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PREFACE

Compilers are utilities that transform programs written in higher level languages like Pascal, C, and C++ 

into lower level languages like the assembly language program or the machine code. The machine code 

can be directly executed on a computer to perform various tasks. The assembly language program can be 

converted to machine code by using another utility called assembler and then executed on a computer.

This book describes the internals of a compiler detailing the steps used by it to transform a higher level 

language program into a lower language program.

Purpose

In my 18 years of industrial experience, I have had the opportunity to absorb a number of fresh computer 

science graduates in my team. My observation has been that the fresh computer science graduates get a 

theoretical level of understanding of the compilers and its functions during their course work. These young 

men and women often fi nd it diffi cult to get into job assignments that deal with compilers and the associated 

tools. They usually have to be trained to make them ready for the job assignments involving compilers. 

One of the reasons for this gap is lack of textbooks that emphasise on practical application of principles of 

compilers like Syntax Analysis, Semantic Analysis, etc. This book bridges the gap and provides students of 

computer science good reading material to understand the basics of compilers.

During my survey of textbooks on compilers, I found that there was a dearth of textbooks that had the 

right mix of theory and practice for compiler construction. I did not fi nd many textbooks in the market that 

focused on introducing compilers to the entry-level student. Most of the available textbooks were suitable 

for an advanced course in compiler construction rather than the introductory course. Most of the existing 

textbooks also had a heavy theoretical emphasis. I embarked on writing this book because I felt a genuine 

need for a textbook that had (a) focus on the basics of compilers (b) accent on the practical aspect and (c) 

suitability to an entry-level student.

Background

It was the summer of 2001 that I was contemplating on writing a book in the fi eld of computer science as 

my service to the industry that gave me bread and butter. I was more inclined towards writing a book on the 

subject of Artifi cial Intelligence because (a) I had implemented many of the AI algorithms while competing 

at the Programmer of the Month (POTM) contest, during my stay in AT&T Paradyne at NJ, USA. (b) I was 

reasonably convinced that students would fi nd my book encouraging, since they would see “Source Code” 

and not just Theory.

On 18 May 2001, I spoke to Prof. Khodanpur, Retired Head of the department of computer science 

at RV College of Engineering, Bangalore, on the subject of writing a book on Artifi cial Intelligence. 

He encouraged me to undertake writing a book on Principles of Compiler Design instead of Artifi cial 

Intelligence. Prof. Khodanpur impressed upon me that the students were struggling to get a grasp on the 

basics of compilers and it would do a world of good, if I can contribute something to help the students. 

That was the genesis of this book on the principles of compilers. Prof. Khodanpur subsequently reviewed 

my fi rst output and gave me some suggestions for improvement. I have tried my best to keep up to his 

philosophy of ‘keeping it simple and correct’ throughout this book.



For 8 years, I have been relentlessly working on various aspects of this book. The Almighty chose me 

and bestowed upon me the strength and the means to carry on this incredible journey. The blessings of my 

parents helped me overcome many a challenge during the process of making this book. The inspiration, 

happiness and purpose came from my constant companion and buddy—Pranav. There were numerous times 

in this span of 8 years, where I felt that I cannot go any further and thought of giving it all up. Fortunately, 

God willed it otherwise and today I live to see my dream fulfi lled. It has been a fantastic experience writing 

this book and I hope that you fi nd reading the book equally pleasurable.

Target Readers

The textbook is intended for an introductory level student who is familiar with C/C++ Programming. The 

goal is to cover the basics of the compiler theory rather than being an exhaustive complete reference in the 

subject. The textbook would be ideal for graduate/undergraduate level of students taking an introductory 

course on the compilers. It is particularly well suited for undergraduate students of computer science and  

information technology engineering. This book can also be used by professionals who wish to understand 

the basics of compilers in order to prepare themselves for working on projects based on compilers.

Salient Features

The salient features of the book are

• Simple chapter organisation based on different stages of a compiler

• Easy narrative style of explanation with emphasis on basic principles

• Numerous examples and illustrations clarifying concepts

• Incremental development of a Toy C language compiler 

• References to the behaviour of production compilers

Organisation

The textbook is organised into 7 chapters. The fi rst chapter provides an introduction to compilers. It talks 

about the different utilities that participate in the compilation process. It details the functionality of a 

compiler, describing briefl y each stage of the compilation. This forms the basis for the rest of the book.

The different stages of compilation are described in successive chapters starting from Chapter 2. Lexical 

Analysis, Syntax Analysis, Semantic Analysis, Intermediate Code Generation and Target Code generation 

are the topics for discussions in Chapters 2,3,4,5 and 6 respectively. 

The techniques for optimising the intermediate code and the target code are described in Chapter 7— 

Optimisation.

The approach taken in each of the chapters is to introduce the theory with suitable practical examples. 

Algorithm description is usually followed by an implementation and demonstrated by an example. A 

number of examples use the C language compiler of GNU’s compiler collection (gcc) as a reference to 

illustrate the behaviour of the compilers.

Online Learning Centre

The book needs to be read along with source code for examples that can be downloaded from http://www.

mhhe.com/raghavan/pcd . These examples have been compiled and tested on CYGWIN 1.5 platform on my 

home x86 PC running Win98. I have also checked the examples on LINUX platform. I have used gcc 3.4, 

fl ex 2.5 and bison 2.3 for compiling and testing the examples. An older version of gcc, namely gcc-2.95 

was used in one of the examples of Chapter 1 to illustrate the compilation process. 
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The reader should install CYGWIN 1.5 (or newer) for compiling and checking out the source code of 

examples in the case of PC running Windows. The source code can be compiled and checked on Personal 

Computers running LINUX Operating System. An HTML based documentation for the source code is also 

available as a part of the download. 

Supplements for Instructors: PowerPoint slides, class-test quizzes with answers, chapter-wise references, 

and lab assignments.

Supplements for Students: Chapter-wise tutorials and self-test quizzes with answers. 

The Yahoo Groups at http://in.groups.yahoo.com/group/compilers2009 is a useful place to post any 

issues with regard to the compilation/execution of the source code, specifi c to your Operating System.
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                    VISUAL WALKTHROUGH

Each chapter begins with an 

Introduction that gives a summary 

of the background and the 

organisation of chapter’s contents.

CODE  OPTIMISATION

Introduction
In this chapter, we look at ways of improving the intermediate code 
and the target code in terms of both speed and the amount of memory 
required for execution. This process of improving the intermediate 
and target code is termed as optimisation. Section 7.1 demonstrates 
the fact that there is scope for improving the existing intermediate 
and target code. Section 7.2 discusses the techniques commonly used 
to improve the intermediate code. Section 7.3 describes the common 
methods used in improving the target code generated by the target 
code generator.

7
7.1 SCOPE FOR IMPROVEMENT

The correctness of the generated assembly language code is the most critical aspect of a 

code generator. Also, the effi ciency of the generated assembly language code should match 

closely with the handwritten code, if not be better than it. The code generator that we had 

discussed in Chapter 6 worked on the principle of statement-by-statement translation of the 

TAC code into x86 assembly language instruction. This strategy produces correct code, but 

might not be the most optimal code in terms of effi ciency at the run-time.

Consider the sample input source, the corresponding intermediate code and the target 

code shown in Table 7.1 for understanding the areas of improving the intermediate code 

and the target code. The intermediate code and the target code have been generated using 

the toy compiler described in Chapters 5 and 6.

INTERMEDIATE CODE  GENERATION

Introduction
The front end of a compiler consists of lexical analysis, syntax analysis, 
semantic analysis and intermediate code generation. We have studied 
about lexical analysis, syntax analysis and semantic analysis in the 
previous chapters. In this chapter, we discuss about how to take the 
syntactically and semantically correct input source and generate 
intermediate code from it. The intermediate code is used by the back 
end of the compiler for generating the target code.

We begin the discussion by understanding the common forms of 
intermediate code used in compilers (Section 5.1). In Section 5.2, we 
take up the translation of common programming constructs in high 
level languages like C into intermediate code. We take a subset of the 
‘C’ language as our reference source language and learn about the 
challenges associated with the translation of programming constructs 
like if-else, while, switch-case, etc. into intermediate code. 

5

5.1 INTERMEDIATE FORMS

In this section, we study about the different forms of intermediate code that are commonly 

found in the compilers. Before we get into the details of the various forms of intermediate 

code that the input source can be translated into, let us fi rst see why we need to translate 

the input source into an intermediate form and why not generate the fi nal machine code 

itself.

INTRODUCTION
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7.2 INTERMEDIATE CODE OPTIMISATION

The intermediate code generated by translation scheme described in Chapter 5, is adequate in terms 

of correctness with respect to the input program. We saw in the previous section, that there is scope for 

improving the effi ciency of the generated intermediate code in terms of speed of execution and size in 

memory. In the intermediate code optimisation phase (refer Fig. 1.9), the compiler makes a pass over the 

generated intermediate code and transforms it into an improved (optimised) form, which is more effi cient 

in terms of speed and size. The transformed intermediate code is then fed to the target code generator 

for the generation of the target code. In the discussion in Section 7.2.1, we take a look at some of the 

common transformations made in the intermediate code optimisation phase of the compiler to improve the 

intermediate code.

7.2.1 Common Sub-expression Elimination

Consider the input source and the corresponding intermediate code in TAC format in Table 7.2. The TAC 

was generated from the translation scheme explained in Chapter 5. We call the intermediate code shown in 

Table 7.2 as unoptimised intermediate code to differentiate it from the version of intermediate code after 

optimisation using transformations.

Table 7.2 Input source and the intermediate code

Input Source TAC

int sum_n,sum_n2,sum_n3;

int sum(int n)

{

 sum_n = ((n) *(n + 1))/2;

 sum_n2=((n)*(n + 1)*(2*n + 1))/6;

 sum_n3=(((n)*(n + 1))/2)*(((n)*(n + 1))/2);

}

(0) proc_begin sum

(1) _t0 := n + 1

(2) _t1 := n * _t0

(3) _t2 := _t1 / 2

(4) sum_n := _t2

(5) _t3 := n + 1

(6) _t4 := n * _t3

(7) _t5 := 2 * n

(8) _t6 := _t5 + 1

(9) _t7 := _t4 * _t6

(10) _t8 := _t7 / 6

(11) sum_n2 := _t8

(12) _t9 := n + 1

(13) _t10 := n * _t9

(14) _t11 := _t10 / 2

(15) _t12 := n + 1

(16) _t13 := n * _t12

(17) _t14 := _t13 / 2

(18) _t15 := _t11 * _t14

(19) sum_n3 := _t15

(20) label .L0

(21) proc_end sum

A detailed look at the intermediate code generated in Table 7.2 indicates that the computations made in 

quads (1) through (3), (12) through (14) and (15) through (17) are essentially the same. These chunks of 

intermediate code compute the value of the common sub-expression ((n) *(n + 1))/2, which is used in all 

the three summations. If we look further, the common sub-expression ((n) *(n + 1)) is computed 4 times 

in the statements {1,2 }, {5,6 }, {12,13}, {15,16}. It is possible to optimise the intermediate code to have 

common sub-expressions computed only once in the function and then re-use the computed values at the 

second instance. 
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Table 5.1 Input C-statements and the translated TAC

Input C statement TAC statements Comments

a = b – c + d ; _t1 := b – c

_t2 := _t1 + d

a := _t2 ;

_t1 and _t2 are compiler generated 

temporaries. Note that one C statement 

is transformed into multiple TAC 

statements

p_new = p + ( ( p * n * r ) /100 ) _t1 := p * n

_t2 := _t1 * r

_t3 = _t2 / 100

p_new = p + _t3

_t1,_t2 and _t3 are compiler generated 

temporaries. Note that one C statement 

is transformed into multiple TAC 

statements

The number of allowable operators (like ADD, SUB, etc.) is an important factor in the design of an 

intermediate representation like three address code. One end of the spectrum is a restricted operator set, 

which allows for easy portability to multiple architectures. A restricted feature set would mean that the front 

end would generate a long list of TAC instructions, forcing the optimiser and code generator to do the bulk 

of work. At the other end of the spectrum is a feature rich operator set in the intermediate language that 

allows one to take advantage of an advanced processor, but is diffi cult to port on to low-end processors. The 

usual approach is to have a minimum set of allowable operators in Intermediate language, whose equivalent 

machine language statements would be invariably available on any processor.

The following table shows a complete list of  TAC operators that we would be using in this book.

Table 5.2 TAC operators

# TAC operator Sample TAC instruction
Textual 

representation
Description

1 ASSIGN
ASSIGN y x

x := y x gets assigned the result of 

y op z

2 ADD
ADD y z x

x := y + z x gets assigned the result of y 

added to z

3 MUL
MUL y z x

x =  y * z x gets assigned the result of y 

multiplied by z

4 DIV
DIV y z x

x := y / z x gets assigned the result of y 

divided by z

5 SUB
SUB y z x

x := y – z x gets assigned the result of y 

minus z

6 UMINUS
UMINUS y x

x := – y x gets assigned the value of –y

7 L_INDEX_ASSIGN
L_INDEX_

ASSIGN
y i x

x[i]   := y x[i] denotes the content of a 

location which is i memory 

units away from  the pointer 

contained in x. 

x[i] gets assigned the value of y.

Neatly divided into sections and sub-sections, 

the subject matter can be studied in a logical 

progression of ideas and concepts.

SECTIONS AND SUB-SECTIONS

Tables are provided in each 

chapter to aid in understanding 

of the text material.

TABLES



Dialogs showing the human-computer 

interactions are provided in each 

chapter to help the readers appreciate 

the relevant practical aspects.

DIALOGS
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The regular expression ‘bo*s’ matches any input line where b is followed by zero or more o and then a s 

like say boost, boss, labs.

The regular expression ‘bo+s’ matches any input line where b is followed by one or more o and then a s 

like say boost, boss.

The regular expression ‘bo?s’ matches any input line where b is followed by zero or one o and then a s 

like say boss, labs.

# Matches b followed by zero or any number of o then s

$ egrep -n -e ‘bo*s’ my_input

6:boost

10:boss

11:labs

# Matches b followed by one or any number of o then s

$ egrep -n -e ‘bo+s’ my_input

6:boost

10:boss

# Matches b followed by one or no o then s

$ egrep -n -e ‘bo?s’ my_input

10:boss

11:labs

# Matches b followed by 1 or 2 instances of o followed by s

$ egrep -n -e ‘bo{1,2}s’ my_input

6:boost

10:boss

The regular expression ‘oa|or’ matches any input line where oa or ort exists like say goat, ported.

# Matches oa or ort

$ egrep -n -e ‘oa|ort’ my_input

5:goat

8:ported

The regular expression ‘The regular expression ‘ (oa|os)t’ matches any input line where oa or os 

followed by t exists like say goat, boost.

# Matches oa or os followed by t

$ egrep -n -e ‘(oa|os)t’ my_input

5:goat

6:boost

Having understood the concepts of regular expressions, let’s defi ne the constructs of C language like 

identifi ers, constants, etc. using regular expressions.

The C language keywords are the easiest ones to be described using regular expression. The regular 

expression is same as the keyword. For example, the keyword ‘goto’ is represented by a regular expression 

‘goto’, and ‘switch’ by regular expression ‘switch’, and so on.

A C  identifi er begins with an alphabet or underscore, followed by either an alphabet or underscore or 

digit. A C identifi er is represented by a regular expression ‘[a-zA-Z_]([a-zA-Z_]|[0-9])*’

2 Principles of Compiler Design

1.1 THE BIGGER PICTURE

A compiler works in tandem with a few other utilities like preprocessor, assembler, linker and so on to 

produce binaries that can be executed. In this section we look at the process of generating an executable 

binary from a sample input program written in C and understand how these utilities fi t in.

Let’s start off with a sample C program (ex1.c) and see how we transform it into a binary that can be 

executed. The following dialog shows the sample C program (ex1.c) being transformed into an executable 

using GNU’s compiler collection ( gcc)—a freely available compiler collection.

# A Sample input C file

$ cat -n ex1.c
 1

 2 #define SUCCESS 0

 4 /* The function prototype for printf found in stdio.h */

 5 extern int printf(const char *, ...);

 6

 7 int main()

 8 {

 9  printf(“Hello World\n”);

 10

  /* returning 0 to the Operating system */

 12  return(SUCCESS);

 13 }

# Creating an executable from sample input file using the GNU C compiler system

$ gcc -Wall ex1.c -o ex1

# Invoking the executable

$ ./ex1
Hello World

From the above dialog, we can understand that the GNU compiler collection (gcc) binary is invoked 

with the input C source fi le as the argument for compilation. This outputs an executable ex1, which can be 

invoked on the command line to get the desired effect. The above dialog abstracts us from a lot of behind-

the-scene activity that is involved in conversion of the input C fi le into executable. 

Let’s try out the compilation of the same C program (ex1.c), this time with extra options to ‘gcc’ in 

order to know all the utilities that get involved in the transformation of ex1.c to an executable binary. The 

following dialog shows the compilation of ex1.c with gcc using the extra options for getting a detailed 

account of the compilation.

# Compiling with verbose option and preserving the intermediate files

$ gcc --save-temps --verbose ex1.c -o ex1

Reading specs from /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/specs

gcc version 2.95.3-5 (cygwin special)

/usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/cpp0.exe -lang-c -v -D__GNUC__=2 -D__GNUC_MINOR__=95 -

D_X86_=1 -D_X86_=1 -Asystem(winnt) -Acpu(i386) -Amachine(i386) -Di386 -D__i386 -D__i386__ -Di686 -

Dpentiumpro -D__i686 -D__i686__ -D__pentiumpro -D__pentiumpro__ -

D__stdcall=__attribute__((__stdcall_)) -D__cdecl=__attribute__((__cdecl__)) -

D_stdcall=__attribute__((__stdcall__)) -D_cdecl=__attribute__((__cdecl__)) -

D__declspec(x)=__attribute__((x)) -D__CYGWIN32__ -D__CYGWIN__ -Dunix -D__unix__ -D__unix -isystem/

usr/local/include -idirafter /usr/include -idirafter /usr/include/w32api ex1.c ex1.i
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5.2.6 Example 3—Pointers and Address Operators

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate 

code for statements involving ‘*’ and ‘&’ operators using the productions and semantic actions described 

in the preceding section. The icgen program implements the translation scheme using bottom up translation 

method. The program takes as input, a sample C input source with some statements using ‘*’ and ‘&’ 

operators. The output of ‘icgen’ is the intermediate code in TAC format generated from the input C source. 

The dialog below shows the icgen program taking in some sample input C sources, and printing out their 

intermediate code in TAC format. 

# Generating the Parser from Grammar Specifications

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyser from Lexical Specifications

$ flex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyser 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building icgen Binary 

$ g++  -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen 

# This is an input source file

$ cat -n test3.c 
    1 int *p;

    2 int x;

    3 

    4 /* Function */

    5 int main()

    6 {

    7  /* Move 10 into x */

    8  p=&x;

    9  *p=10;

   10 }

# Generating IC for statements with pointer and Address operators 

$ ./icgen test3.c 
(0) proc_begin main

(1) _t0 := &x

(2) p := _t0

(3) p[0] := 10

(4) label .L0

(5) proc_end main

# Input source file

$ cat -n test3a.c 
    1 int *p;

    2 int x,y;

    3 

    4 /* Function */

    5 int main()
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17           }

18        }

19     }

20

21     return(FAILURE);

22  }

Listing 4.2 Code derived from production 10 and 11

In line 8 of Listing 4.2, we derived the value of synthesised attribute—lexeme of the terminal 

CONSTANT from the lexical Analyser and stored it in the variable CONSTANT_lexeme declared for the 

attribute CONSTANT.lexeme. The Line 10 makes a call to function match, which matches the token and 

advances the input.

4.1.3.5 Example 2—Top-Down Translation This section demonstrates an example program that 

evaluates semantic actions during the top-down parsing using the theory described in the preceding section. 

The example implements the translation scheme presented in Table 4.13 to build a desktop calculator. 

The program shows the usage of the guidelines provided in the preceding section to construct a top-down 

translator for L-attributed defi nitions. The program takes as input an expression involving constants. The 

output of the example is the evaluated result of the input expression, similar to the desktop calculator. The 

dialog below shows the example program taking in expressions involving constants, and printing out the 

result of the expression.

# Generating the Lexical Analyzer from lexical Specifications

$ flex -otop_down_lex.cc top_down_lex.l

# Compiling the Lexical Analyzer

$ g++ -g -Wall -c -o top_down_lex.o top_down_lex.cc

top_down_lex.cc:1040: warning: ‘void yyunput(int, char*)’ defined but not used

# Building ex2 Binary

$ g++ -g -Wall ex2.cc top_down.cc top_down_lex.o -o ex2

# Executing it for a sample Expression

$ ./ex2 ‘9+15-20’

result=4

SYNTAX CORRECT

# Another sample Expression

$ ./ex2 ‘3*21 - (4*5)’

result=43

SYNTAX CORRECT

# Another sample Expression

$ ./ex2 ‘(9*53)/(7-4)’

result=159

SYNTAX CORRECT

# syntax Error in Expression

$ ./ex2 ‘9*53)/(7-4)’
SYNTAX INCORRECT

xvi Visual Walkthrough
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Table 4.10 Translation scheme for C-declarations compatible with ‘yacc’/ ‘bison’

# Production

1 declaration_list : declaration_list  declaration

2 |   declaration

3 declaration : type_spec { saved_identifi er_list_type = $1 } identifi er_list ‘ ; ’

4 type_spec : INT {  type_spec.data_type = INT }

5 | CHAR {  type_spec.data_type = CHAR }

6 | FLOAT {  type_spec.data_type = FLOAT }

7 identifi er_list : identifi er_list ‘,’ IDENTIFIER { insert(IDENTIFIER.place, saved_identifi er_list_type) }

8 identifi er_list : IDENTIFIER {  insert (IDENTIFIER.place, saved_identifi er_list_type) }

4.1.3.3 Example 1—Bottom-Up Translation This section demonstrates an example program 

that evaluates semantic actions during the bottom-up parsing using the theory described in the preceding 

section. The example implements the translation scheme presented in Table 4.10. The program shows the 

usage of the VAL stack and the special $ variables in LR parser generators like bison to help the evaluation 

of semantic rules. The program takes as input, a sample C program with some declarations of variables 

using the basic data types like ‘int’, ‘char’ and ‘fl oat’. The output of the example is symbol table entries 

generated from the processing of the declarations in the input C program. The dialog below shows the 

example program taking in C programs, and printing out the symbol table entry details.

# Generating the Parser from Grammar Specifications

$ bison -d -y -v -oc_decl_gram.cc c_decl_gram.y

# Compiling the Parser

$ g++ -g -Wall -c -o c_decl_gram.o c_decl_gram.cc

# Generating the Lexical Analyzer from Lexical Specifications

$ flex -oc_decl_lex.cc c_decl_lex.l

# Compiling the Lexical Analyzer 

$ g++ -g -Wall -c -o c_decl_lex.o c_decl_lex.cc

# Building ex1 Binary

$ g++ -g -Wall c_decl_gram.o c_decl_lex.o -o ex1

# This is a sample input source file

$ cat -n test1.c

 1 int a,b,c;

 2 float d,e,f;

 3 char i,j,k;

# Parsing and displaying Symbol table information for the declarations

$ ./ex1 test1.c

Identifier name=a type=INT

Identifier name=b type=INT

Identifier name=c type=INT
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6.3.6.1 Call by Value In the  call by value parameter-passing mechanism, the arguments are evaluated 

at the time of call and they become the values of formal parameters throughout the function. For example, 

consider the PASCAL program shown in Listing 6.12 in which we use the call by value parameter-passing 

mechanism for calling the function ‘my_func’ at line number 24. At the time of call, i.e. line 24, the 

arguments ‘p1’ and ‘p2’ are evaluated, which would yield 4 and 30 in this case. These evaluated values, 

become the values of the formal arguments ‘f1’ and ‘f2’ during the execution of the function ‘my_func’. 

In call by value method, the changes made to the formal parameters are not refl ected in the actual 

arguments at the caller site. In the Listing 6.12, we modify the formal parameters ‘f1’ to 100 and ‘f2’ to 120 

at the lines 12 and 13 respectively, but when we print the actual parameters ‘p1’ and ‘p2’ at line 26 after the 

call to the function ‘my_func’, the modifi ed values are not refl ected. The actual arguments ‘p1’ and ‘p2’ 

continue to have original values, i.e. 4 and 30 even after the call to the function ‘my_func’.

 1 PROGRAM sample(input,output);

 2 VAR p1,p2,p3 : integer;

 3

 4  FUNCTION my_func(f1,f2:integer): integer;

 5  BEGIN

 6   if (f1 > f2 ) 

 7   then 

 8    my_func := f1

 9   else 

10    my_func := f2;

11

12   f1 := 100 ;{ Changing the Value of Formal Parameter }

13   f2 := 120 ;{ Changing the Value of Formal Parameter }

14

15  END;

16

17 BEGIN

18

19  p1 := 4;

20  p2 := 30;

21

22  writeln(‘Before the function call p1=’,p1,’ p2=’,p2);

23

24  p3 := my_func(p1,p2);

25

26  writeln(‘After the function call p1=’,p1,’ p2=’,p2);

27

28 END.

Listing 6.12 ex7.pas

The dialog below shows the compilation and execution of the Pascal program shown in Listing 6.12 that 

uses the call-by-value mechanism for parameter-passing. The x86 assembly language output for the same 

program generated by the Pascal compiler—gpc is also seen in the dialog. We will use that to understand 

the details of implementing the call by value mechanism from a target code generator standpoint. Observing 

the execution of the program establishes the fact that any changes made to the parameters in a call-by-value 

method does not have any effect in the actual arguments at the caller site.
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47  if (argc != 2) {

48   printf (“Usage: %s ‘C statement’ \n”, argv[0]);

49   return (1);

50  }

51

52  strcpy (input_str, argv[1]);

53

54  ret = yyparse ();

55

56  if (ret == 0) {

57   printf (“%s”, input_str);

58   printf (“\nSYNTAX CORRECT \n”);

59  } else {

60   printf (“SYNTAX INCORRECT \n”);

61  }

62

63  return (0);

64 }

Listing 3.1 c-stmt-gram.y

A grammar-specifi cation fi le like the one illustrated in Listing 3.1 can be broadly divided into 3 parts.

Declarations

%%

Production Rules

%%

Auxiliary Functions

The declarations section consists of declarations of all the non-terminals (tokens) used in the grammar. 

This is illustrated in line 1 of Listing 3.1. The declarations section also contains the declaration of the start 

symbol that we discussed in Section 3.2. This is illustrated in line 2 of Listing 3.1, where we declare that 

the start symbol is c_statement. The declarations section can also contain a literal block of C code enclosed 

in {% and %} lines, exactly the way it is in the lexical specifi cation fi le. This is illustrated from line 3 to 11 

of Listing 3.1.

The production rules section consists of a list of grammar rules each separated by a semicolon (;). A 

colon (:) separates the left-hand and the right-hand sides of the productions. In the rules section, the fi rst 

rule (line 15) defi nes the c statement. This is the production 1 of Table 3.1. The rules for c expression are 

mentioned next. These are the productions 2, 3, 4 of Table 3.1.

The auxiliary functions section consists C code that is copied verbatim into the generated code for 

parser. In the auxiliary section, we typically defi ne yyerror( ) function that is responsible for printing where 

the syntax error is found in case of erroneous input. This is shown from lines 33 to 40 in Listing 3.1. The 

auxiliary functions section also defi nes the main(), which in turn invokes the parsing routine yyparse( ) 

at line 54. The return value of yyparse( ) determines whether the given input is syntactically correct or 

otherwise. This is illustrated by line 56 in Listing 3.1.

  Code Optimisation 499

From the data fl ow equation e_

OUT[B] = e_GEN[B] U (e_IN[B] 

– e_KILL[B]), we have

e_OUT[B5] = {p + b, q – b} U 

({{ø} – {ø})

e_OUT[B5] = {p + b, q – b} U 

({ø})

e_OUT[B5] = {p + b, q – b}

Table 7.52 The values of e_IN and e_OUT for iteration 1 and 2

Block # Iteration 1 Iteration 2

e_IN e_OUT e_IN e_OUT

0 {ø} {p + b, q – b} {ø} {p + b, q – b}

1 {q – b} {q – b} {q – b} {q – b}

2 {q – b} {q – b} {q – b} {q – b}

3 {q – b} {q – b} {q – b} {q – b}

4 {q – b} {p + b, q – b} {q – b} {p + b, q – b}

5 {p + b, q – b} {p + b, q – b} {p + b, q – b} {p + b, q – b}

Algorithm 7.4 summarises the computation of available expression (e_IN/e_OUT) using the iterative 

approach of solving data fl ow equations that we discussed above.

e_IN[B0] = ø

out[B0] = e_GEN[B0]

/* Initialize e_OUT for all blocks */

for every block B except the initial block B0 {

 e_OUT[B] = L – e_KILL[B]

}

steady_state=FALSE

while (steady_state== FALSE) {

 steady_state=TRUE

 for every block B except the initial block B0 {

  /* e_IN */

  e_IN[B] = « e_OUT[P] for all the predecessors P of the block

  /* saving e_OUT to later check if we have reached steady state */

  saved_e_OUT=e_OUT[B]

  /* computing e_OUT */

  e_OUT[B] = e_GEN[B] » (e_IN[B] – e_KILL[B])

  /* Checking for a steady state of e_OUT */

  if (saved_e_OUT ! = e_OUT[B]){

     steady_state = FALSE

  }

 }

}

Algorithm 7.4 Available expressions computation using the iterative approach
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system-wide start up object fi le (crt0.o) and makes an executable. The linker also links the ex1.o fi le with 

other system-wide libraries, including the C library containing the function defi nitions for printf, scanf, etc. 

The libraries that are used by the linker are the ones given by –l option during the invocation of linker. The 

output of the linker is an executable (ex1.exe) that can be invoked on the command line. The dialog below 

shows us that the fi nal executable ex1.exe is a MS Windows binary for Intel 80386, which can be invoked 

on the console.

# The properties of the executable ex1.exe

$ file ex1.exe

ex1.exe: MS Windows PE Intel 80386 console executable not relocatable

The whole process of transforming an input C source fi le into an executable binary is summarised

in Fig. 1.1.

Fig. 1.1 Transforming an input C-source fi le into an executable

Even though Fig. 1.1 shows the transformation of an input source fi le written in C language into an 

executable form, the steps are similar for other compiled languages also. 

1.2 THE COMPILER

The main focus of the book is to understand the details of working of a compiler, i.e. the step2 of Fig. 1.1. 

The compiler takes the pre-processed fi le as the input and translates it into an equivalent assembly language 

fi le. In this section, we will get an overview of how a compiler translates a pre-processed input fi le into an 

assembly language fi le.

The translation of the input source (pre-processed fi le) into target assembly language fi le can be divided 

into two stages called as  front end (or  analysis) and  back end (or  synthesis).

The front end of the compiler transforms the input source into intermediate code. The intermediate code 

(sometimes called intermediate representation—IR) is a machine-independent representation of the input 

source program.
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Consider a monolithic compiler for C language that generates machine instructions directly from 

the input source for an 80¥86 processor system. Let’s say it needs to be modifi ed to generate machine 

instructions for SPARC processor system. The effort involved in modifying the 80¥86-based compiler for 

re-targeting to SPARC platform is high. It requires the intricate knowledge of the machine instructions of 

both the 80¥86 system as well as SPARC System. Also, the translation to fi nal machine code from the input 

source language makes the generation of optimal code diffi cult because it would not have the context of the 

entire program.

Consider another compiler that is broken into modular elements called as front end and the back end, as 

explained in Chapter 1. The re-targeting of such a compiler from 80¥86 to SPARC system is illustrated in 

Fig. 5.1. The front end of the compiler for a source language remains same irrespective of the machine code 

generated. The output of the front end of the compiler is an intermediate form that does not depend on the 

specifi cs of the processor. The back end of the compiler converts the intermediate code into the respective 

machine instructions as required. This approach allows the re-use of a large portion of the compiler without 

modifi cation during the re-targeting to a different processor. 

Fig. 5.1 Retargeting of a compiler

Some of the advantages in this approach of breaking up the compiler into front end and back end are:

 1. It is easy to re-target the compiler to generate code for newer and different processors. As seen in 

the discussion previously, the re-targeting of the compiler could be highly effort intensive but for the 

presence of intermediate code.

 2. The compiler can be easily extended to support an additional input source language by adding the 

required front end and retaining the same back end.

 3. It facilitates machine independent code optimisation. The intermediate code generated by the front 

end can be optimised by using several specialised techniques. This optimisation is different from the 

target code optimisation that can be done during the code generation for the actual processor by the 

back end system.

Most of the modern compilers take this approach of partitioning the job of the compiler into front end 

and back end. 
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15   c :=40;

16   writeln(‘Value of c is ‘,c); (* c is 40 here *)

17   P2();

18   writeln(‘Value of c is ‘,c); (* c is 25 here *)

19  END;

20 BEGIN

21  P1();

22 END.

23

24

Listing 6.8 A Pascal program with nested procedures

Programming languages like LISP and APL allow variables to be bound to a storage depending on the 

current activations. In these cases the variable can be resolved to the appropriate declaration only at the 

run-time depending on the current activations. In order to implement such dynamic scoping, it is necessary 

to keep track of the chain of the current activations. The optional  control link in an activation record helps 

in maintaining a track of the current activations and implementing dynamic scope. Following the control 

link of the current activation record, we can make a chain of all the functions that are currently active. This 

helps in implementing the dynamic scope. 

The activation record contains a fi eld for storing the return value of a function. The callee stores the 

return value in this fi eld before returning the control to the caller. The caller copies it from this fi eld into 

the appropriate variable as defi ned in the source program. In practice, many of the compilers, have the 

return value and the arguments passed in registers, whenever feasible rather than having them as a part of 

activation record. The register access is faster than memory access and hence passing the return values and 

arguments in registers is more effi cient.

Activation records are allocated space in the stack Area in C run-time environment. The Old 

FORTRAN77 compilers used the static area for housing the activation records. The run-time environments 

for functional languages like LISP allocate space for activation records on the heap. 

6.3.4.1 Activation Record in C Run-time Environment In C runtime environment, the activation 

records are allocated storage space on the stack. When a procedure is called, a new activation record is 

pushed on to the stack. When the procedure is complete, the activation record is popped-out of the stack. 

The top of the stack is usually pointed to by a 

register called SP (stack pointer). An activation 

record can be allocated by moving SP with an 

amount equal to the size of activation record. 

The activation record is de-allocated by moving 

the SP back by an amount equal to the size of 

activation record. For example, consider the 

activation of a function ‘my_func()’ having an 

activation record of size, say, 40 bytes. The SP 

is moved (decremented in this case) by 40 bytes 

to allocate an activation record for my_func(). 

The SP is moved back (incremented by 40) to 

de-allocate the activation record for my_func() 

after the execution of my_func() is complete. 

Figure 6.16 shows the run-time stack, before, 

during and after the activation of my_func().

Fig. 6.16 Allocating and de-allocating space for
activation records
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analysis is the last phase in which we reject incorrect input programs and fl ash error 
messages for the user to correct them.

The following dialog examines a few C programs, which have some semantic errors 
and shows us how the GNU C compiler detects and reports them. These examples 
give us a feel of what kinds of errors are detected in semantic analysis. Observe that 
all of these programs are syntactically correct, but have semantic errors.

# A C Program using an undeclared variable

$ cat -n sem_err1.c

1

2 int main()

3 {

4  int a,b;

5

6  a=1;

7  b=2;

8  c=3; /* Use of undeclared variable */

9

10  a = b + c;

11

12  return(a);

13

14 }

# The Compiler detects it and reports the error

$ gcc -Wall sem_err1.c -o sem_err1

sem_err1.c: In function `main’:

sem_err1.c:8: error: `c’ undeclared (first use in this function)

sem_err1.c:8: error: (Each undeclared identifier is reported only once

sem_err1.c:8: error: for each function it appears in.)

# A C Program Assigning a float to char pointer

$ cat -n sem_err2.c

    1 

    2 int main()

    3 {

    4  char *a;

    5 

    6  float b,c;

    7 

    8  b = 30.45;

    9  c = 40.36;

   10 

   11  a = b + c; /* Assigning a float to char pointer */

   12 

   13  return(0);

   14 

   15 }
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Dialogs exemplifying the behaviour of a 

production compiler suite (gcc) have been 

provided in the pertinent sections of the 

textbook.
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Comments and white space (like tab, blank, new line) do not infl uence code generation. 
The lexical analyser strips out the comments and white space in the source program. 
For example, in Fig. 2.1, the lexical analyser stripped out the white space (line 5), 
comment (line 6) of the input C program and did not return them as tokens.

The part of the input stream that qualifi es for a certain type of token is called as 
 lexeme. For example, in line 4 of the input the letters ‘int’ qualifi es for a keyword in C 
language. ‘int’ is called as lexeme in this case. The other lexemes shown in Fig. 2.1 are 
‘main’ (token type is identifi er), ‘for’ (token type is keyword), etc.

The lexical analyser keeps track of the new line characters, so that it can output the 
line number with associated error messages, in case of errors in the input source 
program. This is extremely useful for the programmer to correct syntax errors. 
For example, consider the C program shown in the dialog below in which the line 5 
does not end with a semicolon (;). On trying to compile it using GNU C compiler, the 
following output was observed:

# An input C program. A semicolon (;) is missing in Line 5

$ cat -n test1.c

1 #include <stdio.h>

2

3  int main()

4  {

5   printf (“Hello World \n”)

6   return(0);

7  }

# Compiling the C program

$ gcc test1.c -o test1

test1.c: In function ‘main’:

test1.c:6: error: parse error before “return”

The error message in the dialog indicates that a parse error was encountered on line 
6, before the token ‘return’. This message indicating the line number was possible 
because the lexical analyser kept a count of the number of new lines that it has 
encountered till that point of the source program.

The lexical analyser in conjunction with the parser is responsible for creating  symbol 

table, a data structure containing information that is used in various stages of the 
compiler. The symbol table consists of entries describing various identifi ers used in 
the source program. Typically, each entry in the symbol table consists of the lexeme 
of the identifi er and all the attributes associated with it. While some of the attributes 
pertaining to an entry are fi lled in at lexical analyser/parser level, the other attributes 
in the entry would be progressively fi lled by subsequent stages of compilation. As an 
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 7

 8  var1 = 0;

 9  var2 = 10;

 10

 11  printf(“This is message 1 “)

 12

 13  var1 = var2 ;

 14

 15  for( i = var1; i < var2; i++){

 16   printf(“This is iteration %d “,i);

 17  }

 18 }

The input C source program test1.c has two errors. (1) There is a missing semicolon in line 11 and (2) 

the variable ‘i’ used in line 15 has not been declared earlier.

The dialog below shows how the GNU’s C compiler ‘gcc’ parses the above program.

$ gcc test1.c -o test1

test1.c: In function ‘main’:

test1.c:13: parse error before ‘var1’

test1.c:15: ‘i’ undeclared (first use in this function)

test1.c:15: (Each undeclared identifier is reported only once

test1.c:15: for each function it appears in.)

The parser in gcc has reported the error in line 13 before the variable ‘var1’, which is nothing but the end 

of line 11. This is indicative of missing semicolon in line 11. Note that the parser of gcc did not stop there, 

it continued parsing the subsequent lines of input source program and identifi ed an error in line number 

15. The parser in gcc has performed error recovery from earlier error in line 13 and continued parsing. 

The error reporting on line number 15 clearly says that ‘i’ is not declared. Note that, the parser was smart 

enough to report the non-declaration of ‘i’ once, despite being used more than once.

The above example demonstrates the error reporting and error recovery features of a parser.

The main considerations in error reporting are:

∑ The error handler should report the place in the input source program, where the error has occurred. 

The offending line number should be emitted for the programmer to correct the mistake.

∑ The diagnostic message emitted out by the error handler module of the parser should give out enough 

information to help the programmer correct the mistake in the input source program.

The job of error recovery for the error handler is trickier. The following are some of the considerations 

in error recovery:

∑ The error recovery should not be partial where spurious errors not made by the programmer are 

falsely identifi ed as errors and displayed.

∑ The error recovery should also be cautious not to get into a bind when a totally unexpected input is 

given.

∑ The compiler designer needs to decide if error repair feature should be incorporated in the error 

handler. Usually error repair is not very cost-effective except in situations where the input source 

program is from beginners to programming.

There are several  error-recovery strategies that can normally be applied in the error handler of a parser. 

They are:
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5.2.16 Example 8—Translation of Procedure Calls

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate 

code for statements involving procedure calls using the productions and semantic actions described in 

the preceding section. The icgen program implements the translation scheme using bottom-up translation 

method. The program takes as input, a sample C input source with statements involving procedure calls. 

The output of ‘icgen’ is the intermediate code in TAC format generated from the input C source. The dialog 

below shows the icgen program taking in some sample input C sources, and printing out their intermediate 

code in TAC format. 

# Generating the Parser from Grammar Specifications

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyser from Lexical Specifications

$ flex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyser 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building icgen Binary 

$ g++  -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen 

# Input file

$ cat -n test8.c 
 1 int z;

 2

 3 int add_func(int a,int b)

 4 {

 5  int c;

 6

 7  c = a + b;

 8

 9  return(c); 

 10 }

 11

 12 int main()

 13 {

 14  int v1,v2,v3,v4;

 15

 16  v1=10;

 17  v2=20;

 18

 19  v3=add_func(v1,v2);

 20

 21  z=v3+5;

 22 }

 23
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5.2.14 Example 7—Translation of Switch-case Statements

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate 

code for switch-case statements using the productions and semantic actions described in the preceding 

section. The icgen program implements the translation scheme using bottom-up translation method. The 

program takes as input, a sample C input source with some switch-case statements. The output of ‘icgen’ 

is the intermediate code in TAC format generated from processing the input C source. The dialog below 

shows the icgen program taking in some sample input C sources, and printing out their intermediate code in 

TAC format.

# Generating the Parser from Grammar Specifications

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyser from Lexical Specifications

$ flex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyser 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building icgen Binary

$ g++  -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen 

# Input file

$ cat -n test7.c 
 1 int z;

 2

 3 int

 4 func (int sel_exp, int a, int b)

 5 {

 6

 7  switch (sel_exp)

 8  {

 9   case 5:

 10    z = a + b;

 11    break;

 12   default:

 13    z = a - b;

 14    break;

 15  }

 16  z = z * b;

 17 }

# Generating IC 

$ ./icgen test7.c 
 (0) proc_begin func

 (1) goto .L2

 (2) label .L0

 (3) _t0 := a + b

 (4) z := _t0

A Toy C Language compiler is built 

progressively chapter by chapter using the 

concepts explained in each chapter.

A TOY C COMPILER IMPLEMENTATION
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In the cases of programs containing multiple dead stores, repeated application of the above mentioned 

criteria in the DAG and removal of DAG nodes, eliminates all of the dead stores in the basic block. 

To summarise, the process of making the DAG, revising it, and the subsequent regeneration of the 

optimised quads from the DAG helps in making the following optimising transformations within a basic 

block (a) common sub-expression elimination (b) copy propagation (c) removal of redundant assignments 

(d) constant folding and (e) dead store elimination.

7.2.9.8 Example 2—Local Optimisation using DAG This section demonstrates the toy C compiler 

(mycc) performing local optimisation of intermediate code by making the transformations like common 

sub-expression elimination, copy propagation, etc. The toy C compiler ‘mycc’ performs local optimisation 

by (a) constructing the DAG from the un-optimised TAC (Algorithm 7.2) and (b) regenerating the optimised 

quads from the DAG (Algorithm 7.3) as described in the preceding section. 

The toy C compiler takes as input, a sample C input source and gives out (a) unoptimised TAC and 

(b) the locally optimised TAC. The dialog below shows ‘mycc’ taking in some sample input C sources, 

printing out unoptimised and locally optimised intermediate code in TAC format.

# Generating the Parser from Grammar Specifications

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyzer from Lexical Specifications

$ flex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyzer 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building ‘mycc’ - A Toy Compiler for C Language 

$ g++ -DCHAP7_EX2  -DICGEN -g -Wall ic_gen.cc optimise.cc target_code gen.cc mycc.cc 
semantic_analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe 

# Common Sub-Expression Elimination Transformation 

$ cat -n test2a.c 
 1 /*

 2  Common Sub-expression

 3 */

 4 int a,b,c,d,e,f,g;

 5

 6 void func()

 7 {

 8

 9  int i,x;

 10

 11  a  = (b  + c)*d ;

 12  e  =  f * a ;

 13  f  = (b + c)*e;

 14  g  = d / (b + c);

 15

 16 }

$ ./mycc -i -O local -v test2a.c 
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following chapters, we would also familiarise ourselves with tools that would help perform the tasks in that 

phase easily. The examples in the chapters would illustrate the principles discussed therein.

A toy C compiler (mycc) is developed incrementally by adding the corresponding module as we 

progress chapter by chapter in this book. We demonstrate the capabilities of the respective module in our 

toy C compiler as we progress chapterwise. For example, the toy C compiler’s semantic analyser module 

is demonstrated in Chapter 4—Semantic Analysis, the intermediate code generator module in Chapter 5—

Intermediate Code Generation, and so on.

    SUMMARY

A compiler is a software utility that translates code written in higher language like C or C++ into target 

language. The target language is usually a low-level language like assembly language or machine 

language. The job of the compiler can be split into two distinct stages, namely the front end and the 

back end. The front end is responsible for translating the input source for compilation into a form 

known as the Intermediate code, which is independent of the target processor architecture. The back 

end converts the Intermediate code into the assembly language or the machine language of the target 

processor. The front end and the back end can be logically divided into phases, where each phase 

has a specifi c task to accomplish. The front end can be divided into lexical analysis, syntax analysis, 

semantic analysis, intermediate code generation and intermediate code optimisation phases. The back 

end can be split into target code generation and target code optimisation phases. We shall study about 

each of the phases in detail in the forthcoming chapters. A compiler can be termed as a multi-pass or 

a single-pass compiler depending on the number of times it reads the equivalent of the entire input 

source in the form of tokens or parse tree or Intermediate code and likewise. The main data structures 

involved in a compiler implementation are symbol table, literal table and optionally, a parse tree.

    REVIEW QUESTIONS AND EXERCISES

 1.1 What is a compiler? What is its primary function? What are its secondary functions?

 1.2 What are the other utilities that a compiler interacts with? Describe their functions.

 1.3 What is a front end and back end of a compiler? What are the advantages of breaking up the 

compiler functionality into these two distinct stages?

 1.4 What are the different phases in a compiler? Explain each one of them.

 1.5 What is the difference between syntax analysis and semantic analysis? Give an example each for 

an error found by the compiler during syntax analysis and semantic analysis.

 1.6 What is a ‘pass’ in a compiler? Differentiate between a multiple pass compiler and a single pass 

compiler.

 1.7 Describe the common data structures used by a compiler.

 1.8 Write a simple ‘C’ language ‘Hello World’ program and compile it with the ‘gcc’ compiler to 

generate an executable program. Invoke the ‘gcc’ compiler in verbose mode (–v) to identify all 

the utilities that are used during the compilation process.
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     REVIEW QUESTIONS AND EXERCISES

 5.1 A compiler can choose one of the two options (a) Translate the input source into intermediate 

code and then convert it to fi nal machine code; (b) Directly generate the fi nal machine code from 

the input source. What is the preferred option and why? 

 5.2 Describe the three address code form of the intermediate code. List out some of operators used in 

three address code with examples. 

 5.3 How can three address code be implemented in a compiler? Describe triples and indirect triples 

method of implementing TAC with examples. 

 5.4 Compare the different methods of implementing three address code. 

 5.5 How is an abstract syntax tree different from a parse tree? List out some of the nodes in the AST 

for a C compiler? 

 5.6 Translate a C statement ‘a = b + c – (4*a*b + 3*c);’ into TAC. How are the binary operators like 

+, –, etc., handled during the translation? 

 5.7 Translate an array reference statement ‘a = b[c];’ into TAC. What are the main TAC operators 

used during the translation? What attributes of a unary expression are used in translation of array 

references? 

 5.8 How is the offset calculated for a multidimensional array reference? Derive the formula. 

 5.9 Translate the C statements ‘p=& arr[3]; *p=10;’ into TAC. What TAC operators are useful during 

the translation of pointer accesses? 

 5.10 Translate the C statement ‘x.age = 30;’ into TAC. Assume that the fi eld ‘age’ is at an offset of 

20 bytes from the base of the structure. What are the common TAC operators used during the 

translation of ‘struct’ references using the dot operator? 

 5.11 Translate the C statement ‘ptrÆage=20;’. Assume that the fi eld ‘age’ is at an offset of 20 bytes 

from the base of the structure. What are the common TAC operators used during the translation 

of ‘struct’ references using the arrow operator? 

 5.12 Translate the C statement ‘if (a<b){x=y;} m=20;’ into TAC. In a single pass compiler, how is the 

translation of Boolean test expression (a < b) performed? How does it know about the labels to 

jump on being true or false? 

 5.13 Describe the backpatching technique. How is it used in the translation of an input C statement ‘if 

((a < b) || (c < d)) {m = 20;} else {m = 10;} p = m;’? 

 5.14 What are the data structures used during the translation of a ‘while’ statement? Illustrate the 

usage of those data structures during the translation of a C statement ‘while (i < b){val = val *i; 

i = i + 1;} m = val;’?

 5.15 How is a switch-case statement translated into TAC? Illustrate with an example. 

 5.16 What are the calling and returning sequences? List out the TAC instructions generated during 

both of these sequences by taking a sample C code snippet. 

 5.17 What is the sequence of events in the called function during a procedure call? Illustrate with an 

example. 

 5.18 How is a call to a procedure translated into TAC? Illustrate with an example. 

 5.19 State if the following statements are true or false:

  (a) The separation of a compiler into front end and back end is helpful in retargeting  of the 

compiler.

  (b) The separation of a compiler into front end and back end helps in adding support for a new 

Each chapter material is accompanied 

by a summary section that gives the 

reader a quick glimpse of what has been 

learnt in the chapter broadly.

SUMMARY





COMPILERS AN  INTRODUCTION

Introduction
A  compiler is a software utility that translates code written in 

higher language like C or C++ into target language. The target 

language is usually a low-level language like assembly language or 

machine language. The translation from higher language to low-

level language is the primary job of the compiler. However, there 

are other important secondary functions that the compilers provide 

for helping the programmers develop software. Compilers provide 

for reporting errors and warnings in the input higher-language 

source to help the programmer in correcting them. Compilers allow 

options to help debug the execution of the executable program 

generated by it. Compilers off er options to generate extra ‘profi ling 

code’ to report the statistics on the time taken by specifi c functions 

in the input source at the run time. Today’s compilers off er many 

other programmer-friendly features that help us develop software 

quickly and correctly, meeting all the specifi ed requirements.

In this chapter, we study the process of transforming code 

written in a higher language like C into an executable form. We 

get an overview of how a compiler translates code written in a 

higher level language like C or C++ into target language. The later 

chapters develop on the ideas presented here to give a detailed 

understanding of the compiler.

1
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1.1 THE BIGGER PICTURE

A compiler works in tandem with a few other utilities like preprocessor, assembler, linker and so on to 

produce binaries that can be executed. In this section we look at the process of generating an executable 

binary from a sample input program written in C and understand how these utilities fi t in.

Let’s start off with a sample C program (ex1.c) and see how we transform it into a binary that can be 

executed. The following dialog shows the sample C program (ex1.c) being transformed into an executable 

using GNU’s compiler collection ( gcc)—a freely available compiler collection.

# A Sample input C f le
$ cat -n ex1.c

 1
 2 #def ne SUCCESS 0
 3
 4 /* The function prototype for printf found in stdio.h */
 5 extern int printf(const char *, ...);
 6
 7 int main()
 8 {
 9  printf(“Hello World\n”);
 10
 11  /* returning 0 to the Operating system */
 12  return(SUCCESS);
 13 }

# Creating an executable from sample input f le using the GNU C compiler system
$ gcc -Wall ex1.c -o ex1

# Invoking the executable

$ ./ex1

Hello World

From the above dialog, we can understand that the GNU compiler collection (gcc) binary is invoked 

with the input C source fi le as the argument for compilation. This outputs an executable ex1, which can be 

invoked on the command line to get the desired effect. The above dialog abstracts us from a lot of behind-

the-scene activity that is involved in conversion of the input C fi le into executable. 

Let’s try out the compilation of the same C program (ex1.c), this time with extra options to ‘gcc’ in 

order to know all the utilities that get involved in the transformation of ex1.c to an executable binary. The 

following dialog shows the compilation of ex1.c with gcc using the extra options for getting a detailed 

account of the compilation.

# Compiling with verbose option and preserving the intermediate f les

$ gcc --save-temps --verbose ex1.c -o ex1

Reading specs from /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/specs

gcc version 2.95.3-5 (cygwin special)

 /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/cpp0.exe -lang-c -v -D__GNUC__=2 -D__GNUC_MINOR__=95 -

D_X86_=1 -D_X86_=1 -Asystem(winnt) -Acpu(i386) -Amachine(i386) -Di386 -D__i386 -D__i386__ -Di686 -

Dpentiumpro -D__i686 -D__i686__ -D__pentiumpro -D__pentiumpro__ -

D__stdcall=__attribute__((__stdcall_)) -D__cdecl=__attribute__((__cdecl__)) -

D_stdcall=__attribute__((__stdcall__)) -D_cdecl=__attribute__((__cdecl__)) -

D__declspec(x)=__attribute__((x)) -D__CYGWIN32__ -D__CYG WIN__ -Dunix -D__unix__ -D__unix -isystem/

usr/local/include -idirafter /usr/include -idirafter /usr/include/w32api ex1.c ex1.i
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GNU CPP version 2.95.3-5 (cygwin special) (80386, BSD syntax)

#include “...” search starts here:

#include <...> search starts here:

 /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/include

 /usr/include

 /usr/include/w32api

End of search list.

The following default directories have been omitted from the search path:

End of omitted list.

  /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/cc1.exe ex1.i -quiet -dumpbase ex1.c -version -o ex1.s

GNU C version 2.95.3-5 (cygwin special) (i686-pc-cygwin) compiled by GNU C version 2.95.3-5 
cygwin special).

  /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/../../../../i686-pc-cygwin/bin/as.exe -o ex1.o ex1.s

 /usr/lib/gcc-lib/i686-pc-cygwin/2.95.3-5/collect2. exe -Bdynamic--dll-search-pref x=cyg -o

ex1.exe /usr/lib/crt0.o -L/usr/local/lib -L/usr/lib -L/usr/lib/w32api -L/usr/lib/gcc-lib/i686-pc -
cygwin/2.95.3-5 ex1.o -lgcc -lcygwin -luser32 -lkernel32 -ladvapi32 -lshell32 -lgcc

You can see from the above verbose dialog that there are 4 programs (shaded in gray) that get invoked 

internally for transforming the input source ex1.c into an executable ex1.exe. They are:

 1. The pre-processor program (cpp0.exe)

 2. The compiler (cc1.exe)

 3. The assembler (as.exe)

 4. The linker (collect2.exe)

Each one of these invocations is shaded in gray in the above dialog.

The  pre-processor program (cpp0.exe) is the fi rst program to get invoked. The main functions of 

a preprocessor are (a) to substitute the macros (like #defi ne SUCCESS in the above example) with the 

exact value; (b) strip comments in the input fi le before parsing and (c) include the header fi les given by 

the #include statements. All the lines in the input C fi le having a ‘#’ sign as the fi rst character are handled 

by the pre-processor. The output of the pre-processor program is given by the fi le with ‘.i’ extension. Let’s 

check out the pre-processed output fi le of the above example.

# The pre-processed output f le - ex1.i

$ cat -n ex1.i

 1 # 1 “ex1.c”

 2 

 3 

 4

 5

 6 extern int printf(const char *, ...);

 7

 8 int main()

 9 {

10      printf(“Hello World\n”);

11

12

13      return(0 );

14 }
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The reader can verify in the pre-processed output fi le that the comment lines have been stripped out. The 

return statement in line 13 now uses the actual value of 0 instead of SUCCESS. 

The C compiler (cc1.exe) is the next program that gets invoked. This takes the pre-processed fi le 

(ex1.i) as input and creates an assembly language output stored in a fi le ex1.s. This is the compiler 

functionality that we are attempting to understand as the core of this book. The compiler utility translates 

code written in C programming language (after pre-processing) into target assembly language. The 

assembly language output fi le (ex1.s) created for the sample C program that we compiled is shown below.

# The assembly language output f le - ex1.s

$ cat -n ex1.s

 1      .f le “ex1.c”

 2 gcc2_compiled.:

 3 __gnu_compiled_c:

 4      .def ___main;  .scl 2;  .type 32;  .endef

 5 .text

 6 LC0:

 7      .ascii “Hello World\12\0”

 8      .align 4

 9 .globl _main

10      .def  _main;  .scl  2;  .type 32;  .endef

11 _main:

12      pushl %ebp

13      movl %esp,%ebp

14      subl $8,%esp

15      call ___main

16      addl $-12,%esp

17      pushl $LC0

18      call _printf

19      addl $16,%esp

20      xorl %eax,%eax

21      jmp L2

22      .align 4

23 L2:

24      movl %ebp,%esp

25      popl %ebp

26      ret

27      .def _printf; .scl 2; .type 32; .endef

The third step is the invocation of  assembler (as.exe) to convert the assembly fi le ex1.s into a relocatable 

object fi le ex1.o. The relocatable object fi le is not in human readable form. There are several formats for the 

relocatable object fi le. Some of the common object fi le formats are  ELF(Executable and Linking Format) 

and  COFF (Common Object File Format). We can check out which format our sample program has been 

converted to by using a convenience utility called the ‘fi le’ to give out the characteristics of the object fi le. 

The dialog below tells us that the object fi le ex1.o is in COFF Format. 

# Figuring out the object f le format

$ fi le ex1.o

ex1.o: 80386 COFF executable not stripped - version 30821

The fourth and fi nal step is the invocation of the  linker (collect2.exe) to generate the executable ex1.exe 

given the object fi le ex1.o as the input. The linker utility links the relocatable object fi le (ex1.o) with the 
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system-wide start up object fi le (crt0.o) and makes an executable. The linker also links the ex1.o fi le with 

other system-wide libraries, including the C library containing the function defi nitions for printf, scanf, etc. 

The libraries that are used by the linker are the ones given by –l option during the invocation of linker. The 

output of the linker is an executable (ex1.exe) that can be invoked on the command line. The dialog below 

shows us that the fi nal executable ex1.exe is a MS Windows binary for Intel 80386, which can be invoked 

on the console.

# The properties of the executable ex1.exe

$ fi le ex1.exe

ex1.exe: MS Windows PE Intel 80386 console executable not relocatable

The whole process of transforming an input C source fi le into an executable binary is summarised

in Fig. 1.1.

Fig. 1.1 Transforming an input C-source fi le into an executable

Even though Fig. 1.1 shows the transformation of an input source fi le written in C language into an 

executable form, the steps are similar for other compiled languages also. 

1.2 THE COMPILER

The main focus of the book is to understand the details of working of a compiler, i.e. the step2 of Fig. 1.1. 

The compiler takes the pre-processed fi le as the input and translates it into an equivalent assembly language 

fi le. In this section, we will get an overview of how a compiler translates a pre-processed input fi le into an 

assembly language fi le.

The translation of the input source (pre-processed fi le) into target assembly language fi le can be divided 

into two stages called as  front end (or  analysis) and  back end (or  synthesis).

The front end of the compiler transforms the input source into intermediate code. The intermediate code 

(sometimes called intermediate representation—IR) is a machine-independent representation of the input 

source program.
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The back end of the compiler takes the machine-independent intermediate 

code and generates the target assembly language program. The backend 

deals with machine-specifi c details like the registers, number of allowable 

operators, and so on.

Figure 1.2 illustrates the two-stage design approach of a compiler using C 

language source fi le as the input.

The main advantages of having this two-stage approach are:

∑ The compiler can be extended to support an additional processor by 

adding the required back end of the compiler. The existing front end is 

completely re-used in this case. This is illustrated in Fig. 1.3.

∑ The compiler can be easily extended to support an additional input 

source language by adding the required front end. In this case, the back 

end is completely re-used. This is illustrated in Fig. 1.4.

Fig. 1.3 Supporting an additional processor by adding back end

Fig. 1.4 Supporting an additional language by adding front end

Fig. 1.2 Front end and 

back end of the compiler
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1.2.1 Front End
The front end of the compiler is responsible for analysing the input source by breaking it into smaller 

entities, checking the syntax, verifying the semantics (meaning) and generating intermediate code. In this 

section, we learn about the front end of the compiler in more detail.

The front end is sub-divided into phases, where each phase is responsible for performing certain specifi c 

tasks. The front end of the compiler consists of the following phases (refer to Fig. 1.5).

∑  Lexical analysis

∑  Syntax analysis 

∑  Semantic analysis

∑  Intermediate code generation 

∑  Intermediate code optimisation

Fig. 1.5 The phases in front end of compiler

In  lexical analysis, the input source is broken up into a small meaningful sequence of characters called 

tokens. The tokens are the basic units of the programming language, which cannot be broken up further. 

Some examples of tokens in C programming language are Identifi ers (user defi ned variables), keywords 

(like while, for), punctuation marks (like left brace/right brace, etc.) and operators (like + and –). Figure 

1.6 shows how the input source is broken up into tokens during lexical analysis. The lexical analysis of the 

input source program can be compared to breaking up of a sentence into discrete words, which form the 

basic units in a natural language.

In  syntax analysis, the tokens are grouped together and checked, if they form a valid sequence as defi ned 

in the programming language. A  context-free grammar specifi es the rules or productions for identifying 

constructs that are valid in a programming language. The productions can be compared to the rules of 

grammar in natural languages.
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Fig. 1.6 The lexical analysis

To get a feel of the context-free grammar and syntax analysis, let’s consider a small set of grammar rules 

that can be used to recognise a few English sentences.

 1. A sentence consists of a noun phrase followed by a verb phrase.

 2. A noun phrase consists of an article followed by a noun.

 3. An article can be the word ‘a’ or ‘an’ or ‘the’.

 4. A verb phrase consists of verb followed by noun phrase.

 5. A noun can be the word ‘boy’ or ‘bicycle’.

 6. A verb can be the word ‘rides’.

The above grammar rules can be written in context-free grammar as shown in Table 1.1. The rule 1 in 

Table 1.1 says that a sentence consists of a noun phrase followed by a verb phrase. The symbol ‘:=’ is used 
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to denote ‘consists of’. The rule 3 in Table 1.1 tells us that an article can be ‘a’ or ‘an’ or ‘the’. The symbol 

‘|’ is used to indicate a ‘or’ option.

 Table 1.1 Context-free grammar for recognising a few English 

  sentences

1 <sentence > ::= <noun_phrase> <verb_phrase>

2 <noun_phrase> ::= <article> <noun>

3 <article> ::= a | an | the

4 <verb_phrase> ::= <verb> <noun_phrase>

5 <noun> ::= boy | bicycle

6 <verb> ::= rides

The following are valid sentences conforming to the language described by the syntax rules in

Table 1.1.

The boy rides a bicycle.

A boy rides a bicycle.

The boy rides the bicycle.

In a similar way for a programming language, a simple C assignment statement can be defi ned using the 

context-free grammar shown in Table 1.2. Production 1 states that a C statement consists of an identifi er 

followed by an equal to (‘=’) sign, followed by a C expression followed by a semi-colon. Production 2 

states that a C expression can be a constant. Production 3 states that C expression can be an identifi er. 

Production 4 states that a C expression can be a C expression followed by a ‘+’ operator followed by 

another C expression. Observe that the fourth production is recursive in nature. The tokens that are used in 

these rules are IDENTIFIER, CONSTANT, ‘=’ , ‘;’ and ‘+’.

Table 1.2 Context-free grammar for a simple C assignment statement

1 <c_statement > ::= IDENTIFIER ‘=’ <c_expression> ‘;’

2 <c_expression> ::= CONSTANT

3 | IDENTIFIER

4 | <c_expression> ‘+’ <c_expression>

The context-free grammar in Table 1.2 recognises the following C statements:

 x = y + 5;

 x = y + z + 5;

The outcome of syntax analysis can be a  parse tree. A parse tree is a record of which productions have 

been used to ascertain that the input is part of the language. Figure 1.7 shows visually the parse tree of an 

input C statement ( x = y + z;) using the context-free grammar Table 1.2. The parse tree for an input English 

sentence (The boy rides a bicycle) using the context-free grammar in Table 1.1 is also shown in Fig. 1.7.

In  semantic analysis, we check if the syntactically correct statements make a meaningful reading. For 

example, a statement in the input source program ‘x = y + 2;’ would not make a meaningful read if say x 

is the name of a function or array and y is a fl oat type of variable. This statement might be syntactically 

acceptable by the productions of the context-free grammar in syntax analysis, but would not hold out during 

semantic analysis because the data types of x and y are not compatible. In natural language parlance, this 

is very similar to having a grammatically correct sentence, but devoid of meaning. For example, the syntax 

rules in Table 1.1 would also accept a sentence “The bicycle rides the boy”. This sentence does not make 



10 Principles of Compiler Design

sense, so we would reject it during semantic analysis. In a similar way, a C statement ‘myfunc=y;’, where 

myfunc is the name of a function and y, a fl oat type might be acceptable in syntax analysis, but would 

be rejected in semantic analysis since the data types of left-hand side and right-hand side do not match. 

Most of the semantic analysis revolves around such type checking. Other tasks in semantic analysis involve 

detection of undeclared variables, access violations and so on. The result of semantic analysis is annotating 

the parse tree with more information on the data types.

Fig. 1.7 Syntax analysis

In the intermediate code generation phase, we walk through the annotated parse tree and generate 

intermediate code. Three-address code (TAC) is one of the common forms of Intermediate code. Three-

address code is a sequence of instructions, each of which can have at most three operands. Table 1.3 

shows a sample input source and its equivalent Intermediate code. The variables t2, t3, etc. shown in the 

intermediate code are compiler generated temporary variables. We use the three-address code intermediate 



  Compilers—An Introduction 11

form extensively in this book. However, other forms of intermediate code like directed acyclic graphs 

(DAG), etc. would also be studied in later chapters. 

Table 1.3 Intermediate code

Input C Statement Intermediate Code

v4 = v5 + 34 - (45 *v1 - v2); t2 := v5 + 34
t3 := 45 * v1
t4 := t3 - v2
t5 := t2 - t4
v4 := t5

In the  intermediate code optimisation phase, the intermediate code is optimised by using several 

techniques, like elimination of common sub-expressions, elimination of unreachable code segments, 

elimination of statements that are not modifi ed in the loop, and so on. Table 1.4 shows an Intermediate code 

segment before and after elimination of common sub-expression.

Table 1.4 Intermediate code optimisation

Input C Statement Intermediate Code Intermediate Code after elimination of Common 

sub-expression

a = b + c * d ; t1: = c * d t1 : = c * d
e = a + c * d ; a : = b + t1 a  : = b + t1

t2: = c * d e  : = a + t1
e : = a + t2

The optimised Intermediate code emerging out of the Intermediate code optimisation phase is passed on 

to the back end of the compiler for generation of target code.

1.2.2 Back End

The  back end of the compiler is responsible for translating the machine-independent intermediate code into 

the target assembly language. The back end of the compiler depends on the target processor, where the fi nal 

binary would be executed. In this section, we study about the back end of the compiler in greater detail.

The back end of the compiler consists of the following phases (refer to Fig. 1.8).

∑ Target code generation

∑ Target code optimisation

Fig. 1.8 Phases in the back end of the compiler

In  target code generation phase, the intermediate code is translated into machine or assembly code. 
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In this phase, we associate memory locations with the variables and choose the appropriate assembly 

instructions depending on the target processor. The output of this phase is target code in the form of 

assembly language of the target hardware. Table 1.5 shows a segment of intermediate code and the 

generated target code in x86 assembly language (AT&T syntax) for the same.

Table 1.5 Target code

Intermediate Code Target Code (x86 Assembly)

x := y + z movl _y, %eax
addl _z,%eax
movl %eax,_x

In the  target code optimisation phase the target code is transformed into a more effi cient target code. The 

code optimisation phase considers better usage of registers, usage of machine-specifi c idioms or features of 

the processor like specialised instructions, pipelinings, and so on to make the generated target code more 

effi cient. This phase also looks at replacing expensive operations like exponentiation by multiplication if 

possible. An example of target code in x86 assembly being optimised by using an auto-increment machine 

idiom is shown in Table 1.6. 

Table 1.6 Target code optimisation

Intermediate Code Target Code (x86 Assembly) before 

Code Optimization

Target Code (x86 Assembly) after 

Code Optimization

x := x + 1 movl _x, %eax incl _x

addl $1,%eax

movl %eax,_x

Table 1.7 gives the summary of the various phases and the tasks associated with them.

Table 1.7 Compiler phases and the tasks

# Phase Tasks

1 Lexical Analysis Breaking up of the input source into tokens. Some examples of tokens are identifi ers, 

constant, strings, punctuation marks (like ‘;’), operators. Adding identifi ers into symbol 

table. Adding strings (like “Hello World”) and constants into literal table.

2 Syntax Analysis Group the tokens to see if they form a valid sequence as defi ned in the language. Add data-

type Information to the symbol table entry.

3 Semantic Analysis Perform data type checks to determine, if the data types of the operands are compatible and 

report errors for incompatible ones.

4 Intermediate Code 

Generation

Generate the intermediate code. The intermediate code is independent of the target machine.

5 Intermediate Code 

Optimisation

The generated intermediate code is optimised by eliminating common sub-expressions, 

unreachable code segments, statements that are not modifi ed in the loop, and so on.

6 Target Code 

Generation

Generation of target code (assembly language) from the intermediate code. Associating 

memory locations with the variables.

7 Target Code 

Optimisation

Optimise the target code by using machine-specifi c idioms or features of the processor 

like specialised instructions, pipe lining, and so on. Replacing expensive operations like 

exponentiation by multiplication, if possible.
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1.3 COMPILER IMPLEMENTATION

In this section, we consider ways of implementing a compiler based on 2-stage analysis-synthesis model as 

illustrated in Fig. 1.9, consolidating the phases in the front end and back end of the compiler. This section 

also gives us familiarity with some of the terminology used in the compiler implementations.

A simple and modular way of implementing a compiler based on the model shown in Fig. 1.9 is to have 

each phase as a module, with the input and output as specifi ed in the fi gure itself. The lexical analysis 

module would scan the entire input source program, break it up into tokens and output the entire list of 

tokens. The syntax analysis module would take the entire list of tokens and create a parse tree that is 

representative of the entire source program. Next, the 

semantic analysis module would take the parse tree, 

perform type checking and annotate it with data-type 

information. In this manner, we can have modules 

for intermediate code generation, optimisation, and 

so on, where the module transforms the input and 

gives an output in accordance with Fig. 1.9. In this 

implementation, each of the modules runs through an 

input representative of the entire source program in 

some form (like tokens or parse tree or Intermediate 

code, etc.) and creates an output representative 

of the entire source program in same or different 

form. Each time we read through a representation 

of the entire program, we term it as a  pass. This 

type of implementation, where we read through a 

representation of entire source program multiple 

times is called as  multi-pass compiler. Going 

by this approach of having a pass for each of the 

phases in Fig. 1.9, we would have a 7-pass compiler 

implementation.

Another way of implementing the compiler based 

on the model shown in Fig. 1.9 is to club several 

phases into one pass. For example, let’s say we

 1. Read a single token [lexical analysis].

 2. If the token sequence matches a grammar 

rule go to step 3, else go to step 1 [syntax 

analysis].

 3. Perform the semantic check for the matched 

grammar construct [semantic analysis].

 4. Generate intermediate code for the matched grammar construct [intermediate code generation]

We can keep on repeating the sequence 1 through 4 above until the entire input source program is 

completely read. In this case the lexical analysis, syntax analysis, semantic analysis and Intermediate 

code generation are all performed in one single pass. Observe the control alternating among these phases 

in this implementation. The interface between each of these phases would be an implementation choice. 

However, the output of the complete pass remains as intermediate code in this case. Figure 1.10 shows a 

4-pass compiler design, where we have clubbed the lexical analysis, syntax analysis, semantic analysis and 

intermediate code generation into one single pass and have a pass each for the rest of the phases. Typically, 

Fig. 1.9 The front end and the

 back end of compiler
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optimisation phases requires several passes 

because it involves looking at multiple 

instructions at one time to decide on a 

optimising method. In theory, if we eliminate 

optimisation, it is possible to have a single 

pass compiler for some of the programming 

languages like C.

Multi-pass compilation requires more 

memory since we need to store the output of 

each phase in totality. Multi-pass compiler 

also takes a longer time to compile, since it 

involves reading of the input in different 

forms (tokens, parse tree, etc.) multiple 

number of times.

In practice, compilers are designed with 

the idea of keeping the number of passes to as 

minimum as possible. The number of passes 

required in a compiler to process an input 

source program depends on the structure of 

the programming language. Compilers for 

some of the programming languages like C 

can be implemented in a single pass, while a 

PL/1 or ALGOL 68 compiler cannot be implemented in a single pass. The programming languages PL/1 

or ALGOL 68 allow for variables to be used before declaring them. This makes it hard to design a single 

pass compiler for them, since semantic analysis cannot be performed without the knowledge of the variable 

type.

1.4 DATA STRUCTURES IN A COMPILER

The various phases of compilers interact using some common data structures. There are two important 

tables that are used by various phases during the compilation. They are:

 1. Symbol table

 2. Literal table

A  symbol table contains information with regard to the identifi ers used in the input source program. 

Each entry in the symbol table corresponds to a symbol (Identifi er) and contains details like the name of 

the symbol, the data type, size (the amount of memory required), and so on. Typically, an entry is made 

into the symbol table at the lexical analysis phase. The entry is updated and looked up in different phases 

of the compiler. In the syntax and semantic analysis phases, the entry is updated for details like the size 

and data type of the variable. During the target code generation phase, the size of the variable is used for 

generating appropriate target assembly code. In some compilers, there are symbol tables for every function 

along with a global symbol table (as shown in Fig. 1.11). These symbol tables might be maintained in a list 

or a stack. Another common scheme is to have a single symbol table for all the identifi ers in the program 

with scope information present in the entry. The symbol table is accessed very frequently during the 

compilation of a program. A hash table is usually used for implementing a symbol table, mainly due to fast 

look-up capability.

Fig. 1.10 A four-pass compiler
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Fig. 1.11 Symbol table and literal table for a sample input source

A sample input C source and its corresponding symbol tables created in a compiler are shown in 

Fig. 1.11. Observe that each entry in the symbol table contains details like the name and the size of the 

variable (memory occupied) along with some other information that would be used in different phases of 

the compiler. The information shown in each entry of the symbol table in Fig. 1.11 is very preliminary. In 

practice there is much more information fi lled in for each entry.

A  literal table stores the strings and constants found in the input source program. The main function 

of the literal table is to conserve memory by re-using the constants and the strings. In literal table, the 

information is usually entered at the time of lexical analysis and looked up during the target code generation. 

A sample input C source and its corresponding literal table created in a compiler are shown in Fig. 1.11.

The intermediate code is passed between the front end and the back end of the compiler. The 

intermediate code is also optimised during the optimisation phase. It is usually stored in an array/ linked list 

of structures for facilitating easy reorganisation.

In compilers using a pass each for lexical, syntax and semantic analysis, the parse tree is another 

important data structure under consideration. It is usually implemented using a pointer-based structure, 

where the parent and children contain pointers to each other for facilitating quick traversal. 

1.5 STUDY PLAN

This book is organised in accordance with the various phases of the compiler shown in Table 1.7, with 

a chapter being devoted to each one of the phases. During the discussion on the individual phases in the 
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following chapters, we would also familiarise ourselves with tools that would help perform the tasks in that 

phase easily. The examples in the chapters would illustrate the principles discussed therein.

A toy C compiler (mycc) is developed incrementally by adding the corresponding module as we 

progress chapter by chapter in this book. We demonstrate the capabilities of the respective module in our 

toy C compiler as we progress chapterwise. For example, the toy C compiler’s semantic analyser module 

is demonstrated in Chapter 4—Semantic Analysis, the intermediate code generator module in Chapter 5—

Intermediate Code Generation, and so on.

    SUMMARY

A compiler is a software utility that translates code written in higher language like C or C++ into target 

language. The target language is usually a low-level language like assembly language or machine 

language. The job of the compiler can be split into two distinct stages, namely the front end and the 

back end. The front end is responsible for translating the input source for compilation into a form 

known as the Intermediate code, which is independent of the target processor architecture. The back 

end converts the Intermediate code into the assembly language or the machine language of the target 

processor. The front end and the back end can be logically divided into phases, where each phase 

has a specifi c task to accomplish. The front end can be divided into lexical analysis, syntax analysis, 

semantic analysis, intermediate code generation and intermediate code optimisation phases. The back 

end can be split into target code generation and target code optimisation phases. We shall study about 

each of the phases in detail in the forthcoming chapters. A compiler can be termed as a multi-pass or 

a single-pass compiler depending on the number of times it reads the equivalent of the entire input 

source in the form of tokens or parse tree or Intermediate code and likewise. The main data structures 

involved in a compiler implementation are symbol table, literal table and optionally, a parse tree.

    REVIEW QUESTIONS AND EXERCISES

 1.1 What is a compiler? What is its primary function? What are its secondary functions?

 1.2 What are the other utilities that a compiler interacts with? Describe their functions.

 1.3 What is a front end and back end of a compiler? What are the advantages of breaking up the 

compiler functionality into these two distinct stages?

 1.4 What are the different phases in a compiler? Explain each one of them.

 1.5 What is the difference between syntax analysis and semantic analysis? Give an example each for 

an error found by the compiler during syntax analysis and semantic analysis.

 1.6 What is a ‘pass’ in a compiler? Differentiate between a multiple pass compiler and a single pass 

compiler.

 1.7 Describe the common data structures used by a compiler.

 1.8 Write a simple ‘C’ language ‘Hello World’ program and compile it with the ‘gcc’ compiler to 

generate an executable program. Invoke the ‘gcc’ compiler in verbose mode (–v) to identify all 

the utilities that are used during the compilation process.
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 1.9 Compile a simple ‘C’ language ‘Hello World’ source program using gcc with - -save-temps option 

to save the intermediate fi les after each step in the compilation process. Identify the output fi le 

after each of the steps, namely the pre-processing, compiling, assembling and linking. Use the 

‘fi le’ utility to know more about each of the output fi les.

 1.10 Does the ‘gcc’ compiler collection follow the analysis-synthesis model during compiler 

development? Are the benefi ts of using analysis-synthesis model obvious?



LEXICAL  ANALYSIS

Introduction
 Lexical analysis is the fi rst stage in the compilation of a source 
program written in higher-level language like C or C++. The lexical 
analyser reads the input source program and produces as output, a 
sequence of tokens that the parser uses for syntax analysis. Consider 
for example a C program as input to the lexical analyser. The lexical 
analyser separates the input C program into various types of tokens 
like keywords, identifi ers, operators, and so on as shown in Fig. 2.1.

Fig. 2.1 Lexical analysis

2
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Comments and white space (like tab, blank, new line) do not infl uence code generation. 
The lexical analyser strips out the comments and white space in the source program. 
For example, in Fig. 2.1, the lexical analyser stripped out the white space (line 5), 
comment (line 6) of the input C program and did not return them as tokens.

The part of the input stream that qualifi es for a certain type of token is called as 
 lexeme. For example, in line 4 of the input the letters ‘int’ qualifi es for a keyword in C 
language. ‘int’ is called as lexeme in this case. The other lexemes shown in Fig. 2.1 are 
‘main’ (token type is identifi er), ‘for’ (token type is keyword), etc.

The lexical analyser keeps track of the new line characters, so that it can output the 
line number with associated error messages, in case of errors in the input source 
program. This is extremely useful for the programmer to correct syntax errors. 
For example, consider the C program shown in the dialog below in which the line 5 
does not end with a semicolon (;). On trying to compile it using GNU C compiler, the 
following output was observed:

# An input C program. A semicolon (;) is missing in Line 5

$ cat -n test1.c

1 #include <stdio.h>

2

3  int main()

4  {

5   printf (“Hello World \n”)

6   return(0);

7  }

# Compiling the C program

$ gcc test1.c -o test1

test1.c: In function ‘main’:

test1.c:6: error: parse error before “return”

The error message in the dialog indicates that a parse error was encountered on line 
6, before the token ‘return’. This message indicating the line number was possible 
because the lexical analyser kept a count of the number of new lines that it has 
encountered till that point of the source program.

The lexical analyser in conjunction with the parser is responsible for creating  symbol 

table, a data structure containing information that is used in various stages of the 
compiler. The symbol table consists of entries describing various identifi ers used in 
the source program. Typically, each entry in the symbol table consists of the lexeme 
of the identifi er and all the attributes associated with it. While some of the attributes 
pertaining to an entry are fi lled in at lexical analyser/parser level, the other attributes 
in the entry would be progressively fi lled by subsequent stages of compilation. As an 
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example, consider a C program shown in Fig. 2.2. The lexical analyser in tandem with 
the parser would make an entry in the symbol table, indicating that the lexeme main is 
an identifi er. The subsequent stages in compilation could add more information with 
respect to the entry, like the number of bytes of storage required for it, the position 
in the memory layout for the program, and so on. The symbol table is typically stored 
as a hash indexed on the lexeme.

Fig. 2.2 Creation of symbol table

2.1 ELEMENTS OF LEXICAL ANALYSIS

In the last section, we discussed the tasks that the lexical analyser does. We understood that the primary 

task of a lexical analyser is to break up the input source program into a sequence of tokens like identifi er, 

keyword, string literals, constants, and so on. In this section, we discuss how a lexical analyser is made.

A lexical analyser for a specifi c programming language can be constructed by taking the input character-

by-character and then checking in for various constructs of that language. For example, a lexical analyser 

for C language can take the input character-by-character and check if it is a keyword (like ‘int’ or ‘char’ 

or ‘switch’ or ‘break’, etc.) or operator or identifi er or string literal, etc. Similarly a pascal lexical analyser 

can take in character-by-character and check if the input is a keyword (like ‘FORMAT’ or ‘READ’, etc.) 

or operator or identifi er or string literal, etc. The difference between the C lexical analyser and the pascal 

lexical analyser is that the rules that defi ne how to identify keyword, operator, identifi er or a string literal 

will vary. For example, in C language, the keywords are ‘switch’, ‘case’, ‘int’, etc., while in pascal the 

keywords are ‘record’, ‘var’, ‘then,’ etc. 

There are several diffi culties with the above-mentioned approach of having the knowledge of the 

language tightly coupled with the lexical analyser:
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�  A lot of design/coding effort goes into parsing of the input that could be common to lexical analysers 

of any programming language.

�  The complexity of the lexical analyser would be very high and adding a new construct to an existing 

language could become diffi cult.

�  Developing a lexical analyser for a new language would be cumbersome and involve almost the same 

effort as any of the ones previously developed.

In order to overcome the diffi culties mentioned above and facilitate the development of lexical analysers 

for any language easily, lexical analyser generators are used. A  lexical analyser generator is a tool that 

can generate a code to perform lexical analysis of the input, given the rules for the basic building blocks 

of the language. The rules for the basic building blocks of a language are called its lexical specifi cations. 

An example will make the terms clear. Assume that we are interested in developing lexical analyser for C 

language that can break up a C language program into tokens. In order to develop such a lexical analyser, 

we need to supply the lexical specifi cations for C language to a lexical analyser generator. The lexical 

analyser generator then transforms the lexical specifi cations into a lexical analyser that can be used to 

tokenize an input C program. This is illustrated in Fig. 2.3.

Fig. 2.3 Lexical specifi cations, lexical analyser generator and lexical analyser

The  lexical specifi cations for any programming language consists of information about identifying 

each and every token that is defi ned for it. For example, the lexical specifi cations for C language would 

typically contain information about identifying keywords (‘for’, ‘switch’ ‘case’, etc.), operators (<, >, = 

etc.), identifi er (starts with alphabet can have digits within it), string literal (within quotes), etc.
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1. Specify the tokens and their associated actions in a lexical specifi cation fi le usually with a ‘.l’ 

extension.

2. Compile the lexical specifi cations given in step 1 above using fl ex to generate a C fi le lex.yy.c.

3. Compile lex.yy.c using a C compiler to generate a binary fi le, which is the lexical analyser that 

transforms an input stream into a sequence of tokens.

This is shown in Fig. 2.4.

Fig. 2.4 Lexical analyser generation using fl ex

To make the 3-step procedure clear, let’s create a lexical analyser to split an English sentence into 

individual words. This lexical analyser will take an input fi le containing English sentences and tokenises 

them into individual words.

The lexical specifi cation fi le to split an English sentence into individual words is ‘words.l’ shown in 

Listing 2.1. The contents and format of the lexical specifi cation fi le ‘words.l’ will form the topic of 

discussion for the next section. For the illustration of the 3-step procedure, it suffi ces to assume that ‘words.

l’ fi le has already been created. The following dialog illustrates the 3-step procedure outlined in Fig. 2.4.

# The creation of words.l fi le is Step 1 . It is not shown here

# Compiling the lexical specifi cation fi le, Step 2

$ fl ex words.l

# lex.yy.c generated by previous command

# Compiling it to build lexical analyzer, Step 3

$ gcc lex.yy.c -o eng_lex_analyzer -lfl

# Input to lexical analyzer

$ cat -n sentence

 1 The Quick Brown Fox jumps over a Lazy Dog
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# lexical Analyzer at work on the input fi le

$ ./eng_lex_analyzer sentence

Lexeme=[The] length=3  Token is WORD

Lexeme=[Quick]  length=5  Token is  WORD

Lexeme=[Brown]  length=5  Token is  WORD

Lexeme=[Fox]  length=3  Token is  WORD

Lexeme=[jumps]  length=5 Token is  WORD

Lexeme=[over] length=4 Token is  WORD

Lexeme=[a]  length=1 Token is  WORD

Lexeme=[Lazy] length=4 Token is  WORD

Lexeme=[Dog] length=3  Token is  WORD

2.1.1 Lexical Specifi cations
In the previous section, we learnt that lexical analyser could be generated from a lexical specifi cation fi le by 

using lexical analyser generator tools like fl ex. This section focuses on the composition of a lexical specifi cation 

fi le.

A notation called the  regular expressions is used to write lexical specifi cations. We shall fi rst study 

the notation (Section 2.1.1.1), followed by an explanation of how a lexical specifi cation fi le is structured 

(Section 2.1.1.2) and later write lexical specifi cations of C language (Section 2.1.2).

2.1.1.1 Regular Expressions A regular expression is a pattern that describes a set of strings. The 

simplest regular expression is the one that matches a single character. For example a regular expression ‘s’ 

matches any input string where letter s is present like say sink, base, start, boost, etc.

In order to understand the concepts of regular expressions (RE’s), we shall use a utility ‘ egrep’ (extended 

global regular expression print) available on UNIX, LINUX and other platforms. This utility can be used to 

try out various regular expressions and verify if the expected strings are matched or not. It is invoked in the 

following form:

$ egrep –n –e ‘Regular Expression’ fi le1 fi le2 ……

This utility searches fi le1, fi le2, fi le3, etc. for lines containing a match to the specifi ed regular expression. 

We use a fi le ‘my_input’ having the following lines as shown by the ‘cat’ command for trying out various 

regular expressions throughout this section.

# -n option for showing line numbers

$ cat -n my_input

    1 sink

    2 base

    3 start

    4 dog

    5 goat

    6 boost

    7 easter

    8 ported

    9 global

   10 boss

   11 labs

We can try out the regular expression that matches a single character s for the fi le ‘my_input’
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# Match any line with s

$ egrep -n -e ‘s’ my_input

1:sink

2:base

3:start

6:boost

7:easter

10:boss

11:labs

Two regular expressions concatenated form a regular expression that recognises a match of fi rst regular 

expression followed by a match of second. For example, a regular expression ‘st’ matches any input where 

letter s is followed by a t like say start, boost, easter, etc.

# Character s followed by t

$ egrep -n -e ‘st’ my_input

3:start

6:boost

7:easter

There are some characters in the regular expressions, which have special meaning. They are called  meta 

characters. Table 2.1 gives a summary of all the meta characters used in regular expressions. 

Table 2.1 Meta characters in regular expressions

Meta character Description

. Matches any character except a new line.

For example, a regular expression ‘a.’ matches ‘a’ followed by any character like b or c, etc. 

except a new line. Some strings that match the regular expression ‘a.’ are ‘bat’, ‘mad’, ‘car’, etc.

^ Matches the start of the line.

For example, a regular expression ‘^A’ matches any line that starts with ‘A’. Some lines that 

match regular expression ‘^A’ are:

A thing of beauty is a joy forever

A fool and money are soon parted

$ Matches end-of-the line.

For example, a regular expression ‘d$’ matches any line that ends with ‘d’. Some lines that 

match regular expression ‘d$’ are: 

A friend in need is a friend indeed

“let’s celebrate”, the doctor said

[ ] A character class—Matches any letter within the parenthesis.

For example, a regular expression [012345] matches 0 or 1 or 2 or 3 or 4 or 5. Some strings 

that match this regular expression are ‘var1’, ‘v3engine’ and ‘version5’. Note that ‘v6’ does not 

match the above regular expression.

Within the parenthesis, the following characters have special meanings:

A dash ‘–’ inside a square bracket represents a range of characters to match, e.g. a regular 

expression [a–k] represents all the characters ‘a’, ‘b’, ‘c’ and so on till ‘k’. Some strings that 

match the regular expression [a–k] are ‘ram’, ‘mob’, and ‘mug’. Note that ‘mop’ does not match 

the above regular expression.
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A circumfl ex ‘^’ inside a square brackets represents the match of any character except the ones in 

the bracket, e.g.  a regular expression [^abcd] represents all the characters except ‘a’ or ‘b’ or ‘c’ 

or ‘d’. Some strings that match the above regular expression are ‘pet’, ‘fellow’. The string ‘bad’ 

does not match the regular expression.

| Matches either the preceding regular expression or the succeeding regular expression.

For example, a regular expression a|b represents match for ‘a’ or ‘b’. Some strings that match 

the above regular expression are ‘gate’, ‘boost’. The strings ‘fi x’ and ‘group’ do not match the 

regular expression.

( ) Used for grouping regular expressions.

For example, the regular expression (ab) represents a match for ‘a’ followed by ‘b’. The strings 

that match the above regular expression are ‘cab’ and ‘lab’. The strings that do not match the 

above regular expression are ‘garb’, ‘aerobics’.

*

+

?

Unary operators for specifying repetition in regular expressions. * for zero or more, + for one or 

more and ? for zero or one.

For example, the regular expression ab* matches ‘a’ followed by no ‘b’ like ‘all’, ‘a’ followed by 

one ‘b’ like ‘about’ or a followed by any number of ‘b’s like ‘gabbbbbb’.

The regular expression ab+ matches ‘a’ followed by at least one ‘b’ like ‘cab’ or any number of 

‘b’s like ‘gabbbbbb’ . Note that it does not match ‘a’ followed by no ‘b’ as in the previous case 

of regular expression ‘ab*’ like say, all.

The regular expression ab? Matches ‘a’ followed by no ‘b’ like all or at the most one ‘b’ like 

‘lab’. It does not match the string ‘jabb’.

{ } Indicates how many times the previous pattern is matched.

For example, the regular expression a{1,3} represents a match of one to three occurrences of ‘a’. 

The strings that match the above regular expression are ‘dad’, ‘daad’, and ‘daaad’. The strings 

that do not match the above regular expression are ‘sting’ and ‘out’.

Let’s try out a few examples using the egrep utility and the fi le ‘my_input’ shown earlier in this section 

to clarify the concepts of meta characters.

The regular expression ‘o.t’ matches any input where letter o is followed by any character followed by t 

like say goat, boost, ported, etc.

# o followed by any char then by t

$ egrep -n -e ‘o.t’ my_input

5:goat

6:boost

8:ported

The regular expression ‘^b’ matches any input where letter b is the start of the line like say base, boost, 

boss, etc.

# b is the fi rst letter in the line

$ egrep -n -e ‘^b’ my_input

2:base

6:boost

10:boss
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The regular expression ‘t$’ matches any input where letter t is the end of the line like say start, goat, 

boost.

# t is the last letter in the line

$ egrep -n -e ‘t$’ my_input

3:start

5:goat

6:boost

The regular expression ‘[ats]’ matches any input where letters a or t or s are present like say sink, base, 

start, etc.

# Matches a or t or s

$ egrep -n -e ‘[ats]’ my_input

1:sink

2:base

3:start

5:goat

6:boost

7:easter

8:ported

9:global

10:boss

11:labs

The regular expression ‘[p-s]’ matches any input line where letter p or q or s exist like say sink, base, 

ported, etc.

# Matches p or q or s

$ egrep -n -e ‘[p-s]’ my_input

1:sink

2:base

3:start

6:boost

7:easter

8:ported

10:boss

11:labs

The regular expression ‘[^b]a’ matches any input where some letter other than ‘b’ is followed by ‘a’ like 

say start, goat, easter, labs.

# Matches any char other than b followed by a

$ egrep -n -e ‘[^b]a’ my_input

3:start

5:goat

7:easter

11:labs
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The regular expression ‘bo*s’ matches any input line where b is followed by zero or more o and then a s 

like say boost, boss, labs.

The regular expression ‘bo+s’ matches any input line where b is followed by one or more o and then a s 

like say boost, boss.

The regular expression ‘bo?s’ matches any input line where b is followed by zero or one o and then a s 

like say boss, labs.

# Matches b followed by zero or any number of o then s

$ egrep -n -e ‘bo*s’ my_input

6:boost

10:boss

11:labs

# Matches b followed by one or any number of o then s

$ egrep -n -e ‘bo+s’ my_input

6:boost

10:boss

# Matches b followed by one or no o then s

$ egrep -n -e ‘bo?s’ my_input

10:boss

11:labs

# Matches b followed by 1 or 2 instances of o followed by s

$ egrep -n -e ‘bo{1,2}s’ my_input

6:boost

10:boss

The regular expression ‘oa|or’ matches any input line where oa or ort exists like say goat, ported.

# Matches oa or ort

$ egrep -n -e ‘oa|ort’ my_input

5:goat

8:ported

The regular expression ‘The regular expression ‘ (oa|os)t’ matches any input line where oa or os 

followed by t exists like say goat, boost.

# Matches oa or os followed by t

$ egrep -n -e ‘(oa|os)t’ my_input

5:goat

6:boost

Having understood the concepts of regular expressions, let’s defi ne the constructs of C language like 

identifi ers, constants, etc. using regular expressions.

The C language keywords are the easiest ones to be described using regular expression. The regular 

expression is same as the keyword. For example, the keyword ‘goto’ is represented by a regular expression 

‘goto’, and ‘switch’ by regular expression ‘switch’, and so on.

A C  identifi er begins with an alphabet or underscore, followed by either an alphabet or underscore or 

digit. A C identifi er is represented by a regular expression ‘[a-zA-Z_]([a-zA-Z_]|[0-9])*’
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An integer constant in C language has one or more digits followed optionally by a type qualifi er like L or 

l or U or U. This can be represented by a regular expression ‘[0–9]+(u|U|l|L)?’

A hexadecimal constant in C language begins with 0 followed X or x followed by one or more number of 

hexadecimal digits. A type qualifi er like u or U (for unsigned) or L or l (for Long) might optionally follow 

the hexadecimal digits. A hexadecimal constant can be represented by a regular expression ‘0[xX][0-9a–fA 
F]+(u|U|l|L)?’

The regular expression for both the C identifi er and integer constant contain [0–9] in them. Similarly, 

{u|U|l|L} is contained in the regular expression for hexadecimal constant as well as integer constant. The 

repetition of the same regular expression in various places can be avoided by having a  regular defi nition 

for that particular regular expression. Table 2.2 gives regular defi nitions for representing a digit, a integer 

specifi er, letter, and so on.

Table 2.2 Regular defi nitions

Regular Defi nition Regular expression for the 

defi nition

DIGIT [0–9]

IS (u|U|l|L)

FS (f|F|l|L)

LETTER [a-zA-Z_]

EXPONENTIAL [Ee][+-]?[0–9]+

The regular defi nitions given in Table 2.2 can be used in describing the C identifi er as {LETTER}{LETTE

R}|{DIGIT})* which is more readable compared to the earlier version ‘[a-zA-Z_]([a-zA-Z_]|[0-9])*’ 

even though both mean the same.

Table 2.3 gives the regular expression for a few C constructs, some of them using the regular defi nitions 

mentioned previously.

Table 2.3 Regular expressions for a few C constructs

Regular expression Description

“(“ Open parenthesis

++ Increment operator

{DIGIT}+{IS}? Integer constant

“;” Semicolon

“for” For keyword

{LETTER}({LETTER}|{DIGIT})* C identifi er

0{DIGIT}+{IS}? Octal constant

{DIGIT}+{EXPONENTIAL}{FS}? Exponential constant

\”(\\.|[^\\”])*\” A string literal

Before we end this section, let us see some of the limitations of regular expressions.

Regular expressions are not suited to describe nested structures like C expressions. For example, 

consider a C expression ((my_var+1) == 10) where my_var is a C identifi er. This entire C expression 
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cannot be described using regular expression, because it cannot determine the matching braces. The same 

can be described adequately using context-free grammar as we can see in the coming chapters. This is one 

of the main reasons that lexical analysis is separated from parsing.

Regular expressions can be used to denote only a fi xed number of repetitions (using {x,y} notation) or 

an unspecifi ed number of repetitions (using * operator) of given construct. It cannot be used in situations 

where the length of the regular expression needs to be deduced. For example, in FORTRAN,  Hollerith 

format strings are used to print formatted output on the screen. It is shown below: 

 100 FORMAT (17H TITLE OF PROGRAM) 

In the FORMAT statement above, 17 is the length of the string that follows, i.e. ‘TITLE OF 

PROGRAM’. Regular expression cannot be used to recognise the FORMAT statement because the length 

of the regular expression cannot be deduced from the statement.

2.1.1.2 Structure of a Lexical Specifi cation File In this section, we shall understand in detail about 

the format of  lexical specifi cation fi le. We will use the fi le ‘words.l’ shown in Listing 2.1 as an example 

to explain the concepts clearly. Recall that this fi le was used earlier in Section 2.1 for creating a lexical 

analyser, which splits English sentences into words.

 1 LETTER [A-Za-z]

 2 WS [ \t\n]

 3

 4 %{

 5  #defi ne WORD 1

 6 %}

 7

 8 %%

 9 {LETTER}+ { return (WORD) ; }

10

11 {WS} { ; /* eat up White Space */ }

12 . { ; /* eat up all others like punctuation marks etc. */}

13

14 %%

15

16 #include <stdio.h>

17 int main(int argc, char **argv)

18 {

19  FILE *fp;

20  int ret_val;

21

22  if(argc != 2){

23   printf(“Usage %s <input fi le>\n”,argv[0]);

24   exit(1);

25  }

26

27  if((fp = fopen(argv[1],”r”)) == NULL ){

28   printf(“File [%s] does not exist \n”,argv[1]);

29   exit(1);

30  }

31
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32  yyin = fp; /* Input fi le to lexical analyser */

33

34  while (1) {

35   if( (ret_val=yylex()) == 0 ){

36    break;

37   }

38

39

40   /* return value signifi es token type */

41   if(ret_val == WORD ){

42    printf(“Lexeme=[%s] \t length=%d “,yytext,yyleng);

43    printf(“ \t Token is WORD \n”);

44   }

45  }

46 }

Listing 2.1 words.l

A lexical specifi cation (in short a lex) fi le consists of 3 parts:

Declarations

%%

Translation Rules

%%

Auxiliary Functions

The declarations section in ‘words.l’ extends from lines 1 to 8. The declarations section consists of 

regular defi nitions that can be used in translation rules. This can be seen on lines 1 and 2 of the ‘words.

l’ where we specifi ed regular defi nition for LETTER and WS. Apart from the regular defi nitions, the 

declaration section usually contains the #defi nes, C prototype declarations of the functions used in 

translation rules and some #include statements for the library functions used in translation rules. All the C 

statements mentioned above are enclosed in the special brackets %{and %}. This can be seen from lines 4 

through 6 where the #defi ne for WORD is done within special brackets. Anything appearing between these 

special brackets is copied verbatim into lex.yy.c

The translation rules section consists of statements in the following form:

Pattern1      { Action 1 }

Pattern2      { Action 2 }

Pattern3      { Action 3 }

where Pattern1, Pattern2,... Pattern n are all regular expressions, and the Action 1, Action 2,... Action n are 

all program segments describing the action to be taken when the pattern matches. The pattern is a regular 

expression that we learnt in the previous section. The action is typically a return statement indicating the 

type of token that has been matched as can be seen from line 9 of ‘words.l’. There are a few generated 

global variables that can be used in the action statements. For example, yytext contains the lexeme, yyleng 

gives the length of the lexeme. For the tokens that do not have any signifi cance for the parser (like white 

space, new line, etc.) the action statement would not have a return statement as seen by lines 11 and 12.
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The auxiliary functions section extends from line 15 till the end of the program. The auxiliary functions 

section usually contains the defi nition of the C functions used in the action statements. The whole section is 

copied “as is” into lex.yy.c. In ‘words.l’ example, we have also defi ned the ‘main( )’ in auxiliary section.

The code from line 34 to 45 is refl ective of the parser to lexical analyser interaction. The function yylex 

is called repeatedly to get the next token of the input. The return value of yylex is indicates the type of 

token. A 0 return value signifi es the end of input. We can observe that the yylex routine is called repeatedly 

to continue getting the next token until the end of the input.

2.1.2 A Lexical Analyser for C Language

In the last section we understood the lexical specifi cation fi le format and how to generate a lexical analyser 

from lexical specifi cation fi le using the tool fl ex. In Table 2.3, we saw how C constructs can be specifi ed in 

regular expressions. In this section, we put these concepts into practice and generate a lexical analyser for C 

language program.

The following dialog shows the steps of converting the ‘c-lex.l’ lexical specifi cation fi le into a C lexical 

analyser. The C lexical analyser is shown splitting an input C program into tokens. The lexical analyser 

of the toy C compiler (mycc) that we are developing incrementally in this book is based on this lexical 

specifi cation.

# Compiling the Lexical Specs to generate lex.yy.c

$ fl ex c-lex.l

# Compiling the lex.yy.c to generate a binary

$ gcc lex.yy.c -o lex_analyzer -lfl

# Input C program for tokenizing

$ cat -n test2.c

  1 int

  2 main ()

  3 {

  4    int i;

  5

  6    /* This is a comment.This will be stripped by Lexical Analyzer */

  7

  8    for (i = 0; i < 10; i++) {

  9       printf (“Hello World\n”);

 10    }

 11 }

# Lexical Analyzer Tokenizing the input C Program

$ ./lex_analyzer test2.c

Lexeme=[int] Length=3    Token is INT

Lexeme=[main] Length=4    Token is IDENTIFIER

Lexeme=[(]  Length=1    Token is LP

Lexeme=[)]  Length=1    Token is RP

Lexeme=[{]  Length=1    Token is LC

Lexeme=[int] Length=3    Token is INT

Lexeme=[i]  Length=1    Token is IDENTIFIER

Lexeme=[;]  Length=1    Token is SEMI

Lexeme=[for] Length=3    Token is FOR
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Lexeme=[(]  Length=1    Token is LP

Lexeme=[i]  Length=1    Token is IDENTIFIER

Lexeme=[=]  Length=1    Token is EQUAL

Lexeme=[0]  Length=1    Token is CONSTANT

Lexeme=[;]  Length=1    Token is SEMI

Lexeme=[i]  Length=1    Token is IDENTIFIER

Lexeme=[<]  Length=1    Token is LT

Lexeme=[10]  Length=2    Token is CONSTANT

Lexeme=[;]  Length=1    Token is SEMI

Lexeme=[i]  Length=1    Token is IDENTIFIER

Lexeme=[++]  Length=2    Token is INC_OP

Lexeme=[)]  Length=1    Token is RP

Lexeme=[{]  Length=1    Token is LC

Lexeme=[printf] Length=6    Token is IDENTIFIER

Lexeme=[(]  Length=1    Token is LP

Lexeme=[“Hello World\n”] Length=15 Token is STRING_LITERAL

Lexeme=[)]  Length=1    Token is RP

Lexeme=[;]  Length=1    Token is SEMI

Lexeme=[}]  Length=1    Token is RC

Lexeme=[}]  Length=1    Token is RC

2.2 THE MECHANICS OF LEXICAL ANALYSER GENERATORS

In the previous section, we understood how a lexical analyser generator like fl ex could transform lexical 

specifi cations of a language into a lexical analyser. The rest of the chapter discusses the concepts and 

algorithms that lexical analyser generators like fl ex would use to generate the lexical analyser from the 

lexical specifi cations.

The lexical analyser generated by a lexical analyser generator tools like fl ex can be broadly divided into 

2 components

 (1) A recogniser component, to recognise all the input strings that match the regular expressions 

specifi ed in the translation rules of the lexical specifi cations fi le.

 (2) An action component, which is the manifestation of the action, specifi ed in the translation rules 

on recognising a specifi ed pattern.

Figure 2.5 shows the idea of a recogniser component and action component in a lexical analyser 

generated by fl ex. The generated code is shown in a pseudo-code manner.

The recogniser component is built by converting the regular expressions given in the lexical specifi cation 

fi le into a  fi nite state machine (FSM). The next section (Section 2.2.1) discusses in detail what an FSM is 

and how it can be used to determine if the input matches any of the regular expression. The crux of the 

lexical analyser generator lies in conversion of the RE into FSM and using it to check if the input matches 

the RE.

The action component is a straightforward copy of the actions mentioned in the lexical specifi cations 

fi le.
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Fig. 2.5 Mechanics of lexical analyser generator

2.2.1 Finite State Machines—DFA and NFA

In the context of lexical analysis, a fi nite state machine is a mechanism used to recognise a particular 

pattern in a given input. For example, a fi nite state machine can be used to recognise keywords like ‘while’ 

and ‘for’ in a given C program.

A fi nite state machine consists of:

•   A fi nite number of states.

•   A set of transitions from one state to another on the receipt of inputs, e.g. transition from state 1 to 

state 2 on receiving an input of ‘A’, state 1 to state 3 on input of ‘B’, etc.

• A start state.

•   A set of accepting states, each signifying the successful recognition of input as a token. 

A fi nite state machine can be visually represented by a labelled directed graph called a  transition 

diagram. The transition diagram shown in Fig. 2.6 represents the fi nite state machine, which recognises the 

C language keywords for and while.

Fig. 2.6 Transition diagram for keywords ‘for’ and ‘while’
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Each state is depicted using a circle. Receiving a certain input causes a transition from one state to 

another. For example, while in state 1, on receiving an input ‘o’, there would be a transition from state 1 to 

state 2. The edge represents the character in the input based on which the transition between states happen. 

For example, the transition between state 4 and state 5 can only happen if the input is ‘h’. The states with 

concentric circles are called as  accepting states. They signify a successful recognition of a particular input 

string as a token. For example, reaching state 8 signifi es that the input contained a ‘while’ in it.

A fi nite state machine can also be represented by a  transition table, in which each row represents a state 

and each column an input. The transition table equivalent of Fig. 2.6 is shown in Table 2.4. By observing 

the row corresponding to state 0, we can conclude that in state 0 an input of ‘w’ would cause a transition 

to state 4, while an input of ‘f’ in state 0 would cause a transition to state 1. Similarly, observing the row 

corresponding to state 1, we can conclude that an input of ‘o’ would cause a transition to state 2. In state 1, 

an input of ‘e’ is not defi ned, hence represented by a null (–) transition.

Table 2.4 Transition table

State
Input Symbol

e f h i l o r w

0 – 1 – – – – – 4

1 – – – – – 2 – –

2 – – – – – – 3 –

3 – – – – – – – –

4 – – 5 – – – – –

5 – – – 6 – – – –

6 – – – – 7 – – –

7 8 – – – – – – –

 8 – – – – – – – –

A transition diagram of the type shown in Fig. 2.6 can be implemented by using 3 data structures:

•   A variable holding the current state.

•   Transition table, a two-dimensional array for computing the next state. The next state is computed by 

indexing the table on the basis of current state and the input character. In other words, next_state = 

transition_table[current_state][input_char] using the C language syntax of a two-dimensional array.

•  Accept marker, a single-dimensional array indexed by current state used to determine if the state is an 

accepting state or not. The accept marker array for the transition table shown in Table 2.4 is shown 

below. Observe that accept[3] and accept[8] are 1, signifying that they are accepting states.

– – – 1 – – – – 1

The following dialog shows an implementation of a fi nite machine that recognises the keywords ‘for’ and 

‘while’ using the data structures just discussed.

# Compiling trans.c to get a Binary

$ gcc -Wall trans.c -o trans

# Sample input fi le
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$ cat -n test3.c

 1  int

 2  main ()

 3  {

 4  int i = 0;

 5

 6  while (i < 5) {

 7    printf (“Hi\n”);

 8    i++;

 9  }

 10

 11  for (i = 0; i < 10; i++) {

 12      printf (“Hello World\n”);

 13  }

 14 }(

# Tokenizing the input C program

$ ./trans test3.c

found ‘while’ Return Val=8

found ‘for’ Return Val=3

The fi nite state machine that we saw till now is called as  deterministic fi nite automaton or DFA. It is 

called deterministic because the next state can be determined by knowing the current state and the next 

input character.

There is another type of fi nite state machine called as  non-deterministic fi nite state machine or  NFA. 

An NFA differs from the DFA in the following aspects:

An empty transition denoted by special symbol Œ — epsilon is possible in NFA. This transition (also 

called as epsilon transition) can be made on empty string without advancing input. For example, the 

transition diagram shown in Fig. 2.6 is modifi ed in Fig. 2.7 to show the epsilon transition. The transitions 0 

to 1 and 0 to 5 do not require any input.

Fig. 2.7 NFA transition diagram showing epsilon transition

An NFA has no limitations on the number and type of edges. Two outgoing edges can have the same 

label. For example, the keywords char and case of C language can be recognised by a NFA shown in 

Fig. 2.8. Note that transitions 0 to 1 and 0 to 5 can happen on input ‘c’. Another NFA that can recognise the 

C language keywords case and char is shown in Fig. 2.9. As you would understand in the next few sections, 

it is easier to convert an RE to the kind of NFA shown in Fig. 2.9 rather than Fig. 2.8.

Fig. 2.8 NFA can have two outgoing edges having same label ‘c’
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Fig. 2.9 NFA recognising C keywords ‘char’ and ‘case’

In DFA, the next state can be determined by having the current state and the input character. In NFA, the 

next set of states can be determined by knowing the current set of states and the next input character. For 

example, the NFA shown in Fig. 2.9, if the current state is {0}, then on receiving an input of ‘c’, the next set 

of states is {2,7} (recall that Œ transition does not need any input). This can be represented mathematically 

by:

 next({0},’c’) = {2,7}

Subsequent to that if another input say ‘h’ is received then the next set of states is {8}. This can be 

represented mathematically by:

 next({2,7},’h’) = {8}

Some other advanced aspects on which NFA and DFA can be compared are listed in Table 2.5.

Table 2.5 NFA v/s DFA comparison

NFA DFA

A regular expression can be easily converted to NFA by 

using Thompson’s construction. 

A regular expression can be converted to DFA, but it is 

complex. The usual method for deriving a DFA from a 

regular expression is to fi rst convert the RE to NFA and 

then translate the NFA to DFA.

NFA is optimised on space. However, it requires more 

computation to be done in order to verify if the input 

matches an RE.

The DFA is optimised in time, but it requires more 

memory for storing the state information. This is due to 

the number of DFA states being greater than the number 

of states of a corresponding NFA.

The time taken to recognise a string matching a regular 

expression using the RE’s NFA increases, when the 

length of the RE increases. For example, the time taken 

to recognise a string matching a regular expression 

‘ab|cd|ef’ is greater than ‘ab|cd’, which is greater than 

‘ab’.

The time taken to recognise a RE using its DFA is 

independent of the length of RE. For e.g. the time taken 

to recognise a string matching a regular expression 

‘ab|cd|ef’ is same as ‘ab|cd’, which is same as ‘ab’

This is a very important characteristic that weighs heavily 

in favour of using DFA in lexical analysers.

2.2.2 From Lexical Specifi cations to Lexical Analyser

The recogniser component of the lexical analyser (Fig. 2.5) is built by converting the regular expressions 

given in the lexical specifi cation fi le into a fi nite state machine. The fi nite state machine could be an NFA 

or a DFA. The choice is DFA when speed is important and there are no memory constraints. In other cases 

where memory is at premium and speed can be compromised, the choice is NFA. In practice, most of the 

lexical analyser generators including fl ex base the recogniser component on a DFA.

Typically, lexical analyser generators convert the input lexical specifi cation fi le into a lexical analyser in 

the following 4 steps as shown in Fig. 2.10.

 Step 1: Translate the regular expressions in the input lexical specifi cations fi le into NFA.

 Step 2: Convert the NFA into DFA.
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 Step 3: Minimise the number of DFA states.

 Step 4: Generate the code for the lexical analyser using the minimised DFA.

Fig. 2.10 Stages of lexical analyser generator

In step 1 of Fig. 2.10, the regular expressions given in the lexical specifi cation fi le are converted into 

NFA by using an algorithm called as Thompson’s construction. The second step converts the NFA to DFA. 

The memory required to implement a DFA depends on the number of states in the DFA. The DFA obtained 

in step 2 is usually not optimised in terms of the number of states and hence might turn out having a higher 

memory requirement. In order to reduce the memory needed, the number of states in DFA is minimised 

using several techniques in Step 3. Finally using the minimised DFA, the code is generated for the lexical 

analyser in step 4.
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2.3 RLEX A RESTRICTED LEXICAL ANALYSER GENERATOR

This section is devoted to understanding the 4 steps shown in Fig. 2.10 for converting lexical specifi cations 

into a lexical analyser. In the process of grasping the 4 steps, we build a toy lexical analyser generator 

called rlex (restricted lexical analyser).  rlex is a lexical analyser generator similar to ‘fl ex’, but with a 

restricted feature set in the interest of keeping it simple and focused on the concepts of lexical analysis. The 

development of rlex is done in step-by-step fashion to explain concepts and show relevant examples.

Each one of the next four sub-sections represents a step in making of a lexical analysis generator. While 

Sub-section 2.3.1 represents the step1 of lexical analyser generator, i.e. translation of regular expression to 

NFA, Sub-section 2.3.2 discusses the second step of lexical analyser generator, which is the conversion of 

the NFA to DFA, and so on.

2.3.1 Translating Regular Expression to NFA

The algorithm to convert a  regular expression to NFA was fi rst given by Ken Thompson, when he was 

working on the QED editor at Bell Labs.

The fi rst step in the algorithm is to break up the input regular expression into smaller components that 

are easier to process independently. 

Consider the regular expression abc*ef|ij(kl)? for discussion, this is broken up into:

 1.  Terminal symbols that individually represent an atomic unit of regular expression. For example, in 

the above regular expression a, b, c, e, etc. represent terminal symbols.

 2.  Factor, which represent the grouping of a terminal symbol with a closure operator like *, ?, + etc. 

For example, in the above regular expression c* represents a factor.

 3.  Sub-expressions, which themselves constitute a single regular expression. For example, in the 

above RE, ef is a sub-expression, ij is another sub-expression, (kl) is another sub-expression.

The process of splitting the input into smaller components as explained above, is illustrated in 

Fig. 2.11.

Fig. 2.11 Parsing a regular expression

After the regular expression is broken up into smaller components, viz. terminal symbols, factor and 

sub-expressions, NFA’s are created for each of those using the following rules.

 (1) For a terminal symbol, the NFA is shown below:
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 (2) For concatenation of two regular expressions, for example, ab, the NFA is shown below:

 (3) For alternation of two regular expressions, for example, a|b, the NFA is shown below:

 (4) For a factor, the NFA is shown below:

 (5) For a sub-expression, the NFA is similar to concatenation shown earlier, excepting the fact that 

the whole of sub-expression needs to be considered as a single unit.
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The translation of a regular expression to NFA involves 2 steps.

 1. Parse the regular expression to break it up to terminal symbols, factor and sub-expressions.

 2. Use the rules given above to formulate NFA for the regular expression.

In step (a), we break up the input RE after parsing it character by character into terminal symbols, factor 

or sub-expressions. The step (b) uses the rules given above and makes the NFA. The following example is 

an implementation of the above 2 steps for converting a regular expression into an NFA.

2.3.1.1 Example 1—Translation of Regular Expression to NFA This section demonstrates an 

example program that can convert a given regular expression into NFA using the theory described in the 

preceding section. The program takes a regular expression on the command line, converts it into an NFA 

and prints out the details of the NFA. The output of the program is in the form of translation table that we 

discussed earlier. The program is also capable of taking a single lexical specifi cation translation rule (recall 

Section 2.1.1.2) and printing out the details of the resultant NFA. The dialog below shows the example 

program taking in different regular expressions, and printing out the NFA details.

# Making the example

$ g++ -g -Wall rlex.cc ex1.cc -o ex1

# The argument is any regular expression

$ ./ex1 ‘abcd’

    NFA Transition Table

============|===============================

State       | Input symbol

            | a b c d  epsilon

============|===============================

START 0 | -  -  -  -  { 1 }

 1  | 2  -  -  -  -

 2  | -  -  -  - { 3 }

 3  | -  4  -  -  -

 4  | -  -  -  -  { 5 }

 5  | -  -  6  -  -

 6  | -  -  -  -  { 7 }

 7  | -  -  -  8  -

ACCEP 8  | -  -  - -  -

 ========== |============================

# Another regular expression

$ ./ex1 ‘(a|b|c)?d’

    NFA Transition Table
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============|===============================

State  | Input symbol

  |a b c d epsilon

=========== |===============================

START  0  |- - - - { 11 }

 1  |2  -  -  -  -

 2  |-  -  -  -  { 6 }

 3  |-  4  -  -  -

 4  |-  -  -  -  { 6 }

 5  |-  -  -  -  { 1 3 }

 6  |-  -  -  -  { 10 }

 7  |-  -  8  -  -

 8  |-  -  -  -  { 10 }

 9  |-  -  -  -  { 5 7 }

 10 |-  -  -  -  { 12 }

 11 |-  -  -  -  { 9 12 }

 12  |-  -  -  - { 13 }

 13  |-  -  - 14  -

ACCEP  14  |-  -  -  -  -

============|===============================

# Another regular expression

$ ./ex1 ‘(a|b)*abb’

    
 
NFA Transition Table

===========|=====================

State  | Input symbol

  | a b epsilon

===========|=====================

START 0 | - - { 7 }

 1 | 2 - -

 2  | -  - { 6 }

 3  | -  4 -

 4  | -  - { 6 }

 5  | -  -  { 1 3 }

 6 | -  -  { 8 5 }

 7  | -  -  { 5 8 }

 8  | -  -  { 9 }

 9  | 10 -  -

 10  | -  -  { 11 }

 11  | - 12 -

 12  | - - { 13 }

 13  | - 14 -

 ACCEP 14  | - - -

===========|=====================

# The argument can be a Translation rule of a Lex fi le

$ ./ex1 ‘ab printf(“ab found”);’

      NFA Transition Table
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==========|=====================

State      | Input symbol

  | a b epsilon

==========|=====================

START 0 | - -  { 1 }

 1  | 2 - -

 2 | - -  { 3 }

 3  | - 4  -

ACCEP  4  | - -  - Accept Action is [ {printf(“ab found”);}]

==========|=====================

2.3.1.2 Interpreting an NFA In Section 2.3.1.1, we looked  at how to convert a regular expression 

into an NFA, which is the fi rst step in Fig. 2.10 lexical analyser generator. In this section, we examine how 

to use the NFA created from regular expression to recognise if a given input string matches the regular 

expression or not.

Consider a regular expression ‘(a|b)*abb’ for discussion. The NFA for it can be derived using the earlier 

example—ex1 as shown in the dialog below:

# The argument is any regular expression

$ ./ex1 ‘(a|b)*abb’

  NFA Transition Table

============|=====================
State   | Input symbol
   | a b epsilon
=========== |=====================
START   0  |  -  -  { 7 }

   1  |  2  -  -

   2  |  -  -  { 6 }

   3  |  -  4  -

   4  |  -  -  { 6 }

   5  |  -  - { 1 3 }

   6  |  -  -  { 8 5 }

   7  |  -  -  { 5 8 }

   8  |  -  -  { 9 }

   9  |  10  -  -

  10  |  -  -  { 11 }

  11  |  -  12  -

  12  |  -  -  { 13 }

  13  |  -  14  -

 ACCEP 14  |  -  - -
============|=====================

Figure 2.12 shows the graphic view of NFA constructed from the output of ex1.



  Lexical Analysis 43

Fig. 2.12 NFA for ‘(a|b)*abb’

In an NFA, at any given point there are ‘n’ states waiting in parallel for input. This is due to the fact that 

an Œ transition can be taken without input. For example, in the NFA shown in Fig. 2.12, the start state is 0. 

The Œ transitions that can be taken from state 0 without having any input are:

  0 Æ 7

  0 Æ 7Æ 5

  0 Æ 7Æ 5Æ 3

  0 Æ 7Æ 5Æ 1

  0 Æ 7Æ 8

  0 Æ 7Æ 8 Æ 9

  0 Æ 0

Thus, the NFA States that can be reached from 0 on Œ transitions alone are {7,5,3,1,8,9,0}. Note that 

we include the state from which the Œ transitions originate (state 0 in this case) automatically. Figure 

2.13 shows the NFA states (shaded) that are reachable on Œ transitions alone. This set of states that are 

waiting for input in parallel, due to the epsilon transitions alone is called as Œ-closure set. It is denoted by 

e-closure(s), where s is a state. Thus,

 Œ-closure ({0}) = { 0 7 5 3 1 8 9 }

Fig. 2.13 Illustration of Œclosure set

On receiving an input symbol in a particular state, we need to apply the transition to all of the NFA 

states waiting in parallel at that point. For example, consider an input symbol ‘a’ received in the start state 

for the above NFA, the NFA states waiting in parallel as seen above are {0 7 5 3 1 8 9}. We should 

apply the transition to all of these states. Out of these states, only state 1 and state 9 have a valid transition 

for the input character ‘a’. Applying the transition for ‘a’ on these states, we get state 2 and 10 respectively 

as shown in Fig. 2.14. This set of NFA States {2,10}, which has been derived by applying a transition for 

an input symbol to all of the NFA states waiting in parallel, is called as move set. Formally stated, move 

(T, a) represents the set of NFA states to which there exists a transition on input symbol ‘a’ from some NFA 

state s in T.
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 move_set({ 0 7 5 3 1 8 9 }, a ) = {2,10}

Fig. 2.14 Illustration of move set

2.3.1.3 Algorithm for Interpreting an NFA We shall use the concepts of closure set and move set to 

devise the algorithm for interpreting an NFA.

The algorithm for  interpreting an NFA is presented in Algorithm 2.1. The basic strategy of the algorithm 

is to:

 1. Identify all the NFA States waiting in parallel. This is done by computing the e closure set.

 2. Take in the next input character and apply the transition on all of the NFA States waiting in 

parallel. This is done by computing the move set and then applying epsilon closure on it.

 3. If the resulting NFA state out of applying transition in step 2, is an accepting state return a 

SUCCESS. If the resultant NFA State is not an accepting state, then go to step 2.

start_state is the start state of the NFA
cur_ptr is a pointer to the line of text being checked for match with the regular expression

nfa_accept_set is the set containing all the accept states in the NFA

interpret_nfa()

{
 current_set = Œ-closure(start_state)

 start_set = current_set ;

 while((c= *cur_ptr) != End-of-line){

  move_set=move(current_set,c)

  e_closure_set=e_closure(move_set)

  if(e_closure_set is not empty set){

   If(e_closure_set « nfa_accept_set){

    Return(SUCCESS) ;

   }

   current_set = e_closure_set;

  } else {

   if(current_set != start_set){

    current_set = start_set;

    continue;
   }

  }

  cur_ptr ++ ;
 }

 return (FAILURE) ;
}

Algorithm 2.1 Interpreting NFA
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Let us see the algorithm at work given an input string ‘aabb’ for the NFA shown in Fig. 2.12.

Initially the NFA states that are waiting in parallel for input is given by:

 e_closure( {0} ) = { 0 1 3 5 7 8 9 }  ………………………… (I)

On consuming the fi rst ‘a’ of the input, the NFA states that are waiting for input in parallel is determined by

 move({ 0 1 3 5 7 8 9 },a)= { 2 10 }

 e_closure({ 2 10 })= { 1 2 3 5 6 8 9 10 11 }  ………………………… (II)

On consuming the second ‘a’ of the input, the NFA states that are waiting for input is determined by

 move({ 1 2 3 5 6 8 9 10 11 },a)= { 2 10 }

 e_closure({ 2 10 })= { 1 2 3 5 6 8 9 10 11 }  ………………………… (III)

On consuming the next character of the input ‘b’, the NFA states that are waiting for input is determined by

 move({ 1 2 3 5 6 8 9 10 11 },b)= { 4 12 }

 e_closure({ 4 12 })= { 1 3 4 5 6 8 9 12 13 }  ………………………… (IV)

On consuming the next character of the input ‘b’, the NFA states that are waiting for input is determined by

 move({ 1 3 4 5 6 8 9 12 13 },b)= { 4 14 }
 e_closure({ 4 14 })= { 1 3 4 5 6 8 9 14 }  ………………………… (V)

The accept state of 14 is found in (V), thus signalling the match of the input to the RE.

Programs such as these that can read a string as an input and output SUCCESS, if the string is a sentence 

in the language or failure, if it is not are called as recognisers. The egrep utility that we used in Section 

2.1.1.1 is a good example of a recogniser.

2.3.1.4 Example 2—Interpreting NFA This section demonstrates an example program that is similar 

to the functionality of egrep utility. The program implements Algorithm 2.1 for interpreting the NFA and 

reporting if the input string matches the regular expression or not. The program takes in a regular expression 

and fi le name to search for a string that matches the regular expression. The output of the program is the 

lines in the fi le matching the regular expression along with the line numbers. The dialog below shows the 

example program taking in different regular expressions and fi le names, and printing out the lines in the fi le 

matching the regular expression.

# Making the example

$ g++ -g -Wall rlex.cc ex2.cc -o ex2

# Use the fi le that we used before for learning about the regular expressions

$ cat -n my_input

 1 sink

 2 base

 3 start

 4 dog

 5 goat

 6 boost

 7 easter

 8 ported

 9 global

 10 boss

 11 labs

# Matches b followed by zero or any number of o then s
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$ ./ex2 ‘bo*s’ my_input

6:boost

10:boss

11:labs

# Matches b followed by one or any number of o then s

$ ./ex2 ‘bo+s’ my_input

6:boost

10:boss

# Matches b followed by one or no o then s

$ ./ex2 ‘bo?s’ my_input

10:boss

11:labs

# Matches oa or ort

$ ./ex2 ‘oa|ort’ my_input

5:goat

8:ported

# Matches oa or os followed by t

$ ./ex2 ‘(oa|os)t’ my_input

5:goat

6:boost

# Verbose mode

# Test fi le containing a string

$ cat -n test4

 1 aabbb

$ ./ex2 -v ‘(a|b)*abb’ test4

 NFA Transition Table

=========== |=====================

State       | Input symbol

            |   a    b    epsilon

=========== |=====================

START  0 | -  -  { 7 }

 1  | 2  -  -

 2  | -  - { 6 }

 3  | -  4  -

 4  | -  -  { 6 }

 5  | -  -  { 1 3 }

 6  | -  -  { 8 5 }

 7  | -  -  { 5 8 }

 8  | -  -  { 9 }

 9  | 10  -  -

 10  | -  -  { 11 }

 11 | -  12  -

 12  | -  -  { 13 }
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 13  | -  14  -

ACCEP  14  | -  -  -

=========== |=====================

e_closure({ 0 }) = { 0 1 3 5 7 8 9 }

move({ 0 1 3 5 7 8 9 },a)= { 2 10 }

e_closure({ 2 10 })= { 1 2 3 5 6 8 9 10 11 }

move({ 1 2 3 5 6 8  9 10 11 },a)= { 2 10 }

e_closure({ 2 10 })= { 1 2 3 5 6 8 9 10 11 }

move({ 1 2 3 5 6 8 9 10 11 },b)= { 4 12 }

e_closure({ 4 12 })= { 1 3 4 5 6 8 9 12 13 }

move({ 1 3 4 5 6 8 9 12 13 },b)= { 4 14 }

e_closure({ 4 14 })= { 1 3 4 5 6 8 9 14 }

Accept State =14

1:aabbb

2.3.2 Converting NFA to DFA

In Section 2.3.1, we learnt how to convert a regular expression to NFA and interpret an NFA to recognise 

strings that match a regular expression. While the NFA can be used to recognise strings matching the 

regular expression, there is an inherent disadvantage. The time taken to recognise an input string using the 

NFA is dependent on the number of NFA states. The time taken to determine if an input string x, matches 

a regular expression ‘r’ is proportional to length of ‘x’ multiplied by length of ‘r’. Due to this, complex 

regular expressions take longer time to recognise input string if the NFA is used. This is the reason why 

NFA is not used commonly for recognising the strings. The DFA does not have this problem. Hence NFA 

is converted to DFA and used for recognising input strings matching regular expression. The technique of 

converting the  f is explained in this section. 

This represents the second step (conversion of NFA to DFA) in the development of a lexical analyser 

generator shown in Fig. 2.10.

Consider the regular expression ‘(a|b)*abb’ whose NFA was discussed in section 2.3.1.2. We shall try 

and convert the same NFA into DFA. The NFA is reproduced here for discussion.

Fig. 2.15 NFA for (a|b)*abb

The basic principle on which the NFA to DFA conversion works is that each DFA state corresponds to a 

set of NFA states that are waiting in parallel for input.

Initially the NFA states that are waiting in parallel for input is given by

 e_closure( {0} ) = { 0 1 3 5 7 8 9 }   ( DFA State 0 )

This NFA set { 0 1 3 5 7 8 9 } is the starting DFA state (state 0).
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On scanning the regular expression ‘(a|b)*abb’ , it can be concluded that the set of all possible input 

characters that can result in transitions leading to recognition of the input are {a b}. The next few DFA 

states are derived by simulating the inputs {a b}. Thus,

Applying transitions of a and b on DFA state 0

 move ( { 0 1 3 5 7 8 9 } ,a )= { 2 10 }
 e_closure ( { 2 10 })= { 1 2 3 5 6 8 9 10 11 }  ( DFA State 1 )
 move ( { 0 1 3 5 7 8 9 } ,b )= { 4 }
 e_closure ( { 4 })= { 1 3 4 5 6 8 9 }   ( DFA State 2 )

The transition table for these 2 transitions can be represented by:

 dtran[0,’a’] = 1
 dtran[0,’b’] = 2

Applying transitions of a and b on DFA State 1:

 move ( { 1 2 3 5 6 8 9 10 11 } ,a )= { 2 10 }
 e_closure ( { 2 10 })= { 1 2 3 5 6 8 9 10 11 } ( same as DFA state 1)
 move ( { 1 2 3 5 6 8 9 10 11 } ,b )= { 4 12 }
 e_closure ( { 4 12 })= { 1 3 4 5 6 8 9 12 13 } ( DFA State 3 )

The transition table for these 2 transitions can be represented by:

 dtran[1,’a’] = 1
 dtran[1,’b’] = 3

Applying transitions of a and b on DFA State 2:

 move ( { 1 3 4 5 6 8 9 } ,a )= { 2 10 }
 e_closure ( { 2 10 })= { 1 2 3 5 6 8 9 10 11 } ( same as DFA State 1 )
 move ( { 1 3 4 5 6 8 9 } ,b )= { 4 }
 e_closure ( { 4 })= { 1 3 4 5 6 8 9 }    ( same as DFA State 2 )

The transition table for these 2 transitions can be represented by:

 dtran[2,’a’] = 1
 dtran[2,’b’] = 2

Applying transitions of a and b on DFA State 3:

 move ( { 1 3 4 5 6 8 9 12 13 } ,a )= { 2 10 }
 e_closure ( { 2 10 })= { 1 2 3 5 6 8 9 10 11 } ( same as DFA State 1 )
 move ( { 1 3 4 5 6 8 9 12 13 } ,b )= { 4 14 }
 e_closure ( { 4 14 })= { 1 3 4 5 6 8 9 14 }  ( DFA State 4 )

The DFA state 4 is an accepting DFA state since it contains NFA State 14, which is an accepting NFA 

state.

The transition table for these 2 transitions can be represented by:

 dtran[3,’a’] = 1
 dtran[3,’b’] = 4

Applying transitions of a and b on DFA State 4:

 move ( { 1 3 4 5 6 8 9 14 } ,a )= { 2 10 }
 e_closure ( { 2 10 })= { 1 2 3 5 6 8 9 10 11 } ( same as DFA State 1 )
 move ( { 1 3 4 5 6 8 9 14 } ,b )= { 4 }
 e_closure ( { 4 })= { 1 3 4 5 6 8 9 }    ( same as DFA State 2 )

The transition table for these 2 transitions can be represented by:

 dtran[4,’a’] = 1
 dtran[4,’b’] = 2
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Note that the transitions have been applied on all of the DFA states (1,2,3,4) that signals the end of the 

algorithm. The resultant DFA is shown in Fig. 2.16.

Fig. 2.16 Resultant DFA for (a|b)*abb

Algorithm 2.2 formalises the ideas that we just discussed.

start_state is the start state of the NFA

nfa_accept_set is the set containing all the accept states in the NFA

dfa_tab is the set of resulting dfa states after conversion of NFA to DFA

dtran is the Transition Table

nfa_to_dfa()
{
 e_closure_set = e_closure(start_state)
 Add a new DFA State to dfa_tab which corresponds to e_closure_set;

 If(e_closure_set « nfa_accept_set){
  Mark the DFA State as an Accepting State
 }

 for(each DFA state T in dfa_tab ){
  for ( each possible input character ‘c’ )
   current_set = The NFA Set corresponding to T;
   move_set=move(current_set,c)
   e_closure_set=e_closure(move_set)
   if ( There is a DFA State d, which corresponds to e_closure_set
   ){
    dtran[T,c]= d ;
   }else {
    Add a new DFA State ‘n’ into dfa_tab which corresponds to
    e_closure_set

    If(e_closure_set « nfa_accept_set){
     Mark the DFA State as an Accepting State
    }
    dtran[T,c]=  n ;
   }
  }
 }
}

Algorithm 2.2 Conversion of NFA to DFA
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The DFA that we obtain by using Algorithm 2.2 can be used to determine if an input string matches a 

regular expression or not. We discuss the details on how the DFA can be interpreted to recognise a string in 

Section 2.3.2.2.

2.3.2.1 Example 3—Converting NFA to DFA This section demonstrates an example program that 

that converts an NFA to DFA using Algorithm 2.2. The program takes a regular expression on the command 

line, and prints out its NFA and the equivalent DFA. The NFA and DFA are shown in the form of a 

translation table. The dialog below shows the example program taking in different regular expressions and 

printing out the NFA and DFA details.

# Making the example

$ g++ -g -Wall rlex.cc ex3.cc -o ex3

# The NFA and the corresponding DFA for ab*c

$ ./ex3 ‘ab*c’

        NFA Transition Table

============ |==========================

State   | Input symbol

  | a  b  c epsilon

============ |==========================

START  0 |  -  -  -  { 1 }

 1  |  2  -  -  -

 2 |  -  -  -  { 5 }

 3 |  -  4  -  -

 4 |  -  -  -  { 6 3 }

 5 |  -  -  -  { 3 6 }

 6 |  -  -  -  { 7 }

 7  |  -  -  8  -

ACCEP  8 |  -  -  -  -

============ |==========================

       DFA Transition Table

============ |===============

State  | Input symbol

  |  a  b  c

=========== |===============

START  0  | 1  -  -

 1  | -  2  3

 2  | -  2  3

ACCEP  3  | - -  -

============ |===============

# The NFA and the corresponding DFA for (a|b|c)+abb

$ ./ex3 ‘(a|b|c)+abb’

         NFA Transition Table
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============ |==========================

State  | Input symbol

  |  a  b  c  epsilon

============ |==========================

START 0 | - - - { 11 }

 1 | 2  -  -  -

 2  |  -  -  -  { 6 }

 3  |  -  4  -  -

 4  |  -  -  -  { 6 }

 5  |  -  -  -  { 1 3 }

 6  |  -  -  -  { 10 }

 7  |  -  -  8  -

 8  |  -  -  -  { 10 }

 9  |  -  -  -  { 5 7 }

 10  |  -  -  - { 12 9 }

 11  |  -  -  -  { 9 }

 12  |  -  -  -  { 13 }

 13  |  14  -  -  -

 14  |  -  -  -  { 15 }

 15  |  -  16 -  -

 16  |  -  -  -  { 17 }

 17  |  -  18  -  -

ACCEP  18  |  -  - - -

============ |==========================

      DFA Transition Table

============ |===============

State  | Input symbol

  | a  b  c

============ |===============

START  0  | 1  2  3

 1 | 4  2  3

 2  | 4  2  3

 3  | 4  2  3

 4 | 4  5  3

 5  | 4  6  3

ACCEP 6  | 4  2  3

============ |===============

# Verbose mode

$ ./ex3 -v ‘ab’

        NFA Transition Table

============ |=====================

State   | Input symbol

  | a b epsilon

============ |=====================

START  0 | -  -  { 1 }

 1  | 2  -  -

 2  | -  -  { 3 }
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 3  | -  4  -

ACCEP  4  | -  -  -

============ |=====================

DFA State=0 Corresponding NFA Set: { 0 1 }

DFA State=1 Corresponding NFA Set: { 2 3 }

DFA State=2 Corresponding NFA Set: { 4 }

  DFA Transition Table

============ |==========

State  | Input symbol

  | a b

============ |==========

START 0 | 1  -

 1 | -  2

ACCEP 2  | - -

============ |==========

# Another Regular Expression

$ ./ex3 -v ‘(a|b)+cd’

              NFA Transition Table

============ |===============================

State   |  Input symbol

  | a  b  c  d  epsilon

============ |===============================

START  0 | - - - - { 7 }

 1  | 2  -  -  -  -

 2  | -  -  - -  { 6 }

 3  | -  4  -  -  -

 4  | -  -  - -  { 6 }

 5  | -  -  -  - { 1 3 }

 6  | -  -  -  - { 8 5 }

 7  | -  -  -  - { 5 }

 8  | -  -  -  - { 9 }

 9  | -  -  10 - -

 10 | -  -  - - { 11 }

 11  | -  -  - 12 -

ACCEP 12 | -  -  -  -  -

============ |===============================

DFA State=0 Corresponding NFA Set: { 0 1 3 5 7 }

DFA State=1 Corresponding NFA Set: { 1 2 3 5 6 8 9 }

DFA State=2 Corresponding NFA Set: { 1 3 4 5 6 8 9 }

DFA State=3 Corresponding NFA Set: { 10 11 }

DFA State=4 Corresponding NFA Set: { 12 }

     DFA Transition Table

============ |====================

State   |  Input symbol
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  | a  b  c  d

============ |====================

START 0  |  1  2  - -

 1 | 1  2  3  -

 2  | 1  2  3  -

 3  | -  -  -  4

ACCEP  4 | -  -  -  -

============ |====================

# Another Regular Expression

$ ./ex3 -v ‘(a|b)*abb’

       NFA Transition Table

============ |======================

State   |  Input symbol

  | a b epsilon

============ |=====================
START 0 | -  - { 7 }
 1 | 2  -  -
 2  | -  -  { 6 }
 3  | -  4  -
 4  | -  -  { 6 }
 5  | -  -  { 1 3 }
 6  | -  -  { 8 5 }
 7  | -  -  { 5 8 }
 8  | -  -  { 9 }
 9  | 10  -  -
 10  | -  -  { 11 }
 11  | -  12  -
 12  | -  -  { 13 }
 13  | -  14  -
ACCEP  14  | -  -  -
============ |=====================

DFA State=0 Corresponding NFA Set: { 0 1 3 5 7 8 9 }
DFA State=1 Corresponding NFA Set: { 1 2 3 5 6 8 9 10 11 }
DFA State=2 Corresponding NFA Set: { 1 3 4 5 6 8 9 }
DFA State=3 Corresponding NFA Set: { 1 3 4 5 6 8 9 12 13 }
DFA State=4 Corresponding NFA Set: { 1 3 4 5 6 8 9 14 }

     DFA Transition Table

============ |=================
State   | Input symbol
  | a  b
============ |=================
START 0 | 1  2
 1 | 1  3
 2 | 1  2
 3 | 1  4
ACCEP 4 | 1 2
============ |=================
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2.3.2.2 Interpreting DFA In the last few sections, we learnt how to convert a regular expression to 

an NFA and create a DFA from an NFA. This section shows how a DFA can be interpreted to recognise the 

strings matching the regular expression.

Consider the regular expression ‘ab*c’ for discussion. The NFA and the corresponding DFA can be obtained 

by using the executable ex3 shown in Section 2.3.2.1.

