

Principles of Compiler Design

ABOUT THE AUTHOR

V Raghavan is a software developer by profession. Currently, he is working as a Technical Manager in

Wipro Technologies, developing software in the technology domain. In the past, he has worked with Tata

Consultancy Services and NCORE Technologies as a member of software development teams.

Raghavan has developed software for several leading international companies like AT&T, Analog

Devices, Lucent Technologies, Hewlett-Packard, and Telstra Multimedia. He has designed and developed

software in different domains—Embedded Systems, Wireless, Web based Solutions, Static Code Analysis,

Networking and Test Automation, to name a few.

He is passionate about Compilers, Operating Systems and Artifi cial Intelligence. This book was written

as a part of experiential learning while developing a Toy C Compiler in his spare time. He loves working on

smart algorithms for solving tricky problems. He was one of the regular participants in Programmer of the

Month (POTM) contest—an international programming contest at AT&T.

Raghavan holds an M.Tech in Computer Science and Engineering from Osmania University, Hyderabad,

and a B.Tech in Mechanical Engineering from Jawaharlal Nehru Technological University, Hyderabad.

He can be reached through email at raghavan.compilers2009@yahoo.co.in.

Principles of Compiler Design

V Raghavan
Technical Manager

Wipro Technologies, Bangalore

Tata McGraw Hill Education Private Limited
NEW DELHI

McGraw-Hill Offi ces

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

Published by the Tata McGraw Hill Education Private Limited,

7 West Patel Nagar, New Delhi 110 008.

Principles of Compiler Design

Copyright © 2010 by Tata McGraw Hill Education Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of

the publishers. The program listing (if any) may be entered, stored and executed in a computer system, but they may not

be reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw Hill Education Private Limited.

ISBN 13: 978-0-07-014471-978-0-07-014471-22

ISBN 10: 0-07-014471-0-07-014471-0

Managing Director: Ajay Shukla

Head—Higher Education Publishing: Vibha Mahajan

Manager: Sponsoring—SEM & Tech Ed: Shalini Jha

Editorial Executive: Surabhi Shukla

Development Editor: Surbhi Suman

Jr Executive—Editorial Services: Dipika Dey

Jr Manager—Production: Anjali Razdan

General Manager: Marketing—Higher Education: Michael J Cruz

Sr Product Manager—SEM & Tech Ed: Biju Ganesan

Asst Product Manager—SEM & Tech Ed: Amit Paranjpe

General Manager—Production: Rajender P Ghansela

Asst General Manager—Production: B L Dogra

Information contained in this work has been obtained by Tata McGraw Hill, from sources believed to be reliable.

However, neither Tata McGraw Hill nor its authors guarantee the accuracy or completeness of any information

published herein, and neither Tata McGraw Hill nor its authors shall be responsible for any errors, omissions,

or damages arising out of use of this information. This work is published with the understanding that Tata

McGraw Hill and its authors are supplying information but are not attempting to render engineering or other

professional services. If such services are required, the assistance of an appropriate professional should be sought.

Typeset at Bukprint India, B-180A, Guru Nanak Pura, Laxmi Nagar-110 092 and printed at Pashupati Printers Pvt. Ltd.,

1/429/16, Gali No. 1, Friends Colony, Industrial Area, G.T. Road, Shahdara, Delhi - 110 095

Cover Printer: Rashtriya Printers

RAXLCRBFDRRBQ

Dedicated to

My Parents – G K Viswanathan and V Bhagirathy

My Wife – S Prathibha

My Little One – R Pranav

CONTENTS

Preface ix

Visual Walkthrough xiii

 1. Compilers—An Introduction 1

 Introduction 1

 1.1 The Bigger Picture 2

 1.2 The Compiler 5

 1.3 Compiler Implementation 13

 1.4 Data Structures in a Compiler 14

 1.5 Study Plan 15

 Summary 16

 Review Questions and Exercises 16

 2. Lexical Analysis 18

 Introduction 18

 2.1 Elements of Lexical Analysis 20

 2.2 The Mechanics of Lexical Analyser Generators 32

 2.3 rlex—A Restricted Lexical Analyser Generator 38

 Summary 66

 Review Questions and Exercises 66

 3. Syntax Analysis 69

 Introduction 69

 3.1 Context-free Grammar 70

 3.2 Classifi cation of Parsing Techniques 82

 3.3 Error Reporting and Recovery in Syntax Analyser 84

 3.4 Top-down Parsing 86

 3.5 Bottom-up Parsing 113

 3.6 A Syntax Analyser for C Language 180

 Summary 183

 Review Questions and Exercises 183

 4. Semantic Analysis 186

 Introduction 186

 4.1 Syntax-Directed Translation 190

 4.2 Semantic Analysis 218

 Summary 246

 Review Questions and Exercises 247

viii Contents

 5. Intermediate Code Generation 249

 Introduction 249

 5.1 Intermediate Forms 249

 5.2 Intermediate Code Generation 261

 Summary 319

 Review Questions and Exercises 320

 6. Target Code Generation 322

 Introduction 322

 6.1 Target Program 323

 6.2 x86 Primer 323

 6.3 Runtime Environment 345

 6.4 Code Generation for x86 397

 6.5 A Toy C Language Compiler ‘MYCC’ 405

 Summary 411

 Review Questions and Exercises 411

 7. Code Optimisation 414

 Introduction 414

 7.1 Scope for Improvement 414

 7.2 Intermediate Code Optimisation 417

 7.3 Target Code Optimisation 552

 Summary 574

 Review Questions and Exercises 575

 Index 579

PREFACE

Compilers are utilities that transform programs written in higher level languages like Pascal, C, and C++

into lower level languages like the assembly language program or the machine code. The machine code

can be directly executed on a computer to perform various tasks. The assembly language program can be

converted to machine code by using another utility called assembler and then executed on a computer.

This book describes the internals of a compiler detailing the steps used by it to transform a higher level

language program into a lower language program.

Purpose

In my 18 years of industrial experience, I have had the opportunity to absorb a number of fresh computer

science graduates in my team. My observation has been that the fresh computer science graduates get a

theoretical level of understanding of the compilers and its functions during their course work. These young

men and women often fi nd it diffi cult to get into job assignments that deal with compilers and the associated

tools. They usually have to be trained to make them ready for the job assignments involving compilers.

One of the reasons for this gap is lack of textbooks that emphasise on practical application of principles of

compilers like Syntax Analysis, Semantic Analysis, etc. This book bridges the gap and provides students of

computer science good reading material to understand the basics of compilers.

During my survey of textbooks on compilers, I found that there was a dearth of textbooks that had the

right mix of theory and practice for compiler construction. I did not fi nd many textbooks in the market that

focused on introducing compilers to the entry-level student. Most of the available textbooks were suitable

for an advanced course in compiler construction rather than the introductory course. Most of the existing

textbooks also had a heavy theoretical emphasis. I embarked on writing this book because I felt a genuine

need for a textbook that had (a) focus on the basics of compilers (b) accent on the practical aspect and (c)

suitability to an entry-level student.

Background

It was the summer of 2001 that I was contemplating on writing a book in the fi eld of computer science as

my service to the industry that gave me bread and butter. I was more inclined towards writing a book on the

subject of Artifi cial Intelligence because (a) I had implemented many of the AI algorithms while competing

at the Programmer of the Month (POTM) contest, during my stay in AT&T Paradyne at NJ, USA. (b) I was

reasonably convinced that students would fi nd my book encouraging, since they would see “Source Code”

and not just Theory.

On 18 May 2001, I spoke to Prof. Khodanpur, Retired Head of the department of computer science

at RV College of Engineering, Bangalore, on the subject of writing a book on Artifi cial Intelligence.

He encouraged me to undertake writing a book on Principles of Compiler Design instead of Artifi cial

Intelligence. Prof. Khodanpur impressed upon me that the students were struggling to get a grasp on the

basics of compilers and it would do a world of good, if I can contribute something to help the students.

That was the genesis of this book on the principles of compilers. Prof. Khodanpur subsequently reviewed

my fi rst output and gave me some suggestions for improvement. I have tried my best to keep up to his

philosophy of ‘keeping it simple and correct’ throughout this book.

For 8 years, I have been relentlessly working on various aspects of this book. The Almighty chose me

and bestowed upon me the strength and the means to carry on this incredible journey. The blessings of my

parents helped me overcome many a challenge during the process of making this book. The inspiration,

happiness and purpose came from my constant companion and buddy—Pranav. There were numerous times

in this span of 8 years, where I felt that I cannot go any further and thought of giving it all up. Fortunately,

God willed it otherwise and today I live to see my dream fulfi lled. It has been a fantastic experience writing

this book and I hope that you fi nd reading the book equally pleasurable.

Target Readers

The textbook is intended for an introductory level student who is familiar with C/C++ Programming. The

goal is to cover the basics of the compiler theory rather than being an exhaustive complete reference in the

subject. The textbook would be ideal for graduate/undergraduate level of students taking an introductory

course on the compilers. It is particularly well suited for undergraduate students of computer science and

information technology engineering. This book can also be used by professionals who wish to understand

the basics of compilers in order to prepare themselves for working on projects based on compilers.

Salient Features

The salient features of the book are

• Simple chapter organisation based on different stages of a compiler

• Easy narrative style of explanation with emphasis on basic principles

• Numerous examples and illustrations clarifying concepts

• Incremental development of a Toy C language compiler

• References to the behaviour of production compilers

Organisation

The textbook is organised into 7 chapters. The fi rst chapter provides an introduction to compilers. It talks

about the different utilities that participate in the compilation process. It details the functionality of a

compiler, describing briefl y each stage of the compilation. This forms the basis for the rest of the book.

The different stages of compilation are described in successive chapters starting from Chapter 2. Lexical

Analysis, Syntax Analysis, Semantic Analysis, Intermediate Code Generation and Target Code generation

are the topics for discussions in Chapters 2,3,4,5 and 6 respectively.

The techniques for optimising the intermediate code and the target code are described in Chapter 7—

Optimisation.

The approach taken in each of the chapters is to introduce the theory with suitable practical examples.

Algorithm description is usually followed by an implementation and demonstrated by an example. A

number of examples use the C language compiler of GNU’s compiler collection (gcc) as a reference to

illustrate the behaviour of the compilers.

Online Learning Centre

The book needs to be read along with source code for examples that can be downloaded from http://www.

mhhe.com/raghavan/pcd . These examples have been compiled and tested on CYGWIN 1.5 platform on my

home x86 PC running Win98. I have also checked the examples on LINUX platform. I have used gcc 3.4,

fl ex 2.5 and bison 2.3 for compiling and testing the examples. An older version of gcc, namely gcc-2.95

was used in one of the examples of Chapter 1 to illustrate the compilation process.

x Preface

The reader should install CYGWIN 1.5 (or newer) for compiling and checking out the source code of

examples in the case of PC running Windows. The source code can be compiled and checked on Personal

Computers running LINUX Operating System. An HTML based documentation for the source code is also

available as a part of the download.

Supplements for Instructors: PowerPoint slides, class-test quizzes with answers, chapter-wise references,

and lab assignments.

Supplements for Students: Chapter-wise tutorials and self-test quizzes with answers.

The Yahoo Groups at http://in.groups.yahoo.com/group/compilers2009 is a useful place to post any

issues with regard to the compilation/execution of the source code, specifi c to your Operating System.

Acknowledgements

I am grateful to Prof Khodanpur, Retired Head of the computer science department at RV college of

Engineering, Bangalore, for giving me the idea to write a book on compilers and reviewing my fi rst output.

I hope I have done justice to his expectations.

I am indebted to my family for all the sacrifi ces they had to make in order to fulfi ll my dream. Thank

you Amma and Little fellow for everything. You have been a wonderful family. This book would not have

been possible without your support, love and affection.

I would like to acknowledge the help of several people who have made a difference in my life. I owe

a Big Thank you to Dr Aswath N Rao, N R Ramesh, M K Suresh Kumar, Priya Suresh, K Srinivas, R

Sundararajan, J Swaminathan, Siby Abraham, S Krishna Kumar, Tinku Jose, Vijay Garapati, Sanjay

Khodanpur, Shashikala, Srinath Rajaram, A Ramasamy, M Vijay Anand, V Balachandran, David Lobaccaro,

Prakash Viswanathan and Srinivasan.

I would like to thank my fi rst employers—Vinay Deshpande and Shashank Garg at NCORE

Technologies, Bangalore—for giving me an entry into the software fi eld. I want to thank my colleagues and

friends at Wipro Technologies for all their help and cooperation.

I also want to thank Vibha Mahajan, Shalini Jha, Nilanjan Chakravarty, Surabhi Shukla, Surbhi Suman,

Dipika Dey, Anjali Razdan and Baldev Raj at Tata McGraw Hill Education for their help and guidance

in the course of making this book. A note of acknowledgement is due to the following reviewers for their

valuable feedback.

Preeti Aggarwal

Punjab University of Technology (earlier Punjab Engineering College), Chandigarh

M Tripathi

Institute of Engineering & Technology, Kanpur

Shailendra Singh

Punjab University of Technology (earlier Punjab Engineering College), Chandigarh

Shalini Batra

Thapar Institute of Engineering & Technology, Patiala

K Umamaheshwari

PSG College of Technology, Coimbatore

R Prabhakar

Coimbatore Institute of Technology, Coimbatore

 Preface xi

B N S Murthy

Nagarjuna College of Engineering & Technology, Bangalore

B I Khodanpur

R.V. College of Engineering, Bangalore

B K Sarkar

Birla Institute of Technology (BIT), Ranchi

The readers of the book are encouraged to send their comments, queries and suggestions at the following

email id—tmh.csefeedback@gmail.com (kindly mention the title and author name in the subject line).

 V Raghavan
 raghavan.compilers2009@yahoo.co.in

xii Preface

 VISUAL WALKTHROUGH

Each chapter begins with an

Introduction that gives a summary

of the background and the

organisation of chapter’s contents.

CODE OPTIMISATION

Introduction
In this chapter, we look at ways of improving the intermediate code
and the target code in terms of both speed and the amount of memory
required for execution. This process of improving the intermediate
and target code is termed as optimisation. Section 7.1 demonstrates
the fact that there is scope for improving the existing intermediate
and target code. Section 7.2 discusses the techniques commonly used
to improve the intermediate code. Section 7.3 describes the common
methods used in improving the target code generated by the target
code generator.

7
7.1 SCOPE FOR IMPROVEMENT

The correctness of the generated assembly language code is the most critical aspect of a

code generator. Also, the effi ciency of the generated assembly language code should match

closely with the handwritten code, if not be better than it. The code generator that we had

discussed in Chapter 6 worked on the principle of statement-by-statement translation of the

TAC code into x86 assembly language instruction. This strategy produces correct code, but

might not be the most optimal code in terms of effi ciency at the run-time.

Consider the sample input source, the corresponding intermediate code and the target

code shown in Table 7.1 for understanding the areas of improving the intermediate code

and the target code. The intermediate code and the target code have been generated using

the toy compiler described in Chapters 5 and 6.

INTERMEDIATE CODE GENERATION

Introduction
The front end of a compiler consists of lexical analysis, syntax analysis,
semantic analysis and intermediate code generation. We have studied
about lexical analysis, syntax analysis and semantic analysis in the
previous chapters. In this chapter, we discuss about how to take the
syntactically and semantically correct input source and generate
intermediate code from it. The intermediate code is used by the back
end of the compiler for generating the target code.

We begin the discussion by understanding the common forms of
intermediate code used in compilers (Section 5.1). In Section 5.2, we
take up the translation of common programming constructs in high
level languages like C into intermediate code. We take a subset of the
‘C’ language as our reference source language and learn about the
challenges associated with the translation of programming constructs
like if-else, while, switch-case, etc. into intermediate code.

5

5.1 INTERMEDIATE FORMS

In this section, we study about the different forms of intermediate code that are commonly

found in the compilers. Before we get into the details of the various forms of intermediate

code that the input source can be translated into, let us fi rst see why we need to translate

the input source into an intermediate form and why not generate the fi nal machine code

itself.

INTRODUCTION

 Code Optimisation 417

7.2 INTERMEDIATE CODE OPTIMISATION

The intermediate code generated by translation scheme described in Chapter 5, is adequate in terms

of correctness with respect to the input program. We saw in the previous section, that there is scope for

improving the effi ciency of the generated intermediate code in terms of speed of execution and size in

memory. In the intermediate code optimisation phase (refer Fig. 1.9), the compiler makes a pass over the

generated intermediate code and transforms it into an improved (optimised) form, which is more effi cient

in terms of speed and size. The transformed intermediate code is then fed to the target code generator

for the generation of the target code. In the discussion in Section 7.2.1, we take a look at some of the

common transformations made in the intermediate code optimisation phase of the compiler to improve the

intermediate code.

7.2.1 Common Sub-expression Elimination

Consider the input source and the corresponding intermediate code in TAC format in Table 7.2. The TAC

was generated from the translation scheme explained in Chapter 5. We call the intermediate code shown in

Table 7.2 as unoptimised intermediate code to differentiate it from the version of intermediate code after

optimisation using transformations.

Table 7.2 Input source and the intermediate code

Input Source TAC

int sum_n,sum_n2,sum_n3;

int sum(int n)

{

 sum_n = ((n) *(n + 1))/2;

 sum_n2=((n)*(n + 1)*(2*n + 1))/6;

 sum_n3=(((n)*(n + 1))/2)*(((n)*(n + 1))/2);

}

(0) proc_begin sum

(1) _t0 := n + 1

(2) _t1 := n * _t0

(3) _t2 := _t1 / 2

(4) sum_n := _t2

(5) _t3 := n + 1

(6) _t4 := n * _t3

(7) _t5 := 2 * n

(8) _t6 := _t5 + 1

(9) _t7 := _t4 * _t6

(10) _t8 := _t7 / 6

(11) sum_n2 := _t8

(12) _t9 := n + 1

(13) _t10 := n * _t9

(14) _t11 := _t10 / 2

(15) _t12 := n + 1

(16) _t13 := n * _t12

(17) _t14 := _t13 / 2

(18) _t15 := _t11 * _t14

(19) sum_n3 := _t15

(20) label .L0

(21) proc_end sum

A detailed look at the intermediate code generated in Table 7.2 indicates that the computations made in

quads (1) through (3), (12) through (14) and (15) through (17) are essentially the same. These chunks of

intermediate code compute the value of the common sub-expression ((n) *(n + 1))/2, which is used in all

the three summations. If we look further, the common sub-expression ((n) *(n + 1)) is computed 4 times

in the statements {1,2 }, {5,6 }, {12,13}, {15,16}. It is possible to optimise the intermediate code to have

common sub-expressions computed only once in the function and then re-use the computed values at the

second instance.

xiv Visual Walkthrough

252 Principles of Compiler Design

Table 5.1 Input C-statements and the translated TAC

Input C statement TAC statements Comments

a = b – c + d ; _t1 := b – c

_t2 := _t1 + d

a := _t2 ;

_t1 and _t2 are compiler generated

temporaries. Note that one C statement

is transformed into multiple TAC

statements

p_new = p + ((p * n * r) /100) _t1 := p * n

_t2 := _t1 * r

_t3 = _t2 / 100

p_new = p + _t3

_t1,_t2 and _t3 are compiler generated

temporaries. Note that one C statement

is transformed into multiple TAC

statements

The number of allowable operators (like ADD, SUB, etc.) is an important factor in the design of an

intermediate representation like three address code. One end of the spectrum is a restricted operator set,

which allows for easy portability to multiple architectures. A restricted feature set would mean that the front

end would generate a long list of TAC instructions, forcing the optimiser and code generator to do the bulk

of work. At the other end of the spectrum is a feature rich operator set in the intermediate language that

allows one to take advantage of an advanced processor, but is diffi cult to port on to low-end processors. The

usual approach is to have a minimum set of allowable operators in Intermediate language, whose equivalent

machine language statements would be invariably available on any processor.

The following table shows a complete list of TAC operators that we would be using in this book.

Table 5.2 TAC operators

TAC operator Sample TAC instruction
Textual

representation
Description

1 ASSIGN
ASSIGN y x

x := y x gets assigned the result of

y op z

2 ADD
ADD y z x

x := y + z x gets assigned the result of y

added to z

3 MUL
MUL y z x

x = y * z x gets assigned the result of y

multiplied by z

4 DIV
DIV y z x

x := y / z x gets assigned the result of y

divided by z

5 SUB
SUB y z x

x := y – z x gets assigned the result of y

minus z

6 UMINUS
UMINUS y x

x := – y x gets assigned the value of –y

7 L_INDEX_ASSIGN
L_INDEX_

ASSIGN
y i x

x[i] := y x[i] denotes the content of a

location which is i memory

units away from the pointer

contained in x.

x[i] gets assigned the value of y.

Neatly divided into sections and sub-sections,

the subject matter can be studied in a logical

progression of ideas and concepts.

SECTIONS AND SUB-SECTIONS

Tables are provided in each

chapter to aid in understanding

of the text material.

TABLES

Dialogs showing the human-computer

interactions are provided in each

chapter to help the readers appreciate

the relevant practical aspects.

DIALOGS

 Lexical Analysis 27

The regular expression ‘bo*s’ matches any input line where b is followed by zero or more o and then a s

like say boost, boss, labs.

The regular expression ‘bo+s’ matches any input line where b is followed by one or more o and then a s

like say boost, boss.

The regular expression ‘bo?s’ matches any input line where b is followed by zero or one o and then a s

like say boss, labs.

Matches b followed by zero or any number of o then s

$ egrep -n -e ‘bo*s’ my_input

6:boost

10:boss

11:labs

Matches b followed by one or any number of o then s

$ egrep -n -e ‘bo+s’ my_input

6:boost

10:boss

Matches b followed by one or no o then s

$ egrep -n -e ‘bo?s’ my_input

10:boss

11:labs

Matches b followed by 1 or 2 instances of o followed by s

$ egrep -n -e ‘bo{1,2}s’ my_input

6:boost

10:boss

The regular expression ‘oa|or’ matches any input line where oa or ort exists like say goat, ported.

Matches oa or ort

$ egrep -n -e ‘oa|ort’ my_input

5:goat

8:ported

The regular expression ‘The regular expression ‘ (oa|os)t’ matches any input line where oa or os

followed by t exists like say goat, boost.

Matches oa or os followed by t

$ egrep -n -e ‘(oa|os)t’ my_input

5:goat

6:boost

Having understood the concepts of regular expressions, let’s defi ne the constructs of C language like

identifi ers, constants, etc. using regular expressions.

The C language keywords are the easiest ones to be described using regular expression. The regular

expression is same as the keyword. For example, the keyword ‘goto’ is represented by a regular expression

‘goto’, and ‘switch’ by regular expression ‘switch’, and so on.

A C identifi er begins with an alphabet or underscore, followed by either an alphabet or underscore or

digit. A C identifi er is represented by a regular expression ‘[a-zA-Z_]([a-zA-Z_]|[0-9])*’

2 Principles of Compiler Design

1.1 THE BIGGER PICTURE

A compiler works in tandem with a few other utilities like preprocessor, assembler, linker and so on to

produce binaries that can be executed. In this section we look at the process of generating an executable

binary from a sample input program written in C and understand how these utilities fi t in.

Let’s start off with a sample C program (ex1.c) and see how we transform it into a binary that can be

executed. The following dialog shows the sample C program (ex1.c) being transformed into an executable

using GNU’s compiler collection (gcc)—a freely available compiler collection.

A Sample input C file

$ cat -n ex1.c
 1

 2 #define SUCCESS 0

 4 /* The function prototype for printf found in stdio.h */

 5 extern int printf(const char *, ...);

 6

 7 int main()

 8 {

 9 printf(“Hello World\n”);

 10

 /* returning 0 to the Operating system */

 12 return(SUCCESS);

 13 }

Creating an executable from sample input file using the GNU C compiler system

$ gcc -Wall ex1.c -o ex1

Invoking the executable

$./ex1
Hello World

From the above dialog, we can understand that the GNU compiler collection (gcc) binary is invoked

with the input C source fi le as the argument for compilation. This outputs an executable ex1, which can be

invoked on the command line to get the desired effect. The above dialog abstracts us from a lot of behind-

the-scene activity that is involved in conversion of the input C fi le into executable.

Let’s try out the compilation of the same C program (ex1.c), this time with extra options to ‘gcc’ in

order to know all the utilities that get involved in the transformation of ex1.c to an executable binary. The

following dialog shows the compilation of ex1.c with gcc using the extra options for getting a detailed

account of the compilation.

Compiling with verbose option and preserving the intermediate files

$ gcc --save-temps --verbose ex1.c -o ex1

Reading specs from /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/specs

gcc version 2.95.3-5 (cygwin special)

/usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/cpp0.exe -lang-c -v -D__GNUC__=2 -D__GNUC_MINOR__=95 -

D_X86_=1 -D_X86_=1 -Asystem(winnt) -Acpu(i386) -Amachine(i386) -Di386 -D__i386 -D__i386__ -Di686 -

Dpentiumpro -D__i686 -D__i686__ -D__pentiumpro -D__pentiumpro__ -

D__stdcall=__attribute__((__stdcall_)) -D__cdecl=__attribute__((__cdecl__)) -

D_stdcall=__attribute__((__stdcall__)) -D_cdecl=__attribute__((__cdecl__)) -

D__declspec(x)=__attribute__((x)) -D__CYGWIN32__ -D__CYGWIN__ -Dunix -D__unix__ -D__unix -isystem/

usr/local/include -idirafter /usr/include -idirafter /usr/include/w32api ex1.c ex1.i

 Visual Walkthrough xv

Comments for Reader’s Understanding in Italics

User Commands in Bold

The output from the computer

in regular font.

278 Principles of Compiler Design

5.2.6 Example 3—Pointers and Address Operators

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate

code for statements involving ‘*’ and ‘&’ operators using the productions and semantic actions described

in the preceding section. The icgen program implements the translation scheme using bottom up translation

method. The program takes as input, a sample C input source with some statements using ‘*’ and ‘&’

operators. The output of ‘icgen’ is the intermediate code in TAC format generated from the input C source.

The dialog below shows the icgen program taking in some sample input C sources, and printing out their

intermediate code in TAC format.

Generating the Parser from Grammar Specifications

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyser from Lexical Specifications

$ flex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyser

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building icgen Binary

$ g++ -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

This is an input source file

$ cat -n test3.c
 1 int *p;

 2 int x;

 3

 4 /* Function */

 5 int main()

 6 {

 7 /* Move 10 into x */

 8 p=&x;

 9 *p=10;

 10 }

Generating IC for statements with pointer and Address operators

$./icgen test3.c
(0) proc_begin main

(1) _t0 := &x

(2) p := _t0

(3) p[0] := 10

(4) label .L0

(5) proc_end main

Input source file

$ cat -n test3a.c
 1 int *p;

 2 int x,y;

 3

 4 /* Function */

 5 int main()

 Semantic Analysis 207

17 }

18 }

19 }

20

21 return(FAILURE);

22 }

Listing 4.2 Code derived from production 10 and 11

In line 8 of Listing 4.2, we derived the value of synthesised attribute—lexeme of the terminal

CONSTANT from the lexical Analyser and stored it in the variable CONSTANT_lexeme declared for the

attribute CONSTANT.lexeme. The Line 10 makes a call to function match, which matches the token and

advances the input.

4.1.3.5 Example 2—Top-Down Translation This section demonstrates an example program that

evaluates semantic actions during the top-down parsing using the theory described in the preceding section.

The example implements the translation scheme presented in Table 4.13 to build a desktop calculator.

The program shows the usage of the guidelines provided in the preceding section to construct a top-down

translator for L-attributed defi nitions. The program takes as input an expression involving constants. The

output of the example is the evaluated result of the input expression, similar to the desktop calculator. The

dialog below shows the example program taking in expressions involving constants, and printing out the

result of the expression.

Generating the Lexical Analyzer from lexical Specifications

$ flex -otop_down_lex.cc top_down_lex.l

Compiling the Lexical Analyzer

$ g++ -g -Wall -c -o top_down_lex.o top_down_lex.cc

top_down_lex.cc:1040: warning: ‘void yyunput(int, char*)’ defined but not used

Building ex2 Binary

$ g++ -g -Wall ex2.cc top_down.cc top_down_lex.o -o ex2

Executing it for a sample Expression

$./ex2 ‘9+15-20’

result=4

SYNTAX CORRECT

Another sample Expression

$./ex2 ‘3*21 - (4*5)’

result=43

SYNTAX CORRECT

Another sample Expression

$./ex2 ‘(9*53)/(7-4)’

result=159

SYNTAX CORRECT

syntax Error in Expression

$./ex2 ‘9*53)/(7-4)’
SYNTAX INCORRECT

xvi Visual Walkthrough

A Dialog pertaining to a sample implementation

immediately follows the theory to reinforce

the ideas correctly. All the source code

used in the textbook is online and can be

downloaded from the website http://www.

mhhe.com/raghavan/pcd.

SAMPLE CODE IMPLEMENTATION

202 Principles of Compiler Design

Table 4.10 Translation scheme for C-declarations compatible with ‘yacc’/ ‘bison’

Production

1 declaration_list : declaration_list declaration

2 | declaration

3 declaration : type_spec { saved_identifi er_list_type = $1 } identifi er_list ‘ ; ’

4 type_spec : INT { type_spec.data_type = INT }

5 | CHAR { type_spec.data_type = CHAR }

6 | FLOAT { type_spec.data_type = FLOAT }

7 identifi er_list : identifi er_list ‘,’ IDENTIFIER { insert(IDENTIFIER.place, saved_identifi er_list_type) }

8 identifi er_list : IDENTIFIER { insert (IDENTIFIER.place, saved_identifi er_list_type) }

4.1.3.3 Example 1—Bottom-Up Translation This section demonstrates an example program

that evaluates semantic actions during the bottom-up parsing using the theory described in the preceding

section. The example implements the translation scheme presented in Table 4.10. The program shows the

usage of the VAL stack and the special $ variables in LR parser generators like bison to help the evaluation

of semantic rules. The program takes as input, a sample C program with some declarations of variables

using the basic data types like ‘int’, ‘char’ and ‘fl oat’. The output of the example is symbol table entries

generated from the processing of the declarations in the input C program. The dialog below shows the

example program taking in C programs, and printing out the symbol table entry details.

Generating the Parser from Grammar Specifications

$ bison -d -y -v -oc_decl_gram.cc c_decl_gram.y

Compiling the Parser

$ g++ -g -Wall -c -o c_decl_gram.o c_decl_gram.cc

Generating the Lexical Analyzer from Lexical Specifications

$ flex -oc_decl_lex.cc c_decl_lex.l

Compiling the Lexical Analyzer

$ g++ -g -Wall -c -o c_decl_lex.o c_decl_lex.cc

Building ex1 Binary

$ g++ -g -Wall c_decl_gram.o c_decl_lex.o -o ex1

This is a sample input source file

$ cat -n test1.c

 1 int a,b,c;

 2 float d,e,f;

 3 char i,j,k;

Parsing and displaying Symbol table information for the declarations

$./ex1 test1.c

Identifier name=a type=INT

Identifier name=b type=INT

Identifier name=c type=INT

Code Listings and Algorithm Specifi c-

ations have been provided at appropriate

locations in the chapters.

LISTINGS AND ALGORITHMS

 Target Code Generation 379

6.3.6.1 Call by Value In the call by value parameter-passing mechanism, the arguments are evaluated

at the time of call and they become the values of formal parameters throughout the function. For example,

consider the PASCAL program shown in Listing 6.12 in which we use the call by value parameter-passing

mechanism for calling the function ‘my_func’ at line number 24. At the time of call, i.e. line 24, the

arguments ‘p1’ and ‘p2’ are evaluated, which would yield 4 and 30 in this case. These evaluated values,

become the values of the formal arguments ‘f1’ and ‘f2’ during the execution of the function ‘my_func’.

In call by value method, the changes made to the formal parameters are not refl ected in the actual

arguments at the caller site. In the Listing 6.12, we modify the formal parameters ‘f1’ to 100 and ‘f2’ to 120

at the lines 12 and 13 respectively, but when we print the actual parameters ‘p1’ and ‘p2’ at line 26 after the

call to the function ‘my_func’, the modifi ed values are not refl ected. The actual arguments ‘p1’ and ‘p2’

continue to have original values, i.e. 4 and 30 even after the call to the function ‘my_func’.

 1 PROGRAM sample(input,output);

 2 VAR p1,p2,p3 : integer;

 3

 4 FUNCTION my_func(f1,f2:integer): integer;

 5 BEGIN

 6 if (f1 > f2)

 7 then

 8 my_func := f1

 9 else

10 my_func := f2;

11

12 f1 := 100 ;{ Changing the Value of Formal Parameter }

13 f2 := 120 ;{ Changing the Value of Formal Parameter }

14

15 END;

16

17 BEGIN

18

19 p1 := 4;

20 p2 := 30;

21

22 writeln(‘Before the function call p1=’,p1,’ p2=’,p2);

23

24 p3 := my_func(p1,p2);

25

26 writeln(‘After the function call p1=’,p1,’ p2=’,p2);

27

28 END.

Listing 6.12 ex7.pas

The dialog below shows the compilation and execution of the Pascal program shown in Listing 6.12 that

uses the call-by-value mechanism for parameter-passing. The x86 assembly language output for the same

program generated by the Pascal compiler—gpc is also seen in the dialog. We will use that to understand

the details of implementing the call by value mechanism from a target code generator standpoint. Observing

the execution of the program establishes the fact that any changes made to the parameters in a call-by-value

method does not have any effect in the actual arguments at the caller site.

 Visual Walkthrough xvii

80 Principles of Compiler Design

47 if (argc != 2) {

48 printf (“Usage: %s ‘C statement’ \n”, argv[0]);

49 return (1);

50 }

51

52 strcpy (input_str, argv[1]);

53

54 ret = yyparse ();

55

56 if (ret == 0) {

57 printf (“%s”, input_str);

58 printf (“\nSYNTAX CORRECT \n”);

59 } else {

60 printf (“SYNTAX INCORRECT \n”);

61 }

62

63 return (0);

64 }

Listing 3.1 c-stmt-gram.y

A grammar-specifi cation fi le like the one illustrated in Listing 3.1 can be broadly divided into 3 parts.

Declarations

%%

Production Rules

%%

Auxiliary Functions

The declarations section consists of declarations of all the non-terminals (tokens) used in the grammar.

This is illustrated in line 1 of Listing 3.1. The declarations section also contains the declaration of the start

symbol that we discussed in Section 3.2. This is illustrated in line 2 of Listing 3.1, where we declare that

the start symbol is c_statement. The declarations section can also contain a literal block of C code enclosed

in {% and %} lines, exactly the way it is in the lexical specifi cation fi le. This is illustrated from line 3 to 11

of Listing 3.1.

The production rules section consists of a list of grammar rules each separated by a semicolon (;). A

colon (:) separates the left-hand and the right-hand sides of the productions. In the rules section, the fi rst

rule (line 15) defi nes the c statement. This is the production 1 of Table 3.1. The rules for c expression are

mentioned next. These are the productions 2, 3, 4 of Table 3.1.

The auxiliary functions section consists C code that is copied verbatim into the generated code for

parser. In the auxiliary section, we typically defi ne yyerror() function that is responsible for printing where

the syntax error is found in case of erroneous input. This is shown from lines 33 to 40 in Listing 3.1. The

auxiliary functions section also defi nes the main(), which in turn invokes the parsing routine yyparse()

at line 54. The return value of yyparse() determines whether the given input is syntactically correct or

otherwise. This is illustrated by line 56 in Listing 3.1.

 Code Optimisation 499

From the data fl ow equation e_

OUT[B] = e_GEN[B] U (e_IN[B]

– e_KILL[B]), we have

e_OUT[B5] = {p + b, q – b} U

({{ø} – {ø})

e_OUT[B5] = {p + b, q – b} U

({ø})

e_OUT[B5] = {p + b, q – b}

Table 7.52 The values of e_IN and e_OUT for iteration 1 and 2

Block # Iteration 1 Iteration 2

e_IN e_OUT e_IN e_OUT

0 {ø} {p + b, q – b} {ø} {p + b, q – b}

1 {q – b} {q – b} {q – b} {q – b}

2 {q – b} {q – b} {q – b} {q – b}

3 {q – b} {q – b} {q – b} {q – b}

4 {q – b} {p + b, q – b} {q – b} {p + b, q – b}

5 {p + b, q – b} {p + b, q – b} {p + b, q – b} {p + b, q – b}

Algorithm 7.4 summarises the computation of available expression (e_IN/e_OUT) using the iterative

approach of solving data fl ow equations that we discussed above.

e_IN[B0] = ø

out[B0] = e_GEN[B0]

/* Initialize e_OUT for all blocks */

for every block B except the initial block B0 {

 e_OUT[B] = L – e_KILL[B]

}

steady_state=FALSE

while (steady_state== FALSE) {

 steady_state=TRUE

 for every block B except the initial block B0 {

 /* e_IN */

 e_IN[B] = « e_OUT[P] for all the predecessors P of the block

 /* saving e_OUT to later check if we have reached steady state */

 saved_e_OUT=e_OUT[B]

 /* computing e_OUT */

 e_OUT[B] = e_GEN[B] » (e_IN[B] – e_KILL[B])

 /* Checking for a steady state of e_OUT */

 if (saved_e_OUT ! = e_OUT[B]){

 steady_state = FALSE

 }

 }

}

Algorithm 7.4 Available expressions computation using the iterative approach

Figures are used exhaustively

in the text to illustrate

the concepts and methods

described.

FIGURES

xviii Visual Walkthrough

 Compilers—An Introduction 5

system-wide start up object fi le (crt0.o) and makes an executable. The linker also links the ex1.o fi le with

other system-wide libraries, including the C library containing the function defi nitions for printf, scanf, etc.

The libraries that are used by the linker are the ones given by –l option during the invocation of linker. The

output of the linker is an executable (ex1.exe) that can be invoked on the command line. The dialog below

shows us that the fi nal executable ex1.exe is a MS Windows binary for Intel 80386, which can be invoked

on the console.

The properties of the executable ex1.exe

$ file ex1.exe

ex1.exe: MS Windows PE Intel 80386 console executable not relocatable

The whole process of transforming an input C source fi le into an executable binary is summarised

in Fig. 1.1.

Fig. 1.1 Transforming an input C-source fi le into an executable

Even though Fig. 1.1 shows the transformation of an input source fi le written in C language into an

executable form, the steps are similar for other compiled languages also.

1.2 THE COMPILER

The main focus of the book is to understand the details of working of a compiler, i.e. the step2 of Fig. 1.1.

The compiler takes the pre-processed fi le as the input and translates it into an equivalent assembly language

fi le. In this section, we will get an overview of how a compiler translates a pre-processed input fi le into an

assembly language fi le.

The translation of the input source (pre-processed fi le) into target assembly language fi le can be divided

into two stages called as front end (or analysis) and back end (or synthesis).

The front end of the compiler transforms the input source into intermediate code. The intermediate code

(sometimes called intermediate representation—IR) is a machine-independent representation of the input

source program.

250 Principles of Compiler Design

Consider a monolithic compiler for C language that generates machine instructions directly from

the input source for an 80¥86 processor system. Let’s say it needs to be modifi ed to generate machine

instructions for SPARC processor system. The effort involved in modifying the 80¥86-based compiler for

re-targeting to SPARC platform is high. It requires the intricate knowledge of the machine instructions of

both the 80¥86 system as well as SPARC System. Also, the translation to fi nal machine code from the input

source language makes the generation of optimal code diffi cult because it would not have the context of the

entire program.

Consider another compiler that is broken into modular elements called as front end and the back end, as

explained in Chapter 1. The re-targeting of such a compiler from 80¥86 to SPARC system is illustrated in

Fig. 5.1. The front end of the compiler for a source language remains same irrespective of the machine code

generated. The output of the front end of the compiler is an intermediate form that does not depend on the

specifi cs of the processor. The back end of the compiler converts the intermediate code into the respective

machine instructions as required. This approach allows the re-use of a large portion of the compiler without

modifi cation during the re-targeting to a different processor.

Fig. 5.1 Retargeting of a compiler

Some of the advantages in this approach of breaking up the compiler into front end and back end are:

 1. It is easy to re-target the compiler to generate code for newer and different processors. As seen in

the discussion previously, the re-targeting of the compiler could be highly effort intensive but for the

presence of intermediate code.

 2. The compiler can be easily extended to support an additional input source language by adding the

required front end and retaining the same back end.

 3. It facilitates machine independent code optimisation. The intermediate code generated by the front

end can be optimised by using several specialised techniques. This optimisation is different from the

target code optimisation that can be done during the code generation for the actual processor by the

back end system.

Most of the modern compilers take this approach of partitioning the job of the compiler into front end

and back end.

354 Principles of Compiler Design

15 c :=40;

16 writeln(‘Value of c is ‘,c); (* c is 40 here *)

17 P2();

18 writeln(‘Value of c is ‘,c); (* c is 25 here *)

19 END;

20 BEGIN

21 P1();

22 END.

23

24

Listing 6.8 A Pascal program with nested procedures

Programming languages like LISP and APL allow variables to be bound to a storage depending on the

current activations. In these cases the variable can be resolved to the appropriate declaration only at the

run-time depending on the current activations. In order to implement such dynamic scoping, it is necessary

to keep track of the chain of the current activations. The optional control link in an activation record helps

in maintaining a track of the current activations and implementing dynamic scope. Following the control

link of the current activation record, we can make a chain of all the functions that are currently active. This

helps in implementing the dynamic scope.

The activation record contains a fi eld for storing the return value of a function. The callee stores the

return value in this fi eld before returning the control to the caller. The caller copies it from this fi eld into

the appropriate variable as defi ned in the source program. In practice, many of the compilers, have the

return value and the arguments passed in registers, whenever feasible rather than having them as a part of

activation record. The register access is faster than memory access and hence passing the return values and

arguments in registers is more effi cient.

Activation records are allocated space in the stack Area in C run-time environment. The Old

FORTRAN77 compilers used the static area for housing the activation records. The run-time environments

for functional languages like LISP allocate space for activation records on the heap.

6.3.4.1 Activation Record in C Run-time Environment In C runtime environment, the activation

records are allocated storage space on the stack. When a procedure is called, a new activation record is

pushed on to the stack. When the procedure is complete, the activation record is popped-out of the stack.

The top of the stack is usually pointed to by a

register called SP (stack pointer). An activation

record can be allocated by moving SP with an

amount equal to the size of activation record.

The activation record is de-allocated by moving

the SP back by an amount equal to the size of

activation record. For example, consider the

activation of a function ‘my_func()’ having an

activation record of size, say, 40 bytes. The SP

is moved (decremented in this case) by 40 bytes

to allocate an activation record for my_func().

The SP is moved back (incremented by 40) to

de-allocate the activation record for my_func()

after the execution of my_func() is complete.

Figure 6.16 shows the run-time stack, before,

during and after the activation of my_func().

Fig. 6.16 Allocating and de-allocating space for
activation records

 Semantic Analysis 187

analysis is the last phase in which we reject incorrect input programs and fl ash error
messages for the user to correct them.

The following dialog examines a few C programs, which have some semantic errors
and shows us how the GNU C compiler detects and reports them. These examples
give us a feel of what kinds of errors are detected in semantic analysis. Observe that
all of these programs are syntactically correct, but have semantic errors.

A C Program using an undeclared variable

$ cat -n sem_err1.c

1

2 int main()

3 {

4 int a,b;

5

6 a=1;

7 b=2;

8 c=3; /* Use of undeclared variable */

9

10 a = b + c;

11

12 return(a);

13

14 }

The Compiler detects it and reports the error

$ gcc -Wall sem_err1.c -o sem_err1

sem_err1.c: In function `main’:

sem_err1.c:8: error: `c’ undeclared (first use in this function)

sem_err1.c:8: error: (Each undeclared identifier is reported only once

sem_err1.c:8: error: for each function it appears in.)

A C Program Assigning a float to char pointer

$ cat -n sem_err2.c

 1

 2 int main()

 3 {

 4 char *a;

 5

 6 float b,c;

 7

 8 b = 30.45;

 9 c = 40.36;

 10

 11 a = b + c; /* Assigning a float to char pointer */

 12

 13 return(0);

 14

 15 }

 Visual Walkthrough xix

Dialogs exemplifying the behaviour of a

production compiler suite (gcc) have been

provided in the pertinent sections of the

textbook.

PRODUCTION COMPILER REFERENCES

 Lexical Analysis 19

Comments and white space (like tab, blank, new line) do not infl uence code generation.
The lexical analyser strips out the comments and white space in the source program.
For example, in Fig. 2.1, the lexical analyser stripped out the white space (line 5),
comment (line 6) of the input C program and did not return them as tokens.

The part of the input stream that qualifi es for a certain type of token is called as
 lexeme. For example, in line 4 of the input the letters ‘int’ qualifi es for a keyword in C
language. ‘int’ is called as lexeme in this case. The other lexemes shown in Fig. 2.1 are
‘main’ (token type is identifi er), ‘for’ (token type is keyword), etc.

The lexical analyser keeps track of the new line characters, so that it can output the
line number with associated error messages, in case of errors in the input source
program. This is extremely useful for the programmer to correct syntax errors.
For example, consider the C program shown in the dialog below in which the line 5
does not end with a semicolon (;). On trying to compile it using GNU C compiler, the
following output was observed:

An input C program. A semicolon (;) is missing in Line 5

$ cat -n test1.c

1 #include <stdio.h>

2

3 int main()

4 {

5 printf (“Hello World \n”)

6 return(0);

7 }

Compiling the C program

$ gcc test1.c -o test1

test1.c: In function ‘main’:

test1.c:6: error: parse error before “return”

The error message in the dialog indicates that a parse error was encountered on line
6, before the token ‘return’. This message indicating the line number was possible
because the lexical analyser kept a count of the number of new lines that it has
encountered till that point of the source program.

The lexical analyser in conjunction with the parser is responsible for creating symbol

table, a data structure containing information that is used in various stages of the
compiler. The symbol table consists of entries describing various identifi ers used in
the source program. Typically, each entry in the symbol table consists of the lexeme
of the identifi er and all the attributes associated with it. While some of the attributes
pertaining to an entry are fi lled in at lexical analyser/parser level, the other attributes
in the entry would be progressively fi lled by subsequent stages of compilation. As an

 Syntax Analysis 85

 7

 8 var1 = 0;

 9 var2 = 10;

 10

 11 printf(“This is message 1 “)

 12

 13 var1 = var2 ;

 14

 15 for(i = var1; i < var2; i++){

 16 printf(“This is iteration %d “,i);

 17 }

 18 }

The input C source program test1.c has two errors. (1) There is a missing semicolon in line 11 and (2)

the variable ‘i’ used in line 15 has not been declared earlier.

The dialog below shows how the GNU’s C compiler ‘gcc’ parses the above program.

$ gcc test1.c -o test1

test1.c: In function ‘main’:

test1.c:13: parse error before ‘var1’

test1.c:15: ‘i’ undeclared (first use in this function)

test1.c:15: (Each undeclared identifier is reported only once

test1.c:15: for each function it appears in.)

The parser in gcc has reported the error in line 13 before the variable ‘var1’, which is nothing but the end

of line 11. This is indicative of missing semicolon in line 11. Note that the parser of gcc did not stop there,

it continued parsing the subsequent lines of input source program and identifi ed an error in line number

15. The parser in gcc has performed error recovery from earlier error in line 13 and continued parsing.

The error reporting on line number 15 clearly says that ‘i’ is not declared. Note that, the parser was smart

enough to report the non-declaration of ‘i’ once, despite being used more than once.

The above example demonstrates the error reporting and error recovery features of a parser.

The main considerations in error reporting are:

∑ The error handler should report the place in the input source program, where the error has occurred.

The offending line number should be emitted for the programmer to correct the mistake.

∑ The diagnostic message emitted out by the error handler module of the parser should give out enough

information to help the programmer correct the mistake in the input source program.

The job of error recovery for the error handler is trickier. The following are some of the considerations

in error recovery:

∑ The error recovery should not be partial where spurious errors not made by the programmer are

falsely identifi ed as errors and displayed.

∑ The error recovery should also be cautious not to get into a bind when a totally unexpected input is

given.

∑ The compiler designer needs to decide if error repair feature should be incorporated in the error

handler. Usually error repair is not very cost-effective except in situations where the input source

program is from beginners to programming.

There are several error-recovery strategies that can normally be applied in the error handler of a parser.

They are:

 Intermediate Code Generation 317

5.2.16 Example 8—Translation of Procedure Calls

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate

code for statements involving procedure calls using the productions and semantic actions described in

the preceding section. The icgen program implements the translation scheme using bottom-up translation

method. The program takes as input, a sample C input source with statements involving procedure calls.

The output of ‘icgen’ is the intermediate code in TAC format generated from the input C source. The dialog

below shows the icgen program taking in some sample input C sources, and printing out their intermediate

code in TAC format.

Generating the Parser from Grammar Specifications

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyser from Lexical Specifications

$ flex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyser

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building icgen Binary

$ g++ -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

Input file

$ cat -n test8.c
 1 int z;

 2

 3 int add_func(int a,int b)

 4 {

 5 int c;

 6

 7 c = a + b;

 8

 9 return(c);

 10 }

 11

 12 int main()

 13 {

 14 int v1,v2,v3,v4;

 15

 16 v1=10;

 17 v2=20;

 18

 19 v3=add_func(v1,v2);

 20

 21 z=v3+5;

 22 }

 23

xx Visual Walkthrough

308 Principles of Compiler Design

5.2.14 Example 7—Translation of Switch-case Statements

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate

code for switch-case statements using the productions and semantic actions described in the preceding

section. The icgen program implements the translation scheme using bottom-up translation method. The

program takes as input, a sample C input source with some switch-case statements. The output of ‘icgen’

is the intermediate code in TAC format generated from processing the input C source. The dialog below

shows the icgen program taking in some sample input C sources, and printing out their intermediate code in

TAC format.

Generating the Parser from Grammar Specifications

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyser from Lexical Specifications

$ flex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyser

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building icgen Binary

$ g++ -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

Input file

$ cat -n test7.c
 1 int z;

 2

 3 int

 4 func (int sel_exp, int a, int b)

 5 {

 6

 7 switch (sel_exp)

 8 {

 9 case 5:

 10 z = a + b;

 11 break;

 12 default:

 13 z = a - b;

 14 break;

 15 }

 16 z = z * b;

 17 }

Generating IC

$./icgen test7.c
 (0) proc_begin func

 (1) goto .L2

 (2) label .L0

 (3) _t0 := a + b

 (4) z := _t0

A Toy C Language compiler is built

progressively chapter by chapter using the

concepts explained in each chapter.

A TOY C COMPILER IMPLEMENTATION

 Code Optimisation 459

In the cases of programs containing multiple dead stores, repeated application of the above mentioned

criteria in the DAG and removal of DAG nodes, eliminates all of the dead stores in the basic block.

To summarise, the process of making the DAG, revising it, and the subsequent regeneration of the

optimised quads from the DAG helps in making the following optimising transformations within a basic

block (a) common sub-expression elimination (b) copy propagation (c) removal of redundant assignments

(d) constant folding and (e) dead store elimination.

7.2.9.8 Example 2—Local Optimisation using DAG This section demonstrates the toy C compiler

(mycc) performing local optimisation of intermediate code by making the transformations like common

sub-expression elimination, copy propagation, etc. The toy C compiler ‘mycc’ performs local optimisation

by (a) constructing the DAG from the un-optimised TAC (Algorithm 7.2) and (b) regenerating the optimised

quads from the DAG (Algorithm 7.3) as described in the preceding section.

The toy C compiler takes as input, a sample C input source and gives out (a) unoptimised TAC and

(b) the locally optimised TAC. The dialog below shows ‘mycc’ taking in some sample input C sources,

printing out unoptimised and locally optimised intermediate code in TAC format.

Generating the Parser from Grammar Specifications

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyzer from Lexical Specifications

$ flex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyzer

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building ‘mycc’ - A Toy Compiler for C Language

$ g++ -DCHAP7_EX2 -DICGEN -g -Wall ic_gen.cc optimise.cc target_code gen.cc mycc.cc
semantic_analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe

Common Sub-Expression Elimination Transformation

$ cat -n test2a.c
 1 /*

 2 Common Sub-expression

 3 */

 4 int a,b,c,d,e,f,g;

 5

 6 void func()

 7 {

 8

 9 int i,x;

 10

 11 a = (b + c)*d ;

 12 e = f * a ;

 13 f = (b + c)*e;

 14 g = d / (b + c);

 15

 16 }

$./mycc -i -O local -v test2a.c

Review Questions and Exercises provided

at the end of each chapter help the readers

reinforce their learning.

REVIEW QUESTIONS AND EXERCISES

16 Principles of Compiler Design

following chapters, we would also familiarise ourselves with tools that would help perform the tasks in that

phase easily. The examples in the chapters would illustrate the principles discussed therein.

A toy C compiler (mycc) is developed incrementally by adding the corresponding module as we

progress chapter by chapter in this book. We demonstrate the capabilities of the respective module in our

toy C compiler as we progress chapterwise. For example, the toy C compiler’s semantic analyser module

is demonstrated in Chapter 4—Semantic Analysis, the intermediate code generator module in Chapter 5—

Intermediate Code Generation, and so on.

 SUMMARY

A compiler is a software utility that translates code written in higher language like C or C++ into target

language. The target language is usually a low-level language like assembly language or machine

language. The job of the compiler can be split into two distinct stages, namely the front end and the

back end. The front end is responsible for translating the input source for compilation into a form

known as the Intermediate code, which is independent of the target processor architecture. The back

end converts the Intermediate code into the assembly language or the machine language of the target

processor. The front end and the back end can be logically divided into phases, where each phase

has a specifi c task to accomplish. The front end can be divided into lexical analysis, syntax analysis,

semantic analysis, intermediate code generation and intermediate code optimisation phases. The back

end can be split into target code generation and target code optimisation phases. We shall study about

each of the phases in detail in the forthcoming chapters. A compiler can be termed as a multi-pass or

a single-pass compiler depending on the number of times it reads the equivalent of the entire input

source in the form of tokens or parse tree or Intermediate code and likewise. The main data structures

involved in a compiler implementation are symbol table, literal table and optionally, a parse tree.

 REVIEW QUESTIONS AND EXERCISES

 1.1 What is a compiler? What is its primary function? What are its secondary functions?

 1.2 What are the other utilities that a compiler interacts with? Describe their functions.

 1.3 What is a front end and back end of a compiler? What are the advantages of breaking up the

compiler functionality into these two distinct stages?

 1.4 What are the different phases in a compiler? Explain each one of them.

 1.5 What is the difference between syntax analysis and semantic analysis? Give an example each for

an error found by the compiler during syntax analysis and semantic analysis.

 1.6 What is a ‘pass’ in a compiler? Differentiate between a multiple pass compiler and a single pass

compiler.

 1.7 Describe the common data structures used by a compiler.

 1.8 Write a simple ‘C’ language ‘Hello World’ program and compile it with the ‘gcc’ compiler to

generate an executable program. Invoke the ‘gcc’ compiler in verbose mode (–v) to identify all

the utilities that are used during the compilation process.

 Visual Walkthrough xxi

320 Principles of Compiler Design

 REVIEW QUESTIONS AND EXERCISES

 5.1 A compiler can choose one of the two options (a) Translate the input source into intermediate

code and then convert it to fi nal machine code; (b) Directly generate the fi nal machine code from

the input source. What is the preferred option and why?

 5.2 Describe the three address code form of the intermediate code. List out some of operators used in

three address code with examples.

 5.3 How can three address code be implemented in a compiler? Describe triples and indirect triples

method of implementing TAC with examples.

 5.4 Compare the different methods of implementing three address code.

 5.5 How is an abstract syntax tree different from a parse tree? List out some of the nodes in the AST

for a C compiler?

 5.6 Translate a C statement ‘a = b + c – (4*a*b + 3*c);’ into TAC. How are the binary operators like

+, –, etc., handled during the translation?

 5.7 Translate an array reference statement ‘a = b[c];’ into TAC. What are the main TAC operators

used during the translation? What attributes of a unary expression are used in translation of array

references?

 5.8 How is the offset calculated for a multidimensional array reference? Derive the formula.

 5.9 Translate the C statements ‘p=& arr[3]; *p=10;’ into TAC. What TAC operators are useful during

the translation of pointer accesses?

 5.10 Translate the C statement ‘x.age = 30;’ into TAC. Assume that the fi eld ‘age’ is at an offset of

20 bytes from the base of the structure. What are the common TAC operators used during the

translation of ‘struct’ references using the dot operator?

 5.11 Translate the C statement ‘ptrÆage=20;’. Assume that the fi eld ‘age’ is at an offset of 20 bytes

from the base of the structure. What are the common TAC operators used during the translation

of ‘struct’ references using the arrow operator?

 5.12 Translate the C statement ‘if (a<b){x=y;} m=20;’ into TAC. In a single pass compiler, how is the

translation of Boolean test expression (a < b) performed? How does it know about the labels to

jump on being true or false?

 5.13 Describe the backpatching technique. How is it used in the translation of an input C statement ‘if

((a < b) || (c < d)) {m = 20;} else {m = 10;} p = m;’?

 5.14 What are the data structures used during the translation of a ‘while’ statement? Illustrate the

usage of those data structures during the translation of a C statement ‘while (i < b){val = val *i;

i = i + 1;} m = val;’?

 5.15 How is a switch-case statement translated into TAC? Illustrate with an example.

 5.16 What are the calling and returning sequences? List out the TAC instructions generated during

both of these sequences by taking a sample C code snippet.

 5.17 What is the sequence of events in the called function during a procedure call? Illustrate with an

example.

 5.18 How is a call to a procedure translated into TAC? Illustrate with an example.

 5.19 State if the following statements are true or false:

 (a) The separation of a compiler into front end and back end is helpful in retargeting of the

compiler.

 (b) The separation of a compiler into front end and back end helps in adding support for a new

Each chapter material is accompanied

by a summary section that gives the

reader a quick glimpse of what has been

learnt in the chapter broadly.

SUMMARY

COMPILERS AN INTRODUCTION

Introduction
A compiler is a software utility that translates code written in

higher language like C or C++ into target language. The target

language is usually a low-level language like assembly language or

machine language. The translation from higher language to low-

level language is the primary job of the compiler. However, there

are other important secondary functions that the compilers provide

for helping the programmers develop software. Compilers provide

for reporting errors and warnings in the input higher-language

source to help the programmer in correcting them. Compilers allow

options to help debug the execution of the executable program

generated by it. Compilers off er options to generate extra ‘profi ling

code’ to report the statistics on the time taken by specifi c functions

in the input source at the run time. Today’s compilers off er many

other programmer-friendly features that help us develop software

quickly and correctly, meeting all the specifi ed requirements.

In this chapter, we study the process of transforming code

written in a higher language like C into an executable form. We

get an overview of how a compiler translates code written in a

higher level language like C or C++ into target language. The later

chapters develop on the ideas presented here to give a detailed

understanding of the compiler.

1

2 Principles of Compiler Design

1.1 THE BIGGER PICTURE

A compiler works in tandem with a few other utilities like preprocessor, assembler, linker and so on to

produce binaries that can be executed. In this section we look at the process of generating an executable

binary from a sample input program written in C and understand how these utilities fi t in.

Let’s start off with a sample C program (ex1.c) and see how we transform it into a binary that can be

executed. The following dialog shows the sample C program (ex1.c) being transformed into an executable

using GNU’s compiler collection (gcc)—a freely available compiler collection.

A Sample input C f le
$ cat -n ex1.c

 1
 2 #def ne SUCCESS 0
 3
 4 /* The function prototype for printf found in stdio.h */
 5 extern int printf(const char *, ...);
 6
 7 int main()
 8 {
 9 printf(“Hello World\n”);
 10
 11 /* returning 0 to the Operating system */
 12 return(SUCCESS);
 13 }

Creating an executable from sample input f le using the GNU C compiler system
$ gcc -Wall ex1.c -o ex1

Invoking the executable

$./ex1

Hello World

From the above dialog, we can understand that the GNU compiler collection (gcc) binary is invoked

with the input C source fi le as the argument for compilation. This outputs an executable ex1, which can be

invoked on the command line to get the desired effect. The above dialog abstracts us from a lot of behind-

the-scene activity that is involved in conversion of the input C fi le into executable.

Let’s try out the compilation of the same C program (ex1.c), this time with extra options to ‘gcc’ in

order to know all the utilities that get involved in the transformation of ex1.c to an executable binary. The

following dialog shows the compilation of ex1.c with gcc using the extra options for getting a detailed

account of the compilation.

Compiling with verbose option and preserving the intermediate f les

$ gcc --save-temps --verbose ex1.c -o ex1

Reading specs from /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/specs

gcc version 2.95.3-5 (cygwin special)

 /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/cpp0.exe -lang-c -v -D__GNUC__=2 -D__GNUC_MINOR__=95 -

D_X86_=1 -D_X86_=1 -Asystem(winnt) -Acpu(i386) -Amachine(i386) -Di386 -D__i386 -D__i386__ -Di686 -

Dpentiumpro -D__i686 -D__i686__ -D__pentiumpro -D__pentiumpro__ -

D__stdcall=__attribute__((__stdcall_)) -D__cdecl=__attribute__((__cdecl__)) -

D_stdcall=__attribute__((__stdcall__)) -D_cdecl=__attribute__((__cdecl__)) -

D__declspec(x)=__attribute__((x)) -D__CYGWIN32__ -D__CYG WIN__ -Dunix -D__unix__ -D__unix -isystem/

usr/local/include -idirafter /usr/include -idirafter /usr/include/w32api ex1.c ex1.i

 Compilers—An Introduction 3

GNU CPP version 2.95.3-5 (cygwin special) (80386, BSD syntax)

#include “...” search starts here:

#include <...> search starts here:

 /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/include

 /usr/include

 /usr/include/w32api

End of search list.

The following default directories have been omitted from the search path:

End of omitted list.

 /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/cc1.exe ex1.i -quiet -dumpbase ex1.c -version -o ex1.s

GNU C version 2.95.3-5 (cygwin special) (i686-pc-cygwin) compiled by GNU C version 2.95.3-5
cygwin special).

 /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/../../../../i686-pc-cygwin/bin/as.exe -o ex1.o ex1.s

 /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/collect2. exe -Bdynamic--dll-search-pref x=cyg -o

ex1.exe /usr/lib/crt0.o -L/usr/local/lib -L/usr/lib -L/usr/lib/w32api -L/usr/lib/gcc-lib/i686-pc -
cygwin/2.95.3-5 ex1.o -lgcc -lcygwin -luser32 -lkernel32 -ladvapi32 -lshell32 -lgcc

You can see from the above verbose dialog that there are 4 programs (shaded in gray) that get invoked

internally for transforming the input source ex1.c into an executable ex1.exe. They are:

 1. The pre-processor program (cpp0.exe)

 2. The compiler (cc1.exe)

 3. The assembler (as.exe)

 4. The linker (collect2.exe)

Each one of these invocations is shaded in gray in the above dialog.

The pre-processor program (cpp0.exe) is the fi rst program to get invoked. The main functions of

a preprocessor are (a) to substitute the macros (like #defi ne SUCCESS in the above example) with the

exact value; (b) strip comments in the input fi le before parsing and (c) include the header fi les given by

the #include statements. All the lines in the input C fi le having a ‘#’ sign as the fi rst character are handled

by the pre-processor. The output of the pre-processor program is given by the fi le with ‘.i’ extension. Let’s

check out the pre-processed output fi le of the above example.

The pre-processed output f le - ex1.i

$ cat -n ex1.i

 1 # 1 “ex1.c”

 2

 3

 4

 5

 6 extern int printf(const char *, ...);

 7

 8 int main()

 9 {

10 printf(“Hello World\n”);

11

12

13 return(0);

14 }

4 Principles of Compiler Design

The reader can verify in the pre-processed output fi le that the comment lines have been stripped out. The

return statement in line 13 now uses the actual value of 0 instead of SUCCESS.

The C compiler (cc1.exe) is the next program that gets invoked. This takes the pre-processed fi le

(ex1.i) as input and creates an assembly language output stored in a fi le ex1.s. This is the compiler

functionality that we are attempting to understand as the core of this book. The compiler utility translates

code written in C programming language (after pre-processing) into target assembly language. The

assembly language output fi le (ex1.s) created for the sample C program that we compiled is shown below.

The assembly language output f le - ex1.s

$ cat -n ex1.s

 1 .f le “ex1.c”

 2 gcc2_compiled.:

 3 __gnu_compiled_c:

 4 .def ___main; .scl 2; .type 32; .endef

 5 .text

 6 LC0:

 7 .ascii “Hello World\12\0”

 8 .align 4

 9 .globl _main

10 .def _main; .scl 2; .type 32; .endef

11 _main:

12 pushl %ebp

13 movl %esp,%ebp

14 subl $8,%esp

15 call ___main

16 addl $-12,%esp

17 pushl $LC0

18 call _printf

19 addl $16,%esp

20 xorl %eax,%eax

21 jmp L2

22 .align 4

23 L2:

24 movl %ebp,%esp

25 popl %ebp

26 ret

27 .def _printf; .scl 2; .type 32; .endef

The third step is the invocation of assembler (as.exe) to convert the assembly fi le ex1.s into a relocatable

object fi le ex1.o. The relocatable object fi le is not in human readable form. There are several formats for the

relocatable object fi le. Some of the common object fi le formats are ELF(Executable and Linking Format)

and COFF (Common Object File Format). We can check out which format our sample program has been

converted to by using a convenience utility called the ‘fi le’ to give out the characteristics of the object fi le.

The dialog below tells us that the object fi le ex1.o is in COFF Format.

Figuring out the object f le format

$ fi le ex1.o

ex1.o: 80386 COFF executable not stripped - version 30821

The fourth and fi nal step is the invocation of the linker (collect2.exe) to generate the executable ex1.exe

given the object fi le ex1.o as the input. The linker utility links the relocatable object fi le (ex1.o) with the

 Compilers—An Introduction 5

system-wide start up object fi le (crt0.o) and makes an executable. The linker also links the ex1.o fi le with

other system-wide libraries, including the C library containing the function defi nitions for printf, scanf, etc.

The libraries that are used by the linker are the ones given by –l option during the invocation of linker. The

output of the linker is an executable (ex1.exe) that can be invoked on the command line. The dialog below

shows us that the fi nal executable ex1.exe is a MS Windows binary for Intel 80386, which can be invoked

on the console.

The properties of the executable ex1.exe

$ fi le ex1.exe

ex1.exe: MS Windows PE Intel 80386 console executable not relocatable

The whole process of transforming an input C source fi le into an executable binary is summarised

in Fig. 1.1.

Fig. 1.1 Transforming an input C-source fi le into an executable

Even though Fig. 1.1 shows the transformation of an input source fi le written in C language into an

executable form, the steps are similar for other compiled languages also.

1.2 THE COMPILER

The main focus of the book is to understand the details of working of a compiler, i.e. the step2 of Fig. 1.1.

The compiler takes the pre-processed fi le as the input and translates it into an equivalent assembly language

fi le. In this section, we will get an overview of how a compiler translates a pre-processed input fi le into an

assembly language fi le.

The translation of the input source (pre-processed fi le) into target assembly language fi le can be divided

into two stages called as front end (or analysis) and back end (or synthesis).

The front end of the compiler transforms the input source into intermediate code. The intermediate code

(sometimes called intermediate representation—IR) is a machine-independent representation of the input

source program.

6 Principles of Compiler Design

The back end of the compiler takes the machine-independent intermediate

code and generates the target assembly language program. The backend

deals with machine-specifi c details like the registers, number of allowable

operators, and so on.

Figure 1.2 illustrates the two-stage design approach of a compiler using C

language source fi le as the input.

The main advantages of having this two-stage approach are:

∑ The compiler can be extended to support an additional processor by

adding the required back end of the compiler. The existing front end is

completely re-used in this case. This is illustrated in Fig. 1.3.

∑ The compiler can be easily extended to support an additional input

source language by adding the required front end. In this case, the back

end is completely re-used. This is illustrated in Fig. 1.4.

Fig. 1.3 Supporting an additional processor by adding back end

Fig. 1.4 Supporting an additional language by adding front end

Fig. 1.2 Front end and

back end of the compiler

 Compilers—An Introduction 7

1.2.1 Front End
The front end of the compiler is responsible for analysing the input source by breaking it into smaller

entities, checking the syntax, verifying the semantics (meaning) and generating intermediate code. In this

section, we learn about the front end of the compiler in more detail.

The front end is sub-divided into phases, where each phase is responsible for performing certain specifi c

tasks. The front end of the compiler consists of the following phases (refer to Fig. 1.5).

∑ Lexical analysis

∑ Syntax analysis

∑ Semantic analysis

∑ Intermediate code generation

∑ Intermediate code optimisation

Fig. 1.5 The phases in front end of compiler

In lexical analysis, the input source is broken up into a small meaningful sequence of characters called

tokens. The tokens are the basic units of the programming language, which cannot be broken up further.

Some examples of tokens in C programming language are Identifi ers (user defi ned variables), keywords

(like while, for), punctuation marks (like left brace/right brace, etc.) and operators (like + and –). Figure

1.6 shows how the input source is broken up into tokens during lexical analysis. The lexical analysis of the

input source program can be compared to breaking up of a sentence into discrete words, which form the

basic units in a natural language.

In syntax analysis, the tokens are grouped together and checked, if they form a valid sequence as defi ned

in the programming language. A context-free grammar specifi es the rules or productions for identifying

constructs that are valid in a programming language. The productions can be compared to the rules of

grammar in natural languages.

8 Principles of Compiler Design

Fig. 1.6 The lexical analysis

To get a feel of the context-free grammar and syntax analysis, let’s consider a small set of grammar rules

that can be used to recognise a few English sentences.

 1. A sentence consists of a noun phrase followed by a verb phrase.

 2. A noun phrase consists of an article followed by a noun.

 3. An article can be the word ‘a’ or ‘an’ or ‘the’.

 4. A verb phrase consists of verb followed by noun phrase.

 5. A noun can be the word ‘boy’ or ‘bicycle’.

 6. A verb can be the word ‘rides’.

The above grammar rules can be written in context-free grammar as shown in Table 1.1. The rule 1 in

Table 1.1 says that a sentence consists of a noun phrase followed by a verb phrase. The symbol ‘:=’ is used

 Compilers—An Introduction 9

to denote ‘consists of’. The rule 3 in Table 1.1 tells us that an article can be ‘a’ or ‘an’ or ‘the’. The symbol

‘|’ is used to indicate a ‘or’ option.

 Table 1.1 Context-free grammar for recognising a few English

 sentences

1 <sentence > ::= <noun_phrase> <verb_phrase>

2 <noun_phrase> ::= <article> <noun>

3 <article> ::= a | an | the

4 <verb_phrase> ::= <verb> <noun_phrase>

5 <noun> ::= boy | bicycle

6 <verb> ::= rides

The following are valid sentences conforming to the language described by the syntax rules in

Table 1.1.

The boy rides a bicycle.

A boy rides a bicycle.

The boy rides the bicycle.

In a similar way for a programming language, a simple C assignment statement can be defi ned using the

context-free grammar shown in Table 1.2. Production 1 states that a C statement consists of an identifi er

followed by an equal to (‘=’) sign, followed by a C expression followed by a semi-colon. Production 2

states that a C expression can be a constant. Production 3 states that C expression can be an identifi er.

Production 4 states that a C expression can be a C expression followed by a ‘+’ operator followed by

another C expression. Observe that the fourth production is recursive in nature. The tokens that are used in

these rules are IDENTIFIER, CONSTANT, ‘=’ , ‘;’ and ‘+’.

Table 1.2 Context-free grammar for a simple C assignment statement

1 <c_statement > ::= IDENTIFIER ‘=’ <c_expression> ‘;’

2 <c_expression> ::= CONSTANT

3 | IDENTIFIER

4 | <c_expression> ‘+’ <c_expression>

The context-free grammar in Table 1.2 recognises the following C statements:

 x = y + 5;

 x = y + z + 5;

The outcome of syntax analysis can be a parse tree. A parse tree is a record of which productions have

been used to ascertain that the input is part of the language. Figure 1.7 shows visually the parse tree of an

input C statement (x = y + z;) using the context-free grammar Table 1.2. The parse tree for an input English

sentence (The boy rides a bicycle) using the context-free grammar in Table 1.1 is also shown in Fig. 1.7.

In semantic analysis, we check if the syntactically correct statements make a meaningful reading. For

example, a statement in the input source program ‘x = y + 2;’ would not make a meaningful read if say x

is the name of a function or array and y is a fl oat type of variable. This statement might be syntactically

acceptable by the productions of the context-free grammar in syntax analysis, but would not hold out during

semantic analysis because the data types of x and y are not compatible. In natural language parlance, this

is very similar to having a grammatically correct sentence, but devoid of meaning. For example, the syntax

rules in Table 1.1 would also accept a sentence “The bicycle rides the boy”. This sentence does not make

10 Principles of Compiler Design

sense, so we would reject it during semantic analysis. In a similar way, a C statement ‘myfunc=y;’, where

myfunc is the name of a function and y, a fl oat type might be acceptable in syntax analysis, but would

be rejected in semantic analysis since the data types of left-hand side and right-hand side do not match.

Most of the semantic analysis revolves around such type checking. Other tasks in semantic analysis involve

detection of undeclared variables, access violations and so on. The result of semantic analysis is annotating

the parse tree with more information on the data types.

Fig. 1.7 Syntax analysis

In the intermediate code generation phase, we walk through the annotated parse tree and generate

intermediate code. Three-address code (TAC) is one of the common forms of Intermediate code. Three-

address code is a sequence of instructions, each of which can have at most three operands. Table 1.3

shows a sample input source and its equivalent Intermediate code. The variables t2, t3, etc. shown in the

intermediate code are compiler generated temporary variables. We use the three-address code intermediate

 Compilers—An Introduction 11

form extensively in this book. However, other forms of intermediate code like directed acyclic graphs

(DAG), etc. would also be studied in later chapters.

Table 1.3 Intermediate code

Input C Statement Intermediate Code

v4 = v5 + 34 - (45 *v1 - v2); t2 := v5 + 34
t3 := 45 * v1
t4 := t3 - v2
t5 := t2 - t4
v4 := t5

In the intermediate code optimisation phase, the intermediate code is optimised by using several

techniques, like elimination of common sub-expressions, elimination of unreachable code segments,

elimination of statements that are not modifi ed in the loop, and so on. Table 1.4 shows an Intermediate code

segment before and after elimination of common sub-expression.

Table 1.4 Intermediate code optimisation

Input C Statement Intermediate Code Intermediate Code after elimination of Common

sub-expression

a = b + c * d ; t1: = c * d t1 : = c * d
e = a + c * d ; a : = b + t1 a : = b + t1

t2: = c * d e : = a + t1
e : = a + t2

The optimised Intermediate code emerging out of the Intermediate code optimisation phase is passed on

to the back end of the compiler for generation of target code.

1.2.2 Back End

The back end of the compiler is responsible for translating the machine-independent intermediate code into

the target assembly language. The back end of the compiler depends on the target processor, where the fi nal

binary would be executed. In this section, we study about the back end of the compiler in greater detail.

The back end of the compiler consists of the following phases (refer to Fig. 1.8).

∑ Target code generation

∑ Target code optimisation

Fig. 1.8 Phases in the back end of the compiler

In target code generation phase, the intermediate code is translated into machine or assembly code.

12 Principles of Compiler Design

In this phase, we associate memory locations with the variables and choose the appropriate assembly

instructions depending on the target processor. The output of this phase is target code in the form of

assembly language of the target hardware. Table 1.5 shows a segment of intermediate code and the

generated target code in x86 assembly language (AT&T syntax) for the same.

Table 1.5 Target code

Intermediate Code Target Code (x86 Assembly)

x := y + z movl _y, %eax
addl _z,%eax
movl %eax,_x

In the target code optimisation phase the target code is transformed into a more effi cient target code. The

code optimisation phase considers better usage of registers, usage of machine-specifi c idioms or features of

the processor like specialised instructions, pipelinings, and so on to make the generated target code more

effi cient. This phase also looks at replacing expensive operations like exponentiation by multiplication if

possible. An example of target code in x86 assembly being optimised by using an auto-increment machine

idiom is shown in Table 1.6.

Table 1.6 Target code optimisation

Intermediate Code Target Code (x86 Assembly) before

Code Optimization

Target Code (x86 Assembly) after

Code Optimization

x := x + 1 movl _x, %eax incl _x

addl $1,%eax

movl %eax,_x

Table 1.7 gives the summary of the various phases and the tasks associated with them.

Table 1.7 Compiler phases and the tasks

Phase Tasks

1 Lexical Analysis Breaking up of the input source into tokens. Some examples of tokens are identifi ers,

constant, strings, punctuation marks (like ‘;’), operators. Adding identifi ers into symbol

table. Adding strings (like “Hello World”) and constants into literal table.

2 Syntax Analysis Group the tokens to see if they form a valid sequence as defi ned in the language. Add data-

type Information to the symbol table entry.

3 Semantic Analysis Perform data type checks to determine, if the data types of the operands are compatible and

report errors for incompatible ones.

4 Intermediate Code

Generation

Generate the intermediate code. The intermediate code is independent of the target machine.

5 Intermediate Code

Optimisation

The generated intermediate code is optimised by eliminating common sub-expressions,

unreachable code segments, statements that are not modifi ed in the loop, and so on.

6 Target Code

Generation

Generation of target code (assembly language) from the intermediate code. Associating

memory locations with the variables.

7 Target Code

Optimisation

Optimise the target code by using machine-specifi c idioms or features of the processor

like specialised instructions, pipe lining, and so on. Replacing expensive operations like

exponentiation by multiplication, if possible.

 Compilers—An Introduction 13

1.3 COMPILER IMPLEMENTATION

In this section, we consider ways of implementing a compiler based on 2-stage analysis-synthesis model as

illustrated in Fig. 1.9, consolidating the phases in the front end and back end of the compiler. This section

also gives us familiarity with some of the terminology used in the compiler implementations.

A simple and modular way of implementing a compiler based on the model shown in Fig. 1.9 is to have

each phase as a module, with the input and output as specifi ed in the fi gure itself. The lexical analysis

module would scan the entire input source program, break it up into tokens and output the entire list of

tokens. The syntax analysis module would take the entire list of tokens and create a parse tree that is

representative of the entire source program. Next, the

semantic analysis module would take the parse tree,

perform type checking and annotate it with data-type

information. In this manner, we can have modules

for intermediate code generation, optimisation, and

so on, where the module transforms the input and

gives an output in accordance with Fig. 1.9. In this

implementation, each of the modules runs through an

input representative of the entire source program in

some form (like tokens or parse tree or Intermediate

code, etc.) and creates an output representative

of the entire source program in same or different

form. Each time we read through a representation

of the entire program, we term it as a pass. This

type of implementation, where we read through a

representation of entire source program multiple

times is called as multi-pass compiler. Going

by this approach of having a pass for each of the

phases in Fig. 1.9, we would have a 7-pass compiler

implementation.

Another way of implementing the compiler based

on the model shown in Fig. 1.9 is to club several

phases into one pass. For example, let’s say we

 1. Read a single token [lexical analysis].

 2. If the token sequence matches a grammar

rule go to step 3, else go to step 1 [syntax

analysis].

 3. Perform the semantic check for the matched

grammar construct [semantic analysis].

 4. Generate intermediate code for the matched grammar construct [intermediate code generation]

We can keep on repeating the sequence 1 through 4 above until the entire input source program is

completely read. In this case the lexical analysis, syntax analysis, semantic analysis and Intermediate

code generation are all performed in one single pass. Observe the control alternating among these phases

in this implementation. The interface between each of these phases would be an implementation choice.

However, the output of the complete pass remains as intermediate code in this case. Figure 1.10 shows a

4-pass compiler design, where we have clubbed the lexical analysis, syntax analysis, semantic analysis and

intermediate code generation into one single pass and have a pass each for the rest of the phases. Typically,

Fig. 1.9 The front end and the

 back end of compiler

14 Principles of Compiler Design

optimisation phases requires several passes

because it involves looking at multiple

instructions at one time to decide on a

optimising method. In theory, if we eliminate

optimisation, it is possible to have a single

pass compiler for some of the programming

languages like C.

Multi-pass compilation requires more

memory since we need to store the output of

each phase in totality. Multi-pass compiler

also takes a longer time to compile, since it

involves reading of the input in different

forms (tokens, parse tree, etc.) multiple

number of times.

In practice, compilers are designed with

the idea of keeping the number of passes to as

minimum as possible. The number of passes

required in a compiler to process an input

source program depends on the structure of

the programming language. Compilers for

some of the programming languages like C

can be implemented in a single pass, while a

PL/1 or ALGOL 68 compiler cannot be implemented in a single pass. The programming languages PL/1

or ALGOL 68 allow for variables to be used before declaring them. This makes it hard to design a single

pass compiler for them, since semantic analysis cannot be performed without the knowledge of the variable

type.

1.4 DATA STRUCTURES IN A COMPILER

The various phases of compilers interact using some common data structures. There are two important

tables that are used by various phases during the compilation. They are:

 1. Symbol table

 2. Literal table

A symbol table contains information with regard to the identifi ers used in the input source program.

Each entry in the symbol table corresponds to a symbol (Identifi er) and contains details like the name of

the symbol, the data type, size (the amount of memory required), and so on. Typically, an entry is made

into the symbol table at the lexical analysis phase. The entry is updated and looked up in different phases

of the compiler. In the syntax and semantic analysis phases, the entry is updated for details like the size

and data type of the variable. During the target code generation phase, the size of the variable is used for

generating appropriate target assembly code. In some compilers, there are symbol tables for every function

along with a global symbol table (as shown in Fig. 1.11). These symbol tables might be maintained in a list

or a stack. Another common scheme is to have a single symbol table for all the identifi ers in the program

with scope information present in the entry. The symbol table is accessed very frequently during the

compilation of a program. A hash table is usually used for implementing a symbol table, mainly due to fast

look-up capability.

Fig. 1.10 A four-pass compiler

 Compilers—An Introduction 15

Fig. 1.11 Symbol table and literal table for a sample input source

A sample input C source and its corresponding symbol tables created in a compiler are shown in

Fig. 1.11. Observe that each entry in the symbol table contains details like the name and the size of the

variable (memory occupied) along with some other information that would be used in different phases of

the compiler. The information shown in each entry of the symbol table in Fig. 1.11 is very preliminary. In

practice there is much more information fi lled in for each entry.

A literal table stores the strings and constants found in the input source program. The main function

of the literal table is to conserve memory by re-using the constants and the strings. In literal table, the

information is usually entered at the time of lexical analysis and looked up during the target code generation.

A sample input C source and its corresponding literal table created in a compiler are shown in Fig. 1.11.

The intermediate code is passed between the front end and the back end of the compiler. The

intermediate code is also optimised during the optimisation phase. It is usually stored in an array/ linked list

of structures for facilitating easy reorganisation.

In compilers using a pass each for lexical, syntax and semantic analysis, the parse tree is another

important data structure under consideration. It is usually implemented using a pointer-based structure,

where the parent and children contain pointers to each other for facilitating quick traversal.

1.5 STUDY PLAN

This book is organised in accordance with the various phases of the compiler shown in Table 1.7, with

a chapter being devoted to each one of the phases. During the discussion on the individual phases in the

16 Principles of Compiler Design

following chapters, we would also familiarise ourselves with tools that would help perform the tasks in that

phase easily. The examples in the chapters would illustrate the principles discussed therein.

A toy C compiler (mycc) is developed incrementally by adding the corresponding module as we

progress chapter by chapter in this book. We demonstrate the capabilities of the respective module in our

toy C compiler as we progress chapterwise. For example, the toy C compiler’s semantic analyser module

is demonstrated in Chapter 4—Semantic Analysis, the intermediate code generator module in Chapter 5—

Intermediate Code Generation, and so on.

 SUMMARY

A compiler is a software utility that translates code written in higher language like C or C++ into target

language. The target language is usually a low-level language like assembly language or machine

language. The job of the compiler can be split into two distinct stages, namely the front end and the

back end. The front end is responsible for translating the input source for compilation into a form

known as the Intermediate code, which is independent of the target processor architecture. The back

end converts the Intermediate code into the assembly language or the machine language of the target

processor. The front end and the back end can be logically divided into phases, where each phase

has a specifi c task to accomplish. The front end can be divided into lexical analysis, syntax analysis,

semantic analysis, intermediate code generation and intermediate code optimisation phases. The back

end can be split into target code generation and target code optimisation phases. We shall study about

each of the phases in detail in the forthcoming chapters. A compiler can be termed as a multi-pass or

a single-pass compiler depending on the number of times it reads the equivalent of the entire input

source in the form of tokens or parse tree or Intermediate code and likewise. The main data structures

involved in a compiler implementation are symbol table, literal table and optionally, a parse tree.

 REVIEW QUESTIONS AND EXERCISES

 1.1 What is a compiler? What is its primary function? What are its secondary functions?

 1.2 What are the other utilities that a compiler interacts with? Describe their functions.

 1.3 What is a front end and back end of a compiler? What are the advantages of breaking up the

compiler functionality into these two distinct stages?

 1.4 What are the different phases in a compiler? Explain each one of them.

 1.5 What is the difference between syntax analysis and semantic analysis? Give an example each for

an error found by the compiler during syntax analysis and semantic analysis.

 1.6 What is a ‘pass’ in a compiler? Differentiate between a multiple pass compiler and a single pass

compiler.

 1.7 Describe the common data structures used by a compiler.

 1.8 Write a simple ‘C’ language ‘Hello World’ program and compile it with the ‘gcc’ compiler to

generate an executable program. Invoke the ‘gcc’ compiler in verbose mode (–v) to identify all

the utilities that are used during the compilation process.

 Compilers—An Introduction 17

 1.9 Compile a simple ‘C’ language ‘Hello World’ source program using gcc with - -save-temps option

to save the intermediate fi les after each step in the compilation process. Identify the output fi le

after each of the steps, namely the pre-processing, compiling, assembling and linking. Use the

‘fi le’ utility to know more about each of the output fi les.

 1.10 Does the ‘gcc’ compiler collection follow the analysis-synthesis model during compiler

development? Are the benefi ts of using analysis-synthesis model obvious?

LEXICAL ANALYSIS

Introduction
 Lexical analysis is the fi rst stage in the compilation of a source
program written in higher-level language like C or C++. The lexical
analyser reads the input source program and produces as output, a
sequence of tokens that the parser uses for syntax analysis. Consider
for example a C program as input to the lexical analyser. The lexical
analyser separates the input C program into various types of tokens
like keywords, identifi ers, operators, and so on as shown in Fig. 2.1.

Fig. 2.1 Lexical analysis

2

 Lexical Analysis 19

Comments and white space (like tab, blank, new line) do not infl uence code generation.
The lexical analyser strips out the comments and white space in the source program.
For example, in Fig. 2.1, the lexical analyser stripped out the white space (line 5),
comment (line 6) of the input C program and did not return them as tokens.

The part of the input stream that qualifi es for a certain type of token is called as
 lexeme. For example, in line 4 of the input the letters ‘int’ qualifi es for a keyword in C
language. ‘int’ is called as lexeme in this case. The other lexemes shown in Fig. 2.1 are
‘main’ (token type is identifi er), ‘for’ (token type is keyword), etc.

The lexical analyser keeps track of the new line characters, so that it can output the
line number with associated error messages, in case of errors in the input source
program. This is extremely useful for the programmer to correct syntax errors.
For example, consider the C program shown in the dialog below in which the line 5
does not end with a semicolon (;). On trying to compile it using GNU C compiler, the
following output was observed:

An input C program. A semicolon (;) is missing in Line 5

$ cat -n test1.c

1 #include <stdio.h>

2

3 int main()

4 {

5 printf (“Hello World \n”)

6 return(0);

7 }

Compiling the C program

$ gcc test1.c -o test1

test1.c: In function ‘main’:

test1.c:6: error: parse error before “return”

The error message in the dialog indicates that a parse error was encountered on line
6, before the token ‘return’. This message indicating the line number was possible
because the lexical analyser kept a count of the number of new lines that it has
encountered till that point of the source program.

The lexical analyser in conjunction with the parser is responsible for creating symbol

table, a data structure containing information that is used in various stages of the
compiler. The symbol table consists of entries describing various identifi ers used in
the source program. Typically, each entry in the symbol table consists of the lexeme
of the identifi er and all the attributes associated with it. While some of the attributes
pertaining to an entry are fi lled in at lexical analyser/parser level, the other attributes
in the entry would be progressively fi lled by subsequent stages of compilation. As an

20 Principles of Compiler Design

example, consider a C program shown in Fig. 2.2. The lexical analyser in tandem with
the parser would make an entry in the symbol table, indicating that the lexeme main is
an identifi er. The subsequent stages in compilation could add more information with
respect to the entry, like the number of bytes of storage required for it, the position
in the memory layout for the program, and so on. The symbol table is typically stored
as a hash indexed on the lexeme.

Fig. 2.2 Creation of symbol table

2.1 ELEMENTS OF LEXICAL ANALYSIS

In the last section, we discussed the tasks that the lexical analyser does. We understood that the primary

task of a lexical analyser is to break up the input source program into a sequence of tokens like identifi er,

keyword, string literals, constants, and so on. In this section, we discuss how a lexical analyser is made.

A lexical analyser for a specifi c programming language can be constructed by taking the input character-

by-character and then checking in for various constructs of that language. For example, a lexical analyser

for C language can take the input character-by-character and check if it is a keyword (like ‘int’ or ‘char’

or ‘switch’ or ‘break’, etc.) or operator or identifi er or string literal, etc. Similarly a pascal lexical analyser

can take in character-by-character and check if the input is a keyword (like ‘FORMAT’ or ‘READ’, etc.)

or operator or identifi er or string literal, etc. The difference between the C lexical analyser and the pascal

lexical analyser is that the rules that defi ne how to identify keyword, operator, identifi er or a string literal

will vary. For example, in C language, the keywords are ‘switch’, ‘case’, ‘int’, etc., while in pascal the

keywords are ‘record’, ‘var’, ‘then,’ etc.

There are several diffi culties with the above-mentioned approach of having the knowledge of the

language tightly coupled with the lexical analyser:

 Lexical Analysis 21

� A lot of design/coding effort goes into parsing of the input that could be common to lexical analysers

of any programming language.

� The complexity of the lexical analyser would be very high and adding a new construct to an existing

language could become diffi cult.

� Developing a lexical analyser for a new language would be cumbersome and involve almost the same

effort as any of the ones previously developed.

In order to overcome the diffi culties mentioned above and facilitate the development of lexical analysers

for any language easily, lexical analyser generators are used. A lexical analyser generator is a tool that

can generate a code to perform lexical analysis of the input, given the rules for the basic building blocks

of the language. The rules for the basic building blocks of a language are called its lexical specifi cations.

An example will make the terms clear. Assume that we are interested in developing lexical analyser for C

language that can break up a C language program into tokens. In order to develop such a lexical analyser,

we need to supply the lexical specifi cations for C language to a lexical analyser generator. The lexical

analyser generator then transforms the lexical specifi cations into a lexical analyser that can be used to

tokenize an input C program. This is illustrated in Fig. 2.3.

Fig. 2.3 Lexical specifi cations, lexical analyser generator and lexical analyser

The lexical specifi cations for any programming language consists of information about identifying

each and every token that is defi ned for it. For example, the lexical specifi cations for C language would

typically contain information about identifying keywords (‘for’, ‘switch’ ‘case’, etc.), operators (<, >, =

etc.), identifi er (starts with alphabet can have digits within it), string literal (within quotes), etc.

22 Principles of Compiler Design

1. Specify the tokens and their associated actions in a lexical specifi cation fi le usually with a ‘.l’

extension.

2. Compile the lexical specifi cations given in step 1 above using fl ex to generate a C fi le lex.yy.c.

3. Compile lex.yy.c using a C compiler to generate a binary fi le, which is the lexical analyser that

transforms an input stream into a sequence of tokens.

This is shown in Fig. 2.4.

Fig. 2.4 Lexical analyser generation using fl ex

To make the 3-step procedure clear, let’s create a lexical analyser to split an English sentence into

individual words. This lexical analyser will take an input fi le containing English sentences and tokenises

them into individual words.

The lexical specifi cation fi le to split an English sentence into individual words is ‘words.l’ shown in

Listing 2.1. The contents and format of the lexical specifi cation fi le ‘words.l’ will form the topic of

discussion for the next section. For the illustration of the 3-step procedure, it suffi ces to assume that ‘words.

l’ fi le has already been created. The following dialog illustrates the 3-step procedure outlined in Fig. 2.4.

The creation of words.l fi le is Step 1 . It is not shown here

Compiling the lexical specifi cation fi le, Step 2

$ fl ex words.l

lex.yy.c generated by previous command

Compiling it to build lexical analyzer, Step 3

$ gcc lex.yy.c -o eng_lex_analyzer -lfl

Input to lexical analyzer

$ cat -n sentence

 1 The Quick Brown Fox jumps over a Lazy Dog

 Lexical Analysis 23

lexical Analyzer at work on the input fi le

$./eng_lex_analyzer sentence

Lexeme=[The] length=3 Token is WORD

Lexeme=[Quick] length=5 Token is WORD

Lexeme=[Brown] length=5 Token is WORD

Lexeme=[Fox] length=3 Token is WORD

Lexeme=[jumps] length=5 Token is WORD

Lexeme=[over] length=4 Token is WORD

Lexeme=[a] length=1 Token is WORD

Lexeme=[Lazy] length=4 Token is WORD

Lexeme=[Dog] length=3 Token is WORD

2.1.1 Lexical Specifi cations
In the previous section, we learnt that lexical analyser could be generated from a lexical specifi cation fi le by

using lexical analyser generator tools like fl ex. This section focuses on the composition of a lexical specifi cation

fi le.

A notation called the regular expressions is used to write lexical specifi cations. We shall fi rst study

the notation (Section 2.1.1.1), followed by an explanation of how a lexical specifi cation fi le is structured

(Section 2.1.1.2) and later write lexical specifi cations of C language (Section 2.1.2).

2.1.1.1 Regular Expressions A regular expression is a pattern that describes a set of strings. The

simplest regular expression is the one that matches a single character. For example a regular expression ‘s’

matches any input string where letter s is present like say sink, base, start, boost, etc.

In order to understand the concepts of regular expressions (RE’s), we shall use a utility ‘ egrep’ (extended

global regular expression print) available on UNIX, LINUX and other platforms. This utility can be used to

try out various regular expressions and verify if the expected strings are matched or not. It is invoked in the

following form:

$ egrep –n –e ‘Regular Expression’ fi le1 fi le2 ……

This utility searches fi le1, fi le2, fi le3, etc. for lines containing a match to the specifi ed regular expression.

We use a fi le ‘my_input’ having the following lines as shown by the ‘cat’ command for trying out various

regular expressions throughout this section.

-n option for showing line numbers

$ cat -n my_input

 1 sink

 2 base

 3 start

 4 dog

 5 goat

 6 boost

 7 easter

 8 ported

 9 global

 10 boss

 11 labs

We can try out the regular expression that matches a single character s for the fi le ‘my_input’

24 Principles of Compiler Design

Match any line with s

$ egrep -n -e ‘s’ my_input

1:sink

2:base

3:start

6:boost

7:easter

10:boss

11:labs

Two regular expressions concatenated form a regular expression that recognises a match of fi rst regular

expression followed by a match of second. For example, a regular expression ‘st’ matches any input where

letter s is followed by a t like say start, boost, easter, etc.

Character s followed by t

$ egrep -n -e ‘st’ my_input

3:start

6:boost

7:easter

There are some characters in the regular expressions, which have special meaning. They are called meta

characters. Table 2.1 gives a summary of all the meta characters used in regular expressions.

Table 2.1 Meta characters in regular expressions

Meta character Description

. Matches any character except a new line.

For example, a regular expression ‘a.’ matches ‘a’ followed by any character like b or c, etc.

except a new line. Some strings that match the regular expression ‘a.’ are ‘bat’, ‘mad’, ‘car’, etc.

^ Matches the start of the line.

For example, a regular expression ‘^A’ matches any line that starts with ‘A’. Some lines that

match regular expression ‘^A’ are:

A thing of beauty is a joy forever

A fool and money are soon parted

$ Matches end-of-the line.

For example, a regular expression ‘d$’ matches any line that ends with ‘d’. Some lines that

match regular expression ‘d$’ are:

A friend in need is a friend indeed

“let’s celebrate”, the doctor said

[] A character class—Matches any letter within the parenthesis.

For example, a regular expression [012345] matches 0 or 1 or 2 or 3 or 4 or 5. Some strings

that match this regular expression are ‘var1’, ‘v3engine’ and ‘version5’. Note that ‘v6’ does not

match the above regular expression.

Within the parenthesis, the following characters have special meanings:

A dash ‘–’ inside a square bracket represents a range of characters to match, e.g. a regular

expression [a–k] represents all the characters ‘a’, ‘b’, ‘c’ and so on till ‘k’. Some strings that

match the regular expression [a–k] are ‘ram’, ‘mob’, and ‘mug’. Note that ‘mop’ does not match

the above regular expression.

 Lexical Analysis 25

A circumfl ex ‘^’ inside a square brackets represents the match of any character except the ones in

the bracket, e.g. a regular expression [^abcd] represents all the characters except ‘a’ or ‘b’ or ‘c’

or ‘d’. Some strings that match the above regular expression are ‘pet’, ‘fellow’. The string ‘bad’

does not match the regular expression.

| Matches either the preceding regular expression or the succeeding regular expression.

For example, a regular expression a|b represents match for ‘a’ or ‘b’. Some strings that match

the above regular expression are ‘gate’, ‘boost’. The strings ‘fi x’ and ‘group’ do not match the

regular expression.

() Used for grouping regular expressions.

For example, the regular expression (ab) represents a match for ‘a’ followed by ‘b’. The strings

that match the above regular expression are ‘cab’ and ‘lab’. The strings that do not match the

above regular expression are ‘garb’, ‘aerobics’.

*

+

?

Unary operators for specifying repetition in regular expressions. * for zero or more, + for one or

more and ? for zero or one.

For example, the regular expression ab* matches ‘a’ followed by no ‘b’ like ‘all’, ‘a’ followed by

one ‘b’ like ‘about’ or a followed by any number of ‘b’s like ‘gabbbbbb’.

The regular expression ab+ matches ‘a’ followed by at least one ‘b’ like ‘cab’ or any number of

‘b’s like ‘gabbbbbb’ . Note that it does not match ‘a’ followed by no ‘b’ as in the previous case

of regular expression ‘ab*’ like say, all.

The regular expression ab? Matches ‘a’ followed by no ‘b’ like all or at the most one ‘b’ like

‘lab’. It does not match the string ‘jabb’.

{ } Indicates how many times the previous pattern is matched.

For example, the regular expression a{1,3} represents a match of one to three occurrences of ‘a’.

The strings that match the above regular expression are ‘dad’, ‘daad’, and ‘daaad’. The strings

that do not match the above regular expression are ‘sting’ and ‘out’.

Let’s try out a few examples using the egrep utility and the fi le ‘my_input’ shown earlier in this section

to clarify the concepts of meta characters.

The regular expression ‘o.t’ matches any input where letter o is followed by any character followed by t

like say goat, boost, ported, etc.

o followed by any char then by t

$ egrep -n -e ‘o.t’ my_input

5:goat

6:boost

8:ported

The regular expression ‘^b’ matches any input where letter b is the start of the line like say base, boost,

boss, etc.

b is the fi rst letter in the line

$ egrep -n -e ‘^b’ my_input

2:base

6:boost

10:boss

26 Principles of Compiler Design

The regular expression ‘t$’ matches any input where letter t is the end of the line like say start, goat,

boost.

t is the last letter in the line

$ egrep -n -e ‘t$’ my_input

3:start

5:goat

6:boost

The regular expression ‘[ats]’ matches any input where letters a or t or s are present like say sink, base,

start, etc.

Matches a or t or s

$ egrep -n -e ‘[ats]’ my_input

1:sink

2:base

3:start

5:goat

6:boost

7:easter

8:ported

9:global

10:boss

11:labs

The regular expression ‘[p-s]’ matches any input line where letter p or q or s exist like say sink, base,

ported, etc.

Matches p or q or s

$ egrep -n -e ‘[p-s]’ my_input

1:sink

2:base

3:start

6:boost

7:easter

8:ported

10:boss

11:labs

The regular expression ‘[^b]a’ matches any input where some letter other than ‘b’ is followed by ‘a’ like

say start, goat, easter, labs.

Matches any char other than b followed by a

$ egrep -n -e ‘[^b]a’ my_input

3:start

5:goat

7:easter

11:labs

 Lexical Analysis 27

The regular expression ‘bo*s’ matches any input line where b is followed by zero or more o and then a s

like say boost, boss, labs.

The regular expression ‘bo+s’ matches any input line where b is followed by one or more o and then a s

like say boost, boss.

The regular expression ‘bo?s’ matches any input line where b is followed by zero or one o and then a s

like say boss, labs.

Matches b followed by zero or any number of o then s

$ egrep -n -e ‘bo*s’ my_input

6:boost

10:boss

11:labs

Matches b followed by one or any number of o then s

$ egrep -n -e ‘bo+s’ my_input

6:boost

10:boss

Matches b followed by one or no o then s

$ egrep -n -e ‘bo?s’ my_input

10:boss

11:labs

Matches b followed by 1 or 2 instances of o followed by s

$ egrep -n -e ‘bo{1,2}s’ my_input

6:boost

10:boss

The regular expression ‘oa|or’ matches any input line where oa or ort exists like say goat, ported.

Matches oa or ort

$ egrep -n -e ‘oa|ort’ my_input

5:goat

8:ported

The regular expression ‘The regular expression ‘ (oa|os)t’ matches any input line where oa or os

followed by t exists like say goat, boost.

Matches oa or os followed by t

$ egrep -n -e ‘(oa|os)t’ my_input

5:goat

6:boost

Having understood the concepts of regular expressions, let’s defi ne the constructs of C language like

identifi ers, constants, etc. using regular expressions.

The C language keywords are the easiest ones to be described using regular expression. The regular

expression is same as the keyword. For example, the keyword ‘goto’ is represented by a regular expression

‘goto’, and ‘switch’ by regular expression ‘switch’, and so on.

A C identifi er begins with an alphabet or underscore, followed by either an alphabet or underscore or

digit. A C identifi er is represented by a regular expression ‘[a-zA-Z_]([a-zA-Z_]|[0-9])*’

28 Principles of Compiler Design

An integer constant in C language has one or more digits followed optionally by a type qualifi er like L or

l or U or U. This can be represented by a regular expression ‘[0–9]+(u|U|l|L)?’

A hexadecimal constant in C language begins with 0 followed X or x followed by one or more number of

hexadecimal digits. A type qualifi er like u or U (for unsigned) or L or l (for Long) might optionally follow

the hexadecimal digits. A hexadecimal constant can be represented by a regular expression ‘0[xX][0-9a–fA
F]+(u|U|l|L)?’

The regular expression for both the C identifi er and integer constant contain [0–9] in them. Similarly,

{u|U|l|L} is contained in the regular expression for hexadecimal constant as well as integer constant. The

repetition of the same regular expression in various places can be avoided by having a regular defi nition

for that particular regular expression. Table 2.2 gives regular defi nitions for representing a digit, a integer

specifi er, letter, and so on.

Table 2.2 Regular defi nitions

Regular Defi nition Regular expression for the

defi nition

DIGIT [0–9]

IS (u|U|l|L)

FS (f|F|l|L)

LETTER [a-zA-Z_]

EXPONENTIAL [Ee][+-]?[0–9]+

The regular defi nitions given in Table 2.2 can be used in describing the C identifi er as {LETTER}{LETTE

R}|{DIGIT})* which is more readable compared to the earlier version ‘[a-zA-Z_]([a-zA-Z_]|[0-9])*’

even though both mean the same.

Table 2.3 gives the regular expression for a few C constructs, some of them using the regular defi nitions

mentioned previously.

Table 2.3 Regular expressions for a few C constructs

Regular expression Description

“(“ Open parenthesis

++ Increment operator

{DIGIT}+{IS}? Integer constant

“;” Semicolon

“for” For keyword

{LETTER}({LETTER}|{DIGIT})* C identifi er

0{DIGIT}+{IS}? Octal constant

{DIGIT}+{EXPONENTIAL}{FS}? Exponential constant

\”(\\.|[^\\”])*\” A string literal

Before we end this section, let us see some of the limitations of regular expressions.

Regular expressions are not suited to describe nested structures like C expressions. For example,

consider a C expression ((my_var+1) == 10) where my_var is a C identifi er. This entire C expression

 Lexical Analysis 29

cannot be described using regular expression, because it cannot determine the matching braces. The same

can be described adequately using context-free grammar as we can see in the coming chapters. This is one

of the main reasons that lexical analysis is separated from parsing.

Regular expressions can be used to denote only a fi xed number of repetitions (using {x,y} notation) or

an unspecifi ed number of repetitions (using * operator) of given construct. It cannot be used in situations

where the length of the regular expression needs to be deduced. For example, in FORTRAN, Hollerith

format strings are used to print formatted output on the screen. It is shown below:

 100 FORMAT (17H TITLE OF PROGRAM)

In the FORMAT statement above, 17 is the length of the string that follows, i.e. ‘TITLE OF

PROGRAM’. Regular expression cannot be used to recognise the FORMAT statement because the length

of the regular expression cannot be deduced from the statement.

2.1.1.2 Structure of a Lexical Specifi cation File In this section, we shall understand in detail about

the format of lexical specifi cation fi le. We will use the fi le ‘words.l’ shown in Listing 2.1 as an example

to explain the concepts clearly. Recall that this fi le was used earlier in Section 2.1 for creating a lexical

analyser, which splits English sentences into words.

 1 LETTER [A-Za-z]

 2 WS [\t\n]

 3

 4 %{

 5 #defi ne WORD 1

 6 %}

 7

 8 %%

 9 {LETTER}+ { return (WORD) ; }

10

11 {WS} { ; /* eat up White Space */ }

12 . { ; /* eat up all others like punctuation marks etc. */}

13

14 %%

15

16 #include <stdio.h>

17 int main(int argc, char **argv)

18 {

19 FILE *fp;

20 int ret_val;

21

22 if(argc != 2){

23 printf(“Usage %s <input fi le>\n”,argv[0]);

24 exit(1);

25 }

26

27 if((fp = fopen(argv[1],”r”)) == NULL){

28 printf(“File [%s] does not exist \n”,argv[1]);

29 exit(1);

30 }

31

30 Principles of Compiler Design

32 yyin = fp; /* Input fi le to lexical analyser */

33

34 while (1) {

35 if((ret_val=yylex()) == 0){

36 break;

37 }

38

39

40 /* return value signifi es token type */

41 if(ret_val == WORD){

42 printf(“Lexeme=[%s] \t length=%d “,yytext,yyleng);

43 printf(“ \t Token is WORD \n”);

44 }

45 }

46 }

Listing 2.1 words.l

A lexical specifi cation (in short a lex) fi le consists of 3 parts:

Declarations

%%

Translation Rules

%%

Auxiliary Functions

The declarations section in ‘words.l’ extends from lines 1 to 8. The declarations section consists of

regular defi nitions that can be used in translation rules. This can be seen on lines 1 and 2 of the ‘words.

l’ where we specifi ed regular defi nition for LETTER and WS. Apart from the regular defi nitions, the

declaration section usually contains the #defi nes, C prototype declarations of the functions used in

translation rules and some #include statements for the library functions used in translation rules. All the C

statements mentioned above are enclosed in the special brackets %{and %}. This can be seen from lines 4

through 6 where the #defi ne for WORD is done within special brackets. Anything appearing between these

special brackets is copied verbatim into lex.yy.c

The translation rules section consists of statements in the following form:

Pattern1 { Action 1 }

Pattern2 { Action 2 }

Pattern3 { Action 3 }

where Pattern1, Pattern2,... Pattern n are all regular expressions, and the Action 1, Action 2,... Action n are

all program segments describing the action to be taken when the pattern matches. The pattern is a regular

expression that we learnt in the previous section. The action is typically a return statement indicating the

type of token that has been matched as can be seen from line 9 of ‘words.l’. There are a few generated

global variables that can be used in the action statements. For example, yytext contains the lexeme, yyleng

gives the length of the lexeme. For the tokens that do not have any signifi cance for the parser (like white

space, new line, etc.) the action statement would not have a return statement as seen by lines 11 and 12.

 Lexical Analysis 31

The auxiliary functions section extends from line 15 till the end of the program. The auxiliary functions

section usually contains the defi nition of the C functions used in the action statements. The whole section is

copied “as is” into lex.yy.c. In ‘words.l’ example, we have also defi ned the ‘main()’ in auxiliary section.

The code from line 34 to 45 is refl ective of the parser to lexical analyser interaction. The function yylex

is called repeatedly to get the next token of the input. The return value of yylex is indicates the type of

token. A 0 return value signifi es the end of input. We can observe that the yylex routine is called repeatedly

to continue getting the next token until the end of the input.

2.1.2 A Lexical Analyser for C Language

In the last section we understood the lexical specifi cation fi le format and how to generate a lexical analyser

from lexical specifi cation fi le using the tool fl ex. In Table 2.3, we saw how C constructs can be specifi ed in

regular expressions. In this section, we put these concepts into practice and generate a lexical analyser for C

language program.

The following dialog shows the steps of converting the ‘c-lex.l’ lexical specifi cation fi le into a C lexical

analyser. The C lexical analyser is shown splitting an input C program into tokens. The lexical analyser

of the toy C compiler (mycc) that we are developing incrementally in this book is based on this lexical

specifi cation.

Compiling the Lexical Specs to generate lex.yy.c

$ fl ex c-lex.l

Compiling the lex.yy.c to generate a binary

$ gcc lex.yy.c -o lex_analyzer -lfl

Input C program for tokenizing

$ cat -n test2.c

 1 int

 2 main ()

 3 {

 4 int i;

 5

 6 /* This is a comment.This will be stripped by Lexical Analyzer */

 7

 8 for (i = 0; i < 10; i++) {

 9 printf (“Hello World\n”);

 10 }

 11 }

Lexical Analyzer Tokenizing the input C Program

$./lex_analyzer test2.c

Lexeme=[int] Length=3 Token is INT

Lexeme=[main] Length=4 Token is IDENTIFIER

Lexeme=[(] Length=1 Token is LP

Lexeme=[)] Length=1 Token is RP

Lexeme=[{] Length=1 Token is LC

Lexeme=[int] Length=3 Token is INT

Lexeme=[i] Length=1 Token is IDENTIFIER

Lexeme=[;] Length=1 Token is SEMI

Lexeme=[for] Length=3 Token is FOR

32 Principles of Compiler Design

Lexeme=[(] Length=1 Token is LP

Lexeme=[i] Length=1 Token is IDENTIFIER

Lexeme=[=] Length=1 Token is EQUAL

Lexeme=[0] Length=1 Token is CONSTANT

Lexeme=[;] Length=1 Token is SEMI

Lexeme=[i] Length=1 Token is IDENTIFIER

Lexeme=[<] Length=1 Token is LT

Lexeme=[10] Length=2 Token is CONSTANT

Lexeme=[;] Length=1 Token is SEMI

Lexeme=[i] Length=1 Token is IDENTIFIER

Lexeme=[++] Length=2 Token is INC_OP

Lexeme=[)] Length=1 Token is RP

Lexeme=[{] Length=1 Token is LC

Lexeme=[printf] Length=6 Token is IDENTIFIER

Lexeme=[(] Length=1 Token is LP

Lexeme=[“Hello World\n”] Length=15 Token is STRING_LITERAL

Lexeme=[)] Length=1 Token is RP

Lexeme=[;] Length=1 Token is SEMI

Lexeme=[}] Length=1 Token is RC

Lexeme=[}] Length=1 Token is RC

2.2 THE MECHANICS OF LEXICAL ANALYSER GENERATORS

In the previous section, we understood how a lexical analyser generator like fl ex could transform lexical

specifi cations of a language into a lexical analyser. The rest of the chapter discusses the concepts and

algorithms that lexical analyser generators like fl ex would use to generate the lexical analyser from the

lexical specifi cations.

The lexical analyser generated by a lexical analyser generator tools like fl ex can be broadly divided into

2 components

 (1) A recogniser component, to recognise all the input strings that match the regular expressions

specifi ed in the translation rules of the lexical specifi cations fi le.

 (2) An action component, which is the manifestation of the action, specifi ed in the translation rules

on recognising a specifi ed pattern.

Figure 2.5 shows the idea of a recogniser component and action component in a lexical analyser

generated by fl ex. The generated code is shown in a pseudo-code manner.

The recogniser component is built by converting the regular expressions given in the lexical specifi cation

fi le into a fi nite state machine (FSM). The next section (Section 2.2.1) discusses in detail what an FSM is

and how it can be used to determine if the input matches any of the regular expression. The crux of the

lexical analyser generator lies in conversion of the RE into FSM and using it to check if the input matches

the RE.

The action component is a straightforward copy of the actions mentioned in the lexical specifi cations

fi le.

 Lexical Analysis 33

Fig. 2.5 Mechanics of lexical analyser generator

2.2.1 Finite State Machines—DFA and NFA

In the context of lexical analysis, a fi nite state machine is a mechanism used to recognise a particular

pattern in a given input. For example, a fi nite state machine can be used to recognise keywords like ‘while’

and ‘for’ in a given C program.

A fi nite state machine consists of:

• A fi nite number of states.

• A set of transitions from one state to another on the receipt of inputs, e.g. transition from state 1 to

state 2 on receiving an input of ‘A’, state 1 to state 3 on input of ‘B’, etc.

• A start state.

• A set of accepting states, each signifying the successful recognition of input as a token.

A fi nite state machine can be visually represented by a labelled directed graph called a transition

diagram. The transition diagram shown in Fig. 2.6 represents the fi nite state machine, which recognises the

C language keywords for and while.

Fig. 2.6 Transition diagram for keywords ‘for’ and ‘while’

34 Principles of Compiler Design

Each state is depicted using a circle. Receiving a certain input causes a transition from one state to

another. For example, while in state 1, on receiving an input ‘o’, there would be a transition from state 1 to

state 2. The edge represents the character in the input based on which the transition between states happen.

For example, the transition between state 4 and state 5 can only happen if the input is ‘h’. The states with

concentric circles are called as accepting states. They signify a successful recognition of a particular input

string as a token. For example, reaching state 8 signifi es that the input contained a ‘while’ in it.

A fi nite state machine can also be represented by a transition table, in which each row represents a state

and each column an input. The transition table equivalent of Fig. 2.6 is shown in Table 2.4. By observing

the row corresponding to state 0, we can conclude that in state 0 an input of ‘w’ would cause a transition

to state 4, while an input of ‘f’ in state 0 would cause a transition to state 1. Similarly, observing the row

corresponding to state 1, we can conclude that an input of ‘o’ would cause a transition to state 2. In state 1,

an input of ‘e’ is not defi ned, hence represented by a null (–) transition.

Table 2.4 Transition table

State
Input Symbol

e f h i l o r w

0 – 1 – – – – – 4

1 – – – – – 2 – –

2 – – – – – – 3 –

3 – – – – – – – –

4 – – 5 – – – – –

5 – – – 6 – – – –

6 – – – – 7 – – –

7 8 – – – – – – –

 8 – – – – – – – –

A transition diagram of the type shown in Fig. 2.6 can be implemented by using 3 data structures:

• A variable holding the current state.

• Transition table, a two-dimensional array for computing the next state. The next state is computed by

indexing the table on the basis of current state and the input character. In other words, next_state =

transition_table[current_state][input_char] using the C language syntax of a two-dimensional array.

• Accept marker, a single-dimensional array indexed by current state used to determine if the state is an

accepting state or not. The accept marker array for the transition table shown in Table 2.4 is shown

below. Observe that accept[3] and accept[8] are 1, signifying that they are accepting states.

– – – 1 – – – – 1

The following dialog shows an implementation of a fi nite machine that recognises the keywords ‘for’ and

‘while’ using the data structures just discussed.

Compiling trans.c to get a Binary

$ gcc -Wall trans.c -o trans

Sample input fi le

 Lexical Analysis 35

$ cat -n test3.c

 1 int

 2 main ()

 3 {

 4 int i = 0;

 5

 6 while (i < 5) {

 7 printf (“Hi\n”);

 8 i++;

 9 }

 10

 11 for (i = 0; i < 10; i++) {

 12 printf (“Hello World\n”);

 13 }

 14 }(

Tokenizing the input C program

$./trans test3.c

found ‘while’ Return Val=8

found ‘for’ Return Val=3

The fi nite state machine that we saw till now is called as deterministic fi nite automaton or DFA. It is

called deterministic because the next state can be determined by knowing the current state and the next

input character.

There is another type of fi nite state machine called as non-deterministic fi nite state machine or NFA.

An NFA differs from the DFA in the following aspects:

An empty transition denoted by special symbol Œ — epsilon is possible in NFA. This transition (also

called as epsilon transition) can be made on empty string without advancing input. For example, the

transition diagram shown in Fig. 2.6 is modifi ed in Fig. 2.7 to show the epsilon transition. The transitions 0

to 1 and 0 to 5 do not require any input.

Fig. 2.7 NFA transition diagram showing epsilon transition

An NFA has no limitations on the number and type of edges. Two outgoing edges can have the same

label. For example, the keywords char and case of C language can be recognised by a NFA shown in

Fig. 2.8. Note that transitions 0 to 1 and 0 to 5 can happen on input ‘c’. Another NFA that can recognise the

C language keywords case and char is shown in Fig. 2.9. As you would understand in the next few sections,

it is easier to convert an RE to the kind of NFA shown in Fig. 2.9 rather than Fig. 2.8.

Fig. 2.8 NFA can have two outgoing edges having same label ‘c’

36 Principles of Compiler Design

Fig. 2.9 NFA recognising C keywords ‘char’ and ‘case’

In DFA, the next state can be determined by having the current state and the input character. In NFA, the

next set of states can be determined by knowing the current set of states and the next input character. For

example, the NFA shown in Fig. 2.9, if the current state is {0}, then on receiving an input of ‘c’, the next set

of states is {2,7} (recall that Œ transition does not need any input). This can be represented mathematically

by:

 next({0},’c’) = {2,7}

Subsequent to that if another input say ‘h’ is received then the next set of states is {8}. This can be

represented mathematically by:

 next({2,7},’h’) = {8}

Some other advanced aspects on which NFA and DFA can be compared are listed in Table 2.5.

Table 2.5 NFA v/s DFA comparison

NFA DFA

A regular expression can be easily converted to NFA by

using Thompson’s construction.

A regular expression can be converted to DFA, but it is

complex. The usual method for deriving a DFA from a

regular expression is to fi rst convert the RE to NFA and

then translate the NFA to DFA.

NFA is optimised on space. However, it requires more

computation to be done in order to verify if the input

matches an RE.

The DFA is optimised in time, but it requires more

memory for storing the state information. This is due to

the number of DFA states being greater than the number

of states of a corresponding NFA.

The time taken to recognise a string matching a regular

expression using the RE’s NFA increases, when the

length of the RE increases. For example, the time taken

to recognise a string matching a regular expression

‘ab|cd|ef’ is greater than ‘ab|cd’, which is greater than

‘ab’.

The time taken to recognise a RE using its DFA is

independent of the length of RE. For e.g. the time taken

to recognise a string matching a regular expression

‘ab|cd|ef’ is same as ‘ab|cd’, which is same as ‘ab’

This is a very important characteristic that weighs heavily

in favour of using DFA in lexical analysers.

2.2.2 From Lexical Specifi cations to Lexical Analyser

The recogniser component of the lexical analyser (Fig. 2.5) is built by converting the regular expressions

given in the lexical specifi cation fi le into a fi nite state machine. The fi nite state machine could be an NFA

or a DFA. The choice is DFA when speed is important and there are no memory constraints. In other cases

where memory is at premium and speed can be compromised, the choice is NFA. In practice, most of the

lexical analyser generators including fl ex base the recogniser component on a DFA.

Typically, lexical analyser generators convert the input lexical specifi cation fi le into a lexical analyser in

the following 4 steps as shown in Fig. 2.10.

 Step 1: Translate the regular expressions in the input lexical specifi cations fi le into NFA.

 Step 2: Convert the NFA into DFA.

 Lexical Analysis 37

 Step 3: Minimise the number of DFA states.

 Step 4: Generate the code for the lexical analyser using the minimised DFA.

Fig. 2.10 Stages of lexical analyser generator

In step 1 of Fig. 2.10, the regular expressions given in the lexical specifi cation fi le are converted into

NFA by using an algorithm called as Thompson’s construction. The second step converts the NFA to DFA.

The memory required to implement a DFA depends on the number of states in the DFA. The DFA obtained

in step 2 is usually not optimised in terms of the number of states and hence might turn out having a higher

memory requirement. In order to reduce the memory needed, the number of states in DFA is minimised

using several techniques in Step 3. Finally using the minimised DFA, the code is generated for the lexical

analyser in step 4.

38 Principles of Compiler Design

2.3 RLEX A RESTRICTED LEXICAL ANALYSER GENERATOR

This section is devoted to understanding the 4 steps shown in Fig. 2.10 for converting lexical specifi cations

into a lexical analyser. In the process of grasping the 4 steps, we build a toy lexical analyser generator

called rlex (restricted lexical analyser). rlex is a lexical analyser generator similar to ‘fl ex’, but with a

restricted feature set in the interest of keeping it simple and focused on the concepts of lexical analysis. The

development of rlex is done in step-by-step fashion to explain concepts and show relevant examples.

Each one of the next four sub-sections represents a step in making of a lexical analysis generator. While

Sub-section 2.3.1 represents the step1 of lexical analyser generator, i.e. translation of regular expression to

NFA, Sub-section 2.3.2 discusses the second step of lexical analyser generator, which is the conversion of

the NFA to DFA, and so on.

2.3.1 Translating Regular Expression to NFA

The algorithm to convert a regular expression to NFA was fi rst given by Ken Thompson, when he was

working on the QED editor at Bell Labs.

The fi rst step in the algorithm is to break up the input regular expression into smaller components that

are easier to process independently.

Consider the regular expression abc*ef|ij(kl)? for discussion, this is broken up into:

 1. Terminal symbols that individually represent an atomic unit of regular expression. For example, in

the above regular expression a, b, c, e, etc. represent terminal symbols.

 2. Factor, which represent the grouping of a terminal symbol with a closure operator like *, ?, + etc.

For example, in the above regular expression c* represents a factor.

 3. Sub-expressions, which themselves constitute a single regular expression. For example, in the

above RE, ef is a sub-expression, ij is another sub-expression, (kl) is another sub-expression.

The process of splitting the input into smaller components as explained above, is illustrated in

Fig. 2.11.

Fig. 2.11 Parsing a regular expression

After the regular expression is broken up into smaller components, viz. terminal symbols, factor and

sub-expressions, NFA’s are created for each of those using the following rules.

 (1) For a terminal symbol, the NFA is shown below:

 Lexical Analysis 39

 (2) For concatenation of two regular expressions, for example, ab, the NFA is shown below:

 (3) For alternation of two regular expressions, for example, a|b, the NFA is shown below:

 (4) For a factor, the NFA is shown below:

 (5) For a sub-expression, the NFA is similar to concatenation shown earlier, excepting the fact that

the whole of sub-expression needs to be considered as a single unit.

40 Principles of Compiler Design

The translation of a regular expression to NFA involves 2 steps.

 1. Parse the regular expression to break it up to terminal symbols, factor and sub-expressions.

 2. Use the rules given above to formulate NFA for the regular expression.

In step (a), we break up the input RE after parsing it character by character into terminal symbols, factor

or sub-expressions. The step (b) uses the rules given above and makes the NFA. The following example is

an implementation of the above 2 steps for converting a regular expression into an NFA.

2.3.1.1 Example 1—Translation of Regular Expression to NFA This section demonstrates an

example program that can convert a given regular expression into NFA using the theory described in the

preceding section. The program takes a regular expression on the command line, converts it into an NFA

and prints out the details of the NFA. The output of the program is in the form of translation table that we

discussed earlier. The program is also capable of taking a single lexical specifi cation translation rule (recall

Section 2.1.1.2) and printing out the details of the resultant NFA. The dialog below shows the example

program taking in different regular expressions, and printing out the NFA details.

Making the example

$ g++ -g -Wall rlex.cc ex1.cc -o ex1

The argument is any regular expression

$./ex1 ‘abcd’

 NFA Transition Table

============|===============================

State | Input symbol

 | a b c d epsilon

============|===============================

START 0 | - - - - { 1 }

 1 | 2 - - - -

 2 | - - - - { 3 }

 3 | - 4 - - -

 4 | - - - - { 5 }

 5 | - - 6 - -

 6 | - - - - { 7 }

 7 | - - - 8 -

ACCEP 8 | - - - - -

 ========== |============================

Another regular expression

$./ex1 ‘(a|b|c)?d’

 NFA Transition Table

 Lexical Analysis 41

============|===============================

State | Input symbol

 |a b c d epsilon

=========== |===============================

START 0 |- - - - { 11 }

 1 |2 - - - -

 2 |- - - - { 6 }

 3 |- 4 - - -

 4 |- - - - { 6 }

 5 |- - - - { 1 3 }

 6 |- - - - { 10 }

 7 |- - 8 - -

 8 |- - - - { 10 }

 9 |- - - - { 5 7 }

 10 |- - - - { 12 }

 11 |- - - - { 9 12 }

 12 |- - - - { 13 }

 13 |- - - 14 -

ACCEP 14 |- - - - -

============|===============================

Another regular expression

$./ex1 ‘(a|b)*abb’

NFA Transition Table

===========|=====================

State | Input symbol

 | a b epsilon

===========|=====================

START 0 | - - { 7 }

 1 | 2 - -

 2 | - - { 6 }

 3 | - 4 -

 4 | - - { 6 }

 5 | - - { 1 3 }

 6 | - - { 8 5 }

 7 | - - { 5 8 }

 8 | - - { 9 }

 9 | 10 - -

 10 | - - { 11 }

 11 | - 12 -

 12 | - - { 13 }

 13 | - 14 -

 ACCEP 14 | - - -

===========|=====================

The argument can be a Translation rule of a Lex fi le

$./ex1 ‘ab printf(“ab found”);’

 NFA Transition Table

42 Principles of Compiler Design

==========|=====================

State | Input symbol

 | a b epsilon

==========|=====================

START 0 | - - { 1 }

 1 | 2 - -

 2 | - - { 3 }

 3 | - 4 -

ACCEP 4 | - - - Accept Action is [{printf(“ab found”);}]

==========|=====================

2.3.1.2 Interpreting an NFA In Section 2.3.1.1, we looked at how to convert a regular expression

into an NFA, which is the fi rst step in Fig. 2.10 lexical analyser generator. In this section, we examine how

to use the NFA created from regular expression to recognise if a given input string matches the regular

expression or not.

Consider a regular expression ‘(a|b)*abb’ for discussion. The NFA for it can be derived using the earlier

example—ex1 as shown in the dialog below:

The argument is any regular expression

$./ex1 ‘(a|b)*abb’

 NFA Transition Table

============|=====================
State | Input symbol
 | a b epsilon
=========== |=====================
START 0 | - - { 7 }

 1 | 2 - -

 2 | - - { 6 }

 3 | - 4 -

 4 | - - { 6 }

 5 | - - { 1 3 }

 6 | - - { 8 5 }

 7 | - - { 5 8 }

 8 | - - { 9 }

 9 | 10 - -

 10 | - - { 11 }

 11 | - 12 -

 12 | - - { 13 }

 13 | - 14 -

 ACCEP 14 | - - -
============|=====================

Figure 2.12 shows the graphic view of NFA constructed from the output of ex1.

 Lexical Analysis 43

Fig. 2.12 NFA for ‘(a|b)*abb’

In an NFA, at any given point there are ‘n’ states waiting in parallel for input. This is due to the fact that

an Œ transition can be taken without input. For example, in the NFA shown in Fig. 2.12, the start state is 0.

The Œ transitions that can be taken from state 0 without having any input are:

 0 Æ 7

 0 Æ 7Æ 5

 0 Æ 7Æ 5Æ 3

 0 Æ 7Æ 5Æ 1

 0 Æ 7Æ 8

 0 Æ 7Æ 8 Æ 9

 0 Æ 0

Thus, the NFA States that can be reached from 0 on Œ transitions alone are {7,5,3,1,8,9,0}. Note that

we include the state from which the Œ transitions originate (state 0 in this case) automatically. Figure

2.13 shows the NFA states (shaded) that are reachable on Œ transitions alone. This set of states that are

waiting for input in parallel, due to the epsilon transitions alone is called as Œ-closure set. It is denoted by

e-closure(s), where s is a state. Thus,

 Œ-closure ({0}) = { 0 7 5 3 1 8 9 }

Fig. 2.13 Illustration of Œclosure set

On receiving an input symbol in a particular state, we need to apply the transition to all of the NFA

states waiting in parallel at that point. For example, consider an input symbol ‘a’ received in the start state

for the above NFA, the NFA states waiting in parallel as seen above are {0 7 5 3 1 8 9}. We should

apply the transition to all of these states. Out of these states, only state 1 and state 9 have a valid transition

for the input character ‘a’. Applying the transition for ‘a’ on these states, we get state 2 and 10 respectively

as shown in Fig. 2.14. This set of NFA States {2,10}, which has been derived by applying a transition for

an input symbol to all of the NFA states waiting in parallel, is called as move set. Formally stated, move

(T, a) represents the set of NFA states to which there exists a transition on input symbol ‘a’ from some NFA

state s in T.

44 Principles of Compiler Design

 move_set({ 0 7 5 3 1 8 9 }, a) = {2,10}

Fig. 2.14 Illustration of move set

2.3.1.3 Algorithm for Interpreting an NFA We shall use the concepts of closure set and move set to

devise the algorithm for interpreting an NFA.

The algorithm for interpreting an NFA is presented in Algorithm 2.1. The basic strategy of the algorithm

is to:

 1. Identify all the NFA States waiting in parallel. This is done by computing the e closure set.

 2. Take in the next input character and apply the transition on all of the NFA States waiting in

parallel. This is done by computing the move set and then applying epsilon closure on it.

 3. If the resulting NFA state out of applying transition in step 2, is an accepting state return a

SUCCESS. If the resultant NFA State is not an accepting state, then go to step 2.

start_state is the start state of the NFA
cur_ptr is a pointer to the line of text being checked for match with the regular expression

nfa_accept_set is the set containing all the accept states in the NFA

interpret_nfa()

{
 current_set = Œ-closure(start_state)

 start_set = current_set ;

 while((c= *cur_ptr) != End-of-line){

 move_set=move(current_set,c)

 e_closure_set=e_closure(move_set)

 if(e_closure_set is not empty set){

 If(e_closure_set « nfa_accept_set){

 Return(SUCCESS) ;

 }

 current_set = e_closure_set;

 } else {

 if(current_set != start_set){

 current_set = start_set;

 continue;
 }

 }

 cur_ptr ++ ;
 }

 return (FAILURE) ;
}

Algorithm 2.1 Interpreting NFA

 Lexical Analysis 45

Let us see the algorithm at work given an input string ‘aabb’ for the NFA shown in Fig. 2.12.

Initially the NFA states that are waiting in parallel for input is given by:

 e_closure({0}) = { 0 1 3 5 7 8 9 } ………………………… (I)

On consuming the fi rst ‘a’ of the input, the NFA states that are waiting for input in parallel is determined by

 move({ 0 1 3 5 7 8 9 },a)= { 2 10 }

 e_closure({ 2 10 })= { 1 2 3 5 6 8 9 10 11 } ………………………… (II)

On consuming the second ‘a’ of the input, the NFA states that are waiting for input is determined by

 move({ 1 2 3 5 6 8 9 10 11 },a)= { 2 10 }

 e_closure({ 2 10 })= { 1 2 3 5 6 8 9 10 11 } ………………………… (III)

On consuming the next character of the input ‘b’, the NFA states that are waiting for input is determined by

 move({ 1 2 3 5 6 8 9 10 11 },b)= { 4 12 }

 e_closure({ 4 12 })= { 1 3 4 5 6 8 9 12 13 } ………………………… (IV)

On consuming the next character of the input ‘b’, the NFA states that are waiting for input is determined by

 move({ 1 3 4 5 6 8 9 12 13 },b)= { 4 14 }
 e_closure({ 4 14 })= { 1 3 4 5 6 8 9 14 } ………………………… (V)

The accept state of 14 is found in (V), thus signalling the match of the input to the RE.

Programs such as these that can read a string as an input and output SUCCESS, if the string is a sentence

in the language or failure, if it is not are called as recognisers. The egrep utility that we used in Section

2.1.1.1 is a good example of a recogniser.

2.3.1.4 Example 2—Interpreting NFA This section demonstrates an example program that is similar

to the functionality of egrep utility. The program implements Algorithm 2.1 for interpreting the NFA and

reporting if the input string matches the regular expression or not. The program takes in a regular expression

and fi le name to search for a string that matches the regular expression. The output of the program is the

lines in the fi le matching the regular expression along with the line numbers. The dialog below shows the

example program taking in different regular expressions and fi le names, and printing out the lines in the fi le

matching the regular expression.

Making the example

$ g++ -g -Wall rlex.cc ex2.cc -o ex2

Use the fi le that we used before for learning about the regular expressions

$ cat -n my_input

 1 sink

 2 base

 3 start

 4 dog

 5 goat

 6 boost

 7 easter

 8 ported

 9 global

 10 boss

 11 labs

Matches b followed by zero or any number of o then s

46 Principles of Compiler Design

$./ex2 ‘bo*s’ my_input

6:boost

10:boss

11:labs

Matches b followed by one or any number of o then s

$./ex2 ‘bo+s’ my_input

6:boost

10:boss

Matches b followed by one or no o then s

$./ex2 ‘bo?s’ my_input

10:boss

11:labs

Matches oa or ort

$./ex2 ‘oa|ort’ my_input

5:goat

8:ported

Matches oa or os followed by t

$./ex2 ‘(oa|os)t’ my_input

5:goat

6:boost

Verbose mode

Test fi le containing a string

$ cat -n test4

 1 aabbb

$./ex2 -v ‘(a|b)*abb’ test4

 NFA Transition Table

=========== |=====================

State | Input symbol

 | a b epsilon

=========== |=====================

START 0 | - - { 7 }

 1 | 2 - -

 2 | - - { 6 }

 3 | - 4 -

 4 | - - { 6 }

 5 | - - { 1 3 }

 6 | - - { 8 5 }

 7 | - - { 5 8 }

 8 | - - { 9 }

 9 | 10 - -

 10 | - - { 11 }

 11 | - 12 -

 12 | - - { 13 }

 Lexical Analysis 47

 13 | - 14 -

ACCEP 14 | - - -

=========== |=====================

e_closure({ 0 }) = { 0 1 3 5 7 8 9 }

move({ 0 1 3 5 7 8 9 },a)= { 2 10 }

e_closure({ 2 10 })= { 1 2 3 5 6 8 9 10 11 }

move({ 1 2 3 5 6 8 9 10 11 },a)= { 2 10 }

e_closure({ 2 10 })= { 1 2 3 5 6 8 9 10 11 }

move({ 1 2 3 5 6 8 9 10 11 },b)= { 4 12 }

e_closure({ 4 12 })= { 1 3 4 5 6 8 9 12 13 }

move({ 1 3 4 5 6 8 9 12 13 },b)= { 4 14 }

e_closure({ 4 14 })= { 1 3 4 5 6 8 9 14 }

Accept State =14

1:aabbb

2.3.2 Converting NFA to DFA

In Section 2.3.1, we learnt how to convert a regular expression to NFA and interpret an NFA to recognise

strings that match a regular expression. While the NFA can be used to recognise strings matching the

regular expression, there is an inherent disadvantage. The time taken to recognise an input string using the

NFA is dependent on the number of NFA states. The time taken to determine if an input string x, matches

a regular expression ‘r’ is proportional to length of ‘x’ multiplied by length of ‘r’. Due to this, complex

regular expressions take longer time to recognise input string if the NFA is used. This is the reason why

NFA is not used commonly for recognising the strings. The DFA does not have this problem. Hence NFA

is converted to DFA and used for recognising input strings matching regular expression. The technique of

converting the f is explained in this section.

This represents the second step (conversion of NFA to DFA) in the development of a lexical analyser

generator shown in Fig. 2.10.

Consider the regular expression ‘(a|b)*abb’ whose NFA was discussed in section 2.3.1.2. We shall try

and convert the same NFA into DFA. The NFA is reproduced here for discussion.

Fig. 2.15 NFA for (a|b)*abb

The basic principle on which the NFA to DFA conversion works is that each DFA state corresponds to a

set of NFA states that are waiting in parallel for input.

Initially the NFA states that are waiting in parallel for input is given by

 e_closure({0}) = { 0 1 3 5 7 8 9 } (DFA State 0)

This NFA set { 0 1 3 5 7 8 9 } is the starting DFA state (state 0).

48 Principles of Compiler Design

On scanning the regular expression ‘(a|b)*abb’ , it can be concluded that the set of all possible input

characters that can result in transitions leading to recognition of the input are {a b}. The next few DFA

states are derived by simulating the inputs {a b}. Thus,

Applying transitions of a and b on DFA state 0

 move ({ 0 1 3 5 7 8 9 } ,a)= { 2 10 }
 e_closure ({ 2 10 })= { 1 2 3 5 6 8 9 10 11 } (DFA State 1)
 move ({ 0 1 3 5 7 8 9 } ,b)= { 4 }
 e_closure ({ 4 })= { 1 3 4 5 6 8 9 } (DFA State 2)

The transition table for these 2 transitions can be represented by:

 dtran[0,’a’] = 1
 dtran[0,’b’] = 2

Applying transitions of a and b on DFA State 1:

 move ({ 1 2 3 5 6 8 9 10 11 } ,a)= { 2 10 }
 e_closure ({ 2 10 })= { 1 2 3 5 6 8 9 10 11 } (same as DFA state 1)
 move ({ 1 2 3 5 6 8 9 10 11 } ,b)= { 4 12 }
 e_closure ({ 4 12 })= { 1 3 4 5 6 8 9 12 13 } (DFA State 3)

The transition table for these 2 transitions can be represented by:

 dtran[1,’a’] = 1
 dtran[1,’b’] = 3

Applying transitions of a and b on DFA State 2:

 move ({ 1 3 4 5 6 8 9 } ,a)= { 2 10 }
 e_closure ({ 2 10 })= { 1 2 3 5 6 8 9 10 11 } (same as DFA State 1)
 move ({ 1 3 4 5 6 8 9 } ,b)= { 4 }
 e_closure ({ 4 })= { 1 3 4 5 6 8 9 } (same as DFA State 2)

The transition table for these 2 transitions can be represented by:

 dtran[2,’a’] = 1
 dtran[2,’b’] = 2

Applying transitions of a and b on DFA State 3:

 move ({ 1 3 4 5 6 8 9 12 13 } ,a)= { 2 10 }
 e_closure ({ 2 10 })= { 1 2 3 5 6 8 9 10 11 } (same as DFA State 1)
 move ({ 1 3 4 5 6 8 9 12 13 } ,b)= { 4 14 }
 e_closure ({ 4 14 })= { 1 3 4 5 6 8 9 14 } (DFA State 4)

The DFA state 4 is an accepting DFA state since it contains NFA State 14, which is an accepting NFA

state.

The transition table for these 2 transitions can be represented by:

 dtran[3,’a’] = 1
 dtran[3,’b’] = 4

Applying transitions of a and b on DFA State 4:

 move ({ 1 3 4 5 6 8 9 14 } ,a)= { 2 10 }
 e_closure ({ 2 10 })= { 1 2 3 5 6 8 9 10 11 } (same as DFA State 1)
 move ({ 1 3 4 5 6 8 9 14 } ,b)= { 4 }
 e_closure ({ 4 })= { 1 3 4 5 6 8 9 } (same as DFA State 2)

The transition table for these 2 transitions can be represented by:

 dtran[4,’a’] = 1
 dtran[4,’b’] = 2

 Lexical Analysis 49

Note that the transitions have been applied on all of the DFA states (1,2,3,4) that signals the end of the

algorithm. The resultant DFA is shown in Fig. 2.16.

Fig. 2.16 Resultant DFA for (a|b)*abb

Algorithm 2.2 formalises the ideas that we just discussed.

start_state is the start state of the NFA

nfa_accept_set is the set containing all the accept states in the NFA

dfa_tab is the set of resulting dfa states after conversion of NFA to DFA

dtran is the Transition Table

nfa_to_dfa()
{
 e_closure_set = e_closure(start_state)
 Add a new DFA State to dfa_tab which corresponds to e_closure_set;

 If(e_closure_set « nfa_accept_set){
 Mark the DFA State as an Accepting State
 }

 for(each DFA state T in dfa_tab){
 for (each possible input character ‘c’)
 current_set = The NFA Set corresponding to T;
 move_set=move(current_set,c)
 e_closure_set=e_closure(move_set)
 if (There is a DFA State d, which corresponds to e_closure_set
){
 dtran[T,c]= d ;
 }else {
 Add a new DFA State ‘n’ into dfa_tab which corresponds to
 e_closure_set

 If(e_closure_set « nfa_accept_set){
 Mark the DFA State as an Accepting State
 }
 dtran[T,c]= n ;
 }
 }
 }
}

Algorithm 2.2 Conversion of NFA to DFA

50 Principles of Compiler Design

The DFA that we obtain by using Algorithm 2.2 can be used to determine if an input string matches a

regular expression or not. We discuss the details on how the DFA can be interpreted to recognise a string in

Section 2.3.2.2.

