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Preface to the

Fourth Edition

I am extremely gratifi ed by the overwhelming response shown to the fi rst three 

editions of my book Probability, Statistics and Random Processes by the students 

and teachers throughout Tamil Nadu.

Based on the new Anna University syllabus, as per 2013 regulation, an additional 

chapter on “Advanced Queue Models and Queue Networks” has been added for the 

benefi t of CSE and IT branches.

The topics ‘Test of Hypotheses’ and ‘Design of Experiments’ have been retained 

in the revised edition, as they are required for Mechanical Engineering students. 

Also, a new chapter on ‘Statistical Quality Control’ has been introduced. Solved 

question papers of 2011–2014 have been added. Thus, this revised edition, will cater 

to the requirement of all the branches for which this is a core subject.

The salient features of the book are the following:

 ∑ Written as per the latest AU syllabus

 ∑ Lucid writing style supported by step-by-step solutions

 ∑ Application-based problems for  better comprehension of concepts

 ∑ Solved AU 2011 to 2014 examination question papers

 ∑ Rich exam-oriented pedagogy includes

 � Solved Examples: 379

 � Exercise Problems: 1184

 � Figures: 42

 � Tables: 35

I hope that the book will be received by both the faculty and students as 

enthusiastically as the previous edition of the book and my other books. Critical 

evaluation and suggestions for further improvement of the book will be highly 

appreciated and acknowledged.

T VEERARAJAN

Publisher’s Note

McGraw Hill Education (India) invites suggestions and comments from you, all of 

which can be sent to info.india@mheducation.com (kindly mention the title and 

author name in the subject line).

Piracy-related issues may also be reported.





This book conforms to the syllabi of the Probability and Queueing Theory paper of 

computer science, the Random Processes paper of Electronics and Communication 

and the Probability and Statistics paper of Information Technology streams of 

engineering at Anna University.

Most engineering students, who are used to a deterministic outlook of Physics and 

Engineering problems, fi nd the theory of probability unreliable, vague and diffi cult. 

This is due to inadequate understanding of the basic concepts of probability theory 

and the wrong impression that the subject is an advanced branch of Mathematics.

The book is written in such a manner that beginners may develop an interest in 

the subject and may fi nd it useful to pursue their studies. Basic concepts and proofs 

of theorems are explained in as lucid a manner as possible. Although the theory of 

probability is developed rigorously based on measure theory, it is developed in this 

book by simple set theory approach.

As engineering students fi nd it easier to generalize specifi c results and examples 

than to specialize general results, considerable attention is devoted to working 

of problems. More than 300 problems, including those with applications  to 

communication theory, are worked out in various chapters. Unless the students 

become personally involved in solving exercises, they cannot really develop an 

understanding and appreciation of the ideas and a familiarity with the pertinent 

techniques. Hence, in addition to a large number of short-answer questions under 

Part-A, over 350 problems have been given under Part-B of the Exercises in various 

chapters. Answers are provided at the end of every chapter.

Though chapters 7 and 8 are meant for Electrical/Electronics Engineering students, 

the other chapters that deal with probability theory, random variables, probability 

distributions and statistics will be useful to the students of other disciplines of 

engineering as well as those doing MCA and M.Sc courses.

I am sure that the students and the faculty will fi nd this book very useful.

Critical evaluation and suggestions for improvement of the book will be highly 

appreciated and gratefully acknowledged.

I am extremely grateful to Dr K V Kuppusamy, Chairman, and Mr K Senthil 

Ganesh, Managing Trustee, RVS Educational Trust, Dindigul, for the support 

extended to me in this project.

Preface to the

First Edition
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time.

I would also like to thank Dr. A Rangan, Professor, Department of Mathematics, 

IIT Madras, Dr S Leela Devi, Professor and Head, Department of Mathematics,

JJ College of Engineering and Technology, Tiruchirapalli, and Mr Sitharselvan 
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P
robability theory had its origin in the analysis of certain games of chance that 

were popular in the seventeenth century. It has since found applications in 

many branches of Science and Engineering and this extensive application 

makes it an important branch of study. Probability theory, as a matter of fact, is a 

study of random or unpredictable experiments and is helpful in investigating the 

important features of these random experiments.

Random Experiment

An experiment whose outcome or result can be predicted with certainty is called 

a deterministic experiment. For example, if the potential difference E between 

the two ends of a conductor and the resistance R are known, the current I fl owing 

in the conductor is uniquely determined by Ohm’s law, =
E

I
R

.

Although all possible outcomes of an experiment may be known in advance, 

the outcome of a particular performance of the experiment cannot be predicted 

owing to a number of unknown causes. Such an experiment is called a random 

experiment.

Whenever a fair 6-faced cubic die is rolled, it is known that any of the 6 

possible outcomes will occur, but it cannot be predicted what exactly the outcome 

will be, when the die is rolled at a point of time.

Although the number of telephone calls received in a board in a 5-minutes 

interval is a non-negative integer, we cannot predict exactly the number of calls 

received in the next 5-minutes. In such situations, we talk of the chance or the 

probability of occurrence of a particular outcome, which is taken as a quantitative 

measure of the likelihood of the occurrence of the outcome.

Mathematical or Apriori Defi nition of Probability

Let S be the sample space (the set of all possible outcomes which are assumed 

equally likely) and A be an event (a subset of S consisting of possible outcomes) 

Chapter 1
Probability Theory
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associated with a random experiment. Let n(S) and n(A) be the number of 

elements of S and A. Then the probability of event A occurring, denoted as P(A), 

is defi ned by

 P(A) = 
( ) Number of cases favourable to

( ) Exhaustive number of cases in

n A A

n S S
=

For example, the probability of getting an even number in the die tossing 

experiment is 0.5, as S = {1, 2, 3, 4, 5, 6}, E = {2, 4, 6}, n(S) = 6 and n(E) = 3.

Statistical or Aposteriori Defi nition of Probability
Let a random experiment be repeated n times and let an event A occur nA times 

out of the n trials. The ratio An

n
 is called the relative frequency of the event A. 

As n increases, An

n
 shows a tendency to stabilise and to approach a constant 

value. This value, denoted by P(A), is called the probability of the event A, i.e., 

Æ•
=( ) lim A

n

n
P A

n
.

For example, if we want to fi nd the probability that a spare part produced by 

a machine is defective, we study the record of defective items produced by the 

machine over a considerable period of time. If, out of 10,000 items produced, 

500 are defective, it is assumed that the probability of a defective item is 0.05.

Note  From both the defi nitions, it is obvious that 0 £ P(A) £ 1. If  A is an impossible 

event, P(A) = 0. Conversely, if  P(A) = 0, then A can occur in a very small percentage of  times 

in the long run. On the other hand, if  A is a certain event, P(A) = 1. Conversely, if  P(A) = 

1, then A may fail to occur in a very small percentage of  times in the long run.

Axiomatic Defi nition of Probability

Let S be the sample space and A be an event associated with a random experiment. 

Then the probability of the event A, denoted by P(A), is defi ned as a real number 

satisfying the following axioms.

 (i) 0 £ P(A) £ 1

 (ii) P(S) = 1

 (iii) If A and B are mutually exclusive events, P(A » B) = P(A) + P(B)

 (iv) If A1, A2, ..., An, ... are a set of mutually exclusive events, P(A1 » A2 » 

... » An ...) =  P(A1) + P(A2) + ... + P(An) + ...

The term mutually exclusive used in the above defi nition can be explained 

as follows. A set of events is said to be mutually exclusive if the occurrence of 

any one of them excludes the occurrence of the others. Two events A and B are 

mutually exclusive if A occurs and B does not occur and vice versa. In other 

words, A and B cannot occur simultaneously, i.e., P(A « B) = 0.



Probability Theory 1.3

In the development of the probability theory, all results are derived directly or 

indirectly using only the axioms of probability, as can be seen from the following 

theorems.

Theorem 1

The probability of the impossible event is zero, i.e., if f is the subset (event) 

containing no sample point, P(f) = 0.

Proof

The certain event S and the impossible event f are mutually exclusive.

Hence P(S » f) = P(S) + P(f) [Axiom (iii)].

But S » f) = S.

\ P(S) = P(S) + P(f)

\ P(f) = 0

Theorem 2

If A  is the complementary event of A, P( A ) = 1 – P(A) £ 1.

Proof

A and A  are mutually exclusive events, such that A » A  = S.

\ P(A » A ) = P(S)

  = 1 [Axiom (ii)]

i.e., P(A) + P( A ) = 1 [Axiom (iii)]

\ P( A ) = 1 – ¢ P(A)

Since P(A) ≥ 0, it follows that P( A ) £ 1.

Theorem 3

If A and B are any 2 events, P(A » B) = P(A) + P(B) – P(A « B) £ P(A) + P(B)

Proof

A is the union of the mutually exclusive events A B  and AB and B is the union of 

the mutually exclusive events A B and AB.

\ P(A) = P(A B ) + P(AB) [Axiom (iii)]

And P(B) = P( A B) + P(AB) [Axiom (iii)]

Fig. 1.1
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\ P(A) + P(B) = [P(A B ) + P(AB) + P( A B) + P(AB)]

  = P(A » B) + P(A « B)

The result follows. Clearly, P(A) + P(B) – P(A « B) £ P(A) + P(B)]

Theorem 4

If B Ã A, P(B) £ P(A).

Proof

Fig. 1.2

B and A B  are mutually exclusive events such that B » A B  = A.

\ P(B » A B ) = P(A)

i.e. P(B) + P(A B ) = P(A) [Axiom (iii)]

\ P(B) £ P(A)

Note  In probability theory developed using the classical defi nition of  probability, Theorem 

3 above is termed as Addition theorem of  probability as applied to any 2 events. The theorem 

can be extended to any 3 events A, B and C as follows:

 P(A » B » C) = P (at least one of A, B and C occurs)

  =  P(A) + P(B) + P(C) – P(A « B)

–P(B « C) – P(C « A) + P(A « B « C)

In the classical approach, probability axiom (iii) is termed as addition theorem 

of probability as applied to 2 mutually exclusive events, which is proved in the 

following way.

Let the total number of cases (outcomes) be n, of which nA are favourable to 

the event A and nB are favourable to the event B.

Therefore the numbers of cases favourable to A or B, i.e. A » B is (nA + nB), 

since the events A and B are disjoint.

\ P(A » B) = ( ) ( )A B A Bn n n n
P A P B

n n n

+
= + = +

Conditional Probability

The conditional probability of an event B, assuming that the event A has happened, 

is denoted by P(B/A) and defi ned as
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 P(B/A) = 
( )

( )

P A B

P A

«
, provided P(A) π 0

For example, when a fair die is tossed, the conditional probability of getting ‘1’, 

given that an odd number has been obtained, is equal to 1/3 as explained below:

 S = {1, 2, 3, 4, 5, 6}; A = {1, 3, 5}; B = {1}

\ P(B/A) = 
( ) 1

( ) 3

n A B

n A

«
=

As per the defi nition given above, 
( ) 1/6 1

( / )
( ) 1/2 3

P A B
P B A

P A

«
= = = .

Rewriting the defi nition of conditional probability, we get P(A « B) = P(A) × 

P(B/A). This is sometimes referred to as product theorem of probability, which 

is proved as follows:

Let nA, nAB be the number of cases favourable to the events A and A « B, out 

of the total number n of cases.

\ P(A « B) = ( ) ( / )AB A AB

A

n n n
P A P B A

n n n
= ¥ = ¥

The product theorem can be extended to three events A, B and C as follows:

 P(A « B « C) = P(A) × P(B/A) × P(C/A and B)

The following properties are easily deduced from the defi nition of conditional 

probability:

 1. If A Ã B, P(B/A) = 1, since A « B  = A

 2. If B Ã A, P(B/A) ≥ P(B), since A « B  = B, and 
( )

( )
( )

P B
P B

P A
≥ , as P(A) £ 

P(S) = 1

 3. If A and B are mutually exclusive events, P(B/A) = 0, since P(A « B) = 0

 4. If P(A) > P(B), P(A/B) > P(B/A)

 5. If A1 Ã A2, P(A1/B) £ P(A2/B)

Independent Events

A set of events is said to be independent if the occurrence of any one of them 

does not depend on the occurrence or non-occurrence of the others.

When two events A and B are independent, it is obvious from the defi nition 

that P(B/A) = P(B). If the events A and B are independent, the product theorem 

takes the form P(A « B) = P(A) × P(B). Conversely, If P(A « B) = P(A) × 

P(B), the events A and B are said to be independent (pairwise independent). The 

product theorem can be extended to any number of independent events: If A1, A2, 

..., An are n independent events.

P(A1  « A2 « ... « An ) = P(A1) × P(A2) × ... × P(An)
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When this condition is satisfi ed, the events A1, A2, ..., An are also said to 

be totally independent. A set of events A1, A2, ..., An is said to be mutually 

independent if the events are totally independent when considered in sets of 2, 

3, ..., n events.

In the case of more than two events, the term ‘independence’ is taken as ‘total 

independence’ unless specifi ed otherwise.

Theorem 1

If the events A and B are independent, the events A  and B  (and similarly A and 

B ) are also independent.

Proof

The events A « B and A  « B are mutually exclusive such that (A « B) »
( A  « B) = B.

\ P(A « B) + P( A  « B) = P(B) (by addition theorem)

\ P( A  « B) = P(B) – P(A « B)

  = P(B) – P(A) P(B) (by product theorem)

  = P(B) [1 – P(A)]

  = P( A ) P(B)

Theorem 2

If the events A and B are independent, then so are A  and B .

Proof

 P( A  « B ) = ( ) 1 ( )P A B P A B» = - »  (1)

  = 1 – [P(A) + P(B) – P(A « B)] (by addition theorem)

  = 1 – P(A) – P(B) + P(A) × P(B) (since A and B are independent)

  = [1 – P(A)] – P(B) [1 – P(A)]

  = P( A ) × P( B ) (2)

Note  From (1) and (2), if  follows that when the events A and B are independent,

P(A » B) = 1 – P(A
–
) × (B

–
).

Worked Example 1(A)

Example 1

A fair coin is tossed 4 times. Defi ne the sample space corresponding to this 

random experiment. Also give the subsets corresponding to the following events 

and fi nd the respective probabilities:
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 (a) More heads than tails are obtained.

 (b) Tails occur on the even numbered tosses.

 S = {H HHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT,

THHH, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT}

 (a) Let A be the event in which more heads occur than tails.

  Then A = {HHHH, HHHT, HHTH, HTHH, THHH}

 (b) Let B the event in which tails occur in the second and fourth tosses.

  Then B = {HTHT, HTTT, TTHT, TTTT}

      

( ) 5 ( ) 1
( ) ; ( )

( ) 16 ( ) 4

n A n B
P A P B

n S n S
= = = =

Example 2

There are 4 letters and 4 addressed envelopes. If the letters are placed in the 

envelopes at random, fi nd the probability that (a) none of the letters is in the 

correct envelope, and (b) at least 1 letter is in the correct envelope, by explicitly 

writing the sample space and the event spaces.

Let the envelopes be denoted by A, B, C and D and the corresponding letters 

by a, b, c and d.

 S = {(Aa, Bb, Cc, Dd), (Aa, Bb, Cd, Dc), (Aa, Bc, Cb, Dd),

   (Aa, Bc, Cd, Db), (Aa, Bd, Cb, Dc), (Aa, Bd, Cc, Db),

   (Ab, Ba, Cc, Dd), (Ab, Ba, Cd, Dc), (Ab, Bc, Ca, Dd),

   (Ab, Bc, Cd, Da), (Ab, Bd, Ca, Dc), (Ab, Bd, Cc, Da),

   (Ac, Ba, Cb, Dd), (Ac, Ba, Cd, Db), (Ac, Bb, Ca, Dd),

   (Ac, Bb, Cd, Da), (Ac, Bd, Ca, Db), (Ac, Bd, Cb, Da),

   (Ad, Ba, Cb, Dc), (Ad, Ba, Cc, Db), (Ad, Bb, Ca, Dc),

   (Ad, Bb, Cc, Da), (Ad, Bc, Ca, Db), (Ad, Bc, Cb, Da)}

where ‘Aa’ means that the letter ‘a’ is placed in the envelope A.

Let E1 denote the event in which none of the letters is in the correct 

envelope.

Then E1 =  {(Ab, Ba, Cd, Dc), (Ab, Bc, Cd, Da), (Ab, Bd, Ca, Dc), 

(Ac, Ba, Cd, Db), (Ac, Bd, Ca, Db), (Ac, Bd, Cb, Da),

(Ad, Ba, Cb, Dc), (Ad, Bc, Ca, Db), (Ad, Bc, Cb, Da)}

Let E2 denote the event in which at least one of the letters is in the correct 

envelope.

We note that E2 is the complement of E1. Therefore, E2 consists of all elements 

of S except those in E1.

1
1 2 1

( ) 9 3 5
( ) and ( ) 1 ( )

( ) 24 8 8

n E
P E P E P E

n S
= = = = - =
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Example 3

A lot consists of 10 good articles, 4 with minor defects and 2 with major defects. 

Two articles are chosen from the lot at random (without replacement). Find the 

probability that (a) both are good, (b) both have major defects, (c) at least 1 is 

good, (d) at most 1 is good, (e) exactly 1 is good, (f) neither has major defects, 

and (g) neither is good.

Although the articles may be drawn one after the other, we can consider that 

both articles are drawn simultaneously, as they are drawn without replacement.

 (a) P(both are good) = 
No. of ways drawing 2 good articles

Total no. of ways of drawing 2 articles

         

2

2

10 3

16 8

C

C
= =

 (b) P(both have major defects)

  = 
No. of ways of drawing 2 articles with major defects

Total no. of ways

  = 2

2

2 1

16 120

C

C
=

 (c) P(at least 1 is good) = P(exactly 1 is good or both are good)

  = P(exactly 1 is good and 1 is bad or both are good)

  = 1 1 2

2

10 6 10 7

16 8

C C C

C

¥ +
=

 (d) P(atmost 1 is good) = P(none is good or 1 is good and 1 is bad)

  = 0 2 1 1

2

10 6 10 6 5

16 8

C C C C

C

¥ + ¥
=

 (e) P(exactly 1 is good) = P(1 is good and 1 is bad)

  = 1 1

2

10 6 1

16 2

C C

C

¥
=

 (f) P(neither has major defects)

  = P(both are non-major defective articles)

  = 
2

2

14 91

16 120

C

C
=

 (g) P(neither is good) = P(both are defective)

  = 2

2

6 1

16 8

C

C
=



Probability Theory 1.9

Example 4

From 6 positive and 8 negative numbers, 4 numbers are chosen at random 

(without replacement) and multiplied. What is the probability that the product 

is positive?

If the product is to be positive, all the 4 numbers must be positive or all 

the 4 must be negative or 2 of them must be positive and the other 2 must be 

negative.

No. of ways of choosing 4 positive numbers = 6C4 = 15.

No. of ways of choosing 4 negative numbers = 8C4 = 70.

No. of ways of choosing 2 positive and 2 negative numbers

  = 6C2 × 8C2 = 420.

Total no. of ways of choosing 4 numbers from all the 14 numbers

  = 14C4 = 1001.

P(the product is positive)

  = 
No. of ways by which the product is positive

Total no. of ways

  = 
15 70 420 505

1001 1001

+ +
=

Example 5

A box contains tags marked 1, 2, ..., n. Two tags are chosen at random without 

replacement. Find the probability that the numbers on the tags will be consecutive 

integers.

If the numbers on the tags are to be consecutive integers, they must be chosen 

as a pair from the following pairs.

(1, 2); (2, 3); (3, 4); ...; (n – 1, n)

No. of ways of choosing any one pair from the above (n – 1) pairs =

(n – 1) C1 = n – 1.

Total no. of ways of choosing 2 tags from the n tags = nC2.

\  Required probability = 
1 2

( 1)

2

n

n n n

-
=

-

Example 6

If n biscuits are distributed at random among m children, what is the probability 

that a particular child receives r biscuits, where r < n?

The fi rst biscuit can be given to any one of the m children, i.e. in m ways.

Similarly, the second biscuit can be given in m ways.

Therefore, 2 biscuits can be given in m2 ways.
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Extending, n biscuits can be distributed in mn ways. The r biscuits received by 

the particular child can be chosen from the n biscuits in nCr ways. If this child 

has got r biscuits, the remaining (n – r) biscuits can be distributed among the 

remaining (m – 1) children in (m – 1)n – r ways.

\ No. of ways of distributing in the required manner

  = nCr(m – 1)n – r

\ Required probability = 
( 1)n r

r

n

nC m

m

--

Example 7

If P(A) = P(B) = P(AB), show that P(A B  + A B) = 0 [AB ∫ A « B].

By addition theorem,

 P(A » B) = P(A) + P(B) – P(AB) (1)

From the Venn diagram on page (1.3), it is clear that

 A » B = A B  + A B + AB

\ P(A » B) = P(A B ) + P( A B) + P(AB) (by probability axiom) (2)

Using the given condition in (1),

 P(A » B) = P(AB) (3)

From (2) and (3), P(A B ) + P( A B) = 0

Example 8

If A, B and C are any 3 events such that P(A) = P(B) = P(C) = 1/4, P(A « B) = 

P(B « C) = 0; P(C « A) = 1/8. Find the probability that at least 1 of the events 

A, B and C occurs.

P(at least one of A, B and C occurs) = P(A » B » C)

 P(A » B » C) =  P(A) + P(B) + P(C) – P(A « B)

– P(B « C) – P(C « A) + P(A « B « C) (1)

Since P(A « B) = P(B « C) = 0, P(A « B « C) = 0. Equation (1) becomes

 P(A » B » C) = 
3 1 5

0 0
4 8 8

- - - =

Example 9

Solve Example 5, if the tags are chosen at random with replacement.

If the tag with ‘1’ is chosen in the fi rst draw, the tag with ‘2’ must be chosen 

in the second draw. Probability for each = 1/n.
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\ P(‘1’ in the fi rst draw and ‘2’ in the second draw) = 1/n2 (Product theorem) 

Similarly, P(‘n’ in the fi rst draw and ‘n – 1’ in the second draw = 1/n2.

If the number drawn fi rst is ‘2’, the number drawn second may be ‘1’ or ‘3’.

Probability of drawing consecutive numbers in this case

  
2

1 2 2

n n n
= ¥ =

Similarly, when the fi rst number drawn is ‘3’, ‘4’, ... ‘(n – 1)’ probability of 

drawing consecutive numbers will be 2/n2.

All the above possibilities are mutually exclusive.

\ Required probability = 
2 2 2 2

1 1 2 2( 1)
( 2)

n
n

n n n n

-
+ + - ¥ =

Example 10

A box contains 4 bad and 6 good tubes. Two are drawn out from the box at a time. 

One of them is tested and found to be good. What is the probability that the other 

one is also good?

Let A = one of the tubes drawn is good and B = the other tube is good.

 P(A « B) = P(both tubes drawn are good)

  

2

2

6 1

10 3

C

C
= =

Knowing that one tube is good, the conditional probability that the other tube 

is also good is required, i.e., P(B/A) is required.

By defi nition,

 P(B/A) = 
( ) 1/3 5

( ) 6/10 9

P A B

P A

«
= =

Example 11

Two defective tubes get mixed up with 2 good ones. The tubes are tested, one by 

one, until both defectives are found. What is the probability that the last defective 

tube is obtained on (a) the second test, (b) the third test, and (c) the fourth test?

Let D represent defective and N represent non-defective tube.

 (a) P(Second D in the II test) = P(D in the I test and D in the II test)

  = P(D1 « D2), say

  = P(D1) × P(D2) (by independence)

  

2 1 1

4 3 6
= ¥ =
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 (b) P(second D in the III test) = P(D1 « N2 « D3 or N1 « D2 « D3)

  = P(D1 « N2 « D3) + P(N1 « D2 « D3)

  

2 2 1 2 2 1

4 3 2 4 3 2
= ¥ ¥ + ¥ ¥

  

1

3
=

 (c) P(second D in the IV test) = P(D1 « N2 « N3 « D4) + P(N1 « D2 « N3

« D4) + P(N1 « N2 « D3 « D4)

  

2 2 1 2 2 1 2 2 1
1 1 1

4 3 2 4 3 2 4 3 2
= ¥ ¥ ¥ + ¥ ¥ ¥ + ¥ ¥ ¥

  

1

2
=

Example 12

In a shooting test, the probability of hitting the target is 1/2 for A, 2/3 for B and 

3/4 for C. If all of them fi re at the target, fi nd the probability that (a) none of them 

hits the target, and (b) at least one of them hits the target.

Let A ∫ Event of A hitting the target, and so on.

 P( A ) = 
1 1 1

, ( ) , ( )
2 3 4

P B P C= =

 P( A  « B  « C ) = P( A ) × P( B ) × P( C ) (by independence)

  = 
1 1 1 1

2 3 4 24
¥ ¥ =

P(at least one hits the target)

  = 1 – P(none hits the target)

  

1 23
1

24 24
= - =

Example 13

A and B alternately throw a pair of dice. A wins if he throws 6 before B throws 

7 and B wins if he throws 7 before A throws 6. If A begins, show that his chance 

of winning is 30/61.

Throwing 6 with 2 dice ∫ Getting 6 as the sum of the numbers shown on the 

upper faces of the 2 dice.

 P(throwing 6 with 2 dice) = 
5

36

 P(throwing 7 with 2 dice) = 
1

6
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Let A ∫ Event of A throwing 6.

Let B ∫ Event of B throwing 7.

A plays in the fi rst, third, fi fth, ..., trials.

Therefore, A will win, if he throws 6 in the fi rst trial or third trial or in 

subsequent (odd) trials.

\ P(A wins) = P(A or A B A or A B A B A or ...)

  = P(A) + P( A B A) + P( A B A B A) + ... (Addition theorem)

  

2
5 31 5 5 31 5 5

36 36 6 36 36 6 36

Ê ˆ Ê ˆ= + ¥ + ¥ ¥ +Á ˜ Á ˜Ë ¯ Ë ¯
 up to •

  
5/36

1 (155/216)
=

-
 (since the series is an infi nite geometric series)

  

30

61
=

Example 14

Show that 2n – (n + 1) equations are needed to establish the mutual independence 

of n events.

n events are mutually independent, if they are totally independent when 

considered in sets of 2, 3, ..., n events.

Sets of r events can be chosen from the n events in nCr ways.

To establish total independence of r events, say, A1, A2, ..., Ar chosen in any 

one of the nCr ways, we need one equation, namely, P(A1, A2, ..., Ar) = P(A1) × 

P(A2) ... × P(Ar).

Therefore, to establish total independence of all the nCr sets, each of r events, 

we need nCr equations.

Therefore, the number of equations required to establish mutual 

independence

  = 
2

n

r

r

nC
=
Â

  = (nC0 + nC1 + nC2 + ... + nCn) – (1 + n)

  = (1 + 1)n – (n + 1)

  = 2n – (n + 1)

Example 15

Two fair dice are thrown independently. Three events A, B and C are defi ned as 

follows:

 (a) Odd face with the fi rst die

 (b) Odd face with the second die
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 (c) Sum of the numbers in the 2 dice is odd. Are the events A, B and C 

mutually independent?

 P(A) = 
3 1 3 1

; ( )
6 2 6 2

P B= = =

The outcomes favourable to the event C are (1, 2), (1, 4), (1, 6), (2, 1), (2, 3),

(2, 4), and so on.

\ P(C) = 
1

2

 P(A « B) = P(B « C) = P(A « C) = 
1

4
\ P(A « B) = P(A) P(B), and so on

But P(A « B « C) = 0, since C cannot happen when A and B occur. Therefore 

P(A « B « C) π P(A) × P(B) × P(C).

Therefore, the events are pairwise independent, but not mutually independent.

Example 16

If A, B and C are random subsets (events) in a sample space and if they are 

pairwise independent and A is independent of (B » C), prove that A, B and C are 

mutually independent.

Given P(AB) = P(A) × P(B) (1)

 P(BC) = P(B) × P(C) (2)

 P(CA) = P(C) × P(A) (3)

 P[A(B » C)] = P(A) × P(B » C) (4)

Consider P[A(B » C)] = P(AB » AC)

  = P(AB) + P(AC) – P(AB « AC) (by addition theorem)

  = P(A) × P(B) + P(A) × P(C) – P(ABC) [by (1) and (3)] (5)

Therefore, from (4) and (5), we get

 P(ABC) = P(A) × P(B) + P(A) × P(C) – P(A) × P(B » C)

  = P(A) × [P(B) + P(C) – P(B » C)]

  = P(A) × P(B « C) (by addition theorem)

  = P(A) × P(B) × P(C) [by (2)] (6)

From (1), (2), (3) and (6), the required result follows.

Exercise 1(A)

Part-A (Short-answer Questions)

 1. What is a random experiment? Give an example.

 2. Give the apriori defi nition of probability with an example.

 3. Give the aposteriori defi nition of probability with an example.
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 4. Give the relative frequency defi nition of probability with an example.

 5. Defi ne the sample space and an event associated with a random 

experiment with an example.

 6. Give the axiomatic defi nition of probability.

 7. State the axioms of probability.

 8. What do you infer from the statements P(A) = 0 and P(A) = 1?

 9. Defi ne mutually exclusive events with an example.

  (Example: Getting an odd number and getting an even number when a 

6-faced dice is tossed are 2 mutually exclusive events.)

 10. From a bag containing 3 red and 2 black balls, 2 balls are drawn at 

random. Find the probability that they are of the same colour.

 11. When 2 cards are drawn from a well-shuffl ed pack of playing cards, 

what is the probability that they are of the same suit?

 12. When A and B are 2 mutually exclusive events such that P(A) = 1/2 and 

P(B) = 1/3, fi nd P(A » B) and P(A « B).

 13. If P(A) = 0.29, P(B) = 0.43, fi nd P(A « B ), if A and B are mutually 

exclusive.

 14. When A and B are 2 mutually exclusive events, are the values P(A) = 0.6  

and P(A « B ) = 0.5 consistent? Why?

 15. Prove that the probability of an impossible event is zero (or prove) that 

P(f) = 0.

 16. Prove that P( A ) = 1 – P(A), where A  is the complement of A.

 17. State addition theorem as applied to any 2 events. Extend it to any

3 events.

 18. If P(A) = 3/4, P(B) = 5/8, prove that P(A « B) ≥ 3/8.

 19. A card is drawn from a well-shuffl ed pack of playing cards. What is the 

probability that it is either a spade or an ace?

 20. The probability that a contractor will get a plumbing contract is 2/3 

and the probability that he will get an electric contract is 4/9. If the 

probability of getting at least one contract is 4/5, what is the probability 

that he will get both?

 21. If P(A) = 0.4, P(B) = 0.7 and P(A « B) = 0.3, fi nd P( A  « B ).

 22. If P(A) = 0.35, P(B) = 0.75 and P(A » B) = 0.95, fi nd P( A  » B ).

 23. Prove that P(A » B) £ P(A) + P(B). When does the equality hold good?

 24. If B Ã A, prove that P(B) £ P(A).

 25. Give the defi nitions of joint and conditional probabilities with examples.

 26. Give the defi nition of conditional probability and deduce the product 

theorem of probability.

 27. If A Ã B, prove that P(B/A) = 1.

 28. If B Ã A, prove that P(B/A) ≥ P(B).

 29. If A and B are mutually exclusive events, prove that P(B/A) = 0.

 30. If P(A) > P(B), prove that P(A/B) > P(B/A).

 31. If A Ã B, prove that P(A/C) £ P(B/C).
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 32. If P(A) = 1/3, P(B) = 3/4 and P(A » B) = 11/12, fi nd P(A/B) and P(B/A).

 33. When are 2 events said to be independent? Give an example for 2 

independent events.

 34. What is the probability of getting atleast 1 head when 2 coins are tossed?

 35. When 2 dice are tossed, what is the probability of getting 4 as the sum of 

the face numbers?

 36. If the probability that A solves a problem is 1/2 and that for B is 3/4 and 

if they aim at solving a problem independently, what is the probability 

that the problem is solved?

 37. If P(A) = 0.65, P(B) = 0.4 and P(A « B) = 0.24, can A and B independent 

events?

 38. 15% of a fi rm’s employees are BE degree holders, 25% are MBA degree 

holders and 5% have both the degrees. Find the probability of selecting 

a BE degree holder, if the selection is confi ned to MBAs.

 39. In a random experiment, P(A) = 1/12, P(B) = 5/12 and P(B/A) = 1/15, 

fi nd P(A » B).

 40. What is the difference between total independence and mutual 

independence?

 41. Can 2 events be simultaneously independent and mutually exclusive? 

Explain.

 42. If A and B are independent events, prove that A  and B are also 

independent.

 43. If A and B are independent events, prove that A and B  are also 

independent.

 44. If P(A) = 0.5, P(B) = 0.3 and P(A « B) = 0.15, fi nd P(A/ B ).

 45. If A and B are independent events, prove that A  and B  are also 

independent.

 46. If A and B are independent events, prove that

 P(A » B) = 1 – P( A ) × P( B ).

 47. A and B toss a fair coin alternately with the understanding that the one 

who obtains the head fi rst wins. If A starts, what is his chance of winning?

Part-B

 48. Write the sample space associated with the experiment of tossing 3 coins 

at a time and the event of getting heads from the fi rst 2 coins. Also fi nd 

the corresponding probability.

 49. Items coming off a production line are marked defective (D) or non-

defective (N). Items are observed and their condition listed. This is 

continued until 2 consecutive defectives are produced or 4 items have 

been checked, whichever occurs fi rst. Describe a sample space for this 

experiment.

 50. An urn contains 2 white and 4 black balls. Two balls are drawn one by 

one without replacement. Write the sample space corresponding to this 

experiment and the subsets corresponding to the following events.
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 (a) The fi rst ball drawn is white.

 (b) Both the balls drawn are black.

  Also fi nd the probabilities of the above events.

 51. A box contains three 10-W resistors labelled R1, R2 and R3 and two 50-W 

resistors labelled R4 and R5. Two resistors are drawn from this  box 

without replacement. List all the outcomes of this random experiment as 

pairs of resistors. Also list the outcomes associated with the following 

events and hence fi nd the corresponding probabilities.

 (a) Both the resistors drawn are 10-W resistors.

 (b) One 10-W resistor and one 50-W resistor are drawn.

 (c) One 10-W resistor is drawn in the fi rst draw and one 50-W resistor 

is drawn in the second draw.

 52. A box contains 3 white balls and 2 black balls. We remove at random

2 balls in succession. What is the probability that the fi rst removed ball 

is white and the second is red?

 53. An urn contains 3 white balls, 4 red balls and 5 black balls. Two balls are 

drawn from the urn at random. Find the probability that (i) both of them 

are of the same colour and (ii) they are of different colours.

 54. One integer is chosen at random from the numbers 1, 2, 3, ..., 100. What 

is the probability that the chosen number is divisible by (i) 6 or 8 and (ii) 

6 or 8 or both?

 55. If there are 4 persons A, B, C and D and if A tossed with B, then C tossed 

with D and then the winners tossed. This process continues till the prize 

is won. What are the probabilities of each of the 4 to win?

 56. Ten chips numbered 1 through 10 are mixed in a bowl. Two chips are 

drawn from the bowl successively and without replacement. What is the 

probability that their sum is 10?

 57. A bag contains 10 tickets numbered 1, 2, ..., 10. Three tickets are drawn 

at random and arranged in ascending order of magnitude. What is the 

probability that the middle number is 5?

 58. Two fair dice are thrown independently. Four events A, B, C and D are 

defi ned as follows:

  A: Even face with the fi rst dice.

  B: Even face with the second dice.

  C: Sum of the points on the 2 dice is odd.

  D: Product of the points on the 2 dice exceeds 20.

  Find the probabilities of the 4 events.

 59. A box contains 4 white, 5 red and 6 black balls. Four balls are drawn at 

random from the box. Find the probability that among the balls drawn, 

there is at least 1 ball of each colour.

 60. Four persons are chosen at random from a group consisting of 4 men, 3 

women and 2 children. Find the chance that the selected group contains 

at least 1 child.
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 61. A committee of 6 is to be formed from 5 lecturers and 3 professors. If the 

members of the committee are chosen at random, what is the probability 

that there will be a majority of lecturers in the committee?

 62. Twelve balls are placed at random in 3 boxes. What is the probability 

that the fi rst box will contain 3 balls?

 63. If A and B are any 2 events, show that P(A « B) £ P(A) £ P(A » B) £ 

P(A) + P(B).

 64. A and B are 2 events associated with an experiment. If P(A) = 0.4 and 

P(A » B) = 0.7, fi nd P(B) if (i) A and B are mutually exclusive (ii) A and 

B are independent.

 65. If P(A + B) = 5/6, P(AB) = 1/3 and P( B ) = 1/2, prove that the events A 

and B are independent.

 66. If A Ã B, P(A) = 1/4 and P(B) = 1/3, fi nd P(A/B) and P(B/A).

 67. m objects are selected from n objects (m < n). What is the probability 

that the selection contains a particular object that was present in the n 

given objects?

 68. What is the probability that there will be 53 sundays in (i) a leap year, 

and (ii) a non-leap year?

 69. If the probability that a communication system has high selectivity is 

0.54 and the probability that it will have high fi delity is 0.81 and the 

probability that it will have both is 0.18, fi nd the probability that (i) a 

system with high fi delity will also have high selectivity, and (ii) a system 

with high selectivity will also have high fi delity.

 70. An electronic assembly consists of two subsystems A and B. From previous 

testing procedures, the following probabilities are assumed to be known:

  P(A fails) = 0.20, P(A and B fail) = 0.15 and P(B fails alone) = 0.15.

  Evaluate (i) P(A fails alone), and (ii) P(A fails/B has failed).

 71. A consignment of 15 tubes contains 4 defectives. The tubes are selected 

at random, one by one, and examined. Assuming that the tubes tested are 

not put back, what is the probability that the ninth one examined is the 

last defective?

 72. A card is drawn from a 52-card deck, and without replacing it, a second 

card is drawn. The fi rst and second cards are not replaced and a third 

card is drawn.

 (a) If the fi rst card is a heart, what is the probability of second card 

being a heart?

 (b) If the fi rst and second cards are hearts, what is the probability that 

the third card is the king of clubs?

 73. A pair of dice are rolled once. Let A be the event that the fi rst dice has a 

1 on it, B the event that the second dice has a 6 on it and C the event that 

the sum is 7. Are A, B and C independent?

 74. A problem is given to 3 students whose chances of solving it are 1/2, 

1/3 and 1/4. What is the probability that (i) only one of them solves the 

problem and (ii) the problem solved.
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 75. A and B alternately cut a pack of cards and the pack is shuffl ed after each 

cut. If A starts and the game is continued until one cuts a diamond, what 

is the chance that A wins at his second cut?

 76. Players X and Y roll a pair of dice alternately. The player who rolls 11 

fi rst wins. If X starts, fi nd his chance of winning.

 77. Three persons, A, B and C draw in succession from a bag containing 8 

red and 4 white balls until a white ball is drawn. What is the probability 

that C draws the white ball?

Theorem of Total Probability

If B1, B2, ..., Bn be a set of exhaustive and mutually exclusive events, and A is 

another event associated with (or caused by) Bi, then

 P(A) = 
1

( ) ( / )
n

i i

i

P B P A B
=
Â

Fig. 1.3

Proof

The inner circle represents the event A. A can occur along with (or due to)  B1, B2, 

..., Bn that are exhaustive and mutually exclusive.

\ AB1, AB2, ..., ABn are also mutually exclusive, such that

 A = AB1, AB2, ..., ABn

\ P(A) = P(S ABi)

  = S P(ABi) (since AB1, AB2, ..., ABn  are mutually exclusive)

(by addition theorem)

  = 
1

( ) ( )
n

i i

i

P B P AB
=

¥Â

Bayes’ Theorem of Theorem of Probability of Causes

If B1, B2, ..., Bn be a set of exhaustive and mutually exclusive events associated 

with a random experiment and A is another event associated with (or caused by) 

Bi, then

 P(Bi/A) = 

1

( ) ( / )
, 1, 2, ...,

( ) ( / )

i i

n

i i

i

P B P A B
i n

P B P A B
=

¥
=

¥Â
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Proof

 P(Bi » A) = P(Bi) × P(A/Bi) = P(A) × P(Bi/A)

\ P(Bi/A) = 
( ) ( / )

( )

i iP B P A B

P A

¥

  = 

1

( ) ( / )
, 1, 2, 3, ...,

( ) ( / )

i i

n

i i

i

P B P A B
i n

P B P A B
=

¥
=

¥Â

Worked Example 1(B)

Example 1

A bolt is manufactured by 3 machines A, B and C. A turns out twice as many 

items as B, and machines B and C produce equal number of items. 2% of bolts 

produced by A and B are defective and 4% of bolts produced by C are defective. 

All bolts are put into 1 stock pile and 1 is chosen from this pile. What is the 

probability that it is defective?

Let A = the event in which the item has been produced by machine A, and so on.

Let D = the event of the item being defective.

 P(A) = 
1 1

, ( ) ( )
2 4

P B P C= =

 P(D/A) = P(an item is defective, given that A has produced it)

  = 
2

( / )
100

P D B=

 P(D/C) = 
4

100

By theorem of total probability,

 P(D) = P(A) × P(D/A) + P(B) × P(D/B) + P(C) × P(D/C)

  = 
1 2 1 2 1 4

2 100 4 100 4 100
¥ + ¥ + ¥

  = 
1

40

Example 2

An urn contains 10 white and 3 black balls. Another urn contains 3 white and 

5 black balls. Two balls are drawn at random from the fi rst urn and placed in 

the second urn and then 1 ball is taken at random from the latter. What is the 

probability that it is a white ball?

The two balls transferred may be both white or both black or 1 white and 1 

black.
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Let B1 = event of drawing 2 white balls from the fi rst urn, B2 = event of 

drawing 2 black balls from it and B3 = event of drawing 1 white and 1 black ball 

from it.

Clearly, B1, B2 and B3 are exhaustive and mutually exclusive events.

Let A = event of drawing a white ball from the second urn after transfer.

 P(B1) = 2 2
2 3

2 2 2

10 315 1 10 3 10
; ( ) ; ( )

13 26 13 26 13 26

C C
P B P B

C C C

¥
= = = = = ,

 P(A/B1) = P(drawing a white ball/2 white balls have been transferred)

  = P(drawing a white ball/urn II contains 5 white and 5 black balls)

  

5

10
=

Similarly, 2 3

3 4
( / ) and ( / )

10 10
P A B P A B= = .

By theorem of total probability,

 P(A) = P(B1) × P(A/B1) +  P(B2) × P(A/B2) + P(B3) × P(A/B3)

  = 
15 5 1 3 10 4

26 10 26 10 26 10
¥ + ¥ + ¥

  = 
59

130

Example 3

In a coin tossing experiment, if the coin shows head, 1 dice is thrown and the 

result is recorded. But if the coin shows tail, 2 dice are thrown and their sum is 

recorded. What is the probability that the recorded number will be 2?

When a single dice is thrown, 
1

(2)
6

P = .

When 2 dice are thrown, the sum will be 2, only if each dice shows 1.

\ P(getting 2 as sum with 2 dice) = 
1 1 1

6 6 36
¥ =   (since independence)

By theorem of total probability,

 P(2) = P(H) × P(2/H) + P(T) × P(2/T)

  

1 1 1 1

2 6 2 36
= ¥ + ¥

  

7

72
=

Example 4

A bag contains 5 balls and it is not known how many of them are white. Two balls 

are drawn at random from the bag and they are noted to be white. What is the 

chance that all the balls in the bag are white?
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Since 2 white balls have been drawn out, the bag must have contained 2, 3, 4 

or 5 white balls.

Let B1 = Event of the bag containing 2 white balls, B2 = Events of the bag 

containing 3 white balls, B3 = Event of the bag containing 4 white balls and B4 = 

Event of the bag containing 5 white balls.

Let A = Event of drawing 2 white balls.

 P(A/B1) = 2 2
2

2 2

2 31 3
, ( / )

5 10 5 10

C C
P A B

C C
= = =

 P(A/B3) = 2 2
4

2 2

4 53
, ( / ) 1

5 5 5

C C
P A B

C C
= = =

Since the number of white balls in the bag is not known, Bi’s are equally 

likely.

\ P(B1) = P(B2) = P(B3) = P(B4) = 
1

4

By Bayes’ theorem,

 P(B4/A) = 4 4

4

1

1
1

( ) ( / ) 14

1 1 3 3 2
1( ) ( / )

4 10 10 5i i

i

P B P A B

P B P A B
=

¥¥
= =

Ê ˆ¥ + + +¥ Á ˜Ë ¯Â

Example 5

There are 3 true coins and 1 false coin with ‘head’ on both sides. A coin is 

chosen at random and tossed 4 times. If ‘head’ occurs all the 4 times, what is the 

probability that the false coin has been chosen and used?

 P(T) = P(the coin is a true coin) = 
3

4

 P(F) = P(the coin is a false coin) = 
1

4

Let A = Event of getting all heads in 4 tosses

Then  P(A/T) = 
1 1 1 1 1

2 2 2 2 16
¥ ¥ ¥ =  and P(A/F) = 1.

By Bayes’ theorem,

 P(F/A) = 
( ) ( / )

( ) ( / ) ( ) ( / )

P F P A F

P F P A F P T P A T

¥
¥ + ¥

  = 

1
1

164
1 3 1 19

1
4 4 16

¥
=

¥ + ¥
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Example 6

For a certain binary, communication channel, the probability that a transmitted ‘0’ 

is received as a ‘0’ is 0.95 and the probability that a transmitted ‘1’ is received as 

‘1’ is 0.90. If the probability that a ‘0’ is transmitted is 0.4, fi nd the probability that 

(i) a ‘1’ is received and (ii) a ‘1’ was transmitted given that a ‘1’ was received.

Let A = the event of transmitting ‘1’, A  = the event of transmitting ‘0’, B = 

the event of receiving ‘1’ and, B  = the event of receiving ‘0’.

Given: P( A ) = 0.4, P(B/A) = 0.9 and P( B / A ) = 0.95

\ P(A) = 0.6 and P(B A ) = 0.05

By the theorem of total probability

 P(B) = P(A) × P(B/A) + P( A ) × P(B/ A )

  = 0.6 × 0.9 + 0.4 × 0.05

  = 0.56

By Bayes’ theorem,

 P(A/B) = 
( ) ( / ) 0.6 0.9 27

( ) 0.56 28

P A P B A

P B

¥ ¥
= =

Exercise 1(B)

Part-A (Short-answer questions)

 1. State the theorem of total probability.

 2. Bag I contains 2 red and 1 black balls and bag II contains 3 red and 2 

black balls. What is the probability that a ball drawn from one of the 

bags is red?

 3. State Bayes’ theorem on inverse probability.

 4. Bag I contains 2 white and 3 black balls and bag II contains 4 white and 

1 black balls. A ball chosen at random from one of the bags is white. 

What is the probability that it has come from bag I?

 5. Five men out of 100 and 25 women out of 1000 are colour-blind. A 

colour-blind person is chosen at random. What is the probability that the 

person is male? (Assume males and females are in equal numbers).

Part-B

 6. There are 2 bags one of which contains 5 red and 8 black balls and the 

other 7 red and 10 black balls. A ball is drawn from one or the other of 

the 2 bags. Find the chance of drawing a red ball.

 7. In a bolt factory, machines A, B and C produce 25, 35 and 40% of the 

total output, respectively. Of their outputs, 5, 4 and 2%, respectively, are 

defective bolts. If a bolt is chosen at random from the combined output, 

what is the probability that it is defective? If a bolt chosen at random is 
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found to be defective, what is the probability that it was produced by B 

or C?

 8. A box contains 2000 components of which 5% are defective. A second 

box contains 500 components of which 40% are defective. Two other 

boxes contain 1000 components, each with 10% defective components. 

We select at random one of the above boxes and remove from it at 

random a single component.

 (a) What is the probability that the component is defective?

 (b) Finding that the selected component is defective, what is the 

probability that it was drawn from box 2?

 9. There are 4 candidates for the offi ce of the highway commissioner; the 

respective probabilities that they will be selected are 0.3, 0.2, 0.4 and 

0.1, and the probabilities for a project’s approval are 0.35, 0.85, 0.45 

and 0.15, depending on which of the 4 candidates is selected. What is the 

probability of the project getting approved?

 10. In a binary communication system a ‘0’ or ‘1’ is transmitted. Because of 

noise in the system, a ‘0’, can be received as a ‘1’ with probability p and 

a ‘1’ can be received as a ‘0’ also with probability p. Assuming that the 

probability that a ‘0’ is transmitted is p0, and that a ‘1’ is transmitted is 

q0 (= 1 – p0) fi nd the probability that a ‘1’ was transmitted when a ‘1’ is 

received.

 11. A bag contains 7 red and 3 black marbles, and another bag contains 4 red 

and 5 black marbles. One marble is transferred from the fi rst bag into the 

second bag and then a marble is taken out of the second bag at random. 

If this marble happens to be red, fi nd the probability that a black marble 

was transferred.

 12. The probability that a student passes a certain exam is 0.9, given that he 

studied. The probability that he passes the exam without studying is 0.2. 

Assume that the probability that the student studies for an exam is 0.75. 

Given that the student passed the exam, what is the probability that he 

studied?

 13. Urn I has 2 white and 3 black balls, urn II has 4 white and 1 black balls 

and urn III has 3 white and 4 black balls. An urn is selected at random 

and a ball drawn at random is found to be white. Find the probability that 

urn I was selected.

 14. Suppose that coloured balls are distributed in 3 boxes as follows:

Box 1 Box 2 Box 3

Red 2 4 3

White 3 1 4

Blue 5 3 5

  A box is selected at random from which a ball is selected at random and it 

is observed to be red. What is the probability that box 3 was selected?
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 15. Three urns contain 3 white, 1 red and 1 black balls; 2 white, 3 red and 4 

black balls; 1 white, 3 red and 2 black balls respectively. One urn is chosen 

at random and from it 2 balls are drawn at random. If they are found to be 1 

red and 1 black ball, what is the probability that the fi rst urn was chosen?

 16. An urn contains 10 red and 3 black balls. Another urn contains 3 red 

and 5 black balls. Two balls are transferred from the fi rst urn to the 

second urn, without noticing their colour. One ball is now drawn from 

the second urn and it is found to be red. What is the probability that 1 red 

and 1 black ball were transferred?

 17. Box 1 contains 1000 bulbs of which 10% are defective. Box 2 contains 

2000 bulbs of which 5% are defective. Two bulbs are drawn (without 

replacement) from a randomly selected box. (i) Find the probability that 

both bulbs are defective and (ii) assuming that both are defective, fi nd 

the probability that they came from box 1.

 18. The chance that a doctor A will diagnose a disease x correctly is 60%. 

The chance that a patient will die by his treatment after correct diagnosis 

is 40% and the chance of death by wrong diagnosis is 70%. A patient of 

doctor A, who had disease x, died. What is the chance that his disease 

was diagnosed correctly?

 19. The chances of A, B and C becoming the general manager of a certain 

company are in the ratio 4:2:3. The probabilities that the bonus scheme 

will be introduced in the company if A, B and C become general manager 

are 0.3, 0.7 and 0.8 respectively. If the bonus scheme has been introduced, 

what is the probability that A has been appointed as general manager?

Bernoulli’s Trials
Let us consider n independent repetitions (trials) of a random experiment E. If A 

is an event associated with E such that P(A) remains the same for the repetitions, 

the trials are called Bernoulli’s trials.

Theorem
If the probability of occurrence of an event (probability of success) in a single 

trial of a Bernoulli’s experiment is p, then the probability that the event occurs 

exactly r times out of n independent trials is equal to nCr q
n – r

 p
r, where q = 1 – p, 

the probability of failure of the event.

Proof

Getting exactly r successes means getting r successes and (n – r) failures 

simultaneously.

\ P(getting r successes and n – r failures) = p
r
q

n – r (since the n trials are 

independent) (by product theorem).

The trials, from which the successes are obtained, are not specifi ed. There 

are nCr ways of choosing r trials for successes. Once the r trials are chosen for 

successes, the remaining (n – r) trials should result in failures.
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These nCr ways are mutually exclusive. In each of these nCr ways, P(getting 

exactly r success) = pr
q

n – r.

Therefore, by the addition theorem the required probability = nCr ×  qn – r × pr.

De Moivre–Laplace Approximation
A result which is useful when a large number of terms of the form nCr  q

n – r pr is 

required to be summed up, is given below without proof.

If the probability of getting exactly r successes out of n Bernoulli’s trials is 

denoted by Pn(r), then

2 2

1 1

( )

r r
n r r

n r

r r r r

P r nC q p
-

= =

=Â Â  is approximately equal to 

2

1

1

2

1

2

r

r

y dx

+

-

Ú ,

where 
2( ) /21

2

x np npq
y e

npqp

- -= , which is the density of a normal distribution 

with mean np and variance npq.

As the reader is familiar with normal distribution, it can be easily seen that

    

22

1 1

( ) ( )

tr

n

r r t

P r t dtf
=

=Â Ú

where f(t) is the standard normal density and 
1

1

1/2r np
t

npq

- -
=  and 

2
2

1/2r np
t

npq

- +
= . Now 

2

1

( )

t

t

t dtfÚ  can be computed using the table of areas 

under normal curve.

Generalisation of Bernoulli’s Theorem 

Multinomial Distribution

If A1, A2, ..., Ak are exhaustive and mutually exclusive events associated with a 

random experiment such that P(Ai occurs) = pi, where p1 + p2 + ... + pk = 1, and 

if the experiment is repeated n times, then the probability that A1 occurs r1 times, 

A2 occurs r2 times, ... Ak occurs rk times is given by

    

1 2
1 2 1 2

1 2

!
( , ,..., ) ...

! ! ... !
krr r

n k k

k

n
P r r r p p p

r r r
= ¥

where r1 + r2 + ... + rk = n.

Proof

The r1 trials in which the event A1 occurs can be chosen from the n trials in 
1r

nC  

ways. The remaining (n – r1) trials are left over for the other events.

The r2 trials in which the event A2 occurs can be chosen from the (n – r1) trials 

in (n – r1)
2r

C  ways.

The r3 trials in which the event A3 occurs can be chosen from the (n – r1 – r2) 

trials in (n – r1 – r2) 3r
C  ways, and so on.
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Therefore the number of ways in which the events A1, A2, ..., Ak can happen 

= 
1r

nC  × (n – r1)
2r

C  × (n – r1 – r2)
3r

C  × ... × (n – r1 – r2 ... – rk – 1) kr
C

1 2

!

! !... !k

n

r r r
= .

Consider any one of the above ways in which the events A1, A2, ..., Ak occur. 

Since the n trials are independent, r1, r2, ..., rk trials are also independent.

\ P(A1 occurs r1 times) = 1
1

r
p

 P(A2 occurs r2 times) = 2
2

r
p , and so on.

\ P(A1 occurs r1 times, A2 occurs r2 times, ..., Ak occurs rk times) = 
1 2

1 2 ... krr r

kp p p¥ ¥ ¥

Since the ways in which the events happen are mutually exclusive, the required 

probability is given by

   

1 2
1 2 1 2

1 2

!
( , , ..., ) ...

! ! ... !
krr r

n k k

k

n
P r r r p p p

r r r
= ¥ ¥ ¥

Worked Example 1(C)

Example 1

A coin is tossed an infi nite number of times. If the probability of a head in a 

single toss is p, show that the probability that kth head is obtained at the nth 

tossing, but not earlier is (n – 1)Ck – 1 p
k
q

n – k, where q = 1 – p.

k heads should be obtained at the nth tossing, but not earlier.

Therefore (k – 1) heads must be obtained in the fi rst (n – 1) tosses and 1 head 

must be obtained at the nth toss.

\ Required probability = P[k – 1 heads in (n – 1) tosses] × P(1 head in 1 toss)

  = (n – 1) Ck – 1 p
k – 1

q
n – k × p

  = (n – 1) Ck – 1 p
k 
q

n – k

Example 2

Each of two persons A and B tosses 3 fair coins. What is the probability that they 

obtain the same number of heads?

P(A and B get the same no. of heads)

  = P(they get no head each or 1 head each or 2 heads each or 3 heads each)

  =  P(each gets 0 head) + P(each gets 1 head) + P(each gets 2 heads) + 

P(each gets 3 heads) (since the events are mutually exclusive)

  = P(A gets 0 head) × P(B gets 0 head) + ... (since A and B toss independently)

  

2 2 2 2
3 3 3 3

0 1 2 3

1 1 1 1
3 3 3 3

2 2 2 2
C C C C

È ˘ È ˘ È ˘ È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + + +Í ˙ Í ˙ Í ˙ Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙ Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚ Î ˚
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1 5
(1 9 9 1)

64 16
= + + + =

Example 3

A coin with P(head) = p = 1 – q is tossed n times. Show that the probability that 

the number of heads obtained is even is 0.5[1 + (q – p)n].

     P(even no. of heads are obtained)

  = P(0 head or 2 heads or 4 heads or ...)

  = nC0
 
q

n
 p

0 + nC2
 
q

n – 2
 p

2 + nC4
 
q

n – 4
 p

4 + ... (1)

Consider 1 = (q + p)n = nC0
 
q

n
 p

0 + nC1
 
q

n – 1
 p

1 + nC2
 
q

n – 2
 p

2 + ...  (2)

 (q – p)n = nC0
 
q

n
 p

0 – nC1
 
q

n – 1
 p

1 + nC2
 
q

n – 2
 p

2 – ... (3)

Adding (2) and (3), we get

 1 + (q – p)n
 = 2[nC0

 
q

n
 p

0 + nC2
 
q

n – 2
 p

2 + nC4
 
q

n – 4
 p

4 + ...] (4)

Using (4) in (1), the required probability = 0.5[1 + (q – p)n].

Example 4

If at least 1 child in a family with 2 children is a boy, what is the probability that 

both children are boys?

 p = Probability that a child is a boy = 
1

2

\ q = 
1

2
 and n = 2

 P(at least one boy) = p(exactly 1 boy) + p(exactly 2 boys)

  = 

2 2

1 2

1 1
2 2

2 2
C C

Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯
 (by Bernoulli’s theorem)

  = 
3

4
P(both are boys/at least one is a boy)

  

(both are boys at least one is a boy)

(at least one is a boy)

P

P

«
=

  

(both are boys)

(at least one is a boy)

P

P
=

  

1

14
3 3

4

= =
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Example 5

Find the probability of getting at last 60 heads, when 100 fair coins are tossed.

Since the coins are fair, 
1

2
p q= = .

 n = 100

\ np = 50 and 5npq =

Required probability 

100100

60

1
100

2
r

r

P C
=

Ê ˆ= Á ˜Ë ¯Â

  

10.1

1.9 1.9

( ) ( )t dt t dtf f
•

= Ú Ú  (by De Moivre–Laplace approximation)

  

1.9

0

0.5 ( )t dtf= - Ú  = 0.5 – 0.4719 (from the Normal Table)

  = 0.0281

Example 6

A fair dice is rolled 5 times. Find the probability that 1 shows twice, 3 shows 

twice and 6 shows once.

This problem is a direct application of Bernoulli’s generalisation.

Here n = 5, A1 ∫ (getting), A3 ∫ (getting 3)

A6 = (getting 6), k1 = 2, k3 = 2 and k6 = 1; p1 = p3 = p6 = 1/6

\ Required probability = 

2 2 1
5! 1 1 1

2!2!1! 6 6 6

Ê ˆ Ê ˆ Ê ˆ¥ ¥Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
 = 0.0039

(It is to be noted that k2 = k4 = k5 = 0, though p2 = p4 = p5 = 
1

6
.)

Exercise 1(C)

Part-A (Short-answer Questions)

 1. State Bernoulli’s theorem on independent trials.

 2. A fair coin is tossed 4 times. What is the probability of getting more 

heads than tails?

 3. When 12 coins are tossed 256 times, how many times may one expect 8 

heads and 4 tails?

 4. If war breaks out on the average once in 25 years, fi nd the probability 

that in 50 years at a stretch, there will be no war.

 5. State the generalised form of Bernoulli’s theorem on independent trials.

 6. State De Moivre–Laplace theorem.
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Part-B

 7. A binary number (composed only of the digits ‘0’ and ‘1’) is made up 

of n digits. If the probability of an incorrect digit appearing is p and 

that errors in different digits are independent of one another, fi nd the 

probability of forming an incorrect number.

 8. Suppose that twice as many items are produced (per day) by machine 1 

as by machine 2. However 4% of the items from machine 1 are defective 

while machine 2 produces only about 2% defective. Suppose that the 

daily output of the 2 machines is combined. A random sample of 10 

items is taken from the combined output. What is the probability that 

this sample contains 2 defectives?

 9. Binary digits are transmitted over a noisy communication channel in 

blocks of 16 binary digits. The probability that a received binary digit 

is in error because of channel noise is 0.1. If errors occur in various 

digit position within a block independently, fi nd the probability that the 

number of errors per block is greater than or equal to 5.

 10. A company is trying to market a digital transmission system (modem) 

that has a bit error probability of 10–4, and the bit errors are independent. 

The buyer will test the modem by sending a known message of 104 

digits and checking the received message. If more than 2 errors occur, 

the modem will be rejected. Find the probability that the customer will 

buy the company’s modem.

 11. A fair coin is tossed 10,000 times. Find the probability that the number 

of heads obtained is between 4900 and 5100, using De Moivre–Laplace 

approximation.

 12. Over a period of 12 h, 180 calls are made at random. What is the 

‘probability’ that in a 4 h interval the number of calls is between 50 and 

70? Use De Moivre–Laplace approximation.

  [Hint: P (a particular call occurs in the 4 h interval) = 
4 1

12 3
p

˘= = ˙̊ .

 13. A random experiment can terminate in one of 3 events A, B and C with 

probabilities 1/2, 1/4 and 1/4 respectively. The experiment is repeated 6 

times. Find the probability that the events A, B and C occur once, twice 

and thrice respectively.

 14. A throws 3 fair coins and B throws 4 fair coins. Find the chance that A 

will throw more number of heads than would B.

 15. In a large consignment of electric bulbs 10% are defective. A random 

sample of 20 bulbs is taken for inspection. Find the probability that

(i) exactly 3 of them are defective, (ii) at most 3 of them are defective, 

and (iii) at least 3 of them are defective.

 16. A lot contains 1% defective items. What should be the number of items 

in a random sample so that the probability of fi nding at least 1 defective 

in it is at least 0.95?
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 17. In a precision bombing attack there is a 50% chance that any one bomb 

will hit the target. Two direct hits are required to destroy the target 

completely. How many bombs must be dropped to give a 99% or more 

chance of completely destroying the target?

ANSWERS

Exercise 1(A)

 10. P(both balls are of the same colour)

  = P(both balls are red or both are black)

  = P(both are red) + P(both are black)

  

2 2

2 2

3 2 2

5 5 5

C C

C C
= + =

 11. Required probability = P(both are spades) + P(both are clubs) + P(both 

are hearts) + P(both are diamonds)

  

2

2

13 4
4

52 17

C

C
= ¥ =

 12. P(A » B) = P(A) + P(B) = 5/6; P(A « B) = 0, by defi nition.

 13. When A and B are mutually exclusive, P(A « B ) = P(A) = 0.29.

 14. P(A) = P(A « B) + P(A « B ) = 0 + P(A « B ) i.e., 0.6 = 0.5, which is 

absurd. Hence the given values are inconsistent.

 18. P(any event) £ 1; P(A » B) £ 1; P(A) + P(B) – P(A « B) £ 1

  \ 
3 5 3

( ) 1
4 8 8

P A B
Ê ˆ« ≥ + - =Á ˜Ë ¯

 19. P(S » A) = P(S) + P(A) – P(S « A)

     = 
13 4 1 4

52 52 52 13
+ - =

 20. P(A » B) = P(A) + P(B) – P(A » B)

  \ 2 4 4 14
( )

3 9 5 45
P A B« = + - =

 21. P( A  « B ) = 1 – P(A » B)

   = 1 – [P(A) + P(B) – P(A « B)]

   = 1 – [0.4 + 0.7 – 0.3] = 0.2

 22. P( A  » B ) = 1 – P(A « B)

   = 1 – [P(A) + P(B) – P(A » B)] = 0.85

 23. Equality holds good, when A and B are mutually exclusive events.

 25. The probability for the simultaneous occurrence of two events A and B 

is called the joint probability of A and B. Probability of getting 2 heads, 

when 2 coins are tossed, is an example of joint probability.
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 32. P(A » B) = P(A) + P(B) – P(A « B); P(A « B) = 
1 3 11 1

3 4 12 6
+ - =

  

( ) 2 ( ) 1
( / ) ; ( / )

( ) 9 ( ) 2

P A B P A B
P A B P B A

P B P A

« «
= = = =

 34. Required probability = 1 – P(both tails)

          

1 1 3
1

2 2 4
= - ¥ =

 35. Required probability = P(1 from I dice and 3 from II dice or 2 from I and 

2 from II or 3 from I and 1 from II)

          

1 1 1 1 1 1 1

6 6 6 6 6 6 12
= ¥ + ¥ + ¥ =

 36. Required probability = 1 – P(the problem is not solved)

                        

1 1 7
1

2 4 8
= - ¥ =

 37. No, since P(A « B) π P(A) × P(B)

 38. P(BE/MBA) = 
( ) 0.05

0.2
( ) 0.25

P BE MBA

P MBA

«
= =

 39. P(A « B) = P(A) × P(B/A) = 
1 1 1

12 15 180
¥ =

  P(A » B) = P(A) + P(B) – P(A « B)

      = 
1 5 1 89

12 12 180 180
+ - =

 41. A and B are independent, if P(A « B) = P(A) × P(B). They are mutually 

exclusive, if P(A « B) = 0.

  They are both independent and mutually exclusive if P(A) × P(B) = 0, 

i.e., if P(A) = 0 or P(B) = 0 or P(A) = 0 and P(B) = 0. The third case is 

trivial. Hence A and B can be both independent and mutually exclusive, 

provided either of the events is an impossible event.

 44. P(A « B) = P(A) × P(B)

  \ A and B are independent. Hence, A and B  are also independent.

  \ P(A/B) = P(A) = 0.5.

 47. 

2 4
1

1 1 1 1 1 22
12 2 2 2 2 3

1
4

P
Ê ˆ Ê ˆ= + + + + • = =Á ˜ Á ˜Ë ¯ Ë ¯ -

 48. 
1

4

 49. {DD, NDD, DNDD, DNDN, DNND, DNNN, NDND, NDNN, NNDD, 

NNDN, NNND, NNNN}
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 50. (i) 
1

3
 (ii) 

2

5

 51. (i) 
3

10
 (ii) 

3

5
 (iii) 

3

10

 52. 
6

25
  (if the ball is replaced), 

3

10
 (if the ball is not replaced).

 53. (i) 
19

66
 (ii) 

47

66

 54. (i) 
1

5
 (ii) 

6

25

 55. 
1

4

 56. 
4

45

 57. 
1

6

 58. 
1 1

( ) ( ) ( ); ( )
2 6

P A P B P C P D= = = =

 59. 
48

91

 60. 
13

18

 61. 
9

14

 62. 12 C3 × 29/312

 64. (i) 0.3 (ii) 0.5

 66. 
3

4

 67. 
m

n

 68. (i) 
2

7
 (ii) 

1

7

 69. (i) 
2

9
 (ii) 

1

3

 70. (i) 0.05 (ii) 0.50

 71. 
8

195
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 72. (a) 
12

51
 (b) 

1

50

 73. Pairwise independent, but not totally independent

 74. (i) 
11

24
 (ii) 

3

4

 75. 
9

64

 76. 
18

35

 77. 
7

33

Exercise 1(B)

 2. P(red ball) = P(red ball from bag I) + P(red ball from bag II)

       

1 2 1 3 19

2 3 2 5 30
= ¥ + ¥ =

 4. 1 1
1

1 1 2 2

( ) ( / )
( / )

( ) ( / ) ( ) ( / )

P B P W B
P B W

P B P W B P B P W B

¥
=

¥ + ¥

      

1 2

12 5
1 2 1 4 3

2 5 2 5

¥
= =

¥ + ¥

 5. P(M) = P(F) = 
1 1 1

; ( / ) ; ( / )
2 20 40

P B M P B F= =

  By Bayes’ theorem, 

1 1

22 20( / )
1 1 1 1 3

2 20 2 40

P M B

¥
= =

¥ + ¥

 6. 
88

221

 7. (i) 
69

2000
 (ii) 

44

69

 8. (i) 
13

80
 (ii) 

8

13

 9. 0.47

 10. 
0

0 0

(1 )

(1 )

p q

p q pp

-
- +
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 11. 
12

47

 12. 
27

29

 13. 
14

57

 14. 
5

19

 15. 
3

25

 16. 
20

59

 17. (i) 0.0062 (ii) 0.8005

 18. 
6

13

 19. 
6

25

Exercise 1(C)

 2. Required probability = P(getting exactly 3 or 4 heads)

           

4 4

3 4

1 1 5
4 4

2 2 16
C C

Ê ˆ Ê ˆ= + =Á ˜ Á ˜Ë ¯ Ë ¯

 3. Required number = 

12

8

1
256 12 31

2
C

Ê ˆ¥ @Á ˜Ë ¯

 4. 
1 24

,
25 25

p q= = , n = 50; 

0 50 50

0

1 24 24
50

25 25 25
P C

Ê ˆ Ê ˆ Ê ˆ= =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
 7. 1 – (1 – p)n

 8. 0.0381

 9. 0.017

 10. 0.9197

 11. 0.9545

 12. 0.9876

 13. 0.0293

 14. 
29

128

 15. (i) 0.1898 (ii) 0.8655 (iii) 0.3243

 16. 299

 17. 11





T
he outcomes of random experiments may be numerical or non-numerical 

in nature. For example, the number of telephone calls received in a board 

in 1 h is numerical in nature, while the result of a coin tossing experiment 

in which 2 coins are tossed at a time is non-numerical in nature. As it is often 

useful to describe the outcome of a random experiment by a number, we will 

assign a number to each non-numerical outcome of the experiment. For example, 

in the 2 coins tossing experiment we could assign the value 0 to the outcome 

of getting 2 tails, 1 to the outcome of getting 1 head and 1 tail and 2 to the 

outcome of getting 2 heads. Thus, in any experimental situation we can assign a 

real number x to every element s of the sample space S. That is, the function X(s) 

= x that maps the elements of the sample space into real numbers is called the 

random variable associated with the concerned experiment. A formal defi nition 

may be given as follows.

Defi nition: A random variable (abbreviatively RV) is a function that assigns a real 

number X(s) to every element s Œ S, where S is the sample space corresponding 

to a random experiment E.

Note  Although we are expected to perform the random experiment E, we observe the 

outcome s Œ S and then evaluate X(s) [i.e., assign a real number x to X(s)], the number x = 

X(s) itself  can be though of  as the outcome of  the experiment and Rx as the sample space of  

the experiment. In this sense, we will hereafter talk about a random variable X taking the value 

x and P(X = x). Actually, P(X = x) = P{s: X(s) = x}.

Hereafter, Rx will be referred to as range space.

Similarly, {X £ x} represents the subset {s: X(s) £ x} and, hence, an event 

associated with the experiment.

Discrete Random Variable

If X is random variable (RV) which can take a fi nite number or countably infi nite 

number of values, X is called a discrete RV. When the RV is discrete, the possible 

Chapter 2
Random Variables



2.2 Probability, Sta  s  cs and Random Processes

values of X may be assumed as x1, x2, ..., xn, ... . In the fi nite case, the list of values 

terminates and in the countably infi nite case, the list goes upto infi nity.

For example, the number shown when a dice is thrown and the number of 

alpha particles emitted by a radioactive source are discrete RVs.

Probability Function

If X is a discrete RV which can take the values x1, x2, ..., xn, ... such that P(X = 

xi) = pi then pi is called the probability function or probability mass function 

or point probability function, provided pi (i = 1, 2, 3, ...) satisfy the following 

conditions:

 (i) pi ≥ 0, for all i, and

 (ii) 1i

i

p =Â
The collection of pairs {xi, pi}, i = 1, 2, 3, ..., is called the probability distribution of 

the RV X, which is sometimes displayed in the form of a table as given below:

X = xi P(X = xi)

x1 p1

x2 p2

� �

xr pr

� �

Continuous Random Variable

If X is an RV which can take all values (i.e. infi nite number of values) in an 

interval, then X is called a continuous RV.

For example, the length of time during which a vacuum tube installed in a 

circuit functions is a continuous RV.

Probability Density Function

If X is a continuous RV such that

  

1 1
d d ( )d

2 2
P x x X x x f x x

Ï ¸- £ £ + =Ì ˝
Ó ˛

then f(x) is called the probability density function (shortly denoted as pdf) of X, 

provided f(x) satisfi es following conditions:

 (i) f(x) ≥ 0, for all x Œ Rx, and

 (ii) ( )d 1

XR

f x x =Ú
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Moreover, P(a £ X £ b) or P(a < X < b) is defi ned as

 P(a £ X £ b) = ( )d .

b

a

f x xÚ
The curve y = f(x) is called the probability curve of the RV X.

Note  When X is a continuous RV

P(X = a) = P(a £ X £ a) = Ú
a

a

f (x) dx = 0

This means that it is almost impossible that a continuous RV assumes a specifi c value. Hence, 

P(a £ X £ b) = P(a £ X < b) = P(a < X £ b) = P(a < X < b).

Cumulative Distribution Function (cdf)

If X is an RV, discrete or continuous then P(X £ x) is called the cumulative 

distribution function of X or distribution function of X and denoted as F(x).

If X is discrete,

 F(x) = 

j

j
j

x x

P

£

Â

If X is continuous,

 F(x) = ( ) ( )

x

P X x f x dx

-•

-• < £ = Ú

Properties of the cdf F(x)

 1. F(x) is a non-decreasing function of x, i.e., if x1 < x2, then F(x1) £ F(x2).

 2. F(–•) = 0 and F(•) = 1.

 3. If X is a discrete RV taking values x1, x2, ..., where x1 < x2 < x3 < ... < xi – 1 

< xi < ..., then P(X = xi) = F(xi) – F(xi – 1).

 4. If X is a continuous R V, then 
d

( ) ( )
d

F x f x
x

= , at all points where F(x) 

is differentiable.

Note  Although we may talk of  probability distribution of  a continuous RV, it cannot 

be represented by a table as in the case of  a discrete RV. The probability distribution of  a 

continuous RV is said to be known, if  either its pdf  or cdf  is given.

Special Distributions

The probability mass functions of some discrete RVs and the probability density 

functions of some continuous RVs, which are of frequent applications, are as 

follows:
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Discrete Distributions

 1. If the discrete RV X can take the values 0, 1, 2, ..., n, such that P(X = 

i) = nCi p
i
 q

n – 1, i = 0, 1, ..., n, where p + q = 1, then X is said to follow 

a binomial distribution with parameters n and p, which is denoted a

B(n, p).

 2. If the discrete RV X can take the value 0, 1, 2, ..., such that P(X = i) = 

!

i
e

i

ll-
, i = 0, 1, 2, ..., then X is said to follow a Poisson distribution with 

parameter l.

 3. If the discrete RV X can take the values 0, 1, 2, ..., such that P(X = i) = (n 

+ i – 1) Ci p
n
 q

i, i = 0, 1, 2, ..., where p + q = 1, then X is said to follow a 

Pascal (or negative binomial) distribution with parameter n.

 4. A Pascal distribution with parameter 1 [i.e., P(X = i) = pq
i, i = 0, 1, 2, ... 

and p + q = 1] is called a geometric distribution.

Continuous Distributions

 5. If the pdf of a continuous RV X is 
1

( )f x
b a

=
-

 (a constant), a £ x £ b, 

then X follows a uniform distribution (or rectangular distribution).

 6. If the pdf of a continuous RV X is 
2 2( ) /21

( )
2

x
f x e

m s

s p

- -= , –• < x < •, 

then X is said to follow a normal distribution (or Gaussian distribution) 

with parameters m and s, which will be hereafter denoted as N(m, s).

 7. If the pdf of a continuous RV X is 
11

( )
( )

x n
f x e x

n

- -= , 0 < x < • and 

n > 0, then X follows a gamma distribution with parameter n. Gamma 

distribution is a particular case of Erlang distribution, the pdf of which 

is 1( )
( )

n
n cxc

f x x e
n

- -= , 0 < x < •, n > 0, c > 0.

 8. An Erlang distribution with n = 1 [i.e., f(x) = ce
–cx, 0 < x < •, c > 0] 

is called an exponential (or negative exponential) distribution with 

parameter c.

 9. If the pdf of a continuous RV X is 
2 2/2

2
( ) xx

f x e
a

a

-= , 0 < x < •, then X 

follows a Rayleigh distribution with parameter a.

 10. If the pdf of a continuous RV X is 
2 22 /2

3

2
( ) x

f x x e
a

a p

-= , 0 < x < •, 

then X follows a Maxwell distribution with parameter a.
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 11. If the pdf of a continuous RV X is | |/1
( )

2

x
f x e

m l

l
-= , –• < x < •, l > 

0, then X follows a Laplace (or double exponential) distribution with 

parameters l and m.

 12. If the pdf of a continuous RV X is 
2 2

1
( )f x

x

a

p a
= ¥

+
, a > 0, –• < x < 

•, then X follows a Cauchy distribution with parameter a.

Worked Example 2(A)

Example 1

From a lot containing 25 items, 5 of which are defective, 4 items are chosen 

at random. If X is the number of defectives found, obtain the probability 

distribution of X, when the items are chosen (i) without replacement, and (ii) 

with replacement.

Since only 4 items are chosen, X can take the values 0, 1, 2, 3 and 4.

The lot contains 20 non-defective and 5 defective items.

Case (i): When the items are chosen without replacement, we can assume that all 

the 4 items are chosen simultaneously.

\ P(X = r) = P(choosing exactly r defective items)

  = P(choosing r defective and (4 – r) good items)

  = 4

4

5 20
( 0,1, ..., 4)

25

r rC C
r

C

-¥
=

Case (ii): When the items are chosen with replacement, we note that the 

probability of an item being defective remains the same in each draw.

i.e., p = 
5 1 4

,
25 5 5

q= =  and n = 4

The problem is one of performing 4 Bernoulli’s trials and fi nding the probability 

of exactly r successes.

\ P(X = r) = 

4
1 4

4
5 5

r r

rC

-
Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

 (r = 0, 1, ..., 4)

Example 2

A shipment of 6 television sets contains 2 defective sets. A hotel makes a random 

purchase of 3 of the sets. If X is the number of defective sets purchased by the 

hotel, fi nd the probability distribution of X.

All the 3 sets are purchased simultaneously. Since there are only 2 defective 

sets in the lot, X can take the values 0, 1 and 2.
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\ P(X = r) = P(choosing exactly r defective sets)

  = P[choosing r defective and (3 – r) good sets]

  = 3

3

2 4
( 0,1, 2)

6

r rC C
r

C

-¥
=

The required probability distribution is represented in the form of the following 

table:

X = r pr

0 1/5

1 3/5

2 1/5

Total 1

Example 3

A random variable X may assume 4 values with probabilities (1 + 3x)/4, (1 – x/4), 

(1 + 2x)/4 and (1 – 4x)/4. Find the condition on x so that these values represent 

the probability function of X.

 P(X = x1) = p1 = (1 + 3x)/4; p2 = (1 – x)/4;

 p3 = (1 + 2x)/4; p4 = (1 – 4x)/4

If the given probabilities represent a probability function, each pi ≥ 0 and 

1i

i

p =Â .

In this problem, p1 + p2 + p3 + p4 = 1, for any x.

But p1 ≥ 0, if x ≥ –1/3; p2 ≥ 0, if x £ 1; p3 ≥ 0, if x ≥ –1/2 and p4 ≥ 0, If x £ 1/4.

Therefore, the values of x for which a probability function is defi ned lie in the 

range –1/3 £ x £ 1/4.

Example 4

If the random variable X takes the values 1, 2, 3 and 4 such that 2P(X = 1) = 3P(X 

= 2) = P(X = 3) = 5P(X = 4), fi nd the probability distribution and cumulative 

distribution function of X.

