 and shifted down seven

units.

15. The graph of f is vertically contracted by , reflected in the x axis,

and shifted down four units.

17. Not linear 19. Linear 21. Linear 23. Linear

25. Not linear

27. x intercept: ; y intercept: 4; slope:  

29. x intercept: 0; y intercept: 0; slope:  

x

y

5

 5

 5 5

3
4

 10

 10

10

x

y

3
5

20
3

1
2

1
3

1
3

3
5

2
8

3
5

31. x intercept: ; y intercept: 5; slope: 

33. x intercept: 4; y intercept: 8; slope: 2

35. x intercept: 3; y intercept: none; slope is not defined

x

y

5

 5

 5 5

10 10

10

x

y

10 10

 10

10

x

y

2
3

15
2

h



37. x intercept: none; y intercept: 3.5; slope: 0

39. y  x 41. y   x  4 43. y   3x  4

45. y   x  2 47. y   2x  8 49. y   x  

51. y 4 53. x 4 55. y x 3 57. 3x y  13

59. 3x y 9 61. x 2 63. x 3 65. 3x 2y 15

67. 3x  y  4

71. (A) (B)

(C) f and g are inverse functions

73. slope AB    slope DC

75. (slope AB) (slope BC)    1

77. 6x  8y   9

79. 3x  4y  25 81. x  y  10

10 10

 10

10

x

y

 10

 10

10

x

y

( 3
4)(4

3)

3
4

10 10

 10

10

x

y

g(x)  8
5x  19

5f (x)  5
8x  19

8

3
4

8
3

4
3

2
5

2
3

x

y

5

 5

 5 5

83. 232  5x  12y

85. (A)

(B) Varying C produces a family of parallel lines.

87. The function g is never linear.

91. (A) F  C  32 (B) 68 F, 30 C (C)

93. (A) V   1,600t  8,000, 0  t  5 (B) V  $3,200

(C)  1,600

95. C(x)  124  0.12x, 1,050 doughnuts

97. (A) C(x)  2,147  75x

(B) The daily fixed costs are $2,147 and the variable cost per

club is $75.

99. (A) R  0.00152C  0.159, C  210 (B) R  0.236

(C) Slope  0.00152; coronary risk increases 0.00152 per unit

increase in cholesterol above the 210 cholesterol level.

101. (A) T  5A 70, A 0 (B) A 14,000 feet

(C) Slope   5; the temperature changes  5 F for each 

1,000-foot rise in altitude.

103. (A) h  1.13t  12.8 (B) t  32.9 hours

9
5

9
5

 10

 15.2

10

15.2

2010

 10

 20

10

x

y
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41. d  43. f  45. a  

47. x  

49. The graphs are identical for x 0. For x  0, each is the reflec-

tion of the other in the x axis.

51. l  2w 53. w  l 55. l  w  3 57. l  w  4

59. (A) y  0.5x  1.5 (B) y  2x  3

The graphs are symmetric with respect to the line y x. Each

function is the inverse of the other.

1
2

5y  3

2  3y

A  2bc

2b  2c

d1d2

d2  d1

an  a1

n  1
Exercise 2.2

1. x  c, x  f 3. x  b, x  e 5. Identity

7. Conditional equation, x  0 9. Contradiction

11. Contradiction 13. Identity as long as x 1

15. Conditional equation, x  0 17. Contradiction

19. 18 21. 9 23. or 5.5 25. t  

27. 3 29. No solution 31. x  7 33. x  

35. Identity 37. x  3.4 39. No solution

6
5

 
5
4

11
2
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61. x  2 63. Identity, x 0, 1

65. 27, 28, 29 67. 8, 10, 12, 14 69. 10 inches by 20 inches

71. $19,750 73. 5,000 trout 75. 10 gallons

77. 11.25 liters 79. (A) 216 miles (B) 225 miles

81. 90 miles

83. (A) T  30  25(x  3) (B) 330 C (C) 13 kilometers

Exercise 2.3

1. f (x)  (x  2)2  1 3. h(x)   (x  1)2

5. m(x)  (x  2)2  3

7. The graph of f is the graph of y x2 shifted to the right two units

and up one unit.

9. The graph of h is the graph of y x2 reflected in the x axis and

shifted to the left one unit.

11. The graph of m is the graph of y x2 shifted to the right two units

and down three units.

13. k 15. m 17. h

19. 21.

23.

25. Increasing: [2.25,  ); decreasing: (  , 2.25]; range: [4.75,  )

27. Increasing: (  , 2.2]; decreasing: [2.2,  ); range: (  , 60.4]

29. y  2x2  4x  2 31. y   0.5x2  x  3.5

y

x

10

 10

 10 10

20

30

 5 15

Vertex
(2,  9)

Axis
x   2

y

x

5

 5
 2 2

 10

 15

10

 4

Vertex
( 3, 5)

Axis
x    3

y

50

 5 5

100

10 15
x

Vertex
(6, 18)

Axis
x   6

33. y  x2  2x  3 35. y   0.5x2  2x  2.5

37. y   2x2  16x  24 39. y   0.5x2  4x  4

41. y  5x2  50x  100 43. g 1(x)   1  

45. p 1(x)  1  

47. All the graphs are translations of the graph of y x2.

51. Center: (3, 2); radius: 7 53. Center: ( 4, 1); radius: 5

57. y  2x  1

59. (A) 1  h (B) ; The slope seems 

to be approaching

1.

61. The minimum product is  225 for the numbers 15 and  15.

There is no maximum product.

63. (A) A(x)  5,000  50x  x2, 0  x  100 (B) x  25

(C) 75 feet  75 feet

65. After 25 seconds 67. 100 feet

69. (A) d(t)  176t  16t2, 0  t  11

(B) 1.68 seconds; 9.32 seconds

71. (A) h(x)   0.14x2  14, 0  x  10 (B) No

(C) 11.76 feet (D) 7.56 feet

73. (A) p  d(x)   0.129x  9.27 (B) $4.71

h slope  1  h

1 2

0.1 1.1

0.01 1.01

0.001 1.001

x

f(x)

5

 5

 5 5

 4  x

 x  4

85. Model: y  0.227x  4.20, ticket price: $6.47

87. Men: y  0.111x  51.6, women: y  0.162x  58.5, in 2104

the times for men and women are equal.

89. Supply: y 4.95x  4.22, demand: y   7.65x  25.7,

equilibrium price: $2.37 per bushel

Exercise 2.4

1. 7  5i 3. 5  3i 5. 2  4i 7. 5  9i 9. 4  3i

11.  24 or  24  0i 13.  12  6i 15. 15  3i

17.  4  33i 19. 65 or 65  0i 21.

23. 25. 5  3i 27. 4 29. 4i 31. 4i

33.  4 35. 7  5i 37.  3  2i 39. 8  25i

3

13
 

11

13
i

2

5
 

1

5
i



Answers A-85

41. 43. 45.  or 47.

49.  6i or 0  6i 53. i18   1, i32  1, i67   i

55. x  3, y   2 57. x  2, y  3 59. 0.6  1.2i

61. 1.5  0.5i 65. (a  c)  (b  d)i

3

2
 

1

2
i0  

2

5
i

2

5
i

2

13
 

3

13
i

5

7
 

2

7
i

67. a2  b2 or (a2  b2)  0i 69. (ac  bd )  (ad  bc)i

71. i4k (i4)k (i2  i2)k  [( 1)( 1)]k 1k 1

75. 3  i,  3  i

79. (1) Definition of addition; (2) Commutative ( ) property for R;

(3) Definition of addition

Exercise 2.5

1. u  0, 2 3. y  (double root) 5. x  , 4

7. x  3  2 9. t  2  2i

11. m   1  2i 13. d   5, 2.5

15. v   17. y   

19. x  5  21. x  2  2i 23. x  

25. x  

27. Two real zeros 29. Two imaginary zeros

31. One real zero 33. One real zero

35. Two real zeros 37. Two imaginary zeros

39. x  3  41. y  43. x  

45. x  47. x  49.

51. 53. 55.

57. 59. 61. x  3x  
5

2
 

i 11

2
x  

  3   19

2

x   3x  
 7  i

2
I  

E   E2  4RP

2R

t   2s

g

3   13

2
 

5
4, 2

3

1   7

3

3   3

2
2 3

1
5  

3
5 i

2   2

2
2 7

3i 15

8
 

3

8
1
2i1

2

 2

 3

3
2

2
3

63. 65. 67.

71. x   i,  2i 73. x   i,   i

75. x  1,

81. The  in front still yields the same two numbers even if a is

negative.

83. 8, 13 85. 12, 14 87. At 8:06 A.M. 89. 2.19 feet

91. (A) A(w)  400w  2w2, 0  w  200 (B) 50  w  150

(C) No, the maximum cross-sectional area is 20,000 square feet

when w  100 feet.

93. 52 miles

95. (A) y   0.000607x2  0.0308x  0.943

(B) 2009 (C) 1.20 gallons

97. (A) y   0.326x2  18.2x  340

(B) 2004 (C) 435 billion

99. (A) y 0.0476x2 0.0452x 0.357 (B) 64 miles per hour

101. (A) y   0.00217x2  0.140x  1.90

(B) 44.0 miles per hour, 3.86 miles per gallon, 2.27 hours, 

25.9 gallons, $61.60

 
1
2  

1
2 i 3

 2 2

x   
5

4
 

i 15

4
x  0,

2

3
x  

7

2
 
 13

2

47. (four roots) 49. m 9, 16 51. t 4, 81

53. x  4, 39,596 55.  0.016203, 1974.98

57. 5.3 inches by 8.5 inches 59. 2, 277 feet

61. (A)

(B) 13.1 inches by 9.1 inches

(C) The maximum area is 128 square inches when the beam is a

square with sides of 11.3 inches.

63. 1.65 feet or 3.65 feet

A  w 256  w2, 0  w   16

x   4

5   17 
5

y    3   3

2

Exercise 2.6

1. T 3. F 5. F 7. 2u2  4u  0, u  x 3

9. Not of quadratic type 11.

13. x  22 15. n  8 17. No solution 19. x  0, 4

21. y   2,  i 23. x  25. x  ,  8

27. m  3,  2, 29. No solution 31. y  1

33. x 2 35. x 37. n 39. y  3, 1

41. y  1, 16 43. m  3, 7, 2, 8 45. x   2

 
3
4, 1

5 
3
2  

1
2 i

1

2
 
 7

2
i

1
8

1
2 i 2

10

9
 4u  7u2  0, u  

1

x2

Exercise 2.7

1. (c, f ) 3. (  , b]  [e,  ) 5. (  , c]  [ f,  )

7. (  , b)  (e,  ) 9.  x  3  5 11.  y  1  6

13.  a  3  5 15.  d  2  4 17. (  , 5); x 5

19. (2,  ); t 2 21. (3,  ); m 3 23. ( 5, 2);  5 x 2

25. (  , 3)  (7,  ); x  3 or x  7 27. [0, 8]; 0  x  8

29. [ 5, 0];  5 x  0
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31. y is no more than seven units from the origin:

[ 7, 7];  7 x  7

33. w is at least seven units from the origin;

(  ,  7]  [7,  ); x   7 or x  7

35. s is less than three units from 5;

(2, 8); 2  s  8

37. s is more than three units from 5;

(  , 2)  (8,  ); s  2 or s  8

39. u is no more than three units from  8;

[ 11,  5];  11  u   5

41. u is at least three units from  8;

(  ,  11]  [ 5,  ); u   11 or u   5

43. ( 2, 3];  2 t  3 45. [ 30, 18);  30  x  18

47. (  ,  14); q   14 49. No solution,  

51. (1, 3); 1  x  3 53. (  ,  3]  [7,  ); x   3 or x   7

55. 57. (  ,  1)  (5,  ); t   1 or t  5

59. (  ,  11]  [ 6,  ); u   11 or u   6

61. (A) and (C): a and b have the same sign

(B) and (D): a and b have opposite signs

63.  65.  67. (2.9, 3)  (3, 3.1) 69. ( c, c)  (c, 3c)

71. If a  0, the solution set is (  , r1)  (r2,  ). If a 0, the solu-

tion set is (r1, r2).

[1, 11
3 ]; 1  x  11

3

73. If a  0, the solution set is R, the set of real numbers.

If a  0, the solution set is {r}.

75. x2  0 77.  A  12.436  0.001; (12.435, 12.437)

79. (A) x  40,625 (B) x  40,625

81. (B) x  52,000 (C) Raise wholesale price $3.50 to $66.50

83.  N  2.37  0.005 85. 33  x  122

87. 16 C to 27 C 89. (A) d(t)  16t2 128t (B) 3  t 5

91. T(x)  28x  2; 5.286  x  7.071

93. y   0.00738x  28.2; 5,180  x  7,890

95. y   0.0623x  877; 3,640  x  8,460

97. (A) p  d(x)   0.0000727x  3.50, 0  x  48,100

(B) R(x)   0.0000727x2  3.50x, 0  x  48,100

C(x)  20,000  0.5x, x  0

(C) The company will break even at the sales levels of 8,360 gal-

lons or 32,900 gallons. Any sales between these two levels

will produce a profit. Any sales less than 8,360 or greater than

32,900 will result in a loss.

(D) The maximum profit is $10,900 when the sales are 20,600

gallons.

Chapter 2 Review

1. Rise   2, run  5, slope     0.4, 2x  5y  7 (2.1)

2. Slope: (2.1)

3. 2x  3y  12 (2.1) 4. y   x  2 (2.1)

5. Vertical: x  3, slope not defined;

horizontal: y  4, slope  0 (2.1)

6. (A) x  21 (B) x  (2.2)

7. (A) f(x)   (x  1)2  4

(B) It is the same as the graph of y x2 reflected in the x axis,

shifted left one unit, and up four units.

(C) x   3, 1 (2.3, 2.5)

8. (A) f(x)  

(B) It is the same as the graph of y x2 shifted right units, and

down units.

(C) x  (2.3, 2.5)

9. (A) 3  6i (B) 15  3i (C) 2  i (2.4)

10. No solution (2.2) 11. All real numbers (2.2)

3   17

2

17
4

3
2

(x  3
2)2  

17
4

30
11

2
3

x

y

 5 5

5

3
2

2
5

12. x  2 (2.1, 2.5) 13. (2.6)

14. x  0, 2 (2.5) 15. x  , 3 (2.5)

16. m  (2.5) 17. y  (2.5)

18. x  2, 3 (2.6) 19. x  1; [1,  ) (2.2)

20. ( 5, 4);  5 x  4; (2.2)

21. x   2 or x  6; (  , 2)  (6,  ) (2.5)

23. 3x  2y   6 (2.1)

24. (A) y   2x  3 (B) y   2 (2.1)

25.  14  y   4 (2.2) 26. x  2.5 or 5.5  x (2.2)

27.  1  m  2 (2.2) 28. 3  y  7; [3, 7] (2.7)

29. t   15 or t  3; (  , 15)  (3,  ) (2.7)

30. Two real roots (2.5) 31. One real root (2.5)

32. Two imaginary roots (2.5)

33. (A)

(B) Increasing: [4,  ); decreasing: (  , 4]; range: [ 3,  ) (2.3)

34. g(x)  2x  2; f (x)   0.5x2  x  1.5 (2.1, 2.3)

35. (A) 5  4i (B) i (2.4)

y

x

5

 5

 5 5 10

y   f(x)

Vertex
(4,  3)

Axis
x   4

1
2x

3   33

4
 

1

2
 
 3

2
i

1
2

x   
 14

2



36. (A)  1  i (B) (C)  2i (D)  20 (2.4)

37. (2.5) 38. u  1  (2.6)

39. (2.6) 40. x  , 64 (2.6)

41. m   3i,  2 (2.6) 42. y  , 3 (2.6)

43. g 1(x)  2  (2.3)

44. (A) y  2x  5 (B) y  0.5x  2.5 (2.2)

The graphs are symmetric with respect to the line y x.

Each function is the inverse of the other.

47. If c  9 there are two distinct real roots, if c 9 there is one real

double root, and if c  9 there are two distinct imaginary roots.

(2.5)

48. (2.2) 49. (2.5)

50. True for all real b and all negative a (2.2)

51. is less than 1. (2.2)

52. 6  d  x  6  d, x  6, (6  d, 6)  (6, 6  d ) (2.2)

53. 1 (2.4) 54. Perpendicular (2.1)

55. Center: (2, 1); radius: (2.3)

56. y  x 7 (1.1, 2.1)

57. x  1, 243 (2.6) 58. x   1; (2.5)

59. 47, 48, 49 (2.2) 60. 4, 6, 8 (2.2) 61. b  5h (2.2)

62. h  0.25b (2.2)

63. 12.5 inches by 30.0 inches (2.5) 64. 196 feet (2.6)

65. (A) 4,750 calculators; $7,437.50 (B) 2,614 or 6,886 calculators

(C) None (2.3)

66. 3,240 or 9,260 calculators (2.3)

1  i 3

2

x
6

6

y

(4, 3)

2 2

a

b

I  
E   E2  4PR

2R
M  

P

1  dt

 x  1

9
4

 
27
8

1
2  

3
2 i

i 2x  
 5   5

2

5
2

4
13  

7
13 i 67. Profit: 3,240  x 9,260; loss: 0  x 3,240 or x 9,260 (2.3)

68. (A) V   1,250t  12,000 (B) V  $5,750 (2.1)

69. (A) R  1.6C (B) R  $168 (2.1)

70. E(x)  

71. (A) A(x)  60x  x2 (B) 0  x  40

(C) x  20, y  15 (2.3)

72. (A) H  0.7(220  A) (B) H  140 beats per minute

(C) A  40 years old (2.1)

73. 20 centimeters by 24 centimeters (2.5)

74. B  14.58 feet or 6.58 feet (2.6) 75. 6.6 feet (2.3)

76. (A) (B) 2005 (2.3)

77. (A) (B) 45.33% (2.1)

78. Supply: y  0.0000258x  0.0533; (2.2)

demand: y   0.0000221x  1.63; equilibrium price: $0.90

79. (A) R(x)   0.0000221x2  1.63x, 0  x  73,800 (2.5)

C(x)  15,000  0.2x, x  0

(B) The company will break even at sales levels of 13,200 pounds

and 51,500 pounds. It will make a profit for any sales level

between these two break-even levels and a loss for any sales

level less than 13,200 pounds or greater than 51,500 pounds.

(C) The maximum profit is $8,130 when 32,400 pounds of broc-

coli are sold.

80. y   0.00174x2  0.0865x  0.980, 33.6 miles per hour,

1.92 miles per gallon, 2.98 hours, 52.1 gallons, $128 (2.5)

3
2

E(2,000) 200,

E(5,000)  400 (2.1) 200

0.1x  100

if 0  x  3,000

if x   3,000
;

Answers A-87

Cumulative Review for Chapters 1 and 2

1. (A)

(B) Xmin   3, Xmax  3, Ymin   4, Ymax  4

(C) No (1.1, 1.2)

x

y

5

 5

 5 5

2. (A) (B) y  2x  4 (C) y  

(D) (x 3)2  (y  2)2  20

(E) (2.1)

x
 5 105

y

10

y   2x   4

y    
1

2

17

2
x  

 
1
2x  17

22 5



ANSWERSA-88

3. Slope: ; y intercept: 2; x intercept: 3 (2.1)

4. (A) 2 (B) 4 (C) (1.2)

5. (A) Expanded by a factor of 2 (B) Shifted right two units

(C) Shifted down two units (1.4)

6. Domain: [ 2, 3]; range: [ 1, 2] (1.2) 7. Neither (1.4)

8. (A) (B)

9. x (2.2) 10. x 0, 4 (2.5) 11. x (2.5)

12. x 3 (2.5) 13. x 3 (2.6) 14. y 5; [5,  ) (2.7)

15.  5  x  9; ( 5, 9) (2.7)

16. x   5 or x  2; (  , 5]  [2,  ) (2.7)

17. (A) f(x)  (x  2)2  5

(B) It is the same as the graph of y x2 shifted to the right two

units and down five units.

(C) x  2  (2.3, 2.5)

18. (A) 7  10i (B) 23  7i (C) 1  i (2.4)

19. (A) All real numbers (  ,  ) (B) { 2}  [1,  )

(C) 1 (D) [ 3, 2] and [2,  ) (E)  2, 2 (1.4)

20. ( f  g)(x)  ; domain: (  , 0)  (0, 3)  (3,  ) (1.5)

21. f  1(x)  (1.6)

22. (A) f  1(x)  x2  4; domain: x 0

(B) Domain of f [ 4,  )  Range of f  1

Range of f [0,  )  Domain of f  1

(C) (1.6)

23. (A) (1.6)

24. (A) y   x   8 (B) y  x  5 (2.1)2
3

3
2

x

y

5

 5

 5 5

f 1

f

y   x

x  5

2
 or 

1

2
x  

5

2

x

3  x

 5

 7

  55
2

x

y

5

 5

 5 5
x

y

5

 5

 5 5

 
2
5

x

y

5

 5

 5 5

2
3 25. Range: [ 9,  ); min f (x)    9;

y intercept: f (0)  8; x intercepts: x 4 and x   2 (2.3)

26. x  or x  3;  (3,  ) (2.7)

27.  m  2; (2.7)

28. (A) 0  0i or 0 (B)

(C) i35  i32i3  (i4)8( i)  18( i)   i (2.4)

29. (A) 3  18i (B)  2.9  10.7i (C)  4  6i (2.4)

30. Domain: all real numbers; range: (  , 1)  [1,  );

discontinuous at: x  0 (1.4)

31. Center: (3,  1); radius: (2.3)

32. The graph of y  x is contracted by , reflected in the x axis,

shifted two units to the right and three units up; 

y   x  2  3. (1.4)

33. y  (x  2)2  3 (2.3) 34. y  3  (2.6)

35. x  (2.6) 36. u   2i,  (2.6)

37. t  (2.6) 38. x  (2.4)

39. If b   2 or b  2 there are two distinct real roots; if b  2 or

b  2, there is one real double root; and if  2  b  2 there are

two distinct imaginary roots. (2.5)

42.  5  2h (1.2) 43. y  (1.4)

44. (A) h  

(B) r  The negative root is discarded 

because r must be positive. (2.2, 2.5)

 
h

2
  h2

4
 

A

2 

A  2 r2

2 r

2 3 x  1  1

4
3 i9

4

 327
8 ,  1

8

i 5

 
1
2

1
2

x

f(x)

5

 5

5
(3,  1)

 10

x

y

5

 5

 5 5

6
5

[2
3, 2]2

3

(  , 3
2)3

2

x

y

10

 10

 10 10

Vertex
(1,  9)

Axis
x   1

f   b

2a 

(1.4)



45. (A) Domain g: [ 2, 2] (B) ; domain of

f g is ( 2, 2) (C) ( f  g)(x)  4  x2; domain of f  g is

[ 2, 2] (1.5)

46. (A) f  1(x)  1  

(B) Domain of f 1 is [ 4,  ). Range of f 1 Domain of f is [1,  )

(C) (1.6)

47. 0 (2.4)

48. All a and b such that a b. (2.2)

49. (2.4) 50. x  (2.5)

51. x   2i,  3i (2.6) 52. x   1.5  0.5i (2.6)

53. x  (2.6)

55. (A) x  3  0.5h (B) 0.5x 0.5a  3 (1.2)

57.

58. f (x)   

x

y

2

 2

 2 2

 
 

2x  2

2x  1

2x

2x  1

2x  2

2x  3

 

if

if

if

if

if

if

 

 1  x   1
2

 
1
2  x  0

0  x  1
2

1
2  x  1

1  x  3
2

3
2  x  2

 

x

y

5

10

 5 5

Domain: all real numbers; 

range: [4,  ) (1.3)
f (x)   

 2x

4

2x

  if

if

if

   x   2

   2  x  2

   x   2

 6

1   13 
5

 2  i

3

a2  b2

a2  b2
 

2ab

a2  b2
i

x

y

5

 5

 5 5

f 1

fy   x

 x  4

 fg (x)  
x2

 4  x2

59. x  2,  1  (2.5) 60. x  8,800 books (2.2)

61.  p  200  10 (2.2)

62. (A) Profit: $5.5  p  $8 or ($5.5, $8)

(B) Loss: $0  p  $5.5 or p  $8. [$0, $5.5)  ($8,  ) (2.3)

63. (A) v   2,000t  20,000 (B) t  0.0005v  10 (1.6)

64. 40 miles from A to B and 75 miles from B to C or 75 miles from A

to B and 40 miles from B to C (2.5)

65. x   900(3.29) 4,571; 1,610 bottles (2.2)

66. (1.3)

67. (A) A(x)  80x  2x2

(B) 0  x  40 (C) 20 feet by 40 feet (1.3, 2.3)

68. (A) f (1) 1; f (2) 0; f (3) 1; f (4) 0

(B) (1.3)

69. (A) 30,000 bushels

(B) The demand decreases to 20,000 bushels.

(C) The demand increases to 40,000 bushels.

(E) q 20 25 30 35 40 (1.1, 2.1)

p 340 332 325 320 315

70. (A) y  0.144x2  6.24x  310 (2.5)

(B) The per capita consumption will return to the 1970 level in

2013 and to the 1945 level in 2025.

71. (A) y  0.0481x2  0.0690x  2.21 (2.5)

(B) 66.6 miles per hour

72. y   0.00149x2  0.0627x  1.21, 29.6 miles per hour, 

1.76 miles per gallon, 6.76 hours, 114 gallons, $227 (2.5)

f (n)   1 if n is an odd integer

0 if n is an even integer

x

A(x)

200

0

400

600

800

1,000

25 50

x

C(x)

20

10

60 500300150

C(x)   

0.06x

0.05x  0.6

0.04x  2.1

0.03x  5.1

    

if

if

if

if

    

0  x    60

60   x  150

150   x  300

300   x

i 3
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Domain: all real numbers;

range: [0, 1); discontinu-

ous at x k 2, k an

integer (1.3)

e
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Exercise 3.1

1. c 3. d

5. Zeros: 1, 3; turning point: (1, 4); P(x) →   as x →  and

P(x) →   as x →   

7. Zeros: 2, 1; turning points: ( 1, 4), (1, 0); P(x) →   as x →  

and P(x) →    as x →   

9. The graph does not increase or decrease without bound as x →  

and as x →   .

11. The graph has an infinite number of turning points.

13. Zeros: 3, 0, 3, 2i,  2i; x intercepts: 3, 0, 3

15. Zeros: 5, 3i,  3i, 4i,  4i; x intercepts: 5

17. 4m  4, R  3 19. 8x  14, R  20

21. x2  x  1, R  0 23. 2y2  5y  13, R   27

25.

27.

29.

31. Yes 33. Yes 35. 4 37. 3 39.  6

41. 3x3  3x2  3x  4, R  0 43. x4  x3  x2  x  1, R  0

45. 3x3  7x2  21x  67, R  200

47. 2x5  3x4  15x3  2x  10, R  0

49. 4x3  6x  2, R  2 51. 4x2  2x  4, R  0

53. 3x3  0.8x2  1.68x  2.328, R  0.0688

55. 3x4  0.4x3  5.32x2  4.256x  3.5952, R   0.12384

57. (A) P(x) →  as x →  and P(x) →  as x →   ;

three intercepts and two local extrema

(B) x intercepts: 0.86, 1.68, 4.18; local maximum: 

P(0.21) 6.21; local minimum: P(3.12)  6.06

59. (A) P(x) →  as x →  and P(x) →  as x →   ; three inter-

cepts and two local extrema

(B) x intercept: 4.47; local minimum: P( 0.12) 4.94; local

maximum: P(2.79) 17.21

61. (A) P(x) →  as x →  and as x →   ; four intercepts and three

local extrema

(B) x intercepts: none; local minimum: P( 1.87) 5.81;

local maximum: P( 0.28) 12.43; local minimum: 

P(1.41) 4.59

2x3  3x  1

x  2
 2x2  4x  5  

11

x  2

4x2  10x  9

x  3
 4x  2  

3

x  3

x2  3x  7

x  2
 x  5  

3

x  2

63. P(x)  x3 65. No such polynomial exists.

67. x2  ( 3  i)x 3i, R  0

69. (A)  5 (B)  40i (C) 0 (D) 0

71. x intercepts: 12.69,  0.72, 4.41; local maximum: 

P(2.07) 96.07; local minimum: P( 8.07)  424.07

73. x intercepts: 16.06, 0.50, 15.56; local maximum: 

P( 9.13)  65.86; local minimum: P(9.13)  55.86

75. x intercepts: 16.15,  2.53, 1.56, 14.12; local minimum:

P( 11.68)   1,395.99; local maximum: P( 0.50) 95.72;

local minimum: P(9.92)  1,140.27

77. x intercepts: 1, 1.09; local minimum: P(1.05)  0.20; local

maximum: P(6.01) 605.01; local minimum: P(10.94) 9.70

79. (A) In both cases the coefficient of x is a2, the constant term 

a2r  a1, and the remainder is (a2r  a1)r  a0.