2.3.2.1 Example 3—Converting NFA to DFA This section demonstrates an example program that

that converts an NFA to DFA using Algorithm 2.2. The program takes a regular expression on the command

line, and prints out its NFA and the equivalent DFA. The NFA and DFA are shown in the form of a

translation table. The dialog below shows the example program taking in different regular expressions and

printing out the NFA and DFA details.

Making the example

$ g++ -g -Wall rlex.cc ex3.cc -o ex3

The NFA and the corresponding DFA for ab*c

$./ex3 ‘ab*c’

 NFA Transition Table

============ |==========================

State | Input symbol

 | a b c epsilon

============ |==========================

START 0 | - - - { 1 }

 1 | 2 - - -

 2 | - - - { 5 }

 3 | - 4 - -

 4 | - - - { 6 3 }

 5 | - - - { 3 6 }

 6 | - - - { 7 }

 7 | - - 8 -

ACCEP 8 | - - - -

============ |==========================

 DFA Transition Table

============ |===============

State | Input symbol

 | a b c

=========== |===============

START 0 | 1 - -

 1 | - 2 3

 2 | - 2 3

ACCEP 3 | - - -

============ |===============

The NFA and the corresponding DFA for (a|b|c)+abb

$./ex3 ‘(a|b|c)+abb’

 NFA Transition Table

 Lexical Analysis 51

============ |==========================

State | Input symbol

 | a b c epsilon

============ |==========================

START 0 | - - - { 11 }

 1 | 2 - - -

 2 | - - - { 6 }

 3 | - 4 - -

 4 | - - - { 6 }

 5 | - - - { 1 3 }

 6 | - - - { 10 }

 7 | - - 8 -

 8 | - - - { 10 }

 9 | - - - { 5 7 }

 10 | - - - { 12 9 }

 11 | - - - { 9 }

 12 | - - - { 13 }

 13 | 14 - - -

 14 | - - - { 15 }

 15 | - 16 - -

 16 | - - - { 17 }

 17 | - 18 - -

ACCEP 18 | - - - -

============ |==========================

 DFA Transition Table

============ |===============

State | Input symbol

 | a b c

============ |===============

START 0 | 1 2 3

 1 | 4 2 3

 2 | 4 2 3

 3 | 4 2 3

 4 | 4 5 3

 5 | 4 6 3

ACCEP 6 | 4 2 3

============ |===============

Verbose mode

$./ex3 -v ‘ab’

 NFA Transition Table

============ |=====================

State | Input symbol

 | a b epsilon

============ |=====================

START 0 | - - { 1 }

 1 | 2 - -

 2 | - - { 3 }

52 Principles of Compiler Design

 3 | - 4 -

ACCEP 4 | - - -

============ |=====================

DFA State=0 Corresponding NFA Set: { 0 1 }

DFA State=1 Corresponding NFA Set: { 2 3 }

DFA State=2 Corresponding NFA Set: { 4 }

 DFA Transition Table

============ |==========

State | Input symbol

 | a b

============ |==========

START 0 | 1 -

 1 | - 2

ACCEP 2 | - -

============ |==========

Another Regular Expression

$./ex3 -v ‘(a|b)+cd’

 NFA Transition Table

============ |===============================

State | Input symbol

 | a b c d epsilon

============ |===============================

START 0 | - - - - { 7 }

 1 | 2 - - - -

 2 | - - - - { 6 }

 3 | - 4 - - -

 4 | - - - - { 6 }

 5 | - - - - { 1 3 }

 6 | - - - - { 8 5 }

 7 | - - - - { 5 }

 8 | - - - - { 9 }

 9 | - - 10 - -

 10 | - - - - { 11 }

 11 | - - - 12 -

ACCEP 12 | - - - - -

============ |===============================

DFA State=0 Corresponding NFA Set: { 0 1 3 5 7 }

DFA State=1 Corresponding NFA Set: { 1 2 3 5 6 8 9 }

DFA State=2 Corresponding NFA Set: { 1 3 4 5 6 8 9 }

DFA State=3 Corresponding NFA Set: { 10 11 }

DFA State=4 Corresponding NFA Set: { 12 }

 DFA Transition Table

============ |====================

State | Input symbol

 Lexical Analysis 53

 | a b c d

============ |====================

START 0 | 1 2 - -

 1 | 1 2 3 -

 2 | 1 2 3 -

 3 | - - - 4

ACCEP 4 | - - - -

============ |====================

Another Regular Expression

$./ex3 -v ‘(a|b)*abb’

 NFA Transition Table

============ |======================

State | Input symbol

 | a b epsilon

============ |=====================
START 0 | - - { 7 }
 1 | 2 - -
 2 | - - { 6 }
 3 | - 4 -
 4 | - - { 6 }
 5 | - - { 1 3 }
 6 | - - { 8 5 }
 7 | - - { 5 8 }
 8 | - - { 9 }
 9 | 10 - -
 10 | - - { 11 }
 11 | - 12 -
 12 | - - { 13 }
 13 | - 14 -
ACCEP 14 | - - -
============ |=====================

DFA State=0 Corresponding NFA Set: { 0 1 3 5 7 8 9 }
DFA State=1 Corresponding NFA Set: { 1 2 3 5 6 8 9 10 11 }
DFA State=2 Corresponding NFA Set: { 1 3 4 5 6 8 9 }
DFA State=3 Corresponding NFA Set: { 1 3 4 5 6 8 9 12 13 }
DFA State=4 Corresponding NFA Set: { 1 3 4 5 6 8 9 14 }

 DFA Transition Table

============ |=================
State | Input symbol
 | a b
============ |=================
START 0 | 1 2
 1 | 1 3
 2 | 1 2
 3 | 1 4
ACCEP 4 | 1 2
============ |=================

54 Principles of Compiler Design

2.3.2.2 Interpreting DFA In the last few sections, we learnt how to convert a regular expression to

an NFA and create a DFA from an NFA. This section shows how a DFA can be interpreted to recognise the

strings matching the regular expression.

Consider the regular expression ‘ab*c’ for discussion. The NFA and the corresponding DFA can be obtained

by using the executable ex3 shown in Section 2.3.2.1.

The NFA and the corresponding DFA for ab*c

$./ex3 ‘ab*c’

 NFA Transition Table

=========== |==========================

State | Input symbol

 | a b c epsilon

=========== |==========================

START 0 | - - - { 1 }

 1 | 2 - - -

 2 | - - - { 5 }

 3 | - 4 - -

 4 | - - - { 6 3 }

 5 | - - - { 3 6 }

 6 | - - - { 7 }

 7 | - - 8 -

ACCEP 8 | - - - -

===========|==========================

 DFA Transition Table

===========|===============

State | Input symbol

 | a b c

=========== |===============

START 0 | 1 - -

 1 | - 2 3

 2 | - 2 3

ACCEP 3 | - - -

===========|===============

Fig. 2.17 DFA for ‘ab*c’

Figure 2.17 shows the visual representation of the DFA for ‘ab*c’ derived above by running Example 3.

Let us simulate an input string ‘abbbc’ to the above DFA. The initial state of the DFA is state 0. The

following table shows the transitions occurring due to the input string.

 Lexical Analysis 55

Current state
Input

character
Next state

0 a 1

1 b 2

2 b 2

2 b 2

3 c 2 (accepting state)

The transitions above yield an accepting state (state 3) and hence the string is recognised to match the RE.

Lets consider another input ‘abbabbc’, for which the transitions are shown below:

Current state
Input

character
Next state

0 a 1

1 b 2

2 b 2

2 a

No transition specifi ed.

So retry the transition from the start

state

0 a 1

1 b 2

2 b 2

2 c 2 (accepting state)

Again, the transitions above yield an accepting state (state 3) and hence the string is recognised to match

the RE.

The transitions occurring in the DFA can be formalised in the following algorithm:

cur_state holds the state number

move(state,c) gives the next state by looking at the Transition Table

interpret_dfa()

{

 cur_state=0;

 c=nextchar();

 while (c is not end-of-input) {

 cur_state = move (cur_state, c);

 if (cur_state is ACCEPTING_STATE) {

 return (SUCCESS);

 }

 c = nextchar();

 }

 return(FAILURE);

}

Algorithm 2.3 DFA interpretation

56 Principles of Compiler Design

2.3.2.3 Example 4—Interpreting DFA This section demonstrates an example program that is similar

to the functionality of ‘egrep’ utility. The program uses the DFA to recognise if the input matches the regular

expression or not. The program takes a regular expression and fi le name to search for a string that matches

the regular expression. The output of the program is the lines matching the regular expression along with

the line numbers. The dialog below shows the example program taking in different regular expressions and

fi le names, and printing out the lines in the fi le matching the regular expression.

Making the example

$ g++ -g -Wall rlex.cc ex4.cc -o ex4

Use the fi le that we used before for learning about the Regular Expressions

$ cat -n my_input

 1 sink

 2 base

 3 start

 4 dog

 5 goat

 6 boost

 7 easter

 8 ported

 9 global

 10 boss

 11 labs

Matches b followed by zero or any number of o then s

$./ex4 ‘bo*s’ my_input

6:boost

10:boss

11:labs

Matches b followed by one or any number of o then s

$./ex4 ‘bo+s’ my_input

6:boost

10:boss

Matches b followed by one or no o then s

$./ex4 ‘bo?s’ my_input

10:boss

11:labs

Matches oa or ort

$./ex4 ‘oa|ort’ my_input

5:goat

8:ported

Matches oa or os followed by t

$./ex4 ‘(oa|os)t’ my_input

5:goat

6:boost

Verbose mode

 Lexical Analysis 57

Test fi le containing strings

$ cat -n test5

 1 abbbc

 2 cbbbc

 3 aaaaaaaabbbc

$./ex4 -v ‘(a|b)*abb’ test5

 NFA Transition Table

========== |=====================

State | Input symbol

 | a b epsilon

========== |=====================

START 0 | - - { 7 }

 1 | 2 - -

 2 | - - { 6 }

 3 | - 4 -

 4 | - - { 6 }

 5 | - - { 1 3 }

 6 | - - { 8 5 }

 7 | - - { 5 8 }

 8 | - - { 9 }

 9 | 10 - -

 10 | - - { 11 }

 11 | - 12 -

 12 | - - { 13 }

 13 | - 14 -

ACCEP 14 | - - -

========== |=====================

 DFA Transition Table

========== |================

State | Input symbol

 | a b

========== |================

START 0 | 1 2

 1 | 1 3

 2 | 1 2

 3 | 1 4

ACCEP 4 | 1 2

========== |================

1:abbbc

3:aaaaaaaabbbc

2.3.3 Minimisation of DFA States

In Section 2.3.2.3, we learnt about converting an NFA to DFA and how DFA can be interpreted to recognise

strings that match a regular expression. When an NFA is converted into DFA, the resulting number of DFA

states is not optimised. It is possible to reduce the number of DFA states, thereby consuming lesser memory

for storing the DFA data structures and improving memory effi ciency. This section discusses the techniques

to reduce the number of DFA states to a minimum for a given DFA.

58 Principles of Compiler Design

From the lexical analyser generator development point of view, this is the third step (minimisation of

DFA states) shown in Fig. 2.10.

Consider the regular expression ‘(a|b|c)+abb’ . We can get the DFA by invoking the binary created as a

part of Example 3, as shown in the dialog below.

The NFA and the corresponding DFA for (a|b|c)+abb

$./ex3 ‘(a|b|c)+abb’

 NFA Transition Table

========= |==========================

State | Input symbol

 | a b c epsilon

============|==========================

START 0 | - - - { 11 }

 1 | 2 - - -

 2 | - - - { 6 }

 3 | - 4 - -

 4 | - - - { 6 }

 5 | - - - { 1 3 }

 6 | - - - { 10 }

 7 | - - 8 -

 8 | - - - { 10 }

 9 | - - - { 5 7 }

 10 | - - - { 12 9 }

 11 | - - - { 9 }

 12 | - - - { 13 }

 13 | 14 - - -

 14 | - - - { 15 }

 15 | - 16 - -

 16 | - - - { 17 }

 17 | - 18 - -

ACCEP 18 | - - - -

========== |==========================

 DFA Transition Table

========== |===============

State | Input symbol

 | a b c

========== |===============

START 0 | 1 2 3

 1 | 4 2 3

 2 | 4 2 3

 3 | 4 2 3

 4 | 4 5 3

 5 | 4 6 3

ACCEP 6 | 4 2 3

========== |===============

 Lexical Analysis 59

The following observations can be made by looking at the DFA states 1, 2, and 3.

• All the 3 states make a transition to DFA state 4, given the input ‘a’.

• All the 3 states make a transition to DFA state 2, given the input ‘b’.

• All the 3 states make a transition to DFA state 3, given the input ‘c’.

• The transitions for states 1, 2 and 3 are defi ned for inputs a, b, c only.

We can replace the DFA states 1, 2 and 3 by a single state, which has transitions to itself on inputs b and

c. On given an input of ‘a’, the transition will be to the DFA state 4. It is likely that the state 4 might have to

be re-named to different state (for example, state 2 or 3) in the wake of reduction of three states to a single

state.

Comparing state 4 and state 5 in the above DFA, both of the states make a transition to state 4 on

receiving an input ‘a’; both of the states make a transition to 3 on receiving input of ‘c’. However, on

receiving the input ‘b’ state 4 transitions to 5, while state 5 transitions to 6. The states 4 and 5 are said to be

 distinguished from each other by the input ‘b’.

The algorithm for reducing the number of DFA states works by:

• Creating groups of states that are distinguished by some input string.

• Merging the group of states that cannot be distinguished into a single state.

Let us try to minimise the DFA states in the example by using the above principle. In the fi rst pass, we

scan all the DFA states to separate out the accepting states and non-accepting states, this would yield 2

groups as shown in the table below:

DFA states Group

 0,1,2,3,4,5 (non-accepting) 1

 6 (accepting) 2

In the second pass, we compare the states in each of the groups to separate out the states that are not

identical. Thus, we compare state 0 with state 1, with respect to transitions on all possible inputs, we fi nd

that in state 0, the transition for ‘a’ is 1, while in state 1, the transition for ‘a’ is 4. Hence, we create a new

group 3, into which state 1 is placed. Next, we compare state 0 with 2, they are different with respect to

transitions on input ‘b’, hence state 2 is also moved to group 3. This kind of comparison of state 0 is done

with 3, 4, and 5 also, since none of them are identical to 0 with respect to transitions on all inputs, all of

them are moved to group 3. Thus we have at the end of the comparisons,

DFA states Group

 0 1

 6 (accepting) 2

 1,2,3,4,5 3

Next, we perform the same kind of operation on group 3. We compare state 1 with state 2 with regard to

transitions on all possible inputs. Since they are identical, we retain the state 2 in group 3 itself. The same

happens for state 3. When state 1 is compared with state 4, it is found that they are different with respect to

transition on ‘b’, hence it will be moved into a new group 4. When state 1 is compared with 5, it is found

that they are different with respect to transition on ‘b’, hence it will be moved into group 4. Thus we have at

the end of the comparisons,

60 Principles of Compiler Design

DFA states Group

 0 1

 6 (accepting) 2

 1,2,3 3

 4,5 4

Next, we perform the same kind of operation on group 4. We compare state 4 with state 5 with regard to

transitions on all possible inputs. When state 4 is compared with state 5, it is found that they are different

with respect to transition on ‘b’, hence state 5 will be moved into a new group 5. Thus we have at the end

of the comparisons,

DFA states Group

 0 1

 6 (accepting) 2

 1,2,3 3

 4 4

 5 5

Since group 5 contains only 1 element, there would be no comparisons necessary.

We have successfully created 5 groups of states. Note that the elements of each group have identical

transactions with respect to all inputs and can be merged into a single state. We can assign new state

numbers to the groups as shown in the following table :

DFA states Group New DFA

state

 0 1 0

 6 (accepting) 2 1

 1,2,3 3 2

 4 4 3

 5 5 4

Thus we were able to reduce the number of DFA states from 7 to 5 by creating groups of states that are

distinguished by some input string and merging the group of states that cannot be distinguished into a single

state. This algorithm has been formalised below:

dfa_tab is a array containing all the DFA States

Groups is an array of group

minimise_dfa ()

{

 for (each group g in Groups){

 d1 = fi rst DFA State in the Group g ;

 new_group is empty;

 for (each subsequent DFA State d in g){

 if (DFA State d is not identical to d1 with respect

 Lexical Analysis 61

 to transitions on all possible inputs){

 Add it to new_group

 }

 }

 if(new_group is not empty)

 Add new_group to Groups

 }

 }

 Create a new Transitions Table with group index as the state number

}

Algorithm 2.4 Minimise DFA

2.3.3.1 Example 5—Minimising DFA States This section demonstrates an example program that can

translate a given regular expression into NFA, convert the NFA to DFA and minimise the DFA states. The

program implements Algorithm 2.4 for minimising the DFA states. The program takes a regular expression

on the command line, translates it into NFA, converts the NFA to DFA, minimises the DFA states and prints

out the NFA/DFA translation tables. The dialog below shows the example program taking in different

regular expressions and printing out the NFA and DFA details.

Making the example

$ g++ -g -Wall rlex.cc ex5.cc -o ex5

Verbose mode

Minimising DFA States

$./ex5 -v ‘(a|b)*abb’

 NFA Transition Table

============ |=====================

State | Input symbol

 | a b epsilon

============ |=====================

START 0 | - - { 7 }

 1 | 2 - -

 2 | - - { 6 }

 3 | - 4 -

 4 | - - { 6 }

 5 | - - { 1 3 }

 6 | - - { 8 5 }

 7 | - - { 5 8 }

 8 | - - { 9 }

 9 | 10 - -

 10 | - - { 11 }

 11 | - 12 -

 12 | - - { 13 }

 13 | - 14 -

ACCEP 14 | - - -

============ |=====================

 DFA Transition Table

62 Principles of Compiler Design

============ |================

State | Input symbol

 | a b

============ |================

START 0 | 1 2

 1 | 1 3

 2 | 1 2

 3 | 1 4

ACCEP 4 | 1 2

============ |================

No of Old States=5 No of New States=4

Old State=0 New State=0

Old State=1 New State=2

Old State=2 New State=0

Old State=3 New State=3

Old State=4 New State=1

 MIN DFA Transition Table

============ |================

State | Input symbol

 | a b

============ |================

START 0 | 2 -

ACCEP 1 | 2 -

 2 | 2 3

 3 | 2 1

============ |================

Another Regular Expression

$./ex5 -v ‘(a|b|c)+’

 NFA Transition Table

============ |==========================

State | Input symbol

 | a b c epsilon

============ |==========================

START 0 | - - - { 11 }

 1 | 2 - - -

 2 | - - - { 6 }

 3 | - 4 - -

 4 | - - - { 6 }

 5 | - - - { 1 3 }

 6 | - - - { 10 }

 7 | - - 8 -

 8 | - - - { 10 }

 9 | - - - { 5 7 }

 10 | - - - { 12 9 }

 11 | - - - { 9 }

ACCEP 12 | - - - -

=============|==========================

 Lexical Analysis 63

 DFA Transition Table

============ |===============

State | Input symbol

 | a b c

 ============ |=======================

START 0 | 1 2 3

ACCEP 1 | 1 2 3

ACCEP 2 | 1 2 3

ACCEP 3 | 1 2 3

============ |=======================

No of Old States=4 No of New States=2

Old State=0 New State=0

Old State=1 New State=1

Old State=2 New State=1

Old State=3 New State=1

 MIN DFA Transition Table

============ |===================

State | Input symbol

 | a b c

============ |===================

START 0 | 1 1 1

ACCEP 1 | 1 1 1

============ |===================

2.3.4 Generate the Code for the Lexical Analyser using the Minimised DFA

In the previous sections we understood the concepts of converting a regular expression into NFA,

converting the NFA to DFA and then minimising the number of DFA states. Now, we enter the last phase of

lexical analysis (step 4), namely the generation of C language code that can be compiled to make a lexical

analyser.

As we saw in Section 2.2.1, the main data structures that are required to interpret a DFA are (1)

transition table; (2) fl ag to indicate whether a given state is accepting state or not. The DFA interpreting

algorithm (Algorithm 2.3) operates on these data structures to determine if a given input matches the

regular expression or not. The DFA interpreting algorithm is a standard one and hence the code for it can be

generated statically from a template. The two data structures mentioned above are the only thing that varies

depending on the input regular expression. Thus in order to generate a lexical analyser, we need to:

 (a) Export the transition table and an accept marker that can indicate if a given state is an accepting

state or not into the lexical analyser. These two data structures are dependent on the input lexical

specifi cation fi le.

 (b) Generate the code for a standard DFA interpreting algorithm (Algorithm 2.3) that remains the

same regardless of the input lex fi le. This is the recogniser component of lexical analyser shown in

Fig. 2.5.

 (c) Generate the code for the action component shown in Fig. 2.5. This is dependent on the input lexical

specifi cations fi le.

64 Principles of Compiler Design

The following describes the design issues that need to be addressed for generating lexical analyser code

• In a lexical analyser, even when the input character string does not match the regular expression,

there is usually some default action that needs to be taken, like echoing the character onto the screen.

This can be taken care by having a stack in which input characters are stored and then control can

fl ow to the specifi c action block or the default action block depending on whether it matches a regular

expression or not.

• For generating the code of standard DFA interpretation algorithm, there are two possible approaches:

(a) generate the code from a template fi le or (b) generate the code from stored static strings in the

lexical analyser generator. In rlex, the latter approach has been chosen.

• In this chapter, till now, we were having a single regular expression to convert to NFA then to DFA,

and interpret it. In a lexical specifi cation fi le, there could be a number of rules (regular expressions),

which need to be addressed simultaneously. Consider an input lexical specifi cation fi le having 3 rules.

After converting them to NFA individually, each of them would have a start state say nfa_s1, nfa_s2

and nfa_s3. A single NFA can be built out of them by creating 3 new NFA nodes (n1, n2, n3) and

interconnecting these using the Œ transitions. A new NFA start node (nfa_start) can be used as a start

for the entire NFA. This is shown in the fi gure below. This NFA can then be converted to DFA and

then interpreted.

• The interpretation of DFA shown in Algorithm 2.3 returns with the shortest sub-string that matches

a regular expression, but a lexical analyser needs to return the longest sub-string that matches the

regular expression. This type of regular expression matching where the longest sub-string match is

returned is called greedy interpretation of the RE; e.g. consider a regular expression ‘abc*’ and an

input string ‘abccccd’, In a non-greedy interpretation, the RE match would yield ab while the greedy

interpretation would return ‘abcccc’. In order to cater to greedy version, the DFA Interpretation

shown in Algorithm 2.3, needs to be modifi ed a little bit as shown in Algorithm 2.5. The modifi cation

is to keep track of the last accepting state and continue taking the input until there is transition from

accepting state to non-accepting state. When such a transition occurs, we signal that the match is

complete. In lexical analyser generator rlex, we generate code for lexical analyser which uses the

greedy interpretation of DFA shown in Algorithm 2.5.

 Lexical Analysis 65

cur_state stores the current state of the DFA

move(state,c) gives the next state by looking at the Transition Table

interpret_greedy_dfa()

{

 last_accept_state = -1

 while (c is not end-of-input) {

 cur_state = move(cur_state, c);

 if (cur_state is ACCEPTING_STATE) {

 last_accept_state=cur_state;

 }else{

 if(last_accept_state != -1){

 return(SUCCESS);

 }

 }

 c = nextchar();

 }

 if(last_accept_state != -1){

 return(SUCCESS);

 } else {

 return(FAILURE);

 }

}

Algorithm 2.5 Greedy DFA interpretation

2.3.4.1 Example 6—Lexical Analyser Code Generation using the minimised DFA This section

demonstrates a lexical analyser generator—rlex, which generates code for a lexical analyser given a lexical

specifi cations fi le. ‘rlex’ is a lexical analyser generator similar to ‘fl ex’. It implements most of the theory

we have learnt in the previous sections. ‘rlex’ takes in a lexical specifi cations fi le and generates code for

a corresponding lexical analyser. The ‘rlex’ lexical analyser generator handles only a few of the meta

characters shown in Table 2.1, hence it cannot work with full-fl edged C language lexical specifi cations. The

dialog below shows ‘rlex’ taking in ‘keywords.l’—a lexical specifi cation that identifi es and returns only the

keywords as tokens and ignores everything else. The dialog illustrates rlex lexical analyser generator taking

the input lexical specifi cations and generating code for the lexical analyser.

Building the lexical Analyzer Generator

$ g++ -g -Wall rlex.cc ex6.cc -o rlex

Compiling Lex fi le using rlex to generate C Code for Lexical Analyzer

$./rlex keywords.l >out.c

Building Lexical Analyzer Binary

$ gcc -g out.c -o lexer

Input fi le to be tokenized

$ cat -n test8.c

 1 int

 2 main ()

66 Principles of Compiler Design

 3 {

 4 int i = 0;

 5

 6 while (i < 5) {

 7 puts (“Hi\n”);

 8 i++;

 9 }

 10

 11 for (i = 0; i < 10; i++) {

 12 puts (“Hello World\n”);

 13 }

 14 }

Lexical Analyser at work !

$./lexer test8.c

Lexeme=[int] Length=3 Token is INT

Lexeme=[int] Length=3 Token is INT

Lexeme=[while] Length=5 Token is WHILE

Lexeme=[for] Length=3 Token is FOR

 SUMMARY

Lexical analysis is the fi rst stage in compilation of a source program written in a higher-level

language like C or C++. The lexical analyser reads the input source program and produces as output

a sequence of tokens that the parser uses for syntax analysis. In order to facilitate the development of

lexical analysers for any higher-level language easily, lexical analyser generators are used. A lexical

analyser generator is a tool that can generate code to perform lexical analysis of the input, given

the rules for the basic building blocks of the language. The rules for the basic building blocks of a

language are called its lexical specifi cations. This chapter describes in detail the 4 steps that lexical

analyser generators follow in order to generate the lexical analyser from the lexical specifi cations.

 REVIEW QUESTIONS AND EXERCISES

 2.1 What are the main functions of a lexical analyser?

 2.2 State whether the following statements are true or false:

 (a) A lexical analyser strips out the comments and white spaces from input source program.

 (b) The part of the input stream that qualifi es for a certain type of token in a lexical analyser is

called as lexeme.

 (c) The lexical analyser keeps track of the new line characters, so that it can output the line

number with associated error messages, in case of errors in the input source program.

 (d) The lexical analyser helps in creation of symbol table.

 2.3 Why do we need to have lexical analyser generators? What are its advantages?

 Lexical Analysis 67

 2.4 How does a lexical analyser generator like ‘fl ex’ convert the lexical analysis specifi cation to a

lexical analyser? What are the steps involved?

 2.5 What is a regular expression? How is it used in lexical specifi cations?

 2.6 What is a regular defi nition? Specify an identifi er and a hexadecimal constant in C language

taking the help of regular defi nitions.

 2.7 What are the limitations of regular expressions? Can a regular expression be used for detecting

simple C language statements?

 2.8 What are the various components of a lexical specifi cation fi le? Illustrate with an example.

 2.9 What is a fi nite state machine? How is it visually represented? Give an example of FSM to

recognise 3 keywords in C language?

 2.10 What are deterministic fi nite machines and non-deterministic fi nite machines? List out the

differences between them.

 2.11 How do you translate a regular expression to an NFA? Translate (a|b|c)?d into an NFA and draw

its transition diagram.

 2.12 Write an algorithm to interpret an NFA and report if a given string matches the NFA. Illustrate

with an example.

 2.13 What is a move set? What is an epsilon closure set? Give examples. How are they used in

reporting if a given string matches a regular expression?

 2.14 Why do lexical analyser generators use and interpret DFA to report if a given input string

matches the given regular expression, rather than using an NFA? What are the advantages of

using a DFA?

 2.15 How is an NFA converted to a DFA? Illustrate for a sample regular expression ‘(a|b)*abb’.

 2.16 Write an algorithm to interpret a DFA and report if a given string matches the DFA.

 2.17 Why is the step to minimise the number DFA states required during the process of generating a

lexical analyser from the lexical specifi cations? Give the algorithm to minimise the number of

DFA states for a given DFA.

 2.18 What are the main design issues to be considered while generating the code for lexical analyser

given the minimised DFA?

 2.19 State whether the following statements are TRUE or FALSE:

 (a) A lexical analyser generator translates the regular expressions given in lexical specifi cation

fi le into NFA. The NFA is then converted to DFA. The DFA is minimised to eliminate

duplicate states. The minimised DFA is then used to generate the lexical analyser.

 (b) An NFA cannot be used to recognise whether a given input string matches it or not. Hence,

the NFA is converted to DFA in a lexical analyser generator.

 (c) The generated lexical analysers use a greedy interpretation while matching the regular

expressions provided in the lexical specifi cations fi le.

 (d) A lexical analyser generator cannot be used to generate lexical analyser for different

programming languages.

 2.20 The extended regular expressions offer more facilities to recognise patterns than the basic regular

expressions. List out the additional meta characters and their signifi cance in the extended regular

expressions.

 2.21 Most of the operating systems provide a regular expression library that can be used in the

programs to match input strings. Write a program on LINUX to use the ‘regex’ library to check if

a given string is a valid internet protocol address (IP address)?

 2.22 Write a regular expression that can detect C language comments. Support both the single line

comment syntax (//) and multi-line comment syntax (/* */).

68 Principles of Compiler Design

 2.23 A meta-character is used to signify a special meaning within a regular expression. How do you

turn off the special meaning and recognise a string containing the meta character literally? Write a

regular expression that can detect sentences in a text fi le containing a full-stop at the end of the line.

 2.24 Write a lexical analyser that can recognise an identifi er and a few of the keywords in C language

without using a lexical analyser generator. Compare the effort required for implementing the

same by having a lexical analyser generated from a lexical specifi cation fi le. This should justify

the need to have lexical analyser generator tools.

 2.25 Write a lexical specifi cations fi le supporting a small subset of ANSI-C language and generate the

lexical analyser for the same using ‘fl ex’. Check whether the lexical analyser can tokenise some

sample input C fi les.

Introduction

 Syntax analysis is the second stage in compilation of a source program
after lexical analysis. While lexical analyser reads the input source
program and produces as output a sequence of tokens, syntax analysis
verifi es if the tokens are properly sequenced in accordance with the
grammar of the language. Consider, for example a C program as
input to the compiler as shown in Fig. 3.1. To understand the function
of syntax analysis, let us take the statement in line number 8 of the
input C program. The lexical analyser separates it into 5 tokens,
namely, identifi er (count), equal to operator (=), identifi er (count),
plus operator (=), constant (1), followed by semicolon (;). The syntax
analyser verifi es if the sequence of identifi er followed by equal to
operator, identifi er, plus operator, and a constant is a valid sequence
in the grammar of C language. The syntax analyser returns success,
if the sequence is defi ned in the grammar of C language, or failure in
case it is not defi ned. In cases where the statement does not match
the grammar specifi ed for the language, the syntax analyser detects
the error, emits appropriate error message to the user and if possible,
recovers from the error.

The syntax analysis (or parsing) is performed by a module in the
compiler called as syntax analyser or parser. For the parser to perform

3

SYNTAX ANALYSIS

70 Principles of Compiler Design

syntax analysis, the grammar of the language needs to be specifi ed. How do we
specify the grammar of the language? Context-free grammar (CFG) is usually used to
defi ne the grammar of a language. Context-free grammar can be adequately used for
describing any programming language.

Fig. 3.1 Syntax analysis

Section 3.1 deals with how we can specify the context-free grammar using some
standard notation. Section 3.2 shows the classifi cation of various techniques used
for parsing. We discuss one class of parsing techniques called as top-down parsing
in Section 3.4. Section 3.5 is devoted to another class of parsing techniques called
as bottom-up parsing. Apart from verifying if the tokens are properly sequenced in
accordance with the grammar of the language, the syntax analyser is responsible for
reporting errors in the input source program and recovering from them. This is dealt
with in Section 3.3.

3.1 CONTEXT FREE GRAMMAR

 Context-free grammar (CFG) is used to defi ne the syntactic structure of a programming language. It

contains a set of rules called as productions or production rules.

To understand the productions and the other aspects of context-free grammar, let us take a look at a

grammar that can describe a simple assignment statement in C language, like any one of the following:

count = 5 ; /* Variant 1 */
count = index ; /* Variant 2 */
count = 3*2 ; /* Variant 3 */
count = count + index ; /* Variant 4*/

 Syntax Analysis 71

count = count + 1 ; /* Variant 5 */
count = count * 2 + 5 ; /* Variant 6 */
count = count * 2 + index ; /* Variant 7 */

The context-free grammar in Table 3.1 defi nes the syntax of a simple assignment statement in C

language such as the ones shown above. The context-free grammar in Table 3.1 contains 4 productions

numbered accordingly.

Table 3.1 Context-free grammar

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3 c_expression Æ IDENTIFIER

4 c_expression Æ c_expression OPERATOR c_expression

The Æ in each of the productions of Table 3.1 may be read as ‘can take the form’. The production rule

1 can thus be interpreted as ‘A C statement can take the form of an IDENTIFIER followed by an equal-to-

operator, C expression and a semicolon’. The production 2 can be interpreted as, ‘A C expression can take

the form of a CONSTANT’. The production 3 can be interpreted as ‘A C expression can take the form of an

IDENTIFIER’. The production 4 can be interpreted as ‘A C expression can take the form of a C expression

followed by an OPERATOR and a C expression’. The production 4 defi nes the C expression in terms C

expression itself recursively.

In general, a context-free grammar consists of the following components:

 1. A set of tokens called as terminal symbols. These tokens cannot be sub-divided into smaller

elements. The lexical analyser provides these as tokens as a part of tokenising the input. In the

above example, IDENTIFIER, CONSTANT, SEMI_COLON, OPERATOR and EQ_TO_OP are the

terminal symbols. They are denoted by capital letters. In the above example, the lexical analyser

returns OPERATOR as the token type on encountering any of the operators ‘+’ or ‘–’ or ‘*’ or ‘/’.

 2. A set of non-terminal symbols. These can be broken down into smaller components. In the above

example, c_expression, and c_statement are the non-terminal symbols. These are usually denoted by

lower-case letters. The recursive defi nition of non-terminals (e.g. production 4) is extensively used

while defi ning grammar for programming languages.

 3. A set of productions where each production consists of a non-terminal called as the left-side of

the production, an arrow and a sequence of tokens and/or non-terminals called as the right-side of

the production. For example, the c_expression is the left-side and CONSTANT is the right-side of

production 2.

 4. A designation of one of the non-terminals called as start symbol. This requires some explanation.

Let’s say we want to check whether the input is a simple C assignment statement such as variant 1

or variant 2. In such case, the start symbol is c_statement. Let’s say in another scenario, we want to

check whether the input is a simple C expression. In such case, the start symbol is c_expression. In

the above example, since we are looking to validate one simple C assignment statement as input, the

start symbol is a c_statement.

The grammar of a programming language expressed in the form shown in of Table 3.1 is also referred

to as Backus-Naur form (BNF) in recognition to the contributions by the authors Backus and Naur. There

are several alternatives to the notation used to represent a grammar in BNF. Table 3.2 shows one of the

72 Principles of Compiler Design

popular notations accepted by automatic parser generators like bison and yacc. The notation used in Table

3.2 uses the colon (:) symbol instead of the Æ symbol to separate the LHS and the RHS of a production.

The semicolon (;) is used to indicate the end of the production.

Table 3.2 Production rules for a single C-statement using an alternate notation

1 c_statement : IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

;

2 c_expression : CONSTANT

;

3 c_expression : IDENTIFIER

;

4 c_expression : c_expression OPERATOR c_expression

;

Apart from these the symbol of vertical bar (|) indicating an OR condition is also used commonly to

show the production rules having the same LHS together. The production rules 2, 3 and 4 can be shown

together using ‘|’ as shown below:

2 c_expression : CONSTANT

3 | IDENTIFIER

4 | c_expression OPERATOR c_expression

;

By looking at production rules 2, 3, 4 we can infer that c_expression consists of CONSTANT (rule 2) or

IDENTIFIER (rule 3) or c_expression followed by OPERATOR and c_expression (rule 4).

Till now the discussion was mostly with regard to defi ning and expressing context-free grammar. Let us

now see how to identify if a given input string is in conformance to the syntax specifi ed by the grammar or not.

In order to prove that an input is syntactically in conformance to grammar, we need to prove that it can

take one of the generic forms deduced from the productions. There are several ways of proving this. One of

the methods involves the following procedure.

 1. Expand the start symbol. For example, if we are trying to prove that an input is a C statement

conforming to the grammar specifi ed in Table 3.1, the start symbol is the c_statement.

 2. Repeat step 3 until there are no more non-terminals to replace.

 3. Replace the leftmost non-terminal by one of its right-hand sides.

 4. Exit.

This process of showing how an input can be verifi ed for conformance to a grammar is called as

 derivation. Figure 3.2 illustrates the method for checking if the input ‘count = count + 5 – index;’ is in

conformance with the grammar in Table 3.1. We use a symbol =>, which means ‘derives’ in the proof.

Figure 3.2 proves that the statement count = count + 5 – index; is indeed part of the grammar specifi ed

in Table 3.1.

The entire sequence of replacements as seen in Figure 3.2 is called as derivation of ‘count = count +

5 – index;’ from c_statement. It shows the proof that one instance of c_statement is ‘count = count + 5

– index;’.

 Syntax Analysis 73

The process used in Figure 3.2 for the derivation of ‘count = count +5 – index;’ is called as leftmost

derivation because we replaced the leftmost non-terminal in the partially parsed sentence with equivalent

production’s right-hand side.

Fig. 3.2 Derivation of ‘count= count +5 –index ;’

In step 1, we saw that the c_statement (start symbol of the grammar in Table 3.2) took a form

‘IDENTIFIER EQ_TO_OP c_expression SEMI_COLON’. In step 2, we saw that the c_statement took a form

‘IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON’. In all, we saw 6 forms

corresponding to each step in Fig. 3.2. These forms are called sentential forms of the grammar. In the fi nal

step (step 6), the form is ‘IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT OPERATOR

IDENTIFIER SEMI_COLON. ‘All the elements of this form are terminals. This is called as a sentence of

the grammar in Table 3.2. In short a sentence is a sentential form in which all the elements are terminals

only. Using a different substitution for c_expression, you can prove that the form ‘IDENTIFIER EQ_TO_

OP IDENTIFIER SEMI_COLON’ is another sentence generated out of the same grammar in Table 3.2. The

collection of all the sentences that can be derived from the grammar is called as context-free language. If

two grammars generate the same context-free language, then grammars are said to be equivalent.

 In the above derivation of ‘count = count + 5 – index;’, we replaced the leftmost non-terminal in the

sentential forms with the production’s right-hand side. Similarly, it is possible to replace the rightmost non-

terminal in the partially parsed sentence with equivalent production’s right-hand side and prove that the

given statement is a C statement. This type of derivation is called as rightmost derivation or canonical

derivation. Shown below is the derivation of count = count + 5 – index; using the rightmost derivation.

The comment at the right in italics at each of the steps below indicates the production used at that particular

step in the derivation. For example, by P3 indicates using the production 3.

74 Principles of Compiler Design

 c_statement => IDENTIFIER EQ_TO_OP c_expression SEMI_COLON By P1

 => IDENTIFIER EQ TO_OP c_expression OPERATOR c_expression SEMI_COLON By P4

 => IDENTIFIER EQ TO_OP c_expression OPERATOR c_expression OPERATOR c_expression SEMI_COLON By P4

 => IDENTIFIER EQ TO_OP c_expression OPERATOR c_expression OPERATOR IDENTIFIER SEMI_COLON By P3

 => IDENTIFIER EQ TO_OP c_expression OPERATOR CONSTANT OPERATOR IDENTIFIER SEMI_COLON By P2

 => IDENTIFIER EQ TO_OP IDENTIFIER OPERATOR CONSTANT OPERATOR IDENTIFIER SEMI_COLON By P3

 => count = count + 5 – index ;

A parse tree is a graphical representation of a derivation. Let’s see what a parse tree looks like and how

it is constructed by taking the example of the derivation of a C statement ‘count = count + 10 ;’ with the

productions mentioned in Table 3.1.

The leftmost derivation proceeds as follows:

 c_statement => IDENTIFIER EQ_TO_OP c_expression By P1

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON By P4

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR c_expression SEMI_COLON By P3

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON By P2

 => count = count + 10 ;

The construction of the parse tree for the derivation is shown in Fig. 3.3. The fi nal parse tree in

Fig. 3.3(e) can be used to represent the entire derivation. The numbering of the interior nodes specifi es the

order in which the derivation proceeded. Observe that the numbering of the interior nodes in the parse tree

is actually a pre-order numbering. To recall, a pre-order traversal of tree visits the root, followed by left

sub-tree and then the right sub-tree. To sum up, a pre-order traversal of the interior nodes of the fi nal parse

tree replicates the entire leftmost derivation in totality.

A parse tree has the following properties:

∑ The root node is labelled with the start symbol. In the parse tree example shown at Fig. 3.3(e) the root

node is c_statement.

∑ Each of the interior nodes, i.e. nodes having children, are labelled by a non-terminal. At each of the

interior nodes, the children of the node are labelled from left to right by the symbols that are used

for replacing it. In the parse tree shown at Fig. 3.3(e), we can see that there are two interior nodes

labelled as c_expression, and one interior node labelled as c_statement.

∑ The leaves of the parse tree are labelled by terminals. When the leaves are read from left to right, they

constitute the yield of the tree. For example, in the parse tree shown in Fig. 3.3(e), the yield is count =

count + 10;

∑ The parse tree is independent of the order of application of productions. For example, in the above

derivation for count = count + 10;, the productions used were 1, 4, 3, and 2 in that order. The parse

tree would be the same, even if we had used production 2 to replace the c_expression in the extreme

right and then consequently used production 3 to replace the c_expression in the left.

∑ A pre-order traversal of the interior nodes of a parse tree brings out a unique leftmost derivation.

The exact reverse of a post-order traversal of the interior nodes in a parse tree brings out a unique

rightmost derivation. To recall, a post-order traversal of a tree is visiting the left sub-tree followed by

right sub-tree followed by the root. For example, by observing the parse tree in Fig. 3.3(e) we can see

that the unique leftmost derivation (pre-order) is as follows:

 c_statement => IDENTIFIER EQ_TO_OP c_expression

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR c_expression SEMI_COLON

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON

 => count = count + 10 ;

Similarly, we can deduce the unique rightmost derivation from the parse tree (reverse of post-order) in

Fig. 3.3(e), as follows:

 Syntax Analysis 75

Fig. 3.3 Parse tree construction for count=count + 10;

76 Principles of Compiler Design

c_statement => IDENTIFIER EQ_TO_OP c_expression

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR CONSTANT SEMI_COLON

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON

 => count = count + 10 ;

Before we end the discussion on parse tree, let’s see the advantages of representing a derivation by a

parse tree:

∑ It makes the hierarchical syntactic structure of the sentence explicit. By viewing the fi nal parse tree in

Fig. 3.3(e), it is easy to make out the hierarchical structure of count=count+10.

∑ It illustrates the replacement of the productions clearly. Consider the C statement, count = count + 10 / 5;,

as you can see later in the section, it can be derived in two ways. The parse trees shown in Fig. 3.4

can clearly tell us what replacements were made in either case.

A grammar is said to be ambiguous if it produces more than one parse tree for the same sentence.

 Ambiguous grammars produce more than one leftmost derivation or more than one rightmost derivation.

Consider a C statement ‘count = count + 10 / 5; ’. Let’s take a look at the leftmost derivation of this

statement for checking its conformance with the grammar specifi ed in Table 3.1.

 c_statement => IDENTIFIER EQ_TO_OP c_expression SEMI_COLON By P1

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON By P4

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR c_expression SEMI_COLON By P3

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR c_expression OPERATOR c_expression SEMI_COLON By P4

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT OPERATOR c_expression SEMI_COLON By P2

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT OPERATOR CONSTANT SEMI_COLON By P2

 => count = count + 10 / 5 ;

Another way of doing leftmost derivation, where the order of productions used varies from the previous case.

 c_statement => IDENTIFIER EQ_TO_OP c_expression SEMI_COLON By P1

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON By P4

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression OPERATOR c_expression SEMI_COLON By P4

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR c_expression OPERATOR c_expression SEMI_COLON By P3

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT OPERATOR c_expression SEMI_COLON By P2

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT OPERATOR CONSTANT SEMI_COLON By P2

 => count = count + 10 / 5 ;

Figure 3.4 shows the parse trees for both of the above derivations.

Observe that there exists more than one parse tree with differing yields. This would create a problem at

the time of generating a code. Hence, it is imperative that we disambiguate the grammar.

How do we disambiguate these grammars?

The fundamental idea behind the disambiguation of grammars is to eliminate some of the undesirable

parse trees by means of specifying one or more disambiguating rules.

In order to eliminate ambiguity, operators like *, /,+,– are grouped hierarchically according to their

 precedence. Precedence specifi es the order of evaluation in an expression. Operations with higher

precedence are carried out before operations having lower precedence. Table 3.3 shows a sample operator

precedence in C language.

Table 3.3 Operator precedence

Operators Priority

+ – Lower priority

* / Higher priority

 Syntax Analysis 77

Fig. 3.4 Parse trees for count=count + 10 /5 ;

The operator precedence table shown in Table 3.3 will disambiguate statements like

count = count + 10/5;

78 Principles of Compiler Design

This will be evaluated as

 count = count + (10/5);

since division operator ‘/’ is of higher precedence compared to ‘+’ . It has eliminated the option of count

= (count + 10)/5; since it gives an impression that plus operator has higher precedence than division

operator.

The operator precedence table still does not disambiguate the cases like

 var1 = var2 / var3 * 5;

Since both ‘*’ and ‘/’ have the same precedence. This can be evaluated as

 var1 = (var2 / var3) * 5;

 or

 var1 = var2 / (var3 * 5);

This ambiguity is eliminated by specifying the order in which consecutive operations within same

precedence group are carried on. This is called as associativity. The operators of same precedence group

can be evaluated from left to right (called as left to right associativity) or from right to left (called as right

 to left associativity). Using C language norm that each of the precedence group in Table 3.3 have left to

right associativity then

 var1 = var2 / var3 * 5;

would be evaluated to

 var1 = (var2 / var3) * 5;

since the expression is evaluated from left to right for the same precedence group of ‘*’ and ‘/’ . This has

eliminated the case of var1 = var2 / (var3*5), since it gives the impression that evaluation has happened

from right to left. In any case, natural order of evaluation can always be altered by use of parenthesis.

The associativity and precedence rules mentioned above can also be refl ected in the grammar itself, even

though it is cumbersome and non-intuitive.

Before we end this section on context-free grammars, let’s see the advantages of specifying the syntax of

a language using context-free grammar.

∑ An effi cient parser can be constructed automatically from a properly designed grammar. This is very

similar to building a lexical analyser given the lexical specifi cations in regular expression as discussed

in Chapter 2. There are tools like yacc, bison that can convert syntax specifi cation in CFG form to a

parser. Section 3.1.2 shows an example of generating a parser from a CFG using the above-mentioned

tools.

∑ Specialised tools like ‘yacc’ and ‘bison’ can perform verifi cation and validation of CFG. They can

detect fl aws like ambiguities, unused rules, etc. in a grammar. This helps in correcting the grammar

in early design phase of a language before we decide what action should follow on detection of a

particular sequence.

∑ The context-free grammar lends structure to a program easing out translation to intermediate code, as

we would see in the later chapters.

3.1.1 Using Context-free Grammar to Automatically Generate a Parser

The automatic generation of a parser from the CFG is perhaps the most important use of the context-free

grammar. The context-free grammar is included as a part of the grammar-specifi cations fi le supplied to a

parser generator utility like ‘bison’ in order to generate a parser. In this section, we discuss the structure of

the grammar-specifi cations fi le and how the context-free grammar fi ts into it.

 Syntax Analysis 79

Listing 3.1 shows the grammar-specifi cation fi le corresponding to the context-free grammar for simple C

assignment statement described in Table 3.1.

 1 %token IDENTIFIER CONSTANT OPERATOR EQ_TO_OP SEMI_COLON

 2 %start c_statement

 3 %{

 4 #include <stdlib.h>

 5 #include <stdio.h>

 6 #include <string.h>

 7

 8 extern int yylex();

 9 int yyerror(char *s);

 10

 11 %}

 12

 13 %%

 14

 15 c_statement : IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

 16 ;

 17

 18 c_expression : CONSTANT

 19 ;

 20

 21 c_expression : IDENTIFIER

 22 ;

 23

 24 c_expression : c_expression OPERATOR c_expression

 25 ;

 26

 27 %%

 28

 29 extern int column;

 30 int yydebug = 0;

 31 char input_str[500];

 32

 33 int

 34 yyerror (char *s)

 35 {

 36 printf (“%s”, input_str);

 37 ffl ush (stdout);

 38 printf (“\n%*s\n%*s\n”, column, “^”, column, s);

 39 return (1);

 40 }

 41

 42 int

 43 main (int argc, char **argv)

 44 {

 45 int ret;

 46

80 Principles of Compiler Design

 47 if (argc != 2) {

 48 printf (“Usage: %s ‘C statement’ \n”, argv[0]);

 49 return (1);

 50 }

 51

 52 strcpy (input_str, argv[1]);

 53

 54 ret = yyparse ();

 55

 56 if (ret == 0) {

 57 printf (“%s”, input_str);

 58 printf (“\nSYNTAX CORRECT \n”);

 59 } else {

 60 printf (“SYNTAX INCORRECT \n”);

 61 }

 62

 63 return (0);

 64 }

Listing 3.1 c-stmt-gram.y

A grammar-specifi cation fi le like the one illustrated in Listing 3.1 can be broadly divided into 3 parts.

Declarations
%%
Production Rules
%%
Auxiliary Functions

The declarations section consists of declarations of all the non-terminals (tokens) used in the grammar.

This is illustrated in line 1 of Listing 3.1. The declarations section also contains the declaration of the start

symbol that we discussed in Section 3.2. This is illustrated in line 2 of Listing 3.1, where we declare that

the start symbol is c_statement. The declarations section can also contain a literal block of C code enclosed

in {% and %} lines, exactly the way it is in the lexical specifi cation fi le. This is illustrated from line 3 to 11

of Listing 3.1.

The production rules section consists of a list of grammar rules each separated by a semicolon (;). A

colon (:) separates the left-hand and the right-hand sides of the productions. In the rules section, the fi rst

rule (line 15) defi nes the c statement. This is the production 1 of Table 3.1. The rules for c expression are

mentioned next. These are the productions 2, 3, 4 of Table 3.1.

The auxiliary functions section consists C code that is copied verbatim into the generated code for

parser. In the auxiliary section, we typically defi ne yyerror() function that is responsible for printing where

the syntax error is found in case of erroneous input. This is shown from lines 33 to 40 in Listing 3.1. The

auxiliary functions section also defi nes the main(), which in turn invokes the parsing routine yyparse()

at line 54. The return value of yyparse() determines whether the given input is syntactically correct or

otherwise. This is illustrated by line 56 in Listing 3.1.

 Syntax Analysis 81

3.1.2 Example 1—A Simple C Assignment Statement Checker Program

We now create a simple C assignment statement checker program that can verify the syntax of C statement

using the grammar-specifi cation fi le shown in Listing 3.1. The C assignment statement checker program

takes the input C statement as a command line parameter and verifi es if it is in conformance to the grammar

specifi ed in Listing 3.1.

The main components of C assignment statement checker program are:

 1. A grammar-specifi cation fi le (see Listing 3.1) based on the context-free grammar for C assignment

statement specifi ed in Table 3.1.

 2. A lexical specifi cations fi le (not listed here) that describes a lexical analyser returning the tokens

IDENTIFIER, CONSTANT, SEMI_COLON, OPERATOR and EQ_TO_OP.

 3. A main () routine that invokes the parsing routine – yyparse(). This is part of the auxiliary functions

section of the grammar-specifi cation fi le given in Listing 3.1.

The following dialog shows how we build the c statement parser and execute it. We can see from the

dialog that the parser generator utility ‘bison’ takes in the grammar specifi cations fi le c-stmt-gram.y and

generates the parser. The lexical analyser is also built automatically from the lexical specifi cations fi le.

Generating the Parser from Grammar Specifi cations

$ bison -dy -oc-stmt-gram.c -v c-stmt-gram.y

confl icts: 1 shift/reduce

Compiling the Parser

$ gcc -g -Wall -DGENERATED_PARSER -c -o c-stmt-gram.o c-stmt-gram.c

Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

Compiling the Lexical Analyser

$ gcc -c -DGENERATED_PARSER -DCHAP3_EX1 -o c-stmt-lex1.o c-stmt-lex.c

Building ex1 Binary

$ gcc c-stmt-gram.o c-stmt-lex1.o -o ex1

Variant 1

$./ex1 ‘count=5;’

count=5;

SYNTAX CORRECT

Variant 2

$./ex1 ‘count=index;’

count=index;

SYNTAX CORRECT

Variant 3

$./ex1 ‘count=3*2;’

count=3*2;

SYNTAX CORRECT

Variant 4

82 Principles of Compiler Design

$./ex1 ‘count=count+index;’

count=count+index;

SYNTAX CORRECT

Variant 5

$./ex1 ‘count=count+1;’

count=count+1;

SYNTAX CORRECT

Variant 6

$./ex1 ‘count=count*2+5;’

count=count*2+5;

SYNTAX CORRECT

Variant 7

$./ex1 ‘count=count*2+index;’

count=count*2+index;

SYNTAX CORRECT

Missing Identifi er / Constant

$./ex1 ‘count=5+;’

count=5+;

 ^

syntax error

SYNTAX INCORRECT

Missing semicolon

$./ex1 ‘count=index’

count=index

 ^

syntax error

SYNTAX INCORRECT

The reader is advised to try out some more invocations of ex1 with various combinations of identifi ers

and constants to gain better understanding of the grammar.

3.2 CLASSIFICATION OF PARSING TECHNIQUES

In the last section we learnt about what is context-free grammar and how it helps in defi ning the syntax of

the language. This section presents an overview of various techniques used to parse the input in accordance

to a defi ned grammar. The consequent sections describe in detail the parsing techniques mentioned here.

Parsing techniques can be classifi ed into two major categories top-down parsing or bottom-up parsing

(see Fig. 3.4) depending on how the parse tree is built. The top-down parsers build the parse tree starting

from the root node and work down to the leaves. The bottom-up parsers build the parse tree starting from

the leaves and goes all the way to the root. Top-down parsing is described in Section 3.4, while bottom-up

parsing is the focus of Section 3.5.

From applicability point of view, the largest class of grammars for which top-down parsers can work

successfully is called as LL grammars (scanning Left to right, Leftmost derivation). The largest class of

 Syntax Analysis 83

grammars for which bottom-up parsers can succeed is called LR grammars (scanning Left to right, Right

most derivation).

Fig. 3.5 Classifi cation of parsing techniques

 Backtracking parsing is one of the top-down techniques where, if we make a sequence of erroneous

expansions and subsequently discover a mismatch, we undo the effects and roll back the input pointer. A

backtracking top-down parsing example is discussed in Section 3.4. The top-down backtracking parsers are

seldom used in practice owing to several disadvantages it entails (see Section 3.4).

One way of compensating the need for backtracking is to use the next input symbol to ‘guide’ the parser

to use the correct production rule. Thus knowing the current non-terminal to be expanded and the next input

symbol, the parser makes an informed decision as to what production needs to be expanded. This parsing

technique is called predictive parsing. There are certain transformations that grammar needs to undergo,

in order to make it suitable for predictive parsing. This is discussed in detail in Section 3.4. There are two

ways of implementing a top-down predictive parser. One of the methods involves having a procedure for

each non-terminal. These procedures are responsible for parsing the constructs defi ned by its non-terminal.

This method is called recursive descent parsing owing to the recursive nature of the resultant procedures.

This is detailed in Section 3.4.1. The other method of implementing a top-down predictive parser is to have

a stack maintained explicitly by the parser. The parser determines the next production to be applied by using

a parsing table. The parsing table is a table of production rules, which can be indexed using the current non-

terminal being expanded and the next input symbol. The parsing table is populated using the grammar of

the language. This method is known as table-driven predictive parsing owing to the use of parsing table

as a mechanism for determining the next production to be used. This forms the focus of discussion in

Section 3.4.2.

In bottom-up parsing the parse tree is built from the leaves to the top. In bottom-up parsing, the input

is ‘reduced’ to the start symbol in a sequence of steps known as the reduction steps. Each reduction step

involves matching of a particular string on the right-hand side of the production and replacing it by the left-

hand side of the production.

Bottom-up parsers are usually implemented using a stack. The next input symbol is examined to make a

decision to:

 (a) shift the next input symbol on to the top of stack or

84 Principles of Compiler Design

 (b) pop the top few elements and push a non-terminal equivalent of the same on to the top of stack

(called as reduce operation).

Owing to this shift or reduce operation, bottom-up parsing is also called as shift reduce parsing.

The choice of whether to shift the next input symbol or reduce the processed input is based on a table

called as precedence relations table for operator precedence parsing.

The LR parsers, i.e. SLR, canonical LR and LALR use a parsing table derived out of the grammar

for deciding whether to shift the next input symbol or reduce the processed input. The method used for

deriving these tables from grammar is different for each one of them, viz. SLR, canonical LR and LALR.

The SLR (simple LR) method succeeds in generating a parsing table out of the grammar for a sub-set of

LR grammars called SLR grammars. The canonical LR parsing method is the most powerful method of

generating the parsing table from the given grammar. It succeeds in generation of parsing table for a largest

sub-set of LR grammars called as LR(1) grammars. The disadvantage of the canonical LR parsing method

of generating the parsing table from the grammar is that the size of the parsing table is very large. LALR

(look ahead LR) method tries to shrink the parsing table derived out of canonical LR parsing method by

applying some considerations. In the process of doing so, it loses some of the power of the canonical LR

method. However, it succeeds to a pretty reasonable sub-set of LR grammars. The LALR method of shift

reduce parsing is used in most of the popular parser generators like ‘bison’ and ‘yacc’.

3.3 ERROR REPORTING AND RECOVERY IN SYNTAX ANALYSER

One of the main functions of the syntax analyser is to report errors in the input source program and emit

an informative diagnostic message. The diagnostic message should typically give out line number of the

offending line in the source program and also emit information related to the error (e.g. in a C source

program, it could be a missing semicolon). This is called error reporting in syntax analyser. The syntax

analyser should not stop at the fi rst instance of encountering an error, it should continue and report as many

errors present in the input source program as possible, so that the programmer can correct all of the errors

in the input source program. This function of recovering from the fi rst error and continuing to process the

rest of the input source program is known as error recovery in a syntax analyser. The error reporting and

recovery is performed by a logical entity in the syntax analyser called as error handler.

The error handler module of a syntax analyser has two main functions: (1) It should report the errors in

the input source program with enough information to enable the programmer to correct the mistake. (2) The

error handler should not stop at the fi rst error encountered in the input source program. It should recover

and report as many errors present in the input source program as possible. Incorporating the intelligence

in the error handler to accomplish the above functions should not slow down the syntax analysis phase

signifi cantly.

Let us take an example C program and use the GNU’s C compiler ‘gcc’ to demonstrate the error

reporting and error recovery concepts.

An input C source Program containing errors

$ cat -n test1.c

 1 #include <stdio.h>

 2

 3 int main()

 4 {

 5 int var1,var2;

 6

 Syntax Analysis 85

 7

 8 var1 = 0;

 9 var2 = 10;

 10

 11 printf(“This is message 1 “)

 12

 13 var1 = var2 ;

 14

 15 for(i = var1; i < var2; i++){

 16 printf(“This is iteration %d “,i);

 17 }

 18 }

The input C source program test1.c has two errors. (1) There is a missing semicolon in line 11 and (2)

the variable ‘i’ used in line 15 has not been declared earlier.

The dialog below shows how the GNU’s C compiler ‘gcc’ parses the above program.

$ gcc test1.c -o test1

test1.c: In function ‘main’:
test1.c:13: parse error before ‘var1’
test1.c:15: ‘i’ undeclared (fi rst use in this function)
test1.c:15: (Each undeclared identifi er is reported only once
test1.c:15: for each function it appears in.)

The parser in gcc has reported the error in line 13 before the variable ‘var1’, which is nothing but the end

of line 11. This is indicative of missing semicolon in line 11. Note that the parser of gcc did not stop there,

it continued parsing the subsequent lines of input source program and identifi ed an error in line number

15. The parser in gcc has performed error recovery from earlier error in line 13 and continued parsing.

The error reporting on line number 15 clearly says that ‘i’ is not declared. Note that, the parser was smart

enough to report the non-declaration of ‘i’ once, despite being used more than once.

The above example demonstrates the error reporting and error recovery features of a parser.

The main considerations in error reporting are:

∑ The error handler should report the place in the input source program, where the error has occurred.

The offending line number should be emitted for the programmer to correct the mistake.

∑ The diagnostic message emitted out by the error handler module of the parser should give out enough

information to help the programmer correct the mistake in the input source program.

The job of error recovery for the error handler is trickier. The following are some of the considerations

in error recovery:

∑ The error recovery should not be partial where spurious errors not made by the programmer are

falsely identifi ed as errors and displayed.

∑ The error recovery should also be cautious not to get into a bind when a totally unexpected input is

given.

∑ The compiler designer needs to decide if error repair feature should be incorporated in the error

handler. Usually error repair is not very cost-effective except in situations where the input source

program is from beginners to programming.

There are several error-recovery strategies that can normally be applied in the error handler of a parser.

They are:

86 Principles of Compiler Design

 1. Panic mode recovery

 2. Phrase level recovery

 3. Error productions

 4. Global corrections

 Panic mode recovery is the simplest of all the strategies mentioned above. On discovering an error,

the parser discards all the input symbols until it encounters one of the symbols in a designated set of

 synchronisation tokens. The symbols in synchronisation set are determined by the characteristics of the

language. For example, in C language, a semicolon, which indicates the end of a C statement, is a good

candidate for being an element in synchronisation token set. The challenge for the compiler designer is to

select the right elements to form the synchronisation set. The advantage of panic mode recovery is that it is

simple and easy to implement. The disadvantage in panic mode recovery is that the parser could potentially

end up ignoring a considerable amount of input without looking for errors. This method of error recovery is

ideally suited for situations where multiple errors in the same line are rare.

In phrase level error recovery, the parser on encountering an error attempts to perform a local correction

in the rest of the input, which allows it to continue. For example, the parser could add a missing semicolon

or convert an existing comma to semicolon, etc. so that the parser can continue parsing further input.

The phrase-level error recovery could lead the parser into an infi nite loop especially if a wrong choice of

correction is attempted before the current input symbol. This technique is used commonly in error-repairing

compilers. This method of error recovery is suited in situations where the error is detected as soon as it

happens. It cannot work well in situations where there is a certain lag between error detection and error

occurrence.

In error productions method of error recovery, there are additional productions defi ned in the language

grammar for catching errors. The action for those erroneous productions would be to fl ash an informative

error message relevant for the error production. Defi ning the error productions without overlapping the

legal productions of the language presents a challenge to the compiler designer.

In global correction error recovery technique the partial parse tree of the erroneous input string is

compared to the parse tree of a related correct input strings and the distance (i.e. the additions, deletions,

etc.) between them is computed. The parse tree with minimum distance from the erroneous input string is

picked as the correct input string and the corrections are then made appropriately to the input string. The

distance between incorrect input string and the correct ones are computed by certain specialised algorithms.

This method of error recovery is very expensive in term of memory and time and hence it remains of

theoretical interest.

We shall see the suitability of an error recovery scheme to a parsing technique, during the detailed

discussion of various parsing techniques in the succeeding sections.

3.4 TOP DOWN PARSING

In this section we study in detail about top-down parsing. Initially we shall discuss about a generic form of

top-down parsing. Next, we address the kinds of grammars that are suitable for top-down parsing followed

by a brief discussion on how to transform grammars to suit top-down parsing. After that we study two

techniques of implementing top-down parser namely the recursive descent and table-driven predictive

parsing.

Top-down parsing is an attempt to fi nd the leftmost derivation for an input string. It attempts to construct

a parse tree for the input starting from the root (start symbol) and creating the nodes of the parse tree in pre-

order. In order to make the concept clear, let us consider a C statement

 count = index + 30;

 Syntax Analysis 87

and examine how it is derived by a top-down parser using the production rules given in Table 3.2.

 c_statement => IDENTIFIER EQ_TO_OP c_expression SEMI_COLON By P1

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON By P4

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR c_expression SEMI_COLON By P3

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON By P2

 => count = index + 10 ;

The parse tree for the above derivation is shown in Fig. 3.6.

Fig. 3.6 Top-down parsing for count=index + 10;

In backtracking top-down parsers, we begin with the start symbol and apply productions until we get

the desired string. The choice of which production needs to be applied depends on the order of production

rules specifi ed in the grammar. If this choice leads to a dead-end, the parser would have to backtrack to that

decision point moving backwards through the input and start again making a different choice. This goes on

until the parser ends up with the appropriate production for matching the complete input or it runs out of

choices. The following example will illustrate the concept.

Consider the grammar for a single C statement presented in Table 3.1, reproduced below for convenience.

c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression Æ CONSTANT

| IDENTIFIER

| c_expression OPERATOR c_expression

The table below shows how an input string ‘count = index + 100;’ can be parsed using the top-down

parser that can do backtracking. Column (A) shows the expansion thus far, column (B) shows the remaining

input and column (C) shows the action attempted at each step.

88 Principles of Compiler Design

(A) (B) (C)

Expansion till now Remaining input Action attempted

count = index + 100 ; Try expanding a production with the start

symbol - c_statement as LHS. There is

only 1 production with the start symbol on

the LHS, i.e. Production 1. We start with

that

c_statement Æ IDENTIFIER EQ_TO_OP

c_expression SEMI_COLON

IDENTIFIER EQ_TO_OP c_expression

SEMI_COLON

count = index + 100 ; Match count with IDENTIFIER.

Successful.

EQ_TO_OP c_expression SEMI_COLON = index + 100 ; Match = with EQ_TO_OP. Successful.

c_expression SEMI_COLON index + 100 ; Try expanding production 2, c_expression

Æ CONSTANT

CONSTANT SEMI_COLON index + 100 ; index does not match CONSTANT. Dead-

end, backtrack

c_expression SEMI_COLON index + 100 ; Try expanding production 3, c_expression

Æ IDENTIFIER

IDENTIFIER SEMI_COLON index + 100 ; Match index with IDENTIFIER.

Successful.

SEMI_COLON + 100 ; SEMI_COLON does not match + . Dead-

end, backtrack

c_expression SEMI_COLON index + 100 ; Try expanding Production 4, c_expression

Æc_expression OPERATOR c_expression

c_expression OPERATOR c_expression

SEMI_COLON

index + 100 ; Try expanding production 2, c_expression

Æ CONSTANT

CONSTANT OPERATOR c_expression

SEMI_COLON

index + 100 ; index does not match CONSTANT. Dead-

end, Backtrack

c_expression OPERATOR c_expression

SEMI_COLON

index + 100 ; Try expanding production 3, c_expression

Æ IDENTIFIER

IDENTIFIER OPERATOR c_expression

SEMI_COLON

index + 100 ; Match index with IDENTIFIER.

Successful

OPERATOR c_expression SEMI_COLON + 100 ; Match + with OPERATOR. Successful.

c_expression SEMI_COLON 100 ; Try expanding production 2, c_expression

Æ CONSTANT

CONSTANT SEMI_COLON 100 ; Match 100 with CONSTANT. Successful.

SEMI_COLON ; Match ; with SEMI_COLON . Successful.

Success

From the steps above, we can see that whenever we reach a dead-end, we backtrack to the last decision

point undo the decision and try another production. If all the productions are exhausted, we backup to the

 Syntax Analysis 89

preceding decision point and so on. This procedure continues until the complete input is matched or we

have exhausted all combinations.

The top-down backtracking parsing procedure that we just described can cope up with any kind of

grammar. However, when there are a large number of non-terminals, the algorithm becomes very slow due

to the combinatorial explosion in terms of the productions that have to be tried out before arriving at the

correct parse.

If we make a series of expansions and subsequently discover a mismatch, we may have to undo the

semantic effects of erroneous expansions like, say the removal of entries from symbol table. Undoing

the semantic effects is a substantial overhead for a compiler. This is one of the major disadvantages of

backtracking a top-down parser.

In top-down backtracking parser, the order in which alternates of production rules are tried can also

affect the language considered. This makes backtracking parsers unsuitable for production compilers.

Another disadvantage of the backtracking top-down parser is the diffi culty in error reporting. In top-

down backtracking parser, it is diffi cult to pinpoint where the error has occurred and consequently the

compiler cannot emit informative error messages.

Backtracking can be avoided by transforming the grammar in such a way that at each step the choice

of production that can lead us to solution can be easily identifi ed. In other words, at each step, we can

‘predict’ which of the productions can lead us to the complete derivation of the input string, if one exists.

The idea behind a top-down predictive parser is that the current non-terminal being processed combined

with the next input symbol can guide the parser to take the correct production rule eventually leading to

the match of complete input string. The predictive parser is a type of top-down parser that does not require

backtracking in order to derive various input strings. This is possible because the grammar for the language

is transformed such that backtracking is not needed.

What kind of transformations do we make to the grammar rules to suit a predictive parser? There are two

types of transformations done to the grammar in order to suit a predictive parser. They are:

 1. elimination of left recursion

 2. left factoring

 Elimination of left recursion is a grammar transformation that is used for producing grammar suitable

for predictive parsing. Let’s take an example to get an idea of why the transformation is required and how

we do the transformation.

Consider an erroneous input string (real programmers do type mistakes!) for a parser using the

production rules in Table 3.1

 count = -;

Let’s see how the parsing proceeds using the production rules in Table 3.1.

The top-down parser will fi rst match the production rule 1 and consume the input count and
EQ_TO_OP. On receiving ‘-’, it tries to verify whether it is a C expression. How does the parser do it?

It checks if the input (which is the – i.e. OPERATOR) fi ts production 2 fi rst. It does not. Next, we try

production 3, it does not match either, since production 3 starts with IDENTIFIER. Next, we try production

4, the parser will try to match if ‘-’ is a c_expression, which is what we started in the fi rst place. This leads

to us try and match ‘-’ recursively for c expression, without really consuming input.

How do we solve this problem?

Observe from production 2, 3 and 4 that the c_expression has to begin with IDENTIFIER or

CONSTANT (because that is where the recursion has to end). The solution to the problem is to take

advantage of the fact that the c_expression has to defi nitely start with either a terminal (CONSTANT or

IDENTIFIER in this case). We can rewrite the left recursive production 4 to refl ect this philosophy.

90 Principles of Compiler Design

c_expression Æ IDENTIFIER c_expr_rest ……….. (3.5)

c_expression Æ CONSTANT c_expr_rest ……….. (3.6)

c_expr_rest Æ OPERATOR IDENTIFIER c_expr_rest ……….. (3.7)

c_expr_rest Æ OPERATOR CONSTANT c_expr_rest ……….. (3.8)

c_expr_rest Æ Œ /* empty string */ ……….. (3.9)

Note that (3.5) in conjunction with (3.9) is exactly equivalent to production 2 (c_expression Æ

IDENTIFIER) and (3.6) in conjunction with (3.9) is equivalent to production 3 (c_expression Æ

CONSTANT). The transformed grammar is refl ected in Table 3.4.

Let’s see how the top-down parsing of the input happens with the new transformed rules. The top-down

parser will fi rst match the production rule 1 and consume the input count and EQ_TO_OP. On receiving

‘-’, it tries to verify whether it is a C expression. It checks if the input (which is the – operator) fi ts

production 2 or 3 in that order. It does not match since ‘-’ is not a CONSTANT or IDENTIFIER as required

by these rules. The parser then decides that it is not conformant with the grammar specifi ed in Table 3.4 and

rejects the input string.

Table 3.4 Productions after elimination of left recursion

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT c_expr_rest

3 | IDENTIFIER c_expr_rest

4 c_expr_rest Æ OPERATOR IDENTIFIER c_expr_rest

5 | OPERATOR CONSTANT c_expr_rest

6 | Œ

 Left factoring is another transformation that is commonly applied to the grammar to make it suitable

for predictive parsing. We shall look at an example to get an idea of why the transformation is required and

then we shall see how the transformation is done.

Consider an input string ‘result = total + 20;’ for conformance with the grammar in Table 3.4. After

we consume result and EQ_TO_OP, we would get the input of total, which is an IDENTIFIER. The

IDENTIFIER would match the production 3, and would be consumed by the parser. The next input symbol

would be the ‘+’ operator. The parser would try and match it with the c_expr_rest. At this point, the parser

would be in dilemma whether to use production 4 or production 5 to expand. Both of them start with an

OPERATOR. By hard coding the parser to choose one of the productions all the time, we could potentially

be reporting legal input strings not to be conformant to the grammar.

How can we ‘predict’ which production rule to take for complete derivation of input string?

A common approach to the problem is to rewrite the grammar to factor the common prefi x (which is an

OPERATOR in this case) out of the two alternatives (production 4 and 5 in this case) and create a new rule.

 Syntax Analysis 91

If we left-factor the rules 4 and 5 we get

c_expression Æ OPERATOR c_expr_factor ……….. (3.10)

c_expr_factor Æ IDENTIFIER c_expr_rest ……….. (3.11)

c_expr_factor Æ CONSTANT c_expr_rest ……….. (3.12)

The new transformed rules after the left factoring is given in Table 3.5.

Table 3.5 Productions after (a) elimination of left recursion and (b) left factoring

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT c_expr_rest

3 | IDENTIFIER c_expr_rest

4 c_expr_rest Æ OPERATOR c_expr_factor

5 | Œ

6 c_expr_factor Æ IDENTIFIER c_expr_rest

7 | CONSTANT c_expr_rest

Let’s see how the parsing proceeds with the new transformed rules. After, the top-down parser consumes

result and EQ_TO_OP, the next input is total, which is an IDENTIFIER. The IDENTIFIER would match the

production 3, and would be consumed by the parser. The next input symbol would be the ‘+’ OPERATOR.

The parser would try and match it with the c_expr_rest. The top-down parser would make an attempt to

match production 4 and consume the OPERATOR. The next input symbol is 20. The parser would try and

match with one of the productions for c_expr_factor, which is 6 or 7. The input symbol ‘20’ matches the

CONSTANT, so production 7 is chosen. The next input symbol is ‘;’ which will be tried against c_expr_

rest. The production 5 (empty string) would match since the ‘;’ is not a part of any of the rules for c_expr_

rest. By doing this left factoring we effectively postponed the decision of choosing a production until a

point is reached where it can be made properly (in this case after consuming the OPERATOR symbol).

Here is a generalisation of left factoring. consider a production

 AÆab1 | ab2

and an input that begins with a non-empty string derived from a, it is not clear whether to expand A to ab1

or ab2. We can solve this by deferring the decision by expanding A to aA1. Then after seeing the input

derived from a, we expand A1 to b1 or b2. The left-factored form of original productions becomes

 A Æ aA1

 A1 Æ b1| b2

The grammars that are suitable for predictive parsing (after elimination of left recursion and Left

factoring) are called as LL(k) grammars, where the fi rst ‘L’ implies that we scan from left to right, the

second ‘L’ stands for the leftmost derivation and ‘k’ stands for number of tokens of look ahead. In practice,

LL(1) grammars are used for building programming languages.

We have understood how grammars are transformed to suit predictive parsers. Next, we see how to

implement top-down predictive parsers.

92 Principles of Compiler Design

There are 2 main techniques for implementing top-down predictive parsers. They are:

 1. recursive descent parsing

 2. table-driven predictive parser.

The next two sections describe these techniques in detail.

3.4.1 Recursive Descent Parsing

A recursive descent parser is a collection of procedures one for each non-terminal. Each procedure is

responsible for parsing the constructs defi ned by its non-terminal. The syntax of most of the programming

languages is recursive, the resulting procedures are also recursive, hence the name recursive descent parser.

For the production rules mentioned in Table 3.5, there would be four functions c_statement, c_expression,

c_expr_rest, and c_expr_factor denoting each of the non-terminals in the grammar. These functions are then

constructed using the grammar in a straightforward way. For example, consider the c_statement.

The rule

c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

could be translated into a function as shown below.

Table 3.6 Pseudo-code for c_statement

c_statement()

{

 if (match (IDENTIFIER)){

 if(match (EQ_TO_OP)){

 if(c_expression()){

 if(match(SEMI_COLON)){

 return(SUCCESS);

 }

 }

 }

 }

 return(FAILURE);

}

The function match checks if the current token is the same as the expected token.

Table 3.7 Psuedo-code for ‘match’

match(expected)
{
 if(current_token == expected){
 current_token = get_next_token();
 return(SUCCESS);
 }
 return(FAILURE);
}

 Syntax Analysis 93

Similarly, for c_expression,

c_expression Æ CONSTANT c_expr_rest

| IDENTIFIER c_expr_rest

the pseudo-code is derived from the grammar as follows:

Table 3.8 Pseudo-code for c_expression

c_expression()
{
 if (match (CONSTANT)){
 if (c_expr_rest ()){
 return(SUCCESS);
 }
 } else if (match (IDENTIFIER)){
 if (c_expr_rest ()){
 return(SUCCESS);
 }
 }
 return(FAILURE);
}

The pseudo-code for c_expr_rest derived from the following grammar:

c_expr_rest Æ OPERATOR c_expr_factor

| Œ

is shown below:

Table 3.9 Psuedo-code for c_expr_rest

c_expr_rest()

{

 if (match (OPERATOR)){

 if (c_expr_factor ()){

 return(SUCCESS);

 }

 } else {

 return(SUCCESS); /* empty string */

 }

 return(FAILURE);

}

The pseudo-code for c_expr_factor derived from the following grammar:

c_expr_factor Æ IDENTIFIER c_expr_rest

| CONSTANT c_expr_rest

94 Principles of Compiler Design

Table 3.10 Pseudo-code for c_expr_factor

c_expr_factor()
{
 if (match (IDENTIFIER)){
 if (c_expr_rest ()){
 return(SUCCESS);
 }
 } else if (match (CONSTANT)){
 if (c_expr_rest ()){
 return(SUCCESS);
 }
 }
 return(FAILURE);
}

Recursive descent parsers are simple and easy to implement. Most of the hand-written parsers are usually

recursive descent parsers due to the intuitive nature of the technique. A recursive descent parser needs a

large stack due to the recursion of the procedures. This could be prohibitive in systems where memory is at

premium. Recursive descent parsers cannot be automatically generated easily from the grammar, compared

to table-driven approaches, which we shall discuss later.

A sample recursive descent parser built for C statement syntax verifi cation is presented in the next

section to reinforce the concepts discussed till now.

3.4.1.1 Example 2—A Recursive Descent Parser for Simple C Statement In this section, we

build a recursive descent parser for verifying the syntax of c statements using the pseudo-code given earlier.

The following dialog shows how we make the recursive descent parser for c statement and how we use it to

verify syntax of c-statements.

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

Compiling the Lexical Analyzer

$ gcc -c -o c-stmt-lex.o c-stmt-lex.c

Building ex2 Binary

$ gcc -g -Wall recur_descent.c c-stmt-lex.o -o ex2

Variant 1

$./ex2 ‘count=5;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=5;

SYNTAX CORRECT

Variant 2

$./ex2 ‘count=index;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

 Syntax Analysis 95

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

count=index;

SYNTAX CORRECT

Variant 3

$./ex2 ‘count=3*2;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=3*2;

SYNTAX CORRECT

Variant 4

$./ex2 ‘count=count+index;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

count=count+index;

SYNTAX CORRECT

Variant 5

$./ex2 ‘count=count+1;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=count+1;

SYNTAX CORRECT

Variant 6

$./ex2 ‘count=count*2+5;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=count*2+5;

SYNTAX CORRECT

Variant 7

$./ex2 ‘count=count*2+index;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

96 Principles of Compiler Design

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

count=count*2+index;

SYNTAX CORRECT

Missing Identifi er / Constant

$./ex2 ‘count=5+;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

Error Error Error Error

SYNTAX INCORRECT

Missing semicolon

$./ex2 ‘count=index’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

Error

SYNTAX INCORRECT

The following are some of the observations that can be made for a recursive descent parser.

∑ The recursive descent parser starts by calling the lexical analyser to get the fi rst token. The procedure

corresponding to the start symbol is invoked. The completion of this procedure indicates the parse is

complete.

∑ A global variable holding the token that is not yet consumed by parser is used to predict which

production needs to be expanded

∑ Printing a good error recovery message is not easy, since it is diffi cult to determine from the current

routine, as to what is the calling routine and its context.

3.4.2 Table-driven Predictive Parsing

The recursive descent parser works by maintaining the production expansion implicitly on the stack by

virtue of recursion in the procedures. The table-driven predictive parser maintains the stack explicitly. In

recursive descent parser, the choice of which production needs to be applied is determined by the code

structure. In the table-driven parser, the choice of which productions needs to be applied is determined by

indexing into a parsing table, given the current non-terminal being expanded and the next input terminal.

Table-driven predictive parser consists of:

 1. An input buffer that contains the string to be parsed followed by a $, a symbol used for indicating

the end of input.

 2. A stack containing the sequence of grammar symbols with a $ at the bottom of the stack.

 3. A parsing table containing the production rules to be applied. This is a two-dimensional array M[A,

a], where A is the non-terminal and ‘a’ is a terminal or the symbol $. This is a manifestation of the

grammar rules.

 Syntax Analysis 97

 4. A parsing program that takes the input string and determines if it is conformant to the grammar. The

parser program uses the parsing table and the stack to arrive at this decision. The logic built into the

parsing program does not change with the grammar.

The fi gure illustrates the various components of a table-driven parser.

The parsing program determines the action of the parser depending on

∑ X, the symbol on the top of the stack

∑ a, the current input symbol

There are 3 combinations of X and a, that are important for the parsing program. Each of those 3

conditions marked A, B and C are shown below. Any other condition other than these 3 denotes a parsing

error.

Condition Action

A X = a = $ The parser announces the successful completion of parsing and returns.

B X is a terminal and

X = a π $

The parser pops off the stack and advances the input pointer to the next

input symbol.

C X is a non-terminal The program consults the entry M[X, a] in the parsing table. This entry is a production

for X or an error entry. If M[X, a] is a production X Æ UVW, then the program replaces

the X on the top of the stack by WVU (U on the top of stack). The parser can output the

production or execute the code specifi ed in the grammar. If M[X, a] is an error entry,

then the program calls for an error recovery routine.

The parsing program discussed above is summarised in Algorithm 3.1.

tbl_driven_parse()

{

 a = get_next_tok();

 do

 {

 X = The top element of the Stack

 if((X == $) or (a == $))

98 Principles of Compiler Design

 {

 if (X == a)

 return(SUCCESS);

 else

 return(FAILURE)

 }

 if (X is a terminal) {

 if (X is a){

 pop X from the Stack and remove a from the input

 a = get_next_tok()

 } else {

 return(FAILURE)

 }

 } else {/* Non terminal */

 if (M[X][a] is a rule X -> Y1Y2…Yk){

 pop X from the Stack

 push Yk…Y2Y1 on the stack

 } else {

 return(FAILURE)

 }

 }

 } while (1) /* Always */

}

Algorithm 3.1 Table-driven predictive parsing

The main data structure on which Algorithm 3.1 depends is the parsing table M. For a grammar

described in Table 3.5, the parsing table M is shown in Table 3.11.

Table 3.11 Parsing table for the grammar described in Table 3.5

IDENTIFIER CONSTANT OPERATOR EQ_TO_OP SEMI_COLON $

c_statement c_statement Æ
IDENTIFIER

EQ_TO_OP

c_expression

SEMI_COLON

c_expression c_expression Æ
IDENTIFIER

c_expr_rest

c_expression Æ
CONSTANT

c_expr_rest

c_expr_rest c_expr_rest Æ
OPERATOR

c_expr_factor

 c_expr_rest Æ
e

c_expr_factor c_expr_factor Æ
IDENTIFIER

c_expr_rest

c_expr_factor Æ
CONSTANT

c_expr_rest

 Syntax Analysis 99

From the parsing table given in Table 3.11, we can understand the following:

∑ if c_statement has to be expanded and we encounter an input of IDENTIFIER, we use the production

c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

∑ if c_expression has to be expanded and we encounter an input of IDENTIFIER, we use the production

c_expression Æ IDENTIFIER c_expr_rest

∑ if c_expression has to be expanded and we encounter an input of CONSTANT, we use the production

c_expression Æ CONSTANT c_expr_rest

∑ All the empty entries denote errors

Using the grammar of Table 3.5, and the corresponding parsing table given in Table 3.11, you can see

how the predictive table-driven parser algorithm works for an input of

 c = i + 5;

Initially in table-driven predictive parsing, the end of the input marker $ along with the start symbol

(c_statement) is pushed on to the stack.

Stack Remaining Input

$ c_statement c = i + 5 ; $

At this point the symbol on the top of the stack X is c_statement and the next input symbol is ‘c’ — an

IDENTIFIER. Since the top of the stack is a non-terminal (condition C), we check for the entry in the

parsing table at M[c_statement] [IDENTIFIER]. It contains the entry c_statement Æ IDENTIFIER EQ_

TO_OP c_expression SEMI_COLON . Hence we pop c_statement from the stack and push the RHS of the

production in the reverse order. The order of pushing is such that IDENTIFIER would be on the top. Note

that the input pointer is not advanced and hence it would continue to point to ‘c’, which is an IDENTIFIER.

The fi gure below shows the stack expanding to the right with the top of the stack being its rightmost

element.

Stack Remaining Input

$ SEMI_COLON c_expression EQ_TO_OP IDENTIFIER c = i + 5 ; $

At this point, the symbol on the top of the stack, X is an IDENTIFIER. The next input symbol ‘c’ is also

IDENTIFIER. Now, the top of stack matches the next input (condition B), we pop the topmost element on

the stack (IDENTIFIER) and advance the input pointer.

Stack Remaining Input

$ SEMI_COLON c_expression EQ_TO_OP = i + 5 ; $

In this confi guration, the top of the stack is EQ_TO_OP. The next input symbol is =, which gets

translated to EQ_TO_OP by the lexical analyser. Now, the top of the stack matches the next input (condition

B), we pop the topmost element on the stack (EQ_TO_OP) and advance the input pointer.

Stack Remaining Input

$ SEMI_COLON c_expression i + 5 ; $

In this confi guration, the top of the stack is a non-terminal c_expression. The next input symbol is ‘i’,

which gets translated to IDENTIFIER by the lexical analyser. Since the top of the stack is a non-terminal

(condition C), we check for the entry in the parsing table M[c_expression][IDENTIFIER]. This shows a

production c_expression Æ IDENTIFIER c_expr_rest. We pop c_expression from the stack and push the

right-hand side of the production in the reverse order. Observe that the input pointer is not advanced.

100 Principles of Compiler Design

Stack Remaining Input

$ SEMI_COLON c_expr_rest IDENTIFIER i + 5 ; $

In this confi guration, the top of the stack is IDENTIFIER. The next input symbol ‘i’ is also IDENTIFIER

(condition B). Now, the top of stack matches the next input (condition B), we pop the IDENTIFIER from

the stack and advance the input pointer.

Stack Remaining Input

$ SEMI_COLON c_expr_rest + 5 ; $

At this point, the top of the stack is the non-terminal c_expr_rest and the next input symbol is ‘+’, which

gets translated to OPERATOR. Since the top of the stack is a non-terminal (condition C), we check for

the entry in the parsing table, M[c_expr_rest][OPERATOR]. This shows a production c_expr_rest Æ

OPERATOR c_expr_factor. We pop the c_expr_rest and push the right-hand side of the production in the

reverse order. Again, the input pointer is not advanced in this operation.

Stack Remaining Input

$ SEMI_COLON c_expr_factor OPERATOR + 5 ; $

In this confi guration, the top of the stack is OPERATOR. The next input symbol ‘+’ is also OPERATOR.

Now, the top of the stack matches the next input (condition B), we pop the OPERATOR from the stack and

advance the input pointer.

Stack Remaining Input

$ SEMI_COLON c_expr_factor 5 ; $

At this point, the top of the stack is the non-terminal c_expr_factor and the next input symbol is ‘5’,

which gets translated to CONSTANT. Since the top of the stack is a non-terminal (condition C), we consult

the entry in the parsing table M[c_expr_factor][CONSTANT]. This shows a production c_expr_factor

ÆCONSTANT c_expr_rest. We pop the c_expr_factor and push the right-hand side of the production in the

reverse order. Again, the input pointer is not advanced in this operation.

Stack Remaining Input

$ SEMI_COLON c_expr_rest CONSTANT 5 ; $

In this confi guration, the top of the stack is CONSTANT. The next input symbol ‘5’ is also CONSTANT. Now,

the top of the stack matches the next input (condition B), we pop the CONSTANT from the stack and advance

the input pointer.

Stack Remaining Input

$ SEMI_COLON c_expr_rest ; $

At this point, the top of the stack is the non-terminal c_expr_rest and the next input symbol is SEMI_

COLON. Since the top of the stack is a non-terminal (condition C), we check for the entry in the parsing

table at M[c_expr_rest][SEMI_COLON]. This shows a production c_expr_rest Æ e. We pop the c_expr_

rest and push the right-hand side of the production in the reverse order. For an epsilon production, there is

no right-hand side. Again, the input pointer is not advanced in this operation.

 Syntax Analysis 101

Stack Remaining Input

$ SEMI_COLON ; $

In this confi guration, the top of the stack is SEMI_COLON. The next input symbol is also SEMI_

COLON. Now, the top of the stack matches the next input (condition B), we pop the SEMI_COLON from

the stack and advance the input pointer.

Stack Remaining Input

$ $

Now the top of the stack is $ and the next input is also $ (condition A), which signals accepting the

input as a part of the language and the successful completion of parse.

The above steps are summarised in Table 3.12.

Table 3.12 Moves of a table-driven predictive parser program

Stack Input Output/Comment

$

$

$

$

$

$

$

$

$

$

$

$

c_statement

SEMI_COLON c_expression EQ_TO_OP IDENTIFIER

SEMI_COLON c_expression EQ_TO_OP

SEMI_COLON c_expression

SEMI_COLON c_expr_rest IDENTIFIER

SEMI_COLON c_expr_rest

SEMI_COLON c_expr_factor OPERATOR

SEMI_COLON c_expr_factor

SEMI_COLON c_expr_rest CONSTANT

SEMI_COLON c_expr_rest

SEMI_COLON

c = i + 5 ; $

c = i + 5 ; $

= i + 5 ; $

i + 5 ; $

i + 5 ; $

+ 5 ; $

+ 5 ; $

5 ; $

5 ; $

; $

; $

$

c_statement Æ IDENTIFIER EQ_TO_OP

c_expression SEMI_COLON

c is an Identifi er

= is EQ_TO_OP

c_expression Æ IDENTIFIER c_expr_rest

i is an Identifi er

c_expr_rest Æ OPERATOR c_expr_factor

SEMI_COLON

+ is an Operator

c_expr_factor Æ CONSTANT c_expr_rest

5 is a CONSTANT

c_expr_rest Æ e

; is SEMI_COLON

Success. Top of the Stack is = $

Before we end this section, let’s briefl y touch upon the advantages and disadvantages of table-driven

predictive parsing:

Advantages
∑ It is easy to generate a table-driven parser from a given grammar. The parsing program is independent

of the grammar and remains common to any grammar. The parsing table is the only component that

depends on the grammar and can be generated by using the FIRST and FOLLOW set generation

algorithms discussed in the next section.

∑ The error recovery and reporting in table-driven parser can be done easily by having entries in the

table, which point to the error recovery and reporting routines.

Disadvantages
∑ A predictive parser like table-driven parsers or recursive descent parsers can work on LL(1) grammars

only. Sometimes any amount of left-factoring and elimination of left-recursion might not be adequate

to transform a grammar into LL(1) grammar.

102 Principles of Compiler Design

3.4.2.1 Example 3—A Table-driven Predictive Parser for Simple C Statement This section

shows the implementation of a table-driven parser for checking the syntax of simple C statements. This

uses the grammar from Table 3.5, and the corresponding parsing table given in Table 3.11. The following

dialog shows how we compile and execute the C statement checker.

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

Compiling the Lexical Analyzer

$ gcc -c -o c-stmt-lex.o c-stmt-lex.c

Building ex3 Binary

$ g++ -g -Wall ex3.cc table_parse.cc c-stmt-lex.o -o ex3

Variant 1

$./ex3 ‘count=5;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=5;

SYNTAX CORRECT

Variant 2

$./ex3 ‘count=index;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

count=index;

SYNTAX CORRECT

Variant 3

$./ex3 ‘count=3*2;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=3*2;

SYNTAX CORRECT

Variant 4

$./ex3 ‘count=count+index;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

count=count+index;

SYNTAX CORRECT

 Syntax Analysis 103

Variant 5

$./ex3 ‘count=count+1;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=count+1;

SYNTAX CORRECT

Variant 6

$./ex3 ‘count=count*2+5;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=count*2+5;

SYNTAX CORRECT

Variant 7

$./ex3 ‘count=count*2+index;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

count=count*2+index;

SYNTAX CORRECT

Missing Identifi er / Constant

$./ex3 ‘count=5+;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

Error

SYNTAX INCORRECT

Missing semicolon

$./ex3 ‘count=index’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

Error

SYNTAX INCORRECT

104 Principles of Compiler Design

3.4.2.2 Parsing Table Entries In the last section, we saw how a table-driven parser can parse a given

input and check for conformance with the grammar using the parsing table M. The parsing table is the only

component in the table-driven parser that is dependent on the grammar. This section looks at devising a

method by which we can automatically generate the parsing table entries from the grammar. This would

help us in automatically generating a table-driven parser from a given grammar.

Before we look at generating the parsing table entries, let’s get to some important defi nitions.

3.4.2.2.1 FIRST and FOLLOW Sets A FIRST set of a non-terminal A is the set of all the terminals that A

can begin with. From the grammar of Table 3.5, by visual inspection of production 1, we can fi gure out that

the c_statement defi nitely begins with IDENTIFIER for a legal input. Hence, the FIRST set of c_statement

is an IDENTIFIER. This is denoted by

 FIRST(c_statement) = {IDENTIFIER}.

Again, by visual inspection of productions 2 and 3 of the grammar in Table 3.5, we can make out

that the c_expression defi nitely begins with CONSTANT in the case of production 2 and begins with

IDENTIFIER in the case of production 3. Hence, the FIRST set of c_expression consists of CONSTANT

and IDENTIFIER.

 FIRST(c_expression) = {CONSTANT, IDENTIFIER}.

In order to compute the FIRST sets of various symbols of a grammar in a program, we use the following

rules:

Table 3.13 Rules for computing FIRST set

Rule # Description

1 If X is a Terminal, then FIRST(X) = {X}

2 For a non-terminal X, If there exists a production X Æ e, then add e to FIRST (X)

3 For a production

X Æ Y1 Y2 Y3 Y4.. Yk..…. Yn

FIRST (X) = FIRST (Y1), if FIRST(Y1) does not contain e

 = FIRST (Y2), if FIRST(Y1) contains e and FIRST(Y2) does not contain e

 = FIRST (Y3), if FIRST(Y1), FIRST(Y2) both contain e FIRST(Y3) does not contain e

Generalising

FIRST(X) = FIRST(Yk) if FIRST(Y1), FIRST(Y2)..FIRST(Yk-1) all contain e and FIRST (Yk) does not

contain e

Table 3.14 shows the computation of FIRST set for all the non-terminals in the grammar of Table

3.5. We use the rules given in Table 3.13 to compute the FIRST sets. We take each of the production and

compute the FIRST set of the non-terminal in the LHS of the production.

 Syntax Analysis 105

Table 3.14 Computation of FIRST sets

Production Comments

c_statement Æ IDENTIFIER EQ_
TO_OP c_expression SEMI_COLON

FIRST(IDENTIFIER) = {IDENTIFIER}, since
IDENTIFIER is a non-terminal, by Rule 1

FIRST(c_statement) = FIRST(IDENTIFIER), since
FIRST(IDENTIFIER) does not contain Œ as
specifi ed by Rule 3.

Hence, we add IDENTIFIER to the
FIRST(c_statement)
FIRST(c_statement) = {IDENTIFIER}

c_expression Æ CONSTANT
c_expr_rest

FIRST(CONSTANT) = {CONSTANT}, since CONSTANT is a non-
terminal, by Rule 1

FIRST(c_expression) = FIRST(CONSTANT), since
FIRST(CONSTANT) does not contain Œ as specifi ed by Rule 3.

Hence, we add CONSTANT to the
FIRST(c_expression)

FIRST(c_expression) = {CONSTANT}

c_expression Æ IDENTIFIER
c_expr_rest

FIRST(IDENTIFIER) = {IDENTIFIER}, since IDENTIFIER is a
non-terminal, by Rule 1

FIRST(c_expression) = FIRST(IDENTIFIER), since
FIRST(IDENTIFIER) does not contain Œ as specifi ed by Rule 3.

Hence, we add IDENTIFIER to the
FIRST(c_expression)

FIRST(c_ expression) = {CONSTANT, IDENTIFIER}

c_expr_rest Æ OPERATOR c_
expr_factor

FIRST(OPERATOR) = {OPERATOR}, since OPERATOR is a non-
terminal, by Rule 1

FIRST(c_expr_rest) = FIRST(OPERATOR), since
FIRST(OPERATOR) does not contain Œ as specifi ed by Rule 3.

Hence, we add OPERATOR to the
FIRST(c_expr_rest)

FIRST(c_expr_rest) = {OPERATOR}

c_expr_rest Æ Œ By Rule 2, we add Œ to the FIRST(c_expr_rest)

FIRST(c_expr_rest) = {OPERATOR, Œ}

c_expr_factor Æ IDENTIFIER
c_expr_rest

FIRST(IDENTIFIER) = {IDENTIFIER}, since
IDENTIFIER is a non-terminal, by Rule 1

FIRST(c_expr_factor) = FIRST(IDENTIFIER), since
FIRST(IDENTIFIER) does not contain Œ as specifi ed by
Rule 3.

Hence, we add IDENTIFIER to the
FIRST(c_expr_factor)

FIRST(c_expr_factor) = {IDENTIFIER}

106 Principles of Compiler Design

c_expr_factor Æ CONSTANT
c_expr_rest

FIRST(CONSTANT) = {CONSTANT}, since CONSTANT is a non-
terminal, by Rule 1

FIRST(c_expr_factor) = FIRST(CONSTANT), since
FIRST(CONSTANT) does not contain Œ as specifi ed by Rule 3.

Hence, we add CONSTANT to the
FIRST(c_expr_factor)

FIRST(c_expr_factor) = {IDENTIFIER,CONSTANT}

Summarising the FIRST sets of all the non-terminals from the above, we have

FIRST (c_statement) = {IDENTIFIER}

FIRST (c_expression) = {CONSTANT, IDENTIFIER}

FIRST(c_expr_rest) = {OPERATOR, e}

FIRST (c_expr_factor) = {IDENTIFIER, CONSTANT}

The grammar in Table 3.5 is simple and does not have many productions with the same LHS. In most of

the programming languages, there are quite a number of productions with the same LHS and different RHS.

Due to this, there is interdependency of FIRST set of common LHS symbols with FIRST set of various

RHS symbols due to the application of rule 3 on different productions. Hence the FIRST set computation

needs to be done in multiple passes on the grammar rules, until a steady state is reached.

A FOLLOW set of a non-terminal A is the set of all the terminals that can follow A. From the grammar

of Table 3.5, by visual inspection of production 1, we can fi gure out that the c_expression is defi nitely

followed by a SEMI_COLON for a legal input. Hence, The FOLLOW set of c_expression is a SEMI_

COLON. This is denoted by

FOLLOW(c_expression) = {SEMI_COLON}

The FOLLOW set would never contain e, since it is not a valid input token. This is in contrast from the

FIRST set, which can contain an e.

In order to compute the FOLLOW sets of various symbols of a grammar in a program, we use the

following rules.

Table 3.15 Rules for computing FOLLOW set

Rule# Description

1. FOLLOW(S)=$, where S is the start symbol and $ is the symbol to indicate the end of input.

2. For a production

X ÆY1 Y2 Y3 Y4.. Yk..…. Yn

where Y1 is a non-terminal,

FOLLOW(Y1) = FIRST(Y2), if FIRST(Y2) does not contain e
 = [union of FIRST(Y2), and FIRST(Y3)], if FIRST(Y2) contains e and FIRST(Y3) does not

contain e. When the union of FIRST(Y2), and FIRST(Y3) is computed we discard the e element out of the

set.

 = [union of FIRST(Y2), FIRST(Y3) and FIRST(Y4)], if FIRST(Y2), FIRST(Y3) both

contain e and FIRST(Y4) does not contain e. For the computation of union of FIRST(Y2), FIRST(Y3) and

FIRST(Y4), we discard the e element.

Generalizing, for a non-terminal Yk in the above production

FOLLOW(Yk) = [union of FIRST(Yk+1), FIRST(Yk+2)..FIRST(Yk+m)], if FIRST(Yk+1), FIRST(Yk+2)

..FIRST(Yk+3) all contain e and FIRST(Yk+m) does not contain e. Eventhough FIRST(Yk+1), FIRST(Yk+2) ..

FIRST (Yk+m+1) all contain e, when we compute the union of FIRST(Yk+1), FIRST(Yk+2)..FIRST(Yk+m), we

discard the e element.

 Syntax Analysis 107

3. For a Production

X ÆY1 Y2 Y3 Y4.. YkYk+1 Yk+2 Yk+3.…. Yn

if FIRST(Yk+1), FIRST(Yk+2), FIRST(Yk+3)…FIRST(Yn) all contain e then

FOLLOW(Yk) = FOLLOW (X)

A specifi c case of the rule is

FOLLOW(Yn) = FOLLOW (X)

In the above type of scenarios, typically there would be another rule in the grammar of language that would

allow the computation of FOLLOW (X).

Table 3.16 shows the computation of FOLLOW sets for all the non-terminals in the grammar of Table

3.5. We use the rules given in Table 3.15 to compute the FOLLOW sets. We take each of the production and

compute the FOLLOW sets of the relevant symbols.

Table 3.16 Computation of FOLLOW sets

Production Comments

c_statement Æ IDENTIFIER EQ_TO_OP c_
expression SEMI_COLON

FOLLOW(c_statement) = {$}

since c_statement is the start symbol (by Rule 1)

FOLLOW(c_expression) = FIRST(SEMI_COLON), by
Rule 2.

We know that FIRST(SEMI_COLON)= {SEMI_COLON},
since SEMI_COLON is an NonTerminal, during the
computation of FIRST sets.

Hence, we add SEMI_COLON to the FOLLOW(c_
expression)

FOLLOW(c_expression) = {SEMI_COLON}

c_expression Æ CONSTANT c_expr_rest FOLLOW(c_expr_rest)= FOLLOW(c_expression) by
Rule 3. Hence,

FOLLOW(c_expr_rest) = {SEMI_COLON}

c_expression Æ IDENTIFIER c_expr_rest FOLLOW(c_expr_rest)= FOLLOW(c_expression) by
Rule 3. Hence,

FOLLOW(c_expr_rest) = {SEMI_COLON}

c_expr_rest Æ OPERATOR c_expr_factor FOLLOW(c_expr_factor)= FOLLOW(c_expr_rest) by
Rule 3. Hence,

FOLLOW(c_expr_factor) = {SEMI_COLON}

c_expr_factor Æ IDENTIFIER c_expr_rest FOLLOW(c_expr_rest)= FOLLOW(c_expr_factor) by
Rule 3. Hence,

FOLLOW(c_expr_rest) = {SEMI_COLON}

c_expr_factor Æ CONSTANT c_expr_rest FOLLOW(c_expr_rest)= FOLLOW(c_expr_factor) by
Rule 3. Hence,

FOLLOW(c_expr_rest) = {SEMI_COLON}

108 Principles of Compiler Design

Summarising the FOLLOW sets of all the non-terminals, we have

FOLLOW (c_statement) = {$}

FOLLOW (c_expression) = {SEMI_COLON}

FOLLOW (c_expr_rest) = {SEMI_COLON}

FOLLOW (c_expr_factor) = {SEMI_COLON}

The grammar in Table 3.5 is simple and does not have many productions with the same LHS. In most

of the programming languages, there are quite a number of productions with the same LHS and different

RHS. Due to this, there is interdependency of FOLLOW set of common LHS symbols with FOLLOW set

of various RHS symbols due to the application of rule 3 on different productions. Hence, the FOLLOW set

computation needs to be done in multiple passes on the grammar rules, until a steady state is reached.

Section 3.4.2.2.2 shows a program, that computes ‘FIRST’ and ‘FOLLOW’ sets, given the grammar of

the language. The FIRST and FOLLOW sets play an important role in making the parsing table entries for

the top-down parsing.

3.4.2.2.2 Example 4—A Program for computing FIRST and FOLLOW sets This example shows how

we can compute FIRST and FOLLOW sets for a symbol, given the grammar for the language. The following

dialog shows how the binary is built and used to compute FIRST and FOLLOW sets for a given grammar.

Building ex4 Binary

$ g++ -g -Wall grammar.cc ex4.cc -o ex4

A sample grammar fi le - sample1.gram

$ cat sample1.gram

c_statement : IDENTIFIER EQ_TO_OP c_expression ;

c_expression : CONSTANT c_expr_rest

c_expression : IDENTIFIER c_expr_rest

c_expr_rest : OPERATOR c_expr_factor

c_expr_rest : epsilon

c_expr_factor : IDENTIFIER c_expr_rest

c_expr_factor : CONSTANT c_expr_rest

$./ex4 ‘sample1.gram’

c_expr_factor FIRST={CONSTANT,IDENTIFIER} FOLLOW={;}

c_expr_rest FIRST={OPERATOR,epsilon} FOLLOW={;}

c_expression FIRST={CONSTANT,IDENTIFIER} FOLLOW={;}

c_statement FIRST={IDENTIFIER} FOLLOW={$}

A sample grammar fi le - sample2.gram

$ cat sample2.gram

E : T EDASH

EDASH : PLUS T EDASH

EDASH : epsilon

T : F TDASH

TDASH : STAR F TDASH

 Syntax Analysis 109

TDASH : epsilon

F : (E)

F : ID

$./ex4 ‘sample2.gram’

E FIRST={(,ID} FOLLOW={$,)}

EDASH FIRST={PLUS,epsilon} FOLLOW={$,),PLUS}

F FIRST={(,ID} FOLLOW={$,),PLUS,STAR}

T FIRST={(,ID} FOLLOW={$,),PLUS}

TDASH FIRST={STAR,epsilon} FOLLOW={$,),PLUS,STAR}

A sample grammar fi le - sample3.gram

$ cat sample3.gram

S : i E t S S1

S : a

S1 : e S

S1 : epsilon

E : b

$./ex4 ‘sample3.gram’

E FIRST={b} FOLLOW={t}

S FIRST={a,i} FOLLOW={$,e,t}

S1 FIRST={e,epsilon} FOLLOW={$,e,t}

3.4.2.2.3 Construction of Predictive Parsing Tables using FIRST and FOLLOW Sets In this section,

we study about making entries in a parsing table M, using the concept of FIRST and FOLLOW sets.

Consider a production X Æ Y1 Y2 Y3 Y4.. Yk..…. Yn in the grammar. The predictive parsing table entries

M relevant to this production are based on FIRST set of the entire RHS (Y1 Y2 Y3 Y4.. Yk..…. Yn). The

FIRST set of (Y1 Y2 Y3 Y4.. Yk..…. Yn) is calculated as follows. Add to FIRST(Y1 Y2 Y3 Y4.. Yk..…. Yn) all

the non-e symbols of FIRST(Y1). If FIRST(Y1) contains e, then add to FIRST(Y1 Y2 Y3 Y4.. Yk..…. Yn) all

the non-e symbols of FIRST(Y2). If FIRST(Y2) contains e, then add to FIRST(Y1 Y2 Y3 Y4.. Yk..…. Yn) all

the non-e symbols of FIRST(Y3). This goes on until we fi nd a FIRST(Yk) that does not contain e. In case, if

FIRST(Y1), FIRST(Y2), FIRST(Y3) .. FIRST(Yn) all contain e, we add e at the end to FIRST(Y1 Y2 Y3 Y4..

Yk..…. Yn).

For each production X ÆY1 Y2 Y3 Y4.. Yk..…. Yn in the grammar, calculate the FIRST(Y1 Y2 Y3 Y4..

Yk..….Yn) using the above method. For each terminal ‘a’ in FIRST (Y1 Y2 Y3 Y4.. Yk..…. Yn) make a

parsing table entry M[X, a] = XÆY1 Y2 Y3 Y4.. Yk..…. Yn. This essentially means that if we are expanding

a non-terminal X and an input of ‘a’ is received, we use the production X ÆY1 Y2 Y3 Y4.. Yk..…. Yn . In

case FIRST(Y1 Y2 Y3 Y4..Yk..... Yn) contains e, we need to add more entries. The additional entries are as

follows. For each terminal ‘b’ in FOLLOW(Y1 Y2 Y3 Y4.. Yk..…. Yn) make a parsing table entry M[X, b]

as X ÆY1 Y2 Y3 Y4.. Yk..…. Yn. This essentially means that if we are expanding a non-terminal X and an

input of ‘b’ is encountered, then also we use the production XÆ Y1 Y2 Y3 Y4.. Yk..…. Yn. This method used

for making entries in the parsing table is summarised in Algorithm 3.2.

110 Principles of Compiler Design

Grammar G
a is a string of grammar symbols e.g. Y1 Y2 Y3 Y4.. Yk..…. Yn

Initialise the table M to undefi ned entries
for (each production A Æ a in Grammar G){
 for (each terminal a in FIRST (a)){
 M[A,a] = (A Æ a)
 }
 if (FIRST(a) contains e){/* additional entries */
 for (each terminal b in FOLLOW(A)){
 M[A,b] = (A Æ a)
 }
 if ($ is in FOLLOW(A)) {
 M[A,$] = (A Æ a)
 }
 }
}

Algorithm 3.2 Construction of predictive parsing table

We now use Algorithm 3.2 to make the parsing table entries for the grammar described in Table 3.5. We

use the FIRST and FOLLOW sets computed earlier as a ready reference.

Production Comments

(1) c_statement Æ
IDENTIFIER EQ_TO_OP
c_expression SEMI_COLON

FIRST(IDENTIFIER EQ_TO_OP c_expression SEMI_COLON) =
FIRST(IDENTIFIER) = {IDENTIFIER}

Hence,

M[c_statement, IDENTIFIER] = 1 /* production 1 */

(2) c_expression Æ
CONSTANT c_expr_rest

FIRST(CONSTANT c_expr_rest)= FIRST(CONSTANT) = { CONSTANT}
Hence,

M[c_expression, CONSTANT] = 2 /* production 2 */

(3) c_expression Æ
IDENTIFIER c_expr_rest

FIRST(IDENTIFIER c_expr_rest)= FIRST(IDENTIFIER) = IDENTIFIER
Hence,

M[c_expression, IDENTIFIER] = 3 /* production 3 */

(4) c_expr_rest Æ
OPERATOR c_expr_factor

FIRST(OPERATOR c_expr_factor)=FIRST(OPERATOR) = {OPERATOR}
Hence,

M[c_expr_rest,OPERATOR] = 4 /* production 4 */

(5) c_expr_rest Æ Œ FIRST(Œ) = {Œ}
FOLLOW(c_expr_rest)= {SEMI_COLON} from the earlier computation.
Hence,

M[c_expr_rest, SEMI_COLON]= 5 /* production 5 */

(6) c_expr_factor Æ
IDENTIFIER c_expr_rest

FIRST(IDENTIFIER c_expr_rest) = FIRST(IDENTIFIER) =
{IDENTIFIER},

M[c_expr_factor,IDENTIFIER]= 6 /* production 6 */

(7) c_expr_factor Æ
CONSTANT c_expr_rest

FIRST(CONSTANT c_expr_rest) = FIRST(CONSTANT) = {CONSTANT},

M[c_expr_factor, CONSTANT]= 7 /* production 7 */

 Syntax Analysis 111

The reader is advised to verify the parse table entries made above and compare it with the parse table

shown in Table 3.11 for explaining the predictive table-driven parser algorithm.

3.4.2.3 Example 5—Predictive Parsing Table Entries using FIRST and FOLLOW Sets This

example shows how the parsing table entries of a table-driven predictive parser are generated using FIRST

and FOLLOW set concepts. Algorithm 3.2 has been implemented in this example. This example not only

generates the parsing table entries, but also does syntax analysis of the simple c assignment statement using

the parse table entries.

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

Compiling the Lexical Analyzer

$ gcc -c -o c-stmt-lex.o c-stmt-lex.c

Building ex5 Binary

$ g++ -g -Wall grammar.cc table_parse.cc c-stmt-lex.o ex5.cc -o ex5

Variant 1

$./ex5 ‘sample1.gram’ ‘count=5;’

**** Table Entries ****

M[c_statement][IDENTIFIER]= ‘c_statement : IDENTIFIER EQ_TO_OP c_expression ; ’

M[c_expression][CONSTANT]= ‘c_expression : CONSTANT c_expr_rest ’

M[c_expression][IDENTIFIER]= ‘c_expression : IDENTIFIER c_expr_rest ’

M[c_expr_rest][OPERATOR]= ‘c_expr_rest : OPERATOR c_expr_factor ’

M[c_expr_rest][;]= ‘c_expr_rest : epsilon ’

M[c_expr_factor][IDENTIFIER]= ‘c_expr_factor : IDENTIFIER c_expr_rest ’

M[c_expr_factor][CONSTANT]= ‘c_expr_factor : CONSTANT c_expr_rest ’

**** Parsing ****

c_statement : IDENTIFIER EQ_TO_OP c_expression ;

c_expression : CONSTANT c_expr_rest

c_expr_rest : epsilon

count=5;

SYNTAX CORRECT

Variant 2

$./ex5 ‘sample1.gram’ ‘count=index;’

**** Table Entries ****

M[c_statement][IDENTIFIER]= ‘c_statement : IDENTIFIER EQ_TO_OP c_expression ; ’

M[c_expression][CONSTANT]= ‘c_expression : CONSTANT c_expr_rest ’

M[c_expression][IDENTIFIER]= ‘c_expression : IDENTIFIER c_expr_rest ’

M[c_expr_rest][OPERATOR]= ‘c_expr_rest : OPERATOR c_expr_factor ’

M[c_expr_rest][;]= ‘c_expr_rest : epsilon ’

M[c_expr_factor][IDENTIFIER]= ‘c_expr_factor : IDENTIFIER c_expr_rest ’

M[c_expr_factor][CONSTANT]= ‘c_expr_factor : CONSTANT c_expr_rest ’

**** Parsing ****

c_statement : IDENTIFIER EQ_TO_OP c_expression ;

112 Principles of Compiler Design

c_expression : IDENTIFIER c_expr_rest

c_expr_rest : epsilon

count=index;

SYNTAX CORRECT

3.4.2.4 Error Recovery in Predictive Parsing We had, till now, discussed about the two common

techniques of implementing a top-down predictive parser, viz. recursive descent parsing and table-driven

parsing. This section is focussed on the error reporting and recovery in top-down predictive parsing.

In table-driven parsing, it is clear as to what terminals and non-terminals the parser expects from the rest

of the input. An error can be detected in the following situations:

 1. When the terminal on the top of the stack does not match the next input symbol.

 2. When a non-terminal A is on the top of stack, a is the next input symbol and the parsing table entry

M[A,a] is empty.

Recall from Section 3.4 that the error recovery of a parser is the ability to ignore the current error and

continue with the parsing for the remainder of the input. The error recovery schemes that are commonly

used in predictive parsing are:

 1. Panic mode recovery.

 2. Phrase level recovery.

Panic mode recovery is based on the principle that when an error is detected, the parser should skip the

input symbols until it fi nds a synchronising token in the input. Usually, the synchronising tokens are more

than one; hence a set called as synchronising set is used to denote the set of all synchronising tokens. The

effectiveness of panic mode recovery depends on the choice of synchronising set. Some of the guidelines

for constructing the synchronising set are as follows:

 1. For a non-terminal A, all the elements of FOLLOW set of A can be added to synchronising set of A.

For example, consider an input of multiple C statements as shown below to be verifi ed against the

grammar in Table 3.5. The line 1 has a missing C expression.

 count = ; /* This is line 1 – Missing C Expression*/
 index = a +100 ; /* This is line 2 */

 The table-driven parser after consuming = in line 1, would expect a C expression, instead it would

fi nd an input of SEMI_COLON . This is a part of FOLLOW set of C expression. The parser can

emit a message indicating that C expression is missing and then continue parsing the line 2.

 2. For a non-terminal A, the elements in FIRST set of A can be added to synchronisation set of A. This

would be useful in situations where the parsing can be resumed according to A, on appearance of an

input symbol that is a part of FIRST set of A. For example, consider an erroneous C statement using

the grammar in Table 3.5

 39 count = a + b ; /* Extra characters 39 */

 The table-driven predictive parser can skip characters ‘39’ and synchronise from count (Identifi er),

because the FIRST (c_statement) is an IDENTIFIER. This would allow the parser to recover from

errors in which there are some extraneous characters and resume the parsing from ‘count’.

 3. The synchronising set for a token can be a set of all other tokens. If a terminal on the top of stack

cannot be matched, then pop the terminal from the top of stack and issue a warning indicating that

the terminal was inserted and continue parsing. For example, consider an input C statement using

the grammar in Table 3.5 as shown below.

 count 45 ; /* Missing equal to operator */

 The table-driven parser after consuming count would expect an EQ_TO_OP according to rule 1. On

fi nding that the next input symbol is 45 (which is a CONSTANT), the table-driven predictive parser

 Syntax Analysis 113

can emit a message indicating that EQ_TO_OP was inserted and continue parsing as if EQ_TO_OP

was a part of the input.

Phrase-level recovery in predictive parser can be implemented by fi lling in blank entries in the predictive

parsing table with pointers to error-handling routines. For example, in Table 3.11 each one of the empty

entries can point to error-handling routines that can do the following:

 1. The error-handling routines can insert, modify or delete any symbols in the input. This would

amount to local correction that is expected from phrase-level recovery.

 2. The routines can also pop elements from the stack. The routines should safeguard against an infi nite

loop by making sure whatever local correction is done should ultimately result in an input symbol

being consumed.

3.5 BOTTOM UP PARSING

In bottom-up parsing, the parse tree for an input string is constructed beginning at the leaves (the bottom)

and working up towards the root (the top).

Bottom-up parsing involves ‘reducing’ an input string ‘w’ to the start symbol of the grammar. In each of

the reduction step a particular sub-string matching the right side of a production is replaced by a symbol on

the left of that production. If the sub-string were chosen correctly at each step, the reduction steps would be

the exact reverse of rightmost derivation. The ‘reducing’ is in contrast to what we saw earlier in top-down

parsing where we were ‘expanding’ the left-hand-side of the production to replace it with the RHS of the

production.

Let us consider the example of a C statement ‘count = index + 10 ; We shall try to check if this

C statement is in conformance to the grammar in Table 3.1 (which is where we started before we made

changes in grammar to suit LL parsing). It is reproduced below for convenience.

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3 | IDENTIFIER

4 | c_expression OPERATOR c_expression

For the input ‘count = index + 10;’ the lexical analyser returns the following string of tokens by virtue of

the defi nition of an IDENTIFIER, CONSTANT, OPERATOR and EQ_TO_OP. This is shown as:

=> IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON Tokens

We scan the tokenised input string to identify sub-strings that match the right side of a production.

The IDENTIFIER qualifi es for being the right side of Production 3. Let’s choose to replace one of the

IDENTIFIER (the one standing in for variable ‘index’) by the equivalent left side of Production 3, i.e. c_

expression. This results in

=> IDENTIFIER EQ_TO_OP c_expression OPERATOR CONSTANT SEMI_COLON By Production 3

Again, we scan the above string to identify sub-strings that match the right side of a production. The

‘CONSTANT’ sub-string qualifi es for being the right side of Production 2. Let’s choose to replace it by the

equivalent left side of Production 2, i.e. c_expression. This results in the following string:

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON By Production

 2

We continue the next iteration of scanning the above string to identify sub-strings that match the right

side of a production. The sub-string ‘c_expression OPERATOR c_expression’ qualifi es for being the right

side of Production 4. Let’s choose to replace it by the equivalent left-side of Production 4, i.e. c_expression.

This results in the following string:

114 Principles of Compiler Design

=> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON By Production 4

Let’s see the next iteration of scanning the above string to identify sub-strings that match the right side of

a production. The entire string ‘IDENTIFIER EQ_TO_OP c_expression SEMI_COLON’ qualifi es for being

the right side of Production 1. Let’s replace it by the equivalent left side of Production 1, i.e. C statement.

This results in the following string:

=> c_statement By Production 1

Thus we have reduced the input string ‘count = index + 10 ;’ to a C statement. Interestingly, note that the

derivation is exactly the reverse of a rightmost derivation starting from the root:

c_statement => IDENTIFIER EQ_TO_OP c_expression SEMI_COLON By P1

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON By P4

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR CONSTANT SEMI_COLON By P2

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON By P3

 count = index + 10 SEMI_COLON

The production rules applied in the rightmost derivation starting from the top are 1 followed by 4, 2, 3

while the bottom-up parsing applied productions 3 followed by 2, 4, 1. A rightmost derivation in reverse is

called as canonical reduction sequence.

The parse-tree construction for bottom-up parsing is illustrated in Fig. 3.7.

We saw in the previous sections that left factoring and elimination of left recursion are two important

transformations essential to make a grammar suitable for top-down parsing. Similarly, the transformation

that is necessary to make the grammar suitable for bottom-up parsing is elimination of right recursion. In

top-down parsing, we started with the grammar in Table 3.1 and transformed it to have left factoring and

eliminate left recursion. Similarly, we start with the grammar in Table 3.1 and eliminate right recursion in

rule 4 to make it suitable for bottom-up parsing. Table 3.1 is repeated here for convenience.

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3 | IDENTIFIER

4 | c_expression OPERATOR c_expression

Consider the Production 4,

c_expression Æ c_expression OPERATOR c_expression

 The right recursion can end only in two situations, where the c_expression takes the form of

CONSTANT (as in rule 2) or IDENTIFIER (as in rule 3). Taking advantage of it, we can rewrite Production

4 as two rules shown below.

c_expression Æ c_expression OPERATOR CONSTANT

c_expression Æ c_expression OPERATOR IDENTIFIER

Using the two rules above, the c-statement grammar suitable for bottom-up parsing can be written as:

Table 3.17 C-statement grammar suitable for bottom-up parsing

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3 | IDENTIFIER

4 | c_expression OPERATOR CONSTANT

5 | c_expression OPERATOR IDENTIFIER

 Syntax Analysis 115

Fig. 3.7 Bottom-up parsing for count=index + 10;

3.5.1 Defi nitions in Bottom-up Parsing

Let’s go through the derivation of ‘count = index + 10 ;’ with the new grammar rules shown in Table 3.17

and in the process understand some defi nitions.

116 Principles of Compiler Design

The process of replacement of the right side of the production by its equivalent left side of the Production

is called as reduction. The sub-string that gets replaced by its equivalent left side of the production is

called a handle. The handles in two of the steps above are shown. In the above derivation, each one of the

intermediate forms that are encountered before the input is reduced to the start symbol is called as right

sentential form. For example, in the derivation of ‘count=index + 10 ;’ shown above, in step 1.

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON

is a right sentential form whose handle is c_expression Æ IDENTIFIER at position 3.

In the derivation of ‘count=index + 10 ;’ shown above, the choices of handles to replace are intuitively

clear. However, in reality the choices of handles have to be pruned to identify the correct handle that would

lead us to the start symbol. For example, by making a wrong choice of handle the derivation could have

gone awry as follows:

 count = index + 10 ;

fi IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON Returned as

 Tokens

fi c_expression EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON By P1

fi c_expression EQ_TO_OP c_expression OPERATOR CONSTANT SEMI_COLON By P1

fi c_expression EQ_TO_OP c_expression SEMI_COLON By P4

fi c_expression EQ_TO_OP c_expression SEMI_COLON Cannot be

 reduced further

The input is not reduced to c_statement, this would have led us to the wrong conclusion that given

input ‘count = index + 10;’ is not a valid C statement. This undermines the need for identifying the correct

handle out of all possible handles (handle pruning) to replace in order to be able to reduce the input string

to the start symbol.

Similarly, when there is more than 1 production that has the same right-hand side, the choice of

which production rule to apply, in order to reduce a handle is very important to have the correct outcome of

parsing.

 Syntax Analysis 117

3.5.2 Working of a Bottom-up Parser

Bottom-up parsing is commonly implemented by using a stack. The end of the input is marked with a ‘$’.

The bottom of the stack is also marked with ‘$’. Depending on the content of the stack and the next input

symbol, the actions of a bottom-up parser can be classifi ed as (1) shift (2) reduce (3) accept (4) error.

In shift action, the next input symbol is shifted on to the top of the stack.

In reduce action, the top few elements on the stack constituting the right-hand side of a production are

replaced by the non-terminal that forms the equivalent left side on the top of stack.

In accept action, in which the top of the stack contains the start symbol, the parser announces the

successful parsing of the input.

In error action, the parser recognises that a syntax error has occurred in the input and calls an error

handling routine.

Let’s see the working of a bottom-up parser by trying to verify if an input string ‘a= count +2 ;’ is in

conformance with the grammar given in Table 3.17.

The fi rst input symbol ‘a’ would be translated to IDENTIFIER by the lexical analyser. The parser would

perform the ‘shift’ action and push it on the stack. The stack is shown below.

$ IDENTIFIER Step 1

The next symbol ‘=’ would be translated to EQ_TO_OP by the lexical analyser. The parser would

perform the ‘shift’ action and push it on the stack.

$ IDENTIFIER EQ_TO_OP Step 2

The next input symbol ‘count’ would be translated as IDENTIFIER by the lexical analyser. The parser

would perform the ‘shift’ action and push it on the stack.

$ IDENTIFIER EQ_TO_OP IDENTIFIER Step 3

The topmost element of the stack is IDENTIFIER, which forms the right-hand side of Production 3. A

‘Reduce’ action is performed by the parser, replacing IDENTIFIER by c_expression.

$ IDENTIFIER EQ_TO_OP c_expression Step 4

The next input symbol ‘+’ would be translated as ‘OPERATOR’ by lexical analyser. The parser would

perform the ‘shift’ action and push it on the top of stack.

$ IDENTIFIER EQ_TO_OP c_expression OPERATOR Step 5

The next input symbol ‘2’ would be translated into CONSTANT by lexical analyser. The parser would

perform ‘shift’ action and push it on the top of stack.

$ IDENTIFIER EQ_TO_OP c_expression OPERATOR CONSTANT Step 6

The top-most few elements of the stack are c_expression OPERATOR CONSTANT, which forms the

right-hand side of Production 3. A ‘reduce’ action is performed by the parser, replacing ‘c_expression

OPERATOR CONSTANT ‘ by c_expression.

$ IDENTIFIER EQ_TO_OP c_expression Step 7

118 Principles of Compiler Design

The next input symbol ‘;’ would be translated into SEMI_COLON by lexical analyser. The parser would

perform ‘shift’ action and push it on the top of stack.

$ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON Step 8

The top-most few elements of the stack are IDENTIFIER EQ_TO_OP c_expression SEMI_COLON,

which forms the right-hand side of Production 3. A ‘reduce’ action is performed by the parser, replacing

‘IDENTIFIER EQ_TO_OP c_expression SEMI_COLON’ by c_statement.

$ c_statement Step 9

The top of the stack contains the start symbol ‘c_statement’. The parser does an accept action and

indicates the successful parsing of the input to c_statement.

Note that the rationale behind why a shift is chosen or reduce is chosen in each one of the above steps

is not yet explained. We will come to that a little later. For now, try and appreciate the how the stack is

manipulated to make the entire parse.

Let’s look at an example to see how the shift/reduce actions happen during the parsing process. We

shall use a parser generated by the tool bison (similar to the Example 1 in Section 3.1.2). The tool bison

generates a bottom-up parser that does shift and reduce, the way we did above. Let’s try it out by giving in

the grammar of Table 3.17 and the same input as above ‘a = count+2;’

3.5.2.1 Example 6—A Bottom-up Parser for a Simple C Statement The parsers that are

automatically generated by most of popular tools like bison/yacc are bottom-up parsers. This section shows

a bottom-up parser generated by bison, for the grammar in Table 3.17. The focus of this example is to

illustrate the shift-reduce actions performed by a bottom-up parser, when an input is given. We reuse the

lexical analyser shown in Example 1.

Generating C File from grammar. -t enables debugging, i.e. shows shift/reduce actions performed

$ bison -dy -t -oc-stmt-bot-up-gram.c -v c-stmt-bot-up-gram.y

Compiling the Parser

$ gcc -g -Wall -DGENERATED_PARSER -c -o c-stmt-bot-up-gram.o c-stmt-bot-up-gram.c

Generating the lexical Analyzer from lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

Compiling the lexical Analyzer

$ gcc -c -DGENERATED_PARSER -DCHAP3_EX6 -o c-stmt-lex6.o c-stmt-lex.c

Building ex6 Binary

$ gcc -g -Wall ex6.c c-stmt-bot-up-gram.o c-stmt-lex6.o -o ex6

An Example for shift-reduce Parsing

$./ex6 ‘a=count+2;’

Starting parse

Entering state 0

Reading a token: Next token is token IDENTIFIER ()

Shifting token IDENTIFIER ()

Entering state 1

 Syntax Analysis 119

Reading a token: Next token is token EQ_TO_OP ()

Shifting token EQ_TO_OP ()

Entering state 3

Reading a token: Next token is token IDENTIFIER ()

Shifting token IDENTIFIER ()

Entering state 5

Reducing stack by rule 3 (line 21):

 $1 = token IDENTIFIER ()

-> $$ = nterm c_expression ()

Stack now 0 1 3

Entering state 7

Reading a token: Next token is token OPERATOR ()

Shifting token OPERATOR ()

Entering state 8

Reading a token: Next token is token CONSTANT ()

Shifting token CONSTANT ()

Entering state 11

Reducing stack by rule 4 (line 22):

 $1 = nterm c_expression ()

 $2 = token OPERATOR ()

 $3 = token CONSTANT ()

-> $$ = nterm c_expression ()

Stack now 0 1 3

Entering state 7

Reading a token: Next token is token SEMI_COLON ()

Shifting token SEMI_COLON ()

Entering state 9

Reducing stack by rule 1 (line 16):

 $1 = token IDENTIFIER ()

 $2 = token EQ_TO_OP ()

 $3 = nterm c_expression ()

 $4 = token SEMI_COLON ()

-> $$ = nterm c_statement ()

Stack now 0

Entering state 2

Reading a token: Now at end of input.

Stack now 0 2

Cleanup: popping nterm c_statement ()

a=count+2;

SYNTAX CORRECT

For now, ignore the state related information emitted in the output. The reader is advised to make a

comparison of the output of ‘ex6’ for ‘a=count+2;’ in the above dialog with the explanation done

previously so as to understand the process of shift-reduce parsing better. Trying out the executable ex6 with

different types of input will help in comprehending the nuances of shift-reduce parsing.

3.5.3 Shift-Reduce Parsing Methods

From a mechanical point of view, the explanation given for shift-reduce parsing in the previous section seemed

complete. Let’s do a deeper analysis and fi nd out some of the issues encountered in the parsing of input.

120 Principles of Compiler Design

How do we recognise the right ‘handles’ for reducing?

For example, in the shift-reduce parsing of ‘a=count+2;’ explained earlier. When we were in step 1,

we had the stack where ‘IDENTIFIER’ was on the top of stack. We did not reduce it to ‘c_expression’.

However, in step 3, we reduced the ‘IDENTIFIER’ on the top of the stack to ‘c_expression’. If we had

reduced ‘IDENTIFIER’ on the top of the stack to ‘c_expression’ in step 1, it would have led us to the

conclusion that the sentence ‘a=count+2;’ does not conform to the c-statement grammar.

This explains the need to have a mechanism to identify the correct handle for reducing.

Similarly, in cases where there are more than 1 productions having the same sub-string on the right-hand

side we need to have a mechanism to fi gure out what production needs to be used for reducing in order to

have a successful derivation of input.

In the next few sections, we shall see two methods of shift-reduce parsing, which use different

techniques to resolve the issues mentioned above. The two methods are:

 1. Operator precedence parsing method.

 2. LR parsing method.

These methods vary in their approach to identify the right handle and the correct production for reduction.

The LR parsing method uses a state machine represented by a parsing table to make the shift/reduce decisions.

The operator parsing method uses a table known as precedence table to make shift/reduce decisions.

The operator precedence parsing method can be applied to a small class of grammar called as operator

precedence grammar. In operator precedence grammar, there would not be an epsilon production. The

operator precedence grammar also puts a restriction that in no production would there be two adjacent

terminals. The operator precedence parsing method is described in Section 3.5.4.

The LR parsing method can be applied to a class of grammar called LR grammar (L stands for left to

right scanning and R stands for rightmost derivation). Unlike the operator precedence grammar, the LR

grammar does not put serious restrictions on the productions. The LR parsing method can parse most of the

programming constructs. The LR parsing method is described in detail in Section 3.5.5.

Even when we devise mechanisms to identify the right handle for reducing and the correct production

for reducing, there is no assurance that a shift-reduce parser can parse any context-free grammar. For some

context-free grammars, it is possible that the shift-reduce parser can get into a confi guration in which the

parser knowing the entire stack contents (S) and the next input symbol (a), is still unable to decide whether

to shift or reduce (shift-reduce confl ict) or cannot decide which of the productions to reduce (reduce-

reduce confl ict). These kinds of context-free grammars for which the LR parsers end up with a confl ict are

called as non-LR grammars.

3.5.4 Operator Precedence Parsing

 Operator precedence parsing is a shift-reduce parsing method that can be applied to a small class of

grammar called as operator grammar.

An operator grammar has two important characteristics:

 1. There are no e productions in this type of grammar.

 2. No production would have two adjacent non-terminals.

Consider an operator grammar recognising expressions using the following 7 productions.

 Syntax Analysis 121

Table 3.18 An operator grammar

1 E Æ ID An expression is a Identifi er

2 | E + E Addition

3 | E – E Subtraction

4 | E * E Multiplication

5 | E / E Division

6 | E ^ E Raising to the Power

7 | (E) Parenthesised

8 | -E Unary Minus

The ID can be either a number or a variable name.

Before we see how the operator precedence parsing technique can be used to parse an input and check its

conformance with the above grammar, let’s spend some time on where this kind of grammar can be used.

In the fi rst look, it appears that the grammar shown in Table 3.18 can be used in a desktop calculator, if

we defi ne ID as a number. In reality, apart from the desktop calculator, most of the programming languages

use this kind of grammar for evaluating expressions. Remember, we were having a c_expression in our

earlier examples. We can use operator precedence grammar to evaluate such expressions. The existence of

expressions in almost all programming languages makes it an important class of grammar. The limitation

on the type of productions is not a great hindrance, since expressions by nature exhibit operator grammar

characteristics. To appreciate the importance of this parsing, it is relevant to mention that the expressions in

SNOBOL compiler were based on operator precedence parsing.

We had seen earlier that in shift-reduce parsing, the main challenges are:

 1. To identify the correct handle in each of the reduction steps, such that we can eventually reduce a

given input to the start symbol.

 2. To identify which production to use for reducing in each of the reducing steps, such that we can

correctly reduce the given input to the start symbol.

The operator precedence parsing technique uses a table called as operator precedence relations table

for making informed decisions with regard to identifying the correct handle during a reduction step. Since

the operator grammar does not contain any epsilon productions, the issue of having to identify the right

production for reducing is simplifi ed.

An operator precedence parser consists of:

 1. An input buffer that contains the string to be parsed followed by a $, a symbol used for indicating

the end of input.

 2. A stack containing the sequence of grammar symbols with a $ at the bottom of the stack. The stack

does not differentiate between non-terminals, it merely marks the element on the stack as non-

terminal. This will be more evident, when we see the example a little later.

 3. An operator precedence relations table O, containing the precedence relationship between a pair of

terminals. This is a two-dimensional array using the operators as the indexes. The content of the

operator precedence relations table can be one of the three precedence relations namely <•, •>, or =
.

between a pair of terminals. The relation a •> b implies that the terminal ‘a’ has higher precedence

than ‘b’. The relation a <• b implies that the terminal ‘a’ has lower precedence than ‘b’. The relation

a =
.
 b implies that both ‘a’ and ‘b’ have the same precedence. The precedence relationship between

a terminal ‘a’ and another terminal ‘b’ is determined by consulting the entry O[a][b]. Table 3.19

122 Principles of Compiler Design

shows an operator precedence relations table. The shaded entry indicates that operator * has a higher

precedence than ‘–’.

 4. An operator precedence parsing program that takes the input string and determines if it is

conformant to the grammar. The parser program uses the operator precedence relations table and the

stack to arrive at this decision.

Figure 3.8 illustrates the various components of an operator precedence parser.

Fig. 3.8 Components of an operation precedence parser

The operator precedence parsing program determines the action of the parser depending on

∑ ‘a’, the top most terminal symbol on the stack

∑ ‘b’, the current input symbol

There are 3 combinations of ‘a’ and ‘b’ that are important for the parsing program

Condition Action

a = b = $ The parser announces the successful completion of parsing and returns.

a <• b or a =
.
 b The parser shifts the input symbol on to the top of the stack and advances the input pointer

to the next input symbol.

a •> b This triggers off a reduce operation. The parser pops out elements one by one from

the shift-reduce stack until we fi nd that the current top of the stack element has lower

precedence than the most recently popped-out terminal. The popped out elements form the

handle for the reduction. We make a check to see if the handle forms a valid right-hand side

of a production. If the handle is valid then we push a non-terminal on the stack and continue

the parse or else we try to decipher the error and emit a proper error message. The parser

can either recover and continue the parse or stop parsing.

The parsing program is summarised in Algorithm 3.1.

 Syntax Analysis 123

op_prec_parse()

{

 do

 {

 a = Symbol on the top of Stack

 b = Next Input Symbol

 if ((a == $) && (b == $)){

 return(SUCCESS)

 }

 if (O[a][b] is < || O[a][b] is =
.
){/* Shift */

 Shift b on to the Stack

 Advance the input pointer

 b = next input symbol ;

 } else if (O[a][b] is >) {/* Reduce */

 no_of_term_popped = 0;

 do {

 if(top_of_stack == NONTERM){

 pop the stack

 continue;

 }

 /* Terminal */

 if (no_of_term_popped > 0){

 if(O[topmost_term_on_stack][most_recently_popped_term] is <){
 break;

 }

 }

 most_recently_popped_term = topmost_term_on_stack;

 pop the stack

 no_of_term_popped ++ ;

 } while (1)

 a = top_of_the stack

 if (the elements popped out do not form the RHS of a Production){

 return(FAILURE)

 }

 Push non-terminal E on the stack

 } else {

 return(FAILURE)

 }

 } while (1)

}

Algorithm 3.3 Operator precedence parsing

124 Principles of Compiler Design

The main data structure on which the operator precedence algorithm depends is the operator precedence

relations table O. For the grammar mentioned in Table 3.18, the operator precedence relations table O is

shown in Table 3.19.

Table 3.19 Operator precedence relations table

+ – * / ^ ID () $

+ •> •> <• <• <• <• <• •> •>

- •> •> <• <• <• <• <• •> •>

* •> •> •> •> <• <• <• •> •>

/ •> •> •> •> <• <• <• •> •>

^ •> •> •> •> <• <• <• •> •>

ID •> •> •> •> •> ERR ERR •> •>

(<• <• <• <• <• <• <• =
.

ERR

) •> •> •> •> •> ERR ERR •> •>

$ <• <• <• <• <• <• <• ERR ERR

Using the grammar shown in Table 3.18, and the corresponding parsing table given in Table 3.19, let’s

see how the operator precedence parser algorithm works for an input of

‘80 + 100 – 56’.

Initially in operator precedence parsing, the end of input marker ‘$’ is pushed on to the stack. ‘$’ is the

top of the stack now.