Let P(X = 3) = 30K. Since 2P(X = 1) = 30K, P(X = 1) = 15K.

Similarly, P(X = 2) = 10K and P(X = 4) = 6K.

Since Spi = 1, 15K + 10K + 30K + 6K = 1.

\ K = 
1

61
The probability distribution of X is given in the following table:

X = i 1 2 3 4

Pi

15

61

10

61

30

61

6

61
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The cdf F(x) is defi ned as F(x) = P(X £ x). Accordingly, the cdf for the above 

distribution is found out as follows:

When x < 1, F(x) = 0

When 1 £ x < 2, F(x) = P(X = 1) = 
15

61

When 2 £ x < 3, F(x) = P(X = 1) + P(X = 2) = 
25

61

When 3 £ x < 4, F(x) = P(X = 1) + P(X = 2) + P(X = 3) = 
55

61

When x ≥ 4, F(x) = P(x = 1) + P(x = 2) + P(x = 3) + P(x = 4) = 1.

Example 5

A random variable X has the following probability distribution.

x: –2 –1 0 1 2 3

p(x): 0.1 K 0.2 2K 0.3 3K

(a) Find K. (b) Evaluate P(X < 2) and P(–2 < X < 2). (c) Find the cdf of X. 

(d) Evaluate the mean of X. 

(a) Since SP(x) = 1, 6K + 0.6 = 1

\ K = 
1

15
\  the probability distribution becomes

x: –2 –1 0 1 2 3

p(x): 1/10 1/15 1/5 2/15 3/10 1/5

(b) P(X < 2) = P(X = –2, –1, 0 or 1)

  = P(X = –2) + P(X =   –1) + P(X = 0) + P(X = 1)

[since the events (X = –2), (X = –1), etc., are mutually exclusive]

  
1 1 1 2 1

10 15 5 15 2
= + + + =

 P(–2 < X < 2) = P(X = –1, 0 or 1)

  = P(X =   –1) + P(X = 0) + P(X = 1)

  
1 1 2 2

15 5 15 5
= + + =

(c) F(x) = 0. When x < –2

  = 
1

10
, when –2 £ x < –1

  = 
1

6
, when –1 £ x < 0
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  = 
11

30
, when 0 £ x < 1

  = 
1

2
, when 1 £ x < 2

  = 
4

5
, when 2 £ x < 3

  = 1, when 3 £ x

(d) The mean of X is defi ned as E(X) = S xp(x)

(refer to Chapter 4)

\ Mean of X 
1 1 1

2 1 0
10 15 5

Ê ˆ Ê ˆ Ê ˆ= - ¥ + - ¥ + ¥Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

  

2 3 1
1 2 3

15 10 5

Ê ˆ Ê ˆ Ê ˆ+ ¥ + ¥ + ¥Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

  

1 1 2 3 3 16

5 15 15 5 5 15
= - - + + + =

Example 6

The probability function of an infi nite discrete distribution is given by P(X = j) 

= 1/2j (j = 1, 2, ..., •). Verify that the total probability is 1 and fi nd the mean and 

variance of the distribution. Find also P(X is even), P(X ≥ 5) and P(X is divisible 

by 3).

Let P(X = j) = pj

       
2 3

1

1 1 1

2 2 2
j

j

p
•

=

= + + + •Â � , that is a geometric series.

  

1

2 1
1

1
2

= =
-

The mean of X is defi ned as E(X) = 
1

j

j

jp
•

=
Â  (refer to Chapter 4).

\ E(x) = a + 2a
2 + 3a

2 + ... •, where 
1

2
a =

  = a(1 + 2a + 3a
2 + ... •)
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2

2

1

2(1 ) 2
1

2

a a
-= - = =

Ê ˆ
Á ˜Ë ¯

The variance of X is defi ned as V(X) = E(X2) – [E(X)]2,

where 2 2

1

( ) j

j

E X j p
•

=

= Â  (refer to Chapter 4).

 E(X2) = 
2

1

1
, where

2

j

j

j a a
•

=

=Â

  = 
1 1 1

[ ( 1) ] ( 1)j j j

j j j

j j j a j j a ja
• • •

= = =

+ - = + -Â Â Â

  = a(1.2 + 2.3a + 3.4a
2 + ... •) – a(1 + 2a + 3a

2 + ... •)

  = a × 2(1 – a)3 – a × (1 – a)–2

  = 
3 2

2
8 2 6

(1 ) (1 )

a a

a a
- = - =

- -

\ V(X) = E(X)2 – {E(X)}2 = 6 – 4 = 2

P(X is even) = P(X = 2 or X = 4 or X = 6 or etc.)

P(X = 2) + P(X = 4) + ... + •
(since the events are mutually exclusive)

  

2 4 6
1 1 1

2 2 2

Ê ˆ Ê ˆ Ê ˆ= + + + + •Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
�

  

1

14
1 3

1
4

= =
-

 P(X ≥ 5) = P(X = 5 or X = 6 or X = 7, etc.)

  = P(X = 5) + P(X = 6) + ... + •

  

5

1

12
1 16

1
2

= =
-
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 P(X is divisible by 3) = P(X = 3 or X = 6 or X = 9, etc.)

  = P(X = 3) + P(X = 6) + ... + •

  = 

3 6 9
1 1 1

2 2 2

Ê ˆ Ê ˆ Ê ˆ+ + + + •Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
�

  = 

1

18
1 7

1
8

=
-

Example 7

A random variable X has the following probability distribution.

x: 0 1 2 3 4 5 6 7

p(x): 0 K 2K 2K 3K K
2 2K

2 7K
2 + K

Find (a) the value of K, (b) P(1.5 < X < 4.5/X > 2), and (c) the smallest value of 

l for which P(X £ l) > 1/2.

(a) Sp(x) = 1

\ 10K
2 + 9K = 1

i.e., (10K – 1) (K + 1) = 0

\ K = 
1

10
 or –1.

  The value K = –1 makes some values of p(x) negative, which is mean-

ingless.

\ K = 
1

10

  The actual distribution is given below:

x: 0 1 2 3 4 5 6 7

P(x): 0
1

10

2

10

2

10

3

10

1

100

2

100

17

100

 (b) P(1.5 < X < 4.5/X > 2) = P(A/B), say

  

( )

( )

P A B

P B

«
=

  

[(1.5 4.5) ( 2)]

( 2)

P X X

P X

< < « >
=

>

  

7

3

5

( 3) ( 4) 510
7 7

( )
10

r

P X P X

X r
=

= + =
= = =

=Â
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 (c) By trials, P(X £ 0) = 0; P(X £ 1) = 
1

10
; P(X £ 2) = 

3

10

 P(X £ 3) = 
5 8

; ( 4)
10 10

P X £ =

  Therefore, the smallest value of l satisfying the condition P(X £ l) > 1/2 

is 4.

Example 8

If 

2 /2 0
( )

0 0

x
xe x

p x
x

-ÏÔ ≥= Ì
<ÔÓ

 (a) show that p(x) is a pdf (of a continuous RV X),

 (b) fi nd its distribution function P(x).

 (a) If p(x) is to be a pdf, p(x) ≥ 0 and

  
( )d 1

XR

p x x =Ú

Obviously, 
2 /2( ) 0x

p x xe
-= ≥ , when x ≥ 0

Now 
2 /2

0 0 0

( )d d dx t
p x x xe x e t

• • •
- -= =Ú Ú Ú  (putting t = x2/2)

      = 1

\ p(x) is a legitimate pdf of a RV X.

  (b) F(x) = 
0

( ) ( )d

x

P X x f x x£ = Ú
\ F(x) = 0, when x < 0

and F(x) = 
2 2/2 /2

0

d 1

x
x x

x e x e
- -= -Ú , when x ≥ 0.

Example 9

If the density function of a continuous RV X is given by

 f(x) = ax, 0 £ x £ 1

  = a, 1 £ x £ 2

  = 3a – ax, 2 £ x £ 3

  = 0, elsewhere

 (a) fi nd the value of a, and

 (b) fi nd the cdf of X.

 (c) If x1, x2 and x3 are 3 independent observations of X, what is the probability 

that exactly one of these 3 is greater than 1.5?
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 (a) Since f(x) is a pdf, ( )d 1

XR

f x x =Ú

i.e., 
3

0

( )d 1f x x =Ú

i.e., 
1 2 3

0 1 2

d d (3 )d 1ax x a x a ax x+ + - =Ú Ú Ú
i.e., 2a = 1

\ 1

2
a =

 (b) F(x) = P(X £ x) = 0, when x < 0

 F(x) 
4

0

d
2 4

x
x x

x= =Ú , when 0 £ x £ 1

  

1

0 1

1 1
d d

2 2 2 4

X
x x

x x= + = -Ú Ú  when 1 £ x £ 2

  
1 2 2

0 1 2

1 3 3 5
d d d

2 2 2 2 2 4 4

x
x x x

x x x x
Ê ˆ= + + - = - -Á ˜Ë ¯Ú Ú Ú , when 2 £ x £ 3

  = 1, when x > 3

(c) p(X > 1.5) = 
3

1.5

( )df x xÚ

  

2 3

1.5 2

1 3 1
d d

2 2 2 2

x
x x

Ê ˆ= + - =Á ˜Ë ¯Ú Ú

Choosing an X and observing its value can be considered as a trial and (X > 1.5) 

can be considered a success.

\ p = 1/2, q = 1/2

As we choose 3 independent observations of X, n = 3.

By Bernoulli’ s theorem,

P(exactly one value > 1.5)

  

1 2
1

3
(1 success) 3 ( ) ( )

8
p C p q= = ¥ ¥ =

Example 10

A continuous RV X that can assume any value between x = 2 and x = 5 has a 

density function given by f(x) = k(1 + x). Find P(X < 4).
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By the property of pdf,

( )d 1

xR

f x x =Ú , X takes values between 2 and 5.

\ 
5

2

(1 )d 1k x x+ =Ú

i.e., 
27

1
2

k =

\ 2

27
k =

Now p(X < 4) = p(2 < X < 4) = 
4

2

16
(1 )d

27
k x x+ =Ú

Example 11

A continuous RV X has a pdf f(x) = kx
2
e

–x; x 1 0. Find k, mean and variance.

By the property of pdf,

  

2

0

d 1x
kx e x

•
- =Ú

i.e.,  2k = 1

\  

1

2
k =

Mean of X is defi ned as

 E(X) = ( )d

xR

xf x xÚ

(refer to Chapter 4)

Variance of X is defi ned as

 V(X) = E(X2) – {E(X)}2,

where E(X)2 = 2 ( )d

xR

x f x xÚ  (refer to Chapter 4)

\ E(X) = 3

0

1
d

2

x
x e x

•
-Ú

  = 
3 2

0

1
[ ( ) 3 ( ) 6 ( ) 6( )]

2

x x x x
x e x e x e e

- - - - •- - + - -

  = 3
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 E(X)2 = 4

0

1
d

2

x
x e x

•
-Ú

  = 4 3 2
0

1
[ ( ) 4 ( ) 12 ( ) 24 ( ) 24( )]

2

x x x x x
x e x e x e x e e

- - - - - •- - + - - + -

  = 12

\ V(X) = E(X2) – {E(X)}2 = 3

Example 12

The probability that a person will die in the time interval (t1, t2) is given by

 p(t1 £ t £ t2) = 
2

1

( )d

t

t

a t tÚ

The function a(t) is determined from long records and can be assumed to be

 a(t) = 
9 2 23 10 (100 ) 0 100

0 elsewhere

t t t
-Ï ¥ - £ £Ô

Ì
ÔÓ

Determine (a) the probability that a person will die between the ages 60 and 70, 

and (b) the probability that he will die between those ages, assuming he lived up 

to 60.

(a) P(60 < t < 70) = 

70

60

( )da t tÚ

  = 
70

9 2 2

60

3 10 (100 ) dt t t
-¥ -Ú

  = 0.1544

(b) P(60 < t < 70/t ≥ 60) = P(60 < t < 70/60 £ t £ 100)

  

(60 70)

(60 100)

P t

P t

< <
=

< <

  

70 100

60 60

( )d / ( )da t t a t t= Ú Ú

  

0.15436
0.4863

0.31744
= =

Example 13

A continuous RV has a pdf f(x) = 3x
2, 0 £ x £ 1. Find a and b such that

 (a) P(X £ a) = P(X > a), and

 (b) P(X > b) = 0.05.
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 (a) P(X £ a) = P(X > a)

\   
1

2 2

0

3 d 3 d

a

a

x x x x=Ú Ú
i.e., a

3 = 1 – a3

i.e., a
3 = 

1

2

\ a = 0.7937

 (b)      P(X > b) = 0.05

 

1

23 d

b

x xÚ  = 0.05

i.e.,  b
3 = 95

\ b = 0.9830

Example 14

The distribution function of a RV X is given by F(x) = 1 – (1 + x)e–x, x ≥ 0. Find 

the density function, mean and variance of X.

By the property of F(x), the pdf f(x) is given by f(x) = F¢(x) at points of continuity 

of F(x).

The given cdf is continuous for x ≥ 0.

\ f(x) = (1 + x)e–x – e–x = x e
–x, x ≥ 0

 E(X) = 2

0

d 2x
x e x

•
- =Ú

 E(X2) = 3

0

d 6x
x e x

•
- =Ú

 V(X) = E(X2) – [E(X)]2 = 2

Example 15

The cdf of a continuous RV X is given by

 F(x) = 0, x < 0

  

2 1
,0

2
x x= £ <

  
23 1

1 (3 ) , 3
25 2

x x= - - £ <

  = 1, x ≥ 3

Find the pdf of X and evaluate P(|X| £ 1) and 
1

4
3

P X
Ê ˆ£ <Á ˜Ë ¯

 using both the pdf 

and cdf.
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The points x = 0, 1/2 and 3 are points of continuity.

\ f(x) = 0, x < 0

  

1
2 , 0

2
x x= £ <

  

6 1
(3 ), 3

25 2
x x= - £ <

  = 0, x ≥ 3

Although the points x = 1/2, 3 are points of discontinuity for f(x), we may assume 

that 
1 3

2 5
f

Ê ˆ =Á ˜Ë ¯
 and f(3) = 0.

 P(|X| £ 1) = p(–1 £ x £ 1)

  = 

1 1/2 1

1 0 1/2

6
( )d 2 d (3 )d

25
f x x x x x x

-

= + -Ú Ú Ú  (using property of pdf)

  

13

25
=

If we use property of cdf,

 P(|X| £ 1) = P(–1 £ x £ 1) = F(1) – F(–1) = 
13

25
If we use the property of pdf,

 P(1/3 £ X < 4) = 

1/2 3

1/3 1/2

6 8
2 d (3 )d

25 9
x x x x+ - =Ú Ú

If we use the property of cdf,

 P(1/3 £ X < 4) = 
1

(4)
3

F F
Ê ˆ- Á ˜Ë ¯

  = 
1 8

1
9 9

- =

Example 16

If the RV k is uniformly distributed over (0, 5) what is the probability that the 

roots of the equation 4x
2 + 4kx + (k + 2) = 0 are real?

The RV k is U(0, 5).

\ pdf of k = 
1

, 0 5
5

k< <

P(Roots of 4x
2 + 4kx + k + 2 = 0 are real)

  = P(Discriminant of the equation ≥ 0)

  = P(k2 – k – 2 ≥ 0) = P[(k – 2) (k + 1) ≥ 0]

  = P[k ≥ –1 and k ≥ 2) or (k £ 2 and k £ –1)]
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  = P(k ≥ 2 or k £ –1) = P[(k ≥ 2) [since k takes values in (0, 5)]

  

5

2

1
( )d (5 2)

5
f k k= = -Ú

  

3

5
=

Example 17

A point P is taken at random on a line AB of length 2a, all positions of the point 

being equally likely. Find the probability that the product 

2

( )
2

a
AP PB¥ > .

Let AP = X. 

\ PB = (2a – X)

Since all positions of the point P are equally likely, X(= AP) is uniformly 

distributed over (0, 2a).

\ pdf of X = 
1

, 0 2
2

x a
a

< <

  

2 2

(2 )
2 2

a a
P AP PB P X a X

È ˘ È ˘
¥ > = - >Í ˙ Í ˙

Î ˚ Î ˚
  = P(2X

2 – 4aX + a2 < 0)

  

1 1
1 1 0

2 2
P X a X a

È ˘Ï ¸ Ï ¸Ê ˆ Ê ˆÔ Ô Ô Ô= - - - + <Í ˙Ì ˝ Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Ó ˛ Ó ˛Î ˚

[since the factors of 2 2 1 1
(2 4 ) are 1 and 1 ]

2 2
x ax a x a x a

Ê ˆ Ê ˆ
- + - - - +Á ˜ Á ˜Ë ¯ Ë ¯

  

1 1
1 1

2 2
P a X a

È ˘Ê ˆ Ê ˆ
= - < < +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

  

1
11

12
2

1
11

1 2
2

1 2 1
( )d [ ]

2 2 2

a
a

a
a

a
f x x x

a a

Ê ˆ Ê ˆ+Á ˜ +Ë ¯ Á ˜Ë ¯

Ê ˆ
-Ê ˆ Á ˜- Ë ¯Á ˜Ë ¯

= = = =Ú

Example 18

If the continuous RV, X represents the time of failure of a system that has been 

put into operation at t = 0, fi nd the conditional density function of X, given 

that the system has survived up to time t. Deduce the same when X follows an 

exponential distribution with parameter l.
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The conditional distribution function of X, subject to the given condition, is 

given by

 f(x/X > t) = 
[ and ]

( )

P X x X t

P X t

£ >
>

 [since unconditional F(x) = P(X £ x)]

  

[ ]

[ ]

P t X x

P t X

< £
=

< < •

  
( ) ( )

1 ( )

F x F t

F t

-
=

-  for x > t

  = 0 for x < t

Therefore, the conditional density function f(x/X > t) is given by

 f(x/X > t) = 
d

( / )
d

F x X t
x

>

  = 
( )

,
1 ( )

f x
x t

F t
>

-
For the exponential distribution with parameter l,

 f(x) = l l ll l- - -> = = -Ú
0

, 0, and ( ) d 1

X
x x x

e x F x e x e

\ f(x/X > t) = ( ) ( )
X

x t

t

e
e f x t

e

l
l

l

l
l

-
- -

- = = -

Example 19

If f(t) is the unconditional density of the time of failure of a system and h(t) is the 

hazard rate (or conditional failure rate or conditional density of T, given T > t)

fi nd f(t) in terms of h(t). Deduce that T follows a Rayleigh distribution, when 

h(t) = t.

The conditional density of T, given T > t or the hazard rate, is given by h(t) = 

f(t/T > t)

  

( ) ( )

1 ( ) 1 ( )

f t F t

F t F t

¢
= =

- -

\    
0 0

( )
( )d d

1 ( )

t t
F t

h t t t
F t

¢
=

-Ú Ú

  
0[ log{1 ( )}]t

F t= - -

  = –log {1 – F(t)} [ since F(0) = P(T £ 0) = 0 as the system 

was put into operation at t = 0]

\ F(t) = 0

( )

1

t

h t dt

e

-

-
Ú
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\ F(t) = h(t) × 0

( )d

t

h t t

e

-Ú

When h(t) = t,

 f(t) = 0

d

t

t t

t e

-

¥
Ú

  = 
2 /2t

te
-

, which is the pdf of a Raleigh distribution

Example 20

If a continuous RV X follows N(0, 2), fi nd

P{1 £ X £ 2} and P{1 £ X £ 2/X ≥ 1}

X follows N(0, 2), the density function of which is 
2 /81

( )
2 2

x
f x e

p

-= , –• 

< x < •.

\ P{1 £ X £ 2} = 
2

1

( )df x xÚ

  

1

0.5

( )d , putting
2

x
t t tf= =Ú

where f(t) is the standard normal density.

  

1 0.5

0 0

( )d ( )dt t t tf f= -Ú Ú
  = 0.3413 – 0.1915 (from the normal tables)

  = 0.1498

 P{1 £ X £ 2/ X £ 1} = 
{(1 2) and 1}

{ 1}

P X X

P X

£ £ ≥
≥

  

{1 2}

{1 }

P X

P X

£ £
=

£ < •

  

0.5

0 0

0.1498

( )d ( )dt t t tf f
•=

-Ú Ú

  

0.1498
0.4856

0.5 0.1915
= =

-
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Exercise 2(A)

Part-A (Short-answer Questions)

 1. Defi ne a RV with an example.

 2. Defi ne a discrete RV with an example.

 3. Defi ne a continuous RV and give an example for the same.

 4. Distinguish between a discrete RV and a continuous RV.

 5. Defi ne the probability mass function of a discrete RV.

 6. Write down the probability distribution of the outcome when 2 fair dice 

are tossed.

 7. Defi ne the pdf of a continuous RV.

 8. State the properties of the pdf of a continuous RV.

 9. What is the probability curve of a continuous RV? Give an example.

 10. Prove that it is almost impossible that a continuous RV assumes a 

specifi c value. (OR) If X is a continuous RV prove that P(X = a) = 0.

 11. If X represents the total number of heads obtained, when a fair coin is 

tossed 5 times, fi nd the probability distribution of X.

 12. If the probability distribution of X is given as:

   x: 1 2 3 4

   px: 0.4 0.3 0.2 0.1

  Find 
1 7

/ 1
2 2

P X X
Ê ˆ< < >Á ˜Ë ¯

 13. Defi ne the cdf of a RV. Explain how to fi nd it for both kinds of RV.

 14. Differentiate between the pdf and cdf of a RV.

 15. State the properties of the cdf of a RV.

 16. Verify whether 
| | in 1 1

( )
0, elsewhere

x X
f x

- £ £Ï
= Ì

Ó
 

  can be the pdf of a continuous RV.

 17. IF f(x) = kx
2, 0 < x < 3, is to be a density function, fi nd the value of k.

 18. If the pdf of a RV X is given by

    

1 / 4 in 2 2
( )

0, elsewhere

x
f x

- < <Ï
= Ì

Ó
  Find P{|X| > 1}.

 19. Find the value of k, if 
0

( )
0 elsewhere

x
k x e x

f x
-Ï >Ô= Ì

ÔÓ
       is the pdf of a RV X.

 20. If the pdf of a RV X is ( )
2

x
f x =  in 0 £ x £ 2, fi nd P(X > 1.5/X > 1).
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 21. The RV X has the following probability distribution:

   x: –2 –1 0 1

   px: 0.4 k 0.2 0.3

  Find k and the mean value of X.

 22. If X represents the outcome of the toss of a 6 faced dice, fi nd P(X £ x) as 

a function of x.

 23. If the pdf of a RV X is f(x) = 2x, 0 < x < 1, fi nd the cdf of X.

 24. If the cdf of a RV X is given by F(x) = 1 – e–lx, when x ≥ 0 and = 0, when 

x < 0, fi nd the pdf of X.

 25. If the cdf of a RV is given by F(x) = 0, for x < 0; = x2/16 for 0 £ x £ 4 and 

= 1, for 4 £ x, fi nd P(X > 1/X < 3).

 26. Defi ne binomial distribution. What are its mean and variance?

 27. Give the probability law of Poisson distribution and also its mean and 

variance.

 28. Defi ne the exponential distribution.

 29. If X follows an exponential distribution with parameter 1, fi nd P(|X| £ 1).

 30. Defi ne Pascal distribution and defi ne geometric distribution as a 

particular case of Pascal distribution.

 31. Write down the pdf’s of general normal distribution and standard normal 

distribution.

 32. Defi ne Erlang distribution. Deduce Gamma distribution as a particular 

case of Erlang distribution.

 33. Deduce the pdf of an exponential distribution as a particular case of that 

of Erlang distribution.

 34. Give the pdf of Rayleigh distribution.

 35. Defi ne Maxwell distribution.

 36. Write down the pdf of Laplace distribution.

 37. Defi ne Cauchy distribution.

Part-B

 38. Find the formula for the probability distribution of the number of heads, 

when a fair coin is tossed 4 times.

 39. A coin is known to come up heads 3 times as often as tails. This coin is 

tossed 3 times. Write down the probability distribution of the number of 

heads that appear and also the cdf. Make a sketch of both.

 40. Consider the experiment of tossing a coin, the 2 events of the space 

being occurrence of head of tail. Assign probabilities p and q for head 

and tail respectively and defi ne a random variable X by X(h) = 1 and X(t) 

= 0. Determine and plot the probability function f(x) and the distribution 

function F(x).

 41. Two dice are tossed. If X is the sum of the numbers shown up, fi nd the 

probability mass function of X.

 42. Consider the experiment of tossing a fair coin 4 times. Defi ne X = 0, if 0 

or 1 head appears; X = 1, if 2 heads appear; X = 2, if 3 or 4 heads appear. 

Find the probability function, mean and variance of X.
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 43. A discrete RV X has the following probability distribution.

x: 0 1 2 3 4 5 6 7 8

p(x): a 3a 5a 7a 9a 11a 13a 15a 17a

  Find the value of a, P(X < 3),variance and distribution function of X.

 44. The probability distribution of a RV X is given below:

   x: 0 1 2 3

   p(x): 0.1 0.3 0.5 0.1

  If Y = X2 + 2X, fi nd the probability distribution, mean and variance of Y.

 45. The probability mass function of a RV X is defi ned as

  P(X = 0) = 3C
2, P(X = 1) = 4C – 10C

2 and P(X = 2) = 5C – 1, where C > 

0 and P(X = r) = 0, if r π 0, 1, 2.

  (i) Find the value of C, (ii) Find P{0 < X < 2/X > 0}, (iii) the distribution 

function of X, (iv) the largest value of X for which 
1

( )
2

F x < , and (v) the 

smallest value of X for which 
1

( )
2

F x > .

 46. If the probability mass function of a RV X is given by P(X = r) = kr
3; r = 

1, 2, 3, 4, fi nd (i) the value of k (ii) P(1/2 < X 5/2 / X > 1), (iii) the mean 

and variance of X, and (iv) the distribution function of X.

 47. Find the values of a for which P(x = j) = (1 – a)aj, j = 0, 1, 2, ..., represents 

a probability mass function. Show also that for any 2 positive integers m 

and n

 P(X > m + n/X > m) = P(X ≥ n).

 48. If a discrete probability distribution is given by P(X = r) = k (1 – a)r – 1, 

0 < a < 1, for r = 1, 2, ..., •, fi nd the value of k and also the mean and 

variance of X.

 49. If the probability distribution of a discrete RV X is given by P(X = x) = 

ke
–t(1 – e–t)x – 1, x = 1, 2, ..., •, fi nd the value of k and also the mean and 

variance of X.

 50. In a continuous distribution, the probability density is given by f(x) =

kx(2 – x), 0 < x < 2. Find k, mean, variance and the distribution function.

 51. The diameter of an electric cable X is a continuous RV with pdf f(x) = 

kx(1 – x), 0 £ x £ 1. Find (i) the value of k, (ii) cdf of X, (iii) the value of 

a such that P(X < a) = 2P(X > a), and (iv) P(X £ 1/2 / 1/3 < X < 2/3).

 52. X is a continuous RV with pdf given by f(x) = kx, in 0 £ x £ 2; = 2k, in

2 £ x £ 4, and = 6k – kx, in 4 £ x £ 6. Find the value of k and F(x).

 53. The continuous RV X has pdf ( ) ,0 2
2

x
f x x= £ £ . Two independent 

determinations of X are made. What is the probability that both these 

determinations will be greater than 1? If 3 independent determinations 

had been made, what is the probability that exactly 2 of these are larger 

than 1?
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 54. A continuous RVX that can assume values between x = 2 and x = 5 has 

a density function given by f(x) = 2(1 + x)/27. Find P(3 < X < 4).

 55. A continuous RV has the pdf f(x) = kx
4, –1 < x < 0. Find the value of k 

and also P(X > – 1/2/ X < – 1/4).

 56. Suppose that the life length of a certain radio tube (in hours) is a 

continuous RV X with pdf 
2

100
( ) , 100f x x

x
= >  and = 0, elsewhere.

   (i) What is the probability that a tube will last less than 200 h, if it is 

known that the tube is still functioning after 150 h of service?

  (ii) What is the probability that if 3 such tubes are installed in a set, 

exactly 1 will have to be replaced after 150 h of service?

 (iii) What is the maximum number of tubes that may be inserted into 

a set so that there is a probability of 0.1 that after 150 h of service 

all of them are still functioning?

 57. If the cdf of a continuous RV X is given by 
1

( )
2

kx
F x e= , x £ 0, and 

1
( ) 1

2

kx
F x e

-= - , x > 0, fi nd P(|x| £ 1/k). Prove that the density function 

of X is | |( )
2

k xk
f x e

-=  –• < x < •, given that k > 0.

 58. If the distribution function of a continuous RV X is given by F(x) = 0, 

when x < 0; = x, when 0 £ x £ 1 and = 1, when 1 £ x, fi nd the pdf of X. 

Also fi nd P(1/3 < X < 1/2) and P(1/2 < X < 2) using the cdf of X.

 59. A point is chosen on a line of length a at random. What is the probability 

that the ratio of the shorter to the longer segment is less than 1/4?

 60. If the RV k is uniformly distributed over (1, 7) what is the probability 

that the roots of the equation x2 + 2kx + (2k + 3) = 0 are real?

 61. If f(t) is the unconditional density of time to failure T of a system and 

h(t) is the conditional density of T, given T > t, fi nd h(t) when (i) f(t) = 

le
–lt, and (ii) f(t) = l2 te–lt, t > 0. Prove also that h(t) is not a density 

function.

 62. If the continuous RV X follows N(1000, 20), fi nd

   (i) P(X < 1024), (ii) P(X < 1024/X > 961) and

 (iii) (31 32)P X< £ .

Two-Dimensional Random Variables

So far we have considered only the one-dimensional RV, i.e., we have considered 

such random experiments, the outcome of which had only one characteristic and 

hence, was assigned a single real value. In many situations, we will be interested 

in recording two or more characteristics (numerically) of the outcome of a 

random experiment. For example, both voltage and current might be of interest 

in a certain experiment.
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Defi nitions: Let S be the sample space associated with a random experiment E. 

Let X = X(s) and Y = Y(s) be two functions each assigning a real number to each 

outcomes s Œ S. Then (X, Y) is called a two-dimensional random variable.

If the possible values of (X, Y) are fi nite or countably infi nite, (X, Y) is called 

a two-dimensional discrete RV. When (X, Y) is a two-dimensional discrete RV 

the possible values of (X, Y) may be represented as (xi, yj), i = 1, 2, ..., m, ...; j = 

1, 2, ..., n, ... .

If (X, Y) can assume all values in a specifi ed region R in the xy-plane, (X, Y) is 

called a two-dimensional continuous RV.

Probability Function of (X, Y)
If (X, Y) is a two-dimensional discrete RV such that P(x = xi, y = yj) = pij, then pij 

is called the probability mass function or simply the probability function of (X, 

Y) provided the following conditions are satisfi ed.

 (i) pij ≥ 0, for all i and j

 (ii) 1ij

j i

p =ÂÂ
The sets of triples {xi, yj, pij}, i = 1, 2, ..., m, ..., j = 1, 2, ..., n, ..., is called the 

joint probability distribution of (X, Y).

Joint Probability Density Function
If (X, Y) is a two-dimensional continuous RV such that

d d d d
and ( , )d d

2 2 2 2

x x y y
P x X x y Y y f x y x y

Ï ¸- £ £ + - £ £ + =Ì ˝
Ó ˛

, then f(x, y) is 

called the joint pdf of (X, Y), provided f(x, y) satisfi es the following conditions.

 (i) f(x, y) ≥ 0, for all (x, y) Œ R, where R is the range space.

 (ii) ( , )d d 1.
R

f x y x y =ÚÚ
Moreover, if D is a subspace of the range space R, P{(X, Y) Œ D} is defi ned as

 P{(X, Y) Œ D} = ( , )d d
D

f x y x yÚÚ . In particular

 P{a £ X £ b, c £ Y £ d} = ( , )d d

d b

c a

f x y x yÚ Ú

Cumulative Distribution Function
If (X, Y) is a two-dimensional RV (discrete or continuous), then F(x, y) = P{X £ 

x and Y £ y} is called the cdf of (X, Y).

In the discrete case,

 F(x, y) = 
ij

j i

pÂÂ
  yj £ y xi £ x
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In the continuous case,

 F(x, y) = ( , )d d

y x

f x y x y

-• -•
Ú Ú

Properties of F(x, y)

 (i) F(–•, y) = 0 = F(x, –•) and F(•, •) = 1

 (ii) P{a < X < b, Y £ y} = F(b, y) – F(a, y)

 (iii) P{X £ x, c < Y < d} = F(x, d) – F(x, c)

 (iv) P{a < X < b, c < Y < d} = F(b, d) – F(a, d) – F(b, c) + F(a, c)

 (iv) At points of continuity of f(x, y)

  

2

( , )
F

f x y
x y

∂
=

∂ ∂

Marginal Probability Distribution

 P(X = xi) = P{X = xi and Y = y1) or (X = xi and Y = y2) or etc.}

  = pi1 + pi2 + ... = ij

j

pÂ

( )i ij

j

P X x p= = Â  is called the marginal probability function of X. It is defi ned 

for X = x1, x2, ... and denoted as Pi*. The collection of pairs {xi, pi*}, i = 1, 2, 3, 

... is called the marginal probability distribution of X.

Similarly the collection of pairs {yj, p*j}, j = 1, 2, 3, ... is called the marginal 

probability distribution of Y, where * ( )j ij j

i

p P P Y y= = =Â .

In the continuous case,

 

1 1
d d ,

2 2
P x x X x x Y

Ï ¸- £ £ + -• < < •Ì ˝
Ó ˛

  = 

1

2

1

2

( , )d d

x dx

x dx

f x y x y

+
•

-• -

Ú Ú

  = ( , )d df x y y x

•

-•

È ˘
Í ˙
Í ˙Î ˚
Ú  [ since f(x, y) may be treated a constant in 

(x – 1/2 dx, x + 1/2 dx)]

  = fX(x) dx, say

 ( ) ( , )dXf x f x y y

•

-•

= Ú  is called the marginal density of X.

Similarly, ( ) ( , )dYf y f x y x

•

-•

= Ú  is called the marginal density of Y.
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Note  P(a £ X £ b) = P(a £ X £ b, –• < Y < •)

  = 
•

-•
Ú Ú ( , )d d

b

a

f x y x y

  = 
•

-•

È ˘
=Í ˙

Í ˙Î ˚
Ú Ú Ú( , )d d ( )d

b b

X

a a

f x y y x f x x

  Similarly, P(c £ Y £ d) = Ú ( )d

d

Y

c

f y y

Conditional Probability Distribution

P(X = xi/Y = yj) = 
*

{ }

{ }

i j ij

j j

P X x Y y p

P Y y p

= =
=

=
 is called the conditional probability 

function of X, given that Y = yj.

The collection of pairs, 
*

, 1, 2, 3, ...
ij

i

j

p
x i

p

Ï ¸Ô Ô =Ì ˝
Ô ÔÓ ˛

, is called the conditional prob-

ability distribution of X, given Y = yj.

Similarly, the collection of pairs, 
*

, 1, 2, 3, ...,
ij

j

i

p
y j

p

Ï ¸Ô Ô =Ì ˝
Ô ÔÓ ˛

 is called the conditional 

probability distribution of Y, given Xi = xi. In the continuous case,

1 1
d d /

2 2
P x x X x x Y y

Ï ¸- £ < + =Ì ˝
Ó ˛

  = 
1 1 1 1

d d / d d
2 2 2 2

P x x X x x Y y Y y y
Ï ¸- £ £ + - £ £ +Ì ˝
Ó ˛

  = 
( , )d d ( , )

d .
( )d ( )Y Y

f x y x y f x y
x

f y y f y

Ï ¸
= Ì ˝

Ó ˛

( , )

( )Y

f x y

f y
 is called the conditional density of X, given Y, and is denoted by f(x/y). 

Similarly, 
( , )

( )X

f x y

f y
 is called the conditional density of Y, given X, and is denoted 

by f(y/x).

Independent RVs

If (X, Y) is a two-dimensional discrete RV such that P{X = xi/Y = yj} = P(X = xi), i.e., 

*

*

ij

i

j

p
p

p
= , i.e., pij = pi* × p*j for all i, j then X and Y are said to be independent RVs.
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Similarly, if (X, Y) is a two-dimensional continuous RV such that f(x, y) = fX(x) × 

fY(y), then X and Y are said to be independent RVs.

Random Vectors

Sometimes we may have to be concerned with random experiments whose 

outcomes will have three or more simultaneous numerical characteristics. To study 

the outcomes of such random experiments we require knowledge of n-dimensional 

random variables or random vectors. For example, the location of a space 

vehicle in a cartesian co-ordinate system is a three-dimensional random vector.

Most of the concepts introduced above for the two-dimensional case can be 

extended to the n-dimensional one.

Defi nitions: A vector X: [X1, X2, ..., Xn] whose components Xi are RVs is called 

a random vector. (X1, X2, ..., Xn) can assume all values in some region Rn of the 

n-dimensional space. Rn is called the range space.

The joint distribution function of (X1, X2, ..., Xn) is defi ned as F(x1, x2, ..., xn) 

= P[X1 £ x1, X2 £ x2, ..., Xn £ xn]

The joint pdf of [X1, X2, ..., Xn] is defi ned as f(x1, x2, ..., xn)

  = 1 2

1 2

( , )n
n

n

F x x x

x x x

∂
∂ ◊ ∂ ∂

�

�
 and satisfi es the following conditions.

 (i) f(x1, x2, ..., xn) ≥ 0, for all (x1, x2, ..., xn)

 (ii) 
1 2 1 2( , , ..., )d d ... d 1

n

n n

R

f x x x x x x =Ú Ú Ú�

 (iii) P[(X1, X2, ..., Xn) Œ D] = 1 2 1 2... ( , ,..., )d d ... dn n

D

f x x x x x xÚ Ú Ú  where D is 

a subset of the range space Rn.

The marginal pdf of any subset of the n RVs X1, X2, ..., Xn is obtained by 

“integrating out” the variables not in the subset. For example, if n = 3, then

1 1 1 2 3 2 3( ) ( , , )d dXf x f x x x x x

• •

-• -•

= Ú Ú  is the marginal pdf of the one-dimensional 

RV X1 and 
1 2, 1 2 1 2 3 3( , ) ( )dx xf x x f x x x x

•

-•

= Ú  is the marginal joint pdf of the two-

dimensional RV (X1, X2). The concept of independent RVs is also extended in a 

natural way. The RVs (X1, X2, ..., Xn) are said to be independent, if f(x1, x2, ..., xn) 

= 
1 21 2,( ) ( ) ( )

nX X X nf x f x f x◊ ◊� .

The conditional density functions are defi ned as in the following examples.

 If n = 3,

 3

1 2 3
1 2 3

3

( , , )
( , / ) and

( )X

f x x x
f x x x

f x
=



2.28 Probability, Sta  s  cs and Random Processes

  
2 3

1 2 3
1 2 3

, 2 3

( , , )
( / , )

( , )X X

f x x x
f x x x

f x x
=

Worked Example 2(B)

Example 1

Three balls are drawn at random without replacement from a box containing 2 

white, 3 red and 4 black balls. If X denotes the number of white balls drawn and 

Y denotes the number of red balls drawn, fi nd the joint probability distribution 

of (X, Y).

As there are only 2 white balls in the box, X can take the values 0, 1 and 2 and 

Y can take the values 0, 1, 2 and 3.

 P(X = 0, Y = 0) = P(drawing 3 balls none of which is white or red)

  = P(all the 3 balls drawn are black)

  = 
3 3

1
4 /9

21
C C =

 P(X = 0, Y = 1) = P(drawing 1 red and 2 black balls)

  = 1 2

3

3 4 3

9 14

C C

C

¥
=

Similarly, P(X = 0, Y = 2) = 2 1

3

3 4 1 1
; ( 0, 3)

9 7 84

C C
P X Y

C

¥
= = = =

 P(X = 1, Y = 0) = 
1 2 1

; ( 1, 1) ; ( 1, 2) ;
7 7 14

P X Y P X Y= = = = = =

 P(X = 1, Y = 3) = 0 (since only 3 balls are drawn)

 P(X = 2, Y = 0) = 
1 1

; ( 2, 1) ; ( 2, 2) 0;
21 28

P X Y P X Y= = = = = =

 P(X = 2, Y = 3) = 0

The joint probability distribution of (X, Y) may be represented in the form of a 

table as given below:

X
Y

0 1 2 3

0
1

21

3

14

1

7

1

84

1
1

7

2

7

1

14
0

2
1

21

1

28
0 0
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Note  Sum of  all the cell probabilities = 1.

Example 2

For the bivariate probability distribution of (X, Y) given below, fi nd P(X £ 1),

P(Y £ 3), P(X £ 1, Y £ 3), P(X £ 1/Y £ 3), P(Y £ 3/X £ 1) and P(X + Y £ 4).

X          Y 1 2 3 4 5 6

0 0 0 1/32 2/32 2/32 3/32

1 1/16 1/16 1/8 1/8 1/8 1/8

2 1/32 1/32 1/64 1/64 0 2/64

 P(X £ 1) = P(X = 0) + P(X = 1)

  = 

6 6

1 1

( 0, ) ( 1, )
j j

P X Y j P X Y j
= =

= = + = =Â Â

  = 
1 2 2 3 1 1 1 1 1 1

0 0
32 32 32 32 16 16 8 8 8 8

Ê ˆ Ê ˆ+ + + + + + + + + + +Á ˜ Á ˜Ë ¯ Ë ¯

  = 
1 5 7

4 8 8
+ =

 P(Y £ 3) = P(Y = 1) + P(Y = 2) + P(Y = 3)

  = 

2 2 2

0 0 0

( , 1) ( , 2) ( , 3)
i i i

P X i Y P X i Y P X i Y
= = =

= = + = = + = =Â Â Â

  = 
1 1 1 3 1 1 1

0 0
16 32 16 32 32 8 64

Ê ˆ Ê ˆ Ê ˆ+ + + + + + + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

  = 
3 3 11 23

32 32 64 64
+ + =

 P(X £ 1, Y £ 3) = 

3 3

1 1

( 0, ) ( 1, )
j j

P X Y j P X Y j
= =

= = + = =Â Â
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  = 
1 1 1 1 9

0 0
32 16 16 8 32

Ê ˆ Ê ˆ+ + + + + =Á ˜ Á ˜Ë ¯ Ë ¯

 P(X £ 1/Y £ 3) = 
( 1, 3) 9 / 32 18

( 3) 23 / 64 23

P X Y

P Y

£ £
= =

£

 P(Y £ 3/X £ 1) = 
( 1, 3) 9 / 32 9

( 1) 7 / 8 28

P X Y

P X

£ £
= =

£

 P(X + Y £ 4) = 
4 3 2

1 1 1

( 0, ) ( 1, ) ( 2, )
j j j

P X Y j P X Y j P X Y j
= = =

= = + = = + = =Â Â Â

  = 
3 1 1 13

32 4 16 32
+ + =

Example 3

The joint probability mass function of (X, Y) is given by p(x, y) = k(2x + 3y), x = 

0, 1, 2; y = 1, 2, 3. Find all the marginal and conditional probability distributions. 

Also fi nd the probability distribution of (X + Y).

The joint probability distribution of (X, Y) is given below. The relevant 

probabilities have been computed by using the given law.

X
Y

1 2 3

0 3k 6k 9k

1 5k 8k 11k

2 7k 10k 13k

 

3 2

1 0

( , ) 1i j

j i

p x y
= =

=ÂÂ

i.e., the sum of all the probabilities in the table is equal to 1.

i.e., 72 k = 1.

\ k = 
1

72



Random Variables 2.31

Marginal Probability Distribution of X: {i, pi*}

X = i

3

*

1

i ij

j

p p

=

= Â

0 p01 + p02 + p03 = 
18

72

1 p11 + p12 + p13 = 
24

72

2 p21 + p22 + p23 = 
30

72

Total = 1

Marginal Probability Distribution of Y: { j, p*j}

Y = j

2

*

0

j ij

i

p p

=

= Â

1 15/27

2 24/72

3 33/72

Total = 1

Conditional distribution of X, given Y = 1, is given by {i, P(X = i/Y = 1)} =

{i, P(X = i, Y = 1)/P(Y = 1)} = {i, pi1/p*1} = 0, 1, 2.

The tabular representation is given below:

X = i pi1/p*1

0 3k/15k = 
1

5

1 5k/15k = 
1

3

2 7k/15k = 
7

15

Total = 1
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The other conditional distributions are given below:

C.P.D. of X, given Y = 2

X = i pi2/p*2

0
6 1

24 4

k

k
=

1
8 1

24 3

k

k
=

2
10 5

24 12

k

k
=

Total = 1

C.P.D. of X, given Y = 3

X = i pi3/p*3

0
9 3

33 11

k

k
=

1
11 1

33 3

k

k
=

2
13 13

33 33

k

k
=

Total = 1

C.P.D. of Y, given X = 0

Y = j p0j/p0*

1
3 1

18 6

k

k
=

2
6 1

18 3

k

k
=

3
9 1

18 2

k

k
=

Total = 1

C.P.D. of Y, given X = 1

Y = j p1j/p1*

1
5 5

24 24

k

k
=

2
8 1

24 3

k

k
=

3
11 11

24 24

k

k
=

Total = 1

C.P.D. of Y, given X = 2

Y = j p2j/p2*

1
7 7

30 30

k

k
=

2
10 1

30 3

k

k
=

3
13 13

30 30

k

k
=

Total = 1
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Probability distribution of (X + Y)

(X + Y) P

1 p01 = 
3

72

2 p02 + p11 = 
11

72

3 p03 + p12 + p21 = 
24

72

4 p13 + p22 = 
21

72

5 p23 = 
13

72

Total = 1

Example 4

A machine is used for a particular job in the forenoon and for a different job 

in the afternoon. The joint probability distribution of (X, Y), where X and Y 

represent the number of times the machine breaks down in the forenoon and in 

the afternoon respectively, is given in the following table. Examine if X and Y are 

independent RVs.

X
Y

0 1 2

0 0.1 0.04 0.06

1 0.2 0.08 0.12

2 0.2 0.08 0.12

X and Y are independent, if Pi* × P*j = Pij for all i and j. So, let us fi nd Pi* × P*j 

for all i and j.

 P0* = 0.1 + 0.04 + 0.06 = 0.2; P1* = 0.4; P2* = 0.4

 P*0 = 0.5; P*1 = 0.2; P*2 = 0.3

Now, P0* × P*0 = 0.2 × 0.5 = 0.1 = P00

 P0* × P*1 = 0.2 × 0.2 = 0.04 = P01

 P0 × P*2 = 0.2 × 0.3 = 0.06 = P02

Similarly, we can verify that

 P1* × P*0 = P10; P1* × P*1 = P11; P1* × P*2 = P12;

 P2* × P*0 = P20; P2* × P*1 = P21; P2* × P*2 = P22

Hence, the RVs X and Y are independent.
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Example 5

The joint pdf of a two-dimensional RV (X, Y) is given by f(x, y) = 
2

2

8

x
xy + ,

0 £ x £ 2, 0 £ y £ 1.

Compute P(X < 1), 
1

2
P Y

Ê ˆ<Á ˜Ë ¯
, P(X > 1/Y < 1/2)

1
/ 1

2
P Y X

Ê ˆ< >Á ˜Ë ¯ , P(X < Y) and P(X + Y £ 1).

Here, the rectangular defi ned by 0 £ x £ 2, 0 £ y £ 1 is the range space R. R1, R2, 

..., are event spaces.

   (a) P(X > 1) = 

1
( 1)

( , )d d
R
x

f x y x y

>

Ú Ú  = 

1 2 2
2

0 1

19
d d

8 24

x
xy x y

Ê ˆ
+ =Á ˜Ë ¯Ú Ú

Fig. 2.1

  (b) P(X < 2) = 

2

2
2

1

2

d d
8

R

y

x
xy x y

Ê ˆ<Á ˜Ë ¯

Ê ˆ
+Á ˜Ë ¯Ú

  = 
1/2 2 2

2

0 0

d d
8

x
xy x y

Ê ˆ
+Á ˜Ë ¯Ú Ú  = 

1

4

Fig. 2.2
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(c) P(X > 1, Y < 1/2) = 

3

2
2

1
1&

2

d d
8

R

x y

x
xy x y

Ê ˆ> <Á ˜Ë ¯

Ê ˆ
+Á ˜Ë ¯Ú

           = 

1/2 2 2
2

0 1

d d
8

x
xy x y

Ê ˆ
+Á ˜Ë ¯Ú Ú  = 

5

24

Fig. 2.3

(d) 
1

1 /
2

P X Y
Ê ˆ> <Á ˜Ë ¯

 = 

1
1,

5 / 24 52

1 1 / 4 6

2

P X Y

P Y

Ê ˆ> <Á ˜Ë ¯
= =

Ê ˆ<Á ˜Ë ¯

(e) 
1

/ 1
2

P Y X
Ê ˆ< >Á ˜Ë ¯

 = ( )

1
1,

5 / 24 52

1 19 / 24 19

P X Y

P X

Ê ˆ> <Á ˜Ë ¯
= =

>

(f) P(X < Y) = 

4

2
2

( )

d d
8

R
x y

x
xy x y

<

Ê ˆ
+Á ˜Ë ¯Ú Ú

   = 
1 2

2

0 0

53
d d

8 480

y
x

xy x y
Ê ˆ

+ =Á ˜Ë ¯Ú Ú

Fig. 2.4
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(g) P(X + Y £ 1) = 

5

2
2

( 1)

d d
8

R
x y

x
xy x y

+ £

Ê ˆ
+Á ˜Ë ¯Ú Ú

    = 

11 2
2

0 0

13
d d

8 480

y
x

xy x y

- Ê ˆ
+ =Á ˜Ë ¯Ú Ú

Fig. 2.5

Example 6

If the joint pdf of the RV (X, Y) is given by f(x, y)

= 
2

1

2ps
 exp {–(x2 + y2)/2 s2}, – • < x, y < •, fi nd P(X2

 + Y2 £ a2).

Here, the entire xy-plane is the range space R and the event space D is the 

interior of the circle x2 + y2 = a2.

 P(X2
 + Y2 £ a2) = 

2 2 2

( , )d d

x y a

f x y x y

+ £
ÚÚ

Transform from Cartesian system to polar system, i.e., put x = r cos q and y = r 

sin q.

Then dx dy = rdrdq.

The domain of integration becomes r £ a.

Then P(X2
 + Y2 £ a2) = 

2 2
2

/2

2
0 0

1
d d

2

a
r

e r r

p
s q

ps

-Ú Ú

  = 
2 2

2
/2

0

0

1
( ) d

2

r a
e

p
s q

p
--Ú

  = 
2 2

2
/2

0

1
(1 )d

2

a
e

p
s q

p
--Ú  = 

2 2/21 a
e

s--

Fig. 2.6
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Example 7

A gun is aimed at a certain point (origin of the coordinate system). Because of 

the random factors, the actual hit point can be any point (X, Y) in a circle of radius 

R about the origin. Assume that the joint density of X and Y is constant in this 

circle given by

 fXY(x, y) = c, for x2 + y2 £ R2

  = 0, otherwise

(a) Compute c, and (b) show that

 fX(x) = 

2
2

1
x

R Rp

Ê ˆ- Á ˜Ë ¯
, for – R £ x £ R

  = 0, otherwise.

Here, the range space is the interior of the circle x2 + y2 = R2. By the property of 

joint pdf.

 
2 2

( , )d d 1

x y R

f x y x y

+ £

=ÚÚ

i.e., 
2 2

d d 1

x y R

c x y

+ £

=ÚÚ
Changing over to polar coordinates, we have

 

2

0 0

d d 1

R

cr r

p

q =Ú Ú

\ 
2

1
c

Rp
=

Note  We have defi ned earlier that ( ) ( , )dXf x f x y y
•

-•
= Ú . This defi nition holds good if  

the range space is the entire xy-plane. If  the range space is different from the entire xy-plane 

fX(x) is given by ( , )f x y dyÚ , for which the limits are fi xed as follows: Draw an arbitrary 

line parallel to y-axis (since x is to be treated as a constant). The y-coordinates of  the ends of  
the segment of  such a line that lies within the range space are the required limits. These limits 
will be either constants or functions of  x.

Fig. 2.7

The point A = 2 2{ , }x R x- -

and the point B = 2 2{ , }x R x-
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Now fX(x) = 

2 2

2 2

2

1
R x

R x

dy
Rp

-

- -

Ú

  = 

2

2 2

2

2 2
1

x
R x R x R

R RR pp

Ê ˆ- = - - £ £Á ˜Ë ¯

Note  Whenever we are required to fi nd the marginal and conditional density functions, the 

ranges of  the concerned variables should also be specifi ed.

Example 8

The joint pdf of the RV (X, Y) is given by f(x, y) = 
2 2( )x y

kxye
- +  x > 0, y > 0. Find 

the value of k and prove also that X and Y are independent.

Here, the range space is the entire fi rst quadrant of the xy-plane.

By the property of the joint pdf

 

2 2( )

0, 0

d d 1x y

x y

kxy e x y
- +

> >

=ÚÚ

i.e., 
2 2

0 0

d d 1y x
k ye y xe x

• •
- - =Ú Ú

i.e., 
4

k
 = 1

\ k = 4

Now, fX(x) = 
2 2 2

0

4 d 2 , 0x y x
x e ye y x e x

•
- - -¥ = >Ú

Similarly, fY(y) = 
2

2 , 0y
ye y

- >

Now fX(x) × fY(y) = 
2 2( )4 ( , )x y

xye f x y
- + =

\ the RVs x and y are independent.

Note  If  f(x, y) can be factorised as f1(x) × f2(y) then X and Y will be independent.

Example 9
Given fXY(x, y) = cx (x – y), 0 < x < 2, –x <, y < x, and 0 elsewhere, (a) evaluate c, 

(b) fi nd fX(x), (c) fXY(y/x), and (d) fY(y).

Fig. 2.8
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Here, the range space is the area within the triangle OAB (shown in the fi gure), 

defi ned by 0 < x < 2 and –x < y < x.

 (a) By the property of j pdf,

 

( )d d 1
OAB

cx x y x y

D

- =ÚÚ

 

2

0

( )d d 1

x

x

cx x y y x

-

- =Ú Ú
 i.e., 8c = 1

 \  1

8
c =

(b) fX(x) = 
1

( )d
8

x

x

x x y y

-

-Ú

   = 
3

4

x
, in 0 < x < 2

(c) fX(y/x) = 
2

( , ) 1
( ),

( ) 2X

f x y
x y x y x

f x x
= - - < <

(d) fY(y) = 
2

1
( )d , in 2 0

8
y

x x y x y

-

- - £ £Ú

     = 

2
1

( )d , in 0 2
8

y

x x y x y- £ £Ú

 i.e., fY(y) = 

3

3

1 5
, in 2 0

3 4 48

1 1
, in 0 2

3 4 48

y
y y

y
y y

Ï - + - £ £ÔÔ
Ì
Ô - + £ £
ÔÓ

Example 10

Train X arrives at a station at random in the time interval (0, T) and stops for ‘a’ 

min. Train Y arrives independently in the same interval and stops for ‘b’ min.

 (a) Find the probability P1 that X will arrive before Y.

 (b) Find the probability P2 that the two trains meet.

 (c) Assuming that they meet, fi nd the probability P3 that X arrived before Y.

Let the trains X and Y arrive at the station at time instances X and Y 

respectively.

Then the lengths of the intervals (0, X) and (0, Y), namely X and Y are 

continuous RVs. Each of X and Y is uniformly distributed in (0, T) (since the 

times of arrival are equally likely) with pdf 
1

T
.
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Since the 2 trains arrive independently, X and Y are independent RVs.

\ the joint pdf of (X, Y) is given by

 f(x, y) = fX(x) × fY(y) = 
2

1
;0 ,x y T

T
£ £

The range space is the square defi ned by 0 £ x £ T and 0 £ y £ T.

(a) P1 = P(X < Y) = 

( )

( , )d d
x y
OBC

f x y x y

<
D

ÚÚ

Fig. 2.9

  = 2 2

1 1
d d Area of

OBC

x y OBC
T TD

= ¥ DÚÚ

  = 
1

2

(b) If train X arrives fi rst, the two trains will meet if Y £ X + a.

If train Y arrives fi rst, the two trains will meet if X £ Y + b.

\ for the two trains to meet, – a £ X – Y £ b.

\ P2 = P(–a £ X – Y £ b) = 

( )

( , )d d
a x y b

ODEBGFO

f x y x y

- £ - £
ÚÚ

  = 
2

1

T
 × Area of the fi gure ODEBGFO

  = 
2

1

T
 × (Area of trapezium ODEB + that of OBGF)

 = 
2

1 1 1
{( ) 2 2} {( ) 2 2}

2 22 2

b a
T b T T a T

T

È ˘
¥ ¥ - + + ¥ - +Í ˙

Î ˚

  = 
2

1
{ (2 ) (2 )}

2
a T a b T b

T
- + -

  = 2 2

2

1
{2( ) ( )}

2
a b T a b

T
+ - -
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(c) P3 = P{X < Y/–a £ X – Y £ b}

  = 
[ and ]

( )

P X Y a X Y b

P a X Y b

< - £ - £
- £ - £

  = 

¥
2

2

1
Area of trapezium OBGF

T

P

  = 
2 2

(2 )

2( ) ( )

a T a

a b T a b

-
+ - +

Example 11

Two trains arrive at a station at random between 7 a.m. and 7:30 a.m. One train 

stops for 5 min and the other for x min. For what value of x, will be probability 

that the 2 trains meet be equal to 
1

3
?

In the notation of the previous problem,

 T = 30, a = 5, b = x and 2

1

3
P =

\ 2 2

2

1 1
{2( ) ( )}

32
a b T a b

T
+ - + =

i.e., 21 1
{60( 5) ( 25)}

1800 3
x x+ - + =

i.e., x
2 – 60x + 325 = 0

Solving, x = 53.98 (or) 6.02

As x = 53.98 is meaningless, x = 6 min (nearly).

Example 12

The two-dimensional RV (X, Y) follows a bivariate normal distribution N(0, 0; 

sx, sy; r). Find the marginal density function of X and the conditional density 

function of Y, given X.

The notation N(0, 0; sx, sy; r) refers to a bivariate normal distribution with 

mean of X = mean of Y = 0, variance of X = sx
2, variance of Y = sy

2, and the co-

effi cient of correlation between X and Y = r.

The joint pdf of such a brivariate normal distribution is given by

 

2 2

2 2 22

1 1 2
( , ) exp

2(1 )2 1 x yx yx y

x rxy y
f x y

rr s ss sps s

Ï ¸Ê ˆÔ Ô= - - +Á ˜Ì ˝
- Ë ¯- Ô ÔÓ ˛

– • < x, y < •
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The marginal density function of X is given by

 fX(x) = ( , )df x y y

•

-•
Ú

  = 

2

2

1
exp

2(1 ) y x

y rx
A

r s s

•

-•

Ï ¸Ê ˆÔ Ô- - ¥Ì ˝Á ˜
- Ë ¯Ô ÔÓ ˛

Ú

  
2

2
exp d

2 x

x
y

s

Ê ˆ-
Á ˜
Ë ¯

, where 
2

1

2 1x y

A
rps s

=
-

  = 
2

2
2

2
exp 2 1 d

2

t
y

x

x
A r e ts

s

•
-

-•

Ê ˆ-
¥ -Á ˜

Ë ¯ Ú ,

by putting 
2

1

2(1 ) y x

y rx
t

r s s

Ê ˆ
- =Á ˜

Ë ¯-
,

  = 
2

2

2

1
exp 2 1

22 x

x
A y rs

s

Ê ˆ- Ê ˆ◊ - Á ˜Á ˜ Ë ¯Ë ¯

  = 
2

2

22

1
exp 2 1

22 1 xx y

x
y r

r
s p

sps s

Ê ˆ-
◊ -Á ˜

Ë ¯-

  = 
2

2

1
exp ,

22 xx

x
x

ss p

Ê ˆ-
-• < < •Á ˜

Ë ¯

which is the density function of a normal distribution N(0, sx).

The conditional density function of Y given X is given by 
( , )

( )X

y f x y
f

x f x

Ê ˆ =Á ˜Ë ¯

\ 

2 2

2 2 22

2

2

1 1 2
exp

2(1 )2 1

1
exp

22

x yx yx y

xx

x rxy y

rry
f

x x

s ss sps s

ss p

Ï ¸Ê ˆ-Ô Ô- +Ì ˝Á ˜
- Ë ¯- Ô ÔÊ ˆ Ó ˛=Á ˜Ë ¯ -

 = 

2 2

2

2 2 22

1 1
exp 2

2 (1 )2 ( 1 )

y y

xy xy

r
y r xy

rr

s s

ss sp s

Ï ¸Ê ˆÔ Ô- - +Á ˜Ì ˝
- Ë ¯- Ô ÔÓ ˛
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 = 

2

22 2

1 1
exp

2 ( 1 ) 2 1

y

xy y

r x
y

r r

s

sp s s

Ï ¸Ê ˆÔ Ô- -Ì ˝Á ˜Ë ¯- Ô Ô-Ó ˛e j
which is the density function of a normal distribution

  

2, 1
y

y

x

r
N x r

s
s

s

Ê ˆ
-Á ˜Ë ¯

Exercise 2(B)

Part-A (Short-answer Questions)

 1. Defi ne a two-dimensional RV. Give an example for the outcome of a 

random experiment, that is a two-dimensional RV.

 2. Defi ne the joint pmf of a two-dimensional discrete RV.

 3. Defi ne the joint pdf of a two-dimensional continuous RV.

 4. Write down the joint pdf of a bivariate normal distribution.

 5. Defi ne the cdf of a two-dimensional RV and write down the formulas 

for, fi nding the cdf of (X, Y), when (X, Y) is (i) a discrete RV, and (ii) a 

continuous RV.

 6. State the properties of the cdf of a two-dimensional RV (X, Y).

 7. Defi ne the marginal probability distributions of X and Y, when (X, Y) is 

a discrete RV.

 8. Defi ne the marginal probability density functions of X and Y, when (X, 

Y) is a continuous RV.

 9. Defi ne independence of 2 RVs X and Y, both in the discrete case and in 

the continuous case.

 10. Defi ne the conditional probability distributions of X and Y, given Y and 

X respectively, when (X, Y) is a discrete RV.

 11. Defi ne the conditional probability density functions of X and Y given Y 

and X respectively, when (X, Y) is a continuous RV.

 12. Find the probability distribution of (X + Y) from the bivariate distribution 

of (X, Y) given below.

X
Y

1 2

1 0.1 0.2

2 0.3 0.4

 13. Find the marginal distributions of X and Y from the bivariate distribution 

of (X, Y) given in Q.12.

 14. Find the conditional distribution of X, when Y = 1, from the bivariate 

distribution of (X, Y) given in Q.12.

 15. Find the value of k, if f(x, y) = k(1 – x) (1 – y), for 0 < x, y < 1, is to be a 

joint density function.



2.44 Probability, Sta  s  cs and Random Processes

 16. If f(x, y) = k(1 – x – y), 0 < x, y < 
1

2
, is a joint density function, fi nd k.

 17. If the joint pdf of (X, Y) is f(x, y) = 
1

4
, 0 £ x, y £ 2, fi nd P(X + Y £ 1).

 18. If the joint pdf of (X, Y) is f(x, y) = 6e
–2x – 3y, x ≥ 0, y ≥ 0, fi nd the marginal 

density of X and conditional density of Y given X.

 19. The j pdf of (X, Y) is given by f(x, y) = e–(x + y), 0 £ x, y < •. Are X and Y 

independent? Why?

 20. Defi ne a random vector with an example.

 21. Defi ne the joint density and distribution functions of an n-dimensional 

RV. How are they related?

Part-B

 22. If X denotes the number of aces and Y the number of queens obtained 

when 2 cards are drawn at random (without replacement) from a deck of 

cards, obtain the joint probability distribution of (X, Y).

 23. The joint probability function of two discrete RVs and X and Y is given 

by f(x, y) = c(2x + y), where x and y can assume all integers such that 0 £ 

x £ 2 and 0 £ y £ 3, and f(x, y) = 0 otherwise. (i) Find the value of c and 

(ii) fi nd P(X ≥ 1, Y £ 2).

Note  f(x, y) should not be mistaken as pdf, it is used instead of  p(xi, yj).

 24. The joint probability distribution of a two-dimensional discrete RV (X, Y)

is given below:

Y
X

0 1 2 3 4 5

0 0 0.01 0.03 0.05 0.07 0.09

1 0.01 0.02 0.04 0.05 0.06 0.08

2 0.01 0.03 0.05 0.05 0.05 0.06

3 0.01 0.02 0.04 0.06 0.06 0.05

 (i) Find P(X > Y) and P{max(X, Y) = 3}, and

 (ii) Find the probability distribution of the RV Z = min (X, Y).

 25. The input to a binary communication system, denoted by a RV X, takes 

one of two values 0 or 1 with probabilities 3/4 and 1/4 respectively. 

Because of errors caused by noise in the system, the output Y differs from 

the input occasionally. The behaviour of the communication system is 

modeled by the conditional probabilities given below:

    P(Y = 1/X = 1) = 3/4 and P(Y = 0/X = 0) = 7/8

  Find (i) P(Y = 1), (ii) P(Y = 0), and (iii) P(X = 1/Y = 1).

 26. The following table represents the joint probability distribution of the 

discrete RV (X, Y). Find all the marginal and conditional distributions.
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Y
X

1 2 3

1 1/2 1/6 0

2 0 1/9 1/5

3 1/18 1/4 2/15

 27. The joint distribution of X1 and X2 is given by 1 2
1 2( , )

21

x x
f x x

+
= ,

x1 = 1, 2 and 3: x2 = 1 and 2. fi nd the marginal distribution of X1 and X2.

 28. If the joint pdf of a two-dimensional RV (X, Y) is given by

 f(x, y) = 2 ; 0 1, 0 2
3

xy
x x y+ < < < <

  = 0, elsewhere

  fi nd (i) 
1

2
P X

Ê ˆ>Á ˜Ë ¯
, (ii) P(Y < X), and (iii) 

1 1
/

2 2
P Y X

Ê ˆ< <Á ˜Ë ¯
.

 29. If the joint pdf of a two-dimensional RV (X, Y) is given by

 f(x, y) = k(6 – x – y); 0 < x < 2, 2 < y < 4

  = 0, elsewhere

  fi nd (i) the value of k, (ii) P(X< 1, Y < 3), (iii) P(X + Y < 3), and (iv) P(X< 1/

Y < 3).

 30. The joint density function of the RVs X and Y is given by

 f(x, y) = 8xy; 0 < x < 1, 0 < y < x

  = 0, elsewhere,

  fi nd 
1 1

/
8 2

P Y X
Ê ˆ< <Á ˜Ë ¯

.

 31. Given that the joint pdf of (X, Y) is

 f(x, y) = e–y; x > 0, y > x

  = 0, otherwise

  Find (i) P(X > 1/Y < 5), and (ii) the marginal distributions of X and Y.

 32. If the joint pdf of a two-dimensional RV (X, Y) is given by

 f(x, y) = 2; 0 < x < 1, 0 < y < x

  = 0, otherwise

  fi nd the marginal density functions of X and Y.

 33. If the joint pdf of (X, Y) is given by f(x, y) = k, 0 £ x < y £ 2, fi nd k and 

also the marginal and conditional density functions.
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 34. The joint density function of a RV (X, Y) is f(x, y) = 8xy, 0 < x < 1, 0 < y 

< x, fi nd the conditional density function f(y/x).

 35. The joint density function of a RV (X, Y) is given by f(x, y) = axy, 1 £ x 

£ 3, 2 £ y £ 4, and = 0, elsewhere.

  Find (i) the value of a, (ii) the marginal densities of X and Y, and (iii) the 

conditional densities of X and Y, given Y and X respectively.

 36. Let X1 and X2 be two RVs with joint pdf given by f(x1, x2) = 1 2( )x x
e

- +
; x1, 

x2 ≥ 0 and = 0, otherwise. Find the marginal densities of X1 and X2. Are 

they independent? Also fi nd P[X1 £ 1, X2 £ 1] and P(X1 + X2 £ 1).

 37. The joint pdf of the RVs X and Y is given by p(x, y) = xe
–x(y + 1) where 0 

£ x, y < •. (i) Find p(x) and p(y), and (ii) Are the RVs independent?

 38. If the joint pdf of the RV (X, Y) is given by f(x, y) = k(x3
y + xy

3), 0 £ x £ 

2, 0 £ y £ 2, fi nd (i) the value of k, (ii) the marginal densities of X and Y, 

and (iii) the conditional densities of X and Y.

 39. If the joint pdf of (X, Y) is given by

    
4 4

9(1 )
( , ) 0 0

2(1 ) (1 )

x y
f x y x y

x y

+ +
= > >

+ +

  Find the marginal densities of X and Y. Are they independent?

 40. Trains X and Y arrive at a station at random between 8 A.M. and 8.20 

A.M. Train A stops for 4 min and train B stops for 5 min. Assuming that 

the trains arrive independently of each other, fi nd the probability that

(i) X will arrive before Y, (ii) the trains will meet, and (iii) X arrived 

before Y, assuming that they met.

 41. If the two-dimensional RV (X, Y) follows a bivariate normal distribution 

N(0, 0; sx, sy; r), fi nd the marginal density function of Y and the 

conditional density function of X, given Y.

 42. The two-dimensional RV (X, Y) has the joint density

 f(x, y) = 8xy, 0 < x < y < 1

  = 0, otherwise

 (i) Find P(X < 1/2 « Y < 1/4),

 (ii) Find the marginal and conditional distributions, and

 (iii) Are X and Y independent? Give reasons for your answer.

ANSWERS

Exercise 2(A)

 6. Assign the values 0, 1, 2 to X, when the outcome consists of 2 tails,

1 tail and 1 head and 2 heads respectively. Then the required probability 

distribution of X is
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x: 0 1 2

px:
1

4

1

2

1

4

 9. Example: 
2( ) /21

2

x
y e

m s

s p

2- -= , – • < x < •, is the equation of the 

normal curve, viz., the probability curve of the normal distribution.

 11. X: 0 1 2 3 4 5

  px: 
1

32
 

5

32
 

10

32
 

10

32
 

5

32
 

1

32

 12. Required probability = 

1 7
( 1)

2 2

( 1)

P X X

P X

Ï ¸Ê ˆ< < « >Ì ˝Á ˜Ë ¯Ó ˛
>

           = 
( 2 or 3) 0.5 5

( 2, 3 or 4) 0.6 6

P X

P X

=
= =

=

 16. 

1 1

1 0

( ) 0; | |d 2 d 1f x x x x x

-

≥ = =Ú Ú
  \ f(x) can be the pdf of continuous RV.

 17. 

3
2

0

d 1; 9 1kx x k= =Ú

  \ 1

9
k =

 18. 
1

1

1 1
{| | 1} 1 {| | 1} 1 d

4 2
P X P X x

-

> = - < = - =Ú

 19. 
0

d 1x
kx e x

•
- =Ú ;

    0[ ( ) 1 ( )] 1x x
k x e e

- - •- - ¥ =

  \ k = 1

 20. Required probability = 

2
2

1.5

2
2

1

4( 1.5) 7

( 1) 12

4

x

P X

p X x

Ê ˆ
Á ˜Ë ¯>

= =
> Ê ˆ

Á ˜Ë ¯
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 21. S Px = 1 \ k = 0.1; E(X) = –0.8 – 0.1 + 0 + 0.3 = –0.6

 22. The probability distribution of X is

  X: 1 2 3 4 5 6

  px: 
1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6

 F(x) = P(X £ x) = 0, if x < 1; = 
1

6
, if 1 £ x £ 2;

  = 
2 3 4

if 2 3; , if 3 4; , if 4 5;
6 6 6

x x x£ < = £ < = £ <

  = 
5

, if 5 x 6
6

£ <  and = 1, if 6 £ x

 23. When x < 0, F(x) < 0; when 0 £ x < 1, F(x) = x2, when 1 £ x, F(x) = 1.

 24. ( ) xdF
f x e

dx

ll -= = , when x > 0 and = 0 when x < 0.

 25. P(X > 1/X < 3)

    = 

9 1

(1 3) (3) (1) 816 16
9(0 3) (3) (0) 9

0
16

P X F F

P X F F

-< < -
= = =

< < - -

 26. For the binomial distribution B(n, p), mean = np and variance = npq.

 27. Mean = variance = l for the Poisson distribution with parameter l.

 29. P(|X| < 1) = P(–1 < X < 1)

      = 

1

0

1
dx e

e x
e

- -
=Ú

Part-B

 38. 

4
1

( ) 4 , 0,1, 2, 3, 4
2

rP X r C r
Ê ˆ= = =Á ˜Ë ¯

 39. 
1 9 27 27

( 0) , ( 1) , ( 2) , ( 3)
64 64 64 64

P X P X P X P X= = = = = = = =

 40. P(X = 0) = q, P(X = 1) = p; when x < 0, F(x) = 0; when 0 £ x £ 1, F(x) = 

q; when 1 £ x, F(x) = q + p = 1

 41. P(X = r) = p(X = 14 – r) = 
( 1)

36

r -
, r = 2, 3, 4, 5, 6, 7

 42. 
5 6 5 5

( 0) , ( 1) , ( 2) ; ( ) 1; ( )
16 16 16 8

P X P X P X E X V X= = = = = = = =
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 43. 
1 1

; ( 3) ; ( ) 4.4719
18 9

a P X V X= < = = ; F(x) = 0 in x < 0, 
1

( ) in
81

F x =

0 £ x < 1, 
4

( ) in
81

F x =  1 £ x < 2, 
9

( ) in
81

F x =  2 £ x < 3 etc. 
64

( ) in
81

F x =  

7 £ x < 8 and F(x) = 1 in 8 £ x.

 44. P(Y = 0) = 0.1; P(Y = 3) = 0.3; P(Y = 8) = 0.5; P(Y = 15) = 0.1; E(Y) = 

6.4; V(Y) = 16.24.

 45. 
2 16

;
7 37

C P= = ; F(x) = 0, when x < 0; = 
12

49
, when 0 £ x < 1; = 

28

49
, 

when 1 £ x < 2 and = 1, when 2 £ x; x = 0; x = 1.

 46, 
1 8

;
100 99

k P= = ; E(X) = 3.54; V(X) = 0.4684; F(x) = 0, when x < 1; = 

1

100
, when 1 £ x < 2; = 

9

100
, when  2 £ x < 3; = 

36

100
, when 3 £ x £ 4 

and = 1, when 4 £ x.

 47. 0 < a < 1.

 48. k = a; E(X) = 
1 1 1

; ( ) 1V X
a a a

Ê ˆ= -Á ˜Ë ¯

 49. k = 1; E(X) = et; V(X) = et (et – 1).

 50. 
3

4
k = ; E(X) = 1; V(X) = 

1

5
; F(x) = 0, when x < 0; = 2 31

(3 )
4

x x- , when 

0 £ x £ 2; = 1, when 2 £ x.

 51.   (i) k = 6;

   (ii) F(x) = 0, when x < 0; = 3x
2 – 2x

3, when 0 £ x < 1; = 1, when 1 £ x;

  (iii) the root of the equation 6a
3 – 9a

2 + 2 = 0 that lies between 0 and 1; 

  (iv) 
1

2
.

 52. 
1

8
k = ; F(x) = 0, when x < 0; = 

2

16

x
, when 0 £ x £ 2; = 

1
( 1)

4
x - , when 

2 £ x < 4; = 21
(20 12 )

16
x x- - + , when 4 £ x < 6; = 1, when 6 £ x.

 53. (i) 
9

16
 (ii) 

27

64

 54. 
1

3

 55. k = 5; 
1

33
P =
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 56. (i) 
1

4
 (ii) 

4

9
 (iii) 5

 57. | |1
1 ; ( )

2

k xk
P f x e

e

-= - =

 58. f(x) = 1 in 0 £ x < 1 and = 0, elsewhere; 
1 1

;
6 2

.

 59. 
1

5

 60. 
2

3

 61. (i) l; (ii) 
2

1

t

t

l

l+
 62. (i) 0.8849 (ii) 0.8819 (iii) 0.8593

Exercise 2(B)

 4. 
2

1
( , )

2 1
XY

x y

f x y
rps s

=
-

  

22

2 2 2

2 ( )( ) ( )( )1
exp

2(1 )

x y yx

x yx y

r x y yx

r

m m mm

s ss s

È ˘Ï ¸- - --Ô ÔÍ ˙- - +Ì ˝
-Í ˙Ô ÔÓ ˛Î ˚

,

  – • < x, y < •

 12. (X + Y): 2 3 4

      p: 0.1 0.5 0.4

 13. X: 1 2 and Y: 1 2

  px: 0.3 0.7  py: 0.4 0.6

 14. X: 1 2

  PX/Y = 1: 0.25 0.75

 15. 

1 1

0 0

(1 )(1 )d d 1k x y x y- - =Ú Ú ;

  

1 1
2 2

0 0

(1 ) (1 )
1

2 2

x y
k

Ï ¸ Ï ¸- -Ô Ô Ô Ô =Ì ˝ Ì ˝- -Ô Ô Ô ÔÓ ˛ Ó ˛

  i.e., 1
4

k
=

  \   k = 4
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 16. 

1/2 1/2

0 0

(1 )d d 1k x y x y- - =Ú Ú

  

1
1/2 2 2

0 0

d 1
2

x
k x yx y

Ê ˆ
- - =Á ˜Ë ¯Ú ;

  

1

2 2

0

3
1

8 4

y
k

y

Ê ˆ
- =Á ˜Ë ¯

  \        k = 8

 17. 

11 1

0 0 0

1 1 1
d d (1 )d

4 4 8

y

P x y y y

-

= = - =Ú Ú Ú

 18. 2 3 2

0

( ) 6 d 2 ; 0x y x
Xf x e e y e x

•
- - -= = ≥Ú

  

3
/

( , )
( ) 3 ; 0

( )

y
Y X

X

f x y
f y e y

f x

-= = ≥

 19. fX(x) = e–x and fY(y) = e–y

        f(x, y) = fX(x) fY(y)

  \ X and Y are independent

 22.

Y      
X

0 1 2

0 0.71 0.13 0.01

1 0.13 0.01 0

2 0.01 0 0

 23. 
1 4

;
42 7

c P= =

 24. (i) 0.75, 0.21 (ii) 
Z 0 1 2 3

P 0.28 0.30 0.25 0.17

 25. (i) 
9

32
 (ii) 

23

32
 (iii) 

2

3
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 26.          {i, pi*} {j, p*j} CPD of X/Y = 1 CPD of X/Y = 2

x = i pi* y = j p*j x = i pi1/p*1 x = i pi2/p*2

1 5/36 1 1/4 1 1/3 1 0

2 19/36 2 14/45 2 2/3 2 5/14

3 1/3 3 79/180 3 0 3 9/14

    CPD of X/Y = 3      CPD of Y/X = 1      CPD of Y/X = 2    CPD of Y/X = 3

x = i pi3/p*3 x = j p1j/p1* x = j p2j/p2* x = j p3j/p3*

1 10/79 1 3/5 1 6/19 1 0

2 45/79 2 0 2 4/19 2 3/5

3 24/79 3 2/5 3 9/19 3 2/5

 27.

M.D. of X1 M.D. of X2

X1 = i pi* X2 = j p*j

1 5/21 1 9/21

2 7/21 2 12/21

3 9/21

 28. (i) 
5

6
 (ii) 

7

24
 (iii) 

5

32

 29. (i) 1/8 (ii) 3/8 (iii) 5/24  (iv) 3/5

 30. 
31

256

 31. (i) 
4

5

5

6

e

e

-
-

 (ii) fX(x) = e–x, x > 0; fY(y) = y e–y, y > 0.

 32. fX(x) = 2x in 0 < x < 1; fY(y) = 2(1 – y) in 0 < y < 1.

 33. k = 1/2; fX(x) = 1/2 (2 – x), 0 £ x £ 2; fY(y) = (1/2) y, 0 £ y £ 2; f(x/y) = 

1/y; 0 < x < y; f(y/x) = 
1

, 2
2

x y
x

< <
-

.