# The NFA and the corresponding DFA for ab*c

$ ./ex3 ‘ab*c’

          NFA Transition Table

=========== |==========================

State  | Input symbol

   | a  b c epsilon

=========== |==========================

START 0 | -  - - { 1 }

  1  |  2  -  -  -

  2 |  -  -  -  { 5 }

  3  | -  4  -  -

  4  |  -  -  -  { 6 3 }

  5  |  -  -  -  { 3 6 }

  6  |  -  -  -  { 7 }

  7  |  -  - 8  -

ACCEP  8  |  -  -  -  -

===========|==========================

     DFA Transition Table

===========|===============

State  | Input symbol

   | a  b  c

=========== |===============

START  0 |  1  -  -

  1  |  -  2  3

  2  |  -  2  3

ACCEP  3 | -  - -

===========|===============

Fig. 2.17 DFA for ‘ab*c’

Figure 2.17 shows the visual representation of the DFA for ‘ab*c’ derived above by running Example 3.

Let us simulate an input string ‘abbbc’ to the above DFA. The initial state of the DFA is state 0. The 

following table shows the transitions occurring due to the input string. 
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Current state
Input 

character
Next state

0 a 1

1 b 2

2 b 2

2 b 2

3 c 2 (accepting state)

The transitions above yield an accepting state (state 3) and hence the string is recognised to match the RE.

Lets consider another input ‘abbabbc’, for which the transitions are shown below:

Current state
Input 

character
Next state

0 a 1

1 b 2

2 b 2

2 a

No transition specifi ed. 

So retry the transition from the start 

state

0 a 1

1 b 2

2 b 2

2 c 2 (accepting state)

Again, the transitions above yield an accepting state (state 3) and hence the string is recognised to match 

the RE.

The transitions occurring in the DFA can be formalised in the following algorithm:

cur_state holds the state number

move(state,c) gives the next state by looking at the Transition Table

interpret_dfa()

{

 cur_state=0;

 c=nextchar();

 while ( c is not end-of-input ) {

  cur_state = move (cur_state, c);

  if ( cur_state is ACCEPTING_STATE ) {

   return (SUCCESS);

  }

  c = nextchar();

 }

 return(FAILURE);

}

Algorithm 2.3 DFA interpretation
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2.3.2.3 Example 4—Interpreting DFA This section demonstrates an example program that is similar 

to the functionality of ‘egrep’ utility. The program uses the DFA to recognise if the input matches the regular 

expression or not. The program takes a regular expression and fi le name to search for a string that matches 

the regular expression. The output of the program is the lines matching the regular expression along with 

the line numbers. The dialog below shows the example program taking in different regular expressions and 

fi le names, and printing out the lines in the fi le matching the regular expression.

# Making the example

$ g++ -g -Wall rlex.cc ex4.cc -o ex4

# Use the fi le that we used before for learning about the Regular Expressions

$ cat -n my_input

 1 sink

 2  base

 3  start

 4  dog

 5  goat

 6  boost

 7  easter

 8  ported

 9  global

 10  boss

 11 labs

# Matches b followed by zero or any number of o then s

$ ./ex4 ‘bo*s’ my_input

6:boost

10:boss

11:labs

# Matches b followed by one or any number of o then s

$ ./ex4 ‘bo+s’ my_input

6:boost

10:boss

# Matches b followed by one or no o then s

$ ./ex4 ‘bo?s’ my_input

10:boss

11:labs

# Matches oa or ort

$ ./ex4 ‘oa|ort’ my_input

5:goat

8:ported

# Matches oa or os followed by t

$ ./ex4 ‘(oa|os)t’ my_input

5:goat

6:boost

# Verbose mode



  Lexical Analysis 57

# Test fi le containing strings

$ cat -n test5

    1 abbbc

    2 cbbbc

    3 aaaaaaaabbbc

$ ./ex4 -v ‘(a|b)*abb’ test5

       NFA Transition Table

========== |=====================

State  | Input symbol

  |  a   b    epsilon

========== |=====================

START 0 | - - { 7 }

 1  | 2  -  -

 2  |  -  -  { 6 }

 3  |  -  4  -

 4  |  -  -  { 6 }

 5  |  -  -  { 1 3 }

 6  |  -  -  { 8 5 }

 7  |  -  -  { 5 8 }

 8  |  -  -  { 9 }

 9  |  10  -  -

 10  |  -  -  { 11 }

 11  |  -  12  -

 12  |  -  -  { 13 }

 13  |  -  14  -

ACCEP 14 |  -  -  -

========== |=====================

     DFA Transition Table

========== |================

State  | Input symbol

  |  a  b

========== |================

START 0 | 1 2

 1  |  1  3

 2  |  1  2

 3  |  1  4

ACCEP 4  |  1  2

========== |================

1:abbbc

3:aaaaaaaabbbc

2.3.3 Minimisation of DFA States

In Section 2.3.2.3, we learnt about converting an NFA to DFA and how DFA can be interpreted to recognise 

strings that match a regular expression. When an NFA is converted into DFA, the resulting number of DFA 

states is not optimised. It is possible to reduce the number of DFA states, thereby consuming lesser memory 

for storing the DFA data structures and improving memory effi ciency. This section discusses the techniques 

to reduce the number of DFA states to a minimum for a given DFA.
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From the lexical analyser generator development point of view, this is the third step ( minimisation of 

DFA states) shown in Fig. 2.10.

Consider the regular expression ‘(a|b|c)+abb’ . We can get the DFA by invoking the binary created as a 

part of Example 3, as shown in the dialog below.

# The NFA and the corresponding DFA for (a|b|c)+abb

$ ./ex3 ‘(a|b|c)+abb’

         NFA Transition Table

========= |==========================

State  | Input symbol

  | a  b c   epsilon

============|==========================

START 0 | - - - { 11 }

 1 | 2 - - -

 2 |  -  -  -  { 6 }

 3  |  -  4  -  -

 4  |  -  -  -  { 6 }

 5  |  -  -  -  { 1 3 }

 6  |  -  -  -  { 10 }

 7  |  -  -  8  -

 8  |  -  -  -  { 10 }

 9  |  -  -  -  { 5 7 }

 10  |  -  -  -  { 12 9 }

 11  |  -  -  -  { 9 }

 12 | -  -  -  { 13 }

 13  |  14  -  -  -

 14  |  -  -  -  { 15 }

 15  |  -  16 -  -

 16  |  -  -  -  { 17 }

 17  |  -  18  -  -

ACCEP 18 |  -  -  -  -

========== |==========================

    DFA Transition Table

========== |===============

State   | Input symbol

  |  a  b  c

========== |===============

START  0 | 1 2 3

 1  |  4  2  3

 2  |  4  2  3

 3  |  4  2  3

 4  |  4  5  3

 5  |  4  6  3

ACCEP  6  |  4  2  3

========== |===============
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The following observations can be made by looking at the DFA states 1, 2, and 3.

•  All the 3 states make a transition to DFA state 4, given the input ‘a’.

•  All the 3 states make a transition to DFA state 2, given the input ‘b’.

•  All the 3 states make a transition to DFA state 3, given the input ‘c’.

•  The transitions for states 1, 2 and 3 are defi ned for inputs a, b, c only.

We can replace the DFA states 1, 2 and 3 by a single state, which has transitions to itself on inputs b and 

c. On given an input of ‘a’, the transition will be to the DFA state 4. It is likely that the state 4 might have to 

be re-named to different state (for example, state 2 or 3) in the wake of reduction of three states to a single 

state.

Comparing state 4 and state 5 in the above DFA, both of the states make a transition to state 4 on 

receiving an input ‘a’; both of the states make a transition to 3 on receiving input of ‘c’. However, on 

receiving the input ‘b’ state 4 transitions to 5, while state 5 transitions to 6. The states 4 and 5 are said to be 

 distinguished from each other by the input ‘b’.

The algorithm for reducing the number of DFA states works by:

•  Creating groups of states that are distinguished by some input string.

•  Merging the group of states that cannot be distinguished into a single state.

Let us try to minimise the DFA states in the example by using the above principle. In the fi rst pass, we 

scan all the DFA states to separate out the accepting states and non-accepting states, this would yield 2 

groups as shown in the table below:

DFA states Group

  0,1,2,3,4,5 (non-accepting) 1

  6 (accepting) 2

In the second pass, we compare the states in each of the groups to separate out the states that are not 

identical. Thus, we compare state 0 with state 1, with respect to transitions on all possible inputs, we fi nd 

that in state 0, the transition for ‘a’ is 1, while in state 1, the transition for ‘a’ is 4. Hence, we create a new 

group 3, into which state 1 is placed. Next, we compare state 0 with 2, they are different with respect to 

transitions on input ‘b’, hence state 2 is also moved to group 3. This kind of comparison of state 0 is done 

with 3, 4, and 5 also, since none of them are identical to 0 with respect to transitions on all inputs, all of 

them are moved to group 3. Thus we have at the end of the comparisons,

DFA states Group

  0 1

  6 (accepting) 2

  1,2,3,4,5 3

Next, we perform the same kind of operation on group 3. We compare state 1 with state 2 with regard to 

transitions on all possible inputs. Since they are identical, we retain the state 2 in group 3 itself. The same 

happens for state 3. When state 1 is compared with state 4, it is found that they are different with respect to 

transition on ‘b’, hence it will be moved into a new group 4. When state 1 is compared with 5, it is found 

that they are different with respect to transition on ‘b’, hence it will be moved into group 4. Thus we have at 

the end of the comparisons,
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DFA states Group

  0 1

  6 (accepting) 2

  1,2,3 3

  4,5 4

Next, we perform the same kind of operation on group 4. We compare state 4 with state 5 with regard to 

transitions on all possible inputs. When state 4 is compared with state 5, it is found that they are different 

with respect to transition on ‘b’, hence state 5 will be moved into a new group 5. Thus we have at the end 

of the comparisons,

DFA states Group

  0 1

  6 (accepting) 2

  1,2,3 3

  4 4

  5 5

Since group 5 contains only 1 element, there would be no comparisons necessary.

We have successfully created 5 groups of states. Note that the elements of each group have identical 

transactions with respect to all inputs and can be merged into a single state. We can assign new state 

numbers to the groups as shown in the following table :

DFA states Group New DFA 

state

  0 1 0

  6 (accepting) 2 1

  1,2,3 3 2

  4 4 3

  5 5 4

Thus we were able to reduce the number of DFA states from 7 to 5 by creating groups of states that are 

distinguished by some input string and merging the group of states that cannot be distinguished into a single 

state. This algorithm has been formalised below:

dfa_tab is a array containing all the DFA States

Groups is an array of group

minimise_dfa ()

{

 for ( each group g in Groups ){

  d1 = fi rst DFA State in the Group g ;

  new_group is empty;

  for ( each subsequent DFA State d in g ){

  if ( DFA State d is not identical to d1 with respect
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     to transitions on all possible inputs ){

   Add it to new_group

  }

 }

 if(new_group is not empty)

  Add new_group to Groups

 }

   }

   Create a new Transitions Table with group index as the state number

}

Algorithm 2.4 Minimise DFA

2.3.3.1 Example 5—Minimising DFA States This section demonstrates an example program that can 

translate a given regular expression into NFA, convert the NFA to DFA and minimise the DFA states. The 

program implements Algorithm 2.4 for minimising the DFA states. The program takes a regular expression 

on the command line, translates it into NFA, converts the NFA to DFA, minimises the DFA states and prints 

out the NFA/DFA translation tables. The dialog below shows the example program taking in different 

regular expressions and printing out the NFA and DFA details.

# Making the example

$ g++ -g -Wall rlex.cc ex5.cc -o ex5

# Verbose mode

# Minimising DFA States

$ ./ex5 -v ‘(a|b)*abb’

      NFA Transition Table

============ |=====================

State   | Input symbol

  |  a b epsilon

============ |=====================

START 0 | - - { 7 }

 1  |  2  -  -

 2  |  -  -  { 6 }

 3  | -  4  -

 4  |  -  -  { 6 }

 5  |  -  -  { 1 3 }

 6  |  -  -  { 8 5 }

 7  |  -  -  { 5 8 }

 8  |  -  -  { 9 }

 9  |  10  -  -

 10  |  -  -  { 11 }

 11  |  -  12  -

 12  |  -  -  { 13 }

 13  |  -  14  -

ACCEP 14 | -  -  -

============ |=====================

    DFA Transition Table
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============ |================

State   |  Input symbol

  |  a  b

============ |================

START 0  |  1  2

 1  | 1  3

 2  | 1 2

 3  |  1  4

ACCEP  4  |  1  2

============ |================

No of Old States=5 No of New States=4

Old State=0 New State=0

Old State=1 New State=2

Old State=2 New State=0

Old State=3 New State=3

Old State=4 New State=1

    MIN DFA Transition Table

============ |================

State   |  Input symbol

  |  a  b

============ |================

START  0 |  2  -

ACCEP  1  |  2  -

 2  |  2  3

 3  |  2  1

============ |================

# Another Regular Expression

$ ./ex5 -v ‘(a|b|c)+’

            NFA Transition Table

============ |==========================

State   |  Input symbol

  |  a  b  c  epsilon

============ |==========================

START  0  |  -  -  - { 11 }

 1  | 2  -  -  -

 2  |  -  -  -  { 6 }

 3  |  -  4  -  -

 4  |  -  -  -  { 6 }

 5  |  -  -  -  { 1 3 }

 6  |  -  -  -  { 10 }

 7  |  -  -  8  -

 8  |  -  -  -  { 10 }

 9  |  -  -  -  { 5 7 }

 10  |  -  -  -  { 12 9 }

 11  |  -  -  -  { 9 }

ACCEP  12  |  -  -  -  -

=============|==========================
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      DFA Transition Table

============ |===============

State   |  Input symbol

  |  a  b c

 ============ |=======================

START 0  |  1  2  3

ACCEP  1  |  1  2  3

ACCEP  2  |  1  2  3

ACCEP  3  |  1  2  3

============ |=======================

No of Old States=4 No of New States=2

Old State=0 New State=0

Old State=1 New State=1

Old State=2 New State=1

Old State=3 New State=1

    MIN DFA Transition Table

============ |===================

State   |  Input symbol

  |  a  b  c

============ |===================

START  0  |  1  1 1

ACCEP  1  |  1  1  1

============ |===================

2.3.4 Generate the Code for the Lexical Analyser using the Minimised DFA

In the previous sections we understood the concepts of converting a regular expression into NFA, 

converting the NFA to DFA and then minimising the number of DFA states. Now, we enter the last phase of 

lexical analysis (step 4), namely the generation of C language code that can be compiled to make a lexical 

analyser.

As we saw in Section 2.2.1, the main data structures that are required to interpret a DFA are (1) 

transition table; (2) fl ag to indicate whether a given state is accepting state or not. The DFA interpreting 

algorithm (Algorithm 2.3) operates on these data structures to determine if a given input matches the 

regular expression or not. The DFA interpreting algorithm is a standard one and hence the code for it can be 

generated statically from a template. The two data structures mentioned above are the only thing that varies 

depending on the input regular expression. Thus in order to generate a lexical analyser, we need to:

 (a)  Export the transition table and an accept marker that can indicate if a given state is an accepting 

state or not into the lexical analyser. These two data structures are dependent on the input lexical 

specifi cation fi le.

 (b)  Generate the code for a standard DFA interpreting algorithm (Algorithm 2.3) that remains the 

same regardless of the input lex fi le. This is the recogniser component of lexical analyser shown in 

Fig. 2.5.

 (c) Generate the code for the action component shown in Fig. 2.5. This is dependent on the input lexical 

specifi cations fi le.
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The following describes the design issues that need to be addressed for generating lexical analyser code

•  In a lexical analyser, even when the input character string does not match the regular expression, 

there is usually some default action that needs to be taken, like echoing the character onto the screen. 

This can be taken care by having a stack in which input characters are stored and then control can 

fl ow to the specifi c action block or the default action block depending on whether it matches a regular 

expression or not.

•  For generating the code of standard  DFA interpretation algorithm, there are two possible approaches: 

(a) generate the code from a template fi le or (b) generate the code from stored static strings in the 

lexical analyser generator. In rlex, the latter approach has been chosen.

•  In this chapter, till now, we were having a single regular expression to convert to NFA then to DFA, 

and interpret it. In a lexical specifi cation fi le, there could be a number of rules (regular expressions), 

which need to be addressed simultaneously. Consider an input lexical specifi cation fi le having 3 rules. 

After converting them to NFA individually, each of them would have a start state say nfa_s1, nfa_s2 

and nfa_s3. A single NFA can be built out of them by creating 3 new NFA nodes (n1, n2, n3) and 

interconnecting these using the Œ transitions. A new NFA start node (nfa_start) can be used as a start 

for the entire NFA. This is shown in the fi gure below. This NFA can then be converted to DFA and 

then interpreted.

• The interpretation of DFA shown in Algorithm 2.3 returns with the shortest sub-string that matches 

a regular expression, but a lexical analyser needs to return the longest sub-string that matches the 

regular expression. This type of regular expression matching where the longest sub-string match is 

returned is called  greedy interpretation of the RE; e.g. consider a regular expression ‘abc*’ and an 

input string ‘abccccd’, In a  non-greedy interpretation, the RE match would yield ab while the greedy 

interpretation would return ‘abcccc’. In order to cater to greedy version, the DFA Interpretation 

shown in Algorithm 2.3, needs to be modifi ed a little bit as shown in Algorithm 2.5. The modifi cation 

is to keep track of the last accepting state and continue taking the input until there is transition from 

accepting state to non-accepting state. When such a transition occurs, we signal that the match is 

complete. In lexical analyser generator rlex, we generate code for lexical analyser which uses the 

greedy interpretation of DFA shown in Algorithm 2.5.
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cur_state stores the current state of the DFA

move(state,c) gives the next state by looking at the Transition Table

interpret_greedy_dfa()

{

 last_accept_state = -1

 while ( c is not end-of-input ) {

  cur_state = move(cur_state, c);

  if ( cur_state is ACCEPTING_STATE ) {

   last_accept_state=cur_state;

  }else{

   if(last_accept_state != -1 ){

    return(SUCCESS);

   }

  }

  c = nextchar();

 }

 if(last_accept_state != -1){

   return(SUCCESS);

 } else {

   return(FAILURE);

 }

}

Algorithm 2.5 Greedy DFA interpretation

2.3.4.1 Example 6—Lexical Analyser Code Generation using the minimised DFA This section 

demonstrates a lexical analyser generator—rlex, which generates code for a lexical analyser given a lexical 

specifi cations fi le. ‘rlex’ is a lexical analyser generator similar to ‘fl ex’. It implements most of the theory 

we have learnt in the previous sections. ‘rlex’ takes in a lexical specifi cations fi le and generates code for 

a corresponding lexical analyser. The ‘rlex’ lexical analyser generator handles only a few of the meta 

characters shown in Table 2.1, hence it cannot work with full-fl edged C language lexical specifi cations. The 

dialog below shows ‘rlex’ taking in ‘keywords.l’—a lexical specifi cation that identifi es and returns only the 

keywords as tokens and ignores everything else. The dialog illustrates rlex lexical analyser generator taking 

the input lexical specifi cations and generating code for the lexical analyser.

# Building the lexical Analyzer Generator

$ g++ -g -Wall rlex.cc ex6.cc -o rlex

# Compiling Lex fi le using rlex to generate C Code for Lexical Analyzer

$ ./rlex keywords.l >out.c

# Building Lexical Analyzer Binary

$ gcc -g out.c -o lexer

# Input fi le to be tokenized

$ cat -n test8.c

 1 int

 2 main ()
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 3  {

 4   int i = 0;

 5

 6   while (i < 5) {

 7    puts (“Hi\n”);

 8    i++;

 9   }

 10

 11  for (i = 0; i < 10; i++) {

 12   puts (“Hello World\n”);

 13  }

 14  }

# Lexical Analyser at work !

$ ./lexer test8.c

Lexeme=[int]  Length=3 Token is INT

Lexeme=[int]  Length=3 Token is INT

Lexeme=[while] Length=5 Token is WHILE

Lexeme=[for]  Length=3 Token is FOR

    SUMMARY

Lexical analysis is the fi rst stage in compilation of a source program written in a higher-level 

language like C or C++. The lexical analyser reads the input source program and produces as output 

a sequence of tokens that the parser uses for syntax analysis. In order to facilitate the development of 

lexical analysers for any higher-level language easily, lexical analyser generators are used. A lexical 

analyser generator is a tool that can generate code to perform lexical analysis of the input, given 

the rules for the basic building blocks of the language. The rules for the basic building blocks of a 

language are called its lexical specifi cations. This chapter describes in detail the 4 steps that lexical 

analyser generators follow in order to generate the lexical analyser from the lexical specifi cations.

    REVIEW QUESTIONS AND EXERCISES

 2.1 What are the main functions of a lexical analyser?

 2.2 State whether the following statements are true or false:

  (a) A lexical analyser strips out the comments and white spaces from input source program.

  (b) The part of the input stream that qualifi es for a certain type of token in a lexical analyser is 

called as lexeme.

  (c) The lexical analyser keeps track of the new line characters, so that it can output the line 

number with associated error messages, in case of errors in the input source program.

  (d) The lexical analyser helps in creation of symbol table.

 2.3 Why do we need to have lexical analyser generators? What are its advantages?
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 2.4 How does a lexical analyser generator like ‘fl ex’ convert the lexical analysis specifi cation to a 

lexical analyser? What are the steps involved?

 2.5 What is a regular expression? How is it used in lexical specifi cations?

 2.6 What is a regular defi nition? Specify an identifi er and a hexadecimal constant in C language 

taking the help of regular defi nitions.

 2.7 What are the limitations of regular expressions? Can a regular expression be used for detecting 

simple C language statements?

 2.8 What are the various components of a lexical specifi cation fi le? Illustrate with an example.

 2.9 What is a fi nite state machine? How is it visually represented? Give an example of FSM to 

recognise 3 keywords in C language?

 2.10 What are deterministic fi nite machines and non-deterministic fi nite machines? List out the 

differences between them.

 2.11 How do you translate a regular expression to an NFA? Translate (a|b|c)?d into an NFA and draw 

its transition diagram.

 2.12 Write an algorithm to interpret an NFA and report if a given string matches the NFA. Illustrate 

with an example.

 2.13 What is a move set? What is an epsilon closure set? Give examples. How are they used in 

reporting if a given string matches a regular expression?

 2.14 Why do lexical analyser generators use and interpret DFA to report if a given input string 

matches the given regular expression, rather than using an NFA? What are the advantages of 

using a DFA?

 2.15 How is an NFA converted to a DFA? Illustrate for a sample regular expression ‘(a|b)*abb’.

 2.16 Write an algorithm to interpret a DFA and report if a given string matches the DFA.

 2.17 Why is the step to minimise the number DFA states required during the process of generating a 

lexical analyser from the lexical specifi cations? Give the algorithm to minimise the number of 

DFA states for a given DFA.

 2.18 What are the main design issues to be considered while generating the code for lexical analyser 

given the minimised DFA?

 2.19 State whether the following statements are TRUE or FALSE:

  (a) A lexical analyser generator translates the regular expressions given in lexical specifi cation 

fi le into NFA. The NFA is then converted to DFA. The DFA is minimised to eliminate 

duplicate states. The minimised DFA is then used to generate the lexical analyser.

  (b) An NFA cannot be used to recognise whether a given input string matches it or not. Hence, 

the NFA is converted to DFA in a lexical analyser generator.

  (c) The generated lexical analysers use a greedy interpretation while matching the regular 

expressions provided in the lexical specifi cations fi le.

  (d) A lexical analyser generator cannot be used to generate lexical analyser for different 

programming languages.

 2.20 The extended regular expressions offer more facilities to recognise patterns than the basic regular 

expressions. List out the additional meta characters and their signifi cance in the extended regular 

expressions.

 2.21 Most of the operating systems provide a regular expression library that can be used in the 

programs to match input strings. Write a program on LINUX to use the ‘regex’ library to check if 

a given string is a valid internet protocol address (IP address)?

 2.22 Write a regular expression that can detect C language comments. Support both the single line 

comment syntax ( // ) and multi-line comment syntax ( /* */ ).
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 2.23 A meta-character is used to signify a special meaning within a regular expression. How do you 

turn off the special meaning and recognise a string containing the meta character literally? Write a 

regular expression that can detect sentences in a text fi le containing a full-stop at the end of the line.

 2.24 Write a lexical analyser that can recognise an identifi er and a few of the keywords in C language 

without using a lexical analyser generator. Compare the effort required for implementing the 

same by having a lexical analyser generated from a lexical specifi cation fi le. This should justify 

the need to have lexical analyser generator tools.

 2.25 Write a lexical specifi cations fi le supporting a small subset of ANSI-C language and generate the 

lexical analyser for the same using ‘fl ex’. Check whether the lexical analyser can tokenise some 

sample input C fi les.



Introduction

 Syntax analysis is the second stage in compilation of a source program 
after lexical analysis. While lexical analyser reads the input source 
program and produces as output a sequence of tokens, syntax analysis 
verifi es if the tokens are properly sequenced in accordance with the 
grammar of the language. Consider, for example a C program as 
input to the compiler as shown in Fig. 3.1. To understand the function 
of syntax analysis, let us take the statement in line number 8 of the 
input C program. The lexical analyser separates it into 5 tokens, 
namely, identifi er (count), equal to operator (=), identifi er (count), 
plus operator (=), constant (1), followed by semicolon (;). The syntax 
analyser verifi es if the sequence of identifi er followed by equal to 
operator, identifi er, plus operator, and a constant is a valid sequence 
in the grammar of C language. The syntax analyser returns success, 
if the sequence is defi ned in the grammar of C language, or failure in 
case it is not defi ned. In cases where the statement does not match 
the grammar specifi ed for the language, the syntax analyser detects 
the error, emits appropriate error message to the user and if possible, 
recovers from the error.

The syntax analysis (or  parsing) is performed by a module in the 
compiler called as  syntax analyser or parser. For the parser to perform 

3

SYNTAX  ANALYSIS
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syntax analysis, the grammar of the language needs to be specifi ed. How do we 
specify the grammar of the language?  Context-free grammar (CFG) is usually used to 
defi ne the grammar of a language. Context-free grammar can be adequately used for 
describing any programming language.

Fig. 3.1 Syntax analysis

Section 3.1 deals with how we can specify the context-free grammar using some 
standard notation. Section 3.2 shows the classifi cation of various techniques used 
for parsing. We discuss one class of parsing techniques called as top-down parsing 
in Section 3.4. Section 3.5 is devoted to another class of parsing techniques called 
as bottom-up parsing. Apart from verifying if the tokens are properly sequenced in 
accordance with the grammar of the language, the syntax analyser is responsible for 
reporting errors in the input source program and recovering from them. This is dealt 
with in Section 3.3.

3.1 CONTEXT FREE GRAMMAR

 Context-free grammar (CFG) is used to defi ne the syntactic structure of a programming language. It 

contains a set of rules called as productions or production rules.

To understand the productions and the other aspects of context-free grammar, let us take a look at a 

grammar that can describe a simple assignment statement in C language, like any one of the following:

count = 5 ;   /* Variant 1 */
count = index ;   /* Variant 2 */
count = 3*2 ;   /* Variant 3 */
count = count + index ;  /* Variant 4*/
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count = count + 1 ;  /* Variant 5 */
count = count * 2 + 5 ;   /* Variant 6 */
count = count * 2 + index ; /* Variant 7 */

The context-free grammar in Table 3.1 defi nes the syntax of a simple assignment statement in C 

language such as the ones shown above. The context-free grammar in Table 3.1 contains 4 productions 

numbered accordingly.

Table 3.1 Context-free grammar

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3 c_expression Æ IDENTIFIER

4 c_expression Æ c_expression OPERATOR c_expression

The Æ in each of the productions of Table 3.1 may be read as ‘can take the form’. The production rule 

1 can thus be interpreted as ‘A C statement can take the form of an IDENTIFIER followed by an equal-to-

operator, C expression and a semicolon’. The production 2 can be interpreted as, ‘A C expression can take 

the form of a CONSTANT’. The production 3 can be interpreted as ‘A C expression can take the form of an 

IDENTIFIER’. The production 4 can be interpreted as ‘A C expression can take the form of a C expression 

followed by an OPERATOR and a C expression’. The production 4 defi nes the C expression in terms C 

expression itself recursively.

In general, a context-free grammar consists of the following components:

 1. A set of tokens called as  terminal symbols. These tokens cannot be sub-divided into smaller 

elements. The lexical analyser provides these as tokens as a part of tokenising the input. In the 

above example, IDENTIFIER, CONSTANT, SEMI_COLON, OPERATOR and EQ_TO_OP are the 

terminal symbols. They are denoted by capital letters. In the above example, the lexical analyser 

returns OPERATOR as the token type on encountering any of the operators ‘+’ or ‘–’ or ‘*’ or ‘/’.

 2. A set of  non-terminal symbols. These can be broken down into smaller components. In the above 

example, c_expression, and c_statement are the non-terminal symbols. These are usually denoted by 

lower-case letters. The recursive defi nition of non-terminals (e.g. production 4) is extensively used 

while defi ning grammar for programming languages.

 3. A set of productions where each production consists of a non-terminal called as the left-side of 

the production, an arrow and a sequence of tokens and/or non-terminals called as the right-side of 

the production. For example, the c_expression is the left-side and CONSTANT is the right-side of 

production 2.

 4. A designation of one of the non-terminals called as  start symbol. This requires some explanation. 

Let’s say we want to check whether the input is a simple C assignment statement such as variant 1 

or variant 2. In such case, the start symbol is c_statement. Let’s say in another scenario, we want to 

check whether the input is a simple C expression. In such case, the start symbol is c_expression. In 

the above example, since we are looking to validate one simple C assignment statement as input, the 

start symbol is a c_statement.

The grammar of a programming language expressed in the form shown in of Table 3.1 is also referred 

to as  Backus-Naur form (BNF) in recognition to the contributions by the authors Backus and Naur. There 

are several alternatives to the notation used to represent a grammar in BNF. Table 3.2 shows one of the 
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popular notations accepted by automatic parser generators like bison and yacc. The notation used in Table 

3.2 uses the colon (:) symbol instead of the Æ symbol to separate the LHS and the RHS of a production. 

The semicolon (;) is used to indicate the end of the production.

Table 3.2 Production rules for a single C-statement using an alternate notation

1 c_statement : IDENTIFIER EQ_TO_OP  c_expression SEMI_COLON

;

2 c_expression : CONSTANT

;

3 c_expression : IDENTIFIER

;

4 c_expression : c_expression OPERATOR c_expression

;

Apart from these the symbol of vertical bar ( | ) indicating an OR condition is also used commonly to 

show the production rules having the same LHS together. The production rules 2, 3 and 4 can be shown 

together using ‘|’ as shown below:

2 c_expression : CONSTANT

3 | IDENTIFIER

4 | c_expression OPERATOR c_expression

;

By looking at production rules 2, 3, 4 we can infer that c_expression consists of CONSTANT (rule 2) or 

IDENTIFIER (rule 3) or c_expression followed by OPERATOR and c_expression (rule 4).

Till now the discussion was mostly with regard to defi ning and expressing context-free grammar. Let us 

now see how to identify if a given input string is in conformance to the syntax specifi ed by the grammar or not.

In order to prove that an input is syntactically in conformance to grammar, we need to prove that it can 

take one of the generic forms deduced from the productions. There are several ways of proving this. One of 

the methods involves the following procedure.

 1. Expand the start symbol. For example, if we are trying to prove that an input is a C statement 

conforming to the grammar specifi ed in Table 3.1, the start symbol is the c_statement.

 2. Repeat step 3 until there are no more non-terminals to replace.

 3. Replace the leftmost non-terminal by one of its right-hand sides.

 4. Exit.

This process of showing how an input can be verifi ed for conformance to a grammar is called as 

 derivation. Figure 3.2 illustrates the method for checking if the input ‘count = count + 5 – index;’ is in 

conformance with the grammar in Table 3.1. We use a symbol =>, which means ‘derives’ in the proof.

Figure 3.2 proves that the statement count = count + 5 – index; is indeed part of the grammar specifi ed 

in Table 3.1.

The entire sequence of replacements as seen in Figure 3.2 is called as derivation of ‘count = count + 

5 – index;’ from c_statement. It shows the proof that one instance of c_statement is ‘count = count + 5 

– index;’.
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The process used in Figure 3.2 for the derivation of ‘count = count +5 – index;’ is called as  leftmost 

derivation because we replaced the leftmost non-terminal in the partially parsed sentence with equivalent 

production’s right-hand side.

Fig. 3.2 Derivation of ‘count= count +5 –index ;’

In step 1, we saw that the c_statement (start symbol of the grammar in Table 3.2) took a form 

‘IDENTIFIER EQ_TO_OP c_expression SEMI_COLON’. In step 2, we saw that the c_statement took a form 

‘IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON’. In all, we saw 6 forms 

corresponding to each step in Fig. 3.2. These forms are called  sentential forms of the grammar. In the fi nal 

step (step 6), the form is ‘IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT OPERATOR 

IDENTIFIER SEMI_COLON. ‘All the elements of this form are terminals. This is called as a  sentence of 

the grammar in Table 3.2. In short a sentence is a sentential form in which all the elements are terminals 

only. Using a different substitution for c_expression, you can prove that the form ‘IDENTIFIER EQ_TO_

OP IDENTIFIER SEMI_COLON’ is another sentence generated out of the same grammar in Table 3.2. The 

collection of all the sentences that can be derived from the grammar is called as  context-free language. If 

two grammars generate the same context-free language, then grammars are said to be equivalent.

 In the above derivation of ‘count = count + 5 – index;’, we replaced the leftmost non-terminal in the 

sentential forms with the production’s right-hand side. Similarly, it is possible to replace the rightmost non-

terminal in the partially parsed sentence with equivalent production’s right-hand side and prove that the 

given statement is a C statement. This type of derivation is called as  rightmost derivation or  canonical 

derivation. Shown below is the derivation of count = count + 5 – index; using the rightmost derivation. 

The comment at the right in italics at each of the steps below indicates the production used at that particular 

step in the derivation. For example, by P3 indicates using the production 3.
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 c_statement => IDENTIFIER EQ_TO_OP c_expression     SEMI_COLON By P1

  => IDENTIFIER  EQ TO_OP c_expression OPERATOR c_expression   SEMI_COLON By P4

  => IDENTIFIER  EQ TO_OP c_expression OPERATOR c_expression OPERATOR c_expression SEMI_COLON By P4

  => IDENTIFIER  EQ TO_OP c_expression OPERATOR c_expression OPERATOR IDENTIFIER SEMI_COLON By P3

  => IDENTIFIER  EQ TO_OP c_expression OPERATOR CONSTANT OPERATOR IDENTIFIER SEMI_COLON By P2

  => IDENTIFIER  EQ TO_OP IDENTIFIER OPERATOR CONSTANT OPERATOR IDENTIFIER SEMI_COLON By P3

  => count = count + 5 – index ;

A parse tree is a graphical representation of a derivation. Let’s see what a parse tree looks like and how 

it is constructed by taking the example of the derivation of a C statement ‘count = count + 10 ;’ with the 

productions mentioned in Table 3.1.

The leftmost derivation proceeds as follows:

 c_statement => IDENTIFIER EQ_TO_OP c_expression    By P1

  => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON By P4

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR c_expression SEMI_COLON By P3

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON By P2

  => count = count + 10 ;

The construction of the parse tree for the derivation is shown in Fig. 3.3. The fi nal parse tree in 

Fig. 3.3(e) can be used to represent the entire derivation. The numbering of the interior nodes specifi es the 

order in which the derivation proceeded. Observe that the numbering of the interior nodes in the parse tree 

is actually a pre-order numbering. To recall, a pre-order traversal of tree visits the root, followed by left 

sub-tree and then the right sub-tree. To sum up, a pre-order traversal of the interior nodes of the fi nal parse 

tree replicates the entire leftmost derivation in totality.

A parse tree has the following properties:

∑ The root node is labelled with the start symbol. In the parse tree example shown at Fig. 3.3(e) the root 

node is c_statement.

∑ Each of the interior nodes, i.e. nodes having children, are labelled by a non-terminal. At each of the 

interior nodes, the children of the node are labelled from left to right by the symbols that are used 

for replacing it. In the parse tree shown at Fig. 3.3(e), we can see that there are two interior nodes 

labelled as c_expression, and one interior node labelled as c_statement.

∑ The leaves of the parse tree are labelled by terminals. When the leaves are read from left to right, they 

constitute the  yield of the tree. For example, in the parse tree shown in Fig. 3.3(e), the yield is count = 

count + 10;

∑ The parse tree is independent of the order of application of productions. For example, in the above 

derivation for count = count + 10;, the productions used were 1, 4, 3, and 2 in that order. The parse 

tree would be the same, even if we had used production 2 to replace the c_expression in the extreme 

right and then consequently used production 3 to replace the c_expression in the left.

∑ A pre-order traversal of the interior nodes of a parse tree brings out a unique leftmost derivation. 

The exact reverse of a post-order traversal of the interior nodes in a parse tree brings out a unique 

rightmost derivation. To recall, a post-order traversal of a tree is visiting the left sub-tree followed by 

right sub-tree followed by the root. For example, by observing the parse tree in Fig. 3.3(e) we can see 

that the unique leftmost derivation (pre-order) is as follows:

 c_statement => IDENTIFIER EQ_TO_OP c_expression

  => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR c_expression SEMI_COLON

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON

  => count = count + 10 ;

Similarly, we can deduce the unique rightmost derivation from the parse tree (reverse of post-order) in 

Fig. 3.3(e), as follows:
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Fig. 3.3 Parse tree construction for count=count + 10;
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c_statement => IDENTIFIER  EQ_TO_OP  c_expression

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR CONSTANT SEMI_COLON

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON

 =>       count        =      count         +          10           ;

Before we end the discussion on parse tree, let’s see the advantages of representing a derivation by a 

parse tree:

∑ It makes the hierarchical syntactic structure of the sentence explicit. By viewing the fi nal parse tree in 

Fig. 3.3(e), it is easy to make out the hierarchical structure of count=count+10.

∑ It illustrates the replacement of the productions clearly. Consider the C statement, count = count + 10 / 5;, 

as you can see later in the section, it can be derived in two ways. The parse trees shown in Fig. 3.4 

can clearly tell us what replacements were made in either case.

A grammar is said to be ambiguous if it produces more than one parse tree for the same sentence. 

 Ambiguous grammars produce more than one leftmost derivation or more than one rightmost derivation.

Consider a C statement ‘count = count + 10 / 5; ’. Let’s take a look at the leftmost derivation of this 

statement for checking its conformance with the grammar specifi ed in Table 3.1.

 c_statement => IDENTIFIER EQ_TO_OP c_expression     SEMI_COLON By P1

  => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression   SEMI_COLON By P4

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR c_expression   SEMI_COLON By P3

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR c_expression OPERATOR c_expression SEMI_COLON By P4

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT OPERATOR c_expression SEMI_COLON By P2

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT OPERATOR CONSTANT SEMI_COLON By P2

  => count = count + 10 / 5 ;

Another way of doing leftmost derivation, where the order of productions used varies from the previous case.

 c_statement => IDENTIFIER EQ_TO_OP c_expression     SEMI_COLON By P1

  => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression   SEMI_COLON By P4

  => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression OPERATOR c_expression SEMI_COLON By P4

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR c_expression OPERATOR c_expression SEMI_COLON By P3

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT OPERATOR c_expression SEMI_COLON By P2

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT OPERATOR CONSTANT SEMI_COLON By P2

  => count = count + 10 / 5 ;

Figure 3.4 shows the parse trees for both of the above derivations.

Observe that there exists more than one parse tree with differing yields. This would create a problem at 

the time of generating a code. Hence, it is imperative that we disambiguate the grammar.

How do we disambiguate these grammars?

The fundamental idea behind the disambiguation of grammars is to eliminate some of the undesirable 

parse trees by means of specifying one or more disambiguating rules.

In order to eliminate ambiguity, operators like *, /,+,– are grouped hierarchically according to their 

 precedence. Precedence specifi es the order of evaluation in an expression. Operations with higher 

precedence are carried out before operations having lower precedence. Table 3.3 shows a sample operator 

precedence in C language.

Table 3.3 Operator precedence

Operators Priority

+     – Lower priority

*     / Higher priority
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Fig. 3.4 Parse trees for count=count + 10 /5 ;

The operator precedence table shown in Table 3.3 will disambiguate statements like

count = count + 10/5;
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This will be evaluated as

 count = count + (10/5);

since division operator ‘/’ is of higher precedence compared to ‘+’ . It has eliminated the option of count 

= (count + 10)/5; since it gives an impression that plus operator has higher precedence than division 

operator.

The operator precedence table still does not disambiguate the cases like

 var1 = var2 / var3 * 5;

Since both ‘*’ and ‘/’ have the same precedence. This can be evaluated as

 var1 = (var2 / var3) * 5;

 or

 var1 = var2 / (var3 * 5);

This ambiguity is eliminated by specifying the order in which consecutive operations within same 

precedence group are carried on. This is called as  associativity. The operators of same precedence group 

can be evaluated from left to right (called as left to right associativity) or from right to left (called as right 

 to left associativity). Using C language norm that each of the precedence group in Table 3.3 have left to 

right associativity then

 var1 = var2 / var3 * 5;

would be evaluated to

 var1 = (var2 / var3) * 5;

since the expression is evaluated from left to right for the same precedence group of ‘*’ and ‘/’ . This has 

eliminated the case of var1 = var2 / (var3*5), since it gives the impression that evaluation has happened 

from right to left. In any case, natural order of evaluation can always be altered by use of parenthesis. 

The associativity and precedence rules mentioned above can also be refl ected in the grammar itself, even 

though it is cumbersome and non-intuitive.

Before we end this section on context-free grammars, let’s see the advantages of specifying the syntax of 

a language using context-free grammar.

∑ An effi cient parser can be constructed automatically from a properly designed grammar. This is very 

similar to building a lexical analyser given the lexical specifi cations in regular expression as discussed 

in Chapter 2. There are tools like  yacc,  bison that can convert syntax specifi cation in CFG form to a 

parser. Section 3.1.2 shows an example of generating a parser from a CFG using the above-mentioned 

tools.

∑ Specialised tools like ‘yacc’ and ‘bison’ can perform verifi cation and validation of CFG. They can 

detect fl aws like ambiguities, unused rules, etc. in a grammar. This helps in correcting the grammar 

in early design phase of a language before we decide what action should follow on detection of a 

particular sequence.

∑ The context-free grammar lends structure to a program easing out translation to intermediate code, as 

we would see in the later chapters.

3.1.1 Using Context-free Grammar to Automatically Generate a Parser

The automatic generation of a parser from the CFG is perhaps the most important use of the context-free 

grammar. The context-free grammar is included as a part of the grammar-specifi cations fi le supplied to a 

parser generator utility like ‘bison’ in order to generate a parser. In this section, we discuss the structure of 

the grammar-specifi cations fi le and how the context-free grammar fi ts into it.
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Listing 3.1 shows the grammar-specifi cation fi le corresponding to the context-free grammar for simple C 

assignment statement described in Table 3.1.

 1 %token IDENTIFIER CONSTANT OPERATOR EQ_TO_OP SEMI_COLON 

 2 %start c_statement

 3 %{

 4  #include <stdlib.h>

 5  #include <stdio.h>

 6  #include <string.h>

 7

 8  extern int yylex();

 9  int yyerror(char *s);

 10

 11 %}

 12

 13 %%

 14

 15 c_statement : IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

 16           ;

 17

 18 c_expression : CONSTANT

 19    ;

 20

 21 c_expression : IDENTIFIER

 22            ;

 23

 24 c_expression : c_expression OPERATOR c_expression

 25            ;

 26

 27 %%

 28

 29 extern int column;

 30 int yydebug = 0;

 31 char input_str[500];

 32

 33 int

 34 yyerror (char *s)

 35 {

 36  printf (“%s”, input_str);

 37  ffl ush (stdout);

 38  printf (“\n%*s\n%*s\n”, column, “^”, column, s);

 39  return (1);

 40 }

 41

 42 int

 43 main (int argc, char **argv)

 44 {

 45  int ret;

 46



80 Principles of Compiler Design

 47  if (argc != 2) {

 48   printf (“Usage: %s ‘C statement’ \n”, argv[0]);

 49   return (1);

 50  }

 51

 52  strcpy (input_str, argv[1]);

 53

 54  ret = yyparse ();

 55

 56  if (ret == 0) {

 57   printf (“%s”, input_str);

 58   printf (“\nSYNTAX CORRECT \n”);

 59  } else {

 60   printf (“SYNTAX INCORRECT \n”);

 61  }

 62

 63  return (0);

 64 }

Listing 3.1 c-stmt-gram.y

A grammar-specifi cation fi le like the one illustrated in Listing 3.1 can be broadly divided into 3 parts.

Declarations
%%
Production Rules
%%
Auxiliary Functions

The declarations section consists of declarations of all the non-terminals (tokens) used in the grammar. 

This is illustrated in line 1 of Listing 3.1. The declarations section also contains the declaration of the start 

symbol that we discussed in Section 3.2. This is illustrated in line 2 of Listing 3.1, where we declare that 

the start symbol is c_statement. The declarations section can also contain a literal block of C code enclosed 

in {% and %} lines, exactly the way it is in the lexical specifi cation fi le. This is illustrated from line 3 to 11 

of Listing 3.1.

The production rules section consists of a list of grammar rules each separated by a semicolon (;). A 

colon (:) separates the left-hand and the right-hand sides of the productions. In the rules section, the fi rst 

rule (line 15) defi nes the c statement. This is the production 1 of Table 3.1. The rules for c expression are 

mentioned next. These are the productions 2, 3, 4 of Table 3.1.

The auxiliary functions section consists C code that is copied verbatim into the generated code for 

parser. In the auxiliary section, we typically defi ne yyerror( ) function that is responsible for printing where 

the syntax error is found in case of erroneous input. This is shown from lines 33 to 40 in Listing 3.1. The 

auxiliary functions section also defi nes the main(), which in turn invokes the parsing routine yyparse( ) 

at line 54. The return value of yyparse( ) determines whether the given input is syntactically correct or 

otherwise. This is illustrated by line 56 in Listing 3.1.
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3.1.2 Example 1—A Simple C Assignment Statement Checker Program

We now create a simple C assignment statement checker program that can verify the syntax of C statement 

using the grammar-specifi cation fi le shown in Listing 3.1. The C assignment statement checker program 

takes the input C statement as a command line parameter and verifi es if it is in conformance to the grammar 

specifi ed in Listing 3.1.

The main components of C assignment statement checker program are:

 1. A grammar-specifi cation fi le (see Listing 3.1) based on the context-free grammar for C assignment 

statement specifi ed in Table 3.1.

 2. A lexical specifi cations fi le (not listed here) that describes a lexical analyser returning the tokens 

IDENTIFIER, CONSTANT, SEMI_COLON, OPERATOR and EQ_TO_OP.

 3. A main ( ) routine that invokes the parsing routine – yyparse( ). This is part of the auxiliary functions 

section of the grammar-specifi cation fi le given in Listing 3.1.

The following dialog shows how we build the c statement parser and execute it. We can see from the 

dialog that the parser generator utility ‘bison’ takes in the grammar specifi cations fi le c-stmt-gram.y and 

generates the parser. The lexical analyser is also built automatically from the lexical specifi cations fi le. 

# Generating the Parser from Grammar Specifi cations

$ bison -dy -oc-stmt-gram.c -v c-stmt-gram.y

confl icts: 1 shift/reduce

# Compiling the Parser

$ gcc -g -Wall -DGENERATED_PARSER -c -o c-stmt-gram.o c-stmt-gram.c

# Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

# Compiling the Lexical Analyser

$ gcc -c -DGENERATED_PARSER -DCHAP3_EX1 -o c-stmt-lex1.o c-stmt-lex.c

# Building ex1 Binary

$ gcc c-stmt-gram.o c-stmt-lex1.o -o ex1

# Variant 1

$ ./ex1 ‘count=5;’

count=5;

SYNTAX CORRECT

# Variant 2

$ ./ex1 ‘count=index;’

count=index;

SYNTAX CORRECT

# Variant 3

$ ./ex1 ‘count=3*2;’

count=3*2;

SYNTAX CORRECT

# Variant 4
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$ ./ex1 ‘count=count+index;’

count=count+index;

SYNTAX CORRECT

# Variant 5

$ ./ex1 ‘count=count+1;’

count=count+1;

SYNTAX CORRECT

# Variant 6

$ ./ex1 ‘count=count*2+5;’

count=count*2+5;

SYNTAX CORRECT

# Variant 7

$ ./ex1 ‘count=count*2+index;’

count=count*2+index;

SYNTAX CORRECT

# Missing Identifi er / Constant

$ ./ex1 ‘count=5+;’

count=5+;

        ^

syntax error

SYNTAX INCORRECT

# Missing semicolon

$ ./ex1 ‘count=index’

count=index

          ^

syntax error

SYNTAX INCORRECT

The reader is advised to try out some more invocations of ex1 with various combinations of identifi ers 

and constants to gain better understanding of the grammar.

3.2 CLASSIFICATION OF PARSING TECHNIQUES

In the last section we learnt about what is context-free grammar and how it helps in defi ning the syntax of 

the language. This section presents an overview of various techniques used to parse the input in accordance 

to a defi ned grammar. The consequent sections describe in detail the parsing techniques mentioned here.

Parsing techniques can be classifi ed into two major categories  top-down parsing or  bottom-up parsing 

(see Fig. 3.4) depending on how the parse tree is built. The top-down parsers build the parse tree starting 

from the root node and work down to the leaves. The bottom-up parsers build the parse tree starting from 

the leaves and goes all the way to the root. Top-down parsing is described in Section 3.4, while bottom-up 

parsing is the focus of Section 3.5.

From applicability point of view, the largest class of grammars for which top-down parsers can work 

successfully is called as  LL grammars (scanning Left to right, Leftmost derivation). The largest class of 
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grammars for which bottom-up parsers can succeed is called  LR grammars (scanning Left to right, Right 

most derivation).

Fig. 3.5 Classifi cation of parsing techniques

 Backtracking parsing is one of the top-down techniques where, if we make a sequence of erroneous 

expansions and subsequently discover a mismatch, we undo the effects and roll back the input pointer. A 

backtracking top-down parsing example is discussed in Section 3.4. The top-down backtracking parsers are 

seldom used in practice owing to several disadvantages it entails (see Section 3.4).

One way of compensating the need for backtracking is to use the next input symbol to ‘guide’ the parser 

to use the correct production rule. Thus knowing the current non-terminal to be expanded and the next input 

symbol, the parser makes an informed decision as to what production needs to be expanded. This parsing 

technique is called  predictive parsing. There are certain transformations that grammar needs to undergo, 

in order to make it suitable for predictive parsing. This is discussed in detail in Section 3.4. There are two 

ways of implementing a top-down predictive parser. One of the methods involves having a procedure for 

each non-terminal. These procedures are responsible for parsing the constructs defi ned by its non-terminal. 

This method is called  recursive descent parsing owing to the recursive nature of the resultant procedures. 

This is detailed in Section 3.4.1. The other method of implementing a top-down predictive parser is to have 

a stack maintained explicitly by the parser. The parser determines the next production to be applied by using 

a parsing table. The parsing table is a table of production rules, which can be indexed using the current non-

terminal being expanded and the next input symbol. The parsing table is populated using the grammar of 

the language. This method is known as  table-driven predictive parsing owing to the use of parsing table

as a mechanism for determining the next production to be used. This forms the focus of discussion in 

Section 3.4.2.

In bottom-up parsing the parse tree is built from the leaves to the top. In bottom-up parsing, the input 

is ‘reduced’ to the start symbol in a sequence of steps known as the reduction steps. Each reduction step 

involves matching of a particular string on the right-hand side of the production and replacing it by the left-

hand side of the production.

Bottom-up parsers are usually implemented using a stack. The next input symbol is examined to make a 

decision to:

 (a) shift the next input symbol on to the top of stack or



84 Principles of Compiler Design

 (b) pop the top few elements and push a non-terminal equivalent of the same on to the top of stack 

(called as reduce operation).

Owing to this shift or reduce operation, bottom-up parsing is also called as  shift reduce parsing.

The choice of whether to shift the next input symbol or reduce the processed input is based on a table 

called as precedence relations table for  operator precedence parsing.

The LR parsers, i.e. SLR, canonical LR and LALR use a parsing table derived out of the grammar 

for deciding whether to shift the next input symbol or reduce the processed input. The method used for 

deriving these tables from grammar is different for each one of them, viz. SLR, canonical LR and LALR. 

The SLR ( simple LR) method succeeds in generating a parsing table out of the grammar for a sub-set of 

LR grammars called  SLR grammars. The  canonical LR parsing method is the most powerful method of 

generating the parsing table from the given grammar. It succeeds in generation of parsing table for a largest 

sub-set of LR grammars called as  LR(1) grammars. The disadvantage of the canonical LR parsing method 

of generating the parsing table from the grammar is that the size of the parsing table is very large. LALR 

(look ahead LR) method tries to shrink the parsing table derived out of canonical LR parsing method by 

applying some considerations. In the process of doing so, it loses some of the power of the canonical LR 

method. However, it succeeds to a pretty reasonable sub-set of LR grammars. The LALR method of shift 

reduce parsing is used in most of the popular parser generators like ‘bison’ and ‘yacc’.

3.3 ERROR REPORTING AND RECOVERY IN SYNTAX ANALYSER

One of the main functions of the syntax analyser is to report errors in the input source program and emit 

an informative diagnostic message. The diagnostic message should typically give out line number of the 

offending line in the source program and also emit information related to the error (e.g. in a C source 

program, it could be a missing semicolon). This is called  error reporting in syntax analyser. The syntax 

analyser should not stop at the fi rst instance of encountering an error, it should continue and report as many 

errors present in the input source program as possible, so that the programmer can correct all of the errors 

in the input source program. This function of recovering from the fi rst error and continuing to process the 

rest of the input source program is known as  error recovery in a syntax analyser. The error reporting and 

recovery is performed by a logical entity in the syntax analyser called as  error handler.

The error handler module of a syntax analyser has two main functions: (1) It should report the errors in 

the input source program with enough information to enable the programmer to correct the mistake. (2) The 

error handler should not stop at the fi rst error encountered in the input source program. It should recover 

and report as many errors present in the input source program as possible. Incorporating the intelligence 

in the error handler to accomplish the above functions should not slow down the syntax analysis phase 

signifi cantly.

Let us take an example C program and use the GNU’s C compiler ‘gcc’ to demonstrate the error 

reporting and error recovery concepts.

# An input C source Program containing errors

$ cat -n test1.c

 1 #include <stdio.h>

 2

 3 int main()

 4 {

 5  int var1,var2;

 6
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 7

 8  var1 = 0;

 9  var2 = 10;

 10

 11  printf(“This is message 1 “)

 12

 13  var1 = var2 ;

 14

 15  for( i = var1; i < var2; i++){

 16   printf(“This is iteration %d “,i);

 17  }

 18 }

The input C source program test1.c has two errors. (1) There is a missing semicolon in line 11 and (2) 

the variable ‘i’ used in line 15 has not been declared earlier.

The dialog below shows how the GNU’s C compiler ‘gcc’ parses the above program.

$ gcc test1.c -o test1

test1.c: In function ‘main’:
test1.c:13: parse error before ‘var1’
test1.c:15: ‘i’ undeclared (fi rst use in this function)
test1.c:15: (Each undeclared identifi er is reported only once
test1.c:15: for each function it appears in.)

The parser in gcc has reported the error in line 13 before the variable ‘var1’, which is nothing but the end 

of line 11. This is indicative of missing semicolon in line 11. Note that the parser of gcc did not stop there, 

it continued parsing the subsequent lines of input source program and identifi ed an error in line number 

15. The parser in gcc has performed error recovery from earlier error in line 13 and continued parsing. 

The error reporting on line number 15 clearly says that ‘i’ is not declared. Note that, the parser was smart 

enough to report the non-declaration of ‘i’ once, despite being used more than once.

The above example demonstrates the error reporting and error recovery features of a parser.

The main considerations in error reporting are:

∑ The error handler should report the place in the input source program, where the error has occurred. 

The offending line number should be emitted for the programmer to correct the mistake.

∑ The diagnostic message emitted out by the error handler module of the parser should give out enough 

information to help the programmer correct the mistake in the input source program.

The job of error recovery for the error handler is trickier. The following are some of the considerations 

in error recovery:

∑ The error recovery should not be partial where spurious errors not made by the programmer are 

falsely identifi ed as errors and displayed.

∑ The error recovery should also be cautious not to get into a bind when a totally unexpected input is 

given.

∑ The compiler designer needs to decide if error repair feature should be incorporated in the error 

handler. Usually error repair is not very cost-effective except in situations where the input source 

program is from beginners to programming.

There are several  error-recovery strategies that can normally be applied in the error handler of a parser. 

They are:



86 Principles of Compiler Design

 1. Panic mode recovery

 2. Phrase level recovery

 3. Error productions

 4. Global corrections

 Panic mode recovery is the simplest of all the strategies mentioned above. On discovering an error, 

the parser discards all the input symbols until it encounters one of the symbols in a designated set of 

 synchronisation tokens. The symbols in synchronisation set are determined by the characteristics of the 

language. For example, in C language, a semicolon, which indicates the end of a C statement, is a good 

candidate for being an element in synchronisation token set. The challenge for the compiler designer is to 

select the right elements to form the synchronisation set. The advantage of panic mode recovery is that it is 

simple and easy to implement. The disadvantage in panic mode recovery is that the parser could potentially 

end up ignoring a considerable amount of input without looking for errors. This method of error recovery is 

ideally suited for situations where multiple errors in the same line are rare.

In  phrase level error recovery, the parser on encountering an error attempts to perform a local correction 

in the rest of the input, which allows it to continue. For example, the parser could add a missing semicolon 

or convert an existing comma to semicolon, etc. so that the parser can continue parsing further input. 

The phrase-level error recovery could lead the parser into an infi nite loop especially if a wrong choice of 

correction is attempted before the current input symbol. This technique is used commonly in error-repairing 

compilers. This method of error recovery is suited in situations where the error is detected as soon as it 

happens. It cannot work well in situations where there is a certain lag between error detection and error 

occurrence.

In  error productions method of error recovery, there are additional productions defi ned in the language 

grammar for catching errors. The action for those erroneous productions would be to fl ash an informative 

error message relevant for the error production. Defi ning the error productions without overlapping the 

legal productions of the language presents a challenge to the compiler designer.

In  global correction error recovery technique the partial parse tree of the erroneous input string is 

compared to the parse tree of a related correct input strings and the distance (i.e. the additions, deletions, 

etc.) between them is computed. The parse tree with minimum distance from the erroneous input string is 

picked as the correct input string and the corrections are then made appropriately to the input string. The 

distance between incorrect input string and the correct ones are computed by certain specialised algorithms. 

This method of error recovery is very expensive in term of memory and time and hence it remains of 

theoretical interest.

We shall see the suitability of an error recovery scheme to a parsing technique, during the detailed 

discussion of various parsing techniques in the succeeding sections.

3.4 TOP DOWN PARSING

In this section we study in detail about  top-down parsing. Initially we shall discuss about a generic form of 

top-down parsing. Next, we address the kinds of grammars that are suitable for top-down parsing followed 

by a brief discussion on how to transform grammars to suit top-down parsing. After that we study two 

techniques of implementing top-down parser namely the recursive descent and table-driven predictive 

parsing.

Top-down parsing is an attempt to fi nd the leftmost derivation for an input string. It attempts to construct 

a parse tree for the input starting from the root (start symbol) and creating the nodes of the parse tree in pre-

order. In order to make the concept clear, let us consider a C statement

 count = index + 30;
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and examine how it is derived by a top-down parser using the production rules given in Table 3.2.

 c_statement => IDENTIFIER EQ_TO_OP c_expression   SEMI_COLON By P1

  => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON By P4

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR c_expression SEMI_COLON By P3

  => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON By P2

  => count = index + 10 ;

The parse tree for the above derivation is shown in Fig. 3.6.

Fig. 3.6 Top-down parsing for count=index + 10;

In  backtracking top-down parsers, we begin with the start symbol and apply productions until we get 

the desired string. The choice of which production needs to be applied depends on the order of production 

rules specifi ed in the grammar. If this choice leads to a dead-end, the parser would have to backtrack to that 

decision point moving backwards through the input and start again making a different choice. This goes on 

until the parser ends up with the appropriate production for matching the complete input or it runs out of 

choices. The following example will illustrate the concept.

Consider the grammar for a single C statement presented in Table 3.1, reproduced below for convenience.

c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression Æ CONSTANT

| IDENTIFIER

| c_expression OPERATOR c_expression

The table below shows how an input string ‘count = index + 100;’ can be parsed using the top-down 

parser that can do backtracking. Column (A) shows the expansion thus far, column (B) shows the remaining 

input and column (C) shows the action attempted at each step.
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(A) (B) (C)

Expansion till now Remaining input Action attempted

count = index + 100 ; Try expanding a production with the start 

symbol - c_statement as LHS. There is 

only 1 production with the start symbol on 

the LHS, i.e. Production 1. We start with 

that

c_statement Æ IDENTIFIER EQ_TO_OP 

c_expression SEMI_COLON

IDENTIFIER EQ_TO_OP c_expression 

SEMI_COLON

count = index + 100 ; Match count with IDENTIFIER. 

Successful.

EQ_TO_OP c_expression SEMI_COLON = index + 100 ; Match = with EQ_TO_OP. Successful.

c_expression SEMI_COLON index + 100 ; Try expanding production 2, c_expression 

Æ CONSTANT

CONSTANT SEMI_COLON index + 100 ; index does not match CONSTANT. Dead-

end, backtrack

c_expression SEMI_COLON index + 100 ; Try expanding production 3, c_expression 

Æ IDENTIFIER

IDENTIFIER SEMI_COLON index + 100 ; Match index with IDENTIFIER. 

Successful.

SEMI_COLON + 100 ; SEMI_COLON does not match + . Dead-

end, backtrack

c_expression SEMI_COLON index + 100 ; Try expanding Production 4, c_expression 

Æc_expression OPERATOR c_expression

c_expression OPERATOR c_expression 

SEMI_COLON

index + 100 ; Try expanding production 2, c_expression 

Æ CONSTANT

CONSTANT OPERATOR c_expression 

SEMI_COLON

index + 100 ; index does not match CONSTANT. Dead-

end, Backtrack

c_expression OPERATOR c_expression 

SEMI_COLON

index + 100 ; Try expanding production 3, c_expression 

Æ IDENTIFIER

IDENTIFIER OPERATOR c_expression 

SEMI_COLON

index + 100 ; Match index with IDENTIFIER. 

Successful

OPERATOR c_expression SEMI_COLON + 100 ; Match + with OPERATOR. Successful.

c_expression SEMI_COLON 100 ; Try expanding production 2, c_expression 

Æ CONSTANT

CONSTANT SEMI_COLON 100 ; Match 100 with CONSTANT. Successful.

SEMI_COLON ; Match ; with SEMI_COLON . Successful.

Success

From the steps above, we can see that whenever we reach a dead-end, we backtrack to the last decision 

point undo the decision and try another production. If all the productions are exhausted, we backup to the 
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preceding decision point and so on. This procedure continues until the complete input is matched or we 

have exhausted all combinations.

The top-down backtracking parsing procedure that we just described can cope up with any kind of 

grammar. However, when there are a large number of non-terminals, the algorithm becomes very slow due 

to the combinatorial explosion in terms of the productions that have to be tried out before arriving at the 

correct parse.

If we make a series of expansions and subsequently discover a mismatch, we may have to undo the 

semantic effects of erroneous expansions like, say the removal of entries from symbol table. Undoing 

the semantic effects is a substantial overhead for a compiler. This is one of the major disadvantages of 

backtracking a top-down parser.

In top-down backtracking parser, the order in which alternates of production rules are tried can also 

affect the language considered. This makes backtracking parsers unsuitable for production compilers.

Another disadvantage of the backtracking top-down parser is the diffi culty in error reporting. In top-

down backtracking parser, it is diffi cult to pinpoint where the error has occurred and consequently the 

compiler cannot emit informative error messages.

Backtracking can be avoided by transforming the grammar in such a way that at each step the choice 

of production that can lead us to solution can be easily identifi ed. In other words, at each step, we can 

‘predict’ which of the productions can lead us to the complete derivation of the input string, if one exists. 

The idea behind a top-down  predictive parser is that the current non-terminal being processed combined 

with the next input symbol can guide the parser to take the correct production rule eventually leading to 

the match of complete input string. The predictive parser is a type of top-down parser that does not require 

backtracking in order to derive various input strings. This is possible because the grammar for the language 

is transformed such that backtracking is not needed.

What kind of transformations do we make to the grammar rules to suit a predictive parser? There are two 

types of transformations done to the grammar in order to suit a predictive parser. They are:

 1. elimination of left recursion

 2. left factoring

 Elimination of left recursion is a grammar transformation that is used for producing grammar suitable 

for predictive parsing. Let’s take an example to get an idea of why the transformation is required and how 

we do the transformation.

Consider an erroneous input string (real programmers do type mistakes!) for a parser using the 

production rules in Table 3.1

 count = -;

Let’s see how the parsing proceeds using the production rules in Table 3.1.

The top-down parser will fi rst match the production rule 1 and consume the input count and 
EQ_TO_OP. On receiving ‘-’, it tries to verify whether it is a C expression. How does the parser do it? 

It checks if the input (which is the – i.e. OPERATOR) fi ts production 2 fi rst. It does not. Next, we try 

production 3, it does not match either, since production 3 starts with IDENTIFIER. Next, we try production 

4, the parser will try to match if ‘-’ is a c_expression, which is what we started in the fi rst place. This leads 

to us try and match ‘-’ recursively for c expression, without really consuming input.

How do we solve this problem?

Observe from production 2, 3 and 4 that the c_expression has to begin with IDENTIFIER or 

CONSTANT (because that is where the recursion has to end). The solution to the problem is to take 

advantage of the fact that the c_expression has to defi nitely start with either a terminal (CONSTANT or 

IDENTIFIER in this case). We can rewrite the left recursive production 4 to refl ect this philosophy.
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c_expression Æ IDENTIFIER c_expr_rest   ……….. (3.5)

c_expression Æ CONSTANT c_expr_rest   ……….. (3.6)

c_expr_rest Æ OPERATOR IDENTIFIER c_expr_rest  ……….. (3.7)

c_expr_rest Æ OPERATOR CONSTANT c_expr_rest  ……….. (3.8)

c_expr_rest Æ Œ /* empty string */    ……….. (3.9)

Note that (3.5) in conjunction with (3.9) is exactly equivalent to production 2 (c_expression Æ 

IDENTIFIER) and (3.6) in conjunction with (3.9) is equivalent to production 3 (c_expression Æ 

CONSTANT). The transformed grammar is refl ected in Table 3.4.

Let’s see how the top-down parsing of the input happens with the new transformed rules. The top-down 

parser will fi rst match the production rule 1 and consume the input count and EQ_TO_OP. On receiving 

‘-’, it tries to verify whether it is a C expression. It checks if the input (which is the – operator) fi ts 

production 2 or 3 in that order. It does not match since ‘-’ is not a CONSTANT or IDENTIFIER as required 

by these rules. The parser then decides that it is not conformant with the grammar specifi ed in Table 3.4 and 

rejects the input string.

Table 3.4 Productions after elimination of left recursion

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT c_expr_rest

3 | IDENTIFIER c_expr_rest

4 c_expr_rest Æ OPERATOR IDENTIFIER c_expr_rest

5 | OPERATOR CONSTANT c_expr_rest

6 | Œ

 Left factoring is another transformation that is commonly applied to the grammar to make it suitable 

for predictive parsing. We shall look at an example to get an idea of why the transformation is required and 

then we shall see how the transformation is done.

Consider an input string ‘result = total + 20;’ for conformance with the grammar in Table 3.4. After 

we consume result and EQ_TO_OP, we would get the input of total, which is an IDENTIFIER. The 

IDENTIFIER would match the production 3, and would be consumed by the parser. The next input symbol 

would be the ‘+’ operator. The parser would try and match it with the c_expr_rest. At this point, the parser 

would be in dilemma whether to use production 4 or production 5 to expand. Both of them start with an 

OPERATOR. By hard coding the parser to choose one of the productions all the time, we could potentially 

be reporting legal input strings not to be conformant to the grammar.

How can we ‘predict’ which production rule to take for complete derivation of input string?

A common approach to the problem is to rewrite the grammar to factor the common prefi x (which is an 

OPERATOR in this case) out of the two alternatives (production 4 and 5 in this case) and create a new rule.
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If we left-factor the rules 4 and 5 we get

c_expression Æ OPERATOR c_expr_factor  ……….. (3.10)

c_expr_factor Æ IDENTIFIER c_expr_rest  ……….. (3.11)

c_expr_factor Æ CONSTANT c_expr_rest  ……….. (3.12)

The new transformed rules after the left factoring is given in Table 3.5.

Table 3.5 Productions after (a) elimination of left recursion and (b) left factoring

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT c_expr_rest

3 | IDENTIFIER c_expr_rest

4 c_expr_rest Æ OPERATOR c_expr_factor

5 | Œ

6 c_expr_factor Æ IDENTIFIER c_expr_rest

7 | CONSTANT c_expr_rest

Let’s see how the parsing proceeds with the new transformed rules. After, the top-down parser consumes 

result and EQ_TO_OP, the next input is total, which is an IDENTIFIER. The IDENTIFIER would match the 

production 3, and would be consumed by the parser. The next input symbol would be the ‘+’ OPERATOR. 

The parser would try and match it with the c_expr_rest. The top-down parser would make an attempt to 

match production 4 and consume the OPERATOR. The next input symbol is 20. The parser would try and 

match with one of the productions for c_expr_factor, which is 6 or 7. The input symbol ‘20’ matches the 

CONSTANT, so production 7 is chosen. The next input symbol is ‘;’ which will be tried against c_expr_

rest. The production 5 (empty string) would match since the ‘;’ is not a part of any of the rules for c_expr_

rest. By doing this left factoring we effectively postponed the decision of choosing a production until a 

point is reached where it can be made properly (in this case after consuming the OPERATOR symbol).

Here is a generalisation of left factoring. consider a production

 AÆab1 | ab2

and an input that begins with a non-empty string derived from a, it is not clear whether to expand A to ab1 

or ab2. We can solve this by deferring the decision by expanding A to aA1. Then after seeing the input 

derived from a, we expand A1 to b1 or b2. The left-factored form of original productions becomes

 A Æ aA1

 A1 Æ b1| b2

The grammars that are suitable for predictive parsing (after elimination of left recursion and Left 

factoring) are called as LL(k) grammars, where the fi rst ‘L’ implies that we scan from left to right, the 

second ‘L’ stands for the leftmost derivation and ‘k’ stands for number of tokens of look ahead. In practice, 

LL(1) grammars are used for building programming languages.

We have understood how grammars are transformed to suit predictive parsers. Next, we see how to 

implement top-down predictive parsers.
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There are 2 main techniques for implementing top-down predictive parsers. They are:

 1. recursive descent parsing

 2. table-driven predictive parser.

The next two sections describe these techniques in detail.

3.4.1 Recursive Descent Parsing

A  recursive descent parser is a collection of procedures one for each non-terminal. Each procedure is 

responsible for parsing the constructs defi ned by its non-terminal. The syntax of most of the programming 

languages is recursive, the resulting procedures are also recursive, hence the name recursive descent parser. 

For the production rules mentioned in Table 3.5, there would be four functions c_statement, c_expression, 

c_expr_rest, and c_expr_factor denoting each of the non-terminals in the grammar. These functions are then 

constructed using the grammar in a straightforward way. For example, consider the c_statement.

The rule

c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

could be translated into a function as shown below.

Table 3.6 Pseudo-code for c_statement

c_statement()

{

     if ( match (IDENTIFIER)){

           if(match (EQ_TO_OP)){

              if(c_expression()){

                   if(match(SEMI_COLON)){

                       return(SUCCESS);

                   }

              }

           }

     }

     return(FAILURE);

}

The function match checks if the current token is the same as the expected token.

Table 3.7 Psuedo-code for ‘match’

match(expected)
{
    if(current_token == expected){
       current_token = get_next_token();
       return(SUCCESS);
    }
    return(FAILURE);
}
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Similarly, for c_expression,

c_expression Æ CONSTANT c_expr_rest

| IDENTIFIER c_expr_rest

the pseudo-code is derived from the grammar as follows:

Table 3.8 Pseudo-code for c_expression

c_expression()
{ 
 if ( match (CONSTANT)){
    if ( c_expr_rest ()){
      return(SUCCESS);
    }
 } else if (match ( IDENTIFIER)){
    if ( c_expr_rest ()){
      return(SUCCESS);
    }
 }
 return(FAILURE);
}

The pseudo-code for c_expr_rest derived from the following grammar:

c_expr_rest Æ OPERATOR c_expr_factor

| Œ

is shown below:

Table 3.9 Psuedo-code for c_expr_rest

c_expr_rest()

{

 if ( match (OPERATOR)){

    if ( c_expr_factor ()){

      return(SUCCESS);

    }

 } else {

    return(SUCCESS); /* empty string */

 }

 return(FAILURE);

}

The pseudo-code for c_expr_factor derived from the following grammar:

c_expr_factor Æ IDENTIFIER c_expr_rest

| CONSTANT c_expr_rest
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Table 3.10 Pseudo-code for c_expr_factor

c_expr_factor()
{
 if ( match (IDENTIFIER)){
    if ( c_expr_rest ()){
         return(SUCCESS);
    }
 } else if ( match (CONSTANT)){
    if ( c_expr_rest ()){
         return(SUCCESS);
    }
 }
 return(FAILURE);
}

Recursive descent parsers are simple and easy to implement. Most of the hand-written parsers are usually 

recursive descent parsers due to the intuitive nature of the technique. A recursive descent parser needs a 

large stack due to the recursion of the procedures. This could be prohibitive in systems where memory is at 

premium. Recursive descent parsers cannot be automatically generated easily from the grammar, compared 

to table-driven approaches, which we shall discuss later.

A sample recursive descent parser built for C statement syntax verifi cation is presented in the next 

section to reinforce the concepts discussed till now.

3.4.1.1 Example 2—A Recursive Descent Parser for Simple C Statement In this section, we 

build a recursive descent parser for verifying the syntax of c statements using the pseudo-code given earlier. 

The following dialog shows how we make the recursive descent parser for c statement and how we use it to 

verify syntax of c-statements.

# Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

# Compiling the Lexical Analyzer

$ gcc -c -o c-stmt-lex.o c-stmt-lex.c

# Building ex2 Binary

$ gcc -g -Wall recur_descent.c c-stmt-lex.o -o ex2

# Variant 1

$ ./ex2 ‘count=5;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=5;

SYNTAX CORRECT

# Variant 2

$ ./ex2 ‘count=index;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON
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c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

count=index;

SYNTAX CORRECT

# Variant 3

$ ./ex2 ‘count=3*2;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=3*2;

SYNTAX CORRECT

# Variant 4

$ ./ex2 ‘count=count+index;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

count=count+index;

SYNTAX CORRECT

# Variant 5

$ ./ex2 ‘count=count+1;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=count+1;

SYNTAX CORRECT

# Variant 6

$ ./ex2 ‘count=count*2+5;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=count*2+5;

SYNTAX CORRECT

# Variant 7

$ ./ex2 ‘count=count*2+index;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest



96 Principles of Compiler Design

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

count=count*2+index;

SYNTAX CORRECT

# Missing Identifi er / Constant

$ ./ex2 ‘count=5+;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

Error Error Error Error

SYNTAX INCORRECT

# Missing semicolon

$ ./ex2 ‘count=index’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

Error

SYNTAX INCORRECT

The following are some of the observations that can be made for a recursive descent parser.

∑ The recursive descent parser starts by calling the lexical analyser to get the fi rst token. The procedure 

corresponding to the start symbol is invoked. The completion of this procedure indicates the parse is 

complete.

∑ A global variable holding the token that is not yet consumed by parser is used to predict which 

production needs to be expanded

∑ Printing a good error recovery message is not easy, since it is diffi cult to determine from the current 

routine, as to what is the calling routine and its context.

3.4.2 Table-driven Predictive Parsing

The recursive descent parser works by maintaining the production expansion implicitly on the stack by 

virtue of recursion in the procedures. The table-driven predictive parser maintains the stack explicitly. In 

recursive descent parser, the choice of which production needs to be applied is determined by the code 

structure. In the table-driven parser, the choice of which productions needs to be applied is determined by 

indexing into a parsing table, given the current non-terminal being expanded and the next input terminal.

Table-driven predictive parser consists of:

 1. An input buffer that contains the string to be parsed followed by a $, a symbol used for indicating 

the end of input.

 2. A stack containing the sequence of grammar symbols with a $ at the bottom of the stack.

 3. A parsing table containing the production rules to be applied. This is a two-dimensional array M[A, 

a], where A is the non-terminal and ‘a’ is a terminal or the symbol $. This is a manifestation of the 

grammar rules.
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 4. A parsing program that takes the input string and determines if it is conformant to the grammar. The 

parser program uses the parsing table and the stack to arrive at this decision. The logic built into the 

parsing program does not change with the grammar.

The fi gure illustrates the various components of a table-driven parser.

The parsing program determines the action of the parser depending on

∑ X, the symbol on the top of the stack

∑ a, the current input symbol

There are 3 combinations of X and a, that are important for the parsing program. Each of those 3 

conditions marked A, B and C are shown below. Any other condition other than these 3 denotes a parsing 

error.

# Condition Action

A X = a = $ The parser announces the successful completion of parsing and returns.

B X is a terminal and

X = a π $

The parser pops off the stack and advances the input pointer to the next 

input symbol.

C X is a non-terminal The program consults the entry M[X, a] in the parsing table. This entry is a production 

for X or an error entry. If M[X, a] is a production X Æ UVW, then the program replaces 

the X on the top of the stack by WVU (U on the top of stack). The parser can output the 

production or execute the code specifi ed in the grammar. If M[X, a] is an error entry, 

then the program calls for an error recovery routine.

The parsing program discussed above is summarised in Algorithm 3.1.

tbl_driven_parse()

{

 a = get_next_tok();

 do

 {

  X = The top element of the Stack

  if( (X == $) or ( a == $ ))
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  {

   if ( X == a)

    return(SUCCESS);

   else

    return(FAILURE)

  }

  if ( X is a terminal) {

                if ( X is a){

                      pop X from the Stack and remove a from the input

    a = get_next_tok()

   } else {

    return(FAILURE)

   }

  } else {/* Non terminal */

   if ( M[X][a] is a rule X -> Y1Y2…Yk){

    pop X from the Stack

    push Yk…Y2Y1 on the stack

   } else {

    return(FAILURE)

   }

  }

 } while ( 1) /* Always */

}

Algorithm 3.1 Table-driven predictive parsing

The main data structure on which Algorithm 3.1 depends is the parsing table M. For a grammar 

described in Table 3.5, the parsing table M is shown in Table 3.11.

Table 3.11 Parsing table for the grammar described in Table 3.5

IDENTIFIER CONSTANT OPERATOR EQ_TO_OP SEMI_COLON $

c_statement c_statement Æ
IDENTIFIER

EQ_TO_OP

c_expression

SEMI_COLON

 

c_expression c_expression Æ
IDENTIFIER

c_expr_rest

c_expression Æ
CONSTANT

c_expr_rest

c_expr_rest c_expr_rest Æ
OPERATOR

c_expr_factor

 c_expr_rest Æ
e

 

c_expr_factor c_expr_factor Æ
IDENTIFIER

c_expr_rest

c_expr_factor Æ
CONSTANT

c_expr_rest
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From the parsing table given in Table 3.11, we can understand the following:

∑ if c_statement has to be expanded and we encounter an input of IDENTIFIER, we use the production 

c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

∑ if c_expression has to be expanded and we encounter an input of IDENTIFIER, we use the production 

c_expression Æ IDENTIFIER c_expr_rest

∑ if c_expression has to be expanded and we encounter an input of CONSTANT, we use the production 

c_expression Æ CONSTANT c_expr_rest

∑ All the empty entries denote errors

Using the grammar of Table 3.5, and the corresponding parsing table given in Table 3.11, you can see 

how the predictive table-driven parser algorithm works for an input of 

 c = i + 5;

Initially in table-driven predictive parsing, the end of the input marker $ along with the start symbol 

(c_statement) is pushed on to the stack.

Stack Remaining Input

$  c_statement c = i + 5 ; $

At this point the symbol on the top of the stack X is c_statement and the next input symbol is ‘c’ — an 

IDENTIFIER. Since the top of the stack is a non-terminal (condition C), we check for the entry in the 

parsing table at M[c_statement] [IDENTIFIER]. It contains the entry c_statement Æ IDENTIFIER EQ_

TO_OP c_expression SEMI_COLON . Hence we pop c_statement from the stack and push the RHS of the 

production in the reverse order. The order of pushing is such that IDENTIFIER would be on the top. Note 

that the input pointer is not advanced and hence it would continue to point to ‘c’, which is an IDENTIFIER. 

The fi gure below shows the stack expanding to the right with the top of the stack being its rightmost 

element.

Stack Remaining Input

$ SEMI_COLON c_expression EQ_TO_OP IDENTIFIER c = i + 5 ; $

At this point, the symbol on the top of the stack, X is an IDENTIFIER. The next input symbol ‘c’ is also 

IDENTIFIER. Now, the top of stack matches the next input (condition B), we pop the topmost element on 

the stack (IDENTIFIER) and advance the input pointer.

Stack Remaining Input

$ SEMI_COLON c_expression EQ_TO_OP = i + 5 ; $

In this confi guration, the top of the stack is EQ_TO_OP. The next input symbol is =, which gets 

translated to EQ_TO_OP by the lexical analyser. Now, the top of the stack matches the next input (condition 

B), we pop the topmost element on the stack (EQ_TO_OP) and advance the input pointer.

Stack Remaining Input

$ SEMI_COLON c_expression i + 5 ; $

In this confi guration, the top of the stack is a non-terminal c_expression. The next input symbol is ‘i’, 

which gets translated to IDENTIFIER by the lexical analyser. Since the top of the stack is a non-terminal 

(condition C), we check for the entry in the parsing table M[c_expression][IDENTIFIER]. This shows a 

production c_expression Æ IDENTIFIER c_expr_rest. We pop c_expression from the stack and push the 

right-hand side of the production in the reverse order. Observe that the input pointer is not advanced.
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Stack Remaining Input

$ SEMI_COLON c_expr_rest IDENTIFIER i + 5 ; $

In this confi guration, the top of the stack is IDENTIFIER. The next input symbol ‘i’ is also IDENTIFIER 

(condition B). Now, the top of stack matches the next input (condition B), we pop the IDENTIFIER from 

the stack and advance the input pointer.

Stack Remaining Input

$ SEMI_COLON c_expr_rest + 5 ; $

At this point, the top of the stack is the non-terminal c_expr_rest and the next input symbol is ‘+’, which 

gets translated to OPERATOR. Since the top of the stack is a non-terminal (condition C), we check for 

the entry in the parsing table, M[c_expr_rest][OPERATOR]. This shows a production c_expr_rest Æ 

OPERATOR c_expr_factor. We pop the c_expr_rest and push the right-hand side of the production in the 

reverse order. Again, the input pointer is not advanced in this operation.

Stack Remaining Input

$ SEMI_COLON c_expr_factor OPERATOR + 5 ; $

In this confi guration, the top of the stack is OPERATOR. The next input symbol ‘+’ is also OPERATOR. 

Now, the top of the stack matches the next input (condition B), we pop the OPERATOR from the stack and 

advance the input pointer.

Stack Remaining Input

$ SEMI_COLON c_expr_factor 5 ; $

At this point, the top of the stack is the non-terminal c_expr_factor and the next input symbol is ‘5’, 

which gets translated to CONSTANT. Since the top of the stack is a non-terminal (condition C), we consult 

the entry in the parsing table M[c_expr_factor][CONSTANT]. This shows a production c_expr_factor 

ÆCONSTANT c_expr_rest. We pop the c_expr_factor and push the right-hand side of the production in the 

reverse order. Again, the input pointer is not advanced in this operation.

Stack Remaining Input

$ SEMI_COLON c_expr_rest CONSTANT 5 ; $

In this confi guration, the top of the stack is CONSTANT. The next input symbol ‘5’ is also CONSTANT. Now, 

the top of the stack matches the next input (condition B), we pop the CONSTANT from the stack and advance 

the input pointer.

Stack Remaining Input

$ SEMI_COLON c_expr_rest ; $

At this point, the top of the stack is the non-terminal c_expr_rest and the next input symbol is SEMI_

COLON. Since the top of the stack is a non-terminal (condition C), we check for the entry in the parsing 

table at M[c_expr_rest][SEMI_COLON]. This shows a production c_expr_rest Æ e. We pop the c_expr_

rest and push the right-hand side of the production in the reverse order. For an epsilon production, there is 

no right-hand side. Again, the input pointer is not advanced in this operation.
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Stack Remaining Input

$ SEMI_COLON ; $

In this confi guration, the top of the stack is SEMI_COLON. The next input symbol is also SEMI_

COLON. Now, the top of the stack matches the next input (condition B), we pop the SEMI_COLON from 

the stack and advance the input pointer.

Stack Remaining Input

$  $

Now the top of the stack is $ and the next input is also $ (condition A), which signals accepting the 

input as a part of the language and the successful completion of parse.

The above steps are summarised in Table 3.12.

Table 3.12 Moves of a table-driven predictive parser program

Stack Input Output/Comment

$

$

$

$

$

$

$

$

$

$

$

$

c_statement

SEMI_COLON c_expression EQ_TO_OP   IDENTIFIER

SEMI_COLON c_expression EQ_TO_OP

SEMI_COLON c_expression

SEMI_COLON c_expr_rest  IDENTIFIER

SEMI_COLON c_expr_rest

SEMI_COLON c_expr_factor OPERATOR

SEMI_COLON c_expr_factor

SEMI_COLON c_expr_rest CONSTANT

SEMI_COLON c_expr_rest

SEMI_COLON 

c = i + 5 ; $

c = i + 5 ; $

= i + 5 ; $

i + 5 ; $

i + 5 ; $

+ 5 ; $

+ 5 ; $

5 ; $

5 ; $

; $

; $ 

$

c_statement Æ IDENTIFIER EQ_TO_OP

c_expression    SEMI_COLON

c is an Identifi er

= is EQ_TO_OP

c_expression Æ IDENTIFIER c_expr_rest

i is an Identifi er

c_expr_rest Æ OPERATOR c_expr_factor 

SEMI_COLON

+ is an Operator

c_expr_factor Æ CONSTANT c_expr_rest

5 is a CONSTANT

c_expr_rest Æ e

; is SEMI_COLON

Success. Top of the Stack is = $

Before we end this section, let’s briefl y touch upon the advantages and disadvantages of table-driven 

predictive parsing:

Advantages
∑ It is easy to generate a table-driven parser from a given grammar. The parsing program is independent 

of the grammar and remains common to any grammar. The parsing table is the only component that 

depends on the grammar and can be generated by using the FIRST and FOLLOW set generation 

algorithms discussed in the next section.

∑ The error recovery and reporting in table-driven parser can be done easily by having entries in the 

table, which point to the error recovery and reporting routines.

Disadvantages
∑ A predictive parser like table-driven parsers or recursive descent parsers can work on LL(1) grammars 

only. Sometimes any amount of left-factoring and elimination of left-recursion might not be adequate 

to transform a grammar into LL(1) grammar.
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3.4.2.1 Example 3—A Table-driven Predictive Parser for Simple C Statement This section 

shows the implementation of a table-driven parser for checking the syntax of simple C statements. This 

uses the grammar from Table 3.5, and the corresponding parsing table given in Table 3.11. The following 

dialog shows how we compile and execute the C statement checker.

# Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

# Compiling the Lexical Analyzer

$ gcc -c -o c-stmt-lex.o c-stmt-lex.c

# Building ex3 Binary

$ g++ -g -Wall ex3.cc table_parse.cc c-stmt-lex.o -o ex3

# Variant 1

$ ./ex3 ‘count=5;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=5;

SYNTAX CORRECT

# Variant 2

$ ./ex3 ‘count=index;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

count=index;

SYNTAX CORRECT

# Variant 3

$ ./ex3 ‘count=3*2;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=3*2;

SYNTAX CORRECT

# Variant 4

$ ./ex3 ‘count=count+index;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

count=count+index;

SYNTAX CORRECT
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# Variant 5

$ ./ex3 ‘count=count+1;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=count+1;

SYNTAX CORRECT

# Variant 6

$ ./ex3 ‘count=count*2+5;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> EPSILON

count=count*2+5;

SYNTAX CORRECT

# Variant 7

$ ./ex3 ‘count=count*2+index;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

c_expr_factor -> IDENTIFIER c_expr_rest

c_expr_rest -> EPSILON

count=count*2+index;

SYNTAX CORRECT

# Missing Identifi er / Constant

$ ./ex3 ‘count=5+;’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> CONSTANT c_expr_rest

c_expr_rest -> OPERATOR c_expr_factor

Error

SYNTAX INCORRECT

# Missing semicolon

$ ./ex3 ‘count=index’

c_statement -> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

c_expression -> IDENTIFIER c_expr_rest

Error

SYNTAX INCORRECT
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3.4.2.2 Parsing Table Entries In the last section, we saw how a table-driven parser can parse a given 

input and check for conformance with the grammar using the parsing table M. The parsing table is the only 

component in the table-driven parser that is dependent on the grammar. This section looks at devising a 

method by which we can automatically generate the parsing table entries from the grammar. This would 

help us in automatically generating a table-driven parser from a given grammar.

Before we look at generating the parsing table entries, let’s get to some important defi nitions.

3.4.2.2.1 FIRST and FOLLOW Sets A  FIRST set of a non-terminal A is the set of all the terminals that A 

can begin with. From the grammar of Table 3.5, by visual inspection of production 1, we can fi gure out that 

the c_statement defi nitely begins with IDENTIFIER for a legal input. Hence, the FIRST set of c_statement 

is an IDENTIFIER. This is denoted by

 FIRST(c_statement) = {IDENTIFIER}.

Again, by visual inspection of productions 2 and 3 of the grammar in Table 3.5, we can make out 

that the c_expression defi nitely begins with CONSTANT in the case of production 2 and begins with 

IDENTIFIER in the case of production 3. Hence, the FIRST set of c_expression consists of CONSTANT 

and IDENTIFIER.

 FIRST(c_expression) = {CONSTANT, IDENTIFIER}.

In order to compute the FIRST sets of various symbols of a grammar in a program, we use the following 

rules:

Table 3.13 Rules for computing FIRST set

Rule # Description

1 If X is a Terminal, then FIRST(X) = {X}

2 For a non-terminal X, If there exists a production X  Æ e, then add e to FIRST (X)

3 For a production

X Æ Y1 Y2 Y3 Y4.. Yk..…. Yn

FIRST (X) = FIRST (Y1), if FIRST(Y1) does not contain e

 = FIRST (Y2), if FIRST(Y1) contains e and FIRST(Y2) does not contain e

 = FIRST (Y3), if FIRST(Y1), FIRST(Y2) both contain e FIRST(Y3) does not contain e

Generalising

FIRST(X) = FIRST(Yk ) if FIRST(Y1), FIRST(Y2)..FIRST(Yk-1) all contain e and FIRST (Yk) does not 

contain e

Table 3.14 shows the computation of FIRST set for all the non-terminals in the grammar of Table 

3.5. We use the rules given in Table 3.13 to compute the FIRST sets. We take each of the production and 

compute the FIRST set of the non-terminal in the LHS of the production.



  Syntax Analysis 105

Table 3.14 Computation of FIRST sets

Production Comments

c_statement Æ IDENTIFIER EQ_
TO_OP c_expression SEMI_COLON

FIRST(IDENTIFIER) = {IDENTIFIER}, since
IDENTIFIER is a non-terminal, by Rule 1

FIRST(c_statement) = FIRST(IDENTIFIER), since
FIRST(IDENTIFIER) does not contain Œ as
specifi ed by Rule 3.

Hence, we add IDENTIFIER to the
FIRST(c_statement)
FIRST(c_statement) = {IDENTIFIER}

c_expression Æ CONSTANT 
c_expr_rest

FIRST(CONSTANT) = {CONSTANT}, since CONSTANT is a non-
terminal, by Rule 1

FIRST(c_expression) = FIRST(CONSTANT), since
FIRST(CONSTANT) does not contain Œ as specifi ed by Rule 3.

Hence, we add CONSTANT to the
FIRST(c_expression)

FIRST(c_expression) = {CONSTANT}

c_expression Æ IDENTIFIER 
c_expr_rest

FIRST(IDENTIFIER) = {IDENTIFIER}, since IDENTIFIER is a 
non-terminal, by Rule 1

FIRST(c_expression) = FIRST(IDENTIFIER), since
FIRST(IDENTIFIER) does not contain Œ as specifi ed by Rule 3.

Hence, we add IDENTIFIER to the
FIRST(c_expression)

FIRST(c_ expression) = {CONSTANT, IDENTIFIER}

c_expr_rest Æ OPERATOR c_
expr_factor

FIRST(OPERATOR) = {OPERATOR}, since OPERATOR is a non-
terminal, by Rule 1

FIRST(c_expr_rest) = FIRST(OPERATOR), since
FIRST(OPERATOR) does not contain Œ as specifi ed by Rule 3.

Hence, we add OPERATOR to the
FIRST(c_expr_rest)

FIRST(c_expr_rest) = {OPERATOR}

c_expr_rest Æ Œ By Rule 2, we add Œ to the FIRST(c_expr_rest)

FIRST(c_expr_rest) = {OPERATOR, Œ}

c_expr_factor Æ IDENTIFIER 
c_expr_rest

FIRST(IDENTIFIER) = {IDENTIFIER}, since
IDENTIFIER is a non-terminal, by Rule 1

FIRST(c_expr_factor) = FIRST(IDENTIFIER), since
FIRST(IDENTIFIER) does not contain Œ as specifi ed by 
Rule 3.

Hence, we add IDENTIFIER to the
FIRST(c_expr_factor)

FIRST(c_expr_factor) = {IDENTIFIER}
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c_expr_factor Æ CONSTANT 
c_expr_rest

FIRST(CONSTANT) = {CONSTANT}, since CONSTANT is a non-
terminal, by Rule 1

FIRST(c_expr_factor) = FIRST(CONSTANT), since
FIRST(CONSTANT) does not contain Œ as specifi ed by Rule 3.

Hence, we add CONSTANT to the
FIRST(c_expr_factor)

FIRST(c_expr_factor) = {IDENTIFIER,CONSTANT}

Summarising the FIRST sets of all the non-terminals from the above, we have

FIRST (c_statement) = {IDENTIFIER}

FIRST (c_expression) = {CONSTANT, IDENTIFIER}

FIRST(c_expr_rest) = {OPERATOR, e}

FIRST (c_expr_factor) = {IDENTIFIER, CONSTANT}

The grammar in Table 3.5 is simple and does not have many productions with the same LHS. In most of 

the programming languages, there are quite a number of productions with the same LHS and different RHS. 

Due to this, there is interdependency of FIRST set of common LHS symbols with FIRST set of various 

RHS symbols due to the application of rule 3 on different productions. Hence the FIRST set computation 

needs to be done in multiple passes on the grammar rules, until a steady state is reached.

A  FOLLOW set of a non-terminal A is the set of all the terminals that can follow A. From the grammar 

of Table 3.5, by visual inspection of production 1, we can fi gure out that the c_expression is defi nitely 

followed by a SEMI_COLON for a legal input. Hence, The FOLLOW set of c_expression is a SEMI_

COLON. This is denoted by

FOLLOW(c_expression) = {SEMI_COLON}

The FOLLOW set would never contain e, since it is not a valid input token. This is in contrast from the 

FIRST set, which can contain an e.

In order to compute the FOLLOW sets of various symbols of a grammar in a program, we use the 

following rules.

Table 3.15 Rules for computing FOLLOW set

Rule#                                                                      Description

1. FOLLOW(S)=$, where S is the start symbol and $ is the symbol to indicate the end of input.

2. For a production

X ÆY1 Y2 Y3 Y4.. Yk..…. Yn

where Y1 is a non-terminal,

FOLLOW(Y1) = FIRST(Y2), if FIRST(Y2) does not contain e
 = [union of FIRST(Y2), and FIRST(Y3)], if FIRST(Y2) contains e and FIRST(Y3) does not 

contain e. When the union of FIRST(Y2), and FIRST(Y3) is computed we discard the e element out of the 

set.

 = [union of FIRST(Y2), FIRST(Y3) and FIRST(Y4)], if FIRST(Y2), FIRST(Y3) both 

contain e and FIRST(Y4) does not contain e. For the computation of union of FIRST(Y2), FIRST(Y3) and 

FIRST(Y4), we discard the e element.

Generalizing, for a non-terminal Yk in the above production

FOLLOW(Yk ) = [union of FIRST(Yk+1 ), FIRST(Yk+2 )..FIRST(Yk+m)], if FIRST(Yk+1), FIRST(Yk+2)

..FIRST(Yk+3) all contain e and FIRST(Yk+m) does not contain e. Eventhough FIRST(Yk+1), FIRST(Yk+2) .. 

FIRST (Yk+m+1) all contain e, when we compute the union of FIRST(Yk+1), FIRST(Yk+2)..FIRST(Yk+m), we 

discard the e element.
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3. For a Production

X ÆY1 Y2 Y3 Y4.. YkYk+1 Yk+2 Yk+3.…. Yn

if FIRST(Yk+1), FIRST(Yk+2), FIRST(Yk+3)…FIRST(Yn) all contain e then

FOLLOW(Yk) = FOLLOW (X)

A specifi c case of the rule is

FOLLOW(Yn) = FOLLOW (X)

In the above type of scenarios, typically there would be another rule in the grammar of language that would 

allow the computation of FOLLOW (X).

Table 3.16 shows the computation of FOLLOW sets for all the non-terminals in the grammar of Table 

3.5. We use the rules given in Table 3.15 to compute the FOLLOW sets. We take each of the production and 

compute the FOLLOW sets of the relevant symbols.

Table 3.16 Computation of FOLLOW sets

Production Comments

c_statement Æ IDENTIFIER EQ_TO_OP c_
expression SEMI_COLON

FOLLOW(c_statement) = {$}

since c_statement is the start symbol (by Rule 1)

FOLLOW(c_expression) = FIRST(SEMI_COLON), by 
Rule 2.

We know that FIRST(SEMI_COLON)= {SEMI_COLON}, 
since SEMI_COLON is an NonTerminal, during the 
computation of FIRST sets.

Hence, we add SEMI_COLON to the FOLLOW(c_
expression)

FOLLOW(c_expression) = {SEMI_COLON}

c_expression Æ CONSTANT c_expr_rest FOLLOW(c_expr_rest)= FOLLOW(c_expression) by 
Rule 3. Hence,

FOLLOW(c_expr_rest) = {SEMI_COLON}

c_expression Æ IDENTIFIER c_expr_rest FOLLOW(c_expr_rest)= FOLLOW(c_expression) by 
Rule 3. Hence,

FOLLOW(c_expr_rest) = {SEMI_COLON}

c_expr_rest Æ OPERATOR c_expr_factor FOLLOW(c_expr_factor)= FOLLOW(c_expr_rest) by 
Rule 3. Hence,

FOLLOW(c_expr_factor) = {SEMI_COLON}

c_expr_factor Æ IDENTIFIER c_expr_rest FOLLOW(c_expr_rest)= FOLLOW(c_expr_factor) by 
Rule 3. Hence,

FOLLOW(c_expr_rest) = {SEMI_COLON}

c_expr_factor Æ CONSTANT c_expr_rest FOLLOW(c_expr_rest)= FOLLOW(c_expr_factor) by 
Rule 3. Hence,

FOLLOW(c_expr_rest) = {SEMI_COLON}
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Summarising the FOLLOW sets of all the non-terminals, we have

FOLLOW (c_statement) = {$}

FOLLOW (c_expression) = {SEMI_COLON}

FOLLOW (c_expr_rest) = {SEMI_COLON}

FOLLOW (c_expr_factor) = {SEMI_COLON}

The grammar in Table 3.5 is simple and does not have many productions with the same LHS. In most 

of the programming languages, there are quite a number of productions with the same LHS and different 

RHS. Due to this, there is interdependency of FOLLOW set of common LHS symbols with FOLLOW set 

of various RHS symbols due to the application of rule 3 on different productions. Hence, the FOLLOW set 

computation needs to be done in multiple passes on the grammar rules, until a steady state is reached.

Section 3.4.2.2.2 shows a program, that computes ‘FIRST’ and ‘FOLLOW’ sets, given the grammar of 

the language. The FIRST and FOLLOW sets play an important role in making the parsing table entries for 

the top-down parsing.

3.4.2.2.2 Example 4—A Program for computing FIRST and FOLLOW sets This example shows how 

we can compute FIRST and FOLLOW sets for a symbol, given the grammar for the language. The following 

dialog shows how the binary is built and used to compute FIRST and FOLLOW sets for a given grammar.

# Building ex4 Binary

$ g++ -g -Wall grammar.cc ex4.cc -o ex4

# A sample grammar fi le - sample1.gram

$ cat sample1.gram

c_statement : IDENTIFIER EQ_TO_OP c_expression ;

c_expression : CONSTANT c_expr_rest

c_expression : IDENTIFIER c_expr_rest

c_expr_rest : OPERATOR c_expr_factor

c_expr_rest : epsilon

c_expr_factor : IDENTIFIER c_expr_rest

c_expr_factor : CONSTANT c_expr_rest

$ ./ex4 ‘sample1.gram’

c_expr_factor FIRST={CONSTANT,IDENTIFIER} FOLLOW={;}

c_expr_rest FIRST={OPERATOR,epsilon} FOLLOW={;}

c_expression FIRST={CONSTANT,IDENTIFIER} FOLLOW={;}

c_statement FIRST={IDENTIFIER} FOLLOW={$}

# A sample grammar fi le - sample2.gram

$ cat sample2.gram

E : T EDASH

EDASH : PLUS T EDASH

EDASH : epsilon

T : F TDASH

TDASH : STAR F TDASH
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TDASH : epsilon

F : ( E)

F : ID

$ ./ex4 ‘sample2.gram’

E FIRST={(,ID} FOLLOW={$,)}

EDASH FIRST={PLUS,epsilon} FOLLOW={$,),PLUS}

F FIRST={(,ID} FOLLOW={$,),PLUS,STAR}

T FIRST={(,ID} FOLLOW={$,),PLUS}

TDASH FIRST={STAR,epsilon} FOLLOW={$,),PLUS,STAR}

# A sample grammar fi le - sample3.gram

$ cat sample3.gram

S : i E t S S1

S : a

S1 : e S

S1 : epsilon

E : b

$ ./ex4 ‘sample3.gram’

E FIRST={b} FOLLOW={t}

S FIRST={a,i} FOLLOW={$,e,t}

S1 FIRST={e,epsilon} FOLLOW={$,e,t}

3.4.2.2.3 Construction of Predictive Parsing Tables using FIRST and FOLLOW Sets In this section, 

we study about making entries in a parsing table M, using the concept of FIRST and FOLLOW sets.

Consider a production X Æ Y1 Y2 Y3 Y4.. Yk..…. Yn in the grammar. The predictive parsing table entries 

M relevant to this production are based on FIRST set of the entire RHS (Y1 Y2 Y3 Y4.. Yk..…. Yn). The 

FIRST set of (Y1 Y2 Y3 Y4.. Yk..…. Yn) is calculated as follows. Add to FIRST(Y1 Y2 Y3 Y4.. Yk..…. Yn) all 

the non-e symbols of FIRST(Y1). If FIRST(Y1) contains e, then add to FIRST(Y1 Y2 Y3 Y4.. Yk..…. Yn) all 

the non-e symbols of FIRST(Y2). If FIRST(Y2) contains e, then add to FIRST(Y1 Y2 Y3 Y4.. Yk..…. Yn) all 

the non-e symbols of FIRST(Y3). This goes on until we fi nd a FIRST(Yk) that does not contain e. In case, if 

FIRST(Y1), FIRST(Y2), FIRST(Y3) .. FIRST(Yn) all contain e, we add e at the end to FIRST(Y1 Y2 Y3 Y4.. 

Yk..…. Yn).

For each production X ÆY1 Y2 Y3 Y4.. Yk..…. Yn in the grammar, calculate the FIRST(Y1 Y2 Y3 Y4.. 

Yk..….Yn) using the above method. For each terminal ‘a’ in FIRST (Y1 Y2 Y3 Y4.. Yk..…. Yn) make a 

parsing table entry M[X, a] = XÆY1 Y2 Y3 Y4.. Yk..…. Yn. This essentially means that if we are expanding 

a non-terminal X and an input of ‘a’ is received, we use the production X ÆY1 Y2 Y3 Y4.. Yk..…. Yn . In 

case FIRST(Y1 Y2 Y3 Y4..Yk..... Yn) contains e, we need to add more entries. The additional entries are as 

follows. For each terminal ‘b’ in FOLLOW(Y1 Y2 Y3 Y4.. Yk..…. Yn) make a parsing table entry M[X, b] 

as X ÆY1 Y2 Y3 Y4.. Yk..…. Yn. This essentially means that if we are expanding a non-terminal X and an 

input of ‘b’ is encountered, then also we use the production XÆ Y1 Y2 Y3 Y4.. Yk..…. Yn. This method used 

for making entries in the parsing table is summarised in Algorithm 3.2.
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Grammar G
a is a string of grammar symbols e.g. Y1 Y2 Y3 Y4.. Yk..…. Yn

Initialise the table M to undefi ned entries
for (each production A Æ a in Grammar G){
     for ( each terminal a in FIRST (a) ){
          M[A,a] = (A Æ a)
     }
     if (FIRST(a) contains e){/* additional entries */
          for ( each terminal b in FOLLOW(A)){
               M[A,b] = (A Æ a)
          }
          if ( $ is in FOLLOW(A)) {
               M[A,$] = ( A Æ a)
          }
     }
}

Algorithm 3.2 Construction of predictive parsing table

We now use Algorithm 3.2 to make the parsing table entries for the grammar described in Table 3.5. We 

use the FIRST and FOLLOW sets computed earlier as a ready reference.

Production Comments

(1) c_statement Æ 
IDENTIFIER EQ_TO_OP 
c_expression SEMI_COLON

FIRST(IDENTIFIER EQ_TO_OP c_expression SEMI_COLON) = 
FIRST(IDENTIFIER) = {IDENTIFIER}

Hence,

M[c_statement, IDENTIFIER] = 1 /* production 1 */

(2) c_expression Æ 
CONSTANT c_expr_rest

FIRST(CONSTANT c_expr_rest)= FIRST(CONSTANT) = { CONSTANT}
Hence,

M[c_expression, CONSTANT] = 2 /* production 2 */

(3) c_expression Æ 
IDENTIFIER c_expr_rest

FIRST(IDENTIFIER c_expr_rest)= FIRST(IDENTIFIER) = IDENTIFIER
Hence,

M[c_expression, IDENTIFIER] = 3 /* production 3 */

(4) c_expr_rest Æ 
OPERATOR c_expr_factor

FIRST(OPERATOR c_expr_factor)=FIRST(OPERATOR) = {OPERATOR}
Hence,

M[c_expr_rest,OPERATOR] = 4 /* production 4 */

(5) c_expr_rest Æ Œ FIRST(Œ) = {Œ}
FOLLOW(c_expr_rest)= {SEMI_COLON} from the earlier computation.
Hence,

M[c_expr_rest, SEMI_COLON]= 5 /* production 5 */

(6) c_expr_factor Æ 
IDENTIFIER c_expr_rest

FIRST(IDENTIFIER c_expr_rest) = FIRST(IDENTIFIER) = 
{IDENTIFIER},

M[c_expr_factor,IDENTIFIER]= 6 /* production 6 */

(7) c_expr_factor Æ 
CONSTANT c_expr_rest

FIRST(CONSTANT c_expr_rest) = FIRST(CONSTANT) = {CONSTANT},

M[c_expr_factor, CONSTANT]= 7 /* production 7 */
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The reader is advised to verify the parse table entries made above and compare it with the parse table 

shown in Table 3.11 for explaining the predictive table-driven parser algorithm.

3.4.2.3 Example 5—Predictive Parsing Table Entries using FIRST and FOLLOW Sets This 

example shows how the parsing table entries of a table-driven predictive parser are generated using FIRST 

and FOLLOW set concepts. Algorithm 3.2 has been implemented in this example. This example not only 

generates the parsing table entries, but also does syntax analysis of the simple c assignment statement using 

the parse table entries.

# Generating the Lexical Analyzer from Lexical Specifi cations 

$ fl ex -oc-stmt-lex.c c-stmt-lex.l 

# Compiling the Lexical Analyzer 

$ gcc  -c -o c-stmt-lex.o c-stmt-lex.c 

# Building ex5 Binary 

$ g++ -g -Wall grammar.cc table_parse.cc c-stmt-lex.o ex5.cc -o ex5 

# Variant 1 

$ ./ex5 ‘sample1.gram’  ‘count=5;’ 

**** Table Entries **** 

M[c_statement][IDENTIFIER]= ‘c_statement : IDENTIFIER EQ_TO_OP c_expression ; ’

M[c_expression][CONSTANT]= ‘c_expression : CONSTANT c_expr_rest  ’

M[c_expression][IDENTIFIER]= ‘c_expression : IDENTIFIER c_expr_rest  ’

M[c_expr_rest][OPERATOR]= ‘c_expr_rest : OPERATOR c_expr_factor  ’

M[c_expr_rest][;]= ‘c_expr_rest : epsilon  ’

M[c_expr_factor][IDENTIFIER]= ‘c_expr_factor : IDENTIFIER c_expr_rest  ’

M[c_expr_factor][CONSTANT]= ‘c_expr_factor : CONSTANT c_expr_rest  ’

**** Parsing **** 

c_statement : IDENTIFIER EQ_TO_OP c_expression ;  

c_expression : CONSTANT c_expr_rest  

c_expr_rest : epsilon  

count=5;

SYNTAX CORRECT 

# Variant 2 

$ ./ex5 ‘sample1.gram’  ‘count=index;’ 

**** Table Entries **** 

M[c_statement][IDENTIFIER]= ‘c_statement : IDENTIFIER EQ_TO_OP c_expression ;  ’

M[c_expression][CONSTANT]= ‘c_expression : CONSTANT c_expr_rest  ’

M[c_expression][IDENTIFIER]= ‘c_expression : IDENTIFIER c_expr_rest  ’

M[c_expr_rest][OPERATOR]= ‘c_expr_rest : OPERATOR c_expr_factor  ’

M[c_expr_rest][;]= ‘c_expr_rest : epsilon  ’

M[c_expr_factor][IDENTIFIER]= ‘c_expr_factor : IDENTIFIER c_expr_rest  ’

M[c_expr_factor][CONSTANT]= ‘c_expr_factor : CONSTANT c_expr_rest  ’

**** Parsing **** 

c_statement : IDENTIFIER EQ_TO_OP c_expression ;  
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c_expression : IDENTIFIER c_expr_rest  

c_expr_rest : epsilon  

count=index;

SYNTAX CORRECT 

3.4.2.4 Error Recovery in Predictive Parsing We had, till now, discussed about the two common 

techniques of implementing a top-down predictive parser, viz. recursive descent parsing and table-driven 

parsing. This section is focussed on the  error reporting and recovery in top-down predictive parsing.

In table-driven parsing, it is clear as to what terminals and non-terminals the parser expects from the rest 

of the input. An error can be detected in the following situations:

 1. When the terminal on the top of the stack does not match the next input symbol.

 2. When a non-terminal A is on the top of stack, a is the next input symbol and the parsing table entry 

M[A,a] is empty.

Recall from Section 3.4 that the error recovery of a parser is the ability to ignore the current error and 

continue with the parsing for the remainder of the input. The error recovery schemes that are commonly 

used in predictive parsing are:

 1. Panic mode recovery. 

 2. Phrase level recovery.

Panic mode recovery is based on the principle that when an error is detected, the parser should skip the 

input symbols until it fi nds a synchronising token in the input. Usually, the synchronising tokens are more 

than one; hence a set called as  synchronising set is used to denote the set of all synchronising tokens. The 

effectiveness of panic mode recovery depends on the choice of synchronising set. Some of the guidelines 

for constructing the synchronising set are as follows:

 1. For a non-terminal A, all the elements of FOLLOW set of A can be added to synchronising set of A. 

For example, consider an input of multiple C statements as shown below to be verifi ed against the 

grammar in Table 3.5. The line 1 has a missing C expression.

   count = ; /* This is line 1 – Missing C Expression*/
 index = a +100 ; /* This is line 2 */

  The table-driven parser after consuming = in line 1, would expect a C expression, instead it would 

fi nd an input of SEMI_COLON . This is a part of FOLLOW set of C expression. The parser can 

emit a message indicating that C expression is missing and then continue parsing the line 2.

 2. For a non-terminal A, the elements in FIRST set of A can be added to synchronisation set of A. This 

would be useful in situations where the parsing can be resumed according to A, on appearance of an 

input symbol that is a part of FIRST set of A. For example, consider an erroneous C statement using 

the grammar in Table 3.5

   39 count = a + b ; /* Extra characters 39 */

  The table-driven predictive parser can skip characters ‘39’ and synchronise from count (Identifi er), 

because the FIRST (c_statement) is an IDENTIFIER. This would allow the parser to recover from 

errors in which there are some extraneous characters and resume the parsing from ‘count’.

 3. The synchronising set for a token can be a set of all other tokens. If a terminal on the top of stack 

cannot be matched, then pop the terminal from the top of stack and issue a warning indicating that 

the terminal was inserted and continue parsing. For example, consider an input C statement using 

the grammar in Table 3.5 as shown below.

   count 45 ; /* Missing equal to operator */

  The table-driven parser after consuming count would expect an EQ_TO_OP according to rule 1. On 

fi nding that the next input symbol is 45 (which is a CONSTANT), the table-driven predictive parser 
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can emit a message indicating that EQ_TO_OP was inserted and continue parsing as if EQ_TO_OP 

was a part of the input.

Phrase-level recovery in predictive parser can be implemented by fi lling in blank entries in the predictive 

parsing table with pointers to error-handling routines. For example, in Table 3.11 each one of the empty 

entries can point to error-handling routines that can do the following:

 1. The error-handling routines can insert, modify or delete any symbols in the input. This would 

amount to local correction that is expected from phrase-level recovery.

 2. The routines can also pop elements from the stack. The routines should safeguard against an infi nite 

loop by making sure whatever local correction is done should ultimately result in an input symbol 

being consumed.

3.5 BOTTOM UP PARSING

In  bottom-up parsing, the parse tree for an input string is constructed beginning at the leaves (the bottom) 

and working up towards the root (the top).

Bottom-up parsing involves ‘reducing’ an input string ‘w’ to the start symbol of the grammar. In each of 

the reduction step a particular sub-string matching the right side of a production is replaced by a symbol on 

the left of that production. If the sub-string were chosen correctly at each step, the reduction steps would be 

the exact reverse of rightmost derivation. The ‘reducing’ is in contrast to what we saw earlier in top-down 

parsing where we were ‘expanding’ the left-hand-side of the production to replace it with the RHS of the 

production.

Let us consider the example of a C statement ‘count = index + 10 ; We shall try to check if this 

C statement is in conformance to the grammar in Table 3.1 (which is where we started before we made 

changes in grammar to suit LL parsing). It is reproduced below for convenience.

1 c_statement Æ IDENTIFIER  EQ_TO_OP   c_expression  SEMI_COLON

2 c_expression Æ CONSTANT

3 | IDENTIFIER

4 | c_expression  OPERATOR  c_expression

For the input ‘count = index + 10;’ the lexical analyser returns the following string of tokens by virtue of 

the defi nition of an IDENTIFIER, CONSTANT, OPERATOR and EQ_TO_OP. This is shown as:

=> IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON Tokens

We scan the tokenised input string to identify sub-strings that match the right side of a production. 

The IDENTIFIER qualifi es for being the right side of Production 3. Let’s choose to replace one of the 

IDENTIFIER (the one standing in for variable ‘index’) by the equivalent left side of Production 3, i.e. c_

expression. This results in

=> IDENTIFIER EQ_TO_OP c_expression OPERATOR CONSTANT SEMI_COLON By Production 3

Again, we scan the above string to identify sub-strings that match the right side of a production. The 

‘CONSTANT’ sub-string qualifi es for being the right side of Production 2. Let’s choose to replace it by the 

equivalent left side of Production 2, i.e. c_expression. This results in the following string:
 
 => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON By Production

 2

We continue the next iteration of scanning the above string to identify sub-strings that match the right 

side of a production. The sub-string ‘c_expression OPERATOR c_expression’ qualifi es for being the right 

side of Production 4. Let’s choose to replace it by the equivalent left-side of Production 4, i.e. c_expression. 

This results in the following string:
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=> IDENTIFIER EQ_TO_OP c_expression SEMI_COLON  By Production 4

Let’s see the next iteration of scanning the above string to identify sub-strings that match the right side of 

a production. The entire string ‘IDENTIFIER EQ_TO_OP c_expression SEMI_COLON’ qualifi es for being 

the right side of Production 1. Let’s replace it by the equivalent left side of Production 1, i.e. C statement. 

This results in the following string:

=> c_statement By Production 1

Thus we have reduced the input string ‘count = index + 10 ;’ to a C statement. Interestingly, note that the 

derivation is exactly the reverse of a rightmost derivation starting from the root:

c_statement => IDENTIFIER EQ_TO_OP c_expression   SEMI_COLON By P1

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR c_expression SEMI_COLON By P4

 => IDENTIFIER EQ_TO_OP c_expression OPERATOR CONSTANT SEMI_COLON By P2

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON By P3

  count = index + 10 SEMI_COLON

The production rules applied in the rightmost derivation starting from the top are 1 followed by 4, 2, 3 

while the bottom-up parsing applied productions 3 followed by 2, 4, 1. A rightmost derivation in reverse is 

called as  canonical reduction sequence.

The parse-tree construction for bottom-up parsing is illustrated in Fig. 3.7.

We saw in the previous sections that left factoring and elimination of left recursion are two important 

transformations essential to make a grammar suitable for top-down parsing. Similarly, the transformation 

that is necessary to make the grammar suitable for bottom-up parsing is elimination of right recursion. In 

top-down parsing, we started with the grammar in Table 3.1 and transformed it to have left factoring and 

eliminate left recursion. Similarly, we start with the grammar in Table 3.1 and eliminate right recursion in 

rule 4 to make it suitable for bottom-up parsing. Table 3.1 is repeated here for convenience.

1 c_statement Æ IDENTIFIER EQ_TO_OP  c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3 | IDENTIFIER

4 | c_expression  OPERATOR  c_expression

Consider the Production 4,

c_expression Æ c_expression OPERATOR c_expression

 The right recursion can end only in two situations, where the c_expression takes the form of 

CONSTANT (as in rule 2) or IDENTIFIER (as in rule 3). Taking advantage of it, we can rewrite Production 

4 as two rules shown below.

c_expression Æ c_expression OPERATOR CONSTANT

c_expression Æ c_expression OPERATOR IDENTIFIER

Using the two rules above, the c-statement grammar suitable for bottom-up parsing can be written as:

Table 3.17 C-statement grammar suitable for bottom-up parsing

1 c_statement Æ IDENTIFIER EQ_TO_OP  c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3 | IDENTIFIER

4 | c_expression OPERATOR CONSTANT

5 | c_expression OPERATOR IDENTIFIER
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Fig. 3.7 Bottom-up parsing for count=index + 10;

3.5.1 Defi nitions in Bottom-up Parsing

Let’s go through the derivation of ‘count = index + 10 ;’ with the new grammar rules shown in Table 3.17 

and in the process understand some defi nitions.
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The process of replacement of the right side of the production by its equivalent left side of the Production 

is called as  reduction. The sub-string that gets replaced by its equivalent left side of the production is 

called a  handle. The handles in two of the steps above are shown. In the above derivation, each one of the 

intermediate forms that are encountered before the input is reduced to the start symbol is called as  right 

sentential form. For example, in the derivation of ‘count=index + 10 ;’ shown above, in step 1.

 => IDENTIFIER EQ_TO_OP IDENTIFIER OPERATOR CONSTANT SEMI_COLON

is a right sentential form whose handle is c_expression Æ IDENTIFIER at position 3.

In the derivation of ‘count=index + 10 ;’ shown above, the choices of handles to replace are intuitively 

clear. However, in reality the choices of handles have to be pruned to identify the correct handle that would 

lead us to the start symbol. For example, by making a wrong choice of handle the derivation could have 

gone awry as follows:

        count = index + 10 ; 

fi IDENTIFIER EQ_TO_OP  IDENTIFIER             OPERATOR CONSTANT SEMI_COLON Returned as

       Tokens

fi c_expression  EQ_TO_OP  IDENTIFIER      OPERATOR CONSTANT SEMI_COLON By P1

fi c_expression EQ_TO_OP c_expression OPERATOR   CONSTANT SEMI_COLON By P1

fi c_expression EQ_TO_OP c_expression   SEMI_COLON By P4

fi c_expression EQ_TO_OP c_expression   SEMI_COLON Cannot be 

       reduced further

The input is not reduced to c_statement, this would have led us to the wrong conclusion that given 

input ‘count = index + 10;’ is not a valid C statement. This undermines the need for identifying the correct 

handle out of all possible handles (handle pruning) to replace in order to be able to reduce the input string 

to the start symbol.

Similarly, when there is more than 1 production that has the same right-hand side, the choice of 

which production rule to apply, in order to reduce a handle is very important to have the correct outcome of 

parsing.
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3.5.2 Working of a Bottom-up Parser

Bottom-up parsing is commonly implemented by using a stack. The end of the input is marked with a ‘$’. 

The bottom of the stack is also marked with ‘$’. Depending on the content of the stack and the next input 

symbol, the actions of a bottom-up parser can be classifi ed as (1) shift (2) reduce (3) accept (4) error.

In  shift action, the next input symbol is shifted on to the top of the stack.

In  reduce action, the top few elements on the stack constituting the right-hand side of a production are 

replaced by the non-terminal that forms the equivalent left side on the top of stack.

In  accept action, in which the top of the stack contains the start symbol, the parser announces the 

successful parsing of the input.

In  error action, the parser recognises that a syntax error has occurred in the input and calls an error 

handling routine.

Let’s see the working of a bottom-up parser by trying to verify if an input string ‘a= count +2 ;’ is in 

conformance with the grammar given in Table 3.17.

The fi rst input symbol ‘a’ would be translated to IDENTIFIER by the lexical analyser. The parser would 

perform the ‘shift’ action and push it on the stack. The stack is shown below.

$ IDENTIFIER Step 1

The next symbol ‘=’ would be translated to EQ_TO_OP by the lexical analyser. The parser would 

perform the ‘shift’ action and push it on the stack.

$ IDENTIFIER EQ_TO_OP Step 2

The next input symbol ‘count’ would be translated as IDENTIFIER by the lexical analyser. The parser 

would perform the ‘shift’ action and push it on the stack.

$ IDENTIFIER EQ_TO_OP IDENTIFIER Step 3

The topmost element of the stack is IDENTIFIER, which forms the right-hand side of Production 3. A 

‘Reduce’ action is performed by the parser, replacing IDENTIFIER by c_expression.

$ IDENTIFIER EQ_TO_OP c_expression Step 4

The next input symbol ‘+’ would be translated as ‘OPERATOR’ by lexical analyser. The parser would 

perform the ‘shift’ action and push it on the top of stack.

$ IDENTIFIER EQ_TO_OP c_expression OPERATOR Step 5

The next input symbol ‘2’ would be translated into CONSTANT by lexical analyser. The parser would 

perform ‘shift’ action and push it on the top of stack.

$ IDENTIFIER EQ_TO_OP c_expression OPERATOR CONSTANT Step 6

The top-most few elements of the stack are c_expression OPERATOR CONSTANT, which forms the 

right-hand side of Production 3. A ‘reduce’ action is performed by the parser, replacing ‘c_expression 

OPERATOR CONSTANT ‘ by c_expression.

$ IDENTIFIER EQ_TO_OP c_expression Step 7
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The next input symbol ‘;’ would be translated into SEMI_COLON by lexical analyser. The parser would 

perform ‘shift’ action and push it on the top of stack.

$ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON  Step 8

The top-most few elements of the stack are IDENTIFIER EQ_TO_OP c_expression SEMI_COLON, 

which forms the right-hand side of Production 3. A ‘reduce’ action is performed by the parser, replacing 

‘IDENTIFIER EQ_TO_OP c_expression SEMI_COLON’  by c_statement.

$ c_statement       Step 9

The top of the stack contains the start symbol ‘c_statement’. The parser does an accept action and 

indicates the successful parsing of the input to c_statement.

Note that the rationale behind why a shift is chosen or reduce is chosen in each one of the above steps 

is not yet explained. We will come to that a little later. For now, try and appreciate the how the stack is 

manipulated to make the entire parse.

Let’s look at an example to see how the shift/reduce actions happen during the parsing process. We 

shall use a parser generated by the tool bison (similar to the Example 1 in Section 3.1.2). The tool bison 

generates a bottom-up parser that does shift and reduce, the way we did above. Let’s try it out by giving in 

the grammar of Table 3.17 and the same input as above ‘a = count+2;’ 

3.5.2.1 Example 6—A Bottom-up Parser for a Simple C Statement The parsers that are 

automatically generated by most of popular tools like bison/yacc are bottom-up parsers. This section shows 

a bottom-up parser generated by bison, for the grammar in Table 3.17. The focus of this example is to 

illustrate the shift-reduce actions performed by a bottom-up parser, when an input is given. We reuse the 

lexical analyser shown in Example 1.

# Generating C File from grammar. -t enables debugging, i.e. shows shift/reduce actions performed

$ bison -dy -t -oc-stmt-bot-up-gram.c -v c-stmt-bot-up-gram.y

# Compiling the Parser

$ gcc -g -Wall -DGENERATED_PARSER -c -o c-stmt-bot-up-gram.o c-stmt-bot-up-gram.c

# Generating the lexical Analyzer from lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

# Compiling the lexical Analyzer

$ gcc -c -DGENERATED_PARSER -DCHAP3_EX6 -o c-stmt-lex6.o c-stmt-lex.c

# Building ex6 Binary

$ gcc -g -Wall ex6.c c-stmt-bot-up-gram.o c-stmt-lex6.o -o ex6

# An Example for shift-reduce Parsing

$ ./ex6 ‘a=count+2;’

Starting parse

Entering state 0

Reading a token: Next token is token IDENTIFIER ()

Shifting token IDENTIFIER ()

Entering state 1
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Reading a token: Next token is token EQ_TO_OP ()

Shifting token EQ_TO_OP ()

Entering state 3

Reading a token: Next token is token IDENTIFIER ()

Shifting token IDENTIFIER ()

Entering state 5

Reducing stack by rule 3 (line 21):

   $1 = token IDENTIFIER ()

-> $$ = nterm c_expression ()

Stack now 0 1 3

Entering state 7

Reading a token: Next token is token OPERATOR ()

Shifting token OPERATOR ()

Entering state 8

Reading a token: Next token is token CONSTANT ()

Shifting token CONSTANT ()

Entering state 11

Reducing stack by rule 4 (line 22):

    $1 = nterm c_expression ()

    $2 = token OPERATOR ()

    $3 = token CONSTANT ()

->  $$ = nterm c_expression ()

Stack now 0 1 3

Entering state 7

Reading a token: Next token is token SEMI_COLON ()

Shifting token SEMI_COLON ()

Entering state 9

Reducing stack by rule 1 (line 16):

    $1 = token IDENTIFIER ()

    $2 = token EQ_TO_OP ()

    $3 = nterm c_expression ()

    $4 = token SEMI_COLON ()

->  $$ = nterm c_statement ()

Stack now 0

Entering state 2

Reading a token: Now at end of input.

Stack now 0 2

Cleanup: popping nterm c_statement ()

a=count+2;

SYNTAX CORRECT

For now, ignore the state related information emitted in the output. The reader is advised to make a 

comparison of the output of ‘ex6’ for ‘a=count+2;’ in the above dialog with the explanation done 

previously so as to understand the process of shift-reduce parsing better. Trying out the executable ex6 with 

different types of input will help in comprehending the nuances of shift-reduce parsing.

3.5.3 Shift-Reduce Parsing Methods

From a mechanical point of view, the explanation given for shift-reduce parsing in the previous section seemed 

complete. Let’s do a deeper analysis and fi nd out some of the issues encountered in the parsing of input.
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How do we recognise the right ‘handles’ for reducing?

For example, in the shift-reduce parsing of ‘a=count+2;’ explained earlier. When we were in step 1, 

we had the stack where ‘IDENTIFIER’ was on the top of stack. We did not reduce it to ‘c_expression’. 

However, in step 3, we reduced the ‘IDENTIFIER’ on the top of the stack to ‘c_expression’. If we had 

reduced ‘IDENTIFIER’ on the top of the stack to ‘c_expression’ in step 1, it would have led us to the 

conclusion that the sentence ‘a=count+2;’ does not conform to the c-statement grammar.

This explains the need to have a mechanism to identify the correct handle for reducing.

Similarly, in cases where there are more than 1 productions having the same sub-string on the right-hand 

side we need to have a mechanism to fi gure out what production needs to be used for reducing in order to 

have a successful derivation of input.

In the next few sections, we shall see two methods of shift-reduce parsing, which use different 

techniques to resolve the issues mentioned above. The two methods are:

 1. Operator precedence parsing method.

 2. LR parsing method.

These methods vary in their approach to identify the right handle and the correct production for reduction. 

The LR parsing method uses a state machine represented by a parsing table to make the shift/reduce decisions.  

The operator parsing method uses a table known as precedence table to make shift/reduce decisions.

The operator precedence parsing method can be applied to a small class of grammar called as  operator 

precedence grammar. In operator precedence grammar, there would not be an epsilon production. The 

operator precedence grammar also puts a restriction that in no production would there be two adjacent 

terminals. The operator precedence parsing method is described in Section 3.5.4.

The LR parsing method can be applied to a class of grammar called LR grammar (L stands for left to 

right scanning and R stands for rightmost derivation). Unlike the operator precedence grammar, the LR 

grammar does not put serious restrictions on the productions. The LR parsing method can parse most of the 

programming constructs. The LR parsing method is described in detail in Section 3.5.5.

Even when we devise mechanisms to identify the right handle for reducing and the correct production 

for reducing, there is no assurance that a shift-reduce parser can parse any context-free grammar. For some 

context-free grammars, it is possible that the shift-reduce parser can get into a confi guration in which the 

parser knowing the entire stack contents (S) and the next input symbol (a), is still unable to decide whether 

to shift or reduce (shift-reduce confl ict) or cannot decide which of the productions to reduce (reduce-

reduce confl ict). These kinds of context-free grammars for which the LR parsers end up with a confl ict are 

called as  non-LR grammars.

3.5.4 Operator Precedence Parsing

 Operator precedence parsing is a shift-reduce parsing method that can be applied to a small class of 

grammar called as operator grammar.

An operator grammar has two important characteristics:

 1. There are no e productions in this type of grammar.

 2. No production would have two adjacent non-terminals.

Consider an operator grammar recognising expressions using the following 7 productions.
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Table 3.18 An operator grammar

1 E    Æ ID                                    An expression is a Identifi er

2 | E + E Addition

3 | E – E Subtraction

4 | E * E Multiplication

5 | E / E Division

6 | E ^ E Raising to the Power

7 | (E) Parenthesised

8 | -E Unary Minus

The ID can be either a number or a variable name.

Before we see how the operator precedence parsing technique can be used to parse an input and check its 

conformance with the above grammar, let’s spend some time on where this kind of grammar can be used.

In the fi rst look, it appears that the grammar shown in Table 3.18 can be used in a desktop calculator, if 

we defi ne ID as a number. In reality, apart from the desktop calculator, most of the programming languages 

use this kind of grammar for evaluating expressions. Remember, we were having a c_expression in our 

earlier examples. We can use operator precedence grammar to evaluate such expressions. The existence of 

expressions in almost all programming languages makes it an important class of grammar. The limitation 

on the type of productions is not a great hindrance, since expressions by nature exhibit operator grammar 

characteristics. To appreciate the importance of this parsing, it is relevant to mention that the expressions in 

SNOBOL compiler were based on operator precedence parsing. 

We had seen earlier that in shift-reduce parsing, the main challenges are:

 1. To identify the correct handle in each of the reduction steps, such that we can eventually reduce a 

given input to the start symbol.

 2. To identify which production to use for reducing in each of the reducing steps, such that we can 

correctly reduce the given input to the start symbol.

The operator precedence parsing technique uses a table called as  operator precedence relations table 

for making informed decisions with regard to identifying the correct handle during a reduction step. Since 

the operator grammar does not contain any epsilon productions, the issue of having to identify the right 

production for reducing is simplifi ed.

An operator precedence parser consists of:

 1. An input buffer that contains the string to be parsed followed by a $, a symbol used for indicating 

the end of input.

 2. A stack containing the sequence of grammar symbols with a $ at the bottom of the stack. The stack 

does not differentiate between non-terminals, it merely marks the element on the stack as non-

terminal. This will be more evident, when we see the example a little later.

 3. An operator precedence relations table O, containing the precedence relationship between a pair of 

terminals. This is a two-dimensional array using the operators as the indexes. The content of the 

operator precedence relations table can be one of the three precedence relations namely <•, •>, or  =
.
  

between a pair of terminals. The relation a •> b implies that the terminal ‘a’ has higher precedence 

than ‘b’. The relation a <• b implies that the terminal ‘a’ has lower precedence than ‘b’. The relation 

a =
.
  b implies that both ‘a’ and ‘b’ have the same precedence. The precedence relationship between 

a terminal ‘a’ and another terminal ‘b’ is determined by consulting the entry O[a][b]. Table 3.19 
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shows an operator precedence relations table. The shaded entry indicates that operator * has a higher 

precedence than ‘–’.

 4. An operator precedence parsing program that takes the input string and determines if it is 

conformant to the grammar. The parser program uses the operator precedence relations table and the 

stack to arrive at this decision.

Figure 3.8 illustrates the various components of an operator precedence parser.

Fig. 3.8 Components of an operation precedence parser

The operator precedence parsing program determines the action of the parser depending on

∑ ‘a’, the top most terminal symbol on the stack

∑ ‘b’, the current input symbol

There are 3 combinations of ‘a’ and ‘b’ that are important for the parsing program

Condition Action

a = b = $ The parser announces the successful completion of parsing and returns.

a <• b or a =
.
 b The parser shifts the input symbol on to the top of the stack and advances the input pointer 

to the next input symbol.

a •> b This triggers off a reduce operation. The parser pops out elements one by one from 

the shift-reduce stack until we fi nd that the current top of the stack element has lower 

precedence than the most recently popped-out terminal. The popped out elements form the 

handle for the reduction. We make a check to see if the handle forms a valid right-hand side 

of a production. If the handle is valid then we push a non-terminal on the stack and continue 

the parse or else we try to decipher the error and emit a proper error message. The parser 

can either recover and continue the parse or stop parsing.

The parsing program is summarised in Algorithm 3.1.
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op_prec_parse()

{

 do

 {

  a = Symbol on the top of Stack

  b = Next Input Symbol

  if ( ( a == $) && ( b == $)){

   return(SUCCESS)

  }

  if ( O[a][b] is < || O[a][b] is =
.
){/* Shift */

   Shift b on to the Stack

   Advance the input pointer

   b = next input symbol ;

  } else if ( O[a][b] is >) {/* Reduce */

   no_of_term_popped = 0;

   do {

    if( top_of_stack == NONTERM ){

     pop the stack

     continue;

    }

    /* Terminal */

    if (no_of_term_popped > 0){

     if(O[topmost_term_on_stack][most_recently_popped_term] is <){  
         break;

     }

    }

    most_recently_popped_term = topmost_term_on_stack;

    pop the stack

    no_of_term_popped ++ ;

   } while ( 1)

   a = top_of_the stack

   if ( the elements popped out do not form the RHS of a Production){

    return(FAILURE)

   }

   Push non-terminal E on the stack

  } else {

   return(FAILURE)

  }

 } while ( 1)

}

Algorithm 3.3 Operator precedence parsing
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The main data structure on which the operator precedence algorithm depends is the operator precedence 

relations table O. For the grammar mentioned in Table 3.18, the operator precedence relations table O is 

shown in Table 3.19.

Table 3.19 Operator precedence relations table

+ – * / ^ ID ( ) $

+ •> •> <• <• <• <• <• •> •>

- •> •> <• <• <• <• <• •> •>

* •> •> •> •> <• <• <• •> •>

/ •> •> •> •> <• <• <• •> •>

^ •> •> •> •> <• <• <• •> •>

ID •> •> •> •> •> ERR ERR •> •>

( <• <• <• <• <• <• <• =
.

ERR

) •> •> •> •> •> ERR ERR •> •>

$ <• <• <• <• <• <• <• ERR ERR

Using the grammar shown in Table 3.18, and the corresponding parsing table given in Table 3.19, let’s 

see how the operator precedence parser algorithm works for an input of 

‘80 + 100 – 56’.

Initially in operator precedence parsing, the end of input marker ‘$’ is pushed on to the stack. ‘$’ is the 

top of the stack now.

Stack Remaining Input

$ 80 + 100 – 56 $

The parser receives the fi rst token ‘80’, which is translated to an ID from the lexical analyser. The parser 

compares the precedence of ID with ‘$’ by viewing the entry O[$][ID]. The value is ‘<•’, which implies that 

the input symbol ID should be pushed on to the stack (shift operation) and the input pointer advanced. The 

topmost terminal symbol on the stack is ID. 

Stack Remaining Input

$ ID + 100 – 56 $

The next input is ‘+’, which is a token of type PLUS as classifi ed by the lexical analyser. The parser 

compares the precedence of ID (which is the top of stack) with ‘+’ by viewing the entry O [ID] [+]. The 

value is ‘•>’, which implies that a reduce operation needs to be carried out. Symbols are popped out until 

the precedence relation between the top of stack element and the most recently popped element is ‘<•’. The 

fi rst symbol to be popped out of the stack is ID. This makes the most recently popped out element as ID. 

The stack then has ‘$’ as the top of the stack. The precedence relation between ‘$’ (top of stack) and the 

most recently popped out element (ID) is determined by the entry O[$][ID]. The value is ‘<•’, which signals 

us to stop popping out the elements from stack. The elements that were popped out during this process 

are ID. We reduce it to a non-terminal E. Note that we are not distinguishing between non-terminals, it is 

always E in the case of operator grammar. We need to push E onto the stack. The topmost terminal symbol 

on the stack is, however, $. Note that the input pointer is not advanced in the reduce operation. 
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Stack Remaining Input

$ E + 100 – 56 $

We continue to use ‘+’ as the next input symbol. The parser compares the precedence of $ (topmost 

terminal symbol on the stack) with ‘+’ with by viewing the entry O[$][+]. The value is ‘<•’, which implies 

that the input symbol + should be pushed on to the stack (shift operation) and the input pointer advanced. The 

topmost terminal symbol on the stack is +. The input pointer is advanced to point to the next symbol 100.

Stack Remaining Input

$ E + 100 – 56 $

The parser now receives the next token ‘100’, which is an ID from the lexical analyser. The parser 

compares the precedence of ‘+’ (The topmost terminal symbol on the stack) with ID by viewing the entry 

O[+][ID]. The value is ‘<•’, which implies that the input symbol ID should be pushed on to the stack (shift 

operation) and the input pointer advanced. The topmost terminal symbol on the stack is ID.

Stack Remaining Input

$ E + ID – 56 $

The next input is ‘–’, which is a token of type MINUS as classifi ed by the lexical analyser. The parser 

compares the precedence of ID (which is the topmost terminal symbol of stack) with ‘–’ by viewing the 

entry O [ID] [–]. The value is ‘•>’, which implies that a reduce operation needs to be carried out. Symbols 

are popped out until the precedence relation between the top of stack element and the most recently popped 

element is ‘<•’. The fi rst symbol to be popped out of the stack is ID. This makes the most recently popped 

out element as ID. The stack then has ‘+’ as the top of the stack. The precedence relation between ‘+’ 

(topmost terminal symbol on the stack) and the most recently popped out element (ID) is determined by 

the entry O[+][ID]. The value is ‘<•’, which signals us to stop popping out the elements from stack. The 

elements that were popped out during this process are ID. We reduce it to a non-terminal E. Note that we 

are not distinguishing between non-terminals, it is always E even if there were many non-terminals in the 

operator grammar. We need to push E onto the stack. The topmost terminal symbol on the stack is however 

+. Note that the input pointer is not advanced in the reduce operation.