Stack Remaining Input

$ 80 + 100 – 56 $

The parser receives the fi rst token ‘80’, which is translated to an ID from the lexical analyser. The parser

compares the precedence of ID with ‘$’ by viewing the entry O[$][ID]. The value is ‘<•’, which implies that

the input symbol ID should be pushed on to the stack (shift operation) and the input pointer advanced. The

topmost terminal symbol on the stack is ID.

Stack Remaining Input

$ ID + 100 – 56 $

The next input is ‘+’, which is a token of type PLUS as classifi ed by the lexical analyser. The parser

compares the precedence of ID (which is the top of stack) with ‘+’ by viewing the entry O [ID] [+]. The

value is ‘•>’, which implies that a reduce operation needs to be carried out. Symbols are popped out until

the precedence relation between the top of stack element and the most recently popped element is ‘<•’. The

fi rst symbol to be popped out of the stack is ID. This makes the most recently popped out element as ID.

The stack then has ‘$’ as the top of the stack. The precedence relation between ‘$’ (top of stack) and the

most recently popped out element (ID) is determined by the entry O[$][ID]. The value is ‘<•’, which signals

us to stop popping out the elements from stack. The elements that were popped out during this process

are ID. We reduce it to a non-terminal E. Note that we are not distinguishing between non-terminals, it is

always E in the case of operator grammar. We need to push E onto the stack. The topmost terminal symbol

on the stack is, however, $. Note that the input pointer is not advanced in the reduce operation.

 Syntax Analysis 125

Stack Remaining Input

$ E + 100 – 56 $

We continue to use ‘+’ as the next input symbol. The parser compares the precedence of $ (topmost

terminal symbol on the stack) with ‘+’ with by viewing the entry O[$][+]. The value is ‘<•’, which implies

that the input symbol + should be pushed on to the stack (shift operation) and the input pointer advanced. The

topmost terminal symbol on the stack is +. The input pointer is advanced to point to the next symbol 100.

Stack Remaining Input

$ E + 100 – 56 $

The parser now receives the next token ‘100’, which is an ID from the lexical analyser. The parser

compares the precedence of ‘+’ (The topmost terminal symbol on the stack) with ID by viewing the entry

O[+][ID]. The value is ‘<•’, which implies that the input symbol ID should be pushed on to the stack (shift

operation) and the input pointer advanced. The topmost terminal symbol on the stack is ID.

Stack Remaining Input

$ E + ID – 56 $

The next input is ‘–’, which is a token of type MINUS as classifi ed by the lexical analyser. The parser

compares the precedence of ID (which is the topmost terminal symbol of stack) with ‘–’ by viewing the

entry O [ID] [–]. The value is ‘•>’, which implies that a reduce operation needs to be carried out. Symbols

are popped out until the precedence relation between the top of stack element and the most recently popped

element is ‘<•’. The fi rst symbol to be popped out of the stack is ID. This makes the most recently popped

out element as ID. The stack then has ‘+’ as the top of the stack. The precedence relation between ‘+’

(topmost terminal symbol on the stack) and the most recently popped out element (ID) is determined by

the entry O[+][ID]. The value is ‘<•’, which signals us to stop popping out the elements from stack. The

elements that were popped out during this process are ID. We reduce it to a non-terminal E. Note that we

are not distinguishing between non-terminals, it is always E even if there were many non-terminals in the

operator grammar. We need to push E onto the stack. The topmost terminal symbol on the stack is however

+. Note that the input pointer is not advanced in the reduce operation.

Stack Remaining Input

$ E + E – 56 $

We continue to use ‘–’ as the next input symbol. The parser compares the precedence of + (topmost

terminal symbol on the stack) with ‘–’ with by viewing the entry O[+][–]. The value is ‘•>’, which implies

that a reduce operation needs to be carried out. Symbols are popped-out until the precedence relation

between the top of stack element and the most recently popped element is ‘<’. The fi rst symbol to be

popped out of the stack is non-terminal E. Note that this does not change the most recently popped out

terminal, since we had popped out a non-terminal. We pop again, the element to be popped out is ‘+’. This

makes the most recently popped out element as ‘+’. The stack then has E as the top of the stack. We pop

out again. The top of the stack is now $, which is a non-terminal. The precedence relation between $ and +

(the most recently popped out terminal) as determined by O[$][+] is ‘<•’. This signals us to stop popping

out the elements from stack. The elements that were popped out during this process were E, + and E in that

order. We reduce these elements to a non-terminal E, i.e. E Æ E + E. Note that we are not distinguishing

between non-terminals, it is always E in the case of operator grammar. We need to push E onto the stack.

126 Principles of Compiler Design

The topmost terminal symbol on the stack is, however, $. Note that the input pointer is not advanced in the

reduce operation.

Stack Remaining Input

$ E – 56 $

We continue to use ‘–’ as the next input symbol. The parser compares the precedence of $ (topmost

terminal on the stack) with ‘–’ with by viewing the entry O[$][–]. The value is ‘<•’, which implies that the

input symbol ‘–’ should be pushed on to the stack (shift operation) and the input pointer advanced. The

topmost terminal symbol on the stack is ‘–’.

Stack Remaining Input

$ E – 56 $

The parser now receives the next token ‘56’, which is an ID from the lexical analyser. The parser

compares the precedence of ‘–’ (The topmost terminal symbol on the stack) with ID by viewing the entry

O[–][ID]. The value is ‘<•’, which implies that the input symbol ID should be pushed on to the stack (shift

operation) and the input pointer advanced. The topmost terminal symbol now on the stack is ID.

Stack Remaining Input

$ E – ID $

The parser now receives the next token ‘$’, the end of input marker from the lexical analyser. The parser

compares the precedence of ‘ID’ (The topmost terminal symbol on the stack) with $ by viewing the entry

O[ID][$]. The value is ‘•>’, which implies that a reduce operation needs to be carried out. Symbols are

popped out until the precedence relation between the top of stack element and the most recently popped

element is ‘<•’. The fi rst symbol to be popped out of the stack is ID. This makes the most recently popped

out element as ID. The stack then has ‘–’ as the top of the stack. The precedence relation between ‘–’

(topmost terminal symbol on the stack) and the most recently popped out element (ID) is determined by

the entry O[–][ID]. The value is ‘<•’, which signals us to stop popping out the elements from stack. The

elements that were popped out during this process are ID. We reduce it to a non-terminal E, i.e. E Æ ID. We

need to push E onto the stack. The topmost terminal symbol on the stack is, however –. Note that the input

pointer is not advanced in the reduce operation.

Stack Remaining Input

$ E – E $

We continue to use ‘$’ as the next input symbol. The parser compares the precedence of – (topmost

terminal symbol on the stack) with ‘$’ with by viewing the entry O[–][$]. The value is ‘•>’, which

implies that a reduce operation needs to be carried out. Symbols are popped out until the precedence

relation between the top of stack element and the most recently popped element is ‘<’. The fi rst symbol

to be popped out of the stack is non-terminal E. Note that this does not change the most recently popped

out terminal, since we had popped out a non-terminal. We pop again, the element to be popped out is

‘–’. This makes the most recently popped out element as ‘–’. The stack then has E as the top of the stack.

We pop out again. The top of the stack is now $, which is a terminal. The precedence relation between

$ and – (the most recently popped out terminal) as determined by O[$][–] is ‘<•’. This signals us to stop

popping out the elements from stack. The elements that were popped out during this process were E, – and

E in that order. We reduce these elements to a non-terminal E, i.e. E Æ E – E. We need to push E onto the

 Syntax Analysis 127

stack. The topmost terminal symbol on the stack is, however, $. Note that the input pointer is not advanced

in the reduce operation.

Stack Remaining Input

$ E $

We continue to use ‘$’ as the next input symbol. Now the top most terminal on the stack is ‘$’ and

also the next input symbol is ‘$’, which signals the completion of a successful parse. This terminates by

accepting the input string as conformant to the grammar. The reader needs to observe how the operator

relations table facilitated the shift/reduce decisions made by the parsing program.

Let’s now understand how error recovery can be done in operations precedence parsing.

3.5.4.1 Error Reporting and Recovery in Operator Precedence Parsing In the operator

precedence parsing algorithm shown in Algorithm 3.3 there are two points where the operator precedence

parser can detect errors.

 1. No precedence relation exists between the top of the stack and the current input. For example,

considering the grammar in Table 3.18 (which is manifested as a precedence table in Table 3.18), if

an erroneous input of say ‘35 59’ is given as an input, the operation precedence parser indicates an

unsuccessful parse in step 3 due to the erroneous entry in the precedence table (see below).

Step Stack Input Comment

1 $ 35 59 $ Initial confi guration ‘$’ is on the top of stack

2 59 $ ID is shifted on to the stack

3 $ ID 59 $ The parser announces an error since O[ID][ID] is an error entry

 2. The handle emerging out of the popped elements does not form the RHS of a production. For

example, if an erroneous input of say ‘35 +’ is given, the operator precedence parser indicates a

unsuccessful parse in step 5 due to the handle not matching the RHS of a production.

Step Stack Input Comment

1 $ 35 + $ Initial confi guration ‘$’ is on the top of stack

2 $ ID + $ ID is shifted on to the stack

3 $ E + $ ID is reduced to E

4 $ E + $ + is shifted onto the stack

5 $ E + The handle resulting out of the popped elements from the stack is

‘E +’, which does not form the RHS of any production

We can build intelligence in both of these points to indicate not only the error but also the source of

error. We can also recover from the current error to proceed with the syntax analysis of the following lines.

In situations where there is no precedence relation existing between the topmost terminal on the stack

and the next input, the source of error can be determined by virtue of the position in the operator precedence

table. For example, the entry O[ID][ID] is referenced in situations where the input contains two consecutive

IDs without an operator between them, as we saw above for the input ‘35 59’. We can issue a diagnostic

message, ‘Missing Operand’ in such cases. Similarly some other error messages can also be fl ashed on the

position in the relations table. Table 3.20 and Table 3.21 show all the error entries and their corresponding

diagnostic messages.

128 Principles of Compiler Design

Table 3.20 Precedence relations table with well-defi ned error entries

+ - * / ^ ID () $

+ •> •> <• <• <• <• <• •> •>

– •> •> <• <• <• <• <• •> •>

* •> •> •> •> <• <• <• •> •>

/ •> •> •> •> <• <• <• •> •>

^ •> •> •> •> <• <• <• •> •>

ID •> •> •> •> •> ERR1 ERR1 •> •>

(<• <• <• <• <• <• <• =
.

ERR4

) •> •> •> •> •> ERR1 ERR1 •> •>

$ <• <• <• <• <• <• <• ERR2 ERR3

The diagnostic messages are as follows:

Table 3.21 Diagnostics messages

Error Diagnostic message

ERR1 Missing operator

ERR2 Missing left parenthesis

ERR3 Missing operand

ERR4 Missing right parenthesis

In all of these situations where we can fl ash the error messages as indicated by the diagnostics messages

in Table 3.21, we can also proceed with the syntax analysis of the next line without stopping at the error by

fi lling in the missing element on the stack. For example, in case of errors resulting in ERR1 message, we

can insert an operator on the stack in order to proceed with the syntax analysis of the next line after fl ashing

the error message. Similarly for ERR2, we can insert a left parenthesis in the stack, and allow the syntax

analysis to proceed after fl ashing the ERR2 diagnostic message.

Coming to the situations where the handle popped out does not match the RHS of any production, we

could fl ash a message depending on the resemblance to a particular production. For example, if the handle

is ‘E +’ (as we saw in the earlier example), the production that it resembles is E Æ E + E. The missing

element is another ID, which would have been reduced to E. We can issue a diagnostic message indicating a

‘missing operand’ for this case. As a general rule for the grammar in Table 3.18, we can potentially check if

there are non-terminals on either end of other operators like –,^,* or /, if they do not exist, then we can issue

a diagnostic message ‘missing operand’. Additionally, as error recovery, we can also insert the E on the

stack and proceed with the syntax analysis of the next line. Similarly, from the characteristics exhibited by

the grammar in Table 3.18, we can deduce that a non-terminal needs to be present between the parentheses

or else we can fl ash a diagnostic message indicating that the expression is missing between the parentheses.

The table below shows some of the checks that can be made for the grammar in Table 3.18 with regard to

the handle popped out during a reduction.

 Syntax Analysis 129

Check Diagnostic message on

failing the check

Related production

Operators +.–,*,/,^ should be surrounded

on either side by non-terminal E

Missing operand E Æ E + E

E Æ E – E

E Æ E * E

E Æ E / E

E Æ E ^ E

There should be a non-terminal between

open parenthesis, and close parenthesis

No expression between parentheses E Æ (E)

Both of the above-mentioned methods of error recovery involve some kind of local correction either in

the stack or input or both. Thus the error recovery schemes in operator precedence parsing fall under the

category of phrase level recovery as described in Section 3.3.

3.5.4.2 Precedence Functions The main use of the operator precedence table is for determining the

precedence of a terminal with respect to another. For operator grammar with many rules, it could become

large. Alternatively, it is also possible to defi ne two functions f and g such that

f(a) < g(b) whenever a < b

f(a) = g(b) whenever a = b

f(a) > g(b) whenever a > b

where ‘a’ and ‘b’ are the terminals for whom we need to determine the precedence relations.

These functions f and g are called as precedence functions. The precedence functions help in reducing

the memory consumption of the operator precedence parser by virtue of eliminating the table and replacing

with the functions. The precedence functions equivalent of the operator precedence relations table in Table

3.19 is shown in Table 3.22.

Table 3.22 Precedence functions

+ – * / ^ () ID $

f 2 2 4 4 4 0 6 6 0

g 1 1 3 3 5 5 0 5 0

In the parsing algorithm, we need to compute f(a) and g(b) instead of looking at the table entry O[a][b].

However, one disadvantage with the precedence functions is that we lose the ability to detect errors based

on the error entries of the table as explained in the previous section.

3.5.4.3 Advantages and Disadvantages of Operator Precedence Parsing The following are the

advantages and the disadvantages of operator precedence parsing:

Advantages
∑ It is a simple and easy to implement parsing technique.

∑ The operator precedence parser is constructed by hand after understanding the grammar. It is simpler

to debug.

130 Principles of Compiler Design

Disadvantages
∑ It is hard to handle tokens like minus (–), which has two different values of precedence depending on

whether it is being used as binary or unary operator.

∑ This technique unlike most of the other techniques we have seen does not take the grammar as the

input and generate a parser. The parser has a fragile relationship with the grammar. Any addition or

deletion of production rules would require a rewrite of the parser. Because of the implicit nature of

the dependency on the grammar rules (for example, in the error recovery), it might so happen that the

parser might not accept sentences belonging to the language or reject the sentences belonging to the

language.

∑ The operator precedence parsing technique can parse only a small class of grammars (operator

grammars).

In the Section 3.5.4.4, we see a functional operator precedence parser with error detection facility.

3.5.4.4 Example 7—An Operator Precedence Parsing Program This section shows an operator

precedence parsing program built for the grammar shown in Table 3.18. Algorithm 3.3 is used in this

example. The program is capable of performing error reporting. The following dialog shows how the

operator precedence parsing program can be used to perform syntax analysis on given expressions.

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oop-prec-lex.c op-prec-lex.l

Compiling the Lexical Analyzer

$ gcc -c -o op-prec-lex.o op-prec-lex.c

Building ex7 Binary

$ g++ -g -Wall ex7.cc op-prec.cc op-prec-lex.o -o ex7

Simple Expression with 2 numbers

$./ex7 ‘25 + 35’

Shifting ID [25]

Reducing E --> ID

Shifting + [+]

Shifting ID [35]

Reducing E --> ID

Reducing E --> E + E

25 + 35

SYNTAX CORRECT

Simple Expression with a number and a variable

$./ex7 ‘a + 35’

Shifting ID [a]

Reducing E --> ID

Shifting + [+]

Shifting ID [35]

Reducing E --> ID

Reducing E --> E + E

a + 35

SYNTAX CORRECT

 Syntax Analysis 131

Expression with multiple Operators

$./ex7 ‘a + 35 * 40’

Shifting ID [a]

Reducing E --> ID

Shifting + [+]

Shifting ID [35]

Reducing E --> ID

Shifting * [*]

Shifting ID [40]

Reducing E --> ID

Reducing E --> E * E

Reducing E --> E + E

a + 35 * 40

SYNTAX CORRECT

Expression with multiple Operators

$./ex7 ‘a ^ 35 - 40’

Shifting ID [a]

Reducing E --> ID

Shifting ^ [^]

Shifting ID [35]

Reducing E --> ID

Reducing E --> E ^ E

Shifting - [-]

Shifting ID [40]

Reducing E --> ID

Reducing E --> E - E

a ^ 35 - 40

SYNTAX CORRECT

Expression with missing Operand

$./ex7 ‘a ^ -’

Shifting ID [a]

Reducing E --> ID

Shifting ^ [^]

Missing Operand

SYNTAX INCORRECT

Expression with missing Operator

$./ex7 ‘a h’

Shifting ID [a]

Missing Operator

SYNTAX INCORRECT

3.5.5 LR Parsing

We saw that in operator precedence parsing, the precedence relations table served as a mechanism to make

shift/reduce decisions. In LR parsing method a parsing table (also called LR parsing table) is used to detect

correct handles and make informed shift/reduce decisions.

132 Principles of Compiler Design

The parsing table is used to fi gure out whether a shift or a reduce needs to be done on the receipt of a

given input. In case of a reduce operation, it tells us which production needs to be used for it. Given the

current ‘state’ of the LR parser and the next input symbol, the parsing table helps in arriving at a shift/

reduce decision. The starting state of the LR parser is 0. We had earlier seen in Section 3.5.2 that a shift

involves pushing the input symbol on the stack, a reduce operation involves popping of as many elements

as the right-hand side of the production and a push of the left-hand side of the production.

For the grammar in Table 3.17 (reproduced below), the parsing table is shown in Table 3.23.

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3 | IDENTIFIER

4 | c_expression OPERATOR CONSTANT

5 | c_expression OPERATOR IDENTIFIER

In the parsing table shown in Table 3.23, the current state is given in the fi rst column. The entries sX

represent a shift operation and changing the state to X. For example, in state 0, an input of ‘IDENTIFIER’

involves a shift of the input and a change of the state to 1. The entries with rX denote reduction by

production X. For example, in state 4, an input of ‘OPERATOR’ would mean a reduction by Production 2

(c_expression Æ CONSTANT).

This parsing table is the key data structure for LR parsing. The use of the parsing table to make shift/

reduce decisions is the central idea in the LR parsing method. The generation of the parsing table from

the grammar will be the topics for later sections, for now assume the availability of the parsing table to

simplify your understanding.

A state diagram can visually represent a parsing table. The state diagram shown in Fig. 3.9 is

representative of the parsing table in Table 3.23.

 Table 3.23 Parsing table for an LR parser

CURRENT

STATE

(Top of stack)

action goto

IDENTIFIER CONSTANT OPERATOR EQ_

TO_OP

SEMI_

COLON

End of

Input ($)

c_expression c_statement

0 s1 - - - - - - 10

1 - - - s2 - - - -

2 s3 s4 - - - - 5 -

3 - - r3 - r3 - - -

4 - - r2 - r2 - - -

5 - - s6 - s7 - - -

6 s8 s9 - - - - - -

7 - - - - - r1 - -

8 - - r5 - r5 - - -

9 - - r5 - r5 - - -

10 - - - - - accept - -

 Syntax Analysis 133

Fig. 3.9 State machine for c-statement grammar

We can see from the state diagram that a particular input symbol causes a transition from one state

to another. In non-accepting states, the next input symbol causes a shift and a transition to another state,

for example, in the state 1, an input of EQ_TO_OP causes a shift operation and a transition to state 2.

In accepting states, the next input symbol can cause a shift or a reduce operation, for example, in state

3, an input of SEMI_COLON would trigger a reduce operation using production 3 (c_expression Æ

IDENTIFIER). Even though, in this particular state diagram none of the accepting states transition to

another state by shift operation on the receipt of next symbol, It is common to have transitions by shift

operation in accepting states too.

An LR parser consists of an input, an output, a stack, driver program and a parsing table made up two

parts (action and goto). Figure 3.10 shows the various components of an LR parser.

The stack consists of states. These are the same states that we had earlier seen in the state diagram of

Fig. 3.9. The top of the stack and the next symbol are used to index into a parsing table to make a shift-

reduce decision.

The parsing table consists of two parts, a parsing action part called the action and a goto function

called as goto. The action table is a two-dimensional array indexed by state and the next input symbol, i.e.

action[state][input]. An action table entry can have one of following four kinds of values in it:

 1. shift X, where X is a state number

 2. reduce X, where X is a production number

 3. accept, signifying the complete of a successful parse

 4. error entry

The goto table is a two-dimensional array indexed by state number and a non-terminal grammar symbol,

i.e. goto[state][non-terminal]. A goto entry contains a state number. Both the action table and goto table are

derived from the grammar of the language. Table 3.23 shows the parsing table for the grammar in Table 3.17.

134 Principles of Compiler Design

Fig. 3.10 LR parser components

The driver program uses the current state C (given by top of stack element), the next input symbol ‘a’

to consult the entry at action[C][a]. The driver program makes one of the four actions as dictated by the

content of the entry in the action table.

 1. If action[C][a] = shift X, the parser executes a shift of X on to the top of stack and advances the

input pointer.

 2. If action[S][a] = reduce X, the parser executes a reduce using the production X. The reduce

operation involves popping of as many number of elements as existing on right-hand side of

production X. The driver program then pushes the left-hand side of the production. The input pointer

is not advanced in this operation.

 3. If action[S][a] = accept, then parsing is complete, and the sentence is accepted.

 4. If action[S][a] = error, then the parser has discovered an error and calls error recovery routine.

The algorithm followed by the driver program is shown in Algorithm 3.4.

action and goto are 2 dimensional arrays

TOS is used to denote Top Of Stack

push 0

while (action[TOS][input] != accept)

{

 if(action[TOS][input] == sX){

 push (X);

 advance();

 } else if (action[TOS][input] == rX){

 pop (the no of elements in the RHS of production X) ;

 push (goto [new TOS][LHS of production X]

 } else {

 return (FAILURE)

 }

}

return (SUCCESS)

Algorithm 3.4 LR parsing

 Syntax Analysis 135

A step-by-step illustration of LR parsing of an input will make Algorithm 3.4 and the concepts clear.

Consider an LR parser working on an input ‘c = a +1;’ using Table 3.23 as its parsing table.

Initially in LR parsing, the start state (state 0) is pushed on to the stack.

Stack Remaining Input

0 c = a + 1 ; $

The parser receives the fi rst token ‘c’ which is an IDENTIFIER from the lexical analyser. The

action[0][IDENTIFIER] = s1, which implies that we push state 1 onto to the stack and advance the input

pointer.

Stack Remaining Input

0 1 = a + 1 ; $

The next input is ‘=’, which is a token of type ‘EQ_TO_OP’ as classifi ed by the lexical analyser. The

action[1][EQ_TO_OP] = s2, which implies that we push state 2 on to the stack and advance the input.

Stack Remaining Input

0 1 2 a + 1 ; $

The next input is ‘a’, which is a token of type IDENTIFIER as classifi ed by the lexical analyser. The

action[2][IDENTIFIER]= s3, which implies that we push state 3 on to the stack and advance the input

pointer. Note that the state machine has avoided the reducing the IDENTIFIER into C expression. The state

table is clearly identifying the ‘right-handle’ in the parse process.

Stack Remaining Input

0 1 2 3 + 1 ; $

The next input token is ‘+’, which is a token of the type OPERATOR as classifi ed by lexical analyser.

From the action table, action[3][OPERATOR]= r3, which implies that we reduce using the rule 3. Rule 3

is ‘c_expression Æ IDENTIFIER’. The number of elements on the right-hand side of the production is 1.

Hence we pop one element from the top of stack.

Stack Remaining Input

0 1 2 + 1 ; $

The new top of stack is state 2. The left-hand side of the production 3, that we are reducing is

c_expression. Now, the parser looks at goto[2][c_expression], which is state 5. The parser pushes state 5 on

to the stack. Note that input pointer is not advanced during the reduction.

Stack Remaining Input

0 1 2 5 + 1 ; $

We continue using the input token ‘+’ of the type OPERATOR, since the last reduce did not advance the

input pointer. From the action table, action[5][OPERATOR]= s6, this implies that we push state 6 on the

stack and advance the input pointer.

Stack Remaining Input

0 1 2 5 6 1 ; $

136 Principles of Compiler Design

The next input token is ‘1’, which is of the type ‘CONSTANT’ as classifi ed by the lexical analyser. From

the action table, action[6][CONSTANT]= s9, which implies that we shift state 9 on to the stack and advance

the input pointer.

Stack Remaining Input

0 1 2 5 6 9 ; $

The next input token is ‘;’, which is of the type SEMI_COLON as classifi ed by the lexical analyser.

From the action table, action[9][SEMI_COLON] = r5, which implies that we reduce using the rule 5. Rule

5 is c_statement Æ c_expression OPERATOR IDENTIFIER. The number of elements on the right-hand

side of the production is 3. Hence we pop three elements from the top of stack.

Stack Remaining Input

0 1 2 ; $

The new top of stack is state 2. The left-hand side of the rule 4 that we are reducing is ‘c_statement’.

Now, the parser looks at goto[2][c_statement], which is state 5. The parser pushes state 5 on to the stack.

Note that input pointer is not advanced during the reduction.

Stack Remaining Input

0 1 2 5 ; $

We continue using the input token ‘;’ of the type SEMI_COLON, since the last reduce did not advance

the input pointer. From the action table, action[5][SEMI_COLON]= s7, this implies that we push state 7 on

the stack and advance the input pointer.

Stack Remaining Input

0 1 2 5 7 $

The next input is ‘$’, which is indicative of the end of the input. From the action table, the action[7][‘$’]

= r1, which implies that we reduce using the rule 1. Rule 1 is c_statement Æ IDENTIFIER EQ_TO_OP

c_expression SEMI_COLON. The number of elements on the right-hand side of the production is 4. Hence

we pop four elements from the top of stack.

Stack Remaining Input

0 ; $

The new top of stack is state 0. The left-hand side of the rule 1 that we are reducing is ‘c_statement’.

Now, the parser looks at goto[0][c_statement], which is state 10. The parser pushes state 10 on to the stack.

Note that input pointer is not advanced during the reduction.

Stack Remaining Input

0 10 $

We continue using the input token ‘$’ which is the end-of-input, since the last reduce did not advance the

input pointer. From the action table, action[10][$]= accept, this implies that the input string is accepted by

the grammar of the language.

In the next section we take a look at an LR parser program that implements Algorithm 3.4.

 Syntax Analysis 137

3.5.5.1 Example 8—An LR Parser In this section, we shall take a look at an LR parser program that

implements Algorithm 3.4. The idea here is to use an already constructed parsing table (i.e.) the action and

goto tables shown in Table 3.23. Remember that the parsing table in Table 3.23 is a manifestation of the

grammar in Table 3.17. The method for constructing the parsing table from the grammar will follow in later

sections. The focus right now is on the algorithm that performs the syntax analysis on the input given a

parsing table.

The following dialog shows how to build the binary and use it to verify the syntax of input.

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

Compiling the Lexical Analyzer

$ gcc -c -o c-stmt-lex.o c-stmt-lex.c

Building ex8 Binary

$ g++ -g -Wall -DCHAP3_EX8 ex8.cc c-stmt-lr-parse.cc c-stmt-lex.o -o ex8

Variant 1

$./ex8 ‘count=5;’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 258 (CONSTANT)

Shifting token 258 (CONSTANT), Entering state 2

Reading a token: Next token is 257 (EQ_TO_OP)

Shifting token 257 (EQ_TO_OP), Entering state 4

Reading a token: Next token is 256 (SEMI_COLON)

Reducing via Rule 2

Entering state 5

Shifting token 256 (SEMI_COLON), Entering state 7

Reading a token: Now at end of input.

Reducing via Rule 1

Entering state 10

Success

count=5;

SYNTAX CORRECT

Variant 5

$./ex8 ‘count=count+1;’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 258 (CONSTANT)

Shifting token 258 (CONSTANT), Entering state 2

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 3

Reading a token: Next token is 260 (OPERATOR)

Reducing via Rule 3

Entering state 5

138 Principles of Compiler Design

Shifting token 260 (OPERATOR), Entering state 6

Reading a token: Next token is 257 (EQ_TO_OP)

Shifting token 257 (EQ_TO_OP), Entering state 9

Reading a token: Next token is 256 (SEMI_COLON)

Reducing via Rule 4

Entering state 5

Shifting token 256 (SEMI_COLON), Entering state 7

Reading a token: Now at end of input.

Reducing via Rule 1

Entering state 10

Success

count=count+1;

SYNTAX CORRECT

Missing Identifi er / Constant

$./ex8 ‘count=5+;’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 258 (CONSTANT)

Shifting token 258 (CONSTANT), Entering state 2

Reading a token: Next token is 257 (EQ_TO_OP)

Shifting token 257 (EQ_TO_OP), Entering state 4

Reading a token: Next token is 260 (OPERATOR)

Reducing via Rule 2

Entering state 5

Shifting token 260 (OPERATOR), Entering state 6

Reading a token: Next token is 256 (SEMI_COLON)

Error not fi nding entry action_table[6][256]..Exiting

count=5+;

 ̂

SYNTAX INCORRECT

3.5.5.2 Construction of LR Parsing Table In the last section, we had focused on parsing an input

given the parsing table (action and goto tables). We understood that the parsing table is derived from the

grammar of the language. The LR parsing program described previously depends on the parsing table for

performing the syntax analysis of the input. Note that the algorithm does not undergo any change while

catering to different grammars, only the parsing table changes. In this section, we shall see how to construct

the parsing table from a given grammar.

There are 3 major methods for constructing the parsing table from the grammar. They are:

 1. Simple LR or SLR(1) method.

 2. Canonical LR or LR(1) method.

 3. Look ahead LR or LALR(1) method.

The simple LR method of constructing the parsing table uses look-ahead information of 1 input symbol.

The way it uses the look-ahead information to construct entries for the parsing table differs from LR(1)

and LALR(1). This method succeeds in constructing the parsing table for a sub-set of LR grammar called

SLR(1) grammar.

 Syntax Analysis 139

The canonical LR method of constructing parsing table entries is the most powerful method compared

to all other methods. This succeeds in constructing a parsing table for a large class of grammars called

as LR(1) grammars. However, the disadvantage is that it generates a large parse table. An optimisation in

terms of size of parsing table is the basis of LALR method.

The look-ahead LR method is widely used in practice. This method optimises the size of parsing table

generated by canonical LR method, by collapsing a few states into a single state. Due to the collapsing of

states, sometimes loss of information happens. Hence, it succeeds in constructing a parsing table for a sub-

set of LR(1) grammar called as LALR(1) grammar. However, LALR(1) grammar is suffi cient to express

most of the grammars of programming languages. The most commonly used parser generators like bison,

yacc, etc. employ this method for constructing the parsing table.

All these methods use the 3 steps shown in Fig. 3.11 for constructing the parsing table from the grammar.

In the fi rst step, an extra production rule is added to the original set of productions to create an augmented

grammar G’. In the second step, we create a canonical collection of sets of entities called as Items using

two distinct functions called the goto and closure functions operating on the augmented grammar G’. In

step three, we convert the canonical collection of sets of Items into the parsing table by applying certain

rules. We will deal with details of each of these steps with respect to all of the methods a little later.

Fig. 3.11 Constructing an LR parsing table from the grammar G

In the fi rst step of creating augmented grammar from the grammar, all the 3 methods—SLR, canonical

LR and LALR follow the same procedure.

In the second step of creating the canonical collection C of entities called items, the SLR uses an entity

known as LR0 item, while canonical LR and LALR use a more specialised entity called as LR1 Item. The

goto and closure functions that aid in the creation of canonical collection C are common for both canonical

LR and LALR methods. The SLR method has a different goto and closure functions, when compared to the

respective counterparts in canonical LR and LALR methods.

In the fi nal step of constructing the parsing table from the canonical collection, each of the three methods

apply a different mechanism. The SLR does consider the look-ahead information, but uses it in a primitive

140 Principles of Compiler Design

fashion to construct the parsing table from the collection of items. The canonical LR applies the best

criteria to construct the parsing table entries from the collection of item sets. The LALR is a minor variant

of canonical LR approach, which focuses on optimising space rather than adopting a different method to

construct the parsing table entries.

The SLR(1) method is described in Section 3.5.5.3, the LR(1) method in Section 3.5.5.4 and LALR(1)

method in Section 3.5.5.5.

3.5.5.3 Construction of Parsing Table by SLR(1) method This section talks about the SLR(1)

method for constructing a parsing table. This parsing table construction method is the simplest of all the

methods and succeeds for SLR(1) grammars.

Before we discuss in detail about the SLR(1) method of constructing the LR parse table, let’s understand

a few defi nitions.

Important Defi nitions This section discusses important defi nitions that would be used in algorithms to

construct the parsing table.

Augmented Grammar If G is a grammar with start symbol S then the augmented grammar G¢ for G

consists of all the productions in G and an additional production S¢ Æ S. The start symbol for G¢ is S¢.

Consider a grammar G, consisting of following productions, where c_statement is the start symbol.

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3 | IDENTIFIER

4 | c_expression OPERATOR CONSTANT

5 | c_expression OPERATOR IDENTIFIER

The augmented grammar for G is:

Table 3.24 Augmented grammar for the grammar in Table 3.17

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3 | IDENTIFIER

4 | c_expression OPERATOR CONSTANT

5 | c_expression OPERATOR IDENTIFIER

6 c_statement ¢ Æ c_statement

The main use of augmented grammar lies in the fact that the acceptance of input happens, when the

parser is about to reduce production S¢ Æ S. The use of the augmented grammar can be appreciated better

in situations where the start symbol has multiple productions where it is the left-hand side of the production.

It would be diffi cult to keep track of all the productions with the start symbol as the LHS and fi nd out if the

acceptance of input has happened. But, with the usage of this extra production, the state machine needs

to keep track of only one state where the reduction of S¢ Æ S is envisaged. This state would trigger the

acceptance of the input.

 Syntax Analysis 141

In the above example, the acceptance of the input string happens when we are about to reduce the

production c_statement ¢ Æ c_statement.

We shall see how the augmented grammar comes in handy for computing the closure and goto operations

discussed next.

LR(0) Item An LR(0) Item (or simply Item for short) of a grammar G is a production of G with a dot in some

position of the right-hand side. For a grammar consisting of a production X Æ ABC, the LR(0) Items are:

X Æ •ABC

X Æ A•BC

X Æ AB•C

X Æ ABC•

For an epsilon production X Æ e there is only one LR(0) Item denoted by

X Æ •

An LR(0) Item can be represented by a 2-tuple of (production, position of dot).

The dot can be used for indicating two aspects:

∑ To show the portion of input that is already consumed. In the case of shift-reduce parsing, it can be

used to indicate what is already present on the stack. If the dot moves to the rightmost point of the

production, we can use it to ‘reduce’ by that production.

∑ The symbols on the right of the dot can be used as look ahead symbols.

These LR(0) Items form the basis of states in the state diagram (and the parsing table), an example of

which is shown in Fig. 3.9. An LR(0) Item is associated with one of the states in the state diagram. The

same item cannot be in multiple states. Figure 3.12 shows a few Items associated with some of the states

for the grammar in Table 3.17.

Fig. 3.12 LR(0) Items associated with states

142 Principles of Compiler Design

An Item related to Production 1 accompanies each of the states shown in the Fig. 3.12. For the item in

state 0, the dot is before the IDENTIFIER. This tells us that the parser is expecting an IDENTIFIER as the

next input symbol. In state 1, the dot has shifted by one position, now it is before EQ_TO_OP. This tells

us that the parser has already consumed an IDENTIFIER (shifted it on to the stack) and is now expecting

an EQ_TO_OP symbol. In state 4, the dot has reached the extreme right position. This tells us that the

entire right-hand side of the production is on the stack, and hence we can reduce by Production 1 (and

hence the concentric circles for representing the state 4). Note that Fig. 3.12 consciously shows the items

related to Production 1 only in order to illustrate the concept better. In reality there are items related to other

productions also in any given state.

Closure Operation Now, consider the state 2 of Fig. 3.12, where we are expecting a c_expression (non-

terminal) as determined by the item c_statement Æ IDENTIFIER EQ_TO_OP • c_expression SEMI_

COLON. This means that we are expecting an input symbol depending on what the productions with

‘c_expression’ as the left-hand side indicate. The following productions qualify.

2 c_expression Æ CONSTANT

3 c_expression Æ IDENTIFIER

4 c_expression Æ c_expression OPERATOR CONSTANT

5 c_expression Æ c_expression OPERATOR IDENTIFIER

Looking at the productions, we can deduce that, in state 2, we are really expecting inputs as determined

by the following items:

c_statement Æ IDENTIFIER EQ_TO_OP • c_expression SEMI_COLON The original one

c_expression Æ • CONSTANT The derived ones

c_expression Æ • IDENTIFIER

c_expression Æ • c_expression OPERATOR CONSTANT

c_expression Æ • c_expression OPERATOR IDENTIFIER

This set of items is called as the closure set of item c_statement Æ IDENTIFIER EQ_TO_OP_•

c_expression SEMI_COLON, the operation by which it was derived is called as closure operation.

Adding the above items to state 2, we have Fig. 3.13. This brings home the concept that items grouped

together form a state. As we saw, the item ‘c_statement Æ IDENTIFIER EQ_TO_OP • c_expression

SEMI_COLON’ was the seed for the other items in state 2 begotten by the closure operation. Note that,

all the additional items generated out of closure operation have the dot at the left end of RHS, while the

original item does not have a dot at the left end.

Those items that do not contain a dot at the far left are called as the seed items or kernel items. These

kernel items form the basis of forming the other items of the state. The other items that contain a dot at

the left end are called as the non-kernel or non-seed items. The kernel item in state 2 is c_statement Æ
IDENTIFIER EQ_TO_OP • c_expression SEMI_COLON, while the other items in state 2 are the non-

kernel items. There is one exception to this rule, which is the Item S¢ Æ • S, where S is the start symbol of

grammar G and S¢ is the start symbol of the augmented grammar G¢. Even though it has a dot at the far left

of the RHS, it is called as a seed item, because it is the one that seeds the start state of the state diagram.

 Syntax Analysis 143

Fig. 3.13 More LR(0) Items associated with states

 Let’s get to a more formal defi nition for the computation of closure operation. If I is a set of items for a

grammar G, then closure of I, represented by closure(I) can be computed using the following 2 rules.

Table 3.25 Rules for computing closure of an LR(0) item set

Rule 1 Every element of I is added to closure of I

Rule 2 If X Æ A•BC, is in closure(I), and there exists a production B Æ b1 b2 .. bn, then add item B Æ

•b1 b2 .. bn if it is not already in closure(I). Keep applying this rule until there are no more

elements added.

Let’s check out an example to understand the nuances of closure set computation. Consider a grammar

with the following productions:

1 my_start_sym Æ my_non_term_a MY_TERM_ONE

2 my_non_term_a Æ my_non_term_b MY_TERM_TWO

3 | MY_TERM_THREE

4 my_non_term_b Æ MY_TERM_FOUR my_non_term_c

5 my_non_term_c Æ MY_TERM_FIVE

Let’s compute the closure of the item set I, where

 I = my_start_sym Æ • my_non_term_a MY_TERM_ONE

Using rule 1, the closure set of I would have the item my_start_sym Æ • my_non_term_a MY_TERM_

ONE. By rule 2, we get other element

144 Principles of Compiler Design

my_non_term_a Æ • my_non_term_b MY_TERM_TWO

We have the two elements in the fi rst pass

Closure(I) = my_start_sym Æ • my_non_term_a, MY_TERM_ONE

 my_non_term_a Æ • my_non_term_b MY_TERM_TWO

We apply rule 2 again on the above set since the rule 2 says that we keep applying it until there are no

new elements added. We need to add the item whose left-hand side is my_non_term_b and the dot is at the

start of the RHS. Thus, we have now 3 elements.

Closure(I) = my_start_sym Æ • my_non_term_a, MY_TERM_ONE

 my_non_term_a Æ • my_non_term_b MY_TERM_TWO

 my_non_term_b Æ • MY_TERM_FOUR my_non_term_c

Applying rule 2 again does not yield any new item. Hence we stop with this pass. The closure set is

Closure(I) = my_start_sym Æ • my_non_term_a, MY_TERM_ONE

 my_non_term_a Æ • my_non_term_b MY_TERM_TWO

 my_non_term_b Æ • MY_TERM_FOUR my_non_term_c

The algorithm for computing closure(I) is formalised in Algorithm 3.5.

I is a set of items belonging to grammar G

At the end of the algorithm J contains the closure(I)

J=I

do{

 added=0

 for (each item X Æ A•BC in J) {

 if (production B Æ b1b2b3..bn exists in grammar G){

 if (item B Æ •b1b2b3..bn does not exist in C){

 add the item B Æ •b1b2b3..bn
 added ++

 }

 }

 }

} while (added > 0)

Algorithm 3.5 Closure set computation

Goto Operation Let’s have a preview on how the items for each of the states are computed. The start state

is always seeded with an item related to the extra production that we created for the augmented grammar.

The beauty of this extra production is that it allows us embrace all the productions with the start symbol as

the left-hand side by means of closure operation.

Let us consider the grammar of Table 3.17 whose start symbol is the c_statement. As we saw earlier, the

augmented grammar had an extra production c_statement ¢Æ c_statement. The start state is seeded with the

item

 Syntax Analysis 145

I0 = {c_statement¢ Æ • c_statement}

Applying closure on the above set, would get us the items with all the productions that have the start

symbols as the left-hand side, namely,

c_statement Æ • IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

Applying closure does not yield any extra items since the symbol to the right of the dot is a terminal.

Thus, there are two items in the item set for the start state:

I0 = c_statement¢ Æ • c_statement

 c_statement Æ • IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

Now, if we input any one of the symbols in the grammar, we need to see what items are generated. This

is facilitated by the goto function.

If I is a set of LR(0) Items which contains an item A Æ a • Xb where X is grammar symbol, then

goto(I,X) is defi ned as the closure of the set of all the items A Æ a X • b. The goto operation gives the set

of all the possible items given X as the next input.

Coming back to the example, from the start state item set I0, let’s see what the goto function does.

goto(I0, IDENTIFIER) = closure set of {c_statement Æ IDENTIFIER • EQ_TO_OP c_expression SEMI_COLON}

 = {c_statement Æ IDENTIFIER • EQ_TO_OP c_expression SEMI_COLON}

goto(I0, CONSTANT) does not yield any items because there is no item in I0 that has a dot before

CONSTANT. Similarly, there are no items yielding for goto(I0, OPERATOR), etc.

Thus I1 = {c_statement Æ IDENTIFIER • EQ_TO_OP c_expression SEMI_COLON} can be used to

represent state 1.

The goto(I,X) is formalised in Algorithm 3.6.

I, is the set of Items for which the goto(I,X) needs to be computed
At the end of the Algorithm J contains goto(I,X)

for (each item A Æ a•Xb in I)
 Add the item A Æ aX•b to tmp_set
}
J= closure(tmp_set)

Algorithm 3.6 goto(I,X) for a set of LR(0) items

We have just seen how goto function helps us in creating items for other states from a given state. Now,

armed with the concepts of augmented grammar, LR(0) item, closure and goto functions, lets get to the

procedure for constructing a parsing table using SLR(1) Method.

Procedure for constructing the parsing table Let’s revisit the steps shown in Fig. 3.11 with reference to

SLR(1) method of constructing the parsing table.

In step 1, we construct the augmented grammar (G¢) by adding an additional production S ¢Æ S where S

is the start symbol of the original grammar (G).

Step 2 involves creation of a canonical collection of sets of LR(0) items for SLR(1) parsing table. We

start with the Item set 0 (I0) containing merely the additional production of augmented grammar and the

146 Principles of Compiler Design

closure obtained on it. This is the fi rst set added in the canonical collection of sets C. Now, for every set

In present in canonical collection C, we determine goto(In, X), for every symbol X in the grammar, if that

yields a set not already present in the canonical collection of sets, we add it to the collection. If no sets

are added to the collection during one traversal of the entire canonical collection, we halt the algorithm

completing the canonical collection of sets of items. This procedure is shown in Algorithm 3.7.

I,J, tmp_set are sets of LR(0) items

C is canonical Collection of sets of LR(0) Items

I= {S’Æ • S}

J = closure (I)

Add J as one set in canonical collection C /* This corresponds to state 0 */

do

{

 added = false;

 for (each set I in canonical collection C)

 for (each grammar symbol X in symbol table)

 tmp_set = goto(I,X)

 if(tmp_set is not present in canonical collection C){

 added = true;

 add tmp_set in canonical collection C

 }

 }

 }

} while (added == true)

Algorithm 3.7 Creating canonical collection of sets of LR(0) items

In step 3, we construct the action and goto table using the canonical collection of sets of LR(0) items by

using algorithm 3.8. The initial state is constructed from the set containing the element [S¢ Æ S], which is

I0. The following rules form the basis of construction of SLR(1) parsing table from the canonical collection

of sets of items.

Table 3.26 Rules for constructing parsing table from canonical collection

Rule 1 If there is an item A Æ a • Xb in Ii and goto(Ii, X) is in the Item set Ij then action[I][X] = shift j, where X is

a terminal

Rule 2 If there is an Item A Æ a • in Ii then set action[i][X] = reduce by A Æ a for all terminals X in the

FOLLOW(A).

Rule 3 If there is an item S¢ Æ S • in Ii then set action[I][$] = accept

Rule 4 If the goto(Ii, X) = Ij then goto[i][X] = j, where X is a non-terminal.

All the entries not defi ned by the above rules are error entries. If there is confl ict in the entries generated

out of the above rules, then the grammar is not SLR(1) grammar. The algorithm fails to produce a parser.

These rules are formalised in Algorithm 3.8.

 Syntax Analysis 147

C is canonical collection of sets of Items = {I0, I1, I2,... In} created using Algorithm 3.7

for (each item set Ii in Canonical Collection) {

 for (each item P in a Item set Ii) {

 if (P is S’ Æ S•){

 action[I][$]=ACCEPT;

 } else if (P is of the form A Æ a•){

 for (each terminal k in FOLLOW(A)){

 action[i][k] = Reduce by the Production A Æ a

 }

 } else if (P is of the form A Æ a•Xb and X is a Terminal){

 if (goto(Ii,X) == Ij){

 action[I][X]=j ;

 }

 } else if (P is of the form A Æ a•Xb and X is a NonTerminal) {

 if (goto(Ii,Y) == Ij){

 goto[I][Y]=j ;

 }

 }

 }

}

Algorithm 3.8 Construction of SLR(1) parsing table from canonical collection of LR(0) items

An Illustration of SLR(1) Method for constructing a parsing table In this section, we take the grammar

shown in Table 3.17 (reproduced below), go over each of the 3 steps and construct a parsing table for the

same using the SLR(1) method.

1

2

3

4

5

c_statement

c_expression

Æ

Æ

 |

 |

 |

IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

CONSTANT

IDENTIFIER

c_expression OPERATOR CONSTANT

c_expression OPERATOR IDENTIFIER

In step 1, we create augmented grammar G’ by adding an extra production S’Æ S, where S is the start

symbol of the original grammar G. So, we have augmented grammar for G as:

1

2

3

4

5

6

c_statement

c_expression

c_statement¢

Æ
Æ

 |

 |

 |

Æ

IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

CONSTANT

IDENTIFIER

c_expression OPERATOR CONSTANT

c_expression OPERATOR IDENTIFIER

c_statement

148 Principles of Compiler Design

In step 2, we take the augmented grammar as the input and construct a canonical collection of sets of

items. We begin by seeding the start state with

I0= {c_statement¢ Æ • c_statement}

Applying closure on the above set, would get us the items with all the productions that have the start

symbol as the left-hand side, namely,

c_statement Æ • IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

Applying closure does not yield any extra items since the symbol to the right of the dot is a terminal.

Thus, there are two items in the item set for the start state

I0 = c_statement¢ Æ • c_statement

 c_statement Æ • IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

This is the fi rst set in canonical collection of sets of LR(0) Items. The canonical collection is now

 C = {I0}

We now perform goto operation on I0 for all the symbols in the grammar namely SEMI_COLON,

EQ_TO_OP, IDENTIFIER, CONSTANT, OPERATOR, c_expression and c_statement. This is shown below.

I0 = c_statement¢ Æ • c_statement

c_statement Æ • IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

goto(I0, IDENTIFIER) =

=

closure set of {c_statement Æ IDENTIFIER • EQ_TO_OP c_expression

SEMI_COLON}

c_statement Æ IDENTIFIER • EQ_TO_OP c_expression SEMI_COLON

 This is I1

goto(I0, c_statement) =

=
closure set of {c_statement¢ Æ c_expression •}

c_statement’ Æ c_statement • This is I2

goto(I0, SEMI_COLON)

goto(I0, EQ_TO_OP)

goto(I0, OPERATOR)

goto(I0, CONSTANT)

goto(I0, c_expression)

All of these are empty

Since there is no item in I0 with SEMI_COLON or EQ_TO_OP or

OPERATOR or c_expression before the dot

The canonical collection is now

C = {I0, I1, I2}

We now perform goto operation on the newly added sets of items I1 and I2 for all the symbols in the

grammar, namely SEMI_COLON, EQ_TO_OP, IDENTIFIER, CONSTANT, OPERATOR, c_expression

and c_statement.

I1 = c_statement Æ IDENTIFIER • EQ_TO_OP c_expression SEMI_COLON

goto(I1, EQ_TO_OP) = closure set of {c_statement Æ IDENTIFIER EQ_TO_OP • c_expression

SEMI_COLON}

= c_statement Æ IDENTIFIER EQ_TO_OP • c_expression SEMI_COLON

 This is I3

 Syntax Analysis 149

c_expression Æ • CONSTANT

c_expression Æ • IDENTIFIER

c_expression Æ • c_expression OPERATOR CONSTANT

c_expression Æ • c_expression OPERATOR IDENTIFIER

goto(I1, SEMI_COLON)

goto(I1, CONSTANT)

goto(I1, IDENTIFIER) All of these are empty

goto(I1, OPERATOR) Since there is no item in I1 with SEMI_COLON or CONSTANT or

goto(I1, c_expression) IDENTIFIER or OPERATOR or c_expression or c_statement before the dot

goto(I1, c_statement)

The canonical collection is now

 C = {I0, I1, I2, I3}

I2 = c_statement¢ Æ c_statement •

goto(I2, SEMI_COLON) =

goto(I2, EQ_TO_OP) All of these are empty

goto(I2, IDENTIFIER) Since there is no item in I2 with SEMI_COLON or EQ_TO_OP or

goto(I2, CONSTANT) IDENTIFIER or CONSTANT or OPERATOR or c_expression or

goto(I2, OPERATOR) c_statement before the dot

goto(I2, c_expression)

goto(I2, c_statement)

I3 = c_statement Æ IDENTIFIER EQ_TO_OP • c_expression SEMI_COLON

c_expression Æ • CONSTANT

c_expression Æ • IDENTIFIER

c_expression Æ • c_expression OPERATOR CONSTANT

c_expression Æ • c_expression OPERATOR IDENTIFIER

goto(I3, SEMI_COLON)

goto(I3, EQ_TO_OP) All of these are empty

goto(I3, OPERATOR) Since there is no item in I3 with SEMI_COLON or EQ_TO_OP or

goto(I3, c_statement) OPERATOR or c_statement before the dot

goto(I3, CONSTANT) = closure set of {c_expression Æ CONSTANT •}

= c_expression Æ CONSTANT •

This is I4

goto(I3, IDENTIFIER) = closure set of {c_expression Æ IDENTIFIER •}

= {c_expression Æ IDENTIFIER •} This is I5

150 Principles of Compiler Design

goto(I3, c_expression) = closure set of

{

 c_statement Æ IDENTIFIER EQ_TO_OP c_expression

 • SEMI_COLON

 c_expression Æ c_expression • OPERATOR CONSTANT

 c_expression Æ c_expression • OPERATOR IDENTIFIER

}

= c_statement IDENTIFIER EQ_TO_OP c_expression • SEMI_COLON

This is I6

c_expression Æ c_expression • OPERATOR CONSTANT

c_expression Æ c_expression • OPERATOR IDENTIFIER

The canonical collection is now

C = {I0, I1, I2, I3, I4, I5, I6}

I4 = c_expression Æ CONSTANT •

goto(I4, SEMI_COLON)

goto(I4, EQ_TO_OP)

=

All of these are empty

goto(I4, IDENTIFIER)

goto(I4, CONSTANT)

Since there is no item in I4 with SEMI_COLON or EQ_TO_OP or

IDENTIFIER or CONSTANT or OPERATOR or c_expression or c_

statement before the dot

goto(I4, OPERATOR)

goto(I4, c_expression)

goto(I4, c_statement)

I5 = c_expression Æ IDENTIFIER •

goto(I5, SEMI_COLON) =

goto(I5, EQ_TO_OP) All of these are empty

goto(I5, IDENTIFIER) Since there is no item in I5 with SEMI_COLON or EQ_TO_OP or

IDENTIFIER or CONSTANT or OPERATOR or c_expression or

goto(I5, CONSTANT) c_statement before the dot

goto(I5, OPERATOR)

goto(I5, c_expression)

goto(I5, c_statement)

I6 = c_statement Æ IDENTIFIER EQ_TO_OP c_expression • SEMI_COLON

c_expression Æ c_expression • OPERATOR CONSTANT

c_expression Æ c_expression • OPERATOR IDENTIFIER

goto(I6, SEMI_COLON) = closure set of {c_statement Æ IDENTIFIER = c_expression SEMI_COLON

•}

 Syntax Analysis 151

c_statement : IDENTIFIER = c_expression SEMI_COLON • This is I7

goto(I6, OPERATOR) = closure set of

{

 c_expression Æ c_expression OPERATOR • CONSTANT

 c_expression Æ c_expression OPERATOR • IDENTIFIER

}

= c_expression Æ c_expression OPERATOR • CONSTANT This is I8

c_expression Æ c_expression OPERATOR • IDENTIFIER

The canonical collection is now

 C = {I0, I1, I2, I3, I4, I5, I6, I7, I8}

I7 = c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON •

goto(I7, SEMI_COLON) =

goto(I7, EQ_TO_OP) All of these are empty

goto(I7, IDENTIFIER) Since there is no item in I7 with SEMI_COLON or EQ_TO_OP or

IDENTIFIER or CONSTANT or OPERATOR or c_expression or c_statement

before the dot

goto(I7, CONSTANT)

goto(I7, OPERATOR)

goto(I7, c_expression)

goto(I7, c_statement)

I8 = c_expression Æ c_expression OPERATOR • CONSTANT

c_expression Æ c_expression OPERATOR • IDENTIFIER

goto(I8, CONSTANT) = closure set {c_expression Æ c_expression OPERATOR CONSTANT •}

= c_expression Æ c_expression OPERATOR CONSTANT • This is I9

goto(I8, IDENTIFIER) = closure set {c_expression Æ c_expression OPERATOR IDENTIFIER •}

= c_expression Æ c_expression OPERATOR IDENTIFIER • This is I10

The canonical collection is now

 C = {I0, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10}

I9 = c_expression Æ c_expression OPERATOR CONSTANT •

goto(I9, SEMI_COLON) =

goto(I9, EQ_TO_OP) All of these are empty

goto(I9, IDENTIFIER) Since there is no item in I9, with SEMI_COLON or EQ_TO_OP or

IDENTIFIER or CONSTANT or OPERATOR or c_expression or c_

statement before the dot

goto(I9, CONSTANT)

152 Principles of Compiler Design

goto(I9, OPERATOR)

goto(I9, c_expression)

goto(I9, c_statement)

I10 = c_expression Æ c_expression OPERATOR IDENTIFIER •

goto(I10, SEMI_COLON) =

goto(I10, EQ_TO_OP) All of these are empty

goto(I10, IDENTIFIER) Since there is no item in I10 with SEMI_COLON or EQ_TO_OP or

IDENTIFIER or CONSTANT or OPERATOR or c_expression or c_statement

before the dot

goto(I10, CONSTANT)

goto(I10, OPERATOR)

goto(I10, c_expression)

goto(I10, c_statement)

We have performed goto operation on the entire Item sets I0 through I10, there are no more sets of items

generated, and we halt the algorithm.

The fi nal canonical collection is

 C = {I0, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10}

Each one of these sets represents the corresponding state. For example, I0 represents state 0, I1 represents

state 1, etc.

We now start step 3, which is the generation of parsing table from the canonical collection of sets of items.

Parsing Table Entries Explanation

I0 action_table[0][IDENTIFIER]=s1

goto_table[0][c_statement]=2

We saw earlier that goto(I0, IDENTIFIER) = I1, hence by Rule 1

of Table 3.26

We saw earlier that goto(I0, c_statement) = I2, hence by Rule 4 of

Table 3.26

I1 action_table[1][EQ_TO_OP]=s3 We saw earlier that goto(I1, IDENTIFIER) = I3, hence by Rule 1

of Table 3.26

I2 action_table[2][$]=accept In Item set I2, we see the item c_statement Æ c_statement •,

hence by Rule 3 of Table 3.26

I3 action_table[3][CONSTANT]=s4

action_table[3][IDENTIFIER]=s5

goto_table[3][c_expression]=6

We saw earlier that goto(I3, CONSTANT) = I4, hence by Rule 1

of Table 3.26

We saw earlier that goto(I3, IDENTIFIER) = I5, hence by Rule 1

of Table 3.26

We saw earlier that goto(I3, IDENTIFIER) = I6, hence by Rule 4

of Table 3.26

I4 action_table[4][SEMI_COLON]=r2

action_table[4][OPERATOR]=r2
In I4, there is an item c_expression Æ CONSTANT • which tells

us that action should be to reduce by the production number 2,

c_expression Æ CONSTANT for all elements in FOLLOW(c_

expression), i.e. {SEMI_COLON, OPERATOR}, hence by Rule

2 of Table 3.26

 Syntax Analysis 153

I5 action_table[5][SEMI_COLON]=r3

action_table[5][OPERATOR]=r3
In I5, there is an item c_expression Æ IDENTIFIER • which tells

us that action should be reduce by the Production 3, c_expression

Æ IDENTIFIER for all elements in FOLLOW(c_expression) i.e.

{SEMI_COLON, OPERATOR}, hence by Rule 2 of Table 3.26

I6 action_table[6][SEMI_COLON]=s7

action_table[6][OPERATOR]=s8

We saw earlier that goto(I6, SEMI_COLON) = I7, hence By Rule

1 of Table 3.26

We saw earlier that goto(I6, OPERATOR) = I7, hence by Rule 1

of Table 3.26

I7 action_table[7][$]=r1 In I7, there is an item c_statement Æ IDENTIFIER EQ_TO_OP

c_expression SEMI_COLON •, which tells us that action

should be to reduce by the Production number 1, c_statement Æ

IDENTIFIER EQ_TO_OP c_expression SEMI_COLON for all

elements in FOLLOW(c_statement), i.e. {$} hence by Rule 2 of

Table 3.26

I8 action_table[8][CONSTANT]=s9

action_table[8][IDENTIFIER]=s10

We saw earlier that goto(I8, CONSTANT) = I9, hence by Rule 1

of Table 3.26

We saw earlier that goto(I8, IDENTIFIER) = I10, hence by Rule 1

of Table 3.26

I9 action_table[9][SEMI_COLON]=r4

action_table[9][OPERATOR]=r4
In I9, there is an item c_expression Æ c_expression OPERATOR

IDENTIFIER •, which tells us that action should be to reduce

by the Production number 4, c_expression Æ c_expression

OPERATOR IDENTIFIER for all elements in FOLLOW(c_

expression), i.e. {SEMI_COLON, OPERATOR}, hence by Rule

2 of Table 3.26

I10 action_table[10][SEMI_COLON]=r5

action_table[10][OPERATOR]=r5
In I10, there is an item c_expression Æ c_expression

OPERATOR CONSTANT •, which tells us that action should

be to reduce by the production number 5, c_expression Æ

c_expression OPERATOR CONSTANT for all elements in

FOLLOW(c_expression), i.e. {SEMI_COLON, OPERATOR}

hence by Rule 2 of Table 3.26

This completes the construction of parsing table entries (see Table 3.27) for the grammar in Table 3.17.

Table 3.27 Parsing table

State

#

action goto

SEMI_

COLON

CONSTANT EQ_TO_

OP

IDENTIFIER OPERATOR End of

Input ($)

c_

expression

c_

statement

0 s1 2

1 s3

2 accept

3 s4 s5 6

4 r2 r2

5 r3 r3

154 Principles of Compiler Design

6 s7 s8

7 r1

8 s9 s10

9 r4 r4

10 r5 r5

Figure 3.14 shows the output at each one of the steps in the construction of parsing table by SLR(1)

method for the grammar shown in Table 3.17.

Grammar G

Create Augmented Grammar

G'

Create
Canonical collection C of items

Using

goto and Closure Functions

Construction of

Parsing Table

(action and goto
Tables)

from Canonical

Collection C

Step 1

Step 2

Step 3

1 c_statement � IDENTIFIER EQ_TO_OP c_expression ‘;’

2 c_expression � CONSTANT
3 IDENTIFIER
4 c_expression OPERATOR CONSTANT
5 c_expression OPERATOR IDENTIFIER

1 c_statement � IDENTIFIER EQ_TO_OP <c_expression> ‘;’
2 c_expression � CONSTANT
3 | IDENTIFIER
4 | c_expression OPERATOR CONSTANT
5 | c_expression OPERATOR IDENTIFIER
6 c_statement' � c_statement

Items

I0 = c_statement � • IDENTIFIER EQ_TO_OP c_expression ;
 c_statement' � • c_statement

I1 = c_statement � IDENTIFIER • EQ_TO_OP c_expression ;

I2 = c_statement' � c_statement •

I3 = c_statement � IDENTIFIER EQ_TO_OP • c_expression ;
 c_expression � • CONSTANT
 c_expression � • IDENTIFIER
 c_expression � • c_expression OPERATOR CONSTANT
 c_expression � • c_expression OPERATOR IDENTIFIER

I4 = c_expression � CONSTANT •

I5 = c_expression � IDENTIFIER •

I6 = c_statement � IDENTIFIER EQ_TO_OP c_expression • ;
 c_expression � c_expression • OPERATOR CONSTANT
 c_expression � c_expression • OPERATOR IDENTIFIER

I7 = c_statement � IDENTIFIER EQ_TO_OP c_expression ; •

I8 = c_expression � c_expression OPERATOR • CONSTANT
 c_expression � c_expression OPERATOR • IDENTIFIER

I9 = c_expression � c_expression OPERATOR CONSTANT•

I10 = c_expression � c_expression OPERATOR IDENTIFIER•

action goto
State # ; CONS EQ ID OPER $ c_ex r c_stmt

0 s1 2

1 s3

2 acc
3 s4 s5 6

4 r2 r2
5 r3 r3

6 s7 s8
7 r1

8 s9 s10
9 r4 r4

10 r5 r5

Fig. 3.14 Construction of parsing table for the C-statement grammar by SLR(1) method

 Syntax Analysis 155

Example 9—Construction of Parsing Table by SLR(1) Method This section shows a program

constructing the parsing table from grammar by using the SLR(1) method. This takes a grammar as input

and outputs the parsing table entries. It uses the 3 steps outlined earlier for constructing the parsing table

entries from a given grammar.

Building ex9 Binary

$ g++ -g -Wall grammar.cc slr.cc item.cc ex9.cc -o ex9

A sample grammar fi le - sample4.gram

$ cat sample4.gram

c_statement : IDENTIFIER EQ_TO_OP c_expression ;

c_expression : CONSTANT

c_expression : IDENTIFIER

c_expression : c_expression OPERATOR CONSTANT

c_expression : c_expression OPERATOR IDENTIFIER

$./ex9 ‘sample4.gram’

**** FIRST and FOLLOW sets ****

c_expression FIRST={CONSTANT,IDENTIFIER} FOLLOW={;,OPERATOR}

c_statement FIRST={IDENTIFIER} FOLLOW={$}

********* Canonical Collection *********

No of sets in Canonical Collection=11

I(0) = c_statement : .IDENTIFIER EQ_TO_OP c_expression ;

 c_statementDASH : .c_statement

I(1) = c_statement : IDENTIFIER .EQ_TO_OP c_expression ;

I(2) = c_statementDASH : c_statement.

I(3) = c_statement : IDENTIFIER EQ_TO_OP .c_expression ;

 c_expression : .CONSTANT

 c_expression : .IDENTIFIER

 c_expression : .c_expression OPERATOR CONSTANT

 c_expression : .c_expression OPERATOR IDENTIFIER

I(4) = c_expression : CONSTANT.

I(5) = c_expression : IDENTIFIER.

I(6) = c_statement : IDENTIFIER EQ_TO_OP c_expression .;

 c_expression : c_expression .OPERATOR CONSTANT

 c_expression : c_expression .OPERATOR IDENTIFIER

I(7) = c_statement : IDENTIFIER EQ_TO_OP c_expression ;.

I(8) = c_expression : c_expression OPERATOR .CONSTANT

 c_expression : c_expression OPERATOR .IDENTIFIER

I(9) = c_expression : c_expression OPERATOR CONSTANT.

156 Principles of Compiler Design

I(10) = c_expression : c_expression OPERATOR IDENTIFIER.

State | ; CONSTANT EQ_TO_OP IDENTIFIER OPERATOR $ c_expression c_statement

000 | s1 2

001 | s3

002 | acc

003 | s4 s5 6

004 | r2 r2

005 | r3 r3

006 | s7 s8

007 | r1

008 | s9 s10

009 | r4 r4

010 | r5 r5

3.5.5.4 Construction of Parsing Table by Canonical LR Method The SLR method can be used to

construct the parsing table for non-ambiguous grammars. However, there are certain grammars for which

SLR method does not work despite being non-ambiguous.

Let’s take a look at why SLR method fails for certain grammars despite being non-ambiguous. Consider

a grammar whose parsing table entries are constructed by using the SLR method.

Table 3.28 Context-free grammar

1 s Æ D C a

2 s Æ D a B

3 a Æ C

The sets of LR(0) Items for the above grammar can be found by executing the Example 9 binary.

A sample grammar fi le - sample7.gram

$ cat sample7.gram

s : D C A

s : D a B

a : C

$./ex9 ‘sample7.gram’

**** FIRST and FOLLOW sets ****

a FIRST={C} FOLLOW={B}

s FIRST={D} FOLLOW={$}

********* Canonical Collection *********

No of sets in Canonical Collection=7

I(0) = s : .D C A

 s : .D a B

 sDASH : .s

I(1) = s : D .C A

 Syntax Analysis 157

 s : D .a B

 a : .C

I(2) = sDASH : s.

I(3) = s : D C .A

 a : C.

I(4) = s : D a .B

I(5) = s : D C A.

I(6) = s : D a B.

State | A B C D $ a s

000 | s1 2

001 | s3 4

002 | acc

003 | s5 r3

004 | s6

005 | r1

006 | r2

The state diagram for the same grammar is shown in Fig. 3.15.

Fig. 3.15 State diagram for the grammar

158 Principles of Compiler Design

Let’s take a look at I3

I3 : s Æ DC • A Item 1

 a Æ C • Item 2

From the Item 1, we know that if the next input symbol is ‘A’, a shift is performed to reach state 5.

From Item 2, we know that, if the next input symbol is a part of FOLLOW(a), i.e. {‘B’}, We reduce by the

production a Æ C. The output also shows action_table[3][A] = s5 and action_table[3][B] = r3.

Let’s add an additional production to the grammar as follows:

4 s Æ a A

Let’s execute the Example 9 again on this new grammar.

A sample grammar fi le - sample7a.gram

$ cat sample7a.gram

s : D C A

s : D a B

a : C

s : a A

$./ex9 ‘sample7a.gram’

$./ex9 ‘sample7a.gram’

**** FIRST and FOLLOW sets ****

a FIRST={C} FOLLOW={A, B}

s FIRST={C, D} FOLLOW={$}

********* Canonical Collection *********

No of sets in Canonical Collection=10

I(0) = s : .D C A

 s : .D a B

 a : .C

 s : .a A

 sDASH : .s

I(1) = a : C.

I(2) = s : D .C A

 s : D .a B

 a : .C

I(3) = s : a .A

I(4) = sDASH : s.

I(5) = s : D C .A

 a : C.

I(6) = s : D a .B

 Syntax Analysis 159

I(7) = s : a A.

I(8) = s : D C A.

I(9) = s : D a B.

Confl icting entry at action_table[5][A] oldval=8 newval=–3

This is creating a confl ict in the generation of parsing table at the state 5.

Let’s take a look at I5

I5 : s Æ DC • A Item 1

 a Æ C • Item 2

The items in I5 are exactly same as what we had in I3 before the addition of the new production. Looking

at item 1, in this state tells us that if the next input is A, then a shift needs to be performed. Item 2 tells us

that a reduce by a Æ C would be performed, if the next input symbol is A, since FOLLOW(a)={A, B}.

Thus, if the next input symbol is A, item 1 dictates that there would be a shift, while Item 2 indicates that

there should be a reduce. This is the genesis of the confl ict.

Actually, the parser should have gone ahead with the shift, when the input is A, because the only

possibility of the input being accepted is s Æ D C A. The reduction a Æ C should never be made in this

state, when the input is A, since there is no production accepting an input string by ‘D a A’, even if it were

followed by any favourable tokens.

This problem is overcome in the canonical LR and LALR methods of constructing a parsing table. The

canonical LR and LALR methods of constructing parsing table entries use a more powerful enhanced item

packed with more information that will allow us to rule out some of these invalid reductions like the one

‘a Æ C’ above. The enhanced item includes a terminal in addition to the production and dot. Recall that

the LR(0) Item can be represented by a 2-tuple of (production, position of dot). The enhanced item called

as LR(1) item consists of a terminal X in addition to the production and position of dot. The LR(1) item is

defi ned by (production, position of dot, terminal). The terminal X is called the look ahead symbol.

To get an idea on the LR(1) items, Let’s take a grammar, one of whose productions is say,

y Æ a B c D, where B and D are terminals.

Some of the LR(1) Items possible with this production are

[Y Æ a • B c D, B] Item 1

[Y Æ a • B c D, D] Item 2

[Y Æ a B • c D, B] Item 3

[Y Æ a B • c D, D] Item 4

The two related procedures, namely the closure and goto, also undergo a change for supporting LR(1)

items. Let’s see how they change.

Closure Operation for LR(1) Items If I is a set of LR(1) items for a grammar G, then closure of I,

represented by closure(I) can be computed using the following 2 rules:

Rule 1 Every element of I is added to closure of I

Rule 2 If an LR(1) item [X Æ A • BC, a] exists in I, and there exists a production B Æ b1b2..bn, then add item

[BÆ • b1b2..bn, z] where z is a terminal in FIRST(Ca), if it is not already in closure(I). Keep applying this

rule until there are no more elements added.

160 Principles of Compiler Design

To understand the computation of closure operation of LR(1) items, consider the grammar

Table 3.29 A context-free grammar

1 s Æ D C A

2 | D a B

3 a Æ C

4 s Æ a A

Let’s take a set I containing two of LR(1) items

I = {[s Æ D • C A, $], [s Æ D • aB, $]} where $ is the end of input.

Table 3.30 Computation of closure set on LR(1) items

Items Comments

closure(I) = {[s Æ D • C A, $], [s Æ D • aB, $]} By Rule 1, every element of I is also present

in closure of I.

= {[s Æ D • C A, $], [s Æ D • aB, $], [a Æ • C, B]} Rule 2 applied on the fi rst item [s Æ D • CA,

$] does not yield any item, since the symbol

after the dot is a terminal (i.e. no productions

would exist with the LHS as ‘C’).

Applying Rule 2 applied on the second item

[s Æ D • aB, $], we fi nd that there exists

a Production 3 (a Æ C) whose left-hand

side is ‘a’ (the non-terminal after the dot).

The FIRST(B$) is {B} (recall that the

FIRST(non-terminal) is itself.). By the rule

2, we have the closure of I containing the

element [a : • C, B].

= {[s Æ D • C A, $], [s Æ D • aB, $], [a Æ • C, B]} Applying Rule 2 on the entire set of items

yield no additional items.

The closure computation for LR(1) Item set is summarised in Algorithm 3.9.

I is a set of LR(1) items belonging to grammar G
J is the closure(I)

J=I
do{
 added=0

 for (each item [X Æ A • BC, Y] in J) {

 for each production B Æ b1b2b3..bn exists in grammar G’ {
 for each terminal Z in FIRST(CY) {

 if (item [B Æ • b1b2b3..bn, Z] does not exist in C){

 add the item B Æ.b1b2b3..bn, Z
 added ++
 }
 }
 }

 Syntax Analysis 161

 }
} while (added > 0)

Algorithm 3.9 Closure computation on LR(1) item set

goto Operation for LR(1) Items If I is a set of LR(1) Items which contains an item [A Æ a • Xb, a] where

X is any grammar symbol, then goto(I, X) is defi ned as the closure of the set of all the items [A Æ aX • b, a]

To understand the goto computation on LR(1) items, consider the Grammar in Table 3.29.

Let’s take a set of LR(1) Items I with four elements

I = {[s Æ • DCA, $] [s Æ • DaB, $] [a Æ • C, A] [s Æ • aA, $]}

From the above defi nition of goto operation on LR(1) items, we have

goto(I, D) = closure {[s Æ D • CA, $] [s Æ D • aB, $]}

 = {[s Æ D • CA, $] [s Æ D • aB, $] [a Æ • C, B]} from example in Table 3.30.

 = {[s Æ D • CA, $], [s Æ D • aB, $], [a Æ • C, B]}

The goto(I, X) computation is formalised in Algorithm 3.10.

I, J, tmp_set are sets of items

J = goto(I, X)

for (each item [A Æ a • X b, a] in I)

 Add the item [A Æ a • b, a] to tmp_set
}
J= closure(tmp_set)

Algorithm 3.10 goto(I, X) for a set I of LR(1) Items

Armed with the concept of LR(1) Item, methods to perform closure operation and goto operations on

LR(1) items, we shall try to understand the canonical LR parsing method for constructing a parsing table.

Procedure for constructing the Parsing Table Let’s revisit the steps shown in Fig. 3.11 with reference

to canonical LR method of constructing the parsing table.

In step 1, we construct the augmented grammar (G¢) by adding an additional production S ¢ Æ S where S

is the start symbol of the original grammar (G).

Step 2 involves creation of a canonical collection of sets of LR(1) items for LR(1) parsing table. We

start with the Item set 0 (I0) containing the LR(1) item [S¢ Æ S,$] and the closure obtained on it. This is

the fi rst set added in the canonical collection of sets C. Now, for every set In present in canonical collection

C, we determine goto(In, X), for every symbol X in the grammar, if that yields a set not already present in

the canonical collection of sets, we add it to the collection. If no sets are added to the collection during one

traversal of the entire canonical collection, we halt the algorithm completing the canonical collection of

sets of LR(1) items. This procedure is shown in Algorithm 3.7. This algorithm uses the goto and closure

functions for the LR(1) Items that were described in the previous section.

I, J, tmp_set are sets of items

I = {S’Æ • S, $}

J = closure (I)

Add J as one set in canonical collection C /* This corresponds to state 0 */

do

162 Principles of Compiler Design

{

 added = false;

 for (each set I in canonical collection C)

 for (each grammar symbol X in symbol table)

 tmp_set = goto(I,X)

 if(tmp_set is not present in canonical collection C){

 added = true;

 add tmp_set in canonical collection C

 }

 }

 }

} while (added == true)

Algorithm 3.11 Creating canonical collection of sets of LR(1) items

In step 3, we construct the action and goto table using the canonical collection of sets of LR(1) items by

using Algorithm 3.12. The following rules form the basis of construction of LR(1) parsing table from the

canonical collection of sets of items.

Table 3.31 Rules for constructing parsing table from canonical collection

Rule 1 If there is an item [A Æ a • Xb, b] in Ii and goto(Ii, X) is in the Item set Ij then action[I][X] = shift j, where

X is a terminal

Rule 2 If there is an Item [A Æ a •, X] in Ii (and A π S’) set action[i][X] = reduce by A Æ a

Rule 3 If there is an item [S’ Æ S •, $] in Ii then set action[i][$] = accept

Rule 4 If the goto(Ii, X) = Ij then goto[i][X] = j, where X is a non-terminal

All the entries not defi ned by above rules are error entries. If there is confl ict in the entries generated out

of the above rules, then the grammar is not LR(1) grammar. The algorithm fails to produce a parser. These

rules are formalised in the Algorithm 3.12.

C is canonical collection of sets of Items = {I0, I1, I2,... In} created using Algorithm 3.11

for (each item set Ii in Canonical Collection) {
 for (each item P in an Item set Ii) {

 if (P is [S’Æ S•, $]){
 action[i][$]=ACCEPT;

 } else if (P is [A Æ a•, X]){

 action[i][X] = Reduce by the Production A Æ a •

 } else if (P is a item [A Æ a • X b, b] and X is a Terminal){
 if (goto(Ii,X) == Ij){
 action[I][X]=shift j ;
 }

 } else if (P is a item [A Æ a • Xb, b] and X is a non-terminal) {
 if (goto(Ii,X) == Ij){
 goto[I][X]=j ;
 }
 }
 }
}

Algorithm 3.12 Construction of parsing table

 Syntax Analysis 163

Example 10—Construction of Parsing Table by canonical LR Method This section demonstrates an

example program that can construct parsing table entries using the canonical parsing table construction

method. The program implements Algorithm 3.9, Algorithm 3.10 and Algorithm 3.11 for constructing the

parsing table entries.

Building ex10 Binary

$ g++ -g -Wall grammar.cc canonical_lr.cc lr1item.cc item.cc ex10.cc -o ex10

A sample grammar fi le - sample7a.gram

$ cat sample7a.gram

s : D C A

s : D a B

a : C

s : a A

$./ex10 ‘sample7a.gram’

********* Canonical Collection *********

No of sets in Canonical Collection=10

I(0) = [s : .D C A,$]

 [s : .D a B,$]

 [a : .C,A]

 [s : .a A,$]

 [sDASH : .s,$]

I(1) = [a : C.,A]

I(2) = [s : D .C A,$]

 [s : D .a B,$]

 [a : .C,B]

I(3) = [s : a .A,$]

I(4) = [sDASH : s.,$]

I(5) = [s : D C .A,$]

 [a : C.,B]

I(6) = [s : D a .B,$]

I(7) = [s : a A.,$]

I(8) = [s : D C A.,$]

I(9) = [s : D a B.,$]

State | A B C D $ a s

000 | s1 s2 3 4

001 | r3

002 | s5 6

003 | s7

004 | acc

005 | s8 r3

006 | s9

007 | r4

008 | r1

009 | r2

164 Principles of Compiler Design

3.5.5.5 Construction of Parsing Table by Look Ahead LR Method The look ahead LR method for

constructing a parsing table is an improvisation on the canonical LR parsing table construction method. The

LALR method for constructing parsing table uses the LR(1) item, like the canonical LR method. Most of

the popular parser generator programs like ‘bison’, ‘yacc’, etc. use the LALR method for constructing the

parsing table.

Consider the grammar in Table 3.32, which describes a simple selection statement of the form say (count

= = 20), where count is a variable.

Table 3.32 Grammar for selection statement

1 sel_stmt Æ cond_expr EQTO cond_expr

2 cond_expr Æ (cond_expr)

3 | pri_expr

4 pri_expr Æ IDENTIFIER

| CONSTANT

We have avoided the full description of sel_stmt, which could contain less than/greater than operators,

cast expression, etc. The idea is to explore a few key concepts by keeping it simple.

Let’s see how the canonical LR parsing works on this grammar by executing Example 10.

A sample grammar fi le - sample9.gram

$ cat sample9.gram

sel_stmt : cond_expr EQTO cond_expr

cond_expr : (cond_expr)

cond_expr : pri_expr

pri_expr : ID

pri_expr : CONSTANT

$./ex10 ‘sample9.gram’

********* Canonical Collection *********

No of sets in Canonical Collection=23

I(0) = [sel_stmt : .cond_expr EQTO cond_expr,$]

 [cond_expr : .(cond_expr),EQTO]

 [cond_expr : .pri_expr,EQTO]

 [pri_expr : .ID,EQTO]

 [pri_expr : .CONSTANT,EQTO]

 [sel_stmtDASH : .sel_stmt,$]

I(1) = [cond_expr : .(cond_expr),)]

 [cond_expr : (.cond_expr),EQTO]

 [cond_expr : .pri_expr,)]

 [pri_expr : .ID,)]

 [pri_expr : .CONSTANT,)]

I(2) = [pri_expr : CONSTANT.,EQTO]

 Syntax Analysis 165

I(3) = [pri_expr : ID.,EQTO]

I(4) = [sel_stmt : cond_expr .EQTO cond_expr,$]

I(5) = [cond_expr : pri_expr.,EQTO]

I(6) = [sel_stmtDASH : sel_stmt.,$]

I(7) = [cond_expr : .(cond_expr),)]

 [cond_expr : (.cond_expr),)]

 [cond_expr : .pri_expr,)]

 [pri_expr : .ID,)]

 [pri_expr : .CONSTANT,)]

I(8) = [pri_expr : CONSTANT.,)]

I(9) = [pri_expr : ID.,)]

I(10) = [cond_expr : (cond_expr .),EQTO]

I(11) = [cond_expr : pri_expr.,)]

I(12) = [sel_stmt : cond_expr EQTO .cond_expr,$]

 [cond_expr : .(cond_expr),$]

 [cond_expr : .pri_expr,$]

 [pri_expr : .ID,$]

 [pri_expr : .CONSTANT,$]

I(13) = [cond_expr : (cond_expr .),)]

I(14) = [cond_expr : (cond_expr).,EQTO]

I(15) = [cond_expr : .(cond_expr),)]

 [cond_expr : (.cond_expr),$]

 [cond_expr : .pri_expr,)]

 [pri_expr : .ID,)]

 [pri_expr : .CONSTANT,)]

I(16) = [pri_expr : CONSTANT.,$]

I(17) = [pri_expr : ID.,$]

I(18) = [sel_stmt : cond_expr EQTO cond_expr.,$]

I(19) = [cond_expr : pri_expr.,$]

I(20) = [cond_expr : (cond_expr).,)]

I(21) = [cond_expr : (cond_expr .),$]

I(22) = [cond_expr : (cond_expr).,$]

166 Principles of Compiler Design

State | () CONSTANT EQTO ID $ cond_expr pri_expr sel_stmt

000 | s1 s2 s3 4 5 6

001 | s7 s8 s9 10 11

002 | r5

003 | r4

004 | s12

005 | r3

006 | acc

007 | s7 s8 s9 13 11

008 | r5

009 | r4

010 | s14

011 | r3

012 | s15 s16 s17 18 19

013 | s20

014 | r2

015 | s7 s8 s9 21 11

016 | r5

017 | r4

018 | r1

019 | r3

020 | r2

021 | s22

022 | r2

The canonical LR method of constructing the parsing table has generated 23 states. For a grammar with

few rules like the above one, the number of states is pretty reasonable. But, for a full-fl edged grammar (e.g. C

language grammar) the number of states produced by canonical LR(1) method is typically in thousands. Thus

to store the parsing table, the parser would necessitate enormous amount of memory. The LALR method of

constructing the parsing table alleviates the problem of parser needing a large amount of memory.

Let’s follow the grammar of Table 3.32 and study the LR(1) Items for each of the states as generated by

the canonical LR method given in Example 10.

I(0) : [sel_stmt : .cond_expr EQTO cond_expr,$] I(8) [pri_expr : CONSTANT. ,)]
 [cond_expr : .(cond_expr),EQTO]
 [cond_expr : .pri_expr,EQTO] I(9) [pri_expr : ID. ,)]
 [pri_expr : .ID,EQTO]
 [pri_expr : .CONSTANT,EQTO] I(10) [cond_expr : (cond_expr .),EQTO]
 [sel_stmtDASH : .sel_stmt,$]
 I(11) [cond_expr : pri_expr. ,)]
I(1) [cond_expr : .(cond_expr),)]
 [cond_expr : (.cond_expr),EQTO] I(12) [sel_stmt : cond_expr EQTO .cond_expr,$]
 [cond_expr : .pri_expr,)] [cond_expr : .(cond_expr),$]
 [pri_expr : .ID,)] [cond_expr : .pri_expr,$]
 [pri_expr : .CONSTANT,)] [pri_expr : .ID,$]
 [pri_expr : .CONSTANT,$]
I(2) [pri_expr : CONSTANT. ,EQTO]
 I(13) [cond_expr : (cond_expr .),)]
I(3) [pri_expr : ID. ,EQTO]

 Syntax Analysis 167

 I(14) [cond_expr : (cond_expr). ,EQTO]
I(4) [sel_stmt : cond_expr .EQTO cond_expr,$]
 I(15) [cond_expr : .(cond_expr),)]
I(5) [cond_expr : pri_expr. ,EQTO] [cond_expr : (.cond_expr),$]
 [cond_expr : .pri_expr,)]
I(6) [sel_stmtDASH : sel_stmt. ,$] [pri_expr : .ID,)]
 [pri_expr : .CONSTANT,)]
I(7) [cond_expr : .(cond_expr),)]
 [cond_expr : (.cond_expr),)] I(16) [pri_expr : CONSTANT. ,$]
 [cond_expr : .pri_expr,)]
 [pri_expr : .ID,)] I(17) [pri_expr : ID. ,$]
 [pri_expr : .CONSTANT,)]
 I(18) [sel_stmt : cond_expr EQTO cond_expr. ,$]

 I(19) [cond_expr : pri_expr. ,$]

 I(20) [cond_expr : (cond_expr). ,)]

 I(21) [cond_expr : (cond_expr .),$]

 I(22) [cond_expr : (cond_expr). ,$]

Let’s take a look at the LR(1) Item sets I14, I20, I22.These three item sets have a similarity, all of them

have

 cond_expr : (cond_expr) •

as the fi rst part of the LR(1) element, only the look ahead symbol varies. In I14 the look ahead is EQTO

symbol, in I20 the look ahead is ‘)’ symbol, while in I22 the look ahead is ‘$’, the end-of-input symbol.

The three LR(1) item sets represent states 14, 20 and 22 where the ‘(’, cond_expr and ‘)’ have already

been consumed. The corresponding rows in action and goto table for the three states 14, 20 and 22 are

highlighted in Table 3.33.

Table 3.33 Canonical parsing table for the grammar in Table 3.32

TOP OF STACK

(Current State)

action goto

IDENTIFIER CONSTANT (EQ_TO_OP) End of Input ($) cond_expr pri_expr sel_stmt

0 s3 s2 s1 4 6 5

1 s9 s8 s7 10 11

2 r5

3 r4

4 s12

5 r3

6 accept

7 s9 s8 s7 13 11

8 r5

9 r4

10 s14

(Contd)

168 Principles of Compiler Design

11 r3

12 s17 s16 s15 18 19

13 s20

14 r2

15 s9 s8 s7 21 11

16 r5

17 r4

18 r1

19 r3

20 r2

21 s22

22 r2

The sets containing the same fi rst components of the LR(1) Items are said to have the same core. We just

saw that the states 14, 20 and 22 have the same core which is cond_expr : (cond_expr) •

In LALR method of constructing the parsing table, the LR(1) Item sets with same core are

merged to form a single Item set. Since each one of the LR(1) Item sets represent a state, we can see

in the above example that the three states 14, 20 and 22 would be merged into one state. This merged

state (let’s call it as s14-20-22) would be entered in situations where any one of the constituents would

have been originally entered. For example, an input of ‘)’ in state 10 would have forced a transition to

state 14 originally. Now the same would force a transition to the state s14-20-22. The transition from this

merged state s14-20-22 would be determined by the constituent states reaction to the next input symbol.

For example, the merged state s14-20-22 would be reducing by Production 2 on receipt EQ_TO_OP as the

next input symbol. This was determined by the constituent state 14. On similar lines the merged state

s14-20-22 would be reducing by Production 2 on receipt ‘)’ as the next input symbol as determined by the

constituent state 20. It can be proved that the merged state can never have a shift-shift or a shift-reduce

confl ict due to the constituent states with respect to any of the input symbol, i.e. it can never happen that

on the receipt of a given input symbol X, one of the constituent states would have a ‘shift j’ and another

constituent state would have a ‘shift k’ or ‘reduce n’ for the same input symbol.

Coming back to the discussion on the LR(1) item sets generated for the grammar in Table 3.32, we can

also see that the states 2, 8 and 16 having a common fi rst part of LR(1) in pri_expr : CONSTANT• . They

can be combined to create a new state (called as s2-8-16), and so on.

This merging of LR(1) Item sets with same core to form condensed LR(1) item sets is the main principle

behind the LALR method of constructing the parsing table.

Let’s revisit the steps shown in Fig. 3.11 with reference to look ahead LR method of constructing the

parsing table.

Step 1: The Augmented grammar is created in the same way as SLR or canonical LR method.

Step 2: The collection C of sets of LR(1) Items is performed in the same way as canonical LR method

using Algorithm 3.11. Let’s say C contains the sets of LR(1) Items {I0, I1, I2, I3…In}. After the construction

of C, we identify all the sets having the same core and merge them. This results in a collection of condensed

sets of LR(1) Items—C¢ containing {J0, J1, J2, J3…Jk}, where Ji is a union of one or more sets of LR(1) Item

sets having the same core, denoted mathematically as Ji = {I1 U I2 U I3… U Ik}

Table 3.33 (contd)

 Syntax Analysis 169

Step 3: We construct the action and goto table using the original and condensed collection of sets of

LR(1) items by using Algorithm 3.13, which is an improvisation on the Algorithm 3.12. The fundamental

change in the Algorithm 3.13 compared to Algorithm 3.12 lies in the fact that the entries into action and

goto table are made keeping the index of the condensed item set and not the original Item set.

C is canonical collection of sets of Items = {I0, I1, I2,... In} created using Algorithm 3.7

for (each item set Ii in canonical collection) {
 let Jk be the condensed set whose constituent is the item set Ii
 for (each item P in a Item set Ii) {
 if (P is [S’Æ S •, $]){
 action[k][$]=ACCEPT;
 } else if (P is [A Æ a • ¥]){
 action[k][X] = Reduce by the Production A Æ a •
 } else if (P is a item [A Æ a•X b, b] and X is a Terminal){
 if (goto(Ii,X) == Ij){
 let Jn be the condensed set whose constituent is the item set Ij
 action[k][X]=shift n ;
 }
 } else if (P is an item [A Æ a•X b, b] and X is a non-terminal) {
 if (goto(Ii,X) == Ij){
 let Jn be the condensed set whose constituent is the item set Ij
 goto[k][X]=n ;
 }
 }
 }
}

Algorithm 3.13 Construction of parsing table

Example 11—Construction of Parsing Table by LALR Method This section demonstrates an example

program that can construct parsing table entries using the LALR method. The program implements the

Algorithm 3.13 for constructing the parsing table entries.

Building ex11 Binary

$ g++ -g -Wall grammar.cc canonical_lr.cc lalr.cc lr1item.cc item.cc ex11.cc -o ex11

A sample grammar fi le - sample9.gram

$ cat sample9.gram

sel_stmt : cond_expr EQTO cond_expr

cond_expr : (cond_expr)

cond_expr : pri_expr

pri_expr : ID

pri_expr : CONSTANT

$./ex11 ‘sample9.gram’

********* canonical collection *********

No of sets in Canonical Collection=23

I(0) = [sel_stmt : .cond_expr EQTO cond_expr,$]

170 Principles of Compiler Design

 [cond_expr : .(cond_expr),EQTO]

 [cond_expr : .pri_expr,EQTO]

 [pri_expr : .ID,EQTO]

 [pri_expr : .CONSTANT,EQTO]

 [sel_stmtDASH : .sel_stmt,$]

I(1) = [cond_expr : .(cond_expr),)]

 [cond_expr : (.cond_expr),EQTO]

 [cond_expr : .pri_expr,)]

 [pri_expr : .ID,)]

 [pri_expr : .CONSTANT,)]

I(2) = [pri_expr : CONSTANT.,EQTO]

I(3) = [pri_expr : ID.,EQTO]

I(4) = [sel_stmt : cond_expr .EQTO cond_expr,$]

I(5) = [cond_expr : pri_expr.,EQTO]

I(6) = [sel_stmtDASH : sel_stmt.,$]

I(7) = [cond_expr : .(cond_expr),)]

 [cond_expr : (.cond_expr),)]

 [cond_expr : .pri_expr,)]

 [pri_expr : .ID,)]

 [pri_expr : .CONSTANT,)]

I(8) = [pri_expr : CONSTANT.,)]

I(9) = [pri_expr : ID.,)]

I(10) = [cond_expr : (cond_expr .),EQTO]

I(11) = [cond_expr : pri_expr.,)]

I(12) = [sel_stmt : cond_expr EQTO .cond_expr,$]

 [cond_expr : .(cond_expr),$]

 [cond_expr : .pri_expr,$]

 [pri_expr : .ID,$]

 [pri_expr : .CONSTANT,$]

I(13) = [cond_expr : (cond_expr .),)]

I(14) = [cond_expr : (cond_expr).,EQTO]

I(15) = [cond_expr : .(cond_expr),)]

 [cond_expr : (.cond_expr),$]

 [cond_expr : .pri_expr,)]

 [pri_expr : .ID,)]

 [pri_expr : .CONSTANT,)]

 Syntax Analysis 171

I(16) = [pri_expr : CONSTANT.,$]

I(17) = [pri_expr : ID.,$]

I(18) = [sel_stmt : cond_expr EQTO cond_expr.,$]

I(19) = [cond_expr : pri_expr.,$]

I(20) = [cond_expr : (cond_expr).,)]

I(21) = [cond_expr : (cond_expr .),$]

I(22) = [cond_expr : (cond_expr).,$]

State | () CONSTANT EQTO ID $ cond_expr pri_expr sel_stmt

000 | s1 s2 s3 4 5 6

001 | s7 s8 s9 10 11

002 | r5

003 | r4

004 | s12

005 | r3

006 | acc

007 | s7 s8 s9 13 11

008 | r5

009 | r4

010 | s14

011 | r3

012 | s15 s16 s17 18 19

013 | s20

014 | r2

015 | s7 s8 s9 21 11

016 | r5

017 | r4

018 | r1

019 | r3

020 | r2

021 | s22

022 | r2

No of condensed sets = 11

old state=0 new state = 0

old state=1 new state = 1

old state=2 new state = 2

old state=3 new state = 3

old state=4 new state = 4

old state=5 new state = 5

old state=6 new state = 6

old state=7 new state = 1

old state=8 new state = 2

old state=9 new state = 3

172 Principles of Compiler Design

old state=10 new state = 7

old state=11 new state = 5

old state=12 new state = 8

old state=13 new state = 7

old state=14 new state = 9

old state=15 new state = 1

old state=16 new state = 2

old state=17 new state = 3

old state=18 new state = 10

old state=19 new state = 5

old state=20 new state = 9

old state=21 new state = 7

old state=22 new state = 9

******Refi ned Canonical Collection *******

No of sets in condensed collection = 11

I(0) = [sel_stmt : .cond_expr EQTO cond_expr,$]

 [cond_expr : .(cond_expr),EQTO]

 [cond_expr : .pri_expr,EQTO]

 [pri_expr : .ID,EQTO]

 [pri_expr : .CONSTANT,EQTO]

 [sel_stmtDASH : .sel_stmt,$]

I(1) = [cond_expr : .(cond_expr),)]

 [cond_expr : (.cond_expr),$]

 [cond_expr : (.cond_expr),)]

 [cond_expr : (.cond_expr),EQTO]

 [cond_expr : .pri_expr,)]

 [pri_expr : .ID,)]

 [pri_expr : .CONSTANT,)]

I(2) = [pri_expr : CONSTANT.,$]

 [pri_expr : CONSTANT.,)]

 [pri_expr : CONSTANT.,EQTO]

I(3) = [pri_expr : ID.,$]

 [pri_expr : ID.,)]

 [pri_expr : ID.,EQTO]

I(4) = [sel_stmt : cond_expr .EQTO cond_expr,$]

I(5) = [cond_expr : pri_expr.,$]

 [cond_expr : pri_expr.,)]

 [cond_expr : pri_expr.,EQTO]

I(6) = [sel_stmtDASH : sel_stmt.,$]

I(7) = [cond_expr : (cond_expr .),$]

 [cond_expr : (cond_expr .),)]

 [cond_expr : (cond_expr .),EQTO]

 Syntax Analysis 173

I(8) = [sel_stmt : cond_expr EQTO .cond_expr,$]

 [cond_expr : .(cond_expr),$]

 [cond_expr : .pri_expr,$]

 [pri_expr : .ID,$]

 [pri_expr : .CONSTANT,$]

I(9) = [cond_expr : (cond_expr).,$]

 [cond_expr : (cond_expr).,)]

 [cond_expr : (cond_expr).,EQTO]

I(10) = [sel_stmt : cond_expr EQTO cond_expr.,$]

State | () CONSTANT EQTO ID $ cond_expr pri_expr sel_stmt

000 | s1 s2 s3 4 5 6

001 | s1 s2 s3 7 5

002 | r5 r5 r5

003 | r4 r4 r4

004 | s8

005 | r3 r3 r3

006 | acc

007 | s9

008 | s1 s2 s3 10 5

009 | r2 r2 r2

010 | r1

Limitation of Look Ahead LR(1) Method The LALR method for constructing the parsing table works

very well for most of the unambiguous grammars. However, it can have a reduce-reduce confl ict for some

of the grammars that LR(1) method can resolve.

Consider the grammar in Table 3.34.

Table 3.34 Context-free grammar

1 s Æ A a D

2 s Æ B b D

3 s Æ A b E

4 s Æ B a E

5 a Æ C

6 b Æ C

Let’s execute the program for constructing the parsing table by LALR method shown in Example 11

giving the above grammar as input.

174 Principles of Compiler Design

A sample grammar fi le - sample10.gram

$ cat sample10.gram

S : a A d

S : b B d

S : a B e

S : b A e

A : c

B : c

$./ex11 ‘sample10.gram’

********* canonical collection *********

No of sets in canonical collection=14

I(0) = [S : .a A d,$]

 [S : .b B d,$]

 [S : .a B e,$]

 [S : .b A e,$]

 [SDASH : .S,$]

I(1) = [SDASH : S.,$]

I(2) = [S : a .A d,$]

 [S : a .B e,$]

 [A : .c,d]

 [B : .c,e]

I(3) = [S : b .B d,$]

 [S : b .A e,$]

 [A : .c,e]

 [B : .c,d]

I(4) = [S : a A .d,$]

I(5) = [S : a B .e,$]

I(6) = [A : c.,d]

 [B : c.,e]

I(7) = [S : b A .e,$]

I(8) = [S : b B .d,$]

I(9) = [A : c. ,e]

 [B : c. ,d]

I(10) = [S : a A d. ,$]

I(11) = [S : a B e. ,$]

I(12) = [S : b A e. ,$]

 Syntax Analysis 175

I(13) = [S : b B d.,$]

State | a b c d e $ A B S

000 | s2 s3 1

001 | acc

002 | s6 4 5

003 | s9 7 8

004 | s10

005 | s11

006 | r5 r6

007 | s12

008 | s13

009 | r6 r5

010 | r1

011 | r3

012 | r4

013 | r2

No of condensed sets = 13

old state=0 new state = 0

old state=1 new state = 1

old state=2 new state = 2

old state=3 new state = 3

old state=4 new state = 4

old state=5 new state = 5

old state=6 new state = 6

old state=7 new state = 7

old state=8 new state = 8

old state=9 new state = 6

old state=10 new state = 9

old state=11 new state = 10

old state=12 new state = 11

old state=13 new state = 12

******Refi ned canonical collection *******

No of sets in condensed collection = 13

I(0) = [S : .a A d,$]

 [S : .b B d,$]

 [S : .a B e,$]

 [S : .b A e,$]

 [SDASH : .S,$]

I(1) = [SDASH : S.,$]

I(2) = [S : a .A d,$]

 [S : a .B e,$]

 [A : .c,d]

 [B : .c,e]

176 Principles of Compiler Design

I(3) = [S : b .B d,$]

 [S : b .A e,$]

 [A : .c,e]

 [B : .c,d]

I(4) = [S : a A .d,$]

I(5) = [S : a B .e,$]

I(6) = [A : c.,d]

 [A : c.,e]

 [B : c.,d]

 [B : c.,e]

I(7) = [S : b A .e,$]

I(8) = [S : b B .d,$]

I(9) = [S : a A d.,$]

I(10) = [S : a B e.,$]

I(11) = [S : b A e.,$]

I(12) = [S : b B d.,$]

Confl icting entry at action_table[6][e] oldval=-6 newval=-5

Confl icting entry at action_table[6][d] oldval=-5 newval=-6

State | a b c d e $ A B S

000 | s2 s3 1

001 | acc

002 | s6 4 5

003 | s6 7 8

004 | s9

005 | s10

006 | r5 r6

007 | s11

008 | s12

009 | r1

010 | r3

011 | r4

012 | r2

The LALR method was unable to construct a parsing table for the above grammar due to confl icts. The

canonical LR method can generate the parsing table for the same grammar. It proves that, even though the

LALR method does improve the effi ciency in terms memory consumed for the parsing table, there are cases

where the LR(1) method is better.

 Syntax Analysis 177

3.5.5.6 Comparison of the Parsing Table Construction Methods We have studied three types of

LR parsing table construction methods namely, SLR, LR(1) and LALR methods. Let’s make a comparison

of these methods.

The following table compares the 3 methods of constructing the parsing table from the grammar with

respect to vital parameters.

Method Usage of look-

ahead information

Item entity goto and closure

functions

Grammar it applies to

SLR(1) Yes – 1 symbol LR(0) Item Different from LR(1) SLR(1) – Sub-set of LR(1) grammar

LR(1) Yes – 1 symbol LR(1) Item LR(1) – Largest class of LR grammar

LALR(1) Yes – 1 symbol LR(1) Item Same as LR(1) LALR(1) – Sub-set of LR(1) grammar

but greater than SLR(1) grammar

The following set diagram depicts the applicability of each of these methods to construct parsing table

on grammars. The SLR(1) grammar indicates those grammars for which the SLR(1) method can be used

successfully to construct a parsing table, the LALR(1) indicates the grammars for which the LALR(1)

method can be successfully used for constructing a parsing table, and so on. From Fig. 3.16, it is clear that

the LR(1) method of constructing the parsing table can be used on a majority of non-ambiguous grammars.

The LALR(1) method can be applied on a sub-set of LR(1) grammars. The SLR(1) method can be used for

constructing a parsing table on a sub-set of LALR(1) grammars. Clearly the LR(1) method can be used to

construct parsing table for the largest class of non-ambiguous grammars.

Fig. 3.16 Applicability of parsing table construction methods on grammars

3.5.5.7 Error reporting and recovery in LR parsing An LR parser can detect an error, when

it consults the action table and fi nds that there is no entry for the given state and input symbol. Errors

can never be detected by consulting the goto table. The error detection in LR parsing exhibits valid prefi x

property—the detection of error happens as soon as the prefi x of the input has been seen for which there is

no valid continuation for the input scanned till now. A canonical LR parser will not make a single reduction

before announcing an error. The SLR and LALR parsers can make several reductions before detecting an

error, but will not make a single shift before detecting an error.

178 Principles of Compiler Design

The error recovery schemes adopted in LR parsers are:

 1. Panic mode recovery.

 2. Phrase level recovery.

Consider that the current state is C and the next input symbol is denoted by a. The LR parser on fi nding

that action[current state][a] is an error entry detects an error.

In the panic mode recovery, the LR parser scans down the stack until it fi nds a state S for which a valid

goto[S][A] entry is found, where A is any non-terminal. Now, the input symbols are discarded until an

element b in FOLLOW(A) is encountered. The parser then stacks the state goto[S][b] and continues the

parsing. The elements in FOLLOW(A) act as the synchronisation token set. Observe that the A can be any

non-terminal. There could be multiple choices for A, which needs to be pruned for the particular language.

Phrase-level recovery is implemented by fi lling in appropriate error handling routines in the action

table. These error-handling routines would typically modify the top of the stack or the next input symbol to

recover from the error. The caution that the compiler designer has to exercise is to make sure that the error

handling routines do not get the parser to go into an infi nite loop, due to the modifi cation of stack or input.

These error routines are similar to the ones that we saw in operator precedence parsing, but they are easier

to write because in LALR parsing, the action table will never have an erroneous reduction, but in operator

precedence parsing, there is a chance that we could wrongly reduce. A simple phrase level recovery strategy

is as described below. Initially we identify all the expected input symbols in each one of the states. If an

input symbol other than the expected ones is encountered in any state, we emit an error message indicating

the possible expected inputs. For the states where there is only one particular input symbol a possible, we

can have the following error recovery scheme. If the next input symbol is b, we can make state transition to

the new state n as if a was the next input symbol. We then verify if there is a valid transition from the new

state n for the input symbol b. This verifi cation is necessary to make sure that we do not get into infi nite

loop. In case there is no valid transition from the new state n for the input symbol b, we cannot recover

from the error.

Example 12 shows the phrase-level recovery scheme.

Example 12—Illustration of Error Reporting and Recovery in LR Parsing This example shows the error

reporting and a simple phrase level recovery in LR parsing for the parsing table shown in Table 3.23. This

is an enhancement made to Example 8, to include the error recovery and reporting.

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

Compiling the Lexical Analyzer

$ gcc -c -o c-stmt-lex.o c-stmt-lex.c

Building ex12 Binary

$ g++ -g -Wall -DCHAP3_EX12 ex12.cc c-stmt-lr-parse.cc c-stmt-lex.o -o ex12

Variant 7

$./ex12 ‘count=count*2+index;’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 258 (CONSTANT)

Shifting token 258 (CONSTANT), Entering state 2

Reading a token: Next token is 259 (IDENTIFIER)

 Syntax Analysis 179

Shifting token 259 (IDENTIFIER), Entering state 3

Reading a token: Next token is 260 (OPERATOR)

Reducing via Rule 3

Entering state 5

Shifting token 260 (OPERATOR), Entering state 6

Reading a token: Next token is 257 (EQ_TO_OP)

Shifting token 257 (EQ_TO_OP), Entering state 9

Reading a token: Next token is 260 (OPERATOR)

Reducing via Rule 4

Entering state 5

Shifting token 260 (OPERATOR), Entering state 6

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 8

Reading a token: Next token is 256 (SEMI_COLON)

Reducing via Rule 5

Entering state 5

Shifting token 256 (SEMI_COLON), Entering state 7

Reading a token: Now at end of input.

Reducing via Rule 1

Entering state 10

Success

count=count*2+index;

SYNTAX CORRECT

Missing Identifi er / Constant

$./ex12 ‘count=5+;’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 258 (CONSTANT)

Shifting token 258 (CONSTANT), Entering state 2

Reading a token: Next token is 257 (EQ_TO_OP)

Shifting token 257 (EQ_TO_OP), Entering state 4

Reading a token: Next token is 260 (OPERATOR)

Reducing via Rule 2

Entering state 5

Shifting token 260 (OPERATOR), Entering state 6

Reading a token: Next token is 256 (SEMI_COLON)

Error not fi nding entry action_table[6][256]..

Expecting IDENTIFIER or CONSTANT

count=5+;

 ̂

SYNTAX INCORRECT

Missing semicolon

$./ex12 ‘count=index’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 258 (CONSTANT)

180 Principles of Compiler Design

Shifting token 258 (CONSTANT), Entering state 2

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 3

Reading a token: Now at end of input.

Error not fi nding entry action_table[3][0]..

Expecting SEMI_COLON or OPERATOR

count=index

 ^

SYNTAX INCORRECT

Missing EQTO Operator

$./ex12 ‘count index;’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 259 (IDENTIFIER)

Error not fi nding entry action_table[1][259]..

Expecting EQ_TO_OP (Inserted it)

Shifting token 259 (IDENTIFIER), Entering state 3

Reading a token: Next token is 256 (SEMI_COLON)

Reducing via Rule 3

Entering state 5

Shifting token 256 (SEMI_COLON), Entering state 7

Reading a token: Now at end of input.

Reducing via Rule 1

Entering state 10

Success

count index;

SYNTAX CORRECT

3.6 A SYNTAX ANALYSER FOR C LANGUAGE
In the previous sections, we learnt about the context-free grammar and the techniques used for parsing an

input, given the grammar. We also explored how the parser generators use the grammar to automatically

generate the parser by using different techniques (like say creating a parsing table from grammar).

This section demonstrates the syntax analyser module of our toy C compiler (mycc) taking in sample C

programs and announcing, if the syntax is correct or incorrect.

The syntax analyser module is built from a context-free grammar that describes the syntax of a C

language program. We use the ‘bison’ parser generator program to generate the syntax analyser from the

CFG. The generated syntax analyser can take as input, sample C programs and announce, if the syntax is

correct or incorrect. This gives an idea on how the specifi cations of a complete language can be written

using a context-free grammar and the corresponding lexical specifi cations. It illustrates the ease with which

the parser can be generated from the CFG. Most of the theory that we have discussed in this chapter goes

into making of parser generator programs like ‘bison’. This section merely ‘uses’ the capability of parser

generator program to generate a syntax analyser from a context-free grammar describing a C language

program.

The following dialog shows the process of making a C language parser from the context-free grammar.

It demonstrates how the parser takes different input fi les and announces if the syntax is conformant to the

grammar.

 Syntax Analysis 181

Generating the Parser from Grammar Specifi cations

$ bison -dy -oc-small-gram.c -v c-small-gram.y

Compiling the Parser

$ gcc -g -Wall -DGENERATED_PARSER -c -o c-small-gram.o c-small-gram.c

Generating the Lexical Analyser from lexical Specifi cations

$ fl ex -oc-small-lex.c c-small-lex.l

Compiling the Lexical Analyser

$ gcc -c -o c-small-lex.o c-small-lex.c

Building the Syntax Analyser Binary

$ gcc -g -Wall c-small-gram.o c-small-lex.o main.c -o syn_analyzer

Sample C Program with correct syntax

$ cat -n test1.c

 1 /* Function */

 2 int func(int v1,int v2)

 3 {

 4 int v3,v4;

 5

 6 v3=v1+v2;

 7 v4=v1-v2;

 8

 9 return(v3*v4);

10 }

Trying out the Syntax Analyser on the Sample Program

$./syn_analyzer test1.c

SYNTAX CORRECT

Sample C Program with syntax error

$ cat -n test1a.c

 1 /* Function */

 2 int func(int v1,int v2)

 3 {

 4 int v3,v4;

 5

 6 v3=v1+v2 /* syntax error - Missing Semicolon */

 7 v4=v1-v2;

 8

 9 return(v3*v4);

10 }

Trying out the syntax analyser on the Sample Program

$./syn_analyzer test1a.c

182 Principles of Compiler Design

 v4

 ̂

Error in Line number=7

SYNTAX INCORRECT

Sample C Program with syntax error

$ cat -n test1b.c

 1 /* Function */

 2 int func(int v1,int v2)

 3 {

 4 int v3,v4;

 5

 6 v3=v1+v2;

 7 v4=v1 - / v2; /* syntax error - missing operand */

 8

 9 return(v3*v4);

10 }

Trying out the syntax analyser on the Sample Program

$./syn_analyser test1b.c

 v4=v1 - /

 ̂

Error in Line number=7

SYNTAX INCORRECT

Sample C Program with no syntax error,but semantic error

$ cat -n test1c.c

 1 /* Function */

 2 int func(int v1,int v2)

 3 {

 4 int v3,v4;

 5

 6 v3=v1+v2;

 7 v4=v1-v2;

 8

 9 /*

10 Undefi ned variable ‘v5’ used below in return statement

11 It is a Semantic Error.

12 However it is NOT a syntax error

13 */

14 return(v5*v4);

15 }

Trying out the Syntax Analyser on the Sample Program

$./syn_analyzer test1c.c

SYNTAX CORRECT

 Syntax Analysis 183

From the different inputs given to the toy parser discussed so far, there are a couple of observations that

can be made.

The toy parser can check the syntax of an input C program and announce if the syntax is correct or

erroneous. In case, there is a syntax error, it reports the line number in which the error is found.

The input ‘test1c.c’ contains the use of an undeclared variable ‘v5’ in the return statement. However, the

syntax analyser did not pronounce any syntax error. This is because, from a grammar point of view, there is

no syntax error. The sequence of tokens in the statement conforms to the grammar specifi cations. However,

such errors are caught in ‘semantic analysis’, which is the topic of discussion in the next chapter. This

sample input fi le illustrates the important distinction between syntax and semantic analysis.

 SUMMARY

Syntax analysis is the second step in compilation process of a source program after the lexical

analysis. In lexical analysis phase, the input source program is broken up into a sequence of tokens.

The syntax analysis (also called as parsing) verifi es if the sequence of tokens returned by the lexical

analyser are in accordance to the grammar of the language. A notation known as context-free

grammar (CFG) is used to describe the grammar of a language. There are various techniques used for

parsing an input source program to verify if the tokens are in accordance to the grammar described by

CFG. The techniques can be classifi ed as top-down parsing or bottom-up parsing. We studied about

the top-down parsing in Section 3.4 and bottom-up parsing in 3.5. We learnt about the two major

methods of top-down parsing, namely the recursive descent parsing and the table-driven predictive

parsing. In bottom-up parsing, we studied about operator precedence parsing and the LR parsing. The

LR parsing technique is the most powerful one since it can be applied to a large variety of grammars.

In LR parsing, a couple of tables called as the action table and the goto table are used to determine

if the tokens from the input source program are in accordance to the specifi ed grammar. There are 3

methods of deriving these tables automatically from the grammar of the language. They are called

as simple LR (SLR), canonical LR and look ahead LR methods of parse table generation. The look

ahead LR method of constructing the parsing tables is used in most of the popular parser generators

like ‘bison’ and ‘yacc’.

One of the responsibilities of a syntax analyser is to detect errors in the input source program and

report them to the programmer to take of correcting it. This is called as error reporting. The syntax

analyser cannot stop at the fi rst error encountered in the input source program, it should continue and

detect as many errors as present in a source program as possible. This is called as the error recovery

in a syntax analyser. Section 3.3 discusses various strategies to recover from errors and continue

parsing. During the discussion of individual parsing strategies, we also examined the error recovery

schemes that can be used in tandem with them.

 REVIEW QUESTIONS AND EXERCISES

 3.1 What is syntax analysis? What are its primary functions? What are its secondary functions?

 3.2 State whether the following statements are true or false.

184 Principles of Compiler Design

 (a) A syntax analyser verifi es if the tokens for a given input are properly sequenced in

accordance with the grammar of the language under check.

 (b) A syntax analyser detects the error, emits appropriate error message to the user and if

possible, recovers from the error for a given input.

 (c) A syntax analyser reads an input source program and produces as output a sequence of

tokens.

 (d) A syntax analyser generates intermediate code.

 3.3 What is a context-free grammar? Illustrate with an example the different components of a

context-free grammar. What are the advantages of using context-free grammar to specify a

language?

 3.4 How do you prove that an input is syntactically in conformance to grammar? Provide the proof

that the input ‘min= count - index +5;’ is conformant to the grammar

 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

 c_expression Æ CONSTANT

 c_expression Æ IDENTIFIER

 c_expression Æ c_expression OPERATOR c_expression

 Assume that the lexical analyser is capable of splitting the input into tokens IDENTIFIER, EQ_

TO_OP, SEMI_COLON, CONSTANT and OPERATOR. Also assume that the lexical analyser

returns OPERATOR as a token for any of the operators like + or –.

 3.5 What is a derivation? Illustrate with an example, the leftmost derivation and rightmost

derivation.

 3.6 What is a parse tree? Show the generated parse tree for an input ‘m = n + p –q;’ while checking

for conformance with the grammar given in Q. 3.4. From the parse tree, identify each of the

replacement of the productions in the derivation.

 3.7 Give an example of an ambiguous grammar. What are the techniques to disambiguate grammars?

 3.8 How do you classify the different parsing techniques?

 3.9 Distinguish between error reporting and error recovery in a parser. What are the main

considerations for each of them in a parser?

 3.10 List out the important error recovery strategies in a parser.

 3.11 Distinguish between top-down parsing and bottom-up parsing? What is the largest class of

grammars that can be parsed by each of them?

 3.12 Illustrate with an example the working of a backtracking parser? List out its advantages and

disadvantages.

 3.13 What is a predictive parser? What is the need to modify a grammar to suit predictive parser?

Illustrate with examples.

 3.14 What is a recursive descent parser? How do you implement a recursive descent parser for a

grammar?

 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

 c_expression Æ CONSTANT c_expr_rest

 c_expression Æ IDENTIFIER c_expr_rest

 c_expr_rest Æ OPERATOR c_expr_factor

 c_expr_rest Æ Œ

 c_expr_factor Æ IDENTIFIER c_expr_rest

 c_expr_factor Æ CONSTANT c_expr_rest

 Syntax Analysis 185

 3.15 What are the components of a table-driven predictive parser? Which of those are dependent on

the grammar that is being parsed? What are the advantages of a table-driven predictive parser?

 3.16 Illustrate with an example the moves of a table-driven predictive parser for a given input and the

context-free grammar. You can use the parsing table corresponding to the grammar for helping

the moves of the table-driven predictive parser.

 3.17 Illustrate by example, how a bottom-up parser reduces a given input to the start symbol. Draw the

parse tree for the same and prove that the reduction is the exact reverse of a rightmost derivation.

 3.18 What transformations make a grammar suitable for bottom-up parsing? Illustrate with an

example.

 3.19 Defi ne the terms reduction, handle and right sentential form. Explain with an example, the

importance of picking the right-handles during a reduction sequence.

 3.20 Illustrate with example, the working of a general bottom-up parser using the shift and reduce actions.

 3.21 Develop a bottom-up parser for the grammar given below using ‘bison’, the parser generator

program.

 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

 c_expression Æ CONSTANT

 c_expression Æ IDENTIFIER

 c_expression Æ c_expression OPERATOR CONSTANT

 c_expression Æ c_expression OPERATOR IDENTIFIER

 Check the parser for the inputs marked as variant 1 through variant 7 in Section 3.2.

 3.22 How does an operator precedence parser work? Use a pre-constructed operator precedence table

to guide the parsing of an input ‘a + b – 20’ using operator precedence parser.

 3.23 Describe the error reporting and recovery schemes in operator precedence parsing?

 3.24 What are precedence functions in an operator precedence parser? List out the advantages and

disadvantages of operator precedence parsing.

 3.25 What are the main components of an LR parser? Describe them.

 3.26 Illustrate the steps in the parsing of an input ‘x = y + z – 5;’ by an LR parser using a pre-

constructed LR parsing table.

 3.27 What are the different methods of constructing the LR parsing table from a grammar? What are

the common steps involved in constructing the LR parsing table from a given grammar?

 3.28 What is an LR(0) Item? How are closure and goto operations performed on LR(0) Item set?

 3.29 Describe the SLR(1) method of constructing the LR parsing table from a given grammar.

Illustrate with an example.

 3.30 Describe the canonical LR method of constructing the LR parsing table from a given grammar.

Illustrate with an example.

 3.31 Describe the look ahead LR method of constructing the LR parsing table from a given grammar.

Illustrate with an example.

 3.32 How do SLR(1), LR(1) and LALR(1) methods compare against each other in the process of

constructing the parsing table from the grammar? Draw a set diagram depicting the applicability

of SLR(1), LR(1) and LALR(1) methods on the grammars.

 3.33 How does the error detection and error recovery happen in LR parsing? Illustrate with an

example.

 3.34 Add error detection and recovery capabilities to the LR parser developed in 3.21.

 3.35 Distinguish between a syntax error and a semantic error by providing an example.

SEMANTIC ANALYSIS

Introduction
In the previous chapters we had studied about how in a compiler,
the input is broken up into tokens (lexical analysis) and how the
token ordering is checked to see if it is conformant to the grammar
of the language (syntax analysis). All the statements that are valid
from syntax point of view are not legal instructions. For example, a
statement in a C language program x = y() is valid from syntax point of
view. However, it is not a legal statement, if y is defi ned as an integer
instead of being defi ned as a function. In semantic analysis we verify
if the input source forms a legal set of instructions in accordance with
the language rules. For example, semantic analysis in a C language
compiler would involve tasks like (a) verifying if all the variables are
declared before use; (b) checking if expressions and variables are being
used properly keeping the data types in mind, e.g. LHS and RHS in an
assignment statement should have the same data type; (c) checking if
the operators are used on compatible operands, e.g. the operator ‘->’
is used on a variable, which is a pointer to structure, the operator ‘*’
is used on pointer variable, and so on. Semantic analysis also detects
errors like defi ning an identifi er more than once in the same scope. In
the case of object-oriented languages, semantic analysis additionally
detects issues like violation of access controls, and so on. Semantic
analysis also involves gathering information that would be used in later
phases like intermediate and target code generation. The semantic

4

 Semantic Analysis 187

analysis is the last phase in which we reject incorrect input programs and fl ash error
messages for the user to correct them.

The following dialog examines a few C programs, which have some semantic errors
and shows us how the GNU C compiler detects and reports them. These examples
give us a feel of what kinds of errors are detected in semantic analysis. Observe that
all of these programs are syntactically correct, but have semantic errors.

A C Program using an undeclared variable

$ cat -n sem_err1.c

1

2 int main()

3 {

4 int a,b;

5

6 a=1;

7 b=2;

8 c=3; /* Use of undeclared variable */

9

10 a = b + c;

11

12 return(a);

13

14 }

The Compiler detects it and reports the error

$ gcc -Wall sem_err1.c -o sem_err1

sem_err1.c: In function `main’:

sem_err1.c:8: error: `c’ undeclared (fi rst use in this function)

sem_err1.c:8: error: (Each undeclared identifi er is reported only once

sem_err1.c:8: error: for each function it appears in.)

A C Program Assigning a fl oat to char pointer

$ cat -n sem_err2.c

 1

 2 int main()

 3 {

 4 char *a;

 5

 6 fl oat b,c;

 7

 8 b = 30.45;

 9 c = 40.36;

 10

 11 a = b + c; /* Assigning a fl oat to char pointer */

 12

 13 return(0);

 14

 15 }

188 Principles of Compiler Design

The Compiler detects it and reports the error

$ gcc -Wall sem_err2.c -o sem_err2

sem_err2.c: In function `main’:

sem_err2.c:11: error: incompatible types in assignment

A C Program using ‘->’ operator on a fl oat Variable

$ cat -n sem_err3.c

 1

 2 int main()

 3 {

 4

 5 fl oat b,c;

 6

 7 b = 30.45;

 8 c = 40.36;

 9

 10 b = c -> f1; /* using ‘->’ operator on a fl oat Variable */

 11

 12 return(0);

 13 }

The Compiler detects it and reports the error

$ gcc -Wall sem_err3.c -o sem_err3

sem_err3.c: In function `main’:

sem_err3.c:10: error: invalid type argument of `->’

A C Program using break statement in a non-loop context

$ cat -n sem_err4.c

 1

 2 int main()

 3 {

 4 fl oat b,c;

 5

 6 b = 30.45;

 7 c = 40.36;

 8

 9 b = c ;

 10

 11 break; /* using break statement in a non-loop context */

 12

 13 return(0);

 14 }

The Compiler detects it and reports the error

$ gcc -Wall sem_err4.c -o sem_err4

sem_err4.c: In function `main’:

sem_err4.c:11: error: break statement not within loop or switch

A C Program using a fl oat variable as function

$ cat -n sem_err5.c

 1

 Semantic Analysis 189

 2 int main()

 3 {

 4 fl oat b,c;

 5

 6 b = 30.45;

 7 c = 40.36;

 8

 9 b = c() ; /* using a fl oat variable as function */

 10

 11 return(0);

 12 }

The Compiler detects it and reports the error

$ gcc -Wall sem_err5.c -o sem_err5

sem_err5.c: In function `main’:

sem_err5.c:9: error: called object is not a function

A C Program declaring a variable twice in the same scope

$ cat -n sem_err6.c

 1

 2 int main()

 3 {

 4 int a;

 5

 6 int b,c;

 7 fl oat a; /* declaring a variable twice in the same scope */

 8

 9 b = 30;

 10 c = 40;

 11

 12 a = b + c;

 13

 14 return(a);

 15

 16 }

The Compiler detects it and reports the error

$ gcc -Wall sem_err6.c -o sem_err6

sem_err6.c: In function `main’:

sem_err6.c:7: error: confl icting types for ‘a’

sem_err6.c:4: error: previous declaration of ‘a’ was here

sem_err6.c:4: warning: unused variable ‘a’

Semantic analysis involves the following main tasks:

 1. Process the declarations (e.g. variable declarations, function prototype declarations, type

defi nitions, etc.) and build/update the symbol table to record the type information associated with

various Identifi ers.

 2. Examine the rest of the program to ensure that the identifi ers are used correctly adhering

to the type-compatibility conventions defi ned by the language. For example, one of the type-

compatibility conventions in C language is that the LHS and RHS in an assignment statement

190 Principles of Compiler Design

should match. Another one of the type-compatibility conventions in C language is that the

variable names used should be unique in that particular scope. Each programming language has

its own set of type-compatibility conventions that must be met for a program to be declared as

semantically correct. This assessment of program for type-compatibility is called type checking.

We had used regular expressions to specify and implement the lexical analysis. For the syntax analysis,

we had used the context-free grammar to specify and implement the parsers. In order to perform semantic

analysis, we make use of a formalism called syntax directed translation (SDT). The syntax-directed

translation allows us to specify and implement a semantic analyser. We can see in the next chapter how

the syntax-directed translation technique can also be used for generation of intermediate code. We study

the details of syntax-directed translation in Section 4.1. We show the application of the SDT technique

to perform the semantic analysis in Section 4.2. This is followed by a sample semantic analyser

implementation in Section 4.3.

4.1 SYNTAX DIRECTED TRANSLATION

The main idea behind syntax-directed translation is that the semantics or the meaning of the program is

closely tied to its syntax. Most of the modern compiled languages exhibit this property.

Syntax-directed translation involves:

∑ Identifying attributes of the grammar symbols in the context-free grammar.

∑ Specifying semantic rules or attribute equations relating the attributes and associate them with the

productions.

∑ Evaluating semantic rules to cause valuable side-effects like insertion of information into the

symbol table, semantic checking, issuing of a error message, generation of intermediate code, and

so on.

An attribute is any property of a symbol. For example, the data type of a variable is an attribute. The

memory location associated with a variable is another attribute. In the next few sections, we shall see many

attributes of the grammar symbols in use.

The syntax-directed defi nition is a commonly used notation for specifying attributes and semantic rules

along with the context-free grammar.

4.1.1 Syntax Directed Defi nition

Consider the context-free grammar for recognising declarations in C language supporting the basic data

types like ‘int’, ‘char’ and ‘fl oat’, shown in Table 4.1.

Table 4.1 Grammar for supporting C-declarations

Production

1 declaration_list Æ declaration_list declaration

2 | declaration

3 declaration Æ type_spec identifi er_list ‘;’

4 type_spec Æ INT

5 | CHAR

6 | FLOAT

7 identifi er_list Æ identifi er_list ‘,’ IDENTIFIER

8 | IDENTIFIER

 Semantic Analysis 191

A sample input source that conforms to the grammar of Table 4.1 is shown in Table 4.2.

Table 4.2 An input source

int a,b;

Let’s examine the grammar shown in Table 4.1 and get to understand some of the defi nitions and

concepts.

∑ The syntactic entities (terminals and non-terminals) in the grammar shown in Table 4.1 are

declaration_list, declaration, type_spec, identifi er_list, INT, CHAR, FLOAT and IDENTIFIER. The

start symbol is ‘declaration_list’. The terminals INT, CHAR, FLOAT are tokens returned by lexical

analyser for the keywords ‘int’, char’ and ‘fl oat’ respectively.

∑ There are attributes that can be defi ned for the above syntactic entities. For example, the syntactic

entity-identifi er_list can have an attribute ‘type’, which is representative of the data type of all the

identifi ers in the list.

∑ The attribute for a grammar symbol is referred to by writing the grammar symbol followed by

a dot and the attribute name. For example, the ‘type’ attribute of identifi er_list can be referred to

as identifi er_list.type. Observe that this notation is similar to accessing a fi eld in a structure in C

language.

∑ The value of an attribute can be a string or a number or any other convenient value. For example,

the ‘type’ attribute of the identifi er_list (identifi er_list.type) can have one of the value from the set

{INTEGER, CHARACTER, REAL}.

∑ The attributes of different syntactic entities are related using semantic rules associated with

each production. For example, we can associate a semantic rule “identifi er_list.type= type_spec.

data_type” with the Production 3. This signifi es that the value of ‘type’ attribute of identifi er_list is

copied from the data_type attribute of the type_spec in association with Production 3.

∑ A context-free grammar in which the productions are shown along with its associated semantic rules

is called as a syntax-directed defi nition. Table 4.3 shows the syntax-directed defi nition evolved from

the grammar for the C declarations seen in Table 4.1.

Table 4.3 Syntax-directed defi nition

Production Semantic Rule

1 declaration_list Æ declaration_list declaration

2 | declaration

3 declaration Æ type_spec identifi er_list ‘;’ identifi er_list .type = type_spec. data_type

4 type_spec Æ INT type_spec.data_type = INTEGER

5 | CHAR type_spec.data_type = CHARACTER

6 | FLOAT type_spec.data_type = REAL

7 identifi er_list Æ identifi er_list ‘,’ IDENTIFIER identifi er_list1.type = identifi er_list.type

insert (IDENTIFIER.place, identifi er_list.type)

8 | IDENTIFIER insert (IDENTIFIER.place, identifi er_list.type)

∑ In a syntax-directed defi nition, while writing the semantic rules for a production, if the same grammar

symbol appears on both the left and right side of the production, then each occurrence on the right-

192 Principles of Compiler Design

hand side is referred to by a subscript. For example, the production 7 in Table 4.3, shows a semantic

rule ‘identifi er_list1.type = identifi er_list.type’. The identifi er_list1.type refers to the attribute ‘type’ of

the grammar symbol ‘identifi er_list’ on the right-hand side of the production, while the identifi er_list.

type (without subscript) refers to the ‘type’ attribute of ‘identifi er_list’ on the left-hand side of the

production.

∑ The semantic rules in a syntax-directed defi nition can also be used to call routines that can provide

side-effects like generation of code, insertion/updating of information into symbol table, perform

a semantic check, issue warning messages, and so on. For example, the semantic rule associated

with Production 7 in Table 4.3, we call a routine ‘insert’, which inserts a symbol table entry for the

IDENTIFIER with the type information, given by the attribute identifi er_list.type.

Consider the source shown in Table 4.2 as an input to the syntax-directed defi nition presented in Table

4.3. Figure 4.1 illustrates the parse tree showing the values of attributes of the parse tree nodes for the input.

A parse tree showing the values of attributes of different parse tree nodes is called a decorated parse tree.

The process of computing the attribute values at various parse tree nodes is called decorating or annotating

the parse tree.

Fig. 4.1 Decorated parse tree

A parse tree might be decorated during the parsing process itself. In other cases, the base parse tree

could be constructed during the parsing. After the parse tree is constructed, the attributes could be evaluated

and parse tree decorated by visiting the tree nodes. The order in which the parse tree nodes are visited

 Semantic Analysis 193

for evaluating the attributes is based on the dependencies of the attributes belonging to various nodes. For

example, the semantic rule for the Production 3 is identifi er_list.type = type_spec.data_type, i.e. the type

attribute of identifi er_list is assigned the value of data_type attribute of type_spec node. This tells us that

in order to compute the attribute ‘type’ of identifi er_list, the attribute ‘data_type’ for the type_spec node

needs to have already been computed. Similarly, for Production 7, in order to compute identifi er_list1.type,

the attribute identifi er_list.type should have already been computed. Thus, in order to properly decorate the

above parse tree, we need to compute the ‘data_type’ attribute of type_spec node fi rst, followed by ‘type’

attribute of identifi er_list, and so on. This dependency of attributes of a parse tree node on other attributes

is illustrated by a dependency graph. Figure 4.2 shows the dependency graph overlaid on the parse tree. In

a dependency graph, the direction of the arrow signifi es the order in which the attributes are evaluated. The

parse tree is shown in the dotted line in the background.

Fig. 4.2 Dependency graph

Let’s briefl y understand the nature of the attributes in a syntax-directed defi nition. Consider the syntax-

directed defi nition shown in Table 4.3. In the semantic rule for Production 7, we can observe that the

attribute of the element on the RHS of the production (identifi er_list1.type) is dependent on attribute of

the element in the LHS of the production (identifi er_list.type). In the parse tree, the symbol on the LHS

of the production is a parent and the symbols on the RHS of the productions are the children as seen in

Fig. 4.2. In other words, the attribute identifi er_list1.type depends on its parent attribute – identifi er_list.

type. Such attributes for a grammar symbol that depend on its parent’s or a sibling’s attribute are called

 inherited attributes. In Production 3 of the same SDD, we see another example of an inherited attribute—

identifi er_list.type, which depends on its sibling’s attribute—type_spec. data_type.

194 Principles of Compiler Design

It is also possible to have an attribute of a grammar symbol that depends on one or more of its children’s

attributes. Such attributes are called as synthesised attributes. A syntax-directed defi nition that makes use of

synthesised attributes only is known as an S-attributed defi nition. Table 4.4 shows an S-attributed syntax-

directed defi nition.

Table 4.4 An S-attributed syntax-directed defi nition

Production Semantic Rule

1 sentence : expr print expr.value

2 expr : expr ‘+’ term expr.value = expr1.value + term.value

3 | expr ‘-’ term expr.value = expr1.value - term.value

4 | term expr.value = term.value

5 term : term ‘*‘ factor term.value = term1.value * factor.value

6 | term ‘/’ factor term.value = term1.value / factor.value

7 | factor term.value = factor.value

8 factor : ‘(‘ expr ‘)’ factor.value = expr.value

9 | CONSTANT factor.value = CONSTANT.lexeme

The syntax-directed defi nition in Table 4.4 describes a desktop calculator taking expressions involving

constants as input and printing out the result of the expression as output. Table 4.5 shows some sample

input and the corresponding output from the SDD.

Table 4.5 Sample input and output

Input Output

9+15–20 4

3*21 – (4*5) 43

(9*53) /(7–4) 159

4.1.2 Evaluation of Semantic Rules in SDD

In the last section, we studied about how a syntax-directed defi nition can be used for specifying attributes

and semantic rules along with the context-free grammar. In this section, we look at the methods by which

the semantic rules of an SDD can be evaluated to compute the values of attributes. The evaluation of

semantic rules in a syntax-directed defi nition achieves the actual translation of input to the output.

One of the methods for computing the attributes of different symbols in a syntax-directed defi nition is to

evaluate the semantic rules during the parsing itself. This method of translation interleaved with parsing

can be applied to a restricted class of syntax-directed defi nitions.

Another method of evaluating semantic rules is to construct a parse tree, form a dependency graph and

then evaluate the semantic rules in accordance with the dependency graph. This method of evaluation

is called the parse tree method. This method works for any kind of SDD provided there is no cycle in

 Semantic Analysis 195

the dependency graph. The parse tree method takes more time for evaluating the semantic rules, since

it involves multiple passes of the input (one for creating parse tree, and one or more for evaluating the

semantic rules).

Another method of evaluating the semantic rules is called as the rule-based method. In the rule-based

method, a parse tree is created from the syntax analysis similar to the parse tree method, but the evaluation

order is determined beforehand by analysis of the semantic rules. The dependency graph is not created in

this method. In the rule based method, the order of evaluation of attributes is hard-coded into the compiler.

In order to completely evaluate all the semantic rules, it is possible that the parse tree is walked through

multiple times in the rule-based method.

We study in detail about each of the above-mentioned methods to evaluate semantic rules of a SDD in

the next few sections.

4.1.3 Translation Interleaved with Parsing

Semantic rules can be evaluated in a single pass during parsing itself, without having to explicitly create

a parse tree or a dependency graph. The evaluation of semantic rules during the parsing is applicable to

a class of syntax-directed defi nitions whose semantic rules meet certain criteria. The order of evaluation

of attributes for the syntax-directed defi nition plays an important part in determining the feasibility of

evaluation of semantic rules during the parsing.

Even if there is no explicit parse tree that is created, an order of evaluation of attributes that is a reference

for evaluation of semantic rules during the parsing is the depth-fi rst order of evaluation of attributes.

In depth-fi rst traversal, an entire sub-tree under each child is traversed before going to the next child.

Figure 4.3 shows a parse tree and the order in which the nodes are visited by depth-fi rst traversal.

Fig. 4.3 Depth-fi rst traversal of parse tree

The depth-fi rst order of evaluation of attributes can be represented by Algorithm 4.1.

 1 procedure dfeval (node *n)

 2 {

 3 for each of the child m of n from left to right

 4 {

196 Principles of Compiler Design

 5 Evaluate inherited attributes of m

 6 dfeval (m);

 7 }

 8

 9 /* At this point all the children of Node n have been processed */

 10 Evaluate synthesised attributes of Node n.

 11 }

Algorithm 4.1 Depth-fi rst traversal for evaluation of attributes

Consider a production A Æ X1 X2 X3 X4 ..Xj … Xn. in a context-free grammar. For the successful

evaluation of attributes using depth-fi rst evaluation method, we can see that the attributes of nodes have to

adhere to the following guidelines.

 1. The inherited attributes of any particular node Xj can depend on the attributes of X1,X2…Xj–1 but

not on any of the right siblings like Xj+1 ..Xn. This is because the attributes of right siblings of Xj

like Xj+1... Xn would not yet have been evaluated by the depth-fi rst traversal algorithm at the time

of evaluating Xj.

 2. The inherited attributes of any particular node Xj can depend on A. This is because the node A

would have already been evaluated before evaluating Xj.

The syntax-directed defi nitions that adhere to the above guidelines and lend themselves to depth-

fi rst evaluation of attributes are known as L-attributed defi nitions. It is useful to observe that all the S-

attributed defi nitions are also L-attributed defi nitions because the guidelines (1) and (2) apply only for

inherited attributes. The syntax-directed defi nition presented in Table 4.3 is L-attributed, since none of

the productions violate the above two guidelines. The semantic rules for L-attributed defi nitions can be

evaluated during the parsing stage itself.

4.1.3.1 Translation Scheme A translation scheme is a useful notation for specifying translation

during parsing. A translation scheme allows us to specify the semantic rules expressing the relationship

between attributes as well as the order of evaluation of attributes. A translation scheme is a context-free

grammar in which the attributes are associated with the grammar symbols and semantic actions enclosed

between braces { } are inserted within the right sides of productions. The position at which the action can

be executed is shown by enclosing it in a bracket and inserting it in the right-side of the production. The

semantic actions can refer to inherited as well as synthesised attributes. A translation scheme that recognises

variable declarations in C language and makes entries into the symbol table is shown in Table 4.6. This

translation scheme is a manifestation of the SDD we studied earlier in Table 4.3.

Table 4.6 Translation Scheme

Production

1 declaration_list : declaration_list declaration

2 | declaration

3 declaration : type_spec { identifi er_list.type = type_spec.data_type } identifi er_list ‘ ;’

4 type_spec : INT { type_spec.data_type = INT }

5 | CHAR { type_spec.data_type = CHAR }

 Semantic Analysis 197

6 | FLOAT { type_spec.data_type = FLOAT }

7 identifi er_list : { identifi er_list1.type = identifi er_list.data_type } identifi er_list ‘,’ IDENTIFIER {

insert(IDENTIFIER.place,identifi er_list.type) }

8 identifi er_list : IDENTIFIER { insert (IDENTIFIER.place, identifi er_list.type) }

When drawing a parse tree for a translation scheme, we indicate a semantic action by constructing an

extra child for it, connected by a dashed line to the node of production. Since there are no children for the

semantic action, it gets executed when it is fi rst seen during the depth-fi rst traversal. The parse tree might

not be explicitly created during a translation. It merely serves as a way of expressing the order of evaluation

of attributes in a translation scheme.

The parse tree for the simple input source as shown in Table 4.2 parsed using the translation scheme

in Table 4.6 is shown in Fig. 4.4. The depth-fi rst traversal of the parse tree showing the dotted semantic

actions gives the order of evaluation of the attributes in a translation scheme. The order of evaluation of

attributes in Fig. 4.4, which is arrived by depth-fi rst traversal of the tree, is marked sequentially from 1

through 5.

Fig. 4.4 Semantic actions shown in parse tree

Similar to the syntax-directed defi nition notation, the semantic actions in a translation scheme can

compute the value of attributes or call routines to produce side-effects like printing a value or inserting/

198 Principles of Compiler Design

updating symbol table entry. In Fig. 4.4 we can see the semantic actions marked 4 and 5 insert an entry in

the symbol table.

Translation schemes are designed to ensure that the semantic actions refer to attributes whose values are

already computed by a previous semantic action or by the lexical analyser. Note that this is a signifi cant

departure from the convention that we followed in SDD specifi cations. In SDD, we merely specify how

the value of certain attribute ‘x’ of a symbol A is computed from attribute ‘y’ of another symbol B. There

is no guarantee that the attribute ‘y’ of symbol B is already computed. This is the reason why we had to

look at dependency graph and evaluation order for evaluating semantic rules, while dealing with a SDD.