 34. f(y/x) = 2y/x2, 0 < y < x

 35.   (i)    a = 1/24

  (ii) fX(x) = x/4, 1 £ x £ 3; fY(y) = y/6, 2 £ y £ 4

 (iii) f(x/y) = x/4, 1 < x < 3; f(y/x) = y/6, 2 < y < 4

 36. 1 2

1 21 2( ) ; ( )
x x

X Xf x e f x e
- -= = ; X1 and X2 are independent; (1 – e

–1)2;

(1 – 2e
–1)
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 37. fX(x) = e–x, 0 < x < •; fY(y) = (y + 1)–2, 0 < y < •; X and Y are not 

independent.

 38. k = 1/16; fX(x) = 1/8 (x3 + 2x), 0 £ x £ 2; fY(y) = 1/8 (y3 + 2y), 0 £ y £ 2; 

f(x/y) = 
2 2

2

( )
/ 2

( 2)

x y
x

y

+
+

, 0 < x < 2; f(y/x) = 
2 2

2

( )
/ 2

( 2)

x y
y

x

+
+

, 0 < y < 2.

 39. fX(x) = 
4

2 3
(3 / 4)

(1 )

x

x

+
+

 x > 0 and fY(y) = 
4

2 3
(3 / 4) 0

(1 )

x
y

y

+
>

+
;

  Not independent.

 40. (i) 1/2 (ii) 0.3988 (iii) 0.4514

 41. 

2

2

1
( ) exp ,

22
Y

yy

y
f y y

ss p

Ê ˆ
= - - • < < •Á ˜

Ë ¯

  f(x/y) = 2, 1x
x

y

r
N y r

s
s

s

Ê ˆ
◊ -Á ˜

Ë ¯

 42.   (i)   1/256

 (ii) fX(x) = 4x(1 – x2) in (0, 1); fY(y) = 4 y3 in (0, 1); f(y/x)

  = 
2 2

2 2
( / )

1

y x
f x y

x y
=

-

 (iii) X and Y are not independent.





I
n the analysis of electrical systems, we will be often interested in fi nding 

the properties of a signal after it has been subjected to certain processing 

operations by the system, such as integration, weighted averaging, etc. 

These signal processing operations may be viewed as transformations of a set 

of input variables to a set of output variables. If the input is a set of random 

variables (RVs), then the output will also be a set of RVs. In this chapter, we 

deal with techniques for obtaining the probability law (distribution) for the set of 

output RVs when the probability law for the set of input RVs and the nature of 

transformation are known.

Function of One Random Variable

Let X be an RV with the associated sample space Sx and a known probability 

distribution. Let g be a scalar function that maps each x Œ Sx into y = g (x). The 

expression Y = g (X) defi nes a new RV Y. For a given outcome, X(s) is a number 

x and g [X(s)] is another number specifi ed by g (x). This number is the value of 

the RV Y, i.e., Y(s) = y = g(x). The sample space Sy of Y is the set

 Sy = {y = g (x): x Œ Sx)}

How to fi nd fY(y), when fX(x) is known 

Let us now derive a procedure to fi nd fY(y), the pdf of Y, when y = g(X), where X 

is a continuous RV with pdf fX(x) and g(x) is a strictly monotonic function of x. 

Case (i): g(x) is a strictly increasing function of x.

 fY(y) = P(Y £ y), where FY(y) is the cdf of Y

  = P[g(X) £ y]

  = P[X £ g–1 (y)]

  = FX(g–1 (y)]

Chapter 3
Functions of Random 

Variables
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Differentiating both sides with respect to y,

 fY(y) = fX(x) 
d

,
d

x

y
 where x = g–1 (y) (1)

Case (ii): g(x) is a strictly decreasing function of x.

 fY(y) = P(Y £ y)

  = P[g(X) £ y]

  = P[X ≥ g–1 (y)]

  = 1 – P[X £ g–1 (y)]

  = 1 – FX[g–1 (y)]

\ fY(y) = –fX(x) 
d

d

x

y
 (2)

Combining (1) and (2), we get

 fY(y) = fX(x) 
d

d

x

y

i.e., fY(y) = 
( )

( )

Xf x

g x¢

Note  The above formula for fY(y) can be used only when x = g–1(y) is single valued.

When x = g–1(y) takes fi nitely many values x1, x2, … xn, i.e., when the roots of 

the equation y = g(x) are x1, x2, …, xn, the following extended formula should be 

used for fi nding fY(y):

 fY(y) = 1 2

1 2

( )( ) ( )
or

( ) ( ) ( )

X nX X

n

f xf x f x

g x g x g x
+ + +

¢ ¢ ¢
�

 fY(y) = fX(x1) 
1 2

2

dd d
( ) ( )

d d d

n
X X n

xx x
f x f x

y y y
+ + +�

One Function of Two Random Variables

If a RV Z is defi ned as Z = g(X, Y) where X and Y are RVs, we proceed to fi nd 

fZ(z) in the following way.

If z is a given number, we can fi nd a region DZ in the xy-plane such that all 

points in DZ satisfy the condition g(x, y) £ z.

i.e., (Z £ z) = [g (X, Y) £ z] = [(X, Y) Œ DZ)]

Now FZ(z) = P(Z £ z) = P[(X, Y) Œ DZ] = ( , ) d d

zD

f x y x yÚÚ
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where f(x, y) is the joint pdf of (X, Y). Thus, to fi nd FZ(z) it is suffi cient to fi nd 

the region DZ for every Z and to evaluate the above integral. fZ(z) is then found 

out as usual.

Theorem 1

If two RVs are independent, then the density function of their sum is given by the 

convolution of their density functions.

Fig. 3.1

Proof

Let the joint pdf of (X, Y) be f(x, y)

Let  Z = X + Y

 FZ(z) = P(X + Y £ z)

  = 

( )

( , ) d d
x y z

f x y x y

+ £
ÚÚ

  = ( , ) d d

z y

f x y x y

-•

-• -•
Ú Ú

Differentiating both sides with respect to z (note that the upper limit for the 

inner integral is a function of z),

 fZ(z) = ( , ) df z y y y

•

-•

-Ú  (1)

Since X, Y are independent RVs,

 f(x, y) = fX(x) fY(y)

\ f(z – y, y) = fX(z – y) fY(y) (2)

Using (2) in (1), we get

 fZ(z) = ( ) ( ) ,X Yf z y f y dy

•

-•

-Ú  which is the convolution of fX(x) and fY(y).

Corollary

If fX(x) = 0, for x < 0, and fY(y) = 0, for y < 0, then fX(z – y) fY(y) π 0, only when 

0 < y < z.
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\ fZ(z) = - >Ú
0

( ) ( ) , 0

z

X Yf z y f y dy z

Theorem 2

If two RVs X and Y are independent, fi nd the pdf of Z = XY in terms of the density 

functions of X and Y.

Fig. 3.2

Let the joint pdf of (X, Y) be f(x, y)

 fZ(z) = ( , ) d d
xy z

f x y x y

£
ÚÚ

Note  xy = z is a rectangular hyperbola as shown in the fi gure.

 fZ(z) = 
/0 0

/ 0 0

( , ) d d ( , ) d d

z y

z y

f x y x y f x y x y

•

-•

+Ú Ú Ú Ú

Differentiating both sides with respect to z,

 fZ(z) = 

•

-•

Ê ˆ Ê ˆ
- +Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú

0

0

1 1
, ) d , d

z z
f y y f y y

y y y y

  = 
1

, ) d
z

f y y
y y

•

-•

Ê ˆ
Á ˜Ë ¯Ú

  = 

•

-•

Ê ˆ
Á ˜Ë ¯Ú

1
( ) dX Y

z
f f y y

y y
 (Since X and Y are independent)

Theorem 3

If two RVs X and Y are independent, fi nd the pdf of 
X

Z
Y

=  in terms of the 

density functions of X and Y. 
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Fig. 3.3

Let the joint pdf of (X, Y) be f(x, y).

 FZ(z) = ( , ) d d
x

z
y

f x y x y

£

ÚÚ

i.e., FZ(z) = 
0

0

( , )d d ( , ) d d

yz

yz

f x y x y f x y x y

• •

- • - •

+Ú Ú Ú Ú

Differentiating both sides with respect to z,

  fZ(z) = 
0

0

( , )d ( , )dyf yz y y yf yz y y

•

-•

- +Ú Ú

  = ( , ) dy f yz y y

•

-•
Ú

  = ( ) ( ) d
X Y

y f yz f y y

•

-•
Ú  (since X and Y are independent)

Two Functions of Two Random Variables 

Theorem

If (X, Y) is a two-dimensional RV with joint pdf fXY(x, y) and if Z = g(X, Y) and W 

= h(X, Y) are two other RVs, then the joint pdf of (Z, W) is given by

 fZW(z, w) = 
( , )

( , ), where
( , w)

XY

x y
J f x y J

z

∂
=

∂

is called the Jacobian of the transformation and is given by

 J = 

x x

z w

y y

z w

∂ ∂
∂ ∂
∂ ∂
∂ ∂
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Note  This theorem holds good, only if  the equations z = g(x, y) and w = h(x, y) when 

solved, give unique values of  x and y in terms of  z and w.

An alternative method to fi nd the pdf of Z = g(X, Y)

Introduce a second RV W = h(X, Y) and obtain the joint pdf of (Z, W), as suggested 

in the above theorem. Let it be fZW(z, w). The required pdf of Z is then obtained 

as the marginal pdf, i.e., fZ(z) is obtained by simply integrating fZW(z, w) with 

respect to w.

i.e., fZ(z) = ( , )
ZW

f z w dw

•

- •
Ú

Worked Example 3

Example 1

Find the distribution function of the RV Y = g(X), in terms of the distribution 

function of X, if it is given that

 g(x) = 

-Ï ¸
Ô Ô£Ì ˝
Ô Ô+ < -Ó ˛

for >

0 for

x c x c

x c

x c x c

If y < 0,  FY(y) = P(Y £ y)

  = P(X + c £ y)

  = P(X £ y – c)

  = FX(y – c)

Fig. 3.4

If y ≥ 0,  FY(y)  = P(X – c £ y)

  = FX(y + c)
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Example 2

The random variable Y is defi ned by 
1

( | |),
2

Y X X= +  where X is another RV. 

Determine the density and distribution function of Y in terms of those of X.

Fig. 3.5

When X ≥ 0, Y = X

When X < 0, Y = 0

If y < 0, FY(y) = P(Y £ y) = 0 (since there is no X, for which Y £ y)

If y ≥ 0, FY(y) = P(Y £ y)

  = P(X £ y/X ≥ 0)

  = P(0 £ X £ y)/P(X ≥ 0)

  = 
( ) (0)

1 (0)

X X

X

F y F

F

-
-

\ when y < 0, fY(y) = 0

and

when y ≥ 0, fY(y) = fX(y)/[1 – FX(0)]

Example 3

 (a) Find the density function of Y = aX + b in terms of the density function 

of X.

 (b) Let X be a continuous RV with pdf

 f(x) = , in 1 < < 5
12

x
x

  = 0,  elsewhere

 fi nd the probability density function of Y = 2X – 3.

 (a) (i) Let a > 0

 FY(y) = P(Y £ y) = P(aX + b £ y)
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  = 
y b

P X
a

-Ê ˆ£Á ˜Ë ¯
 (since a > 0)

  = 
x

y b
F

a

-Ê ˆ
Á ˜Ë ¯

 (1)

 (ii) Let a < 0

 FY(y) = P(Y £ y) = P(aX + b £ y)

  = P(aX £ y – b)

  = 
y b

P X
a

-Ê ˆ≥Á ˜Ë ¯
 (since a < 0)

  = 1 X

y b
F

a

-Ê ˆ- Á ˜Ë ¯
 (2)

From (1), fY(y) = 
-Ê ˆ

Á ˜Ë ¯
1

X

y b
f

a a
 (3)

From (2), fY(y) = 
-Ê ˆ- Á ˜Ë ¯

1
X

y b
f

a a
 (4)

Combining (3) and (4),

 fY(y) = 
-Ê ˆ

Á ˜Ë ¯
1

| |
X

y b
f

a a

 (b) y = 2x – 3, since Y = 2X – 3

\ x = 
1

( 3),
2

y +  i.e., x is a single valued function of y

\ fY(y) = fX(x) 
d

d

x

y

  = 
1

12 2

x
¥

  = 
1

( 3),
48

y +  in – 1 < y < 7

Note  The range of  y is obtained from that of  x (given in the problem) using the relation 

between x and y.

Example 4

If X is a continuous RV with some distribution defi ned over (0, 1) such that

 P(X £ 0.29) = 0.75, determine k so that

 P(Y £ k) = 0.25, where Y = 1 – X

 P(Y £ k) = 0.25
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i.e., P(1 – X £ k) = 0.25

i.e., P(X ≥ 1 – k) = 0.25

\ P(X £ 1 – k) = 0.75 (1)

But it is given that P(X £ 0.29) = 0.75 (2)

Comparing (1) and (2), k = 0.71

Example 5

If Y = X2, where X is a Gaussian random variable with zero mean and variance 

s2, fi nd the pdf of the random variable Y.

 FY(y) = P(Y £ y) = P(X2 £ y)

  = P(– y) £ X £ y ), if y ≥ 0

  = FX( y) – FX (– y) (1)

and FY(y) = 0, if y < 0 [since X2 = y has no roots, when y < 0]

Differentiating (1) with respect to y,

 fY(y) = 
1

,
2

X Xf fy y
y

+ -e j e j[ \  if y ≥ 0 (2)

  = 0, if y < 0

It is given that X follows N(0, s).

\ fX(x) = 
2 2/21

2

x
e x

s

s p

- - • < < •

Using this value is (2), we get

 fY(y) = 
2/21

0
2

y
e y

y

s

s p

- >

Example 6

If the continuous RV X has pdf fX(x) = 
2

( 1),
9

x +  in –1 < x < 2 and = 0, elsewhere, 

fi nd the pdf of Y = X2.

The transformation function y = x2 is not monotonic in (–1, 2). So we divide 

the interval into two parts.

i.e., (–1, 1) and (1, 2)

Since (–1, 1) is a symmetric interval, fY(y) is found out by using the formula 

(2) of the previous problem.

\ when –1 < x < 1, i.e., 0 < y < 1

 fY(y) = 
1 2 2

(1 ) (1 )
9 92

y y
y

Ï ¸+ + -Ì ˝
Ó ˛

  = 
2

9 y
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When 1 < x < 2, i.e., 1 < y < 4, y = x2 is strictly increasing.

\ fY(y = fX(x) 
d

d

x

y

  = 
2 1

( 1)
9 2

x
x

+ ¥

  = 
1 1

1
9 y

Ê ˆ
+Á ˜

Ë ¯

Example 7

According to the Maxwell–Boltzmann law of theoretical physics, the pdf of V, 

the velocity of a gas molecule is given by

 fV(v) = 

22 , 0

0 , elsewhere

a
k e

-Ï ¸Ô Ô>
Ì ˝
Ô ÔÓ ˛

v
v v

where a is a constant depending on its mass and the absolute temperature and k 

is an appropriate constant. Show that the kinetic energy 21

2
Y mV=  is a random 

variable having Gamma distribution.

By the property of pdf,

 

22

0

d 1a
k e

•
- =Ú v

v v

i.e., 3/2 1

0

d 1,
2

tk
e

a a

•
- - =Ú t t  by putting t = av2

i.e., 
3

1
22

k

a a

Ê ˆ =Á ˜Ë ¯

i.e., 
1 1

1
2 22

k

a a

Ê ˆ¥ =Á ˜Ë ¯

\ k = 
4 1

, since
2

a a
p

p

Ê ˆ =Á ˜Ë ¯

 Y = 2

2

m
V

\ v = 
2y

m
±

since v > 0, v = 
2y

m
 is the only admissible value.
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Now, fY(y) = fV(v) 
d

dy

v

  = 

1
2 /

24 2 ay m
mya a y

e
mp

-

¥

  = 1/2 2 /4 2 ay ma a
y e

m m p

-¥

  = 
/2

3/2 1 (2 / )(2 / )
, 0

(3/2

a m ya m
y e y

3
- -¥ >

which is a 2-parameter Gamma distribution or Erlang distribution.

Example 8

Given the RV X with density function

 f(x) = 
2 , 0 1

0, elsewhere

x x< <Ï
Ì
Ó

fi nd the pdf of Y = 8 X3.

Since y = 8x
3 is a strictly increasing function in (0, 1),

 fY(y) = 1/3d 1
( ) , where

d 2
X

x
f x x y

y
=

  = 1/3 2/31

6
y y

-¥

  = 1/31
0 8

6
y y

- < <

Example 9

If X is a Gaussian random variable with mean zero and variance s2, fi nd the pdf 

of Y = |X|.

 FY(y) = P(Y £ y) = P(|X| £ y)

  = P{–y £ X £ y}

  = FX(y) – FX(–y)

Differentiating both sides with respect to y,

 fY(y) = fX(y) + fX(–y) y > 0 (1)

Now X follows N(0, s)

\ fX(x) = 
2 2/21

,
2

x
e x

s

s p

- - • < < •  (2)
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Using (2) in (1), we get

 fY(y) = 
2 2/22

, 0
2

y
e y

s

s p

- >

Example 10

 (a) If X is a normal RV with mean zero and variance s2, fi nd the pdf of Y = eX.

 (b) If X has an exponential distribution with parameter a, fi nd the pdf of Y = 

log X.

(a) fY(y) = 
d

( )
d

X

x
f x

y
 (since y = ex is monotonic function)

  = 
1

(log )Xf y
y

 fY(y) = 
2 2(log ) /21

, 0
2

y
e y

y

m s

s p

- - >

  which is the pdf of a lognormal distribution.

 (b) fY(y) = 
d

( )
d

X

x
f x

y

  = ey a e–aey, –• < y < •

Example 11

 (a) If X has an exponential distribution with parameter 1, fi nd the pdf of Y = 

X .

 (b) If X has a Cauchy’s distribution with parameter a, prove that Y = 1/X has 

also a Cauchy’s distribution with parameter 1/a.

 (a)  fY(y) = 
d

( )
d

X

x
f x

y
 (since y = x  is m.i.)

   = 
2

2 , 0y
y e y

- >

 (b) fY(y) = 
d

( )
d

X

x
f x

y
 

1
sine = is m.d.y

x

Ê ˆ
Á ˜Ë ¯

   = 
2 2

2

1

1y

y

a

p

a

¥
Ê ˆ

+Á ˜Ë ¯

2 2

/
since pdf of Cauchy s distribution =’  

x

a p

a

Ê ˆ
Á ˜+Ë ¯
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  = 
2

2

1

,
1

x

y

pa

a

- • < < •
+

  which is a Cauchy’s distribution with parameter 1/a.

Example 12

 (a) If the RV X is uniformly distributed in (–p, p) fi nd the pdf of Y = a sin 

(X + a), where a > 0 and a are constants.

 (b) The horizontal range of a projectile is given by 
2

R
g

=
v

 sin 2q. If q is 

uniformly distributed in (0, p/2) and 
2

g

v
 is a constant, fi nd the pdf of R. 

 (a) If |y| > a, no solution exists for x.

\ fY(y) = 0

  If |y| < a, there exist only two values for x in (–p, p).

  Let them be xr = 1sin ; 1, 2
y

r
a

a- Ê ˆ - =Á ˜Ë ¯

\ 
d

d

rx

y
 = 

2 2

1

a y-
 

Now,  fY(y) = 1 2
1 2

d d
( ) ( )

d d
X X

x x
f x f x

y y
+

  = 
2 2 2 2

1 1 1 1

2 2a y a yp p
¥ + ¥

- -

 

1
since the pdf of = , as it is ( ,

2
X U p p

p

Ê ˆ-Á ˜Ë ¯

\ fY(y) = 
2 2

1
| |y a

a yp
<

-

 (b) q is uniform in (0, p/2)

  \ X = 2q is uniform in (0, p) with pdf 1/p

  
2

R
g

=
v

 sin X = a sin X, say [R and a > 0]

  Therefore, when r < a, there exist only two values for x in (0, p), given 

by xi = sin–1 
r

a
, i = 1, 2.
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\ 
d

d

ix

r
 = 

2 2

1

a r-

Now  fR(r) = 1 2
1 2

d d
( ) ( )

d d
X X

x x
f x f x

r r
+

  = 
2 2

2
, 0 r a

a rp
< <

-

  = 0, r > a

Example 13

 (a) If X is uniformly distributed in (–p/2, p/2) fi nd the pdf of Y = tan X.

 (b) If X has the Cauchy’s distribution with parameter 1, fi nd the pdf of Y = 

tan–1 X.

 (a) X is U(–p/2, p/2)

\ fX(x) = 
1

p
 y = tan x

  Therefore, x = tan–1 y, which is single valued in (–p/2, p/2), i.e., for a 

given value of y, there exists only one value of tan–1 y in (–p/2, p/2).

 fY(y) = 
d

( )
d

X

x
f x

y

  = 
2

1

1
y

y

p - • < < •
+

  which is the pdf of a Cauchy’s distribution.

 (b) y = tan–1 x is a monotonic increasing function

\ fY(y) = 
d

( )
d

X

x
f x

y

  = 
2

1

(1 )xp +
 sec2 y (since x = tan y)

  = 
1

,
2 2

y
p p

p

-
< <

  i.e., Y is uniformly distributed in (–p/2, p/2).

Example 14

 (a) If X has an arbitrary distribution function FX(x), fi nd g(x) so that the 

random variable Y = g(X) may be uniformly distributed in (0, 1).
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 (b) If X is uniformly distributed in (0, 1), fi nd g(x), so that the random 

variable Y = g(X) may have an arbitrary distribution with cdf FY(y).

 (c) If X is uniformly distributed in (–1, 1), fi nd g(x), so that the random 

variable Y = g(X) may have the density function fY(y) = 2e
–2y, y > 0.

 (a) Y is to be uniform in (0, 1)

\ fY(y) = 1 and FY(y) = 
0

( ) d

y

Yf y y y=Ú
\ FY[g(x)] = g(x) (1)

Now FY(y) = P(Y £ y) = P[g(X) £ y]

  = P[X £ g–1(y)]

  = P(X £ x) [since y = g(x) and hence x = g–1(y)]

  = FX(x) (2)

i.e., FY[g(x)] = FX(x)

i.e., g(x) = FX(x), from (1)

 (b) X is uniform in (0, 1)

\ fX(x) = x

By (2), FY(y) = FX(x)

\ FY[g(x)] = x

\ g(x) = FY
–1(x)

 (c) X is uniform in (–1, 1)

\ fX(x) = 
1 1

and ( ) ( 1)
2 2

XF x x= +

 fY(y) = 2 e–2y, y > 0

\ FY(y) = 2 2

0

2 , d 1

y

y y
e y e

- -= -Ú

By (2), 1 – e–2y = 
1

( 1)
2

x +

i.e., 1 – e–2g(x) = 
1

( 1)
2

x +

\ g(x) = 
1 2

log
2 1 x

Ê ˆ
Á ˜-Ë ¯

Example 15

If X and Y are independent RVs having density functions,

 f1(x) = 
22 0

and
0 , 0

x
e x

x

-Ï ≥Ô
Ì

<ÔÓ
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 f2(y) = 
33 0

and
0 , 0

y
e y

y

-Ï ≥Ô
Ì

<ÔÓ
fi nd the density function of their sum U = X + Y.

By corollary under Theorem 1,

 fU(u) = 

0

( ) ( ) d , 0

u

X Yf u y f y y u- >Ú

  = 2( ) 3

0

2 3 d

u
u y y

e e y
- - -¥Ú

  = 6e
–2u 

0

d

u
y

e y
-Ú

  = 6e
–2u (1 – e–u), u > 0

Example 16

If X and Y are independent RVs and if Y is uniformly distributed in (0, 1), show 

that the density of Z = X + Y is given by fZ(z) = FX(z) – FX(z – 1).

By Theorem 1,

 fZ(z) = ( ) ( ) dX Yf z y f y y

•

-•

-Ú

Now fY(y) = 1, provided 0 < y < 1

 fZ(z) = 
1

0

( ) dXf z y y-Ú

  = 
1

( ) d , by putting –

z

X

z

f t t z y t

-

=Ú

  = FX(z) – FX(z – 1)

Example 17

If fX(x) = ce
–cx U(x) and fZ(z) = c2

z e–cz U(z), fi nd fY(y), if Z = X + Y and X and Y 

are independent.

Note  U(x) is the unit step function defi ned as

 U(x) = 1, if  x ≥ 0

   = 0, if  x < 0

 fX(x) = c e–cx, x ≥ 0, and fZ(z) = c2 ze
–cz, z ≥ 0
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By Theorem 1,

 c
2
z e–cz = ( )

0

( ) d

z
c z y

Yc e f y y
- -Ú  (1)

Recalling that

 

( )

( , ) d

b z

a

z y y
z

f
∂
∂ Ú  = 

( )
( )

d [ , ( )] ,

b z

a

b z
y z b z

z z

f
f

∂ ∂
+

∂ ∂Ú  where a is a constant, and 

differentiating (1) with respect to z partially, we get,

 c
2 e–cz – c3

ze
–cz = 2 ( )

0

( ) d ( )

z
c z y

Y Yc e f y y cf z
- -- +Ú

  = –c{c
2
z e–cz} + cfY(z), by (1)

\ fY(z) = ce
–cz z > 0

\ fY(y) = ce
–cy y > 0

Example 18

The current I and the resistance R in a circuit are independent continuous RVs 

with the following density functions.

 fI(i) = 2i, 0 £ i £ 1

  = 0 elsewhere

 fR(r) = r2/9 0 £ r £ 3

  = 0 elsewhere

Find the pdf of the voltage E in the circuit,

where E = IR.

By Theorem 2,

 fZ(z) = 
1

( ) d
| |

X Y

z
f f y y

y y

•

-•

Ê ˆ
Á ˜Ë ¯Ú

when Z = XY and X and Y are independent RVs.

Taking x = i, y = r and z = e, we have

 fE(e) = 
1

( ) d
| |

I R

e
f f r r

r r

•

-•

Ê ˆ ¥Á ˜Ë ¯Ú

  = 

3 21
2 d

9
e

e r
r

r r
¥ ¥Ú

Note
 Ê ˆ

Á ˜Ë ¯I

e
f

r
 = , ,

e e
2 if 0 1

r r
£ £

         i.e., if  r ≥ e.
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 fR(r) = 
2

, if 0 3
9

r
r£ £

Hence, the limits for r are taken as e and 3.

\ fE(e) = 
2

, (3 ), 0 3
9

e
e e- £ £

Example 19

If X and Y are independent RVs each following N(0, 2) prove that 
X

Z
Y

=  follows 

a Cauchy’s distribution.

 fX(x) = 
2 2/8 /81 1

and ( ) ,
2 2 2 2

x y
Ye f y e x y

p p

- -= - • < < •

By Theorem 3,

 fZ(z) = | | ( ) ( ) dX Yy f yz f y y

•

-•
Ú

  = 
2 2 2/8 /81 1

| | d
2 2 2 2

y z y
y e e y

p p

•
- -

-•

¥Ú

  = 
2 2(1 ) /81

d
4

z y
y e y

p

•
- +

-•
Ú  (since the integrand is an even function)

  = 
2

1 1

1
z

zp
¥ - • < < •

+

which is the pdf of Cauchy’s distribution.

Example 20

If X and Y are independent RVs each following N(0, 2), fi nd the pdf of Z = 2X + 

3Y.

Introduce the auxiliary RV W = Y.

\ z = 2x + 3y and w = y

Solving, 
1

( 3 ) and =
2

x z w y w= -

 J = 

1 3
( , ) 1

2 2
( , ) 2

0 1

x x

x y z w

y yz w

z w

∂ ∂
-

∂ ∂ ∂= = =
∂ ∂∂
∂ ∂
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Since X and Y are independent normal RVs fXY(x, y) = 
2 2( )/81

,
8

x y
e

p
- +  –• < x, 

y < •. The joint pdf of (Z, W) is given by 

 fZW(z, w) = |J| fXY(x, y)

  = 
2 2{( 3 ) 4 }/321 1

2 8

z w w
e

p
- - +¥  –• < z, w < •

The pdf of Z is the marginal pdf, obtained by integrating fZW(z, w) with respect 

to w over the range of w.

\ fZ(z) = 
2 2(13 6 )/321

d
16

w zw z
e w

p

•
- - +

-•
Ú

  = 

2
2 13 3

/8 13 /32
131

d
16

z
z e w

e w
p

•
-

-•

Ê ˆ- ¥ -Á ˜Ë ¯Ú

  = 
2 2/2 (2 13)1

(2 13) 2

z
e z

p

- - • < < •

which is (0, 2 13)N .

Example 21

If X and Y each follow an exponential distribution with parameter 1 and are 

independent, fi nd the pdf of U = X – Y.

 fX(x) = e–x, x > 0, and fY(y) = e–y, y > 0

Since X and Y are independent,

 fXY(x, y) = e–(x + y); x, y > 0

Consider the auxiliary RV V = Y along with

 U = X – Y.

\ x = u + v and y = v

 J = 
1 1

1
0 1

x x

u

y y

u

∂ ∂
∂ ∂ = =
∂ ∂
∂ ∂

v

v

The joint pdf of (U, V) is given by

 fUV(u, v) = |J| fXY(x, y)

  = e–(x + y) = e–(u + 2v)

The range space of (U, V) is found out from the map of the range space of

(X, Y) under the transformations x = u + v and y = v.
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Fig. 3.6 (a) and (b)

Therefore, the range space of (U, V) is given by v > –u, when u < 0 and

v > 0, when u > 0

Now the pdf of U is given by

 fU(u) = 
( 2 )du

u

e

•
- +

-
Ú v

v,  when u < 0

and  = ( 2 )

0

du
e

•
- +Ú v

v,  when u > 0

\ fU(u) = 
1

,
2

u
e   when u < 0

and  = 
1

,
2

u
e

-    when u > 0

Example 22

If the joint pdf of (X, Y) is given by fXY(x, y) = x + y; 0 £ x, y £ 1, fi nd the pdf of 

U = XY.

Introduce the auxiliary RV V = Y.

\ x = and
u

y = v
v

 J = 2

1
1

0 1

u
-

=v v
v

The joint pdf of (U, V) is given by

 fUV(u, v) = 
1 1

( , )XY

u
f x y

Ê ˆ= +Á ˜Ë ¯
v

|v| |v| v

Range space of (X, Y) is given by 0 £ x £ 1 and 0 £ y £ 1
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Fig. 3.7

\ Range space of (U, V) is given by

 0 £ 1 and 0 1
u

£ £ £v
v

i.e. 0 £ u £ v and 0 £ v £ 1

The pdf of U is given by

 fU(u) = 

1

( , ) dUV

u

f uÚ v v

  = 

1
1

d
u

uÊ ˆ+Á ˜Ë ¯Ú v v
v v

  = 2(1 – u), 0 < u < 1

Example 23

If X and Y are independent RVs with fX(x) = e–x U(x) and fY(y) = 3e
–3y U(y), fi nd 

fZ(z), if 
X

Z
Y

= .

Since X and Y are independent, fXY(x, y) = 3e
–(x + 3y), x, y ≥ 0

Introduce the auxiliary RV W = Y.

\ x = zw and y = w

 J = 
0 1

w z
w=

The joint pdf of (Z, W) is given by

 fZW(z, w) = |J| fXY(x, y)

  = |w| ¥ 3e
–(z + 3)w; z, w ≥ 0

The range space is obtained as follows:

Since y ≥ 0, w ≥ 0. Since x ≥ 0, zw ≥ 0.

As w ≥ 0, z ≥ 0.
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The pdf of z is given by

 fZ(z) = ( 3)

0

3 dz w
w e w

•
- +Ú

   = 2

3
0

( 3)
z

z
≥

+

Example 24

If X and Y are independent RVs with pdf’s e–x, x ≥ 0, and e–y, y ≥ 0, respectively, fi nd 

the density functions of 
X

U
X Y

=
+

 and V = X + Y. Are U and V independent?

Since X and Y are independent, fXY(x, y) = e–(x + y).

Solving the equations 
x

u
x y

=
+

 and v = x + y.

we get x = uv and y = v(1 – u).

 J = 
(1 )

u

u
=

- -
v

v
v

The joint pdf of (U, V) is given by

 fUV(u, v) = |J| e–(x + y)

  = | v | e–v

The range space of (U, V) is obtained as follows:

Since x and y ≥ 0, uv ≥ 0 and v (1 – u) ≥ 0.

Therefore, either u ≥ 0, v ≥ 0 and 1 – u ≥ 0, i.e., 0 £ u £ 1 and v ≥ 0

or u £ 0, v £ 0 and 1 – u £ 0,

i.e., u £ 0 and u ≥ 1, which is absurd.

Therefore, range space of (U, V) is given by 0 £ u £ 1 and v ≥ 0.

\ fUV(u, v) = v e–v; 0 £ u £ 1 and v ≥ 0.

Pdf of U is given by fU(u) = 
0

1, 0 1u

•
- = £ £Ú v

v e

i.e., U is uniformly distributed in (0, 1).

Pdf of V is given by fV(v) = 

1

0

du
-Ú v

v e

    = v e–v v ≥ 0

Now fUV(u, v) = fU(u) ¥ fV(v)

Therefore, U and V are independent RVs.
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Example 25

If X and Y are independent RVs each normally distributed with mean zero and 

variance s2, fi nd the density functions of 2 2 1and tan
Y

R X Y
X

f - Ê ˆ= + = Á ˜Ë ¯
.

Since X and Y are independent N(0, s),

 fXY(x, y) = 
2 2 2( )/2

2

1
,

2

x y
e x y

s

p s

- + - • < < •

2 2 1and tan
y

r x y
x

q - Ê ˆ= + = Á ˜Ë ¯
 are the transformations from Cartesians to 

polars.

Therefore, the inverse transformations are given by x = r cos q and y = r sin q.

  

cos sin

sin cos

r
J r

r

q q

q q

-
= =

The joint pdf of (R, f) is given by

 fRf(r, q) = 
2 2/2

2

| |
0 0 2

2

rr
e r

s q p
p s

- ≥ £ £

Note  (–• < x, y < •) and (r ≥ 0 and 0 £ q £ 2p) both represent the entire xy-plane.

The density function of R is given by

 fR(r) = 
2 2

2
/2

2
0

( , ) d = 0r
R

r
f r e r

p
s

f q q
s

-¥ ≥Ú

which is a Rayleigh distribution with parameter s. The density function of f is 

given by

 ff(q) = 
2 2/2

2
0

d
2

rr
e r

s

p s

•
-Ú

  = 
2

2
0

1
d , on putting 

2 2

t r
e t t

p s

•
- =Ú

  = 
1

, 0 2 ,
2

q p
p

£ £

which is a uniform distribution.

Exercise 3

Part-A (Short-answer Questions)

 1. If X and Y are two RVs where Y = g(X), how are the density functions of 

X and Y related?
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 2. If the pdf of X is fX(x) = 2x, 0 < x < 1, fi nd the pdf of Y = 3X + 1.

 3. If the pdf of X is fX(x) = e–x, x > 0, fi nd the pdf of Y = 2X + 1.

 4. If the RV X is uniformly distributed in (0, 2), fi nd the pdf of Y = X3.

 5. If the RV X is uniformly distributed in (1, 2) fi nd the pdf of 
1

Y
X

= .

 6. If X is uniformly distributed in (0, 1), fi nd the pdf of 
1

2 1
Y

X
=

+
.

 7. If X is uniformly distributed in (1, 2) fi nd the pdf of Y = eX.

 8. If the pdf of a RV X is fX(x) = 2x, 0 < x < 1, fi nd the pdf of Y = e–X.

 9. If the cdf of a RV X is F(x), show that the RV Y = F(x) follows a uniform 

distribution.

 10. A RV X assumes three values –1, 0, 1 with probabilities 1/3, 1/2, 1/6 

respectively, fi nd the probability distribution of Y = 3X + 1.

 11. If X and Y are two RVs such that Y = X2, how are the cdf’s of X and Y 

related?

 12. If X and Y are two RVs such that Y = X2, how are the pdf’s of X and Y 

related?

 13. If the RV X is uniformly distributed in (–3, 3), fi nd the pdf of Y = X2.

 14. If the pdf of X is f(x) = e–x, x > 0, fi nd the pdf of Y = X2.

 15. If the RVs X and Y are related by Y = |X|, how are the cdf’s of X and Y 

related?

 16. If the RVs X and Y are related by Y = |X|, how are the pdf’s of X and Y 

related?

 17. If the RV X is uniform distributed in (–1, 1), fi nd the pdf of Y = |X|.

 18. If the RVs X and Y are related by Y X= , how are their pdf’s related?

 19. If X is uniformly distributed in (0, 1), fi nd the pdf of Y = X .

 20. If the pdf of a RV X is fX(x) = 2x in (0, 1), fi nd the pdf of Y X=

 21. If X is uniformly distributed in , ,
2 2

p pÊ ˆ-Á ˜Ë ¯
 fi nd the pdf of Y = tan X.

 22. Write down the formula to fi nd the pdf of Z = X + Y, if X and Y are 

independent RVs with pdf’s fX(x) and fY(y) respectively.

 23. Write down the formula to fi nd the pdf of Z = XY in terms of the pdf’s of 

X, Y if they are independent.

 24. Write down the formula for the pdf of 
X

Z
Y

=  in terms of the pdf’s of X, 

Y if they are independent.

 25. If Z = g(X, Y) and W = h(X, Y), how are the joint pdf’s of (X, Y) and (Z, 

W) related?

 26. If Z = 2X + 3Y and W = Y, how are the joint pdf’s of (X, Y) and (Z, W) 

related?

 27. If U = XY and V = Y, how are the joint pdf’s of (X, Y) and (U, V) 

related?
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 28. If 
X

U
Y

=  and V = Y, how are the joint pdf’s of (X, Y) and (U, V) related?

 29. If U = X + Y and V + X – Y, how are the joint pdf’s of (X, Y) and (U, V) 

related?

 30. If x = R cos f and y = R sin f, how are the joint pdf’s of (X, Y) and (R, f) 

related?

Part-B

 31. The RV X is of the continuous type with distribution function FX(x). If 

g(x) is defi ned as

    

1 if 0
( )

1 if 0

x
g x

x

>Ï
= Ì- £Ó

  what is the distribution function of Y = g(X)?

 32. If g(x) is defi ned as

    

if

( ) if

if

b x b

g x x b x b

b x b

- £ -Ï
Ô= - < <Ì
Ô ≥Ó

  fi nd the distribution function of Y = g(X) in terms of that of X.

 33. If X follows a normal distribution with mean zero and variance s2, fi nd 

the density function of 
1

( | |).
2

Y X X= +

 34. If the density function of a continuous RV X is given by fX(x) = 

2
( 1)

9
x + , for –1 < x < 2, and = 0, otherwise, fi nd the density function of 

1
( | |).

2
Y X X= +

 35. If X is a continuous RV with density function fX(x) = e–x, x > 0, fi nd the 

density function of Y = 2X + 1. Hence or otherwise fi nd P(Y ≥ 5).

 36. If the density function of a continuous RV X is given by fX(x) = 2x, for 0 

< x < 1, and = 0, elsewhere, fi nd the density and distribution functions of 

Y = 3X + 1.

 37. If Y = aX
2 (a > 0), where X is a Gaussian RV with zero mean and variance 

s2, fi nd the pdf of the RV Y.

 38.   (i)  If the continuous RV X is uniformly distributed in (–3, 3), fi nd the 

density function of Y = 2X
2 – 3.

 (ii) If the continuous RV X is uniformly distributed in (–2, 2), fi nd the 

density function of Y = 6 – X2.

 39.   (i)  A fl uctuating electric current I may be considered as a uniformly 

distributed RV over the interval (9, 11). If this current fl ows 

through a 2-W resistor, fi nd the density function of the power P = 

2I
2.
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 (ii) If the voltage E across a resistor is a RV uniformly distributed 

between 5 and 10 V, fi nd the density function of the power 
2

,
E

W
r

=  when r = 1000 W.

 40.  (i) If the continuous RV X has density function 

  fX(x) = 2 e–2x, x > 0, fi nd the density function of Y = X2.

 (ii) If the density function of a continuous RV X is given by fX(x) = e–x, 

x > 0, fi nd the density function of Y = 3/(X + 1)2.

 41. If the RV X is uniform of a continuous RV X is given by fX(x) = e–x, x > 

0, fi nd the density function of Y = X3.

 42. If the RV X is uniform in (–2p, 2p), fi nd the density function of RV (i) Y 

= X3 and (ii) Y = X4.

 43. If the radius R of a sphere is a continuous RV with pdf fR(r) = 6r(1 – r), 

0 < r < 1, fi nd the pdf of (i) the surface area S of the sphere and (ii) the 

volume V of the sphere.

 44. If the random variable X is uniformly distributed over (–1, 1), fi nd the 

density function of Y = |X|.

 45.   (i)  If the resistance R follows a uniform distribution between 900 

and 1000 W, fi nd the density of the corresponding conductance 

1
.G

R
=

 (ii) If the RV X is uniformly distributed in (0, 1), fi nd the pdf of Y = 

1

1X +
.

 46.   (i)  If the continuous RV X is uniformly distributed over (1, 3), obtained 

the pdf of the RV Y = eX.

 (ii) If the density function of a random variable X is given by fX(x) = 

2x, for 0 < x < 1, and = 0, elsewhere, fi nd the pdf of the RV Y = e–X.

 47. If the RV X is uniformly distributed over (–1, 1), fi nd the density function 

of (i) sin and (ii) cos
2 2

X X
Y Y

p pÊ ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯
.

 48. If X is an arbitrary RV with continuous distribution function FX(x) and if 

Y = FX(X), show that Y is uniformly distributed in (0, 1).

 49. If X and Y are independent RVs with density function fX(x) = a e–ax U(x) 

and fY(y) = b e–by U(y), fi nd the density function of Z = X + Y.

 50. If X and Y are independent RVs with identical uniform distributions in 

the interval (–1, 1) fi nd the density function of Z = X + Y.

 51. If X and Y are independent RVs with density functions fX(x) = e–x U(x) 

and fY(y) = 2e
–2y U(y), fi nd the density function of Z = X + Y.

 52. If X and Y are independent RVs with density function fX(x) = 1, in 1 £ x 

£ 2, and fY(y) = 
6

y
 in 2 £ y £ 4, fi nd the density function of Z = XY.
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 53. If X and Y are independent RVs such that fX(x) = 
2 2/2

2
( )xx

e U x
a

a

-  and 

fY(y) = 
2 2/2

2
( )yy

e U y
b

b

-
 prove that the density function of 

X
Z

Y
=  is 

given by

    fZ(z) = 

2

2 2
2

2

2
( )

z
U z

z

a

b a

b

¥ ¥
Ê ˆ

+Á ˜Ë ¯

 54. If X and Y are independent RVs with identical uniform distributions in (0, 

a), fi nd the density function of Z = |X – Y|. (Hint: First fi nd the cdf of Z)

 55. If X and Y are independent RVs with identical uniform distributions in 

(0, 1), fi nd (i) the joint density function of (U, V), where U = X + Y and V 

= X – Y, (ii) the density function of U and (iii) the density function of V.

 56. Given the joint density function of X and Y as

  f(x, y) = 

1
, 0 2, 0

2

0, elsewhere

y
x e x y

-Ï < < >Ô
Ì
ÔÓ

  fi nd the distribution function of (X + Y).

ANSWERS

Exercise 3

 1. if x = g
–1 (y) is single valued, then fY(y) = 

( ) d
( ) .

| ( )| d

X
X

F x x
f x

g x y
=

¢
 If x 

= g
–1(y) takes many values x1, x2, …, xn, then fY(y) = fX(x1) 

1d

d

x

y
 + 

2
2

dd
( ) ( )

d d

n
X X n

xx
f x f x

y y
+ +� .

 2. fY(y) = 
d 2

( ) ( 1) in 1 4
d 9

X

x
f x y y

y
= - < <

 3. fY(y) = 

1
( 1)

2
d 1

( ) , 1
d 2

y

X

x
f x e y

y

- -
= >

 4. fY(y) = 
2/3 2/31 1 1

0 8
3 2 6

y y y
- -= < <

 5. fY(y) = 
2 2

1 1 1
1 in 1

2
y

y y
- = < <
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 6. fY(y) = 
2

2

(2 1) 1 1
1 in 1

2 32

x
y

y

- +
= < <

 7. fY(y) = 21 1
1 in

x
e y e

ye
= < <

 8. fY(y) = 
2 1

2 log in 1x
e x y y

y e
- = - < <

 9. fY(y) = 
1

( ) 1 in 0 < < 1
( )

X

X

f x y
f x

=

 10. 

: 2 1 4

1 1 1
:

3 2 6
Y

Y

p

-

 11. fY(y) = ( ) ( )X XF y F y- -  if y ≥ 0

   = 0, if y < 0 

 12. fY(y) = È ˘ + -Î ˚
1

( ) ( )
2

Y Xf y f y
y

 if y ≥ 0

   = 0 if y < 0 

 13. fY(y) = 
1 1 1 1

in 0 9
6 62 6

y
y y

Ï ¸+ = < <Ì ˝
Ó ˛

 14. Since y = x2 is m.i. in x > 0, fY(y) = 
1 1

in > 0
2 2

yx
e e y

x y

-- =

 15. fY(y) = FX(y) – FX(–y)

 16. fY(y) = fX(y) + fX(–y), y > 0

 17. fY(y) = 
1 1

1 in 0 < 1
2 2

y+ = <

 18. fY(y) = 2d
( ) 2 ( )

d
X X

x
f x y f y

y
=

 19. fY(y) = 2y in 0 < y < 1

 20. fY(y) = 2y ¥ 2y
2 = 4y

3 in 0 < y < 1

  21. fY(y) = 
2

d 1 1
( ) in < <

d 1
X

x
f x y

y yp
= - • •

+

 22. fZ(z) = ( ) ( ) dX yf z y f y y

•

-•

-Ú

 23. fZ(z) = 
1

( ) d
| |

X Y

z
f f y y

y y

•

-•

Ê ˆ
Á ˜Ë ¯Ú
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 24. fZ(z) = | | ( ) ( ) dX Yy f yz f y y

•

-•
Ú

 25. fZW(z, w) = | | ( , ), where
z w

XY
z w

x x
J f x y J

y y
=

 26. fZW(z, w) = 
1

( , )
2

XYf x y

 27. fUV(u, v) = 
1

( , )
| |

XYf x y
v

 28. fUV(u, v) = | | ( , )XYf x yv

 29. fUV(u, v) = 
1

( , )
2

XYf x y

 30. fRf(r, q) = |r| fXY(x, y)

 31. fY(y) = 0, if y < –1; = FX(0), if –1 £ y < 1 and = 1, if 1 £ y

 32. fY(y) = 0, if y < –b; = FX(y), if –b £ y < b and = 1, if b £ y

 33. fY(y) = 
2 2/22

,
2

y
e

s

s p

-  y ≥ 0 and 0, elsewhere 

 34. fY(y) = 
1

( 1), 0 2
4

y y+ < <  and = 0, elsewhere

 35. fY(y) = 
( 1)/2 21

, 1); 1 /
2

y
e y e

- - >

 36. fY(y) = 
2

9
 (y – 1) for 1 < y < 4 and = 0, elsewhere; FY(y) = (y – 1)2/9

 37. fY(y) = 
2/21
, 0

2

y a
e y

ay

s

s p

- >

 38.  (i) fY(y) = 
1

6 2 3y +
 for –3 £ y £ 15

    (ii) fY(y) = 
1

4 6 y-
 for 2 £ y £ 6

 39.  (i) fP(p) = 
1 2

8 p
 for 162 £ p £ 242 

   (ii) fw(w) = 
10 1 1

for
40 10

w
w

£ £

 40.  (i) fY(y) = 
21

for 0
y

e y
y

- >

   (ii) fY(y) = 

3/2

1 3/1 3

6

y
e

y

-Ê ˆ
Á ˜Ë ¯

 for 0 £ y £ 3
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 41. fY(y) = 
1/32/31

3

y
y e

- -  for y > 0

 42.  (i) fY(y) = 
2/31

12
y

p
-

 for –8p3 £ y £ 8p3

   (ii) fY(y) = 3/41

8
y

p
-  for 0 £ y £ 16p4

 43.  (i) fS(s) = 
3

1
4 4

s

p p

Ê ˆ
-Á ˜

Ë ¯
 for 0 £ s £ 4p

   (ii) fV(v) = 

1

33 3 4
1 for 0

2 4 3

p

p p

-Ï ¸
Ê ˆÔ Ô- £ £Ì ˝Á ˜Ë ¯Ô ÔÓ ˛

v
v

 44. fY(y) = 1 in (0, 1)

 45.  (i) fG(g) = 2

1 1 1
for

1100 900200
g

g
£ £

   (ii) fY(y) = 2

1 1
for 1

2
y

y
£ £

 46.  (i) fY(y) = 
1

2y
 for e £ y £ e3

   (ii) fY(y) = 
2 1

log for 1y y
y e

- £ £

 47.  (i) fY(y) = 
2

1

1 yp -
 for –1 £ y £ 1

   (ii) fY(y) = 
2

2

1 yp -
 for 0 £ y £ 1

 49. fZ(z) = ( ) ifz z
e e

a bab
b a

b a
- -- π

-

           = a2
z e–az if b = a

 50. fZ(z) = 
1

(2 ) if > 0
4

z z+

      = 
1

(2 ) if 0
4

z z- >

 51. fZ(z) = 2[e–z – e–2z] U(z)
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 52. fz(z) = 

1
( 2) when 2 4

6

1
(8 ) when 4 8

12

z z

z z

Ï - £ £ÔÔ
Ì
Ô - £ £
ÔÓ

 54. fZ(z) = 
2

2
( ),a z

a
- for 0 < z < a

 55. (i) fUV(u, v) = 
1

2
 for 0 £ u + v £ 2 and 0 £ u – v £ 2

 (ii) fU(u) = 
if 0 1

2 if 1 2

u u

u u

£ £Ï
Ì - £ £Ó

 (iii) fV(v) = 
1 if 1 0

1 if 0 1

+ - £ £Ï
Ì - £ £Ó

v v

v v

 56. If Z = X + Y, fZ(z) = 0, if z < 0

  = 
21

1 ,
2 2

zz
e z

-Ê ˆ
- - +Á ˜Ë ¯

 if 0 £ z < 2

  = 2 2 21
[(1 (1 )( )],

2

z
e e e e

- - -- + + -  if 2 £ z





A 
discrete random variable (RV) is no doubt completely described by 

its probability mass function or probability distribution. Similarly, 

a continuous RV is completely described by its probability density 

function. For many purposes, this description is often considered to consist of 

too many details. It is sometimes simpler and more convenient to describe a RV 

or to characterise its distribution by a few parameters or summary measures that 

are representative of the distribution. These parameters or characteristic numbers 

are the various expected values or statistical averages of the RV.

Defi nitions: If X is a discrete RV, then the expected value or the mean value of 

g(X) is defi ned as

 E{g(X)} = ( )i i

i

g x pÂ ,

where pi = P(X = xi) is the probability mass function of X.

If X is a continuous RV with pdf f(x), then

 E{g(X)} = ( ) ( )

XR

g x f x dxÚ
Two expected values which are most commonly used for characterising a RV 

X are its mean mX and variance s2
X, which are defi ned as follows:

 mX = E(X)

  = i i

i

x pÂ , if X is discrete

  = ( )d

XR

xf x xÚ , if X is continuous

 Var(X) = sX
2 = E{(X – mX)2}

  = 
2( )i X i

i

x pm-Â , if X is discrete

Chapter 4
Statistical Averages
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2( ) ( )d

x

X

R

x f x xm-Ú , if X is continuous

The square root of variance is called the standard deviation. The mean of an RV 

is its average value and the variance is a measure of the spread or dispersion of 

the values of the RV.

Note  Var(X) = E(X2) – {E(X)}2

 Var(X) = E{X – mx)
2}

  = E{X2 – 2mxX + mx
2}

  = E(X2) – 2mx E(X) + mx
2 (since mX is a constant)

  = E(X2) – mx
2 [since mX = E(X)]

  = E(X2) – {E(X)}2

This modifi ed formula for var(X) holds good for both discrete and continuous 

RVs.

Note  If  X is a discrete RV and a constant, then (i) E(aX) = aE(X), (ii) Var(aX)

= a2 Var(X).

 (i) E(aX) = i
j

ax piÂ

   = i i
j

a x pÂ
   = aE(X)

 (ii) Var(aX) = E(a2X2) – {E(aX)}2 (by Note 1)

   = a2E(X)2 – {aE(X)}2

   = a2[E(X2) – {E(X)}2]

   = a2Var(X)

This result holds good for a continuous RV also.

Moments: If X is a discrete or continuous RV, E(Xn) is called nth order raw 

moment of X about the origin and denoted by m¢n.
E{(X – mX)n} is called the nth order central moment of X and denoted by mn.

E{|X|n} and E{|X – mX|n} are called absolute moments of X.

E{X – a)n} and E{|X – a|n} are called generalised moments of X.

Expected Values of a Two-Dimensional RV

If (X, Y) is a two-dimensional discrete RV with joint probability mass function 

pij, then E{g(X, Y)} = ( , )i i ij

j i

g x y pÂÂ .

If (X, Y) is a two-dimensional continuous RV with joint pdf f(x, y), then

 E{g(X, Y)} = ( , ) ( , )d dg x y f x y x y

• •

-• -•
Ú Ú
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Properties of Expected Values

We give below the proofs of the properties for continuous RVs. Students can 

prove the properties for discrete RVs.

 (i) E{g(X)} = ( ) ( )dXg x f x x

•

-•
Ú , where fX(x) is the marginal density of X.

Proof

 E{g(X)} = ( ) ( , )d dg x f x y x y

• •

-• -•
Ú Ú

  = ( ) ( , )d dg x f x y y x

• •

-• -•

È ˘
Í ˙
Í ˙Î ˚

Ú Ú

  = ( ) ( )dXg x f x x

•

-•
Ú

 (ii) E{h(Y)} = ( ) ( )dYh y f y y

•

-•
Ú

  where fY(y) is the marginal density of Y.

  (Proof is left as an exercise to the student.)

(iii) E(X + Y) = E(X) + E(Y)

Proof

 E(X + Y) = ( ) ( , )d dx y f x y x y

• •

-• -•

+Ú Ú

  = ( , )d d ( , )d dxf x y x y yf x y x y

• • • •

-• -• -• -•

+Ú Ú Ú Ú
  = E(X) + E(Y)

 (iv) In general, E(XY) π E(X) × E(Y), but if X and Y are independent RVs, 

E(XY) = E(X) × E(Y).

Proof

 E(XY) = ( , )d dxyf x y x y

• •

-• -•
Ú Ú

  = ( )f ( )d dX Yxyf x y x y

• •

-• -•
Ú Ú

    (since X and Y are independent)
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  = ( )d ( )dX Yxf x x yf y y

• •

-• -•

¥Ú Ú

  = E(X) × E(Y)

In general, if X and Y are independent,

 E{g(X) × h(Y)} = E{g(X)} × E{h(Y)}

Conditional Expected Values

If (X, Y) is a two-dimensional discrete RV with joint probability mass function 

pij, then the conditional expectations of g(X, Y) are defi ned as follows:

 E{g(X, Y)/Y = Yj} = ¥ = =Â ( , ) ( / )i j i j

i

g x y P X x Y y

  = 
*

( , )
ij

i j

i j

p
g x y

p
Â

and E{g(X, Y)/X = xi} = Â *( , ) /i j ij i

j

g x y p p

If (X, Y) is a two-dimensional continuous RV with joint pdf f(x, y), then

 E{g(X, Y)/Y} = 

•

-•

¥Ú ( , ) ( / )dg x y f x y x  and

 E{g(X, Y)/X} = 

•

-•

¥Ú ( , ) ( / )dg x y f y x y

In particular, the conditional means are defi ned as

 mY/X = 
•

-•

= Ú( / ) ( / )dE Y X yf y x y  and

 mX/Y = 
•

-•

= Ú( / ) ( / )dE X Y xf x y x

The conditional variance are defi ned as

 s2
Y/X = m m

•

-•

- = -Ú2 2
/ /{( ) } ( ) ( / )dY X Y XE Y y f y x y  and

 s2
X/Y = m m

•

-•

- = -Ú2 2
/ /{( ) } ( ) ( / )dX Y X YE X x f x y x
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Properties

(1) If X and Y are independent RVs, then E(Y/X) = E(Y) and E(X/Y) = E(X).

Proof

 E(Y/X) = ( / )dyf y x y

•

-•
Ú

  = 
( , )

d
( )X

f x y
y y

f x

•

-•
Ú

  = 
( ) ( )

d
( )

X Y

X

f x f y
y y

f x

•

-•

¥
Ú  (since X and Y are independent)

  = ( ) ( )Yyf y dy E Y

•

-•

=Ú
A similar proof can be given for the other result.

(2) E[E{g(X, Y)/X}] = E{g(X, Y)}

Proof

 E{g(X, Y)/X} = ( , ) ( / )dg x y f y x y

•

-•
Ú

Since E{g(X, Y)/X} is a function of the RV X,

 E[E{g(X, Y)/X}] = { ( , ) / } ( )dXE g X Y X f x x

•

-•
Ú

  = ( , ) ( / ) ( )d dXg x y f y x f x x y

• •

-• -•
Ú Ú  [from (1)]

  = ( , ) ( , )d dg x y f x y x y

• •

-• -•
Ú Ú

  = E{g(X, Y)}

In particular,

 E{E(Y/X)} = E(Y) and similarly

 E{E(X/Y)} = E(X)

(3) E{g1(X) × g2(Y)} = E[g1(X) × E{g2(Y)/X}]

Proof

 E{g1(X) × g2(Y)} = E[E{g1(X) × g2(Y)/X}] (by Property (2))

  = E[g1(X) × E{g2(Y)/X}] (since X is given)



4.6 Probability, Sta  s  cs and Random Processes

In particular,

 E(XY) = E[X × E(Y/X)] and

 E(X2
Y

2) = E[X2 × E(Y2/X)]

Worked Example 4(A)

Example 1

A lot is known to contain 2 defectives and 8 non-defective items. If these items 

are inspected at random, one after another, what is the expected number of items 

that must be chosen in order to remove, both the defective ones?

Let the random variable X denote the number of items that must be drawn in 

order to remove both defective items.

Clearly, X takes the values 2, 3, 4, ..., 10.

 P(X = r) = P(r items are to be drawn to remove both defectives)

  =  P{the fi rst (r – 1) items drawn should contain 1 defective 

and rth item drawn should be defective}

  = 1 2 2

1 1

2 8 2 81

10 10 ( 1) 10 (11 )

r r

r r

C C C

C r C r

- -

- -

¥ ¥
¥ =

- - -
(r = 2, 3, ..., 10)

The probability distribution of X will then be as follows:

X = r 2 3 4 5 6 7 8 9 10

pr 1/45 2/45 3/45 4/45 5/45 6/45 7/45 8/45 9/45

 E(X) = 
10

2

22

3
r

r

rp
=

=Â

Example 2

A box contains 2n tickets of which nCr tickets bear the number r(r = 0, 1, 2, ..., 

n). Two tickets are drawn from the box. Find the expectation of the sum of their 

numbers.

Total number of tickets in the box.

 
0

n

r

r

nC
=
Â  = nC0 + nC1 + ... + nCn

  = (1 + 1)n = 2n, as given.

Let the RVs X and Y represent the numbers on the fi rst and second tickets 

respectively.

Then E(X + Y) = E(X) + E(Y)

X can take the values 0, 1, 2, ..., n with probabilities 0 1, ,
2 2 2

n

n n n

nC nCnC
  

respectively.
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\ E(X) = 1 21 2
2 2 2

n

n n n

nCnC nC
n¥ + ¥ + + ¥ 

  = ( 1)
0 1 1{( 1) ( 1) }

2

n
nn

n
n C n C C

-
-- + - + + 

  = 1(1 1)
22

n

n

n n-+ =

Similarly,  E(Y) = 
2

n

\ E(X + Y) = n

Example 3

Find the mean and variance of the Pascal’s (negative binomial distribution) 

distribution, given by P(X = k) = 
+ -Ê ˆ

Á ˜Ë ¯
1n k

k
 pn qk, k = 0, 1, 2, ...

 E(X) = 

•

=

+ -Ê ˆ
Á ˜Ë ¯Â

0

1 n k

k

n k
k p q

k

  = pn [1 × nC1q
1 + 2(n + 1)C2q

2 + 3(n + 2) C3q
3 + ...]

  = np
n
q [1 + (n + 1)C1q + (n + 2) C2q

2 + ...]

  = np
n
q [1 – q)– (n + 1) = 

nq

p

 E(X2) = 2

0

1 n k

k

n k
k p q

k

•

=

+ -Ê ˆ
Á ˜Ë ¯Â

  = pn [12 nC1q
1 + 22(n + 1)C2q

2 + 32(n + 2) C3q
3 + ...]

  = 
2 31 2 2 (2 3 3)

( 1) ( 2)( 1)
2! 3!

n
p nq n nq n n nq

¥ + ¥ +È ˘+ + + + + +Í ˙Î ˚
 

  = 2( 1) ( 1)( 2)
1 ( 1)

1! 2!

n n n n
np q q q n q

È + + +Ï ¸+ + + + + ¥Ì ˝Í
Ó ˛Î

 

  

2( 2) ( 2)( 3)
1

1! 2!

n n n
q q

˘+ + +Ï ¸+ + +Ì ˝˙
Ó ˛˚

 

  = np
n
q [1 – q)– (n + 1) + (n + 1)q(1 – q)–(n + 2)]

  = 
1 2

1 ( 1)n

n n

n q
np q

p p
+ +

È ˘+
+Í ˙

Î ˚

  = 
2

2

( 1)nq n n q

p p

+
+
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\ Var(X) = E(X2) – {E(X)}2

  = 
2 2 2

2 2

( 1)nq n n q n q

p p p

+
+ -

  = 
2

1
nq q nq

p p p

Ê ˆ
+ =Á ˜Ë ¯

Example 4

If the continuous RV X has Rayleigh density 
2 2/2

2
( ) ( )xx

f x e U x
a

a

-= ¥ , fi nd 

E(Xn) and deduce the values of E(X) and var(X).

By defi nition,

 E(Xn) = 
2 2/2

2
0

dn xx
x e x

a

a

•
-¥Ú

  = 2 /2

0

(2 ) dn t
t e ta

•
-Ú  

2

2
putting

2

x
t

a

Ê ˆ
=Á ˜Ë ¯

  = /2 /2

0

2 dn n n t
t e ta

•
-Ú

  = /22 ( 1) if 2n n
k n ka + =

  = /2 /22 2 / 2, if is evenn n n n
k n na a=

 E(Xn) = /2 2 3
2 if 2 1

3

n n k
n ka

+Ê ˆ = +Á ˜Ë ¯

  = /2 2 1 2 1 3 1 1
2

2 2 2 2 2

n n k k
a

+ - Ê ˆ¥ ¥ ¥ Á ˜Ë ¯
 

  = /2

( 1)/2

1 3 5
2

2

n n

n

n
a p+

¥ ¥ ¥ ¥ 

  = 1 3 5 / 2n
na p¥ ¥ ¥ ¥  if n is odd

\ E(X) = 2 2 2; ( ) 2 ;var( ) 2
2

E X X
p

a p a a
Ê ˆ/ 2 = = -Á ˜Ë ¯

Example 5

A line of length a units is divided into two parts. If the fi rst part is of length X, 

fi nd E(X), var(X) and E{X(a – X)}.
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Since the positions of the point of division are equally likely, X is uniformly 

distributed in (0, a).

\ f(x) = 
1

a

 E(X) = 
0 0

1
( )d d

2

a a
a

xf x x x x
a

= =Ú Ú

 E(X2) = =Ú
3

2

0

( )d
3

a
a

x f x x

\ Var(X) = 
2 2 2

2 2( ) { ( )}
3 4 12

a a a
E X E X- = - =

 E{X(a – X)} = 

2 2 2
2( ) ( )

3 4 12

a a a
a E X E X- = - =

Example 6

If X is a continuous RV, prove that

 E(X) = 

0

0

[1 ( )]d ( )dF x x F x x

•

-•

- -Ú Ú

 E(X) = 

0

0

( )d d ( ) d{1 ( )}xf x x x F x x F x

• •

-• -•

= - -Ú Ú Ú
 [since F¢(x) = f(x)]

  = 

0
0

0

0

[ ( )] ( )d [ {1 ( )}] {1 ( )}dxF x F x x x F x F x x

•
•

-•
-•

- - - + -Ú Ú

  = 

0

0

{1 ( )} d ( ) dF x x F x x

•

-•

- -Ú Ú
 [since F(–•) = 0 and F(•) = 1]

Example 7

If the random variable X follows N(0, 2) and Y = 3X
2, fi nd the mean and variance 

of Y.

Since X follows N(0, 2), E(X) = 0 and var(X) = 4

\ E(X2) = var(X) + {E(X)}2 = 4

Now E(Y) = E(3X
2) = 3 × 4 = 12
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 E(Y2) = E(9X
4) = 9 × 3 × 24

[since for the normal distribution N(0, s), 
2

2 (2 )!
( )

2 !

r
r

r

r
E X

r

s
= ]

 Var(Y) = E(Y2) – {E(Y)}2

  = 27 × 24 – 122 = 288

Example 8

If the joint pdf of (X, Y) is given by f(x, y) = 24y(1 – x), 0 £ y £ x £ 1, fi nd 

E(XY).

Fig. 4.1

 E(XY) = 

1 1

0

( , ) d d
y

xyf x y x yÚ Ú

  = 

1 1
2

0

24 (1 ) d d
y

xy x x y-Ú Ú

  = 

1 2 3
2

0

1
24 d

6 2 3

y y
y y

Ê ˆ
- +Á ˜Ë ¯Ú

  = 
4

15

Example 9

If X and Y are two independent RVs with fX(x) = e–x
U(x) and fY(y) = e–y

U(y) and 

Z = (X – Y) U(X – Y), prove that E(Z) = 1/2.

 U(X – Y) = 
1 if

0 if

X Y

X Y

>Ï
Ì <Ó

\ Z = 
if

0 if

X Y X Y

X Y

- >Ï
Ì <Ó
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 E(Z) = ( )

0 0

d dx y
ze x y

• •
- +Ú Ú

[since X and Y are independent, f(x, y) = fX(x) × fY(y)]

  = 
( )

0

( ) d dx y

y

x y e x y

• •
- +-Ú Ú

  = 
0

[( )( ) ] dy x x
ye x y e e y

•
- - - •- - -Ú

  = 2

0

1
d

2

y
e y

•
- =Ú

Example 10

The joint pdf of (X, Y) is given by f(x, y) = 24 xy; x > 0, y > 0, x + y £ 1, and

f(x, y) = 0, elsewhere, fi nd the conditional mean and variance of Y, given X.

Fig. 4.2

 fX(x) = 

1

0

24 d

x

xy y

-

Ú

  = 212 (1 ) , 0 1x x x- < <

Now, f(y/x) = = < < -
- 2

( , ) 2
, 0 1

( ) (1 )X

f x y y
y x

f x x

 E(Y/X = x) = 

-

Ú
1

0

( / ) d

x

yf y x y

  = 

1 2

2
0

2 2
d (1 )

3(1 )

x
y

y x
x

-

= -
-Ú

 E(Y2/x) = 

-

¥ = -Ú
1

2 2

0

1
( / ) d (1 )

2

x

y f y x y x

 Var(Y2/x) = E(Y2/x) – {E(Y/x)}2
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  = 2 21 4
(1 ) (1 )

2 9
x x- - -

  = 21
(1 )

18
x-

Example 11

If (X, Y) is uniformly distributed over the semicircle bounded by y = 
21 x-  and 

y = 0, fi nd E(X/Y) and E(Y/X). Also verify the E{E(X/Y)} = E(X) and E{E(Y/X)} 

= E(Y).

Fig. 4.3

 f(x, y) = k

 
( , ) d d 1f x y y x =Ú Ú

i.e., 

21 1

1 0

d d 1

x

k y x

-

-

=Ú Ú

i.e., 
1

2

0

2 1 d 1k x x- =Ú

\ k = 
p

2

 fX(x) = 

21
2

0

2 2
d 1 , 1 1

x

y x x
p p

-

= - - £ £Ú

 fY(y) = 

2

2

1

2

1

2 4
d 1 , 0 1

y

y

x y y
p p

-

- -

= - £ £Ú

 f(x/y) = = - - £ £ -
-

2 2

2

( , ) 1
, 1 1

( ) 2 1Y

f x y
y x y

f y y

 f(y/x) = 2

2

1
,0 1

1
y x

x
£ £ -

-
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 E(X) = 

1 1
2

1 1

2
( ) d 1 d 0Xxf x x x x x

p-

= - =Ú Ú
 (since the integrand is odd)

 E(X/Y) = 

2

2

1

1

( / ) d

y

y

xf x y x

-

- -

Ú

  = 

2

2

1

2

1

1
d 0

2 1

y

y

x
y

-

- -

=
-

Ú  (since the integrand is odd)

\ E{E(X/Y)} = E{0} = 0 = E(X)

 E(Y) = 
1 1

2

0 0

4 4
( )d 1 d

3
Yyf y y y y y

p p
= - =Ú Ú

 E(Y/X) = 

2
2 11 2

2

2
0 0

1 1
( / ) d 1

2 21

xx
y

yf y x y x
x

-- Ê ˆ
= = -Á ˜Ë ¯-

Ú

\ E{E(Y/X) = 21
1

2
E X

Ï ¸-Ì ˝
Ó ˛

  = 

1
2

1

1
1 ( )d

2
Xx f x x

-

-Ú

  = 

1
2

0

2 4
(1 )d

3
x x

p p
- =Ú

\ E{E(Y/X) = E(Y)

Example 12

If (X, Y) follows a bivariate normal distribution N(0, 0; sX, sY; r), fi nd E(Y/X), 

E(Y2/X), E(XY) and E(X2
Y

2).

 f(x, y) = 
2 2

2 2 22

1 1 2
exp

2(1 )2 1 x yx yx y

x rxy y

rr s ss sps s

Ï ¸Ê ˆÔ Ô- - +Á ˜Ì ˝
- Ë ¯- Ô ÔÓ ˛

  = 

2
2

2 22

1 1
exp

2(1 ) 22 1 y x xx y

y rx x

rr s s sps s

Ï ¸Ê ˆÔ Ô- - -Ì ˝Á ˜
- Ë ¯- Ô ÔÓ ˛

 fX(x) = s
s p

- 2 21
exp( /2 )

2
X

x

x

[refer to the worked Example 12 in Chapter 2 on two-dimensional RVs]

\ f(y/x) = 
2

( , ) 1

( ) 1 2X y

f x y

f x rs p
=

-
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2

2 2

1
exp

2(1 )

y

xy

rx
y

r

s

ss

Ï ¸Ê ˆÔ Ô- -Ì ˝Á ˜- Ë ¯Ô ÔÓ ˛

which is a 
s

s
s

Ê ˆ
-Á ˜Ë ¯

2, 1
y

y

x

rx
N r

\ E(Y/X = x) = ( / )d
y

y

rx
yf y x y

s

s

•

-•

=Ú

and Var(Y/X = x) = sy
2 (1 – r2)

 Var(Y/X) = E(Y2/X) – {E(Y/X)}2

\ E(Y2/X) = sy
2 (1 – r2) + r2

x
2s2

y/sx
2

By Property 3 of conditional expected values,

 E(XY) = E{XE(Y/X)}

  = 2 2y y

x x y

x x

E r X r r
s s

s s s
s s

Ï ¸Ô Ô = ¥ =Ì ˝
Ô ÔÓ ˛

Again, by the same property

 E(X2
Y

2) = E{X
2 × E(Y2/X)}

  = 

2 2

2 2 2 4

2
(1 )

y

y

x

r
E r X X

s
s

s

È ˘
Í - + ˙
Í ˙Î ˚

  = 

2 2

2 2 2 4

2
(1 ) ( ) ( )

y

y

x

r
r E X E X

s
s

s
- +

  = 

2 2

2 2 2 4

2
(1 ) 3

y

x y x

x

r
r

s
s s s

s
- + ¥

  = 2 2 2(1 2 ) x yr s s+

Exercise 4(A)

Part-A (Short-answer Questions)

 1. Defi ne the expected value of g(X), where X is a RV.

 2. Defi ne the mean and variance of a RV.

 3. Prove that Var(X) = E(X2) – E2 (X)

 4. If X is a RV, prove that E(X2) ≥ {E(X)}2.

 5. If X is a discrete/continuous RV prove that E(aX + b) = aE(X) + b and 

Var(aX) = a2Var(X).
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 6. If mX and sX are the mean and SD of the RV X, fi nd mY and sY, where 

m
s

= -
1

( ).X

X

Y X

 7. Defi ne the raw and central moments of a RV and state the relation 

between them.

 8. The probability distribution of a RV X is given by

  X: 0 1 2 3

  pX: 0.1 0.3 0.4 0.2

  fi nd E(Y), where Y = X2 + X.

 9. Find the mean of the RV X, if its pmf is given by P(x = j) = (1 – a)aj, j = 

0, 1, 2, ..., •.

 10. Find the mean of the RV X if its pdf is f(x) = 6x(1 – x), 0 £ x £ 1.

 11. Find the mean and variance of the uniform distributed in (a, b).

 12. Find the mean and variance of a RV X, that is uniformly distributed in 

(2, 8).

 13. If X is uniformly distributed in (1, 2) and Y = X3, fi nd the mean of Y.

 14. Obtain the mean of the binomial distribution B(n; p).

 15. Obtain the mean of the Poisson distribution P(l).

 16. Find the binomial distribution whose mean is 6 and SD is 2 .

 17. If X is a binomial RV with mean 2.4 and variance 1.44, fi nd P(X = 7).

 18. If X is binomially distributed with n = 5 such that P(X = 1) = 2P(X = 2), 

fi nd E(X) and Var(X).

 19. If X is binomially distributed with n = 6 such that P(X = 2) = 9 P(X = 4), 

fi nd E(X) and Var(X).

 20. X is a Poisson RV such that P(X = 1) = P(X = 2), fi nd E(X) and E(X2).

 21. Find the mean of the geometric distribution given by P(X = r) = pq
r (r = 

0, 1, 2, ...). where p + q = 1.

 22. On the average, how many times must a dice be thrown until a ‘6’ is 

obtained?

 23. Find the mean and variance of the exponential distribution given by f(x) 

= le
–lx, x > 0.

 24. If the RV X follows N(0, 2), fi nd E(X2).

 25. Defi ne the expected value of g(X, Y), where (X, Y) is a two-dimensional 

continuous RV with joint pdf f(x, y).

 26. If (X, Y) is a two-dimensional continuous RV, express E[g(X)] and 

E[h(Y)} in terms of the marginal densities of X and Y.

 27. If X and Y are independent RVs prove that E(XY) = E(X) × E(Y).

 28. If X and Y are independent RVs with means 2 and 3 and variances 1 and 

2 respectively, fi nd the mean and variance of Z = 2X – 5Y.

 29. If (X, Y) is a two-dimensional continuous RV, defi ne E{g(X, Y)/X} and 

E{g(X, Y)/Y}.

 30. If (X, Y) is a two-dimensional continuous RV, defi ne conditional mean 

and conditional variance of X, given Y.
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 31. If X and Y are independent RVs, prove that E(Y/X) = E(Y).

 32. If X and Y are independent RVs, prove that E{E(Y/X)} = E(Y).

 33. If X and Y are independent RVs, prove that E(X/Y) = E{X.E(Y/X)}.

 34. If the joint pdf of (X, Y) is given by f(x, y) = 2 – x – y, in 0 £ x £ y £ 1, 

fi nd E(X) and E(Y).

 35. If the joint pdf of (X, Y) is given by f(x, y) = 2, in 0 £ x £ y £ 1, fi nd 

E(X).

Part-B

 36. What is the expectation of the number of failures preceding the fi rst 

success in an infi nite series of independent trials with constant probability 

p of success?

 37. What is the expectation of (a) the sum of the points on n dice? and

(b) the product of the points on n dice?

 38. Three tickets are chosen at random without replacement from 100 

tickets, numbered 1, 2, 3, ..., 100. Find the expectation of the sum of the 

numbers.

 39. From an urn containing 3 red and 2 black balls, a man is to draw 2 balls 

at random without replacement, being promised Rs. 20/- for each red 

ball he draws and Rs. 10/- for each black ball. Find his expectation.

 40. If X follows a uniform distribution in (a, b), fi nd E(X) and Var(X).

 41. Find the mean and variance of the geometric distribution given by

P(X = r) = pq
r, r = 0, 1, 2, ...; p + q = 1.

 42. Find the mean and variance of the binomial distribution B(n; p).

 43. Find the mean and variance of the Poisson distribution P(l).

 44. If the continuous RV X follows a normal distribution N(0, s), prove 

that

 (i) E(Xn) = 
0 if is odd

1 3 5 ( 1) if is evenn

n

n ns

Ï ¸Ô Ô
Ì ˝

¥ ¥ -Ô ÔÓ ˛ 

 (ii) E(|X|n) = 

1

22
2 ( 1) / 2 if is odd

1 3 5 ( 1) if is even

n

n

n

n n

n n

s
p

s

-Ï ¸
¥ -Ô Ô

Ì ˝
Ô Ô¥ ¥ -Ó ˛ 

 45. If the continuous RV X has a Maxwell density, given by

 f(x) = 
2 2

2
/2

3

2
( )xx

e U x
a

p a

- , prove that

 E(Xn) = 

2

2 1

1,3 (2 1) if 2

2 if 2 1
2

k

k k

k n k

k n k

a

p
a -

Ï ¸+ =
Ô Ô
Ì ˝

¥ ¥ = -Ô Ô
Ó ˛

 

  Hence, fi nd the mean and variance of the distribution.
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 46. If X has a Rayleigh density with parameter a and Y = a + b X2, prove that 

sy
2 = 4b

2 a4.

 47.   (i) If Y = aX + b, show that sY = asX and

 (ii) If Y = (X – mX)/sX, fi nd mY and sY. 

 48. If X is a RV for which E(X) = 10 and Var(X) = 25, for what positive 

values of a and b does Y = aX  – b have expectation 0 and variance 1?

 49. If X is uniformly distributed in (1, 2) and Y = X3, fi nd the mean and 

variance of Y.

 50. If the continuous RV X has the density function 
2

( ) 2 , 0x
f x xe x

-= ≥ , 

and if Y = X2, fi nd the mean and variance Y.

 51. If X and Y are independent random variables with density functions 

3

8
( ) , 2Xf x x

x
= > , and fY(y) = 2y, 0 < y < 1, respectively, and Z = XY, 

fi nd E(Z).

 52. If each of the independent RVs X and Y follows N(0, s) and Z = |X – Y|, 

prove that E(Z) = 2s/ p  and E(Z)2 = 2s2.

 53. If the joint pdf of (X, Y) is given by f(x, y) = 2, 0 £ x £ y £ 1, fi nd the 

conditional mean and conditional variance of X, given that Y = y.

 54. If the joint pdf of (X, Y) is given by f(x, y) = 21x
2
y

3, 0 £ x £ y £ 1, fi nd 

the conditional mean and variance of X, given that Y = y, 0 < y < 1.

 55. If the joint pdf of (X, Y) is given by f(x, y) = 3xy(x + y), 0 £ x, y £ 1, verify 

that E{E(Y/X)} = E(Y) = 
17

24
.

Linear Correlation

In many situations, the outcome of a random experiment will have two measurable 

characteristics, viz. will result in two random variables X and Y. Often we will 

be interested in fi nding whether the two different RV’s are related to each other. 