Stack Remaining Input

$ E + E – 56 $

We continue to use ‘–’ as the next input symbol. The parser compares the precedence of + (topmost 

terminal symbol on the stack) with ‘–’ with by viewing the entry O[+][–]. The value is ‘•>’, which implies 

that a reduce operation needs to be carried out. Symbols are popped-out until the precedence relation 

between the top of stack element and the most recently popped element is ‘<’. The fi rst symbol to be 

popped out of the stack is non-terminal E. Note that this does not change the most recently popped out 

terminal, since we had popped out a non-terminal. We pop again, the element to be popped out is ‘+’. This 

makes the most recently popped out element as ‘+’. The stack then has E as the top of the stack. We pop 

out again. The top of the stack is now $, which is a non-terminal. The precedence relation between $ and + 

(the most recently popped out terminal) as determined by O[$][+] is ‘<•’. This signals us to stop popping 

out the elements from stack. The elements that were popped out during this process were E, + and E in that 

order. We reduce these elements to a non-terminal E, i.e. E Æ E + E. Note that we are not distinguishing 

between non-terminals, it is always E in the case of operator grammar. We need to push E onto the stack. 
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The topmost terminal symbol on the stack is, however, $. Note that the input pointer is not advanced in the 

reduce operation.

Stack Remaining Input

$ E – 56 $

We continue to use ‘–’ as the next input symbol. The parser compares the precedence of $ (topmost 

terminal on the stack) with ‘–’ with by viewing the entry O[$][–]. The value is ‘<•’, which implies that the 

input symbol ‘–’ should be pushed on to the stack (shift operation) and the input pointer advanced. The 

topmost terminal symbol on the stack is ‘–’. 

Stack Remaining Input

$ E – 56 $

The parser now receives the next token ‘56’, which is an ID from the lexical analyser. The parser 

compares the precedence of ‘–’ (The topmost terminal symbol on the stack) with ID by viewing the entry 

O[–][ID]. The value is ‘<•’, which implies that the input symbol ID should be pushed on to the stack (shift 

operation) and the input pointer advanced. The topmost terminal symbol now on the stack is ID.

Stack Remaining Input

$ E –   ID  $

The parser now receives the next token ‘$’, the end of input marker from the lexical analyser. The parser 

compares the precedence of ‘ID’ (The topmost terminal symbol on the stack) with $ by viewing the entry 

O[ID][$]. The value is ‘•>’, which implies that a reduce operation needs to be carried out. Symbols are 

popped out until the precedence relation between the top of stack element and the most recently popped  

element is ‘<•’. The fi rst symbol to be popped out of the stack is ID. This makes the most recently popped 

out element as ID. The stack then has ‘–’ as the top of the stack. The precedence relation between ‘–’ 

(topmost terminal symbol on the stack) and the most recently popped out element (ID) is determined by 

the entry O[–][ID]. The value is ‘<•’, which signals us to stop popping out the elements from stack. The 

elements that were popped out during this process are ID. We reduce it to a non-terminal E, i.e. E Æ ID. We 

need to push E onto the stack. The topmost terminal symbol on the stack is, however –. Note that the input 

pointer is not advanced in the reduce operation.

Stack Remaining Input

$ E – E $

We continue to use ‘$’ as the next input symbol. The parser compares the precedence of – (topmost 

terminal symbol on the stack) with ‘$’ with by viewing the entry O[–][$]. The value is ‘•>’, which 

implies that a reduce operation needs to be carried out. Symbols are popped out until the precedence 

relation between the top of stack element and the most recently popped element is ‘<’. The fi rst symbol 

to be popped out of the stack is non-terminal E. Note that this does not change the most recently popped 

out terminal, since we had popped out a non-terminal. We pop again, the element to be popped out is 

‘–’. This makes the most recently popped out element as ‘–’. The stack then has E as the top of the stack. 

We pop out again. The top of the stack is now $, which is a terminal. The precedence relation between 

$ and – (the most recently popped out terminal) as determined by O[$][–] is ‘<•’. This signals us to stop 

popping out the elements from stack. The elements that were popped out during this process were E, – and 

E in that order. We reduce these elements to a non-terminal E, i.e. E Æ E – E. We need to push E onto the 
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stack. The topmost terminal symbol on the stack is, however, $. Note that the input pointer is not advanced 

in the reduce operation.

Stack Remaining Input

$ E $

We continue to use ‘$’ as the next input symbol. Now the top most terminal on the stack is ‘$’ and 

also the next input symbol is ‘$’, which signals the completion of a successful parse. This terminates by 

accepting the input string as conformant to the grammar. The reader needs to observe how the operator 

relations table facilitated the shift/reduce decisions made by the parsing program.

Let’s now understand how error recovery can be done in operations precedence parsing.

3.5.4.1  Error Reporting and Recovery in Operator Precedence Parsing In the operator 

precedence parsing algorithm shown in Algorithm 3.3 there are two points where the operator precedence 

parser can detect errors.

 1. No precedence relation exists between the top of the stack and the current input. For example,  

considering the grammar in Table 3.18 (which is manifested as a precedence table in Table 3.18), if 

an erroneous input of say ‘35 59’ is given as an input, the operation precedence parser indicates an 

unsuccessful parse in step 3 due to the erroneous entry in the precedence table (see below).

Step Stack Input Comment

1 $ 35 59 $ Initial confi guration ‘$’ is on the top of stack

2 59 $ ID is shifted on to the stack

3 $ ID 59 $ The parser announces an error since O[ID][ID] is an error entry

 2. The handle emerging out of the popped elements does not form the RHS of a production. For 

example, if an erroneous input of say ‘35 +’ is given, the operator precedence parser indicates a 

unsuccessful parse in step 5 due to the handle not matching the RHS of a production.

Step Stack Input Comment

1 $ 35 + $ Initial confi guration ‘$’ is on the top of stack

2 $ ID + $ ID is shifted on to the stack

3 $ E + $ ID is reduced to E

4 $ E + $ + is shifted onto the stack

5 $ E + The handle resulting out of the popped elements from the stack is 

‘E +’, which does not form the RHS of any production

We can build intelligence in both of these points to indicate not only the error but also the source of 

error. We can also recover from the current error to proceed with the syntax analysis of the following lines.

In situations where there is no precedence relation existing between the topmost terminal on the stack 

and the next input, the source of error can be determined by virtue of the position in the operator precedence 

table. For example, the entry O[ID][ID] is referenced in situations where the input contains two consecutive 

IDs without an operator between them, as we saw above for the input ‘35 59’. We can issue a diagnostic 

message, ‘Missing Operand’ in such cases. Similarly some other error messages can also be fl ashed on the 

position in the relations table. Table 3.20 and Table 3.21 show all the error entries and their corresponding 

diagnostic messages.
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Table 3.20 Precedence relations table with well-defi ned error entries

+ - * / ^ ID ( ) $

+ •> •> <• <• <• <• <• •> •>

– •> •> <• <• <• <• <• •> •>

* •> •> •> •> <• <• <• •> •>

/ •> •> •> •> <• <• <• •> •>

^ •> •> •> •> <• <• <• •> •>

ID •> •> •> •> •> ERR1 ERR1 •> •>

( <• <• <• <• <• <• <• =
.

ERR4

) •> •> •> •> •> ERR1 ERR1 •> •>

$ <• <• <• <• <• <• <• ERR2 ERR3

The diagnostic messages are as follows:

Table 3.21 Diagnostics messages

Error Diagnostic message

ERR1 Missing operator

ERR2 Missing left parenthesis

ERR3 Missing operand

ERR4 Missing right parenthesis

In all of these situations where we can fl ash the error messages as indicated by the diagnostics messages 

in Table 3.21, we can also proceed with the syntax analysis of the next line without stopping at the error by 

fi lling in the missing element on the stack. For example, in case of errors resulting in ERR1 message, we 

can insert an operator on the stack in order to proceed with the syntax analysis of the next line after fl ashing 

the error message. Similarly for ERR2, we can insert a left parenthesis in the stack, and allow the syntax 

analysis to proceed after fl ashing the ERR2 diagnostic message.

Coming to the situations where the handle popped out does not match the RHS of any production, we 

could fl ash a message depending on the resemblance to a particular production. For example, if the handle 

is ‘E +’ (as we saw in the earlier example), the production that it resembles is E Æ E + E. The missing 

element is another ID, which would have been reduced to E. We can issue a diagnostic message indicating a 

‘missing operand’ for this case. As a general rule for the grammar in Table 3.18, we can potentially check if 

there are non-terminals on either end of other operators like –,^,* or /, if they do not exist, then we can issue 

a diagnostic message ‘missing operand’. Additionally, as error recovery, we can also insert the E on the 

stack and proceed with the syntax analysis of the next line. Similarly, from the characteristics exhibited by 

the grammar in Table 3.18, we can deduce that a non-terminal needs to be present between the parentheses 

or else we can fl ash a diagnostic message indicating that the expression is missing between the parentheses. 

The table below shows some of the checks that can be made for the grammar in Table 3.18 with regard to 

the handle popped out during a reduction.
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Check Diagnostic message on

failing the check

Related production

Operators +.–,*,/,^ should be surrounded 

on either side by non-terminal E

Missing operand E Æ E + E

E Æ E – E

E Æ E * E

E Æ E / E

E Æ E ^ E

There should be a non-terminal between 

open parenthesis, and close parenthesis

No expression between parentheses E Æ (E)

Both of the above-mentioned methods of error recovery involve some kind of local correction either in 

the stack or input or both. Thus the error recovery schemes in operator precedence parsing fall under the 

category of phrase level recovery as described in Section 3.3.

3.5.4.2 Precedence Functions The main use of the operator precedence table is for determining the 

precedence of a terminal with respect to another. For operator grammar with many rules, it could become 

large. Alternatively, it is also possible to defi ne two functions f and g such that

f(a) < g(b) whenever a < b

f(a) = g(b) whenever a = b

f(a) > g(b) whenever a > b

where ‘a’ and ‘b’ are the terminals for whom we need to determine the precedence relations.

These functions f and g are called as precedence functions. The precedence functions help in reducing 

the memory consumption of the operator precedence parser by virtue of eliminating the table and replacing 

with the functions. The precedence functions equivalent of the operator precedence relations table in Table 

3.19 is shown in Table 3.22.

Table 3.22 Precedence functions

+ – * / ^ ( ) ID $

f 2 2 4 4 4 0 6 6 0

g 1 1 3 3 5 5 0 5 0

In the parsing algorithm, we need to compute f(a) and g(b) instead of looking at the table entry O[a][b]. 

However, one disadvantage with the precedence functions is that we lose the ability to detect errors based 

on the error entries of the table as explained in the previous section.

3.5.4.3 Advantages and Disadvantages of Operator Precedence Parsing The following are the 

advantages and the disadvantages of operator precedence parsing:

Advantages
∑ It is a simple and easy to implement parsing technique.

∑ The operator precedence parser is constructed by hand after understanding the grammar. It is simpler 

to debug.
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Disadvantages
∑ It is hard to handle tokens like minus (–), which has two different values of precedence depending on 

whether it is being used as binary or unary operator.

∑ This technique unlike most of the other techniques we have seen does not take the grammar as the 

input and generate a parser. The parser has a fragile relationship with the grammar. Any addition or 

deletion of production rules would require a rewrite of the parser. Because of the implicit nature of 

the dependency on the grammar rules (for example, in the error recovery), it might so happen that the 

parser might not accept sentences belonging to the language or reject the sentences belonging to the 

language.

∑ The operator precedence parsing technique can parse only a small class of grammars (operator 

grammars).

In the Section 3.5.4.4, we see a functional operator precedence parser with error detection facility.

3.5.4.4 Example 7—An Operator Precedence Parsing Program This section shows an operator 

precedence parsing program built for the grammar shown in Table 3.18. Algorithm 3.3 is used in this 

example. The program is capable of performing error reporting. The following dialog shows how the 

operator precedence parsing program can be used to perform syntax analysis on given expressions.

# Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oop-prec-lex.c op-prec-lex.l

# Compiling the Lexical Analyzer

$ gcc -c -o op-prec-lex.o op-prec-lex.c

# Building ex7 Binary

$ g++ -g -Wall ex7.cc op-prec.cc op-prec-lex.o -o ex7

# Simple Expression with 2 numbers

$ ./ex7 ‘25 + 35’

Shifting ID [25]

Reducing E --> ID

Shifting + [+]

Shifting ID [35]

Reducing E --> ID

Reducing E --> E + E

25 + 35

SYNTAX CORRECT

# Simple Expression with a number and a variable

$ ./ex7 ‘a + 35’

Shifting ID [a]

Reducing E --> ID

Shifting + [+]

Shifting ID [35]

Reducing E --> ID

Reducing E --> E + E

a + 35

SYNTAX CORRECT
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# Expression with multiple Operators

$ ./ex7 ‘a + 35 * 40’

Shifting ID [a]

Reducing E --> ID

Shifting + [+]

Shifting ID [35]

Reducing E --> ID

Shifting * [*]

Shifting ID [40]

Reducing E --> ID

Reducing E --> E * E

Reducing E --> E + E

a + 35 * 40

SYNTAX CORRECT

# Expression with multiple Operators

$ ./ex7 ‘a ^ 35 - 40’

Shifting ID [a]

Reducing E --> ID

Shifting ^ [^]

Shifting ID [35]

Reducing E --> ID

Reducing E --> E ^ E

Shifting - [-]

Shifting ID [40]

Reducing E --> ID

Reducing E --> E - E

a ^ 35 - 40

SYNTAX CORRECT

# Expression with missing Operand

$ ./ex7 ‘a ^ -’

Shifting ID [a]

Reducing E --> ID

Shifting ^ [^]

Missing Operand

SYNTAX INCORRECT

# Expression with missing Operator

$ ./ex7 ‘a h’

Shifting ID [a]

Missing Operator

SYNTAX INCORRECT

3.5.5  LR Parsing

We saw that in operator precedence parsing, the precedence relations table served as a mechanism to make 

shift/reduce decisions. In LR parsing method a parsing table (also called  LR parsing table) is used to detect 

correct handles and make informed shift/reduce decisions.
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The parsing table is used to fi gure out whether a shift or a reduce needs to be done on the receipt of a 

given input. In case of a reduce operation, it tells us which production needs to be used for it. Given the 

current ‘state’ of the LR parser and the next input symbol, the parsing table helps in arriving at a shift/

reduce decision. The starting state of the LR parser is 0. We had earlier seen in Section 3.5.2 that a shift 

involves pushing the input symbol on the stack, a reduce operation involves popping of as many elements 

as the right-hand side of the production and a push of the left-hand side of the production.

For the grammar in Table 3.17 (reproduced below), the parsing table is shown in Table 3.23.

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3    | IDENTIFIER

4    | c_expression OPERATOR CONSTANT

5    | c_expression OPERATOR IDENTIFIER

In the parsing table shown in Table 3.23, the current state is given in the fi rst column. The entries sX 

represent a shift operation and changing the state to X. For example, in state 0, an input of ‘IDENTIFIER’ 

involves a shift of the input and a change of the state to 1. The entries with rX denote reduction by 

production X. For example, in state 4, an input of ‘OPERATOR’ would mean a reduction by Production 2 

(c_expression Æ CONSTANT).

This parsing table is the key data structure for  LR parsing. The use of the parsing table to make shift/

reduce decisions is the central idea in the LR parsing method. The generation of the parsing table from 

the grammar will be the topics for later sections, for now assume the availability of the parsing table to 

simplify your understanding.

A state diagram can visually represent a parsing table. The state diagram shown in Fig. 3.9 is 

representative of the parsing table in Table 3.23.

 Table 3.23 Parsing table for an LR parser

CURRENT 

STATE

( Top of stack)

action goto

IDENTIFIER CONSTANT OPERATOR EQ_

TO_OP

SEMI_

COLON

End of 

Input ($)

c_expression c_statement

0 s1 - - - - - - 10

1 - - - s2 - - - -

2 s3 s4 - - - - 5 -

3 - - r3 - r3 - - -

4 - - r2 - r2 - - -

5 - - s6 - s7 - - -

6 s8 s9 - - - - - -

7 - - - - - r1 - -

8 - - r5 - r5 - - -

9 - - r5 - r5 - - -

10 - - - - - accept - -
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Fig. 3.9 State machine for c-statement grammar

We can see from the state diagram that a particular input symbol causes a transition from one state 

to another. In non-accepting states, the next input symbol causes a shift and a transition to another state, 

for example, in the state 1, an input of EQ_TO_OP causes a shift operation and a transition to state 2. 

In accepting states, the next input symbol can cause a shift or a reduce operation, for example, in state 

3, an input of SEMI_COLON would trigger a reduce operation using production 3 (c_expression Æ 

IDENTIFIER). Even though, in this particular state diagram none of the accepting states transition to 

another state by shift operation on the receipt of next symbol, It is common to have transitions by shift 

operation in accepting states too.

An LR parser consists of an input, an output, a stack, driver program and a parsing table made up two 

parts (action and goto). Figure 3.10 shows the various components of an LR parser.

The stack consists of states. These are the same states that we had earlier seen in the state diagram of 

Fig. 3.9. The top of the stack and the next symbol are used to index into a parsing table to make a shift-

reduce decision.

The parsing table consists of two parts, a parsing action part called the action and a goto function 

called as goto. The action table is a two-dimensional array indexed by state and the next input symbol, i.e. 

action[state][input]. An action table entry can have one of following four kinds of values in it:

 1. shift X, where X is a state number

 2. reduce X, where X is a production number

 3. accept, signifying the complete of a successful parse

 4. error entry

The goto table is a two-dimensional array indexed by state number and a non-terminal grammar symbol, 

i.e. goto[state][non-terminal]. A goto entry contains a state number. Both the action table and goto table are 

derived from the grammar of the language. Table 3.23 shows the parsing table for the grammar in Table 3.17. 
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Fig. 3.10 LR parser components

The driver program uses the current state C (given by top of stack element), the next input symbol ‘a’ 

to consult the entry at action[C][a]. The driver program makes one of the four actions as dictated by the 

content of the entry in the action table.

 1. If action[C][a] = shift X, the parser executes a shift of X on to the top of stack and advances the 

input pointer.

 2. If action[S][a] = reduce X, the parser executes a reduce using the production X. The reduce 

operation involves popping of as many number of elements as existing on right-hand side of 

production X. The driver program then pushes the left-hand side of the production. The input pointer 

is not advanced in this operation.

 3. If action[S][a] = accept, then parsing is complete, and the sentence is accepted.

 4. If action[S][a] = error, then the parser has discovered an error and calls error recovery routine. 

The algorithm followed by the driver program is shown in Algorithm 3.4.

action and goto are 2 dimensional arrays

TOS is used to denote Top Of Stack

push 0

while ( action[TOS][input] != accept)

{

     if( action[TOS][input] == sX){

         push (X);

         advance();

     } else if (action[TOS][input] == rX){

         pop ( the no of elements in the RHS of production X) ;

         push ( goto [new TOS][LHS of production X]

     } else {

         return (FAILURE)

     }

}

return (SUCCESS)

Algorithm 3.4 LR parsing
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A step-by-step illustration of LR parsing of an input will make Algorithm 3.4 and the concepts clear.

Consider an LR parser working on an input ‘c = a +1;’ using Table 3.23 as its parsing table.

Initially in LR parsing, the start state (state 0) is pushed on to the stack.

Stack Remaining Input

0 c = a + 1 ; $

The parser receives the fi rst token ‘c’ which is an IDENTIFIER from the lexical analyser. The 

action[0][IDENTIFIER] = s1, which implies that we push state 1 onto to the stack and advance the input 

pointer.

Stack Remaining Input

0 1       = a + 1 ; $

The next input is ‘=’, which is a token of type ‘EQ_TO_OP’ as classifi ed by the lexical analyser. The 

action[1][EQ_TO_OP] = s2, which implies that we push state 2 on to the stack and advance the input.

Stack Remaining Input

0 1 2 a + 1 ; $

The next input is ‘a’, which is a token of type IDENTIFIER as classifi ed by the lexical analyser. The 

action[2][IDENTIFIER]= s3, which implies that we push state 3 on to the stack and advance the input 

pointer. Note that the state machine has avoided the reducing the IDENTIFIER into C expression. The state 

table is clearly identifying the ‘right-handle’ in the parse process.

Stack Remaining Input

0 1 2 3 + 1 ; $

The next input token is ‘+’, which is a token of the type OPERATOR as classifi ed by lexical analyser. 

From the action table, action[3][OPERATOR]= r3, which implies that we reduce using the rule 3. Rule 3 

is ‘c_expression Æ IDENTIFIER’. The number of elements on the right-hand side of the production is 1. 

Hence we pop one element from the top of stack.

Stack Remaining Input

0 1 2 + 1 ; $

The new top of stack is state 2. The left-hand side of the production 3, that we are reducing is 

c_expression. Now, the parser looks at goto[2][c_expression], which is state 5. The parser pushes state 5 on 

to the stack. Note that input pointer is not advanced during the reduction.

Stack Remaining Input

0 1 2 5 + 1 ; $

We continue using the input token ‘+’ of the type OPERATOR, since the last reduce did not advance the 

input pointer. From the action table, action[5][OPERATOR]= s6, this implies that we push state 6 on the 

stack and advance the input pointer.

Stack Remaining Input

0 1 2 5 6 1 ; $
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The next input token is ‘1’, which is of the type ‘CONSTANT’ as classifi ed by the lexical analyser. From 

the action table, action[6][CONSTANT]= s9, which implies that we shift state 9 on to the stack and advance 

the input pointer.

Stack Remaining Input

0 1 2 5 6 9 ; $

The next input token is ‘;’, which is of the type SEMI_COLON as classifi ed by the lexical analyser. 

From the action table, action[9][SEMI_COLON] = r5, which implies that we reduce using the rule 5. Rule 

5 is c_statement Æ c_expression OPERATOR IDENTIFIER. The number of elements on the right-hand 

side of the production is 3. Hence we pop three elements from the top of stack.

Stack Remaining Input

0 1 2 ; $

The new top of stack is state 2. The left-hand side of the rule 4 that we are reducing is ‘c_statement’. 

Now, the parser looks at goto[2][c_statement], which is state 5. The parser pushes state 5 on to the stack. 

Note that input pointer is not advanced during the reduction.

Stack Remaining Input

0 1 2 5 ; $

We continue using the input token ‘;’ of the type SEMI_COLON, since the last reduce did not advance 

the input pointer. From the action table, action[5][SEMI_COLON]= s7, this implies that we push state 7 on 

the stack and advance the input pointer.

Stack Remaining Input

0 1 2 5 7 $

The next input is ‘$’, which is indicative of the end of the input. From the action table, the action[7][‘$’] 

= r1, which implies that we reduce using the rule 1. Rule 1 is c_statement Æ IDENTIFIER EQ_TO_OP 

c_expression SEMI_COLON. The number of elements on the right-hand side of the production is 4. Hence 

we pop four elements from the top of stack.

Stack Remaining Input

0 ; $

The new top of stack is state 0. The left-hand side of the rule 1 that we are reducing is ‘c_statement’. 

Now, the parser looks at goto[0][c_statement], which is state 10. The parser pushes state 10 on to the stack. 

Note that input pointer is not advanced during the reduction.

Stack Remaining Input

0 10 $

We continue using the input token ‘$’ which is the end-of-input, since the last reduce did not advance the 

input pointer. From the action table, action[10][$]= accept, this implies that the input string is accepted by 

the grammar of the language.

In the next section we take a look at an LR parser program that implements Algorithm 3.4.
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3.5.5.1 Example 8—An LR Parser In this section, we shall take a look at an LR parser program that 

implements Algorithm 3.4. The idea here is to use an already constructed parsing table (i.e.) the action and 

goto tables shown in Table 3.23. Remember that the parsing table in Table 3.23 is a manifestation of the 

grammar in Table 3.17. The method for constructing the parsing table from the grammar will follow in later 

sections. The focus right now is on the algorithm that performs the syntax analysis on the input given a 

parsing table. 

The following dialog shows how to build the binary and use it to verify the syntax of input.

# Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

# Compiling the Lexical Analyzer

$ gcc -c -o c-stmt-lex.o c-stmt-lex.c

# Building ex8 Binary

$ g++ -g -Wall -DCHAP3_EX8 ex8.cc c-stmt-lr-parse.cc c-stmt-lex.o -o ex8

# Variant 1

$ ./ex8 ‘count=5;’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 258 (CONSTANT)

Shifting token 258 (CONSTANT), Entering state 2

Reading a token: Next token is 257 (EQ_TO_OP)

Shifting token 257 (EQ_TO_OP), Entering state 4

Reading a token: Next token is 256 (SEMI_COLON)

Reducing via Rule 2

Entering state 5

Shifting token 256 (SEMI_COLON), Entering state 7

Reading a token: Now at end of input.

Reducing via Rule 1

Entering state 10

Success

count=5;

SYNTAX CORRECT

# Variant 5

$ ./ex8 ‘count=count+1;’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 258 (CONSTANT)

Shifting token 258 (CONSTANT), Entering state 2

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 3

Reading a token: Next token is 260 (OPERATOR)

Reducing via Rule 3

Entering state 5
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Shifting token 260 (OPERATOR), Entering state 6

Reading a token: Next token is 257 (EQ_TO_OP)

Shifting token 257 (EQ_TO_OP), Entering state 9

Reading a token: Next token is 256 (SEMI_COLON)

Reducing via Rule 4

Entering state 5

Shifting token 256 (SEMI_COLON), Entering state 7

Reading a token: Now at end of input.

Reducing via Rule 1

Entering state 10

Success

count=count+1;

SYNTAX CORRECT

# Missing Identifi er / Constant

$ ./ex8 ‘count=5+;’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 258 (CONSTANT)

Shifting token 258 (CONSTANT), Entering state 2

Reading a token: Next token is 257 (EQ_TO_OP)

Shifting token 257 (EQ_TO_OP), Entering state 4

Reading a token: Next token is 260 (OPERATOR)

Reducing via Rule 2

Entering state 5

Shifting token 260 (OPERATOR), Entering state 6

Reading a token: Next token is 256 (SEMI_COLON)

Error not fi nding entry action_table[6][256]..Exiting

count=5+;

     ̂

SYNTAX INCORRECT

3.5.5.2 Construction of LR Parsing Table In the last section, we had focused on parsing an input 

given the parsing table (action and goto tables). We understood that the parsing table is derived from the 

grammar of the language. The LR parsing program described previously depends on the parsing table for 

performing the syntax analysis of the input. Note that the algorithm does not undergo any change while 

catering to different grammars, only the parsing table changes. In this section, we shall see how to construct 

the parsing table from a given grammar.

There are 3 major methods for constructing the parsing table from the grammar. They are:

 1. Simple LR or SLR(1) method.

 2. Canonical LR or LR(1) method.

 3. Look ahead LR or LALR(1) method.

The simple LR method of constructing the parsing table uses look-ahead information of 1 input symbol. 

The way it uses the look-ahead information to construct entries for the parsing table differs from LR(1) 

and LALR(1). This method succeeds in constructing the parsing table for a sub-set of LR grammar called 

SLR(1) grammar.
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The canonical LR method of constructing parsing table entries is the most powerful method compared 

to all other methods. This succeeds in constructing a parsing table for a large class of grammars called 

as LR(1) grammars. However, the disadvantage is that it generates a large parse table. An optimisation in 

terms of size of parsing table is the basis of LALR method.

The look-ahead LR method is widely used in practice. This method optimises the size of parsing table 

generated by canonical LR method, by collapsing a few states into a single state. Due to the collapsing of 

states, sometimes loss of information happens. Hence, it succeeds in constructing a parsing table for a sub-

set of LR(1) grammar called as LALR(1) grammar. However, LALR(1) grammar is suffi cient to express 

most of the grammars of programming languages. The most commonly used parser generators like bison, 

yacc, etc. employ this method for constructing the parsing table.

All these methods use the 3 steps shown in Fig. 3.11 for constructing the parsing table from the grammar. 

In the fi rst step, an extra production rule is added to the original set of productions to create an augmented 

grammar G’. In the second step, we create a canonical collection of sets of entities called as Items using 

two distinct functions called the goto and closure functions operating on the augmented grammar G’. In 

step three, we convert the canonical collection of sets of Items into the parsing table by applying certain 

rules. We will deal with details of each of these steps with respect to all of the methods a little later.

Fig. 3.11 Constructing an LR parsing table from the grammar G

In the fi rst step of creating augmented grammar from the grammar, all the 3 methods—SLR, canonical 

LR and LALR follow the same procedure.

In the second step of creating the canonical collection C of entities called items, the SLR uses an entity 

known as LR0 item, while canonical LR and LALR use a more specialised entity called as LR1 Item. The 

goto and closure functions that aid in the creation of canonical collection C are common for both canonical 

LR and LALR methods. The SLR method has a different goto and closure functions, when compared to the 

respective counterparts in canonical LR and LALR methods.

In the fi nal step of constructing the parsing table from the canonical collection, each of the three methods 

apply a different mechanism. The SLR does consider the look-ahead information, but uses it in a primitive 
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fashion to construct the parsing table from the collection of items. The canonical LR applies the best 

criteria to construct the parsing table entries from the collection of item sets. The LALR is a minor variant 

of canonical LR approach, which focuses on optimising space rather than adopting a different method to 

construct the parsing table entries.

The SLR(1) method is described in Section 3.5.5.3, the LR(1) method in Section 3.5.5.4 and LALR(1) 

method in Section 3.5.5.5.

3.5.5.3 Construction of Parsing Table by SLR(1) method This section talks about the  SLR(1) 

method for constructing a parsing table. This parsing table construction method is the simplest of all the 

methods and succeeds for SLR(1) grammars.

Before we discuss in detail about the SLR(1) method of constructing the LR parse table, let’s understand 

a few defi nitions.

Important Defi nitions This section discusses important defi nitions that would be used in algorithms to 

construct the parsing table.

Augmented Grammar If G is a grammar with start symbol S then the  augmented grammar G¢ for G 

consists of all the productions in G and an additional production S¢ Æ S. The start symbol for G¢ is S¢.

Consider a grammar G, consisting of following productions, where c_statement is the start symbol.

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3    | IDENTIFIER

4    | c_expression OPERATOR CONSTANT

5    | c_expression OPERATOR IDENTIFIER

The augmented grammar for G is:

Table 3.24 Augmented grammar for the grammar in Table 3.17

1 c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

2 c_expression Æ CONSTANT

3    | IDENTIFIER

4    | c_expression OPERATOR CONSTANT

5    | c_expression OPERATOR IDENTIFIER

6 c_statement ¢ Æ c_statement

The main use of augmented grammar lies in the fact that the acceptance of input happens, when the 

parser is about to reduce production S¢ Æ S. The use of the augmented grammar can be appreciated better 

in situations where the start symbol has multiple productions where it is the left-hand side of the production. 

It would be diffi cult to keep track of all the productions with the start symbol as the LHS and fi nd out if the 

acceptance of input has happened. But, with the usage of this extra production, the state machine needs 

to keep track of only one state where the reduction of S¢ Æ S is envisaged. This state would trigger the 

acceptance of the input.
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In the above example, the acceptance of the input string happens when we are about to reduce the 

production c_statement ¢ Æ c_statement.

We shall see how the augmented grammar comes in handy for computing the closure and goto operations 

discussed next.

LR(0) Item An  LR(0) Item (or simply  Item for short) of a grammar G is a production of G with a dot in some 

position of the right-hand side. For a grammar consisting of a production X Æ ABC, the LR(0) Items are:

X Æ •ABC

X Æ A•BC

X Æ AB•C

X Æ ABC•

For an epsilon production X Æ e there is only one LR(0) Item denoted by

X Æ •

An LR(0) Item can be represented by a 2-tuple of (production, position of dot).

The dot can be used for indicating two aspects:

∑ To show the portion of input that is already consumed. In the case of shift-reduce parsing, it can be 

used to indicate what is already present on the stack. If the dot moves to the rightmost point of the 

production, we can use it to ‘reduce’ by that production.

∑ The symbols on the right of the dot can be used as look ahead symbols.

These LR(0) Items form the basis of states in the state diagram (and the parsing table), an example of 

which is shown in Fig. 3.9. An LR(0) Item is associated with one of the states in the state diagram. The 

same item cannot be in multiple states. Figure 3.12 shows a few Items associated with some of the states 

for the grammar in Table 3.17.

Fig. 3.12 LR(0) Items associated with states
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An Item related to Production 1 accompanies each of the states shown in the Fig. 3.12. For the item in 

state 0, the dot is before the IDENTIFIER. This tells us that the parser is expecting an IDENTIFIER as the 

next input symbol. In state 1, the dot has shifted by one position, now it is before EQ_TO_OP. This tells 

us that the parser has already consumed an IDENTIFIER (shifted it on to the stack) and is now expecting 

an EQ_TO_OP symbol. In state 4, the dot has reached the extreme right position. This tells us that the 

entire right-hand side of the production is on the stack, and hence we can reduce by Production 1 (and 

hence the concentric circles for representing the state 4). Note that Fig. 3.12 consciously shows the items 

related to Production 1 only in order to illustrate the concept better. In reality there are items related to other 

productions also in any given state.

Closure Operation Now, consider the state 2 of Fig. 3.12, where we are expecting a c_expression (non-

terminal) as determined by the item c_statement Æ IDENTIFIER EQ_TO_OP • c_expression SEMI_

COLON. This means that we are expecting an input symbol depending on what the productions with 

‘c_expression’ as the left-hand side indicate. The following productions qualify.

2 c_expression Æ CONSTANT

3 c_expression Æ IDENTIFIER

4 c_expression Æ c_expression OPERATOR CONSTANT

5 c_expression Æ c_expression OPERATOR IDENTIFIER

Looking at the productions, we can deduce that, in state 2, we are really expecting inputs as determined 

by the following items:

c_statement Æ IDENTIFIER EQ_TO_OP • c_expression SEMI_COLON The original one

c_expression Æ • CONSTANT The derived ones

c_expression Æ • IDENTIFIER

c_expression Æ • c_expression OPERATOR CONSTANT

c_expression Æ • c_expression OPERATOR IDENTIFIER

This set of items is called as the  closure set of item c_statement Æ IDENTIFIER EQ_TO_OP_• 

c_expression SEMI_COLON, the operation by which it was derived is called as closure operation.

Adding the above items to state 2, we have Fig. 3.13. This brings home the concept that items grouped 

together form a state. As we saw, the item ‘c_statement Æ IDENTIFIER EQ_TO_OP • c_expression 

SEMI_COLON’ was the seed for the other items in state 2 begotten by the closure operation. Note that, 

all the additional items generated out of closure operation have the dot at the left end of RHS, while the 

original item does not have a dot at the left end.

Those items that do not contain a dot at the far left are called as the  seed items or  kernel items. These 

kernel items form the basis of forming the other items of the state. The other items that contain a dot at 

the left end are called as the non-kernel or  non-seed items. The kernel item in state 2 is c_statement Æ 
IDENTIFIER EQ_TO_OP • c_expression SEMI_COLON, while the other items in state 2 are the non-

kernel items. There is one exception to this rule, which is the Item S¢ Æ • S, where S is the start symbol of 

grammar G and S¢ is the start symbol of the augmented grammar G¢. Even though it has a dot at the far left 

of the RHS, it is called as a seed item, because it is the one that seeds the start state of the state diagram.
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Fig. 3.13 More LR(0) Items associated with states

 Let’s get to a more formal defi nition for the computation of closure operation. If I is a set of items for a 

grammar G, then closure of I, represented by closure(I) can be computed using the following 2 rules.

Table 3.25 Rules for computing closure of an LR(0) item set

Rule 1 Every element of I is added to closure of I

Rule 2 If X Æ A•BC, is in closure(I), and there exists a production B Æ b1 b2 .. bn, then add item B Æ 

•b1 b2 .. bn if it is not already in closure(I). Keep applying this rule until there are no more 

elements added.

Let’s check out an example to understand the nuances of closure set computation. Consider a grammar 

with the following productions:

1 my_start_sym Æ my_non_term_a MY_TERM_ONE

2 my_non_term_a Æ my_non_term_b MY_TERM_TWO

3 | MY_TERM_THREE

4 my_non_term_b Æ MY_TERM_FOUR my_non_term_c

5 my_non_term_c Æ MY_TERM_FIVE

Let’s compute the closure of the item set I, where

 I = my_start_sym Æ • my_non_term_a MY_TERM_ONE

Using rule 1, the closure set of I would have the item my_start_sym Æ • my_non_term_a MY_TERM_

ONE. By rule 2, we get other element
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my_non_term_a Æ • my_non_term_b MY_TERM_TWO

We have the two elements in the fi rst pass

Closure(I) = my_start_sym Æ • my_non_term_a, MY_TERM_ONE

  my_non_term_a Æ • my_non_term_b MY_TERM_TWO

We apply rule 2 again on the above set since the rule 2 says that we keep applying it until there are no 

new elements added. We need to add the item whose left-hand side is my_non_term_b and the dot is at the 

start of the RHS. Thus, we have now 3 elements.

Closure(I) = my_start_sym Æ • my_non_term_a, MY_TERM_ONE

  my_non_term_a Æ • my_non_term_b MY_TERM_TWO

  my_non_term_b Æ • MY_TERM_FOUR my_non_term_c

Applying rule 2 again does not yield any new item. Hence we stop with this pass. The closure set is 

Closure(I) = my_start_sym Æ • my_non_term_a, MY_TERM_ONE

  my_non_term_a Æ • my_non_term_b MY_TERM_TWO

  my_non_term_b Æ • MY_TERM_FOUR my_non_term_c

The algorithm for computing closure(I) is formalised in Algorithm 3.5.

I is a set of items belonging to grammar G

At the end of the algorithm J contains the closure(I)

J=I

do{

 added=0

 for ( each item X Æ A•BC in J) {

    if ( production B Æ b1b2b3..bn exists in grammar G){

      if ( item B Æ •b1b2b3..bn does not exist in C){

         add the item B Æ •b1b2b3..bn
         added ++

      }

    }

 }

} while ( added > 0)

Algorithm 3.5 Closure set computation

Goto Operation Let’s have a preview on how the items for each of the states are computed. The start state 

is always seeded with an item related to the extra production that we created for the augmented grammar. 

The beauty of this extra production is that it allows us embrace all the productions with the start symbol as 

the left-hand side by means of closure operation.

Let us consider the grammar of Table 3.17 whose start symbol is the c_statement. As we saw earlier, the 

augmented grammar had an extra production c_statement ¢Æ c_statement. The start state is seeded with the 

item
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I0 = {c_statement¢ Æ • c_statement}

Applying closure on the above set, would get us the items with all the productions that have the start 

symbols as the left-hand side, namely,

c_statement Æ • IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

Applying closure does not yield any extra items since the symbol to the right of the dot is a terminal. 

Thus, there are two items in the item set for the start state:

I0 = c_statement¢ Æ • c_statement

  c_statement Æ • IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

Now, if we input any one of the symbols in the grammar, we need to see what items are generated. This 

is facilitated by the goto function.

If I is a set of LR(0) Items which contains an item A Æ a • Xb where X is grammar symbol, then 

goto(I,X) is defi ned as the closure of the set of all the items A Æ a X • b. The goto operation gives the set 

of all the possible items given X as the next input.

Coming back to the example, from the start state item set I0, let’s see what the goto function does.

goto(I0, IDENTIFIER) = closure set of {c_statement Æ IDENTIFIER • EQ_TO_OP c_expression SEMI_COLON}

 = {c_statement Æ IDENTIFIER • EQ_TO_OP c_expression SEMI_COLON}

goto(I0, CONSTANT) does not yield any items because there is no item in I0 that has a dot before 

CONSTANT. Similarly, there are no items yielding for goto(I0, OPERATOR), etc.

Thus I1 = {c_statement Æ IDENTIFIER • EQ_TO_OP c_expression SEMI_COLON} can be used to 

represent state 1.

The goto(I,X) is formalised in Algorithm 3.6.

I, is the set of Items for which the goto(I,X) needs to be computed
At the end of the Algorithm J contains goto(I,X)

for ( each item A Æ a•Xb in I)
    Add the item A Æ aX•b to tmp_set
}
J= closure(tmp_set)

Algorithm 3.6 goto(I,X) for a set of LR(0) items

We have just seen how goto function helps us in creating items for other states from a given state. Now, 

armed with the concepts of augmented grammar, LR(0) item, closure and goto functions, lets get to the 

procedure for constructing a parsing table using SLR(1) Method.

Procedure for constructing the parsing table Let’s revisit the steps shown in Fig. 3.11 with reference to 

SLR(1) method of constructing the parsing table.

In step 1, we construct the augmented grammar (G¢) by adding an additional production S ¢Æ S where S 

is the start symbol of the original grammar (G).

Step 2 involves creation of a canonical collection of sets of LR(0) items for SLR(1) parsing table. We 

start with the Item set 0 (I0) containing merely the additional production of augmented grammar and the 



146 Principles of Compiler Design

closure obtained on it. This is the fi rst set added in the canonical collection of sets C. Now, for every set 

In present in canonical collection C, we determine goto(In, X), for every symbol X in the grammar, if that 

yields a set not already present in the canonical collection of sets, we add it to the collection. If no sets 

are added to the collection during one traversal of the entire canonical collection, we halt the algorithm 

completing the canonical collection of sets of items. This procedure is shown in Algorithm 3.7.

I,J, tmp_set are sets of LR(0) items

C is canonical Collection of sets of LR(0) Items

I= {S’Æ • S}

J = closure (I)

Add J as one set in canonical collection C /* This corresponds to state 0 */

do

{

 added = false;

 for ( each set I in canonical collection C)

  for ( each grammar symbol X in symbol table)

   tmp_set = goto(I,X)

   if( tmp_set is not present in canonical collection C){

    added = true;

    add tmp_set in canonical collection C

   }

  }

 }

} while ( added == true)

Algorithm 3.7 Creating canonical collection of sets of LR(0) items

In step 3, we construct the action and goto table using the canonical collection of sets of LR(0) items by 

using algorithm 3.8. The initial state is constructed from the set containing the element [S¢ Æ S], which is 

I0. The following rules form the basis of construction of SLR(1) parsing table from the canonical collection 

of sets of items.

Table 3.26 Rules for constructing parsing table from canonical collection

Rule 1 If there is an item A Æ a • Xb in Ii and goto(Ii, X) is in the Item set Ij then action[I][X] = shift j, where X is 

a terminal

Rule 2 If there is an Item A Æ a • in Ii then set action[i][X] = reduce by A Æ a for all terminals X in the 

FOLLOW(A).

Rule 3 If there is an item S¢ Æ S • in Ii then set action[I][$] = accept

Rule 4 If the goto(Ii, X) = Ij then goto[i][X] = j, where X is a non-terminal.

All the entries not defi ned by the above rules are error entries. If there is confl ict in the entries generated 

out of the above rules, then the grammar is not SLR(1) grammar. The algorithm fails to produce a parser. 

These rules are formalised in Algorithm 3.8.
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C is canonical collection of sets of Items = {I0, I1, I2,... In} created using Algorithm 3.7

for ( each item set Ii in Canonical Collection) {

 for ( each item P in a Item set Ii) {

    if ( P is S’ Æ S•){

      action[I][$]=ACCEPT;

    } else if ( P is of the form A Æ a•){

      for ( each terminal k in FOLLOW(A)){

         action[i][k] = Reduce by the Production A Æ a

      }

    } else if ( P is of the form A Æ a•Xb and X is a Terminal){

      if ( goto(Ii,X) == Ij){

         action[I][X]=j ;

      }

    } else if ( P is of the form A Æ a•Xb and X is a NonTerminal) {

      if ( goto(Ii,Y) == Ij){

         goto[I][Y]=j ;

      }

    }

 }

}

Algorithm 3.8 Construction of SLR(1) parsing table from canonical collection of LR(0) items

An Illustration of SLR(1) Method for constructing a parsing table In this section, we take the grammar 

shown in Table 3.17 (reproduced below), go over each of the 3 steps and construct a parsing table for the 

same using the SLR(1) method.

1

2

3

4

5

c_statement

c_expression

Æ

Æ

   |

   |

   |

IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

CONSTANT

IDENTIFIER

c_expression OPERATOR CONSTANT

c_expression OPERATOR IDENTIFIER

In step 1, we create augmented grammar G’ by adding an extra production S’Æ S, where S is the start 

symbol of the original grammar G. So, we have augmented grammar for G as:

1

2

3

4

5

6

c_statement

c_expression

c_statement¢

Æ
Æ

   |

   |

   |

Æ

IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

CONSTANT

IDENTIFIER

c_expression OPERATOR CONSTANT

c_expression OPERATOR IDENTIFIER

c_statement
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In step 2, we take the augmented grammar as the input and construct a canonical collection of sets of 

items. We begin by seeding the start state with

I0= {c_statement¢ Æ • c_statement}

Applying closure on the above set, would get us the items with all the productions that have the start 

symbol as the left-hand side, namely,

c_statement Æ • IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

Applying closure does not yield any extra items since the symbol to the right of the dot is a terminal. 

Thus, there are two items in the item set for the start state

I0 = c_statement¢ Æ • c_statement

  c_statement Æ • IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

This is the fi rst set in canonical collection of sets of LR(0) Items. The canonical collection is now

 C = {I0}

We now perform goto operation on I0 for all the symbols in the grammar namely SEMI_COLON, 

EQ_TO_OP, IDENTIFIER, CONSTANT, OPERATOR, c_expression and c_statement. This is shown below.

I0 = c_statement¢ Æ • c_statement

c_statement Æ • IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

goto(I0, IDENTIFIER) =

=

closure set of {c_statement Æ IDENTIFIER • EQ_TO_OP c_expression 

SEMI_COLON}

c_statement Æ IDENTIFIER • EQ_TO_OP c_expression SEMI_COLON

                                                                                                         This is I1

goto(I0, c_statement) =

=
closure set of {c_statement¢ Æ c_expression •}

c_statement’ Æ c_statement •                                                         This is I2

goto(I0, SEMI_COLON)

goto(I0, EQ_TO_OP)

goto(I0, OPERATOR)

goto(I0, CONSTANT)

goto(I0, c_expression)

All of these are empty

Since there is no item in I0 with SEMI_COLON or EQ_TO_OP or

OPERATOR or c_expression before the dot

The canonical collection is now

C = {I0, I1, I2}

We now perform goto operation on the newly added sets of items I1 and I2 for all the symbols in the 

grammar, namely SEMI_COLON, EQ_TO_OP, IDENTIFIER, CONSTANT, OPERATOR, c_expression 

and c_statement.

I1 = c_statement Æ IDENTIFIER • EQ_TO_OP c_expression SEMI_COLON

goto(I1, EQ_TO_OP) = closure set of {c_statement Æ IDENTIFIER EQ_TO_OP • c_expression 

SEMI_COLON}

= c_statement Æ IDENTIFIER EQ_TO_OP • c_expression SEMI_COLON

                                                                                                        This is I3
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c_expression Æ • CONSTANT

c_expression Æ • IDENTIFIER

c_expression Æ • c_expression OPERATOR CONSTANT

c_expression Æ • c_expression OPERATOR IDENTIFIER

goto(I1, SEMI_COLON)

goto(I1, CONSTANT)

goto(I1, IDENTIFIER) All of these are empty

goto(I1, OPERATOR) Since there is no item in I1 with SEMI_COLON or CONSTANT or

goto(I1, c_expression) IDENTIFIER or OPERATOR or c_expression or c_statement before the dot

goto(I1, c_statement)

The canonical collection is now

  C = {I0, I1, I2, I3}

I2 = c_statement¢ Æ c_statement •

goto(I2, SEMI_COLON) =

goto(I2, EQ_TO_OP) All of these are empty

goto(I2, IDENTIFIER) Since there is no item in I2 with SEMI_COLON or EQ_TO_OP or

goto(I2, CONSTANT) IDENTIFIER or CONSTANT or OPERATOR or c_expression or

goto(I2, OPERATOR) c_statement before the dot

goto(I2, c_expression)

goto(I2, c_statement)

I3 = c_statement Æ IDENTIFIER EQ_TO_OP • c_expression SEMI_COLON

c_expression Æ • CONSTANT

c_expression Æ • IDENTIFIER

c_expression Æ • c_expression OPERATOR CONSTANT

c_expression Æ • c_expression OPERATOR IDENTIFIER

goto(I3, SEMI_COLON)

goto(I3, EQ_TO_OP) All of these are empty

goto(I3, OPERATOR) Since there is no item in I3 with SEMI_COLON or EQ_TO_OP or

goto(I3, c_statement) OPERATOR or c_statement before the dot

goto(I3, CONSTANT) = closure set of {c_expression Æ CONSTANT •}

= c_expression Æ CONSTANT •

This is I4

goto(I3, IDENTIFIER) = closure set of {c_expression Æ IDENTIFIER •}

= {c_expression Æ IDENTIFIER •}              This is I5
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goto(I3, c_expression) = closure set of

{

   c_statement Æ IDENTIFIER EQ_TO_OP c_expression

   • SEMI_COLON

    c_expression Æ c_expression • OPERATOR CONSTANT

    c_expression Æ c_expression • OPERATOR IDENTIFIER

}

= c_statement IDENTIFIER EQ_TO_OP c_expression • SEMI_COLON 

This is I6

c_expression Æ c_expression • OPERATOR CONSTANT

c_expression Æ c_expression • OPERATOR IDENTIFIER

The canonical collection is now

C = {I0, I1, I2, I3, I4, I5, I6}

I4 = c_expression Æ CONSTANT •

goto(I4, SEMI_COLON)

goto(I4, EQ_TO_OP)

=

All of these are empty

goto(I4, IDENTIFIER)

goto(I4, CONSTANT)

Since there is no item in I4 with SEMI_COLON or EQ_TO_OP or 

IDENTIFIER or CONSTANT or OPERATOR or c_expression or c_

statement before the dot

goto(I4, OPERATOR)

goto(I4, c_expression)

goto(I4, c_statement)

I5 = c_expression Æ IDENTIFIER •

goto(I5, SEMI_COLON) =

goto(I5, EQ_TO_OP) All of these are empty

goto(I5, IDENTIFIER) Since there is no item in I5 with SEMI_COLON or EQ_TO_OP or 

IDENTIFIER or CONSTANT or OPERATOR or c_expression or

goto(I5, CONSTANT) c_statement before the dot

goto(I5, OPERATOR)

goto(I5, c_expression)

goto(I5, c_statement)

I6 = c_statement Æ IDENTIFIER EQ_TO_OP c_expression • SEMI_COLON

c_expression Æ c_expression • OPERATOR CONSTANT

c_expression Æ c_expression • OPERATOR IDENTIFIER

goto(I6, SEMI_COLON) = closure set of {c_statement Æ IDENTIFIER = c_expression SEMI_COLON 

•}
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c_statement : IDENTIFIER = c_expression SEMI_COLON •     This is I7

goto(I6, OPERATOR) = closure set of

{

      c_expression Æ c_expression OPERATOR • CONSTANT

      c_expression Æ c_expression OPERATOR • IDENTIFIER

}

= c_expression Æ c_expression OPERATOR • CONSTANT         This is I8

c_expression Æ c_expression OPERATOR • IDENTIFIER 

The canonical collection is now

            C = {I0, I1, I2, I3, I4, I5, I6, I7, I8} 

I7 = c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON •

goto(I7, SEMI_COLON) =

goto(I7, EQ_TO_OP) All of these are empty

goto(I7, IDENTIFIER) Since there is no item in I7 with SEMI_COLON or EQ_TO_OP or 

IDENTIFIER or CONSTANT or OPERATOR or c_expression or c_statement 

before the dot

goto(I7, CONSTANT)

goto(I7, OPERATOR)

goto(I7, c_expression)

goto(I7, c_statement)

I8 = c_expression Æ c_expression OPERATOR • CONSTANT

c_expression Æ c_expression OPERATOR • IDENTIFIER

goto(I8, CONSTANT) = closure set {c_expression Æ c_expression OPERATOR CONSTANT •}

= c_expression Æ c_expression OPERATOR CONSTANT •           This is I9

goto(I8, IDENTIFIER) = closure set {c_expression Æ c_expression OPERATOR IDENTIFIER •}

= c_expression Æ c_expression OPERATOR IDENTIFIER •         This is I10

The canonical collection is now

          C = {I0, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10}

I9 = c_expression Æ c_expression OPERATOR CONSTANT •

goto(I9, SEMI_COLON) =

goto(I9, EQ_TO_OP) All of these are empty

goto(I9, IDENTIFIER) Since there is no item in I9, with SEMI_COLON or EQ_TO_OP or 

IDENTIFIER or CONSTANT or OPERATOR or c_expression or c_

statement before the dot

goto(I9, CONSTANT)
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goto(I9, OPERATOR)

goto(I9, c_expression)

goto(I9, c_statement)

I10 = c_expression Æ c_expression OPERATOR IDENTIFIER •

goto(I10, SEMI_COLON) =

goto(I10, EQ_TO_OP) All of these are empty

goto(I10, IDENTIFIER) Since there is no item in I10 with SEMI_COLON or EQ_TO_OP or 

IDENTIFIER or CONSTANT or OPERATOR or c_expression or c_statement 

before the dot

goto(I10, CONSTANT)

goto(I10, OPERATOR)

goto(I10, c_expression)

goto(I10, c_statement)

We have performed goto operation on the entire Item sets I0 through I10, there are no more sets of items 

generated, and we halt the algorithm.

The fi nal canonical collection is

          C = {I0, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10}

Each one of these sets represents the corresponding state. For example, I0 represents state 0, I1 represents 

state 1, etc.

We now start step 3, which is the generation of parsing table from the canonical collection of sets of items.

# Parsing Table Entries Explanation

I0 action_table[0][IDENTIFIER]=s1

goto_table[0][c_statement]=2

We saw earlier that goto(I0, IDENTIFIER) = I1, hence by Rule 1 

of Table 3.26

We saw earlier that goto(I0, c_statement) = I2, hence by Rule 4 of 

Table 3.26

I1 action_table[1][EQ_TO_OP]=s3 We saw earlier that goto(I1, IDENTIFIER) = I3, hence by Rule 1 

of Table 3.26

I2 action_table[2][$]=accept In Item set I2, we see the item c_statement Æ c_statement •, 

hence by Rule 3 of Table 3.26

I3 action_table[3][CONSTANT]=s4 

action_table[3][IDENTIFIER]=s5 

goto_table[3][c_expression]=6

We saw earlier that goto(I3, CONSTANT) = I4, hence by Rule 1 

of Table 3.26

We saw earlier that goto(I3, IDENTIFIER) = I5, hence by Rule 1 

of Table 3.26

We saw earlier that goto(I3, IDENTIFIER) = I6, hence by Rule 4 

of Table 3.26

I4 action_table[4][SEMI_COLON]=r2 

action_table[4][OPERATOR]=r2
In I4, there is an item c_expression Æ CONSTANT • which tells 

us that action should be to reduce by the production number 2, 

c_expression Æ CONSTANT for all elements in FOLLOW(c_

expression), i.e. {SEMI_COLON, OPERATOR}, hence by Rule 

2 of Table 3.26
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I5 action_table[5][SEMI_COLON]=r3 

action_table[5][OPERATOR]=r3
In I5, there is an item c_expression Æ IDENTIFIER • which tells 

us that action should be reduce by the Production 3, c_expression 

Æ IDENTIFIER for all elements in FOLLOW(c_expression) i.e. 

{SEMI_COLON, OPERATOR}, hence by Rule 2 of Table 3.26

I6 action_table[6][SEMI_COLON]=s7 

action_table[6][OPERATOR]=s8

We saw earlier that goto(I6, SEMI_COLON) = I7, hence By Rule 

1 of Table 3.26

We saw earlier that goto(I6, OPERATOR) = I7, hence by Rule 1 

of Table 3.26

I7 action_table[7][$]=r1 In I7, there is an item c_statement Æ IDENTIFIER EQ_TO_OP 

c_expression SEMI_COLON •, which tells us that action 

should be to reduce by the Production number 1, c_statement Æ 

IDENTIFIER EQ_TO_OP c_expression SEMI_COLON for all 

elements in FOLLOW(c_statement), i.e. {$} hence by Rule 2 of 

Table 3.26

I8 action_table[8][CONSTANT]=s9 

action_table[8][IDENTIFIER]=s10

We saw earlier that goto(I8, CONSTANT) = I9, hence by Rule 1 

of Table 3.26

We saw earlier that goto(I8, IDENTIFIER) = I10, hence by Rule 1 

of Table 3.26

I9 action_table[9][SEMI_COLON]=r4 

action_table[9][OPERATOR]=r4
In I9, there is an item c_expression Æ c_expression OPERATOR 

IDENTIFIER •, which tells us that action should be to reduce 

by the Production number 4, c_expression Æ c_expression 

OPERATOR IDENTIFIER for all elements in FOLLOW(c_

expression), i.e. {SEMI_COLON, OPERATOR}, hence by Rule 

2 of Table 3.26

I10 action_table[10][SEMI_COLON]=r5 

action_table[10][OPERATOR]=r5
In I10, there is an item c_expression Æ c_expression 

OPERATOR CONSTANT •, which tells us that action should 

be to reduce by the production number 5, c_expression Æ 

c_expression OPERATOR CONSTANT for all elements in 

FOLLOW(c_expression), i.e. {SEMI_COLON, OPERATOR} 

hence by Rule 2 of Table 3.26

This completes the construction of parsing table entries (see Table 3.27) for the grammar in Table 3.17.

Table 3.27 Parsing table

State 

#

action goto

SEMI_

COLON

CONSTANT EQ_TO_

OP

IDENTIFIER OPERATOR End of 

Input ($)

c_

expression

c_

statement

0 s1 2

1 s3

2 accept

3 s4 s5 6

4 r2 r2

5 r3 r3
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6 s7 s8

7 r1

8 s9 s10

9 r4 r4

10 r5 r5

Figure 3.14 shows the output at each one of the steps in the construction of parsing table by SLR(1) 

method for the grammar shown in Table 3.17.

Grammar G 

Create Augmented Grammar 

G'

Create 
Canonical collection C of items

Using  

goto and Closure Functions 

Construction of 

Parsing Table 

( action and goto 
Tables ) 

from Canonical 

Collection C 

Step 1 

Step 2 

Step 3 

1 c_statement  � IDENTIFIER  EQ_TO_OP   c_expression  ‘;’ 

2 c_expression � CONSTANT 
3   IDENTIFIER 
4   c_expression   OPERATOR   CONSTANT 
5   c_expression   OPERATOR   IDENTIFIER 
    

1 c_statement  �  IDENTIFIER  EQ_TO_OP <c_expression>  ‘;’ 
2 c_expression �  CONSTANT 
3   | IDENTIFIER 
4   | c_expression   OPERATOR   CONSTANT 
5   | c_expression   OPERATOR   IDENTIFIER 
6 c_statement' �  c_statement 

#  Items 

I0 = c_statement  � • IDENTIFIER EQ_TO_OP c_expression ;   
  c_statement'  �  •  c_statement 
     

I1 = c_statement  �  IDENTIFIER •  EQ_TO_OP c_expression ; 
     

I2 = c_statement'  �  c_statement •  
     

I3 = c_statement  �  IDENTIFIER EQ_TO_OP •  c_expression ;   
  c_expression  �  •  CONSTANT   
  c_expression  �  •  IDENTIFIER   
  c_expression  �  •  c_expression OPERATOR CONSTANT   
  c_expression  �  •  c_expression OPERATOR IDENTIFIER 
     

I4 = c_expression  �  CONSTANT •    
     

I5 = c_expression  �  IDENTIFIER •     
     

I6 = c_statement  �  IDENTIFIER EQ_TO_OP c_expression •  ;   
  c_expression  �  c_expression •  OPERATOR CONSTANT   
  c_expression  �  c_expression •   OPERATOR IDENTIFIER 
     

I7 = c_statement  �  IDENTIFIER EQ_TO_OP c_expression ;  •    
     

I8 = c_expression  �  c_expression OPERATOR  •   CONSTANT   
  c_expression � c_expression OPERATOR  •   IDENTIFIER 
     

I9 = c_expression  �  c_expression OPERATOR CONSTANT•    
     

I10 = c_expression  �  c_expression OPERATOR IDENTIFIER•    
     

action goto 
State # ; CONS EQ ID OPER $ c_ex r c_stmt 

0    s1    2 

1   s3      

2      acc   
3  s4  s5   6  

4 r2    r2    
5 r3    r3    

6 s7    s8    
7      r1   

8  s9  s10     
9 r4    r4    

10 r5    r5    

Fig. 3.14 Construction of parsing table for the C-statement grammar by SLR(1) method
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Example 9—Construction of Parsing Table by SLR(1) Method This section shows a program 

constructing the parsing table from grammar by using the SLR(1) method. This takes a grammar as input 

and outputs the parsing table entries. It uses the 3 steps outlined earlier for constructing the parsing table 

entries from a given grammar.

# Building ex9 Binary

$ g++ -g -Wall grammar.cc slr.cc item.cc ex9.cc -o ex9

# A sample grammar fi le - sample4.gram

$ cat sample4.gram

c_statement : IDENTIFIER EQ_TO_OP c_expression ;

c_expression : CONSTANT

c_expression : IDENTIFIER

c_expression : c_expression OPERATOR CONSTANT

c_expression : c_expression OPERATOR IDENTIFIER

$ ./ex9 ‘sample4.gram’

**** FIRST and FOLLOW sets ****

c_expression FIRST={CONSTANT,IDENTIFIER} FOLLOW={;,OPERATOR}

c_statement FIRST={IDENTIFIER} FOLLOW={$}

********* Canonical Collection *********

No of sets in Canonical Collection=11

I(0) = c_statement : .IDENTIFIER EQ_TO_OP c_expression ;

  c_statementDASH : .c_statement

I(1) = c_statement : IDENTIFIER .EQ_TO_OP c_expression ;

I(2) = c_statementDASH : c_statement.

I(3) = c_statement : IDENTIFIER EQ_TO_OP .c_expression ;

  c_expression : .CONSTANT

  c_expression : .IDENTIFIER

  c_expression : .c_expression OPERATOR CONSTANT

  c_expression : .c_expression OPERATOR IDENTIFIER

I(4) = c_expression : CONSTANT.

I(5) = c_expression : IDENTIFIER.

I(6) = c_statement : IDENTIFIER EQ_TO_OP c_expression .;

  c_expression : c_expression .OPERATOR CONSTANT

  c_expression : c_expression .OPERATOR IDENTIFIER

I(7) = c_statement : IDENTIFIER EQ_TO_OP c_expression ;.

I(8) = c_expression : c_expression OPERATOR .CONSTANT

   c_expression : c_expression OPERATOR .IDENTIFIER

I(9) = c_expression : c_expression OPERATOR CONSTANT.
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I(10) = c_expression : c_expression OPERATOR IDENTIFIER.

State | ; CONSTANT EQ_TO_OP IDENTIFIER OPERATOR $ c_expression c_statement

000 |    s1    2

001 |   s3

002 |      acc

003 |  s4  s5   6

004 | r2    r2

005 | r3    r3

006 | s7    s8

007 |                                                r1

008 |  s9  s10

009 | r4    r4

010 | r5    r5

3.5.5.4  Construction of Parsing Table by Canonical LR Method The SLR method can be used to 

construct the parsing table for non-ambiguous grammars. However, there are certain grammars for which 

SLR method does not work despite being non-ambiguous.

Let’s take a look at why SLR method fails for certain grammars despite being non-ambiguous. Consider 

a grammar whose parsing table entries are constructed by using the SLR method.

Table 3.28 Context-free grammar

1 s Æ D C a

2 s Æ D a B

3 a Æ C

The sets of LR(0) Items for the above grammar can be found by executing the Example 9 binary.

# A sample grammar fi le - sample7.gram

$ cat sample7.gram

s : D C A

s : D a B

a : C

$ ./ex9 ‘sample7.gram’

**** FIRST and FOLLOW sets ****

a FIRST={C} FOLLOW={B}

s FIRST={D} FOLLOW={$}

********* Canonical Collection *********

No of sets in Canonical Collection=7

I(0) = s : .D C A

  s : .D a B

  sDASH : .s

I(1) = s : D .C A
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  s : D .a B

  a : .C

I(2) = sDASH : s.

I(3) = s : D C .A

  a : C.

I(4) = s : D a .B

I(5) = s : D C A.

I(6) = s : D a B.

State | A B C D $ a s

000 |    s1   2

001 |   s3   4

002 |     acc

003 | s5 r3

004 |  s6

005 |     r1

006 |     r2

The state diagram for the same grammar is shown in Fig. 3.15. 

Fig. 3.15 State diagram for the grammar
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Let’s take a look at I3

I3 : s Æ DC • A  Item 1

  a Æ C •  Item 2

From the Item 1, we know that if the next input symbol is ‘A’, a shift is performed to reach state 5. 

From Item 2, we know that, if the next input symbol is a part of FOLLOW(a), i.e. {‘B’}, We reduce by the 

production a Æ C. The output also shows action_table[3][A] = s5 and action_table[3][B] = r3.

Let’s add an additional production to the grammar as follows:

4 s Æ a A

Let’s execute the Example 9 again on this new grammar.

# A sample grammar fi le - sample7a.gram

$ cat sample7a.gram

s : D C A

s : D a B

a : C

s : a A

$ ./ex9 ‘sample7a.gram’

$ ./ex9 ‘sample7a.gram’

**** FIRST and FOLLOW sets ****

a FIRST={C} FOLLOW={A, B}

s FIRST={C, D} FOLLOW={$}

********* Canonical Collection *********

No of sets in Canonical Collection=10

I(0) = s : .D C A

  s : .D a B

  a : .C

  s : .a A

  sDASH : .s

I(1) = a : C.

I(2) = s : D .C A

  s : D .a B

  a : .C

I(3) = s : a .A

I(4) = sDASH : s.

I(5) = s : D C .A

  a : C.

I(6) = s : D a .B
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I(7) = s : a A.

I(8) = s : D C A.

I(9) = s : D a B.

Confl icting entry at action_table[5][A] oldval=8 newval=–3

This is creating a confl ict in the generation of parsing table at the state 5.

Let’s take a look at I5

I5 : s Æ DC • A Item 1

  a Æ C •  Item 2

The items in I5 are exactly same as what we had in I3 before the addition of the new production. Looking 

at item 1, in this state tells us that if the next input is A, then a shift needs to be performed. Item 2 tells us 

that a reduce by a Æ C would be performed, if the next input symbol is A, since FOLLOW(a)={A, B}. 

Thus, if the next input symbol is A, item 1 dictates that there would be a shift, while Item 2 indicates that 

there should be a reduce. This is the genesis of the confl ict.

Actually, the parser should have gone ahead with the shift, when the input is A, because the only 

possibility of the input being accepted is s Æ D C A. The reduction a Æ C should never be made in this 

state, when the input is A, since there is no production accepting an input string by ‘D a A’, even if it were 

followed by any favourable tokens.

This problem is overcome in the canonical LR and LALR methods of constructing a parsing table. The 

canonical LR and LALR methods of constructing parsing table entries use a more powerful enhanced item 

packed with more information that will allow us to rule out some of these invalid reductions like the one 

‘a Æ C’ above. The enhanced item includes a terminal in addition to the production and dot. Recall that 

the LR(0) Item can be represented by a 2-tuple of (production, position of dot). The enhanced item called 

as  LR(1) item consists of a terminal X in addition to the production and position of dot. The LR(1) item is 

defi ned by (production, position of dot, terminal). The terminal X is called the  look ahead symbol.

To get an idea on the LR(1) items, Let’s take a grammar, one of whose productions is say,

y Æ a B c D, where B and D are terminals.

Some of the LR(1) Items possible with this production are

[Y Æ a • B c D, B] Item 1

[Y Æ a • B c D, D] Item 2

[Y Æ a B • c D, B] Item 3

[Y Æ a B • c D, D] Item 4

The two related procedures, namely the closure and goto, also undergo a change for supporting LR(1) 

items. Let’s see how they change.

Closure Operation for LR(1) Items If I is a set of LR(1) items for a grammar G, then closure of I, 

represented by closure(I) can be computed using the following 2 rules:

Rule 1 Every element of I is added to closure of I

Rule 2 If an LR(1) item [X Æ A • BC, a] exists in I, and there exists a production B Æ b1b2..bn, then add item 

[BÆ • b1b2..bn, z] where z is a terminal in FIRST(Ca), if it is not already in closure(I). Keep applying this 

rule until there are no more elements added.
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To understand the computation of closure operation of LR(1) items, consider the grammar

Table 3.29 A context-free grammar

1 s Æ D C A

2  | D a B

3 a Æ C

4 s Æ a A

Let’s take a set I containing two of LR(1) items

I = {[s Æ D • C A, $], [s Æ D • aB, $]} where $ is the end of input.

Table 3.30 Computation of closure set on LR(1) items

Items Comments

closure(I) = {[s Æ D • C A, $], [s Æ D • aB, $]} By Rule 1, every element of I is also present 

in closure of I.

= {[s Æ D • C A, $], [s Æ D • aB, $], [a Æ • C, B]} Rule 2 applied on the fi rst item [s Æ D • CA, 

$] does not yield any  item, since the symbol 

after the dot is a terminal (i.e. no productions 

would exist with the LHS as ‘C’).

Applying Rule 2 applied on the second item 

[s Æ D • aB, $], we fi nd that there exists 

a Production 3 (a Æ C) whose left-hand 

side is ‘a’ (the non-terminal after the dot). 

The FIRST(B$) is {B} (recall that the 

FIRST(non-terminal) is itself.). By the rule 

2, we have the closure of I containing the 

element [a : • C, B].

= {[s Æ D • C A, $], [s Æ D • aB, $], [a Æ • C, B]} Applying Rule 2 on the entire set of items 

yield no additional items.

The closure computation for LR(1) Item set is summarised in Algorithm 3.9.

I is a set of LR(1) items belonging to grammar G
J is the closure(I)

J=I
do{
 added=0

 for (each item [X Æ A • BC, Y] in J) {

  for each production B Æ b1b2b3..bn exists in grammar G’ {
   for each terminal Z in FIRST(CY) {

    if (item [B Æ • b1b2b3..bn, Z] does not exist in C){

     add the item B Æ.b1b2b3..bn, Z
     added ++
    }
   }
  }
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 }
} while (added > 0)

Algorithm 3.9 Closure computation on LR(1) item set

goto Operation for LR(1) Items If I is a set of LR(1) Items which contains an item [A Æ a • Xb, a] where 

X is any grammar symbol, then goto(I, X) is defi ned as the closure of the set of all the items [A Æ aX • b, a]

To understand the goto computation on LR(1) items, consider the Grammar in Table 3.29.

Let’s take a set of LR(1) Items I with four elements

I = {[s Æ • DCA, $] [s Æ • DaB, $] [a Æ • C, A] [s Æ • aA, $]}

From the above defi nition of goto operation on LR(1) items, we have

goto(I, D) = closure {[s Æ D • CA, $] [s Æ D • aB, $]}

 = {[s Æ D • CA, $] [s Æ D • aB, $] [a Æ • C, B]} from example in Table 3.30.

 = {[s Æ D • CA, $], [s Æ D • aB, $], [a Æ • C, B]}

The goto(I, X) computation is formalised in Algorithm 3.10.

I, J, tmp_set are sets of items

J = goto(I, X)

for (each item [A Æ a • X b, a] in I)

 Add the item [A Æ a • b, a] to tmp_set
}
J= closure(tmp_set)

Algorithm 3.10 goto(I, X) for a set I of LR(1) Items

Armed with the concept of LR(1) Item, methods to perform closure operation and goto operations on 

LR(1) items, we shall try to understand the canonical LR parsing method for constructing a parsing table.

Procedure for constructing the Parsing Table Let’s revisit the steps shown in Fig. 3.11 with reference 

to canonical LR method of constructing the parsing table.

In step 1, we construct the augmented grammar (G¢) by adding an additional production S ¢ Æ S where S 

is the start symbol of the original grammar (G).

Step 2 involves creation of a canonical collection of sets of LR(1) items for LR(1) parsing table. We 

start with the Item set 0 (I0) containing the LR(1) item [S¢ Æ S,$] and the closure obtained on it. This is 

the fi rst set added in the canonical collection of sets C. Now, for every set In present in canonical collection 

C, we determine goto(In, X), for every symbol X in the grammar, if that yields a set not already present in 

the canonical collection of sets, we add it to the collection. If no sets are added to the collection during one 

traversal of the entire canonical collection, we halt the algorithm completing the canonical collection of 

sets of LR(1) items. This procedure is shown in Algorithm 3.7. This algorithm uses the goto and closure 

functions for the LR(1) Items that were described in the previous section.

I, J, tmp_set are sets of items

I = {S’Æ • S, $}

J = closure (I)

Add J as one set in canonical collection C /* This corresponds to state 0 */

do
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{

 added = false;

 for ( each set I in canonical collection C)

  for ( each grammar symbol X in symbol table)

   tmp_set = goto(I,X)

   if( tmp_set is not present in canonical collection C){

    added = true;

    add tmp_set in canonical collection C

   }

  }

  }

} while ( added == true)

Algorithm 3.11 Creating canonical collection of sets of LR(1) items

In step 3, we construct the action and goto table using the canonical collection of sets of LR(1) items by 

using Algorithm 3.12. The following rules form the basis of construction of LR(1) parsing table from the 

canonical collection of sets of items.

Table 3.31 Rules for constructing parsing table from canonical collection

Rule 1 If there is an item [A Æ a • Xb, b] in Ii and goto(Ii, X) is in the Item set Ij then action[I][X] = shift j, where 

X is a terminal

Rule 2 If there is an Item [A Æ a •, X] in Ii (and A π S’) set action[i][X] = reduce by A Æ a

Rule 3 If there is an item [S’ Æ S •, $] in Ii then set action[i][$] = accept

Rule 4 If the goto(Ii, X) = Ij then goto[i][X] = j, where X is a non-terminal

All the entries not defi ned by above rules are error entries. If there is confl ict in the entries generated out 

of the above rules, then the grammar is not LR(1) grammar. The algorithm fails to produce a parser. These 

rules are formalised in the Algorithm 3.12.

C is canonical collection of sets of Items = {I0, I1, I2,... In} created using Algorithm 3.11

for (each item set Ii in Canonical Collection) {
 for (each item P in an Item set Ii) {

   if (P is [S’Æ S•, $]){
     action[i][$]=ACCEPT;

   } else if (P is [A Æ a•, X]){

     action[i][X] = Reduce by the Production A Æ a •

   } else if (P is a item [A Æ a • X    b, b] and X is a Terminal){
      if (goto(Ii,X) == Ij){
       action[I][X]=shift j ;
      }

   } else if (P is a item [A Æ a • Xb, b] and X is a non-terminal) {
      if (goto(Ii,X) == Ij){
        goto[I][X]=j ;
      }
   }
 }
}

Algorithm 3.12 Construction of parsing table
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Example 10—Construction of Parsing Table by canonical LR Method This section demonstrates an 

example program that can construct parsing table entries using the canonical parsing table construction 

method. The program implements Algorithm 3.9, Algorithm 3.10 and Algorithm 3.11 for constructing the 

parsing table entries.

# Building ex10 Binary

$ g++ -g -Wall grammar.cc canonical_lr.cc lr1item.cc item.cc ex10.cc -o ex10

# A sample grammar fi le - sample7a.gram

$ cat sample7a.gram

s : D C A

s : D a B

a : C

s : a A

$ ./ex10 ‘sample7a.gram’

********* Canonical Collection *********

No of sets in Canonical Collection=10

I(0) = [s : .D C A,$]

  [s : .D a B,$]

  [a : .C,A]

  [s : .a A,$]

  [sDASH : .s,$]

I(1) = [a : C.,A]

I(2) = [s : D .C A,$]

  [s : D .a B,$]

  [a : .C,B]

I(3) = [s : a .A,$]

I(4) = [sDASH : s.,$]

I(5) = [s : D C .A,$]

  [a : C.,B]

I(6) = [s : D a .B,$]

I(7) = [s : a A.,$]

I(8) = [s : D C A.,$]

I(9) = [s : D a B.,$]

State | A B C D $ a s

000 |   s1 s2  3 4

001 | r3

002 |   s5   6

003 | s7

004 |     acc

005 | s8 r3

006 |  s9

007 |     r4

008 |     r1

009 |     r2
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3.5.5.5  Construction of Parsing Table by Look Ahead LR Method The look ahead LR method for 

constructing a parsing table is an improvisation on the canonical LR parsing table construction method. The 

LALR method for constructing parsing table uses the LR(1) item, like the canonical LR method. Most of 

the popular parser generator programs like ‘bison’, ‘yacc’, etc. use the LALR method for constructing the 

parsing table.

Consider the grammar in Table 3.32, which describes a simple selection statement of the form say (count 

= = 20), where count is a variable.

Table 3.32 Grammar for selection statement

1 sel_stmt Æ cond_expr EQTO cond_expr

2 cond_expr Æ (cond_expr)

3 | pri_expr

4 pri_expr Æ IDENTIFIER

| CONSTANT

We have avoided the full description of sel_stmt, which could contain less than/greater than operators, 

cast expression, etc. The idea is to explore a few key concepts by keeping it simple.

Let’s see how the canonical LR parsing works on this grammar by executing Example 10.

# A sample grammar fi le - sample9.gram

$ cat sample9.gram

sel_stmt : cond_expr EQTO cond_expr

cond_expr : ( cond_expr)

cond_expr : pri_expr

pri_expr : ID

pri_expr : CONSTANT

$ ./ex10 ‘sample9.gram’

********* Canonical Collection *********

No of sets in Canonical Collection=23

I(0) = [sel_stmt : .cond_expr EQTO cond_expr,$]

  [cond_expr : .( cond_expr),EQTO]

  [cond_expr : .pri_expr,EQTO]

  [pri_expr : .ID,EQTO]

  [pri_expr : .CONSTANT,EQTO]

  [sel_stmtDASH : .sel_stmt,$]

I(1) = [cond_expr : .( cond_expr),)]

  [cond_expr : ( .cond_expr),EQTO]

  [cond_expr : .pri_expr,)]

  [pri_expr : .ID,)]

  [pri_expr : .CONSTANT,)]

I(2) = [pri_expr : CONSTANT.,EQTO]
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I(3) = [pri_expr : ID.,EQTO]

I(4) = [sel_stmt : cond_expr .EQTO cond_expr,$]

I(5) = [cond_expr : pri_expr.,EQTO]

I(6) = [sel_stmtDASH : sel_stmt.,$]

I(7) = [cond_expr : .( cond_expr),)]

  [cond_expr : ( .cond_expr),)]

  [cond_expr : .pri_expr,)]

  [pri_expr : .ID,)]

  [pri_expr : .CONSTANT,)]

I(8) = [pri_expr : CONSTANT.,)]

I(9) = [pri_expr : ID.,)]

I(10) = [cond_expr : ( cond_expr .),EQTO]

I(11) = [cond_expr : pri_expr.,)]

I(12) = [sel_stmt : cond_expr EQTO .cond_expr,$]

  [cond_expr : .( cond_expr),$]

  [cond_expr : .pri_expr,$]

  [pri_expr : .ID,$]

  [pri_expr : .CONSTANT,$]

I(13) = [cond_expr : ( cond_expr .),)]

I(14) = [cond_expr : ( cond_expr).,EQTO]

I(15) = [cond_expr : .( cond_expr),)]

  [cond_expr : ( .cond_expr),$]

  [cond_expr : .pri_expr,)]

  [pri_expr : .ID,)]

  [pri_expr : .CONSTANT,)]

I(16) = [pri_expr : CONSTANT.,$]

I(17) = [pri_expr : ID.,$]

I(18) = [sel_stmt : cond_expr EQTO cond_expr.,$]

I(19) = [cond_expr : pri_expr.,$]

I(20) = [cond_expr : ( cond_expr).,)]

I(21) = [cond_expr : ( cond_expr .),$]

I(22) = [cond_expr : ( cond_expr).,$]
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State | ( ) CONSTANT EQTO ID $ cond_expr pri_expr sel_stmt

000 | s1  s2  s3  4 5 6

001 | s7  s8  s9  10 11

002 |    r5

003 |    r4

004 |    s12

005 |    r3

006 |      acc

007 | s7  s8  s9  13 11

008 |  r5

009 |  r4

010 |  s14

011 |  r3

012 | s15  s16  s17  18 19

013 |  s20

014 |    r2

015 | s7  s8  s9  21 11

016 |      r5

017 |      r4

018 |      r1

019 |      r3

020 |  r2

021 |  s22

022 |      r2

The canonical LR method of constructing the parsing table has generated 23 states. For a grammar with 

few rules like the above one, the number of states is pretty reasonable. But, for a full-fl edged grammar (e.g. C 

language grammar) the number of states produced by canonical LR(1) method is typically in thousands. Thus 

to store the parsing table, the parser would necessitate enormous amount of memory. The LALR method of 

constructing the parsing table alleviates the problem of parser needing a large amount of memory.

Let’s follow the grammar of Table 3.32 and study the LR(1) Items for each of the states as generated by 

the canonical LR method given in Example 10.

I(0) : [ sel_stmt : .cond_expr EQTO cond_expr,$ ] I(8) [ pri_expr : CONSTANT. ,) ]
 [ cond_expr : .( cond_expr ),EQTO ]  
 [ cond_expr : .pri_expr,EQTO ] I(9) [ pri_expr : ID. ,) ]
 [ pri_expr : .ID,EQTO ]  
 [ pri_expr : .CONSTANT,EQTO ] I(10) [ cond_expr : ( cond_expr .),EQTO ]
 [ sel_stmtDASH : .sel_stmt,$ ]  
  I(11) [ cond_expr : pri_expr. ,) ]
I(1) [ cond_expr : .( cond_expr ),) ]  
 [ cond_expr : ( .cond_expr ),EQTO ] I(12) [ sel_stmt : cond_expr EQTO .cond_expr,$ ]
 [ cond_expr : .pri_expr,) ]       [ cond_expr : .( cond_expr ),$ ]
 [ pri_expr : .ID,) ]       [ cond_expr : .pri_expr,$ ]
 [ pri_expr : .CONSTANT,) ]       [ pri_expr : .ID,$ ]
        [ pri_expr : .CONSTANT,$ ]
I(2) [ pri_expr : CONSTANT. ,EQTO ]  
  I(13) [ cond_expr : ( cond_expr .),) ]
I(3) [ pri_expr : ID. ,EQTO ]  
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  I(14) [ cond_expr : ( cond_expr ). ,EQTO ]
I(4) [ sel_stmt : cond_expr .EQTO cond_expr,$ ]  
  I(15) [ cond_expr : .( cond_expr ),) ]
I(5) [ cond_expr : pri_expr. ,EQTO ]       [ cond_expr : ( .cond_expr ),$ ]
        [ cond_expr : .pri_expr,) ]
I(6) [ sel_stmtDASH : sel_stmt. ,$ ]       [ pri_expr : .ID,) ]
        [ pri_expr : .CONSTANT,) ]
I(7) [ cond_expr : .( cond_expr ),) ]  
 [ cond_expr : ( .cond_expr ),) ] I(16) [ pri_expr : CONSTANT. ,$ ]
 [ cond_expr : .pri_expr,) ]  
 [ pri_expr : .ID,) ] I(17) [ pri_expr : ID. ,$ ]
 [ pri_expr : .CONSTANT,) ]  
  I(18) [ sel_stmt : cond_expr EQTO cond_expr. ,$ ]
   
  I(19) [ cond_expr : pri_expr. ,$ ]
   
  I(20) [ cond_expr : ( cond_expr ). ,) ]
   
  I(21) [ cond_expr : ( cond_expr .),$ ]

  I(22) [ cond_expr : ( cond_expr ). ,$ ]

Let’s take a look at the LR(1) Item sets I14, I20, I22.These three item sets have a similarity, all of them 

have

 cond_expr : (cond_expr) •

as the fi rst part of the LR(1) element, only the look ahead symbol varies. In I14 the look ahead is EQTO 

symbol, in I20 the look ahead is ‘)’ symbol, while in I22 the look ahead is ‘$’, the end-of-input symbol. 

The three LR(1) item sets represent states 14, 20 and 22 where the ‘(’, cond_expr and ‘)’ have already 

been consumed. The corresponding rows in action and goto table for the three states 14, 20 and 22 are 

highlighted in Table 3.33.

Table 3.33 Canonical parsing table for the grammar in Table 3.32

TOP OF STACK

(Current State)

action goto

IDENTIFIER CONSTANT (EQ_TO_OP) End of Input ($) cond_expr pri_expr sel_stmt

0 s3 s2 s1 4 6 5

1 s9 s8 s7 10 11

2 r5

3 r4

4 s12

5 r3

6 accept

7 s9 s8 s7 13 11

8 r5

9 r4

10 s14

(Contd )
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11 r3

12 s17 s16 s15 18 19

13 s20

14 r2

15 s9 s8 s7 21 11

16 r5

17 r4

18 r1

19 r3

20 r2

21 s22

22 r2

The sets containing the same fi rst components of the LR(1) Items are said to have the same core. We just 

saw that the states 14, 20 and 22 have the same core which is cond_expr : ( cond_expr) •

In LALR method of constructing the parsing table, the LR(1) Item sets with same core are 

merged to form a single Item set. Since each one of the LR(1) Item sets represent a state, we can see 

in the above example that the three states 14, 20 and 22 would be merged into one state. This merged 

state (let’s call it as s14-20-22) would be entered in situations where any one of the constituents would 

have been originally entered. For example, an input of  ‘)’ in state 10 would have forced a transition to 

state 14 originally. Now the same would force a transition to the state s14-20-22. The transition from this 

merged state s14-20-22 would be determined by the constituent states reaction to the next input symbol. 

For example, the merged state s14-20-22 would be reducing by Production 2 on receipt EQ_TO_OP as the 

next input symbol. This was determined by the constituent state 14. On similar lines the merged state 

s14-20-22 would be reducing by Production 2 on receipt ‘)’ as the next input symbol as determined by the 

constituent state 20. It can be proved that the merged state can never have a shift-shift or a shift-reduce 

confl ict due to the constituent states with respect to any of the input symbol, i.e. it can never happen that 

on the receipt of a given input symbol X, one of the constituent states would have a ‘shift j’ and another 

constituent state would have a ‘shift k’ or ‘reduce n’ for the same input symbol. 

Coming back to the discussion on the LR(1) item sets generated for the grammar in Table 3.32, we can 

also see that the states 2, 8 and 16 having a common fi rst part of LR(1) in pri_expr : CONSTANT• . They 

can be combined to create a new state (called as s2-8-16), and so on.

This merging of LR(1) Item sets with same core to form condensed LR(1) item sets is the main principle 

behind the LALR method of constructing the parsing table.

Let’s revisit the steps shown in Fig. 3.11 with reference to look ahead LR method of constructing the 

parsing table.

Step 1: The Augmented grammar is created in the same way as SLR or canonical LR method.

Step 2: The collection C of sets of LR(1) Items is performed in the same way as canonical LR method 

using Algorithm 3.11. Let’s say C contains the sets of LR(1) Items {I0, I1, I2, I3…In}. After the construction 

of C, we identify all the sets having the same core and merge them. This results in a collection of condensed 

sets of LR(1) Items—C¢ containing {J0, J1, J2, J3…Jk}, where Ji is a union of one or more sets of LR(1) Item 

sets having the same core, denoted mathematically as Ji = {I1 U I2 U I3… U Ik}

Table 3.33 (contd )
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Step 3: We construct the action and goto table using the original and condensed collection of sets of 

LR(1) items by using Algorithm 3.13, which is an improvisation on the Algorithm 3.12. The fundamental 

change in the Algorithm 3.13 compared to Algorithm 3.12 lies in the fact that the entries into action and 

goto table are made keeping the index of the condensed item set and not the original Item set.

C is canonical collection of sets of Items = {I0, I1, I2,... In} created using Algorithm 3.7

for ( each item set Ii in canonical collection) {
 let Jk be the condensed set whose constituent is the item set Ii
 for ( each item P in a Item set Ii) {
  if ( P is [S’Æ S •, $]){
   action[k][$]=ACCEPT;
  } else if ( P is [A Æ a • ¥]){
   action[k][X] = Reduce by the Production A Æ a •
  } else if ( P is a item [A Æ a•X b, b] and X is a Terminal){
   if ( goto(Ii,X) == Ij){
    let Jn be the condensed set whose constituent is the item set Ij 
    action[k][X]=shift n ;
   }
  } else if (P is an item [A Æ a•X b, b] and X is a non-terminal) {
   if ( goto(Ii,X) == Ij){
    let Jn be the condensed set whose constituent is the item set Ij  
    goto[k][X]=n ;
   }
  }
 }
}

Algorithm 3.13 Construction of parsing table

Example 11—Construction of  Parsing Table by LALR Method This section demonstrates an example 

program that can construct parsing table entries using the LALR method. The program implements the 

Algorithm 3.13 for constructing the parsing table entries.

# Building ex11 Binary

$ g++ -g -Wall grammar.cc canonical_lr.cc lalr.cc lr1item.cc item.cc ex11.cc -o ex11

# A sample grammar fi le - sample9.gram

$ cat sample9.gram

sel_stmt : cond_expr EQTO cond_expr

cond_expr : ( cond_expr)

cond_expr : pri_expr

pri_expr : ID

pri_expr : CONSTANT

$ ./ex11 ‘sample9.gram’

********* canonical collection *********

No of sets in Canonical Collection=23

I(0) = [sel_stmt : .cond_expr EQTO cond_expr,$]
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  [cond_expr : .( cond_expr),EQTO]

  [cond_expr : .pri_expr,EQTO]

  [pri_expr : .ID,EQTO]

  [pri_expr : .CONSTANT,EQTO]

  [sel_stmtDASH : .sel_stmt,$]

I(1) = [cond_expr : .( cond_expr),)]

  [cond_expr : ( .cond_expr),EQTO]

  [cond_expr : .pri_expr,)]

  [pri_expr : .ID,)]

  [pri_expr : .CONSTANT,)]

I(2) = [pri_expr : CONSTANT.,EQTO]

I(3) = [pri_expr : ID.,EQTO]

I(4) = [sel_stmt : cond_expr .EQTO cond_expr,$]

I(5) = [cond_expr : pri_expr.,EQTO]

I(6) = [sel_stmtDASH : sel_stmt.,$]

I(7) = [cond_expr : .( cond_expr),)]

  [cond_expr : ( .cond_expr),)]

  [cond_expr : .pri_expr,)]

  [pri_expr : .ID,)]

  [pri_expr : .CONSTANT,)]

I(8) = [pri_expr : CONSTANT.,)]

I(9) = [pri_expr : ID.,)]

I(10) = [cond_expr : ( cond_expr .),EQTO]

I(11) = [cond_expr : pri_expr.,)]

I(12) = [sel_stmt : cond_expr EQTO .cond_expr,$]

  [cond_expr : .( cond_expr),$]

  [cond_expr : .pri_expr,$]

  [pri_expr : .ID,$]

  [pri_expr : .CONSTANT,$]

I(13) = [cond_expr : ( cond_expr .),)]

I(14) = [cond_expr : ( cond_expr).,EQTO]

I(15) = [cond_expr : .( cond_expr),)]

  [cond_expr : ( .cond_expr),$]

  [cond_expr : .pri_expr,)]

  [pri_expr : .ID,)]

  [pri_expr : .CONSTANT,)]
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I(16) = [pri_expr : CONSTANT.,$]

I(17) = [pri_expr : ID.,$]

I(18) = [sel_stmt : cond_expr EQTO cond_expr.,$]

I(19) = [cond_expr : pri_expr.,$]

I(20) = [cond_expr : ( cond_expr).,)]

I(21) = [cond_expr : ( cond_expr .),$]

I(22) = [cond_expr : ( cond_expr).,$]

State | ( ) CONSTANT EQTO ID $ cond_expr pri_expr sel_stmt

000 | s1  s2  s3  4 5 6

001 | s7  s8  s9  10 11

002 |    r5

003 |    r4

004 |    s12

005 |    r3

006 |      acc

007 | s7  s8  s9  13 11

008 |  r5

009 |  r4

010 |  s14

011 |  r3

012 | s15  s16  s17  18 19

013 |  s20

014 |    r2

015 | s7  s8  s9  21 11

016 |      r5

017 |      r4

018 |      r1

019 |      r3

020 |  r2

021 |  s22

022 |      r2

No of condensed sets = 11

old state=0 new state = 0

old state=1 new state = 1

old state=2 new state = 2

old state=3 new state = 3

old state=4 new state = 4

old state=5 new state = 5

old state=6 new state = 6

old state=7 new state = 1

old state=8 new state = 2

old state=9 new state = 3
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old state=10 new state = 7

old state=11 new state = 5

old state=12 new state = 8

old state=13 new state = 7

old state=14 new state = 9

old state=15 new state = 1

old state=16 new state = 2

old state=17 new state = 3

old state=18 new state = 10

old state=19 new state = 5

old state=20 new state = 9

old state=21 new state = 7

old state=22 new state = 9

******Refi ned Canonical Collection *******

No of sets in condensed collection = 11

I(0) = [sel_stmt : .cond_expr EQTO cond_expr,$]

  [cond_expr : .( cond_expr ),EQTO]

  [cond_expr : .pri_expr,EQTO]

  [pri_expr : .ID,EQTO]

  [pri_expr : .CONSTANT,EQTO]

  [sel_stmtDASH : .sel_stmt,$]

I(1) = [cond_expr : .( cond_expr),)]

  [cond_expr : ( .cond_expr),$]

  [cond_expr : ( .cond_expr),)]

  [cond_expr : ( .cond_expr),EQTO]

  [cond_expr : .pri_expr,)]

  [pri_expr : .ID,)]

  [pri_expr : .CONSTANT,)]

I(2) = [pri_expr : CONSTANT.,$]

  [pri_expr : CONSTANT.,)]

  [pri_expr : CONSTANT.,EQTO]

I(3) = [pri_expr : ID.,$]

  [pri_expr : ID.,)]

  [pri_expr : ID.,EQTO]

I(4) = [sel_stmt : cond_expr .EQTO cond_expr,$]

I(5) = [cond_expr : pri_expr.,$]

  [cond_expr : pri_expr.,)]

  [cond_expr : pri_expr.,EQTO]

I(6) = [sel_stmtDASH : sel_stmt.,$]

I(7) = [cond_expr : ( cond_expr .),$]

  [cond_expr : ( cond_expr .),)]

  [cond_expr : ( cond_expr .),EQTO]
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I(8) = [sel_stmt : cond_expr EQTO .cond_expr,$]

  [cond_expr : .( cond_expr),$]

  [cond_expr : .pri_expr,$]

  [pri_expr : .ID,$]

  [pri_expr : .CONSTANT,$]

I(9) = [cond_expr : ( cond_expr).,$]

  [cond_expr : ( cond_expr).,)]

  [cond_expr : ( cond_expr).,EQTO]

I(10) = [sel_stmt : cond_expr EQTO cond_expr.,$]

State | ( ) CONSTANT EQTO ID $ cond_expr pri_expr sel_stmt

000 | s1  s2  s3  4 5 6

001 | s1  s2  s3  7 5

002 |  r5  r5  r5

003 |  r4  r4  r4

004 |    s8

005 |  r3  r3  r3

006 |      acc

007 |  s9

008 | s1  s2  s3  10 5

009 |  r2  r2  r2

010 |      r1

Limitation of Look Ahead LR(1) Method The LALR method for constructing the parsing table works 

very well for most of the unambiguous grammars. However, it can have a reduce-reduce confl ict for some 

of the grammars that LR(1) method can resolve. 

Consider the grammar in Table 3.34.

Table 3.34 Context-free grammar

1 s Æ A a D

2 s Æ B b D

3 s Æ A b E

4 s Æ B a E

5 a Æ C

6 b Æ C

Let’s execute the program for constructing the parsing table by LALR method shown in Example 11 

giving the above grammar as input.
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# A sample grammar fi le - sample10.gram

$ cat sample10.gram

S : a A d

S : b B d

S : a B e

S : b A e

A : c

B : c

$ ./ex11 ‘sample10.gram’

********* canonical collection *********

No of sets in canonical collection=14

I(0) = [S : .a A d,$]

  [S : .b B d,$]

  [S : .a B e,$]

  [S : .b A e,$]

  [SDASH : .S,$]

I(1) = [SDASH : S.,$]

I(2) = [S : a .A d,$]

  [S : a .B e,$]

  [A : .c,d]

  [B : .c,e]

I(3) = [S : b .B d,$]

  [S : b .A e,$]

  [A : .c,e]

  [B : .c,d]

I(4) = [S : a A .d,$]

I(5) = [S : a B .e,$]

I(6) = [A : c.,d]

  [B : c.,e]

I(7) = [S : b A .e,$]

I(8) = [S : b B .d,$]

I(9) = [A : c. ,e]

  [B : c. ,d]

I(10) = [S : a A d. ,$]

I(11) = [S : a B e. ,$]

I(12) = [S : b A e. ,$]
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I(13) = [S : b B d.,$]

State | a b c d e $ A B S

000 | s2 s3       1

001 |      acc

002 |   s6    4 5

003 |   s9    7 8

004 |    s10

005 |     s11

006 |    r5 r6

007 |     s12

008 |    s13

009 |    r6 r5

010 |                r1

011 |                r3

012 |                r4

013 |                r2

No of condensed sets = 13

old state=0 new state = 0

old state=1 new state = 1

old state=2 new state = 2

old state=3 new state = 3

old state=4 new state = 4

old state=5 new state = 5

old state=6 new state = 6

old state=7 new state = 7

old state=8 new state = 8

old state=9 new state = 6

old state=10 new state = 9

old state=11 new state = 10

old state=12 new state = 11

old state=13 new state = 12

******Refi ned canonical collection *******

No of sets in condensed collection = 13

I(0) = [S : .a A d,$]

  [S : .b B d,$]

  [S : .a B e,$]

  [S : .b A e,$]

  [SDASH : .S,$]

I(1) = [SDASH : S.,$]

I(2) = [S : a .A d,$]

  [S : a .B e,$]

  [A : .c,d]

  [B : .c,e]
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I(3) = [S : b .B d,$]

  [S : b .A e,$]

  [A : .c,e]

  [B : .c,d]

I(4) = [S : a A .d,$]

I(5) = [S : a B .e,$]

I(6) = [A : c.,d]

  [A : c.,e]

  [B : c.,d]

  [B : c.,e]

I(7) = [S : b A .e,$]

I(8) = [S : b B .d,$]

I(9) = [S : a A d.,$]

I(10) = [S : a B e.,$]

I(11) = [S : b A e.,$]

I(12) = [S : b B d.,$]

Confl icting entry at action_table[6][e] oldval=-6 newval=-5

Confl icting entry at action_table[6][d] oldval=-5 newval=-6

State | a b c d e $ A B S

000 | s2 s3       1

001 |      acc

002 |   s6    4 5

003 |   s6    7 8

004 |    s9

005 |     s10

006 |    r5 r6

007 |     s11

008 |    s12

009 |      r1

010 |      r3

011 |      r4

012 |      r2

The LALR method was unable to construct a parsing table for the above grammar due to confl icts. The 

canonical LR method can generate the parsing table for the same grammar. It proves that, even though the 

LALR method does improve the effi ciency in terms memory consumed for the parsing table, there are cases 

where the LR(1) method is better.
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3.5.5.6  Comparison of the Parsing Table Construction Methods We have studied three types of 

LR parsing table construction methods namely, SLR, LR(1) and LALR methods. Let’s make a comparison 

of these methods.

The following table compares the 3 methods of constructing the parsing table from the grammar with 

respect to vital parameters.

Method Usage of look-

ahead information

Item entity goto and closure 

functions

Grammar it applies to

SLR(1) Yes – 1 symbol LR(0) Item Different from LR(1) SLR(1) – Sub-set of LR(1) grammar

LR(1) Yes – 1 symbol LR(1) Item LR(1) – Largest class of LR grammar

LALR(1) Yes – 1 symbol LR(1) Item Same as LR(1) LALR(1) – Sub-set of LR(1) grammar 

but greater than SLR(1) grammar

The following set diagram depicts the applicability of each of these methods to construct parsing table 

on grammars. The SLR(1) grammar indicates those grammars for which the SLR(1) method can be used 

successfully to construct a parsing table, the LALR(1) indicates the grammars for which the LALR(1) 

method can be successfully used for constructing a parsing table, and so on. From Fig. 3.16, it is clear that 

the LR(1) method of constructing the parsing table can be used on a majority of non-ambiguous grammars. 

The LALR(1) method can be applied on a sub-set of LR(1) grammars. The SLR(1) method can be used for 

constructing a parsing table on a sub-set of LALR(1) grammars. Clearly the LR(1) method can be used to 

construct parsing table for the largest class of non-ambiguous grammars.

Fig. 3.16 Applicability of parsing table construction methods on grammars

3.5.5.7  Error reporting and recovery in LR parsing An LR parser can detect an error, when 

it consults the action table and fi nds that there is no entry for the given state and input symbol. Errors 

can never be detected by consulting the goto table. The error detection in LR parsing exhibits valid prefi x 

property—the detection of error happens as soon as the prefi x of the input has been seen for which there is 

no valid continuation for the input scanned till now. A canonical LR parser will not make a single reduction 

before announcing an error. The SLR and LALR parsers can make several reductions before detecting an 

error, but will not make a single shift before detecting an error.
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The error recovery schemes adopted in LR parsers are:

 1. Panic mode recovery.

 2. Phrase level recovery.

Consider that the current state is C and the next input symbol is denoted by a. The LR parser on fi nding 

that action[current state][a] is an error entry detects an error.

In the panic mode recovery, the LR parser scans down the stack until it fi nds a state S for which a valid 

goto[S][A] entry is found, where A is any non-terminal. Now, the input symbols are discarded until an 

element b in FOLLOW(A) is encountered. The parser then stacks the state goto[S][b] and continues the 

parsing. The elements in FOLLOW(A) act as the synchronisation token set. Observe that the A can be any 

non-terminal. There could be multiple choices for A, which needs to be pruned for the particular language.

Phrase-level recovery is implemented by fi lling in appropriate error handling routines in the action 

table. These error-handling routines would typically modify the top of the stack or the next input symbol to 

recover from the error. The caution that the compiler designer has to exercise is to make sure that the error 

handling routines do not get the parser to go into an infi nite loop, due to the modifi cation of stack or input. 

These error routines are similar to the ones that we saw in operator precedence parsing, but they are easier 

to write because in LALR parsing, the action table will never have an erroneous reduction, but in operator 

precedence parsing, there is a chance that we could wrongly reduce. A simple phrase level recovery strategy 

is as described below. Initially we identify all the expected input symbols in each one of the states. If an 

input symbol other than the expected ones is encountered in any state, we emit an error message indicating 

the possible expected inputs. For the states where there is only one particular input symbol a possible, we 

can have the following error recovery scheme. If the next input symbol is b, we can make state transition to 

the new state n as if a was the next input symbol. We then verify if there is a valid transition from the new 

state n for the input symbol b. This verifi cation is necessary to make sure that we do not get into infi nite 

loop. In case there is no valid transition from the new state n for the input symbol b, we cannot recover 

from the error.

Example 12 shows the phrase-level recovery scheme.

Example 12—Illustration of Error Reporting and Recovery in LR Parsing This example shows the error 

reporting and a simple phrase level recovery in LR parsing for the parsing table shown in Table 3.23. This 

is an enhancement made to Example 8, to include the error recovery and reporting.

# Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-stmt-lex.c c-stmt-lex.l

# Compiling the Lexical Analyzer

$ gcc -c -o c-stmt-lex.o c-stmt-lex.c

# Building ex12 Binary

$ g++ -g -Wall -DCHAP3_EX12 ex12.cc c-stmt-lr-parse.cc c-stmt-lex.o -o ex12

# Variant 7

$ ./ex12 ‘count=count*2+index;’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 258 (CONSTANT)

Shifting token 258 (CONSTANT), Entering state 2

Reading a token: Next token is 259 (IDENTIFIER)
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Shifting token 259 (IDENTIFIER), Entering state 3

Reading a token: Next token is 260 (OPERATOR)

Reducing via Rule 3

Entering state 5

Shifting token 260 (OPERATOR), Entering state 6

Reading a token: Next token is 257 (EQ_TO_OP)

Shifting token 257 (EQ_TO_OP), Entering state 9

Reading a token: Next token is 260 (OPERATOR)

Reducing via Rule 4

Entering state 5

Shifting token 260 (OPERATOR), Entering state 6

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 8

Reading a token: Next token is 256 (SEMI_COLON)

Reducing via Rule 5

Entering state 5

Shifting token 256 (SEMI_COLON), Entering state 7

Reading a token: Now at end of input.

Reducing via Rule 1

Entering state 10

Success

count=count*2+index;

SYNTAX CORRECT

# Missing Identifi er / Constant

$ ./ex12 ‘count=5+;’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 258 (CONSTANT)

Shifting token 258 (CONSTANT), Entering state 2

Reading a token: Next token is 257 (EQ_TO_OP)

Shifting token 257 (EQ_TO_OP), Entering state 4

Reading a token: Next token is 260 (OPERATOR)

Reducing via Rule 2

Entering state 5

Shifting token 260 (OPERATOR), Entering state 6

Reading a token: Next token is 256 (SEMI_COLON)

Error not fi nding entry action_table[6][256]..

Expecting IDENTIFIER or CONSTANT

count=5+;

     ̂

SYNTAX INCORRECT

# Missing semicolon

$ ./ex12 ‘count=index’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 258 (CONSTANT)
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Shifting token 258 (CONSTANT), Entering state 2

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 3

Reading a token: Now at end of input.

Error not fi nding entry action_table[3][0]..

Expecting SEMI_COLON or OPERATOR

count=index

      ^

SYNTAX INCORRECT

# Missing EQTO Operator

$ ./ex12 ‘count index;’

Entering state 0

Reading a token: Next token is 259 (IDENTIFIER)

Shifting token 259 (IDENTIFIER), Entering state 1

Reading a token: Next token is 259 (IDENTIFIER)

Error not fi nding entry action_table[1][259]..

Expecting EQ_TO_OP (Inserted it)

Shifting token 259 (IDENTIFIER), Entering state 3

Reading a token: Next token is 256 (SEMI_COLON)

Reducing via Rule 3

Entering state 5

Shifting token 256 (SEMI_COLON), Entering state 7

Reading a token: Now at end of input.

Reducing via Rule 1

Entering state 10

Success

count index;

SYNTAX CORRECT

3.6 A SYNTAX ANALYSER FOR C LANGUAGE
In the previous sections, we learnt about the context-free grammar and the techniques used for parsing an 

input, given the grammar. We also explored how the parser generators use the grammar to automatically 

generate the parser by using different techniques (like say creating a parsing table from grammar).

This section demonstrates the syntax analyser module of our toy C compiler (mycc) taking in sample C 

programs and announcing, if the syntax is correct or incorrect.

The syntax analyser module is built from a context-free grammar that describes the syntax of a C 

language program. We use the ‘bison’ parser generator program to generate the syntax analyser from the 

CFG. The generated syntax analyser can take as input, sample C programs and announce, if the syntax is 

correct or incorrect. This gives an idea on how the specifi cations of a complete language can be written 

using a context-free grammar and the corresponding lexical specifi cations. It illustrates the ease with which 

the parser can be generated from the CFG. Most of the theory that we have discussed in this chapter goes 

into making of parser generator programs like ‘bison’. This section merely ‘uses’ the capability of parser 

generator program to generate a syntax analyser from a context-free grammar describing a C language 

program. 

The following dialog shows the process of making a C language parser from the context-free grammar.  

It demonstrates how the parser takes different input fi les and announces if the syntax is conformant to the 

grammar.
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# Generating the Parser from Grammar Specifi cations

$ bison -dy -oc-small-gram.c -v c-small-gram.y

# Compiling the Parser

$ gcc -g -Wall -DGENERATED_PARSER -c -o c-small-gram.o c-small-gram.c

# Generating the Lexical Analyser from lexical Specifi cations

$ fl ex -oc-small-lex.c c-small-lex.l

# Compiling the Lexical Analyser

$ gcc -c -o c-small-lex.o c-small-lex.c

# Building the Syntax Analyser Binary

$ gcc -g -Wall c-small-gram.o c-small-lex.o main.c -o syn_analyzer

# Sample C Program with correct syntax

$ cat -n test1.c

 1 /* Function */

 2 int func( int v1,int v2)

 3 {

 4      int v3,v4;

 5

 6      v3=v1+v2;

 7      v4=v1-v2;

 8

 9      return(v3*v4);

10 }

# Trying out the Syntax Analyser on the Sample Program

$ ./syn_analyzer test1.c

SYNTAX CORRECT

# Sample C Program with syntax error

$ cat -n test1a.c

 1 /* Function */

 2 int func( int v1,int v2)

 3 {

 4      int v3,v4;

 5

 6      v3=v1+v2 /* syntax error - Missing Semicolon */

 7      v4=v1-v2;

 8

 9      return(v3*v4);

10 }

# Trying out the syntax analyser on the Sample Program

$ ./syn_analyzer test1a.c
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       v4

        ̂

Error in Line number=7

SYNTAX INCORRECT

# Sample C Program with syntax error

$ cat -n test1b.c

 1 /* Function */

 2 int func( int v1,int v2)

 3 {

 4      int v3,v4;

 5

 6      v3=v1+v2;

 7      v4=v1 - / v2; /* syntax error - missing operand */

 8

 9      return(v3*v4);

10 }

# Trying out the syntax analyser on the Sample Program

$ ./syn_analyser test1b.c

       v4=v1 - /

             ̂

Error in Line number=7

SYNTAX INCORRECT

# Sample C Program with no syntax error,but semantic error

$ cat -n test1c.c

 1 /* Function */

 2 int func( int v1,int v2)

 3 {

 4      int v3,v4;

 5

 6      v3=v1+v2;

 7      v4=v1-v2;

 8

 9      /*

10      Undefi ned variable ‘v5’ used below in return statement

11      It is a Semantic Error.

12      However it is NOT a syntax error

13      */

14      return(v5*v4);

15 }

# Trying out the Syntax Analyser on the Sample Program

$ ./syn_analyzer test1c.c

SYNTAX CORRECT
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From the different inputs given to the toy parser discussed so far, there are a couple of observations that 

can be made.

The toy parser can check the syntax of an input C program and announce if the syntax is correct or 

erroneous. In case, there is a syntax error, it reports the line number in which the error is found.

The input ‘test1c.c’ contains the use of an undeclared variable ‘v5’ in the return statement. However, the 

syntax analyser did not pronounce any syntax error. This is because, from a grammar point of view, there is 

no syntax error. The sequence of tokens in the statement conforms to the grammar specifi cations. However, 

such errors are caught in ‘semantic analysis’, which is the topic of discussion in the next chapter. This 

sample input fi le illustrates the important distinction between syntax and semantic analysis.

    SUMMARY

Syntax analysis is the second step in compilation process of a source program after the lexical 

analysis. In lexical analysis phase, the input source program is broken up into a sequence of tokens. 

The syntax analysis (also called as parsing) verifi es if the sequence of tokens returned by the lexical 

analyser are in accordance to the grammar of the language. A notation known as context-free 

grammar (CFG) is used to describe the grammar of a language. There are various techniques used for 

parsing an input source program to verify if the tokens are in accordance to the grammar described by 

CFG. The techniques can be classifi ed as top-down parsing or bottom-up parsing. We studied about 

the top-down parsing in Section 3.4 and bottom-up parsing in 3.5. We learnt about the two major 

methods of top-down parsing, namely the recursive descent parsing and the table-driven predictive 

parsing. In bottom-up parsing, we studied about operator precedence parsing and the LR parsing. The 

LR parsing technique is the most powerful one since it can be applied to a large variety of grammars. 

In LR parsing, a couple of tables called as the action table and the goto table are used to determine 

if the tokens from the input source program are in accordance to the specifi ed grammar. There are 3 

methods of deriving these tables automatically from the grammar of the language. They are called 

as simple LR (SLR), canonical LR and look ahead LR methods of parse table generation. The look 

ahead LR method of constructing the parsing tables is used in most of the popular parser generators 

like ‘bison’ and ‘yacc’. 

One of the responsibilities of a syntax analyser is to detect errors in the input source program and 

report them to the programmer to take of correcting it. This is called as error reporting. The syntax 

analyser cannot stop at the fi rst error encountered in the input source program, it should continue and 

detect as many errors as present in a source program as possible. This is called as the error recovery 

in a syntax analyser. Section 3.3 discusses various strategies to recover from errors and continue 

parsing. During the discussion of individual parsing strategies, we also examined the error recovery 

schemes that can be used in tandem with them.

    REVIEW QUESTIONS AND EXERCISES

 3.1 What is syntax analysis? What are its primary functions? What are its secondary functions?

 3.2 State whether the following statements are true or false.
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  (a) A syntax analyser verifi es if the tokens for a given input are properly sequenced in 

accordance with the grammar of the language under check.

  (b) A syntax analyser detects the error, emits appropriate error message to the user and if 

possible, recovers from the error for a given input.

  (c) A syntax analyser reads an input source program and produces as output a sequence of 

tokens.

  (d) A syntax analyser generates intermediate code.

 3.3 What is a context-free grammar? Illustrate with an example the different components of a 

context-free grammar. What are the advantages of using context-free grammar to specify a 

language?

 3.4 How do you prove that an input is syntactically in conformance to grammar? Provide the proof 

that the input ‘min= count - index +5;’ is conformant to the grammar

  c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

  c_expression Æ CONSTANT

  c_expression Æ IDENTIFIER

  c_expression Æ c_expression OPERATOR c_expression

  Assume that the lexical analyser is capable of splitting the input into tokens IDENTIFIER, EQ_

TO_OP, SEMI_COLON, CONSTANT and OPERATOR. Also assume that the lexical analyser 

returns OPERATOR as a token for any of the operators like + or –.

 3.5 What is a derivation? Illustrate with an example, the leftmost derivation and rightmost 

derivation.

 3.6 What is a parse tree? Show the generated parse tree for an input ‘m = n + p –q;’ while checking 

for conformance with the grammar given in Q. 3.4. From the parse tree, identify each of the 

replacement of the productions in the derivation.

 3.7 Give an example of an ambiguous grammar. What are the techniques to disambiguate grammars?

 3.8 How do you classify the different parsing techniques?

 3.9 Distinguish between error reporting and error recovery in a parser. What are the main 

considerations for each of them in a parser?

 3.10 List out the important error recovery strategies in a parser.

 3.11 Distinguish between top-down parsing and bottom-up parsing? What is the largest class of 

grammars that can be parsed by each of them?

 3.12 Illustrate with an example the working of a backtracking parser? List out its advantages and 

disadvantages.

 3.13 What is a predictive parser? What is the need to modify a grammar to suit predictive parser? 

Illustrate with examples.

 3.14 What is a recursive descent parser? How do you implement a recursive descent parser for a 

grammar?

  c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

  c_expression Æ CONSTANT c_expr_rest

  c_expression Æ IDENTIFIER c_expr_rest

  c_expr_rest Æ OPERATOR c_expr_factor

  c_expr_rest Æ Œ

  c_expr_factor Æ IDENTIFIER c_expr_rest

  c_expr_factor Æ CONSTANT c_expr_rest
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 3.15 What are the components of a table-driven predictive parser? Which of those are dependent on 

the grammar that is being parsed? What are the advantages of a table-driven predictive parser?

 3.16 Illustrate with an example the moves of a table-driven predictive parser for a given input and the 

context-free grammar. You can use the parsing table corresponding to the grammar for helping 

the moves of the table-driven predictive parser.

 3.17 Illustrate by example, how a bottom-up parser reduces a given input to the start symbol. Draw the 

parse tree for the same and prove that the reduction is the exact reverse of a rightmost derivation.

 3.18 What transformations make a grammar suitable for bottom-up parsing? Illustrate with an 

example.

 3.19 Defi ne the terms reduction, handle and right sentential form. Explain with an example, the 

importance of picking the right-handles during a reduction sequence.

 3.20 Illustrate with example, the working of a general bottom-up parser using the shift and reduce actions.

 3.21 Develop a bottom-up parser for the grammar given below using ‘bison’, the parser generator 

program.

  c_statement Æ IDENTIFIER EQ_TO_OP c_expression SEMI_COLON

  c_expression Æ CONSTANT

  c_expression Æ IDENTIFIER

  c_expression Æ c_expression OPERATOR CONSTANT

  c_expression Æ c_expression OPERATOR IDENTIFIER

  Check the parser for the inputs marked as variant 1 through variant 7 in Section 3.2.

 3.22 How does an operator precedence parser work? Use a pre-constructed operator precedence table 

to guide the parsing of an input ‘a + b – 20’ using operator precedence parser.

 3.23 Describe the error reporting and recovery schemes in operator precedence parsing?

 3.24 What are precedence functions in an operator precedence parser? List out the advantages and 

disadvantages of operator precedence parsing.

 3.25 What are the main components of an LR parser? Describe them.

 3.26 Illustrate the steps in the parsing of an input ‘x = y + z – 5;’ by an LR parser using a pre-

constructed LR parsing table.

 3.27 What are the different methods of constructing the LR parsing table from a grammar? What are 

the common steps involved in constructing the LR parsing table from a given grammar?

 3.28 What is an LR(0) Item? How are closure and goto operations performed on LR(0) Item set?

 3.29 Describe the SLR(1) method of constructing the LR parsing table from a given grammar. 

Illustrate with an example.

 3.30 Describe the canonical LR method of constructing the LR parsing table from a given grammar. 

Illustrate with an example.

 3.31 Describe the look ahead LR method of constructing the LR parsing table from a given grammar. 

Illustrate with an example.

 3.32 How do SLR(1), LR(1) and LALR(1) methods compare against each other in the process of 

constructing the parsing table from the grammar? Draw a set diagram depicting the applicability 

of SLR(1), LR(1) and LALR(1) methods on the grammars.

 3.33 How does the error detection and error recovery happen in LR parsing? Illustrate with an 

example.

 3.34 Add error detection and recovery capabilities to the LR parser developed in 3.21.

 3.35 Distinguish between a syntax error and a semantic error by providing an example.



SEMANTIC  ANALYSIS

Introduction
In the previous chapters we had studied about how in a compiler, 
the input is broken up into tokens (lexical analysis) and how the 
token ordering is checked to see if it is conformant to the grammar 
of the language (syntax analysis). All the statements that are valid 
from syntax point of view are not legal instructions. For example, a 
statement in a C language program x = y( ) is valid from syntax point of 
view. However, it is not a legal statement, if y is defi ned as an integer 
instead of being defi ned as a function. In semantic analysis we verify 
if the input source forms a legal set of instructions in accordance with 
the language rules. For example, semantic analysis in a C language 
compiler would involve tasks like (a) verifying if all the variables are 
declared before use; (b) checking if expressions and variables are being 
used properly keeping the data types in mind, e.g. LHS and RHS in an 
assignment statement should have the same data type; (c) checking if 
the operators are used on compatible operands, e.g. the operator ‘->’ 
is used on a variable, which is a pointer to structure, the operator ‘*’ 
is used on pointer variable, and so on. Semantic analysis also detects 
errors like defi ning an identifi er more than once in the same scope. In 
the case of object-oriented languages, semantic analysis additionally 
detects issues like violation of access controls, and so on. Semantic 
analysis also involves gathering information that would be used in later 
phases like intermediate and target code generation. The semantic 

4
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analysis is the last phase in which we reject incorrect input programs and fl ash error 
messages for the user to correct them.

The following dialog examines a few C programs, which have some semantic errors 
and shows us how the GNU C compiler detects and reports them. These examples 
give us a feel of what kinds of errors are detected in semantic analysis. Observe that 
all of these programs are syntactically correct, but have semantic errors.

# A C Program using an undeclared variable

$ cat -n sem_err1.c

1 

2 int main()

3 {

4  int a,b;

5 

6  a=1;

7  b=2;

8  c=3; /* Use of undeclared variable */

9 

10  a = b + c;

11 

12  return(a);

13 

14 }

# The Compiler detects it and reports the error

$ gcc -Wall sem_err1.c -o sem_err1

sem_err1.c: In function `main’:

sem_err1.c:8: error: `c’ undeclared (fi rst use in this function)

sem_err1.c:8: error: (Each undeclared identifi er is reported only once

sem_err1.c:8: error: for each function it appears in.)

# A C Program Assigning a fl oat to char pointer

$ cat -n sem_err2.c

    1 

    2 int main()

    3 {

    4  char *a;

    5 

    6  fl oat b,c;

    7 

    8  b = 30.45;

    9  c = 40.36;

   10 

   11  a = b + c; /* Assigning a fl oat to char pointer */

   12 

   13  return(0);

   14 

   15 }
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# The Compiler detects it and reports the error

$ gcc -Wall sem_err2.c -o sem_err2

sem_err2.c: In function `main’:

sem_err2.c:11: error: incompatible types in assignment

# A C Program using ‘->’ operator on a fl oat Variable

$ cat -n sem_err3.c

    1 

    2 int main()

    3 {

    4 

    5  fl oat b,c;

    6 

    7  b = 30.45;

    8  c = 40.36;

    9 

   10  b = c -> f1; /* using ‘->’ operator on a fl oat Variable */

   11 

   12  return(0);

   13 }

# The Compiler detects it and reports the error

$ gcc -Wall sem_err3.c -o sem_err3

sem_err3.c: In function `main’:

sem_err3.c:10: error: invalid type argument of `->’

# A C Program using break statement in a non-loop context

$ cat -n sem_err4.c

    1 

    2 int main()

    3 {

    4  fl oat b,c;

    5 

    6  b = 30.45;

    7  c = 40.36;

    8 

    9  b = c ;

   10 

   11  break; /* using break statement in a non-loop context */

   12 

   13  return(0);

   14 }

# The Compiler detects it and reports the error

$ gcc -Wall sem_err4.c -o sem_err4

sem_err4.c: In function `main’:

sem_err4.c:11: error: break statement not within loop or switch

# A C Program using a fl oat variable as function

$ cat -n sem_err5.c

    1 
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    2 int main()

    3 {

    4  fl oat b,c;

    5 

    6  b = 30.45;

    7  c = 40.36;

    8 

    9  b = c() ; /* using a fl oat variable as function */

   10 

   11  return(0);

   12 }

# The Compiler detects it and reports the error

$ gcc -Wall sem_err5.c -o sem_err5

sem_err5.c: In function `main’:

sem_err5.c:9: error: called object is not a function

# A C Program declaring a variable twice in the same scope

$ cat -n sem_err6.c

    1 

    2 int main()

    3 {

    4  int a;

    5 

    6  int b,c;

    7  fl oat a; /* declaring a variable twice in the same scope */

    8 

    9  b = 30;

   10  c = 40;

   11 

   12  a = b + c;

   13 

   14  return(a);

   15 

   16 }

# The Compiler detects it and reports the error

$ gcc -Wall sem_err6.c -o sem_err6

sem_err6.c: In function `main’:

sem_err6.c:7: error: confl icting types for ‘a’

sem_err6.c:4: error: previous declaration of ‘a’ was here

sem_err6.c:4: warning: unused variable ‘a’

Semantic analysis involves the following main tasks:

 1. Process the declarations (e.g. variable declarations, function prototype declarations, type 

defi nitions, etc.) and build/update the symbol table to record the type information associated with 

various Identifi ers.

 2. Examine the rest of the program to ensure that the identifi ers are used correctly adhering 

to the type-compatibility conventions defi ned by the language. For example, one of the type-

compatibility conventions in C language is that the LHS and RHS in an assignment statement 
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should match. Another one of the type-compatibility conventions in C language is that the 

variable names used should be unique in that particular scope. Each programming language has 

its own set of type-compatibility conventions that must be met for a program to be declared as 

semantically correct. This assessment of program for type-compatibility is called  type checking.

We had used regular expressions to specify and implement the lexical analysis. For the syntax analysis, 

we had used the context-free grammar to specify and implement the parsers. In order to perform semantic 

analysis, we make use of a formalism called  syntax directed translation (SDT). The syntax-directed 

translation allows us to specify and implement a semantic analyser. We can see in the next chapter how 

the syntax-directed translation technique can also be used for generation of intermediate code. We study 

the details of syntax-directed translation in Section 4.1. We show the application of the SDT technique 

to perform the semantic analysis in Section 4.2. This is followed by a sample semantic analyser 

implementation in Section 4.3.

4.1 SYNTAX DIRECTED TRANSLATION

The main idea behind syntax-directed translation is that the semantics or the meaning of the program is 

closely tied to its syntax. Most of the modern compiled languages exhibit this property.

Syntax-directed translation involves:

∑ Identifying attributes of the grammar symbols in the context-free grammar.

∑ Specifying  semantic rules or attribute equations relating the attributes and associate them with the 

productions.

∑ Evaluating semantic rules to cause valuable side-effects like insertion of information into the 

symbol table, semantic checking, issuing of a error message, generation of intermediate code, and 

so on.

An attribute is any property of a symbol. For example, the data type of a variable is an attribute. The 

memory location associated with a variable is another attribute. In the next few sections, we shall see many 

attributes of the grammar symbols in use.

The syntax-directed defi nition is a commonly used notation for specifying attributes and semantic rules 

along with the context-free grammar.

4.1.1 Syntax Directed Defi nition

Consider the context-free grammar for recognising declarations in C language supporting the basic data 

types like ‘int’, ‘char’ and ‘fl oat’, shown in Table 4.1.

Table 4.1 Grammar for supporting C-declarations

# Production

1 declaration_list Æ declaration_list declaration

2 | declaration

3 declaration Æ type_spec identifi er_list ‘;’

4 type_spec Æ INT

5 | CHAR

6 | FLOAT

7 identifi er_list Æ identifi er_list ‘,’ IDENTIFIER

8 | IDENTIFIER
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A sample input source that conforms to the grammar of Table 4.1 is shown in Table 4.2.

Table 4.2 An input source

int a,b;

Let’s examine the grammar shown in Table 4.1 and get to understand some of the defi nitions and 

concepts.

∑ The syntactic entities (terminals and non-terminals) in the grammar shown in Table 4.1 are 

declaration_list, declaration, type_spec, identifi er_list, INT, CHAR, FLOAT and IDENTIFIER. The 

start symbol is ‘declaration_list’. The terminals INT, CHAR, FLOAT are tokens returned by lexical 

analyser for the keywords ‘int’, char’ and ‘fl oat’ respectively.

∑  There are attributes that can be defi ned for the above syntactic entities. For example, the syntactic 

entity-identifi er_list can have an attribute ‘type’, which is representative of the data type of all the 

identifi ers in the list.

∑ The attribute for a grammar symbol is referred to by writing the grammar symbol followed by 

a dot and the attribute name. For example, the ‘type’ attribute of identifi er_list can be referred to 

as identifi er_list.type. Observe that this notation is similar to accessing a fi eld in a structure in C 

language.

∑  The value of an attribute can be a string or a number or any other convenient value. For example, 

the ‘type’ attribute of the identifi er_list (identifi er_list.type) can have one of the value from the set 

{INTEGER, CHARACTER, REAL}.

∑ The attributes of different syntactic entities are related using  semantic rules associated with 

each production. For example, we can associate a semantic rule “identifi er_list.type= type_spec. 

data_type” with the Production 3. This signifi es that the value of ‘type’ attribute of identifi er_list is 

copied from the data_type attribute of the type_spec in association with Production 3.

∑ A context-free grammar in which the productions are shown along with its associated semantic rules 

is called as a  syntax-directed defi nition. Table 4.3 shows the syntax-directed defi nition evolved from 

the grammar for the C declarations seen in Table 4.1.

Table 4.3 Syntax-directed defi nition

Production Semantic Rule

1 declaration_list Æ declaration_list declaration

2 | declaration

3 declaration Æ type_spec identifi er_list ‘;’ identifi er_list .type = type_spec. data_type

4 type_spec Æ INT type_spec.data_type = INTEGER

5 | CHAR type_spec.data_type = CHARACTER

6 | FLOAT type_spec.data_type = REAL

7 identifi er_list Æ identifi er_list ‘,’ IDENTIFIER identifi er_list1.type = identifi er_list.type

insert (IDENTIFIER.place, identifi er_list.type)

8 | IDENTIFIER insert (IDENTIFIER.place, identifi er_list.type)

∑ In a syntax-directed defi nition, while writing the semantic rules for a production, if the same grammar 

symbol appears on both the left and right side of the production, then each occurrence on the right-
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hand side is referred to by a subscript. For example, the production 7 in Table 4.3, shows a semantic 

rule ‘identifi er_list1.type = identifi er_list.type’. The identifi er_list1.type refers to the attribute ‘type’ of 

the grammar symbol ‘identifi er_list’ on the right-hand side of the production, while the identifi er_list.

type (without subscript) refers to the ‘type’ attribute of ‘identifi er_list’ on the left-hand side of the 

production.

∑  The semantic rules in a syntax-directed defi nition can also be used to call routines that can provide 

side-effects like generation of code, insertion/updating of information into symbol table, perform 

a semantic check, issue warning messages, and so on. For example, the semantic rule associated 

with Production 7 in Table 4.3, we call a routine ‘insert’, which inserts a symbol table entry for the 

IDENTIFIER with the type information, given by the attribute identifi er_list.type. 

Consider the source shown in Table 4.2 as an input to the syntax-directed defi nition presented in Table 

4.3. Figure 4.1 illustrates the parse tree showing the values of attributes of the parse tree nodes for the input. 

A parse tree showing the values of attributes of different parse tree nodes is called a  decorated parse tree. 

The process of computing the attribute values at various parse tree nodes is called decorating or annotating 

the parse tree.

 

Fig. 4.1 Decorated parse tree

A parse tree might be decorated during the parsing process itself. In other cases, the base parse tree 

could be constructed during the parsing. After the parse tree is constructed, the attributes could be evaluated 

and parse tree decorated by visiting the tree nodes. The order in which the parse tree nodes are visited 
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for evaluating the attributes is based on the dependencies of the attributes belonging to various nodes. For 

example, the semantic rule for the Production 3 is identifi er_list.type = type_spec.data_type, i.e. the type 

attribute of identifi er_list is assigned the value of data_type attribute of type_spec node. This tells us that 

in order to compute the attribute ‘type’ of identifi er_list, the attribute ‘data_type’ for the type_spec node 

needs to have already been computed. Similarly, for Production 7, in order to compute identifi er_list1.type, 

the attribute identifi er_list.type should have already been computed. Thus, in order to properly decorate the 

above parse tree, we need to compute the ‘data_type’ attribute of type_spec node fi rst, followed by ‘type’ 

attribute of identifi er_list, and so on. This dependency of attributes of a parse tree node on other attributes 

is illustrated by a  dependency graph. Figure 4.2 shows the dependency graph overlaid on the parse tree. In 

a dependency graph, the direction of the arrow signifi es the order in which the attributes are evaluated. The 

parse tree is shown in the dotted line in the background.

Fig. 4.2 Dependency graph

Let’s briefl y understand the nature of the attributes in a syntax-directed defi nition. Consider the syntax-

directed defi nition shown in Table 4.3. In the semantic rule for Production 7, we can observe that the 

attribute of the element on the RHS of the production (identifi er_list1.type) is dependent on attribute of 

the element in the LHS of the production (identifi er_list.type). In the parse tree, the symbol on the LHS 

of the production is a parent and the symbols on the RHS of the productions are the children as seen in 

Fig. 4.2. In other words, the attribute identifi er_list1.type depends on its parent attribute – identifi er_list.

type. Such attributes for a grammar symbol that depend on its parent’s or a sibling’s attribute are called 

 inherited attributes. In Production 3 of the same SDD, we see another example of an inherited attribute—

identifi er_list.type, which depends on its sibling’s attribute—type_spec. data_type. 
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It is also possible to have an attribute of a grammar symbol that depends on one or more of its children’s 

attributes. Such attributes are called as  synthesised attributes. A syntax-directed defi nition that makes use of 

synthesised attributes only is known as an  S-attributed defi nition. Table 4.4 shows an S-attributed syntax-

directed defi nition.

Table 4.4 An S-attributed syntax-directed defi nition

# Production Semantic Rule

1 sentence : expr print expr.value  

2 expr : expr  ‘+’  term expr.value = expr1.value +  term.value

3 | expr  ‘-’   term expr.value = expr1.value -  term.value

4 | term expr.value = term.value

5 term : term   ‘*‘  factor term.value = term1.value * factor.value

6 | term  ‘/’   factor term.value =  term1.value / factor.value

7 | factor term.value = factor.value

8 factor : ‘(‘   expr   ‘)’ factor.value = expr.value

9 | CONSTANT factor.value = CONSTANT.lexeme

The syntax-directed defi nition in Table 4.4 describes a desktop calculator taking expressions involving 

constants as input and printing out the result of the expression as output. Table 4.5 shows some sample 

input and the corresponding output from the SDD.

Table 4.5 Sample input and output

Input Output

9+15–20 4

3*21 – (4*5) 43

(9*53) /(7–4) 159

4.1.2 Evaluation of Semantic Rules in SDD

In the last section, we studied about how a syntax-directed defi nition can be used for specifying attributes 

and semantic rules along with the context-free grammar. In this section, we look at the methods by which 

the semantic rules of an SDD can be evaluated to compute the values of attributes. The evaluation of 

semantic rules in a syntax-directed defi nition achieves the actual translation of input to the output.

One of the methods for computing the attributes of different symbols in a syntax-directed defi nition is to 

evaluate the semantic rules during the parsing itself. This method of  translation interleaved with parsing 

can be applied to a restricted class of syntax-directed defi nitions.

Another method of evaluating semantic rules is to construct a parse tree, form a dependency graph and 

then evaluate the semantic rules in accordance with the dependency graph. This method of evaluation 

is called the  parse tree method. This method works for any kind of SDD provided there is no cycle in 
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the dependency graph. The parse tree method takes more time for evaluating the semantic rules, since 

it involves multiple passes of the input (one for creating parse tree, and one or more for evaluating the 

semantic rules).

Another method of evaluating the semantic rules is called as the  rule-based method. In the rule-based 

method, a parse tree is created from the syntax analysis similar to the parse tree method, but the evaluation 

order is determined beforehand by analysis of the semantic rules. The dependency graph is not created in 

this method. In the rule based method, the order of evaluation of attributes is hard-coded into the compiler. 

In order to completely evaluate all the semantic rules, it is possible that the parse tree is walked through 

multiple times in the rule-based method.

We study in detail about each of the above-mentioned methods to evaluate semantic rules of a SDD in 

the next few sections.

4.1.3 Translation Interleaved with Parsing

Semantic rules can be evaluated in a single pass during parsing itself, without having to explicitly create 

a parse tree or a dependency graph. The evaluation of semantic rules during the parsing is applicable to 

a class of syntax-directed defi nitions whose semantic rules meet certain criteria. The order of evaluation 

of attributes for the syntax-directed defi nition plays an important part in determining the feasibility of 

evaluation of semantic rules during the parsing.

Even if there is no explicit parse tree that is created, an order of evaluation of attributes that is a reference 

for evaluation of semantic rules during the parsing is the depth-fi rst order of evaluation of attributes. 

In depth-fi rst traversal, an entire sub-tree under each child is traversed before going to the next child. 

Figure 4.3 shows a parse tree and the order in which the nodes are visited by depth-fi rst traversal.

Fig. 4.3 Depth-fi rst traversal of parse tree

The depth-fi rst order of evaluation of attributes can be represented by Algorithm 4.1.

 1 procedure dfeval ( node *n)

 2 {

 3  for each of the child m of n from left to right 

 4  {
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 5   Evaluate inherited attributes of m

 6   dfeval (m);

 7  }

 8 

 9  /* At this point all the children of Node n have been processed */

 10  Evaluate synthesised attributes of Node n.

 11 }

Algorithm 4.1 Depth-fi rst traversal for evaluation of attributes

Consider a production A Æ X1 X2 X3 X4 ..Xj … Xn. in a context-free grammar. For the successful 

evaluation of attributes using depth-fi rst evaluation method, we can see that the attributes of nodes have to 

adhere to the following guidelines.

 1. The inherited attributes of any particular node Xj can depend on the attributes of X1,X2…Xj–1 but 

not on any of the right siblings like Xj+1 ..Xn. This is because the attributes of right siblings of Xj 

like Xj+1... Xn would not yet have been evaluated by the depth-fi rst traversal algorithm at the time 

of evaluating Xj.

 2. The inherited attributes of any particular node Xj can depend on A. This is because the node A 

would have already been evaluated before evaluating Xj.

The syntax-directed defi nitions that adhere to the above guidelines and lend themselves to depth-

fi rst evaluation of attributes are known as  L-attributed defi nitions. It is useful to observe that all the S-

attributed defi nitions are also L-attributed defi nitions because the guidelines (1) and (2) apply only for 

inherited attributes. The syntax-directed defi nition presented in Table 4.3 is L-attributed, since none of 

the productions violate the above two guidelines. The semantic rules for L-attributed defi nitions can be 

evaluated during the parsing stage itself.

4.1.3.1 Translation Scheme A translation scheme is a useful notation for specifying  translation 

during parsing. A translation scheme allows us to specify the semantic rules expressing the relationship 

between attributes as well as the order of evaluation of attributes. A translation scheme is a context-free 

grammar in which the attributes are associated with the grammar symbols and semantic actions enclosed 

between braces { } are inserted within the right sides of productions. The position at which the action can 

be executed is shown by enclosing it in a bracket and inserting it in the right-side of the production. The 

semantic actions can refer to inherited as well as synthesised attributes. A translation scheme that recognises 

variable declarations in C language and makes entries into the symbol table is shown in Table 4.6. This 

translation scheme is a manifestation of the SDD we studied earlier in Table 4.3.

Table 4.6 Translation Scheme

# Production

1 declaration_list : declaration_list declaration

2 | declaration

3 declaration : type_spec { identifi er_list.type = type_spec.data_type } identifi er_list ‘ ;’

4 type_spec : INT { type_spec.data_type = INT }

5 | CHAR { type_spec.data_type = CHAR }
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6 | FLOAT { type_spec.data_type = FLOAT }

7 identifi er_list : { identifi er_list1.type = identifi er_list.data_type } identifi er_list ‘,’ IDENTIFIER {  

insert(IDENTIFIER.place,identifi er_list.type) }

8 identifi er_list : IDENTIFIER { insert (IDENTIFIER.place, identifi er_list.type) }

When drawing a parse tree for a translation scheme, we indicate a semantic action by constructing an 

extra child for it, connected by a dashed line to the node of production. Since there are no children for the 

semantic action, it gets executed when it is fi rst seen during the depth-fi rst traversal. The parse tree might 

not be explicitly created during a translation. It merely serves as a way of expressing the order of evaluation 

of attributes in a translation scheme.

The parse tree for the simple input source as shown in Table 4.2 parsed using the translation scheme 

in Table 4.6 is shown in Fig. 4.4. The depth-fi rst traversal of the parse tree showing the dotted semantic 

actions gives the order of evaluation of the attributes in a translation scheme. The order of evaluation of 

attributes in Fig. 4.4, which is arrived by depth-fi rst traversal of the tree, is marked sequentially from 1 

through 5.

Fig. 4.4 Semantic actions shown in parse tree

Similar to the syntax-directed defi nition notation, the semantic actions in a translation scheme can 

compute the value of attributes or call routines to produce side-effects like printing a value or inserting/
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updating symbol table entry. In Fig. 4.4 we can see the semantic actions marked 4 and 5 insert an entry in 

the symbol table.

Translation schemes are designed to ensure that the semantic actions refer to attributes whose values are 

already computed by a previous semantic action or by the lexical analyser. Note that this is a signifi cant 

departure from the convention that we followed in SDD specifi cations. In SDD, we merely specify how 

the value of certain attribute ‘x’ of a symbol A is computed from attribute ‘y’ of another symbol B. There 

is no guarantee that the attribute ‘y’ of symbol B is already computed. This is the reason why we had to 

look at dependency graph and evaluation order for evaluating semantic rules, while dealing with a SDD. 

In the translation scheme, the design ensures that we refer to attributes that have already been computed 

by previous semantic actions. It is always possible to construct a translation scheme from an L-attributed 

syntax-directed defi nition.

 Since the translation scheme needs to ensure that the semantic actions refer to attributes whose values are 

already computed by a previous semantic action, we need to adhere to the following rules while designing it:

∑ An inherited attribute for a symbol on the right side of a production must be computed in an action 

before that symbol.

∑ An action must not refer to a synthesised attribute of a symbol to the right of the action.

∑ A synthesised attribute for the non-terminal on the left can be only computed after all attributes it 

references have been computed. The action computing such attributes are usually placed at the end of 

the right-side of the production.

It is important to understand that the above guidelines essentially stem out of the fact that the semantic 

actions in a translation scheme are executed in the order of depth fi rst traversal of the parse tree (even if the 

parse tree is not explicitly created).

In the next few sections and also in the forthcoming chapters, we make use of translation schemes for 

performing semantic analysis, generation of intermediate code, and so on.

4.1.3.2 Bottom-Up Translation The evaluation of semantic rules during the bottom-up parsing of the 

input source is called as  bottom-up translation. In this section, we look at techniques to evaluate semantic 

rules during the bottom-up parsing for L-attributed defi nitions.

Let’s have a quick recap of the bottom-up parsing before we get into translation interleaved with it. The 

most common bottom-up parsing method is the LR parsing method, which was explained in Section 3.5.5. 

An LR parser consists of an input, an output, a state stack, driver program and a parsing table made up two 

parts (action and goto). Algorithm 3.4 explained how the LR parsing of the input proceeds. There are 2 

steps involved in bottom-up parsing given the input source and the grammar for which we are checking the 

compliance. The fi rst step is to create a parsing table (action and goto tables) from the grammar. The second 

step is to parse the input source as explained in Algorithm 3.4, using the parsing table. The LR parsing 

process allows us to execute fragments of code when a reduction takes place. This facility of executing the 

code fragments during a reduction is used for evaluating semantic rules. The evaluation of semantic rules 

allows us to perform semantic analysis, generation of intermediate code and other useful side-effects.