In the translation scheme, the design ensures that we refer to attributes that have already been computed

by previous semantic actions. It is always possible to construct a translation scheme from an L-attributed

syntax-directed defi nition.

 Since the translation scheme needs to ensure that the semantic actions refer to attributes whose values are

already computed by a previous semantic action, we need to adhere to the following rules while designing it:

∑ An inherited attribute for a symbol on the right side of a production must be computed in an action

before that symbol.

∑ An action must not refer to a synthesised attribute of a symbol to the right of the action.

∑ A synthesised attribute for the non-terminal on the left can be only computed after all attributes it

references have been computed. The action computing such attributes are usually placed at the end of

the right-side of the production.

It is important to understand that the above guidelines essentially stem out of the fact that the semantic

actions in a translation scheme are executed in the order of depth fi rst traversal of the parse tree (even if the

parse tree is not explicitly created).

In the next few sections and also in the forthcoming chapters, we make use of translation schemes for

performing semantic analysis, generation of intermediate code, and so on.

4.1.3.2 Bottom-Up Translation The evaluation of semantic rules during the bottom-up parsing of the

input source is called as bottom-up translation. In this section, we look at techniques to evaluate semantic

rules during the bottom-up parsing for L-attributed defi nitions.

Let’s have a quick recap of the bottom-up parsing before we get into translation interleaved with it. The

most common bottom-up parsing method is the LR parsing method, which was explained in Section 3.5.5.

An LR parser consists of an input, an output, a state stack, driver program and a parsing table made up two

parts (action and goto). Algorithm 3.4 explained how the LR parsing of the input proceeds. There are 2

steps involved in bottom-up parsing given the input source and the grammar for which we are checking the

compliance. The fi rst step is to create a parsing table (action and goto tables) from the grammar. The second

step is to parse the input source as explained in Algorithm 3.4, using the parsing table. The LR parsing

process allows us to execute fragments of code when a reduction takes place. This facility of executing the

code fragments during a reduction is used for evaluating semantic rules. The evaluation of semantic rules

allows us to perform semantic analysis, generation of intermediate code and other useful side-effects.

In order to facilitate the evaluation of semantic rules and translation of input source an additional stack

containing the values of the attributes of symbols involved in the reduction is used. This stack (called VAL

stack) supplements the state stack, which is primarily used for making parsing decisions of shift/reduce.

The shift action would push the value of an attribute corresponding to the input grammar symbol on the

VAL stack. A reduce action would pop as many elements as present in the RHS of the production and push

the attribute’s value of LHS of the production on the VAL stack. Figure 4.5 shows the VAL stack before and

after a shift or a reduce operation. In cases where the symbol to be shifted does not have any attribute (e.g.

operators like +, –, *), the value that is pushed on VAL stack is undefi ned. In cases, where there are multiple

 Semantic Analysis 199

attributes to a grammar symbol, a pointer to a structure containing the attributes can be pushed on to a VAL

stack on a shift operation. The same can be popped off the VAL stack during a reduce operation.

Fig. 4.5 VAL stack before and after shift/reduce operations

The LR parser generators like ‘bison’/ ‘yacc,’ etc. allow for maintaining and accessing the VAL stack by

means of special $ variables. The special variables $1, $2, etc. correspond to the VAL stack for each element

in the RHS of the production. The attribute of the non-terminal on the LHS of the production can be created

using the special variable $$. For example, during the reduction of a production x Æ a b c, the attribute of

‘a’ on the RHS is accessible using $1, the attribute of ‘b’ is accessible using $2 and the attribute of ‘c’ is

accessible using $3. The attributes of the LHS non-terminal ‘x’ can be created using the special variable $$.

The VAL stack helps us evaluate the synthesised and inherited attributes during the bottom-up parsing of

an L-attributed defi nition.

Consider the production x Æ a b c { x.s = a.attrib1+ b.attrib1 + c.attrib1 }. For an input conformant to the

grammar, the VAL stack just before the reduction of the production x Æ a b c would be as shown in Fig. 4.6.

The VAL stack contains the values of attributes of the children a.attrib1, b.attrib1 and c.attrib1. Using these

values, we can compute x.s, a synthesised attribute of ‘x’ and store it on the VAL stack. This shows how we

can evaluate synthesised attributes of symbols using the VAL stack during the bottom-up translation.

Fig. 4.6 VAL stack contains attributes of children before reduction

Consider the syntax directed defi nition in Table 4.7 that has semantic actions involving inherited

attribute depending on the synthesised attributes of its left-side siblings in a production. We can see from

200 Principles of Compiler Design

Table 4.7 that the inherited attribute d.i depends on the synthesised attributes of left-side siblings b.s and c.s

of Production 1.

Table 4.7 Syntax Directed Defi nition

Production Semantic Rule

1 a : b c d d.i = f3(c.s,b.s)

2 b : B b.s = f1(B.lexeme)

3 c : C c.s = f2(C.lexeme)

4 d : D

The VAL stack at the time of reduction of d Æ D is as shown in Fig. 4.7. The VAL stack contains the

synthesised attributes c.s and b.s at that point of time. In general, the VAL stack contains the attributes of

the left siblings of the parent during a reduction.

Fig. 4.7 VAL stack contains attributes of left siblings of parent

Let’s say, we introduce a new marker symbol M generating Œ, in the existing grammar. The marker

symbol M is inserted before ‘d’ in the RHS of production 1 to take advantage of the fact that both c.s and

b.s are on the VAL stack. The semantic action for the production M Æ Œ involves saving the values of the

synthesised attributes c.s and b.s in variables ‘save_c_s’ and ‘save_b_s’ respectively by retrieving them

from the VAL stack. The variables save_c_s and save_b_s can be later used for computing the attribute ‘d.i’

in production 4. Table 4.8 shows the transformed translation scheme including the production for M and its

semantic action. This translation scheme can be used directly for evaluating the semantic rules during the

bottom-up parsing.

Table 4.8 Translation scheme using saved variables

Production

1 a : b c M d { d.i = f3(saved_c_s,saved_b_s) }

2 b : B { b.s = f1(B.lexeme) }

3 c : C { c.s = f2(C.lexeme) }

4 d : D

5 M : Є { save_c_s = val[top] ; save_b_s = val[top-1] }

The introduction of a marker helped us evaluate inherited attributes depending on the synthesised

attributes of its left siblings. The LR parser generators like ‘yacc’/ ‘bison’ insert such markers like M

implicitly and provide the user with a simplifi ed notion of an embedded semantic action. Table 4.9 shows

 Semantic Analysis 201

the translating scheme that can be used readily with LR parser generators like ‘yacc’/ ‘bison’. Observe the

usage of $ variables to represent the elements on the VAL stack. The variable $2 represents the val[top] and

$1 represents val[top-1] in this context.

Table 4.9 Translation scheme compatible with ‘yacc’/ ‘bison’

Production

1 a : b c { saved_b_s=$1 ; saved_c_s=$2 } d { d.i = f3(saved_c_s,saved_b_s) }

2 b : B { b.s = f1(B.lexeme) }

3 c : C { c.s = f2(C.lexeme) }

4 d : D

Consider another translation scheme shown earlier in Table 4.6 (reproduced below for convenience) for

reinforcing the ideas on the handling of inherited attributes during the bottom-up parsing. This translation

scheme recognises variable declarations in C language and makes entries into symbol table. It is a

manifestation of L-attributed syntax-directed defi nition shown in Table 4.3.

Production

1 declaration_list : declaration_list declaration

2 | declaration

3 declaration : type_spec { identifi er_list.type = type_spec.data_type } identifi er_list ‘ ; ’

4 type_spec : INT { type_spec.data_type = INT }

5 | CHAR { type_spec.data_type = CHAR }

6 | FLOAT { type_spec.data_type = FLOAT }

7 identifi er_list : { identifi er_list1.type = identifi er_list.data_type } identifi er_list ‘,’ IDENTIFIER {

insert(IDENTIFIER.place,identifi er_list.type) }

8 identifi er_list : IDENTIFIER { insert (IDENTIFIER.place, identifi er_list.type) }

The inherited attribute ‘identifi er_list.type’ in the Production 3 cannot be fi lled in during bottom-up

parsing, since the symbol ‘identifi er_list’ is yet to be reduced. However, we can use a variable ‘saved_

identifi er_list_type’ to store the attribute value, so that it can be used later in Production 7 and 8. By using

the variable ‘saved_identifi er_list_type’ to store the attribute, the attribute identifi er_list.type itself can be

completely eliminated as shown below.

3 declaration : type_spec { saved_identifi er_list_type = type_spec.data_type } identifi er_list ‘ ;’

7 identifi er_list : identifi er_list ‘,’ IDENTIFIER { insert(IDENTIFIER.place, saved_identifi er_list_type) }

8 identifi er_list : IDENTIFIER { insert (IDENTIFIER.place, saved_identifi er_list_type) }

We can make use of the special variable $1 in the embedded semantic action of Production 3 to access

val[top] containing ‘type_spec.data_type’. The fi nal translation scheme using the $ variable compatible with

LR parser generators like ‘yacc’/ ‘bison’ is shown in Table 4.10.

202 Principles of Compiler Design

Table 4.10 Translation scheme for C-declarations compatible with ‘yacc’/ ‘bison’

Production

1 declaration_list : declaration_list declaration

2 | declaration

3 declaration : type_spec { saved_identifi er_list_type = $1 } identifi er_list ‘ ; ’

4 type_spec : INT { type_spec.data_type = INT }

5 | CHAR { type_spec.data_type = CHAR }

6 | FLOAT { type_spec.data_type = FLOAT }

7 identifi er_list : identifi er_list ‘,’ IDENTIFIER { insert(IDENTIFIER.place, saved_identifi er_list_type) }

8 identifi er_list : IDENTIFIER { insert (IDENTIFIER.place, saved_identifi er_list_type) }

4.1.3.3 Example 1—Bottom-Up Translation This section demonstrates an example program

that evaluates semantic actions during the bottom-up parsing using the theory described in the preceding

section. The example implements the translation scheme presented in Table 4.10. The program shows the

usage of the VAL stack and the special $ variables in LR parser generators like bison to help the evaluation

of semantic rules. The program takes as input, a sample C program with some declarations of variables

using the basic data types like ‘int’, ‘char’ and ‘fl oat’. The output of the example is symbol table entries

generated from the processing of the declarations in the input C program. The dialog below shows the

example program taking in C programs, and printing out the symbol table entry details.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -oc_decl_gram.cc c_decl_gram.y

Compiling the Parser

$ g++ -g -Wall -c -o c_decl_gram.o c_decl_gram.cc

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc_decl_lex.cc c_decl_lex.l

Compiling the Lexical Analyzer

$ g++ -g -Wall -c -o c_decl_lex.o c_decl_lex.cc

Building ex1 Binary

$ g++ -g -Wall c_decl_gram.o c_decl_lex.o -o ex1

This is a sample input source fi le

$ cat -n test1.c

 1 int a,b,c;

 2 fl oat d,e,f;

 3 char i,j,k;

Parsing and displaying Symbol table information for the declarations

$./ex1 test1.c

Identifi er name=a type=INT

Identifi er name=b type=INT

Identifi er name=c type=INT

 Semantic Analysis 203

Identifi er name=d type=FLOAT

Identifi er name=e type=FLOAT

Identifi er name=f type=FLOAT

Identifi er name=i type=CHAR

Identifi er name=j type=CHAR

Identifi er name=k type=CHAR

SYNTAX CORRECT

Input source fi le with Syntax Error

$ cat -n test1a.c

 1 int a,b c; /* Missing comma */

syntax Error is detected

$./ex1 test1a.c

Identifi er name=a type=INT

Identifi er name=b type=INT

int a,b c

 ^

Error in Line number=1

SYNTAX INCORRECT

4.1.3.4 Top-Down Translation We saw in the previous section, how we can evaluate semantic rules

during the bottom-up parsing of the input for L-attributed defi nitions. In this section, we discuss how we

can evaluate semantic rules for L-attributed defi nitions during the top-down parsing of the input.

Consider the syntax-directed defi nition presented in Table 4.4 (reproduced below for convenience) for

discussing about top-down translation. The SDD describes a desktop calculator that takes an expression

involving constants as input and emits out the evaluated result. The input and the corresponding output for

the SDD are given in Table 4.5.

Production Semantic Rule

1 sentence : expr print expr.value

2 expr : expr ‘+’ term expr.value = expr1.value + term.value

3 | expr ‘-’ term expr.value = expr1.value - term.value

4 | term expr.value = term.value

5 term : term ‘*‘ factor term.value = term1.value * factor.value

6 | term ‘/’ factor term.value = term1.value / factor.value

7 | factor term.value = factor.value

8 factor : ‘(‘ expr ‘)’ factor.value = expr.value

9 | CONSTANT factor.value = CONSTANT.lexeme

We have studied earlier in the chapter on syntax analysis that left-recursive grammar cannot be parsed

using top-down parsing method. The productions 2, 3, 5 and 6 above exhibit left recursion, we need to

transform these productions to remove the left recursion. The transformation to eliminate the left recursion

should also take into account the rearrangement of semantic actions.

204 Principles of Compiler Design

Let’s look at how to transform any left-recursive grammar and its semantic rules to be non-left recursive.

Consider a left-recursive grammar shown in Table 4.11. In the syntax-directed defi nition, A.a, B.b , C.c are

synthesised attributes, f1 and f2 are arbitrary functions.

Table 4.11 A syntax-directed defi nition

1 a : a B a.a := f1(a1.a,B.b)

2 a : C a.a := f2(C.c)

Table 4.12 shows the resultant translation scheme after the elimination of left recursion and the

rearrangement of the semantic actions from the syntax-directed defi nition. This grammar recognises the

same sentences as the original grammar.

Table 4.12 Translation scheme

1 a : C { a_rest.i = f2(C.c) } a_rest { a.a = a_rest.s }

2 a_rest : B { a_rest1.a = f1 (a_rest.i , B.b) } a_rest { a_rest.s = a_rest1.s }

3 : Є { a_rest.s = a_rest.i }

Using the above principle, we eliminate left recursion in the Productions 2, 3, 5 and 6 of the syntax-

directed defi nition of Table 4.4 and also transform it to a translation scheme. The resulting translation

scheme suitable for top-down translation is shown in Table 4.13.

Table 4.13 Translation scheme for the desktop calculator suitable for top-down parsing

Production

1 sentence : expr

2 expr : term { expr_rest.i = term.value } expr_rest { expr.value = expr_rest.s; }

3 expr_rest : ‘+’ term { expr_rest1.i = expr_rest. i + term.value } expr_rest { expr_rest.s = expr_rest1.s }

4 | ‘-’ term { expr_rest1.i = expr_rest. i - term.value } expr_rest { expr_rest.s = expr_rest1.s }

5 | e { expr_rest.s = expr_rest.i; }

6 term : factor { term_rest.i = factor.value ; } term_rest { term.value = term_rest.s ; }

7 term_rest : ‘*’ factor { term_rest1.i = term_rest. i * factor.value } term_rest { term_rest.s = term_rest1.s }

8 | ‘/’ factor { term_rest1.i = term_rest. i / factor.value } term_rest { term_rest.s = term_rest1.s }

9 | e { term_rest.s= term_rest. i }

10 factor : ‘(‘ expr ’)’ { factor.value = expr.value }

11 | CONSTANT { factor.value = CONSTANT.lexeme }

Now that we have a translation scheme suitable for top-down translation in Table 4.13, the next step is to

code a top-down translator that uses the translation scheme. We shall implement a recursive descent parser

and include functionality of evaluating the attributes. We have seen in the previous chapter that a recursive

descent parser is a collection of procedures one for each non-terminal. Each procedure is responsible for

parsing the constructs defi ned by its non-terminal.

The following guidelines help us build a top-down translator from a translation scheme similar to the one

we have in Table 4.13. These guidelines can be used for building a top-down translator for any translation

scheme originating from a L-attributed defi nition.

 Semantic Analysis 205

For each non-terminal N, we construct a function N, that returns success or failure depending on

whether it was able to expand the non-terminal correctly or not. The function N takes in formal parameters

for each inherited attribute and the synthesised attributes of N. The inherited attributes are used in the

function to compute the dependent attributes of N or any one of its children. The synthesised attributes that

come in as formal parameters of N are usually passed by reference so that the value can be derived and

populated inside the function. The function for N would typically have a local variable for each attribute

of the grammar symbols that appear in a production for N. For example, consider Productions 2, 3 and 4

governing the non-terminal ‘expr_rest’.

3 expr_rest : ‘+’ term { expr_rest1.i = expr_rest. i + term.value } expr_rest { expr_rest.s = expr_rest1.s }

4 | ‘-’ term { expr_rest1.i = expr_rest. i - term.value } expr_rest { expr_rest.s = expr_rest1.s }

5 | e { expr_rest.s = expr_rest.i; }

Based on the guideline mentioned above, the Productions 3, 4 and 5 would result in the following

function.

1 int expr_rest(int expr_rest_i,int &expr_rest_s)

2 {

3 int value;

4 int term_value;

5 int expr_rest1_i;

6 int expr_rest1_s;

7

8 int op;

9

10 if(match(‘+’)){

11 op=‘+’;

12 }else if(match(‘-’)){

13 op = ‘-’;

14 }else {

15 expr_rest_s=expr_rest_i;

16 return(SUCCESS);

17 }

18

19 if(term(term_value) == SUCCESS){

20 if(op == ‘+’){

21 expr_rest1_i = expr_rest_i + term_value ;

22 }else{

23 expr_rest1_i = expr_rest_i - term_value ;

24 }

25

26 if(expr_rest(expr_rest1_i,expr_rest1_s) == SUCCESS){

27 expr_rest_s = expr_rest1_s;

28 return(SUCCESS);

29 }

206 Principles of Compiler Design

30 }

31

32 return(FAILURE);

33 }

Listing 4.1 Code for the non-terminal ‘expr_rest’

The function expr_rest returns SUCCESS on being able to expand the non-terminal correctly and

FAILURE on not being able to. The function expr_rest has two formal parameters, one being expr_rest_i

(denoting expr_rest.i—the Inherited attribute of expr_rest) and the other expr_rest_s (denoting expr_rest.s

– the synthesised attribute of expr_rest). The formal parameter ‘expr_rest_s’ is passed by reference, since

its value is computed in the function and would be typically used by the caller of the function expr_rest.

The inherited attribute expr_rest_i is used in computing expr_rest_s in line 15 (in accordance to Production

5) and computing expr_rest1.i in line 21 and 23 (in accordance to Productions 3 and 4). The synthesised

attribute expr_rest_s is passed by reference and is populated in the lines 15 and 27 in cases where the

function returns SUCCESS. The function expr_rest has 3 local variables term_value, expr_rest1_i and

expr_rest1_s each denoting attributes for grammar symbols suggestive in the name. The code associated

with each of the functions for the non-terminal is decided on the basis of the next token as explained in

Section 3.5.1. The function expr_rest shown in Listing 4.1 refl ects the principles of recursive descent parser

discussed in Section 3.5.1.

For each terminal T, we derive the synthesised attribute ‘t’ from the lexical analyser. We store the value

of the synthesised attribute in the local variable declared. This is followed by a call to match the token and

advance the input. Let’s take Productions 10, 11 and their associated code shown below as a reference to

understand this concept.

10 factor : ‘(‘ expr ‘)’ { factor.value = expr.value }

11 : CONSTANT { factor.value = CONSTANT.lexeme }

1 int factor(int &factor_value)

2 {

3

4 int CONSTANT_lexeme;

5 int expr_value;

6

7 if(current_token == CONSTANT){

8 CONSTANT_lexeme = atoi(yytext);

9 factor_value = CONSTANT_lexeme;

10 match(CONSTANT);

11 return(SUCCESS);

12 } else if(match(‘(’)){

13 if(expr(expr_value) == SUCCESS){

14 factor_value = expr_value;

15 if(match(‘)’)){

16 return(SUCCESS);

 Semantic Analysis 207

17 }

18 }

19 }

20

21 return(FAILURE);

22 }

Listing 4.2 Code derived from production 10 and 11

In line 8 of Listing 4.2, we derived the value of synthesised attribute—lexeme of the terminal

CONSTANT from the lexical Analyser and stored it in the variable CONSTANT_lexeme declared for the

attribute CONSTANT.lexeme. The Line 10 makes a call to function match, which matches the token and

advances the input.

4.1.3.5 Example 2—Top-Down Translation This section demonstrates an example program that

evaluates semantic actions during the top-down parsing using the theory described in the preceding section.

The example implements the translation scheme presented in Table 4.13 to build a desktop calculator.

The program shows the usage of the guidelines provided in the preceding section to construct a top-down

translator for L-attributed defi nitions. The program takes as input an expression involving constants. The

output of the example is the evaluated result of the input expression, similar to the desktop calculator. The

dialog below shows the example program taking in expressions involving constants, and printing out the

result of the expression.

Generating the Lexical Analyzer from lexical Specifi cations

$ fl ex -otop_down_lex.cc top_down_lex.l

Compiling the Lexical Analyzer

$ g++ -g -Wall -c -o top_down_lex.o top_down_lex.cc

top_down_lex.cc:1040: warning: ‘void yyunput(int, char*)’ defi ned but not used

Building ex2 Binary

$ g++ -g -Wall ex2.cc top_down.cc top_down_lex.o -o ex2

Executing it for a sample Expression

$./ex2 ‘9+15-20’

result=4

SYNTAX CORRECT

Another sample Expression

$./ex2 ‘3*21 - (4*5)’

result=43

SYNTAX CORRECT

Another sample Expression

$./ex2 ‘(9*53)/(7-4)’

result=159

SYNTAX CORRECT

syntax Error in Expression

$./ex2 ‘9*53)/(7-4)’
SYNTAX INCORRECT

208 Principles of Compiler Design

4.1.4 Parse Tree Method

In the parse tree method of evaluating semantic rules, we create a parse tree during the syntax analysis.

Based on the parse tree and semantic rules, a dependency graph is created post-syntax analysis. Next, we

evaluate the value of each of the attribute as signifi ed by a node in the dependency graph. The order of

evaluation of attributes is obtained from a topological sort of the dependency graph. The evaluation of

attributes yields the necessary side-effect like addition into symbol table, generation of intermediate code,

and so on.

Let’s take the syntax-directed defi nition shown in Table 4.4 as an example for understanding the parse

tree method of evaluating semantic rules. The SDD is for a desktop calculator taking expressions involving

constants as input and printing out the result of the expression as output. Table 4.5 shows some sample

inputs and the corresponding output given out by the syntax-directed defi nition.

The parse tree method of evaluating semantic rules consists of 3 steps as shown in Fig. 4.8.

Fig. 4.8 Steps in converting input-source program to intermediate code

Step 1: Conversion of Input into Parse Tree

Step 2: Creating a Dependency Graph of the attributes using the parse tree

Step 3: Evaluating attributes using the Dependency Graph

 Semantic Analysis 209

In the fi rst step, the input is converted into a parse tree. In a parse tree, each of the interior nodes represents

a non-terminal, while the leaf nodes denote terminals. The parse tree is an outcome of syntax analysis.

The parse tree contains nodes pertaining to each syntactic unit. For example, if an input source were

parsed for a grammar shown in Table 4.4, the parse tree would contain nodes like ‘factor’, ‘term’, ‘stmt’,

etc. The nodes in the parse tree are typically associated with attributes specifi c to the nature of the node. The

‘expr’ node is associated with an attribute ‘value’. Now, the ‘value’ associated with the ‘expr’ node depends

on its constituents like the ‘value’ of factor node and the ‘value’ of term node, and so on. The dependency

of the attributes of various nodes dictates the order in which the attributes are computed. The second step

involves creation of the dependency graph—a graph associating the order in which the attributes need to be

computed for making the translation of input into output.

In the third step, we compute the values of attributes in the order specifi ed by the dependency graph

obtained earlier in step 2. The computation of values for the attributes is governed by semantic rules. The

evaluation of semantic attributes generates the output.

Figure 4.8 shows parts of the sample output at each of the stages for the input ‘10+30–15’. The syntax-

directed defi nition it conforms to is in Table 4.4.

The next three sections explain in detail, the three steps required for evaluating semantic rules using

parse tree method as outlined in Fig. 4.8.

4.1.4.1 Step 1—Conversion of Input Source Program into Parse Tree The fi rst step involves

converting the input into a parse tree. This is usually done during the parsing phase itself. Recall

that the parser generators allow for program fragments to be executed when a production gets

reduced (or expanded in case of a top-down parser). This feature can be extensively used for creating the

parse tree.

Let’s take the case of a bottom-up parser. Typically for a production P Æ A B C in the grammar, the

program fragment to be executed while reducing a production for generating a parse tree would be as

shown in Algorithm 4.2.

{
 Create a Node P
 Make the Nodes A,B,C as the children of P from left to right
}

Algorithm 4.2 The program fragment to be executed for generating parse tree

There are facilities in parser generators like bison/yacc for aiding the creation of parse tree. Typically

a pointer to the newly created node P (in Algorithm 4.2) can be stored on the stack using the notation $$.

Similarly, pointers to each one of the entities on the RHS can be retrieved from the stack by using the

notation $1 for the fi rst entity on the RHS, $2 for the second entity, and so on. These facilities in the parser

generators are used in the parse tree creation.

In order to work on a parse tree (for e.g. printing the parse tree nodes on the screen or adding information

to various nodes in the parse tree), we need to have an order of visiting (traversing) each of the parse nodes

in the tree starting from the root. A common method of traversing the parse nodes is the depth-fi rst traversal

method discussed previously. It starts with the root and recursively visits the children of each node, left to

right order. Figure 4.9 shows the order in which the parse tree nodes are visited by the depth-fi rst traversal

method with the node #1 being visited fi rst followed by node #2 and so on in the series. This is a parse tree

created for the input ‘10 + 30 – 15’ conformant to the grammar in Table 4.4.

210 Principles of Compiler Design

Fig. 4.9 Parse tree

The algorithm for depth-fi rst traversal is formalised and shown in Algorithm 4.3. Observe the recursive

nature of the algorithm.

procedure dfvisit (node *n)
{
 process_the node (); /* For e.g. Printing the Node */

 for each of the child m of n from left to right
 {
 dfvisit(m);
 }
}

Algorithm 4.3 Depth-fi rst traversal

 Semantic Analysis 211

In step 1 of the parse tree method, we learnt the concepts of creating the parse tree (Algorithm 4.2) and

traversing the parse tree for, say, printing it (Algorithm 4.3). We now move on to the second step of the

parse tree method of evaluating semantic rules—the creation of dependency graph.

4.1.4.2 Step 2—Creation of Dependency Graph We had seen earlier that the order in which the

attributes are evaluated could be depicted by a directed graph called as dependency graph. In this section

we learn how to create a dependency graph from the parse tree.

In a dependency graph, there is a node for each of the attribute associated with each of the nodes of the

parse tree. For example, consider the parse tree in Fig. 4.9. Let us take the case of the expr node (Node 2).

The expr node has one attribute called ‘value’. The dependency graph will have one node, namely expr.

value corresponding to the expr node numbered 2 in the parse tree. In a similar fashion, we would have

a node expr.value in the dependency graph corresponding to the expr node numbered 3 in the parse tree.

There would be another node term.value in dependency graph corresponding to the term node numbered

13 of the parse tree, and so on. Figure 4.10 shows the dependency graph nodes associated with the three

parse tree nodes just discussed, namely—expr (Node 2) and its children (Node 3 and Node 13). The full

dependency graph would contain nodes corresponding to all the parse nodes and all of its attributes.

Fig. 4.10 Some dependency graph nodes

After creating a node in the dependency graph for each attribute corresponding to each parse tree node,

the dependency nodes are ‘chained’ by drawing edges between them. The dependency graph has an edge

from a dependency graph node ‘a’ to dependency graph node ‘b’, if ‘b’ depends on ‘a’. For example,

consider the dependency graph nodes shown in Fig. 4.10. The production used to reduce for creating the

nodes 2, 3 and 13 is the production number 3. The Production 3 and the semantic rule from the SDD are

reproduced here.

3 expr : expr ‘-’ term expr.value = expr1.value - term.value

Observing the semantic rule associated with the above production, we have:

∑ expr.value of Node 2 depends on expr.value of Node 3.

∑ expr.value of Node 2 depends on term.value of Node 13.

212 Principles of Compiler Design

We create two edges in the dependency graph for the corresponding elements.

 1. From expr.value of Node 3 to expr.value of Node 2.

 2. From term.value of Node 13 to expr.value of Node 2.

The section of dependency graph corresponding to these three edges is shown in Fig. 4.11.

Fig. 4.11 A section of dependency graph

In this manner the edges between the dependency graph nodes are created on the basis of dependencies

between the attributes as specifi ed in semantic rules.

To sum up this step, the creation of dependency graph is a two-part process:

 1. Creation of dependency graph nodes for each one of the attributes corresponding to each of the

parse tree nodes.

 2. Creation of edges from one dependency graph node ‘a’ to another dependency graph node ‘b’, if

‘b’ depends on ‘a’.

This procedure is formalised in Algorithm 4.4.

create_dep_graph()
{
 /* Creation of dependency graph nodes for each one of the attributes corresponding

to each of the parse tree node */

 for each node n in a parse tree
 for each attribute a of the grammar symbol at n
 Construct a Node in the dependency graph

 /* Creation of edges from one dependency graph node ‘a’ to another dependency
 graph node ‘b’, if b depends on a */

 for each node n in the parse tree
 for each semantic rule b := f (c1,c2,c3 …ck) associated with production used at n
 for I:=1 to k
 Construct an edge from the node for ci to the node b
}

Algorithm 4.4 Creation of dependency graph

The dependency graph created using Algorithm 4.4 gives the dependencies among the attributes of

various parse tree nodes.

The order of evaluation of attributes is obtained by performing a topological sort of the dependency

graph. A topological sort of a directed non-cyclic graph is any ordering m1, m2, m3,….mk of the nodes of

the graph such that edges exist from earlier nodes to later nodes. It means that if an edge exists from mi to

 Semantic Analysis 213

mj, then topological sort will have mi ahead of mj. As an example, the topological sort of the dependency

graph discussed earlier is shown in Fig. 4.12. It would be interesting to note that the relative ordering

between nodes marked 1 and 2 is not signifi cant. The only criterion is that the nodes marked 1 and 2 have

to be aligned earlier than the node marked 3. This is because there are edges 1 Æ 3 and 2 Æ 3.

Fig. 4.12 Topological sort of dependency graph

Note that if there is a situation in which an attribute x.a depends on another attribute y.b, which in turn

depends on another attribute say z.c. If z.c depends on the original attribute x.a then there is a cycle in

the graph. The parse tree method of evaluating semantic rules does not work when there are cycles in the

dependency graph.

An algorithm to perform topological sort of a directed non-cyclic graph is given in Algorithm 4.5.

TopSort(Graph G)
{
 for(counter=1;counter < number_of_nodes ; counter ++){
 V = fi nd the graph node with incoming edges as 0
 if (V is NULL){
 error – The Graph G has a Cycle - exit
 }
 Add V to the sorted list at the end
 for each graph node W adjacent to V {
 W.incoming edges –
 }
 }
}

Algorithm 4.5 Topological sort of non-cyclic directed graph

The topological sort of the dependency graph yields the order in which the attributes associated with

the nodes in a parse tree can be evaluated. For example, from the Fig. 4.12, the value attribute of the expr

node corresponding to node 2 in the parse tree would be evaluated before the value attribute of expr node

corresponding to node 3 in the parse tree.

4.1.4.3 Step 3—Evaluation of Attributes using the Dependency Graph In step 3, we evaluate

the value of each of the attributes as signifi ed by a node in the dependency graph. The order of evaluation of

attributes was obtained from a topological sort of the dependency graph in the previous step. The evaluation

of attributes yields the output.

The value for each of the attributes represented by a node in the dependency graph is computed using

the related semantic rule. As an example, consider the section of dependency graph shown in Fig. 4.12. The

214 Principles of Compiler Design

dependency graph node marked 3, which represents expr.value, has originated from the parse tree node 2.

The node 2 in the parse tree has been created due to reduction by Production 3 (expr Æ expr ‘–’ term).

The semantic rule for the Production 3 is expr.value = expr1.value – term.value. We know that expr1.value

(dependency graph node 1) and term.value (dependency graph node 2) would have already been evaluated

before we attempt to evaluate expr.value (dependency graph node 3) because the evaluation order is based

on the topological sort of the dependency graph.

The evaluation of all the attributes represented by the entire set of nodes in dependency graph populates

all the attributes of parse tree nodes. The evaluation of attributes also includes invocation of routines

causing important side-effects like, say, adding an entry into symbol table, printing out a value, etc.

This step concludes the parse tree method of evaluating semantic rules.

4.1.4.4 Example 3—Parse Tree Method This section demonstrates an example program that

evaluates semantic actions using the parse tree method for the syntax-directed defi nition shown in Table 4.4.

In this example we create the parse tree, compute the dependency graph, topologically sort it and evaluate

the attributes for generating the output. The program takes as input an expression involving constants. The

output of the example is the evaluated result of the input expression, similar to the desktop calculator. The

dialog below shows the example program taking in expressions involving constants, and printing out the

result of the expression.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -optree_gram.cc ptree_gram.y

Compiling the Parser

$ g++ -g -Wall -c -o ptree_gram.o ptree_gram.cc

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -optree_lex.cc ptree_lex.l

Compiling the Lexical Analyzer

$ g++ -g -Wall -c -o ptree_lex.o ptree_lex.cc

Building ex3 Binary

$ g++ -g -Wall ex3.cc ptree_gram.o ptree_lex.o ptree_method.cc -o ex3

Executing it for a sample Expression

$./ex3 ‘9+15-20’
SYNTAX CORRECT
4

Another sample Expression

$./ex3 ‘3*21 - (4*5)’
SYNTAX CORRECT
43

Another sample Expression

$./ex3 ‘(9*53)/(7-4)’
SYNTAX CORRECT
159

Syntax Error in Expression

$./ex3 ‘9*53)/(7-4)’
9*53)/(7-4)
 ^

syntax error
SYNTAX INCORRECT

 Semantic Analysis 215

4.1.5 Rule-based Method

In rule-based method, the evaluation order of the attributes at each parse tree node is determined by means

of analysing the semantic rules at the time of constructing the compiler. The order of visiting the children

nodes for evaluation of semantic rules for a given parse tree node and the associated production is hard-

coded into the compiler for evaluation of the semantic rules. Since the order of the evaluation is known at

the time of compilation itself, there is no need for creating a dependency graph. In order to completely

evaluate all the semantic rules, it is possible that the parse tree is walked through multiple times in the rule-

based method. In this section, we study about a rule-based method for evaluating semantic rules popularly

known as recursive evaluator.

In a recursive evaluator, we create an explicit parse tree and traverse it for evaluating the semantic rules

by mutually recursive functions. The parse tree creation happens during the parsing and the traversal of

the parse tree nodes for evaluating semantic rules happens later. The order in which we traverse the tree

is determined by the analysis of the production and the semantic rules of that particular node before the

compilation itself. It is possible that for evaluating semantic rules at one of the parse tree nodes, the children

might be visited from the right-to-left. For evaluating semantic rules at another parse tree node, the children

might be visited from the left-to-right. The main considerations involved in arriving at the correct order for

the traversal of children for a parse tree node are (a) all the inherited attributes at a node are computed before

the fi rst visited (b) the synthesised attributes must be computed before we leave the node for the last time.

Let’s take the SDD for the declaration statements in Pascal language in Table 4.14 as an example for

understanding the intricacies of the recursive evaluator. The SDD is reproduced here for convenience.

Table 4.14 Syntax-directed defi nition for processing of Pascal declarations

Production Semantic Rule

1 declaration_list : declaration_list declaration

2 | declaration

3 declaration : identifi er_list ‘:’ type_spec ‘;’ identifi er_list .type = type_spec. data_type

4 type_spec : INTEGER type_spec. data_type = INTEGER

5 | CHAR type_spec. data_type = CHAR

6 | REAL type_spec. data_type = REAL

7 identifi er_list : identifi er_list ‘,’ IDENTIFIER identifi er_list1.type = identifi er_list.type

add_to_sym_table (IDENTIFIER.place, identifi er_list.type)

8 | IDENTIFIER add_to_sym_table (IDENTIFIER.place, identifi er_list.type)

We have selected the above grammar, which is not L-attributed, so as to bring out the fact that the

recursive evaluator can also work for non-L-attributed grammars.

The fi rst step in a recursive evaluator is the creation of a parse tree. The concepts and the method to

obtain the parse tree have already been explained in Section 4.1.4.1. We skip the step in the discussion here.

The next step in the recursive evaluator is to traverse the parse tree to evaluate semantic rules. This

is done by associating each of the non-terminals with a translation function. This function performs the

translation by visiting the children of the node in some particular order as determined by the production at

the node before the compilation. For example, consider the translation function at the ‘declaration’ node.

The translation function at declaration_node would visit its right child—the type_spec node and invoke its

translation function to get the value of the data_type attribute. The category attribute is then passed down to

its left child, the identifi er_list node and its subtree by inheriting it as shown in Listing 4.3.

216 Principles of Compiler Design

 1 void declaration_node::eval_semantic_rules()
 2 {
 3 int type_spec_data_type;
 4 identifi er_list_node *identifi er_list_ptr;
 5 type_spec_node *type_spec_node_ptr;
 6
 7 if(rule_no == 3){
 8
 9 /* declaration -> identifi er_list ‘:’ type_spec ‘;’ */
 10
 11 identifi er_list_ptr = (identifi er_list_node *)children[0];
 12 type_spec_node_ptr = (type_spec_node *)children[1];
 13
 14 /* Getting the ‘data_type’ synthesised from type_spec_node
 15 - passing by reference
 16 */
 17 type_spec_node_ptr->eval_semantic_rules(type_spec_data_type);
 18
 19 /* Passing the ‘data_type’ to the children of identifi er_list */
 20 identifi er_list_ptr -> eval_semantic_rules(type_spec_data_type);
 21 }
 22 }

Listing 4.3 Evaluation of semantic rules for ‘decl’ node

There are several interesting observations that can be made from Listing 4.3, highlighting the features of

the recursive evaluator.

∑ At the highest level, we typically invoke the method to evaluate the semantic rules of the root of

the tree. It internally evaluates the semantic rules of all its children. The children would similarly

invoke the semantic rules for its children, and so on. In short, the evaluation of attributes happens in a

recursive manner giving this the name—recursive evaluator.

∑ A non-terminal node can be created by one or more productions. The evaluation of semantic rules for

a particular non-terminal node is determined by the production that created the node. Line 7 in Listing

4.3 illustrates this.

∑ The evaluation order does not depend on the order in which the parse tree nodes are created. This

gives fl exibility to visit the children in any order that is useful for evaluating the attributes. In the

declaration_node evaluation shown in Listing 4.3, we are visiting the right child (type_spec) fi rst and

then the left child (identifi er_list) . The reason in choosing this particular order is that we need to fi rst

fetch the value of data_type (line 17) to be passed on to identifi er_list and its children (line 20).

∑ The evaluation function for each non-terminal N exhibits similarity with the top-down translator

functions that we talked of in Section 4.1.3.4. Both of these functions take in formal parameters

for each inherited attribute and the synthesised attributes of N. The inherited attributes are used in

the function to compute the dependent attributes of N or any one of its children. The synthesised

attributes that come in as formal parameters of N are usually passed by reference so that the value can

be derived and populated inside the function. In Listing 4.3, the declaration_node does not have any

inherited attributes and hence does not have formal parameters. However, identifi er_list has inherited

attributes and has a formal parameter. The type_spec node returns a synthesised attribute (data_type)

by using call-by-reference technique.

∑ The fl exibility of visiting the children in any order allows us to perform translation for any kind of

grammar including the non-L attributed ones like the one above.

In the next section, we see the implementation of recursive evaluator for processing the SDD for Pascal

declarations (Table 4.14) based on the concepts learnt here.

 Semantic Analysis 217

4.1.5.1 Example 4—Recursively evaluating translator This section demonstrates an example

program that evaluates semantic actions using a recursively evaluating translator. The example implements

the non-L-attributed syntax-directed defi nition shown in Table 4.14. The program takes as input, a sample

Pascal program with some declarations of variables using the basic data types like ‘integer’, ‘char’ and

‘real’. The output of the example is the symbol table entries generated from the processing of the

declarations in the input Pascal program. The dialog below shows the example program taking in Pascal

programs, and printing out the symbol table details.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -opas_decl_gram.cc pas_decl_gram.y

Compiling the Parser

$ g++ -g -Wall -c -o pas_decl_gram.o pas_decl_gram.cc

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -opas_decl_lex.cc pas_decl_lex.l

Compiling the Lexical Analyzer

$ g++ -g -Wall -c -o pas_decl_lex.o pas_decl_lex.cc

Building ex4 Binary

$ g++ -g -Wall ex4.cc pas_decl_gram.o pas_decl_lex.o recur_eval.cc -o ex4

This is an input source fi le

$ cat test4.pas

a,b,c,d,e:integer;
f,g,h,i,j : real ;
k,l,m,n,o : char ;

Symbol Table for it

$./ex4 test4.pas

SYNTAX CORRECT
Identifi er name=a type=INTEGER
Identifi er name=b type=INTEGER
Identifi er name=c type=INTEGER
Identifi er name=d type=INTEGER
Identifi er name=e type=INTEGER
Identifi er name=f type=REAL
Identifi er name=g type=REAL
Identifi er name=h type=REAL
Identifi er name=i type=REAL
Identifi er name=j type=REAL
Identifi er name=k type=CHAR
Identifi er name=l type=CHAR
Identifi er name=m type=CHAR
Identifi er name=n type=CHAR
Identifi er name=o type=CHAR

4.1.6 Comparison of Translation Methods

We had discussed about the three methods of evaluating semantic rules in the previous sections. Let’s

quickly refl ect on each of these methods as to how they fare vis-à-vis various parameters. The following

matrix provides the details of the comparison, where the methods are lined up as columns, and the

parameters of comparison are marked up as rows.

218 Principles of Compiler Design

Parameter Translation interleaved

with parsing

Parse tree method Rule-based method

Principle on

which the method

is based on

Does not create a parse

tree, does not create

dependency graph.

Evaluation of semantic

rules happens during

parsing.

Creates a parse tree, makes

a dependency graph,

evaluates the attributes

based on topographic sort

of the dependency graph.

Creates a parse tree, traverses it

in proper order to evaluate the

attributes and realise the SDD. The

proper order is determined before

compilation, by analysing the

attributes and productions.

Attributes

evaluation order

During symbol expansion

for top-down translation.

During symbol reduction

for bottom-up translation.

Determined during the

compilation by means of

dependency graph.

The evaluation order is

determined before

compilation, by analysing

the productions and hard-

coding it in the recursive

translator.

Applicability L-attributed defi nitions. Can be applied to any

grammar provided there

are no cycles in the

dependency graph.

Any grammar.

Effi ciency Effi cient, since we do not

have to create a parse tree

or dependency graph at

the compile time.

Creation of dependency

graph and sorting it reduces

the effi ciency.

Effi cient, since we do not create a

dependency graph at the compile

time. However, multiple passes

could reduce the effi ciency.

4.2 SEMANTIC ANALYSIS

Armed with the concepts of syntax-directed translation, we now come back to the primary theme of the

chapter—Semantic Analysis. As mentioned earlier, semantic analysis revolves around 2 tasks.

 1. Process the declarations (e.g. variable declarations, function prototype declarations, type defi nitions,

etc.) and build/update the symbol table to record the type information associated with various

identifi ers.

 2. Examine the rest of the program to ensure that the identifi ers are used correctly adhering to the

type compatibility conventions defi ned by the language. For example, in an assignment statement,

the types of the LHS and the RHS should match, the variable names used should be unique in that

particular scope, and so on. This verifi cation is called as type checking.

Section 4.2.1 describes the fi rst task in detail. In that, we present the productions and semantic actions

of a semantic analyser that are relevant for the creation of a symbol table from a given input C program.

Section 4.2.2 describes the second task, i.e. type checking in detail. In that, we examine the productions and

semantic actions of a semantic analyser that are relevant for the type-checking and reporting of semantic

errors in input C programs.

4.2.1 Processing Declarations

Let’s start off the discussion on the declarations by looking at a simple declaration in C language of the form.

Table 4.15 Declaration

int counter , total ;

 Semantic Analysis 219

This declaration establishes the intent of the programmer to use the variables ‘counter’ and ‘total’ as

integers. Most of the compiled languages require that the programmer specify the name and type of all the

variables in the program before use. The main idea behind the declarations is to establish the ‘data type’ for

every identifi er used in the program, so that it can be verifi ed for type correctness in the rest of the program.

The function prototypes like the one seen at Table 4.16 extend the same idea to specify the data type of each

of the parameters and the return value of the function.

Table 4.16 Function prototype

int my_func(int,fl oat,char);

Establishing the data type of all the identifi ers and updating the symbol table about the same is the

primary purpose of processing the declarations. We will study about the data types and its representation

in Section 4.2.1.1. The symbol table in which we record information about all the identifi ers and their

respective data types is studied in detail in Section 4.2.1.2. A translation scheme that can process an input

fi le containing C language declarations and create a symbol table is discussed in Section 4.2.1.3. We

follow it up with an implementation of the translation scheme and test it on sample C programs containing

different types of declarations in Section 4.2.1.4.

4.2.1.1 Data Type A data type in a programming language can be a basic data type or a constructed

one. In the declaration of Table 4.15 we are using one of the basic data types in C language—int. The other

basic data types in C language are ‘char’, ‘fl oat’, etc. A constructed data type is constructed from aggregates

of the basic data type. Structures, arrays, functions are some of the examples of constructed data types in

C language. The following declaration shows a variable v1 belonging to a constructed data type, namely a

structure.

Table 4.17 Declaration using a constructed data type—structure

struct my_tag
{
 int a ;
 char b;
 fl oat c ;
} v1;

A data type in a programming language is associated with a set of values and a set of operators/

operations allowed on those values. In the C language declaration shown in Table 4.15, ‘counter’ is an

Integer data type. It can take any Integer value within a range. The set of operations allowed on it are +, –,

*, etc. In the case of declaration in Table 4.17, we can use the dot (.) operator on the variable v1 to access

the fi elds a, b or c as v1.a or v1.b or v1.c in any of the execution statements.

The data type information in a compiler cannot be represented by a simple integer, because we will have

to denote constructed types like pointers, records, arrays, arrays of records and many other permutations and

combinations of these. In order to represent all the basic types, constructed types and various combinations

of basic and constructed types and of data, the type information needs to be more elaborate.

A data type in a compiler is represented by a type expression. A basic data type of the language like

int or char or fl oat in C would be represented by a simple type expression. Constructed data types are

represented by type expressions in conjunction with type constructors such as array, pointer, record and

functions. A tree consisting of basic type expressions as leaves and type constructors as interior nodes can

be used for visually representing any of the constructed data types. Figure 4.13 shows a few declarations of

identifi ers and their corresponding type expression tree.

220 Principles of Compiler Design

Fig. 4.13 Type expressions for declarations

A possible implementation of the data types is having a linked list of type expressions and type

constructors as shown in Fig. 4.14. Each node in the linked list is a type constructor or a basic type

expression. The node corresponding to the type constructor for the respective type would consist of the

relevant attributes. For example, the node corresponding to the type constructor array would have an

attribute ‘no_of_elements’, which would be indicative of the number of the elements in the array. The fi eld

‘next’ in each of the node in linked list points to the next node in the type expression chain.

The linked list approach for implementing data type has been chosen in the example semantic analyser

that follows in a section.

4.2.1.2 Symbol Table The main aspect of processing declarations in a compiler is to store the variable

name along with its type information, scope information and other attributes in a symbol table.

A symbol table is one of major data structures in a compiler, which is consulted and updated in most

of the phases. Each entry in a symbol table corresponds to an identifi er. The information in a symbol table

entry is fi lled in different phases. For example, the lexical analysis phase might create the symbol table

entry, while the semantic analysis phase might add the type information to the symbol table entry. The

processing of declarations in semantic analysis phase usually results in adding the type information to a

symbol table entry. Additional information is entered in the symbol table entry, whenever the role of the

Identifi er becomes clear.

A symbol table entry has fi elds for the name of the variable and the type of the variable (a pointer to its

type expression tree). The symbol table entry also has a fi eld ‘offset’ that specifi es the relative address of

the variable in a memory layout. For example, if there were 3 variables v1, v2 and v3 of size 4 bytes each

declared in the same scope, the offset of v1 would be 0 and v2 would be 4 and v3 would be 8 bytes. There

 Semantic Analysis 221

are other segments of information in the symbol table entry that would be very useful in code generation

like whether a variable is a formal parameter to the function, the memory corresponding to the variable

name, and so on.

Fig. 4.14 Linked list implementation of data type

222 Principles of Compiler Design

There are 3 main interface functions to the symbol table. They are:

 1 insert : The insert operation inserts a symbol into the symbol table.

 2 lookup : The lookup operation is used for looking up a given symbol in the symbol table

 3 delete : The delete operation removes the entry from the symbol table.

Due to the high frequency of access, the symbol table needs to be maintained in a data structure that

allows us quick insertion and fast lookup.

A doubly linked list of the records is a simple method to implement a symbol table. Each record is a

symbol table entry containing among other things, an array for storing the name. New names are added to

the end of the list by the insert operation. The ‘lookup’ operation proceeds backwards from the end of the

list to the start, searching for the required identifi er.

int counter, block, common, tmp, tmp1;

A hash table is another data structure commonly used to implement symbol table. The hash table allows

us to insert, lookup and delete a symbol entry in almost constant time. A hash table is an array of entries

called buckets. The array can be indexed by an integer ranging from 0 to table size – 1. A hash function

converts the search key into an integer in the range of 0 to (table size – 1). For a symbol table, the search

key is the name of the identifi er. When the hash function converts two or more of the search keys (identifi er

names in case a symbol table) into the same index of the hash table, a hash collision happens. A common

collision resolving mechanism is to make a linked list of identifi ers for each bucket instead of a single

identifi er.

Let’s take a simple example to understand the terms used in the hash implementation for a symbol table.

Figure 4.15 illustrates a hash table implementation, and shows a C language declaration of 5 identifi ers and

the corresponding hash table for the symbol table. The hash function used here is the ASCII value of the

fi rst letter in the identifi er. The ASCII value of ‘b’ is 98, ‘c’ 99 and ‘t’ is 116. The collision is resolved using

a linked list of identifi ers for each bucket. The buckets contain a pointer to the linked list of Identifi ers.

The hash table size is 256. The lookup function would fetch the ASCII value of the fi rst letter in the

identifi er and then index into the hash table to get the start of the linked list. The linked list is searched for

obtaining the required identifi er.

The effi ciency of a symbol table implementation is usually judged by the time taken to insert an entry,

lookup an entry and delete an entry in a symbol table. In a linked list implementation, the insert operation

is constant in time, because we always insert at the end of the linked list. The lookup and delete operations

are linear in time with the size of the linked list. The hash table implementation provides an almost constant

in time performance for all the 3 operations of insert, lookup and delete of a symbol table entry. The

performance of these operations does depend on the hash function to a large extent. A hash function that

shows lesser rate of collisions would be more effective than the one that has higher rate of collisions.

Most of the compiled languages support the use of the same variable name in different scopes. The

symbol table implementation should allow for the fetch of the symbol table entry in tune with the scope

rules of the language. For example, C language supports the most closely nested scope rule. The listing

4.4 shows a C program in which a variable ‘counter’ is used in the function ‘my_func’. The same variable

has been declared and used in multiple scope blocks. In the C compiler, when the symbol table entry is

looked up for the variable ‘counter’, it should correspond to the most closely nested scope. In the listing

 Semantic Analysis 223

4.4, when we are trying to resolve the symbol table entry during the processing of line number 9, it should

correspond to the symbol table entry made on the processing of the declaration at line number 7 (as opposed

to line number 3). Similarly, when the line number 20 is processed, the symbol table entry for ‘counter’

corresponding to the declaration on line number 18 should be fetched.

Fig. 4.15 Hash table implementation

1 #include <stdio.h>
2
3 int counter;
4
5 int my_func()
6 {
7 int counter, j;
8
9 j=counter;
10 for(counter=0; counter < 100 ; counter++)
11 {
12 int k, counter;
13
14 k=counter;
15
16 for(counter = 0; counter < 30 ; counter++)
17 {

224 Principles of Compiler Design

18 int m, counter;
19
20 m=counter;
21 for(counter=0; counter < 20; counter++)
22 {
23 printf(“Hi”);
24 }
25
26 }
27 }
28 return(0);
29 }

Listing 4.4 A C program

A simple strategy to support the most closely nested scope in a compiler is to maintain a separate symbol

table for each scope. The symbol table for the local block or a procedure is consulted fi rst before checking

the enclosing scope. Another strategy to support the most closely nested scope in a compiler is to number

the blocks and procedures. The symbol table entry would be obtained by using the tuple consisting of the

name of the variable, procedure number, and block number.

4.2.1.3 Translation Scheme In this section, we look at some of the productions and the semantic

actions pertaining to the processing of the declarations in a semantic analyser for C language. These

productions and semantic actions reinforce the ideas on symbol tables, type expressions and other relevant

concepts that we studied previously. The translation scheme is presented in a pseudo-code form. The

complete implementation of a semantic analyser for C language is presented in Section 4.3.

We start off by looking at some of the key productions and their semantic actions associated with the

processing of declarations for a C language program as input.

The ‘declaration’ non-terminal is used for recognising a single declaration. It consists of a ‘type_spec’

and ‘declarator_list’ as given by Production 8. Some of the input code strings that match the declaration

non-terminal are given in Table 4.18

8 declaration : type_spec declarator_list ‘;’

The ‘type_spec’ denotes the type specifi cation in a declaration. Some of the input code strings that match

the ‘type_spec’ non-terminal are given in Table 4.18. The Productions 10, 11 and 12 represent cases when

the type specifi cation is a basic data type. The lexical analyser provides the tokens INT, CHAR and FLOAT

corresponding to the keywords ‘int’, ‘char’ and ‘fl oat’.

10 type_spec : INT {
 type_spec.data_type = new integer() ; /* Type expression */
}

11 | CHAR {
 type_spec.data_type = new character() ; /* Type expression */
}

12 | FLOAT {
 type_spec.data_type = new real(); /* Type expression */
}

 Semantic Analysis 225

Production 14 represents a case when the type specifi cation is a constructed data type—struct. Productions

15 and 16 are a couple of supportive productions for the same. Some of the input code strings that match the

‘type_spec’ non-terminal are given in Table 4.18. The marker ‘T’ is used as a placeholder to create a new

symbol table and also record the tag name of the structure in a global hash table called ‘type_list’.

14 type_spec : struct_specifi er {
 /* Type expression */
 type_spec.data_type = struct_specifi er.data_type ;

}

15 struct_specifi er : STRUCT IDENTIFIER ‘{’ T declaration_list ‘}’ {
 t = type_list[IDENTIFIER.name]
 struct_specifi er.data_type= t ;

 curr_sym_tab_ptr = tbl_stk.top();
 tbl_stk.pop();

}

16 | STRUCT IDENTIFIER {
 t = type_list[IDENTIFIER.name] ; /* Type */
 struct_specifi er.data_type = t ;

}

29 T : Є {
 id = val[top-1]

 tbl_stk.push(curr_sym_tab_ptr);

 curr_sym_tab_ptr = new sym_tab() ;
 curr_sym_tab_ptr->previous = tbl_stk.top() ;

 t1 = type_list[id->name.c_str()];

 if(t1 == NULL){
 t1 = new record(curr_sym_tab_ptr,id->name);
 type_list[id->name]= t1;
 }else{
 /* Already present */
 print(“struct %s defi ned multiple times \n”,id->name);
 exit(0);
 }

}

Productions 17, 18 and 19 defi ne the ‘declarator’. Production 17 is used for supporting an array

declaration. Observe that the left-recursive ‘declarator’ defi nition allows it to declare a multi-dimensional

array or say a pointer with double level of indirection. Some of the input code strings that match the

‘declarator’ non-terminal are given in Table 4.18.

A ‘declarator_list’ is used to represent a list of variables following a type specifi cation. Some of the input

code strings that match the ‘declarator_list’ non-terminal are given in Table 4.18. The semantic action for

both of them involves adding the variable into the current symbol table. The data type is fetched from the

VAL stack at a known place. The semantic actions on Productions 25 and 26 also show the detection of a

semantic error, namely the re-declaration of a variable in the same scope.

17 declarator : IDENTIFIER {
 declarator.name = IDENTIFIER.name ;
}

226 Principles of Compiler Design

18 | declarator ‘[’ CONSTANT ‘]’ {
 t = new array(CONSTANT.val) ; /* Type Constructor*/
 if(declarator1.data_type != NULL)
 declarator1.data_type->chain(t)
 }else{
 declarator1.data_type=t;
 }
 declarator = declarator1 ;
}

19 | ‘*’ declarator {
 t = new pointer() ; /* Type Constructor */
 if(declarator1.data_type != NULL)
 declarator1.data_type->chain(t)
 }else{
 declarator1.data_type=t;
 }
 declarator.type = declarator1.type ;
}

25 declarator_list : declarator {
 /* Inheriting attributes of type_spec
 (see Production 8) on stack */
 t = val[top-1].data_type ;

 if(declarator.data_type != NULL)
 declarator.data_type->chain(t)
 }else{
 declarator.data_type=t;
 }

 if(curr_sym_tab_ptr->fi nd(declarator1.name) == NULL){
 curr_sym_tab_ptr->add(declarator.name,declarator. data_type);
 }else{
 print (“Re-declaration of the Variable ‘%s’ in the same
 scope line=%d \n”,dptr->name,line_no);
 }

}

26 | declarator_list ‘,’ declarator {
 /* Inheriting attributes of type_spec
 (see Production 8) on stack */
 t = val[top-1].data_type ;

 if(declarator1.data_type != NULL)
 declarator.data_type->chain(t)
 }else{
 declarator.data_type=t;
 }

 if(curr_sym_tab_ptr->fi nd(declarator1.name) == NULL){
 curr_sym_tab_ptr->add(declarator.name,declarator.data_type);
 }else{
 print (“Re-declaration of the Variable ‘%s’ in the
same scope line=%d \n”,dptr->name,line_no);
 }
}

 Semantic Analysis 227

The Table 4.18 shows some of the non-terminals and the input code strings that are generated by the

non-terminal. The corresponding production used for generating the code string is also provided for getting

a clear understanding.

Table 4.18 Some non-terminals and the matching input code strings

Non-terminal Sample code strings

matching the non-terminal

Production Comments

1 declaration int a1,a2,a3 ; 8

2 declaration char c1,c2; 8

3 declaration struct abcd { int a;int b; } x,y,z; 8

4 declaration struct efgh tmp; 8

5 type_spec int 10

6 type_spec char 11

7 type_spec fl oat 12

8 type_spec struct abcd { int a;int b; } 14 ‘abcd’ is called as tag name

9 type_spec struct efgh 14 ‘efgh’ is called as tag name

10 declarator v1 17

11 declarator v1[100] 18

12 declarator v1[100][200] 18

13 declarator *v2 19

14 declarator_list v1,v2,v3 26

15 declarator_list v4, v5[10][20], *v6 26

The type expressions are implemented using a linked list as shown in Fig. 4.14. A base class ‘type_expr’

having a member ‘next’ for pointing to the next element in the type expression chain is used. A method

‘chain’ of the type_expr class is used to insert an element at the end of the linked list. There are derived

classes from type_expr for the basic data types like integer, character and real. The constructed data types

like record (for structure), array, function are also derived from the base class ‘type_expr’. The array class

contains member to hold the number of elements as signifi ed in Fig. 4.14. The record type expression

contains an attribute ‘fi elds’—a pointer to the symbol table of the fi elds associated with the structure. The

other attribute for the struct type expression is ‘tagname’, the tag name used for defi ning more variables of

the same structure type. A global data structure type_list contains the association between the structure’s tag

and the data type.

The scope of the declarations is supported by means of having multiple symbol tables, one for each

function block encountered and a global symbol table for the global variables. The translation scheme uses

tbl_stk—stack of pointers to symbol tables to manage the adding of a variable in appropriate symbol table.

At the beginning of a structure defi nition (Production 15 and 29) we use a marker T to push the current

symbol table pointer on the tbl_stk and start with a new symbol table. The ‘previous’ fi eld of the current

symbol table is used to store a pointer to the older symbol table. The same concept of tbl_stk can be used

for handling any declaration nested by a pair of braces, but it is left as an exercise for the reader.

The symbol table maintenance is handled by the sym_tab class. It has methods add—for adding to

the symbol table, fi nd—for fi nding a symbol in the table, and print—for printing the symbol table. The

variables (symbols) are added into the symbol table while handling every declarator in a declaration

228 Principles of Compiler Design

(Production 25 and 26). The fi elds in a structure defi nition in the input source are added into a symbol table

(attribute ‘fi elds’ of struct type expression) in Production 15.

4.2.1.4 Example 5—Declarations This section demonstrates an example program that implements

the translation scheme, part of which was described in Section 4.2.1.3 to build the symbol table from the

declarations. The program takes as input, a sample C program with some declarations of variables using

the basic data types (e.g. int) and some constructed data types (e.g. struct). The output of the example is

the contents of the symbol table in the form of symbol name and the type expression chain generated from

the processing of the declarations in the input C program. Observe that each function results in a separate

symbol table and so do the struct defi nitions. The dialog below shows the example program taking in C

programs, and printing out the symbol table details.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyzer

$ g++ -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building ex5 Binary

$ g++ -g -Wall ex5.cc semantic_analysis.cc c-small-gram.o c-small-lex.o -o ex5

This is a sample input source fi le

$ cat -n test5.c

 1 int var1;
 2 int var2[10];
 3 int var3[10][20];
 4
 5 int *var4;
 6 int *var5[50];
 7
 8
 9
 10 /* Function */
 11 int main()
 12 {
 13 var1=20;
 14 }
 15
 16 /* Another function */
 17 int ab(int one,char two, fl oat three,int four)
 18 {
 19 /* Local Variables */
 20 int h,j;
 21 char k[56][67];
 22
 23 h=10;
 24 }
 25

 Semantic Analysis 229

Parsing , creating and displaying Symbol table for the declarations

$./ex5 test5.c

Name of the Table=main Size=0

Name of the Table=ab Size=3777
Name=four Type=INTEGER Size=4 Offset=13
Name=h Type=INTEGER Size=4 Offset=17
Name=j Type=INTEGER Size=4 Offset=21
Name=k Type=ARRAY(56)->ARRAY(67)->CHAR Size=3752 Offset=25
Name=two Type=CHAR Size=1 Offset=4
Name=one Type=INTEGER Size=4 Offset=0
Name=three Type=REAL Size=8 Offset=5

Another input source fi le

$ cat -n test5a.c

 1 /* Global Structure */
 2 struct my_info
 3 {
 4 int v1,v2;
 5 char c1;
 6 struct my_info *next;
 7 } var1;
 8
 9
 10 /* Function */
 11 int main()
 12 {
 13
 14 int h;
 15
 16 h=20;
 17 }
 18

Parsing , creating and displaying Symbol table for the declarations

$./ex5 test5a.c

Name of the Table=my_info Size=13
Name=next Type=POINTER->RECORD(my_info) Size=4 Offset=9
Name=v1 Type=INTEGER Size=4 Offset=0
Name=v2 Type=INTEGER Size=4 Offset=4
Name=c1 Type=CHAR Size=1 Offset=8

Name of the Table=main Size=4
Name=h Type=INTEGER Size=4 Offset=0

4.2.2 Type Checking

In the previous section, we saw that the processing of declarations results in fi lling symbol table with

entries for every identifi er describing the type information, scope information and other essentials. In type

checking, we validate the rest of the program for usage of the identifi ers in type correct manner by using

these symbol table entries.

Type checking is the process of verifying, if each of the statements in the input source program respects

the type system of the language and report any errors found. For example, in C language program, When we

try to apply an incompatible operator like say ‘Æ’ on an integer variable, we encounter a type error because

230 Principles of Compiler Design

it violates the type system of the language. As we saw in the introductory section, some other errors in C

language program that type checking caught were assigning a fl oat value to a char pointer, de-referencing a

non-pointer variable, using the ‘.’ operator on a non-structure variable, and so on. In type checking, we also

detect some other obvious semantic errors like, say, using a ‘break’ statement outside a loop.

In a strongly typed language like C, none of the type errors go undetected. In a weakly typed language,

the type errors can go undetected resulting in exceptions at the run time.

The type errors can be detected during compile time (as we saw in C language) or when the program is

executed (as in LISP) or a combination of both. Some of the type errors can be detected at compile time,

while some can only be detected during run time. For example, using a dot operator on a non-structure

variable is a type error that can be detected by the compiler, while indexing an array out of bounds with an

instruction like a[x] can be detected only during the run time, because it is diffi cult to predict the value of x

at compile time with certainty.

The static type checking involves checking each and every statement in the input source program for

violations of the type system during the compile time. Most of the compilers also offer facility to correct

some of the type errors that can occur in a program by doing type conversion or coercion. For example,

consider a C language statement x = 5, where x is defi ned as a fl oat variable. The compiler automatically

does ‘coercion’ of the value 5 into 5.0 as required by the type system (since x is fl oat), to get cleared by

the semantic analyser. Contrasting this kind of ‘implicit’ conversions in the type by the compiler, there

are also explicit conversions done by the programmer. Consider the commonly used library routine to

dynamically allocate memory called ‘malloc’ in a C language program. This returns a pointer to void type.

The returned pointer to void is typecast to the appropriate type by the programmer. This is an example of

explicit conversion in type by the programmer.

The dynamic type checking involves checking every statement for type correctness during the

execution. The dynamic type checking requires that we evaluate every statement before execution to

determine if there is any violation of the type system specifi ed by the language. This would degrade the

performance of the program. However, it offers more freedom to the programmers. LISP is a language that

relies on dynamic-type checking. We shall be discussing about static-type checking in detail in this chapter.

In order to verify type correctness, A semantic analyser will have to frequently test if two type

expressions represent the same type. When two type expressions represent the same type, they are called

 type equivalent. There are a few ways type equivalence can be defi ned in a language.

A common way of establishing type equivalence is called the structural equivalence. In structural

equivalence, two type expressions are equivalent, only when both of them can be represented by the

identical type expression tree. Consider the declarations in the Table 4.19. We fi nd three variables x, y and

z declared in it. The Type expression tree for the variables x and y corresponding to the two declarations

are identical. The type expression tree of variable z is different from x or y as evident from Fig. 4.16. The

variables x and y are structurally equivalent. C language considers two expressions to be equivalent during

the type checking, if they are structurally equivalent. In the statements following the declaration in Table

4.19, we can assign x = y because they are structurally equivalent. However, we cannot assign z = x because

z and x are not structurally equivalent.

Table 4.19 Declarations

char *x;
char *y;

fl oat z ;

 Semantic Analysis 231

Fig. 4.16 Type expression tree

The dialog below shows two C programs given as input to GNU C compiler. The fi rst program adheres

to structural equivalence in all of the statements and the compiler successfully compiles it. The second

program violates the structural equivalence in some of the statements. The compiler emits error messages

indicating the lines where type equivalence is not respected.

C Program using variables following structural equivalence

$ cat -n test6a.c

 1 #include <stdio.h>

 2

 3 void my_func(char *);

 4

 5 char str1[]=”String 1”;

 6 char str2[]=”String 2”;

 7

 8 int main()

 9 {

 10 char *x;

 11 char *y;

 12

 13 x = str1;

 14 y = str2;

 15

 16 /* Function my_func() can be called with parameter x or y */

 17 my_func(x);

 18 my_func(y);

 19

 20 /* x and y are type equivalent and can be assigned either way */

 21 x = y ;

 22 y = x ;

 23

 24 return(0);

 25 }

 26

 27 void my_func(char *p)

 28 {

 29 printf(“%s\n”,p);

 30 }

232 Principles of Compiler Design

The C Compiler compiles it successfully

$ gcc -Wall test6a.c -o test6a

C Program using variables that do not follow structure equivalence

$ cat -n test6b.c

 1 #include <stdio.h>
 2
 3 void my_func(char *);
 4
 5 char str1[]=”String 1”;
 6 char str2[]=”String 2”;
 7
 8 int main()
 9 {
 10 char *x;
 11 fl oat y;
 12
 13 x = str1;
 14 y = str2;
 15
 16 /* Function my_func() is being called with appropriate type */
 17 my_func(x);
 18
 19 /*
 20 Function my_func() is being called with a fl oat
 21 as parameter instead of a pointer to char
 22 */
 23
 24 my_func(y);
 25
 26 /* x and y are not type equivalent and cannot be assigned
 27 to each other*/
 28 x = y ;
 29 y = x ;
 30
 31 return(0);
 32 }
 33
 34 void my_func(char *p)
 35 {
 36 printf(“%s\n”,p);
 37 }

The C Compiler rejects it with appropriate error messages

$ gcc -Wall test6b.c -o test6b

test6b.c: In function ‘main’:
test6b.c:14: error: incompatible types in assignment
test6b.c:24: error: incompatible type for argument 1 of ‘my_func’
test6b.c:28: error: incompatible types in assignment
test6b.c:29: error: incompatible types in assignment

C language considers two expressions to be equivalent during the type checking, if they follow structural

equivalence. However, there is one exception to this rule with regard to structures. The C language supports

another kind of type equivalence called the name equivalence with regard to structures. To understand the

name equivalence, we need to be familiar with the idea of type name. Most compiled languages support

the notion of a user assigning a name to the type expressions called as type name. The typedef mechanism

 Semantic Analysis 233

in C language is an example of user assigning a name to the type expression. The type name can then be

used to defi ne new variables. The following C language declaration shows two variables x and y belonging

to the type name ‘complex’. The ‘complex’ is a type name that was defi ned by the user using the typedef

mechanism. In name equivalence, two type expressions are equal only if they have the same type name. In

the declarations below x and y are name equivalent. The variable z is not name equivalent with either x or y

despite having identical tree representation for the data type. In the statements following the declaration, we

can assign x = y because they are name equivalent. However we cannot assign z = x because z and x are not

name equivalent.

typedef struct complex
{
 double real_part;
 double imaginary_part;
} complex;

complex x;
complex y;

typedef struct complex_again
{
 double real_part;
 double imaginary_part;
} complex_again;

complex_again z ;

The dialog below shows how the GNU C compiler behaves with respect to name equivalence of

structures. It compiles successfully, the programs adhering to name equivalence with respect to structures.

It emits error messages, when name equivalence is not respected.

C Program showing Name equivalence with regard to structures

$ cat -n test6c.c

 1 #include <stdio.h>

 2

 3 typedef struct complex

 4 {

 5 double real_part;

 6 double imaginary_part;

 7 } complex;

234 Principles of Compiler Design

 8

 9

 10 void my_func(complex v1);

 11

 12 int main()

 13 {

 14 complex x;

 15 complex y;

 16

 17 y.real_part =10;

 18 y.imaginary_part = 20;

 19

 20 /* x and y are name equivalent !!! */

 21 x = y ;

 22

 23 /*

 24 my_func called with a variable of appropriate type - complex

 25 */

 26 my_func(x);

 27

 28 return(0);

 29 }

 30

 31 void my_func(complex v1)

 32 {

 33 v1.real_part = 10;

 34 v1.imaginary_part = 20;

 35 }

The C Compiler compiles it successfully

$ gcc -Wall test6c.c -o test6c

C Program with assignment between struct variables that are not name equivalent

$ cat -n test6d.c

 1 #include <stdio.h>

 2

 3 /* Two structure defi nitions with Identical fi eld types and names */

 4 typedef struct complex

 5 {

 6 double real_part;

 7 double imaginary_part;

 8 } complex;

 9

 10 typedef struct complex_again

 11 {

 12 double real_part;

 13 double imaginary_part;

 14 } complex_again;

 15

 16

 17 void my_func(complex v1);

 Semantic Analysis 235

 18

 19 int main()

 20 {

 21 complex x;

 22 complex_again y;

 23

 24 y.real_part =10;

 25 y.imaginary_part = 20;

 26

 27 /* x and y are NOT name equivalant !!! */

 28 x = y ;

 29

 30 /*

 31 my_func called with a variable of wrong type - complex_again

 32 */

 33 my_func(y);

 34

 35 return(0);

 36 }

 37

 38 void my_func(complex v1)

 39 {

 40 v1.real_part = 10;

 41 v1.imaginary_part = 20;

 42 }

The C Compiler rejects it with appropriate error messages

$ gcc -Wall test6d.c -o test6d

test6d.c: In function ‘main’:

test6d.c:28: error: incompatible types in assignment

test6d.c:33: error: incompatible type for argument 1 of ‘my_func’

Having understood the idea of types and type equivalence, we are now in a position to look an algorithm

that establishes the type equivalence of two type expressions. Algorithm 4.6 shows a routine that can be

used to check the type equivalence of two type expressions representing data types in C language. This

routine can check the equivalence of type expressions using 4 basic data types, namely integer, char, real

and void. It also supports the checking of type equivalence of constructed data types like record, array,

pointer and function. Just as we did in the processing of the declarations in Section 4.2.1.3, we confi ne

ourselves to simple data types without the use of any qualifi ers like unsigned, long, etc.

int type_equal(type_expr *ty1, type_expr *ty2)

{

 type_expr *t1,*t2;

 int b1,b2;

 t1 = ty1;

 t2 = ty2;

 /* reached the end of the type chain */

 if ((t1 == NULL) && (t2 == NULL)){

236 Principles of Compiler Design

 return(TRUE);

 }

 /* One of them has terminated */

 if ((t1 == NULL) || (t2 == NULL)){

 return(FALSE);

 }

 b1 = t1->gettype();

 b2 = t2->gettype();

 /* Not the same Kind */

 if(b1 !=b2){

 return(FALSE);

 }

 switch(b1)

 {

 case INTEGER:

 case CHARACTER:

 case REAL:

 case VOID_TYPE : break;

 case RECORD : {

 record *r1,*r2;

 r1 = (record *)t1;

 r2 = (record *)t2;

 if(r1->tagname != r2 ->tagname){ /* Name Equivalance for Structures */

 return(FALSE);

 }

 break;

 }

 case ARRAY: {

 array *a1,*a2;

 a1 = (array *)t1;

 a2 = (array *)t2;

 if(a1->limit != a2->limit){ /* Length of the Array */

 return(FALSE);

 }

 break;

 }

 case POINTER: break;

 case FUNCTION: {

 function *f1,*f2;

 int n,i;

 f1 = (function *)t1;

 f2 = (function *)t2;

 if(f1->no_of_args != f2 -> no_of_args){ /* Number of Arguments */

 return(FALSE);

 }

 n = f1->no_of_args ;

 for(i=0;i<n;i++){

 Semantic Analysis 237

 /* Checking Each argument for equivalence*/

 if(!type_equal(f1->args_list[i],f2->args_list[i])){

 return(FALSE);

 }

 }

 break;

 }

 case LABEL:

 case CONSTAN:

 case TYPE_ERROR: break;

 }

 return(type_equal(t1->next,t2->next));

Algorithm 4.6 Type equivalence

The following are the highlights of Algorithm 4.6.

∑ This algorithm works on the linked list representation of the type expression as illustrated in Fig. 4.14.

∑ The two type expressions are not equal, if they both do not belong to the same kind. The kind can be

a basic data-type-like integer or a constructed data-type-like array or structure.

∑ Two type expressions belonging to the basic data type (e.g. integer, char, real and void) are equal if

they are of the same kind. The constructed data types need to be compared for the other attributes

as well. For example, two type expressions representing arrays are equal only if they match on the

number of elements in the array, apart from the fact they both denote the same kind—array. In a

similar manner, two type expressions representing structures (records) are equal if they have the same

tag name (name equivalence), apart from the fact that they both denote the same kind—record. The

type expressions representing functions are considered equal, if the number of arguments, type of

each argument, and the return type are identical.

∑ The algorithm is recursive in nature. It checks the current node for type equivalence and then

invokes itself recursively passing the next node in the type expression chain. For example, consider

comparison of two Integer arrays ‘a’ and ‘b’ having 50 elements each, as shown in Fig. 4.17 along

with the type expressions. The fi rst invocation of ‘type_equal’ function would check the fi rst node

of a’s type expression chain (array), comparing it with the fi rst node of b’s type expression chain. On

the event of being successful in comparison, the ‘type_equal’ is invoked again recursively, this time

comparing the ‘int’ Node.

Fig. 4.17 Type expression representing an array of 50 integers

238 Principles of Compiler Design

The algorithm to check the equivalence of two type expressions would be extensively used in the

translation scheme for semantic analysis of input C language programs.

4.2.2.1 Translation Scheme In this section, we look at some of the productions and the semantic

actions pertaining to the type checking in a semantic analyser for C language. These productions and

semantic actions reinforce the ideas on type checking and other relevant concepts that we studied

previously. The semantic actions are presented in a pseudo-code form. The complete implementation of a

semantic analyser for C language is presented in Section 4.4.

An ‘stmt’ non-terminal is used for recognising C language statement. It takes the form of expression

followed by a semicolon as given by Production 30. Table 4.20 shows ‘stmt’ and some of the other non-

terminals used in the productions below and the input code strings that are generated by those non-terminals.

In an expression of the form ‘unary_expr = expr’ (Production 31), the assignment is valid only when the

LHS and the RHS belong to the same data type. This is checked by the type_equal() function. The semantic

analyser reports a type error in case the data type of LHS and the RHS in the assignment statement do not

match. Assigning the void data type to ‘expr’ is a means of propagating the data type to the statement. The

semantic analyser reports an error in the statement if the expr is anything other than void type.

30 stmt : expr ‘;’
{
 t = expr.type
 if(t->get_kind() != VOID){
 print “Semantic error in line =%d”,line_no
 }
}

31 expr : unary_expr ‘=’ expr
{
 t1 = unary_expr.type
 t2 = expr.type
 if(type_equal(t1,t2)){
 t = new void_type()
 }else{
 t = new type_error()
 }
 expr.type = t
}

An Identifi er’s type is determined by its declaration. We had seen earlier that the processing of the

declaration results in a symbol table entry. In Production 32, we fetch the symbol table entry corresponding

to the identifi er using the lookup() routine. The Identifi er’s type attribute is stored as a part of the symbol

table entry. The semantic analyser reports an error, if the variable used is not found in the symbol table.

32 unary_expr : IDENTIFIER
{
 sym_tab_entry_ptr = lookup(IDENTIFIER.name)
 if(sym_tab_entry != NULL){
 t = sym_tab_entry_ptr -> type
 }else{
 t = new type_error();

 printf(“Variable ‘%s’ not defi ned, but used in line %d
 \n”,IDENTIFIER.name,line_no);
 }
 unary_expr.type = t
}

 Semantic Analysis 239

A binary expression takes the form of a unary expression as given by Production 42. When two binary

expressions of the integer kind are combined using an operator like ‘+’, ‘–’ etc, the type of the resulting

binary expression is also an integer. The semantic analyser reports a type error in case any one of the

combined binary expressions is not an integer. This type checking is stricter than the normal C compilers,

which would allow the component binary expression to be a ‘real’ and perform automatic coercion to

Integer. The toy compiler ‘mycc’ only supports Integer arithmetic.

38 binary_expr : binary_expr ‘*’ binary_expr
{

b1 = binary_expr1.type ;
b2 = binary_expr2.type ;

k1 = b1->get_kind()
k2 = b2->get_kind()

if((k1 == INTEGER) and (k2 == INTEGER)) {
 t = new integer() ;

}else{
 print “Incompatible Operand ‘*’ in line=%d”,line_no
 t = new type_error()

}
binary_expr.type = t

}

42 binary_expr : unary_expr
{

unary_expr_node *u;
binary_expr_node *be;

be = new binary_expr_node();
u = (unary_expr_node *)$1;

binary_expr.type=unary_expr.type;
}

The data type of unary expression performing array access in the form of say arr[5], is given by the

‘next’ fi eld of the type expression chain similar to the one we saw in Fig. 4.14. The semantic analyser in

our toy compiler reports an error, if we are indexing on a non-array. Again, this is slightly different from

the production C compilers that would rightly allow pointers to be indexed. The semantic analyser reports a

type error in case the index of the array is not an integer.

43 unary_expr : unary_expr ‘[’ expr ‘]’
{
 ut = unary_expr1.type
 kind = ut->get_kind()

 if(kind != ARRAY){
 print “Incompatible Operand ‘[’ in line=%d”,line_no
 t = new type_error()
 }else{
 et = expr.type
 ekind = et->get_type()

 if(ekind != INTEGER){
 print “Array index is not integer in line =%d”,line_no
 t = new type_error()
 }else{
 t = ut->next
 }
 }
 unary_expr.type = t
}

240 Principles of Compiler Design

For a unary expression using the address of operator in the form of say ‘&var1’, the type is given by

a pointer to the type of the variable var1. This is done by adding a pointer node at the head of the type

expression chain of the variable var1. The semantic analyser reports a type error in case, we are trying to

use the operator ‘&’ on constants.

44 unary_expr : ‘&’ unary_expr
{
 ut = unary_expr1 -> type
 kind = ut->get_kind()

 if((kind == CONSTANT) || (kind == REAL_CONSTANT)){
 printf(“Incompatible operand to & used in line %d \n”,line_no);
 t = new type_error();
 } else {
 t = new pointer()
 t->chain(unary_expr1.type)
 }
 unary_expr.type = t
}

The type for a unary expression using the ‘*’ operator of the form say ‘*ptr’ is given by the ‘next’ node

in the type expression chain. The semantic analyser reports a type error in case the data type of ‘ptr’ is not

of the kind ‘pointer’.

45 unary_expr : ‘*’ unary_expr
{
 ut = unary_expr1 -> type
 kind = ut->get_kind()

 if(kind != POINTER){
 printf(“Incompatible operand to & used in line %d \n”,line_no);
 t = new type_error();
 } else {
 t = ut -> next
 }
 unary_expr.type = t
}

The data type of unary expression performing record access in the form of say ‘myrec.fi eld1’, is fetched

from the symbol table entry pertaining to ‘fi eld1’. The symbol table for the fi elds in a record is stored in

the fi rst node of the type expression chain as seen earlier in Fig. 4.14. The semantic analyser reports a type

error, if the expected fi eld name is not present in the symbol table. The unary expression for record access

in the form of say ‘ptr->fi eld1’ is also dealt similarly by fetching the type of ‘fi eld1’ from the symbol table

of the record. Again, the semantic analyser reports a type error if the expected fi eld name is not present in

the symbol table.

The data type of a unary expression performing function invocation in the form of say my_func(), is

given by the return type, which is stored in the fi rst node of the type expression tree as seen earlier in

Fig. 4.14. The semantic analyser reports a type error if my_func is not of the kind ‘function’. In case of

function invocation with parameters, the semantic analyser matches the data type for all the formal

parameters passed in the invocation with the corresponding type for arguments recorded in the fi rst node

of the type expression chain of the function as seen in Fig. 4.14. In case there is no mismatch, the resultant

unary expression is assigned the return data type of the function. In the event of mismatch, the semantic

analyser reports a type error.

 Semantic Analysis 241

46 unary_expr : unary_expr ‘.’ IDENTIFIER
{
 ut = unary_expr1.type
 kind = ut -> get_kind()

 if(kind != RECORD){
 print “Incompatible Operator ‘.’ used in line=%d”,line_no
 t = new type_error()
 }else{
 rt = (record *)ut /* Record Type */
 sym_tab_ptr = rt->sym_tab
 fi eld_entry = lookup(IDENTIFIER.name,sym_tab_ptr)

 if(fi eld_entry == NULL){
 print “Unknown Field used in line=%d”,line_no
 t = new type_error()
 }else{
 t = fi eld_entry -> type
 }
 }
 unary_expr.type = t

}

47 unary_expr ‘->’ IDENTIFIER
{

 ut = unary_expr1.type

 kind = ut -> get_kind()

 if(kind != POINTER){

 printf(“Incompatible operator ‘->’ used in line %d \n”,line_no)

 t = new type_error()

 }else{

 nt = ut->next

 nkind = nt ->get_kind()

 if(nkind != RECORD){
 printf(“Incompatible operator ‘->’ used in line %d
 \n”,line_no)
 t = new type_error()

 }else{

 rt = (record *)ut /* Record Type */

 sym_tab_ptr = rt->sym_tab

 fi eld_entry = lookup(IDENTIFIER.name,sym_tab_ptr)

 if(fi eld_entry == NULL){

 print “Unknown Field used in line=%d”,line_no

 t = new type_error()

 }else{

 t = fi eld_entry->type

 }

 }

 }

 unary_expr.type = t

}

242 Principles of Compiler Design

76 unary_expr : unary_expr ‘(‘ ‘)’
{
 ut = unary_expr1.type
 kind = ut -> get_kind()

 if(kind != FUNCTION){
 printf(“Invoking a Non Function in line %d \n”,line_no)
 t = new type_error()
 }else{
 ft = (function *)ut /* Function Type */
 if(ft->no_of_args != 0){
 print “Expected %d arguments in line %d”,
 unary_expr1.type.no_of_args,line_no
 t = new type_error()
 } else {
 t = ut->ret_type;
 }
 }
 unary_expr.type = t
}

77 unary_expr | unary_expr ‘(’ args_list ‘)’

{

 ut = unary_expr1.type

 kind = ut -> get_kind()

 if(kind != FUNCTION){

 printf(“Invoking a Non Function in line %d \n”,line_no)

 t = new type_error()

 }else{

 ft = (function *)ut /* Function Type */

 no_of_args = ft->no_of_args

 mismatch_in_func_args = 0

 for(i=0;i < no_of_args;i++){

 if(!type_equal(ft->args[i],args_list.args[i])){

 mismatch_in_func_args ++;

 break;

 }

 }

 if(mismatch_in_func_args == 0){

 t = ft->ret_type;

 }else{

 printf(“Function Invocation used in line %d does not

 match with its Defi nition/Declaration \n”,line_no);

 t = new type_error()

 }

 }

 unary_expr.type = t

}

 Semantic Analysis 243

Table 4.20 shows some of the non-terminals and the input code strings that are generated by the non-

terminal. The corresponding production used for generating the code string is also provided for getting a

clear understanding.

Table 4.20 Some non-terminals and the matching input code strings

Non-

terminal

Sample code strings matching

the non-terminal

Production Comments

1 stmt x = y ; 30

2 unary_expr v1 32

3 binary_expr v1 42

4 binary_expr v1*v2 38

5 expr x = y 31

6 expr a = b + c 31

7 unary_expr arr[50] 43

8 unary_expr arr[index] 43

9 unary_expr *ptr 45

10 unary_expr &v1 44

11 unary_expr a.fi eld1 46

12 unary_expr ptr->fi eld1 47

4.3 A SEMANTIC ANALYSER FOR C LANGUAGE
This section demonstrates the semantic analyser module of our toy C compiler (mycc) taking in sample C

programs, performing semantic analysis and reporting semantic errors.

The semantic analyser implements the translation scheme that performs the semantic analysis of an

input C program, parts of which were described in Sections 4.2.1.3 and 4.2.2.1. It evaluates the semantic

rules during the bottom-up parsing. The semantic analyser detects the common scenarios where there is a

mismatch in the types. The semantic analyser does not perform coercion among the friendly types like say

fl oat to integer. As seen in the translation scheme, the semantic analyser emits error messages depending on

the semantic error in the input C program. The translation scheme is not comprehensive enough to handle

all the aspects of C language. It operates on a smaller subset of the C language to bring out the ideas on the

type-checking clearly.

We line up the same input C programs to our semantic analyser as we did for GNU C compiler in

Example 1. It is evident from the dialog below, that our semantic analyser detects the semantic errors in

those input C programs excepting for the one where there is a break statement without loop construct.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyzer

244 Principles of Compiler Design

$ g++ -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building the Semantic Analyzer Binary

$ g++ -g -Wall main.cc semantic_analysis.cc c-small-gram.o c-small-lex.o -o sem_analyser

A C Program using an undeclared variable

$ cat -n sem_err1.c

 1

 2 int main()

 3 {

 4 int a,b;

 5

 6 a=1;

 7 b=2;

 8 c=3; /* Use of undeclared variable */

 9

10 a = b + c;

11

12 return(a);

13

14 }

The Semantic Analyzer detects it and reports the error

$./sem_analyser sem_err1.c

Variable ‘c’ not defi ned, but used in line 8

Semantic error in line 8 (LHS and RHS of ‘=’ are not the same type)

Variable ‘c’ not defi ned, but used in line 10

Incompatible operands for the operator ‘*’ in line no =10 (Integer Operands allowed)

Semantic error in line 10 (LHS and RHS of ‘=’ are not the same type)

Semantic Errors in the Program

A C Program Assigning a fl oat to char pointer

$ cat -n sem_err2.c

 1

 2 int main()

 3 {

 4 char *a;

 5

 6 fl oat b,c;

 7

 8 b = 30.45;

 9 c = 40.36;

10

11 a = b + c; /* Assigning a fl oat to char pointer */

12

13 return(0);

14

15 }

The Semantic Analyzer detects it and reports the error

$./sem_analyser sem_err2.c

Incompatible operands for the operator ‘*’ in line no =11 (Integer Operands allowed)

 Semantic Analysis 245

Semantic error in line 11 (LHS and RHS of ‘=’ are not the same type)

Semantic Errors in the Program

A C Program using ‘->’ operator on a fl oat Variable

$ cat -n sem_err3.c

 1

 2 int main()

 3 {

 4

 5 fl oat b,c;

 6

 7 b = 30.45;

 8 c = 40.36;

 9

10 b = c -> f1; /* using ‘->’ operator on a fl oat Variable */

11

12 return(0);

13 }

The Semantic Analyzer detects it and reports the error

$./sem_analyser sem_err3.c

Incompatible operator ‘->’ used in line 10

Semantic error in line 10 (LHS and RHS of ‘=’ are not the same type)

Semantic Errors in the Program

A C Program using break statement in a non-loop context

$ cat -n sem_err4.c

 1

 2 int main()

 3 {

 4 fl oat b,c;

 5

 6 b = 30.45;

 7 c = 40.36;

 8

 9 b = c ;

10

11 break; /* using break statement in a non-loop context */

12

13 return(0);

14 }

The Semantic Analyzer does NOT detect it and report error

$./sem_analyser sem_err4.c

Semantically correct Program

A C Program using a fl oat variable as function

$ cat -n sem_err5.c

 1

 2 int main()

 3 {

 4 fl oat b,c;

246 Principles of Compiler Design

 5

 6 b = 30.45;

 7 c = 40.36;

 8

 9 b = c() ; /* using a fl oat variable as function */

10

11 return(0);

12 }

The Semantic Analyzer detects it and reports the error

$./sem_analyser sem_err5.c

Trying to invoke a non Function in line 9

Semantic error in line 9 (LHS and RHS of ‘=’ are not the same type)

Semantic Errors in the Program

A C Program declaring a variable twice in the same scope

$ cat -n sem_err6.c

 1

 2 int main()

 3 {

 4 int a;

 5

 6 int b,c;

 7 fl oat a; /* declaring a variable twice in the same scope */

 8

 9 b = 30;

10 c = 40;

11

12 a = b + c;

13

14 return(a);

15

16 }

The Semantic Analyzer detects it and reports the error

$./sem_analyzer sem_err6.c

Re-declaration of the Variable ‘a’ in the same scope line=7

Semantic Errors in the Program

 SUMMARY

In lexical analysis of a compiler the input program is split into tokens. In syntax analysis, the ordering

of the tokens is checked to see if they formed valid syntax of the language. All the statements that are

valid from syntax point of view are not legal instructions. For example, a statement in a C language

program x = y() is valid from syntax point of view. However, it is not a legal statement, if y is defi ned

as an integer instead of being defi ned as a function. In semantic analysis, the input source is checked

to see if all the statements are legal in accordance with the language rules. The semantic analysis

reports the illegal statements for the user to correct them. Some of the common errors that semantic

 Semantic Analysis 247

analyser reports in the case of C language input programs are shown in the dialog of the opening

section.

In order to perform semantic analysis, we make use of a formalism called as syntax-directed

translation (SDT). The syntax-directed translation allows us to specify and implement a semantic

analyser. In syntax-directed translation, we identify the attributes of the grammar symbols in the

context-free grammar and specify semantic rules relating those attributes. The semantic rules are

associated with the productions. The semantic rules are evaluated to cause valuable side-effects

like insertion of information into the symbol table, semantic checking, issuing of an error message,

generation of intermediate code, and so on. There are 3 methods of evaluating the semantic rules

in a syntax-directed defi nition that we discussed, namely: (1) translation interleaved with parsing,

(2) parse tree method, and (3) rule-based method.

The semantic analysis consists of two main tasks: (1) processing the declarations and adding type

information to the entries in the symbol table, and (2) examining the rest of the program to ensure

that the identifi ers are used correctly adhering to the type compatibility conventions defi ned by the

language. This is called type checking.

We studied some of the productions and their semantic actions pertaining to declarations in the

semantic analyser of C language programs in Section 4.2.1.3. We studied some of the productions and

their semantic actions pertaining to type checking in the semantic analyser of C language programs in

Section 4.2.2. The complete semantic analyser for C language programs was presented in Section 4.3.

 REVIEW QUESTIONS AND EXERCISES

 4.1 What is semantic analysis? Give some examples of errors that are detected during semantic

analysis.

 4.2 State whether the following statements are true or false:

 (a) A semantic analyser strips out the comments and white spaces from input source program.

 (b) Semantic analysis involves verifying if the input source forms a legal set of instructions in

accordance with the language rules.

 (c) A semantic analyser checks if all the variables are declared before use.

 (d) A semantic analyser checks if the operators are used on compatible operands.

 4.3 What are the main tasks involved in semantic analysis? How is it different from syntax analysis?

Illustrate with an example.

 4.4 What is a syntax-directed defi nition? What are its main characteristics? Illustrate with an

example.

 4.5 Explain the terms: (a) decorated parse tree, (b) dependency graph, (c) inherited and synthesised

attributes. Illustrate with examples.

 4.6 How do we evaluate semantic rules in a syntax-directed defi nition? What are the common

methods used for evaluating semantic rules?

 4.7 What kinds of syntax directed defi nitions are suited for evaluation of semantic rules during the

parsing? Explain with an example.

 4.8 What is a translation scheme? How is it different from a syntax-directed defi nition? Illustrate the

order of execution of semantic actions in a translation scheme?

248 Principles of Compiler Design

 4.9 How do we evaluate synthesised and inherited attributes in the semantic rules during bottom-up

parsing? Illustrate with an example.

 4.10 How do we construct a top-down parser that can evaluate semantic rules during the parsing for

an L-attributed defi nition? Illustrate with an example.

 4.11 Describe the parse tree method of evaluating semantic rules. What are its limitations?

 4.12 How do we evaluate semantic rules using the rule-based method? Describe a recursive evaluator

with an example.

 4.13 How do you represent a data type in a compiler? Explain an implementation approach for storing

the data types in a compiler?

 4.14 What is a symbol table? Explain how the symbol table in a compiler can be implemented by a

hash table.

 4.15 Explain some of the productions and the semantic actions pertaining to the processing of the

declarations in a semantic analyser for C language.

 4.16 Explain static and dynamic type checking with examples.

 4.17 What is structural equivalence? Give examples of variables in C language that are structurally

equivalent and structurally different.

 4.18 What is name equivalence? In what context is name equivalence used during the type checking?

Illustrate with an example in C language.

 4.19 Write an algorithm to check the equivalence of two type expressions in C language represented

by a linked list.

 4.20 Explain some of the productions and the semantic actions pertaining to the type checking in a

semantic analyser for C language.

INTERMEDIATE CODE GENERATION

Introduction
The front end of a compiler consists of lexical analysis, syntax analysis,
semantic analysis and intermediate code generation. We have studied
about lexical analysis, syntax analysis and semantic analysis in the
previous chapters. In this chapter, we discuss about how to take the
syntactically and semantically correct input source and generate
intermediate code from it. The intermediate code is used by the back
end of the compiler for generating the target code.

We begin the discussion by understanding the common forms of
intermediate code used in compilers (Section 5.1). In Section 5.2, we
take up the translation of common programming constructs in high
level languages like C into intermediate code. We take a subset of the
‘C’ language as our reference source language and learn about the
challenges associated with the translation of programming constructs
like if-else, while, switch-case, etc. into intermediate code.

5

5.1 INTERMEDIATE FORMS

In this section, we study about the different forms of intermediate code that are commonly

found in the compilers. Before we get into the details of the various forms of intermediate

code that the input source can be translated into, let us fi rst see why we need to translate

the input source into an intermediate form and why not generate the fi nal machine code

itself.

250 Principles of Compiler Design

Consider a monolithic compiler for C language that generates machine instructions directly from

the input source for an 80¥86 processor system. Let’s say it needs to be modifi ed to generate machine

instructions for SPARC processor system. The effort involved in modifying the 80¥86-based compiler for

re-targeting to SPARC platform is high. It requires the intricate knowledge of the machine instructions of

both the 80¥86 system as well as SPARC System. Also, the translation to fi nal machine code from the input

source language makes the generation of optimal code diffi cult because it would not have the context of the

entire program.

Consider another compiler that is broken into modular elements called as front end and the back end, as

explained in Chapter 1. The re-targeting of such a compiler from 80¥86 to SPARC system is illustrated in

Fig. 5.1. The front end of the compiler for a source language remains same irrespective of the machine code

generated. The output of the front end of the compiler is an intermediate form that does not depend on the

specifi cs of the processor. The back end of the compiler converts the intermediate code into the respective

machine instructions as required. This approach allows the re-use of a large portion of the compiler without

modifi cation during the re-targeting to a different processor.

Fig. 5.1 Retargeting of a compiler

Some of the advantages in this approach of breaking up the compiler into front end and back end are:

 1. It is easy to re-target the compiler to generate code for newer and different processors. As seen in

the discussion previously, the re-targeting of the compiler could be highly effort intensive but for the

presence of intermediate code.

 2. The compiler can be easily extended to support an additional input source language by adding the

required front end and retaining the same back end.

 3. It facilitates machine independent code optimisation. The intermediate code generated by the front

end can be optimised by using several specialised techniques. This optimisation is different from the

target code optimisation that can be done during the code generation for the actual processor by the

back end system.

Most of the modern compilers take this approach of partitioning the job of the compiler into front end

and back end.

 Intermediate Code Generation 251

The front end typically includes lexical analysis, syntax analysis, semantic analysis, intermediate code

generation and its optimisation. The back end takes the optimised intermediate code and performs code

generation for the target processor. A code optimisation specifi c to the processor is also performed by the

backend to produce the fi nal output.

What is intermediate code? The intermediate code is a translated form of the input source stored in some

data structure like array, tree, etc. The back end generates the target code by traversing this data structure.

The intermediate code is also called as intermediate representation (IR).

There are two commonly used intermediate code forms in compilers that we study in this chapter. They

are:

 1. Three address code (TAC)

 2. Abstract syntax tree (AST)

We study about each of them in detail in the next two sections.

5.1.1 Three Address Code

The three address code (TAC) form of intermediate code consists of a list of statements called as the three

address code statements. Each TAC statement is a record consisting of 4 fi elds, An operator, argument1,

argument2 and a result. The argument1, argument2 and the result are pointers to symbol table entries

pertaining to programmer defi ned or compiler-generated variables. The operator fi eld holds a mnemonic for

a particular operation like addition, subtraction, etc. The name—‘three address code’ comes from the fact

that there are 3 addresses involved in each of these instructions, argument1, argument 2 and the result.

An example of a TAC statement is shown below.

Operator Argument 1 Argument 2 Result

ADD y z x

For the sake of readability, the arguments and the result fi elds are shown as name of variables, they are

actually pointers to symbol table entries pertaining to those variables. In the above example, the argument 1,

argument 2 and result are pointers to symbol table entries pertaining to the variables y, z and x respectively.

This TAC statement represents a computation, where x is assigned the sum of y and z given textually by

x : = y + z

The following shows a few more TAC statements and the computation that they represent, in textual

form.

Operator Argument 1 Argument 2 Result

SUB y z x x := y – z

MUL y z x x := y * z

ADDR_OF y – x x := &y

UMINUS y – x x := –y

Table 5.1 shows a couple of C language statements and their equivalent three address code statements.

This gives an idea on translation from C language instructions to TAC.

252 Principles of Compiler Design

Table 5.1 Input C-statements and the translated TAC

Input C statement TAC statements Comments

a = b – c + d ; _t1 := b – c
_t2 := _t1 + d
a := _t2 ;

_t1 and _t2 are compiler generated
temporaries. Note that one C statement
is transformed into multiple TAC
statements

p_new = p + ((p * n * r) /100) _t1 := p * n
_t2 := _t1 * r
_t3 = _t2 / 100
p_new = p + _t3

_t1,_t2 and _t3 are compiler generated
temporaries. Note that one C statement
is transformed into multiple TAC
statements

The number of allowable operators (like ADD, SUB, etc.) is an important factor in the design of an

intermediate representation like three address code. One end of the spectrum is a restricted operator set,

which allows for easy portability to multiple architectures. A restricted feature set would mean that the front

end would generate a long list of TAC instructions, forcing the optimiser and code generator to do the bulk

of work. At the other end of the spectrum is a feature rich operator set in the intermediate language that

allows one to take advantage of an advanced processor, but is diffi cult to port on to low-end processors. The

usual approach is to have a minimum set of allowable operators in Intermediate language, whose equivalent

machine language statements would be invariably available on any processor.

The following table shows a complete list of TAC operators that we would be using in this book.

Table 5.2 TAC operators

TAC operator Sample TAC instruction
Textual

representation
Description

1 ASSIGN
ASSIGN y x

x := y x gets assigned the result of

y op z

2 ADD
ADD y z x

x := y + z x gets assigned the result of y

added to z

3 MUL
MUL y z x

x = y * z x gets assigned the result of y

multiplied by z

4 DIV
DIV y z x

x := y / z x gets assigned the result of y

divided by z

5 SUB
SUB y z x

x := y – z x gets assigned the result of y

minus z

6 UMINUS
UMINUS y x

x := – y x gets assigned the value of –y

7 L_INDEX_ASSIGN
L_INDEX_

ASSIGN
y i x

x[i] := y x[i] denotes the content of a

location which is i memory

units away from the pointer

contained in x.

x[i] gets assigned the value of y.

 Intermediate Code Generation 253

8 R_INDEX_ASSIGN
R_INDEX_

ASSIGN
y i x

y := x[i] Again x[i] denotes the content

of a location which is i

memory units away from the

pointer contained in x.

y gets assigned the value of x[i].

9 ADDR_OF
ADDR_OF y x

x = &y The address of the variable y

is assigned to x. The operator

& can be used to fetch the

address of any variable,

whether it is a compiler

generated temporary or a user-

defi ned variable.

10 LBL
LBL my_lbl

lbl my_lbl This marks the next TAC

statement as the one with the

label as ‘my_lbl’.

11 GOTO
GOTO my_lbl

goto my_lbl This sample TAC statement

transfers the control to the

TAC statement marked as

my_lbl.

12 LT
LT x y my_lbl

if x < y goto

my_lbl

If the value of x is less than

y, the control is transferred

to the TAC statement marked

my_lbl.

13 GT
GT x y my_lbl

if x > y goto

my_lbl

If the value of x is greater than

y, the control is transferred

to the TAC statement marked

my_lbl.

14 LE
LE x y my_lbl

if x < = y goto

my_lbl

If the value of x is less than

or equal to y, the control

is transferred to the TAC

statement marked my_lbl.

15 GE
GE x y my_lbl

if x > = y goto

my_lbl

If the value of x is greater

than or equal to y, the control

is transferred to the TAC

statement marked my_lbl.

16 EQ
EQ x y my_lbl

if x == y goto

my_lbl

If the value of x is equal to y,

the control is transferred to

the TAC statement marked

my_lbl.

17 NE
NE x y my_lbl

if x ! = y goto

my_lbl

If the value of x is not equal

to y, the control is transferred

to the TAC statement marked

my_lbl.

18 PROC_BEGIN
PROC_

BEGIN
my_func

proc_begin

my_func

This TAC statement marks

the beginning of a function

‘my_func’.

19 PROC_END
PROC_

END
x y my_lbl

proc_end This TAC statement marks the

end of a function ‘my_func’.

254 Principles of Compiler Design

20 RETURN
RETURN x

return x Identifi es x as the return value.

21 RETRIEVE
RETRIEVE

retrieve x Moves the returned value of a

function into the variable x.

22 PARAM
PARAM x

param x x is identifi ed as a parameter

to a ‘call’ TAC statement that

would follow.

23 CALL
CALL my_func 8

call my_

func, 8

Transfers the control to the

function my_func. The second

argument is the cumulative

size of all the parameters for

this ‘call’ given in bytes.

The Table 5.3 shows some input C programs and the corresponding TAC. This gives a fair idea on most

of the TAC operators mentioned above.

Table 5.3 Input C-source and the equivalent TAC code

Input C Source

/* Function */
int main()
{
 /* Local Variables */
 int v1,v2,v3,v4;

 v2=200;
 v3=300;
 v4=400;

 /* Simple assignment statements
*/

 v1 = v2 + v3 - v4 ;

}

/* Function */
int main()
{
 /* Local Variables */
 int var;
 int arr[50];

 /* Array accesses */
 arr[43]=7;
 var = arr[43];
}

int x,z;

int

Translated TAC

(0) proc_begin main

(1) v2 := 200
(2) v3 := 300
(3) v4 := 400

/* v1 = v2 + v3 - v4 ; */
(4) _t0 := v2 + v3
(5) _t1 := _t0 - v4
(6) v1 := _t1

(7) label .L0
(8) proc_end main

(0) proc_begin main

/* arr[43]=7; */
(1) _t0 := 43 * 4
(2) _t1 := &arr
(3) _t1[_t0] := 7

/* var = arr[43]; */
(4) _t2 := 43 * 4
(5) _t3 := &arr
(6) _t4 := _t3[_t2]
(7) var := _t4

(8) label .L0
(9) proc_end main

(0) proc_begin func

/* if (a < b) */

Comments

The output TAC shows
the statements using the
following operators.
 ∑ PROC_BEGIN
 ∑ PROC_END
 ∑ ADD
 ∑ SUB

The output TAC shows
the statements using the
following operators.
 ∑ ADDR_OF
 ∑ L_INDEX_ASSIGN
 ∑ R_INDEX_ASSIGN

The output TAC shows
the statements using the
following operators.

 Intermediate Code Generation 255

(1) if a < b goto .L0
(2) goto .L1

(3) label .L0
(4) z := 30
(5) goto .L2
(6) label .L1
(7) z := 40
(8) label .L2
(9) x := 90
(10) label .L3
(11) proc_end func

func (int a, int b)
{
 if (a < b) {
 z = 30;
 } else {
 z = 40;
 }
 x = 90;

}

 ∑ LT
 ∑ GOTO
 ∑ LBL

The TAC statements can be implemented in a compiler by having a record with 4 fi elds of operator,

argument1, argument2 and the result. This implementation is common and is often referred to as quadruples

(quads for short). The entire set of TAC statements can be represented by an array of quads.

There are subtle variants of quads approach in which the TAC statements can be implemented. They are:

 1. Triples

 2. Indirect Triples

In triples and indirect triples, a record with 3 fi elds is used to represent each of TAC statements. The 3

fi elds are operator, argument 1 and argument 2. In comparison with the quadruples, the result fi eld is absent

in triples. We shall see shortly how the TAC statements can be implemented with just 3 fi elds.

An analysis of the TAC statements (for example the ones shown in Table 5.1), indicates that the result

fi eld is mostly used in cases of compiler-generated temporaries like _t1, _t2 etc. For assignments between

programmer-defi ned variables, the ASSIGN TAC statement is used. The triples exploit this feature and use

the statement that computes the temporary value as a reference for the temporary. For example, consider the

TAC statements shown in Table 5.4.

Table 5.4 TAC statements

0 : _t1 := p * n
1 : _t2 := _t1 * r
2 : _t3 = _t2 / 100
3 : p_new = p + _t3

This can be represented in triples as follows.

Table 5.5 Triples

Operator Argument 1 Argument 2

0 MUL p n

1 MUL (0) r

2 DIV (1) 100

3 ADD p (2)

Observe that the reference to temporaries is converted to the statements that evaluate them. For example,

the temporary ‘_t1’ is calculated in the triple referenced by 0. In the triple marked 1, the value of _t1 is

used. Instead of using the location _t1 as it is done in quadruple representation, the triple that evaluated it

(namely triple 0) is used as the reference in triples representation. A triple, by virtue of using this technique

256 Principles of Compiler Design

of referencing the statement instead of location for the temporaries has eliminated the fi eld ‘result’. It is

clear that the parenthesised references are only for temporaries, while the programmer-defi ned variables

continue using the pointers to symbol table.

Eliminating the result fi eld in the triples notation, however, causes additional triples entries for

instructions requiring 3 operands. Consider for example, an R_INDEX_ASSIGN TAC statement

x = y[i]

To implement this in triples, it requires two entries as shown below.

Operator Argument 1 Argument 2

0 R_INDEX y i

1 ASSIGN x (0)

The R_INDEX would be used for computing the content of the memory, which is ‘i’ units away from y.

The ASSIGN is used for assigning the result of the fi rst computation to x.

In indirect triples implementation, there is a statements array that has a listing of pointers to triples in

addition to the triples themselves. Every element in statements array points to one of the triples as seen

in Fig. 5.2. At fi rst sight, one might wonder about the benefi t of adding an additional statements array,

when the triples alone can suffi ce. The benefi t would be evident at a later point, when the intermediate

code optimisation is performed where the statements often have to be re-arranged. In indirect triples, re-

arranging the statements is a matter of merely re-ordering the statement array.

The indirect triples implementation for the TAC statements in Table 5.4 is shown in Fig. 5.2.

Fig. 5.2 Indirect triples

 Table 5.6 shows a brief comparison of the three TAC statement implementations on the parameters of

indirection, suitability to optimisation and space.

Table 5.6 Comparison of TAC implementations

Parameter Quadruples Triples Indirect Triples

Indirection No Indirection present. All

variables (temporary as well

as programmer defi ned)

have immediate access

through symbol table.

Indirection present.

However, since we have to

allocate memory for every

variable whether temporary

or programmer defi ned, the

indirection does not help

much.

Indirection present.

 Intermediate Code Generation 257

Suitability to optimisation The quadruples lend well

to optimisation. When the

statements need to be re-

arranged for optimisation,

the quads are moved

around. For moving a

quad, there is no extra

dependence on other quads.

The triples do not lend

well to optimisation. When

the statements need to be

rearranged for optimisation,

the triples need to be

moved. If a triple is moved,

all the references (in the

form of parenthesised

numbers) in arg1 and

arg2 arrays also have to be

updated accordingly. This

would be a time-consuming

operation making it less

compile-time effi cient.

The indirect triples lend

well to optimisation.

When the statements

need to be rearranged

for optimisation, the

statement list is re-

ordered. The references

do not change.

Space The space required for

storage is not optimum,

because of the additional

result fi eld.

Requires lesser space than

the quadruples.

More space required than

triples. But, it can save

some space as compared

to quadruples because the

statement list can point

to the same triple for a

temporary value, in case it

is used more than once.

5.1.2 Abstract Syntax Tree
Some of the front-ends of compilers translate the input source into an intermediate form knows as abstract

syntax tree (AST). The idea of AST can be appreciated better when it is seen in the context of parse tree.

Consider a C-statement grammar in Table 5.7 for understanding the concept of AST.

Table 5.7 Context-free grammar

1 c_statement : IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression : CONSTANT

3 | IDENTIFIER

4 | c_expression OPERATOR CONSTANT

5 | c_expression OPERATOR IDENTIFIER

For an input string of ‘a = b + c – 5 ;’ conformant to the grammar in Table 5.7, the parse tree is shown in

Fig. 5.3.

Fig. 5.3 Parse tree for ‘a = b + c – 5;’

258 Principles of Compiler Design

The parse tree is ideal to represent the syntax of the language. There are portions of the parse tree

that can be considered irrelevant from an intermediate code generation viewpoint. For example, from an

intermediate code generation standpoint, it is not required to know that the IDENTIFIER was reduced

to c_expression and then the ‘c_expression OPERATOR CONSTANT’ was reduced to c_expression and

so on. The real crux in terms of intermediate code generation view comes from the leaves IDENTIFIER,

OPERATOR and the CONSTANT. Another piece of information that is irrelevant from an intermediate

code generation point of view is the presence of syntactic entities like semicolon, parenthesis, commas, etc.

The abstract syntax tree is a condensed version of parse tree eliminating all the syntactic sugar of the

language (like semicolon, multiple levels of reduction, etc.). In AST, operands are located as leaf nodes and

operators/keywords are interior nodes. The AST for the parse tree given above is shown in Fig. 5.4.

Fig. 5.4 Abstract syntax tree for ‘a = b + c – 5’

From the AST in Fig. 5.4, we can observe that:

∑ The interior nodes correspond to operators like +, –, and so on.

∑ The leaf nodes correspond to operands like a, b, 5, etc.

∑ Chains of single productions like c_expression Æ IDENTIFIER are collapsed in comparison with the

parse tree.

∑ The nodes of AST deal with semantic entities only. There are no AST nodes associated with

syntactical entities like ‘;’ or ‘(’ and alike.

Another feature in AST that helps us deduce the abstract meaning of the programming construct quickly

is the ‘fl attening’ of lists like lists of declarations, lists of parameters, etc. For example, Fig. 5.5 shows an

if-else construct having a block statement. The parse tree equivalent for the same block statement would

typically have gone in to multiple levels owing to productions like “statement_list Æ statement statement_

list”. It is diffi cult to get a feel for the meaning of program by browsing the parse tree. The AST helps

us deduce the meaning of the ‘if’ statement quickly by fl attening the lists and eliminating the syntactic

overhead.

The AST is usually shown in graphical form, but it is implemented in software using a record data

structure. In order to implement simple assignment statements shown in Table 5.7, there are three types of

AST nodes, namely operator node, identifi er node and a literal node required to represent intermediate code.

Each node in AST is implemented as a record with multiple fi elds. A label fi eld indicating whether it is an

operator or identifi er or a literal is common to all the AST nodes. An identifi er node has a fi eld containing

a pointer to symbol table entry of the Identifi er. A literal node contains a fi eld that stores the value of the

 Intermediate Code Generation 259

number it represents. An operator node contains pointers to one or two of the AST nodes depending on

whether it is a unary or a binary operator. These nodes are shown in Fig. 5.6.

Fig. 5.5 AST for if-else block statement construct

Fig. 5.6 Nodes in AST

An AST tree representing an assignment statement can be created by having an operator node as the root

and having pointers to its children (operands) in its record structure. The entire tree can be traversed from

the root node by following the fi elds marked for children as shown in Fig. 5.7(c), resulting in a yield of the

assignment statement.

Alternatively, an AST Tree can be implemented by having an array of records of AST nodes. A new AST

node is allocated from an array of records whenever required. The index to the children nodes in the fi elds

marked for the children is stored instead of storing the pointer to children. This is shown in Fig. 5.7(d).

In either of the cases, the AST is denoted by a tree data structure. Traversal algorithms operating on

the tree data structure starting from the root of the tree can enable us do specifi c tasks like optimisation of

intermediate code, etc.

The front end of GNU compiler collection—gcc, uses AST as its intermediate code form. The AST can

be dumped into a fi le by using the option ‘–fdump-translation-unit’ on the command line during compilation

of a C program.

260 Principles of Compiler Design

Fig. 5.7 AST implementation

The following are the advantages and disadvantages of using abstract syntax tree as an intermediate

language.

Advantages

∑ The creation of an AST can be done at the time of parsing. Further analysis like type checking,

optimisation of intermediate code, etc. can be easily done by operating on the AST after the parsing is

completed. This gives fl exibility with respect to the techniques that can be employed to have a better

machine code.

∑ The AST lends well for intermediate code optimisation by means of reorganising code.

Disadvantages

∑ The AST might consume a lot of memory in order to store the hierarchical organisation of the entire

program.

5.1.2.1 Directed Acyclic Graph An important derivative of abstract syntax tree known as directed

acyclic graph (DAG) is used to reduce the amount of memory used for storing the AST tree data structure.

Consider an expression

k = k – 7

The abstract syntax tree for it is as shown in Fig. 5.8.

 Intermediate Code Generation 261

Fig. 5.8 AST for k = k – 7

Note that there are 2 nodes for the identifi er ‘k’ in Fig. 5.8, one representing k on the LHS of the

expression and the other representing the k on the RHS.

The DAG identifi es such common nodes and eliminates their duplication in the AST. The DAG for the

expression k = k – 7 is given by

Fig. 5.9 DAG for k = k – 7

A DAG like the one shown in Fig. 5.9 is characterised by some of the nodes having multiple parents.

In the above example, the identifi er node k has 2 parents—the operator nodes having operator ‘–’ and

‘=’. The creation of DAG is identical to the AST except for the extra check to determine whether a node

with identical properties already exists. In the event of the node already created before, it is chained to the

existing node avoiding a duplicate node. The DAG is optimal on space as compared to the AST.

5.2 INTERMEDIATE CODE GENERATION

In this section, we study a translation scheme for translating some of the common programming constructs

in higher level languages into intermediate code. A sub-set of the ‘C’ language is taken as the reference

input source language for the discussion. The challenges associated with the translation of programming

constructs like if-else, while, switch-case, etc. into intermediate code are discussed.

The discussion on the productions and semantic actions for handling each of the programming constructs

is followed-up by examples showing the generation of intermediate code for the same. The intermediate

code is represented in three-address code(TAC) form throughout the discussion. The bottom-up translation

method is used for implementing the translation scheme and generation of intermediate code. Unless

otherwise specifi ed, all the variables used in the discussion are integers, which require 4 bytes in memory

for storage each.

262 Principles of Compiler Design

5.2.1 Simple Assignment Statements

The simple assignment statements are the most common statements found in programs. The assignment

statements help in performing basic computations. They form the core of the programs. In this section, we

learn about the translation of simple assignment statements into intermediate code.

Table 5.8 shows a few C code snippets containing simple assignment statements and the corresponding

intermediate code. The variables v1, v2, etc. used in the code snippet are all assumed to be integers. The

TAC statements are numbered for convenience.

Table 5.8 Code snippets and the intermediate code

Code snippet Intermediate code

1 v1= v2 + v3 - v4; 0: _t0 := v2 + v3
1: _t1 := _t0 - v4
2: v1 := _t1

2 v1 = v2 + v3 + v4 ; 0: _t0 := v2 + v3
1: _t1 := _t0 + v4
2: v1 := _t1

3 v1 = (v2 – v3) * (v2 + 2*v3) ; 0: _t0 := v2 - v3
1: _t1 := 2 * v3
2: _t2 := v2 + _t1
3: _t3 := _t0 * _t2
4: v1 := _t3

In the intermediate code for the simple assignment statements seen in Table 5.8, we can fi nd that

temporaries are created for storing the interim results to be later transferred to the user defi ned variables.

For example, in the code snippet # 3, the temporary variables _t0,_t1,_t2 and _t3 are used for computing the

interim values and later in the quad 4, a temporary value ‘_t3’ is transferred to the user defi ned variable v1.

We look at some of the productions and the semantic actions pertaining to the translation of simple

assignment statements in the input C language program to intermediate code. Some of the semantic

actions listed below use the symbol table that is created during the processing of declarations for fetching

the symbol table entry. The processing of the declarations resulting in creation of symbol table entries has

been explained in the chapter on ‘Semantic Analysis’. The semantic actions listed below for generating

intermediate code should be treated as an extension to the actions for the semantic analysis discussed in

Chapter 4.

A function ‘emit’ is used to generate the intermediate code in the three-address format. The function

‘emit’ is modelled on the quadruple representation of the three-address code. It takes four parameters,

namely the TAC operator, operand1, operand2 and result, in the same order. The operator fi eld can take

one of the 23 operators shown in Table 5.2. The operand1, operand2 and result are pointers to symbol table

entries holding the respective operands.

There are 4 non-terminals that are used in the translation of simple assignment statements. They are:

(1) statement (2) unary expression (3) binary expression and (4) expression.

A ‘stmt’ non-terminal is used for recognising a C language statement. It takes the form of expression

followed by a semicolon as given by Production 30.

30 stmt : expr ‘;’

 Intermediate Code Generation 263

A unary expression is created by reduction of lexical token IDENTIFIER. A unary expression has an

attribute ‘place’. The place attribute refers to the symbol table entry of the variable where the value of unary

expression is stored. When an identifi er is reduced to unary expression (Production 32), the place attribute

is fi lled with the symbol table entry of the identifi er.

32 unary_expr : IDENTIFIER {

 unary_expr.place = lookup(IDENTIFIER.name); /*Symbol Table Entry*/

}

The ‘place’ attribute is propagated, when a unary expression is reduced to a binary expression and also

when expression with braces is reduced to a unary expression as shown by Productions 36 and 42. The

place attribute is propagated from binary expression to expression via ‘or expression’ and ‘and expression’

as seen in Productions 54, 56 and 57.

36 unary_expr : ‘(’ expr ‘)’ {

 unary_expr.place = expr.place

}

42 binary_expr : unary_expr {

 binary_expr.place = unary_expr.place;

}

54 expr : or_expr {

 expr.place = or_expr.place;

}

56 or_expr : and_expr {

 or_expr.place = and_expr.place;

}

57 and_expr : binary_expr {

 and_expr.place = binary_expr.place;

}

In the simple assignment statement of the form unary_expr ‘=’ expr, an ASSIGN three address statement

using the place attributes of expr and unary_expr is emitted.

31 expr : unary_expr ‘=’ expr {

 emit(ASSIGN,expr1.place,NULL,unary_expr.place);

}

A unary minus is handled by generating TAC statement with UMINUS operator using the function

‘emit’. A function ‘newtemp()’ is used for creating a temporary variable like _t0,_t1, etc. to store the result

value. The function newtemp() creates a symbol table entry for the temporary variable and returns it.

264 Principles of Compiler Design

37 unary_expr | ‘-’ unary_expr {

 unary_expr.place = newtemp();
 emit(UMINUS,unary_expr1.place,NULL,unary_expr.place);

}

The binary expression is used for storing the result of the operations involving operators like +,* etc.

which require two operands. Similar to the unary expression, the main attribute for a binary expression is

‘place’, a pointer to the symbol table entry, where the value of binary expression is stored. The semantic

actions shown for Productions 38 through 41 are along similar lines. Each of these emits TAC code using

the operands and the binary operator. The result is stored in a compiler-generated temporary (e.g. _t1, _t2),

created by the function ‘newtemp’.

38 binary_expr : binary_expr ‘*’ binary_expr {

binary_expr.place = newtemp();
emit(MUL,binary_expr1.place,binary_expr2.place,binary_expr.place);

}

39 | binary_expr ‘/’ binary_expr {

binary_expr.place = newtemp();
emit(DIV,binary_expr1.place,binary_expr2.place,binary_expr.place);

}

40 | binary_expr ‘+’ binary_expr {

binary_expr.place = newtemp();
emit(PLUS,binary_expr1.place,binary_expr2.place,binary_expr.place);

}

41 | binary_expr ‘–’ binary_expr {

binary_expr.place = newtemp();
emit(MINUS,binary_expr1.place,binary_expr2.place,binary_expr.place);

}

Table 5.9 shows a simple assignment statement and its corresponding translated code using the

productions and semantic actions discussed above. Figure 5.10 shows the attributes of different nodes and

their values during the translation from the input source to the three address code. The nodes are numbered

in the order of creation during bottom-up translation.

Table 5.9 Input source and its translated code

C code snippet Translated TAC

v1= v2+v3-v4; 0: _t0 := v2 + v3
1: _t1 := _t0 - v4
2: v1 := _t1

 Intermediate Code Generation 265

Fig. 5.10 Translation of assignment statement ‘v1 = v2 + v3 – v4 ;’

5.2.2 Example 1—Simple Assignment Statements

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate

code for simple assignment statements using the productions and semantic actions described in the

preceding section. The program takes as input, a sample C input source with some simple assignment

statements. The output of ‘icgen’ is the Intermediate code in TAC format generated from the input C source.

The dialog below shows the icgen program taking in some sample input C sources, and printing out their

intermediate code in TAC format.

The PROC_BEGIN and PROC_END statements are generated at the beginning and end of a function

defi nition respectively.

266 Principles of Compiler Design

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyser

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building icgen Binary

$ g++ -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

This is an input source fi le

$ cat -n test1.c
1 /* Function */
2 int main()
3 {
4 /* Local Variables */
5 int v1,v2,v3,v4;
6
7 v2=200;
8 v3=300;
9 v4=400;
10
11 /* Simple assignment statements */
12 v1 = v2 + v3 - v4 ;
13
14 }

Generating Intermediate code for simple assignment statements

$./icgen test1.c
(0) proc_begin main
(1) v2 := 200
(2) v3 := 300
(3) v4 := 400
(4) _t0 := v2 + v3
(5) _t1 := _t0 - v4
(6) v1 := _t1
(7) label .L0
(8) proc_end main

Another input source fi le

$ cat -n test1a.c
1 /* Function */
2 int main()
3 {
4 /* Local Variables */

5 int v1,v2,v3,v4;

6

7 /* Simple assignment statements */

8 v1=50;

9 v2=30;

10

 Intermediate Code Generation 267

11 v3 = v1 + v2 ;
12 v4 = v1 + 34 - (45 *v3 - v2) ;
13
14 }

Generating IC for assignment statements

$./icgen test1a.c
(0) proc_begin main
(1) v1 := 50
(2) v2 := 30
(3) _t0 := v1 + v2
(4) v3 := _t0
(5) _t1 := v1 + 34
(6) _t2 := 45 * v3
(7) _t3 := _t2 - v2
(8) _t4 := _t1 - _t3
(9) v4 := _t4
(10) label .L0
(11) proc_end main

5.2.3 Arrays

One of the important data structures used in higher level programming languages is arrays. The C language

supports single and multi-dimensional arrays. In this section, we learn about generation of intermediate

code for statements using array references in the input source.

 Arrays are stored in memory as a block of contiguous locations. An element in an array can be accessed

by computing the offset from the base of the array and fetching the value in that location. Consider an array

stored at an address ‘base’ and the width of the array element is given by ‘w’. The memory layout for the

array is shown in Fig. 5.11.

Fig. 5.11 Array memory layout

From Fig. 5.11, it is evident that the address of ‘i’th element in the array is given by ‘base + i*w’.

The TAC generated for an array access of ‘i’th element, uses the ‘base’ or starting address of the array

and an offset given by ‘i*w’ to index to the correct location. Table 5.10 shows a couple of code snippets

making array references and the corresponding intermediate code. We can see from Table 5.10 that there

are two types of TAC statements that are useful in dealing with array references. They are the address

assignment statement and the indexed assignment statement given in Table 5.2.

268 Principles of Compiler Design

Table 5.10 TAC statements for array references

Code snippet Intermediate code

1 var = arr[i]; 0: _t0 := i * 4 /* Assuming the width of integer is 4 Bytes */
1: _t1 := &arr /* Fetching the base address */
2: _t2 := _t1[_t0] /* _t1 contains ‘base’ and _t0 contains ‘offset’ */
3: var := _t2

2 var = arr[43]; 0: _t0 := 43 * 4 /* Assuming the width of integer is 4 Bytes */
1: _t1 := &arr /* Fetching the base address */
2: _t2 := _t1[_t0] /* _t1 contains ‘base’ and _t0 contains ‘offset’ */
3: var := _t2

A multi-dimensional array can be stored in memory in row major form or column major form. In row

major form the elements of the multi-dimensional array are stored row by row, while the column major

form stores elements of the multi-dimensional array column by column. Figure 5.12 shows the memory

layout of storage in row major form representing a two-dimensional array of size arr[2][3]. Figure 5.13

shows the memory layout of storage in column major form for the same array.

First Row arr[0][0]

arr[0][1]

arr[0][2]

Second Row arr[1][0]

arr[1][1]

arr[1][2]

Fig. 5.12 Row major form of storage for multi-dimensional array (arr[2][3])

First Column arr[0][0]

arr[1][0]

Second Column arr[0][1]

arr[1][1]

Third Column arr[0][2]

arr[1][2]

Fig. 5.13 Column major form of storage for multi-dimensional array (arr[2][3])

Consider an array of size arr[d1][d2], with each element of width w. From the Fig. 5.12, it is evident

that in the row major form, the address corresponding to the element a[i1][i2] is given by ‘base + (i1*d2

+ i2)*w’. From the Fig. 5.13, it is evident that in the column major form, the address corresponding to

the element a[i1][i2] is given by ‘base + (i1 + i2*d1)*w’. The ‘C’ language compilers store the arrays in

row major form. In the following discussion, we assume row major form of storage for multi-dimensional

arrays.

 Intermediate Code Generation 269

For a generic multi-dimensional array of ‘n’ dimensions, arr[d1][d2][d3]......[dn], the address of an

element arr[i1][i2][i3]......[in] using row major form given by

base + (i1* d2 *d3 *d4.....dn * w) + (i2* d3 *d4 *d5.....dn* w) + (i3* d4 *d5 *d6.....dn* w) + (in* w)

 Equation 5.1

Let us examine Equation 5.1 carefully in terms of how each index in contributes to the offset calculation.

The contributing factor in Equation 5.1 corresponding to the fi rst index i1 is given by i1 *d2 *d3 *d4.....dn *

w. Similarly, the next index i2, contributes i2* d3 *d4 *d5.....dn *w. The index i3 contributes i3 *d4 *d5.....dn

w, and so on. The index in, contributes in w.

In order to translate array references, there are two attributes, ‘place’ and ‘offset’ associated with unary

expression. The ‘place’ would typically hold the base address of the array and the ‘offset’ holds the sum

of parenthesised expressions in Equation 5.1. When the array index i1 is processed during an access for

arr[i1][i2][i3]......[in], in an input source, the contributing factor corresponding to it, i.e. (i1 *d2 *d3

*d4.....dn *w) is evaluated and held in the attribute ‘offset’. Similarly, when the index i2 is processed the

corresponding factor (i2 *d3 *d4 *d5.....dn *w) is computed and summed up with the value already in offset.

This goes on until all the indexes till in are processed. Let’s take an example to clarify these ideas.

Consider an array usage as shown in Listing 5.1. The line 4 declares the array and in line 9 an element in

the array is accessed.

1 int main()
2 {
3 int h;
4 int arr[30][40][50];
5
6 h=30;
7
8 /* Array accesses */
9 arr[6][23][9]=h;
10
11 }

Listing 5.1 Array access in program

 After the declaration on line 4 is processed in semantic analysis, a type expression chain as shown in

Fig. 5.14 is set up.

int arr [30][40][50];

Fig. 5.14 Type expression chain

 During the processing of array access on line 9, i.e. arr[6][23][9], when the fi rst index arr[6] is parsed,

the factor i1* d2 *d3 *d4.....dn * w is evaluated according to Equation 5.1. The value of d2 *d3 * w can be

270 Principles of Compiler Design

readily calculated by following the type expression chain starting from the next dimension till the end as

40*50*4, which is 8000. The contributing factor from the fi rst index [6] is thus 6*8000. Similarly, when the

next index, which is [23] is parsed, the value of d3 * w can be calculated by following the type expression

chain starting from the next dimension till the end as 50*4, which is 200. The contributing factor for the

second index [23] is thus 23*200. When the fi nal index, which is [9] is parsed, the contributing factor,

computed from the type expression chain is 9*4. Thus for the access arr[6][23][9], the memory location is

the base of the array, arr plus an offset, which is the sum of the contributing factors calculated above. The

TAC for the same is shown below.

Table 5.11 TAC statements for array reference arr[6][23][9] = h

0: _t0 := 6 * 8000 /* contributing factor from the fi rst index 6 */
1: _t1 := &arr
2: _t2 := 23 * 200 /* contributing factor from the second index 23 */
3: _t0 := _t2 + _t0
4: _t3 := 9 * 4 /* contributing factor from the third index 9 */
5: _t0 := _t3 + _t0
6: _t1[_t0] := h

The ideas just discussed are embodied in the productions and the semantic actions shown below. In

order to support array references, the semantic actions for some of the productions seen in Section 5.3.1

require modifi cation. The reader can appreciate the fact that if the attribute ‘offset’ of the unary expression

is NULL, it would make this translation similar to the one shown in Section 5.3.1.

When a unary expression is created from IDENTIFIER (Production 32) or expression (Production 36),

the offset attribute is initialised with NULL. The offset attribute would be fi lled in later, when array access

is found in Production 43.

32 unary_expr : IDENTIFIER {

 /* Symbol Table Entry */
 unary_expr.place = lookup(IDENTIFIER.name);
 unary_expr.offset = NULL ;

}

36 unary_expr : ‘(’ expr ‘)’ {

 unary_expr.place = expr.place
 unary_expr.offset = NULL ;
}

The array references are handled by Production 43 shown below. In the semantic action, an ADDR_

OF statement is emitted, when the fi rst index is sighted. The fi rst index can be identifi ed by the condition

of offset being NULL. The value of offset is determined by calculating the contributing factor as given

in Equation 5.1. For calculating the contributing factor, the index given by ‘expr.place’ and a couple

of functions getsize() and make_lit_tab_entry() are used. The getsize() function calculates the factor

d(i + 1) *d(i + 2) *d(i + 3).....dn * w for an index ‘i’. The function make_lit_tab_entry() makes an entry in the

literal table for literals like say 1, 2, etc. Observe that Production 43 is left recursive. This helps in fetching

one index at a time, when multi-dimensional access is made.

 Intermediate Code Generation 271

43 unary_expr : unary_expr ‘[’ expr ‘]’ {

 sz_of_unit= getsize(unary_expr1.expr_type.next);
 se_ptr = make_lit_tab_entry(sz_of_unit);

 t = newtemp();
 emit(MUL,expr.place,se_ptr,t);

 if(unary_expr1.offset == NULL){
 t1 = newtemp();
 emit(ADDR_OF,unary_expr1.place,NULL,t1);
 unary_expr.place = t1;
 unary_expr.offset = t;
 }else{
 emit(PLUS,t,unary_expr1.offset,unary_expr.offset);
 }
}

When a unary expression is used, the content of the unary expression is accessed by using the attributes,

place and offset as given by Production 42 and 31.

42 binary_expr | unary_expr {

 if(unary_expr.offset == NULL){
 binary_expr.place = unary_expr.place;
 }else{
 binary_expr.place = newtemp();
 emit(R_INDEX_ASSIGN,unary_expr.place,unary_expr. offset,
 binary_expr.place);
 }
}

31 expr : unary_expr ‘=’ expr {

 if(unary_expr.offset == NULL){
 emit(ASSIGN,expr1.place,NULL,unary_expr.place);
 }else{
 emit(L_INDEX_ASSIGN,unary_expr.offset,expr1. place, unary_expr.place);
 }
}

Table 5.12 shows an array access statement and its corresponding translated code using the productions

and semantic actions discussed above. Figure 5.15 shows the attributes of different nodes and their values

during the translation from the input source to the three address code. The nodes are numbered in the order

of creation during bottom-up translation.

Table 5.12 Input source and its translated code

C code snippet Translated TAC Comments

x = arr[5][9]; 0: _t0 := 5 * 120
1: _t1 := &arr
2: _t2 := 9 * 4
3: _t0 := _t2 + _t0
4: _t3 := _t1[_t0]
5: x := _t3

The array ‘arr’ is assumed to be declared as
int arr[20][30] ;

The value 120 in quad 0 comes from 30 * 4, where 30
is the next dimension and 4 is the size of integer.

272 Principles of Compiler Design

Fig. 5.15 Translation of statement x = arr[5][9]

 Intermediate Code Generation 273

5.2.4 Example 2—Array Access

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate

code for array references using the productions and semantic actions described in the preceding section.

The program takes as input, a sample C input source with some array references. The output of ‘icgen’ is

the intermediate code in TAC format generated from the input C source. The dialog below shows the icgen

program taking in some sample input C sources, and printing out their intermediate code in TAC format.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyser

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building icgen Binary

$ g++ -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

This is a input source fi le

$ cat -n test2.c

 1
 2 /* Function */
 3 int main()
 4 {
 5 /* Local Variables */
 6 int var;
 7 int arr[50];
 8
 9 /* Array accesses */
10 arr[43]=7;
11 var = arr[43];
12 }

Generating Intermediate code for array access statements

$./icgen test2.c

(0) proc_begin main
(1) _t0 := 43 * 4
(2) _t1 := &arr
(3) _t1[_t0] := 7
(4) _t2 := 43 * 4
(5) _t3 := &arr
(6) _t4 := _t3[_t2]
(7) var := _t4
(8) label .L0
(9) proc_end main

Another input source fi le

$ cat -n test2a.c

274 Principles of Compiler Design

 1 /* Variables */
 2 int x,arr[20][30];
 3
 4
 5 /* Function */
 6 int main()
 7 {
 8 /* Array accesses */
 9 x = arr[5][9];
10 }

Generating IC for Array access

$./icgen test2a.c

(0) proc_begin main
(1) _t0 := 5 * 120
(2) _t1 := &arr
(3) _t2 := 9 * 4
(4) _t0 := _t2 + _t0
(5) _t3 := _t1[_t0]
(6) x := _t3
(7) label .L0
(8) proc_end main

Another input source fi le

$ cat -n test2b.c

 1 /* Function */
 2 int main()
 3 {
 4 /* Local Variables */
 5 int h;
 6 int arr[30][40][50];
 7
 8 /* Initialization */
 9 h=30;
10
11 /* Array accesses */
12 arr[6][23][9]=h;
13 }

Generating IC for Array access

$./icgen test2b.c

(0) proc_begin main
(1) h := 30
(2) _t0 := 6 * 8000
(3) _t1 := &arr
(4) _t2 := 23 * 200
(5) _t0 := _t2 + _t0
(6) _t3 := 9 * 4
(7) _t0 := _t3 + _t0
(8) _t1[_t0] := h
(9) label .L0
(10) proc_end main

 Intermediate Code Generation 275

5.2.5 Pointers and Address Operators

 Pointers are an important part of higher level programming languages. They are used to set up data

structures like linked lists, trees, and so on. In this section, we learn about translating the C language

statements involving pointers into intermediate code in three address format.

The statements in C language involving pointers consists of the usage of two operators namely ‘*’ and

‘&’. In a later section, we will also look at the ‘–>’ operator, which de-references an element in a structure.

Table 5.13 shows some C code snippets using the ‘*’ and ‘&’ operators and the corresponding intermediate

code. This gives an idea on how the intermediate code looks like for accesses using pointer and address of

operators. We can see from Table 5.13 that the left-indexed assign and right-indexed assign TAC operators

are used in the translation of the ‘*’ operator. The ‘&’ operator in C input source is translated to the ADDR_OF

operator in the TAC statements.

Table 5.13 C code snippets and the intermediate code

Sample C code

snippet
Intermediate code Comments

1 p = &x ;

*p = 10 ;

0: _t0 := &x

1: p := _t0

2: p[0] := 10

x is assumed to be an integer variable.

2 p=&x;

y=*p;

0: _t0 := &x

1: p := _t0

2: _t1 := p[0]

3: y := _t1

x is assumed to be an integer variable.

3 p = &arr[3]

*p = 10 ;

0: _t0 := 3 * 4

1: _t1 := &arr

2: _t2 := _t1 + _t0

3: p := _t2

4: p[0] := 10

The array ‘arr’ is assumed to be declared as
int arr[20];

The size of an integer is 4 Bytes.

4 p = &arr[3]

y=*p;

0: _t2 := 3 * 4

1: _t3 := &arr

2: _t4 := _t3 + _t2

3: p := _t4

4: _t5 := p[0]

5: x := _t5

The array ‘arr’ is assumed to be declared as
int arr[20];

The size of an integer is 4 Bytes.

We have seen in the previous section that the translation of access to any variable in the input program

is done by using two attributes of unary expression namely the ‘place’ and ‘offset’. When an array access is

translated, the place contains the base address of the variable and the offset contains the number of memory

units from the base for that particular access. When a simple variable access in the input source program

is translated, the offset attribute is NULL. The same attributes place, and offset are used to handle the two

operators ‘*’ and ‘&’.

The translation of ‘& unary_expr’ in the input source program (Production 44) involves fetching the

address of the unary expression. For simple variables, the address is given by place attribute alone, since

the offset would be NULL. The ADDR_OF TAC statement is emitted as a part of the translation. For an

array variable, which is identifi ed by ‘place’ and ‘offset’ attributes, the address is simply a sum of the place

and offset attribute.