(B) The remainder expanded is a2r2  a1r  a0  P(r).

81. P( 2) 81; P(1.7) 6.2452 or 6.2 83. (A) 1; 3 (B) 0; 4

85. No; f (x)  x2  x has even degree, but f (1) f ( 1).

87. (A) (B) {c   2  c  2}

89. (A) R(x)  0.0004x3  x2 569x

(B) 364 air conditioners; price: $258; max revenue: $93,911

91. (A) V(x)  (1  2x)(2 2x)(4 2x)  8 (B) 0.097 feet

93. (A) (B) $2, 329.3 billion

95. (A) (B) 3.6 marriages per 1,000 

population

 10

 10

10

10

Exercise 3.2

1.  5.372, 0.372 3.  1.752, 0.432, 1.320

5. [ 2,  1]  {1}  [3,  ) 7. ( 2,  1)  (3,  )

9. (  , 5.372)  (0.372,  ) 11. (  , 1.752]  [0.432, 1.320]

13. Upper bound: 2; lower bound:  2

15. Upper bound: 3; lower bound:  2

17. Upper bound: 2; lower bound:  3

19. (A) P(3) 0 and P(4) 0 (B) Five intervals; 3.2

21. (A) P( 2)  0 and P( 1)  0 (B) Six intervals;  1.4

23. (A) P(3) 0 and P(4) 0 (B) Four intervals; 3.1

25. (A) P( 1)  0 and P(0) 0 (B) Five intervals;  0.5

27. (A) Upper bound: 3; lower bound:  1 (B) 2.25

29. (A) Upper bound: 3; lower bound:  4 (B)  3.51, 2.12

31. (A) Upper bound: 2; lower bound:  3 (B)  2.09, 0.75, 1.88

33. (A) Upper bound: 1; lower bound:  1 (B) 0.83

39.  1.83, 3.83 41.  1.24, 2, 3.24 43.  0.22, 2, 2.22
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Exercise 3.3

1.  8 (multiplicity 3), 6 (multiplicity 2); degree of P(x) is 5

3.  4 (multiplicity 3), 3 (multiplicity 2);  1; degree of P(x) is 6

5. 2i (multiplicity 3),  2i (multiplicity 4),  2 (multiplicity 5), 

2 (multiplicity 5); degree of P(x) is 17

7.  9 (multiplicity 2),  3, 0, 3, 3i, 3i; degree of P(x) is 7

9. P(x)  (x  3)2(x  4); degree 3

11. P(x)  (x  7)3[x  ( 3  )][x ( 3  )]; degree 5

13. P(x)  [x  (2  3i)][x (2  3i)](x 4)2; degree 4

15. (x 2)(x 1)(x 3); degree 3 17. (x 2)2(x 1)2; degree 4

19. (x  3)(x 2) x(x 1)(x 2); degree 5

21. (A) (x2  1) (x2  4) (B) (x i) (x i) (x 2i)(x  2i)

23. (A) (x 1) (x2  25) (B) (x 1) (x 5i) (x 5i)

25.  1,  2,  3,  6 27.  1,  2,  4,

29.  1,  3,

31. P(x) (x 4)2(x 1) 33. P(x) (x 1)(x 1)(x i)(x i)

35. P(x)  (2x  1)[x (4  5i)][x (4  5i)] 37. , 1   21
2

 
1
2,  3

2,  1
3,  1

4,  3
4,  1

6,  1
12

 
1
3,  2

3,  4
3

 2 2

39.  2 (double), 41.  2, 1  43.  i,  3i

45.  1, ,  i 47. 2, 3,  5 49. 0, 2, 

51. 2 (double), 53.  i ,  i ,

55.  1 (double), , 2  i 57. P(x)  (x  2)(3x 2)(2x 1)

59. P(x)  (x  4)[x (1  )][x (1  )]

61. P(x)  (x  2)(x 1)(2x 1)(2x 1) 63. x2  8x  41

65. x2  6x  25 67. x2  2ax  a2  b2 69.  1 and 3  i

71. 5i and 3 73. 2  i, 2  i,

75. is a zero of P(x) x2  6, but P(x) has no rational zeros.

77. is a zero of P(x) x3  5, but P(x) has no rational zeros.

79. 2 81. 3 83. , 6  85. ,  ,  4i

87. (double), 4  

89. (A) 3 (B) and

91. Maximum of n; minimum of 1 

93. No, because P(x) is not a polynomial with real coefficients (the

coefficient of x is the imaginary number 2i).

95. 2 feet 97. 0.5  0.5 inches or 1.59  1.59 inches

 
1

2
 
 3

2
i 

1

2
 
 3

2
i

 63
2

5
2

3
22 31

3

 3 5

 6

  2 2,

 2 2

 
1
3

 6 51
2  

1
2 3

 
2
5, 1

2
3
2

 2  5

Exercise 3.4

1. g(x) 3. h(x)

5. Domain: (  , 1)  ( 1,  ); x intercept: 2

7. Domain: (  , 4)  ( 4, 4)  (4,  ); x intercepts: 1, 1

9. Domain: (  , 3)  ( 3, 4)  (4,  ); x intercepts: 2, 3

11. Domain: all real numbers; x intercept: 0

13. Vertical asymptote: x 4; horizontal asymptote: y 2

15. Vertical asymptotes: x  4, x  4; horizontal asymptote: y 

17. No vertical asymptotes; horizontal asymptote: y 0

19. Vertical asymptotes: x  1, x  ; no horizontal asymptote

21. The graph has more than one horizontal asymptote.

23. The graph has a sharp corner at (0, 0).

25. 27.

x

y

5

 5

 5

5
x

y

10

 10

 10 10

5
3

2
3

29. 31.

33. 35. y

5

 5

 5 5
xx

y

 5

 5 5

5

x

y

10

 10

 10

10
x

y

5

 5

 5 5

45. (  ,  1.414)  (1.414,  ) 47. [4.367,  )

49. [ 2.507, 1.222]  [2.285,  ) 51. (2.484, 4.873)

53. (  ,  3.101]  [ 2.259, 0.259]  [1.101,  )

55. (A) Upper bound: 30; lower bound:  10

(B)  1.29, 0.31, 24.98 

57. (A) Upper bound: 30; lower bound:  40

(B)  36.53,  2.33, 2.40, 24.46

59. (A) Upper bound: 20; lower bound:  10 (B)  7.47, 14.03

61. (A) Upper bound: 30; lower bound:  20

(B)  17.66, 2.5 (double zero), 22.66

63. (A) Upper bound: 40; lower bound:  40

(B)  30.45, 9.06, 39.80

65. Yes 67. x4  3x2  2x  4  0; (1, 1) and (1.659, 2.752)

69. 4x3  84x2  432x  600  0; 2.319 inches or 4.590 inches

71. x3  15x2  30  0; 1.490 feet



81. Domain: x  2, or (  , 2)  (2,  ); f(x)  x  2

83. Domain: x 2, 2 or (  , 2)  ( 2, 2)  (2,  );

85. As t →  , N → 50 87. As t →  , N → 5

89. (A) (B) 10 years

(C)

91. (A) (B) (0,  )

(C) 15 feet by 15 feet (D)

x

L

100

200

50250

L(x)  2x  
450

x
 

2x2  450

x

n

C

1,000

2,000

50250

C(n)  25n  175  
2,500

n

t

N

50

25

50250
t

N

50

25

50250

x

y

5

 5

5

r(x)  
1

x  2

x

y

5

 5

 5 5

37. 39.

41. 43.

45.

47.

49. [0, 4) 51. ( 6.541,  2)  ( 0.459,  )

53. ( 3,  2.110)  (7.110,  )

55. (  , 0)  (0, 0.595)  [8.405,  )

57. (5, 7.429) 59. (  ,  2.333]  ( 1, 0)

61. Vertical asymptote: x 1; oblique asymptote: y 2x  2

63. Oblique asymptote: y x

65. Vertical asymptote: x 0; oblique asymptote: y 2x  3

67. f(x) → 5 as x →  and f(x) → 5 as x →   ; the lines 

y  5 and y   5 are horizontal asymptotes.

69. f(x) → 4 as x →  and f(x) → 4 as x →   ; the lines 

y  4 and y   4 are horizontal asymptotes.

71. 73.

75.

77. Let p(x)  x2  1; [ f(x)  p(x)] → 0 as x →  and as x →   

79. p(x)  x3  x; [ f(x)  p(x)] → 0 as x →  and as x →   

x

y

 5

 5 5

x

y

5

 5

 5 5
x

y

5

 5

 5 5

f (x)  
(2x  5)(x  10)  100

x  10

f (x)  
3(x2  1)(x2  4)

x4  1

x

y

 10

 10

10

10

x

y

 10

 10

10

10

x

y

5

 5

 5 5
x

y

5

 5 5
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Chapter 3 Review

1. Zeros: 1, 3; turning points: ( 1, 0), (1, 2), (3, 0);

P(x) →  as x →  and P(x) →  as x →   (3.1)

2. 2x3  3x2  1  (x  2)(2x2  x  2)  5 (3.1)

3. P(3)  8 (3.1) 4. 2,  4,  1 (3.1)

5. 1  i is a zero. (3.3)

6. (A) P(x)  (x  2)x(x 2)  x3  4x

(B) P(x) →  as x →  and P(x) →  as x →   (3.1)

7. Lower bounds:  2, 1; upper bound: 4 (3.2)

8. P(1)  5 and P(2) 1 are of opposite sign. (3.2)

9.  1,  2,  3,  6 (3.3) 10.  1, 2, 3 (3.3)

11. (A) Domain is (  , 4)  ( 4,  ); x intercept is .

(B) Domain is (  , 2)  ( 2, 3)  (3,  );

x intercept is 0. (3.4)

12. (A) Horizontal asymptote: y 2; vertical asymptote: x  4

(B) Horizontal asymptote: y 0; vertical asymptotes: 

x   2, x  3 (3.4)

13. The graph does not increase or decrease without bound as 

x →  and as x →   . (3.1)

14. (A) The graph of P(x) has three x intercepts (B) 3.53 (3.1)

and two turning points; P(x) →  as x →  

and P(x) →  as x →   

15. Q(x)  8x3  12x2  16x  8, R  5; P  5 (3.1)

16.  4 (3.1) 17. P(x) [x (1 )][x (1 )] (3.1)

18. Yes, because P( 1) 0, x ( 1) x 1 must be a factor. (3.1)

19. 4,  ,  2 (3.3) 20. (x  4)(2x 1)(x 2) (3.3)

21. No rational zeros (3.3) 22. 1, , and (3.3)

23. (3.3)

24. deg P(x) 9; 1 (multiplicity 3),  1 (multiplicity 4), i, i (3.3)

25. (A) (x 2) (x 2) (x2  9)

(B) (x 2) (x 2) (x 3i) (x 3i) (3.3)

26. (A)  0.24 (double zero); 2 (simple zero); 4.24 (double zero)

(B)  0.24 can be approximated with a maximum routine; 2 can

be approximated with the bisection; 4.24 can be approxi-

mated with a minimum routine. (3.2)

27. (A) Upper bound: 7; lower bound:  5 (B) Four intervals 

(C)  4.67, 6.62 (3.2)

28. (A) Domain is (  , 1)  ( 1,  ); x intercept: x 1;

y intercept: y  

(B) Vertical asymptote: x  1; horizontal asymptote: y 1
2

1
2

(x  1)(2x  1) x  1  i 3

2   x  
1  i 3

2  

1  i 3

2

1

2

1
2

 2 2

(1
4)

P(x)

x

10

 10

 5 5

3
2

(C) (3.4)

29. (A) (  , 2.562)  (1, 1.562)

(B) (  , 2.414)  (0.414, 2) (3.2)

30. The graph is discontinuous at x  0, but x  0 is not a vertical

asymptote. (3.4)

31. P(x)  [x2  (1  i)x (3  2i)][x (1  i)] 3  5i (3.1)

32. P(x)  (x  3)(x 1)3. The degree is 6. (3.3)

33. P(x) (x 5)[x (2 3i)][x (2 3i)]. The degree is 3. (3.3)

34. ,  2, 1  (3.3)

35. (x  2)(x 2)(2x 1)[x (1  )][x (1  )] (3.3)

36. Zeros: 0.91, 1; local minimum: P( 8.94) 9.70; local maximum:

P( 4.01) 605.01; local minimum: P(0.95)  0.20 (3.2)

37. Because P(x) changes sign three times, the minimal degree is 3.

(3.1)

38. P(x)  a(x  r)(x2  2x  5) and because the constant term,

 5ar, must be an integer, r must be a rational number. (3.3)

39. (A) 3 (B) (3.3)

40. (A) Upper bound: 30; lower bound:  30

(B)  23.54, 21.57 (3.2)

41. (3.4)

42. y  2 and y   2 (3.4)

43. (A) (  , 1.879)  [ 1.732, 0.347)  (1.532, 1.732]

(B) ( 1.879, 1.843)  (1.420, 1.532) (3.4)

44. 3; None of the candidates for rational zeros ( 1, 2, and  4) are

actually zeros. (3.3)

45. (3.4)

46. 2x3  32x  48  0, 4  12 feet or 5.211  9.211 feet (3.2)

47. x3  27x2  729  0, 4.789 feet (3.2)

48. 4x3 70x2 300x 300 0, 1.450 inches or 4.465 inches (3.2)

49. x4  7x2  2x  8  0, ( 2, 4), ( 1.562, 2.440), (1, 1), 

(2.562, 6.564) (3.2)

f (x)  
5x(x  3)(x  2)

(x  1)2(x  4)

x

y

5

 5

 5

5

 
3

2
 

3i 3

2

 2 2

 21
2

(x  1
2)2

x

y

5

 5

 5

5



51. (B) (C) 25 years, 39 years, 55 years

(3.1)

50. (A) (B) 339 refrigerators

(C) 36 ads (3.1)
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Exercise 4.1

1. (A) g (B) n (C) f (D) m 3. 16.24 5. 7.524

7. 1.649 9. 4.469 11. 102x 3

13. 32x 1 15. 17. e3x 1 19. (B) e

21. Increasing; y intercept: 1; horizontal asymptote: y 0

23. Decreasing; y intercept: 1; horizontal asymptote: y 0

25. Increasing; y intercept: 1; horizontal asymptote: y 0

27. Increasing; x intercept: 0.69; y intercept: 1; 

horizontal asymptote: y 2

29. Increasing; x intercept: 0.23; y intercept: 1;

horizontal asymptote: y  2

31. x  2 33. x   1, 3 35. x  37. x  0

39. x  0, 5 41. x  43. a  1 or a   1

47. 49.

51. 53.

x

y

5

 5

 5 5
x

5

 5

 5 5

y

x

y

5

 5

 5 5
x

5

 5

 5 5

y

1
2, 1

2
3

43xz

53yz

55. The graph of g is the same as the graph of f shifted to the right

two units.

57. The graph of g is the same as the graph of f shifted upward two units.

59. The graph of g is the same as the graph of f reflected in the y axis,

shifted to the left two units, and expanded vertically.

61. 63. 2e2x 2e 2x

65. No local extrema; no x intercept; y intercept: 2.14; 

horizontal asymptote: y 2

67. Local minimum: m(0) 1; no x intercepts; y intercept: 1; 

no horizontal asymptotes

69. Local maximum: s(0) 1; no x intercepts; y intercept: 1;

horizontal asymptote: x axis

71. No local extrema; no x intercept; y intercept: 50; 

horizontal asymptotes: x axis and y 200

73. Local maximum: m(0.91) 2.67; x intercept: 0.55;

horizontal asymptote: y 2

75. Local minimum: f(0) 1; no x intercepts; no horizontal asymptotes

77. f (x) → 2.7183   e as x → 0

79. 81.

83. As x →  , fn(x) → 0; the line y 0 is a horizontal asymptote. 

As x →   , f1(x) →  and f3(x) →  , while f2(x) →  .

As x →   , fn(x) →  if n is even and fn(x) →  if n is odd.

85. The graph of a nonconstant polynomial has no horizontal asymptote.

87. $9,841 89. (A) $10,691.81 (B) $36,336.69

91. Yes, after 6,217 days 93. No 95. $12,197.09

97. Gill Savings: $1,230.60; Richardson S & L: $1,231.00; 

U.S.A. Savings: $1,229.03

99. (A) $4,225.92 (B) $12,002.75

 5

 4

50

4

 5

 4

50

4

e 2x( 2x  3)

x4

Exercise 4.2

1. 3. (A) 76 flies

(B) 570 flies

n

500

1,000

5 10

L

5. (A) 19 pounds (B) 7.9 pounds 7. 7.1 billion 9. 2006

11. 13. (A) 62% (B) 39%

t

P

50

0

100

50 100
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15. (A) 36 million (B) 83 million 17. T  50 F

19. q approaches 0.0009 coulombs, the upper limit for the charge on

the capacitor

21. (A) 25 deer; 37 deer (B) 10 years

(C) N approaches 100 deer, the upper limit for the number of deer

the island can support

23. Estimated purchase price: $14,910;

estimated value after 10 years: $1,959

25. (A) (B) 836.0 billion kilowatt-hours

Exercise 4.3

1. 81  34 3. 0.001  10 3 5. 3  811 4

7. 16  9. log10 0.0001   4 11. log4 8  

13. log32 15. log49 7  17. 0 19. 1

21. 4 23. log10 10 2  2 25. 27. 29. x2

31. 4.9177 33.  2.8419 35. 3.7623 37.  2.5128

39. 200,800 41. 0.0006648 43. 47.73 45. 0.6760

47. x  22  4 49. y  2 51. b  4

53. b is any positive real number except 1 55. x  2

57. y   2 59. b  100 61. 4.959 63. 7.861

65. 3.301 67. 4.561 69. x  12.725 71.  25.715

73. x  1.1709  1032 75. 4.2672  10 7

77. f  1(x)  e x 2 2 79. f  1(x)  e(x 3) 4

81. Domain: (  ,  ); range: [ 2,  ); x intercepts: 2.53;

y intercept: 2; no asymptotes

83. Domain: ( 1, 1); range: (  , 1]; x intercepts: 0.80;

y intercept: 1; vertical asymptotes: x  1

85. The inequality sign in the last step reverses because log is

negative.

87. (B) Domain  (1,  ); range  (  ,  )

89. (0.90,  0.11), (38.51, 3.65) 91. (6.41, 1.86), (93.35, 4.54)

93. 95.

 2

 1

2

3

 2

 1

2

3

1
3

 x1
3

1
2

1
2   

1
5

3
2(1

2) 4

97. (A) (B) f  1(x)  2x 2

99. (A) (B) f  1(x)  2x 2

101. (A)

(B) Domain f (  ,  ) range f  1;

range f (0,  ) domain f  1

(C) f  1(x)  log1 2 x   log2x

x

y

y   x

5

 5

 5 5

f

f 1

x

y

 5

5

105

x

y

 5

5

105

Exercise 4.4

1. (A) 0 decibels (B) 120 decibels 3. 30 decibels

5. 8.6 7. 1,000 times as powerful

9. 7.67 kilometers per second

11. (A) 8.3, basic (B) 3.0, acidic

13. 6.3  10 6 moles per liter

15. (A) m  6 (B) 100 times brighter

17. (A) 1996: 123.0 bushels per acre; 2010: 141.4 bushels per acre
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Exercise 4.5

1. 1.46 3. 0.321 5. 1.29 7. 3.50 9. 1.80

11. 2.07 13. 20 15. x  5 17. x  19. 14.2

21.  1.83 23. 11.7 25.  1.21 27. x  5

29. 2  31. 33. 1, e2, e 2 35. x  ee

37. x  100, 0.1 39. (B) 2 41. (B)  1.252, 1.707

43. r  ln 45. I  I0(10D 10) 47. I  I0[10(6 M) 2.5]
A

P

1

t

1   89

4
 3

11
9

49. t   ln 51. x  ln ( y  )

53. x  ln 55. 0.38 57. 0.55 59. 0.57

61. 0.85 63. 0.43 65. 0.27

67. n  5 years to the nearest year 69. r  0.0916 or 9.16%

71. t  35 years to the nearest year 73. t  18,600 years old

75. t  7.52 seconds 77. k  0.40, t  2.9 hours

1  y

1  y

1

2

 y2  1 1  RI

E  
L

R

Chapter 4 Review

1. (A) m (B) f (C) n (D) g (4.1, 4.3)

2. log m  n (4.3) 3. ln x  y (4.3) 4. x  10y (4.3)

5. y  ex (4.3) 6. 72x (4.1) 7. (4.1)

8. x  8 (4.3) 9. x  5 (4.3) 10. x  3 (4.3)

11. x 1.24 (4.5) 12. x 11.9 (4.5) 13. x 0.984 (4.3)

14. x 103 (4.3) 15. 1.145 (4.3) 16. Not defined (4.3)

17. 2.211 (4.3) 18. 11.59 (4.1) 19. x  4 (4.5)

20. x  2 (4.5) 21. x  3,  1 (4.5) 22. x  1 (4.5)

23. x  3,  3 (4.5) 24. x   2 (4.5) 25. x  (4.5)

26. x  64 (4.5) 27. x  e (4.5) 28. x  33 (4.5)

29. x  1 (4.5) 30. x  41.8 (4.1) 31. x  1.95 (4.3)

32. x  0.0400 (4.3) 33. x   6.67 (4.3)

34. x 1.66 (4.3) 35. x 2.32 (4.5) 36. x 3.92 (4.5)

37. x  92.1 (4.5) 38. x  2.11 (4.5)

39. x  0.881 (4.5) 40. x  300 (4.5) 41. x  2 (4.5)

42. x  1 (4.5) 43. x  (4.5)

44. x  1, 103, 10 3 (4.5) 45. x  10e (4.5)

46. e x 1 (4.1) 47. 2  2e 2x (4.1)

48. Domain (  ,  ); range  (0,  ); y intercept: 0.5; 

horizontal asymptote: y 0 (4.1)

49. Domain (  ,  ); range  (0,  ); y intercept: 10; 

horizontal asymptote: y 0 (4.1)

50. Domain (1,  ); range  (  ,  ); x intercept: 2; 

vertical asymptote: x 1 (4.3)

51. Domain (  ,  ); range  (0, 100); y intercept: 25; 

horizontal asymptotes: y 0 and y  100 (4.1)

52. y   e x; y  e x or y  or y  (4.1)

53. (A) y  e x 3 is decreasing while y 4 ln (x  1) is increasing

without bound.

(B) 0.258 (4.5)

54. 0.018, 2.187 (4.5) 55. (1.003, 0.010), (3.653, 4.502) (4.5)

56. I  I0(10D 10) (4.5) 57. x   (4.5)

58. I  I0(e kx) (4.5) 59. n  (4.5) 
ln (1  Pi

r )

ln (1  i)

  2 ln ( 2 y)

 1e 
x1

ex

3   13

2

1
3

e2x2

60. y  ce 5t (4.5)

61. Domain f  (0,  )  Range f  1

Range f  (  ,  )  Domain f  1 (4.3)

62. If log1 x  y, then we would have to have 1y x; that is, 1  x for

arbitrary positive x, which is impossible. (4.3)

64. t  23.4 years (4.2) 65. t  23.1 years (4.2)

66. t  37,100 years (4.2)

67. (A) N  22t (or N  4t) (B) t  15 days (4.2)

68. A  1.1  1026 dollars (4.1)

69. (A) (B) 0 (4.1)

70. M  6.6 (4.4) 71. E 1016.85 or 7.08  1016 joules (4.4)

72. The level of the louder sound is 50 decibels more. (4.4)

73. k  0.00942, d  489 feet (4.2) 74. t  3 years (4.2)

t

P

1,000

500

50250

x

y

f 1: y   2x

f : y   log2 x

10

5

 5

 5 105



75. (A) 1996: $207 billion; 2010: $886 billion

(B) Midway through 2004 (4.2)

76. (A) 1996: 1,724 million bushels; 2010: 2,426 million bushels

(4.4)

Answers A-97

Cumulative Review for Chapters 3 and 4

1. (A) P(x)  (x  1)2(x  1)(x 2)

(B) P(x) →  as x →  and as x →   (3.1)

2. (A) m (B) g (C) n (D) f (4.1)

3. 3x3  5x2  18x  3  (x  3)(3x2  4x  6)  15 (3.1)

4.  2, 3, 5 (3.1)

5. P(1)  5 and P(2) 5 are of opposite sign. (3.2)

6. 1, 2,  4 (3.3) 7. (A) x  log y (B) x  ey (4.3)

8. (A) 8e3x (B) e5x (4.1) 9. (A) 9 (B) 4 (C) (4.3)

10. (A) 0.371 (B) 11.4 (C) 0.0562 (D) 15.6 (4.3)

11. The graph of a nonconstant polynomial has no horizontal

asymptote. (3.1)

12. The graph does not approach the horizontal asymptote as 

x →   . (3.4)

13. f (x)  3 ln x  (4.3)

14. The function f multiplies the base e raised to power of one-half the

domain element by 100 and then subtracts 50. (4.1)

15. (A) Domain: x   2; x intercept: x  4; y intercept: y 4

(B) Vertical asymptote: x  2; horizontal asymptote: y 2

(C) (3.4)

16. 0,  4,  2i; 0 and  4 are x intercepts (3.1)

17. [ 4,0] (3.2) 18. (3.1) 19. (B) (3.1)

20. (A) The graph of P(x) has four x intercepts and three turning

points; P(x) →  as x →  and as x →   

(B) 2.76 (3.1)

x

P(x)

20

 20

 5 5

P(1
2)  5

2

x

y

10

 10

 10 10

 x

1
2

21. (A)  0.56 (double zero); 2 (simple zero); 3.56 (double zero)

(B)  0.56 can be approximated with a maximum routine; 2 can

be approximated with the bisection; 3.56 can be approxi-

mated with a minimum routine (3.2)

22. (A) Upper bound: 4; lower bound:  6 (B) four intervals

(C)  5.68, 3.80 (3.2)

23. 3, 1  i (3.3)

24. P(x) (x 1)(x 4)(x2 3) (x 1)(x 4)(x )(x );

the four zeros are  1, 4,  . (3.3)

25. x  4,  2 (4.5) 26. ,  1 (4.5) 27. x  2.5 (4.5)

28. x  10 (4.5) 29. x  (4.5) 30. x  5 (4.5)

31. x  7 (4.5) 32. x  5 (4.5) 33. x  e0.1 (4.5)

34. x  1, e0.5 (4.5) 35. x  3.38 (4.5) 36. x 4.26 (4.5)

37. x 2.32 (4.5) 38. x 3.67 (4.5) 39. x 0.549 (4.5)

40. Domain: (  ,  ); range: (0,  ); y intercept: 3; 

horizontal asymptote: y 0 (4.1)

41. Domain: (  , 2); range: (  ,  ); x intercept: 1; y intercept: ln 2;

vertical asymptote: x 2 (4.3)

42. Domain: (  ,  ); range: (0,  ); y intercept: 100; 

horizontal asymptote: y 0 (4.1)

43. Domain: (  ,  ); range: (  , 3); x intercept: 0.41;

y intercept: 1; horizontal asymptote: y 3 (4.1)

44. Domain: (  ,  ); range: (0, 3); y intercept: 2; 

horizontal asymptotes: y 0 and y  3 (4.1)

45. A reflection in the x axis transforms the graph of y ln x into the

graph of y  ln x. A reflection in the y axis transforms the graph

of y  ln x into the graph of y ln ( x). (4.3)

46. (A) For x 0, y  e x decreases from 1 to 0 while ln x increases

from  to  . Consequently, the graphs can intersect at 

exactly one point.