In order to facilitate the evaluation of semantic rules and translation of input source an additional stack 

containing the values of the attributes of symbols involved in the reduction is used. This stack (called VAL 

stack) supplements the state stack, which is primarily used for making parsing decisions of shift/reduce. 

The shift action would push the value of an attribute corresponding to the input grammar symbol on the 

VAL stack. A reduce action would pop as many elements as present in the RHS of the production and push 

the attribute’s value of LHS of the production on the VAL stack. Figure 4.5 shows the VAL stack before and 

after a shift or a reduce operation. In cases where the symbol to be shifted does not have any attribute (e.g. 

operators like +, –, *), the value that is pushed on VAL stack is undefi ned. In cases, where there are multiple 
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attributes to a grammar symbol, a pointer to a structure containing the attributes can be pushed on to a VAL 

stack on a shift operation. The same can be popped off the VAL stack during a reduce operation.

Fig. 4.5 VAL stack before and after shift/reduce operations

The LR parser generators like ‘bison’/ ‘yacc,’ etc. allow for maintaining and accessing the VAL stack by 

means of special $ variables. The special variables $1, $2, etc. correspond to the VAL stack for each element 

in the RHS of the production. The attribute of the non-terminal on the LHS of the production can be created 

using the special variable $$. For example, during the reduction of a production x Æ a b c, the attribute of 

‘a’ on the RHS is accessible using $1, the attribute of ‘b’ is accessible using $2 and the attribute of ‘c’ is 

accessible using $3. The attributes of the LHS non-terminal ‘x’ can be created using the special variable $$.

The VAL stack helps us evaluate the synthesised and inherited attributes during the bottom-up parsing of 

an L-attributed defi nition.

Consider the production x Æ a b c { x.s = a.attrib1+ b.attrib1 + c.attrib1 }. For an input conformant to the 

grammar, the VAL stack just before the reduction of the production x Æ a b c would be as shown in Fig. 4.6. 

The VAL stack contains the values of attributes of the children a.attrib1, b.attrib1 and c.attrib1. Using these 

values, we can compute x.s, a synthesised attribute of ‘x’ and store it on the VAL stack. This shows how we 

can evaluate synthesised attributes of symbols using the VAL stack during the bottom-up translation.

Fig. 4.6 VAL stack contains attributes of children before reduction

Consider the syntax directed defi nition in Table 4.7 that has semantic actions involving inherited 

attribute depending on the synthesised attributes of its left-side siblings in a production. We can see from 
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Table 4.7 that the inherited attribute d.i depends on the synthesised attributes of left-side siblings b.s and c.s 

of Production 1.

Table 4.7 Syntax Directed Defi nition

# Production Semantic Rule

1 a : b c d d.i = f3(c.s,b.s)

2 b : B    b.s = f1(B.lexeme)

3 c : C    c.s = f2(C.lexeme)

4 d : D    

The VAL stack at the time of reduction of d Æ D is as shown in Fig. 4.7. The VAL stack contains the 

synthesised attributes c.s and b.s at that point of time. In general, the VAL stack contains the attributes of 

the left siblings of the parent during a reduction.

Fig. 4.7 VAL stack contains attributes of left siblings of parent

Let’s say, we introduce a new marker symbol M generating Œ, in the existing grammar. The marker 

symbol M is inserted before ‘d’ in the RHS of production 1 to take advantage of the fact that both c.s and 

b.s are on the VAL stack. The semantic action for the production M Æ Œ involves saving the values of the 

synthesised attributes c.s and b.s in variables ‘save_c_s’ and ‘save_b_s’ respectively by retrieving them 

from the VAL stack. The variables save_c_s and save_b_s can be later used for computing the attribute ‘d.i’ 

in production 4. Table 4.8 shows the transformed translation scheme including the production for M and its 

semantic action. This translation scheme can be used directly for evaluating the semantic rules during the 

bottom-up parsing.

Table 4.8 Translation scheme using saved variables

# Production

1 a : b c M d { d.i = f3(saved_c_s,saved_b_s) }

2 b : B    { b.s = f1(B.lexeme) }

3 c : C    { c.s = f2(C.lexeme) }

4 d : D    

5 M : Є  { save_c_s = val[top] ; save_b_s = val[top-1] }

The introduction of a marker helped us evaluate inherited attributes depending on the synthesised 

attributes of its left siblings. The LR parser generators like ‘yacc’/ ‘bison’ insert such markers like M 

implicitly and provide the user with a simplifi ed notion of an embedded semantic action. Table 4.9 shows 
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the translating scheme that can be used readily with LR parser generators like ‘yacc’/ ‘bison’. Observe the 

usage of $ variables to represent the elements on the VAL stack. The variable $2 represents the val[top] and 

$1 represents val[top-1] in this context.

Table 4.9 Translation scheme compatible with ‘yacc’/ ‘bison’

# Production

1 a : b c { saved_b_s=$1 ; saved_c_s=$2 } d { d.i = f3(saved_c_s,saved_b_s) }

2 b : B    { b.s = f1(B.lexeme) }

3 c : C    { c.s = f2(C.lexeme) }

4 d : D   

Consider another translation scheme shown earlier in Table 4.6 (reproduced below for convenience) for 

reinforcing the ideas on the handling of inherited attributes during the bottom-up parsing. This translation 

scheme recognises variable declarations in C language and makes entries into symbol table. It is a 

manifestation of L-attributed syntax-directed defi nition shown in Table 4.3.

# Production

1 declaration_list : declaration_list declaration

2 | declaration

3 declaration : type_spec { identifi er_list.type = type_spec.data_type } identifi er_list ‘ ; ’

4 type_spec : INT { type_spec.data_type = INT }

5 | CHAR { type_spec.data_type = CHAR }

6 | FLOAT { type_spec.data_type = FLOAT }

7 identifi er_list : { identifi er_list1.type = identifi er_list.data_type } identifi er_list ‘,’ IDENTIFIER { 

insert(IDENTIFIER.place,identifi er_list.type ) }

8 identifi er_list : IDENTIFIER { insert ( IDENTIFIER.place, identifi er_list.type) }

The inherited attribute ‘identifi er_list.type’ in the Production 3 cannot be fi lled in during bottom-up 

parsing, since the symbol ‘identifi er_list’ is yet to be reduced. However, we can use a variable ‘saved_

identifi er_list_type’ to store the attribute value, so that it can be used later in Production 7 and 8. By using 

the variable ‘saved_identifi er_list_type’ to store the attribute, the attribute identifi er_list.type itself can be 

completely eliminated as shown below.

3 declaration : type_spec { saved_identifi er_list_type = type_spec.data_type } identifi er_list ‘ ;’

7 identifi er_list : identifi er_list ‘,’ IDENTIFIER { insert(IDENTIFIER.place, saved_identifi er_list_type) }

8 identifi er_list : IDENTIFIER { insert (IDENTIFIER.place, saved_identifi er_list_type) }

We can make use of the special variable $1 in the embedded semantic action of Production 3 to access 

val[top] containing ‘type_spec.data_type’. The fi nal translation scheme using the $ variable compatible with 

LR parser generators like ‘yacc’/ ‘bison’ is shown in Table 4.10.
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Table 4.10 Translation scheme for C-declarations compatible with ‘yacc’/ ‘bison’

# Production

1 declaration_list : declaration_list  declaration

2 |   declaration

3 declaration : type_spec { saved_identifi er_list_type = $1 } identifi er_list ‘ ; ’

4 type_spec : INT {  type_spec.data_type = INT }

5 | CHAR {  type_spec.data_type = CHAR }

6 | FLOAT {  type_spec.data_type = FLOAT }

7 identifi er_list : identifi er_list ‘,’ IDENTIFIER { insert(IDENTIFIER.place, saved_identifi er_list_type) }

8 identifi er_list : IDENTIFIER {  insert (IDENTIFIER.place, saved_identifi er_list_type) }

4.1.3.3 Example 1—Bottom-Up Translation This section demonstrates an example program 

that evaluates semantic actions during the bottom-up parsing using the theory described in the preceding 

section. The example implements the translation scheme presented in Table 4.10. The program shows the 

usage of the VAL stack and the special $ variables in LR parser generators like bison to help the evaluation 

of semantic rules. The program takes as input, a sample C program with some declarations of variables 

using the basic data types like ‘int’, ‘char’ and ‘fl oat’. The output of the example is symbol table entries 

generated from the processing of the declarations in the input C program. The dialog below shows the 

example program taking in C programs, and printing out the symbol table entry details.

# Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -oc_decl_gram.cc c_decl_gram.y

# Compiling the Parser

$ g++ -g -Wall -c -o c_decl_gram.o c_decl_gram.cc

# Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc_decl_lex.cc c_decl_lex.l

# Compiling the Lexical Analyzer 

$ g++ -g -Wall -c -o c_decl_lex.o c_decl_lex.cc

# Building ex1 Binary

$ g++ -g -Wall c_decl_gram.o c_decl_lex.o -o ex1

# This is a sample input source fi le

$ cat -n test1.c

 1 int a,b,c;

 2 fl oat d,e,f;

 3 char i,j,k;

# Parsing and displaying Symbol table information for the declarations

$ ./ex1 test1.c

Identifi er name=a type=INT

Identifi er name=b type=INT

Identifi er name=c type=INT
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Identifi er name=d type=FLOAT

Identifi er name=e type=FLOAT

Identifi er name=f type=FLOAT

Identifi er name=i type=CHAR

Identifi er name=j type=CHAR

Identifi er name=k type=CHAR

SYNTAX CORRECT

# Input source fi le with Syntax Error

$ cat -n test1a.c

 1 int a,b c; /* Missing comma */

# syntax Error is detected

$ ./ex1 test1a.c

Identifi er name=a type=INT

Identifi er name=b type=INT

int a,b c

  ^

Error in Line number=1

SYNTAX INCORRECT

4.1.3.4 Top-Down Translation We saw in the previous section, how we can evaluate semantic rules 

during the bottom-up parsing of the input for L-attributed defi nitions. In this section, we discuss how we 

can evaluate semantic rules for L-attributed defi nitions during the top-down parsing of the input.

Consider the syntax-directed defi nition presented in Table 4.4 (reproduced below for convenience) for 

discussing about top-down translation. The SDD describes a desktop calculator that takes an expression 

involving constants as input and emits out the evaluated result. The input and the corresponding output for 

the SDD are given in Table 4.5.

# Production Semantic Rule

1 sentence : expr print expr.value  

2 expr : expr  ‘+’  term expr.value = expr1.value +  term.value

3 | expr  ‘-’   term expr.value = expr1.value -  term.value

4 | term expr.value = term.value

5 term : term   ‘*‘  factor term.value = term1.value * factor.value

6 | term  ‘/’   factor term.value =  term1.value / factor.value

7 | factor term.value = factor.value

8 factor : ‘(‘   expr   ‘)’ factor.value = expr.value

9 | CONSTANT factor.value = CONSTANT.lexeme

We have studied earlier in the chapter on syntax analysis that left-recursive grammar cannot be parsed 

using top-down parsing method. The productions 2, 3, 5 and 6 above exhibit left recursion, we need to 

transform these productions to remove the left recursion. The transformation to eliminate the left recursion 

should also take into account the rearrangement of semantic actions.
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Let’s look at how to transform any left-recursive grammar and its semantic rules to be non-left recursive. 

Consider a left-recursive grammar shown in Table 4.11. In the syntax-directed defi nition, A.a, B.b , C.c are 

synthesised attributes, f1 and f2 are arbitrary functions.

Table 4.11 A syntax-directed defi nition

1 a  : a B a.a := f1(a1.a,B.b)

2 a  : C a.a := f2(C.c)

Table 4.12 shows the resultant translation scheme after the elimination of left recursion and the 

rearrangement of the semantic actions from the syntax-directed defi nition. This grammar recognises the 

same sentences as the original grammar.

Table 4.12 Translation scheme

1 a : C { a_rest.i = f2(C.c) } a_rest { a.a = a_rest.s }

2 a_rest : B { a_rest1.a = f1 (a_rest.i , B.b ) } a_rest { a_rest.s = a_rest1.s }

3 : Є { a_rest.s = a_rest.i }

Using the above principle, we eliminate left recursion in the Productions 2, 3, 5 and 6 of the syntax-

directed defi nition of Table 4.4 and also transform it to a translation scheme. The resulting translation 

scheme suitable for top-down translation is shown in Table 4.13.

Table 4.13 Translation scheme for the desktop calculator suitable for top-down parsing

# Production

1 sentence : expr

2 expr : term  { expr_rest.i = term.value }  expr_rest {  expr.value = expr_rest.s;   }

3 expr_rest        : ‘+’ term {  expr_rest1.i  = expr_rest. i + term.value  } expr_rest { expr_rest.s = expr_rest1.s }

4 | ‘-’ term {  expr_rest1.i  = expr_rest. i -  term.value  } expr_rest { expr_rest.s = expr_rest1.s } 

5 | e { expr_rest.s = expr_rest.i; }

6 term             : factor  { term_rest.i = factor.value ; }  term_rest  { term.value = term_rest.s ; } 

7 term_rest        : ‘*’ factor {  term_rest1.i  = term_rest. i  * factor.value   } term_rest { term_rest.s = term_rest1.s  }

8 | ‘/’ factor {  term_rest1.i  = term_rest. i  / factor.value   } term_rest { term_rest.s = term_rest1.s  }

9 | e  { term_rest.s= term_rest. i   }

10 factor : ‘(‘  expr  ’)’ {  factor.value = expr.value }

11 | CONSTANT { factor.value = CONSTANT.lexeme }

Now that we have a translation scheme suitable for top-down translation in Table 4.13, the next step is to 

code a top-down translator that uses the translation scheme. We shall implement a recursive descent parser 

and include functionality of evaluating the attributes. We have seen in the previous chapter that a recursive 

descent parser is a collection of procedures one for each non-terminal. Each procedure is responsible for 

parsing the constructs defi ned by its non-terminal.

The following guidelines help us build a top-down translator from a translation scheme similar to the one 

we have in Table 4.13. These guidelines can be used for building a top-down translator for any translation 

scheme originating from a L-attributed defi nition.
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For each non-terminal N, we construct a function N, that returns success or failure depending on 

whether it was able to expand the non-terminal correctly or not. The function N takes in formal parameters 

for each inherited attribute and the synthesised attributes of N. The inherited attributes are used in the 

function to compute the dependent attributes of N or any one of its children. The synthesised attributes that 

come in as formal parameters of N are usually passed by reference so that the value can be derived and 

populated inside the function. The function for N would typically have a local variable for each attribute 

of the grammar symbols that appear in a production for N. For example, consider Productions 2, 3 and 4 

governing the non-terminal ‘expr_rest’.

3 expr_rest : ‘+’ term { expr_rest1.i = expr_rest. i + term.value } expr_rest { expr_rest.s = expr_rest1.s }

4 | ‘-’ term { expr_rest1.i = expr_rest. i - term.value } expr_rest { expr_rest.s = expr_rest1.s }

5 | e { expr_rest.s = expr_rest.i; }

Based on the guideline mentioned above, the Productions 3, 4 and 5 would result in the following 

function.

1   int expr_rest(int expr_rest_i,int &expr_rest_s)

2   {

3      int value;

4      int term_value;

5      int expr_rest1_i;

6      int expr_rest1_s;

7   

8      int op;

9   

10     if(match(‘+’)){

11        op=‘+’;

12     }else if(match(‘-’)){

13        op = ‘-’;

14     }else {

15        expr_rest_s=expr_rest_i;

16        return(SUCCESS);

17     }

18  

19     if(term(term_value) == SUCCESS ){

20        if(op == ‘+’ ){

21           expr_rest1_i = expr_rest_i + term_value ;

22        }else{

23           expr_rest1_i = expr_rest_i - term_value ;

24        }

25  

26        if(expr_rest(expr_rest1_i,expr_rest1_s) == SUCCESS ){

27           expr_rest_s = expr_rest1_s;

28           return(SUCCESS);

29        }
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30     }

31  

32     return(FAILURE);

33  }

Listing 4.1 Code for the non-terminal ‘expr_rest’

The function expr_rest returns SUCCESS on being able to expand the non-terminal correctly and 

FAILURE on not being able to. The function expr_rest has two formal parameters, one being expr_rest_i 

(denoting expr_rest.i—the Inherited attribute of expr_rest) and the other expr_rest_s (denoting expr_rest.s 

– the synthesised attribute of expr_rest ). The formal parameter ‘expr_rest_s’ is passed by reference, since 

its value is computed in the function and would be typically used by the caller of the function expr_rest. 

The inherited attribute expr_rest_i is used in computing expr_rest_s in line 15 (in accordance to Production 

5) and computing expr_rest1.i in line 21 and 23 (in accordance to Productions 3 and 4). The synthesised 

attribute expr_rest_s is passed by reference and is populated in the lines 15 and 27 in cases where the 

function returns SUCCESS. The function expr_rest has 3 local variables term_value, expr_rest1_i and 

expr_rest1_s each denoting attributes for grammar symbols suggestive in the name. The code associated 

with each of the functions for the non-terminal is decided on the basis of the next token as explained in 

Section 3.5.1. The function expr_rest shown in Listing 4.1 refl ects the principles of recursive descent parser 

discussed in Section 3.5.1.

For each terminal T, we derive the synthesised attribute ‘t’ from the lexical analyser. We store the value 

of the synthesised attribute in the local variable declared. This is followed by a call to match the token and 

advance the input. Let’s take Productions 10, 11 and their associated code shown below as a reference to 

understand this concept.

10 factor : ‘(‘  expr  ‘)’ {  factor.value = expr.value }

11 : CONSTANT { factor.value = CONSTANT.lexeme }

1   int factor(int &factor_value)

2   {

3      

4      int CONSTANT_lexeme;

5      int expr_value;

6   

7      if(current_token == CONSTANT ){

8         CONSTANT_lexeme = atoi(yytext);

9         factor_value = CONSTANT_lexeme;

10        match(CONSTANT);

11        return(SUCCESS);

12     } else if(match(‘(’) ){

13        if(expr(expr_value) == SUCCESS ){

14           factor_value = expr_value;

15           if(match(‘)’) ){

16              return(SUCCESS);
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17           }

18        }

19     }

20  

21     return(FAILURE);

22  }

Listing 4.2 Code derived from production 10 and 11

In line 8 of Listing 4.2, we derived the value of synthesised attribute—lexeme of the terminal 

CONSTANT from the lexical Analyser and stored it in the variable CONSTANT_lexeme declared for the 

attribute CONSTANT.lexeme. The Line 10 makes a call to function match, which matches the token and 

advances the input.

4.1.3.5 Example 2—Top-Down Translation This section demonstrates an example program that 

evaluates semantic actions during the top-down parsing using the theory described in the preceding section. 

The example implements the translation scheme presented in Table 4.13 to build a desktop calculator. 

The program shows the usage of the guidelines provided in the preceding section to construct a top-down 

translator for L-attributed defi nitions. The program takes as input an expression involving constants. The 

output of the example is the evaluated result of the input expression, similar to the desktop calculator. The 

dialog below shows the example program taking in expressions involving constants, and printing out the 

result of the expression.

# Generating the Lexical Analyzer from lexical Specifi cations

$ fl ex -otop_down_lex.cc top_down_lex.l

# Compiling the Lexical Analyzer

$ g++ -g -Wall -c -o top_down_lex.o top_down_lex.cc

top_down_lex.cc:1040: warning: ‘void yyunput(int, char*)’ defi ned but not used

# Building ex2 Binary

$ g++ -g -Wall ex2.cc top_down.cc top_down_lex.o -o ex2

# Executing it for a sample Expression

$ ./ex2 ‘9+15-20’

result=4

SYNTAX CORRECT

# Another sample Expression

$ ./ex2 ‘3*21 - (4*5)’

result=43

SYNTAX CORRECT

# Another sample Expression

$ ./ex2 ‘(9*53)/(7-4)’

result=159

SYNTAX CORRECT

# syntax Error in Expression

$ ./ex2 ‘9*53)/(7-4)’
SYNTAX INCORRECT
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4.1.4 Parse Tree Method

In the parse tree method of evaluating semantic rules, we create a parse tree during the syntax analysis. 

Based on the parse tree and semantic rules, a dependency graph is created post-syntax analysis. Next, we 

evaluate the value of each of the attribute as signifi ed by a node in the dependency graph. The order of 

evaluation of attributes is obtained from a topological sort of the dependency graph. The evaluation of 

attributes yields the necessary side-effect like addition into symbol table, generation of intermediate code, 

and so on.

Let’s take the syntax-directed defi nition shown in Table 4.4 as an example for understanding the parse 

tree method of evaluating semantic rules. The SDD is for a desktop calculator taking expressions involving 

constants as input and printing out the result of the expression as output. Table 4.5 shows some sample 

inputs and the corresponding output given out by the syntax-directed defi nition.

The parse tree method of evaluating semantic rules consists of 3 steps as shown in Fig. 4.8.

Fig. 4.8 Steps in converting input-source program to intermediate code

Step 1: Conversion of Input into Parse Tree

Step 2: Creating a Dependency Graph of the attributes using the parse tree

Step 3: Evaluating attributes using the Dependency Graph
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In the fi rst step, the input is converted into a parse tree. In a parse tree, each of the interior nodes represents 

a non-terminal, while the leaf nodes denote terminals. The parse tree is an outcome of syntax analysis.

The parse tree contains nodes pertaining to each syntactic unit. For example, if an input source were 

parsed for a grammar shown in Table 4.4, the parse tree would contain nodes like ‘factor’, ‘term’, ‘stmt’, 

etc. The nodes in the parse tree are typically associated with attributes specifi c to the nature of the node. The 

‘expr’ node is associated with an attribute ‘value’. Now, the ‘value’ associated with the ‘expr’ node depends 

on its constituents like the ‘value’ of factor node and the ‘value’ of term node, and so on. The dependency 

of the attributes of various nodes dictates the order in which the attributes are computed. The second step 

involves creation of the dependency graph—a graph associating the order in which the attributes need to be 

computed for making the translation of input into output.

In the third step, we compute the values of attributes in the order specifi ed by the dependency graph 

obtained earlier in step 2. The computation of values for the attributes is governed by semantic rules. The 

evaluation of semantic attributes generates the output.

Figure 4.8 shows parts of the sample output at each of the stages for the input ‘10+30–15’. The syntax-

directed defi nition it conforms to is in Table 4.4.

The next three sections explain in detail, the three steps required for evaluating semantic rules using 

parse tree method as outlined in Fig. 4.8.

4.1.4.1 Step 1—Conversion of Input Source Program into Parse Tree The fi rst step involves 

converting the input into a parse tree. This is usually done during the parsing phase itself. Recall

that the parser generators allow for program fragments to be executed when a production gets

reduced (or expanded in case of a top-down parser). This feature can be extensively used for creating the 

parse tree.

Let’s take the case of a bottom-up parser. Typically for a production P Æ A B C in the grammar, the 

program fragment to be executed while reducing a production for generating a parse tree would be as 

shown in Algorithm 4.2.

{
 Create a Node P
 Make the Nodes A,B,C as the children of P from left to right
}

Algorithm 4.2 The program fragment to be executed for generating parse tree

There are facilities in parser generators like bison/yacc for aiding the creation of parse tree. Typically 

a pointer to the newly created node P (in Algorithm 4.2) can be stored on the stack using the notation $$. 

Similarly, pointers to each one of the entities on the RHS can be retrieved from the stack by using the 

notation $1 for the fi rst entity on the RHS, $2 for the second entity, and so on. These facilities in the parser 

generators are used in the parse tree creation.

In order to work on a parse tree (for e.g. printing the parse tree nodes on the screen or adding information 

to various nodes in the parse tree), we need to have an order of visiting (traversing) each of the parse nodes 

in the tree starting from the root. A common method of traversing the parse nodes is the depth-fi rst traversal 

method discussed previously. It starts with the root and recursively visits the children of each node, left to 

right order. Figure 4.9 shows the order in which the parse tree nodes are visited by the depth-fi rst traversal 

method with the node #1 being visited fi rst followed by node #2 and so on in the series. This is a parse tree 

created for the input ‘10 + 30 – 15’ conformant to the grammar in Table 4.4.
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Fig. 4.9 Parse tree

The algorithm for depth-fi rst traversal is formalised and shown in Algorithm 4.3. Observe the recursive 

nature of the algorithm.

procedure dfvisit ( node *n)
{
 process_the node (); /* For e.g. Printing the Node */

 for each of the child m of n from left to right
 {
  dfvisit(m);
 }
}

Algorithm 4.3 Depth-fi rst traversal
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In step 1 of the parse tree method, we learnt the concepts of creating the parse tree (Algorithm 4.2) and 

traversing the parse tree for, say, printing it (Algorithm 4.3). We now move on to the second step of the 

parse tree method of evaluating semantic rules—the creation of dependency graph.

4.1.4.2 Step 2—Creation of Dependency Graph We had seen earlier that the order in which the 

attributes are evaluated could be depicted by a directed graph called as dependency graph. In this section 

we learn how to create a dependency graph from the parse tree.

In a dependency graph, there is a node for each of the attribute associated with each of the nodes of the 

parse tree. For example, consider the parse tree in Fig. 4.9. Let us take the case of the expr node (Node 2). 

The expr node has one attribute called ‘value’. The dependency graph will have one node, namely expr.

value corresponding to the expr node numbered 2 in the parse tree. In a similar fashion, we would have 

a node expr.value in the dependency graph corresponding to the expr node numbered 3 in the parse tree. 

There would be another node term.value in dependency graph corresponding to the term node numbered 

13 of the parse tree, and so on. Figure 4.10 shows the dependency graph nodes associated with the three 

parse tree nodes just discussed, namely—expr (Node 2) and its children (Node 3 and Node 13). The full 

dependency graph would contain nodes corresponding to all the parse nodes and all of its attributes.

Fig. 4.10 Some dependency graph nodes

After creating a node in the dependency graph for each attribute corresponding to each parse tree node, 

the dependency nodes are ‘chained’ by drawing edges between them. The dependency graph has an edge 

from a dependency graph node ‘a’ to dependency graph node ‘b’, if ‘b’ depends on ‘a’. For example, 

consider the dependency graph nodes shown in Fig. 4.10. The production used to reduce for creating the 

nodes 2, 3 and 13 is the production number 3. The Production 3 and the semantic rule from the SDD are 

reproduced here.

3 expr : expr ‘-’ term expr.value = expr1.value - term.value

Observing the semantic rule associated with the above production, we have:

∑ expr.value of Node 2 depends on expr.value of Node 3.

∑ expr.value of Node 2 depends on term.value of Node 13.
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We create two edges in the dependency graph for the corresponding elements.

 1.  From expr.value of Node 3 to expr.value of Node 2.

 2.  From term.value of Node 13 to expr.value of Node 2.

The section of dependency graph corresponding to these three edges is shown in Fig. 4.11.

Fig. 4.11 A section of dependency graph

In this manner the edges between the dependency graph nodes are created on the basis of dependencies 

between the attributes as specifi ed in semantic rules.

To sum up this step, the creation of dependency graph is a two-part process:

 1. Creation of dependency graph nodes for each one of the attributes corresponding to each of the 

parse tree nodes.

 2. Creation of edges from one dependency graph node ‘a’ to another dependency graph node ‘b’, if 

‘b’ depends on ‘a’.

This procedure is formalised in Algorithm 4.4.

create_dep_graph()
{
 /* Creation of dependency graph nodes for each one of the attributes corresponding 

to each of the parse tree node */

 for each node n in a parse tree
  for each attribute a of the grammar symbol at n
   Construct a Node in the dependency graph

 /* Creation of edges from one dependency graph node ‘a’ to another dependency  
 graph node ‘b’, if b depends on a */

 for each node n in the parse tree
  for each semantic rule b := f (c1,c2,c3 …ck) associated with production used at n
   for I:=1 to k
    Construct an edge from the node for ci to the node b
}

Algorithm 4.4 Creation of dependency graph

The dependency graph created using Algorithm 4.4 gives the dependencies among the attributes of 

various parse tree nodes.

The order of evaluation of attributes is obtained by performing a topological sort of the dependency 

graph. A topological sort of a directed non-cyclic graph is any ordering m1, m2, m3,….mk of the nodes of 

the graph such that edges exist from earlier nodes to later nodes. It means that if an edge exists from mi to 
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mj, then topological sort will have mi ahead of mj. As an example, the topological sort of the dependency 

graph discussed earlier is shown in Fig. 4.12. It would be interesting to note that the relative ordering 

between nodes marked 1 and 2 is not signifi cant. The only criterion is that the nodes marked 1 and 2 have 

to be aligned earlier than the node marked 3. This is because there are edges 1 Æ 3 and 2 Æ 3.

Fig. 4.12 Topological sort of dependency graph

Note that if there is a situation in which an attribute x.a depends on another attribute y.b, which in turn 

depends on another attribute say z.c. If z.c depends on the original attribute x.a then there is a cycle in 

the graph. The parse tree method of evaluating semantic rules does not work when there are cycles in the 

dependency graph.

An algorithm to perform topological sort of a directed non-cyclic graph is given in Algorithm 4.5.

TopSort(Graph G )
{
 for(counter=1;counter < number_of_nodes ; counter ++ ){
  V = fi nd the graph node with incoming edges as 0
  if ( V is NULL ){
   error – The Graph G has a Cycle - exit
  }
  Add V to the sorted list at the end
  for each graph node W adjacent to V {
   W.incoming edges –
  }
 }
}

Algorithm 4.5 Topological sort of non-cyclic directed graph

The topological sort of the dependency graph yields the order in which the attributes associated with 

the nodes in a parse tree can be evaluated. For example, from the Fig. 4.12, the value attribute of the expr 

node corresponding to node 2 in the parse tree would be evaluated before the value attribute of expr node 

corresponding to node 3 in the parse tree.

4.1.4.3 Step 3—Evaluation of Attributes using the Dependency Graph In step 3, we evaluate 

the value of each of the attributes as signifi ed by a node in the dependency graph. The order of evaluation of 

attributes was obtained from a topological sort of the dependency graph in the previous step. The evaluation 

of attributes yields the output.

The value for each of the attributes represented by a node in the dependency graph is computed using 

the related semantic rule. As an example, consider the section of dependency graph shown in Fig. 4.12. The 
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dependency graph node marked 3, which represents expr.value, has originated from the parse tree node 2. 

The node 2 in the parse tree has been created due to reduction by Production 3 ( expr Æ expr ‘–’ term ). 

The semantic rule for the Production 3 is expr.value = expr1.value – term.value. We know that expr1.value 

(dependency graph node 1) and term.value (dependency graph node 2) would have already been evaluated 

before we attempt to evaluate expr.value (dependency graph node 3) because the evaluation order is based 

on the topological sort of the dependency graph.

The evaluation of all the attributes represented by the entire set of nodes in dependency graph populates 

all the attributes of parse tree nodes. The evaluation of attributes also includes invocation of routines 

causing important side-effects like, say, adding an entry into symbol table, printing out a value, etc.

This step concludes the parse tree method of evaluating semantic rules.

4.1.4.4 Example 3—Parse Tree Method This section demonstrates an example program that 

evaluates semantic actions using the parse tree method for the syntax-directed defi nition shown in Table 4.4. 

In this example we create the parse tree, compute the dependency graph, topologically sort it and evaluate 

the attributes for generating the output. The program takes as input an expression involving constants. The 

output of the example is the evaluated result of the input expression, similar to the desktop calculator. The 

dialog below shows the example program taking in expressions involving constants, and printing out the 

result of the expression.

# Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -optree_gram.cc ptree_gram.y

# Compiling the Parser

$ g++ -g -Wall -c -o ptree_gram.o ptree_gram.cc

# Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -optree_lex.cc ptree_lex.l

# Compiling the Lexical Analyzer

$ g++ -g -Wall -c -o ptree_lex.o ptree_lex.cc

# Building ex3 Binary

$ g++ -g -Wall ex3.cc ptree_gram.o ptree_lex.o ptree_method.cc -o ex3

# Executing it for a sample Expression

$ ./ex3 ‘9+15-20’
SYNTAX CORRECT
4

# Another sample Expression

$ ./ex3 ‘3*21 - (4*5)’
SYNTAX CORRECT
43

# Another sample Expression

$ ./ex3 ‘(9*53)/(7-4)’
SYNTAX CORRECT
159

# Syntax Error in Expression

$ ./ex3 ‘9*53)/(7-4)’
9*53)/(7-4)
   ^

syntax error
SYNTAX INCORRECT
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4.1.5 Rule-based Method

In rule-based method, the evaluation order of the attributes at each parse tree node is determined by means 

of analysing the semantic rules at the time of constructing the compiler. The order of visiting the children 

nodes for evaluation of semantic rules for a given parse tree node and the associated production is hard-

coded into the compiler for evaluation of the semantic rules. Since the order of the evaluation is known at 

the time of compilation itself, there is no need for creating a dependency graph. In order to completely 

evaluate all the semantic rules, it is possible that the parse tree is walked through multiple times in the rule-

based method. In this section, we study about a rule-based method for evaluating semantic rules popularly 

known as  recursive evaluator.

In a recursive evaluator, we create an explicit parse tree and traverse it for evaluating the semantic rules 

by mutually recursive functions. The parse tree creation happens during the parsing and the traversal of 

the parse tree nodes for evaluating semantic rules happens later. The order in which we traverse the tree 

is determined by the analysis of the production and the semantic rules of that particular node before the 

compilation itself. It is possible that for evaluating semantic rules at one of the parse tree nodes, the children 

might be visited from the right-to-left. For evaluating semantic rules at another parse tree node, the children 

might be visited from the left-to-right. The main considerations involved in arriving at the correct order for 

the traversal of children for a parse tree node are (a) all the inherited attributes at a node are computed before 

the fi rst visited (b) the synthesised attributes must be computed before we leave the node for the last time.

Let’s take the SDD for the declaration statements in Pascal language in Table 4.14 as an example for 

understanding the intricacies of the recursive evaluator. The SDD is reproduced here for convenience.

Table 4.14 Syntax-directed defi nition for processing of Pascal declarations

# Production Semantic Rule

1 declaration_list : declaration_list declaration

2 | declaration

3 declaration : identifi er_list ‘:’ type_spec ‘;’ identifi er_list .type = type_spec. data_type

4 type_spec : INTEGER type_spec. data_type = INTEGER

5  | CHAR type_spec. data_type = CHAR

6 | REAL type_spec. data_type = REAL

7 identifi er_list : identifi er_list ‘,’ IDENTIFIER identifi er_list1.type = identifi er_list.type

add_to_sym_table (IDENTIFIER.place, identifi er_list.type)

8 | IDENTIFIER add_to_sym_table (IDENTIFIER.place, identifi er_list.type)

We have selected the above grammar, which is not L-attributed, so as to bring out the fact that the 

recursive evaluator can also work for non-L-attributed grammars.

The fi rst step in a recursive evaluator is the creation of a parse tree. The concepts and the method to 

obtain the parse tree have already been explained in Section 4.1.4.1. We skip the step in the discussion here.

The next step in the recursive evaluator is to traverse the parse tree to evaluate semantic rules. This 

is done by associating each of the non-terminals with a  translation function. This function performs the 

translation by visiting the children of the node in some particular order as determined by the production at 

the node before the compilation. For example, consider the translation function at the ‘declaration’ node. 

The translation function at declaration_node would visit its right child—the type_spec node and invoke its 

translation function to get the value of the data_type attribute. The category attribute is then passed down to 

its left child, the identifi er_list node and its subtree by inheriting it as shown in Listing 4.3.
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 1 void declaration_node::eval_semantic_rules()
 2 {
 3  int type_spec_data_type;
 4  identifi er_list_node *identifi er_list_ptr;
 5  type_spec_node *type_spec_node_ptr;
 6
 7  if(rule_no == 3 ){
 8
 9   /* declaration -> identifi er_list ‘:’ type_spec ‘;’ */
 10
 11   identifi er_list_ptr = (identifi er_list_node *)children[0];
 12   type_spec_node_ptr = (type_spec_node *)children[1];
 13
 14   /* Getting the ‘data_type’ synthesised from type_spec_node
 15     - passing by reference
 16   */
 17   type_spec_node_ptr->eval_semantic_rules(type_spec_data_type);
 18
 19   /* Passing the ‘data_type’ to the children of identifi er_list */
 20   identifi er_list_ptr -> eval_semantic_rules(type_spec_data_type);
 21  }
 22 }

Listing 4.3 Evaluation of semantic rules for ‘decl’ node

There are several interesting observations that can be made from Listing 4.3, highlighting the features of 

the recursive evaluator.

∑  At the highest level, we typically invoke the method to evaluate the semantic rules of the root of 

the tree. It internally evaluates the semantic rules of all its children. The children would similarly 

invoke the semantic rules for its children, and so on. In short, the evaluation of attributes happens in a 

recursive manner giving this the name—recursive evaluator.

∑  A non-terminal node can be created by one or more productions. The evaluation of semantic rules for 

a particular non-terminal node is determined by the production that created the node. Line 7 in Listing 

4.3 illustrates this.

∑  The evaluation order does not depend on the order in which the parse tree nodes are created. This 

gives fl exibility to visit the children in any order that is useful for evaluating the attributes. In the 

declaration_node evaluation shown in Listing 4.3, we are visiting the right child (type_spec) fi rst and 

then the left child (identifi er_list) . The reason in choosing this particular order is that we need to fi rst 

fetch the value of data_type (line 17 ) to be passed on to identifi er_list and its children (line 20).

∑  The evaluation function for each non-terminal N exhibits similarity with the top-down translator 

functions that we talked of in Section 4.1.3.4. Both of these functions take in formal parameters 

for each inherited attribute and the synthesised attributes of N. The inherited attributes are used in 

the function to compute the dependent attributes of N or any one of its children. The synthesised 

attributes that come in as formal parameters of N are usually passed by reference so that the value can 

be derived and populated inside the function. In Listing 4.3, the declaration_node does not have any 

inherited attributes and hence does not have formal parameters. However, identifi er_list has inherited 

attributes and has a formal parameter. The type_spec node returns a synthesised attribute (data_type) 

by using call-by-reference technique.

∑  The fl exibility of visiting the children in any order allows us to perform translation for any kind of 

grammar including the non-L attributed ones like the one above.

In the next section, we see the implementation of recursive evaluator for processing the SDD for Pascal 

declarations (Table 4.14) based on the concepts learnt here.
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4.1.5.1 Example 4—Recursively evaluating translator This section demonstrates an example 

program that evaluates semantic actions using a recursively evaluating translator. The example implements 

the non-L-attributed syntax-directed defi nition shown in Table 4.14. The program takes as input, a sample 

Pascal program with some declarations of variables using the basic data types like ‘integer’, ‘char’ and 

‘real’. The output of the example is the symbol table entries generated from the processing of the 

declarations in the input Pascal program. The dialog below shows the example program taking in Pascal 

programs, and printing out the symbol table details.

# Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -opas_decl_gram.cc pas_decl_gram.y

# Compiling the Parser

$ g++ -g -Wall -c -o pas_decl_gram.o pas_decl_gram.cc

# Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -opas_decl_lex.cc pas_decl_lex.l

# Compiling the Lexical Analyzer

$ g++ -g -Wall -c -o pas_decl_lex.o pas_decl_lex.cc

# Building ex4 Binary

$ g++ -g -Wall ex4.cc pas_decl_gram.o pas_decl_lex.o recur_eval.cc -o ex4

# This is an input source fi le

$ cat test4.pas

a,b,c,d,e:integer;
f,g,h,i,j : real ;
k,l,m,n,o : char ;

# Symbol Table for it

$ ./ex4 test4.pas

SYNTAX CORRECT
Identifi er name=a type=INTEGER
Identifi er name=b type=INTEGER
Identifi er name=c type=INTEGER
Identifi er name=d type=INTEGER
Identifi er name=e type=INTEGER
Identifi er name=f type=REAL
Identifi er name=g type=REAL
Identifi er name=h type=REAL
Identifi er name=i type=REAL
Identifi er name=j type=REAL
Identifi er name=k type=CHAR
Identifi er name=l type=CHAR
Identifi er name=m type=CHAR
Identifi er name=n type=CHAR
Identifi er name=o type=CHAR

4.1.6 Comparison of Translation Methods

We had discussed about the three methods of evaluating semantic rules in the previous sections. Let’s 

quickly refl ect on each of these methods as to how they fare vis-à-vis various parameters. The following 

matrix provides the details of the comparison, where the methods are lined up as columns, and the 

parameters of comparison are marked up as rows.
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Parameter Translation interleaved

with parsing

Parse tree method Rule-based method

Principle on 

which the method 

is based on

Does not create a parse 

tree, does not create 

dependency graph. 

Evaluation of semantic 

rules happens during 

parsing.

Creates a parse tree, makes 

a dependency graph, 

evaluates the attributes 

based on topographic sort 

of the dependency graph.

Creates a parse tree, traverses it 

in proper order to evaluate the 

attributes and realise the SDD. The 

proper order is determined before 

compilation, by analysing the 

attributes and productions.

Attributes 

evaluation order

During symbol expansion

for top-down translation.

During symbol reduction

for bottom-up translation.

Determined during the

compilation by means of

dependency graph.

The evaluation order is

determined before

compilation, by analysing

the productions and hard-

coding it in the recursive

translator.

Applicability L-attributed defi nitions. Can be applied to any

grammar provided there

are no cycles in the

dependency graph.

Any grammar.

Effi ciency Effi cient, since we do not 

have to create a parse tree 

or dependency graph at 

the compile time.

Creation of dependency 

graph and sorting it reduces 

the effi ciency.

Effi cient, since we do not create a 

dependency graph at the compile 

time. However, multiple passes 

could reduce the effi ciency.

4.2 SEMANTIC ANALYSIS

Armed with the concepts of syntax-directed translation, we now come back to the primary theme of the 

chapter—Semantic Analysis. As mentioned earlier, semantic analysis revolves around 2 tasks.

 1. Process the declarations (e.g. variable declarations, function prototype declarations, type defi nitions, 

etc.) and build/update the symbol table to record the type information associated with various 

identifi ers.

 2. Examine the rest of the program to ensure that the identifi ers are used correctly adhering to the 

type compatibility conventions defi ned by the language. For example, in an assignment statement, 

the types of the LHS and the RHS should match, the variable names used should be unique in that 

particular scope, and so on. This verifi cation is called as  type checking.

Section 4.2.1 describes the fi rst task in detail. In that, we present the productions and semantic actions 

of a semantic analyser that are relevant for the creation of a symbol table from a given input C program. 

Section 4.2.2 describes the second task, i.e. type checking in detail. In that, we examine the productions and 

semantic actions of a semantic analyser that are relevant for the type-checking and reporting of semantic 

errors in input C programs.

4.2.1 Processing Declarations

Let’s start off the discussion on the declarations by looking at a simple declaration in C language of the form.

Table 4.15 Declaration

int counter , total ;
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This declaration establishes the intent of the programmer to use the variables ‘counter’ and ‘total’ as 

integers. Most of the compiled languages require that the programmer specify the name and type of all the 

variables in the program before use. The main idea behind the declarations is to establish the ‘data type’ for 

every identifi er used in the program, so that it can be verifi ed for type correctness in the rest of the program. 

The function prototypes like the one seen at Table 4.16 extend the same idea to specify the data type of each 

of the parameters and the return value of the function.

Table 4.16 Function prototype

int my_func(int,fl oat,char);

Establishing the data type of all the identifi ers and updating the symbol table about the same is the 

primary purpose of processing the declarations. We will study about the data types and its representation 

in Section 4.2.1.1. The symbol table in which we record information about all the identifi ers and their 

respective data types is studied in detail in Section 4.2.1.2. A translation scheme that can process an input 

fi le containing C language declarations and create a symbol table is discussed in Section 4.2.1.3. We 

follow it up with an implementation of the translation scheme and test it on sample C programs containing 

different types of declarations in Section 4.2.1.4.

4.2.1.1 Data Type A data type in a programming language can be a basic data type or a constructed 

one. In the declaration of Table 4.15 we are using one of the basic data types in C language—int. The other 

basic data types in C language are ‘char’, ‘fl oat’, etc. A constructed data type is constructed from aggregates 

of the basic data type. Structures, arrays, functions are some of the examples of constructed data types in 

C language. The following declaration shows a variable v1 belonging to a constructed data type, namely a 

structure.

Table 4.17 Declaration using a constructed data type—structure

struct my_tag
{
      int a ;
      char b;
      fl oat c ;
} v1;

A data type in a programming language is associated with a set of values and a set of operators/

operations allowed on those values. In the C language declaration shown in Table 4.15, ‘counter’ is an 

Integer data type. It can take any Integer value within a range. The set of operations allowed on it are +, –, 

*, etc. In the case of declaration in Table 4.17, we can use the dot (.) operator on the variable v1 to access 

the fi elds a, b or c as v1.a or v1.b or v1.c in any of the execution statements.

The data type information in a compiler cannot be represented by a simple integer, because we will have 

to denote constructed types like pointers, records, arrays, arrays of records and many other permutations and 

combinations of these. In order to represent all the basic types, constructed types and various combinations 

of basic and constructed types and of data, the type information needs to be more elaborate.

A data type in a compiler is represented by a  type expression. A basic data type of the language like 

int or char or fl oat in C would be represented by a simple type expression. Constructed data types are 

represented by type expressions in conjunction with  type constructors such as array, pointer, record and 

functions. A tree consisting of basic type expressions as leaves and type constructors as interior nodes can 

be used for visually representing any of the constructed data types. Figure 4.13 shows a few declarations of 

identifi ers and their corresponding  type expression tree.
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Fig. 4.13 Type expressions for declarations

A possible implementation of the data types is having a linked list of type expressions and type 

constructors as shown in Fig. 4.14. Each node in the linked list is a type constructor or a basic type 

expression. The node corresponding to the type constructor for the respective type would consist of the 

relevant attributes. For example, the node corresponding to the type constructor array would have an 

attribute ‘no_of_elements’, which would be indicative of the number of the elements in the array. The fi eld 

‘next’ in each of the node in linked list points to the next node in the type expression chain.

The linked list approach for implementing data type has been chosen in the example semantic analyser 

that follows in a section.

4.2.1.2 Symbol Table The main aspect of processing declarations in a compiler is to store the variable 

name along with its type information, scope information and other attributes in a  symbol table.

A symbol table is one of major data structures in a compiler, which is consulted and updated in most 

of the phases. Each entry in a symbol table corresponds to an identifi er. The information in a symbol table 

entry is fi lled in different phases. For example, the lexical analysis phase might create the symbol table 

entry, while the semantic analysis phase might add the type information to the symbol table entry. The 

processing of declarations in semantic analysis phase usually results in adding the type information to a 

symbol table entry. Additional information is entered in the symbol table entry, whenever the role of the 

Identifi er becomes clear.

A symbol table entry has fi elds for the name of the variable and the type of the variable (a pointer to its 

type expression tree). The symbol table entry also has a fi eld ‘offset’ that specifi es the relative address of 

the variable in a memory layout. For example, if there were 3 variables v1, v2 and v3 of size 4 bytes each 

declared in the same scope, the offset of v1 would be 0 and v2 would be 4 and v3 would be 8 bytes. There 
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are other segments of information in the symbol table entry that would be very useful in code generation 

like whether a variable is a formal parameter to the function, the memory corresponding to the variable 

name, and so on.

Fig. 4.14 Linked list implementation of data type
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There are 3 main interface functions to the symbol table. They are:

 1 insert : The insert operation inserts a symbol into the symbol table.

 2 lookup : The lookup operation is used for looking up a given symbol in the symbol table

 3 delete : The delete operation removes the entry from the symbol table.

Due to the high frequency of access, the symbol table needs to be maintained in a data structure that 

allows us quick insertion and fast lookup.

A doubly linked list of the records is a simple method to implement a symbol table. Each record is a 

symbol table entry containing among other things, an array for storing the name. New names are added to 

the end of the list by the insert operation. The ‘lookup’ operation proceeds backwards from the end of the 

list to the start, searching for the required identifi er.

int counter, block, common, tmp, tmp1;

A hash table is another data structure commonly used to implement symbol table. The hash table allows 

us to insert, lookup and delete a symbol entry in almost constant time. A hash table is an array of entries 

called buckets. The array can be indexed by an integer ranging from 0 to table size – 1. A hash function 

converts the search key into an integer in the range of 0 to (table size – 1). For a symbol table, the search 

key is the name of the identifi er. When the hash function converts two or more of the search keys (identifi er 

names in case a symbol table) into the same index of the hash table, a hash collision happens. A common 

collision resolving mechanism is to make a linked list of identifi ers for each bucket instead of a single 

identifi er.

Let’s take a simple example to understand the terms used in the hash implementation for a symbol table. 

Figure 4.15 illustrates a hash table implementation, and shows a C language declaration of 5 identifi ers and 

the corresponding hash table for the symbol table. The hash function used here is the ASCII value of the 

fi rst letter in the identifi er. The ASCII value of ‘b’ is 98, ‘c’ 99 and ‘t’ is 116. The collision is resolved using 

a linked list of identifi ers for each bucket. The buckets contain a pointer to the linked list of Identifi ers.

The hash table size is 256. The lookup function would fetch the ASCII value of the fi rst letter in the 

identifi er and then index into the hash table to get the start of the linked list. The linked list is searched for 

obtaining the required identifi er.

The effi ciency of a symbol table implementation is usually judged by the time taken to insert an entry, 

lookup an entry and delete an entry in a symbol table. In a linked list implementation, the insert operation 

is constant in time, because we always insert at the end of the linked list. The lookup and delete operations 

are linear in time with the size of the linked list. The hash table implementation provides an almost constant 

in time performance for all the 3 operations of insert, lookup and delete of a symbol table entry. The 

performance of these operations does depend on the hash function to a large extent. A hash function that 

shows lesser rate of collisions would be more effective than the one that has higher rate of collisions.

Most of the compiled languages support the use of the same variable name in different scopes. The 

symbol table implementation should allow for the fetch of the symbol table entry in tune with the scope 

rules of the language. For example, C language supports the most closely nested scope rule. The listing 

4.4 shows a C program in which a variable ‘counter’ is used in the function ‘my_func’. The same variable 

has been declared and used in multiple scope blocks. In the C compiler, when the symbol table entry is 

looked up for the variable ‘counter’, it should correspond to the most closely nested scope. In the listing 
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4.4, when we are trying to resolve the symbol table entry during the processing of line number 9, it should 

correspond to the symbol table entry made on the processing of the declaration at line number 7 (as opposed 

to line number 3). Similarly, when the line number 20 is processed, the symbol table entry for ‘counter’ 

corresponding to the declaration on line number 18 should be fetched.

Fig. 4.15 Hash table implementation

1 #include <stdio.h>
2
3 int counter;
4
5 int  my_func()
6 {
7  int counter, j;
8
9  j=counter;
10  for(counter=0; counter < 100 ; counter++)
11  {
12   int k, counter;
13
14   k=counter;
15
16   for(counter = 0; counter < 30 ; counter++ )
17   {
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18    int m, counter;
19
20    m=counter;
21    for(counter=0; counter < 20; counter++)
22    {
23     printf(“Hi”);
24    }
25
26   }
27  }
28  return(0);
29 }

Listing 4.4 A C program

A simple strategy to support the most closely nested scope in a compiler is to maintain a separate symbol 

table for each scope. The symbol table for the local block or a procedure is consulted fi rst before checking 

the enclosing scope. Another strategy to support the most closely nested scope in a compiler is to number 

the blocks and procedures. The symbol table entry would be obtained by using the tuple consisting of the 

name of the variable, procedure number, and block number.

4.2.1.3 Translation Scheme In this section, we look at some of the productions and the semantic 

actions pertaining to the processing of the declarations in a semantic analyser for C language. These 

productions and semantic actions reinforce the ideas on symbol tables, type expressions and other relevant 

concepts that we studied previously. The translation scheme is presented in a pseudo-code form. The 

complete implementation of a semantic analyser for C language is presented in Section 4.3.

We start off by looking at some of the key productions and their semantic actions associated with the 

processing of declarations for a C language program as input.

The ‘declaration’ non-terminal is used for recognising a single declaration. It consists of a ‘type_spec’ 

and ‘declarator_list’ as given by Production 8. Some of the input code strings that match the declaration 

non-terminal are given in Table 4.18

8 declaration : type_spec declarator_list ‘;’

The ‘type_spec’ denotes the type specifi cation in a declaration. Some of the input code strings that match 

the ‘type_spec’ non-terminal are given in Table 4.18. The Productions 10, 11 and 12 represent cases when 

the type specifi cation is a basic data type. The lexical analyser provides the tokens INT, CHAR and FLOAT 

corresponding to the keywords ‘int’, ‘char’ and ‘fl oat’.

10 type_spec : INT {
 type_spec.data_type = new integer() ; /* Type expression */
}

11 | CHAR {
 type_spec.data_type = new character() ; /* Type expression */
}

12 | FLOAT {
 type_spec.data_type = new real(); /* Type expression */
}
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Production 14 represents a case when the type specifi cation is a constructed data type—struct. Productions 

15 and 16 are a couple of supportive productions for the same. Some of the input code strings that match the 

‘type_spec’ non-terminal are given in Table 4.18.  The marker ‘T’ is used as a placeholder to create a new 

symbol table and also record the tag name of the structure in a global hash table called ‘type_list’.

14 type_spec : struct_specifi er {
 /* Type expression */
 type_spec.data_type = struct_specifi er.data_type ;

}

15 struct_specifi er : STRUCT IDENTIFIER ‘{’ T declaration_list ‘}’ {
 t = type_list[IDENTIFIER.name]
 struct_specifi er.data_type= t ;

 curr_sym_tab_ptr = tbl_stk.top();
 tbl_stk.pop();

}

16      | STRUCT IDENTIFIER {
 t = type_list[IDENTIFIER.name] ; /* Type */
 struct_specifi er.data_type = t ;

}

29 T : Є {
 id = val[top-1]

 tbl_stk.push(curr_sym_tab_ptr);

 curr_sym_tab_ptr = new sym_tab() ;
 curr_sym_tab_ptr->previous = tbl_stk.top() ;

 t1 = type_list[id->name.c_str()];

 if(t1 == NULL){
  t1 = new record(curr_sym_tab_ptr,id->name);
  type_list[id->name]= t1;
 }else{
  /* Already present */
  print(“struct %s defi ned multiple times \n”,id->name);
  exit(0);
 }

}

Productions 17, 18 and 19 defi ne the ‘declarator’. Production 17 is used for supporting an array 

declaration. Observe that the left-recursive ‘declarator’ defi nition allows it to declare a multi-dimensional 

array or say a pointer with double level of indirection. Some of the input code strings that match the 

‘declarator’ non-terminal are given in Table 4.18.

A ‘declarator_list’ is used to represent a list of variables following a type specifi cation. Some of the input 

code strings that match the ‘declarator_list’ non-terminal are given in Table 4.18. The semantic action for 

both of them involves adding the variable into the current symbol table. The data type is fetched from the 

VAL stack at a known place. The semantic actions on Productions 25 and 26 also show the detection of a 

semantic error, namely the re-declaration of a variable in the same scope.

17 declarator : IDENTIFIER {
 declarator.name = IDENTIFIER.name ;
}
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18 | declarator ‘[’ CONSTANT ‘]’ {
 t = new array(CONSTANT.val) ; /* Type Constructor*/
 if(declarator1.data_type != NULL )
  declarator1.data_type->chain(t)
 }else{
  declarator1.data_type=t;
 }
 declarator = declarator1 ;
}

19 | ‘*’ declarator {
 t = new pointer() ; /* Type Constructor */
 if(declarator1.data_type != NULL )
  declarator1.data_type->chain(t)
 }else{
  declarator1.data_type=t;
 }
 declarator.type = declarator1.type ;
}

25 declarator_list : declarator {
 /* Inheriting attributes of type_spec
  (see Production 8 ) on stack */
 t = val[top-1].data_type ;

 if(declarator.data_type != NULL )
  declarator.data_type->chain(t)
 }else{
  declarator.data_type=t;
 }

 if(curr_sym_tab_ptr->fi nd(declarator1.name) == NULL ){
  curr_sym_tab_ptr->add(declarator.name,declarator. data_type);
 }else{
  print (“Re-declaration of the Variable ‘%s’ in the same  
 scope line=%d \n”,dptr->name,line_no);
 }

}

26 | declarator_list ‘,’ declarator {
 /* Inheriting attributes of type_spec
  (see Production 8 ) on stack */
 t = val[top-1].data_type ;

 if(declarator1.data_type != NULL )
  declarator.data_type->chain(t)
 }else{
  declarator.data_type=t;
 }

 if(curr_sym_tab_ptr->fi nd(declarator1.name) == NULL ){
  curr_sym_tab_ptr->add(declarator.name,declarator.data_type);
 }else{
  print (“Re-declaration of the Variable ‘%s’ in the 
same scope line=%d \n”,dptr->name,line_no);
 }
}
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The Table 4.18 shows some of the non-terminals and the input code strings that are generated by the 

non-terminal. The corresponding production used for generating the code string is also provided for getting 

a clear understanding. 

Table 4.18 Some non-terminals and the matching input code strings

# Non-terminal Sample code strings

matching the non-terminal

Production Comments

1 declaration int a1,a2,a3 ; 8

2 declaration char c1,c2; 8

3 declaration struct abcd { int a;int b; } x,y,z; 8

4 declaration struct efgh tmp; 8

5 type_spec int 10

6 type_spec char 11

7 type_spec fl oat 12

8 type_spec struct abcd { int a;int b; } 14 ‘abcd’ is called as tag name

9 type_spec struct efgh 14 ‘efgh’ is called as tag name

10 declarator v1 17

11 declarator v1[100] 18

12 declarator v1[100][200] 18

13 declarator *v2 19

14 declarator_list v1,v2,v3 26

15 declarator_list v4, v5[10][20], *v6 26

The type expressions are implemented using a linked list as shown in Fig. 4.14. A base class ‘type_expr’ 

having a member ‘next’ for pointing to the next element in the type expression chain is used. A method 

‘chain’ of the type_expr class is used to insert an element at the end of the linked list. There are derived 

classes from type_expr for the basic data types like integer, character and real. The constructed data types 

like record (for structure), array, function are also derived from the base class ‘type_expr’. The array class 

contains member to hold the number of elements as signifi ed in Fig. 4.14. The record type expression 

contains an attribute ‘fi elds’—a pointer to the symbol table of the fi elds associated with the structure. The 

other attribute for the struct type expression is ‘tagname’, the tag name used for defi ning more variables of 

the same structure type. A global data structure type_list contains the association between the structure’s tag 

and the data type.

The scope of the declarations is supported by means of having multiple symbol tables, one for each 

function block encountered and a global symbol table for the global variables. The translation scheme uses 

tbl_stk—stack of pointers to symbol tables to manage the adding of a variable in appropriate symbol table. 

At the beginning of a structure defi nition (Production 15 and 29) we use a marker T to push the current 

symbol table pointer on the tbl_stk and start with a new symbol table. The ‘previous’ fi eld of the current 

symbol table is used to store a pointer to the older symbol table. The same concept of tbl_stk can be used 

for handling any declaration nested by a pair of braces, but it is left as an exercise for the reader.

The symbol table maintenance is handled by the sym_tab class. It has methods add—for adding to 

the symbol table, fi nd—for fi nding a symbol in the table, and print—for printing the symbol table. The 

variables (symbols) are added into the symbol table while handling every declarator in a declaration 
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(Production 25 and 26). The fi elds in a structure defi nition in the input source are added into a symbol table 

(attribute ‘fi elds’ of struct type expression) in Production 15.

4.2.1.4 Example 5—Declarations This section demonstrates an example program that implements 

the translation scheme, part of which was described in Section 4.2.1.3 to build the symbol table from the 

declarations. The program takes as input, a sample C program with some declarations of variables using 

the basic data types (e.g. int ) and some constructed data types (e.g. struct). The output of the example is 

the contents of the symbol table in the form of symbol name and the type expression chain generated from 

the processing of the declarations in the input C program. Observe that each function results in a separate 

symbol table and so do the struct defi nitions. The dialog below shows the example program taking in C 

programs, and printing out the symbol table details.

# Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -oc-small-gram.cc c-small-gram.y

# Compiling the Parser

$ g++ -g -Wall -c -o c-small-gram.o c-small-gram.cc

# Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

# Compiling the Lexical Analyzer

$ g++ -g -Wall -c -o c-small-lex.o c-small-lex.cc

# Building ex5 Binary

$ g++ -g -Wall ex5.cc semantic_analysis.cc c-small-gram.o c-small-lex.o -o ex5

# This is a sample input source fi le

$ cat -n test5.c

 1 int var1;
 2 int var2[10];
 3 int var3[10][20];
 4
 5 int *var4;
 6 int *var5[50];
 7
 8
 9
 10 /* Function */
 11 int main()
 12 {
 13  var1=20;
 14 }
 15
 16 /* Another function */
 17 int ab(int one,char two, fl oat three,int four)
 18 {
 19  /* Local Variables */
 20  int h,j;
 21  char k[56][67];
 22
 23  h=10;
 24 }
 25
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# Parsing , creating and displaying Symbol table for the declarations

$ ./ex5 test5.c

Name of the Table=main Size=0

Name of the Table=ab Size=3777
Name=four Type=INTEGER Size=4 Offset=13
Name=h Type=INTEGER Size=4 Offset=17
Name=j Type=INTEGER Size=4 Offset=21
Name=k Type=ARRAY(56)->ARRAY(67)->CHAR Size=3752 Offset=25
Name=two Type=CHAR Size=1 Offset=4
Name=one Type=INTEGER Size=4 Offset=0
Name=three Type=REAL Size=8 Offset=5

# Another input source fi le

$ cat -n test5a.c

 1 /* Global Structure */
 2 struct my_info
 3 {
 4  int v1,v2;
 5  char c1;
 6  struct my_info *next;
 7 }  var1;
 8
 9
 10 /* Function */
 11 int main()
 12 {
 13
 14  int h;
 15
 16  h=20;
 17 }
 18

# Parsing , creating and displaying Symbol table for the declarations

$ ./ex5 test5a.c

Name of the Table=my_info Size=13
Name=next Type=POINTER->RECORD(my_info) Size=4 Offset=9
Name=v1 Type=INTEGER Size=4 Offset=0
Name=v2 Type=INTEGER Size=4 Offset=4
Name=c1 Type=CHAR Size=1 Offset=8

Name of the Table=main Size=4
Name=h Type=INTEGER Size=4 Offset=0

4.2.2 Type Checking

In the previous section, we saw that the processing of declarations results in fi lling symbol table with 

entries for every identifi er describing the type information, scope information and other essentials. In type 

checking, we validate the rest of the program for usage of the identifi ers in type correct manner by using 

these symbol table entries.

Type checking is the process of verifying, if each of the statements in the input source program respects 

the type system of the language and report any errors found. For example, in C language program, When we 

try to apply an incompatible operator like say ‘Æ’ on an integer variable, we encounter a type error because 
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it violates the type system of the language. As we saw in the introductory section, some other errors in C 

language program that type checking caught were assigning a fl oat value to a char pointer, de-referencing a 

non-pointer variable, using the ‘.’ operator on a non-structure variable, and so on. In type checking, we also 

detect some other obvious semantic errors like, say, using a ‘break’ statement outside a loop.

In a  strongly typed language like C, none of the type errors go undetected. In a weakly typed language, 

the type errors can go undetected resulting in exceptions at the run time.

The type errors can be detected during compile time (as we saw in C language) or when the program is 

executed (as in LISP) or a combination of both. Some of the type errors can be detected at compile time, 

while some can only be detected during run time. For example, using a dot operator on a non-structure 

variable is a type error that can be detected by the compiler, while indexing an array out of bounds with an 

instruction like a[x] can be detected only during the run time, because it is diffi cult to predict the value of x 

at compile time with certainty.

The  static type checking involves checking each and every statement in the input source program for 

violations of the type system during the compile time. Most of the compilers also offer facility to correct 

some of the type errors that can occur in a program by doing type conversion or coercion. For example, 

consider a C language statement x = 5, where x is defi ned as a fl oat variable. The compiler automatically 

does ‘coercion’ of the value 5 into 5.0 as required by the type system (since x is fl oat), to get cleared by 

the semantic analyser. Contrasting this kind of ‘implicit’ conversions in the type by the compiler, there 

are also explicit conversions done by the programmer. Consider the commonly used library routine to 

dynamically allocate memory called ‘malloc’ in a C language program. This returns a pointer to void type. 

The returned pointer to void is typecast to the appropriate type by the programmer. This is an example of 

explicit conversion in type by the programmer.

The  dynamic type checking involves checking every statement for type correctness during the 

execution. The dynamic type checking requires that we evaluate every statement before execution to 

determine if there is any violation of the type system specifi ed by the language. This would degrade the 

performance of the program. However, it offers more freedom to the programmers. LISP is a language that 

relies on dynamic-type checking. We shall be discussing about static-type checking in detail in this chapter.

In order to verify type correctness, A semantic analyser will have to frequently test if two type 

expressions represent the same type. When two type expressions represent the same type, they are called 

 type equivalent. There are a few ways type equivalence can be defi ned in a language.

A common way of establishing type equivalence is called the  structural equivalence. In structural 

equivalence, two type expressions are equivalent, only when both of them can be represented by the 

identical type expression tree. Consider the declarations in the Table 4.19. We fi nd three variables x, y and 

z declared in it. The Type expression tree for the variables x and y corresponding to the two declarations 

are identical. The type expression tree of variable z is different from x or y as evident from Fig. 4.16. The 

variables x and y are structurally equivalent. C language considers two expressions to be equivalent during 

the type checking, if they are structurally equivalent. In the statements following the declaration in Table 

4.19, we can assign x = y because they are structurally equivalent. However, we cannot assign z = x because 

z and x are not structurally equivalent.

Table 4.19 Declarations

char *x;
char *y;

fl oat z ;
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Fig. 4.16 Type expression tree

The dialog below shows two C programs given as input to GNU C compiler. The fi rst program adheres 

to structural equivalence in all of the statements and the compiler successfully compiles it. The second 

program violates the structural equivalence in some of the statements. The compiler emits error messages 

indicating the lines where type equivalence is not respected.

# C Program using variables following structural equivalence

$ cat -n test6a.c

 1 #include <stdio.h>

 2

 3 void my_func(char *);

 4

 5 char str1[]=”String 1”;

 6 char str2[]=”String 2”;

 7

 8 int main()

 9 {

 10  char *x;

 11  char *y;

 12

 13  x = str1;

 14  y = str2;

 15

 16  /* Function my_func() can be called with parameter x or y */

 17  my_func(x);

 18  my_func(y);

 19

 20  /* x and y are type equivalent and can be assigned either way */

 21  x = y ;

 22  y = x ;

 23

 24  return(0);

 25 }

 26

 27 void my_func(char *p)

 28 {

 29  printf(“%s\n”,p);

 30 }
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# The C Compiler compiles it successfully

$ gcc -Wall test6a.c -o test6a

# C Program using variables that do not follow structure equivalence

$ cat -n test6b.c

 1 #include <stdio.h>
 2
 3 void my_func(char *);
 4
 5 char str1[]=”String 1”;
 6 char str2[]=”String 2”;
 7
 8 int main()
 9 {
 10  char *x;
 11  fl oat y;
 12
 13  x = str1;
 14  y = str2;
 15
 16  /* Function my_func() is being called with appropriate type */
 17  my_func(x);
 18
 19  /*
 20  Function my_func() is being called with a fl oat
 21  as parameter instead of a pointer to char
 22  */
 23
 24  my_func(y);
 25
 26  /* x and y are not type equivalent and cannot be assigned
 27  to each other*/
 28  x = y ;
 29  y = x ;
 30
 31  return(0);
 32 }
 33
 34 void my_func(char *p)
 35 {
 36  printf(“%s\n”,p);
 37 }

# The C Compiler rejects it with appropriate error messages

$ gcc -Wall test6b.c -o test6b

test6b.c: In function ‘main’:
test6b.c:14: error: incompatible types in assignment
test6b.c:24: error: incompatible type for argument 1 of ‘my_func’
test6b.c:28: error: incompatible types in assignment
test6b.c:29: error: incompatible types in assignment

C language considers two expressions to be equivalent during the type checking, if they follow structural 

equivalence. However, there is one exception to this rule with regard to structures. The C language supports 

another kind of type equivalence called the  name equivalence with regard to structures. To understand the 

name equivalence, we need to be familiar with the idea of type name. Most compiled languages support 

the notion of a user assigning a name to the type expressions called as type name. The typedef mechanism 
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in C language is an example of user assigning a name to the type expression. The type name can then be 

used to defi ne new variables. The following C language declaration shows two variables x and y belonging 

to the type name ‘complex’. The ‘complex’ is a type name that was defi ned by the user using the typedef 

mechanism. In name equivalence, two type expressions are equal only if they have the same type name. In 

the declarations below x and y are name equivalent. The variable z is not name equivalent with either x or y 

despite having identical tree representation for the data type. In the statements following the declaration, we 

can assign x = y because they are name equivalent. However we cannot assign z = x because z and x are not 

name equivalent.

typedef struct complex
{
     double real_part;
     double imaginary_part;
} complex;

complex x;
complex y;

typedef struct complex_again
{
     double real_part;
     double imaginary_part;
} complex_again;

complex_again z ;

The dialog below shows how the GNU C compiler behaves with respect to name equivalence of 

structures. It compiles successfully, the programs adhering to name equivalence with respect to structures. 

It emits error messages, when name equivalence is not respected.

# C Program showing Name equivalence with regard to structures

$ cat -n test6c.c

 1 #include <stdio.h>

 2

 3 typedef struct complex

 4 {

 5  double real_part;

 6  double imaginary_part;

 7 } complex;
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 8

 9

 10 void my_func(complex v1);

 11

 12 int main()

 13 {

 14  complex x;

 15  complex y;

 16

 17  y.real_part =10;

 18  y.imaginary_part = 20;

 19

 20  /* x and y are name equivalent !!! */

 21  x = y ;

 22

 23  /*

 24  my_func called with a variable of appropriate type - complex

 25  */

 26  my_func(x);

 27

 28  return(0);

 29 }

 30

 31 void my_func(complex v1)

 32 {

 33  v1.real_part = 10;

 34  v1.imaginary_part = 20;

 35 }

# The C Compiler compiles it successfully

$ gcc -Wall test6c.c -o test6c

# C Program with assignment between struct variables that are not name equivalent

$ cat -n test6d.c

 1 #include <stdio.h>

 2

 3 /* Two structure defi nitions with Identical fi eld types and names */

 4 typedef struct complex

 5 {

 6  double real_part;

 7  double imaginary_part;

 8 } complex;

 9

 10 typedef struct complex_again

 11 {

 12  double real_part;

 13  double imaginary_part;

 14 } complex_again;

 15

 16

 17 void my_func(complex v1);
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 18

 19 int main()

 20 {

 21  complex x;

 22  complex_again y;

 23

 24  y.real_part =10;

 25  y.imaginary_part = 20;

 26

 27  /* x and y are NOT name equivalant !!! */

 28  x = y ;

 29

 30  /*

 31  my_func called with a variable of wrong type - complex_again

 32  */

 33  my_func(y);

 34

 35  return(0);

 36 }

 37

 38 void my_func(complex v1)

 39 {

 40  v1.real_part = 10;

 41  v1.imaginary_part = 20;

 42 }

# The C Compiler rejects it with appropriate error messages

$ gcc -Wall test6d.c -o test6d

test6d.c: In function ‘main’:

test6d.c:28: error: incompatible types in assignment

test6d.c:33: error: incompatible type for argument 1 of ‘my_func’

Having understood the idea of types and type equivalence, we are now in a position to look an algorithm 

that establishes the type equivalence of two type expressions. Algorithm 4.6 shows a routine that can be 

used to check the type equivalence of two type expressions representing data types in C language. This 

routine can check the equivalence of type expressions using 4 basic data types, namely integer, char, real 

and void. It also supports the checking of type equivalence of constructed data types like record, array, 

pointer and function. Just as we did in the processing of the declarations in Section 4.2.1.3, we confi ne 

ourselves to simple data types without the use of any qualifi ers like unsigned, long, etc.

int type_equal(type_expr *ty1, type_expr *ty2)

{

 type_expr *t1,*t2;

 int b1,b2;

 t1 = ty1;

 t2 = ty2;

 /* reached the end of the type chain */

 if ( (t1 == NULL ) && ( t2 == NULL ) ){
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  return(TRUE);

 }

 /* One of them has terminated */

 if ( (t1 == NULL ) || ( t2 == NULL ) ){

  return(FALSE);

 }

 b1 = t1->gettype();

 b2 = t2->gettype();

 /* Not the same Kind */

 if(b1 !=b2 ){

  return(FALSE);

 }

 switch(b1)

 {

  case INTEGER:

  case CHARACTER:

  case REAL:

  case VOID_TYPE : break;

  case RECORD : {

       record *r1,*r2;

       r1 = (record *)t1;

       r2 = (record *)t2;

       if(r1->tagname != r2 ->tagname){ /* Name Equivalance for Structures */

        return(FALSE);

       }

       break;

      }

  case ARRAY: {

      array *a1,*a2;

      a1 = (array *)t1;

      a2 = (array *)t2;

      if(a1->limit != a2->limit){ /* Length of the Array */

          return(FALSE);

      }

      break;

     }

  case POINTER: break;

  case FUNCTION: {

       function *f1,*f2;

       int n,i;

       f1 = (function *)t1;

       f2 = (function *)t2;

       if(f1->no_of_args != f2 -> no_of_args){ /* Number of Arguments */

        return(FALSE);

       }

       n = f1->no_of_args ;

       for(i=0;i<n;i++){
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        /* Checking Each argument for equivalence*/

        if(!type_equal(f1->args_list[i],f2->args_list[i])){

         return(FALSE);

        }

       }

       break;

      }

    case LABEL:

    case CONSTAN:

    case TYPE_ERROR: break;

  }

  return(type_equal(t1->next,t2->next) );

Algorithm 4.6 Type equivalence

The following are the highlights of Algorithm 4.6.

∑  This algorithm works on the linked list representation of the type expression as illustrated in Fig. 4.14.

∑  The two type expressions are not equal, if they both do not belong to the same kind. The kind can be 

a basic data-type-like integer or a constructed data-type-like array or structure.

∑ Two type expressions belonging to the basic data type (e.g. integer, char, real and void) are equal if 

they are of the same kind. The constructed data types need to be compared for the other attributes 

as well. For example, two type expressions representing arrays are equal only if they match on the 

number of elements in the array, apart from the fact they both denote the same kind—array. In a 

similar manner, two type expressions representing structures (records) are equal if they have the same 

tag name (name equivalence), apart from the fact that they both denote the same kind—record. The 

type expressions representing functions are considered equal, if the number of arguments, type of 

each argument, and the return type are identical.

∑ The algorithm is recursive in nature. It checks the current node for type equivalence and then 

invokes itself recursively passing the next node in the type expression chain. For example, consider 

comparison of two Integer arrays ‘a’ and ‘b’ having 50 elements each, as shown in Fig. 4.17 along 

with the type expressions. The fi rst invocation of ‘type_equal’ function would check the fi rst node 

of a’s type expression chain (array), comparing it with the fi rst node of b’s type expression chain. On 

the event of being successful in comparison, the ‘type_equal’ is invoked again recursively, this time 

comparing the ‘int’ Node.

Fig. 4.17 Type expression representing an array of 50 integers
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The algorithm to check the equivalence of two type expressions would be extensively used in the 

translation scheme for semantic analysis of input C language programs.

4.2.2.1 Translation Scheme In this section, we look at some of the productions and the semantic 

actions pertaining to the type checking in a semantic analyser for C language. These productions and 

semantic actions reinforce the ideas on type checking and other relevant concepts that we studied 

previously. The semantic actions are presented in a pseudo-code form. The complete implementation of a 

semantic analyser for C language is presented in Section 4.4.

An ‘stmt’ non-terminal is used for recognising C language statement. It takes the form of expression 

followed by a semicolon as given by Production 30. Table 4.20 shows ‘stmt’ and some of the other non-

terminals used in the productions below and the input code strings that are generated by those non-terminals. 

In an expression of the form ‘unary_expr = expr’ (Production 31), the assignment is valid only when the 

LHS and the RHS belong to the same data type. This is checked by the type_equal( ) function. The semantic 

analyser reports a type error in case the data type of LHS and the RHS in the assignment statement do not 

match. Assigning the void data type to ‘expr’ is a means of propagating the data type to the statement. The 

semantic analyser reports an error in the statement if the expr is anything other than void type.

30 stmt : expr ‘;’
{
     t = expr.type
     if( t->get_kind() != VOID ){
        print “Semantic error in line =%d”,line_no
     }
}

31 expr : unary_expr ‘=’ expr
{
     t1 = unary_expr.type
     t2 = expr.type
     if(type_equal(t1,t2) ){
        t = new void_type()
     }else{
        t = new type_error()
     }
     expr.type = t
}

An Identifi er’s type is determined by its declaration. We had seen earlier that the processing of the 

declaration results in a symbol table entry. In Production 32, we fetch the symbol table entry corresponding 

to the identifi er using the lookup( ) routine. The Identifi er’s type attribute is stored as a part of the symbol 

table entry. The semantic analyser reports an error, if the variable used is not found in the symbol table.

32 unary_expr : IDENTIFIER
{
   sym_tab_entry_ptr = lookup(IDENTIFIER.name)
   if(sym_tab_entry != NULL ){
    t = sym_tab_entry_ptr -> type
   }else{
    t = new type_error();

    printf(“Variable ‘%s’ not defi ned, but used in line %d
   \n”,IDENTIFIER.name,line_no);
   }
   unary_expr.type = t
}
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A binary expression takes the form of a unary expression as given by Production 42. When two binary 

expressions of the integer kind are combined using an operator like ‘+’, ‘–’ etc, the type of the resulting 

binary expression is also an integer. The semantic analyser reports a type error in case any one of the 

combined binary expressions is not an integer. This type checking is stricter than the normal C compilers, 

which would allow the component binary expression to be a ‘real’ and perform automatic coercion to 

Integer. The toy compiler ‘mycc’ only supports Integer arithmetic.

38 binary_expr : binary_expr ‘*’ binary_expr
{

b1 = binary_expr1.type ;
b2 = binary_expr2.type ;

k1 = b1->get_kind()
k2 = b2->get_kind()

if( ( k1 == INTEGER ) and ( k2 == INTEGER) ) {
  t = new integer() ;

}else{
 print “Incompatible Operand ‘*’ in line=%d”,line_no
 t = new type_error()

}
binary_expr.type = t

}

42 binary_expr : unary_expr
{

unary_expr_node *u;
binary_expr_node *be;

be = new binary_expr_node();
u = (unary_expr_node *)$1;

binary_expr.type=unary_expr.type;
}

The data type of unary expression performing array access in the form of say arr[5], is given by the 

‘next’ fi eld of the type expression chain similar to the one we saw in Fig. 4.14. The semantic analyser in 

our toy compiler reports an error, if we are indexing on a non-array. Again, this is slightly different from 

the production C compilers that would rightly allow pointers to be indexed. The semantic analyser reports a 

type error in case the index of the array is not an integer.

43 unary_expr : unary_expr ‘[’ expr ‘]’
{
 ut = unary_expr1.type
 kind = ut->get_kind()

 if( kind != ARRAY ){
      print “Incompatible Operand ‘[’ in line=%d”,line_no
  t = new type_error()
 }else{
  et = expr.type
  ekind = et->get_type()

  if( ekind != INTEGER){
   print “Array index is not integer in line =%d”,line_no
   t = new type_error()
  }else{
   t = ut->next
  }
 }
 unary_expr.type = t
}
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For a unary expression using the address of operator in the form of say ‘&var1’, the type is given by 

a pointer to the type of the variable var1. This is done by adding a pointer node at the head of the type 

expression chain of the variable var1. The semantic analyser reports a type error in case, we are trying to 

use the operator ‘&’ on constants.

44 unary_expr : ‘&’ unary_expr
{
 ut = unary_expr1 -> type
 kind = ut->get_kind()

 if( (kind == CONSTANT ) || ( kind == REAL_CONSTANT ) ){
  printf(“Incompatible operand to & used in line %d \n”,line_no);
  t = new type_error();
 } else {
  t = new pointer()
  t->chain(unary_expr1.type)
 }
 unary_expr.type = t
}

The type for a unary expression using the ‘*’ operator of the form say ‘*ptr’ is given by the ‘next’ node 

in the type expression chain. The semantic analyser reports a type error in case the data type of ‘ptr’ is not 

of the kind ‘pointer’.

45 unary_expr : ‘*’ unary_expr
{
 ut = unary_expr1 -> type
 kind = ut->get_kind()

 if( kind != POINTER ){
  printf(“Incompatible operand to & used in line %d \n”,line_no);
  t = new type_error();
 } else {
  t = ut -> next
 }
 unary_expr.type = t
}

The data type of unary expression performing record access in the form of say ‘myrec.fi eld1’, is fetched 

from the symbol table entry pertaining to ‘fi eld1’. The symbol table for the fi elds in a record is stored in 

the fi rst node of the type expression chain as seen earlier in Fig. 4.14. The semantic analyser reports a type 

error, if the expected fi eld name is not present in the symbol table. The unary expression for record access 

in the form of say ‘ptr->fi eld1’ is also dealt similarly by fetching the type of ‘fi eld1’ from the symbol table 

of the record. Again, the semantic analyser reports a type error if the expected fi eld name is not present in 

the symbol table.

The data type of a unary expression performing function invocation in the form of say my_func(), is 

given by the return type, which is stored in the fi rst node of the type expression tree as seen earlier in 

Fig. 4.14. The semantic analyser reports a type error if my_func is not of the kind ‘function’. In case of 

function invocation with parameters, the semantic analyser matches the data type for all the formal 

parameters passed in the invocation with the corresponding type for arguments recorded in the fi rst node 

of the type expression chain of the function as seen in Fig. 4.14. In case there is no mismatch, the resultant 

unary expression is assigned the return data type of the function. In the event of mismatch, the semantic 

analyser reports a type error.
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46 unary_expr : unary_expr ‘.’ IDENTIFIER
{
 ut = unary_expr1.type
 kind = ut -> get_kind()

 if(kind != RECORD ){
  print “Incompatible Operator ‘.’ used in line=%d”,line_no
  t = new type_error()
 }else{
  rt = (record *)ut    /* Record Type */
  sym_tab_ptr = rt->sym_tab
  fi eld_entry = lookup(IDENTIFIER.name,sym_tab_ptr)

  if(fi eld_entry == NULL ){
   print “Unknown Field used in line=%d”,line_no
   t = new type_error()
  }else{
   t = fi eld_entry -> type
  }
 }
 unary_expr.type = t

}

47 unary_expr ‘->’ IDENTIFIER
{

 ut = unary_expr1.type

 kind = ut -> get_kind()

 if(kind != POINTER ){

  printf(“Incompatible operator ‘->’ used in line %d \n”,line_no)

  t = new type_error()

 }else{

  nt = ut->next

  nkind = nt ->get_kind()

  if(nkind != RECORD ){
   printf(“Incompatible operator ‘->’ used in line %d 
   \n”,line_no)
   t = new type_error()

  }else{

   rt = (record *)ut    /* Record Type */

   sym_tab_ptr = rt->sym_tab

   fi eld_entry = lookup(IDENTIFIER.name,sym_tab_ptr)

   if(fi eld_entry == NULL ){

    print “Unknown Field used in line=%d”,line_no

    t = new type_error()

   }else{

    t = fi eld_entry->type

   }

  }

 }

 unary_expr.type = t

}
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76 unary_expr : unary_expr ‘(‘ ‘)’
{
 ut = unary_expr1.type
 kind = ut -> get_kind()

 if(kind != FUNCTION ){
  printf(“Invoking a Non Function in line %d \n”,line_no)
  t = new type_error()
 }else{
  ft = (function *)ut    /* Function Type */
  if(ft->no_of_args != 0 ){
   print “Expected %d arguments in line %d”,
   unary_expr1.type.no_of_args,line_no
   t = new type_error()
  } else {
   t = ut->ret_type;
  }
 }
 unary_expr.type = t
}

77 unary_expr | unary_expr ‘(’ args_list ‘)’

{

 ut = unary_expr1.type

 kind = ut -> get_kind()

 if( kind != FUNCTION ){

  printf(“Invoking a Non Function in line %d \n”,line_no)

  t = new type_error()

 }else{

  ft = (function *)ut    /* Function Type */

 no_of_args = ft->no_of_args

 mismatch_in_func_args = 0

 for(i=0;i < no_of_args;i++){

   if(!type_equal(ft->args[i],args_list.args[i])){

    mismatch_in_func_args ++;

    break;

   }

  }

  if(mismatch_in_func_args == 0){

   t = ft->ret_type;

  }else{

   printf(“Function Invocation used in line %d does not

   match with its Defi nition/Declaration \n”,line_no);

   t = new type_error()

  }

 }

 unary_expr.type = t

}
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Table 4.20 shows some of the non-terminals and the input code strings that are generated by the non-

terminal. The corresponding production used for generating the code string is also provided for getting a 

clear understanding.

Table 4.20 Some non-terminals and the matching input code strings

# Non-

terminal

Sample code strings matching 

the non-terminal

Production Comments

1 stmt x = y ; 30

2 unary_expr v1 32

3 binary_expr v1 42

4 binary_expr v1*v2 38

5 expr x = y 31

6 expr a = b + c 31

7 unary_expr arr[50] 43

8 unary_expr arr[index] 43

9 unary_expr *ptr 45

10 unary_expr &v1 44

11 unary_expr a.fi eld1 46

12 unary_expr ptr->fi eld1 47

4.3 A SEMANTIC ANALYSER FOR C LANGUAGE
This section demonstrates the semantic analyser module of our toy C compiler (mycc) taking in sample C 

programs, performing semantic analysis and reporting semantic errors.

The semantic analyser implements the translation scheme that performs the semantic analysis of an 

input C program, parts of which were described in Sections 4.2.1.3 and 4.2.2.1. It evaluates the semantic 

rules during the bottom-up parsing. The semantic analyser detects the common scenarios where there is a 

mismatch in the types. The semantic analyser does not perform coercion among the friendly types like say 

fl oat to integer. As seen in the translation scheme, the semantic analyser emits error messages depending on 

the semantic error in the input C program. The translation scheme is not comprehensive enough to handle 

all the aspects of C language. It operates on a smaller subset of the C language to bring out the ideas on the 

type-checking clearly.

We line up the same input C programs to our semantic analyser as we did for GNU C compiler in 

Example 1. It is evident from the dialog below, that our semantic analyser detects the semantic errors in 

those input C programs excepting for the one where there is a break statement without loop construct.

# Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -oc-small-gram.cc c-small-gram.y

# Compiling the Parser

$ g++ -g -Wall -c -o c-small-gram.o c-small-gram.cc

# Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

# Compiling the Lexical Analyzer
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$ g++ -g -Wall -c -o c-small-lex.o c-small-lex.cc

# Building the Semantic Analyzer Binary

$ g++ -g -Wall main.cc semantic_analysis.cc c-small-gram.o c-small-lex.o -o sem_analyser

# A C Program using an undeclared variable

$ cat -n sem_err1.c

 1

 2 int main()

 3 {

 4     int a,b;

 5

 6     a=1;

 7     b=2;

 8     c=3; /* Use of undeclared variable */

 9

10     a = b + c;

11

12     return(a);

13

14 }

# The Semantic Analyzer detects it and reports the error

$ ./sem_analyser sem_err1.c

Variable ‘c’ not defi ned, but used in line 8

Semantic error in line 8 (LHS and RHS of ‘=’ are not the same type)

Variable ‘c’ not defi ned, but used in line 10

Incompatible operands for the operator ‘*’ in line no =10 (Integer Operands allowed)

Semantic error in line 10 (LHS and RHS of ‘=’ are not the same type)

Semantic Errors in the Program

# A C Program Assigning a fl oat to char pointer

$ cat -n sem_err2.c

 1

 2 int main()

 3 {

 4     char *a;

 5

 6     fl oat b,c;

 7

 8     b = 30.45;

 9     c = 40.36;

10

11     a = b + c; /* Assigning a fl oat to char pointer */

12

13     return(0);

14

15 }

# The Semantic Analyzer detects it and reports the error

$ ./sem_analyser sem_err2.c

Incompatible operands for the operator ‘*’ in line no =11 (Integer Operands allowed)
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Semantic error in line 11 (LHS and RHS of ‘=’ are not the same type)

Semantic Errors in the Program

# A C Program using ‘->’ operator on a fl oat Variable

$ cat -n sem_err3.c

 1

 2 int main()

 3 {

 4

 5     fl oat b,c;

 6

 7     b = 30.45;

 8     c = 40.36;

 9

10     b = c -> f1; /* using ‘->’ operator on a fl oat Variable */

11

12     return(0);

13 }

# The Semantic Analyzer detects it and reports the error

$ ./sem_analyser sem_err3.c

Incompatible operator ‘->’ used in line 10

Semantic error in line 10 (LHS and RHS of ‘=’ are not the same type)

Semantic Errors in the Program

# A C Program using break statement in a non-loop context

$ cat -n sem_err4.c

 1

 2 int main()

 3 {

 4     fl oat b,c;

 5

 6     b = 30.45;

 7     c = 40.36;

 8

 9     b = c ;

10

11     break; /* using break statement in a non-loop context */

12

13     return(0);

14 }

# The Semantic Analyzer does NOT detect it and report error

$ ./sem_analyser sem_err4.c

Semantically correct Program

# A C Program using a fl oat variable as function

$ cat -n sem_err5.c

 1

 2 int main()

 3 {

 4     fl oat b,c;
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 5

 6     b = 30.45;

 7     c = 40.36;

 8

 9     b = c() ; /* using a fl oat variable as function */

10

11     return(0);

12 }

# The Semantic Analyzer detects it and reports the error

$ ./sem_analyser sem_err5.c

Trying to invoke a non Function in line 9

Semantic error in line 9 (LHS and RHS of ‘=’ are not the same type)

Semantic Errors in the Program

# A C Program declaring a variable twice in the same scope

$ cat -n sem_err6.c

 1

 2 int main()

 3 {

 4     int a;

 5

 6     int b,c;

 7     fl oat a; /* declaring a variable twice in the same scope */

 8

 9     b = 30;

10     c = 40;

11

12     a = b + c;

13

14     return(a);

15

16 }

# The Semantic Analyzer detects it and reports the error

$ ./sem_analyzer sem_err6.c

Re-declaration of the Variable ‘a’ in the same scope line=7

Semantic Errors in the Program

    SUMMARY

In lexical analysis of a compiler the input program is split into tokens. In syntax analysis, the ordering 

of the tokens is checked to see if they formed valid syntax of the language. All the statements that are 

valid from syntax point of view are not legal instructions. For example, a statement in a C language 

program x = y() is valid from syntax point of view. However, it is not a legal statement, if y is defi ned 

as an integer instead of being defi ned as a function. In semantic analysis, the input source is checked 

to see if all the statements are legal in accordance with the language rules. The semantic analysis 

reports the illegal statements for the user to correct them. Some of the common errors that semantic 
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analyser reports in the case of C language input programs are shown in the dialog of the opening 

section.

In order to perform semantic analysis, we make use of a formalism called as syntax-directed 

translation (SDT). The syntax-directed translation allows us to specify and implement a semantic 

analyser. In syntax-directed translation, we identify the attributes of the grammar symbols in the 

context-free grammar and specify semantic rules relating those attributes. The semantic rules are 

associated with the productions. The semantic rules are evaluated to cause valuable side-effects 

like insertion of information into the symbol table, semantic checking, issuing of an error message, 

generation of intermediate code, and so on. There are 3 methods of evaluating the semantic rules 

in a syntax-directed defi nition that we discussed, namely: (1) translation interleaved with parsing, 

(2) parse tree method, and (3) rule-based method.

The semantic analysis consists of two main tasks: (1) processing the declarations and adding type 

information to the entries in the symbol table, and (2) examining the rest of the program to ensure 

that the identifi ers are used correctly adhering to the type compatibility conventions defi ned by the 

language. This is called type checking.

We studied some of the productions and their semantic actions pertaining to declarations in the 

semantic analyser of C language programs in Section 4.2.1.3. We studied some of the productions and 

their semantic actions pertaining to type checking in the semantic analyser of C language programs in 

Section 4.2.2. The complete semantic analyser for C language programs was presented in Section 4.3.

    REVIEW QUESTIONS AND EXERCISES

 4.1 What is semantic analysis? Give some examples of errors that are detected during semantic 

analysis.

 4.2 State whether the following statements are true or false:

  (a) A semantic analyser strips out the comments and white spaces from input source program.

  (b) Semantic analysis involves verifying if the input source forms a legal set of instructions in 

accordance with the language rules.

  (c) A semantic analyser checks if all the variables are declared before use.

  (d) A semantic analyser checks if the operators are used on compatible operands.

 4.3 What are the main tasks involved in semantic analysis? How is it different from syntax analysis? 

Illustrate with an example.

 4.4 What is a syntax-directed defi nition? What are its main characteristics? Illustrate with an 

example.

 4.5 Explain the terms: (a) decorated parse tree, (b) dependency graph, (c) inherited and synthesised 

attributes. Illustrate with examples.

 4.6 How do we evaluate semantic rules in a syntax-directed defi nition? What are the common 

methods used for evaluating semantic rules?

 4.7 What kinds of syntax directed defi nitions are suited for evaluation of semantic rules during the 

parsing? Explain with an example.

 4.8 What is a translation scheme? How is it different from a syntax-directed defi nition? Illustrate the 

order of execution of semantic actions in a translation scheme?
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 4.9 How do we evaluate synthesised and inherited attributes in the semantic rules during bottom-up 

parsing? Illustrate with an example.

 4.10 How do we construct a top-down parser that can evaluate semantic rules during the parsing for 

an L-attributed defi nition? Illustrate with an example.

 4.11 Describe the parse tree method of evaluating semantic rules. What are its limitations?

 4.12 How do we evaluate semantic rules using the rule-based method? Describe a recursive evaluator 

with an example.

 4.13 How do you represent a data type in a compiler? Explain an implementation approach for storing 

the data types in a compiler?

 4.14 What is a symbol table? Explain how the symbol table in a compiler can be implemented by a 

hash table.

 4.15 Explain some of the productions and the semantic actions pertaining to the processing of the 

declarations in a semantic analyser for C language.

 4.16 Explain static and dynamic type checking with examples.

 4.17 What is structural equivalence? Give examples of variables in C language that are structurally 

equivalent and structurally different.

 4.18 What is name equivalence? In what context is name equivalence used during the type checking? 

Illustrate with an example in C language.

 4.19 Write an algorithm to check the equivalence of two type expressions in C language represented 

by a linked list.

 4.20 Explain some of the productions and the semantic actions pertaining to the type checking in a 

semantic analyser for C language.



INTERMEDIATE CODE  GENERATION

Introduction
The front end of a compiler consists of lexical analysis, syntax analysis, 
semantic analysis and intermediate code generation. We have studied 
about lexical analysis, syntax analysis and semantic analysis in the 
previous chapters. In this chapter, we discuss about how to take the 
syntactically and semantically correct input source and generate 
intermediate code from it. The intermediate code is used by the back 
end of the compiler for generating the target code.

We begin the discussion by understanding the common forms of 
intermediate code used in compilers (Section 5.1). In Section 5.2, we 
take up the translation of common programming constructs in high 
level languages like C into intermediate code. We take a subset of the 
‘C’ language as our reference source language and learn about the 
challenges associated with the translation of programming constructs 
like if-else, while, switch-case, etc. into intermediate code. 

5

5.1 INTERMEDIATE FORMS

In this section, we study about the different forms of intermediate code that are commonly 

found in the compilers. Before we get into the details of the various forms of intermediate 

code that the input source can be translated into, let us fi rst see why we need to translate 

the input source into an intermediate form and why not generate the fi nal machine code 

itself.
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Consider a monolithic compiler for C language that generates machine instructions directly from 

the input source for an 80¥86 processor system. Let’s say it needs to be modifi ed to generate machine 

instructions for SPARC processor system. The effort involved in modifying the 80¥86-based compiler for 

re-targeting to SPARC platform is high. It requires the intricate knowledge of the machine instructions of 

both the 80¥86 system as well as SPARC System. Also, the translation to fi nal machine code from the input 

source language makes the generation of optimal code diffi cult because it would not have the context of the 

entire program.

Consider another compiler that is broken into modular elements called as front end and the back end, as 

explained in Chapter 1. The re-targeting of such a compiler from 80¥86 to SPARC system is illustrated in 

Fig. 5.1. The front end of the compiler for a source language remains same irrespective of the machine code 

generated. The output of the front end of the compiler is an intermediate form that does not depend on the 

specifi cs of the processor. The back end of the compiler converts the intermediate code into the respective 

machine instructions as required. This approach allows the re-use of a large portion of the compiler without 

modifi cation during the re-targeting to a different processor. 

Fig. 5.1 Retargeting of a compiler

Some of the advantages in this approach of breaking up the compiler into front end and back end are:

 1. It is easy to re-target the compiler to generate code for newer and different processors. As seen in 

the discussion previously, the re-targeting of the compiler could be highly effort intensive but for the 

presence of intermediate code.

 2. The compiler can be easily extended to support an additional input source language by adding the 

required front end and retaining the same back end.

 3. It facilitates machine independent code optimisation. The intermediate code generated by the front 

end can be optimised by using several specialised techniques. This optimisation is different from the 

target code optimisation that can be done during the code generation for the actual processor by the 

back end system.

Most of the modern compilers take this approach of partitioning the job of the compiler into front end 

and back end. 
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The front end typically includes lexical analysis, syntax analysis, semantic analysis, intermediate code 

generation and its optimisation. The back end takes the optimised intermediate code and performs code 

generation for the target processor. A code optimisation specifi c to the processor is also performed by the 

backend to produce the fi nal output. 

What is intermediate code? The intermediate code is a translated form of the input source stored in some 

data structure like array, tree, etc. The back end generates the target code by traversing this data structure. 

The intermediate code is also called as  intermediate representation (IR).

There are two commonly used intermediate code forms in compilers that we study in this chapter. They 

are:

 1. Three address code (TAC)

 2. Abstract syntax tree (AST)

We study about each of them in detail in the next two sections.

5.1.1 Three Address Code

The  three address code (TAC) form of intermediate code consists of a list of statements called as the three 

address code statements. Each TAC statement is a record consisting of 4 fi elds, An operator, argument1, 

argument2 and a result. The argument1, argument2 and the result are pointers to symbol table entries 

pertaining to programmer defi ned or compiler-generated variables. The operator fi eld holds a mnemonic for 

a particular operation like addition, subtraction, etc. The name—‘three address code’ comes from the fact 

that there are 3 addresses involved in each of these instructions, argument1, argument 2 and the result.

An example of a TAC statement is shown below.

Operator Argument 1 Argument 2 Result

ADD y z x

For the sake of readability, the arguments and the result fi elds are shown as name of variables, they are 

actually pointers to symbol table entries pertaining to those variables. In the above example, the argument 1, 

argument 2 and result are pointers to symbol table entries pertaining to the variables y, z and x respectively. 

This TAC statement represents a computation, where x is assigned the sum of y and z given textually by

x : =  y + z

The following shows a few more TAC statements and the computation that they represent, in textual 

form.

Operator Argument 1 Argument 2 Result

SUB y z x x := y – z

MUL y z x x := y * z

ADDR_OF y – x x := &y

UMINUS y – x x := –y

Table 5.1 shows a couple of C language statements and their equivalent three address code statements. 

This gives an idea on translation from C language instructions to TAC.
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Table 5.1 Input C-statements and the translated TAC

Input C statement TAC statements Comments

a = b – c + d ; _t1 := b – c
_t2 := _t1 + d
a := _t2 ;

_t1 and _t2 are compiler generated 
temporaries. Note that one C statement 
is transformed into multiple TAC 
statements

p_new = p + ( ( p * n * r ) /100 ) _t1 := p * n
_t2 := _t1 * r
_t3 = _t2 / 100
p_new = p + _t3

_t1,_t2 and _t3 are compiler generated 
temporaries. Note that one C statement 
is transformed into multiple TAC 
statements

The number of allowable operators (like ADD, SUB, etc.) is an important factor in the design of an 

intermediate representation like three address code. One end of the spectrum is a restricted operator set, 

which allows for easy portability to multiple architectures. A restricted feature set would mean that the front 

end would generate a long list of TAC instructions, forcing the optimiser and code generator to do the bulk 

of work. At the other end of the spectrum is a feature rich operator set in the intermediate language that 

allows one to take advantage of an advanced processor, but is diffi cult to port on to low-end processors. The 

usual approach is to have a minimum set of allowable operators in Intermediate language, whose equivalent 

machine language statements would be invariably available on any processor.

The following table shows a complete list of  TAC operators that we would be using in this book.

Table 5.2 TAC operators

# TAC operator Sample TAC instruction
Textual 

representation
Description

1 ASSIGN
ASSIGN y x

x := y x gets assigned the result of 

y op z

2 ADD
ADD y z x

x := y + z x gets assigned the result of y 

added to z

3 MUL
MUL y z x

x =  y * z x gets assigned the result of y 

multiplied by z

4 DIV
DIV y z x

x := y / z x gets assigned the result of y 

divided by z

5 SUB
SUB y z x

x := y – z x gets assigned the result of y 

minus z

6 UMINUS
UMINUS y x

x := – y x gets assigned the value of –y

7 L_INDEX_ASSIGN
L_INDEX_

ASSIGN
y i x

x[i]   := y x[i] denotes the content of a 

location which is i memory 

units away from  the pointer 

contained in x. 

x[i] gets assigned the value of y.
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8 R_INDEX_ASSIGN
R_INDEX_

ASSIGN
y i x

y   := x[i] Again x[i] denotes the content 

of a location which is i 

memory units away from the 

pointer contained in x.

y gets assigned the value of x[i].

9 ADDR_OF
ADDR_OF y x

x = &y The address of the variable y 

is assigned to x. The operator 

& can be used to fetch the 

address of any variable, 

whether it is a compiler 

generated temporary or a user-

defi ned variable.

10 LBL
LBL my_lbl

lbl   my_lbl This marks the next TAC 

statement as the one with the 

label as ‘my_lbl’.

11 GOTO
GOTO my_lbl

goto   my_lbl This sample TAC statement 

transfers the control to the 

TAC statement marked as 

my_lbl.

12 LT
LT x y my_lbl

if  x < y goto 

my_lbl

If the value of x is less than 

y, the control is transferred 

to the TAC statement marked 

my_lbl.

13 GT
GT x y my_lbl

if  x > y goto 

my_lbl

If the value of x is greater than 

y, the control is transferred 

to the TAC statement marked 

my_lbl.

14 LE
LE x y my_lbl

if x < = y goto 

my_lbl

If the value of x is less than 

or equal to y, the control 

is transferred to the TAC 

statement marked my_lbl.

15 GE
GE x y my_lbl

if x > = y goto 

my_lbl

If the value of x is greater 

than or equal to y, the control 

is transferred to the TAC 

statement marked my_lbl.

16 EQ
EQ x y my_lbl

if  x == y goto 

my_lbl

If the value of x is equal to y, 

the control is transferred to 

the TAC statement marked 

my_lbl.

17 NE
NE x y my_lbl

if  x ! = y goto 

my_lbl

If the value of x is not equal 

to y, the control is transferred 

to the TAC statement marked 

my_lbl.

18 PROC_BEGIN
PROC_

BEGIN
my_func

proc_begin  

my_func

This TAC statement marks 

the beginning of a function 

‘my_func’.

19 PROC_END
PROC_

END
x y my_lbl

proc_end This TAC statement marks the 

end of a function ‘my_func’.



254 Principles of Compiler Design

20 RETURN
RETURN x

return   x Identifi es x as the return value.

21 RETRIEVE
RETRIEVE

retrieve    x Moves the returned value of a 

function into the variable x.

22 PARAM
PARAM x

param x x is identifi ed as a parameter 

to a ‘call’ TAC statement that 

would follow.

23 CALL
CALL my_func 8

call    my_

func, 8

Transfers the control to the 

function my_func. The second 

argument is the cumulative 

size of all the parameters for 

this ‘call’ given in bytes.

The Table 5.3 shows some input C programs and the corresponding TAC. This gives a fair idea on most 

of the TAC operators mentioned above.

Table 5.3 Input C-source and the equivalent TAC code

Input C Source

/* Function */
int main()
{
 /* Local Variables */
 int v1,v2,v3,v4;

 v2=200;
 v3=300;
 v4=400;

 /* Simple assignment statements 
*/

 v1 = v2 + v3 - v4 ;

}

/* Function */
int main()
{
 /* Local Variables */
 int var;
  int arr[50];

 /* Array accesses */
 arr[43]=7;
 var = arr[43];
}

int x,z;

int

Translated TAC

(0) proc_begin main

(1) v2 := 200
(2) v3 := 300
(3) v4 := 400

/* v1 = v2 + v3 - v4 ; */
(4) _t0 := v2 + v3
(5) _t1 := _t0 - v4
(6) v1 := _t1

(7) label .L0
(8) proc_end main

(0) proc_begin main

/* arr[43]=7; */
(1) _t0 := 43 * 4
(2) _t1 := &arr
(3) _t1[_t0] := 7

/* var = arr[43]; */
(4) _t2 := 43 * 4
(5) _t3 := &arr
(6) _t4 := _t3[_t2]
(7) var := _t4

(8) label .L0
(9) proc_end main

(0) proc_begin func

/* if (a < b) */

Comments

The output TAC shows 
the statements using the 
following operators.
 ∑ PROC_BEGIN
 ∑ PROC_END
 ∑ ADD
 ∑ SUB

The output TAC shows 
the statements using the 
following operators.
 ∑ ADDR_OF
 ∑ L_INDEX_ASSIGN
 ∑ R_INDEX_ASSIGN

The output TAC shows 
the statements using the 
following operators.
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(1) if a < b goto .L0
(2) goto .L1

(3) label .L0
(4) z := 30
(5) goto .L2
(6) label .L1
(7) z := 40
(8) label .L2
(9) x := 90
(10) label .L3
(11) proc_end func

func (int a, int b)
{
 if (a < b) {
     z = 30;
 } else {
     z = 40;
 }
 x = 90;

}

 ∑ LT
 ∑ GOTO
 ∑ LBL

The TAC statements can be implemented in a compiler by having a record with 4 fi elds of operator, 

argument1, argument2 and the result. This implementation is common and is often referred to as  quadruples 

(quads for short). The entire set of TAC statements can be represented by an array of quads.

There are subtle variants of quads approach in which the TAC statements can be implemented. They are:

 1. Triples

 2. Indirect Triples

In  triples and  indirect triples, a record with 3 fi elds is used to represent each of TAC statements. The 3 

fi elds are operator, argument 1 and argument 2. In comparison with the quadruples, the result fi eld is absent 

in triples. We shall see shortly how the TAC statements can be implemented with just 3 fi elds.

An analysis of the TAC statements (for example the ones shown in Table 5.1), indicates that the result 

fi eld is mostly used in cases of compiler-generated temporaries like _t1, _t2 etc. For assignments between 

programmer-defi ned variables, the ASSIGN TAC statement is used. The triples exploit this feature and use 

the statement that computes the temporary value as a reference for the temporary. For example, consider the 

TAC statements shown in Table 5.4.

Table 5.4 TAC statements

0 : _t1 := p * n
1 : _t2 := _t1 * r
2 : _t3 = _t2 / 100
3 : p_new = p + _t3

This can be represented in triples as follows.

Table 5.5 Triples

Operator Argument 1 Argument 2

0 MUL p n

1 MUL (0) r

2 DIV (1) 100

3 ADD p (2)

Observe that the reference to temporaries is converted to the statements that evaluate them. For example, 

the temporary ‘_t1’ is calculated in the triple referenced by 0. In the triple marked 1, the value of _t1 is 

used. Instead of using the location _t1 as it is done in quadruple representation, the triple that evaluated it 

(namely triple 0) is used as the reference in triples representation. A triple, by virtue of using this technique 
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of referencing the statement instead of location for the temporaries has eliminated the fi eld ‘result’. It is 

clear that the parenthesised references are only for temporaries, while the programmer-defi ned variables 

continue using the pointers to symbol table.

Eliminating the result fi eld in the triples notation, however, causes additional triples entries for 

instructions requiring 3 operands. Consider for example, an R_INDEX_ASSIGN TAC statement

x = y[i] 

To implement this in triples, it requires two entries as shown below.

Operator Argument 1 Argument 2

0 R_INDEX y i

1 ASSIGN x (0)

The R_INDEX would be used for computing the content of the memory, which is ‘i’ units away from y. 

The ASSIGN is used for assigning the result of the fi rst computation to x.

In indirect triples implementation, there is a statements array that has a listing of pointers to triples in 

addition to the triples themselves. Every element in statements array points to one of the triples as seen 

in Fig. 5.2. At fi rst sight, one might wonder about the benefi t of adding an additional statements array, 

when the triples alone can suffi ce. The benefi t would be evident at a later point, when the intermediate 

code optimisation is performed where the statements often have to be re-arranged. In indirect triples, re-

arranging the statements is a matter of merely re-ordering the statement array.

The indirect triples implementation for the TAC statements in Table 5.4 is shown in Fig. 5.2.

Fig. 5.2 Indirect triples

 Table 5.6 shows a brief comparison of the three TAC statement implementations on the parameters of 

indirection, suitability to optimisation and space.

Table 5.6 Comparison of TAC implementations

Parameter Quadruples Triples Indirect Triples

Indirection No Indirection present. All 

variables (temporary as well 

as programmer defi ned) 

have immediate access 

through symbol table. 

Indirection present. 

However, since we have to 

allocate memory for every 

variable whether temporary 

or programmer defi ned, the 

indirection does not help 

much.

Indirection present.
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Suitability to optimisation The quadruples lend well 

to optimisation. When the 

statements need to be re-

arranged for optimisation, 

the quads are moved 

around. For moving a 

quad, there is no extra 

dependence on other quads.

The triples do not lend 

well to optimisation. When 

the statements need to be 

rearranged for optimisation, 

the triples need to be 

moved. If a triple is moved, 

all the references (in the 

form of parenthesised 

numbers) in arg1 and 

arg2 arrays also have to be 

updated accordingly. This 

would be a time-consuming 

operation making it less 

compile-time effi cient.

The indirect triples lend 

well to optimisation. 

When the statements 

need to be rearranged 

for optimisation, the 

statement list is re-

ordered. The references 

do not change.

Space The space required for 

storage is not optimum, 

because of the additional 

result fi eld.

Requires lesser space than 

the quadruples.

More space required than 

triples. But, it can save 

some space as compared 

to quadruples because the 

statement list can point 

to the same triple for a 

temporary value, in case it 

is used more than once.

5.1.2 Abstract Syntax Tree
Some of the front-ends of compilers translate the input source into an intermediate form knows as abstract 

syntax tree (AST). The idea of AST can be appreciated better when it is seen in the context of parse tree.

Consider a C-statement grammar in Table 5.7 for understanding the concept of AST.

Table 5.7 Context-free grammar

1 c_statement : IDENTIFIER  EQ_TO_OP  c_expression  SEMI_COLON

2 c_expression : CONSTANT

3 | IDENTIFIER

4 | c_expression   OPERATOR   CONSTANT

5 | c_expression   OPERATOR   IDENTIFIER

For an input string of  ‘a = b + c – 5 ;’ conformant to the grammar in Table 5.7, the parse tree is shown in 

Fig. 5.3.

Fig. 5.3 Parse tree for ‘a = b + c – 5;’
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The parse tree is ideal to represent the syntax of the language. There are portions of the parse tree 

that can be considered irrelevant from an intermediate code generation viewpoint. For example, from an 

intermediate code generation standpoint, it is not required to know that the IDENTIFIER was reduced 

to c_expression and then the ‘c_expression OPERATOR CONSTANT’ was reduced to c_expression and 

so on. The real crux in terms of intermediate code generation view comes from the leaves IDENTIFIER, 

OPERATOR and the CONSTANT. Another piece of information that is irrelevant from an intermediate 

code generation point of view is the presence of syntactic entities like semicolon, parenthesis, commas, etc.

The abstract syntax tree is a condensed version of parse tree eliminating all the syntactic sugar of the 

language (like semicolon, multiple levels of reduction, etc.). In AST, operands are located as leaf nodes and 

operators/keywords are interior nodes. The AST for the parse tree given above is shown in Fig. 5.4.

Fig. 5.4 Abstract syntax tree for ‘a = b + c – 5’

From the AST in Fig. 5.4, we can observe that:

∑ The interior nodes correspond to operators like +, –, and so on.

∑ The leaf nodes correspond to operands like a, b, 5, etc.

∑ Chains of single productions like  c_expression  Æ IDENTIFIER are collapsed in comparison with the 

parse tree.

∑ The nodes of AST deal with semantic entities only. There are no AST nodes associated with 

syntactical entities like ‘;’ or ‘(’ and alike. 

Another feature in AST that helps us deduce the abstract meaning of the programming construct quickly 

is the ‘fl attening’ of lists like lists of declarations, lists of parameters, etc. For example, Fig. 5.5 shows an 

if-else construct having a block statement. The parse tree equivalent for the same block statement would 

typically have gone in to multiple levels owing to productions like “statement_list Æ statement statement_

list”. It is diffi cult to get a feel for the meaning of program by browsing the parse tree. The AST helps 

us deduce the meaning of the ‘if’ statement quickly by fl attening the lists and eliminating the syntactic 

overhead.

The AST is usually shown in graphical form, but it is implemented in software using a record data 

structure. In order to implement simple assignment statements shown in Table 5.7, there are three types of 

AST nodes, namely operator node, identifi er node and a literal node required to represent intermediate code. 

Each node in AST is implemented as a record with multiple fi elds. A label fi eld indicating whether it is an 

operator or identifi er or a literal is common to all the AST nodes. An identifi er node has a fi eld containing 

a pointer to symbol table entry of the Identifi er. A literal node contains a fi eld that stores the value of the 
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number it represents. An operator node contains pointers to one or two of the AST nodes depending on 

whether it is a unary or a binary operator. These nodes are shown in Fig. 5.6.

 

Fig. 5.5 AST for if-else block statement construct

Fig. 5.6 Nodes in AST

An AST tree representing an assignment statement can be created by having an operator node as the root 

and having pointers to its children (operands) in its record structure.  The entire tree can be traversed from 

the root node by following the fi elds marked for children as shown in Fig. 5.7(c), resulting in a yield of the 

assignment statement.

Alternatively, an AST Tree can be implemented by having an array of records of AST nodes. A new AST 

node is allocated from an array of records whenever required. The index to the children nodes in the fi elds 

marked for the children is stored instead of storing the pointer to children. This is shown in Fig. 5.7(d).

In either of the cases, the AST is denoted by a tree data structure. Traversal algorithms operating on 

the tree data structure starting from the root of the tree can enable us do specifi c tasks like optimisation of 

intermediate code, etc.

The front end of GNU compiler collection—gcc, uses AST as its intermediate code form. The AST can 

be dumped into a fi le by using the option ‘–fdump-translation-unit’ on the command line during compilation 

of a C program.
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Fig. 5.7 AST implementation

The following are the advantages and disadvantages of using abstract syntax tree as an intermediate 

language.

Advantages

∑ The creation of an AST can be done at the time of parsing. Further analysis like type checking, 

optimisation of intermediate code, etc. can be easily done by operating on the AST after the parsing is 

completed. This gives fl exibility with respect to the techniques that can be employed to have a better 

machine code.

∑ The AST lends well for intermediate code optimisation by means of reorganising code.

Disadvantages

∑ The AST might consume a lot of memory in order to store the hierarchical organisation of the entire 

program.

5.1.2.1 Directed Acyclic Graph An important derivative of abstract syntax tree known as  directed 

acyclic graph (DAG) is used to reduce the amount of memory used for storing the AST tree data structure.

Consider an expression

k = k – 7

The abstract syntax tree for it is as shown in Fig. 5.8.
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Fig. 5.8 AST for k = k – 7

Note that there are 2 nodes for the identifi er ‘k’ in Fig. 5.8, one representing k on the LHS of the 

expression and the other representing the k on the RHS.

The DAG identifi es such common nodes and eliminates their duplication in the AST. The DAG for the 

expression k = k – 7 is given by

Fig. 5.9 DAG for k = k – 7

A DAG like the one shown in Fig. 5.9 is characterised by some of the nodes having multiple parents. 

In the above example, the identifi er node k has 2 parents—the operator nodes having operator ‘–’ and 

‘=’. The creation of DAG is identical to the AST except for the extra check to determine whether a node 

with identical properties already exists. In the event of the node already created before, it is chained to the 

existing node avoiding a duplicate node. The DAG is optimal on space as compared to the AST. 

5.2 INTERMEDIATE CODE GENERATION

In this section, we study a translation scheme for translating some of the common programming constructs 

in higher level languages into intermediate code. A sub-set of the ‘C’ language is taken as the reference 

input source language for the discussion. The challenges associated with the translation of programming 

constructs like if-else, while, switch-case, etc. into intermediate code are discussed. 

The discussion on the productions and semantic actions for handling each of the programming constructs 

is followed-up by examples showing the generation of intermediate code for the same. The intermediate 

code is represented in three-address code(TAC) form throughout the discussion. The bottom-up translation 

method is used for implementing the translation scheme and generation of intermediate code. Unless 

otherwise specifi ed, all the variables used in the discussion are integers, which require 4 bytes in memory 

for storage each.
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5.2.1 Simple Assignment Statements

The simple assignment statements are the most common statements found in programs. The assignment 

statements help in performing basic computations. They form the core of the programs. In this section, we 

learn about the translation of simple assignment statements into intermediate code.

Table 5.8 shows a few C code snippets containing simple assignment statements and the corresponding 

intermediate code. The variables v1, v2, etc. used in the code snippet are all assumed to be integers. The 

TAC statements are numbered for convenience.

Table 5.8 Code snippets and the intermediate code

# Code snippet Intermediate code

1 v1= v2 + v3 - v4; 0: _t0 := v2 + v3
1: _t1 := _t0 - v4
2: v1 := _t1

2 v1 = v2 + v3 + v4 ; 0: _t0 := v2 + v3
1: _t1 := _t0 + v4
2: v1 := _t1

3 v1 = ( v2 – v3 ) * (v2 + 2*v3 ) ; 0: _t0 := v2 - v3
1: _t1 := 2 * v3
2: _t2 := v2 + _t1
3: _t3 := _t0 * _t2
4: v1 := _t3

In the intermediate code for the simple assignment statements seen in Table 5.8, we can fi nd that 

temporaries are created for storing the interim results to be later transferred to the user defi ned variables. 

For example, in the code snippet # 3, the temporary variables _t0,_t1,_t2 and _t3 are used for computing the 

interim values and later in the quad 4, a temporary value  ‘_t3’ is transferred to the user defi ned variable v1.

We look at some of the productions and the semantic actions pertaining to the translation of simple 

assignment statements in the input C language program to intermediate code. Some of the semantic 

actions listed below use the symbol table that is created during the processing of declarations for fetching 

the symbol table entry. The processing of the declarations resulting in creation of symbol table entries has 

been explained in the chapter on ‘Semantic Analysis’. The semantic actions listed below for generating 

intermediate code should be treated as an extension to the actions for the semantic analysis discussed in 

Chapter 4.

A function ‘emit’ is used to generate the intermediate code in the three-address format. The function 

‘emit’ is modelled on the quadruple representation of the three-address code. It takes four parameters, 

namely the TAC operator, operand1, operand2 and result, in the same order. The operator fi eld can take 

one of the 23 operators shown in Table 5.2. The operand1, operand2 and result are pointers to symbol table 

entries holding the respective operands.

There are 4 non-terminals that are used in the translation of simple assignment statements. They are:    

(1) statement (2) unary expression (3) binary expression and (4) expression.

A ‘stmt’ non-terminal is used for recognising a C language statement. It takes the form of expression 

followed by a semicolon as given by Production 30.

30 stmt : expr  ‘;’
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A unary expression is created by reduction of lexical token IDENTIFIER. A unary expression has an 

attribute ‘place’. The place attribute refers to the symbol table entry of the variable where the value of unary 

expression is stored. When an identifi er is reduced to unary expression (Production 32), the place attribute 

is fi lled with the symbol table entry of the identifi er. 

32 unary_expr : IDENTIFIER   {

   unary_expr.place = lookup(IDENTIFIER.name); /*Symbol Table Entry*/

}

The ‘place’ attribute is propagated, when a unary expression is reduced to a binary expression and also 

when expression with braces is reduced to a unary expression as shown by Productions 36 and 42. The 

place attribute is propagated from binary expression to expression via ‘or expression’ and ‘and expression’ 

as seen in Productions 54, 56 and 57.

36 unary_expr : ‘(’  expr   ‘)’     {

 unary_expr.place = expr.place

}

42 binary_expr : unary_expr {

 binary_expr.place = unary_expr.place;

}

54 expr : or_expr {

 expr.place = or_expr.place;

}

56 or_expr : and_expr {

 or_expr.place = and_expr.place;

}

57 and_expr : binary_expr {

 and_expr.place = binary_expr.place;

}

In the simple assignment statement of the form unary_expr ‘=’ expr, an ASSIGN three address statement 

using the place attributes of expr and unary_expr is emitted.

31 expr : unary_expr ‘=’ expr {

 emit(ASSIGN,expr1.place,NULL,unary_expr.place);

}

A unary minus is handled by generating TAC statement with UMINUS operator using the function 

‘emit’.  A function ‘newtemp( )’ is used for creating a temporary variable like _t0,_t1, etc. to store the result 

value. The function newtemp( ) creates a symbol table entry for the temporary variable and returns it.



264 Principles of Compiler Design

37 unary_expr | ‘-’  unary_expr {

 unary_expr.place = newtemp();
 emit(UMINUS,unary_expr1.place,NULL,unary_expr.place);

}

The binary expression is used for storing the result of the operations involving operators like +,* etc. 

which require two operands. Similar to the unary expression, the main attribute for a binary expression is 

‘place’, a pointer to the symbol table entry, where the value of binary expression is stored. The semantic 

actions shown for Productions 38 through 41 are along similar lines. Each of these emits TAC code using 

the operands and the binary operator. The result is stored in a compiler-generated temporary (e.g. _t1, _t2), 

created by the function ‘newtemp’.

38 binary_expr : binary_expr  ‘*’ binary_expr  {

binary_expr.place = newtemp();
emit(MUL,binary_expr1.place,binary_expr2.place,binary_expr.place);

}

39 | binary_expr ‘/’ binary_expr {

binary_expr.place = newtemp();
emit(DIV,binary_expr1.place,binary_expr2.place,binary_expr.place);

}

40 | binary_expr ‘+’ binary_expr {

binary_expr.place = newtemp();
emit(PLUS,binary_expr1.place,binary_expr2.place,binary_expr.place);

}

41 | binary_expr ‘–’ binary_expr  {

binary_expr.place = newtemp();
emit(MINUS,binary_expr1.place,binary_expr2.place,binary_expr.place);

}

Table 5.9 shows a simple assignment statement and its corresponding translated code using the 

productions and semantic actions discussed above. Figure 5.10 shows the attributes of different nodes and 

their values during the translation from the input source to the three address code. The nodes are numbered 

in the order of creation during bottom-up translation.

Table 5.9 Input source and its translated code

C code snippet Translated TAC

v1= v2+v3-v4; 0: _t0 := v2 + v3
1: _t1 := _t0 - v4
2: v1 := _t1
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Fig. 5.10 Translation of assignment statement  ‘v1 = v2 + v3 – v4 ;’

5.2.2 Example 1—Simple Assignment Statements

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate 

code for simple assignment statements using the productions and semantic actions described in the 

preceding section. The program takes as input, a sample C input source with some simple assignment 

statements. The output of ‘icgen’ is the Intermediate code in TAC format generated from the input C source. 

The dialog below shows the icgen program taking in some sample input C sources, and printing out their 

intermediate code in TAC format.

The PROC_BEGIN and PROC_END statements are generated at the beginning and end of a function 

defi nition respectively.
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# Generating the Parser from Grammar Specifi cations

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc

# Generating the Lexical Analyser from Lexical Specifi cations 

$ fl ex  -oc-small-lex.cc c-small-lex.l

# Compiling the Lexical Analyser 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc

# Building icgen Binary 

$ g++  -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

# This is an input source fi le 

$ cat -n test1.c 
1 /* Function */
2 int main()
3 {
4  /* Local Variables */
5  int v1,v2,v3,v4;
6
7  v2=200;
8  v3=300;
9  v4=400;
10
11  /* Simple assignment statements */
12  v1 = v2 + v3 - v4 ;
13
14  }

# Generating Intermediate code for simple assignment statements 

$ ./icgen test1.c 
(0) proc_begin main
(1) v2 := 200
(2) v3 := 300
(3) v4 := 400
(4) _t0 := v2 + v3
(5) _t1 := _t0 - v4
(6) v1 := _t1
(7) label .L0
(8) proc_end main

# Another input source fi le 

$ cat -n test1a.c 
1  /* Function */
2  int main()
3  {
4     /* Local Variables */

5     int v1,v2,v3,v4;

6

7     /* Simple assignment statements */

8     v1=50;

9     v2=30;

10
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11    v3 = v1 + v2 ;
12    v4 = v1 + 34 - (45 *v3 - v2 ) ;
13
14  }

# Generating IC for assignment statements  

$ ./icgen test1a.c 
(0) proc_begin main
(1) v1 := 50
(2) v2 := 30
(3) _t0 := v1 + v2
(4) v3 := _t0
(5) _t1 := v1 + 34
(6) _t2 := 45 * v3
(7) _t3 := _t2 - v2
(8) _t4 := _t1 - _t3
(9) v4 := _t4
(10) label .L0
(11) proc_end main

5.2.3 Arrays

One of the important data structures used in higher level programming languages is arrays. The C language 

supports single and multi-dimensional arrays. In this section, we learn about generation of intermediate 

code for statements using array references in the input source.  

 Arrays are stored in memory as a block of contiguous locations. An element in an array can be accessed 

by computing the offset from the base of the array and fetching the value in that location. Consider an array 

stored at an address ‘base’ and the width of the array element is given by ‘w’. The memory layout for the 

array is shown in Fig. 5.11.

Fig. 5.11 Array memory layout

From Fig. 5.11, it is evident that the address of ‘i’th element in the array is given by ‘base +  i*w’. 

The TAC generated for an array access of  ‘i’th element, uses the ‘base’ or starting address of the array 

and an offset given by ‘i*w’ to index to the correct location. Table 5.10 shows a couple of code snippets 

making array references and the corresponding intermediate code. We can see from Table 5.10 that there 

are two types of TAC statements that are useful in dealing with array references. They are the address 

assignment statement and the indexed assignment statement given in Table 5.2. 
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Table 5.10 TAC statements for array references

# Code snippet Intermediate code

1 var = arr[i]; 0: _t0 := i * 4  /* Assuming the width of integer is 4 Bytes */
1: _t1 := &arr  /* Fetching the base address */
2: _t2 := _t1[_t0] /* _t1 contains ‘base’ and _t0 contains ‘offset’ */
3: var := _t2

2 var = arr[43]; 0: _t0 := 43 * 4  /* Assuming the width of integer is 4 Bytes */
1: _t1 := &arr  /* Fetching the base address */
2: _t2 := _t1[_t0] /* _t1 contains ‘base’ and _t0 contains ‘offset’ */
3: var := _t2

A multi-dimensional array can be stored in memory in row major form or column major form. In row 

major form the elements of the multi-dimensional array are stored row by row, while the column major 

form stores elements of the multi-dimensional array column by column. Figure 5.12 shows the memory 

layout of storage in row major form representing a two-dimensional array of size arr[2][3]. Figure 5.13 

shows the memory layout of storage in column major form for the same array.

First Row arr[0][0]

arr[0][1]

arr[0][2]

Second Row arr[1][0]

arr[1][1]

arr[1][2]

Fig. 5.12 Row major form of storage for multi-dimensional array (arr[2][3])

First Column arr[0][0]

arr[1][0]

Second Column arr[0][1]

arr[1][1]

Third Column arr[0][2]

arr[1][2]

Fig. 5.13 Column major form of storage for multi-dimensional array (arr[2][3])

Consider an array of size arr[d1][d2], with each element of width w. From the Fig. 5.12, it is evident 

that in the row major form, the address corresponding to the element a[i1][i2] is given by ‘base + (i1*d2 

+ i2)*w’. From the Fig. 5.13, it is evident that in the column major form, the address corresponding to 

the element a[i1][i2] is given by ‘base + (i1 + i2*d1)*w’. The ‘C’ language compilers store the arrays in 

row major form. In the following discussion, we assume row major form of storage for multi-dimensional 

arrays.
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For a generic multi-dimensional array of ‘n’ dimensions, arr[d1][d2][d3]......[dn], the address of an 

element arr[i1][i2][i3]......[in] using row major form given by

base +  (i1* d2 *d3 *d4.....dn * w) + (i2* d3 *d4 *d5.....dn* w) + (i3* d4 *d5 *d6.....dn* w) .... + (in* w)

 

 .... Equation 5.1

Let us examine Equation 5.1 carefully in terms of how each index in contributes to the offset calculation. 

The contributing factor in Equation 5.1 corresponding to the fi rst index i1 is given by  i1 *d2 *d3 *d4.....dn * 

w. Similarly, the next index i2, contributes i2* d3 *d4 *d5.....dn *w. The index i3 contributes i3 *d4 *d5.....dn 

*w, and so on. The index in, contributes in* w.

In order to translate array references, there are two attributes, ‘place’ and ‘offset’ associated with unary 

expression. The ‘place’ would typically hold the base address of the array and the ‘offset’ holds the sum 

of parenthesised expressions in Equation 5.1. When the array index i1 is processed during an access for 

arr[i1][i2][i3]......[in], in an input source, the contributing factor corresponding to it, i.e. (i1 *d2 *d3 

*d4.....dn *w) is evaluated and held in the attribute ‘offset’. Similarly, when the index i2 is processed the 

corresponding factor (i2 *d3 *d4 *d5.....dn *w) is computed and summed up with the value already in offset. 

This goes on until all the indexes till in are processed. Let’s take an example to clarify these ideas.

Consider an array usage as shown in Listing 5.1. The line 4 declares the array and in line 9 an element in 

the array is accessed.

1 int main()
2 {
3      int h;
4      int arr[30][40][50];
5
6      h=30;
7
8      /* Array accesses */
9      arr[6][23][9]=h;
10
11 }

Listing 5.1 Array access in program

 After the declaration on line 4 is processed in semantic analysis, a type expression chain as shown in 

Fig. 5.14 is set up.

int arr [30][40][50];

Fig. 5.14 Type expression chain

 During the processing of array access on line 9, i.e. arr[6][23][9], when the fi rst index arr[6] is parsed, 

the factor i1* d2 *d3 *d4.....dn * w is evaluated according to Equation 5.1. The value of d2 *d3 * w can be 
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readily calculated by following the type expression chain starting from the next dimension till the end as 

40*50*4, which is 8000. The contributing factor from the fi rst index [6] is thus 6*8000. Similarly, when the 

next index, which is [23] is parsed, the value of d3 * w can be calculated by following the type expression 

chain starting from the next dimension till the end as 50*4, which is 200. The contributing factor for the 

second index [23] is thus 23*200. When the fi nal index, which is [9] is parsed, the contributing factor, 

computed from the type expression chain is 9*4. Thus for the access arr[6][23][9], the memory location is 

the base of the array, arr plus an offset, which is the sum of the contributing factors calculated above. The 

TAC for the same is shown below.

Table 5.11 TAC statements for array reference arr[6][23][9] = h

0: _t0 := 6 * 8000 /* contributing factor from the fi rst index 6 */
1: _t1 := &arr
2: _t2 := 23 * 200 /* contributing factor from the second index 23 */
3: _t0 := _t2 + _t0
4: _t3 := 9 * 4  /* contributing factor from the third index 9 */
5: _t0 := _t3 + _t0
6: _t1[_t0] := h

The ideas just discussed are embodied in the productions and the semantic actions shown below. In 

order to support array references, the semantic actions for some of the productions seen in Section 5.3.1 

require modifi cation. The reader can appreciate the fact that if the attribute ‘offset’ of the unary expression 

is NULL, it would make this translation similar to the one shown in Section 5.3.1.

When a unary expression is created from IDENTIFIER (Production 32) or expression (Production 36), 

the offset attribute is initialised with NULL. The offset attribute would be fi lled in later, when array access 

is found in Production 43.

32 unary_expr : IDENTIFIER   {

 /* Symbol Table Entry */
 unary_expr.place = lookup(IDENTIFIER.name); 
 unary_expr.offset = NULL ;

}

36 unary_expr : ‘(’  expr   ‘)’     {

 unary_expr.place = expr.place
 unary_expr.offset = NULL ;
}

The array references are handled by Production 43 shown below. In the semantic action, an ADDR_

OF statement is emitted, when the fi rst index is sighted. The fi rst index can be identifi ed by the condition 

of offset being NULL. The value of offset is determined by calculating the contributing factor as given 

in Equation 5.1. For calculating the contributing factor, the index given by ‘expr.place’ and a couple 

of functions getsize( ) and make_lit_tab_entry( ) are used. The getsize( ) function calculates the factor 

d(i + 1) *d(i + 2) *d(i + 3).....dn * w for an index ‘i’. The function make_lit_tab_entry( ) makes an entry in the 

literal table for literals like say 1, 2, etc. Observe that Production 43 is left recursive. This helps in fetching 

one index at a time, when multi-dimensional access is made.
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43 unary_expr : unary_expr ‘[’ expr ‘]’ {

 sz_of_unit= getsize(unary_expr1.expr_type.next);
 se_ptr = make_lit_tab_entry(sz_of_unit);

 t = newtemp();
 emit(MUL,expr.place,se_ptr,t);

 if(unary_expr1.offset == NULL ){
   t1 = newtemp();
   emit(ADDR_OF,unary_expr1.place,NULL,t1);
   unary_expr.place = t1;
   unary_expr.offset = t;
 }else{
   emit(PLUS,t,unary_expr1.offset,unary_expr.offset);
 }
}

When a unary expression is used, the content of the unary expression is accessed by using the attributes, 

place and offset as given by Production 42 and 31.

42 binary_expr | unary_expr {

 if(unary_expr.offset == NULL ){
  binary_expr.place = unary_expr.place;
 }else{
  binary_expr.place = newtemp();
  emit(R_INDEX_ASSIGN,unary_expr.place,unary_expr. offset, 
        binary_expr.place);
 }
}

31 expr : unary_expr ‘=’ expr {

  if(unary_expr.offset == NULL ){
  emit(ASSIGN,expr1.place,NULL,unary_expr.place);
 }else{
  emit(L_INDEX_ASSIGN,unary_expr.offset,expr1. place, unary_expr.place);
 }
}

Table 5.12 shows an array access statement and its corresponding translated code using the productions 

and semantic actions discussed above. Figure 5.15 shows the attributes of different nodes and their values 

during the translation from the input source to the three address code. The nodes are numbered in the order 

of creation during bottom-up translation.

Table 5.12 Input source and its translated code

C code snippet Translated TAC Comments

x = arr[5][9]; 0: _t0 := 5 * 120
1: _t1 := &arr
2: _t2 := 9 * 4
3: _t0 := _t2 + _t0
4: _t3 := _t1[_t0]
5: x := _t3

The array ‘arr’ is assumed to be declared as 
int arr[20][30] ;

The value 120 in quad 0 comes from 30 * 4, where 30 
is the next dimension and 4 is the size of integer.
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Fig. 5.15 Translation of statement x = arr[5][9]
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5.2.4 Example 2—Array Access

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate 

code for array references using the productions and semantic actions described in the preceding section. 

The program takes as input, a sample C input source with some array references. The output of ‘icgen’ is 

the intermediate code in TAC format generated from the input C source. The dialog below shows the icgen 

program taking in some sample input C sources, and printing out their intermediate code in TAC format.

# Generating the Parser from Grammar Specifi cations 

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y

# Compiling the Parser

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc

# Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex  -oc-small-lex.cc c-small-lex.l

# Compiling the Lexical Analyser

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc

# Building icgen Binary 

$ g++  -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

# This is a input source fi le 

$ cat -n test2.c 

 1
 2 /* Function */
 3 int main()
 4 {
 5   /* Local Variables */
 6   int var;
 7   int arr[50];
 8
 9   /* Array accesses */
10   arr[43]=7;
11   var = arr[43];
12 }

# Generating Intermediate code for array access statements 

$ ./icgen test2.c 

(0) proc_begin main
(1) _t0 := 43 * 4
(2) _t1 := &arr
(3) _t1[_t0] := 7
(4) _t2 := 43 * 4
(5) _t3 := &arr
(6) _t4 := _t3[_t2]
(7) var := _t4
(8) label .L0
(9) proc_end main

# Another input source fi le 

$ cat -n test2a.c 
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 1 /* Variables */
 2 int x,arr[20][30];
 3
 4
 5 /* Function */
 6 int main()
 7 {
 8   /* Array accesses */
 9   x = arr[5][9];
10 }

# Generating IC for Array access

$ ./icgen test2a.c 

(0) proc_begin main
(1) _t0 := 5 * 120
(2) _t1 := &arr
(3) _t2 := 9 * 4
(4) _t0 := _t2 + _t0
(5) _t3 := _t1[_t0]
(6) x := _t3
(7) label .L0
(8) proc_end main

# Another input source fi le 

$ cat -n test2b.c 

 1 /* Function */
 2 int main()
 3 {
 4   /* Local Variables */
 5   int h;
 6   int arr[30][40][50];
 7
 8   /* Initialization */
 9   h=30;
10
11   /* Array accesses */
12   arr[6][23][9]=h;
13 }

# Generating IC for Array access 

$ ./icgen test2b.c 

(0) proc_begin main
(1) h := 30
(2) _t0 := 6 * 8000
(3) _t1 := &arr
(4) _t2 := 23 * 200
(5) _t0 := _t2 + _t0
(6) _t3 := 9 * 4
(7) _t0 := _t3 + _t0
(8) _t1[_t0] := h
(9) label .L0
(10) proc_end main
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5.2.5 Pointers and Address Operators

 Pointers are an important part of higher level programming languages. They are used to set up data 

structures like linked lists, trees, and so on. In this section, we learn about translating the C language 

statements involving pointers into intermediate code in three address format.

The statements in C language involving pointers consists of the usage of two operators namely ‘*’ and 

‘&’. In a later section, we will also look at the ‘–>’ operator, which de-references an element in a structure. 

Table 5.13 shows some C code snippets using the ‘*’ and ‘&’ operators and the corresponding intermediate 

code. This gives an idea on how the intermediate code looks like for accesses using pointer and address of 

operators. We can see from Table 5.13 that the left-indexed assign and right-indexed assign TAC operators 

are used in the translation of the ‘*’ operator. The ‘&’ operator in C input source is translated to the ADDR_OF 

operator in the TAC statements.

Table 5.13 C code snippets and the intermediate code

# Sample C code 

snippet
Intermediate code Comments

1 p = &x ;

*p = 10 ;

0: _t0 := &x

1: p := _t0

2: p[0] := 10

x is assumed to be an integer variable.

2 p=&x;

y=*p;

0: _t0 := &x

1: p := _t0

2: _t1 := p[0]

3: y := _t1

x is assumed to be an integer variable.

3 p = &arr[3]

*p = 10 ;

0: _t0 := 3 * 4

1: _t1 := &arr

2: _t2 := _t1 + _t0

3: p := _t2

4: p[0] := 10

The array ‘arr’ is assumed to be declared as 
int arr[20];

The size of an integer is 4 Bytes.

4 p = &arr[3]

y=*p;

0: _t2 := 3 * 4

1: _t3 := &arr

2: _t4 := _t3 + _t2

3: p := _t4

4: _t5 := p[0]

5: x := _t5

The array ‘arr’ is assumed to be declared as 
int arr[20];

The size of an integer is 4 Bytes.

We have seen in the previous section that the translation of access to any variable in the input program 

is done by using two attributes of unary expression namely the ‘place’ and ‘offset’. When an array access is 

translated, the place contains the base address of the variable and the offset contains the number of memory 

units from the base for that particular access. When a simple variable access in the input source program 

is translated, the offset attribute is NULL. The same attributes place, and offset are used to handle the two 

operators ‘*’ and ‘&’.

The translation of ‘& unary_expr’ in the input source program (Production 44) involves fetching the 

address of the unary expression. For simple variables, the address is given by place attribute alone, since 

the offset would be NULL. The ADDR_OF TAC statement is emitted as a part of the translation. For an 

array variable, which is identifi ed by ‘place’ and ‘offset’ attributes, the address is simply a sum of the place 

and offset attribute.
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44 unary_expr : ‘&’ unary_expr {

 t= newtemp()

 if(unary_expr1.offset == NULL ){

  emit(ADDR_OF,unary_expr1.place,NULL,t);

 }else{

  emit(PLUS,unary_expr1.place,unary_expr1.offset,t);

 }

 unary_expr.place=t;

 unary_expr.offset = 0;       

}

The translation of ‘* unary_expr’ in the input source program (Production 45) involves fetching the 

content of the unary expression. For simple variables, the content is obtained by getting the content at 

‘place’ attribute alone, since the offset would be NULL. For an array variable, which is identifi ed by ‘place’ 

and ‘offset’ attributes, the content is given by ‘place’ attribute indexed with ‘offset’ attribute using the R_

INDEX_ASSIGN statement shown in Table 5.2.