276 Principles of Compiler Design

44 unary_expr : ‘&’ unary_expr {

 t= newtemp()

 if(unary_expr1.offset == NULL){

 emit(ADDR_OF,unary_expr1.place,NULL,t);

 }else{

 emit(PLUS,unary_expr1.place,unary_expr1.offset,t);

 }

 unary_expr.place=t;

 unary_expr.offset = 0;

}

The translation of ‘* unary_expr’ in the input source program (Production 45) involves fetching the

content of the unary expression. For simple variables, the content is obtained by getting the content at

‘place’ attribute alone, since the offset would be NULL. For an array variable, which is identifi ed by ‘place’

and ‘offset’ attributes, the content is given by ‘place’ attribute indexed with ‘offset’ attribute using the R_

INDEX_ASSIGN statement shown in Table 5.2.

45 unary_expr : ‘*’ unary_expr {

 t=newtemp();

 if(unary_expr1.offset == NULL){

 unary_expr.place=unary_expr1.place;

 unary_expr.offset=make_lit_tbl_entry(0);

 }else{

 t1=newtemp();

 emit(R_INDEX_ASSIGN,

 unary_expr1.place,

 unary_expr1.offset,t1);

 unary_expr.place=t1;

 unary_expr.offset=make_lit_tbl_entry(0);

 }

}

Table 5.14 shows statement using ‘&’ operator and its corresponding translated code using the

productions and semantic actions discussed above. Figure 5.16 shows the attributes of different nodes and

their values during the translation from the input source to the three address code. The nodes are numbered

in the order of creation during bottom up translation.

Table 5.14 Input source and its translated code

C code snippet Translated TAC Comments

x = &arr[3]; 0: _t0 := 3 * 4
1: _t1 := &arr
2: _t2 := _t1 + _t0
3: x := _t2

The array ‘arr’ is assumed to be declared as
int arr[20] ;

The size of an integer is 4 bytes.

 Intermediate Code Generation 277

Fig. 5.16 Translation of a statement ‘x = &arr[3] ; ’

278 Principles of Compiler Design

5.2.6 Example 3—Pointers and Address Operators

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate

code for statements involving ‘*’ and ‘&’ operators using the productions and semantic actions described

in the preceding section. The icgen program implements the translation scheme using bottom up translation

method. The program takes as input, a sample C input source with some statements using ‘*’ and ‘&’

operators. The output of ‘icgen’ is the intermediate code in TAC format generated from the input C source.

The dialog below shows the icgen program taking in some sample input C sources, and printing out their

intermediate code in TAC format.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyser

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building icgen Binary

$ g++ -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

This is an input source fi le

$ cat -n test3.c
 1 int *p;
 2 int x;
 3
 4 /* Function */
 5 int main()
 6 {
 7 /* Move 10 into x */
 8 p=&x;
 9 *p=10;
 10 }

Generating IC for statements with pointer and Address operators

$./icgen test3.c
(0) proc_begin main
(1) _t0 := &x
(2) p := _t0
(3) p[0] := 10
(4) label .L0
(5) proc_end main

Input source fi le

$ cat -n test3a.c
 1 int *p;
 2 int x,y;
 3
 4 /* Function */
 5 int main()

 Intermediate Code Generation 279

 6 {
 7 x=10;
 8
 9 /* Move value of x into y */
 10 p=&x;
 11 y=*p;
 12 }

Generating IC

$./icgen test3a.c
(0) proc_begin main
(1) x := 10
(2) _t0 := &x
(3) p := _t0
(4) _t1 := p[0]
(5) y := _t1
(6) label .L0
(7) proc_end main

Input source fi le

$ cat -n test3b.c
 1 int *p;
 2 int arr[10];
 3
 4 /* Function */
 5 int main()
 6 {
 7 /* Move 10 into arr[3] */
 8 p=&arr[3];
 9 *p=10;
 10 }

Generating IC

$./icgen test3b.c
(0) proc_begin main
(1) _t0 := 3 * 4
(2) _t1 := &arr
(3) _t2 := _t1 + _t0
(4) p := _t2
(5) p[0] := 10
(6) label .L0
(7) proc_end main

Input source fi le

$ cat -n test3c.c
 1 int *p;
 2 int arr[10];
 3 int x;
 4
 5 /* Function */
 6 int main()
 7 {
 8 arr[3]=10;
 9
 10 /* Move 10 into x */

280 Principles of Compiler Design

 11 p=&arr[3];
 12 x=*p;
 13 }

Generating IC

$./icgen test3c.c
(0) proc_begin main
(1) _t0 := 3 * 4
(2) _t1 := &arr
(3) _t1[_t0] := 10
(4) _t2 := 3 * 4
(5) _t3 := &arr
(6) _t4 := _t3 + _t2
(7) p := _t4
(8) _t5 := p[0]
(9) x := _t5
(10) label .L0
(11) proc_end main

5.2.7 Record Access

A structure or record is a common facility used in higher-level languages like C. A record can consist of

multiple fi elds of different data types. In Chapter 4, on ‘Semantic Analysis’, we saw that a separate symbol

table was created for each structure declaration. The fi elds of the structure are contained as elements of that

symbol table. When C statement containing the structure references is translated, the symbol table is used

to calculate the offset required to access a particular member of the structure.

Consider the C code snippet containing the usage of a structure in Table 5.15 for understanding the

important aspects of intermediate code generation for a structure reference. The code snippet shows a

structure ‘my_data’ containing two integer fi elds student_id and age. In C language, there are two ways

of accessing a fi eld in a structure in a C statement, one by using the ‘.’ operator and the other by using ‘->’

operator. Table 5.15 shows the usage of the dot (.) operator for accessing a fi eld in a structure.

Table 5.15 C code snippet using dot operator

..

..
struct my_data
{
 int student_id;
 int age;
}d1;

..

..

d1.age=20;
..
..

Table 5.16 shows the intermediate code for the code snippet in Table 5.15. The struct references are

translated to indexed assign TAC statements. The base address of the structure is used as the base in the

indexed operation. The offset in bytes for the fi eld of reference, which is ‘age’ in this case, is used an index.

 Intermediate Code Generation 281

The fi eld ‘age’ follows the fi eld ‘student_id’ which is 4 bytes. Hence, the offset of the fi eld ‘age’ is 4 bytes

from the base address.

Table 5.16 TAC statements for the struct access by dot operator

0: _t1 := &d1
1: _t2 := 4
2: _t1[_t2] := 20

Consider the C code snippet in Table 5.17 containing the usage of ‘Æ’ (arrow) operator for accessing

structure fi elds. A variable ‘ptr’ accesses the fi elds in the structure by using the Æ operator.

Table 5.17 C code snippet using arrow operator

..

..
struct my_data
{
 int student_id;
 int age;
}*ptr;

..

..

ptr->age=20;
..
..

Table 5.18 shows the intermediate code for the code snippet in Table 5.17. As in the previous case, the

struct references are translated to indexed assign TAC statements. The value of the ‘ptr’ is used as the base

in the indexed operation. The offset in bytes for the fi eld of reference, which is ‘age’ in this case, is used an

index. The fi eld ‘age’ follows the fi eld ‘student_id’, which is 4 bytes. Hence the offset of the fi eld ‘age’ is 4

bytes from the base address.

Table 5.18 TAC statements for the struct access by arrow operator

0: _t3 := ptr
1: _t4 := 4
2: _t3[_t4] := 20

The translation of structure references (Productions 46 and 47 below) in the statements involves

handling the two operators, ‘.’ and ‘Æ’. For the translation of structure reference, when the dot operator is

used, the following steps are involved: (a) Fetch the address of the unary expression preceding the dot (b)

Calculate the offset of the fi eld following the dot and (c) Use the values in (a) & (b) in the indexed TAC

statement to access the memory associated with the fi eld. Similarly, when a ‘Æ’ operator is used to access

a fi eld in a structure, the steps involved are: (a) Fetch the content of the unary expression preceding the

‘Æ’ (b) Calculate the offset of the fi eld following the ‘Æ’ and (c) Use the values in (a) & (b) in the indexed

TAC statement to access the memory associated with the fi eld. The calculation of offset of the fi eld in both

the cases is done by using the symbol table pertaining to the structure defi nition, which holds the offsets of

all the fi elds associated with the structure. The semantic actions of Productions 46 and 47 also show some

282 Principles of Compiler Design

of the sanity checks to be performed (e.g. checking if the fi eld name exists in the structure, etc.) before

emitting the intermediate code.

46 unary_expr : unary_expr ‘.’ IDENTIFIER {

 type = unary_expr1.expr_type

 if(type != RECORD){
 Error Msg(“Type Mismatch”);
 exit();
 }

 sym_tab_ptr = type.fi elds

 sym_tab_entry_ptr = sym_tab_ptr.fi nd(IDENTIFIER.name)

 if(sym_tab_entry_ptr == NULL){
 Error Msg(“Accessing a non-existent fi eld”);
 exit();
 }

 offset = sym_tab_entry_ptr.offset ;
 unary_expr.expr_type= sym_tab_entry_ptr.type;

 if(unary_expr1.offset == NULL){
 t= newtemp()
 emit(ADDR_OF,unary_expr1.place,NULL,t);
 unary_expr.place = t;
 unary_expr.offset = newtemp();
 emit(ASSIGN,offset,NULL,unary_expr.offset);
 }else{
 emit(PLUS,unary_expr1.offset,offset,unary_expr1.offset);
 unary_expr.place = unary_expr1.place ;
 unary_expr.offset = unary_expr1.offset

 }

}

47 | unary_expr PTR_OP IDENTIFIER {

 type = unary_expr1.expr_type

 if((type != POINTER) || (type.next != RECORD)){
 Error Msg(“Type Mismatch”);
 exit();

 }

 sym_tab_ptr = type.next.fi elds

 sym_tab_entry_ptr = sym_tab_ptr.fi nd(IDENTIFIER.name)

 if(sym_tab_entry_ptr == NULL){
 Error Msg(“Accessing a non-existent fi eld”);
 exit();
 }

 offset = sym_tab_entry_ptr.offset ;
 unary_expr.expr_type= sym_tab_entry_ptr.type;

 t = newtemp();

 Intermediate Code Generation 283

 if(unary_expr1.offset == NULL){
 emit(ASSIGN,unary_expr1.place,NULL,t);

 }else{
 emit(R_INDEX_ASSIGN,unary_expr1.place,unary_expr1.offset,t);

 }

 unary_expr.place = t;
 unary_expr.offset = newtemp();

 emit(ASSIGN,offset,NULL,unary_expr.offset);

}

Table 5.19 shows a structure access using ‘.’ operator and its corresponding translated code using the

productions and semantic actions discussed above. Figure 5.17 shows the attributes of different nodes and

their values during the translation from the input source to the three address code. The nodes are numbered

in the order of creation during bottom up translation. The offset of the fi eld ‘age’ is assumed to be 4 bytes.

Table 5.19 Input source and its translated code

C code snippet Translated TAC

x.age=3 ; 0: _t0 := &x
1: _t1 := 4
2: _t0[_t1] := 3

Fig. 5.17 The translation of statement ‘x.age = 3 ;’

284 Principles of Compiler Design

Table 5.20 shows a structure access using ‘Æ’ operator and its corresponding translated code using the

productions and semantic actions discussed above. Figure 5.18 shows the attributes of different nodes and

their values during the translation from the input source to the three address code. The nodes are numbered

in the order of creation during bottom up translation. The offset of the fi eld ‘age’ is assumed to be 4 bytes.

Table 5.20 Input source and its translated code

C code snippet Translated TAC

ptr->age=3 ; 0: _t0 := ptr
1: _t1 := 4

2: _t0[_t1] := 3

Fig. 5.18 The translation of statement ‘ptrÆage = 3 ;’

5.2.8 Example 4—Translation of Record References

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate

code for statements involving structure references using the productions and semantic actions described

in the preceding section. The program takes as input, a sample C input source with some statements

involving structure references. The output of ‘icgen’ is the intermediate code in TAC format generated from

processing the input C source. The dialog below shows the icgen program taking in some sample input C

sources, and printing out their intermediate code in TAC format.

 Intermediate Code Generation 285

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyser

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building icgen Binary

$ g++ -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

This is an input source fi le

$ cat -n test4.c

 1 struct my_data

 2 {

 3 int student_id;

 4 int age;

 5 }d1;

 6

 7

 8 /* Function */

 9 int main()

10 {

11 struct my_data *ptr;

12

13 ptr = &d1;

14

15 /* Access by ‘.’ operator */

16 d1.age=20;

17

18 /* Access by ‘->’ operator */

19 ptr->age=20;

20

21 }

Generating IC

$./icgen test4.c

 (0) proc_begin main

 (1) _t0 := &d1

 (2) ptr := _t0

 (3) _t1 := &d1

 (4) _t2 := 4

 (5) _t1[_t2] := 20

 (6) _t3 := ptr

286 Principles of Compiler Design

 (7) _t4 := 4

 (8) _t3[_t4] := 20

 (9) label .L0

(10) proc_end main

Input source fi le

$ cat -n test4a.c

 1 struct dob{

 2 int day;

 3 int mon;

 4 int year;

 5 }ab;

 6

 7 struct my_data

 8 {

 9 int age;

10 int student_id;

11 struct dob student_dob;

12 }d1;

13

14

15 /* Function */

16 int main()

17 {

18 /* Local Variables */

19 int h,j,k;

20

21 /* Initialisation */

22 d1.age=20;

23 d1.student_id=4567;

24 d1.student_dob.day=17;

25 d1.student_dob.mon=11;

26 d1.student_dob.year=1967;

27 }

Generating IC

$./icgen test4a.c

 (0) proc_begin main

 (1) _t0 := &d1

 (2) _t1 := 0

 (3) _t0[_t1] := 20

 (4) _t2 := &d1

 (5) _t3 := 4

 (6) _t2[_t3] := 4567

 (7) _t4 := &d1

 (8) _t5 := 8

 (9) _t5 := _t5 + 0

(10) _t4[_t5] := 17

(11) _t6 := &d1

(12) _t7 := 8

(13) _t7 := _t7 + 4

 Intermediate Code Generation 287

(14) _t6[_t7] := 11

(15) _t8 := &d1

(16) _t9 := 8

(17) _t9 := _t9 + 8

(18) _t8[_t9] := 1967

(19) label .L0

(20) proc_end main

Input source fi le

$ cat -n test4b.c
 1 struct dob{
 2 int day;
 3 int mon;
 4 int year;
 5 }ab;
 6
 7 struct my_data
 8 {
 9 int age;
10 int student_id;
11 struct dob student_dob;
12 }d1;

13
14
15 /* Function */
16 int main()
17 {
18 /* Local Variables */
19 struct my_data *ptr;
20
21 /* Initialisation */
22 ptr=&d1;
23
24 ptr->age=20;
25 ptr->student_id=4567;
26
27 ptr->student_dob.mon=11;
28 }

Generating IC

$./icgen test4b.c
 (0) proc_begin main
 (1) _t0 := &d1
 (2) ptr := _t0
 (3) _t1 := ptr
 (4) _t2 := 0
 (5) _t1[_t2] := 20
 (6) _t3 := ptr
 (7) _t4 := 4
 (8) _t3[_t4] := 4567
 (9) _t5 := ptr
(10) _t6 := 8

(11) _t6 := _t6 + 4

(12) _t5[_t6] := 11
(13) label .L0

(14) proc_end main

288 Principles of Compiler Design

5.2.9 If-else Statements

In this section, we learn about the translation of simple fl ow of control statements namely, the ‘if’ and ‘if-

else’ statements. These statements are used in higher-level languages to make decisions and execute the

designated code.

Consider the C code snippet containing an ‘if-else’ statement in Table 5.21 for understanding the

important aspects of intermediate code generation for if-else statement. The variables used in the code

snippet are all assumed to be integers.

Table 5.21 A C code snippet with if-else condition

..

..

if (a < b) {
 z = 30;
} else {
 z = 40;
}
x=90;

..

..

The expression that is being evaluated in the ‘if’ condition namely (a < b) is called as a Boolean test

expression or simply test expression. It can have a result of TRUE or FALSE. In the code snippet shown

above, if the Boolean test expression (a < b) is TRUE, then the control fl ows to the code where z is assigned

30. If the Boolean test expression is false, then the control fl ows into the code where z is assigned 40.

A simple Boolean test expression like the one shown in Table 5.21, i.e. (a < b) can also use other relation

operators for the comparison like greater than (>), less than or equal to (<=), etc.

Programming languages also allow for compound Boolean expressions formed out of logical

combination of simpler Boolean expressions using operators known as Boolean operators. The common

Boolean operators are and (&&), or (||) operators. An example of a compound Boolean expression formed

by using the OR Boolean operator is shown in Table 5.22.

Table 5.22 A C code snippet showing compound Boolean expression

..

..
if ((a < b) || (c < d))
{
 z = 30;
}
else
{
 z = 40;
}
..
..

The compound Boolean expression (a < b) || (c < d) is TRUE in situation where a is less than b or c is

less than d. The value 30 is assigned to z, when the compound Boolean expression is TRUE. The value 40

is assigned to z when the compound Boolean expression is FALSE.

 Intermediate Code Generation 289

Table 5.23 below shows the intermediate code for the if-else statement shown in Table 5.21. The TAC

statements are numbered for easy reference.

Table 5.23 Translated intermediate code

0: if a < b goto .L0
1: goto .L1
2: label .L0
3: z := 30
4: goto .L2
5: label .L1
6: z := 40
7: label .L2
8: x := 90

The fi rst two TAC statements, numbered 0 and 1 correspond to the decision-making based on Boolean

expression (a < b). The fl ow of control reaches the statement numbered 2 with the label. L0 only if the

Boolean expression (a < b) is true. The statement numbered 5 with label. L1 is reached only if a < b is false.

This method of construction of the intermediate code where the position reached by the program signifi es

the result of the Boolean expression is known as fl ow of control method of translating Boolean expressions.

This method of translating the Boolean expressions is used in the rest of the chapter.

Is it possible to generate intermediate code for a Boolean expression in one pass during the parsing by

having a translation scheme?

The main challenge in implementing such a translation scheme is that the target labels for the jump

statements are not known at the time of generating code for the test expression. To illustrate the point,

consider the code snippet in Table 5.21. At the time of reducing the Boolean expression a < b and

generating the TAC statement for it, there is no information about the target label to jump. The statement

z = 30, where it needs to jump on the condition being true, is not yet processed for syntax analysis. Also,

the target label to jump when the condition is false, i.e. z = 40 is not yet processed for syntax analysis at the

time of generating TAC instructions for the Boolean expression (a < b). The target label to jump when the

Boolean expression is true or false becomes clear only after processing several statements following the

Boolean expression.

Fortunately, there is a technique by which this issue can be overcome to generate intermediate code for

Boolean expression in a single pass during the syntax analysis itself. Let’s understand this technique with

an example.

Consider the generation of intermediate code for the code snippet in Table 5.23. At the time of reducing

the Boolean expression a < b, the intermediate code is generated by keeping the target label unfi lled.

The generated intermediate code is stored in an array called quads. The generated TAC instructions are

shown below. The numbering given to the each of the TAC instructions can also be used as an index of the

respective quad in the quads array. For example, the instruction z := 40 is available at the index 6 in the

quads array.

0 : if a<b goto __
1 : goto __

2 : lbl .L0
3 : z := 30
4 : goto __

5 : lbl .L1
6 : z := 40
7 : lbl .L2

290 Principles of Compiler Design

During the intermediate code generation, few data structures are updated to remember the indexes in the

quads array, having unfi lled target labels, i.e. 0, 1 and 4. At a later stage, when the parser has completely

reduced the ‘if-else’ statement, the quads array is revisited to plug in the unfi lled target labels as shown

below.

0 : if a<b goto .L0
1 : goto .L1

2 : lbl .L0
3 : z := 30
4 : goto .L2

5 : lbl .L1
6 : z := 40
7 : lbl .L2

This approach of generating TAC statements with unfi lled target labels and then at a later stage fi lling up

the target labels when the information is available is called as backpatching. This technique can be used to

generate intermediate code for fl ow of control statements using Boolean expressions like the if-else, while,

switch-case statements, and so on.

Let’s briefl y touch upon some of the data structures and functions that are used to implement

backpatching.

An array called ‘quads’ array is used to hold the sequence of Quadruples generated. Any TAC statement

in the quads array can be accessed using its index. For example, in the quads array containing the following

TAC statements.

0 : if a<b goto __
1 : goto __

2 : lbl .L0
3 : z := 30
4 : goto __

5 : lbl .L1
6 : z := 40
7 : lbl .L2

The quads[3] contains the TAC statement ‘z := 30’. The quads[4] contains the TAC statement with an

unfi lled target label ‘goto _’ and so on.

The TAC statements are populated in the quads array in a sequence using the ‘emit’ function. The fi rst

call to emit function would fi ll in a TAC statement at quads[0], the next call to emit would store the TAC

statement at quads[1] and so on. A variable nextquad is used to maintain the index in the quads array where

the next emit statement would be stored. As expected, this would be incremented each time an emit function

call is made.

To get an idea on the other common functions required during backpatching, consider the following

input source.

if ((a < b) || (c < d))
{
 i=j ;
}
l=m;

 Intermediate Code Generation 291

The following TAC statements are generated in the quads array during the processing of the compound

Boolean expression ((a < b) || (c < d)).

0 : if a < b goto __
1 : goto .L0

2 : label .L0
3 : if c < d goto __
4 : goto __

When the expression a < b is true or when c < d is true, the control goes to the same label. In other

words, the target label for the TAC statements at index 0 and 3 are the same. It is effi cient to make a list

of the labels that need the same target label, so that they can be fi lled in at one shot. A list of quads called

say ‘truelist’, indicative of target label to be jumped when the compound Boolean expression is true, is

created with the elements 0 and 3. The truelist is given by the list {0,3}. In a similar way, the ‘falselist’ for

the compound Boolean expression is given by list {4}. The list creation and appending elements into it are

carried out by the following functions.

∑ makelist(quad_no). This creates a list with the quad_no as the only element in a list. It returns the

pointer to the list so created.

∑ quadlist_merge(newlist, list1,list2). This concatenates the items in list1 and list2 and puts them in

newlist.

Backpatching is accomplished by a function backpatch(list, label). This fi lls the unfi lled goto’s target

labels in the list with the label. For example, using the truelist {0, 3} mentioned above, an invocation of the

function backpatch (truelist,.L1) would fi ll in the target label .L1 in the list of statements given by truelist,

i.e. in quads at index 0 and 3 as shown below.

0 : if a < b goto .L1
1 : goto .L0

2 : label .L0
3 : if c < d goto .L1
4 : goto __

5 : label .L1
6 : i := j
7 : label .L2
8 : l := m
9 : label .L3

Armed with the functions to perform backpatching and some of the theory we studied above, let’s study

about some of the productions and their semantic actions for generating TAC statements for if and if-else

statements.

The processing of binary expression (Productions 59–60) involves emitting the TAC with the appropriate

conditional check like GT, LT, etc. followed by an unconditional jump statement. The conditional jump

statement would be added to the ‘truelist’ of the binary expression, since that is the statement it would

jump when the binary expression is true. The unconditional jump statement is added to the false list, since

the target is the statement to be jumped when the binary expression is false. The handling of other relation

operators like ‘<=’,‘>=’, etc. are similar in nature. The attributes of truelist and falselist are relayed on from

binary_expr to test_expr (production 53) through and_expr,or_expr and expr.

292 Principles of Compiler Design

59 binary_expr : binary_expr ‘<’ binary_expr {

 binary_expr.truelist = makelist(next_quad);
 binary_expr.falselist = makelist((next_quad+1));
 emit(LT,binary_expr1.place,binary_expr2.place,NULL);
 emit (GOTO,NULL,NULL,NULL);
}

60 | binary_expr ‘>’ binary_expr {

 binary_expr.truelist = makelist(next_quad);
 binary_expr.falselist = makelist((next_quad+1));
 emit(GT,binary_expr1.place,binary_expr2.place,NULL);
 emit (GOTO,NULL,NULL,NULL);
}

53 test_expr : expr {

 test_expr.place = expr.place;
 test_expr.truelist = expr.truelist;
 test_expr.falselist = expr.falselist;
}

54 expr : or_expr {

 expr.place = or_expr.place;
 expr.truelist = or_expr.truelist;
 expr.falselist = or_expr.falselist;
}

56 or_expr : and_expr {

 or_expr.place = and_expr.place;
 or_expr.truelist = and_expr.truelist;
 or_expr.falselist = and_expr.falselist;
}

57 and_expr : binary_expr {

 and_expr.place = binary_expr.place;
 and_expr.truelist = binary_expr.truelist;
 and_expr.falselist = binary_expr.falselist;
}

The OR_OP (||) is used to combine two binary expressions with a logical or condition (Production 55).

The resulting expression’s true list is a merge of the true lists of both of the binary expressions. The false

list of the resulting expression is the false list of the second binary expression. In a similar fashion the

AND_OP (&&) is used to combine the Boolean expressions (Production 58). The resulting expression’s

true list is the true list of the second Boolean expression. The resulting expression’s false list is a merge of

the false lists of both the Boolean expressions.

55 or_expr : or_expr OR_OP M and_expr {

 backpatch(or_expr1.falselist, M.lbl));
 quadlist_merge(or_expr.truelist,or_expr1.truelist,
 and_expr.truelist);
 or_expr.falselist = and_expr.falselist ;
}

 Intermediate Code Generation 293

58 and_expr | and_expr AND_OP M binary_expr {

 backpatch(and_expr1.truelist, M.lbl);
 and_expr.truelist = binary_expr.truelist ;
 quadlist_merge(and_expr.falselist,and_expr1.falselist,
 binary_expr.falselist);
}

The non-terminal ‘stmt’ takes the form of a simple if statement (Production 48), or if-else statement

(Production 49). The stmt can take the form of a compound statement (Production 50), which is essentially

a group of statements within the braces. A stmt non-terminal has an attribute nextlist, which is a list of

TAC statements generated by ‘stmt’ containing the conditional and unconditional jumps to the quadruple

following the statement. This is an important attribute using which the intermediate code can be

backpatched for jumps during if, if-else and while constructs.

The conditional statement for ‘if’ construct (Production 48) makes use of a marker M. The marker

helps determine the fi rst statement to be executed, if the Boolean expression E is true. In case the value of

Boolean expression is false, then the target label for the jump is the statement following the ‘if’ statement.

Hence, it adds the test_expr.falselist into the statement’s nextlist. This is given by quadlist_merge(stmt.

nextlist, test_expr.falselist,stmt1.nextlist) in the semantic action.

The if-else statement (Production 49) uses two of the markers M to know the fi rst executable statement

when the Boolean expression is true and false respectively. For representing the attributes the marker M

following the ‘test-expr’ is treated as M1 and the M following the ‘ELSE’ keyword is treated as M2. They

are backpatched by using the function backpatch(test_expr.truelist, M1.quad), backpatch(test_expr.falselist,

M2.quad). After generating TAC instructions for all the statements within the ‘if’ condition, a goto statement

is generated to jump to the following statement after the ‘if–else’ construct. The marker N helps achieve

this. The label of the goto statement is added to ‘stmt.nextlist’ to refl ect the conditional/unconditional goto

TAC statements that jump to the next statement.

48 stmt : IF ‘(’ test_expr ‘)’ M stmt {

 backpatch(test_expr.truelist, M.lbl));
 quadlist_merge(stmt.nextlist, test_expr.falselist,stmt1.nextlist);

}

49 | IF ‘(’ test_expr ‘)’ M stmt ELSE N M stmt {

 backpatch(test_expr.truelist,M1.lbl);
 backpatch(test_expr.falselist,M2.lbl);

 quadlist_merge(tmp, N.nextlist,stmt2.nextlist);
 quadlist_merge(stmt.nextlist,stmt1.nextlist,tmp);

}

50 stmt : ‘{’ stmt_list ‘}’ {

 stmt.nextlist = stmt_list.nextlist;
}

66 N : e {

 N.nextlist = makelist(next_quad) ;
 emit (GOTO,NULL,NULL,NULL);
}

294 Principles of Compiler Design

A marker M is inserted in several productions of the grammar above to get the label of the next

quadruple to be generated. The marker M facilitates in getting the label of next TAC statement to be

generated by means of Production 65. The label of next TAC statement to be generated is stored in M.lbl. In

Production 48 (also in 49), the attribute M.lbl is used to backpatch the TAC statements that have an unfi lled

goto’s with the value in M.lbl.

65 M : Œ {

 lbl = newlbl();
 emit(LBL,NULL,NULL,lbl);

 M.lbl = lbl ;
}

The statements that have the next_list attribute as non-empty indicate that there are some quads already

generated, that have the target label as the next statement. For example, Production 48 and 49 generate

quads whose target label is the next following statement. The attribute next_list of the ‘stmt’ contains the

list of such quads whose target label is the next following statement. Production 51 and 52 generate a label

for the next statement and do backpatching for those quads.

51 stmt_list : stmt_list stmt {

 if(stmt.nextlist is not empty){
 lbl = newlbl();
 emit(LBL,NULL,NULL,sptr);
 backpatch(stmt_list1.nextlist,lbl);
 }
}

52 | stmt {

 if(stmt.nextlist is not empty){
 lbl = newlbl();
 emit(LBL,NULL,NULL,sptr);
 backpatch(stmt.nextlist,lbl);
 }
}

Table 5.24 shows an if-else statement and its corresponding translated code using the productions and

semantic actions discussed above. Figure 5.19 shows the attributes of the different nodes and their values

during the translation from the input source to the three address code. The nodes are numbered in the order

of creation during bottom-up translation.

Table 5.24 Input source and its translated code

C code snippet Translated TAC

if (a < b) 0: if a < b goto .L0
 z = 30 ; 1: goto .L1
else 2: label .L0
 z = 40 ; 3: z := 30

4: goto .L2
x=90; 5: label .L1

6: z := 40
7: label .L2
8: x := 90

 Intermediate Code Generation 295

Fig. 5.19 Translation of if-else construct

296 Principles of Compiler Design

5.2.10 Example 5—Translation of if, if-else statements

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate

code for statements involving if and if-else constructs using the productions and semantic actions described

in the preceding section. The icgen program implements the translation scheme using bottom-up translation

method. The program takes as input, a sample C input source with some statements involving if and if-else

constructs. The output of ‘icgen’ is the intermediate code in TAC format generated from the input C source.

The dialog below shows the icgen program taking in some sample input C sources, and printing out their

intermediate code in TAC format.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyser

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building icgen Binary

$ g++ -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

Input fi le

$ cat -n test5.c
 1 int x,z;
 2
 3 int
 4 func (int a, int b)
 5 {
 6 if (a < b) {
 7 z = 30;
 8 } else {
 9 z = 40;
 10 }
 11 x=90;
 12
 13 }

Generating IC

$./icgen test5.c
 (0) proc_begin func
 (1) if a < b goto .L0
 (2) goto .L1
 (3) label .L0
 (4) z := 30
 (5) goto .L2
 (6) label .L1
 (7) z := 40
 (8) label .L2

 Intermediate Code Generation 297

 (9) x := 90
(10) label .L3
(11) proc_end func

Input fi le

$ cat -n test5a.c
 1 int x,z;
 2
 3 int
 4 func (int a, int b, int c, int d)
 5 {
 6 if ((a < b) || (c < d)) {
 7 z = 30;
 8 } else {
 9 z = 40;
 10 }
 11 x=90;
 12
 13 }

Generating IC

$./icgen test5a.c
 (0) proc_begin func
 (1) if a < b goto .L1
 (2) goto .L0
 (3) label .L0
 (4) if c < d goto .L1
 (5) goto .L2
 (6) label .L1
 (7) z := 30
 (8) goto .L3
 (9) label .L2
(10) z := 40
(11) label .L3
(12) x := 90
(13) label .L4
(14) proc_end func

Input source fi le

$ cat -n test5b.c
 1 int x,z;
 2
 3 int
 4 func (int a, int b, int c, int d)
 5 {
 6 if ((a < b) && (c < d)) {
 7 z = 30;
 8 } else {
 9 z = 40;
 10 }
 11 x=90;
 12
 13 }

Generating IC

298 Principles of Compiler Design

$./icgen test5b.c
 (0) proc_begin func
 (1) if a < b goto .L0
 (2) goto .L2
 (3) label .L0
 (4) if c < d goto .L1
 (5) goto .L2
 (6) label .L1
 (7) z := 30
 (8) goto .L3
 (9) label .L2
(10) z := 40
(11) label .L3
(12) x := 90
(13) label .L4
(14) proc_end func

5.2.11 While Statement

In this section, we learn about the translation of another fl ow of control statement—the while statement.

The while statement is used in higher level languages to repeatedly execute a section of code as long as the

entry condition is satisfi ed. The common way to break out of the while statement loop is when the entry

condition is no longer satisfi ed, or when there is a explicit ‘break’ statement executed by the program.

Consider the C code snippet containing a while statement in Table 5.25 for understanding the important

aspects of intermediate code generation for a while statement. The variables used in the code snippet are

all assumed to be integers. The entry condition to the while loop is given by the test expression (i > 0). The

statements val = val *i and i = i –1; are executed repeatedly as long as the entry condition is satisfi ed.

Table 5.25 C code snippet using while statement

..

..
while(i>0)
{
 val = val * i;
 i = i-1;
}
..
..

Table 5.26 shows the intermediate code for the code snippet in Table 5.25. We can see from

Table 5.26 that the generated intermediate code for the while loop is very similar to the ‘if’ statement with

an additional jump to the entry condition.

Table 5.26 TAC statements for ‘while’ statement

0 : label .L0
1 : if i > 0 goto .L1
2 : goto .L2
3 : label .L1
4 : _t0 := val * i
5 : val := _t0
6 : _t1 := i - 1
7 : i := _t1
8 : goto .L0
9 : label .L2

 Intermediate Code Generation 299

The translation of a ‘while’ statement is similar to the if-else construct that we saw in the last section. The

backpatch technique is used again for overcoming the issue of unknown labels at the time of translation.

We now look at the productions and the corresponding semantic actions relevant for the translation of a

while statement.

The while statement (see Production 67 below) uses a marker R to know the label of the beginning

statement of the ‘while’ loop. The beginning statement of a while loop is the test expression statement

which is the entry condition for the while loop. It uses another marker M to determine the label of the fi rst

executable statement to jump, if the value of test expression is true. Both of these labels are backpatched on

the completion of processing of the ‘while’ statement. The statement to jump when the Boolean expression

is false is the next executable statement after the while loop. Hence, the test_expr.falselist is added into

the statement’s nextlist along with break labels in the processing of Production 67. At the end of TAC

statements for while loop, a goto statement that jumps back to the start of while loop to check the entry

condition (marked by R) is generated.

67

69

stmt

R

:

:

WHILE R ‘(’ test_expr ‘)’ M stmt {

 while (top of Break-Label stack is not marker)
 {
 pop the Label.
 add the label to brk_list
 }
 backpatch(stmt1.nextlist,R.lbl));
 backpatch(test_expr.truelist, M.lbl);

 quadlist_merge(stmt.nextlist, test_expr.falselist,brk_list) ;
 emit (GOTO,NULL,NULL,R.quad);
}

Œ {

 b = new brk_lbl(-1); /* marker */
 brk_lbl_stk.push(b);

 lbl = newlbl();
 emit(LBL,NULL,NULL,lbl);

 R.lbl = lbl;
}

The ‘break’ statement processing involves generating an unfi lled ‘goto’ statement (Production 68). The

label is pushed on to a break-label stack to signify that it needs to be backpatched later. The labels of

the break statements are consolidated and added to the ‘stmt.nextlist’ during the processing of the while

statement in Production 67. The break label stack uses a marker to differentiate between the nested while

statements and their corresponding break statements as seen in the processing of Production 69.

68 stmt : BREAK ‘;’ {

 b = new brk_lbl(next_quad);
 brk_lbl_stk.push(b);
 emit (GOTO,NULL,NULL,NULL);

}

Table 5.27 shows an input source containing a ‘while’ statement and its corresponding translated code

using the productions and semantic actions discussed above. Figure 5.20 shows the attributes of different

nodes and their values during the translation from the input source to the three address code. The nodes are

numbered in the order of creation during bottom-up translation.

300 Principles of Compiler Design

Fig. 5.20 Translation of ‘while’ construct

 Intermediate Code Generation 301

Table 5.27 Input source and its translated code

C code snippet Translated TAC

while (i > 0)
{
 val = val * i;
 i = i -1 ;
}

0 : label .L0
1 : if i > 0 goto .L1
2 : goto .L2
3 : label .L1
4 : _t0 := val * i
5 : val := _t0
6 : _t1 := i - 1
7 : i := _t1
8 : goto .L0
9 : label .L2

5.2.12 Example 6—Translation of While Statements

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate

code for while statement using the productions and semantic actions described in the preceding section.

The icgen program implements the translation scheme using bottom-up translation method. The program

takes as input, a sample C input source with some switch-case statements. The output of ‘icgen’ is the

intermediate code in TAC format generated from the input C source. The dialog below shows the icgen

program taking in some sample input C sources, and printing out their intermediate code in TAC format.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyser

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building icgen Binary

$ g++ -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

Input fi le

$ cat -n test6.c
 1 int val;
 2
 3 int func(int num)
 4 {
 5 int i,val;
 6
 7 val=1;
 8 i=num;
 9
10 while(i>0)
11 {
12 val = val * i;

302 Principles of Compiler Design

13 i = i-1;
14 }
15
16 }

Generating IC

$./icgen test6.c
 (0) proc_begin func
 (1) val := 1
 (2) i := num
 (3) label .L0
 (4) if i > 0 goto .L1
 (5) goto .L2
 (6) label .L1
 (7) _t0 := val * i
 (8) val := _t0
 (9) _t1 := i - 1
(10) i := _t1
(11) goto .L0
(12) label .L2
(13) label .L3
(14) proc_end func

Input fi le

$ cat -n test6a.c
 1 int val;
 2
 3 int func(int num)
 4 {
 5 int i,val;
 6
 7 val=1;
 8 i=num;
 9
10 while(i>0)
11 {
12 val = val * i;
13 i = i-1;
14
15 if(val > 10000){
16 break;
17 }
18 }
19
20 }

Generating IC

$./icgen test6a.c
 (0) proc_begin func

 (1) val := 1
 (2) i := num
 (3) label .L0
 (4) if i > 0 goto .L1

 (5) goto .L4

 (6) label .L1

 Intermediate Code Generation 303

 (7) _t0 := val * i

 (8) val := _t0

 (9) _t1 := i - 1
(10) i := _t1
(11) if val > 10000 goto .L2
(12) goto .L3

(13) label .L2

(14) goto .L4
(15) label .L3

(16) goto .L0
(17) label .L4

(18) label .L5

(19) proc_end func

5.2.13 Switch-case Statement

The switch-case statement is another common programming construct found in most of the programming

languages. It is used in scenarios where there is a need to execute a set of statements depending on the

value of an expression. The switch case statement is supported in C language.

Consider the C code snippet containing a switch-case in Table 5.28 for understanding the important

aspects of intermediate code generation for a switch-case statement. The variables used in the code snippet

are all assumed to be integers.

Table 5.28 Switch-case code snippet in C language

..

..

switch(x+y)
{
 case 3 :
 a=b;
 c=d;
 break;

 case 5 :
 e=f;
 g=h;
 case 7 :
 i=j;
 k=l;
 break;

 default :
 a=b;
 c=d;
 break;
}
p=q
..
..

We shall spend some time understanding the components of the switch case statement before we try to

attempt a translation of the switch-case to TAC statements.

304 Principles of Compiler Design

The switch statement consists of three main parts:

∑ The selector expression based on whose value the control fl ows to a specifi c case statement. In the

code snippet shown in Table 5.28, the selector expression is (x + y).

∑ The set of statements to be executed when the selector expression matches a particular case

expression. In the code snippet shown in Table 5.28, the set of statements a = b; c = d; break; get

executed when the selector expression, i.e. (x + y) is equal to the case expression 3. The break

statement allows the control to jump out of the switch statement to the next executable statement,

which is p = q;

∑ A ‘default’ case, which allows for executing a set of statements in the event of the selector expression

not matching any of the case expressions. In the above example, the statements in the ‘default’ get

executed if the selector expression (x + y) is not equal to any of the case expressions 3 or 5 or 7. The

default case is optional in C language.

Table 5.29 shows the intermediate code for the switch-case statement shown in Table 5.28. The index in

the quads array is also shown alongside the instruction for reference.

Table 5.29 TAC statements for the switch-case statement

 0: t1 := x + y
 1: goto .L4
 2: label .L0
 3: a := b
 4: c := d
 5: goto .L5
 6: label .L1
 7: e := f
 8: g := h
 9: label .L2
 10: i := j
 11: k := l
 12: goto .L5
 13: label .L3
 14: a := b
 15: c := d
 16: goto .L5
 17: goto .L5
 18: label .L4
 19: if t1 == 3 goto .L0
 20: if t1 == 5 goto .L1
 21: if t1 == 7 goto .L2
 22: goto .L3
 23: label .L5
 24: p := q

The translation of the switch case statement would broadly be divided into three parts as follows:

 1. Generation of TAC statements to evaluate the selector expression. In Table 5.29, the quad at the

index 0 evaluates the selector expression and stores it in the temporary _t0 for the upcoming

comparisons.

 2. Generation of TAC statements for each one of the cases in the switch statement. Each case is

associated with a unique label as an entry point. In Table 5.29, the TAC statements 2 through 5

are generated for the case ‘3’ in the input source. The entry point for the case 3 is the label .L0.

Similarly, the statements 9 through 12 are associated with the case ‘7’ in the input source with the

entry point being the label .L2.

 Intermediate Code Generation 305

 3. Generation of a set of ‘if’ TAC statements to compare the selector expression with each one of the

case expressions. These conditional statements jump to the respective entry point label identifi ed

in (2) above on success. In Table 5.29, the TAC statements 19 through 22 compare the selector

expression in _t0 with each of the case expressions 3, 5 and 7. The ‘if’ statement in 19 jumps to

the entry point label .L0 associated with the case expression 3 on success. The ‘if’ statement in 20

jumps to the entry point label .L1 associated with case expression 5 on success. The quad in 22 is

for the default label of the case statement.

We now look at the productions and the corresponding semantic actions relevant for the translation of a

switch-case statement.

A value-label (VL) stack is used to maintain the mapping between the value of the selector expression

and the label to be jumped for that particular value of selector expression. Each time the parser encounters

a case statement, the value of selector expression and the label for the fi rst statement to be executed

corresponding to that value are stored on the value-label stack. For example, when case 5 is encountered

in the input source shown in Table 5.28, the value 5 and the label of the next statement, i.e. e = f, given by

M.lbl are stored on the VL stack. This is manifested in the semantic computation associated with Production

71. The default case (Production 72) is also handled similarly except the fact that in the value-label pair, the

value does not hold signifi cance; an unconditional goto is generated to the label of the ‘default’ case.

71 case_stmt : CASE CONSTANT ‘:’ M stmt_list {

 push the pair M.lbl,CONSTANT.value on VL stack

}

72 | DEFAULT ‘:’ M stmt_list {

 push the pair M.lbl,default on VL stack

}

73 case_stmt_list : case_stmt_list case_stmt

74 | case_stmt

After the parser identifi es the ‘switch’ keyword, a marker is pushed on the value-label stack. This serves

as a demarcation on the value-label stack for the elements corresponding to this particular switch-case

statement. This is manifested in the semantic processing of Production 75. Having a marker on value-label

stack enables us to handle nested switch case statements. After processing the complete switch statement

including all the cases, a series of ‘if’ TAC statements are generated, which check the value of selector

expression with a jump to appropriate label on success. This is done using the VL stack that was populated

during the handling of case statements. The semantic processing associated with the Production 70 is

indicative of this.

The processing for ‘break’ statement seen in Production 68 earlier in Section 5.3.11 remains unchanged.

The labels of the break statements are consolidated and added to the ‘stmt.nextlist’ during the processing of

the switch statement in Production 70.

In the TAC statements shown in Table 5.29, the lines associated with indexes 17 through 21 are

generated from semantic processing of Production 70.

70 stmt : SWITCH Q expr N ‘{‘ case_stmt_list ‘}’ {

list1 = makelist(nextquad);
emit (GOTO,NULL,NULL,NULL);

306 Principles of Compiler Design

backpatch(N.nextlist,nextquad);

lbl = newlbl();
emit(LBL,NULL,NULL,lbl);

while (top of Value-Label stack is not marker)
{
 pop the Value-Label pair VL.
 if (VL is default case){
 ldef = L
 emit(‘goto’, ldef);
 } else
 emit(EQ,expr.place,value,label)
 }
}

while (top of Break-Label stack is not marker)
{
 pop the Label.
 add the label to list2
}
quadlist_merge(stmt.nextlist,list1,list2)

}

75 Q : Œ {
 push the marker on VL stack
 push the marker on the Break Label Stack

}

The backpatching technique is used to fi ll in the label for the next executable statement for the list of

statements given by attribute stmt.nextlist, fi lled in Production 70. The backpatching happens in the

processing of Production 50/51 seen earlier during the discussion on if-constructs in Section 5.3.9.

In the TAC statements shown in Table 5.29, the lines associated with indexes 5, 12, 16 and 17 are all

backpatched by the processing of Production 50 or 51. The ‘stmt.nextlist’ for the switch-case statement at

the end of processing Production 70 has the four elements 5,12,16 and 17 corresponding to Table 5.29.

Table 5.30 shows a C code snippet containing a ‘switch-case’ construct and its corresponding translated

code using the productions and semantic actions discussed above. Figure 5.21 shows the attributes of

different nodes and their values during the translation from the input source to the three address code. The

nodes are numbered in the order of creation during bottom-up translation.

Table 5.30 Input source and its translated code

Input source Translated TAC

switch(v1)
{
 case 5 : v2=v3;
 break;
 default : v3=v4;
 break;
}

0: goto .L2
1: label .L0
2: v2 := v3
3: goto .L3
4: label .L1
5: v3 := v4
6: goto .L3
7: goto .L3
8: label .L2
9: if v1 == 5 goto .L0
10: goto .L1
11: label .L3

 Intermediate Code Generation 307

Fig. 5.21 Translation of switch-case construct

308 Principles of Compiler Design

5.2.14 Example 7—Translation of Switch-case Statements

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate

code for switch-case statements using the productions and semantic actions described in the preceding

section. The icgen program implements the translation scheme using bottom-up translation method. The

program takes as input, a sample C input source with some switch-case statements. The output of ‘icgen’

is the intermediate code in TAC format generated from processing the input C source. The dialog below

shows the icgen program taking in some sample input C sources, and printing out their intermediate code in

TAC format.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyser

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building icgen Binary

$ g++ -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

Input fi le

$ cat -n test7.c
 1 int z;
 2
 3 int
 4 func (int sel_exp, int a, int b)
 5 {
 6
 7 switch (sel_exp)
 8 {
 9 case 5:
 10 z = a + b;
 11 break;
 12 default:
 13 z = a - b;
 14 break;
 15 }
 16 z = z * b;
 17 }

Generating IC

$./icgen test7.c
 (0) proc_begin func
 (1) goto .L2
 (2) label .L0
 (3) _t0 := a + b
 (4) z := _t0

 Intermediate Code Generation 309

 (5) goto .L3
 (6) label .L1
 (7) _t1 := a - b
 (8) z := _t1
 (9) goto .L3
(10) goto .L3
(11) label .L2
(12) if sel_exp == 5 goto .L0
(13) goto .L1
(14) label .L3
(15) _t2 := z * b
(16) z := _t2
(17) label .L4
(18) proc_end func

Input fi le

$ cat -n test7a.c
 1 int z;
 2
 3 int
 4 func (int sel_exp, int a, int b)
 5 {
 6
 7 switch (sel_exp)
 8 {
 9 case 5:
 10 z = a + b;
 11 break;
 12 case 6:
 13 z = a + 2*b;
 14 break;
 15 case 7:
 16 z = a + 3*b;
 17 break;
 18 default:
 19 z = a - b;
 20 break;
 21 }
 22 z = z * b;
 23 }

Generating IC

$./icgen test7a.c
 (0) proc_begin func
 (1) goto .L4
 (2) label .L0
 (3) _t0 := a + b
 (4) z := _t0
 (5) goto .L5
 (6) label .L1
 (7) _t1 := 2 * b
 (8) _t2 := a + _t1
 (9) z := _t2
(10) goto .L5
(11) label .L2

310 Principles of Compiler Design

(12) _t3 := 3 * b
(13) _t4 := a + _t3
(14) z := _t4
(15) goto .L5
(16) label .L3
(17) _t5 := a - b
(18) z := _t5
(19) goto .L5
(20) goto .L5
(21) label .L4
(22) if sel_exp == 5 goto .L0
(23) if sel_exp == 6 goto .L1
(24) if sel_exp == 7 goto .L2
(25) goto .L3
(26) label .L5
(27) _t6 := z * b
(28) z := _t6
(29) label .L6
(30) proc_end func

5.2.15 Procedure Calls

In this section, we study about the translation of procedure or function calls. The functions are used in

higher level languages to break down a large program into smaller modular components. Strictly speaking,

a function is a procedure with a return value, but for the discussion here, we use the terms function and

procedure interchangeably.

Consider a small C code snippet that calls a function ‘my_func’ as shown in Listing 5.2 to understand

the important aspects of intermediate code generation for a function call. For the sake of simplicity, it is

assumed that all the variables used in the code snippet are integers that require 4 bytes of memory each.

..

..
v3=my_func((v1+6),v2);
v4=v3+5;
..

Listing 5.2 C Code snippet calling a function

There are several things that happen, when a function is called or invoked in the input source as shown

in Listing 5.2.

∑ The arguments to the called function are evaluated. For example, in the code snippet of Listing 5.2,

the arguments ‘v1 + 6’ and v2 are evaluated. The argument list consists of expressions, which would

include, arguments by reference, pointers, arithmetic expressions, and so on. The attribute expr.place

would typically hold the evaluation of an argument expression.

∑ Each of the arguments is put into a place in memory from where they can be accessed by the called

function. In the code snippet of Listing 5.2, the evaluated arguments, namely (v1 + 6) and v2 are put

into a pre-determined place in memory for the function ‘my_func’ to access them. The ‘param’ TAC

statement does the job of putting the argument into a pre-determined place in memory to be accessed

by the calee. A ‘param’ statement is emitted for every argument that is used by the procedure.

∑ The control is transferred to the fi rst statement of the procedure called. But, just before that, the

‘return’ address, where the control should return after executing the procedure needs to be put into

 Intermediate Code Generation 311

a place in memory, so that there is a smooth transfer of control back after the function is executed.

The ‘call’ TAC statement does the job of storing the return address in a pre-determined place and

then transferring the control to the fi rst statement of the procedure called. The cumulative size of

the arguments in bytes for each parameter generated by ‘param’ statements is the other argument for

‘call’ statement. It is used during the target code generation.

From a TAC statements point of view, a function call invocation in C language is translated into the

following: (a) TAC statements for evaluation of each of the arguments; (b) A series of ‘param’ statements,

one for every argument that is used during the invocation of a function; (c) A ‘call’ statement, which

involves saving the return address and transferring the control to the fi rst statement in the function.

This sequence of TAC instructions generated for a function invocation is termed as the ‘ calling

sequence’. Table 5.31 shows the section of translated code corresponding to the code snippet in Listing 5.2.

It illustrates the calling sequence that we just discussed.

Table 5.31 TAC statements illustrating the calling sequence

Translated TAC

_t0 := v1 + 6 /* Evaluating Argument */
param v2
param _t0
call my_func 8 /* 8 is the cumulative size of arguments
 in bytes generated by param statements (v2 and _t0)*/

After the function is executed and the control returns back to the caller, the returned value is fetched

from the pre-determined place into a local variable. This is achieved by a ‘retrieve’ TAC statement. The

argument to the retrieve TAC statement is the variable, where the returned value needs to be stored.

The ‘retrieve’ TAC statement can be envisaged as the returning sequence similar to the calling sequence

we studied earlier. Table 5.32 shows the returning sequence incorporated along with the calling sequence

for the translation of input source of Listing 5.2.

Table 5.32 TAC statements illustrating both the calling and the returning sequence

/* Calling Sequence */
_t0 := v1 + 6
param v2
param _t0
call add_func

/* Returning Sequence */
retrieve _t1

v3 := _t1
v4 := v3+5

In similar lines, when a function gets called, there is sequence of actions that happen in the called

function.

∑ The called function saves the registers and accommodates storage for local variables. This is achieved

by the ‘proc_begin’ TAC statement, which has the name of the function as an argument.

∑ The called function can have a ‘return’ statement of the form return(expression) in the input source.

This is translated to (a) placing the return value into a place, where the caller wants it, and (b) jumping

to the end of the function. The placing of return value into a place agreed by caller is achieved by the

312 Principles of Compiler Design

‘return’ TAC statement. The argument to the return TAC statement specifi es the value that is being

returned. The jump to the end of the function is performed by a ‘goto’ TAC statement. If the input C

source contains a return statement without the expression, only a goto TAC statement is generated,

which accomplishes (b) above.

∑ The end of a function is marked by ‘proc_end’ TAC statement. The proc_end TAC statement would

be responsible for restoring the registers, release the local space and transfer the control back to the

caller. A label signifying the end of the function (say end_lbl) is also generated before the proc_end

TAC statement. The end_lbl is used as the target of all the goto statements generated with ‘return’

statements mentioned above.

Table 5.33 shows a simple function ‘add_func’ and its corresponding translated intermediate code

illustrating the concepts discussed above. The ‘add_func’ adds the two parameters and returns the result.

Table 5.33 A function and its translation

C Code Snippet Translated TAC

int add_func(int a, int b) 0: proc_begin add_func
{ 1: _t0 := a + b
 int c; 2: c := _t0

3: return c
 c = a + b; 4: goto .L0
 return(c); 5: label .L0
} 6: proc_end add_func

Having understood the TAC statements relevant to procedure calls, let us now look at the productions

and the semantic actions relevant for the translation of procedure calls.

A queue called ‘args_queue’ is a placeholder for all the actual parameters that are used in invoking the

function. The args_queue is initialised, when the fi rst argument is spotted in Production 79 (see below).

Every argument succeeding it is appended into the args_queue in Production 78. When the function call is

translated in Production 77, a ‘param’ statement is generated for each of the argument stored in the args_

queue.

A function invocation (Productions 76, 77) results in a ‘call’ TAC statement. The ‘call’ TAC statement

is preceded by the series of param statements in case there are arguments to the function as seen in the

semantic action for Production 77. The cumulative size of parameters in bytes is an argument for the

CALL TAC statement. For functions that have a return non-void return type, a ‘retrieve’ TAC statement is

generated. This is shown in the code segments of both Productions 76 and 77.

76 unary_expr : unary_expr ‘(’ ‘)’ {

 param_bytes = make_lit_tbl_entry(0);
 emit(CALL, u->place,param_bytes,NULL);
 if(unary_expr1.place.type == FUNCTION){
 f = unary_expr1.place.type;
 if(f.ret_type!= VOID_TYPE){
 t = newtemp1(f.ret_type);
 emit(RETRIEVE,NULL,NULL,t);
 unary_expr.place = t ;
 }
 }

}

 Intermediate Code Generation 313

77 | unary_expr ‘(‘ args_list ‘)’ {

 for (each element s in args_list.args_queue){
 emit(PARAM,NULL,NULL,s);
 sz = sz + sizeof(s)
 }
 param_bytes = make_lit_tbl_entry(sz);

 emit(CALL,unary_expr1.place,param_
 bytes,NULL,NULL);
 if(unary_expr1.place.type == FUNCTION){
 f = (function *)unary_expr1.place.type;
 if(f.ret_type!= VOID_TYPE){
 t = newtemp1(f.ret_type);
 emit(RETRIEVE,NULL,NULL,t);
 unary_expr.place = t ;
 }
 }

}

78 args_list : args_list ‘,’ expr {

 Append expr.place to args_list.args_queue;

}

79 | expr {

 Append expr.place into args_list.args_queue

}

A simple return statement without parameter is dealt with in Production 80, by generating a goto TAC

statement. The target label for the goto TAC statement is the end of the function, which is backpatched in

Production 5 by means of using a list ‘return_list’.

The return statement with a parameter is dealt with in Production 81, where return TAC statement

is generated with expr.place (that holds the return value) as the argument. The return TAC statement is

followed up by generating a goto TAC statement. The target label for the goto TAC statement is the end of

the function, which is backpatched in Production 5 by means of using a list ‘return_list’.

80

81

stmt :

|

RET ‘;’ {

Add next_quad to return_list;
emit(GOTO,NULL,NULL,NULL);

}

RET expr ‘;’ {

emit(RETURN,NULL,NULL,expr.place);
Add next_quad to return_list;
emit(GOTO,NULL,NULL,NULL);

}

The translated code for a function defi nition (Production 5 and 82) contains the generation of a ‘proc_

begin’ TAC statement signifying the start of a function. A label TAC statement followed by the ‘proc_end’

TAC statement is generated in Production 5 signifying the end of the defi nition of a function.

314 Principles of Compiler Design

5 function_defi nition : type_spec func_decl P function_body {

curr_sym_tab_ptr = tbl_stk.top();
Pop tbl_stk ;

emit(LBL,NULL,NULL,end_label);
backpatch(return_list,end_label)
emit(PROC_END,NULL,NULL,func_name);

}

82 P : Œ {

Push curr_sym_tab_ptr on tbl_stk

curr_sym_tab_ptr = new symbol table ;
curr_sym_tab_ptr->previous = tbl_stk.top() ;

emit (PROC_BEGIN,NULL,NULL,func_name);

}

Table 5.34 shows a a procedure defi nition and its corresponding translated code generated using the

productions and semantic actions discussed above. Figure 5.22 shows the attributes of different nodes and

their values during the translation from the input source to the three address code. The nodes are numbered

in the order of creation during bottom-up translation. The func_decl and the declaration_list non-terminals

are not shown in expanded form in the fi gure, they don’t emit any TAC instructions.

Table 5.34 Input source and its translated code

Input Source Translated TAC

int add_func(int a,int b) 0: proc_begin add_func
{ 1: _t0 := a + b
 int c; 2: c := _t0

3: return c
 c = a + b; 4: goto .L0

5: label .L0
 return c;
}

6: proc_end add_func

Table 5.35 shows a procedure invocation and its corresponding translated code generated using the

productions and semantic actions discussed above. Figure 5.23 shows the attributes of different nodes and

their values during the translation from the input source to the three address code. The nodes are numbered

in the order of creation during bottom-up translation.

Table 5.35 Input source and its translated code

C code snippet Translated TAC

v3=add_func(v1,v2); param v2

param v1
call add_func 8
retrieve _t0
v3 := _t0

 Intermediate Code Generation 315

Fig. 5.22 Translation of procedure defi nition

316 Principles of Compiler Design

Fig. 5.23 Translation of procedure invocation

 Intermediate Code Generation 317

5.2.16 Example 8—Translation of Procedure Calls

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate

code for statements involving procedure calls using the productions and semantic actions described in

the preceding section. The icgen program implements the translation scheme using bottom-up translation

method. The program takes as input, a sample C input source with statements involving procedure calls.

The output of ‘icgen’ is the intermediate code in TAC format generated from the input C source. The dialog

below shows the icgen program taking in some sample input C sources, and printing out their intermediate

code in TAC format.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyser

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building icgen Binary

$ g++ -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

Input fi le

$ cat -n test8.c
 1 int z;
 2
 3 int add_func(int a,int b)
 4 {
 5 int c;
 6
 7 c = a + b;
 8
 9 return(c);
 10 }
 11
 12 int main()
 13 {
 14 int v1,v2,v3,v4;
 15
 16 v1=10;
 17 v2=20;
 18
 19 v3=add_func(v1,v2);
 20
 21 z=v3+5;
 22 }
 23

318 Principles of Compiler Design

Generating IC

$./icgen test8.c
(0) proc_begin add_func
(1) _t0 := a + b
(2) c := _t0
(3) return c
(4) goto .L0
(5) label .L0
(6) proc_end add_func

(0) proc_begin main
(1) v1 := 10
(2) v2 := 20
(3) param v2
(4) param v1
(5) call add_func 8
(6) retrieve _t0
(7) v3 := _t0
 (8) _t1 := v3 + 5
 (9) z := _t1
(10) label .L1
(11) proc_end main

Input fi le

$ cat -n test8a.c
 1 int z;
 2
 3 int add_func(int a,int b)
 4 {
 5 int c;
 6
 7 c = a + b;
 8
 9 return(c);
 10 }
 11
 12 int main()
 13 {
 14 int v1,v2,v3,v4;
 15
 16 v1=10;
 17 v2=20;
 18
 19 v3=add_func((v1+6),v2);
 20
 21 z=v3+5;
 22 }
 23

Generating IC

$./icgen test8a.c
(0) proc_begin add_func
(1) _t0 := a + b
(2) c := _t0

 Intermediate Code Generation 319

(3) return c
(4) goto .L0
(5) label .L0
(6) proc_end add_func

 (0) proc_begin main
 (1) v1 := 10
 (2) v2 := 20
 (3) _t0 := v1 + 6
 (4) param v2
 (5) param _t0
 (6) call add_func 8
 (7) retrieve _t1
 (8) v3 := _t1
 (9) _t2 := v3 + 5
(10) z := _t2
(11) label .L1
(12) proc_end main

 SUMMARY

In a compiler, the front end translates the higher level language input source into a form that is

independent of target machine architecture called as intermediate code. The intermediate code is

simple enough to be mapped on to different target architectures. The main reason for generating

intermediate code instead of the fi nal target code is that it helps in easier retargeting of the compiler

to generate instructions for different processors. There are a two different formats of intermediate

code that were studied in this chapter, namely abstract syntax tree (AST) and three address code

(TAC) format. The translation of input source into intermediate code is performed by using the syntax

directed translation technique.

The production rules and the semantic actions of the translation scheme to generate intermediate

code (TAC format) for common programming constructs encountered in higher-level languages were

examined. The translation of declarations, which yields symbol table, was studied in the previous

chapter. The generation of intermediate code for (1) Simple assignment statements; (2) Array, pointer

and record references; (3) Flow of control statements (like if-else and while constructs); (4) Switch-

case constructs; and (5) Procedure calls were covered in 5.2. The discussion on the translation of

each of the programming construct was supplemented by a demonstration of IC generator program,

generating the intermediate code for that specifi c programming construct. The generation of

intermediate code for fl ow of control statements and some others presented a challenge of not

knowing the target label to jump to at the time of emitting code. The backpatching technique helped

us overcome this challenge and generate the intermediate code.

320 Principles of Compiler Design

 REVIEW QUESTIONS AND EXERCISES

 5.1 A compiler can choose one of the two options (a) Translate the input source into intermediate

code and then convert it to fi nal machine code; (b) Directly generate the fi nal machine code from

the input source. What is the preferred option and why?

 5.2 Describe the three address code form of the intermediate code. List out some of operators used in

three address code with examples.

 5.3 How can three address code be implemented in a compiler? Describe triples and indirect triples

method of implementing TAC with examples.

 5.4 Compare the different methods of implementing three address code.

 5.5 How is an abstract syntax tree different from a parse tree? List out some of the nodes in the AST

for a C compiler?

 5.6 Translate a C statement ‘a = b + c – (4*a*b + 3*c);’ into TAC. How are the binary operators like

+, –, etc., handled during the translation?

 5.7 Translate an array reference statement ‘a = b[c];’ into TAC. What are the main TAC operators

used during the translation? What attributes of a unary expression are used in translation of array

references?

 5.8 How is the offset calculated for a multidimensional array reference? Derive the formula.

 5.9 Translate the C statements ‘p=& arr[3]; *p=10;’ into TAC. What TAC operators are useful during

the translation of pointer accesses?

 5.10 Translate the C statement ‘x.age = 30;’ into TAC. Assume that the fi eld ‘age’ is at an offset of

20 bytes from the base of the structure. What are the common TAC operators used during the

translation of ‘struct’ references using the dot operator?

 5.11 Translate the C statement ‘ptrÆage=20;’. Assume that the fi eld ‘age’ is at an offset of 20 bytes

from the base of the structure. What are the common TAC operators used during the translation

of ‘struct’ references using the arrow operator?

 5.12 Translate the C statement ‘if (a<b){x=y;} m=20;’ into TAC. In a single pass compiler, how is the

translation of Boolean test expression (a < b) performed? How does it know about the labels to

jump on being true or false?

 5.13 Describe the backpatching technique. How is it used in the translation of an input C statement ‘if

((a < b) || (c < d)) {m = 20;} else {m = 10;} p = m;’?

 5.14 What are the data structures used during the translation of a ‘while’ statement? Illustrate the

usage of those data structures during the translation of a C statement ‘while (i < b){val = val *i;

i = i + 1;} m = val;’?

 5.15 How is a switch-case statement translated into TAC? Illustrate with an example.

 5.16 What are the calling and returning sequences? List out the TAC instructions generated during

both of these sequences by taking a sample C code snippet.

 5.17 What is the sequence of events in the called function during a procedure call? Illustrate with an

example.

 5.18 How is a call to a procedure translated into TAC? Illustrate with an example.

 5.19 State if the following statements are true or false:

 (a) The separation of a compiler into front end and back end is helpful in retargeting of the

compiler.

 (b) The separation of a compiler into front end and back end helps in adding support for a new

source language easily.

 Intermediate Code Generation 321

 (c) The intermediate code can be ‘improved’ by using techniques independent of the target

architecture.

 (d) The back end of the compiler takes the intermediate code to generate the target code.

 5.20 State if the following statements are true or false:

 (a) The backpatching technique is employed during the translation of array references.

 (b) The ‘place’ and ‘offset’ attributes of a unary expression are used to help the translation of

array, record references.

 (c) The triples and indirect triples are methods of implementing three address code form of

intermediate representation.

 (d) The indirect triples implementation is more favourable to the optimisation of the TAC.

TARGET CODE GENERATION

6

Introduction
We studied in the previous chapters how the input source was broken
up into tokens (Chapter 2—Lexical Analysis), verifi ed against a specifi ed
grammar (Chapter 3—Syntax Analysis), checked for semantic errors
(Chapter 4—Semantic Analysis) and translated to machine-independent
intermediate code (Chapter 5—Intermediate Code Generation). In this
chapter, we study about the conversion of the machine-independent
intermediate code into target program, which is closer to the machine
architecture. The conversion is accomplished by a target code generator
(more simply called as code generator) that takes intermediate code as
the input and generates a target program as output. The target program
can be an assembly language program or absolute machine code.

The diff erent forms of the target code and their advantages/
disadvantages is the topic of the discussion in Section 6.1. The intricacies
of code generation are explored in this chapter by using x86 as a model
target processor and its assembly language program as the target
program. Section 6.2 gives an overview of the x86 processor and also
its assembly language programming to help understand the target code
generation better. The target code generator needs to conceive the
run-time environment in which the target program runs and generate
the target code accordingly. The important aspects of the run-time

 Target Code Generation 323

environment that the code generator needs to provide for are described in Section 6.3.
The concepts of target code generation using a template-based approach are discussed
in Section 6.4.

6.1 TARGET PROGRAM
The intermediate code, as we saw in the previous chapters, is a very generic set of instructions which is not

restricted to any specifi c type of processor. The target program on the other hand, is a closer representation

of the machine characteristics.

The target program can take one of the following three forms:

 1. Assembly language program.

 2. Absolute machine code.

 3. Relocatable object code.

One of the advantages of choosing assembly instructions as the target program is that the target code

generator can generate symbolic instructions (like mov ax, var1) instead of relocatable or absolute addresses

(like mov ax, 0x80000000). This improves readability of the target code generated. It also makes it easier

to debug the compiler during a malfunction. A target program in assembly language can also make use of

the macro facilities of the assembler. The disadvantage of having the assembly language program as the

target program is that an additional pass is required for converting it into machine instructions. In any case,

multiple passes in the compiler is unavoidable because storing the entire set of data structures for translation

from the input source to machine instructions would put a very high demand on the memory.

By having absolute machine code as the target program for code generation, there is a fl exibility of

loading the code in a fi xed memory location and immediately executing it. However, this can work only if

the program is small in size.

Having relocatable object code as a target program allows a program (say ‘p’), spread across multiple

fi les (like say p1.c, p2.c, etc.) to be each compiled separately. The relocatable object modules (p1.o, p2.o,

etc.) can be linked together and loaded for execution. This scheme allows the user to selectively compile a

part of the program (like just p1.c) and link it together with previously compiled object modules to generate

the executable.

Assembly language program is the target program of our choice for the code generator discussed in this

chapter. This choice aligns well with most of the compilers that are commonly available. The target code

generator discussed throughout this chapter takes the intermediate code as input and generates the assembly

language program as the output. This is shown in Fig. 6.1.

The Intel’s x86 family of processors is the model target processor for the study of code generation in

this chapter. We examine the architecture of x86 family of processors and write some assembly language

programs for it in the next section (Section 6.2). The knowledge of the x86 processor architecture and its

assembly language programming would be of immense use during the discussion on target code generation

for x86 in the later section (Section 6.4) of the chapter.

6.2 X86 PRIMER
In this section, we briefl y study the architecture of the Intel’s x86 processor, followed by some assembly

language programming for the same. The idea here is to get acquainted with the processor details and write

a few basic assembly programs. We cover the common x86 assembly language programming features like

global variables, registers, arithmetic operations, pointers, and so on in the discussion here. For a more

comprehensive treatment of the assembly language programming and the processor details, the reader

should refer to the programming manual.

324 Principles of Compiler Design

Fig. 6.1 Code generator translates intermediate code to assembly language program

6.2.1 x86 Architecture

The Intel’s x86 family of processors is one of the most widely used processors in the world. These

processors form the core of the personal computers (PC) that we use at home. The x86 family of processors

is based on CISC (complex instruction set computer) architecture. It supports a wide range of instructions

and addressing modes.

The x86 family of processors has 8 general-purpose registers given by the names eax, ebx, ecx, edx,

esp, ebp, esi and edi. The registers eax, ebx, ecx and edx are usually used for numerical computations. The

registers esp, ebp, esi and edi are used for accessing stack and performing pointer manipulation. Table 6.1

shows the general purpose registers of x86 family and their typical usage.

Table 6.1 General purpose registers

Name Description

EAX Used in most of the arithmetic operations

EBX Used in most of the arithmetic operations

ECX Used in most of the arithmetic operations

EDX Used in most of the arithmetic operations

ESP Stack Pointer—Used in Stack manipulation

EBP Base Pointer—Used in accessing elements on the stack from a reference point

ESI Source Index—Used in moving chunks of data from source to destination memory

EDI Destination Index—Used in moving chunks of data from source to destination memory

 Target Code Generation 325

The 32 bit EAX, EBX, ECX and EDX

registers can also be referenced by their

16bit and 8bit forms. For example, AX

refers to the lower 16 bits of the register

EAX. AH refers to the higher 8 bits of AX

and AL refers to the lower 8 bits of AX.

Figure 6.2 shows the relationship between

the various forms.

There are 6 segment registers given

by the names cs, ds, ss, es, fs and gs as

shown in Table 6.2. The segment registers are used for accessing memory.

Table 6.2 Segment registers

Name Description

CS Code segment

SS Stack segment

DS A fi rst data segment

ES A second data segment

FS A third data segment

GS A fourth data segment

A ‘fl ags’ register is used to know the status of operations carried out by the processor. The fl ags register

can tell if an overfl ow has happened during a multiplication or if a carry has been set during comparison

and so on. The Instruction pointer register named IP gives the address of the next instruction to be executed.

Table 6.3 Other registers

Name Description

IP Instruction pointer

EFLAGS Flags register used for knowing the status of operations performed by processor

6.2.2 Structure of an Assembly Language Program

The structure or the template of an assembly language program depends on the assembler used for

translating it into Machine Code. In this chapter, we use the GNU’s assembler (commonly known as gas)

to convert the assembly language programs to machine code for the x86 processor. The assembly language

programs that we would see in this chapter are all based on the format that GNU’s assembler expects. The

‘gas’ takes input assembly programs using AT&T Syntax. This syntax is somewhat different from the intel

syntax that other assemblers like MASM follow.

There are three types of assembly language statements that can be seen in an assembly language

program. They are

 ∑ Instructions

 ∑ Directives

 ∑ Macros

Fig. 6.2 Register EAX and its representation

326 Principles of Compiler Design

An instruction is translated by assembler into machine code that is executed at run-time. An assembly

instruction can consist of 4 fi elds namely, the label, mnemonic to specify the instruction/size, operands on

which the instruction operates, and a comment fi eld beginning with a #. A sample assembly instruction

illustrating all the four fi elds is shown below.

Label Mnemonic Operands Comment

11 : movl %eax,var1 # Moving the contents of register eax into a variable var1

A directive is used for informing the assembler to take some action. Directives do not result in machine

code. All the assembler directive statements start with a dot (.). For example, the align directive is used for

aligning the next assembly statement with 8 or 16 or 32 bit boundary. This directive helps in meeting the

requirement of the processor regarding positioning of certain parts of the program at prescribed boundaries

for effi ciency. For example, in x86 architecture accessing a 16-bit value at addresses that are at multiples of

2 is more effi cient than the addresses that are not. The align directive can be used to take advantage of this

feature.

.align 2 #aligns the next assembly statement to 16 bit boundary

A macro is shorthand for a sequence of other statements. The assembler expands the macros to the

statements it represents and then assembles it. For example, the following defi nes a macro called ‘prolog’.

Table 6.4 A macro defi nition

.macro PROLOG
 pushl %ebp
 movl %esp,%ebp
.endm

In Fig. 6.3 we can see that wherever the macro PROLOG is used, the assembler expands it and replaces

it with the statements that it represents.

Fig. 6.3 Expansion of macro by assembler

An x86 assembly program would be typically divided into sections meant for specifi c purpose. The three

sections used commonly are:

 ∑ Data section

 ∑ BSS (block started by symbol) section

 ∑ Text section

 Target Code Generation 327

The data section is used for declaring the variables that have an explicit value to be initialised with. The

BSS Section is used for declaring variables that are not initialised. The program loader usually initialises

the BSS segment to a default value of 0. The text section defi nes the code (instructions) to be executed.

The data and BSS sections are optional but the text section is mandatory. The ‘.section’ directive is used for

defi ning a section. Table 6.5 shows the three common sections defi ned in an assembly program.

Table 6.5 Sections in an assembly program

.section .data

 # Initialized Data

.section .bss

 # UnInitialized Data

.section .text

 # Instruction Code

A listing of assembly fi le can be used to view the assembly instructions side-by-side with the machine

language instructions to which it was transformed. The listing is obtained by passing extra command line

arguments to the assembler during assembly.

6.2.3 Assembly Language Programming
In this section, we take a quick look at some of the important features of assembly language programming

for the x86 family using the GNU’s assembler (gas). We try and understand the assembly language

instructions by going through some code snippets and programs.

6.2.3.1 Global Variables and Arrays Global variables in an assembly program are commonly defi ned

in data section. The following shows the declaration of an integer variable called ‘my_var’ having an initial

value of 100.

Declaration of a variable my_var with initial value as 100
my_var :
.int 100

As we can see, there are two statements used in defi ning a global variable, a label indicating the name of

the variable and a directive signifying the size of the variable and its initial value. The comments are shown

starting with the # mark.

Initialised global arrays are declared in the data section in a similar way with more number of data type

(.int) directives. The following shows the declaration of a global array my_init_arr with 5 elements, each

element being a 4-byte integer. The initial values for each of the fi ve elements are 10, 20, 30, 40 and 50.

Declaration of an integer global array my_init_arr with 5 elements

The initial values for each of the fi ve elements are 10,20,30,40 and 50

my_init_arr :

.int 10

.int 20

.int 30

.int 40

.int 50

328 Principles of Compiler Design

Un-initialised global arrays in an assembly program are defi ned in bss section using the ‘.comm’

(common memory) directive. The following shows the declaration of a 4-byte integer array called ‘my_arr’

having a size of 100 elements.

Declaration of a 4-byte integer array my_arr with 100 elements (size =4x100= 400 Bytes)
.comm my_arr,400

In the above case, the size of each element in the array is 4 bytes. There are 100 elements in it. This

makes the size of the integer array 400 bytes. This size of 400 is used in the declaration using the ‘.comm’

directive.

6.2.3.2 Registers The registers in x86 family of processors are accessed in assembly programs by

prefi xing the name with a % sign in front of them. For example, the content of eax register is accessed

using %eax. The MOV instruction is commonly used for moving data across registers as well as memory.

The MOV instruction has a suffi x that indicates the number of bytes that are being moved from source to

destination. A suffi x of ‘b’ or ‘w’ or ‘l’ indicates movement of 1 byte or 2 bytes or 4 bytes respectively.

The 16 bit and 8 bit forms of the registers eax, ebx, ecx and edx similar to the one shown in Fig. 6.2 can

also be accessed separately by using the corresponding reference. For example, %al refers to the lowest 8

bits in the register AX, %ah refers to the higher 8 bits of register AX. %ax refers to the 16-bit register AX.

%eax refers to the complete 32-bit register EAX. The following shows the usage of various forms of the

register.

movl %eax,%ebx #moving 4 bytes of data from eax register to ebx register

movl %eax,var #moving 4 bytes of data from eax register to label ‘var’

movl var,%eax #moving 4 bytes of data from variable ‘var’ to eax register

movw var,%ax #moving 2 bytes of data from variable ‘var’ to ax register

movb var,%ah #moving 1 byte of data from variable ‘var’ to ah register

movb var,%al #moving 1 byte of data from variable ‘var’ to al register

6.2.3.3 Immediate Operands In assembly language programming using the AT&T syntax that we are

following, the immediate operands are referenced using a $ sign in front of them. The following instruction

shows the use of an immediate operand.

movl $5,%eax #moving a value 5 to eax register

6.2.3.4 Arithmetic Operations The x86 assembly language has instructions to perform the common

 arithmetic operations of add, subtract, multiply and divide.

The addition is performed by the ADD instruction whose syntax is given below.

 add source, destination

where the source can be an immediate value, a memory location or a register. The destination can be a

register or a memory location. This instruction adds the source value with the destination value and stores

the result in the destination. Observe that the add instruction like many other instructions cannot operate

when both source and destination are memory locations. As usual, the suffi x of the instruction tells us the

size of the operands (b for 8 bit, w for 16 bit, and l for 32 bit). The following are some of the examples of

the ADD instruction.

 Target Code Generation 329

addl %ecx,%eax # Adds the content of register ecx to that of register eax
and the result stored in register eax

addl var,%eax # Adds the 4 bytes of data at label ‘var’ with content
of the register eax.
The result stored in register eax

addl %eax,var # Adds the content of the register eax with 4 bytes of
data at label ‘var’ and the result stored at the label var

The subtraction is performed by the SUB instruction whose syntax is given below.

 sub source, destination

where the source can be an immediate value, a memory location or a register. The destination can be a

register or a memory location. This instruction subtracts the source value from the destination value and

stores the result in the destination. The sub-instruction cannot operate when both source and destination are

memory locations. The suffi x of the instruction tells us the size of the operands (b for 8 bit, w for 16 bit,

and l for 32 bit). The following are some of the examples of the SUB instruction.

subl %ecx,%eax # Subtracts the content of register ecx from that of register
eax and the result stored in register eax

subl var,%eax # Subtracts the 4 bytes of data at label ‘var’ from the
content of the register eax and the result stored in
register eax

subl %eax,var # Subtracts the content of the register eax from 4 bytes
of data at label ‘var’ and the result stored
at the label var

The multiplication is performed by the MUL instruction whose syntax is given below.

 mul source

where the source can be a memory location or a register. The destination operand is implied and it is a form

of AX register depending on the suffi x of the mnemonic. The destination operand is AL for the mnemonic

mulb, AX for mulw, EAX for mull. This instruction multiplies the source value with the destination value

and stores the result in AX for mulb, DX:AX for mulw, EDX:EAX for the mull. For the mulw and mull, the

higher bits are stored in the DX or EDX respectively. The following are some of the examples of the MUL

instruction.

mull %ecx # Multiplies the content of register ecx with that of
register eax and the result stored in register
combination edx:eax

mull var # Multiplies the 4 bytes of data at label ‘var’
with the content of the register eax and the result stored
in register combination edx:eax

mulb %cl # Multiplies the 8 bit content of the register cl with
the 8 bit content of al
and the result stored in register ax

330 Principles of Compiler Design

The MUL instruction allows us to multiply unsigned integers. The IMUL instruction allows us to

multiply signed integers. The IMUL instruction operates exactly like the MUL excepting that it interprets

the sign by using the higher bits. The format, source operand, destination operand and the location where

the result is stored remain the same.

The division is performed by the DIV instruction whose syntax is given below.

 div divisor

where the divisor can be a memory location or a register. The dividend is implied and it is a form of AX

register depending on the suffi x of the mnemonic. The dividend is AX for the mnemonic divb, DX:AX

for divw, EDX:EAX for divl. This instruction divides the implied dividend by the divisor and stores the

result(quotient) in AL for mulb, AX for mulw, and EAX for the mull. The remainder of the division is

stored in AH, DX and EDX for mulb, mulw and mull respectively. The following are some of the examples

of the DIV instruction.

divl %ecx # Divides the content of register pair edx:eax with
the content of register ecx and the quotient
is stored in register eax, the remainder in edx

divl var # Divides the content of register pair edx:eax with
the 32 bit value at label var and the quotient
is stored in register eax, the remainder in edx

divb %cl # Divides the content of register ax with the content
in cl and the quotient is stored in register al,
the remainder in dl

The DIV instruction allows us to divide unsigned integers. The IDIV instruction allows us to divide

signed integers. The IDIV instruction operates exactly like the DIV excepting that it interprets the sign by

using the higher bits. The format, source operand, destination operand and the location where the result is

stored remain the same.

6.2.3.5 Addresses and Pointers We have seen earlier that registers can contain data. They can also

be used for containing memory addresses. A register containing memory address is usually referred to as

a pointer. Using the memory address in the register, it is possible to access the memory location. This is

called as indirect addressing.

We can store the address of a variable in a register using the assembly instruction lea—load effective

address. The syntax of the lea instruction is as follows.

 lea source, destination

The source points to a memory location like a label. The destination is a 32-bit register where the address

of the source object will be stored. An example of lea instruction is shown below.

leal var, %esi # Loads the effective address of the variable/label var
into register esi

The other way of getting the address is to use the $ sign as a prefi x to the variable. An example is shown

below.

movl $var, %esi # Loads the effective address of the variable/label var
into register esi

 Target Code Generation 331

In order to access memory location using indirect addressing, the braces, ‘(‘ and ‘)’ are used in

conjunction with the register name. For example (%esi) is used for accessing the location pointed to by esi.

Some assembly instructions using the indirect addressing are shown below.

movb $100, (%esi) # Moves 100 into the location pointed by the register esi

movb (%esi),%eax # Moves the content of location pointed by the register esi
into register eax

Using the indirect addressing, it is possible to access memory at a given offset from the location pointed

to. For example, 4(%esi) can be used to access a memory location that is 4 bytes after the location pointed

to by the register esi. A negative offset can be used to refer to the memory before the location pointed to.

For example, –4(%esi) refers to a location that is 4 bytes before the location pointed to by the register esi.

Some examples of assembly instructions using the indirect addressing with offsets are shown below.

movb $100, 6(%esi) # Moves 100 into the location which is 6 bytes after
the memory pointed to by the register esi

movl 10(%esi), %eax # This moves the data that are at 10,11,12 and 13 byte offsets
from the pointer esi into register eax

movb $100, -10(%esi) # This moves the data that are at 7,8,9 and 10 byte offsets from
the pointer esi into register eax.

Figure 6.4 shows the concept of indirect addressing discussed above.

Fig. 6.4 Indirect addressing

332 Principles of Compiler Design

6.2.3.6 Functions A function is a logical entity to achieve a specifi c purpose. An assembly function

begins with a label, which is the same as the name of the function. For example, a function called my_func

begins with a label my_func. The fi rst instruction following the label is the start of the function. The ‘ret’

instruction signifi es the end of a function. A template for defi ning a function is shown below.

my_func :

 # The function Body come here

 ret

Fig. 6.5 A Template for an assembly function

The assembly instructions in the function body can access any global variables and registers. Listing 6.1

shows a part of assembly program ex1.s (assembly fi le names usually have a .s extension) that defi nes a

function, which adds two global variables x and y and stores the result in another global z.

1 .data
2 x:
3 .int 10
4 y:
5 .int 20
6 z:
7 .int 0
8
9 .text
10
11 # The function ‘my_add’ adds the values in the global
12 # variables x and y and stores the result in global z.
13
14 my_add :
15
16 # Function Body Begins
17 movl x,%eax
18 addl y,%eax
19 movl %eax,z
20 # Function Body ends
21
22 ret
23

Listing 6.1 ex1.s

A function can be invoked by a ‘call’ assembly instruction. The call instruction pushes the return address

on the stack and transfers the control to the function. The ‘_main’ is a special global function that serves as

the default entry point for the program. Listing 6.2 shows the continuation of assembly program ex1.s in

which the ‘call’ instruction is used to invoke the ‘my_add’ function defi ned earlier.

24 .globl _main
25 _main :
26 call my_add
27

 Target Code Generation 333

28 mov $0,%eax # returning 0 to keep the OS happy
29
30 ret
31
32 .end

Listing 6.2 Continuation of ex1.s

The following dialog shows how to assemble the program ‘ex1.s’ and generate a binary that can be

executed.

Invoking the assembler to create an object fi le

..and linking it with startup fi le (crt0.o) to make the executable

$ gcc -g ex1.s -o ex1

Executing it

$./ex1.exe

The common C Library functions (e.g. scanf, printf, strlen, etc.) can also be called by using the ‘call’

instruction. When a C library function is called using the ‘call’ instruction, the function name needs to

be prefi xed with an underscore (_) sign. For example, to call the C library printf function, the assembly

instruction ‘call _printf’ should be used.

When the function ‘my_add’ was called in the earlier example, there were no arguments passed to

it. Let’s now learn how to pass the arguments to a function when it is called using the ‘call’ assembly

instruction. The following steps are involved in invoking a function with arguments.

 ∑ The arguments to a function are pushed on the stack using the ‘push’ instruction. While calling C

library functions, the order in which the arguments are pushed on the stack is last to fi rst, i.e. the

last argument is pushed fi rst, the last but one, next and so on. The fi rst argument is the last one to

be pushed on the stack.

 ∑ The function is invoked using the ‘call’ instruction.

 ∑ After the called routine returns, it is the caller’s responsibility to remove the arguments from the

stack. This can be done by a series of pop instructions or by simply incrementing the SP register

with the number of bytes pushed.

The Listing 6.3 shows an assembly program which invokes the C library routine printf, fi rst with one

argument and next with two arguments to clarify the function calling conventions mentioned above.

 1
 2 .data
 3 year :
 4 .int 2005
 5
 6 str1 :
 7 .ascii “Hello World \n\0”
 8
 9 str2 :
10 .ascii “Hello World %d \n\0”
11
12 .text
13

334 Principles of Compiler Design

14 .globl _main
15
16 _main:
17
18 # Equivalant of doing printf(“Hello World \n”);
19
20 pushl $str1 # Push the address of the str1 as argument
21 call _printf # Calling the C Library Function - printf
22 addl $4,%esp # Reset the SP to ‘remove’ the pushed items
23
24 # Equivalant of doing printf(“Hello World %d \n”,year);
25
26 pushl year # push the Last argument fi rst
27 pushl $str2 # Pushing the Last but one (fi rst) argument
28 call _printf # Calling the C Library Function - printf

29 addl $8,%esp # Reset the SP to ‘remove’ the pushed items
30
31 mov $0,%eax # Return 0 to keep the OS Happy
32
33 ret
34
35 .end

Listing 6.3 ex1a.s

The following dialog shows the assembling, linking and execution of example 1a.

Invoking the assembler to create an object le

..and linking it with startup le (crt0.o) to make the executable

$ gcc -g ex1a.s -o ex1a

Executing it

$./ex1a.exe

Hello World

Hello World 2005

How do we fetch the return value of a function? The convention is that, if the return value is less than or

equal to 32-bit value, then one of the forms of the register EAX is used to get the return value. The 8-bit return

values are fetched from register ‘al’. The 16-bit return values from register ax, and the 32-bit return values

from register eax. For 64-bit return values, the higher 32 bits are in edx, and the lower 32 bits are in eax.

Let’s check out this convention by the program ex1b.c (Listing 6.4) in which we fi nd the length of the

string ‘Hello World’ using the C library function ‘strlen’ and then display it.

1 .data
2
3 ret_val :
4 .int 0
5
6 str1 :
7 .ascii “Hello World\0”

 Target Code Generation 335

 8
 9 str2 :
10 .ascii “Return value of strlen is %d \n\0”
11
12 .text
13 .globl _main
14
15 .align 4
16 _main:
17
18 # Equivalant of doing ret_val = strlen(str1);
19
20 pushl $str1 # Push the address of the str1 as argument
21 call _strlen # Calling the C Library Function - strlen
22 movl %eax,ret_val # Moving the return value into variable ret_val
23 addl $4,%esp # Reset the SP to ‘remove’ the pushed argument
24
25 # Displaying the return value by using the equivalant of
26 # printf(“Return value of strlen is %d \n”,ret_val);
27
28 pushl ret_val # push the Last argument fi rst
29 pushl $str2 # Pushing the Last but one (fi rst) argument
30 call _printf # Calling the C Library Function - printf
31 addl $8,%esp # Reset the SP to ‘remove’ the pushed arguments
32
33 mov $0,%eax # Returning 0 to keep the OS happy
34
35 ret
36
37 .end

Listing 6.4 ex1b.s

The following dialog shows the details of assembling, linking and execution of the example ex1b.c.

Invoking the assembler to create an object fi le

..and linking it with startup fi le (crt0.o) to make the executable

$ gcc -g ex1b.s -o ex1b

Executing it

$./ex1b.exe

Return value of strlen is 11

 We learnt about calling functions (with and without arguments) and also fetching their return values. We

have also learnt to defi ne functions that do not have any arguments passed to it or return any value (ex1.s).

We now turn to defi ning functions that have arguments passed to it and have return values.

As we have already seen, the arguments to the function are passed on the stack. Let’s rework the function

my_add, seen earlier in Example 1, to take two numbers as arguments and have their sum as the return

value. From the conventions that we studied in the previous examples, the calling part would be as shown

below.

336 Principles of Compiler Design

Pushing the Two arguments for my_add(x,y)
pushl y
pushl x

Invoking my_add function
call my_add

Fetching the return value of my_add function
movl %eax, z

Restoring the stack to remove the pushed arguments
addl $8, % esp

The function defi nition for my_add requires a fuller understanding of the runtime settings. At the time of

entry into the function my_add, the stack is as shown in Fig. 6.6. The two arguments are on the stack owing

to the pushes made before calling the function. The return address is on the stack because of the ‘call’

assembly instruction, which pushes it on to the stack before transferring the control to the my_add function.

From Fig. 6.6, it is clear that the function arguments can be accessed in the body of the function by using

indirect addressing via the ESP. For example, if we assume the return address, argument 1 and argument

2 are all 4 bytes each, the function argument 1 can

be accessed as 4(%ESP), argument 2 as 8(%ESP)

and so on. The pitfall in accessing the arguments

in indirect addressing via SP is that, if the SP gets

changed in the function body due to a push, then

the ability to access the arguments is completely

lost. A more safer approach is to move the value

of esp into ebp at the time of entry of the function,

so that all the arguments in the function body can

be accessed by indirect addressing via ebp like

4(%ebp), 8(%ebp) and so on. The only restriction is

that the bp should not get changed in the function,

which is reasonable. The additional aspect that

needs to be taken care of is to save the BP value at

the entry of function and restore it back at the time

of exiting the function.

Assuming that each of the function

argument is a 4-byte value, Fig. 6.7 shows

the stack as seen in the body of function.

The function arguments are accessed by

indirect addressing via the bp.

The fi rst argument is at 8(%ebp),

the second at 12(%ebp), and so on. For

arguments, which are not 32-bit values, the

calculations should take into account the

size of the arguments. The fi rst argument

is at 8(%ebp), while the second argument

is located at offset (%ebp), where offset =

8+sizeof fi rst argument. The third argument

Fig. 6.6 Stack at the entry point of a function

Fig. 6.7 Function arguments accessed by indirect
 addressing via BP

 Target Code Generation 337

is located at an offset = 8 + size of fi rst argument + size of second argument and so on. The alignment that

the processor is particular about is that the size of each argument should be multiples of 4.

In order to support function arguments, the following two guidelines need to be adhered to while

defi ning a function.

 ∑ A prolog code in which the current value of BP is saved and then the SP’s value is moved to BP,

should be added at the entry of each function.

 ∑ An epilog code in which the SP and BP are restored to their respective original values at the time

of function entry, should be added at the function exit.

Figure 6.8 shows the modifi ed function template including the prolog and epilog.

Fig. 6.8 Assembly function template including prolog and epilog

In order to return a value, the convention is that the called function moves the return value to some form

of the register EAX and returns back to the caller. 8-bit values are returned in al, 16-bit values are returned

in ax and the 32-bit values are returned in eax. It is the caller’s responsibility to retrieve the return value

from the appropriate form of EAX and use it.

Listing 6.5 shows the reworked function my_add, seen earlier in Example 1, to take two numbers as

arguments and have their sum as the return value.

1
2 .data
3 x:
4 .int 10
5 y:

338 Principles of Compiler Design

 6 .int 20
 7 z:
 8 .int 0
 9
10 str2 :
11 .ascii “The Sum of two numbers x=%d y=%d is z=%d \n”
12
13 .text
14
15 # The function ‘my_add’ adds the values in the global variables x and y
16 # and stores the result in another global z.
17
18 my_add :
19
20 # Function Body Begins
21 pushl %ebp # Saving the current BP
22 movl %esp, %ebp # Moving the SP to BP so that
23 # function arguments can be accesed using
24 # indirect addressing via BP
25
26 movl 8(%ebp),%ecx # Moving the First Argument to %ecx
27 addl 12(%ebp),%ecx # Adding the second argument to the
28 # content of %ecx and store it in %ecx
29
30
31 movl %ecx,%eax # The return value has to be stored in %eax
32
33 movl %ebp,%esp # Restoring the SP to what it was at the
34 # entry of function
35 popl %ebp # Restoring the value of BP
36
37 # Function Body ends
38
39 ret
40
41 .globl _main
42 _main :
43
44 # Pushing the Two arguments for my_add(x,y)
45 pushl y
46 pushl x
47 call my_add
48 movl %eax,z
49 addl $8,%esp
50
51 # Displaying the return value by using the equivalant of
52 # printf(“The Sum of two numbers x=%d y=%d is z=%d \n”,x,y,z);
53
54 pushl z # push the Last argument fi rst
55 pushl y # push the Last but one argument next
56 pushl x # push the next argument in the reverse order
57 pushl $str2 # Pushing the Last but one (fi rst) argument
58 call _printf # Calling the C Library Function - printf
59 addl $16,%esp # Reset the SP to ‘remove’ the pushed arguments
60

 Target Code Generation 339

61 mov $0,%eax # returning 0 to keep the OS happy
62
63
64 ret
65
66 .end

Listing 6.5 ex1c.s

The dialog below shows the details of assembling, linking and executing the Example 1c.

Invoking the assembler to create an object fi le

..and linking it with startup fi le (crt0.o) to make the executable

$ gcc -g ex1c.s -o ex1c

Executing it

$./ex1c.exe

The Sum of two numbers x=10 y=20 is z=30

The local variables are also allocated on the

stack. The register ebp is used to access the local

variables via the indirect addressing similar to the

function arguments. While the function arguments

are accessed using positive offsets, the local

variables are accessed using negative offsets from

ebp as shown in Fig. 6.9.

For using local variables in an assembly

language routine, the following procedure needs

to be adhered to:

 ∑ The storage space is allocated for the

local variables at the start of the function.

This is done through decrementing SP by

the amount of space required by the local

variables. For example, if there are 2 local

variables (each is say a 4-byte integer),

then the SP is decremented by 8. The

fi rst local variable would constitute the 4

bytes –1(%ebp), –2(%ebp), –3(%ebp) and

–4(%ebp). The second local variable

would constitute the 4 bytes starting at –5(%ebp) and extending till –8(%ebp).

 ∑ The local variables are accessed in assembly instructions with indirect addressing via EBP

register. The following instructions show sample local variable accesses.

 movl -4(%ebp),%eax #moving the value of local variable 1 into eax
 movl $5, -8(%ebp) #Assigning 5 to the Local variable 2

 ∑ The local storage space is reclaimed just before exiting the assembly routine. This is done by

restoring the SP to its value at the entry of the function (before it was decremented to create local

Fig. 6.9 Stack showing local variables and
 function arguments

340 Principles of Compiler Design

space). This is achieved by simply moving the current value of BP into SP, since BP is currently

pointing to the place where SP was at the start of function (see Fig. 6.6). This functionality is

anyway part of the epilog of a function that we studied earlier.

The template of the function using function arguments as well as local variables and returning a value is

shown below.

my_func:

 # Function Prolog begins

 pushl %ebp # Saving the current BP
 movl %esp,%ebp # Moving the SP to BP so that
 # function arguments can be accessed using
 # indirect addressing via BP

 # Creating Storage for Local Variables
 subl $12,%esp # For a function needing 12 Bytes of Local storage

 # Function Prolog Ends

 # The function Body begins
 # The Function Arguments can be accesed here using indirect addressing via BP
 # for e.g.movl 4(%ebp), %eax which moves the content of Function Argument 1
 # into register eax

 # The Local Variables can be accessed using indirect addressing via BP
 # for e.g.movl –4(%ebp), %eax which moves the content of local variable 1
 # into register eax

 # If there is a return value for the function, move the return value
 # to some form of AX register. AL for 1 byte return value,
 # AX for 2 byte return value, EAX for 4 byte return value

 # The function Body ends

 # Function Epilog begins

 movl %ebp,%esp # Restoring the SP to what it was at the
 # entry of function

 popl %ebp # Restoring the value of BP

 # Function Epilog Ends

 ret

Fig. 6.10 Template for function capable of handling arguments and local variables

The Example 1d in Listing 6.6, shows a program in which there is a function swap, which handles

arguments, returns a value and also has local variables.

 1
 2 .data
 3 x:
 4 .int 10
 5 y:

 Target Code Generation 341

 6 .int 20
 7
 8 str1 :
 9 .ascii “The two numbers before swap x=%d y=%d \n\0”
10
11 str2 :
12 .ascii “The two numbers after swap x=%d y=%d \n\0”
13
14 .text
15
16 # The function ‘swap’ swaps the values in the global variables x and y
17 # by using a temporary local variable - tmp on the stack
18
19 swap :
20
21 # Function Prolog begins
22 pushl %ebp # Saving the current BP
23 movl %esp,%ebp # Moving the SP to BP so that
24 # function arguments can be accessed using
25 # indirect addressing via BP
26
27 # Creating local storage space
28 subl $4,%esp # Creating 4 bytes of Local storage
29
30 # Function Prolog ends
31
32 # Function Body Begins
33
34 # tmp = x ;
35 movl x,%eax # Moving x into register eax
36 movl %eax,-4(%ebp) # Moving it into local variable (tmp)
37
38 # x = y ;
39 movl y,%eax # Moving y into register x
40 movl %eax,x # Moving it into x
41
42 # y = tmp ;
43 movl -4(%ebp),%eax # Moving local variable (tmp) to reg x
44 movl %eax,y # Moving reg x into y
45
46 # Function Body ends
47
48
49 # Function Epilog begins
50 movl %ebp,%esp # Restoring the SP to what it was at the
51 # entry of function
52 popl %ebp # Restoring the value of BP
53
54 # Function Epilog ends
55
56 ret
57
58 .globl _main
59 _main :

342 Principles of Compiler Design

60
61 # printf(“The two numbers before swap x=%d y=%d \n”,x,y);
62 pushl y # push the Last argument
63 pushl x # push the next argument in the reverse order
64 pushl $str1 # Pushing the Last but one (fi rst) argument
65 call _printf # Calling the C Library Function - printf
66 addl $12,%esp # Reset the SP to ‘remove’ the pushed arguments
67
68 call swap # Calling the swap function
69
70
71 # printf(“The two numbers after swap x=%d y=%d \n”,x,y);
72 pushl y # push the Last argument
73 pushl x # push the next argument in the reverse order
74 pushl $str2 # Pushing the Last but one (fi rst) argument
75 call _printf # Calling the C Library Function - printf
76 addl $12,%esp # Reset the SP to ‘remove’ the pushed arguments
77
78
79 mov $0,%eax # returning 0 to keep the OS happy
80
81 ret
82
83 .end

Listing 6.6 ex1d.s

The following shows the dialog for assembling, linking and executing Example 1d.

Invoking the assembler to create an object fi le

..and linking it with startup fi le (crt0.o) to make the executable

$ gcc -g ex1d.s -o ex1d

Executing it

$./ex1d.exe

The two numbers before swap x=10 y=20
The two numbers after swap x=20 y=10

6.2.3.7 Decision-making and Jumps In the normal course of a program, the instructions get

executed sequentially one after the other. However, programs often require branching out to different parts

of code depending on certain conditions. For example, a program might invoke a function A or function B

depending on whether a variable ‘g’ is greater than 50 or less than 50. This kind of conditional jumps are an

important part of programming.

At an assembly instruction level, the conditional jumps happen in two steps:

 1. Comparing two values.

 2. Jumping to a label depending on the result of comparison.

The comparison of two values is performed using the ‘cmp’ assembly instruction. The syntax of the cmp

instruction is as follows.

 cmp operand1,operand2

 Target Code Generation 343

This compares operand2 with operand1. The operands can be registers or immediate values or a memory

location (both cannot be memory locations at the same time). The operands are not modifi ed by the

instruction, but the status fl ags in EFLAGS register are set.

Jumping to a label depending on the content of EFLAGS register is performed by the conditional jump

instruction, which has the following syntax.

 jxx address

where the xx is a one- or two- or three-letter code for the condition and address is the target label to jump.

An example of conditional jump instruction is ‘ja’ instruction, which stands for jump if above. The ja

instruction checks the two bits CF (Carry Flag) and ZF (zero fl ag) in the EFLAGS register to make the

decision as to jump to the label or not. The following shows some examples of jumps to labels depending

on the result of comparisons.

cmpl %eax, $100 # Compare 100 with the content in register eax

jl my_lbl # Jump to my_lbl if 100 is less than content of

 # register eax

cmpl %eax, $100 # Compare 100 with the content in register eax

jle my_lbl # Jump to my_lbl if 100 is less or equal to

 # content of register eax

cmpl %ecx,%eax # Compare the content of register eax with that of ecx

jne my_lbl # Jump to my_lbl , if they are not equal

A complete list of all the conditional jump instructions like ja, jle, etc. can be found in an x86 assembly

language programming manual.

The Example 1e in Listing 6.7, shows a program in which we use conditional jump feature in the x86

assembly language.

 1
 2 .data
 3 x:
 4 .int 10
 5 y:
 6 .int 20
 7 z:
 8 .int 30
 9
10 str1 :
11 .ascii “The numbers before compare x=%d y=%d z=%d \n\0”
12
13 str2 :
14 .ascii “The numbers after compare x=%d y=%d z=%d \n\0”
15
16 .text
17
18 .globl _main
19 _main :
20
21 # printf(“The numbers before compare x=%d y=%d z=%d \n”,x,y,z);

344 Principles of Compiler Design

22 pushl z # push the Last argument
23 pushl y # push the Last but one argument
24 pushl x # push the next argument in the reverse order
25 pushl $str1 # Pushing the fi rst argument
26 call _printf # Calling the C Library Function - printf
27 addl $16,%esp # Reset the SP to ‘remove’ the pushed arguments
28
29 movl x,%eax # Moving x into reg eax
30 cmpl %eax,y # Comparing y with x
31 jl lbl1 # jump to lbl1, if y is less than x
32
33 movl $50,z # move 50 into z, if y is >= x
34 jmp lbl3 # jumping to lbl3
35
36 lbl1:
37 movl $100,z # move 100 into z, if x is < y
38
39 lbl3:
40
41 # printf(“The numbers after compare x=%d y=%d z=%d \n”,x,y,z);
42 pushl z # push the Last argument
43 pushl y # push the Last but one argument
44 pushl x # push the next argument in the reverse order
45 pushl $str2 # Pushing the fi rst argument
46 call _printf # Calling the C Library Function - printf
47 addl $16,%esp # Reset the SP to ‘remove’ the pushed arguments
48
49
50 mov $0,%eax # returning 0 to keep the OS happy
51
52 ret
53
54 .end

Listing 6.7 ex1e.s

The following shows the dialog for assembling, linking and executing example 1e.

Invoking the assembler to create an object fi le

..and linking it with startup fi le (crt0.o) to make the executable

$ gcc -g ex1e.s -o ex1e

Executing it

$./ex1e.exe

The numbers before compare x=10 y=20 z=30
The numbers after compare x=10 y=20 z=50

We have discussed about some of the important aspects of x86 assembly programming in this section.

The grasp on the essentials of the x86 assembly programming is very vital for understanding the principles

of code generation that would be studied in a later section. The code generator like all the assembly

programs that we saw in this section uses AT&T syntax for the generated x86 assembly code.

 Target Code Generation 345

6.3 RUNTIME ENVIRONMENT

During the target code generation, the target code generator needs to consider what kind of runtime settings

or runtime environment should be provided for the execution of program. ‘Runtime environment’ is a term

used to broadly describe all the runtime settings. In the case of compiled languages the runtime environment

is indirectly controlled by generating the code to maintain it. In the case of an interpreted program like,

say, a PERL script, the runtime environment is maintained directly in the data structures of the interpreter

(PERL).

A compiler designer should conceive the environment under which a program is expected to execute

and have the code generator generate the target code accordingly. In this section we discuss the various

aspects of a runtime environment and how the target code needs to be generated in order to implement the

environment. We start off with a discussion on the terminology used in describing runtime environment

in Section 6.3.1. This is followed by discussion on the important elements of a runtime environment. The

discussion is supplemented by taking examples of how certain features are implemented in the runtime

environments used in C language, Pascal and FORTRAN77 compilers.

6.3.1 Terminology

When a program is executed, the control fl ows sequentially instruction after instruction. When a procedure

is called, the control is transferred to the fi rst instruction in the procedure. After executing all the

instructions in the procedure, the control returns back to the location where the procedure was called. The

program continues the execution with the next instruction after the call.

Strictly speaking, a function is a procedure, but with a return value. However, we use the terms

procedure and functions interchangeably throughout this chapter for the sake of convenience.

The execution of a procedure is called as the activation of the procedure. The lifetime of a procedure is

the time spent in execution of a procedure, including the time spent in other procedures called by it. The

fl ow of control in a program can be depicted by an activation tree. In an activation tree, each of the function

activation represents a node. Figure 6.11 shows an activation tree corresponding to the execution of a string

reversal C program shown in the dialog below.

String Reversal Program in C

$ cat -n ex2.c

 1 #include <stdio.h>
 2 #include <string.h>
 3
 4 char str[100]=”Compiler”;
 5
 6 void string_reverse(char *a,int b);
 7 void swap(int a,int b);
 8 void my_print(char c1,char c2);
 9
10 int main()
11 {
12 int len;
13
14 len=strlen(str);
15 printf(“%s\n”,str);
16 string_reverse(str,len);
17 printf(“%s\n”,str);
18 return(0);

346 Principles of Compiler Design

19 }
20
21 void string_reverse(char *c,int len)
22 {
23 int i,mid,l1;
24
25 l1=(len-1);
26 mid=l1/2;
27
28 for(i=0;i<=mid;i++){
29 swap(i,(l1-i));
30 }
31 }
32
33 void swap(int a,int b)
34 {
35 char tmp,c1,c2;
36
37 c1=str[a];
38 c2=str[b];
39
40 my_print(c1,c2);
41
42 tmp=str[a];
43 str[a]=str[b];
44 str[b]=tmp;
45 }
46
47 void my_print(char c1,char c2)
48 {
49 printf(“Swapping %c with %c\n”,c1,c2);
50 }
51

Compiling it

$ gcc -Wall ex2.c -o ex2

Executing it

$./ex2

Compiler

Swapping C with r

Swapping o with e

Swapping m with l

Swapping p with i

relipmoC

The root of the activation tree represents the activation of the main() function. The main() activates the

function string_reverse(), which in turn activates the function swap(), four times in the form of swap(0,7),

swap(1,6), swap(2,5) and swap (3,4). Each of these swap() invocations call the my_print() function in

the form of my_print(‘C’, ‘r’), my_print(‘o’, ‘e’), my_print(‘m’, ‘l’), my_print(‘p’, ‘i’) respectively. The

activation of the C library function ‘printf()’ in the activation tree is not shown to keep it simple. The fl ow

of control in the program can be deduced by doing a depth fi rst traversal of the activation tree. The traversal

of the activation tree starts at the root of the tree. Each node is visited before its children are visited. The

 Target Code Generation 347

children are visited from left to right order. When all the children of a particular node have been visited,

the function activation corresponding to the node is completed. The reader can verify that the depth fi rst

traversal of activation tree in Fig. 6.11 can recreate the program output.

Fig. 6.11 Activation tree

A stack representing the fl ow of control, called as

control stack or runtime stack is used to keep track of

the activations that are in progress currently. When an

activation of a function happens, a node corresponding

to it is pushed on to the control stack. When the

activation ends, the node is popped out of the control

stack. Figure 6.12 shows an instance of control stack

during the execution of string reversal program that

we saw previously. It shows the control stack

during the execution of my_print(‘m’, ‘l’).

The control stack and the activation tree are

related in an interesting way. When a node N() is

at the top of the control stack, the other elements

on the control stack are the ones that are along the

path from N to the root. For example, the activation

tree at the time of execution of my_print(‘m’, ‘l’)

is shown in Fig. 6.13. The path in the activation

tree from my_print(‘m’, ‘l’) to the root of the tree

(main()) is shown in the dark line. This path given

by my_print(m,l), swap(2,5), main() is the same as

the control stack at that point, shown previously in Fig. 6.12. The activations of the functions connected

using the dotted lines have executed to completion.

Let’s briefl y touch upon the some other terminology that is used in some of the later sections.

When a variable, say ‘v’, is declared in a program, it needs to be mapped to a memory location ‘L’ at the

runtime. This mapping is known as the binding of ‘v’ to ‘L’. The location ‘L’ symbolises a set of memory

locations equal to the size of the variable. The term data object is also to refer to the memory location a

variable is mapped into.

Fig. 6.13 Activation tree

Fig. 6.12 Control stack

348 Principles of Compiler Design

The scope of a declaration is the region where the declaration applies. This is the region where the

variables defi ned in the declaration can be used according to the rules of the programming language. For

example, a variable declared within a function in C language would have a scope within the function. The

variable cannot be used outside it.

The environment is a function that maps a variable name to a memory location. The state refers to the

function that maps the memory location to the value stored in it. A data object can contain different values

at different times.

We look at an example C program, which illustrates the idea of binding of variable to memory and also

the state of the variable.

6.3.1.1 Example 3—A Program to Display the Binding and State of Variables The dialog below

shows a C program that prints the memory location to which a variable is bound and also its state. It can be

observed from the output that the same variable can be bound to different memory locations at different times.

Program to print the Bindings and states of Variables

$ cat -n ex3.c

1 #include <stdio.h>
 2
 3 void func2();
 4 void func1();
 5
 6 int g=0;
 7
 8 int main()
 9 {
10 func1();
11 func2();
12 return(0);
13 }
14
15 void func1()
16 {
17 int i,j,k;
18
19 i=1;
20 j=2;
21 k=3;
22
23 printf(“==============\n”);
24 printf(“Variable ‘i’ is bound to %lx state=%d \n”, (unsigned long)&i,i);
25 printf(“Variable ‘j’ is bound to %lx state=%d \n”, (unsigned long)&j,j);
26 printf(“Variable ‘k’ is bound to %lx state=%d \n”, (unsigned long)&k,k);
27
28 printf(“Variable ‘g’ is bound to %lx state=%d \n”, (unsigned long)&g,g);
29 g++;
30
31 }
32
33 void func2()
34 {
35 int a,b,c;
36
37 a=10;

 Target Code Generation 349

38 b=20;
39 c=30;
40
41 printf(“==============\n”);
42 printf(“Variable ‘a’ is bound to %lx state=%d \n”, (unsigned long)&a,a);
43 printf(“Variable ‘b’ is bound to %lx state=%d \n”, (unsigned long)&b,b);
44 printf(“Variable ‘c’ is bound to %lx state=%d \n”, (unsigned long)&c,c);
45
46 printf(“Variable ‘g’ is bound to %lx state=%d \n”, (unsigned long)&g,g);
47
48 func1();
49
50 }

Compiling it

$ gcc -Wall ex3.c -o ex3

Executing it

$./ex3

==============
Variable ‘i’ is bound to 73cb44 state=1
Variable ‘j’ is bound to 73cb40 state=2
Variable ‘k’ is bound to 73cb3c state=3
Variable ‘g’ is bound to 403010 state=0
==============
Variable ‘a’ is bound to 73cb44 state=10
Variable ‘b’ is bound to 73cb40 state=20
Variable ‘c’ is bound to 73cb3c state=30
Variable ‘g’ is bound to 403010 state=1
==============
Variable ‘i’ is bound to 73cb24 state=1
Variable ‘j’ is bound to 73cb20 state=2
Variable ‘k’ is bound to 73cb1c state=3
Variable ‘g’ is bound to 403010 state=1

6.3.2 Elements of a Run-time Environment
As stated earlier, Run-time environment describes the run-time settings of a program in execution. In this

section, we introduce the important elements that constitute a run-time environment for a program. We

study briefl y about each one of those in this section. Later, we examine each of these elements in detail

and get into some specifi cs about run-time environments provided by the compilers for FORTRAN, C and

Pascal.

The important elements in a Run-time environment are:

 (1) Memory Organisation: At the time of execution, the program requires memory for storing local

variables, global variables, the code of the program, data structures for keeping track of the

activations, and so on. One of the important characteristics of a run-time environment is the way

memory is organised during execution. The features of the source language determine the way run-

time memory is organised. For example, FORTRAN77 specifi cations did not support pointers or

usage of any dynamic memory. It did not support recursion in procedures. This is in contrast to

a source language like C where, there is support for pointers and use of dynamic memory in the

form of malloc () and free () routines. C language allows recursion in its functions. The memory

organisation in FORTRAN77 run-time environment would be very different from C run-time

350 Principles of Compiler Design

environment given the contrast in the language features. The way memory is organised is an

important aspect of a runtime environment.

 (2) Activation records: Typically, source languages support procedures or functions for making the

programs modular. Procedure activation is managed by having a contiguous block of memory called

the activation record. The activation record contains among other things, the memory for all the

local variables of the procedure. A single activation record which is common across any number

of activations can be created statically. The activation record can also be constructed dynamically,

one for each activation. Depending on how the activation record is created, the target code has to be

generated accordingly to access the local variables that are part of it. In block-structured languages

like C and Pascal, the activation record which houses memory for the local variables would also

include the space for the variables declared in different blocks of the procedure. The scoping rules

of the source language dictate how the target code needs to be generated in order to access the

variables in the block. The content of activation record, the code generated to access the variables

given the scoping rules of the language, the method used for creating activation record, and the

place where activation records are stored are all important aspects of the run-time environment.

 (3) Procedure calling and return sequences: When a procedure is activated, there are certain sequence

of operations like evaluating the function arguments, placing it in a mutually agreed upon location

between the caller and callee, transferring the control to the called procedure, and so on. This

sequence of operations that are carried out during the process of calling a procedure is known as

the calling sequence. Similarly, when an activated procedure completes execution, there would be

a sequence of actions to be performed like fetching the return value from a mutually agreed upon

location between the caller and callee, transferring the control back to the caller, etc. This sequence

of actions to be carried out, when a procedure returns after completing its execution is known as

 return sequence. The calling and return sequences, the division of responsibility between caller and

the callee in these sequences are vital aspects of a runtime environment. They differ from one source

language to another and in a few rare cases from compiler to compiler for the same language.

 (4) Parameter passing: When a function is called, it can be passed one or more parameters. The called

function might modify the value of the parameter. Some of the source languages like PASCAL and

C++ specify rules in which context the modifi ed value should refl ect in the caller and in which it

should not. In some of the source languages like FORTRAN77, the modifi cation of parameter in a

function always refl ects in the caller. There exist several mechanisms by which parameters can be

passed to functions. The target code generator should take into account the type of the parameter-

passing mechanism used in the context and generate code accordingly. An important characteristic of

a given run-time environment is the support provided for different parameter-passing mechanisms.

In the next few sections, we study about each of these elements of a run-time environment in detail.

The discussion is supplemented by taking examples of how things

are structured in run-time environments of common programming

languages like C, FORTRAN77, Pascal, ADA, and so on.

6.3.3 Memory Organisation

The operating system provides a block of memory for executing a

compiled program. The block of memory is segregated into logical

areas for ease of execution. The layout of a program in memory

ready for execution illustrating the various logical divisions in

memory is shown in Fig. 6.14.
Fig. 6.14 Memory layout

 Target Code Generation 351

The program instructions consisting of the code for each of the procedures is stored in the code region

(also known as the program memory). The size of the code for each of the procedures is known at the time

of compilation, so the total size of this area is fi xed at the compile time for a given program.

The static/global data region provides the memory for storage of all the global variables declared in the

program. It also provides storage for all the static objects (which do not change during the execution) like

string literals, large constants, etc. used in the program. The amount of memory needed for this section is

also known at the time of compilation similar to the program region.

The stack and heap area are used for allocation of dynamic memory required by the program. The

dynamic memory is the memory that can be allocated and freed during the execution of program as opposed

to the static one, which stays allocated throughout the life of the program.

The stack area is used for allocating memory to data that follow last-in-fi rst-out (LIFO) order of

allocation to de-allocation. In other words, the stack houses data structures in which last chunk to be

allocated would be the fi rst one to be freed.

The heap region provides for other dynamic memory needs in a program that do not follow the last-in-

fi rst-out order of allocation to de-allocation.

To get an idea of what kind of data goes into the stack and the heap in a run-time environment, let’s

take the example of C program runtime environment. In a C program, when memory is requested by the

program using dynamic memory management routines like say malloc(), calloc(), etc., it is provided from

the heap. After using the obtained memory, the program can free the memory using the free() routine. The

heap then reclaims the storage for the freed memory, so that it can be allocated to future memory allocation

requests. The stack holds all the local variables defi ned within a function during its activation. The memory

for local variables is de-allocated automatically after the activation of the function is complete. There is no

explicit ‘free’ made in the program for the de-allocations on the stack.

The heap and stack grow and diminish during the lifetime of a program. Some of the compilers might

have a run-time environment where stack starts at lower address and heap starts at higher address. There are

others where the heap starts at lower address and stack starts at higher address. Regardless of where they

are positioned, they can only be known at the run-time and keep growing and diminishing depending on the

program activity.

In FORTRAN77 run-time environment all the data variables (both local and Global) are bound to the

static memory region. Every variable is associated with a fi xed address computed at the compile time that

can be used to access it throughout the life of the program. The FORTRAN77 specifi cations did not support

dynamic memory allocation and hence its run-time environment did not need a heap or stack.

6.3.3.1 Example 4—Memory Organisation in C Run-time Environment The example shown in

the dialog below illustrates the memory organisation in a C run-time environment. The program displays the

address of the variables stored in static area, stack area and also the heap area. The address of the functions

stored in code area is also displayed. From the output, one can understand the partitioning of the runtime

memory into specifi c areas.

A utility called ‘ objdump’ also helps displaying the range of addresses of specifi c sections in a

given executable. In the dialog below, we see ‘objdump’ deciphering the executable and showing the

range of addresses in the code area (called text) and static area (given together by rdata, bss and idata).

This establishes the fact that the code area and static area are determined at the compile time, and that

information is stored in the object fi le. The heap and stack information can be determined at the runtime

only. The reader is advised to read the manual pages of objdump for more details.

352 Principles of Compiler Design

Program to display addresses of variables

Compiling it

$ gcc -Wall ex4.c -o ex4

Executing it

$./ex4

========== CODE AREA ============
Start address of the main() in code area=401094
Start address of the func1() in code area=401050
Start address of the func2() in code area=4011c4
========== STATIC AREA ============
Address of the Global Variable g1 in Static area=403040
Address of the Global Variable g2 in Static area=403030
========== STACK AREA ============
Address of Local Variable a=73cb34
Address of Local Variable b=73cb30
Address of Local Variable e=73cb14
Address of Local Variable f=73cb10
========== HEAP AREA ============
Address allocated on the heap=b90518
Address allocated on the heap=b90528
Address allocated on the heap=b90538

Using the objdump utility to get the addresses

$ objdump -h ex4.exe

ex4.exe: fi le format pei-i386

Sections:
Idx Name Size VMA LMA File off Algn
0 .text 00000520 00401000 00401000 00000400 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .rdata 00000250 00402000 00402000 00000a00 2**4
 CONTENTS, ALLOC, LOAD, READONLY, DATA
2 .bss 00000070 00403000 00403000 00000000 2**4
 ALLOC
3 .idata 00000188 00404000 00404000 00000e00 2**2

 CONTENTS, ALLOC, LOAD, DATA

6.3.4 Activation Records

The execution of a procedure is managed by maintaining a contiguous block of storage at the run-time

called as activation record. An activation of a procedure is associated with an activation record. For

example, in the activation tree shown in Fig. 6.11, there are 4 instances of swap() being activated one after

the other. In the C program, When swap(0,7) is activated, an activation record corresponding to it is created

for aiding its execution and then destroyed at the end of execution. Similarly, when swap(1,6) is activated in

the C program, another activation record corresponding to it is created for assisting its execution, and so on.

An activation record holds space for arguments to the procedure, local variables, compiler-generated

temporaries, the return value of the function and some other fi elds that help the activation of a procedure.

An activation record is illustrated in Fig. 6.15. The format of the activation record need not exactly adhere

to the one shown in Fig. 6.15 for all the languages in different run-time environments. The exact content

 Target Code Generation 353

of the activation record depends on factors like the target architecture,

the source language compiled, and so on. However, the fi elds of the

activation record illustrated in Fig. 6.15 are found commonly in most of

the activation records.

When a procedure is activated, storage space is required for local

variables, arguments to the function, compiler-generated temporaries

and the return value of the function. The activation record serves as a

placeholder for all of these elements.

From a program control point of view, when a procedure is called, the

control is transferred to the callee and after its execution is complete, the

control is given to the next executable instruction after the function call in

the caller. The return address in the caller, where the control should return

after the callee completes execution is saved before the execution of the

callee. It would be used to transfer the control back to the caller after the

execution of callee. On most of the target architectures, a register called the program counter (PC) holds

the address of the next instruction to be executed. The PC should be saved before transferring the control

to the callee procedure and restored after its completion in order to achieve proper fl ow of control. The

registers of the processor would be used freely by the callee for executing its instructions. If the registers

are not saved before the execution of callee, and restored after its completion they would become corrupted

due to the callee procedure execution. If the registers get corrupted, the caller procedure would not execute

as expected after it returns from the callee. Hence when a procedure is called, the machine status in the

form of contents of the registers, return address and the program counter should be saved before the call

and restored after the execution of the called procedure is complete. The machine status is saved in the

activation record before the call to a procedure and restored after the execution of the procedure.

In source languages like Pascal, procedures can be nested. Consider a Pascal program having nested

procedures P1 and P2 as shown in the Listing 6.8. The procedure ‘P2’ is nested within ‘P1’. The variable

‘c’ used in the nested procedure P2 is defi ned in P1. At the place where c is used, i.e. line 12, it should be

resolved to the declaration in P1. In order to implement such scope rules that allow resolving the names

unambiguously to a declaration in the case of nested procedures at the compile time, we have an optional

fi eld called as access link in the activation record. The access link typically points to the activation record

of the defi ning environment. We learn about the exact usage of access link fi eld in implementing the scope

rule for nesting of procedures later in the chapter. This optional fi eld is not required in the activation records

for source languages like C where no nesting of procedures is allowed.

 1 PROGRAM sample(input,output);
 2 VAR a,b: integer;
 3
 4 PROCEDURE P1();
 5 VAR a,b : integer;
 6 VAR c : integer;
 7 PROCEDURE P2();
 8 VAR a,b : integer;
 9 BEGIN
10 a:=10; (* This should resolve to ‘a’ defi ned in P2 *)
11 b:=20; (* This should resolve to ‘b’ defi ned in P2 *)
12 c:=25; (* This should resolve to ‘c’ defi ned in P1 *)
13 END;
14 BEGIN

Fig. 6.15 Activation record

354 Principles of Compiler Design

15 c :=40;
16 writeln(‘Value of c is ‘,c); (* c is 40 here *)
17 P2();
18 writeln(‘Value of c is ‘,c); (* c is 25 here *)
19 END;
20 BEGIN
21 P1();
22 END.
23
24

Listing 6.8 A Pascal program with nested procedures

Programming languages like LISP and APL allow variables to be bound to a storage depending on the

current activations. In these cases the variable can be resolved to the appropriate declaration only at the

run-time depending on the current activations. In order to implement such dynamic scoping, it is necessary

to keep track of the chain of the current activations. The optional control link in an activation record helps

in maintaining a track of the current activations and implementing dynamic scope. Following the control

link of the current activation record, we can make a chain of all the functions that are currently active. This

helps in implementing the dynamic scope.

The activation record contains a fi eld for storing the return value of a function. The callee stores the

return value in this fi eld before returning the control to the caller. The caller copies it from this fi eld into

the appropriate variable as defi ned in the source program. In practice, many of the compilers, have the

return value and the arguments passed in registers, whenever feasible rather than having them as a part of

activation record. The register access is faster than memory access and hence passing the return values and

arguments in registers is more effi cient.

Activation records are allocated space in the stack Area in C run-time environment. The Old

FORTRAN77 compilers used the static area for housing the activation records. The run-time environments

for functional languages like LISP allocate space for activation records on the heap.

6.3.4.1 Activation Record in C Run-time Environment In C runtime environment, the activation

records are allocated storage space on the stack. When a procedure is called, a new activation record is

pushed on to the stack. When the procedure is complete, the activation record is popped-out of the stack.

The top of the stack is usually pointed to by a

register called SP (stack pointer). An activation

record can be allocated by moving SP with an

amount equal to the size of activation record.

The activation record is de-allocated by moving

the SP back by an amount equal to the size of

activation record. For example, consider the

activation of a function ‘my_func()’ having an

activation record of size, say, 40 bytes. The SP

is moved (decremented in this case) by 40 bytes

to allocate an activation record for my_func().

The SP is moved back (incremented by 40) to

de-allocate the activation record for my_func()

after the execution of my_func() is complete.

Figure 6.16 shows the run-time stack, before,

during and after the activation of my_func().

Fig. 6.16 Allocating and de-allocating space for
activation records

 Target Code Generation 355

Another register known as

frame pointer (FP) or base pointer

(BP) stores a pointer to the

current activation record. The BP

points to a location in the current

activation record that is used as

a base for accessing the local

variables, arguments to the function,

temporaries and other elements in

the activation record. Figure 6.17

shows the stack layout during the

activation of function ‘my_func’ and

how BP can be used for accessing

arguments and local variables.

The local variables in the currently

active function are accessed using

negative offsets from the location

where BP points. In the above

example, during the time that

function ‘my_func’ is active, the

local variable ‘ret’ is accessed as

–4(%BP), ‘c’ as –8(%BP), ‘d’ as –

12(%BP). Consider the initialisation

of the local variables ‘c’ and ‘d’

in the function ‘my_func’ of Fig.

6.17. The code generator produces

the following x86 assembly code

for initialisation using the relative

offsets of the variables ‘c’ and ‘d’

from the BP.

movl $10,-8(%ebp) # Variable ‘c’ is at offset –8 from the BP throughout the function
movl $20,-12(%ebp) # Variable ‘d’ is at offset –12 from the BP throughout the function

The parameters in the currently active function are accessed using positive offsets from the location

where BP points. In the above example, during the time that function ‘my_func’ is active, the parameter

‘a’ is accessed using 8(%ebp) and parameter ‘b’ using 12(%ebp). Consider the computation for the line

‘c=a*a;’ in the function ‘my_func’ of Fig. 6.17. The code generator produces the following x86 assembly

code for the computation using the relative offsets of the parameters ‘a’ and ‘b’ from the BP.

movl 8(%ebp),%eax # Accessing the parameter ‘a’
imull 8(%ebp),%eax # Accessing the parameter ‘a’ again and multiplying it
movl %eax,-8(%ebp) # Moving the result to ‘c’

The layout of the activation record in terms of the offsets of the local variables and arguments from

the location that BP points, remains exactly the same any time the activation of the function happens.

Fig. 6.17 Stack during the activation of a function

int my_func(int a,int b)
{
 int ret;
 int c_=10,d=20;

 c=a*a;
 d=b*b;
 ret=c+d+2 *a *b;

 return(ret);
}

356 Principles of Compiler Design

For example, the memory for the variable ‘ret’ would always be at an offset –4 from the BP, any time the

function ‘my_func’ is activated irrespective of the caller.

Till the time that the program control is within the function my_func, the offsets from BP for the local

variables, arguments to the function, compiler generated temporaries, etc. remain unchanged.

The creation of activation record on the stack allows for having multiple instances of activation records,

each one corresponding to an activation of a procedure. For example, consider a recursive routine to

evaluate the factorial of a given number shown in Fig. 6.18.

Fig. 6.18 Stack showing multiple activation records

The fi rst activation from main() as factorial(5)

creates an activation record for factorial(5) on the

stack. The next activation comes due to recursive call

made at line number 15 with factorial(4). The next

activation is due to the call again from line 15, this

time as factorial(3), and so on. The activation records

stack up on the run-time stack as seen in Fig. 6.18.

This facility of having an instance of activation

record in the memory, one for each of the activations

helps in supporting recursion.

We will now look at an example program, which

displays the content of activation record in C run-

time environment provided by the C compiler(cc1)

of the gcc—The GNU compiler collection. This

activation record has the following format. Fig. 6.19 Activation record for a C program (gcc)

 Target Code Generation 357

The dialog below shows the compilation and execution of the example C program.

Program to print the Activation record in C

Compiling it

$ gcc -Wall ex5.c -o ex5

Executing it

$./ex5

THE ACTIVATION RECORD OF func1
======================================
Start of Activation Record [addr=0073cb44]
Parameter2 : 22222222 [addr=0073cb44]
Parameter1 : 11111111 [addr=0073cb40]
Return Address : 0040109d [addr=0073cb3c]
Saved BP : 0073cb68 [addr=0073cb38]
Local Variable1 : 33333333 [addr=0073cb34]
Local Variable2 : 44444444 [addr=0073cb30]

6.3.4.2 Activation Record in FORTRAN77 Runtime Environment In FORTRAN77 run-time

environment, for each procedure in the program, an activation record is statically allocated at the compile

time. Consider a FORTRAN77 program that

has 3 procedures P1, P2, P3. The FORTRAN77

environment is a completely static one, where all

the activation records are created at the compile

time and stored in the static memory area. Figure

6.20 shows the memory organisation of the

program in such a run-time environment.

The local variables in procedure P1 would

be part of its activation record and would be

bound at the compile time. In a similar way,

the local variables of P2 and P3 would be part

of their respective activation records and bound

at the compile time. Any procedure has only

one activation-record and multiple activations

would have to use the same activation record.

Hence, this type of run-time environment cannot

support recursion in procedures. The fi xed

activation record means that any local variable in

a function is bound to a fi xed memory location

throughout the life of the program. The side-effect of this is that the values of local variables can be retained

across the activations of a procedure.

In FORTRAN77 environment, the activation records of all the procedures are stored in the static memory

throughout the lifetime of the program. This wastes memory, since the activation record for a procedure

gets used only when it is activated.

6.3.4.3 Non-Local Access We have seen how the activation record helps us in managing the procedure

activation and handling access to local variables. We will now look at how activation records can also help

us access variables defi ned in the enclosing scope.

Fig. 6.20 Activation records in FORTRAN77 run-time
environment

358 Principles of Compiler Design

Programming languages commonly offer features for accessing variables that are not only declared

locally, but also declared in an enclosing scope. For example, C language allows for having ‘blocks’ of

code, where variables that are declared in an enclosing block can also be accessed. PASCAL allows for

procedures to be nested. In the nested procedure, We can access variables that are declared in the enclosing

procedure. These are two good examples of accessing non-local variables defi ned in an enclosed scope of

a program. We use the term non-local to essentially mean that they are not defi ned in the Local scope. It is

pertinent at this point to make the distinction between a ‘non-local’ variable and a global variable clear. A

global variable is in the outermost scope and is treated differently by having storage allocated in the static

memory and any access to it would be resolved to that static memory location at the compile time. A non-

local variable is simply a variable that is neither declared in the current scope nor the outermost scope, it is

declared in-between these.

In both of the above cases of non-local access, (i.e. in the case of blocks or nested procedures) the

scoping rules of the respective languages C and PASCAL specify that the reference to the variable

be resolved to the nearest enclosed declaration made in the program text. This type of scoping, where a

reference to the variable can be resolved to the appropriate declaration by examining the program text

regardless of the current activations is known as lexical or static scope rule. This is in contrast with

 dynamic scope rule used in source languages like LISP, SNOBOL and APL, in which a variable can be

resolved into the correct declaration only during the execution by considering the current activations. The

interpreted language PERL supports both lexical and dynamic scoping.

In order to make the distinction between lexical scoping and dynamic scoping clear, let’s consider the 2

PERL programs seen in the dialog of Fig. 6.21. The fi rst program ‘dynamic.pl’ shows the dynamic scoping

at work. The execution of dynamic.pl shows that the function ‘g’ returns different values depending on

where it is in invoked. When it is invoked from within the function ‘f’, the value returned is that of the

variable ‘y’ defi ned within ‘f’. The variable ‘y’ is specifi cally declared within function ‘f’ as a dynamically

scoped variable by the use of keyword ‘local’. When ‘g’ is invoked from the main, it returns the global

variable ‘y’, since that is active in the scope. The second program ‘static.pl’ shows static scoping at work. In

this program, the variable ‘y’ declared within the function ‘f’ is lexically scoped. Any access of the variable

‘y’ within the function ‘f’ would refer to the declaration in ‘f’. However, all the other routines like say ‘g’

continue to refer to the global declaration of ‘y’. Hence when ‘static.pl’ is executed, the value returned by

the function ‘g’ is consistent regardless of called site.

dynamic.pl

$ cat -n dynamic.pl

 1 #!/usr/bin/perl
 2
 3
 4 $y=101 ;
 5
 6 sub f () {
 7
 8 local $y ; # Dynamically scoped variable
 9
10 $y = 10 ;
11
12 return g();
13
14
15 }

 Target Code Generation 359

16
17 sub g () {
18 return $y ;
19 }
20
21
22 print “y at the start = $y \n” ;
23
24 print “y when g is called directly=”,g(),”\n” ;
25 print “y when g is called indirectly=”,f(),”\n” ;
26
27

Executing it

$./dynamic.pl

y at the start = 101
y when g is called directly=101
y when g is called indirectly=10

static.pl

$ cat -n static.pl

1 #!/usr/bin/perl
2
3
4 $y=101 ;
5
6 sub f () {
7
8 my $y ; # Lexically scoped variable
9

10 $y = 10 ; # This refers to the ‘y’ declared above
11
12 return g(); # g continues to access the global ‘y’
13
14
15 }
16
17 sub g () {
18 return $y ;
19 }
20
21
22 print “y at the start = $y \n” ;
23
24 print “y when g is called directly=”,g(),”\n” ;
25 print “y when g is called indirectly=”,f(),”\n” ;
26
27

Executing it

$./static.pl

y at the start = 101
y when g is called directly=101
y when g is called indirectly=101

Fig. 6.21 Lexical and dynamic scoping

360 Principles of Compiler Design

In this chapter, we study about resolving the access to the variable references in static scope only. The

resolving of variable references in dynamic scope is not taken up.

We now discuss about how the activation records help us implement lexical scoping and resolve access

to the non-local variables that are declared in the enclosed block in a block-structured language like C.

Later we learn about how activation record can also be used to resolve accesses to the non-local variables

that are declared in an enclosing procedure. This would apply to languages like PASCAL that allow nesting

of procedures.

Non-local access in the context of blocks A block is a set of statements containing its own local

declarations. A block is identifi ed by a pair of delimiters. In C language, the delimiters for a block are the

curly braces ‘{ and }’. In Pascal, the delimiters for a block are ‘begin’ and ‘end’. The delimiters ensure

that blocks do not overlap each other. For example, there cannot be a situation where a block B1 begins,

followed by the beginning of block B2 and then block B1 ends before B2. Blocks can only be nested like

say block B1 begins, followed by beginning of B2 , then B2 ends, before the end of B1. In Listing 6.9, there

are 4 blocks of code in the main() function. The block B0 spans from line 4 through 43, block B1 from line

10 through 36, B2 from line 14 through 22, B4 from line 24 through 32. Each of these blocks has its own

declarations for the variables v1 and v2.

 1 #include <stdio.h>
 2
 3 int main()
 4 {
 5 /* Block B0 Begins */
 6
 7 int v1=10,v2=20;
 8 int v3=5;
 9
10 {
11 /* Block B1 Begins */
12 int v1=20,v2=30;
13
14 {
15 /* Block B2 Begins */
16 int v1=40,v2=50;
17
18 v3=90;
19 printf(“In Block B2 v1=%d v2=%d v3=%d \n”,v1,v2,v3);
20
21 /* Block B2 ends */
22 }
23
24 {
25 /* Block B3 Begins */
26 int v1=60,v2=70;
27
28 v3=80;
29 printf(“In Block B3 v1=%d v2=%d v3=%d \n”,v1,v2,v3);
30
31 /* Block B3 ends */
32 }
33 printf(“In Block B1 v1=%d v2=%d v3=%d \n”,v1,v2,v3);
34

 Target Code Generation 361

35 /* Block B1 ends */
36 }
37
38 printf(“In Block B0 v1=%d v2=%d v3=%d \n”,v1,v2,v3);
39
40 return(0);
41
42 /* Block B0 ends */
43 }
44

Listing 6.9 blocks.c

In the example shown in Listing 6.9, the access of the variables v1 and v2 in the printf statement shown

in line 19 (block B2) would be resolved to the declaration in line 16 (block B2). This is an evidence of what

is known as ‘the most closely nested rule’ in resolving the scope. In simple terms, what this means is that

any access to non-local variables should be resolved to the block that is most closely nested from the point

of access. The declaration of v1 and v2 on line 16 is in the most closely nested block B2. This declaration

is considered ahead of the one at line 12, which is in the enclosing block B1. The most closely nested rule

is used again to determine that the access for variables v1 and v2 in line 29 (B3), which is resolved to

declaration in line 26 (B3) ahead of the declaration at line 12 in the enclosing block B1.

The most closely nested rule for resolving the scope of declarations in a block-structured language can

be stated as follows:

 1. The scope of a declaration for a variable v1 in a block B pervades throughout the entire block B.

 2. If a variable v1 is not declared in a block B, but used in B, then it is resolved to the declaration

in a block B1, which encloses B. In case there are two enclosing blocks B1 and B2 that contain

declarations for v1, the innermost block is taken for consideration.

The block structure and the most closely nested rule can be implemented by having a separate symbol

table created for all the variables declared in a block. When a variable is used in an execution statement of a

block, the symbol table for the most deeply nested block is consulted fi rst, followed by the enclosing block,

and so on, until the symbol table for global scope.

At the run-time, the most closely nested

rule in a block is supported by allocating

memory on the stack for the variables in

a block. There are a couple of schemes

for allocating memory on the stack with

respect to the block variables. Let us take

the example of the C program—blocks.c,

given in Listing 6.9 and understand the two

schemes for allocation of memory to the

block variables.

In the fi rst scheme, when a block is

entered, the space for all the variables

declared in it is allocated on the stack.

When the control leaves the block, the

memory allocated for the same variables is

discarded. Figure 6.22 shows the snapshot

of the stack when the control is in block B1,

when this scheme is used.
Fig. 6.22 Snapshot of stack when the control is in block B1

362 Principles of Compiler Design

We can see that the variables declared in block B1 are present on the stack and so are the ones declared

in B0. This allows for access of variables declared in the enclosing scope like v3, which are at a known

offset on the stack. The assignment to v3 in the block B2 would be typically done by generating x86

assembly instructions like the one show below, given that the memory for the variable is at a known fi xed

offset on the stack.

movl $90, -12(%ebp)

We can see from Fig. 6.22 that the usage of stack for handling of blocks is very similar to the handling of

declarations in procedures seen earlier. The only difference being that the saving of machine status, return

address, etc. on the stack is not performed in the case of blocks. A block can be viewed as a parameter-less

procedure called from the point where the block begins and returning at the point of ending of the block.

In the second scheme, the memory needed for all the blocks in the entire procedure is allocated at

the start of the function as a part of the activation record. The memory necessary for all the blocks

in a procedure is computed by taking the lifetimes of the blocks into consideration. For example, in the

procedure shown in the Listing 6.9, the blocks B2 and B3 have mutually exclusive lifetimes, i.e. either the

block B2 is alive or block B3 is alive at any given point of time. The memory required for the blocks in

‘my_func()’ is computed by taking the sum of the memory required for blocks B0, B1 and the greater of B2

and B3 (since only one of them is active at any point). For a procedure having multiple control paths, the

memory required for a procedure is determined by traversing all the control paths in it and computing the

memory required for them. The cumulative memory required by all the blocks is computed and allocated at

the start of the function. In this scheme, the memory for any variable declared in a block can be resolved at

the compile time by using the tuple (variable name, block number), since the variable name alone does not

suffi ce. The resolving of the variable to the memory happens at the compile time and hence it is possible to

generate instruction for accesing the variables in the block.