If they are related, we will try to determine the nature fo relationship and degree 

of relationship (correlation). Assuming that there is some correlation between X 

and Y, we will then try to fi nd a formula expressing the relationship and use this 

formula to predict the most likely value of one RV corresponding to any given 

value of other RV

To examine whether the two RV’s are inter-related, we collect n pairs of 

values of X and Y corresponding to n repetitions of the random experiment, Let 

them be (x1, y1), (x2, y2), ..., (xn, yn). Then we plot the points with co-ordinates (x1, 

y1), ..., (xn, yn) on a graph paper. The simple fi gure consisting of the plotted points 

is called a scatter diagram. From the scatter diagram, we can form a fairly good, 

though vague, idea of the relationship between X and Y. If the points are dense or 

closely packed, we may conclude that X and Y are correlated. On the other hand 

if the points are widely scattered throughout the graph paper, we may conclude 

that X and Y are either not correlated or poorly correlated.
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Further if the points in the scatter diagram appear to lie near a straight line, 

we assume that the RV’s have linear correlation. If they cluster round a well 

defi ned curve other than a straight line, the RV’s are assumed to be non-linear. In 

this section we will assume linear correlation between the concerned RV’s and 

discuss how to measure the degree of linear correlation.

Correlation Coeffi cient

As the variance E{X – E(X)}2 measures the variations of the RV X from its mean 

value E(X), the quantity E{[X – E(X)] [Y – E(Y)]} measures the simultaneous 

variation of two RV’s X and Y from their respective means and hence it is called 

the covariance of X, Y and denoted as Cov (X, Y).

Cov(X, Y) = E{[X – E(X)] [Y – E(Y)]} is also called the product moment of X 

and Y and also denoted as p(X, Y).

Though p(X, Y) is a useful measure of the degree of correlation between X and 

Y, it is to be expressed in mixed units of X and Y. To avoid this diffi culty and to 

express the degree of correlation in absolute units, we divide p(X, Y) by sx ·sy, so 

that 
( , )

x y

p x y

s s
 is a mere number, free from units of X and Y.

( , )

x y

p x y

s s
 is a measure of intensity of linear relationship between X and Y and 

is called Karl Pearson’s Product Moment Correlation Coeffi cient or simply 

correlation coeffi cient between X and Y. It is denoted by r(X, Y) or rXY
 or simply r.

Thus, rXY = 
2 2

{[ ( )][ ( )]}

{ ( )} { ( )}

E X E X Y E Y

E X E X E Y E Y

- -

- -
 (1)

since sx, the standard deviation of X is the positive square root of the variance 

of X.

Now,    E[{X – E(X)}{Y – E(Y)}]

  = E[XY) – E(Y) · X – E(X) · Y + E(X) · E(Y)]

  = E(XY) – E(Y) · E(X) – E(X) · E(Y) + E(X) · E(Y)

[∵ E(X) and E(Y) are non-random constants]

  = E(XY) – E(X) · E(Y) (2)

Also we know that E{X – E(X)}2 = E(X2) – {E(X)}2 (3)

and                          E{Y – E(Y)}2 = E(Y2) – {E(Y)}2 (4)

Using (2), (3) and (4) in (1), we get

 rXY = 
2 2 2 2

( ) ( ) ( )

{ ( ) ( )}{ ( ) ( )}

E XY E X E Y

E X E X E Y E Y

- ◊

- -
 (5)

where E2(X) means {E(X)}2.
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We will mainly deal with linear correlation of discrete RV’s X and Y. X will 

take the values x1, x2, ..., xn with frequency 1 each and Y will simultaneously take 

the values y1, y2, ..., yn with frequency 1 each. Hence, E(X) = 
1

ix
n

Â ; E(X2) = 

21 1
, ( )i i ix E XY x y

n n
=Â Â  etc. Using these values in (5), the working formula 

for the computation of rXY is got as

 rXY = 
S - S S

Ï ¸ Ï ¸Ô Ô Ô ÔÊ ˆ Ê ˆS - S S - SÌ ˝ Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ô Ô Ô ÔÓ ˛ Ó ˛

2 2

2 2

1 1 1

1 1 1 1

i i i i

i i i i

x y x y
n n n

x x y y
n n n n

 (6)

or rXY = 
S - S ◊ S

S - SS - S 2 22 2 ( )( )

n xy x y

n y yn x x[ \\ [
 (7)

Properties of Correlation Coeffi cient

 1. –1 £ rXY £ 1 or |Cov (X, Y)| £ sX · sY.

  Let us consider

      E[a{X – E(X)} + {Y – E(Y)}]2 = a2 sx
2 + 2a CXY + sY

2 (1)

  The R.H.S. expression is a quadratic expression in a, that is a real 

quantity. It is positive, as it is the expected values of a perfect square.

  Hence, by the property of quadratic expressions, the discriminant of the 

R.H.S. £ 0

  i.e., 
2 2 24 4 0XY X YC s s- £

  i.e., 
2 2 2
XY X YC s s£ ◊  (2)

  i.e., 

2

2 2
1XY

X Y

C

s s
£

◊

  i.e., 2 1XYr £

  i.e., |rXY| £ 1 or –1 £ rXY £ 1

  From step (2), it is clear that |CXY| £ sX · sY

Note  When 0 < rXY £ 1, the correlation between X and Y is said to be positive or direct.

 When –1 £ rXY £ 0, the correlation is said to be negative or inverse.

 When –1 £ rXY £ –0.5 or 0.5 £ rXY £ 1, the correlation is assumed to be high, otherwise the 

correlation is assumed to be poor.
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 2. Correlation coeffi cient is independent of change of origin and scale.

 i.e., if 
X a

U
h

-
=  and 

Y b
V

k

-
= , where h, k > 0, then rXY = rUV.

 By the transformations, X = a + hU and Y = b + kV

\ E(X) = a + hE(U) and E(Y) = b + kE(V)

\ X – E(X) = h(U – E(U)} and Y – E(Y) = k{V – E(V)}

Then CXY = E[h{U – E(U)} · k{V – E(V)} = hk CUV

 sX
2 = E[h2{U – E(U)}2] = h2 sU

2

 sY
2 = E[k2{V – E(V)}2] = k2 sV

2

\ rXY = 
2 2 2 2 2 2

Cov( , ) UV

X Y U V

hk CX Y

h ks s s s
=

◊ ◊ ◊

  = UV
UV

U V

C
r

s s
=

◊

Note  If  X and Y take considerably large values, computation of  rXY will become diffi cult. In 

such problems, we may introduce change of  origin and scale and compute r using the above property.

 3. Two independent RV’s X and Y are uncorrelated, but two uncorrelated 

RV’s need not be independent.

  When X and Y are independent, E(XY) = E(X) · E(Y).

  \  CXY = 0 and hence rXY = 0

  viz., X and Y are uncorrelated.

  The converse is not true, since E(XY) = E(X) · E(Y), when rXY = 0.

  This does not imply that X and Y are independent, as X and Y are 

independent only when f(x, y) = fX(x) · fY(y).

Note  When E(XY) = 0, X and Y are said to be orthogonal RV’s.

4. rXY = 

2 2 2
( )

2

X Y X Y

X Y

s s s

s s

-+ -

Let Z = X – Y. Then E(Z) = E(X) – E(Y)

\ Z – E(Z) = [X – E(X)] – [Y – E(Y)]

\ sZ
2 = E[Z – E(Z)]2 – E[{X – E(X)} – [Y – E(Y)}]2

  = E{X – E(X)}2 + E[{Y – E(Y)}2 – 2E[{X – E(X)}{Y – E(Y)}] 

  = 2 2 2X Y XYCs s+ -
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\ CXY = 
2 2 2

2

X Y Zs s s+ -

\ rXY = 

2 2 2
( )

2

X Y X YXY

X Y X Y

C s s s

s s s s

-+ -
=

Similarly, we can prove that

 
2
( )X Ys +  = 

2 2 2X Y XYCs s+ +

and hence, rXY = 

2 2 2
( )

2

X Y X Y

X Y

s s s

s s

+ - -

Rank Correlation Coeffi cient

Sometimes the actual numerical values of X and Y may not be available, but the 

positions of the actual values arranged in order of merit (ranks) only may be 

available. The ranks of X and Y will in general, be different and hence may be 

considered as random variables. Let them be denoted by U and V. The correlation 

coeffi cient between U and V is called the rank correlation coeffi cient between 

(the ranks of) X, Y and denoted by rXY.

Let us now derive a formula for rXY or rUV. Since U represents ranks of n 

values of X, U takes the values 1, 2, 3, ..., n.

Similarly, V takes the same values 1, 2, 3, ..., n in a different order.

 E(U) = 
1 1

( ) (1 2 )
2

n
E V n

n

+
= + + + = 

 E(U2) = 2 2 2 21 ( 1)(2 1)
( ) (1 2 )

6

n n
E V n

n

+ +
= + + + = 

\ sU
2 = 

2 2 2( ) ( )V E U E Us = -

  = 
2( 1)(2 1) ( 1)

6 4

n n n+ + +
-

  = 
( 1)

{2(2 1) 3( 1)}
12

n
n n

+
+ - +

  = 
2 1

12

n -

Let D = U – V \ E(D) = 0

and sD
2 = E(D2)

By Property (4) given above,

 rXY = 

2 2 2

2

U V D
UV

U V

r
s s s

s s

+ -
= , where D = U – V
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  = 

2
2

2

1

6

1
2

12

D

n

n

s
Ê ˆ-

-Á ˜Ë ¯
Ê ˆ-
Á ˜Ë ¯

  = 
2

2

2 2

6 6 ( )
1 or 1

1 1
D

E D

n n
s- -

- -

  = 
S È ˘- = SÍ ˙- Î ˚

∵

2
2 2

2

6 1
1 ( )

( 1)

d
E D d

nn n

Note  The formula for the rank correlation coeffi cient is known as spearman’s formula. 

The values of  rXY and rXY (or rUV) will be, in general, different.

Worked Example 4(B)

Example 1

Compute the coeffi cient of correlation between X and Y, using the following data:

X: 1 3 5 7 8 10

Y: 8 12 15 17 18 20

xi yi xi
2

yi
2

xi yi

1 8 1 64 8

3 12 9 144 36

5 15 25 225 75

7 17 49 289 119

8 18 64 324 144

10 20 100 400 200

34 90 248 1446 352

Thus, n = 6

 Sxi = 34, Syi = 90

 Sxi
2 = 248, Syi

2 = 1446

 Sxiyi = 582

 rXY = 
2 2 2 2{ ( ) }{ ( ) }

n xy x y

n x x n y y

S - S ◊ S

S - S S - S

  = 
2 2

6 582 34 90

{6 248 (34) }{6 1446 (90) }

¥ - ¥

¥ - ¥ -
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  = 
432

0.9879
332 576

=
¥

Example 2

Compute the coeffi cients of correlation between X and Y using the following 

data:

X: 65 67 66 71 67 70 68 69

Y: 67 68 68 70 64 67 72 70

We effect change of origin in respect of both X and Y. The new origins are 

chosen at or near the average of extreme values. Thus, we take 
65 71

68
2

+
=  as 

the new origin for X and 
64 72

68
2

+
=  as the new origin for Y. viz., we put ui = 

(xi – 68) and vi = yi – 68 and fi nd rUV.

X = xi Y = yi ui = xi – 68  vi = yi – 68 ui
2

v i
2

ui v i

65 67 –3 –1 9 1 3

67 68 –1 0 1 0 0

66 68 –2 0 4 0 0

71 70 3 2 9 4 6

67 64 –1 –4 1 16 4

70 67 2 –1 4 1 –2

68 72 0 4 0 16 0

69 70 1 2 1 1 2

Total –1 2 29 39 13

 rXY = rUV = 
2 2 2 2{ ( ) }{ ( ) }

n u u

n u u n

S - S ◊ S

S - S S - S

v v

v v

  = 
¥ - - ¥

= =
¥ - ¥ - ¥
8 13 ( 1) 2 106

0.3974
(8 29 1)(8 39 4) 231 308

Example 3

Find the coeffi cient of correlation between X and Y using the following data:

X: 5 10 15 20 25

Y: 16 19 23 26 30

As the values of X are in arithmetic progression, we make the change of 

origin and scale, by choosing the middle most value 15 as the new origin and the 

common difference 5 as the new scale.
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i.e., we put 
15

5

X
U

-
=

As the values of Y are not in A.P., we are content with effecting a change of 

origin only, i.e., we put 
30 16

23
2

V Y Y
+Ê ˆ= - = -Á ˜Ë ¯

.

x y
15

5

x
u

-
= v = y – 23 u

2
v

2
uv

5 16 –2 –7 4 49 14

10 19 –1 –4 1 16 4

15 23 0 0 0 0 0

20 26 1 3 1 9 3

25 30 2 7 4 49 14

Total 0 –1 10 123 35

 r XY = r UV = 
S - S ◊ S

S - S S - S2 2 2 2{ ( ) }{{ ( ) }

n u u

n u u n

v v

v v

  = 
5 35 0 ( 1)

5 10 0) (5 125 1)

¥ - ¥ -
¥ - ¥ -

  = 
175

0.9907
50 624

=
¥

Example 4

The following table gives the bivariate frequency distribution of marks in an 

intelligence test obtained by 100 students according to their ages:

Age (x) in yrs 

Marks (y) 18 19 20 21 Total

10–20 4 2 2 – 8

20–30 5 4 6 4 19

30–40 6 8 10 11 35

40–50 4 4 6 8 22

50–60 – 2 4 4 10

60–70 – 2 3 1 6

Total 19 22 31 28 100

Calculate the coeffi cient of correlation between age and intelligence.

Since the frequencies of various values of x and y are not equal to 1 each the 

formula for the computation of rXY is taken with a slight modifi cation as given 

below:
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 rXY = r UV = 
S S ◊ S

S - S S - S2 2 2 2{ ( ) }{ ( ) }

XY X Y

X X Y Y

N f u f u f

N f u f u N f f

v - v

v v

 (1)

where u = x – 20, 
35

10

y -
=v , fX represents frequencies of X-distribution, fY 

represents frequencies of Y-distribution and fXY are the cell frequencies.

Mid y/mid x 18 19 20 21 fY v fYv fYv
2

fXY uv

15 4 2 2 – 8 –2 –16 32 20

25 5 4 6 4 19 –1 –19 19 10

35 6 8 10 11 35 0 0 0 0

45 4 4 6 8 22 1 22 22 –4

55 – 2 4 4 10 2 20 40 4

65 – 2 3 1 6 3 18 54 –3

fX 19 22 31 28 100 Total 5 167 27

u –2 –1 0 1 Total

fXu –38 –22 0 28 –32

fXu
2 76 22 0 28 126

SfXY uv 18 –6 0 15 27

Note  SfXY uV for the fi rst row of  the table is computed as follows.

 SfXYuv = f11 u1 v1 + f12 u2 v1 + f13 u3 v1 + f14 u4 v1

 = 4(–2) (–2) + 2(–1) (–2) + 2(0) + 0(1) (–2)

  = 20

Similarly, other SfXYuv values are computed. Value of (SSfXYuv) obtained as 

the total of the entries of the last column and as that of the last row must tally.

Using the relevant values obtained in the table in (1), we have

 rXY = 
¥ - - ¥

¥ - - ¥ -2 2

100 27 ( 32) 5

{100 126 ( 32) }{100 167 5 }

  = 
2860

0.1897
13624 16675

=
¥

Example 5

Calculate the correlation coeffi cient for the following ages of husbands (X) and 

wives (Y), using only standard deviations of X and Y:

X: 23 27 28 28 29 30 31 33 35 36

Y: 18 20 22 27 21 29 27 29 28 29
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x y u = x – 30 v = y – 24 u
2

v
2

d = x – y d
2

23 18 –7 –6 49 36 5 25

27 20 –3 –4 9 16 7 49

28 22 –2 –2 4 4 6 36

28 27 –2 3 4 9 1 1

29 21 –1 –3 1 9 8 64

30 29 0 5 0 25 1 1

31 27 1 3 1 9 4 16

33 29 3 5 9 25 4 16

35 28 5 4 25 16 7 49

36 29 6 5 36 25 7 49

Total 0 10 138 174 50 306

 2
Xs  = 

2

21 1 1
138 13.8

10
u u

n n

Ê ˆS - S = ¥ =Á ˜Ë ¯

 2
Ys  = 

2 2

21 1 1 10
174 16.4

10 10n n

Ê ˆ Ê ˆS - S = ¥ - =Á ˜ Á ˜Ë ¯ Ë ¯
v v

 
2
( )X Ys -  = 

2 2

2 21 1 1 50
306 5.6

10 10
D d d

n n
s

Ê ˆ Ê ˆ= S - S = ¥ - =Á ˜ Á ˜Ë ¯ Ë ¯

 rXY = 
2 2 2

13.8 16.4 5.6

2 2 13.8 16.4

X Y D

X Y

s s s

s s

+ - + -
=

¥ ¥

  = 
24.6

0.8176
30.0879

=

Example 6

If the independent random variables X and Y have the variances 36 and 16 

respectively, fi nd the correlation coeffi cient between (X + Y) and (X – Y).

Let U = X + Y and V = X – Y

 E(U) = E(X) + E(Y); E(V) = E(X) – E(Y)

 E(UV) = E(X2 – Y2) = E(X2) – E(Y2)

 E(U2) = E{(X + Y)2} = E(X2) + E(Y2) + 2E(XY)

 E(V2) = E(X2) + E(Y2) – 2E(XY)

 CUV = E(UV) – E(U) · E(V)

  = E(X2) – E(Y2) – {E
2(X) – E2(Y)}

  = [E(X2) – E2(X)] – [E(Y2) –E
2(Y)]
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  = 
2 2 36 16 20X Ys s- = - =

 2
Us  = E(U2) – E2(U)

  = {E(X2) + E(Y2) + 2E(XY)} – {E
2(X) + E2(Y) + 2E(X) · E(Y)}

  = [E(X2) – E2(X)] + [E(Y2) –E
2(Y)] + 2[E(XY) – E(X) · E(Y)]

  = 36 + 16 + 2 × 0

[∵ X and Y are independent and hence uncorrelated]

  = 52

Similarly,           
2 52Vs =

Now, rUV = 
20 5

52 13

UV

U V

C

s s
= =

◊

Example 7

If X, Y and Z are uncorrelated RV’s with zero means and standard deviations 5, 12 

and 9 respectively and if U = X + Y and V = Y + Z, fi nd the correlation coeffi cient 

between U and V.

 E(X) = E(Y) = E(Z) = 0

 Var(X) = E(X2) – E2(X) = 25 \ E(X2) = 25

Similarly, E(Y2) = 144 and E(Z2) = 81

X and Y are uncorrelated.

\ rXY = 0, i.e., E(XY) – E(X) · E(Y) = 0

\ E(XY) = 0. Similarly E(YZ) = 0; E(ZX) = 0

Now, E(U) = E(X + Y) = 0 and E(V) = 0

 E(U2) = E(X2 + Y2 + 2XY)

  = 25 + 144 + 2 × 0 = 169

 E(V2) = E(Y2 + Z2 + 2YZ)

  = 144 + 81 + 2 × 0 = 225

\ sU
2
 = E(U2) – E2(U) = 169

and sV
2
 = E(V2) – E2(V) = 225

 E(UV) = E{(X + Y) (Y + Z)}

  = E(XY) + E(XZ) + E(YZ) + E(Y2)
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  = 0 + 0 + 0 + 144 = 144

 rUV = 
( ) ( ) ( ) 144 48

13 15 65U V

E UV E U E V

s s

- ◊
= =

◊ ¥

Example 8

If X and Y are two RV’s with variances sX
2 and sY

2 respectively, fi nd the value 

of k, if U = X + kY and X

Y

V X Y
s

s
= + ◊  are uncorrelated.

U and V are uncorrelated.

\ Cov (U, V) = 0

i.e.,        E(UV) – E(U) · E(V) = 0

i.e.,       
s s

s s

Ï ¸Ê ˆ Ê ˆÔ Ô+ + ◊ - + ◊ + =Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ô ÔÓ ˛
( ) ( ) 0X X

Y Y

E X kY X Y E X kY E X Y

i.e.,  2 2X X

Y Y

E X k Y k XY
s s

s s

Ï ¸Ê ˆÔ Ô+ ◊ + +Ì ˝Á ˜Ë ¯Ô ÔÓ ˛

 

{ ( ) ( )} ( ) ( ) 0X

Y

E X kE Y E X E Y
s

s

È ˘Ï ¸
- + + =Í ˙Ì ˝

Í ˙Ó ˛Î ˚

i.e.,  2 2( ) ( ) ( )X X

Y Y

E X k E Y k E XY
s s

s s

Ê ˆ
+ + +Á ˜Ë ¯

 

2 2( ) k ( ) ( ) ( ) 0X X

Y Y

E X E Y k E X E Y
s s

s s

È ˘Ê ˆ
- + + + ◊ =Í ˙Á ˜Ë ¯Í ˙Î ˚

i.e.,   2 2 2 2{ ( ) ( )} { ( ) ( )}X

Y

k
E X E X E Y E Y

s

s
- + -

 

{ ( ) ( ) ( )} 0X

Y

k E XY E X E Y
s

s

Ê ˆ
+ + - ◊ =Á ˜Ë ¯

i.e.,  
2 2 Cov( , ) 0X X
X Y

Y Y

k k X Y
s s

s s
s s

Ê ˆ
+ ◊ + + =Á ˜Ë ¯

Dividing throughout by sX,

 

cov( , )
( ) ( ) 0X Y X Y

X Y

X Y
k ks s s s

s s
+ + + ◊ =

i.e. (sX + ksY) + (1 + rXY) = 0
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Assuming that rXY π –1, we get

 sX + ksY = 0

\ k = 
s

s
- X

Y

Example 9

If (X, Y) is a two-dimensional RV uniformly distributed over the triangular region 

R bounded by y = 0, x = 3 and y = 4/3 x. Find fX(x), fY(y), E(X), Var(X), E(Y). 

Var(Y) and rXY.

Fig. 4.4

Since (X, Y) is uniformly distributed, f(x, y) = a constant = k

Now, ( , ) d d 1f x y x y =ÚÚ

i.e., 

4 3

0 3 /4

d d 1
y

k x y =Ú Ú

i.e., 

4

0

3
3 d 1

4

y
k y

Ê ˆ- =Á ˜Ë ¯Ú
i.e., 6k = 1

\ k = 
1

6

 fY(y) = 

3

3 /4

1 1
d (4 ), 0 4

6 8
y

x y y= - < <Ú

 fX(x) = 

4 /3

3

1 2
d , 0 3

6 9

x

y x x= < <Ú

 E(X) = 

3
2

0

2
( ) d d 2

9
Xxf x x x x= =Ú Ú

 E(Y) = 

4

0

4
( ) d (4 ) d

8 3
Y

y
yf y y y y= ¥ - =Ú Ú
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 E(X2) = 

3
3

0

2 9
d

9 2
x x¥ =Ú

 E(Y2) = 

4 2

0

8
(4 ) d

8 3

y
y y¥ - =Ú

 Var(X) = E(X2) – {E(X)}2 = 
9 1

4
2 2

- =

 Var(Y) = E(Y2) – {E(Y)}2 = 
8 16 8

3 9 9
- =

 E(XY) = 

4 3

0 3 /4

1
d d

6
y

xy x yÚ Ú

  = 

4
2

0

3
(16 ) d 3

64
y y y- =Ú

 rXY = 

4
3 2

( ) ( ) ( ) 13

21 2
2

32

x y

E XY E X E Y

s s

- ¥- ¥
= =

¥

Example 10

Find the correlation co-effi cient between X and Y, which are jointly normally 

distributed with

 f(x, y) = 
2 2

2 2 22

1 1 2
exp

2(1 )2 1 x yx yx y

x rxy y

rr s ss sps s

Ï ¸Ê ˆÔ Ô- - +Á ˜Ì ˝
- Ë ¯- Ô ÔÓ ˛

    

2
2 2 2

2

2 2 2

2
(1 )

x y x yx y y

x rxy y x ry y
r

s s s ss s s

Ê ˆ
- + = - + -Á ˜

Ë ¯

  = 
s

ss s

Ê ˆ
- + -Á ˜

Ë ¯

2
2

2

2 2

1
(1 )

yx y

ry x y
x r

 E(XY) = 
2

1
exp

2 1x y rps s

• •

-• -•-
Ú Ú

     

2
2 2

2 2 2

1 1 (1 )
d d

2(1 )

x

yx y

ry r y
x xy x y

r

s

ss s

Ï ¸È ˘Ê ˆ -Ô ÔÍ ˙- - +Ì ˝Á ˜Í ˙- Ë ¯Ô ÔÎ ˚Ó ˛
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  = 
2

2 2

1
exp

22 ( (1 ) 2yy x

y x
y

rss p s p

• •

-• -•

Ê ˆ-
Á ˜
Ë ¯ -

Ú Ú

  

s

s

s

Ï ¸Ê ˆ
Ô Ô- -Ô ÔÁ ˜Ì ˝Ë ¯
Ô Ô

-Ô ÔÓ ˛

2

2 2
exp d d

2(1 )

x

y

x

ry
x

x y
r

 (1)

The inner integral is the mean of the normal distribution with mean 
x

y

rys

s
 and 

variance s- 2 2(1 ) Xr .

\ the inner integral = 
x

y

rys

s

Using this value in (1),

 E(XY) = 
2

2

2

1
exp d

22

x

y yy

r y
y y

s

s ss p

•

-•

Ê ˆÊ ˆ
¥ -Á ˜Á ˜

Ë ¯ Ë ¯
Ú

  = 
s

s
s

2( ) for (0, )x
Y

y

r
E Y N

  = 2x
Y

y

rs
s

s
¥

  = rsXsY

\ rXY = 
( ) ( ) ( )

x y

E XY E X E y
r

s s

-
=

Example 11

Ten students got the following percentage of marks in Mathematics and Physical 

sciences:

Students: 1 2 3 4 5 6 7 8 9 10

Marks in

Mathematics: 78 36 98 25 75 82 90 62 65 39

Marks in

Phy. Sciences: 84 51 91 60 68 62 86 58 63 47

Calculate the rank correlation coeffi cient.

Denoting the ranks in Mathematics and in Phy. Sciences by U and V, we have 

the following values of U and V:

U: 4 9 1 10 5 3 2 7 6 8

V: 3 9 1 7 4 6 2 8 5 10

D: 1 0 0 3 1 –3 0 –1 1 –2

D
2: 1 0 0 9 1 9 0 1 1 4 :Sd

2 = 26
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 rXY = rUV = 
S

-
-

2

2

6
1

( 1)

d

n n

  = 
6 26

1 0.8424
10 99

¥
- =

¥

Example 12

Ten competitors in a beauty contest were ranked by three judges as follows:

Competitors

Judges 1 2 3 4 5 6 7 8 9 10

A: 6 5 3 10 2 4 9 7 8 1

B: 5 8 4 7 10 2 1 6 9 3

C: 4 9 8 1 2 3 10 5 7 6

Discuss which pair of judges have the nearest approach to common taste of 

beauty.

Rank by A Rank by B Rank by C d1 = d2 = d3 = d1
2

d2
2

d3
2

(U) (V) (W) U – V V – W U – W

6 5 4 1 1 2 1 1 4

5 8 9 –3 –1 –4 9 1 16

3 4 8 –1 –4 –5 1 16 25

10 7 1 3 6 9 9 36 81

2 10 2 –8 8 0 64 64 0

4 2 3 2 –1 1 4 1 1

9 1 10 8 –9 –1 64 81 1

7 6 5 1 1 2 1 1 4

8 9 7 –1 2 1 1 4 1

1 3 6 –2 –3 –5 4 9 25

Total: 158 214 158

 rUV = 
2
1

2

6 6 158
1 1 0.0424

10 99( 1)

d

n n

S ¥
- = - =

¥-

 rVW = 
2
2

2

6 6 214
1 1 0.2970

10 99( 1)

d

n n

S ¥
- = - = -

¥-

 rUW = 
2
3

2

6 6 158
1 1 0.0424

10 99( 1)

d

n n

S ¥
- = - =

¥-
Since rUV is maximum, the judges A and B may be considered to have common 

taste of beauty to some extent compared to other pairs of judges.
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Exercise 4(B)

Part-A (Short-answer Questions)

 1. What is the scatter diagram? What is its role in correlation analysis?

 2. What do you mean by correlation between two random variables?

 3. What is linear correlation? How will you fi nd that two RV’s are linearly 

correlated?

 4. Defi ne covariance of X, Y and coeffi cient of correlation between X and Y.

 5. Why is rXY preferred for measuring the degree of linear correlation to 

Cov (X, Y)?

 6. State the properties of correlation coeffi cient.

 7. State two different formulas used to compute rXY.

 8. Defi ne rank correlation coeffi cient and write down the formula for 

computing it.

 9. Prove that –1 £ rXY £ 1.

 10. Prove that 
2 2
( ) ( ) 4 Cov ( , )X Y X Y X Ys s+ -- =

 11. If CXY is the covariance of X and Y, prove that CXY = E(XY) – E(X) · E(Y).

 12. If X and Y are independent RV’s prove that rXY = 0. Is the converse true?

 13. If X and Y are uncorrelated, prove that Var(X + Y) = Var(X) + Var(Y).

 14. When are two RVs said to be orthogonal?

Part-B

 15. Ten students got the following marks in Mathematics and Basic Engi-

neering:

Marks in 

Mathematics } 78 36 98 25 75 82 90 62 65 39

Marks in

Basic Engg. } 84 51 91 60 68 62 86 58 53 47

  Calculate the coeffi cient of correlation.

 16. Calculate the correlation coeffi cient between X and Y from the following 

data:

X: 65 66 67 67 68 69 70 72
Y: 67 68 65 68 72 72 69 71

 17. Find the coeffi cient of correlation between X and Y using the following 

data:

X: 5.5 3.6 2.6 3.4 3.1 2.7 3.0 3.1 3.2 3.8

Y: 27 36 39 39 32 35 40 36 44 36

 18. Compute the coeffi cient of correlation between X and Y from the 

following data:

X: 80 45 55 56 58 60 65 68 70 75 85

Y: 82 56 50 48 60 62 64 65 70 74 90
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 19. Find the coeffi cient of correlation between X and Y from the following 

data:

X: 10 14 18 22 26 30
Y: 18 12 24 6 30 36

 20. Calculate the coeffi cient of correlation between X and Y, by fi nding 

variance only, from the following data:

X: 21 23 30 54 57 58 72 78 87 90
Y: 60 71 72 83 110 84 100 92 113 135

 21. Calculate rXY from the following data, where X represents production 

(in crore tons) and Y represents exports (in crore tons), using only the 

variances.

X: 55 56 58 59 60 60 62
Y: 35 38 38 39 44 43 44

 22. The following table gives the frequency of scores obtained by 65 students 

in a general knowledge test according to age groups. Measure the degree 

of linear relationship between age and general knowledge:

Test 

scores

Age in years

19 20 21 22

225 4 4 2 1

275 3 5 4 2

325 2 6 8 5

375 1 4 6 8

 23. Compute the value of rXY between X, the ages of husbands and Y the ages 

of wives from the following data:

Y       X 15–25 25–35 35–45 45–55 55–65 65–75 Total

15–25 1 1 – – – – 2

25–35 2 12 1 – – – 15

35–45 – 4 10 1 – – 15

45–55 – – 3 6 1 – 10

55–65 – – – 2 4 2 8

65–75 – – – – 1 2 3

Total 3 17 14 9 6 4 53

 24. Find the rank correlation coeffi cient between the ranks of the variable X 

and Y:

X: 10 15 12 17 13 16 24 14 22
Y: 30 42 45 46 33 34 40 35 39

 25. The competitors in a musical contest were ranked by the three judges A, 

B, C in the following order:

Rank by A:1 6 5 10 3 2 4 9 7 8

Rank by B:3 5 8 4 7 10 2 1 6 9

Rank by C:6 4 9 8 1 2 3 10 5 7
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  Using rank correlation technique, fi nd which pair of judges have more or 

less the same taste in music.

 26. If X, Y, Z are uncorrelated RVs having the same variance, fi nd the 

correlation coeffi cient between (X + Y) and (Y + Z).

 27. If X and Y are two correlated RVs with zero means, prove that

U = X cos a + Y sin a and V = X sin a – Y cos a are also uncorrelated.

 28. X and Y are independent RV’s with means 5 and 10 variances 4 and 9 

respectively. Obtain the correlation coeffi cient between U and V, where 

U = 3X + 4Y and V = 3X – Y.

 29. If X1, X2, X3 are three correlated RV’s having variances v1, v2, v3 

respectively, obtain the coeffi cient of correlation between (X1 + X2) and 

(X2 + X3).

 30. Show that (i) E{aX + bY} = aE(X) + bE(Y) and (ii) var(aX + bY) = a2 

var(X) + b2 var(Y) + 2abC(X, Y), where C(X, Y) is the covariance of (X, Y).

 31. It two RV’s are uncorrelated, prove that the variance of their sum is 

equal to the sum of their variances.

 32. If the joint density function of (X, Y) is given by f(x, y) = 2 – x – y, 0 £ x,  

y £ 1, fi nd E(X), E(Y), var(X), var(Y) and rXY.

 33. If the two dimensional RV (X, Y) is uniformly distributed in 0 £ x £ y £ 

1, fi nd E(X), E(Y), var(X), var(Y) and rXY.

 34. If the two dimensional RV (X, Y) is uniformly distributed over R, where 

R is defi ned by {(x, y)/x2 + y2 £ 1, y ≥ 0}, fi nd rXY.

 35. If the joint pdf of (X, Y) is given by f(x, y) = x + y, 0 £ x, y £ 1, fi nd rXY.

 36. Let X be a RV with mean value = 3 and variance = 2. Find the second 

moment of X about the origin. Another RV Y is defi ned by Y = –6X + 22. 

Find the mean value of Y and the correlation of X and Y.

Regression

When the random variables X and Y are linearly correlated, the points plotted 

on the scatter diagram, corresponding to n pairs of observed values of X and Y, 

will have a tendency to cluster round a straight line. This straight is called the 

regression line. The regression line can be taken as the best fi tting straight line 

for the observed pairs of values of X and Y in the least square sense, with which 

the students are familiar.

When two RV’s X and Y are linearly correlated, we may not know which 

variable takes independent values. If we treat X as the independent variable and 

hence assume that the values of Y depend on those of X, the regression line is 

called the regression line of Y on X. If we assume that the values of X depend 

on those of the independent variable Y, the regression line of X on Y is obtained. 

Thus in situations where the distinction cannot be made between the RVs X and 

Y as to which is the independent variable and which is the dependent variable, 

there will be two regression lines. However, when the value of Y(X) is to be 

predicted corresponding to a specifi ed value of X(Y), we should make use of the 

regression line of Y(X) on X(Y).
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Equation of the Regression Line of Y on X

The regression line of Y on X is the best-fi tting straight line for the observed 

pairs of values (x1, y1), (x2, y2), ..., (xn, yn), based on the assumption that x is the 

independent variable and y is the dependent variable. Hence, let the equation of 

the regression line of Y on X be assumed as y = ax + b. (1)

By the principle of least squares, the normal equations which give the values 

of a and b.

are Syi = a S xi + nb (2)

and S xiyi = a S x2
i + b S xi (3)

Dividing the equation (2) by n, we get

 y  = a x b+  (4)

where ( )x E X=  and ( )y E Y= . (1) – (4) gives the required equation as

 y y-  = ( )a x x-  (5)

Eliminating b between equations (2) and (3),

we get a = 
2 2( )

i i i i

i i

n x y x y

n x x

S - S ◊ S
S - S

  = 

Ê ˆ Ê ˆS - S ◊ SÁ ˜ Á ˜Ë ¯ Ë ¯

Ê ˆS - SÁ ˜Ë ¯

2

2

1 1 1

1 1

i i i i

i i

x y x y
n n n

x x
n n

or a = 
2 2 2

( ) ( ) ( )

( ) ( )

XY

X

pE XY E X E Y

E X E X s

- ◊
=

-
 (6)

Using (6) in (5), we get the equation of the regression line of Y on X as

 y y-  = 2
( )XY

X

p
x x

s
-  (7)

or y y-  = ( )XY Y

X

r
x x

s

s
-  (8)

   

XY
XY

X Y

p
r

s s

È ˘
=Í ˙

Î ˚
∵

In a similar manner, assuming the equation of the regression line of X and Y as x 

= ay + b and using the equations

 Sxi = a Syi + nb and Sxiyi = a Syi
2 + b Syi,
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we can get the equation of the regression line of X on Y as

 x x-  = 2
( )XY

Y

p
y y

s
-  (9)

or x x-  = ( )XY X

Y

r
y y

s

s
-  (10)

Note  

1. 
2

XY

X

p

s
 or XY Y

X

r s

s
 is called the regression coeffi cient of  Y on X and denoted by b1 or 

bYX. 
2

XY

Y

p

s
 or 

XY X

Y

r s

s
 is called the regression coeffi cient of  X on Y and denoted by b2 

or bXY. 

2. Clearly, b1b2 = rX
2
Y, i.e., rXY is the geometric mean of  b1 and b2.

 \       rXY = 
1 2b b±

 The sign of  rXY is the same as that of  b1 or b2, as 
1

Y
xy

X

b r
s

s
=  and b2 = rXY Y

X

s

s
 

have the same sign as rXY (∵ sX and sY are positive).

 Also, 1

2

b

b
 = 

2

2
Y

X

s

s

3. When there is perfect linear correlation between X and Y, viz., when rXY = ±1, the two 

regression lines coincide.

4. The point of  intersection of  the two regression lines is clearly the point whose co-ordinates 

are ( , )x y .

5. When there is no linear correlation between X and Y, viz., when rXY = 0, the equations 

of  the regression lines become y y=  and x x= , which are at right angles.

Standard Error of Estimate of Y

Although we use the regression line of Y on X to predict the value of Y 

corresponding to a specifi ed value of X we may also use it to estimate the value of 

Y corresponding to an observed value of X = xi, say. The value of Y estimated in 

this manner need not, in general, be equal to the corresponding observed value of 

Y, namely, yi. Hence, the difference between Y and YE is called the error estimate 

of Y. This error will vary from one observed value to the other and a random 

variable. The standard deviation of this RV (Y – YE) is called the standard error 

of estimate of Y and denoted by SY.
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Now, E{Y – YE} = ( )XY Y

X

r
E Y y X x

s

s

È ˘Ï ¸
- + -Í ˙Ì ˝

Í ˙Ó ˛Î ˚

  = ( ) ( )XY Y

X

r
y y x x

s

s
- - -

  = 0

 2
( )EY Ys -  = E{(Y – YE)2} – E2(Y – YE)

  = 

2

( )XY Y

X

r
E Y y X x

s

s

È ˘Ï ¸
- + -Í ˙Ì ˝

Í ˙Ó ˛Î ˚

  = 
s s

ss

È ˘
- + - - - -Í ˙

Í ˙Î ˚

2 2
2 2

2

2
( ) ( ) ( )( )XY Y XY Y

XX

r r
E Y y X x X x Y y

(i.e.) 
2
YS  = 

2 2
2 2

2

2
Cov( , )XY Y XY Y

Y X

XX

r r
X Y

s s
s s

ss
+ -

  = 2 2 2 22Y XY Y XY Yr rs s s+ ◊ -
 [∵ Cov (X, Y) = rXY sX sY]

  = 2 2 2(1 ) or 1XY Y Y XY Yr S rs s- = -  (1)

Similarly, the standard error estimate of X, denoted by SX is given by

 SX
2 = 2 2 2(1 ) or 1XY X X XY Xr S rs s- = -  (2)

Note  We may use (1) or (2) to prove that |rXY| £ 1.

 From (1), SY = 21 XY Yr s-

 Since SY and sY are positive, 1 – rX
2
Y ≥ 0

 \ rX
2
Y £ 1

 i.e., |rXY| £ 1 or –1 £ rXY £ 1]

Worked Example 4(C)

Example 1

Obtain the equations of the lines of regression from the following data:

X: 1 2 3 4 5 6 7

Y: 9 8 10 12 11 13 14
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X Y U = X – 4 V = Y – 11 U
2

V
2

UV

1  9 –3 –2 9 4 6

2  8 –2 –3 4 9 6

3 10 –1 –1 1 1 1

4 12 0 1 0 1 0

5 11 1 0 1 0 0

6 13 2 2 4 4 4

7 14 3 3 9 9 9

Total 0 0 28 28 26

 x  = E(X) = 
1

4 4u
n

+ S =

 y  = E(Y) = 
1

11 11
n

+ S =v

 
2
Xs  = 

2

21 1 1
28 4

7
u u

n n

Ê ˆS - S = ¥ =Á ˜Ë ¯

 
2
Ys  = 

2

21 1 1
28 4

7n n

Ê ˆS - S = ¥ =Á ˜Ë ¯
v v

 CXY = 
1 1 1 1

26 3.7
7

u u
n n n

Ê ˆ Ê ˆS - S ◊ S = ¥ =Á ˜ Á ˜Ë ¯ Ë ¯
v v

The regression line of Y on X is

 y – y  = 
2

( )XY

X

p
x x

s
-

i.e., y – 11 = 
3.7

( 4)
4

x -

i.e., 3.7x – 4y + 29.2 = 0

The regression line of X on Y is

 x – x  = 2
( )XY

X

p
y y

s
-

i.e., x – 4 = 
3.7

( 11)
4

y -

i.e., 4x – 3.7y + 24.7 = 0

Example 2

Obtain the equations of the regression lines from the following data, using the 

method of least squares. Hence, fi nd the coeffi cient of correlation between X and 

Y. Also estimate the value of (a) Y, when X = 38, and (b) X, when Y = 18.
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X: 22 26 29 30 31 31 34 35

Y: 20 20 21 29 27 24 27 31

Put U = X – 29 and V = Y – 27.

Let the equation of the regression line of Y on X be y = Ax + B or equivalently 

v = au + b (1)

The normal equations for fi nding a and b are

 a Su + nb = Sv (2)

and a Su
2 + bSv = S uv (3)

x y u = x – 29 v = y – 27 u
2

v
2

uv

22 20 –7 –7 49 49 49

26 20 –3 –7 9 49 21

29 21 0 –6 0 36 0

30 29 1 2 1 4 2

31 27 2 0 4 0 0

31 24 2 –3 4 9 –6

34 27 5 0 25 0 0

35 31 6 4 36 16 24

Total 6 –17 128 163 90

Using the relevant values from the table in (2) and (3), we have

 6a + 8b = –17 (2)¢

 128a + 6b = 90 (3)¢

Solving (2)¢ and (3)¢, we get

 a = 0.83; b = –2.75

Hence, the regression line of Y on X is

 y – 27 = 0.83 (x – 29) – 2.75

i.e., y = 0.83x + 0.18 (4)

Let the equation of the regression line of X on Y be x = Cy + D or equivalently 

u = cv + d (5)

The normal equations for fi nding c and d are

 cSv + nd = Su (6)

and cSv
2 + dSuv = Suv (7)

Using the relevant values from the table in (6) and (7), we have

 –17c + 8d = 6 (6)¢
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 163c – 17d = 90 (7)¢

Solving (6)¢ and (7)¢, we get

 c = 0.81; d = 2.47

Hence, the regression line of X on Y is

 x – 29 = 0.81 (y – 27) + 2.47

i.e., x = 0.81y + 9.60 (8)

Comparing the equation (4) with

 y – y  = ( )Y

X

r x x
s

s
-

We get Y

X

r
s

s
 = 0.83 (9)

Comparing the equation (8) with

 x – x  = ( )X

Y

r y y
s

s
-

We get X

Y

r
s

s
 = 0.81 (10)

From (9) and (10), we get r2 = 0.83 × 0.81

\ r = 0.82 
s s

s s

Ê ˆ
= =Á ˜Ë ¯

∵ 1 2and are both positiveY X

X Y

r r
b b

We use the equation (4) to estimate the value of Y when X = 38.

\ Y = 0.83 × 38 + 0.18 = 31.72

Using the equation (8) to estimate the value of X when Y = 18, we have

 X = 0.81 × 18 + 9.60 = 24.18

Example 3

A study of prices of rice at Chennai and Madurai gave the following data:

Chennai Madurai

Mean 19.5 17.75

S.D. 1.75 2.5

Also the coeffi cient of correlation between the two is 0.8. Estimate the most 

likely price of rice (a) at Chennai corresponding to the price of 18 at Madurai, 

and (b) at Madurai corresponding to the price of 17 at Chennai.
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Let the prices of rice at Chennai and Madurai be denoted by X and Y 

respectively. Then from the data,

x  = 19.5, y  = 17.75, sX = 1.75, sY = 2.5 and rXY = 0.8.

Regression line of X on Y is

 x – x  = ( )X

Y

r
y y

s

s
-

i.e., x – 19.5 = 
0.8 1.75

( 17.75)
2.5

y
¥

-

\  when y = 18,

 x = 
0.8 1.75

19.5 0.25
2.5

¥
+ ¥

  = 19.64

Regression line of Y on X is

 y – y  = ( )Y

X

r
x x

s

s
-

i.e., y – 17.75 = 
0.8 2.5

( 19.5)
1.75

x
¥

-

\  when x = 17,

 y = 
0.8 2.5

17.75 ( 2.5)
1.75

¥
+ ¥ -

  = 14.89

Example 4

In a partially destroyed laboratory record of an analysis of correlation data, the 

following results only are legible: Variable of X = 1. The regression equations are 

3x + 2y = 26 and 6x + y = 31. What were (a) the mean values of X and Y? (b) the 

standard deviation of Y? and (c) the correlation coeffi cient between X and Y?

 (a) Since the lines of regression intersect at ( x , y ) we have 3 x  + 2 y  = 26 

and 6 x  + y  = 31

  Solving these equations, we get x  = 4 and y  = 7.

 (b) Which of the two equations is the regression equation of Y on X and 

which one is the regression equation of X on Y are not known.

Let us tentatively assume that the fi rst equation is the regression line of X 

on Y and the second equation is the regression line of Y on X. Based on this 

assumption, the fi rst equation can be re-written as
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 x = 
2 26

3 3
y- +  (1)

and the other as y = – 6x + 31 (2)

Then bXY = 
2

3
-  and bXY = –6

\ rX
2
Y = bXY × bYX = 4

\ rXY = –2, which is absurd.

Hence, our tentative assumption is wrong.

\ the fi rst equation is the regression line of Y on X and re-written as

 y = 
3

13
2

x- +  (3)

The second equation is the regression line of X on Y and re-written as

 x = 
1 31

6 6
y- +  (4)

Hence, the correct bYX = 
3

2
-  and the correct bXY = 

1

6
-

\ rX
2
Y

 = 
1

4
YX XYb b◊ =

\ rXY = 
1

2
-  (∵ both bYX and bXY are negative)

(c) Now 
2

2

Y

X

s

s
 = 

3

2 9
1

6

YX

XY

b

b

-
= =

-

\ sY
2 = 9 × sx

2 = 9

\ sY = 3

Example 5

Given that x = 4y + 5 and y = kx + 4 are regression lines of X on Y and of Y on X 

respectively, show that 0 £ k £ 
1

4
. If k = 

1

16
, fi nd the means of X and Y and rXY. 

From the given equations, we note that

 bYX = k and bXY = 4

 rX
2
Y

 = bXY·bYX = 4k



4.44 Probability, Sta  s  cs and Random Processes

Since 0 £ rX
2
Y £ 1, wet get 0 £ 4k £ 1

\ 0 £ 
1

4
k £

When k = 21 1
,

16 4
XYr =

\ rXY = ±
1

2

But both bYX and bXY are positive.

\ rXY = 
1

2

When 
1

16
k = , the regression equations become

 x = 4y + 5 (1)

and y = 
1

4
16

x +  (2)

Solving equations (1) and (2), we get

 x = 28 and y = 5.75

\ x  = 28 and y  = 5.75

Example 6

Find the angle between the two lines of regression. Deduce the condition for the 

two lines to be (a) at right angles, and (b) coincident.

The equations of the regression lines

are y – y  = 
s

s
-( )Y

X

r x x  (1)

and  x – x  = ( )X

Y

r y y
s

s
-  (2) 

Slope of line (1) = 1, sayY

X

r m
s

s
=

Slope of line (2) = 2 , sayY

X

m
r

s

s
=

If q is the acute angle between the two lines, then

 tan q = 1 2

1 2

| |

1

m m

m m

-
+
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  = 
2

2
1

Y Y

X X

Y

X

r
r

s s

s s

s

s

-

+

  = 
2 2

1
X Y

X Y

r
r

s s

s s

-
◊

+

  = 

2

2 2

(1 )

| |

X Y

X Y

r

r

s s

s s

-
+

The two regression lines are at angles when 
2

p
q = , i.e., tan q = •

i.e., r = 0

\ when the linear correlation between X and Y is zero, the two lines of regression 

will be at right angles.

The two regression lines are coincident, when q = 0, i.e., when tan q = 0

i.e., when r = ±1.

\ when the correlation between X and Y is perfect, the two regression lines will 

coincide.

Example 7

For two RV’s X and Y with the same mean, the two regression equations are y = 

ax + b and x = cy + d. Find the common mean, ratio of the standard deviations 

and also show that 
1

1

b a

d c

-
=

-
.

If m is the common mean, the point (m, m) lies on y = ax + b and x = cy + d

[∵ they intersect at ( x , y )]

\ m = am + b (1)

 m = cm + d (2)

From (1), m = 
1

b

a-

From (2), m = 
1

d

c-

\ 
1

b

a-
 = 

1

d

c-
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\ 
b

d
 = 

1

1

a

c

-
-

Now, 
2

2

Y

X

s

s
 = YX

XY

b a

b c
=  \ Y

X

a

c

s

s
=

Example 8

Find the standard error of estimate of Y on X and of X on Y from the following 

data:

X: 1 2 3   4   5

Y: 2 5 9 13 14

x y x
2

y
2

xy

1 2 1 4 2

2 5 4 25 10

3 9 9 81 27

4 13 16 169 52

5 14 25 196 70

15 43 55 475 161

 rXY = 
2 2 2 2{ ( ) }{ ( ) }

n xy x y

n x x n y y

S - S ◊ S

S - S S - S

  = 
¥ - ¥

¥ - ¥ -2 2

5 161 15 43

{5 55 (15) }{5 475 (43) }

  = 
160

0.9866
50 526

=
¥

 sX
2 = 

2

21 1
x x

n n

Ê ˆS - SÁ ˜Ë ¯

  = 

2
1 1

55 15 2
5 5

Ê ˆ¥ - ¥ =Á ˜Ë ¯

\ sX = 1.4142

 sY
2 = 

2

21 1
y y

n n

Ê ˆS - SÁ ˜Ë ¯
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  = 

2
1 1

475 43
5 5

Ê ˆ¥ - ¥Á ˜Ë ¯

  = 21.04

\ sY = 4.5869

 SY = 2 21 1 (0.9866) 4.5869XY Yr s- ◊ = - ¥

  = 0.7484

 SX = 2 21 1 (0.9866) 1.4142XY Xr s- ◊ = - ¥

  = 0.2307

Exercise 4(C)

Part-A (Short-answer Questions)

 1. What do you mean by regression line? What is its use?

 2. For a given data of n pairs of values of X and Y, why should there be two 

regression lines?

 3. Write down the analytic equations of the regression lines?

 4. When will the two regression lines be (i) at right angles, and

(ii) coincident?

 5. Defi ne regression coeffi cients.

 6. Prove that the correlation coeffi cient is the geometric mean of the 

regression coeffi cients.

 7. Find the co-ordinates of the point of intersection of the regression lines.

 8. What do you mean by standard error of estimate?

 9. Write down the formulas for the standard errors of estimate of Y and X.

 10. In the usual notation prove that

 (i) rXY ·SX SY = 2(1 )XY XYr C-  and

 (ii) 
2

1 Xb S  = 
2

2 Yb S

Part-B

 11. Find the equations of the regression lines from the following data. Hence, 

calculate the coeffi cient of correlation between X and Y.

X: 62 64 65 69 70 71 72 74

Y: 126 125 139 145 165 152 180 208

 12. Find the equations of the regression lines from the following data. Also 

estimate the value of Y when X = 71 and the value of X when Y = 70.

X: 65 66 67 67 68 69 70 72

Y: 67 68 65 68 72 72 69 71
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 13. Find the equation of the regression line of Y on X using the method of 

least squares from the following data. Find the value of Y corresponding 

to X = 18.

X: 5 10 15 20 25

Y: 16 19 23 26 30

 14. Obtain the line of regression of X on Y using the method of least squares 

from the following data. Find the value of X when Y = 45.

X: 4.7 8.2 12.4 15.8 20.7 24.9 31.9 35.0 39.1 38.8

Y: 4.0 8.0 12.5 16.0 20.0 25.0 31.0 36.0 40.0 40.0

 15. Find the most likely price in Mumbai corresponding to the price of

Rs. 70 at Chennai and that in Chennai corresponding to the price of Rs. 75

at Mumbai from the following:

Chennai Mumbai

Mean 65 67

S.D. 2.5 3.5

  Coeffi cient of correlation between the prices in the two cities is 0.8.

 16. In a partially destroyed laboratory record of an analysis of correlation 

data, the following results only are legible.

  Variance of X = 9. Regression equations are 8x – 10y + 66 = 0 and 40x 

– 18y = 214. What were (i) the mean values of X and Y?

  (ii) the correlation coeffi cient between X and Y, and (iii) the standard 

deviation of Y?

 17. The equations of two regression lines got in a correlation analysis are 

3x + 12y = 19 and 3y + 9x = 46. Obtain (i) the correlation coeffi cient 

between X and Y, (ii) the mean values of X and Y, and (iii) the ratio of 

the coeffi cient of variation of X to that of Y.

 18. The equations of lines of regression are given by x + 2y – 5 = 0 and 2x + 

3y – 8 = 0 and variance of X is 12. Compute the values of x , y , sY
2 and 

rXY.

 19. The regression lines of Y on X and of X on Y are respectively y = a + bx 

and x = c + dy. Find the values of x , y, and rXY. Can you fi nd SX and SY 

from them?

 20. If the lines of regression of Y on X and X on Y are respectively a1x + 

b1y + c1 = 0 and a2x + b2y + c2 = 0, prove that a1b2 £ a2b1. Find also the 

coeffi cient of correlation between X and Y and the ratio of the coeffi cient 

of variability of Y to that of X.

Characteristic Function

Although higher order moments of a RV X may be obtained directly by using the 

defi nition of E(Xn), it will be easier in many problems to compute them through 

the characteristics function or equivalently through the moment generating 
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function of the RV X. While the characteristic function always exists, the moment 

generating function need out.

Moment Generating Function (MGF) of a RV X (discrete or continuous) is 

defi ned as E(etX), where t is a real variable and denoted as M(t).

If X is discrete, them M(t) = rtx
r

r

e pÂ ,

where X takes the values x1, x2, x3, ..., with probabilities p1, p2, p3, ...

If X is a continuous RV with density function f(x), then

 M(t) = ( )dtx
e f x x

•

-•
Ú

Properties of MGF

(Proofs of the properties are omitted, as the proofs of the corresponding properties 

of characteristic function will be given later.)

 1. M(t) = 
0

( )/n n

n

t E X n
•

=
Â

  i.e., E(Xn) = m¢n is the co-effi cient of 
n

t

n
 in the expansion of M(t) in 

series of powers of t.

 2. m¢n = E(Xn) = 

0

( )
n

n

t

d
M t

dt
=

È ˘
Í ˙
Î ˚

 3. If the MGF of X is MX(t) and if Y = aX + b, then MY(t) = ebt
MX(at).

 4. If X and Y are independent RVs and Z = X + Y, then MZ(t) = MX(t)

MY(t).

Characteristic function of a RV X (discrete or continuous) is defi ned as E(eiwX) 

and denoted as f(w).

If X is a discrete RV that can take the values x1, x2, ..., such that P(X = xr) = 

pr, then

 f(w) = 
ri x

r

r

e p
wÂ

If X is a continuous RV with density function f(x), then

 f(w) = ( )di x
e f x x

w
•

-•
Ú

Properties of Characteristic Function

 1. m¢n = E(Xn) = the coeffi cient of 
!

n n
i

n

w
 in the expansion of f(w) in series 

of ascending powers of iw.
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Proof

 f(w) = E(eiwX)

  = 
2 2 2

1
1 2

n n n
i X i X i X

E
n

w w wÊ ˆ
+ + + +Á ˜Ë ¯

 

  = 
2 2

21 ( ) ( )
1 2

i i
E X E X

w w
+ ¥ + ¥ + 

  = 
2 2

1 21
1 2

i iw w
m m+ + +¢ ¢  

i.e., f(w) = 
0

n n

n

n

i

n

w
m

•

=
¢Â  (1)

Hence, the result.

2. m¢n = 

0

1 d
( )

d

n

n n
i

w

f w
w

=

È ˘
Í ˙
Î ˚

Proof

Differentiating both sides of (1) with respect to w, n times and then putting

w = 0.

 [f(n) (w)]w = 0 = m¢n i
n

\ m¢n = ( )
0

1
[ ( )]n

n
i

wf w =

 3. If the characteristic function of a RV X is fX(w) and if Y = aX + b, then

 fy(w) = eibw
 fX(aw)

Proof

 fy(w) = E{e
iwY}

  = E{e
iw(aX + b)}

  = eibw
 E{e

ia(w)X}

  = eibw
 fX(aw)

 4. If X and Y are independent RVs, then

 fX + Y(w) = fX(w) × fY(w)

Proof

 fX + Y(w) = E{e
iw(X + Y)}

  = E{e
iwX × eiwY}
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  = E(eiwX) × E(eiwY) [since X and Y are independent]

  = fX(w) × fY(w)

 5. If the characteristic function of a continuous RV X with density function 

f(x) is f(w), then f(x) = 
1

( ) d
2

ix
e

wf w w
p

•
-

-•
Ú .

Proof

 f(w) = w
•

-•
Ú ( ) di x

f x e x

RS can be identifi ed as the Fourier transform of f(x).

Therefore, by Fourier inversion formula

 f(x) = 
1

( ) d
2

i x
e

wf w w
p

•
-

-•
Ú

 6. If the density function of X is known, the density function of Y = g(X) 

can be found from the CF of Y, provided Y = g(X) is one-to-one.

Proof

Let the density function of X be fX(x).

Then fg(X)(w) = ( ) ( )dig x
Xe f x x

w
•

-•
Ú

Put g(X) = Y and hence g(x) = y

Then fY(w) = ( ) d , sayiy
e h y y

w
•

-•
Ú

Therefore, h(y) is the density function of Y.

Cumulant Generating Function (CGF)

If M(t) is the MGF of a RV X, then loge M(t) is called the cumulant generating 

function of X and denoted by K(t).

The coeffi cient of 
!

r
t

r
 in the expansion of K(t) in ascending powers of t is 

called the rth order cumulant of X and denoted by lr.

i.e., K(t) = 
1

r
r

r

t

r

l•

=
Â

Also lr = 

=

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛ 0

d
( )

d

r

r

t

K t
t

If f(w) is the characteristic function of a RV X, then logef(w) is called the second 

characteristic function of X and denoted by y(w).
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The coeffi cient of 
r r

i

r

w
 in the expansion of y(w) in ascending powers of w is 

the rth order cumulant of X and denoted by lr.

Thus, y(w) = 
1

/ !r r
r

r

i rl w
•

=
Â

Also, lr = 

0

1 d
( )

d

r

r r
i

w

y w
w

=

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

Joint Characteristic Function

If (X, Y) is a two-dimensional RV, then 1 2( )
i X i Y

E e
w w+

 is called the joint 

characteristic function of (X, Y) and denoted by fXY(w1, w2).

It is easily verifi ed that

 (i) fXY(0, 0) = 1

 (ii) E{X
m Yn} = 

w w

f w w
w w

+

+
= =

È ˘∂
Í ˙

∂ ∂Í ˙Î ˚
1 2

1 2

1 2 0, 0

1
( )

m n

XYm n m m
i

 (iii) fX(w) = fXY(w, 0) and fY(w) = fXY(0, w)

 (iv) If X and Y are independent

  fXY(w1, w2) = fX(w1) × fX(w2) and conversely.

Worked Example 4(D)

Example 1

If X represents the outcome, when a fair die is tossed, fi nd the MGF of X and 

hence fi nd E(X) and Var(X).

The probability distribution of X is given by

 pi = 
1

( ) , 1, 2, ...,6
6

p X i i= = =

 M(t) = 
6

1

itx ti
i i

i i

e p e p
=

=Â Â

  = 2 3 4 5 61
( )

6

t t t t t t
e e e e e e+ + + + +

 E(X) = 0

7
[ ( )]

2
tM t = =¢
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 E(X2) = [M¢¢(t)]t = 0

  = 
2 3 4 5 6

0

1 91
( 4 9 16 25 36 )

6 6

t t t t t t
te e e e e e =+ + + + + =

\ Var(X) = 
91 49 35

6 4 12
- =

Example 2

If a RV X has the MGF 
3

( )
3

M t
t

=
-

, obtain the standard deviation of X.

 M(t) = 
23

1 /3 /9

3 1
3

t t
t

= + + + + •
Ê ˆ-Á ˜Ë ¯

  (1)

E(X) = coeffi cient of 
1

in (1)
1 3

t
=

E(X2) = coeffi cient of 
2 2

in (1)
2 9

t
=

 Var(X) = 2 2 1
( ) { ( )}

9
E X E X- =

\ sX = 
1

3

Example 3

Find the MGF of the binomial distribution and, hence, fi nd its mean and variance.

Binomial distribution is given by

 pr = p(X = r) = nCrp
r
q

n – r, r = 0, 1, 2, ..., n

\ M(t) = 
0

n
tr

r

r

e p
=
Â

  = 
0

n
tr r n r

r

r

e nC p q
-

=
Â

  = 
-

=
Â

0

( )
n

t r n r
r

r

nC p e q

  = (p e
t + q)n

 M¢(t) = n(p e
t + q)n – 1 × p e

t

 M¢¢(t) = np[(p e
t + q)n – 1 × et + (n – 1) (p e

t + q)n – 2 p e
2t]
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 E(X) = M¢(0) = np (since p + q = 1)

 E(X2) = M¢¢(0) = np [1 + (n – 1)p]

 Var(X) = E(X2) – {E(X)}2

  = np – np
2

  = npq

Example 4

Find the characteristic function of the Poisson distribution and hence, fi nd the 

values of the fi rst four central moments.

Poisson distribution is given by

 pr = P(X = r) = l l- = •/ 0,1, 2, ...,r
e r r

\ f(w) = 
0

/i r r

r

e e r
w l l

•
-

=
Â

  = 
0

( ) /i r

r

e e r
l wl

•
-

=
Â

  = 
)(1i ie e

e e e
w wl l l- - -=

 f(1)(w) = 
ie i

e e i e
wl l wl-

 f(2)(w) = 
w wl l w l wl l- + 2{ }

i ie i e i
i e e e i e i e

  = 2 2{ }
ii i e

i e e e e
wl w w ll l- +

 f(3)(w) = i2 le
–l

  2 2[{ 2 } { } ]
i ii i e i i e i

i e i e e e e e i e
w ww w l w w l wl l l+ + +

  = 
3 2 2 3{ 3 }

ie i i i
i e e e e e

wl l w w wl l l- + +

 f(4)(w) = 3 2 2 3[ { 3 }
ie i i i i

i e e i e e e e
wl l w w w wl l l l- + +

 2 2 3{ 6 3 }
ie i i i

e e i e i e
wl w w wl l+ + +

  = 4 2 2 3 3 4{ 7 6 }
ie i i i i

i e e e e e e
wl l w w w wl l l l- + + +

\ E(X) = (1)1
(0)

i
f l=

 E(X2) = (2)

2

1
(0) (1

i
f l l= + )

 E(X3) = (3) 2

3

1
(0) (1 3

i
f l l l= + + )
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 E(X4) = (4) 2 3

4

1
(0) (1 7 6

i
f l l l l= + + + )

The central moments are given by

 mk = E{X – mX)k}

\ m1 = E{X – l)} = 0

 m2 = E{X – l)2} = l

 m3 = E{X – l)3} = l

 m4 = E{X – l)4} = 3l2 + l

Example 5

Find the characteristic function of the geometric distribution given by P(X = r) = 

q
r p, r = 0, 1, 2, ..., •, p + q = 1.

Hence, fi nd the mean and variance.

 f(w) = 
0

i r r

r

e pq
w

•

=
Â

  = 1

0

( ) (1 )i r i

r

p qe p qe
w w

•
-

=

= -Â
 f(1)(w) = p(1 – qe

iw)–2 i q e
iw

 f(2)(w) = i2pq[2(1 – qe
iw)–3 q e

i2w + (1 – qe
iw)–2 eiw]

\ E(X) = 
(1) 2 (2)

2 2

1 1
(0) and ( ) (0) (1 )

q q
E X q

i p i p
f f= = = +

\ mX = 2

2
and X

q q

p p
s =

Example 6

Obtain the characteristic function of the normal distribution. Deduce the fi rst 

four central moments.

Let X follows N(m, s)

Then 
X

Z
m

s

-
=  follows N(0, 1), i.e., the standard normal distribution whose 

density function is f(z) = 
2 /21

2

Z
e

p

- .

Now, fZ(w) = 
2 /21

d
2

z i z
e e z

w

p

•
-

-•
Ú

  = 

2 2
21

( )
2 2

1
d

2

i
z i

e z

w
w

p

• - - +

-•
Ú
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  = 
2 2/2 1

2 d , on putting
2 2

t z i
e e t t

w w

p

•
- -

-•

-
◊ =Ú

  = 
2 2/2 1

since d
2

t
e e t

w p
•

- -

-•

È ˘Ê ˆ= =Í ˙Á ˜Ë ¯Í ˙Î ˚
Ú

\ fX(w) = fsZ + m (w)

  = eimw fZ(sw) (by Property 3)

  = 
2 2 /2i

e e
mw s w-

Now, fX(w) = 
2(i i

e
w m s w+ /2)

  = 2 2 2 2 21 1
1 ( /2) ( / 2)

1 2
i i i iw m s w w m s w+ + + + + 

  = 
wm w w

s m ms m+ + + + +
2 2 3 3

2 2 2 31 ( ) (3 )
1 2 3

i i i

     
4 4

4 2 2 4(3 6 )
4

i w
s m s m+ + + +  (1)

\ m¢1 = E(X) = coeffi cient of in (1)
1

iw
m=

Similarly, E(X2) = s2 + m2;

 E(X3) = 3ms2 + m3 and,

 E(X4) = 3s4 + 6m2s2 + m4

Using the relation mk = E{(X – m)k}, we get

 m1 = 0, m2 = s2, m3 = 0 and m4 = 3s4

Example 7

Find the characteristic function of the Erlang distribution given by f(x) = 

( )
1

n

f x
n

l
=

-
 xn – 1 e–lx U(x) and, hence, fi nd its mean and variance.

 f(w) = 1 ( )

0

d
1

n
n i x

x e x
n

l wl
•

- - -

- Ú

  = 
1

0

d
1( )

n
n t

n
t e t

n i

l

l w

•
- -

- - Ú , on putting (l – iw)x = t

  = 
1 1

( )
1

1

n

n
n

i n i

l

l w w

l

Ê ˆ =Á ˜Ë ¯- - Ê ˆ-Á ˜Ë ¯

 [since 1n n= -  when n is a positive integer]
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Now f(w) = 1

n
iw

l

-
Ê ˆ-Á ˜Ë ¯

  = 
2 2

2

( 1)
1

1 2

n i n n iw w

l l

+
+ + + + • 

\ E(X) = 2

2

( 1)
and ( )

n n n
E X

l l

+
=

\ Var(X) = 
2

n

l

Note  If  n = 1, Erlang’s distribution becomes the exponential distribution. Hence, the 

mean and variance of  an exponential distribution with parameter l are 1/l and 1/l2 

respectively.

Example 8

Find the characteristic function of the Laplace distribution with pdf f(x) = | |

2

x
e

aa - ,

– • < x < •. Hence, fi nd its mean and variance.

 f(w) = | | d
2

x i x
e e x

a wa
•

-

-•
Ú

  = 

0
( ) ( )

0

d d
2

i x i x
e x e x

a w a wa
•

+ - -

-•

È ˘
+Í ˙

Í ˙Î ˚
Ú Ú

  = 
2

2 2

1 1

2 i i

a a

a w a w a w

Ï ¸+ =Ì ˝+ - +Ó ˛

Now, f(w) = 

1
2 2 4

2 2 4
1 1

w w w

a a a

-
Ê ˆ

+ = - + + + •Á ˜Ë ¯
 

 E(X) = 0 and E(X2) = Var(X) = 
2

2

a

Example 9

If X1 and X2 are two independent RVs that follow Poisson distribution with 

parameters l1 and l2, prove that (X1 + X2) also follows a Poisson distribution 

with parameter (l1 + l2).

(This property is called the re-productivity property of the Poisson 

distribution.)



4.58 Probability, Sta  s  cs and Random Processes

 
1
( )X tf  = 1( 1)ie

e
wl -

 2
( )X tf  = 2 ( 1)ie

e
wl -

Since X1 and X2 are independent RVs,

1 2
( )X X tf +  = 1 2( )( 1)ie

e
wl l+ -

, which is the characteristic function of a Poisson 

distribution with parameter ((l1 + l2). Hence, the result.

Example 10

Show that the distribution for which the characteristic function is e–|w| has the 

density function f(x) = 
2

1 1

1
x

xp
¥ - • < < •

+
.

By inversion Property 5,

 f(x) = 
1

( ) d
2

ix
e

wf w w
p

•
-

-•
Ú

  = | |1
(cos sin )d

2
e x i x

w w w w
p

•
-

-•

-Ú

  = 
0

1
cos de x

w w w
p

•
-Ú  (by properties of odd and even function)

  = 2

0

1
( cos sin

1

e
x x x

x

w

w w
p

•-È ˘
- +Í ˙

+Î ˚

  = 
2

1 1
,

1
x

xp
¥ -• < < •

+

Example 11

Find the density function f(x) corresponding to the characteristic function defi ned 

as

 f(t) = 
1 | | for | | 1

0 for | | 1

t t

t

- £Ï
Ì >Ó

Note  The letter t is used in the place of  w.

By inversion Property 5,

 f(x) = 
1

( ) d
2

ixt

t e tf
p

-
•

-•
Ú
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  = 

1

1

1
{1 | |} d

2

ixt

t e t
p

-

-

-Ú

  = 

1

0

1
(1 }cos dt xt t

p
-Ú

  = 

1

2
0

1 sin cos
(1 )

xt xt
t

x xp

Ï ¸- -Ì ˝
Ó ˛

  = 
2

1 (1 cos )x

xp

-

Example 12

Express the fi rst four cumulants in terms of central moments.

By defi nition, K(t) = log{M(t)}

\ 
1r

t

r

l•

=
Â  = 

0

log
r

r

r

t

r

m•

=

Ï ¸¢Ô Ô
Ì ˝
Ô ÔÓ ˛
Â

  = 

2
2 332

1log 1
2 3

t
t t t

mm
m

Ï ¸¢¢Ô Ô+ + + +¢Ì ˝
Ô ÔÓ ˛

 

  = 

2 3
32 4

1
2 6 24

t t
t t

mm m
m

Ê ˆ¢¢ ¢
+ + + +¢Á ˜

Ë ¯
 

   

2
2 32

32 4
1

2 2 6 24

tt tt mm m
m

Ê ˆ¢¢ ¢
- + + + + +¢Á ˜

Ë ¯
  

Comparing like coeffi cients, we get,

 l1 = 2
1 2 2 1 2;m l m m m= - =¢ ¢ ¢ ¢

 l3 = m m m m m- + =¢ ¢ ¢ ¢3
3 2 1 1 33 2

 l4 = 2 1 2 4
4 3 1 2 2 1 14 3 12 6m m m m m m m- - + -¢ ¢ ¢ ¢ ¢ ¢ ¢

  = 
2

4 23m m-

Example 13

If X and Y are two independent RVs, prove that the cumulant of (X + Y) of any 

order is the sum of the cumulants of X and Y of the same order.

By Property 4 of characteristic functions, fX + Y(w) = fX(w) × fY(w), when X 

and Y are independent.
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\ logfX + Y(w) = logfX(w) + logfY(w)

i.e., yX + Y(w) = yX(w) + yY(w)

i.e.,     
1

( )
r r

r

r

i
X Y

r

w
l

•

=

+Â  = 
1 1

( ) ( )
r r r r

r r

r r

i i
X Y

r r

w w
l l

• •

= =

+Â Â

\ lr(X + Y) = lr(X) + lr(Y)

Example 14

If the RV X follows N(0, s), fi nd the density function of Y = aX
2, using the 

characteristic function technique.

 2 ( )
aX

f w  = 
2 2 2/21

d
2

iax x
e e x

w s

s p

•
-

-•

¥Ú  (1)

Put y = ax
2 in (1)

\ dx = 
d d

2 2

y y

ax ay
=

\ fY(w) = 
2/2

0

1
2 d

2 2

i y y a
e e y

ay

w s

s p

•
-¥ ¥Ú  (2)

But fY(w) = ( )di y
Ye f y y

w
•

-•
Ú  (3)

Comparing (2) and (3), we get

 fY(y) = 
2/21

( )
2

y a
e U y

ay

s

s p

-

Example 15

Two RVs X and Y have the joint characteristic function fXY(w1, w2) =

exp
2 2
1 2( 2 8 )w w- - . Show that X and Y are both zero mean RVs and also that they 

are uncorrelated.

By the property of joint CF

 E(X) = 
w w

w w
w

- -

= =

È ˘∂
Í ˙∂Î ˚

2 2
1 2

1 2

2 8

1 0, 0

1
( )e

i

  = 
2 2
2 1

1 2

8 2
1

0, 0

4e e i
w w

w w
w- -

= =

È ˘
Í ˙Î ˚

  = 0
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 E(Y) = 
2 2
1 2

1 2

2 8
2

0, 0

16e e i
w w

w w
w- -

= =

È ˘
Í ˙Î ˚

  = 0

 E(XY) = 
w w

w w
w w

- -

= =

È ˘∂
Í ˙∂ ∂Î ˚

2 2
1 2

1 2

2
2 8

2
1 2 0, 0

1
( )e

i

  = 
w w

w w
w

w
- -

= =

∂ È ˘
Î ˚∂

2 2
1 2

1 2

2 8
2 0, 0

1

16e e

  = 
w w

w ww w - +
= =-

2 2
1 2

1 2

2 8
1 2 0, 0{ 64 }e

  = 0

 CXY = E(XY) – E(X) × E(Y) = 0

Therefore, X and Y are uncorrected RVs.

Exercise 4(D)

Part-A (Short-answer Questions)

 1. Defi ne the MGF of a RV X. Why is it called so?

 2. State the properties of the MGF of a RV.

 3. Derive the relation between the MGFs of X and Y when Y = aX + b.

 4. If X and Y are independent RVs and Z = X + Y, prove that MZ(t) = MX(t) 

× MY(t).

 5. Defi ne the characteristic function of a RV. How does it differ from the 

MGF?

 6. State the properties of the characteristic function of a RV.

 7. State the uniqueness theorem of characteristic functions.

 8. If Y = aX + b, fi nd the relation between the characteristic functions of X 

and Y.

 9. If X and Y are 2 independent RVs prove that fX + Y(w) = fX × fY(w).

 10. If the characteristic function of a continuous RV X is f(w), express its 

density function f(x) in terms of f(w).

 11. Defi ne the cumulant generating function/the second characteristic 

function of a RV X and what is its use?

 12. If the rth moment of a continuous RV X about the origin is r!, fi nd the 

MGF of X.

 13. If the MGF of a RV X is 
2

2 t-
 fi nd the SD of X.

 14. Find the MGF/CF of a uniform distribution in (a, b).

 15. Find the MGF/CF of the binomial distribution.

 16. Find the MGF/CF of the Poisson distribution.
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 17. State and prove the reproductive property of the Poisson distribution.

 18. Find the CF/MGF of the geometric distribution.

 19. Find the CF/MGF of the exponential distribution.

 20. If the CF of the standard normal distribution N(0, 1) is 
2 /2

e
w-

, fi nd the 

CF of the general normal distribution N(m, s).

 21. Find the CF of X whose pdf is given by f(x) = | |1

2

x
e

- , –• < x < •.

Part-B

 22. Find the MGF of a RV which is uniformly distributed over (–1, 2) and 

hence fi nd its mean and variance.

 23. Find the characteristic function of the binomial distribution and, hence, 

fi nd its mean and variance.

 24. Obtain the MGF of the Poisson distribution; deduce the values of the 

fi rst four central moments.

 25. Find the characteristic function of the negative binomial distribution 

given by P(X = r) = (n + r – 1) Crq
r
 p

n, (r = 0, 1, 2, ..., •), p + q = 1, and 

hence fi nd its mean and variance.

 26. Find the MGF of the two-parameter exponential distribution whose 

density function is given by f(x) = le
–l(x – a), x ≥ a. Hence, fi nd its mean 

and variance.

 27. If the density function of a continuous RV X is given by f(x) = | |1

2

x
e

- ,

– • < x < •, fi nd the MGF of X. Hence, fi nd its mean and variance.

 28. Find the characteristic function of the Cauchy’s distribution given by 

f(x) = 
2

1 1

1 xp
¥

+
 –• < x < •. Comment about the fi rst two moments. 

(Hint: Use contour integration.)

 29. Find the characteristic function for the following probability density 

function:

  
2 2

( )
)

Xf x
x

l

p l
=

( +

 30. If X follows N(mX, sX) and Y follows N(mY, sY), prove, by using 

characteristic functions, that (aX + bY) follows a normal distribution 

with mean (amX + bmY) and variance 
2 2 2 2( )X Ya bs s+ .

 31. Find the density function of the distribution for which the characteristic 

function is given by f(t) = 
2 2 /2t

e
s- .

 32. If a raw moments of a continuous RV X are given by E(Xn) = n , fi nd 

the characteristic function of X and also the density function of X.

(Hint: Use contour integration to fi nd pdf.)

 33. Express the fi rst 4 raw moments about the origin in terms of the 

cumulants.
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 34. Prove that the cumulants of all orders are equal for the Poisson 

distribution.

 35. If X and Y are two jointly normal RVs whose joint pdf is N(mX, mY; sX, 

sY; r), fi nd the joint characteristic function of (X, Y).

 36. If the random variable X is uniformly distributed over (–p/2, p/2), fi nd 

the pdf of Y = sin X, using characteristic function technique.

Bounds on Probabilities

If we know the probability distribution of a random variable X (i.e., the pdf 

in the continuous case or the pmf in the discrete case), we may compute E(X) 

and Var(X). Conversely, if E(X) and Var(X) are known, we cannot construct the 

probability distribution of X and hence compute quantities such as P{|X – E(X)| 

£ k}. Although we cannot evaluate such probabilities from a knowledge of E(X) 

and Var(X), several approximation techniques have been developed to yield 

upper and/or lower bounds to such probabilities. The most important of such 

techniques is Tchebycheff inequality.

Tchebycheff Inequality

If X is a RV with E(X) = m and Var(X) = s2, then 
2

2
{| | }P X c

c

s
m- ≥ £  where

c > 0.

Proof

Let X be a continuous RV with pdf f(x).

Then s2
 = 2( ) ( )dx f x xm

•

-•

-Ú

  

2 2( ) ( ) d ( ) ( ) d

c

c

x f x x x f x x

m

m

m m
- •

-• +

≥ - + -Ú Ú

In the fi rst integral, x £ m – c

\ (x – m)2 ≥ c2

In the second integral, x ≥ m + c

\ (x – m)2 ≥ c2

\ s 2 ≥ 
2 ( ) d ( ) d

c

c

c f x x f x x

m

m

- •

-• +

Ï ¸Ô Ô+Ì ˝
Ô ÔÓ ˛

Ú Ú  (1)

RS of (1)  = c2[1 – P{m – c £ X £ m + c}]

  = c2[1 – P{–c £ X – m £ c}]

  = c2[1 – P{|X – m | £ c}]

  = c2
P{|X – m | ≥ c} (2)
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Using (2) in (1), we get

s s
m m- ≥ £ - < ≥ - >

2 2

2 2
{| | } or {| | } 1 , 0P X c P X c c

c c

Alternative forms: If we put c = ks, where k > 0, then Tchebycheff inequality 

takes the form

  
2

1X
P

k k

m
s

Ï ¸-
≥ £Ì ˝

Ó ˛

\  2

1
1

X
P

k k

m
s

Ï ¸-
£ ≥ -Ì ˝

Ó ˛

Note  Although we have proved the inequality for the continuous case, it holds good for the 

discrete RV also.