45 unary_expr : ‘*’ unary_expr  {

 t=newtemp();

 if(unary_expr1.offset == NULL ){

  unary_expr.place=unary_expr1.place;

  unary_expr.offset=make_lit_tbl_entry(0); 

 }else{

  t1=newtemp();

  emit(R_INDEX_ASSIGN,

     unary_expr1.place,

     unary_expr1.offset,t1);

  unary_expr.place=t1;

  unary_expr.offset=make_lit_tbl_entry(0);

 }

}

Table 5.14 shows statement using ‘&’ operator and its corresponding translated code using the 

productions and semantic actions discussed above. Figure 5.16 shows the attributes of different nodes and 

their values during the translation from the input source to the three address code. The nodes are numbered 

in the order of creation during bottom up translation.

Table 5.14 Input source and its translated code

C code snippet Translated TAC Comments

x = &arr[3]; 0: _t0 := 3 * 4
1: _t1 := &arr
2: _t2 := _t1 + _t0
3: x := _t2

The array ‘arr’ is assumed to be declared as 
int arr[20] ;

The size of an integer is 4 bytes.
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Fig. 5.16 Translation of a statement ‘x = &arr[3] ; ’
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5.2.6 Example 3—Pointers and Address Operators

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate 

code for statements involving ‘*’ and ‘&’ operators using the productions and semantic actions described 

in the preceding section. The icgen program implements the translation scheme using bottom up translation 

method. The program takes as input, a sample C input source with some statements using ‘*’ and ‘&’ 

operators. The output of ‘icgen’ is the intermediate code in TAC format generated from the input C source. 

The dialog below shows the icgen program taking in some sample input C sources, and printing out their 

intermediate code in TAC format. 

# Generating the Parser from Grammar Specifi cations 

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyser from Lexical Specifi cations 

$ fl ex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyser 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building icgen Binary 

$ g++  -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen 

# This is an input source fi le 

$ cat -n test3.c 
    1 int *p;
    2 int x;
    3 
    4 /* Function */
    5 int main()
    6 {
    7  /* Move 10 into x */
    8  p=&x;
    9  *p=10;
   10 }

# Generating IC for statements with pointer and Address operators 

$ ./icgen test3.c 
(0) proc_begin main
(1) _t0 := &x
(2) p := _t0
(3) p[0] := 10
(4) label .L0
(5) proc_end main

# Input source fi le 

$ cat -n test3a.c 
    1 int *p;
    2 int x,y;
    3 
    4 /* Function */
    5 int main()
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    6 {
    7  x=10;
    8 
    9  /* Move value of x into y */
   10  p=&x;
   11  y=*p;
   12 }

# Generating IC 

$ ./icgen test3a.c 
(0) proc_begin main
(1) x := 10
(2) _t0 := &x
(3) p := _t0
(4) _t1 := p[0]
(5) y := _t1
(6) label .L0
(7) proc_end main

# Input source fi le 

$ cat -n test3b.c 
    1 int *p;
    2 int arr[10];
    3 
    4 /* Function */
    5 int main()
    6 {
    7  /* Move 10 into arr[3] */
    8  p=&arr[3];
    9  *p=10;
   10 }

# Generating IC 

$ ./icgen test3b.c 
(0) proc_begin main
(1) _t0 := 3 * 4
(2) _t1 := &arr
(3) _t2 := _t1 + _t0
(4) p := _t2
(5) p[0] := 10
(6) label .L0
(7) proc_end main

# Input source fi le 

$ cat -n test3c.c 
    1 int *p;
    2 int arr[10];
    3 int x;
    4 
    5 /* Function */
    6 int main()
    7 {
    8  arr[3]=10;
    9 
   10  /* Move 10 into x */
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   11  p=&arr[3];
   12  x=*p;
   13 }

# Generating IC 

$ ./icgen test3c.c 
(0) proc_begin main
(1) _t0 := 3 * 4
(2) _t1 := &arr
(3) _t1[_t0] := 10
(4) _t2 := 3 * 4
(5) _t3 := &arr
(6) _t4 := _t3 + _t2
(7) p := _t4
(8) _t5 := p[0]
(9) x := _t5
(10) label .L0
(11) proc_end main

5.2.7 Record Access

A structure or record is a common facility used in higher-level languages like C. A record can consist of 

multiple fi elds of different data types. In Chapter 4, on ‘Semantic Analysis’, we saw that a separate symbol 

table was created for each structure declaration. The fi elds of the structure are contained as elements of that 

symbol table. When C statement containing the structure references is translated, the symbol table is used 

to calculate the offset required to access a particular member of the structure.

Consider the C code snippet containing the usage of a structure in Table 5.15 for understanding the 

important aspects of  intermediate code generation for a structure reference. The code snippet shows a 

structure ‘my_data’ containing two integer fi elds student_id and age. In C language, there are two ways 

of accessing a fi eld in a structure in a C statement, one by using the ‘.’ operator and the other by using ‘->’ 

operator. Table 5.15 shows the usage of the dot (.) operator for accessing a fi eld in a structure.

Table 5.15 C code snippet using dot operator

..

..
struct my_data
{ 
        int student_id;
        int age;
}d1;

..

..

d1.age=20;
..
..

Table 5.16 shows the intermediate code for the code snippet in Table 5.15. The struct references are 

translated to indexed assign TAC statements. The base address of the structure is used as the base in the 

indexed operation. The offset in bytes for the fi eld of reference, which is ‘age’ in this case, is used an index. 
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The fi eld ‘age’ follows the fi eld ‘student_id’ which is 4 bytes. Hence, the offset of the fi eld ‘age’ is 4 bytes 

from the base address.

Table 5.16 TAC statements for the struct access by dot operator

0: _t1 := &d1
1: _t2 := 4
2: _t1[_t2] := 20

Consider the C code snippet in Table 5.17 containing the usage of ‘Æ’ (arrow) operator for accessing 

structure fi elds. A variable ‘ptr’ accesses the fi elds in the structure by using the Æ operator.

Table 5.17 C code snippet using arrow operator

..

..
struct my_data
{ 
   int student_id;
   int age;
}*ptr;

..

..

ptr->age=20;
..
..

Table 5.18 shows the intermediate code for the code snippet in Table 5.17. As in the previous case, the 

struct references are translated to indexed assign TAC statements. The value of the ‘ptr’ is used as the base 

in the indexed operation. The offset in bytes for the fi eld of reference, which is ‘age’ in this case, is used an 

index. The fi eld ‘age’ follows the fi eld ‘student_id’, which is 4 bytes. Hence the offset of the fi eld ‘age’ is 4 

bytes from the base address.

Table 5.18 TAC statements for the struct access by arrow operator

0: _t3 := ptr 
1: _t4 := 4
2: _t3[_t4] := 20

The translation of structure references (Productions 46 and 47 below) in the statements involves 

handling the two operators, ‘.’ and ‘Æ’. For the translation of structure reference, when the dot operator is 

used, the following steps are involved: (a) Fetch the address of the unary expression preceding the dot (b) 

Calculate the offset of the fi eld following the dot and (c) Use the values in (a) & (b) in the indexed TAC 

statement to access the memory associated with the fi eld. Similarly, when a ‘Æ’ operator is used to access 

a fi eld in a structure, the steps involved are: (a) Fetch the content of the unary expression preceding the 

‘Æ’ (b) Calculate the offset of the fi eld following the ‘Æ’ and (c) Use the values in (a) & (b) in the indexed 

TAC statement to access the memory associated with the fi eld. The calculation of offset of the fi eld in both 

the cases is done by using the symbol table pertaining to the structure defi nition, which holds the offsets of 

all the fi elds associated with the structure. The semantic actions of Productions 46 and 47 also show some 
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of the sanity checks to be performed (e.g. checking if the fi eld name exists in the structure, etc.) before 

emitting the intermediate code.

46 unary_expr : unary_expr ‘.’ IDENTIFIER {

 type = unary_expr1.expr_type

 if(type != RECORD ){
  Error Msg(“Type Mismatch”);
  exit();
 }

 sym_tab_ptr = type.fi elds 

 sym_tab_entry_ptr = sym_tab_ptr.fi nd(IDENTIFIER.name)

 if(sym_tab_entry_ptr == NULL ){
  Error Msg(“Accessing a non-existent fi eld”);
  exit();
 }

 offset = sym_tab_entry_ptr.offset ;
 unary_expr.expr_type= sym_tab_entry_ptr.type;

 if(unary_expr1.offset == NULL ){
  t= newtemp()
  emit(ADDR_OF,unary_expr1.place,NULL,t);
  unary_expr.place = t;
  unary_expr.offset = newtemp();
  emit(ASSIGN,offset,NULL,unary_expr.offset);
 }else{
  emit(PLUS,unary_expr1.offset,offset,unary_expr1.offset);
  unary_expr.place = unary_expr1.place ;
  unary_expr.offset = unary_expr1.offset

 }

}

47 | unary_expr PTR_OP IDENTIFIER {

 type = unary_expr1.expr_type

 if( (type != POINTER) || (type.next != RECORD ) ){
  Error Msg(“Type Mismatch”);
  exit();

 }

 sym_tab_ptr = type.next.fi elds 

 sym_tab_entry_ptr = sym_tab_ptr.fi nd(IDENTIFIER.name)

 if(sym_tab_entry_ptr == NULL ){
  Error Msg(“Accessing a non-existent fi eld”);
  exit();
 }

 offset = sym_tab_entry_ptr.offset ;
 unary_expr.expr_type= sym_tab_entry_ptr.type;

 t = newtemp();
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 if(unary_expr1.offset == NULL ){
  emit(ASSIGN,unary_expr1.place,NULL,t);

 }else{
  emit(R_INDEX_ASSIGN,unary_expr1.place,unary_expr1.offset,t);

 }

    unary_expr.place = t;
    unary_expr.offset = newtemp();

    emit(ASSIGN,offset,NULL,unary_expr.offset);

}

Table 5.19 shows a structure access using ‘.’ operator and its corresponding translated code using the 

productions and semantic actions discussed above. Figure 5.17 shows the attributes of different nodes and 

their values during the translation from the input source to the three address code. The nodes are numbered 

in the order of creation during bottom up translation. The offset of the fi eld ‘age’ is assumed to be 4 bytes.

Table 5.19 Input source and its translated code

C code snippet Translated TAC

x.age=3 ; 0: _t0 := &x
1: _t1 := 4
2: _t0[_t1] := 3

Fig. 5.17 The translation of statement ‘x.age = 3 ;’
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Table 5.20 shows a structure access using ‘Æ’ operator and its corresponding translated code using the 

productions and semantic actions discussed above. Figure 5.18 shows the attributes of different nodes and 

their values during the translation from the input source to the three address code. The nodes are numbered 

in the order of creation during bottom up translation. The offset of the fi eld ‘age’ is assumed to be 4 bytes.

Table 5.20 Input source and its translated code

C code snippet Translated TAC

ptr->age=3 ; 0: _t0 := ptr 
1: _t1 := 4

2: _t0[_t1] := 3

Fig. 5.18 The translation of statement ‘ptrÆage = 3 ;’

5.2.8 Example 4—Translation of Record References

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate 

code for statements involving structure references using the productions and semantic actions described 

in the preceding section. The program takes as input, a sample C input source with some statements 

involving structure references. The output of ‘icgen’ is the intermediate code in TAC format generated from 

processing the input C source. The dialog below shows the icgen program taking in some sample input C 

sources, and printing out their intermediate code in TAC format.
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# Generating the Parser from Grammar Specifi cations

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y

# Compiling the Parser

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc

# Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex  -oc-small-lex.cc c-small-lex.l

# Compiling the Lexical Analyser

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc

# Building icgen Binary

$ g++  -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen

# This is an input source fi le

$ cat -n test4.c

 1 struct my_data

 2 { 

 3   int student_id;

 4   int age;

 5 }d1;  

 6

 7

 8 /* Function */

 9 int main()

10 {

11   struct my_data *ptr; 

12

13   ptr = &d1;

14

15   /* Access by ‘.’ operator */

16   d1.age=20;

17

18   /* Access by ‘->’ operator */

19   ptr->age=20;

20

21 }

# Generating IC

$ ./icgen test4.c

 (0) proc_begin main

 (1) _t0 := &d1

 (2) ptr := _t0

 (3) _t1 := &d1

 (4) _t2 := 4

 (5) _t1[_t2] := 20

 (6) _t3 := ptr
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 (7) _t4 := 4

 (8) _t3[_t4] := 20

 (9) label .L0

(10) proc_end main

# Input source fi le 

$ cat -n test4a.c 

 1 struct dob{

 2   int day;

 3   int mon;

 4   int year;

 5 }ab;

 6

 7 struct my_data

 8 {

 9   int age;

10   int student_id;

11   struct dob student_dob;

12 }d1;

13

14

15 /* Function */

16 int main()

17 {

18   /* Local Variables */

19   int h,j,k;

20

21   /* Initialisation */

22   d1.age=20;

23   d1.student_id=4567;

24   d1.student_dob.day=17;

25   d1.student_dob.mon=11;

26   d1.student_dob.year=1967;

27 }

# Generating IC

$ ./icgen test4a.c

 (0) proc_begin main

 (1) _t0 := &d1

 (2) _t1 := 0

 (3) _t0[_t1] := 20

 (4) _t2 := &d1

 (5) _t3 := 4

 (6) _t2[_t3] := 4567

 (7) _t4 := &d1

 (8) _t5 := 8

 (9) _t5 := _t5 + 0

(10) _t4[_t5] := 17

(11) _t6 := &d1

(12) _t7 := 8

(13) _t7 := _t7 + 4
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(14) _t6[_t7] := 11

(15) _t8 := &d1

(16) _t9 := 8

(17) _t9 := _t9 + 8

(18) _t8[_t9] := 1967

(19) label .L0

(20) proc_end main

# Input source fi le

$ cat -n test4b.c
 1 struct dob{
 2   int day;
 3   int mon;
 4   int year;
 5 }ab;
 6
 7 struct my_data
 8 {
 9   int age;
10   int student_id;
11   struct dob student_dob;
12 }d1;

13
14
15 /* Function */
16 int main()
17 {
18   /* Local Variables */
19   struct my_data *ptr;
20
21   /* Initialisation */
22   ptr=&d1;
23
24   ptr->age=20;
25   ptr->student_id=4567;
26
27   ptr->student_dob.mon=11;
28 }

# Generating IC

$ ./icgen test4b.c
 (0) proc_begin main
 (1) _t0 := &d1
 (2) ptr := _t0
 (3) _t1 := ptr
 (4) _t2 := 0
 (5) _t1[_t2] := 20
 (6) _t3 := ptr
 (7) _t4 := 4
 (8) _t3[_t4] := 4567
 (9) _t5 := ptr
(10) _t6 := 8

(11) _t6 := _t6 + 4

(12) _t5[_t6] := 11
(13) label .L0

(14) proc_end main
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5.2.9 If-else Statements

In this section, we learn about the translation of simple fl ow of control statements namely, the ‘if’ and ‘if-

else’ statements. These statements are used in higher-level languages to make decisions and execute the 

designated code.

Consider the C code snippet containing an ‘if-else’ statement in Table 5.21 for understanding the 

important aspects of  intermediate code generation for if-else statement. The variables used in the code 

snippet are all assumed to be integers.

Table 5.21 A C code snippet with if-else condition

..

..

if (a < b) {
   z = 30;
} else {
   z = 40;
}
x=90;

..

..

The expression that is being evaluated in the ‘if’ condition namely (a < b) is called as a  Boolean test 

expression or simply test expression. It can have a result of TRUE or FALSE. In the code snippet shown 

above, if the Boolean test expression (a < b) is TRUE, then the control fl ows to the code where z is assigned 

30. If the Boolean test expression is false, then the control fl ows into the code where z is assigned 40. 

A simple Boolean test expression like the one shown in Table 5.21, i.e. (a < b) can also use other relation 

operators for the comparison like greater than (>), less than or equal to ( <= ), etc. 

Programming languages also allow for compound Boolean expressions formed out of logical 

combination of simpler Boolean expressions using operators known as  Boolean operators. The common 

Boolean operators are and (&&), or (||) operators. An example of a compound Boolean expression formed 

by using the OR Boolean operator is shown in Table 5.22.

Table 5.22 A C code snippet showing compound Boolean expression

..

..
if ( (a < b ) || ( c < d ) )
{
     z = 30;
}
else
{
     z = 40;
}
..
..

The compound Boolean expression (a < b) || (c < d) is TRUE in situation where a is less than b or c is 

less than d. The value 30 is assigned to z, when the compound Boolean expression is TRUE. The value 40 

is assigned to z when the compound Boolean expression is FALSE.
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Table 5.23 below shows the intermediate code for the if-else statement shown in Table 5.21. The TAC 

statements are numbered for easy reference.

Table 5.23 Translated intermediate code

0: if a < b goto .L0
1: goto .L1
2: label .L0
3: z := 30
4: goto .L2
5: label .L1
6: z := 40
7: label .L2
8: x := 90

The fi rst two TAC statements, numbered 0 and 1 correspond to the decision-making based on Boolean 

expression (a < b). The fl ow of control reaches the statement numbered 2 with the label. L0 only if the 

Boolean expression (a < b) is true. The statement numbered 5 with label. L1 is reached only if a < b is false. 

This method of construction of the intermediate code where the position reached by the program signifi es 

the result of the Boolean expression is known as  fl ow of control method of translating Boolean expressions. 

This method of translating the Boolean expressions is used in the rest of the chapter.

Is it possible to generate intermediate code for a Boolean expression in one pass during the parsing by 

having a translation scheme?

The main challenge in implementing such a translation scheme is that the target labels for the jump 

statements are not known at the time of generating code for the test expression. To illustrate the point, 

consider the code snippet in Table 5.21. At the time of reducing the Boolean expression a < b and 

generating the TAC statement for it, there is no information about the target label to jump. The statement    

z = 30, where it needs to jump on the condition being true, is not yet processed for syntax analysis. Also, 

the target label to jump when the condition is false, i.e. z = 40 is not yet processed for syntax analysis at the 

time of generating TAC instructions for the Boolean expression (a < b). The target label to jump when the 

Boolean expression is true or false becomes clear only after processing several statements following the 

Boolean expression.

Fortunately, there is a technique by which this issue can be overcome to generate intermediate code for 

Boolean expression in a single pass during the syntax analysis itself.  Let’s understand this technique with 

an example.

Consider the generation of intermediate code for the code snippet in Table 5.23. At the time of reducing 

the Boolean expression a < b, the intermediate code is generated by keeping the target label unfi lled. 

The generated intermediate code is stored in an array called quads.  The generated TAC instructions are 

shown below. The numbering given to the each of the TAC instructions can also be used as an index of the 

respective quad in the quads array. For example, the instruction z := 40 is available at the index 6 in the 

quads array.

0 : if a<b goto __
1 : goto __

2 : lbl .L0
3 : z := 30
4 : goto __

5 : lbl .L1
6 : z := 40
7 : lbl .L2
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During the intermediate code generation, few data structures are updated to remember the indexes in the 

quads array, having unfi lled target labels, i.e. 0, 1 and 4. At a later stage, when the parser has completely 

reduced the ‘if-else’ statement, the quads array is revisited to plug in the unfi lled target labels as shown 

below.

0 : if a<b goto .L0
1 : goto .L1

2 : lbl .L0
3 : z := 30
4 : goto .L2

5 : lbl .L1
6 : z := 40
7 : lbl .L2

This approach of generating TAC statements with unfi lled target labels and then at a later stage fi lling up 

the target labels when the information is available is called as  backpatching. This technique can be used to 

generate intermediate code for fl ow of control statements using Boolean expressions like the if-else, while, 

switch-case statements, and so on.

Let’s briefl y touch upon some of the data structures and functions that are used to implement 

backpatching.

An array called ‘quads’ array is used to hold the sequence of Quadruples generated. Any TAC statement 

in the quads array can be accessed using its index. For example, in the quads array containing the following 

TAC statements.

0 : if a<b goto __
1 : goto __

2 : lbl .L0
3 : z := 30
4 : goto __

5 : lbl .L1
6 : z := 40
7 : lbl .L2

The quads[3]  contains the TAC statement  ‘z := 30’. The quads[4] contains the TAC statement with an 

unfi lled target label ‘goto _’ and so on.

The TAC statements are populated in the quads array in a sequence using the ‘emit’ function. The fi rst 

call to emit function would fi ll in a TAC statement at quads[0], the next call to emit would store the TAC 

statement at quads[1] and so on. A variable nextquad is used to maintain the index in the quads array where 

the next emit statement would be stored. As expected, this would be incremented each time an emit function 

call is made.

To get an idea on the other common functions required during backpatching, consider the following 

input source.

if  ( (a < b ) || ( c < d ) )
{
        i=j ;
}
l=m;
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The following TAC statements are generated in the quads array during the processing of the compound 

Boolean expression ( (a < b) || (c < d) ).

0 : if a < b goto __
1 : goto .L0

2 : label .L0
3 : if c < d goto __
4 : goto __

When the expression a < b is true or when c < d is true, the control goes to the same label. In other 

words, the target label for the TAC statements at index 0 and 3 are the same. It is effi cient to make a list 

of the labels that need the same target label, so that they can be fi lled in at one shot. A list of quads called 

say ‘truelist’, indicative of target label to be jumped when the compound Boolean expression is true, is 

created with the elements 0 and 3. The truelist is given by the list {0,3}. In a similar way, the ‘falselist’ for 

the compound Boolean expression is given by list {4}. The list creation and appending elements into it are 

carried out by the following functions.

∑ makelist(quad_no). This creates a list with the quad_no as the only element in a list. It returns the 

pointer to the list so created.

∑ quadlist_merge( newlist, list1,list2). This concatenates the items in list1 and list2 and puts them in 

newlist.

Backpatching is accomplished by a function backpatch( list, label ). This fi lls the unfi lled goto’s target 

labels in the list with the label. For example, using the truelist {0, 3} mentioned above, an invocation of the 

function backpatch (truelist,.L1) would fi ll in  the target label .L1 in the list of statements given by truelist, 

i.e. in quads at index 0 and 3 as shown below.

0 : if a < b goto .L1
1 : goto .L0

2 : label .L0
3 : if c < d goto .L1
4 : goto __

5 : label .L1
6 : i := j
7 : label .L2
8 : l := m
9 : label .L3

Armed with the functions to perform backpatching and some of the theory we studied above, let’s study 

about some of the productions and their semantic actions for generating TAC statements for if and if-else 

statements.

The processing of binary expression (Productions 59–60) involves emitting the TAC with the appropriate 

conditional check like GT, LT, etc. followed by an unconditional jump statement. The conditional jump 

statement would be added to the ‘truelist’ of the binary expression, since that is the statement it would 

jump when the binary expression is true. The unconditional jump statement is added to the false list, since 

the target is the statement to be jumped when the binary expression is false. The handling of other relation 

operators like ‘<=’,‘>=’, etc. are similar in nature. The attributes of truelist and falselist are relayed on from 

binary_expr to test_expr (production 53) through and_expr,or_expr and expr.
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59 binary_expr : binary_expr ‘<’ binary_expr {

 binary_expr.truelist = makelist(next_quad);
 binary_expr.falselist = makelist((next_quad+1));
 emit(LT,binary_expr1.place,binary_expr2.place,NULL);
 emit (GOTO,NULL,NULL,NULL);
}

60 | binary_expr ‘>’ binary_expr {

 binary_expr.truelist = makelist(next_quad);
 binary_expr.falselist = makelist((next_quad+1));
 emit(GT,binary_expr1.place,binary_expr2.place,NULL);
 emit (GOTO,NULL,NULL,NULL);
}

53 test_expr : expr  {

 test_expr.place = expr.place;
 test_expr.truelist = expr.truelist;
 test_expr.falselist = expr.falselist;
}

54 expr : or_expr {

 expr.place = or_expr.place;
 expr.truelist = or_expr.truelist;
 expr.falselist = or_expr.falselist;
}

56 or_expr : and_expr {

 or_expr.place = and_expr.place;
 or_expr.truelist = and_expr.truelist;
 or_expr.falselist = and_expr.falselist;
}

57 and_expr : binary_expr {

 and_expr.place = binary_expr.place;
 and_expr.truelist = binary_expr.truelist;
 and_expr.falselist = binary_expr.falselist;
}

The OR_OP (||) is used to combine two binary expressions with a logical or condition (Production 55). 

The resulting expression’s true list is a merge of the true lists of both of the binary expressions. The false 

list of the resulting expression is the false list of the second binary expression. In a similar fashion the 

AND_OP (&&) is used to combine the Boolean expressions (Production 58). The resulting expression’s 

true list is the true list of the second Boolean expression. The resulting expression’s false list is a merge of 

the false lists of both the Boolean expressions.

55 or_expr : or_expr  OR_OP  M  and_expr {

   backpatch(or_expr1.falselist, M.lbl));
   quadlist_merge(or_expr.truelist,or_expr1.truelist,
         and_expr.truelist);
 or_expr.falselist = and_expr.falselist ;
}
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58 and_expr |   and_expr AND_OP  M  binary_expr {

 backpatch(and_expr1.truelist, M.lbl);
 and_expr.truelist = binary_expr.truelist ;
 quadlist_merge(and_expr.falselist,and_expr1.falselist,
       binary_expr.falselist);
}

The non-terminal ‘stmt’ takes the form of a simple if statement (Production 48), or if-else statement 

(Production 49). The stmt can take the form of a compound statement (Production 50), which is essentially 

a group of statements within the braces. A stmt non-terminal has an attribute nextlist, which is a list of 

TAC statements generated by ‘stmt’ containing the conditional and unconditional jumps to the quadruple 

following the statement. This is an important attribute using which the intermediate code can be 

backpatched for jumps during if, if-else and while constructs.

The conditional statement for ‘if’ construct (Production 48) makes use of a marker M. The marker 

helps determine the fi rst statement to be executed, if the Boolean expression E is true. In case the value of 

Boolean expression is false, then the target label for the jump is the statement following the ‘if’ statement. 

Hence, it adds the test_expr.falselist into the statement’s nextlist. This is given by quadlist_merge(stmt.

nextlist, test_expr.falselist,stmt1.nextlist) in the semantic action.

The if-else statement (Production 49) uses two of the markers M to know the fi rst executable statement 

when the Boolean expression is true and false respectively. For representing the attributes the marker M 

following the ‘test-expr’ is treated as M1 and the M following the ‘ELSE’ keyword is treated as M2. They 

are backpatched by using the function backpatch(test_expr.truelist, M1.quad), backpatch(test_expr.falselist, 

M2.quad). After generating TAC instructions for all the statements within the ‘if’ condition, a goto statement 

is generated to jump to the following statement after the ‘if–else’ construct. The marker N helps achieve 

this. The label of the goto statement is added to ‘stmt.nextlist’ to refl ect the conditional/unconditional goto 

TAC statements that jump to the next statement.

48 stmt : IF ‘(’ test_expr ‘)’ M stmt  {

 backpatch(test_expr.truelist, M.lbl));
 quadlist_merge(stmt.nextlist, test_expr.falselist,stmt1.nextlist);

}

49 | IF ‘(’ test_expr ‘)’ M stmt   ELSE N M stmt  {

 backpatch(test_expr.truelist,M1.lbl);
 backpatch(test_expr.falselist,M2.lbl);

 quadlist_merge(tmp, N.nextlist,stmt2.nextlist);
 quadlist_merge(stmt.nextlist,stmt1.nextlist,tmp);

}

50 stmt : ‘{’ stmt_list ‘}’  {

 stmt.nextlist = stmt_list.nextlist;
}

66 N : e {

 N.nextlist = makelist(next_quad) ;
 emit (GOTO,NULL,NULL,NULL);
}
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A marker M is inserted in several productions of the grammar above to get the label of the next 

quadruple to be generated. The marker M facilitates in getting the label of next TAC statement to be 

generated by means of Production 65. The label of next TAC statement to be generated is stored in M.lbl. In 

Production 48 (also in 49), the attribute M.lbl is used to backpatch the TAC statements that have an unfi lled 

goto’s with the value in M.lbl.

65 M : Œ {

 lbl = newlbl();
 emit(LBL,NULL,NULL,lbl);

 M.lbl = lbl ;
}

The statements that have the next_list attribute as non-empty indicate that there are some quads already 

generated, that have the target label as the next statement. For example, Production 48 and 49 generate 

quads whose target label is the next following statement. The attribute next_list of the ‘stmt’ contains the 

list of such quads whose target label is the next following statement. Production 51 and 52 generate a label 

for the next statement and do backpatching for those quads.

51 stmt_list : stmt_list stmt  {

 if(stmt.nextlist is not empty ){
  lbl = newlbl();
  emit(LBL,NULL,NULL,sptr);
  backpatch(stmt_list1.nextlist,lbl);
   }
}

52 | stmt {

 if(stmt.nextlist is not empty ){
    lbl = newlbl();
    emit(LBL,NULL,NULL,sptr);
    backpatch(stmt.nextlist,lbl);
   }
}

Table 5.24 shows an if-else statement and its corresponding translated code using the productions and 

semantic actions discussed above. Figure 5.19 shows the attributes of the different nodes and their values 

during the translation from the input source to the three address code. The nodes are numbered in the order 

of creation during bottom-up translation.

Table 5.24 Input source and its translated code

C code snippet Translated TAC

if ( a < b ) 0: if a < b goto .L0
  z = 30 ; 1: goto .L1
else 2: label .L0
  z = 40 ; 3: z := 30

4: goto .L2
x=90; 5: label .L1

6: z := 40
7: label .L2
8: x := 90
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Fig. 5.19 Translation of if-else construct
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5.2.10 Example 5—Translation of if, if-else statements

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate 

code for statements involving if and if-else constructs using the productions and semantic actions described 

in the preceding section. The icgen program implements the translation scheme using bottom-up translation 

method. The program takes as input, a sample C input source with some statements involving if and if-else 

constructs. The output of ‘icgen’ is the intermediate code in TAC format generated from the input C source. 

The dialog below shows the icgen program taking in some sample input C sources, and printing out their 

intermediate code in TAC format.

# Generating the Parser from Grammar Specifi cations 

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyser from Lexical Specifi cations 

$ fl ex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyser 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building icgen Binary 

$ g++  -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen 

# Input fi le 

$ cat -n test5.c 
 1 int x,z;
 2
 3 int
 4 func (int a, int b)
 5 {
 6   if (a < b) {
 7   z = 30;
 8   } else {
 9       z = 40;
 10   }
 11   x=90;
 12
 13 }

# Generating IC 

$ ./icgen test5.c 
 (0) proc_begin func
 (1) if a < b goto .L0
 (2) goto .L1
 (3) label .L0
 (4) z := 30
 (5) goto .L2
 (6) label .L1
 (7) z := 40
 (8) label .L2
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 (9) x := 90
(10) label .L3
(11) proc_end func

# Input fi le 

$ cat -n test5a.c 
    1 int x,z;
    2
    3 int
    4 func (int a, int b, int c, int d)
    5 {
    6   if ((a < b) || ( c < d )) {
    7       z = 30;
    8   } else {
    9       z = 40;
   10   }
   11   x=90;
   12
   13 }

# Generating IC 

$ ./icgen test5a.c 
 (0) proc_begin func
 (1) if a < b goto .L1
 (2) goto .L0
 (3) label .L0
 (4) if c < d goto .L1
 (5) goto .L2
 (6) label .L1
 (7) z := 30
 (8) goto .L3
 (9) label .L2
(10) z := 40
(11) label .L3
(12) x := 90
(13) label .L4
(14) proc_end func

# Input source fi le 

$ cat -n test5b.c 
    1 int x,z;
    2
    3 int
    4 func (int a, int b, int c, int d)
    5 {
    6   if ((a < b) && ( c < d )) {
    7       z = 30;
    8   } else {
    9       z = 40;
   10   }
   11   x=90;
   12
   13 }

# Generating IC 



298 Principles of Compiler Design

$ ./icgen test5b.c 
 (0) proc_begin func
 (1) if a < b goto .L0
 (2) goto .L2
 (3) label .L0
 (4) if c < d goto .L1
 (5) goto .L2
 (6) label .L1
 (7) z := 30
 (8) goto .L3
 (9) label .L2
(10) z := 40
(11) label .L3
(12) x := 90
(13) label .L4
(14) proc_end func

5.2.11 While Statement

In this section, we learn about the translation of another fl ow of control statement—the while statement. 

The while statement is used in higher level languages to repeatedly execute a section of code as long as the 

entry condition is satisfi ed. The common way to break out of the while statement loop is when the entry 

condition is no longer satisfi ed, or when there is a explicit ‘break’ statement executed by the program.

Consider the C code snippet containing a while statement in Table 5.25 for understanding the important 

aspects of  intermediate code generation for a while statement. The variables used in the code snippet are 

all assumed to be integers. The entry condition to the while loop is given by the test expression (i > 0). The 

statements val = val *i and i = i –1; are executed repeatedly as long as the entry condition is satisfi ed.

Table 5.25 C code snippet using while statement

..

..
while(i>0)
{
  val = val * i;
  i = i-1;
}
..
..

Table 5.26 shows the intermediate code for the code snippet in Table 5.25. We can see from 

Table 5.26 that the generated intermediate code for the while loop is very similar to the ‘if’ statement with 

an additional jump to the entry condition.

Table 5.26 TAC statements for ‘while’ statement

0 : label .L0
1 : if i > 0 goto .L1
2 : goto .L2
3 : label .L1
4 : _t0 := val * i
5 : val := _t0
6 : _t1 := i - 1
7 : i := _t1
8 : goto .L0
9 : label .L2
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The translation of a ‘while’ statement is similar to the if-else construct that we saw in the last section. The 

backpatch technique is used again for overcoming the issue of unknown labels at the time of translation.

We now look at the productions and the corresponding semantic actions relevant for the translation of a 

while statement.

The while statement  (see Production 67 below) uses a marker R to know the label of the beginning 

statement of the ‘while’ loop. The beginning statement of a while loop is the test expression statement 

which is the entry condition for the while loop. It uses another marker M to determine the label of the fi rst 

executable statement to jump, if the value of test expression is true. Both of these labels are backpatched on 

the completion of processing of the ‘while’ statement. The statement to jump when the Boolean expression 

is false is the next executable statement after the while loop. Hence, the test_expr.falselist is added into 

the statement’s nextlist along with break labels in the processing of Production 67. At the end of TAC 

statements for while loop, a goto statement that jumps back to the start of while loop to check the entry 

condition (marked by R) is generated.

67

69

stmt

R

:

 

:

WHILE R ‘(’ test_expr ‘)’ M stmt  {

 while (top of Break-Label stack is not marker)
 {
    pop the Label.
    add the label to brk_list
 }
 backpatch(stmt1.nextlist,R.lbl));
 backpatch(test_expr.truelist, M.lbl);

 quadlist_merge(stmt.nextlist, test_expr.falselist,brk_list) ;
 emit (GOTO,NULL,NULL,R.quad);
}

Œ  {

   b = new brk_lbl(-1); /* marker */
   brk_lbl_stk.push(b);

   lbl = newlbl(); 
   emit(LBL,NULL,NULL,lbl);

   R.lbl = lbl;
}

The ‘break’ statement processing involves generating an unfi lled ‘goto’ statement (Production 68). The 

label is pushed on to a  break-label stack to signify that it needs to be backpatched later. The labels of 

the break statements are consolidated and added to the ‘stmt.nextlist’ during the processing of the while 

statement in Production 67. The break label stack uses a marker to differentiate between the nested while 

statements and their corresponding break statements as seen in the processing of Production 69.

68 stmt : BREAK ‘;’   {

 b = new brk_lbl(next_quad);
 brk_lbl_stk.push(b);
 emit (GOTO,NULL,NULL,NULL);

}

Table 5.27 shows an input source containing a ‘while’ statement and its corresponding translated code 

using the productions and semantic actions discussed above. Figure 5.20 shows the attributes of different 

nodes and their values during the translation from the input source to the three address code. The nodes are 

numbered in the order of creation during bottom-up translation.
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Fig. 5.20 Translation of ‘while’ construct
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Table 5.27 Input source and its translated code

C code snippet Translated TAC

while ( i > 0 )
{
  val = val * i;
  i = i -1 ;
}

0 : label .L0
1 : if i > 0 goto .L1
2 : goto .L2
3 : label .L1
4 : _t0 := val * i
5 : val := _t0
6 : _t1 := i - 1
7 : i := _t1
8 : goto .L0
9 : label .L2

5.2.12 Example 6—Translation of While Statements

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate 

code for while statement using the productions and semantic actions described in the preceding section. 

The icgen program implements the translation scheme using bottom-up translation method. The program 

takes as input, a sample C input source with some switch-case statements. The output of ‘icgen’ is the 

intermediate code in TAC format generated from the input C source. The dialog below shows the icgen 

program taking in some sample input C sources, and printing out their intermediate code in TAC format.

# Generating the Parser from Grammar Specifi cations

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y

# Compiling the Parser

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc

# Generating the Lexical Analyser from Lexical Specifi cations

$ fl ex  -oc-small-lex.cc c-small-lex.l

# Compiling the Lexical Analyser 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc

# Building icgen Binary 

$ g++  -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen 

# Input fi le 

$ cat -n test6.c 
 1 int val;
 2
 3 int func(int num)
 4 {
 5 int i,val;
 6
 7 val=1;
 8 i=num;
 9
10 while(i>0)
11 {
12  val = val * i;
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13  i = i-1;
14 }
15
16 }

# Generating IC 

$ ./icgen test6.c 
 (0) proc_begin func
 (1) val := 1
 (2) i := num
 (3) label .L0
 (4) if i > 0 goto .L1
 (5) goto .L2
 (6) label .L1
 (7) _t0 := val * i
 (8) val := _t0
 (9) _t1 := i - 1
(10) i := _t1
(11) goto .L0
(12) label .L2
(13) label .L3
(14) proc_end func

# Input fi le 

$ cat -n test6a.c 
 1 int val;
 2
 3 int func(int num)
 4 {
 5       int i,val;
 6
 7       val=1;
 8       i=num;
 9
10       while(i>0)
11       {
12              val = val * i;
13              i = i-1; 
14
15              if(val > 10000 ){
16                     break;
17              }
18       }
19
20 }

# Generating IC

$ ./icgen test6a.c 
 (0) proc_begin func

 (1) val := 1
 (2) i := num
 (3) label .L0
 (4) if i > 0 goto .L1

 (5) goto .L4

 (6) label .L1
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 (7) _t0 := val * i

 (8) val := _t0

 (9) _t1 := i - 1
(10) i := _t1
(11) if val > 10000 goto .L2
(12) goto .L3

(13) label .L2

(14) goto .L4
(15) label .L3

(16) goto .L0
(17) label .L4

(18) label .L5

(19) proc_end func

5.2.13 Switch-case Statement

The switch-case statement is another common programming construct found in most of the programming 

languages. It is used in scenarios where there is a need to execute a set of statements depending on the 

value of an expression. The switch case statement is supported in C language. 

Consider the C code snippet containing a switch-case in Table 5.28 for understanding the important 

aspects of intermediate code generation for a switch-case statement. The variables used in the code snippet 

are all assumed to be integers.

Table 5.28 Switch-case code snippet in C language

..

..

switch(x+y)
{
 case 3 :
  a=b;
  c=d;
  break;

 case 5 :
  e=f;
  g=h;
 case 7 :
  i=j;
  k=l;
  break;
  
 default :
  a=b;
  c=d;
  break;
}
p=q
..
..

We shall spend some time understanding the components of the switch case statement before we try to 

attempt a translation of the switch-case to TAC statements.
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The switch statement consists of three main parts: 

∑ The selector expression based on whose value the control fl ows to a specifi c case statement. In the 

code snippet shown in Table 5.28, the selector expression is (x + y).

∑ The set of statements to be executed when the selector expression matches a particular case 

expression. In the code snippet shown in Table 5.28, the set of statements a = b; c = d; break; get 

executed when the selector expression, i.e. (x + y) is equal to the case expression 3. The break 

statement allows the control to jump out of the switch statement to the next executable statement, 

which is p = q;

∑ A ‘default’ case, which allows for executing a set of statements in the event of the selector expression 

not matching any of the case expressions. In the above example, the statements in the ‘default’ get 

executed if the selector expression (x + y) is not equal to any of the case expressions 3 or 5 or 7. The 

default case is optional in C language.

Table 5.29 shows the  intermediate code for the switch-case statement shown in Table 5.28. The index in 

the quads array is also shown alongside the instruction for reference.

Table 5.29 TAC statements for the switch-case statement

 0: t1 := x + y
 1: goto .L4
 2: label .L0
 3: a := b
 4: c := d
 5: goto .L5
 6: label .L1
 7: e := f
 8: g := h
 9: label .L2
 10: i := j
 11: k := l
 12: goto .L5
 13: label .L3
 14: a := b
 15: c := d
 16: goto .L5
 17: goto .L5
 18: label .L4
 19: if t1 == 3 goto .L0
 20: if t1 == 5 goto .L1
 21: if t1 == 7 goto .L2
 22: goto .L3
 23: label .L5
 24: p := q

The translation of the switch case statement would broadly be divided into three parts as follows:

 1. Generation of TAC statements to evaluate the selector expression. In Table 5.29, the quad at the 

index 0 evaluates the selector expression and stores it in the temporary _t0 for the upcoming 

comparisons.

 2. Generation of TAC statements for each one of the cases in the switch statement. Each case is 

associated with a unique label as an entry point. In Table 5.29, the TAC statements 2 through 5 

are generated for the case ‘3’ in the input source. The entry point for the case 3 is the label .L0. 

Similarly, the statements 9 through 12 are associated with the case ‘7’ in the input source with the 

entry point being the label .L2.
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 3. Generation of a set of ‘if’ TAC statements to compare the selector expression with each one of the 

case expressions. These conditional statements jump to the respective entry point label identifi ed 

in (2) above on success. In Table 5.29, the TAC statements 19 through 22 compare the selector 

expression in _t0 with each of the case expressions 3, 5 and 7. The ‘if’ statement in 19 jumps to 

the entry point label .L0 associated with the case expression 3 on success. The ‘if’ statement in 20 

jumps to the entry point label .L1 associated with case expression 5 on success. The quad in 22 is 

for the default label of the case statement.

We now look at the productions and the corresponding semantic actions relevant for the translation of a 

switch-case statement.

A  value-label (VL) stack is used to maintain the mapping between the value of the selector expression 

and the label to be jumped for that particular value of selector expression. Each time the parser encounters 

a case statement, the value of selector expression and the label for the fi rst statement to be executed 

corresponding to that value are stored on the value-label stack. For example, when case 5 is encountered 

in the input source shown in Table 5.28, the value 5 and the label of the next statement, i.e. e = f, given by 

M.lbl are stored on the VL stack. This is manifested in the semantic computation associated with Production 

71. The default case (Production 72) is also handled similarly except the fact that in the value-label pair, the 

value does not hold signifi cance; an unconditional goto is generated to the label of the ‘default’ case.

71 case_stmt : CASE CONSTANT ‘:’ M stmt_list   {

 push the pair M.lbl,CONSTANT.value on VL stack

}

72 | DEFAULT ‘:’ M stmt_list  {

 push the pair M.lbl,default on VL stack 

}

73 case_stmt_list : case_stmt_list case_stmt 

74 | case_stmt

After the parser identifi es the ‘switch’ keyword, a marker is pushed on the value-label stack. This serves 

as a demarcation on the value-label stack for the elements corresponding to this particular switch-case 

statement. This is manifested in the semantic processing of Production 75. Having a marker on value-label 

stack enables us to handle nested switch case statements. After processing the complete switch statement 

including all the cases, a series of ‘if’ TAC statements are generated, which check the value of selector 

expression with a jump to appropriate label on success. This is done using the VL stack that was populated 

during the handling of case statements. The semantic processing associated with the Production 70 is 

indicative of this. 

The processing for ‘break’ statement seen in Production 68 earlier in Section 5.3.11 remains unchanged. 

The labels of the break statements are consolidated and added to the ‘stmt.nextlist’ during the processing of 

the switch statement in Production 70.

In the TAC statements shown in Table 5.29, the lines associated with indexes 17 through 21 are 

generated from semantic processing of Production 70.

70 stmt : SWITCH Q expr N ‘{‘ case_stmt_list ‘}’  {

list1 = makelist(nextquad);
emit (GOTO,NULL,NULL,NULL);
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backpatch(N.nextlist,nextquad);

lbl = newlbl(); 
emit(LBL,NULL,NULL,lbl);

while (top of Value-Label stack is not marker)
{
 pop the Value-Label pair VL.
 if (VL is default case){
  ldef = L
  emit(‘goto’, ldef );
 } else
  emit(EQ,expr.place,value,label)
 }
}

while (top of Break-Label stack is not marker)
{
 pop the Label.
 add the label to list2
}
quadlist_merge(stmt.nextlist,list1,list2)         

}

75 Q : Œ  {
 push the marker on VL stack
 push the marker on the Break Label Stack

}

The backpatching technique is used to fi ll in the label for the next executable statement for the list of 

statements given by attribute stmt.nextlist, fi lled in Production 70. The backpatching happens in the 

processing of Production 50/51 seen earlier during the discussion on if-constructs in Section 5.3.9.

In the TAC statements shown in Table 5.29, the lines associated with indexes 5, 12, 16 and 17 are all 

backpatched by the processing of Production 50 or 51. The ‘stmt.nextlist’ for the switch-case statement at 

the end of processing Production 70 has the four elements 5,12,16 and 17 corresponding to Table 5.29.

Table 5.30 shows a C code snippet containing a ‘switch-case’ construct and its corresponding translated 

code using the productions and semantic actions discussed above. Figure 5.21 shows the attributes of 

different nodes and their values during the translation from the input source to the three address code. The 

nodes are numbered in the order of creation during bottom-up translation.

Table 5.30 Input source and its translated code

Input source Translated TAC

switch(v1)
{ 
 case 5 : v2=v3;
          break;
 default : v3=v4;
   break;
}

0: goto .L2
1: label .L0
2: v2 := v3
3: goto .L3
4: label .L1
5: v3 := v4
6: goto .L3
7: goto .L3
8: label .L2
9: if v1 == 5 goto .L0
10: goto .L1
11: label .L3
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Fig. 5.21 Translation of  switch-case construct
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5.2.14 Example 7—Translation of Switch-case Statements

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate 

code for switch-case statements using the productions and semantic actions described in the preceding 

section. The icgen program implements the translation scheme using bottom-up translation method. The 

program takes as input, a sample C input source with some switch-case statements. The output of ‘icgen’ 

is the intermediate code in TAC format generated from processing the input C source. The dialog below 

shows the icgen program taking in some sample input C sources, and printing out their intermediate code in 

TAC format.

# Generating the Parser from Grammar Specifi cations 

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyser from Lexical Specifi cations 

$ fl ex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyser 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building icgen Binary

$ g++  -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen 

# Input fi le 

$ cat -n test7.c 
 1 int z;
 2
 3 int
 4 func (int sel_exp, int a, int b)
 5 {
 6
 7  switch (sel_exp)
 8  {
 9   case 5:
 10    z = a + b;
 11    break;
 12   default:
 13    z = a - b;
 14    break;
 15  }
 16  z = z * b;
 17 }

# Generating IC 

$ ./icgen test7.c 
 (0) proc_begin func
 (1) goto .L2
 (2) label .L0
 (3) _t0 := a + b
 (4) z := _t0
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 (5) goto .L3
 (6) label .L1
 (7) _t1 := a - b
 (8) z := _t1
 (9) goto .L3
(10) goto .L3
(11) label .L2
(12) if sel_exp == 5 goto .L0
(13) goto .L1
(14) label .L3
(15) _t2 := z * b
(16) z := _t2
(17) label .L4
(18) proc_end func

# Input fi le 

$ cat -n test7a.c 
 1 int z;
 2
 3 int
 4 func (int sel_exp, int a, int b)
 5 {
 6
 7   switch (sel_exp)
 8   {
 9     case 5:
 10    z = a + b;
 11    break;
 12     case 6:
 13    z = a + 2*b;
 14    break;
 15     case 7:
 16    z = a + 3*b;
 17    break;
 18     default:
 19    z = a - b;
 20    break;
 21   }
 22   z = z * b;
 23 }

# Generating IC 

$ ./icgen test7a.c 
 (0) proc_begin func
 (1) goto .L4
 (2) label .L0
 (3) _t0 := a + b
 (4) z := _t0
 (5) goto .L5
 (6) label .L1
 (7) _t1 := 2 * b
 (8) _t2 := a + _t1
 (9) z := _t2
(10) goto .L5
(11) label .L2
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(12) _t3 := 3 * b
(13) _t4 := a + _t3
(14) z := _t4
(15) goto .L5
(16) label .L3
(17) _t5 := a - b
(18) z := _t5
(19) goto .L5
(20) goto .L5
(21) label .L4
(22) if sel_exp == 5 goto .L0
(23) if sel_exp == 6 goto .L1
(24) if sel_exp == 7 goto .L2
(25) goto .L3
(26) label .L5
(27) _t6 := z * b
(28) z := _t6
(29) label .L6
(30) proc_end func

5.2.15 Procedure Calls

In this section, we study about the translation of procedure or function calls.  The functions are used in 

higher level languages to break down a large program into smaller modular components. Strictly speaking, 

a function is a procedure with a return value, but for the discussion here, we use the terms function and 

procedure interchangeably.

Consider a small C code snippet that calls a function ‘my_func’ as shown in Listing 5.2 to understand 

the important aspects of  intermediate code generation for a function call. For the sake of simplicity, it is 

assumed that all the variables used in the code snippet are integers that require 4 bytes of memory each.

..

..
v3=my_func((v1+6),v2);
v4=v3+5;
..

Listing 5.2 C Code snippet calling a function

There are several things that happen, when a function is called or invoked in the input source as shown 

in Listing 5.2.

∑ The arguments to the called function are evaluated. For example, in the code snippet of Listing 5.2, 

the arguments ‘v1 + 6’ and v2 are evaluated. The argument list consists of expressions, which would 

include, arguments by reference, pointers, arithmetic expressions, and so on. The attribute expr.place 

would typically hold the evaluation of an argument expression.

∑ Each of the arguments is put into a place in memory from where they can be accessed by the called 

function. In the code snippet of Listing 5.2, the evaluated arguments, namely (v1 + 6) and v2 are put 

into a pre-determined place in memory for the function ‘my_func’ to access them. The ‘param’ TAC 

statement does the job of putting the argument into a pre-determined place in memory to be accessed 

by the calee. A ‘param’ statement is emitted for every argument that is used by the procedure.

∑ The control is transferred to the fi rst statement of the procedure called. But, just before that, the 

‘return’ address, where the control should return after executing the procedure needs to be put into 
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a place in memory, so that there is a smooth transfer of control back after the function is executed. 

The ‘call’ TAC statement does the job of storing the return address in a pre-determined place and 

then transferring the control to the fi rst statement of the procedure called. The cumulative size of 

the arguments in bytes for each parameter generated by ‘param’ statements is the other argument for 

‘call’ statement. It is used during the target code generation.

From a TAC statements point of view, a function call invocation in C language is translated into the 

following: (a) TAC statements for evaluation of each of the arguments; (b) A series of ‘param’ statements, 

one for every argument that is used during the invocation of a function; (c) A ‘call’ statement, which 

involves saving the return address and transferring the control to the fi rst statement in the function.

This sequence of TAC instructions generated for a function invocation is termed as the ‘ calling 

sequence’. Table 5.31 shows the section of translated code corresponding to the code snippet in Listing 5.2. 

It illustrates the calling sequence that we just discussed.

Table 5.31 TAC statements illustrating the calling sequence

Translated TAC

_t0 := v1 + 6   /* Evaluating Argument */
param v2 
param _t0 
call my_func 8  /* 8 is the cumulative size of arguments 
             in bytes generated by param statements (v2 and _t0 )*/

After the function is executed and the control returns back to the caller, the returned value is fetched 

from the pre-determined place into a local variable. This is achieved by a ‘retrieve’ TAC statement. The 

argument to the retrieve TAC statement is the variable, where the returned value needs to be stored.

The ‘retrieve’ TAC statement can be envisaged as the  returning sequence similar to the calling sequence 

we studied earlier. Table 5.32 shows the returning sequence incorporated along with the calling sequence 

for the translation of input source of Listing 5.2.

Table 5.32 TAC statements illustrating both the calling and the returning sequence

/* Calling Sequence */
_t0 := v1 + 6
param v2
param _t0
call add_func

/* Returning Sequence */
retrieve _t1

v3 := _t1
v4 := v3+5

In similar lines, when a function gets called, there is sequence of actions that happen in the called 

function.

∑ The called function saves the registers and accommodates storage for local variables. This is achieved 

by the ‘proc_begin’  TAC statement, which has the name of the function as an argument.

∑ The called function can have a ‘return’ statement of the form return(expression) in the input source. 

This is translated to (a) placing the return value into a place, where the caller wants it, and (b) jumping 

to the end of the function. The placing of return value into a place agreed by caller is achieved by the 
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‘return’ TAC statement. The argument to the return TAC statement specifi es the value that is being 

returned. The jump to the end of the function is performed by a ‘goto’ TAC statement. If the input C 

source contains a return statement without the expression, only a goto TAC statement is generated, 

which accomplishes (b) above.

∑ The end of a function is marked by ‘proc_end’ TAC statement. The proc_end TAC statement would 

be responsible for restoring the registers, release the local space and transfer the control back to the 

caller. A label signifying the end of the function (say end_lbl) is also generated before the proc_end 

TAC statement. The end_lbl is used as the target of all the goto statements generated with ‘return’ 

statements mentioned above.

Table 5.33 shows a simple function ‘add_func’ and its corresponding translated intermediate code 

illustrating the concepts discussed above. The ‘add_func’ adds the two parameters and returns the result.

Table 5.33 A function and its translation

C Code Snippet Translated TAC

int add_func(int a, int b) 0: proc_begin add_func
{ 1: _t0 := a + b
   int c; 2: c := _t0

3: return c
   c = a + b; 4: goto .L0
   return(c); 5: label .L0
} 6: proc_end add_func

Having understood the TAC statements relevant to procedure calls, let us now look at the productions 

and the semantic actions relevant for the translation of procedure calls.

A queue called ‘args_queue’ is a placeholder for all the actual parameters that are used in invoking the 

function. The args_queue is initialised, when the fi rst argument is spotted in Production 79 (see below). 

Every argument succeeding it is appended into the args_queue in Production 78. When the function call is 

translated in Production 77, a ‘param’ statement is generated for each of the argument stored in the args_

queue.

A function invocation (Productions 76, 77) results in a ‘call’ TAC statement. The ‘call’ TAC statement 

is preceded by the series of param statements in case there are arguments to the function as seen in the 

semantic action for Production 77. The cumulative size of parameters in bytes is an argument for the 

CALL TAC statement. For functions that have a return non-void return type, a ‘retrieve’ TAC statement is 

generated. This is shown in the code segments of both Productions 76 and 77.

76 unary_expr : unary_expr ‘(’ ‘)’ {         

 param_bytes = make_lit_tbl_entry(0);
 emit(CALL, u->place,param_bytes,NULL);
 if(unary_expr1.place.type == FUNCTION ){ 
  f = unary_expr1.place.type;
  if(f.ret_type!= VOID_TYPE ){
   t = newtemp1(f.ret_type);
   emit(RETRIEVE,NULL,NULL,t);
   unary_expr.place = t ;
  }
 }

}



  Intermediate Code Generation 313

77 | unary_expr ‘(‘  args_list ‘)’  {          

 for (each element s in args_list.args_queue ){
  emit(PARAM,NULL,NULL,s);
  sz = sz + sizeof(s)
 }
 param_bytes = make_lit_tbl_entry(sz);           

 emit(CALL,unary_expr1.place,param_
 bytes,NULL,NULL);
 if(unary_expr1.place.type == FUNCTION ){
  f = (function *)unary_expr1.place.type;
  if(f.ret_type!= VOID_TYPE ){
   t = newtemp1(f.ret_type);
   emit(RETRIEVE,NULL,NULL,t);
   unary_expr.place = t ;
  }
 }

}

78 args_list : args_list ‘,’ expr {

 Append expr.place to args_list.args_queue;

}

79 | expr {

 Append expr.place into args_list.args_queue

}

A simple return statement without parameter is dealt with in Production 80, by generating a goto TAC 

statement. The target label for the goto TAC statement is the end of the function, which is backpatched in 

Production 5 by means of using a list  ‘return_list’.

The return statement with a parameter is dealt with in Production 81, where return TAC statement 

is generated with expr.place (that holds the return value) as the argument. The return TAC statement is 

followed up by generating a goto TAC statement. The target label for the goto TAC statement is the end of 

the function, which is backpatched in Production 5 by means of using a list  ‘return_list’.

80

81

stmt :

|

RET ‘;’  {

Add next_quad to return_list;
emit(GOTO,NULL,NULL,NULL);

}

RET expr ‘;’ {

emit(RETURN,NULL,NULL,expr.place); 
Add next_quad to return_list;
emit(GOTO,NULL,NULL,NULL);

}

The translated code for a function defi nition (Production 5 and 82) contains the generation of a ‘proc_

begin’ TAC statement signifying the start of a function. A label TAC statement followed by the ‘proc_end’ 

TAC statement is generated in Production 5 signifying the end of the defi nition of a function. 
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5 function_defi nition : type_spec func_decl P function_body {

curr_sym_tab_ptr = tbl_stk.top();
Pop tbl_stk ;

emit(LBL,NULL,NULL,end_label);
backpatch(return_list,end_label)
emit(PROC_END,NULL,NULL,func_name);

}

82 P : Œ  {

Push curr_sym_tab_ptr on tbl_stk

curr_sym_tab_ptr = new symbol table ;
curr_sym_tab_ptr->previous = tbl_stk.top() ;

emit (PROC_BEGIN,NULL,NULL,func_name);

}

Table 5.34 shows a a procedure defi nition and its corresponding translated code generated using the 

productions and semantic actions discussed above. Figure 5.22 shows the attributes of different nodes and 

their values during the translation from the input source to the three address code. The nodes are numbered 

in the order of creation during bottom-up translation. The func_decl and the declaration_list non-terminals 

are not shown in expanded form in the fi gure, they don’t emit any TAC instructions.

Table 5.34 Input source and its translated code

Input Source Translated TAC

int add_func(int a,int b) 0: proc_begin add_func
{ 1: _t0 := a + b
        int c; 2: c := _t0

3: return c
        c = a + b; 4: goto .L0

5: label .L0
        return c;
}

6: proc_end add_func

Table 5.35 shows a procedure invocation and its corresponding translated code generated using the 

productions and semantic actions discussed above. Figure 5.23 shows the attributes of different nodes and 

their values during the translation from the input source to the three address code. The nodes are numbered 

in the order of creation during bottom-up translation.

Table 5.35 Input source and its translated code

C code snippet Translated TAC

v3=add_func(v1,v2); param v2 

param v1 
call add_func 8       
retrieve _t0 
v3 := _t0
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Fig. 5.22 Translation of procedure defi nition
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Fig. 5.23 Translation of procedure invocation
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5.2.16 Example 8—Translation of Procedure Calls

This section demonstrates the IC generator module of our toy C compiler (mycc) generating intermediate 

code for statements involving procedure calls using the productions and semantic actions described in 

the preceding section. The icgen program implements the translation scheme using bottom-up translation 

method. The program takes as input, a sample C input source with statements involving procedure calls. 

The output of ‘icgen’ is the intermediate code in TAC format generated from the input C source. The dialog 

below shows the icgen program taking in some sample input C sources, and printing out their intermediate 

code in TAC format. 

# Generating the Parser from Grammar Specifi cations 

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyser from Lexical Specifi cations 

$ fl ex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyser 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building icgen Binary 

$ g++  -DICGEN -g -Wall ic_gen.cc semantic_analysis.cc main.cc c-small-gram.o c-small-
lex.o -o icgen 

# Input fi le 

$ cat -n test8.c 
 1 int z;
 2
 3 int add_func(int a,int b)
 4 {
 5  int c;
 6
 7  c = a + b;
 8
 9  return(c); 
 10 }
 11
 12 int main()
 13 {
 14  int v1,v2,v3,v4;
 15
 16  v1=10;
 17  v2=20;
 18
 19  v3=add_func(v1,v2);
 20
 21  z=v3+5;
 22 }
 23
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# Generating IC 

$ ./icgen test8.c 
(0) proc_begin add_func
(1) _t0 := a + b
(2) c := _t0
(3) return c
(4) goto .L0
(5) label .L0
(6) proc_end add_func

(0) proc_begin main
(1) v1 := 10
(2) v2 := 20
(3) param v2
(4) param v1
(5) call add_func 8
(6) retrieve _t0
(7) v3 := _t0
 (8) _t1 := v3 + 5
 (9) z := _t1
(10) label .L1
(11) proc_end main

# Input fi le 

$ cat -n test8a.c 
 1 int z;
 2
 3 int add_func(int a,int b)
 4 {
 5    int c;
 6
 7    c = a + b;
 8
 9    return(c); 
 10 }
 11
 12 int main()
 13 {
 14    int v1,v2,v3,v4;
 15
 16    v1=10;
 17    v2=20;
 18
 19    v3=add_func((v1+6),v2);
 20
 21    z=v3+5;
 22 }
 23

# Generating IC 

$ ./icgen test8a.c 
(0) proc_begin add_func
(1) _t0 := a + b
(2) c := _t0
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(3) return c
(4) goto .L0
(5) label .L0
(6) proc_end add_func

 (0) proc_begin main
 (1) v1 := 10
 (2) v2 := 20
 (3) _t0 := v1 + 6
 (4) param v2
 (5) param _t0
 (6) call add_func 8
 (7) retrieve _t1
 (8) v3 := _t1
 (9) _t2 := v3 + 5
(10) z := _t2
(11) label .L1
(12) proc_end main

    SUMMARY

In a compiler, the front end translates the higher level language input source into a form that is 

independent of target machine architecture called as intermediate code. The intermediate code is 

simple enough to be mapped on to different target architectures. The main reason for generating 

intermediate code instead of the fi nal target code is that it helps in easier retargeting of the compiler 

to generate instructions for different processors. There are a two different formats of intermediate 

code that were studied in this chapter, namely abstract syntax tree (AST) and three address code 

(TAC) format. The translation of input source into intermediate code is performed by using the syntax 

directed translation technique. 

The production rules and the semantic actions of the translation scheme to generate intermediate 

code (TAC format) for common programming constructs encountered in higher-level languages were 

examined. The translation of declarations, which yields symbol table, was studied in the previous 

chapter. The generation of intermediate code for (1) Simple assignment statements; (2) Array, pointer 

and record references; (3) Flow of control statements (like if-else and while constructs); (4) Switch-

case constructs; and (5) Procedure calls were covered in 5.2. The discussion on the translation of 

each of the programming construct was supplemented by a demonstration of IC generator program, 

generating the intermediate code for that specifi c programming construct. The generation of 

intermediate code for fl ow of control statements and some others presented a challenge of not 

knowing the target label to jump to at the time of emitting code. The backpatching technique helped 

us overcome this challenge and generate the intermediate code.
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     REVIEW QUESTIONS AND EXERCISES

 5.1 A compiler can choose one of the two options (a) Translate the input source into intermediate 

code and then convert it to fi nal machine code; (b) Directly generate the fi nal machine code from 

the input source. What is the preferred option and why? 

 5.2 Describe the three address code form of the intermediate code. List out some of operators used in 

three address code with examples. 

 5.3 How can three address code be implemented in a compiler? Describe triples and indirect triples 

method of implementing TAC with examples. 

 5.4 Compare the different methods of implementing three address code. 

 5.5 How is an abstract syntax tree different from a parse tree? List out some of the nodes in the AST 

for a C compiler? 

 5.6 Translate a C statement ‘a = b + c – (4*a*b + 3*c);’ into TAC. How are the binary operators like 

+, –, etc., handled during the translation? 

 5.7 Translate an array reference statement ‘a = b[c];’ into TAC. What are the main TAC operators 

used during the translation? What attributes of a unary expression are used in translation of array 

references? 

 5.8 How is the offset calculated for a multidimensional array reference? Derive the formula. 

 5.9 Translate the C statements ‘p=& arr[3]; *p=10;’ into TAC. What TAC operators are useful during 

the translation of pointer accesses? 

 5.10 Translate the C statement ‘x.age = 30;’ into TAC. Assume that the fi eld ‘age’ is at an offset of 

20 bytes from the base of the structure. What are the common TAC operators used during the 

translation of ‘struct’ references using the dot operator? 

 5.11 Translate the C statement ‘ptrÆage=20;’. Assume that the fi eld ‘age’ is at an offset of 20 bytes 

from the base of the structure. What are the common TAC operators used during the translation 

of ‘struct’ references using the arrow operator? 

 5.12 Translate the C statement ‘if (a<b){x=y;} m=20;’ into TAC. In a single pass compiler, how is the 

translation of Boolean test expression (a < b) performed? How does it know about the labels to 

jump on being true or false? 

 5.13 Describe the backpatching technique. How is it used in the translation of an input C statement ‘if 

((a < b) || (c < d)) {m = 20;} else {m = 10;} p = m;’? 

 5.14 What are the data structures used during the translation of a ‘while’ statement? Illustrate the 

usage of those data structures during the translation of a C statement ‘while (i < b){val = val *i; 

i = i + 1;} m = val;’?

 5.15 How is a switch-case statement translated into TAC? Illustrate with an example. 

 5.16 What are the calling and returning sequences? List out the TAC instructions generated during 

both of these sequences by taking a sample C code snippet. 

 5.17 What is the sequence of events in the called function during a procedure call? Illustrate with an 

example. 

 5.18 How is a call to a procedure translated into TAC? Illustrate with an example. 

 5.19 State if the following statements are true or false:

  (a) The separation of a compiler into front end and back end is helpful in retargeting  of the 

compiler.

  (b) The separation of a compiler into front end and back end helps in adding support for a new 

source language easily.
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  (c) The intermediate code can be ‘improved’ by using techniques independent of the target 

architecture.

  (d) The back end of the compiler takes the intermediate code to generate the target code. 

 5.20 State if the following statements are true or false:

  (a) The backpatching technique is employed during the translation of array references.

  (b) The ‘place’ and ‘offset’ attributes of a unary expression are used to help the translation of 

array, record references.

  (c) The triples and indirect triples are methods of implementing three address code form of 

intermediate representation.

  (d) The indirect triples implementation is more favourable to the optimisation of the TAC.



TARGET CODE  GENERATION

6

Introduction
We studied in the previous chapters how the input source was broken 
up into tokens (Chapter 2—Lexical Analysis), verifi ed against a specifi ed 
grammar (Chapter 3—Syntax Analysis), checked for semantic errors 
(Chapter 4—Semantic Analysis) and translated to machine-independent 
intermediate code (Chapter 5—Intermediate Code Generation). In this 
chapter, we study about the conversion of the machine-independent 
intermediate code into target program, which is closer to the machine 
architecture. The conversion is accomplished by a target code generator 
(more simply called as code generator) that takes intermediate code as 
the input and generates a target program as output. The target program 
can be an assembly language program or absolute machine code. 

The diff erent forms of the target code and their advantages/
disadvantages is the topic of the discussion in Section 6.1. The intricacies 
of code generation are explored in this chapter by using x86 as a model 
target processor and its assembly language program as the target 
program. Section 6.2 gives an overview of the x86 processor and also 
its assembly language programming to help understand the target code 
generation better. The target code generator needs to conceive the 
run-time environment in which the target program runs and generate 
the target code accordingly. The important aspects of the run-time 
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environment that the code generator needs to provide for are described in Section 6.3. 
The concepts of target code generation using a template-based approach are discussed 
in Section 6.4.

6.1 TARGET PROGRAM
The intermediate code, as we saw in the previous chapters, is a very generic set of instructions which is not 

restricted to any specifi c type of processor. The target program on the other hand, is a closer representation 

of the machine characteristics. 

The target program can take one of the following three forms:

 1. Assembly language program.

 2. Absolute machine code.

 3. Relocatable object code.

One of the advantages of choosing assembly instructions as the target program is that the target code 

generator can generate symbolic instructions (like mov ax, var1) instead of relocatable or absolute addresses 

(like mov ax, 0x80000000). This improves readability of the target code generated. It also makes it easier 

to debug the compiler during a malfunction. A target program in assembly language can also make use of 

the macro facilities of the assembler. The disadvantage of having the assembly language program as the 

target program is that an additional pass is required for converting it into machine instructions. In any case, 

multiple passes in the compiler is unavoidable because storing the entire set of data structures for translation 

from the input source to machine instructions would put a very high demand on the memory.

By having absolute machine code as the target program for code generation, there is a fl exibility of 

loading the code in a fi xed memory location and immediately executing it. However, this can work only if 

the program is small in size.

Having relocatable object code as a target program allows a program (say ‘p’), spread across multiple 

fi les (like say p1.c, p2.c, etc.) to be each compiled separately. The relocatable object modules (p1.o, p2.o, 

etc.) can be linked together and loaded for execution. This scheme allows the user to selectively compile a 

part of the program (like just p1.c) and link it together with previously compiled object modules to generate 

the executable.

Assembly language program is the target program of our choice for the code generator discussed in this 

chapter. This choice aligns well with most of the compilers that are commonly available. The target code 

generator discussed throughout this chapter takes the intermediate code as input and generates the assembly 

language program as the output. This is shown in Fig. 6.1.

The Intel’s x86 family of processors is the model target processor for the study of code generation in 

this chapter. We examine the architecture of x86 family of processors and write some assembly language 

programs for it in the next section (Section 6.2). The knowledge of the x86 processor architecture and its 

assembly language programming would be of immense use during the discussion on target code generation 

for x86 in the later section (Section 6.4) of the chapter.

6.2 X86 PRIMER
In this section, we briefl y study the architecture of the Intel’s x86 processor, followed by some assembly 

language programming for the same. The idea here is to get acquainted with the processor details and write 

a few basic assembly programs. We cover the common x86 assembly language programming features like 

global variables, registers, arithmetic operations, pointers, and so on in the discussion here. For a more 

comprehensive treatment of the assembly language programming and the processor details, the reader 

should refer to the programming manual.
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Fig. 6.1 Code generator translates intermediate code to assembly language program

6.2.1 x86 Architecture

The Intel’s x86 family of processors is one of the most widely used processors in the world. These 

processors form the core of the personal computers (PC) that we use at home. The x86 family of processors 

is based on CISC (complex instruction set computer) architecture. It supports a wide range of instructions 

and addressing modes.

The x86 family of processors has 8 general-purpose registers given by the names eax, ebx, ecx, edx, 

esp, ebp, esi and edi. The registers eax, ebx, ecx and edx are usually used for numerical computations. The 

registers esp, ebp, esi and edi are used for accessing stack and performing pointer manipulation. Table 6.1 

shows the general purpose registers of x86 family and their typical usage.

Table 6.1 General purpose registers

Name Description

EAX Used in most of the arithmetic operations

EBX Used in most of the arithmetic operations

ECX Used in most of the arithmetic operations

EDX Used in most of the arithmetic operations

ESP Stack Pointer—Used in Stack manipulation

EBP Base Pointer—Used in accessing elements on the stack from a reference point

ESI Source Index—Used in moving chunks of data from source to destination memory

EDI Destination Index—Used in moving chunks of data from source to destination memory
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The 32 bit EAX, EBX, ECX and EDX 

registers can also be referenced by their 

16bit and 8bit forms. For example, AX 

refers to the lower 16 bits of the register 

EAX. AH refers to the higher 8 bits of AX 

and AL refers to the lower 8 bits of AX. 

Figure 6.2 shows the relationship between 

the various forms.

There are 6 segment registers given 

by the names cs, ds, ss, es, fs and gs as 

shown in Table 6.2. The segment registers are used for accessing memory. 

Table 6.2 Segment registers

Name Description

CS Code segment

SS Stack segment

DS A fi rst data segment

ES A second data segment 

FS A third data segment

GS A fourth data segment

A ‘fl ags’ register is used to know the status of operations carried out by the processor. The fl ags register 

can tell if an overfl ow has happened during a multiplication or if a carry has been set during comparison 

and so on. The Instruction pointer register named IP gives the address of the next instruction to be executed.

Table 6.3 Other registers

Name Description

IP Instruction pointer

EFLAGS Flags register used for knowing the status of operations performed by processor

6.2.2 Structure of an Assembly Language Program

The structure or the template of an  assembly language program depends on the assembler used for 

translating it into Machine Code. In this chapter, we use the GNU’s assembler (commonly known as gas) 

to convert the assembly language programs to machine code for the x86 processor. The assembly language 

programs that we would see in this chapter are all based on the format that GNU’s assembler expects. The 

‘gas’ takes input assembly programs using AT&T Syntax. This syntax is somewhat different from the intel 

syntax that other assemblers like MASM follow.

There are three types of assembly language statements that can be seen in an assembly language 

program. They are

 ∑ Instructions

 ∑ Directives

 ∑ Macros

Fig. 6.2 Register EAX and its representation
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An instruction is translated by assembler into machine code that is executed at run-time. An  assembly 

instruction can consist of 4 fi elds namely, the label, mnemonic to specify the instruction/size, operands on 

which the instruction operates, and a comment fi eld beginning with a #. A sample assembly instruction 

illustrating all the four fi elds is shown below.

Label Mnemonic Operands Comment

11 : movl %eax,var1 # Moving the contents of register eax into a variable var1

A directive is used for informing the assembler to take some action. Directives do not result in machine 

code. All the  assembler directive statements start with a dot (.). For example, the align directive is used for 

aligning the next assembly statement with 8 or 16 or 32 bit boundary. This directive helps in meeting the 

requirement of the processor regarding positioning of certain parts of the program at prescribed boundaries 

for effi ciency. For example, in x86 architecture accessing a 16-bit value at addresses that are at multiples of 

2 is more effi cient than the addresses that are not. The align directive can be used to take advantage of this 

feature.

.align 2   #aligns the next assembly statement to 16 bit boundary

A macro is shorthand for a sequence of other statements. The assembler expands the macros to the 

statements it represents and then assembles it. For example, the following defi nes a macro called ‘prolog’. 

Table 6.4 A macro defi nition

.macro  PROLOG
    pushl %ebp
    movl %esp,%ebp
.endm

In Fig. 6.3 we can see that wherever the macro PROLOG is used, the assembler expands it and replaces 

it with the statements that it represents.

Fig. 6.3 Expansion of macro by assembler

An x86 assembly program would be typically divided into sections meant for specifi c purpose. The three 

sections used commonly are:

 ∑ Data section

 ∑ BSS (block started by symbol) section

 ∑ Text section
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The data section is used for declaring the variables that have an explicit value to be initialised with. The 

BSS Section is used for declaring variables that are not initialised. The program loader usually initialises 

the BSS segment to a default value of 0. The text section defi nes the code (instructions) to be executed. 

The data and BSS sections are optional but the text section is mandatory. The ‘.section’ directive is used for 

defi ning a section. Table 6.5 shows the three common sections defi ned in an assembly program.

Table 6.5 Sections in an assembly program

.section .data

   # Initialized Data 

.section .bss

    # UnInitialized Data

.section .text

   # Instruction Code

A listing of assembly fi le can be used to view the assembly instructions side-by-side with the machine 

language instructions to which it was transformed. The listing is obtained by passing extra command line 

arguments to the assembler during assembly.

6.2.3 Assembly Language Programming
In this section, we take a quick look at some of the important features of  assembly language programming 

for the x86 family using the GNU’s assembler (gas). We try and understand the assembly language 

instructions by going through some code snippets and programs.

6.2.3.1 Global Variables and Arrays  Global variables in an assembly program are commonly defi ned 

in data section. The following shows the declaration of an integer variable called ‘my_var’ having an initial 

value of 100.  

# Declaration of a variable my_var with initial value as 100
my_var :
.int 100

As we can see, there are two statements used in defi ning a global variable, a label indicating the name of 

the variable and a directive signifying the size of the variable and its initial value. The comments are shown 

starting with the # mark.

Initialised  global arrays are declared in the data section in a similar way with more number of data type 

(.int) directives. The following shows the declaration of a global array my_init_arr with 5 elements, each 

element being a 4-byte integer. The initial values for each of the fi ve elements are 10, 20, 30, 40 and 50.

# Declaration of an integer global array my_init_arr with 5 elements

# The initial values for each of the fi ve elements are 10,20,30,40 and 50

my_init_arr :

.int 10

.int 20

.int 30

.int 40

.int 50
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Un-initialised global arrays in an assembly program are defi ned in bss section using the ‘.comm’ 

(common memory) directive. The following shows the declaration of a 4-byte integer array called ‘my_arr’ 

having a size of 100 elements.

# Declaration of a 4-byte integer array my_arr with 100 elements (size =4x100= 400 Bytes)
.comm    my_arr,400

In the above case, the size of each element in the array is 4 bytes. There are 100 elements in it. This 

makes the size of the integer array 400 bytes. This size of 400 is used in the declaration using the ‘.comm’ 

directive.

6.2.3.2 Registers The  registers in x86 family of processors are accessed in assembly programs by 

prefi xing the name with a % sign in front of them. For example, the content of eax register is accessed 

using %eax. The MOV instruction is commonly used for moving data across registers as well as memory. 

The MOV instruction has a suffi x that indicates the number of bytes that are being moved from source to 

destination. A suffi x of ‘b’ or ‘w’ or ‘l’ indicates movement of 1 byte or 2 bytes or 4 bytes respectively.

The 16 bit and 8 bit forms of the registers eax, ebx, ecx and edx similar to the one shown in Fig. 6.2 can 

also be accessed separately by using the corresponding reference. For example, %al refers to the lowest 8 

bits in the register AX, %ah refers to the higher 8 bits of register AX. %ax refers to the 16-bit register AX. 

%eax refers to the complete 32-bit register EAX. The following shows the usage of various forms of the 

register. 

movl %eax,%ebx #moving 4 bytes of data from eax register to ebx register

movl %eax,var #moving 4 bytes of data from eax register to label ‘var’

movl var,%eax #moving 4 bytes of data from variable ‘var’ to eax register

movw var,%ax #moving 2 bytes of data from variable ‘var’ to ax register

movb var,%ah #moving 1 byte of data from variable  ‘var’ to ah register

movb var,%al #moving 1 byte of data from variable  ‘var’ to al register

6.2.3.3 Immediate Operands In assembly language programming using the AT&T syntax that we are 

following, the  immediate operands are referenced using a $ sign in front of them. The following instruction 

shows the use of an immediate operand.

movl  $5,%eax    #moving a value 5 to eax register

6.2.3.4 Arithmetic Operations The x86 assembly language has instructions to perform the common 

 arithmetic operations of add, subtract, multiply and divide. 

The addition is performed by the ADD instruction whose syntax is given below. 

 add source, destination

where the source can be an immediate value, a memory location or a register. The destination can be a 

register or a memory location. This instruction adds the source value with the destination value and stores 

the result in the destination. Observe that the add instruction like many other instructions cannot operate 

when both source and destination are memory locations. As usual, the suffi x of the instruction tells us the 

size of the operands (b for 8 bit, w for 16 bit, and l for 32 bit). The following are some of the examples of 

the ADD instruction.
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addl %ecx,%eax # Adds the content of register ecx to that of register eax 
# and the result stored in register eax 

addl var,%eax # Adds the 4 bytes of data at label ‘var’ with content 
# of the register eax. 
# The result stored in register eax

addl %eax,var # Adds the content of the register eax with 4 bytes of
# data at label ‘var’ and the result stored at the label var 

The subtraction is performed by the SUB instruction whose syntax is given below. 

 sub source, destination

where the source can be an immediate value, a memory location or a register. The destination can be a 

register or a memory location. This instruction subtracts the source value from the destination value and 

stores the result in the destination. The sub-instruction cannot operate when both source and destination are 

memory locations. The suffi x of the instruction tells us the size of the operands (b for 8 bit, w for 16 bit, 

and l for 32 bit). The following are some of the examples of the SUB instruction.

subl %ecx,%eax # Subtracts the content of register ecx from that of register 
# eax and the result stored in register eax 

subl var,%eax # Subtracts the 4 bytes of data at label ‘var’ from the 
# content of the register eax and the result stored in 
# register eax

subl %eax,var # Subtracts the content of the register eax from 4 bytes 
# of data at label ‘var’ and the result stored 
# at the label var

The multiplication is performed by the MUL instruction whose syntax is given below. 

 mul source

where the source can be a memory location or a register. The destination operand is implied and it is a form 

of AX register depending on the suffi x of the mnemonic. The destination operand is AL for the mnemonic 

mulb, AX for mulw, EAX for mull. This instruction multiplies the source value with the destination value 

and stores the result in AX for mulb, DX:AX for mulw, EDX:EAX for the mull. For the mulw and mull, the 

higher bits are stored in the DX or EDX respectively. The following are some of the examples of the MUL 

instruction. 

mull %ecx # Multiplies the content of register ecx with that of 
# register eax and the result stored in register 
# combination edx:eax

mull var # Multiplies the 4 bytes of data at label ‘var’ 
# with the content of the register eax and the result stored 
# in register combination edx:eax

mulb %cl # Multiplies the 8 bit content of the register cl with 
# the 8 bit content of al 
# and the result stored in register ax



330 Principles of Compiler Design

The MUL instruction allows us to multiply unsigned integers. The IMUL instruction allows us to 

multiply signed integers. The IMUL instruction operates exactly like the MUL excepting that it interprets 

the sign by using the higher bits. The format, source operand, destination operand and the location where 

the result is stored remain the same. 

The division is performed by the DIV instruction whose syntax is given below. 

 div divisor

where the divisor can be a memory location or a register. The dividend is implied and it is a form of AX 

register depending on the suffi x of the mnemonic. The dividend is AX for the mnemonic divb, DX:AX 

for divw, EDX:EAX for divl. This instruction divides the implied dividend by the divisor and stores the 

result(quotient) in AL for mulb, AX for mulw, and EAX for the mull. The remainder of the division is 

stored in AH, DX and EDX for mulb, mulw and mull respectively. The following are some of the examples 

of the DIV instruction.

divl %ecx # Divides the content of register pair edx:eax with 
# the content of register ecx and the quotient
# is stored in register eax, the remainder in edx

divl var # Divides the content of register pair edx:eax with 
# the 32 bit value at label var and the quotient
# is stored in register eax, the remainder in edx

divb %cl # Divides the content of register ax with the content 
# in cl and the quotient is stored in register al, 
# the remainder in dl

The DIV instruction allows us to divide unsigned integers. The IDIV instruction allows us to divide 

signed integers. The IDIV instruction operates exactly like the DIV excepting that it interprets the sign by 

using the higher bits. The format, source operand, destination operand and the location where the result is 

stored remain the same.

6.2.3.5 Addresses and Pointers We have seen earlier that registers can contain data. They can also 

be used for containing memory addresses. A register containing memory address is usually referred to as 

a pointer. Using the memory address in the register, it is possible to access the memory location. This is 

called as  indirect addressing.

We can store the address of a variable in a register using the assembly instruction lea—load effective 

address. The syntax of the lea instruction is as follows.

 lea source, destination

The source points to a memory location like a label. The destination is a 32-bit register where the address 

of the source object will be stored. An example of lea instruction is shown below.

leal var, %esi  # Loads the effective address of the variable/label var
# into register esi

The other way of getting the address is to use the $ sign as a prefi x to the variable. An example is shown 

below. 

movl $var, %esi # Loads the effective address of the variable/label var 
# into register esi
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In order to access memory location using indirect addressing, the braces, ‘(‘ and ‘)’ are used in 

conjunction with the register name. For example (%esi) is used for accessing the location pointed to by esi. 

Some assembly instructions using the indirect addressing are shown below. 

movb $100, (%esi) # Moves 100 into the location pointed by the register esi

movb (%esi),%eax # Moves the content of location pointed by the register esi 
into register eax

Using the indirect addressing, it is possible to access memory at a given offset from the location pointed 

to. For example, 4(%esi) can be used to access a memory location that is 4 bytes after the location pointed 

to by the register esi. A negative offset can be used to refer to the memory before the location pointed to. 

For example, –4(%esi) refers to a location that is 4 bytes before the location pointed to by the register esi. 

Some examples of assembly instructions using the indirect addressing with offsets are shown below. 

movb $100, 6(%esi) # Moves 100 into the location which is 6 bytes after 
# the memory pointed to by the register esi

movl 10(%esi), %eax # This moves the data that are at 10,11,12 and 13 byte offsets 
# from the pointer esi into register eax 

movb $100,  -10(%esi) # This moves the data that are at 7,8,9 and 10 byte offsets from 
# the pointer esi into register eax.

Figure 6.4 shows the concept of indirect addressing discussed above.

Fig. 6.4 Indirect addressing
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6.2.3.6 Functions  A function is a logical entity to achieve a specifi c purpose. An assembly function 

begins with a label, which is the same as the name of the function. For example, a function called my_func 

begins with a label my_func. The fi rst instruction following the label is the start of the function. The ‘ret’ 

instruction signifi es the end of a function. A template for defi ning a function is shown below. 

my_func :

   # The function Body come here

   ret

Fig. 6.5 A Template for an assembly function

The assembly instructions in the function body can access any global variables and registers. Listing 6.1 

shows a part of assembly program ex1.s (assembly fi le names usually have a .s extension) that defi nes a 

function, which adds two global variables x and y and stores the result in another global z.

1 .data
2 x:
3 .int 10
4 y:
5 .int 20
6 z:
7 .int 0
8
9 .text
10
11 # The function ‘my_add’ adds the values in the global
12 # variables x and y and stores the result in global z.
13
14 my_add :
15
16     # Function Body Begins
17     movl x,%eax
18     addl y,%eax
19     movl %eax,z
20     # Function Body ends
21
22     ret
23

Listing 6.1 ex1.s

A function can be invoked by a ‘call’ assembly instruction. The call instruction pushes the return address 

on the stack and transfers the control to the function. The ‘_main’ is a special global function that serves as 

the default entry point for the program. Listing 6.2 shows the continuation of assembly program ex1.s in 

which the ‘call’ instruction is used to invoke the ‘my_add’ function defi ned earlier. 

24  .globl _main
25 _main :
26     call my_add
27
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28     mov $0,%eax # returning 0 to keep the OS happy
29
30     ret
31
32 .end

Listing 6.2 Continuation of ex1.s

The following dialog shows how to assemble the program ‘ex1.s’ and generate a binary that can be 

executed. 

# Invoking the assembler to create an object fi le 

# ..and linking it with startup fi le (crt0.o) to make the executable 

$ gcc -g ex1.s -o ex1 

# Executing it 

$ ./ex1.exe 

The common C Library functions (e.g. scanf, printf, strlen, etc.) can also be called by using the ‘call’ 

instruction. When a C library function is called using the ‘call’ instruction, the function name needs to 

be prefi xed with an underscore (_) sign. For example, to call the C library printf function, the assembly 

instruction ‘call _printf’ should be used.

When the function ‘my_add’ was called in the earlier example, there were no arguments passed to 

it. Let’s now learn how to pass the arguments to a function when it is called using the ‘call’ assembly 

instruction. The following steps are involved in invoking a function with arguments.

 ∑ The arguments to a function are pushed on the stack using the ‘push’ instruction. While calling C 

library functions, the order in which the arguments are pushed on the stack is last to fi rst, i.e. the 

last argument is pushed fi rst, the last but one, next and so on. The fi rst argument is the last one to 

be pushed on the stack.

 ∑ The function is invoked using the ‘call’ instruction.

 ∑ After the called routine returns, it is the caller’s responsibility to remove the arguments from the 

stack. This can be done by a series of pop instructions or by simply incrementing the SP register 

with the number of bytes pushed. 

The Listing 6.3 shows an assembly program which invokes the C library routine printf, fi rst with one 

argument and next with two arguments to clarify the function calling conventions mentioned above.

 

 1
 2 .data
 3 year :
 4 .int 2005
 5
 6 str1 :
 7 .ascii “Hello World \n\0”
 8
 9 str2 :
10 .ascii “Hello World %d \n\0”
11
12 .text
13
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14  .globl _main
15
16 _main:
17
18   # Equivalant of doing printf(“Hello World \n”);
19
20   pushl $str1 # Push the address of the str1 as argument
21   call _printf # Calling the C Library Function - printf
22   addl $4,%esp # Reset the SP to ‘remove’ the pushed items
23
24   # Equivalant of doing printf(“Hello World %d \n”,year);
25
26   pushl year # push the Last argument fi rst
27   pushl $str2 # Pushing the Last but one (fi rst) argument
28   call _printf # Calling the C Library Function - printf

29   addl $8,%esp # Reset the SP to ‘remove’ the pushed items
30
31   mov $0,%eax # Return 0 to keep the OS Happy
32
33   ret
34
35 .end

Listing 6.3 ex1a.s 

The following dialog shows the assembling, linking and execution of example 1a. 

# Invoking the assembler to create an object   le 

# ..and linking it with startup   le (crt0.o) to make the executable 

$ gcc -g ex1a.s -o ex1a 

# Executing it

$ ./ex1a.exe 

Hello World 

Hello World 2005 

How do we fetch the return value of a function? The convention is that, if the return value is less than or 

equal to 32-bit value, then one of the forms of the register EAX is used to get the return value. The 8-bit return 

values are fetched from register ‘al’. The 16-bit return values from register ax, and the 32-bit return values 

from register eax. For 64-bit return values, the higher 32 bits are in edx, and the lower 32 bits are in eax.

Let’s check out this convention by the program ex1b.c (Listing 6.4) in which we fi nd the length of the 

string ‘Hello World’ using the C library function ‘strlen’ and then display it.

1 .data
2
3 ret_val :
4 .int 0
5
6 str1 :
7 .ascii “Hello World\0”
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 8
 9 str2 :
10 .ascii “Return value of strlen is %d \n\0”
11
12 .text
13  .globl _main
14
15 .align 4
16 _main:
17
18   # Equivalant of doing ret_val = strlen(str1);
19
20   pushl $str1       # Push the address of the str1 as argument
21   call _strlen      # Calling the C Library Function - strlen
22   movl %eax,ret_val # Moving the return value into variable ret_val
23   addl $4,%esp      # Reset the SP to ‘remove’ the pushed argument
24
25   # Displaying the return value by using the equivalant of 
26   # printf(“Return value of strlen is %d \n”,ret_val);
27
28   pushl ret_val     # push the Last argument fi rst
29   pushl $str2       # Pushing the Last but one (fi rst) argument
30   call _printf      # Calling the C Library Function - printf
31   addl $8,%esp      # Reset the SP to ‘remove’ the pushed arguments
32
33   mov $0,%eax       # Returning 0 to keep the OS happy
34
35   ret
36
37 .end

 

Listing 6.4 ex1b.s

The following dialog shows the details of assembling, linking and execution of the example ex1b.c.

# Invoking the assembler to create an object fi le 

# ..and linking it with startup fi le (crt0.o) to make the executable 

$ gcc -g ex1b.s -o ex1b 

# Executing it 

$ ./ex1b.exe 

Return value of strlen is 11

 We learnt about calling functions (with and without arguments) and also fetching their return values. We 

have also learnt to defi ne functions that do not have any arguments passed to it or return any value (ex1.s). 

We now turn to defi ning functions that have arguments passed to it and have return values.

As we have already seen, the arguments to the function are passed on the stack. Let’s rework the function 

my_add, seen earlier in Example 1, to take two numbers as arguments and have their sum as the return 

value. From the conventions that we studied in the previous examples, the calling part would be as shown 

below.



336 Principles of Compiler Design

# Pushing the Two arguments for my_add(x,y)
pushl y
pushl x

# Invoking my_add function 
call my_add

# Fetching the return value of my_add function 
movl %eax, z

# Restoring the stack to remove the pushed arguments
addl $8, % esp

The function defi nition for my_add requires a fuller understanding of the runtime settings. At the time of 

entry into the function my_add, the stack is as shown in Fig. 6.6. The two arguments are on the stack owing 

to the pushes made before calling the function. The return address is on the stack because of the ‘call’ 

assembly instruction, which pushes it on to the stack before transferring the control to the my_add function.

From Fig. 6.6, it is clear that the function arguments can be accessed in the body of the function by using 

indirect addressing via the ESP. For example, if we assume the return address, argument 1 and argument 

2 are all 4 bytes each, the function argument 1 can 

be accessed as 4(%ESP), argument 2 as 8(%ESP) 

and so on. The pitfall in accessing the arguments 

in indirect addressing via SP is that, if the SP gets 

changed in the function body due to a push, then 

the ability to access the arguments is completely 

lost. A more safer approach is to move the value 

of esp into ebp at the time of entry of the function, 

so that all the arguments in the function body can 

be accessed by indirect addressing via ebp like 

4(%ebp), 8(%ebp) and so on. The only restriction is 

that the bp should not get changed in the function, 

which is reasonable. The additional aspect that 

needs to be taken care of is to save the BP value at 

the entry of function and restore it back at the time 

of exiting the function.

Assuming that each of the function 

argument is a 4-byte value, Fig. 6.7 shows 

the stack as seen in the body of function. 

The function arguments are accessed by 

indirect addressing via the bp.

The fi rst argument is at 8(%ebp), 

the second at 12(%ebp), and so on. For 

arguments, which are not 32-bit values, the 

calculations should take into account the 

size of the arguments. The fi rst argument 

is at 8(%ebp), while the second argument 

is located at offset (%ebp), where offset = 

8+sizeof fi rst argument. The third argument 

Fig. 6.6 Stack at the entry point of a function

Fig. 6.7 Function arguments accessed by indirect
                               addressing via BP
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is located at an offset = 8 + size of fi rst argument + size of second argument and so on. The alignment that 

the processor is particular about is that the size of each argument should be multiples of 4.

In order to support function arguments, the following two guidelines need to be adhered to while 

defi ning a function.

 ∑ A prolog code in which the current value of BP is saved and then the SP’s value is moved to BP, 

should be added at the entry of each function.

 ∑ An epilog code in which the SP and BP are restored to their respective original values at the time 

of function entry, should be added at the function exit.

Figure 6.8 shows the modifi ed function template including the prolog and epilog.

Fig. 6.8 Assembly function template including prolog and epilog

In order to return a value, the convention is that the called function moves the return value to some form 

of the register EAX and returns back to the caller. 8-bit values are returned in al, 16-bit values are returned 

in ax and the 32-bit values are returned in eax. It is the caller’s responsibility to retrieve the return value 

from the appropriate form of EAX and use it. 

Listing 6.5 shows the reworked function my_add, seen earlier in Example 1, to take two numbers as 

arguments and have their sum as the return value. 

               

1               
2 .data
3 x:
4 .int 10
5 y:
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 6 .int 20
 7 z:
 8 .int 0
 9
10 str2 :
11 .ascii “The Sum of two numbers x=%d y=%d is z=%d \n”
12
13 .text
14
15 # The function ‘my_add’ adds the values in the global variables x and y
16 # and stores the result in another global z.
17
18 my_add :
19
20   # Function Body Begins
21   pushl %ebp # Saving the current BP
22   movl %esp, %ebp # Moving the SP to BP so that 
23    # function arguments can be accesed using
24    # indirect addressing via BP
25
26   movl 8(%ebp),%ecx # Moving the First Argument to %ecx
27   addl 12(%ebp),%ecx # Adding the second argument to the 
28    # content of %ecx and store it in %ecx
29
30
31   movl %ecx,%eax # The return value has to be stored in %eax
32
33   movl  %ebp,%esp # Restoring the SP to what it was at the 
34    # entry of function 
35   popl  %ebp # Restoring the value of BP
36
37    # Function Body ends
38  
39   ret
40
41  .globl _main
42 _main :
43
44   # Pushing the Two arguments for my_add(x,y)
45   pushl y
46   pushl x
47   call my_add
48   movl %eax,z
49   addl $8,%esp
50
51   # Displaying the return value by using the equivalant of
52   # printf(“The Sum of two numbers x=%d y=%d is z=%d \n”,x,y,z);
53  
54   pushl z            # push the Last argument fi rst
55   pushl y            # push the Last but one argument next
56   pushl x            # push the next argument in the reverse order
57   pushl $str2        # Pushing the Last but one (fi rst) argument
58   call _printf       # Calling the C Library Function - printf
59   addl $16,%esp      # Reset the SP to ‘remove’ the pushed arguments
60
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61   mov $0,%eax        # returning 0 to keep the OS happy
62
63
64   ret
65  
66 .end

Listing 6.5 ex1c.s

The dialog below shows the details of assembling, linking and executing the Example 1c. 

# Invoking the assembler to create an object fi le 

# ..and linking it with startup fi le (crt0.o) to make the executable 

$ gcc -g ex1c.s -o ex1c

# Executing it 

$ ./ex1c.exe

The Sum of two numbers x=10 y=20 is z=30 

The local variables are also allocated on the 

stack. The register ebp is used to access the local 

variables via the indirect addressing similar to the 

function arguments. While the function arguments 

are accessed using positive offsets, the local 

variables are accessed using negative offsets from 

ebp as shown in Fig. 6.9.

For using local variables in an assembly 

language routine, the following procedure needs 

to be adhered to:

 ∑ The storage space is allocated for the 

local variables at the start of the function. 

This is done through decrementing SP by 

the amount of space required by the local 

variables. For example, if there are 2 local 

variables (each is say a 4-byte integer), 

then the SP is decremented by 8. The 

fi rst local variable would constitute the 4 

bytes –1(%ebp), –2(%ebp), –3(%ebp) and 

–4(%ebp). The second local variable 

would constitute the 4 bytes starting at –5(%ebp) and extending till –8(%ebp). 

 ∑ The local variables are accessed in assembly instructions with indirect addressing via EBP 

register. The following instructions show sample local variable accesses.

 movl -4(%ebp),%eax #moving the value of local variable 1 into eax
 movl $5, -8(%ebp) #Assigning 5 to the Local variable 2

 ∑ The local storage space is reclaimed just before exiting the assembly routine. This is done by 

restoring the SP to its value at the entry of the function (before it was decremented to create local 

Fig. 6.9 Stack showing local variables and
 function arguments
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space). This is achieved by simply moving the current value of BP into SP, since BP is currently 

pointing to the place where SP was at the start of function (see Fig. 6.6). This functionality is 

anyway part of the epilog of a function that we studied earlier.

The template of the function using function arguments as well as local variables and returning a value is 

shown below.

my_func:

   # Function Prolog begins

   pushl %ebp # Saving the current BP
   movl %esp,%ebp # Moving the SP to BP so that
  # function arguments can be accessed using
  # indirect addressing via BP

   # Creating Storage for Local Variables
   subl $12,%esp # For a function needing 12 Bytes of Local storage

   # Function Prolog Ends

   # The function Body begins
   # The Function Arguments can be accesed here using indirect addressing via BP
   # for e.g.movl 4(%ebp), %eax which moves the content of Function Argument 1 
   # into register eax

   # The Local Variables can be accessed using indirect addressing via BP
   # for e.g.movl –4(%ebp), %eax which moves the content of local variable 1
   # into register eax

   # If there is a return value for the function, move the return value
   # to some form of AX register. AL for 1 byte return value,
   # AX for 2 byte return value, EAX for 4 byte return value

   # The function Body ends

   # Function Epilog begins

   movl %ebp,%esp # Restoring the SP to what it was at the
  # entry of function

   popl %ebp # Restoring the value of BP

   # Function Epilog Ends

   ret

Fig. 6.10 Template for function capable of handling arguments and local variables

The Example 1d in Listing 6.6, shows a program in which there is a function swap, which handles 

arguments, returns a value and also has local variables.

 1
 2 .data
 3 x:
 4 .int 10
 5 y:
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 6 .int 20
 7
 8 str1 :
 9 .ascii “The two numbers before swap x=%d y=%d \n\0”
10
11 str2 :
12 .ascii “The two numbers after swap x=%d y=%d \n\0”
13
14 .text
15
16 # The function ‘swap’ swaps the values in the global variables x and y
17 # by using a temporary local variable - tmp on the stack
18
19 swap :
20
21   # Function Prolog begins
22   pushl %ebp # Saving the current BP
23   movl %esp,%ebp # Moving the SP to BP so that
24   # function arguments can be accessed using
25   # indirect addressing via BP
26
27   # Creating local storage space
28   subl $4,%esp # Creating 4 bytes of Local storage
29
30   # Function Prolog ends
31
32   # Function Body Begins
33
34   # tmp = x ;
35   movl x,%eax # Moving x into register eax
36   movl %eax,-4(%ebp) # Moving it into local variable (tmp)
37
38   # x = y ;
39   movl y,%eax # Moving y into register x
40   movl %eax,x # Moving it into x
41
42   # y = tmp ;
43   movl -4(%ebp),%eax # Moving local variable (tmp) to reg x
44   movl %eax,y # Moving reg x into y
45
46   # Function Body ends
47
48
49   # Function Epilog begins
50   movl %ebp,%esp # Restoring the SP to what it was at the
51   # entry of function
52   popl %ebp # Restoring the value of BP
53
54   # Function Epilog ends
55
56   ret
57
58   .globl _main
59 _main :
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60
61   # printf(“The two numbers before swap x=%d y=%d \n”,x,y);
62   pushl y  # push the Last argument
63   pushl x  # push the next argument in the reverse order
64   pushl $str1 # Pushing the Last but one (fi rst) argument
65   call _printf # Calling the C Library Function - printf
66   addl $12,%esp # Reset the SP to ‘remove’ the pushed arguments
67
68   call swap # Calling the swap function
69
70
71   # printf(“The two numbers after swap x=%d y=%d \n”,x,y);
72   pushl y  # push the Last argument
73   pushl x  # push the next argument in the reverse order
74   pushl $str2 # Pushing the Last but one (fi rst) argument
75   call _printf # Calling the C Library Function - printf
76   addl $12,%esp # Reset the SP to ‘remove’ the pushed arguments
77
78
79   mov $0,%eax # returning 0 to keep the OS happy
80
81   ret
82
83 .end

Listing 6.6 ex1d.s

The following shows the dialog for assembling, linking and executing Example 1d.

# Invoking the assembler to create an object fi le

# ..and linking it with startup fi le (crt0.o) to make the executable

$ gcc -g ex1d.s -o ex1d

# Executing it

$ ./ex1d.exe

The two numbers before swap x=10 y=20
The two numbers after swap x=20 y=10 

6.2.3.7 Decision-making and Jumps In the normal course of a program, the instructions get 

executed sequentially one after the other. However, programs often require branching out to different parts 

of code depending on certain conditions. For example, a program might invoke a function A or function B 

depending on whether a variable ‘g’ is greater than 50 or less than 50. This kind of  conditional jumps are an 

important part of programming.

At an assembly instruction level, the conditional jumps happen in two steps:

 1. Comparing two values.

 2. Jumping to a label depending on the result of comparison.

The comparison of two values is performed using the ‘cmp’ assembly instruction. The syntax of the cmp 

instruction is as follows.

 cmp operand1,operand2
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This compares operand2 with operand1. The operands can be registers or immediate values or a memory 

location (both cannot be memory locations at the same time). The operands are not modifi ed by the 

instruction, but the status fl ags in EFLAGS register are set.

Jumping to a label depending on the content of EFLAGS register is performed by the conditional jump 

instruction, which has the following syntax.

 jxx address

where the xx is a one- or two- or three-letter code for the condition and address is the target label to jump.

An example of conditional jump instruction is ‘ja’ instruction, which stands for jump if above. The ja 

instruction checks the two bits CF (Carry Flag) and ZF (zero fl ag) in the EFLAGS register to make the 

decision as to jump to the label or not. The following shows some examples of jumps to labels depending 

on the result of comparisons.

cmpl %eax, $100  # Compare 100 with the content in register eax

jl my_lbl   # Jump to my_lbl if 100 is less than content of 

    # register eax

cmpl %eax, $100  # Compare 100 with the content in register eax

jle my_lbl   # Jump to my_lbl if 100 is less or equal to 

    # content of register eax

cmpl %ecx,%eax  # Compare the content of register eax with that of ecx

jne my_lbl   # Jump to my_lbl , if they are not equal

A complete list of all the conditional jump instructions like ja, jle, etc. can be found in an x86 assembly 

language programming manual.

The Example 1e in Listing 6.7, shows a program in which we use conditional jump feature in the x86 

assembly language.

 1
 2 .data
 3 x:
 4 .int 10
 5 y:
 6 .int 20
 7 z:
 8 .int 30
 9
10 str1 :
11 .ascii “The numbers before compare x=%d y=%d z=%d \n\0”
12
13 str2 :
14 .ascii “The numbers after compare x=%d y=%d z=%d \n\0”
15
16 .text
17
18  .globl _main
19 _main :
20
21  # printf(“The numbers before compare x=%d y=%d z=%d \n”,x,y,z);
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22  pushl z   # push the Last argument
23  pushl y   # push the Last but one argument
24  pushl x   # push the next argument in the reverse order
25  pushl $str1  # Pushing the fi rst argument
26  call _printf  # Calling the C Library Function - printf
27  addl $16,%esp  # Reset the SP to ‘remove’ the pushed arguments
28
29  movl x,%eax # Moving x into reg eax
30  cmpl %eax,y # Comparing y with x
31  jl lbl1 # jump to lbl1, if y is less than x
32
33  movl $50,z # move 50 into z, if y is >= x
34  jmp lbl3 # jumping to lbl3
35
36 lbl1:
37  movl $100,z # move 100 into z, if x is < y
38
39 lbl3:
40
41  # printf(“The numbers after compare x=%d y=%d z=%d \n”,x,y,z);
42  pushl z  # push the Last argument
43  pushl y  # push the Last but one argument
44  pushl x  # push the next argument in the reverse order
45  pushl $str2 # Pushing the fi rst argument
46  call _printf # Calling the C Library Function - printf
47  addl $16,%esp # Reset the SP to ‘remove’ the pushed arguments
48
49
50  mov $0,%eax # returning 0 to keep the OS happy
51
52 ret
53
54 .end

Listing 6.7 ex1e.s

The following shows the dialog for assembling, linking and executing example 1e.

# Invoking the assembler to create an object fi le

# ..and linking it with startup fi le (crt0.o) to make the executable

$ gcc -g ex1e.s -o ex1e

# Executing it

$ ./ex1e.exe

The numbers before compare x=10 y=20 z=30
The numbers after compare x=10 y=20 z=50

We have discussed about some of the important aspects of x86 assembly programming in this section. 

The grasp on the essentials of the x86 assembly programming is very vital for understanding the principles 

of code generation that would be studied in a later section. The code generator like all the assembly 

programs that we saw in this section uses AT&T syntax for the generated x86 assembly code.
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6.3 RUNTIME ENVIRONMENT

During the target code generation, the target code generator needs to consider what kind of runtime settings 

or  runtime environment should be provided for the execution of program. ‘Runtime environment’ is a term 

used to broadly describe all the runtime settings. In the case of compiled languages the runtime environment 

is indirectly controlled by generating the code to maintain it. In the case of an interpreted program like, 

say, a PERL script, the runtime environment is maintained directly in the data structures of the interpreter 

(PERL). 

A compiler designer should conceive the environment under which a program is expected to execute 

and have the code generator generate the target code accordingly. In this section we discuss the various 

aspects of a runtime environment and how the target code needs to be generated in order to implement the 

environment. We start off with a discussion on the terminology used in describing runtime environment 

in Section 6.3.1. This is followed by discussion on the important elements of a runtime environment. The 

discussion is supplemented by taking examples of how certain features are implemented in the runtime 

environments used in C language, Pascal and FORTRAN77 compilers.

6.3.1 Terminology

When a program is executed, the control fl ows sequentially instruction after instruction. When a procedure 

is called, the control is transferred to the fi rst instruction in the procedure. After executing all the 

instructions in the procedure, the control returns back to the location where the procedure was called. The 

program continues the execution with the next instruction after the call.

Strictly speaking, a function is a procedure, but with a return value. However, we use the terms 

procedure and functions interchangeably throughout this chapter for the sake of convenience.

The execution of a procedure is called as the  activation of the procedure. The  lifetime of a procedure is 

the time spent in execution of a procedure, including the time spent in other procedures called by it. The 

fl ow of control in a program can be depicted by an  activation tree. In an activation tree, each of the function 

activation represents a node. Figure 6.11 shows an activation tree corresponding to the execution of a string 

reversal C program shown in the dialog below. 

# String Reversal Program in C

$ cat -n ex2.c

  1 #include <stdio.h>
  2 #include <string.h>
  3
  4 char str[100]=”Compiler”;
  5
 6 void string_reverse(char *a,int b);
 7 void swap(int a,int b);
 8 void my_print(char c1,char c2);
 9
10 int main()
11 {
12  int len;
13
14  len=strlen(str);
15  printf(“%s\n”,str);
16  string_reverse(str,len);
17  printf(“%s\n”,str);
18  return(0);
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19 }
20
21 void string_reverse(char *c,int len)
22 {
23  int i,mid,l1;
24
25  l1=(len-1);
26  mid=l1/2;
27
28  for(i=0;i<=mid;i++){
29   swap(i,(l1-i));
30  }
31 }
32
33 void swap(int a,int b)
34 {
35  char tmp,c1,c2;
36
37  c1=str[a];
38  c2=str[b];
39
40  my_print(c1,c2);
41
42  tmp=str[a];
43  str[a]=str[b];
44  str[b]=tmp;
45 }
46
47 void my_print(char c1,char c2)
48 {
49  printf(“Swapping %c with %c\n”,c1,c2);
50 }
51

# Compiling it 

$ gcc -Wall ex2.c -o ex2 

# Executing it 

$ ./ex2 

Compiler

Swapping C with r

Swapping o with e

Swapping m with l

Swapping p with i

relipmoC 

The root of the activation tree represents the activation of the main() function. The main() activates the 

function string_reverse(), which in turn activates the function swap(), four times in the form of swap(0,7), 

swap(1,6), swap(2,5) and swap (3,4). Each of these swap() invocations call the my_print() function in 

the form of my_print(‘C’, ‘r’), my_print(‘o’, ‘e’), my_print(‘m’, ‘l’), my_print(‘p’, ‘i’) respectively. The 

activation of the C library function ‘printf()’ in the activation tree is not shown to keep it simple. The fl ow 

of control in the program can be deduced by doing a depth fi rst traversal of the activation tree. The traversal 

of the activation tree starts at the root of the tree. Each node is visited before its children are visited. The 
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children are visited from left to right order. When all the children of a particular node have been visited, 

the function activation corresponding to the node is completed. The reader can verify that the depth fi rst 

traversal of activation tree in Fig. 6.11 can recreate the program output.

 

Fig. 6.11 Activation tree

A stack representing the fl ow of control, called as 

control stack or runtime stack is used to keep track of 

the activations that are in progress currently. When an 

activation of a function happens, a node corresponding 

to it is pushed on to the control stack. When the 

activation ends, the node is popped out of the control 

stack. Figure 6.12 shows an instance of control stack 

during the execution of string reversal program that 

we saw previously. It shows the control stack 

during the execution of my_print(‘m’, ‘l’).

The control stack and the activation tree are 

related in an interesting way. When a node N() is 

at the top of the control stack, the other elements 

on the control stack are the ones that are along the 

path from N to the root. For example, the activation 

tree at the time of execution of my_print(‘m’, ‘l’) 

is shown in Fig. 6.13. The path in the activation 

tree from my_print(‘m’, ‘l’) to the root of the tree 

(main()) is shown in the dark line. This path given 

by my_print(m,l), swap(2,5), main() is the same as 

the control stack at that point, shown previously in Fig. 6.12. The activations of the functions connected 

using the dotted lines have executed to completion.

Let’s briefl y touch upon the some other terminology that is used in some of the later sections.

When a variable, say ‘v’, is declared in a program, it needs to be mapped to a memory location ‘L’ at the 

runtime. This mapping is known as the  binding of ‘v’ to ‘L’. The location ‘L’ symbolises a set of memory 

locations equal to the size of the variable. The term  data object is also to refer to the memory location a 

variable is mapped into.

Fig. 6.13 Activation tree

Fig. 6.12 Control stack
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The  scope of a declaration is the region where the declaration applies. This is the region where the 

variables defi ned in the declaration can be used according to the rules of the programming language. For 

example, a variable declared within a function in C language would have a scope within the function. The 

variable cannot be used outside it.

The  environment is a function that maps a variable name to a memory location. The  state refers to the 

function that maps the memory location to the value stored in it. A data object can contain different values 

at different times. 

We look at an example C program, which illustrates the idea of binding of variable to memory and also 

the state of the variable.

6.3.1.1 Example 3—A Program to Display the Binding and State of Variables The dialog below 

shows a C program that prints the memory location to which a variable is bound and also its state. It can be 

observed from the output that the same variable can be bound to different memory locations at different times.

# Program to print the Bindings and states of Variables 

$ cat -n ex3.c 

1 #include <stdio.h>
  2
  3 void func2();
  4 void func1();
  5
  6 int g=0;
  7
  8 int main()
  9 {
10  func1();
11  func2();
12  return(0);
13 }
14
15 void func1()
16 {
17  int i,j,k;
18
19  i=1;
20  j=2;
21  k=3;
22
23  printf(“==============\n”);
24  printf(“Variable ‘i’ is bound to %lx state=%d \n”, (unsigned long)&i,i);
25  printf(“Variable ‘j’ is bound to %lx state=%d \n”, (unsigned long)&j,j);
26  printf(“Variable ‘k’ is bound to %lx state=%d \n”, (unsigned long)&k,k);
27
28  printf(“Variable ‘g’ is bound to %lx state=%d \n”, (unsigned long)&g,g);
29  g++;
30
31 }
32
33 void func2()
34 {
35  int a,b,c;
36
37  a=10;
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38  b=20;
39  c=30;
40
41  printf(“==============\n”);
42  printf(“Variable ‘a’ is bound to %lx state=%d \n”, (unsigned long)&a,a);
43  printf(“Variable ‘b’ is bound to %lx state=%d \n”, (unsigned long)&b,b);
44  printf(“Variable ‘c’ is bound to %lx state=%d \n”, (unsigned long)&c,c);
45
46  printf(“Variable ‘g’ is bound to %lx state=%d \n”, (unsigned long)&g,g);
47
48  func1();
49
50 }

# Compiling it

$ gcc -Wall ex3.c -o ex3

# Executing it 

$ ./ex3 

==============
Variable ‘i’ is bound to 73cb44 state=1 
Variable ‘j’ is bound to 73cb40 state=2 
Variable ‘k’ is bound to 73cb3c state=3 
Variable ‘g’ is bound to 403010 state=0 
==============
Variable ‘a’ is bound to 73cb44 state=10 
Variable ‘b’ is bound to 73cb40 state=20 
Variable ‘c’ is bound to 73cb3c state=30 
Variable ‘g’ is bound to 403010 state=1 
==============
Variable ‘i’ is bound to 73cb24 state=1 
Variable ‘j’ is bound to 73cb20 state=2 
Variable ‘k’ is bound to 73cb1c state=3 
Variable ‘g’ is bound to 403010 state=1 

6.3.2 Elements of a Run-time Environment
As stated earlier, Run-time environment describes the run-time settings of a program in execution. In this 

section, we introduce the important elements that constitute a run-time environment for a program. We 

study briefl y about each one of those in this section. Later, we examine each of these elements in detail 

and get into some specifi cs about run-time environments provided by the compilers for FORTRAN, C and 

Pascal.

The important elements in a Run-time environment are:

 (1) Memory Organisation: At the time of execution, the program requires memory for storing local 

variables, global variables, the code of the program, data structures for keeping track of the 

activations, and so on. One of the important characteristics of a run-time environment is the way 

memory is organised during execution. The features of the source language determine the way run-

time memory is organised. For example, FORTRAN77 specifi cations did not support pointers or 

usage of any dynamic memory. It did not support recursion in procedures. This is in contrast to 

a source language like C where, there is support for pointers and use of dynamic memory in the 

form of malloc () and free () routines. C language allows recursion in its functions. The memory 

organisation in FORTRAN77 run-time environment would be very different from C run-time 



350 Principles of Compiler Design

environment given the contrast in the language features. The way memory is organised is an 

important aspect of a runtime environment.

 (2) Activation records: Typically, source languages support procedures or functions for making the 

programs modular. Procedure activation is managed by having a contiguous block of memory called 

the  activation record. The activation record contains among other things, the memory for all the 

local variables of the procedure. A single activation record which is common across any number 

of activations can be created statically. The activation record can also be constructed dynamically, 

one for each activation. Depending on how the activation record is created, the target code has to be 

generated accordingly to access the local variables that are part of it. In block-structured languages 

like C and Pascal, the activation record which houses memory for the local variables would also 

include the space for the variables declared in different blocks of the procedure. The scoping rules 

of the source language dictate how the target code needs to be generated in order to access the 

variables in the block. The content of activation record, the code generated to access the variables 

given the scoping rules of the language, the method used for creating activation record, and the 

place where activation records are stored are all important aspects of the run-time environment.

 (3) Procedure calling and return sequences: When a procedure is activated, there are certain sequence 

of operations like evaluating the function arguments, placing it in a mutually agreed upon location 

between the caller and callee, transferring the control to the called procedure, and so on. This 

sequence of operations that are carried out during the process of calling a procedure is known as 

the  calling sequence. Similarly, when an activated procedure completes execution, there would be 

a sequence of actions to be performed like fetching the return value from a mutually agreed upon 

location between the caller and callee, transferring the control back to the caller, etc. This sequence 

of actions to be carried out, when a procedure returns after completing its execution is known as 

 return sequence. The calling and return sequences, the division of responsibility between caller and 

the callee in these sequences are vital aspects of a runtime environment. They differ from one source 

language to another and in a few rare cases from compiler to compiler for the same language.

 (4)  Parameter passing: When a function is called, it can be passed one or more parameters. The called 

function might modify the value of the parameter. Some of the source languages like PASCAL and 

C++ specify rules in which context the modifi ed value should refl ect in the caller and in which it 

should not. In some of the source languages like FORTRAN77, the modifi cation of parameter in a 

function always refl ects in the caller. There exist several mechanisms by which parameters can be 

passed to functions. The target code generator should take into account the type of the parameter-

passing mechanism used in the context and generate code accordingly. An important characteristic of 

a given run-time environment is the support provided for different parameter-passing mechanisms.

In the next few sections, we study about each of these elements of a run-time environment in detail. 

The discussion is supplemented by taking examples of how things 

are structured in run-time environments of common programming 

languages like C, FORTRAN77, Pascal, ADA, and so on.

6.3.3 Memory Organisation

The operating system provides a block of memory for executing a 

compiled program. The block of memory is segregated into logical 

areas for ease of execution. The layout of a program in memory 

ready for execution illustrating the various logical divisions in 

memory is shown in Fig. 6.14. 
Fig. 6.14 Memory layout
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The program instructions consisting of the code for each of the procedures is stored in the code region 

(also known as the program memory). The size of the code for each of the procedures is known at the time 

of compilation, so the total size of this area is fi xed at the compile time for a given program. 

The static/global data region provides the memory for storage of all the global variables declared in the 

program. It also provides storage for all the static objects (which do not change during the execution) like 

string literals, large constants, etc. used in the program. The amount of memory needed for this section is 

also known at the time of compilation similar to the program region.

The stack and heap area are used for allocation of dynamic memory required by the program. The 

dynamic memory is the memory that can be allocated and freed during the execution of program as opposed 

to the static one, which stays allocated throughout the life of the program. 

The stack area is used for allocating memory to data that follow last-in-fi rst-out (LIFO) order of 

allocation to de-allocation. In other words, the stack houses data structures in which last chunk to be 

allocated would be the fi rst one to be freed. 

The heap region provides for other dynamic memory needs in a program that do not follow the last-in-

fi rst-out order of allocation to de-allocation. 

To get an idea of what kind of data goes into the stack and the heap in a run-time environment, let’s 

take the example of C program runtime environment. In a C program, when memory is requested by the 

program using dynamic memory management routines like say malloc(), calloc(), etc., it is provided from 

the heap. After using the obtained memory, the program can free the memory using the free() routine. The 

heap then reclaims the storage for the freed memory, so that it can be allocated to future memory allocation 

requests. The stack holds all the local variables defi ned within a function during its activation. The memory 

for local variables is de-allocated automatically after the activation of the function is complete. There is no 

explicit ‘free’ made in the program for the de-allocations on the stack.

The heap and stack grow and diminish during the lifetime of a program. Some of the compilers might 

have a run-time environment where stack starts at lower address and heap starts at higher address. There are 

others where the heap starts at lower address and stack starts at higher address. Regardless of where they 

are positioned, they can only be known at the run-time and keep growing and diminishing depending on the 

program activity.

In FORTRAN77 run-time environment all the data variables (both local and Global) are bound to the 

static memory region. Every variable is associated with a fi xed address computed at the compile time that 

can be used to access it throughout the life of the program. The FORTRAN77 specifi cations did not support 

dynamic memory allocation and hence its run-time environment did not need a heap or stack.

6.3.3.1 Example 4—Memory Organisation in C Run-time Environment The example shown in 

the dialog below illustrates the  memory organisation in a C run-time environment. The program displays the 

address of the variables stored in static area, stack area and also the heap area. The address of the functions 

stored in code area is also displayed. From the output, one can understand the partitioning of the runtime 

memory into specifi c areas.

A utility called ‘ objdump’ also helps displaying the range of addresses of specifi c sections in a 

given executable. In the dialog below, we see ‘objdump’ deciphering the executable and showing the 

range of addresses in the code area (called text) and static area (given together by rdata, bss and idata). 

This establishes the fact that the code area and static area are determined at the compile time, and that 

information is stored in the object fi le. The heap and stack information can be determined at the runtime 

only. The reader is advised to read the manual pages of objdump for more details.
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# Program to display addresses of variables

# Compiling it

$ gcc -Wall ex4.c -o ex4

# Executing it

$ ./ex4

========== CODE AREA ============
Start address of the main() in code area=401094
Start address of the func1() in code area=401050
Start address of the func2() in code area=4011c4
========== STATIC AREA ============
Address of the Global Variable g1 in Static area=403040
Address of the Global Variable g2 in Static area=403030
========== STACK AREA ============
Address of Local Variable a=73cb34
Address of Local Variable b=73cb30
Address of Local Variable e=73cb14
Address of Local Variable f=73cb10
========== HEAP AREA ============
Address allocated on the heap=b90518
Address allocated on the heap=b90528
Address allocated on the heap=b90538

# Using the objdump utility to get the addresses

$ objdump -h ex4.exe

ex4.exe: fi le format pei-i386

Sections:
Idx Name Size VMA LMA File off Algn
0 .text 00000520 00401000 00401000 00000400 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .rdata 00000250 00402000 00402000 00000a00 2**4
 CONTENTS, ALLOC, LOAD, READONLY, DATA
2 .bss 00000070 00403000 00403000 00000000 2**4
 ALLOC
3 .idata 00000188 00404000 00404000 00000e00 2**2

  CONTENTS, ALLOC, LOAD, DATA

6.3.4 Activation Records

The execution of a procedure is managed by maintaining a contiguous block of storage at the run-time 

called as  activation record. An activation of a procedure is associated with an activation record. For 

example, in the activation tree shown in Fig. 6.11, there are 4 instances of swap() being activated one after 

the other. In the C program, When swap(0,7) is activated, an activation record corresponding to it is created 

for aiding its execution and then destroyed at the end of execution. Similarly, when swap(1,6) is activated in 

the C program, another activation record corresponding to it is created for assisting its execution, and so on.

An activation record holds space for arguments to the procedure, local variables, compiler-generated 

temporaries, the return value of the function and some other fi elds that help the activation of a procedure. 

An activation record is illustrated in Fig. 6.15. The format of the activation record need not exactly adhere 

to the one shown in Fig. 6.15 for all the languages in different run-time environments. The exact content 
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of the activation record depends on factors like the target architecture, 

the source language compiled, and so on. However, the fi elds of the 

activation record illustrated in Fig. 6.15 are found commonly in most of 

the activation records. 

When a procedure is activated, storage space is required for local 

variables, arguments to the function, compiler-generated temporaries 

and the return value of the function. The activation record serves as a 

placeholder for all of these elements.

From a program control point of view, when a procedure is called, the 

control is transferred to the callee and after its execution is complete, the 

control is given to the next executable instruction after the function call in 

the caller. The return address in the caller, where the control should return 

after the callee completes execution is saved before the execution of the 

callee. It would be used to transfer the control back to the caller after the 

execution of callee. On most of the target architectures, a register called the program counter (PC) holds 

the address of the next instruction to be executed. The PC should be saved before transferring the control 

to the callee procedure and restored after its completion in order to achieve proper fl ow of control. The 

registers of the processor would be used freely by the callee for executing its instructions. If the registers 

are not saved before the execution of callee, and restored after its completion they would become corrupted 

due to the callee procedure execution. If the registers get corrupted, the caller procedure would not execute 

as expected after it returns from the callee. Hence when a procedure is called, the  machine status in the 

form of contents of the registers, return address and the program counter should be saved before the call 

and restored after the execution of the called procedure is complete. The machine status is saved in the 

activation record before the call to a procedure and restored after the execution of the procedure.

In source languages like Pascal, procedures can be nested. Consider a Pascal program having nested 

procedures P1 and P2 as shown in the Listing 6.8. The procedure ‘P2’ is nested within ‘P1’. The variable 

‘c’ used in the nested procedure P2 is defi ned in P1. At the place where c is used, i.e. line 12, it should be 

resolved to the declaration in P1. In order to implement such scope rules that allow resolving the names 

unambiguously to a declaration in the case of nested procedures at the compile time, we have an optional 

fi eld called as  access link in the activation record. The access link typically points to the activation record 

of the defi ning environment. We learn about the exact usage of access link fi eld in implementing the scope 

rule for nesting of procedures later in the chapter. This optional fi eld is not required in the activation records 

for source languages like C where no nesting of procedures is allowed.  

 1 PROGRAM sample(input,output);
 2 VAR a,b: integer;
 3
 4  PROCEDURE P1();
 5  VAR a,b : integer;
 6  VAR c : integer;
 7   PROCEDURE P2();
 8   VAR a,b : integer;
 9   BEGIN
10     a:=10; (* This should resolve to ‘a’ defi ned in P2 *)
11     b:=20; (* This should resolve to ‘b’ defi ned in P2 *)
12     c:=25; (* This should resolve to ‘c’ defi ned in P1 *)
13   END;
14  BEGIN

Fig. 6.15 Activation record
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15   c :=40;
16   writeln(‘Value of c is ‘,c); (* c is 40 here *)
17   P2();
18   writeln(‘Value of c is ‘,c); (* c is 25 here *)
19  END;
20 BEGIN
21  P1();
22 END.
23
24

Listing 6.8 A Pascal program with nested procedures

Programming languages like LISP and APL allow variables to be bound to a storage depending on the 

current activations. In these cases the variable can be resolved to the appropriate declaration only at the 

run-time depending on the current activations. In order to implement such dynamic scoping, it is necessary 

to keep track of the chain of the current activations. The optional  control link in an activation record helps 

in maintaining a track of the current activations and implementing dynamic scope. Following the control 

link of the current activation record, we can make a chain of all the functions that are currently active. This 

helps in implementing the dynamic scope. 

The activation record contains a fi eld for storing the return value of a function. The callee stores the 

return value in this fi eld before returning the control to the caller. The caller copies it from this fi eld into 

the appropriate variable as defi ned in the source program. In practice, many of the compilers, have the 

return value and the arguments passed in registers, whenever feasible rather than having them as a part of 

activation record. The register access is faster than memory access and hence passing the return values and 

arguments in registers is more effi cient.

Activation records are allocated space in the stack Area in C run-time environment. The Old 

FORTRAN77 compilers used the static area for housing the activation records. The run-time environments 

for functional languages like LISP allocate space for activation records on the heap. 

6.3.4.1 Activation Record in C Run-time Environment In C runtime environment, the activation 

records are allocated storage space on the stack. When a procedure is called, a new activation record is 

pushed on to the stack. When the procedure is complete, the activation record is popped-out of the stack. 

The top of the stack is usually pointed to by a 

register called SP (stack pointer). An activation 

record can be allocated by moving SP with an 

amount equal to the size of activation record. 

The activation record is de-allocated by moving 

the SP back by an amount equal to the size of 

activation record. For example, consider the 

activation of a function ‘my_func()’ having an 

activation record of size, say, 40 bytes. The SP 

is moved (decremented in this case) by 40 bytes 

to allocate an activation record for my_func(). 

The SP is moved back (incremented by 40) to 

de-allocate the activation record for my_func() 

after the execution of my_func() is complete. 

Figure 6.16 shows the run-time stack, before, 

during and after the activation of my_func().

Fig. 6.16 Allocating and de-allocating space for
activation records
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Another register known as 

frame pointer (FP) or base pointer 

(BP) stores a pointer to the 

current activation record. The BP 

points to a location in the current 

activation record that is used as 

a base for accessing the local 

variables, arguments to the function, 

temporaries and other elements in 

the activation record. Figure 6.17 

shows the stack layout during the 

activation of function ‘my_func’ and 

how BP can be used for accessing 

arguments and local variables.

The local variables in the currently 

active function are accessed using 

negative offsets from the location 

where BP points. In the above 

example, during the time that 

function ‘my_func’ is active, the 

local variable ‘ret’ is accessed as 

–4(%BP), ‘c’ as –8(%BP), ‘d’ as –

12(%BP). Consider the initialisation 

of the local variables ‘c’ and ‘d’ 

in the function ‘my_func’ of Fig. 

6.17. The code generator produces 

the following x86 assembly code 

for initialisation using the relative 

offsets of the variables ‘c’ and ‘d’ 

from the BP.

movl $10,-8(%ebp) # Variable ‘c’ is at offset –8 from the BP throughout the function
movl $20,-12(%ebp) # Variable ‘d’ is at offset –12 from the BP throughout the function

The parameters in the currently active function are accessed using positive offsets from the location 

where BP points. In the above example, during the time that function ‘my_func’ is active, the parameter 

‘a’ is accessed using 8(%ebp) and parameter ‘b’ using 12(%ebp). Consider the computation for the line 

‘c=a*a;’ in the function ‘my_func’ of Fig. 6.17. The code generator produces the following x86 assembly 

code for the computation using the relative offsets of the parameters ‘a’ and ‘b’ from the BP.

movl 8(%ebp),%eax  # Accessing the parameter ‘a’
imull 8(%ebp),%eax # Accessing the parameter ‘a’ again and multiplying it
movl %eax,-8(%ebp) # Moving the result to ‘c’

The layout of the activation record in terms of the offsets of the local variables and arguments from 

the location that BP points, remains exactly the same any time the activation of the function happens. 

Fig. 6.17 Stack during the activation of a function

int my_func(int a,int b)
{
 int ret;
 int c_=10,d=20;

  c=a*a;
  d=b*b;
 ret=c+d+2 *a *b;

 return(ret);
}
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For example, the memory for the variable ‘ret’ would always be at an offset –4 from the BP, any time the 

function ‘my_func’ is activated irrespective of the caller. 

Till the time that the program control is within the function my_func, the offsets from BP for the local 

variables, arguments to the function, compiler generated temporaries, etc. remain unchanged.

The creation of activation record on the stack allows for having multiple instances of activation records, 

each one corresponding to an activation of a procedure. For example, consider a recursive routine to 

evaluate the factorial of a given number shown in Fig. 6.18. 

Fig. 6.18 Stack showing multiple activation records

The fi rst activation from main() as factorial(5) 

creates an activation record for factorial(5) on the 

stack. The next activation comes due to recursive call 

made at line number 15 with factorial(4). The next 

activation is due to the call again from line 15, this 

time as factorial(3), and so on. The activation records 

stack up on the run-time stack as seen in Fig. 6.18. 

This facility of having an instance of activation 

record in the memory, one for each of the activations 

helps in supporting recursion.

We will now look at an example program, which 

displays the content of activation record in C run-

time environment provided by the C compiler(cc1) 

of the gcc—The GNU compiler collection. This 

activation record has the following format. Fig. 6.19 Activation record for a C program (gcc)
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The dialog below shows the compilation and execution of the example C program.

# Program to print the Activation record in C

# Compiling it

$ gcc -Wall ex5.c -o ex5

# Executing it

$ ./ex5

THE ACTIVATION RECORD OF func1
======================================
Start of Activation Record [addr=0073cb44]
Parameter2 : 22222222 [addr=0073cb44]
Parameter1 : 11111111 [addr=0073cb40]
Return Address : 0040109d [addr=0073cb3c]
Saved BP : 0073cb68 [addr=0073cb38]
Local Variable1 : 33333333 [addr=0073cb34]
Local Variable2 : 44444444 [addr=0073cb30]

6.3.4.2 Activation Record in FORTRAN77 Runtime Environment In FORTRAN77 run-time 

environment, for each procedure in the program, an activation record is statically allocated at the compile 

time. Consider a FORTRAN77 program that 

has 3 procedures P1, P2, P3. The FORTRAN77 

environment is a completely static one, where all 

the activation records are created at the compile 

time and stored in the static memory area. Figure 

6.20 shows the memory organisation of the 

program in such a run-time environment. 

The local variables in procedure P1 would 

be part of its activation record and would be 

bound at the compile time. In a similar way, 

the local variables of P2 and P3 would be part 

of their respective activation records and bound 

at the compile time. Any procedure has only 

one activation-record and multiple activations 

would have to use the same activation record. 

Hence, this type of run-time environment cannot 

support recursion in procedures. The fi xed 

activation record means that any local variable in 

a function is bound to a fi xed memory location 

throughout the life of the program. The side-effect of this is that the values of local variables can be retained 

across the activations of a procedure. 

In FORTRAN77 environment, the activation records of all the procedures are stored in the static memory 

throughout the lifetime of the program. This wastes memory, since the activation record for a procedure 

gets used only when it is activated.

6.3.4.3 Non-Local Access We have seen how the activation record helps us in managing the procedure 

activation and handling access to local variables. We will now look at how activation records can also help 

us access variables defi ned in the enclosing scope. 

Fig. 6.20 Activation records in FORTRAN77 run-time 
environment
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Programming languages commonly offer features for accessing variables that are not only declared 

locally, but also declared in an enclosing scope. For example, C language allows for having ‘blocks’ of 

code, where variables that are declared in an enclosing block can also be accessed. PASCAL allows for 

procedures to be nested. In the nested procedure, We can access variables that are declared in the enclosing 

procedure. These are two good examples of accessing  non-local variables defi ned in an enclosed scope of 

a program. We use the term non-local to essentially mean that they are not defi ned in the Local scope. It is 

pertinent at this point to make the distinction between a ‘non-local’ variable and a global variable clear. A 

global variable is in the outermost scope and is treated differently by having storage allocated in the static 

memory and any access to it would be resolved to that static memory location at the compile time. A non-

local variable is simply a variable that is neither declared in the current scope nor the outermost scope, it is 

declared in-between these. 

In both of the above cases of non-local access, (i.e. in the case of blocks or nested procedures) the 

scoping rules of the respective languages C and PASCAL specify that the reference to the variable 

be resolved to the nearest enclosed declaration made in the program text. This type of scoping, where a 

reference to the variable can be resolved to the appropriate declaration by examining the program text 

regardless of the current activations is known as lexical or  static scope rule. This is in contrast with 

 dynamic scope rule used in source languages like LISP, SNOBOL and APL, in which a variable can be 

resolved into the correct declaration only during the execution by considering the current activations. The 

interpreted language PERL supports both lexical and dynamic scoping.

In order to make the distinction between lexical scoping and dynamic scoping clear, let’s consider the 2 

PERL programs seen in the dialog of Fig. 6.21. The fi rst program ‘dynamic.pl’ shows the dynamic scoping 

at work. The execution of dynamic.pl shows that the function ‘g’ returns different values depending on 

where it is in invoked. When it is invoked from within the function ‘f’, the value returned is that of the 

variable ‘y’ defi ned within ‘f’. The variable ‘y’ is specifi cally declared within function ‘f’ as a dynamically 

scoped variable by the use of keyword ‘local’. When ‘g’ is invoked from the main, it returns the global 

variable ‘y’, since that is active in the scope. The second program ‘static.pl’ shows static scoping at work. In 

this program, the variable ‘y’ declared within the function ‘f’ is lexically scoped. Any access of the variable 

‘y’ within the function ‘f’ would refer to the declaration in ‘f’. However, all the other routines like say ‘g’ 

continue to refer to the global declaration of ‘y’. Hence when ‘static.pl’ is executed, the value returned by 

the function ‘g’ is consistent regardless of called site.

# dynamic.pl

$ cat -n dynamic.pl

 1 #!/usr/bin/perl
 2  
 3
 4 $y=101 ;
 5
 6 sub f () {
 7
 8  local $y ; # Dynamically scoped variable
 9
10  $y = 10 ;
11
12  return g();
13
14
15 }



  Target Code Generation 359

16
17 sub g () {
18  return $y ;
19 }
20
21
22 print “y at the start = $y \n” ;
23
24 print “y when g is called directly=”,g(),”\n” ;
25 print “y when g is called indirectly=”,f(),”\n” ;
26
27

# Executing it

$ ./dynamic.pl

y at the start = 101
y when g is called directly=101
y when g is called indirectly=10

# static.pl

$ cat -n static.pl

1 #!/usr/bin/perl
2
3
4 $y=101 ;
5
6 sub f () {
7
8  my $y ;   # Lexically scoped variable
9

10  $y = 10 ; # This refers to the ‘y’ declared above
11
12  return g(); # g continues to access the global ‘y’
13
14
15 }
16
17 sub g () {
18  return $y ;
19 }
20
21
22 print “y at the start = $y \n” ;
23
24 print “y when g is called directly=”,g(),”\n” ;
25 print “y when g is called indirectly=”,f(),”\n” ;
26
27

# Executing it

$ ./static.pl

y at the start = 101
y when g is called directly=101
y when g is called indirectly=101

Fig. 6.21 Lexical and dynamic scoping
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In this chapter, we study about resolving the access to the variable references in static scope only. The 

resolving of variable references in dynamic scope is not taken up.

We now discuss about how the activation records help us implement lexical scoping and resolve access 

to the non-local variables that are declared in the enclosed block in a block-structured language like C. 

Later we learn about how activation record can also be used to resolve accesses to the non-local variables 

that are declared in an enclosing procedure. This would apply to languages like PASCAL that allow nesting 

of procedures.

Non-local access in the context of blocks A block is a set of statements containing its own local 

declarations. A block is identifi ed by a pair of delimiters. In C language, the delimiters for a block are the 

curly braces ‘{ and }’. In Pascal, the delimiters for a block are ‘begin’ and ‘end’. The delimiters ensure 

that blocks do not overlap each other. For example, there cannot be a situation where a block B1 begins, 

followed by the beginning of block B2 and then block B1 ends before B2. Blocks can only be nested like 

say block B1 begins, followed by beginning of B2 , then B2 ends, before the end of B1. In Listing 6.9, there 

are 4 blocks of code in the main() function. The block B0 spans from line 4 through 43, block B1 from line 

10 through 36, B2 from line 14 through 22, B4 from line 24 through 32. Each of these blocks has its own 

declarations for the variables v1 and v2.

 1 #include <stdio.h>
 2
 3 int main()
 4 {
 5      /* Block B0 Begins */
 6
 7      int v1=10,v2=20;
 8      int v3=5;
 9
10      {
11           /* Block B1 Begins */
12           int v1=20,v2=30;
13
14           {
15                /* Block B2 Begins */
16                int v1=40,v2=50;
17
18                v3=90;
19                printf(“In Block B2 v1=%d v2=%d v3=%d \n”,v1,v2,v3);
20
21                /* Block B2 ends */
22           }
23
24           {
25                /* Block B3 Begins */
26                int v1=60,v2=70;
27
28                v3=80;
29                printf(“In Block B3 v1=%d v2=%d v3=%d \n”,v1,v2,v3);
30
31                /* Block B3 ends */
32           }
33           printf(“In Block B1 v1=%d v2=%d v3=%d \n”,v1,v2,v3);
34
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35           /* Block B1 ends */
36      }
37
38      printf(“In Block B0 v1=%d v2=%d v3=%d \n”,v1,v2,v3);
39
40      return(0);
41
42      /* Block B0 ends */
43 }
44

Listing 6.9 blocks.c

In the example shown in Listing 6.9, the access of the variables v1 and v2 in the printf statement shown 

in line 19 (block B2) would be resolved to the declaration in line 16 (block B2). This is an evidence of what 

is known as ‘the  most closely nested rule’ in resolving the scope. In simple terms, what this means is that 

any access to non-local variables should be resolved to the block that is most closely nested from the point 

of access. The declaration of v1 and v2 on line 16 is in the most closely nested block B2. This declaration 

is considered ahead of the one at line 12, which is in the enclosing block B1. The most closely nested rule 

is used again to determine that the access for variables v1 and v2 in line 29 (B3), which is resolved to 

declaration in line 26 (B3) ahead of the declaration at line 12 in the enclosing block B1.

The most closely nested rule for resolving the scope of declarations in a block-structured language can 

be stated as follows:

 1. The scope of a declaration for a variable v1 in a block B pervades throughout the entire block B.

 2. If a variable v1 is not declared in a block B, but used in B, then it is resolved to the declaration 

in a block B1, which encloses B. In case there are two enclosing blocks B1 and B2 that contain 

declarations for v1, the innermost block is taken for consideration.