In both of the schemes mentioned above, the non-local variable defi ned in one of the enclosing blocks is

resolved into an address on the stack at a known offset. The reader is advised to compile the program shown

in Listing 6.9 and observe the x86 assembly output to verify the above-mentioned principles of resolving

the address of the non-local variables.

Non-local access in the context of Nested Procedures Source Languages like Pascal allow procedures

to be nested. These nested ‘local procedures’ can be called from the procedure defi ning it or from one of its

peers. Consider a sample Pascal program with local procedures shown in Listing 6.10. The local procedure

P2 is nested inside P1. The procedure P2 is called in the action statements of the procedure P1 (Line 31)

and in a peer procedure, e.g. Peer_Of_P2 (Line 16) as seen in the listing. The scoping rules in Pascal allow

the variables defi ned in an enclosed procedure to be used in the local procedures. For example, the variable

‘v1’ is defi ned in the procedure P1 at Line 5 and is used in the procedure P2 at line 11.

 1 PROGRAM sample(input,output);
 2 VAR v0 : integer;
 3
 4 PROCEDURE P1(param1:integer);
 5 VAR v1 : integer;
 6
 7 PROCEDURE P2();
 8 VAR v2: integer;
 9 BEGIN
10 v2:=20;

 Target Code Generation 363

11 v1:=25; (* ‘v1’ defi ned in P1 *)
12 END;
13
14 PROCEDURE Peer_Of_P2();
15 BEGIN
16 P2();
17 END;
18
19
20 PROCEDURE Another_Peer_Of_P2();
21 PROCEDURE P3();
22 BEGIN
23 P2();
24 END;
25 BEGIN
26 END;
27
28 BEGIN
29 if (param1 > 100)
30 then
31 P2()
32 else if(param1 > 50)
33 then
34 Peer_Of_P2()
35 else
36 Another_Peer_Of_P2() ;
37
38 END;
39
40 BEGIN
41 write(‘Give Input :’);
42 readln(v0);
43 P1(v0);
44 END.
45
46
47
48

Listing 6.10 nested_proc.pas

At the time of execution of the above program, the memory for variable ‘v1’ is allocated on the stack

corresponding to the procedure P1, since it is defi ned locally in P1. Being a local of P1, the memory for

variable ‘v1’ would be a part of its activation record. Figure 6.23 shows the stack layout of the program

during the execution of procedure P2(), when invoked from P1(). The relevant variables ‘v1’ and ‘v2’ in

the activation records of P1() and P2() respectively are shown in Fig. 6.23. The other fi elds in the activation

records are not shown in Fig. 6.23 for clarity purposes.

Figure 6.24 shows the stack layout during the execution of procedure P2, when invoked from Peer_Of_

P2(), which in turn is called from P1(), when the given user input is between 50 and 100.

We can see from the two stack layouts that the variable ‘v1’ would not be at a fi xed known offset on

the stack from the activation record of P2. This poses a challenge for resolving the variable ‘v1’ to the

appropriate address on the stack at the compile time. The local variables of P2 like ‘v2’ can be accessed

364 Principles of Compiler Design

by indexing from the BP as say –4(%ebp) , –8(%ebp), etc. but ‘v1’ cannot be accessed in a similar way,

because the offset from the BP is different depending on the caller of P2 as seen in stack layout 1 and 2.

Fig. 6.23 Stack layout—1 Fig. 6.24 Stack layout—2

The solution to this issue is to have a link to the enclosing procedure’s activation record (in this case,

P1) in the current activation record and use that to index to the exact address corresponding to the variable

on the stack. We are taking advantage of the fact that the position of ‘v1’ within the activation record of P1

is fi xed and known at the time of compilation. This link to the enclosing procedure’s activation record is

called as the static link as opposed to the

dynamic link which points to the activation

record of the caller. In the above example,

the activation record of P2 would contain a

static link fi eld that points to the activation

record of the enclosing procedure P1. This

is irrespective of the caller of P2(), which

can be either P1, Peer_of_P2() or Another_

Peer_Of_P2(). Once we have the pointer

to the activation record of P1, the variable

‘v1’ can be accessed using a specifi c offset

since it is a local of P1. Figure 6.25 shows

the use of static link to access the memory

for the variable ‘v1’, in the scenario

corresponding to stack layout-2.

In order to implement the static link and

support non-local variable access in nested

procedures, a concept called as lexical

level is used. A lexical level in a pascal

program corresponds to the nesting level in

the source program. The main program is

at lexical level 0. All the global variables

declared in the main program are at the
Fig. 6.25 Use of static link

 Target Code Generation 365

lexical level 0. For example, the variable ‘v0’ declared in line 2 of the Listing 6.10 is at lexical level 0.

All the procedures declared at one level from the main program are at lexical level 1. In the Listing 6.10,

the procedure P1 is at lexical level 1, the procedures P2, peer_of_P2() and another_Peer_Of_P2() are all

at lexical level 2 and P3 is at lexical level 3. In the execution statements of the program, variables defi ned

in the current level or lesser than the current level can be accessed. We can see in the Listing 6.10, the

procedure P2 (lexical level 2) accesses variable ‘v1’ defi ned in the enclosing procedure P1 at lexical level 1,

P2 also accesses variables defi ned in its own level ‘v2’.

Using the idea of lexical levels in the nested procedures, the procedure calling conventions in PASCAL

language can be stated as follows.

 (a) A procedure at lexical level ‘L’ can call a child procedure i.e. the one immediately nested in it, at

lexical level (L + 1). In Listing 6.10, we can see that the main program, which is at level 0, invokes

the procedure P1 (at line 43), which is at lexical level L.

 (b) A procedure can call one of its ancestors. The ancestor is a procedure, which is a parent

(immediately enclosing procedure), or a grandparent or one of the peers of a parent/grandparent. In

other words, a procedure at lexical level ‘L’ can call one of its ancestors at lexical level less than ‘L’.

In Listing 6.10, we see the procedure P3() at lexical level 3, calling Peer_of_P2() (at line 23), which

is at lexical level 2—a peer of its parent P2.

 (c) A procedure can call any one of its peers at the same lexical level. In Listing 6.10, we also see the

procedure Peer_of_P2() at lexical level 2 calling its peer procedure P2 also at lexical level 2 in line

16.

The target code generator produces code that uses the static link fi eld in an activation record and enables

non-local variable access in nested procedures in all of the 3 cases (a), (b) and (c) mentioned above. The

scheme used by the target code generator can be broadly described as follows.

 (1) The caller passes the pointer to the activation record of the defi ning environment to be used as

the static link in the caller to access the non-local variable. The pointer to the activation record

of the defi ning environment is typically pushed on to the stack by the caller before making a

function call and is popped out after the call is complete, similar to the function arguments.

 (2) The callee uses the static link and accesses the memory for the non-local variable defi ned in the

enclosing procedure using its offset.

Let’s take the example shown in Listing 6.10, dissect its x86 assembly language output generated by the

PASCAL compiler and understand how the above-mentioned steps are accomplished.

The process of compilation and generation of assembly language output for ‘nested_proc.pas’ shown in

Listing 6.10 by using gpc—A Pascal compiler, is given in the following dialog.

Program illustrating nested procedures

$ gpc -Wall —save-temps nested_proc.pas -o nested_proc

The x86 assembly language output for nested_proc.pas

$ cat -n nested_proc.s

 1 .fi le “nested_proc.pas”
 2 .lcomm _V0,16
 3 .text
 4 .def _P2.0; .scl 3; .type 32; .endef
 5 _P2.0:
 6 pushl %ebp
 7 movl %esp, %ebp
 8 subl $8, %esp
 9 movl %ecx, -4(%ebp)

366 Principles of Compiler Design

10 movl -4(%ebp), %ecx
11 movl $20, -8(%ebp)
12 movl $25, -4(%ecx)
13 leave
14 ret
15 .def _Peer_of_p2.1; .scl 3; .type 32; .endef
16 _Peer_of_p2.1:
17 pushl %ebp
18 movl %esp, %ebp
19 subl $4, %esp
20 movl %ecx, -4(%ebp)
21 movl -4(%ebp), %ecx
22 call _P2.0
23 leave
24 ret
25 .def _P3 .3; .scl 3; .type 32; .endef
26 _P3.3:
27 pushl %ebp
28 movl %esp, %ebp
29 subl $4, %esp
30 movl %ecx, -4(%ebp)
31 movl -4(%ebp), %ecx
32 movl -4(%ecx), %ecx
33 call _P2.0
34 leave
35 ret
36 .def _Another_peer_of_p2.2; .scl 3; .type 32; .endef
37 _Another_peer_of_p2.2:
38 pushl %ebp
39 movl %esp, %ebp
40 subl $4, %esp
41 movl %ecx, -4(%ebp)
42 leave
43 ret
44 .def __p__M0_S0_P1; .scl 3; .type 32; .endef
45 __p__M0_S0_P1:
46 pushl %ebp
47 movl %esp, %ebp
48 subl $4, %esp
49 cmpl $100, 8(%ebp)
50 jle L6
51 movl %ebp, %ecx
52 call _P2.0
53 jmp L1
54 L6:
55 cmpl $50, 8(%ebp)
56 jle L8
57 movl %ebp, %ecx
58 call _Peer_of_p2.1
59 jmp L1
60 L8:
61 movl %ebp, %ecx
62 call _Another_peer_of_p2.2
63 L1:

 Target Code Generation 367

64 leave
65 ret
66 .section .rdata,”dr”
67 LC0:
68 .ascii “Give Input :\0”
69 .text
70 .globl __p__M0_main_program
71 .def __p__M0_main_program; .scl 2; .type 32; .endef
72 __p__M0_main_program:
73 pushl %ebp
74 movl %esp, %ebp
75 subl $40, %esp
76 movl $1568, 4(%esp)
77 movl __p_Output, %eax
78 movl %eax, (%esp)
79 call __p_Write_Init
80 movl $-2147483648, 12(%esp)
81 movl $12, 8(%esp)
82 movl $LC0, 4(%esp)
83 movl __p_Output, %eax
84 movl %eax, (%esp)
85 call __p_Write_String
86 movl __p_Output, %eax
87 movl %eax, (%esp)
88 call __p_Write_Flush
89 cmpl $0, __p_InOutRes
90 je L12
91 call __p_CheckInOutRes
92 L12:
93 movl $12, 4(%esp)
94 movl __p_Input, %eax
95 movl %eax, (%esp)
96 call __p_Read_Init
97 movl __p_Input, %eax
98 movl %eax, (%esp)
99 call __p_Read_Integer
100 movl %eax, -8(%ebp)
101 movl %edx, -4(%ebp)
102 cmpl $-1, -4(%ebp)
103 jl L15
104 cmpl $-1, -4(%ebp)
105 jg L16
106 cmpl $-2147483648, -8(%ebp)
107 jb L15
108 L16:
109 cmpl $0, -4(%ebp)
110 jg L15
111 cmpl $0, -4(%ebp)
112 js L13
113 cmpl $2147483647, -8(%ebp)
114 ja L15
115 jmp L13
116 L15:
117 call __p_IORangeCheckError
118 movl -8(%ebp), %eax
119 movl %eax, -12(%ebp)

368 Principles of Compiler Design

120 jmp L14
121 L13:
122 movl -8(%ebp), %eax
123 movl %eax, -12(%ebp)
124 L14:
125 movl -12(%ebp), %eax
126 movl %eax, _V0
127 movl __p_Input, %eax
128 movl %eax, (%esp)
129 call __p_Read_Line
130 cmpl $0, __p_InOutRes
131 je L19
132 call __p_CheckInOutRes
133 L19:
134 movl _V0, %eax
135 movl %eax, (%esp)
136 call __p__M0_S0_P1
137 leave
138 ret
139 .lcomm _static_ctor_run_condition_1_2,16
140 .globl __p__M0_init
141 .def __p__M0_init; .scl 2; .type 32; .endef
142 __p__M0_init:
143 pushl %ebp
144 movl %esp, %ebp
145 subl $8, %esp
146 cmpb $0, _static_ctor_run_condition_1_2
147 jne L20
148 movb $1, _static_ctor_run_condition_1_2
149 call __p_DoInitProc
150 L20:
151 leave
152 ret
153 .def ___main; .scl 2; .type 32; .endef
154 .globl _main
155 .def _main; .scl 2; .type 32; .endef
156 _main:
157 pushl %ebp
158 movl %esp, %ebp
159 subl $24, %esp
160 andl $-16, %esp
161 movl $0, %eax
162 addl $15, %eax
163 addl $15, %eax
164 shrl $4, %eax
165 sall $4, %eax
166 movl %eax, -4(%ebp)
167 movl -4(%ebp), %eax
168 call __alloca
169 call ___main
170 movl __p_GPC_RTS_VERSION_20050331, %eax
171 movl $0, 12(%esp)
172 movl 16(%ebp), %eax
173 movl %eax, 8(%esp)
174 movl 12(%ebp), %eax
175 movl %eax, 4(%esp)

 Target Code Generation 369

176 movl 8(%ebp), %eax
177 movl %eax, (%esp)
178 call __p_initialize
179 call __p__M0_init
180 call __p__M0_main_program
181 call __p_fi nalize
182 movl $0, %eax
183 leave
184 ret
185 .def __p_fi nalize; .scl 3; .type 32; .endef
186 .def __p__M0_init; .scl 3; .type 32; .endef
187 .def __p_initialize; .scl 3; .type 32; .endef
188 .def __p_DoInitProc; .scl 3; .type 32; .endef
189 .def __p_Read_Line; .scl 3; .type 32; .endef
190 .def __p_IORangeCheckError; .scl 3; .type 32; .endef
191 .def __p_Read_Integer; .scl 3; .type 32; .endef
192 .def __p_Read_Init; .scl 3; .type 32; .endef
193 .def __p_CheckInOutRes; .scl 3; .type 32; .endef
194 .def __p_Write_Flush; .scl 3; .type 32; .endef
195 .def __p_Write_String; .scl 3; .type 32; .endef
196 .def __p_Write_Init; .scl 3; .type 32; .endef

Consider the situation in case—a, where the enclosing procedure P1 (at lexical level 1) is calling its

child procedure P2 (at lexical level 2) at line number 31 of the Listing 6.10. The defi ning environment

for the callee P2 is P1. In this scenario, we fi nd that the caller and the defi ning environment are the same

and hence the caller’s activation record serves as the static link for the callee. The caller passes the current

frame pointer (the pointer to current activation record) to the callee for using it as a static link. In the x86

assembly language output generated by gpc compiler, corresponding to the program in Listing 6.10, the

lines related to the call to P2 from P1 are 51 and 52. We fi nd that the pointer to the current activation record

(ebp) is passed to the child routine P2 by moving it to the register ecx in line 51 of the nested_proc.s fi le

and then making the call to the procedure P2.

51 movl %ebp, %ecx # Moving the pointer to the current activation record to %ecx
52 call _P2.0 # Calling P2

The callee routine P2 assigns 25 to the variable ‘v1’ defi ned at lexical level 1, by using the register ecx

and indexing to the location where ‘v1’ is bound i.e. –4(%ecx) as seen in lines 9 through 12 of nested_

proc.s. The line 9 updates the static link fi eld in the current activation record with the value passed by the

enclosing procedure in the form of %ecx.

 9 movl %ecx,–4(%ebp) # Updating the static link fi eld in the current AR
10 movl -4(%ebp),%ecx # Fetching it again

12 movl $25, –4(%ecx) # Using the Static Link to access ‘v1’ by indirect addressing

The instance of a procedure calling a peer (case—b) can be found at line 16 in the sample program

at Listing 6.10, where the procedure ‘Peer_Of_P2’ calls ‘P2’ procedure. The defi ning environment of P2

and Peer_Of_P2 is P1. In this scenario, we fi nd that the callee and the callee share the same the defi ning

environment and hence the static link of the caller can be used as the static link of the callee. The caller

passes its own static link stored in its activation record, to the callee to be used as its static link. This is

370 Principles of Compiler Design

demonstrated by the line 20 through 22 in the x86 assembly language output (nested_proc.s) of the source

program, where the current static link in register %ecx is passed again in register ecx to the P2 routine.

20 movl %ecx, -4(%ebp) # Updating the static link fi eld in the caller AR
21 movl -4(%ebp), %ecx # Passing the caller’s static link fi eld to the callee
22 call _P2.0

The callee—P2 uses the static link in order to

assigns 25 to the variable ‘v1’ defi ned at lexical level 1,

by using the register ecx and indexing to the location

where ‘v1’ is bound, i.e. –4(%ecx) as seen earlier in

lines 9 through 12.

The instance of a procedure calling a peer of its

ancestor at a lexical level less than the current level

(case—c) can be found at line 23 of Listing 6.10,

where the procedure P3 calls P2 routine. The defi ning

environment of the P2 is P1. In order to fetch a pointer

to the activation record of P1(lexical level 1) in the

caller P3(lexical level 3), the static link chain needs to

be traversed by 2 levels, i.e. from P3 to its static link

Another_Peer_Of_P2() and from it to P1 as shown in

Fig. 6.26.

After fetching the pointer to the activation record

of P1, it is passed to the callee P2 on the stack similar

to the function arguments. This is demonstrated by the

lines at 31 through 33.

31 movl -4(%ebp), %ecx # Fetching the AR at lexical Level 2 (Another_Peer_Of_P2)
32 movl -4(%ecx), %ecx # Fetching the AR at lexical Level 1 (P1)

33 call _P2.0

The line 31 fetches the static link of the current routine (P3), which would be the pointer to activation

record of its enclosing procedure (Another_Peer_Of_P2) at level 2. The line 32 traverses the static link of

Another_Peer_Of_P2 to fetch the pointer to activation record of its enclosing procedure at level 1(P1) by

doing an indirection. The pointer to activation record of P1 is passed as a static link to the callee routine

(P2) in the form of register ecx.

In general, If the current activation is at lexical level ‘n’ and we are calling a procedure at lexical level

‘m’ , where m is less than ‘n’, then we need to traverse (n – m + 1) links to get the static link for passing to

the callee procedure. In this example, of procedure P3 (lexical level 3) calling Peer_Of_P2() (lexical level

2) we need to traverse (3 – 2 + 1) = 2 links to get to the activation record of the defi ning environment. This

is passed to the callee to be used as the static link.

The callee—P2 uses the static link in order to assign 25 to the variable ‘v1’ defi ned at lexical level 1, by

using the register ecx and indexing to the location where ‘v1’ is bound, i.e. –4(%ecx) as seen earlier in lines

9 through 12.

From the discussion, it becomes clear that the calling of an ancestor (case — c) or accessing of a variable

defi ned at a lexical level ‘m’ from the current level ‘n’ would require traversing of the access links and will

add up to be an overhead in terms of program execution time.

Fig. 6.26 Traversing the static link chain

 Target Code Generation 371

An improved scheme for handling static links defi ned at various lexical levels is the usage of a data

structure called display. A display is an array of pointers to the activation records. Display[0] contains

a pointer to the activation record of the most recent activation of a procedure defi ned at lexical level 0.

Similarly, Display[1] houses a pointer to the activation record of the most recent activation of a procedure

defi ned at lexical level 1, and so on. The number of elements in the display array is given by the maximum

level of nesting in the input source program.

In the display scheme of accessing the non-local variables defi ned in the enclosing procedures, each

procedure on activation stores a pointer to its own activation record in the display array at its lexical level.

It saves the previous value at that location in the display array and restores it back when the procedure exits.

For example, when procedure P2 is entered, it sets the Display[2] to point to its own, i.e. P2 activation

record. It saves the previous content of Display[2] and restores it when P2 exits. In this manner, it is ensured

that display array always has a pointer to the activation record of the most recent activation of a procedure

defi ned at a particular lexical level. Accessing a variable say ‘v
n
’ defi ned in the enclosing procedure ‘P

n
’

would involve (a) Fetching the pointer to activation record of P
n
 by obtaining Display[n] since ‘P

n
’ is at

lexical level n and (b) indexing to the memory for the variable ‘v
n
’ within the activation record of ‘P

n
’.

Consider the implementation of display scheme for the access of non-local variables in the example

shown earlier in Listing 6.10. Figure 6.27 shows the display array at the time of activation of P2 when

called from P1 represented by the stack layout-1. The display array at the time of activation of P2 when

called from Peer_Of_P2 represented by

the stack layout-2 is also seen in Fig.

6.27. We can see that in both of these

cases the variable ‘v1’ can be accessed by

(a) fetching the activation record of P1

using display[1] and (b) Indexing into the

memory bound to ‘v1’ on the stack.

The advantage of the display scheme

is that the activation record of any

enclosing procedure at lexical level ‘n’

can be directly fetched using Display [n]

as opposed to traversing of the access

links in the previous scheme.

6.3.5 Procedure Calling and

Return Sequences

Another important aspect in a run-time

environment is the calling and return

sequences for a procedure execution. In

this section, we study about the general

steps involved in calling and return

sequences. We also examine the division

of responsibility between the caller and

callee in each of these sequences. In

the later part of this section, we also try

and understand some of the specifi cs

of calling and return sequences in the C

language run-time environment.
Fig. 6.27 Using display for non-local access

372 Principles of Compiler Design

Broadly speaking, the generated code for the calling sequence of a function allocates memory for the

callee activation record and populates the information into its fi elds. The return sequence restores the

machine state of the caller to the condition it was before the call was made. This enables the caller to

continue execution smoothly.

Let’s start with trying to understand the calling sequence in a run-time environment. The common

operations that need to be performed at the run-time, when a function is called are as follows.

 1. The caller evaluates the arguments and stores it in the callee activation record. In the case of run-

time environment where the stack is used for housing activation records, this involves pushing the

arguments on the stack.

 2. The caller stores the return address in the callee activation record and transfers the control to the

called function.

 3. The callee saves the machine status in the form of contents of the registers so that it can be restored

later after its execution.

 4. The callee creates the space in its activation record for the local data and initialises it.

The optional control link fi eld in the callee activation fi eld is populated co-operatively by the caller and

callee in the case of source languages supporting dynamic scope. The same applies to the optional access

link fi eld in cases of source languages supporting nested procedures.

Similar to the calling sequence, when a procedure completes its execution, there are a sequence of

actions to be carried out at the run-time as given below.

 1. The callee places the return value of the function in its activation record or in some other mutually

agreed upon location (e.g. register) from where the caller can pick it up.

 2. The callee restores the machine status (in the form of the contents of registers) to the state that

was saved in its activation record, during the calling sequence. This enables the caller to resume its

execution smoothly. The callee also releases the memory allocated in the activation record for the

local variables and compiler-generated temporaries.

 3. The caller releases the memory allocated for the parameters in the activation record. With this, the

callee activation record is completely released from the memory.

 4. The caller copies the return value of the function into its own area.

The target code generator produces code that performs the actions mentioned in the calling and return

sequence.

The calling and return sequences that we just studied gives a generic idea of the activities performed.

These sequences might vary a little, based on the source language characteristics and the memory

organisation at the run-time. The division of responsibility between the caller and callee might also vary a

little, depending on the source language characteristics and to a smaller extent on the compiler.

6.3.5.1 Procedure Calling and return Sequences in C Run-time Environment In this section we

study some of the specifi cs of the calling and return sequences in a C run-time environment. The emphasis

in this section is on understanding the calling and return sequences in the C runtime environment by

studying the x86 assembly code generated for a sample C program. The idea is to have a sample program

compiled using the gcc compiler and generate x86 assembly code for the same. We then dissect the

generated assembly code to identify the various steps in the calling and return sequences.

The dialog below shows a sample C program being compiled by gcc. We pass the options—save-temps

during the compilation for saving the assembly output among others. The assembly output is quoted later

for explaining the calling and return sequences.

 Target Code Generation 373

Program to dislay Calling and return Sequence in C

$ cat -n ex6.c

 1 #include <stdio.h>
 2
 3 void test();
 4 int my_func(int a,int b);
 5
 6 int x,y,z;
 7
 8 int main()
 9 {
10 test();
11 return(0);
12 }
13
14 void test()
15 {
16 x=5;
17 y=10;
18 z=my_func((x+43),(y+20));
19 x = z + y;
20 printf(“Value of z=%d \n”,z);
21
22 return;
23 }
24
25 int my_func(int a,int b)
26 {
27 int ret;
28 int c=10,d=20;
29
30 c = a *a ;
31 d = b* b;
32 ret = c + d + 2 *a *b;
33
34 return(ret);
35 }

Compiling it for generating the x86 assembly Language code

$ gcc -Wall -c —save-temps ex6.c

Displaying the x86 assembly fi le

$ cat -n ex6.s

1 .fi le “ex6.c”
2 .def ___main; .scl 2; .type 32; .endef
3 .text
4 .globl _main
5 .def _main; .scl 2; .type 32; .endef
6 _main:
7 pushl %ebp
8 movl %esp, %ebp
9 subl $8, %esp

10 andl $-16, %esp
11 movl $0, %eax
12 addl $15, %eax

374 Principles of Compiler Design

13 addl $15, %eax
14 shrl $4, %eax
15 sall $4, %eax
16 movl %eax, -4(%ebp)
17 movl -4(%ebp), %eax
18 call __alloca
19 call ___main
20 call _test
21 movl $0, %eax
22 leave
23 ret
24 .section .rdata,”dr”
25 LC0:
26 .ascii “Value of z=%d \12\0”
27 .text
28 .globl _test
29 .def _test; .scl 2; .type 32; .endef
30 _test:
31 pushl %ebp
32 movl %esp, %ebp
33 subl $8, %esp
34 movl $5, _x
35 movl $10, _y
36 movl _y, %eax
37 addl $20, %eax
38 movl %eax, 4(%esp)
39 movl _x, %eax
40 addl $43, %eax
41 movl %eax, (%esp)
42 call _my_func
43 movl %eax, _z
44 movl _y, %eax
45 addl _z, %eax
46 movl %eax, _x
47 movl _z, %eax
48 movl %eax, 4(%esp)
49 movl $LC0, (%esp)
50 call _printf
51 leave
52 ret
53 .globl _my_func
54 .def _my_func; .scl 2; .type 32; .endef
55 _my_func:
56 pushl %ebp
57 movl %esp, %ebp
58 subl $12, %esp
59 movl $10, -8(%ebp)
60 movl $20, -12(%ebp)
61 movl 8(%ebp), %eax
62 imull 8(%ebp), %eax
63 movl %eax, -8(%ebp)
64 movl 12(%ebp), %eax
65 imull 12(%ebp), %eax
66 movl %eax, -12(%ebp)
67 movl -12(%ebp), %eax
68 movl -8(%ebp), %edx

 Target Code Generation 375

69 addl %eax, %edx
70 movl 8(%ebp), %eax
71 imull 12(%ebp), %eax
72 addl %eax, %eax
73 leal (%edx,%eax), %eax
74 movl %eax, -4(%ebp)
75 movl -4(%ebp), %eax
76 leave
77 ret
78 .comm _x, 16 # 4
79 .comm _y, 16 # 4
80 .comm _z, 16 # 4
81 .def _printf; .scl 3; .type 32; .endef

82 .def _my_func; .scl 3; .type 32; .endef
83 .def _test; .scl 3; .type 32; .endef

We start off by looking at the calling sequence for the function ‘my_func’ in the x86 assembly code

generated above for the sample program by the gcc compiler. The function my_func is called from the

test() function in line 18 of the ex6.c fi le. Let’s study the calling sequence for my_func() in a step-by-step

fashion.

Step 1: The caller evaluates the arguments and pushes on to the run-time stack before making the

function call. In the program above, a call is made to the function ‘my_func’ on the line 18

of the source program ex6.c in the form of z=my_func((x+43),(y+20)). As we can see, the

arguments to the function are (x+43) and (y+20). They are evaluated in the caller (function

test) and pushed on to the run-time stack in the lines 36 through 41 of the assembly listing

(ex6.s) as shown below. Observe that the arguments are pushed on to the stack from right to

left, with the rightmost argument pushed fi rst, while the leftmost argument is pushed last on it.

36 movl _y, %eax
37 addl $20, %eax
38 movl %eax, 4(%esp) # Pushing the right most argument

39 movl _x, %eax
40 addl $43, %eax
41 movl %eax, (%esp) # Pushing the left most argument

Step 2: The caller executes the ‘call’ assembly instruction. This pushes the return address on the stack

and transfers the control to the called function.

42 call _my_func

Step 3: The callee (function my_func) saves the registers and gets the register bp to point to the top

of the stack at this point. The BP is used as a base pointer for indexing and accessing local

variables as seen in the next step. Note that the saving of machine’s status in this example

comprises merely saving the old value of ‘bp’. In situations like say a function called within

a loop and others where there is quite some amount of computation going on at the caller site,

there would more number of registers saved in the form of machine status.

376 Principles of Compiler Design

55 _my_func:
56 pushl %ebp
57 movl %esp, %ebp

Step 4: The callee creates the local space on the stack and initialises the local data. In the case of the

function my_func in the sample code, the size of the local stack is 12 bytes. The size was

computed by the code generator depending on the total size of the local variables. The space

for the local data is created by simply moving the stack pointer by 12 bytes. The local variable

‘c’ is at the offset –8 from BP. It is being initialised to 10 by the assembly instruction at line 59.

Similarly, the variable ‘d’ is at –12 from BP. It is being initialised to 20 by the instruction on

line 60. Any access to variable ‘c’ in the function body would resolve to offset –8 from BP as

–8(%ebp) and variable ‘d’ to offset –12 from BP as –12(%ebp).

58 subl $12, %esp # Creating space for Local variables
59 movl $10, -8(%ebp) # Initializing Local variable ‘c’
60 movl $20, -12(%ebp) # Initializing Local variable ‘d’

Let’s look at the above steps in the calling

sequence from the perspective of the caller and

callee responsibility. Figure 6.28 shows the

activation record on the stack along with the

demarcation of caller and callee responsibility

in the C run-time environment that we just

discussed. The caller takes the responsibility

of pushing the function arguments and the

return address on the run-time stack. The callee

takes the responsibility for saving the machine

status and also for allocating space for the local

variables and the temporaries.

We now look at the return sequence for the

same function ‘my_func’ in the x86 assembly

code generated for the sample C program by

the gcc compiler.

Step 1: The callee puts the return value of the function at a location where the caller can pick it up. In

the gcc C compiler implementation, the return value of the function is placed in the register eax

from where the caller picks it up. The local variable ‘ret’ is situated at offset –4 from BP. The

return value is moved from the local variable ‘ret’ to register eax in the line 75 of ex6.s.

75 movl -4(%ebp), %eax

Step 2: The callee restores the machine status to the state it was before the function call was made,

so that the caller can resume execution. In this case, the value of esp is restored to the value

before function started. The value of register ebp is also restored back to the value before the

start of the function. This is achieved by the ‘leave’ instruction. By moving back the esp to the

Fig. 6.28 Stack in C-run-time environment

 Target Code Generation 377

value before the function execution, the space allocated for the local variables in step 4 of the

calling sequence is also released. The control is transferred to the caller by executing the ‘ret’

instruction.

76 leave
77 ret

Step 3: The caller copies the return value into its own area. The return value, which was stored in

register %eax in step 1 of the return sequence, is fetched and copied into the variable ‘z’. The

assembly instruction corresponding to the copying of the return value into the variable ‘z’ is

shown below.

43 movl %eax,_z

In the cases where the return value of a function is a structure that cannot fi t into the register eax, the

structure is copied to the caller area by the callee in the gcc C compiler implementation.

The calling and return sequences might vary a little bit with regard to some details in other compiler

implementations. The direction in which the stack grows, the locations of heap and stack, and the extent of

committed heap and stack are some of the details that might vary depending on the operating system, target

architecture and design of the compiler. The main concepts discussed in this section hold good for most of

the stack-based C runtime environments.

6.3.6 Parameter-passing Mechanisms

There are several mechanisms by which parameters can be passed to functions, during a function call. The

parameter-passing mechanism used in a function call infl uences the output of the program. The target code

generator takes into account the type of the parameter-passing mechanism used in the context and generates

code accordingly. An important characteristic of a given runtime environment is the support provided

for different parameter-passing mechanisms. In this section we introduce the different ways of passing

arguments and the expected program behaviour corresponding to them. We discuss ways of implementing

each one of those parameter-passing mechanisms from a code-generation standpoint.

Let’s start off by getting the terminology involved in parameter-passing to functions by looking at

a sample C program. Consider the small C program shown in Listing 6.11. There is a call made to the

function ‘max’ at line 12. The arguments that are passed to a function at the time of call are called as actual

parameters. The variables ‘p1’ and ‘p2’ are the actual parameters in the call made to max at line 12. The

function defi nition gives out more details with regard to the number of arguments, type of the arguments,

and so on. The function ‘max’ is defi ned to take two arguments ‘f1’ and ‘f2’, which are integers. The

arguments that appear in the function defi nition are called as formal parameters. The variables ‘f1’ and

‘f2’ are the formal parameters for the function ‘max’. When formal parameters are defi ned as a part of a

function, they are treated like local variables. For example, in Listing 6.11, the function max is defi ned

from line 16 to 27 with two formal parameters ‘f1’ and ‘f2’. These two are treated like local variables with

storage allocated to them in the activation record.

 1 #include <stdio.h>
 2
 3 int max(int f1,int f2.);
 4 int main()

378 Principles of Compiler Design

 5 {
 6 int p1,p2;
 7 int out;
 8
 9 p1 = 1;
10 p2 = 2;
11
12 out = max(p1,p2);
13 return(0);
14 }
15
16 int max(int f1,int f2)
17 {
18 int tmp;
19
20 if(f1 > f2){
21 tmp=f1;
22 }else{
23 tmp=f2;
24 }
25
26 return(tmp);
27 }

Listing 6.11 params.c

In order to understand the different parameter-passing mechanisms one needs to appreciate the difference

between a storage location and a value. Consider an assignment statement using an array ‘a’ in C language

 a[i] = a[j];

The expression on the left-hand side, namely, a[i] represents a storage location, while a similar

expression on the right-hand side ‘a[j]’ represents a value. An expression used on the left-hand side of the

assignment represents a storage location and the one on the right-hand side of the assignment represents a

value. We use the term l-value, to refer to the storage location of an expression and r-value to refer to the

value of the expression. The ‘l’ and ‘r’ in the above terms come from the fact that they are on the left or

right side of an assignment.

The parameter-passing mechanisms differ on the basis of whether a parameter represents an r-value or an

l-value. A consequence of whether the parameter is an l-value or r-value is the net effect of changes made

to the formal parameters within the called function. In cases where the parameter represents an l-value,

the changes made to the formal parameters in the called function is refl ected in the actual arguments at the

caller site, i.e. if the called function modifi es the formal parameter ‘f1’, that would refl ect on the actual

parameter ‘p1’. In cases where the parameter represents an r-value, there is no effect of the changes made

to the formal parameter ‘f1’ on the actual parameter ‘p1’.

There are 4 different parameter-passing mechanisms that are discussed in this text:

 1. Call by value.

 2. Call by reference.

 3. Call by value-result.

 4. Call by name.

Each one of these is discussed in detail in the following sections.

 Target Code Generation 379

6.3.6.1 Call by Value In the call by value parameter-passing mechanism, the arguments are evaluated

at the time of call and they become the values of formal parameters throughout the function. For example,

consider the PASCAL program shown in Listing 6.12 in which we use the call by value parameter-passing

mechanism for calling the function ‘my_func’ at line number 24. At the time of call, i.e. line 24, the

arguments ‘p1’ and ‘p2’ are evaluated, which would yield 4 and 30 in this case. These evaluated values,

become the values of the formal arguments ‘f1’ and ‘f2’ during the execution of the function ‘my_func’.

In call by value method, the changes made to the formal parameters are not refl ected in the actual

arguments at the caller site. In the Listing 6.12, we modify the formal parameters ‘f1’ to 100 and ‘f2’ to 120

at the lines 12 and 13 respectively, but when we print the actual parameters ‘p1’ and ‘p2’ at line 26 after the

call to the function ‘my_func’, the modifi ed values are not refl ected. The actual arguments ‘p1’ and ‘p2’

continue to have original values, i.e. 4 and 30 even after the call to the function ‘my_func’.

 1 PROGRAM sample(input,output);
 2 VAR p1,p2,p3 : integer;
 3
 4 FUNCTION my_func(f1,f2:integer): integer;
 5 BEGIN
 6 if (f1 > f2)
 7 then
 8 my_func := f1
 9 else
10 my_func := f2;
11
12 f1 := 100 ;{ Changing the Value of Formal Parameter }
13 f2 := 120 ;{ Changing the Value of Formal Parameter }
14
15 END;
16
17 BEGIN
18
19 p1 := 4;
20 p2 := 30;
21
22 writeln(‘Before the function call p1=’,p1,’ p2=’,p2);
23
24 p3 := my_func(p1,p2);
25
26 writeln(‘After the function call p1=’,p1,’ p2=’,p2);
27
28 END.

Listing 6.12 ex7.pas

The dialog below shows the compilation and execution of the Pascal program shown in Listing 6.12 that

uses the call-by-value mechanism for parameter-passing. The x86 assembly language output for the same

program generated by the Pascal compiler—gpc is also seen in the dialog. We will use that to understand

the details of implementing the call by value mechanism from a target code generator standpoint. Observing

the execution of the program establishes the fact that any changes made to the parameters in a call-by-value

method does not have any effect in the actual arguments at the caller site.

380 Principles of Compiler Design

Compiling ex7.pas to demonstrate Call-by-Value

$ gpc -Wall --save-temps ex7.pas -o ex7

x86 assembly language output

$ cat -n ex7.s

 1 .fi le “ex7.pas”
 2 .lcomm _P1,16
 3 .lcomm _P2,16
 4 .lcomm _P3,16
 5 .text
 6 .def __p__M0_S0_My_func; .scl 3; .type 32; .endef
 7 __p__M0_S0_My_func:
 8 pushl %ebp
 9 movl %esp, %ebp
10 subl $4, %esp
11 movl 8(%ebp), %eax
12 cmpl 12(%ebp), %eax
13 jle L2
14 movl 8(%ebp), %eax
15 movl %eax, -4(%ebp)
16 jmp L3
17 L2:
18 movl 12(%ebp), %eax
19 movl %eax, -4(%ebp)
20 L3:
21 movl $100, 8(%ebp)
22 movl $120, 12(%ebp)
23 movl -4(%ebp), %eax
24 leave
25 ret
26 .section .rdata,”dr”
27 LC0:
28 .ascii “Before the function call p1=\0”
29 LC1:
30 .ascii “ p2=\0”
31 LC2:
32 .ascii “After the function call p1=\0”
33 .text
34 .globl __p__M0_main_program
35 .def __p__M0_main_program; .scl 2; .type 32; .endef
36 __p__M0_main_program:
37 pushl %ebp
38 movl %esp, %ebp
39 subl $24, %esp
40 movl $4, _P1
41 movl $30, _P2
42 movl $1568, 4(%esp)
43 movl __p_Output, %eax
44 movl %eax, (%esp)
45 call __p_Write_Init
46 movl $-2147483648, 12(%esp)
47 movl $28, 8(%esp)
48 movl $LC0, 4(%esp)
49 movl __p_Output, %eax
50 movl %eax, (%esp)

 Target Code Generation 381

51 call __p_Write_String
52 movl $-2147483648, 8(%esp)
53 movl _P1, %eax
54 movl %eax, 4(%esp)
55 movl __p_Output, %eax
56 movl %eax, (%esp)
57 call __p_Write_Integer
58 movl $-2147483648, 12(%esp)
59 movl $4, 8(%esp)
60 movl $LC1, 4(%esp)
61 movl __p_Output, %eax
62 movl %eax, (%esp)
63 call __p_Write_String
64 movl $-2147483648, 8(%esp)
65 movl _P2, %eax
66 movl %eax, 4(%esp)
67 movl __p_Output, %eax
68 movl %eax, (%esp)
69 call __p_Write_Integer
70 movl __p_Output, %eax
71 movl %eax, (%esp)
72 call __p_Write_Line
73 movl __p_Output, %eax
74 movl %eax, (%esp)
75 call __p_Write_Flush
76 cmpl $0, __p_InOutRes
77 je L6
78 call __p_CheckInOutRes
79 L6:
80 movl _P2, %eax
81 movl %eax, 4(%esp)
82 movl _P1, %eax
83 movl %eax, (%esp)
84 call __p__M0_S0_My_func
85 movl %eax, _P3
86 movl $1568, 4(%esp)
87 movl __p_Output, %eax
88 movl %eax, (%esp)
89 call __p_Write_Init
90 movl $-2147483648, 12(%esp)
91 movl $28, 8(%esp)
92 movl $LC2, 4(%esp)
93 movl __p_Output, %eax
94 movl %eax, (%esp)
95 call __p_Write_String
96 movl $-2147483648, 8(%esp)
97 movl _P1, %eax
98 movl %eax, 4(%esp)
99 movl __p_Output, %eax
100 movl %eax, (%esp)
101 call __p_Write_Integer
102 movl $-2147483648, 12(%esp)
103 movl $4, 8(%esp)
104 movl $LC1, 4(%esp)
105 movl __p_Output, %eax

382 Principles of Compiler Design

106 movl %eax, (%esp)
107 call __p_Write_String
108 movl $-2147483648, 8(%esp)
109 movl _P2, %eax
110 movl %eax, 4(%esp)
111 movl __p_Output, %eax
112 movl %eax, (%esp)
113 call __p_Write_Integer
114 movl __p_Output, %eax
115 movl %eax, (%esp)
116 call __p_Write_Line
117 movl __p_Output, %eax
118 movl %eax, (%esp)
119 call __p_Write_Flush
120 cmpl $0, __p_InOutRes
121 je L4
122 call __p_CheckInOutRes
123 L4:
124 leave
125 ret
126 .lcomm _static_ctor_run_condition_1_2,16
127 .globl _p__M0_init
128 .def __p__M0_init; .scl 2; .type 32; .endef
129 __p__M0_init:
130 pushl %ebp
131 movl %esp, %ebp
132 subl $8, %esp
133 cmpb $0, _static_ctor_run_condition_1_2
134 jne L9
135 movb $1, _static_ctor_run_condition_1_2
136 call __p_DoInitProc
137 L9:
138 leave
139 ret
140 .def ___main; .scl 2; .type 32; .endef
141 .globl _main
142 .def _main; .scl 2; .type 32; .endef
143 _main:
144 pushl %ebp
145 movl %esp, %ebp
146 subl $24, %esp
147 andl $-16, %esp
148 movl $0, %eax
149 addl $15, %eax
150 addl $15, %eax
151 shrl $4, %eax
152 sall $4, %eax
153 movl %eax, -4(%ebp)
154 movl -4(%ebp), %eax
155 call __alloca
156 call ___main
157 movl __p_GPC_RTS_VERSION_20050331, %eax
158 movl $0, 12(%esp)
159 movl 16(%ebp), %eax
160 movl %eax, 8(%esp)

 Target Code Generation 383

161 movl 12(%ebp), %eax
162 movl %eax, 4(%esp)
163 movl 8(%ebp), %eax
164 movl %eax, (%esp)
165 call __p_initialize
166 call __p__M0_init
167 call __p__M0_main_program
168 call __p_fi nalize
169 movl $0, %eax
170 leave
171 ret
172 .def __p_fi nalize; .scl 3; .type 32; .endef

173 .def __p__M0_init; .scl 3; .type 32; .endef
174 .def __p_initialize; .scl 3; .type 32; .endef
175 .def __p_DoInitProc; .scl 3; .type 32; .endef
176 .def __p_CheckInOutRes; .scl 3; .type 32; .endef
177 .def __p_Write_Flush; .scl 3; .type 32; .endef

178 .def __p_Write_Line; .scl 3; .type 32; .endef
179 .def __p_Write_Integer; .scl 3; .type 32; .endef
180 .def __p_Write_String; .scl 3; .type 32; .endef
181 .def __p_Write_Init; .scl 3; .type 32; .endef

Executing it

$./ex7

Before the function call p1=4 p2=30

After the function call p1=4 p2=30

The call-by-value parameter-passing mechanism is implemented by the code generator as follows: (1)

The actual arguments are evaluated and their r-values computed at the called site. The r-values of the actual

parameters are then ‘copied’ as the initial values of the formal parameters. (2) The formal parameters in the

called function are accessed in a similar manner to the local variables. In the called function, the formal

parameters are used for all the computations. Since the called function works on the ‘copies’ of the actual

parameters in the form of formal parameters, any changes done to the formal parameters are not refl ected in

the actual arguments at the caller site.

The relevant portions of the x86 assembly language code generated by gpc—the Pascal compiler, for

Example 7, are shown below. It is annotated to show both of the above aspects in the caller and callee. We

have the computing of the r-values of actual arguments and copying them as the initial values of formal

parameters in lines 80–84. We see how the arguments are accessed in the called function ‘my_func’ in the

lines 21–22.

Copying the actual parameter ‘p2’ to the formal parameter ‘f2’
80 movl _P2, %eax
81 movl %eax, 4(%esp)

Copying the actual parameter ‘p1’ to the formal parameter ‘f1’
82 movl _P1, %eax
83 movl %eax, (%esp)

Calling the procedure ‘my_func’
84 call __p__M0_S0_My_func

In the called function

384 Principles of Compiler Design

Accessing the formal parameters similar to the local variables
21 movl $100, 8(%ebp)
22 movl $120, 12(%ebp)

The call-by-value method is supported as the default parameter passing mechanism in C and PASCAL

language run-time environment.

6.3.6.2 Call by Reference In call-by-reference mechanism of parameter passing, the reference

(address of the memory location) of the actual parameter is passed to the function instead of the value.

In other words, the l-values of the actual parameters are passed to the caller as opposed to the r-values

passed in the case of call by value. For example, consider the PASCAL program shown in Listing 6.13 in

which we use the call-by-reference parameter-passing mechanism for calling the function ‘my_func’ at line

number 24. This program is identical to the one shown in Listing 6.12 except for the line 4, where we use

the keyword VAR at the time of function defi nition to signify that parameters are passed by reference. At

the time of call, i.e. line 22, the address of arguments ‘p1’ and ‘p2’ are calculated and passed as arguments.

In the called function, ‘my_func’ any access to the formal parameters ‘f1’ and ‘f2’ would be done by using

indirect addressing as seen earlier in Section 6.2.3.5.

In call-by-reference method, the changes made to the formal parameters are refl ected in the actual

parameters at the caller site. This is due to the fact that the addresses of the actual parameters are passed to

the caller, and any changes to the formal parameters would be carried out on the same addresses by using

the indirect addressing. In Listing 6.13, we modify the formal parameters ‘f1’ to 100 and ‘f2’ to 120 at the

lines 12 and 13 respectively, when we print the actual parameters ‘p1’ and ‘p2’ at line 26 after the call to

the function ‘my_func’, the modifi ed values are refl ected. The actual arguments ‘p1’ and ‘p2’ have the new

values, i.e. 100 and 120 after the call to the function ‘my_func’ when printed at line 26.

 1 PROGRAM sample(input,output);
 2 VAR p1,p2,p3 : integer;
 3
 4 FUNCTION my_func(VAR f1,f2:integer): integer;
 5 BEGIN
 6 if (f1 > f2)
 7 then
 8 my_func := f1
 9 else
10 my_func := f2;
11
12 f1 := 100 ;{ Changing the Value of Formal Parameter }
13 f2 := 120 ;{ Changing the Value of Formal Parameter }
14
15 END;
16
17 BEGIN
18
19 p1 := 4;
20 p2 := 30;
21
22 writeln(‘Before the function call p1=’,p1,’ p2=’,p2);
23

 Target Code Generation 385

24 p3 := my_func(p1,p2);
25
26 writeln(‘After the function call p1=’,p1,’ p2=’,p2);
27
28 END.

Listing 6.13 ex8.pas

The dialog below shows the compilation and execution of the Pascal program shown in Listing 6.13

that uses the call-by-reference mechanism for parameter passing. The x86 assembly language output for

the same program generated by the Pascal compiler—gpc is also seen in the dialog. We will use that to

understand the details of implementing the call-by-reference mechanism from a target code generator

standpoint. Observing the execution of the program establishes the fact that any changes made to the

parameters in a call-by-reference method is refl ected in the caller.

Compiling ex8.pas to demonstrate Call-by-Reference

$ gpc -Wall —save-temps ex8.pas -o ex8

x86 assembly language output

$ cat -n ex8.s

1 .fi le “ex8.pas”
2 .lcomm _P1,16
3 .lcomm _P2,16
4 .lcomm _P3,16
5 .text
6 .def __p__M0_S0_My_func; .scl 3; .type 32; .endef
7 __p__M0_S0_My_func:
8 pushl %ebp
9 movl %esp, %ebp
10 subl $4, %esp
11 movl 8(%ebp), %eax
12 movl 12(%ebp), %edx
13 movl (%eax), %eax
14 cmpl (%edx), %eax
15 jle L2
16 movl 8(%ebp), %eax
17 movl (%eax), %eax
18 movl %eax, -4(%ebp)
19 jmp L3
20 L2:
21 movl 12(%ebp), %eax
22 movl (%eax), %eax
23 movl %eax, -4(%ebp)
24 L3:
25 movl 8(%ebp), %eax
26 movl $100, (%eax)
27 movl 12(%ebp), %eax
28 movl $120, (%eax)
29 movl -4(%ebp), %eax
30 leave
31 ret
32 .section .rdata,”dr”
33 LC0:

386 Principles of Compiler Design

34 .ascii “Before the function call p1=\0”
35 LC1:
36 .ascii “ p2=\0”
37 LC2:
38 .ascii “After the function call p1=\0”
39 .text
40 .globl __p__M0_main_program
41 .def __p__M0_main_program; .scl 2; .type 32; .endef
42 __p__M0_main_program:
43 pushl %ebp
44 movl %esp, %ebp
45 subl $24, %esp
46 movl $4, _P1
47 movl $30, _P2
48 movl $1568, 4(%esp)
49 movl __p_Output, %eax
50 movl %eax, (%esp)
51 call __p_Write_Init
52 movl $-2147483648, 12(%esp)
53 movl $28, 8(%esp)
54 movl $LC0, 4(%esp)
55 movl __p_Output, %eax
56 movl %eax, (%esp)
57 call __p_Write_String
58 movl $-2147483648, 8(%esp)
59 movl _P1, %eax
60 movl %eax, 4(%esp)
61 movl __p_Output, %eax
62 movl %eax, (%esp)
63 call __p_Write_Integer
64 movl $-2147483648, 12(%esp)
65 movl $4, 8(%esp)
66 movl $LC1, 4(%esp)
67 movl __p_Output, %eax
68 movl %eax, (%esp)
69 call __p_Write_String
70 movl $-2147483648, 8(%esp)
71 movl _P2, %eax
72 movl %eax, 4(%esp)
73 movl __p_Output, %eax
74 movl %eax, (%esp)
75 call __p_Write_Integer
76 movl __p_Output, %eax
77 movl %eax, (%esp)
78 call __p_Write_Line
79 movl __p_Output, %eax
80 movl %eax, (%esp)
81 call __p_Write_Flush
82 cmpl $0, __p_InOutRes
83 je L6
84 call __p_CheckInOutRes
85 L6:
86 movl $_P2, 4(%esp)
87 movl $_P1, (%esp)
88 call __p__M0_S0_My_func

 Target Code Generation 387

89 movl %eax, _P3
90 movl $1568, 4(%esp)
91 movl __p_Output, %eax
92 movl %eax, (%esp)
93 call __p_Write_Init
94 movl $-2147483648, 12(%esp)
95 movl $28, 8(%esp)
96 movl $LC2, 4(%esp)
97 movl __p_Output, %eax
98 movl %eax, (%esp)
99 call __p_Write_String

100 movl $-2147483648, 8(%esp)
101 movl _P1, %eax
102 movl %eax, 4(%esp)
103 movl __p_Output, %eax
104 movl %eax, (%esp)
105 call __p_Write_Integer
106 movl $-2147483648, 12(%esp)
107 movl $4, 8(%esp)
108 movl $LC1, 4(%esp)
109 movl __p_Output, %eax
110 movl %eax, (%esp)
111 call __p_Write_String
112 movl $-2147483648, 8(%esp)
113 movl _P2, %eax
114 movl %eax, 4(%esp)
115 movl __p_Output, %eax
116 movl %eax, (%esp)
117 call __p_Write_Integer
118 movl __p_Output, %eax
119 movl %eax, (%esp)
120 call __p_Write_Line
121 movl __p_Output, %eax
122 movl %eax, (%esp)
123 call __p_Write_Flush
124 cmpl $0, __p_InOutRes
125 je L4
126 call __p_CheckInOutRes
127 L4:
128 leave
129 ret
130 .lcomm _static_ctor_run_condition_1_2,16
131 .globl __p__M0_init
132 .def __p__M0_init; .scl 2; .type 32; .endef
133 __p__M0_init:
134 pushl %ebp
135 movl %esp, %ebp
136 subl $8, %esp
137 cmpb $0, _static_ctor_run_condition_1_2
138 jne L9
139 movb $1, _static_ctor_run_condition_1_2
140 call __p_DoInitProc
141 L9:
142 leave
143 ret

388 Principles of Compiler Design

144 .def ___main; .scl 2; .type 32; .endef
145 .globl _main
146 .def _main; .scl 2; .type 32; .endef
147 _main:
148 pushl %ebp
149 movl %esp, %ebp
150 subl $24, %esp
151 andl $-16, %esp
152 movl $0, %eax
153 addl $15, %eax
154 addl $15, %eax
155 shrl $4, %eax
156 sall $4, %eax
157 movl %eax, -4(%ebp)
158 movl -4(%ebp), %eax
159 call __alloca
160 call ___main
161 movl __p_GPC_RTS_VERSION_20050331, %eax
162 movl $0, 12(%esp)
163 movl 16(%ebp), %eax
164 movl %eax, 8(%esp)
165 movl 12(%ebp), %eax
166 movl %eax, 4(%esp)
167 movl 8(%ebp), %eax
168 movl %eax, (%esp)
169 call __p_initialize
170 call __p__M0_init
171 call __p__M0_main_program
172 call __p_fi nalize
173 movl $0, %eax
174 leave
175 ret
176 .def __p_fi nalize; .scl 3; .type 32; .endef
177 .def __p__M0_init; .scl 3; .type 32; .endef
178 .def __p_initialize; .scl 3; .type 32; .endef
179 .def __p_DoInitProc; .scl 3; .type 32; .endef
180 .def __p_CheckInOutRes; .scl 3; .type 32; .endef
181 .def __p_Write_Flush; .scl 3; .type 32; .endef
182 .def __p_Write_Line; .scl 3; .type 32; .endef
183 .def __p_Write_Integer; .scl 3; .type 32; .endef
184 .def __p_Write_String; .scl 3; .type 32; .endef
185 .def __p_Write_Init; .scl 3; .type 32; .endef

Executing it

$./ex8

Before the function call p1=4 p2=30
After the function call p1=100 p2=120

In order to implement the call-by-reference, the code generation has to take care of two aspects: (1) The

address of the actual arguments needs to be computed at the called site and passed as the arguments. (2) The

references to the formal parameters in the called function should be done using indirect addressing.

The relevant portions of x86 assembly language code generated by gpc—The Pascal compiler, for

Example 8, are shown below. It is annotated to show both of the aspects mentioned above. We have the

computing of the address of actual arguments and passing it as arguments to the function ‘my_func’, by

 Target Code Generation 389

pushing on to the stack in lines 86–88. We see how the arguments are accessed in the called function ‘my_

func’ using the indirect addressing in the lines 25–28.

Copying the ADDRESSES of the actual parameters on to the stack before making the call
86 movl $_P2, 4(%esp)
87 movl $_P1, (%esp)
88 call __p__M0_S0_My_func

In the called function
Using the indirect addressing on the passed references to
affect the change in the actual parameters itself
25 movl 8(%ebp), %eax
26 movl $100, (%eax) # Assigning 100 using INDIRECT Addressing
27 movl 12(%ebp), %eax
28 movl $120, (%eax) # Assigning 120 using INDIRECT Addressing

In call by reference, if the function call uses an expression like say my_func((p1+5),p2) or simply my_

func(4,5) in the above example, then the compiler needs to handle it specially, since there are no addresses

associated with these actual arguments. In such cases, the gpc compiler gives out an error indicating

incompatibility between the expected argument and the used ones. This forces the user to correct it and call

the function with a proper address location. The FORTRAN77 compiler handles these situations differently.

It creates a temporary location where the expression is stored and passes that address as the reference.

An advantage in the call-by-reference is that the values that are passed are not ‘copied’ as in pass-by-

value. This helps in improving performance, especially when large structures are passed to a function.

In Pascal programs, the keyword ‘var’ in the function defi nition is used to signify that the parameters

are passed by reference. In FORTRAN77, call by reference is the only parameter-passing mechanism. In C

language, call by reference is achieved by explicitly defi ning a function take pointers as parameters and at

the time of calling, the addresses are passed as parameters using the address of operator—‘&’.

6.3.6.3 Call-by-Value-Result In the call-by-value-result, the values of actual parameters are copied

to the formal parameters and used in the called procedure. This is similar to the call-by-value parameter-

passing mechanism. However, at the time of completion of the called function, the fi nal value of the formal

parameter is copied back into the location of the actual argument. This allows the changes made to the

formal parameters within the called function be refl ected on the actual parameters at the caller site.

ADA programming language uses this as one of the parameter-passing mechanisms, when the parameter

is specifi ed using the ‘in out’ keyword at the procedure defi nition. Consider an ADA program mytst.

adb shown in Listing 6.14 having a procedure ‘myproc’ using the ‘in out’ parameter ‘b’. The procedure

‘myproc’ increments the value of ‘a’ by 20 and stores it in the ‘in out’ parameter ‘b’. The Listing 6.15

shows the program ex9.adb in which a call is made to ‘myproc’ with the actual parameters as ‘x’ and ‘y’.

The values of ‘x’ and ‘y’ at the time of call are 10 and 20 respectively. The two programs — ex9.adb and

myproc.adb are compiled and linked together to form an executable—ex9.

1 with Ada.Text_IO; use Ada.Text_IO;
2 package body mytst is
3 procedure myproc(a:in integer; b:in out integer) is
4 begin
5 b := a + 20 ;

390 Principles of Compiler Design

6 end myproc;
7 end mytst;

Listing 6.14 mytst.adb

1 with mytst;
2 with Ada.Text_IO, Ada.Integer_Text_IO;
3 use Ada;
4 procedure ex9 is
5 x: integer ;
6 y: integer ;
7 begin
8 x :=10;
9 y :=20;
10 Text_IO.Put (“Value of ‘y’ before the procedure call:”);
11 Integer_Text_IO.Put (y);
12 mytst.myproc(x,y);
13 Text_IO.New_Line;
14 Text_IO.Put (“Value of ‘y’ after the procedure call:”);
15 Integer_Text_IO.Put (y);
16 end ex9;

Listing 6.15 ex9.adb

The following dialog shows the compilation and linking of the ‘mytst.adb’ with the fi le ‘ex9.adb’. We

can see from the output of the program that the value of ‘y’ changes after the execution of the procedure

‘myproc’. The x86 assembly listing of the code generated for ‘mytst.adb’ and ‘ex9.adb’ by the ADA

compiler is also shown in the dialog.

Compiling ADA fi les to demonstrate Call-by-Value-Result

$ gcc -c --save-temps ex9.adb

$ gcc -c --save-temps mytst.adb

Binding it

$ gnatbind ex9

Linking it

$ gnatlink ex9

Executing it

$./ex9

Value of ‘y’ before the procedure call: 20
Value of ‘y’ after the procedure call: 30

x86 assembly language output for ex9.adb

$ cat -n ex9.s

1 .fi le “ex9.adb”

2 .section .rdata,”dr”
3 .align 4
4 LC0:
5 .ascii “Value of ‘y’ before the procedure call:”
6 .align 4

 Target Code Generation 391

7 LC1:
8 .long 1
9 .long 39
10 .align 4
11 LC2:
12 .ascii “Value of ‘y’ after the procedure call:”
13 .text
14 .globl __ada_ex9
15 .def __ada_ex9; .scl 2; .type 32; .endef
16 __ada_ex9:
17 pushl %ebp
18 movl %esp, %ebp
19 subl $24, %esp
20 movl $10, -4(%ebp)
21 movl $20, -8(%ebp)
22 movl $LC0, %eax
23 movl $LC1, %edx
24 movl %eax, (%esp)
25 movl %edx, 4(%esp)
26 call _ada__text_io__put__4
27 movl _ada__integer_text_io__default_base, %eax
28 movl %eax, 8(%esp)
29 movl _ada__integer_text_io__default_width, %eax
30 movl %eax, 4(%esp)
31 movl -8(%ebp), %eax
32 movl %eax, (%esp)
33 call _ada__integer_text_io__put__2
34 movl -8(%ebp), %eax
35 movl %eax, 4(%esp)
36 movl -4(%ebp), %eax
37 movl %eax, (%esp)
38 call _mytst__myproc
39 movl %eax, -8(%ebp)
40 movl $1, (%esp)
41 call _ada__text_io__new_line__2
42 movl $LC2, %eax
43 movl $LC1, %edx
44 movl %eax, (%esp)
45 movl %edx, 4(%esp)
46 call _ada__text_io__put__4
47 movl _ada__integer_text_io__default_base, %eax
48 movl %eax, 8(%esp)
49 movl _ada__integer_text_io__default_width, %eax
50 movl %eax, 4(%esp)
51 movl -8(%ebp), %eax
52 movl %eax, (%esp)
53 call _ada__integer_text_io__put__2
54 leave
55 ret
56 .def _ada__text_io__new_line__2; .scl 3; .type 32; .endef
57 .def _mytst__myproc; .scl 3; .type 32; .endef
58 .def _ada__integer_text_io__put__2; .scl 3; .type 32; .endef
59 .def _ada__text_io__put__4; .scl 3; .type 32; .endef

x86 assembly language output for myproc.adb

$ cat -n mytst.s

392 Principles of Compiler Design

1 .fi le “mytst.adb”
2 .comm _mytst_E, 16 # 1
3 .text
4 .globl _mytst__myproc
5 .def _mytst__myproc; .scl 2; .type 32; .endef
6 _mytst__myproc:
7 pushl %ebp
8 movl %esp, %ebp
9 movl 8(%ebp), %eax
10 addl $20, %eax
11 movl %eax, 12(%ebp)
12 movl 12(%ebp), %eax
13 popl %ebp
14 ret

The code generation for passing by value-result involves three steps: (1) The caller copies the actual

arguments by value to the stack, similar to the call-by-value parameter-passing mechanism. (2) The callee

executes normally and stores the result (i.e. the changed value of the formal parameter) into a common

mutually agreed location. (3) The caller picks up the result from the common mutually agreed location to

update the actual argument.

Let’s dissect the x86 assembly output of the fi les ex9.adb and mytst.adb to identify and understand the

three steps mentioned above. The lines 34 through 37 of the caller routine ex9 in ex9.s (see Fig. 6.29), show

the arguments ‘y’ and ‘x’ being copied on to the stack. This is the illustration of the fi rst step. The second

step happens in the called routine ‘myproc’ at line 12 of mytst.s (Fig. 6.30) where the value of ‘in out’

variable ‘y’ (result) is moved to a register eax, which serves as the common location between the caller and

callee. The third step can be found at line 39 of ex9.s (Fig. 6.29), where caller copies the result from the

register eax back to the ‘in out’ actual argument—y.

One of the disadvantages of the call-by-value-result is that, there could be an ambiguity in the result,

when the same variable is passed as more than one argument, e.g. func(y,y). In this type of situation, it is

unclear as to which value of ‘y’ needs to be copied back into the actual argument at the caller site.

Copying actual argument ‘y’ (in out parameter) on to the stack
34 movl -8(%ebp), %eax
35 movl %eax, 4(%esp)

Copying actual argument ‘x’ on to the stack
36 movl -4(%ebp), %eax
37 movl %eax, (%esp)

Making the call to myproc
38 call _mytst__myproc

Copying the result back to ’y’ from the register eax
39 movl %eax, -8(%ebp)

Fig. 6.29 ex9.s

6 _mytst__myproc:
7 pushl %ebp
8 movl %esp, %ebp

 # Using the parameter passed as value (y = x + 20)

 Target Code Generation 393

9 movl 8(%ebp), %eax
10 addl $20, %eax
11 movl %eax, 12(%ebp)

 # Copying the ‘fi nal’ value of ‘y’ into register eax
12 movl 12(%ebp), %eax
13 popl %ebp
14 ret

Fig. 6.30 mytst.s

6.3.6.4 Call by Name The call-by-name parameter-passing mechanism was fi rst used in Algol60.

Some of the modern functional languages like Haskell use this mechanism for parameter passing.

The call-by-name can be characterised as follows:

 1. Every call statement is replaced by the body of the called procedure.

 2. Each occurrence of a formal parameter in the called method is replaced with the corresponding

actual parameter—the actual text of the argument, not its value.

 3. The local variables in the procedure are renamed, in case there exists a name clash with the

current set of variables.

Let’s take an example using C language syntax, to understand call-by-name parameter-passing

mechanism. Consider the C program shown in Listing 6.16 containing a ‘swap’ routine. We try and

understand the call-by-name parameter-passing mechanism by pretending to call the ‘swap’ routine using

the call-by-name. The swap routine is called in the main(), as swap(i,x[i]) in line 22;

1 void swap(a,b)
2 {
3 int temp;
4 temp = a;
5 a = b;
6 b = temp ;
7 }
8
9 int x[10];
10 int i;
11
12 int main()
13 {
14
15 i = 1;
16 x[1] = 4;
17 x[2] = 5 ;
18 x[3] = 7 ;
19 x[4] = 9 ;
20
21
22 swap(i,x[i]);
23
24 return(0);
25
26 }
27

Listing 6.16 ex10.c

394 Principles of Compiler Design

When the ‘swap’ method is called by name, the body of the swap routine would be literally substituted

as shown by the shaded portion in Fig. 6.31. We can see in the shaded portion of Fig. 6.31 that the formal

argument ‘a’ is textually substituted with the actual argument ‘i’ and formal argument ’b’ is textually

substituted by the actual argument ‘x[i]’. In the call-by-name parameter-passing mechanism, the evaluation

of arguments to the function happens at the time it is used as opposed to the time of call for all other

parameter-passing mechanisms. For example, if we had called swap(i,x[i]) with say, call-by-value, it would

evaluate i and x[i] at the time of call and pass it as arguments within the function. Here in call-by-name, we

can see that the x[i] is getting evaluated in the fourth line of the shaded portion, where it is used. The other

argument ‘i’ is evaluated in the second line of the shaded portion.

void swap(a, b)
{
 int temp;
 temp = a;
 a = b;
 b = temp ;
}

int x[10];
int i;
int main()
{

 i = 1;
 x[1] = 4;
 x[2] = 5 ;
 x[3] = 7 ;
 x[4] = 9 ;

 {
 int temp;
 temp = i;
 i = x[i];
 x[i] = temp ;
 }

 return(0);

}

Fig. 6.31 The expansion of swap

Let’s analyse the shaded portion of Fig. 6.31 to understand the consequences of calling the swap routine

using call-by-name parameter-passing mechanism. Figure 6.32 shows in comments what happens as each of

the statements in the textually substituted swap routine gets executed. The net result of executing the entire

shaded portion of the code is that i = 4 and x[4] = 1. The expected net result would have been i = 4 and x[1]

= 1, the swap of values for i and x[i] as one would expect of the swap routine. This kind of unexpected,

counterintuitive results made the call-by-name unpopular. In fact, it has been proved that it is impossible to

have a correctly working ‘swap’ routine using call by name.

 Target Code Generation 395

void swap(a,b)
{
 int temp;
 temp = a;
 a = b;
 b = temp ;
}

int x[10];
int i;

int main()
{

 i = 1;
 x[1] = 4;
 x[2] = 5 ;
 x[3] = 7 ;

 x[4] = 9 ;

 {
 int temp;
 temp = i; /* temp = 1 */
 i = x[i]; /* i = x[1] which is 4, so i = 4 */
 x[i] = temp ; /* x[4] = 1 */
 }

 return(0);

}

Fig. 6.32 Annotation for the macro-expansion of swap function

Even though the call-by-name is best understood by textually substituting the called routine and

replacing the formal parameters in the called method with the corresponding actual parameter. The

compilers implement the call-by-name mechanism internally by a different means but achieving the same

result as that of textual substitution as discussed above. The reason why textual substitution was not used

as implementation mechanism is that, when a function changes, all the functions that are calling it by name

have to be recompiled so that the textual substitution happens again. The call-by-name is implemented by

using parameter less subroutines called ‘thunks’ that can evaluate l-value or r-value of the actual parameters.

For example, the swap routine used in previous discussion would be implemented using two thunks, where

thunk1 evaluates ‘i’ and thunk2 evaluating x[i]. These thunks would help evaluate the parameter at the time

of access and implement call-by-name.

Even though the call-by-name has not been popular after Algol60, the idea of macro-expansion has been

used later in many programming languages like C. The macro-expansion is an ideal solution to situations

where the overhead of setting-up procedure activation is more than the execution of actual body of the

procedure.

396 Principles of Compiler Design

6.3.7 Comparison of Run-time Environments

In this section, we compare the features of run-time environments of some of the popular programming

languages like C, FORTRAN77 and Pascal. The idea is to bring out some of the differences in terms of

different ways each of these run-time environments function. The run-time environment of a source

language is usually designed to suit its features. Let’s take, for example, the FORTRAN77 run-time

environment. The FORTRAN77 language specifi cations supported parameter passing by reference, and did

not provide for advanced features like recursion, and dynamic memory allocation. Given these features, a

completely static run-time environment with no heap and stack was a good fi t. In the case of C language,

features like dynamic memory, recursion and others, motivated a stack-based run-time environment, which

also had heap memory.

Item for

Comparison

C FORTRAN77 Pascal

Memory

organisation

Heap, stack, and static

memory. There is

support for dynamic

memory.

Only static memory.

There is no dynamic

memory in the form of

either stack or heap.

Heap, stack and static memory.

There is support for dynamic

memory.

Activation

records

Stored in the stack area.

supports recursion.

Stored in the static

area. Cannot support

recursion.

Stored in the stack area. Supports

recursion.

Procedure calling

and return

sequences

The calling and return

sequences for C

deal with allocating,

populating and release of

the activation record.

The calling and return

sequence in a static

run-time environment

do not allocate and free

activation record. The

creation of activation

record is skipped

because it is created

statically at the compile

time itself and stored in

the static region.

The calling and return sequences

for PASCAL deal with allocating,

fi lling in all the fi elds and release

of the activation record. The

calling sequence in the PASCAL

environment also deals with

populating the access link of the

activation record.

Parameter

passing

This supports call by

value. However, one

can use pass a pointer

using call-by-value

and simulate a call-by-

reference.

This supports only call-

by-reference.

This run-time environment

supports both call-by-value, and

call-by-reference. The default

is call-by-value. The keyword

‘var’ is used to indicate to that

the parameter is passed using

reference.

In general, some of factors that are considered before conceiving a run-time environment for a

new language compiler are as follows: (a) Does the language support recursion? (b) Are local variables

supported? Are they required to be visible after the procedure is complete? (c) Does the source language

support features like pointers that require dynamic memory? (d) What types of parameter-passing

mechanisms are required to be supported?

 Target Code Generation 397

6.4 CODE GENERATION FOR x86

In this section, we look at implementing a code generator that translates the intermediate code (three-

address-code format) into target program (x86 assembly program). There are several ways a code generator

can be implemented to translate intermediate code into target assembly program. The method chosen here is

a straightforward scheme for generation of assembly code over more sophisticated and better counterparts

in view of retaining the simplicity and ease of understanding.

The code generator that we examine in this section associates a sequence of one or more x86 assembly

instructions to be generated for each type of three-address-code operator. These generated x86 assembly

instructions together achieve the intended functionality for the TAC Operator. This kind of code generation,

where each of the TAC operators is associated with a pattern of assembly instructions is sometimes referred

to as template-based code generation. Let’s take an example of a three-address-code statement using the

ADD TAC operator and the associated x86 assembly code as shown in Table 6.6 for understanding the

template-based code generation.

Table 6.6 x86 code generation for ADD TAC statement

TAC operator TAC statement x86 Assembly code to be

generated by the code

generator

Comments

ADD x := y + z movl _y, %eax
addl _z,%eax
mov1 %eax, _x

Assuming that x, y and z
are global variables,
each 4 bytes wide

The generated x86 assembly code shown in Table 6.6 for the ADD TAC statement has three x86

assembly language statements doing the following.

 ∑ Moving the operand y into the register eax. This prepares the operand for performing the add

operation.

 ∑ Performing the ‘add’ operation using z and an implicit operand from register eax with the result

being stored in the register eax.

 ∑ Moving the result of the operation (which is in register eax) into the variable x.

These three x86 assembly language statements together achieve the functionality of the ADD TAC

statement.

In a similar manner, a sequence of x86 assembly instructions is associated with each of the TAC

operators that have been defi ned in the Intermediate language. The generated x86 assembly instructions

have to work with the limitation that both the operands cannot be in memory at the same time. They have to

intelligently use the registers as a temporary storage points and perform the required operations.

Before we get into the details of translating other TAC statements into x86 assembly, it would be

necessary to understand how the global variables like x, y, and z in Table 6.6 are visible in the context of a

generated assembly code.

6.4.1 Global Variable Declarations

In the earlier chapter we studied that the global symbol table contains the details of all the global variables

that have been declared in the input source. In order to translate the global declarations in the input

source into x86 assembly statements, the code generator goes through the symbol table entry by entry and

398 Principles of Compiler Design

generates assembly statements. A ‘.comm’ directive in the BSS section is generated for a symbol table entry

corresponding to un-initialised global variable. A global symbol label in the data segment together with

its initial value is generated for a symbol table entry corresponding to initialised global variable. The code

generator generates global symbol label with initialising statements for each element in the case of symbol

table entry corresponding to an initialised global array declaration. Table 6.7 shows the transformation

of initialised, un-initialised global variables and arrays in the input C source into symbol table and

consequently into x86 assembly language code.

Table 6.7 Translation of global variables into x86 assembly code

The translation of global variable declarations into x86 assembly statements as shown in Table 6.7 helps

in accessing them later in the execution statements (text section) by using the symbolic name. For example,

in the text section following the generated x86 assembly code of Table 6.7, we can have statements like

mov %eax,_x for moving a value in register eax into the memory associated with variable _x. This facility

of being able to access the global variables by name (with an underscore as prefi x) is used during the

translation of TAC statements with global variables as operands, like the one in Table 6.6.

6.4.2 Statements

As mentioned earlier, the template-based code generator sets out to associate a x86 assembly code sequence

to be generated for each TAC operator that has been defi ned in the intermediate language. Table 6.8 shows

 Target Code Generation 399

the translation into x86 assembly instructions for all the 23 operators that were chosen for intermediate

language in Chapter 5. Most of the sample TAC statements, considered for translation in Table 6.8 use x,

y, z or i as operands. For simplicity, we assume that x, y, z and i are 4 byte integer-type global variables

declared in the input source translated into x86 assembly declarations as discussed in Section 6.4.1. By

virtue of that translation, we can use _x, _y, _z and _i to reference the memory associated with each of them

in the generated x86 assembly code. In the next section (Section 6.4.3), we see how the code generation can

be adapted in case the operands are local variables.

Table 6.8 Translation from TAC to x86 assembly instructions

TAC Operator Sample TAC Translated x86 Assembly Code

1 ASSIGN x := y movl _y,%eax
movl %eax, _x

2 ADD x := y + z movl _y, %eax
addl_ z,%eax
movl %eax,_x

3 MUL x = y * z movl _y,%eax
imull _z
movl %eax, _x

4 DIV x := y / z movl _y,%eax
cltd
idivl _z
movl %eax, _x

5 SUB x := y – z movl _y,%eax
subl _z,%eax
movl %eax,_x

6 UMINUS x := – y movl _y,%eax
negl %eax
movl %eax,_x

7 L_INDEX_ASSIGN x[i]:= y movl _i,%eax
addl _x,%eax
movl _y,(%eax)

8 R_INDEX_ASSIGN y:= x[i] movl _i,%eax
addl _x,%eax
movl (%eax),_y

9 ADDR_OF x = &y leal _y, %eax
movl %eax, _x

10 LBL lbl my_lbl .align 4
my_lbl :

11 GOTO goto my_lbl jmp my_lbl

12 LT if x < y goto my_lbl movl _y,%eax
cmp %eax,_x
jl my_lbl

400 Principles of Compiler Design

13 GT if x > y goto my_lbl movl _y,%eax
cmp %eax,_x
jg my_lbl

14 LE if x <= y goto my_lbl movl _y,%eax
cmp %eax,_x
jle my_lbl

15 GE if x >= y goto my_lbl movl _y,%eax
cmp %eax,_x
jge my_lbl

16 EQ if x == y goto my_lbl movl _y,%eax
cmp %eax,_x
je my_lbl

17 NE if x != y goto my_lbl movl _y,%eax
cmp %eax,_x
jne my_lbl

18 PROC_BEGIN proc_begin my_func 40 .align 4
.globl my_func
my_func :
 pushl %ebp
 movl %esp,%ebp
 subl $40,%esp

19 PROC_END proc_end movl %ebp,%esp
popl %ebp
ret

20 RETURN return x movl _x,%eax

21 RETRIEVE retrieve x movl %eax,_x

22 PARAM param x pushl _x

23 CALL call my_func, 8 call my_func
addl $8,%esp

The simplest translation is for the TAC statements using the ASSIGN TAC operator, where the

functionality is carried out by temporarily storing the content of variable y in register eax before assigning

to x. This temporary step is required because x86 assembly language instructions do not allow both the

operands to be in memory at the same time.

The translation of TAC statements using binary arithmetic operator OP (ADD/SUB/MUL/DIV) in x = y

OP z involves generation of three x86 assembly instructions. (a) Moving y into register eax. (b) Performing

the computation OP with z and register eax as operands, such that the result is stored in register eax. (c)

Moving the result, which is in register eax into x. The translation for the DIV operator has an additional

x86 assembly instruction to clear the direction fl ag (cltd) before performing the division operation. In the

translation of unary negation operator (UMINUS), the ‘negl’ x86 assembly instruction is used.

The translation of TAC statements using L_INDEX_ASSIGN and R_INDEX_ASSIGN TAC operators

involves generation of x86 assembly instructions that use the indirect addressing facility. Recall that x[i] in

three address notation refers to the location, which is ‘i’ memory units away from the memory pointed to by

x. The L_INDEX_ASSIGN TAC instruction translates into 3 assembly instructions. The fi rst two of them

help in having the register eax loaded with the correct address of the location where the value needs to be

stored. The third instruction uses the indirect addressing to store the value into the memory location. The R_

INDEX_ASSIGN TAC instruction is also translated in the same way except that the indirect addressing is

 Target Code Generation 401

used to fetch the value to stored, while the memory location for storing is accessed using direct addressing.

The translation of ADDR TAC operator involves the usage of ‘lea’ (load effective address) x86 assembly

instruction, which fetches the address of a given label.

The translation of TAC statement using the LBL operator involves generation of a label in x86 assembly

program. An align directive is also generated to fulfi l the condition that x86 architecture requires that the

labels in the text segment be aligned at a 4-byte boundary. The translation of the TAC statement using

the GOTO operator—‘goto my_lbl’, involves generation of the jmp assembly instruction with the target as

my_lbl.

The TAC statements using the comparison TAC operators like LT,GT, etc. are translated into three

x86 assembly instructions. The fi rst two instructions help perform the comparison of the two values. The

third assembly instruction generated is the conditional jump that is synonymous to the TAC operator. For

example, the TAC operator LT (less than) is translated to ‘jl’ assembly instruction (jump on less than)

with the target label as the operand, while the TAC operator LE (less than or equal to) is translated to ‘jle’

assembly instruction (jump on less than or equal to).

The translation of T AC statements using function-related TAC operators like PROC_BEGIN, PROC_

END, RETURN, etc. are geared towards providing a runtime environment that is similar to the one we

studied in Section 6.2.3.6. In the translation for PROC_BEGIN, the code generator generates x86 assembly

language directives for being able to view the function globally (.global) and aligning the function entry

point at a 4-byte boundary (.align 4). Additionally, a function prolog that saves the BP and moves the value

of SP into BP is also generated. This enables the use of BP to access the local variables (negative offsets)

and formal parameters (positive offsets). The space for local variables is also created in the PROC_BEGIN

translation by shifting the SP (subl instruction) using the cumulative size of local variables. We discuss the

local variables and the related stack organisation with more details in Section 6.4.3. In the translation for

TAC statements using PROC_END operator, the x86 assembly instructions that constitute the epilog of the

function are generated. The epilog of the function involves moving the value of BP into SP and restoring

the BP value from what was saved on the stack. The fi nal x86 assembly language statement in the PROC_

END operator translation is the ‘ret’ instruction to transfer the control back to the caller. The translation

of the TAC statement using RETURN operator having a value to be returned involves moving the return

value into a register eax. We are using the convention that the return value is stored in the register eax. The

RETRIEVE TAC instruction uses the same convention and fetches the value of eax register into the variable

storing the return value of a function. The translation of TAC statements using the PARAM operator

involves generation of a pushl assembly instruction for pushing the parameter on the stack. Observe that the

PARAM TAC statements are generated in the reverse order of the arguments passed (last argument fi rst).

This ensures that the arguments are pushed in the reverse order before calling the function as expected by

the convention studied in Section 6.2.3.6 The translation of the TAC statements using CALL TAC operator

involves generation two assembly instructions. The fi rst of them is a ‘call’ x86 assembly instruction, which

transfers the control to the function. The second instruction restores the stack to the original state, the way

it was prior to pushing the parameters. The restoring of the stack is performed by incrementing the stack

(using addl) with the cumulative size of all the parameters pushed earlier (before the call instruction).

6.4.3 Parameters and Local Identifi ers

When the Intermediate code is translated to the x86 assembly language, the accesses to the local variables

are transformed to the corresponding locations on the stack. These locations are at known offsets (negative)

from the memory pointed to by the base pointer register (ebp). The parameters to the function are pushed

on to the stack before a ‘call’ instruction is issued during the translation of PARAM and CALL TAC

statements. The parameters are accessed in the body of the called function by using positive offsets from

402 Principles of Compiler Design

the memory pointed to by ebp. The arrangement for the local identifi ers and the parameters is exactly the

same way as we saw in Fig. 6.9. The term ‘frame offset’ is used to refer to the offset of a local variable

or parameter from the memory pointed to by ebp on the stack. It follows that the frame offset would be

positive for parameters and negative for local variables.

We have studied earlier that the parameters and the local variables are part of the local symbol table-

specifi c to the function. The ‘offset’ fi eld in the symbol table entry is used for calculating the frame offset in

order to access the location identifi ed for the variable or the parameter on the stack.

Let’s take an example to understand how the local variables and parameters are resolved by the code

generator during the generation of x86 assembly code. Consider the input source, the corresponding symbol

table, intermediate code and the generated x86 assembly code shown in Fig. 6.33. The translated assembly

code shows the intermediate code statements (in comments) interspersed along with the x86 assembly

statements. This helps in following the translation of each of the TAC statement independently. We can see

from the generated x86 assembly code in Fig. 6.33 that the space for local variables is allocated on the stack

by line 9 of the x86 assembly code (subl $8,%esp) as a part of translation for PROC_BEGIN. The local

variables in the generated x86 assembly code are accessed via indirect addressing using the register ebp as

depicted in lines 15,16 and 18 of the generated x86 assembly code. The parameters ‘a’ and ‘b’ are accessed

in lines 11 and 12 of the generated x86 assembly code.

The frame offsets of both the parameters (a and b) and local variables (x and _t0) were derived using a

frame offset calculating algorithm shown in Algorithm 6.1.

sptr is a pointer to the symbol table entry for the local variable/parameter
marker is the offset of the last of parameters in the symbol table

calc_frame_offset (sptr)
{
 if(sptr -> offset > marker) {/* Local variable */

 frame_offset = marker - sptr->offset
 }else { /* Parameter */

 /* 8 is added to take into account for the saved BP and return address */
 frame_offset = marker – sptr->offset + 8 ;

 }
 return(frame_offset);
}

Algorithm 6.1 Frame off set calculation algorithm

The frame offset calculation algorithm returns the frame offset given the symbol table pointer for the

variable or parameter. It uses the offset of the last of parameters as a marker for distinguishing between a

local variable and a parameter. The value of marker is 4 for the example shown in Fig. 6.33. The compiler

generated temporary variables are also treated in the same way as local variables. The reader can verify

how the frame offsets in lines 11, 12, 15, 16 and 18 were derived using Algorithm 6.1 and the local symbol

table in Fig. 6.33.

In the generated x86 assembly code shown in Fig. 6.33, the local variables are accessed in lines 15,

16 and 18. The local storage was created earlier in line 9. Observe that the line 9 has been generated as a

part of translation of PROC_BEGIN TAC statement. The translation of PROC_BEGIN also contains the

function prolog identical to what we saw in Section 6.2.3.6. Likewise, the translation of PROC_END

TAC statement contains the function epilog, which reclaims the local storage area. The translation of PROC_

BEGIN and PROC_END TAC statements are crucial to creation and reclaiming of the local storage space.

 Target Code Generation 403

Fig. 6.33 Local variables and parameters of a function

6.4.4 Literals

In the course of the input source, we would fi nd statements using numeric literals, e.g. ‘x = 30’. There are

string literals that are encountered in the input source like say printf(“Hello World”). Both the numeric and

string literals are stored in a literal table as explained in the earlier chapter.

404 Principles of Compiler Design

The code generation for TAC statements that use numeric literals is straightforward. The literal can

be embedded as a part of the x86 assembly language statement. Table 6.9 shows the example of a TAC

statement using numeric literal and the corresponding generated x86 assembly language code. The numeric

literal is accessed using a $ sign as a prefi x and it is embedded in the x86 assembly instruction itself.

Table 6.9 Translation of numeric literals

TAC operator Sample TAC Translated x86 assembly code

ASSIGN x := 30 movl $30,_x

The string literals cannot be embedded in the x86 instruction, they need to be allocated space in the

generated x86 assembly program. The code generator goes through all the string literals in the literal table

and generates a ‘.ascii’ directive along with the label for each of them to allocate space in the text section

itself. The literal is then accessed using the label with a dollar($) prefi x in the generated x86 assembly

language code. Table 6.10 shows a small input C program, the corresponding TAC statements and the

generated x86 assembly code. The lines 2 and 3 in the generated x86 assembly code shows the label and the

ascii directive generated for the string literal. The line 13 shows the usage of the string literal with a dollar

prefi x.

Table 6.10 x86 code generation for string literals

Input source TAC Translated x86 Assembly Code

int printf ()

int
main ()

{

 printf (“Hello world\n”);

}

(0) proc_begin main

(1) param .1c1

(2) call printf 4

(3) retrieve _t0

(4) label .L0

(5) proc_end main

1

2 .text

3 .lc1 :

4 .ascii “Hello world\n\0”

5

6 /* proc_begin main */

7 .align 4

8 .globl _main

9 _main:

10 pushl %ebp

11 movl %esp,%ebp

12 subl $4,%esp

13 /* param .lc1 */

14 movl $.lc1,%eax

15 pushl %eax

16 /* call printf 4 */

17 call _printf

18 addl $4,%esp

19 /* retrieve _t0 */

20 movl %eax,-4(%ebp)

21 /* label .L0 */

22 .align 4

23 .L0:

24 /* proc_end main */

25 movl %ebp,%esp

26 popl %ebp

27 ret

 Target Code Generation 405

6.5 A TOY C LANGUAGE COMPILER ‘MYCC’

This section demonstrates the toy C language compiler (mycc), which uses the target code generation

concepts described in the previous sections. This compiler includes the lexical analyser, syntax analyser,

semantic analyser, and IC generator modules described in the respective chapters. The toy compiler ‘mycc’

provides support for some of the commonly used features in C. However, it needs improvement to make it

into a full-fl edged C language compiler offering the complete set of language features.

The toy C compiler—mycc, takes a C source fi le as an input and generates the corresponding x86

assembly instructions as output. The x86 assembly language instructions are then converted to an executable

binary using GNU’s assembler and linker. The x86 assembly language output is fi rst converted to an object

fi le (with a .o extension) by using the GNU assembler program (as). The object fi le is then converted to an

executable (with .exe extension) by using the GNU linker program(collect2) that comes as a part of gcc.

The dialog below shows ‘mycc’ taking in different sample C fi les, and generating the corresponding x86

assembly language instructions. The sample input C fi les cover some of the important data structures of the

C language like arrays, pointer and address operators, structures, and so on. The input c fi les also include

fl ow of control statements like the if-else, while and switch statements.

The toy C compiler mycc also has an option (–i) to generate the intermediate code only without

progressing to the code generation stage.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyzer

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building ‘mycc’ - A Toy Compiler for C Language

$ g++ -DICGEN -g -Wall ic_gen.cc target_code_gen.cc mycc.cc semantic_analysis.cc c-

small-gram.o c-small-lex.o -o mycc.exe

Input C source - Hello World Program

$ cat -n hello.c

1
2 /* Function Prototype */
3 int printf();
4
5 int main()
6 {
7 printf(“Hello World\n”);
8 return(0); /* to keep the OS Happy */
9 }

Compiling it with toy compiler(mycc) to generate x86 assembly language output

$./mycc hello.c > hello.s

Observe the interspersed TAC code (in comments) with the assembly language output

$ cat -n hello.s

1

406 Principles of Compiler Design

2 .text
3 .lc1 :
4 .ascii “Hello World\n\0”
5
6 /* proc_begin main */
7 .align 4
8 .globl _main

9 _main:
10 pushl %ebp
11 movl %esp,%ebp
12 subl $4,%esp
13 /* param .lc1 */
14 movl $.lc1,%eax
15 pushl %eax
16 /* call printf 4 */
17 call _printf
18 addl $4,%esp
19 /* retrieve _t0 */
20 movl %eax,-4(%ebp)
21 /* return 0 */
22 movl $0,%eax
23 /* goto .L0 */
24 jmp .L0
25 /* label .L0 */
26 .align 4
27 .L0:
28 /* proc_end main */
29 movl %ebp,%esp
30 popl %ebp
31 ret

Using gcc in verbose mode to make the executable binary

Observe the Invoking of the assembler(as) to create an object fi le

..and the linker (collect2) for linking to make the executable

$ gcc -g -v hello.s -o hello.exe

Reading specs from /usr/lib/gcc/i686-pc-cygwin/3.4.4/specs

Confi gured with: /gcc/gcc-3.4.4/gcc-3.4.4-1/confi gure --verbose --prefi x=/usr --exec-prefi x=/usr-

-sysconfdir=/etc --libdir=/usr/lib --libexecdir=/usr/lib --mandir=/usr/share/man --

infodir=/usr/share/info --enable-languages=c,ada,c++,d,f77,java,objc --enable-nls --without-
included-gettext --enable-version-specifi c-runtime-libs --without-x --enable-libgcj --disable-

java-awt --with-system-zlib --enable-interpreter --disable-libgcj-debug --enable-threads=posix --

enable-java-gc=boehm --disable-win32- registry --enable-sjlj-exceptions --enable-hash-
synchronization --enable-libstdcxx-debug : (reconfi gured)

Thread model: posix

gcc version 3.4.4 (cygming special) (gdc 0.12, using dmd 0.125)

 /usr/lib/gcc/i686-pc-cygwin/3.4.4/../../../../i686-pc-cygwin/bin/as.exe --gstabs -o

 /cygdrive/c/WINDOWS/ TEMP/ccS7m1wq.o hello.s

 /usr/lib/gcc/i686-pc-cygwin/3.4.4/collect2.exe -Bdynamic --dll-search-prefi x=cyg -o hello.exe

/usr/ lib/gcc/i686-pc-cygwin/3.4.4/../../../crt0.o -L/usr/lib/gcc/i686-pc-cygwin/3.4.4

-L/usr/lib/gcc/i686-pc-cygwin/3.4.4 -L/usr/lib/gcc/i686-pc-cygwin/3.4.4/../../..

/cygdrive/c/WINDOWS/TEMP/ccS7m1wq.o -lgcc -lcygwin -luser32 -lkernel32 -ladvapi32 -lshell32 -lgcc

Executing the Binary !!

$./hello.exe

 Target Code Generation 407

Hello World

mycc has an option -i for merely generating TAC output

$./mycc -i hello.c

(0) proc_begin main

(1) param .lc1

(2) call printf 4

(3) retrieve _t0

(4) return 0

(5) goto .L0

(6) label .L0

(7) proc_end main

Input C fi le using Local and Global variables

$ cat -n test3.c

1
2 /* function prototype */
3 int printf();
4
5 /* Global Variables */
6 int g_var1,g_var2;
7
8 /* Function */
9 int main()
10 {
11 int l_var1,l_var2;
12
13 /* Initialization */
14 g_var1=200;
15 g_var2=25;
16
17 l_var1=g_var1*g_var2;
18 l_var2 = g_var1/g_var2;
19
20 printf(“g_var1=%d g_var2=%d l_var1=%d l_var2=%d\n”,
21 g_var1,g_var2,l_var1,l_var2);
22
23 return(0);
24 }

Compiling it with mycc to generate x86 assembly language output

$./mycc test3.c >test3.s

Using gcc to make the executable binary

$ gcc -g test3.s -o test3.exe

Executing the Binary

$./test3

g_var1=200 g_var2=25 l_var1=5000 l_var2=8

Input C fi le having Simple single dimensional array access

$ cat -n test4.c

408 Principles of Compiler Design

1
2 /* function prototype */
3 int printf();
4
5 /* Global Variables */
6 int h;
7 int a1[20];
8
9 /* Function */
10 int main()
11 {
12
13 /* Initialization */
14 a1[15]=100;
15 h=30;
16
17 printf(“Before : a1[10]=%d h=%d \n”,a1[10],h);
18
19 /* Array accesses */
20 a1[10]=h;
21 h = a1[15];
22
23 printf(“After : a1[10]=%d h=%d \n”,a1[10],h);
24
25 return(0);
26 }

Compiling it with mycc to generate x86 assembly language output

$./mycc test4.c > test4.s

Using gcc to make the executable binary

$ gcc -g test4.s -o test4.exe

Executing the Binary

$./test4

Before : a1[10]=0 h=30
After : a1[10]=30 h=100

Input C fi le using Pointer and Address Operator

$ cat -n test5.c

1 /* Prototype */
2 int printf();
3
4 int *p;
5 int x,y;
6
7 /* Function */
8 int main()
9 {
10 int tmp;
11
12 /* Initialize */
13 y=10;
14 x=25;
15
16 printf(“Before : x=%d y=%d \n”,x,y);
17

 Target Code Generation 409

18 /* Move the value of y into x */
19 p=&x;
20 tmp = *p;
21 *p=y;
22 p = &y;
23 *p = tmp;
24
25 printf(“After : x=%d y=%d \n”,x,y);
26
27 return(0);
28 }

Compiling it with mycc to generate x86 assembly language output

$./mycc test5.c > test5.s

Using gcc to make the executable binary

$ gcc -g test5.s -o test5.exe

Executing the Binary

$./test5

Before : x=25 y=10
After : x=10 y=25

Input C fi le using Structures

$ cat -n test6.c

1 /* Prototype */
2 int printf();
3
4 struct my_data
5 {
6 int age;
7 int student_id;
8 }d1;
9
10 int main()
11 {
12 /* Initialization */
13 d1.age=60;
14 d1.student_id=1234;
15

16 printf(“Before : age=%d student_id=%d \n”,d1.age,d1.student_id);
17
18 d1.student_id=4567;
19 d1.age=20;
20
21 printf(“After : age=%d student_id=%d \n”,d1.age,d1.student_id);
22
23 return(0);
24
25 }

Compiling it with mycc to generate x86 assembly language output

$./mycc test6.c > test6.s

Using gcc to make the executable binary

410 Principles of Compiler Design

$ gcc -g test6.s -o test6.exe

Executing the Binary

$./test6

Before : age=60 student_id=1234
After : age=20 student_id=4567

Input C fi le using if-else statements

$ cat -n test7.c

1 /* Prototype */
2 int printf();
3
4 int v1,v2,v3,v4;
5
6 int main()
7 {
8 v1=10; v2=20; v3=0; v4=0;
9
10 printf(“Before1 : v1=%d v2=%d v3=%d v4=%d \n”,v1,v2,v3,v4);
11 if(v1 < v2){
12 v3=10;
13 }
14 v4=40;
15 printf(“After1 : v1=%d v2=%d v3=%d v4=%d \n”,v1,v2,v3,v4);
16
17 v1=20; v2=10; v3=0; v4=0;
18 printf(“Before2 : v1=%d v2=%d v3=%d v4=%d \n”,v1,v2,v3,v4);
19 if(v1 < v2){
20 v3=10;
21 }
22 v4=40;
23 printf(“After2 : v1=%d v2=%d v3=%d v4=%d \n”,v1,v2,v3,v4);
24
25 return(0);
26
27 }

Compiling it with mycc to generate x86 assembly language output

$./mycc test7.c > test7.s

Using gcc to make the executable binary

$ gcc -g test7.s -o test7.exe

Executing the Binary

$./test7

Before1 : v1=10 v2=20 v3=0 v4=0
After1 : v1=10 v2=20 v3=10 v4=40
Before2 : v1=20 v2=10 v3=0 v4=0
After2 : v1=20 v2=10 v3=0 v4=40

Input C fi le using while statement

$ cat -n test8.c

1 /* Prototype */
2 int printf();

 Target Code Generation 411

3
4 int v1,v2;
5 int v3,v4;
6
7 int main()
8 {
9
10 v1=9; v4=0; v2=1; v3=1;
11
12 while (v2 <= v1)
13 {
14 v3=v3*v2;
15 v2 = v2 + 1;
16 }
17 v4=v3;
18
19 printf(“factorial(%d) = %d \n”,v1,v4);
20
21 return(0);
22
23 }

Compiling it with mycc to generate x86 assembly language output

$./mycc test8.c > test8.s

Using gcc to make the executable binary

$ gcc -g test8.s -o test8.exe

Executing the Binary

$./test8
factorial(9) = 362880

 SUMMARY

The entity that translates the intermediate code into target program is called as target code generator

or simply code generator. The target program can take the form of assembly language instructions,

or relocatable machine code or absolute machine code for the processor. The code generator

conceives the runtime settings of the program (called as runtime environment) and generates target

code accordingly. The important aspects of run-time environment are: (a) memory organisation

(b) activation records (c) procedure calling and return sequences (d) parameter passing mechanisms.

The code generator discussed here worked on the principle of associating an assembly code skeleton

to be generated for each type of TAC operator/statement defi ned in the intermediate language.

 REVIEW QUESTIONS AND EXERCISES

 6.1 What does a target code generator do? Explain the various forms of a target program that a target

code generator can produce.

412 Principles of Compiler Design

 6.2 What are the registers available in x86 architecture for a target generator to generate code?

Mention the specifi c uses of each of these registers.

 6.3 What is the format of an x86 assembly language program? Describe the different types of

statements found in it.

 6.4 How are the global variables defi ned in x86 assembly language? How do you defi ne: (a) A global

array of 50 integers of 4 bytes each; (b) a global array of 3 integers of 4 bytes each having initial

values of 10, 20 and 30?

 6.5 How do you perform arithmetic operations in x86 assembly language? Illustrate with examples.

 6.6 How do you (a) fetch the address of a variable; (b) fetch the content of a memory location given

its address in x86 assembly language? Can we fetch the content of memory which is at say +20

bytes offset from a given memory address? Illustrate with examples for each.

 6.7 How do you defi ne a function in x86 assembly language? How is a stack used for passing the

arguments into a function? How do you access the arguments in the body of the function?

Illustrate the stack layout during the function body execution showing the function arguments.

 6.8 Explain the creation, usage and release of local variables in an x86 assembly function. Illustrate

with the stack layout diagram.

 6.9 How are the conditional jumps handled in x86 assembly? Illustrate with an example.

 6.10 Explain the following terms: (a) activation and lifetime of a procedure (b) Control stack (c)

activation tree (d) Binding of a variable to memory.

 6.11 What is run-time environment? What are the important elements of runtime environment? How

is it controlled in a program that is compiled?

 6.12 How is the memory organised in a compiled program? Illustrate the memory organisation in a

C run-time environment. Compare it with the memory organisation in FORTRAN77 run-time

environment.

 6.13 What is an activation record? With the help of a diagram, show the important fi elds in an

activation record.

 6.14 Describe the activation record in a C runtime environment? In which section of memory is the

activation record located in C runtime environment?

 6.15 What is lexical scoping and dynamic scoping in the context of non-local variables? Illustrate with

an example.

 6.16 How does the C run-time environment handle variables declared in blocks? How does the

activation record help in accessing the correct memory for non-local variables?

 6.17 How does the activation record help in accessing a non-local variable in a nested procedure of a

PASCAL program? Illustrate with an example.

 6.18 How are non-local accesses handled in a display scheme? Illustrate with an example.

 6.19 What are the procedure calling and returning sequences? Explain the sequence of actions in each

of them?

 6.20 Illustrate by example, the calling and return sequences in C runtime environment.

 6.21 Explain the terms (a) Actual parameters. (b) Formal parameters. Illustrate with an example.

 6.22 Explain (a) call-by-reference and (b) call-by-value parameter-passing mechanisms. Illustrate with

an example.

 6.23 Explain (a) call-by-value-result and (b) call-by-name parameter-passing mechanisms. Illustrate

with an example.

 6.24 How do the run-time environments of C, PASCAL and FORTRAN77 languages compare against

each other?

 Target Code Generation 413

 6.25 Briefl y describe the template-based code generation approach. Do you see any performance

issues in this approach?

 6.26 In semantic analysis, the global variables declared in the input source are converted to symbol

table entries. How are the symbol table entries translated into corresponding declarations in x86

assembly language by the target code generator? Illustrate by example for (a) simple variables

(b) arrays.

 6.27 How do you generate target code for arithmetic TAC operators in a template-based code

generation approach? Illustrate with examples for (a) ADD (b) SUB (c) MUL (d) DIV

(e) UMINUS.

 6.28 How do you generate target code for indexed TAC operators in a template-based code generation

approach? Illustrate with examples for (a) L_INDEX_ASSIGN (b) R_INDEX_ASSIGN.

 6.29 How do you generate target code for comparison TAC operators in a template-based code

generation approach? Illustrate with examples for any three comparison operators.

 6.30 How do you generate target code for PROC_BEGIN and PROC_END TAC operators in a

template-based code generation approach? Illustrate with examples.

 6.31 How are local variables resolved to memory addresses during the translation of intermediate code

to target code by the code generator? Draw the stack layout showing the local variables.

 6.32 How are numeric and string literals in the intermediate code translated to the target code?

Illustrate with an example each.

 6.33 State if the following statements are true or false:

 (a) The target code generator takes the intermediate code as the input and generates a target

program as output.

 (b) The target program can take one of the three forms (1) assembly language program;

(2) relocatable code; (3) absolute code.

 (c) The memory organisation of FORTRAN77 runtime environment does not have a stack or a

heap for dynamic memory.

 (d) All the global variables are provided memory in the code section in C run-time

environment.

 6.34 State if the following statements are true or false:

 (a) The support for nested procedures in PASCAL is accomplished by having a static link in the

activation record.

 (b) The term l-value refers to the storage location of an expression and r-value refers to the

value of the expression.

 (c) In call-by-reference method, the changes made to the formal parameters are refl ected in the

actual parameters at the caller site.

 (d) The template-based approach for code generation produces sub-optimal code in terms of

performance.

 6.35 State if the following statements are true or false:

 (a) In a C runtime environment, the local variables and the function arguments are located on

the stack.

 (b) The ‘display’ scheme helps in resolving non-local variable access in the case of nested

procedures in PASCAL.

 (c) In ‘call by value-result’ parameter-passing mechanism used in languages like ADA, the fi nal

value of the formal parameters is copied back to the actual parameters.

 (d) The literals are accessed using the label with a dollar($) prefi x in the generated x86 assembly

language code.

CODE OPTIMISATION

Introduction
In this chapter, we look at ways of improving the intermediate code

and the target code in terms of both speed and the amount of memory

required for execution. This process of improving the intermediate

and target code is termed as optimisation. Section 7.1 demonstrates

the fact that there is scope for improving the existing intermediate

and target code. Section 7.2 discusses the techniques commonly used

to improve the intermediate code. Section 7.3 describes the common

methods used in improving the target code generated by the target

code generator.

7
7.1 SCOPE FOR IMPROVEMENT

The correctness of the generated assembly language code is the most critical aspect of a

code generator. Also, the effi ciency of the generated assembly language code should match

closely with the handwritten code, if not be better than it. The code generator that we had

discussed in Chapter 6 worked on the principle of statement-by-statement translation of the

TAC code into x86 assembly language instruction. This strategy produces correct code, but

might not be the most optimal code in terms of effi ciency at the run-time.

Consider the sample input source, the corresponding intermediate code and the target

code shown in Table 7.1 for understanding the areas of improving the intermediate code

and the target code. The intermediate code and the target code have been generated using

the toy compiler described in Chapters 5 and 6.

 Code Optimisation 415

Table 7.1 Input source, intermediate code and target code

Input source Intermediate code Target code

int a,b;

int c,d ;

int main()

{

 a=40;

 b=20;

 c = a + b;

 d = b + c;

 }

(0) proc_begin main

(1) a := 40

(2) b := 20

(3) _t0 := a + b

(4) c := _t0

(5) _t1 := b + c

(6) d := _t1

(7) label .L0

(8) proc_end main

 1 .comm _a,4

 2 .comm _b,4

 3 .comm _c,4

 4 .comm _d,4

 5

 6 .text

 7

 8 /* proc_begin main */

 9 .align 4

10 .globl _main

11 _main:

12 pushl %ebp

13 movl %esp,%ebp

14 subl $8,%esp

15 /* a := 40 */

16 movl $40,_a

17 /* b := 20 */

18 movl $20,_b

19 /* _t0: = a + b */

20 movl _b,%eax

21 addl _a,%eax

22 movl %eax,-4(%ebp)

23 /* c := _t0 */

24 movl -4(%ebp),%eax

25 movl %eax,_c

26 /* _t1 := b + c */

27 movl _c,%eax

28 addl _b,%eax

29 movl %eax,-8(%ebp)

30 /* d := _t1 */

31 movl -8(%ebp),%eax

32 movl %eax,_d

33 /* label .L0 */

34 .align 4

35 .L0:

36 /* proc_end main */

37 movl %ebp,%esp

38 popl %ebp

39 ret

Let’s analyse the intermediate code to see if any improvements can be made from a run-time effi ciency

point of view. The quad (3) in the intermediate code uses a temporary _t0 to store the value of expression

‘a + b’. The next quad (quad 4) assigns the temporary _t0 to the variable ‘c’. The temporary could have

been avoided altogether, if the intermediate code is c := a + b instead of quad 3 and 4. In a similar way,

the temporary _t1 could have been avoided by generating d := b + c instead of quads 5 and 6. This proves

that there is scope for improvement at the intermediate code level. As the chapter progresses, we can see

that there are many more of such opportunities to improve the intermediate code in terms of effi ciency.

Improving the intermediate code results in reduction of the size of generated target code and overall

improvement of run-time effi ciency.

416 Principles of Compiler Design

Let’s analyse the x86 assembly code for improving its runtime effi ciency. Line 24 (movl %eax,

–4(%ebp)) moves the contents of register eax on to the stack specifi ed by –4(%ebp). The very next

x86 assembly statement, line 25 moves the content of stack location –4(%ebp) to register eax (movl

–4(%ebp),%eax). Line 24 is redundant, since the register eax already contains the value at –4(%ebp). In a

similar fashion, it can be shown that the lines 27 and 31 are also redundant because the destination register

already contains the expected value. The generated x86 assembly code could have been better, had the code

generation algorithm remembered that the register eax already contained the expected value.

An equivalent handwritten x86 assembly code providing the same functionality is shown in Listing 7.1.

.comm _a,4

.comm _b,4

.comm _c,4

.comm _d,4

proc_begin main

 .align 4

.globl _main

_main:

 pushl %ebp

 movl %esp,%ebp

 subl $16,%esp

 movl $40,_a

 movl $20,_b

 movl _a,%eax

 addl _b,%eax

 movl %eax,_c

 addl _b,%eax

 movl %eax,_d#

label .L0

 .align 4

.L0:

proc_end main

 movl %ebp,%esp

 popl %ebp

 ret

Listing 7.1 hand_coded_test1.s

When the output of the code generator is compared with that of the handwritten code, the latter is more

compact and effi cient (10 assembly instructions) than the former (19 assembly instructions). The code

generator should strive to match the effi ciency of the handwritten code, if not better than it. In a situation

where a piece of code gets executed thousands of times in a loop, a little bit of improvement in the inner

loop would make a signifi cant improvement in the overall effi ciency of the program.

The intermediate code and the assembly language code generated for the sample input source serves

us to understand that there is scope for improvement at both the intermediate code and assembly language

levels. The exact nature of improvement in the intermediate code and assembly language outputs varies

from input program to program.

In this chapter we discuss the various techniques that can be used for improving intermediate code as

well as the assembly language output.

 Code Optimisation 417

7.2 INTERMEDIATE CODE OPTIMISATION

The intermediate code generated by translation scheme described in Chapter 5, is adequate in terms

of correctness with respect to the input program. We saw in the previous section, that there is scope for

improving the effi ciency of the generated intermediate code in terms of speed of execution and size in

memory. In the intermediate code optimisation phase (refer Fig. 1.9), the compiler makes a pass over the

generated intermediate code and transforms it into an improved (optimised) form, which is more effi cient

in terms of speed and size. The transformed intermediate code is then fed to the target code generator

for the generation of the target code. In the discussion in Section 7.2.1, we take a look at some of the

common transformations made in the intermediate code optimisation phase of the compiler to improve the

intermediate code.

7.2.1 Common Sub-expression Elimination

Consider the input source and the corresponding intermediate code in TAC format in Table 7.2. The TAC

was generated from the translation scheme explained in Chapter 5. We call the intermediate code shown in

Table 7.2 as unoptimised intermediate code to differentiate it from the version of intermediate code after

optimisation using transformations.

Table 7.2 Input source and the intermediate code

Input Source TAC

int sum_n,sum_n2,sum_n3;

int sum(int n)

{

 sum_n = ((n) *(n + 1))/2;

 sum_n2=((n)*(n + 1)*(2*n + 1))/6;

 sum_n3=(((n)*(n + 1))/2)*(((n)*(n + 1))/2);

}

(0) proc_begin sum

(1) _t0 := n + 1

(2) _t1 := n * _t0

(3) _t2 := _t1 / 2

(4) sum_n := _t2

(5) _t3 := n + 1

(6) _t4 := n * _t3

(7) _t5 := 2 * n

(8) _t6 := _t5 + 1

(9) _t7 := _t4 * _t6

(10) _t8 := _t7 / 6

(11) sum_n2 := _t8

(12) _t9 := n + 1

(13) _t10 := n * _t9

(14) _t11 := _t10 / 2

(15) _t12 := n + 1

(16) _t13 := n * _t12

(17) _t14 := _t13 / 2

(18) _t15 := _t11 * _t14

(19) sum_n3 := _t15

(20) label .L0

(21) proc_end sum

A detailed look at the intermediate code generated in Table 7.2 indicates that the computations made in

quads (1) through (3), (12) through (14) and (15) through (17) are essentially the same. These chunks of

intermediate code compute the value of the common sub-expression ((n) *(n + 1))/2, which is used in all

the three summations. If we look further, the common sub-expression ((n) *(n + 1)) is computed 4 times

in the statements {1,2 }, {5,6 }, {12,13}, {15,16}. It is possible to optimise the intermediate code to have

common sub-expressions computed only once in the function and then re-use the computed values at the

second instance.

418 Principles of Compiler Design

The optimised version of the intermediate code shown in Table 7.3 evaluates common sub-expression ((n)

*(n + 1)) only once and stores it in _t1 as depicted in statement (2). The variable _t1 is used in statements

(3), (6). The sum_n is itself a common sub-expression and evaluated only once, since sum_n3 can be looked

at sum_n*sum_n. The intermediate code shown in Table 7.3 offers improvement in the speed of execution

and also reduces the number of the instructions (memory) compared to the unoptimised IC seen in

Table 7.3.

Table 7.3 Optimised intermediate code

(0) proc_begin sum

(1) _t0 := n + 1

(2) _t1 := n * _t0

(3) sum_n := _t1 / 2

(4) _t5 := 2 * n

(5) _t6 := _t5 + 1

(6) _t7 := _t1 * _t6

(7) sum_n2 := _t7 / 6

(8) sum_n3 := sum_n * sum_n

(9) proc_end sum

This process of identifying common sub-expressions and eliminating their computation multiple times in

the intermediate code is known as common sub-expression elimination.

7.2.2 Constant Folding

Another common optimisation performed on the intermediate code is known as constant folding. In

constant folding, the constant expressions in the input source are evaluated and replaced by the equivalent

values at the time of compilation. A constant expression is an expression involving only constants like, say,

4*1, 2*0, and so on. Constant folding improves the speed of execution, since the calculations involving

constant expressions are performed at compile time, not at run-time.

Let’s take the example of input source and the corresponding intermediate code in TAC format shown in

Table 7.4 to understand the constant folding transformation.

Table 7.4 Input source and the intermediate code

Input source TAC

int arr1[20];

int main()

{

 arr1[0]=3;

 arr1[1]=4;

}

(0) proc_begin main

(1) _t0 := 0 * 4

(2) _t1 := &arr1

(3) _t1[_t0] := 3

(4) _t2 := 1 * 4

(5) _t3 := &arr1

(6) _t3[_t2] := 4

(7) label .L0

(8) proc_end main

In the quad (1) of the TAC in Table 7.4, the value 0*4 is computed, which is known to be 0 at the

compile time itself. Similarly, in statement (4), the value 1*4 is computed, which is known to be 4 at the

time of compilation itself.

 Code Optimisation 419

As an optimising transformation, the constants can be ‘folded’ and the resultant value computed at the

compile time itself in the statements (1) and (4). In statement (1), 0*4 can be folded to 0, and in statement

(4), 1*4 can be folded into 4 at the time of compilation itself. The resulting statements from the constant

folding are _t0=0 for (1) and _t2=4 for (4) respectively. In general, the constant operands can be folded

in any of the statements containing arithmetic operators like multiplication, addition, subtraction, division,

etc. and transformed into an assignment statement. Table 7.5 shows the optimised IC after using constant

folding transformation.

Table 7.5 Optimised intermediate code

(0) proc_begin main

(1) _t0: = 0

(2) _t1: = &arr1

(3) _t1[_t0]:= 3

(4) _t2: = 4

(5) _t3: = &arr1

(6) _t3[_t2]:= 4

(7) label .L0

(8) proc_end main

Constant folding moves the computations (like multiplication, division, addition, subtraction, etc.)

involving constants from being computed at the run-time to the compile time, thereby improving the

effi ciency of the program.

7.2.3 Copy Propagation and Dead Store Elimination

 Copy propagation is another commonly used transformation in order to improve the intermediate code. In

copy propagation, the use of the variable ‘y’ instead of ‘x’ is propagated in the statements following a copy

statement x=y.

Let’s see how copy propagation works by taking the sample intermediate code shown in Table 7.5. There

are two assignment statements (also called as copy statements) that are of interest in the intermediate code

of Table 7.5 from the copy propagation standpoint. They are:

 (a) The assignment statement (1) where the temporary variable _t0 is assigned 0.

 (b) The assignment statement (4), where the temporary variable _t2 is assigned 4.

The use of value 0 can be propagated in the place of _t0 in the statements following the assignment

at statement (1). In other words, the variable _t0 can be replaced with 0 in statement (3). Similarly, the

variable _t2 can be replaced with the value 4 in statement (6) following the assignment at statement (4).

The resultant intermediate code after the copy propagation is shown in Table 7.6. The statement (3) where

_t0 has been replaced with 0 and statement (6) where _t2 has been replaced with 4 have been shaded in

Table 7.6.

By itself, copy propagation does not vastly improve the quality of intermediate code. The intermediate

code shown in Table 7.6 is not vastly superior to the IC in Table 7.5. However, copy propagation facilitates

other optimising transformations to be performed on the resultant intermediate code. We will now see how

copy propagation facilitates an optimising transformation called dead store elimination to be performed on

the resultant code.

420 Principles of Compiler Design

Table 7.6 Intermediate code after copy propagation

(0) proc_begin main

(1) _t0 := 0

(2) _t1 := &arr1

(3) _t1[0] := 3
(4) _t2 := 4

(5) _t3 := &arr1

(6) _t3[4] := 4

(7) label .L0

(8) proc_end main

In the intermediate code shown in Table 7.6, the assignment statement (1) can be eliminated, because

_t0 is no longer used in any of the statements following the assignment. Similarly, the assignment

statement (4) can also be eliminated, since _t2 is no longer used in any of the statements following the

assignment. The values of both _t0 and _t1 have been copy propagated earlier. The statements (1) and

(4) are examples of dead store—statements that compute values which are not used in the program.

Dead store can be eliminated from the intermediate code, since it has no effect on the result of the

program. The resultant intermediate code after the elimination of assignment statements (1) and (4) is

shown in Table 7.7.

Table 7.7 Intermediate code after elimination of dead stores

(0) proc_begin main

(1) _t1: = &arr1

(2) _t1[0]: = 3

(3) _t3: = &arr1

(4) _t3[4]: = 4

(5) label .L0

(6) proc_end main

The dead store elimination improves the speed of execution because we have lesser instructions to

execute at the run-time. The dead store elimination also reduces the amount of memory required for storing

the code, since it eliminates a few instructions.

In the above example, during the copy propagation, the use of constant 0 was propagated in the

place of _t0 and the constant 4 was propagated in the place of _t2. This kind of copy propagation

is sometimes referred to as constant propagation owing to the propagation of the use of a constant

instead of a variable. It is fairly easy to imagine that constant propagation can also facilitate constant

folding optimisation.

It is also possible to propagate the use of another variable instead of the existing one in copy

propagation. This is known as variable propagation. Let’s take a sample input source shown in Table 7.8

for the illustration of variable propagation.

 Code Optimisation 421

Table 7.8 cp_prop.1.c

1 int func(int a,int b,int c)

2 {

3 int d,e,f;

4

5 d = a;

6

7

8 if(a > 10){

9 e = d + b;

10 }else{

11 e = d + c;

12 }

13

14 f = d*e ;

15

16 return(f);

17 }

The corresponding intermediate code at various stages, i.e. unoptimised IC, the IC after copy propagation

and then the IC after dead store elimination are all shown in Table 7.9.

Table 7.9 Intermediate code

(0) proc begin func (0) proc_begin func (0) proc_begin func

(1) d := a (1) d: = a (1) if a > 10 goto .L0

(2) if a > 10 goto .L0 (2) if a > 10 goto .L0 (2) goto .L1

(3) goto .L1 (3) goto .L1 (3) label .L0

(4) label .L0 (4) label .L0 (4) e: = a + b

(5) e := d + b (5) e := a + b (5) goto .L2

(6) goto .L2 (6) goto .L2 (6) label .L1

(7) label .L1 (7) label .L1 (7) e: = a + c

(8) e := d + c (8) e := a + c (8) label .L2

(9) label .L2 (9) label .L2 (9) f: = a * e

(10) f := d * e (10) f := a * e (10) return f

(11) return f (11) return f (11) goto .L3

(12) goto .L3 (12) goto .L3 (12) label .L3

(13) label .L3 (13) label .L3 (13) proc_end func

(14) proc_end func (14) proc_end func

(A) Unoptimised IC (B) IC after copy propagation (C) IC after dead store elimination

The assignment statement (1) in the unoptimised IC (column A) is of interest from a copy propagation

standpoint. The use of variable ‘a’ can be propagated in the place of ‘d’ following the assignment at

statement (1). The column (B) in Table 7.9, shows the intermediate code after the variable ‘a’ is used in the

place of ‘d’ at statements (5), (8) and (10).

422 Principles of Compiler Design

After copy propagation, the assignment statement (1) can be eliminated as a part of dead store

elimination, since ‘d’ is no longer used in any of the statements. The intermediate code after the elimination

of dead store is shown in column C of Table 7.9.

7.2.4 Dead Code Elimination

In Section 7.2.3, we saw how copy propagation helps eliminate dead stores in the program. In this section,

we can see how it helps in eliminating code that is never executed by the program (termed as dead code).

The elimination of such dead code reduces the memory required by the program.

Consider the input source shown in Table 7.10 to understand the idea of dead code elimination. In the

input source, line 11 makes the check to see if debug is 1 and the line 12 prints the arguments if the check

returns true.

Table 7.10 Dead code in the input source

1 int printf();

2

3 int debug;

4

5 int func(int a,int b,int c)

6 {

7 int v1,v2,v3;

8

9 debug=0;

10

11 if(debug == 1)

12 printf(“a=%d b=%d c=%d \n”,a,b,c);

13

14 v1=a + b + c;

15

16 return(v1);

17 }

Table 7.11 shows the intermediate code resulting from the input source of Table 7.10. In the

unoptimised code (column A), there is an opportunity to do copy propagation of the assignment at

statement (1). In copy propagation, the use of ‘debug’ is replaced with 0 in the statement (2), where

‘debug’ is used. The copy propagation transform yields the intermediate code shown in the column B

of Table 7.11.

In the intermediate code seen at column B, the test in statement (2), i.e. 0 == 1, always returns

false. This implies that the control cannot fl ow to label .L0 from statement (2). There is no other way

control can fl ow to label .L0 either. This makes the statements (4) through (10) in column (B) as dead

code. The test 0 == 1 in statement (2) itself becomes redundant, since the result is already known to

be false. Hence statement (2) can also be removed as part of dead code elimination. The statement

(1) debug := 0, cannot be eliminated in the dead code elimination process, because ‘debug’ is a

global variable. The optimised code after elimination of the dead code is shown in column (C) of

Table 7.11.

 Code Optimisation 423

Table 7.11 The intermediate code

(0) proc_begin func (0) proc_begin func (0) proc_begin func

(1) debug: = 0 (1) debug: = 0 (1) debug := 0

(2) if debug == 1 goto .L0 (2) if 0 == 1 goto .L0 (2) goto .L1

(3) goto .L1 (3) goto .L1 (3) label .L1

(4) label .L0 (4) label .L0 (4) _t1 := a + b

(5) param c (5) param c (5) _t2 := _t1 + c

(6) param b (6) param b (6) v1 := _t2

(7) param a (7) param a (7) return v1

(8) param .lc1 (8) param .lc1 (8) goto .L2

(9) call printf 16 (9) call printf 16 (9) label .L2

(10) retrieve _t0 (10) retrieve _t0 (10) proc_end func

(11) label .L1 (11) label .L1

(12) _t1 := a + b (12) _t1 := a + b

(13) _t2 := _t1 + c (13) _t2 := _t1 + c

(14) v1 := _t2 (14) v1 := _t2

(15) return v1 (15) return v1

(16) goto .L2 (16) goto .L2

(17) label .L2 (17) label .L2

(18) proc_end func (18) proc_end func

(A) Unoptimised IC (B) IC after copy propagation (C) IC after dead code elimination

Table 7.12 shows another common scenario when dead code exists in the input source during the

debugging phase. In this source code, a part of the function has been disabled for debugging reasons. The

control returns from the function at the line 9, it cannot reach lines 12,13 or 14 in the input source. The

source lines 12,13,14 can be viewed as dead in the input source itself.

We can observe in the unoptimised intermediate code (column B) that the corresponding statements (7)

through (12) are dead, since there is no way control can reach them. The dead code is eliminated in the

optimised IC shown in column (C) of Table 7.12.

Table 7.12 Dead code due to debugging code

1 (0) proc_begin func (0) proc_begin func

2 int func(int a,int b,int c) (1) _t0: = a + b (1) _t0 := a + b

3 { (2) v1 := _t0 (2) v1 := _t0

4 int v1,v2,v3; (3) _t1 := v1 / c (3) _t1 := v1 / c

5 (4) v2: = _t1 (4) v2 := _t1

6 v1 = a + b; (5) return v2 (5) return v2

7 v2 = v1/c; (6) goto .L0 (6) goto .L0

8 (7) _t2 := v1 + v2 (7) label .L0

9 return(v2); (8) v3 := _t2 (8) proc_end func

10 (9) _t3 := v3 + 1

11 /* Dead Code */ (10) v2 := _t3

12 v3=v1 + v2; (11) return v2

13 v2=v3 + 1; (12) goto .L0

14 return(v2); (13) label .L0

15 } (14) proc_end func

(A) Input source (B) Unoptimised IC (C) Optimised IC after dead code

elimination

424 Principles of Compiler Design

7.2.5 Algebraic Transformations

The quality of the intermediate code can be improved by taking advantage of algebraic identities. An

algebraic identity is a relation that holds true for all values of the symbols involved in it. Some of the

common algebraic identities that can be used to improve the intermediate code are shown in Table 7.13.

Table 7.13 Algebraic identities

Name of the identity Example

Additive Identity x + 0 = x

Multiplicative Identity x * 1 = x

Multiplication with 0 x * 0 = 0

The algebraic identity is typically applied on a single intermediate code statement and transformed to a

copy statement. Some of the examples are shown in Table 7.14.

Table 7.14 Algebraic transformations

IC statement Identity applied IC statement after transformation

y := x + 0 Additive Identity y := x

y := x * 1 Multiplicative Identity y := x

y := x * 0 Multiplication with 0 y := 0

The amount of computation is reduced when an algebraic transformation is applied. For example, when

an ADD IC statement say y := x + 0 is replaced by a transformed ASSIGN IC statement y := x, there is

savings in terms of speed, since no addition is involved.

In algebraic transformations, IC statements with operators like ADD and MUL are transformed

into copy statements as illustrated in Table 7.14. The copy statements lend well for copy propagation

and subsequent dead store/code elimination transformations, which lead to fewer IC statements. The

reduction in the IC statements leads to improvement in speed of execution and lower consumption of

memory as well.

Let’s look at an example, where the unoptimised IC generated contains statements on which algebraic

transformations are applied resulting in improvement in the quality of the intermediate code. Consider the

C language input source shown in Table 7.15.

Table 7.15 Input source

1 struct my_struct

2 {

3 int f1[20];

4 int f2;

5 } xyz;

6

7 int func(int index)

8 {

9 xyz.f1[index]=34;

10 }

 Code Optimisation 425

The unoptimised intermediate code generated for the input source in Table 7.15 is shown in column (A)

of Table 7.16.

Table 7.16 Intermediate code.

(0) proc_begin func

(1) _t0 := &xyz

(2) _t1 := 0

(3) _t2 := index * 4

(4) _t1 := _t2 + _t1

(5) _t0[_t1] := 34

(6) label .L0

(7) proc_end func

(0) proc_begin func

(1) _t0 := &xyz

(2) _t2 := index * 4

(3) _t1 := _t2 + 0

(4) _t0[_t1] := 34

(5) label .L0

(6) proc_end func

(0) proc_begin func

(1) _t0 := &xyz

(2) _t2 := index * 4

(3) _t1 := _t2

(4) _t0[_t1] := 34

(5) label .L0

(6) proc_end func

(0) proc_begin func

(1) _t0 := &xyz

(2) _t2 := index * 4

(3) _t0[_t2] := 34

(4) label .L0

(5) proc_end func

(A) Unoptimised IC (B) Optimised IC after

copy propagation & dead

code elimination

(C) Optimised IC

after applying additive

identity

(D) Optimised IC after

copy propagation & dead

store elimination

In the unoptimised code (column A) of Table 7.16, there is an opportunity to do copy propagation

following the assignment at statement (2), i.e. (_t1=0). The use of ‘_t1’ can be replaced with 0 in the

statement (4). Notice that _t1 cannot be replaced 0 in the statement (5), because _t1 is re-evaluated in

statement (4). After the copy propagation, the copy statement (2) is dead and can be eliminated.

The intermediate code after copy propagation and dead code elimination is shown in column (B) of

Table 7.16.

In the IC after copy propagation in column B, we can apply the additive identity on the statement 3

(shaded) and transform it to a copy statement _t1 = _t2. The transformed IC after applying the additive

identity transformation is shown in column (C) of Table 7.16.

The IC in column (C) offers an opportunity to perform copy propagation following the assignment

statement (3). We can observe that it is the same assignment statement that was borne out of transformation

using the additive identity. The use of ‘_t1’ can be replaced with _t2 in the statement (4). Following the

copy propagation, the copy statement at (3) becomes dead store and hence can be eliminated. The resultant

code after copy propagation followed by dead store elimination is shown in (D).

From the above example, it is clear that the algebraic transformations not only replace expensive

operations (like add, mul. etc.) with cheaper ones (assign), but also facilitate other optimisations like copy

propagation and subsequent dead store elimination.

7.2.6 Strength Reduction Transformation

On most of the processors, the addition operation takes fewer cycles than the multiplication operation.

Similarly, a shift operation takes fewer cycles compared to a multiplication or division operation on most

of the processors. Extending the view to the intermediate code level, we can say that the addition operator

is less expensive than multiplication operator and shift operator is less expensive than multiplication or

division operators.

The idea behind the strength reduction transformations is to identify and replace costly operations by less

expensive counterparts to achieve the same effect. For example, in strength of reduction transformation a

quad y := x * 2 can be replaced by another quad y := x + x, which is less expensive but achieves the same

effect. Table 7.17 shows some of the common strength reduction transformations.

426 Principles of Compiler Design

Table 7.17 Strength reduction transformations

Expensive operation Less expensive
equivalant

Comments

y := x * 2 y := x + x Addition is less expensive than multiplication

y := x * 32 y := x << 5 Shift is less expensive than multiply

y := x / 8 y := x >> 3 Shift is less expensive than divide

The strength reduction transformations provide signifi cant benefi ts, when applied on quads within a

loop, due to the fact that the same instruction is executed multiple number of times. We revisit the strength

reduction transformations again during the loop optimisation.

7.2.7 Loop Optimisation

The optimisations in the loop have a good scope for performance improvement, since they get executed

over and over many times. In loops, any marginal improvement in performance for a single iteration could

turn out to be a big improvement in the overall performance of the program, since a loop can get executed

multiple times. A couple of loop related transformations, namely loop invariant code motion transformation

and strength reduction on induction variables transformation are explained in this section.

7.2.7.1 Loop Invariant Code Motion The statements within a loop that compute values, which do

not vary throughout the life of the loop are called loop invariant statements. In loop invariant code motion

transformation, the loop invariant statements are identifi ed and moved outside of the loop.

Let’s see how loop invariant code motion transformation works, by considering the input source and the

corresponding unoptimised intermediate code shown below in Table 7.18.

There are two assignment statements that are of interest in the intermediate code of Table 7.18 from the

loop invariant code motion transformation perspective. They are:

 (a) The assignment statement (6) where the temporary variable _t3 is assigned the value &arr. We know

that the value of &arr is a constant throughout the life of the program.

 (b) The assignment statement (8), where the temporary variable _t5 is assigned the value n1*n2. The

values of n1 and n2 are computed before the loop starts at quads (2) and (3) respectively, they do

not change during the loop. The value of n1*n2 computed at quad (8) is a constant throughout the

life of the loop.

Table 7.18 Input source and the intermediate code

Input Source TAC

 1 int arr[1000]; (0) proc_begin func

 2 (1) i := 0

 3 int func(int a,int b) (2) n1 := a * b

 4 { (3) n2 := a - b

 5 int i; (4) label .L0

 6 int n1,n2; (5) _t2 := i * 4

 7 (6) _t3 := &arr

 8 i=0; (7) _t4 := _t3[_t2]

 9 (8) _t5 := n1 * n2

10 n1 = a * b ; (9) if _t4 > _t5 goto .L1

11 n2 = a - b ; (10) goto .L2

 Code Optimisation 427

12 (11) label .L1

13 while(arr[i] > (n1*n2)) (12) i := i + 1

14 { (13) goto .L0

15 i=i + 1; (14) label .L2

16 } (15) return i

17 (16) goto .L3

18 (17) label .L3

19 return(i); (18) proc_end func

20 }

21

The loop invariant code motion transformation moves the quads (6) and (8) from within to outside of the

loop. The performance of the code improves due to this movement, since the amount of computation within

the loop decreases. The intermediate code after the loop invariant code motion transformation is shown in

Table 7.19.

Observe that the number of quads to be executed in each of the iteration before the loop invariant code

motion transformation was 10 (quad 4 through 13 in Table 7.18). The number of quads to be executed in

each of the iteration after the transformation is 8 (quad 6 through 13 in Table 7.19).

The loop Invariant code motion transformation improves the speed of execution because there are lesser

instructions to execute in each of the iterations.

Table 7.19 Intermediate code after loop invariant code motion transformation

(0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a - b

(4) _t3 := &arr

(5) _t5 := n1 * n2

(6) label .L0

(7) _t2 := i * 4

(8) _t4 := _t3[_t2]

(9) if _t4 > _t5 goto .L1

(10) goto .L2

(11) label .L1

(12) i := i + 1

(13) goto .L0

(14) label .L2

(15) return i

(16) goto .L3

(17) label .L3

(18) proc_end func

7.2.7.2 Strength Reduction on Induction Variables The strength reduction transformations can

be carried out in any part of the intermediate code. However, the loops offer more returns in terms of

performance benefi ts, on the application of the strength reduction transforms, since the code gets executed

multiple times.

428 Principles of Compiler Design

An induction variable is a variable that changes by a fi xed quantity on each of the iterations of a loop.

Consider the input source and the corresponding unoptimised intermediate code shown in Table 7.20. The

variable ‘ind’ is a user defi ned induction variable that increases by 1 on each of the iterations (quad 8). The

compiler-generated variable ‘_t0’ is another induction variable that increases by 4 on each of the iterations

(quad 5). The strength reduction transformations are usually applied on the induction variables in a loop to

get substantial performance benefi ts.

Table 7.20 Input source and intermediate code

Input source TAC

1 int ind;

2 int a[20];

3

4 int func()

5 {

6 while(ind < 20){

7 a[ind]=10;

8 ind=ind + 1;

9 }

10 }

(0) proc_begin func

(1) label .L0

(2) if ind < 20 goto .L1

(3) goto .L2

(4) label .L1

(5) _t0: = ind * 4

(6) _t1: = &a

(7) _t1[_t0]: = 10

(8) ind: = ind + 1

(9) goto .L0

(10) label .L2

(11) label .L3

(12) proc_end func

Table 7.21 shows the intermediate code after the application of reduction of strength on the induction

variable _t0. The quad assigning the initial value of _t0, i.e. _t0 := ind *4 is moved out of the loop as the

quad (0a). This is used as an initial value, for _t0. An additional quad (8a) computing the value of _t0 from

its previous value i.e. _t0: = _t0 + 4, is inserted right after the quad 8, which computes the value of main

induction variable ‘ind’. Observe that the transformed loop in Table 7.21 is functionally equivalent to the

intermediate code at Table 7.20.

Table 7.21 Intermediate code after reduction of strength transformation

(0) proc_begin func

(0a) _t0 := ind * 4

(1) label .L0

(2) if ind < 20 goto .L1

(3) goto .L2

(4) label .L1

(5)

(6) _t1 := &a

(7) _t1[_t0] := 10

(8) ind := ind + 1

(8a) _t0 := _t0 + 4

(9) goto .L0

(10) label .L2

(11) label .L3

(12) proc_end func

 Code Optimisation 429

The strength reduction transformation on induction variables improves the speed of execution because

we have less expensive instruction, i.e. addition being substituted for multiplication in each of the

iterations.

7.2.8 Introductory Concepts for Implementing Intermediate Code Optimisation

In order to implement the transformations mentioned in the Section 7.2.7, the compiler is required to

perform analysis of the intermediate code. Before we get into the details of the analysis performed by the

optimiser module, it is essential to familiarise ourselves with some relevant terminology and concepts. This

section describes such terminology and concepts.

7.2.8.1 Basic Block The idea of a basic block is very useful in implementing the optimising

transformations on the intermediate code. A basic block is a sequence of intermediate code statements in

which the control enters at the beginning and leaves only at the end. Within a basic block control fl ows

sequentially. Branching in fl ow of control can only happen in the last statement of a basic block.

Consider the input source and its corresponding intermediate code shown in Table 7.22. The input source

contains a branching statement (if statement), which is also refl ected in the IC. It is possible to break this

intermediate code into logical chunks of sequential code called as basic blocks.

Table 7.22 Input source and the intermediate code

Input source Unoptimised TAC

1 (0) proc_begin func

2 int func(int a,int b, int c) (1) _t0 := 2 * a

3 { (2) x := _t0

4 int x,y,z; (3) _t1 := 2 * a

5 (4) _t2 := 5 * b

6 (5) _t3 := _t1 + _t2

7 x = 2 * a ; (6) y := _t3

8 y = 2 * a + 5 * b ; (7) if a > 1 goto .L0

9 (8) goto .L1

10 if(a > 1){ (9) label .L0

11 x = 2 * a + 3 * b + 20; (10) _t4 := 2 * a

12 y = 2 * a + 4 * b + 40 ; (11) _t5 := 3 * b

13 } (12) _t6 := _t4 + _t5

14 (13) _t7 := _t6 + 20

15 z = x * y ; (14) x := _t7

16 (15) _t8 := 2 * a

17 return(z); (16) _t9 := 4 * b

18 } (17) _t10 := _t8 + _t9

(18) _t11 := _t10 + 40

(19) y := _t11

(20) label .L1

(21) _t12 := x * y

(22) z := _t12

(23) return z

(24) goto .L2

(25) label .L2

(26) proc_end func

430 Principles of Compiler Design

Table 7.23 shows intermediate code logically split into basic blocks separated by a dotted line. Each of

these basic blocks is given names such as B0, B1, B2, etc. representing basic block 0, basic block 1,

and so on.

Table 7.23 Basic blocks

Intermediate code

(0) proc_begin func

(1) _t0 := 2 * a

(2) x := _t0

B0 (3) _t1 := 2 * a

(4) _t2 := 5 * b

(5) _t3 := _t1 + _t2

(6) y := _t3

(7) if a > 1 goto .L0

B1 (8) goto .L1

B2

(9) label .L0

(10) _t4 := 2 * a

(11) _t5 := 3 * b

(12) _t6 := _t4 + _t5

(13) _t7 := _t6 + 20

(14) x := _t7

(15) _t8 := 2 * a

(16) _t9 := 4 * b

(17) _t10 := _t8 + _t9

(18) _t11 := _t10 + 40

(19) y := _t11

B3

(20) label .L1

(21) _t12 := x * y

(22) z := _t12

(23) return z

(24) goto .L2

B4
(25) label .L2

(26) proc_end func

We study about the details of how to split a given set of quads into basic blocks, how to optimise within

a basic block and other operations on a basic block in the forthcoming sections. At this point, the reader

needs to appreciate the idea of a basic block of intermediate code in which control fl ows sequentially.

7.2.8.2 Directed Acyclic Graph Another concept used extensively in implementing optimising

transformations for intermediate code is a directed acyclic graph (DAG). The DAG is a data structure

used for implementing optimising transformations on the intermediate code within a basic block. The

DAG can be constructed from the three address code statements pertaining to a basic block. A DAG is

usually shown in a pictorial fashion. Figure 7.1 shows a basic block of three address code statements and its

corresponding DAG.

A DAG for a basic block consists of two kinds of nodes, namely,

 (1) Leaf nodes

 (2) Interior nodes

 Code Optimisation 431

The leaf nodes are the nodes that do not

have children. The leaf nodes are labelled

by unique identifi ers or constants. Figure

7.1 shows leaf nodes labelled as ‘d’, ‘b’

and ‘5’. As a convention in this book, the

label for a node is written inside the bubble

representing the node.

The interior nodes are the nodes that

have children. The children could be either

another interior node or a leaf node. The

interior nodes are labelled by an operator.

Figure 7.1 shows two interior nodes, one of

them is labelled with the ADD operator and

the other is labelled with a MUL operator. Table 5.2 in Chapter 5 gives a list of all the operators that are

considered in the intermediate language that we defi ned.

The leaf nodes and the interior nodes can have an attached identifi er list (shown outside the bubble). The

attached identifi er list represents the identifi ers holding the computed value in the case of interior nodes.

For example, in Fig. 7.1, the attached identifi er list for the operator node ADD, contains the identifi er ‘a’.

The identifi er ‘a’ holds the computed value (b + 5).

Similarly, the identifi er ‘e’ attached to the node

labelled MUL holds the computed value d * a.

In the case of leaf, the attached identifi er

holds the value of label. Figure 7.2 shows a DAG

having an identifi er ‘a’ attached to a leaf node

labelled 5. The identifi er ‘a’ holds the value of the

label, i.e. 5.