(B) 1.31 (4.3)

47. (A) (x2  3)(x2  6)

(B) (x i )(x  i )(x  i )(x  i ) (3.3)

48. (A) (x2  25)(x2  2)

(B) (x 5)(x 5)(x i )(x  i ) (3.3)

49. Vertical asymptote: x  2;

oblique asymptote: y x  2 (3.4)

x

y

 10

 10

10

10

 2 2

 6 6 3 3

1
27

1
2

 3

 3 3

1
2
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Exercise 5.1

1. 40 3. 270 5. 405 7. 6 9. 2.5

11. 13. 15. 17.

19. 21. 60 , 120 , 180 , 240 , 300 , 360 

23.  90 ,  180 ,  270 ,  360 25. True 27. True

29. False 31. 5.859 33. 354.141 35. 3 2 31 

37. 403 13 23 39. 1.117 41. 1.892 43. 0.234

45. 53.29 47. 64.74 49.  134.65 51. Quadrant III

53. Quadrant II 55. Quadrant III 57. Quadrantal angle

59. Quadrant IV 61. Quadrant IV 63. Quadrant II

65. Quadrantal angle 67. Quadrant II 69. Quadrant III

71. A central angle of radian measure 1 is an angle subtended by an

arc of the same length as the radius of the circle.

 
 

4
,  
 

2
,  

3 

4
,   

 

6
,
 

3
,
 

2
,

2 

3
,

5 

6
,  

13 

6

3 

2

 

4

73. Coterminal 75. Coterminal 77. Coterminal

79. Not coterminal 81. Coterminal 83. Coterminal

85. 24,000 miles 87. The 7.5 angle and  have a common side.

(An extended vertical pole in Alexandria will pass through the

center of the Earth.) The sun’s rays are essentially parallel when

they arrive at the Earth. Thus, the other two sides of the angles

are parallel, because a sun ray to the bottom of the well, when

extended, will pass through the center of the Earth. From geome-

try we know that the alternate interior angles made by a line in-

tersecting two parallel lines are equal. Therefore,   7.5 .

89. 20.94 radians second; 62.83 feet second 91. radians

93. 200 radians 95.  0.12 radians 97. 12

99. Front wheel: 13.89 radians second;

back wheel: 9.26 radians second

101. 865,000 miles 103. 33 feet

 

26

7 

4

Exercise 5.2

1. (0,  1) 3. (1, 0) 5.
7. 9. 11.

13. 15.
17.  1 19. 1 21. 23. 25.
27. 29. 31. 1 33. Quadrants II and III

35. Quadrants I and II 37. Quadrants II and IV

39.  0.6573 41.  14.60 43. 1.000 45. 0.8138

47. 0.5290 49. 0.4226 51.  1.573 53. 0.8439

55.  0.3363 57. 0.9174

59. Zeros: none; turning points: ( , 1), (2 , 1), (3 , 1)

61. Zeros: 0,  , 2 , 3 , 4 ; turning points: none

63. 1.508, 2.208, 3.384 65. 4.769 67. a,  ; b,  

69. a,  ; b,  71. a,  ; b,  73. a,  ; b,  

 1/ 22 3

  3/21/ 3 2

( 1/ 2,  1/ 2)( 1/ 2,  1/ 2)

( 1/2,  3/2)(1/2,   3/2)( 3/2, 1/2)

(1/ 2, 1/ 2)

75. a,  ; b,  77. 0; 2k , k any integer

79. 3  4; 3  4  2k , k any integer

81. W(x) is the coordinates of a point on a unit circle that is  x units

from (1, 0), in a counterclockwise direction if x is positive and in

a clockwise direction if x is negative. W(x 4 ) has the same

coordinates as W(x), because we return to the same point every

time we go around the unit circle any integer multiple of 2 units

(the circumference of the circle) in either direction.

83. True 85. False 87. True

89. (A) sin 0.4  0.4 (B) cos 0.4  0.9 (C) tan 0.4  0.4

91. (A) sec 2.2   2 (B) tan 5.9   0.4 (C) cot 3.8  1

93. sin x  0 in quadrants III and IV; cot x 0 in quadrants II and

IV; therefore, both are true in quadrant IV.

95. cos x  0 in quadrants II and III; sec x 0 in quadrants I and

IV; therefore, it is not possible to have both true for the same

value of x.

50. Zeros: 2.97, 3; local minimum: P(2.98)   0.02; local maximum:

P(7.03)  264.03; local minimum: P(10.98)  15.98 (3.2)

51. P(x)  (x  1)2x3(x  3  5i)(x  3  5i); degree 7 (3.3)

52. Yes, for example, P(x) (x  i)(x  i)(x  )(x  )  

x4  x2  2 (3.3)

53. (A) Upper bound: 20; lower bound:  30

(B)  26.68,  6.22, 7.23, 16.67 (3.2)

54. 2,  1 (double), and 2  ;

P(x)  (x  2)(x 1)2(x  2  )(x  2  ) (3.3)

55.  2 (double),  1.88, 0.35, 1.53 (3.3)

56. (3.4)

57. (4.5) 58. y  Ae5x (4.5)n  
ln (1  Ai

P )

ln (1  i)

f (x)  
3(x  5)(x  8)

(x  1)2

i 2i 2

i 2

 2 2

59. x  ln (y  ) (4.5)

60. (  ,  1]  [0, 1]  (2,  ) (3.4)

61. (  ,  1)  ( 0.535, 1)  (1.869,  ) (3.4)

62. x 2 feet and y 2 feet, or x 1.28 feet and y 4.88 feet (3.3)

63. 1.79 feet by 3.35 feet (3.3)

64. (A) 46.8 million (B) 103 million (4.2)

65. t  10.2 years (4.1) 66. t  9.90 years (4.1)

67. 63.1 times as powerful (4.4)

68. I  6.31  10 4 watts per square meter (4.4)

69. (A) 79.3 (B) 75.4 (C) 77.8 (D) 79.5 (3.1, 4.2)

70. Cubic regression (3.1, 4.2)

 y2  2



Answers A-99

39. (A) As  approaches 90 , OA  cos  approaches 0.

(B) As  approaches 90 , DE  cot  approaches 0.

(C) As  approaches 90 , OC  sec  increases without bound.

41. (A) As  approaches 0 , AD  sin  approaches 0.

(B) As  approaches 0 , CD  tan  approaches 0.

(C) As  approaches 0 , OE  csc  increases without bound.

45. 228 feet 47. 127.5 feet 49. 2,225 miles

51. 44 53. 9.8 meters second2

55. (B) 57. 0.77 meters C( )

10° $368,222

20° $363,435

30° $360,622

40° $360,146

50° $363,050

Exercise 5.3

1. b c 3. c b 5. b a 7. cos  9. sec  

11. cot  13. 60.55 15. 82.90 17. 37.09 

19.   72.2 , a 3.28, b  1.05

21.   46 40 , b 116, c  169

23.   67 0 , b 127, c  138

25.   36.79 , a 31.85, c  39.77

27.   54.6 or 54 40 ,   35 20 , c  10.4

29.   52.5 or 52 30 ,   37 30 , a  7.67 31. False

33. True 35. False

37. (A) cos   OA 1  OA

(B) Angle OED   ; cot    DE 1  DE

(C) sec    OC 1  OC

Exercise 5.4

1. 2 ,  , 2 3. (A) 1 unit (B) Indefinitely far

(C) Indefinitely far

5. (A)  2 ,   , 0,  , 2 (B)  3  2,   2,   2, 3  2
(C) No x intercepts

7. (A) None (B)  3  2,   2,   2, 3  2
(C)  2 ,  , 0,  , 2 

9. (A) No vertical asymptotes (B)  3  2,    2,   2, 3  2
(C)  2 ,   , 0,  , 2 

11. (A) A shift of   2 to the left will transform the cosecant graph into

the secant graph. [The answer is not unique—see part B.]

(B) The graph of y  csc(x   2) is a   2 shift to the right

and a reflection in the x axis of the graph of y csc x. The re-

sult is the graph of y sec x.

13. Even 15. Even 17. Odd 19. Odd

21. sin   , csc    , cos    , sec    , tan    , cot    

23. sin   , csc    , cos    , sec     2,

tan    , cot    25. 60 27.

29. 31. 120 or radians 33. 210 or radians

35. 240 or radians

37. cos    , tan    , sec    , cot    , csc    

39. sin    , sec    , tan    , cot    ,

csc     
3

2

 5

2

2

 5
 

3

 5
 

2

3

5
3 4

3 5
4 3

4 4
5

4 

3

7 

6

2 

3

 

3

 

6
 

1

 3
  3

 
1

2

2

 3

 3

2

3
4

4
3

5
3

3
5

5
4

4
5

41. Tangent and secant, because tan   b a and sec    r a and a 0

if P (a, b) is on the vertical axis (division by zero is not defined).

43. 150 , 210 45.

47. (A) (B) No

(C) 1 unit; 2 units; 3 units

(D) The deviation of the

graph from the x axis is

changed by changing A.

The deviation 

appears to be  A .

49. (A) (B) 1; 2; 3 (C) n

51. (A)

(B) The graph of y cos x is shifted  C units to the right if 

C  0 and  C units to the left if C 0.

 1.5

 2

1.5

2

y   cos (x   /2)y   cos (x   /2)

y   cos x

 2

 

2



y   sin x
y   sin 2x y   sin 3x

 3

 2

3

2

y   cos x

y   2 cos x

y    3 cos x

 

4
,

5 

4

97. None 99. and 101. and

103. 75 square meters 105.  20.78 square inches12 3

3 

2

 

2

3 

2

 

2
107. a1  0.5, a2  1.377583, a3  1.569596, a4  1.570796,

a5  1.570796;  1.570796
 

2
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Exercise 5.5

1. A  3, P  2 3. A  , P  2 

5. A  1, P  7. Period  

9. Period  

x

y

0.5

1

8

x

y



2

 

4

2 

3

x

y

1

 1

 2   2

1
2

53. For each case, the number is not in the domain of the function and

an error message of some type will appear.

55. (A) Both graphs are almost indistinguishable the closer the x is to

the origin.

(B)

57. (A) 1.75 radians (B) ( 0.713, 3.936) 59. 2 units

61. k, 0.866k, 0.5k

65. (A) 3.31371, 3.14263, 3.14160, 3.14159

(B)   3.1415926 . . .

67. (A) 44.07;  0.32 (B) y   0.93x  1.28

11. Period  4 13. A  1,

15. Period  2 17.

19. Period   2

21. A  3, P  ; B  4, y  3 sin 4x,  x  
 

2
 
 

4

 

2
 

2 

4

x

y

3 1 1

x

y

3

 3

 
x

y

42

3

A  3, P  
2 

 
  

x

y

2

 2

2

 2
x

y

3

 3

P  
2 

 
 2

x  0.3  0.2  0.1 0.0 0.1 0.2 0.3

sin x  0.296  0.199  0.100 0.000 0.100 0.199 0.296

x

y

4

 4

 2

2

x

y

1



 



Answers A-101

37. A  3, P  2, phase shift  

39. Period  , phase shift  

41. A  4, P   , phase shift  

43. Period  2, phase shift  

45. y  cos 2x 47. y  1  cos 2x

x

y

1 1

 1
2

x

y

5

 5

2 3 

 

2

x

y

3

4
 

3

4

 
 

2

 

2

x

y

4

 4

2

 2

 1
223. A  10, P  2  ; B   , y   10 sin  x,  1  x  2

25. A  5, P  8  2  4  2  ; B  , y  5 cos x,

 4  x 8 

27. A  0.5, P  8  2   2  ; B  , y   0.5 cos ,

 4  x  8

29. A  1, P  2 , phase shift    

31. A  , P  2 , phase shift  

33. Period   , phase shift  

35. A  1, P  2, phase shift  1

x

y

2

 2

3

x

y




2
 



2

3

2

 
 

2

y

1

 1

32  

x

 

4

1

2

x

y

2

 2

3

  

 x

4

 

4

 

4

4

 

1
4

1
4

1
4

2 

 



ANSWERSA-102

49. y  2 cot 2x 51. y  cot (x 2)

53. y  csc 3x 55. y  tan 2x

57. y   4 sin 59. y  

61. A  3.5, P  4, phase shift   0.5

63. A  50, P  1, phase shift  0.25

65. y  2 sin (x 0.785) 67. y  2 sin (x 0.524)

69. y  5 sin (2x 0.284)

71. The amplitude is decreasing with

time. This is often referred to as a

damped sine wave. Examples are a

car’s vertical motion, which is

damped by the suspension system

after the car goes over a bump, and

the slowing down of a pendulum that

is released away from the vertical line

of suspension (air resistance and

friction).

 1

0

1

16

x

y

25
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 cos  14 x  
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73. The amplitude is increasing with time.

In physical and electrical systems this

is referred to as resonance. Some ex-

amples are the swinging of a bridge

during high winds and the movement

of tall buildings during an earthquake.

Some bridges and buildings are de-

stroyed when the resonance reaches

the elastic limits of the structure.

75.

77. A  , P  79. y   8 cos 4 t

81. The graph shows the seasonal 

changes of sulfur dioxide 

pollutant in the atmosphere; 

more is produced during winter 

months because of increased 

heating.

83. A  15, P  , phase shift  

85. A  3, P  
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89. (A)

(B) y  18.22  1.37 sin

(C)

15

0

20

24

  x

6
 1.75 

15

0

20

24

87. (A) c  20 sec ( t 2), [0, 1)

(B)

(C) The length of the light beam starts at 20 feet and increases

slowly at first, then increases rapidly without end.

t

500

10

c

Exercise 5.6

1. 3. 5. 7. 9. 0 11.

13. 1.144 15. 1.561 17. Not defined 19.

21. 23. 25 25. 2.3 27. 29.

31. 0 33. 2  3 35.  1.472 37.  0.9810

39. 2.645 41.  45 43.  60 45. 180 

47. 43.51 49.  21.48 51.  89.93 

53. sin 1 (sin 2)  1.1416  2. For the identity sin 1 (sin x)  x to

hold, x must be in the restricted domain of the sine function; that 

is,  x  . The number 2 is not in the restricted domain.

55. 57.

59. 61.

63. (A)

 1

 1

1

1

 /2

 2

/2

6

 /2

1

/2

3

0

 3
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 /2

 1
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3

 

3
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(B) The domain of cos 1 is restricted to  1 x  1; hence no

graph will appear for other x.

65. 67.

69. f 1(x)  3  cos 1 ; 2  x  6

71. (A)

(B) The domain for cos x is (  ,  ) and the range is [ 1, 1],

which is the domain for cos 1 x. Thus, y  cos 1 (cos x) has

a graph over the interval (  ,  ), but cos 1 (cos x)  x only

on the restricted domain of cos x, [0,  ].

0

 2



2

0

0





x  4

2

1

 1  x2 1  x2

 1
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73. 75.38 ; 24.41 

75. (A) (B) 59.44 mm

77. 21.59 inches

79. (A) (B) 7.22 inches

81. (B) 76.10 feet

Chapter 5 Review

1. 2.5 radians (5.1) 2. 7.5 centimeters (5.1)

3.   54.8 , a 16.5 feet, b 11.6 feet (5.3)

4. (A) (B) 60 (C) (D) 30 (5.4)

5. (A) III, IV (B) II, III (C) II, IV (5.2)

6. (A) (B) (C) (5.4)

7.
 4

3
5
4 3

5

 

6

 

3

11. (5.4)

12. The central angle in a circle subtended by an arc of half the length

of the radius. (5.1)

13. If the graph of y sin x is shifted units to the left, the result

will be the graph of y cos x. (5.4)

14. 78.50 (5.1) 15.   49.7 ;   40.3 ;

c  20.6 centimeters (5.3)

16. (A) II (B) Quadrantal (C) III (5.1)

17. (A) and (C) (5.1) 18. (B) and (C) (5.2)

19. (A) (B) 0,  (C) 0,  (5.4)

20. Because the coordinates of a point on a unit circle are given by 

P   (a, b)  P  (cos x, sin x), we evaluate P  (cos ( 8.305),

sin ( 8.305))—using a calculator set in radian mode—to obtain 

P   ( 0.436,  0.900). Note that x  8.305, because 

P is moving clockwise. The quadrant in which P  (a, b) lies can

be determined by the signs of a and b. In this case, P is in the

third quadrant, because a is negative and b is negative. (5.1, 5.2)

21. 0 (5.2) 22. Not defined (5.2) 23. 0 (5.6)

24. or (5.2) 25. (5.6)

26. or (5.2) 27. (5.6) 28. (5.2) 1
2

 

3

 2 3

3
 

2

 3

 

4
 
 2

2
 

1

 2

 

2
,

3 

2

 

2

x

y

5

 

 º  rad sin  cos  tan  csc  sec  cot  

0° 0 0 1 0 ND* 1 ND

30°   6 1 2  2 1 2 2 

45°   4 1 1 1 1

60°   3  2 1 2 2 2 1 

90°   2 1 0 ND 1 ND 0

180°  0  1 0 ND  1 ND

270° 3  2  1 0 ND  1 ND 0

360° 2 0 1 0 ND 1 ND

 3 3 3 3

 2 2 2 2

 3 3 3 3

(5.1, 5.2)

8. (A) 2 (B) 2 (C)  (5.4)

9. (A) Domain  (  ,  ), range  [ 1, 1]

(B) Domain is set of all real numbers except ,

k an integer, range  all real numbers (5.4)

10. (5.4)

x

y

1

 1

2

 2  

x  
2k  1

2
 

*ND  not defined

0

10

150

100 0

3

35

10

0

3

35

10

0

10

150

100
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29. (5.6) 30. or (5.2)

31. (5.6) 32. (5.6) 33. 0.33 (5.6)

34. (5.6) 35. (5.6) 36. (5.6)

37. 0.4431 (5.2) 38.  15.17 (5.2) 39.  2.077 (5.2)

40.  0.9750 (5.6) 41. Not defined (5.6)

42. 1.557 (5.6) 43. 1.095 (5.6)

44. Not defined (5.6)

45. (A)    30° (B)   120° (5.6)

46. (A)   151.20° (B)   82.28° (5.6)

47. cos 1 [cos ( 2)] 2. For the identity cos 1 (cos x)  x to hold,

x must be in the restricted domain of the cosine function; that is, 

0  x   . The number  2 is not in the restricted domain. (5.6)

48. A  2, P  2 (5.5)

49. (5.5)

50. y  6 cos 2x;  x   (5.5)

51. y   0.5 sin  x;  1  x  2 (5.5)

52. If the graph of y tan x is shifted units to the right and 

reflected in the x axis, the result will be the graph of 

y  cot x. (5.4)

53. (A) cos x (B) tan2 x (5.4)

54. (5.5)

55. A  2; P  4; phase shift  (5.5)
1
2
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y

 3
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42 2 4
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 5

4

2 2 4
x
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y

2

 2

321 1

 4
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6
 
 

6

 
 3

3
 

1

 3
 
 

4

56. Domain [ 1, 1]; range  [0,  ] (5.6)

57. y  cos 2x  (5.5)

58. (A) y tan x (B) y cot x (5.5)

59. (A) Even (B) Neither (5.4)

60. False (5.3) 61. True (5.3)

62. (A) 2.5 radians (B) ( 6.41, 4.79) (5.1, 5.2)

63. (A) (B) (5.2)

64. (5.4)

65.

Domain all real numbers; range  (5.6)   2,
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66. Phase shift  ; period P 1 (5.5)

67. Phase shift  ; period  4 (5.5)

68. (A) Sine has origin symmetry.

(B) Cosine has y axis symmetry.

(C) Tangent has origin symmetry. (5.4)

69. (5.6)

70. For each case, the number is not in the domain of the function and

an error message of some type will appear. (5.2, 5.6)

71. y  2 sin (5.5)

72. y  2 sin (2x 0.928) (5.5)

73. (A)

(B) (5.5)

74. radians (5.1) 75. 28.3 centimeters (5.2)

76. 8.38 radians second; 167.55 feet second (5.1)

2 

5

x

y

2

1

 2

3

 3

 2

 3

2

3

 3

 2

3

2

  x  
 

4  

1

 1  x2

 

2

 1
2

77. I  30 cos 120 t (5.5)

78. (A) L  10 csc   15 sec  ; 0    

(B)  (radians) 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L (feet) 42.0 38.0 35.9 35.1 35.5 36.9 39.6

35 feet is the length of the longest log that can make the corner.

(C) Length of longest log that can make the corner is 35.1 feet.

(D) Length L increases without bound. (5.2, 5.3)

79. (A) R(t)  4  3 cos t.

(B) The graph shows the seasonal changes in soft drink consumption.

Most is consumed in August and the least in February. (5.5)

80. (A)

(B) y  66.5  8.5 sin 

(C) (5.5)

40

1

90

24

  6 x  2.4 

40

1

90

24

 

6

30

0.4

40

1.0

 

2

Exercise 6.1

27. 29.

31. Yes 33. No 35. No 37. No 69. Not an identity

 2

 

2



 2

 

2



71. An identity 73. Not an identity 75. An identity

77. An identity 79. Not an identity

87. (A) (B)

(C) csc x  
1

sin x

sin2 x  cos2 x  1cot x  
cos x

sin x
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93. g(x)  3 cos x

95. III, IV 97. I, II 99. All quadrants

101. I, IV 103. a cos x 105. a sec x

 4

 2

4

2

89. g(x) cot x 91. g(x)   1  csc x

 4

 2

4

2

 4

 2

4

2

Exercise 6.2

1. Yes 3. No 5. No 7. Yes 13. (cos x sin x)

15. sin x 17. 19.

21. 23. 25. 1

27. sin (x y)  ; tan (x y)  

29. sin (x y)  ; tan (x y)  

45.  0.3685,  0.3685; 0.9771, 0.9771

47.  0.4429,  0.4429;  2.682,  2.682

49. Evaluate each side for a particular set of values of x and y for

which each side is defined. If the left side is not equal to the right

side, then the equation is not an identity. For example, for x 2

and y  1, both sides are defined, but are not equal.

51. y1  sin (x   6); y2  sin x  cos x

 4

 2

4

2

1

2

 3

2

2
11

 2

 5

4 8  3

4  3 8

 3  4 8

15

 3

2

 3  1

2 2

2 2

 3  1

tan x   3

1   3 tan x

 31
2

53. y1  cos (x 3  4); y2  cos x  sin x

55. y1  tan (x 2  3); y2  

57. 59. 61.
65. y1  cos 1.2x cos 0.8x  sin 1.2x sin 0.8x; y2  cos 2x

71. (C) 3,510 feet

 4

 2

4

2

xy   1  x2 1  y2 1
2

24
25

 4

 2

4

2

tan x   3

1   3 tan x

 4

 2

4

2

 2

2
 
 2

2

11.

 4

 2

4

2

Exercise 6.3

1. 3. 5. 1  1

7. 9.
 2   2

2

 2   2

2

  3    31
2  

1
2
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61. 63. 65.

67. tan 69. 1  2 sin x

71. sec 2x

73. x   13.176 m;   28.955 

75. (A) (B)   45 

77. (B) TABLE 1

n 10 100 1,000 10,000

An 2.93893 3.13953 3.14157 3.14159

(C) An appears to approach  , the area of the circle with radius 1.

(D) An will not exactly equal the area of the circumscribing circle

for any n no matter how large n is chosen; however, An can be

made as close to the area of the circumscribing circle as we

like by making n sufficiently large.

d  
v2

0 sin 2 

32 ft/sec2

224
17

 4

 2

4

2

 4

 2

4

2

 4

 2

4

2

x

2

 5

5
 24

7 7
25

13. 33. No 35. Yes 37. No

39. sin 2x  , cos 2x  , tan 2x  

41. sin 2x  , cos 2x  , tan 2x  

43.

45.

47. (A) 2 is a second quadrant angle, because  is a first quadrant

angle and tan 2 is negative for 2 in the second quadrant and

not for 2 in the first.

(B) Construct a reference triangle for 2 in the second quadrant

with (a, b)  ( 3, 4). Use the Pythagorean theorem to find

r 5. Thus, sin 2  4 5 and cos 2   3 5.

(C) The double-angle identities cos 2  1 2 sin2  and

cos 2  2 cos2   1.

(D) Use the identities in part C in the form 

and

The positive radicals are used because  is in quadrant one.

(E) sin    5; cos    5

49. (A)  0.72335   0.72335 (B)  0.58821   0.58821

51. (A)  3.2518   3.2518 (B) 0.89279  0.89279

53. y1  y2 for [  ,  ] 55. y1  y2 for [ 2 , 0]

 4

 2

4

2

 4

 2

4

2

 52 5

cos    1  cos 2 

2
.sin    1  cos 2 

2

sin
x

2
  

2 5

5
, cos 

x

2
 
 5

5
, tan 

x

2
  2

tan
x

2
  3  2 2

sin
x

2
  3  2 2

6
, cos 

x

2
   3  2 2

6
,

 120
119

119
169 120

169

 24
7

7
25 24

25

 4

 2

4

2

39. y2   2 sin cos 41. y2   2 sin x sin 0.7x

43. y2  (sin 4x sin 2x)

 4

 2

4

2

1
2

 4

 2

4

2

 4

 2

4

2

x

2

3x

2
Exercise 6.4

1. sin 4m  sin 2m 3. cos 2u  cos 4u

5. 2 sin 2t cos t 7. 2 sin 7w sin 2w

9. 11. 13. 15.

19. Let x  u  v and y  u  v and solve the resulting system for u

and v in terms of x and y, then substitute the results into the first

identity. The second identity will result after a small amount of al-

gebraic manipulation.

29. Yes 31. No 33. Yes

35. (A)  0.34207   0.34207 (B)  0.05311   0.05311

37. (A)  0.19115   0.19115 (B)  0.46541    0.46541

 6

2
 
 2

2
1
4

 3  2

4

1
2

1
2

1
2

1
2
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51. (A)

(B) y1  sin (22 x) sin (18 x); Graph same as part A

53. (B)

 1

0

1

0.25

 1

0

1

0.25

 1

0

1

0.25

 1

0

1

0.25

 2

0

2

1

45. y2  (cos 1.6x cos 3x)

49. (A)

 2

0

2

1

 4

 2

4

2

1
2

(B) y1  cos (30 x) cos (26 x); Graph same as part A

55. 0, 3  2 57.  59. 0.1204, 0.1384

61. (A) The largest zero for f is 0.3183. As x increases without bound,

1 x tends to 0 through positive numbers, and sin (1 x) tends

to 0 through positive numbers. y  0 is a horizontal asymp-

tote for the graph of f.

(B) Infinitely many zeros exist between 0 and b, for any b, how-

ever small. The exploration graphs suggest this conclusion,

which is reinforced by the following reasoning. Note that for

each interval (0, b], however small, as x tends to zero through

positive numbers, 1 x increases without bound, and as 1 x in-

creases without bound, sin (1 x) will cross the x axis an un-

limited number of times. The function f does not have a

smallest zero, because, between 0 and b, no matter how small

b is, there is always an unlimited number of zeros.