The block structure and the most closely nested rule can be implemented by having a separate symbol 

table created for all the variables declared in a block. When a variable is used in an execution statement of a 

block, the symbol table for the most deeply nested block is consulted fi rst, followed by the enclosing block, 

and so on, until the symbol table for global scope.

At the run-time, the most closely nested 

rule in a block is supported by allocating 

memory on the stack for the variables in 

a block. There are a couple of schemes 

for allocating memory on the stack with 

respect to the block variables. Let us take 

the example of the C program—blocks.c, 

given in Listing 6.9 and understand the two 

schemes for allocation of memory to the 

block variables.

In the fi rst scheme, when a block is 

entered, the space for all the variables 

declared in it is allocated on the stack. 

When the control leaves the block, the 

memory allocated for the same variables is 

discarded. Figure 6.22 shows the snapshot 

of the stack when the control is in block B1, 

when this scheme is used. 
Fig. 6.22 Snapshot of stack when the control is in block B1
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We can see that the variables declared in block B1 are present on the stack and so are the ones declared 

in B0. This allows for access of variables declared in the enclosing scope like v3, which are at a known 

offset on the stack. The assignment to v3 in the block B2 would be typically done by generating x86 

assembly instructions like the one show below, given that the memory for the variable is at a known fi xed 

offset on the stack. 

movl $90, -12(%ebp)

We can see from Fig. 6.22 that the usage of stack for handling of blocks is very similar to the handling of 

declarations in procedures seen earlier. The only difference being that the saving of machine status, return 

address, etc. on the stack is not performed in the case of blocks. A block can be viewed as a parameter-less 

procedure called from the point where the block begins and returning at the point of ending of the block.

In the second scheme, the memory needed for all the blocks in the entire procedure is allocated at 

the start of the function as a part of the activation record. The memory necessary for all the blocks 

in a procedure is computed by taking the lifetimes of the blocks into consideration. For example, in the 

procedure shown in the Listing 6.9, the blocks B2 and B3 have mutually exclusive lifetimes, i.e. either the 

block B2 is alive or block B3 is alive at any given point of time. The memory required for the blocks in 

‘my_func()’ is computed by taking the sum of the memory required for blocks B0, B1 and the greater of B2 

and B3 (since only one of them is active at any point). For a procedure having multiple control paths, the 

memory required for a procedure is determined by traversing all the control paths in it and computing the 

memory required for them. The cumulative memory required by all the blocks is computed and allocated at 

the start of the function. In this scheme, the memory for any variable declared in a block can be resolved at 

the compile time by using the tuple (variable name, block number), since the variable name alone does not 

suffi ce. The resolving of the variable to the memory happens at the compile time and hence it is possible to 

generate instruction for accesing the variables in the block.

In both of the schemes mentioned above, the non-local variable defi ned in one of the enclosing blocks is 

resolved into an address on the stack at a known offset. The reader is advised to compile the program shown 

in Listing 6.9 and observe the x86 assembly output to verify the above-mentioned principles of resolving 

the address of the non-local variables.

Non-local access in the context of Nested Procedures Source Languages like Pascal allow procedures 

to be nested. These nested ‘local procedures’ can be called from the procedure defi ning it or from one of its 

peers. Consider a sample Pascal program with local procedures shown in Listing 6.10. The local procedure 

P2 is nested inside P1. The procedure P2 is called in the action statements of the procedure P1 (Line 31) 

and in a peer procedure, e.g. Peer_Of_P2 (Line 16) as seen in the listing. The scoping rules in Pascal allow 

the variables defi ned in an enclosed procedure to be used in the local procedures. For example, the variable 

‘v1’ is defi ned in the procedure P1 at Line 5 and is used in the procedure P2 at line 11. 

 1 PROGRAM sample(input,output);
 2 VAR v0 : integer;
 3
 4  PROCEDURE P1(param1:integer);
 5  VAR v1 : integer;
 6
 7   PROCEDURE P2();
 8   VAR v2: integer;
 9   BEGIN
10    v2:=20;
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11    v1:=25; (* ‘v1’ defi ned in P1 *)
12   END;
13
14   PROCEDURE Peer_Of_P2();
15   BEGIN
16    P2();
17   END;
18
19
20   PROCEDURE Another_Peer_Of_P2();
21    PROCEDURE P3();
22    BEGIN
23     P2();
24    END;
25   BEGIN
26   END;
27
28  BEGIN
29   if (param1 > 100 )
30   then
31    P2()
32   else if( param1 > 50 )
33   then
34    Peer_Of_P2()
35   else
36    Another_Peer_Of_P2() ;
37
38  END;
39
40 BEGIN
41  write(‘Give Input :’);
42  readln(v0);
43  P1(v0);
44 END.
45
46
47
48

Listing 6.10 nested_proc.pas

At the time of execution of the above program, the memory for variable ‘v1’ is allocated on the stack 

corresponding to the procedure P1, since it is defi ned locally in P1. Being a local of P1, the memory for 

variable ‘v1’ would be a part of its activation record. Figure 6.23 shows the stack layout of the program 

during the execution of procedure P2(), when invoked from P1(). The relevant variables ‘v1’ and ‘v2’ in 

the activation records of P1() and P2() respectively are shown in Fig. 6.23. The other fi elds in the activation 

records are not shown in Fig. 6.23 for clarity purposes.

Figure 6.24 shows the stack layout during the execution of procedure P2, when invoked from Peer_Of_

P2(), which in turn is called from P1(), when the given user input is between 50 and 100.

We can see from the two stack layouts that the variable ‘v1’ would not be at a fi xed known offset on 

the stack from the activation record of P2. This poses a challenge for resolving the variable ‘v1’ to the 

appropriate address on the stack at the compile time. The local variables of P2 like ‘v2’ can be accessed 
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by indexing from the BP as say –4(%ebp) , –8(%ebp), etc. but ‘v1’ cannot be accessed in a similar way, 

because the offset from the BP is different depending on the caller of P2 as seen in stack layout 1 and 2.

Fig. 6.23 Stack layout—1 Fig. 6.24 Stack layout—2

The solution to this issue is to have a link to the enclosing procedure’s activation record (in this case, 

P1) in the current activation record and use that to index to the exact address corresponding to the variable 

on the stack. We are taking advantage of the fact that the position of ‘v1’ within the activation record of P1 

is fi xed and known at the time of compilation. This link to the enclosing procedure’s activation record is 

called as the static link as opposed to the 

dynamic link which points to the activation 

record of the caller. In the above example, 

the activation record of P2 would contain a 

static link fi eld that points to the activation 

record of the enclosing procedure P1. This 

is irrespective of the caller of P2(), which 

can be either P1, Peer_of_P2() or Another_

Peer_Of_P2(). Once we have the pointer 

to the activation record of P1, the variable 

‘v1’ can be accessed using a specifi c offset 

since it is a local of P1. Figure 6.25 shows 

the use of static link to access the memory 

for the variable ‘v1’, in the scenario 

corresponding to stack layout-2.

In order to implement the static link and 

support non-local variable access in nested 

procedures, a concept called as lexical 

level is used. A  lexical level in a pascal 

program corresponds to the nesting level in 

the source program. The main program is 

at lexical level 0. All the global variables 

declared in the main program are at the 
Fig. 6.25 Use of static link
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lexical level 0. For example, the variable ‘v0’ declared in line 2 of the Listing 6.10 is at lexical level 0. 

All the procedures declared at one level from the main program are at lexical level 1. In the Listing 6.10, 

the procedure P1 is at lexical level 1, the procedures P2, peer_of_P2() and another_Peer_Of_P2() are all 

at lexical level 2 and P3 is at lexical level 3. In the execution statements of the program, variables defi ned 

in the current level or lesser than the current level can be accessed. We can see in the Listing 6.10, the 

procedure P2 (lexical level 2) accesses variable ‘v1’ defi ned in the enclosing procedure P1 at lexical level 1, 

P2 also accesses variables defi ned in its own level ‘v2’.

Using the idea of lexical levels in the nested procedures, the procedure calling conventions in PASCAL 

language can be stated as follows.

 (a) A procedure at lexical level ‘L’ can call a child procedure i.e. the one immediately nested in it, at 

lexical level (L + 1). In Listing 6.10, we can see that the main program, which is at level 0, invokes 

the procedure P1 (at line 43), which is at lexical level L.

 (b) A procedure can call one of its ancestors. The ancestor is a procedure, which is a parent 

(immediately enclosing procedure), or a grandparent or one of the peers of a parent/grandparent. In 

other words, a procedure at lexical level ‘L’ can call one of its ancestors at lexical level less than ‘L’. 

In Listing 6.10, we see the procedure P3() at lexical level 3, calling Peer_of_P2() (at line 23), which 

is at lexical level 2—a peer of its parent P2.

 (c) A procedure can call any one of its peers at the same lexical level. In Listing 6.10, we also see the 

procedure Peer_of_P2() at lexical level 2 calling its peer procedure P2 also at lexical level 2 in line 

16.

The target code generator produces code that uses the static link fi eld in an activation record and enables 

non-local variable access in nested procedures in all of the 3 cases (a), (b) and (c) mentioned above. The 

scheme used by the target code generator can be broadly described as follows.

 (1) The caller passes the pointer to the activation record of the defi ning environment to be used as 

the static link in the caller to access the non-local variable. The pointer to the activation record 

of the defi ning environment is typically pushed on to the stack by the caller before making a 

function call and is popped out after the call is complete, similar to the function arguments.

 (2) The callee uses the static link and accesses the memory for the non-local variable defi ned in the 

enclosing procedure using its offset.

Let’s take the example shown in Listing 6.10, dissect its x86 assembly language output generated by the 

PASCAL compiler and understand how the above-mentioned steps are accomplished.

The process of compilation and generation of assembly language output for ‘nested_proc.pas’ shown in 

Listing 6.10 by using gpc—A Pascal compiler, is given in the following dialog.

# Program illustrating nested procedures

$ gpc -Wall —save-temps nested_proc.pas -o nested_proc

# The x86 assembly language output for nested_proc.pas

$ cat -n nested_proc.s

 1  .fi le “nested_proc.pas”
 2 .lcomm _V0,16
 3  .text
 4  .def _P2.0; .scl 3; .type 32; .endef
 5 _P2.0:
 6  pushl %ebp
 7  movl %esp, %ebp
 8  subl $8, %esp
 9  movl %ecx, -4(%ebp)
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10  movl -4(%ebp), %ecx
11  movl $20, -8(%ebp)
12  movl $25, -4(%ecx)
13  leave
14   ret
15  .def _Peer_of_p2.1; .scl 3; .type 32; .endef
16 _Peer_of_p2.1:
17  pushl %ebp
18  movl %esp, %ebp
19  subl $4, %esp
20  movl %ecx, -4(%ebp)
21  movl -4(%ebp), %ecx
22  call _P2.0
23  leave
24  ret
25  .def _P3 .3; .scl 3; .type 32; .endef
26 _P3.3:
27  pushl %ebp
28  movl %esp, %ebp
29  subl $4, %esp
30  movl %ecx, -4(%ebp)
31  movl -4(%ebp), %ecx
32  movl -4(%ecx), %ecx
33  call _P2.0
34  leave
35  ret
36  .def _Another_peer_of_p2.2; .scl 3; .type 32; .endef
37 _Another_peer_of_p2.2:
38  pushl %ebp
39  movl %esp, %ebp
40  subl $4, %esp
41  movl %ecx, -4(%ebp)
42  leave
43  ret
44  .def __p__M0_S0_P1; .scl 3; .type 32; .endef
45 __p__M0_S0_P1:
46  pushl    %ebp
47  movl %esp, %ebp
48  subl $4, %esp
49  cmpl $100, 8(%ebp)
50  jle  L6
51  movl %ebp, %ecx
52  call _P2.0
53  jmp L1
54 L6:
55  cmpl $50, 8(%ebp)
56  jle L8
57  movl %ebp, %ecx
58  call _Peer_of_p2.1
59  jmp L1
60 L8:
61  movl %ebp, %ecx
62  call _Another_peer_of_p2.2
63 L1:
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64  leave
65  ret
66   .section .rdata,”dr”
67 LC0:
68   .ascii “Give Input :\0”
69   .text
70 .globl __p__M0_main_program
71   .def __p__M0_main_program; .scl 2; .type 32; .endef
72 __p__M0_main_program:
73  pushl %ebp
74  movl %esp, %ebp
75  subl $40, %esp
76  movl $1568, 4(%esp)
77  movl __p_Output, %eax
78  movl %eax, (%esp)
79  call __p_Write_Init
80  movl $-2147483648, 12(%esp)
81  movl $12, 8(%esp)
82  movl $LC0, 4(%esp)
83  movl __p_Output, %eax
84  movl %eax, (%esp)
85  call __p_Write_String
86  movl __p_Output, %eax
87  movl %eax, (%esp)
88  call __p_Write_Flush
89  cmpl $0, __p_InOutRes
90  je L12
91  call __p_CheckInOutRes
92 L12:
93  movl $12, 4(%esp)
94  movl __p_Input, %eax
95  movl %eax, (%esp)
96  call __p_Read_Init
97  movl __p_Input, %eax
98  movl %eax, (%esp)
99  call __p_Read_Integer
100  movl %eax, -8(%ebp)
101  movl %edx, -4(%ebp)
102  cmpl $-1, -4(%ebp)
103  jl L15
104  cmpl $-1, -4(%ebp)
105  jg L16
106  cmpl $-2147483648, -8(%ebp)
107  jb L15
108 L16:
109  cmpl $0, -4(%ebp)
110  jg L15
111  cmpl $0, -4(%ebp)
112  js L13
113  cmpl $2147483647, -8(%ebp)
114  ja L15
115  jmp L13
116 L15:
117  call __p_IORangeCheckError
118  movl -8(%ebp), %eax
119  movl %eax, -12(%ebp)
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120  jmp L14
121 L13:
122  movl -8(%ebp), %eax
123  movl %eax, -12(%ebp)
124 L14:
125  movl -12(%ebp), %eax
126  movl %eax, _V0
127  movl __p_Input, %eax
128  movl %eax, (%esp)
129  call __p_Read_Line
130   cmpl $0, __p_InOutRes
131   je L19
132   call __p_CheckInOutRes
133 L19:
134  movl _V0, %eax
135  movl %eax, (%esp)
136  call __p__M0_S0_P1
137  leave
138  ret
139 .lcomm _static_ctor_run_condition_1_2,16
140 .globl __p__M0_init
141  .def __p__M0_init; .scl 2; .type 32; .endef
142 __p__M0_init:
143  pushl %ebp
144  movl %esp, %ebp
145  subl $8, %esp
146  cmpb $0, _static_ctor_run_condition_1_2
147  jne L20
148  movb $1, _static_ctor_run_condition_1_2
149  call __p_DoInitProc
150 L20:
151  leave
152  ret
153  .def ___main; .scl 2; .type 32; .endef
154 .globl _main
155  .def _main; .scl 2; .type 32; .endef
156 _main:
157  pushl %ebp
158  movl %esp, %ebp
159  subl $24, %esp
160  andl $-16, %esp
161  movl $0, %eax
162  addl $15, %eax
163  addl $15, %eax
164  shrl $4, %eax
165  sall $4, %eax
166  movl %eax, -4(%ebp)
167  movl -4(%ebp), %eax
168  call __alloca
169  call ___main
170  movl __p_GPC_RTS_VERSION_20050331, %eax
171  movl $0, 12(%esp)
172  movl 16(%ebp), %eax
173  movl %eax, 8(%esp)
174  movl 12(%ebp), %eax
175  movl %eax, 4(%esp)
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176  movl 8(%ebp), %eax
177  movl %eax, (%esp)
178  call __p_initialize
179  call __p__M0_init
180  call __p__M0_main_program
181  call __p_fi nalize
182  movl $0, %eax
183  leave
184  ret
185  .def __p_fi nalize; .scl 3; .type 32; .endef
186  .def __p__M0_init; .scl 3; .type 32; .endef
187  .def __p_initialize; .scl 3; .type 32; .endef
188  .def __p_DoInitProc; .scl 3; .type 32; .endef
189  .def __p_Read_Line; .scl 3; .type 32; .endef
190  .def __p_IORangeCheckError; .scl 3; .type 32; .endef
191  .def __p_Read_Integer; .scl 3; .type 32; .endef
192  .def __p_Read_Init; .scl 3; .type 32; .endef
193  .def __p_CheckInOutRes; .scl 3; .type 32; .endef
194  .def __p_Write_Flush; .scl 3; .type 32; .endef
195  .def __p_Write_String; .scl 3; .type 32; .endef
196  .def __p_Write_Init; .scl 3; .type 32; .endef

Consider the situation in case—a, where the enclosing procedure P1 (at lexical level 1) is calling its 

child procedure P2 (at lexical level 2) at line number 31 of the Listing 6.10. The defi ning environment 

for the callee P2 is P1. In this scenario, we fi nd that the caller and the defi ning environment are the same 

and hence the caller’s activation record serves as the static link for the callee. The caller passes the current 

frame pointer (the pointer to current activation record) to the callee for using it as a static link. In the x86 

assembly language output generated by gpc compiler, corresponding to the program in Listing 6.10, the 

lines related to the call to P2 from P1 are 51 and 52. We fi nd that the pointer to the current activation record 

(ebp) is passed to the child routine P2 by moving it to the register ecx in line 51 of the nested_proc.s fi le 

and then making the call to the procedure P2. 

51 movl %ebp, %ecx # Moving the pointer to the current activation record to %ecx
52 call _P2.0 # Calling P2

The callee routine P2 assigns 25 to the variable ‘v1’ defi ned at lexical level 1, by using the register ecx 

and indexing to the location where ‘v1’ is bound i.e. –4(%ecx) as seen in lines 9 through 12 of nested_

proc.s. The line 9 updates the static link fi eld in the current activation record with the value passed by the 

enclosing procedure in the form of %ecx. 

 9 movl %ecx,–4(%ebp) # Updating the static link fi eld in the current AR 
10 movl -4(%ebp),%ecx # Fetching it again

12 movl $25, –4(%ecx) # Using the Static Link to access ‘v1’ by indirect addressing

The instance of a procedure calling a peer (case—b) can be found at line 16 in the sample program 

at Listing 6.10, where the procedure ‘Peer_Of_P2’ calls ‘P2’ procedure. The defi ning environment of P2 

and Peer_Of_P2 is P1. In this scenario, we fi nd that the callee and the callee share the same the defi ning 

environment and hence the static link of the caller can be used as the static link of the callee. The caller 

passes its own static link stored in its activation record, to the callee to be used as its static link. This is 
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demonstrated by the line 20 through 22 in the x86 assembly language output (nested_proc.s) of the source 

program, where the current static link in register %ecx is passed again in register ecx to the P2 routine.  

20 movl %ecx, -4(%ebp)  # Updating the static link fi eld in the caller AR 
21 movl -4(%ebp), %ecx # Passing the caller’s static link fi eld to the callee
22 call _P2.0

The callee—P2 uses the static link in order to 

assigns 25 to the variable ‘v1’ defi ned at lexical level 1, 

by using the register ecx and indexing to the location 

where ‘v1’ is bound, i.e. –4(%ecx) as seen earlier in 

lines 9 through 12.

The instance of a procedure calling a peer of its 

ancestor at a lexical level less than the current level 

(case—c) can be found at line 23 of Listing 6.10, 

where the procedure P3 calls P2 routine. The defi ning 

environment of the P2 is P1. In order to fetch a pointer 

to the activation record of P1(lexical level 1) in the 

caller P3(lexical level 3), the static link chain needs to 

be traversed by 2 levels, i.e. from P3 to its static link 

Another_Peer_Of_P2() and from it to P1 as shown in 

Fig. 6.26. 

After fetching the pointer to the activation record 

of P1, it is passed to the callee P2 on the stack similar 

to the function arguments. This is demonstrated by the 

lines at 31 through 33. 

31 movl -4(%ebp), %ecx # Fetching the AR at lexical Level 2 (Another_Peer_Of_P2)
32 movl -4(%ecx), %ecx # Fetching the AR at lexical Level 1 (P1)

33 call _P2.0

The line 31 fetches the static link of the current routine (P3), which would be the pointer to activation 

record of its enclosing procedure (Another_Peer_Of_P2) at level 2. The line 32 traverses the static link of 

Another_Peer_Of_P2 to fetch the pointer to activation record of its enclosing procedure at level 1(P1) by 

doing an indirection. The pointer to activation record of P1 is passed as a static link to the callee routine 

(P2) in the form of register ecx.

In general, If the current activation is at lexical level ‘n’ and we are calling a procedure at lexical level 

‘m’ , where m is less than ‘n’, then we need to traverse (n – m + 1) links to get the static link for passing to 

the callee procedure. In this example, of procedure P3 (lexical level 3) calling Peer_Of_P2() (lexical level 

2) we need to traverse (3 – 2 + 1) = 2 links to get to the activation record of the defi ning environment. This 

is passed to the callee to be used as the static link.

The callee—P2 uses the static link in order to assign 25 to the variable ‘v1’ defi ned at lexical level 1, by 

using the register ecx and indexing to the location where ‘v1’ is bound, i.e. –4(%ecx) as seen earlier in lines 

9 through 12.

From the discussion, it becomes clear that the calling of an ancestor (case — c) or accessing of a variable 

defi ned at a lexical level ‘m’ from the current level ‘n’ would require traversing of the access links and will 

add up to be an overhead in terms of program execution time.

Fig. 6.26 Traversing the static link chain
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An improved scheme for handling static links defi ned at various lexical levels is the usage of a data 

structure called display. A  display is an array of pointers to the activation records. Display[0] contains 

a pointer to the activation record of the most recent activation of a procedure defi ned at lexical level 0. 

Similarly, Display[1] houses a pointer to the activation record of the most recent activation of a procedure 

defi ned at lexical level 1, and so on. The number of elements in the display array is given by the maximum 

level of nesting in the input source program. 

In the display scheme of accessing the non-local variables defi ned in the enclosing procedures, each 

procedure on activation stores a pointer to its own activation record in the display array at its lexical level. 

It saves the previous value at that location in the display array and restores it back when the procedure exits. 

For example, when procedure P2 is entered, it sets the Display[2] to point to its own, i.e. P2 activation 

record. It saves the previous content of Display[2] and restores it when P2 exits. In this manner, it is ensured 

that display array always has a pointer to the activation record of the most recent activation of a procedure 

defi ned at a particular lexical level. Accessing a variable say ‘v
n
’ defi ned in the enclosing procedure ‘P

n
’ 

would involve (a) Fetching the pointer to activation record of P
n
 by obtaining Display[n] since ‘P

n
’ is at 

lexical level n and (b) indexing to the memory for the variable ‘v
n
’ within the activation record of ‘P

n
’. 

Consider the implementation of display scheme for the access of non-local variables in the example 

shown earlier in Listing 6.10. Figure 6.27 shows the display array at the time of activation of P2 when 

called from P1 represented by the stack layout-1. The display array at the time of activation of P2 when 

called from Peer_Of_P2 represented by 

the stack layout-2 is also seen in Fig.  

6.27. We can see that in both of these 

cases the variable ‘v1’ can be accessed by 

(a) fetching the activation record of P1 

using display[1] and (b) Indexing into the 

memory bound to ‘v1’ on the stack.

The advantage of the display scheme 

is that the activation record of any 

enclosing procedure at lexical level ‘n’ 

can be directly fetched using Display [n] 

as opposed to traversing of the access 

links in the previous scheme.

6.3.5 Procedure Calling and 

Return Sequences

Another important aspect in a run-time 

environment is the calling and return 

sequences for a procedure execution. In 

this section, we study about the general 

steps involved in calling and return 

sequences. We also examine the division 

of responsibility between the caller and 

callee in each of these sequences. In 

the later part of this section, we also try 

and understand some of the specifi cs 

of calling and return sequences in the C 

language run-time environment.
Fig. 6.27 Using display for non-local access
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Broadly speaking, the generated code for the  calling sequence of a function allocates memory for the 

callee activation record and populates the information into its fi elds. The  return sequence restores the 

machine state of the caller to the condition it was before the call was made. This enables the caller to 

continue execution smoothly.

Let’s start with trying to understand the calling sequence in a run-time environment. The common 

operations that need to be performed at the run-time, when a function is called are as follows. 

 1. The caller evaluates the arguments and stores it in the callee activation record. In the case of run-

time environment where the stack is used for housing activation records, this involves pushing the 

arguments on the stack. 

 2. The caller stores the return address in the callee activation record and transfers the control to the 

called function.

 3. The callee saves the machine status in the form of contents of the registers so that it can be restored 

later after its execution. 

 4. The callee creates the space in its activation record for the local data and initialises it.

The optional control link fi eld in the callee activation fi eld is populated co-operatively by the caller and 

callee in the case of source languages supporting dynamic scope. The same applies to the optional access 

link fi eld in cases of source languages supporting nested procedures.

Similar to the calling sequence, when a procedure completes its execution, there are a sequence of 

actions to be carried out at the run-time as given below.

 1. The callee places the return value of the function in its activation record or in some other mutually 

agreed upon location (e.g. register) from where the caller can pick it up. 

 2. The callee restores the machine status (in the form of the contents of registers) to the state that 

was saved in its activation record, during the calling sequence. This enables the caller to resume its 

execution smoothly. The callee also releases the memory allocated in the activation record for the 

local variables and compiler-generated temporaries.

 3. The caller releases the memory allocated for the parameters in the activation record. With this, the 

callee activation record is completely released from the memory.

 4. The caller copies the return value of the function into its own area.

The target code generator produces code that performs the actions mentioned in the calling and return 

sequence. 

The calling and return sequences that we just studied gives a generic idea of the activities performed. 

These sequences might vary a little, based on the source language characteristics and the memory 

organisation at the run-time. The division of responsibility between the caller and callee might also vary a 

little, depending on the source language characteristics and to a smaller extent on the compiler.

6.3.5.1 Procedure Calling and return Sequences in C Run-time Environment In this section we 

study some of the specifi cs of the calling and return sequences in a C run-time environment. The emphasis 

in this section is on understanding the calling and return sequences in the C runtime environment by 

studying the x86 assembly code generated for a sample C program. The idea is to have a sample program 

compiled using the gcc compiler and generate x86 assembly code for the same. We then dissect the 

generated assembly code to identify the various steps in the calling and return sequences.

The dialog below shows a sample C program being compiled by gcc. We pass the options—save-temps 

during the compilation for saving the assembly output among others. The assembly output is quoted later 

for explaining the calling and return sequences.
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# Program to dislay Calling and return Sequence in C 

$ cat -n ex6.c

 1 #include <stdio.h>
 2
 3 void test();
 4 int my_func(int a,int b);
 5
 6 int x,y,z;
 7
 8 int main()
 9 {
10  test();
11  return(0);
12 }
13
14 void test()
15 {
16  x=5;
17  y=10;
18  z=my_func((x+43),(y+20));
19  x = z + y;
20  printf(“Value of z=%d \n”,z);
21
22  return;
23 }
24
25 int my_func(int a,int b)
26 {
27  int ret;
28  int c=10,d=20;
29
30  c = a *a ;
31  d = b* b;
32  ret = c + d + 2 *a *b;
33
34  return(ret);
35 }

# Compiling it for generating the x86 assembly Language code 

$ gcc -Wall -c —save-temps ex6.c

# Displaying the x86 assembly fi le

$ cat -n ex6.s

1  .fi le “ex6.c”
2  .def  ___main; .scl 2; .type 32; .endef
3  .text
4 .globl _main
5  .def _main; .scl 2; .type 32; .endef
6 _main:
7  pushl %ebp
8  movl %esp, %ebp
9  subl $8, %esp

10  andl $-16, %esp
11  movl $0, %eax
12  addl $15, %eax
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13  addl $15, %eax
14  shrl $4, %eax
15  sall $4, %eax
16  movl %eax, -4(%ebp)
17  movl -4(%ebp), %eax
18  call __alloca
19  call ___main
20  call _test
21  movl $0, %eax
22  leave
23  ret
24  .section .rdata,”dr”
25 LC0:
26  .ascii “Value of z=%d \12\0”
27  .text
28 .globl _test
29  .def _test; .scl 2; .type 32; .endef
30 _test:
31  pushl %ebp
32  movl %esp, %ebp
33  subl $8, %esp
34  movl $5, _x
35  movl $10, _y
36  movl _y, %eax
37  addl $20, %eax
38  movl %eax, 4(%esp)
39  movl _x, %eax
40  addl $43, %eax
41  movl %eax, (%esp)
42  call _my_func
43  movl %eax, _z
44  movl _y, %eax
45  addl _z, %eax
46  movl %eax, _x
47  movl _z, %eax
48  movl %eax, 4(%esp)
49  movl $LC0, (%esp)
50  call _printf
51  leave
52  ret
53 .globl _my_func
54  .def _my_func; .scl 2; .type 32; .endef
55 _my_func:
56  pushl %ebp
57  movl %esp, %ebp
58  subl $12, %esp
59  movl $10, -8(%ebp)
60  movl $20, -12(%ebp)
61  movl 8(%ebp), %eax
62  imull 8(%ebp), %eax
63  movl %eax, -8(%ebp)
64  movl 12(%ebp), %eax
65  imull 12(%ebp), %eax
66  movl %eax, -12(%ebp)
67  movl -12(%ebp), %eax
68  movl -8(%ebp), %edx
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69  addl %eax, %edx
70  movl 8(%ebp), %eax
71  imull 12(%ebp), %eax
72  addl %eax, %eax
73  leal (%edx,%eax), %eax
74  movl %eax, -4(%ebp)
75  movl -4(%ebp), %eax
76  leave
77  ret
78  .comm _x, 16  # 4
79  .comm _y, 16  # 4
80  .comm _z, 16  # 4
81  .def _printf; .scl 3; .type 32; .endef

82  .def _my_func; .scl 3; .type 32; .endef
83  .def _test; .scl 3; .type 32; .endef

We start off by looking at the calling sequence for the function ‘my_func’ in the x86 assembly code 

generated above for the sample program by the gcc compiler. The function my_func is called from the 

test() function in line 18 of the ex6.c fi le. Let’s study the calling sequence for my_func() in a step-by-step 

fashion.

Step 1: The caller evaluates the arguments and pushes on to the run-time stack before making the 

function call. In the program above, a call is made to the function ‘my_func’ on the line 18 

of the source program ex6.c in the form of z=my_func((x+43),(y+20)). As we can see, the 

arguments to the function are (x+43) and (y+20). They are evaluated in the caller (function 

test) and pushed on to the run-time stack in the lines 36 through 41 of the assembly listing 

(ex6.s) as shown below. Observe that the arguments are pushed on to the stack from right to 

left, with the rightmost argument pushed fi rst, while the leftmost argument is pushed last on it. 

36 movl _y, %eax
37 addl $20, %eax
38 movl %eax, 4(%esp) # Pushing the right most argument

39 movl _x, %eax
40 addl $43, %eax
41 movl %eax, (%esp) # Pushing the left most argument

Step 2: The caller executes the ‘call’ assembly instruction. This pushes the return address on the stack 

and transfers the control to the called function.

42     call  _my_func

Step 3: The callee (function my_func) saves the registers and gets the register bp to point to the top 

of the stack at this point. The BP is used as a base pointer for indexing and accessing local 

variables as seen in the next step. Note that the saving of machine’s status in this example 

comprises merely saving the old value of ‘bp’. In situations like say a function called within 

a loop and others where there is quite some amount of computation going on at the caller site, 

there would more number of registers saved in the form of machine status.
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55 _my_func:
56   pushl %ebp
57   movl %esp, %ebp

Step 4: The callee creates the local space on the stack and initialises the local data. In the case of the 

function my_func in the sample code, the size of the local stack is 12 bytes. The size was 

computed by the code generator depending on the total size of the local variables. The space 

for the local data is created by simply moving the stack pointer by 12 bytes. The local variable 

‘c’ is at the offset –8 from BP. It is being initialised to 10 by the assembly instruction at line 59. 

Similarly, the variable ‘d’ is at –12 from BP. It is being initialised to 20 by the instruction on 

line 60. Any access to variable ‘c’ in the function body would resolve to offset –8 from BP as 

–8(%ebp) and variable ‘d’ to offset –12 from BP as –12(%ebp). 
 

58 subl $12, %esp # Creating space for Local variables
59 movl $10, -8(%ebp) # Initializing Local variable ‘c’
60 movl $20, -12(%ebp) # Initializing Local variable ‘d’

Let’s look at the above steps in the calling 

sequence from the perspective of the caller and 

callee responsibility. Figure 6.28 shows the 

activation record on the stack along with the 

demarcation of caller and callee responsibility 

in the C run-time environment that we just 

discussed. The caller takes the responsibility 

of pushing the function arguments and the 

return address on the run-time stack. The callee 

takes the responsibility for saving the machine 

status and also for allocating space for the local 

variables and the temporaries.

We now look at the return sequence for the 

same function ‘my_func’ in the x86 assembly 

code generated for the sample C program by 

the gcc compiler. 

Step 1: The callee puts the return value of the function at a location where the caller can pick it up. In 

the gcc C compiler implementation, the return value of the function is placed in the register eax 

from where the caller picks it up. The local variable ‘ret’ is situated at offset –4 from BP. The 

return value is moved from the local variable ‘ret’ to register eax in the line 75 of ex6.s.

75 movl -4(%ebp), %eax

Step 2: The callee restores the machine status to the state it was before the function call was made, 

so that the caller can resume execution. In this case, the value of esp is restored to the value 

before function started. The value of register ebp is also restored back to the value before the 

start of the function. This is achieved by the ‘leave’ instruction. By moving back the esp to the 

Fig. 6.28 Stack in C-run-time environment
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value before the function execution, the space allocated for the local variables in step 4 of the 

calling sequence is also released. The control is transferred to the caller by executing the ‘ret’ 

instruction.  

76 leave
77 ret

Step 3: The caller copies the return value into its own area. The return value, which was stored in 

register %eax in step 1 of the return sequence, is fetched and copied into the variable ‘z’. The 

assembly instruction corresponding to the copying of the return value into the variable ‘z’ is 

shown below. 

43 movl %eax,_z

In the cases where the return value of a function is a structure that cannot fi t into the register eax, the 

structure is copied to the caller area by the callee in the gcc C compiler implementation. 

The calling and return sequences might vary a little bit with regard to some details in other compiler 

implementations. The direction in which the stack grows, the locations of heap and stack, and the extent of 

committed heap and stack are some of the details that might vary depending on the operating system, target 

architecture and design of the compiler. The main concepts discussed in this section hold good for most of 

the stack-based C runtime environments.

6.3.6 Parameter-passing Mechanisms

There are several mechanisms by which parameters can be passed to functions, during a function call. The 

parameter-passing mechanism used in a function call infl uences the output of the program. The target code 

generator takes into account the type of the parameter-passing mechanism used in the context and generates 

code accordingly. An important characteristic of a given runtime environment is the support provided 

for different parameter-passing mechanisms. In this section we introduce the different ways of passing 

arguments and the expected program behaviour corresponding to them. We discuss ways of implementing 

each one of those parameter-passing mechanisms from a code-generation standpoint.

Let’s start off by getting the terminology involved in parameter-passing to functions by looking at 

a sample C program. Consider the small C program shown in Listing 6.11. There is a call made to the 

function ‘max’ at line 12. The arguments that are passed to a function at the time of call are called as  actual 

parameters. The variables ‘p1’ and ‘p2’ are the actual parameters in the call made to max at line 12. The 

function defi nition gives out more details with regard to the number of arguments, type of the arguments, 

and so on. The function ‘max’ is defi ned to take two arguments ‘f1’ and ‘f2’, which are integers. The 

arguments that appear in the function defi nition are called as  formal parameters. The variables ‘f1’ and 

‘f2’ are the formal parameters for the function ‘max’. When formal parameters are defi ned as a part of a 

function, they are treated like local variables. For example, in Listing 6.11, the function max is defi ned 

from line 16 to 27 with two formal parameters ‘f1’ and ‘f2’. These two are treated like local variables with 

storage allocated to them in the activation record.

 1 #include <stdio.h>
 2
 3 int max(int f1,int f2.);
 4 int main()
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 5 {
 6  int p1,p2;
 7  int out;
 8
 9  p1 = 1;
10  p2 = 2;
11
12  out = max(p1,p2);
13  return(0);
14 }
15
16 int max(int f1,int f2)
17 {
18  int tmp;
19
20  if(f1 > f2){
21   tmp=f1;
22  }else{
23   tmp=f2;
24  }
25
26  return(tmp);
27 }

Listing 6.11 params.c

In order to understand the different parameter-passing mechanisms one needs to appreciate the difference 

between a storage location and a value. Consider an assignment statement using an array ‘a’ in C language

 a[i] = a[j];

The expression on the left-hand side, namely, a[i] represents a storage location, while a similar 

expression on the right-hand side ‘a[j]’ represents a value. An expression used on the left-hand side of the 

assignment represents a storage location and the one on the right-hand side of the assignment represents a 

value. We use the term  l-value, to refer to the storage location of an expression and  r-value to refer to the 

value of the expression. The ‘l’ and ‘r’ in the above terms come from the fact that they are on the left or 

right side of an assignment. 

The parameter-passing mechanisms differ on the basis of whether a parameter represents an r-value or an 

l-value. A consequence of whether the parameter is an l-value or r-value is the net effect of changes made 

to the formal parameters within the called function. In cases where the parameter represents an l-value, 

the changes made to the formal parameters in the called function is refl ected in the actual arguments at the 

caller site, i.e. if the called function modifi es the formal parameter ‘f1’, that would refl ect on the actual 

parameter ‘p1’. In cases where the parameter represents an r-value, there is no effect of the changes made 

to the formal parameter ‘f1’ on the actual parameter ‘p1’.

There are 4 different parameter-passing mechanisms that are discussed in this text:

 1. Call by value.

 2. Call by reference.

 3. Call by value-result. 

 4. Call by name.

Each one of these is discussed in detail in the following sections.
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6.3.6.1 Call by Value In the  call by value parameter-passing mechanism, the arguments are evaluated 

at the time of call and they become the values of formal parameters throughout the function. For example, 

consider the PASCAL program shown in Listing 6.12 in which we use the call by value parameter-passing 

mechanism for calling the function ‘my_func’ at line number 24. At the time of call, i.e. line 24, the 

arguments ‘p1’ and ‘p2’ are evaluated, which would yield 4 and 30 in this case. These evaluated values, 

become the values of the formal arguments ‘f1’ and ‘f2’ during the execution of the function ‘my_func’. 

In call by value method, the changes made to the formal parameters are not refl ected in the actual 

arguments at the caller site. In the Listing 6.12, we modify the formal parameters ‘f1’ to 100 and ‘f2’ to 120 

at the lines 12 and 13 respectively, but when we print the actual parameters ‘p1’ and ‘p2’ at line 26 after the 

call to the function ‘my_func’, the modifi ed values are not refl ected. The actual arguments ‘p1’ and ‘p2’ 

continue to have original values, i.e. 4 and 30 even after the call to the function ‘my_func’.

 1 PROGRAM sample(input,output);
 2 VAR p1,p2,p3 : integer;
 3
 4  FUNCTION my_func(f1,f2:integer): integer;
 5  BEGIN
 6   if (f1 > f2 ) 
 7   then 
 8    my_func := f1
 9   else 
10    my_func := f2;
11
12   f1 := 100 ;{ Changing the Value of Formal Parameter }
13   f2 := 120 ;{ Changing the Value of Formal Parameter }
14
15  END;
16
17 BEGIN
18
19  p1 := 4;
20  p2 := 30;
21
22  writeln(‘Before the function call p1=’,p1,’ p2=’,p2);
23
24  p3 := my_func(p1,p2);
25
26  writeln(‘After the function call p1=’,p1,’ p2=’,p2);
27
28 END.

Listing 6.12 ex7.pas

The dialog below shows the compilation and execution of the Pascal program shown in Listing 6.12 that 

uses the call-by-value mechanism for parameter-passing. The x86 assembly language output for the same 

program generated by the Pascal compiler—gpc is also seen in the dialog. We will use that to understand 

the details of implementing the call by value mechanism from a target code generator standpoint. Observing 

the execution of the program establishes the fact that any changes made to the parameters in a call-by-value 

method does not have any effect in the actual arguments at the caller site.
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# Compiling ex7.pas to demonstrate Call-by-Value

$ gpc -Wall --save-temps ex7.pas -o ex7

# x86 assembly language output

$ cat -n ex7.s

 1  .fi le “ex7.pas”
 2 .lcomm _P1,16
 3 .lcomm _P2,16
 4 .lcomm _P3,16
 5  .text
 6  .def __p__M0_S0_My_func; .scl 3; .type 32; .endef
 7 __p__M0_S0_My_func:
 8  pushl %ebp
 9  movl %esp, %ebp
10  subl $4, %esp
11  movl 8(%ebp), %eax
12  cmpl 12(%ebp), %eax
13  jle L2
14  movl 8(%ebp), %eax
15  movl %eax, -4(%ebp)
16  jmp L3
17 L2:
18  movl 12(%ebp), %eax
19  movl %eax, -4(%ebp)
20 L3:
21  movl $100, 8(%ebp)
22  movl $120, 12(%ebp)
23  movl -4(%ebp), %eax
24  leave
25  ret
26  .section .rdata,”dr”
27 LC0:
28  .ascii “Before the function call p1=\0”
29 LC1:
30  .ascii “ p2=\0”
31 LC2:
32  .ascii “After the function call p1=\0”
33  .text
34 .globl __p__M0_main_program
35  .def __p__M0_main_program; .scl 2; .type 32; .endef
36 __p__M0_main_program:
37  pushl %ebp
38  movl %esp, %ebp
39  subl $24, %esp
40  movl $4, _P1
41  movl $30, _P2
42  movl $1568, 4(%esp)
43  movl __p_Output, %eax
44  movl %eax, (%esp)
45  call __p_Write_Init
46  movl $-2147483648, 12(%esp)
47  movl $28, 8(%esp)
48  movl $LC0, 4(%esp)
49  movl __p_Output, %eax
50  movl %eax, (%esp)
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51  call __p_Write_String
52  movl $-2147483648, 8(%esp)
53  movl _P1, %eax
54  movl %eax, 4(%esp)
55  movl __p_Output, %eax
56  movl %eax, (%esp)
57  call __p_Write_Integer
58  movl $-2147483648, 12(%esp)
59  movl $4, 8(%esp)
60  movl $LC1, 4(%esp)
61  movl __p_Output, %eax
62  movl %eax, (%esp)
63  call __p_Write_String
64  movl $-2147483648, 8(%esp)
65  movl _P2, %eax
66  movl %eax, 4(%esp)
67  movl __p_Output, %eax
68  movl %eax, (%esp)
69  call __p_Write_Integer
70  movl __p_Output, %eax
71  movl %eax, (%esp)
72  call __p_Write_Line
73  movl __p_Output, %eax
74  movl %eax, (%esp)
75  call __p_Write_Flush
76  cmpl $0, __p_InOutRes
77  je L6
78  call __p_CheckInOutRes
79 L6:
80  movl _P2, %eax
81  movl %eax, 4(%esp)
82  movl _P1, %eax
83  movl %eax, (%esp)
84  call __p__M0_S0_My_func
85  movl %eax, _P3
86  movl $1568, 4(%esp)
87  movl __p_Output, %eax
88  movl %eax, (%esp)
89  call __p_Write_Init
90  movl $-2147483648, 12(%esp)
91  movl $28, 8(%esp)
92  movl $LC2, 4(%esp)
93  movl __p_Output, %eax
94  movl %eax, (%esp)
95  call __p_Write_String
96  movl $-2147483648, 8(%esp)
97  movl _P1, %eax
98  movl %eax, 4(%esp)
99  movl __p_Output, %eax
100  movl %eax, (%esp)
101  call __p_Write_Integer
102  movl $-2147483648, 12(%esp)
103  movl $4, 8(%esp)
104  movl $LC1, 4(%esp)
105  movl __p_Output, %eax
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106  movl %eax, (%esp)
107  call __p_Write_String
108  movl $-2147483648, 8(%esp)
109  movl _P2, %eax
110  movl %eax, 4(%esp)
111  movl __p_Output, %eax
112  movl %eax, (%esp)
113  call __p_Write_Integer
114  movl __p_Output, %eax
115  movl %eax, (%esp)
116  call __p_Write_Line
117  movl __p_Output, %eax
118  movl %eax, (%esp)
119  call __p_Write_Flush
120  cmpl $0, __p_InOutRes
121  je L4
122  call __p_CheckInOutRes
123 L4:
124  leave
125  ret
126 .lcomm _static_ctor_run_condition_1_2,16
127 .globl  _p__M0_init
128  .def __p__M0_init; .scl 2; .type 32; .endef
129 __p__M0_init:
130  pushl %ebp
131  movl %esp, %ebp
132  subl $8, %esp
133  cmpb $0, _static_ctor_run_condition_1_2
134  jne L9
135  movb $1, _static_ctor_run_condition_1_2
136  call __p_DoInitProc
137 L9:
138  leave
139  ret
140  .def ___main; .scl 2; .type 32; .endef
141 .globl _main
142  .def _main; .scl 2; .type 32; .endef
143 _main:
144  pushl %ebp
145  movl %esp, %ebp
146  subl $24, %esp
147  andl $-16, %esp
148  movl $0, %eax
149  addl $15, %eax
150  addl $15, %eax
151  shrl $4, %eax
152  sall $4, %eax
153  movl %eax, -4(%ebp)
154  movl -4(%ebp), %eax
155  call __alloca
156  call ___main
157  movl __p_GPC_RTS_VERSION_20050331, %eax
158  movl $0, 12(%esp)
159  movl 16(%ebp), %eax
160  movl %eax, 8(%esp)
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161  movl 12(%ebp), %eax
162  movl %eax, 4(%esp)
163  movl 8(%ebp), %eax
164  movl %eax, (%esp)
165  call __p_initialize
166  call __p__M0_init
167  call __p__M0_main_program
168  call __p_fi nalize
169  movl $0, %eax
170  leave
171  ret
172  .def __p_fi nalize; .scl 3; .type 32; .endef

173  .def __p__M0_init; .scl 3; .type 32; .endef
174  .def __p_initialize; .scl 3; .type 32; .endef
175  .def __p_DoInitProc; .scl 3; .type 32; .endef
176  .def __p_CheckInOutRes; .scl 3; .type 32; .endef
177  .def __p_Write_Flush; .scl 3; .type 32; .endef

178  .def __p_Write_Line; .scl 3; .type 32; .endef
179  .def __p_Write_Integer; .scl 3; .type 32; .endef
180  .def __p_Write_String; .scl 3; .type 32; .endef
181  .def __p_Write_Init; .scl 3; .type 32; .endef

# Executing it

$ ./ex7

Before the function call p1=4 p2=30

After the function call p1=4 p2=30

The call-by-value parameter-passing mechanism is implemented by the code generator as follows: (1) 

The actual arguments are evaluated and their r-values computed at the called site. The r-values of the actual 

parameters are then ‘copied’ as the initial values of the formal parameters. (2) The formal parameters in the 

called function are accessed in a similar manner to the local variables. In the called function, the formal 

parameters are used for all the computations. Since the called function works on the ‘copies’ of the actual 

parameters in the form of formal parameters, any changes done to the formal parameters are not refl ected in 

the actual arguments at the caller site.

The relevant portions of the x86 assembly language code generated by gpc—the Pascal compiler, for 

Example 7, are shown below. It is annotated to show both of the above aspects in the caller and callee. We 

have the computing of the r-values of actual arguments and copying them as the initial values of formal 

parameters in lines 80–84. We see how the arguments are accessed in the called function ‘my_func’ in the 

lines 21–22.

# Copying the actual parameter ‘p2’ to the formal parameter ‘f2’
80 movl _P2, %eax
81 movl %eax, 4(%esp)

# Copying the actual parameter ‘p1’ to the formal parameter ‘f1’
82 movl _P1, %eax
83 movl %eax, (%esp)

# Calling the procedure ‘my_func’
84 call __p__M0_S0_My_func

# In the called function
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# Accessing the formal parameters similar to the local variables
21 movl $100, 8(%ebp)
22 movl $120, 12(%ebp)

The call-by-value method is supported as the default parameter passing mechanism in C and PASCAL 

language run-time environment.

6.3.6.2 Call by Reference In  call-by-reference mechanism of parameter passing, the reference 

(address of the memory location) of the actual parameter is passed to the function instead of the value. 

In other words, the l-values of the actual parameters are passed to the caller as opposed to the r-values 

passed in the case of call by value. For example, consider the PASCAL program shown in Listing 6.13 in 

which we use the call-by-reference parameter-passing mechanism for calling the function ‘my_func’ at line 

number 24. This program is identical to the one shown in Listing 6.12 except for the line 4, where we use 

the keyword VAR at the time of function defi nition to signify that parameters are passed by reference. At 

the time of call, i.e. line 22, the address of arguments ‘p1’ and ‘p2’ are calculated and passed as arguments. 

In the called function, ‘my_func’ any access to the formal parameters ‘f1’ and ‘f2’ would be done by using 

indirect addressing as seen earlier in Section 6.2.3.5.

In call-by-reference method, the changes made to the formal parameters are refl ected in the actual 

parameters at the caller site. This is due to the fact that the addresses of the actual parameters are passed to 

the caller, and any changes to the formal parameters would be carried out on the same addresses by using 

the indirect addressing. In Listing 6.13, we modify the formal parameters ‘f1’ to 100 and ‘f2’ to 120 at the 

lines 12 and 13 respectively, when we print the actual parameters ‘p1’ and ‘p2’ at line 26 after the call to 

the function ‘my_func’, the modifi ed values are refl ected. The actual arguments ‘p1’ and ‘p2’ have the new 

values, i.e. 100 and 120 after the call to the function ‘my_func’ when printed at line 26. 

 1 PROGRAM sample(input,output);
 2 VAR p1,p2,p3 : integer;
 3
 4    FUNCTION my_func(VAR f1,f2:integer): integer;
 5    BEGIN
 6          if (f1 > f2 )
 7          then
 8           my_func := f1
 9          else
10           my_func := f2;
11
12          f1 := 100 ;{ Changing the Value of Formal Parameter }
13          f2 := 120 ;{ Changing the Value of Formal Parameter }
14
15    END;
16
17 BEGIN
18
19    p1 := 4;
20    p2 := 30;
21
22    writeln(‘Before the function call p1=’,p1,’ p2=’,p2);
23
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24    p3 := my_func(p1,p2);
25
26    writeln(‘After the function call p1=’,p1,’ p2=’,p2);
27
28 END.

Listing 6.13 ex8.pas

The dialog below shows the compilation and execution of the Pascal program shown in Listing 6.13 

that uses the call-by-reference mechanism for parameter passing. The x86 assembly language output for 

the same program generated by the Pascal compiler—gpc is also seen in the dialog. We will use that to 

understand the details of implementing the call-by-reference mechanism from a target code generator 

standpoint. Observing the execution of the program establishes the fact that any changes made to the 

parameters in a call-by-reference method is refl ected in the caller.

# Compiling ex8.pas to demonstrate Call-by-Reference

$ gpc -Wall —save-temps ex8.pas -o ex8

# x86 assembly language output

$ cat -n ex8.s

1  .fi le “ex8.pas”
2 .lcomm _P1,16
3 .lcomm _P2,16
4 .lcomm _P3,16
5  .text
6  .def __p__M0_S0_My_func; .scl 3; .type 32; .endef
7 __p__M0_S0_My_func:
8  pushl %ebp
9  movl %esp, %ebp
10  subl $4, %esp
11  movl 8(%ebp), %eax
12  movl 12(%ebp), %edx
13  movl (%eax), %eax
14  cmpl (%edx), %eax
15  jle L2
16  movl 8(%ebp), %eax
17  movl (%eax), %eax
18  movl %eax, -4(%ebp)
19  jmp L3
20 L2:
21  movl 12(%ebp), %eax
22  movl (%eax), %eax
23  movl %eax, -4(%ebp)
24 L3:
25  movl 8(%ebp), %eax
26  movl $100, (%eax)
27  movl 12(%ebp), %eax
28  movl $120, (%eax)
29  movl -4(%ebp), %eax
30  leave
31  ret
32  .section .rdata,”dr”
33 LC0:
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34  .ascii “Before the function call p1=\0”
35 LC1:
36  .ascii “ p2=\0”
37 LC2:
38  .ascii “After the function call p1=\0”
39  .text
40 .globl __p__M0_main_program
41  .def __p__M0_main_program; .scl 2; .type 32; .endef
42 __p__M0_main_program:
43  pushl %ebp
44  movl %esp, %ebp
45  subl $24, %esp
46  movl $4, _P1
47  movl $30, _P2
48  movl $1568, 4(%esp)
49  movl __p_Output, %eax
50  movl %eax, (%esp)
51  call __p_Write_Init
52  movl $-2147483648, 12(%esp)
53  movl $28, 8(%esp)
54  movl $LC0, 4(%esp)
55  movl __p_Output, %eax
56  movl %eax, (%esp)
57  call __p_Write_String
58  movl $-2147483648, 8(%esp)
59  movl _P1, %eax
60  movl %eax, 4(%esp)
61  movl __p_Output, %eax
62  movl %eax, (%esp)
63  call __p_Write_Integer
64  movl $-2147483648, 12(%esp)
65  movl $4, 8(%esp)
66  movl $LC1, 4(%esp)
67  movl __p_Output, %eax
68  movl %eax, (%esp)
69  call __p_Write_String
70  movl $-2147483648, 8(%esp)
71  movl _P2, %eax
72  movl %eax, 4(%esp)
73  movl __p_Output, %eax
74  movl %eax, (%esp)
75  call __p_Write_Integer
76  movl __p_Output, %eax
77  movl %eax, (%esp)
78  call __p_Write_Line
79  movl __p_Output, %eax
80  movl %eax, (%esp)
81  call __p_Write_Flush
82  cmpl $0, __p_InOutRes
83  je L6
84  call __p_CheckInOutRes
85 L6:
86  movl $_P2, 4(%esp)
87  movl $_P1, (%esp)
88  call __p__M0_S0_My_func
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89  movl %eax, _P3
90  movl $1568, 4(%esp)
91  movl __p_Output, %eax
92  movl %eax, (%esp)
93  call __p_Write_Init
94  movl $-2147483648, 12(%esp)
95  movl $28, 8(%esp)
96  movl $LC2, 4(%esp)
97  movl __p_Output, %eax
98  movl %eax, (%esp)
99  call __p_Write_String

100  movl $-2147483648, 8(%esp)
101  movl _P1, %eax
102  movl %eax, 4(%esp)
103  movl __p_Output, %eax
104  movl %eax, (%esp)
105  call __p_Write_Integer
106  movl $-2147483648, 12(%esp)
107  movl $4, 8(%esp)
108  movl $LC1, 4(%esp)
109  movl __p_Output, %eax
110  movl %eax, (%esp)
111  call __p_Write_String
112  movl $-2147483648, 8(%esp)
113  movl _P2, %eax
114  movl %eax, 4(%esp)
115  movl __p_Output, %eax
116  movl %eax, (%esp)
117  call __p_Write_Integer
118  movl __p_Output, %eax
119  movl %eax, (%esp)
120  call __p_Write_Line
121  movl __p_Output, %eax
122  movl %eax, (%esp)
123  call __p_Write_Flush
124  cmpl $0, __p_InOutRes
125  je L4
126  call __p_CheckInOutRes
127 L4:
128  leave
129  ret
130 .lcomm _static_ctor_run_condition_1_2,16
131 .globl __p__M0_init
132  .def __p__M0_init; .scl 2; .type 32; .endef
133  __p__M0_init:
134  pushl %ebp
135  movl %esp, %ebp
136  subl $8, %esp
137  cmpb $0, _static_ctor_run_condition_1_2
138  jne L9
139  movb $1, _static_ctor_run_condition_1_2
140  call __p_DoInitProc
141 L9:
142  leave
143  ret
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144  .def ___main; .scl 2; .type 32; .endef
145 .globl _main
146  .def _main; .scl 2; .type 32; .endef
147 _main:
148  pushl %ebp
149  movl %esp, %ebp
150  subl $24, %esp
151  andl $-16, %esp
152  movl $0, %eax
153  addl $15, %eax
154  addl $15, %eax
155  shrl $4, %eax
156  sall $4, %eax
157  movl %eax, -4(%ebp)
158  movl -4(%ebp), %eax
159  call __alloca
160  call ___main
161  movl __p_GPC_RTS_VERSION_20050331, %eax
162  movl $0, 12(%esp)
163  movl 16(%ebp), %eax
164  movl %eax, 8(%esp)
165  movl 12(%ebp), %eax
166  movl %eax, 4(%esp)
167  movl 8(%ebp), %eax
168  movl %eax, (%esp)
169  call __p_initialize
170  call __p__M0_init
171  call __p__M0_main_program
172  call __p_fi nalize
173  movl $0, %eax
174  leave
175  ret
176  .def __p_fi nalize; .scl 3; .type 32; .endef
177  .def __p__M0_init; .scl 3; .type 32; .endef
178  .def __p_initialize; .scl 3; .type 32; .endef
179  .def __p_DoInitProc; .scl 3; .type 32; .endef
180  .def __p_CheckInOutRes; .scl 3; .type 32; .endef
181  .def __p_Write_Flush; .scl 3; .type 32; .endef
182  .def __p_Write_Line; .scl 3; .type 32; .endef
183  .def __p_Write_Integer; .scl 3; .type 32; .endef
184  .def __p_Write_String; .scl 3; .type 32; .endef
185  .def __p_Write_Init; .scl 3; .type 32; .endef

# Executing it

$ ./ex8

Before the function call p1=4 p2=30
After the function call p1=100 p2=120

In order to implement the call-by-reference, the code generation has to take care of two aspects: (1) The 

address of the actual arguments needs to be computed at the called site and passed as the arguments. (2) The 

references to the formal parameters in the called function should be done using indirect addressing.

The relevant portions of x86 assembly language code generated by gpc—The Pascal compiler, for 

Example 8, are shown below. It is annotated to show both of the aspects mentioned above. We have the 

computing of the address of actual arguments and passing it as arguments to the function ‘my_func’, by 
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pushing on to the stack in lines 86–88. We  see how the arguments are accessed in the called function ‘my_

func’ using the indirect addressing in the lines 25–28.

# Copying the ADDRESSES of the actual parameters on to the stack before making the call
86 movl $_P2, 4(%esp)
87 movl $_P1, (%esp)
88 call __p__M0_S0_My_func

# In the called function
# Using the indirect addressing on the passed references to
# affect the change in the actual parameters itself
25 movl 8(%ebp), %eax
26 movl $100, (%eax) # Assigning 100 using INDIRECT Addressing
27 movl 12(%ebp), %eax 
28 movl $120, (%eax) # Assigning 120 using INDIRECT Addressing

In call by reference, if the function call uses an expression like say my_func( (p1+5),p2) or simply my_

func(4,5) in the above example, then the compiler needs to handle it specially, since there are no addresses 

associated with these actual arguments. In such cases, the gpc compiler gives out an error indicating 

incompatibility between the expected argument and the used ones. This forces the user to correct it and call 

the function with a proper address location. The FORTRAN77 compiler handles these situations differently. 

It creates a temporary location where the expression is stored and passes that address as the reference.

An advantage in the call-by-reference is that the values that are passed are not ‘copied’ as in pass-by-

value. This helps in improving performance, especially when large structures are passed to a function. 

In Pascal programs, the keyword ‘var’ in the function defi nition is used to signify that the parameters 

are passed by reference. In FORTRAN77, call by reference is the only parameter-passing mechanism. In C 

language, call by reference is achieved by explicitly defi ning a function take pointers as parameters and at 

the time of calling, the addresses are passed as parameters using the address of operator—‘&’.

6.3.6.3 Call-by-Value-Result In the  call-by-value-result, the values of actual parameters are copied 

to the formal parameters and used in the called procedure. This is similar to the call-by-value parameter-

passing mechanism. However, at the time of completion of the called function, the fi nal value of the formal 

parameter is copied back into the location of the actual argument. This allows the changes made to the 

formal parameters within the called function be refl ected on the actual parameters at the caller site.

ADA programming language uses this as one of the parameter-passing mechanisms, when the parameter 

is specifi ed using the ‘in out’ keyword at the procedure defi nition. Consider an ADA program mytst.

adb shown in Listing 6.14 having a procedure ‘myproc’ using the ‘in out’ parameter ‘b’. The procedure 

‘myproc’ increments the value of ‘a’ by 20 and stores it in the ‘in out’ parameter ‘b’. The Listing 6.15 

shows the program ex9.adb in which a call is made to ‘myproc’ with the actual parameters as ‘x’ and ‘y’. 

The values of ‘x’ and ‘y’ at the time of call are 10 and 20 respectively. The two programs — ex9.adb and 

myproc.adb are compiled and linked together to form an executable—ex9. 

1 with Ada.Text_IO; use Ada.Text_IO;
2 package body mytst is
3  procedure myproc(a:in integer; b:in out integer ) is
4  begin
5    b := a + 20 ;
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6  end myproc;
7 end mytst;

Listing 6.14 mytst.adb

1 with mytst;
2 with Ada.Text_IO, Ada.Integer_Text_IO;
3 use Ada;
4 procedure ex9 is
5 x: integer ;
6 y: integer ;
7 begin
8      x :=10;
9      y :=20;
10      Text_IO.Put (“Value of ‘y’ before the procedure call:”);
11      Integer_Text_IO.Put (y);
12      mytst.myproc(x,y);
13      Text_IO.New_Line;
14      Text_IO.Put (“Value of ‘y’ after the procedure call:”);
15      Integer_Text_IO.Put (y);
16 end ex9;

Listing 6.15 ex9.adb

The following dialog shows the compilation and linking of the ‘mytst.adb’ with the fi le ‘ex9.adb’. We 

can see from the output of the program that the value of ‘y’ changes after the execution of the procedure 

‘myproc’. The x86 assembly listing of the code generated for ‘mytst.adb’ and ‘ex9.adb’ by the ADA 

compiler is also shown in the dialog.

# Compiling ADA fi les to demonstrate Call-by-Value-Result

$ gcc -c --save-temps ex9.adb

$ gcc -c --save-temps mytst.adb

# Binding it

$ gnatbind ex9

# Linking it

$ gnatlink ex9

# Executing it

$ ./ex9

Value of ‘y’ before the procedure call:  20
Value of ‘y’ after the procedure call:  30

# x86 assembly language output for ex9.adb

$ cat -n ex9.s

1  .fi le “ex9.adb”

2  .section .rdata,”dr”
3  .align 4
4 LC0:
5  .ascii “Value of ‘y’ before the procedure call:”
6  .align 4
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7 LC1:
8  .long 1
9  .long 39
10  .align 4
11 LC2:
12  .ascii “Value of ‘y’ after the procedure call:”
13  .text
14 .globl __ada_ex9
15  .def __ada_ex9; .scl 2; .type 32; .endef
16 __ada_ex9:
17  pushl %ebp
18  movl %esp, %ebp
19  subl $24, %esp
20  movl $10, -4(%ebp)
21  movl $20, -8(%ebp)
22  movl $LC0, %eax
23  movl $LC1, %edx
24  movl %eax, (%esp)
25  movl %edx, 4(%esp)
26  call _ada__text_io__put__4
27  movl _ada__integer_text_io__default_base, %eax
28  movl %eax, 8(%esp)
29  movl _ada__integer_text_io__default_width, %eax
30  movl %eax, 4(%esp)
31  movl -8(%ebp), %eax
32  movl %eax, (%esp)
33  call _ada__integer_text_io__put__2
34  movl -8(%ebp), %eax
35  movl %eax, 4(%esp)
36  movl -4(%ebp), %eax
37  movl %eax, (%esp)
38  call _mytst__myproc
39  movl %eax, -8(%ebp)
40  movl $1, (%esp)
41  call _ada__text_io__new_line__2
42  movl $LC2, %eax
43  movl $LC1, %edx
44  movl %eax, (%esp)
45  movl %edx, 4(%esp)
46  call _ada__text_io__put__4
47  movl _ada__integer_text_io__default_base, %eax
48  movl %eax, 8(%esp)
49  movl _ada__integer_text_io__default_width, %eax
50  movl %eax, 4(%esp)
51  movl -8(%ebp), %eax
52  movl %eax, (%esp)
53  call _ada__integer_text_io__put__2
54  leave
55  ret
56  .def _ada__text_io__new_line__2;  .scl  3;  .type  32;  .endef
57  .def _mytst__myproc;   .scl  3; .type 32; .endef
58  .def _ada__integer_text_io__put__2; .scl 3; .type 32; .endef
59  .def _ada__text_io__put__4; .scl 3; .type 32; .endef

# x86 assembly language output for myproc.adb

$ cat -n mytst.s 
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1  .fi le “mytst.adb”
2  .comm _mytst_E, 16  # 1
3  .text
4 .globl _mytst__myproc
5  .def _mytst__myproc;  .scl 2;  .type 32;  .endef
6 _mytst__myproc:
7  pushl %ebp
8  movl %esp, %ebp
9  movl 8(%ebp), %eax
10  addl $20, %eax
11  movl %eax, 12(%ebp)
12  movl 12(%ebp), %eax
13  popl %ebp
14  ret

The code generation for passing by value-result involves three steps: (1) The caller copies the actual 

arguments by value to the stack, similar to the call-by-value parameter-passing mechanism. (2) The callee 

executes normally and stores the result (i.e. the changed value of the formal parameter) into a common 

mutually agreed location. (3) The caller picks up the result from the common mutually agreed location to 

update the actual argument.

Let’s dissect the x86 assembly output of the fi les ex9.adb and mytst.adb to identify and understand the 

three steps mentioned above. The lines 34 through 37 of the caller routine ex9 in ex9.s (see Fig. 6.29), show 

the arguments ‘y’ and ‘x’ being copied on to the stack. This is the illustration of the fi rst step. The second 

step happens in the called routine ‘myproc’ at line 12 of mytst.s (Fig. 6.30) where the value of ‘in out’ 

variable ‘y’ (result) is moved to a register eax, which serves as the common location between the caller and 

callee. The third step can be found at line 39 of ex9.s (Fig. 6.29), where caller copies the result from the 

register eax back to the ‘in out’ actual argument—y. 

One of the disadvantages of the call-by-value-result is that, there could be an ambiguity in the result, 

when the same variable is passed as more than one argument, e.g. func(y,y). In this type of situation, it is 

unclear as to which value of ‘y’ needs to be copied back into the actual argument at the caller site. 

# Copying actual argument ‘y’ (in out parameter) on to the stack
34  movl -8(%ebp), %eax
35  movl %eax, 4(%esp)

# Copying actual argument ‘x’ on to the stack
36  movl -4(%ebp), %eax
37  movl %eax, (%esp)

# Making the call to myproc
38  call _mytst__myproc

# Copying the result back to ’y’ from the register eax
39  movl %eax, -8(%ebp)

Fig. 6.29 ex9.s

6 _mytst__myproc:
7  pushl %ebp
8  movl %esp, %ebp

 # Using the parameter passed as value ( y = x + 20 )
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9  movl 8(%ebp), %eax
10  addl $20, %eax
11  movl %eax, 12(%ebp)

 # Copying the ‘fi nal’ value of ‘y’ into register eax
12  movl 12(%ebp), %eax
13  popl %ebp
14  ret

Fig. 6.30 mytst.s

6.3.6.4 Call by Name The  call-by-name parameter-passing mechanism was fi rst used in Algol60. 

Some of the modern functional languages like Haskell use this mechanism for parameter passing.

The call-by-name can be characterised as follows:

 1. Every call statement is replaced by the body of the called procedure.

 2. Each occurrence of a formal parameter in the called method is replaced with the corresponding 

actual parameter—the actual text of the argument, not its value.

 3. The local variables in the procedure are renamed, in case there exists a name clash with the 

current set of variables.

Let’s take an example using C language syntax, to understand call-by-name parameter-passing 

mechanism. Consider the C program shown in Listing 6.16 containing a ‘swap’ routine. We try and 

understand the call-by-name parameter-passing mechanism by pretending to call the ‘swap’ routine using 

the call-by-name. The swap routine is called in the main(), as swap(i,x[i]) in line 22;

1 void swap(a,b)
2 {
3  int temp;
4  temp = a;
5  a = b;
6  b = temp ;
7 }
8
9 int x[10];
10 int i;
11
12 int main()
13 {
14
15  i = 1;
16  x[1] = 4;
17  x[2] = 5 ;
18  x[3] = 7 ;
19  x[4] = 9 ;
20
21
22  swap(i,x[i]);
23
24  return(0);
25
26 }
27

Listing 6.16 ex10.c
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When the ‘swap’ method is called by name, the body of the swap routine would be literally substituted 

as shown by the shaded portion in Fig. 6.31. We can see in the shaded portion of Fig. 6.31 that the formal 

argument ‘a’ is textually substituted with the actual argument ‘i’ and formal argument ’b’ is textually 

substituted by the actual argument ‘x[i]’. In the call-by-name parameter-passing mechanism, the evaluation 

of arguments to the function happens at the time it is used as opposed to the time of call for all other 

parameter-passing mechanisms. For example, if we had called swap(i,x[i]) with say, call-by-value, it would 

evaluate i and x[i] at the time of call and pass it as arguments within the function. Here in call-by-name, we 

can see that the x[i] is getting evaluated in the fourth line of the shaded portion, where it is used. The other 

argument ‘i’ is evaluated in the second line of the shaded portion.

void swap(a, b)
{
 int temp; 
 temp = a; 
 a = b; 
 b = temp ;
}

int x[10];
int i;
int main()
{

 i = 1;
 x[1] = 4;
 x[2] = 5 ;
 x[3] = 7 ;
 x[4] = 9 ;

 {
  int temp; 
  temp = i; 
  i = x[i]; 
  x[i] = temp ;
 }

 return(0);

}

Fig. 6.31 The expansion of swap

Let’s analyse the shaded portion of Fig. 6.31 to understand the consequences of calling the swap routine 

using call-by-name parameter-passing mechanism. Figure 6.32 shows in comments what happens as each of 

the statements in the textually substituted swap routine gets executed. The net result of executing the entire 

shaded portion of the code is that i = 4 and x[4] = 1. The expected net result would have been i = 4 and x[1] 

= 1, the swap of values for i and x[i] as one would expect of the swap routine. This kind of unexpected, 

counterintuitive results made the call-by-name unpopular. In fact, it has been proved that it is impossible to 

have a correctly working ‘swap’ routine using call by name.
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void swap(a,b) 
{ 
 int temp; 
 temp = a; 
 a = b; 
 b = temp ;
}

int x[10];
int i;

int main()
{

 i = 1;
 x[1] = 4;
 x[2] = 5 ;
 x[3] = 7 ;

 x[4] = 9 ;

 { 
  int temp;
  temp = i; /* temp = 1 */
  i = x[i];  /* i = x[1] which is 4, so i = 4 */
  x[i] = temp ; /* x[4] = 1 */
 }

 return(0);

}

Fig. 6.32 Annotation for the macro-expansion of swap function

Even though the call-by-name is best understood by textually substituting the called routine and 

replacing the formal parameters in the called method with the corresponding actual parameter. The 

compilers implement the call-by-name mechanism internally by a different means but achieving the same 

result as that of textual substitution as discussed above. The reason why textual substitution was not used 

as implementation mechanism is that, when a function changes, all the functions that are calling it by name 

have to be recompiled so that the textual substitution happens again. The call-by-name is implemented by 

using parameter less subroutines called ‘thunks’ that can evaluate l-value or r-value of the actual parameters. 

For example, the swap routine used in previous discussion would be implemented using two thunks, where 

thunk1 evaluates ‘i’ and thunk2 evaluating x[i]. These thunks would help evaluate the parameter at the time 

of access and implement call-by-name.

Even though the call-by-name has not been popular after Algol60, the idea of macro-expansion has been 

used later in many programming languages like C. The macro-expansion is an ideal solution to situations 

where the overhead of setting-up procedure activation is more than the execution of actual body of the 

procedure. 
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6.3.7 Comparison of Run-time Environments

In this section, we compare the features of run-time environments of some of the popular programming 

languages like C, FORTRAN77 and Pascal. The idea is to bring out some of the differences in terms of 

different ways each of these run-time environments function. The run-time environment of a source 

language is usually designed to suit its features. Let’s take, for example, the FORTRAN77 run-time 

environment. The FORTRAN77 language specifi cations supported parameter passing by reference, and did 

not provide for advanced features like recursion, and dynamic memory allocation. Given these features, a 

completely static run-time environment with no heap and stack was a good fi t. In the case of C language, 

features like dynamic memory, recursion and others, motivated a stack-based run-time environment, which 

also had heap memory.

Item for

Comparison

C FORTRAN77 Pascal

Memory 

organisation

Heap, stack, and static 

memory. There is 

support for dynamic 

memory.

Only static memory. 

There is no dynamic 

memory in the form of 

either stack or heap.

Heap, stack and static memory. 

There is support for dynamic 

memory.

Activation

records

Stored in the stack area. 

supports recursion.

Stored in the static 

area. Cannot support 

recursion.

Stored in the stack area. Supports 

recursion.

Procedure calling 

and return 

sequences

The calling and return 

sequences for C 

deal with allocating, 

populating and release of 

the activation record.

The calling and return 

sequence in a static 

run-time environment 

do not allocate and free 

activation record. The 

creation of activation 

record is skipped 

because it is created 

statically at the compile 

time itself and stored in 

the static region.

The calling and return sequences 

for PASCAL deal with allocating, 

fi lling in all the fi elds and release 

of the activation record. The 

calling sequence in the PASCAL 

environment also deals with 

populating the access link of the 

activation record.

Parameter

passing

This supports call by 

value. However, one 

can use pass a pointer 

using call-by-value 

and simulate a call-by-

reference.

This supports only call-

by-reference.

This run-time environment 

supports both call-by-value, and 

call-by-reference. The default 

is call-by-value. The keyword 

‘var’ is used to indicate to that 

the parameter is passed using 

reference.

  

In general, some of factors that are considered before conceiving a run-time environment for a 

new language compiler are as follows: (a) Does the language support recursion? (b) Are local variables 

supported? Are they required to be visible after the procedure is complete? (c) Does the source language 

support features like pointers that require dynamic memory? (d) What types of parameter-passing 

mechanisms are required to be supported? 
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6.4 CODE GENERATION FOR x86

In this section, we look at implementing a code generator that translates the intermediate code (three-

address-code format) into target program (x86 assembly program). There are several ways a code generator 

can be implemented to translate intermediate code into target assembly program. The method chosen here is 

a straightforward scheme for generation of assembly code over more sophisticated and better counterparts 

in view of retaining the simplicity and ease of understanding.

The code generator that we examine in this section associates a sequence of one or more x86 assembly 

instructions to be generated for each type of three-address-code operator. These generated x86 assembly 

instructions together achieve the intended functionality for the TAC Operator. This kind of code generation, 

where each of the TAC operators is associated with a pattern of assembly instructions is sometimes referred 

to as template-based code generation. Let’s take an example of a three-address-code statement using the 

ADD TAC operator and the associated x86 assembly code as shown in Table 6.6 for understanding the 

template-based code generation.

Table 6.6 x86 code generation for ADD TAC statement

TAC operator TAC statement x86 Assembly code to be 

generated by the code 

generator

Comments

ADD x := y + z movl _y, %eax
addl _z,%eax
mov1 %eax, _x

Assuming that x, y and z 
are global variables, 
each 4 bytes wide

The generated x86 assembly code shown in Table 6.6 for the ADD TAC statement has three x86 

assembly language statements doing the following.

 ∑ Moving the operand y into the register eax. This prepares the operand for performing the add 

operation.

 ∑ Performing the ‘add’ operation using z and an implicit operand from register eax with the result 

being stored in the register eax.

 ∑ Moving the result of the operation (which is in register eax) into the variable x. 

These three x86 assembly language statements together achieve the functionality of the ADD TAC 

statement.

In a similar manner, a sequence of x86 assembly instructions is associated with each of the TAC 

operators that have been defi ned in the Intermediate language. The generated x86 assembly instructions 

have to work with the limitation that both the operands cannot be in memory at the same time. They have to 

intelligently use the registers as a temporary storage points and perform the required operations. 

Before we get into the details of translating other TAC statements into x86 assembly, it would be 

necessary to understand how the global variables like x, y, and z in Table 6.6 are visible in the context of a 

generated assembly code.

6.4.1 Global Variable Declarations

In the earlier chapter we studied that the global symbol table contains the details of all the global variables 

that have been declared in the input source. In order to translate the global declarations in the input 

source into x86 assembly statements, the code generator goes through the symbol table entry by entry and 



398 Principles of Compiler Design

generates assembly statements. A ‘.comm’ directive in the BSS section is generated for a symbol table entry 

corresponding to un-initialised global variable. A global symbol label in the data segment together with 

its initial value is generated for a symbol table entry corresponding to initialised global variable. The code 

generator generates global symbol label with initialising statements for each element in the case of symbol 

table entry corresponding to an initialised global array declaration. Table 6.7 shows the transformation 

of initialised, un-initialised global variables and arrays in the input C source into symbol table and 

consequently into x86 assembly language code. 

Table 6.7 Translation of global variables into x86 assembly code

The translation of global variable declarations into x86 assembly statements as shown in Table 6.7 helps 

in accessing them later in the execution statements (text section) by using the symbolic name. For example, 

in the text section following the generated x86 assembly code of Table 6.7, we can have statements like 

mov %eax,_x for moving a value in register eax into the memory associated with variable _x. This facility 

of being able to access the global variables by name (with an underscore as prefi x) is used during the 

translation of TAC statements with global variables as operands, like the one in Table 6.6.

6.4.2 Statements

As mentioned earlier, the template-based code generator sets out to associate a x86 assembly code sequence 

to be generated for each TAC operator that has been defi ned in the intermediate language. Table 6.8 shows 
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the translation into x86 assembly instructions for all the 23 operators that were chosen for intermediate 

language in Chapter 5. Most of the sample TAC statements, considered for translation in Table 6.8 use x, 

y, z or i as operands. For simplicity, we assume that x, y, z and i are 4 byte integer-type global variables 

declared in the input source translated into x86 assembly declarations as discussed in Section 6.4.1. By 

virtue of that translation, we can use _x, _y, _z and _i to reference the memory associated with each of them 

in the generated x86 assembly code. In the next section (Section 6.4.3), we see how the code generation can 

be adapted in case the operands are local variables.

Table 6.8 Translation from TAC to x86 assembly instructions

# TAC Operator Sample TAC Translated x86 Assembly Code

1 ASSIGN x := y movl _y,%eax
movl %eax, _x

2 ADD x := y + z movl _y, %eax
addl_ z,%eax
movl %eax,_x

3 MUL x = y * z movl _y,%eax
imull _z
movl %eax, _x

4 DIV x := y / z movl _y,%eax
cltd
idivl       _z
movl %eax, _x

5 SUB x := y – z movl _y,%eax
subl _z,%eax
movl %eax,_x

6 UMINUS x := – y movl _y,%eax
negl     %eax
movl  %eax,_x

7 L_INDEX_ASSIGN x[i]:= y movl  _i,%eax
addl  _x,%eax
movl  _y,(%eax)

8 R_INDEX_ASSIGN y:= x[i] movl  _i,%eax
addl  _x,%eax
movl  (%eax),_y

9 ADDR_OF x = &y leal _y, %eax
movl  %eax, _x

10 LBL lbl my_lbl .align 4
my_lbl :

11 GOTO goto my_lbl jmp my_lbl

12 LT if x < y goto my_lbl movl  _y,%eax
cmp  %eax,_x
jl my_lbl
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13 GT if x > y goto my_lbl movl  _y,%eax
cmp  %eax,_x
jg my_lbl

14 LE if x <= y goto my_lbl movl   _y,%eax
cmp    %eax,_x
jle    my_lbl

15 GE if x >= y goto my_lbl movl   _y,%eax
cmp    %eax,_x
jge    my_lbl

16 EQ if x == y goto my_lbl movl     _y,%eax
cmp     %eax,_x
je     my_lbl

17 NE if x != y goto my_lbl movl     _y,%eax
cmp     %eax,_x
jne      my_lbl

18 PROC_BEGIN proc_begin   my_func 40 .align   4
.globl    my_func
my_func :
  pushl   %ebp
  movl    %esp,%ebp
  subl    $40,%esp

19 PROC_END proc_end movl   %ebp,%esp
popl   %ebp
ret

20 RETURN return x movl   _x,%eax

21 RETRIEVE retrieve x movl    %eax,_x

22 PARAM param x pushl   _x

23 CALL call  my_func, 8 call     my_func
addl     $8,%esp

The simplest translation is for the TAC statements using the ASSIGN TAC operator, where the 

functionality is carried out by temporarily storing the content of variable y in register eax before assigning 

to x. This temporary step is required because x86 assembly language instructions do not allow both the 

operands to be in memory at the same time.

The translation of TAC statements using binary arithmetic operator OP (ADD/SUB/MUL/DIV) in x = y 

OP z involves generation of three x86 assembly instructions. (a) Moving y into register eax. (b) Performing 

the computation OP with z and register eax as operands, such that the result is stored in register eax. (c) 

Moving the result, which is in register eax into x. The translation for the DIV operator has an additional 

x86 assembly instruction to clear the direction fl ag (cltd) before performing the division operation. In the 

translation of unary negation operator (UMINUS), the ‘negl’ x86 assembly instruction is used.

The translation of TAC statements using L_INDEX_ASSIGN and R_INDEX_ASSIGN TAC operators 

involves generation of x86 assembly instructions that use the indirect addressing facility. Recall that x[i] in 

three address notation refers to the location, which is ‘i’ memory units away from the memory pointed to by 

x. The L_INDEX_ASSIGN TAC instruction translates into 3 assembly instructions. The fi rst two of them 

help in having the register eax loaded with the correct address of the location where the value needs to be 

stored. The third instruction uses the indirect addressing to store the value into the memory location. The R_

INDEX_ASSIGN TAC instruction is also translated in the same way except that the indirect addressing is 
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used to fetch the value to stored, while the memory location for storing is accessed using direct addressing. 

The translation of ADDR TAC operator involves the usage of ‘lea’ (load effective address) x86 assembly 

instruction, which fetches the address of a given label.

The translation of TAC statement using the LBL operator involves generation of a label in x86 assembly 

program. An align directive is also generated to fulfi l the condition that x86 architecture requires that the 

labels in the text segment be aligned at a 4-byte boundary. The translation of the TAC statement using 

the GOTO operator—‘goto my_lbl’, involves generation of the jmp assembly instruction with the target as 

my_lbl.

The TAC statements using the comparison TAC operators like LT,GT, etc. are translated into three 

x86 assembly instructions. The fi rst two instructions help perform the comparison of the two values. The 

third assembly instruction generated is the conditional jump that is synonymous to the TAC operator. For 

example, the TAC operator LT (less than) is translated to ‘jl’ assembly instruction (jump on less than) 

with the target label as the operand, while the TAC operator LE (less than or equal to) is translated to ‘jle’ 

assembly instruction (jump on less than or equal to).

The translation of T AC statements using function-related TAC operators like PROC_BEGIN, PROC_

END, RETURN, etc. are geared towards providing a runtime environment that is similar to the one we 

studied in Section 6.2.3.6. In the translation for PROC_BEGIN, the code generator generates x86 assembly 

language directives for being able to view the function globally (.global) and aligning the function entry 

point at a 4-byte boundary (.align 4). Additionally, a function prolog that saves the BP and moves the value 

of SP into BP is also generated. This enables the use of BP to access the local variables (negative offsets) 

and formal parameters (positive offsets). The space for local variables is also created in the PROC_BEGIN 

translation by shifting the SP (subl instruction) using the cumulative size of local variables. We discuss the 

local variables and the related stack organisation with more details in Section 6.4.3. In the translation for 

TAC statements using PROC_END operator, the x86 assembly instructions that constitute the epilog of the 

function are generated. The epilog of the function involves moving the value of BP into SP and restoring 

the BP value from what was saved on the stack. The fi nal x86 assembly language statement in the PROC_

END operator translation is the ‘ret’ instruction to transfer the control back to the caller. The translation 

of the TAC statement using RETURN operator having a value to be returned involves moving the return 

value into a register eax. We are using the convention that the return value is stored in the register eax. The 

RETRIEVE TAC instruction uses the same convention and fetches the value of eax register into the variable 

storing the return value of a function. The translation of TAC statements using the PARAM operator 

involves generation of a pushl assembly instruction for pushing the parameter on the stack. Observe that the 

PARAM TAC statements are generated in the reverse order of the arguments passed (last argument fi rst). 

This ensures that the arguments are pushed in the reverse order before calling the function as expected by 

the convention studied in Section 6.2.3.6 The translation of the TAC statements using CALL TAC operator 

involves generation two assembly instructions. The fi rst of them is a ‘call’ x86 assembly instruction, which 

transfers the control to the function. The second instruction restores the stack to the original state, the way 

it was prior to pushing the parameters. The restoring of the stack is performed by incrementing the stack 

(using addl) with the cumulative size of all the parameters pushed earlier (before the call instruction). 

6.4.3 Parameters and Local Identifi ers

When the Intermediate code is translated to the x86 assembly language, the accesses to the local variables 

are transformed to the corresponding locations on the stack. These locations are at known offsets (negative) 

from the memory pointed to by the base pointer register (ebp). The parameters to the function are pushed 

on to the stack before a ‘call’ instruction is issued during the translation of PARAM and CALL TAC 

statements. The parameters are accessed in the body of the called function by using positive offsets from 
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the memory pointed to by ebp. The arrangement for the local identifi ers and the parameters is exactly the 

same way as we saw in Fig. 6.9. The term ‘frame offset’ is used to refer to the offset of a local variable 

or parameter from the memory pointed to by ebp on the stack. It follows that the frame offset would be 

positive for parameters and negative for local variables.

We have studied earlier that the parameters and the local variables are part of the local symbol table-

specifi c to the function. The ‘offset’ fi eld in the symbol table entry is used for calculating the frame offset in 

order to access the location identifi ed for the variable or the parameter on the stack.

Let’s take an example to understand how the local variables and parameters are resolved by the code 

generator during the generation of x86 assembly code. Consider the input source, the corresponding symbol 

table, intermediate code and the generated x86 assembly code shown in Fig. 6.33. The translated assembly 

code shows the intermediate code statements (in comments) interspersed along with the x86 assembly 

statements. This helps in following the translation of each of the TAC statement independently. We can see 

from the generated x86 assembly code in Fig. 6.33 that the space for local variables is allocated on the stack 

by line 9 of the x86 assembly code (subl $8,%esp) as a part of translation for PROC_BEGIN. The local 

variables in the generated x86 assembly code are accessed via indirect addressing using the register ebp as 

depicted in lines 15,16 and 18 of the generated x86 assembly code. The parameters ‘a’ and ‘b’ are accessed 

in lines 11 and 12 of the generated x86 assembly code. 

The frame offsets of both the parameters (a and b) and local variables (x and _t0) were derived using a 

frame offset calculating algorithm shown in Algorithm 6.1.

sptr is a pointer to the symbol table entry for the local variable/parameter
marker is the offset of the last of parameters in the symbol table

calc_frame_offset ( sptr)
{
 if(sptr -> offset > marker ) {/* Local variable */

  frame_offset = marker - sptr->offset
 }else { /* Parameter */

  /* 8 is added to take into account for the saved BP and return address */
  frame_offset = marker – sptr->offset + 8 ;

 }
 return(frame_offset);
}

Algorithm 6.1 Frame off set calculation algorithm

The frame offset calculation algorithm returns the frame offset given the symbol table pointer for the 

variable or parameter. It uses the offset of the last of parameters as a marker for distinguishing between a 

local variable and a parameter. The value of marker is 4 for the example shown in Fig. 6.33. The compiler 

generated temporary variables are also treated in the same way as local variables. The reader can verify 

how the frame offsets in lines 11, 12, 15, 16 and 18 were derived using Algorithm 6.1 and the local symbol 

table in Fig. 6.33.

In the generated x86 assembly code shown in Fig. 6.33, the local variables are accessed in lines 15, 

16 and 18. The local storage was created earlier in line 9. Observe that the line 9 has been generated as a 

part of translation of PROC_BEGIN TAC statement. The translation of PROC_BEGIN also contains the 

function prolog identical to what we saw in Section 6.2.3.6. Likewise, the translation of PROC_END 

TAC statement contains the function epilog, which reclaims the local storage area. The translation of PROC_

BEGIN and PROC_END TAC statements are crucial to creation and reclaiming of the local storage space.
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Fig. 6.33 Local variables and parameters of a function

6.4.4 Literals

In the course of the input source, we would fi nd statements using numeric literals, e.g. ‘x = 30’. There are 

string literals that are encountered in the input source like say printf(“Hello World”). Both the numeric and 

string literals are stored in a literal table as explained in the earlier chapter. 
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The code generation for TAC statements that use numeric literals is straightforward. The literal can 

be embedded as a part of the x86 assembly language statement. Table 6.9 shows the example of a TAC 

statement using numeric literal and the corresponding generated x86 assembly language code. The numeric 

literal is accessed using a $ sign as a prefi x and it is embedded in the x86 assembly instruction itself.

Table 6.9 Translation of numeric literals

TAC operator Sample TAC Translated x86 assembly code

ASSIGN x := 30 movl $30,_x

The string literals cannot be embedded in the x86 instruction, they need to be allocated space in the 

generated x86 assembly program. The code generator goes through all the string literals in the literal table 

and generates a ‘.ascii’ directive along with the label for each of them to allocate space in the text section 

itself. The literal is then accessed using the label with a dollar($) prefi x in the generated x86 assembly 

language code. Table 6.10 shows a small input C program, the corresponding TAC statements and the 

generated x86 assembly code. The lines 2 and 3 in the generated x86 assembly code shows the label and the 

ascii directive generated for the string literal. The line 13 shows the usage of the string literal with a dollar 

prefi x.

Table 6.10 x86 code generation for string literals

Input source TAC Translated x86 Assembly Code

int printf ()

int
main ()

{

  printf (“Hello world\n”);

}

(0) proc_begin main

(1) param .1c1

(2) call printf 4

(3) retrieve _t0

(4) label .L0

(5) proc_end main

1

2 .text

3 .lc1 :

4 .ascii “Hello world\n\0” 

5

6 /* proc_begin main  */ 

7  .align 4

8 .globl _main

9 _main:

10  pushl %ebp

11  movl %esp,%ebp

12  subl $4,%esp

13 /* param .lc1  */ 

14  movl $.lc1,%eax

15  pushl %eax

16 /* call printf 4  */ 

17  call _printf

18  addl $4,%esp

19 /* retrieve _t0  */

20  movl %eax,-4(%ebp)

21 /* label .L0  */

22  .align 4

23 .L0:

24 /* proc_end main  */

25  movl %ebp,%esp

26  popl %ebp

27  ret
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6.5 A TOY C LANGUAGE COMPILER ‘MYCC’

This section demonstrates the toy C language compiler (mycc), which uses the target code generation 

concepts described in the previous sections. This compiler includes the lexical analyser, syntax analyser, 

semantic analyser, and IC generator modules described in the respective chapters. The toy compiler ‘mycc’ 

provides support for some of the commonly used features in C. However, it needs improvement to make it 

into a full-fl edged C language compiler offering the complete set of language features.

The toy C compiler—mycc, takes a C source fi le as an input and generates the corresponding x86 

assembly instructions as output. The x86 assembly language instructions are then converted to an executable 

binary using GNU’s assembler and linker. The x86 assembly language output is fi rst converted to an object 

fi le (with a .o extension) by using the GNU assembler program (as). The object fi le is then converted to an 

executable (with .exe extension) by using the GNU linker program( collect2) that comes as a part of gcc. 

The dialog below shows ‘mycc’ taking in different sample C fi les, and generating the corresponding x86 

assembly language instructions. The sample input C fi les cover some of the important data structures of the 

C language like arrays, pointer and address operators, structures, and so on. The input c fi les also include 

fl ow of control statements like the if-else, while and switch statements.

The toy C compiler mycc also has an option (–i) to generate the intermediate code only without 

progressing to the code generation stage.

# Generating the Parser from Grammar Specifi cations

$ bison -d -y -v -t -oc-small-gram.cc c-small-gram.y

# Compiling the Parser

$ g++ -DICGEN -g -Wall -c -o c-small-gram.o c-small-gram.cc

# Generating the Lexical Analyzer from Lexical Specifi cations

$ fl ex -oc-small-lex.cc c-small-lex.l

# Compiling the Lexical Analyzer

$ g++ -DICGEN -g -Wall -c -o c-small-lex.o c-small-lex.cc

# Building ‘mycc’ - A Toy Compiler for C Language

$ g++ -DICGEN -g -Wall ic_gen.cc target_code_gen.cc mycc.cc semantic_analysis.cc c-

small-gram.o c-small-lex.o -o mycc.exe

# Input C source - Hello World Program

$ cat -n hello.c

1
2 /* Function Prototype */
3 int printf();
4
5 int main()
6 {
7  printf(“Hello World\n”);
8  return(0); /* to keep the OS Happy */
9 }

# Compiling it with toy compiler(mycc) to generate x86 assembly language output

$ ./mycc hello.c > hello.s

# Observe the interspersed TAC code (in comments) with the assembly language output

$ cat -n hello.s

1
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2 .text
3 .lc1 :
4 .ascii “Hello World\n\0”
5
6 /* proc_begin main */
7  .align 4
8 .globl _main

9 _main:
10  pushl %ebp
11  movl %esp,%ebp
12  subl $4,%esp
13 /* param .lc1 */ 
14  movl $.lc1,%eax 
15  pushl %eax 
16 /* call printf 4 */ 
17  call _printf 
18  addl $4,%esp 
19 /* retrieve _t0 */ 
20  movl %eax,-4(%ebp) 
21 /* return 0 */ 
22  movl $0,%eax 
23 /* goto .L0 */ 
24  jmp .L0 
25 /* label .L0 */ 
26  .align 4
27 .L0:
28 /* proc_end main */
29  movl %ebp,%esp
30  popl %ebp
31  ret

# Using gcc in verbose mode to make the executable binary

# Observe the Invoking of the assembler(as) to create an object fi le

# ..and the linker (collect2) for linking to make the executable

$ gcc -g -v hello.s -o hello.exe

Reading specs from /usr/lib/gcc/i686-pc-cygwin/3.4.4/specs

Confi gured with: /gcc/gcc-3.4.4/gcc-3.4.4-1/confi gure --verbose --prefi x=/usr --exec-prefi x=/usr-

-sysconfdir=/etc --libdir=/usr/lib --libexecdir=/usr/lib --mandir=/usr/share/man --

infodir=/usr/share/info --enable-languages=c,ada,c++,d,f77,java,objc --enable-nls --without-
included-gettext --enable-version-specifi c-runtime-libs --without-x --enable-libgcj --disable-

java-awt --with-system-zlib --enable-interpreter --disable-libgcj-debug --enable-threads=posix --

enable-java-gc=boehm --disable-win32- registry --enable-sjlj-exceptions --enable-hash-
synchronization --enable-libstdcxx-debug : (reconfi gured) 

Thread model: posix

gcc version 3.4.4 (cygming special) (gdc 0.12, using dmd 0.125)

  /usr/lib/gcc/i686-pc-cygwin/3.4.4/../../../../i686-pc-cygwin/bin/as.exe --gstabs -o

 /cygdrive/c/WINDOWS/ TEMP/ccS7m1wq.o hello.s

 /usr/lib/gcc/i686-pc-cygwin/3.4.4/collect2.exe -Bdynamic --dll-search-prefi x=cyg -o hello.exe

/usr/ lib/gcc/i686-pc-cygwin/3.4.4/../../../crt0.o -L/usr/lib/gcc/i686-pc-cygwin/3.4.4

-L/usr/lib/gcc/i686-pc-cygwin/3.4.4 -L/usr/lib/gcc/i686-pc-cygwin/3.4.4/../../..

/cygdrive/c/WINDOWS/TEMP/ccS7m1wq.o -lgcc -lcygwin -luser32 -lkernel32 -ladvapi32 -lshell32 -lgcc 

# Executing the Binary !!

$ ./hello.exe
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Hello World

# mycc has an option -i for merely generating TAC output

$ ./mycc -i hello.c

(0) proc_begin main

(1) param .lc1

(2) call printf 4

(3) retrieve _t0

(4) return 0

(5) goto .L0

(6) label .L0

(7) proc_end main

# Input C fi le using Local and Global variables

$ cat -n test3.c

1
2 /* function prototype */
3 int printf();
4
5 /* Global Variables */
6 int g_var1,g_var2;
7
8 /* Function */
9 int main()
10 {
11  int l_var1,l_var2;
12
13  /* Initialization */
14  g_var1=200;
15  g_var2=25;
16
17  l_var1=g_var1*g_var2;
18  l_var2 = g_var1/g_var2;
19
20  printf(“g_var1=%d g_var2=%d l_var1=%d l_var2=%d\n”,
21  g_var1,g_var2,l_var1,l_var2);
22
23  return(0);
24 }

# Compiling it with mycc to generate x86 assembly language output

$ ./mycc test3.c >test3.s

# Using gcc to make the executable binary

$ gcc -g test3.s -o test3.exe

# Executing the Binary

$ ./test3

g_var1=200 g_var2=25 l_var1=5000 l_var2=8

# Input C fi le having Simple single dimensional array access

$ cat -n test4.c
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1
2 /* function prototype */
3 int printf();
4
5 /* Global Variables */
6 int h;
7 int a1[20];
8
9 /* Function */
10 int main()
11 {
12
13  /* Initialization */
14  a1[15]=100;
15  h=30;
16
17  printf(“Before : a1[10]=%d h=%d \n”,a1[10],h);
18
19  /* Array accesses */
20  a1[10]=h;
21  h = a1[15];
22
23  printf(“After : a1[10]=%d h=%d \n”,a1[10],h);
24
25  return(0);
26 }

# Compiling it with mycc to generate x86 assembly language output

$ ./mycc test4.c > test4.s

# Using gcc to make the executable binary

$ gcc -g test4.s -o test4.exe

# Executing the Binary

$ ./test4

Before : a1[10]=0 h=30
After : a1[10]=30 h=100

# Input C fi le using Pointer and Address Operator

$ cat -n test5.c

1 /* Prototype */
2 int printf();
3
4 int *p;
5 int x,y;
6
7 /* Function */
8 int main()
9 {
10  int tmp;
11
12  /* Initialize */
13  y=10;
14  x=25;
15
16  printf(“Before : x=%d y=%d \n”,x,y);
17
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18  /* Move the value of y into x */
19  p=&x;
20  tmp = *p;
21  *p=y;
22  p = &y;
23  *p = tmp;
24
25  printf(“After : x=%d y=%d \n”,x,y);
26
27  return(0);
28 }

# Compiling it with mycc to generate x86 assembly language output

$ ./mycc test5.c > test5.s

# Using gcc to make the executable binary

$ gcc -g test5.s -o test5.exe

# Executing the Binary

$ ./test5

Before : x=25 y=10
After : x=10 y=25

# Input C fi le using Structures

$ cat -n test6.c

1 /* Prototype */
2 int printf();
3
4 struct my_data
5 {
6  int age;
7  int student_id;
8 }d1;
9
10 int main()
11 {
12  /* Initialization */
13  d1.age=60;
14  d1.student_id=1234;
15

16  printf(“Before : age=%d student_id=%d \n”,d1.age,d1.student_id);
17
18  d1.student_id=4567;
19  d1.age=20;
20
21  printf(“After : age=%d student_id=%d \n”,d1.age,d1.student_id);
22
23  return(0);
24
25 }

# Compiling it with mycc to generate x86 assembly language output

$ ./mycc test6.c > test6.s

# Using gcc to make the executable binary
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$ gcc -g test6.s -o test6.exe

# Executing the Binary

$ ./test6

Before : age=60 student_id=1234
After : age=20 student_id=4567

# Input C fi le using if-else statements

$ cat -n test7.c

1 /* Prototype */
2 int printf();
3
4 int v1,v2,v3,v4;
5
6 int main()
7 {
8  v1=10; v2=20; v3=0; v4=0;
9
10  printf(“Before1 : v1=%d v2=%d v3=%d v4=%d \n”,v1,v2,v3,v4);
11  if(v1 < v2 ){
12      v3=10;
13  }
14  v4=40;
15  printf(“After1 : v1=%d v2=%d v3=%d v4=%d \n”,v1,v2,v3,v4);
16
17  v1=20; v2=10; v3=0; v4=0;
18  printf(“Before2 : v1=%d v2=%d v3=%d v4=%d \n”,v1,v2,v3,v4);
19  if(v1 < v2 ){
20      v3=10;
21  }
22  v4=40;
23  printf(“After2 : v1=%d v2=%d v3=%d v4=%d \n”,v1,v2,v3,v4);
24
25  return(0);
26
27 }

# Compiling it with mycc to generate x86 assembly language output

$ ./mycc test7.c > test7.s

# Using gcc to make the executable binary

$ gcc -g test7.s -o test7.exe

# Executing the Binary

$ ./test7

Before1 : v1=10 v2=20 v3=0 v4=0
After1 : v1=10 v2=20 v3=10 v4=40
Before2 : v1=20 v2=10 v3=0 v4=0
After2 : v1=20 v2=10 v3=0 v4=40

# Input C fi le using while statement

$ cat -n test8.c

1 /* Prototype */
2 int printf();
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3
4 int v1,v2;
5 int v3,v4;
6
7 int main()
8 {
9
10  v1=9; v4=0; v2=1; v3=1;
11
12  while ( v2 <= v1 )
13  {
14   v3=v3*v2;
15   v2 = v2 + 1;
16  }
17  v4=v3;
18
19  printf(“factorial(%d) = %d \n”,v1,v4);
20
21  return(0);
22
23 }

# Compiling it with mycc to generate x86 assembly language output

$ ./mycc test8.c > test8.s

# Using gcc to make the executable binary

$ gcc -g test8.s -o test8.exe

# Executing the Binary

$ ./test8
factorial(9) = 362880

    SUMMARY

The entity that translates the intermediate code into target program is called as target code generator 

or simply code generator. The target program can take the form of assembly language instructions, 

or relocatable machine code or absolute machine code for the processor. The code generator 

conceives the runtime settings of the program (called as runtime environment) and generates target 

code accordingly. The important aspects of run-time environment are: (a) memory organisation 

(b) activation records (c) procedure calling and return sequences (d) parameter passing mechanisms. 

The code generator discussed here worked on the principle of associating an assembly code skeleton 

to be generated for each type of TAC operator/statement defi ned in the intermediate language.

     REVIEW QUESTIONS AND EXERCISES

 6.1 What does a target code generator do? Explain the various forms of a target program that a target 

code generator can produce. 
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 6.2 What are the registers available in x86 architecture for a target generator to generate code? 

Mention the specifi c uses of each of these registers.

 6.3 What is the format of an x86 assembly language program? Describe the different types of 

statements found in it. 

 6.4 How are the global variables defi ned in x86 assembly language? How do you defi ne: (a) A global 

array of 50 integers of 4 bytes each; (b) a global array of 3 integers of 4 bytes each having initial 

values of 10, 20 and 30?

 6.5 How do you perform arithmetic operations in x86 assembly language? Illustrate with examples.

 6.6 How do you (a) fetch the address of a variable; (b) fetch the content of a memory location given 

its address in x86 assembly language? Can we fetch the content of memory which is at say +20 

bytes offset from a given memory address? Illustrate with examples for each.

 6.7 How do you defi ne a function in x86 assembly language? How is a stack used for passing the 

arguments into a function? How do you access the arguments in the body of the function? 

Illustrate the stack layout during the function body execution showing the function arguments.

 6.8 Explain the creation, usage and release of local variables in an x86 assembly function. Illustrate 

with the stack layout diagram. 

 6.9 How are the conditional jumps handled in x86 assembly? Illustrate with an example. 

 6.10 Explain the following terms: (a) activation and lifetime of a procedure (b) Control stack (c) 

activation tree (d) Binding of a variable to memory.

 6.11 What is run-time environment? What are the important elements of runtime environment? How 

is it controlled in a program that is compiled?

 6.12 How is the memory organised in a compiled program? Illustrate the memory organisation in a 

C run-time environment. Compare it with the memory organisation in FORTRAN77 run-time 

environment. 

 6.13 What is an activation record? With the help of a diagram, show the important fi elds in an 

activation record. 

 6.14 Describe the activation record in a C runtime environment? In which section of memory is the 

activation record located in C runtime environment?

 6.15 What is lexical scoping and dynamic scoping in the context of non-local variables? Illustrate with 

an example.

 6.16 How does the C run-time environment handle variables declared in blocks? How does the 

activation record help in accessing the correct memory for non-local variables? 

 6.17 How does the activation record help in accessing a non-local variable in a nested procedure of a 

PASCAL program? Illustrate with an example.

 6.18 How are non-local accesses handled in a display scheme? Illustrate with an example. 

 6.19 What are the procedure calling and returning sequences? Explain the sequence of actions in each 

of them? 

 6.20 Illustrate by example, the calling and return sequences in C runtime environment. 

 6.21 Explain the terms (a) Actual parameters. (b) Formal parameters. Illustrate with an example. 

 6.22 Explain (a) call-by-reference and (b) call-by-value parameter-passing mechanisms. Illustrate with 

an example. 

 6.23 Explain (a) call-by-value-result and (b) call-by-name parameter-passing mechanisms. Illustrate 

with an example. 

 6.24 How do the run-time environments of C, PASCAL and FORTRAN77 languages compare against 

each other? 
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 6.25 Briefl y describe the template-based code generation approach. Do you see any performance 

issues in this approach? 

 6.26 In semantic analysis, the global variables declared in the input source are converted to symbol 

table entries. How are the symbol table entries translated into corresponding declarations in x86 

assembly language by the target code generator? Illustrate by example for (a) simple variables 

(b) arrays.

 6.27 How do you generate target code for arithmetic TAC operators in a template-based code 

generation approach? Illustrate with examples for (a) ADD (b) SUB (c) MUL (d) DIV 

(e) UMINUS.

 6.28 How do you generate target code for indexed TAC operators in a template-based code generation 

approach? Illustrate with examples for (a) L_INDEX_ASSIGN (b) R_INDEX_ASSIGN.

 6.29 How do you generate target code for comparison TAC operators in a template-based code 

generation approach? Illustrate with examples for any three comparison operators.

 6.30 How do you generate target code for PROC_BEGIN and PROC_END TAC operators in a 

template-based code generation approach? Illustrate with examples.

 6.31 How are local variables resolved to memory addresses during the translation of intermediate code 

to target code by the code generator? Draw the stack layout showing the local variables. 

 6.32 How are numeric and string literals in the intermediate code translated to the target code? 

Illustrate with an example each. 

 6.33 State if the following statements are true or false:

 (a) The target code generator takes the intermediate code as the input and generates a target 

program as output.

 (b) The target program can take one of the three forms (1) assembly language program; 

(2) relocatable code; (3) absolute code.

 (c) The memory organisation of FORTRAN77 runtime environment does not have a stack or a 

heap for dynamic memory.

 (d) All the global variables are provided memory in the code section in C run-time 

environment.

 6.34 State if the following statements are true or false:

 (a) The support for nested procedures in PASCAL is accomplished by having a static link in the 

activation record.

 (b) The term l-value refers to the storage location of an expression and r-value refers to the 

value of the expression.

 (c) In call-by-reference method, the changes made to the formal parameters are refl ected in the 

actual parameters at the caller site.

 (d) The template-based approach for code generation produces sub-optimal code in terms of 

performance. 

 6.35 State if the following statements are true or false:

 (a) In a C runtime environment, the local variables and the function arguments are located on 

the stack.

 (b) The ‘display’ scheme helps in resolving non-local variable access in the case of nested 

procedures in PASCAL.

 (c) In ‘call by value-result’ parameter-passing mechanism used in languages like ADA, the fi nal 

value of the formal parameters is copied back to the actual parameters.

 (d) The literals are accessed using the label with a dollar($) prefi x in the generated x86 assembly 

language code.



CODE  OPTIMISATION

Introduction
In this chapter, we look at ways of improving the intermediate code 

and the target code in terms of both speed and the amount of memory 

required for execution. This process of improving the intermediate 

and target code is termed as optimisation. Section 7.1 demonstrates 

the fact that there is scope for improving the existing intermediate 

and target code. Section 7.2 discusses the techniques commonly used 

to improve the intermediate code. Section 7.3 describes the common 

methods used in improving the target code generated by the target 

code generator.

7
7.1 SCOPE FOR IMPROVEMENT

The correctness of the generated assembly language code is the most critical aspect of a 

code generator. Also, the effi ciency of the generated assembly language code should match 

closely with the handwritten code, if not be better than it. The code generator that we had 

discussed in Chapter 6 worked on the principle of statement-by-statement translation of the 

TAC code into x86 assembly language instruction. This strategy produces correct code, but 

might not be the most optimal code in terms of effi ciency at the run-time.

Consider the sample input source, the corresponding intermediate code and the target 

code shown in Table 7.1 for understanding the areas of improving the intermediate code 

and the target code. The intermediate code and the target code have been generated using 

the toy compiler described in Chapters 5 and 6.
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Table 7.1 Input source, intermediate code and target code

Input source Intermediate code Target code

int a,b;

int c,d ;

int main()

{

 a=40;

 b=20;

 c = a + b;

 d = b + c;

 }

(0) proc_begin main

(1) a := 40

(2) b := 20

(3) _t0 := a + b

(4) c := _t0

(5) _t1 := b + c

(6) d := _t1

(7) label .L0

(8) proc_end main

 1 .comm   _a,4

 2 .comm   _b,4

 3 .comm   _c,4

 4 .comm   _d,4

 5 

 6 .text 

 7 

 8 /* proc_begin main */ 

 9  .align 4 

10 .globl _main 

11 _main: 

12  pushl %ebp 

13  movl %esp,%ebp 

14  subl $8,%esp 

15 /* a := 40   */ 

16  movl $40,_a 

17 /* b := 20   */ 

18  movl $20,_b 

19 /* _t0: = a + b   */ 

20  movl _b,%eax 

21  addl _a,%eax 

22  movl %eax,-4(%ebp) 

23 /* c := _t0   */ 

24  movl -4(%ebp),%eax 

25  movl %eax,_c 

26 /* _t1 := b + c   */ 

27  movl _c,%eax 

28  addl _b,%eax 

29  movl %eax,-8(%ebp) 

30 /* d := _t1   */ 

31  movl -8(%ebp),%eax 

32  movl %eax,_d 

33 /* label .L0   */ 

34  .align 4

35 .L0: 

36 /* proc_end main   */ 

37  movl %ebp,%esp 

38  popl %ebp

39  ret

Let’s analyse the intermediate code to see if any improvements can be made from a run-time effi ciency 

point of view. The quad (3) in the intermediate code uses a temporary _t0 to store the value of expression 

‘a + b’. The next quad (quad 4) assigns the temporary _t0 to the variable ‘c’. The temporary could have 

been avoided altogether, if the intermediate code is c := a + b instead of quad 3 and 4. In a similar way, 

the temporary _t1 could have been avoided by generating d := b + c instead of quads 5 and 6. This proves 

that there is scope for improvement at the intermediate code level. As the chapter progresses, we can see 

that there are many more of such opportunities to improve the intermediate code in terms of effi ciency. 

Improving the intermediate code results in reduction of the size of generated target code and overall 

improvement of run-time effi ciency.
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Let’s analyse the x86 assembly code for improving its runtime effi ciency. Line 24 (movl %eax, 

–4(%ebp)) moves the contents of register eax on to the stack specifi ed by –4(%ebp). The very next 

x86 assembly statement, line 25 moves the content of stack location –4(%ebp) to register eax (movl 

–4(%ebp),%eax). Line 24 is redundant, since the register eax already contains the value at –4(%ebp). In a 

similar fashion, it can be shown that the lines 27 and 31 are also redundant because the destination register 

already contains the expected value. The generated x86 assembly code could have been better, had the code 

generation algorithm remembered that the register eax already contained the expected value.

An equivalent handwritten x86 assembly code providing the same functionality is shown in Listing 7.1.

.comm _a,4

.comm _b,4

.comm _c,4

.comm _d,4

# proc_begin main

 .align 4

.globl _main

_main:

 pushl %ebp

 movl %esp,%ebp

 subl $16,%esp

 movl $40,_a

 movl $20,_b

 movl _a,%eax

 addl _b,%eax

 movl %eax,_c

 addl _b,%eax

 movl %eax,_d#

label .L0 

 .align 4

.L0:

# proc_end main 

 movl %ebp,%esp

 popl %ebp    

 ret

Listing 7.1 hand_coded_test1.s

When the output of the code generator is compared with that of the handwritten code, the latter is more 

compact and effi cient (10 assembly instructions) than the former (19 assembly instructions). The code 

generator should strive to match the effi ciency of the handwritten code, if not better than it. In a situation 

where a piece of code gets executed thousands of times in a loop, a little bit of improvement in the inner 

loop would make a signifi cant improvement in the overall effi ciency of the program.

The intermediate code and the assembly language code generated for the sample input source serves 

us to understand that there is scope for improvement at both the intermediate code and assembly language 

levels. The exact nature of improvement in the intermediate code and assembly language outputs varies 

from input program to program.

In this chapter we discuss the various techniques that can be used for improving intermediate code as 

well as the assembly language output.
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7.2 INTERMEDIATE CODE OPTIMISATION

The intermediate code generated by translation scheme described in Chapter 5, is adequate in terms 

of correctness with respect to the input program. We saw in the previous section, that there is scope for 

improving the effi ciency of the generated intermediate code in terms of speed of execution and size in 

memory. In the intermediate code optimisation phase (refer Fig. 1.9), the compiler makes a pass over the 

generated intermediate code and transforms it into an improved (optimised) form, which is more effi cient 

in terms of speed and size. The transformed intermediate code is then fed to the target code generator 

for the generation of the target code. In the discussion in Section 7.2.1, we take a look at some of the 

common transformations made in the intermediate code optimisation phase of the compiler to improve the 

intermediate code.

7.2.1 Common Sub-expression Elimination

Consider the input source and the corresponding intermediate code in TAC format in Table 7.2. The TAC 

was generated from the translation scheme explained in Chapter 5. We call the intermediate code shown in 

Table 7.2 as unoptimised intermediate code to differentiate it from the version of intermediate code after 

optimisation using transformations.

Table 7.2 Input source and the intermediate code

Input Source TAC

int sum_n,sum_n2,sum_n3;

int sum(int n)

{

 sum_n = ((n) *(n + 1))/2;

 sum_n2=((n)*(n + 1)*(2*n + 1))/6;

 sum_n3=(((n)*(n + 1))/2)*(((n)*(n + 1))/2);

}

(0) proc_begin sum

(1) _t0 := n + 1

(2) _t1 := n * _t0

(3) _t2 := _t1 / 2

(4) sum_n := _t2

(5) _t3 := n + 1

(6) _t4 := n * _t3

(7) _t5 := 2 * n

(8) _t6 := _t5 + 1

(9) _t7 := _t4 * _t6

(10) _t8 := _t7 / 6

(11) sum_n2 := _t8

(12) _t9 := n + 1

(13) _t10 := n * _t9

(14) _t11 := _t10 / 2

(15) _t12 := n + 1

(16) _t13 := n * _t12

(17) _t14 := _t13 / 2

(18) _t15 := _t11 * _t14

(19) sum_n3 := _t15

(20) label .L0

(21) proc_end sum

A detailed look at the intermediate code generated in Table 7.2 indicates that the computations made in 

quads (1) through (3), (12) through (14) and (15) through (17) are essentially the same. These chunks of 

intermediate code compute the value of the common sub-expression ((n) *(n + 1))/2, which is used in all 

the three summations. If we look further, the common sub-expression ((n) *(n + 1)) is computed 4 times 

in the statements {1,2 }, {5,6 }, {12,13}, {15,16}. It is possible to optimise the intermediate code to have 

common sub-expressions computed only once in the function and then re-use the computed values at the 

second instance. 
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The optimised version of the intermediate code shown in Table 7.3 evaluates common sub-expression ((n) 

*(n + 1)) only once and stores it in _t1 as depicted in statement (2). The variable _t1 is used in statements 

(3), (6). The sum_n is itself a common sub-expression and evaluated only once, since sum_n3 can be looked 

at sum_n*sum_n. The intermediate code shown in Table 7.3 offers improvement in the speed of execution 

and also reduces the number of the instructions (memory) compared to the unoptimised IC seen in 

Table 7.3.

Table 7.3 Optimised intermediate code

(0) proc_begin sum

(1) _t0 := n + 1

(2) _t1 := n * _t0

(3) sum_n := _t1 / 2

(4) _t5 := 2 * n

(5) _t6 := _t5 + 1

(6) _t7 := _t1 * _t6

(7) sum_n2 := _t7 / 6

(8) sum_n3 := sum_n * sum_n

(9) proc_end sum

This process of identifying common sub-expressions and eliminating their computation multiple times in 

the intermediate code is known as  common sub-expression elimination. 

7.2.2 Constant Folding

Another common optimisation performed on the intermediate code is known as  constant folding. In 

constant folding, the constant expressions in the input source are evaluated and replaced by the equivalent 

values at the time of compilation. A constant expression is an expression involving only constants like, say, 

4*1, 2*0, and so on. Constant folding improves the speed of execution, since the calculations involving 

constant expressions are performed at compile time, not at run-time.

Let’s take the example of input source and the corresponding intermediate code in TAC format shown in 

Table 7.4 to understand the constant folding transformation.

Table 7.4 Input source and the intermediate code

Input source TAC

int arr1[20];

int main()

{

 arr1[0]=3;

 arr1[1]=4;

}

(0) proc_begin main

(1) _t0 := 0 * 4

(2) _t1 := &arr1

(3) _t1[_t0] := 3

(4) _t2 := 1 * 4

(5) _t3 := &arr1

(6) _t3[_t2] := 4

(7) label .L0

(8) proc_end main

In the quad (1) of the TAC in Table 7.4, the value 0*4 is computed, which is known to be 0 at the 

compile time itself. Similarly, in statement (4), the value 1*4 is computed, which is known to be 4 at the 

time of compilation itself.
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As an optimising transformation, the constants can be ‘folded’ and the resultant value computed at the 

compile time itself in the statements (1) and (4). In statement (1), 0*4 can be folded to 0, and in statement 

(4), 1*4 can be folded into 4 at the time of compilation itself. The resulting statements from the constant 

folding are _t0=0 for (1) and _t2=4 for (4) respectively. In general, the constant operands can be folded 

in any of the statements containing arithmetic operators like multiplication, addition, subtraction, division, 

etc. and transformed into an assignment statement. Table 7.5 shows the optimised IC after using constant 

folding transformation.

Table 7.5 Optimised intermediate code

(0) proc_begin main

(1) _t0: = 0

(2) _t1: = &arr1

(3) _t1[_t0]:= 3

(4) _t2: = 4

(5) _t3: = &arr1

(6) _t3[_t2]:= 4

(7) label .L0

(8) proc_end main

Constant folding moves the computations (like multiplication, division, addition, subtraction, etc.) 

involving constants from being computed at the run-time to the compile time, thereby improving the 

effi ciency of the program.

7.2.3 Copy Propagation and Dead Store Elimination

 Copy propagation is another commonly used transformation in order to improve the intermediate code. In 

copy propagation, the use of the variable ‘y’ instead of ‘x’ is propagated in the statements following a copy 

statement x=y.

Let’s see how copy propagation works by taking the sample intermediate code shown in Table 7.5. There 

are two assignment statements (also called as copy statements) that are of interest in the intermediate code 

of Table 7.5 from the copy propagation standpoint. They are:

 (a) The assignment statement (1) where the temporary variable _t0 is assigned 0. 

 (b) The assignment statement (4), where the temporary variable _t2 is assigned 4. 

The use of value 0 can be propagated in the place of _t0 in the statements following the assignment 

at statement (1). In other words, the variable _t0 can be replaced with 0 in statement (3). Similarly, the 

variable _t2 can be replaced with the value 4 in statement (6) following the assignment at statement (4). 

The resultant intermediate code after the copy propagation is shown in Table 7.6. The statement (3) where 

_t0 has been replaced with 0 and statement (6) where _t2 has been replaced with 4 have been shaded in 

Table 7.6.

By itself, copy propagation does not vastly improve the quality of intermediate code. The intermediate 

code shown in Table 7.6 is not vastly superior to the IC in Table 7.5. However, copy propagation facilitates 

other optimising transformations to be performed on the resultant intermediate code. We will now see how 

copy propagation facilitates an optimising transformation called dead store elimination to be performed on 

the resultant code.
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Table 7.6 Intermediate code after copy propagation

(0) proc_begin main

(1) _t0 := 0

(2) _t1 := &arr1

(3) _t1[0] := 3
(4) _t2 := 4

(5) _t3 := &arr1

(6) _t3[4] := 4

(7) label .L0

(8) proc_end main

In the intermediate code shown in Table 7.6, the assignment statement (1) can be eliminated, because 

_t0 is no longer used in any of the statements following the assignment. Similarly, the assignment 

statement (4) can also be eliminated, since _t2 is no longer used in any of the statements following the 

assignment. The values of both _t0 and _t1 have been copy propagated earlier. The statements (1) and 

(4) are examples of  dead store—statements that compute values which are not used in the program. 

Dead store can be eliminated from the intermediate code, since it has no effect on the result of the 

program. The resultant intermediate code after the elimination of assignment statements (1) and (4) is 

shown in Table 7.7.

Table 7.7 Intermediate code after elimination of dead stores

(0) proc_begin main

(1) _t1: = &arr1

(2) _t1[0]: = 3

(3) _t3: = &arr1

(4) _t3[4]: = 4

(5) label .L0

(6) proc_end main

The dead store elimination improves the speed of execution because we have lesser instructions to 

execute at the run-time. The dead store elimination also reduces the amount of memory required for storing 

the code, since it eliminates a few instructions.

In the above example, during the copy propagation, the use of constant 0 was propagated in the 

place of _t0 and the constant 4 was propagated in the place of _t2. This kind of copy propagation 

is sometimes referred to as  constant propagation owing to the propagation of the use of a constant 

instead of a variable. It is fairly easy to imagine that constant propagation can also facilitate constant 

folding optimisation. 

It is also possible to propagate the use of another variable instead of the existing one in copy 

propagation. This is known as  variable propagation. Let’s take a sample input source shown in Table 7.8 

for the illustration of variable propagation.
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Table 7.8 cp_prop.1.c

1 int func(int a,int b,int c)

2 {

3  int d,e,f;

4

5  d = a;

6 

7 

8  if(a > 10){

9   e = d + b;

10  }else{

11   e = d + c;

12  }

13 

14  f = d*e ;

15 

16  return(f);

17 }

The corresponding intermediate code at various stages, i.e. unoptimised IC, the IC after copy propagation 

and then the IC after dead store elimination are all shown in Table 7.9.

Table 7.9 Intermediate code

(0) proc begin func (0) proc_begin func (0) proc_begin func

(1) d := a (1) d: = a (1) if a > 10 goto .L0

(2) if a > 10 goto .L0 (2) if a > 10 goto .L0 (2) goto .L1

(3) goto .L1 (3) goto .L1 (3) label .L0

(4) label .L0 (4) label .L0 (4) e: = a + b

(5) e := d + b (5) e := a + b (5) goto .L2

(6) goto .L2 (6) goto .L2 (6) label .L1

(7) label .L1 (7) label .L1 (7) e: = a + c

(8) e := d + c (8) e := a + c (8) label .L2

(9) label .L2 (9) label .L2 (9) f: = a * e

(10) f := d * e (10) f := a * e (10) return f

(11) return f (11) return f (11) goto .L3

(12) goto .L3 (12) goto .L3 (12) label .L3

(13) label .L3 (13) label .L3 (13) proc_end func

(14) proc_end func (14) proc_end func

(A) Unoptimised IC (B) IC after copy propagation (C) IC after dead store elimination

The assignment statement (1) in the unoptimised IC (column A) is of interest from a copy propagation 

standpoint. The use of variable ‘a’ can be propagated in the place of ‘d’ following the assignment at 

statement (1). The column (B) in Table 7.9, shows the intermediate code after the variable ‘a’ is used in the 

place of ‘d’ at statements (5), (8) and (10).
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After copy propagation, the assignment statement (1) can be eliminated as a part of dead store 

elimination, since ‘d’ is no longer used in any of the statements. The intermediate code after the elimination 

of dead store is shown in column C of Table 7.9.

7.2.4 Dead Code Elimination

In Section 7.2.3, we saw how copy propagation helps eliminate dead stores in the program. In this section, 

we can see how it helps in eliminating code that is never executed by the program (termed as dead code). 

The elimination of such dead code reduces the memory required by the program.

Consider the input source shown in Table 7.10 to understand the idea of  dead code elimination. In the 

input source, line 11 makes the check to see if debug is 1 and the line 12 prints the arguments if the check 

returns true.

Table 7.10 Dead code in the input source

1   int printf();

2 

3   int debug;

4

5   int func(int a,int b,int c)

6   {

7   int v1,v2,v3;

8  

9   debug=0;

10 

11   if(debug == 1)

12    printf(“a=%d b=%d c=%d \n”,a,b,c);

13 

14   v1=a + b + c;

15 

16   return(v1);

17  }

Table 7.11 shows the intermediate code resulting from the input source of Table 7.10. In the 

unoptimised code (column A), there is an opportunity to do copy propagation of the assignment at 

statement (1). In copy propagation, the use of ‘debug’ is replaced with 0 in the statement (2), where 

‘debug’ is used. The copy propagation transform yields the intermediate code shown in the column B 

of Table 7.11.

In the intermediate code seen at column B, the test in statement (2), i.e. 0 == 1, always returns 

false. This implies that the control cannot fl ow to label .L0 from statement (2). There is no other way 

control can fl ow to label .L0 either. This makes the statements (4) through (10) in column (B) as dead 

code. The test 0 == 1 in statement (2) itself becomes redundant, since the result is already known to 

be false. Hence statement (2) can also be removed as part of dead code elimination. The statement 

(1) debug := 0, cannot be eliminated in the dead code elimination process, because ‘debug’ is a 

global variable. The optimised code after elimination of the dead code is shown in column (C) of 

Table 7.11.
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Table 7.11 The intermediate code

(0) proc_begin func (0) proc_begin func (0) proc_begin func

(1) debug: = 0 (1) debug: = 0 (1) debug := 0

(2) if debug == 1 goto .L0 (2) if 0 == 1 goto .L0 (2) goto .L1

(3) goto .L1 (3) goto .L1 (3) label .L1

(4) label .L0 (4) label .L0 (4) _t1 := a + b

(5) param c (5) param c (5) _t2 := _t1 + c

(6) param b (6) param b (6) v1 := _t2

(7) param a (7) param a (7) return v1

(8) param .lc1 (8) param .lc1 (8) goto .L2

(9) call printf 16 (9) call printf 16 (9) label .L2

(10) retrieve _t0 (10) retrieve _t0 (10) proc_end func

(11) label .L1 (11) label .L1

(12) _t1 := a + b (12) _t1 := a + b

(13) _t2 := _t1 + c (13) _t2 := _t1 + c

(14) v1 := _t2 (14) v1 := _t2

(15) return v1 (15) return v1

(16) goto .L2 (16) goto .L2

(17) label .L2 (17) label .L2

(18) proc_end func (18) proc_end func

(A) Unoptimised IC (B) IC after copy propagation (C) IC after dead code elimination

Table 7.12 shows another common scenario when dead code exists in the input source during the 

debugging phase. In this source code, a part of the function has been disabled for debugging reasons. The 

control returns from the function at the line 9, it cannot reach lines 12,13 or 14 in the input source. The 

source lines 12,13,14 can be viewed as dead in the input source itself.

We can observe in the unoptimised intermediate code (column B) that the corresponding statements (7) 

through (12) are dead, since there is no way control can reach them. The dead code is eliminated in the 

optimised IC shown in column (C) of Table 7.12.

Table 7.12 Dead code due to debugging code

1 (0) proc_begin func (0) proc_begin func

2 int func(int a,int b,int c) (1) _t0: = a + b (1) _t0 := a + b

3 { (2) v1 := _t0 (2) v1 := _t0

4  int v1,v2,v3; (3) _t1 := v1 / c (3) _t1 := v1 / c

5 (4) v2: = _t1 (4) v2 := _t1

6  v1  = a  + b; (5) return v2 (5) return v2

7  v2  = v1/c; (6) goto .L0 (6) goto .L0

8 (7) _t2 := v1 + v2 (7) label .L0

9  return(v2); (8) v3 := _t2 (8) proc_end func

10 (9) _t3 := v3 + 1

11  /* Dead Code */ (10) v2 := _t3

12  v3=v1 + v2; (11) return v2

13  v2=v3 + 1; (12) goto .L0

14  return(v2); (13) label .L0

15 } (14) proc_end func

(A) Input source (B) Unoptimised IC (C) Optimised IC after dead code 

elimination
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7.2.5 Algebraic Transformations

The quality of the intermediate code can be improved by taking advantage of algebraic identities. An 

algebraic identity is a relation that holds true for all values of the symbols involved in it. Some of the 

common algebraic identities that can be used to improve the intermediate code are shown in Table 7.13.

Table 7.13 Algebraic identities

Name of the identity Example

Additive Identity x + 0 = x

Multiplicative Identity x * 1 = x

Multiplication with 0 x * 0 = 0

The algebraic identity is typically applied on a single intermediate code statement and transformed to a 

copy statement. Some of the examples are shown in Table 7.14.

Table 7.14 Algebraic transformations

IC statement Identity applied IC statement after transformation

y := x + 0 Additive Identity y := x

y := x * 1 Multiplicative Identity y := x

y := x * 0 Multiplication with 0 y := 0

The amount of computation is reduced when an  algebraic transformation is applied. For example, when 

an ADD IC statement say y := x + 0 is replaced by a transformed ASSIGN IC statement y := x, there is 

savings in terms of speed, since no addition is involved. 

In algebraic transformations, IC statements with operators like ADD and MUL are transformed 

into copy statements as illustrated in Table 7.14. The copy statements lend well for copy propagation 

and subsequent dead store/code elimination transformations, which lead to fewer IC statements. The 

reduction in the IC statements leads to improvement in speed of execution and lower consumption of 

memory as well. 

Let’s look at an example, where the unoptimised IC generated contains statements on which algebraic 

transformations are applied resulting in improvement in the quality of the intermediate code. Consider the 

C language input source shown in Table 7.15.

Table 7.15 Input source

1 struct my_struct

2 {

3  int f1[20];

4  int f2;

5 } xyz;

6

7 int func(int index)

8 {

9  xyz.f1[index]=34;

10 }
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The unoptimised intermediate code generated for the input source in Table 7.15 is shown in column (A) 

of Table 7.16.

Table 7.16 Intermediate code.

(0) proc_begin func

(1) _t0 := &xyz

(2) _t1 := 0

(3) _t2 := index * 4

(4) _t1 := _t2 + _t1

(5) _t0[_t1] := 34

(6) label .L0

(7) proc_end func

(0) proc_begin func

(1) _t0 := &xyz

(2) _t2 := index * 4

(3) _t1 := _t2 + 0

(4) _t0[_t1] := 34

(5) label .L0

(6) proc_end func

(0) proc_begin func

(1) _t0 := &xyz

(2) _t2 := index * 4

(3) _t1 := _t2

(4) _t0[_t1] := 34

(5) label .L0

(6) proc_end func

(0) proc_begin func

(1) _t0 := &xyz

(2) _t2 := index * 4

(3) _t0[_t2] := 34

(4) label .L0

(5) proc_end func

(A) Unoptimised IC (B) Optimised IC after 

copy propagation & dead 

code elimination

(C) Optimised IC 

after applying additive 

identity

(D) Optimised IC after 

copy propagation & dead 

store elimination

In the unoptimised code (column A) of Table 7.16, there is an opportunity to do copy propagation 

following the assignment at statement (2), i.e. (_t1=0). The use of ‘_t1’ can be replaced with 0 in the 

statement (4). Notice that _t1 cannot be replaced 0 in the statement (5), because _t1 is re-evaluated in 

statement (4). After the copy propagation, the copy statement (2) is dead and can be eliminated. 

The intermediate code after copy propagation and dead code elimination is shown in column (B) of 

Table 7.16.

In the IC after copy propagation in column B, we can apply the additive identity on the statement 3 

(shaded) and transform it to a copy statement _t1  = _t2. The transformed IC after applying the additive 

identity transformation is shown in column (C) of Table 7.16.

The IC in column (C) offers an opportunity to perform copy propagation following the assignment 

statement (3). We can observe that it is the same assignment statement that was borne out of transformation 

using the additive identity. The use of ‘_t1’ can be replaced with _t2 in the statement (4). Following the 

copy propagation, the copy statement at (3) becomes dead store and hence can be eliminated. The resultant 

code after copy propagation followed by dead store elimination is shown in (D).

From the above example, it is clear that the algebraic transformations not only replace expensive 

operations (like add, mul. etc.) with cheaper ones (assign), but also facilitate other optimisations like copy 

propagation and subsequent dead store elimination.

7.2.6 Strength Reduction Transformation

On most of the processors, the addition operation takes fewer cycles than the multiplication operation. 

Similarly, a shift operation takes fewer cycles compared to a multiplication or division operation on most 

of the processors. Extending the view to the intermediate code level, we can say that the addition operator 

is less expensive than multiplication operator and shift operator is less expensive than multiplication or 

division operators. 

The idea behind the  strength reduction transformations is to identify and replace costly operations by less 

expensive counterparts to achieve the same effect.  For example, in strength of reduction transformation a 

quad y := x * 2 can be replaced by another quad y := x + x, which is less expensive but achieves the same 

effect. Table 7.17 shows some of the common strength reduction transformations.
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Table 7.17 Strength reduction transformations

Expensive operation Less expensive 
equivalant

Comments

y := x * 2 y := x + x Addition is less expensive than multiplication

y := x * 32 y := x << 5 Shift is less expensive than multiply

y := x / 8 y := x >> 3 Shift is less expensive than divide

The strength reduction transformations provide signifi cant benefi ts, when applied on quads within a 

loop, due to the fact that the same instruction is executed multiple number of times. We revisit the strength 

reduction transformations again during the loop optimisation.

7.2.7 Loop Optimisation

The optimisations in the loop have a good scope for performance improvement, since they get executed 

over and over many times. In loops, any marginal improvement in performance for a single iteration could 

turn out to be a big improvement in the overall performance of the program, since a loop can get executed 

multiple times. A couple of  loop related transformations, namely loop invariant code motion transformation 

and strength reduction on induction variables transformation are explained in this section.

7.2.7.1 Loop Invariant Code Motion The statements within a loop that compute values, which do 

not vary throughout the life of the loop are called  loop invariant statements. In loop invariant code motion 

transformation, the loop invariant statements are identifi ed and moved outside of the loop.

Let’s see how loop invariant code motion transformation works, by considering the input source and the 

corresponding unoptimised intermediate code shown below in Table 7.18.

There are two assignment statements that are of interest in the intermediate code of Table 7.18 from the 

loop invariant code motion transformation perspective. They are:

 (a) The assignment statement (6) where the temporary variable _t3 is assigned the value &arr. We know 

that the value of &arr is a constant throughout the life of the program.

 (b) The assignment statement (8), where the temporary variable _t5 is assigned the value n1*n2. The 

values of n1 and n2 are computed before the loop starts at quads (2) and (3) respectively, they do 

not change during the loop. The value of n1*n2 computed at quad (8) is a constant throughout the 

life of the loop.

Table 7.18 Input source and the intermediate code

Input Source TAC

 1 int arr[1000]; (0) proc_begin func

 2 (1) i := 0

 3 int func(int a,int b) (2) n1 := a * b

 4 { (3) n2 := a - b

 5  int i; (4) label .L0

 6  int n1,n2; (5) _t2 := i * 4

 7 (6) _t3 := &arr

 8  i=0; (7) _t4 := _t3[_t2]

 9 (8) _t5 := n1 * n2

10  n1  = a * b ; (9) if _t4 > _t5 goto .L1

11  n2  = a - b ; (10) goto .L2
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12 (11) label .L1

13  while(arr[i] > (n1*n2)) (12) i := i + 1

14  { (13) goto .L0

15   i=i + 1; (14) label .L2

16  } (15) return i

17 (16) goto .L3

18 (17) label .L3

19  return(i); (18) proc_end func

20 }

21

The loop invariant code motion transformation moves the quads (6) and (8) from within to outside of the 

loop. The performance of the code improves due to this movement, since the amount of computation within 

the loop decreases. The intermediate code after the loop invariant code motion transformation is shown in 

Table 7.19.

Observe that the number of quads to be executed in each of the iteration before the loop invariant code 

motion transformation was 10 (quad 4 through 13 in Table 7.18). The number of quads to be executed in 

each of the iteration after the transformation is 8 (quad 6 through 13 in Table 7.19).

The loop Invariant code motion transformation improves the speed of execution because there are lesser 

instructions to execute in each of the iterations. 

Table 7.19 Intermediate code after loop invariant code motion transformation

(0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a - b

(4) _t3 := &arr

(5) _t5 := n1 * n2

(6) label .L0

(7) _t2 := i * 4

(8) _t4 := _t3[_t2]

(9) if _t4 > _t5 goto .L1

(10) goto .L2

(11) label .L1

(12) i := i + 1

(13) goto .L0

(14) label .L2

(15) return i

(16) goto .L3

(17) label .L3

(18) proc_end func

7.2.7.2 Strength Reduction on Induction Variables The strength reduction transformations can 

be carried out in any part of the intermediate code. However, the loops offer more returns in terms of 

performance benefi ts, on the application of the strength reduction transforms, since the code gets executed 

multiple times.
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An  induction variable is a variable that changes by a fi xed quantity on each of the iterations of a loop. 

Consider the input source and the corresponding unoptimised intermediate code shown in Table 7.20. The 

variable ‘ind’ is a user defi ned induction variable that increases by 1 on each of the iterations (quad 8). The 

compiler-generated variable ‘_t0’ is another induction variable that increases by 4 on each of the iterations 

(quad 5). The strength reduction transformations are usually applied on the induction variables in a loop to 

get substantial performance benefi ts.

Table 7.20 Input source and intermediate code

Input source TAC

1 int ind;

2 int a[20];

3

4 int func()

5 {

6  while(ind < 20){

7   a[ind]=10;

8   ind=ind + 1;

9  }

10 }

(0) proc_begin func

(1) label .L0

(2) if ind < 20 goto .L1

(3) goto .L2

(4) label .L1

(5) _t0: = ind * 4

(6) _t1: = &a

(7) _t1[_t0]: = 10

(8) ind: = ind + 1

(9) goto .L0

(10) label .L2

(11) label .L3

(12) proc_end func

Table 7.21 shows the intermediate code after the application of reduction of strength on the induction 

variable _t0. The quad assigning the initial value of _t0, i.e. _t0 := ind *4 is moved out of the loop as the 

quad (0a). This is used as an initial value, for _t0. An additional quad (8a) computing the value of _t0 from 

its previous value i.e. _t0: = _t0 + 4, is inserted right after the quad 8, which computes the value of main 

induction variable ‘ind’. Observe that the transformed loop in Table 7.21 is functionally equivalent to the 

intermediate code at Table 7.20.

Table 7.21  Intermediate code after reduction of strength transformation

(0) proc_begin func

(0a) _t0 := ind * 4

(1) label .L0

(2) if ind < 20 goto .L1

(3) goto .L2

(4) label .L1

(5) 

(6) _t1 := &a

(7) _t1[_t0] := 10

(8) ind := ind + 1

(8a) _t0 := _t0 + 4

(9) goto .L0

(10) label .L2

(11) label .L3

(12) proc_end func 
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The strength reduction transformation on induction variables improves the speed of execution because 

we have less expensive instruction, i.e. addition being substituted for multiplication in each of the 

iterations.

7.2.8 Introductory Concepts for Implementing Intermediate Code Optimisation

In order to implement the transformations mentioned in the Section 7.2.7, the compiler is required to 

perform analysis of the intermediate code. Before we get into the details of the analysis performed by the 

optimiser module, it is essential to familiarise ourselves with some relevant terminology and concepts. This 

section describes such terminology and concepts.

7.2.8.1 Basic Block The idea of a  basic block is very useful in implementing the optimising 

transformations on the intermediate code. A basic block is a sequence of intermediate code statements in 

which the control enters at the beginning and leaves only at the end. Within a basic block control fl ows 

sequentially. Branching in fl ow of control can only happen in the last statement of a basic block. 

Consider the input source and its corresponding intermediate code shown in Table 7.22. The input source 

contains a branching statement (if statement), which is also refl ected in the IC. It is possible to break this 

intermediate code into logical chunks of sequential code called as basic blocks.

Table 7.22 Input source and the intermediate code

Input source Unoptimised TAC

1 (0) proc_begin func

2 int func(int a,int b, int c) (1) _t0 := 2 * a

3 { (2) x := _t0

4  int x,y,z; (3) _t1 := 2 * a

5 (4) _t2 := 5 * b

6 (5) _t3 := _t1 + _t2

7  x  = 2 * a ; (6) y := _t3

8  y  = 2 * a + 5 * b ; (7) if a > 1 goto .L0

9 (8) goto .L1

10  if(a > 1){ (9) label .L0

11   x  = 2 * a + 3 * b + 20; (10) _t4 := 2 * a

12   y  = 2 * a + 4 * b + 40 ; (11) _t5 := 3 * b

13  } (12) _t6 := _t4 + _t5

14 (13) _t7 := _t6 + 20

15  z  = x * y ; (14) x := _t7

16 (15) _t8 := 2 * a

17  return(z); (16) _t9 := 4 * b

18 } (17) _t10 := _t8 + _t9

(18) _t11 := _t10 + 40

(19) y := _t11

(20) label .L1

(21) _t12 := x * y

(22) z := _t12

(23) return z

(24) goto .L2

(25) label .L2

(26) proc_end func
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Table 7.23 shows intermediate code logically split into basic blocks separated by a dotted line. Each of 

these basic blocks is given names such as B0, B1, B2, etc. representing basic block 0, basic block 1, 

and so on.