Bienayme’s Inequality

Let us fi rst prove a basic result:

If X is a RV with f(x) = 0, when x < 0, and with E(x) = m, then for any a > 0, 

P(X ≥ a) £ m/a.

Proof

 m = E(X) = 
0

( )dxf x x

•

Ú

  ( )dxf x x

a

•

≥ Ú  (since a > 0)

i.e.,  
a

a
•

≥ Ú ( )df x x  (since x ≥ a)

i.e.,  ≥ aP(X ≥ a)

\ P(X ≥ a) 
m

a
£  (1)

[In particular, ( )P X m m≥ £ .

In (1), replace X by |X – a|n and a by cn, where X is an arbitrary RV and c, a, 

n are arbitrary numbers.

|X – a|n takes only positive values.

\ 
{| | }

{| | }
n

n n

n

E X a
P X a c

c

-
- ≥ £

i.e., 
{| | }

({| | }
n

n

E X a
P X a c

c

-
- ≥ £  (2)

This inequality is called the Bienayme’s inequality.

If we take n = 2 and a = m in (2), we get Tchebycheff’s inequality.
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Schwartz Inequality

If f(x) and g(x) are real functions of x, then

  

2

2 2( ) ( )d [ ( )] d [ ( )] d

b b b

a a a

f x g x x f x x g x x
Ê ˆ

£ ¥Á ˜
Ë ¯
Ú Ú Ú

Proof

Consider 
2[ ( ) ( )] d

b

a

f x tg x x-Ú , where t is real,

  = 2 2 2( )d 2 ( ) ( ) d ( )d

b b b

a a a

t g x x t f x g x x f x x- +Ú Ú Ú

For every real t, LS ≥ 0.

Therefore, RS which is a quadratic expression in t ≥ 0.

Therefore, discriminant £ 0.

i.e., 
È ˘

£ ¥Í ˙
Í ˙Î ˚
Ú Ú Ú

2

2 2( ) ( ) d ( ) d ( ) d

b b b

a a a

f x g x x f x x g x x

Note  (i) The equality bolds, if  f(x) = kg(x).

   (ii) If  f  and g are complex, then
2

2 2( ) ( ) | ( )| | ( )|f z g z dz f z dz g z dz£Ú Ú Ú

Cauchy-Schwartz Inequality

For any two RVs X and Y,

 {E(XY)2 £ E(X2)E(Y2)

Proof

Consider E{(X – tY)2} ≥ 0, where t is real.

i.e.,   E(X2) – 2tE(XY) + t2E(Y2) ≥ 0

Since the LS is a quadratic expression in t, discriminant of LS £ 0.

i.e., {E(XY)}2 £ E(X2) × E(Y2)

Worked Example 4(E)

Example 1

A RV X has mean m = 12 and variance s2 = 9 and an unknown probability 

distribution. Find P(6 < X < 18).
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Since the probability distribution of X is not known, we cannot fi nd the value 

of the required probability. We can fi nd only a lower bound for the probability 

using Tchebycheff’s inequality.

     

2

2
{| | } , 0P X c c

c

s
m- ≥ £ >

i.e.,            
2

2
{| | } 1P X c

c

s
m- £ ≥ -

\            
2

2
{ } 1P c x c

c

s
m m- £ £ + ≥ -

Taking m = 12 and s2 = 9, we get,

   2

9
{12 12 } 1P c X c

c
- < < + ≥ -

Putting 
9

6, {6 18} 1
36

c P X= < < ≥ -

i.e.,                
3

{6 18}
4

P X< < ≥

Example 2

If the RV X is uniformly distributed over ( 3, 3)- , compute 
3

| |
2

P X
s

m
Ï ¸- ≥Ì ˝
Ó ˛

 

and compare it with the upper bound obtained by Tchebycheff’s inequality. 

[Refer to Problem 46 in Exercise 4(A)].

 m = 0 and s2 = 1

\ 
3

| |
2

P X
s

m
Ï ¸- ≥Ì ˝
Ó ˛

 = P{|X| ≥ 3/2}

  = 1 – P{–3/2 < X < 3/2}

  = 

3/2

3/2

1 1
1 d since pdf

2 3 2 3
x

-

Ê ˆ
- =Á ˜Ë ¯Ú

  = 
3

1 0.134
2

- =

By Tchebycheff’s inequality,

     2

1
{| | }P X k

k
m s- ≥ £

\      4
{| | 3/2 } 0.444

9
P X m s- ≥ £ = ,

which is a poor upper bound.
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Example 3

Can we fi nd a RV X for which P{m – 2s £ X £ m + 2s} = 0.6?

 P{m – 2s £ X £ m + 2s} = P{|X – m| £ 2s}

  
2

1
1

2
≥ -  by Tchebycheff’s inequality

i.e., P{m – 2s £ X £ m + 2s} ≥ 0.75

Therefore, there does not exist a RV X satisfying the given condition.

Example 4

A discrete RV X takes the values –1, 0, 1 with probabilities 
1 3 1

, ,
8 4 8

 respectively. 

Evaluate P{|X – m| ≥ 2s} and compare it with the upper bound given by 

Tchebycheff’s inequality.

 E(X) = 
1 3 1

1 0 1 0
8 4 8

- ¥ + ¥ + ¥ =

 E(X2) = 
1 3 1 1 1

1 0 1 ; Var( )
8 4 8 4 4

X¥ + ¥ + ¥ = =

\ P{|X – m | ≥ 2s} = P{|X ≥ 1}

  = P{X = –1 or X = 1}

  = 
1 1 1

8 8 4
+ =  (1)

By Tchebycheff’s inequality,

   
2

1 1
{| | 2 }

42
P X m s- ≥ £ =

 (2)

The two values coincide.

Example 5

If X denotes the sum of the numbers obtained when 2 dice are thrown, obtain an 

upper bound for P{|X – 7| ≥ 4}. Compare with the exact probability.

Let X1, X2 denote the outcomes of the fi rst and second dice respectively.

 E(X1) = E(X2) = 
1 7

(1 2 6)
6 2

+ + + = 

 2 2
1 2( ) ( )E X E X=  = 2 2 21 91

(1 2 6 )
6 6

+ + + = 

\ Var(X1) = Var(X2) = 
35

12

\ E(X) = E(X1 + X2) = 7 and
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 Var(X) = Var(X1 + X2) = 2 235 35 35
1 1

12 12 6
¥ + ¥ =

By Tchebycheff’s inequality,

  

2

2
{| | }P X c

c

s
m- ≥ £

\  35
{| 7 | 4}

96
P X - ≥ £  (1)

Now, P{|X – 7| ≥ 4} = P{X = 2, 3, 11 or 12}

                        = 
1 2 2 1 1

36 36 36 36 6
+ + + =  (2)

There is much difference between the two values.

Example 6

A fair dice is tossed 720 times. Use Tchebycheff’s inequality to fi nd a lower 

bound for the probability of getting 100 to 140 sixes.

Let X be the number of sixes obtained when a fair dice is tossed 720 times.

 p = P{getting ‘6’ in a single toss} = 
1

6

 q = 
5

6
 and n = 720

X follows a binomial distribution with mean np = 120 and variance npq = 100, 

i.e., m = 120 and s = 10.

By Tchebycheff’s inequality,

  
2

1
{| } 1P X k

k
m s- £ ≥ -

i.e.,  
2

1
{| 120 10 } 1P X k

k
- £ ≥ -

i.e.,  - £ £ + ≥ -
2

1
{|120 10 120 10 } 1P k X k

k

Taking k = 2, we get,

  

3
{100 140}

4
P X£ £ ≥

Therefore, required lower bound for the probability = 0.75.

Example 7

Use Tchebycheff’s inequality to fi nd how many times a fair coin must be tossed 

in order that the probability that the ratio of the number of heads to the number 

of tosses will lie between 0.45 and 0.55 will be at least 0.95.
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Let X be the number of heads obtained when a fair coin is tossed n times. Then 

X follows a binomial distribution.

( , )B np npq  where p = q = 
1

2

\ 1 1
follows ,

2 2

X
B

n n

Ê ˆ
Á ˜Ë ¯

By Tchebycheff’s inequality,

           

2

2

1
1

2

X
P c

n c

sÏ ¸
- £ ≥ -Ì ˝

Ó ˛

i.e.,                - £ £ + ≥ -
2

1
{0.5 0.5 } 1

4

X
P c c

n nc

Taking c = 0.05, 
100

0.45 0.55 1
X

P
n n

Ï ¸£ £ ≥ -Ì ˝
Ó ˛

Given that          0.45 0.55 0.95
X

P
n

Ï ¸£ £ ≥Ì ˝
Ó ˛

\                                            
100

1
n

-  = 0.95

\                                                        n = 2000

Example 8

A RV X is exponentially distributed with parameter 1. Use Tchebycheff’s 

inequality to show that P(–1 £ X £ 3) ≥ 3/4. Find the actual probability also.

For an exponential distribution with parameter l, E(X) = 
1

l
 and Var(X) = 

2

1

l
.

(refer to Worked Example 7 in the previous section of this chapter).

Here, l = 1

\ m = 1 and s = 1

By Tchebycheff’s inequality,

  
- £ ≥ -

1
{| 1| 2} 1

4
P X

i.e.,  
3

{ 1 3}
4

P X- £ £ ≥

Density function of the exponential distribution with l = 1 is given by f(x) = e–x, 

x > 0.

\ 
3

1

{ 1 3} dx
P X e x

-

-

- £ £ = Ú
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      = 
3

3

0

d 1 0.9502x
e x e

- -= - =Ú

Example 9

Use Tchebycheff’s inequality to prove that P(X = m) = 1, if Var(X) = 0

By Tchebycheff’s inequality

  

2

2
{| | }P X c

c

s
m- ≥ £

and  
2

2
{| | } 1P X c

c

s
m- £ ≥ -

Putting s2 = 0, these inequalities become

 P{|X – m| ≥ c} £ 0

and P{|X – m| £ c} ≥ 1 where c > 0

The above results hold good even for arbitrarily chosen small values of c. Hence 

in the limit when c Æ 0,

 P{|X – m| = 0} = 1

i.e., P{X = m} = 1

Example 10

A discrete RV X can assume the values x = 1, 2, 3, ... with probability 2–x. Show 

that P{|X – 2| ≥ 2} £ 1/2, while the actual probability is 1/8.

 E(X) = 
1

2
2x

x

x•

=

=Â  and Var(X) = 2

(Refer to Worked Example 6 in the fi rst section of Chapter 2)

By Tchebycheff’s inequality,

  

2

2
{| | }P X c

c

s
m- ≥ £

Putting m = 2, s2 = 2, and c = 2, we get

  

1
{| 2 | 2}

2
P X - ≥ £

Now, P{|X – 2| ≥ 2} = P{X ≥ 4}

  = 
4 5 6

1 1 1

2 2 2
+ + + + • 

  = 
2

1

12
1 8

1
2

=
-
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Exercise 4(E)

Part-A (Short-answer Questions)

 1. State Tchebycheff’s inequality.

 2. A RV X has mean 10 and variance 16. Find a lower bound for P{5 < X 

< 15}.

 3. A RV X has mean 10 and variance 16. Find an upper bound for P{|X – 

10| ≥ 15}.

 4. If Tchebycheff’s inequality for a RV X with mean 12 is P{6 < X < 18} ≥ 

3

4
, fi nd the SD of X.

 5. If Tchebycheff’s inequality for a RV X with SD 3 in 
3

{6 18}
4

P X< < ≥ ,

fi nd the mean of X.

 6. If Tchebycheff’s inequality for a RV X is 
21

{ 2 8}
25

P X- < < ≥ , fi nd E(X) 

and Var(X).

 7. If E(X) = 8 and E(X2) = 68, fi nd a lower bound for P{5 < X < 11}, using 

Tchebycheff’s inequality.

 8. State Beinayme’s inequality. Deduce Tchebycheff’s inequality.

 9. State Schwarz inequality.

 10. State Cauchy–Schwarz inequality.

 11. Use Cauchy–Schwarz inequality to prove that |rXY| £ 1.

 12. Does a RV X with mean m and SD s satisfying m s m s- £ £ +{ 3 3 }P X  

= 0.5 exist? Why?

Part-B

 13. If X is a RV with E(X) = 3 and E(X2) = 13, fi nd the lower bound for P(–2 

< X < 8), using Tchebycheff’s inequality.

 14. If the RV X is uniformly distributed over 
1 1

1 ,1
3 3

Ê ˆ
- +Á ˜Ë ¯

 compute 

P{|X – m| ≥ 3/2 s} and compare it with the upper bound obtained by 

Tchebycheff’s inequality.

 15. A discrete RV X can take the values –a, 0, a with probabilities 1/8, 3/4, 

1/8 respectively. Compute P{|X –2s} and compare it with Tchebycheff’s 

inequality bound.

 16. Two dice are thrown once. If X is the sum of the numbers showing up, 

prove that P{|X – 7| ≥ 3} £ 
35

54
 and compare this value with the exact 

probability.

 17. A fair dice is tossed 600 times. Use Tchebycheff’s inequality to fi nd a 

lower bound for the probability of getting 80 to 120 sixes.

 18. An unbiased coin is tossed 100 times. Show that the probability that the 

number of heads will be between 30 to 70 is greater than 0.93.
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 19. If X is the number obtained in a throw of a fair dice, show that the 

Tcheycheff’s inequality gives P{|X – m| > 2.5} < 0.47, while the actual 

probability is zero.

 20. Using Tchebycheff’s inequality, fi nd how many times a fair coin must be 

tossed in order that the probability that the ratio of the number of heads 

of the number of tosses will lie between 0.4 and 0.6 will be at least 0.9.

 21. A random variable X has pdf f(x) = e–x, x ≥ 0. use Tchebycheff’s inequality to 

show that P{|X – 1| > 1} < 1/4 and show also that the actual probability is e–3.

 22. A random variable X has the pmf P(X = 1) = 1/18, P(X = 2) = 16/18, 

P(X = 3) = 1/18. Show that there is a value of c such that P{|X – m| ≥ c} 

= 
2

2
c

s
, so that, in general, the bound given by Tchebycheff’s inequality 

cannot be improved.

Convergence Concepts and Central Limit Theorem

Let us consider the sequence of RVs X1, X2, X3, ..., Xn, ... or random sequence. 

The concept of convergence of random sequences is essential in the study of 

random signals. A few defi nitions and criteria that are used for determining the 

convergence of random sequences are given below.

1. Convergence everywhere and almost everywhere

If {Xn} is a sequence of RVs and X is a RV such that lim( )n
n

X X
Æ•

È ˘=Í ˙Î ˚
 i.e., Xn Æ X 

as n Æ •, then the sequence {Xn} is said to converge to X everywhere.

If P{Xn Æ X} = 1 as n Æ •, then the sequence {Xn} is said to converge to X 

almost everywhere.

2. Convergence in probability or stochastic convergence
If P{|Xn – X| > e} Æ 0 as n Æ •, then the sequence {Xn} is said to converge to X 

in probability or stochastically.

As a particular case of this kind of convergence we have the following result, 

known as Bernoulli’s law of large numbers.

If X represents the number of successes out of n Bernoulli’s trials with 

probability of success p (in each trial), then {X/n} converges in probability to p.

i.e., 
X

P p
n

e
Ï ¸

- >Ì ˝
Ó ˛

 Æ 0 as n Æ • 

3. Convergence in the mean square sense
If E{|Xn – X|2} Æ 0 as n Æ •, then the sequence {Xn} is said to converge to X in 

the mean square sense.

4. Convergence in distribution
If Fn(x) and F(x) are the distribution functions of Xn and X respectively such that 

Fn(x) Æ F(x) as n Æ • for every point of continuity of F(x), then the sequence 

{Xn} is said to converge to X in distribution.
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Closely associated to the concept of convergence in distribution is a remarkable 

result known as central limit theorem, which is given below without proof.

Central Limit Theorem (Liapounoff’s Form)

If X1, X2, ..., Xn, ..., be a sequence of independent RVs with E(Xi) = mi and Var(Xi) 

= si
2 i = 1, 2, .., and if Sn = X1 + X2 + ... + Xn, then under certain general conditions, 

Sn follows a normal distribution with mean m = 
1

n

i

i

m
=
Â  and variance s2 = 2

1

n

i

i

s
=
Â  

as n tends to infi nity.

Central Limit Theorem (Lindeberg-Levy’s Form)

If X1, X2, ..., Xn, ..., be a sequence of independent identically distributed RVs with 

E(Xi) = m and Var(Xi) = s2, i = 1, 2, ..., and if Sn = X1 + X2 + ... + Xn, then under 

certain general conditions, Sn follows a normal distribution with mean nm and 

variance ns2 as n tends to infi nity.

Corollary

If 1 2

1
( )nX X X X

n
= + + + , then ( )E X m=  and 

s
s= =

2
2

2

1
Var( ) ( )X n

nn

\ follows , asX N n
n

s
m

Ê ˆ
Æ •Á ˜Ë ¯

Worked Example 4(F)

Example 1

The lifetime of a certain brand of an electric bulb may be considered a RV with 

mean 1200 h and standard deviation 250 h. Find the probability, using central 

limit theorem, that the average lifetime of 60 bulbs exceeds 1250 h.

Let Xi represent the lifetime of the bulb.

 E(Xi) = 1200 and Var (Xi) = 2502

Let X  denote the mean lifetime of 60 bulbs.

By corollary of Lindeberg–Levy form of CLT X  follows 
250

1200,
60

N
Ê ˆ
Á ˜Ë ¯

 ( 1250)P X >  = 
1200 1250 1200

250 250

60 60

X
P

Ê ˆ
Á ˜- -

>Á ˜
Á ˜Á ˜Ë ¯
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  = 
60

5
P z

Ê ˆ
>Á ˜

Ë ¯

  = P(z > 1.55), where z is the standard normal variable

  = 0.0606 (from the table of areas under normal curve)

Example 2

A distribution with unknown mean m has variance equal to 1.5. Use central limit 

theorem to fi nd how large a sample should be taken from the distribution in order 

that the probability will be at least 0.95 that the sample mean will be within 0.5 

of the population mean.

Let n be the size of the sample, a typical member of which is Xi.

Given: E(Xi) = m and Var(Xi) = 1.5

Let X  denote the sample mean.

By corollary under CLT, X  follows 
1.5

,N
n

m
Ê ˆ
Á ˜
Ë ¯

We have to fi nd n such that

 P{m – 0.5 < X  < m + 0.5} ≥ 0.95

i.e., P{– 0.5 < X  – m < 0.5} ≥ 0.95

i.e., P{| X  – m | < 0.5} ≥ 0.95

i.e., 
m

Ï ¸
Ô Ô| - |Ô Ô<Ì ˝
Ô Ô
Ô ÔÓ ˛

0.5

1.5 1.5

X
P

n n

 ≥ 0.95

i.e., {| | 0.4082 }P z n<  ≥ 0.95

where z is the standard normal variable.

The least value of n is obtained from

 {| | 0.4082 }P z n<  = 0.95

From the table of areas under normal curve

 P{|z| < 1.96} = 0.95

Therefore, least n is given by 0.4082 1.96n = , i.e., least n = 24.

Therefore, the size of the sample must be at least 24.
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Example 3

If X1, X2, ..., Xn are Poisson variates with parameter l = 2, use the central limit 

theorem to estimate P(120 £ Sn £ 160), where Sn = X1, X2, ..., Xn and n = 75.

 E(Xi) = l = 2 and Var(Xi) = l = 2

By CLT, Sn follows ( , )N n nm s

i.e., Sn follows (150, 150)N

 P{120 £ Sn £ 160} = 
15030 10

150 150 150

nS
P

Ï ¸--
£ £Ì ˝

Ó ˛

  = P{–2.45 £ z £ 0.85}

where z is the standard normal variable

  = 0.4927 + 0.2939, (from the normal tables)

  = 0.7866

Example 4

Using the central limit theorem, show that, for large n,

21 ( ) /2 , 0
1 2

n
n cx cx n nc c

x e e x
n np

- - - -@ >
-

Let X1, X2, ..., Xn be independent RVs each of which is exponentially distributed 

with parameter c.

i.e., let the pdf of Xi = c e
–cx, x > 0

The characteristic function of Xi is given by

 ( )
iXf w  = (1 – iw/c)–1

(refer to the Note under Worked Example 7 of the characteristic function section).

By Property 4 of CFs, since X1, X2, ..., Xn are independent RVs,

 
1 2( ) ( )

nX X Xf w+ + + 
 = f w[ ( )]

i

n
x

  = 1

n
i

c

w
-

Ê ˆ-Á ˜Ë ¯
  = CF of Erlang distribution

  (refer to Worked Example 7 of Section 4(B))
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Therefore, when n is fi nite, (X1 + X2 +   + Xn) follows the Erlang distribution 

whose pdf is given by

   
1 , 0

1

n
n cxc

x e x
n

- - >
-

 (1)

When n tends to infi nity, (X1 + X2 +   + Xn) follows a normal distribution with 

mean nE(Xi) = 
n

c
 and variance nVar(Xi) = 

2

n

c
 (Central limit theorem), i.e., when 

n Æ •, (X1 + X2 +   + Xn) follows a normal distribution whose pdf is given by

     

2

2

2

1 2
exp

2

n n
x

c cn

c
p

Ï ¸Ô ÔÊ ˆ- -Ì ˝Á ˜Ë ¯Ô ÔÓ ˛

  = 
2exp { ( ) /2 )

2

c
cx n n

np
- -  (2)

From (1) and (2), the required result follows.

Example 5

Verify central limit theorem for the independent random variables Xk, where for 

each k, P{Xk = ±1} = 
1

2
. 

 E(Xk) = 1 × 1/2 + (–1) × 1/2 = 0

 Var (Xk) = 12 × 1/2 + (–1)2 × 1/2 = 1

Consider Y n = + + + 1 2

1
( )nX X X

n

E(Y n) = 0 and Var(Y n) = 
1

1n
n

¥ =

Now ( )
kXf w  = { }ki x

E e
w

  = ( 1) 1
1 / 2

2

i i
e e

w w -¥ + ¥

  = cos w

\ ( )
nYf w  = 

1 2

1
( )

( )
nX X X

n

f w
+ + + 

  = f w
/

( )
k

n

X n \[  (since X1, X2, ..., Xn are independent)

  = cos

n

n

wÈ ˘Ê ˆ
Í ˙Á ˜Ë ¯Î ˚

 [since faX + b (w) = eibw
 fX(aw)]
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  = 
2

2

1 1
1 terms involving and higher powers of

2

n

n nn

wÈ ˘
- +Í ˙

Î ˚

  = 
2 1 1

1 term involving and higher powers of
2

n

n n n

wÊ ˆ
- +Á ˜Ë ¯

\        
21

2lim ( )
ny

n
e

w
f w

-

Æ•
=

which is the characteristic function of N(0, 1).

\  Yn Æ N(0, 1), as n Æ •
Therefore, CLT holds good for the sequence {Xk}.

Example 6

Show that the central limit theorem holds good for the sequence {Xk}, if

2 21 1
{ } , { 0} 1 , .

2 2
k kP X k k P X k

a a a a- -= ± = ¥ = = - <

Note  Liapounoff ’s form of  CLT holds good for a sequence {Xk}, if

3

1

3

2

1

0

( )

n

k k
k

n
n

k
k

E X

lim

Var X

m
=

Æ•

=

È ˘-Î ˚
=

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

Â

Â
 

Condition is assumed.

We have to verify whether this condition is satisfi ed by the given {Xk}.

Now mk = E(Xk) = 
1 1

0
2 2

k k
a a- -¥ - ¥ =

 2( )kE X  = 2 2 2 21 1
1

2 2
k k k k

a a a a- -¥ ¥ + ¥ =

\ Var(Xk) = 1

 E{|Xk – mk|
3 = E{|Xk|

3}

  = 3 2 3 21 1

2 2
k k k k

a a a a- -¥ + ¥

  = ka

\ 
3

1

{| | }
n

k k

k

E X m
=

-Â  = 1a + 2a + ... + na < n × na (since each term £ na)

 
1

Var ( )
n

k

k

X
=

Â  = n
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\  
m

=

Æ•

=

-

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

Â

Â

3

1

3

2

1

{| | }

lim

Var ( )

n

k k

k

n
n

k

k

E X

X

  = 3/2 3/2

1 2
lim lim
n n

n n n

n n

a a a a

Æ• Æ•

Ê ˆ+ + + ¥
<Á ˜Ë ¯

 

  = 
1

2

1
lim
n

n
aÆ• -

  = 0 (since a < 1/2)

i.e., the necessary condition is satisfi ed. Therefore, CLT holds good for the 

sequence {Xk}.

Exercise 4(F)

Part-A (Short-answer Questions)

 1. What is the difference between convergence everywhere and almost 

everywhere of a random sequence {Xn}?

 2. Defi ne stochastic convergence of a random sequence {Xn}.

 3. State Bernoulli’s law of large numbers.

 4. Defi ne convergence of a random sequence {xn} in the mean square sense.

 5. Defi ne convergence in distribution of a random sequence {Xn}.

 6. State the Liapounoff’s form of CLT.

 7. State the Lindeberg-Levy’s form of CLT.

 8. What is the importance of CLT?

Part-B

 9. A random sample of size 100 is taken from a population whose mean is 

60 and variance is 400. Using CLT, with what probability can we assert 

that the mean of the sample will not differ from m = 60 by more than 4?

 10. The guaranteed average life of a certain type of electric light bulb is 

1000 h with a standard deviation of 125 h. It is decided to sample the 

output so as to ensure that 90% of the bulbs do not fall short of the 

guaranteed average by more than 2.5%. Use CLT to fi nd the minimum 

sample size.

 11. If Xi , i = 1, 2, ..., 50, are independent RVs, each having a Poisson 

distribution with parameter l = 0.03 and Sn = X1 + X2 +   + Xn, evaluate 

P(Sn ≥ 3), using CLT. Compare your answer with the exact value of the 

probability.

 12. If Vi, i = 1, 2, ..., 20, are independent noise voltages received in an ‘adder’ 

and V is the sum of the voltages received, fi nd the probability that the 
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total incoming voltage V exceeds 105, using CLT. Assume that each of 

the random variables V i is uniformly distributed over (0, 10).

 13. 30 electronics devices D1, D1, ..., D30 are used in the following manner. 

As soon as D1 fails, D2 becomes operative. When D2 fails, D3 becomes 

operative and so on. If the time to failure of Di is an exponentially 

distributed random variable with parameter l = 0.1/h and T is the total 

time of operation of all the 30 devices, fi nd the probability that T exceeds 

350 h, using CLT.

 14. Examine if the CLT holds good for the sequence {Xk}, if P{Xk = ±2k} = 

2–(2k + 1), P{Xk = 0} = 1 – 2–2k.

 15. Show that the CLT does not hold if the RV’s Xi have a Cauchy density.

ANSWERS

Exercise 4(A)

 4. Var(X) = E{X – E(X)}2 ≥ 0

  E(X2) – {E(X)}2 ≥ 0

  E(X2) ≥ {E(X)}2

 6. E(Y) = 
1

{ ( ) } 0X

X

E X m
s

- =

  Var(Y) = 
s

¥ =
2

1
Var( ) 1

X

X

  SD = 1

 7. mk = m¢k – kc1 m¢k – 1 D + k c2 m¢k – 2 D
2 + ... + (–1)k kckD

k, where D = m¢1

 8. Y: 0 2 6 12

  py: 0.1 0.3 0.4 0.2

  E(Y) = 0.6 + 2.4 + 2.4 = 5.4

 9. E(X) = 
2 3

0

(1 ) (1 )( 2 3 )j

j

j a a a a a a
•

=

- = - + + +Â  

     = 
2

(1 )
1(1 )

a a
a

aa
- =

--

 10. E(X) = 
1 3 4

2

0

1
6 (1 )d 6

3 4 2

x x
x x x

Ê ˆ
- = - =Á ˜Ë ¯Ú

 11. E(X) = 
1

d
2

b

a

b a
x x

b a

+
=

-Ú

  E(X2) = 2 2 21 1
d ( )

3

b

a

x x b ba a
b a

= + +
-Ú
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  Var(X) = 
2

2 2 ( )
( ) ( )

12

b a
E X E X

-
- =

 12. E(X) = 
2( )

5; Var( ) 3
2 12

b a b a
X

+ -
= = =

 13. E(Y) = 

2
3 3

1

15
( ) d

4
E X x x= =Ú

 14. E(X) = 
0

!

!( )!

n
r n r

r

n
r p q

r n r

-

= -Â

           = 1 1

1

( 1)!

( 1)!( )!

n
r n

r

n
np p q np

r n r

- -

=

-
=

- -Â

 15. E(X) = 
l

ll l
l l

- -• •
-

= =

= =
-Â Â

1

0 1! ( 1)!

r r

r r

e
r e

r r

 16. 
n pq

np
 = 

2 1 2
; ; and 9

6 3 3
p n= = =

  P(X = r) = 

9
2 1

9 0,1, ..., 9
3 3

r r

rC r

-
Ê ˆ Ê ˆ¥ =Á ˜ Á ˜Ë ¯ Ë ¯

 17. 
n pq

np
 = 

1.44
0.6; 0.4; 6

2.4
p n= = = ;

  Required P = 0

 18. 5 C1p
1
q

4 = 2 × 5C2P
2
q

3; q = 4p; p = 0.2

  E(X) = 1 and Var(X) = 0.8

 19. 6C2p
2
q

4 = 9 × 6C4P
4
q

2; q = 3p; p = 1/4

  E(X) = 1.5 and Var(X) = 
9

8

 20. 
1

e
l l-

 = 
2

;
2

e
l l

l
-

= 2

  E(X) = 2 = Var(X)

  E(X2) = V(X) + E2(X) = 6

 21. E(X) = 2

0

(1 2 3 ...)r

r

q
rpq pq q q

p

•

=

= + + + =Â
 22. If X represents the number of times, the distribution of X is

  x: 1 2 3 4 ...

  px: p qp q
2
p q

3
p ..., where 

1

6
p =
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  E(X) = 
2

2

1
(1 2 3 ) 6

(1 )

p
p q q

pq
+ + + = = =

-
 

 23. E(X) = 
0

1
dx

x e x
ll

l

•
- =Ú

  E(X2) = 2

2
0

2
dx

x e x
ll

l

•
- =Ú

  Var(X) = 2 2

2

1
( ) ( )E X E X

l
- =

 24. E(X) = 0; Var(X) = 4; E(X2) = Var(X) + E2(X) = 4

 28. E(Z) = 2E(X) – 5E(Y) = 4 – 15 = –11

  Var(Z) = E(2X – 5Y)2 – {E(2X – 5Y)}2

   = 4E(X2) + 25E(Y2) – 20E(XY)

– {4E
2(X) + 25E

2(Y) – 20E(X) × E(Y)}

   = 4 × 1 + 25 × 2 – 20 × 0 = 54

 34. E(X) = 
1 1

0 0 0

2 5
(2 ) d d d

3 2 12

y
y

x x y x y y
Ê ˆ- - = - =Á ˜Ë ¯Ú Ú Ú

  E(Y) = 
5

12

 35. E(X) = 
1 1

2

0 0 0

1
2 d d d

3

y

x x y y y= =Ú Ú Ú

 36. 
1 p

p

-

 37. (i) 
7

2

n
 (ii) 

7

2

n
Ê ˆ
Á ˜Ë ¯

 38. 151.5

 39. Rs. 32/-

 40. 21
; ( )

2 12

b a
b a

+
-

 41. 
2

2
;

q q

p p

 42. np; npq

 43. l; l
 47. (ii) 0, 1

 48. 
1

, 2
5

a b= =
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 49. 
15 457

,
4 112

 50. 1, 1

 51. 
8

3

 53. 
2

;
2 12

y y

 54. 23 3
;

4 80

y
y

Exercise 4(B)

 12. No

 15. 0.7891

 16. 0.6030

 17. 0.0390

 18. 0.8504

 19. 0.6

 20. 0.8762

 21. 0.9173

 22. 0.3875

 23. 0.91

 24. 0.4

 25. A and C

 26. 
1

2
 28. 0

 29. 
2

1 2 2 3)( )+ +

v

v v v v

 32. 
5 5 1 1 1

; ; ; ;
12 12 16 16 9

-

 33. -
1 2 1 1 1

; ; ; ;
3 3 18 18 2

 34. 0

 35. 
1

11
-

 36. 11; 4; 0

Exercise 4(C)

 11. y = 6x + 114; 20x = 3y + 950; 0.9

 12. y = 0.665x + 23.78; x = 0.54y + 30.74; 70.995, 68.54
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 13. y = 0.7x + 12.7; 25.3

 14. x = 0.936y + 1.388; 43.508

 15. 72.6; 69.57

 16. 13; 17; 0.6; 4

 17. -
1 1 2

; 5; ;
32 3 15 3

 18. 1; 2; 4; –0.8.66

 19. ; ; ; No
1 1

a bc c ad
x y r bd

bd bd

+ +
= = =

- -

 20. 
1 2 1 2 2 1 1 2

2 1 1 2 2 1 1 2

;
a b b c b c a a

a b c a c a b b

Ê ˆ-
Á ˜-Ë ¯

Exercise 4(D)

 5. M(t) = E(etX), whereas f(w) = E(eiwX)

 7. The characteristic function of a RV uniquely determines its pdf. (or) The 

necessary and suffi cient condition for two distributions with pdf’s f1(x) 

and f2(x) to be identical is that their characteristic functions f1(w) and 

f2(w) are identical.

 11. It generates cumulants.

 12. M(t) = 
0 0

1
( ) / !

1

r r r

r r

E X t r t
t

• •

= =

= =
-Â Â

 13. 
2

2 t-
 = 

1 2

1 1
2 2 4

t t t
-

Ê ˆ- = + + +Á ˜Ë ¯
 

  E(X) = 21 1 1 1
; ( ) ; Var( ) ;

2 2 4 2
xE X X s= = =

 14. M(t) = 
1

( ) d

b
tX tx

a

E e e x
b a

=
-Ú

    = 
1 bt at

e e

b a t

Ê ˆ-
Á ˜- Ë ¯

  f(w) = 
1 ib ia

e e

b a i

w w

w

Ê ˆ-
Á ˜- Ë ¯

 15. M(t) = 
0

( )
n

r n r tr t n
r

r

nC p q e q pe
-

=

= +Â

  f(w) = (q + pe
iw)n
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 16. M(t) = (1 )

0 !

t
r

tr e

r

e
e e

r

l
ll-•

- -

=

=Â

  f(w) = (1 )ie
e

wl- -

 18. CF = 
1 i

p

qe
w-

  MGF = 
1 t

p

qe-

 19. f(w) = 
l w

l w l
l l

l w l w

•• - -
- Ï ¸Ô Ô= =Ì ˝- - -Ô ÔÓ ˛

Ú
( )

0 0

d
( )

i x
x i x e

e e x
i i

  M(t) = 
t

l

l -

 20. f(w) = 
2 2 /2i

e e
mw s w-

 21. f(w) = | |1
d

2

x i x
e e x

w
•

-

-•
Ú

   = 

0
(1 ) (1 )

0

1
d d

2

i x i x
e x e x

w w
•

+ - -

-•

È ˘
+Í ˙

Í ˙Î ˚
Ú Ú

   = 
2

1 1 1 1

2 1 1 1i iw w w

È ˘+ =Í ˙+ - +Î ˚

Part-B

 22. 
3 1 1 3

; ;
2 43

t

t

e

te

-

 23. (pe
iw + q)n; np; npq

 24. e
l(et – 1); 0; l; l; 3l2 + l

 25. 2
(1 ) ; ;n i n nq nq

p qe
p p

w --

 26. 
2

1 1
; ;

at
e a

t

l l

l l l

+
-

 27. 
- 2

1
;0;2

1 t

 28. e
–|w|; mX = 0; sX does not exist.

 29. e
–l|w|
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 31. f(x) = 
2 2/21

,
2

x
e x

s

s p

- - • < < •

 32. f(w) = 
w

-= < < •
-
1

; ( ) , 0
1

x
f x e x

j

 33. m1 = l m l l m l l l l= + = + +2 3
1 2 2 1 3 3 2 1 1; ; 3  and

  m4 = 2 2 4
4 3 1 2 2 1 14 3 6l l l l l l l+ + + +

 35. fXY (w1,w2) = 
1 2( ) 2 2 2 2

1 1 2 2

1
( 2 )

2

x yj

x x y ye r
m w m w

s w s s w w s w
+ - + +

 36. fY(y) = 
2

1 1
in 1 1

1
y

yp
◊ - £ £

-

Exercise 4(E)

 2. 2

16
{10 10 } 1 ; 5P c X c c

c
- < < + ≥ - =

  

9
{5 15}

25
P X< < ≥

 3. 
2

1
{| | }P x k

k
m s- ≥ £

  

5

4
k =

  

16
{| 10 | 5}

25
P X - ≥ £

 4. 
2

2
{12 12 } 1 ; 6P c X c c

c

s
- < < + ≥ - =

  

2 3
1 ; 3

36 4

s
s- = =

 5. 
s

m m m- < < + ≥ - - = = =
2

2 2

9 3
{ } 1 ;1 ; 6; 12

4
P c X c c

c c

 6. 
2

2
{ } 1P c X c

c

s
m m- < < + ≥ -

  m = 
2 8

3; 5
2

c
- +

= =

  

2
221

1 ; 4
25 25

s
s- = =
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 7. Var(X) = 68 – 64 = 4

  
2

4
{8 8 } 1P c X c

c
- < < + ≥ - ; c = 3

  Required Probability ≥ 
5

9

 11. {E(XY)2 £ E(X2) E(Y2): Replace X by X – mx, and Y by Y – my

  

m m

m m

- -
£ £ £

- -

2

2

2 2

[ ( )( )]
1; 1; | | 1

( ) ( )

x y

xy xy

x y

E X Y
p p

E X E Y

 12. By Tchebycheff’s inequality, 
1 2

{| | 3 } 1
3 3

P X m s
Ê ˆ- £ ≥ - = Á ˜Ë ¯

. Since 

2
0.5

3
< , such a RV does not exist.

 13. 21/25

 14. 4/9; 0.134

 15. 1/4; 1/4

 16. 1/3

 17. 19/24

 20. 250

 22. c = 1

Exercise 4(F)

 8. If X1, X2, ..., Xn be a sequence of independent and identically distributed 

RVs with E(Xi) = m and Var(Xi) = s2 and if 
1

X
n

=  (X1 + X2 +...+ Xn), 

then X  follows ,N
n

s
m

Ê ˆ
Á ˜Ë ¯

 as n Æ •. This result is used in theory of 

sampling.

 9. 0.9544

 10. 41

 11. 0.1112; 0.1915

 12. 0.352

 13. 0.1814

 14. CLT does not hold good



Introduction

In Chapter 2, we have just stated the defi nitions of certain special probability 

distributions, both discrete and continuous. While constructing probabilistic 

models for observable phenomena, certain probability distributions arise more 

frequency than do others. We treat such distributions that play important roles in 

many engineering applications as special probability distributions. In this chapter 

we shall discuss a number of discrete as well as continuous (random variables) 

distributions in considerable detail.

SPECIAL DISCRETE DISTRIBUTIONS

1. Binomial Distribution

Defi nition: Let A be some event associated with a random experiment E, such 

that P(A) = p and = - =( ) 1 .P A p q  Assuming that p remains the same for all 

repetitions, if we consider n independent repetitions (or trials) of E and if the 

random variable (RV) X denotes the number of times the event A has occurred, 

then X is called a binomial random variable with parameters n and p or we say 

that X follows a binomial distribution with parameters n and p, or symbolically 

B(n, p). Obviously the possible values that X can take, are 0, 1, 2,…, n.

By the theorem under Bernoulli’s trials in Chapter 1, the probability mass 

function of a binomial RV is given by

 P(X = r) = nCr p
r 
q

n–r; r = 0, 1, 2, …, n where p + q = 1

Chapter 5
Some Special Probability 

Distributions
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Note  1. Binomial distribution is a legitimate probability distribution since 

 
=

=Â
0

( )
n

r

P X r  = 
-

=
Â

0

n
n r r

r
r

nC q p

    = (q + p)n = 1

2. The name ‘binomial distribution’ is given since the probabilities nCrq
n–r pr (r = 0, 1, 2, 

…, n) are the successive terms in the expansion of  the binomial expression (q + p)n.

3. If  we assume that n trials constitute a set and if  we consider N sets, the frequency function 

of  the binomial distribution is given by f(r) = Np(r) = N ◊ nCr q
n–r pr, r = 0, 1, 2, …, 

n. In other words, the number of  sets in which we get exactly r successes (the occurrences of  

the event A) = N . nCrq
n–r pr; r = 0, 1, 2, …, n.

Mean and Variance of the Binomial Distribution

We have already found out E(X) and Var(X) for the binomial distribution B(n, p) 

using the moment generating function in Example 3 in Worked Example 4(b). 

Here, we shall fi nd them directly using the defi nitions of E(X) and Var (X).

 E(X) = Â r r

r

x p

  = -

=

◊Â
0

n
r n r

r

r

r nC p q

  = 
-

=

◊
-Â

0

!

! ( )!

n
r n r

r

n
r p q

r n r
 (1)

  = 
- - - -

=

-
◊

- - - -Â 1 ( 1) ( 1)

1

( 1)!

( 1)!{( 1) ( 1)}!

n
r n r

r

n
np r p q

r n r

  = - - - -
-

=

- ◊ ◊Â 1 ( 1) ( 1)
1

1

( 1)
n

r n r
r

r

np n C p q

  = np (q + p)n – 1

  = np (2)

 E(X2) = =Â Â2 2

0

n

r r r

r

x p r p

  = 
-

=

- +
-Â

0

!
{ ( 1) }

!( )!

n
r n r

r

n
r r r p q

r n r

  = - -
-

=

- - +Â2 2
2

2

( 1) ( 2) ,
n

r n r
r

r

n n p n C p q np

 [by (1) and (2)]

  = n(n – 1)p2 (q +p)n – 2 + np
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  = n(n – 1)p2 + np

 Var(X) = E(X2) – {E(X)}2

  = n(n – 1)p2 + np – n2
p

2

  = np (1 – p)

  = npq

Recurrence Formula for the Central Moments of the Binomial 

Distribution

By defi nition, the kth order central moment mk is given by mk = E{X – E(X)}k.

For the binomial distribution B(n, p),

 mk = 
-

=

-Â
0

( )
n

k r n r
r

r

r np nC p q  (1)

Differentiating (1) with respect to p, we get

 
md

d

k

p
 = 

- -

=

- - ◊ + -Â 1

0

[ ( ) ( )
n

k r n r k
r

r

nC nk r np p q r np

 - - - -+ - -1 1{ ( ) ( 1)}]r n r r n r
rp q n r p q

  = m - - -
-

=

- + - - -Â 1 1
1

0

( ) { ( ) }
n

k r n r
k r

r

nk nC r np p q rq n r p

  = m - - -
-

=

- + - - + =Â ∵
1 1

1

0

( ) ( ) ( 1)
n

k r n r
k r

r

nk nC r np p q r np p q

  = m - +
-

=

- + -Â 1
1

0

1
( )

n
r n r k

k r

r

nk nC p q r np
pq

  = m m- +- +1 1

1
k knk

pq

i.e.,  mk + 1 = 
m

m -

È ˘
+Í ˙

Í ˙Î ˚
1

d

d

k
k

p

pq nk  (2)

Using the recurrence relation (2), we may compute moments of higher order, 

provided we know moments of lower order. 

Putting k = 1 in (2), we get

 m2 = 
m

m
È ˘

+Í ˙
Î ˚

1
0

d

d
pq n

p

  = npq  (∵ m0 = 1 and m1 = 0)

Putting k = 2 in (2), we get

 m3 = m m
È ˘

+Í ˙
Î ˚

2 1

d
2

d
pq n

p
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  = -
d

[ (1 ]
d

pq np p
p

  = npq [1 – 2p] = npq (q – p)

Putting k = 3 in (2), we get

 m4 = m m
È ˘

+Í ˙
Î ˚

3 2

d
3

d
pq n

p

  = 
È ˘

- - +Í ˙
Î ˚

d
{ (1 ) (1 2 )} 3

d
npq p p p npq

p

  = npq [1 – 6p + 6p
2 + 3npq]

  = npq [1 – 6 pq + 3npq]

  = npq [1 + 3 pq (n – 2)]

Note  m2 is the variance, m3 is a measure of  skewness and m4 is a measure of  kurtosis. 

Sometimes the coeffi cients b1 and b2 are used to measure  skewness and kurtosis respectively, 

where m1 = 
m m

m
m m

=
2
3 4

23 2
2 2

and .

2. Poisson Distribution

Defi nition: If X is a discrete RV that can assume the values 0, 1, 2, …,  such that 

its probability mass function is given by

 P(X = r) = ;
!

r
e

r

l l-

 r = 0, 1, 2, …; l > 0  

then X is said to follow a Poisson distribution with parameter l or symbolically 

X is said to follow P(l).

Note  Poisson distribution is a legitimate probability distribution, since

  
•

=

=Â
0

( )
r

P x r  = 

l l-•

=
Â

0 !

r

r

e

r

       = e–l el = 1

Poisson Distribution as Limiting form of Binomial Distribution

Poisson distribution is a limiting case of binomial distribution under the following 

conditions:

 (i) n, the number of trials is indefi nitely large, i.e., n Æ •.

 (ii) p, the constant probability of success in each trial is very small, i.e., p Æ 0.
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 (iii) np(= l) is fi nite or 
l

=p
n

 and q = 
l

-1
n

, where l is a positive real 

number.

Proof

If X is a binomially distributed RV with parameters n and p, then

 P(X = r) = nCr p
r qn–r; r = 0, 1, 2, …, n.

  = -- - - +
-

 ( 1)( 2) ( 1)
(1 )

!

r n rn n n n r
p p

r

  = 
l l

-- - + Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯
 ( 1) ( 1)

1
!

r n r
n n n r

r n n
 

lÊ ˆ
Á ˜Ë ¯

on putting =p
n

  = 
l l l

-È ˘-Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ- - - - ◊ -Í ˙Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯Î ˚
 

1 2 1
1 1 1 1 1 1

!

n rr
r

r n n n n n

\ 
l

l

Æ• Æ•
=

È ˘-Ê ˆ Ê ˆ Ê ˆ= = - - -Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚
 

1 2 1
lim [ ( )] lim 1 1 1

!

r

n n
np finite

r
P X r

r n n n

ll l l
-

-

Æ• Æ•

¢Ê ˆ Ê ˆ- ◊ - =Á ˜ Á ˜Ë ¯ Ë ¯
lim 1 lim 1

!

r n

n n
e

n n r

ll l
-

-

Æ• Æ• Æ•

˘È Ê ˆ Ê ˆ Ê ˆ- = - = - = ˙Í Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ ˙Î ˚
∵ lim 1 1, when  is finite, lim 1 1 and lim 1

r n

n n n

k
k e

n n n
 

But P(X = r) = 
l l- ◊

,
!

r
e

r
 r = 0, 1, 2, …

is the probability mass function of the Poisson random variable.

Thus, the limit of the binomial RV (distribution) is the Poisson RV (distribution).

Note  1.    The above  result means that we may compute binomial probabilities 

approximately by using the corresponding Poisson probabilities, whenever n is 

large and p is small.

2.  When an event occurs rarely, the number of  occurrences of  such an event may be assumed 

to follow a Poisson distribution. The following are some of  the examples, which may be 

analysed using Poisson distribution:

 (i)  the number of  alpha particles emitted by a radioactive source in a given time interval

 (ii) the number of  telephone calls received at a telephone exchange in a given time interval

 (iii) the number of  defective articles in a packet of  100

 (iv) the number of  printing errors at each page of  a book

 (v) the number of  road accidents reported in a city per day.
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Mean and Variance of Poisson Distribution

We have already found out E(X) and Var (X) for the Poisson distribution P(l), 

using the characteristic function in Example 4 in Worked Example 4(b). Also, 

since the Poisson distribution is the limit of binomial distribution, the mean and 

variance of the Poisson distribution may be obtained as the limits of those of 

binomial distribution when n Æ •,

i.e., if X is the Poisson RV

 E(X) = 

l

l
Æ•

=

=lim ( )
n
np

np

and Var(X) = 
0 0

lim ( ) lim [ (1 )]
p p
np

npq p

l

l l
Æ Æ
=

= - =

Now we shall fi nd E(X) and Var(X) for the Poisson distribution directly using 

the defi nitions.

 E(X) = Â r r

r

x p

  = 
l l-•

=

◊Â
0 !

r

r

e
r

r
 (1)

  = l l
l

-•
-

= -Â
1

1 ( 1)!

r

r

e
r

  = le
–l el = l (2)

 E(X2) = Â 2
r

r

x pr

  = 
l l•

-

=

- +Â
0

{ ( 1) }
!

r

r

r r r e
r

  = l l
l l

-•
-

=

+
-Â

2
2

2 ( 2)!

r

r

e
r

 [by (1) and (2)]

  = l2 e–l el + l = l2 + l

 Var(X) = E(X2) – {E(X)}2

  = l2 + l – l2 = l

Recurrence Formula for the Central Moments of the Poisson 

Distribution

By defi nition, the kth order central moment mk is given by mk = E{X – E(X)]k.

For the Poisson distribution P(l),

 mk = 
0

( )
!

r
k

r

r e
r

l l
l

•
-

=

-Â  (1)
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Differentiating (1) with respect to l, we get
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=
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i.e., mk + 1 = 
m

l m
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d

d

k
kk  (2)

Using recurrence relation (2), we may compute moments of higher order, 

provided we know moment of lower order.

Putting k = 1 in (2), we get

 m2 = 1
0

d

d

m
l m

l

Ê ˆ
+Á ˜Ë ¯

  = l ( m0 = 1 and m1 = 0)

Putting k = 2 in (2), we get

 m3 = 
m

l m l
l

Ê ˆ
+ =Á ˜Ë ¯

2
1

d
2

d

Putting k = 3 in (2), we get

 m4 = 
m

l m l l
l

Ê ˆ
+ = +Á ˜Ë ¯

3
2

d
3 (3 1)

d

Note  The interesting property of  the Poisson distribution is the equality of  its mean, 

variance and third-order central moment.

3. Geometric Distribution

Defi nition: Let the RV X denote the number of trials of a random experiment 

required to obtain the fi rst success (occurrence of an event A). Obviously, X can 

assume the values 1, 2, 3, …

Now, X = r, if and only if the fi rst (r – 1) trials result in failure (occurrence of 

A ) and the rth trial results in success (occurrence A). Hence,

 P(X = r) = qr–1 p; r = 1, 2, 3, …, •

where = =( ) and ( ) .P A p P A q

If X is a discrete RV that can assume the values 1, 2, 3, …, • such that its 

probability mass function is given by

  P(X = r) = qr–1 p; r = 1, 2, .., • where p + q = 1

then X is said to follow a geometric distribution. 
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Note  Geometric distribution is a legitimate probability distribution, since

 
r 1

P( X r )
•

=

=Â  = 
r 1

r 1

q p
•

-

=
Â

  = p(1 + q + q2 + … •)

  = 
p

1
1 q

=
-

Mean and Variance of the Geometric Distribution

 E(X) = Â r r

r

x p

  = 
•

-

=
Â 1

1

r

r

rq p

  = p[1 + 2q + 3q
2 + … + •]

  = 
-- =2 1

(1 )p q
p

 E(X2) = Â 2
r

r

x pr

  = 

•
-

=
Â 2 1

1

r

r

r q p

  = 

•
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=
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{ ( 1) } r

r

p r r r q

  = P[{1 ¥ 2 + 2 ¥ 3q + 3 ¥ 4 q2 + … + •} – { 1 + 2q + 3q
2 + … + •}]

  = p[2(1 – q)–3 – (1 – q)–2]

  = 
Ê ˆ

- = - = +Á ˜Ë ¯3 2 2 2

2 1 1 1
(2 ) (1 )p p q

p p p p

 Var(X) = E(X2) – {E(X)}2

  = + - =
2 2 2

1 1
(1 ) .

q
q

p p p

Note  Sometimes the probability mass function of  a geometric RV X is taken as 

  P(X = r) = qr p; r = 0, 1, 2, …, • where p + q = 1

It is this defi nition that was given in chapter II. If  this defi nition is assumed, then

 2

q q
E( X ) and Var( X )

p p
= =  [see example (5) in Worked Example 4(b)
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4. Hypergeometric Distribution

If X represents the number of defectives found, when n items are drawn without 

replacement from a lot of N items containing k defectives and (N – k) non-

defectives, clearly

  

-◊ -
= = =( )( )

( ) ; 0,1, 2, ...,min ( , )
r n r

n

kC N k C
P X r r n k

NC

Note  If  n > k, then the maximum value of  X is k;

If  n < k, then the maximum value of  X is n,

i.e., the maximum value of  X is min (n, k),

i.e., r can take the value 0, 1, 2, …, min (n, k).

Defi nition: If X is a discrete RV that can assume, non-negative values 0, 1, 2, …, 

such that its probability mass function is given by

-◊ -
= = =( )( )

( ) ; 0,1, 2, ...,min ( , )
r n r

n

kC N k C
P X r r n k

NC

then X is said to follow hypergeometric distribution with the parameters N, k and 

n.

Note  (1) In the probability mass function of  X, r can be assumed to take the values 0, 

1, 2, …, n, which is true when n < k. But when n > k, r can take the values 0, 1, 2, …k. 

In other words.

  P(X = r) = 0, when r = k + 1, k + 2, …n.

This value (namely, zero) of  the probability is provided by the probability mass function formula 

itself, since kCr = 0, for r = k + 1, k + 2, …n.

Thus, in the value of  P(X = r), min (n, k) can be replaced by n.

(2) Hypergeometric distribution is a legitimate probability distribution, since

 

n

r 0

P( X r )
=

=Â  = 

n
r ( n r )

nr 0

kC ( N k ) C

N C

-

=

◊ -
Â  (1)

  = n
n

1
NC 1 since

NC
=

 
n

r n r
r 0

kC ( N k ) C -
=

◊ -Â  = coeffi cient of  xn in (1 + x)k (1 + x)N – k

  = coeffi cient of  xn in (1 + x)N

  = NCn.

Mean and Variance of the Hypergeometric Distribution

 E(X) = Â r r

r

x p
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  = -
=

◊ -Â ( )

0

( ) /
n

r n r n

r

r kC N k C NC

  = - -
=

- -Â ( 1) )

1

( 1) ( )
n

r n r

rn

k
k C N k C

NC

  = 
-

- -¢ ¢
=¢

- -¢ ¢Â
1

1 )

0

( 1 ) ,
n

r n r

rn

k
k C N k C

NC

 (on putting k¢ = k – 1 and r¢ = r – 1)

  = -◊ - 1( 1) ,n

n

k
N C

NC
 [by step (1) in note (2) given above]

  = 
n k

N
.

 E(X2) = E{X(X – 1) + X}

  = E{X(X – 1)} + 
n k

N

  = -
=

+ - ◊ -Â ( )

0

( 1) ( ) /
n

r n r n

r

n k
r r kC N k C NC

N

  = - -
=

-
+ - ◊ -Â ( 2) ( )

2

( 1)
( 2) ( )

n

r n r

rn

n k k k
k C N k C

N N C

  = 
-

- -¢ ¢
=¢

-
+ ◊ - -¢ ¢Â

2

( 2 ),

0

( 1)
( 2 )

n

r n r

rn

n k k k
k C N k C

N N C

 [on putting k¢ = k – 2 and r¢ = r – 2]

  = -
-

+ ◊ - 2

( 1)
( 2) ,n

n

n k k k
N C

N N C

  [by step (1) in note (2) given above]

  = 
- -

+
-

( 1) ( 1)

( 1)

n k k k n n

N N N

 Var(X) = E(X2) = {E(X)}2

  = 
- ◊ -

+ -
-

2 2

2

( 1) ( 1)

( 1)

n k k k n n n k

N N N N

  = - + - - - -
-2

[ ( 1) ( 1)( 1) ( 1) ]
( 1)

n k
N N N k n N nk

N N

  = - - +
-

2

2
[ ]

( 1)

n k
N Nn Nk nk

N N

  = 
- -

-2

( ) ( )

( 1)

n k N k N n

N N
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Note  If  we denote the proportion of  defective items in the lot as p, i.e., =
k

p
N

 and

q = 1 – p, then E(X) = np and Var(x) = 
N n

npq
N 1

Ê ˆ-
Á ˜-Ë ¯

.

Binomial Distribution as a Limiting Form of the Hypergeometric 

Distribution

Hypergeometric distribution tends to binomial distribution as N Æ • and 

.
k

p
N

=

Proof

If X follows a hypergeometric distribution with parameters N, k and n, then 

 P{X = r} = 
-◊ -

=
( )

, 0,1, 2, ...,
r n r

n

kC N k C
r n

N C

  = 
- - + - - - - - + +

◊
-

  ( 1) ( 1) ( )( 1) ( 1)

! ( )!

k k k r N k N k N k n r

r n r

 
¥

- - + 

!

( 1) ( 1)

n

N N N n

  = 
-
!

!( )!

n

r n r

È ˘ È ˘- + + - -Ê ˆ Ê ˆ Ï ¸ Ê ˆ Ï ¸ Ï ¸- - - - -Ì ˝ Ì ˝ Ì ˝Á ˜ Á ˜ Á ˜Í ˙ Í ˙Ë ¯ Ë ¯ Ë ¯Ó ˛ Ó ˛ Ó ˛Î ˚ Î ˚¥
-Ê ˆ Ê ˆ Ï ¸◊ - - -Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯ Ó ˛

  

 

1 ( 1) 1 1
1 1 1

1 2 ( 1)
1 1 1 1

k k k r k k k n r

N N N N N N N N

n

N N N

(by dividing each factor in the numerator and denominator by N.) 

Putting =
k

p
N

 and proceeding to the limit as N Æ •, we get

 
Æ•

=

=lim { }
N
k

p
N

P X r  = nCr ◊ p
r(1 – p)n – r

  = nCr p
r qn–r; r = 0, 1, 2, …, n

Thus, the limit of a hypergeometric distribution is a binomial distribution.

Note  We know that the binomial distribution holds good when we draw samples with 

replacement (since the probability of  getting a defective item has to remain constant), while the 

hypergeometric distribution holds good when we draw samples without replacement. If  the lot 

size N is very large, there is not much difference in the proportions of  defective items in the 

lot whether the item drawn is replaced or not. The previous result is simply a mathematical 

statement of  this fact.
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5. Negative Binomial Distribution

Defi nition: If X denotes the number of failures preceding the nth success in a 

sequence of independent Bernoulli’s trials, then X is said to follow a negative 

binomial distribution with parameter n.

If r failures have to occur preceding the nth success, (n + r) trials are required, 

as the fi rst (n + r – 1) trials should result in r failures and (n – 1) successes and

(n + r)th trial should result in a success, where r = 0, 1, 2, …

Hence, P{X = r} = P[getting (n – 1) successes and r failures in (n + r – 1) 

trials] ¥ P[getting success in the (n + r)th trial]

  = (n + r – 1)C(n – 1)p
n – 1 qr ¥ p, where

p and q have the usual meaning in Bernouilli’s trials

i.e., P{X = r} = (n + r – 1) Cr p
n qr (r = 0, 1, 2, …)

Note  The negative binomial distribution is a legitimate probability distribution, since

 
r 0

P( X r )
•

=

=Â  = pn r
r

r 0

( n r 1) C q
•

=

+ -Â

  = n 2 3
1 2 3p [1 n C q ( n 1)C q ( n 2 ) C q ]+ + + + + + 

  = 
n 2 3n( n 1) n( n 1)( n 2 )n

p 1 q q q
1! 2 ! 3 !

+ + +È ˘+ + + +Í ˙Î ˚
 

  = pn (1 – q)–n = 1, since p + q = 1

Note  When n = 1, the negative binomial distribution reduces to the geometric distribution 

whole probability low is given by P{X = r} = qr p(r = 0, 1, 2, …)]

MGF of the Negative Binomial Distribution

The moment generating function M(t) of the negative binomial distribution is 

given by

 M(t) = E{e
tX}

  = 

•

=

¥ =Â
0

( )tr

r

e P X r

  = 
•

=

+ - ◊Â
0

( 1) n r tr
r

r

n r C p q e

  = 

•

=

+ -Â
0

( 1) ( )n t r
r

r

n r C p q e
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  = pn (1 – q et)–n  

•
-

=

È ˘
+ + = -Í ˙

Í ˙Î ˚
Â∵

0

( 1) (1 )r n
r

r

n r C q q

  = 

-
Ê ˆ-
Á ˜Ë ¯

1
n

t
q e

p

Let us now use the MGF to fi nd the mean and variance of the negative binomial 

distribution

Note  We bare already found out the mean and variance directly in example (3) of  section 

4(A)] 

 M(t) = 

-
Ï ¸Ê ˆ

- + + +Ô ÔÁ ˜Ì ˝Ë ¯
Ô Ô
Ó ˛

 

2

1 1
1! 2!

n

t t
q

p

  = 

-
Ï ¸Ê ˆ- + +Ì ˝Á ˜Ë ¯Ó ˛

 1 1
2

n
qt t

p

  = 
+Ê ˆ Ê ˆ+ + + + + + +Á ˜ Á ˜Ë ¯ Ë ¯◊

   

22 2

2

( 1)
1 1 1

1! 2 2! 2

nq t n n q t t
t

p p

 E(X) = Coeffi cient of 
1!

t
 in the expansion of M(t).

  = 
nq

p

 E(X2)  = Coeffi cient of 
2

2!

t
 in the expansion of M(t)

  = 
+

+
2

2

( 1)nq n n q

p p

 Var(X) = E(X2) – E
2(X)

  = 
+

+ -
2 2 2

2 2

( 1)nq n n q n q

p p p

  = 
Ê ˆ

+ =Á ˜Ë ¯ 2
1

nq q nq

p p p
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Worked Example 5(A)

Example 1

Out of 800 families with 4 children each, how many families would be expected 

to have (a) 2 boys and 2 girls, (b) at least 1 boy, (c) at most 2 girls, and

(d) children of both sexes. Assume equal probabilities for boys and girls.

Considering each child as a trial, n = 4. Assuming that birth of a boy is a 

success, =
1 1

and =
2 2

p q . Let X denote the number of successes (boys).

 (a) P(2 boys and 2 girls) = P(X = 2)

  = 

-
Ê ˆ Ê ˆ◊ ◊Á ˜ Á ˜Ë ¯ Ë ¯

2 4 2

2

1 1
4

2 2
C

  = 
Ê ˆ¥ =Á ˜Ë ¯

4
1 3

6
2 8

  \ No. of families having 2 boys and 2 girls

  = N ◊ P(X = 2) (where N is the total no. of families considered)

  = ¥
3

800
8

  = 300.

 (b) P(at least 1 boy) = P(X ≥ 1)

  = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

  = 1 – P(X = 0)

  = 1 – 
Ê ˆ Ê ˆ◊ ◊Á ˜ Á ˜Ë ¯ Ë ¯

0 4

0

1 1
4

2 2
C

  = - =
1 15

1
16 16

 \ No. of families having at least 1 boy

  = ¥ =
15

800 750.
16

 (c) P(at most 2 girls) = P(exactly 0 girl, 1 girl or 2 girls)

  = P(X = 4, X = 3 or X = 2)

  = 1 – {P(X = 0) + P(X = 1)

  = 
Ï ¸Ê ˆ Ê ˆÔ Ô- ◊ + ◊Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ô ÔÓ ˛

4 4

0 1

1 1
1 4 4

2 2
C C
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  = 
11

16

  \ No. of families having at most 2 girls

  = ¥ =
11

800 550
16

 (d) P(children of both sexes)

  = 1 – P(children of the same sex)

  = 1 – {P(all are boys) + P(all are girls)}

  = 1 – {P(X = 4) + P(X = 0)}

  = 
Ï ¸Ê ˆ Ê ˆÔ Ô- ◊ + ◊Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ô ÔÓ ˛

4 4

4 0

1 1
1 4 4

2 2
C C

  = - =
1 7

1
8 8

  \ No. of families having children of both sexes

  = ¥ =
7

800 700.
8

Example 2

An irregular 6-faced die is such that the probability that it gives 3 even numbers 

in 5 throws is twice the probability that it gives 2 even numbers in 5 throws. How 

many sets of exactly 5 trials can be expected to give no even number out of 2500 

sets?

Let the probability of getting an event number with the unfair die be p.

Let X denote the number of even numbers obtained in 5 trials (throws).

Given: P(X = 3) = 2 ¥ P(X = 2)

i.e.,  5C3 p
3
q

2 = 2 ¥ 5C2 p
2
q

3

i.e., p = 2q = 2(1 – p)

\ 3p = 2 or = =
2 1

and
3 3

p q

Now, P(getting no even number)

  = P(X = 0)

  = 5C0 ◊ p
0 ◊ q5 = 

Ê ˆ =Á ˜Ë ¯

5
1 1

3 243

\ Number of sets having no success (even number) out of N sets = N ¥ P(X = 0)

\ Required number of sets = ¥
1

2500
243

      = 10, nearly
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Example 3

The probability of a successful rocket launching is p. If launching attempts are 

made until 3 successful launching have occurred, what is the probability that 

exactly 5 attempts will be necessary? What is the probability that fewer than 5 

attempts will be necessary?

If launching attempts are made until 3 consecutive successful launching occur, 

what are the probabilities? [See Example (1) in Section 1 (c)]

 (a) Exactly 5 attempts will be required to get 3 successes (successful 

launching of rockets), if 2 successes occur in the fi rst 4 attempts and 

third success occurs in the fi fth attempt.

  \ P(exactly 5 attempts are required)

  = P(2 successes in 4 attempts)

¥ P(success in the single 5th attempt)

  = 4C2 p
2
q

2 ¥ p

 [∵ The no. of successes in the 4 independent attempts follow B(4, p)]

  = 6 p3
q

3

 (b) P{fewer than 5 attempts are required} 

  = P{exactly 3 or 4 attempts are required}

  = [P{2 successes in the fi rst 2 attempts}

  ¥ P(success in the 3rd attempt)]

  + [P{2 successes in the fi rst 3 attempts}

  × P(success in the 4th attempt)]

  = 2C2p
2
q

0 ¥ p + 3C2p
2
q

1 ¥ p

  = p3 + 3p
3 q = p3 (1 + 3q)

 (c) Five attempts will be required to get 3 consecutive successes, if the fi rst 

2 attempts result in failures and the last 3 attempts result in successes.

 \ Required probability = q ◊ q ◊ p ◊ p ◊ p = p3
q

2

 (d) Three attempts will be required to get 3 consecutive successes, if each 

attempt results in a success.

 \ Probability for this = p3.

  Four attempts will be required to get 3 consecutive successes, if the fi rst 

attempt results in a failure and the remaining attempts result in a success 

each.

  \ Probability for this = qp
3

  \ P{fewer than 5 attempts are required}

  = p3 + qp
3 = p3 (1 + q).

Example 4

A communication system consists of n components, each of which will 

independently function with probability p. The total system will be able to operate 

effectively if at least one-half of its components function. For what values of p 
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is a 5-component system more likely to operate effectively than a 3-component 

system?

Since the probability p of functioning of every component is a constant and 

the n components function independently, the number of components X that 

function follow a binomial distribution with parameters n and p.

\ P(X = r) = nCr p
r 
q

n–r; r = 0, 1, 2, …, n.

P(5-component system functions effectively)

  = P(X = 3 or 4 or 5)

  = 
-

=

=Â ∵

5
5

3

5 ( 5)r r
r

r

C p q n

P(3-component system functions effectively)

  = P(X = 2 or 3)

  = 
-

=

=Â ∵

3
3

2

3 ( 3)r r
r

r

C p q n

5-component system will function more effectively than the 3-component system,

if  
- -

= =

≥Â Â
5 3

5 3

3 2

5 3r r r r
r r

r r

C p q C p q

i.e.,  10 p3
q

2 + 5p
4
q + p5 ≥ 3p

2
q + p3

i.e.,  10p
3 (1 – 2p + p2) + 5p

4 (1 – p) + p5 ≥ 3p
2(1 – p) + p

3

i.e.,  3p
2(2p

3 – 5 p2 + 4p – 1) ≥ 0

i.e.,  3p
2(p – 1)2 (2p – 1) ≥ 0

i.e.,  (2p – 1) ≥ 0,   [since 3p
2 (p – 1)2 ≥ 0]

i.e.,  ≥
1

.
2

p

Example 5

If the probability that a child is a boy is p, where 0 < p < 1, fi nd the expected 

number of boys in a family with n children, given that there is at least one boy.

Let X be the number of boys (successes) out of n children (trials)

Then X follows a B(n, p).

Required to fi nd E{X/X ≥ 1}.

 E{X/X ≥ 1} = ( / 1)
r

r P X r X◊ = ≥Â

  = 
=

=
◊

≥Â
1

( )

( 1)

n

r

P X r
r

P X
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  = 

-

=

◊
- =Â

1 1 ( 0)

r n rn
r

r

r nC p q

P X

  = 
-

=

◊
-

Â
0

1

1

n
r n r

rn
r

r nC p q
q

  = 
-1 n

n p

q

Example 6

Two dice are thrown 120 times. Find the average number of times in which the 

number of the fi rst dice exceeds the number on the second dice.

The number on the fi rst dice exceeds that on the second dice, in the following 

combinations:

(2, 1); (3, 1), (3, 2); (4, 1), (4, 2), (4, 3); (5, 1), (5, 1), (5, 2), (5, 3), (5, 4); (6, 1), 

(6, 2), (6, 3), (6, 4), (6, 5),

where the numbers in the parentheses represent the numbers in the fi rst and 

second dice respectively.

\ P(success) = P(number in the fi rst dice exceeds the number in the second dice)

  = =
15 5

36 12

This probability remains the same in all the throws that are independent.

If X is the number of successes, then X follows a binomial distribution with 

parameters 
Ê ˆ= =Á ˜Ë ¯

5
( 120) and .

12
n p

\ E(X) = np = ¥ =
5

120 50
12

Example 7

Fit a binomial distribution for the following data:

x: 0 1 2 3 4 5 6 Total

f: 5 18 28 12 7 6 4 80

Fitting a binomial distribution means assuming that the given distribution is 

approximately binomial and hence fi nding the probability mass function and 

then fi nding the theoretical frequencies.

To fi nd the binomial frequency distribution N(q + p)n, which fi ts the given 

data, we required N, n and p. We assume N = total frequency = 80 and n = no. of 

trials = 6 from the given data.

To fi nd p, we compute the mean of the given frequency distribution and equate 

it to np (means of the binomial distribution).
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x: 0 1 2 3 4 5 6 Total

f: 5 18 28 12 7 6 4 80

fx: 0 18 56 36 28 30 24 192

    = = =Â
Â

192
2.4

80

f x
x

f

i.e., np = 2.4 or 6p = 2.4

\ p = 0.4 and q = 0.6

If the given distribution is nearly binomial, the theoretical frequencies are 

given by the successive terms in the expansion of 80(0.6 + 0.4)6. Thus we get,

x: 0 1 2 3 4 5 6

Theoretical f: 3.73 14.93 24.88 22.12 11.06 2.95 0.33

Converting these values into whole numbers consistent with the condition that 

the total frequency is 80, the corresponding binomial frequency distribution is 

as follows:

x: 0 1 2 3 4 5 6 Total

f: 4 15 25 22 11 3 0 80

Example 8

The number of monthly breakdowns of a computer is a RV having a Poisson 

distribution with mean equal to 1.8. Find the probability that this computer will 

function for a month

 (a) without a breakdown,

 (b) with only one breakdown, and

 (c) with at least one breakdown.

Let X denote the number of breakdowns of the computer in a month. X follows 

a Poisson distribution with mean (parameter) l = 1.8.

\ P{X = r} = 
l l- -◊ ◊

=
1.8 (1.8)

! !

r r
e e

r r

(a) P(X = 0) = e–1.8 = 0.1653

(b) P(X = 1) = e-1.8 (1.8) = 0.2975

(c) P(X ≥ 1) = 1 – P(X = 0) = 0.8347

Example 9

It is known that the probability of an item produced by a certain machine will be 

defective is 0.05. If the produced items are sent to the market in packets of 20, 

fi nd the number of packets containing at least, exactly and at most 2 defective 

items in a consignment of 1000 packets using (a) binomial distribution, and

(b) Poisson approximation to binomial distribution.
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Use of Binomial Distributions

p = probability that an item is defective = 0.05, q = 0.95 and n = No. of independent 

items (trials) considered = 20.

Let X denote the number of defectives in the n items considered.

 P(X = r) = nCr p
r qn – r

 (a) \  P(X = 2) = 20 C2(.05)2 (0.95)18

  = 0.1887

  If N is the number of sets (packets), each set (packet) containing 20 

trials (items), then the number of sets containing exactly 2 successes 

(defectives) is given by

 N(X = 2) = N ¥ P(X = 2)

  = 1000 ¥ 0.1887 = 189, nearly

 (b) P(at least 2 defectives) = P(X ≥ 2)

  = 1 – {P(X = 0) + P(X = 1)}

  = 1 – [20C0 (0.05)0 (0.95)20 + 20 C1 (0.05)1 (0.95)19]

  = 1 – [0.3585 + 0.3774]

  = 0.2641

\ N(X ≥ 2) = N ¥ P(X ≥ 2)

  = 1000 ¥ 0.2641 = 264, nearly

 (c) P(at most 2 defectives) = P(X £ 2)

  = P(X = 0) + P(X = 1) + P(X = 2)

  = 
-

=
Â

2
20

0

20 (0.05) (0.95)r r
r

r

C

  = 0.3585 + 0.3774 + 0.1887

  = 0.9246

\ N(X £ 2) = N ¥ P(X £ 2)

  = 1000 ¥ 0.9246 = 925, nearly

Use of Poisson Distributions

Since p = 0.05 is very small and n = 20 is suffi ciently large, binomial distribution 

may be approximated by Poisson distribution with parameter l = np = 1.

\ P(X = r) = 
l l- -◊

=
1

! !

r
e e

r r

 (a)      P(X = 2) = 
-

=
1

0.1839
2!

e

\ N(X = 2) = 1000 ¥ 0.1839 = 184, nearly
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   (b) P(X ≥ 2) = 1 – {P(X = 0) + P(X = 1)}

  = 1 – {e
–1 + e–1} = 0.2642

\ N(X ≥ 2) = 1000 ¥ 0.2642 = 264, nearly.

 (c) P(X £ 2) = 

-

= =

= =Â Â
12 2

0 0

( )
!r r

e
P X r

r

  = 0.9197

\ N(X £ 2) = 920, nearly.

Example 10

Prove the reproductive property of independent Poisson RVs. Hence, fi nd the 

probability of 5 or more telephone calls arriving in a 9-min period in a college 

switch-board, if the telephone calls that are received at the rate of 2 every

3 minutes follow a Poisson distribution.

Let X1 and X2 be independent RVs that follow Poisson distributions with 

parameters l1 and l2 respectively.

Let X = X1 + X2

 P{X = n} = P{X1 + X2 = n}

  = 
=

= ◊ = -Â 1 2

0

{ } { },
n

r

P X r P X n r

 (since X1 and X2 are independent)

  = 

l ll l- - -

=

◊ ◊
-Â

1 2
1 2

0 ! ( )!

r n rn

r

e e

r n r

  = 
l l

l l
- +

-

=

◊
-Â

1 2( )

1 2

0

!

! !( )!

n
r n r

r

e n

n r n r

  = 
l l

l l
- +

-

=

◊ ◊Â
1 2( )

1 2

0!

n
r n r

r

r

e
nC

n

  = 

l l l l- + ◊ +1 2( )
1 2( )

!

n
e

n

Thus, the sum of 2 independent Poisson variables with parameters l1 and l2 

is also a Poisson variable with parameter (l1 + l2).

This property, which can be extended to any fi nite number of independent 

Poisson variables is known as the Reproductive Property of Poisson RVs. [For 

an alternative proof, see example (9) in section 4(b)]

Let X1, X2, X3 denote the number of telephone calls received in three 

consecutive 3-min periods.

Each of X1, X2, X3 follows a Poisson distribution with parameter (mean)

l = 2.
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\ X = X1 + X2 + X3 follow a Poisson distribution with parameter 6.

Clearly, X represents the number of calls received in a 9-min period.

Now, P(X ≥ 5) = 1 – P{X £ 4)

  = 
-

=

◊
- Â

64

0

6
1

!

r

r

e

r

  = 1 – (0.0025 + 0.0149 + 0.0446 + 0.0892 + 0.1339)

  = 1 – 0.2851 = 0.7149

Example 11

If the number X of particles emitted during a 1 h period from a radioactive source 

has a Poisson distribution with parameter l = 4 and that the probability that any 

emitted particle is recorded is p = 0.9, fi nd the probability distribution of the 

number Y of the particles recorded in a 1 h period and hence the probability that 

no particle is recorded.

 P{Y = n} = 
•

=

= +Â
0

[ and  of them are recorded]
r

P X n r n

  = 
l l- +•

=

◊
+ ◊

+Â
0

( )
( )!

n r
n r

n

r

e
n r C p q

n r

  = 
0

( ) ( )!
( )

( )! ! !

n
r

r

e p n r
q

n r n r

l l
l

-•

=

◊ +
+Â

  = 
l l

l
- •

=

◊ Â
0

( ) 1
( )

! !

n
r

r

e p
q

n r

  = 
l

ll- ◊( )

!

n
qe p

e
n

  = 
(1 ) ( ) ( )

, 0,1, 2, , .
! !

q n p n
e p e p

n
n n

l ll l- - -◊ ◊
= = • 

Therefore, Y, the number of recorded particles, follows a Poisson distribution 

with parameter lp.

Hence, P(Y = 0) = e–lp

  = e–4 ¥ 0.9 = e–3.6

  = 0.0273

Example 12

If X and Y are independent Poisson RVs, show that the conditional distribution of 

X, given the value of X + Y, is a binomial distribution.

Let X and Y follow Poisson distributions with parameters l1 and l2 

respectively.
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Now, P{X = r/(X + Y) = n}

  = 
= + = = = -

=
+ = + =

{ and ( ) } { ; ]

{( ) } [ ]

P X r X Y n P X r Y n r

P X Y n P X Y n

  = 
= ◊ = -

+ =
{ } { }

{( ) }

P X r P X n r

P X Y n
 (by independence of X and Y)

  = 

l l

l l

l l

l l

- - -

- +

◊ ◊ -

◊ +

1 2

1 2

1 2

( )
1 2

{ / !}{ /( )!}

( ) / !

r n r

n

e r e n r

e n

 (by the reproductive property)

  = 
l l

l l l l

-
Ê ˆ Ê ˆ

◊Á ˜ Á ˜- + +Ë ¯ Ë ¯
1 2

1 2 1 2

!

!( )!

r n r
n

r n r

  = nCr p
r qn – r, where p = 

l l

l l l l
=

+ +
1 2

1 2 1 2

and q

Hence, the required result.

Example 13

Fit a Poisson distribution for the following distribution:

 x: 0 1 2 3 4 5 Total

 f: 142 156 69 27 5 1 400

Fitting a Poisson distribution for a given distribution means assuming that the 

given distribution in approximately Poisson and, hence, fi nding the probability 

mass function and then fi nding the theoretical frequencies. 

To fi nd the probability mass function

 P{X = r} = 
l l- ◊

= •…0,1, 2, ,
!

r
e

r
r

of the approximate Poisson distribution, we require l, which is the mean of the 

Poisson distribution.

We fi nd the mean of the given distribution and assume it as l.

 x : 0 1 2 3 4 5 Total

 f : 142 156 69 27 5 1 400

 fx : 0 156 138 81 20 5 400

  

l= = = =Â
Â

400
1

400

f x
x

f

The theoretical frequencies are given by

 
l l- ◊
!

r
N e

r
 where N = 400, obtained from the given distribution.

  = 
-1400

!

e

r
, r = 0, 1, 2, …, •
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Thus, we get

x: 0 1 2 3 4 5

Theoretical f: 147.15 147.15 73.58 24.53 6.13 1.23

The theoretical frequencies for x = 6, 7, 8, … are vary small and hence 

neglected.