In the later sections, we will study more on the

construction of DAG and its usage in optimising

IC within a basic block. At this point, it is important to understand that (a) DAG can be constructed from

three address code and (b) DAG is used for performing optimising transformations on the intermediate code

within a basic block.

7.2.8.3 Local Optimisation and Global Optimisation It is possible to perform optimising

transformations like common sub-expression evaluation, copy propagation, etc. that are localised to a basic

block. These optimising transformations can be arrived at by analysing the intermediate code of the

basic block in isolation. This kind of optimisation in which both the analysis and the transformations are

localised to a basic block is known as local optimisation. The transformations in local optimisation

are called as local transformations. The name of transformation is usually prefi xed with ‘local’ while

referring to the local transformation, e.g. local common sub-expression elimination, local copy propagation,

and so on.

Consider the input C language source and the corresponding unoptimised intermediate code shown in

Table 7.24 to get an idea of local optimisation.

Fig. 7.1 Three address code and its DAG

Fig. 7.2 Leaf node with an attached identifi er

432 Principles of Compiler Design

Table 7.24 Input C-source and the unoptimised intermediate code

Input source Unoptimised TAC

1

2 int func(int a, int b, int c)

3 {

4 int x,y,z;

5

6

7 x = 2 * a ;

8 y = 2 * a + 5 * b ;

9

10 if(a > 1){

11 x = 2 * a + 3 * b + 20;

12 y = 2 * a + 4 * b + 40 ;

13 }

14

15 z = x * y ;

16

17 return(z);

18 }

(0) proc_begin func

(1) _t0 := 2 * a

(2) x := _t0

(3) _t1 := 2 * a

(4) _t2 := 5 * b

(5) _t3 := _t1 + _t2

(6) y := _t3

(7) if a > 1 goto .L0

(8) goto .L1

(9) label .L0

(10) _t4 := 2 * a

(11) _t5 := 3 * b

(12) _t6 := _t4 + _t5

(13) _t7 := _t6 + 20

(14) x := _t7

(15) _t8 := 2 * a

(16) _t9 := 4 * b

(17) _t10 := _t8 + _t9

(18) _t11 := _t10 + 40

(19) y := _t11

(20) label .L1

(21) _t12 := x * y

(22) z := _t12

(23) return z

(24) goto .L2

(25) label .L2

(26) proc_end func

Table 7.25 shows the unoptimised TAC broken up into basic blocks. Consider the unoptimised TAC in

basic block 0. By analysing the TAC statements of basic block 0, we can conclude that there is a common

sub-expression 2*a, which is computed twice at statement (1) and (3). We can optimise the IC of the

block 0 by computing the common sub-expression ‘2*a’ once at statement (1) and then re-use it. We can

eliminate the statement (3) in which we re-compute the common sub-expression 2*a. Another opportunity

for optimisation in the basic block 0 exists at statement (1) and (2), where the unnecessary assignment to

the temporary ‘_t0’ can be avoided by directly assigning ‘2*a’ to ‘x’. Column (B) in Table 7.25 shows

the resulting optimised code for basic block 0 after applying the optimising transformations mentioned

above. Observe that the opportunities for optimisation in basic block 0 were decided by analysing the

TAC belonging to the basic block 0 only. This ability to optimise the intermediate code of a basic block by

analysing the TAC belonging to its own self is the main characteristic of local optimisation. Table 7.25 shows

the locally optimised TAC for all the other basic blocks B1, B2, B3 and B4. The optimised TAC for each of

these basic blocks was obtained by analysing the TAC pertaining to that particular basic block only. Thus,

in local optimisation, the optimising transformations like common sub-expression elimination, etc. are

applied locally to each one of basic blocks independently without taking note of TAC in any other basic

block.

 Code Optimisation 433

Table 7.25 Local optimisation

(A) Unoptimised code (B) Locally optimised code Remarks

B0

(0) proc_begin func

(1) _t0 := 2 * a

(2) x := _t0

(3) _t1 := 2 * a

(4) _t2 := 5 * b

(5) _t3 := _t1 + _t2

(6) y := _t3

(7) if a > 1 goto .L0

-->

(0) proc_begin func

(1) x := 2 * a

(2) _t2 := 5 * b

(3) y := x + _t2

(4) if a > 1 goto .L0

In the optimized code for

this block

(a) The unnecessary

assignment to _t0 has

been eliminated.

(b) The common sub-

expression 2*a is

computed only once in

(1) and re-used (3)

B1 (8) goto .L1 --> (8) goto .L1 No room for Local optimi-

sation in this block

B2

(9) label .L0

(10) _t4 := 2 * a

(11) _t5 := 3 * b

(12) _t6 := _t4 + _t5

(13) _t7 := _t6 + 20

(14) x := _t7

(15) _t8 := 2 * a

(16) _t9 := 4 * b

(17) _t10 := _t8 + _t9

(18) _t11 := _t10 + 40

(19) y := _t11

-->

(6) label .L0

(7) _t4 := 2 * a

(8) _t5 := 3 * b

(9) _t6 := _t4 + _t5

(10) x := _t6 + 20

(11) _t9 := 4 * b

(12) _t10 := _t4 + _t9

(13) y := _t10 + 40

In the optimized code for

this block

(a) The unneccesary

assignments to _t7

and _t11 have been

eliminated

(b) Recomputation of 2*a

into _t8 has been

avoided, and _t4 is

used instead.

B3

(20) label .L1

(21) _t12 := x * y

(22) z := _t12

(23) return z

(24) goto .L2

-->

(14) label .L1

(15) z := x * y

(16) return z

(17) goto .L2

In the optimized code for

this block

(a) The unneccesary

assignment to _t12

has been eliminated

B4 (25) label .L2

(26) proc_end func

--> (18) label .L2

(19) proc_end func

No room for Local

Optimization in this block

In contrast to the local optimisation, global optimisation involves analysis and transformations of the

TAC spanning across multiple basic blocks of a procedure. The transformations in global optimisation are

called global transformations. The name of transformation is usually prefi xed with ‘global’ while referring

to the global transformation, e.g. global common sub-expression elimination, global copy propagation, and

so on. In the optimisation phase of a compiler, the global optimising transformations usually follow the

local transformations. The locally optimised code is taken as the input for global optimisation.

Let’s take the locally optimised TAC shown in Table 7.26 as the input and analyse the TAC of the entire

procedure (spanning across multiple blocks) for opportunities to optimise. The statement (1) in block B0

computes the common sub-expression 2*a, which is used in statement (3) of the same basic block. In block

B2, the same common sub-expression ‘2*a’ is computed in statement (7) and used in statement (9) and

(12). If we analyse across blocks, we can fi gure out that (a) the identifi er ‘a’ is not modifi ed between the two

computations at (1) and (7); (b) the sub-expression 2*a computed at statement (1) in block B0 can be used

in statements (9); and (12) of block B2. By using the value of 2*a computed in (1) throughout the function

(at 3, 9 and 12), we can eliminate the re-computation of the common sub-expression ‘2*a’ at (7). This

kind of optimising transformations that require analysis and changes spanning across the blocks falls under

the purview of global optimisation. Table 7.26 shows the resulting intermediate code after performing the

434 Principles of Compiler Design

global common sub-expression (2*a) elimination as discussed above. Observe that the global optimisation

resulted in changes in the intermediate code belonging to block B0 and B2.

Table 7.26 Global optimisation

Locally optimised code Globally optimised code

B0

(0) proc_begin func

(1) x := 2 * a

(2) _t2 := 5 * b

(3) y := x + _t2

(4) if a > 1 goto .L0

(0) proc_begin func

(1) _t13 := 2 * a

(2) x := _t13

(3) _t2 := 5 * b

(4) y := x + _t2

(5) if a > 1 goto .L0

B1 (5) goto .L1 (6) goto .L1

B2

(6) label .L0

(7) _t4 := 2 * a

(8) _t5 := 3 * b

(9) _t6 := _t4 + _t5

(10) x := _t6 + 20

(11) _t9 := 4 * b

(12) _t10 := _t4 + _t9

(13) y := _t10 + 40

-->

(7) label .L0

(8) _t4 := _t13

(9) _t5 := 3 * b

(10) _t6 := _t4 + _t5

(11) x := _t6 + 20

(12) _t9 := 4 * b

(13) _t10 := _t4 + _t9

(14) y := _t10 + 40

B3

(14) label .L1

(15) z := x * y

(16) return z

(15) label .L1

(16) z := x * y

(17) return z

B4 (17) goto .L2 (18) goto .L2

B5 (18) label .L2

(19) proc_end func

(19) label .L2

(20) proc_end func

We have seen how a common sub-expression (2*a) was eliminated in the global optimisation. We refer

to that as global common sub-expression elimination (gcse) indicative of the fact that the common sub-

expression was eliminated in a global manner across basic blocks. A common sub-expression eliminated

locally within a basic block is termed as local common sub-expression elimination or simply common

sub-expression elimination. In a similar manner we use the term global copy propagation (gcp) for a

copy propagation spanning multiple blocks as opposed to local copy propagation for the ones local to the

basic block. The algorithms used for performing global common sub-expression elimination/global copy

propagation are different from the ones used in local common sub-expression elimination/local copy

propagation. We study about the algorithms performing local common sub-expression elimination and local

copy propagation in the section on local optimisation (Section 7.2.9). The algorithms for global common

sub-expression elimination and global copy propagation are studied in the section on global optimisation

(Section 7.2.10).

The amount of analysis required for local optimisation is lesser, since it is restricted to one basic

block at a time. Comparatively the global optimisation requires more analysis, since it requires to

analyse intermediate code for the entire function. Due to the lesser analysis involved, the time taken to

 Code Optimisation 435

perform local optimisation on the intermediate code is lesser compared to global optimisation. Another

aspect on which local and global optimisation differ is the amount of optimisation feasible. The amount

of optimisation possible with local optimisation is lesser than the global optimisation. For example,

loop-related optimisations are not possible in local optimisation. This is due to the fact that loop-related

optimisations involve analysis of all the blocks involved in a loop at the same time. Since local optimisation

concerns analysis and changes localised to a basic block, it is not possible to perform any of the loop-

related optimisations in local optimisation. Global transformations are essential for loop optimisation.

Both local and global optimising transformations are performed in most of the compilers. Commonly,

the local optimising transformations are performed fi rst, followed by global optimising transformations.

Since the local optimisation takes very less time, it is usually included in the preparatory phase for global

optimisation.

In one of the studies conducted on the effectiveness of optimisation, Knuth reported an improvement

in the speed of execution of about > = 1.4 times in local optimisation and > = 2.7 times due to global

optimisation.

In Section 7.2.9, we discuss about local optimisation in detail. We study about how we can implement

transformations like local common sub-expression elimination, local copy propagation, dead code

elimination, etc. locally as a part of local optimisation in that section.

In Section 7.2.10, we discuss about global optimisation in detail. In that section we learn about

implementing global common sub-expression elimination, global copy propagation and other loop-related

optimisations.

7.2.9 Local Optimisation

In this section, we learn about implementing local optimisation in a compiler. The optimising

transformations that would be studied are local common sub-expression elimination, constant folding, local

copy propagation and dead code elimination. We study about algorithms that identify opportunities for the

above-mentioned transformations within a basic block and affect the transform on the intermediate code

accordingly.

We use the ideas of basic blocks and the directed acyclic graph in implementing the local optimisation.

The local optimisation on the intermediate code is carried out in the steps illustrated in Fig. 7.3.

 (1) The fi rst step involves splitting the input intermediate code of a function into basic blocks named as

B0, B1, B2, and so on till B
n
. Figure 7.3 illustrates the split of the input intermediate code into basic

blocks B0, through B
n
.

 (2) For each basic block B in {B0, B1 … B
n
}, the following steps are performed:

 (a) A directed acyclic graph D is constructed for the quads in the basic block B using an algorithm

described later in this section. Figure 7.3 illustrates the creation of DAG for the block B0.

 (b) The optimised quads are generated from the directed acyclic graph D. Figure 7.3 illustrates the

generation of optimised quads from DAG corresponding to the block B0.

 The optimised code for the function is concatenation of the quads generated in 2(b) for all the basic

blocks B0 through B
n
.

436 Principles of Compiler Design

Fig. 7.3 Local optimisation of intermediate code

 Code Optimisation 437

We study about each of these steps in detail in the next few sections. Section 7.2.9.1 describes the step

1 followed by an example. Section 7.2.9.3 describes the step 2(a), followed by an example. Section 7.2.9.5

details the step 2(b) followed by an example.

7.2.9.1 Step 1—Splitting the IC into Basic Blocks As already mentioned, in order to improve the

intermediate code, the three address statements are broken up into smaller units on which transformations

can be easily applied. Each of these units is called a basic block. A basic block is a sequence of three

address statements in which the fl ow of control enters the beginning and leaves only at the end without any

possibility of branching except at the end. In other words, once the control enters a basic block, each and

every statement in it is executed.

Let’s take an example to understand the idea of splitting up the intermediate into basic blocks. Consider

the input C source and its corresponding intermediate code shown in Table 7.27.

Table 7.27 Input source and its intermediate code

Input source TAC

1 int largest(int p,int q, int r)

2 {

3 int tmp;

4

5 if(p > q){

6 tmp=p;

7 }else{

8 tmp=q;

9 }

10 if(r > tmp){

11 tmp=r;

12 }

13

14 return(tmp);

15 }

(0) proc_begin largest

(1) if p > q goto .L0

(2) goto .L1

(3) label .L0

(4) tmp := p

(5) goto .L2

(6) label .L1

(7) tmp := q

(8) label .L2

(9) if r > tmp goto .L3

(10) goto .L4

(11) label .L3

(12) tmp := r

(13) label .L4

(14) return tmp

(15) goto .L5

(16) label .L5

(17) proc_end largest

Let’s go over the intermediate code shown in Table 7.27 and break it up into basic blocks. By defi nition,

a basic block consists of statements in which the fl ow of control has to be sequential. The TAC statements

0 and 1 have sequential fl ow of control and hence form the block 0. The statement 1 is a conditional goto

statement, which would transfer the control to label .L0 in case the condition p > q is true. The statement 2

would not be reached when the condition p > q is true. The block B0 ends with statement 1 because there

is no assurance that the statement 2 would be reached after statement 1. In general, the statement following

a conditional or unconditional goto is a leader or the fi rst statement of the next block. The statement 2 falls

in new block B1. The statement 3—label statement, would never be reached sequentially after 2, since

statement 2 is a goto statement. Hence statement 3 falls into the next block B2. The statements 3, 4 and 5

have sequential fl ow of control and hence would go in the same block—B2. The fl ow of control would not

reach statement 6 after statement 5 and hence the block B2 ends with statement 5. The statements 6 and 7

have sequential fl ow of control and go into block B3. The statement 8, which is a label statement, cannot

be in the same block because control can directly come to label from a conditional or unconditional goto

438 Principles of Compiler Design

statement. Since there is no assurance that the control fl ow

would follow statement 8 after 7, the statement 8 goes into

the new block B4. In general, a label statement is a leader or

the fi rst statement of a new block, since control can come to

it from a goto statement or sequentially. The reader is advised

to apply the above-mentioned principles and understand

the rationale behind the breaking of statements into blocks

B5 through B8. Figure 7.4 shows the complete split of the

intermediate code into basic blocks.

The method we used above to partition the TAC statements

into basic blocks is formalised in Algorithm 7.1. We use the

idea of leaders, the fi rst statements in the IC of basic blocks to

make the partitions. The leaders are (a) Label statement and

(b) Any statement, following a conditional or unconditional

goto statement. The statements 0, 2, 3, 6, 8, 10, 11, 13 and 15

in the above example are all leaders because they satisfy at

least one of the criteria mentioned above. Each block consists

of the leader and all the statements following it up to the next

leader, but not including it.

split_into_basic_blocks()

{

 i=0

 prev=NULL

 /* L is a list of TAC statements */

 /* B is a data structure associating quads with a basic block */

 Add the fi rst statement of L into Bi

 for every statement s in L

 do

 {

 leader=0

 if(s is a label statement){

 leader=1

 }

 if(prev is a conditional or unconditional goto){

 leader=1

 }

 if(leader == 1){

 i=i+1;

 }

 Attach s to Bi

 prev=s

 }

}

Algorithm 7.1 Partition TAC statements into basic blocks

Fig. 7.4 Splitting of IC into basic blocks

 Code Optimisation 439

7.2.9.2 Example 1—Splitting TAC Statements to Basic Blocks This section demonstrates the

toy C compiler (mycc) splitting the intermediate code into basic blocks using Algorithm 7.1 described

in the preceding section. The toy C compiler takes as input, a sample C input source and gives out (a)

TAC and (b) the breakup of the TAC into basic blocks. The dialog below shows ‘mycc’ taking in some

sample input C sources, and printing out their intermediate code in TAC format along with the basic

block information.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g ++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyzer

$ g ++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building ‘mycc’ - A Toy Compiler for C Language

$ g ++ -DCHAP7_EX1 -DICGEN -g -Wall ic_gen.cc optimize.cc target_code_gen.cc mycc.cc
semantic_analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe

An input source

$ cat -n test1.c
 1 int largest(int p, int q, int r)

 2 {

 3 int tmp;

 4

 5 if(p > q){

 6 tmp=p;

 7 }else{

 8 tmp=q;

 9 }

 10 if(r > tmp){

 11 tmp=r;

 12 }

 13

 14 return(tmp);

 15 }

Partitioning the IC into Basic Blocks

$./mycc -i -O local -v test1.c
TAC Before optimisation

(0) proc_begin largest

(1) if p > q goto .L0

(2) goto .L1

(3) label .L0

(4) tmp: = p

(5) goto .L2

(6) label .L1

(7) tmp: = q

(8) label .L2

(9) if r > tmp goto .L3

440 Principles of Compiler Design

(10) goto .L4

(11) label .L3

(12) tmp: = r

(13) label .L4

(14) return tmp

(15) goto .L5

(16) label .L5

(17) proc_end largest

Quads After Splitting into Basic Blocks

BLOCK =0

(0) proc_begin largest

(1) if p > q goto .L0

BLOCK =1

(2) goto .L1

BLOCK =2

(3) label .L0

(4) tmp := p

(5) goto .L2

BLOCK =3

(6) label .L1

(7) tmp := q

BLOCK =4

(8) label .L2

(9) if r > tmp goto .L3

BLOCK =5

(10) goto .L4

BLOCK =6

(11) label .L3

(12) tmp := r

BLOCK =7

(13) label .L4

(14) return tmp

(15) goto .L5

BLOCK =8

(16) label .L5

(17) proc_end largest

Another input source

$ cat -n test1a.c
 1 int fact(int num)

 2 {

 3 int i,prod;

 4

 5 i=1;

 6 prod=1;

 7

 8 while(i<=num){

 9 prod=prod*i;

 10 i=i + 1;

 11 }

 12

 13 return(prod);

 14 }

Basic Blocks for the input source

 Code Optimisation 441

$./mycc -i -O local -v test1a.c
TAC Before optimisation

(0) proc_begin fact

(1) i := 1

(2) prod := 1

(3) label .L0

(4) if i <= num goto .L1

(5) goto .L2

(6) label .L1

(7) _t0: = prod * i

(8) prod: = _t0

(9) _t1: = i + 1

(10) i: = _t1

(11) goto .L0

(12) label .L2

(13) return prod

(14) goto .L3

(15) label .L3

(16) proc_end fact

Quads after Splitting into Basic Blocks

BLOCK =0

(0) proc_begin fact

(1) i := 1

(2) prod := 1

BLOCK =1

(3) label .L0

(4) if i <= num goto .L1

BLOCK =2

(5) goto .L2

BLOCK =3

(6) label .L1

(7) _t0 := prod * i

(8) prod := _t0

(9) _t1 := i + 1

(10) i := _t1

(11) goto .L0

BLOCK =4

(12) label .L2

(13) return prod

(14) goto .L3

BLOCK =5

(15) label .L3

(16) proc_end fact

7.2.9.3 Step 2(a)—Construction of DAG from Basic Block In this section, we study about how

we can construct a directed acyclic graph (DAG) from the quads in a basic block. As introduced before, a

DAG is a data structure used for implementing optimising transformations on the intermediate code within

a basic block. Each basic block is transformed into a DAG.

We have seen earlier that a DAG Node consists of a label and an optional list of attached identifi ers. We

can represent a DAG node by a structure or a class containing the following main elements:

442 Principles of Compiler Design

label : The label for a leaf node is the identifi er or the constant that the node represents. For

the interior nodes, it is the operator symbol represented by the node.

attached_identifi ers_list : This is a list of identifi ers attached to the node. The current value of each of the

identifi ers in the list is represented by the current node.

The process of building a DAG requires an association between an identifi er and a DAG node. The DAG

node represents the ‘current’ value of the Identifi er. A DAG node is associated with an identifi er by using

the function set_current(identifi er, dag_node). We can fetch the DAG node associated with an identifi er by

using the function get_current(identifi er).

set_current (identifi er,dag_node) : This associates the current value of an identifi er with the DAG node.

get_current (identifi er) : This returns the dag node associated with the identifi er. This represents the

current value of identifi er.

During the DAG construction process, there are functions needed for adding and removing an identifi er

from the attached list of identifi ers of a DAG node. The following functions are used for the purpose.

add_attached_identifi er(dag_node,identifi er) : This function adds the identifi er to the list of attached

identifi ers of the DAG node.

remove_attached_identifi er(dag_node,identifi er) : This function removes the identifi er from the attached list of

identifi ers of the DAG node.

In the algorithm presented a little later for constructing a DAG from the TAC statements, the TAC

statements are represented using a generic form res: = arg1 OP arg2. The operator OP determines which of

the three operands are defi ned. For example, an ADD operator would have all the three operands res, arg1

and arg2 as defi ned. A unary minus operator (UMINUS) would have the operands res and arg1 as defi ned

but the operand arg2 is undefi ned. In a similar way, the ASSIGN operator has res and arg1 as valid, but

arg2 as undefi ned.

We classify the three address operators into 2 classes based on the ability to participate in common sub-

expression identifi cation and elimination.

The TAC operators belonging to class 1 are the ones for which the result ‘res’ is valid and can be used

for identifying the common sub-expressions. Examples of these are quads using the operators ADD, MUL,

DIV, and so on.

The TAC operators in class 2 are the ones that cannot participate in the common sub-expression

identifi cation and elimination either due to (a) ‘res’ cannot be considered as a ‘result’ of an expression, e.g.

LT,GT, L_INDEX_ASSIGN or (b) ‘res’ is not valid, e.g. PROC_BEGIN,PARAM, etc.

Table 7.28 shows the classifi cation of all the 23 operators defi ned in our intermediate language that we

saw in Chapter 5.

Table 7.28 Classifi cation of TAC operators

TAC operator Description Class

1 ADD, MUL, DIV, SUB, UMINUS, ADDR_OF,

ASSIGN, R_INDEX_ASSIGN

res is valid and can be used as a result for

identifying the common sub-expressions.

Class 1

 Code Optimisation 443

2 LT, GT, LE, GE, EQ, NE, L_INDEX_ASSIGN arg1, arg2 and res are valid, but we cannot use

‘res’ as a result for identifying the common

sub-expressions. The quads with these operators

cannot participate in common sub-expression

identifi cation.

Class 2

3 PROC_BEGIN, PROC_END, RETURN,

RETRIEVE, PARAM, CALL, LBL, GOTO

arg2 and res are not valid. Only arg1 is valid. The

quads with these operators cannot participate in

common sub-expression identifi cation.

Class 2

We now turn to the algorithm for creating a DAG from the quads in a basic block. We use the functions

that have been mentioned above. The DAG is represented by the structure described previously.

For each TAC statement res: = arg1 OP arg2 in the basic block do steps 1 to 3:

 1. If arg1 is valid, then fi nd a dag node ‘node_arg1’ that represents the current value of ‘arg1’. If we do

not fi nd a node, create a node and call it ‘node_arg1’. Now, the ‘node_arg1’ represents the current

value of ‘arg1’.

 2. If ‘arg2’ is valid, then fi nd a dag node ‘node_arg2’ that represents the current value of ‘arg2’. If we

do not fi nd a node, create a node and call it ‘node_arg2’. Now the ‘node_arg2’ represents the current

value of ‘arg2’.

 3. If the OP is ASSIGN operator, then,

if ‘res’ was attached to some other dag node previously, remove that linkage. Associate

the current value of identifi er ‘res’ with ‘node_arg1’. Add the identifi er ‘res’ to the list of

identifi ers attached to ‘node_arg1’.

 Else, if the OP is one of class 1 operators, i.e. operators on which we can have a common sub-

expression then,

Find if there is an interior node ‘node_res’, whose children are ‘node_arg1’ and ‘node_arg2’.

If we do not fi nd such a node then create a new dag node called ‘node_res’ and make ‘node_

arg1’ and ‘node_arg2’ as its children. In either case, i.e. ‘node_res’ was created freshly now,

or found already, do the following (a) if res were attached to some other dag node previously,

remove that linkage. Associate the current value of identifi er ‘res’ with ‘node_res’ (b) add the

identifi er ‘res’ to the list of identifi ers attached to ‘node_res’.

 Else,

/* class 2 operators */

Find if there is a node ‘node_res’ that represents the current value of ‘res’. If there is no node

representing the current value of res, then create a new dag node ‘node_res’ and associate the

current value of identifi er ‘res’ with ‘node_res’. Create a new dag node ‘n4’, whose children

are node_res, node_arg1, node_arg2.

Algorithm 7.2 shows the above in a loose C pseudo-code form. The repeated tasks in the algorithm

have been converted to functions. The three support functions, namely get_dag_node(), move_attached_

identifi er() and fi nd_dag_node are also presented in Algorithm 7.2.

construct_dag ()

{

 for (each ‘quad’ in the Basic Block) {

444 Principles of Compiler Design

 arg1 = quad.arg1 ;

 arg2 = quad.arg2 ;

 res = quad.res ;

 op = quad.op ; /* Operator of the quad */

 /* Step 1 */

 node_arg1 = get_dag_node(arg1)

 /* Step 2 */

 node_arg2 = get_dag_node(arg2)

 /* Step 3 */

 if (op is ASSIGN){

 move_attached_identifi er(res,node_arg1);

 } else if (op is ADD or MUL or DIV or SUB or UMINUS or

 ADDR_OF or R_INDEX_ASSIGN){/* Class 1*/

 node_res = fi nd_dag_node(op,node_arg1,node_arg2);

 if(node_res = = NULL){

 node_res = mk_dag_node(op,node_arg1,node_arg2);

 }

 move_attached_identifi er(res,node_res);

 }else{

 /*

 Class 2 Operators

 op is one of

 LT,GT,LE,GE,EQ,NE,L_INDEX_ASSIGN - 3 args

 PROC_BEGIN,PROC_END,RETURN,RETRIEVE,PARAM,CALL,LBL,GOTO - 1 arg

 */

 node_res = get_dag_node(res)

 n4 = mk_dag_node(op,node_arg1,node_arg2,node_res);

 }

 }

}

dag_node *get_dag_node(sym_tab_entry *s)

{

 dag_node *d;

 if(s == NULL){

 return(NULL);

 }

 if((d=get_current(s)) == NULL) {

 /* create a leaf node */

 d = mk_dag_node (s);

 /*

 dag_arr is a global data structure containing pointers to all

 Code Optimisation 445

 the dag nodes created

 */

 dag_arr[dag_node_no]=d;

 dag_node_no = dag_node_no + 1;

 /* set the associated node */

 set_current(s,d);

 }

 return(d);

}

move_attached_identifi er(sym_tab_entry *s,dag_node *d)

{

 dag_node *tmp;

 /* Remove the existing linkage */

 tmp = get_current(s);

 if(tmp ! = NULL){

 remove_attached_identifi er(s,tmp);

 }

 /* Set the new association */

 set_current(s,d);

 /* Attach the identifi er to the dag node */

 add_attached_identifi er(s,d);

}

dag_node * fi nd_dag_node(op, dag_node *l,dag_node *r)

{

 dag_node *d;

 /*
 Search in dag_arr to see, if there is a dag node with op as label,
 with ‘l’ as the left child and ‘r’ as the right child
 */

 n = dag_node_no;
 for(i=0;i<n;i++)
 {
 d=dag_arr[dag_node_no];

 if(
 (d->label == op) &&
 (d ->left_child == l) &&
 (d ->right_child == r)

){

 return(d);
 }
 }
 return(NULL);
}

Algorithm 7.2 Construction of DAG

446 Principles of Compiler Design

7.2.9.4 Illustration of Construction of a DAG Consider the input C source fi le and the

corresponding unoptimised intermediate code (see Table 7.29) for demonstrating the construction of DAG

using Algorithm 7.2. The intermediate code can be divided into 2 basic blocks. The basic block 0 consists

of statements (1) through (12) with both inclusive. Block 1 consists of the TAC statements (13) and (14).

Table 7.29 Input source and intermediate code

Input source TAC

int a,b,c,d,e,f,g;

void func()

{

 a = (b + c)*d ;

 e = f * a ;

 f = (b + c)*e;

 g = (b + c)/d;

}

(1) proc_begin func

(2) _t0: = b + c

(3) _t1: = _t0 * d

(4) a: = _t1

(5) _t2: = f * a

(6) e := _t2

(7) _t3 := b + c

(8) _t4 := _t3 * e

(9) f := _t4

(10) _t5: = b + c

(11) _t6: = _t5 / d

(12) g := _t6

(13) label .L0

(14) proc_end func

We will build the DAG for block 0 in a step-by-step fashion using Algorithm 7.2. The intermediate code

of block 0 is shown in Fig. 7.5.

The processing of TAC statement (1) proc_begin func causes the creation of a leaf for the identifi er

‘func’ and an interior node with PROC_BEGIN as the operator as shown in Fig. 7.6.

 Fig. 7.5 Basic block 0 Fig. 7.6 Processing of (1) PROC_BEGIN func

The TAC statement (2) _t0: = b + c causes the creation of a leaf for the identifi er ‘b’ and another leaf

for the identifi er ‘c’. An interior node for the operator ADD is created with the leaf nodes of ‘b’ and ‘c’ as

children. The identifi er ‘_t0’ is attached to the created interior node as shown in Fig. 7.7.

The next TAC statement to be processed is (3) _t1: = _t0 * d. This uses the existing node to which ‘_t0’

is attached. A new leaf node is created for the identifi er ‘d’. An interior node with a label ‘MUL’ is created.

 Code Optimisation 447

The identifi er _t1 is attached to this interior node. The DAG at this point is shown in Fig. 7.8. The dotted line

in Fig. 7.8 shows the part of the DAG that has been created due to the processing of the current TAC statement

(3) _t1: = _t0 * d.

 Fig. 7.7 Processing (2) _t0: = b + c Fig. 7.8 DAG after processing (3) _t1: = _t0 * d

The next TAC statement to be processed is the assignment statement (4) a: = _t1. This attaches the identifi er

‘a’ to the DAG node associated with the current value of the identifi er ‘_t1’. The DAG at this point is

shown in Fig. 7.9. The attaching of the identifi er ‘a’ to the DAG node holding the current value of ‘_t1’ is

shown in bold for the sake of clarity.

The processing of next TAC statement (5) _t2: = f * a, causes the creation of a new leaf node storing the

value of the identifi er ‘f ’, since there is no DAG node associated with ‘f ’. An interior node with the label MUL

is created with the children as DAG nodes storing the latest value of identifi ers ‘f ’ and ‘a’. Figure 7.10 shows

the DAG after the processing of (5) _t2 := f * a. The dotted line shows the part of the DAG created due to

the processing of (5) _t2: = f * a.

 Fig. 7.9 DAG after processing (4) a := _t1 Fig. 7.10 DAG after processing (5) _t2 := f * a

The next statement to be processed is the assignment statement (6) e := _t2. TAC This causes

an additional identifi er ‘e’ to be attached to the DAG node storing the latest value of ‘_t1’ as shown in

Fig. 7.11. Observe that any DAG node with multiple identifi ers attached to it indicates that all of those

identifi ers contain the same value at that point in time.

448 Principles of Compiler Design

The next TAC statement to be processed is (7) _t3 := b + c. We fi nd that there exists an interior node ADD

that has ‘b’ and ‘c’ as children. We attach the identifi er ‘_t3’ to such a node as shown in Fig. 7.12. From the

DAG shown in Fig. 7.12, we can observe that the identifi ers ‘_t0’ and ‘_t3’ hold the value of a common

expression ‘b + c’. We can also notice that the identifi ers ‘_t1’ and ‘a’ hold the value of common expression

(b + c) * d.

 Fig 7.11 DAG after processing (6) e := _t2 Fig. 7.12 DAG after processing (7) _t3 := b + c

The next TAC statement to be processed is (8) _t4: = _t3 * e. An interior node with the label MUL is

created with the children as DAG nodes storing the latest value of identifi ers ‘_t3’ and ‘e’. We attach the

identifi er ‘_t4’ to such a node as shown in Fig. 7.13. The dotted line shows the part of the DAG created due

to the processing of (8) _t4: = _t3 * e.

The next TAC statement to be processed is the assignment statement (9) f: = _t4. This causes an

additional identifi er ‘f ’ to be attached to the DAG node storing the latest value of ‘_t4’ as shown in Fig. 7.14.

 Fig. 7.13 DAG after processing (8) _t4 := _t3 * e Fig. 7.14 DAG after processing (9) f := _t4

 Code Optimisation 449

The next TAC statement to be processed (10) _t5 := b + c. We fi nd that there exists an interior node ADD

that has ‘b’ and ‘c’ as children. We attach the identifi er ‘_t5’ to such a node as shown in Fig. 7.15. From the

DAG shown in Fig. 7.15, we can observe that the identifi ers ‘_t0’, ‘_t3’ and now ‘_t5’ hold the value of the

common expression ‘b + c’.

The next TAC statement to be processed (11) _t6 := d /_t5. There exists no interior node DIV that has

‘d’ and ‘_t5’ as children. We create a new interior node DIV having the nodes holding the latest value of

‘d’ and ‘_t5’ as children as shown by the dotted line in Fig. 7.16. The interior node DIV created newly is

attached with the identifi er ‘_t6’. The identifi er ‘_t6’ was not attached to any other node previously, so there

is no previous linkage to be discarded.

 Fig. 7.15 DAG after processing (10) _t5 := b + c Fig. 7.16 DAG after processing (11) _t6 := _t5/d

The next TAC statement to be processed is the assignment statement (12) g: = _t6. This causes

an additional identifi er ‘g’ to be attached to the DAG node storing the latest value of ‘_t6’ as shown in

Fig. 7.17. The identifi er ‘g’ was not attached to any other node previously, so there is no previous linkage to

be discarded.

We have completed the processing of all the TAC statements in the basic block 0. The fi nal DAG for the

basic block 0 is shown in Fig. 7.18.

 Fig. 7.17 DAG after processing (12) g := _t6 Fig. 7.18 The fi nal DAG for basic block 0

450 Principles of Compiler Design

7.2.9.5 Step 2(b)—Reconstruction of Intermediate Code from DAG In this section, we study

about traversing the DAG to generate optimised intermediate code. The reconstruction of the intermediate

code from the DAG is the fi nal step in the local optimisation as seen in Fig. 7.3.

The reconstruction of TAC from the DAG is accomplished by traversing the nodes of a DAG

in a topologically sorted order and generating code. In topological sorted order, an interior node is

not visited unless all its children have already been visited. The order in which DAG nodes are created

from the intermediate code using Algorithm 7.2 presented earlier is itself in a topologically sorted order.

Fig. 7.19 shows the DAG created in Section 7.2.9.4, with the nodes numbered 1, 2, 3 and so on in the order they

were created. Observe that in the DAG in Fig. 7.19, the nodes marked 1, 2, 3 and so on, are in a topologically

sorted order with the parent nodes being created only after all of their children have been created.

Fig. 7.19 The order of creation of DAG nodes

The optimised TAC is generated from the DAG by visiting all the DAG nodes in a topologically sorted

order. For each node in the DAG in the topologically sorted order, we do the following:

If the node is a leaf node, then check if it has any attached

identifi ers. If there are no attached identifi ers, no quads are

generated for the node. If there are attached identifi ers then

generate ASSIGN statements that assign the value of the

node to each one of the user defi ned identifi ers ‘s’ in the

attached identifi ers list. Figure 7.20 shows the re-constructed

quads from a leaf node in a DAG.

If the node is an interior node then we check to see, if

the operator is a class 1 operator or a class 2 operator. As

explained before, class 1 operators have a ‘result’ amenable

to common sub-expression elimination.

If it is class 2 operator node, generate a quad with the operator, left child, right child and any other

additional children if present. Figure 7.21 shows the quads generated for an interior node using

PROC_BEGIN—a class 2 operator.

Fig. 7.20 Quad generation for a leaf node

 Code Optimisation 451

If it is a class 1 operator node, then generate a quad that assigns the value of the node to one of the

identifi ers ‘s’ in the attached identifi ers list. The preference is given to an identifi er ‘s’ in the list of

identifi ers attached to the node, if it is a user-defi ned variable as opposed to a compiler generator temporary.

The value of the node is produced by applying the operator on the left and right child. Figure 7.22

shows the quads generated from an interior node having children that are leaves. In Fig. 7.22, the

identifi er ‘d’ has been selected for assigning the value, since it is user defi ned as compared to _t0. The

identifi er ‘d’ now represents this node for all further computations. In case there were other user defi ned

identifi ers like say e and f also attached to this interior node, additional assignment statements e = d, f = d

are generated at this point.

 Fig. 7.21 Quad generation for interior Fig. 7.22 Quad generation for interior
 node (class 2 operator) node having leaves as children

The generation of quads for interior nodes having other interior nodes as children is also similar.

Figure 7.23 shows an interior DAG node (shaded in gray) having other interior nodes as children. The quad

generated in this case would be m = j + k, since ‘j’ and ‘k’ are selected identifi ers for child interior nodes.

By virtue of the fact that the nodes are visited in a topographical order, each of the children (interior nodes)

would already have a selected identifi er representing the node. In Fig. 7.23, we have the left child being

represented by the selected identifi er ‘j’ and right child by the selected identifi er ‘k’.

Fig. 7.23 Reconstruction of quads from interior node having other interior nodes as children

452 Principles of Compiler Design

In situations where there are no user-defi ned identifi ers in the list of identifi ers attached to the interior

node, we can pick any one of the temporary identifi ers to store the value of the node. If there are no

identifi ers at all in the attached identifi ers list, create a new unused temporary variable, let’s say ‘_tk’ and

generate a quad that assigns the value of the node to it.

Algorithm 7.3 formalises the regeneration of optimised quads from the DAG as explained above.

dag_arr is the array of all the dag nodes. It is in the same order as created and hence

topographically sorted.

regenarate_quads ()
{
 for (each dag node ‘d’ in the dag_arr) {

 if(d is a leaf node with label ‘l’){
 if(there are attached identifi ers to the node i1,i2 in){
 Generate assign quads for each of the user defi ned (non-

 temporarary) identifi ers (i1=l,i2=l etc)
 continue;
 }

 /* ‘d’ is an Interior Node */

 if (operator is not one of ADD MUL DIV SUB UMINUS ADDR_OF R_INDEX_ASSIGN){

 /* These are operators for which ‘result’ is undefi ned */

 Generate a quad with (operator, left child,right child and additional

 child if any)

 continue;
 }
 /* These are operators for which ‘result’ is defi ned */
 /* operator is one of ADD MUL DIV SUB UMINUS ADDR_OF R_INDEX_ASSIGN */

 Select an user defi ned identifi er ‘s’ in the attached identifi er’s list.

 Generate a new quad with (operator,left child, right child, s)

 if (There are more than one user defi ned identifi ers in the attached

 identifi er’s list){
 Generate assign quads for i1=s,i2=s,i3=s
 }
 }
}

Algorithm 7.3 Regenerating optimised quads from DAG

7.2.9.6 Illustration of Reconstruction of Intermediate Code from DAG Consider the fi nal DAG

for the basic block 0 discussed earlier in 7.2.9.4 and shown again in Fig. 7.24 for understanding the re-

construction of quads using Algorithm 7.3.

Table 7.30 shows the regeneration of the quads from the DAG in a step-by-step fashion based on

Algorithm 7.3 and the discussion in Section 7.2.9.5. The DAG in Fig. 7.24 showing nodes numbered in the

order of creation is used as the basis for regeneration of the quads.

In Table 7.30, the node number is mentioned in the fi rst column. The generated quad for the same node

based on Algorithm 7.3 is shown in the second column. The explanation column gives the details with

regard to the working of the algorithm.

 Code Optimisation 453

Fig. 7.24 Final DAG considered for regeneration of optimised quads

Table 7.30 Regeneration of optimised quads from DAG

Node

Generated Quad Explanation

1 None It is leaf node, without any attached identifi ers. No Quads are generated.

2 proc_begin func This node is an interior node. It is a class 2 operator. The Quad is generated with the

Left child.

3 None It is leaf node, without any attached identifi ers. No Quads are generated.

4 None It is leaf node, without any attached identifi ers. No Quads are generated.

5 _t0 = b + c This node is an interior node. The left child is the leaf node ‘b’. The right child is the

leaf node ‘c’. The operator of the node is ADD. Hence, the value of the node is (b+c).

We select the identifi er ‘_t0’ among the attached identifi ers _t0,_t3,_t5 for assigning

the value of the node. We could have selected any one of the three attached identifi ers

(_t0,_t3,_t5), we chose _t0. We will continue to use _t0 as the identifi er refl ecting the

value of this node (Node # 5) till the completion of the algorithm.

6 None It is leaf node, without any attached identifi ers. No Quads are generated.

7 a := _t0 * d This node is an interior node. The left child is node number 5, which had selected the

identifi er _t0 for saving the value of the node. The right child is the leaf node with label

‘d’. The operator of the node is MUL. Hence, the value of the current node is (_t0 * d).

We select the identifi er ‘a’ among the attached identifi ers _t1,a for assigning the

value of the node. The reason for selecting ‘a’ ahead of _t1 is that ‘a’ is a user-defi ned

identifi er. In the generated quad, the value of the node _t0 * d, is assigned to the

selected identifi er ‘a’.

8 None It is leaf node, without any attached identifi ers. No Quads are generated.

454 Principles of Compiler Design

9 e = f * a This node is an interior node. The left child is a leaf node with label ‘f’. The right child

is node number 7, which had selected the identifi er ‘a’ for assigning the value of the

node. The operator of the node is MUL. Hence, the value of the current node is (f * a).

We select the identifi er ‘e’ among the attached identifi ers _t2,e for assigning the value of

the node. The reason for selecting ‘e’ ahead of _t2 is that ‘e’ is a user-defi ned identifi er. In

the generated quad, the value of the node f * a , is assigned to the selected identifi er ‘e’.

10 f = _t0 * e This node is an interior node. The left child is node number 5, which had selected the

identifi er _t0 for assigning the value of the node. The right child is node number 9,

which had selected the identifi er ‘e’ for assigning the value of the node. The operator of

the node is MUL. Hence, the value of the current node is (_t0 * e).

We select the identifi er ‘f’ among the attached identifi ers _t4,f for assigning the value of

the node. The reason for selecting ‘f’ ahead of _t4 is that ‘f’ is a user-defi ned identifi er.

In the generated quad, the value of the node _t0 * e , is assigned to the selected

identifi er ‘f’.

11 g := _t0 / d This node is an interior node. This left child is node number 5, which had selected the

identifi er _t0 for assigning the value of the node. The right child is the leaf node with label

‘d’. The operator of the node is DIV. Hence, the value of the current node is (_t0 / d).

We select the identifi er ‘g’ among the attached identifi ers _t6,g for assigning the value of

the node. The reason for selecting ‘g’ ahead of _t6 is that ‘g’ is a user-defi ned identifi er. In

the generated quad, the value of the node _t0 / d , is assigned to the selected identifi er ‘g’.

The optimised quads regenerated from the DAG are given in Table 7.31. The optimised TAC contains 6

quads. The un-optimised TAC before optimisation containing 12 instructions is also as shown in Table 7.31.

Table 7.31 Optimised TAC regenerated from the DAG for basic block 0

Un-optimised code Optimised code regenerated

from DAG

(1) proc_begin func (1) proc_begin func

(2) _t0 := b + c (2) _t0 := b + c

(3) _t1 := _t0 * d (3) a := _t0 * d

(4) a := _t1 (4) e := f * a

(5) _t2 := f * a (5) f := _t0 * e

(6) e := _t2 (6) g := _t0 / d

(7) _t3 := b + c

(8) _t4 := _t3 * e

(9) f := _t4

(10) _t5 := b + c

(11) _t6 := _t5 / d

(12) g := _t6

7.2.9.7 Optimising Transformations on DAG The conversion of the quads pertaining to a basic block

into DAG and the subsequent generation of the optimised quads from the DAG results in several optimising

transformations taking place on the input quads. In this section, we discuss about how the optimising

transformations like common sub-expression elimination, dead store elimination, copy propagation, etc. occur

during the process of constructing a DAG and subsequent regeneration of the optimised quads.

 Code Optimisation 455

In the algorithm for constructing the DAG from the input quads (Algorithm 7.2), there is a check made

to fi nd if there is an existing node with the same children (given by the line node_res = fi nd_dag_node (op,

node_arg1, node_arg2);). A new node is created only when such a node does not exist. This action allows

us to detect common sub-expressions and eliminate the re-computation of the same. For example, consider

the DAG shown in Fig. 7.24 resulting from the basic block in Fig. 7.5. The common sub-expression

(b + c) is computed thrice in the input code at the quads (2), (7) and (10). These three computations are

translated into a single node in the DAG (Node #5) having attached identifi ers as _t0, _t3 and _t5. When

the reconstruction of the quads takes place from the DAG, the computation is only carried out once, stored

in the selected identifi er _t0 and reused later. This illustrates how the DAG construction scheme identifi es

the common sub-expressions and helps in eliminating its re-computation later during the reconstruction of

the optimised quads from the DAG.

During the DAG construction process multiple identifi ers are attached to a DAG node. All of these

identifi ers hold the same value. During the reconstruction of the quads from the DAG, we select only one

of the identifi er among the attached identifi er list to represent the value. We generate additional assignment

statements only if there are other user defi ned variables in the attached identifi er list. This eliminates

unnecessary assignments of the form a: = b. For example, consider the DAG shown in Fig. 7.24 resulting

from the basic block in Fig. 7.5. The input quad (5) _t2 := f * a resulted in the DAG node 9. The next

input quad (6) e := _t2, resulted in adding an attached identifi er ‘e’ to the DAG node #9. When the DAG is

traversed for generation of optimised quads, the node 9 results in a single quad e := f * d. No assignment

is made to _t2, since it is not a user-defi ned variable. This eliminated the assignment e := _t2. Also, it

allows the use of ‘e’ instead of _t2 (copy propagation) in further generation of quads. This illustrates how

copy propagation is facilitated in the process of construction of DAG and the subsequent regeneration of

optimised quads.

The elimination of common sub-expression and copy propagation transformations are implicit to

the process of construction of DAG and the subsequent regeneration of optimised quads. There are

other optimising transformations like the constant folding and elimination of dead code that can also be

accomplished by revising the DAG before the generation of optimising quads.

Constant folding can be implemented by traversing the DAG and trimming it at the points where there

are constants as children. Consider the sample input source and its corresponding intermediate code shown

in Table 7.32. The DAG built for block 0 using Algorithm 7.2 is shown in Fig. 7.25. The nodes of the DAG

shown in Fig. 7.25 are numbered according to the order of creation. The segment of the DAG containing

PROC_BEGIN has been ignored for simplicity.

Table 7.32 Input source and intermediate code

Input source TAC

1 int a[45]; (1) proc_begin func

2 (2) _t0 := 5 * 4

3 int func() (3) _t1 := &a

4 { (4) _t1[_t0] := 25

5 (5) _t2 := 6 * 4

6 a[5]=25; (6) _t3 := &a

7 a[6]=30; (7) _t3[_t2]: = 30

8 } (8) label .L0

(9) proc_end func

456 Principles of Compiler Design

Fig. 7.25 DAG

In order to implement constant folding the DAG is traversed in the order of creation of the

nodes. During the node traversal, if we fi nd an interior node having class 1 operator (ADD, MUL,

DIV, SUB, etc.) with both children as constants, we perform constant folding. For example, in the

DAG we see in Fig. 7.25, the node 3 is an interior node (MUL) having two children, which are

constants, namely 5 and 4. Node 3 is replaced by a leaf node whose value is 20 (result of 5 * 4). If the

children do not have any other parents apart from the node in consideration and they do not have

any attached user defi ned identifi ers, they are removed from the DAG. The leaf node numbered 1

(label 5) does not have any other parents apart from node number 3, hence it is removed from the DAG.

The other child, namely the node numbered 2 (label 4), is not removed, since it has another parent (node

number 9). The DAG after making these changes is shown in Fig. 7.26.

Fig. 7.26 DAG after performing constant folding at node number 3

 Code Optimisation 457

In a similar way, the node numbered 9 is another candidate for performing constant folding, since both

of its children are constants and the operator is MUL. The DAG after performing constant folding on node

number 9 is shown in Fig. 7.27.

Fig. 7.27 DAG after performing constant folding on node number 9

The DAG in Fig. 7.27 is then traversed for generating the optimised quads as explained in Algorithm

7.3. The generated optimised quads for the DAG in Fig. 7.27 is shown below:

Table 7.33 Regenerated quads

Optimised code regenerated from DAG

(0) proc_begin main

(1) _t1: = &arr1

(2) _t1[20] := 25

(3) _t1[24] := 30

(4) label .L0

(5) proc_end main

The above example illustrates how constant folding transformation can be performed on the unoptimised

quads using the DAG.

Another optimising transformation—dead store elimination can also be implemented using the DAG

built for a basic block. Dead store elimination is implemented by traversing the DAG and removing root

nodes that do not have any user defi ned variables attached to it. A root node is a node in DAG that does not

have any parents.

Consider the code snippet and its corresponding intermediate code shown in Table 7.34 for understand-

ing the elimination of dead store using the DAG. The DAG for the block 0 built using Algorithm 7.2 is

shown in Fig. 7.28.

458 Principles of Compiler Design

Table 7.34 Input source and intermediate code

Input source TAC

1 int a,b,c,d; (1) proc_begin func

2 int x,y,z; (2) _t0: = a + b

3 (3) x := _t0

4 void func () (4) _t1 := b + c

5 { (5) y := _t1

6 x = a + b; /* Dead Store */ (6) _t2 := d + a

7 y = b + c; (7) x := _t2

8 x = d + a; (8) label .L0

9 } (9) proc_end func

Fig. 7.28 DAG

In the DAG shown in Fig. 7.28 observe the node numbered 3. It has no parent. The list of identifi ers

attached to it contains of only one identifi er _t0—a compiler-generated temporary that is not user defi ned.

This node meets both the criteria of (1) not having any parent and (2) not having any user-defi ned variables

attached to it. This node indicates a dead store and can be eliminated. The new DAG after the elimination

of node 3 is shown in Fig. 7.29.

Fig. 7.29 Modifi ed DAG after elimination of node 3

The quads for the function regenerated from the DAG in Fig. 7.29 are shown below.

Optimised code regenerated from DAG

(0) proc_begin func

(1) y := b + c

(2) x := d + a

(3) label .L0

(4) proc_end func

 Code Optimisation 459

In the cases of programs containing multiple dead stores, repeated application of the above mentioned

criteria in the DAG and removal of DAG nodes, eliminates all of the dead stores in the basic block.

To summarise, the process of making the DAG, revising it, and the subsequent regeneration of the

optimised quads from the DAG helps in making the following optimising transformations within a basic

block (a) common sub-expression elimination (b) copy propagation (c) removal of redundant assignments

(d) constant folding and (e) dead store elimination.

7.2.9.8 Example 2—Local Optimisation using DAG This section demonstrates the toy C compiler

(mycc) performing local optimisation of intermediate code by making the transformations like common

sub-expression elimination, copy propagation, etc. The toy C compiler ‘mycc’ performs local optimisation

by (a) constructing the DAG from the un-optimised TAC (Algorithm 7.2) and (b) regenerating the optimised

quads from the DAG (Algorithm 7.3) as described in the preceding section.

The toy C compiler takes as input, a sample C input source and gives out (a) unoptimised TAC and

(b) the locally optimised TAC. The dialog below shows ‘mycc’ taking in some sample input C sources,

printing out unoptimised and locally optimised intermediate code in TAC format.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyzer

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building ‘mycc’ - A Toy Compiler for C Language

$ g++ -DCHAP7_EX2 -DICGEN -g -Wall ic_gen.cc optimise.cc target_code gen.cc mycc.cc
semantic_analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe

Common Sub-Expression Elimination Transformation

$ cat -n test2a.c
 1 /*

 2 Common Sub-expression

 3 */

 4 int a,b,c,d,e,f,g;

 5

 6 void func()

 7 {

 8

 9 int i,x;

 10

 11 a = (b + c)*d ;

 12 e = f * a ;

 13 f = (b + c)*e;

 14 g = d / (b + c);

 15

 16 }

$./mycc -i -O local -v test2a.c

460 Principles of Compiler Design

TAC Before optimisation

(0) proc_begin func

(1) _t0: = b + c

(2) _t1: = _t0 * d

(3) a: = _t1

(4) _t2: = f * a

(5) e: = _t2

(6) _t3 := b + c

(7) _t4 := _t3 * e

(8) f: = _t4

(9) _t5 := b + c

(10) _t6 := d / _t5

(11) g := _t6

(12) label .L0

(13) proc_end func

TAC After Local Optimization

(0) proc_begin func

(1) _t0 := b + c

(2) a := _t0 * d

(3) e := f * a

(4) f := _t0 * e

(5) g := d / _t0

(6) label .L0

(7) proc_end func

Copy Propagation Transform

$ cat -n test2b.c
 1 /*

 2 Copy Propagation

 3 */

 4

 5 int a,b,c,d,e,f,g;

 6

 7 void func()

 8 {

 9

 10 int i,x;

 11

 12 b = a;

 13

 14 d = (b + c)*f;

 15 e = (a + c)*g ;

 16 }

$./mycc -i -O local -v test2b.c
TAC Before optimisation

(0) proc_begin func

(1) b := a

(2) _t0 := b + c

(3) _t1 := _t0 * f

(4) d := _t1

(5) _t2 := a + c

(6) _t3 := _t2 * g

(7) e := _t3

 Code Optimisation 461

(8) label .L0

(9) proc_end func

TAC After Local Optimisation

(0) proc_begin func

(1) b := a

(2) _t0 := a + c

(3) d := _t0 * f

(4) e := _t0 * g

(5) label .L0

(6) proc_end func

Constant Folding Transformation

$ cat -n test2c.c
 1 /*

 2 Constant Folding

 3 */

 4

 5 int a,b,c,d,e,f,g;

 6

 7 int func1()

 8 {

 9 int i;

 10

 11 b = 5;

 12 a = 6 ;

 13

 14 d = f / (b * a) ;

 15 e = g /f ;

 16

 17 }

 18

$./mycc -i -O local -v test2c.c
TAC Before optimisation

(0) proc_begin func1

(1) b := 5

(2) a := 6

(3) _t0 := b * a

(4) _t1 := f / _t0

(5) d := _t1

(6) _t2 := g / f

(7) e := _t2

(8) label .L0

(9) proc_end func1

TAC After Local Optimisation

(0) proc_begin func1

(1) b := 5

(2) a := 6

(3) d := f / 30

(4) e := g / f

(5) label .L0

(6) proc_end func1

Dead Assignment Elimination Transformation

462 Principles of Compiler Design

$ cat -n test2d.c
 1 /*

 2 Dead Store

 3 */

 4

 5 int a,b,c,d;

 6 int x,y,z;

 7

 8 void func ()

 9 {

 10

 11 x = a + b; /* Dead Store */

 12 y = b + c;

 13 x = d + a;

 14 }

$./mycc -i -O local -v test2d.c
TAC Before optimisation

(0) proc_begin func

(1) _t0 := a + b

(2) x := _t0

(3) _t1 := b + c

(4) y := _t1

(5) _t2 := d + a

(6) x := _t2

(7) label .L0

(8) proc_end func

TAC After Local Optimization

(0) proc_begin func

(1) y := b + c

(2) x := d + a

(3) label .L0

(4) proc_end func

All of the transformations at Work

$ cat -n test2e.c
 1 /*

 2 All the Transformations at Work

 3 (1) Common Expression Elimination

 4 (2) Constant Propagation

 5 (3) Constant Folding

 6 (4) Dead Assignment Elimination

 7 */

 8 int a[45];

 9

 10 int func()

 11 {

 12 a[5]=25;

 13 a[6]=30;

 14 }

 15

$./mycc -i -O local -v test2e.c
TAC Before optimisation

(0) proc_begin func

 Code Optimisation 463

(1) _t0 := 5 * 4

(2) _t1 := &a

(3) _t1[_t0] := 25

(4) _t2 := 6 * 4

(5) _t3 := &a

(6) _t3[_t2] := 30

(7) label .L0

(8) proc_end func

TAC After Local Optimization

(0) proc_begin func

(1) _t1 := &a

(2) _t1[20] := 25

(3) _t1[24] := 30

(4) label .L0

(5) proc_end func

7.2.9.9 Properties of DAG In this section, we discuss about some of the important properties of a

DAG. We try and understand these properties by looking at the DAG construction process for a sample

intermediate code.

Consider the input source and the TAC generated by the intermediate code generator in Table 7.35. There

are several points that can be observed from Table 7.35.

 (a) In the TAC, there is one basic block spanning from the quad (0) through (10). This basic block is

essentially the core of the input source translated to the three address code.

 (b) The values of ‘y1’ and ‘y2’ are used in the block (in quad 1) but are not computed in this block. The

identifi ers ‘y1’ and ‘y2’ are considered as input to the block.

 (c) The value of ‘x1’ computed in the quad (10) can be potentially used in a succeeding block, if any.

The value of ‘x1’ computed in the quad (2) cannot be used in the succeeding block, since it is

overwritten in quad (10). The values of ‘x1’, ‘x2’, ‘x4’ and ‘x3’ computed at the quads 10, 9, 8 and 6

are considered as output from the block.

Table 7.35 Input source and the intermediate code

Input source TAC

1 int x1, x2, x3, x4, y1, y2; (0) proc_begin func

2 (1) _t0 := y1 + y2

3 void func() (2) x1 := _t0

4 { (3) _t1 := x1 + y2

5 x1 = y1 + y2 ; (4) x2 := _t1

6 x2 = x1 + y2 ; (5) _t2 := x1 + x2

7 x3 = x1 + x2 ; (6) x3 := _t2

8 x4 = x1 + y2 ; (7) _t3 := x1 + y2

9 x2 = 0; (8) x4 := _t3

10 x1 = x3 ; (9) x2 := 0

11 } (10) x1 := x3

(11) label .L0

(12) proc_end func

Figure 7.30 depicts the construction of DAG for the TAC shown above. There are several properties of
the DAG that we can understand by looking at the DAG construction process and the nal DAG arrived at
in step (D) of the gure.

464 Principles of Compiler Design

Fig. 7.30 DAG construction process

 Code Optimisation 465

 1. The nal DAG in (D) contains two leaves labeled ‘y1’ and ‘y2’. These variables ‘y1’ and ‘y2’ are the
input variables to the block that manifest as leaves in the DAG.

 2. The variable ‘x3’ was attached to node # 5 in (C) and it continued to be attached to it till the nal
DAG in (D). The variable ‘x3’ can be potentially used in the succeeding block if any, and it gets its
 nal value from node # 5. In a similar way, the variable ‘x4’ was attached to node # 5 in (C) and it
continued to be attached to it till the Final DAG in (D). The variable ‘x4’ can be potentially used in
the succeeding block if any, and it gets its nal value from node # 5. The variable ‘x1’ is attached
to node # 5 and variable ‘x2’ is attached to node # 6 in step (D), which is also the fi nal step in the

DAG. The variables ‘x2’ and ‘x3’ can be potentially used in the succeeding block if any, and they

derive their fi nal value from node 5 and 6 respectively. The variables ‘x1’, ‘x2’, ‘x3’ and ‘x4’ are all

examples of output variables identifi ed by the fact that they are attached to a node at some stage in

the DAG construction process and continue to stay attached till the fi nal DAG.

 3. The fi rst evaluation of the sub-expression ‘x1 + y2’ happened in step (B), when the node # 5 was

created. The expression ‘x1 + y2’ is identifi ed as common during the DAG construction process,

when in step (C) we have the variables ‘_t3’ and ‘x4’ being attached on node # 5. The common sub-

expressions get identifi ed in the process of constructing the DAG.

 4. In a DAG, all the variables that hold the same values are all attached to the same node ‘n’. For

example, _t2, x3 and x1 all hold the same value as given by node # 5 as seen from the fi nal DAG.

The reconstruction of TAC from the DAG uses this property in eliminating unnecessary assignments

of the form ‘x := y’. The optimised TAC generated from the DAG contains no assignments to any of

the temporary variables, unless they are necessary.

7.2.9.10 Arrays, Pointers and Procedure Calls in DAG The algorithms presented in the previous

section for DAG construction and IC regeneration have some limitations with respect to handling of arrays,

pointers and procedure calls in the input source. In this section, we identify those limitations and suggest

improvements to the algorithms to handle them.

Arrays

In some of the cases of input source containing array references, the DAG construction and IC regeneration

algorithms in the form explained previously result in incorrect generation of optimised code. In this

section, we show an example of input source using array references, where the generated optimised code is

incorrect. Later we look at the modifi cation necessary in the DAG construction algorithm to fi x the issue of

incorrect generation of optimised code.

Consider the input source given in Table 7.36. It contains a sequence of array references—a read from an

array in the form of arr[i], a write into array in the form of arr[j], followed by a read from array again in the

form of arr[i] as seen in lines 6, 7 and 8 respectively. Table 7.36 also shows the intermediate code, before

and after the local optimisation as given out by ‘mycc’ toy C compiler using the DAG construction and IC

regeneration algorithms discussed in the previous sections.

Consider the optimised TAC instructions in Table 7.36. The quads (1) through (4) in the optimised TAC

are correct. They represent the read of arr[i] into the identifi er ‘x’. The quad (5) showing an assignment

‘z = x’ is incorrect. We need to step back to the input source to understand why the quad (5) is incorrect.

In-between the two reads of arr[i] at line 6 and line 8 in the input source, there is a possibility of a write at

the location arr[i]. This happens when ‘i’ and ‘j’ have the same value. Thus, we cannot be assured that ‘z’

and ‘x’ would be equal all the time. Hence the quad (5) in the optimised TAC is incorrect. The correct code

would need to read the value of arr[i] again and store it in ‘z’.

466 Principles of Compiler Design

Table 7.36 Input source and the intermediate code

Input source Un-optimised TAC Optimised TAC

1 int arr[50];

2 int x,y,z;

3

4 int func(int i,int j)

5 {

6 x = arr[i];

7 arr[j]=y;

8 z = arr[i];

9 }

10

(0) proc_begin func

(1) _t0 := i * 4

(2) _t1 := &arr

(3) _t2 := _t1[_t0]

(4) x := _t2

(5) _t3 := j * 4

(6) _t4 := &arr

(7) _t4[_t3] := y

(8) _t5 := i * 4

(9) _t6 := &arr

(10) _t7 := _t6[_t5]

(11) z := _t7

(12) label .L0

(13) proc_end func

(0) proc_begin func

(1) _t0 := i * 4

(2) _t1 := &arr

(3) x := _t1[_t0]

(4) z := x

(5) _t3 := j * 4

(6) _t1[_t3]: = y

(7) label .L0

(8) proc_end func

In order to appreciate why incorrect optimised TAC has been generated for the above example, we need

to take a look at the DAG for the same. The DAG for the input source in Table 7.36 is shown in Fig. 7.31.

Fig. 7.31 DAG using the original DAG construction algorithm

Observe that the DAG construction process has identifi ed arr[i] as a common expression and attached

the identifi ers x and z to it (see node #6). This is the genesis of incorrect code generation.

The algorithm that we used for constructing the DAG (Algorithm 7.2) needs to be modifi ed to overcome

this fl aw and amend the generation of optimised code for array references. The revision in the algorithm is

to process the assignments into arrays given by L_INDEX_ASSIGN of the form a[b] = c differently. In the

modifi ed version of the algorithm, at the time of processing of the quad with operator L_INDEX_ASSIGN,

we mark all the nodes depending on the base address ‘a’ as ‘killed’. The notion of killing a node is to make

it ineligible to have any more identifi ers attached to it. In other words, a killed node cannot be returned,

when the algorithm looks for common sub-expression. This forces the DAG construction algorithm to

create a new node on any further access of the array using ‘a’ as the base address.

 Code Optimisation 467

The DAG constructed by using the modifi ed DAG construction algorithm for the same input source

is shown in Fig. 7.32. It shows the node # 6 (shaded in gray) as killed, i.e. ineligible to have any more

identifi ers attached. The node # 6 is killed during the processing of the input TAC statement (7) _t4[_t3]

: = y (L_INDEX_ASSIGN). The subsequent processing of the input statement (10) _t7 := _t6[_t5] creates

a new node (node # 12), since node # 6 has been killed. Thus, we fi nd that the _t7 and z are not attached to

node #6 and falsely identifi ed as a common sub-expression.

Fig. 7.32 DAG using the modifi ed DAG construction algorithm

The optimised code generated from this DAG is given in Fig. 7.33. This set of quads is proper from the

correctness standpoint.

Fig. 7.33 Optimised quads

Pointers

In some of the cases of input source containing usage of pointers, the DAG construction and IC

regeneration algorithms in the form explained previously result in incorrect generation of optimised code.

In this section, we show an example of input source using pointers, where the generated optimised code is

incorrect. Later we look at the modifi cation necessary in the DAG construction algorithm to fi x the issue of

incorrect generation of optimised code.

When there is a write into a variable using a pointer, the existing algorithm causes inaccuracies in the

common sub-expression elimination leading to incorrect optimised code generation. A simple manifestation

of write into a variable using a pointer and an incorrect identifi cation of common sub-expression is shown

468 Principles of Compiler Design

in Table 7.37. The optimised TAC shown in Table 7.37 has incorrectly identifi ed ‘a + b’ as a common

sub-expression, since there is no explicit write into ‘a’ or ‘b’ in the code between the two computations of

‘a + b’. In reality, the variable ‘a’ is being written into indirectly by having a pointer to it.

Table 7.37 Writing into variable via explicit pointer

Input source Un-optimised TAC Optimised TAC

1 int a,b,c,d; (0) proc_begin fun (0) proc_begin fun

2 (1) _t0 := a + b (1) c := a + b

3 int fun () (2) c := _t0 (2) d := c

4 { (3) _t1 := &a (3) p := &a

5 (4) p := _t1 (4) p[0] := 100

6 int *p; (5) p[0] := 100 (5) label .L0

7 (6) _t2 := a + b (6) proc_end fun

8 c = a + b; (7) d := _t2

9 p = &a ; (8) label .L0

10 *p = 100; (9) proc_end fun

11

12 /* NOT cse */

13 d = a + b;

14

15 }

In the above case, the memory or the variable where the pointer was pointing to was clear from the

code. In some other scenarios, it is diffi cult to pinpoint which variable is being written into or read from,

especially in the cases where the control can fl ow in multiple paths. This type of ambiguity in the memory

location that a pointer is pointing to (called ambiguous pointer), also affects common sub-expression

elimination in a similar fashion.

Consider the program shown in Table 7.38, which shows the input source, intermediate code, before and

after the local optimisation as given out by the compiler using the DAG construction and IC regeneration

algorithms that we had discussed in the previous sections.

Table 7.38 Writing into memory location via ambigious pointer

Input source Un-optimised TAC Optimised TAC

1 (0) proc_begin fun (0) proc_begin fun

2 int a,b,c,d; (1) if x > 10 goto .L0 (1) if x > 10 goto .L0

3 (2) goto .L1 (2) goto .L1

4 void fun(int x) (3) label .L0 (3) label .L0

5 { (4) _t0: = &b (4) p := &b

6 int *p; (5) p := _t0 (5) goto .L2

7 (6) goto .L2 (6) label .L1

8 if(x> 10){ (7) label .L1 (7) p := &a

9 p = &b; (8) _t1 := &a (8) label .L2

10 }else{ (9) p := _t1 (9) c := a + b

11 p = &a; (10) label .L2 (10) d := c

12 } (11) _t2 := a + b (11) p[0] := 25

13 (12) c := _t2 (12) label .L3

 Code Optimisation 469

14 c = a + b; (13) p[0] := 25 (13) proc_end fun

15 (14) _t3 := a + b

16 /* a or b is overwritten */ (15) d := _t3

17 *p = 25; (16) label .L3

18 (17) proc_end fun

19 d = a + b; /* NOT cse */

20

21 }

22

Observe that at line 17 of the input source, the pointer could be writing into ‘a’ or ‘b’ (ambiguous)

depending on whether the fl ow of control was via line 9 or line 11. Since ‘a’ or ‘b’ could be overwritten, the

evaluation of ‘a + b’ in line 19 will be different from ‘a + b’ in line 14. Hence, the expression ‘a + b’ cannot

be termed as a common sub-expression. The DAG construction algorithm discussed previously needs to be

adapted to take care of write into variables pointed to using an ambiguous pointer such as ‘p’ above.

In order to fi x the above-mentioned issues with respect to incorrect identifi cation of common sub-

expression in the optimised code using pointers, the DAG construction algorithm is modifi ed as follows.

During a write into memory via an explicit pointer (L_INDEX_ASSIGN), the DAG construction algorithm

identifi es the variable ‘v’, that is being written to by a pointer. The current node ‘n’ associated with ‘v’ is

then found using get_current(). The parents of ‘n’ are then ‘killed’ because they use the current value of ‘v’,

which is being overwritten via pointer. In cases where the pointer is ambiguous, we kill all the nodes that

have an identifi er attached. In both the cases, the killing of nodes forces an expression to be re-evaluated

after the pointer is written into, resulting in correct optimal code.

Let’s consider the examples we had seen above in Table 7.37 and Table 7.38, in which the generated

optimised code, was incorrect. We shall revisit the same examples, this time with the above-mentioned

modifi cations to the DAG construction algorithm and see how it helps us generate correct optimal code.

Consider the source code seen earlier in Table 7.37, for illustrating the incorrect generation of optimised

code owing to a write using a pointer. Figure 7.34 shows the DAG constructed using the original and the

modifi ed DAG construction algorithm (as presented above) for the same input source. The corresponding

optimised code generated from both of these DAGS is also shown. We can see from Fig. 7.34 that the node

3 has been killed (shaded) in the case of DAG created from modifi ed algorithm. This prevents the node

3 from having more attached identifi ers. The node # 3 is killed during the processing of TAC statement

(5) p[0] := 100, (L_INDEX_ASSIGN) of the input TAC. During the processing of the statement (6) _t2 :=

a + b, the expression ‘a + b’ is not considered as a common sub-expression because the node # 3 is already

‘killed’, i.e. made ineligible for attaching identifi ers. This forces the creation of a new node # 8 for storing

the expression ‘a + b’.

The case of handling a write using an ambiguous pointer is relatively simpler. A write using an

ambiguous pointer (L_INDEX_ASSIGN) causes all the nodes having an attached identifi er to be ‘killed’.

This prevents incorrect identifi cation and elimination of common sub-expressions.

470 Principles of Compiler Design

Fig. 7.34 Write via pointer

Procedure Calls

In some of the cases of input source containing calls to procedures, the DAG construction and IC

regeneration algorithms in the form explained previously result in incorrect generation of optimised code.

In this section, we look at some examples of input source using procedure calls, where the generated

optimised code is incorrect. Later we look at the modifi cation necessary in the DAG construction algorithm

to fi x the issue of incorrect generation of optimised code.

Consider the input source shown in Table 7.39. A pointer ‘p’, pointing to the variable ‘x’ is being passed

into a function ‘func1’. It is possible that the pointer ‘p’ is de-referenced to either read or write into the

variable ‘x’ within the function ‘func1’. The expression ‘x + y’ cannot be a common sub-expression across

the function invocation, since the value of ‘x’ can be changed in ‘func1’. The optimised code in Table 7.39,

does not take this into account and judges ‘x + y’ as a common sub-expression. The DAG construction

algorithm needs to be modifi ed to distinguish the variables that can be modifi ed by means of call to a

procedure and treat common sub-expressions accordingly. In languages like C, where the parameter passing

 Code Optimisation 471

is call-by-value, the only way a variable ‘v’ in the caller can be modifi ed by a callee is by passing a pointer

to ‘v’ as parameter to the callee. In C ++ , which supports both call-by-value and call-by-reference, care

needs to be taken to ascertain which variable can be modifi ed by the callee.

Table 7.39 Eff ect of procedure call on CSE

Input Source Un-optimised TAC Optimised TAC

1 int func1(int *p); (0) proc_begin func (0) proc_begin func

2 (1) _t0 := x + y (1) a := x + y

3 int a,b; (2) a := _t0 (2) b := a

4 (3) _t1 := &x (3) p := &x

5 void func(int x,int y) (4) p := _t1 (4) param p

6 { (5) param p (5) call func1 4

7 int *p; (6) call func1 4 (6) goto .L0

8 (7) _t2 := x + y (7) label .L0

9 a=x + y; (8) b := _t2 (8) proc_end func

10 (9) goto .L0

11 p = &x; (10) label .L0

12 (11) proc_end func

13 /* can read/write

14 into p */

15 func1(p);

16

17 /* NOT cse */

18 b = x + y;

19

20 return;

21 }

In order to fi x the above-mentioned issues in the optimised code related to the procedure calls, the DAG

construction algorithm is modifi ed in the following ways.

The processing of a call to a procedure (CALL statement) is modifi ed to kill all the DAG nodes having

an identifi er attached to it. This prevents identifi cation of common sub-expressions across a CALL

statement. This also eliminates the possibility of identifying legitimate common expressions that span

across a CALL statement. As we can see, the modifi cation is similar to the modifi cations proposed for

handling the erroneous generation of optimal code in the case of pointers.

We will now revisit the example shown in Table 7.39, with the improved algorithm and verify the

optimised code for correctness. Consider the input source shown earlier in Table 7.39, for which the

generated optimised code was incorrect. Figure 7.35 shows the DAG constructed using the original

and the modifi ed algorithm for the same input source. The corresponding optimised codes generated

from both of these DAGS are also shown. We can see from Fig. 7.35 that the nodes #3 and # 4 have

been killed (shaded) in the case of DAG created from modifi ed algorithm. This prevents the node

3 from having more attached identifi ers. The node # 3 and # 4 (nodes with attached identifi ers) were

killed during the processing of TAC statement (6) call func1 in the input TAC. During the processing

of the statement (7), the expression ‘a + b’ is not considered as a common sub-expression because

the node # 3 is already, ‘killed’, i.e. made ineligible for attaching identifi ers. This forces the creation

of a new node for storing the expression ‘a + b’. This is an illustration of the modifi cation at work.

This concludes the discussion concerning the changes required in the DAG construction algorithm in the

case of procedure calls.

472 Principles of Compiler Design

Fig. 7.35 Optimisation with a CALL statement

7.2.9.11 Example 3—Local Optimisation with DAG using the Improved Algorithm This section

demonstrates the toy C compiler (mycc) performing local optimisation of intermediate code by using the

improved DAG construction and TAC regeneration algorithms outlined in Section 7.2.9.10. The generated

optimised intermediate code using the improved algorithms do not suffer from any of the defi ciencies

presented previously and is complete in terms of correctness.

The toy C compiler takes as input, a sample C input source and gives out (a) unoptimised TAC and

(b) the locally optimised TAC. The dialog below shows ‘mycc’ taking in some sample input C sources

containing arrays, pointers and procedure calls. It prints out the unoptimised and locally optimised

intermediate code in TAC format as the output.

 Code Optimisation 473

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g + + -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyzer

$ g + + -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building ‘mycc’ - A Toy Compiler for C Language

$ g++ -DICGEN -g -Wall ic_gen.cc optimise.cc target_code_gen.cc mycc.cc semantic_
analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe

Sample Input C fi le containing array references

$ cat -n test3a.c
 1 int arr[50];

 2 int x,y,z;

 3

 4 int func(int i,int j)

 5 {

 6 x = arr[i];

 7 arr[j]=y;

 8 z = arr[i];

 9 }

 10

Intermediate code before and after optimization

$./mycc.exe -i -O local -v test3a.c
TAC Before optimisation

(0) proc_begin func

(1) _t0 := i * 4

(2) _t1 := &arr

(3) _t2 := _t1[_t0]

(4) x := _t2

(5) _t3 := j * 4

(6) _t4 := &arr

(7) _t4[_t3] := y

(8) _t5 := i * 4

(9) _t6 := &arr

(10) _t7 := _t6[_t5]

(11) z := _t7

(12) label .L0

(13) proc_end func

TAC After Local Optimization

(0) proc_begin func

(1) _t0 := i * 4

(2) _t1 := &arr

(3) x := _t1[_t0]

(4) _t3 := j * 4

(5) _t1[_t3] := y

(6) _t5 := i * 4

(7) _t6 := &arr

474 Principles of Compiler Design

(8) z: = _t6[_t5]

(9) label .L0

(10) proc_end func

Sample Input C fi le with a write via pointer.Affects CSE

$ cat -n test3d.c
 1 int a,b,c,d;

 2

 3 int fun ()

 4 {

 5

 6 int *p;

 7

 8 c = a + b;

 9 p = &a ;

 10 *p = 100;

 11

 12 /* NOT cse */

 13 d = a + b;

 14

 15 }

Intermediate code before and after optimization

$./mycc.exe -i -O local -v test3d.c
TAC Before optimization

(0) proc_begin fun

(1) _t0 := a + b

(2) c := _t0

(3) _t1 := &a

(4) p := _t1

(5) p[0] := 100

(6) _t2 := a + b

(7) d := _t2

(8) label .L0

(9) proc_end fun

TAC After Local Optimization

(0) proc_begin fun

(1) c := a + b

(2) p := &a

(3) p[0] := 100

(4) d := a + b

(5) label .L0

(6) proc_end fun

Sample Input C fi le using pointer to write into variable

Ambiguous pointer. Affects CSE

$ cat -n test3f.c
 1

 2 int a,b,c,d;

 3

 4 void fun(int x)

 5 {

 6 int *p;

 7

 8 if(x> 10){

 9 p = &b;

 Code Optimisation 475

 10 }else{

 11 p = &a;

 12 }

 13

 14 c = a + b;

 15

 16 /* a or b is overwritten */

 17 *p = 25;

 18

 19 d = a + b; /* NOT cse */

 20

 21 }

 22

Intermediate code before and after optimization

$./mycc.exe -i -O local -v test3f.c
TAC Before optimization

(0) proc_begin fun

(1) if x > 10 goto .L0

(2) goto .L1

(3) label .L0

(4) _t0: = &b

(5) p := _t0

(6) goto .L2

(7) label .L1

(8) _t1 := &a

(9) p := _t1

(10) label .L2

(11) _t2 := a + b

(12) c := _t2

(13) p[0] := 25

(14) _t3 := a + b

(15) d := _t3

(16) label .L3

(17) proc_end fun

TAC After Local Optimization

(0) proc_begin fun

(1) if x > 10 goto .L0

(2) goto .L1

(3) label .L0

(4) p := &b

(5) goto .L2

(6) label .L1

(7) p := &a

(8) label .L2

(9) c := a + b

(10) p[0] := 25

(11) d := a + b

(12) label .L3

(13) proc_end fun

Sample Input C fi le with a procedure call passing a pointer.

The called procedure can write using the pointer. This Affects CSE.

$ cat -n test3h.c
 1 void func1(int *p);

 2

476 Principles of Compiler Design

 3 int a,b;

 4

 5 void func(int x,int y)

 6 {

 7 int *p;

 8

 9 a=x + y;

 10

 11 p = &x;

 12

 13 /* can read/write

 14 into p */

 15 func1(p);

 16

 17 /* NOT cse */

 18 b = x + y;

 19

 20 return;

 21 }

Intermediate code before and after optimization

$./mycc.exe -i -O local -v test3h.c
TAC Before optimization

(0) proc_begin func

(1) _t0 := x + y

(2) a := _t0

(3) _t1 := &x

(4) p : = _t1

(5) param p

(6) call func1 4

(7) _t2 : = x + y

(8) b : = _t2

(9) goto .L0

(10) label .L0

(11) proc_end func

TAC After Local Optimization

(0) proc_begin func

(1) a : = x + y

(2) p : = &x

(3) param p

(4) call func1 4

(5) b : = x + y

(6) goto .L0

(7) label .L0

(8) proc_end func

7.2.10 Global Optimisation

7.2.10.1 Introduction The global optimisation of the intermediate code is more complex than the

local one, since it needs to take care of variety of issues like say branching in the fl ow of control, usage

of variables across basic blocks, loop information, and so on, while constructing optimised code. We start

the study of global optimisation for the intermediate code with discussion on some of the basic concepts in

global optimisation.

 Code Optimisation 477

Flow Graph

In local optimisation, the focus was essentially on the quads within a basic block, where the fl ow of control

was in a straight line. In global optimisation, we are also concerned about how the fl ow of control goes

from one block to another. The decisions taken for optimisation need to take into account all possible ways

Fig. 7.36 Input source, IC after local optimisation and the fl ow graph

478 Principles of Compiler Design

the control can fl ow. The information about the fl ow of the entire procedure, i.e. the possible blocks to get

executed after a particular block B is represented in a graph called as the fl ow graph. Each node in a fl ow

graph is a basic block. In a fl ow graph, there is a directed edge from the block B1 and B2, only if (a) There

is a conditional jump to the block B2 from the last quad of B1 or (b) the fl ow of control goes to B2 after B1

sequentially.

Figure 7.36 shows an input source, IC, after local optimisation and the corresponding fl ow graph.

Remember that the input to global optimisation is the locally optimised intermediate code. The starting

node in a fl ow graph is called as initial node. This is the basic block whose leader is the fi rst TAC statement

in the procedure. The node B0 in Fig. 7.36 is the initial node. The fl ow of control can go to block B1 or B2

from the block B0. The blocks B1 and B2 are called the successors of the block B0. Block B0 is called as a

 predecessor of block B1. B0 is called as the predecessor for block B2 also.

Point and Path

There are a couple of abstractions that are commonly used during the discussion on global optimisation,

namely a point and path.

A point is a place of reference that can be found at (a) before the fi rst quad in a basic block (b) after

the last quad in a basic block and (c) In between two quads within a basic block. Figure 7.37 shows the

different points of the basic block 0 of the previous example. We can see that there are 4 points in basic

block 0, given by p0_b0, p1_b0, p2_b0 and p3_b0. We have suffi xed the block number b0 to the point

name to clearly identify that the point belongs to block 0. There are 3 quads and 4 points in the basic block

0. In general, there are (i + 1) points for a basic block containing ‘i’ quads.

Fig. 7.37 Points

Figure 7.38 shows a part of the fl ow graph containing the basic blocks B0, B1, B2 and B3 for the same

example. It shows all the points in each of those basic blocks. A path is a sequence of points in which the

control can fl ow. For example, there is a path between the points ‘p0_b0’ and ‘p6_b2’ given by the sequence

of points, p0_b0, p1_b0, p2_b0, p3_b0, p4_b2, p5_b2 and p6_b2. There is no path between p3_b1 and

p6_b2, since there is no sequence of points that can take the control from p3_b1 to p6_b2. Observe that

there are two possible paths from p0_b0 to p7_b3. The path1 consists of the sequence of points, p0_b0, p1_

b0, p2_b0, p3_b0, p3_b1, p4_b1, and p7_b3. The path2 consists of the sequence of points, p0_b0, p1_b0,

p2_b0, p3_b0, p4_b2, p5_b2, p6_b2, p7_b2, and p7_b3. It is not common to illustrate each of the points in

the fl ow graph, the reader needs to absorb the idea of the points and path from a given fl ow graph.

Defi nition and Usage of Variables

The concepts of defi nition and usage of variables are used extensively during the study of global

optimisation. Consider the input source and the TAC (locally optimised) shown in Table 7.40 to understand

those twin concepts. The quad (1) defi nes the variable ‘v3’. In other words, the quad (1) assigns a value to

 Code Optimisation 479

the variable ‘v3’. The quad(1) uses the variables ‘v1’ and ‘v2’ to defi ne ‘v3’. Similarly, quad (5) defi nes ‘v4’

and uses ‘v1’ and ‘v2’.

Fig. 7.38 Points and paths

480 Principles of Compiler Design

Table 7.40 Defi ne and use

Input source Locally optimised TAC

 1 int v1,v2,v3,v4,v5; (0) proc_begin func

 2 (1) v3: = v1 + v2

 3 int func(int c) (2) if c > 100 goto .L0

 4 { (3) goto .L1

 5 v3 = v1 + v2 ; (4) label .L0

 6 (5) v4 := v1 + v2

 7 if(c > 100){ (6) v1 := 0

 8 v4 = v1 + v2; (7) label .L1

 9 v1 = 0; (8) v5 := v1 + v2

10 } (9) label .L2

11 (10) proc_end func

12 v5 = v1 + v2 ;

13 }

14

In the above example, the assignment to ‘v3’ in quad (1) is explicit. There would be cases, where a

quad defi nes a variable implicitly through a pointer. As an example, consider the input source and the

corresponding three-address code in Table 7.41. In this case, the variable ‘x’ is defi ned in the quad (3) implicitly

by using the pointer ‘p’. We can say that quad (3) defi nes the variable ‘x’ assertively, since we know that the

pointer ‘p’ is unambiguously pointing to the variable ‘x’ at the time when control reaches quad (3).

Table 7.41 Defi ne via unambiguous pointer

Input source Locally optimised TAC

 1 int x,y,z; (0) proc_begin func

 2 (1) p := &x

 3 int func() (2) _t1 := y + z

 4 { (3) p[0] := _t1

 5 int *p; (4) label .L0

 6 (5) proc_end func

 7 p = &x;

 8

 9 /* x is assigned */

10 *p = y + z;

11

12 }

Table 7.42 presents another case, where the pointer ‘p’ is ambiguous, i.e. we cannot say that the quad

(10) defi nes ‘a’ or ‘b’ assertively, since it depends on how the control has passed before it came to the quad

(10). In such cases where there is a write into a variable via an ambiguous pointer, it is considered to have

defi ned all the variables that are present in the scope.

Table 7.42 Defi ning via ambiguous pointer

Input source Locally optimised TAC

 1 int a,b,c,d; (0) proc_begin fun

 2 (1) if x > 10 goto .L0

 3 void fun(int x) (2) goto .L1

 Code Optimisation 481

 4 { (3) label .L0

 5 int *p; (4) p : = &b

 6 (5) goto .L2

 7 if(x> 10){ (6) label .L1

 8 p = &b; (7) p := &a

 9 }else{ (8) label .L2

10 p = &a; (9) _t2 := c + d

11 } (10) p[0] := _t2

12 (11) label .L3

13 /* a or b is assigned */ (12) proc_end fun

14 *p = c + d;

15

16 }

17

It is also possible for a procedure call to defi ne a variable ‘v’ by passing it as a parameter using the pass-

by-reference scheme.

Data Flow Analysis

The global optimisation is performed after the local optimisation. The local optimisation would typically

have eliminated the common sub-expressions, removed dead code, performed copy propagation and other

optimisations mentioned in Section 7.3.9 at a block level. The global optimiser takes the quads that come

out of the local optimiser and works on optimising them at a global level across the blocks.

The global optimiser elicits a variety of information from the input quads in order to make informed

decisions during optimisation. It uses specialised algorithms to analyse the input quads and extract useful

details so that it can perform the optimisation of the quads.

Let’s take an example to understand the kind of information that is extracted from the input quads to

perform optimisation at a global level. Consider the input source and the intermediate code after local

optimisation shown in Table 7.43. The expression ‘v1 + v2’ has been computed in the quad (1) in the basic

block 0. When the control comes to quad (5), we can re-use the computed value of the expression ‘v1 + v2’

from the quad (1). Observe that the values of ‘v1’ and ‘v2’ have not changed from the time ‘v1 + v2’ has been

computed at (1) till the time the control reaches (5). In other words, in order to eliminate the re-computation

of the common sub-expression ‘v1 + v2’ in a global fashion at (5), it is required to fi gure out the information

that the expression ‘v1 + v2’ has been computed earlier in a different block and is readily ‘available’ for use.

The local optimisation would have taken care of eliminating a common sub-expression, if it were within

the same block. The global optimisation needs to analyse the quads in all of the basic blocks to absorb the

information about which expressions are ‘available’ and at what point. Observe that we cannot eliminate the

re-computation of the expression ‘v1 + v2’ at the quad(8), because it is not ‘available’ at that point.

Table 7.43 Input source and the TAC after local optimisation

Input source TAC after local optimisation

1 int v1,v2,v3,v4,v5; (0) proc_begin func

2 (1) v3 := v1 + v2

3 int func(int c) (2) if c > 100 goto .L0

4 {
5 v3 = v1 + v2 ; (3) goto .L1

6

482 Principles of Compiler Design

7 if(c > 100){ (4) label .L0

8 (5) v4 := v1 + v2

9 /* ‘v1 + v2’ is available (6) v1 := 0

10 here */

11 v4 = v1+v2; (7) label .L1

12 (8) v5 := v1 + v2

13 /* CSE Killed */

14 v1 = 0; (9) label .L2

15 } (10) proc_end func

16

17 /* ‘v1+v2’ is NOT available

18 here */

19 v5 = v1 + v2 ;

20 }

The information about the ‘available expressions’ that we saw in the above example is used by the global

optimiser in order to eliminate common sub-expressions at a global level. There are many other such pieces

of information like say ‘reaching defi nitions’, ‘liveness’, and so on that the global optimiser requires for

performing different types of optimisations. We study a few of them in the forthcoming sections.

The analysis of the input quads for obtaining information such as the ‘available expressions’ in the above

example is known as data fl ow analysis. By using data fl ow analysis, we collect specifi c information about

a data fl ow property. In the above example, we have computed the data fl ow property commonly called as

‘available expressions’. The algorithm used for collecting a data fl ow property say ‘available expressions’

might differ vastly from the one used for collecting another data fl ow property say ‘reaching defi nitions’.

In the next few sections, we study about some of the data fl ow properties used commonly during global

optimisation. Each of those sections is structured to discuss about (a) introduction to the data fl ow property

(b) the algorithm that is used to collect the particular data fl ow property (c) how the data fl ow property is

used to make a particular global optimisation, and (d) example demonstrating the global optimisation using

the data fl ow property.

7.2.10.2 Available Expressions

Introduction There was a brief introduction to the data fl ow property called ‘available expressions’ in

the Section 7.2.10.1. We study about that in detail in this section. Available expressions (AE) is a data fl ow

property that is computed by the global optimiser using data fl ow analysis for eliminating the re-evaluation

of common sub-expressions globally across blocks.

Let’s start off with a formal defi nition of ‘available expression’ using the notion of points and path that

we studied in Section 7.2.10.1. An expression ‘a + b’ is available at a point ‘p’, if both of the following

conditions are satisfi ed.

 (a) Every path from initial node in the fl ow graph to ‘p’ evaluates ‘a + b’.

 (b) After the last such evaluation of ‘a + b’ and before reaching ‘p’ in every path, there are no

subsequent assignments to ‘a’ or ‘b’.

Let’s use the example in Table 7.43 and check whether the expression ‘v1 + v2’ is available at the

points just before quad (5) and quad (8) using the above defi nition. The quads (5) and (8) re-compute the

expression ‘v1 + v2’, which can be avoided in case the expression is available at those points.

Figure 7.39 shows the fl ow graph of the Intermediate code after local optimisation annotated with the

individual points for the discussion.

 Code Optimisation 483

Let’s check the availability of expression ‘v1 + v2’ at the point ‘p5_b2’ using the above defi nition of

‘available expression’. There is only one path—path1 leading to p5_b2 from the initial node, which is given

by the sequence of points p0_b0, p1_b0, p2_b0, p3_b0, p4_b2 and p5_b2. The last evaluation of ‘v1 + v2’

happens at quad (1). There is no assignment to ‘v1’ or ‘v2’ after the last evaluation, along the sequence of

points in path1 mentioned above. Hence, the expression ‘v1 + v2’ is available at the point p5_b2.

Fig. 7.39 Flow graph with points

Let’s check the availability of expression ‘v1 + v2’ at the point ‘p8_b3’ using the above defi nition of

‘available expression’. There are 2 paths leading to p8_b3 from the initial node. The path1 is given by the

sequence of points, p0_b0, p1_b0, p2_b0, p3_b0, p3_b1, p4_b1, p7_b3 and p8_b3. The last evaluation of

484 Principles of Compiler Design

‘v1 + v2’ happens at quad (1) in this path. There is no assignment to ‘v1’ or ‘v2’ after the last evaluation

along the sequence of points in path1 mentioned above. The path2 is given by p1_b0, p2_b0, p3_b0, p3_b1,

p4_b2, p5_b2, p6_b2, p7_b2, p7_b3 and p8_b3. The last evaluation of ‘v1 + v2’ happens at quad (5) in this

path. There is an assignment to ‘v1’ at quad (6) after the last evaluation, in this path. This violates the condition

(b) mentioned above for the path2. Hence, the expression ‘v1 + v2’ is not available at the point p8_b3.

From the above discussion, the expression ‘v1 + v2’, is available at the point p5_b2, so it can be used

to eliminate the re-evaluation of common sub-expression at quad (5). Table 7.44 shows the TAC after local

optimisation and the TAC after eliminating the global common sub-expression—v1 + v2. We can observe

that the re-computation of the expression ‘v1 + v2’ has been avoided in the quad (5). The quads of relevance

for the elimination of the global common sub-expression ‘v1 + v2’ are shaded in gray in Table 7.44. This

is a testimony of how the information on AE is used for elimination of global common sub-expressions.

Table 7.44 Global common sub-expression elimination using AE

Input source TAC after local optimisation
TAC after elimination of global

common sub-expression

1 int v1,v2,v3,v4,v5; (0) proc_begin func (0) proc_begin func

2 (1) v3 := v1 + v2 (1) _t3 := v1 + v2

3 int func(int c) (2) if c > 100 goto .L0 (1a) v3 := _t3

4 { (2) if c > 100 goto .L0

5 v3 = v1 + v2 ; (3) goto .L1 (3) goto .L1

6 (4) label .L0

7 if(c > 100){ (4) label .L0 (5) v4 := _t3

8 (5) v4 := v1 + v2 (6) v1 := 0

9 /* ‘v1+v2’ is available (6) v1 := 0 (7) label .L1

10 here */ (8) v5 := v1 + v2

11 v4 = v1 + v2; (7) label .L1 (9) proc_end func

12 (8) v5 : = v1 + v2

13 /* CSE Killed */

14 v1 = 0; (9) label .L2

15 } (10) proc_end func

16

17 /* ‘v1 + v2’ is NOT available

18 here */

19 v5 = v1 + v2 ;

20 }

Table 7.45 illustrates more examples with information on the available expressions in order to enhance

the understanding of the same. The description here uses the input source to make conclusions on

the available expressions, just for the ease of understanding. In practice, the global optimiser elicits the

available expression information from the quads post local optimisation using the algorithms described in

the next sections.

 Code Optimisation 485

Table 7.45 Input sources and the available expressions

Input source Comments on the available expressions

1 int v1,v2,v3,v4,v5;

2

3 int func(int c)

4 {

5 v3 = v1 + v2 ;

6

7 if(c > 100){

8

9 /* ‘v1+v2’ is available here as CSE */

10 v4 = v1 + v2;

11

12 /* CSE Killed */

13 v1 = 0;

14

15 /* computing ‘v1+v2’ again */

16 v6 = v1 + v2;

17 }

18

19 /* ‘v1+v2’ is available here as CSE */

20 v5 = v1 + v2 ;

21 }

The expression ‘v1 + v2’ is available at line 10,

since the only path that reaches line #10 (5->7

->10) evaluates ‘v1 + v2’ at line #5 and there are

no subsequent assignments to ‘v1’ or ‘v2’ between

line #5 and line #10.

The line #20 can be reached in 2 ways. One of

the paths reaching line #20 is (5->7->10->13

->16->20) evaluates ‘v1 + v2’ at line #16 and

there are no subsequent assignments to ‘v1’ or

‘v2’ between line #16 and line #20 in this path.

The other path to line #20 is 5->7->20, evaluates

‘v1 + v2’ at line #5 and there are no subsequent

assignments to ‘v1’ or ‘v2’ between line #5 and

#20 in this path. Hence the expression ‘v1 + v2’ is

available at line #20.

1 int v1,v2,v3,v4,v5,v6;

2

3 int func(int c)

4 {

5 if(c > 100){

6 v3 = v1 + v2;

7 }else{

8 v4 = v1 + v2 ;

9 }

10

11 /* ‘v1+v2’ is available here as CSE */

12 v5 = v1 + v2 ;

13 }

The line #12 can be reached in 2 ways. One of the

paths reaching line #12 is (5->6->12) evaluates

‘v1 + v2’ at line #6 and there are no subsequent

assignments to ‘v1’ or ‘v2’ between line #6 and

line #12 in this path. The other path to line #12

is 5->8->12, evaluates ‘v1 + v2’ at line #8 and

there are no subsequent assignments to ‘v1’ or

‘v2’ between line #8 and #12 in this path. The

expression ‘v1 + v2’ is available at line #12, since

both the conditions (a) and (b) mentioned above

are satisfi ed.

Data Flow Analysis to Compute AE in Intermediate Code We now study about the algorithms that can

be used for computing the AE properties of a given TAC and subsequently use it for globally eliminating

common sub-expression.

We start off with some terminology.

A block generates an expression say ‘a + b’, if it evaluates ‘a + b’ and does not make any assignment to

‘a’ or ‘b’ subsequently in the block. We use the term e_GEN[B] to denote the expressions generated by a

basic block B. For example, the term e_GEN[B0] represents the expressions generated by block 0.

A block kills an expression say ‘a + b’, if it assigns a value to ‘a’ or ‘b’ and does not subsequently re-

compute the value ‘a + b’. We use the term e_KILL[B] to denote the expressions killed by a basic block B.

For example, the term e_KILL[B0] represents the expressions killed by block 0.

The generation and killing of expressions are used in tandem with ‘L’ a universal set of expressions

appearing on the right side of one or more quads of the program spanning across all the basic blocks.

Consider the sample TAC shown in Table 7.46 to understand how the universal set of expressions L, is

computed. The universal set of expressions L consists of any expression that appears on the right side of

one or more statements. By inspecting the input quads in Table 7.46, we can see that the expression ‘a + b’

486 Principles of Compiler Design

is used in quad (1). The expression ‘b * c’ is used in the quad (2) The expression ‘c + d’ is used in (3) and

(8). The expression ‘a * b’ is used in (5) and (9) The expression ‘b/c’ is used in quad (6). Thus, we have the

universal set of expressions L = {a + b, b * c, c + d, a * b, b/c}.

Table 7.46 Sample TAC

 (0) proc_begin test_func

 (1) x = a + b

 (2) y = b * c

 (3) d = c + d

 (4) if u > 100 goto .L1

 (5) x = a * b

 (6) y = b / c

 (7) b = 45

 (8) z = c + d

 (9) u = a * b

(10) label .L1

(11) proc_end test_func

In order to calculate the set of generated expressions e_GEN[B], we need to consider the points in a

block from the beginning to the end of block. For a quad ‘x := y + z’, sandwiched between two points ‘p’ and

‘q’ as shown in Fig. 7.40, the set of generated expressions at the point ‘q’ would be calculated from e_GEN, the

set of generated expression at p, as follows:

 (a) Add the expression ‘y + z’ to the set e_GEN.

 (b) Delete from e_GEN any expression that uses ‘x’.

The steps (a) and (b) would have be done in the same order for catering to situations where the operand

‘x’ on the LHS is the same as one of the operands on the RHS—‘y’ or ‘z’. The quad #3 in Table 7.46 is an

example where the operand on the LHS is ‘d’ and one of the operands on the right is also ‘d’.

p

(n) x := y + z

q

Fig. 7.40 A quad between two points

Let’s take the example of basic block shown in Table 7.47 and calculate the set of generated expressions

at the end of the block using the steps (a) and (b) mentioned above. Table 7.47 illustrates the TAC along

with the points that need to be considered for the calculation of generated expressions.

Table 7.47 Points in the basic block 0

p0_b0

(0) proc_begin test_func

p1_b0

(1) x = a + b

p2_b0

(2) y = b * c

p3_b0

(3) d = c + d

p4_b0

(4) if u > 100 goto .L1

p5_b0

 Code Optimisation 487

Table 7.48 shows the step-by-step computation of e_GEN for the basic block 0.

Table 7.48 Computing the e_GEN for Block 0

TAC under consideration Explanation

1 p0_b0

(0) proc_begin test_func

p1_b0

At the point p0_b0, the start of the initial block there are no

generated expressions, so e_GEN[p0_b0] = { ø }.

No expressions are used or killed in quad (0) , hence

e_GEN[p1_b0] = e_GEN[p0_b0]

e_GEN[p1_b0] = { ø }

2 p1_b0

(1) x = a + b

p2_b0

e_GEN[p1_b0] = { ø } as computed above.

step(a)

e_GEN[p2_b0] = e_GEN[p1_b0] + { a+b }

e_GEN[p2_b0] = { a+b }

step(b)

There are no expressions in e_GEN[p2_b0] containing ‘x’to be

deleted , so it remains as is.

e_GEN[p2_b0] = { a+b }

3 p2_b0

(2) y = b * c

p3_b0

e_GEN[p2_b0] = { a+b } as computed above.

step(a)

e_GEN[p3_b0] = e_GEN[p2_b0] + { b*c}

e_GEN[p3_b0] = { a+b, b*c }

step(b)

There are no expressions in e_GEN[p3_b0] containing ‘y’to be

deleted , so it remains as is.

e_GEN[p3_b0] = { a+b, b*c }

4 p3_b0

(3) d = c + d

p4_b0

e_GEN[p3_b0] = { a+b, b*c } as computed above.

step(a)

e_GEN[p4_b0] = e_GEN[p3_b0] + { c+d }

e_GEN[p4_b0] = { a+b, b*c , c+d }

step(b)

There is an expression in e_GEN[p4_b0] containing ‘d’ which is

c+d. We now,delete c+d from e_GEN[p4_b0].

e_GEN[p4_b0] = { a+b, b*c, c+d } – { c+d }

e_GEN[p4_b0] = { a+b, b*c }

5 p4_b0

(4) if u > 100 goto .L1

p5_b0

e_GEN[p4_b0] = { a+b, b*c } as computed above.

step(a) and (b)

No expressions are used or killed in quad (4) , hence

e_GEN[p5_b0] = e_GEN[p4_b0]

e_GEN[p5_b0] = { a+b, b*c }

The value of e_GEN[B0] is the same as e_GEN[p5_b0], since it is

the last point in the block.

The value of e_GEN[B0] = { a+b,b*c } is the set of Generated

expressions for the Block 0.

488 Principles of Compiler Design

The generated set of expressions e_GEN[B0] for the block 0 as calculated above is = {a + b, b * c}.

The set of killed expressions e_KILL, is all the expressions ‘y + z’, which satisfy the following criteria:

 (a) Either y or z are defi ned in the block.

 (b) The expression ‘y + z’ is not generated by the block.

Let’s now calculate the set of killed expressions for the block 0 in the above example. The universal set

of expressions L, used in the TAC is = {a + b, b * c, c + d, a * b, b/c}. This was calculated previously. In

the block 0, we defi ne ‘x’ in quad (1), ‘y’ in quad (2) and ‘d’ in quad (3). In L, the expressions that involve

x, y, or d are {c + d}. The expression ‘c + d’ is not generated by block 0. Hence, the set of killed expressions

in block 0, e_KILL[B0] is = {c + d}.

Figure 7.41 shows the universal set of expressions L, e_GEN and e_KILL for the block 0 as calculated

in this discussion.

Fig. 7.41 e_GEN and e_KILL for block 0

The reader is encouraged to calculate the values of e_GEN and e_KILL for the other blocks.

The data fl ow properties like AE and the others that we study in the next few sections are computed

using equations know as data fl ow equations. By using the data fl ow equations, one can compute the values

of data fl ow property like AE at the block boundaries. The value of data fl ow property is then extrapolated

to the point of interest within the block by using its value at the block boundary.

The data fl ow equations for AE express the relationship between the e_IN[B], the set of expressions that

are available at the beginning of block ‘B’ to e_OUT[B] the set of expressions that are available at the end

of block ‘B’. The data fl ow equations for available expressions are as follows:

e_OUT[B] = e_GEN[B] U (e_IN[B] – e_KILL[B])

e_IN[B] = « e_OUT[P] for all the predecessors P of the block

e_IN[B0] = ø where B0 is the initial block

Equation 7.1

Let’s use the data fl ow equations for available expressions given by Equation 7.1 and calculate the

available expressions at the start (e_IN[B]) and end of each block (e_out[B]) for the sample code shown in

Fig. 7.36 reproduced below for convenience. There are 5 basic blocks (B0–B4) each of them is seen as a

node in the fl ow graph.

 Code Optimisation 489

The following table shows the calculation of the sets e_IN and e_OUT for all the blocks B0 through B4

using the data fl ow equations defi ned by Equation 7.2.

Table 7.49 Computation of e_IN and e_OUT for the basic blocks

Block

No.

TAC e_IN e_OUT Comments

B0 (0) proc_begin func

(1) v3 := v1 + v2

(2) if c > 100 goto .L0

{ø} {v1 + v2} The universal set of expressions

that are used in the entire

procedure is given by L = {v1 + v2}

e_IN[B0] = ø as defi ned by the Data

Flow Equation in Equation 7.1

e_GEN[B0] = {v1 + v2}, since the

block evaluates ‘v1 + v2’ and does

not make any assignment to ‘v1’ or

‘v2’ subsequently in the block

490 Principles of Compiler Design

e_KILL[B0] = {ø} since there is

no assignment to v1 or v2, which

can kill the only expression ‘v1 +

v2’ in L.

From the data fl ow equation e_OUT[B]

= e_GEN[B] U (e_IN[B] – e_KILL[B]

), we have

e_OUT[B0] = {v1 + v2} U ({ø} – {ø})

e_OUT[B0] = {v1 + v2}

B1 (3) goto .L1 {v1 + v2} {v1 + v2} According to Equation 7.1 we have

e_IN[B] = « e_OUT[P] for all the

predecessors P of the block

e_IN[B1] = e_OUT[B0], since there

is only one predeccesor i.e. B0

Hence, e_IN[B1] = {v1 + v2}

e_GEN[B0] = {ø}, since the block

does not evaluate any expression

e_KILL[B0] = {ø} since there is

no assignment to v1 or v2, which

can kill the expression ‘v1 + v2’

From the data fl ow equation e_OUT[B]

= e_GEN[B] U (e_IN[B] – e_KILL[B]),

we have

e_OUT[B1] = {ø} U ({v1 + v2} – {ø})

e_OUT[B1] = {v1 + v2}

B2 (4) label .L0

(5) v4 := v1 + v2

(6) v1 := 0

{v1 + v2} {ø} According to Equation 7.1 we have

e_IN[B] = « e_OUT[P] for all the

predecessors P of the block

e_IN[B2] = e_OUT[B0], since there is

only one predecessor for B2 i.e. B0

Hence, e_IN[B2] = {v1 + v2}

e_GEN[B2] = {ø}, since the block

evaluates expression ‘v1 + v2’, but

subsequently has an assignment to

v1.

e_KILL[B2] = {v1 + v2} since

there is an assignment to v1, which

can kill the expression ‘v1 + v2’

From the data fl ow equation OUT[B]

= e_GEN[B] U (e_IN[B] – e_KILL[B]),

we have

e_OUT[B2] = {ø} U ({v1 + v2} – {v1

+ v2})

e_OUT[B2] = {ø}

B3 (7) label .L1

(8) v5 := v1 + v2

{ø} {v1 + v2} According to Equation 7.1 we have

e_IN[B] = « e_OUT[P] for all the

predecessors P of the block

 Code Optimisation 491

e_IN[B3] = e_OUT[B1] « e_OUT[B2],

since there are two predecessors

for B3 i.e. B1 and B2

Hence, e_IN[B3] = {v1 + v2} « {ø}

e_IN[B3] = {ø}

e_GEN[B3] = {v1 + v2} since the

block evaluates expression ‘v1 +

v2’, and it has no assignment to v1

or v2 later.

e_KILL[B3] = {ø} since there is

no assignment to v1 or v2, which

can kill the expression ‘v1 + v2’

From the data fl ow equation e_OUT[B]

= e_GEN[B] U (e_IN[B] – e_KILL[B]

), we have

e_OUT[B3] = {v1 + v2} U ({ø} – {ø})

e_OUT[B3] = {v1 + v2} U {ø}

e_OUT[B3] = {v1 + v2}

B4 (9) label .L2

(10) proc_end func

{v1 + v2} {v1 + v2} According to Equation 7.1 we have

e_IN[B] = « e_OUT[P] for all the

predecessors P of the block

e_IN[B4] = e_OUT[B3], since there is

only one predecessor for B4 i.e. B3

Hence, e_IN[B4] = {v1 + v2}

e_IN[B4] = {v1 + v2}

e_GEN[B4] = {ø} since the block

evaluates no expression.

e_KILL[B4] = {ø} since there is

no assignment to v1 or v2, which

can kill the expression ‘v1 + v2’

From the data fl ow equation e_OUT[B]

= e_GEN[B] U (e_IN[B] – e_KILL[B]

), we have

e_OUT[B4] = {ø} U ({v1 + v2}

– {ø})

e_OUT[B4] = {ø} U {v1 + v2}

e_OUT[B4] = {v1 + v2}

Figure 7.42 shows the fl ow graph annotated with the values of e_IN, e_GEN, e_KILL and e_OUT for

each of the blocks—B0 through B4.

In this example, we have been able to compute the available expression information at the start of the

block in the form of e_IN by using the Equation 7.1 for all the blocks in the program. We have been able to

compute the values of e_IN and e_OUT for each of the blocks by proceeding block after block in the same

order as the data fl ow, i.e. B0, followed B1, B2, B3, and B4. We had to strictly follow the order of fl ow of

control while computing the e_IN because the e_IN[B] = « e_OUT[P] for all the predecessors P of the

block. We could not have computed e_IN[B], even if the e_OUT of one of the predecessors were not yet

computed.

492 Principles of Compiler Design

Fig. 7.42 Flow graph annotated with available expression information

Let’s now consider a scenario for computing the available expression (AE) in the form of e_IN and

e_OUT in an input source involving loops. We shall use the data fl ow equations for available expressions

given by Equation 7.1 and calculate the available expressions at the start (e_IN[B]) and end of each block

e_OUT[B] for the sample code shown in Fig. 7.43. Figure 7.43 also shows the corresponding TAC after

local optimisation and its fl ow graph. There are 6 basic blocks (B0–B5) each of them is seen as a node in

the fl ow graph.

 Code Optimisation 493

Fig. 7.43 Input source, IC after local optimisation and the fl ow graph

494 Principles of Compiler Design

The computation of e_IN and e_OUT for the basic blocks is described in Table 7.50.

Table 7.50 Computation of e_IN and e_OUT for the basic blocks

Block

No.

TAC e_IN e_OUT Comments

B0 (0) proc_begin func

(1) c1 := p + b

(2) c2 := q – b

{ø} {p + b, q – b} The universal set of expressions

that are used in the entire

procedure is given by L = {p + b,

q – b}

e_IN[B0] = ø as defi ned by
Equation 7.1

e_GEN[B0] = {p + b, q – b},

since the block evaluates ‘p

+ b’and ‘q – b’. There are no

subsequent assignments to ‘p’ or

‘q’ or ‘b’ subsequently in the

block

e_KILL[B0] = {ø} since

There is no assignment to

p or b, which can kill the

expression ‘p + b’. There are no

assignments to ‘q’ or ‘b’, which

can kill the expression ‘q – b’.

From the data fl ow equation

OUT[B] = e_GEN[B] U (e_IN[B]

– e_KILL[B]), we have

OUT[B0] = {p + b, q – b} U ({ø}

– {ø})

e_OUT[B0] = {p + b, q – b}

Let’s now look at the calculation of e_IN and e_OUT of the block B1, which offers some challenges.

The e_IN for the block is defi ned by Equation 7.1

 e_IN[B] = « e_OUT[P] for all the predecessors P of the block

The block B1 has two predecessors B0 and B3, hence the e_IN for B1 can be written as

 e_IN[B1] = e_OUT[B0] « e_OUT[B3].

The e_OUT for B0 has been calculated above. However, the e_OUT of B3 is not available at this point

for the computation of e_IN[B1]. We cannot compute the value of e_OUT[B3] at this point either, because

we would require the e_OUT[B1] to be known for the calculation of e_OUT[B3], since B1 is one of the

predecessor for the block B3. This type of cyclic dependency between the nodes of the fl ow graph makes it

diffi cult to calculate e_IN at some of the nodes like B1 in the cases of input source having loops.

This issue is overcome by having an iterative approach to solving the data fl ow equations for the

available expressions given by Equation 7.1. In the iterative approach of solving data fl ow equations

for available expressions, an initial value for e_OUT[B] for every block B is provided. This will help us

compute the e_IN[B], where e_IN[B] = « e_OUT[P] for all the predecessors P of the block, even in cases

where e_OUT[P] is not yet computed, like the block 3 in the above example. The initial value of e_OUT[B]

 Code Optimisation 495

for every block B that is assigned before the start of the fi rst iteration is (L – e_KILL[B]). Observe that this

initial value, (L – e_KILL[B]) is the maximum value that e_OUT can take. In other words the e_OUT[B]

is initialised with the maximum possible value. For the initial block, we initialise e_IN[B0] to ø and e_

OUT[B0] to e_GEN[B0].

Now, using the value of e_IN[B], we compute e_OUT[B] for each one of the blocks B, with the help

of the equation e_OUT[B] = e_GEN[B] U (e_IN[B] – e_KILL[B]). In this manner, we compute e_IN and

e_OUT for all the blocks. Observe that the e_IN of some of the blocks like B1, might have been computed

directly based on the initial value of e_OUT for one of the predecessor — B3, while the e_IN of other

blocks like B2, B4, etc. are calculated based on the computed values of e_OUT of the predecessors. At the

end of one round of computation for all the blocks (let’s call it iteration 1), we have a set of values of e_IN/

e_OUT for all the blocks. At this point, note that the e_OUT for every block contains the computed value

and not the initial value that we assigned at the start. Table 7.51 shows e_IN/e_OUT calculation for the fi rst

iteration corresponding to all the nodes (basic blocks) of the fl ow graph in Fig. 7.43.

Next, we do the computation of e_IN and e_OUT for all the blocks again (say iteration 2) using the

same equations defi ned in Equation 7.1. In this second iteration, the value of e_IN for the blocks like B1

might change, since e_IN[B1] = e_OUT[B0] « e_OUT[B3], and e_OUT[B3] would now be the value

computed in the fi rst iteration as opposed to initial value. The changes in e_IN[B1] could have a ripple

effect changing e_OUT[B1], e_IN[B3] and then e_OUT[B3]. Thus, the second iteration yields a set of

values of e_IN/e_OUT for all the blocks.

We calculate the e_IN / e_OUT for all the blocks again in the third iteration, fourth iteration and so

on. We stop the iterations, when we see that for every block, the value of e_OUT has not changed, when

compared to its value in the previous iteration. In other words, we stop the iterations, when the e_OUT for

all the blocks have reached a steady state. The Table 7.52 shows the values of e_IN/e_OUT as calculated

in the fi rst and second iteration corresponding to all the nodes (basic blocks) of the fl ow graph in Fig. 7.43.

Observe that the values of e_OUT for none of the blocks have changed from the fi rst to second iteration.

This signals us to halt the iterations calculating e_IN/e_OUT for the blocks, since e_OUT of all the blocks

have reached a steady state.

Table 7.51 shows the calculation of e_IN/e_OUT for each of the blocks in the fi rst iteration using the

initial values of e_OUT, wherever required.

Table 7.51 Computation of e_IN and e_OUT in the fi rst iteration

TAC e_IN e_OUT Comments

B0 (0) proc_begin func

(1) c1 := p + b

(2) c2 := q – b

{ø} {p + b, q – b} The universal set of expressions

that are used in the entire

procedure is given by L = {p +

b, q – b}

e_IN[B0] = ø as defi ned in
Equation 7.1

e_GEN[B0] = {p + b, q – b},

since the block evaluates ‘p +

b’ and ‘q – b’. There are no

subsequent assignments to ‘p’ or

‘q’ or ‘b’ subsequently in the

block

496 Principles of Compiler Design

e_KILL[B0] = {ø} since

There is no assignment to p or b,

which can kill the expression ‘p

+ b’. There are no assignments to

‘q’ or ‘b’, which can kill the

expression ‘q – b’.

From the data fl ow equation OUT[B]

= e_GEN[B] U (e_IN[B] – e_KILL[B]

), we have

OUT[B0] = {p + b, q – b} U ({ø}

– {ø})

e_OUT[B0] = {p + b, q – b}

B1 (3) label .L0

(4) if p < 20 goto .L1

{q – b} {q – b} According to Equation 7.1 we have

e_IN[B] = « e_OUT[P] for all the

predecessors P of the block

e_IN[B1] = e_OUT[B0] « e_

OUT [B3], since there are 2

predecessors i.e. B0 and B3

We have already computed e_
OUT[B0] = {p + b, q – b} in the
previous step.

e_OUT[B3] is initialised with (L

– e_KILL[B3])

L = {p + b, q – b}

e_KILL[B3] = {p + b} since there

is an assignment to ‘p’, but there

is subsequent re-computation of

p + b. There are no assignments

to ‘q’ or ‘b’, which can kill the

expression ‘q – b’.

e_OUT[B3] = (L – e_KILL[B3])

e_OUT[B3] = ({p + b, q – b} – {p + b})

e_OUT[B3] = {q – b}

e_IN[B1] = e_OUT[B0] « e_OUT[B3]

e_IN[B1] = {p + b, q – b} « {q – b}

e_IN[B1] = {q – b}

e_GEN[B1] = {ø}, since the block

does not evaluate ‘p + b’and ‘q

– b’.

e_KILL[B1] = {ø} since

There is no assignment to p or b,

which can kill the expression ‘p

+ b’. There are no assignments to

‘q’ or ‘b’, which can kill the

expression ‘q – b’.

From the data fl ow equation e_

OUT[B] = e_GEN[B] U (e_IN[B]

– e_KILL[B]), we have

e_OUT[B1] = {ø} U ({q – b} – {ø})

e_OUT[B1] = {q – b}

 Code Optimisation 497

B2 (5) goto .L2 {q – b} {q – b} According to Equation 7.1 we have

e_IN[B] = « e_OUT[P] for all the

predecessors P of the block

e_IN[B2] = e_OUT[B1], since there

is only 1 predecessor i.e. B1

We have already computed e_
OUT[B1] = {q – b} in the previous
step.

e_IN[B2] = e_OUT[B1]

e_IN[B2] = {q – b}

e_GEN[B2] = {ø}, since the block

does not evaluate ‘p + b’and ‘q

– b’.

e_KILL[B2] = {ø} since

There is no assignment to p or b,

which can kill the expression ‘p

+ b’. There are no assignments to

‘q’ or ‘b’, which can kill the

expression ‘q – b’.

From the data fl ow equation e_

OUT[B] = e_GEN[B] U (e_IN[B]

– e_KILL[B]), we have

e_OUT[B2] = {ø} U ({q – b} – {ø})

e_OUT[B2] = {q – b}

B3 (6) label .L1

(7) p := p + b

(8) goto .L0

{q – b} {q – b} According to Equation 7.1 we have

e_IN[B] = ∩ e_OUT[P] for all the

predecessors P of the block

e_IN[B3] = e_OUT[B2], since there

is only 1 predecessor i.e. B2

We have already computed e_
OUT[B2] = {q – b} in the previous
step.

e_IN[B3] = e_OUT[B2]

e_IN[B3] = {q – b}

e_GEN[B3] = {ø}, since the block

evaluates ‘p+b’, but assigns it to

‘p’.

e_KILL[B3] = {p + b} since

There is assignment to p, which

kills the expression ‘p + b’.

There are no assignments to

‘q’ or ‘b’, which can kill the

expression ‘q –b’.

From the data fl ow equation e_

OUT[B] = e_GEN[B] U (e_IN[B]

– e_KILL[B]), we have

498 Principles of Compiler Design

e_OUT[B3] = {ø} U ({q – b} – {p

+ b})

e_OUT[B3] = {ø} U ({q – b})

e_OUT[B3] = {q – b}

B4 (9) label .L2

(10) c3 := p + b

(11) c4 := q – b

{q – b} {p + b, q – b} According to Equation 7.1 we have

e_IN[B] = « e_OUT[P] for all the

predecessors P of the block.

e_IN[B4] = e_OUT[B3], since there

is only 1 predecessor, i.e. B3

We have already computed e_
OUT[B3] = {q – b} in the previous
step.

e_IN[B4] = e_OUT[B3]

e_IN[B4] = {q – b}

e_GEN[B4] = {p + b, q – b}, since

the block evaluates ‘p + b’ and

‘q – b’.

e_KILL[B4] = {ø} since

There is no assignment to p,

which kills the expression ‘p +

b’. There are no assignments to

‘q’ or ‘b’, which can kill the

expression ‘q –b’.

From the data fl ow equation

e_OUT[B] = e_GEN[B] U (e_IN[B]

– e_KILL[B]), we have

e_OUT[B4] = {p + b, q – b} U ({q

– b} – {ø})

e_OUT[B4] = {p + b, q – b} U ({q

– b})

e_OUT[B4] = {p + b, q – b}

B5 (12) label .L3

(13) proc_end func

{p + b,

q – b}

{p + b, q – b} According to Equation 7.1 we have

e_IN[B] = « e_OUT[P] for all the

predecessors P of the block.

e_IN[B5] = e_OUT[B4], since there

is only 1 predecessor, i.e. B4

We have already computed e_
OUT[B4] = {p + b, q – b} in the
previous step.

e_IN[B5] = e_OUT[B4]

e_IN[B5] = {p + b, q – b}

e_GEN[B5] = {ø}, since the block

does not evaluate any expression.

e_KILL[B5] = {ø} since

There is no assignment to ‘p’ or

‘b’, which kills the expression

‘p + b’. There are no assignments

to ‘q’ or ‘b’, which can kill the

expression ‘q – b’.

 Code Optimisation 499

From the data fl ow equation e_

OUT[B] = e_GEN[B] U (e_IN[B]

– e_KILL[B]), we have

e_OUT[B5] = {p + b, q – b} U

({{ø} – {ø})

e_OUT[B5] = {p + b, q – b} U

({ø})

e_OUT[B5] = {p + b, q – b}

Table 7.52 The values of e_IN and e_OUT for iteration 1 and 2

Block # Iteration 1 Iteration 2

e_IN e_OUT e_IN e_OUT

0 {ø} {p + b, q – b} {ø} {p + b, q – b}

1 {q – b} {q – b} {q – b} {q – b}

2 {q – b} {q – b} {q – b} {q – b}

3 {q – b} {q – b} {q – b} {q – b}

4 {q – b} {p + b, q – b} {q – b} {p + b, q – b}

5 {p + b, q – b} {p + b, q – b} {p + b, q – b} {p + b, q – b}

Algorithm 7.4 summarises the computation of available expression (e_IN/e_OUT) using the iterative

approach of solving data fl ow equations that we discussed above.

e_IN[B0] = ø

out[B0] = e_GEN[B0]

/* Initialize e_OUT for all blocks */

for every block B except the initial block B0 {

 e_OUT[B] = L – e_KILL[B]

}

steady_state=FALSE

while (steady_state== FALSE) {

 steady_state=TRUE

 for every block B except the initial block B0 {

 /* e_IN */

 e_IN[B] = « e_OUT[P] for all the predecessors P of the block

 /* saving e_OUT to later check if we have reached steady state */

 saved_e_OUT=e_OUT[B]

 /* computing e_OUT */

 e_OUT[B] = e_GEN[B] » (e_IN[B] – e_KILL[B])

 /* Checking for a steady state of e_OUT */

 if (saved_e_OUT ! = e_OUT[B]){

 steady_state = FALSE

 }

 }

}

Algorithm 7.4 Available expressions computation using the iterative approach

500 Principles of Compiler Design

Algorithm 7.4 works for the input sources involving loops and also the ones without the loops. Observe

in the algorithm that the fi nal values of e_IN and e_OUT for all the blocks in the procedure are arrived

at in an iterative fashion. For an input source without any loops, the fi nal values of e_IN and e_OUT for

each block can be arrived at in the fi rst iteration, if the computation is made in the order of fl ow of control,

where we compute e_IN/e_OUT for a block B only after e_IN/e_OUT for all its predecessors have been

computed. In such cases, the second iteration is performed only to confi rm that the values of e_OUT have

reached a steady state.

The iterative approach to solve the data fl ow equations that we saw above is used time and again in the

next few sections for computing other data fl ow properties like reaching defi nition, etc.

The next section explains how the available expression information in the form of e_IN/e_OUT,

computed at the block boundaries is used in global common sub-expression elimination (gcse).

Global common sub-expression elimination using available expressions The e_IN information

available at the start of each block can be used for eliminating the evaluation of common sub-expression.

From a conceptual standpoint, the e_IN at the start of the block represents all the expressions that have

been evaluated in the procedure before reaching this block, and are available in an evaluated form. The

focal point of the discussion below is on how to use the e_IN information to eliminate the common sub-

expressions.

A quad ‘q’ in the block B using a common sub-expression of the form ‘x + y’ can be eliminated if the

following conditions are satisfi ed.

 1. The expression ‘x + y’ should be available at the start of the block B as indicated by the e_IN set for

the block B.

 2. There should not be an assignment to either ‘x’ or ‘y’ from the start of the block B till the quad ‘q’.

We will use the input source, the locally optimised TAC and the corresponding fl ow graph that we fi rst

saw in Fig. 7.36 to use the above two conditions to eliminate a quad using an available expression. Recall

that the Fig. 7.42 showed the same fl ow graph annotated with the values of e_IN, e_GEN, e_KILL and

e_OUT for each of the blocks—B0 through B4 computed in the last section. It is reproduced below for

convenience.

In the block B2, there is a quad (5), which uses the expression v1 + v2. The quad (5) in block B2 is a

potential candidate for eliminating the common sub-expression, v1 + v2 because it satisfi es the following

conditions:

 1. The expression v1 + v2 is available at the start of the block as indicated by e_IN[B2] = {v1 + v2}.

 2. There are no assignments to either v1 or v2 from the start of the block B2 till the quad (5).

In order to eliminate the common sub-expression v1 + v2 in the quad (5), we fi rst identify all the

statements evaluating ‘v1 + v2’ that reach quad (5). In this case it is only quad (1) in block B0 that evaluates

‘v1 + v2’ and reaches B2. We create a new temporary say ‘_t0’ for using as a temporary place to store the

evaluated value of v1 + v2. We replace the quad (1) with a couple of statements allowing us to store the

value of ‘v1 + v2’ as shown below.

Before After

(1) v3: = v1 + v2 Æ (1a) _t0 = v1 + v2

(1b) v3 = _t0

The quad (5) is then replaced to use the temporary instead of re-evaluating the expression as follows.

Before After

(5) v4 := v1 + v2 Æ (5a) v4 = _t0

 Code Optimisation 501

The fi nal TAC incorporating the changes just discussed is shown in Table 7.53. The fi nal TAC shown in

Table 7.53 has eliminated the re-evaluation of common sub-expression ‘v1 + v2’ found earlier in the quad (5).

Table 7.53 Global common sub-expression elimination

Locally optimised TAC Final TAC

(0) proc_begin func (0) proc_begin func

(1) v3 := v1 + v2 (1a) _t0 := v1 + v2

(2) if c > 100 goto .L0 (1b) v3 := _t3

(3) goto .L1 (2) if c > 100 goto .L0

502 Principles of Compiler Design

(4) label .L0 (3) goto .L1

(5) v4 := v1 + v2 (4) label .L0

(6) v1 := 0 (5a) v4 := _t0

(7) label .L1 (6) v1 := 0

(8) v5 := v1 + v2 (7) label .L1

(9) label .L2 (8) v5 := v1 + v2

(10) proc_end func (9) label .L2

(10) proc_end func

The procedure we had adopted to eliminate the re-evaluation of common sub-expression ‘v1 + v2’ at

quad (5) is formalised in Algorithm 7.5. The input to the algorithm is the locally optimised TAC and the

output is the TAC in which global common sub-expressions are eliminated. The algorithm shows ‘+’ as a

notional operator denoting any of the binary operators like addition (+), subtraction (–), multiplication (*),

or division (/).

Scan all the quads in the TAC to identify the quads ‘q’ of the form x := y + z, that

meet the following criteria

 (a) y + z is available at the start of the block in which ‘q’ is located i.e. in e_IN and

 (b) There are no assignments to ‘y’ or ‘z’ in the statements before ‘q’ in the block.

The identifi ed quads ‘q’ are added into a set ‘M’.

For each quad ‘q’ in the set M, do the following to eliminate the common sub-expression.

 (1) Identify all the statements evaluating ‘y + z’ that reach the quad ‘q’ and add

them to a set ‘A’.

 (2) Create a new temporary variable ‘_tn’ (e.g. _t0 or _t1 or _t2 etc)

 (3) For every statement w: = y + z, in the set A, do the following

 a. _tn := y + z

 b. w := _tn

 (4) Replace the quad ‘q’ by w: = _tn

Algorithm 7.5 Global common sub-expression elimination using AE

Example 4—Global common sub-expression elimination using AE This section demonstrates the toy

C compiler (mycc) performing global common sub-expression elimination using the available expression

information. The available expression information was gathered by using Algorithm 7.4, explained

previously. The AE information was put to use to eliminate the global common sub-expressions as

explained in Algorithm 7.5.

The toy C compiler takes as input, a sample C input source and gives out (a) unoptimised TAC (b) the

locally optimised TAC and (c) the TAC after global common sub-expression elimination. The dialog below

shows ‘mycc’ taking in some sample input C sources having common sub-expressions and printing out the

above information as the output.

 Code Optimisation 503

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyser

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building ‘mycc’ - A Toy Compiler for C Language

$ g++ -DICGEN -g -Wall ic_gen.cc optimize.cc target_code_gen.cc mycc.cc
semantic_analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe

Sample Input C fi le containing common sub-expressions

$ cat -n test.cse.1.c
 1 int v1, v2, v3, v4, v5;

 2

 3 int func(int c)

 4 {

 5 v3 = v1 + v2 ;

 6

 7 if (c > 100){

 8

 9 /* ‘v1+v2’ is available

 10 here */

 11 v4 = v1 + v2;

 12

 13 /* CSE Killed */

 14 v1 = 0;

 15 }

 16

 17 /* ‘v1+v2’ is NOT available

 18 here */

 19 v5 = v1 + v2 ;

 20 }

Intermediate code before and after optimization

-O gcse for Global Common Subexpression, -v for verbosity

$./mycc.exe -i -O gcse -v test.cse.1.c
TAC Before optimization

 (0) proc_begin func

 (1) _t0 := v1 + v2

 (2) v3 := _t0

 (3) if c > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) _t1 := v1 + v2

 (7) v4 := _t1

 (8) v1 := 0

 (9) label .L1

(10) _t2 := v1 + v2

(11) v5 := _t2

504 Principles of Compiler Design

(12) label .L2

(13) proc_end func

TAC After Local Optimization

 (0) proc_begin func

 (1) v3 : = v1 + v2

 (2) if c > 100 goto .L0

 (3) goto .L1

 (4) label .L0

 (5) v4 := v1 + v2

 (6) v1 := 0

 (7) label .L1

 (8) v5 : = v1 + v2

 (9) label .L2

(10) proc_end func

TAC After (Local and Global) optimization

 (0) proc_begin func

 (1) _t3 := v1 + v2

 (2) v3 := _t3

 (3) if c > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) v4 := _t3

 (7) v1 := 0

 (8) label .L1

 (9) v5 := v1 + v2

(10) proc_end func

Sample Input C fi le containing common subexpressions

$ cat -n test.cse.2.c
 1 int v1, v2, v3, v4, v5, v6, v7;

 2

 3 int func(int c)

 4 {

 5 v3 = v1 + v2 ;

 6

 7 if (c > 100){

 8

 9 /* ‘v1+v2’ is available here as CSE */

 10 v4 = v1 + v2;

 11

 12 /* CSE Killed */

 13 v1 = v3 + v4;

 14

 15 /* computing ‘v1+v2’ again */

 16 v7 = v1 + v2;

 17 }

 18

 19 /* ‘v1+v2’ is available here as CSE */

 20 v5 = v1 + v2 ;

 21 }

Intermediate code before and after optimization

$./mycc.exe -i -O gcse -v test.cse.2.c

 Code Optimisation 505

TAC Before optimization

 (0) proc_begin func

 (1) _t0 := v1 + v2

 (2) v3 := _t0

 (3) if c > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) _t1 := v1 + v2

 (7) v4 := _t1

 (8) _t2 := v3 + v4

 (9) v1 := _t2

(10) _t3 := v1 + v2

(11) v7 := _t3

(12) label .L1

(13) _t4 := v1 + v2

(14) v5 := _t4

(15) label .L2

(16) proc_end func

TAC After Local Optimization

 (0) proc_begin func

 (1) v3 : = v1 + v2

 (2) if c > 100 goto .L0

 (3) goto .L1

 (4) label .L0

 (5) v4 := v1 + v2

 (6) v1 := v3 + v4

 (7) v7 := v1 + v2

 (8) label .L1

 (9) v5 := v1 + v2

(10) label .L2

(11) proc_end func

TAC After (Local and Global) optimization

 (0) proc_begin func

 (1) _t5 := v1 + v2

 (2) v3 := _t5

 (3) if c > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) v4 := _t5

 (7) v1 := v3 + v4

 (8) _t5 := v1 + v2

 (9) v7 := _t5

(10) label .L1

(11) v5 := _t5

(12) proc_end func

Sample Input C fi le containing common sub-expressions

$ cat -n test.cse.3.c
 1 int v1, v2, v3, v4, v5, v6;

 2

 3 int func(int c)

 4 {

 5 if (c > 100){

 6 v3 = v1 + v2;

506 Principles of Compiler Design

 7 }else{

 8 v4 = v1 + v2 ;

 9 }

 10

 11 /* ‘v1+v2’ is available here as CSE */

 12 v5 = v1 + v2 ;

 13 }

Intermediate code before and after optimization

$./mycc.exe -i -O gcse -v test.cse.3.c
TAC Before optimization

 (0) proc_begin func

 (1) if c > 100 goto .L0

 (2) goto .L1

 (3) label .L0

 (4) _t0 := v1 + v2

 (5) v3 := _t0

 (6) goto .L2

 (7) label .L1

 (8) _t1 := v1 + v2

 (9) v4 := _t1

(10) label .L2

(11) _t2 := v1 + v2

(12) v5 := _t2

(13) label .L3

(14) proc_end func

TAC After Local Optimization

 (0) proc_begin func

 (1) if c > 100 goto .L0

 (2) goto .L1

 (3) label .L0

 (4) v3 := v1 + v2

 (5) goto .L2

 (6) label .L1

 (7) v4 := v1 + v2

 (8) label .L2

 (9) v5 := v1 + v2

(10) label .L3

(11) proc_end func

TAC After (Local and Global) optimization

 (0) proc_begin func

 (1) if c > 100 goto .L0

 (2) goto .L1

 (3) label .L0

 (4) _t3 := v1 + v2

 (5) v3 := _t3

 (6) goto .L2

 (7) label .L1

 (8) _t3 := v1 + v2

 (9) v4 := _t3

(10) label .L2

(11) v5 := _t3

(12) proc_end func

 Code Optimisation 507

7.2.10.3 Live Variable Analysis

Introduction The live variable analysis is another commonly employed data fl ow analysis technique to

derive a data fl ow property called as ‘liveness’ from the input TAC. The liveness information helps us in

performing global dead code elimination. A more important application of live variable analysis information

happens during the optimised target code generation, where it is used in making decisions for retaining a

variable’s value in a register. We study about that later in the section on optimised target code generation.

Let’s take an example to understand the idea of liveness and see how that can be used in performing

dead code elimination at a global level. Consider the input source and the corresponding TAC after local

optimisation shown in Fig. 7.44.

Fig. 7.44 Input source and the TAC after local optimisation

Let’s take a look at the TAC after local optimisation in order to get an idea on ‘liveness’. In the block

B0, we have an assignment i := 45 in quad (1). The value of ‘i’, i.e. 45, has been propagated to the quad

(3) during local optimisation. Observe that ‘i’ is not used later in block 0 or in any of the later blocks. In

contrast, the value of ‘j’ computed in quad (2) of block B0 is used in other blocks, i.e. in quad (7) and quad

(10). We can say that the variable ‘j’ is live at the point right after quad (2) and also at the end of the block

B0. The variable ‘i’ is not live either at the point right after quad (1) or nor at the end of the block B0.

A variable v is said to be live at a point p, if it is used in some path in the fl ow graph starting p. The

variable is considered dead, if it is not live.

The quad (1) in which we assign 45 to the variable ‘i’ can be eliminated, since the variable ‘i’ is dead. In

general, let’s say we have a quad q: v = x op y, where op is one of the operators in the TAC. If the variable

‘v’ is dead and the operator op does not have any side-effects then the statement ‘s’ can be eliminated.

Observe that the quad (1) can be eliminated only when we have the information that the user defi ned

variable ‘i’ is not used across the blocks. This cannot be performed by analysing the TAC within a block

in local optimisation. This is global dead code elimination. The global dead code elimination is one of the

508 Principles of Compiler Design

benefi ts of doing live variable analysis. Table 7.54 shows the TAC after the global dead code elimination

for the sample input source shown in Fig. 7.44.

Table 7.54 TAC after global dead code elimination

 (0) proc_begin func

 (1) j: = a + b

 (2) _t1: = a + 45

 (3) if _t1 > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) k := a + j

 (7) goto .L2

 (8) label .L1

 (9) k: = b + j

(10) label .L2

(11) return k

(12) goto .L3

(13) label .L3

(14) proc_end func

Data Flow Analysis to Compute Liveness Information in Intermediate Code In the discussion

above, we understood the concept of live variable analysis and how it can be used to perform global dead

code elimination. In this section we study about the algorithms that are used for computing the liveness

properties in a given program.

Let’s start off with some terminology.

We use the term live_DEFS [B] to represent the set of variables whose defi nition precedes any use in the

block B. In simpler terms, if we scan the block starting from the fi rst quad to the last quad in the block, and

the earliest quad in which ‘v’ is involved is a defi nition, then ‘v’ goes in live_DEFS.

We use the term live_USES [B] to represent the set of variables whose use precedes any defi nition within

the block B. In simpler terms, if we scan the block starting from the fi rst quad to the last quad in the block,

and the earliest quad in which ‘v’ is involved is a use, then ‘v’ goes in live_USES. In case of situations,

where the earliest quad in the block B involving ‘v’ defi nes and uses ‘v’ (e.g. v := v + 1), then ‘v’ goes into

live_USES. This is because the quad uses the earlier value of ‘v’ to redefi ne ‘v’.

Observe that live_DEFS and live_USES are mutually exclusive sets, since we can either fi nd a defi nition

of a variable ‘v’ earlier or the usage of a variable ‘v’ earlier.

A simple algorithm to calculate live_USES and live_DEFS for a block is given below.

for each quad res := arg1 op arg2 in the Block

{

 if (arg1 is valid for the operator){

 if (arg1 is not in live_DEFS){

 /* Use has preceded any defi nition */

 insert (live_USES,arg1)

 }

 }

 if (arg2 is valid for the operator){

 if (arg2 is not in live_DEFS){

 Code Optimisation 509

 /* Use has preceded any defi nition */

 insert (live_USES,arg1)

 }

 }

 if (res is valid for the operator){

 if (res is not in live_USES){

 /* Defi nition has preceded any use */

 insert (live_DEFS,arg1)

 }

 }

}

Algorithm 7.6 live_USES and live_DEFS

The following table shows how live_DEFS and live_USES sets are computed for the TAC after local

optimisation shown in Fig. 7.44.

Table 7.55 The calculation of live_DEFS and live_USES

TAC after local optimisation live_DEFS and live_USES Explanation

B0 (0) proc_begin func

(1) i := 45

(2) j := a + b

(3) _t1 := a + 45

(4) if _t1 > 100 goto .L0

live_DEFS[B0] = {i, j, _t1}

live_USES[B0] = {a, b}

The variable ‘i’ is defi ned

in quad (1) and is not used

in the block before the

quad (1).

The variable ‘j’ is defi ned

in quad (2) and is not

used in this block before

quad(2).

The variable ‘_t1’ is

defi ned in quad (3) and is

not used before quad (3).

All of these qualify for

live_DEFS.

The variables ‘a’ and ‘b’

are used in quad (2). There

is no defi nition of ‘a’ or

‘b’ preceding the quad (2)

in the block B0. Hence,

they qualify to be part of

live_USES.