Table 7.23 Basic blocks

# Intermediate code 

(0) proc_begin func

(1) _t0 := 2 * a

(2) x := _t0

B0 (3) _t1 := 2 * a

(4) _t2 := 5 * b

(5) _t3 := _t1 + _t2

(6) y := _t3

(7) if a > 1 goto .L0

B1 (8) goto .L1

B2

(9) label .L0

(10) _t4 := 2 * a

(11) _t5 := 3 * b

(12) _t6 := _t4 + _t5

(13) _t7 := _t6 + 20

(14) x := _t7

(15) _t8 := 2 * a

(16) _t9 := 4 * b

(17) _t10 := _t8 + _t9

(18) _t11 := _t10 + 40

(19) y := _t11

B3

(20) label .L1

(21) _t12 := x * y

(22) z := _t12

(23) return z

(24) goto .L2

B4
(25) label .L2

(26) proc_end func

We study about the details of how to split a given set of quads into basic blocks, how to optimise within 

a basic block and other operations on a basic block in the forthcoming sections. At this point, the reader 

needs to appreciate the idea of a basic block of intermediate code in which control fl ows sequentially.

7.2.8.2 Directed Acyclic Graph Another concept used extensively in implementing optimising 

transformations for intermediate code is a  directed acyclic graph (DAG). The DAG is a data structure 

used for implementing optimising transformations on the intermediate code within a basic block. The 

DAG can be constructed from the three address code statements pertaining to a basic block. A DAG is 

usually shown in a pictorial fashion. Figure 7.1 shows a basic block of three address code statements and its 

corresponding DAG.

A DAG for a basic block consists of two kinds of nodes, namely,

 (1) Leaf nodes

 (2) Interior nodes



  Code Optimisation 431

The leaf nodes are the nodes that do not 

have children. The leaf nodes are labelled 

by unique identifi ers or constants. Figure 

7.1 shows leaf nodes labelled as ‘d’, ‘b’ 

and ‘5’. As a convention in this book, the 

label for a node is written inside the bubble 

representing the node.

The interior nodes are the nodes that 

have children. The children could be either 

another interior node or a leaf node. The 

interior nodes are labelled by an operator. 

Figure 7.1 shows two interior nodes, one of 

them is labelled with the ADD operator and 

the other is labelled with a MUL operator. Table 5.2 in Chapter 5 gives a list of all the operators that are 

considered in the intermediate language that we defi ned. 

The leaf nodes and the interior nodes can have an attached identifi er list (shown outside the bubble). The 

attached identifi er list represents the identifi ers holding the computed value in the case of interior nodes. 

For example, in Fig. 7.1, the attached identifi er list for the operator node ADD, contains the identifi er  ‘a’. 

The identifi er ‘a’ holds the computed value (b + 5). 

Similarly, the identifi er ‘e’ attached to the node 

labelled MUL holds the computed value d * a. 

In the case of leaf, the attached identifi er 

holds the value of label. Figure 7.2 shows a DAG 

having an identifi er ‘a’ attached to a leaf node 

labelled 5. The identifi er ‘a’ holds the value of the 

label, i.e. 5.

In the later sections, we will study more on the 

construction of DAG and its usage in optimising 

IC within a basic block. At this point, it is important to understand that (a) DAG can be constructed from 

three address code and (b) DAG is used for performing optimising transformations on the intermediate code 

within a basic block.

7.2.8.3 Local Optimisation and Global Optimisation It is possible to perform optimising 

transformations like common sub-expression evaluation, copy propagation, etc. that are localised to a basic 

block. These optimising transformations can be arrived at by analysing the intermediate code of the 

basic block in isolation. This kind of optimisation in which both the analysis and the transformations are 

localised to a basic block is known as  local optimisation. The transformations in local optimisation 

are called as  local transformations. The name of transformation is usually prefi xed with ‘local’ while 

referring to the local transformation, e.g. local common sub-expression elimination, local copy propagation, 

and so on.

Consider the input C language source and the corresponding unoptimised intermediate code shown in 

Table 7.24 to get an idea of local optimisation. 

Fig. 7.1 Three address code and its DAG

Fig. 7.2 Leaf node with an attached identifi er
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Table 7.24 Input C-source and the unoptimised intermediate code

Input source Unoptimised TAC

1

2 int func(int a, int b, int c)

3 {

4  int x,y,z;

5

6

7  x = 2 * a ;

8  y = 2 * a + 5 * b ;

9

10   if(a > 1){

11   x = 2 * a + 3 * b + 20;

12   y = 2 * a + 4 * b + 40 ;

13   }

14

15  z = x * y ;

16

17  return(z);

18 }

(0) proc_begin func

(1) _t0 := 2 * a

(2) x := _t0

(3) _t1 := 2 * a

(4) _t2 := 5 * b

(5) _t3 := _t1 + _t2

(6) y := _t3

(7) if a > 1 goto .L0

(8) goto .L1

(9) label .L0

(10) _t4 := 2 * a

(11) _t5 := 3 * b

(12) _t6 := _t4 + _t5

(13) _t7 := _t6 + 20

(14) x := _t7

(15) _t8 := 2 * a

(16) _t9 := 4 * b

(17) _t10 := _t8 + _t9

(18) _t11 := _t10 + 40

(19) y := _t11

(20) label .L1

(21) _t12 := x * y

(22) z := _t12

(23) return z

(24) goto .L2

(25) label .L2

(26) proc_end func

Table 7.25 shows the unoptimised TAC broken up into basic blocks. Consider the unoptimised TAC in 

basic block 0. By analysing the TAC statements of basic block 0, we can conclude that there is a common 

sub-expression 2*a, which is computed twice at statement (1) and (3). We can optimise the IC of the 

block 0 by computing the common sub-expression ‘2*a’ once at statement (1) and then re-use it. We can 

eliminate the statement (3) in which we re-compute the common sub-expression 2*a. Another opportunity 

for optimisation in the basic block 0 exists at statement (1) and (2), where the unnecessary assignment to 

the temporary ‘_t0’ can be avoided by directly assigning ‘2*a’ to  ‘x’. Column (B) in Table 7.25 shows 

the resulting optimised code for basic block 0 after applying the optimising transformations mentioned 

above. Observe that the opportunities for optimisation in basic block 0 were decided by analysing the 

TAC belonging to the basic block 0 only. This ability to optimise the intermediate code of a basic block by 

analysing the TAC belonging to its own self is the main characteristic of local optimisation. Table 7.25 shows 

the locally optimised TAC for all the other basic blocks B1, B2, B3 and B4. The optimised TAC for each of 

these basic blocks was obtained by analysing the TAC pertaining to that particular basic block only. Thus, 

in local optimisation, the optimising transformations like common sub-expression elimination, etc. are 

applied locally to each one of basic blocks independently without taking note of TAC in any other basic 

block. 
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Table 7.25 Local optimisation

# (A) Unoptimised code (B) Locally optimised code Remarks

B0

(0) proc_begin func

(1) _t0 := 2 * a

(2) x := _t0

(3) _t1 := 2 * a

(4) _t2 := 5 * b

(5) _t3 := _t1 + _t2

(6) y := _t3

(7) if a > 1 goto .L0

-->

(0) proc_begin func

(1) x := 2 * a

(2) _t2 := 5 * b

(3) y := x + _t2

(4) if a > 1 goto .L0

In the optimized code for 

this block

(a) The unnecessary 

assignment to _t0 has 

been eliminated.

(b) The common sub-

expression 2*a is 

computed only once in 

(1) and re-used (3)

B1 (8) goto .L1 --> (8) goto .L1 No room for Local optimi-

sation in this block

B2

(9) label .L0

(10) _t4 := 2 * a

(11) _t5 := 3 * b

(12) _t6 := _t4 + _t5

(13) _t7 := _t6 + 20

(14) x := _t7

(15) _t8 := 2 * a

(16) _t9 := 4 * b

(17) _t10 := _t8 + _t9

(18) _t11 := _t10 + 40

(19) y := _t11

-->

(6) label .L0

(7) _t4 := 2 * a

(8) _t5 := 3 * b

(9) _t6 := _t4 + _t5

(10) x := _t6 + 20

(11) _t9 := 4 * b

(12) _t10 := _t4 + _t9

(13) y := _t10 + 40

In the optimized code for 

this block

(a) The unneccesary 

assignments to _t7 

and _t11 have been 

eliminated

(b) Recomputation of 2*a 

into _t8 has been 

avoided, and _t4 is 

used instead.

B3

(20) label .L1

(21) _t12 := x * y

(22) z := _t12

(23) return z

(24) goto .L2

-->

(14) label .L1

(15) z := x * y

(16) return z

(17) goto .L2

In the optimized code for 

this block

(a) The unneccesary 

assignment to _t12 

has been eliminated

B4 (25) label .L2

(26) proc_end func

--> (18) label .L2

(19) proc_end func

No room for Local

Optimization in this block

In contrast to the local optimisation,  global optimisation involves analysis and transformations of the 

TAC spanning across multiple basic blocks of a procedure. The transformations in global optimisation are 

called  global transformations. The name of transformation is usually prefi xed with ‘global’ while referring 

to the global transformation, e.g. global common sub-expression elimination, global copy propagation, and 

so on. In the optimisation phase of a compiler, the global optimising transformations usually follow the 

local transformations. The locally optimised code is taken as the input for global optimisation.

Let’s take the locally optimised TAC shown in Table 7.26 as the input and analyse the TAC of the entire 

procedure (spanning across multiple blocks) for opportunities to optimise. The statement (1) in block B0 

computes the common sub-expression 2*a, which is used in statement (3) of the same basic block. In block 

B2, the same common sub-expression ‘2*a’ is computed in statement (7) and used in statement (9) and 

(12). If we analyse across blocks, we can fi gure out that (a) the identifi er ‘a’ is not modifi ed between the two 

computations at (1) and (7); (b) the sub-expression 2*a computed at statement (1) in block B0 can be used 

in statements (9); and (12) of block B2. By using the value of 2*a computed in (1) throughout the function 

(at 3, 9 and 12), we can eliminate the re-computation of the common sub-expression ‘2*a’ at (7).  This 

kind of optimising transformations that require analysis and changes spanning across the blocks falls under 

the purview of global optimisation. Table 7.26 shows the resulting intermediate code after performing the 
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global common sub-expression (2*a) elimination as discussed above. Observe that the global optimisation 

resulted in changes in the intermediate code belonging to block B0 and B2.

Table 7.26 Global optimisation

# Locally optimised code Globally optimised code

B0

(0) proc_begin func

(1) x := 2 * a

(2) _t2 := 5 * b

(3) y := x + _t2

(4) if a > 1 goto .L0

(0) proc_begin func

(1) _t13 := 2 * a

(2) x := _t13

(3) _t2 := 5 * b

(4) y := x + _t2

(5) if a > 1 goto .L0

B1 (5) goto .L1 (6) goto .L1

B2

(6) label .L0

(7) _t4 := 2 * a

(8) _t5 := 3 * b

(9) _t6 := _t4 + _t5

(10) x := _t6 + 20

(11) _t9 := 4 * b

(12) _t10 := _t4 + _t9

(13) y := _t10 + 40

-->

(7) label .L0

(8) _t4 := _t13

(9) _t5 := 3 * b

(10) _t6 := _t4 + _t5

(11) x := _t6 + 20

(12) _t9 := 4 * b

(13) _t10 := _t4 + _t9

(14) y := _t10 + 40

B3

(14) label .L1

(15) z := x * y

(16) return z

(15) label .L1

(16) z := x * y

(17) return z

B4 (17) goto .L2 (18) goto .L2

B5 (18) label .L2

(19) proc_end func

(19) label .L2

(20) proc_end func

We have seen how a common sub-expression (2*a) was eliminated in the global optimisation. We refer 

to that as global common sub-expression elimination (gcse) indicative of the fact that the common sub-

expression was eliminated in a global manner across basic blocks. A common sub-expression eliminated 

locally within a basic block is termed as local common sub-expression elimination or simply common 

sub-expression elimination. In a similar manner we use the term global copy propagation (gcp) for a 

copy propagation spanning multiple blocks as opposed to local copy propagation for the ones local to the 

basic block. The algorithms used for performing global common sub-expression elimination/global copy 

propagation are different from the ones used in local common sub-expression elimination/local copy 

propagation. We study about the algorithms performing local common sub-expression elimination and local 

copy propagation in the section on local optimisation (Section 7.2.9). The algorithms for global common 

sub-expression elimination and global copy propagation are studied in the section on global optimisation 

(Section 7.2.10).

The amount of analysis required for local optimisation is lesser, since it is restricted to one basic 

block at a time. Comparatively the global optimisation requires more analysis, since it requires to 

analyse intermediate code for the entire function. Due to the lesser analysis involved, the time taken to 
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perform local optimisation on the intermediate code is lesser compared to global optimisation. Another 

aspect on which local and global optimisation differ is the amount of optimisation feasible. The amount 

of optimisation possible with local optimisation is lesser than the global optimisation. For example, 

loop-related optimisations are not possible in local optimisation. This is due to the fact that loop-related 

optimisations involve analysis of all the blocks involved in a loop at the same time. Since local optimisation 

concerns analysis and changes localised to a basic block, it is not possible to perform any of the loop-

related optimisations in local optimisation. Global transformations are essential for loop optimisation.

Both local and global optimising transformations are performed in most of the compilers. Commonly, 

the local optimising transformations are performed fi rst, followed by global optimising transformations. 

Since the local optimisation takes very less time, it is usually included in the preparatory phase for global 

optimisation. 

In one of the studies conducted on the effectiveness of optimisation, Knuth reported an improvement 

in the speed of execution of about > = 1.4 times in local optimisation and > = 2.7 times due to global 

optimisation.

In Section 7.2.9, we discuss about local optimisation in detail. We study about how we can implement 

transformations like local common sub-expression elimination, local copy propagation, dead code 

elimination, etc. locally as a part of local optimisation in that section.

In Section 7.2.10, we discuss about global optimisation in detail. In that section we learn about 

implementing global common sub-expression elimination, global copy propagation and other loop-related 

optimisations.

7.2.9 Local Optimisation

In this section, we learn about implementing local optimisation in a compiler. The optimising 

transformations that would be studied are local common sub-expression elimination, constant folding, local 

copy propagation and dead code elimination. We study about algorithms that identify opportunities for the 

above-mentioned transformations within a basic block and affect the transform on the intermediate code 

accordingly.

We use the ideas of basic blocks and the directed acyclic graph in implementing the local optimisation.

The local optimisation on the intermediate code is carried out in the steps illustrated in Fig. 7.3.

 (1) The fi rst step involves splitting the input intermediate code of a function into basic blocks named as 

B0, B1, B2, and so on till B
n
. Figure 7.3 illustrates the split of the input intermediate code into basic 

blocks B0, through B
n
.

 (2) For each basic block B in {B0, B1 … B
n
},  the following steps are performed:

 (a) A directed acyclic graph D is constructed for the quads in the basic block B using an algorithm 

described later in this section. Figure 7.3 illustrates the creation of DAG for the block B0. 

 (b) The optimised quads are generated from the directed acyclic graph D. Figure 7.3 illustrates the 

generation of optimised quads from DAG corresponding to the block B0.

  The optimised code for the function is concatenation of the quads generated in 2(b) for all the basic 

blocks B0 through B
n
.
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Fig. 7.3 Local optimisation of intermediate code
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We study about each of these steps in detail in the next few sections. Section 7.2.9.1 describes the step 

1 followed by an example. Section 7.2.9.3 describes the step 2(a), followed by an example. Section 7.2.9.5 

details the step 2(b) followed by an example.

7.2.9.1 Step 1—Splitting the IC into Basic Blocks As already mentioned, in order to improve the 

intermediate code, the three address statements are broken up into smaller units on which transformations 

can be easily applied. Each of these units is called a  basic block. A basic block is a sequence of three 

address statements in which the fl ow of control enters the beginning and leaves only at the end without any 

possibility of branching except at the end. In other words, once the control enters a basic block, each and 

every statement in it is executed.

Let’s take an example to understand the idea of splitting up the intermediate into basic blocks. Consider 

the input C source and its corresponding intermediate code shown in Table 7.27.

Table 7.27 Input source and its intermediate code

Input source TAC

1 int largest(int p,int q, int r)

2 {

3  int tmp;

4

5  if(p > q){

6   tmp=p;

7  }else{

8   tmp=q;

9  }

10  if(r > tmp){

11   tmp=r;

12  }

13

14  return(tmp);

15 }

(0) proc_begin largest

(1) if p > q goto .L0

(2) goto .L1

(3) label .L0

(4) tmp := p

(5) goto .L2

(6) label .L1

(7) tmp := q

(8) label .L2

(9) if r > tmp goto .L3

(10) goto .L4

(11) label .L3

(12) tmp := r

(13) label .L4

(14) return tmp

(15) goto .L5

(16) label .L5

(17) proc_end largest

Let’s go over the intermediate code shown in Table 7.27 and break it up into basic blocks. By defi nition, 

a basic block consists of statements in which the fl ow of control has to be sequential. The TAC statements 

0 and 1 have sequential fl ow of control and hence form the block 0. The statement 1 is a conditional goto 

statement, which would transfer the control to label .L0 in case the condition p > q is true. The statement 2 

would not be reached when the condition p > q is true. The block B0 ends with statement 1 because there 

is no assurance that the statement 2 would be reached after statement 1. In general, the statement following 

a conditional or unconditional goto is a leader or the fi rst statement of the next block. The statement 2 falls 

in new block B1. The statement 3—label statement, would never be reached sequentially after 2, since 

statement 2 is a goto statement. Hence statement 3 falls into the next block B2. The statements 3, 4 and 5 

have sequential fl ow of control and hence would go in the same block—B2. The fl ow of control would not 

reach statement 6 after statement 5 and hence the block B2 ends with statement 5. The statements 6 and 7 

have sequential fl ow of control and go into block B3. The statement 8, which is a label statement, cannot 

be in the same block because control can directly come to label from a conditional or unconditional goto 
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statement. Since there is no assurance that the control fl ow 

would follow statement 8 after 7, the statement 8 goes into 

the new block B4. In general, a label statement is a leader or 

the fi rst statement of a new block, since control can come to 

it from a goto statement or sequentially. The reader is advised 

to apply the above-mentioned principles and understand 

the rationale behind the breaking of statements into blocks 

B5 through B8. Figure 7.4 shows the complete split of the 

intermediate code into basic blocks.

The method we used above to partition the TAC statements 

into basic blocks is formalised in Algorithm 7.1. We use the 

idea of leaders, the fi rst statements in the IC of basic blocks to 

make the partitions. The leaders are (a) Label statement and 

(b) Any statement, following a conditional or unconditional 

goto statement. The statements 0, 2, 3, 6, 8, 10, 11, 13 and 15 

in the above example are all leaders because they satisfy at 

least one of the criteria mentioned above. Each block consists 

of the leader and all the statements following it up to the next 

leader, but not including it.

split_into_basic_blocks()

{

 i=0

 prev=NULL

 /* L is a list of TAC statements */

 /* B is a data structure associating quads with a basic block */

 Add the fi rst statement of L into Bi

 for every statement s in L

 do

 {

  leader=0

  if(s is a label statement){

   leader=1

  }

  if(prev is a conditional or unconditional goto){

   leader=1

  }

  if(leader == 1){

   i=i+1;

  }

  Attach s to Bi

  prev=s

 }

}

Algorithm 7.1 Partition TAC statements into basic blocks

Fig. 7.4 Splitting of IC into basic blocks
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7.2.9.2 Example 1—Splitting TAC Statements to Basic Blocks This section demonstrates the 

toy C compiler (mycc) splitting the intermediate code into basic blocks using Algorithm 7.1 described 

in the preceding section. The toy C compiler takes as input, a sample C input source and gives out (a) 

TAC and (b) the breakup of the TAC into basic blocks. The dialog below shows ‘mycc’ taking in some 

sample input C sources, and printing out their intermediate code in TAC format along with the basic 

block information.

# Generating the Parser from Grammar Specifi cations 

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g ++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyzer from Lexical Specifi cations 

$ fl ex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyzer 

$ g ++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building ‘mycc’ - A Toy Compiler for C Language 

$ g ++ -DCHAP7_EX1 -DICGEN -g -Wall ic_gen.cc optimize.cc target_code_gen.cc mycc.cc 
semantic_analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe

# An input source 

$ cat -n test1.c 
 1 int largest(int p, int q, int r)

 2 {

 3  int tmp;

 4

 5  if(p > q){

 6   tmp=p;

 7  }else{

 8   tmp=q;

 9  }

 10  if(r > tmp){

 11   tmp=r;

 12  }

 13

 14  return(tmp);

 15 }

# Partitioning the IC into Basic Blocks 

$ ./mycc -i -O local -v test1.c 
TAC Before optimisation 

(0) proc_begin largest

(1) if p > q goto .L0

(2) goto .L1

(3) label .L0

(4) tmp: = p

(5) goto .L2

(6) label .L1

(7) tmp: = q

(8) label .L2

(9) if r > tmp goto .L3
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(10) goto .L4

(11) label .L3

(12) tmp: = r

(13) label .L4

(14) return tmp

(15) goto .L5

(16) label .L5

(17) proc_end largest

Quads After Splitting into Basic Blocks 

BLOCK =0 

(0) proc_begin largest

(1) if p > q goto .L0

BLOCK =1 

(2) goto .L1

BLOCK =2 

(3) label .L0

(4) tmp := p

(5) goto .L2

BLOCK =3 

(6) label .L1

(7) tmp := q

BLOCK =4 

(8) label .L2

(9) if r > tmp goto .L3

BLOCK =5 

(10) goto .L4

BLOCK =6 

(11) label .L3

(12) tmp := r

BLOCK =7 

(13) label .L4

(14) return tmp

(15) goto .L5

BLOCK =8 

(16) label .L5

(17) proc_end largest

# Another input source 

$ cat -n test1a.c 
 1 int fact(int num)

 2 {

 3  int i,prod;

 4

 5  i=1;

 6  prod=1;

 7

 8  while(i<=num){

 9   prod=prod*i;

 10   i=i + 1;

 11  }

 12

 13  return(prod);

 14 }

# Basic Blocks for the input source 
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$ ./mycc -i -O local -v test1a.c 
TAC Before optimisation 

(0) proc_begin fact

(1) i := 1

(2) prod := 1

(3) label .L0

(4) if i <= num goto .L1

(5) goto .L2

(6) label .L1

(7) _t0: = prod * i

(8) prod: = _t0

(9) _t1: = i + 1

(10) i: = _t1

(11) goto .L0

(12) label .L2

(13) return prod

(14) goto .L3

(15) label .L3

(16) proc_end fact

Quads after Splitting into Basic Blocks 

BLOCK =0 

(0) proc_begin fact

(1) i := 1

(2) prod := 1

BLOCK =1 

(3) label .L0

(4) if i <= num goto .L1

BLOCK =2 

(5) goto .L2

BLOCK =3 

(6) label .L1

(7) _t0 := prod * i

(8) prod := _t0

(9) _t1 := i + 1

(10) i := _t1

(11) goto .L0

BLOCK =4 

(12) label .L2

(13) return prod

(14) goto .L3

BLOCK =5 

(15) label .L3

(16) proc_end fact

7.2.9.3 Step 2(a)—Construction of DAG from Basic Block In this section, we study about how 

we can construct a directed acyclic graph (DAG) from the quads in a basic block. As introduced before, a 

DAG is a data structure used for implementing optimising transformations on the intermediate code within 

a basic block. Each basic block is transformed into a DAG. 

We have seen earlier that a DAG Node consists of a label and an optional list of attached identifi ers. We 

can represent a DAG node by a structure or a class containing the following main elements:
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label : The label for a leaf node is the identifi er or the constant that the node represents. For 

the interior nodes, it is the operator symbol represented by the node.

attached_identifi ers_list : This is a list of identifi ers attached to the node. The current value of each of the 

identifi ers in the list is represented by the current node.

The process of building a DAG requires an association between an identifi er and a DAG node. The DAG 

node represents the ‘current’ value of the Identifi er. A DAG node is associated with an identifi er by using 

the function set_current(identifi er, dag_node). We can fetch the DAG node associated with an identifi er by 

using the function get_current(identifi er).

set_current (identifi er,dag_node) : This associates the current value of an identifi er with the DAG node.

get_current (identifi er) : This returns the dag node associated with the identifi er. This represents the 

current value of identifi er.

During the DAG construction process, there are functions needed for adding and removing an identifi er 

from the attached list of identifi ers of a DAG node. The following functions are used for the purpose.

add_attached_identifi er(dag_node,identifi er) : This function adds the identifi er to the list of attached 

identifi ers of the DAG node.

remove_attached_identifi er(dag_node,identifi er) : This function removes the identifi er from the attached list of 

identifi ers of the DAG node.

In the algorithm presented a little later for  constructing a DAG from the TAC statements, the TAC 

statements are represented using a generic form res: = arg1 OP arg2. The operator OP determines which of 

the three operands are defi ned. For example, an ADD operator would have all the three operands res, arg1 

and arg2 as defi ned. A unary minus operator (UMINUS) would have the operands res and arg1 as defi ned 

but the operand arg2  is undefi ned. In a similar way, the ASSIGN operator has res and arg1 as valid, but 

arg2  as undefi ned.

We classify the three address operators into 2 classes based on the ability to participate in common sub-

expression identifi cation and elimination.

The TAC operators belonging to class 1 are the ones for which the result ‘res’ is valid and can be used 

for identifying the common sub-expressions. Examples of these are quads using the operators ADD, MUL, 

DIV, and so on.

The TAC operators in class 2 are the ones that cannot participate in the common sub-expression 

identifi cation and elimination either due to (a) ‘res’ cannot be considered as a ‘result’ of an expression, e.g. 

LT,GT, L_INDEX_ASSIGN  or (b) ‘res’ is not valid, e.g. PROC_BEGIN,PARAM, etc.

Table 7.28 shows the classifi cation of all the 23 operators defi ned in our intermediate language that we 

saw in Chapter 5.

Table 7.28 Classifi cation of TAC operators

# TAC operator Description Class

1 ADD, MUL, DIV, SUB, UMINUS, ADDR_OF, 

ASSIGN, R_INDEX_ASSIGN

res is valid and can be used as a result for 

identifying the common sub-expressions.

Class 1
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2 LT, GT, LE, GE, EQ, NE, L_INDEX_ASSIGN arg1, arg2 and res are valid, but we cannot use 

‘res’ as a result for identifying the common 

sub-expressions. The quads with these operators 

cannot participate in common sub-expression 

identifi cation.

Class 2

3 PROC_BEGIN, PROC_END, RETURN, 

RETRIEVE, PARAM, CALL, LBL, GOTO

arg2 and res are not valid. Only arg1 is valid. The 

quads with these operators cannot participate in 

common sub-expression identifi cation.

Class 2

We now turn to the algorithm for creating a DAG from the quads in a basic block. We use the functions 

that have been mentioned above. The DAG is represented by the structure described previously.

For each TAC statement   res: = arg1 OP arg2 in the basic block do steps 1 to 3:

 1. If arg1 is valid, then fi nd a dag node ‘node_arg1’ that represents the current value of ‘arg1’. If we do 

not fi nd a node, create a node and call it ‘node_arg1’. Now, the ‘node_arg1’ represents the current 

value of ‘arg1’.

 2. If ‘arg2’ is valid, then fi nd a dag node ‘node_arg2’ that represents the current value of ‘arg2’. If we 

do not fi nd a node, create a node and call it ‘node_arg2’. Now the ‘node_arg2’ represents the current 

value of ‘arg2’.

 3. If the OP is ASSIGN operator, then,

if ‘res’ was attached to some other dag node previously, remove that linkage. Associate 

the current value of identifi er ‘res’ with ‘node_arg1’. Add the identifi er ‘res’ to the list of 

identifi ers attached to ‘node_arg1’.

  Else, if the OP is one of class 1 operators, i.e. operators on which we can have a common sub-

expression then,

Find if there is an interior node ‘node_res’, whose children are ‘node_arg1’ and ‘node_arg2’. 

If we do not fi nd such a node then create a new dag node called ‘node_res’ and make ‘node_

arg1’ and ‘node_arg2’ as its children. In either case, i.e. ‘node_res’ was created freshly now, 

or found already, do the following (a) if res were attached to some other dag node previously, 

remove that linkage. Associate the current value of identifi er ‘res’ with ‘node_res’ (b) add the 

identifi er ‘res’ to the list of identifi ers attached to ‘node_res’.

  Else,

/* class 2 operators */

Find if there is a node ‘node_res’ that represents the current value of ‘res’. If there is no node 

representing the current value of res, then create a new dag node ‘node_res’ and associate the 

current value of identifi er ‘res’ with ‘node_res’. Create a new dag node ‘n4’, whose children 

are node_res, node_arg1, node_arg2. 

Algorithm 7.2 shows the above in a loose C pseudo-code form. The repeated tasks in the algorithm 

have been converted to functions. The three support functions, namely get_dag_node(),  move_attached_

identifi er() and fi nd_dag_node are also presented in Algorithm 7.2.

construct_dag ()

{

 for (each ‘quad’ in the Basic Block) {
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  arg1  = quad.arg1 ;  

  arg2  = quad.arg2 ;  

  res  = quad.res ;

  op  = quad.op ; /* Operator of the quad */

  /* Step 1 */

  node_arg1  = get_dag_node(arg1)

  /* Step 2 */

  node_arg2  = get_dag_node(arg2)

  /* Step 3 */

  if (op is ASSIGN){

   move_attached_identifi er(res,node_arg1);

  } else if (op is ADD or MUL or DIV or SUB or UMINUS or 

    ADDR_OF or R_INDEX_ASSIGN){/* Class 1*/

   node_res  = fi nd_dag_node(op,node_arg1,node_arg2);

   if(node_res = = NULL){

    node_res  = mk_dag_node(op,node_arg1,node_arg2);

   }

   move_attached_identifi er(res,node_res);

  }else{

   /* 

    Class 2 Operators

    op is one of

    LT,GT,LE,GE,EQ,NE,L_INDEX_ASSIGN - 3 args

    PROC_BEGIN,PROC_END,RETURN,RETRIEVE,PARAM,CALL,LBL,GOTO - 1 arg

   */

   node_res  = get_dag_node(res)

   n4  = mk_dag_node(op,node_arg1,node_arg2,node_res);

  }

 }

}

dag_node *get_dag_node(sym_tab_entry *s)

{

 dag_node *d;

 if(s == NULL){

  return(NULL);

 }

 if((d=get_current(s)) == NULL) {

  /* create a leaf node */

  d = mk_dag_node (s);

  /* 

   dag_arr is a global data structure containing pointers to all 
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   the dag nodes created

  */

  dag_arr[dag_node_no]=d;

  dag_node_no = dag_node_no  + 1;

  /* set the associated node */

   set_current(s,d);

 }

 return(d);

}

move_attached_identifi er(sym_tab_entry *s,dag_node *d)

{

   dag_node *tmp; 

   /* Remove the existing linkage */

   tmp  = get_current(s);

   if(tmp ! = NULL){

      remove_attached_identifi er(s,tmp);

   }

   /* Set the new association */

   set_current(s,d);

   /* Attach the identifi er to the dag node */

   add_attached_identifi er(s,d);

}

dag_node * fi nd_dag_node(op, dag_node *l,dag_node *r)

{

   dag_node *d;

   /* 
   Search in dag_arr to see, if there is a dag node with op as label,
   with ‘l’ as the left child and ‘r’ as the right child
   */

   n  = dag_node_no;
   for(i=0;i<n;i++)
   {
       d=dag_arr[dag_node_no];

       if(
           (d->label == op) &&
           (d ->left_child == l) &&
           (d ->right_child == r)

           ){

             return(d);
      }
   }
   return(NULL);
}

Algorithm 7.2 Construction of DAG
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7.2.9.4 Illustration of Construction of a DAG Consider the input C source fi le and the 

corresponding unoptimised intermediate code (see Table 7.29) for demonstrating the construction of DAG 

using Algorithm 7.2. The intermediate code can be divided into 2 basic blocks. The basic block 0 consists 

of statements (1) through (12) with both inclusive. Block 1 consists of the TAC statements (13) and (14).

Table 7.29 Input source and intermediate code

Input source TAC

int a,b,c,d,e,f,g;

void func()

{

 a  = (b  + c)*d ;

 e  =  f * a ;

 f  = (b + c)*e;

 g  = (b + c)/d;

}

(1) proc_begin func

(2) _t0: = b + c

(3) _t1: = _t0 * d

(4) a: = _t1

(5) _t2: = f * a

(6) e := _t2

(7) _t3 := b + c

(8) _t4 := _t3 * e

(9) f := _t4

(10) _t5: = b + c

(11) _t6: = _t5 / d

(12) g := _t6

(13) label .L0

(14) proc_end func

We will build the DAG for block 0 in a step-by-step fashion using Algorithm 7.2. The intermediate code 

of block 0 is shown in Fig. 7.5.

The processing of TAC statement  (1) proc_begin func causes the creation of a leaf for the identifi er 

‘func’ and an interior node with PROC_BEGIN as the operator as shown in Fig. 7.6. 

  

 Fig. 7.5 Basic block 0 Fig. 7.6 Processing of (1) PROC_BEGIN func

The TAC statement  (2) _t0: = b + c causes the creation of a leaf for the identifi er ‘b’ and another leaf 

for the identifi er ‘c’. An interior node for the operator ADD is created with the leaf nodes of ‘b’ and ‘c’ as 

children. The identifi er  ‘_t0’  is attached to the created interior node as shown in Fig. 7.7. 

The next TAC statement to be processed is (3) _t1: = _t0 * d. This uses the existing node to which ‘_t0’ 

is attached. A new leaf node is created for the identifi er ‘d’. An interior node with a label ‘MUL’ is created.  
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The identifi er _t1 is attached to this interior node. The DAG at this point is shown in Fig. 7.8. The dotted line 

in Fig. 7.8 shows the part of the DAG that has been created due to the processing of the current TAC statement 

(3) _t1: = _t0 * d. 

  

 Fig. 7.7 Processing  (2) _t0: = b + c Fig. 7.8 DAG after processing (3) _t1: = _t0 * d

The next TAC statement to be processed is the assignment statement (4) a: = _t1. This attaches the identifi er 

‘a’ to the DAG node associated with the current value of the identifi er ‘_t1’. The DAG at this point is 

shown in Fig. 7.9. The attaching of the identifi er ‘a’ to the DAG node holding the current value of ‘_t1’ is 

shown in bold for the sake of clarity.

The processing of next TAC statement (5) _t2: = f * a, causes the creation of a new leaf node storing the 

value of the identifi er ‘f ’, since there is no DAG node associated with ‘f ’. An interior node with the label MUL 

is created with the children as DAG nodes storing the latest value of identifi ers ‘f ’ and ‘a’. Figure 7.10 shows 

the DAG after the processing of (5) _t2 := f * a. The dotted line shows the part of the DAG created due to 

the processing of (5) _t2: = f * a. 

  

 Fig. 7.9 DAG after processing (4) a := _t1 Fig. 7.10 DAG after processing (5) _t2 := f * a

The next statement to be processed is the assignment statement (6) e := _t2. TAC This causes 

an additional identifi er ‘e’ to be attached to the DAG node storing the latest value of ‘_t1’ as shown in 

Fig. 7.11. Observe that any DAG node with multiple identifi ers attached to it indicates that all of those 

identifi ers contain the same value at that point in time.
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The next TAC statement to be processed is (7) _t3 := b + c. We fi nd that there exists an interior node ADD 

that has ‘b’ and ‘c’ as children. We attach the identifi er ‘_t3’ to such a node as shown in Fig. 7.12. From the 

DAG shown in Fig. 7.12, we can observe that the identifi ers ‘_t0’ and ‘_t3’ hold the value of a common 

expression ‘b + c’. We can also notice that the identifi ers ‘_t1’ and ‘a’ hold the value of common expression 

(b + c) * d.

  

 Fig 7.11 DAG after processing (6) e := _t2 Fig. 7.12 DAG after processing (7) _t3 := b + c

The next TAC statement to be processed is (8) _t4: = _t3 * e. An interior node with the label MUL is 

created with the children as DAG nodes storing the latest value of identifi ers ‘_t3’ and ‘e’. We attach the 

identifi er ‘_t4’ to such a node as shown in Fig. 7.13. The dotted line shows the part of the DAG created due 

to the processing of (8) _t4: = _t3 * e.

The next TAC statement to be processed is the assignment statement (9) f: = _t4. This causes an 

additional identifi er ‘f ’ to be attached to the DAG node storing the latest value of ‘_t4’ as shown in Fig. 7.14.

  

 Fig. 7.13 DAG after processing (8) _t4 := _t3 * e Fig. 7.14 DAG after processing (9) f := _t4
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The next TAC statement to be processed (10) _t5 := b + c. We fi nd that there exists an interior node ADD 

that has ‘b’ and ‘c’ as children. We attach the identifi er ‘_t5’ to such a node as shown in Fig. 7.15. From the 

DAG shown in Fig. 7.15, we can observe that the identifi ers  ‘_t0’, ‘_t3’ and now ‘_t5’ hold the value of the 

common expression ‘b + c’. 

The next TAC statement to be processed (11) _t6 := d /_t5. There exists no interior node DIV that has 

‘d’ and ‘_t5’ as children. We create a new interior node DIV having the nodes holding the latest value of 

‘d’ and ‘_t5’ as children as shown by the dotted line in Fig. 7.16. The interior node DIV created newly is 

attached with the identifi er ‘_t6’. The identifi er ‘_t6’ was not attached to any other node previously, so there 

is no previous linkage to be discarded.

  

 Fig. 7.15 DAG after processing (10) _t5 := b + c Fig. 7.16 DAG after processing (11) _t6 := _t5/d

The next TAC statement to be processed is the assignment statement (12) g: = _t6. This causes 

an additional identifi er ‘g’ to be attached to the DAG node storing the latest value of ‘_t6’ as shown in 

Fig. 7.17. The identifi er ‘g’ was not attached to any other node previously, so there is no previous linkage to 

be discarded.

We have completed the processing of all the TAC statements in the basic block 0. The fi nal DAG for the 

basic block 0 is shown in Fig. 7.18.

  

 Fig. 7.17 DAG after processing (12) g := _t6 Fig. 7.18 The fi nal DAG for basic block 0
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7.2.9.5 Step 2(b)—Reconstruction of Intermediate Code from DAG In this section, we study 

about traversing the DAG to generate optimised intermediate code. The  reconstruction of the intermediate 

code from the DAG is the fi nal step in the local optimisation as seen in Fig. 7.3.

The reconstruction of TAC from the DAG is accomplished by traversing the nodes of a DAG

in a topologically sorted order and generating code. In topological sorted order, an interior node is

not visited unless all its children have already been visited. The order in which DAG nodes are created

from the intermediate code using Algorithm 7.2 presented earlier is itself in a topologically sorted order.

Fig. 7.19 shows the DAG created in Section 7.2.9.4, with the nodes numbered 1, 2, 3 and so on in the order they 

were created. Observe that in the DAG in Fig. 7.19, the nodes marked 1, 2, 3 and so on, are in a topologically 

sorted order with the parent nodes being created only after all of their children have been created. 

 

Fig. 7.19 The order of creation of DAG nodes

The optimised TAC is generated from the DAG by visiting all the DAG nodes in a topologically sorted 

order. For each node in the DAG in the topologically sorted order, we do the following:

If the node is a leaf node, then check if it has any attached 

identifi ers. If there are no attached identifi ers, no quads are 

generated for the node. If there are attached identifi ers then 

generate ASSIGN statements that assign the value of the 

node to each one of the user defi ned identifi ers ‘s’ in the 

attached identifi ers list. Figure 7.20 shows the re-constructed 

quads from a leaf node in a DAG.

If the node is an interior node then we check to see, if 

the operator is a class 1 operator or a class 2 operator. As 

explained before, class 1 operators have a ‘result’ amenable 

to common sub-expression elimination. 

If it is class 2 operator node, generate a quad with the operator, left child, right child and any other 

additional children if present. Figure 7.21 shows the quads generated for an interior node using 

PROC_BEGIN—a class 2 operator.

Fig. 7.20 Quad generation for  a leaf node
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If it is a class 1 operator node, then generate a quad that assigns the value of the node to one of the 

identifi ers ‘s’ in the attached identifi ers list. The preference is given to an identifi er ‘s’ in the list of 

identifi ers attached to the node, if it is a user-defi ned variable as opposed to a compiler generator temporary. 

The value of the node is produced by applying the operator on the left and right child. Figure 7.22 

shows the quads generated from an interior node having children that are leaves. In Fig. 7.22, the 

identifi er ‘d’ has been selected for assigning the value, since it is user defi ned as compared to _t0.  The 

identifi er ‘d’ now represents this node for all further computations. In case there were other user defi ned 

identifi ers like say e and f also attached to this interior node, additional assignment statements e  = d, f  = d 

are generated at this point.

  

 Fig. 7.21 Quad generation for interior Fig. 7.22 Quad generation for interior
   node (class 2 operator)       node having leaves as children

The generation of quads for interior nodes having other interior nodes as children is also similar. 

Figure 7.23 shows an interior DAG node (shaded in gray) having other interior nodes as children. The quad 

generated in this case would be m  = j + k, since ‘j’ and ‘k’ are selected identifi ers for child interior nodes. 

By virtue of the fact that the nodes are visited in a topographical order, each of the children (interior nodes) 

would already have a selected identifi er representing the node. In Fig. 7.23, we have the left child being 

represented by the selected identifi er ‘j’ and right child by the selected identifi er ‘k’.

Fig. 7.23 Reconstruction of quads from interior node having other interior nodes as children
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In situations where there are no user-defi ned identifi ers in the list of identifi ers attached to the interior 

node, we can pick any one of the temporary identifi ers to store the value of the node. If there are no 

identifi ers at all in the attached identifi ers list, create a new unused temporary variable, let’s say ‘_tk’ and 

generate a quad that assigns the value of the node to it.

Algorithm 7.3 formalises the regeneration of optimised quads from the DAG as explained above.

dag_arr is the array of all the dag nodes. It is in the same order as created and hence 

topographically sorted.

regenarate_quads ()
{
 for (each dag node ‘d’ in the dag_arr) {

  if(d is a leaf node with label ‘l’){
   if(there are attached identifi ers to the node i1,i2 in){
    Generate assign quads for each of the user defi ned (non- 

    temporarary) identifi ers (i1=l,i2=l etc) 
   continue;
  }

  /* ‘d’ is an Interior Node */

  if (operator is not one of ADD MUL DIV SUB UMINUS ADDR_OF R_INDEX_ASSIGN){

   /* These are operators for which ‘result’ is undefi ned */

   Generate a quad with (operator, left child,right child and additional 

   child if any) 

   continue;
  }
  /* These are operators for which ‘result’ is defi ned */
  /* operator is one of ADD MUL DIV SUB UMINUS ADDR_OF R_INDEX_ASSIGN */

  Select an user defi ned identifi er ‘s’ in the attached identifi er’s list.

  Generate a new quad with (operator,left child, right child, s)

  if (There are more than one user defi ned identifi ers in the attached 

  identifi er’s list){
   Generate assign quads for i1=s,i2=s,i3=s
  }
 }
}

Algorithm 7.3 Regenerating optimised quads from DAG

7.2.9.6 Illustration of Reconstruction of Intermediate Code from DAG Consider the fi nal DAG 

for the basic block 0 discussed earlier in 7.2.9.4 and shown again in Fig. 7.24 for understanding the re-

construction of quads using Algorithm 7.3. 

Table 7.30 shows the regeneration of the quads from the DAG in a step-by-step fashion based on 

Algorithm 7.3 and the discussion in Section 7.2.9.5. The DAG in Fig. 7.24 showing nodes numbered in the 

order of creation is used as the basis for regeneration of the quads.

In Table 7.30, the node number is mentioned in the fi rst column. The generated quad for the same node 

based on Algorithm 7.3 is shown in the second column. The explanation column gives the details with 

regard to the working of the algorithm.
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Fig. 7.24 Final DAG considered for regeneration of optimised quads

Table 7.30 Regeneration of optimised quads from DAG

Node 

# 

Generated Quad Explanation

1 None It is leaf node, without any attached identifi ers. No Quads are generated.

2 proc_begin func This node is an interior node. It is a class 2 operator. The Quad is generated with the 

Left child.

3 None It is leaf node, without any attached identifi ers. No Quads are generated.

4 None It is leaf node, without any attached identifi ers. No Quads are generated.

5 _t0 = b + c This node is an interior node. The left child is the leaf node ‘b’. The right child is the 

leaf node ‘c’. The operator of the node is ADD. Hence, the value of the node is (b+c). 

We select the identifi er ‘_t0’ among the attached identifi ers _t0,_t3,_t5 for assigning 

the value of the node. We could have selected any one of the three attached identifi ers 

(_t0,_t3,_t5), we chose _t0. We will continue to use _t0 as the identifi er refl ecting the 

value of this node (Node # 5) till the completion of the algorithm.

6 None It is leaf node, without any attached identifi ers. No Quads are generated.

7 a  := _t0 * d This node is an interior node. The left child is node number 5, which had selected the 

identifi er _t0 for saving the value of the node.  The right child is the leaf node with label  

‘d’. The operator of the node is MUL. Hence, the value of the current node is (_t0 * d).

We select the identifi er ‘a’ among the attached identifi ers _t1,a for assigning the 

value of the node. The reason for selecting ‘a’ ahead of _t1 is that ‘a’ is a user-defi ned 

identifi er. In the generated quad, the value of the node _t0 * d, is assigned to the 

selected identifi er ‘a’.

8 None It is leaf node, without any attached identifi ers. No Quads are generated.
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9 e = f * a This node is an interior node. The left child is a leaf node with label  ‘f’. The right child 

is node number 7, which had selected the identifi er ‘a’ for assigning the value of the 

node.  The operator of the node is MUL. Hence, the value of the current node is ( f * a).

We select the identifi er ‘e’ among the attached identifi ers _t2,e for assigning the value of 

the node. The reason for selecting ‘e’ ahead of _t2 is that ‘e’ is a user-defi ned identifi er. In 

the generated quad, the value of the node f * a , is assigned to the selected identifi er ‘e’.

10 f = _t0 * e This node is an interior node. The left child is node number 5, which had selected the 

identifi er _t0 for assigning the value of the node.  The right child is node number 9, 

which had selected the identifi er ‘e’ for assigning the value of the node. The operator of 

the node is MUL. Hence, the value of the current node is (_t0 * e).

We select the identifi er ‘f’ among the attached identifi ers _t4,f for assigning the value of 

the node. The reason for selecting ‘f’ ahead of _t4 is that ‘f’ is a user-defi ned identifi er. 

In the generated quad, the value of the node _t0 * e , is assigned to the selected 

identifi er ‘f’.

11 g := _t0 / d This node is an interior node. This left child is node number 5, which had selected the 

identifi er _t0 for assigning the value of the node.  The right child is the leaf node with label  

‘d’. The operator of the node is DIV. Hence, the value of the current node is (_t0 / d).

We select the identifi er ‘g’ among the attached identifi ers _t6,g for assigning the value of 

the node. The reason for selecting ‘g’ ahead of _t6 is that ‘g’ is a user-defi ned identifi er. In 

the generated quad, the value of the node _t0 / d , is assigned to the selected identifi er ‘g’.

The optimised quads regenerated from the DAG are given in Table 7.31. The optimised TAC contains 6 

quads. The un-optimised TAC before optimisation containing 12 instructions is also as shown in Table 7.31.

Table 7.31 Optimised TAC regenerated from the DAG for basic block 0

Un-optimised code Optimised code regenerated 

from DAG

(1) proc_begin func (1) proc_begin func

(2) _t0 := b + c (2) _t0 := b + c

(3) _t1 := _t0 * d (3) a := _t0 * d

(4) a := _t1 (4) e := f * a

(5) _t2 := f * a (5) f := _t0 * e

(6) e := _t2 (6) g := _t0 / d

(7) _t3 := b + c

(8) _t4 := _t3 * e

(9) f := _t4

(10) _t5 := b + c

(11) _t6 := _t5 / d

(12) g := _t6

7.2.9.7 Optimising Transformations on DAG The conversion of the quads pertaining to a basic block 

into DAG and the subsequent generation of the optimised quads from the DAG results in several optimising 

transformations taking place on the input quads. In this section, we discuss about how the optimising 

transformations like common sub-expression elimination, dead store elimination, copy propagation, etc. occur 

during the process of constructing a DAG and subsequent regeneration of the optimised quads.
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In the algorithm for constructing the DAG from the input quads (Algorithm 7.2), there is a check made 

to fi nd if there is an existing node with the same children (given by the line node_res  = fi nd_dag_node (op, 

node_arg1, node_arg2);). A new node is created only when such a node does not exist. This action allows 

us to detect common sub-expressions and eliminate the re-computation of the same. For example, consider 

the DAG shown in Fig. 7.24 resulting from the basic block in Fig. 7.5. The common sub-expression 

(b + c) is computed thrice in the input code at the quads (2), (7) and (10). These three computations are 

translated into a single node in the DAG (Node #5) having attached identifi ers as _t0, _t3 and _t5. When 

the reconstruction of the quads takes place from the DAG, the computation is only carried out once, stored 

in the selected identifi er _t0 and reused later. This illustrates how the DAG construction scheme identifi es 

the common sub-expressions and helps in eliminating its re-computation later during the reconstruction of 

the optimised quads from the DAG.

During the DAG construction process multiple identifi ers are attached to a DAG node. All of these 

identifi ers hold the same value. During the reconstruction of the quads from the DAG, we select only one 

of the identifi er among the attached identifi er list to represent the value. We generate additional assignment 

statements only if there are other user defi ned variables in the attached identifi er list. This eliminates 

unnecessary assignments of the form a: = b. For example, consider the DAG shown in Fig. 7.24 resulting 

from the basic block in Fig. 7.5. The input quad (5) _t2 := f * a resulted in the DAG node 9. The next 

input quad (6) e := _t2, resulted in adding an attached identifi er ‘e’ to the DAG node #9. When the DAG is 

traversed for generation of optimised quads, the node 9 results in a single quad e := f * d. No assignment 

is made to _t2, since it is not a user-defi ned variable. This eliminated the assignment e := _t2. Also, it 

allows the use of ‘e’ instead of _t2  (copy propagation) in further generation of quads. This illustrates how 

copy propagation is facilitated in the process of construction of DAG and the subsequent regeneration of 

optimised quads.

The elimination of common sub-expression and copy propagation transformations are implicit to 

the process of construction of DAG and the subsequent regeneration of optimised quads. There are 

other optimising transformations like the constant folding and elimination of dead code that can also be 

accomplished by revising the DAG before the generation of optimising quads.

Constant folding can be implemented by traversing the DAG and trimming it at the points where there 

are constants as children. Consider the sample input source and its corresponding intermediate code shown 

in Table 7.32. The DAG built for block 0 using Algorithm 7.2 is shown in Fig. 7.25. The nodes of the DAG 

shown in Fig. 7.25 are numbered according to the order of creation. The segment of the DAG containing 

PROC_BEGIN has been ignored for simplicity.

Table 7.32 Input source and intermediate code

Input source TAC

1  int a[45]; (1) proc_begin func

2 (2) _t0 := 5 * 4

3  int func() (3) _t1 := &a

4  { (4) _t1[_t0] := 25

5 (5) _t2 := 6 * 4

6 a[5]=25; (6) _t3 := &a

7 a[6]=30; (7) _t3[_t2]: = 30

8  } (8) label .L0

(9) proc_end func
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Fig. 7.25 DAG

In order to implement constant folding the DAG is traversed in the order of creation of the 

nodes. During the node traversal, if we fi nd an interior node having class 1 operator (ADD, MUL, 

DIV, SUB, etc.) with both children as constants, we perform constant folding. For example, in the 

DAG we see in Fig. 7.25, the node 3 is an interior node (MUL) having two children, which are 

constants, namely 5 and 4. Node 3 is replaced by a leaf node whose value is 20 (result of 5 * 4). If the 

children do not have any other parents apart from the node in consideration and they do not have 

any attached user defi ned identifi ers, they are removed from the DAG. The leaf node numbered 1 

(label 5) does not have any other parents apart from node number 3, hence it is removed from the DAG. 

The other child, namely the node numbered 2 (label 4), is not removed, since it has another parent (node 

number 9). The DAG after making these changes is shown in Fig. 7.26. 

Fig. 7.26 DAG after performing constant folding at node number 3
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In a similar way, the node numbered 9 is another candidate for performing constant folding, since both 

of its children are constants and the operator is MUL. The DAG after performing constant folding on node 

number 9 is shown in Fig. 7.27.

Fig. 7.27 DAG after performing constant folding on node number 9

The DAG in Fig. 7.27 is then traversed for generating the optimised quads as explained in Algorithm 

7.3. The generated optimised quads for the DAG in Fig. 7.27 is shown below:

Table 7.33 Regenerated quads

Optimised code regenerated from DAG

(0) proc_begin main

(1) _t1: = &arr1

(2) _t1[20] := 25

(3) _t1[24] := 30

(4) label .L0

(5) proc_end main

The above example illustrates how constant folding transformation can be performed on the unoptimised 

quads using the DAG.

Another optimising transformation—dead store elimination can also be implemented using the DAG 

built for a basic block. Dead store elimination is implemented by traversing the DAG and removing root 

nodes that do not have any user defi ned variables attached to it. A root node is a node in DAG that does not 

have any parents.

Consider the code snippet and its corresponding intermediate code shown in Table 7.34 for understand-

ing the elimination of dead store using the DAG. The DAG for the block 0 built using Algorithm 7.2 is 

shown in Fig. 7.28.
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Table 7.34 Input source and intermediate code

Input source TAC

1  int a,b,c,d; (1) proc_begin func

2  int x,y,z; (2) _t0: = a + b

3 (3) x := _t0

4  void func () (4) _t1 := b + c

5  { (5) y := _t1

6 x  = a + b; /* Dead Store */ (6) _t2 := d + a

7 y  = b + c; (7) x := _t2

8 x  = d + a; (8) label .L0

9  } (9) proc_end func

Fig. 7.28 DAG

In the DAG shown in Fig. 7.28 observe the node numbered 3. It has no parent. The list of identifi ers 

attached to it contains of only one identifi er _t0—a compiler-generated temporary that is not user defi ned. 

This node meets both the criteria of (1) not having any parent and (2) not having any user-defi ned variables 

attached to it. This node indicates a dead store and can be eliminated. The new DAG after the elimination 

of node 3 is shown in Fig. 7.29. 

Fig. 7.29 Modifi ed DAG after elimination of node 3

The quads for the function regenerated from the DAG in Fig. 7.29 are shown below.

Optimised code regenerated from DAG

(0) proc_begin func

(1) y := b + c

(2) x := d + a

(3) label .L0

(4) proc_end func
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In the cases of programs containing multiple dead stores, repeated application of the above mentioned 

criteria in the DAG and removal of DAG nodes, eliminates all of the dead stores in the basic block. 

To summarise, the process of making the DAG, revising it, and the subsequent regeneration of the 

optimised quads from the DAG helps in making the following optimising transformations within a basic 

block (a) common sub-expression elimination (b) copy propagation (c) removal of redundant assignments 

(d) constant folding and (e) dead store elimination.

7.2.9.8 Example 2—Local Optimisation using DAG This section demonstrates the toy C compiler 

(mycc) performing local optimisation of intermediate code by making the transformations like common 

sub-expression elimination, copy propagation, etc. The toy C compiler ‘mycc’ performs local optimisation 

by (a) constructing the DAG from the un-optimised TAC (Algorithm 7.2) and (b) regenerating the optimised 

quads from the DAG (Algorithm 7.3) as described in the preceding section. 

The toy C compiler takes as input, a sample C input source and gives out (a) unoptimised TAC and 

(b) the locally optimised TAC. The dialog below shows ‘mycc’ taking in some sample input C sources, 

printing out unoptimised and locally optimised intermediate code in TAC format.

# Generating the Parser from Grammar Specifi cations 

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyzer from Lexical Specifi cations 

$ fl ex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyzer 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building ‘mycc’ - A Toy Compiler for C Language 

$ g++ -DCHAP7_EX2  -DICGEN -g -Wall ic_gen.cc optimise.cc target_code gen.cc mycc.cc 
semantic_analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe 

# Common Sub-Expression Elimination Transformation 

$ cat -n test2a.c 
 1 /*

 2  Common Sub-expression

 3 */

 4 int a,b,c,d,e,f,g;

 5

 6 void func()

 7 {

 8

 9  int i,x;

 10

 11  a  = (b  + c)*d ;

 12  e  =  f * a ;

 13  f  = (b + c)*e;

 14  g  = d / (b + c);

 15

 16 }

$ ./mycc -i -O local -v test2a.c 
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TAC Before optimisation 

(0) proc_begin func

(1) _t0: = b + c

(2) _t1: = _t0 * d

(3) a: = _t1

(4) _t2: = f * a

(5) e: = _t2

(6) _t3 := b + c

(7) _t4 := _t3 * e

(8) f: = _t4

(9) _t5 := b + c

(10) _t6 := d / _t5

(11) g := _t6

(12) label .L0

(13) proc_end func

TAC After Local Optimization 

(0) proc_begin func

(1) _t0 := b + c

(2) a := _t0 * d

(3) e := f * a

(4) f := _t0 * e

(5) g := d / _t0

(6) label .L0

(7) proc_end func

# Copy Propagation Transform  

$ cat -n test2b.c 
 1 /*

 2  Copy Propagation

 3 */

 4

 5 int a,b,c,d,e,f,g;

 6

 7 void func()

 8 {

 9

 10  int i,x;

 11

 12  b  = a; 

 13

 14  d  = (b + c)*f;

 15  e  = (a + c)*g ;

 16 }

$ ./mycc -i -O local -v test2b.c 
TAC Before optimisation 

(0) proc_begin func

(1) b := a

(2) _t0 := b + c

(3) _t1 := _t0 * f

(4) d := _t1

(5) _t2 := a + c

(6) _t3 := _t2 * g

(7) e := _t3
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(8) label .L0

(9) proc_end func

TAC After Local Optimisation 

(0) proc_begin func

(1) b := a

(2) _t0 := a + c

(3) d := _t0 * f

(4) e := _t0 * g

(5) label .L0

(6) proc_end func

# Constant Folding Transformation 

$ cat -n test2c.c
 1 /*

 2  Constant Folding

 3 */

 4

 5 int a,b,c,d,e,f,g;

 6

 7 int func1()

 8 {

 9  int i;

 10

 11  b  = 5;

 12  a  = 6 ;

 13

 14  d  = f / (b * a) ;

 15  e  = g /f ;

 16

 17 }

 18

$ ./mycc -i -O local -v test2c.c 
TAC Before optimisation 

(0) proc_begin func1

(1) b := 5

(2) a := 6

(3) _t0 := b * a

(4) _t1 := f / _t0

(5) d := _t1

(6) _t2 := g / f

(7) e := _t2

(8) label .L0

(9) proc_end func1

TAC After Local Optimisation 

(0) proc_begin func1

(1) b := 5

(2) a := 6

(3) d := f / 30

(4) e := g / f

(5) label .L0

(6) proc_end func1

# Dead Assignment Elimination Transformation 
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$ cat -n test2d.c 
 1 /* 

 2  Dead Store

 3 */

 4

 5 int a,b,c,d;

 6 int x,y,z;

 7

 8 void func ()

 9 {

 10

 11  x = a + b; /* Dead Store */

 12  y = b + c;

 13  x = d + a;

 14 }

$ ./mycc -i -O local -v test2d.c 
TAC Before optimisation 

(0) proc_begin func

(1) _t0 := a + b

(2) x := _t0

(3) _t1 := b + c

(4) y := _t1

(5) _t2 := d + a

(6) x := _t2

(7) label .L0

(8) proc_end func

TAC After Local Optimization 

(0) proc_begin func

(1) y := b + c

(2) x := d + a

(3) label .L0

(4) proc_end func

# All of the transformations at Work 

$ cat -n test2e.c 
 1 /*

 2  All the Transformations at Work

 3  (1) Common Expression Elimination

 4  (2) Constant Propagation

 5  (3) Constant Folding

 6  (4) Dead Assignment Elimination

 7 */

 8 int a[45];

 9

 10 int func()

 11 {

 12  a[5]=25;

 13  a[6]=30;

 14 }

 15

$ ./mycc -i -O local -v test2e.c 
TAC Before optimisation 

(0) proc_begin func
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(1) _t0 := 5 * 4

(2) _t1 := &a

(3) _t1[_t0] := 25

(4) _t2 := 6 * 4

(5) _t3 := &a

(6) _t3[_t2] := 30

(7) label .L0

(8) proc_end func

TAC After Local Optimization 

(0) proc_begin func

(1) _t1 := &a

(2) _t1[20] := 25

(3) _t1[24] := 30

(4) label .L0

(5) proc_end func

7.2.9.9 Properties of  DAG In this section, we discuss about some of the important properties of a 

DAG. We try and understand these properties by looking at the DAG construction process for a sample 

intermediate code.

Consider the input source and the TAC generated by the intermediate code generator in Table 7.35. There 

are several points that can be observed from Table 7.35.

 (a) In the TAC, there is one basic block spanning from the quad (0) through (10). This basic block is 

essentially the core of the input source translated to the three address code.

 (b) The values of ‘y1’ and ‘y2’ are used in the block  (in quad 1) but are not computed in this block. The 

identifi ers ‘y1’ and ‘y2’ are considered as input to the block.

 (c) The value of ‘x1’ computed in the quad (10) can be potentially used in a succeeding block, if any. 

The value of ‘x1’ computed in the quad (2) cannot be used in the succeeding block, since it is 

overwritten in quad (10). The values of ‘x1’, ‘x2’, ‘x4’ and ‘x3’ computed at the quads 10, 9, 8 and 6 

are considered as output from the block.

Table 7.35 Input source and the intermediate code

Input source TAC

1  int x1, x2, x3, x4, y1, y2; (0) proc_begin func

2  (1) _t0 := y1 + y2

3  void func() (2) x1 := _t0

4  { (3) _t1 := x1 + y2

5    x1  = y1 + y2 ; (4) x2 := _t1

6    x2  = x1 + y2 ; (5) _t2 := x1 + x2

7    x3  = x1 + x2 ; (6) x3 := _t2

8    x4  = x1 + y2 ; (7) _t3 := x1 + y2

9    x2  = 0; (8) x4 := _t3

10    x1  = x3 ; (9) x2 := 0

11  } (10) x1 := x3

(11) label .L0

(12) proc_end func

Figure 7.30 depicts the construction of DAG for the TAC shown above. There are several  properties of 
the DAG that we can understand by looking at the DAG construction process and the   nal DAG arrived at 
in step (D) of the   gure.
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Fig. 7.30 DAG construction process
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 1. The   nal DAG in (D) contains two leaves labeled ‘y1’ and ‘y2’. These variables ‘y1’ and ‘y2’ are the 
input variables to the block that manifest as leaves in the DAG.

 2. The variable ‘x3’ was attached to node # 5 in (C) and it continued to be attached to it till the   nal 
DAG in (D). The variable ‘x3’ can be potentially used in the succeeding block if any, and it gets its 
  nal value from node # 5. In a similar way, the variable ‘x4’ was attached to node # 5 in (C) and it 
continued to be attached to it till the Final DAG in (D). The variable ‘x4’ can be potentially used in 
the succeeding block if any, and it gets its   nal value from node # 5. The variable ‘x1’ is attached 
to node # 5 and variable ‘x2’ is attached to node # 6 in step (D), which is also the fi nal step in the 

DAG. The variables ‘x2’ and ‘x3’ can be potentially used in the succeeding block if any, and they 

derive their fi nal value from node 5 and 6 respectively. The variables ‘x1’, ‘x2’, ‘x3’ and ‘x4’ are all 

examples of output variables identifi ed by the fact that they are attached to a node at some stage in 

the DAG construction process and continue to stay attached till the fi nal DAG.

 3. The fi rst evaluation of the sub-expression ‘x1 + y2’ happened in step (B), when the node # 5 was 

created. The expression ‘x1 + y2’ is identifi ed as common during the DAG construction process, 

when in step (C) we have the variables ‘_t3’ and ‘x4’ being attached on node # 5. The common sub-

expressions get identifi ed in the process of constructing the DAG.

 4. In a DAG, all the variables that hold the same values are all attached to the same node ‘n’. For 

example, _t2, x3 and x1 all hold the same value as given by node # 5 as seen from the fi nal DAG. 

The reconstruction of TAC from the DAG uses this property in eliminating unnecessary assignments 

of the form ‘x := y’. The optimised TAC generated from the DAG contains no assignments to any of 

the temporary variables, unless they are necessary.

7.2.9.10 Arrays, Pointers and Procedure Calls in DAG The algorithms presented in the previous 

section for DAG construction and IC regeneration have some limitations with respect to handling of arrays, 

pointers and procedure calls in the input source. In this section, we identify those limitations and suggest 

improvements to the algorithms to handle them.

Arrays

In some of the cases of input source containing array references, the DAG construction and IC regeneration 

algorithms in the form explained previously result in incorrect generation of optimised code. In this 

section, we show an example of input source using array references, where the generated optimised code is 

incorrect. Later we look at the modifi cation necessary in the DAG construction algorithm to fi x the issue of 

incorrect generation of optimised code.

Consider the input source given in Table 7.36. It contains a sequence of array references—a read from an 

array in the form of arr[i], a write into array in the form of arr[j], followed by a read from array again in the 

form of arr[i] as seen in lines 6, 7 and 8 respectively.  Table 7.36 also shows the intermediate code, before 

and after the local optimisation as given out by ‘mycc’ toy C compiler using the DAG construction and IC 

regeneration algorithms discussed in the previous sections.

Consider the optimised TAC instructions in Table 7.36. The quads (1) through (4) in the optimised TAC 

are correct. They represent the read of arr[i] into the identifi er ‘x’. The quad (5) showing an assignment 

‘z  = x’ is incorrect. We need to step back to the input source to understand why the quad (5) is incorrect. 

In-between the two reads of arr[i] at line 6 and line 8 in the input source, there is a possibility of a write at 

the location arr[i]. This happens when ‘i’ and ‘j’ have the same value. Thus, we cannot be assured that ‘z’ 

and ‘x’ would be equal all the time. Hence the quad (5) in the optimised TAC is incorrect. The correct code 

would need to read the value of arr[i] again and store it in ‘z’.
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Table 7.36 Input source and the intermediate code

Input source Un-optimised TAC Optimised TAC

1   int arr[50];

2   int x,y,z;

3

4   int func(int i,int j)

5   {

6    x  = arr[i];

7    arr[j]=y;

8    z  = arr[i];

9   }

10

(0) proc_begin func

(1) _t0 := i * 4

(2) _t1 := &arr

(3) _t2 := _t1[_t0]

(4) x := _t2

(5) _t3 := j * 4

(6) _t4 := &arr

(7) _t4[_t3] := y

(8) _t5 := i * 4

(9) _t6 := &arr

(10) _t7 := _t6[_t5]

(11) z := _t7

(12) label .L0

(13) proc_end func

(0) proc_begin func

(1) _t0 := i * 4

(2) _t1 := &arr

(3) x := _t1[_t0]

(4) z := x

(5) _t3 := j * 4

(6) _t1[_t3]: = y

(7) label .L0

(8) proc_end func

In order to appreciate why incorrect optimised TAC has been generated for the above example, we need 

to take a look at the DAG for the same. The DAG for the input source in Table 7.36 is shown in Fig. 7.31. 

Fig. 7.31 DAG using the original DAG construction algorithm

Observe that the DAG construction process has identifi ed arr[i] as a common expression and attached 

the identifi ers x and z to it (see node #6). This is the genesis of incorrect code generation. 

The algorithm that we used for constructing the DAG (Algorithm 7.2) needs to be modifi ed to overcome 

this fl aw and amend the generation of optimised code for array references. The revision in the algorithm is 

to process the assignments into arrays given by L_INDEX_ASSIGN of the form a[b]  = c differently. In the 

modifi ed version of the algorithm, at the time of processing of the quad with operator L_INDEX_ASSIGN, 

we mark all the nodes depending on the base address ‘a’ as ‘killed’. The notion of killing a node is to make 

it ineligible to have any more identifi ers attached to it. In other words, a  killed node cannot be returned, 

when the algorithm looks for common sub-expression. This forces the DAG construction algorithm to 

create a new node on any further access of the array using ‘a’ as the base address.
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The DAG constructed by using the modifi ed DAG construction algorithm for the same input source 

is shown in Fig. 7.32. It shows the node # 6 (shaded in gray) as killed, i.e. ineligible to have any more 

identifi ers attached. The node # 6 is killed during the processing of the input TAC statement (7)  _t4[_t3]

: = y (L_INDEX_ASSIGN). The subsequent processing of the input statement (10) _t7 := _t6[_t5] creates 

a new node (node # 12), since node # 6 has been killed. Thus, we fi nd that the _t7 and z are not attached to 

node #6 and falsely identifi ed as a common sub-expression.

Fig. 7.32 DAG using the modifi ed DAG construction algorithm

The optimised code generated from this DAG is given in Fig. 7.33. This set of quads is proper from the 

correctness standpoint.

Fig. 7.33 Optimised quads

Pointers

In some of the cases of input source containing usage of pointers, the DAG construction and IC 

regeneration algorithms in the form explained previously result in incorrect generation of optimised code. 

In this section, we show an example of input source using pointers, where the generated optimised code is 

incorrect. Later we look at the modifi cation necessary in the DAG construction algorithm to fi x the issue of 

incorrect generation of optimised code.

When there is a write into a variable using a pointer, the existing algorithm causes inaccuracies in the 

common sub-expression elimination leading to incorrect optimised code generation. A simple manifestation 

of write into a variable using a pointer and an incorrect identifi cation of common sub-expression is shown 
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in Table 7.37. The optimised TAC shown in Table 7.37 has incorrectly identifi ed ‘a + b’ as a common 

sub-expression, since there is no explicit write into ‘a’ or ‘b’ in the code between the two computations of 

‘a  + b’. In reality, the variable ‘a’ is being written into indirectly by having a pointer to it.

Table 7.37 Writing into variable via explicit pointer

Input source Un-optimised TAC Optimised TAC

1 int a,b,c,d; (0) proc_begin fun (0) proc_begin fun

2 (1) _t0 := a + b (1) c := a + b

3 int fun () (2) c := _t0 (2) d := c

4 { (3) _t1 := &a (3) p := &a

5 (4) p := _t1 (4) p[0] := 100

6  int *p; (5) p[0] := 100 (5) label .L0

7 (6) _t2 := a + b (6) proc_end fun

8  c = a + b; (7) d := _t2

9  p = &a ; (8) label .L0

10  *p = 100; (9) proc_end fun

11

12  /* NOT cse */

13  d = a + b;

14

15 }

In the above case, the memory or the variable where the pointer was pointing to was clear from the 

code. In some other  scenarios, it is diffi cult to pinpoint which variable is being written into or read from, 

especially in the cases where the control can fl ow in multiple paths. This type of ambiguity in the memory 

location that a pointer is pointing to (called  ambiguous pointer), also affects common sub-expression 

elimination in a similar fashion. 

Consider the program shown in Table 7.38, which shows the input source, intermediate code, before and 

after the local optimisation as given out by the compiler using the DAG construction and IC regeneration 

algorithms that we had discussed in the previous sections. 

Table 7.38 Writing into memory location via ambigious pointer

Input source Un-optimised TAC Optimised TAC

1 (0) proc_begin fun (0) proc_begin fun

2   int a,b,c,d; (1) if x > 10 goto .L0 (1) if x > 10 goto .L0

3 (2) goto .L1 (2) goto .L1

4   void fun(int x) (3) label .L0 (3) label .L0

5   { (4) _t0: = &b (4) p := &b

6     int *p; (5) p := _t0 (5) goto .L2

7 (6) goto .L2 (6) label .L1

8     if(x> 10){ (7) label .L1 (7) p := &a

9        p = &b; (8) _t1 := &a (8) label .L2

10    }else{ (9) p := _t1 (9) c := a + b

11       p = &a; (10) label .L2 (10) d := c

12    } (11) _t2 := a + b (11) p[0] := 25

13 (12) c := _t2 (12) label .L3
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14     c  = a + b; (13) p[0] := 25 (13) proc_end fun

15 (14) _t3 := a + b

16     /* a or b is overwritten */ (15) d := _t3

17     *p = 25; (16) label .L3

18 (17) proc_end fun

19     d = a + b; /* NOT cse */

20

21 }

22

Observe that at line 17 of the input source, the pointer could be writing into ‘a’ or ‘b’ (ambiguous) 

depending on whether the fl ow of control was via line 9 or line 11. Since ‘a’ or ‘b’ could be overwritten, the 

evaluation of ‘a + b’ in line 19 will be different from ‘a + b’ in line 14. Hence, the expression ‘a + b’ cannot 

be termed as a common sub-expression. The DAG construction algorithm discussed previously needs to be 

adapted to take care of write into variables pointed to using an ambiguous pointer such as ‘p’ above.

In order to fi x the above-mentioned issues with respect to incorrect identifi cation of common sub-

expression in the optimised code using pointers, the DAG construction algorithm is modifi ed as follows. 

During a write into memory via an explicit pointer (L_INDEX_ASSIGN), the DAG construction algorithm 

identifi es the variable ‘v’, that is being written to by a pointer. The current node ‘n’ associated with ‘v’ is 

then found using get_current(). The parents of ‘n’ are then ‘killed’ because they use the current value of ‘v’, 

which is being overwritten via pointer. In cases where the pointer is ambiguous, we kill all the nodes that 

have an identifi er attached. In both the cases, the killing of nodes forces an expression to be re-evaluated 

after the pointer is written into, resulting in correct optimal code.

Let’s consider the examples we had seen above in Table 7.37 and Table 7.38, in which the generated 

optimised code, was incorrect. We shall revisit the same examples, this time with the above-mentioned 

modifi cations to the DAG construction algorithm and see how it helps us generate correct optimal code.

Consider the source code seen earlier in Table 7.37, for illustrating the incorrect generation of optimised 

code owing to a write using a pointer. Figure 7.34 shows the DAG constructed using the original and the 

modifi ed DAG construction algorithm (as presented above) for the same input source. The corresponding 

optimised code generated from both of these DAGS is also shown. We can see from Fig. 7.34 that the node 

# 3 has been killed (shaded) in the case of DAG created from modifi ed algorithm. This prevents the node 

# 3 from having more attached identifi ers. The node # 3 is killed during the processing of TAC statement 

(5) p[0] := 100, (L_INDEX_ASSIGN) of the input TAC. During the processing of the statement (6) _t2 := 

a + b, the expression ‘a + b’ is not considered as a common sub-expression because the node # 3 is already 

‘killed’, i.e. made ineligible for attaching identifi ers. This forces the creation of a new node # 8 for storing 

the expression ‘a + b’.

The case of handling a write using an ambiguous pointer is relatively simpler. A write using an 

ambiguous pointer (L_INDEX_ASSIGN) causes all the nodes having an attached identifi er to be ‘killed’. 

This prevents incorrect identifi cation and elimination of common sub-expressions.
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Fig. 7.34 Write via pointer

Procedure Calls

In some of the cases of input source containing calls to procedures, the DAG construction and IC 

regeneration algorithms in the form explained previously result in incorrect generation of optimised code. 

In this section, we look at some examples of input source using procedure calls, where the generated 

optimised code is incorrect. Later we look at the modifi cation necessary in the DAG construction algorithm 

to fi x the issue of incorrect generation of optimised code.

Consider the input source shown in Table 7.39. A pointer ‘p’, pointing to the variable ‘x’ is being passed 

into a function ‘func1’. It is possible that the pointer ‘p’ is de-referenced to either read or write into the 

variable ‘x’ within the function ‘func1’. The expression ‘x + y’ cannot be a common sub-expression across 

the function invocation, since the value of ‘x’ can be changed in ‘func1’. The optimised code in Table 7.39, 

does not take this into account and judges ‘x + y’ as a common sub-expression. The DAG construction 

algorithm needs to be modifi ed to distinguish the variables that can be modifi ed by means of call to a 

procedure and treat common sub-expressions accordingly. In languages like C, where the parameter passing 
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is call-by-value, the only way a variable ‘v’ in the caller can be modifi ed by a callee is by passing a pointer 

to ‘v’ as parameter to the callee. In C ++ , which supports both call-by-value and call-by-reference, care 

needs to be taken to ascertain which variable can be modifi ed by the callee.

Table 7.39 Eff ect of procedure call on CSE

Input Source Un-optimised TAC Optimised TAC

1   int func1(int *p); (0) proc_begin func (0) proc_begin func

2 (1) _t0 := x + y (1) a := x + y

3   int a,b; (2) a := _t0 (2) b := a

4 (3) _t1 := &x (3) p := &x

5   void func(int x,int y) (4) p := _t1 (4) param p

6   { (5) param p (5) call func1 4

7     int *p; (6) call func1 4 (6) goto .L0

8 (7) _t2 := x + y (7) label .L0

9     a=x + y; (8) b := _t2 (8) proc_end func

10 (9) goto .L0

11     p  = &x; (10) label .L0

12 (11) proc_end func

13     /* can read/write

14       into p */

15     func1(p);

16

17     /* NOT cse */

18     b = x + y;

19

20     return;

21  }

In order to fi x the above-mentioned issues in the optimised code related to the procedure calls, the DAG 

construction algorithm is modifi ed in the following ways.

The processing of a call to a procedure (CALL statement) is modifi ed to kill all the DAG nodes having 

an identifi er attached to it. This prevents identifi cation of common sub-expressions across a CALL 

statement. This also eliminates the possibility of identifying legitimate common expressions that span 

across a CALL statement.  As we can see, the modifi cation is similar to the modifi cations proposed for 

handling the erroneous generation of optimal code in the case of pointers.

We will now revisit the example shown in Table 7.39, with the improved algorithm and verify the 

optimised code for correctness. Consider the input source shown earlier in Table 7.39, for which the 

generated optimised code was incorrect. Figure 7.35 shows the DAG constructed using the original 

and the modifi ed algorithm for the same input source. The corresponding optimised codes generated 

from both of these DAGS are also shown. We can see from Fig. 7.35 that the nodes #3 and # 4 have 

been killed (shaded) in the case of DAG created from modifi ed algorithm. This prevents the node 

# 3 from having more attached identifi ers. The node # 3 and # 4 (nodes with attached identifi ers) were 

killed during the processing of TAC statement (6) call func1 in the input TAC. During the processing 

of the statement (7), the expression ‘a + b’ is not considered as a common sub-expression because 

the node # 3 is already, ‘killed’, i.e. made ineligible for attaching identifi ers. This forces the creation 

of a new node for storing the expression ‘a + b’. This is an illustration of the modifi cation at work.

This concludes the discussion concerning the changes required in the DAG construction algorithm in the 

case of procedure calls.
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Fig. 7.35 Optimisation with a CALL statement

7.2.9.11 Example 3—Local Optimisation with DAG using the Improved Algorithm This section 

demonstrates the toy C compiler (mycc) performing local optimisation of intermediate code by using the 

improved DAG construction and TAC regeneration algorithms outlined in Section 7.2.9.10. The generated 

optimised intermediate code using the improved algorithms do not suffer from any of the defi ciencies 

presented previously and is complete in terms of correctness.

The toy C compiler takes as input, a sample C input source and gives out (a) unoptimised TAC and 

(b) the locally optimised TAC. The dialog below shows ‘mycc’ taking in some sample input C sources 

containing arrays, pointers and procedure calls. It prints out the unoptimised and locally optimised 

intermediate code in TAC format as the output.
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# Generating the Parser from Grammar Specifi cations 

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g + +  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyzer from Lexical Specifi cations 

$ fl ex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyzer 

$ g + +  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building ‘mycc’ - A Toy Compiler for C Language 

$ g++  -DICGEN -g -Wall ic_gen.cc optimise.cc target_code_gen.cc mycc.cc semantic_
analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe 

# Sample Input C fi le containing array references 

$ cat -n test3a.c 
 1 int arr[50];

 2 int x,y,z;

 3

 4 int func(int i,int j)

 5 {

 6  x  = arr[i];

 7  arr[j]=y;

 8  z  = arr[i];

 9 }

 10

# Intermediate code before and after optimization 

$ ./mycc.exe -i -O local -v test3a.c 
TAC Before optimisation 

(0) proc_begin func

(1) _t0 := i * 4

(2) _t1 := &arr

(3) _t2 := _t1[_t0]

(4) x := _t2

(5) _t3 := j * 4

(6) _t4 := &arr

(7) _t4[_t3] := y

(8) _t5 := i * 4

(9) _t6 := &arr

(10) _t7 := _t6[_t5]

(11) z := _t7

(12) label .L0

(13) proc_end func

TAC After Local Optimization 

(0) proc_begin func

(1) _t0 := i * 4

(2) _t1 := &arr

(3) x := _t1[_t0]

(4) _t3 := j * 4

(5) _t1[_t3] := y

(6) _t5 := i * 4

(7) _t6 := &arr
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(8) z: = _t6[_t5]

(9) label .L0

(10) proc_end func

# Sample Input C fi le with a write via pointer.Affects CSE 

$ cat -n test3d.c 
 1 int a,b,c,d;

 2

 3 int fun ()

 4 {

 5

 6  int *p;

 7

 8  c  = a + b;

 9  p  = &a ;

 10  *p  = 100;

 11

 12  /* NOT cse */

 13  d  = a + b;

 14

 15 }

# Intermediate code before and after optimization 

$ ./mycc.exe -i  -O local -v test3d.c 
TAC Before optimization 

(0) proc_begin fun

(1) _t0 := a + b

(2) c := _t0

(3) _t1 := &a

(4) p := _t1

(5) p[0] := 100

(6) _t2 := a + b

(7) d := _t2

(8) label .L0

(9) proc_end fun

TAC After Local Optimization 

(0) proc_begin fun

(1) c := a + b

(2) p := &a

(3) p[0] := 100

(4) d := a + b

(5) label .L0

(6) proc_end fun

# Sample Input C fi le using pointer to write into variable  

# Ambiguous pointer. Affects CSE 

$ cat -n test3f.c 
 1

 2 int a,b,c,d;

 3

 4 void fun(int x)

 5 {

 6  int *p;

 7

 8  if(x> 10){

 9   p  = &b;
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 10  }else{

 11   p  = &a;

 12  }

 13

 14  c  = a + b;

 15

 16  /* a or b is overwritten */

 17  *p  = 25;

 18

 19  d  = a + b; /* NOT cse */

 20

 21 }

 22

# Intermediate code before and after optimization 

$ ./mycc.exe -i  -O local -v test3f.c
TAC Before optimization

(0) proc_begin fun

(1) if x > 10 goto .L0

(2) goto .L1

(3) label .L0

(4) _t0: = &b

(5) p := _t0

(6) goto .L2

(7) label .L1

(8) _t1 := &a

(9) p := _t1

(10) label .L2

(11) _t2 := a + b

(12) c := _t2

(13) p[0] := 25

(14) _t3 := a + b

(15) d := _t3

(16) label .L3

(17) proc_end fun

TAC After Local Optimization 

(0) proc_begin fun

(1) if x > 10 goto .L0

(2) goto .L1

(3) label .L0

(4) p := &b

(5) goto .L2

(6) label .L1

(7) p := &a

(8) label .L2

(9) c := a + b

(10) p[0] := 25

(11) d := a + b

(12) label .L3

(13) proc_end fun

# Sample Input C fi le with a procedure call passing a pointer.  

# The called procedure can write using the pointer. This Affects CSE. 

$ cat -n test3h.c
 1 void func1(int *p);

 2
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 3 int a,b;

 4

 5 void func(int x,int y)

 6 {

 7  int *p;

 8

 9  a=x + y;

 10

 11  p  = &x;

 12

 13  /* can read/write

 14  into p */

 15  func1(p);

 16

 17  /* NOT cse */

 18  b = x + y;

 19

 20  return;

 21 }

# Intermediate code before and after optimization 

$ ./mycc.exe -i  -O local -v test3h.c 
TAC Before optimization 

(0) proc_begin func

(1) _t0 := x + y

(2) a := _t0

(3) _t1 := &x

(4) p : = _t1

(5) param p

(6) call func1 4

(7) _t2 : = x + y

(8) b : = _t2

(9) goto .L0

(10) label .L0

(11) proc_end func

TAC After Local Optimization 

(0) proc_begin func

(1) a : = x + y

(2) p : = &x

(3) param p

(4) call func1 4

(5) b : = x + y

(6) goto .L0

(7) label .L0

(8) proc_end func

7.2.10 Global Optimisation

7.2.10.1 Introduction The global optimisation of the intermediate code is more complex than the 

local one, since it needs to take care of variety of issues like say branching in the fl ow of control, usage 

of variables across basic blocks, loop information, and so on, while constructing optimised code. We start 

the study of global optimisation for the intermediate code with discussion on some of the basic concepts in 

global optimisation.
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Flow Graph

In local optimisation, the focus was essentially on the quads within a basic block, where the fl ow of control 

was in a straight line. In global optimisation, we are also concerned about how the fl ow of control goes 

from one block to another. The decisions taken for optimisation need to take into account all possible ways

Fig. 7.36 Input source, IC after local optimisation and the fl ow graph
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the control can fl ow. The information about the fl ow of the entire procedure, i.e. the possible blocks to get 

executed after a particular block B is represented in a graph called as the fl ow graph. Each node in a fl ow 

graph is a basic block. In a fl ow graph, there is a directed edge from the block B1 and B2, only if (a) There 

is a conditional jump to the block B2 from the last quad of B1 or (b) the fl ow of control goes to B2 after B1 

sequentially.

Figure 7.36 shows an input source, IC, after local optimisation and the corresponding fl ow graph. 

Remember that the input to global optimisation is the locally optimised intermediate code. The starting 

node in a fl ow graph is called as  initial node. This is the basic block whose leader is the fi rst TAC statement 

in the procedure. The node B0 in Fig. 7.36 is the initial node. The fl ow of control can go to block B1 or B2 

from the block B0. The blocks B1 and B2 are called the  successors of the block B0. Block B0 is called as a 

 predecessor of block B1. B0 is called as the predecessor for block B2 also.

Point and Path

There are a couple of abstractions that are commonly used during the discussion on global optimisation, 

namely a point and path. 

A point is a place of reference that can be found at (a) before the fi rst quad in a basic block (b) after 

the last quad in a basic block and (c) In between two quads within a basic block. Figure 7.37 shows the 

different points of the basic block 0 of the previous example. We can see that there are 4 points in basic 

block 0, given by p0_b0, p1_b0, p2_b0 and p3_b0. We have suffi xed the block number b0 to the point 

name to clearly identify that the point belongs to block 0. There are 3 quads and 4 points in the basic block 

0. In general, there are (i + 1) points for a basic block containing ‘i’ quads.

Fig. 7.37 Points

Figure 7.38 shows a part of the fl ow graph containing the basic blocks B0, B1, B2 and B3 for the same 

example. It shows all the points in each of those basic blocks. A  path is a sequence of points in which the 

control can fl ow. For example, there is a path between the points ‘p0_b0’ and ‘p6_b2’ given by the sequence 

of points, p0_b0, p1_b0, p2_b0, p3_b0, p4_b2, p5_b2 and p6_b2. There is no path between p3_b1 and 

p6_b2, since there is no sequence of points that can take the control from p3_b1 to p6_b2. Observe that 

there are two possible paths from p0_b0 to p7_b3. The path1 consists of the sequence of points, p0_b0, p1_

b0, p2_b0, p3_b0, p3_b1, p4_b1, and p7_b3. The path2 consists of the sequence of points, p0_b0, p1_b0, 

p2_b0, p3_b0, p4_b2, p5_b2, p6_b2, p7_b2, and p7_b3. It is not common to illustrate each of the points in 

the fl ow graph, the reader needs to absorb the idea of the points and path from a given fl ow graph.

Defi nition and Usage of Variables

The concepts of defi nition and usage of variables are used extensively during the study of global 

optimisation. Consider the input source and the TAC (locally optimised) shown in Table 7.40 to understand 

those twin concepts. The quad (1) defi nes the variable ‘v3’. In other words, the quad (1) assigns a value to 
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the variable ‘v3’. The quad(1) uses the variables ‘v1’ and ‘v2’ to defi ne ‘v3’. Similarly, quad (5) defi nes ‘v4’ 

and uses ‘v1’ and ‘v2’.

Fig. 7.38 Points and paths
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Table 7.40 Defi ne and use

Input source Locally optimised TAC

 1  int v1,v2,v3,v4,v5;  (0) proc_begin func

 2  (1) v3: = v1 + v2

 3  int func(int c)  (2) if c > 100 goto .L0

 4  {  (3) goto .L1

 5    v3  = v1 + v2 ;  (4) label .L0

 6  (5) v4 := v1 + v2

 7    if(c > 100){  (6) v1 := 0

 8      v4  = v1 + v2;  (7) label .L1

 9      v1  = 0;  (8) v5 := v1 + v2

10     }  (9) label .L2

11 (10) proc_end func

12    v5  = v1 + v2 ;

13  }

14

In the above example, the assignment to ‘v3’ in quad (1) is explicit. There would be cases, where a 

quad defi nes a variable implicitly through a pointer. As an example, consider the input source and the 

corresponding three-address code in Table 7.41.  In this case, the variable ‘x’ is defi ned in the quad (3) implicitly 

by using the pointer ‘p’. We can say that quad (3) defi nes the variable ‘x’ assertively, since we know that the 

pointer ‘p’ is unambiguously pointing to the variable ‘x’ at the time when control reaches quad (3). 

Table 7.41 Defi ne via unambiguous pointer

Input source Locally optimised TAC

 1   int x,y,z; (0) proc_begin func

 2 (1) p := &x

 3   int func() (2) _t1 := y + z

 4   { (3) p[0] := _t1

 5     int *p; (4) label .L0

 6 (5) proc_end func

 7     p  = &x;

 8   

 9     /* x is assigned */

10    *p  = y + z;

11  

12   }

Table 7.42 presents another case, where the pointer ‘p’  is ambiguous, i.e. we cannot say that the quad 

(10) defi nes ‘a’ or ‘b’ assertively, since it depends on how the control has passed before it came to the quad 

(10). In such cases where there is a write into a variable via an ambiguous pointer, it is considered to have 

defi ned all the variables that are present in the scope.

Table 7.42 Defi ning via ambiguous pointer

Input source Locally optimised TAC

 1  int a,b,c,d;  (0) proc_begin fun

 2  (1) if x > 10 goto .L0

 3  void fun(int x)  (2) goto .L1
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 4  {  (3) label .L0

 5    int *p;  (4) p : = &b

 6  (5) goto .L2

 7    if(x> 10){  (6) label .L1

 8        p = &b;  (7) p := &a

 9    }else{  (8) label .L2

10      p = &a;  (9) _t2 := c + d

11    } (10) p[0] := _t2

12 (11) label .L3

13    /* a or b is assigned */ (12) proc_end fun

14    *p  = c + d;

15

16  }

17

It is also possible for a procedure call to defi ne a variable ‘v’ by passing it as a parameter using the pass- 

by-reference scheme.

Data Flow Analysis

The global optimisation is performed after the local optimisation. The local optimisation would typically 

have eliminated the common sub-expressions, removed dead code, performed copy propagation and other 

optimisations mentioned in Section 7.3.9 at a block level. The global optimiser takes the quads that come 

out of the local optimiser and works on optimising them at a global level across the blocks.

The global optimiser elicits a variety of information from the input quads in order to make informed 

decisions during optimisation. It uses specialised algorithms to analyse the input quads and extract useful 

details so that it can perform the optimisation of the quads.

Let’s take an example to understand the kind of information that is extracted from the input quads to 

perform optimisation at a global level. Consider the input source and the intermediate code after local 

optimisation shown in Table 7.43. The expression ‘v1 + v2’ has been computed in the quad (1) in the basic 

block 0. When the control comes to quad (5), we can re-use the computed value of the expression ‘v1 + v2’ 

from the quad (1). Observe that the values of ‘v1’ and ‘v2’ have not changed from the time ‘v1 + v2’ has been 

computed at (1) till the time the control reaches (5). In other words, in order to eliminate the re-computation 

of the common sub-expression ‘v1 + v2’ in a global fashion at (5), it is required to fi gure out the information 

that the expression ‘v1 + v2’ has been computed earlier in a different block and is readily ‘available’ for use.  

The local optimisation would have taken care of eliminating a common sub-expression, if it were within 

the same block. The global optimisation needs to analyse the quads in all of the basic blocks to absorb the 

information about which expressions are ‘available’ and at what point. Observe that we cannot eliminate the 

re-computation of the expression ‘v1 + v2’ at the quad(8), because it is not ‘available’ at that point. 

Table 7.43 Input source and the TAC after local optimisation

Input source TAC after local optimisation

1   int v1,v2,v3,v4,v5; (0) proc_begin func

2 (1) v3 := v1 + v2

3   int func(int c) (2) if c > 100 goto .L0

4   {
5     v3  = v1 + v2 ; (3) goto .L1

6
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7     if(c > 100){ (4) label .L0

8 (5) v4 := v1 + v2

9     /* ‘v1 + v2’ is available (6) v1 := 0

10           here */

11         v4 = v1+v2; (7) label .L1

12  (8) v5 := v1 + v2

13         /* CSE  Killed */

14       v1 = 0; (9) label .L2

15    } (10) proc_end func

16  

17    /* ‘v1+v2’ is NOT available 

18         here */

19    v5 = v1 + v2 ;

20  }

The information about the ‘available expressions’ that we saw in the above example is used by the global 

optimiser in order to eliminate common sub-expressions at a global level. There are many other such pieces 

of information like say ‘reaching defi nitions’, ‘liveness’, and so on that the global optimiser requires for 

performing different types of optimisations. We study a few of them in the forthcoming sections.

The analysis of the input quads for obtaining information such as the ‘available expressions’ in the above 

example is known as  data fl ow analysis. By using data fl ow analysis, we collect specifi c information about 

a  data fl ow property. In the above example, we have computed the data fl ow property commonly called as 

‘available expressions’.  The algorithm used for collecting a data fl ow property say ‘available expressions’ 

might differ vastly from the one used for collecting another data fl ow property say ‘reaching defi nitions’. 

In the next few sections, we study about some of the data fl ow properties used commonly during global 

optimisation. Each of those sections is structured to discuss about (a) introduction to the data fl ow property 

(b) the algorithm that is used to collect the particular data fl ow property (c) how the data fl ow property is 

used to make a particular global optimisation, and (d) example demonstrating the global optimisation using 

the data fl ow property.

7.2.10.2 Available Expressions

Introduction There was a brief introduction to the data fl ow property called ‘available expressions’ in 

the Section 7.2.10.1. We study about that in detail in this section. Available expressions (AE) is a data fl ow 

property that is computed by the global optimiser using data fl ow analysis for eliminating the re-evaluation 

of common sub-expressions globally across blocks. 

Let’s start off with a formal defi nition of ‘available expression’ using the notion of points and path that 

we studied in Section 7.2.10.1. An expression ‘a + b’ is available at a point ‘p’, if both of the following 

conditions are satisfi ed.

 (a) Every path from initial node in the fl ow graph to ‘p’ evaluates ‘a + b’.

 (b) After the last such evaluation of ‘a + b’ and before reaching ‘p’ in every path, there are no 

subsequent assignments to ‘a’ or ‘b’.

Let’s use the example in Table 7.43 and check whether the expression ‘v1 + v2’ is available at the 

points just before quad (5) and quad (8) using the above defi nition. The quads (5) and (8) re-compute the 

expression ‘v1 + v2’, which can be avoided in case the expression is available at those points.

Figure 7.39 shows the fl ow graph of the Intermediate code after local optimisation annotated with the 

individual points for the discussion.
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Let’s check the availability of expression ‘v1 + v2’ at the point ‘p5_b2’ using the above defi nition of 

‘available expression’. There is only one path—path1 leading to p5_b2 from the initial node, which is given 

by the sequence of points p0_b0, p1_b0, p2_b0, p3_b0, p4_b2 and p5_b2. The last evaluation of ‘v1 + v2’ 

happens at quad (1). There is no assignment to ‘v1’ or ‘v2’ after the last evaluation, along the sequence of 

points in path1 mentioned above. Hence, the expression ‘v1 + v2’ is available at the point  p5_b2.

Fig. 7.39 Flow graph with points

Let’s check the availability of expression ‘v1 + v2’ at the point ‘p8_b3’ using the above defi nition of 

‘available expression’. There are 2 paths leading to p8_b3 from the initial node. The path1 is given by the 

sequence of points, p0_b0, p1_b0, p2_b0, p3_b0, p3_b1, p4_b1, p7_b3 and p8_b3.  The last evaluation of 
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‘v1 + v2’ happens at quad (1) in this path. There is no assignment to ‘v1’ or ‘v2’ after the last evaluation 

along the sequence of points in path1 mentioned above. The path2 is given by p1_b0, p2_b0, p3_b0, p3_b1, 

p4_b2, p5_b2, p6_b2, p7_b2, p7_b3 and p8_b3. The last evaluation of ‘v1 + v2’ happens at quad (5) in this 

path. There is an assignment to ‘v1’ at quad (6) after the last evaluation, in this path. This violates the condition 

(b) mentioned above for the path2. Hence, the expression ‘v1 + v2’ is not available at the point p8_b3.

From the above discussion, the expression ‘v1 + v2’, is available at the point p5_b2, so it can be used 

to eliminate the re-evaluation of common sub-expression at quad (5). Table 7.44 shows the TAC after local 

optimisation and the TAC after eliminating the global common sub-expression—v1 + v2. We can observe 

that the re-computation of the expression ‘v1 + v2’ has been avoided in the quad (5). The quads of relevance 

for the elimination of the global common sub-expression ‘v1 + v2’  are shaded in gray in Table 7.44. This 

is a testimony of how the information on AE is used for elimination of global common sub-expressions.

Table 7.44 Global common sub-expression elimination using AE

Input source TAC after local optimisation
TAC after elimination of global 

common sub-expression

1   int v1,v2,v3,v4,v5; (0) proc_begin func (0) proc_begin func

2 (1) v3 := v1 + v2 (1) _t3 := v1 + v2

3   int func(int c) (2) if c > 100 goto .L0 (1a) v3 := _t3

4   { (2) if c > 100 goto .L0

5       v3  = v1 + v2 ; (3) goto .L1 (3) goto .L1

6 (4) label .L0

7       if(c > 100){ (4) label .L0 (5) v4 := _t3

8 (5) v4 := v1 + v2 (6) v1 := 0

9        /* ‘v1+v2’ is available (6) v1 := 0 (7) label .L1

10          here */ (8) v5 := v1 + v2

11         v4  = v1 + v2; (7) label .L1 (9) proc_end func

12 (8) v5 : = v1 + v2

13         /* CSE  Killed */

14         v1  = 0; (9) label .L2

15     } (10) proc_end func

16

17     /* ‘v1 + v2’ is NOT available

18        here */

19     v5  = v1 + v2 ;

20   }

Table 7.45 illustrates more examples with information on the available expressions in order to enhance 

the understanding of the same. The description here uses the input source to make conclusions on 

the available expressions, just for the ease of understanding. In practice, the global optimiser elicits the 

available expression information from the quads post local optimisation using the algorithms described in 

the next sections.
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Table 7.45 Input sources and the available expressions

Input source Comments on the available expressions

1 int v1,v2,v3,v4,v5;

2

3 int func(int c)

4 {

5  v3  = v1 + v2 ;

6

7  if( c > 100){

8

9   /* ‘v1+v2’ is available here as CSE */

10   v4 = v1 + v2;

11

12    /* CSE  Killed */

13   v1  = 0;

14

15   /* computing ‘v1+v2’ again */

16   v6  = v1 + v2;

17  }

18

19  /* ‘v1+v2’ is available here as CSE */

20  v5  = v1 + v2 ;

21 }

The expression ‘v1 + v2’ is available at line 10, 

since the only path that reaches line #10 (5->7

->10) evaluates ‘v1 + v2’ at line #5 and there are 

no subsequent assignments to ‘v1’ or ‘v2’ between 

line #5 and line #10.

The line #20 can be reached in 2 ways. One of 

the paths reaching line #20 is (5->7->10->13

->16->20) evaluates ‘v1 + v2’ at line #16 and 

there are no subsequent assignments to ‘v1’ or 

‘v2’ between line #16 and line #20 in this path. 

The other path to line #20 is 5->7->20, evaluates 

‘v1 + v2’ at line #5 and there are no subsequent 

assignments to ‘v1’ or ‘v2’ between line #5 and 

#20 in this path. Hence the expression ‘v1 + v2’ is 

available at line #20.

1 int v1,v2,v3,v4,v5,v6;

2

3 int func(int c)

4 {

5  if(c > 100){

6   v3 = v1 + v2;

7  }else{

8   v4 = v1 + v2 ;

9  }

10

11  /* ‘v1+v2’ is available here as CSE */

12  v5 = v1 + v2 ;

13 }

The line #12 can be reached in 2 ways. One of the 

paths reaching line #12 is (5->6->12) evaluates 

‘v1 + v2’ at line #6 and there are no subsequent 

assignments to ‘v1’ or ‘v2’ between line #6 and 

line #12 in this path. The other path to line #12 

is 5->8->12, evaluates ‘v1 + v2’ at line #8 and 

there are no subsequent assignments to ‘v1’ or 

‘v2’ between line #8 and #12 in this path. The 

expression ‘v1 + v2’ is available at line #12, since 

both the conditions (a) and (b) mentioned above 

are satisfi ed.

Data Flow Analysis to Compute AE in Intermediate Code We now study about the algorithms that can 

be used for computing the AE properties of a given TAC and subsequently use it for globally eliminating 

common sub-expression.

We start off with some terminology.

A block generates an expression say ‘a + b’, if it evaluates ‘a + b’ and does not make any assignment to 

‘a’ or ‘b’ subsequently in the block. We use the term e_GEN[B] to denote the expressions generated by a 

basic block B. For example, the term e_GEN[B0] represents the expressions generated by block 0.

A block kills an expression say ‘a + b’, if it assigns a value to ‘a’ or ‘b’ and does not subsequently re-

compute the value ‘a + b’.  We use the term e_KILL[B] to denote the expressions killed by a basic block B. 

For example, the term e_KILL[B0] represents the expressions killed by block 0.

The generation and killing of expressions are used in tandem with ‘L’ a universal set of expressions 

appearing on the right side of one or more quads of the program spanning across all the basic blocks.

Consider the sample TAC shown in Table 7.46 to understand how the universal set of expressions L, is 

computed. The universal set of expressions L consists of any expression that appears on the right side of 

one or more statements. By inspecting the input quads in Table 7.46, we can see that the expression ‘a + b’ 
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is used in quad (1). The expression ‘b * c’ is used in the quad (2) The expression ‘c + d’ is used in (3) and 

(8). The expression ‘a * b’ is used in (5) and (9) The expression ‘b/c’ is used in quad (6).  Thus, we have the 

universal set of expressions L = {a + b, b * c, c + d, a * b, b/c}.

Table 7.46 Sample TAC

 (0) proc_begin test_func

 (1) x  = a + b

 (2) y  = b * c

 (3) d  = c + d

 (4) if u > 100 goto .L1

 (5) x  = a * b

 (6) y  = b / c

 (7) b  = 45

 (8) z  = c + d

 (9) u  = a * b

(10) label .L1

(11) proc_end test_func

In order to calculate the set of generated expressions e_GEN[B], we need to consider the points in a 

block from the beginning to the end of block. For a quad ‘x := y + z’, sandwiched between two points ‘p’ and 

‘q’ as shown in Fig. 7.40, the set of generated expressions at the point ‘q’ would be calculated from e_GEN, the 

set of generated expression at p, as follows:

 (a) Add the expression ‘y + z’ to the set e_GEN.

 (b) Delete from e_GEN any expression that uses ‘x’.

The steps (a) and (b) would have be done in the same order for catering to situations where the operand 

‘x’ on the LHS is the same as one of the operands on the RHS—‘y’ or ‘z’. The quad #3 in Table 7.46 is an 

example where the operand on the LHS is ‘d’ and one of the operands on the right is also ‘d’. 

p

(n) x := y + z

q

Fig. 7.40 A quad between two points

Let’s take the example of basic block shown in Table 7.47 and calculate the set of generated expressions 

at the end of the block using the steps (a) and (b) mentioned above. Table 7.47 illustrates the TAC along 

with the points that need to be considered for the calculation of generated expressions.

Table 7.47 Points in the basic block 0

p0_b0

(0) proc_begin test_func

p1_b0

(1) x  = a + b

p2_b0

(2) y  = b * c

p3_b0

(3) d  = c + d

p4_b0

(4) if u > 100 goto .L1

p5_b0
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Table 7.48 shows the step-by-step computation of e_GEN for the basic block 0.

Table 7.48 Computing the e_GEN for Block 0

# TAC under consideration Explanation

1 p0_b0

(0) proc_begin test_func

p1_b0

At the point p0_b0, the start of the initial block there are no 

generated expressions, so e_GEN[p0_b0] = { ø }.

No expressions are used or killed in quad (0) , hence

e_GEN[p1_b0] = e_GEN[p0_b0]

e_GEN[p1_b0] = { ø }

2 p1_b0

(1) x = a + b

p2_b0

e_GEN[p1_b0] = { ø } as computed above.

step(a)

e_GEN[p2_b0] = e_GEN[p1_b0] + { a+b }

e_GEN[p2_b0] = { a+b }

step(b) 

There are no expressions in e_GEN[p2_b0] containing ‘x’to be 

deleted , so it remains as is.

e_GEN[p2_b0] = { a+b }

3 p2_b0

(2) y = b * c

p3_b0

e_GEN[p2_b0] = { a+b } as computed above.

step(a)

e_GEN[p3_b0] = e_GEN[p2_b0] + { b*c}

e_GEN[p3_b0] = { a+b, b*c }

step(b) 

There are no expressions in e_GEN[p3_b0] containing ‘y’to be 

deleted , so it remains as is.

e_GEN[p3_b0] = { a+b, b*c }

4 p3_b0

(3) d = c + d

p4_b0

e_GEN[p3_b0] = { a+b, b*c } as computed above.

step(a)

e_GEN[p4_b0] = e_GEN[p3_b0] + { c+d }

e_GEN[p4_b0] = { a+b, b*c , c+d }

step(b) 

There is an expression in e_GEN[p4_b0] containing ‘d’ which is 

c+d. We now,delete c+d from e_GEN[p4_b0].

e_GEN[p4_b0] = { a+b, b*c, c+d } – { c+d }

e_GEN[p4_b0] = { a+b, b*c }

5 p4_b0

(4) if u > 100 goto .L1

p5_b0

e_GEN[p4_b0] = { a+b, b*c } as computed above.

step(a) and (b)

No expressions are used or killed in quad (4) , hence

e_GEN[p5_b0] = e_GEN[p4_b0]

e_GEN[p5_b0] = { a+b, b*c }

The value of e_GEN[B0] is the same as e_GEN[p5_b0], since it is 

the last point in the block.

The value of e_GEN[B0] = { a+b,b*c } is the set of Generated 

expressions for the Block 0.
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The generated set of expressions e_GEN[B0] for the block 0 as calculated above is  = {a + b, b * c}.

The set of killed expressions e_KILL, is all the expressions ‘y + z’, which satisfy the following criteria:

 (a) Either y or z are defi ned in the block.

 (b) The expression ‘y + z’ is not generated by the block.

Let’s now calculate the set of killed expressions for the block 0 in the above example. The universal set 

of expressions L, used in the TAC is  = {a + b, b * c, c + d, a * b, b/c}. This was calculated previously. In 

the block 0, we defi ne ‘x’ in quad (1), ‘y’ in quad (2) and ‘d’ in quad (3).  In L, the expressions that involve 

x, y, or d are {c + d}. The expression ‘c + d’ is not generated by block 0. Hence, the set of killed expressions 

in block 0, e_KILL[B0] is  = {c + d}. 

Figure 7.41 shows the universal set of expressions L, e_GEN and e_KILL for the block 0 as calculated 

in this discussion. 

Fig. 7.41 e_GEN and e_KILL for block 0

The reader is encouraged to calculate the values of e_GEN and e_KILL for the other blocks. 

The data fl ow properties like AE and the others that we study in the next few sections are computed 

using equations know as  data fl ow equations. By using the data fl ow equations, one can compute the values 

of data fl ow property like AE at the block boundaries. The value of data fl ow property is then extrapolated 

to the point of interest within the block by using its value at the block boundary.

The data fl ow equations for AE express the relationship between the e_IN[B], the set of expressions that 

are available at the beginning of block ‘B’ to e_OUT[B] the set of expressions that are available at the end 

of block ‘B’. The data fl ow equations for available expressions are as follows:

e_OUT[B]  = e_GEN[B] U (e_IN[B] – e_KILL[B])

e_IN[B] = « e_OUT[P] for all the predecessors P of the block

e_IN[B0]  = ø where B0 is the initial block

Equation 7.1

Let’s use the data fl ow equations for available expressions given by Equation 7.1 and calculate the 

available expressions at the start (e_IN[B]) and end of each block (e_out[B]) for the sample code shown in 

Fig. 7.36 reproduced below for convenience. There are 5 basic blocks (B0–B4) each of them is seen as a 

node in the fl ow graph.
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The following table shows the calculation of the sets e_IN and e_OUT for all the blocks B0 through B4 

using the data fl ow equations defi ned by Equation 7.2.

Table 7.49 Computation of e_IN and e_OUT for the basic blocks

Block 

No.

TAC e_IN e_OUT Comments

B0 (0) proc_begin func

(1) v3 := v1 + v2

(2) if c > 100 goto .L0

{ø} {v1 + v2} The universal set of expressions 

that are used in the entire 

procedure is given by L  = {v1 + v2}

e_IN[B0]  = ø as defi ned by the Data 

Flow Equation in Equation 7.1

e_GEN[B0]  = {v1 + v2}, since the 

block evaluates ‘v1 + v2’ and does 

not make any assignment to ‘v1’ or 

‘v2’ subsequently in the block
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e_KILL[B0]  = {ø}  since there is 

no assignment to v1 or v2, which 

can kill the only expression ‘v1 + 

v2’ in L.

From the data fl ow equation e_OUT[B]  

= e_GEN[B] U (e_IN[B] – e_KILL[B] 

), we have

e_OUT[B0] = {v1 + v2} U ({ø} – {ø})

e_OUT[B0] = {v1 + v2}

B1 (3) goto .L1 {v1 + v2} {v1 + v2} According to Equation 7.1 we have 

e_IN[B]  = « e_OUT[P] for all the 

predecessors P of the block

e_IN[B1]  = e_OUT[B0], since there 

is only one predeccesor i.e. B0

Hence, e_IN[B1]  = {v1 + v2}

e_GEN[B0]  = {ø}, since the block 

does not evaluate any expression

e_KILL[B0]  = {ø}  since there is 

no assignment to v1 or v2, which 

can kill the expression ‘v1 + v2’

From the data fl ow equation e_OUT[B]  

= e_GEN[B] U (e_IN[B] – e_KILL[B] ), 

we have

e_OUT[B1] = {ø} U ({v1 + v2} – {ø})

e_OUT[B1] = {v1 + v2}

B2 (4) label .L0

(5) v4 := v1 + v2

(6) v1 := 0

{v1 + v2} {ø} According to Equation 7.1 we have

e_IN[B]  = « e_OUT[P] for all the 

predecessors P of the block

e_IN[B2]  = e_OUT[B0], since there is 

only one predecessor for B2 i.e. B0

Hence, e_IN[B2]  = {v1 + v2}

e_GEN[B2]  = {ø}, since the block 

evaluates expression ‘v1 + v2’, but 

subsequently has an assignment to 

v1.

e_KILL[B2]  = {v1 + v2}  since 

there is an assignment to v1, which 

can kill the expression ‘v1 + v2’

From the data fl ow equation OUT[B]  

= e_GEN[B] U (e_IN[B] – e_KILL[B] ), 

we have

e_OUT[B2] = {ø} U ({v1 + v2} – {v1 

+ v2})

e_OUT[B2] = {ø}

B3 (7) label .L1

(8) v5 := v1 + v2

{ø} {v1 + v2} According to Equation 7.1 we have

e_IN[B]  = « e_OUT[P] for all the 

predecessors P of the block
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e_IN[B3]  = e_OUT[B1] « e_OUT[B2], 

since there are two predecessors 

for B3 i.e. B1 and B2

Hence, e_IN[B3]  = {v1 + v2} « {ø} 

e_IN[B3]  = {ø}

e_GEN[B3]  = {v1 + v2} since the 

block evaluates expression ‘v1 + 

v2’, and it has no assignment to v1 

or v2 later.

e_KILL[B3]  = {ø}  since there is 

no assignment to v1 or v2, which 

can kill the expression ‘v1 + v2’

From the data fl ow equation e_OUT[B]  

= e_GEN[B] U (e_IN[B] – e_KILL[B] 

), we have

e_OUT[B3]  = {v1 + v2} U ({ø} – {ø})

e_OUT[B3]  = {v1 + v2} U  {ø} 

e_OUT[B3]  = {v1 + v2}

B4 (9) label .L2

(10) proc_end func

{v1 + v2} {v1 + v2} According to Equation 7.1 we have

e_IN[B]  = « e_OUT[P] for all the 

predecessors P of the block

e_IN[B4]  = e_OUT[B3], since there is 

only one predecessor for B4 i.e. B3

Hence, e_IN[B4]  = {v1 + v2} 

e_IN[B4]  = {v1 + v2}

e_GEN[B4]  = {ø} since the block 

evaluates no expression.

e_KILL[B4]  = {ø}  since there is 

no assignment to v1 or v2, which 

can kill the expression ‘v1 + v2’

From the data fl ow equation e_OUT[B]  

= e_GEN[B] U (e_IN[B] – e_KILL[B] 

), we have

e_OUT[B4]  = {ø} U ({v1 + v2} 

– {ø})

e_OUT[B4]  = {ø}  U {v1 + v2}

e_OUT[B4]  = {v1 + v2}

Figure 7.42 shows the fl ow graph annotated with the values of e_IN, e_GEN, e_KILL and e_OUT for 

each of the blocks—B0 through B4. 

In this example, we have been able to compute the available expression information at the start of the 

block in the form of e_IN by using the Equation 7.1 for all the blocks in the program. We have been able to 

compute the values of e_IN and e_OUT for each of the blocks by proceeding block after block in the same 

order as the data fl ow, i.e. B0, followed B1, B2, B3, and B4. We had to strictly follow the order of fl ow of 

control while computing the e_IN because the e_IN[B] = « e_OUT[P] for all the predecessors P of the 

block. We could not have computed e_IN[B], even if the e_OUT of one of the predecessors were not yet 

computed.
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Fig. 7.42 Flow graph annotated with available expression information

Let’s now consider a scenario for computing the available expression (AE) in the form of e_IN and 

e_OUT in an input source involving loops. We shall use the data fl ow equations for available expressions 

given by Equation 7.1 and calculate the available expressions at the start (e_IN[B]) and end of each block 

e_OUT[B] for the sample code shown in Fig. 7.43. Figure 7.43 also shows the corresponding TAC after 

local optimisation and its fl ow graph. There are 6 basic blocks (B0–B5) each of them is seen as a node in 

the fl ow graph.
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Fig. 7.43 Input source, IC after local optimisation and the fl ow graph
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The computation of e_IN and e_OUT for the basic blocks is described in Table 7.50.

Table 7.50 Computation of e_IN and e_OUT for the basic blocks

Block 

No.

TAC e_IN e_OUT Comments

B0 (0) proc_begin func

(1) c1 := p + b

(2) c2 := q – b

{ø} {p + b, q – b} The universal set of expressions 

that are used in the entire 

procedure is given by L  = {p + b, 

q – b}

e_IN[B0]  = ø as defi ned by 
Equation 7.1

e_GEN[B0]  = {p + b, q – b}, 

since the block evaluates ‘p 

+ b’and ‘q – b’. There are no 

subsequent assignments to ‘p’ or 

‘q’ or ‘b’ subsequently in the 

block

e_KILL[B0]  = {ø}  since 

There is no assignment to 

p or b, which can kill the 

expression ‘p + b’. There are no 

assignments to ‘q’ or ‘b’, which 

can kill the expression ‘q – b’.

From the data fl ow equation 

OUT[B]  = e_GEN[B] U (e_IN[B] 

– e_KILL[B]), we have

OUT[B0] = {p + b, q – b} U ({ø} 

– {ø})

e_OUT[B0] = {p + b, q – b}

Let’s now look at the calculation of e_IN and e_OUT of the block B1, which offers some challenges.

The e_IN for the block is defi ned by Equation 7.1

 e_IN[B] = « e_OUT[P] for all the predecessors P of the block

The block B1 has two predecessors B0 and B3, hence the e_IN for B1 can be written as

 e_IN[B1]  = e_OUT[B0]  « e_OUT[B3].

The e_OUT for B0 has been calculated above. However, the e_OUT of B3 is not available at this point 

for the computation of e_IN[B1]. We cannot compute the value of e_OUT[B3] at this point either, because 

we would require the e_OUT[B1] to be known for the calculation of  e_OUT[B3], since B1 is one of the 

predecessor for the block B3. This type of cyclic dependency between the nodes of the fl ow graph makes it 

diffi cult to calculate e_IN at some of the nodes like B1 in the cases of input source having loops. 

This issue is overcome by having an  iterative approach to solving the data fl ow equations for the 

available expressions given by Equation 7.1. In the iterative approach of solving data fl ow equations 

for available expressions, an initial value for e_OUT[B] for every block B is provided. This will help us 

compute the e_IN[B], where e_IN[B] = « e_OUT[P] for all the predecessors P of the block, even in cases 

where e_OUT[P] is not yet computed, like the block 3 in the above example. The initial value of e_OUT[B] 
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for every block B that is assigned before the start of the fi rst iteration is (L – e_KILL[B]). Observe that this 

initial value, (L – e_KILL[B]) is the maximum value that e_OUT can take. In other words the e_OUT[B] 

is initialised with the maximum possible value. For the initial block, we initialise e_IN[B0]  to ø and e_

OUT[B0] to e_GEN[B0].

Now, using the value of e_IN[B], we compute e_OUT[B] for each one of the blocks B, with the help 

of the equation e_OUT[B] = e_GEN[B] U (e_IN[B] – e_KILL[B]). In this manner, we compute e_IN and 

e_OUT for all the blocks.  Observe that the e_IN of some of the blocks like B1, might have been computed 

directly based on the initial value of e_OUT for one of the predecessor — B3, while the e_IN of other 

blocks like B2, B4, etc. are calculated based on the computed values of e_OUT of the predecessors. At the 

end of one round of computation for all the blocks (let’s call it iteration 1), we have a set of values of e_IN/

e_OUT for all the blocks. At this point, note that the e_OUT for every block contains the computed value 

and not the initial value that we assigned at the start. Table 7.51 shows e_IN/e_OUT calculation for the fi rst 

iteration corresponding to all the nodes (basic blocks) of the fl ow graph in Fig. 7.43.  

Next, we do the computation of  e_IN and e_OUT for all the blocks again (say iteration 2) using the 

same equations defi ned in Equation 7.1. In this second iteration, the value of e_IN for the blocks like B1 

might change, since e_IN[B1]  = e_OUT[B0] « e_OUT[B3], and e_OUT[B3] would now be the value 

computed in the fi rst iteration as opposed to initial value. The changes in e_IN[B1] could have a ripple 

effect changing e_OUT[B1], e_IN[B3] and then e_OUT[B3]. Thus, the second iteration yields a set of 

values of e_IN/e_OUT for all the blocks.

We calculate the e_IN / e_OUT for all the blocks again in the third iteration, fourth iteration and so 

on. We stop the iterations, when we see that for every block, the value of e_OUT has not changed, when 

compared to its value in the previous iteration. In other words, we stop the iterations, when the e_OUT for 

all the blocks have reached a steady state. The Table 7.52 shows the values of e_IN/e_OUT as calculated 

in the fi rst and second iteration corresponding to all the nodes (basic blocks) of the fl ow graph in Fig. 7.43. 

Observe that the values of e_OUT for none of the blocks have changed from the fi rst to second iteration. 

This signals us to halt the iterations calculating e_IN/e_OUT for the blocks, since e_OUT of all the blocks 

have reached a steady state.

Table 7.51 shows the calculation of e_IN/e_OUT for each of the blocks in the fi rst iteration using the 

initial values of e_OUT, wherever required.

Table 7.51 Computation of e_IN and e_OUT in the fi rst iteration

# TAC e_IN e_OUT Comments

B0 (0) proc_begin func

(1) c1 := p + b

(2) c2 := q – b

{ø} {p + b, q – b} The universal set of expressions 

that are used in the entire 

procedure is given by L  = {p + 

b, q – b}

e_IN[B0]  = ø as defi ned in 
Equation 7.1

e_GEN[B0]  = {p + b, q – b}, 

since the block evaluates ‘p + 

b’ and ‘q – b’. There are no 

subsequent assignments to ‘p’ or 

‘q’ or ‘b’ subsequently in the 

block
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e_KILL[B0]  = {ø}  since 

There is no assignment to p or b, 

which can kill the expression ‘p 

+ b’. There are no assignments to 

‘q’ or ‘b’, which can kill the 

expression ‘q – b’.

From the data fl ow equation OUT[B]  

= e_GEN[B] U (e_IN[B] – e_KILL[B] 

), we have

OUT[B0] = {p + b, q – b} U ({ø} 

– {ø})

e_OUT[B0] = {p + b, q – b}

B1 (3) label .L0

(4) if p < 20 goto .L1

{q – b} {q – b} According to Equation 7.1 we have 

e_IN[B]  = « e_OUT[P] for all the 

predecessors P of the block

e_IN[B1]  = e_OUT[B0] « e_

OUT [B3], since there are 2 

predecessors i.e. B0 and B3

We have already computed e_
OUT[B0] = {p + b, q – b} in the 
previous step.

e_OUT[B3] is initialised with  (L 

– e_KILL[B3])

L  = {p + b, q – b}

e_KILL[B3]  = {p + b}  since there 

is an assignment to ‘p’, but there 

is subsequent re-computation of 

p + b. There are no assignments 

to ‘q’ or ‘b’, which can kill the 

expression ‘q – b’.

e_OUT[B3] = (L – e_KILL[B3])

e_OUT[B3] = ({p + b, q – b} – {p + b})

e_OUT[B3] = {q – b}

e_IN[B1]  = e_OUT[B0] « e_OUT[B3] 

e_IN[B1] = {p + b, q – b}  « {q – b}

e_IN[B1] = {q – b}

e_GEN[B1] = {ø}, since the block 

does not evaluate ‘p + b’and ‘q 

– b’.

e_KILL[B1]  = {ø}  since

There is no assignment to p or b, 

which can kill the expression ‘p 

+ b’. There are no assignments to 

‘q’ or ‘b’, which can kill the 

expression ‘q – b’.

From the data fl ow equation e_

OUT[B]  = e_GEN[B] U (e_IN[B] 

– e_KILL[B] ), we have

e_OUT[B1] = {ø} U ({q – b} – {ø})

e_OUT[B1] = {q – b}
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B2 (5) goto .L2 {q – b} {q – b} According to Equation 7.1 we have 

e_IN[B] = « e_OUT[P] for all the 

predecessors P of the block

e_IN[B2] = e_OUT[B1], since there 

is only 1 predecessor i.e. B1

We have already computed e_
OUT[B1] = {q – b} in the previous 
step.

e_IN[B2] = e_OUT[B1] 

e_IN[B2] = {q – b}

e_GEN[B2] = {ø}, since the block 

does not evaluate ‘p + b’and ‘q 

– b’.

e_KILL[B2] = {ø} since

There is no assignment to p or b, 

which can kill the expression ‘p 

+ b’. There are no assignments to 

‘q’ or ‘b’, which can kill the 

expression ‘q – b’.

From the data fl ow equation e_

OUT[B] = e_GEN[B] U (e_IN[B] 

– e_KILL[B]), we have

e_OUT[B2] = {ø} U ({q – b} – {ø})

e_OUT[B2] = {q – b}

B3 (6) label .L1

(7) p := p + b

(8) goto .L0

{q – b} {q – b} According to Equation 7.1 we have 

e_IN[B] = ∩ e_OUT[P] for all the 

predecessors P of the block

e_IN[B3] = e_OUT[B2], since there 

is only 1 predecessor i.e. B2

We have already computed e_
OUT[B2] = {q – b} in the previous 
step.

e_IN[B3] = e_OUT[B2]

e_IN[B3] = {q – b}

e_GEN[B3] = {ø}, since the block 

evaluates ‘p+b’, but assigns it to 

‘p’.

e_KILL[B3] = {p + b} since

There is assignment to p, which 

kills the expression ‘p + b’. 

There are no assignments to 

‘q’ or ‘b’, which can kill the 

expression ‘q –b’.

From the data fl ow equation e_

OUT[B] = e_GEN[B] U (e_IN[B] 

– e_KILL[B]), we have
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e_OUT[B3] = {ø} U ({q – b} – {p 

+ b})

e_OUT[B3] = {ø} U ({q – b})

e_OUT[B3] = {q – b}

B4 (9) label .L2

(10) c3 := p + b

(11) c4 := q – b

{q – b} {p + b, q – b} According to Equation 7.1 we have 

e_IN[B] = « e_OUT[P] for all the 

predecessors P of the block.

e_IN[B4] = e_OUT[B3], since there 

is only 1 predecessor, i.e. B3

We have already computed e_
OUT[B3] = {q – b} in the previous 
step.

e_IN[B4] = e_OUT[B3]

e_IN[B4] = {q – b}

e_GEN[B4] = {p + b, q – b}, since 

the block evaluates ‘p + b’ and 

‘q – b’.

e_KILL[B4] = {ø} since

There is no assignment to p, 

which kills the expression ‘p + 

b’. There are no assignments to 

‘q’ or ‘b’, which can kill the 

expression ‘q –b’.

From the data fl ow equation 

e_OUT[B] = e_GEN[B] U (e_IN[B] 

– e_KILL[B]), we have

e_OUT[B4] = {p + b, q – b} U ({q 

– b} – {ø})

e_OUT[B4] = {p + b, q – b} U ({q 

– b})

e_OUT[B4] = {p + b, q – b}

B5 (12) label .L3

(13) proc_end func

{p + b, 

q – b}

{p + b, q – b} According to Equation 7.1 we have 

e_IN[B] = « e_OUT[P] for all the 

predecessors P of the block.

e_IN[B5] = e_OUT[B4], since there 

is only 1 predecessor, i.e. B4

We have already computed e_
OUT[B4] = {p + b, q – b} in the 
previous step.

e_IN[B5] = e_OUT[B4]

e_IN[B5] = {p + b, q – b}

e_GEN[B5] = {ø}, since the block 

does not evaluate any expression.

e_KILL[B5] = {ø}  since 

There is no assignment to ‘p’ or 

‘b’, which kills the expression 

‘p + b’. There are no assignments 

to ‘q’ or ‘b’, which can kill the 

expression ‘q – b’.
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From the data fl ow equation e_

OUT[B] = e_GEN[B] U (e_IN[B] 

– e_KILL[B]), we have

e_OUT[B5] = {p + b, q – b} U 

({{ø} – {ø})

e_OUT[B5] = {p + b, q – b} U 

({ø})

e_OUT[B5] = {p + b, q – b}

Table 7.52 The values of e_IN and e_OUT for iteration 1 and 2

Block # Iteration 1 Iteration 2

e_IN e_OUT e_IN e_OUT

0 {ø} {p + b, q – b} {ø} {p + b, q – b}

1 {q – b} {q – b} {q – b} {q – b}

2 {q – b} {q – b} {q – b} {q – b}

3 {q – b} {q – b} {q – b} {q – b}

4 {q – b} {p + b, q – b} {q – b} {p + b, q – b}

5 {p + b, q – b} {p + b, q – b} {p + b, q – b} {p + b, q – b}

Algorithm 7.4 summarises the computation of available expression (e_IN/e_OUT) using the iterative 

approach of solving data fl ow equations that we discussed above.

e_IN[B0] = ø

out[B0] = e_GEN[B0]

/* Initialize e_OUT for all blocks */

for every block B except the initial block B0 {

 e_OUT[B] = L – e_KILL[B]

}

steady_state=FALSE

while (steady_state== FALSE) {

 steady_state=TRUE

 for every block B except the initial block B0 {

  /* e_IN */

  e_IN[B] = « e_OUT[P] for all the predecessors P of the block

  /* saving e_OUT to later check if we have reached steady state */

  saved_e_OUT=e_OUT[B]

  /* computing e_OUT */

  e_OUT[B] = e_GEN[B] » (e_IN[B] – e_KILL[B])

  /* Checking for a steady state of e_OUT */

  if (saved_e_OUT ! = e_OUT[B]){

     steady_state = FALSE

  }

 }

}

Algorithm 7.4 Available expressions computation using the iterative approach
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Algorithm 7.4 works for the input sources involving loops and also the ones without the loops. Observe 

in the algorithm that the fi nal values of e_IN and e_OUT for all the blocks in the procedure are arrived 

at in an iterative fashion. For an input source without any loops, the fi nal values of e_IN and e_OUT for 

each block can be arrived at in the fi rst iteration, if the computation is made in the order of fl ow of control, 

where we compute e_IN/e_OUT for a block B only after e_IN/e_OUT for all its predecessors have been 

computed. In such cases, the second iteration is performed only to confi rm that the values of e_OUT have 

reached a steady state.

The iterative approach to solve the data fl ow equations that we saw above is used time and again in the 

next few sections for computing other data fl ow properties like reaching defi nition, etc.

The next section explains how the available expression information in the form of e_IN/e_OUT, 

computed at the block boundaries is used in global common sub-expression elimination (gcse).

Global common sub-expression elimination using available expressions The e_IN information 

available at the start of each block can be used for eliminating the evaluation of common sub-expression. 

From a conceptual standpoint, the e_IN at the start of the block represents all the expressions that have 

been evaluated in the procedure before reaching this block, and are available in an evaluated form. The 

focal point of the discussion below is on how to use the e_IN information to eliminate the common sub-

expressions.

A quad ‘q’ in the block B using a common sub-expression of the form ‘x + y’ can be eliminated if the 

following conditions are satisfi ed.

 1. The expression ‘x + y’ should be available at the start of the block B as indicated by the e_IN set for 

the block B.

 2. There should not be an assignment to either ‘x’ or ‘y’ from the start of the block B till the quad ‘q’.

We will use the input source, the locally optimised TAC and the corresponding fl ow graph that we fi rst 

saw in Fig. 7.36 to use the above two conditions to eliminate a quad using an available expression. Recall 

that the Fig. 7.42 showed the same fl ow graph annotated with the values of e_IN, e_GEN, e_KILL and 

e_OUT for each of the blocks—B0 through B4 computed in the last section. It is reproduced below for 

convenience.

In the block B2, there is a quad (5), which uses the expression v1 + v2. The quad (5) in block B2 is a 

potential candidate for eliminating the common sub-expression, v1 + v2 because it satisfi es the following 

conditions:

 1. The expression v1 + v2 is available at the start of the block as indicated by e_IN[B2] = {v1 + v2}. 

 2. There are no assignments to either v1 or v2 from the start of the block B2 till the quad (5).

In order to eliminate the common sub-expression v1 + v2 in the quad (5), we fi rst identify all the 

statements evaluating ‘v1 + v2’ that reach quad (5). In this case it is only quad (1) in block B0 that evaluates 

‘v1 + v2’ and reaches B2. We create a new temporary say ‘_t0’ for using as a temporary place to store the 

evaluated value of v1 + v2. We replace the quad (1) with a couple of statements allowing us to store the 

value of ‘v1 + v2’ as shown below.

Before After

(1) v3: = v1 + v2 Æ (1a) _t0 = v1 + v2

(1b) v3 = _t0

The quad (5) is then replaced to use the temporary instead of re-evaluating the expression as follows.

Before After

(5) v4 := v1 + v2 Æ (5a) v4 = _t0
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The fi nal TAC incorporating the changes just discussed is shown in Table 7.53. The fi nal TAC shown in 

Table 7.53 has eliminated the re-evaluation of common sub-expression ‘v1 + v2’ found earlier in the quad (5).

Table 7.53 Global common sub-expression elimination

Locally optimised TAC Final TAC

(0) proc_begin func (0) proc_begin func

(1) v3 := v1 + v2 (1a) _t0 := v1 + v2

(2) if c > 100 goto .L0 (1b) v3 := _t3

(3) goto .L1 (2) if c > 100 goto .L0
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(4) label .L0 (3) goto .L1

(5) v4 := v1 + v2 (4) label .L0

(6) v1 := 0 (5a) v4 := _t0

(7) label .L1 (6) v1 := 0

(8) v5 := v1 + v2 (7) label .L1

(9) label .L2 (8) v5 := v1 + v2

(10) proc_end func (9) label .L2

(10) proc_end func

The procedure we had adopted to eliminate the re-evaluation of common sub-expression ‘v1 + v2’ at 

quad (5) is formalised in Algorithm 7.5. The input to the algorithm is the locally optimised TAC and the 

output is the TAC in which global common sub-expressions are eliminated. The algorithm shows ‘+’ as a 

notional operator denoting any of the binary operators like addition (+), subtraction (–), multiplication (*), 

or division (/).

Scan all the quads in the TAC to identify the quads ‘q’ of the form x := y + z, that 

meet the following criteria

 (a) y + z is available at the start of the block in which ‘q’ is located i.e. in e_IN and 

 (b) There are no assignments to ‘y’ or ‘z’ in the statements before ‘q’ in the block.

The identifi ed quads ‘q’ are added into a set ‘M’.

For each quad ‘q’ in the set M, do the following to eliminate the common sub-expression.

 (1) Identify all the statements evaluating ‘y + z’ that reach the quad ‘q’ and add 

them to a set ‘A’.

 (2) Create a new temporary variable ‘_tn’ (e.g. _t0 or _t1 or _t2 etc)

 (3) For every statement w: = y + z, in the set A, do the following

  a. _tn := y + z

  b. w := _tn

 (4) Replace the quad ‘q’  by w: = _tn

Algorithm 7.5 Global common sub-expression elimination using AE

Example 4—Global common sub-expression elimination using AE This section demonstrates the toy 

C compiler (mycc) performing global common sub-expression elimination using the available expression 

information. The available expression information was gathered by using Algorithm 7.4, explained 

previously. The AE information was put to use to eliminate the global common sub-expressions as 

explained in Algorithm 7.5.

The toy C compiler takes as input, a sample C input source and gives out (a) unoptimised TAC (b) the 

locally optimised TAC and (c) the TAC after global common sub-expression elimination. The dialog below 

shows ‘mycc’ taking in some sample input C sources having common sub-expressions and printing out the 

above information as the output.
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# Generating the Parser from Grammar Specifi cations 

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyser from Lexical Specifi cations 

$ fl ex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyser 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building ‘mycc’ - A Toy Compiler for C Language 

$ g++  -DICGEN -g -Wall ic_gen.cc optimize.cc target_code_gen.cc mycc.cc 
semantic_analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe 

# Sample Input C fi le containing common sub-expressions 

$ cat -n test.cse.1.c 
 1 int v1, v2, v3, v4, v5;

 2

 3 int func(int c)

 4 {

 5  v3  = v1 + v2 ;

 6

 7  if (c > 100){

 8

 9   /* ‘v1+v2’ is available 

 10    here */

 11   v4  = v1 + v2; 

 12

 13   /* CSE  Killed */

 14   v1  = 0;

 15  }

 16

 17  /* ‘v1+v2’ is NOT available 

 18    here */

 19  v5  = v1 + v2 ;

 20 }

# Intermediate code before and after optimization 

# -O gcse for Global Common Subexpression, -v for verbosity 

$ ./mycc.exe -i -O gcse -v test.cse.1.c 
TAC Before optimization 

 (0) proc_begin func

 (1) _t0 := v1 + v2

 (2) v3 := _t0

 (3) if c > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) _t1 := v1 + v2

 (7) v4 := _t1

 (8) v1 := 0

 (9) label .L1

(10) _t2 := v1 + v2

(11) v5 := _t2
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(12) label .L2

(13) proc_end func

TAC After Local Optimization 

 (0) proc_begin func

 (1) v3 : = v1 + v2

 (2) if c > 100 goto .L0

 (3) goto .L1

 (4) label .L0

 (5) v4 := v1 + v2

 (6) v1 := 0

 (7) label .L1

 (8) v5 : = v1 + v2

 (9) label .L2

(10) proc_end func

TAC After (Local and Global) optimization 

 (0) proc_begin func

 (1) _t3 := v1 + v2

 (2) v3 := _t3

 (3) if c > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) v4 := _t3

 (7) v1 := 0

 (8) label .L1

 (9) v5 := v1 + v2

(10) proc_end func

# Sample Input C fi le containing common subexpressions 

$ cat -n test.cse.2.c 
 1 int v1, v2, v3, v4, v5, v6, v7;

 2

 3 int func(int c)

 4 {

 5  v3  = v1 + v2 ;

 6

 7  if (c > 100){

 8

 9   /* ‘v1+v2’ is available here as CSE */

 10   v4  = v1 + v2; 

 11

 12   /* CSE  Killed */

 13   v1  = v3 + v4;

 14

 15   /* computing ‘v1+v2’ again */

 16   v7  = v1 + v2;

 17  }

 18

 19  /* ‘v1+v2’ is available here as CSE */

 20  v5  = v1 + v2 ;

 21 }

# Intermediate code before and after optimization 

$ ./mycc.exe -i -O gcse -v test.cse.2.c 
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TAC Before optimization 

 (0) proc_begin func

 (1) _t0 := v1 + v2

 (2) v3 := _t0

 (3) if c > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) _t1 := v1 + v2

 (7) v4 := _t1

 (8) _t2 := v3 + v4

 (9) v1 := _t2

(10) _t3 := v1 + v2

(11) v7 := _t3

(12) label .L1

(13) _t4 := v1 + v2

(14) v5 := _t4

(15) label .L2

(16) proc_end func

TAC After Local Optimization 

 (0) proc_begin func

 (1) v3 : = v1 + v2

 (2) if c > 100 goto .L0

 (3) goto .L1

 (4) label .L0

 (5) v4 := v1 + v2

 (6) v1 := v3 + v4

 (7) v7 := v1 + v2

 (8) label .L1

 (9) v5 := v1 + v2

(10) label .L2

(11) proc_end func

TAC After (Local and Global) optimization 

 (0) proc_begin func

 (1) _t5 := v1 + v2

 (2) v3 := _t5

 (3) if c > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) v4 := _t5

 (7) v1 := v3 + v4

 (8) _t5 := v1 + v2

 (9) v7 := _t5

(10) label .L1

(11) v5 := _t5

(12) proc_end func

# Sample Input C fi le containing common sub-expressions 

$ cat -n test.cse.3.c 
 1 int v1, v2, v3, v4, v5, v6;

 2

 3 int func(int c)

 4 {

 5  if (c > 100){

 6   v3  = v1 + v2; 
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 7  }else{

 8   v4  = v1 + v2 ;

 9  }

 10

 11  /* ‘v1+v2’ is available here as CSE */

 12  v5  = v1 + v2 ;

 13 }

 

# Intermediate code before and after optimization 

$ ./mycc.exe -i -O gcse -v test.cse.3.c 
TAC Before optimization 

 (0) proc_begin func

 (1) if c > 100 goto .L0

 (2) goto .L1

 (3) label .L0

 (4) _t0 := v1 + v2

 (5) v3 := _t0

 (6) goto .L2

 (7) label .L1

 (8) _t1 := v1 + v2

 (9) v4 := _t1

(10) label .L2

(11) _t2 := v1 + v2

(12) v5 := _t2

(13) label .L3

(14) proc_end func

TAC After Local Optimization 

 (0) proc_begin func

 (1) if c > 100 goto .L0

 (2) goto .L1

 (3) label .L0

 (4) v3 := v1 + v2

 (5) goto .L2

 (6) label .L1

 (7) v4 := v1 + v2

 (8) label .L2

 (9) v5 := v1 + v2

(10) label .L3

(11) proc_end func

TAC After (Local and Global) optimization

 (0) proc_begin func

 (1) if c > 100 goto .L0

 (2) goto .L1

 (3) label .L0

 (4) _t3 := v1 + v2

 (5) v3 := _t3

 (6) goto .L2

 (7) label .L1

 (8) _t3 := v1 + v2

 (9) v4 := _t3

(10) label .L2

(11) v5 := _t3

(12) proc_end func
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7.2.10.3 Live Variable Analysis

Introduction The  live variable analysis is another commonly employed data fl ow analysis technique to 

derive a data fl ow property called as ‘liveness’ from the input TAC. The liveness information helps us in 

performing global dead code elimination. A more important application of live variable analysis information 

happens during the optimised target code generation, where it is used in making decisions for retaining a 

variable’s value in a register. We study about that later in the section on optimised target code generation.