Converting the theoretical frequencies into whole numbers consistent with the 

condition that the total frequency = 400, we get the following Poisson frequency 

distribution which fi ts the given distribution:

x: 0 1 2 3 4 5

Theoretical f: 147 147 74 25 6 1

Example 14

If the probability that an applicant for a driver’s license will pass the road test  

on any given trial is 0.8, what is the probability that he will fi nally pass the test

(a) on the fourth trial, and (b) in fewer than 4 trials?

Let X denote the number of trials required to achieve the fi rst success. Then X 

follows a geometric distribution given by

 P(X = r) = qr – 1 p;   r = 1, 2, 3, …, •
Here, p = 0.8 and q = 0.2

 (a) P(X = 4) = 0.8 ¥ (0.2)4–1

  = 0.8 × 0.008 = 0.0064

 (b) P(X < 4) = 
-

=

¥Â
3

1

1

0.8 (0.2)r

r

  = 0.8[(0.2)0 + (0.2)1 + (0.2)2 + (0.2)3]

  =  0.9984.

Example 15

A and B shoot independently until each has hit his own target. The probabilities of 

their hitting the target at each shot are 
3 5

and
5 7

 respectively. Find the probability 

that B will require more shots than A.

Let X denote the number of trials required by A to get his fi rst success. Then 

X follows a geometric distribution given by

 P(X = r) = p1q1
r – 1 = 

-
Ê ˆ◊ = •Á ˜Ë ¯

…

1
3 2

; 1, 2, ,
5 5

r

r



Some Special Probability Distribu  ons 5.25

Let Y denote the number of trials required by B to get his fi rst success. Then Y 

follows a geometric distribution given by

 P(Y = r) = 

-
- Ê ˆ◊ = ◊ = •Á ˜Ë ¯

…

1

1
2 2

5 2
; 1, 2, ,

7 7

r

r
p q r

P{B requires more trials to get his fi rst success than A requires to get his fi rst 

success}

  = 

•

=

= = + + •Â …

1

{ and 1 or 2, , }
r

P X r Y r r

  = 

•

=

= ◊ = + + •Â …

1

[ { } { 1 or 2, , }]
r

P X r P Y r r  (by independence)

  = 

- + -• •

= =

Ê ˆ Ê ˆ◊ ◊ ◊Á ˜ Á ˜Ë ¯ Ë ¯Â Â
1 1

1 1

3 2 5 2

5 5 7 7

r r k

r k

  = 

1

1 1

3 4 2

7 35 7

r k

r k

-• •

= =

Ê ˆ Ê ˆ◊Á ˜ Á ˜Ë ¯ Ë ¯Â Â

  = 

-•

=

Ê ˆ
Á ˜Ê ˆ◊Á ˜ Á ˜Ë ¯ Á ˜-Ë ¯

Â
1

1

2

3 4 7
27 35

1
7

r

r

  = 

-•

=

Ê ˆ = ◊ =Á ˜Ë ¯ -
Â

1

1

6 4 6 1 6
.

435 35 35 31
1

35

r

r

Example 16

A coin is tossed until the fi rst head occurs. Assuming that the tosses are 

independent and the probability of a head occurring is p, fi nd the value of p so 

that the probability that an odd number of tosses is required is equal to 0.6.

Can you fi nd a value of p so that the probability is 0.5 that an odd number of 

tosses is required?

Let X denote the number of tosses required to get the fi rst head (success). 

Then X follows a geometric distribution given by 

 P(X = r) = pq
r – 1;   r = 1, 2, …,

\ P(X = an odd number) P(X = 1 or 3 or 5, …)

  = 

• •
-

= =

= - =Â Â 2 2

1 1

( 2 1) r

r r

P X r p q

  = + + + 2 4 6

2
( )

p
q q q

q
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  = ◊ =
+-

2

2 2

1

11

p q

qq q
 (since p + q = 1) (1)

Now, 
+
1

1 q
 = =

-
1

0.6, if 0.6
2 p

i.e., 0.6 p = 0.2

i.e., p = 
1

3

Now, 
+
1

1 q
 = =

-
1

0.5, if 0.5
2 p

i.e.,                  - =1 1
2

p

i.e., p = 0

though we get p = 0, it is meaningless, because

   P(X = an odd number)

  = 

•
-

=
Â 2 2

1

r

r

pq

  = 0, when p = 0

Hence, the value of p cannot be found out. 

Example 17

Establish the memoryless property of geometric distribution, that is, if X is a 

discrete RV following a geometric distribution, then P{X > m + n/X > m} = P{X 

> n}, where m and n are any two positive integers. Prove the converse also, if it 

is true.

Since X follows a geometric distribution,

 P(X = r) = pq
r – 1; r = 1, 2, …, •; p + q = 1

\ P{X > k} = 
•

- + +

= +

= + + + + • =
-Â  

1 1 2

1

( )
1

k
r k k k

r k

pq
pq p q q q

q

  = q

Now, P{X > m + n/X > m} = 
> + >

>
{ and }

{ }

P X m n X m

P X m

  = 
> +

>
{ }

{ }

P X m n

P X m

  = 

+

= = >( )
m n

n

m

q
q P X n

q
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The converse of the above result is also true, i.e., if P{X > m + n/X > m} =

P{X > n}, where m and n are any two positive integers, then X follows a geometric 

distribution.

Since X takes the values 1, 2, 3, …, P(X ≥ 1) = 1.

Let P{X > 1} = q

Now, P{X = (r + 1)} = P{X > r} – P{X > (r + 1)} (1)

\ 
= +

>
{ ( 1)}

{ }

P X r

P X r
 = 

> +
-

>
{ ( 1)}

1
{ }

P X r

P X r

  = 1 – P{X > (r + 1)/X > r}

  = 1 – P(X > 1) (by the data)

  = 1 – q

\ P{X = r + 1)} = (1 – q) P(X > r) (2)

  = (1 – q) [P{X > (r – 1)} – P{X = r}]

 [from (1), on changing r to (r – 1)]

   = (1 – q) [P{X > (r – 1)} – (1 – q) P(X > (r – 1)]

 [from (2) on changing r to (r – 1)]

  = (1 – q) q P{X > (r – 1)}

  = (1 – q) q2 P{X > (r – 2)}

  = (1 – q)qr – 1 P(X > 1)

  = (1 – q)qr

\ P{X = r} = pq
r – 1, where p = 1 – q and r = 1, 2, …

That is, X follows a geometric distribution.

Example 18

If two independent RVs X and Y have the same geometric distribution, prove 

that the conditional distribution of X, given that X + Y = k is a discrete uniform 

distribution.

Given: P(X = r) = P(Y = r) = pq
r – 1; r = 1, 2, …

Now, P{X = r/X + Y = k} = 
= + =

+ =
{ and }

{ }

P X r X Y k

P X Y k

  = 
= = -

+ =
{ and }

{ }

P X r Y k r

P X Y k

  = 
-

=

= ◊ = -

= ◊ = -Â
1

1

{ } { }

{ } { }
k

r

P X r P Y k r

P X r P Y k r

 (by independence)

  = 
- - -

-
- - -

=

◊

◊Â

1 1

1
1 1

1

r k r

k
r k r

r

pq pq

pq pq
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  = 
-

-
-

=

= = -
-

Â
…

2

1
2

1

1
; 1, 2, 3, , ( 1)

1

k

k
k

r

q
r k

k
q

Note  When P{X = r} = constant, the discrete RV X is said to follow a discrete uniform 

distribution.

Thus, the conditional distribution of X, given that X + Y = k, is a discrete 

uniform distribution.

Example 19

A taxicab company has 12 Ambassadors and 8 Fiats. If 5 of these taxi cabs are in 

the workshop for repairs and an Ambassador is as likely to be in for repairs as a 

Fiat, what is the probability that

 (a) 3 of them are Ambassadors and 2 are Fiats,

 (b) at least 3 of them are Ambassadors, and

 (c) all the 5 are of the same make?

Let X denote the number of Ambassadors in the workshop out of the 5 taxicabs.

We note that N = 20, k = 12, and n = 5 and X follows a hyprgeometric 

distribution given by

  P(X = r) = 
-◊

=5

5

12 8
0,1, ..., 5

20

r rC C
r

C

 (a) P(3 Ambassadors and 2 Fiats) = 
◊3 2

5

12 8

20

C C

C

           = 
¥

=
220 28 385

15,504 969

 (b) P(at least 3 Ambassadors) = P(X ≥ 3)

  = P(X = 3) + P(X = 4) + P(X = 5)

  = 
-

=

◊
Â

5
5

3 5

12 8

20

r r

r

C C

C

  = ¥ + ¥ + ¥ =
1 682

{220 28 495 8 792 1}
15,504 969

 (c) P(all the 5 are of the same make)

  = P(all are Ambassadors or all are fi ats)

  = P(X = 5 or X = 0)

  = P(X = 5) + P(X = 0)

  = 
◊ ◊

+5 0 0 5

5 5

12 8 12 8

20 20

C C C C

C C

  = + =
1 53

(792 56)
15,504 969
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Example 20

A panel of 7 judges is to decide which of the 2 fi nal contestants A and B will be 

declared the winner; a simple majority of the judges will determine the winner. 

Assume that 4 of the judges will vote for A and the other 3 will vote for B. If we 

randomly select 3 of the judges and seek their verdict, what is the probability that 

a majority of them will favour A?

Let X denote the number of judges favouring A. We note that N = 7, k = 4 and 

n = 3 and X follows a hypergeometric distribution, given by

  P(X = r) = 
-◊

=3

3

4 3
0,1, 2, 3

7

r rC C
r

C

P(a majority of 3 chosen judges will favour A) = P(X ≥ 2)

  = P(X = 2) + P(X = 3)

  = ◊ + ◊2 1 3 0

3

1
{4 3 4 3 }

7
C C C C

C

  = ¥ + ¥ =
1 22

(6 3 4 1)
35 35

Example 21

If a boy is throwing stones at a target, what is the probability that his 10th throw 

is his 5th hit, if the probability of hitting the target at any trial is 
1

2
?

Since the 10th throw should result in the 5th success, viz., hit, the fi rst 9 

throws ought to have resulted in 4 successes and 5 failures. Hence, in the usual 

notation, = = = =
1

5, 5,
2

n r p q.

\ Required probability = P(X = 5) = (5 + 5 – 1)
Ê ˆ Ê ˆ◊ ◊Á ˜ Á ˜Ë ¯ Ë ¯

5 5

5

1 1

2 2
C

     = ¥ =4 10

1
9 0.123

2
C

Example 22

An item is produced in large numbers. The machine is known to produce 2% 

defectives. A quality control inspector is examining the items by taking them one 

by one at random. What is the probability that at least 4 items are to be examined 

in order to get 2 defectives?

Success ∫ defective and failure ∫ non-defective

  p = 0.02 and q = 0.98

If at least 4 items are to be examined (viz. 4 trials are required) to give 2 

defectives (success), 4 or 5 or 6 or … items are to be examined i.e., the fi rst 3 or 

4 or 5 or … trials must result in 1 success and the next trial in a success.
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\  Required probability

  = 3C1 p
2 q2 + 4C1 p

2 q3 + 5C1 p
2 q4 + …

  = p2{3q
2 + 4q

3 + 5q
4 + …}

  = p2 [(1 – q)–2 – 1 – 2q]

  = 1 – p2 – 2p
2 q

  = 1 – (0.02)2 – 2 ¥ (0.02)2 ¥ 0.98

  = 0.9988

Example 23

Find the probability that a person tossing 3 fair coins get either all heads or all 

tails for the second time on the fi fth trial.

 p = P(3 heads or 3 tails in tossing 3 coins)

  = + =
1 1 1

8 8 4

and q = 
3

.
4

5th trial must result in the 2nd success.

\  the fi rst 4 trials must have resulted in 1 success and 3 failures.

\  Required probability = 3C1 p
1 q3 ¥ p

  = 
Ê ˆ Ê ˆ¥ ¥Á ˜ Á ˜Ë ¯ Ë ¯

2 3
1 3

4
4 4

  = 
27

256

Exercise 5(A)

Part-A (Short-answer Questions)

 1. The mean and variance of a binomial distribution are 
4

4 and
3

 

respectively. Find P(X ≥ 1), if n = 6.

 2. If the recurrence relation for the central moments of the binomial 

distribution is mr + 1 = 
m

m -
Ê ˆ

+Á ˜Ë ¯1

d

d

r
rpq nr

p
, fi nd the value of b1.

 3. In 256 sets of 8 tosses of a coin, in how many sets one may expect heads 

and tails in equal numbers?

 4. An experiment succeeds twice as often as it fails. Find the chance that in 

the next 4 trials, there shall be at least one success.

 5. In a family of 4 children, what is the probability that there will be at least 

1 boy and at least 1 girl, assuming equal probability for boys and girls.
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 6. If X has the distribution 
Ê ˆ
Á ˜Ë ¯

1
25,

5
B , fi nd P(X < m – 2s) where m and s2 

are the mean and variance of the distribution.

 7. Show that the largest value of the variance of a binomial distribution is .
4

n

 8. Find the mean and SD of the distribution whose moment generating 

function is 0.4 et + 0.6).

 9. When will the sum of 2 binomial variates having distributions B(n1, p1) 

and B(n2, p2) be also a binomial variate?

 10. If X follows 
Ê ˆ
Á ˜Ë ¯

1
3,

3
B  and Y follows 

Ê ˆ
Á ˜Ë ¯

1
5,

3
B , fi nd P(X + Y ≥ 1).

 11. Write down the pmf of the Poisson distribution which is approximately 

equivalent to B(100, 0.02).

 12. If X is a Poisson variate such that 2P(X = 0) + P(X = 2) = 2P(X = 1), fi nd 

E(X).

 13. If X is a Poisson variate such that E(X2) = 6, fi nd E(X).

 14. If X is a Poisson variate such that P(X = 0) = 0.5, fi nd Var(X).

 15. If X is a Poisson variate with parameter l > 0, prove that

 E(X2) = lE(X + 1).

 16. If X is a Poisson variate with parameter l, prove that

      E(X is even) = l-+ 21
(1 )

2
e

 17. If the MGF of a discrete RV X is m s- = +4( 1) , find ( )
t

e
e P X , where m 

and s are the mean and SD of X.

 18. If X and Y are independent identical Poisson variates with mean 1, fi nd 

P(X + Y = 2).

 19. Find the mean and variance of the discrete probability distribution given 

by - - -= = - = •1( ) (1 ) 1, 2, 3, ..., .t t r
P X r e e r

 20. If X is a geometric variate, taking values 1, 2, 3, …, • fi nd P(X is odd).

 21. Find the mean and variance of the distribution given by

 P(X = r) = 
2

, 1, 2, ...,
3r

r = •

 22. For the geometric distribution of X, which represents the number of 

Bernoulli’s trials required to get the fi rst success Var(X) = 2E(X). Find 

the pmf of the distribution.

 23. Find the MGF of the geometric distribution, given by P(X = r) = qr – 1 p, 

r = 1, 2, …, •.

 24. If the MGF of a discrete RV X, taking values 1, 2, …, •, is et (5 – 4e
t)–1, 

fi nd the mean and variance of X.

 25. Defi ne hypergeometric distribution and give an example for the situation 

where it arises.

 26. Write down the mean and variance of the hypergeometric distribution 

given by

 P(X = r) = kCr(N – k) Cn – r/NCn, r = 0, 1, 2, …
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 27. State the conditions under which the hypergeometric distribution tends 

to the binomial distribution. Hence, deduce the mean and variance of the 

binomial distribution from those of the hypergeometric distribution.

Part-B

 28. It is known that diskettes produced by a certain company are defective 

with a probability 0.01 independently of each other. The company 

markets diskettes in packages of 10 and offers a money-back guarantee 

that atmost 1 of the 10 diskettes is defective. What proportion of diskettes 

are returned? If someone buys 3 diskettes, what  is the probability that he 

will return exactly one of them?

 29. Assuming that half the population is vegetarian and that 100 investigators 

each take 10 individuals to see whether they are vegetarians, how many 

would you expect to report that 3 people or less were vegetarians?

 30. Show that, if 2 symmetric binomial distributions of degree n are so 

superposed that the rth term of the one coincides with the (r + 1)th term 

of the other, the distribution formed by adding superposed terms is a 

binomial distribution of degree (n + 1).

  [Hint: nCr–1 + nCr = (n + 1)Cr]

 31. A factory produces 10 articles daily. It may be assumed that there is 

a constant probability p = 0.1 of producing a defective article. Before 

these articles are stored, they are inspected and the defective ones are set 

aside. Suppose that there is a constant probability r = 0.1 that a defective 

article is misclassifi ed. If X denotes the number of articles classifi ed as 

defective at the end of a production day, fi nd (a) P(X = 3) and P(X > 3).

  [Hint: P(a defective article is classifi ed as defective) = P(an article produced 

is defective) ¥ P(it is classifi ed as defective) = 0.1 ¥ 0.9 = 0.09]

 32. A fair coin is tossed 4 times. If X denotes the number of heads obtained 

and Y denotes the excess of the number of heads over the number of 

tails, obtained the probability mass function of Y.

 33. An irregular 6-faced dice is thrown and the expectation that in 10 throws 

it will give 5 even numbers is twice the expectation that it will give 4 

even numbers. How many times in 10,000 sets of 10 throws would you 

expect to give no even number?

 34. If m things are distributed among a men and b women, show that 

the probability that the number of things received by men is odd is 

È ˘+ - -
Í ˙

+Î ˚

1 ( ) ( )
.

2 ( )

m m

m

b a b a

b a

  [Hint: P(a thing is received by men) = = =
+ +

and ]
a b

p q
a b a b

 35. At least one half of an airplane’s engines are required to function in order 

for it to operate. If each engine independently functions with probability 
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p, for what values of p is a 4-engine plane to be preferred for operation 

to a 2-engine plane?

 36. At least one half of an airplane’s engines are required to function in order 

for it to operate. If each engine functions independently with probability 

of failure q, for what values of q is a 2-engine plane to be preferred for 

operation to a 4-engine plane?

 37. If a fair coin is fl ipped an even number 2n times, show that the probability 

of getting more heads than tails is 
È ˘Ê ˆ-Í ˙Á ˜Ë ¯Í ˙Î ˚

2
1 1

1 2 ,
2 2

n

nnC

  [Hint: P(more heads than tails) = P(less heads than tails = 
1

2
 [1 – P(equal

number of heads and tails)]

 38. If a fair coin is tossed at random 5 independent times, fi nd the conditional 

probability of 5 heads relative to the hypothesis that there are at least 4 

heads.

 39. A factory has 10 machines which may need adjustment from time to 

time during the day. Three of these machines are old, each having a 

probability of 
1

11
 needing adjustment during the day and 7 are new, 

having the corresponding probability of 
1

21
. Assuming that no machine 

needs adjustment twice on the same day, fi nd the probabilities that on a 

particular day

  (i) just 2 old and no new machine need adjustment and

 (ii) just 2 machines that need adjustment are of the same type.

 40. The probability of a man hitting a target is 
1

4
. (i) If he fi res 7 times, what 

is the probability of his hitting the target at least twice? and (ii) How 

many times must he fi re so that the probability of his hitting the target at 

least once is greater than 
2

3
?

 41. A set of 6 similar coins are tossed 640 times with the following results:

  Number of heads: 0 1 2 3 4 5 6

  Frequency : 7 64 140 210 132 75 12

  Calculate the binomial frequencies on the assumption that the coins are 

symmetrical.

 42. Fit a binomial distribution for the following data and hence fi nd the 

theoretical frequencies:

  x: 0 1 2 3 4

  f: 5 29 36 25 5 

 43. A car hire fi rm has 2 cars which it hires out day by day. The number of 

demands for a car on each day follows a Poisson distribution with mean 
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1.5. Calculate the proportion of days on which (i) neither car is used and 

(ii) some demand is not fulfi lled.

 44. The proofs of a 500-page book contains 500 misprints. Find the probability 

that there are at least 4 misprints in a randomly chosen page.

 45. If the average number of claims handled daily by an insurance company 

is 5, what proportion of days will have less than 3 claims? What is the 

probability that there will be 4 claims in exactly 3 of the next 5 days. 

Assume that the number of claims on different days are independent.

 46. In a certain factory producing razor blades, there is a small change 
1

500
 

for any blade to be defective. The blades are supplied in packets of 10. 

Use Poisson distribution to calculate the approximate number of packets 

containing (i) no defective blade, (ii) at least 1 defective blade and

(iii) at most 1 defective blade in a consignment of 10,000 packets.

 47. An insurance company has discovered that only about 0.1% of the 

population is involved in a certain type f accident each year. If its 10,000 

policy holders were randomly selected from the population, what is the 

probability that not more than 5 of its clients are involved in such an 

accident next year?

 48. In a given city, 4% of all licensed drivers will be involved in at least 1 

road accident in any given year. Determine the probability that among 

150 licensed drivers randomly chosen in this city

   (i) only 5 will be involved in at least 1 accident in any given year, and

 (ii) at most 3 will be involved in at least 1 accident in any given year.

 49. A radioactive source emits on the average 2.5 particles per second. Find 

the probability that 3 or more particles will be emitted in an interval of 

4s.

 50. It has been established that the number of defective stereos produced 

daily at a certain plant is Poisson distributed with a mean of 4. Over a 

2-day span, what is the probability that the number of defective stereos 

does not exceed 3?

 51. In an industrial complex, the average number of fatal accidents per month 

is one-half. The number of accidents per month is adequately described 

by a Poisson distribution. What is the probability that 6 months will pass 

without a fatal accident?

 52. If the numbers of telephone calls coming into a telephone exchange 

between 9 am and 10 am and between 10 am and 11 am are independent 

and follow Poisson distributions with parameters 2 and 6 respectively, 

what is the probability that more than 5 calls come between 9 am and

11 am?

 53. Patients arrive randomly and independently at a doctor’s consulting 

room from 5 pm at an average rate of one in 5 min. The waiting room 

can hold 12 persons. What is the probability that the room will be full, 

when the doctor arrives at 6 pm?
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 54. The number of blackfl ies on a broad bean leaf follows a Poisson 

distribution with mean 2. A plant inspector, however, records the number 

of fl ies on a leaf only if at least 1 fl y is present. What is the probability 

that he records 1 or 2 fl ies on a randomly chosen leaf? What  is the 

expected number of fl ies recorded per leaf?

  [Hint: If X is the number of fl ies on a leaf, we have to fi nd P{X = r/X ≥ 

1}, r = 1, 2, and add them.]

 55. A radioactive source emits particles at a rate of 10 per minute in 

accordance with Poisson law. Each particle emitted has a probability 

of 
2

5
 being recorded. Find the probability that at least 4 particles are 

recorded in a 2-min period.

 56. Fit a Poisson distribution for the following distribution and hence fi nd 

the expected frequencies.

  x :  0 1 2 3 4 5 6

  f:  314 335 204 86 29 9 3

 57. If the probability that a certain test yields a positive reaction equals 0.4, 

what is the probability that fewer than 5 negative reactions occur before 

the fi rst positive one?

 58. In a test a light switch is turned on and off until it fails. If the probability 

that the switch will fail any time it is turned on or off is 0.001, what is 

the probability that the switch will not fail during the fi rst 800 times it is 

turned on or off?

 59. An item is inspected at the end of each day to see whether it is still 

functioning properly. If it is found to fail at the 10th inspection and not 

earlier, what is the maximum value of the probability of its failure on 

any day?

 60. If X and Y are 2 independent RVs, each representing the number of failures 

preceding the fi rst success in a sequence of Bernoulli’s trials with p as 

the probability of success in a single trial, show that = =
+

( ) ,
1

p
P X Y

q
 

where p + q = 1.

 61. A throws 2 dices until he gets 6 and B throws independently 2 other dice 

until he gets 7. Find the probability that B will require more throws than 

A. 

 62. If 2 independent RVs X and Y have identical geometric distributions 

with parameter p, fi nd the probability mass function of (X + Y) and hence 

the expected value of (X + Y).

 63. As part of an air-pollution survey, an inspector decides to examine the 

exhaust of 6 of a company’s 24 trucks. If four of the company’s trucks 

emit excessive amounts of pollutants, what is the probability that none 

of them will be included in the inspector’s sample?

 64. Among the 120 applicants for a job, only 80 are actually qualifi ed. If 5 

of the applicants are randomly selected for an in-depth interview, fi nd 
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the probability that only 2 of them will be qualifi ed for the job using 

(i) hypergeometric probability, and (ii) binomial approximation to 

hypergeometric probability.

 65. If an auditor selects 5 returns from among 15 returns of which 9 contains 

illegitimate deductions, what is the probability that a majority of the 

selected returns contains illegitimate deductions?

 66. In sampling a lot of 100 items, the sampling plan calls for inspections of 

20 pieces. Find the probability of accepting a lot with 5 defectives, if we 

allow 1 defective in the sample.

 67. If X and Y are independent binomial random variables having respective 

parameters (n, p) and (m, p), prove that the conditional probability mass 

function of X, given that X + Y = k, is that of a hypergeometric RV.

  [Hint: The joint probability mass function of X and Y is that of a binomial 

distribution with parameters (m + n, p).]

 68. A student takes a 5-answer multiple choice test orally. He continues to 

answer questions until he gets 5 correct answers. What is the probability 

that he gets them on the 12th question, if he guesses at each answer?

 69. A consignment of 15 tubes contains 4 defectives. The tubes are selected 

at random, one by one, and examined. Assuming that the tubes tested are 

not put back, what is the probability that the ninth one examined is the 

last defective?

 70. A machine is known to produce 3% defective items. What is the 

probability that at least 5 items are to be examined in order to get 2 

defective items?

SPECIAL CONTINUOUS DISTRIBUTIONS

1. Uniform or Rectangular Distribution

Defi nition: A continuous RV X is said to follow a uniform or rectangular 

distribution in any fi nite interval, if its probability density function is a constant 

in that interval.

If X follows a uniform distribution in a < x < b, then =
-
1

( )f x
b a

 in a < x < 

b, as explained below:

When X follows a uniform distribution in (a, b), 

 f(x) = k.

By the basic property of a probability density function,

   

=Ú ( )d 1

XR

f x x

\ Ú d

b

a

k x  = 1
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\ k = 
-
1

.
b a

Thus, for a uniform distribution in (a, b),

 f(x) = 
-
1

.
b a

When X follows a uniform distribution in (a, b), it is symbolically written as: 

X follows U(a, b).

Moments of the Uniform Distribution U(a, b)

Raw moments mr of the uniform distribution U(a, b) about the origin are given by

 mr¢ = E{X
r}, where X follows U(a, b)

  = 
-Ú
1

d

b
r

a

x x
b a

  = 
+ +-
+ -

1 1

( 1)( )

r r
b a

r b a
 (1)

\ E(X) = Mean of U(a, b) = m = +¢1
1

( )
2

b a  (2)

Central moments mr of the uniform distribution U(a, b) are given by

    mr = E[{X – E(X)}r]

  = - +
1

[{ ( )} ]
2

r
E X b a

  = 

Ï ¸- +Ì ˝
Ó ˛

-Ú

1
( )

2
d

r

b

a

x b a

x
b a

  = 
-

= - + -
- Ú
1 1 1

d , on putting ( ) and c = ( )
2 2

c
r

c

t t t x b a b a
b a

  = 

Ï
Ô
Ì -Ê ˆ◊Ô Á ˜Ë ¯+Ó

0 if is odd

1
if is even

1 2

r

r

b a
r

r

Thus, m2n–1 = 0 and m2n = 
-Ê ˆ

Á ˜Ë ¯+

2
1

2 1 2

n
b a

n
  for n = 1, 2, 3, … (3)

In particular, m2 = variance of U(a, b) = - 21
( )

12
b a  (4)
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 m3 = 0 and m4 = - 41
( )

80
b a

The absolute central moments nr of the uniform distribution U(a, b) are given by

 nr = -{| ( )| }r
E X E X

  = 

- +

-Ú

1
( )

2
d

r

b

a

x b a

x
b a

  = 
-

= - + = -
- Ú
1 1 1

| | d , on putting ( ) and ( )
2 2

c
r

c

t t t x b a c b a
b a

  = 
0

2
d ,

c
r

t t
b a- Ú  (since the integrand is an even function of t)

  = 
-Ê ˆ◊ Á ˜Ë ¯+

1

1 2

r
b a

r
 (5)

Defi nition: E{|X – E(X)|) is called the mean deviation (MD) about the mean of 

the RV X or of the corresponding distribution.

Thus, the MD about the mean of the distribution U(a, b) is given by

  n1 = -
1

( )
4

b a

2. Exponential Distribution

Defi nition: A continuous RV X is said to follow an exponential distribution or 

negative exponential distribution with parameter l > 0, if its probability density 

function is given by

 f(x) = 
ll -Ï ≥Ô

Ì
ÔÓ

0

0 otherwise

x
e x

We note that ll
• •

-= =Ú Ú
0 0

( ) d d 1x
f x x e x  and hence f(x) is a legitimate density 

function.

Mean and Variance of the Exponential Distribution

Raw moments m¢r about the origin of the exponential distribution are given by

 mr¢ = E(Xr)

  = ll
•

-◊Ú
0

dr x
x e x

  = 
l

•
-Ú

0

1
d ,r y

r
y e y  (on putting y = lx) 
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  = 
l

+
1

( 1)
r

r

  = 
l

!
r

r
 (1)

\ E(X) = Mean of the exponential distribution

  = m1¢ = 
l

1
, [from (1)]

Putting r = 2 in (1), we get

  m2¢ = 
l2

2

\ Var(X) = E(X2) – {E(X)}2

  = 
l l l

- =
2 2 2

2 1 1

Memoryless Property of the Exponential Distribution

If X is exponentially distributed, then

 P(X > s + t/X > s) = P(X > t), for any s, t > 0

 P(X > k) = ll
•

-Ú dx

k

e x

  = l l• -- =( )x k
ke e  (1)

Now P(X > s + t/X > s) = 
{ and }

{ }

P X s t X s

P X s

> + >
>

  = 
> +

>
{ }

{ }

P X s t

P X s

  = 
l

l

- +

-

( )

, [by (1)]
s t

s

e

e

  = e–lt = P(X > t).

Note  The converse of  this result is also true. That is, if  P(X > s + t/X > s) = P(X > 

t), then X follows an exponential distribution. See Example (8) in Worked Example 5(b).]

3. Erlang Distribution, or General Gamma 

Distribution

Defi nition: A continuous RV X is said to follow an Erlang distribution or General 

Gamma distribution with parameters l > 0 and k > 0, if its probability density 

function is given by

  f(x) = 

ll - -Ï
≥Ô

Ì
Ô
Ó

1

, for 0
( )

0, otherwise

k k x
x e

x
k
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We note that 
ll

• •
- -=Ú Ú 1

0 0

( )d d
( )

k
k k

f x x x e x
k

    = 

•
- -Ú 1

0

1
d ,

( )

k t
t e t

k
 [on putting lx = t]

Hence, f(x) is a legitimate density function.

Note  1. When l = 1, the Erlang distribution is called Gamma distribution 

or simple Gamma distribution with parameter k whose density function is f(x) = 

, ; .
( )

k t x1
x e x 0 k 0

k

- - ≥ >

2. When k = 1, the Erlang distribution reduces to the exponential distribution with parameter 

l > 0.

3. Sometimes, the Erlang distribution itself  is called Gamma distribution.

Mean and Variance of the Erlang Distribution

The raw moments mr¢ about the origin of the Erlang distribution are given by

 mr¢ = E(Xr) 

  = ll
•

+ - -Ú 1

0

d
( )

k
k r x

x e x
k

  = 
l

l

•
+ - -

+◊ Ú 1

0

1
d ,

( )

k
k r t

k r
t e t

k
 (on putting lx = t)

  = 
l

+1 ( 1)

( )
r

k

k

 Mean = E(X) = 
l l

+
◊ =

1 ( 1)

( )

k k

k

 Var(X) = E(X2) – [E(X)]2 

  = 
ll

+ Ê ˆ◊ - Á ˜Ë ¯

2

2

1 ( 2)

( )

k k

k

  = 
l l

+ - =2

2 2

1
{ ( 1) }

k
k k k

Reproductive Property of the Gamma Distribution

The sum of a fi nite number of independent Erlang variables is also an Erlang 

variable. That is, if X1, X2, …, Xn are independent Erlang variables with parameters 

(l, k1), (l, k2), …, (l, kn), then X1 + X2 +  + Xn is also an Erlang variable with 

parameter (l, k1 + k2 + … + kn). 
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Let us fi rst fi nd the moment generating function of the Erlang variable X with 

parameters l and k and use it to prove this property. MGF of X is given by

 MX(t) = E{e
tx}

  = ll
•

- - -Ú 1

0

d
( )

k
k x tx

x e e x
k

  = ll
•

- - -Ú 1 ( )

0

d
( )

k
k t x

x e x
k

  = 
l

l

•
- -◊

- Ú 1

0

1
d ,

( )( )

k
k y

k
y e y

tk
 (on putting l – t = y)

  = 
l

l

Ê ˆ
Á ˜-Ë ¯

∵[ the integral = ( )]

k

k
t

  = 
l

-
Ê ˆ-Á ˜Ë ¯
1

k
t

Now, + + + =
 

 
1 2 1 2( ( ) ( ) ( ) ( )

n nX X K X X XM t M t M t M t (since X1, X2, …, Xn are 

independent)

 [Refer to Property (4) of MGF given in Section 4(b) of Chapter 4.]

 = 
l l l

- - -
Ê ˆ Ê ˆ Ê ˆ- - -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 

1 2

1 1 1
nk k k

t t t

 = 
l

- + + +
Ê ˆ-Á ˜Ë ¯

 1 2( )

1
nk k k

t

which is the MGF of an Erlang variable with parameters (l, k1 + k2 + … + kn). 

Hence the reproductive property.

Relation Between the Distribution Functions (cdf) of the Erlang 

Distribution with l = 1 (or Simple Gamma Distribution) and 

Poisson Distribution

If X is a Poisson random variable with mean l,

then P(X £ K) = 

l l-

=
Â

0 !

rk

r

e

r
 (1)

Differentiating both sides with respect to l, we get

 
l

£
d

( )
d

P X k  = 
l ll l- - -

=

◊ - ◊Â 1

0

1
{ }

!

k
r r

r

e r e
r

  = 
l l l-

-

=

È ˘
-Í ˙-Î ˚

Â
1

0 ( 1)! !

r rk

r

e
r r
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  = 
l l l l l l-

-
È ˘Ê ˆ Ï ¸Ê ˆ Ô Ô- + - + - + + -Í ˙Ì ˝Á ˜ Á ˜Ë ¯ -Ë ¯ Ô ÔÍ ˙Ó ˛Î ˚

 

2 1

1 1
1! 1! 2! ( 1)! !

k k

e
k k

  = 
l l-

!

k
e

k
 (2)

Integrating both sides of (2) with respect to l from l to •, we get

 
l

l

l
•

-

=

È ˘
Í ˙
Í ˙Î ˚
Â

0 !

rK

r

e

r
 = 

l

l

l l
•

-- Ú
1

!

k
e d

k

i.e., 

l l-

=
Â

0 !

rK

r

e

r
 = 

l

•
-Ú

1
d

!

y k
e y y

k

i.e.,  P(X £ k) = P(Y ≥ l),

 [where Y is the Erlang variable with parameters 1 and (k + 1)]

or P(X £ k) = 1 – P(Y £ l)

Note  The above relationship is valid only when the parameter k is a positive integer.

4. Weibull Distribution

Defi nition: A continuous RV X is said to follow a Weibull distribution with 

parameters a, b > 0, if the RV Y = aX
b follows the exponential distribution with 

density function fY(y) = e–y, y > 0.

Density Function of the Weibull Distribution

Since Y = a ◊ Xb, we have y = a ◊ xb.

By the transformation rule, derived in Chapter 3, we have fX(x) = fY(y) 
d

,
d

y

x
 

where fX(x) and fY(y) are the density functions of X and Y respectively.

\ fX(x) = e–ya bx
b – 1

  = a b xb – 1
e

–a xb; x > 0 [∵ y > 0]

Note  When b = 1, Weibull distribution reduces to the exponential distribution with 

parameter a.

Mean and Variance of the Weibull Distribution

The raw moments mr¢ about the origin of the Weibull distribution are given by

 mr¢ = E(Xr)

  = 
bb aab

•
+ - -Ú 1

0

dr x
x e x

  = b b b

a a

+ - -•
-Ê ˆ Ê ˆ

Á ˜ Á ˜Ë ¯ Ë ¯Ú
1 1

1 1

0

d

r

yy y
e y
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on putting y = ax
b or x = 

b

a

Ê ˆ
Á ˜Ë ¯

1

y

  = b ba
•

- -Ú/ /

0

dr r y
y e y

  = 
ba

b
- Ê ˆ

+Á ˜Ë ¯
/ 1r r

\ Mean = E(X) = m1¢ = 
ba

b

- Ê ˆ
+Á ˜Ë ¯

1
1

1

  Var(X) = E(X2) – {E(X)}2

  = ba
b b

-
È ˘Ï ¸Ê ˆ Ê ˆÔ ÔÍ ˙+ - +Ì ˝Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Ô ÔÓ ˛Í ˙Î ˚

2

2/ 2 1
1 1

Note  Weibull distribution fi nds frequent applications in Reliability Theory. It is assumed 

as the probability distribution of  the time to failure (or length of  life) of  a component in a 

system. Other distributions used to describe the failure law are the exponential and normal 

distributions. see Example (19) in Worked Example 5(b). 

5. Normal (or Gaussian) Distribution
Defi nition: A continuous RV X is said to follow a normal distribution or Gaussian 

distribution with parameters m and s, if its probability density function is given by

  f(x) = m s

s p

- - - • < < •
2 2( ) /21

;
2

x
e x

       –• < m < •   s > 0 (1)

Symbolically, ‘X follows N(m, s)’. Sometimes it is also given as N(m, s2). We 

shall use only the notation N(m, s) as in the earlier chapters.

f(x) is a legitimate density function, as

 

•

-•
Ú ( ) df x x  = 

m s

s p

•
- -

-•
Ú

2 2( ) /21
d

2

x
e x

  = s
s p

•
-

-•
Ú

21
2 d ,

2

t
e t    

m

s

Ê ˆ-
Á ˜Ë ¯

on putting =
2

x
t

  = 
p

•
-

-•
Ú

21
dt

e t

  = p
p p p

•
- Ê ˆ= ◊ = ◊ =Á ˜Ë ¯Ú

2

0

1 1 1 1
2 d 1

2

t
e t
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(a) Standard Normal Distribution

The normal distribution N(0, 1) is called the standardised or simply the standard 

normal distribution, whose density function is given by

  

f
p

-= - • < < •
2 /21

( )
2

z
z e z

This is obtained by putting m = 0 and s = 1 and by changing x and f respectively 

into z and f. if X has distribution N(m, s) and if 
m

s

-
= ,

X
Z  then we can prove 

that Z has distribution N(0, 1).

[See the corollary under the property (6) of normal distribution]

The importance of N(0, 1) is due to the fact that the values of f(z) and fÚ
0

( ) d

z

z z  

are tabulated.

(b) Normal Probability Curve

Fig. 5.1

The graph of y = f(x), that is given above for s = s1 and s2, is a well-known 

bell-shaped curve and is called the normal probability curve (Fig. 5.1).

The curve is symmetrical about the ordinate at x = m. The ordinate f(x) 

decreases rapidly as x increases numerically, the maximum (occurring at x = m) 

given by 
s p

1
.

2
 The curve extends up to infi nity on either side of x = m and the 

x-axis is an asymptote to the curve.

The graph is concave downward at x = m and it is concave upward for large 

numerical values of x. The points at which the concavity changes are called 

the points of infl exion of the curve. They are found by solving the equation 

y¢¢ = 0 [i.e., f ¢¢(x) = 0]. We can prove that the points of infl exion of the normal 

probability curve occur at x = m ± s, that is, at points which are at a distance of 

s on either side of x = m. Thus, if s is relatively large, the curve tends to be fl at, 

while if s is small, the curve tends to be peaked. Hence, the steepness of the 

curve is determined by s. The two curves given in the fi gure relate to N(m, s1) 

and N(m, s2), where s1 > s2.
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(i) Properties of the Normal Distribution N(m, s)
If X follows N(m, s), then E(X) = m and Var (X) = s2

 E(X) = 

•

-•
Ú ( ) dx f x x

  = m s

s p

•
- -

-•
Ú

2 2( ) /21
d

2

x
x e x

  = m s
p

•
-

-•
Ú

21
( + 2 ) d ,t

t e t  
m

s

Ê ˆ-
=Á ˜Ë ¯

on putting
2

x
t

  = 
m

s
pp

• •
- -

-• -•

+Ú Ú
2 22

d dt t
e t t e t

  = 
m

p m
p

◊ = .

 (since the integrand in the second integral is an odd function of t)

 E(X2) = 
m s

s

•
- -

-•
Ú

2 22 ( ) /21
d

2

x
x e x

  = m s
p

•
-

-•

+Ú
221

( 2 ) d ,t
t e t  

m

s

Ê ˆ-
=Á ˜Ë ¯

on putting
2

x
t

  = m ms s
p

• • •
- - -

-• -• -•

È ˘
Í ˙+ +
Í ˙Î ˚
Ú Ú Ú

2 2 22 2 21
d 2 2 2 dt t t

e t t e dt t e t

  = 
s

m
p

•
-+ + Ú

2
2

2

0

2
0 2 d ,t

t e t t  -
∵

22( is even)t
t e

  = 
s

m
p

•
-+ Ú

12
2 2

0

2
d ,u

u e u  (on putting u = t2)

  = 
s

m
p

Ê ˆ+ Á ˜Ë ¯

2
2 2 3

2

  = 
s

m
p

Ê ˆ+ ◊ Á ˜Ë ¯

2
2 1 1

2
2 2

  = m2 + s2 p
Ê ˆÊ ˆ =Á ˜Á ˜Ë ¯Ë ¯
∵

1

2
\ Var(X) = E(X2) – {E(X)}2

  = s2

(ii) Median and Mode of the Normal Distribution N(m, s)
Defi nition: If X is a continuous RV with density function f(x), then M is called 

the median value of X, provided that
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•

-•

= =Ú Ú
1

( ) d ( ) d
2

M

M

f x x f x x

For the normal distribution N(m, s), the median M is given by

  

m s

s p

•
- - =Ú

2 2( ) /21 1
d

22

x

M

e x

i.e.,  

m
m s m s

ms p s p

•
- - - -+ =Ú Ú

2 2 2 2( ) /2 ( ) /21 1 1
d

22 2

x x

M

e x e

i.e.,  

m
m s

s p

- - + =Ú
2 2( ) /21 1 1

d ,
2 22

x

M

e x

  

m s

s p

•
- -

-•

ÏÔ =Ì
ÔÓ

Ú
2 2( ) /21

since d 1 and the normal curve is
2

x
e x

m
¸
˝
˛

symmetrical about  = x

i.e.,  
m

=Ú ( ) d 0
M

f x x

\  M = m
Defi nition: Mode of a continuous RV X is defi ned as the value of x for which the 

density function f(x) is maximum.

For the normal distribution N(m, s),

 f(x) = m s

s p

- - - • < < •
2 2( ) /21

2

x
e x

\ log f(x) = m
s

- - 2

2

1
( )

2
k x

Differentiating with respect to x,

 
¢( )

( )

f x

f x
 = m

s
- -

2

1
( )x

i.e., f ¢(x) = m
s

- -
2

1
( ) ( )x f x

  = 0, when x = m

 f ¢¢(x) = m
s

- - +¢
2

1
{( ) ( ) ( )}x f x f x

\ [f ¢¢(x)]x = m = m
s

- <
2

1
( ) 0f

Therefore, f(x) is maximum at x = m. That is,

Mode of the distribution N(m, s) = m.

Note  For the normal distribution, mean, median and mode are equal.



Some Special Probability Distribu  ons 5.47

(iii) Central Moments of the Normal Distribution N(m, s)
Central moments mr of N(m, s) are given by mr = E(x – m)r

  = m sm
s p

•
- -

-•

-Ú
2 2( ) /21

( ) d
2

r x
x e x

  = s
p

•
-

-•
Ú

21
( 2 ) dr t

t e t

  = 
s

p

•
-

-•
Ú

2
/22

d
r r

r t
t e t

Case (A): r is an odd integer, that is, r = 2n + 1.

 \ m2n+1 = 
s

p

•+ +
+ -

-•
Ú

2
( 1)/2 2 1

2 12
d

n n
n t

t e t

  = 0, (since the integrand is an odd function of t)

Case (B): r is an even integer, that is, r = 2n

\ m2n = 
s

p

•
-

-•
Ú

2
2

22
d

n n
n t

t e t

  = 
2

2
2

0

2
2 d

n n
n t

t e t
s

p

•
-◊ Ú

   (∵ the integrand is an even function of t)

  = 
s

p

• - -

-•
Ú

12

2
2

d .
n n

n
u

u e u  [on putting u = t2)

  = 
s

p

Ê ˆ+Á ˜Ë ¯

22 1

2

n n

n  (1)

  = 
s

p

- -Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

22 2 1 2 1

2 2

n n
n n

  = 
s

p

- - -Ê ˆ Ê ˆ Ê ˆ◊Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

22 2 1 2 3 2 3

2 2 2

n n
n n n

  = 
s

p

- - Ê ˆ◊ Á ˜Ë ¯
 

22 2 1 2 3 1 1

2 2 2 2

n n
n n

  = 1.3.5 … (2n – 1) s2n

From (1), we get,

 m2n – 2 = 
s

p

- 2 - Ê ˆ◊ -Á ˜Ë ¯

1 22 1

2

n n

n  (2)  
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From (1) and (2), we get

     

m
s

m -

= -22

2 2

2 ( 1/2)n

n

n

i.e., m2n = (2n – 1)s2 m2n – 2 (3)

(3) gives a recurrence relation for the even order central moments of the normal 

distribution N(m, s).]

(iv) Mean Deviation about the Mean of the Normal Distribution 

N(m, s)
Defi nition: The absolute (central) moment of the fi rst order of a RV X is called 

the mean deviation about the mean of X.

i.e., MD about the mean = E{|x – E(X)|}

For the normal distribution N(m, s),

The MD about the mean = 
m sm

s p

•
- -

-•

-Ú
2 2( ) /21

d
2

x
x e x

  = s s
s p

•
-

-•
Ú

21
2 2 d

2

t
t e t

  = s
p

•
-

-•
Ú

22
dt

t e t

  = s
p

•
-

-•
Ú

22
2 d ,t

t e t

 (since the integrand is an even function of t)

  = s
p

- •-
2

0

2
( )t

e

  = s s
p

=
2 4

5
  (approximately).

(v) Quartile Deviation of the Normal Distribution N(m, s)
Defi nition: The fi rst quartile Q1 and the third quartile Q3 of N(m, s) (or of any 

continuous random variable ) are defi ned by the equations

  

31 1 3
( ) d and ( ) d

4 4

QQ

f x x f x x

-• -•

= =Ú Ú

or equivalently,

  

3

1

1 1
( ) d and ( ) d ,

4 4

Q

Q

f x x f x x

m

m

= =Ú Ú

[if the curve y = f(x) is symmetrical about x = m]
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Then the quartile deviation (QD) is defi ned as

  QD = -3 1

1
( )

2
Q Q

For the normal distribution N(m, s), Q1 is given by

  
m

m s

s p

- - =Ú
2 2

1

( ) /21
d 0.25

2

x

Q

e x

i.e.,   
m s p

-

-

=Ú
2

1

0
/2

( )/

1
d 0.25

2

z

Q

e z  
m

s

-Ê ˆ
Á ˜Ë ¯

on putting z =
x

i.e.,      

m s

f
-

=Ú
1( )/

0

( ) d 0.25,

Q

z z

 

m

s

-Ê ˆ
<Á ˜Ë ¯

1by symmetry of the normal curve and since 0.
Q

From the table of normal areas (areas under standard normal curve), we get

  f( ) =Ú
0.674

0

d 0.25,z z

\  
m

s

-
=1 0.674

Q

i.e.,  Q1 = m – 0.674 s
By symmetry,  Q3 = m + 0.674 s

\             QD = s s- = =3 1

1 2
( ) 0.674 (approximately)

2 3
Q Q

(vi) Moment Generating Function of N(0, 1) and N(m, s)
The moment generating function of N(0, 1) is given by

 MZ(t) = E(etZ)

  = f
•

-•
Ú ( ) d ,tz

e z z  [where f(z) is the density function of N(0, 1)]

  = 
p

•
-

-•
Ú

2 /21
d

2

z tz
e e z

  = 
p

•
- -

-•
Ú

2( 2 )/21
d

2

z tz
e z

  = 
p

•
- - -

-•
Ú

2 2{( ) }/21
d

2

z t t
e z
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  = 
p

•
-

-•
Ú

2 2/21
2 d ,

2

t u
e e u  

Ê ˆ-
Á ˜Ë ¯

on putting  = 
2

z t
u

  = 
2 2/2 /21 1 1

2 2

t t
e e p

p

Ê ˆÊ ˆ Ê ˆ= =Á ˜Á ˜ Á ˜Ë ¯ Ë ¯Ë ¯
∵

The moment generating function of N(m, s) is given by

 MX(t) = MsZ + m(t),   
m

s

-Ê ˆ=Á ˜Ë ¯
since

X
Z

  = emt ◊ mZ(s t), (by the property of MGF)

  = 
2 2 /2t t

e e
m s

  = 

2

2

t
t

e

s
m

Ê ˆ
+Á ˜

Ë ¯

Now, MX(t) = 
s s

m m
Ê ˆ Ê ˆ

+ + + +Á ˜ Á ˜Ë ¯ Ë ¯

2
2 2 2

1
1! 2 2! 2

t t t t

 

s s
m m

Ê ˆ Ê ˆ
+ + + + + + •Á ˜ Á ˜Ë ¯ Ë ¯

 

3 4
3 2 4 2

3! 2 4! 2

t t t t

\  E(X) = Coeffi cient of m=
1!

t

  E(X2) = Coeffi cient of s m= +
2

2 2

2!

t

  E(X3) = Coeffi cient of ms m= +
3

2 33 and
3!

t

  E(X4) = Coeffi cient of s m s m= + +
4

4 2 2 43 6 .
4!

t

Using the relation mk = kth order central moment = E{(X – m)k}, we get

  m1 = 0, m2 = s2, m3 = 0, m4 = 3s4

We could have got these values from the formulas m2n + 1 = 0 and m2n = 1.3.5 

… (2n – 1) s2n, which we have derived already.

Corollary

If X and the distribution N(m, s) then Y = aX + b has the distribution N(am + b, as)

 MX(t) = m s+ 2 2 /2t t
e

\ MY(t) = MaX + b(t)

  = ebt
MX(at)

  = m s+ 2 2 2 /2bt a t a t
e e

  = 
m s+ + 2 2 2( ) ( ) /2a b t a t

e
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which is the MGF of N(am + b, as).

In particular, if X has the distribution N(m, s), then 
m

s

-
=

X
Z  has the 

distribution 
m

m s
s s s

Ê ˆ- ◊Á ˜Ë ¯
1 1

,N  that is, N(0, 1).

(vii) Additive Property of the Normal Distribution
If Xi (i = 1, 2,… , n) be n independent normal RVs with mean mi and variance si

2, 

then 
=
Â

1

n

i i

i

a X  is also a normal RV with mean m
=
Â

1

n

i i

i

a  and variance s
=
Â 2 2

1

n

i i

i

a .

 

=

Ê ˆ
Á ˜
Á ˜Ë ¯
Â

1

( )
n

i

i

ai X

M t  = 
1 1 2 2

( ). ( ) ... ( ),
n na X a X a XM t M t M t  (by independence)

  = 
m sm s m s ++ +¥ ¥ 

2 2 22 2 2 2 2 2
1 1 1 1 2 2 2 2 /2/2 /2 n n n na t a ta t a t a t a t

e e e

  = 
2 2 2
1( a ) /2i i it a t

e
m sS + S

which is the MGF of a normal RV with mean S aimi and variance Sai
2 si

2. Hence 

the property.

Deductions

 1. Putting a1 = a2 = 1 and a3 = a4 = … = an = 0, we get the following result, 

in particular:

  If X1 is N(u1, s1) and X2 is N(m2, s2), then X1 + X2 is N(m1 + m2, s s+2 2
1 2 ).

Similarly, X1 – X2 is N(m1 – m2, s s+2 2
1 2 ).  

 2. Putting a1 = a2 = … = an = 
1

n
 and assuming that each Xi is N(m, s), then

    
=

= Â
1

1 n

i

i

X X
n

 has a normal distribution

    

m s
= =

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

Â Â 2

2
1 1

1 1
,

n n

i i

N
n n

  i.e., m s{ , / }N n .

  Thus, if Xi (i = 1, 2, ..., n) are independent and identically distributed 

normal variables with mean m and standard deviation s, then their mean 

X  is m s{ , / }N n .

(viii)  Normal Distribution as a Limiting Form of the Binomial 

Distribution
When n is very large and neither p nor q is very small, the standard normal 

distribution can be regarded as the limiting form of the standardised binomial 

distribution.
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When X follows the binomial distribution B(n, p), the standardised binomial 

variable Z is given by Z = 
-X np

n pq
. As X varies from 0 to n with step size 1, 

Z varies from 
-

to
np np

n pq n pq
 with step size 

1
.

n pq
 When neither p nor q 

is very small and n is very large, Z varies from –• to • with infi nitesimally 

small step size. Hence, in the limit, the distribution of Z may be expected to be a 

continuous distribution extending from –• to • and having mean 0 and standard 

deviation 1. In fact the limiting form of the distribution of Z is standard normal 

distribution as seen bellows:

If X follows B(n, p), then the MGF of X is given by MX(t) = (q + p et)n.

If Z = 
-

,
X np

n pq
then

 MZ(t) = 

-

-
= + /

1 ( ) { }

n pt

n pq t n pq n
np

X
n pq n pq

M t e q p e

\ log MZ(t) = 
/

log { }
t n pqnpt

n q p e
n pq

- + +

  = -
n pt

n pq
 +

 

È ˘Ï ¸Ô ÔÍ ˙+ + + + +Ì ˝
Í ˙Ô ÔÓ ˛Î ˚

 

2 3

3/2
log 1

6( )2

t t t
n q p

n pqn pq n pq

  = -
n pt

n pq
 +

 

È ˘Ï ¸Ô ÔÍ ˙+ + + +Ì ˝
Í ˙Ô ÔÓ ˛Î ˚

 

2 3

3/2
log 1

6( )2

pt pt pt
n

n pqn pq n pq

  = 
È Ï ¸Ô ÔÍ- + + + +Ì ˝
Í Ô ÔÓ ˛Î

 

2

2 2 2
1

62

n pt pt t t
n

n p qn pq n pq n pq

   

˘Ï ¸Ô Ô ˙- ◊ + + + +Ì ˝ ˙Ô ÔÓ ˛ ˚

  

2
2 2

2 2 2

1
1

2 62

p t t t

n pq n p qn pq

  = +
2 1

terms containing and lower powers of 
2

t
n

n
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\  
Æ•

=
2

lim log ( )
2

Z
n

t
M t

i.e., 
Æ•

È ˘ =Í ˙Î ˚

2

log lim ( )
2

e z
n

t
M t

\  
Æ•

=
2 /2lim ( ) t

Z
n

M t e

which is the MGF of the standard normal distribution. Hence, the limit of the 

standardised binomial distribution, as n tends to •, is the standard normal 

distribution.

Note  We recall De Moivre–Laplace approximation for the sum of  a large number of  

terms of  the form nCrp
r qn – r in terms of  the integral of  standard normal density function, 

which was discussed in section 1(c). It was stated that

 

f-

=

=Â Ú
22

1 1

zr
n rr

r
r r z

nC p q ( z ) dz

where 
1 2

1 2

1 1
r np r np

2 2z and z and (z )
n pq n pq

f
- - - +

= =  is the density function of  the 

standard normal distribution.

(c) Importance of Normal Distributions

Normal distributions play a very important role in statistical theory because of 

the following reasons:

 (i) A large number of RVs, such as binomial and Poisson, occurring  in 

many applications have a distribution closely resembling the normal 

distribution.

 (ii) Many of the distributions of sample statistics, such as sample mean and 

sample variance, tend to normality for samples of large size. In particular, 

the sampling distributions like Student’s t, Snedecor’s F and Chi-square 

distributions tend to normality when the size of the sample is large.

 (iii) Tests of signifi cance for small samples are based on the assumption that 

samples have been drawn from normal populations.

 (iv) Even if a variable is not normally distributed, it can sometimes be con-

verted into a normal variable by simple transformation of the variable.

 (v) Normal distribution is applied to a large extent in Statistical Quality 

Control in industry.
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Worked Example 5(B)

Example 1

If a string, 1 m long, is cut into 2 pieces at a random point along its length, what 

is the probability that the longer piece is at least twice the length of the shorter?

Fig. 5.2

Let C be the point of cut on AB such that AC = X. Since all positions of C are 

equally likely, X is uniformly distributed over (0, 1) [∵ AB = 1]

\ f(x) = 1

If X represents the length of the longer piece, then C lies in MB.

P{longer piece length  ≥ 2 ¥ shorter piece length}

  = 
Ê ˆ≥ - = ≥Á ˜Ë ¯

2
{ 2 (1 )}

3
P X X P X

  = =Ú
1

2/3

1
1 d

3
x

If X represents the length of the shorter piece, then C lies in A M.

In this case also, required probability

  = 
Ê ˆ- ≥ = £Á ˜Ë ¯

1
{(1 ) 2 }

3
P X X P X

  = =Ú
1/3

0

1
1 d

3
x

Hence, the required probability = 
1

3
 [Also see Example (17) in Worked 

Example 2(A) and Problem (59) in Exercise 2(A)].

Example 2

Buses arrive at a specifi ed stop at 15 min. intervals starting at 7 am that is, 

they arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger arrives at the stop 

at a random time that is uniformly distributed between 7 and 7:30 am, fi nd the 

probability that he waits.

(a) less than 5 min for a bus, and

(b) at least 12 min for a bus.

Let X denote the time in minutes past 7 am, when the passenger arrives at the 

stop.
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Then X is uniformly distributed over (0, 30), i.e., = < <
1

( ) , 0 30
30

f x x

 (a) The passenger will have to wait less than 5 min. if he arrives at the stop 

between 7:10 and 7:15 or 7:25 and 7:30.

  \ Required probability = P(10 < x < 15) + P(25 < x < 30)

  = +Ú Ú
15 30

10 25

1 1
d d

30 30
x x

  = 
1

3

 (b) The passenger will have to wait at least 12 min. if he arrives at the stop 

between 7:00 and 7:03 or 7:15 and 7:18.

  \ Required probability = P(0 < x < 3) + P(15 < x < 18)

  = +Ú Ú
3 18

0 15

1 1
d d

30 30
x x

  = 
1

5

Example 3

If the roots of the quadratic equation x2 – ax + b = 0 are real and b is positive but 

otherwise unknown, what are the expected values of the roots of the equation. 

Assume that b has a uniform distribution in the permissible range.

The roots of the equation x2 – ax + b = 0 are given by

  
= ± -21

( 4 )
2

x a a b

Since the roots are real, a2 – 4b > 0

i.e.,  0 < b < >∵

2

( 0)
4

a
b

Therefore, b is a random variable, uniformly distributed in 
Ê ˆ
Á ˜Ë ¯

2

0, .
4

a

Therefore, its density function =
2

4
( )f b

a

 E{the roots} = 
Ï ¸± -Ì ˝
Ó ˛

21
( 4 )

2
E a a b

  = ± - ◊Ú
2 /4

2

2
0

1 4
( 4 ) d

2

a

a a b b
a
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  = 

( )

È ˘
Í ˙-

±Í ˙
Í ˙-
Î ˚

2 /4
3

2 2

2

0

2 ( 4 )

3
4

2

a

a b
ab

a

  = 
È ˘

-Í ˙
Î ˚

∓

2
3

2

2 1
(0 )

4 6

a
a

a

  = 
Ê ˆ±Á ˜Ë ¯

1 1

2 3
a

  = 
5

and
6 6

a a

Example 4

Two points are taken at random on a given straight line of length 2 units. Prove 

that the probability of the distance between them exceeds 1 unit is 
1

4
.

[See Example (10) in Worked Example 2(B)]

Let X and Y be the distance of the two points P, Q, taken on the line AB from A.

Each of X and Y follows a uniform distribution in (0, 2).

Therefore, the joint density function of (X, Y) =  = < < < <
1

( , ) , 0 2; 0 2.
4

f x y x y

Fig. 5.3

Now, P{PQ < 1} = P{|X – Y| < 1}

  = P{–1 < X – Y < 1} 

  = 
- < - <

ÚÚ
1 1

( , ) d d
x y

f x y x y

  = 
- < - <

=ÚÚ
1 1

1 1
d d .

4 4
x y

x y  Area of ODEBGFO

  = 
1

.
2

 Area of trapezium ODEB, by symmetry
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  = ◊ ◊ +
1 1 1

( 2 2 2)
2 2 2

  = 
3

4

\ P{PQ > 1} = 
1

4

Example 5

If X is a RV with a continuous distribution function F(x), prove that Y = F(X) has 

a uniform distribution in (0, 1). Further,

if f(x) = 

Ï - £ £Ô
Ì
ÔÓ

1
( 1) 1 3

2

0 , otherwise

x x

fi nd the range of Y corresponding to the range 1.1 £ X £ 2.9.

The distribution function of Y is given by

 GY(y) = P(Y £ y)

  = P{F(X) £ y}

  = P{X £ F 
–1(y)} [The inverse exists, as F(x) is 

 non-decreasing and continuous]

  = F[F–1(y)]  [∵ P{X £ x} = F(x)]

  = y

Therefore, the density function of Y is given by

  gY(y) = =[ ( )] 1
d

Y

d
G y

y

Also the range of Y is 0 £ y £ 1, since the range of F(x) is (0, 1).

Therefore, Y follows a uniform distribution in (0, 1).

Note  The converse of  this problem has been worked in Example (14) of  Worked 

Example (3).

When  f(x) = 

Ï - £ £Ô
Ì
ÔÓ

1
( 1) 1 3

2

0 otherwise

x x

 F(x) = - = -Ú 2

1

1 1
( 1) d ( 1)

2 4

x

x x x

Since Y = F(X),    = - 21
( 1)

4
Y X
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\ when 1.1 £ X £ 2.9, - £ £ -2 21 1
(1.1 1) (2.9 1)

4 4
Y

i.e., the required range of Y is

 0.0025 £ Y £ 0.9025

Example 6

The mileage which car owners  get with a certain kind of radial tire is a RV having 

an exponential distribution with mean 40,000 km. Find the probabilities that one 

of these tires will last (a) at least 20,000 km, and (b) at most 30,000 km.

Let X denote the mileage obtained with the tire

 f(x) = - >/40,0001
0

40,000

x
e x

  (a) P(X ≥ 20,000) = 

•
-Ú /40,000

20,000

1
d

40,000

x
e x

  = - •- /40,000
20,000[ ]x

e

  = e–0.5 = 0.6065

  (b) P(X £ 30,000) = -Ú
30,000

/40,000

0

1
d

40,000

x
e x

  = 
-- /40,000 30,000

0[ ]x
e

  = 1 –  e–0.5 = 0.5270

Example 7

If the time T to failure of a component is exponentially distributed  with parameter 

l and if n such components are installed, what is the probability that one-half or 

more of these components are still functioning at the end of t hours? 

The density function of T is given by

 f(t) = le
–lt, t ≥ 0

P(a component functions at the end of or after t hours)

  = l ll
•

- -≥ = =Ú( ) dt t

t

P T t e t e

If we consider a component functioning at the end or after t hours as a success 

in a single trial, we have p = e–lt and q = 1 – e–lt.

Then the number X of successes in n independent trials follows a binomial 

distribution with parameters n and p.

\  P(X  = r) = nCr p
r 
q

n – r; r = 0, 1, 2, …, n
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If n is even the required probability is given by

  

2

( )
n

n
r

P X r

=

=Â  = l l- - -

=

-Â
2

(1 )
n

r t t n r
r

n
r

nC e e

If n is odd, the required probability is given by

  
1

2

( )
n

n
r

P X r
+

=

=Â  = l l- - -

+
=

-Â
1

2

(1 )
n

r t t n r
r

n
r

nC e e

Example 8

If a continuous RV X(> 0) possesses memoryless property, that  is P(X > x + h) = 

P(X > x). P(X > h), then X follows an exponential distribution.

Let G(x) = P(X > x)

\ the given condition means that

 G(x + h) = G(x) G(h)

\ 
+  –( ) ( )G x h G x

h
 = 

Ï ¸
Ì ˝
Ó ˛

–( ) 1
( )

h

h
G

G
x

  = 
( ){ – 0

( )
( )}G h G

G x
h

 [∵ G(0) = P(X > 0) = 1, as x > 0]

Taking limits on both sides as h Æ 0, we have

 G¢(x) = G(x) ◊ G¢(0)

  = –l ◊ G(X),   [on putting l = –G¢(0)] (1)

Solving the differential equation (i), we get

 log G(x) = –lx + log C

i.e., G(x) = C e–lx (2)

Using the fact that G(0) = 1 in (2), we get C = 1

Thus, G(x) = P(X > x) = e–lx

Now, the distribution function F(x) of X is given by F(x) = P(X £ x)

  = 1 – P(X > x) = {1 – G(x)}

  = 1 – e–lx

Therefore, the density function f(x) of X is given by

 f(x) = F¢(x) = l e–lx, x > 0

i.e., X follows an exponential distribution with parameter

 l = –G¢(0) = F¢(0) > 0
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Example 9

The time (in hours) required to repair a machine is exponentially distributed with 

parameter l = 1/2.

 (a) What is the probability that the repair time exceeds 2 h?

 (b) What is the conditional probability that a repair takes at least 10 h given 

that its duration exceeds 9 h?

If X represents the time to repair the machine, the density function of X is 

given by

 f(x) = le
–lx = 

-
>2

1
, 0

2

x

e x

(a) P(X > 2) = 

• -

Ú 2

2

1
, d

2

x

e x

  = 1
2

2
0.3679

x

ee
•

- -= =-e j
(b) P{X ≥ 10/X > 9} = P{X > 1}, (by the memoryless property)

  = 
• -

Ú 2

1

1
d

2

x

e x

  = 

•- -= =-
0.5

2
0

0.6065
x

eee j

Example 10

The life length X of an electronic component follows an exponential distribution. 

There are 2 processes by which the component may be manufactured. The expected 

life length of the component is 100 h. if the process I is used to manufacture, while 

it is 150 h if the process II is used. The cost of manufacturing a single component 

by process I is Rs. 10, while it is Rs. 20 for process II. Moreover if the component 

lasts less than the guaranteed life of 200 h, a loss of Rs. 50 is to be borne by the 

manufacturer. Which process is advantageous to the manufacturer?

If the process I is used, the density function of X is given by

 f(x) = - >/1001
, 0.

100

x
e x

\ P(X ≥ 200) = 
•

-Ú /100

200

1
d

100

x
e x

  = - • -=/100 2
200( )x

e e

\ P(X < 200) = 1 – e–2

Similarly, if the process II is used,

 P(X ≥ 200) = e–4/3 and P(X < 200) = 1 – e–4/3
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Let C1 and C2 be the costs per component corresponding to the processes I 

and II respectively.

Then   C1 = 
≥Ï

Ì <Ó

10, 200

60, 200

X

X

\ E(C1) = 10 ¥ P(X ≥ 200) + 60 ◊ P(X < 200)

  = 10 e–2 + 60 (1 – e–2)

  = 60 – 50 e–2 = 53.235

Now C2 = 
≥Ï

Ì <Ó

20, 200

70, 200

X

X

\ E(C2) = 20 ¥ P(X ≥ 200) + 70 × P(X < 200)

  = 20 e–4/3 + 70 (1 – e–4/3)

  = 70 – 50 e–4/3 = 56.765

Since E(C1) < E(C2), process I is advantageous to the manufacturer.

Example 11

If the density function of a continuous RV X is f(x) = c e–b(x – a), a £ x, where a, 

b, c are constants. Show that b = m s
s

= = -
1

and ,c a  where m = E(X) and s2 

= Var (X).

Since f(x) is a density function, 

•

=Ú ( )d 1.
a

f x x

i.e., 

•
- -Ú ( ) db x a

a

c e x  = 1

i.e., 

•- -Ï ¸Ô Ô
Ì ˝-Ô ÔÓ ˛

( )b x a

a

e
c

b
 = 1

i.e., = 1 or
c

b
b

 = c (1)

Now, m = E(X) = 
•

- -Ú ( ) db x a

a

bx e x

  = 

•
- -È ˘Ê ˆ

◊ -Í ˙Á ˜-Ë ¯Í ˙Î ˚
2

bx bx
ab

a

e e
b e x

b b
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  = - -È ˘+Í ˙Î ˚2

1ab ab aba
b e e e

b b

  = +
1

a
b

 (2)

 E(X2) = 
•

- -Ú 2 ( ) db x a

a

bx e x

   = 

•
- - -È ˘Ê ˆ Ê ˆ Ê ˆ

- +Í ˙Á ˜ Á ˜ Á ˜- - -Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

2

2 3
2 2

bx bx bx
ab

a

e e e
b e x x

b b b

  = 
È ˘

+ +Í ˙
Î ˚

2

2 3

2 2a a
b

b b b

  = + +2 2

2

1
( 2 2)a b ab

b

 Var(X) = E(X2) – {E(X)}2

  = 
Ê ˆ+ + - + +Á ˜Ë ¯

2 2 2

2 2

1 2 1
( 2 2)

a
a b ab a

bb b

i.e., s2 = s
2

1 1
or =

bb
 (3)

From (1) and (3), we get b = 
s

=
1

.c

From (2) and (3), m – s = a.

Example 12

In a certain city, the daily consumption of electric power in millions of kilowatt-

hours can be treated as a RV having an Erlang distribution with parameters 

l =
1

and = 3.
2

k  If the power plant of this city has a daily capacity of 12 millions 

kilowatt-hours, what is the probability that this power supply will be inadequate 

on any given day.

Let X represent the daily consumption of electric power (in millions of 

kilowatt-hours). Then the density function of X is given as

  

-

Ê ˆ
Á ˜Ë ¯

= >

3

2 /2

1

2
( ) , 0

(3)

x
f x x e x
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P{the power supply is inadequate)

  = P(X > 12) = 
•

Ú
12

( ) df x x  [∵ the daily capacity is only 12]

  = 
•

-◊Ú 2 /2

3
12

1 1
d

2(3)

x
x e x

  = 

•

- - -
È ˘Ê ˆÊ ˆ Ê ˆ
Í ˙Á ˜Á ˜ Á ˜

- +Í ˙Á ˜Á ˜ Á ˜
Í ˙Á ˜- -Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

/2 /2 /2
2

12

1
2 2

1 1 116

2 4 8

x x x
e e e

x x

  = - + +61
(288 96 16)

16
e

  = 25 e–6 = 0.0625

Example 13

If a company employs n sales persons, its gross sales in thousands of rupees may 

be regarded as a RV having an Erlang distribution with l =
1

and = 80 .
2

k n  

If the sales cost is Rs. 8000 per salesperson, how many salespersons should the 

company employ to maximise the expected profi t?

Let X represent the gross sales (in Rupees) by n salespersons.

X follows the Erlang distribution with parameters l = 
1

and = 80,000 .
2

k n

\ E(X) = 
l

= 1,60,000
k

n

If y denotes the total expected profi t of the company, then

  y = total expected sales – total sales cost

  = 1,60,000 - 8000n n

 
d

d

y

n
 = -

80,000
8000

n

  = 0, when = =10 or 100n n

 
2

2

d

d

y

n
 = - <

3/2

40,000
0,

n
  when n = 100.

Therefore, y is maximum, when n = 100.

That is the company should employ 100 salespersons in order to maximise the 

total expected profi t. 
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Example 14

Consumer demand for milk in a certain locality, per month, is known to be a 

general Gamma (Erlang) RV. If the average demand is a litres and the most likely 

demand is b litres (b < a), what is the variance of the demand?

Let X represent the monthly consumer demand of milk.

Average demand is the value of E(X).

Most likely demand is the value of the mode of X or the value of X for which 

its density function is maximum.

If f(x) is the density function of X, then

 f(x) = ll - - >1 0
( )

k
k x

x e x
k

 f ¢(x) = l ll
l- - - -- -2 1[( 1) ]

( )

k
k x k x

k x e x e
k

  = ll
l- - - -2 {( 1) }

( )

k
k x

x e k x
k

  = 0, when x = 0, 
l

-
=

1k
x

 f ¢¢(x) = 
l ll

l l- - - -- + - -2 2d
[ {( 1) } { }]

d( )

k
k x k x

x e k x x e
xk

  < 0, when x = 
l

- 1k

Therefore, f(x) is maximum, when 
l

-
=

1k
x .

i.e., most likely demand = 
l

-
=

1k
b  (1)

and E(X) = 
l

=
k

a  (2)

Now, Var(X) = 
l ll

= ◊
2

1k k

  = a(a – b), [from (1) and (2)]

Example 15

A random sample of size n is taken from a general Gamma (Erlang) distribution 

with parameters l and k. Show that the mean X  of the sample also follows a 

Gamma distribution with parameters nl and nk.
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If X follows Erlang distribution with parameters l and k, then the MGF of X 

is given by

  MX(t) = 
l

-
Ê ˆ-Á ˜Ë ¯
1

k
t

If X1, X2, …, Xn are the members of the sample drawn, then each Xi 

follows Erlang distribution with MGF equal to 
l

-
Ê ˆ-Á ˜Ë ¯
1

k
t

 and also they are 

independent. 

Therefore, by the reproductive property,

 
l

-

+ + +
Ê ˆ= -Á ˜Ë ¯ 1 2

( ) 1
n

nk

X X X

t
M t

\ ( )
X

M t  = 
+ + + 1 2

1
( )( )nX X X t

n

M

  = + + +
Ê ˆ
Á ˜Ë ¯ 1 2 nX X X

t
M

n
 [∵ MaX(t) = MX(at)]

  = 
l

-
Ê ˆ-Á ˜Ë ¯
1

nk
t

n

which is the MGF of an Erlang distribution with parameters nl and nk. Therefore, 

X  also follows an Erlang distribution with density function

  

ll - -◊ ◊ >1( )
, 0.

( )

nk
nk n xn

x e x
nk

Example 16

If the conditional distribution of Y, given X = x, is an exponential distribution with 

parameter x and if the unconditional distribution of X is an Erlang distribution 

with parameters l(> 0) and k(> 2), prove that the conditional distribution of X, 

given Y = y, is an Erlang distribution with parameters l + y and k + 1.

Given:  FY/X(y) = x e–xy, y > 0 and x > 0

and fX(x) = ll - - >1 , 0
( )

k
k x

x e x
k

If f(x, y) denotes the joint density function of (X, Y), then fY/X(y) = 
( , )

( )X

f x y

f x

\ f(x, y) = ll - + > >( ) , 0, 0
( )

k
k y x

x e x y
k



5.66 Probability, Sta  s  cs and Random Processes

Now, fY(y) = the marginal density function of Y

  = 

•

Ú
0

( , ) df x y x

  = ll
•

- +◊ Ú ( )

0

d
( )

k
k y x

x e x
k

  = 
l

l

•
-

++ Ú1
0

1
d

( )( )

k
k t

k
t e t

yk
   [on putting (l + y) x = t]

  = 
l l

l l+ ++ = >
+ +1 1

1
( 1) , 0

( ) ( )( )

k k

k k

k
k y

y yk

Now, fX/Y(x) = 
( , )

( )Y

f x y

f y

  = 

ll

l

l

- +

++

( )

1

( )
,

( )

k
k y x

k

k

x e
k

k

y

 x > 0 and y > 0

  = ll +
- ++

◊ >
+

1
( )( )

, 0
( 1)

k
k y xy

x e x
k

This is the density function of an Erlang distribution with parameters l + y 

and k + 1.

Example 17

Each of the 6 tubes of a radio set has a life length (in years) which may be 

considered as a RV that follows a Weibull distribution with parameters a = 25 and 

b = 2. If the tubes function independently of one another, what is the probability 

that no tube will have to be replaced during the fi rst 2 months of service? 

If X represents the life length of each tube, then its density function (f(x) is 

given by

  f(x) = ab  xb–1 e–a x b  x > 0

i.e.,  f(x) = 50x e–25x > 0

Now, P(a tube is not to be replaced during the fi rst 2 months)

  = 
Ê ˆ>Á ˜Ë ¯

1

6
P X
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  = 

•
-Ú

225

1

6

50 dx
x e x

  = 
•- -- =

225 25/36
1

6

x
e ee j

\ P(all the 6 tubes are not to be replaced during the fi rst 2 months)

  = (e–25/36)6   (by independence)

  = e–25/6

  = 0.0155

Example 18

If the life X (in years) of a certain type of car has a Weibull distribution with the 

parameter b = 2, fi nd the value of the parameter a, given that probability that the 

life of the car exceeds 5 years is e–0.25. For these values of a and b, fi nd the mean 

and variance of X.

The density function of X is given by

 f(x) = 2a x e–ax2, x > 0  [∵ b = 2]

Now, P(X > 5) = aa
•

-Ú
2

5

2 dx
x e x

  = 
•--

2

5
ax

ee j

  = e–25a

Given that P(X > 5) = e–0.25

\ e
–25a = e–0.25

\ a = 
1

100

For the Weibull distribution with parameters a and b, E(X) = ba
b

- Ê ˆ
+Á ˜Ë ¯

1/ 1
1

\ Required mean = 

-
Ê ˆ Ê ˆ◊Á ˜ Á ˜Ë ¯ Ë ¯

1

21 3

100 2

  = 
Ê ˆ¥ Á ˜Ë ¯

1 1
10

2 2

  = p5 .

 Var(X) = ba
b b

-
È ˘Ï ¸Ê ˆ Ê ˆÔ ÔÍ ˙+ - +Ì ˝Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Ô ÔÓ ˛Í ˙Î ˚

22
2 1

1 1
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  = 

- È ˘Ï ¸Ê ˆ Ê ˆÔ ÔÍ ˙- Ì ˝Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Ô ÔÓ ˛Î ˚

2
1

1 3
(2)

100 2

  = p
È ˘Ê ˆ-Í ˙Á ˜Ë ¯Í ˙Î ˚

2
1

100 1
2

  = 
pÊ ˆ-Á ˜Ë ¯

100 1
4

Example 19

If the time T to failure of a component follows a Weibull distribution with 

parameters a and b, fi nd the hazard rate or conditional failure rate at time t of 

the component.

Refer to Example (19) in Worked Example 2(A).

If f(t) is the density function of T and h(t) is the hazard rate at time t, then

 h(t) = 
-

( )

1 ( )

f t

F t

where F(t) is the distribution function of T.

Now, f(t) = 
bb aab - -¥ >1 0t

t e t

\ F(t) = P(T £ t)

  = 1

0

d

t
t

t e t
bb aab - -◊Ú

  = 
ba-È ˘-Í ˙Î ˚ 0

t
t

e

  = 
ba--1 t

e

\ h(t) = 

b

b

b a

a

ab - -

-

1 t

t

t e

e

  = bab - 1
t

Example 20

If Y is the smallest item of 3 independent observations X1, X2, X3 from a Weibull 

distribution with parameters a and b, show that Y also has a Weibull distribution. 

What are its parameters?

Each of X1, X2, X3 follows the Weibull distribution whose density function is 

given by

 f(x) = 
bb aab -¥ >1 , 0x

x e x
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Now, P(Y > y) = P[min (X1, X2, X3) > y]

  = P(X1 > y) × P(X2 > y) × P(X3 > y),

 (since X1, X2, X3 are independent)

  = {P(Xi > y)}3 (1)

Now, P(Xi > y) = 
bb aab

•
- -Ú 1 dx

y

x e x

  = 
b •-- ax

yee j

  = 
ba- y

e  (2)

Using (2) in (1), we have

  P(Y > y) = 
b ba a- =3 3( )x y

e e

Therefore, Y also has Weibull distribution with parameters 3a and b.