B1 (5) goto .L1 live_USES[B1] = {}

live_DEFS[B1] = {}

No variable is defi ned or

used in this block

B2 (6) label .L0

(7) k := a + j

(8) goto .L2

live_DEFS[B2] = {k}

live_USES[B2] = {a, j}

The variable ‘k’ is defi ned

in quad (7) and is not used

in the block before the

quad (7)

The variables ‘a’ and ‘j’

are used in quad (7) and

there is no defi nition for

any of them preceding quad

(7) in this block.

510 Principles of Compiler Design

B3 (9) label .L1

(10) k := b + j

live_DEFS[B3] = {k}

live_USES[B3] = {b, j}

The variable ‘k’ is defi ned

in quad (10) and is not

used in the block before

the quad (10)

The variables ‘b’ and ‘j’

are used in quad (10) and

there is no defi nition for

any of them preceding quad

(10) in this block.

B4 (11) label .L2

(12) return k

(13) goto .L3

live_DEFS[B4] = {}

live_USES[B4] = {k}

No variable is defi ned in

this block

The variable ‘k’ is used in

quad (12) and there is no

defi nition for ‘k’ preceding

quad (12) in this block.

B5 (14) label .L3

(15) proc_end func

live_USES[B5] = {}

live_DEFS[B5] = {}

No variable is defi ned or

used in this block

As seen earlier during the discussion on AE, the data fl ow properties are computed using equations

known as data fl ow equations. By using the data fl ow equations, one can compute the values of data

fl ow property like liveness of variables at the block boundaries. The value of data fl ow property is then

extrapolated to each quad within the block by using its value at the block boundary.

The data fl ow equations for live variable analysis express the relationship between the live_IN[B], the

set of all the variables that are live before reaching the beginning of block ‘B’ to live_OUT[B] the set of

variables that are live at the end of block ‘B’. The data fl ow equations for live variable analysis are as

follows.

live_IN[B] = live_USES[B] » (live_OUT[B] – live_DEFS[B])

live_OUT[B] = live_IN[S] » live_IN[S2] » live_IN[S3] ….for all the

successors S1, S2, S3….Sn of the block

Equation 7.3

We will continue the example in Table 7.55 to calculate live_IN and live_OUT for each of the blocks by

using the data fl ow equations given by Equation 7.3. Table 7.56 shows the calculation of the sets live_IN

and live_OUT for all the blocks B0 through B5 using the data fl ow equations. The calculations for live_

IN and live_OUT have been done starting from the block B5 and ending at block B0, since the data fl ow

equation involves all the successors (live_OUT[B] = » live_IN[S] for all the successors S of the block).

We would want the live_IN of the successors to be populated before we calculate the live_OUT of a block.

Observe that the computation of live variable analysis involves working backward from the last block to the

starting block.

Table 7.56 live_IN and live_OUT calculations

TAC after local

optimisation

live_DEFS and live_USES live_IN and live_OUT Explanation

B5 (14) label .L3

(15) proc_end func

live_USES[B5] = {}

live_DEFS[B5] = {}

live_OUT[B5] = {}

live_IN[B5] = {}

live_OUT[B5] = {},

since there is NO

succesor of B5. Hence

live_OUT[B5] = {}

 Code Optimisation 511

live_IN[B5] =

live_USES[B5] »

(live_OUT[B5]

– live_DEFS[B5])

B4 (11) label .L2

(12) return k

(13) goto .L3

live_DEFS[B4] = {}

live_USES[B4] = {k}

live_OUT[B4] = {}

live_IN[B4]={k}
live_OUT[B4] = »

live_IN[B5], since

B5 is the only

succesor of B4.

Hence live_OUT[B4]

= {}

live_IN[B4] =

live_USES[B4] »

(live_OUT[B4]

– live_DEFS[B4])

live_IN [B4] = {k}

B3 (9) label .L1

(10) k := b + j

live_DEFS[B3] = {k}

live_USES[B3] = {b, j}

live_OUT[B3] = {k}

live_IN[B3] = {b, j}

live_OUT[B3] = »

live_IN[B4], since

B4 is the only

succesor of B3.

Hence live_OUT[B3]

= {k}

live_IN[B3] =

live_USES[B3] »

(live_OUT[B3]

– live_DEFS[B3])

(live_IN[B3] =

{b,j} » {[k] - {k}}

live_IN[B3] = {b,j}

B2 (6) label .L0

(7) k := a + j

(8) goto .L2

live_DEFS[B2] = {k}

live_USES[B2] = {a, j}

live_OUT[B2] = {k}

live_IN[B2] = {a, j}
live_OUT[B2] = »

live_IN[B4], since

B4 is the only

successor of B2.

Hence live_OUT[B2]

= {k}

live_IN[B2] =

live_USES[B2] »

(live_OUT[B2]

– live_DEFS[B2])

live_IN[B2] = {a,j)

» {[k}-{k}]

live_IN [B2] = {a,j}

B1 (5) goto .L1 live_USES[B1] = {}

live_DEFS[B1] = {}

live_OUT[B1] = {b, j}

live_IN[B2] = {b, j}
live_OUT[B1] = »

live_IN[B3], since

B3 is the only

successor of B1.

Hence live_OUT[B1]

= {b, j}

live_IN[B1] = live_

USES[B1] »

512 Principles of Compiler Design

(live_OUT[B1]

– live_DEFS[B1])

live_IN[B1}={}»(b,j)

live-IN[B2] = {b,j}

B0 (0) proc_begin func

(1) i: = 45

(2) j: = a + b

(3) _t1: = a + 45

(4) if _t1 > 100

goto .L0

live_DEFS[B0] = {i, j, _t1}

live_USES[B0] = {a, b}

live_OUT[B0] = {a, b, j}

live_IN[B2] = {a, b}

live_OUT[B0] =

live_IN[B1] »

live_IN[B2], since

B1 and B2 are

successors of B0.

Hence live_OUT[B0]

= {b, j} » {a, j}

live_OUT[B0] = {a,

b, j}

live_IN[B0] =

live_USES[B0] »

(live_OUT[B0]

– live_DEFS[B0])

live_IN[B0] = {a,

b} » {{a, b, j}

– {i, j, _t1}}

live_IN[B0] = {a,

b} » {a, b}

live_IN[B2] = {a, b}

Figure 7.45 shows the fl ow graph annotated with the values of live_IN, live_DEFS, live_USES and live_

OUT for each of the blocks—B0 through B5.

In this example, we have been able to compute the live variable information in the form of live_IN and

live_OUT by using the Equation 7.3 for all the blocks in the program. The values of live_IN and live_OUT

for each of the blocks was calculated by proceeding block after block in the reverse order as the data fl ow,

i.e. B5, followed B4, B3, B2, B1 and B0. We had to strictly follow the reverse order of fl ow of control while

computing the live_OUT because the live_OUT[B] = U live_IN[S] for all the successors S of the block. We

could not have computed live_OUT[B], even if the live_IN of one of the successors were not yet computed.

We had seen earlier during the discussion on the available expressions that the cyclic dependency between

the nodes of the fl ow graph makes it impossible to calculate ‘IN/OUT’ at some of the nodes in the cases of

input source having loops. We had overcome the issue for available expressions in the last section by having

an iterative approach to solving the data fl ow equations. We do the same for live variable analysis also.

In the iterative approach of solving data fl ow equations for live variable analysis, an initial value for

live_IN[B] for every block B is assumed. This helps us compute the live_OUT[B], where live_OUT[B] =

» live_IN[S] for all the successors S of the block, even in cases where live_IN[S] is not yet computed. The

initial value of live_IN[B] for every block B that is assigned before the start of the fi rst iteration is = {ø}.

Observe that this initial value is the minimum value that live_IN can take.

Algorithm 7.7 summarises the computation of live variable analysis information (live_IN / live_OUT)

using the iterative approach of solving data fl ow equations that we discussed above.

 Code Optimisation 513

Fig. 7.45 Flow graph annotated with live variable analysis information

Algorithm 7.7 works for the input sources involving loops and also for the ones without the loops.

Observe in the algorithm that the fi nal values of live_IN and live_OUT for all the blocks in the procedure

are arrived at in an iterative fashion. For an input source without any loops, the fi nal values of live_IN and

live_OUT for each block can be arrived at in the fi rst iteration, if the computation is made in the order

514 Principles of Compiler Design

of reverse of fl ow of control, where we compute live_IN / live_OUT for a block B only after live_IN /

live_OUT for all its successors have been computed. In such cases, the second iteration is performed only

to confi rm that the values of live_OUT have reached a steady state.

/* Initialise live_IN for all blocks */

for every block B {

 live_IN[B] = {ø}

}

steady_state = FALSE

while (steady_state = = FALSE) {

 steady_state = TRUE

 for every block B {

 /* live_OUT */

 live_OUT[B] = U live_IN[S] for all the Successors S of the block

 /* saving live_OUT to later check if we have reached steady state */

 saved_live_OUT = live_OUT[B]

 /* computing live_OUT */

 live_OUT[B] = live_GEN[B] » (live_IN[B] – live_KILL[B])

 /* Checking for a steady state of live_OUT */

 if (saved_live_OUT ! = live_OUT[B]){

 steady_state = FALSE

 }

 }

}

Algorithm 7.7 Live variable analysis information computation using the iterative approach

Dead Code Elimination using Live Variable Analysis Information The live_OUT information

representing the live variables at the end of the block can be extrapolated to calculate the live variables at

the beginning and the end of each quad. This information is then used to eliminate dead code.

The live_OUT information available at the end of the block is extrapolated to each quad level by

working backwards from the last quad of the block. The live_OUT of the last quad in the block is the same

as the live_OUT of the block. Using the live_OUT of the last quad, we can calculate live_IN for the same

using the relationship

 live_IN [q
n
] = live_USES [q

n
] » (live_OUT [q

n
] – live_DEFS [q

n
]), where ‘n’ is the quad number.

And then, we can use the live_IN of the current quad as the live_OUT of the previous quad.

 live_OUT [q
n – 1

] = live_IN [q
n
]

The process repeats itself till the fi rst quad in the block.

Let’s take the example of block B0 shown in Fig. 7.45 and calculate the live_OUT information for each

of the quad. The quads in block B0 along with the live_OUT[B0] is shown below again for convenience.

 Code Optimisation 515

B0 (0) proc_begin func live_OUT[B0] = {a,b,j}
(1) i := 45
(2) j := a + b
(3) _t1 := a + 45
(4) if _t1 > 100 goto .L0

The calculation of live_OUT at the end of each quad is given along with explanations in Table 7.57.

Table 7.57 Calculating the live_OUT information for each quad

quad # quad live_OUT Explanation live_IN

4 if _t1 > 100 goto .L0 {a,b,j} The live_OUT of the last

quad in a block is the same

as live_OUT of the block.

live_OUT [q4] = {a,b,j}

The instruction if _t1 >

100 goto .L0 does not defi ne

any variable, but uses the

variable ‘_t1’ .

live_DEFS[q4] = { }

live_USES[q4] = { _t1 }

From the equation

live_IN [q4] = live_USES

[q4] » (live_OUT [q4]

– live_DEFS [q4])

live_IN [q4] = { _t1 } U

{ {a,b,j} – { } }

live_IN [q4] = { _

t1,a,b,j }

{_t1,a,b,j}

3 _t1 := a + 45 {_t1,a,b,j} live_OUT[q3] = live_IN [q4]

Hence

live_OUT[q3] = { _t1,a,b,j }

The instruction ‘_t1 := a +

45’ defi nes ‘_t1’, and uses

the variable ‘a’ .

live_DEFS [q3] = { _t1 }

live_USES [q3] = { a }

From the equation

live_IN [q3] = live_USES

[q3] » (live_OUT [q3]

– live_DEFS [q3])

live_IN [q3] = { a } U {

{_t1,a,b,j} – { _t1 } }

live_IN [q3] = { a,b,j }

{ a,b,j }

516 Principles of Compiler Design

2 j := a + b { a,b,j } live_OUT[q2] = live_IN

[q3]

Hence

live_OUT[q2] = { a,b,j }

The instruction ‘j := a +

b’ defi nes ‘j’, and uses the

variable ‘a’ and ‘b’ .

live_DEFS [q2] = { j }

live_USES [q2] = { a, b }

From the equation

live_IN [q2] = live_USES

[q2] U (live_OUT [q2]

– live_DEFS [q2])

live_IN [q2] = { a,b } U

{ { a,b,j} – { j } }

live_IN [q2] = { a,b }

{ a,b }

1 i := 45 { a,b } live_OUT[q1] = live_IN

[q2]

Hence

live_OUT[q1] = { a,b }

The instruction ‘i := 45’

defi nes ‘i’, and uses no

variables.

live_DEFS [q1] = { i }

live_USES [q1] = { }

From the equation

live_IN [q1] = live_USES

[q1] » (live_OUT [q1]

– live_DEFS [q1])

live_IN [q1] = { } U

{ { a,b} – { i } }

live_IN [q1] = { a,b }

{ a,b }

The procedure we just used for calculating the live_OUT information for each quad is formalised in

Algorithm 7.8.

B is the current Block

live_OUT[B] is already computed using iterative approach explained earlier

out = live_OUT[B]

for each quad ‘q’ of the form x := y op z in the block starting with the last quad in

the block and going towards the fi rst quad

 live_out[q] = out;

 Code Optimisation 517

 in = def = use = { f }

 use.insert(y);

 use.insert(z);

 if(use does not contain ‘x’){ /* handling m = m + c type of statements */

 def.insert(x);

 }

 in = (out – def) » use

 /* for the next iteration */

 out=in

Algorithm 7.8 live_out calculation for each quad

We shall now see how the live out information at each quad can be used in the global dead code

elimination. We use the block B0 in the above example for which we had computed live out information

at each quad level. We summarise the live_OUT values at the end of each quad for the block B0 below for

ease of reference.

Quad live_OUT

0 proc_begin func { a, b}

1 i := 45 { a b }

2 j := a + b { a b j }

3 _t1 := a + 45 { a b j _t1 }

4 if _t1 > 100 goto .L0 { a b j }

We turn our attention to the quad #1, given by i := 45. Observe that the variable ‘i’ is not a member of

the live_OUT set at the quad #1. In other words the variable ‘i’ is dead at this point. Now, the quad #1 in

which we defi ne the variable ‘i’ can be eliminated, since the variable ‘i’ is dead at this point. In general,

for a quad q: v = x op y, if the variable ‘v’ is dead (i.e. not in live_OUT[q]) and the operator op does not

have any side-effects (like say CALL does) then the quad ‘q’ can be eliminated. This is how global dead

code elimination can be performed using the live variable Information. The TAC after global dead code

elimination is shown in Table 7.58.

Table 7.58 Global dead code elimination

TAC after local optimisation TAC after global dead code

elimination

(0) proc_begin func (0) proc_begin func

(1) i := 45 (1) j := a + b

(2) j := a + b (2) _t1 := a + 45

(3) _t1 := a + 45 (3) if _t1 > 100 goto .L0

518 Principles of Compiler Design

(4) if _t1 > 100 goto .L0 (4) goto .L1

 (5) goto .L1 (5) label .L0

 (6) label .L0 Æ (6) k := a + j

 (7) k := a + j (7) goto .L2

 (8) goto .L2 (8) label .L1

 (9) label .L1 (9) k := b + j

(10) k := b + j (10) label .L2

(11) label .L2 (11) return k

(12) return k (12) goto .L3

(13) goto .L3 (13) label .L3

(14) label .L3 (14) proc_end func

(15) proc_end func

Algorithm 7.9 formalises the idea of global dead code elimination using the live out information.

for each quad ‘q’ of the form x:= y op z in the block

{

 if(live_out[q] does not contain x) { /* x is dead */

 eliminate the quad q

 }

}

Algorithm 7.9 Global dead code elimination using live_out information

The live variable analysis information can be used at a DAG level in the local optimisation to eliminate

the dead stores. For example, consider the DAG for the block B0 shown in Fig. 7.46.

Fig. 7.46 DAG for block 0

At the node 1, according to the Algorithm 7.3, we generate the assignment statement i := 45, since the

attached identifi er ‘i’ is an user defi ned variable. We can modify the algorithm to generate an assignment

statement only, if the identifi er in the attached list is needed outside the block, i.e. in the live_OUT of

the block. Since ‘i’ is not part of the live_OUT set for block B0, the assignment statement i := 45 is not

generated, when the quads are regenerated from the DAG. In this way, dead code elimination is performed

at a DAG level using live variable information in the form of live_OUT set for the block.

 Code Optimisation 519

Example 5—Global dead code elimination using live variable analysis This section demonstrates

the toy C compiler (mycc) performing global dead code elimination using the live variable analysis

information. The live variable analysis information was gathered by using the algorithms explained in the

preceding section. The live_OUT information was put to use to eliminate the dead code as explained in

Algorithm 7.9.

The toy C compiler takes as input, a sample C input source and gives out (a) unoptimised TAC (b) the

locally optimised TAC and (c) the TAC after global dead code elimination. The dialog below shows ‘mycc’

taking in some sample input C sources having dead code and printing out the above information as the

output.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyzer

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building ‘mycc’ - A Toy Compiler for C Language

$ g++ -DICGEN -g -Wall ic_gen.cc optimize.cc target_code_gen.cc mycc.cc semantic_
analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe

Sample Input C fi le containing dead code that can be eliminated

$ cat -n test.dce.1.c
 1 int func(int a,int b)

 2 {

 3 int i,j,k;

 4

 5 i=45; /* dead code after local opt*/

 6 j=a+b;

 7

 8 /* ‘i’ is replaced by 45 */

 9 if((a+i) > 100){

 10 k=a+j;

 11 }else{

 12 k=b+j;

 13 }

 14 return(k);

 15 }

 16

Intermediate code before and after optimization

-O gdce for Global Dead Code Elimination, -v for verbosity

$./mycc.exe -i -O gdce -v test.dce.1.c
TAC Before optimisation

 (0) proc_begin func

 (1) i := 45

 (2) _t0 := a + b

 (3) j := _t0

520 Principles of Compiler Design

 (4) _t1 := a + i

 (5) if _t1 > 100 goto .L0

 (6) goto .L1

 (7) label .L0

 (8) _t2 := a + j

 (9) k := _t2

(10) goto .L2

(11) label .L1

(12) _t3 := b + j

(13) k := _t3

(14) label .L2

(15) return k

(16) goto .L3

(17) label .L3

(18) proc_end func

TAC After Local Optimization

 (0) proc_begin func

 (1) i := 45

 (2) j := a + b

 (3) _t1 := a + 45

 (4) if _t1 > 100 goto .L0

 (5) goto .L1

 (6) label .L0

 (7) k := a + j

 (8) goto .L2

 (9) label .L1

(10) k := b + j

(11) label .L2

(12) return k

(13) goto .L3

(14) label .L3

(15) proc_end func

TAC After (Local and Global) optimization

 (0) proc_begin func

 (1) j := a + b

 (2) _t1 := a + 45

 (3) if _t1 > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) k := a + j

 (7) goto .L2

 (8) label .L1

 (9) k := b + j

(10) label .L2

(11) return k

(12) goto .L3

(13) label .L3

(14) proc_end func

Sample Input C fi le containing dead code that can be eliminated

$ cat -n test.dce.2.c
 1

 2 int func(int a, int b)

 Code Optimisation 521

 3 {

 4 int i,j;

 5

 6 i= a * b; /* dead store */

 7

 8 if(a > 100){

 9 i=a+b; /* i redefi ned */

 10 j=j+i;

 11 }else{

 12 i=a-b; /* i redefi ned */

 13 j=b*a;

 14 j = j + a;

 15 }

 16 return(j+i);

 17

 18

 19 }

 20

Intermediate code before and after optimization

$./mycc.exe -i -O gdce -v test.dce.2.c
TAC Before optimization

 (0) proc_begin func

 (1) _t0 := a * b

 (2) i := _t0

 (3) if a > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) _t1 := a + b

 (7) i := _t1

 (8) _t2 := j + i

 (9) j := _t2

(10) goto .L2

(11) label .L1

(12) _t3 := a - b

(13) i := _t3

(14) _t4 := b * a

(15) j := _t4

(16) _t5 := j + a

(17) j := _t5

(18) label .L2

(19) _t6 := j + i

(20) return _t6

(21) goto .L3

(22) label .L3

(23) proc_end func

TAC After Local Optimization

 (0) proc_begin func

 (1) i := a * b

 (2) if a > 100 goto .L0

 (3) goto .L1

 (4) label .L0

 (5) i := a + b

 (6) j := j + i

 (7) goto .L2

522 Principles of Compiler Design

 (8) label .L1

 (9) i := a - b

(10) _t4 := b * a

(11) j := _t4 + a

(12) label .L2

(13) _t6 := j + i

(14) return _t6

(15) goto .L3

(16) label .L3

(17) proc_end func

TAC After (Local and Global) optimization

 (0) proc_begin func

 (1) if a > 100 goto .L0

 (2) goto .L1

 (3) label .L0

 (4) i := a + b

 (5) j := j + i

 (6) goto .L2

 (7) label .L1

 (8) i := a - b

 (9) _t4 := b * a

(10) j := _t4 + a

(11) label .L2

(12) _t6 := j + i

(13) return _t6

(14) goto .L3

(15) label .L3

(16) proc_end func

7.2.10.4 Loops—An Introduction We have studied about the data fl ow analysis to compute the

‘available expression’ and ‘liveness’ properties of a given TAC. We saw that these properties were used

to perform global common sub-expression elimination and global dead code elimination in the program

respectively. The next data fl ow property that we study about is called as ‘reaching defi nitions’. We use the

reaching defi nitions property to perform optimisations in a loop.

Before we start studying about the reaching defi nitions, we take a short diversion to understand the basic

concepts and ideas with regard to loops. In this section, we examine the concepts and algorithms to:

 (a) Detect the presence of a loop, given the intermediate code.

 (b) Identify the basic blocks in the intermediate code that constitute a loop.

The ideas and the algorithms presented here are pre-requisites to the study of loop optimisation. We

study about one of the loop optimisations later by using reaching defi nitions.

Detection of Loop

The loops in programs are detected during the data fl ow analysis by using a concept called as ‘ domination’

in a fl ow graph.

A node ‘d’ of a fl ow graph dominates node ‘n’, if every path from the initial node to ‘n’ goes through ‘d’.

It is represented as d dom n. By defi nition, each node dominates itself.

Consider the input source, TAC after local optimisation and the corresponding fl ow graph in Fig. 7.47 to

understand the idea of domination.

In Fig. 7.47, the initial node of the fl ow graph is B0. We can see from the fl ow graph that in order to

reach block B4 from the initial node B0, it is mandatory to go through block B1. It is impossible to reach

 Code Optimisation 523

B4 from initial node B0 without traversing B1. In other words, B1 dominates B4 (B1 dom B4). In the same

fl ow graph, in order to reach block B4 from the initial node B0, it is not necessary that the control needs to

always pass through the block B3. Hence, we can say that B3 does not dominate B4.

Fig. 7.47 Input source, TAC after local optimisation and fl ow graph

524 Principles of Compiler Design

We use the term dominators to represent the set of nodes that dominate a particular node. For example,

in Fig. 7.47, we can see that B0, B1 and B2 dominate B2. Thus, the dominators [B2] = {B0, B1, B2} or

simply dominators [2] = {0, 1, 2}.

Table 7.59 shows the dominators for each of the nodes in the fl ow graph. Observe that the dominators

set is never empty because (a) each node dominates itself and (b) the initial node also has to be part of the

dominators, since the defi nition of dominations relates to path starting from initial node.

Table 7.59 Dominators

dominators [0] = { 0 }

dominators [1] = { 0, 1 }

dominators [2] = { 0, 1, 2 }

dominators [3] = { 0, 1, 3 }

dominators [4] = { 0, 1, 2, 4 }

dominators [5] = { 0, 1, 2, 4, 5 }

An edge in a fl ow graph represents a possible fl ow of control. For example, in Fig. 7.47 the edge B0

to B1 written as 0 Æ 1 represents a possible fl ow of control. The edges in the fl ow graph of Fig. 7.47 are

0 Æ 1, 1 Æ 2, 1 Æ 3, 3 Æ 1, 2 Æ 4 and 4 Æ 5. For an edge in a fl ow graph denoted by a Æ b, the node

‘b’ is called as the head and the node ‘a’ is called as the tail. It is normal to fi nd that the dominators[head]

containing the tail, since there is an edge from the tail to head. However, there are some edges in which

dominators[tail] contain the head. These are called the back edges. The presence of a back edge indicates

the existence of a loop in a fl ow graph. Table 7.60 shows each of the edges in the fl ow graph along with the

dominators for the head and tail of those edges. We can see from the table, that the back edge 3 Æ 1 has

been detected by the presence of head node in the dominators[tail].

Table 7.60 Edges and dominators for head and tail

Edge Head Tail dominators[head] dominators[tail] Remarks

0Æ1 1 0 { 0, 1 } { 0 }

1Æ2 2 1 { 0, 1, 2 } { 0, 1 }

1Æ3 3 1 { 0, 1, 3 } { 0, 1 }

3Æ1 1 3 { 0, 1 } { 0, 1 , 3 } Back Edge

2Æ4 4 2 { 0, 1, 2, 4 } { 0, 1, 2 }

4Æ5 5 4 { 0, 1, 2, 4, 5 } { 0, 1, 2, 4 }

Let’s take another fl ow graph shown in Fig. 7.48 as an example to fi rm up the ideas on domination. In

Fig. 7.48, by visual inspection, we can notice that (B2, B4, B6) form a loop and (B1, B3) form another

loop.

 Code Optimisation 525

Table 7.61 shows the dominators for each of the nodes in the fl ow graph.

Table 7.61 Dominators

dominators [0] = { 0 }

dominators [1] = { 0 , 1 }

dominators [2] = { 0 , 2 }

dominators [3] = { 0 , 1 , 3 }

dominators [4] = { 0 , 2 , 4 }

dominators [5] = { 0, 1 , 3 , 5 }

dominators [6] = { 0 , 2 , 4 , 6 }

Fig. 7.48 Flow graph

Table 7.62 shows each of the edges in the fl ow graph along with the dominators for the head and tail of

those edges. We can see from the table, that the back edges 3 Æ 1 and 6 Æ 2 have been detected by the

presence of head node in the dominators[tail]. This identifi es both the loops.

526 Principles of Compiler Design

In a loop, the entry of the loop dominates all the nodes in the loop. In Fig. 7.48, {B6, B2, B4} form a

loop L1 and {B3, B1} form another loop—L2. The entry of the loop L1 is B2. The other nodes in the loop

L1 are B4 and B6. We can see that B2 is present in the dominator set of B4 and B6, i.e. in dominators[B4]

and dominators[B6]. The entry of the loop is also called as the header of the loop. The Loop L1 can be

exited from the basic block B6. It is called as loop exit block. The block B3 is the loop exit block for the

loop L2. It is possible to have multiple exit blocks in a loop.

A loop L can be formally described as a set of nodes {n
1
, n

2
, n

3
 …. n

k
} in the fl ow graph in which there

is path from any node n
i
 to n

j
, via other nodes that are also part of the loop L. The header node of the loop

dominates all the nodes in the loop.

In some of the loop optimisation techniques like, say, code motion, it is required to move several quads

from within the loop to outside of the loop. In the optimised code, these quads would typically need to be

executed before entering the loop.

Table 7.62 Edges and dominators for head and tail

Edge Head Tail dominators[head] dominators[tail] Remarks

0 Æ 1 1 0 {0, 1} {0}

0 Æ 2 2 0 {0, 2} {0}

1 Æ 3 3 1 {0, 1, 3} {0, 1}

3 Æ 1 1 3 {0, 1} {0, 1, 3} Back edge

3 Æ 5 5 3 {0, 1, 3, 5} {0, 1, 3}

5 Æ 7 7 5 {0, 7} {0 1, 3, 5}

2 Æ 4 4 2 {0, 2, 4} {0, 2}

6 Æ 2 2 6 {0, 2} {0, 2, 4, 6} Back edge

4 Æ 6 6 4 {0, 2, 4, 6} {0, 2, 4}

6 Æ 7 7 6 {0, 7} {0, 2, 4, 6}

A pre-header block serves as a placeholder for the quads that need to be executed just before entering

the loop. The pre-header is a basic block introduced during the loop optimisation to hold the quads that are

moved from within the loop. It is a predecessor to the header block. Figure 7.49 illustrates the idea of a pre-

header block.

Figure 7.49 (A) shows a fl ow graph with of a loop L consisting of nodes {B3, B4, B5} with B3 as the

header. Imagine, during the data fl ow analysis we fi nd that there are quads in say B4, which can be moved

out of the loop. The optimiser introduces a pre-header block B7, which is a predecessor to the header of

the loop B3 and moves the quads into it. The block B7 is a successor to the blocks B1 and B2, which were

earlier fl owing to B3.

Identifying the Basic Blocks forming a Loop

In data fl ow analysis the presence of a back edge indicates a loop in the program. In order to make

optimisations in the loop, it is required to know the nodes that constitute a loop in the fl ow graph. For

example, in Fig. 7.48, the loop L1 constitutes of {B6, B2, B4} and loop L2 constitutes of {B1, B3}.

In data fl ow analysis, the constituent blocks in a loop are usually calculated from the back edge. Given a

back edge, n1 Æ n2, A natural loop is n1, n2 and the set of nodes that can reach ‘n1’ without going through

‘n2’. We can observe from Fig. 7.48 that for the back edge 6 Æ 2, the set of nodes that can reach 6 without

going through 2 is B4. In other words, there is a path from B4 to B6 without going through B2. By this

defi nition {B6, B2, B4} constitute a natural loop.

 Code Optimisation 527

Fig. 7.49 Pre-header in a loop

The nodes that constitute a loop in the fl ow graph are determined by employing Algorithm 7.10. The

procedure fi nd_nodes_in_loop(n1, n2) is the one that determines the basic blocks constituting a loop. It is

called with the parameters n1 and n2, where n1 Æ n2 is the back edge. A supporting procedure - ‘insert’,

used by ‘fi nd_nodes_in_loop’ is also shown in Algorithm 7.10.

 1 procedure insert(loop,n)

 2 {

 3 if (n is not in loop){

 4 loop = loop U { n }

 5 push n on to stack

 6 }

 7 }

 8

 9 procedure fi nd_nodes_in_loop(n1,n2) /* n1->n2 is the back edge */

10 {

11 loop = { n2 }

12

13 insert(loop, n1)

14

528 Principles of Compiler Design

15 while (stack is not empty)

16 {

17 pop node e, the top element of the stack

18

19 for each predecessor of ‘e’

20 {

21 insert(loop,e)

22 }

23 }

24 return(loop)

25 }

 Algorithm 7.10 Identifying nodes in a loop

Let’s see the working of the algorithm on the fl ow graph in Fig. 7.48. We take the back edge B6 Æ B2 into

consideration and use Algorithm 7.10 to compute the nodes forming the loop with this back edge. Figure

7.50 shows the sequence of events that occur while using Algorithm 7.10 to compute the constituents of

loop for the back edge B6 Æ B2 of the fl ow graph in Fig. 7.48.

Fig. 7.50 Computing the constituents of a loop

 Code Optimisation 529

We examined the basic ideas with respect to identifying a loop and its constituents during data fl ow

analysis. This knowledge is useful for any of the loop optimisations. Next, we study about one of the loop

optimisations using data fl ow property called as reaching defi nitions.

7.2.10.5 Reaching Defi nitions

Introduction Reaching defi nitions (RD) is another data fl ow property that is commonly computed during

data fl ow analysis. In this section, we study about reaching defi nitions and apply it to perform one of the

loop optimisations called as loop invariant code motion.

Consider the input source and the locally optimised TAC shown in Table 7.63 to get an idea of reaching

defi nitions and how that can be used for optimising a loop.

Table 7.63 Input source and locally optimised code

Input source Locally optimised TAC

 1 int arr[1000];

 2

 3 int func(int a,int b)

 4 {

 5 int i;

 6 int n1,n2;

 7

 8 i=0;

 9

10 n1 = a * b ;

11 n2 = a - b ;

12

13 while(arr[i] > (n1*n2))

14 {

15 i=i+1;

16 }

17

18

19 return(i);

20 }

 (0) proc_begin func

 (1) i := 0

 (2) n1 := a * b

 (3) n2 := a - b

 (4) label .L0

 (5) _t2 := i * 4

 (6) _t3 := &arr

 (7) _t4 := _t3[_t2]

 (8) _t5 := n1 * n2

 (9) if _t4 > _t5 goto .L1

(10) goto .L2

(11) label .L1

(12) i := i + 1

(13) goto .L0

(14) label .L2

(15) return i

(16) goto .L3

(17) label .L3

(18) proc_end func

From a visual inspection of the input source and locally optimised TAC in Table 7.63, we can observe

the following:

∑ The variable n1 is defi ned in the quad 2 and used in quad 8. There are no other intervening defi nitions

of n1 before its use in quad 8. In other words, the defi nition of n1 that is reaching quad 8 is the one

made at line quad 2.

∑ The variable n2 is defi ned in the quad 3 and used in quad 8. There are no other intervening defi nitions

of n2 before its use in quad 8. In other words, the defi nition of n2 that is reaching quad 8 is the one

made at line quad 3.

∑ The quads 4 through 13 comprise the while loop. The defi nitions of n1 and n2 that are reaching quad

8 are made outside the loop.

530 Principles of Compiler Design

When the ‘while’ loop spanning from quads 4 through 13 gets executed, the value n1 * n2 is computed

as many times as the loop executes.

There is an opportunity to optimise the loop by calculating the value n1 * n2 before entering the loop

and then using it to compare with ‘i’ within the loop. This optimisation is possible because the defi nitions

of n1 and n2 that are reaching quad 8 come from outside the loop (quad 2 and 3 respectively). This is an

example of a loop invariant code motion optimisation.

The TAC before and after the loop invariant code motion optimisation is shown in Table 7.64 for the

input source in consideration (see Table 7.63).

Table 7.64 Loop invariant code motion using reaching defi nitions

TAC after local

optimisation

TAC after loop invariant

code motion optimisation

(0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a – b

(4) label .L0

(5) _t2 := i * 4

(6) _t3 := &arr

(7) _t4 := _t3[_t2]

(8) _t5 := n1 * n2

(9) if _t4 > _t5 goto .L1

(10) goto .L2

(11) label .L1

(12) i := i + 1

(13) goto .L0

(14) label .L2

(15) return i

(16) goto .L3

(17) label .L3

(18) proc_end func

(0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a – b

(4) _t5 := n1 * n2

(5) label .L0

(6) _t2 := i * 4

(7) _t3 := &arr

(8) _t4 := _t3[_t2]

(9) if _t4 > _t5 goto .L1

(10) goto .L2

(11) label .L1

(12) i := i + 1

(13) goto .L0

(14) label .L2

(15) return i

(16) goto .L3

(17) label .L3

(18) proc_end func

The above example showed informally what a reaching defi nition is and how the loop invariant code

motion optimisation could be carried out by knowing the reaching defi nitions for a particular quad. We

conclude this section with a formal statement on a reaching defi nition.

A defi nition ‘d’ reaches a point ‘p’, if there is a path from the point immediately following ‘d’ to ‘p’ such

that ‘d’ is not killed along the path.

Suppose, a quad ‘q’ uses variables ‘v1’ and ‘v2’ and the only possible defi nitions for ‘v1’ and ‘v2’

come from outside the loop. The quad ‘q’ can be considered for performing loop invariant code motion

optimisation. Apart from the fact that the reaching defi nitions are from outside the loop, there are certain

other conditions that need to be met in order to make the loop invariant code motion optimisation. We study

about those conditions in one of the later sections.

Data Flow Analysis to Compute RD in Intermediate Code In last section, we understood the concept

of reaching defi nitions and how it can be used to perform code motion optimisation. In this section

we study about the method that can be used for computing the RD properties of a given program.

Consider the input source, the corresponding locally optimised TAC and the fl ow graph shown in

Fig. 7.51 to understand some of the terminology that is required for computing the reaching defi nitions

information. The universal set of defi nitions L consists of any defi nition that appears in the statements. In

the TAC shown in Fig. 7.51, the defi nitions can be seen in the quads 1, 2, 3, 5, 6, 7, 8 and 12. Thus, the

universal set of defi nitions for the entire procedure is given by L = {1, 2, 3, 5, 6, 7, 8, 12}.

 Code Optimisation 531

Fig. 7.51 Input source, TAC after local optimisation and the fl ow graph

A block generates a defi nition ‘d’, if the defi nition made reaches the end of the block. We use the term

rd_GEN[B] to denote the set of defi nitions generated by a basic block B.

A block kills all the defi nitions of a variable ‘x’ made outside the block, if it assigns a value to ‘x’. We

use the term rd_KILL[B] to denote the defi nitions killed by a basic block B.

532 Principles of Compiler Design

Table 7.65 shows the computation of rd_GEN and rd_KILL sets corresponding to each of the blocks for

the TAC shown in Fig. 7.51.

Table 7.65 rd_GEN/rd_KILL for all the blocks

TAC rd_GEN Comments

B0 (0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a - b

rd_GEN[B0]= { 1,2,3 }

rd_KILL[B0]= { 12 }

The universal set of defi nitions

that are used in the entire

procedure is given by L =

{ 1,2,3,5,6,7,8,12}

rd_GEN[B0] = { 1,2,3 }, since

these defi nitions reaches the end of

the block

rd_KILL[B0] = { 12 } since there

is an assignment to ‘i’ at (12)

outside this block.

B1 (4) label .L0

(5) _t2 := i * 4

(6) _t3 := &arr

(7) _t4 := _t3[_t2]

(8) _t5 := n1 * n2

(9) if _t4 > _t5 goto

.L1

rd_GEN[B1]= { 5,6,7,8 }

rd_KILL[B1]= { }

rd_GEN[B1] = { 5,6,7,8 }, since

these defi nitions reache the end of

the block

rd_KILL[B1]={ } i.e. empty, since

there are no defi nitions in L

outside the block,which defi ne _t2

or _t3 or _t4 or _t5.

B2 (10) goto .L2 rd_GEN[B2] = { }

rd_KILL[B2]= { }

rd_GEN[B2] = { } i.e. empty

rd_KILL[B2]={ } i.e. empty

Since no defi nitions are made and

as a consequence none are killed

either

B3 (11) label .L1

(12) i := i + 1

(13) goto .L0

rd_GEN[B3] = { 12 }

rd_KILL[B3] = { 1 }

rd_GEN[B3] = { 12 }, since this

defi nition reaches the end of the

block

rd_KILL[B3] = { 1 } since there

is an assignment to ‘i’ at (1)

outside this block.

B4 (14) label .L2

(15) return i

(16) goto .L3

rd_GEN[B4] = { }

rd_KILL[B4]={ }

rd_GEN[B4] = { } i.e. empty

rd_KILL[B4]={ } i.e. empty

Since no defi nitions are made and

as a consequence none are killed

either

B5 (17) label .L3

(18) proc_end func

rd_GEN[B4] = { }

rd_KILL[B4]={ }

rd_GEN[B4] = { } i.e. empty

rd_KILL[B4]={ } i.e. empty

Since no defi nitions are made and

as a consequence none are killed

either

 Code Optimisation 533

As seen earlier during the discussion on AE, the data fl ow properties are commonly computed using

equations known as data fl ow equations. By using the data fl ow equations, one can compute the values of

data fl ow property like RD at the block boundaries. The value of data fl ow property is then extrapolated

within the block by using its value at the block boundary.

The data fl ow equations for RD express the relationship between the rd_IN[B], the set of all the

defi nitions reaching the beginning of block ‘B’ to rd_OUT[B] the set of defi nitions reaching the end of

block ‘B’. The data fl ow equations for available expressions are as follows:

rd_OUT[B] = rd_GEN[B] » (rd_IN[B] – rd_KILL[B])

rd_IN[B]= » rd_OUT[P] for all the predecessors P of the block Equation 7.4

Let’s use the data fl ow equations for reaching defi nitions given by Equation 7.4 and calculate the

reaching defi nitions properties at the start (rd_IN[B]) and end of each block (rd_out[B]) for the sample code

shown in Fig. 7.51.

TAC rd_IN Comments

B0 (0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a – b

rd_IN[B0]= { }

rd_OUT[B0] = {1,2,3}

From the data fl ow equation Equation 7.4

rd_IN[B] = » rd_OUT[P] for all

predecessors P

rd_OUT[B] = rd_GEN[B] » (rd_IN[B] – rd_

KILL[B])

There are no predecessors to B0, so

rd_IN[B0] = { } i.e. empty

using the values of rd_GEN and rd_KILL

for B0 computed earlier

rd_OUT[B0] = {1, 2, 3} » ({ø} – {12})

rd_OUT[B0]= {1, 2, 3}

B1 (4) label .L0

(5) _t2 := i * 4

(6) _t3 := &arr

(7) _t4 := _t3[_t2]

(8) _t5 := n1 * n2

(9) if _t4 > _t5

 goto .L1

According to Equation 7.4 we have

rd_IN[B] = » rd_OUT[P] for all the

predecessors P of the block

There are 2 predecessors to B1, which are

B0 and B3.

rd_IN[B1] = rd_OUT[B0] » rd_OUT[B3]

Now, rd_OUT[B3] is not yet computed. We

are in no position to compute it either,

since B1 is a predecessor of B3 and

rd_IN[B1] = rd_OUT[B3]

We have a cyclic dependency.

We overcome this issue of cyclic dependency issue by using an iterative approach to solving the data

fl ow equations as we did for the available expressions. In the iterative approach of solving data fl ow

equations for reaching defi nitions, an initial value for rd_OUT[B] for every block B is assumed. This will

help us compute the rd_IN[B], where rd_IN[B] = » rd_OUT[P] for all the predecessors P of the block,

even in cases where rd_OUT[P] is not yet computed. The initial value of rd_OUT[B] for every block B that

is assumed before the start of all the calculations = rd_GEN[B].

534 Principles of Compiler Design

Now, using the initial value of rd_OUT[B], we compute rd_IN[B] for each one of the blocks B, using

the equation rd_IN[B] = » rd_OUT[P], for each predecessor P. The initial value of rd_OUT[B] is used in

situations like the one given above, where the rd_OUT of the predecessor has not yet been calculated. Once

the value of rd_OUT[B] is calculated using Equation 7.4, we would use the calculated value thereafter.

In this manner, we compute rd_IN and rd_OUT for all the blocks. Observe that the rd_IN of some of

the blocks like B1, might have been computed directly based on the initial value of rd_OUT for one of the

predecessor—B3, while the rd_IN of other blocks like B2, B4, etc. are calculated based on the computed

values of rd_OUT of the predecessors. At the end of one round of computation for all the blocks (let’s call it

iteration 1), we have a set of values of rd_IN/rd_OUT for all the blocks. At this point, note that the rd_OUT

for every block contains the computed value and not the initial value that we assigned at the start. Table

7.66 shows rd_IN/rd_OUT calculation for the fi rst iteration corresponding to all the nodes (basic blocks) of

the fl ow graph in Fig. 7.51.

Table 7.66 rd_IN/rd_OUT for the blocks—iteration #1

TAC rd_IN Comments

B0 (0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a – b

rd_IN[B0]= { }

rd_OUT[B0]= {1, 2, 3}

From the data fl ow equation

Equation 7.4

rd_IN[B] = » rd_OUT[P] for all

predecessors P

rd_OUT[B] = rd_GEN[B] » (rd_

IN[B] – rd_KILL[B])

There are no predecessors to

B0, so

rd_IN[B0] = { } i.e. empty

using the values of rd_GEN

and rd_KILL for B0 computed

earlier

rd_OUT[B0] = {1, 2, 3} » ({ø}

– {12})

rd_OUT[B0] = {1, 2, 3}

B1 (4) label .L0

(5) _t2 := i * 4

(6) _t3 := &arr

(7) _t4 := _t3[_t2]

(8) _t5 := n1 * n2

(9) if _t4 > _t5 goto .L1

rd_IN[B1]= {1, 2, 3, 12}

rd_OUT[B1] =

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we

have rd_IN[B] = » rd_OUT[P]

for all the predecessors P of

the block

There are 2 predecessors to

B1, which are B0 and B3.

rd_IN[B1] = rd_OUT[B0] »

rd_OUT[B3]

Initial value of rd_OUT[B3] =
rd_GEN[B3] = {12}

rd_IN[B1] = rd_OUT[B0] »

rd_OUT[B3]

rd_IN[B1] = {1, 2, 3} » {12}

rd_IN[B1] = {1, 2, 3, 12}

 Code Optimisation 535

rd_OUT[B1] = rd_GEN[B1] »

(rd_IN[B1] – rd_KILL[B1])

rd_OUT[B1] = {5, 6, 7, 8} »

({1, 2, 3, 12} – {})

rd_OUT[B1] = {1, 2, 3, 5, 6,

7, 8, 12}

B2 (10) goto .L2 rd_IN[B2] =

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B2] =

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we

have rd_IN[B] = » rd_OUT[P]

for all the predecessors P of

the block

There is 1 predecessors to B2,

which is B1.

rd_IN[B2] = rd_OUT[B1]

rd_IN[B2] = {1, 2, 3, 5, 6, 7,

8, 12}

rd_OUT[B2] = rd_GEN[B2] »

(rd_IN[B2] – rd_KILL[B2])

rd_OUT[B2] = { } » ({1, 2, 3,

5, 6, 7, 8, 12} – { })

rd_OUT[B2] = {1, 2, 3, 5, 6,

7, 8, 12}

B3 (11) label .L1

(12) i := i + 1

(13) goto .L0

rd_IN[B3] =

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B3] =

{2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we

have rd_IN[B] = » rd_OUT[P]

for all the predecessors P of

the block

There is 1 predecessors to B3,

which is B1.

rd_IN[B3] = rd_OUT[B1]

rd_IN[B3] = {1, 2, 3, 5, 6, 7,

8, 12}

rd_OUT[B3] = rd_GEN[B3] »

(rd_IN[B3] – rd_KILL[B3])

rd_OUT[B3] = {12} U ({5, 6, 7,

8, 1, 2, 3, 12} – {1})

rd_OUT[B3] = {2, 3, 5, 6, 7,

8, 12}

B4 (14) label .L2

(15) return i

(16) goto .L3

rd_IN[B4] =

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B4] =

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we

have rd_IN[B] = » rd_OUT[P]

for all the predecessors P of

the block

There is 1 predecessors to B4,

which is B2.

rd_IN[B4] = rd_OUT[B2]

rd_IN[B4] = {1, 2, 3, 5, 6, 7,

8, 12}

536 Principles of Compiler Design

rd_OUT[B4] = rd_GEN[B4] U

(rd_IN[B4] – rd_KILL[B4])

rd_OUT[B4] = { } » ({1, 2, 3,

5, 6, 7, 8, 12} – { })

rd_OUT[B4] = {1, 2, 3, 5, 6,

7, 8, 12}

B5 (17) label .L3

(18) proc_end func

rd_IN[B5] = {1, 2, 3, 5,

6, 7, 8, 12}

rd_OUT[B5] = {1, 2, 3,

5, 6, 7, 8, 12}

According to Equation 7.4 we

have rd_IN[B] = » rd_OUT[P]

for all the predecessors P of

the block

There is 1 predecessors to B5,

which is B4.

rd_IN[B5] = rd_OUT[B4]

rd_IN[B5] = {1, 2, 3, 5, 6, 7,

8, 12}

rd_OUT[B5] = rd_GEN[B5] U

(rd_IN[B5] – rd_KILL[B5])

rd_OUT[B5] = { } » ({1, 2, 3,

5, 6, 7, 8, 12} – { })

rd_OUT[B5] = {1, 2, 3, 5, 6,

7, 8, 12}

Next, we do the computation of rd_IN and rd_OUT for all the blocks again (iteration 2) using the same

equations defi ned in Equation 7.4. In this second iteration, the value of rd_IN for the blocks like B1 change,

since rd_OUT[B3] would now be the value computed in the fi rst iteration, i.e. {2, 3, 5, 6, 7, 8, 12} as

opposed to initial value {12} used in the fi rst iteration. The changes in rd_IN[B1] might have a ripple effect

changing rd_OUT[B1], rd_IN[B3] and then rd_OUT[B3]. Thus the second iteration yields a set of values of

rd_IN/rd_OUT for all the blocks.

Table 7.67 rd_IN/rd_OUT for the blocks—iteration #2

TAC rd_IN Comments

B0 (0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a – b

rd_IN[B0] = { }

rd_OUT[B0] = {1, 2, 3}

From the data fl ow equation Equation 7.4

rd_IN[B] = U rd_OUT[P] for all

predecessors P

rd_OUT[B] = rd_GEN[B] » (rd_IN[B] – rd_

KILL[B])

There are no predecessors to B0, so

rd_IN[B0] = { } i.e. empty

using the values of rd_GEN and rd_KILL

for B0 computed earlier

rd_OUT[B0] = {1, 2, 3} » ({ø} – {12})

rd_OUT[B0] = {1, 2, 3}

 Code Optimisation 537

B1 (4) label .L0

(5) _t2 := i * 4

(6) _t3 := &arr

(7) _t4 := _t3[_t2]

(8) _t5 := n1 * n2

(9) if _t4 > _t5

goto .L1

rd_IN[B1] =

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B1] =

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we have

rd_IN[B] = » rd_OUT[P] for all the

predecessors P of the block

There are 2 predecessors to B1, which

are B0 and B3.

rd_IN[B1] = rd_OUT[B0] » rd_OUT[B3]

The value of rd_OUT[B3] computed in the
previous iteration= {2, 3, 5, 6, 7, 8,
12}

rd_IN[B1] = rd_OUT[B0] » rd_OUT[B3]

rd_IN[B1] = {1, 2, 3} » {{2, 3, 5, 6,

7, 8, 12}

rd_IN[B1] = {1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B1] = rd_GEN[B1] » (rd_IN[B1]

– rd_KILL[B1])

rd_OUT[B1] = {5, 6, 7, 8} » ({1, 2, 3,

5, 6, 7, 8, 12} – { })

rd_OUT[B1] = {1, 2, 3, 5, 6, 7, 8, 12}

B2 (10) goto .L2 rd_IN[B2] =

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B2] =

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we have

rd_IN[B] = » rd_OUT[P] for all the

predecessors P of the block

There is 1 predecessor to B2, which is B1.

rd_IN[B2] = rd_OUT[B1]

rd_IN[B2] = {1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B2] = rd_GEN[B2] » (rd_IN[B2]

– rd_KILL[B2])

rd_OUT[B2] = { } » ({1, 2, 3, 5, 6, 7,

8, 12} – { })

rd_OUT[B2] = { 1,2,3,5,6,7,8,12 }

B3 (11) label .L1

(12) i := i + 1

(13) goto .L0

rd_IN[B3] =

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B3] =

{2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we have

rd_IN[B] = » rd_OUT[P] for all the

predecessors P of the block

There is 1 predecessors to B3, which is B1.

rd_IN[B3] = rd_OUT[B1]

rd_IN[B3] = {1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B3] = rd_GEN[B3] » (rd_IN[B3]

– rd_KILL[B3])

rd_OUT[B3] = {12} » ({5, 6, 7, 8, 1, 2,

3, 12} – {1})

rd_OUT[B3] = {2, 3, 5, 6, 7, 8, 12}

538 Principles of Compiler Design

B4 (14) label .L2

(15) return i

(16) goto .L3

rd_IN[B4] =

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B4] =

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we have

rd_IN[B] = » rd_OUT[P] for all the

predecessors P of the block

There is 1 predecessors to B4, which is B2.

rd_IN[B4] = rd_OUT[B2]

rd_IN[B4] = {1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B4] = rd_GEN[B4] » (rd_IN[B4]

– rd_KILL[B4])

rd_OUT[B4] = { } » ({1, 2, 3, 5, 6, 7,

8, 12} – { })

rd_OUT[B4] = {1, 2, 3, 5, 6, 7, 8, 12}

B5 (17) label .L3

(18) proc_end func

rd_IN[B5] =

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B5] =

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we have

rd_IN[B] = U rd_OUT[P] for all the

predecessors P of the block

There is 1 predecessor to B5, which is B4.

rd_IN[B5] = rd_OUT[B4]

rd_IN[B5] = {1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B5] = rd_GEN[B5] » (rd_IN[B5]

– rd_KILL[B5])

rd_OUT[B5] = { } U ({1, 2, 3, 5, 6, 7,

8, 12} – { })

rd_OUT[B5] = {1, 2, 3, 5, 6, 7, 8, 12}

Table 7.68 shows the values of rd_OUT as calculated in the fi rst and second iteration corresponding

to all the basic blocks of the fl ow graph. Observe that the values of rd_OUT for none of the blocks have

changed from the fi rst to second iteration. This signals us to half the iterations calculating rd_IN/e_OUT for

the blocks, since rd_OUT of all the blocks have reached a steady state.

Table 7.68 rd_OUT in the fi rst and second iteration

Block # rd_OUT in iteration #1 rd_OUT in iteration #2

0 rd_OUT[B0] = {1, 2, 3} rd_OUT[B0] = {1, 2, 3}

1 rd_OUT[B1] = {1, 2, 3, 5, 6, 7, 8, 12} rd_OUT[B1] = {1, 2, 3, 5, 6, 7, 8, 12}

2 rd_OUT[B2] = {1, 2, 3, 5, 6, 7, 8, 12} rd_OUT[B2] = {1, 2, 3, 5, 6, 7, 8, 12}

3 rd_OUT[B3] = {2, 3, 5, 6, 7, 8, 12} rd_OUT[B3] = {2, 3, 5, 6, 7, 8, 12}

4 rd_OUT[B4] = {1, 2, 3, 5, 6, 7, 8, 12} rd_OUT[B4] = {1, 2, 3, 5, 6, 7, 8, 12}

5 rd_OUT[B5] = {1, 2, 3, 5, 6, 7, 8, 12} rd_OUT[B5] = {1, 2, 3, 5, 6, 7, 8, 12}

Figure 7.52 shows the fl ow graph annotated with the values of rd_IN, rd_GEN, rd_KILL and rd_OUT

for each of the blocks—B0 through B5.

 Code Optimisation 539

Fig. 7.52 Flow graph annotated with reaching defi nition information

Algorithm 7.11 summarises the computation of reaching defi nitions (rd_IN/rd_OUT) using the iterative

approach of solving data fl ow equations that we discussed above.

540 Principles of Compiler Design

/* Initialize rd_OUT for all blocks */

for every block B {

 rd_OUT[B]= rd_GEN[B]

}

steady_state = FALSE

while (steady_state = = FALSE) {

 steady_state = TRUE

 for every block B {

 /* rd_IN */

 rd_IN[B] = » rd_OUT[P] for all the predecessors P of the block

 /* saving rd_OUT to later check if we have reached steady state */

 saved_rd_OUT = rd_OUT

 /* computing rd_OUT */

 rd_OUT[B] = rd_GEN[B] » (rd_IN[B] – rd_KILL[B])

 /* Checking for a steady state of rd_OUT */

 if(saved_rd_OUT[B] ! = rd_OUT[B]){

 steady_state = FALSE

 }

 }

}

Algorithm 7.11 Reaching defi nitions computation using the iterative approach

Algorithm 7.11 works for the input sources involving loops and also the ones without the loops. Observe

in the algorithm that the fi nal values of rd_IN and rd_OUT for all the blocks in the procedure are arrived

at in an iterative fashion. For an input source without any loops, the fi nal values of rd_IN and rd_OUT for

each block can be arrived at in the fi rst iteration, if the computation is made in the order of fl ow of control,

where we compute rd_IN / rd_OUT for a block B only after rd_IN/rd_OUT for all its predecessors have

been computed. In such cases, the second iteration is performed only to confi rm that the values of rd_OUT

have reached a steady state.

The reaching defi nition information in the form of rd_IN set at the block level is extrapolated to the quad

level and stored in a data structure called use-defi nition (ud) chain.

The ud-chain is a set holding all defi nitions reaching a quad, for each variable used in the quad. Let’s

pick a quad and see its ud-chain, to understand it. Let’s take quad (8) t5 := n1 * n2 in the TAC after local

optimisation in the fl ow graph, Fig. 7.52 . The ud-chains for the same are shown below.

ud_chain (8, n1) = {2}

ud_chain (8, n2) = {3}

This tells us that the defi nition of ‘n1’ reaching the quad (8) comes from the quad (2). Similarly, the

defi nition of ‘n2’ reaching quad (8) comes from the quad (3).

Let’s take another quad to see a case where there are more than one defi nitions reaching the quad—the

quad (5) i := i + 1 in Fig. 7.52. The quad (5) uses one variable ‘i’, the other argument used is a constant ‘1’.

The ud-chain for the quad (5) is shown below.

 Code Optimisation 541

ud_chain (5, i) = {1, 12}

The ud-chain above tells us that the defi nition of ‘i’ reaching the quad (5) comes from either the quad

(1) or quad (12). The quad (1) provides the initial value when the loop is entered for the fi rst time and quad

(12) provides the value thereafter.

The ud-chain at a quad ‘q’ for the usage of a variable ‘v’ can be directly calculated from rd_IN of the

block, by selecting the sub-set of defi nitions corresponding to the variable ‘v’ within rd_IN. In cases where

there is a defi nition of the variable ‘v’ within the current block before the quad ‘q’, at say, q0, then the ud-

chain (q, v) = q0 (i.e.) q0 is the only defi nition that reaches q and the elements in rd_IN for ‘v’ are ignored.

In scenarios containing multiple defi nitions of variable ‘v’ in the current block, then ‘q0’ corresponds to the

last defi nition of the variable ‘v’.

Consider the above example for which we have already constructed the reaching defi nitions information.

Table 7.69 shows the TAC annotated with the rd_IN information that we computed above.

Table 7.69 TAC with RD information

/* rd_IN[B0] = {ø} */

(0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a – b

/* rd_IN[B1] = {1, 2, 3, 5, 6, 7, 8, 12} */

(4) label .L0

(5) _t2 := i * 4

(6) _t3 := &arr

(7) _t4 := _t3[_t2]

(8) _t5 := n1 * n2

(9) if _t4 > _t5 goto .L1

/* rd_IN[B2] = {1, 2, 3, 5, 6, 7, 8, 12} */

(10) goto .L2

/* rd_IN[B3] = {1, 2, 3, 5, 6, 7, 8, 12} */

(11) label .L1

(12) i := i + 1

(13) goto .L0

/* rd_IN[B4] = {1, 2, 3, 5, 6, 7, 8, 12} */

(14) label .L2

(15) return i

(16) goto .L3

/* rd_IN[B5] = {1, 2, 3, 5, 6, 7, 8, 12} */

(17) label .L3

(18) proc_end func

The ud-chains for the quads of blocks B1 and B3 in the TAC shown in Table 7.69 are summarised below

in Table 7.70. The ud-chains are not relevant for the quads using certain operators like label, proc_begin,

proc_end and hence are not listed in Table 7.70.

542 Principles of Compiler Design

Table 7.70 ud-chain information

Block Quad ud-chain Information Explanation

B1 (5) _t2 := i * 4 ud_chain (5, i) = {1, 12} The defi nitions corresponding to ‘i’ in

the rd_IN[B1] are {1, 12}. There are

no defi nitions of ‘i’ preceding the quad

#5 within the block B1. Hence the

defi nitions of ‘i’ that are reaching the

quad 5 are the ones made in {1, 12}.

B1 (6) _t3 := &arr None The ADDR_OF operator fetches the

memory address of the operand ‘arr’. It

is an l-value and cannot be defi ned by

any previous quad. It is treated like a

constant assignment

B1 (7) _t4 := _t3[_t2] ud_chain (7,_t3) = {6}

ud_chain (7,_t2) = {5}
There is a defi nition of ‘_t3’ in quad #6

preceding the quad #7 within the block

B1. Hence, the defi nition of ‘_t3’ that is

reaching the quad 7 is the one made in {6}.

There is a defi nition of ‘_t2’ in quad #5

preceding the quad #7 within the block

B1. Hence, the defi nitions of ‘_t2’ that

is reaching the quad 7 is the one made

in {5}.

B1 (8) _t5 := n1 * n2 ud_chain (8, n1) = {2}

ud_chain (8, n2) = {3}
The defi nitions corresponding to ‘n1’

in the rd_IN[B1] is {2}. There are no

defi nitions of ‘n1’ preceding the quad

#8 within the block B1. Hence, the

defi nition of ‘n1’ that is reaching the

quad 8 is the one made in {2}.

The defi nitions corresponding to ‘n2’

in the rd_IN[B1] is {3}. There are no

defi nitions of ‘n2’ preceding the quad

#8 within the block B1. Hence, the

defi nition of ‘n2’ that is reaching the

quad 8 is the one made in {3}.

B1 (9) if _t4 > _t5 goto .L1 ud_chain (9, _t4) = {7}

ud_chain (9, _t5) = {8}
The defi nitions corresponding to ‘_t4’

in the rd_IN[B1] are None. There is a

defi nition of ‘_t4’ in quad #7 preceding

the quad #9 within the block B1. Hence,

the defi nition of ‘_t4’ that is reaching

the quad 9 is the one made in {7}.

The defi nitions corresponding to ‘_t5’

in the rd_IN[B1] are None. There is a

defi nition of ‘_t5’ in quad #8 preceding

the quad #9 within the block B1. Hence,

the defi nition of ‘_t5’ that is reaching

the quad 9 is the one made in {8}.

 Code Optimisation 543

B3 (12) i := i + 1 ud_chain (12, i) = {1, 12} The defi nitions corresponding to ‘i’ in

the rd_IN[B3] are {1, 12}. There are

no defi nitions of ‘i’ preceding the quad

#12 within the block B3. Hence, the

defi nitions of ‘i’ that are reaching the

quad 12 are the ones made in {1, 12}.

The defi nitions of ‘i’ that are reaching

the quad 15 is the one made in {1, 12}.

The ud-chain is used to perform optimisations like the loop invariant code motion optimisation.

Loop Invariant Code Motion Optimisation using RD Analysis In this section, we discuss about using

the ud-chain obtained from RD analysis for performing the code motion optimisation in the loops. As

mentioned earlier, the code motion optimisation deals with moving the loop invariant statements out of the

loop. Moving the loop invariant statements out of the loop reduces the amount of computation done in an

iteration of the loop. This can potentially improve the performance of the program manifold.

There are two steps required for performing the loop invariant code motion optimisation. They are:

 1. The detection of loop invariant statements in the loop. This is based on the ud-chain information

obtained from the reaching defi nition analysis discussed previously.

 2. The moving of the loop invariant statements to the pre-header of the loop. The loop invariant

statements are moved to the pre-header on ascertaining certain conditions.

We study about each of these steps in detail in the following paragraphs.

Step 1: Detection of loop invariant statements

A loop invariant statement computes a value that does not change throughout the execution of the loop.

In a more formal way, a statement ‘s: x := y + z’ in a loop L is considered as loop invariant if one of the

following conditions hold good:

 1. All the reaching defi nitions of ‘y’ and ‘z’ at ‘s’ are from outside the loop as indicated by the ud

chains for the quad q.

 2. The operands ‘y’ and ‘z’ are constants.

The identifi cation of loop invariant statements could take multiple passes as the following suggests.

Consider a statement s : x := y + z within a loop L. Suppose the defi nitions of ‘y’ and ‘z’ that are reaching

‘s’ are all from outside the loop. The computation (y + z) will yield a value ‘x’, which remains constant

throughout the execution of the loop. The statement ‘s’ is a Loop invariant. Suppose there is another

statement s1 : m := x + k right after the statement ‘s’. Let’s assume that reaching defi nitions of ‘k’ are

outside the loop. The statement ‘s1’ is also a loop invariant since the computation ‘x + k’ remains constant

throughout the execution of the loop. The statement ‘s’ in the above example can be detected in the fi rst

pass of the quads in the loop. The statement ‘s1’ can be detected in the second pass of the quads, after ‘s’

has been moved out of the loop.

Consider the fl ow graph in Fig. 7.52 and the corresponding ud-chain information computed earlier in

Table 7.70. Table 7.71 shows a section of the ud-chain information corresponding to the statements of the

basic blocks B1 and B3 that form a loop. From Table 7.71, the statement (8) can be concluded as a loop

invariant, since the reaching defi nitions for n1 and n2 are from statements (2) and (3), which are outside the

loop. The statement (6) is also a loop invariant, since the operator ‘&’ on any variable yields a constant.

544 Principles of Compiler Design

Table 7.71 ud-chain information for the statements in B1 and B3

Block # TAC statements ud-Chain information Comments

B1

(5) _t2 := i * 4 ud_chain (5, i) = {1, 12}

(6) _t3 := &arr None It is a constant assignment.

This statement is a loop

invariant

(7) _t4 := _t3[_t2] ud_chain (7, _t3) = {6}

ud_chain (7, _t2) = {5}

(8) _t5 := n1 * n2 ud_chain (8, n1) = {2}

ud_chain (8, n2) = {3}

This statement is a loop

invariant

(9) if _t4 > _t5 goto .L1 ud_chain (9, _t4) = {7}

ud_chain (9, _t5) = {8}

B3

(11) label .L1

(12) i := i + 1 ud_chain (12, i) = {1, 12}

(13) goto .L0

The loop invariant statements are thus identifi ed using the ud-chain information as shown in the above

example.

Step 2: Moving the Loop Invariant Statements to the Pre-header

All the loop invariant statements identifi ed in step(1) cannot be moved unconditionally into pre-header of

the loop. The loop invariant statements need to meet several conditions in order to qualify for movement to

the pre-header of the loop. These conditions stem from the idea that optimisation cannot result in incorrect

code under any circumstances.

For a statement ‘s: a = b + c’, to be moved into the pre-header, the following are the conditions that

should be met.

 1. There should be no other statement ‘s1’, which defi nes ‘a’ within L.

 2. The reaching defi nition for all the uses of ‘a’ in the loop should be from ‘s’ only.

 3. The statement ‘s’ should be in a block that dominates all the exits of the loop L.

The loop invariant statements identifi ed in step(1), meeting the above criteria are moved into pre-header

of the loop for accomplishing loop invariant code motion optimisation.

The following examples illustrate how violation of any one of the conditions could potentially lead to

erroneous code generation.

Table 7.72 shows an input source that has a loop in which the variable ‘i’ varies. The copy statement

‘fl ag = 0’ at line #12 is a loop invariant statement. However, moving that to the pre-header of the loop

causes the function ‘func’ to behave incorrectly. The function might return ‘0’, irrespective of whether the

condition’ (arr[i] < a)’ at line #14 is true or not for the loop exiting value of ‘i’. This loop invariant quad at

#5 fl ag := 0, cannot be moved into a pre-header block since there is another statement which defi nes ‘fl ag’

within the loop. It violates the condition 1, i.e. there should be no other statement ‘s1’, which defi nes ‘fl ag’

within the loop L.

 Code Optimisation 545

Table 7.72 Condition 1 violated

Input source TAC after local optimisation Incorrect movement of loop

invariant statement to the pre-

header of the loop

 1 int arr [100]; (0) proc_begin func (0) proc_begin func

 2 (1) i := 0 (1) i := 0

 3 (2) label .L0 (1a) fl ag := 0

 4 int func (int a, int b) (3) goto .L1 (2) label .L0

 5 { (4) goto .L6 (3) goto .L1

 6 int i, fl ag; (5) label .L1 (4) goto .L6

 7 (6) fl ag := 0 (5) label .L1

 8 i = 0; (7) _t0 := i * 4 (6)

 9 (8) _t1 := &arr (7) _t0 := i * 4

10 while (1 == 1){ (9) _t2 := _t1[_t0] (8) _t1 := &arr

11 (10) if _t2 < a goto .L2 (9) _t2 := _t1[_t0]

12 fl ag=0; (11) goto .L3 (10) if _t2 < a goto .L2

13 (12) label .L2 (11) goto .L3

14 if (arr[i] < a){ (13) fl ag := 1 (12) label .L2

15 fl ag=1; (14) label .L3 (13) fl ag := 1

16 } (15) _t3 := i * 4 (14) label .L3

17 (16) _t4 := &arr (15) _t3 := i * 4

18 (17) _t5 := _t4[_t3] (16) _t4 := &arr

19 if (arr[i] >= b){ (18) if _t5 >= b goto .L4 (17) _t5 := _t4[_t3]

20 break; (19) goto .L5 (18) if _t5 >= b goto .L4

21 } (20) label .L4 (19) goto .L5

22 (21) goto .L6 (20) label .L4

23 i = i+1; (22) label .L5 (21) goto .L6

24 (23) i := i + 1 (22) label .L5

25 } (24) goto .L0 (23) i := i + 1

26 return (fl ag); (25) label .L6 (24) goto .L0

27 } (26) return fl ag (25) label .L6

(27) goto .L7 (26) return fl ag

(28) label .L7 (27) goto .L7

(29) proc_end func (28) label .L7

(29) proc_end func

 Table 7.73 shows an input source that has a loop in which the variable ‘change’ could have a value of 1 or

0 in the fi rst iteration, and 0 in all other iterations. The function f1 is called with ‘change’ as a parameter. The

copy statement ‘change = 0’ at line#19 is a loop invariant statement. However moving that to the pre-header

of the loop causes the invocation of function ‘f1’ with change taking the value of 0 as a parameter for all the

iterations including the fi rst. This causes the incorrect behaviour of the program in the event of the condition

(a > b) being true. The correct behaviour of the program would be to invoke function ‘f1’ with ‘change’

taking the value of 1 as a parameter for the fi rst iteration, in the event of the condition (a > b) being true.

This loop invariant quad at #15 change := 0, cannot be moved into a pre-header block since it violates

the condition 2, i.e. the reaching defi nition for all the uses of ‘change’ in the loop should be from quad #15

only. The reaching defi nitions at quad #11 (param change), which specifi es the parameter for the invocation

of f1, are from #1, #5 and #15. One of the prerequisites for moving the loop invariant quad #15 to the pre-

header of the loop in the form of condition 2 is that the reaching defi nition for all the uses of ‘change’ in the

loop (quad #11) should be from the quad #15 only. Clearly, the condition 2 has been violated in this case

and hence the quad #15 cannot be moved to the pre-header of the loop.

546 Principles of Compiler Design

Table 7.73 Condition 2 violated

Input source TAC after local optimisation Incorrect movement of loop

invariant statement to the pre-header

of the loop

 1 int arr[100]; (0) proc_begin func (0) proc_begin func

 2 (1) change := 0 (1) change := 0

 3 int f1(); (2) if a > b goto .L0 (2) if a > b goto .L0

 4 (3) goto .L1 (3) goto .L1

 5 int func (int a, int b) (4) label .L0 (4) label .L0

 6 { (5) change := 1 (5) change := 1

 7 int change, ret; (6) label .L1 (6) label .L1

 8 (7) label .L2 (7) label .L2

 9 change=0; (8) goto .L3 (7a) change := 0

10 if (a > b){ (9) goto .L6 (8) goto .L3

11 change=1; (10) label .L3 (9) goto .L6

12 } (11) param change (10) label .L3

13 (12) call f1 4 (11) param change

14 (13) ret := _t0 (12) call f1 4

15 while (1 == 1){ (14) retrieve _t0 (13) ret := _t0

16 (15) change := 0 (14) retrieve _t0

17 ret = f1(change); (16) if _t0 == 0 goto .L4 (15)

18 (17) goto .L5 (16) if _t0 == 0 goto .L4

19 change = 0; (18) label .L4 (17) goto .L5

20 (19) goto .L6 (18) label .L4

21 if (ret == 0){ (20) label .L5 (19) goto .L6

22 break; (21) goto .L2 (20) label .L5

23 } (22) label .L6 (21) goto .L2

24 (23) goto .L7 (22) label .L6

25 } (24) label .L7 (23) goto .L7

26 return; (25) proc_end func (24) label .L7

27 } (25) proc_end func

Table 7.74 shows an input source that has a loop in which the variable ‘i’ varies. The copy statement

‘fl ag = 1’ at line #17 (quad 16) is a loop invariant statement. However, moving that to the pre-header of

the loop causes the function ‘cap_it’ to always return the value 1, irrespective of whether the condition

‘(arr[i] > a)’ at line #11 is true or not.

 Code Optimisation 547

Table 7.74 Condition 3 violated

Input source TAC after local optimisation Incorrect movement of loop invariant

statement to the

pre-header of the loop

 1 int arr[100]; (0) proc_begin cap_it (0) proc_begin cap_it

 2 (1) i := 0 (1) i := 0

 3 (2) fl ag := 0 (2) fl ag := 0

 4 int cap_it(int a) (2a) fl ag := 1

 5 {

 6 int i, fl ag; (3) label .L0 (3) label .L0

 7 (4) if i < 100 goto .L1 (4) if i < 100 goto .L1

 8 i = 0;

 9 fl ag = 0; (5) goto .L4 (5) goto .L4

10

11 while (i < 100){ (6) label .L1 (6) label .L1

12 (7) _t0 := i * 4 (7) _t0 := i * 4

13 if (arr[i] > a){ (8) _t1 := &arr (8) _t1 := &arr

14 arr[i] = a; (9) _t2 := _t1[_t0] (9) _t2 := _t1[_t0]

15 (10) if _t2 > a goto .L2 (10) if _t2 > a goto .L2

16 /* Loop Invariant */

17 fl ag=1; (11) goto .L3 (11) goto .L3

18 }

19 (12) label .L2 (12) label .L2

20 i = i + 1; (13) _t3 := i * 4 (13) _t3 := i * 4

21 } (14) _t4 := &arr (14) _t4 := &arr

22 (15) _t4[_t3] := a (15) _t4[_t3] := a

23 return (fl ag); (16) fl ag := 1 (16)

24

25 } (17) label .L3 (17) label .L3

26 (18) i := i + 1 (18) i := i + 1

(19) goto .L0 (19) goto .L0

(20) label .L4 (20) label .L4

(21) return fl ag (21) return fl ag

(22) goto .L5 (22) goto .L5

(23) label .L5 (23) label .L5

(24) proc_end cap_it (24) proc_end cap_it

The fl ow graph of the input source is shown in Fig. 7.53. We can gather from the fl ow graph that

the block B5 in which the loop invariant quad ‘(16) fl ag := 1’ is found, does not dominate the loop exit

block B1. The loop invariant statement #16 cannot be moved into a pre-header block since it violates the

condition 3, i.e. the block in which it exists does not dominate all the exits of the loop.

The reader is advised to check if all the three conditions are satisfi ed in the loop invariant code

optimization example shown in Table 7.64.

548 Principles of Compiler Design

Fig. 7.53 Flow graph

 Code Optimisation 549

Example 6—Global Code Motion Using Reaching Defi nition Analysis This section demonstrates the toy

C compiler (mycc) performing global loop invariant code motion using the reaching defi nition information.

The reaching defi nition information was gathered by using the algorithms explained in the preceding

section. The RD information in the form of ud-chains is put to use to move the loop invariant code to the

pre-header on ascertaining that the three conditions mentioned earlier have been fulfi lled.

The toy C compiler takes as input, a sample C input source and gives out (a) unoptimised TAC (b) the

locally optimised TAC and (c) the TAC after global loop invariant code motion. The dialog below shows

‘mycc’ taking in some sample input C sources having loops and printing out the above information as the

output.

Generating the Parser from Grammar Specifi cations

$ bison –d –y –v –t –oc–small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ –DICGEN –g –Wall –c –o c-small-gram.o c-small-gram.cc

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyzer

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building ‘mycc’ - A Toy Compiler for C Language

$ g++ -DICGEN -g -Wall ic_gen.cc optimize.cc target_code_gen.cc mycc.cc semantic_
analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe

Sample Input C fi le with Loop invariants that can be moved out

$ cat -n test.cm.1.c
 1 int arr[1000];

 2

 3 int func (int a, int b)

 4 {

 5 int i;

 6 int n1, n2;

 7

 8 i = 0;

 9

 10 n1 = a * b ;

 11 n2 = a – b ;

 12

 13 while (arr[i] > (n1*n2))

 14 {

 15 i = i + 1;

 16 }

 17

 18

 19 return(i);

 20 }

 21

Intermediate code before and after optimization

-O gcm for Global Code Motion, –v for verbosity

$./mycc.exe -i -O gcm -v test.cm.1.c
TAC Before optimization

550 Principles of Compiler Design

 (0) proc_begin func

 (1) i := 0

 (2) _t0 := a * b

 (3) n1 := _t0

 (4) _t1 := a – b

 (5) n2 := _t1

 (6) label .L0

 (7) _t2 := i * 4

 (8) _t3 := &arr

 (9) _t4 := _t3[_t2]

(10) _t5 := n1 * n2

(11) if _t4 > _t5 goto .L1

(12) goto .L2

(13) label .L1

(14) _t6 := i + 1

(15) i := _t6

(16) goto .L0

(17) label .L2

(18) return i

(19) goto .L3

(20) label .L3

(21) proc_end func

TAC After Local optimization

 (0) proc_begin func

 (1) i := 0

 (2) n1 := a * b

 (3) n2 := a – b

 (4) label .L0

 (5) _t2 := i * 4

 (6) _t3 := &arr

 (7) _t4 := _t3[_t2]

 (8) _t5 := n1 * n2

 (9) if _t4 > _t5 goto .L1

(10) goto .L2

(11) label .L1

(12) i := i + 1

(13) goto .L0

(14) label .L2

(15) return i

(16) goto .L3

(17) label .L3

(18) proc_end func

TAC After (Local and Global) optimization

 (0) proc_begin func

 (1) i := 0

 (2) n1 := a * b

 (3) n2 := a – b

 (4) _t3 := &arr

 (5) _t5 := n1 * n2

 (6) label .L0

 (7) _t2 := i * 4

 (8) _t4 := _t3[_t2]

 (9) if _t4 > _t5 goto .L1

(10) goto .L2

(11) label .L1

 Code Optimisation 551

(12) i := i + 1

(13) goto .L0

(14) label .L2

(15) return i

(16) goto .L3

(17) label .L3

(18) proc_end func

Sample Input C fi le with Loop invariants that can be moved out

$ cat -n test.cm.2.c

 1 int a[100], b[100];

 2

 3 int transform (int n, int factor)

 4 {

 5 int i;

 6

 7 i = 0;

 8 while (1 == 1)

 9 {

 10 b[i] = a[i] + (factor *2);

 11 i = i + 1;

 12 if (i >= n){

 13 break;

 14 }

 15 }

 16

 17 }

 18

Intermediate code before and after optimization

$./mycc.exe -i -O gcm -v test.cm.2.c
TAC Before optimization

 (0) proc_begin transform

 (1) i := 0

 (2) label .L0

 (3) if 1 == 1 goto .L1

 (4) goto .L4

 (5) label .L1

 (6) _t0 := i * 4

 (7) _t1 := &b

 (8) _t2 := i * 4

 (9) _t3 := &a

(10) _t4 := _t3[_t2]

(11) _t5 := factor * 2

(12) _t6 := _t4 + _t5

(13) _t1[_t0] := _t6

(14) _t7 := i + 1

(15) i := _t7

(16) if i >= n goto .L2

(17) goto .L3

(18) label .L2

(19) goto .L4

(20) label .L3

(21) goto .L0

(22) label .L4

(23) label .L5

(24) proc_end transform

552 Principles of Compiler Design

TAC After Local Optimization

 (0) proc_begin transform

 (1) i := 0

 (2) label .L0

 (3) goto .L1

 (4) goto .L4

 (5) label .L1

 (6) _t0 := i * 4

 (7) _t1 := &b

 (8) _t3 := &a

 (9) _t4 := _t3[_t0]

(10) _t5 := factor * 2

(11) _t6 := _t4 + _t5

(12) _t1[_t0] := _t6

(13) i := i + 1

(14) if i >= n goto .L2

(15) goto .L3

(16) label .L2

(17) goto .L4

(18) label .L3

(19) goto .L0

(20) label .L4

(21) label .L5

(22) proc_end transform

TAC After (Local and Global) optimization

 (0) proc_begin transform

 (1) i := 0

 (2) _t1 := &b

 (3) _t3 := &a

 (4) _t5 := factor * 2

 (5) label .L0

 (6) goto .L1

 (7) goto .L4

 (8) label .L1

 (9) _t0 := i * 4

(10) _t4 := _t3[_t0]

(11) _t6 := _t4 + _t5

(12) _t1[_t0] := _t6

(13) i := i + 1

(14) if i >= n goto .L2

(15) goto .L3

(16) label .L2

(17) goto .L4

(18) label .L3

(19) goto .L0

(20) label .L4

(21) proc_end transform

7.3 TARGET CODE OPTIMISATION

In target code optimisation, we look at ways and means of improving the target code generated by the

compiler. Similar to the intermediate code optimisation, the main operating principle is that the optimised

target code should be correct in all scenarios.

 Code Optimisation 553

The effi ciency of the target code depends on resourceful use of the registers of the processor. Most of the

target code optimisation revolves around strategies that can be used during target code generation for better

usage of registers (Section 7.3.1). There are other optimisations like the peep-hole optimisation (Section

7.3.2), which improve the effi ciency for certain patterns in the target code.

7.3.1 Improved Register Usage

The target code generated by the template-based code generator that we discussed earlier in Chapter

6 leaves scope for optimisation. Let’s look at some of the areas where the target code generated by the

template-based code generator has scope for improvement.

Consider the Intermediate code and a part of the x86-based target code generated by the template-based

code generator in Table 7.75. In the target code generated by the template-based code generator, the moves

from register into memory given by 1(c) and the subsequent move from memory to the register given by

2(a) are redundant. The improved target code shown alongside retains the value of ‘_t0’ in the register

%eax to achieve the same functionality. The improved code is smaller in terms of memory and better in

performance.

Table 7.75 Redundant moves into and from memory

Source code Intermediate code Section of target code from

template-based code generator

Improved target code

1 int a, b, c, d; (0) proc_begin func /* _t0: = a + b */ /* _t0 := a + b */

2 (1) _t0: = a + b (1a) movl _b, %eax (1a) movl _b, %eax

3 int func() (2) d: = _t0 – c (1b) addl _a, %eax (1b) addl _a, %eax

4 { (3) return d (1c) movl %eax, –4(%ebp)

5 d = (a+b–c); (4) goto .L0

6 (5) label .L0 /* d := _t0 – c */ /* d: = _t0 – c */

(2b) subl _c, %eax

(2c) movl %eax, _d

7 return (d); (6) proc_end func (2a) movl –4 (%ebp), %eax

8 } (2b) subl _c, %eax

/* return d */

(3a) movl _d, %eax /* return d */

(3a) movl _d, %eax

Consider the Intermediate code and a part of the x86-based target code generated by the template-based

code generator in Table 7.76. The x86 instructions corresponding to each of the quads contains a load from

the memory location to register (e.g. 1a, 2a and 3a) and a move from the register to memory location (e.g.

1c, 2c and 3c). The improved target code retains the results in the registers and uses the less expensive

register-to-register instructions (e.g. 2a, 3b shaded in gray) to achieve the same functionality.

Table 7.76 Using register to register moves

Source code Intermediate code Target code from

template-based code

generator

Improved target code

1 int a, b, c, d, e, f; (0) proc_begin func /* c := a + b */ /* c := a + b */

2 (1) c: = a + b (1a) movl _b, %eax (1a) movl _b, %eax

3 int func() (2) e := c + d (1b) addl _a, %eax (1b) addl _a, %eax

4 { (3) f := c + e (1c) movl %eax, _c (1c) movl %eax, _c

5 (4) return f

6 c = a + b; (5) goto .L0 /* e := c + d */ /* e := c + d */

7 e = c + d; (6) label .L0 (2a) movl _c, %eax (2a) movl %eax, %edx

554 Principles of Compiler Design

8 f = c + e; (7) proc_end func (2b) addl _d, %eax (2b) addl _d, %edx

9 (2c) movl %eax, _e (2c) movl %edx, _e

10 return (f);

11 } /* f: = c + e */ /* f: = c + e */

(3b) addl %edx, %eax

(3c) movl %eax, _f

(3a) movl _c, %eax

(3b) addl _e, %eax

(3c) movl %eax, _f

/* return f */ /* return f */

(4a) movl _f, %eax

The target code generated by the template-based code generator does not work optimally in the cases

of loops. This is because it does not identify and retain the values of heavily used variables in registers

throughout the execution of loop. The performance of loops can be improved manifold by keeping the most

heavily used variables in registers during the execution of the loop.

The target code can be improved by replacing the template-based code generator by more sophisticated

target code generator that makes better usage of registers. Before we look at the specifi cs of a particular

target code generator, let’s study the important issues that need to be addressed commonly by any target

code generator in order to make better utilisation of registers.

The assembly instruction using any of the processor registers, as operands are faster than the instructions

using memory as operands. To take advantage of this, an effi cient target code generator would try and

retain program variables in registers for as long as possible, so that it can generate target instructions

using registers as operands. The improved target code in Table 7.76 demonstrates the same idea. At the

completion of the instruction (1c), the variable ‘c’ is contained in register %eax. At (2a), when the value

of ‘c’ is required, the register %eax is directly used. The value of ‘c’ is retained in the register %eax till

the quad (3b). At (3b), when the value of ‘c’ is needed again, the register %eax is used directly instead

of loading from memory. When the number of variables is small in number as in the example of Table

7.76, all the variables computed can be retained in registers. However, when the number of variables is

higher than the number of registers available, the target code generators need to identify a smaller sub-set

of variables to be retained in memory. The set of variables that would be retained in registers is arrived

at by using heuristics like the number of times a variable is used, whether the variable is live, and so on.

The process of identifying what variables need to be retained in registers is known as register allocation.

Register allocation can be performed at a basic block level or at a global level for the entire procedure. The

register allocation performed at a basic block level is called as local register allocation (LRA). In contrast,

the global register allocation (GRA) aims to allocate the registers across the basic blocks. In local register

allocation, it is evident that all the live variables residing in registers need to be saved (or spilled) into

memory at the end of the basic block, so that the successor block generates code correctly. In local register

allocation, loops cannot be processed optimally, since the registers have to be spilled after every block and

it is not possible to retain the most heavily used variables in a register throughout the life of the loop. The

register allocation strategy is the most important part of any target code generator aiming to make effi cient

use of registers.

The target code generators need to track the value of registers and variables during the target code

generation in order to make effi cient use of registers. The target code generator should have data structures

that will help retrieve information like whether the variable’s value is present in a register or not, is a

register free for allocation to a variable, and so on. The information should be indexed properly in the data

structures for quick retrieval and updates. A signifi cant design effort is spent in designing the data structures

to track the values of registers and variables in a target generator aspiring to use the registers optimally.

 Code Optimisation 555

The target code generators need the information on data fl ow of the program to make informed decisions

during target code generation. The data fl ow analysis of the intermediate code helps in procuring the

information. For example, the target code generators identify points when a variable’s value needs to be

moved from register to memory depending on whether a variable is next used or not. The information about

a variable being used next is obtained by data fl ow analysis of the input program. The target code generators

seeking to use the registers in an effi cient way need to obtain data fl ow information of the input program by

performing data fl ow analysis.

We study in detail about a simple x86 target code generator in Section 7.3.1.1 to get a feel of the issues

concerning a target code generator intending to make the optimum use of registers.

7.3.1.1 A Simple x86 Target Code Generator In this section, we discuss the features and the

implementation of a simple x86 target code generator that makes better use of registers than the template-

based code generator. The simple code generator is based on local register allocation, where the register

allocation is confi ned within the basic block. The simple code generator takes the bottom-up approach with

regard to register allocation, where it dynamically allocates a register to store the result on a need basis.

The best way to understand the important characteristics of simple target code generator is to analyse its

target code for a sample input source. The target code generated by template-based code generator for the

same input source allows us to make a good comparison between the two.

Table 7.77 shows an Input source, the corresponding intermediate code, the x86-based target code

generated using the template-based code generation as well as the code generated by the simple target code

generator.

Table 7.77 Simple code generation

(A)

Input Source

(B)

Intermediate Code

(C)

Target Code from

Template based Code

Generator

(D)

Target Code from Simple

Code Generator

1 int a,b,c,d,e,f; (0) proc_begin func /* proc_begin func */ /* proc_begin func */

2 (1) c := a + b (0a).align 4 (0a).align 4

3 int func() (2) e := c + d (0b) .globl _func (0b) .globl _func

4 { (3) f := c + e (0c) _func: (0c) _func:

5 (4) if f > 100 goto .L0 (0d) pushl %ebp (0d) pushl %ebp

6 c = a + b; (0e) movl %esp,%ebp (0e) movl %esp,%ebp

7 e = c + d; (5) goto .L1 (0f) subl $16,%esp (0f) subl $16,%esp

8 f = c + e;

9 (6) label .L0 /* c := a + b */ /* c := a + b */

10 if(f > 100){ (7) f := a + c (1a) movl _b,%eax (1a) movl _a,%ebx

11 f=a+c; (1b) addl _a,%eax (1b) addl _b,%ebx

12 } (8) label .L1 (1c) movl %eax,_c

13 (9) return f

14 return(f); (10) goto .L2 /* e := c + d */ /* e := c + d */

15 } (2a) movl _d,%eax (2a) movl %ebx,%eax

16 (11) label .L2 (2b) addl _c,%eax (2b) addl _d,%eax

(12) proc_end func (2c) movl %eax,_e

/* f := c + e */ /* f := c + e */

(3a) movl _e,%eax (3a) movl %ebx,%edx

(3b) addl _c,%eax (3b) addl %eax,%edx

(3c) movl %eax,_f

556 Principles of Compiler Design

/*Spilling reg*/

(3c) movl %ebx,_c

(3d) movl %eax,_e

/* if f > 100 goto .L0 */ /* if f > 100 goto .L0*/

/*Spilling reg*/

(4a) movl %edx,_f

(4a) movl $100,%eax (4b) movl _f,%ebx

(4b) cmpl %eax,_f (4c) cmpl $100,%ebx

(4c) jg .L0 (4d) jg .L0

/* goto .L1 */ /* goto .L1 */

(5a) jmp .L1 (5a) jmp .L1

/* label .L0 */ /* label .L0 */

(6a) .align 4 (6a) .align 4

(6b) .L0: (6b) .L0:

/* f := a + c */ /* f := a + c */

(7a) movl _c,%eax (7a) movl _a,%ebx

(7b) addl _a,%eax (7b) addl _c,%ebx

(7c) movl %eax,_f

/*Spilling reg*/

(7c) movl %ebx,_f

/* label .L1 */ /* label .L1 */

(8a) .align 4 (8a) .align 4

(8b) .L1: (8b) .L1:

/* return f */ /* return f */

(9a) movl _f,%eax (9a) movl _f,%eax

/* goto .L2 */ /* goto .L2 */

(10a) jmp .L2 (10a) jmp .L2

/* label .L2 */ /* label .L2 */

(11a).align 4 (11a).align 4

(11b) .L2: (11b) .L2:

/* proc_end func */ /* proc_end func */

(12a) movl %ebp,%esp (12a) movl %ebp,%esp

(12b) popl %ebp (12b) popl %ebp

(12c) ret (12c) ret

Each quad is translated into a set of assembly instructions by the simple target code generator, using the

information as to which operands are already in registers. In case the operands are already in registers, the

registers are directly used in the target code instead of performing a load from memory. The target code

instructions (2a), (3a) and (3b) in column (D) are good examples of operands picked up from registers

instead of being loaded from memory.

 Code Optimisation 557

The register to store the result ‘x’ of the quad in ‘x: = y op z’ is dynamically allocated at the time of

processing the quad. For example, In column (D), at (1a), the register ebx has been allocated to store the

variable ‘c’, at (2a), the register eax has been allocated to store the variable ‘e’.

The result of the operations (e.g. add/sub/mul, etc.) is left in registers for as long as it is possible before

storing it into the memory. For example, after (1b), the value of the variable ‘c’ continues to be register ebx.

After (2b), the register eax continues to hold ‘e’. The result is stored back into the memory of the variable

(spilled) from the register on the triggering of certain conditions like, say, when the variable is no longer

used in the basic block or when the register is required for another computation or at the end of basic block,

and so on. For example, the instruction (3c) and (3d) spill the values of variables ‘c’ and ‘e’ since they are

no longer used in the basic block.

For the quads having operators such as PROC_BEGIN and PROC_END, the code generated by the

template-based approach and simple code generation do not differ. Similarly, for quads using simple

operators like LBL, GOTO and CALL, where there is no usage of variables or registers both the approaches

yield the same code. The generated target instruction for the quads (0), (5), (6) and (12) in Table 7.77

illustrate the idea.

We study about the simple code generator in detail over the next few sections. The simple code generator

needs information about (a) whether a variable is used later in the basic block and (b) whether a variable is

live at a given point, while deciding on register spilling as mentioned above. This information is gathered

by performing data fl ow analysis of the input quads for the target code generator.

We discuss the details of the data fl ow analysis to collect the liveness and next use information at each

quad level in the next section. This is followed by a discussion on the data structures and the algorithm used

by the simple code generator. The working of the algorithm on a sample set of input quads is presented later

in this Section.

Data Flow Analysis for computing Next Use and Liveness We had seen previously how the data fl ow

analysis helped us gather properties like available expressions, reaching defi nitions, and so on. The simple

code generator performs data fl ow analysis to compute liveness of a variable and another data fl ow property

called the ‘ next use’ at each quad level. These two data fl ow properties are used during the register spilling.

Consider the quads shown in Table 7.78 in which the variables a, b, c, d, e, f and g are present. The quad

(1) uses the variables ‘b’ and ‘c’ and defi nes a variable ‘a’. The variable ‘a’ is next used after quad (1) in

the quad (3). The variable ‘c’ is not used in any quad after the quad (1), so there is no next use for ‘c’. We

use the notion of next used in the simple code generator while making the register spills.

The idea of liveness, which we studied earlier, is also used in the simple code generation to spill the

registers at different points in the block. A variable v is said to be live at a point p, if it is used in some path

in the fl ow graph starting p. To compare the liveness with next use, we can say that the liveness is the next

use extending across the blocks. If there is next use for a variable, it is defi nitely live. A variable might not

have next use, but can still be live, if there is a use in some block after the current one.

Table 7.78 Intermediate code

(0) proc_begin func

(1) a := b + c

(2) f := d + e

(3) g := a + f

(4) f := a – b

(5) d := f + g

(6) label .L0

(7) proc_end func

558 Principles of Compiler Design

The next uses and liveness information is stored at a quad level for all its operands and used in the

simple code generator. Before we look at the algorithms to compute the next uses and liveness information,

let’s get a feel of how the liveness and next uses information looks like. We assume for the discussion

that all the variables ‘a’ through ‘e’ are all global in scope. Table 7.79 displays the liveness and next uses

information for a couple of quads in the sample intermediate code that we saw in Table 7.78.

Table 7.79 Liveness and next uses information

Quad Next use information Liveness information Explanation

(1) a := b + c next_use (1, a) = 3

next_use (1, b) = 4

next_use (1, c) = –1

liveness (1, a) = LIVE

liveness (1, b) = LIVE

liveness (1, c) = LIVE

The variable ‘a’ is next

used in quad 3. The

variable ‘b’ is next used

in quad 4. The variable ‘c’

is not used later in this

block, hence next_uses (1,

c) is –1 to indicate no

next use.

The variable ‘a’ is used

later at quad 3, hence it

is LIVE. The variable ‘b’

is used later at 4, hence

it is live.

‘c’ is not used in this

block. It is also not defi ned

in any one of the later

quads. Since it is a global

variable, which can be used

in another procedure, it is

considered LIVE.

(2) f := d + e next_use (2, f) = 3

next_use (2, d) = –1

next_use (2, e) = –1

liveness (2, f) = LIVE

liveness (2, d) = DEAD

liveness (2, e) = LIVE

The variable ‘f’ is next

used in quad 3. The

variable ‘d’ is not used

in quads 3 or 4. It is

redefi ned in quad 5, hence

next_use (2, d) is –1.

There is no next use for

the variable ‘e’.

The variable ‘f’ is used

later at quad 3, hence it

is LIVE. The variable ‘d’

is not used, it is redefi ned

in quad 5, hence it is DEAD

at this point.

‘e’ is not used in this

block. It is also not defi ned

in any one of the later

quads. Since it is a global

variable, which can be used

in another procedure, it is

considered LIVE.

The liveness and next uses information is used for making informed decisions for register spilling and

freeing up of registers in the simple code generator. Let’s say, for example, the values of a, b and c are

 Code Optimisation 559

in the registers eax, ebx and ecx respectively at the end of the quad 1 in the above example. By knowing

that ‘c’ is not going to be used again in this block (i.e. next uses is empty), we can choose to free up the

register ecx for subsequent generation of code. The fact that ‘c’ is live implies that the register ecx needs to

be spilled on to the memory for ‘c’ before we free up the register for subsequent usage. In the simple code

generation strategy, we would try and retain the values of ‘a’ and ‘b’ in the registers for as long as possible,

since there is next usage of these variables.

Let’s now look at an algorithm to compute the liveness and next uses at each quad in a block. The idea

of the algorithm is to scan backwards starting from the last quad in the block and marking variables for

liveness and next use. In the algorithm, we use a temporary table that has an entry for each variable used

in the block. For each of the variable, it stores two pieces of Information (a) the current liveness status of

the variable—live or dead and (b) the next uses of the variable. The table is initialised with the liveness

and next use values at the end of the block, since the quads are processed backwards. For all the variables

that are live at the end of the block as indicated by live_OUT set (see Section 7.2.10.3), we initialise the

liveness attribute to LIVE in the table. The next uses attribute is initialised to –1, i.e. no next use, for all the

variables in the block.

 1 /* Initialize a temporary table for next_use and liveness */

 2

 3 /* for each variable ‘v’ in the block */

 4 for each variable v

 5 {

 6 tmp_tab[v].next_uses = –1 /* No Next use */

 7

 8 if (v is in live_OUT of the block){

 9 tmp_tab[v].liveness = LIVE

 10 }else{

 11 tmp_tab[v].liveness = DEAD

 12 }

 13 }

 14

 15 /* In a scan backwards from the last quad of the block to fi rst */

 16

 17 for each quad ‘res: = arg1 op arg2’

 18 do

 19 next_uses[quad_no].arg1 = tmp_tab.next_uses[arg1]

 20 next_uses[quad_no].arg2 = tmp_tab.next_uses[arg2]

 21 next_uses[quad_no].res = tmp_tab.next_uses[res]

 22

 23 liveness[quad_no].arg1 = tmp_tab.liveness[arg1]

 24 liveness[quad_no].arg2 = tmp_tab.liveness[arg2]

 25 liveness[quad_no].res = tmp_tab.liveness[res]

 26

 27 tmp_tab.liveness[res] = DEAD

 28 tmp_tab.next_uses[res] = –1 /* No Next use */

 29

 30 tmp_tab.liveness[arg1] = LIVE

 31 tmp_tab.next_uses[arg1] = quad_no

 32

 33 tmp_tab.liveness[arg2] = LIVE

 34 tmp_tab.next_uses[arg2] = quad_no;

 35 done

Algorithm 7.12 Computing next use and liveness

560 Principles of Compiler Design

The quads are scanned backwards, from the last quad in the block to the fi rst quad. At each quad res :=

arg1 + arg2, the following steps are performed:

 (a) The information available in the temporary table for ‘res’, arg1 and arg2 with respect to liveness and

next uses attributes are attached to the quad as given by lines 19 through 25 in Algorithm 7.12.

 (b) The entries in the temporary table for variables ‘arg1’, and ‘arg2’ are updated to have liveness

attribute as LIVE and next use attribute as the current quad number. The entry in the temporary table

for ‘res’ is updated to have the liveness attribute as DEAD, while the next use attribute is marked as

–1, signifying no next use. This is given by lines 27 through 34 in Algorithm 7.12.

Let’s watch the algorithm at work on the some of the quads in the intermediate code shown in

Table 7.78.

The variables used in the block a, b, c, d, e, f and g are all global, and hence they are all live at the end of

the block as given by live_OUT set. The temporary table is initialised as shown below:

Var Liveness Next Use

a LIVE -1

b LIVE -1

c LIVE -1

d LIVE -1

e LIVE -1

f LIVE -1

g LIVE -1

The fi rst quad to be processed is (5) d := f + g. The information from the temporary table above is

attached to the quad as mentioned in step (a).

(5) d := f + g next_uses (5, d) = –1

next_uses (5, f) = –1

next_uses (5, g) = –1

liveness (5, d) = LIVE

liveness (5, f) = LIVE

liveness (5, g) = LIVE

 The entries in the temporary table for d, f and g are updated as mentioned in step (b). For the variable

‘d’, we make the liveness attribute as DEAD and the next use attribute as –1 (signifying no next use). The

variable ‘f ’ liveness attribute is turned LIVE and its next use is assigned the current quad number 5. The

updates in the temporary table are shown in gray below:

Var Liveness Next Use

a LIVE -1

b LIVE -1

c LIVE -1

d DEAD -1

e LIVE -1

f LIVE 5

g LIVE 5

 Code Optimisation 561

The next quad to be processed is (4) f := a – b. The information from the temporary table above is

attached to the quad as mentioned in step (a).

(4) f := a – b next_uses (4, f) = 5

next_uses (4, a) = –1

next_uses (4, b) = –1

liveness (4, f) = LIVE

liveness (4, a) = LIVE

liveness (4, b) = LIVE

The entries in the temporary table for ‘f ’, ‘a’ and ‘b’ are updated as mentioned in step (b). For the

variable ‘f ’, we make the liveness attribute as DEAD and the next use attribute as –1 (signifying no next

use). The variable ‘a’ liveness attribute is turned LIVE and its next use is assigned the current quad number

4. The variable ‘b’ liveness attribute is turned LIVE and its next use is assigned the current quad number 4.

The updates in the temporary table are shown in gray below:

Var Liveness Next Use

a LIVE 4

b LIVE 4

c LIVE -1

d DEAD -1

e LIVE -1

f DEAD -1

g LIVE 5

In this way the algorithm continues till the fi rst quad and updates the liveness and next uses information

for all the quads. The reader is advised to verify the computation of liveness and next use information using

the algorithm with Table 7.80.

Table 7.80 Next use and liveness information

Quad Next Use Information Liveness information

(1) a := b + c next_uses (1, a) = {3, 4}

next_uses (1, b) = {4}

next_uses (1, c) = { }

liveness (1, a) = LIVE

liveness (1, b) = LIVE

liveness (1, c) = LIVE

(2) f := d + e next_uses (2, f) = {3}

next_uses (2, d) = { }

next_uses (2, e) = { }

liveness (2, f) = LIVE

liveness (2, d) = DEAD

liveness (2, e) = LIVE

(3) g := a + f next_uses (3, g) = {5}

next_uses (3, a) = {4}

next_uses (3, f) = {}

liveness (3, g) = LIVE

liveness (3, a) = LIVE

liveness (3, f) = DEAD

(4) f := a – b next_uses (4, f) = {5}

next_uses (4, a) = {}

next_uses (4, b) = {}

liveness (4, f) = LIVE

liveness (4, a) = LIVE

liveness (4, b) = LIVE

(5) d := f + g next_uses (5, d) = {}

next_uses (5, f) = {}

next_uses (5, g) = {}

liveness (5, d) = LIVE

liveness (5, f) = LIVE

liveness (5, g) = LIVE

562 Principles of Compiler Design

Algorithm and Data Structures In this section, we study about the data structures and the algorithm used

for implementing the simple code generator. The simple code generator makes use of the liveness and next

uses information collected by means of data fl ow analysis as explained in the last section.

The simple code generator is implemented with the help of two data structures called address descriptor

 table and register descriptor table. As the target code is generated quad after quad, these two data structures

are consulted to know information like, say, ‘Are the operands of the current quad present in a register or

memory?’, ‘Are there any free registers in which the result of the current quad can be stored?’ and so on.

The address descriptor table maintains the information as to where the current value of a variable can be

found. The current value of a variable can be found in a register or in the memory or a combination of both.

Table 7.81 shows a sample address descriptor using x86 registers. It shows 5 variables p, q, r, s and t. The

current value of variable ‘p’ is in a register eax. The current value of the variable ‘q’ is both register ebx and

memory as well. The current value of ‘r’ is in memory only. The current value of the variable ‘s’ is in two

registers ecx and edx. The variable ‘t’ is housed in ebx. Observe that both ‘q’ and ‘t’ are stored in the same

register ‘ebx’. This is possible after processing a copy statement ‘q = t’.

Table 7.81 Address descriptor table

Variable name Current

location

p eax

q ebx, memory

r memory

s ecx, edx

t ebx

We can see from Table 7.81 that the address descriptor is indexed on the name of the variables (symbol

table entries to be precise).

The register descriptor table maintains the information about which variables are currently held in a

particular register. A register can hold the values of more than one variable due to copy statements. Table

7.82 shows a sample register descriptor entries using x86 registers. It shows 4 registers eax, ebx, ecx and

edx. The register eax holds current value of variable ‘p’. The register ebx holds the current value of the

variable ‘q’ as well as ‘t’. The current value of the variable ‘s’ is in two registers ecx and edx. The register

descriptor table is indexed on the register entry. Observe that the register descriptor table shown in Table

7.82 is in sync with the address descriptor shown in Table 7.81, refl ecting the same machine state.

Table 7.82 Register descriptor table

Register name Current variables

eax p

ebx q, t

ecx s

edx s

 Code Optimisation 563

The algorithm for code generation in simple target code generator consists of 4 steps for each of the quad

of the form ‘res := arg1 + arg2’, where ‘+’ is used to represent any of the IC operators.

 1. Identify a register ‘r’ in which the result of the quad (res) would be stored. The identifi cation of the

register for storing the result is based on simple algorithm described later in this section. At this

point, it suffi ces to know that the algorithm invokes a function get_dst() that would return a register

name ‘r’ in which the result of the quad would be stored.

 2. Generate an assembly instruction to move the content of arg1 into ‘r’. In case the value of ‘arg1’ is

in register say ‘r1’, then an assembly instruction to move from ‘r1’ to ‘r’ is generated. In case the

value of arg1 is not in register, but only in memory, the assembly instruction to move from memory

location arg1 to ‘r’ is generated. If it so happens that ‘arg1’ is already in ‘r’, then this instruction

need not be generated. The address descriptor table is consulted for knowing if ‘arg1’ is in a register

and fetching the register name.

 3. Generate assembly instructions to carry out the operation (op) associated with the quad. For

example, if the operation in the quad is say subtract, then assembly instruction ‘sub’ is generated for

an x86 target architecture. The generated target instruction would use ‘arg2’ as one of the operands

and ‘arg1’ present in register ‘r’ as the other operand and store the result in ‘r’ itself. In case the

value of ‘arg2’ is in register say ‘r2’, then an assembly instruction would use the register ‘r2’ instead

of using the memory location. The address descriptor table is consulted for knowing if ‘arg2’ is in a

register and fetching the register name.

 4. Update the register and address descriptor tables for res, arg1 and arg2.

 ∑ Update the address descriptor table to indicate that the value of ‘res’ is stored in ‘r’ only. Update

the register descriptor table to indicate that ‘r’ contains the value of the variable ‘res’ only.

 ∑ If the variable ‘arg1’ is in a register ‘r1’ and arg1 has no next use, then,

 a. if arg1 is LIVE, generate spill code to move the value of r1 to memory location of arg1.

 b. Mark the register and address descriptor tables to indicate that the register ‘r1’ no longer

contains the value of variable ‘arg1’. This would allow, get_dst() to pick up the register r1 in

step (1) in the code generation for the future quads.

 ∑ The same updates as arg1 above are repeated with respect to arg2.

Figure 7.54 illustrates the 4 steps of the target code generation in simple code generator assuming that y

and z are not in registers. It also shows the typical actions that happen at each of the 4 steps for a sample IC

instruction ‘x := y – z’.

564 Principles of Compiler Design

Fig. 7.54 The 4 steps for target code generation in simple code generator

The function get_dst() is used in step 1 above to identify a register ‘r’ for storing the result of the quad.

It works on the basis of following algorithm for a given quad ‘res: = arg1 + arg2’, where ‘+’ is used to

represent any of the IC operators.

 (a) If ‘arg1’ is already in register ‘r’ and ‘arg1’ is dead after this statement and ‘r’ holds no other

variable other than ‘arg1’, then return ‘r’.

 (b) If there is an empty register ‘r’ which does not hold the value of any variable, then return ‘r’.

 (c) Choose any arbitrary register ‘r’. Let’s say the values of variables ‘v1’ and ‘v2’ are stored in ‘r’ at

this point in time. We move the contents of the register ‘r’ into the memory locations associated

with the variables ‘v1’ and ‘v2’. We update the address descriptor of ‘v1’ and ‘v2’ to indicate that ‘r’

no longer holds their value. We return the register ‘r’.

This version of get_dst() can be improved by making a more informed choice rather than picking an

arbitrary register in (c) above. One approach could be that we could pick a register ‘r’ holding the value of

variable ‘v’ that is used furthest from the current quad.

 Code Optimisation 565

The other implementation aspects of the simple target generator that are of interest to the reader are

detailed below.

∑ The simple target code generator generates code to spill all the live variables at the end of the block.

In cases where the last statement of the block is a GOTO or a conditional GOTO statement, the target

code generator spills the live variables before generating code for these or else the spill code would

be unreachable. The simple target code generator also generates code to spill all the live variables

before a CALL statement, since the called procedure could use the live variables and also overwrite

the registers.

∑ The simple target code generator takes the template-based approach for generating code to the simple

operators like PROC_BEGIN, PROC_END, RETURN, RETRIEVE, CALL, LBL, PARAM, GOTO.

∑ For the operators, which use a specifi c register ‘r’ as a convention, the register ‘r’ is spilled in case

it is housing a live variable. For example, RETURN uses the register eax on x86 architecture as a

convention. The register eax is spilled to the memory, before being used by the return.

∑ For a quad using the assign operator say x := y, there are two possible cases

 (a) ‘y’ is already in a register say ‘r’: There is no code generated if ‘y’ is already in a register ‘r’.

The register descriptor table is updated to add the variable ‘x’ as a part of the set housing ‘r’. The

address descriptor table is also updated to refl ect the same.

 (b) ‘y’ is not present in a register: In the case ‘y’ is not already in a register, get_dst(), fetches a

register say ‘r1’ to store ‘x’. A ‘mov’ instruction is generated to move ‘y’ from the memory

location to the register ‘r1’. The register and address descriptor tables are updated to refl ect that

‘x’ and ‘y’ are housed in ‘r1’.

Illustration of Target Code Generation using Simple Code Generator Let’s take the quads shown in

Table 7.78 as input and look at how the above-mentioned algorithms of the simple code generator work on

it to generate target code.

At the start of target code generation, we initialise the address descriptor table and register descriptor

table to indicate that all the values of variables are stored in memory and none of the variables are stored in

registers as shown below.

a Memory

b Memory

c Memory

d Memory

e Memory

f Memory

g Memory

Address descriptor table

eax None

ebx None

ecx None

edx None

Register descriptor table

The quad, the generated target code and the comments on the working of the algorithm are provided

below for all the quads of the example chosen in Table 7.78.

566 Principles of Compiler Design

Quad Generated target code Comments

(0) proc_begin func /* proc_begin func */

 .align 4

.globl _func

_func:

 pushl %ebp

 movl %esp, %ebp

 subl $20, %esp

For the operator ‘proc_begin’ target code is

generated based on the template based code

generation approach.

Quad Generated target code Comments

(1) a := b + c /* a: = b + c */

movl _b, %eax

addl _c, %eax

Step 1: get_dst() returns a free register ‘eax’

Step 2: Generate target instruction to move the
value of ‘b’ into the selected register eax (mov

_b, %eax).

Step 3: Generate target code to carry out the
add operation (addl _c, %eax) and store the

result in the selected register eax.

Step 4: Update the address and register

descriptor table to indicate that the register

‘eax’ contains the value of the variable ‘a’.

a eax

b Memory

c Memory

d Memory

e Memory

f Memory

g Memory

Address descriptor table

eax a

ebx None

ecx None

edx None

Register descriptor table

Quad Generated target code Comments

(2) f := d + e /* f : = d + e */

 movl _d, %edx

 addl _e, %edx

Step 1: get_dst()returns a free register ‘edx’.

Step 2 : Generate target instruction to move the
value of ‘d’ into the selected register edx (mov

_d, %eax).

Step 3 : Generate target code to carry out the add
operation (addl _e, %edx) and store the result in

the register edx.

Step 4 : Update the address and register descriptor
table to indicate that the register ‘edx’ contains

the value of the variable ‘f’.

 Code Optimisation 567

a eax

b Memory

c Memory

d Memory

e Memory

f edx

g Memory

Address descriptor table

eax a

ebx None

ecx None

edx f

Register descriptor table

Quad Generated target code Comments

(3) g := a + f /* g: = a + f */

movl %eax, %ebx
Step 1: get_dst() returns a free register ‘ebx’

addl %edx, %ebx Step 2: Generate target instruction to move the

value of ‘a’ into the selected register edx. The

value of variable ‘a’ is already in the register eax

as indicated by the address descriptor table. The

generated target instruction is mov %eax, %ebx.

Step 3: The other operand ‘f’ is already in the

register ‘edx’ as indicated by address descriptor

table. Generate target code to carry out the add

operation (addl %edx, %ebx) and store the result in

the register ebx.

Step 4: Update the address and register descriptor
table to indicate that the register ‘ebx’ contains

value of the variable ‘g’. From the Table 7.80, in

the row corresponding to quad 3, we know that the

variable ‘f’ has no next uses and is DEAD after this

quad. The register ‘edx’ in which the value of ‘f’

is housed at this time is freed up by updating both

the desriptor tables.

a eax

b Memory

c Memory

d Memory

e Memory

f –

g ebx

Address descriptor table

eax a

ebx g

ecx None

edx None

Register descriptor table

568 Principles of Compiler Design

Quad Generated target code Comments

(4) f := a – b /* f: = a – b */

movl %eax, %ecx

subl _b, %ecx

Step 1: get_dst(), returns a free register ‘ecx.’

Step 2: Generate target instruction to move the
value of ‘a’ into the selected register ecx. The

value of variable ‘a’ is in the register eax as

indicated by the address descriptor table. The

generated target instruction is mov %eax, %ecx.

/* spilling */

movl %eax, _a

Step 3: The other operand ‘b’ is not available in
any register. The third step yields target code to

carry out the subtract operation (subl _b, %ecx) and

stores the result in the register ecx.

Step 4: Update the address and register descriptor
table to indicate that the register ‘ecx’ contains

the value of the variable ‘f’. One of the arguments

of the quad, the variable ‘a’ is stored in

register eax. It has no next use after this quad,

as indicated by the row corresponding to quad 4

in Table 7.80. Since the variable ‘a’ is LIVE,

the register eax is spilled by generating the

instruction movl %eax, _a. The register eax is then

freed up by updating both the descriptor tables.

a Memory

b Memory

c Memory

d Memory

e Memory

f ecx

g ebx

Address descriptor table

eax None

ebx g

ecx f

edx None

Register descriptor table

Quad Generated target code Comments

(5) d := f + g /* d: = f + g */ Step 1: get_dst() returns the free register ‘eax.’

mov %ecx, %eax

addl %ebx, %eax

/* spilling */

movl %ecx, _f

movl %ebx, _g

Step 2: Generate target instruction to move the value
of ‘f’ into the selected register eax. The value

of variable ‘f’ is already in the register ecx as

indicated by the address descriptor table. The

generated target instruction is mov %ecx, %eax.

Step 3: The other operand ‘g’ is available in register
%ebx. Generate target code to carry out the add

operation (addl %ebx, %eax) and store the result in

the register eax.

 Code Optimisation 569

Step 4: Update the address and register descriptor

table to indicate that the register ‘eax’ contains the

value of the variable ‘d’. Both the arguments of the

quad, the variable ‘f’ and ‘g’ are stored in registers

edx and ebx respectively. Both of them have no next

use after this quad, but are LIVE as indicated by

the row corresponding to quad 5 in Table 7.80. The

register edx and ebx are spilled by generating the

instructions movl %ecx, _f and movl %ebx, _g. The

registers are freed up by updating both the descriptor

tables.

a Memory

b Memory

c Memory

d eax

e Memory

f Memory

g Memory

Address descriptor table

eax d

ebx None

ecx None

edx None

Register descriptor table

Quad Generated target code Comments

(6) proc_end func /* Spilling reg */

movl %eax, _d

/* proc_end func */

movl %ebp, %esp

popl %ebp

ret

As a part of processing the operators like

CALL, comparison operators, goto, proc_end,

that change the fl ow of control, all the

live variables that are in registers, but

not yet in the memory are spilled. In this

case, ‘d’ is the only live variable that is

in a register, but not yet in memory and

hence spilled.

For the operator ‘proc_end’ target code is

generated based on the template-based code

generation approach.

Example 7—Optimised Target Code using Simple Code Generator This section demonstrates the toy C

compiler (mycc) generating optimised target code using the simple code generator outlined previously.

The toy C compiler takes as input, a sample C input source and gives out the optimised target code. The

dialog below shows ‘mycc’ taking in some sample input C sources using various operators (like addition,

subtraction, etc.) and data structures like arrays, structures, and so on. It generates the corresponding

optimised x86 assembly code using the simple code generation strategy. The generated x86 assembly code

is assembled to produce an executable binary.

Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

570 Principles of Compiler Design

Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

Compiling the Lexical Analyzer

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

Building ‘mycc’ - A Toy Compiler for C Language

$ g++ -DICGEN -g -Wall ic_gen.cc optimize.cc target_code_gen.cc mycc.cc semantic_
analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe

Sample Input C fi le

$ cat -n test.tc.1.c
 1 /*

 2 Simple example

 3 */

 4

 5 int a, b, c, d, e, f, g;

 6

 7 int func()

 8 {

 9 a = b + c;

 10 f = d + e ;

 11 g = a + f ;

 12 f = a – b ;

 13 d = f + g;

 14 }

 15

Generating Target code with optimization

-t for Target Code Optimization

$./mycc.exe -t -O all test.tc.1.c
.comm _a, 4

.comm _b, 4

.comm _c, 4

.comm _d, 4

.comm _e, 4

.comm _f, 4

.comm _g, 4

.text

/* proc_begin func */

 .align 4

.globl _func

_func:

 pushl %ebp

 movl %esp, %ebp

 subl $20, %esp

/* a: = b + c */

 movl _b, %eax

 addl _c, %eax

/* _t1: = d + e */

 movl _d, %ecx

 addl _e, %ecx

/* g := a + _t1 */

 Code Optimisation 571

 movl %eax, %edx

 addl %ecx, %edx

/* f: = a – b */

 movl %eax, %ecx

 subl _b, %ecx

/*Spilling Variable*/

 movl %eax, _a

/* d: = f + g */

 movl %ecx, %eax

 addl %edx, %eax

/*Spilling Variable*/

 movl %ecx, _f

/*Spilling Variable*/

 movl %edx, _g

/* proc_end func */

/* Spilling live vars */

/* Vars are

 a b c d e f g */

/*Spilling Variable*/

 movl %eax, _d

 movl %ebp, %esp

 popl %ebp

 ret

Generate target code with optimization

$./mycc.exe -O all -t test.tc.2.c >test.tc.2.s

Assemble it

$ gcc test.tc.2.s -o test.tc.2.exe

Execute it

$./test.tc.2.exe
BEFORE: x = 0 y = 0 z = 0 q = 0

AFTER: x = 8 y = 12 z = 14 q = –12

Generate Target code with optimization

$./mycc.exe -O all -t test.tc.3.c >test.tc.3.s

Assemble it

$ gcc test.tc.3.s -o test.tc.3.exe

Execute it

$./test.tc.3.exe
AFTER 1:x = 8 y = –16 ret = –8

AFTER 2:x = 2 y = 16 ret = 18

AFTER 3:x = 25 y = 55 ret = 80

Generate Target code with optimization

$./mycc.exe -O all -t test.tc.4.c >test.tc.4.s

Assemble it

$ gcc test.tc.4.s -o test.tc.4.exe

Execute it

$./test.tc.4.exe

572 Principles of Compiler Design

BEFORE: The fi rst 5 elements in arr are 0 0 0 0 0

AFTER: The fi rst 5 elements in arr are 0 1 2 3 4

Generate Target code with optimization

$./mycc.exe -O all -t test.tc.5.c >test.tc.5.s

Assemble it

$ gcc test.tc.5.s -o test.tc.5.exe

Execute it

$./test.tc.5.exe
g_var1 = 200 g_var2 = 25 l_var1 = 5000 l_var2 = 225

7.3.1.2 Limitations of Simple Target Code Generator The simple code generator that we studied in

the last section is easy to implement and is more effi cient than the template-based code generator.

In the simple code generator, the live variables are spilled into memory from the registers at the end

of each block. In any of the successor blocks, when one of those live variables is fi rst used, there are

instructions to load the variable into a register from the memory. The generated code for register spills at

the end of the block and the consequent load instructions into memory in the successor blocks degrades the

performance.

The target code generated for loops by the simple code generator is poor. For optimal performance, the

most heavily used variables need to be in the registers throughout the life of the loop, across blocks. The

simple target code generator cannot afford to keep a variable in a register across blocks, since it operates at

a basic block level and spills the live variables at the end of each block.

7.3.2 Peep-hole Optimisation

 Peep-hole optimisation is another technique used during the target code optimisation. In peep-hole

optimisation, improvements are done local to a small segment of code called the peep-hole or window.

Let’s take an example to understand the idea behind peep-hole optimisation. Consider the target code

generated for the input source shown in Table 7.83. The target code has been generated using the template-

based code generator discussed in Chapter 6.

Table 7.83 Input source, intermediate code and the target code

Source code Intermediate code Target code from template-

based code generator

1 int a, b, c, d; (0) proc_begin func /* _t0 := a + b */

2 (1) _t0 := a + b (1a) movl _b, %eax

3 int func() (2) d := _t0 – c (1b) addl _a, %eax

4 { (3) return d (1c) movl %eax, –4(%ebp)

5 d = (a + b – c); (4) goto .L0

6 (5) label .L0 /* d: = _t0 – c */

7 return(d); (6) proc_end func (2a) movl –4(%ebp), %eax

8 } (2b) subl _c, %eax

(2c) movl %eax, _d

/* return d */

(3a) movl _d, %eax

 Code Optimisation 573

We take the target code generated by the template-based code generator in Table 7.83 and see how the

peep-hole optimisation can improve it. Figure 7.55 shows the target code before and after the peep-hole

optimisation. The peep-hole optimiser looks at the segment of code (or the peep-hole window) consisting of

the x86 assembly instructions labelled (1c) through 2(a) and replaces it with (1c) as shown in Fig. 7.55.

Before optimisation After optimisation

(1a) movl _b, %eax (1a) movl _b, %eax

(1b) addl _a, %eax (1b) addl _a, %eax

(1c) movl %eax, –4(%ebp)

(2a) movl –4(%ebp), %eax
Æ (1c) movl %eax, –4(%ebp)

(2b) subl _c, %eax (2b) subl _c, %eax

(2c) movl %eax, _d (2c) movl %eax, _d

(3a) movl _d, %eax (3a) movl _d, %eax

Fig. 7.55 Peep-hole optimisation

The instructions (1c) and (2a) represent a pattern in the target code of the form mov R, M followed by

mov M, R where R is a register and M is a memory. When such a pattern occurs in the target code, the

peep-hole optimiser replaces it by a single instruction mov R, M, since the register R already contains the

value held in M. A good number of peep-hole optimisations fall in this category, where an identifi ed pattern

of instructions in the target code is replaced by a more optimal equivalent set of instructions. Table 7.84

shows some of the other patterns and their replacements by peep-hole optimiser module. Most of these

replacements result in either reduction in code size or improvement in speed of execution or both.

Table 7.84 Pattern and replacement instructions in peep-hole optimisation

Pattern Replacement Comments

goto L1

L1:

L1: The control falls through to the label L1 even without the

goto statement. Hence the goto statement can be eliminated.

 This results in reduction of code size.

addl %ex,1 inc %eax Use of the machine idiom, the autoincrement operator instead

of a explicit add by one. The autoincrement operator takes

less cycles to perform the increment. This is an example of

using a machine idiom as a replacement instruction.

This improves the speed of execution.

imull %eax, 32 lshiftl %eax The shift operation involves less cycles than the multiply

operation. This is an example of replacement by reduction

in strength.

This improves the speed of execution.

imull %eax, 1 None The multiplication by 1 yields the same value. Hence it

can be eliminated.

or The addition by 0 yields the same value. Hence it can be

eliminated.

addl %eax, 0 These are examples of algebraic simplifi cation.

These improve the speed of execution and also reduce the

code size.

574 Principles of Compiler Design

Table 7.84 showed cases where the identifi ed pattern is a contiguous set of instructions replaced

by another set of optimal set of instructions. It is also possible that the instructions that are analysed for

replacement are not in contiguous fashion. For example, Table 7.85 shows a pattern where double jump

is avoided by replacing jumps to L1 with L2. The peep-hole optimiser can also be used to eliminate the

unnecessary labels for which there are no jumps.

Table 7.85 Peep-hole optimisation avoiding double jump

Pattern Replacement Comments

goto L1

..

..

..

..

goto L1

..

..

..

..

L1: goto L2

goto L2

..

..

..

..

goto L2

..

..

..

..

L1: goto L2

When a label L1 contains a jump to another label L2, then

the goto L1 can be replaced by goto L2.

The replaced code is more effi cient than the original,

since two jumps are avoided at least in some of the cases.

The peep-hole optimisation technique can also be used on the intermediate code to improve it with the

same ease.

 SUMMARY

An optimising compiler typically has an optimisation phase to improve the intermediate code and the

target code in terms of performance and code size.

There are several transformations that can be done on the intermediate code in order to improve

the performance like common sub-expression elimination, constant folding, copy propagation, dead

code elimination, and so on. Intermediate code optimisation performed within a basic block is known

as local optimisation, while the optimisation performed across the basic blocks is termed as global

optimisation. Typically compilers perform optimisations at both local and global levels. During local

optimisation, the intermediate code is broken into blocks of straight-line code called basic blocks.

A directed acyclic graph (DAG) is a useful data structure for performing local optimisation of the

intermediate code. The DAG is used to perform various local intermediate code optimisations like

CSE, Dead code elimination, and so on. In order to perform global optimisations in the intermediate

code, it is necessary to perform data fl ow analysis of the input source code. The data fl ow properties

like available expressions, liveness, reaching defi nitions, etc. are used to perform optimisations like

global common sub-expression elimination, global dead code elimination, and so on. A loop-related

optimisation in the intermediate code—loop invariant code motion is performed by using a data fl ow

property called as reaching defi nition.

Most of the target code optimisation involves strategies to have the values of variables in

registers and perform operations using the registers instead of memory locations. A simple target

code generator, which retains the values of variables in registers for as long as it is possible and uses

them for calculations was described in Section 7.3.1.1. Peep-hole optimisation is another commonly

employed method to improve the target code.

 Code Optimisation 575

 REVIEW QUESTIONS AND EXERCISES

 7.1 What is optimisation? Is there any scope for improving the intermediate code and target code as well?

 7.2 What are the common techniques for improving the intermediate code? Explain three of them in

detail.

 7.3 What is common sub-expression elimination in the context of intermediate code optimisation?

Illustrate with an example. Would poorly written code only require common sub-expression

elimination to improve the intermediate code?

 7.4 What is constant folding in intermediate code optimisation? Illustrate with an example.

 7.5 What is copy propagation? Illustrate how the copy propagation facilitates other optimisation

opportunities.

 7.6 What is dead code elimination? Illustrate with an example.

 7.7 What are the common algebraic transformations that can be done for improving the intermediate

code?

 7.8 What is strength reduction transformation? Illustrate with an example.

 7.9 What is a loop invariant code motion optimisation? Illustrate with an example.

 7.10 What are induction variables? How does the strength reduction on induction variables help in

improving loop optimisation? Illustrate with an example.

 7.11 Explain the following terms in the context of intermediate code optimisation (a) basic block

(b) directed acyclic graph (c) local and global optimisation.

 7.12 What are the main steps in the local optimisation of intermediate code?

 7.13 How do you split the intermediate code into basic blocks? Explain with the help of an algorithm.

 7.14 Describe an algorithm to construct a DAG from a basic block? Illustrate with an example.

 7.15 Explain the algorithm to generate optimised intermediate code by traversing the nodes in a DAG?

Illustrate with an example.

 7.16 What are the main properties of a DAG? Illustrate those as you construct a DAG.

 7.17 What is ‘killing’ of a DAG node? How does it help in rectifying issues with incorrect optimised

intermediate code generation for arrays?

 7.18 What are the issues with the optimised intermediate code for pointers while using the basic DAG

construction algorithm? What are the corrective measures required in the DAG construction

process to eliminate them?

 7.19 What are the issues with the optimised intermediate code for procedure calls while using the

basic DAG construction algorithm? What are the corrective measures required in the DAG

construction process to eliminate them?

 7.20 Explain the following terms: (a) fl ow graph (b) point and path (c) defi nition and usage of variable

in three address code (d) data fl ow property and data fl ow analysis.

 7.21 What is available expressions? How can it be used to perform global common sub-expression

elimination in the intermediate code?

 7.22 Explain the terms: (a) generation and killing of expressions (b) universal set of expressions for a

basic block of intermediate code? Illustrate these by taking a sample block of three address code.

 7.23 Express the relationship between the set of expressions that are available at the beginning of a

basic block to the set of expressions that are available at the end of a basic block.

 7.24 What is an iterative approach to solving the data fl ow equations? When do we need it? Give an

example in the context of computing available expressions data fl ow property.

576 Principles of Compiler Design

 7.25 Given the available expression information, how can you eliminate the re-computation of

common sub-expressions at a global level? Illustrate with an example.

 7.26 What is liveness of a variable? How can it be used to perform dead code elimination? Illustrate

with an example.

 7.27 How do you compute (a) live_USES—The set of variables whose use precedes any defi nition

within a basic block (b) live_DEFS – The set of variables whose defi nition precedes any use

within a basic block. Illustrate with a sample three address code.

 7.28 Express the relationship between the set of all the variables that are live before reaching the

beginning of a basic block to the set of variables that are live at the end of block ‘B’?

 7.29 Explain the terms (a) domination (b) back edge (c) pre-header (d) natural loop in the context of

identifying loops in the intermediate code.

 7.30 Describe the algorithm to identify a loop given the back edge. Illustrate with an example.

 7.31 What is reaching defi nitions? How is it used in performing loop invariant code motion

optimisation?

 7.32 Explain the terms (a) generation of a defi nition in a block (b) killing of a defi nition in a block.

Illustrate the computation with an example.

 7.33 Express the relationship between rd_IN[B], the set of all the defi nitions reaching the beginning of

block ‘B’ to rd_OUT[B], the set of defi nitions reaching the end of block ‘B’.

 7.34 What is use-defi nition chain? How is it computed from rd_IN[B], the set of all the defi nitions

reaching the beginning of block ‘B’?

 7.35 What are the steps in performing loop invariant code motion optimisation using the ud-chain

information?

 7.36 What are the conditions to be satisfi ed in order to move a TAC statement from within the loop to

the pre-header?

 7.37 What are the common steps taken by target code generators for producing effi cient code?

 7.38 Explain any two data fl ow properties used by target code generators for generating effi cient target

code.

 7.39 Describe an algorithm for computing next use and liveness properties at each quad level in a

basic block.

 7.40 Describe the data structures and the algorithm for a simple target code generator that retains the

values of variables in registers for as long as possible.

 7.41 What is peep-hole optimisation? Give fi ve examples of patterns and their replacements used in

peep-hole optimisation, justifying the improvement in performance or memory usage.

 7.42 State if the following statements are true or false.

 (a) The strength reduction transformations identify and replace costly operations by less

expensive counterparts.

 (b) The DAG is a data structure used for implementing optimising transformations on the

intermediate code across basic blocks.

 (c) The loop optimisations in the intermediate code are performed during the local optimisation

phase.

 (d) The order in which DAG nodes are created from the intermediate code during the DAG

construction process is in topologically sorted order.

 7.43 State if the following statements are true or false.

 (a) The leaf nodes in a DAG cannot have any attached identifi ers to it.

 Code Optimisation 577

 (b) The input variables to a block manifest as leaves in the DAG during the DAG construction

process.

 (c) Each node in a fl ow graph is a quad.

 (d) There are (n – 1) points for a basic block containing ‘n’ quads.

 7.44 State if the following statements are true or false.

 (a) The ‘available expressions’ data fl ow property is used for global common sub-expression

elimination.

 (b) The ‘liveness’ data fl ow property helps in performing global dead code elimination and also

in making decisions for retaining a variable’s value in a register.

 (c) The iterative approach to solving data fl ow equations is used for resolving the cyclic

dependency between the properties of fl ow graph nodes in the cases of input source having

loops.

 (d) The dead code elimination can also be performed at a DAG level using live variable

information in the form of live_OUT set for the block.

 7.45 State if the following statements are true or false.

 (a) A node ‘d’ of a fl ow graph dominates node ‘n’, if every path from the initial node to ‘n’ goes

through ‘d’.

 (b) The dominators[head] containing the tail node in a fl ow graph detects the presence of a back

edge.

 (c) A pre-header is a basic block introduced during the loop optimisation to hold the quads that

are moved from within the loop.

 (d) A ud-chain obtained from reaching defi nitions analysis is used for performing the loop

invariant code motion optimisation in the loops.

 IN DEX

A

accept action 117

accepting states 34

access link 353

activation record 350, 352

activation tree 345

activation 345

actual parameters 377

address descriptor 562

algebraic transformation 424

Ambiguous grammars 76

ambiguous pointer 468

analysis 5

arithmetic operations 328

Arrays 267

assembler directive 326

assembler 4

assembly instruction 326

assembly language program 325

assembly language

programming 327

associativity 78

augmented grammar 140

B

back edges 524

back end 5, 11

backpatching 290

Backtracking parsing 83

backtracking top-down parsers 87

Backus-Naur form (BNF) 71

basic block 429, 437

binding 347

bison 78

Boolean operators 288

Boolean test expression 288

bottom-up parsing 82, 113

bottom-up translation 198

break-label stack 299

C

call by value 379

call-by-name 393

call-by-reference 384

call-by-value-result 389

calling sequence 311, 350, 372

canonical derivation 73

canonical LR parsing 84

canonical reduction sequence 114

closure 142

COFF 4

common sub-expression

elimination 418

compiler 1

conditional jumps 342

constant folding 418

constant propagation 420

constructing a DAG 442

Context-free grammar 7, 70

control link 354

Copy propagation 419

D

data fl ow analysis 482

data fl ow equations 488, 510, 533

data fl ow property 482

data object 347

dead code elimination 422

dead store 420

decorated parse tree 192

dependency graph 193

derivation 72

deterministic fi nite automaton 35

DFA interpretation 64

directed acyclic graph 260, 430

display 371

distinguished 59

domination 522

580 Index

dominators 524

dynamic scope 358

dynamic type checking 230

E

egrep 23

ELF 4

Elimination of left recursion 89

environment 348

error action 117

error handler 84

error productions method 86

error recovery 84

Error reporting and recovery

LR parsing 177

 Operator Precedence

Parsing 127

 Top-down Predictive

Parsing 112

error reporting 84

error-recovery strategies 85

F

Factor 38

fi nite state machine (FSM) 32

fi rst set 104

fl ex 22

fl ow of control 289

Follow set 106

formal parameters 377

front end 5

G

gcc 2

global arrays 327

global correction error

recovery 86

global dead code elimination 507

global optimisation 433

global register allocation

(GRA) 554

global transformations 433

Global variables 327

greedy interpretation 64

H

handle 116

header 526

Hollerith format strings 29

I

identifi er 27

immediate operands 328

indirect addressing 330

indirect triples 255

induction variable 428

inherited attributes 193

initial node 478

Intermediate Code Generation for

swithcase statement 304

 function call 310

 structure reference 280

 while statement 298

 if-else statement 288

intermediate code optimisation 11

intermediate representation

(IR) 251

interpreting an NFA 44

Item 141

iterative approach to solving the

data fl ow equations 494

K

kernel items 142

killed node 466

L

L-attributed defi nitions 196

Left factoring 90

leftmost derivation 73

lexeme 19

lexical analyser generator 21

Lexical analysis 7, 18

lexical level 364

lexical specifi cation fi le 29

lexical specifi cations 21

lifetime of a procedure 345

linker 4

literal table 15

live variable analysis 507

LL grammars 82

local optimisation 431

local register allocation 554

local transformations 431

look ahead symbol 159

loop invariant code motion 529

loop invariant statement 426, 543

loop related transformations 426,

543

LR grammars 83

LR parsing table 131

LR parsing 131, 132

LR(0) Item 141

LR(1) grammars 84

LR(1) item 159

l-value 378

M

machine status 353

memory organisation in a C run-

time environment 351

meta characters 24

minimisation of DFA 58

most closely nested rule 361

multi-pass compiler 13

N

name equivalence 232

natural loop 526

next use 557

NFA to DFA 47

NFA 35

non-deterministic fi nite state

machine 35

non-greedy interpretation 64

non-local 358

non-LR grammars 120

non-seed items 142

non-terminal symbols 71

O

objdump 351

operator precedence grammar 120

Operator precedence parsing 84,

120

 Index 581

operator precedence relations 121

P

Panic mode recovery 86

Parameter passing 350

parse tree method 194

parse tree 9

Parsing Table construction

Canonical LR Method 156

 Comparison of 177

 Look Ahead LR Method 164

 Simple L R Method 140

parsing 69

pass 13

path 478

Peep-hole optimisation 572

phrase level error recovery 86

Pointers 275

precedence 76

predecessor of block 478

predictive parser 89

predictive parsing 83

pre-header 526

pre-processor 3

properties of the DAG 463

Q

quadruples 255

R

Reaching defi nitions 529

reconstruction of the intermediate

code from the DAG 450

recursive descent parser 92

recursive descent parsing 83

recursive evaluator 215

reduce action 117

reduction 116

register allocation 554

register descriptor table 562

registers 328

regular defi nition 28

regular expression to NFA 38

regular expressions 23

return sequence 350, 372

returning sequence 311

right sentential form 116

rightmost derivation 73

rlex 38

rule-based method 195

runtime environment 345

r-value 378

S

S-attributed defi nition 194

scenarios 468

scope 348

seed items 142

semantic analysis 9

semantic rules 190, 191

sentence 73

sentential forms 73

shift action 117

shift reduce parsing 84

simple LR 84

simple x86 target code

generator 555

SLR grammars 84

SLR(1) method 140

start symbol 71

state 348

static scope 358

static type checking 230

strength reduction

transformations 425

strongly typed language 230

structural equivalence 230

Sub-expressions 38

successors of the block 478

symbol table 14, 19, 220

synchronisation tokens 86

synchronising set 112

syntax analyser 69

Syntax analysis 7, 69

syntax directed translation

(SDT) 190

syntax-directed defi nition 191

synthesis 5

synthesised attributes 194

T

table 562

table-driven predictive parsing 83

TAC operators 252

target code generation 11

target code optimisation 12

Terminal symbols 38, 71

three address code 251

top-down parsing 82, 86

transition diagram 33

transition table 34

translation during parsing 196

translation function 215

translation interleaved with

parsing 194

triples 255

type checking 190, 218

type constructors 219

type equivalent 230

type expression tree 219

type expression 219

U

use-defi nition (ud) chain 540

V

value-label (VL) stack 305

variable propagation 420

Y

yacc 78

yield 74

	Cover
	Half Title
	About The Author
	Title Page
	Copyright
	Dedication
	Contents
	Preface
	Visual Walkthrough
	1. Compilers—An Introduction
	Introduction
	1.1 The Bigger Picture
	1.2 The Compiler
	1.3 Compiler Implementation
	1.4 Data Structures in a Compiler
	1.5 Study Plan
	Summary
	Review Questions and Exercises

	2. Lexical Analysis
	Introduction
	2.1 Elements of Lexical Analysis
	2.2 The Mechanics of Lexical Analyser Generators
	2.3 rlex—A Restricted Lexical Analyser Generator
	Summary
	Review Questions and Exercises

	3. Syntax Analysis
	Introduction
	3.1 Context-free Grammar
	3.2 Classification of Parsing Techniques
	3.3 Error Reporting and Recovery in Syntax Analyser
	3.4 Top-down Parsing
	3.5 Bottom-up Parsing
	3.6 A Syntax Analyser for C Language
	Summary
	Review Questions and Exercises

	4. Semantic Analysis
	Introduction
	4.1 Syntax-Directed Translation
	4.2 Semantic Analysis
	Summary
	Review Questions and Exercises

	5. Intermediate Code Generation
	Introduction
	5.1 Intermediate Forms
	5.2 Intermediate Code Generation
	Summary
	Review Questions and Exercises

	6. Target Code Generation
	Introduction
	6.1 Target Program
	6.2 x86 Primer
	6.3 Runtime Environment
	6.4 Code Generation for x86
	6.5 A Toy C Language Compiler ‘MYCC’
	Summary
	Review Questions and Exercises

	7. Code Optimisation
	Introduction
	7.1 Scope for Improvement
	7.2 Intermediate Code Optimisation
	7.3 Target Code Optimisation
	Summary
	Review Questions and Exercises

	Index