63. 0.009235 seconds 65. 50.77 67. 123 

69. 2.267 radians

71. (A) 12.4575 millimeters (B) 2.6496 millimeters

73. (r,  )  (0, 0 ), (0, 180 ), (0, 360 ) 75.   45 

Exercise 6.5

1. 7  6, 11  6 3. 7  6  2k , 11  6  2k , k any integer

5. 2  3 7. 2  3  k , k any integer 9. 30 , 330 

11. 30  k(360 ), 330  k(360 ), k any integer 13. 1.1279, 5.1553

15. 74.0546 17. 3.5075 2k , 5.9172  2k , k any integer

19. 0.3376 21. 2.7642

23. k (180 ), 135  k(180 ), k any integer 25. 0, 2  3,  , 4  3
27. 4  3 29. 210 , 330 31. 60 , 180 , 300 

33.   3,  , 5  3 35. 41.81 37. 1.911

39. 0.3747, 2.767 41. 0.3747 2k , 2.767  2k , k any integer

43. 0.3747, 2.7669 45. 0.3747 2k , 2.7669  2k , k any integer

47. ( 1.1530, 1.1530) 49. [3.5424, 5.3778], [5.9227,  )

51. 1.8183

53. tan 1 ( 5.377) has exactly one value,  1.387; the equation 

tan x   5.377 has infinitely many solutions, which are found by

adding k , k any integer, to each solution in one period of tan x.

12.  1.4032 (6.5) 13. 3.1855 (6.5)

14. (A) Not an identity (B) An identity (6.1)

24. (5.2, 6.4) 25. (5.2, 6.4)

26. No (6.1) 27. Yes (6.2) 28. No (6.2)

29. No (6.2) 30. (6.5)

31. 0 , 120 (6.5)

32. x  0  2k , x    2k , x  2k , x   2k , k any 

integer. The first two can also be written together as x k , k any 

integer. (6.5)

5 

6

 

6

 

3
,

2 

3
,

4 

3
,

5 

3

 
 6

2

 2   3

4

Chapter 6 Review

5. sin 8  sin 2 (6.4) 6.  2 sin 6x sin x (6.4)

7. cos x (6.2)

8. 135  k360 , 225  k360 , k any integer (6.5)

9. k or  k , k any integer (6.5)

10. k any integer (6.5)

11. k any integer (6.5)x    75.1849°  k360°

284.8151°  k360°

x   0.7878  2k 

2.3538  2k 

 

4

1
2

1
2
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33. x  0  2k , x    2k , x  2k , x   2k ,

k any integer. The first two can also be written together as x k ,

k any integer. (6.5)

34. 120  k360 , 240  k360 , k any integer (6.5)

35. 14.34  k180 (6.5)

36. k any integer (6.5)

37. 1.178, 2.749 (6.5) 38. 1.4903 (6.5)

39. (  , 1.4903) (6.5) 40.  0.6716, 0.6716 (6.5)

41. [ 0.6716, 0.6716] (6.5)

42. (A) Yes

(B) Conditional equation, because the equation is false for x 1

and y  1, for example, and both sides are defined at x 1

and y  1. (6.1)

43. sin 1 0.3351 has exactly one value, whereas the equation 

sin x  0.3351 has infinitely many solutions. (5.6, 6.5)

44. (A) Not an identity (B) An identity (6.1)

45. y2  cos x  sin x (6.2)

46. (A) 0, (B) 0, 2.0944 and 4.1888 (6.5)

47. 0.149 and  2.233 (6.5)

48. (A) (B) (6.3)

49. (6.3) 50. (6.2)

51. (A) 0, , (B) 0, 1.0472, 2.0944 (6.5)

52. (A) 0.6817, 1.3183

(B) As x increases without bound, tends to 0 through 

positive numbers and sin tends to 0 through positive

numbers. y  0 is a horizontal asymptote for the graph of f.

1

x  1

1

x  1

2 

3

 

3

24
25 24

25

7
25

3

 10
 or 

3 10

10

2 

3
,

4 

3

 2

 2

2

2

 3

2

1

2

x   0.6259  2k 

2.516  2k 

11 

6

 

6

(C) The exploratory graphs are left to the student. There are infi-

nitely many zeros in any interval containing x 1. The number

x  1 is not a zero because sin is not defined at 

x  1. (6.5)

53. x  ; x  5.196 centimeters,   30.000 (6.3)

54. 0.00346 seconds (6.5)

55. (B) y 0.6 cos 184 t y  0.6 cos 208 t

y 0.6 cos 184 t 0.6 cos 208 t

y 1.2 sin 12 t sin 196 t (6.4)

56. Height 7.057 feet, radius  21.668 feet

From the figure, R  18 and sin   . From these two 

equations, solving each for R in terms of  and setting the results

equal to each other, we obtain the desired trigonometric equation.

(6.5)

16

R

18 18

16 16
h

RR 


 2

0.0

2

0.2

 2

0.0

2

0.2

 2

0.0

2

0.2

 2

0.0

2

0.2

 27

1

x  1

13. 0 triangles; the case where  is acute and 0  a h (a 1, h 2)

15. 2 triangles; the case where  is acute and h a  b

(h  2, a  3, b  4)

17.   49.5 , a 20.0 feet, c 4.81 feet

19.   58.1 , a 140 meters, c 129 meters 21. No solution

23. Triangle I:   158.8 ,   5.3 , c 7.55 inches;

triangle II:   21.2 ,   142.9 , c 49.3 inches

Exercise 7.1

1.   79 , a 41 feet, b 20 feet 3.   40 , a 16 kilometers,

c 5.8 kilometers 5.   49 , a 53 yards, b 66 yards

7.   81 , b 16 centimeters, c 12 centimeters

9. 1 triangle; the case where  is acute and a 2  h

11. 1 triangle; the case where  is acute and a b (a  6, b  4)
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35. Left side: 16.204; right side: 16.073 37. 4.06 miles, 2.47 miles

39. 353 feet 41. 5.8 inches, 3.1 inches

43. 4.42  107 kilometers, 2.39  108 kilometers 45. 159 feet

47. R  7.76 millimeters, s 13.4 millimeters

25. Triangle I:   116.6 ,   24.5 , c  19.8 inches;

triangle II:   63.4 ,   77.7 , c 46.7 inches

27. No solution 29.   22 10 ,    128 20 , c 89.9 millimeters

31.    90 ,   60 , c 50 feet 33. k  25.2 sin 42.3  17.0

13. No solution, because     180 

15. b  23.1 inches,   46.1 ,   29.4 

17.    10.8 , a  22.5 meters, b 5.01 meters

19.   30.7 ,    110.9 , c  21.0 inches

21.    49.1 ,   102.9 ,    28.0 

23. Triangle I:    109.7 ,    11.9 , a  1.58 meters; 

triangle II:    70.3 ,   51.3 , a 5.99 meters

25. No solution

27. Triangle I:    140.5 ,    25.9 , a  40.1 meters;

triangle II:   39.5 ,   126.9 , a 73.5 meters

33. 120 yards 35. 100.6 37. 5.81 feet 39. 121 miles

41. 74.1 meters 43. 0.284 radians

45.   31 50 ,     50 10 ,    98 0 

47.  CAB 33 49. 24,800 miles

Exercise 7.2

1. Angle  is acute. A triangle can have at most one obtuse angle.

Because  is acute, then, if the triangle has an obtuse angle it

must be the angle opposite the longer of the two sides, b and c.

Thus,  , the angle opposite the shorter of the two sides, c, must be

acute.

3. a  6.03 yards,   56.6 ,   52.2 

5. c  14.0 millimeters,   20 40 ,   39 0 

7. If the triangle has an obtuse angle, then it must be the angle oppo-

site the longest side; in this case,  .

9.    23.0 ,   94.9 ,   62.1 

11.   67.3 ,   54.6 ,   58.1 

13.  u  v  77 grams,    15 15.  u  v  23 knots,   6 

17.  u  12 kilograms,  v  6.0 kilograms

19.  u  109 miles per hour,  v  160 miles per hour

21. Because the zero vector has an arbitrary direction, it can be per-

pendicular to any vector.

23. 260 miles per hour at 282 25. 288 , 7.6 knots

27. 3,900 pounds at 72 29. (A) 388 pounds (B) 4,030 pounds

31. To the right

Exercise 7.3

1.  u v  58 miles per hour,   51 

3.  u v  65 kilograms,   54 

5.  u v   447 kilometers per hour,    13.6 

7.  u  30 pounds,  v  12 pounds

9.  u  71 miles per hour,  v  220 miles per hour

11. No. Two vectors are equal if and only if they have the same mag-

nitude and direction.

35. Any one of the force vectors must have the same magnitude as the

sum vector of the other two and be oppositely directed as the sum

vector.

45. 760 pounds to the left; 761 pounds to the right

47. 897 pounds to the left; 732 pounds to the right

49. This corresponds to a tension force of 462 pounds in member CB.

This corresponds to a compression force of 231 pounds in mem-

ber AB.

51. AB  a compression of 2,360 pounds; BC  a tension of 2,000

pounds

Exercise 7.4

1. 〈 3,  3〉 3. 〈 6, 7〉 5. 〈3, 5〉 7. 5 9.
11. 25

13. Two algebraic vectors, 〈a, b〉 and 〈c, d 〉, are equal if and only if 

a  c and b  d.

15. (A) 〈1, 4〉 (B) 〈3,  2〉 (C) 〈14,  1〉

17. (A) 〈 2, 1〉 (B) 〈 6,  3〉 (C) 〈 10,  1〉

19. v   3i  4j 21. v  3i 23. v   5i  2j

25. 5i  2j 27.  16j 29.  8j 31. u  

33. u    5

 34
,

3

 34 
  3

5, 4
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 34
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( 5,  5  4): The polar axis is rotated 5  4 radians clockwise

(negative direction) and the point is located five units from the

pole along the negative polar axis.

11.

13.

15.

17. (5.196, 3.000) 19. (1.848,  0.765) 21. (2.078, 3.688)

23. (7.9, 64 ) 25. (26, 32 ) 27. (7.61,  164.4 )

29.
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Exercise 7.5

1.

3.

5.

7.

9. (5,    4): The polar axis is rotated   4 radians clockwise (nega-

tive direction) and the point is located five units from the pole

along the positive polar axis. (5, 7  4): The polar axis is rotated

7  4 radians counterclockwise (positive direction) and the point

is located five units from the pole along the positive polar axis.

5 10
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31.

33.

35.

37.

5
0



2

3

2



5
0



2

3

2



5
0



2

3

2



10
0



2

3

2



39.

41. (A)

(B) 7 (C) n

43. (A)

(B) 16 (C) 2n

45. r  5 sin  47. tan   1 or   

49. r   4 cot  csc  51. 3x  4y   1

53. x2  y2   2y 55. y  x

57. For each n, there are n large petals and n small petals. For n odd,

the small petals are within the large petals; for n even, the small

petals are between the large petals.

4 cos  

sin2  
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9 9
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6

9

 9

 6

6

9

 9

 6

6

9 9

 6

6

9



ANSWERSA-114

59.

(r,  ) [Note: (0, 0) is not a solution

of the system even though the graphs cross at the origin.]

61.

(r,  ) (0, 90 ), (0, 270 ), ( , 30 ), ( , 150 ) [Note: (0, 0) is

not a solution of the system even though the graphs cross at the

origin.]

 3 33 3

5
0

90 

180 

270 

  2 2,
3 

4  

5
0



2

3

2



  2 2,
3

4  

63. 3.368 units 65. 6 knots, 13 knots, 12 knots, 9 knots

67. (A) Ellipse (B) Parabola

(C) Hyperbola

69. (A) Aphelion: 4.34  107 miles; perihelion: 2.85  107 miles

(B) Faster at perihelion. Because the distance from the sun to

Mercury is less at perihelion than at aphelion, the planet must

move faster near perihelion for the line joining Mercury to

the sun to sweep out equal areas in equal intervals of time.

 5   10
7

 7.6   10
7

5   10
7

7.6   10
7

 10

 20

10

10

 10

 10

10

10

 10

 10

10

20

Exercise 7.6

1. 3.

5.

x

y

5

 5

 5 5

A

B

C

x

y

5

 5

 5 5

A

B

C

x

y

5

 5

 5 5

A

B

C

7.

9. (A) 2e30 i (B) e( 135°)i (C) 7.81e( 50.19°)i

11. (A) e(   2)i (B) 2e( 5  6)i (C) 9.43e2.58i

13. (A) 1  (B) 1  i (C)  2.35  1.99i

15. (A)  3i (B) (C)  2.22  3.43i

17. 14e113°i; 3.5e51°i 19. 10e135°i; 2.5e( 31°)i

21. 36.42e4.35i; 0.26e( 0.83i) 23.  2i; 2e( 90°)i

25.  2; 2e180°i 27.  2  2i, ( 135°)i 31. zn  rnen i

33. (A) (20  0i)  (5  5i )  25  5i (B) 26.5e19.1°i

(C) 26.5 pounds at an angle of 19.1 
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2 2e

 i 73 3

i 3

 3

 2

x

y

5

 5

 5 5

A

B

C



Answers A-115

Exercise 7.7

1. 8e90°i 3. 8e60°i 5. 8e180°i 7.  8  

9. 16 11. 1 13. w1  2e10°i, w2 2e130°i, w3  2e250°i

15. w1  3e15°i, w2  3e105°i, w3  3e195°i, w4  3e285°i

17. w1  21 10e( 9°)i, w2  21 10e63°i, w3  21 10e135°i,

w4  21 10e207°i, w5  21 10e279°i

19. w1  2e0°i, w2  2e120°i, w3  2e240°i

21. w1  2e45°i, w2  2e135°i, w3  2e225°i, w4  2e315°i

23. w1  1e15°i, w2  1e75°i, w3  1e135°i,

w4  1e195°i, w5  1e255°i, w6  1e315°i

x

y

2

 2

 2 2

w2

w3

w1

w4

x

y

2

 2

 2 2

w2

w3

w1

8 3i

25. (A) (1  i)4  4   4  4  0. There are three other roots.

(B) The four roots are equally spaced around the circle. Because

there are four roots, the angle between successive roots on the

circle is 360  4 90 .

(C) ( 1 i)4 4  4 4 0;

( 1 i)4 4  4 4 0; (1  i)4  4   4  4  0

27. x1  4e60°i 2  , x2  4e180°i  4,

x3  4e300 i 2  

29. x1  3e0°i 3, x2  3e120°i ,

x3  3e240 i 

33. x1 2e0°i, x2 2e72°i, x3 2e144 i, x4 2e216°i, x5 2e288°i

35. w1 e36°i, w2 e108°i, w3 e180°i, w4 e252°i, w5 e324°i

37. P(x)  (x  2i)(x  2i)[x  (  i)][x (  i)]

[x  (  i)][x (  i)] 3 3

  3  3
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3 3
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3 3
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i

2 3i

2 3i

x

y

 1   i

 1   i

1   i

1   i

radius  2

x

y

1

 1

 1

1

w3

w5

w4

w2

w1

w6

11. (7.5)
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Chapter 7 Review

1. 1 (7.1) 2. 0 (7.1) 3. 2 (7.1)

4. Angle  is acute. A triangle can have at most one obtuse angle.

Because  is acute, then, if the triangle has an obtuse angle it

must be the angle opposite the longer of the two sides, b and c.

Thus,  , the angle opposite the shorter of the two sides, b, must be

acute. ( 7.2)

5.   75 , a 47 meters, b 31 meters (7.1)

6. a  4.00 feet,   36 ,   129 (7.1, 7.2)

7.   19 ,   40 , a  8.2 centimeters (7.1)

8.  u  v  170 miles per hour,   19 (7.3)

9. 〈3,  7〉 (7.4) 10. (7.4) 34
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12. (7.5)

13. (7.6)

14. ( 10,  210 ): The polar axis is rotated 210 clockwise (negative

direction) and the point is located 10 units from the pole along the

negative polar axis. ( 10, 150 ): The polar axis is rotated 150 

counterclockwise (positive direction) and the point is located 

10 units from the pole along the negative polar axis. (10, 330 ):

The polar axis is rotated 330 counterclockwise and the point is lo-

cated 10 units from the pole along the positive polar axis. (7.5)

15. (7.6)

16. (A) 2e( 60°)i (B)  2i (7.6) 17. (A) 1 (7.7)

18. 8 (7.7)

19. If the triangle has an obtuse angle, then it must be the angle 

opposite the longest side; in this case,  . (7.2)

20. b  10.5 centimeters,   27.2 ,   37.4 (7.2)

21. No solution (7.1)

22. Two solutions. Obtuse case:   133.9 ,   19.7 ,

c  39.6 kilometers (7.1)

23.   41.1 ,   74.2 ,   64.7 (7.1, 7.2)

24. The sum of all of the force vectors must be the zero vector for the 

object to remain at rest. (7.4)

25.  u v  98.0 kilograms,   17.1 (7.3)

26. (A) u  3i 9j (B) v  2j (7.4)

27. (A) 〈 4, 7〉 (B) 〈 14, 13〉 (7.4)

28. (A)  2i  4j (B)  10j (7.4)

29. u  (7.4)  1
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30. (7.5)

31. (7.5)

32. (7.5)

33. (7.5)

34. (7.5)

35. (7.5)
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36. n  1 n  2

n  3

2 leaves for all n (7.5)

37. (A) Ellipse (B) Parabola

(C) Hyperbola (7.5)

38. r2  6r cos  or r  6 cos  (7.5)

39. x2  y2  5x (7.6)

40. z1  e135 i, z2  2e( 120 )i, z3  5e0 i (7.6)

41. z1  1  i, z2  (  2)  (3 2)i, z3   1  (7.6)

42. (A) 32e44 i (B) 2e6 i (7.6)

43. (A) 8  (B)  8  13.86i (7.7)

44. w1 (  2) (1 2)i, w2 (  2) (1 2)i, w3  i (7.7)

45. 2e50 i, 2e170 i, 2e290 i (7.7)

x

y

w2

w3

w1

  3 3

8 3i

i 33 3

 2

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

46. (4e15 i)2  16e30 i  8i (7.7)

47. (5.76,  26.08 ) (7.5) 48. ( 5.30,  2.38) (7.5)

49. 5.26e127.20 i (7.6) 50.  7.27  2.32i (7.6)

51. (A) There are a total of three cube roots and they are spaced

equally around a circle of radius 2.

(B) w2   i, w3   i

(C) The cube of each cube root is  8i. (7.7)

52. k  44.6 sin 23.4 (7.1)

55. (A)

(B) (7.5)

56. (A) The coordinates of P represent a simultaneous solution.

(B) r   4 ,   3  4

(C) The two graphs go through the pole at different values 

of  . (7.5)
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57. 1,  1, i,  i,

(7.7)

58. P(x)  (x  2i)[x  (  i)][x (  i)] (7.7)

59. 438 miles (7.3)

60. 438 miles per hour at 83 (7.3)

61. 86 , 464 miles per hour (7.3)

62. 0.6 miles (7.1)

63. 177 pounds at 15.2 relative to v (7.3)

64. 19 kilograms at 204 relative to u (7.4)

65. 5,740 pounds (7.4)

 3  3
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 i
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2

66. (A) Distance at aphelion: 1.56  108 miles;

distance at perihelion: 1.29  108 miles

(B) Distance at aphelion: 1.56  108 miles;

distance at perihelion: 1.29  108 miles (7.5)

 2   10
8

 2   10
8

2   10
8

2   10
8

Cumulative Review Exercise for Chapter 5, 6, and 7

1. 1.86 meters (5.1)

2.   57.3 , 14.5 centimeters, 7.83 centimeters (5.3)

3. (A) I, II (B) I, IV (C) I, III (5.2)

4. (A) (B) (C) (5.4) 5. (A) (B) 65 

(C) 30 (5.4)

6. (A) Domain: all real numbers; range:  1 y  1; period: 2 

(B) Domain: all real numbers; range:  1 y  1; period: 2 

(C) Domain: all real numbers except x  k , k an integer;

range: all real numbers; period:  (5.4)

7. (5.4)

8. (5.4)

9. The central angle of a circle subtended by an arc of twice the

length of the radius. (5.1)

10. If the graph of y cos x is shifted   2 units to the right, the re-

sult will be the graph of y sin x. (5.4)

15. (A) Not an identity (B) An identity (6.1)

16. Angle  is acute. A triangle can have at most one obtuse angle.

Because  is acute, then, if the triangle has an obtuse angle it

must be the angle opposite the longer of the two sides, a and c.

Thus,  , the angle opposite the shorter of the two sides, a, must

be acute. (7.2)
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5

17. 0.3245, 2.8171 (6.5) 18.  76.2154 (6.5)

19. b 22 feet,   28 ,   31 (7.1, 7.2) 20.  6, 3 (7.4)

21. (5,  30 ): The polar axis is rotated 30 clockwise (negative di-

rection) and the point is located five units from the pole along

the positive polar axis. ( 5, 210 ): The polar axis is rotated

210 clockwise (negative direction) and the point is located five

units from the pole along the negative polar axis. (5, 330 ): The

polar axis is rotated 330 counterclockwise (positive direction)

and the point is located five units from the pole along the posi-

tive polar axis. (7.5)

22. (7.5)

23. (7.6)

24. 4  4i (7.7) 25. , 870 (5.2)

26. 75.06 (5.1) 27. (A) and (C) (5.2)

28. (5.2) 29. Not defined (5.2) 30.  1 (5.2)

31. (5.2) 32.  (5.6) 33. Not defined (5.6)

34. (5.6) 35. 0.55 (5.6) 36. (5.6)
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37. (5.6)

38. (A) 9.871 (B)  3.748

(C)  1.559 (D) Not defined (5.2, 5.6)

39. (5.5)

40. (A) 150 (B)  19.755 (5.6)

41. sin 1 (sin 3)  0.142. For the identity sin 1 (sin x)  x to hold, 

x must be in the restricted domain of the sine function; that is,

   2  x    2. The number 3 is not in the restricted 

domain. (5.6)

42. Because the coordinates of a point on a unit circle are given by 

P (a, b) (cos x, sin x), we evaluate 

P (cos (11.205), sin (11.205))—using a calculator set in radian

mode—to obtain P (0.208, 0.978). The quadrant in which 

P (a, b) lies can be determined by the signs of a and b. In this

case P is in the fourth quadrant, because a is positive and b is

negative. (5.1, 5.2)

43. The equation has infinitely many solutions 

[x  tan 1 ( 24.5)  k , k any integer]; tan 1 ( 24.5)

has a unique value ( 1.530 to three decimal places). (5.6)

44. y  3  2 sin  x (5.5)

45. A  3, P   , P.S.  (5.5)

46. Period  2, P.S.  1 (5.5)

47. (5.4)

x
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48. If the graph of y cot x is shifted to the left   2 units and reflected

in the x axis, the result will be the graph of y tan x. (5.4)

49. y  cos 2x (5.5) 50. y  cot x (5.5)

51. (A) Yes

(B) Conditional, because both sides are defined at x   2, for

example, but   2 is not a solution. (6.1)

58. (A) Not an identity (B) An identity (6.1) 59. 0 (6.2)

60. sin 2x  , cos or (6.3)

61. 30 , 150 , 270 (6.5)

62. x  k ,  2k ,  2k , k any integer (6.5)

63. (A)   2, 3  2, 7  6, 11  6

(B) 1.571, 3.665, 4.712, 5.760 (6.5)

64. x  0.926 (6.5)

65.   107.2 ,   25.0 ,   47.8 (7.1, 7.2)

66. No solution (7.1)

67.   120.7 ,   6.4 , c 4.81 inches (7.1)

68.  must be acute. A triangle can have at most one obtuse angle,

and because  is acute, the obtuse angle, if present, must be 

opposite the longer of the two sides a and b. (7.2)

69.  u  v  35.6 pounds,   16.3 (7.1, 7.2, 7.3)

70. (A)  1, 3 (B) 3i j (7.4) 71. r  8 sin  (7.5)

72. x2  y2   4x (7.5)

73. (7.5)

74. (7.5)
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75. n  1

n  2

n  3 4 leaves for all n (7.5)

76. (7.5)

77. (4.23, 131.07 ) (7.5) 78. ( 3.68, 5.02) (7.5)

79.  i (7.6) 80. z  2e120 i (7.6)

81. 64  0i  64 (7.7)

82. w1  , w2  i, w3  i (7.8)

83. 5.82e( 146.99 )i (7.6) 84.  6.70  1.94i (7.6)

85. (A) There are a total of four fourth roots and they are spaced

equally around a circle of radius .

x
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w4
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7

10.6

(B) w2   1  i, w3   1  i, w4  1  i

(C) The fourth power of each fourth root is  4. (7.7)

86. a  cos 1.2  0.362, b  sin 1.2  0.932 (5.2)

87. (5.4)

88. y  3 cos (2 x   4); amplitude  3,

period 1, P.S.  1 8 (5.5)

89. y 2 sin (2x 0.644) (5.5)

90. (5.6)

91. (5.6, 6.3)

92. (A) or (B) (6.3)

93. (A)   3, 5  3 (B) 1.0472, 5.2360 (6.5)

94. (A)

(B) (7.5)
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105. (A)

(B) y  53.5  22.5 sin ( x 6 2.1)

(C) (5.7)

25

0

80

24

25
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24
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3.9

1.3

5

0

1

3

6

95. (A) (B) 6

(C) (3,   3), (3, 5  3)

(D) The points on r2 and r1

arrive at the intersec-

tion points for different

values of  , except for

the two found in part C.

(7.5)

96. P(x)  (x  i)[x  (  2  i 2)]

[x  (  2  i 2)] (7.7)

97. radians (5.1) 98. 1,088 meters (5.3)

99. 5.88 inches (5.3, 7.2) 100. 76 (7.2)

101. I 50 cos 220  t (5.5)

102. 274 miles per hour at 117 (7.3)

103. Both have a tension of 234 pounds (7.4)

104. (A) Add the perpendicular 

bisector of the chord as 

shown in the figure.

Then, sin   4 R and

  5 R. Substituting 

the second into the first,

we obtain sin 5 R 4 R.

(B) R cannot be isolated on one side of the equation.
(C) Plot y1 sin 5 R and y2 4 R in the same viewing window

and solve for R at the point of intersection using the intersect

command (see figure). R 4.420 centimeters. (6.5)

5

4



R R

2 

73

  3

 3

 4

 3.1

4

9.1

Exercise 8.1

1. b, no solution 3. d, (1,  3) 5. (5, 2) 7. (2,  3)

9. No solution (parallel lines) 11. x  8, y  19

13. x  6, y  2 15. x  2, y   1 17. x  5, y  2

19. m  1, n   2 3 21. x  2,500, y  200

23. u  1.1, v  0.3 25. x   5 4, y  5 3

27. (1.12, 2.41) 29. ( 2.24,  3.31)

31. The system has no solution.

33. The system has an infinite number of solutions.

35. q  x  y  5, p  3x  2y  12

37. ad  bc  0

39. Airspeed 330 miles per hour; wind rate  90 miles per hour

41. 2.475 kilometers

43. 40 milliliters of 50% solution and 60 milliliters of 80% solution

45. $7,200 invested at 10% and $4,800 invested at 15%

47. Mexico plant: 75 hours; Taiwan plant: 50 hours

49. Mix A: 80 grams; mix B: 60 grams

x  
dh  bk

ad  bc
, y  

ak  ch

ad  bc
,

51. (A) Supply: 143 T-shirts; demand: 611 T-shirts

(B) Supply: 714 T-shirts; demand: 389 T-shirts

(C) Equilibrium price: $6.36; equilibrium quantity: 480 T-shirts

(D)

53. (A) p  0.001q  0.15 (B) p   0.002q  1.89

(C) Equilibrium price  $0.73; equilibrium quantity  

580 bushels

55. (A) a  196, b   16 (B) 196 feet (C) 3.5 second

57. 40 seconds, 24 seconds, 120 miles

p

q
0

10

800400

20

Quantity

P
ri

ce
 (

$
)

Equilibrium
point

(480, 6.36)

Supply
curve

Demand
curve



35. { (2t  4, t)  t any real number}; the graph of each system is the

same.

37. No solution; the graph of each system is two parallel lines until a

contradiction is reached.