Note  The result can be extended to n independent observation.

Example 21

There are 400 students in the fi rst-year class of an engineering college. The 

probability that any student requires a copy of a particular Mathematics book 

from the college library on any day is 0.1. How many copies of the book should 

be kept in the library so that the probability may be greater than 0.95 that none 

of the students requiring a copy from the library has to come back disappointed? 

(Use normal approximation to the binomial distribution).

 p = P(a student requires the book) = 0.1 and q = 0.9

 n = number of students = 400

If X represents the number of students requiring the book, then X follows a 

binomial distribution with mean = np = 40 and = =SD 6.npq

As given in the problem, we may assume that X follows the distribution

N(40, 6).

Let m be the required number of books, satisfying the given condition.

i.e., P(X < m) > 0.95

i.e.,  
- -Ê ˆ- • < < >Á ˜Ë ¯

40 40
0.95

6 6

X m
P

i.e.,  
-Ê ˆ< < >Á ˜Ë ¯

40
0 0.45

6

m
P Z

where Z is the standard normal variate.

From the table of areas under normal curve, we fi nd that

  P{0 < Z < 1.65} > 0.45
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\  
-

=
40

1.65
6

m

i.e.,           m = 49.9

Therefore, at least 50 copies of the book should be kept in the library.

Example 22

The marks obtained by a number of students in a certain subject are approximately 

normally distributed  with mean 65 and standard deviation 5. If 3 students are 

selected at random from this group, what is the probability that at least 1 of them 

would have scored above 75?

If X represents the marks obtained by the students. X follows the distribution 

N(65, 5).

 P(a student scores above 75)

  = P(X > 75) = 
- -Ê ˆ< < •Á ˜Ë ¯

75 65 65

5 5

X
P

  = P(2 < Z < •), (where Z is the standard normal variate)

  = 0.5 – P(0 < Z < 2)

  = 0.5 – 0.4772, (from the table of areas)

  = 0.0228

Let p = P(a student scores above 75) = 0.0228 then q = 0.9772 and n = 3. 

Since p is the same for all the students, the number Y, of (successes) students 

scoring above 75, follows a binomial distribution.

 P(at least 1 student scores above 75)

  = P(at least 1 success)

  = P(Y ≥ 1) = 1 – P(Y =  0)

  = 1 – nC0 ¥ P0
q

n

  = 1 – 3C0 (0.9772)3

  = 1 – 0.9333

  = 0.0667

Example 23

If the actual amount of instant coffee which a fi lling machine puts into ‘6-ounce’ 

jars is a RV having a normal distribution with SD = 0.05 ounce and if only 3% 

of the jars are to contain less than 6 ounces of coffee, what must be the mean fi ll 

of these jars?

Let X be the actual amount of coffee put into the jars.

Then X follows N(m, 0.05)

Given: P(X < 6) = 0.03

\  
m m- -Ï ¸- • < < =Ì ˝

Ó ˛

6
0.03

0.05 0.05

X
P
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i.e.,  
m-Ï ¸- • < < =Ì ˝

Ó ˛

6
0.03

0.05
P Z

\      
m -Ï ¸< < =Ì ˝

Ó ˛

6
0 0.47,

0.05
P Z  (by symmetry)

From the table of areas, we have

  P{0 < Z < 1.808} = 0.47

\                    
m -

=
6

1.808
0.05

\                            m = 6.094 ounces.

Example 24

In an engineering examination, a student is considered to have failed, secured 

second class, fi rst class and distinction, according as he scores less than 45%, 

between 45% and 60%, between 60% and 75% and above 75% respectively. In 

a particular year 10% of the students failed in the examination and 5% of the 

students got distinction. Find the percentages of students who have got fi rst class 

and second class. (Assume normal distribution of marks).

Let X represent the percentage of marks scored by the students in the 

examination.

Let X follow the distribution N(m, s).

Given: P(X < 45) = 0.10 and P(X > 75) = 0.05

i.e.,  
m

s s

- -Ê ˆ- • < < =Á ˜Ë ¯
45

0.10 and
X u

P

    
m m

s s

- -Ê ˆ< < • =Á ˜Ë ¯
75

0.05
X

P

i.e.,            
m

s

-Ê ˆ- • < < =Á ˜Ë ¯
45

0.10 andP Z

            
m

s

-Ê ˆ< < • =Á ˜Ë ¯
75

0.05P Z

\            
m

s

-Ê ˆ< < =Á ˜Ë ¯
45

0 0.40 andP Z

           
m

s

-Ê ˆ< < =Á ˜Ë ¯
75

0 0.45P Z

From the table of areas, we get

  

m m

s s

- -
= =

45 75
1.28 and 1.64

i.e.,  m – 12.28 s = 45 (1)

and    m + 1.64 s = 75 (2)
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Solving equations (1) and (2), we get

 m = 58.15 and s = 10.28

Now, P (a student gets fi rst class)

  = P(60 < X < 75)

  = 
- -Ï ¸< <Ì ˝

Ó ˛

60 58.15 75 58.15

10.28 19.28
P Z

  = P{0.18 < Z < 1.64}

  = P{0 < Z < 1.64} – P{0 < Z < 0.18}

  = 0.4495 – 0.0714 = 0.3781

\ Percentage of students getting fi rst class = 38 (approximately)

Now, percentage of students getting second class

  = 100 – ( sum of the percentages of students who have failed, 

got fi rst class and got distinction)

  = 100 – (10 + 38 + 5), approximately.

  = 47 (approximately)

Example 25

The percentage X of a particular compound contained in a rocket fuel follows the 

distribution N(33, 3), though the specifi cation for X is that is should lie between 

30 and 35. The manufacturer will get a net profi t (per unit of the fuel) of Rs. 100, 

if 30 < X < 35, Rs. 50, if 25 < X £ 30 or 35 £ X < 40 and incur a loss of Rs. 60 

per unit of the fuel otherwise. Find the expected profi t of the manufacturer. If 

he wants to increase his expected profi t by 50% by increasing the net profi t on 

that category of the fuel that meets the specifi cation, what should be the new net 

profi t per unit of the fuel of this category?

 P(30 < X < 35) = 
- - -Ï ¸< <Ì ˝

Ó ˛

30 33 33 35 33

3 3 3

X
P

  = P{–1 < Z < 0.67}

  = P{0 < Z < 1} + P{0, < Z < 0.67}

  = 0.3413 + 0.2486, (using the table of areas)

  = 0.5899

 P(25 < X £ 30) = 
- -Ï ¸< <Ì ˝

Ó ˛

25 33 30 33

3 3
P Z

  = P(–2.67 < Z < –1)

  = P(1 < Z < 2.67), (by symmetry)

  = P(0 < Z < 2.67) – P(0 < Z < 1)

  = 0.4962 – 0.3413

  = 0.1549

 P(35 £ X < 40) = 
- -Ï ¸< <Ì ˝

Ó ˛

35 33 40 33

3 3
P Z
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  = P{0.67 < Z < 2.33}

  = P{0 < Z < 2.33} – P{0 < Z < 0.67}

  = 0.4901 – 0.2486

  = 0.2415

\ P{(25 < X £ 30) or {35 £ X < 40)}

  = P(25 < X £ 30) + P(35 £ X < 40),

 (since the 2 ranges are mutually exclusive)

  = 0.1549 + 0.2415 = 0.3964

 P{X < 25 or X > 40} = 1 – (0.5899 + 0.3964)

  = 0.0137

 Profi t/unit Probability

 Rs. 100 0.5899

 Rs. 50 0.3964

 Rs. –60 0.0137

\ E(Profi t per unit) = Rs (100 ¥ 0.5899 + 50 ¥ 0.3964 – 60 ¥ 0.0137)

  = Rs 79, approximately

Let the revised net profi t per unit of the fi rst category fuel be k.

The E(Revised profi t per unit)

  = Rs. (k ¥ 0.5899 + 50 ¥ 0.3964 – 60 ¥ 0.0137)

  = Rs. (0.5899 k + 18.998)

E(Revised profi t per unit) = Rs. 79 + Rs. 39.5, as per the manufacturer’s wish 

\ 0.5899 k + 18.998 = 118.5

 k = 
-118.5 18.998

0.5899

  = 168.68   Rs. 169 nearly.

Example 26

The marks obtained by the students in Mathematics, Physics and Chemistry in 

an examination are normally distributed with the means 52, 50 and 48 and with 

standard deviations 10, 8 and 6 respectively. Find the probability that a student 

selected at random has secured a total of (a) 180 or above, and (b) 135 or less.

Let X, Y, Z denote the marks obtained by students in Mathematics, Physics 

and Chemistry respectively.

Given: X fl ows N(52, 10), Y follows N(50, 8) and Z follows N(48, 6).

By the additive property of normal distribution, T = X + Y + Z fl ows the 

distribution

  N{52 + 50 + 48, + +2 2 210 8 6 }

i.e.,  N(150, 14.14)

(a)      P(T ≥ 180) = 
- -Ï ¸< < •Ì ˝

Ó ˛

180 150 150

14.14 14.14

T
P

  = P{2.12 < Z < •}
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  = 0.5 – P{0 < Z < 2.12}

  = 0.5 – 0.4830 (from the table of areas)

  = 0.0170

(b)  P(T £ 135) = 
- -Ï ¸<Ì ˝

Ó ˛

150 135 150

14.14 14.14

T
P

  = P(–• < Z < –1.06]

  = P{1.06 < Z < •}, (by symmetry)

  = 0.5 – P{0 < Z < 1.06}

  = 0.5 – 0.3554

  = 0.1446

Example 27

The independent RVs X and Y have distributions N(45, 2) and N(44, 1.5) 

respectively. What is the probability that randomly chosen values of X and Y 

differ by 1.5 or more?

 X is N(45, 2) and Y is N(44, 1.5)

\ by the additive property,

U = X – Y follows the distribution +(1, 4 2.25)N

i.e.,  N(1, 2.5)

Now P{X and Y differ by 1.5 or more}

  = P{|X – Y| ≥ 1.5}

  = P{|U| ≥ 1.5}

  = 1 – P(|U £ 1.5)

  = 1 – P{–1.5 £ U £ 1.5}

  = 1 – 
- - - -Ï ¸£ £Ì ˝

Ó ˛

1.5 1 1 1.5 1

2.5 2.5 2.5

U
P

  = 1 – P{–1 £ Z £ 0.2}

  = 1 – {P(0 £ Z £ 1) + P(0 £ Z £ 0.2)]

  = 1 – {0.3413 + 0.0793), (from the table of areas)

  = 0.5794

Example 28

If X and Y are independent RVs, each following N(0, 3), what is the probability 

that the point (X, Y) lies between the lines 3X + 4Y = 5 and 3X + 4Y = 10?

X follows N(0, 3) and Y follows N(0, 3).

Therefore, by the additive property of normal distribution,

 U = 3X + 4Y follows ¥ + ¥ ¥ + ¥[3 0 4 0, 9 9 16 9]N
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i.e., N(0, 15)

Now, P{the point (X, Y) lies between the liens 3X + 4Y = 5 and 3X + 4Y = 10}

  = P{5 < 3X + 4Y < 10}

  = P{5 < U < 10}

  = 
- - -Ï ¸< <Ì ˝

Ó ˛

5 0 0 10 0

15 15 15

U
P

  = P{0.33 < Z < 0.67},

 where Z is the standard normal variable

  = P(0 < Z < 0.67) – P(0 < Z < 0.33)

  = 0.2486 – 0.1293, (from the table of areas)

  = 0.1193.

Example 29

If X and Y are independent RVs following N(8, 2) and (12, 4 3)N  respectively, 

fi nd the value of l such that

 P(2X – Y £ 2l) = P(X + 2Y ≥ l)

By the additive property of normal distribution,

 U = 2X – Y follows ¥ - ¥ + ¥{2 8 12, 4 4 1 48}N

i.e., N(4, 8)

and V = X + 2Y follows ¥ - ¥ ¥{8 2 12, 4 4 48}N

i.e., N(32, 14)

Now, P(2X – Y £ 2l) = P(X + 2Y ≥ l)

i.e., P(U £ 2l) = P(V ≥ l)

i.e.,    
l- -Ê ˆ£Á ˜Ë ¯

4 2 4

8 8

U
P

  = 
l- -Ê ˆ≥Á ˜Ë ¯

32 32

14 14

V
P

i.e., 
l l- -Ê ˆ Ê ˆ£ = ≥Á ˜ Á ˜Ë ¯ Ë ¯

2 4 32
,

9 14
P Z P Z

where Z is the standard normal variable.

\                 
l l- -Ê ˆ= - Á ˜Ë ¯

2 4 32

8 14

i.e., 28 l – 56 = 256 – 8l

\ l = 
26

3
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Example 30

Fit a normal distribution to the following frequency distribution and hence fi nd 

the theoretical frequencies:

x: 125, 135, 145, 155, 165, 175, 185, 195, 205    Total

f: 1,  1, 14, 22, 25, 19, 13, 3, 2, 100

To fi t a normal distribution for the given data, we require the density function 

of the normal distribution which involves the mean and SD. Let us now compute 

the mean x  and SDs of the given distribution and assume them as m and s of the 

approximate normal distribution.

x f
-

=
165

10

x
d fd fd

2

125 1 – 4 – 4 16

135 1 – 3 – 3 9

145 14 – 2 –28 56

155 22 – 1 – 22 22

165 25 0 0 0

175 19 1 19 19

185 13 2 26 52

195 3 3 9 27

205 2 4 8 32

Total: 100 – 5 233

 x  = + = +Â 10
165

100

c
A fd

N
 × 5 = 165.5

 s
2 = 

Ï ¸Ê ˆÔ Ô-Ì ˝Á ˜Ë ¯Ô ÔÓ ˛
Â Â

2

2 21 1
c fd f d

N N

  = 102 (2.33 – 0.0025)

  = 232.75

\ s = 15.26

Therefore, the density function of the approximate normal distribution that 

fi ts the given distribution is 

 
p

- -= - • < < •
2( 165.5) /465.51

( )
15.26 2

x
f x e x

To fi nd the theoretical frequency of the class 120 £ X £ 130, whose mid-value 

is 125, we fi rst get P(120 £ X £ 130) = P
- -Ï ¸£ £Ì ˝

Ó ˛

120 165.5 130 165.5

15.26 15.26
Z  and 

multiply this probability by the total frequency, Proceeding likewise, we get all 

the theoretical frequencies. The computations are shown in the table given in the 

next page.
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0
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Exercise 5(B)

Part-A (Short-answer Questions)

 1. If X has uniform distribution in (–3, 3), fi nd P(|X– 2| < 2).

 2. If X has uniform distribution in (–a, a), a > 0, fi nd ‘a’ such that P(|X| < 1)

= P(|X > 1|.

 3. If the MGF of a continuous RV X is 
1

t
(e5t

 – e
4t), t π 0, what is the 

distribution of X? What are its mean and variance?

 4. A continuous RV X has the density function c e
–x/5; x > 0. Find c, E(X) 

and Var(X).

 5. What do you mean by memoryless property of the exponential distribu-

tion?

 6. If X and Y are independent identically distributed RVs, each with density 

function e–x, x > 0, fi nd the density function of (X + Y).

 7. Defi ne Erlang distribution and also give its mean and variance.

 8. Write down the MGF of simple Gamma distribution and hence fi nd its 

mean and variance.

 9. Give the values of b1and b2 coeffi cients of the Erlang distribution with 

parameters (1, k).

 10. Find where the maximum occurs for the Erlang density function.

 11. If X has uniform distribution in (0, 2) and Y has exponential distribution 

with parameter l, fi nd l such that P(X < 1) = P(Y < 1).

 12. If X has uniform distribution in (–1, 3) and Y has exponential distribution 

with parameter l, fi nd l such that Var(X) = Var(Y).

 13. Defi ne Weibull distribution and also give its mean and variance.

 14. Find the value of k, mean and variance of the normal distribution whose 

density function is k ◊ 2–x2
 –• < x < •.

 15. If X follows N(30, 5) and Y follows N(15, 10) show that P(26 £ X £ 40) 

= P(7 £ Y £ 35).

 16. If X follows N(3, 2), fi nd the value of k such that P(|X – 3| > k) = 0.05.

 17. If log10 X follows N(4, 2), fi nd P(1.202 < X < 83180000), given that

log10(1202) = 3.08 and log10 (8318) = 3.92.

 18. For a certain normal distribution, the fi rst moment about 10 is 40 and the 

fourth moment about 50 is 48. What are its mean and SD?

 19. Show that, for a normal distribution, the quartile deviation, the mean de-

viation and the standard deviation are in the ratio 10 : 12 : 15.

 20. If 2 normal universes A and B have the same total frequency, but the SD 

of A is k times the SD of B, prove that the maximum frequency of A is 

1

k
 times that of B.

 21. State the reproductive property of normal distribution.

 22. If X and Y are independent RVs having N(1, 2) and N(2, 2) respectively 

fi nd the density function of (X + 2Y).
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 23. Why is normal distribution considered an important distribution?

Part-B

 24. X is uniformly distributed with mean 1 and variance 
4

3
. If 3 independent 

observations of X are made, what is the probability that all of them are 

negative?

 25. A point D is chosen on the line AB whose length is 1 and whose mid-

point is C. If the distance X from D to A is a RV having a uniform 

distribution in (0, a), what is ‘the probability that AD, BD and AC will 

form a triangle?

 26. A passenger arrives at a bus stop at 10 am, knowing that the bus will 

arrive at some time uniformly distributed between 10 am and 10.30 am. 

What is the probability that he will have to wait longer than 10 min? If at 

10.15 am the bus has not yet arrived, what is the probability that he will 

have to wait at least 10 additional minutes?

 27. A man and a woman agree to meet at a certain place between 10 am. 

and 11 am. They agree that the one arriving fi rst will wait 15 min for 

the other to arrive. Assuming that the arrival times are independent and 

uni formly distributed, fi nd the probability that they meet.

 28. The RVs a and b are independently and uniformly distributed in the 

inter vals (0, 6) and (0, 9) respectively. Find the probability that the roots 

of the equation x2
 – ax + b = 0 are real.

 29. If a, b, c are randomly chosen between 0 and 1, fi nd the probability that 

the quadratic equation ax
2
 + bx + c = 0 has real roots.

 30. X, Y, Z are independent RVs, each following a uniform distribution in

(0,1). If U = maximum of X, Y, Z and V = minimum of X, Y, Z, fi nd

  (i) P(U £ 
1

2
),     (ii) P(V ≥

1

3
), and     (iii) P{ £ ≥

1 1
and

2 3
U V }.

 31. If the number of kilometres that a car can run before its battery wears 

out is exponentially distributed with an average value of 10,000 km and 

if the owner desires to take a 5000 km trip, what is the probability that 

he will be able to complete his trip without having to replace the car 

battery. Assume that the car has been used for some time. What is the 

probability, when the distribution is not exponential?

 32. If X is exponentially distributed, prove that the probability that X exceeds 

its expected value is less than 0.5.

 33. The amount of time that a watch will run without having to be reset is 

a RV having an exponential distribution with mean 120 days. Find the 

probabil ity that such a watch will

 (i) have to be set in less than 24 days, and 

 (ii) not have to be reset in at least 180 days.

 34. The daily consumption of milk in excess of 20,000 litres in a town is ap-

proximately exponentially distributed with parameter 1/3000. The town 
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has a daily stock of 35,000L. What is the probability that of 2 days se-

lected at random, the stock is insuffi cient for both days?

  [Hint: If Y denotes the daily consumption of milk, then X = Y–20,000 

fol lows the exponential distribution.]

 35. The length of the shower on a tropical island during rainy season has an 

exponential distribution with parameter 2, time being measured in min-

utes. What is the probability that a shower will last more than 3 min? If 

a shower has already lasted for 2 min, what is the probability that it will 

last for at least one more minute?

 36. If X is exponentially distributed with parameter l, fi nd the value of k 

such that

    P(X > k)/P(X £ K) = a.

 37. If X is exponentially distributed with parameter l, prove that the RV Y = 

e
–lX

 is uniformly distributed in (0, 1).

 38. If X1, X2, X3 are independent RVs having exponential distributions with 

parameters l1, l2, l3 respectively, prove that Y = minimum (X1, X2, 

X3) follows an exponential distribution with parameter (l1 + l2 + l3).

[Hint: Find the distribution function of Y = F(y) = 1 – P{min (X1, X2, 

X3) > y}.]

 39. The daily consumption of milk in a town in excess of 20,000L is approxi-

mately distributed as an Erlang variate with parameters

  l = 
1

10,000
 and k = 2. The town has a daily stock of 30,000L. What is 

the probability that the stock is insuffi cient on a particular day?

 40. Find the probabilities that the value of a RV will exceed 4, if it has an

Erlang distribution with

  (i) l = 
1

3
 and k = 2, and (ii) l = 

1

4
 and k = 3.

 41. Show that for the Erlang distribution with parameters l, k, (mean-mode)/

1
SD =

k

  [Hint: If/(x) is the Erlang density function, the mode is the value of x for 

which f(x) is maximum.]

 42. If X follows the Erlang distribution with parameters l and k, prove that 

the expected value of the positive square root of X is l
Ê ˆ+Á ˜Ë ¯

1
.

2
k k

 43. If X1, X2,..., Xn are independent RVs, each following the same exponen-

tial distribution with parameter l, prove that X1 + X2 + ...+ Xn follows an 

Erlang distribution with parameters l and n. 

  [Hint: Use moment generating function. Also see Example (7) in Section 

4(b).]
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 44. A random sample of size n is taken from a population which is exponen-

tially distributed with parameter l. If X  is the sample mean, show that 

nl X  follows a simple Gamma distribution with parameter n.

  [Hint: Use moment generating function.]

 45. If the service life, in hours, of a semiconductor is a RV having a Weibull 

distribution with the parameters a = 0.025 and b = 0.5,

 (i) How long can such a semiconductor be expected to last?

 (ii) What is the probability that such a semiconductor will still be in 

oper ating condition after 4000 h?

 46. Find the mode of the Weibull distribution with parameters a and b when 

a > 1.

 47. If the hazard rate at time t of a system is given by h(t) = abt 
b–1, prove 

that the time to failure of the system follows a Weibull distribution with 

pa rameters a and b.

 48. If the RV X follows an exponential distribution with parameter 2, prove 

that Y = X3
 follows a Weibull distribution with parameters 2 and 

1

3
.

 49. Find the probability of failure-free performance of roller-bearings over 

a period of 104 h if the life expectancy of the bearings is defi ned by 

Weibull distribution with parameters a = 10–7 and b = 1.5.

  [Hint: P(failure-free performance over a period t) = P(the component 

does not fail in (0, t)] = P(T ≥ t), where T is the life expectancy or time 

to failure of the component.]

 50. The time when a country bus passes a certain point is distributed normally 

with a mean 9.25 am and a SD of 3 min. What is the least time one could 

arrive at this point and still have a probability of 0.99 of catching the bus?

[Hint: If T is the time in minutes past 9 am, then T follows N(25, 3).]

 51. The marks obtained by a number of students in a certain subject are 

as sumed to be approximately normally distributed with mean 55 and 

a SD of 5. If 5 students are taken at random from this set, what is the 

probability that 3 of them would have scored marks above 60?

 52. The life lengths in hours of 2 electronic devices A and B have distributions 

N(40, 6) and N(45, 3) respectively. If the electronic device is to be used 

for a 45-h period, which device is to be preferred? If it is to be used for 

a 48-h period, which device is to be preferred?

 53. The mean and SD of a certain group of 1000 high school grades, that are 

normally distributed are 78% and 11% respectively.

 (i) Find how many grades were above 90%?

 (ii) What was the highest grade of the lowest 10?

 (iii) What was the semi-interquartile range (Quartile deviation)?

 (iv) Within what limits did the middle 900 lie?

 54. The local authorities in a certain city instal 10,000 electric lamps in the 

streets of the city. If these lamps have an average life of 1,000 burning 
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hours with a standard deviation of 200 h, how many lamps might be 

ex pected to fail (i) in the fi rst 800 burning hours? (ii) between 800 and 

1200 burning hours? After how many burning hours would you expect 

(iii) 10% of the lamps to fail? (iv) 10% of the lamps to be still burning? 

Assume that the life of lamps is normally distributed.

 55. In a normal population with mean 15 and SD 3.5, it is found that 647

observations exceed 16.25. What is the total number of observations in the

population?

 56. A RV has a normal distribution with SD 10. If the probability that the RV

will take on a value less than 82.5 is 0.8212, what is the probability that it

will take on a value greater than 58.3?

 57. In a normal distribution, 7% of the items are under 35 and 89% are under 

63. What are the mean and standard deviation of the distribution? What 

percentage of items are under 49?

 58. A normal population has coeffi cient of variation equal to 2% and 8% of 

the population lies above 120 cm. What percentage of the population 

lies below 115 cm?

 59. The breaking strength X of a certain kind of rope (in kg) has distribution 

N(45, 1.8). Each 50 metre coil of rope brings a profi t of Rs 1000, provided 

X > 43. If X £ 43, the rope may be used for a different purpose and a 

profi t of Rs. 400 per coil is realised. Find the expected profi t per coil.

 60. The mean and standard deviation of marks in Mathematics are 45 and 

10 respectively. The corresponding values for computer science are 50 

and 15 respectively. Assuming that the marks in the two subjects are 

independent normal variates, fi nd the probability that a student scores a 

total of marks lying between 100 and 120 in the 2 subjects.

 61. If log10 X has the distribution N(7, 3 ) and log10 Y has the distribution 

N(3, 1), fi nd P{1.202 < 
X

Y
 < 8318 ¥ 104}, given that X and Y are 

independent.

 [Hint: Find P{log(1.202) < (log X – log Y) < log (104 ¥ 8318}]

 62. If X and Y are independent RVs having normal distributions with a com-

mon mean m, but with variances 4 and 48 respectively, such that P(X + 

2Y £ 3) = P(2X – Y ≥ 4), determine m.

 63. Fit a normal distribution to the following distribution and hence fi nd the

theoretical frequencies: 

  Class     : 60–65 65–70 70–75 75–80 80–85

  Frequency :    3   21   150   335   326

    85–90 90–95 95–100   Total

    135 26 4   1000
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ANSWERS

Exercise 5(A)

 1. 
0

0

2 1 728
, ; 6; ( 1) 1

3 3 729

n
p q n P X nC p q= = = ≥ = - =

 2. 

2 2
3

3 1 3
2

( )
( );

q p
npq q p

npq

m
m b

m

-
= - = =

 3. Reqd. no. = 256 ¥ 8C4 

8
1

70
2

Ê ˆ =Á ˜Ë ¯

 4. 0 4
0

2 1 80
, ; ( 1) 1 4

3 3 81
p q P X C p q= = ≥ = - =

 5. Reqd. Probability = 

43

1

1 7
4

2 8
r

r

C
=

Ê ˆ =Á ˜Ë ¯Â

 6. m = 5, s2 = 4; P(X < m – 2s) = P(X < 1) = 

25
4

5

Ê ˆ
Á ˜Ë ¯

 7. V = np(1 – p); = - = = <
2

2

d 1 d
(1 2 ) 0,when and 0

d 2 d

V V
n p p

p p

 8. The MGF of B(n, p) is (q + p et)n. The given MGF is that of B(6, 0.4). 

Hence, mean = 2.4 and SD = 1.2

 9. When p1 = p2, the sum is also a binomial variate

 10. (X + Y) follows 

8
1 2 6305

8, ; ( 1) 1
3 3 6561

B P X Y
Ê ˆ Ê ˆ+ ≥ = - =Á ˜ Á ˜Ë ¯ Ë ¯

 11. P(X = r) = e–2 2r/r!

 12.  2e
–l + 

2
22 . ( 2) 0 or = 2

2
e e

l ll
l l l- -= \ - =

 13. If l is the parameter of the Poisson distribution, Var(X) = E(X2) – E2(X). 

i.e., l = 6 – l2

  \ l2 + l – 6 = 0   \ l = E(X) = 2, since l > 0

 14. If l is the parameter, e–l = 0.5 \ Var(X) = l = log 2

 15. E(X2) = l2 + l = l(l + 1) = lE(X + 1)

 16. P(X is even)  = l l l l ll l
l

l
- - - -Ï ¸Ô Ô+ + + = = +Ì ˝

Ô ÔÓ ˛
 

2 4 1
1 cosh ( )

2! 4!
e e e e e    

l-= + 21
(1 )

2
e
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 17. 
4( 1)t

e
e

-
 is the MGF of a Poisson distribution with parameter 4. \ m = 4 

and s = 2.

  \  P(X = 6) = e–4 ◊ 46/6!

 18. (X + Y) is a Poisson variate with parameter 2.

  \ P(X + Y = 2) = e–2 22/2! = 
2

e

 19. The given distribution is a geometric distribution with p = e–t

  \ E(X) = 
2

1 and Var( ) = ( 1).t t tq q
e X e e

p p
= - = -

 20. P(X = r) = pq
r – 1

  \ P(X) is odd) = p + pq
2 + pq

4 + … = 
2

1

11

p

qq
=

+-
.

 21. The given distribution is a geometric distribution with 
2 1

and
3 3

p q= = .

  \ E(X) = 
2

1 3
and Var( )

2 4

q q
X

p p
= = =

 22. -= \ = \ = = = • 
2

1
2 ( ) 2 ; 1, 2, ,

2

rq q
p P X r r

pp

 23.   
• •

- -

= =

= = =
-

Â Â1 1

1 1

( ) ( )
1

t
t r r t t r

t
r r

pe
M t e q p p e q e

qe

 24. The given MGF 
1 4

/ 1
5 5

t t
e e

Ê ˆ-Á ˜Ë ¯  is that of a geometric distribution with 

1 4
and

5 5
p q= =

  \ E(X) = 4 and Var(X) = 20.

 26. Mean = 
2

( ) ( )
and Variance

( 1)

nk nk N k N n

N N N

- -
=

-

 27. Conditions: 
È ˘Ê ˆÆ • = =Í ˙Á ˜Ë ¯Î ˚

and ; lim ;
k k

N p n np
N N

  

È ˘Ê ˆ-Í ˙Á ˜Ê ˆ Ê ˆ- =Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Á ˜-Ë ¯Í ˙Î ˚

1

lim 1
1

1

n

k k Nn npq
N N

N

 28. P(X > 1) = .005; 0.015
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 29. 17

 31. P(X = 3) = 0.0452; P(X > 3) = 0.0099

 32. P(Y = k) = 
2)

2

1
4 , 4, 2, 0, 2, 4

16 k
C kÊ ˆ+Á ˜Ë ¯

◊ = - -

 33. & 34. 
2

1
3

p< <

 35. 
1

1
3

q< <

 38. 
1

6

 39. 0.016; 0.044

 40. (i) 0.5551, (ii) 4

 41. 10, 60, 150, 200, 150, 60, 10

 42. 7, 26, 37, 34, 6

 43. (i) 0.2231, (ii) 0.1913

 44. 0.019

 45. 0.1247; 0.0367

 46. (i) 9802, (ii) 198, (iii) 9998

 47. 0.067

 48. (i) 0.1606, (ii) 0.1512

 49. 0.0028

 50. 0.0424

 51. 0.0498

 52. 0.8088

 53. 0.1144

 54. 0.6244, 2.3

 55. 0.9577

 56. 301, 362, 217, 87, 26, 6, 1

 57. 0.92

 58. 0.4529

 59. 
1

10

 61. 
25

61

 62. P(X + Y = k) = (k – 1) p2
 q

k – 2, k = 2, 3, …, •; 
2

p
. 

 63. 0.2880

 64. (i) 0.164, (ii) 0.165

 65. 0.7134
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 66. 0.8121

 68. 0.0221

 69. 0.0410

 70. 0.9922

Exercise 5(B)

 1. 
1 1

( ) ; (| 2 | 2) (0 4) (0 3)
6 2

f x P X P X P X= - < = < < = < < =

 2. a > 1; P(|X|  < 1) = 

1

1

1 1 1
d ; (| | 1) 1 2

2
x P X a

a a a-

= > = - \ =Ú

 3. Comparing the given MGF with that of uniform distribution, i.e., 
1

b a-
.

bt at
e e

a

-
, X follows U(4, 5) E(X) = 

9

2
 and Var(X) = 

1

12
.

 4. /5

0

1
d ;

5

x
c e x c

•
- \ =Ú  Exponential distribution with parameter 

l
l l

= = = = =
2

1 1 1
; ( ) 5; Var ( ) 25

5
E X X

 5. If X is exponentially distributed, then P(X > s + t/X > s) = P(X > t), for 

any s, t > 0

 6. X and Y follows exponential distribution with parameter 1. \ MX(t) = 

MY(t) = 

1

1
t

l

-
Ê ˆ-Á ˜Ë ¯

  \ MX + Y(t) = MX(t) MY(t) = 

2

1
t

l

-
Ê ˆ-Á ˜Ë ¯

 = MGF of Erlang distribution

(l, 2). Its density function is l2
x e–lx, x > 0

 8. M(t) = (1 – t)–k = 1 + kt + 2( 1)

2!

k k
t

+
+ + • 

  E(X) = k; E(X2) = k(k + 1); Var (X) = k

 9. Using M(t) = (1 – t)–k, m3 = 2k; m4 = 3k
2 + 6 k

  \ b1 = 2 3 2
3 2 2 4 2

4 6
/ and / 3

k k
m m b m m= = = +

 10. Maximum of f(x) = 1 1
| | occurs at =

( )

k xk
x e x

kk

ll l- - -

 11. P(X < 1) = l l ll - - -= < = = - ◊ - =Ú Ú
1 1

0 0

1 1 1
d ; ( 1) d 1 1 ;

2 2 2

x
x P Y e x e e
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l l- = \ =
1

log2
2

e

 12. Var(X) = 
2

2

(3 1) 4 1
; Var(Y) =

12 3 l

+
=

  \ 
2

1 4
gives 3 /2

3
l

l
= =

 14. 
2(log2)( ) ,x

f x k e
-=  Mean = 0; variance is given by 2 1

2
log2

s =

  \ 
1 1 log2

;
log 4 2

ks
ps p

= = =

 15. P(26 £ X £ 40) = P(–0.8 £ Z £ 2) and P(7 £ Y £ 35) = P(–0.8 £ Z £ 2). 

Hence, equality.

 16. P(|X – 3| < k) = 0.95 \  P(–k < X – 3 < k) = 0.95

  i.e., 
Ê ˆ- < < = \ =Á ˜Ë ¯

0.95; 1.96
2 2 2

k k k
P Z

  \ k = 3.92

 17. Reqd. probability = P{log10(1.202) < log X < log108 3180000} = P{0.08 

< log X < 7.92}

  = P{–1.96 < Z < 1.96} = 0.95

 18. E(X – 10) = 40.  \ E(X) = m = 50. E(X – 50)4 = 48

  \ m4 = 48, i.e., 3s2 = 48 \ s = 2

 19. QD : MD : SD = 
2 4

. : : 10 :12 :15
3 5

s s s =

 20. Max. ordinate of A and B are 
1 1

and
2 2A Bs p s p

  Max (fA) = and Max ( )
2 2

B

A B

N N
C f C

s p s p
=

  

Max ( ) 1

Max ( )

A B

B A

f

f k

s

s
\ = =

 21. See Property (7) of normal distribution.

 22. By additive property, (X + 2Y) follows (5, 2 5).N  Its density function 

is 
p

- -= - • < < •
2( 5) /401

( ) ,
2 10

x
f x e x

 24. 
1

64
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 25. 
9

16

 26. 
2 1

;
3 3

 27. 
7

16

 28. 
1

3

 29. 
1

9

 30. (i) 
1

,
8

 (ii) 
8

,
27

 (iii) 
1

216

 31. (i) 0.6065;

  (ii)  
1 ( 5000)

,
1 ( )

F t

F t

- +
-

 where F(t) is the distribution function of the life of 

the car. 

 33. (i) 0.1813. (ii) 0.2231

 34. e
–10

 35. (i) 0.0025, (ii) 0.1353

 36. l–1 log (1 + a–1)

 39. 0.7378

 40. (i) 0.0879, (ii) 0.9197

 45. (i) 3200h, (ii) 0.2057

 46. b(a – 1)

 49. 0.9048

 50. 9.18 am

 51. 0.0283

 52. (i) B, (ii) B

 53. (i) 138, (ii) 52%, (iii) 7.3%, (iv) 60% and 96.1%

 54. (i) 1587, (ii) 6826, (iii) 744h, (iv) 1256h

 55. 1800

 56. 0.4332

 57. 50.3, 10.33, 45%

 58. 116.72, 2.33, 23%

 59. Rs. 920 nearly

 60. 0.3074

 71. 0.95

 62. 2.1

 63. 3, 31, 148, 322, 319, 144, 30, 3



I
n electrical systems, voltage or current waveforms are used as signals for 

collecting, transmitting or processing information, as well as for controlling 

and providing power to a variety of devices. These signals (voltage or 

current waveforms) are functions of time and are of two classes—deterministic 

and random. Deterministic signals can be described by the usual mathematical 

functions with time t as the independent variable. But a random signal always 

has some element of uncertainty associated with it and hence it is not possible 

to determine its value exactly at any given point of time. However, we may be 

able to describe the random signal in terms of its average properties such as the 

average power in the random signal, its spectral distribution and the probability 

tat the signal amplitude exceeds a given value. The probabilistic model used for 

characterising a random signal is called a random process or stochastic process.

A random variable (RV) is a rule (or function) that assigns a real number to 

every outcome of a random experiment, while a random process is a rule (or 

function) that assigns a time function to every outcome of a random experiment. 

For example, consider the random experiment of tossing a dice at t = 0 and 

observing the number on the top face. The sample space of this experiment 

consists of the outcomes {1, 2, 3, ..., 6}. For each outcome of the experiment, let 

us arbitrary assign a function of time t (0 £ t < •) in the following manner.

Outcome: 1 2 3 4 5 6

Function of 

time

x1(t) x2(t) x3(t) x4(t) x5(t) x6(t)

= –4 = – 2 = 2 = 4 = –t/2 = t/2

The set of functions {x1(t), x2(t), ..., x6(t)} represents a random process.

Defi nition: A random process is a collection (or ensemble) of RVs {X(s, t)} that 

are functions of a real variable, namely time t where s Œ S (sample space) and t 

Œ T (parameter set or index set).

The set of possible values of any individual member of the random process is 

called state space. Any individual member itself is called a sample function or a 

realisation of the process.

Chapter 6
Random Processes
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Note  (i) If  s and t are fi xed, {X(s, t)} is a number.

(ii) If  t is fi xed {X(s, t)} is a RV.

(iii) If  s is fi xed, {X(s, t)} is a single time function.

(iv) If  s and t are variables, {X(s, t)} is a collection of  RVs that are time functions.

Notation: As the dependence of a random process on s is obvious, s will be 

omitted hereafter in the notation of a random process. If the parameter set T is 

discrete, the random process will be noted by {X(n)} or {Xn}.

If the parameter set T is continuous, the process will be denoted by {X(t)}.

Classifi cation of Random Processes
Depending on the continuous or discrete nature of the state space S and parameter 

set T, a random process can be classifi ed into four types:

 (i) If both T and S are discrete, the random process is called a discrete 

random sequence. For example, if Xn represents the outcome of the nth 

toss of a fair dice, then {Xn, n ≥ 1} is a discrete random sequence, since 

T = {1, 2, 3, ...} and S = {1, 2, 3, 4, 5, 6}.

 (ii) If T is discrete and S is continuous, the random process is called a 

continuous random sequence.

  For example, if Xn represents the temperature at the end of the nth hour 

of a day, then {Xn, 1 £ n £ 24} is a continuous random sequence, since 

temperature can take any value in an interval and hence continuous.

 (iii) If T is continuous and S is discrete, the random process is called a discrete 

random process.

  For example, if X(t)  represents the number of telephone calls received 

in the interval (0, t), then X(t) is a discrete random process, since S = {0, 

1, 2, 3, ...}.

 (iv) If both T and S are continuous, the random process is called continuous 

random process. For example, if X(t) represents the maximum temperature 

at a place in the interval (0, t) , {X(t)} is a continuous random process. 

In the names given above, the word ‘discrete’ or ‘continuous’ is used to 

refer to the nature of S and the word ‘sequence’ or ‘process’ is used to 

refer to the nature of T.

Methods of Description of a Random Process

Since a random process is an indexed set of RVs, we can obviously use the joint 

probability distribution functions to describe a random process.

For a specifi c t, X(t) is a RV as was observed earlier.

F(x, t) = P{X(t) £ x} is called the fi rst-order distribution of the process {X(t)} 

and f(x, t) = 
x

∂
∂

 F(x, t) is called the fi rst-order density of {X(t)}.
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F(x1, x2, t1, t2) = P{X(t1) £ x1; X(t2) £ x2} is the joint distribution of the RVs 

X(t1) and X(t2) and is called the second-order distribution of the process {X(t)} 

and f(x1, x2, t1, t2) = 
2

1 2x x

∂
∂ ◊ ∂

 F(x1, x2, t1, t2) is called the second-order density 

of {X(t)}.

Similarly the nth order distribution {X(t)} is the joint distribution F(x1, x2, ..., 

xn; t1, t2, ..., t n} of the RVs X(t1), X(t2), .., X(tn).

The fi rst-order distribution function describes the instantaneous amplitude 

distribution of the process and the second-order distribution function tells us 

something about the structure of the signal in the time domain and, hence, the 

spectral content of the signal. Although the higher-order distributions describe 

the process in a more detailed manner, the fi rst and second-order distribution 

functions are primarily used to describe the process.

Special Classes of Random Processes
The important feature of a random process is the relationship among the 

members of the family. Usually, the nature of relationship is understood by the 

joint distribution function of the member RVs. A random process is said to be 

specifi ed only when the parameter set, the state space and the nature of dependence 

relationship existing among the members of the family are specifi ed.

Based on the dependence relationship among the members of the process, 

random processes are classifi ed broadly into a few special types such as the ones 

explained below.

(i) Markov Process

If, for t1 < t2 < t3 < ... < tn < t, P{X(t) £ x/X(t1) = x1, X(t2) = x2, ..., X(tn) = xn} = 

P{X(t) £ x/X(tn) = xn}, then the process {X(t)} is called a Markov process.

In other words, if the future behaviour of a process depends only on the present 

state, but not on the past, the process is a Markov process.

A discrete parameter Markov process is called a Markov chain.

(ii) Process with Independent Increments

If, for all choices of t1, t2, ..., t n such that t1 < t2 < t3 < ... < tn, the random variables 

X(t2) – X(t1), X(t3) – X(t2), ..., X(tn) – X(tn – 1) are independent, then the process 

{X(t)} is said to be a random process with independent increments.

If T = {0, 1, 2, ...} is the parameter set for {Xn}, then {Zn}, where Z0 = X0 and 

Zn = Xn – Xn – 1, is a random sequence with independent increments if the RVs Z0, 

Z1, Z2, ..., are independent.

Two processes with independent increments play an important role in the 

theory of random processes. One is the Poisson process that has a Poisson 

distribution for the increments and the other is the Wiener process with a 

Gaussian distribution for the increments. We will take up the study of Poisson 

and Gaussian processes in Chapter 7.
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(iii) Stationary Processes

If certain probability distribution or averages do not depend on t, then the random 

process {X(t)} is called stationary. A rigorous defi nition and detailed study of 

stationary processes will be taken up in the following articles.

Average Values of Random Processes

As in the case of RVs random processes can be described in terms of averages 

or expected values, mostly derived from the fi rst and second-order distributions 

of {X(t)}. Mean of the process {X(t)} is the expected value of a typical member 

X(t) of the process.

i.e., m(t) = E{X(t)}

Autocorrelation of the process {X(t)}, denoted by Rxx(t1, t2) or Rx(t1, t2) or R(t1, 

t2), the expected value of the product of any two members X(t1) and X(t2) of the 

process.

i.e., R(t1, t2) = E{X(t1) × X(t2)}

Autocovariance of the process {X(t)}, denoted by Cxx (t1, t2) or Cx (t1, t2) or C(t1, 

t2), is defi ned as

 C(t1, t2) = E[{X(t1) – m(t1)} {X(t2) – m(t2)}]

  = R(t1, t2) – m(t1) × m(t2)

Correlation coeffi cient of the process {X(t)}, denoted by rxx (t1, t2) or r (t1, t2), 

is defi ned as

 r (t1, t2) = 
1 2

1 1 2 2

( , )

( , ) ( , )

C t t

C t t C t t¥

where C(t1, t2) is the variance of X(t1).

When we deal with 2 or more random processes, we can use joint distribution 

functions or averages to describe the relationship between them.

Cross-correlation of 2 processes {X(t)} and {Y(t)} is defi ned as

 Rxy(t1, t2) = E{X(t1) × Y(t2)}

Cross-covariance of 2 processes {X(t)} and {Y(t)} is defi ned as

 Cxy (t1, t2) = Rxy(t1, t2) – mx(t1) × my(t2)

Cross correlation coeffi cient of 2 processes {X(t)} and {Y(t)} is defi ned as

 rxy (t1, t2) = 
¥
1 2

1 1 2 2

( , )

( , ) ( , )

xy

xx yy

C t t

C t t C t t

Stationarity

A random process is called a strongly stationary process or strict sense stationary 

process (abbreviated as SSS process), if all its fi nite dimensional distributions are 

invariant under translation of time parameter.
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That is, if the joint distribution (and hence the joint density) of X(t1), X(t2), ..., 

X(tn) is the same as that of X(t1 + h), X(t2 + h), ..., X(tn + h) for all t1, t2, ..., tn and 

h(>0) and for all n ≥ 1, then the random process {X(t)} is called a SSS process. 

If the defi nition given above holds good for n = 1, 2, ..., k only and not for n > k, 

then the process is called kth order stationary.

Note  If  a random process is a SSS process, as per the defi nition, its fi rst-order densities 

must be invariant under translation of  time, i.e., the densities of  X(t) and X(t + h) are the 

same, i.e., f(x, t) = f(x, t + h).

 This is possible only if  f(x, t) is independent of  t.

 Therefore, fi rst-order densities (and hence distribution function) of  a SSS process are independent 

of  time.

 As a consequence, E{X(t)} is also independent of  t.

 i.e., E{X(t)} = m = a constant

 Also the second-order densities must be invariant under translation of  time, i.e., the joint pdf  

of  X(t1), X(t2) is the same as that of  X(t1 + h), X(t2 + h)}.

 i.e., f(x1, x2, t1, t2) = f(x1, x2, t1 + h, t2 + h)

 This is possible only if  f(x1, x2, t1, t2) is function of  t = t1 – t2.

 Therefore, second-order densities (and hence distribution functions) of  a SSS process are functions 

of  t = t1 – t2.

 As a consequence, R(t1, t2) = E{X(t1) × X(t2)} is also a function of  t = t1 – t2.

 It is pointed out that if  E{X(t)} is a constant and R(t1, t2), is a function of  (t1 – t2) the 

random process {X(t)} need not be a SSS process.

The defi nition of strict sense stationarity can be extended as follows.

Two real-valued random processes {X(t)} and {Y(t)} are said to be jointly 

stationary in the strict sense, if the joint distribution of X(t) and Y(t) are invariant 

under translation of time.

The complex random process {Z(t)}, where Z(t) = X(t) + iY(t), is said to be a 

SSS process if {X(t)} and {Y(t)} are jointly stationary in the strict sense.

Wide-sense stationarity: A random process {X(t)} with fi nite fi rst- and second-

order moments is called a weakly stationary process or covariance stationary 

process or wide-sense stationary process (abbreviated as WSS process) if its 

mean is a constant and the autocorrelation depends only on the time difference.

i.e., if E{X(t)} = m and

 E{X(t)} × X(t – t)} = R(t)

Note  From the defi nitions given above, it is clear that a SSS process with fi nite fi rst- and 

second-order moments is a WSS process, while a WSS process need not be a SSS process.

A random process that is not stationary in any sense is called an evolutionary 

process.

Two random processes {X(t)} and {Y(t)} are said to be jointly stationary in 

the wide sense, if each process is individually a WSS process and Rxy(t1, t2) is a 

function of (t1, t2) only.
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Example of a SSS Process

Let Xn denote the presence or absence of a pulse at the nth time instant in a digital 

communication system or digital data processing system.

If P{Xn = 1} = p and P{Xn = 0} = 1 – p = q, then the random process (sequence) 

{Xn, n ≥ 1}, called the Bernoulli’s process, is a SSS process, for, its fi rst-order 

distribution is given by

Xn = r 1 0

P(Xn = r) p q

This distribution is the same for any Xn, i.e., for Xm and Xm + p.

Consider the second-order distribution of the process, i.e., the joint distribution 

of Xr and Xs.

Xr

Xs

1 0

1 p
2

pq

0 pq q
2

This joint distribution is the same for the pair of members Xr and Xs and for 

the pair Xr + p and Xs + p of the process.

Consider the third-order distribution of the process, i.e., the joint distribution 

of Xr, Xs and Xt that is given below.

  P{Xr = 0, Xs = 0, Xt = 0} = q3

  P{Xr = 0, Xs = 0, Xt = 1} = pq
2

  P{Xr = 0, Xs = 1, Xt = 0} = pq
2

  P{Xr = 0, Xs = 1, Xt = 1} = p2
q

  P{Xr = 1, Xs = 0, Xt = 0} = pq
2

  P{Xr = 1, Xs = 0, Xt = 1} = p2
q

  P{Xr = 1, Xs = 1, Xt = 0} = p2
q

  P{Xr = 1, Xs = 1, Xt = 1} = p3

This joint distribution is the same for the triple of members Xr, Xs, Xt and for Xr + p,

Xs + p, Xt + p of the process, and so on, i.e., distributions of all orders are invariant 

under translation of time.

Note  If  
n

n n
n 1

Y X
=

= Â  = the total number of  pulses from time instant 1 through n, then 

the random process {Yn, n ≥ 1}, called the Binomial process, is not a SSS process, for P{Yn 

= i} = nCi p
iqn – 1(i = 0, 1, 2, ..., n) depends on n, i.e., the distributions of  Ym and Ym + p 

are not the same).

Analytical Representation of a Random Process
Deterministic signals are usually expressed in simple analytical forms such as 

2

( ) t
X t e

-=  and Y(t) = 20 sin 10 t. It is sometimes possible to express a random 
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process in an analytical form using form using one or more RVs. For example, 

consider an FM station that is broadcasting a ‘tone’, X(t) = 100 cos (108 t), to 

a large number of receivers distributed randomly in a metropolitan area. The 

amplitude and phase of the waveform received by any receiver will depend on the 

distance between the transmitter and the receiver. Since there are a large number 

of receivers distributed randomly over an area, the distance can be considered as 

a continuous RV. Since the amplitude and the phase are functions of distance, 

they are also RVs. So we can represent the ensemble (collection) of received 

waveforms by a random process {X(t)} of the form

 X(t) = A cos (108 t + q)

where A and q are RVs representing the amplitude and phase of the received 

waveforms.

Such representation of a random process in terms of one or more RVs whose 

probability law is known is used in several applications in communication 

systems.

Worked Example 6(A)

Example 1

Examine whether the Poisson process {X(t)}, given by the probability law

P{X(t) = r} = e–lt(lt)r/ r , {r = 0, 1, 2, ...}, is covariance stationary.

The probability distribution of X(t) is a Poisson distribution with parameter 

lt.

\ E{X(t)} = lt π a constant

Therefore, the Poisson process is not covariance stationary.

Example 2

The process {X(t)}, whose probability distribution under certain conditions is 

given by

 P{X(t) = n} = 
1

1

( )
, 1, 2, ...

(1 )

n

n

at
n

at

-

+ =
+

  = , 0
1

at
n

at
=

+
Show that it is not stationary.

The probability distribution of X(t) is

X(t) = n: 0 1 2 3 ...

pn: 1

at

at+ 2

1

(1 )at+ 3(1 )

at

at+

2

4

( )

(1 )

at

at+
...
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 E{X(t)} = 
0

n

n

np
•

=
Â

  = 

2

2 3 4

1 2 3( )

(1 ) (1 ) (1 )

at at

at at at
+ + +

+ + +
�

  = 2

2

1
{1 2 3 }, where

1(1 )

at

atat
a a a+ + + =

++
�

  = 2 2

2 2

1 1
(1 ) (1 ) 1

(1 ) (1 )
at

at at
a -- = + =

+ +

 E{X
2(t)} = 

1
2 2

1
0 1

( )

(1 )

n

n n
n n

at
n p n

at

-• •

+
= =

=
+

Â Â

  = 

1 1

2
1 1

1
( 1)

1 1(1 )

n n

n n

at at
n n n

at atat

- -• •

= =

È ˘Ê ˆ Ê ˆ+ -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯+ ++ Í ˙Î ˚
Â Â

  = 
È ˘-Í ˙+ Ê ˆ Ê ˆÍ ˙- -Á ˜ Á ˜Í ˙Ë ¯ Ë ¯+ +Î ˚

2 3 2

1 2 1

(1 )
1 1

1 1

at at at

at at

  = 1 + 2at

\ Var{X(t)} = 2at

If {X(t)} is a stationary process, E{X(t)} and Var{X(t)} are constants.

Since Var{X(t)} is a function of t, the given process is not stationary.

Note  When {X(t)} is a stationary process, R{t1, t2} = E{X(t1) X(t2)} is function of  

(t1 – t2).

\ E{X2(t)} is a constant.

Also E{X(t)} is a constant.

\ Var{X(t)} is a constant.

Example 3

Show that the random process X(t) = A cos (w0t + q) is wide-sense stationary, if 

A and w0 are constants and q is a uniformly distributed RV in (0, 2p).

Since q is uniformly distributed in (0, 2p)

 fq(q) = 
1

, 0 2
2

q p
p

< <

 E{X(t)} = E{A cos (w0t + q)}

  = 

2

0

0

1
cos( )d

2
A t

p

w q q
p

+Ú
 [since E{g(q)} = ( ( )d ]g fqq q q)Ú
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  = 0{sin(2 ) sin }
2

A
t tp w w

p 0+ -

  = 0 = a constant

 E{X(t1) X(t2)} = E{A
2cos(w0 t1 + q) × cos (w0 t2 + q)}

  = w q w+ + + -
2

1 2 0 0 1 2{cos[( ) 2 ] cos[ ( )]}
2

A
E t t t t

  = 

22

1 2 0 1 2 0

0

1
[cos{( ) 2 } cos{( ) }] d

2 2

A
t t t t

p

w q w q
p

+ + + -Ú

  = 

2

0 1 2cos ( )
2

A
t tw -

i.e., R(t1, t2) = a function of (t1 – t2)

Therefore, {X(t)} is a WSS process.

Example 4

Given a RV Y with characteristic function

 f(w) = E{e
iwY}

  = E{cos wY + i sin wY}

and a random process defi ned by X(t) = cos (lt + Y), show that {X(t)} is stationary 

in the wide sense

if f(1) = f(2) = 0

 E{X(t)} = E {cos (lt + Y)}

  = cos lt × E(cos Y) – sin lt × cos E(sin Y) (1)

Given f(1) = 0

i.e.,             E{cos Y + i sin Y} = 0 

\ E(cos Y) = 0 = E(sin Y) (2)

Using (2) in (1), we get E{X(t)} = 0 (3)

 E{X(t1) × X(t2)} = E{cos (lt1 + Y) × cos (lt2 + Y)}

  = cos lt1 cos lt2 E(cos2 Y) + sin lt1 sin lt2 E(sin2 Y)

 – sin l(t1 + t2) E(sin Y cos Y)

  = 1 2 1 2

1 1
cos cos cos2 sin sin

2 2
t t E Y t tl l l l

Ê ˆ+ +Á ˜Ë ¯

   1 2

1 1 1
cos2 sin ( ) (sin 2 )

2 2 2
E Y t t E Yl

Ê ˆ◊ - - +Á ˜Ë ¯  (4)

Given: f(2) = 0

i.e., E{cos 2Y + i sin 2Y} = 0

\ E(cos 2Y) = 0 = E(sin 2Y) (5)
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Using (5) in (4), we get

 R(t1, t2) = E{X(t1) × X(t2)} = 1 2 1 2

1
{cos cos sin sin }

2
t t t tl l l l+

  = 1 2

1
cos ( )

2
t tl -  (6)

From (3) and (6), it follows that {X(t)} is a WSS process.

Example 5

In the fair coin experiment, we defi ne the process {X(t)} as follows:

 X(t) = sin pt, if head shows, and

  = 2t, if tail shows.

(a) Find E{X(t)} and (b) fi nd F(x, t) for t = 0.25

 (a) The probability distribution of X(t) is given by

 P{X(t) = sin pt}= 
1 1

and { ( ) 2 }
2 2

P X t t= =

\ E{X(t)} = 
1

sin
2

t tp +

(b) When t = 0.25, 
1 1 1 1

( ) and ( )
2 2 22

P X t P X t
Ï ¸Ï ¸= = = =Ì ˝ Ì ˝

Ó ˛ Ó ˛
 \ F(x, 0.25) is given by

 F(x, 0.25) = 0, if 
1

2
x <

  = 
1 1 1

, if
2 2 2

x£ <

  = 1, if 
1

2
x£

Example 6

If {X(t)} is a wide-sense stationary process with autocorrelation R(t) = Ae
–a|t|, 

determine the second-order moment of the RV X(8) – X(5).

Second moment of X(8) – X(5) is given by

 E[{X(8) – X(5)}2] = E{X
2(8)} + E{X

2(5)} – 2E{X(8) X(5)} (1)

Given: R(t) = Ae
–a|t|

i.e., R(t1, t2) = 1 2| |t t
Ae

a- -

\ E{X
2(t)} = R(t, t) = A

\ E{X
2(8)} = E{X

2(5)} = A (2)

Also, E{X(8) × X(5)} = R(8, 5) = Ae
–3a (3)
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Using (2) and (3) in (1), we get

  E[{X(8) – X(5)}2] = 2A(1 – e–3a)

Example 7

Show that the process X(t) = A cos lt + B sin lt (where A and B are RVs) is wide-

sense stationary, if

 (a) E(A) = E(B) = 0,

 (b) E(A2) = E(B2), and

 (c) E(AB) = 0.

  E{X(t)} = cos lt × E(A) + sin lt × E(B) (1)

  If {X(t)} is to be a WSS process. E{X(t)} must be a constant (i.e., 

independent of t).

  In (1), if E(A) and E(B) are any constants other than zero, E{X(t)} will 

be a function of t.

\ E(A) = E(B) = 0

  R(t1, t2) = E{X(t1) × X(t2)}

  = E{(A cos lt1 + B sin lt1) (A cos lt2 + B sin lt2)}

  = E(A2) cos lt1 cos lt2 + E(B2) sin lt1 sin lt2

       + E(AB) sin l(t1 + t2) (2)

  If {X(t)} is to be a WSS process, R(t1, t2) must be a function of (t1 – t2).

  \ In (2), E(AB) = 0 and E(A2) = E(B2) = k

  Then R(t1, t2) = k cos l(t1 – t2)

Example 8

If the 2n RVs Ar and Br are correlated with zero mean and E(Ar
2) = E(Br

2) = sr
2, 

show that the process X(t) = 
1

( cos sin )
n

r r r r

r

A t B tw w
=

+Â  is wide-sense stationary. 

What are the mean and autocorrelation of X(t)?

 E{X(t)} = 
1

( )cos { }sin 0
n

r r r r

r

E A t E B tw w
=

+ =Â

 E{X(t1)× X(t2)} = 
w w

w w= =

+Ï ¸
Ì ˝¥ +Ó ˛
ÂÂ 1 1

1 1 2 2

( cos sin )

( cos sin )

n n
r r r r

r s s s s s

A t B t
E

A t B t

Since E{ArAs}, E{BrBs}, E{Ar Br} and E{Ar Bs} are all zero, for r π s, we have 

 E{X(t1) × X(t2)} = 2 2
1 2 1 2

1

[ ( )cos cos ( )sin sin ]
n

r r r r r r

r

E A t t E B t tw w w w
=

+Â
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  = 2
1 2

1

cos ( )
n

r r

r

t ts w
=

-Â
Therefore, {X(t)} is a WSS process.

Example 8

Given a RV W with density f(w) and another RV f uniformly distributed in

(–p, p) and independent of W and X(t) = a cos (Wt + f), prove that {X(t)} is a 

WSS process.

Recall that E{g(X, Y)} = E[E{g(X, Y)/X}]

\ E{X(t)} = E{a cos (Wt + f)}

  = aE[E{cos (Wt + f)/W}]

  = aE[cos Wt × E(cos f) – sin Wt × E(sin f)]

  = 
1 1

cos cos sin sin
2 2

aE t d t d

p p

p p

f f f f
p p- -

È ˘
W - WÍ ˙

Í ˙Î ˚
Ú Ú

  = 0 [since f is uniform in (–p, p)]

 R(t1, t2) = E{X(t1) × X(t2)}

  = E{a
2 cos (Wt1 + f) cos (Wt2 + f)}

  = a2
E[E{cos Wt1 cos Wt2 cos2 f + sin Wt1 sin Wt2 sin2f

– (sin Wt1 cos Wt2 + cos Wt1 sin Wt2) sin f cos f/W)}

  = 

p

p

f f
-

È
W W + W W ¥Í

ÍÎ
Ú2 2

1 2 1 2cos cos cos d sin sina E t t t t

 

2
1 2sin d sin ( ) sin cos dt t

p p

p p

f f f f f
- -

˘
- W + ˙

˙̊
Ú Ú

  = 2
1 2 1 2

1
{cos cos sin sin }

2
a E t t t tW W + W W

  = 2
1 2

1
{cos ( )

2
a E t tW -

  = a function of (t1 – t2), whatever be the value of f(w). 

Therefore, {X(t)} is a WSS process.

Example 10

Verify whether the sine wave process {X(t)}, where X(t) = Y cos wt, where Y is 

uniformly distributed in (0, 1) is a SSS process.

 P{X(t) £ x} = P{Y cos wt £ x}
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  = 

if cos 0
cos

if cos 0
cos

x
P Y t

t

x
P Y t

t

w
w

w
w

Ï Ï ¸£ >Ì ˝Ô
Ô Ó ˛
Ì

Ï ¸Ô ≥ <Ì ˝Ô Ó ˛Ó

i.e., FX(t)(x) = 

if cos 0
cos

1 if cos 0
cos

Y

Y

x
F t

t

x
F t

t

w
w

w
w

Ï Ê ˆ >Á ˜Ô Ë ¯Ô
Ì

Ê ˆÔ - <Á ˜Ô Ë ¯Ó

\ fX(t)(x) = 
1

| cos | cos
Y

x
f

t tw w

Ê ˆ¥ Á ˜Ë ¯
  = a function of t

If {X(t)} is to be a SSS process, its fi rst-order density must be independent of t.

Therefore, {X(t)} is not a SSS process.

Example 11

If X(t) = Y cos wt + Z sin wt, where Y and Z are two independent normal RVs 

with E(Y) = E(Z) = 0, E(Y2) = E(Z2) = s2 and w is a constant, prove that {X(t)} is 

a SSS process of order 2.

Since X(t) is a linear combination of Y and Z, that are independent, X(t) follows 

a normal distribution with

 E{X(t)} = cos wtE(Y) + sin wtE(Z) = 0

and Var {X(t)} = cos2 wt × E(Y2) + sin2 wt × E(Z2)

  = s2

Since X(t1) and X(t2) are each N(0, s), X(t1) and X(t2) are jointly normal with the 

joint pdf given by

 f(x1, x2, t1, t2) = 
2 2
1 1 2 2

1 22 22 2

( 2 )1
exp ; ,

2(1 )2 1

x rx x x
x x

rr sps

Ï ¸- - +Ô Ô - • < < •Ì ˝
-Ô Ô- Ó ˛

 (1)

In (1), r = correlation co-effi cient between X(t1) and X(t2)

  = 
¥

1 2

1 2

( , )

Var{ ( )} Var{ ( )}

C t t

X t X t

  = 1 22

1
{ ( ) ( )}E X t X t

s
¥

  = 1 1 2 22

1
[ cos sin )( cos sin )]E Y t Z t Y t Z tw w w w

s
+ +
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  = w w w w
s

+2 2
1 2 1 22

1
[ ( )cos cos ( )sin sin ]E Y t t E Z t t

 [since E(YZ) = 0, as Y and Z are independent]

  = cos w(t1 – t2)

Now, the joint pdf of X(t1 + h) and X(t2 + h) is given by a similar expression 

as in (1), where

 r = cos w{(t1 + h) – (t2 + h)}

  = cos w(t1 – t2)

Thus, the joint pdf’s of {X(t1), X(t2)} and {X(t1 + h), X(t2 + h)} are the same. 

Therefore, {X(t)} is a SSS process of order 2.

Example 12

Two random processes X(t) and Y(t) are defi ned by X(t) = A cos w0t + B sin w0t

and Y(t) = B cos w0t – A sin w0t. Show that X(t) and Y(t) are jointly wide-sense 

stationary, if A and B are uncorrelated RVs with zero means and the same 

variances and w0 is a constant.

 E(A) = E(B) = 0; Var(A) = Var(B)

\ E(A2) = E(B2)

Since A and B are uncorrelated, E(AB) = 0.

Therefore, by Example 7, {X(t)} and {Y(t)} are individually WSS processes.

Now, Rxy(t1, t2) = E{X(t1) × Y(t2)}

  = E{(A cos w0t1 + B sin w0t1) (B cos w0t2 – A sin w0t2)}

  = E(B2) sin w0t1 cos w0t2 – E(A2) cos w0t1 sin w0t2

  = s2 sin w0(t1, t2) [assuming E(A2) = E(B2) = s2]

  = a function of (t1 – t2)

Therefore, {X(t)} and {Y(t)} are jointly WSS processes.

Example 13

(a) Defi ne Random Walk and prove that the limiting form of random walk is the 

Wiener process, and (b) fi nd the covariance function of the Wiener process.

(a) Defi nition of Random Walk

Suppose we toss a fair coin every T seconds and instantly after each toss we move 

a distance d to the right if heads show and to the left if tails show. If the process 

starts at t = 0, our position at time t = nT is a random sequence X(nT) that may be 

simply denoted as X(n) also. The process {X(nT)} is called a random walk.

Suppose that r heads and (n – r) tails have occurred in the fi rst n tosses of the 

coin. Then the random walk consists of r steps to the right and (n – r) steps to 

the left.
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\ X(nT) = rd – (n – r)d

  = (2r – n)d = md, say

Note that X(nT) is a RV, taking the values md, where m = –n, –n + 2, ..., n – 2, 

n.

Now, P{X(nT) = md} = P{getting r heads in n tosses}

  = 
1

, where , since 2
2 2

r

r

m n
nC r r n m

+Ê ˆ = - =Á ˜Ë ¯

Now, X(nT) can also be expressed as a sum as given below,

 X(nT) = X1 + X2 + ... + Xn

where Xi represents the distance moved in the ith step.

The RVs Xi are independent, taking the values ±d with equal probability.

\ E{X(nT)} = 
1

( ) 0
n

i

i

E X
=

=Â

and E{X
2(nT)} = 

2

1

( )
n

i

i

E X
=
Â

  = 
2 2 2

1

1 1

2 2

n

i

d d nd
=

Ê ˆ¥ + ¥ =Á ˜Ë ¯Â

We know that limiting form of the binomial distribution with mean np and 

variance npq as n Æ • is the normal distribution ( , )N np npq .

i.e. 
2( ) /21

2

r n r r np npq
rnC p q e

npqp

- - -@

\              P{X(nT) = md} 

p

- +Ê ˆ=Á ˜Ë ¯
2 /21

since
2

2
4

m n m n
e r

n
 (1)

Wiener Process as Limiting form of Random Walk

In (1), put nT = t, md = x and d2 = aT and take limits as T Æ 0 and n Æ •.

In the limit, {X(t)} becomes a continuous process.

Now, 
m

n
 = 

2

/

/ /

x d x x

t T td t T a
= =  (2)

Also, 
4

n
 = E{X

2(nT)}

  = nd
2

  = naT

  = at (3)
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If we use (2) and (3) in (1), when we proceed to limits,

P{x £ X(t) £ x + dx} = 
2 /21

,
2

x t
e dx x

t

a

pa

- -• < < •

i.e., the pdf of Wiener process {X(t)} is

 fX(t)(x) = 
2 /21

2

x t
e

t

a

pa

-

which is (0, )N ta .

(b)  Obviously, the random walk {X(nT)} is a process with independent 

increments.

i.e., {X(n2T) – X(n1T)} and {X(n1T) – X(0)} are independent.

Since Wiener process {X(t)} is the limiting form of random walk, {X(t2) – 

X(t1)} and X(t1) are independent.

Let t1 < t2

Then E[{X(t2) – X(t1)} × X(t1)]

  = E[{X(t2) – X(t1)} × E{X(t1)}

  = 0 [since E{X(t)} = 0]

i.e., E{X(t1) × X(t2)} = E{X
2(t1)}

  = at1 [since Var {X(t)} = at]

i.e., R(t1, t2) = at1.

Similarly, when t2 < t, R(t1, t2) = a t2.

\ R(t1, t2) = a min (t1, t2)

 C(t1, t2) = R(t1, t2) – m(t1) × m(t2)

  = a min (t1, t2) [since m(t) = 0]

Example 14

If X(t) with X(0) = 0 and m = 0 is a Wiener process, show that Y(t) = 
2

t
Xs

s

Ê ˆ
Á ˜Ë ¯

 

is also a Wiener process. Find its covariance function.

The pdf of Wiener process {X(t)} is given by

 f(x) = 
2 /21

2

x t
e

t

a

pa

-

The standard deviation of X(t) is given by

 s = ta

Therefore, the pdf of the RV 
2

t
X

s

Ï ¸Ê ˆ
Ì ˝Á ˜Ë ¯Ó ˛

 = 
1

X
a

Ï ¸Ê ˆ
Ì ˝Á ˜Ë ¯Ó ˛

 is
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 f1(x) = 
2 /21

2

x
e

p

-

To fi nd the pdf of Y(t) = 
2

t
Xs

s

Ê ˆ
Á ˜Ë ¯

, let us use the transformation rule.

 fY(t)(y) = 
1( )

dx
f x

dy
 where y = sx

  = 1

1 y
f

s s

Ê ˆ
Á ˜Ë ¯

  = 1

1 y
f

t ta a

Ê ˆ
Á ˜Ë ¯

  = 
2 /21

2

y t
e

t

a

pa

-

which is the pdf of the Wiener process.

The covariance function of the Wiener process was found out in the previous 

example.

Example 15

Defi ne semi-random telegraph signal process and random telegraph signal 

process and prove also that the former is evolutionary and the latter is wide-

sense stationary.

If N(t) represents the number of occurrences of a specifi ed event in (0, t) and 

X(t) = (–1)N(t), then {X(t)} is called a semi-random telegraph signal process.

If {X(t)} is a semi-random telegraph signal process, a is a RV which is 

independent of X(t) and which assumes the values +1 and –1 with equal probability 

and Y(t) = aX(t), then {Y(t)} is called a random telegraph signal process.

It will be proved in Chapter 7 that the distribution of N(t) is Poisson with mean 

lt, where the probability of exactly one occurrence in a small interval of length 

h = lh.

In other words, the process {N(t)} is a Poisson process with the probability law

 P{N(t) = r} = e–lt(lt)r/ ; 0,1, 2, ...,r r = •

If {X(t)} is the semi-random telegraph signal process, then as per the defi nition 

given above, X(t) can take the values +1 and –1 only.

 P{X(t) = 1} = P{N(t) is even}.

  = P{N(t) = 0} + P{N(t) = 2} + P{N(t) = 4}

+ ... + • (since the events are mutually exclusive)

  = 
2 4( ) ( )

1
2 4

t t t
e

l l l- Ï ¸Ô Ô+ + + + •Ì ˝
Ô ÔÓ ˛

�
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  = e–lt cosh lt

 P{X(t) = –1} = P{N(t) is odd}

  = P{N(t) = 1} + P{N(t) = 3} + ... + •
 (since the events are mutually exclusive)

  = 
3( )

1 3

t t t
e

l l l- Ï ¸Ô Ô+ + + •Ì ˝
Ô ÔÓ ˛

�

  = e–lt
 sinh lt

\ E{X(t)} = 1 × e–lt cosh lt + (–1) × e–lt sinh t

  = e–lt
 e

–lt = e–2lt

To fi nd E{X(t1) × X(t2)}, we require the joint probability distribution of {X(t1), 

X(t2)}.

Now, P{X(t1) = 1, X(t2) = 1}

  = P{X(t1) = 1/X(t2) = 1} × P{X(t2) = 1}

  = P{an even number of occurrences of the event in (t1 – t2)}

 × P{X(t2) = 1}

  = 
t ll lt l t-¥ = -2–

2 1 2cosh cosh ; where
t

e t t te

Similarly, P{X(t1) = –1, X(t2) = –1}

  = 
lt llt l- - /2

2cosh sinhe e t

 P{X(t1) = –1, X(t2) = –1} = 2
2sinh sinh

t
e e t

llt lt l--

and P{X(t1) = –1, X(t2) = 1} = 
2

2sinh cosh
t

e e t
llt lt l--

Now, X(t1) × X(t2) = 1, if {X(t1) = 1 and X(t2) = 1} or {X(t1) = –1, X(t2) = –1}

\ P{X(t1) × X(t2) = 1} = 2( )
2 2cosh (cosh sinh )

t
e t t

l t lt l l- + +

  = e–lt cosh lt

and P{X(t1) × X(t2) = –1}

  = 2( )
2 2sin (cosh sinh )

t
e t t

l t lt l l- + +

  = e–lt sinh lt

\ R(t1, t2) = E{X(t1) X(t2)}

  = 1 × e–lt cosh lt – 1 × e–lt sinh lt

  = e–2lt

  = 
1 22 ( )t t

e
l- -

Although R(t1, t2) is a function of (t1 – t2), E{X(t)} is not a constant.

Therefore, {X(t)} is evolutionary.

Let us now consider the random telegraph signal process {Y(t)}, where Y(t) 

= aX(t).
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By defi nition, P{a = 1} = 
1 1

and ( 1)
2 2

P a = - =

\ E(a) = 0 and E(a2) = 1

Now, E{Y(t) = E(a) × E{X(t)}

  = 0 [since a and X(t) are independent]

 E{Y(t1) × Y(t2)} = E{a 2 X(t1) × X(t2)}

  = E{a 2) × E{X(t1) × X(t2)} (by independence)

  = 1 22 ( )
1

t t
e

l- -¥
i.e., Ryy(t1, t2) = a function of (t1 – t2)

Therefore, {Y(t)} is a wide-sense stationary process.

Exercise 6(A)

Part-A (Short-answer Questions)

 1. What is the difference between a RV and a random process?

 2. Defi ne a random process and give an example of a random process.

 3. Explain the terms ‘state space’ and ‘parameter set’ associated with a 

random process.

 4. If {X(s, t)} is a random process, what is the nature of X(s, t) when (i) s is 

fi xed and (ii) t is fi xed?

 5. What is the difference between a random sequence and random process?

 6. What is a discrete random sequence? Give an example.

 7. What is a continuous random sequence? Give an example.

 8. What is a discrete random process? Give an example.

 9. What is a continuous random process? Give an example.

 10. How is a random process described mathematically?

 11. Name 3 classes of RP’s into which RP’s are generally divided.

 12. Name 2 important RP’s with independent increments.

 13. What do you mean by the mean and variance of a random process?

 14. Defi ne the autocorrelation of a RP {X(t)}.

 15. Defi ne the autocovariance of a RP {X(t)}.

 16. Defi ne the correlation coeffi cient of a RP {X(t)}.

 17. Is the autocorrelation of a RP the same as the correlation coeffi cient of 

the process? Why?

 18. Defi ne the cross-correlation of 2 random processes.

 19. When are 2 random processes said to be orthogonal?

 20. Defi ne the cross-covariance of 2 random processes.

 21. Defi ne the cross-correlation coeffi cient of 2 random processes.

 22. Defi ne a strict-sense stationary process and give an example.

 23. Defi ne a kth-order stationary process. When will it becomes a SSS 

process?
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 24. Prove that the fi rst-order density function of a SSS process {X(t)} is 

independent of t.

 25. If {X(t)} is a SSS process, prove that E{X(t)} is a constant.

 26. If {X(t)} is a SSS process, prove that the joint pdf of X(t1) and X(t2) is a 

function of (t1 – t2).

 27. Prove that the autocorrelation of a SSS process {X(t)} is a function of

(t1 – t2).

 28. When are {X(t)} and {Y(t)} said to be jointly stationary in the strict sense?

 29. When is a complex random process {Z(t)}, where Z(t) = X(t) + iY(t), said 

to be a SSS process?

 30. Defi ne wide-sense stationary process. Give an example.

 31. What is the difference between a SSS process and a WSS process?

 32. When is a random process said to be evolutionary? Give an example of 

an evolutionary process.

 33. When are the processes {X(t)} and {Y(t)} said to be jointly stationary in 

the wide sense?

 34. If {X(t)} is a stationary process in any sense, prove that Var{X(t)} is a 

constant.

 35. Give the one-dimensional density function of Wiener process. What are 

its mean and variance?

 36. Defi ne a semi-random telegraph signal process. Is it stationary?

 37. Defi ne a random telegraph signal process. Is it stationary?

Part-B

 38. If X(t) = P + Qt, where P and Q are independent RVs with E(P) = p, 

E(Q) = q, Var(P) = s1
2 and Var(Q) = s2

2, fi nd E{X (t)}, R(t1, t2) and C(t1, 

t2). Is the process {X(t)} stationary?

 39. If X(t) = sin (wt + Y), where Y is uniformly distributed in (0, 2p), prove 

that {X(t)} is a wide-sense stationary process.

 40. If X(t) = Y cos t + Z sin t for all t where Y and Z are independent binary 

RVs, each of which assumes the values –1 and +2 with probabilities 2/3 

and 1/3 respectively, prove that {X(t)} is wide-sense stationary.

 41. Calculate the autocorrelation function of the process X(t) = A sin (w0t + 

f), where A and w0 are constants and f is a uniformly distributed RV in 

(0, 2p).

 42. Consider the random process V(t) = cos(wt + q), where q is a RV with 

probability density

 P(q) = 

1

2

0 elsewhere

p q p
p

Ï ¸- £ £Ô Ô
Ì ˝
Ô ÔÓ ˛

  (i) Show that the fi rst and second moments of V(t) are independent of 

time.

 (ii) If q = constant, will the ensemble mean of V(t) be time-independent?
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 43. If X(t) = R cos (wt + f), where R and f are independent RVs and f 

is uniformly distributed in (–p, p), prove that R(t1, t2) = 
1

2
 E(R2) ×

cos w(t1 – t2).

 44. In the fair-coin experiment, we defi ne the process X(t) as follows:

 X(t) = sin pt, if head shows and

 X(t) = 2t, if tail shows.

  Find (i) E{X(t)} and (ii) F(x, t) for t = 0.25, 0.5, 1.

 45. A stochastic process is described by X(t) = A sin t + B cos t, where A and 

B are independent RVs with zero means and equal standard deviations. 

Show that process is stationary of the second order.

  [Hint: Without knowing the distributions of A and B, it is not possible 

to prove strict sense stationarity of the second order. We can prove that 

{X(t)} is WSS.]

 46. Consider a random process Z(t) = X1 cosw0t – X2 sin w0t, where X1 and 

X2 are independent Gaussian RVs with zero mean and variance s2, fi nd 

E{z} and E{z
2}.

 47. Suppose that X(t) is a process with mean m(t) = 3 and autocorrelation R(t1, 

t2) = 9 + 4 1 20.2| |t t
e

- -
. Determine the mean, variance and the convariance 

of the RVs Z = X(5) and W = X(8).

 48. If the RVs Ai are uncorrelated with zero mean and 2 2{| | }i iE A s= , prove 

that the process X(t) = 
1

i

n
j t

i

i

A e
w

=
Â  is wide-sense stationary with zero 

mean. Show also that for X(t), R(z) = 
2

1

i

n
j z

i

i

e
ws

=
Â .

  [Hint: For a complex-valued random process {X(t)}, the autocorrelation 

is defi ned as R(t1, t2) = E{X(t1) X
*(t2)}, where X

*(t2) is the complex 

conjugate of X(t2).]