Let’s take an example to understand the idea of liveness and see how that can be used in performing 

dead code elimination at a global level. Consider the input source and the corresponding TAC after local 

optimisation shown in Fig. 7.44.

Fig. 7.44 Input source and the TAC after local optimisation

Let’s take a look at the TAC after local optimisation in order to get an idea on ‘liveness’. In the block 

B0, we have an assignment i := 45 in quad (1). The value of ‘i’, i.e. 45, has been propagated to the quad 

(3) during local optimisation. Observe that ‘i’ is not used later in block 0 or in any of the later blocks. In 

contrast, the value of ‘j’ computed in quad (2) of block B0 is used in other blocks, i.e. in quad (7) and quad 

(10). We can say that the variable ‘j’ is live at the point right after quad (2) and also at the end of the block 

B0. The variable ‘i’ is not live either at the point right after quad (1) or nor at the end of the block B0.

A variable v is said to be live at a point p, if it is used in some path in the fl ow graph starting p. The 

variable is considered dead, if it is not live.

The quad (1) in which we assign 45 to the variable ‘i’ can be eliminated, since the variable ‘i’ is dead. In 

general, let’s say we have a quad q: v  = x op y, where op is one of the operators in the TAC. If the variable 

‘v’ is dead and the operator op does not have any side-effects then the statement ‘s’ can be eliminated. 

Observe that the quad (1) can be eliminated only when we have the information that the user defi ned 

variable ‘i’ is not used across the blocks. This cannot be performed by analysing the TAC within a block 

in local optimisation. This is  global dead code elimination. The global dead code elimination is one of the 
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benefi ts of doing live variable analysis. Table 7.54 shows the TAC after the global dead code elimination 

for the sample input source shown in Fig. 7.44.

Table 7.54 TAC after global dead code elimination

 (0) proc_begin func

 (1) j: = a + b

 (2) _t1: = a + 45

 (3) if _t1 > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) k := a + j

 (7) goto .L2

 (8) label .L1

 (9) k: = b + j

(10) label .L2

(11) return k

(12) goto .L3

(13) label .L3

(14) proc_end func

Data Flow Analysis to Compute Liveness Information in Intermediate Code In the discussion 

above, we understood the concept of live variable analysis and how it can be used to perform global dead 

code elimination. In this section we study about the algorithms that are used for computing the liveness 

properties in a given program.

Let’s start off with some terminology.

We use the term live_DEFS [B] to represent the set of variables whose defi nition precedes any use in the 

block B. In simpler terms, if we scan the block starting from the fi rst quad to the last quad in the block, and 

the earliest quad in which ‘v’ is involved is a defi nition, then ‘v’ goes in live_DEFS.

We use the term live_USES [B] to represent the set of variables whose use precedes any defi nition within 

the block B. In simpler terms, if we scan the block starting from the fi rst quad to the last quad in the block, 

and the earliest quad in which ‘v’ is involved is a use, then ‘v’ goes in live_USES. In case of situations, 

where the earliest quad in the block B involving ‘v’ defi nes and uses ‘v’ (e.g. v := v + 1), then ‘v’ goes into 

live_USES. This is because the quad uses the earlier value of ‘v’ to redefi ne ‘v’.

Observe that live_DEFS and live_USES are mutually exclusive sets, since we can either fi nd a defi nition 

of a variable ‘v’ earlier or the usage of a variable ‘v’ earlier.

A simple algorithm to calculate live_USES and live_DEFS for a block is given below.

for each quad  res := arg1 op arg2 in the Block 

{

 if (arg1 is valid for the operator){

  if (arg1 is not in live_DEFS){

   /* Use has preceded any defi nition */

   insert (live_USES,arg1)

  }

 }

 if (arg2 is valid for the operator){

  if (arg2 is not in live_DEFS){
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   /* Use has preceded any defi nition */

   insert (live_USES,arg1)

  }

 }

 if (res is valid for the operator){

  if (res is not in live_USES){

   /* Defi nition has preceded any use */

   insert (live_DEFS,arg1)

  }

 }

}

Algorithm 7.6 live_USES and live_DEFS

The following table shows how live_DEFS and live_USES sets are computed for the TAC after local 

optimisation shown in Fig. 7.44.

Table 7.55 The calculation of live_DEFS and live_USES

# TAC after local optimisation live_DEFS and live_USES Explanation

B0 (0) proc_begin func

(1) i := 45

(2) j := a + b

(3) _t1 := a + 45

(4) if _t1 > 100 goto .L0   

    

live_DEFS[B0]  = {i, j, _t1}

live_USES[B0]  = {a, b}

The variable ‘i’ is defi ned 

in quad (1) and is not used 

in the block before the 

quad (1).

The variable ‘j’ is defi ned 

in quad (2) and is not 

used in this block before 

quad(2).

The variable ‘_t1’ is 

defi ned in quad (3) and is 

not used before quad (3).

All of these qualify for 

live_DEFS.

The variables ‘a’ and ‘b’ 

are used in quad (2). There 

is no defi nition of ‘a’ or 

‘b’ preceding the quad (2) 

in the block B0. Hence, 

they qualify to be part of 

live_USES.

B1 (5) goto .L1 live_USES[B1] = {}

live_DEFS[B1] = {}

No variable is defi ned or 

used in this block

B2 (6) label .L0

(7) k := a + j

(8) goto .L2

live_DEFS[B2] = {k}

live_USES[B2] = {a, j}

The variable ‘k’ is defi ned 

in quad (7) and is not used 

in the block before the 

quad (7)

The variables ‘a’ and ‘j’ 

are used in quad (7) and 

there is no defi nition for 

any of them preceding quad 

(7) in this block.
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B3 (9) label .L1

(10) k := b + j

live_DEFS[B3] = {k}

live_USES[B3] = {b, j}

The variable ‘k’ is defi ned 

in quad (10) and is not 

used in the block before 

the quad (10)

The variables ‘b’ and ‘j’ 

are used in quad (10) and 

there is no defi nition for 

any of them preceding quad 

(10) in this block.

B4 (11) label .L2

(12) return k

(13) goto .L3

live_DEFS[B4] = {}

live_USES[B4] = {k}

No variable is defi ned in 

this block

The variable ‘k’ is used in 

quad (12) and there is no 

defi nition for ‘k’ preceding 

quad (12) in this block.

B5 (14) label .L3

(15) proc_end func

live_USES[B5] = {}

live_DEFS[B5] = {}

No variable is defi ned or 

used in this block

As seen earlier during the discussion on AE, the data fl ow properties are computed using equations 

known as  data fl ow equations. By using the data fl ow equations, one can compute the values of data 

fl ow property like liveness of variables at the block boundaries. The value of data fl ow property is then 

extrapolated to each quad within the block by using its value at the block boundary.

The data fl ow equations for live variable analysis express the relationship between the live_IN[B], the 

set of all the variables that are live before reaching the beginning of block ‘B’ to live_OUT[B] the set of 

variables that are live at the end of block ‘B’. The data fl ow equations for live variable analysis are as 

follows.

live_IN[B] = live_USES[B] » (live_OUT[B] – live_DEFS[B])

live_OUT[B] = live_IN[S] » live_IN[S2] » live_IN[S3] ….for all the 

successors S1, S2, S3….Sn of the block

Equation 7.3

We will continue the example in Table 7.55 to calculate live_IN and live_OUT for each of the blocks by 

using the data fl ow equations given by Equation 7.3. Table 7.56 shows the calculation of the sets live_IN 

and live_OUT for all the blocks B0 through B5 using the data fl ow equations. The calculations for live_

IN and live_OUT have been done starting from the block B5 and ending at block B0, since the data fl ow 

equation involves all the successors (live_OUT[B] = » live_IN[S] for all the successors S of the block). 

We would want the live_IN of the successors to be populated before we calculate the live_OUT of a block. 

Observe that the computation of live variable analysis involves working backward from the last block to the 

starting block.

Table 7.56 live_IN and live_OUT calculations

# TAC after local 

optimisation

live_DEFS and live_USES live_IN and live_OUT Explanation

B5 (14) label .L3

(15) proc_end func

live_USES[B5] = {}

live_DEFS[B5] = {}

live_OUT[B5] = {}

live_IN[B5] = {}

live_OUT[B5] = {}, 

since there is NO 

succesor of B5. Hence 

live_OUT[B5] = {}
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live_IN[B5] = 

live_USES[B5] » 

(live_OUT[B5] 

– live_DEFS[B5])

B4 (11) label .L2

(12) return k

(13) goto .L3

live_DEFS[B4] = {}

live_USES[B4] = {k}

live_OUT[B4] = {}

live_IN[B4]={k}
live_OUT[B4] = » 

live_IN[B5], since 

B5 is the only 

succesor of B4. 

Hence live_OUT[B4] 

= {}

live_IN[B4] = 

live_USES[B4] » 

(live_OUT[B4] 

– live_DEFS[B4])

live_IN [B4] = {k}

B3 (9) label .L1

(10) k := b + j

live_DEFS[B3] = {k}

live_USES[B3] = {b, j}

live_OUT[B3] = {k}

live_IN[B3] = {b, j}

live_OUT[B3] = » 

live_IN[B4], since 

B4 is the only 

succesor of B3. 

Hence live_OUT[B3] 

= {k}

live_IN[B3] = 

live_USES[B3] » 

(live_OUT[B3] 

– live_DEFS[B3])

(live_IN[B3] = 

{b,j} » {[k] - {k}} 

live_IN[B3] = {b,j}

B2 (6) label .L0

(7) k := a + j

(8) goto .L2

live_DEFS[B2] = {k}

live_USES[B2] = {a, j}

live_OUT[B2] = {k}

live_IN[B2] = {a, j}
live_OUT[B2] = » 

live_IN[B4], since 

B4 is the only 

successor of B2. 

Hence live_OUT[B2] 

= {k}

live_IN[B2] = 

live_USES[B2] » 

(live_OUT[B2] 

– live_DEFS[B2])

live_IN[B2] = {a,j) 

» {[k}-{k}]

live_IN [B2] = {a,j}

B1 (5) goto .L1 live_USES[B1] = {}

live_DEFS[B1] = {}

live_OUT[B1] = {b, j}

live_IN[B2] = {b, j}
live_OUT[B1] = » 

live_IN[B3], since 

B3 is the only 

successor of B1. 

Hence live_OUT[B1] 

= {b, j}

live_IN[B1] = live_

USES[B1] »
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(live_OUT[B1] 

– live_DEFS[B1])

live_IN[B1}={}»(b,j) 

live-IN[B2] = {b,j}

B0 (0) proc_begin func

(1) i: = 45

(2) j: = a + b

(3) _t1: = a + 45

(4) if _t1 > 100 

goto .L0

live_DEFS[B0] = {i, j, _t1}

live_USES[B0] = {a, b}

live_OUT[B0] = {a, b, j}

live_IN[B2] = {a, b}

live_OUT[B0] = 

live_IN[B1] » 

live_IN[B2], since 

B1 and B2 are 

successors of B0. 

Hence live_OUT[B0] 

= {b, j} » {a, j}

live_OUT[B0] = {a, 

b, j}

live_IN[B0] = 

live_USES[B0] » 

(live_OUT[B0] 

– live_DEFS[B0])

live_IN[B0] = {a, 

b} » {{a, b, j} 

– {i, j, _t1}}

live_IN[B0] = {a, 

b} » {a, b}

live_IN[B2] = {a, b}

Figure 7.45 shows the fl ow graph annotated with the values of live_IN, live_DEFS, live_USES and live_

OUT for each of the blocks—B0 through B5. 

In this example, we have been able to compute the live variable information in the form of live_IN and 

live_OUT by using the Equation 7.3 for all the blocks in the program. The values of live_IN and live_OUT 

for each of the blocks was calculated by proceeding block after block in the reverse order as the data fl ow, 

i.e. B5, followed B4, B3, B2, B1 and B0. We had to strictly follow the reverse order of fl ow of control while 

computing the live_OUT because the live_OUT[B] = U live_IN[S] for all the successors S of the block. We 

could not have computed live_OUT[B], even if the live_IN of one of the successors were not yet computed. 

We had seen earlier during the discussion on the available expressions that the cyclic dependency between 

the nodes of the fl ow graph makes it impossible to calculate ‘IN/OUT’ at some of the nodes in the cases of 

input source having loops. We had overcome the issue for available expressions in the last section by having 

an iterative approach to solving the data fl ow equations. We do the same for live variable analysis also.

In the iterative approach of solving data fl ow equations for live variable analysis, an initial value for 

live_IN[B] for every block B is assumed. This helps us compute the live_OUT[B], where live_OUT[B] = 

» live_IN[S] for all the successors S of the block, even in cases where live_IN[S] is not yet computed. The 

initial value of live_IN[B] for every block B that is assigned before the start of the fi rst iteration is = {ø}. 

Observe that this initial value is the minimum value that live_IN can take.

Algorithm 7.7 summarises the computation of live variable analysis information (live_IN / live_OUT) 

using the iterative approach of solving data fl ow equations that we discussed above.
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Fig. 7.45 Flow graph annotated with live variable analysis information

Algorithm 7.7 works for the input sources involving loops and also for the ones without the loops.  

Observe in the algorithm that the fi nal values of live_IN and live_OUT for all the blocks in the procedure 

are arrived at in an iterative fashion. For an input source without any loops, the fi nal values of live_IN and 

live_OUT for each block can be arrived at in the fi rst iteration, if the computation is made in the order 
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of reverse of fl ow of control, where we compute live_IN / live_OUT for a block B only after live_IN / 

live_OUT for all its successors have been computed. In such cases, the second iteration is performed only 

to confi rm that the values of live_OUT have reached a steady state.

/* Initialise live_IN for all blocks */

for every block B {

 live_IN[B] = {ø}

}

steady_state = FALSE

while (steady_state = = FALSE) {

 steady_state = TRUE

 for every block B {

  /* live_OUT */

  live_OUT[B] = U live_IN[S] for all the Successors S of the block

  /* saving live_OUT to later check if we have reached steady state */

  saved_live_OUT = live_OUT[B]

  /* computing live_OUT */

  live_OUT[B] = live_GEN[B] » (live_IN[B] – live_KILL[B])

  /* Checking for a steady state of live_OUT */

  if (saved_live_OUT ! = live_OUT[B]){

   steady_state = FALSE

  }

 }

}

Algorithm 7.7 Live variable analysis information computation using the iterative approach

Dead Code Elimination using Live Variable Analysis Information The live_OUT information 

representing the live variables at the end of the block can be extrapolated to calculate the live variables at 

the beginning and the end of each quad. This information is then used to eliminate dead code. 

The live_OUT information available at the end of the block is extrapolated to each quad level by 

working backwards from the last quad of the block. The live_OUT of the last quad in the block is the same 

as the live_OUT of the block. Using the live_OUT of the last quad, we can calculate live_IN for the same 

using the relationship 

 live_IN [q
n
] = live_USES [q

n
] » (live_OUT [q

n
] – live_DEFS [q

n
]), where ‘n’ is the quad number.

And then, we can use the live_IN of the current quad as the live_OUT of the previous quad. 

 live_OUT [q
n – 1

] = live_IN [q
n
]

The process repeats itself till the fi rst quad in the block.

Let’s take the example of block B0 shown in Fig. 7.45 and calculate the live_OUT information for each 

of the quad. The quads in block B0 along with the live_OUT[B0] is shown below again for convenience. 
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B0 (0) proc_begin func live_OUT[B0] = {a,b,j}
(1) i := 45
(2) j := a + b
(3) _t1 := a + 45
(4) if _t1 > 100 goto .L0

The calculation of live_OUT at the end of each quad is given along with explanations in Table 7.57.

Table 7.57 Calculating the live_OUT information for each quad

quad # quad live_OUT Explanation live_IN 

4 if _t1 > 100 goto .L0 {a,b,j} The live_OUT of the last 

quad in a block is the same 

as live_OUT of the block.

live_OUT [ q4 ] = {a,b,j}

The instruction if _t1 > 

100 goto .L0 does not defi ne 

any variable, but uses the 

variable ‘_t1’ .

live_DEFS[q4] = { }

live_USES[q4] = { _t1 }

From the equation

live_IN [ q4 ] = live_USES 

[ q4 ] » ( live_OUT [ q4 ] 

– live_DEFS [ q4 ] )

live_IN [ q4 ] = { _t1 } U 

{ {a,b,j} – { } }

live_IN [ q4 ] = { _

t1,a,b,j }

{_t1,a,b,j}

3 _t1 := a + 45 {_t1,a,b,j} live_OUT[q3] = live_IN [ q4 ]

Hence 

live_OUT[ q3 ] = { _t1,a,b,j }

The instruction ‘_t1 := a + 

45’ defi nes ‘_t1’, and uses 

the variable ‘a’ .

live_DEFS [ q3 ] = { _t1 }

live_USES [ q3 ] = { a }

From the equation

live_IN [ q3 ] = live_USES 

[ q3 ] » ( live_OUT [ q3 ] 

– live_DEFS [ q3 ] )

live_IN [ q3 ] = { a } U { 

{_t1,a,b,j} – { _t1 } }

live_IN [ q3 ] = { a,b,j }

{ a,b,j }
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2 j := a + b { a,b,j } live_OUT[ q2 ] = live_IN 

[q3]

Hence 

live_OUT[ q2 ] = { a,b,j }

The instruction ‘j := a + 

b’ defi nes ‘j’, and uses the 

variable ‘a’ and ‘b’ .

live_DEFS [ q2 ] = { j }

live_USES [ q2 ] = { a, b }

From the equation

live_IN [ q2 ] = live_USES 

[q2] U (live_OUT [q2] 

– live_DEFS [ q2 ] )

live_IN [ q2 ] = { a,b } U 

{ { a,b,j} – { j } }

live_IN [ q2 ] = { a,b }

{ a,b }

1 i := 45 { a,b } live_OUT[ q1 ] = live_IN 

[q2]

Hence

live_OUT[ q1 ] = { a,b }

The instruction ‘i := 45’ 

defi nes ‘i’, and uses no 

variables.

live_DEFS [ q1 ] = { i }

live_USES [ q1 ] = { }

From the equation

live_IN [ q1 ] = live_USES 

[ q1 ] » ( live_OUT [ q1 ] 

– live_DEFS [ q1 ] )

live_IN [ q1 ] = { } U 

{ { a,b} – { i } }

live_IN [ q1 ] = { a,b }

{ a,b }

The procedure we just used for calculating the live_OUT information for each quad is formalised in 

Algorithm 7.8.

B is the current Block

live_OUT[B] is already computed using iterative approach explained earlier

out = live_OUT[B]

for each quad ‘q’ of the form x := y op z in the block starting with the last quad in 

the block and going towards the fi rst quad

  live_out[q] = out;
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  in = def = use = { f }

  use.insert(y);

  use.insert(z);

  if(use does not contain ‘x’ ){ /* handling m = m + c type of statements */

    def.insert(x);

  }

  in = ( out – def ) » use 

  /* for the next iteration */

  out=in

Algorithm 7.8 live_out calculation for each quad

We shall now see how the live out information at each quad can be used in the global dead code 

elimination. We use the block B0 in the above example for which we had computed live out information 

at each quad level. We summarise the live_OUT values at the end of each quad for the block B0 below for 

ease of reference. 

# Quad live_OUT

0 proc_begin func { a, b} 

1 i := 45 {  a  b } 

2 j := a + b {  a  b  j } 

3 _t1 := a + 45 {  a  b  j  _t1 } 

4 if _t1 > 100 goto .L0  {  a  b  j }

We turn our attention to the quad #1, given by i := 45.  Observe that the variable ‘i’ is not a member of 

the live_OUT set at the quad #1. In other words the variable ‘i’ is dead at this point. Now, the quad #1 in 

which we defi ne the variable ‘i’ can be eliminated, since the variable ‘i’ is dead at this point. In general, 

for a quad q: v = x op y, if the variable ‘v’ is dead (i.e. not in live_OUT[q]) and the operator op does not 

have any side-effects (like say CALL does) then the quad ‘q’ can be eliminated. This is how global dead 

code elimination can be performed using the live variable Information. The TAC after global dead code 

elimination is shown in Table 7.58.

Table 7.58 Global dead code elimination

TAC after local optimisation TAC after global dead code 

elimination

(0) proc_begin func  (0) proc_begin func

(1) i := 45  (1) j := a + b

(2) j := a + b  (2) _t1 := a + 45

(3) _t1 := a + 45  (3) if _t1 > 100 goto .L0
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(4) if _t1 > 100 goto .L0  (4) goto .L1

 (5) goto .L1  (5) label .L0

 (6) label .L0  Æ  (6) k := a + j

 (7) k := a + j  (7) goto .L2

 (8) goto .L2  (8) label .L1

 (9) label .L1  (9) k := b + j

(10) k := b + j (10) label .L2

(11) label .L2 (11) return k

(12) return k (12) goto .L3

(13) goto .L3 (13) label .L3

(14) label .L3 (14) proc_end func

(15) proc_end func

Algorithm 7.9 formalises the idea of global dead code elimination using the live out information.

for each quad ‘q’ of the form x:= y op z in the block 

{

    if( live_out[q] does not contain x ) { /* x is dead */

      eliminate the quad q

    }

}

Algorithm 7.9 Global dead code elimination using live_out information

The live variable analysis information can be used at a DAG level in the local optimisation to eliminate 

the dead stores. For example, consider the DAG for the block B0 shown in Fig. 7.46. 

Fig. 7.46 DAG for block 0

At the node 1, according to the Algorithm 7.3, we generate the assignment statement i := 45, since the 

attached identifi er ‘i’ is an user defi ned variable. We can modify the algorithm to generate an assignment 

statement only, if the identifi er in the attached list is needed outside the block, i.e. in the live_OUT of 

the block. Since ‘i’ is not part of the live_OUT set for block B0, the assignment statement i := 45 is not 

generated, when the quads are regenerated from the DAG. In this way, dead code elimination is performed 

at a DAG level using live variable information in the form of live_OUT set for the block.
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Example 5—Global dead code elimination using live variable analysis This section demonstrates 

the toy C compiler (mycc) performing global dead code elimination using the live variable analysis 

information. The live variable analysis information was gathered by using the algorithms explained in the 

preceding section. The live_OUT information was put to use to eliminate the dead code as explained in 

Algorithm 7.9.

The toy C compiler takes as input, a sample C input source and gives out (a) unoptimised TAC (b) the 

locally optimised TAC and (c) the TAC after global dead code elimination. The dialog below shows ‘mycc’ 

taking in some sample input C sources having dead code and printing out the above information as the 

output. 

# Generating the Parser from Grammar Specifi cations 

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyzer from Lexical Specifi cations 

$ fl ex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyzer 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building ‘mycc’ - A Toy Compiler for C Language 

$ g++  -DICGEN -g -Wall ic_gen.cc optimize.cc target_code_gen.cc mycc.cc semantic_
analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe 

# Sample Input C fi le containing dead code that can be eliminated 

$ cat -n test.dce.1.c 
 1 int func(int a,int b)

 2 {

 3  int i,j,k;

 4 

 5  i=45; /* dead code after local opt*/

 6  j=a+b;

 7 

 8  /* ‘i’ is replaced by 45 */

 9  if((a+i) > 100 ){ 

 10   k=a+j;

 11  }else{

 12   k=b+j;

 13  }

 14  return(k);

 15 }

 16

# Intermediate code before and after optimization 

# -O gdce for Global Dead Code Elimination, -v for verbosity 

$ ./mycc.exe -i -O gdce -v test.dce.1.c 
TAC Before optimisation 

 (0) proc_begin func

 (1) i := 45

 (2) _t0 := a + b

 (3) j := _t0
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 (4) _t1 := a + i

 (5) if _t1 > 100 goto .L0

 (6) goto .L1

 (7) label .L0

 (8) _t2 := a + j

 (9) k := _t2

(10) goto .L2

(11) label .L1

(12) _t3 := b + j

(13) k := _t3

(14) label .L2

(15) return k

(16) goto .L3

(17) label .L3

(18) proc_end func

TAC After Local Optimization 

 (0) proc_begin func

 (1) i := 45

 (2) j := a + b

 (3) _t1 := a + 45

 (4) if _t1 > 100 goto .L0

 (5) goto .L1

 (6) label .L0

 (7) k := a + j

 (8) goto .L2

 (9) label .L1

(10) k := b + j

(11) label .L2

(12) return k

(13) goto .L3

(14) label .L3

(15) proc_end func

TAC After (Local and Global) optimization 

 (0) proc_begin func

 (1) j := a + b

 (2) _t1 := a + 45

 (3) if _t1 > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) k := a + j

 (7) goto .L2

 (8) label .L1

 (9) k := b + j

(10) label .L2

(11) return k

(12) goto .L3

(13) label .L3

(14) proc_end func

# Sample Input C fi le containing dead code that can be eliminated 

$ cat -n test.dce.2.c 
 1 

 2 int func(int a, int b)
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 3 {

 4  int i,j;

 5 

 6  i= a * b; /* dead store */

 7 

 8  if(a > 100 ){

 9   i=a+b; /* i redefi ned */

 10   j=j+i;

 11  }else{

 12   i=a-b; /* i redefi ned */

 13   j=b*a;

 14   j = j + a;

 15  }

 16  return(j+i);

 17 

 18

 19 }

 20

# Intermediate code before and after optimization 

$ ./mycc.exe -i -O gdce -v test.dce.2.c 
TAC Before optimization 

 (0) proc_begin func

 (1) _t0 := a * b

 (2) i := _t0

 (3) if a > 100 goto .L0

 (4) goto .L1

 (5) label .L0

 (6) _t1 := a + b

 (7) i := _t1

 (8) _t2 := j + i

 (9) j := _t2

(10) goto .L2

(11) label .L1

(12) _t3 := a - b

(13) i := _t3

(14) _t4 := b * a

(15) j := _t4

(16) _t5 := j + a

(17) j := _t5

(18) label .L2

(19) _t6 := j + i

(20) return _t6

(21) goto .L3

(22) label .L3

(23) proc_end func

TAC After Local Optimization 

 (0) proc_begin func

 (1) i := a * b

 (2) if a > 100 goto .L0

 (3) goto .L1

 (4) label .L0

 (5) i := a + b

 (6) j := j + i

 (7) goto .L2
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 (8) label .L1

 (9) i := a - b

(10) _t4 := b * a

(11) j := _t4 + a

(12) label .L2

(13) _t6 := j + i

(14) return _t6

(15) goto .L3

(16) label .L3

(17) proc_end func

TAC After (Local and Global) optimization 

 (0) proc_begin func

 (1) if a > 100 goto .L0

 (2) goto .L1

 (3) label .L0

 (4) i := a + b

 (5) j := j + i

 (6) goto .L2

 (7) label .L1

 (8) i := a - b

 (9) _t4 := b * a

(10) j := _t4 + a

(11) label .L2

(12) _t6 := j + i

(13) return _t6

(14) goto .L3

(15) label .L3

(16) proc_end func

7.2.10.4 Loops—An Introduction We have studied about the data fl ow analysis to compute the 

‘available expression’ and ‘liveness’ properties of a given TAC. We saw that these properties were used 

to perform global common sub-expression elimination and global dead code elimination in the program 

respectively. The next data fl ow property that we study about is called as ‘reaching defi nitions’. We use the 

reaching defi nitions property to perform optimisations in a loop.

Before we start studying about the reaching defi nitions, we take a short diversion to understand the basic 

concepts and ideas with regard to loops. In this section, we examine the concepts and algorithms to:

 (a) Detect the presence of a loop, given the intermediate code.

 (b) Identify the basic blocks in the intermediate code that constitute a loop.

The ideas and the algorithms presented here are pre-requisites to the study of loop optimisation. We 

study about one of the loop optimisations later by using reaching defi nitions.

Detection of Loop

The loops in programs are detected during the data fl ow analysis by using a concept called as ‘ domination’ 

in a fl ow graph.

A node ‘d’ of a fl ow graph dominates node ‘n’, if every path from the initial node to ‘n’ goes through ‘d’. 

It is represented as d dom n. By defi nition, each node dominates itself.

Consider the input source, TAC after local optimisation and the corresponding fl ow graph in Fig. 7.47 to 

understand the idea of domination.

In Fig. 7.47, the initial node of the fl ow graph is B0. We can see from the fl ow graph that in order to 

reach block B4 from the initial node B0, it is mandatory to go through block B1. It is impossible to reach 
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B4 from initial node B0 without traversing B1. In other words, B1 dominates B4 (B1 dom B4). In the same 

fl ow graph, in order to reach block B4 from the initial node B0, it is not necessary that the control needs to 

always pass through the block B3. Hence, we can say that B3 does not dominate B4. 

Fig. 7.47 Input source, TAC after local optimisation and fl ow graph
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We use the term  dominators to represent the set of nodes that dominate a particular node. For example, 

in Fig. 7.47, we can see that B0, B1 and B2 dominate B2. Thus, the dominators [B2] = {B0, B1, B2} or 

simply dominators [2] = {0, 1, 2}.

Table 7.59 shows the dominators for each of the nodes in the fl ow graph. Observe that the dominators 

set is never empty because (a) each node dominates itself and (b) the initial node also has to be part of the 

dominators, since the defi nition of dominations relates to path starting from initial node.

Table 7.59 Dominators

dominators [ 0 ] = { 0 }

dominators [ 1 ] = { 0, 1 }

dominators [ 2 ] = {  0,  1, 2 }

dominators [ 3 ] = { 0, 1, 3 }

dominators [ 4 ] = { 0, 1, 2, 4 }

dominators [ 5 ] = {  0, 1,  2,  4, 5 }

An edge in a fl ow graph represents a possible fl ow of control. For example, in Fig. 7.47 the edge B0 

to B1 written as 0 Æ 1 represents a possible fl ow of control. The edges in the fl ow graph of Fig. 7.47 are 

0 Æ 1, 1 Æ 2, 1 Æ 3, 3 Æ 1, 2 Æ 4 and 4 Æ 5. For an edge in a fl ow graph denoted by a Æ b, the node 

‘b’ is called as the head and the node ‘a’ is called as the tail. It is normal to fi nd that the dominators[head] 

containing the tail, since there is an edge from the tail to head.  However, there are some edges in which 

dominators[tail] contain the head. These are called the  back edges. The presence of a back edge indicates 

the existence of a loop in a fl ow graph. Table 7.60 shows each of the edges in the fl ow graph along with the 

dominators for the head and tail of those edges. We can see from the table, that the back edge 3 Æ 1 has 

been detected by the presence of head node in the dominators[tail].

Table 7.60 Edges and dominators for head and tail

Edge Head Tail dominators[head] dominators[tail] Remarks

0Æ1 1 0 { 0, 1 } { 0 }

1Æ2 2 1 {  0,  1, 2 } { 0, 1 }

1Æ3 3 1 { 0, 1, 3 } { 0, 1 }

3Æ1 1 3 { 0, 1 } { 0, 1 , 3 } Back Edge

2Æ4 4 2 { 0, 1, 2, 4 } {  0,  1, 2 }

4Æ5 5 4 {  0, 1,  2,  4, 5 } { 0, 1, 2, 4 }

Let’s take another fl ow graph shown in Fig. 7.48 as an example to fi rm up the ideas on domination. In 

Fig. 7.48, by visual inspection, we can notice that (B2, B4, B6) form a loop and (B1, B3) form another 

loop.
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Table 7.61 shows the dominators for each of the nodes in the fl ow graph.

Table 7.61 Dominators

dominators [ 0 ]  = { 0 }

dominators [ 1 ] = { 0 , 1 }

dominators [ 2 ] = {  0 ,  2 }

dominators [ 3 ] = { 0 , 1 , 3 }

dominators [ 4 ] = { 0 , 2 , 4 }

dominators [ 5 ] = {  0, 1 , 3 , 5 }

dominators [ 6 ] = { 0 , 2 , 4 , 6 }

Fig. 7.48 Flow graph

Table 7.62 shows each of the edges in the fl ow graph along with the dominators for the head and tail of 

those edges. We can see from the table, that the back edges 3 Æ 1 and 6 Æ 2 have been detected by the 

presence of head node in the dominators[tail]. This identifi es both the loops.
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In a loop, the entry of the loop dominates all the nodes in the loop. In Fig. 7.48, {B6, B2, B4} form a 

loop L1 and {B3, B1} form another loop—L2. The entry of the loop L1 is B2. The other nodes in the loop 

L1 are B4 and B6. We can see that B2 is present in the dominator set of B4 and B6, i.e. in dominators[B4] 

and dominators[B6]. The entry of the loop is also called as the  header of the loop. The Loop L1 can be 

exited from the basic block B6. It is called as loop exit block. The block B3 is the loop exit block for the 

loop L2. It is possible to have multiple exit blocks in a loop.

A loop L can be formally described as a set of nodes {n
1
, n

2
, n

3
 …. n

k
} in the fl ow graph in which there 

is path from any node n
i
 to n

j
, via other nodes that are also part of the loop L. The header node of the loop 

dominates all the nodes in the loop.

In some of the loop optimisation techniques like, say, code motion, it is required to move several quads 

from within the loop to outside of the loop. In the optimised code, these quads would typically need to be 

executed before entering the loop.

Table 7.62 Edges and dominators for head and tail

Edge Head Tail dominators[head] dominators[tail] Remarks

0 Æ 1 1 0 {0, 1} {0}

0 Æ 2 2 0 {0, 2} {0}

1 Æ 3 3 1 {0, 1, 3} {0, 1}

3 Æ 1 1 3 {0, 1} {0, 1, 3} Back edge

3 Æ 5 5 3 {0, 1, 3, 5} {0, 1, 3}

5 Æ 7 7 5 {0, 7} {0 1, 3, 5}

2 Æ 4 4 2 {0, 2, 4} {0, 2}

6 Æ 2 2 6 {0, 2} {0, 2, 4, 6} Back edge

4 Æ 6 6 4 {0, 2, 4, 6} {0, 2, 4}

6 Æ 7 7 6 {0, 7} {0, 2, 4, 6}

A  pre-header block serves as a placeholder for the quads that need to be executed just before entering 

the loop. The pre-header is a basic block introduced during the loop optimisation to hold the quads that are 

moved from within the loop. It is a predecessor to the header block. Figure 7.49 illustrates the idea of a pre-

header block.

Figure 7.49 (A) shows a fl ow graph with of a loop L consisting of nodes {B3, B4, B5} with B3 as the 

header. Imagine, during the data fl ow analysis we fi nd that there are quads in say B4, which can be moved 

out of the loop. The optimiser introduces a pre-header block B7, which is a predecessor to the header of 

the loop B3 and moves the quads into it. The block B7 is a successor to the blocks B1 and B2, which were 

earlier fl owing to B3.

Identifying the Basic Blocks forming a Loop

In data fl ow analysis the presence of a back edge indicates a loop in the program. In order to make 

optimisations in the loop, it is required to know the nodes that constitute a loop in the fl ow graph. For 

example, in Fig. 7.48, the loop L1 constitutes of {B6, B2, B4} and loop L2 constitutes of {B1, B3}.

In data fl ow analysis, the constituent blocks in a loop are usually calculated from the back edge. Given a 

back edge, n1 Æ n2, A  natural loop is n1, n2 and the set of nodes that can reach ‘n1’ without going through 

‘n2’. We can observe from Fig. 7.48 that for the back edge 6 Æ 2, the set of nodes that can reach 6 without 

going through 2 is B4. In other words, there is a path from B4 to B6 without going through B2. By this 

defi nition {B6, B2, B4} constitute a natural loop.
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Fig. 7.49 Pre-header in a loop

The nodes that constitute a loop in the fl ow graph are determined by employing Algorithm 7.10. The 

procedure fi nd_nodes_in_loop(n1, n2) is the one that determines the basic blocks constituting a loop. It is 

called with the parameters n1 and n2, where n1 Æ n2 is the back edge. A supporting procedure - ‘insert’, 

used by ‘fi nd_nodes_in_loop’ is also shown in Algorithm 7.10.

 1   procedure insert(loop,n)

 2   {

 3      if ( n is not in loop ){

 4         loop = loop U { n }

 5         push n on to stack

 6      }

 7   }

 8   

 9   procedure fi nd_nodes_in_loop(n1,n2) /* n1->n2 is the back edge */

10  {

11     loop = { n2 }

12  

13     insert( loop, n1 )

14  
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15     while ( stack is not empty )

16     {

17        pop node e, the top element of the stack

18  

19        for each predecessor of ‘e’

20        {

21           insert(loop,e)

22        }

23     }

24     return(loop)

25  }

 Algorithm 7.10 Identifying nodes in a loop

Let’s see the working of the algorithm on the fl ow graph in Fig. 7.48. We take the back edge B6 Æ B2 into 

consideration and use Algorithm 7.10 to compute the nodes forming the loop with this back edge. Figure 

7.50 shows the sequence of events that occur while using Algorithm 7.10 to compute the constituents of 

loop for the back edge B6 Æ B2 of the fl ow graph in Fig. 7.48.

Fig. 7.50 Computing the constituents of a loop
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We examined the basic ideas with respect to identifying a loop and its constituents during data fl ow 

analysis. This knowledge is useful for any of the loop optimisations. Next, we study about one of the loop 

optimisations using data fl ow property called as reaching defi nitions.

7.2.10.5 Reaching Defi nitions

Introduction  Reaching defi nitions (RD) is another data fl ow property that is commonly computed during 

data fl ow analysis. In this section, we study about reaching defi nitions and apply it to perform one of the 

loop optimisations called as  loop invariant code motion.

Consider the input source and the locally optimised TAC shown in Table 7.63 to get an idea of reaching 

defi nitions and how that can be used for optimising a loop.

Table 7.63 Input source and locally optimised code

Input source Locally optimised TAC

 1  int arr[1000];

 2

 3  int func(int a,int b)

 4  {

 5     int i;

 6     int n1,n2;

 7

 8     i=0;

 9

10     n1 = a * b ;

11     n2 = a - b ;

12

13     while( arr[i] > (n1*n2) )

14     {

15      i=i+1;

16     }

17

18

19     return(i);

20  }

 (0) proc_begin func

 (1) i := 0

 (2) n1 := a * b

 (3) n2 := a - b

 (4) label .L0

 (5) _t2 := i * 4

 (6) _t3 := &arr

 (7) _t4 := _t3[_t2]

 (8) _t5 := n1 * n2

 (9) if _t4 > _t5 goto .L1

(10) goto .L2

(11) label .L1

(12) i := i + 1

(13) goto .L0

(14) label .L2

(15) return i

(16) goto .L3

(17) label .L3

(18) proc_end func

From a visual inspection of the input source and locally optimised TAC in Table 7.63, we can observe 

the following:

∑ The variable n1 is defi ned in the quad 2 and used in quad 8. There are no other intervening defi nitions 

of n1 before its use in quad 8. In other words, the defi nition of n1 that is reaching quad 8 is the one 

made at line quad 2.

∑ The variable n2 is defi ned in the quad 3 and used in quad 8. There  are no other intervening defi nitions 

of n2 before its use in quad 8. In other words, the defi nition of n2 that is reaching quad 8 is the one 

made at line quad 3.

∑ The quads 4 through 13 comprise the while loop. The defi nitions of n1 and n2 that are reaching quad 

8 are made outside the loop. 
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When the ‘while’ loop spanning from quads 4 through 13 gets executed, the value n1 * n2 is computed 

as many times as the loop executes.

There is an opportunity to optimise the loop by calculating the value n1 * n2 before entering the loop 

and then using it to compare with ‘i’ within the loop. This optimisation is possible because the defi nitions 

of n1 and n2 that are reaching quad 8 come from outside the loop (quad 2 and 3 respectively). This is an 

example of a loop invariant code motion optimisation.

The TAC before and after the loop invariant code motion optimisation is shown in Table 7.64 for the 

input source in consideration (see Table 7.63).

Table 7.64 Loop invariant code motion using reaching defi nitions

TAC after local

optimisation

TAC after loop invariant

code motion optimisation

(0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a – b

(4) label .L0

(5) _t2 := i * 4

(6) _t3 := &arr

(7) _t4 := _t3[_t2]

(8) _t5 := n1 * n2

(9) if _t4 > _t5 goto .L1

(10) goto .L2

(11) label .L1

(12) i := i + 1

(13) goto .L0

(14) label .L2

(15) return i

(16) goto .L3

(17) label .L3

(18) proc_end func

(0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a – b

(4) _t5 := n1 * n2

(5) label .L0

(6) _t2 := i * 4

(7) _t3 := &arr

(8) _t4 := _t3[_t2]

(9) if _t4 > _t5 goto .L1

(10) goto .L2

(11) label .L1

(12) i := i + 1

(13) goto .L0

(14) label .L2

(15) return i

(16) goto .L3

(17) label .L3

(18) proc_end func

The above example showed informally what a reaching defi nition is and how the loop invariant code 

motion optimisation could be carried out by knowing the reaching defi nitions for a particular quad. We 

conclude this section with a formal statement on a reaching defi nition.

A defi nition ‘d’ reaches a point ‘p’, if there is a path from the point immediately following ‘d’ to ‘p’ such 

that ‘d’ is not killed along the path.

Suppose, a quad ‘q’ uses variables ‘v1’ and ‘v2’ and the only possible defi nitions for ‘v1’ and ‘v2’ 

come from outside the loop. The quad ‘q’ can be considered for performing loop invariant code motion 

optimisation. Apart from the fact that the reaching defi nitions are from outside the loop, there are certain 

other conditions that need to be met in order to make the loop invariant code motion optimisation. We study 

about those conditions in one of the later sections.

Data Flow Analysis to Compute RD in Intermediate Code In last section, we understood the concept 

of reaching defi nitions and how it can be used to perform code motion optimisation. In this section 

we study about the method that can be used for computing the RD properties of a given program.

Consider the input source, the corresponding locally optimised TAC and the fl ow graph shown in 

Fig. 7.51 to understand some of the terminology that is required for computing the reaching defi nitions 

information. The universal set of defi nitions L consists of any defi nition that appears in the statements. In 

the TAC shown in Fig. 7.51, the defi nitions can be seen in the quads 1, 2, 3, 5, 6, 7, 8 and 12.  Thus, the 

universal set of defi nitions for the entire procedure is given by L = {1, 2, 3, 5, 6, 7, 8, 12}.
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Fig. 7.51 Input source, TAC after local optimisation and the fl ow graph

A block generates a defi nition ‘d’, if the defi nition made reaches the end of the block. We use the term 

rd_GEN[B] to denote the set of defi nitions generated by a basic block B.

A block kills all the defi nitions of a variable ‘x’ made outside the block, if it assigns a value to ‘x’. We 

use the term rd_KILL[B] to denote the defi nitions killed by a basic block B. 



532 Principles of Compiler Design

Table 7.65 shows the computation of rd_GEN and rd_KILL sets corresponding to each of the blocks for 

the TAC shown in Fig. 7.51.

Table 7.65 rd_GEN/rd_KILL for all the blocks

# TAC rd_GEN Comments

B0 (0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a - b

rd_GEN[B0]= { 1,2,3 }

rd_KILL[B0]= { 12 }

The universal set of defi nitions 

that are used in the entire 

procedure is given by L = 

{ 1,2,3,5,6,7,8,12}

rd_GEN[B0] = { 1,2,3 }, since 

these defi nitions reaches the end of 

the block

rd_KILL[B0] = { 12 }  since there 

is an assignment to ‘i’ at (12) 

outside this block.

B1 (4) label .L0

(5) _t2 := i * 4

(6) _t3 := &arr

(7) _t4 := _t3[_t2]

(8) _t5 := n1 * n2

(9) if _t4 > _t5 goto 

.L1

rd_GEN[B1]= { 5,6,7,8 }

rd_KILL[B1]= { }

rd_GEN[B1] = { 5,6,7,8 }, since 

these defi nitions reache the end of 

the block

rd_KILL[B1]={ } i.e. empty, since 

there are no defi nitions in L 

outside the block,which defi ne _t2 

or _t3 or _t4 or _t5.

B2 (10) goto .L2 rd_GEN[B2] = { }

rd_KILL[B2]= { }

rd_GEN[B2] = { } i.e. empty

rd_KILL[B2]={ } i.e. empty

Since no defi nitions are made and 

as a consequence none are killed 

either

B3 (11) label .L1

(12) i := i + 1

(13) goto .L0

rd_GEN[B3] = { 12 }

rd_KILL[B3] = { 1 }

rd_GEN[B3] = { 12 }, since this 

defi nition reaches the end of the 

block

rd_KILL[B3] = { 1 }  since there 

is an assignment to ‘i’ at (1) 

outside this block.

B4 (14) label .L2

(15) return i

(16) goto .L3

rd_GEN[B4] = { }

rd_KILL[B4]={ }

rd_GEN[B4] = { } i.e. empty

rd_KILL[B4]={ } i.e. empty

Since no defi nitions are made and 

as a consequence none are killed 

either

B5 (17) label .L3

(18) proc_end func

rd_GEN[B4] = { }

rd_KILL[B4]={ }

rd_GEN[B4] = { } i.e. empty

rd_KILL[B4]={ } i.e. empty

Since no defi nitions are made and 

as a consequence none are killed 

either
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As seen earlier during the discussion on AE, the data fl ow properties are commonly computed using 

equations known as  data fl ow equations. By using the data fl ow equations, one can compute the values of 

data fl ow property like RD at the block boundaries. The value of data fl ow property is then extrapolated 

within the block by using its value at the block boundary.

The data fl ow equations for RD express the relationship between the rd_IN[B], the set of all the 

defi nitions reaching the beginning of block ‘B’ to rd_OUT[B] the set of defi nitions reaching the end of 

block ‘B’. The data fl ow equations for available expressions are as follows:

rd_OUT[B] = rd_GEN[B] » (rd_IN[B] – rd_KILL[B])

rd_IN[B]= » rd_OUT[P] for all the predecessors P of the block Equation 7.4

Let’s use the data fl ow equations for reaching defi nitions given by Equation 7.4 and calculate the 

reaching defi nitions properties at the start (rd_IN[B]) and end of each block (rd_out[B]) for the sample code 

shown in Fig. 7.51.

# TAC rd_IN Comments

B0 (0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a – b

rd_IN[B0]= { }

rd_OUT[B0] = {1,2,3}

From the data fl ow equation Equation 7.4

rd_IN[B] = » rd_OUT[P] for all 

predecessors P

rd_OUT[B] = rd_GEN[B] » (rd_IN[B] – rd_

KILL[B])

There are no predecessors to B0, so

rd_IN[B0] = { } i.e. empty

using the values of rd_GEN and rd_KILL 

for B0 computed earlier

rd_OUT[B0] = {1, 2, 3} » ({ø} – {12})

rd_OUT[B0]= {1, 2, 3}

B1 (4) label .L0

(5) _t2 := i * 4

(6) _t3 := &arr

(7) _t4 := _t3[_t2]

(8) _t5 := n1 * n2

(9) if _t4 > _t5  

    goto .L1

According to Equation 7.4 we have

rd_IN[B] = » rd_OUT[P] for all the 

predecessors P of the block

There are 2 predecessors to B1, which are 

B0 and B3.

rd_IN[B1] = rd_OUT[B0] » rd_OUT[B3]

Now, rd_OUT[B3] is not yet computed. We 

are in no position to compute it either, 

since B1 is a predecessor of B3 and

rd_IN[B1] = rd_OUT[B3]

We have a cyclic dependency.

We overcome this issue of cyclic dependency issue by using an iterative approach to solving the data 

fl ow equations as we did for the available expressions. In the iterative approach of solving data fl ow 

equations for reaching defi nitions, an initial value for rd_OUT[B] for every block B is assumed. This will 

help us compute the rd_IN[B], where rd_IN[B] = » rd_OUT[P] for all the predecessors P of the block, 

even in cases where rd_OUT[P] is not yet computed. The initial value of rd_OUT[B] for every block B that 

is assumed before the start of all the calculations = rd_GEN[B]. 
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Now, using the initial value of rd_OUT[B], we compute rd_IN[B] for each one of the blocks B, using 

the equation rd_IN[B] = » rd_OUT[P], for each predecessor P. The initial value of rd_OUT[B] is used in 

situations like the one given above, where the rd_OUT of the predecessor has not yet been calculated. Once 

the value of rd_OUT[B] is calculated using Equation 7.4, we would use the calculated value thereafter.

In this manner, we compute rd_IN and rd_OUT for all the blocks.  Observe that the rd_IN of some of 

the blocks like B1, might have been computed directly based on the initial value of rd_OUT for one of the 

predecessor—B3, while the rd_IN of other blocks like B2, B4, etc. are calculated based on the computed 

values of rd_OUT of the predecessors. At the end of one round of computation for all the blocks (let’s call it 

iteration 1), we have a set of values of rd_IN/rd_OUT for all the blocks. At this point, note that the rd_OUT 

for every block contains the computed value and not the initial value that we assigned at the start. Table 

7.66 shows rd_IN/rd_OUT calculation for the fi rst iteration corresponding to all the nodes (basic blocks) of 

the fl ow graph in Fig. 7.51.

Table 7.66 rd_IN/rd_OUT for the blocks—iteration #1

# TAC rd_IN Comments

B0 (0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a – b

rd_IN[B0]= { }

rd_OUT[B0]= {1, 2, 3}

From the data fl ow equation 

Equation 7.4

rd_IN[B] = » rd_OUT[P] for all 

predecessors P

rd_OUT[B] = rd_GEN[B] » (rd_

IN[B] – rd_KILL[B])

There are no predecessors to 

B0, so

rd_IN[B0] = { } i.e. empty

using the values of rd_GEN 

and rd_KILL for B0 computed 

earlier

rd_OUT[B0] = {1, 2, 3} » ({ø} 

– {12})

rd_OUT[B0] = {1, 2, 3}

B1 (4) label .L0

(5) _t2 := i * 4

(6) _t3 := &arr

(7) _t4 := _t3[_t2]

(8) _t5 := n1 * n2

(9) if _t4 > _t5 goto .L1

rd_IN[B1]= {1, 2, 3, 12}

rd_OUT[B1] = 

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we 

have rd_IN[B] = » rd_OUT[P] 

for all the predecessors P of 

the block

There are 2 predecessors to 

B1, which are B0 and B3.

rd_IN[B1] = rd_OUT[B0] » 

rd_OUT[B3]

Initial value of rd_OUT[B3] = 
rd_GEN[B3] = {12}

rd_IN[B1] = rd_OUT[B0] » 

rd_OUT[B3]

rd_IN[B1] = {1, 2, 3} » {12}

rd_IN[B1] = {1, 2, 3, 12}
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rd_OUT[B1] = rd_GEN[B1] » 

(rd_IN[B1] – rd_KILL[B1])

rd_OUT[B1] = {5, 6, 7, 8} » 

({1, 2, 3, 12} – {})

rd_OUT[B1] = {1, 2, 3, 5, 6, 

7, 8, 12}

B2 (10) goto .L2 rd_IN[B2] = 

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B2] = 

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we 

have rd_IN[B] = » rd_OUT[P] 

for all the predecessors P of 

the block

There is 1 predecessors to B2, 

which is B1.

rd_IN[B2] = rd_OUT[B1]

rd_IN[B2] = {1, 2, 3, 5, 6, 7, 

8, 12}

rd_OUT[B2] = rd_GEN[B2] » 

(rd_IN[B2] – rd_KILL[B2])

rd_OUT[B2] = { } » ({1, 2, 3, 

5, 6, 7, 8, 12} – { })

rd_OUT[B2] = {1, 2, 3, 5, 6, 

7, 8, 12}

B3 (11) label .L1

(12) i := i + 1

(13) goto .L0

rd_IN[B3] = 

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B3] = 

{2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we 

have rd_IN[B] = » rd_OUT[P] 

for all the predecessors P of 

the block

There is 1 predecessors to B3, 

which is B1.

rd_IN[B3] = rd_OUT[B1]

rd_IN[B3] = {1, 2, 3, 5, 6, 7, 

8, 12}

rd_OUT[B3] = rd_GEN[B3] » 

(rd_IN[B3] – rd_KILL[B3])

rd_OUT[B3] = {12} U ({5, 6, 7, 

8, 1, 2, 3, 12} – {1})

rd_OUT[B3] = {2, 3, 5, 6, 7, 

8, 12}

B4 (14) label .L2

(15) return i

(16) goto .L3

rd_IN[B4] = 

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B4] = 

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we 

have rd_IN[B] = » rd_OUT[P] 

for all the predecessors P of 

the block

There is 1 predecessors to B4, 

which is B2.

rd_IN[B4] = rd_OUT[B2]

rd_IN[B4] = {1, 2, 3, 5, 6, 7, 

8, 12}
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rd_OUT[B4] = rd_GEN[B4] U 

(rd_IN[B4] – rd_KILL[B4])

rd_OUT[B4] = { } » ({1, 2, 3, 

5, 6, 7, 8, 12} – { })

rd_OUT[B4] = {1, 2, 3, 5, 6, 

7, 8, 12}

B5 (17) label .L3

(18) proc_end func

rd_IN[B5] = {1, 2, 3, 5, 

6, 7, 8, 12}

rd_OUT[B5] = {1, 2, 3, 

5, 6, 7, 8, 12}

According to Equation 7.4 we 

have rd_IN[B] = » rd_OUT[P] 

for all the predecessors P of 

the block

There is 1 predecessors to B5, 

which is B4.

rd_IN[B5] = rd_OUT[B4]

rd_IN[B5] = {1, 2, 3, 5, 6, 7, 

8, 12}

rd_OUT[B5] = rd_GEN[B5] U 

(rd_IN[B5] – rd_KILL[B5])

rd_OUT[B5] = { } » ({1, 2, 3, 

5, 6, 7, 8, 12} – { })

rd_OUT[B5] = {1, 2, 3, 5, 6, 

7, 8, 12}

Next, we do the computation of rd_IN and rd_OUT for all the blocks again (iteration 2) using the same 

equations defi ned in Equation 7.4. In this second iteration, the value of rd_IN for the blocks like B1 change, 

since rd_OUT[B3] would now be the value computed in the fi rst iteration, i.e. {2, 3, 5, 6, 7, 8, 12} as 

opposed to initial value {12} used in the fi rst iteration. The changes in rd_IN[B1] might have a ripple effect 

changing rd_OUT[B1], rd_IN[B3] and then rd_OUT[B3]. Thus the second iteration yields a set of values of 

rd_IN/rd_OUT for all the blocks.

Table 7.67 rd_IN/rd_OUT for the blocks—iteration #2

# TAC rd_IN Comments

B0 (0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a – b

rd_IN[B0] = { }

rd_OUT[B0] = {1, 2, 3}

From the data fl ow equation Equation 7.4

rd_IN[B] = U rd_OUT[P] for all 

predecessors P

rd_OUT[B] = rd_GEN[B] » (rd_IN[B] – rd_

KILL[B])

There are no predecessors to B0, so

rd_IN[B0] = { } i.e. empty

using the values of rd_GEN and rd_KILL 

for B0 computed earlier

rd_OUT[B0] = {1, 2, 3} » ({ø} – {12})

rd_OUT[B0] = {1, 2, 3}
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B1 (4) label .L0

(5) _t2 := i * 4

(6) _t3 := &arr

(7) _t4 := _t3[_t2]

(8) _t5 := n1 * n2

(9) if _t4 > _t5 

goto .L1

rd_IN[B1] = 

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B1] = 

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we have

rd_IN[B] = » rd_OUT[P] for all the 

predecessors P of the block

There are 2 predecessors to B1, which 

are B0 and B3.

rd_IN[B1] = rd_OUT[B0] » rd_OUT[B3]

The value of rd_OUT[B3] computed in the 
previous iteration= {2, 3, 5, 6, 7, 8, 
12}

rd_IN[B1] = rd_OUT[B0] » rd_OUT[B3]

rd_IN[B1] = {1, 2, 3} » {{2, 3, 5, 6, 

7, 8, 12}

rd_IN[B1] = {1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B1] = rd_GEN[B1] » (rd_IN[B1] 

– rd_KILL[B1])

rd_OUT[B1] = {5, 6, 7, 8} » ({1, 2, 3, 

5, 6, 7, 8, 12} – { })

rd_OUT[B1] = {1, 2, 3, 5, 6, 7, 8, 12}

B2 (10) goto .L2 rd_IN[B2] = 

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B2] = 

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we have

rd_IN[B] = » rd_OUT[P] for all the 

predecessors P of the block

There is 1 predecessor to B2, which is B1.

rd_IN[B2] = rd_OUT[B1]

rd_IN[B2] = {1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B2] = rd_GEN[B2] » (rd_IN[B2] 

– rd_KILL[B2])

rd_OUT[B2] = { } » ({1, 2, 3, 5, 6, 7, 

8, 12} – { })

rd_OUT[B2] = { 1,2,3,5,6,7,8,12 }

B3 (11) label .L1

(12) i := i + 1

(13) goto .L0

rd_IN[B3] = 

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B3] = 

{2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we have

rd_IN[B] = » rd_OUT[P] for all the 

predecessors P of the block

There is 1 predecessors to B3, which is B1.

rd_IN[B3] = rd_OUT[B1]

rd_IN[B3] = {1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B3] = rd_GEN[B3] » (rd_IN[B3] 

– rd_KILL[B3])

rd_OUT[B3] = {12} » ({5, 6, 7, 8, 1, 2, 

3, 12} – {1})

rd_OUT[B3] = {2, 3, 5, 6, 7, 8, 12}
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B4 (14) label .L2

(15) return i

(16) goto .L3

rd_IN[B4] = 

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B4] = 

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we have

rd_IN[B] = » rd_OUT[P] for all the 

predecessors P of the block

There is 1 predecessors to B4, which is B2.

rd_IN[B4] = rd_OUT[B2]

rd_IN[B4] = {1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B4] = rd_GEN[B4] » (rd_IN[B4] 

– rd_KILL[B4])

rd_OUT[B4] = { } » ({1, 2, 3, 5, 6, 7, 

8, 12} – { })

rd_OUT[B4] = {1, 2, 3, 5, 6, 7, 8, 12}

B5 (17) label .L3

(18) proc_end func

rd_IN[B5] = 

{1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B5] = 

{1, 2, 3, 5, 6, 7, 8, 12}

According to Equation 7.4 we have

rd_IN[B] = U rd_OUT[P] for all the 

predecessors P of the block

There is 1 predecessor to B5, which is B4.

rd_IN[B5] = rd_OUT[B4]

rd_IN[B5] = {1, 2, 3, 5, 6, 7, 8, 12}

rd_OUT[B5] = rd_GEN[B5] » ( rd_IN[B5] 

– rd_KILL[B5])

rd_OUT[B5] = { } U ({1, 2, 3, 5, 6, 7, 

8, 12} – { })

rd_OUT[B5] = {1, 2, 3, 5, 6, 7, 8, 12}

Table 7.68 shows the values of rd_OUT as calculated in the fi rst and second iteration corresponding 

to all the basic blocks of the fl ow graph. Observe that the values of rd_OUT for none of the blocks have 

changed from the fi rst to second iteration. This signals us to half the iterations calculating rd_IN/e_OUT for 

the blocks, since rd_OUT of all the blocks have reached a steady state.

Table 7.68 rd_OUT in the fi rst and second iteration

Block # rd_OUT in iteration #1 rd_OUT in iteration #2

0 rd_OUT[B0] = {1, 2, 3} rd_OUT[B0] = {1, 2, 3} 

1 rd_OUT[B1] = {1, 2, 3, 5, 6, 7, 8, 12} rd_OUT[B1] = {1, 2, 3, 5, 6, 7, 8, 12} 

2 rd_OUT[B2] = {1, 2, 3, 5, 6, 7, 8, 12} rd_OUT[B2] = {1, 2, 3, 5, 6, 7, 8, 12} 

3 rd_OUT[B3] = {2, 3, 5, 6, 7, 8, 12} rd_OUT[B3] = {2, 3, 5, 6, 7, 8, 12} 

4 rd_OUT[B4] = {1, 2, 3, 5, 6, 7, 8, 12} rd_OUT[B4] = {1, 2, 3, 5, 6, 7, 8, 12}

5 rd_OUT[B5] = {1, 2, 3, 5, 6, 7, 8, 12} rd_OUT[B5] = {1, 2, 3, 5, 6, 7, 8, 12}

Figure 7.52 shows the fl ow graph annotated with the values of rd_IN, rd_GEN, rd_KILL and rd_OUT 

for each of the blocks—B0 through B5.
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Fig. 7.52 Flow graph annotated with reaching defi nition information

Algorithm 7.11 summarises the computation of reaching defi nitions (rd_IN/rd_OUT) using the iterative 

approach of solving data fl ow equations that we discussed above.
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/* Initialize rd_OUT for all blocks */

for every block B {

 rd_OUT[B]= rd_GEN[B]

}

steady_state = FALSE

while (steady_state = = FALSE) {

 steady_state = TRUE

 for every block B {

  /* rd_IN */

  rd_IN[B] = » rd_OUT[P] for all the predecessors P of the block

  /* saving rd_OUT to later check if we have reached steady state */

  saved_rd_OUT = rd_OUT

  /* computing rd_OUT */

  rd_OUT[B] = rd_GEN[B] » ( rd_IN[B] – rd_KILL[B] )

  /* Checking for a steady state of rd_OUT */

  if(saved_rd_OUT[B] ! = rd_OUT[B]){

   steady_state = FALSE

  }

 }

}

Algorithm 7.11 Reaching defi nitions computation using the iterative approach

Algorithm 7.11 works for the input sources involving loops and also the ones without the loops.  Observe 

in the algorithm that the fi nal values of rd_IN and rd_OUT for all the blocks in the procedure are arrived 

at in an iterative fashion. For an input source without any loops, the fi nal values of rd_IN and rd_OUT for 

each block can be arrived at in the fi rst iteration, if the computation is made in the order of fl ow of control, 

where we compute rd_IN / rd_OUT for a block B only after rd_IN/rd_OUT for all its predecessors have 

been computed. In such cases, the second iteration is performed only to confi rm that the values of rd_OUT 

have reached a steady state.

The reaching defi nition information in the form of rd_IN set at the block level is extrapolated to the quad 

level and stored in a data structure called  use-defi nition (ud) chain.

The ud-chain is a set holding all defi nitions reaching a quad, for each variable used in the quad. Let’s 

pick a quad and see its ud-chain, to understand it. Let’s take quad (8) t5 := n1 * n2 in the TAC after local 

optimisation in the fl ow graph, Fig. 7.52 . The ud-chains for the same are shown below.

ud_chain (8, n1) = {2}

ud_chain (8, n2) = {3}

This tells us that the defi nition of ‘n1’ reaching the quad (8) comes from the quad (2). Similarly, the 

defi nition of ‘n2’ reaching quad (8) comes from the quad (3).

Let’s take another quad to see a case where there are more than one defi nitions reaching the quad—the 

quad (5)  i := i + 1 in Fig. 7.52. The quad (5) uses one variable ‘i’, the other argument used is a constant ‘1’. 

The ud-chain for the quad (5) is shown below.
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ud_chain (5, i) = {1, 12}

The ud-chain above tells us that the defi nition of ‘i’ reaching the quad (5) comes from either the quad 

(1) or quad (12). The quad (1) provides the initial value when the loop is entered for the fi rst time and quad 

(12) provides the value thereafter.

The ud-chain at a quad ‘q’ for the usage of a variable ‘v’ can be directly calculated from rd_IN of the 

block, by selecting the sub-set of defi nitions corresponding to the variable ‘v’ within rd_IN. In cases where 

there is a defi nition of the variable ‘v’ within the current block before the quad ‘q’, at say, q0, then the ud-

chain (q, v) = q0 (i.e.) q0 is the only defi nition that reaches q and the elements in rd_IN for ‘v’ are ignored. 

In scenarios containing multiple defi nitions of variable ‘v’ in the current block, then ‘q0’ corresponds to the 

last defi nition of the variable ‘v’.

Consider the above example for which we have already constructed the reaching defi nitions information. 

Table 7.69 shows the TAC annotated with the rd_IN information that we computed above.

Table 7.69 TAC with RD information

/* rd_IN[B0] = {ø} */

(0) proc_begin func

(1) i := 0

(2) n1 := a * b

(3) n2 := a – b

/* rd_IN[B1] = {1, 2, 3, 5, 6, 7, 8, 12} */

(4) label .L0

(5) _t2 := i * 4

(6) _t3 := &arr

(7) _t4 := _t3[_t2]

(8) _t5 := n1 * n2

(9) if _t4 > _t5 goto .L1

/* rd_IN[B2] = {1, 2, 3, 5, 6, 7, 8, 12} */

(10) goto .L2

/* rd_IN[B3] = {1, 2, 3, 5, 6, 7, 8, 12} */

(11) label .L1

(12) i := i + 1

(13) goto .L0

/* rd_IN[B4] = {1, 2, 3, 5, 6, 7, 8, 12} */

(14) label .L2

(15) return i

(16) goto .L3

/* rd_IN[B5] = {1, 2, 3, 5, 6, 7, 8, 12} */

(17) label .L3

(18) proc_end func

The ud-chains for the quads of blocks B1 and B3 in the TAC shown in Table 7.69 are summarised below 

in Table 7.70. The ud-chains are not relevant for the quads using certain operators like label, proc_begin, 

proc_end and hence are not listed in Table 7.70.
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Table 7.70 ud-chain information

Block Quad ud-chain Information Explanation 

B1 (5) _t2 := i * 4 ud_chain (5, i) = {1, 12} The defi nitions corresponding to ‘i’ in 

the rd_IN[B1] are {1, 12}. There are 

no defi nitions of ‘i’ preceding the quad 

#5 within the block B1. Hence the 

defi nitions of ‘i’ that are reaching the 

quad 5 are the ones made in {1, 12}.  

B1 (6) _t3 := &arr None The ADDR_OF operator fetches the 

memory address of the operand ‘arr’. It 

is an l-value and cannot be defi ned by 

any previous quad. It is treated like a 

constant assignment 

B1 (7) _t4 := _t3[_t2] ud_chain (7,_t3) = {6}

ud_chain (7,_t2) = {5}
There is a defi nition of ‘_t3’ in quad #6 

preceding the quad #7 within the block 

B1. Hence, the defi nition of ‘_t3’ that is 

reaching the quad 7 is the one made in {6}. 

There is a defi nition of ‘_t2’ in quad #5 

preceding the quad #7 within the block 

B1. Hence, the defi nitions of ‘_t2’ that 

is reaching the quad 7 is the one made 

in {5}.  

B1 (8) _t5 := n1 * n2 ud_chain (8, n1) = {2}

ud_chain (8, n2) = {3}
The defi nitions corresponding to ‘n1’ 

in the rd_IN[B1] is {2}. There are no 

defi nitions of ‘n1’ preceding the quad 

#8 within the block B1. Hence, the 

defi nition of ‘n1’ that is reaching the 

quad 8 is the one made in {2}.

The defi nitions corresponding to ‘n2’ 

in the rd_IN[B1] is {3}. There are no 

defi nitions of ‘n2’ preceding the quad 

#8 within the block B1. Hence, the 

defi nition of ‘n2’ that is reaching the 

quad 8 is the one made in {3}.

B1 (9) if _t4 > _t5 goto .L1 ud_chain (9, _t4) = {7}

ud_chain (9, _t5) = {8}
The defi nitions corresponding to ‘_t4’ 

in the rd_IN[B1] are None. There is a 

defi nition of ‘_t4’ in quad #7 preceding 

the quad #9 within the block B1. Hence, 

the defi nition of ‘_t4’ that is reaching 

the quad 9 is the one made in {7}.

The defi nitions corresponding to ‘_t5’ 

in the rd_IN[B1] are None. There is a 

defi nition of ‘_t5’ in quad #8 preceding 

the quad #9 within the block B1. Hence, 

the defi nition of ‘_t5’ that is reaching 

the quad 9 is the one made in {8}. 
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B3 (12) i := i + 1 ud_chain (12, i) = {1, 12} The defi nitions corresponding to ‘i’ in 

the rd_IN[B3] are {1, 12}. There are 

no defi nitions of ‘i’ preceding the quad 

#12 within the block B3. Hence, the 

defi nitions of ‘i’ that are reaching the 

quad 12 are the ones made in {1, 12}. 

The defi nitions of ‘i’ that are reaching 

the quad 15 is the one made in {1, 12}. 

The ud-chain is used to perform optimisations like the loop invariant code motion optimisation.

Loop Invariant Code Motion Optimisation using RD Analysis In this section, we discuss about using 

the ud-chain obtained from RD analysis for performing the code motion optimisation in the loops.  As 

mentioned earlier, the code motion optimisation deals with moving the loop invariant statements out of the 

loop. Moving the loop invariant statements out of the loop reduces the amount of computation done in an 

iteration of the loop. This can potentially improve the performance of the program manifold.

There are two steps required for performing the loop invariant code motion optimisation. They are:

 1. The detection of loop invariant statements in the loop. This is based on the ud-chain information 

obtained from the reaching defi nition analysis discussed previously.

 2. The moving of the loop invariant statements to the pre-header of the loop.  The loop invariant 

statements are moved to the pre-header on ascertaining certain conditions.

We study about each of these steps in detail in the following paragraphs.

Step 1: Detection of loop invariant statements

A  loop invariant statement computes a value that does not change throughout the execution of the loop. 

In a more formal way, a statement  ‘s: x := y + z’ in a loop L is considered as loop invariant if one of the 

following conditions hold good:

 1. All the reaching defi nitions of ‘y’ and ‘z’ at ‘s’ are from outside the loop as indicated by the ud 

chains for the quad q.

 2. The operands ‘y’ and ‘z’ are constants.

The identifi cation of loop invariant statements could take multiple passes as the following suggests. 

Consider a statement s : x := y + z within a loop L. Suppose the defi nitions of ‘y’ and ‘z’ that are reaching 

‘s’ are all from outside the loop. The computation (y + z) will yield a value ‘x’, which remains constant 

throughout the execution of the loop. The statement ‘s’ is a Loop invariant. Suppose there is another 

statement s1 : m := x + k  right after the statement ‘s’. Let’s assume that reaching defi nitions of ‘k’ are 

outside the loop. The statement ‘s1’ is also a loop invariant since the computation ‘x + k’ remains constant 

throughout the execution of the loop. The statement ‘s’ in the above example can be detected in the fi rst 

pass of the quads in the loop. The statement ‘s1’ can be detected in the second pass of the quads, after ‘s’ 

has been moved out of the loop.

Consider the fl ow graph in Fig. 7.52 and the corresponding ud-chain information computed earlier in 

Table 7.70. Table 7.71 shows a section of the ud-chain information corresponding to the statements of the 

basic blocks B1 and B3 that form a loop. From Table 7.71, the statement (8) can be concluded as a loop 

invariant, since the reaching defi nitions for n1 and n2 are from statements (2) and (3), which are outside the 

loop. The statement (6) is also a loop invariant, since the operator ‘&’ on any variable yields a constant.
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Table 7.71 ud-chain information for the statements in B1 and B3

Block # TAC statements ud-Chain information Comments

B1

(5) _t2 := i * 4 ud_chain (5, i) = {1, 12}

(6) _t3 := &arr None It is a constant assignment. 

This statement is a loop 

invariant

(7) _t4 := _t3[_t2] ud_chain (7, _t3) = {6}

ud_chain (7, _t2) = {5}

(8) _t5 := n1 * n2 ud_chain (8, n1) = {2}

ud_chain (8, n2) = {3}

This statement is a loop 

invariant

(9) if _t4  > _t5 goto .L1 ud_chain (9, _t4) = {7}

ud_chain (9, _t5) = {8}

B3 

(11) label .L1

(12) i := i + 1 ud_chain (12, i) = {1, 12}

(13) goto .L0

The loop invariant statements are thus identifi ed using the ud-chain information as shown in the above 

example.

Step 2:  Moving the Loop Invariant Statements to the Pre-header

All the loop invariant statements identifi ed in step(1) cannot be moved unconditionally into pre-header of 

the loop. The loop invariant statements need to meet several conditions in order to qualify for movement to 

the pre-header of the loop. These conditions stem from the idea that optimisation cannot result in incorrect 

code under any circumstances.

For a statement  ‘s: a = b + c’, to be moved into the pre-header, the following are the conditions that 

should be met.

 1. There should be no other statement ‘s1’, which defi nes ‘a’ within L.

 2. The reaching defi nition for all the uses of ‘a’ in the loop should be from ‘s’ only.

 3. The statement ‘s’ should be in a block that dominates all the exits of the loop L.

The loop invariant statements identifi ed in step(1), meeting the above criteria are moved into pre-header 

of the loop for accomplishing loop invariant code motion optimisation.

The following examples illustrate how violation of any one of the conditions could potentially lead to 

erroneous code generation.

Table 7.72 shows an input source that has a loop in which the variable ‘i’ varies. The copy statement 

‘fl ag = 0’ at line #12 is a loop invariant statement. However, moving that to the pre-header of the loop 

causes the function ‘func’ to behave incorrectly. The function might return ‘0’, irrespective of whether the 

condition’ (arr[i] < a)’ at line #14 is true or not for the loop exiting value of ‘i’. This loop invariant quad at 

#5 fl ag := 0, cannot be moved into a pre-header block since there is another statement which defi nes ‘fl ag’ 

within the loop. It violates the condition 1, i.e. there should be no other statement ‘s1’, which defi nes ‘fl ag’ 

within the loop L.
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Table 7.72 Condition 1 violated

Input source TAC after local optimisation Incorrect movement of loop 

invariant statement to the pre-

header of the loop

 1 int arr [100];  (0) proc_begin func  (0) proc_begin func

 2  (1) i := 0  (1) i := 0

 3  (2) label .L0  (1a) fl ag := 0

 4 int func (int a, int b)  (3) goto .L1  (2) label .L0

 5 {  (4) goto .L6  (3) goto .L1

 6  int i, fl ag;  (5) label .L1  (4) goto .L6

 7  (6) fl ag := 0  (5) label .L1

 8  i = 0;  (7) _t0 := i * 4  (6)

 9  (8) _t1 := &arr  (7) _t0 := i * 4

10  while (1 == 1){  (9) _t2 := _t1[_t0]  (8) _t1 := &arr

11 (10) if _t2 < a goto .L2  (9) _t2 := _t1[_t0]

12   fl ag=0; (11) goto .L3 (10) if _t2 < a goto .L2

13 (12) label .L2 (11) goto .L3

14   if (arr[i] < a){ (13) fl ag := 1 (12) label .L2

15    fl ag=1; (14) label .L3 (13) fl ag := 1

16   } (15) _t3 := i * 4 (14) label .L3

17 (16) _t4 := &arr (15) _t3 := i * 4

18 (17) _t5 := _t4[_t3] (16) _t4 := &arr

19   if ( arr[i] >= b){ (18) if _t5 >= b goto .L4 (17) _t5 := _t4[_t3]

20    break; (19) goto .L5 (18) if _t5 >= b goto .L4

21   } (20) label .L4 (19) goto .L5

22 (21) goto .L6 (20) label .L4

23   i = i+1; (22) label .L5 (21) goto .L6

24 (23) i := i + 1 (22) label .L5

25  } (24) goto .L0 (23) i := i + 1

26  return (fl ag); (25) label .L6 (24) goto .L0

27   } (26) return fl ag (25) label .L6

(27) goto .L7 (26) return fl ag

(28) label .L7 (27) goto .L7

(29) proc_end func (28) label .L7

(29) proc_end func

 Table 7.73 shows an input source that has a loop in which the variable ‘change’ could have a value of 1 or 

0 in the fi rst iteration, and 0 in all other iterations. The function f1 is called with ‘change’ as a parameter. The 

copy statement ‘change = 0’ at line#19 is a loop invariant statement. However moving that to the pre-header 

of the loop causes the invocation of function ‘f1’ with change taking the value of 0 as a parameter for all the 

iterations including the fi rst. This causes the incorrect behaviour of the program in the event of the condition 

(a > b) being true. The correct behaviour of the program would be to invoke function ‘f1’ with ‘change’ 

taking the value of 1 as a parameter for the fi rst iteration, in the event of the condition (a > b) being true.

This loop invariant quad at #15 change := 0, cannot be moved into a pre-header block since it violates 

the condition 2, i.e. the reaching defi nition for all the uses of ‘change’ in the loop should be from quad #15 

only. The reaching defi nitions at quad #11 (param change), which specifi es the parameter for the invocation 

of f1, are from #1, #5 and #15. One of the prerequisites for moving the loop invariant quad #15 to the pre-

header of the loop in the form of condition 2 is that the reaching defi nition for all the uses of ‘change’ in the 

loop (quad #11) should be from the quad #15 only. Clearly, the condition 2 has been violated in this case 

and hence the quad #15 cannot be moved to the pre-header of the loop.
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Table 7.73 Condition 2 violated

Input source TAC after local optimisation Incorrect movement of loop 

invariant statement to the pre-header 

of the loop

 1 int arr[100];  (0) proc_begin func  (0) proc_begin func

 2  (1) change := 0  (1) change := 0

 3 int f1( );  (2) if a > b goto .L0  (2) if a > b goto .L0

 4  (3) goto .L1  (3) goto .L1

 5 int func (int a, int b)  (4) label .L0  (4) label .L0

 6 {  (5) change := 1  (5) change := 1

 7  int change, ret;  (6) label .L1  (6) label .L1

 8  (7) label .L2  (7) label .L2

 9  change=0;  (8) goto .L3  (7a) change := 0

10  if (a > b){  (9) goto .L6  (8) goto .L3

11   change=1; (10) label .L3  (9) goto .L6

12  } (11) param change (10) label .L3

13 (12) call f1 4 (11) param change

14 (13) ret := _t0 (12) call f1 4

15  while (1 == 1){ (14) retrieve _t0 (13) ret := _t0

16 (15) change := 0 (14) retrieve _t0

17   ret = f1(change); (16) if _t0 == 0 goto .L4 (15)

18 (17) goto .L5 (16) if _t0 == 0 goto .L4

19   change = 0; (18) label .L4 (17) goto .L5

20 (19) goto .L6 (18) label .L4

21   if (ret == 0){ (20) label .L5 (19) goto .L6

22    break; (21) goto .L2 (20) label .L5

23   } (22) label .L6 (21) goto .L2

24 (23) goto .L7 (22) label .L6

25  } (24) label .L7 (23) goto .L7

26  return; (25) proc_end func (24) label .L7

27 } (25) proc_end func

Table 7.74 shows an input source that has a loop in which the variable ‘i’ varies. The copy statement 

‘fl ag = 1’ at line #17 (quad 16) is a loop invariant statement. However, moving that to the pre-header of 

the loop causes the function ‘cap_it’ to always return the value 1, irrespective of whether the condition 

‘(arr[i] > a )’ at line #11 is true or not.
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Table 7.74 Condition 3 violated

Input source TAC after local optimisation Incorrect movement of loop invariant 

statement to the

pre-header of the loop

 1 int arr[100]; (0) proc_begin cap_it (0) proc_begin cap_it

 2 (1) i := 0 (1) i := 0

 3 (2) fl ag := 0 (2) fl ag := 0 

 4 int cap_it(int a) (2a) fl ag := 1

 5 {

 6  int i, fl ag; (3) label .L0 (3) label .L0

 7 (4) if i < 100 goto .L1 (4) if i < 100 goto .L1

 8  i = 0;

 9  fl ag = 0; (5) goto .L4 (5) goto .L4

10

11  while (i < 100){ (6) label .L1 (6) label .L1

12 (7) _t0 := i * 4 (7) _t0 := i * 4

13   if (arr[i] > a){ (8) _t1 := &arr (8) _t1 := &arr

14    arr[i] = a; (9) _t2 := _t1[_t0] (9) _t2 := _t1[_t0]

15  (10) if _t2 > a goto .L2 (10) if _t2 > a goto .L2

16    /* Loop Invariant */

17    fl ag=1; (11) goto .L3 (11) goto .L3

18   }

19  (12) label .L2 (12) label .L2

20   i = i + 1; (13) _t3 := i * 4 (13) _t3 := i * 4

21  } (14) _t4 := &arr (14) _t4 := &arr

22  (15) _t4[_t3] := a (15) _t4[_t3] := a

23  return (fl ag); (16) fl ag := 1 (16)

24  

25 } (17) label .L3 (17) label .L3

26   (18) i := i + 1 (18) i := i + 1

(19) goto .L0 (19) goto .L0

(20) label .L4 (20) label .L4

(21) return fl ag (21) return fl ag

(22) goto .L5 (22) goto .L5

(23) label .L5 (23) label .L5

(24) proc_end cap_it (24) proc_end cap_it

The fl ow graph of the input source is shown in Fig. 7.53. We can gather from the fl ow graph that 

the block B5 in which the loop invariant quad ‘(16) fl ag := 1’ is found, does not dominate the loop exit 

block B1. The loop invariant statement  #16 cannot be moved into a pre-header block since it violates the 

condition 3, i.e. the block in which it exists does not dominate all the exits of the loop.

The reader is advised to check if all the three conditions are satisfi ed in the loop invariant code 

optimization example shown in Table 7.64.
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Fig. 7.53 Flow graph
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Example 6—Global Code Motion Using Reaching Defi nition Analysis This section demonstrates the toy 

C compiler (mycc) performing global loop invariant code motion using the reaching defi nition information. 

The reaching defi nition information was gathered by using the algorithms explained in the preceding 

section. The RD information in the form of ud-chains is put to use to move the loop invariant code to the 

pre-header on ascertaining that the three conditions mentioned earlier have been fulfi lled.

The toy C compiler takes as input, a sample C input source and gives out (a) unoptimised TAC (b) the 

locally optimised TAC and (c) the TAC after global loop invariant code motion. The dialog below shows 

‘mycc’ taking in some sample input C sources having loops and printing out the above information as the 

output.

# Generating the Parser from Grammar Specifi cations 

$ bison –d –y –v  –t –oc–small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g++  –DICGEN –g –Wall –c –o c-small-gram.o  c-small-gram.cc 

# Generating the Lexical Analyzer from Lexical Specifi cations 

$ fl ex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyzer 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building ‘mycc’ - A Toy Compiler for C Language 

$ g++  -DICGEN -g -Wall ic_gen.cc optimize.cc target_code_gen.cc mycc.cc semantic_
analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe 

# Sample Input C fi le with Loop invariants that can be moved out 

$ cat -n test.cm.1.c 
 1 int arr[1000];

 2

 3 int func (int a, int b)

 4 {

 5  int i;

 6  int n1, n2;

 7

 8  i = 0;

 9

 10  n1 = a * b ;

 11  n2 = a – b ;

 12

 13  while (arr[i] > (n1*n2))

 14  {

 15   i = i + 1;

 16  }

 17

 18

 19  return(i);

 20 }

 21

# Intermediate code before and after optimization 

# -O gcm for Global Code Motion, –v for verbosity 

$ ./mycc.exe -i -O gcm -v test.cm.1.c 
TAC Before optimization 
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 (0) proc_begin func

 (1) i := 0

 (2) _t0 := a * b

 (3) n1 := _t0

 (4) _t1 := a – b

 (5) n2 := _t1

 (6) label .L0

 (7) _t2 := i * 4

 (8) _t3 := &arr

 (9) _t4 := _t3[_t2]

(10) _t5 := n1 * n2

(11) if _t4 > _t5 goto .L1

(12) goto .L2

(13) label .L1

(14) _t6 := i + 1

(15) i := _t6

(16) goto .L0

(17) label .L2

(18) return i

(19) goto .L3

(20) label .L3

(21) proc_end func

TAC After Local optimization 

 (0) proc_begin func

 (1) i := 0

 (2) n1 := a * b

 (3) n2 := a – b

 (4) label .L0

 (5) _t2 := i * 4

 (6) _t3 := &arr

 (7) _t4 := _t3[_t2]

 (8) _t5 := n1 * n2

 (9) if _t4 > _t5 goto .L1

(10) goto .L2

(11) label .L1

(12) i := i + 1

(13) goto .L0

(14) label .L2

(15) return i

(16) goto .L3

(17) label .L3

(18) proc_end func

TAC After (Local and Global) optimization 

 (0) proc_begin func

 (1) i := 0

 (2) n1 := a * b

 (3) n2 := a – b

 (4) _t3 := &arr

 (5) _t5 := n1 * n2

 (6) label .L0

 (7) _t2 := i * 4

 (8) _t4 := _t3[_t2]

 (9) if _t4 > _t5 goto .L1

(10) goto .L2

(11) label .L1
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(12) i := i + 1

(13) goto .L0

(14) label .L2

(15) return i

(16) goto .L3

(17) label .L3

(18) proc_end func

# Sample Input C fi le with Loop invariants that can be moved out 

$ cat -n test.cm.2.c 

 1 int a[100], b[100];

 2 

 3 int transform (int n, int factor)

 4 {

 5  int i;

 6

 7  i = 0;

 8  while (1 == 1)

 9  {

 10   b[i] = a[i] + (factor *2);

 11   i = i + 1;

 12   if (i >= n){

 13    break;

 14   }

 15  }

 16

 17 }

 18

# Intermediate code before and after optimization 

$ ./mycc.exe -i -O gcm -v test.cm.2.c 
TAC Before optimization 

 (0) proc_begin transform

 (1) i := 0

 (2) label .L0

 (3) if 1 == 1 goto .L1

 (4) goto .L4

 (5) label .L1

 (6) _t0 := i * 4

 (7) _t1 := &b

 (8) _t2 := i * 4

 (9) _t3 := &a

(10) _t4 := _t3[_t2]

(11) _t5 := factor * 2

(12) _t6 := _t4 + _t5

(13) _t1[_t0] := _t6

(14) _t7 := i + 1

(15) i := _t7

(16) if i >= n goto .L2

(17) goto .L3

(18) label .L2

(19) goto .L4

(20) label .L3

(21) goto .L0

(22) label .L4

(23) label .L5

(24) proc_end transform
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TAC After Local Optimization 

 (0) proc_begin transform

 (1) i := 0

 (2) label .L0

 (3) goto .L1

 (4) goto .L4

 (5) label .L1

 (6) _t0 := i * 4

 (7) _t1 := &b

 (8) _t3 := &a

 (9) _t4 := _t3[_t0]

(10) _t5 := factor * 2

(11) _t6 := _t4 + _t5

(12) _t1[_t0] := _t6

(13) i := i + 1

(14) if i >= n goto .L2

(15) goto .L3

(16) label .L2

(17) goto .L4

(18) label .L3

(19) goto .L0

(20) label .L4

(21) label .L5

(22) proc_end transform

TAC After (Local and Global) optimization 

 (0) proc_begin transform

 (1) i := 0

 (2) _t1 := &b

 (3) _t3 := &a

 (4) _t5 := factor * 2

 (5) label .L0

 (6) goto .L1

 (7) goto .L4

 (8) label .L1

 (9) _t0 := i * 4

(10) _t4 := _t3[_t0]

(11) _t6 := _t4 + _t5

(12) _t1[_t0] := _t6

(13) i := i + 1

(14) if i >= n goto .L2

(15) goto .L3

(16) label .L2

(17) goto .L4

(18) label .L3

(19) goto .L0

(20) label .L4

(21) proc_end transform

7.3 TARGET CODE OPTIMISATION

In target code optimisation, we look at ways and means of improving the target code generated by the 

compiler. Similar to the intermediate code optimisation, the main operating principle is that the optimised 

target code should be correct in all scenarios.



  Code Optimisation 553

The effi ciency of the target code depends on resourceful use of the registers of the processor. Most of the 

target code optimisation revolves around strategies that can be used during target code generation for better 

usage of registers (Section 7.3.1). There are other optimisations like the peep-hole optimisation (Section 

7.3.2), which improve the effi ciency for certain patterns in the target code.

7.3.1 Improved Register Usage

The target code generated by the template-based code generator that we discussed earlier in Chapter 

6 leaves scope for optimisation. Let’s look at some of the areas where the target code generated by the 

template-based code generator has scope for improvement.

Consider the Intermediate code and a part of the x86-based target code generated by the template-based 

code generator in Table 7.75. In the target code generated by the template-based code generator, the moves 

from register into memory given by 1(c) and the subsequent move from memory to the register given by 

2(a) are redundant. The improved target code shown alongside retains the value of ‘_t0’ in the register 

%eax to achieve the same functionality. The improved code is smaller in terms of memory and better in 

performance. 

Table 7.75 Redundant moves into and from memory

Source code Intermediate code Section of target code from 

template-based code generator

Improved target code

1 int a, b, c, d; (0) proc_begin func /* _t0: = a + b */ /* _t0 := a + b */

2   (1) _t0: = a + b (1a) movl _b, %eax (1a) movl _b, %eax

3 int func() (2) d: = _t0 – c (1b) addl _a, %eax (1b) addl _a, %eax

4 { (3) return d (1c) movl %eax, –4(%ebp)

5  d = (a+b–c); (4) goto .L0

6 (5) label .L0 /* d := _t0 – c */ /* d: = _t0 – c */

(2b) subl _c, %eax

(2c) movl %eax, _d

7  return (d); (6) proc_end func (2a) movl –4 (%ebp), %eax

8 } (2b) subl _c, %eax

/* return d   */ 

(3a) movl _d, %eax /* return d */

(3a) movl _d, %eax

Consider the Intermediate code and a part of the x86-based target code generated by the template-based 

code generator in Table 7.76. The x86 instructions corresponding to each of the quads contains a load from 

the memory location to register (e.g. 1a, 2a and 3a ) and a move from the register to memory location (e.g. 

1c, 2c and 3c). The improved target code retains the results in the registers and uses the less expensive 

register-to-register instructions (e.g. 2a, 3b shaded in gray) to achieve the same functionality.

Table 7.76 Using register to register moves

Source code Intermediate code Target code from

template-based code 

generator

Improved target code

1 int a, b, c, d, e, f; (0) proc_begin func /* c := a + b */ /* c := a + b */

2 (1) c: = a + b (1a) movl _b, %eax (1a) movl _b, %eax

3 int func() (2) e := c + d (1b) addl _a, %eax (1b) addl _a, %eax

4 { (3) f := c + e (1c) movl %eax, _c (1c) movl %eax, _c

5 (4) return f

6   c = a + b; (5) goto .L0 /* e := c + d */ /* e := c + d */

7   e = c + d; (6) label .L0 (2a) movl _c, %eax (2a) movl %eax, %edx
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8   f = c + e; (7) proc_end func (2b) addl _d, %eax (2b) addl _d, %edx

9 (2c) movl %eax, _e (2c) movl %edx, _e

10   return (f);

11 } /* f: = c + e */ /* f: = c + e */

(3b) addl %edx, %eax

(3c) movl %eax, _f

(3a) movl _c, %eax 

(3b) addl _e, %eax 

(3c) movl %eax, _f

/* return f  */ /* return f  */

(4a) movl _f, %eax

The target code generated by the template-based code generator does not work optimally in the cases 

of loops. This is because it does not identify and retain the values of heavily used variables in registers 

throughout the execution of loop. The performance of loops can be improved manifold by keeping the most 

heavily used variables in registers during the execution of the loop.

The target code can be improved by replacing the template-based code generator by more sophisticated 

target code generator that makes better usage of registers. Before we look at the specifi cs of a particular 

target code generator, let’s study the important issues that need to be addressed commonly by any target 

code generator in order to make better utilisation of registers.

The assembly instruction using any of the processor registers, as operands are faster than the instructions 

using memory as operands. To take advantage of this, an effi cient target code generator would try and 

retain program variables in registers for as long as possible, so that it can generate target instructions 

using registers as operands. The improved target code in Table 7.76 demonstrates the same idea. At the 

completion of the instruction (1c), the variable ‘c’ is contained in register %eax. At (2a), when the value 

of ‘c’ is required, the register %eax is directly used. The value of ‘c’ is retained in the register %eax till 

the quad (3b). At (3b), when the value of ‘c’ is needed again, the register %eax is used directly instead 

of loading from memory. When the number of variables is small in number as in the example of Table 

7.76, all the variables computed can be retained in registers. However, when the number of variables is 

higher than the number of registers available, the target code generators need to identify a smaller sub-set 

of variables to be retained in memory. The set of variables that would be retained in registers is arrived 

at by using heuristics like the number of times a variable is used, whether the variable is live, and so on. 

The process of identifying what variables need to be retained in registers is known as  register allocation. 

Register allocation can be performed at a basic block level or at a global level for the entire procedure. The 

register allocation performed at a basic block level is called as  local register allocation (LRA). In contrast, 

the  global register allocation (GRA) aims to allocate the registers across the basic blocks. In local register 

allocation, it is evident that all the live variables residing in registers need to be saved (or spilled) into 

memory at the end of the basic block, so that the successor block generates code correctly. In local register 

allocation, loops cannot be processed optimally, since the registers have to be spilled after every block and 

it is not possible to retain the most heavily used variables in a register throughout the life of the loop. The 

register allocation strategy is the most important part of any target code generator aiming to make effi cient 

use of registers.

The target code generators need to track the value of registers and variables during the target code 

generation in order to make effi cient use of registers. The target code generator should have data structures 

that will help retrieve information like whether the variable’s value is present in a register or not, is a 

register free for allocation to a variable, and so on. The information should be indexed properly in the data 

structures for quick retrieval and updates. A signifi cant design effort is spent in designing the data structures 

to track the values of registers and variables in a target generator aspiring to use the registers optimally.
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The target code generators need the information on data fl ow of the program to make informed decisions 

during target code generation. The data fl ow analysis of the intermediate code helps in procuring the 

information. For example, the target code generators identify points when a variable’s value needs to be 

moved from register to memory depending on whether a variable is next used or not. The information about 

a variable being used next is obtained by data fl ow analysis of the input program. The target code generators 

seeking to use the registers in an effi cient way need to obtain data fl ow information of the input program by 

performing data fl ow analysis.

We study in detail about a simple x86 target code generator in Section 7.3.1.1 to get a feel of the issues 

concerning a target code generator intending to make the optimum use of registers.

7.3.1.1 A Simple x86 Target Code Generator In this section, we discuss the features and the 

implementation of a  simple x86 target code generator that makes better use of registers than the template-

based code generator. The simple code generator is based on local register allocation, where the register 

allocation is confi ned within the basic block. The simple code generator takes the bottom-up approach with 

regard to register allocation, where it dynamically allocates a register to store the result on a need basis.

The best way to understand the important characteristics of simple target code generator is to analyse its 

target code for a sample input source. The target code generated by template-based code generator for the 

same input source allows us to make a good comparison between the two.

Table 7.77 shows an Input source, the corresponding intermediate code, the x86-based target code 

generated using the template-based code generation as well as the code generated by the simple target code 

generator.

Table 7.77 Simple code generation

(A) 

Input Source

(B)

Intermediate Code

(C)

Target Code from 

Template based Code 

Generator

(D)

Target Code from Simple 

Code Generator

1 int a,b,c,d,e,f; (0) proc_begin func /* proc_begin func */ /* proc_begin func */

2   (1) c := a + b (0a).align 4 (0a).align 4

3 int func() (2) e := c + d (0b) .globl _func (0b) .globl _func

4 { (3) f := c + e (0c) _func: (0c) _func:

5   (4) if f > 100 goto .L0 (0d) pushl %ebp (0d) pushl %ebp

6  c = a + b; (0e) movl %esp,%ebp (0e) movl %esp,%ebp

7  e = c + d; (5) goto .L1 (0f) subl $16,%esp (0f) subl $16,%esp

8  f = c + e;

9   (6) label .L0 /* c := a + b   */ /* c := a + b */

10  if(f > 100 ){ (7) f := a + c (1a) movl _b,%eax (1a) movl _a,%ebx

11   f=a+c; (1b) addl _a,%eax (1b) addl _b,%ebx

12  } (8) label .L1 (1c) movl %eax,_c

13  (9) return f

14  return(f); (10) goto .L2 /* e := c + d   */ /* e := c + d */

15 } (2a) movl _d,%eax (2a) movl %ebx,%eax

16  (11) label .L2 (2b) addl _c,%eax (2b) addl _d,%eax

(12) proc_end func (2c) movl %eax,_e

/* f := c + e   */ /* f := c + e */

(3a) movl _e,%eax (3a) movl %ebx,%edx

(3b) addl _c,%eax (3b) addl %eax,%edx

(3c) movl %eax,_f
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/*Spilling reg*/

(3c) movl %ebx,_c

(3d) movl %eax,_e

/* if f > 100 goto .L0 */ /* if f > 100 goto .L0*/

/*Spilling reg*/

(4a) movl %edx,_f

(4a) movl $100,%eax (4b) movl _f,%ebx

(4b) cmpl %eax,_f (4c) cmpl $100,%ebx

(4c) jg .L0 (4d) jg .L0

/* goto .L1   */ /* goto .L1 */

(5a) jmp .L1 (5a) jmp .L1

/* label .L0   */ /* label .L0 */

(6a) .align 4 (6a) .align 4

(6b) .L0: (6b) .L0:

/* f := a + c   */ /* f := a + c */

(7a) movl _c,%eax (7a) movl _a,%ebx

(7b) addl _a,%eax (7b) addl _c,%ebx

(7c) movl %eax,_f

/*Spilling reg*/

(7c) movl %ebx,_f

/* label .L1   */ /* label .L1 */

(8a) .align 4 (8a) .align 4

(8b) .L1: (8b) .L1:

/* return f   */ /* return f */

(9a) movl _f,%eax (9a) movl _f,%eax

/* goto .L2   */ /* goto .L2 */

(10a) jmp .L2 (10a) jmp .L2

/* label .L2   */ /* label .L2   */

(11a).align 4 (11a).align 4

(11b) .L2: (11b) .L2:

/* proc_end func   */ /* proc_end func  */

(12a) movl %ebp,%esp (12a) movl %ebp,%esp

(12b) popl %ebp (12b) popl %ebp

(12c) ret (12c) ret

Each quad is translated into a set of assembly instructions by the simple target code generator, using the 

information as to which operands are already in registers. In case the operands are already in registers, the 

registers are directly used in the target code instead of performing a load from memory. The target code 

instructions (2a), (3a) and (3b) in column (D) are good examples of operands picked up from registers 

instead of being loaded from memory.
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The register to store the result ‘x’ of the quad in ‘x: = y op z’ is dynamically allocated at the time of 

processing the quad. For example, In column (D), at (1a), the register ebx has been allocated to store the 

variable ‘c’, at (2a), the register eax has been allocated to store the variable ‘e’.

The result of the operations (e.g. add/sub/mul, etc.) is left in registers for as long as it is possible before 

storing it into the memory. For example, after (1b), the value of the variable ‘c’ continues to be register ebx. 

After (2b), the register eax continues to hold ‘e’. The result is stored back into the memory of the variable 

(spilled) from the register on the triggering of certain conditions like, say, when the variable is no longer 

used in the basic block or when the register is required for another computation or at the end of basic block, 

and so on. For example, the instruction (3c) and (3d) spill the values of variables ‘c’ and ‘e’ since they are 

no longer used in the basic block.

For the quads having operators such as PROC_BEGIN and PROC_END, the code generated by the 

template-based approach and simple code generation do not differ. Similarly, for quads using simple 

operators like LBL, GOTO and CALL, where there is no usage of variables or registers both the approaches 

yield the same code. The generated target instruction for the quads (0), (5), (6) and (12) in Table 7.77 

illustrate the idea.

We study about the simple code generator in detail over the next few sections. The simple code generator 

needs information about (a) whether a variable is used later in the basic block and (b) whether a variable is 

live at a given point, while deciding on register spilling as mentioned above. This information is gathered 

by performing data fl ow analysis of the input quads for the target code generator.

We discuss the details of the data fl ow analysis to collect the liveness and next use information at each 

quad level in the next section. This is followed by a discussion on the data structures and the algorithm used 

by the simple code generator. The working of the algorithm on a sample set of input quads is presented later 

in this Section.

Data Flow Analysis for computing Next Use and Liveness We had seen previously how the data fl ow 

analysis helped us gather properties like available expressions, reaching defi nitions, and so on. The simple 

code generator performs data fl ow analysis to compute liveness of a variable and another data fl ow property 

called the ‘ next use’ at each quad level. These two data fl ow properties are used during the register spilling.

Consider the quads shown in Table 7.78 in which the variables a, b, c, d, e, f and g are present. The quad 

(1) uses the variables ‘b’ and ‘c’ and defi nes a variable ‘a’. The variable ‘a’ is next used after quad (1) in 

the quad (3). The variable ‘c’ is not used in any quad after the quad (1), so there is no next use for ‘c’. We 

use the notion of next used in the simple code generator while making the register spills.

The idea of liveness, which we studied earlier, is also used in the simple code generation to spill the 

registers at different points in the block. A variable v is said to be live at a point p, if it is used in some path 

in the fl ow graph starting p. To compare the liveness with next use, we can say that the liveness is the next 

use extending across the blocks. If there is next use for a variable, it is defi nitely live. A variable might not 

have next use, but can still be live, if there is a use in some block after the current one.

Table 7.78 Intermediate code

(0) proc_begin func

(1) a := b + c

(2) f := d + e

(3) g := a + f

(4) f := a – b

(5) d := f + g

(6) label .L0

(7) proc_end func
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The next uses and liveness information is stored at a quad level for all its operands and used in the 

simple code generator. Before we look at the algorithms to compute the next uses and liveness information, 

let’s get a feel of how the liveness and next uses information looks like. We assume for the discussion 

that all the variables ‘a’ through ‘e’ are all global in scope. Table 7.79 displays the liveness and next uses 

information for a couple of quads in the sample intermediate code that we saw in Table 7.78.

Table 7.79 Liveness and next uses information

Quad Next use information Liveness information Explanation

(1) a := b + c next_use (1, a) = 3

next_use (1, b) = 4

next_use (1, c) = –1

liveness (1, a) = LIVE

liveness (1, b) = LIVE

liveness (1, c) = LIVE

The variable ‘a’ is next 

used in quad 3. The 

variable ‘b’ is next used 

in quad 4. The variable ‘c’ 

is not used later in this 

block, hence next_uses (1, 

c) is –1 to indicate no 

next use.

The variable ‘a’ is used 

later at quad 3, hence it 

is LIVE. The variable ‘b’ 

is used later at 4, hence 

it is live.

‘c’ is not used in this 

block. It is also not defi ned 

in any one of the later 

quads. Since it is a global 

variable, which can be used 

in another procedure, it is 

considered LIVE.

(2) f := d + e next_use (2, f) = 3

next_use (2, d) = –1

next_use (2, e) = –1

liveness (2, f) = LIVE

liveness (2, d) = DEAD

liveness (2, e) = LIVE

The variable ‘f’ is next 

used in quad 3. The 

variable ‘d’ is not used 

in quads 3 or 4. It is 

redefi ned in quad 5, hence 

next_use (2, d) is –1. 

There is no next use for 

the variable ‘e’.

The variable ‘f’ is used 

later at quad 3, hence it 

is LIVE. The variable ‘d’ 

is not used, it is redefi ned 

in quad 5, hence it is DEAD 

at this point.

‘e’ is not used in this 

block. It is also not defi ned 

in any one of the later 

quads. Since it is a global 

variable, which can be used 

in another procedure, it is 

considered LIVE.

The liveness and next uses information is used for making informed decisions for register spilling and 

freeing up of registers in the simple code generator. Let’s say, for example, the values of a, b and c are 
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in the registers eax, ebx and ecx respectively at the end of the quad 1 in the above example. By knowing 

that ‘c’ is not going to be used again in this block (i.e. next uses is empty), we can choose to free up the 

register ecx for subsequent generation of code. The fact that ‘c’ is live implies that the register ecx needs to 

be spilled on to the memory for ‘c’ before we free up the register for subsequent usage. In the simple code 

generation strategy, we would try and retain the values of ‘a’ and ‘b’ in the registers for as long as possible, 

since there is next usage of these variables.

Let’s now look at an algorithm to compute the liveness and next uses at each quad in a block. The idea 

of the algorithm is to scan backwards starting from the last quad in the block and marking variables for 

liveness and next use. In the algorithm, we use a temporary table that has an entry for each variable used 

in the block. For each of the variable, it stores two pieces of Information (a) the current liveness status of 

the variable—live or dead and (b) the next uses of the variable. The table is initialised with the liveness 

and next use values at the end of the block, since the quads are processed backwards. For all the variables 

that are live at the end of the block as indicated by live_OUT set (see Section 7.2.10.3), we initialise the 

liveness attribute to LIVE in the table. The next uses attribute is initialised to –1, i.e. no next use, for all the 

variables in the block.

 1 /* Initialize a temporary table for next_use and liveness */

 2   

 3 /* for each variable ‘v’ in the block */

 4 for each variable v

 5 {

 6  tmp_tab[v].next_uses = –1 /* No Next use */

 7

 8  if (v is in live_OUT of the block){

 9   tmp_tab[v].liveness = LIVE

 10  }else{

 11   tmp_tab[v].liveness = DEAD

 12  }

 13 }

 14  

 15  /* In a scan backwards from the last quad of the block to fi rst */

 16

 17 for each quad ‘res: = arg1 op arg2’

 18 do

 19  next_uses[quad_no].arg1 = tmp_tab.next_uses[arg1]

 20  next_uses[quad_no].arg2 = tmp_tab.next_uses[arg2]

 21  next_uses[quad_no].res  = tmp_tab.next_uses[res]

 22

 23  liveness[quad_no].arg1 = tmp_tab.liveness[arg1]

 24  liveness[quad_no].arg2 = tmp_tab.liveness[arg2]

 25  liveness[quad_no].res  = tmp_tab.liveness[res]

 26

 27  tmp_tab.liveness[res] = DEAD

 28  tmp_tab.next_uses[res] = –1  /* No Next use */

 29

 30  tmp_tab.liveness[arg1] = LIVE

 31  tmp_tab.next_uses[arg1] = quad_no

 32

 33  tmp_tab.liveness[arg2] = LIVE

 34  tmp_tab.next_uses[arg2] = quad_no;

 35 done

Algorithm 7.12 Computing next use and liveness
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The quads are scanned backwards, from the last quad in the block to the fi rst quad. At each quad res := 

arg1 + arg2, the following steps are performed:

 (a) The information available in the temporary table for ‘res’, arg1 and arg2 with respect to liveness and 

next uses attributes are attached to the quad as given by lines 19 through 25 in Algorithm 7.12.

 (b) The entries in the temporary table for variables ‘arg1’, and ‘arg2’ are updated to have liveness 

attribute as LIVE and next use attribute as the current quad number. The entry in the temporary table 

for ‘res’ is updated to have the liveness attribute as DEAD, while the next use attribute is marked as 

–1, signifying no next use. This is given by lines 27 through 34 in Algorithm 7.12.

Let’s watch the algorithm at work on the some of the quads in the intermediate code shown in 

Table 7.78.

The variables used in the block a, b, c, d, e, f and g are all global, and hence they are all live at the end of 

the block as given by live_OUT set. The temporary table is initialised as shown below:

Var Liveness Next Use

a LIVE -1

b LIVE -1

c LIVE -1

d LIVE -1

e LIVE -1

f LIVE -1

g LIVE -1

The fi rst quad to be processed is (5) d := f + g. The information from the temporary table above is 

attached to the quad as mentioned in step (a).

(5) d := f + g next_uses (5, d) = –1 

next_uses (5, f) = –1

next_uses (5, g) = –1

liveness (5, d) = LIVE

liveness (5, f) = LIVE

liveness (5, g) = LIVE

 The entries in the temporary table for d, f and g are updated as mentioned in step (b). For the variable 

‘d’, we make the liveness attribute as DEAD and the next use attribute as –1 ( signifying no next use ). The 

variable ‘f ’ liveness attribute is turned LIVE and its next use is assigned the current quad number 5. The 

updates in the temporary table are shown in gray below:

Var Liveness Next Use

a LIVE -1

b LIVE -1

c LIVE -1

d DEAD -1

e LIVE -1

f LIVE 5

g LIVE 5
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The next quad to be processed is (4) f := a – b. The information from the temporary table above is 

attached to the quad as mentioned in step (a).

(4) f := a – b next_uses (4, f) =  5

next_uses (4, a) = –1

next_uses (4, b) = –1

liveness (4, f) = LIVE

liveness (4, a) = LIVE

liveness (4, b) = LIVE

The entries in the temporary table for ‘f ’, ‘a’ and ‘b’ are updated as mentioned in step (b). For the 

variable ‘f ’, we make the liveness attribute as DEAD and the next use attribute as –1 (signifying no next 

use). The variable ‘a’ liveness attribute is turned LIVE and its next use is assigned the current quad number 

4. The variable ‘b’ liveness attribute is turned LIVE and its next use is assigned the current quad number 4. 

The updates in the temporary table are shown in gray below:

Var Liveness Next Use

a LIVE 4

b LIVE 4

c LIVE -1

d DEAD -1

e LIVE -1

f DEAD -1

g LIVE 5

In this way the algorithm continues till the fi rst quad and updates the liveness and next uses information 

for all the quads. The reader is advised to verify the computation of liveness and next use information using 

the algorithm with Table 7.80.

Table 7.80 Next use and liveness information

Quad Next Use Information Liveness information

(1) a := b + c next_uses (1, a) = {3, 4}

next_uses (1, b) = {4}

next_uses (1, c) = { }

liveness (1, a) = LIVE

liveness (1, b) = LIVE

liveness (1, c) = LIVE

(2) f := d + e next_uses (2, f) = {3}

next_uses (2, d) = { }

next_uses (2, e) = { }

liveness (2, f) = LIVE

liveness (2, d) = DEAD

liveness (2, e) = LIVE

(3) g := a + f next_uses (3, g) = {5}

next_uses (3, a) = {4}

next_uses (3, f) = {}

liveness (3, g) = LIVE

liveness (3, a) = LIVE

liveness (3, f) = DEAD 

(4) f := a – b next_uses (4, f) = {5}

next_uses (4, a) = {}

next_uses (4, b) = {}

liveness (4, f) = LIVE

liveness (4, a) = LIVE

liveness (4, b) = LIVE 

(5) d := f + g next_uses (5, d) = {} 

next_uses (5, f) = {}

next_uses (5, g) = {}

liveness (5, d) = LIVE

liveness (5, f) = LIVE

liveness (5, g) = LIVE
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Algorithm and Data Structures In this section, we study about the data structures and the algorithm used 

for implementing the simple code generator. The simple code generator makes use of the liveness and next 

uses information collected by means of data fl ow analysis as explained in the last section.

The simple code generator is implemented with the help of two data structures called  address descriptor 

 table and  register descriptor table. As the target code is generated quad after quad, these two data structures 

are consulted to know information like, say, ‘Are the operands of the current quad present in a register or 

memory?’, ‘Are there any free registers in which the result of the current quad can be stored?’ and so on.

The address descriptor table maintains the information as to where the current value of a variable can be 

found. The current value of a variable can be found in a register or in the memory or a combination of both. 

Table 7.81 shows a sample address descriptor using x86 registers. It shows 5 variables p, q, r, s and t. The 

current value of variable ‘p’ is in a register eax. The current value of the variable ‘q’ is both register ebx and 

memory as well. The current value of ‘r’ is in memory only. The current value of the variable ‘s’ is in two 

registers ecx and edx. The variable ‘t’ is housed in ebx. Observe that both ‘q’ and ‘t’ are stored in the same 

register ‘ebx’. This is possible after processing a copy statement ‘q = t’.

Table 7.81 Address descriptor table

Variable name Current 

location

p eax 

q ebx, memory 

r memory 

s ecx, edx 

t ebx 

We can see from Table 7.81 that the address descriptor is indexed on the name of the variables (symbol 

table entries to be precise).

The register descriptor table maintains the information about which variables are currently held in a 

particular register. A register can hold the values of more than one variable due to copy statements. Table 

7.82 shows a sample register descriptor entries using x86 registers. It shows 4 registers eax, ebx, ecx and 

edx. The register eax holds current value of variable ‘p’. The register ebx holds the current value of the 

variable ‘q’ as well as ‘t’. The current value of the variable ‘s’ is in two registers ecx and edx. The register 

descriptor table is indexed on the register entry. Observe that the register descriptor table shown in Table 

7.82 is in sync with the address descriptor shown in Table 7.81, refl ecting the same machine state.

Table 7.82 Register descriptor table

Register name Current variables

eax p

ebx q, t

ecx s

edx s
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The algorithm for code generation in simple target code generator consists of 4 steps for each of the quad 

of the form ‘res := arg1 + arg2’, where ‘+’ is used to represent any of the IC operators.

 1. Identify a register ‘r’ in which the result of the quad (res) would be stored. The identifi cation of the 

register for storing the result is based on simple algorithm described later in this section. At this 

point, it suffi ces to know that the algorithm invokes a function get_dst( ) that would return a register 

name ‘r’ in which the result of the quad would be stored.

 2. Generate an assembly instruction to move the content of arg1 into ‘r’. In case the value of ‘arg1’ is 

in register say ‘r1’, then an assembly instruction to move from ‘r1’ to ‘r’ is generated. In case the 

value of arg1 is not in register, but only in memory, the assembly instruction to move from memory 

location arg1 to ‘r’ is generated. If it so happens that ‘arg1’ is already in ‘r’, then this instruction 

need not be generated. The address descriptor table is consulted for knowing if ‘arg1’ is in a register 

and fetching the register name.

 3. Generate assembly instructions to carry out the operation (op) associated with the quad. For 

example, if the operation in the quad is say subtract, then assembly instruction ‘sub’ is generated for 

an x86 target architecture. The generated target instruction would use ‘arg2’ as one of the operands 

and ‘arg1’ present in register ‘r’ as the other operand and store the result in ‘r’ itself. In case the 

value of ‘arg2’ is in register say ‘r2’, then an assembly instruction would use the register ‘r2’ instead 

of using the memory location. The address descriptor table is consulted for knowing if ‘arg2’ is in a 

register and fetching the register name.

 4. Update the register and address descriptor tables for res, arg1 and arg2. 

 ∑ Update the address descriptor table to indicate that the value of ‘res’ is stored in ‘r’ only. Update 

the register descriptor table to indicate that ‘r’ contains the value of the variable ‘res’ only.

 ∑ If the variable ‘arg1’ is in a register ‘r1’ and arg1 has no next use, then,

  a. if arg1 is LIVE, generate spill code to move the value of r1 to memory location of arg1.

  b. Mark the register and address descriptor tables to indicate that the register ‘r1’ no longer 

contains the value of variable ‘arg1’. This would allow, get_dst() to pick up the register r1 in 

step (1) in the code generation for the future quads.

 ∑ The same updates as arg1 above are repeated with respect to arg2.

Figure 7.54 illustrates the 4 steps of the target code generation in simple code generator assuming that y 

and z are not in registers. It also shows the typical actions that happen at each of the 4 steps for a sample IC 

instruction ‘x := y – z’.
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Fig. 7.54 The 4 steps for target code generation in simple code generator

The function get_dst() is used in step 1 above to identify a register ‘r’ for storing the result of the quad. 

It works on the basis of following algorithm for a given quad ‘res: = arg1 + arg2’, where ‘+’ is used to 

represent any of the IC operators.

 (a) If ‘arg1’ is already in register ‘r’ and ‘arg1’ is dead after this statement and ‘r’ holds no other 

variable other than ‘arg1’, then return ‘r’.

 (b) If there is an empty register ‘r’ which does not hold the value of any variable, then return ‘r’.

 (c) Choose any arbitrary register ‘r’. Let’s say the values of variables ‘v1’ and ‘v2’ are stored in ‘r’ at 

this point in time. We move the contents of the register ‘r’ into the memory locations associated 

with the variables ‘v1’ and ‘v2’. We update the address descriptor of ‘v1’ and ‘v2’ to indicate that ‘r’ 

no longer holds their value. We return the register ‘r’.

This version of get_dst() can be improved by making a more informed choice rather than picking an 

arbitrary register in (c) above. One approach could be that we could pick a register ‘r’ holding the value of 

variable ‘v’ that is used furthest from the current quad.
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The other implementation aspects of the simple target generator that are of interest to the reader are 

detailed below.

∑ The simple target code generator generates code to spill all the live variables at the end of the block. 

In cases where the last statement of the block is a GOTO or a conditional GOTO statement, the target 

code generator spills the live variables before generating code for these or else the spill code would 

be unreachable. The simple target code generator also generates code to spill all the live variables 

before a CALL statement, since the called procedure could use the live variables and also overwrite 

the registers.

∑ The simple target code generator takes the template-based approach for generating code to the simple 

operators like PROC_BEGIN, PROC_END, RETURN, RETRIEVE, CALL, LBL, PARAM, GOTO.

∑ For the operators, which use a specifi c register ‘r’ as a convention, the register ‘r’ is spilled in case 

it is housing a live variable. For example, RETURN uses the register eax on x86 architecture as a 

convention. The register eax is spilled to the memory, before being used by the return.

∑ For a quad using the assign operator say x := y, there are two possible cases

 (a) ‘y’ is already in a register say ‘r’:  There is no code generated if ‘y’ is already in a register ‘r’. 

The register descriptor table is updated to add the variable ‘x’ as a part of the set housing ‘r’. The 

address descriptor table is also updated to refl ect the same.

 (b) ‘y’ is not present in a register: In the case ‘y’ is not already in a register, get_dst( ), fetches a 

register say ‘r1’ to store ‘x’. A ‘mov’ instruction is generated to move ‘y’ from the memory 

location to the register ‘r1’. The register and address descriptor tables are updated to refl ect that 

‘x’ and ‘y’ are housed in ‘r1’.

Illustration of Target Code Generation using Simple Code Generator Let’s take the quads shown in 

Table 7.78 as input and look at how the above-mentioned algorithms of the simple code generator work on 

it to generate target code.

At the start of target code generation, we initialise the address descriptor table and register descriptor 

table to indicate that all the values of variables are stored in memory and none of the variables are stored in 

registers as shown below.

 

a Memory

b Memory

c Memory

d Memory

e Memory

f Memory

g Memory

Address descriptor table       

eax None

ebx None

ecx None

edx None

Register descriptor table

The quad, the generated target code and the comments on the working of the algorithm are provided 

below for all the quads of the example chosen in Table 7.78.
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Quad Generated target code Comments

(0) proc_begin func /* proc_begin func */

   .align 4

.globl _func

_func:

   pushl %ebp

   movl %esp, %ebp

   subl $20, %esp

For the operator ‘proc_begin’ target code is 

generated based on the template based code 

generation approach.

Quad Generated target code Comments 

(1) a := b + c /* a: = b + c */

movl _b, %eax

addl _c, %eax

Step 1: get_dst() returns a free register ‘eax’

Step 2: Generate target instruction to move the 
value of ‘b’ into the selected register eax (mov 

_b, %eax).

Step 3: Generate target code to carry out the 
add operation  (addl _c, %eax) and store the 

result in the selected register eax.

Step 4: Update the address and register 

descriptor table to indicate that the register 

‘eax’ contains the value of the variable ‘a’.

a eax

b Memory

c Memory

d Memory

e Memory

f Memory

g Memory

Address descriptor table       

eax a

ebx None

ecx None

edx None

Register descriptor table

Quad Generated target code Comments

(2) f := d + e /* f : = d + e */

  movl _d, %edx

  addl _e, %edx

Step 1: get_dst( )returns a free register ‘edx’.

Step 2 : Generate target instruction to move the 
value of ‘d’ into the selected register edx (mov 

_d, %eax).

Step 3 : Generate target code to carry out the add 
operation (addl _e, %edx) and store the result in 

the register edx.

Step 4 : Update the address and register descriptor 
table to indicate that the register ‘edx’ contains 

the value of the variable ‘f’.
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a eax

b Memory

c Memory

d Memory

e Memory

f edx

g Memory

Address descriptor table

      

eax a

ebx None

ecx None

edx f

Register descriptor table

Quad Generated target code Comments

(3) g := a + f /* g: = a + f */

movl %eax, %ebx
Step 1: get_dst() returns a free register ‘ebx’

addl %edx, %ebx Step 2: Generate target instruction to move the 

value of ‘a’ into the selected register edx. The 

value of variable ‘a’ is already in the register eax 

as indicated by the address descriptor table. The 

generated target instruction is mov %eax, %ebx.

Step 3: The other operand ‘f’ is already in the 

register ‘edx’ as indicated by address descriptor 

table. Generate target code to carry out the add 

operation  (addl %edx, %ebx) and store the result in 

the register ebx.

Step 4: Update the address and register descriptor 
table to indicate that the register ‘ebx’ contains 

value of the variable ‘g’. From the Table 7.80, in 

the row corresponding to quad 3, we know that the 

variable ‘f’ has no next uses and is DEAD after this 

quad. The register ‘edx’ in which the value of ‘f’ 

is housed at this time is freed up by updating both 

the desriptor tables.

a eax

b Memory

c Memory

d Memory

e Memory

f –

g ebx

Address descriptor table       

eax a

ebx g

ecx None

edx None

Register descriptor table
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Quad Generated target code Comments

(4) f := a – b /* f: = a – b */

movl %eax, %ecx

subl _b, %ecx

Step 1: get_dst(), returns a free register ‘ecx.’

Step 2: Generate target instruction to move the 
value of ‘a’ into the selected register ecx. The 

value of variable ‘a’ is in the register eax as 

indicated by the address descriptor table. The 

generated target instruction is  mov %eax, %ecx.

/* spilling */

movl %eax, _a

Step 3: The other operand ‘b’ is not available in 
any register. The third step yields target code to 

carry out the subtract operation (subl _b, %ecx) and 

stores the result in the register ecx.

Step 4: Update the address and register descriptor 
table to indicate that the register ‘ecx’ contains 

the value of the variable ‘f’. One of the arguments 

of the quad, the variable ‘a’ is stored in 

register eax. It has no next use after this quad, 

as indicated by the row corresponding to quad 4 

in Table 7.80. Since the variable ‘a’ is LIVE, 

the register eax is spilled by generating the 

instruction movl %eax, _a. The register eax is then 

freed up by updating both the descriptor tables.

a Memory

b Memory

c Memory

d Memory

e Memory

f ecx

g ebx

Address descriptor table
      

eax None

ebx g

ecx f

edx None

Register descriptor table

Quad Generated target code Comments 

(5) d := f + g /* d: = f + g */ Step 1: get_dst() returns the free register ‘eax.’

mov %ecx, %eax

addl %ebx, %eax

/* spilling */

movl %ecx, _f

movl %ebx, _g

Step 2: Generate target instruction to move the value 
of ‘f’ into the selected register eax. The value 

of variable ‘f’ is already in the register ecx as 

indicated by the address descriptor table. The 

generated target instruction is mov %ecx, %eax. 

Step 3: The other operand ‘g’ is available in register 
%ebx. Generate target code to carry out the add 

operation (addl %ebx, %eax) and store the result in 

the register eax.
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Step 4: Update the address and register descriptor 

table to indicate that the register ‘eax’ contains the 

value of the variable ‘d’. Both the arguments of the 

quad, the variable ‘f’ and ‘g’ are stored in registers 

edx and ebx respectively. Both of them have no next 

use after this quad, but are LIVE as indicated by 

the row corresponding to quad 5 in Table 7.80. The 

register edx and ebx are spilled by generating the 

instructions movl %ecx, _f and  movl %ebx, _g. The 

registers are freed up by updating both the descriptor 

tables.

a Memory

b Memory

c Memory

d eax

e Memory

f Memory

g Memory

Address descriptor table       

eax d

ebx None

ecx None

edx None

Register descriptor table

Quad Generated target code Comments 

(6) proc_end func /* Spilling reg */

movl %eax, _d

/* proc_end func */

movl %ebp, %esp

popl %ebp

ret

As a part of processing the operators like 

CALL, comparison operators, goto, proc_end, 

that change the fl ow of control, all the 

live variables that are in registers, but 

not yet in the memory are spilled. In this 

case, ‘d’ is the only live variable that is 

in a register, but not yet in memory and 

hence spilled.

For the operator ‘proc_end’ target code is 

generated based on the template-based code 

generation approach.

Example 7—Optimised Target Code using Simple Code Generator This section demonstrates the toy C 

compiler (mycc) generating optimised target code using the simple code generator outlined previously.

The toy C compiler takes as input, a sample C input source and gives out the optimised target code. The 

dialog below shows ‘mycc’ taking in some sample input C sources using various operators (like addition, 

subtraction, etc.) and data structures like arrays, structures, and so on. It generates the corresponding 

optimised x86 assembly code using the simple code generation strategy. The generated x86 assembly code 

is assembled to produce an executable binary.

# Generating the Parser from Grammar Specifi cations 

$ bison -d -y -v  -t -oc-small-gram.cc c-small-gram.y 

# Compiling the Parser 

$ g++  -DICGEN -g -Wall -c -o c-small-gram.o  c-small-gram.cc 
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# Generating the Lexical Analyzer from Lexical Specifi cations 

$ fl ex  -oc-small-lex.cc c-small-lex.l 

# Compiling the Lexical Analyzer 

$ g++  -DICGEN -g -Wall -c -o c-small-lex.o  c-small-lex.cc 

# Building ‘mycc’ - A Toy Compiler for C Language 

$ g++  -DICGEN -g -Wall ic_gen.cc optimize.cc target_code_gen.cc mycc.cc semantic_
analysis.cc c-small-gram.o c-small-lex.o -o mycc.exe 

# Sample Input C fi le  

$ cat -n test.tc.1.c 
 1 /*

 2 Simple example

 3 */

 4 

 5 int a, b, c, d, e, f, g;

 6 

 7 int func()

 8 {

 9  a = b + c;

 10  f =  d + e ;

 11  g = a + f ;

 12  f = a – b ;

 13  d = f + g;

 14 }

 15  

# Generating Target code with optimization

# -t for Target Code Optimization 

$ ./mycc.exe -t -O all test.tc.1.c 
.comm   _a, 4

.comm   _b, 4

.comm   _c, 4

.comm   _d, 4

.comm   _e, 4

.comm   _f, 4

.comm   _g, 4

.text

/* proc_begin func */ 

 .align 4

.globl _func 

_func: 

 pushl %ebp 

 movl %esp, %ebp 

 subl $20, %esp 

/* a: = b + c */ 

 movl _b, %eax 

 addl _c, %eax 

/* _t1: = d + e */ 

 movl _d, %ecx 

 addl _e, %ecx 

/* g := a + _t1 */ 
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 movl %eax, %edx 

 addl %ecx, %edx 

/* f: = a – b */ 

 movl %eax, %ecx 

 subl _b, %ecx 

/*Spilling Variable*/

 movl %eax, _a 

/* d: = f + g */ 

 movl %ecx, %eax 

 addl %edx, %eax 

/*Spilling Variable*/

 movl %ecx, _f 

/*Spilling Variable*/

 movl %edx, _g 

/* proc_end func */ 

/* Spilling live vars */ 

/* Vars are 

 a  b  c  d  e  f  g */ 

/*Spilling Variable*/

 movl %eax, _d

 movl %ebp, %esp

 popl %ebp 

 ret 

# Generate target code with optimization

$ ./mycc.exe -O all -t test.tc.2.c >test.tc.2.s

# Assemble it

$ gcc test.tc.2.s -o test.tc.2.exe

# Execute it

$ ./test.tc.2.exe
BEFORE: x = 0 y = 0 z = 0 q = 0 

AFTER: x = 8 y = 12 z = 14 q = –12 

# Generate Target code with optimization 

$ ./mycc.exe -O all -t test.tc.3.c >test.tc.3.s 

# Assemble it

$ gcc test.tc.3.s -o test.tc.3.exe

# Execute it

$ ./test.tc.3.exe 
AFTER 1:x = 8 y = –16 ret = –8

AFTER 2:x = 2 y = 16 ret = 18

AFTER 3:x = 25 y = 55 ret = 80

# Generate Target code with optimization 

$ ./mycc.exe -O all -t test.tc.4.c >test.tc.4.s 

# Assemble it 

$ gcc test.tc.4.s -o test.tc.4.exe 

# Execute it 

$ ./test.tc.4.exe 
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BEFORE: The fi rst 5 elements in arr are 0 0 0 0 0

AFTER: The fi rst 5 elements in arr are 0 1 2 3 4

# Generate Target code with optimization

$ ./mycc.exe -O all -t test.tc.5.c >test.tc.5.s 

# Assemble it 

$ gcc test.tc.5.s -o test.tc.5.exe 

# Execute it 

$ ./test.tc.5.exe 
g_var1 = 200 g_var2 = 25 l_var1 = 5000 l_var2 = 225

7.3.1.2 Limitations of Simple Target Code Generator The simple code generator that we studied in 

the last section is easy to implement and is more effi cient than the template-based code generator.

In the simple code generator, the live variables are spilled into memory from the registers at the end 

of each block. In any of the successor blocks, when one of those live variables is fi rst used, there are 

instructions to load the variable into a register from the memory. The generated code for register spills at 

the end of the block and the consequent load instructions into memory in the successor blocks degrades the 

performance.

The target code generated for loops by the simple code generator is poor. For optimal performance, the 

most heavily used variables need to be in the registers throughout the life of the loop, across blocks. The 

simple target code generator cannot afford to keep a variable in a register across blocks, since it operates at 

a basic block level and spills the live variables at the end of each block.

7.3.2 Peep-hole Optimisation

 Peep-hole optimisation is another technique used during the target code optimisation. In peep-hole 

optimisation, improvements are done local to a small segment of code called the peep-hole or window.

Let’s take an example to understand the idea behind peep-hole optimisation. Consider the target code 

generated for the input source shown in Table 7.83. The target code has been generated using the template-

based code generator discussed in Chapter 6.

Table 7.83 Input source, intermediate code and the target code

Source code Intermediate code Target code from template-

based code generator

1 int a, b, c, d; (0) proc_begin func /* _t0 := a + b */

2 (1) _t0 := a + b (1a) movl _b, %eax

3 int func() (2) d := _t0 – c (1b) addl _a, %eax

4 { (3) return d (1c) movl %eax, –4(%ebp)

5   d = (a + b – c); (4) goto .L0

6 (5) label .L0 /* d: = _t0 – c */

7   return(d); (6) proc_end func (2a) movl –4(%ebp), %eax

8 } (2b) subl _c, %eax

(2c) movl %eax, _d 

/* return d */ 

(3a) movl _d, %eax 
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We take the target code generated by the template-based code generator in Table 7.83 and see how the 

peep-hole optimisation can improve it. Figure 7.55 shows the target code before and after the peep-hole 

optimisation. The peep-hole optimiser looks at the segment of code (or the peep-hole window) consisting of 

the x86 assembly instructions labelled (1c) through 2(a) and replaces it with (1c) as shown in Fig. 7.55.

Before optimisation After optimisation

(1a) movl _b, %eax (1a) movl _b, %eax

(1b) addl _a, %eax (1b) addl _a, %eax

(1c) movl %eax, –4(%ebp)

(2a) movl –4(%ebp), %eax
Æ (1c) movl %eax, –4(%ebp)

(2b) subl _c, %eax (2b) subl _c, %eax

(2c) movl %eax, _d (2c) movl %eax, _d

(3a) movl _d, %eax (3a) movl _d, %eax

Fig. 7.55 Peep-hole optimisation

The instructions (1c) and (2a) represent a pattern in the target code of the form mov R, M followed by 

mov M, R where R is a register and M is a memory. When such a pattern occurs in the target code, the 

peep-hole optimiser replaces it by a single instruction mov R, M, since the register R already contains the 

value held in M. A good number of peep-hole optimisations fall in this category, where an identifi ed pattern 

of instructions in the target code is replaced by a more optimal equivalent set of instructions. Table 7.84 

shows some of the other patterns and their replacements by peep-hole optimiser module. Most of these 

replacements result in either reduction in code size or improvement in speed of execution or both.

Table 7.84 Pattern and replacement instructions in peep-hole optimisation

Pattern Replacement Comments

goto L1

L1:

L1: The control falls through to the label L1 even without the 

goto statement. Hence the goto statement can be eliminated.

 This results in reduction of code size.

addl %ex,1 inc %eax Use of the machine idiom, the autoincrement operator instead 

of a explicit add by one. The autoincrement operator takes 

less cycles to perform the increment. This is an example of 

using a machine idiom as a replacement instruction.

This improves the speed of execution.

imull %eax, 32 lshiftl %eax The shift operation involves less cycles than the multiply 

operation. This is an example of replacement by reduction 

in strength.

This improves the speed of execution.

imull %eax, 1 None The multiplication by 1 yields the same value. Hence it 

can be eliminated.

or The addition by 0 yields the same value. Hence it can be 

eliminated.

addl %eax, 0 These are examples of algebraic simplifi cation.

These improve the speed of execution and also reduce the 

code size. 
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Table 7.84 showed cases where the identifi ed pattern is a contiguous set of instructions replaced 

by another set of optimal set of instructions. It is also possible that the instructions that are analysed for 

replacement are not in contiguous fashion.  For example, Table 7.85 shows a pattern where double jump 

is avoided by replacing jumps to L1 with L2. The peep-hole optimiser can also be used to eliminate the 

unnecessary labels for which there are no jumps.

Table 7.85 Peep-hole optimisation avoiding double jump

Pattern Replacement Comments 

goto L1

..

..

..

..

goto L1

..

..

..

..

L1: goto L2

goto L2

..

..

..

..

goto L2

..

..

..

..

L1: goto L2

When a label L1 contains a jump to another label L2, then 

the goto L1 can be replaced by goto L2.

The replaced code is more effi cient than the original, 

since two jumps are avoided at least in some of the cases.

The peep-hole optimisation technique can also be used on the intermediate code to improve it with the 

same ease.

    SUMMARY

An optimising compiler typically has an optimisation phase to improve the intermediate code and the 

target code in terms of performance and code size. 

There are several transformations that can be done on the intermediate code in order to improve 

the performance like common sub-expression elimination, constant folding, copy propagation, dead 

code elimination, and so on. Intermediate code optimisation performed within a basic block is known 

as local optimisation, while the optimisation performed across the basic blocks is termed as global 

optimisation. Typically compilers perform optimisations at both local and global levels. During local 

optimisation, the intermediate code is broken into blocks of straight-line code called basic blocks.

A directed acyclic graph (DAG) is a useful data structure for performing local optimisation of the 

intermediate code. The DAG is used to perform various local intermediate code optimisations like 

CSE, Dead code elimination, and so on. In order to perform global optimisations in the intermediate 

code, it is necessary to perform data fl ow analysis of the input source code. The data fl ow properties 

like available expressions, liveness, reaching defi nitions, etc. are used to perform optimisations like 

global common sub-expression elimination, global dead code elimination, and so on. A loop-related 

optimisation in the intermediate code—loop invariant code motion is performed by using a data fl ow 

property called as reaching defi nition.

Most of the target code optimisation involves strategies to have the values of variables in 

registers and perform operations using the registers instead of memory locations. A simple target 

code generator, which retains the values of variables in registers for as long as it is possible and uses 

them for calculations was described in Section 7.3.1.1. Peep-hole optimisation is another commonly 

employed method to improve the target code.
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    REVIEW QUESTIONS AND EXERCISES 

 7.1 What is optimisation? Is there any scope for improving the intermediate code and target code as well?

 7.2 What are the common techniques for improving the intermediate code? Explain three of them in 

detail.

 7.3 What is common sub-expression elimination in the context of intermediate code optimisation? 

Illustrate with an example. Would poorly written code only require common sub-expression 

elimination to improve the intermediate code? 

 7.4 What is constant folding in intermediate code optimisation? Illustrate with an example.

 7.5 What is copy propagation? Illustrate how the copy propagation facilitates other optimisation 

opportunities.

 7.6 What is dead code elimination? Illustrate with an example.

 7.7 What are the common algebraic transformations that can be done for improving the intermediate 

code?

 7.8 What is strength reduction transformation? Illustrate with an example. 

 7.9 What is a loop invariant code motion optimisation? Illustrate with an example.

 7.10 What are induction variables? How does the strength reduction on induction variables help in 

improving loop optimisation? Illustrate with an example. 

 7.11 Explain the following terms in the context of intermediate code optimisation (a) basic block 

(b) directed acyclic graph (c) local and global optimisation.

 7.12 What are the main steps in the local optimisation of intermediate code? 

 7.13 How do you split the intermediate code into basic blocks? Explain with the help of an algorithm.

 7.14 Describe an algorithm to construct a DAG from a basic block? Illustrate with an example.

 7.15 Explain the algorithm to generate optimised intermediate code by traversing the nodes in a DAG? 

Illustrate with an example.

 7.16 What are the main properties of a DAG? Illustrate those as you construct a DAG.

 7.17 What is ‘killing’ of a DAG node? How does it help in rectifying issues with incorrect optimised 

intermediate code generation for arrays?

 7.18 What are the issues with the optimised intermediate code for pointers while using the basic DAG 

construction algorithm? What are the corrective measures required in the DAG construction 

process to eliminate them?

 7.19 What are the issues with the optimised intermediate code for procedure calls while using the 

basic DAG construction algorithm? What are the corrective measures required in the DAG 

construction process to eliminate them?

 7.20 Explain the following terms: (a) fl ow graph (b) point and path (c) defi nition and usage of variable 

in three address code (d) data fl ow property and data fl ow analysis.

 7.21 What is available expressions? How can it be used to perform global common sub-expression 

elimination in the intermediate code?

 7.22 Explain the terms: (a) generation and killing of expressions (b) universal set of expressions for a 

basic block of intermediate code? Illustrate these by taking a sample block of three address code.

 7.23 Express the relationship between the set of expressions that are available at the beginning of a 

basic block to the set of expressions that are available at the end of a basic block.

 7.24 What is an iterative approach to solving the data fl ow equations? When do we need it? Give an 

example in the context of computing available expressions data fl ow property.



576 Principles of Compiler Design

 7.25 Given the available expression information, how can you eliminate the re-computation of 

common sub-expressions at a global level? Illustrate with an example.

 7.26 What is liveness of a variable? How can it be used to perform dead code elimination? Illustrate 

with an example.

 7.27 How do you compute (a) live_USES—The set of variables whose use precedes any defi nition 

within a basic block (b) live_DEFS – The set of variables whose defi nition precedes any use 

within a basic block. Illustrate with a sample three address code.

 7.28 Express the relationship between the set of all the variables that are live before reaching the 

beginning of a basic block to the set of variables that are live at the end of block ‘B’?

 7.29 Explain the terms (a) domination (b) back edge (c) pre-header (d) natural loop in the context of 

identifying loops in the intermediate code.

 7.30 Describe the algorithm to identify a loop given the back edge. Illustrate with an example.

 7.31 What is reaching defi nitions? How is it used in performing loop invariant code motion 

optimisation?

 7.32 Explain the terms (a) generation of a defi nition in a block (b) killing of a defi nition in a block. 

Illustrate the computation with an example.

 7.33 Express the relationship between rd_IN[B], the set of all the defi nitions reaching the beginning of 

block ‘B’ to rd_OUT[B], the set of defi nitions reaching the end of block ‘B’.

 7.34 What is use-defi nition chain? How is it computed from rd_IN[B], the set of all the defi nitions 

reaching the beginning of block ‘B’?

 7.35 What are the steps in performing loop invariant code motion optimisation using the ud-chain 

information?

 7.36 What are the conditions to be satisfi ed in order to move a TAC statement from within the loop to 

the pre-header?

 7.37 What are the common steps taken by target code generators for producing effi cient code?

 7.38 Explain any two data fl ow properties used by target code generators for generating effi cient target 

code.

 7.39 Describe an algorithm for computing next use and liveness properties at each quad level in a 

basic block.

 7.40 Describe the data structures and the algorithm for a simple target code generator that retains the 

values of variables in registers for as long as possible.

 7.41 What is peep-hole optimisation? Give fi ve examples of patterns and their replacements used in 

peep-hole optimisation, justifying the improvement in performance or memory usage.

 7.42 State if the following statements are true or false.

  (a) The strength reduction transformations identify and replace costly operations by less 

expensive counterparts.

  (b) The DAG is a data structure used for implementing optimising transformations on the 

intermediate code across basic blocks.

  (c) The loop optimisations in the intermediate code are performed during the local optimisation 

phase.

  (d) The order in which DAG nodes are created from the intermediate code during the DAG 

construction process is in topologically sorted order.

 7.43 State if the following statements are true or false.

  (a) The leaf nodes in a DAG cannot have any attached identifi ers to it.
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  (b) The input variables to a block manifest as leaves in the DAG during the DAG construction 

process.

  (c) Each node in a fl ow graph is a quad.

  (d) There are (n – 1) points for a basic block containing ‘n’ quads.

 7.44 State if the following statements are true or false.

  (a) The ‘available expressions’ data fl ow property is used for global common sub-expression 

elimination.

  (b) The ‘liveness’ data fl ow property helps in performing global dead code elimination and also 

in making decisions for retaining a variable’s value in a register.

  (c) The iterative approach to solving data fl ow equations is used for resolving the cyclic 

dependency between the properties of fl ow graph nodes in the cases of input source having 

loops.

  (d) The dead code elimination can also be performed at a DAG level using live variable 

information in the form of live_OUT set for the block.

 7.45 State if the following statements are true or false.

  (a) A node ‘d’ of a fl ow graph dominates node ‘n’, if every path from the initial node to ‘n’ goes 

through ‘d’.

  (b) The dominators[head] containing the tail node in a fl ow graph detects the presence of a back 

edge.

  (c) A pre-header is a basic block introduced during the loop optimisation to hold the quads that 

are moved from within the loop.

  (d) A ud-chain obtained from reaching defi nitions analysis is used for performing the loop 

invariant code motion optimisation in the loops.
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