39. x1  2 and x2  1 41. x1  2 and x2  4

43. No solution 45. x1  1 and x2  4

47. Infinitely many solutions: for any real number s, x2 s, x1 2s 3

49. Infinitely many solutions: for any real number s,

x2  s, x1  s  

51. (A) ( 24, 20) (B) (6,  4) (C) No solution

53. ( 23.125, 7.8125) 55. (3.225,  6.9375)

57. 25 32¢ stamps, 50 23¢ stamps

59. $107,500 in bond A and $92,500 in bond B

61. 30 liters of 20% solution and 70 liters of 80% solution

63. 200 grams of mix A and 80 grams of mix B

65. Base price  $17.95, surcharge  $2.45 per pound

67. 5,720 pounds of the robust blend and 6,160 pounds of the mild blend

1
2

1
2

10

 10

 10

10

x

y

10 10

 10

10

x

y

Exercise 8.2

1. (2,  1) 3. (3,  1) 5. 2  3, 1  3 7. C 9. B

11.  2,  6 13.  2, 6, 0 15.

17. 19.

21. 23.

25. 27. R2 → R2 29. 6R1  R2 → R2

31. R2  R1 → R1

33. x1  4, x2  3; each pair of lines has the same intersection point.

x1  x2  7 x1  x2  7

x1  x2  1  2x2   6

x1  x2  7 x1  4

x2  3 x2  3

10 10

 10

10

x
1

x
2

(4, 3)

10 10

 10

10

x
1

x
2

(4, 3)

10 10

 10

10

x
1

x
2

(4, 3)

10 10

 10

10

x
1

x
2

(4, 3)

1
3

1
3 1  3

3  3  2

 10 
 1  3

2 0  2

 12  1  3

0 6  2

 16 
 1  3

8  12  2

 16   4 12

4  6   8

 8 
 4  6

1  3   8

2 
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Exercise 8.3

1. Reduced form 3. Not reduced form; R2 ↔ R3

5. Not reduced form; R2 → R2 7. Reduced form

9. Not reduced form; 3R2  R1 → R1

11. Consistent and independent; x1   2, x2  3, x3  0

13. Consistent and dependent; x1  2t  3, x2   t  5, x3  t is the

solution for t any real number.

15. Inconsistent; no solution

1

3

17. Consistent and dependent; x1 2s 3t 5, x2 s, x3  3t 2,

x4  t is the solution for s and t any real numbers.

19. 21. 23.

25. x1  2, x2 3, and x3 1 27. x1 0, x2  2, and x3 2

29. x1  2t  3, x2  t  2, x3  t, t any real number

31. x1  1, x2  2 33. No solution

35. x1  2t  4, x2  t  1, x3  t, t any real number

37. x1  s  2t  1, x2  s, x3  t, s and t any real numbers

39. No solution

 
1 0 2

0 1  2

0 0 0   5
3
1
3

0
  

1 0 0

0 1 0

0 0 1   5

4

 2
  1 0

0 1   7

3 



Answers A-123

67. a  3, b  2, c  1 69. a   2, b   4, and c   20

71. (A) x1  20 one-person boats, x2  220 two-person boats, 

x3  100 four-person boats

(B) x1 (t 80) one-person boats, x2 ( 2t 420) two-person

boats, x3 t four-person boats, 80  t 210, t an integer

(C) No solution; no production schedule will use all the labor-

hours in all departments.

73. (A) x1  8 ounces food A, x2  2 ounces food B, x3  4 ounces

food C

(B) No solution

(C) x1  8 ounces food A, x2   2t  10 ounces food B, x3  t

ounces food C, 0  t  5

75. 10  t barrels of mix A, t  5 barrels of mix B, 25  2t barrels of

mix C, and t barrels of mix D, where t is an integer satisfying 

5  t  10

77. x1  10 hours company A, x2  15 hours company B

41. x1  2.5t  4, x2  t, x3   5 for t any real number

43. x1  1, x2   2, x3  1

45. (A) Dependent with two parameters

(B) Dependent with one parameter

(C) Independent (D) Impossible

51. x1  2s  3t  3, x2  s  2t  2, x3  s, x4  t, s and t any real

numbers

53. x1   0.5, x2  0.2, x3  0.3, x4   0.4

55. x1  2s  1.5t  1, x2  s, x3   t  1.5, x4  0.5t  0.5,

x5  t for s and t any real numbers

57. x1  4, x2  1 59. x1   1.4, x2  4.8, x3  4

63. x1  (3t  100) 15¢ stamps, x2  (145 4t) 20¢ stamps, 

x3  t 35¢ stamps, where t  34, 35, or 36

65. x1  (6t  24) 500-cubic centimeter containers of 10% solution,

x2  (48  8t) 500-cubic centimeter containers of 20% solution,

x3  t 1,000-cubic centimeter containers of 50% solution where 

t  4, 5, or 6

Exercise 8.4

1. 3.

The solution region is the The solution region is the

set of points (x, y) that are set of points (x, y) that are

above the graph of the line on or above the graph of the

2x  3y  6. line 3x  2y  18.

5. 7.

The solution region is the The solution region is the

set of points (x, y) that are set of points (x, y) that are

on or below the graph of the below the graph of the

line y horizontal line y 8.
2

3
x  5.

x

y

5

 5 5

x

y

10

10

x

y

10

 10 10

x

y

5

 5

 5 5

9.

The solution region is the set of points (x, y) that are below the

graph of the horizontal line y 2 and on or above the graph of the

horizontal line y  3.

11. Region IV 13. Region I 15.

17. 19.

x

y

5

 5

 10

5 15x

y

 10 10

5

 5

x

y

5

4

x

y

5

 5

 5 5



33. 35.

Corner points: (0, 4), (0, 0), Corner points: (9, 0), (0, 8),

, (4, 0); bounded and (3, 4); unbounded

37. 39.

Corner points: (6, 0), (4, 3), Corner points: (0, 14), (2, 10),

(5, 2), (0, 0), and (0, 5); bounded (8, 4), (16, 0); unbounded

41.

Corner points: (2, 5), (10, 1),

(1, 10); bounded

43. The feasible region is empty.

45. Corner points: (0, 3), (5, 0), 

(7, 3), (2, 8); bounded

47.

Corner points: (1.27, 5.36), (2.14, 6.52), (5.91, 1.88); bounded

x

y

5

(2.14, 6.52)

(5.91, 1.88)

(1.27, 5.36)

 4x   3y   11

16x   13y   119

12x   16y   101

x

y

5

10

5 10

x

y

5

10

5 10

x

y

10

20

10 20

x

y

5

5

(12
5 , 16

5 )

x

y

5

10

5 10

x

y

5

5

21. (A) Solution region is the double-shaded region.

(B) Solution region is the unshaded region.

23. (A) Solution region is the double-shaded region.

(B) Solution region is the unshaded region.

25. Region IV; corner points are (6, 4), (8, 0), and (18, 0)

27. Region I; corner points are (0, 16), (6, 4), and (18, 0)

29. 31.

Corner points: (0, 0), Corner points: (0, 4) 

(0, 2), (3, 0); bounded and (5, 0); unbounded

x

y

5

10

5 10

x

y

4

2

2 4

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10

 10

 10

10

10
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49.

51. (A) All production schedules in the feasible region that are on the

graph of 50x 60y  1,100 will result in a profit of $1,100.

(B) There are many possible choices. For example, producing 5

trick and 15 slalom skis will produce a profit of $1,150. The

graph of the line 50x 60y  1,150 includes all the produc-

tion schedules in the feasible region that result in a profit of

$1,150.

y  0

x  0

x  y  24

(6, 18)

x   y   24

6x   4y   108

x

y

10

20

10 20

 6x  4y  108 53.

55.

y  0

x  0

30x  10y  360

(10, 6)

x

y

60

20

40

6020 40

30x   10y   360

10x   30y   280

10x  30y  280

y  0

x  0

 5x  10y  220

 30x  30y  960

(14, 18)

(20, 12) x

y

60

20

40

6020 40

20x   10y   460

5x   10y   220

30x   30y   960

 20x  10y  460

Answers A-125

Exercise 8.5

1. Maximum value of z on S is 16 at (7, 9).

3. Maximum value of z on S is 84 at both (0, 12) and (7, 9).

5. Maximum value of z on S is 25 at (7, 9).

7. Maximum value of z on S is 70 at (10, 0).

9. Minimum value of z on T is 32 at (0, 8).

11. Minimum value of z on T is 36 at both (12, 0) and (4, 3).

13. Minimum value of z on T is 10 at (4, 3).

15. Minimum value of z on T is 32 at both (0, 8) and (4, 3).

17. Maximum value of z on S is 18 at (4, 3).

19. Minimum value of z on S is 12 at (4, 0).

21. Maximum value of z on S is 52 at (4, 10).

23. Minimum value of z on S is 44 at (4, 4).

25. The minimum value of z on S is 1,500 at (60, 0). The maximum value

of z on S is 3,000 at (60, 30) and (120, 0) (multiple optimal solutions).

27. The minimum value of z on S is 300 at (0, 20). The maximum

value of z on S is 1,725 at (60, 15).

29. Max P  5,507 at x1  6.62 and x2  4.25

31. (A) a  2b (B) b  a  2b (C) a  b or b  3a

(D) a  2b (E) b  3a

1
3

1
3

33. (A) 6 trick skis, 18 slalom skis; $780 

(B) The maximum profit decreases to $720 when 18 trick and no

slalom skis are produced.

(C) The maximum profit increases to $1,080 when no trick and

24 slalom skis are produced.

35. 9 model A trucks and 6 model B trucks to realize the minimum

cost of $279,000

37. (A) 40 tables, 40 chairs; $4,600

(B) The maximum profit decreases to $3,800 when 20 tables and

80 chairs are produced.

39. (A) Max P $450 when 750 gallons are produced using the old

process exclusively.

(B) The maximum profit decreases to $380 when 400 gallons are

produced using the old process and 700 gallons using the new

process.

(C) The maximum profit decreases to $288 when 1,440 gallons

are produced using the new process exclusively.

41. The nitrogen will range from a minimum of 940 pounds when 40

bags of brand A and 100 bags of brand B are used to a maximum

of 1,190 pounds when 140 bags of brand A and 50 bags of brand B

are used.

Chapter 8 Review

1. x  3, y  3 (8.1) 2. x  3, y   2 (8.1)

3. x  2, y   1 (8.1) 4. x  1.1875, y  1.625 (8.1)

5. (8.4)

x

y

 5

105



20. x1  , x2  , x3  t is a solution for every real

number t. There are infinitely many solutions. (8.3)

21. Corners: (0, 4), (0, 0), (4, 0), and (3, 2); bounded (8.4)

22. Corners: (0, 8), (12, 0), ; unbounded (8.4)

23. Corners: (4, 4), (10, 10), (20, 0); bounded (8.4)

24. The maximum value of z on S is 46 at (4, 2). (8.5)

25. The minimum value of z on S is 75 at (3, 6) and (15, 0) (multiple

optimal solutions). (8.5)

26. The minimum value of z on S is 44 at (4, 3). The maximum value

of z on S is 82 at (2, 9). (8.5)

27. x1  1,000, x2  4,000, x3  2,000 (8.3)

28. The maximum value of z on S is 26,000 at (600, 400). (8.5)

29. (A) A unique solution (B) No solution

(C) An infinite number of solutions (8.3)

30. 48 -lb packages and 72 -lb packages (8.1)

31. 6 meters by 8 meters (8.1)

32. x1  40 grams mix A, x2  60 grams mix B,

x3  30 grams mix C (8.3)

33. (A) x1  22 nickels, x2  8 dimes

(B) x1  3t  22 nickels, x2  8  4t dimes, x3  t quarters, 

t  0, 1, or 2 (8.3)

34. (A) Maximum profit is P $7,800 when 80 regular and 30 

competition sails are produced.

1
3

1
2

x

y

10

10 20

x

y

5

10

5 10

(12
5 , 16

5 )

x

y

5

5

5
7t  9

7 3
7t  4

76. (8.4)

7. (8.2) 8. (8.2)

9. (8.2)

10. x1  4 11. x1  x2  4

x2   7 0  1

The solution is (4,  7) (8.3) No solution (8.3)

12. x1  x2  4

x1  t  4, x2  t is the solution, for t any real number (8.3)

13. The maximum value of z on S is 42 at (6, 4). The minimum value

of z on S is 18 at (0, 6). (8.5)

14. x1  2, x2   2; each pair of lines has the same intersection

point. (8.3)

x1  x2  4 x1  x2  4

2x1  x2  2 3x2  6

x1  x2 4 x1  2

x2  2 x2   2

15. x1   1, x2  3 (8.3) 16. x1   1, x2  2, x3  1 (8.3)

17. x1  2, x2  1, x3   1 (8.3)

18. x1   5t  12, x2  3t  7, x3  t is a solution for every real

number t. There are infinitely many solutions. (8.3)

19. No solution (8.3)

5

 5

 5 5
x

1

x
2

(2,  2)

5

 5 5
x

1

x
2

(2,  2)

5

 5 5
x

1

x
2

(2,  2)

5

 5 5
x

1

x
2

(2,  2)

 1  4

0 6  5

 3 
 1  4

1  2  5

4  3  6

1  4  12

5 

x

y

5

 5

 5 5
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(B) The maximum profit increases to $8,750 when 70 

competition and no regular sails are produced.

(C) The maximum profit decreases to $7,200 when no 

competition and 120 regular sales are produced. (8.5)

35. (A) The minimum cost is C $13 when 100 grams of mix A and

150 grams of mix B are used.

(B) The minimum cost decreases to $9 when 50 grams of mix A

and 275 grams of mix B are used.

(C) The minimum cost increases to $28.75 when 250 grams of

mix A and 75 grams of mix B are used. (8.5)

Answers A-127

Exercise 9.1

1. 3. 5. Not defined

7. 9. 11. [10]

13. 15. 17. 19. [ 14]

21. 23. [11] 25.

27. Not defined 29. 31.

33. 35. 37.

39. Not defined 41.

43. 45. Bn → ,

ABn →

47. a   1, b  1, c  3, d   5 49. x  1, y  2

51. a2  bc  0

53. a   b and c   d 55. x   5, y  4

57. a  3, b  1, c  1, d   2 59. All are true

Guitar Banjo
61.

63. Markup
Basic AM/FM Cruise

car Air radio control

65. (A) $11.80 (B) $30.30

(C) MN gives the labor costs per boat at each plant.

(D) Plant I Plant II

One-person boat

Two-person boat

Four-person boat

MN   
$11.80

$18.50

$26.00

 $13.80

$21.60

$30.30
 

 
$3,330

$2,125

$1,270

  $77

$93

$113

    $42

$95

 $121

    $27

$50

$52
 

Model A

Model B

Model C

 $33

$57

  $26

$77 
 Materials

 Labor

[0.25 0.75]

 0.25

0.25

0.75

0.75  
 26

 4

2

 15

 18

43

 25

4

 19
 
 
 2

26

 2

25

 25

45

 15

45

 25
 

 
 31

61

 3

16

 25

77
  

 0.2

2.6

 0.2

1.2

 0.6

2.2
  

5

4

0

 11

 7

10

15

3

4
 

 
 3

 18

4

6

12

6

8

10

24
   6

4

7

18

 11

 4 

 
3

6

 9

 2

 4

6

 4

 8

12
   20 10

 12 6 

 1  5

 2  4  2 4

1  5  5

 3 
 20  10 30

0  40 50  2 3  5

5  5 7 

 
 1 6

 4 3

1  1
  0 2

2  1 
67. (A)

There is one way to travel from Baltimore to Atlanta with one

intermediate connection; there are two ways to travel from

Atlanta to Chicago with one intermediate connection. In gen-

eral, the elements in A2 indicate the number of different ways

to travel from the ith city to the jth city with one intermediate

connection.

(B)

There is one way to travel from Denver to Baltimore with two

intermediate connections; there are two ways to travel from

Atlanta to El Paso with two intermediate connections. In gen-

eral, the elements in A3 indicate the number of different ways

to travel from the ith city to the jth city with two intermediate

connections.

(C)

It is possible to travel from any origin to any destination with

at most three intermediate connections.
69. (A) $3,550 (B) $6,000

(C) NM gives the total cost per town.

(D)

(E)

(F) N  
Berkeley

Oakland

Total
contacts

6,500 10,800 
1

 11 

Telephone
call

[3,000

House
call

1,300

Letter

13,000][1 1]N  

Berkeley

Oakland

Cost/town

$3,550 $6,000 NM  

A  A2  A3  A4   
2

1

4

1

1

3

1

1

1

1

2

4

3

4

1

5

2

2

2

3

2

1

4

1

1

 

A3   
2

0

0

0

1

0

1

0

1

0

0

0

3

0

0

0

2

0

2

0

2

0

0

0

1

 

A2   
0

1

0

1

0

0

0

1

0

0

2

0

0

0

1

0

0

2

0

0

0

1

0

1

0

 



(C)

where 

(D) Frank, Bart, Aaron and Elvis (tie), Charles, Dan

C   
1

1

1

1

1

1

 BC   
9

10

6

4

9

11

 
71. (A) (B)

 
0

1

1

1
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1
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1

1
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2

2

2

0

1

2

2

3

3

2

0

2

3

1

2

1

0

0

2

2

2

1

1

2
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1

0

0
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0
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1
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0
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1

1

1
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0

0

0
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0
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Exercise 9.2

1. 3. 5.

7. 9. Yes 11. No 13. Yes 15. No

17. Yes 19. 21.

23. 25. 27.

29. Does not exist 31. 39.

41. Does not exist 43.  
 9

4

 1

 15

5

 1

10

 4

1
 
 
1
1
2

2

0
1
2

1

1

1

4
  5

 3

 3

2 

 
2

 1

 2

 1

1

1

 1

1

2
  

 3

 2

2

 4

 2

3

2

1

 1
  7

 2

 3

1 

 3

 1

 2

1  4

 1

1

0 

 
 2

2

5

1

4

1

3

 2

0
 

 
 2

2

5

1

4

1

3

 2

0
  24

 3

5  24
 3

5 

45. A 1 exists if and only if all the elements on the main diagonal are

nonzero.

47. In both parts, A 1 A and A2  I

49. In both parts, (A 1) 1 A

51. (A)

(B)

53. 14 5 195 74 97 37 181 67 49 18 121 43 103 41

55. GREEN EGGS AND HAM

57. 21 56 55 25 58 46 97 94 48 75 45 58 63 45 59 48 64 80 44 69 68

104 123 72 127

59. LYNDON BAINES JOHNSON

B 1A 1   0.7

 1.8

 0.1

0.4 

(AB) 1   0.7

 1.8

 0.1

0.4 , A 1B 1   0.1

 0.4

0

1 ,
B 1A 1   29

 12

 41

17 

(AB) 1   29

 12

 41

17 , A 1B 1   23

 16

 33

23 ,

Exercise 9.3

1. 3.

5. 7.

9. x1   8 and x2  2 11. x1  0 and x2  4

13. x1  3, x2   2 15. x1  11, x2  4

17. (A) x1   3, x2  2 (B) x1   1, x2  2

(C) x1   8, x2  3

19. (A) x1  17, x2   5 (B) x1  7, x2   2

(C) x1  24, x2   7

21. (A) x1  1, x2  0, x3  0 (B) x1   1, x2  0, x3  1

(C) x1  4, x2  1, x3   3

23. (A) x1  0, x2  2, x3  4 (B) x1   2, x2  2, x3  0

(C) x1  6, x2   2, x3   6

 
1

 1

2

 2

1

3

1

0

1
 

x1

 x2

x3

   
 1

2

 3
  41

 3

2  
x1

x2
   21 

x2  x3     2

x1  2x2  x3   4x1  3x2   2

 2x1  x3  32x1  x2  3

25. x1  2t  2.5, x2  t, t any real number 27. No solution

29. x1  13t  3, x2  8t  1, x3  t, t any real number

31. X  (A  B) 1C [X  C(A  B) 1] 33. X  (A  I ) 1C

35. X  (A  B) 1(C  D)

37. (A) x1  1, x2  0 (B) x1   2,000, x2  1,000

(C) x1  2,001, x2   1,000

39. (A) Concert 1: 6,000 $4 tickets and 4,000 $8 tickets; 

concert 2: 5,000 $4 tickets and 5,000 $8 tickets; 

concert 3: 3,000 $4 tickets and 7,000 $8 tickets

(B) No (C) Between $40,000 and $80,000

41. (A) I1  4, I2  6, I3  2 (B) I1  3, I2  7, I3  4

(C) I1  7, I2  8, I3  1

43. (A) a  1, b  0, c   3 (B) a   2, b  5, c  1

(C) a  11, b   46, c  43

45. (A) Diet 1: 60 ounces mix A and 80 ounces mix B;

diet 2: 20 ounces mix A and 60 ounces mix B;

diet 3: 0 ounces mix A and 100 ounces mix B

(B) No



Exercise 9.4

1. 7 3.  17 5. 9.79 7. 9.

11. ( 1)1 1  44 13. ( 1)2 3  10

15. 10 17.  21 19.  40 21.

23. 25. 22 27.  12 29. 0( 1)4 3

a11 a21

a31

a12

a22

a32

a14

a24

a34 
( 1)1 1

a22 a32

a42

a23

a33

a43

a24

a34

a44 
 50  1

 2  4

 2

6

8 
 50  1

 2  4

 2

6

8 

31. 6 33. 60 35. 114 37. False 39. True

41. interchanging the rows of this determinant

changes the sign.

43. multiplying a column of this determinant by a

number k multiplies the value of the determinant by k.

45. adding a multiple of one row to the

other row does not change the value of the determinant.

49. 49  ( 7)( 7) 51. f (x)  x2  4x  3; 1, 3

53. f (x)  x3  2x2  8x; 4, 0, 2

 kc  a

c

kd  b

d    ac b

d ;
 ka

kc

b

d  k ac b

d ;
 ac b

d    ca d

b ;

Answers A-129

Exercise 9.5

1. Theorem 1 3. Theorem 1 5. Theorem 2

7. Theorem 3 9. Theorem 5 11. x  0 13. x  5

15.  10 17. 10 19.  10 21. 25 23.  12

25. Theorem 1 27. Theorem 2 29. Theorem 5

31. x  5, y  0 33. x   3, y  10 35.  28

37. 106 39. 0 41. 6 43. 14

45. Expand the left side of the equation using minors.

47. Expand both sides of the equation and compare.

49. This follows from Theorem 4.

51. Expand the determinant about the first row to obtain 

( y1  y2)x   (x1  x2)y  (x1 y2  x2 y1)  0. Then show 

that the two points satisfy this linear equation.

53. If the determinant is 0, then the area of the triangle formed by the

three points is 0. The only way this can happen is if the three

points are on the same line—that is, the points are collinear.

Exercise 9.6

1. x  5, y   2 3. x  1, y   1 5. x   , y  

7. 9. x  6,400, y  6,600

11. x  760, y  760 13. x  2, y   2, z   1

15. x  y  z  17. x   9, y  , z   6

19. x  y  z  2
3 7

6,3
2,

 7
3

2
3 1

3,4
3,

x  2
17, y   20

17

3
5

6
5

21. If a and b , there are an infinite number of solutions. If a 

and b , there are no solutions. If a , there is one solution.

23. x  4 25. y  2 27. z  

29. Because D 0, the system has either no solution or infinitely many.

Because x 0, y 0, z 0 is a solution, the second case must hold.

33. (A) R  200p  300q  6p2  6pq  3q2

(B) p   0.3x  0.4y  180, q   0.2x  0.6y  220,

R  180x  220y  0.3x2  0.6xy  0.6y 2

5
2

3
2

15
4

3
2

15
4

3
2

Chapter 9 Review

1. (9.1) 2. [ 11] (9.1)

3. (9.1) 4. (9.1) 5. (9.1)

6. Not defined (9.1) 7. Not defined (9.1)

8. (9.1) 9. (9.1)[ 5 18] 13

20

 29

 24 

 3

 4

3

9  16

 6 [ 15 19]

 4

 12

8

18 

10. (9.2)

11. (A) x1   1, x2  3 (B) x1  1, x2  2

(C) x1  8, x2   10 (9.3)

12.  17 (9.4) 13. 0 (9.4, 9.5) 14. x 2, y  1 (9.6)

15. (A)  2 (B) 6 (C) 2 (9.5)

16. (9.1) 17. (9.1) 22

38

19

42  
7

28

 21

16

40

 8

 9

 30

17
 

 2

 1

7

 4 



34. Theorem 4 in Section 9.5 implies that both points satisfy the equa-

tion. All other points on the line through the given points will also

satisfy the equation. (9.5)

35. (A) 60 tons at Big Bend, 20 tons at Saw Pit

(B) 30 tons at Big Bend, 50 tons at Saw Pit

(C) 40 tons at Big Bend, 40 tons at Saw Pit (9.3)

36. (A) $27

(B) Elements in LH give the total labor cost of manufacturing

each product at each plant.

(C) North South (9.1)
Carolina Carolina

37. (A) (B)

(C)

Total production of each item in January (9.1)

38. GRAPHING UTILITY (9.2)

 3,150

1,550 
Desks

Stands

 200

80

160

40  1,600

890

1,730

720 

LH   $46.35

$30.45

  $41.00

$27.00 
  Desks

  Stands

18. (9.1) 19. [16] (9.1)

20. Not defined (9.1)

21. (9.1) 22. (9.2)

23. (A) x1  2, x2  1, x3   1 (B) x1  1, x2   2, x3  1

(C) x1   1, x2  2, x3   2 (9.3)

24. (9.4) 25. 35 (9.4, 9.5) 26. y   2 (9.6)

27. (A) A unique solution

(B) Either no solution or an infinite number (9.3)

28. No (9.3) 29. X  (A  C ) 1B (9.3)

30. or (9.2)

31. x1  1,000, x2  4,000, x3  2,000 (9.3) 32. 42 (9.5)

33.  (u  kv)x (w  kx)v

 ux  kvx wv  kvx  ux  wv  (9.5) uw v

x 
 u  kv

w  kx

v

x 
 
 11

10

1

 1

2

 1

60

 48

0 1
12 

 11
12
10
12
1

12

 1
12
2

12

 1
12

5

 4

0 

10
5 11

12

 
 1

 2
1
2

1

3

 1
4

1

2

 1
4
  63

 42

 24

16

 39

26 

 
12

0

 8

24

0

 16

 6

0

4
 

ANSWERSA-130

Cumulative Review for Chapters 8 and 9

1. x  2, y   1 (8.1, 8.2) 2. ( 1, 2) (8.1)

3. No solution (8.1, 8.2) 4. (8.4)

5. Maximum: 33; Minimum: 10 (8.5)

6. (A) (B) Not defined (C) [3]

(D) (E) [ 1, 8] (F) Not defined (9.1)

7.  10 (9.4)

8. (A) x1  3, x2   4

(B) x1  2t  3, x2  t, t any real number.

(C) No solution (8.1)

9. (A) (B)

(C) x1   1, x2  4 (8.1, 8.2)

10. (A) (B) A 1 

(C) x1  13, x2  5 (D) x1   11, x2   4 (9.3)

11. (A) 2 (B) x  , y   0 (9.6)1
2

  5

 2

3

1  12
 3

 5  
x1

x2
   k1

k2
 

 10
0

1   1

4  1

 1

1

1  3

5 

 14
7

 7 
 03

 3

 9 

x

y

5

5

12. x1 1, x2 3; each pair of lines has the same intersection 

point. (8.1)

13. (1.53, 3.35) (8.1) 14. (1, 0,  2) (8.2)

15. No solution (8.2)

16. (t  3, t  2, t) t any real number (8.2)

17. (A) [ 3] (B) (9.1)

18. (A) (B) Not defined (9.1)  1

2

2

3 

 
1

 1

2

2

 2

4

 1

1

 2
 

x2  3 x2  3

x1  1 x1  3x2  10

x

y

5

 5

 5 5

(1, 3)

x

y

5

 5

 5 5

(1, 3)

 7x2   21 2x1   x2   1

x1  3x2  10x1  3x2  10

x

y

5

 5

 5 5

(1, 3)

x

y

5

 5

 5 5

(1, 3)



19. (8.4) 20. 63 (8.5)

21. (A) (B) A 1 

(C) (7,  5, 6) (D) ( 6, 3,  2) (9.3)

22. (A) D  1 (B) z  32 (9.5, 9.6)

23. (A) Infinite number of solutions (B) No solution

(C) Unique solution (8.2)

24. A  I, the n  n identity (9.3) 25. L, M, and P (8.2)

29. True (9.1) 30. True (9.1) 31. False (9.1)

32. False (9.1) 33. True (9.2) 34. True (9.2)

35. True (9.4) 36. True (9.4)

37. $8,000 at 8% and $4,000 at 14% (8.1, 8.2)

38. 60 grams of mix A, 50 grams of mix B, 40 grams of mix C (8.2)

 
 3

2

 2

2

 2

3

0

1

 2  
1

2

2

4

6

5

2

3

2  
x1

x2

x3
   

k1

k2

k3
 

x

y

5

10

5 10

(0, 6)

(2, 3)

(8, 0)

39. 1 model A truck, 6 model B trucks, and 5 model C trucks; 

or 3 model A trucks, 3 model B trucks, and 6 model C trucks; 

or 5 model A trucks and 7 model C trucks. (8.2)

40. (A) Manufacturing 400 standard and 200 deluxe day packs pro-

duces a maximum weekly profit of $5,600.

(B) The maximum weekly profit increases to $6,000 when 0 stan-

dard and 400 deluxe day packs are manufactured.

(C) The maximum weekly profit increases to $6,000 when 600

standard and 0 deluxe day packs are manufactured. (8.5)

41. (A)

(B)

Class averages

(C) Test 1 Test 2 Test 3 Test 4

(9.1)

M  [84.4   81.8   85   87.2][0.2 0.2 0.2 0.2 0.2]

M  
0.2

0.2

0.2

0.4
   

83

84.8

91.8

85.2

80.8

  

Ann

Bob

Carol

Dan

Eric

M  
0.25

0.25

0.25

0.25
   

82.25

83

92

83.75

82

  

Ann

Bob

Carol

Dan

Eric

Answers A-131

Exercise 10.1

1.  1, 0, 1, 2 3. 0, 5. 4,  8, 16,  32 7. 6

9. 11. 1  2  3  4  5 13.

15.  1  1  1  1 17. 1,  4, 9,  16, 25

19. 0.3, 0.33, 0.333, 0.3333, 0.33333 21. 1,

23. 7, 3,  1,  5,  9 25. 4, 1, 

27. 1, 2, 5, 12, 29, 70, 169 29.  1, 2, 0, 4, 4, 12, 20

31. an  n  3 33. an  3n 35.

37. an  ( 1)n 1 39. an  ( 2)n 41.

43. an 2n 1 and bn  0.5n2  0.5n  1 are two of many correct 

answers.

45. an n3 and bn 6n2 11n 6 are two of many correct answers.

an  
xn

n

an  
n

n  1

1
4, 1

16, 1
64

 1
2, 1

4,  1
8, 1

16

1

10
 

1

100
 

1

1,000

99

101

1
3, 1

2, 3
5

47. 49.

51. 53.

55. 57. 59.

61. 63.

65. (A) 3, 1.83, 1.46, 1.415 (B) Calculator  1.4142135. . .

(C) a1  1; 1, 1.5, 1.417, 1.414

67. The values of cn are approximately 2.236 (i.e., ) for large 

values of n.

69. e0.2 1.2214000; e0.2 1.2214028 (calculator—direct evaluation)

 5

 2

 
n

k 1

 ( 1)k 1k2 
n

k 1

1

k2

 
5

k 1

1

2k 
4

k 1

k 2x  
x2

2
 

x3

3
 

x4

4
 

x5

5

x2  
x3

2
 

x4

3
4
1  

8
2  

16
3  

32
4

 1.5

0

1.5

20

 0.3

0

1

20

Exercise 10.2

1. Fails at n 2 3. Fails at n 3

5. P1: 2  2  12; P2: 2  6  2  22; P3: 2  6  10  2  32

7. P1: a5a1  a5 1; P2: a5a2  a5(a1a)  (a5a)a  a6a  a7  a5 2;

P3: a5a3  a5(a2a)  a5(a1a)a  [(a5a)a]a  a8  a5 3

9. P1: 91  1  8 is divisible by 4; P2: 92  1  80 is divisible by 4;

P3: 93  1  728 is divisible by 4



23. n  4, p(x)  x4  1 25. n  23

43. Pn: 2  4  6   . . .  2n  n(n  1)

45. 1  2  3  . . .  (n  1)  , n  2

51. 34  44  54  64  74

n(n  1)

2

11. Pk: 2  6  10   . . .  (4k  2)  2k2;

Pk 1: 2  6  10   . . .  (4k  2)  (4k  2)  2(k  1)2

13. Pk: a5ak a5 k; Pk 1: a5ak 1 a5 k 1

15. Pk: 9
k 1  4r for some integer r;

Pk 1: 9k 1 1  4s for some integer s

ANSWERSA-132

Exercise 10.3

1. (A) Arithmetic with d  5;  26,  31

(B) Geometric with r  2;  16, 32 (C) Neither

(D) Geometric with r 

3. a2   1; a3  3; a4  7

5. a15  67; S11  242 7. S21  861 9. a15   21

11. a2  3; a3  ; a4  

13. a10  15. S7  3,279 17. d  6; a101 603

19. S40  200 21. a11  2; S11  23. a1 1

25. r  0.398 27. S10   1,705 29. a2  6; a3  4

77
6

1
243

3
4 3

2

1
3; 1

54, 1
162

31. S51  4,131 33. S7  547 35.  1,071 37.

39. 4,446 43. x  45. an   3  (n  1)3 or 3n  6

47. 66 49. 133 51. S  53. no sum

55. S  57. 59. 61. or

65. an  ( 2)( 3)n 1 67. Hint: y x  d, z  x  2d

71. x   1, y  2 73. Firm A: $501,000; firm B: $504,000

75. $4,000,000 77. P(1  r)n; approximately 12 years

79. $700 per year; $115,500 81. 900 83. 1,250,000

85. (A) 336 feet (B) 1,936 feet (C) 16t2 feet

87. A  A022t 89. r  10 0.4 0.398

91. 9.22  1016 dollars; 1.845  1017 dollars

93. 0.0015 pounds per square inch 95. 2 97. 3,420 

119
373 8

37
6

11
7
9

8
5

9
2

2 3

1,023

1,024

Exercise 10.4

1. 362,880 3. 39,916,800 5. 990 7. 10 9. 35

11. 1 15. 60 17. 6,497,400 19. 10 21. 270,725

25. 5  3  4  2  120 27. P10,3  10  9  8  720

29. C7,3  35 subcommittees; P7,3  210 31. C10,2  45

33. No repeats: 6  5  4  3  360; with repeats: 6  6  6  6  1,296

35. No repeats: 10  9  8  7  6  30,240;

with repeats: 10  10  10  10  10  100,000

37. C13,5  1,287

39. 26  26  26  10  10  10  17,576,000 possible license plates;

no repeats: 26  25  24  10  9  8  11,232,000

41. C13,5  C13,2  100,386 43. C8,3  C10,4  C7,2  246,960

45. (B) r  0, 10

(C) Each is the product of r consecutive integers, the largest of

which is n for Pn,r and r for r!.

47. 12  11  132

49. (A) C8,2  28 (B) C8,3  56 (C) C8,4  70

51. Two people: 5  4  20; three people: 5  4  3  60;

four people: 5  4  3  2  120;

five people: 5  4  3  2  1  120

53. (A) P8,5  6,720 (B) C8,5  56 (C) C2,1  C6,4  30

55. There are C4,1  C48,4  778,320 hands that contain exactly one

king, and C39,5  575,757 hands containing no hearts, so the 

former is more likely.

Exercise 10.5

1. Occurrence of E is certain

3. (A) No probability can be negative

(B) P(R)  P(G)  P(Y )  P(B)  1

(C) Is an acceptable probability assignment.

5. P(R)  P(Y)  .56 7. .1 9. .45

11. P(E )   .0014 13.  .025

15.  .0017 17. Yes; no 19. P(E)   .2
n(E )

n(S )
 

50

250

C16,5

C52,5

C26,5

C52,5

n(E )

n(S )
 

1

720

21. P(E)   .008 23. 25. 27.

29. 31. 0 33. 35. 37.
39. S  {1, 2, 3, . . . , 365}; P(ei)  1 365

41. (A) P(2)  .022, P(3)  .07, P(4)  .088, P(5)  .1,

P(6)  .142, P(7)  .178, P(8)  .144, P(9)  .104,

P(10)  .072, P(11)  .052, P(12)  .028

(B) P(2) , P(3) , P(4) , P(5) , P(6) ,

P(7) , P(8) , P(9) , P(10) , P(11) ,

P(12) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

2
3

2
9

1
3

7
9

1
6

5
36

1
36

n(E )

n(S )
 

1

120



(C) Expected Expected

sum frequency sum frequency

2 13.9 8 69.4

3 27.8 9 55.6

4 41.7 10 41.7

5 55.6 11 27.8

6 69.4 12 13.9

7 83.3

45. 47. 49. 51. 53. 55. 57.

59.  .00168 61.  .000 0185

63.  .000 0015 65.  .000 009

67. (A) .015 (B) .222 (C) .169 (D) .958

C4,2  C4,3

C52,5

4

C52,5

48

C52,5

C16,5

C52,5

4
9

1
9

1
3

1
9

3
4

1
4

1
4

Answers A-133

Exercise 10.6

1. 10 3. 6 5. 20 7. 35 9. 84 11. 66

13. 2,380 15. 230,300 17. m3  3m2n  3mn2  n3

19. 8x3 36x2y 54xy2 27y3 21. x4 8x3 24x2 32x 16

23. m4  12m3n  54m2n2  108mn3  81n4

25. 32x5  80x4y  80x3y2  40x2y3  10xy4  y5

27. m6  12m5n  60m4n2  160m3n3  240m2n4  192mn5  64n6

29. 35x4 31.  29,586x6 33. 4,060,938,240x14

35. 15x8 37. Does not exist 39. 5,005u9v6 41. 264m2n10

43. 924w6 45. 48,384x3y5 47. 3x2 3xh h2; approaches 3x2

49. 5x4  10x3h  10x2h2  5xh3  h4; approaches 5x4

51. 5 53. (A) a4  0.251 (B) 1 55. 1.1046

Chapter 10 Review

1. (A) Geometric (B) Arithmetic (C) Arithmetic

(D) Neither (E) Geometric (10.1, 10.3)

2. (A) 5, 7, 9, 11 (B) a10 23 (C) S10 140 (10.1, 10.3)

3. (A) 16, 8, 4, 2 (B) a10 (C) S10 31 (10.1, 10.3)

4. (A)  8, 5, 2, 1 (B) a10 19 (C) S10 55 (10.1, 10.3)

5. (A)  1, 2,  4, 8 (B) a10 512 (C) S10 341 (10.1, 10.3)

6. S  32 (10.3) 7. 720 (10.4)

8. (10.4) 9. 21 (10.4)

10. C6,2  15; P6,2  30 (10.5)

11. (A) 12 combined outcomes: (B) 6  2  12 (10.5)

12. 6  5  4  3  2  1 720 (10.5) 13. P6,6 6! 720 (10.5)

H

T

H

T

H

T

H

T

H

T

H

T

1

2

3

4

5

6

(1, T)

(2, H)

(2, T)

(3, H)

(3, T)

(4, H)

(4, T)

(5, H)

(5, T)

(6, H)

(1, H)

(6, T)

22  21  20  19!

19!
 9,240

31
32

1
32

14.  .0005 (10.5) 15.  .0048 (10.5) 16. .05 (10.5)

17. P1: 5  12  4  1  5; P2: 5  7  22  4  2;

P3: 5  7  9  32  4  3 (10.2)

18. P1: 2  21 1 2; P2: 2  4  22 1 2;

P3: 2  4  8  23 1 2 (10.2)

19. P1: 491  1  48 is divisible by 6; P2: 492  1  2,400 is 

divisible by 6; P3: 493  1  117,648 is divisible by 6 (10.2)

20. Pk: 5  7  9       (2k 3)  k2  4k;

Pk 1: 5  7  9       (2k  3)  (2k  5)  

(k  1)2  4(k  1) (10.2)

21. Pk: 2  4  8       2k 2k 1 2;

Pk 1: 2  4  8       2k 2k 1 2k 2 2 (10.2)

22. Pk: 49k 1 6r for some integer r;

Pk 1: 49k 1 1  6s for some integer s (10.2)

23. n  31 is a counterexample (10.2)

24. S10  ( 6)  ( 4)  ( 2)  0  2  4  6  8  10  12

 30 (10.3)

25. S7  8  4  2  1  (10.3)

26. S  (10.3) 27. Sn  ; S  (10.3)

28. The probability of an event cannot be negative, but P(e2) is given

as negative. The sum of the probabilities of the simple events must

be 1, but it is given as 2.5. The probability of an event cannot be

greater than 1, but P(e4) is given as 2. (10.5)

29. C6,3  20 (10.4) 30. d  3, a5  25 (10.3)

31. 336; 512; 392 (10.4)

32. (A) P(2 heads)  .21; P(1 head)  .48; P(0 heads)  .31

(B) P(E1)  .25; P(E2)  .5; P(E3)  .25

(C) 2 heads  250; 1 head  500; 0 heads  250 (10.5)

1

4 
n

k 1

( 1)k 1

3k

81

5

1
2  

1
4  

1
8  157

8

1

P15,2

C13,5

C52,5



52. x6  6ix5  15x4  20ix3  15x2  6ix  1 (10.6)

53. (10.5)

54. (A) .350 (B)  .375 (C) 375 (10.5)

60. $900 (10.3) 61. $7,200 (10.3)

62. $895.42; $1,603.57 (10.3) 63. P5,5  120 (10.4)

64. (A) .04 (B) .16 (C) .54 (10.5)

65. 1   .576 (10.5)
C10,4

C12,4

3
8

1  
C7,3

C10,3

 
17

24

33. (A) (B) (10.5) 34. (10.5)

35. (A) (B) (10.5) 36. (10.3)

37. (A) P6,3  120 (B) C5,2  10 (10.4) 38. 190 (10.6)

39. 1,820 (10.6) 40. 1 (10.6)

41. x5  5x4y  10x3y2  10x2y3  5xy4  y5 (10.6)

42. 672x6 (10.6) 43.  1,760x3y9 (10.6) 47. 29 (10.6)

48. 26 (10.1) 49. 2  2  2  2  2  32; 6 (10.4)

50. (10.3) 51. 12 (10.4)
49g

2
 feet; 

625g

2
 feet

8
11

2
9

1
3

C8,2

C10,4

 
2

15

C13,3  C13,2

C52,5

C13,5

C52,5
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Exercise 11.1

1. 3.

5. 7.

9. 11.

13. (9.75, 0) 15. (0,  26.25) 17. ( 19.25, 0)

19. x2  12y 21. x2   28y 23. y2   24x

25. y2  8x 27. x2  8y 29. y2   12x 31. x2   4y

x

y

5

 5

 5 5

Directrix
y    2.5

2

5
F    0,  

x

y

10

 10

 10 10

Directrix
x   5

F   ( 5, 0)

y

5

 5

 5 5

Directrix
y   1F   (0,  1)

x

y

5

 5 5

Directrix
x   3

F   ( 3, 0)

x

y

5

 5

 5 5

Directrix
y    2

F   (0, 2)

x

y

5

 5 5

Directrix
x    1

F   (1, 0)

33. 35.

37. (A) 2; x 0 and y  0 (B) (0, 0), (4am, 4am2)

39. A   ( 2a, a), B   (2a, a)

41. y2  8x

43. x2   2y

45. x2  4x  12y  8  0 47. y2  8y  8x  48  0

49. x2   200y

51. (A) y  0.0025x2,  100  x  100 (B) 25 feet

x

y

10

 10

 10 10

x2    2y

x2    4y

x

y

10

 10

 10 10

y2   8x

y2   4x

x

y

10

 10

 10 10

(5.313, 5.646)

(0, 0)

x

y

5

 5

 5 5

(4, 4)

(0, 0)



Exercise 11.2

1. Foci: F  ( , 0), F ( , 0); major axis length  10;

minor axis length  4

3. Foci: F  (0, ), F  (0, ); major axis length  10;

minor axis length  4

5. Foci: F  ( , 0), F ( , 0); major axis length  6; minor

axis length  2

7. (b) 9. (a)

11. Foci: F  (0, 4), F  (0, 4); major axis length  10;

minor axis length  6

13. Foci: F  (0, ), F  (0, ); major axis length   
6.93; minor axis length   4.902 6

2 12 6  6

x

y

 5

 5

5

5

F

F 

x

y

5

 5

 5 5

FF 

 8  8

x

y

5

 5

 5 5

F 

F

 21  21

x

y

5

 5

 5 5

FF 

 21  21

15. Foci: F  ( , 0), F ( , 0); major axis length   
5.29; minor axis length  4

17. 19. 21.

23. 25. 27.

29. It does not pass the vertical line test.

31. 16x2  9y2  576

33. x2  4y2  4

35. : ellipse

37.  1; 7.94 feet approximately

39. (A)  1 (B) 5.13 feet
x2

576
 

y2

15.9

x2

400
 

y2

144

x2

16
 

y2

12
 1

x

y

5

 5

 5 5

x2   4y2   16

x2   4y2   4

x

y

10

 10

 10 10

16x2   9y2   144 

16x2   9y2   576

x2

100
 

y2

170
 1

x2

64
 

y2

28
 1

x2

64
 

y2

121
 1

x2

25
 

y2

9
 1

x2

9
 

y2

36
 1

x2

25
 

y2

16
 1

x

y

F

F 

  7  7

 5

5

 5 5

2 7 3  3

x

y

F

F 

  12

  6

 12
5

5

  6

 5

 5
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13. Foci: F    ( , 0), 15. Foci: F    (0, ), 

F   ( , 0); transverse F   (0, ); transverse 

axis length  4; conjugate axis length  4; conjugate 

axis length   4.90 axis length   5.29

17. 19. 21.

23. 25. 27.

29. (A) Infinitely many; (0  a  1)

(B) Infinitely many; (a  1)

(C) One; y2  4x

31. (A) (2 , 1 ), ( 2 ,  1 )

(B) No intersection points

The graphs intersect at x  1 ( ) and 

y =  m ( ) for  1 m  1.

33. (A) No intersection points

(B) (1 , 3 ), ( 1 ,  3 )

The graphs intersect at x =  1 ( ) and

y =  m ) for m  2 or m  2.

35. ; hyperbola

37. ; 5.38 feet above vertex 39. y  4
3  x2  302

y2

16
 

x2

8
 1

x2

4
 

y2

5
 1

( m2  4

 m2  4

 5 5 5 5

 1  m2

 1  m2

 3 3 3 3

x2

a2
 

y2

a2  1
 1

x2

a2
 

y2

1  a2
 1

y2

151
 

x2

49
 1

x2

81
 

y2

40
 1

y2

144
 

x2

81
 1

x2

49
 

y2

25
 1

y2

16
 

x2

16
 1

x2

9
 

y2

9
 1

x

y

5

 5

F

F  c

c

c
  7  7

x

y

FF 

 c c

c

 5

 5

5

5

  6

  6

2 72 6

 11 10

  11  10

x

y

10

 10

 10 10

F

F  c

c

c

Exercise 11.3

1. (d) 3. (c)

5. Foci: F    ( , 0), F   ( , 0); transverse axis length  6;

conjugate axis length  4

7. Foci: F    (0, ), F   (0, ); transverse axis length  4;

conjugate axis length  6

9. Foci: F    ( , 0), F   ( , 0); transverse axis length  4;

conjugate axis length  8

11. Foci: F    (0, 5), F   (0, 5); transverse axis length  8;

conjugate axis length  6

x

y

5

 5

FF 

 c c

c

 20  20

x

y

5

 5

 5 5

F 

F

 c

c

c

 13  13

x

y

5

 5

5

FF 

 c c

c

 13  13
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Exercise 11.4

1. (A) x  x 3; y  y 5 (B) x 2 y 2 81 (C) Circle

3. (A) x  x 7, y  y 4 (B) (C) Ellipse

5. (A) x  x 4, y  y 9 (B) y 2  16x (C) Parabola

7. (A) x  x 8, y  y 3 (B) (C) Ellipse

9. (A) (B) Hyperbola

11. (A) (B) Ellipse

13. (A) (x 6)2   24( y  4) (B) Parabola

15. ; ellipse

17. (x  4)2   8( y  2); parabola

19. (x  6)2  ( y  5)2  16; circle

x  

y  

x

y

10

 10

10

0 

x  

y  

x

y

10

 10

10

0 

x  

x

y  y

5

 5

 5 5

0 

(x  2)2

9
 

( y  2)2

4
 1

(x  5)2

5
 

( y  7)2

6
 1

(x  3)2

9
 

( y  2)2

16
 1

x 2

12
 

y 2

8
 1

x 2

9
 

y 2

16
 1

21. ; hyperbola

23. (x  1)2  ( y  2)2 = 0; 25. (x  4)2  4( y  1)2 = 0;

the point (1,  2) the lines y = 0.5x  3 and

(a degenerate circle) y   0.5x  1, intersecting at

( 4, 1) (a degenerate hyperbola)

27. 29. x2  4x  4y  16  0

31. x2  4y2  4x  24y  24  0

33. 25x2  9y2  200x  36y  211  0

35. 4x2  y2  16x  6y  11  0

37. 9x2  y2  36x  2y  28  0

39. x2  2y2  2x  8y  8  0

41. F    (  2, 2) and F  (  2, 2) 43. F   ( 4, 0)

45. F    ( 4, 2), F  ( 4, 8)

 5  5

h  
 D

2A
, k  

D2  4AF

4AE

x

5

 5

 5 5

y

x

5

 5

 5 5

y

x  

y  

x

y

10

 10

10

0 

( y  3)2

9
 

(x  4)2

16
 1
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Exercise 11.5

1. (  2,  1 2), (1 2,  2), ((  1) 2, ( 1 ) 2),

(( 3   4) 2, (3  4 ) 2) 3 3

 3 3 3 3

3. (  2,   2), (  2,  2), ( 3  2,   2),

( ,  2 )

5. y axis: y    x; x axis:

7. y axis: y    x; x axis: y   x

y  
1

 3
x 3

 2 2

 2 2 2 2 2 2



17. y 2   8x ; parabola

    30 

19. Ellipse

21. Hyperbola

23. Parabola

25.     60 ; x 2   2 x    2y   1 0;

translate 0 to ( , 2); x 2    2y ; parabola

x 

y 

x 
 

y 
 

y

x
0 and 0 

0 
 

( 3, 2)

 5

 5 5

5

 3

 3

 16

 11

1

2

 9

 6

6

9

 3

 2

2

3

x 

y 
y

x

0 and 0 
 5

 5 5

5

9. x 2   y 2   49; circle

11.

13.

15.

x 

y 

 5

 5 5

5

0 and 0 

 
3

 
2

3

y

x

2

  63.43 

x 2

9
 

y 2

4
 1; ellipse,

0 and 0 

y x 

5

5

y

x

 
2

2

 
 

12

 
12

  45 

y 2

4
 

x 2

12
 1; hyperbola

0 and 0 

 2

2

y 

x 

 5

 5 5

5

y

x

  
20

 20

x 2

4
 

y 2

20
 1; ellipse

x y 

 10

 10 10

10

0 and 0 

 
7

 
7

77

y

x
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Answers A-139

Exercise 11.6

1. ( 12, 5), ( 12, 5) 3. (2, 4), ( 2,  4)

5. (5, 5), ( 5, 5) 7. (4 2 , 1  ), (4  2 , 1  )

9. (2, 4), (2,  4), ( 2, 4), ( 2, 4)

11. (1, 3), (1,  3), ( 1, 3), ( 1, 3)

13. (1  ,  1  ), (1  ,  1  )

15. ( , ), ( ,  ), (2, 1), ( 2, 1)

17. (2, 2i), (2,  2i), ( 2, 2i), ( 2, 2i)

19. (2, ), (2,  ), ( 1, i), ( 1, i)

21. (3, 0), ( 3, 0), ( , 2), ( , 2)

23. (2, 1), ( 2, 1), (i, 2i), ( i, 2i) 25. ( 1, 4), (3,  4)

27. (0, 0), (3, 6) 29. (1, 4), (4, 1) 31. ( 1, 3), (4, 8)

33. (A) The lines are tangent to the circle.

x

y

5

 5

 5 5

 5 5

 2 2

 2 2 2 2

 5 5 5 5

 3 3 3 3

(B) b  5, intersection point is (2,  1); b  5, intersection

point is ( 2, 1)

(C) The line x 2y  0 is perpendicular to all the lines in the

family and intersects the circle at the intersection points

found in part B. Solving the system x2  y2  5, x  2y  0

would determine the intersection points.

35. (A) b   1 (B) b   1 (C) b   1

37. ( 5,  ), ( ,  2) 39. (0,  1), ( 4, 3)

41. (2, 2), ( 2, 2), ( ,  ), ( , )

43. ( 3, 1), (3,  1), ( i, i), (i, i)

45. ( 1.41,  0.82), ( 0.13, 1.15), (0.13,  1.15), (1.41, 0.82)

47. ( 1.66,  0.84), ( 0.91, 3.77), (0.91,  3.77), (1.66, 0.84)

49. ( 2.96,  3.47), ( 0.89, 3.76), (1.39, 4.05), (2.46, 4.18)

51. (3  ), (3  ) 53. 5 inches and 12 inches

55. 6 by 4.5 inches 57. 52.3 inches by 29.4 inches

59. 122 miles east and 158 miles north of station A

61. 22 by 26 feet

63. Boat A: 30 miles per hour; boat B: 25 miles per hour

 51
2 51

2

 2 2 2 2

3
2

3
5

Chapter 11 Review

1. Foci: F    ( 4, 0), F  (4, 0); major axis length  10;

minor axis length  6 (11.2)

2. (11.1)

x

y

F   (0,  3)

Directrix
y   3

5

 5

 5 5

x

y

5

 5

 5 5

FF 

3. Foci: F    (0, ), F   (0, ); transverse axis length  6;

conjugate axis length  10 (11.3)

4. (A) (B) Hyperbola (11.4)

5. (A) (x 5)2   12( y  4) (B) Parabola (11.4)

6. (A) (B) Ellipse (11.4)

7. (A) ((3   4) 2, ( 3  4 ) 2)

(B) (7  2,  2)

(C) ((3  4 ) 2, ( 3   4) 2) (11.5)

8. y  axis: y  (2   )x;

x  axis: y   (2   )x (11.5) 3

 3

 3 3

 2 2

 3 3

(x  6)2

9
 

( y 4)2

16
 1

( y 2)2

25
 

(x  4)2

4
 1

x

y

10

 10

 10 10

F

F 

 34  34



24. (11.5)

25. (11.5)

26. Ellipse (11.5)

27. m  0.2; x2  50y is a magnification by a factor 50 

of x2  y (11.1)

28. ( y  4)2   8(x  4) or y2  8y  8x  16  0 (11.1)

29. ; hyperbola (11.3)

30. ; ellipse (11.2)

31. F     ( 3, ) and F  ( 3, ) (11.4)

32. F  (2,  1) (11.4)

33. F   (  3,  2) and F (  3,  2) (11.4)

34. (2, 2), ( 2, 2), ( ,  ), ( , ) (11.6)

35. (2.09, 2.50), (3.67,  1.92) (11.4)

36. ( 2.16, 0.37), ( 1.09, 5.59), (1.09,  5.59), (2.16, 0.37) (11.6)

37. 4 feet (11.1) 38. (11.2)

39. 4.72 feet deep (11.3)

40. 110 miles east and 141 miles north of station A (11.6)

x2

52
 

y2

32
 1

 72
7

4
7 7 72

7
4
7 7

 13  13

 12  2  12  2

x2

36
 

y2

20
 1

x2

4
 

y2

12
 1

 10

 10

10

10

y x 

 
2

 
3

2

3

 5

 5

y

x

y 2

9
 

x 2

4
 1; hyperbola;   45 

0 and 0 

 2

2

y 

x 

 5

 5 5

5

y

x

  
20

 20

x 2

20
 

y 2

4
 1; ellipse

9. (5,  3), ( 1, 3) (11.5) 10. (1,  1), (1.4, 0.2) (11.6)

11. (1, 3), (1, 3), ( 1, 3), ( 1, 3) (11.6)

12. y2   x (11.1) 13. (11.2)

14. (11.3)

15. ( 4, 2), (4, 2) (11.6) 16. ( 3, 3.2), (3, 3.2) (11.6)

17. (1, 3), (1, 3), ( 1, 3), ( 1, 3) (11.6)

18. (2, ), (2, ), ( 1, i), ( 1, i) (11.6)

19. (1,  2), ( 1, 2), (2, 1), ( 2, 1) (11.6)

20. (2,  2), ( 2, 2), ( , ), ( ,  ) (11.6)

21. ; ellipse (11.4)

22. (x  2)2  4(2) ( y  3); parabola (11.4)

23. ; hyperbola (11.4)

x  

y  y

 5

 10 5
x

0 

(x  3)2

9
 

(y  2)2

4
 1

x  
0 

y  

x

y

5

 5

 5 105

x  
0 

y  

x

y

5

 5

(x  3)2

4
 

(y  2)2

16
 1

 2 2 2 2

 2 2

y2

9
 

x2

16
 1

x2

9
 

y2

25
 1
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Answers A-141

Cumulative Review for Chapters 10 and 11

1. (A) Arithmetic (B) Geometric (C) Neither

(D) Geometric (E) Arithmetic (10.3)

2. (A) 10, 50, 250, 1,250 (B) a8  781,250

(C) S8  976,560 (10.3)

3. (A) 2, 5, 8, 11 (B) a8  23 (C) S8  100 (10.3)

4. (A) 100, 94, 88, 82 (B) a8  58 (C) S8  632 (10.3)

5. (A) 40,320 (B) 992 (C) 84 (10.4)

6. (A) 21 (B) 21 (C) 42 (10.4, 10.5)

7. Foci: F    ( , 0), F   ( , 0); 

transverse axis length  12; conjugate axis length  10 (11.3)

8. Foci: F    ( , 0), F   ( , 0); major axis length  12;

minor axis length  10 (11.2)

9. (11.1)

10. Ellipse (11.5)

11. (1, 1), ( 1 5, 7 5) (11.6)

x

y

4

2

 2

9

25
y    

F    0,  9

25

Directrix

x

y

 5

 5

5

5

FF 

 11  11

x

y

10

 10

 10 10

FF 

 61  61

12. (A) 8 combined outcomes: (B) 2  2  2 8 (10.5)

13. (A) 4  3  2  1  24 (B) P4,4  4!  24 (10.5)

14.  .0129 (10.5) 15.  .0002;  .0048 (10.5)

16. .62 (10.5)

17. P1: 1  1(2  1  1); P2: 1  5  2(2  2  1);

P3: 1  5  9  3(2  3  1) (10.2)

18. P1: 12  1  2  4 is divisible by 2; P2: 22  2  2  8 is

divisible by 2; P3: 32  3  2  14 is divisible by 2 (10.2)

19. Pk : 1  5  9        (4k  3)  k (2k  1); Pk 1: 1  5  9

       (4k  3)  (4k  1)  (k  1)(2k 1) (10.2)

20. Pk : k2  k  2  2r for some integer r;

Pk 1: (k 1)2  (k  1)  2  2s for some integer s (10.2)

21. y   2x2 (11.1) 22. (11.2)

23. (11.3)

24. (1, 1), ( 1, 1), ( ,  3), ( ,   3) (11.6)

25. (0, i), (0,  i), (1, 1), ( 1, 1) (11.6)

26. (11.5)

27. (11.5)

x y 

y

x
0 and 0 

 5

 5 5

5

x 2  4y ; parabola;   45 

y 

x 

 
1

1

 5 5

 5

5

y

x

 
3

 
 

3

y 2

3
 x 2  1; hyperbola;   60 

 3 3 3 3

x2

64
 

y2

25
 1

x2

25
 

y2

16
 1

1

C10,4

1

P10,4

C13,3

C52,3

H

T

H

T

H

T

T

H

T

H

H

T

T

H

HHH

HHT

HTH

HTT

THH

THT

TTH

TTT



46. ; ellipse (11.2)

47. 109; 3,628,800 zip codes (10.1) 49. (10.5)

50. x6  12ix5  60x4  160ix3  240x2  192ix  64 (10.6)

51. x2  12x  4y  28  0 (11.1)

52. (11.2) 53. 8 (11.3) 54. C7,3  35 (10.4)

57. x2  8y2  2x  8y  17  0; hyperbola (11.3)

58. (10.5)

59. $6,000,000 (10.3) 60. 4 meters by 8 meters (11.5)

61. 4 inches (11.1) 62. 32 feet, 14.4 feet (11.2)

63. (A) .13 (B) .17 (C) .32 (10.5)

1  
C8,3

C12,3

 
41

55
 .745

 2 3

2
5; 2

5

x  

y  

x

y

 5

5

0 

(x  2)2

9
 

( y 3)2

4
 1

28. ( 1.35, 0.28), ( 0.87, 1.60), (0.87, 1.60), (1.35,  0.28) (11.6)

29. 1  4  27  256  3,125  3,413 (10.1)

30. (10.1) 31. 81 (10.3)

32. 360; 1,296; 750 (10.4) 33. (10.5)

34. (A) .365 (B) (10.5) 35. n  22 (10.3)

36. (A) 6,375,600 (B) 53,130 (C) 53,130 (10.4, 10.6)

37. a6  3a5b  a4b2  a3b3  a2b4 ab5  b6 (10.6)

38. 153,090x6y4;  3,240x3y7 (10.6) 41. 61,875 (10.3)

42. (10.3) 43. a27  0.236; 8 terms (10.6)

44. 4(x  3)  ( y  2)2; parabola (11.1)

45. ; hyperbola (11.3)

x

y

 5

 5 5

y 

x 

( y  2)2

4
 

(x  1)2

16
 1

x  0 

y  

x

y

 5

 5 5

27
11

1
64

3
16

15
16

5
2

15
4

1
3

C10,3

C12,5

 
5

33
 .15

 
6

k 1

 ( 1)k 1
2k

(k  1)!
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Exercise A.1

1. x  7 3. s  2.5 5. m  5

7.  8  x  7;

9.  6  x  6;

11. x   6;

13. ( 2, 6];

15. ( 7, 8);

17. (  ,  2];

19. [ 7, 2);  7 x  2 21. (  , 0]; x 0 23.  ,  

25.  ,  27.  ,  29.  ,  

31. x  5; (  , 5);

33. x  3; [3,  );

35. N   8; (  , 8);

37. m  3; (3,  );

3

( m

(
 8

N

3

[ x

5

( x

 10  5 1050
x[

 10  5 1050
x()

 10  5 1050
x[)

 10  5 1050
[ x

 10  5 1050
x[ (

x
 10  5 1050

[ [

39. B   4; [ 4,  ); 41. 9 43. 10

45. 8 47. ( 5, 7];  5 x  7;

49. (2, 4); 2  x  4;

51. (  ,  );   x   ;

53. (  ,  1)  [3, 7); x  1 or 3  x  7;

55. (1, 5); 1  x  5;

57. (  , 6]; x 6;

59. q   14; (  , 14);

61. x  4.5; [4.5,  );

63.  20  x  20; [ 20, 20]; 

65.  8  x   3; [ 8,  3);

67.  14  x  11; ( 14, 11];

69. (A) F (B) T (C) T

[ x
 14 11

(

( x
 8  3

[

[ x
 20 20

[

4.5

[ x

q(
 14

x[
6

( x
1 5

(

( x
 1 73

[)

x

( x
2 4

(

[ x
 5 7

(

 4

[ B

Exercise A.2

1. 3.

5. A  (2, 4), B (3,  1), C  ( 4, 0), D ( 5, 2)

7. A  ( 3,  3), B (0, 4), C  ( 3, 2), D (5,  1)

x

y

5

 5

 5 5

( 2, 1)

(4,  5)

(0,  2)
( 1,  3)

x

y

5

 5

 5 5

( 4, 2) (4, 4)

(5, 0)

(3,  2)

9.

x

y

5

 5

 5 5

x y

 3  2

 2  1

 1 0

0 1

1 2

2 3

3 4
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21. 23.

25. 27.

29. 31.

33. 35.

37. (A) 3,000 cases (B) Demand decreases by 400 cases

(C) Demand increases by 600 cases

39. (A) 53 F (B) 68 F at 3 P.M. (C) 1 A.M., 7 A.M., 11 P.M.

x

v

1

21

R

p
50

10

20

30

10

x

y

10 10

 10

10

A

C
B

C 

A B 

x

y

10 10

 10

10

A

A 

C 

B 

C

B

x

y

5

 5

 5 5
x

y

5

 5

 5 5

x

y

5

 5

 5 5
x

y

5

 5

 5 5

11.

13.

15. (A) 6 (B)  5 (C)  1 (D) 8 (E)  5 (F) 5

17. (A) 6 (B) 4 (C) 4 (D) 8 (E)  8, 0, 6

(F)  7,  2, 7

19. (A) (B)

(C)

x

y

5

 5

 5 5
x

y

5

 5

 5 5

x y

 3 4

 2  1

 1  4

0  5

1  4

2  1

3 4

x

y

5

 5 5

x y

 3  4.5

 2  1

 1 1.5

0 3

1 3.5

2 3

3 1.5

x

y

5

 5

 5 5

x  2  1 0 1 2

y  2 2 0  2 2

x

y

5

 5

 5 5
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27. (A)  5 (B) 9 (C)

29. The set of all points that are two units from the point (0, 2). 

x2  ( y  2)2  4

31. The set of all points that are four units from the point (1, 1). 

(x  1)2  ( y  1)2  16

33. (2.65, 1.75) 35. ( 35,  14) 37. ( 18,  16)

39. Center: (0, 1); radius: 1 41. Center: (1,  3); radius: 4

43. Center: ( 0.5, 1.5); radius: 

45. 47. 18.11 51. (x  4)2  ( y  2)2  34

53. (x  2)2  ( y  2)2  50

55. (A) A  (0, 0), B (0, 13.5), C  (0, 27), D (60, 27), 

E  (78, 27), F (78, 13.5), G  (78, 0) 

(B) 62 feet, 79 feet

57. 2.5 feet

59. (A) (x 12)2  ( y  5)2  262; center: ( 12, 5); radius: 26

(B) 13.5 miles

25

 25

 50  25 25

y

x

Town B
(36, 15)( 12,  5)

Town A

 32.5

 0.5

 18Exercise A.3

1. d  5, M  (2.5, 2) 3. d  13, M  (2.5, 4)

5. d  , M  ( 1.5, 0) 7. d  , M  (5, 2)

9. x2  y2  49 11. (x  2)2  ( y  3)2  36

13. (x  4)2  ( y   1)2  7 15. (x  3)2  ( y  4)2  2

17. (x  4)2  x2  8x  16 19. (x   )2  x2  3x  

21. x2  y2  4 23. (x  1)2  y2  1

25. (x 2)2 ( y 1)2 9

x

y

5

 5

 5 5

x

y

5

 5

 5 5
x

y

5

 5

 5 5

9
4

3
2

 68 145

Exercise B.1

1. 123, 005 3. 20,040 5. 6.0 7. 80.000

9. 0.012 11. 0.000 960 13. 3.08 15. 924, 000

17. 23.6 19. 2.82  103 21. 6.78  10 4 23. 30 feet

Exercise B.2

1. A  2, B  5 3. A  7, B   2

5. A  1, B  2, C  3 7. A  2, B  1, C  3

9. A  0, B  2, C  2, D   3 11.

13. 15.

17. 19.
2x

x2  2
 

3x  5

(x2  2)2

2

x
 

3x  1

x2  2x  3

2

x
 

1

x  3
 

3

(x  3)2

3

3x  4
 

1

2x  3

 4

x  2
 

3

x  4

21. 23.

25.

27.

29. x  2  
2

x  2
 

1

2x  1
 

x  1

2x2  x  1

2

x  2
 

3

(x  2)2
 

2x

x2  x  1

2

x  4
 

1

x  3
 

3

(x  3)2

2

x  3
 

2x  5

x2  3x  3
x  2  

3

x  2
 

2

x  3



Exercise B.3

1. Zero variations in P(x) and one in P( x)

3. One variation in P(x) and zero in P( x)

5. One variation in P(x) and one in P( x)

7. One real zero and two imaginary zeros

9. One real zero and two imaginary zeros

11. Two real zeros and two imaginary zeros

13.   I 15.   I 17.   I

2 1 0 2 2 0 4 1 0

0 1 2 2 0 2 2 1 2

0 2 2 0 1 4

0 0 4

19.   I 21.   I

1 1 4 0 1 6

23. There are no positive zeros. There are either two negative zeros or 

two imaginary zeros.

25. There is one negative zero and one positive zero.

27.   I 29.   I 31.   I

4 2 0 2 1 4 1 1 6

4 0 2 0 1 6

2 2 2

2 0 4

0 2 4

0 0 6

33. There is one negative zero and there are two imaginary zeros.

35. There is one negative zero. There are either two positive or two

imaginary zeros.

Exercise B.4

5. The values of x and y 7. The values of x and y

9. y   2x  2; straight line 11. y   2x  2, x  0;

a ray (part of a straight line)

13. y  ; straight line 15. y2  4x; parabola

x

y

5

 5

 5 5
x

y

5

 5

 5 5

 2
3 x

x

y

5

 5

 5 5
x

y

5

 5

 5 5

17. y2  4x, y  0; parabola (upper half ) 19. y   2x; line

21. y2  x  1, y  0, x   1; parabola (upper half )

23. 4x2  y2  64, 0  x  4, 0  y  8; ellipse (first

quadrant portion)

25. x2  y2  2, x   , y  0; hyperbola 

(third quadrant portion)

27.  1; ellipse

29. (x  2)2  ( y  3)2  4; circle

31. x  t, y  ,     t   ; parabola
At2  Dt  F

 E

x2

9
 

y2

16

 2

x

y

5

 5

 5 5
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33.  1; ellipse with center (3, 2)

35.  1; hyperbola with center ( 3, 1)

37. y2  x2  8, x  1, y  3; part of a hyperbola

39. x2  y2  4, 0  x  2,  2  y  2; semicircle (excluding the

end points)

41. x2  y2  2x, x  0 or (x 1)2  y2  1, x  0; circle (note hole

at origin)

43.  1; hyperbola with center (4,  1);

x  4  3 tan t, y   1  5 sec t, 0  t  2 ,

t  
 

2
,

3 

2

( y 1)2

25
 

(x  4)2

9

(y  1)2

25
 

(x  3)2

4

(x  3)2

36
 

(y  2)2

16
45.  1; ellipse with center (3,  4);

x  3  7 cos t, y  4  2 sin t, 0  t  2 

49. 1,786 meters

51. (A) 43.292 seconds 

(B) 9,183.620 meters, 9.184 kilometers

(C) 2,295.918 meters

(x  3)2

49
 

(y  4)2

4
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Abscissa, A-13
Absolute value

of a complex number, 583
function, 47, 57

Acceptable probability assignment, 818
Actual probability, 824
Actual velocity, 550
Acute angle, 387
Acute triangle, 530
Addition

of complex numbers, 169
of functions, 74
of matrices, 694
of vectors, 558

Additive identity, 170
Additive inverse, 171
Adiabatic process, 799
Advertising, 314, 373, 380
Aeronautical engineering, 872
Aeronautics, 149, 150
Agreement on domains and ranges, 23,

A-2
Agriculture, 370, 378, 655, 678
AIDS epidemic, 340, 344
Air

freight, 710
safety, 415
search, 193
temperature, 37, 799

Airspeed, 622, 626
Alcohol consumption, 195
Algebraic equation, A-2
Algebraic long division, 248

dividend, 249
divisor, 249
quotient, 249
remainder, 249

Algebraic vector, 557
Alternating current, 469
Alternating series, 774
Amplitude, 433
Analytic geometry, 493, 522, 548, 580
Angles

acute, 387
complementary, 387
conversion accuracy, 387
coterminal, 386
definition of, 386

initial side, 386
terminal side, 386
vertex, 386

degree measure of, 387
in minutes and seconds, 387

of inclination, 431, 432

measure conversion of, 390
negative, 386
obtuse, 387
positive, 386
quadrantal, 386
radian measure of, 388, 396
right, 387
of rotation, 903
standard position of, 386
straight, 387
supplementary, 387

Angular speed, 393, 396, 469
Animal nutrition, 656, 689
Aphelion, 580, 603
Apparent velocity, 550
Approximate empirical probability, 824
Approximation, 222
Archaeology, 373
Architecture, 194, 230, 313, 413, 887,

930, A-33
Argument of a complex number, 583
Arithmetic progression. SeeArithmetic

sequence
Arithmetic sequence

common difference of, 787
definition of, 787

nth term formula for, 789
Arithmetic series

definition of, 790

sum formulas for, 790
Astronomy, 364, 396, 415, 469, 521,

540, 580, 603, 611, 799, 858
Asymptotes

horizontal, 294
hyperbola, 875
oblique, 299
vertical, 293

Atmospheric pressure, 367, 800
Augmented matrix, 632, 633
Automobile production, 56
Automobile rental, 55
Average

cost, 308
rate of change, 126
speed, 392

Bacteria growth, 334, 343, 799
Base, 319, 346
Basic identities, 418, 474
Beacon lights, 445
Beat, 509
Beat frequency, 509, 526
Binomial coefficients, 833

Binomial formula, 833

Bisection method, 266
Boiling point of water, 37
Boundary line, 658
Bounded solution region, 665
Box office revenue, 150

Break-even
analysis, 217, 222, 229, 231, 236
point, 218

Briggsian logarithms, 351
Business, 626, 689, 798, A-20

Cable tension, 562
Calculus related activities, 30, 80, 83,

107, 132, 164, 221, 222, 227,
235, 307, 308, 330, 357, 368,
372, 416, 431, 432, 445, 460,
483, 492, 493, 503, 520, 522,
526, 548, 579, 580, 777, 838,
918

Carbon-14 dating, 336, 373, 377
Car rental, 37
Cartesian coordinate system, A-13

abscissa, A-13
coordinate axes of, A-13
coordinates, A-13
distance formula for, A-23
and fundamental theorem of 

analytic geometry, A-13
horizontal axis of, A-13
midpoint formula for, A-24
ordinate of, A-13
origin of, A-13
and polar-rectangular relationships,

568
quadrants of, A-13
vertical axis of, A-13
x axis of, A-13
x coordinate, A-13
y axis of, A-13
y coordinate, A-13

Catenary, 367
Caution, 25, 31, 79, 176, 182, 184, 185,

298, 355, 370, 405, 411, 726,
805, 853, 880, A-6

Change-of-base formula (logarithms),
355

Chemistry, 149, 364, 626, 641, 655
Cigarette production, 195, 196
Circle(s), 604, 848

center of, A-27
definition of, A-27

equation of, A-28
radius of, A-27
unit, 397
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Computer science, 54, 110, 236
Conditional equation, 136, 473, 510
Conic sections, 580, 604–605, 848

circle, 604, 848, A-27
coordinate-free definition, 849

degenerate, 849
directrix, 604
discriminant, 906
eccentricity, 580, 604, 887
ellipse, 604, 848, 859
focus, 604
hyperbola, 604, 849, 873
identification, 906

parabola, 604, 849
right circular cone, 848

axis of, 848
nappe of, 848
vertex of, 848

standard equations of translated 
conics, 891

Conjugate (complex number), 168
Connected mode, 50
Constant function, 43, 115
Constant term, 614
Construction, 165, 194, 209, 229, 236,

260, 270, 274, 287, 308, 313,
A-33

Consumer debt, 31
Continuous compound interest, 327,

372, 383
Continuous function, 49
Contraction (graphing), 60
Contradiction, 136
Conversion accuracy, 387
Coordinate, A-13

axes, A-13
Cartesian system of, A-13
polar, 566

Corner point, 663
Cosine-inverse cosine identities, 452
Cost analysis, 127, 134, 229, 416, 

709, 762
Cost function, 72
Costs

fixed, 127

variable, 127
Counterexample, 779
Counting technique, 800
Cramer’s rule, 751
Credit union debt, 33
Cryptography, 720, 724, 761
Cube function, 57
Cube root function, 57
Cubic regression, 254, 314
Cursor, 6
Curve fitting, 141

Cycloid, A-60, A-61

Circuit analysis, 733
Circular functions, 397
Circular point, 397
Coastal navigation, 602
Coast guard, 539
Cofactor (determinant), 736
Cofunction, 485

identities for, 484–487
Combinations, 808, 833
Combinatorial symbol, 808
Common logarithms, 351
Communications, 926
Complementary angles, 387
Completing the square, 153, 182–184,

A-29
Complex numbers

absolute value of, 583
addition of, 169
additive identity for, 170
additive inverse of, 171
and complex plane, 581

imaginary axis, 581
real axis, 581

conjugate of, 168
definition of, 167, 168

division of, 173
equality of, 169
equations involving, 176
history of, 167
imaginary number, 168, 169
imaginary unit, 167, 168
multiplication of, 169, 172
multiplicative identity for, 172
negative of, 171
polar (trigonometric) form of, 582

argument of, 583
De Moivre’s theorem for, 589
division of, 585
modulus (absolute value) of, 583
multiplication of, 585
and nth-root theorem, 591

properties of, 169
pure imaginary number, 168, 169
reciprocal, 172
rectangular form of, 581
standard form of, 167
zero, 168, 170
zero property of, 181

Composite functions, 77
Compound event, 815
Compound interest, 324, 325, 366, 372, 

383, 844
and amount, 325
continuous, 327, 372, 383
and principal, 325
rate of, 325

Computer-generated tests, 802

Data analysis, 38, 110, 195, 217, 223,
230–231, 237–238, 254–255,
260–261, 339–341, A-16, 
A-20

Decibel, 237, 358
level, 358

Decoding matrix, 720
Decreasing function, 43
Definition of function, 18–19

Degree measure of angles, 387
Degree of a polynomial, 241
Delivery charges, 55, 641
Demand, 623
Demographics, 134
De Moivre’s theorem, 589
Dependent variable, 21
Depreciation, 133, 229, 236, 345
Depth of a well, 203, 209
Descartes’ rule of signs, A-49
Design, 186, 205, 209, 230, 871, 

914, 919
Determinants

and characteristic polynomial, 743
coefficient, 751

and cofactor, 736
and Cramer's rule, 751, 753
and diagonal expansion, 743
and eigenvalues, 743
higher-order, 739
and minor, 736
of order n, 739
principal diagonal of, 735
properties of, 743–745
secondary diagonal of, 735
second-order, 734
third-order, 736, 737

Diagnostics, 142
Diagonal matrix, 708
Diamond prices, 141–144
Diet, 630, 684, 689, 734, 766
Difference

identities, 483–487
of functions, 74
quotient, 29

Directed line segment, 549
Direction of an inequality, 211
Directrix, 604
Discontinuous function, 49
Discriminant, 186, 906
Distance formula, A-23
Dividend, 249
Division

algebraic long, 248
algorithm, 249
of complex numbers, 173
of functions, 74
synthetic, 250
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exponential, 365
extraneous solution of, 198, 911
first-degree, A-2

graph of, A-14
identity, 136
involving radicals, 197
involving rational exponents, 201
linear, A-3
logarithmic, 365
matrix, 725
parametric, 404, A-55
power operation on, 198
quadratic, 180
of quadratic type, 202
replacement set, A-2
root of, A-2
solution of, A-2, A-14
solution set of, A-2, A-14
trigonometric, 405

Equilibrium
point, 146
price, 146
quantity, 146

Equivalent
equations, A-2
inequalities, 210
systems, 628

Euclid’s theorem, 194
Evaporation, 73, 85
Even function, 64
Event, 815
Expansion (graphing), 60
Expected frequency, 825
Experiment, 814
Explore/Discuss activities, 5, 6, 7, 19,

21, 29, 40, 42, 44, 58, 60, 62,
63, 74, 77, 78, 80, 87, 92, 94,
95, 97, 114–116, 122, 136,
138, 151, 153, 156, 167, 174,
176, 184, 186, 198, 202, 210,
215, 242, 244, 246, 251, 265,
266, 270, 278, 280, 284,
292–294, 319, 322, 323, 333,
347, 349, 351, 352, 354, 359,
368, 389, 390, 398, 400, 404,
409, 411, 419, 424, 436, 437,
449, 452, 455, 474, 475, 484,
495, 499, 507, 518, 537, 542,
544, 550, 556, 559, 568, 574,
578, 582, 585, 589, 590, 617,
620, 629, 636, 638, 642, 649,
657, 663, 675, 697, 704, 713,
714, 718, 725, 729, 736, 740,
744, 745, 752, 769, 772, 773,
775, 784, 788, 796, 804, 805,
810, 822, 824, 827, 832, 834,
850, 854, 864, 867, 876, 882,

Divisor, 249
Divorce, 261
Domain, 19, A-2
Dominance relation, 711
Dot mode, 50
Double-angle identities, 495
Double root, 181
Doubling time, 332

growth model, 332
Drug use, 230

e, 322
Earthquakes, 149, 360, 364, 370, 383

magnitude of, 359
Earth science, 150, 223, 343, 395, 627
Eccentricity, 580, 604, 887
Ecology, 364
Economics, 798, 930
Economy stimulation, 795
Eigenvalue, 743
Electrical circuits, 444, 445, 521, 

526, 611
Ellipse, 604, 848, 859

applications of, 868
center of, 859
definition of, 859

drawing of, 860
eccentricity of, 580, 604, 887
foci of, 859
graphing of, 864
major axis of, 859
minor axis of, 859
standard equations of, 863, 891
vertex of, 859

Empirical probability, 824, 825
Employee training, 307, 344
Encoding matrix, 720
Endpoint, A-5
Engineering, 165, 391, 396, 415, 431,

445, 459, 460, 526, 540, 548,
603, 611, 799, 858, 871, 926,
930, A-33

Envelope of a projectile, A-60
Epidemics, 338
Equality

of complex numbers, 169
of matrices, 694
of polynomials, A-40
properties of, A-3
of vectors, 550, 557

Equally likely assumption, 821
Equation editor, 4
Equations

algebraic, A-2
conditional, 136, 473, 510
contradiction, 136
equivalent, A-2

895, 896, 901, 904, 911, A-7,
A-8, A-9, A-15, A-24, A-29,
A-41, A-43, A-50, A-54, 
A-57, A-61

Explore/Discuss exercises, 15, 35–37,
52, 53, 82–84, 99–101,
132–133, 147–148, 162, 178,
192–193, 208, 220–221, 259,
273, 287, 306, 329, 358, 371,
394, 406, 414, 442–443,
458–459, 481–482, 491, 502,
538, 546–547, 564, 588, 625,
640, 653, 669, 680, 681, 708,
722, 723, 732, 741–742, 748,
749, 755, 776, 777, 785, 797,
812, 830, 838, 857, 871, 886,
898, 909, 918, A-11, A-19, 
A-31, A-47, A-52

Exponential equation, 365
Exponential function

base of, 319
continuous compound interest, 327
definition of, 319, 323

domain, 319
and doubling time growth model, 332
and e, 322
graphs of, 320
and half-life decay model, 334
properties of, 320, 321
range, 319

Exponential regression, 339
Extraneous solutions, 198, 911
Eye surgery, 521, 522

Fabrication, 288
Face card, 810
Factorial, 804
Factor theorem, 253
Falling, 43
Falling object, 165, 229
Family of curves, 72
Feasible region, 667
Feasible solutions, 667
Fermat’s last theorem, 784
Fibonacci sequence, 770
Finance, 236, 331, 626, 766, 798
Finite series, 773
Fire lookout, 539
First-degree equation. See

Linear equations
Fish weight, 254
Fixed costs, 127
Flight conditions, 134
Flight  navigation, 134
Fluid flow, 72, 85

Focal chord, 857, 927
Focus, 604
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root of, 40, 180, 241
rule definition, 18–19

sequence, 768
set definition, 18–19

sharp corner, 47
square, 57
square root, 57
step, 49
sum of, 74
symbol, 24
transformation, 58
trigonometric. See Trigonometric

functions
and vertical line test, 22
wrapping, 397
x intercept of, 39
y intercept of, 39
zero of, 180

Fundamental counting principle, 801
Fundamental period, 420
Fundamental sample space, 816
Fundamental theorem of algebra, 275
Fundamental theorem of analytic

geometry, A-13
Fundamental theorem of linear 

programming, 676

Gaming, 343
Gauss-Jordan elimination, 645
Genealogy, 799
Geometric progression. See Geometric

sequence
Geometric sequence

common ratio of, 787
definition of, 787

nth term formula for, 789
Geometric series

definition of, 792

finite sum formulas for, 793

infinite sum formula for, 795

Geometric vector, 549
Geometry, 209, 229, 273, 313, 383,

412, 415, 416, 431, 469, 503,
516, 521, 548, 611, 655, 689,
733, 734, 800, 919, 930

Geostationary, 549
Goldbach’s conjecture, 784
Graph, 39, A-13
Graphical interpretation activities, 35,

41, 43, 51, 59–60, 64, 68–71,
82–83, 99–101, 105–108,
120, 130–131, 147, 162–163,
220, 226–227, 233–235, 242,
244, 256–257, 272, 278–279,
285–286, 291–292, 310–312,
329–330, 375, 380–381,

Food chain, 799
Food processing, 621
Force vectors, 552, 588, 602
Frequency, 825

expected, 825
relative, 825

Function(s)
absolute value, 47, 57
agreement on domains and ranges,

23, A-2
circular, 397
composite, 77
constant, 43, 115
continuous, 49
cube, 57
cube root, 57
decreasing, 43
defined by equations, 21

definition, 18–19

dependent variable, 21
difference of, 74
difference quotient, 29
discontinuous, 49
does not exist, 24
domain, 19, 74
even, 64
exponential, 319
falling, 43
graph, 39
greatest integer, 49
history, 34
horizontal graph, 43
and horizontal line test, 88
hyperbolic, 372
identity, 57
increasing, 43
independent variable, 21
inverse, 90
inverse trigonometric, 410–411,

448–455
linear. See Linear functions
local maxima and minima, 44
logarithmic, 346
not defined, 24, 28

odd, 64
one-to-one, 86
periodic, 420
piecewise-defined, 47

polynomial, 241
probability, 820
product of, 74
quadratic. See Quadratic functions
quotient of, 74
range, 19
rational. See Rational function(s)
rising, 43

414–415, 436, 437, 438,
442–444, 452, 467–468, 482,
492, 502, 503, 509, 524, 525,
580, 608, 610, 616, 624, 669,
670, 680, 681, 687, 870, 885,
899, A-18, A-20, A-21, A-31

Graphing
and asymptotes

horizontal, 294
oblique, 299
vertical, 293

of basic functions, 57
and Cartesian coordinate system, 

A-13
of circles, A-27
and continuity, 49
contraction, 60
of ellipses, 864
of equations, A-14
expansion, 60
of exponential functions, 320
of first-degree equations, 115

of functions, 39
with a graphing utility, 3, 8–11, 27, 28
horizontal contraction, 60
horizontal expansion, 60
horizontal shift, 59
of hyperbolas, 877
of inequalities, A-6
of intervals, A-6
of inverse functions, 96
of linear functions, 115
of linear inequalities, 674
of linear systems, 615
of logarithmic functions, 347
of parabolas, 152
point-by-point, A-14
polar, 570
of polynomial functions, 243
of rational functions, 295
and rectangular coordinate 

systems, A-13
reflection, 62

sharp corner, 47
sketch, A-14
symmetry

with respect to origin, 65
with respect to the line y x, 96
with respect to y axis, 65

transformation, 58, 63
translation, 59
of trigonometric functions, 403,

421–425
vertical shift, 59
and x intercept, 39
and y intercept, 39
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steps in verifying, 476
sum, 484–487
sum-product, 506
tangent-inverse tangent, 455

Identity, 136 
function, 57
matrix, 712

Imaginary axis, 581
Imaginary numbers. See Complex 

numbers
Imaginary unit, 167, 168
Imaginary zeros theorem, 276
Incidence matrix, 710
Income analysis, 38, 229
Income tax, 56, 110
Increasing function, 43
Independent variable, 21
Indirect measurement, 503, 526
Inequalities. See also Inequality relation

equivalent, 210, A-8
and interval notation, 214
linear, one variable, 210
linear, two variables

graphing of, 656
half-planes, 656

quadratic, 215
solution of, 210, A-8
solution set of, 210, A-8

Inequality relation
definition, A-4

double, A-5
graph of, A-6
greater than, A-4
less than, A-4
properties of, 211, A-9
symbols, A-4
trichotomy property of, A-5

Infectious diseases, 339
Infinite series, 773

Insecticides, 343
Installation charges, 38
Intercept, 39

form for the equation of a line, 133
Interest, 324

rate, 324
per period, 324

Interpolating polynomial, 316
and graphing utility, 316

Intersect command, 8–13, 40, 136, 146,
197, 200, 203, 206

Intersection of sets, A-7
Interval, A-5

graph, A-6
left endpoint, A-5
notation, 214, A-6
right endpoint, A-5

Greater than, A-4
Greatest integer function, 49
Guess, 40

Half-angle identities, 498
Half-life, 334

decay model, 324
Half-planes, 656
Harmonic analysis, 432, 527
Health care, 260
Heat conduction, 690
History, 34, 167, 586
Home ownership, 362
Hooke’s law, 133
Horizontal asymptote, 294
Horizontal axis, A-13
Horizontal contraction, 60
Horizontal expansion, 60
Horizontal graph, 43
Horizontal line, 125
Horizontal line test, 88
Horizontal translation (shift), 59
Hydroelectric power consumption, 255
Hyperbola, 604, 849, 873

applications of, 882
asymptotes of, 875

rectangle of, 875
center of, 873
conjugate, 880

axis of, 875
definition of, 873

drawing of, 873
eccentricity of, 580, 604, 887
foci of, 873
graphing of, 877
standard equations of, 876, 891
transverse axis of, 873
vertices of, 873

Hyperbolic functions, 372
Hyperbolic paraboloid, 887
Hyperboloid, 887

Identities
basic, 418
cofunction, 484–487
cosine-inverse cosine, 452
definition of, 136

difference, 483–487
double-angle, 495
half-angle, 498
for negatives, 418
product-sum, 504
Pythagorean, 418, 474
quotient, 418, 474
reciprocal, 401, 418, 474
sine-inverse sine, 449

Inventory value, 709
Inverse functions, 90

domain of, 91
graph of, 96
hyperbolic, 372
range of, 91
trigonometric functions, 410–411,

448–455
Inverse of a matrix, 714
Investment analysis, 641, 729

Kirchhoff’s laws, 733

Labor costs, 704, 709, 761
Lagrange’s four square theorem, 784
Law of cosines, 541
Law of sines, 532
Learning curve, 337
Learning theory, 307
Least-squares line, 380
Left bound, 40, 45–46
Left endpoint, A-5
Left half-plane, 656
Leukemic cells, 799
Life expectancy, 383
Life science, 540
Light refraction, 493
Line(s)

equation(s) of
intercept form of, 133
point-slope form of, 123
slope-intercept form of, 122
standard form of, 117
two-point form of, 133

graph of, 117
horizontal, 125
parallel, 125
perpendicular, 125
rise, 119
run, 119
slope of, 119
vertical, 125
x intercept of, 116
y intercept of, 116

Linear and quadratic factor theorem,
277, A-41

Linear equations, A-3
graphing of, 117
in one variable, A-3
standard form of, 117
in two variables, 117

Linear function, 115
Linear programming

constant-profit line, 675

decision variables for, 673
feasible region of, 674
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Matrix
addition of, 694
augmented, 632, 633

row-equivalent, 633
coefficient, 632

column, 632
constant, 632
decoding, 720
definition of, 631

diagonal, 632, 708
dimensions of, 632
element of, 632
encoding, 720
equal, 694
equations, 725
and Gauss-Jordan elimination, 645
identity, 712
inverse of, 714
lower triangular, 765
multiplication of, 701

by a number, 699
negative of, 696
position, 632
principal diagonal of, 632, 735
product of, 701
properties of, 725
reduced form of, 643
reduced row-echelon form, 643
row, 632
row operations, 633, 638
secondary diagonal of, 735
singular, 714
size of, 632
square, 632
submatrix, 645
subscript notation for, 632
subtraction of, 696
sum of, 694
upper triangular, 708, 742
zero, 696

Maximizing profit, 47, 54, 80, 260

Maximizing revenue, 46, 54, 166, 260
Maximum command, 46, 160
Medicare, 377
Medicine, 110, 134, 334, 344, 377, 444
Meteorology, 611
Midpoint formula, A-24
Minimum command, 45
Minor (determinant), 736
Minute (angle measure), 387
Mixture problem, 140, 149
Modeling, 46, 80, 94, 126, 138, 140,

159, 186, 203, 216, 232, 332,
620, 650, 665, 674, 678, 914

Modeling, data analysis, 12, 31, 38–39,
55, 110, 141–147, 150–151,

Linear programming—Cont.
fundamental theorem of, 676
general description of, 676
graphical solution of, 674
isoprofit line, 675

mathematical model for, 674
multiple optimal solutions of, 678
nonnegative constraints for, 673
objective function for, 673
optimal solution of, 674
optimal value of, 678
problem constraints for, 673

Linear regression, 141–147, 150–151,
223–224, 230–231, 383

Linear speed, 393
Lithotripsy, 868
Loan repayment, 843
Local extremum, 44
Local maxima and minima, 44
Location theorem, 265
Logarithmic equation, 365
Logarithmic functions

base, 346
change-of-base formula, 355
common, calculator evaluation 

of, 351
definition of, 346

domain, 347
graph, 347
logarithmic-exponential relationships,

346, 353
natural, calculator evaluation of, 

351
properties of, 349
range, 347

Logarithmic regression, 362, 365, 377
Logistic growth, 338
Logistic regression, 341
Long distance calling plan, 111
Lower bound (of the zeros of a 

polynomial), 262
Lower half-plane, 656
Lower triangular, 765

Magnitude, 359, 550, 558
Manufacturing, 12, 16, 109, 209, 260,

273, 274, 313, 671, 766
Marine biology, 343, 373, 377
Market research, 84, 109, 831, 844
Markup policy, 133, 709
Marriage, 261
Martingale strategy, 343
Mathematical induction, 778

and counterexample, 779
extended principle of, 784
principle of, 779

166, 188, 195, 217, 223–224,
230-231, 237–238, 254–255,
260–261, 314, 339–341, 345,
362–363, 365, 377, 383, 440,
445–446, 469–470, 612. 
See also Regression analysis

Modulus, 583
Mollweide’s equation, 539
Money growth, 331, 377
Motion, 460
Motion picture industry, 38
Multiplication

of complex numbers, 169, 172
of matrices, 699, 700

Multiplication principle, 802
Multiplicative identity, 172, 712
Multiplicative inverse, 714
Multiplicity (of zeros and roots), 181,

275
Multiplier doctrine, 795
Music, 509, 526, 799

Napierian logarithms, 351
Natural logarithms, 351
Natural science, 539
Naval architecture, 872
Navigation, 134, 149, 193, 548, 555,

602, 611, 882
Navigational compass, 550
Net cash flow, 4

Newton’s law of cooling, 344, 373
n factorial, 804
n linear factors theorem, 275
Nonlinear systems, 909
Norm, 557
nth root, 590

theorem, 591
Nuclear power, 345, 887
Nutrition, 626, 641, 655, 671, 710

Oblique asymptote, 299
Oblique triangle, 530
Obtuse angle, 387
Obtuse triangle, 530
Oceanography, 134
Odd function, 64
Olympic games, 150
One-to-one function, 86
Optics, 521
Optimal speed, 190, 196, 231, 238
Ordered pair, A-13
Ordering. See Permutation
Ordinate, A-13
Origin, 566
Ozone level, A-16
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coefficient of, 241

definition of, 241

leading term, 245
Polynomial function

bounding real zeros, 262
coefficients of, 241

definition of, 241

and Descartes’ rule of signs, A-49
equality of, A-40
and factor theorem, 253
and fundamental theorem of 

algebra, 275
graphing of, 243
graph properties of, 243
and imaginary zeros theorem, 276
interpolating, 316
leading term, 245
left and right behavior, 245
and linear and quadratic factor 

theorem, 277, A-41
and location theorem, 265
lower bound of the zeros of, 262
multiplicity (of zeros and roots),

181, 275
and rational zero theorem, 280
reduced, 282
and remainder theorem, 252
root of, 241
turning points, 242
upper bound of the zeros of, 262
and variation in sign, A-49
zero of, 241, 254, 278

Population growth, 332, 343, 376, 
383, 798

Position of a moving object, 109
Predator-prey analysis, 471–472
Present value, 331, 377
Price and demand, 17, 102, 109, 236,

237, 623, A-20, A-21
Price and revenue, 17
Price and supply, 102, 623
Pricing, 229, 236
Principal, 325
Principal square root of a negative real

number, 175
Prize money, 792
Probability

actual, 824
approximate empirical, 824
of an arbitrary event, 819, 822
empirical, 824, 825
function, 820
of a simple event, 818
theoretical, 824

Production, 626
Production costs, 72

Packaging, 287
Parabola, 604, 849

applications of, 855
axis of, 156, 849
definition of, 849

directrix of, 849
drawing of, 850
eccentricity of, 580, 604, 887
focus of, 849
graphing of, 152
standard equations of, 852, 891
vertex of, 156, 849

Parabolic reflector, 855

Paraboloid, 855
Parallel lines, 125
Parallelogram rule, 550
Parameter, 630, A-55
Parametric equations, 404, A-55
Partial fraction, A-39

decomposition, A-42
Particular solution, 630
Pascal’s triangle, 832

on a graphing utility, 833
Path of a projectile, A-58
Perihelion, 580, 603
Period, 420
Periodic functions, 420
Permutation, 806
Perpendicular lines, 125
Phase shift, 436
Photography, 344, 373, 396, 459, 800
pH scale, 364
Physics, 37, 109, 133, 209, 415, 416, 431,

445, 503, 627, 799, A-20
Physiology, 307
Piecewise-defined function, 47

Pixels, 2, 5
Plane curve, 141, A-55
Planetary orbits, 605
Plant nutrition, 641, 671, 684
Point-by-point plotting, A-14
Point-slope form, 123
Polar coordinate system, 566

graphing of, 570
origin of, 566
and point-by-point plotting, 570
polar axis of, 566
polar-rectangular relationships of, 568
pole of, 566
rapid sketching in, 571
standard graphs in, 575

Political science, 230, 930
Politics, 710
Pollution, 85, 444, 683
Polynomial

binomial, 833
characteristic, 743

Production scheduling, 655, 665, 672,
701, 733

Product of functions, 74
Product-sum identities, 504
Profit and loss analysis, 80, 222, 229,

236, 762
Projectile motion, 161, 165, 216, 222,

A-58, A-59, A-63
envelope, A-60
height, 161
path, A-58
range, A-59

Psychology, 671, 682
Purchasing, 651, 683, 766
Puzzle, 641, 655, 689, 800
Pythagorean identities, 418, 474

Quadrant, A-13
Quadrantal angle, 386
Quadratic equations, 180

solution of
by completing the square,

182–184, A-29
by quadratic formula, 184–186

Quadratic formula, 185
discriminant, 186

Quadratic functions
definition of, 152

graph of, 157
axis of, 156
vertex of, 156

maximum or minimum value of, 157
properties of, 157
vertex form of, 154

Quadratic inequality, 214
Quadratic regression, 188–191,

230–231, 383
Quadratic type equations, 202
Quality control, 844
Quartic regression, 255
Quotient, 249

of functions, 74
identities, 418, 474

Radian measure of angles, 388
Radioactive decay, 335
Radioactive tracers, 343
Radius, A-27
Random experiment, 814
Random number generator (randInt),

826–827
Range, 19
Rate of change, 126
Rate-time problems, 139, 626
Rational function(s), 288

asymptotes of, 293, 294
definition of, 288
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Right triangle
adjacent side, 409
hypotenuse, 409
opposite side, 409
ratios, 409
solution of, 408

Rise, 119
Rising, 43
Rocket flight, 361, 364

Root
command, 39
double root, 181
of an equation, 39, A-2
of a function, 180, 241
and multiplicity, 181, 275
nth, 590

Rotation of axes
and angle of rotation, 903
formulas, 901

Rounding calculated values, A-37
Run, 119

Safety research, 72
Sailboat racing, 576, 580
Sales analysis, 38
Sales commissions, 55, 149
Sample space, 815
Scalar, 559
Scalar multiplication, 559
Scatter plot, 32, 142
Scientific notation, A-36

Screen coordinates, 5
Search and rescue, 548
Seasonal business cycles, 469
Secant line, 164
Second (angle measure), 387
Second-degree equations. See

Quadratic equations
Sense of an inequality, 211
Sequence

arithmetic, 787
definition of, 768

Fibonacci, 770
finite, 768

general term of, 768, 772
geometric, 787
infinite, 768

recursion formula for, 770, 845
terms of, 768

Serial numbers, 811
Series

alternating, 774
arithmetic, 790
definition of, 773

finite, 773

geometric, 792

Rational function(s)—Cont.
domain of, 288
graphing of, 295
inequalities, 302
partial fraction, A-39

decomposition, A-42
proper fraction, A-40
properties, 290

Rational zero theorem, 280
Real axis, 581
Real plane, A-13
Real root, 39
Real zero, 39
Reciprocal, 172
Reciprocal identities, 401, 418, 474
Rectangular coordinate system. See

Cartesian coordinate system
Recursion formula, 770, 804, 845
Reduced form, 643
Reduced polynomial, 282
Reduced row-echelon form, 643
Reduced system, 644
Reference angle, 426
Reference triangle, 426
Reflection, 62

Regression analysis, 141–147, 150–151,
166, 188–191, 195, 217,
223–224, 230–231, 237–238,
254–255, 260–261, 314,
339–341, 345, 362–363, 365,
377, 379, 383, 440

Relative frequency, 825
Relatively prime, 280
Remainder, 249

theorem, 252
Rental charges, 47
Replacement set, A-2
Replacement time, 308
Research and development analysis,

38–39
Residual, 379
Resolution of forces, 555
Resource allocation, 641, 671, 682,

683, 689, 733, 761
Restricted access, 469 
Resultant, 550
Resultant force, 552, 555
Retention, 307
Revenue, 101, 260
Revenue analysis, 38, 756, 762
Revenue modeling, 94 
Richter scale, 359
Right angle, 387
Right bound, 40, 45–46
Right endpoint, A-5
Right half-plane, 656

infinite, 795

summation notation for, 773
summing index for, 773

Service charges, 55
Sets

intersection of, A-7
union of, 214, A-7

Shipping, 236, 274, 383
Side-by-side solutions, 27, 28, 65, 116,

118, 123, 127, 128, 135, 136,
139, 160, 161, 170, 171, 172,
173, 174, 175, 187, 200, 202,
203, 204, 206, 211, 212, 214,
215, 217, 269, 302, 321, 325,
328, 332, 334, 336, 366–370,
489, 615, 647, 648, 660, 662,
664, 695, 696, 697, 698, 700,
702, 703, 719, 727, 728, 735,
738, 740, 746, 752, 754, 791,
793, 852, 864, 866, 877, 878,
880, 893, 894, 902, 904, 910,
912, 913, 914, 915, A-25, A-
26, A-27, A-28

Signal light, 859
Significant digits, 222, A-36

Simple event, 815
Simple harmonic motion, 432
Simple harmonics, 432, 438
Sine-inverse sine identities, 449
Sinusoidal regression, 439, 446, 470
Slope, 119
Slope as a rate of change, 126
Slope-intercept form, 122
Sociology, 656, 671, 683
Solar energy, 431
Solid waste disposal, 188
Solution, 210, 614, A-2, A-8, A-14
Solution set, 210, 614, A-2, A-8, A-14
Sound

detection, 149
intensity, 358, 359, 363, 364, 377, 383

Space science, 343, 364, 549, 858, 
888, 926

Speed
angular, 393, 396
average, 392
linear, 393

Sports, 503, A-33
medicine, 229

Spring-mass system, 444, 528
Squared viewing window, 22
Square function, 57
Square matrix of order n, 632
Square root

function, 47
property, 182
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solution region of, 661
bounded, 665
unbounded, 665

Table command, 5, 10
Tail-to-tip rule, 550
Tangent-inverse tangent identities, 455
Taylor polynomials, 330, 357
Technology

boolean expression, 98
combinations, 810
complex numbers, 170

division, 173
multiplication, 172
subtraction, 171
zero, 170

connected mode, 50
cursor, 6
determinant, 738
diagnostics, 142
dot mode, 50
entering matrices, 632
equation editor, 4
factorial, 805
function not defined, 28

graphing equations, 3, 8–11, 27, 28
graphing utility, 2
guess, 40
identity matrix, 712
intersect command, 8–13, 40, 136,

146, 197, 200, 203, 206, 405,
516, 615, 618

inverse matrix, 715, 719
inverse trig functions, 410–411
left bound, 40, 45–46
matrix addition, 695
matrix multiplication, 697, 700,

702, 703 
matrix subtraction, 696
maximum command, 46, 160
minimum command, 45
parametric equations, 404, A-53
Pascal’s triangle on a graphing 

utility, 833
permutations, 808
pixels, 2, 5
polar form, 582, 584
polar graphs, 574
programs for graphing calculators,

263, 316, 771, 833, 845
random number generator (randInt),

826–827
reduced row-echelon form (rref),

643, 646–648
regression

comparison, 379
cubic, 254, 260–261, 314, 383

Standard deck of cards, 810
Standard equations of translated conics,

891
Standard viewing window, 3
Standard window variables, 3
Static equilibrium, 562, 565, 602
Stat plot command, 32
Step function, 49
Stopping distance, 196, 237
Storage, 287
Straight angle, 387
Subcommittees, 809, 823
Submatrix, 645
Summation notation, 773
Sum-product identities, 506
Sunset times, 445
Supplementary angles, 387
Supply and demand, 144, 151, 231,

623, 626, 627
Surveying, 415, 493, 537, 540, 

541, 548
Symmetry, 65, 96
Synthetic division, 250

and a graphing utility, 251, 263
table, 263

Systems involving nonlinear equations,
909

Systems of linear equations, 614
coefficients, 614

consistent, 616
dependent, 616
equivalent, 628
and Gauss-Jordan elimination, 

645
inconsistent, 616
independent, 616
parameter, 630, A-55
particular solution, 630
reduced, 644
solution of, 614

set of, 614
solution using inverses, 729
submatrix, 645
two variables

solution by graphing, 615
solution by substitution, 618
solution using elimination by 

addition, 628
unique solution of, 616

Systems of linear inequalities
boundary line of, 658
corner point of, 663
feasible region of, 667
feasible solution of, 667
graph of, 659
nonnegative restrictions for, 664

exponential, 339, 345, 383
linear, 141–147, 150–151, 217,

223–224, 230–231, 237–238,
383

logarithmic, 362, 365, 377
logistic, 341, 345
quadratic, 188–191, 230–231,

237–238, 383
quartic, 255
sinusoidal, 439, 470, 612

restricting a domain, 98
right bound, 40, 45–46
root command, 39
row operations, 638
scatter plot, 32, 142
screen coordinates, 5
sequence commands, 770, 775, 791,

793, 827
solving equations, 12
standard viewing window, 3
standard window variables, 3
stat plot command, 32
synthetic division, 251, 263
systems of inequalities, 658, 660,

662, 664
table command, 5, 10
testing identities, 479
trace, 6, 8, 65–66
trigonometric functions, 401
viewing window, 3, 5

squared, 22, 118
window variables, 3, 4
Xmax, 3
Xmin, 3
Xres, 3
Xscl, 3
Ymax, 3
Ymin, 3
Yscl, 3
zero command, 39
zoom menu, 7, 8

Telephone charges, 55
Television, 919
Temperature, 133, 222, A-21
Temperature variation, 440, 446, 612
Theoretical probability, 824
Ticket prices, 150
Timber harvesting, 72
Tire mileage, 56
Trace, 6, 8
Traffic flow, 690

Transformation, 58
Translation, 59

formulas, 889
standard equations of conics, 891

Transportation, 55, 194, 683, 844, 920
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Upper bound (of the zeros of a 
polynomial), 262

Upper half-plane, 656
Upper triangular matrix, 708, 742, 765

Variable costs, 127
Variation in sign, A-48
Vectors

addition of, 558
algebraic, 557
components of, 550, 553
direction of, 550
equal, 550, 557
force, 552
geometric, 549
initial point of, 549
magnitude of, 550, 557
norm of, 557
and parallelogram rule, 550
properties of, 561
quantities, 549
resultant, 550
scalar components of, 557
scalar multiplication of, 559
scalar quantities, 549
standard, 556
standard position, 556
static equilibrium, 562
sum of, 550
tail-to-tip rule, 550
tension, 562
terminal point of, 549
translated, 550
unit, 560
velocity, 550
zero, 550, 557

Vertex form of a quadratic 
function, 154

Vertex of a parabola, 156
Vertical asymptote, 293
Vertical axis, A-13
Vertical contraction, 60

Tree diagram, 801
Triangles

acute, 530
ambiguous case, 533
and law of cosines, 541
and law of sines, 532
oblique, 530
obtuse, 530
possible cases, 534
right triangles, 408
solving, 409

Triangulation, 916, 919, 926
Trichotomy property, A-5
Trigonometric equations, 405
Trigonometric functions

amplitude of, 433
calculator evaluation of, 401
cofunctions, 484–487
fundamental period of, 420
graphs of, 403, 421–425
identities. See Identities
inverse, 410–411
law of cosines, 541
law of sines, 532
period, 420
phase shift, 436
ratios, 409
real number domain, 400, 417
reference angle, 426
reference triangle, 426
right triangle solutions, 408
turning points, 404
wrapping, 397

Turning points, 242, 404
Two-point form of the equation of a

line, 133 

Unbounded solution region, 665
Underwater pressure, 128
Union of sets, 214, A-7
Unit circle, 397
Unit vector, 560

Vertical expansion, 60
Vertical line, 125

test, 22
Vertical translation (shift), 59
Viewing window, 3, 4, 5, 10

squared, 22

Weather, 223 
balloon, 85

Wildlife management, 149, 344, 377
Window variables, 3, 4
Women in the workforce, 314
World population, 372
Wrapping function, 397

x axis, A-13
x coordinate, A-13
x intercept, 39
Xmax, 3
Xmin, 3
Xres, 3
Xscl, 3

y axis, A-13
y coordinate, A-13
y intercept, 39
Ymax, 3
Ymin, 3
Yscl, 3

Zeno’s paradox, 800
Zero

command, 39
as complex number, 168, 170
factorial, 804
of a function, 39, 180, 241
matrix, 696
of multiplicity m, 275
of a polynomial, 254
property, 181
vector, 550, 557

Zoom menu, 7, 8