 49. If U(t) = X cos t + Y sin t and V(t) = Y cos t + X sin t, where X and Y are 

independent RVs such that E(X) = 0 = E(Y), E(X2) = E(Y2) = 1, show that 

{U(t)} and {V(t)} are individually stationary in the wide sense, but they 

are not jointly wide-sense stationary.

 50. If X(t) = 5 cos (10t + q) and Y(t) = 20 sin (10t + q), where q is a RV 

uniformly distributed in (0, 2p), prove that the processes {X(t)} and 

{Y(t)} are jointly wide-sense stationary.

 51. If X(t) = A sin(wt + q) where A and w are constants and q is RV, uniformly 

distributed over (–p, p), fi nd the autocorrelation of {Y(t)}, where Y(t) = 

X
2(t).

 52. Find the fi rst-order characteristic function of a Wiener process.
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 53. Consider the process W(t) = X(t) cos wt + Y(t) sin wt, where X(t) and 

Y(t) are 2 real jointly stationary processes. What are the conditions 

for W(t) to be WSS? In case W(t) is wide-sense stationary, what is its 

autocorrelation of X(t) and Y(t)?

 54. Show that, if the process X(t) = a cos wt + b sin wt is SSS, where a and 

b are independent RVs, then they are normal.

 55. The RVs A and B are independent N(0, s) and p is the probability that 

the process {X(t)}, where X(t) = A – Bt, crosses the t-axis in the interval 

(0, T). Show that pp = tan–1 T.

  [Hint: Z = A/B follows the Cauchy distribution with f(z) = 
2

1 1

1 zp
¥

+
 

and p = P{0 £ A/B £ T]}.

Autocorrelation Function and its Properties

Defi nition: If the process {X(t)} is stationary either in the strict sense or in the 

wide sense, then E{X(t)} X(t – t)} is a function of t, denoted by Rxx(t) or R(t) 

or Rx(t). This function R(t) is called the autocorrelation function of the process 

{X(t)}.

Properties of R(t)

1. R(t) is an even function of t

Proof

 R(t) = E{X(t) × X(t – t}

\ R(–t) = E{X(t) × X(t + t}

  = E{X(t + t} × X(t)}

  = R(t)

Therefore, R(t) is an even function of t.

2. R(t) is maximum at t = 0

 i.e., |R(t)| £ R(0)

Proof

The Cauchy–Schwarz inequality is

 {E(XY)}2 £ E(X2) × E(Y2)

Put X = X(t) and Y = X(t – t)

Then [E{X(t) × X(t – t)}]2 £ E{X
2(t)} × E{X

2(t – t)}

i.e.,                          {R(t)}2 £ [E{X
2(t)}]2

  [since E{X(t)} and Var {X(t)} are constant for a stationary process]
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i.e., {R(t)}2 £ {R(0)}2

Taking square-root on both sides

 |R(t)| £ R(0) [since R(0) = E{X
2(t)} is positive]

3. If the autocorrelation function R(t) of a real stationary process {X(t)} is 

continuous at t = 0, it is continuous at every other point.

Proof

Consider

 E[{X(t) – X(t – t)}2] = E[{X
2(t)} + E{X

2(t – t)} – 2E{X(t) × X(t – t)}

  = R(0 + R(0) – 2R(t)

  = 2[R(0) – R(t)] (1)

Since R(t) is continuous at t = 0, 
0

lim ( ) (0)R R
t

t
Æ

=

i.e., 
t Æ0
lim  {R.S. of (1)} = 0

\ 
t Æ0
lim  {L.S. of (1)} = 0

\ 
t Æ0
lim  {X(t – t)} = X(t)

i.e., X(t) is continuous for all t (2)

Consider R(t + h) – R(t)

  = E[{X(t)} × X{t – (t + h)]} – E{X(t) × X(t – t)]

  = E[X(t) {X(t – t – h) – X(t – t)] (3)

Now, 
0

lim [ { } ( )]
h

X t h X tt t
Æ

- ) - - -  = 0, by (2)

\ 
0

lim {R.S. of (3)}
hÆ

 = 0

\ 
0

lim {L.S. of (3)}
hÆ

 = 0

i.e., 
0

lim { ( )}
h

R ht
Æ

+  = R(t)

i.e., R(t) is continuous for all t

4. If R(t) is the autocorrelation function of a stationary process {X(t)} with 

no periodic component, then 
t

t m
Æ• x

R
2lim ( ) = , provided the limit exists.

Proof

 R(t) = E{X(t)} × X(t – t)}

When t is very large, X(t) and X(t – t) are two sample functions (members) of the 

process {X(t)} observed at a very long interval of time.
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Therefore, X(t) and X(t – t) tend to become independent [X(t) and X(t – t) may 

be dependent, when X(t) contains a periodic component, which is not true].

\ lim{ ( )}R
t

t
Æ•

 = E{X(t)} × E{X(t – t)}

  = mx
2 [since E{X(t)} is a constant]

i.e., mx = lim ( )R
t

t
Æ•

Cross-Correlation Function and its Properties

Defi nition: If the processes {X(t)} and {Y(t)} are jointly wide-sense stationary, 

then E{X(t) × Y{X(t – t)} is a function of t, denoted by Rxy(t). This function Rxy 

(t) is called the cross-correlation function of the processes {X(t)} and {Y(t)}.

We give below the properties of Rxy(t) without proof. Proofs of these properties 

are left as exercises to the reader.

Properties

 1. Ryx(t) = Rxy(–t)

 2. |Rxy(t)| £ (0) (0)xx yyR R¥
  This means that the maximum of Rxy(t) can occur anywhere, but it 

cannot exceed ¥(0) (0)xx yyR R .

 3. |Rxy(t)| £ 1/2 {Rxx(0) + Ryy(0)}

 4. If the processes {X(t)} and {Y(t)} are orthogonal, then Rxv(t) = 0

 5. If the processes {X(t)} and {Y(t)} are independent, then Rxy(t) = mx × my

Ergodicity

When we wish to take a measurement of a variable quantity in the laboratory, 

we usually obtain multiple measurements of the variable and average them 

to reduce measurement errors. If the value of the variable being measured in 

constant and errors are due to disturbances (noise) or due to the instability of the 

measuring instrument, then averaging is, in fact, a valid and useful technique. 

‘Time averaging’ is an extension of this concept, which is used in the estimation 

of various statistics of random processes.

We normally use ensemble averages (or statistical averages) such as the mean 

and autocorrelation function for characterising random processes. To estimate 

ensemble averages, one has to compute a weighted average over all the member 

functions of the random process.

For example, the ensemble mean of a discrete random process {X(t)} is 

computed by the formula mx = i i

i

x pÂ . If we have access only to a single sample 

function of the process, then we use its time-average to estimate the ensemble 

averages of the process.
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Defi nition: If {X(t)} is a random process, then 
1

( ) d
2

T

T

X t t
T -

Ú  is called the time-

average of {X(t)} over (–T, T) and denoted by X T.

In general, ensemble averages and time averages are not equal except for a 

very special class of random processes called ergodic processes. The concept of 

ergodicity deals with the equality of time averages and ensemble averages.

Defi nition: A random process {X(t)} is said to be ergodic, if its ensemble averages 

are equal to appropriate time averages.

This defi nition implies that, with probability 1, any ensemble average of 

{X(t)} can be determined from a single sample function of {X(t)}.

Note  Ergodicity is a stronger condition than stationarity and hence all random processes 

that are stationary are not ergodic. Moreover, ergodicity is usually defi ned with respect to one or 

more ensemble averages (such as mean and autocorrelation function) as discussed below and a 

process may be ergodic with respect to one ensemble average but not others.

Mean-Ergodic Process

If the random process {X(t)} has a constant mean E{X(t)} = m and if X T = 

1
( ) d

2

T

T

X t t
T -

Ú  Æ m, as T Æ • , then {X(t)} is said to be mean-ergodic.

Mean-Ergodic Theorem

If {X(t)} is a random process with constant mean m and if X T = 

-
Ú

1
( ) d

2

T

T

X t t
T

, then 

{X(t)} is mean-ergodic (or ergodic in the mean), provided 
Æ•

=lim{Var } 0.T
T

X

Proof

 X T = 
1

( ) d
2

T

T

X t t
T -

Ú

\ E( X T) = 
1

{ ( )} d
2

T

T

E X t t
T -

Ú
  = m (1)

By Tchebycheff’s inequality,

  - £ Œ ≥ -
Œ2

Var( )
{| ( ) | } 1 T

T T

X
P X E X  (2)
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Taking limits as T Æ • and using (1) we get

   

m Æ•

Æ•

Ï ¸
- £ Œ ≥ -Ì ˝

ŒÓ ˛ 2

lim Var( )
lim ( ) 1

T
T

T
T

X
P X

\ when 
Æ•

lim Var ( )T
T

X  = 0, (2) becomes

 

m
Æ•

Ï ¸
- £ Œ ≥Ì ˝

Ó ˛
lim ( ) 1T
T

P X

i.e., lim ( )T
T

X
Æ•

 = E{X(t)} with probability 1.

Note  This theorem provides a suffi cient condition for the mean-ergodicity of  a random process. 

That is, to prove the mean-ergodicity of  {X(t)}, it is enough to prove T
T
lim Var( X ) 0
Æ•

= .

Correlation Ergodic Process

The stationary process {X(t)} is said to be correlation ergodic (or ergodic in 

the correlation), if the process {Y(t)} is mean-ergodic, where Y(t) = X(t + l) 

× X(t). That is, the stationary process {X(t)} is correlation ergodic, if Y T = 

1
( ) ( ) d

2

T

T

X t X t t
T

l
-

+Ú  tends to

 E{X(t + l)X(t)} = R(l) as T Æ •.

Distribution Ergodic Process

If {X(t)} is a stationary process and if {Y(t)} is another process such that 

 Y(t) = 
1 if ( )

0 if ( )

X t x

X t x

£Ï
Ì >Ó

then {X(t)} is said to be distribution-ergodic, if {Y(t)} is mean-ergodic. That is, 

the stationary process {X(t)} is distribution ergodic, if Y T = 
1

( ) d
2

T

T

Y t t
T -

Ú  Æ 

E{Y(t)} as T Æ •.

We note that 

 E{Y(t)} = 1 × P{X(t) £ x} + 0 × P{X(t) > x}

  = FX(x)
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Thus, the stationary process {X(t)} is distribution-ergodic,

if 
1

( ) d ( )as
2

T

X

T

Y t t F x T
T -

Æ Æ •Ú

Worked Example 6(B)

Example 1

Given that the autocorrelation function for a stationary ergodic process with no 

periodic components is

 Rxx(t) = 2

4
25

1 6t
+

+
Find the mean value and variance of the process {X(t)}.

By the property of autocorrelation function,

 mx
2 = lim ( )xxR

t
t

Æ•

  = 25

\ mx = 5

 E{X
2(t)} = Rxx(0)

  = 25 + 4 = 29

\ Var{X(t)} = E{X
2(t)} – E2{X(t)}

  = 29 – 25 = 4

Example 2

Express the autocorrelation function of the process {X¢(t)} in terms of the 

autocorrelation function of the process {X(t)}.

Consider

 Rxx¢(t1, t2) = E{X(t1) X¢(t2)}

  = 2 2
1

( ) ( )
( ) as 0

X t h X t
E X t h

h

È ˘+ -Ï ¸
ÆÌ ˝Í ˙

Ó ˛Î ˚

  = 1 2 1 2

0

( , ) ( , )
lim xx xx

h

R t t h R t t

hÆ

+ -È ˘
Í ˙
Î ˚

  = 1 2

2

( , )xxR t t
t

∂
∂

 (1)

Similarly,

 Rx¢x¢(t1, t2) = 1 2

1

( , )xxR t t
t

¢
∂

∂
 (2)
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Using (1) in (2),

 Rx¢x¢(t1, t2) = 
2

1 2

1 2

( , )xxR t t
t t

∂
∂ ∂

 (3)

If {X(t)} is a stationary process, we put t1 – t2 = t. From (1), (2) and (3), we then get

 Rxx¢(t) = ( )xxR t
t

∂
-

∂

 Rx¢x¢(t) = ( )xxR t
t ¢
∂

∂
 and

 Rx¢x¢(t) = 
2

2
( )xxR t

t

∂
∂

Example 3

Prove that the random process {X(t)} with constant mean is mean-ergodic,

if 1 2 1 22

1
lim ( , ) d  d

4

T T

T
T T

C t t t t
TÆ•

- -

È ˘
Í ˙
Í ˙Î ˚

Ú Ú  = 0

As per mean-ergodic theorem, the condition for the mean-ergodicity of the 

process {X(t)} is

 
Æ•

lim {Var( )}T
T

X  = 0, where

 XT = 
1

( ) d
2

T

T

X t t
T -

Ú  and E( XT) = E{X(t)}

Now, 
2
TX  = 1 2 1 22

1
( ) ( ) d d

4

T T

T T

X t X t t t
T - -

Ú Ú

\ 
2{ }TE X  = 

- -
Ú Ú 1 2 1 22

1
( , )d d

4

T T

T T

R t t t t
T

\ Var( XT) = 2 2{ } ( )T TE X E X-

  = 1 2 1 2 1 22

1
[ ( , ) { ( )} { ( )}] d d

4

T T

T T

R t t E X t E X t t t
T - -

-Ú Ú

  = 1 2 1 22

1
( , ) d d

4

T T

T T

C t t t t
T - -

Ú Ú  (1)

Therefore, the condition lim {Var( )} 0T
T

X
Æ•

=  is equivalent to the condition

  

1 2 1 22

1
lim ( , )d d 0

4

T T

T
T T

C t t t t
TÆ•

- -

È ˘
=Í ˙

Í ˙Î ˚
Ú Ú

Hence, the result.
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Example 4

If XT is the time-average of a stationary random process {X(t)} over {–T, T}, 

prove that Var ( XT) = 
2

0

1 | |
( ) 1

2

T

C d
T T

t
t t

È ˘-Í ˙Î ˚Ú  and hence prove that the suffi cient 

condition for the mean-ergodicity of the process {X(t)} is

(a) 

2

0

1 | |
lim ( ) 1 d 0

2

T

T
C

T T

t
t t

Æ•

È ˘- =Í ˙Î ˚Ú  and (b) | ( ) | dC t t
•

-•

< •Ú .

(a) Step (1) of the previous example gives

 Var( XT) = 1 2 1 22

1
( , ) d d

4

T T

T T

C t t t t
T - -

Ú Ú  (1)

We shall convert the double integral (1) into a single defi nite integral with respect 

to the variable t = t1 – t2 as explained below:

The double integral (1) is evaluated over the area of the square bounded by T1 

= –T, T and t2 = –T, T as shown in the fi gure.

Fig. 6.1

We divide the area of the square ABCD into a number of strips parallel to the 

line t1 – t2 = 0. Let a typical strip be PQRS, where PQ is given by t1 – t2 = t and 

RS is given by t1 – t2 = t + dt.

When PQRS is at the initial position D, t1 – t2 = –2T, i.e., the initial value of 

t = –2T.

When PQRS is at the fi nal position B, t1 – t2 = 2T, i.e., fi nal value of t = 2T.

Hence, to cover the given area ABCD, t has to vary from –2T to 2T.
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Since dt is very small, C(t1 – t2) = C(t) can be assumed to be a constant in the 

strip PQRS.

Now, dt1 dt2 = elemental area in the t1t2-plane

  = area of the small strip PQRS (2)

t1 co-ordinate of P is obtained by solving the equations t1 – t2 = t and t2 = –T.

Thus, (t1)P = t – T.

\ PB(= BQ) = T – (t – T) = 2T – t if t > 0

       = 2T + t if t < 0

When t > 0

 Area of PQRS = Area of DPBQ – Area of DRSB

  = 2 21 1
(2 ) (2 d )

2 2
T Tt t t- - - -

  = (2T – t) dt, omitting (dt)2 (3)

From (2) and (3),

 dt1 dt2 = {2T – |t|} dt (4)

Using (4) in (1),

 Var( XT) = 

2

2

1 | |
( ) 1 d

2 2

T

T

C
T T

t
t t

-

Ï ¸-Ì ˝
Ó ˛Ú

i.e., Var( XT) = 

2

0

1 | |
( ) 1 d

2

T

C
T T

t
t t

Ï ¸-Ì ˝
Ó ˛Ú  (since the integrand is even)

Therefore, suffi cient condition for mean-ergodicity of a stationary process {X(t)} 

can also be stated as

  
2

0

1 | |
lim ( ) 1 d

2

T

T
C

T T

t
t t

Æ•

È ˘Ï ¸-Í ˙Ì ˝
Ó ˛Í ˙Î ˚

Ú  = 0

(b) The suffi cient condition for mean ergodicity of {X(t)} can also given as

  

2

2

1 | |
lim ( ) 1 d

2

T

T
T

C
T T

t
t t

Æ•
-

È ˘Ï ¸-Í ˙Ì ˝
Ó ˛Í ˙Î ˚

Ú  = 0 (5)

Since t varies from –2T to 2T, |t| £ 2T.

\  | |
1 1

2T

t
- £

\  
2 2

2 2

1 | | 1
( ) 1 d | ( ) | d

2 2 2

T T

T T

C C
T T T

t
t t t t

- -

Ï ¸- £Ì ˝
Ó ˛Ú Ú

(5) will be true, only if 

2

2

1
lim | ( ) |d

2

T

T
T

C
T

t t
Æ•

-
Ú  = 0
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i.e.,  if | ( ) |dC t t
•

-•
Ú  is fi nite

i.e.,  if | ( ) |dC t t
•

-•

< •Ú
Therefore, suffi cient condition for mean ergodicity of the stationary process 

{X(t)} can also be stated as | ( ) |dC t t
•

-•

< •Ú .

Example 5

The random binary transmission process {X(t)} is a WSS process with zero mean 

and autocorrelation function R(t) = 
| |

1
T

t
- , where T is a constant. Find the mean 

and variance of the time average of {X(t)} over (0, T). Is {X(t)} mean ergodic?

 XT = 
0

1
( )d

T

X t t
T

Ú

 E(XT) = E{X(t)} = 0

 Var(XT) = 
1 | |

1 ( ) d

T

T

C t
T T

t
t

-

Ï ¸-Ì ˝
Ó ˛Ú  [see (5) in the previous problem]

  = 

2
1 | |

1 d

T

T
T T

t
t

-

Ï ¸-Ì ˝
Ó ˛Ú

  = 

2

0

2 2
1 d

3

T

T T

t
t

Ï ¸- =Ì ˝
Ó ˛Ú

 
Æ•

lim {Var( )}T
T

X  = 
2

0
3

π

i.e., the condition for mean-ergodicity of {X(t)} is not satisfi ed. Therefore, {X(t)} 

is not mean-ergodic.

Example 6

If {X(t)} is a WSS process with mean m and autocovariance function

 Cxx(t) = 

t
s t t

t

t t

Ï Ê ˆ
- £ £Ô Á ˜Ë ¯Ì

Ô ≥Ó

2
0

0

0

| |
1 for 0 | |

0 for | |

x

fi nd the variance of the time average of {X(t)} over (0, T). Also examine if the 

process {X(t)} is mean-ergodic.
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 Var( XT) = 
t

t t
-

Ï ¸-Ì ˝
Ó ˛Ú

1 | |
1 ( )d

T

T

C
T T

  = 

2

00

2
1 1 d

T
x

T T

s t t
t

t

Ê ˆÊ ˆ- -Á ˜ Á ˜Ë ¯ Ë ¯Ú , if 0 < T £ t0

  = 
s

t t

Ê ˆ
- - +Á ˜Ë ¯

2 2 2

0 0

2

2 2 3

x T T T
T

T

  = 2

0

1
3

x

T
s

t

Ê ˆ
-Á ˜Ë ¯

, if 0 < T £ t0 (1)

and Var( XT) = 
02

00

2
1 1 dx

T T

t
s t t

t
t

Ê ˆÊ ˆ- -Á ˜ Á ˜Ë ¯ Ë ¯Ú , if T ≥ t0

  = 

2
0 01

3

x

T T

s t tÊ ˆ
-Á ˜Ë ¯

, if T ≥ t0 (2)

When T is suffi ciently large, (2) holds good.

\ 
Æ•

lim Var( )T
T

X  = 
2

0 0lim 1 0
3

x

T T T

s t t

Æ•

Ï ¸Ê ˆÔ Ô- =Ì ˝Á ˜Ë ¯Ô ÔÓ ˛
Therefore, {X(t)} is mean-ergodic.

Example 7

If X(t) = m + N(t), where N(t) is white noise with C(t1, t2) = f(t1)d(t1 – t2), where 

f(t) is a bounded function of t and d is the unit impulse function, prove that 

{X(t)} is a mean-ergodic process.

Let us consider the time-average of {X(t)} over (–T, T)

 XT = 
1

( )d
2

T

T

X t t
T -

Ú

 E{ XT} = 
1

{ ( )}d
2

T

T

E N t t
T

m
-

+Ú

  = m [since E{N(t)} = 0, as N(t) is white noise]

Note  The unit impulse function d(t – a) is defi ned as

d(t – a) = 

Œ ŒÏ - £ £ +Ô
ŒÌ

Ô ŒÆÓ

1
if a t a

2 2

0 otherwise, where 0
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 ( ) ( )dt t a tf d
•

-•

-Ú  = 
2

2

1
( ) d

a

a

t tf

Œ
+

Œ
-

ŒÚ

  = f(a) [since f(t) can be considered a constant

 in the small interval of length Œ]

Now, Var( XT) = 1 2 1 22

1
( ) d d

4

T T

T T

C t t t t
T - -

Ú Ú  [refer to Example (3)]

  = 1 1 2 1 22

1
( ) ( ) d d

4

T T

T T

t t t t t
T

f d
- -

-Ú Ú

  = 2 22

1
( ) d

4

T

T

t t
T

f
-
Ú  (by the note above)

\ 
Æ•

lim{Var( )}T
T

X  = 0, since f(t) is bounded

\  ( XT) Æ m, as T Æ •

i.e., {X(t)} is a mean-ergodic process.

Example 8

If the WSS prove {X(t)} is given by X(t) = 10 cos (100t + q), where q is uniformly 

distributed over (–p, p), prove that {X(t)} is correlation ergodic.

 R(t) = E[10 cos (100t + 100t + q) × 10 cos (100t + q)]

  = 50 cos (100 t)

Consider TZ  = 
1

( ) ( )d
2

T

T

X t X t t
T

t
-

+Ú

  = t q q
-

+ + +Ú
1

100cos(100 100 ) cos(100 )d
2

T

T

t t t
T

  = 
25 25

cos(100 )d cos(200 100 2 )d

T T

T T

t t t
T T

t t q
- -

+ + +Ú Ú

  = 
25

50cos(100 ) cos(200 100 2 )d

T

T

t t
T

t t q
-

+ + +Ú

Now, lim ( )T
T

Z
Æ•

 = 50 cos (100 t)

  = R(t)

Therefore, {X(t)} is correlation-ergodic.
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Exercise 6(B)

Part-A (Short-answer Questions)

 1. Defi ne autocorrelation function (ACF) of a stationary process.

 2. Prove that the ACF R(t) of a real process is an even function of t.

 3. If R(t) is the ACF of a complex process, prove that R*(t) = R(–t).

 4. If R(t) is the ACF of a stationary process, prove that |R(t)| £ R(0).

 5. If R(t) is the ACF of a stationary process {X(t)}, prove that lim[ ( )]R
t

t
Æ•

 

= mx
2. Is it true for any stationary process?

 6. Find the mean of the stationary process {X(t)},whose ACF is given by 

R(t) = 
2

2

25 36

6.25 4

t

t

+
+

.

 7. Find the variance of the stationary process {X(t)}, whose ACF is given 

by R(t) = 
2

2

25 36

6.25 4

t

t

+
+

.

 8. Find the variance of the stationary process {X(t)}, whose ACF is given 

by R(t) = 2 + 4e
–2|t|.

 9. Find the variance of the stationary process {X(t)}, whose ACF is given 

by R(t) = 
2

9
16

1 6t
+

+
.

 10. Defi ne the cross-correlation function and state any 2 of its properties.

 11. Find the cross-correlation function of 2 stationary processes that are 

orthogonal.

 12. When are the jointly stationary processes {X(t)} and {Y(t)} independent, 

prove that Rxy(t) = mxmy.

 13. Defi ne ensemble average and time average of a random process {X(t)}.

 14. What is the difference between ensemble average and time average of a 

stochastic process {X(t)}?

 15. When is a random process said to be ergodic? Give an example for an 

ergodic process.

 16. Distinguish between stationarity and ergodicity.

 17. What do you mean by mean-ergodicity of a RP?

 18. State mean ergodic theorem.

 19. State the suffi cient conditions for the mean ergodicity of a RP{X(t)}.

 20. State 2 different suffi cient conditions for {X(t)} with constant mean to 

be mean-ergodic.

 21. Examine if the process {X(t)}, where X(t) = X, a random variable is 

mean-ergodic.

 22. Give an example of a WSS process which is not mean-ergodic.

 23. If X T is the time-average of a stationary random process {X(t)} over 

(–T, T), express Var( X T) in terms of the autocovariance function of 
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{X(t)} and hence state the suffi cient condition for the mean-ergodicity 

of {X(t)}.

 24. When is a random process said to be correlation ergodic?

 25. When is a random process said to be distribution ergodic?

Part-B

 26. A stationary process has an autocorrelation function given by R(t) = 
2

2

25 36

6.25 4

t

t

+
+

. Find the mean value, mean-square value and variance of 

the process.

 27. If the autocorrelation of a process {X(t)} is R(t1, t2) and if Y(t) = X(t + a) 

–X(a), where a is a constant, express Ryy(t1, t2) in terms of R’s.

 28. If {X(t)} is a WSS process with autocorrelation function Rxx(t) and if Y(t) 

= X(t + a) – X(t – a) show that Ryy(t) = 2Rxx(t) – Rxx(t + 2a) – Rxx(t – 2a).

 29. If {X(t)} and {Y(t)} are independent WSS processes with zero means, 

fi nd the autocorrelatin function of {Z(t)}, when

 (i) Z(t) = a + bX(t) + cY(t)

 (ii) Z(t) = aX(t)Y(t)

 30. If X(t) = A, where A is random variable, prove that {X(t)} is not mean-

ergodic.

 31. If 

10

0

( )dS X t t= Ú , show that 

10
2

10

( ) (10 | | ( )dxxE S R tt t
-

= -Ú . Find also the 

mean and variance of S, if E{X(t)} = 8 and Rxx(t) = 64 + 10e
–2|t|.

 32. A stationary zero mean random process {X(t)} has the autocorrelation 

function Rxx(t) = 
20.110e

t- . Find the mean and variance of
5

0

1
( )d

5
TX X t t= Ú .

 33. If {X(t)} is a WSS process with E{X(t)} = 2 and Rxx(t) = 4 + e–|t|/10, fi nd 

the mean and variance of S = 

1

0

( )dX t tÚ .

 34. {X(t)} is the random telegraph signal process with E{X(t)} = 0 and R(t) 

= e–2l|t|. Find the mean and variance of the time average of {X(t)} over 

(–T, T). Is it mean-ergodic?

 35. The random process {X(t)} is stationary with E{X(t)} = 1 and R(t) = 1 + 

e
–2|t|. Find the mean and variance of S = 

1

0

( )dX t tÚ .

 36. If the autocovariance function of a stationary process {X(t)} is given 

by C(t) = Ae
–a|t|, prove that {X(t)} is mean-ergodic. Also fi nd Var(XT), 

where XT is the time average of {X(t)} over (–T, T).

  [Hint: c(t) Æ 0 as t Æ •]
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 37. If the autocorrelation function of a WSS process {X(t)} is R(t), show 

that P{|X(t + t) – X(t)| ≥ a} £ 2{R(0) – R(t)}/a2.

  [Hint: Use Tchebycheff’s inequality.]

 38. Show that, if {X(t)} is normal with mx = 0 and Rxx(t) = 0 for |t| > a, then 

it is correlation-ergodic.

  [Hint: Z(t) = X(t + l)X(t); Rzz(t) = R2(l) + R2(t) + R(l + t)R(l – t). 

Since Rzz(t) Æ 0 as t Æ •, Czz(t) Æ 0 as t Æ •]

 39. If the autocorrelation function of a stationary Gaussian process {X(t)} is 

R(t) = 10e
–|t|, prove that {X(t)} is ergodic both in mean and correlation.

 40. Give an example of a WSS process which is not ergodic in mean.

Power Spectral Density Function

The autocorrelation function R(t) tells us something about how rapidly we can 

expect the random signal X(t) to change as a function of time. If the autocorrelation 

function decays rapidly (slowly), it indicates that the process can be expected to 

change rapidly (slowly). Moreover if the autocorrelation function has periodic 

components, then the corresponding process also will have periodic components. 

Hence, we may conclude that the autocorrelation function contains information 

about the expected frequency content of the random process.

For example, if we assume that X(t) is a voltage waveform across a 1 W 

resistance, then the ensemble average value of X2(t) is the average value of power 

delivered to the 1 W resistance by X(t).

i.e., Average power of X(t) = E{X
2(t)}

     = R(0) ≥ 0

Now, if R(0) can be expressed as

 R(0) = ( )dS f f

•

-•
Ú , since R(0) represents power,

S(f) will be expressed in units of power per Hertz. That is, S(f) gives the 

distribution of power of {X(t)} as a function of frequency and hence is called the 

power spectral density function or simply spectral density or power spectrum of 

the stationary process {X(t)}. We shall now give the mathematical defi nition of 

power spectral density function of a stationary process.

Defi nition: If {X(t)} is a stationary process (either in the strict sense or wide 

sense) with autocorrelation function R(t), then the Fourier transform of R(t) is 

called the power spectral density function of {X(t)} and denoted as Sxx(w) or 

Sx(w) or S(w).

Thus, S(w) = wtt t
•

-

-•
Ú ( ) di

R e  (1)
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Sometimes w is replaced by 2pf, where f is the frequency variable, in which case 

the power spectral density function will be a function of f, denoted by S(f).

Then S(f) = 
p tt t

•
-

-•
Ú 2( ) di f

R e  (2)

Note  Equation (1) or (2) is sometimes called the Wiener Khinchine relation. We shall 

mostly follow the defi nition (1) and denote the power spectral density as a function of  w only.

Given the power spectral density functions S(w), the autocorrelation function 

R(t) is given by the Fourier inverse transform of S(w).

i.e., R(t) = 
1

( ) d
2

i
S e

tww w
p

•

-•
Ú  (3)

(or) R(t) = 2( ) di f
S f e f

pt
•

-•
Ú  (4)

If {X(t)} and {Y(t)} are two jointly stationary random processes with cross-

correlation function Rxy(t), then the Fourier transform of Rxy(t) is called the 

cross-power spectral density of {X(t)} and {Y(t)} and denoted as Sxx(w).

i.e., Sxy(w) = wtt t
•

-

-•
Ú ( ) di

xyR e

Properties of Power Spectral Density Function
 1. The value of the spectral density function at zero frequency is equal to 

the total area under the graph of the autocorrelation function. By putting 

w = 0 in (1) or f = 0 in (2), we get

 S(0) = ( )dR t t
•

-•
Ú , which is the given property.

 2. The mean square value of a wide-sense stationary process is equal to the 

total area under the graph of the spectral density. By putting f = 0 in (4), 

we get

 E{X
2(t)} = (0) ( )dR S f f

•

-•

= Ú , which is the given property.

 3. The spectral density function of a real random process is an even function.

Proof

 S(w) = wtt t
•

-

-•
Ú ( ) di

R e , by defi nition

\ S(–w) = ( ) di
R e

wtt t
•

-•
Ú
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Putting t = –u,

 S(–w) = 
w

•
-

-•

-Ú ( ) di u
R u e u

  = w
•

-

-•
Ú ( ) di u

R u e u  [since R(t) is an even function of t]

  = S(w)

Therefore, S(w) is an even function of w.

 4. The spectral density of a process {X(t)}, real or complex, is a real 

function of w and non-negative.

Proof

 R(t) = E{X(t)X*(t – t)}

\ R(–t) = E{X(t)X*(t + t)}

\ R
*(–t) = E{X(t + t)X*(t)}

  = R(t)

(or) R
*(t) = R(–t) (1)

Now, S(w) = ( ) di
R e

wtt t
•

-

-•
Ú

\ S
*(w) = *( ) di

R e
wtt t

•

-•
Ú

  = ( ) di
R e

wtt t
•

-•

-Ú  by (1)

  = w
•

-

-•
Ú ( ) di u

R u e u, by putting u = –t

  = S(w)

Hence, S(w) is a real function of w.

Note  It will be proved that S(w) ≥ 0, in Worked Example 14).

 5. The spectral density and the autocorrelation function of a real WSS 

process form a Fourier consine transform pair.

Proof

 S(w) = ( ){cos sin } dR it wt wt t
•

-•

-Ú

  = 2 ( )cos dR t wt t
•

-•
Ú  [since R(t) is even]
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  = Fourier cosine transform of [2R(t)]

 R(t) = 
1

( )(cos sin )d
2

S iw tw tw w
p

•

-•

+Ú

  = w tw w
p

•

Ú
0

1
( )cos dS  [since S(w) is even]

  = Fourier inverse consine transform of 
1

( )
2

S w
È ˘
Í ˙Î ˚

 6. Wiener-Khinchine Theorem

  If XT (w) is the Fourier transform of the truncated random process defi ned 

as

 XT(t) = 
( ) for | |

0 for | |

X t t T

t T

£Ï
Ì >Ó

  where {X(t)} is a real WSS process with power spectral density function 

S(w), then

 S(w) = 21
lim {| ( ) | }

2
T

T
E X

T
w

Æ•

È ˘
Í ˙Î ˚

Proof

Given: XT (w) = ( ) di t
TX t e t

w
•

-

-•
Ú

  = w-

-
Ú ( ) d

T
i t

T

X t e t

Since {X(t)} is real

 |XT(w)|2 = XT (w)XT (–w)

  = 
w w-

- -
Ú Ú1 2

1 1 2 2( ) (t ) d

T T
i t i t

T T

X t e dt X e t

  = 
( )w- -

- -
Ú Ú 1 2

1 2 1 2( ) ( ) d d

T T
i t t

T T

X t X t e t t

\ E|XT(w)|2 = 
w- -

- -
Ú Ú 1 2( )

1 2 1 2{ ( ) ( )} d d

T T
i t t

T T

E X t X t e t t

  = 
w- -

- -

-Ú Ú 1 2( )
1 2 1 2( )} d d

T T
i t t

T T

R t t e t t  [since {X(t)} is WSS}
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  = 1 2 1 2( )d d

T T

T T

t t t tf
- -

-Ú Ú , say (1)

The double integral (1) is evaluated over the area of the square ABCD bounded 

by t1 = –T, T and t2 = –T, T as shown in the fi gure.

Fig. 6.2

We divide the area of the square into a number of strips like PQRS, where PQ 

is given by t1 – t2 = t and RS is given by t1 – t2 = t + dt.

When PQRS is at the initial position D, t1 – t2 = –2T. When it is at the fi nal 

position B, t1 – t2 = 2T. Hence when t varies from –2T to 2T, the area ABCD is 

covered.

Now, dt1 dt2 = elemental area of the t1t2-plane

  = area of PQRS (2)

 (t1)P = t – T and PB (= BQ) = T – (t – T) = 2T – t, if t > 0

               = 2T + t, if t < 0

When t > 0,

 Area of PQRS = DPBQ – DRBS

  = t t t- - - -2 21 1
(2 ) (2 )

2 2
T T d

  = (2T – t) dt, omitting (dt)2 (3)

From (2) and (3),

 dt1 dt2 = (2T – |t|) dt (4)

Using (4) in (1), we get,

 E{|XT(w)|2} = 
2

2

( )(2 | |)d

T

T

Tf t t t
-

-Ú



Random Processes 6.41

\ 21
{| ( ) | }

2
TE X

T
w  = 

2

2

| |
( ) 1 d

2

T

T
T

t
f t t

-

Ï ¸-Ì ˝
Ó ˛Ú

\ w
Æ•

21
lim {| ( ) | }

2
T

T
E X

T
 = 

2 2

2 2

1
lim ( )d lim | | d

2

T T

T T
T T

T
f t t t f t t

Æ• Æ•
- -

- ( )Ú Ú

  = ( )df t t
•

-•
Ú  [assuming that | | ( )dt f t t

•

-•
Ú  is bounded]

  = wtt t
•

-

-•
Ú ( ) di

R e

 [provided | | ( ) di
R e

wtt t t
•

-

-•
Ú  is bounded]

  = S(w), by defi nition of S(w)

Note  This theorem provides an alternative method for fi nding S(w) for a WSS process.

Linear systems with random inputs: Mathematically, a system is a functional 

relationship between the input x(t) and the output y(t). Usually, this relationship 

is written as y(t) = f [x(t)], –• < t < •.

If we assume that x(t) represents a sample function of a random process {X(t)}, 

the system produces an output or response y(t) and the ensemble of the output 

functions forms a random process {Y(t)}. The process {Y(t)} can be considered 

as the output of the system or transformation ‘f ’ with {X(t)} as the input, the 

system is completely specifi ed by the operator ‘f ’.

We recall that X(t) actually means X(s, t), where s Œ S (sample space). If the 

system operates only on the variable t treating s as a parameter, it is called a 

deterministic system. If the system operates on both t and s, it is called stochastic. 

We shall consider only deterministic systems in our study.

Defi nitions: If f [a1X(t) ± a2 X2(t)] = a1 f[X1(t)] ± a2 f [X2(t)], then f is called a 

linear system.

If Y(t + h) = f[X(t + h)], where Y(t) = f[X(t)], f is called a time-invariant system 

or X(t) and Y(t) are said to form a time-invariant system.

If the output Y(t1) at a given time t = t1 depends only on X(t1) and not on 

any other past or future values of X(t), then the system f is called a memoryless 

system.

If the value of the output Y(t) at t = t1 depends only on the past values of the 

input X(t), t £ t1, i.e., Y(t1) = f [X(t); t £ t1], then the system is called a causal 

system.
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System in the Form of Convolution

Very often in electrical systems, the output Y(t) is expressed as a convolution 

of the input X(t) with a system weighting function h(t), i.e., the input–output 

relationship will be of form

 Y(t) = ( ) ( )dh u X t u u

•

-•

-Ú  (1)

Unit Impulse Response of the System

Refer to the Note in Worked Example 7 of the previous section, in which we have 

proved that

  

( ) ( )d ( )t t a t af d f
•

-•

- =Ú

where d(t – a) is the unit impulse function at a.

If we take a = 0, we get

  ( ) ( )d (0)t t tf d f
•

-•

=Ú  (2)

Put X(t) = d(t) in (1)

Then Y(t) = ( ) ( )dh u t u ud
•

-•

-Ú

  = ( ) ( )dh t u u ud
•

-•

-Ú  (by the property of the convolution)

  = h(t – 0), by (2)

  = h(t)

Thus, if the input of the system is the unit impulse function, then the output or 

response is the system weighting function. Hence, the system weighting function 

h(t) will be hereafter called unit impulse response function.

Properties

1. If a system is such that its input X(t) and its output Y(t) are related by a 

convolution integral, i.e., if Y(t) = ( ) ( )dh u X t u u

•

-•

-Ú , then the system is a linear 

time-invariant system.

Proof

Let X(t) = a1X1(t) + a2X2(t)
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Then Y(t) = 1 1 2 2( )[ ( ) ( )]dh u a X t u a X t u u

•

-•

- + -Ú

  = a1Y1(t) + a2Y2(t)

Therefore, the system is linear. If X(t) is replaced by X(t + h), then 

( ) ( )dh u X t h u u

•

-•

+ -Ú  = Y(t + h)

Therefore, the system is time-invariant.

Note  If  h(t) is absolutely integrable, viz., h( t ) dt
•

-•

< •Ú , then the system is said to be 

stable in the sense that every bounded input gives a bounded output.

In addition, if h(t) = 0, when t < 0, the system is said to be causal.

2. If the input to a time-invariant, stable linear system is a WSS process, the 

output will also be a WSS process.

Proof

 Y(t) = ( ) ( )dh u X t u u

•

-•

-Ú

\ E{Y(t)} = ( ) { ( )}dh u E X t u u

•

-•

-Ú

  = ( )dx h u um
•

-•
Ú  [since {X(t)} is WSS]

  = a fi nite constant, independent of t

 (since the system is stable)

 Ryy(t1, t2) = E{Y(t1) Y(t2)}

  = 

• •

-• -•

- -Ú Ú 1 2 1 1 2 2 1 2( ) ( ) ( ) ( )d dE h u h u X t u X t u u u

  = 1 2 1 1 2 2 1 2( ) ( ) ( , )d dxxh u h u R t u t u u u

• •

-• -•

- -Ú Ú

  = 

• •

-• -•

- - -Ú Ú 1 2 1 2 1 2 1 2( ) ( ) [( ) ( )]d dxxh u h u R t t u u u u

 [since {X(t)} is WSS]

Since the RS is a function of (t1 – t2), so will be the LS. Therefore, Ryy(t1, t2) 

will be a function of (t1 – t2). Therefore, {Y(t)} is a WSS process.
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3. If {X(t)} is a WSS process and if

 Y(t) = ( ) ( )dh u X t u u

•

-•

-Ú , then

 (i) Rxy(t) = Rxx(t)* h(–t) and

 (ii) Ryy(t) = Rxy(t)* h(t), where * denotes convolution. Also

 (iii) Sxy(w) = Sxx(w)H* (w) and

 (iv) Syy(w) = Sxx(w)|H(w)|2

Proof

 Y(t) = ( ) ( )dX t ha a a
•

-•

-Ú

\ X(t + t)Y(t) = ( ) ( ) ( )dX t X t ht a a a
•

-•

+ -Ú

\ E{X(t + t)Y(t)} = { ( ) ( )} ( )dE X t X t ht a a a
•

-•

+ -Ú

  = ( ) ( )dxxR ht a a a
•

-•

+Ú  [since {X(t)} is WSS]

  = ( ) ( )dxxR ht b b b
•

-•

- -Ú   (putting b = –a)

i.e., Rxy(t) = Rxx(t)* h(–t) (1)

Similarly, Ryx(t) = Rxx(t)* h(t) (1a)

Now, Y(t) Y(t – t) = ( ) ( ) ( )dX t Y t ha t a a
•

-•

- -Ú

\ E{Y(t) Y(t – t)} = ( ) ( )dxyR ht a a a
•

-•

-Ú

Assuming that {X(t)} and {Y(t)} are jointly WSS

i.e., Ryy(t) = Rxy(t)* h(t) (2)

Taking Fourier transforms of (1) and (2), we get

 Sxy(w) = Sxx(w)H* (w) (3)

where H* (w) is the conjugate of H(w) and Syy(w) = Sxy(w)H(w) (4)

Note  Inserting (1) in (2), Ryy(t) = Rxx(t)* h(t)*h(–t)  (5)
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Inserting (3) in (4), Syy(w) = |H(w)|2 Sxx(w) (6)

However, alternative proofs for (5) and (6) are given in the following 

properties.

4. If {X(t)} is a WSS process and if

 Y(t) = ( ) ( )dh u X t u u

•

-•

-Ú , then

 Ryy(t) = Rxx(t)*K(t),

where K(t) = h(t)*h(–t) = ( ) ( )dh u h t u u

•

-•

+Ú

Proof

 Y(t) = ( ) ( )dX u h t u u

•

-•

-Ú

\ Y(t) Y(t – t) = ( ) ( )d ( ) ( )dX u h t u u X h t t
• •

-• -•

- - -Ú Ú v v v

  = ( ) ( ) ( ) d ( )dX u X h t u u h t vt
• •

-• -•

È ˘
- - -Í ˙

Í ˙Î ˚
Ú Ú v v

\ Ryy(t) = ( ) ( )d ( )dxxR u h t u u h t t
• •

-• -•

È ˘
- - - -Í ˙

Í ˙Î ˚
Ú Ú v v v

 [taking expectations on both sides]

In the inner integral, put u – v = –w, treating v and t as parameters and also 

change the order of integration.

\ Ryy(t) = ( ) ( ) ( dxxR w h t w h t wt
• •

-• -•

Ï ¸Ô Ô- - + - -Ì ˝
Ô ÔÓ ˛

Ú Ú v v

In the inner integral, put t – t – v = a, treating w, t and t as parameters.

\ Ryy(t) = ( ) ( ) ( )dxxR w h h w dwa t a a
• •

-• -•

È ˘
- + +Í ˙

Í ˙Î ˚
Ú Ú

  = ( ) ( )dxxR w K w wt
•

-•

- +Ú  [by defi nition of K(t)] 
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  = ( ) ( )dxxR Kb t b b
•

-•

-Ú  (putting b = –w)

  = Rxx(t)*K(t)

5. The power spectral densities of the input processes in the system are connected 

by the relation Syy(w) = |H(w)|2 Sxx(w), where H(w) is the Fourier transform of 

unit impulse response function h(t).

Proof

By the previous property,

 Ryy(t) = Rxx(t)*K(t),

where K(t) = h(t)*h(–t)

Taking Fourier transform on both sides,

 Syy(w) = F{K(t)}Sxx(w) (1)

Let  H(w) = F{h(t)} 

  = w
•

-

-•
Ú ( ) di t

h t e t  (2)

\ H*(w) = ( ) di t
h t e t

w
•

-•
Ú

  = w
•

-

-•

-Ú ( ) di s
h s e s  (putting s = –t)

  = F{h(–t)} (3)

Now K(t) = h(t)*h(–t)

\ F{K(t)} = F{h(t)} F{h(–t)} (by convolution theorem)

  = H(w)H*(w) [by (2) and (3)]

  = | H(w)|2 (4)

Inserting (4) in (1), we get

 Syy(w) = | H(w)|2 
Sxx(w)

Defi nition: H(w) is called the system function or the power transfer function. It is 

the Fourier transform of the unit impulse response function of the system.
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Worked Example 6(C)

Example 1

The autocorrelation function of the random telegraph signal process is given by 

R(t) = a2
e

–2g|t|. Determine the power density spectrum of the random telegraph 

signal.

 S(w) = wtt t
•

-

-•
Ú ( ) di

R e

  = 2 2 | | (cos sin )da e i
g t wt wt t

•
-

-•

-Ú

  = 2 2

0

2 cos da e
g t wt t

•
-Ú

  = 
2 2

2 2

0

2
( 2 cos sin

4

a e
gt

g wt w wt
g w

•-È ˘
- +Í ˙

+Î ˚

  = 

2

2 2

4

4

a g

g w+

Example 2

The autocorrelation function of the Poisson increment process is given by

 R(t) = 

2

2

for | |

| |
1 for | |

l t

l t
l t

Ï > Œ
Ô
Ì Ê ˆ+ - £ ŒÁ ˜Ô Ë ¯Œ ŒÓ

Prove that its spectral density is given by

 S(w) = 
2

2

2 2

4 sin ( /2)
2 ( )

l w
pl d w

w

Œ
+

Œ

 S(w) = 
wt wtl t

l t l t
Œ Œ

- -

- Œ -•

Ï ¸Ê ˆ+ - +Ì ˝Á ˜Ë ¯Œ ŒÓ ˛
Ú Ú2 2| |

1 d di i
e e

 

2 di
e

wtl t
•

-

Œ

+Ú

  = 2| |
1 d di i

e e
wt wtl t

t l t
Œ •

- -

- Œ -•

Ê ˆ- +Á ˜Ë ¯Œ ŒÚ Ú

  = 2

0

2
1 cos d { }F

l t
wt t l

ŒÊ ˆ- +Á ˜Ë ¯Œ ŒÚ
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where F(l2) is the Fourier transform of l2.

  = 2

2

0

2 sin 1 cos
1 ( )F

l t wt wt
l

w w

Œ
È ˘-Ê ˆ Ê ˆ- + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Œ Œ ŒÎ ˚

  = 2

2 2

2
(1 cos ) ( )F

l
w l

w
- Œ +

Œ

  = 
2

2

2 2

4 sin ( /2)
( )F

l w
l

w

Œ
+

Œ
 (1)

The Fourier inverse transform of S(w) is given by

 R(t) = F 
–1{S(w)}

  = 
1

( ) d
2

i
S e

tww w
p

•

-•
Ú

Let us now fi nd R(t) corresponding to S(w) = 2pl2d(w), where d(w) is the unit 

impulse function.

i.e., R(t) = F 
–1{2pl2d(w)}

  = 
22

( ) d
2

i
e

twpl
d w w

p

•

-•
Ú

  = 2 since ( ) ( )dt t tl f d f
•

-•

È ˘
= (0)Í ˙

Í ˙Î ˚
Ú

\ F(l2) = 2p l2d(w) (2)

Inserting (2) in (1) the required result is obtained.

Example 3

Find the power spectral density of a WSS process with autocorrelation function

 R(t) = 
2

e
at-

 S(w) = 
2

di
e e

at wt t
•

- -

-•
Ú

  = 

w
a t

w a a t

Ê ˆ• - +Á ˜Ë ¯-

-•
Ú

2

2 /4 2 d

i

e e

  = w a w
a t

aa

•
- -

-•

Ê ˆ+ =Á ˜Ë ¯Ú
2 2/41

d , putting
2

x i
e e x x

  = w ap
p

a

•
- -

-•

È ˘Ê ˆ= =Í ˙Á ˜Ë ¯Í ˙Î ˚
Ú

2 2/4 1
since d

2

x
e e x
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Example 4

A random process {X(t)} is given by X(t) = A cos pt + B sin pt, where A and B 

are independent RVs such that E(A) = E(B) = 0 and E(A2) = E(B2) = s2. Find the 

power spectral density of the process [refer to Problem 7 in Exercise 6(a)].

The autocorrelation function of the given process can be found as

 R(t) = s2 cos pt

 S(w) = wts t t
•

-

-•
Ú 2 cos i

p e d  (1)

Consider F 
–1{ps2[d(w + p) + d(w – p)]}

  = 21
[ ( ) ( )] d

2

i
p p e

twps d w d w w
p

•

-•

+ + -Ú

  = t ts
f d f

•
-

-•

Ï ¸Ô Ô+ ( ) - = (Ì ˝
Ô ÔÓ ˛

Ú
2

[ ] since ( )d )
2

i p i p
e e t t a t a

  = s 2 cos pt

\ F(s2 cos pt) = ps2[d(w + p) + d(w – p)] (2)

Using (2) in (1), we get,

 S(w) = ps2[d(w + p) + d(w – p)]

Example 5

If Y(t) = X(t + a) – X(t – a), prove that Ryy(t) = 2 Rxx(t) – Rxx(t + 2a) – Rxx(t – 2a). 

Hence, prove that Syy(w) = 4 sin2 aw Sxx(w)

 [refer to Problem 28 in Exercise 6(b)].

 Ryy(t) = 2 Rxx(t) – Rxx(t + 2a) – Rxx(t – 2a)

Taking Fourier transforms on both sides,

 Syy(w) = wtw t t
•

-

-•

- +Ú2 ( ) ( 2 ) di
xx xxS R a e

wtt t
•

-

-•

- -Ú ( 2 ) di
xxR a e

  = w ww
•

-

-•

- Ú22 ( ) ( ) di a i u
xx xxS e R u e u

2 ( ) di a i
xxe R e

w w
•

- -

-•

- Ú v

v v

(putting t + 2a = u in the fi rst integral and t – 2a = v in the second integral)

i.e., Syy(w) = 2 Sxx(w) – {e
i2aw + e–i2aw} Sxx(w)

  = 2(1 – cos 2aw) Sxx(w)

  = 4 sin2 aw Sxx(w)
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Example 6

If the process {X(t)} is defi ned as X(t) = Y(t) Z(t), where {Y(t)} and {Z(t)} are 

independent WSS processes, prove that

(a) Rxx(t) = Ryy(t)Rzz(t) and

(b) Sxx(w) = 
1

( ) ( )d
2

yy zzS Sa w a a
p

•

-•

-Ú
[refer to Problem 29(ii) in Exercise 6(b) for part (i)].

 Sxx(w) = F{ Rxx(t)} = F{ Ryy(t) Rzz(t) } (1)

Consider 
1 ( ) ( )dyy zzF S Sa w a a

•
-

-•

È ˘
-Í ˙

Í ˙Î ˚
Ú

  = 
1

( ) ( ) d d
2

i
yy zzS S e

wta w a a w
p

• •

-• -•

-Ú Ú
Putting a = y and w – a = z, we get (from calculus)

 da dw = 
1 0

d d d d
1 1

y z

y z

y z y z
a a

w w
=

\ 1 ( ) ( ) dyy zzF S Sa w a a
•

-

-•

È ˘
-Í ˙

Í ˙Î ˚
Ú

  = ( )1
( ) ( ) d d

2

i y z
yy zzS y S z e y z

t

p

• •
+

-• -•
Ú Ú

  = 
1

( ) d ( ) d
2

iy iz
yy zzS y e y S z e z

t t

p

• •

-• -•
Ú Ú

  = F–1{Syy(w)} × 2pF
–1{Szz(w)}

  = 2pRyy(t) Rzz(t)

\ F{Ryy(t)Rzz(t)} = 
1

( ) ( ) d
2

yy zzS Sa w a a
p

•

-•

-Ú  (2)

Using (2) in (1), we get Sxx(w) in the required form.

Example 7

If the power spectral density of a WSS process is given by

 S(w) = 
( | |), | |

0, | |

b
a a

a

a

w w

w

Ï - £Ô
Ì
Ô >Ó

fi nd the autocorrelation function of the process.
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The autocorrelation function R(t) is given by

 R(t) = F 
–1{S(w)}

  = 
1

( ) d
2

i
S e

tww w
p

•

-•
Ú

  = 
1

( | |) d
2

a
i

a

b
a e

a

tww w
p -

-Ú

  = 
0

1
( ) cos d

a
b

a
a

w tw w
p

-Ú

  = 
2

0

sin cos
( )

a
b

a
a

tw tw
w

p t t

Ï ¸- -Ì ˝
Ó ˛

  = 2
(1 cos )

b
a

a
t

p t
-

  = 

2

sin
2

2

2

a
ab

a

t

tp

Ê ˆ
Á ˜
Á ˜
Á ˜Ë ¯

Example 8

The power spectrum of a WSS process {X(t)} is given by S(w) = 
2 2

1

(1 )w+
.

Find its autocorrelation function R(t) and average power.

 R(t) = 
2

1 1
d

2 (1 )

i
e

tw w
p w

•

-• +Ú  (1)

The integral in (1) is evaluated by contour integration technique as given 

below.

Consider 2(1 )

iaz

C

e
dz

z+Ú , where C is the closed contour consisting of the real 

axis from –R to +R and the upper half of the circle |z| = R.

Fig. 6.3
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The only singularity of the integrand lying within C is the double pole z = i.

 (Residue)z = i = -

=

È ˘Ï ¸ -Ô Ô = +Í ˙Ì ˝
+Ô ÔÍ ˙Ó ˛Î ˚

2

1 d
(1 )

1 d 4( )

iaz
a

z i

e i
a e

z z i

Using Cauchy’s residue theorem, taking limits as R Æ • and using Jorden’s 

lemma, we get

  
p

•
-

-•

= +
+Ú 2 2

d (1 )
2(1 )

iax
ae

x a e
x

 (2)

Using (2) in (1),

 R(t) = 
1

(1 )
4

e
tt -+

Average power of

 {X(t)} = R(0) = 0.25.

Example 9

The power spectral density function of a zero mean WSS process {X(t)} is given 

by

 S(w) = 01, | |

0, elsewhere

w w<Ï
Ì
Ó

Find R(t) and show also that X(t) and 

0

X t
t

w

Ê ˆ
+Á ˜Ë ¯

 are uncorrelated.

 R(t) = 
1

( ) d
2

i
S e

tww w
p

•

-•
Ú

  = 
0

0

1
d

2

i
e

w
tw

w

w
p -

Ú

  = 

0

0

1

2

i
e

i

w
tw

w
p t

-

Ê ˆ
Á ˜Ë ¯

  = 
0

1
sinw t

pt

\ 
0

( )E X t X t
p

w

Ï ¸Ê ˆÔ Ô+Ì ˝Á ˜Ë ¯Ô ÔÓ ˛
 = 

p
p

w pt

Ê ˆ
=Á ˜Ë ¯0

1
sinR

Since the mean of the process is zero,

 
0

( )C X t X t
p

w

Ï ¸Ê ˆÔ Ô+Ì ˝Á ˜Ë ¯Ô ÔÓ ˛
 = 

0

( ) 0E X t X t
p

w

Ï ¸Ê ˆÔ Ô+ =Ì ˝Á ˜Ë ¯Ô ÔÓ ˛
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Therefore, X(t) and 
0

X t
p

w

Ê ˆ
+Á ˜Ë ¯

 are uncorrelated.

Example 10

The short-time moving average of a process {X(t)} is defi ned as Y(t) = 
1

( )d

t

t T

X s s
T -

Ú .

Prove that X(t) and Y(t) are related by means of a convolution type integral. Find 

the unit impulse response of the system also.

 Y(t) = 
1

( )d

t

t T

X x s
T -

Ú  (1)

Putting s = t – u and treating t as a parameter, (1) becomes

 Y(t) = 
0

1
( )d

T

X t u u
T

-Ú  (2)

Let us defi ne the unit impulse response of the system as follows:

 h(t) = 

1
, for 0

0, otherwise

t T
T

Ï £ £Ô
Ì
ÔÓ

Then (2) can be expressed as

 Y(t) = ( ) ( ) dh u X t u u

•

-•

-Ú
which is a convolution type integral.

Example 11

If the input x(t) and the output y(t) are connected by the differential equation 

d ( )
( )

d

y t
T y t

t
+  = x(t), prove that they can be related by means of a convolution 

type integral. Assume that x(t) and y(t) are zero for t £ 0.

The given differential equation 
1 1

( ) ( ) ( )y t y t x t
T T

+ =¢  is a linear equation. 

Its solution is

 y(t)et/T = /1
( ) du T

x u e u c
T

+Ú

i.e., y(t) = ( )/1
( ) dt u T

x u e u c
T

- - +Ú
Since y(0) = 0,

 y(t) = ( )/

0

1
( ) d

t
t u T

x u e u
T

- -Ú
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(or) y(t) = /

0

1
( ) d

t
u T

x t y e u
T

--Ú  (1)

Given:

 x(t) = 0, for t < 0

\ x(t – u) = 0, for t < u

\ (1) can be written as

 y(t) = /

0

1
( ) du T

x t u e u
T

•
--Ú  (2)

Now, if we defi ne

 h(t) = 

/1
, for 0

0, otherwise

t T
e t

T

-Ï ≥Ô
Ì
ÔÓ

(2) can be rewritten as

 y(t) = ( ) ( )dh t x t u u

•

-•

-Ú
Hence, the result.

Example 12

X(t) is the input voltage to a circuit (system) and Y(t) is the output voltage. {X(t)} 

is a stationary random process with mx = 0 and Rxx(t) = e–a|t|. Find my, Syy(w) and 

Ryy(t), if the power transfer function is

 H(w) = 
R

R iLw+

 Y(t) = ( ) ( dh X ta a a
•

-•

- )Ú

\ E{Y(t)} = ( ) { ( )}dh E X ta a a
•

-•

-Ú
  = 0 [since E{X(t – a)} = mx = 0]

 Sxx(w) = wtt t
•

-

-•
Ú ( ) di

xxR e

  = at wt at wtt t
•

- - -

-•

+Ú Ú
0

0

d di i
e e e e

  = 

0
( ) ( )

0
( )

i t i
e e

i i

a w a w t

a w a w

•- - +

-•

Ï ¸ Ï ¸Ô Ô Ô Ô+Ì ˝ Ì ˝- - +Ô Ô Ô ÔÓ ˛ Ó ˛
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  = 
2 2

1 1 2

i i

a

a w a w a w
+ =

- + +

Now, Syy(w) = Sxx(w) = |H(w)|2

  = 
2

2 2 2 2 2

2 R

R L

a

a w w
¥

+ +

  = 
2 2 2 2 2 2 2 2

2 2 2 2 2

{(2 / ( ))} {2 / ( / )}R R L R R L

R L

a a a a

a w w

- -
+

+ +

  = 

2

2 2

2 2 2 2 2

2 2 2

2
1 2 / 1

R

R LL

R R R

L L L

a
a

a w
a a w

Ê ˆ
Á ˜Ë ¯

¥ + ¥
+Ê ˆ Ê ˆ Ê ˆ- - +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

  = 
2 2 2

2

1 1

R

L

l m
a w

w

+
+ Ê ˆ +Á ˜Ë ¯

, say

\ Ryy(t) = 
2 2 2

2
2 2

i i
e e

d d
R

L

tw twl m
w w

p pa w
w

• •

-• -•

+
+ Ê ˆ +Á ˜Ë ¯

Ú Ú  (1)

We can prove that, by contour integration technique,

 2 2

iaz
e

dz
z b

•

-• +Ú  = ; 0ab
e a

b

p - >  (2)

Using (2) in (1),

 Ryy(t) = 

2 2

| |
| |

2 2

2 2

R

L

R R

L L
e e

R R

L L

t
a t

a

a a

Ê ˆ-Á ˜Ë ¯-

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

+
Ê ˆ Ê ˆ- -Á ˜ Á ˜Ë ¯ Ë ¯

Example 13

Given that 
1

( ) ( )d
2

t

t

Y t X a a
+Œ

-Œ

=
Œ Ú , where {X(t)} is a WSS process, prove that 

Syy(w) = 
2

2 2

sin
( )xxS

w
w

w

Œ
Œ

.

Hence, fi nd the relation between Rxx(t) and Ryy(t).

Putting a = t – u, we get 
1

( ) ( ) d
2

Y t X t u u

Œ

- Œ

= -
Œ Ú .
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If we defi ne h(t) as follows:

 h(t) = 

1
, for | |

2

0, for | |

t

t

Ï £ ŒÔ
ŒÌ

Ô > ŒÓ

then Y(t) = ( ) ( ) dh u X t u u

•

-•

-Ú
\ Syy(w) = |H(w)|2 Sxx(w), where

 H(w) = F{h(t)}

  = wt w

w

Œ
-

- Œ

Œ
=

Œ ŒÚ
1 sin

d
2

i
e t

i.e., Syy(w) = 
2

2

sin
( )

( )
xxS

w
w

w

Œ
Œ

\ Ryy(t) = 
2

1

2 2

sin
( )xxF S

w
w

w

- Ï ¸ŒÔ Ô
Ì ˝

ŒÔ ÔÓ ˛

  = 
2

1

2 2

sin
* ( )xxF R

w
t

w

- Ï ¸ŒÔ Ô
Ì ˝

ŒÔ ÔÓ ˛
 (1)

We can prove that

if R(t) = 

| |
1 if | | 2

2

0 if | | 2

t
t

t

Ï - £ ŒÔ
ŒÌ

Ô > ŒÓ

then S(w) = 
2

2 2

sin
2

w

w

Œ
Œ¥

Œ
 [refer to Problem 35 in Exercise 6(c)]

\ 
2

1

2 2

sin
F

w

w

- Ê ˆŒ
Á ˜ŒË ¯

 = 

t

t

Ï Ê ˆ- £ ŒÔ Á ˜Ë ¯Œ ŒÌ
Ô > ŒÓ

1 | |
1 if | | 2

2 2

0 if | | 2

t
 (2)

Using (2) in (1),

 Ryy(t) = 

2

2

1 | |
1 ( ) d

2 2
xx

u
R u ut

Œ

- Œ

Ê ˆ- -Á ˜Ë ¯Œ ŒÚ

Example 14

Property (4) of power spectral density. Prove that the spectral density of any 

WSS process is non-negative, i.e. S(w) ≥ 0.

If possible, let S(w) < 0 at w = w0. That is, let S(w) < 0 in 0 0
2 2

w w w
Œ Œ

- < < + , 

where Œ is very small. Let us assume that the system function of the convolution 

type linear system is
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 H(w) = 0 01,
2 2

0, elsewhere

w w w
Œ ŒÏ - < < +Ô

Ì
ÔÓ

Note  In this case, the system is called a narrow band fi lter.

Now, Syy(w) = |H(w)|2 Sxx(w)

  = 0 0( ),
2 2

0, elsewhere

xxS w w w w
Œ ŒÏ - < < +Ô

Ì
ÔÓ

 E{Y
2(t)} = Ryy(0)

  = 
1

( )d
2

yyS w w
p

•

-•
Ú

  = 

0

0

2

2

1
( ) d

2
xxS

w

w

w w
p

Œ
+

Œ
-

Ú

  = 0( )
2

xxS w
p

Œ

[since Sxx(w) can be considered a constant Sxx(w0), as the band is narrow]

Since E{Y
2(t)} ≥ 0, Sxx(w) ≥ 0, which is contrary to our initial assumption.

Therefore, Sxx(w) ≥ 0, everywhere, since w = w0 is arbitrary.

Exercise 6(C)

Part-A (Short-answer Questions)

 1. Defi ne the power spectral density (PSD) function of a stationary process.

 2. Express each of ACF and PSD of a stationary process in terms of the other.

 3. Write down the Wiener-Khinchine relations.

 4. Defi ne the cross PSD of the random processes {X(t)} and {Y(t)}.

 5. State any 2 properties of the PSD function of a stationary process.

 6. What is average power of a WSS process {X(t)} and express it in terms 

of the PSDF of the process.

 7. Find the mean-square value (or the average power) of the process {X(t)}, 

if its ACF is given by R(t) = 
2 /2

e
t-

.

 8. Prove that the PSDF of a real stationary process is an even function.

 9. Prove that the PSDF of a real or complex stationary process is a real 

function of w.

 10. Prove that the PSDF of a real WSS process is twice the Fourier cosine 

transform of its ACF.
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 11. Prove that the ACF of a real WSS process is half the Fourier inverse 

cosine transform of its PSDF.

 12. Find the PSD function of a stationary process whose ACF is e–|t|.

 13. Find the ACF of a stationary process whose PSDF is given by

 S(w) = 
w w

w

Ï £Ô
Ì

>ÔÓ

2 , for | | 1

0, for | | 1

 14. State Wiener-Khinchine theorem.

 15. What is the use of Wiener-Khinchine theorem?

 16. What do you mean by a system? When is it called (i) a deterministic 

system, and (ii) a stochastic system?

 17. Defi ne a system. When is it called a linear system?

 18. Defi ne a system. When is it called a time-invariant system?

 19. Defi ne a system. When is it called a memoryless system?

 20. Defi ne a system. When is it called a causal system?

 21. Defi ne system weighting function.

 22. If a system is defi ned as 
0

1
( ) ( ) d

T

Y t X t u u
T

= -Ú , fi nd its weighting function.

 23. What is unit impulse response of a system? Why is it called so?

 24. If the input X(t) of the system Y(t) = ( ) ( ) dh u X t u u

•

-•

-Ú  is the unit 

impulse function, prove that Y(t) = h(t).

 25. Express Y(t) = 
1

( d
2

t c

t c

X
c

a a
+

-

)Ú  as a convolution type of linear system 

and hence fi nd the unit impulse response of the system.

 26. If a system is defi ned as 

•
-

-•

= -Ú /1
( ) ( ) du T

Y t X t u e u
T

, fi nd its unit 

impulse response.

 27. Prove that the system ( ) ( ) ( ) dY t h u X t u u

•

-•

= -Ú  is a linear time-invariant 

system.

 28. When is the system ( ) ( ) ( ) dY t h u X t u u

•

-•

= -Ú  said to be stable?

 29. If {X(t)} and {Y(t)} in the system ( ) ( ) ( ) dY t h u X t u u

•

-•

= -Ú  are WSS 

processes, how are their ACF’s related?
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 30. If the input and output of the system Y(t) = ( ) ( ) dh u X t u u

•

-•

-Ú  are WSS 

processes, how are their PSDF’s related?

 31. Defi ne the power transfer function (or system function) of the system 

Y(t) = ( ) ( ) dh u X t u u

•

-•

-Ú .

 32. If the system function of a convolution type of linear system is given by 

h(t) = 

1
, for | |

2

0, for | |

t c
c

t c

Ï £Ô
Ì
Ô >Ó

  Find the relation between PSDF’s of the input and output processes.

Part-B

 33. Calculate the power spectral density of a stationary random process for 

which the autocorrelation is Rxx(t) = e–a|t|.

 34. If the autocorrelation function of a WSS process is R(t) = re
–r|t|, show 

that its spectral density is given by S(w) = 
2

2

1
w

r

Ê ˆ
+ Á ˜Ë ¯

.

 35. Find the power spectral density of the random binary transmission 

process whose autocorrelation function is

  R(t) = 

|
1 , for | |

0, for elsewhere

T
T

t
t

|Ï
- £Ô

Ì
ÔÓ

 36. Find the power spectral density of the random process {X(t)}, if E{X(t)} 

= 1 and Rxx(t) = 1 + e–a|t|.

 37. If {X(t)} is a constant random process with R(t) = m2 for all t, where 

m is a constant, show that the spectral density of the process is S(w) = 

2pm
2d(w).

 38. Find the power spectral density of the random process whose 

autocorrelation function is R(t) = at w t- 2

0cose .

 39. Find the power spectral density of the random process if its autocorrelation 

function is R(t) = e–a|t| cos bt.

 40. For the process {X(t)}, where 
1

( ) ( cos sin )
n

i i i i

i

X t A p t B p t
=

= +Â , where 

Ai and Bi are uncorrelated RVs with mean zero and variance si
2, show 

that the autocorrelation function is given by R(t) = 
2

1

cos
n

i i

i

ps t
=
Â . Prove 

also, that the power spectrum for this process is given by
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 S(w) = p s d w d w
=

- + +Â 2

1

[ ( ) ( )]
n

i i i

i

p p

  (Hint: Refer to Worked Example 4 in Section 6(c)).

 41.   (i)  For the process {X(t)}, where X(t) = a cos(bt + Y), where Y is 

uniformly distributed over (–p, p) fi nd the autocorrelation function 

and the spectral density.

 (ii) For the process {X(t)}, where X(t) = a sin (bt + Y), where Y is 

uniformly distributed over (0, 2p), fi nd the autocorrelation function 

and the spectral density.

 42. Find the autocorrelation function of the process {X(t)}, for which the 

power spectral density is given by

 S(w) = 
21 , for | | 1

0, for | | 1

w w

w

Ï + £Ô
Ì

>ÔÓ
 43. Find the average power of the random process {X(t)}, if its power 

spectral density is given by

 S(w) = 

2

2 2

10 35

( 4)( 9)

w

w w

+
+ +

 (i) using S(w) directly, and

 (ii) using the autocorrelation function R(t).

  [Hint: Average power = 
1

( ) d or (0)
2

S Rw w
p

•

-•
Ú .]

 44. Find the autocorrelation function of the random process {X(t)} for which 

the power spectral density is given by

  (i) S(w) = 
2 2

2
2 ( )

a
pd w

a w
+

+
, and (ii) S(w) = 

2

1

4w +
 45. {X(t)} is a stationary random process with spectral density function 

Sxx(w) and {Y(t)} is another independent random process where Y(t) =

A cos (wct + q), where q is a RV uniformly distributed over (–p, p). Find 

the spectral density function of {Z(t)}, where Z(t) = X(t) Y(t).

 46. If {Y(t)} is the moving time average of {X(t)} over {t – T, t + T}, express 

Syy(w) in terms of Sxx(w). Hence, fi nd the autocorrelation function of 

{Y(t)} in terms of that of {X(t)}.

 47. X(t) is the input voltage to a circuit and Y(t) is the output voltage. {X(t)} 

is a stationary random process with mx = 0 and Rxx(t) = e–2|t|. Find my, 

Syy(w) and Ryy(t), if the system function is given by H(w) = 
2

1

iw +
.
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ANSWERS

Exercise 6(A)

 4. (i) When s is fi xed, X(s, t) is a time function. (ii) When t is fi xed, X(s, t) 

is a RV.

 10. The jpdf’s and the joint distribution functions of the member functions 

of the random process are used to describe it. The fi rst- and second-order 

distribution functions, namely, F(x, t) = P{X(t) £ x} and F(x1, x2; t1, t2) 

= P{X(t1) £ x1; X(t2) £ x2} are primarily used to describe the random 

process {X(t)}.

 11. (i) Markov process (ii) Process with independent increments and

(iii) Stationary process.

 12. Poisson process and Wiener process.

 13. If X(t) is a representative member function of the random process {X(t)}, 

E{X(t)} and Var{X(t)} are called the mean and variance of the process.

 17. No. Their defi nitions are entirely different.

 19. Two processes {X(t)} and {Y(t)} are said to be orthogonal, if E{X(t1) 

Y(t 2)} = 0.

 22. Bernoulli’s process.

 23. A kth-order stationary process becomes a SSS process when k Æ •.

 32. Poisson process.

 35. 
2 /2

( )

1
( ) ; { ( )} 0;

2

x t
X tf x e E X t

t

a

pa

-= =

  Var{X(t)} = at.

 36. No

 37. Yes, it is a WSS process.

 38. 
2 2 2 2 2 2
1 1 2 1 2 2 1 1 2 2; ( ) ( ); ; Nop qt p t t pq t t q t ts s s s+ + + + + + + .

 39. E{X(t)} = 0; R(t1, t2) = 1/2 cos w(t1 – t2)

 40. E{X(t)} = 0; R(t1, t2) = 2 cos (t1 – t2)

 41. R(t1, t2) = (A2/2) cos w (t1 – t2)

 42. E{X(t)} = 0; E{X
2(t)} = 1/2; No

 44. E{X(t)} = t + 1/2 sin p t; when t = 0.25, F(x) = 0, if < = £ <
1 1 1 1

, if
2 2 2 2

x x  

and = 1, if 
1

2
x£ ; when t = 0.5,

  F(x) = 0, if x < 1 and = 1, if x ≥ 1; when t = 1,

  F(x) = 0, if x < 0, = 1/2, if 0 £ x < 2 and = 1, if x ≥ 2.

 45. E{X(t)} = 0; R(t1, t2) = s2 cos (t1 – t2)

 46. E(z) = 0; E(z2) = s2

 47. E{Z} = E{w} = 3; Var(z) = Var(w) = 13; cov (z, w) = 2.195.

 49. Rxy(t1, t2) = sin (t1 + t2)

 50. Rxy(t1, t2) = 50 sin 10 (t1 – t2)
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 51. R (t1, t2) = 
4

1 2{2 cos2 ( )}
8

A
t tw+ -

 52. f(w) = 
2 /2t

e
a w-

 53. Rxx(t) = Ryy(t) and Rxy(–t) = – Rxy(t); Rww(t) =

  Rxx(t) cos wt + Ryx(t) sin wt (or) Rxx(t) cos wt – Rxy(t) sin wt

Exercise 6(B)

 5. No, it is true only when the stationary process does not contain periodic 

components.

 6. mx
2 = 

t

t
m

tÆ•

Ê ˆ+
= =Á ˜+Ë ¯

2

2

25 36/
lim 4; 2

6.25 4/
x

 7. E{X
2(t)} = R(0) = 9;

  Var {X(t)} = E{X
2(t)} – E2{X(t)} = 5

 8. E{X(t)} = 22; { ( )} 6; Var{ ( )} 4E X t X t= =

 9. E{X(t)} = 4; E{X
2(t)} = 25; Var{X(t)} = 9

 11. Rxy(t) = E[X(t)}Y(t – t)] = 0

 12. Rxy(t) = E[X(t)}Y(t – t)] = E[X(t)] E[Y(t – t)] = mx my

 13. E{X(t)} = 
1

or ( )d ; ( ) d
2

X

T

i i T

R T

x p xf x x X X t t
T -

=Â Ú Ú

 14. The ensemble average is given by E{X(t)} = Â Úor ( )d ;

X

i i

R

x p xf x x  the 

time average is given by X T = 
-
Ú

1
( ) d .

2

T

T

X t t
T

 To compute E{X(t)}, we 

should know the probability distribution or density function of X(t); 

To compute X T, it is enough we know a single sample function of the 

process.

 16. Stationary of a random process is the property of the process by which 

certain probability distributions or averages do not depend on t. 

  Ergodicity of a random process is the property by which almost every 

member of the process exhibits the same statistical behaviour as the 

whole process. Ergodicity is a stronger condition than stationarity and 

hence all stationary processes are not ergodic.

 20. (i) lim{Var( )T
T

X
Æ•

 = 0 where 
-

= Ú
1

( ) d
2

T

T

T

X X t t
T

  (ii) 1 2 1 22

1
lim ( , )d d 0

4

T T

T
T T

C t t t t
TÆ•

- -

È ˘
=Í ˙

Í ˙Î ˚
Ú Ú
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 21. No; X T = 
-

= = πÚ
1

d ; Var( ) Var( ) 0;
2

T

T

T

X t X X X
T

 lim{Var( )} 0T
T

X
Æ•

π

 22. Random binary transmission process.

 23. Var( X T) = 

2

0

1 | |
( ) 1 d

2

T

C
T T

t
t t

Ï ¸-Ì ˝
Ó ˛Ú ;

  

2

0

1 | |
lim ( ) 1 0

2

T

T
C d

T T

t
t t

Æ•

È ˘Ï ¸- =Í ˙Ì ˝
Ó ˛Í ˙Î ˚

Ú

 26. ± 2, 9, 5

 27. Ryy(t1, t2) = R(t1 + a, t2 + a) – R(t1 + a, t2)

  –R(t1, t2 + a) + R(t1, t2)

 29. (i) a2 + b2 Rxx(t) + c2 Ryy(t)

  (ii) a2 Rxx(t) · Ryy(t)

 31. 80; 5(e–20 + 19)

 32. 
2

5
/10 2.5

4

10;4 d 4 14x
e x e

- -+ -Ú
 33. 2; 20(10 e–0.1 – 9)

 34. 4

2 2

1 1
0; (1 ); Yes

2 8

T
e

T T

l

l l

-- -

 35. 1; 1/2 (1 + e–2)

 36. 
a

a a

-Ï ¸-Ô Ô-Ì ˝
Ô ÔÓ ˛

2(1 )
1

2

T
A e

T T

 40. Random binary transmission process.

Exercise 6(C)

 6. Average power of {X(t)} = E{X
2(t)} = R(0);

  E{X
2(t)} = 

1
( ) d or ( ) d

2
S f f S w w

p

• •

-• -•
Ú Ú

 7. E{X
2(t)} = R(0) = 1

 12. S(w) = | |

2
0

2
 d 2 cos d

1

i
e e e

t wt tt wt t
w

• •
- -

-•

= =
+Ú Ú

 13. R(t) = 

1
2

2 3
1

1 1 sin 2cos 2sin
cos d

2

t t t
w tw w

p p t t t-

Ê ˆ= + -Á ˜Ë ¯Ú
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 21. If the output Y(t) of a system is expressed as the convolution of the input 

X(t) and a function h(t), i.e., Y(t) = ( ) ( ) dh u X t u u

•

-•

-Ú , then h(t) is called 

the system weighting function.

 22. h(t) = 

Ï £ £Ô
Ì
ÔÓ

1
, 0

0, elsewhere

t T
T

 23. If a system is of the form Y(t) = 

•

-•

-Ú ( ) ( ) dh u X t u u , then the system 

weighting function h(t) is also called unit impulse response of the system. 

It is called so because the response (output) Y(t) will be h(t), when the 

input X(t) = the unit impulse function d (t).
 25. Put a = t – u. Then

 Y(t) = 
1

( ) d
2

c

c

X t u u
c-

-Ú

  = ( ) ( ) dh u X t u u

•

-•

-Ú

\ h(t) = 

Ï £Ô
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Ô >Ó
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, in | |
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0, in | |

t c
c

t c

 26. h(t) = 

/ ,1
for 0

0, elsewhere

t T
e t

T

-Ï ≥Ô
Ì
ÔÓ

 29. Ryy(t) = Rxy(t)*h(t),

  where Rxy(t) = Rxx(t)*h(–t)

  (or)     Ryy(t) = Rxx(t)*h(t)*h(–t)

 30. Syy(w) = |H(w)|2 Sxx(w), where H(w) is the Fourier transform of h(t)

 32. H(w) = w w
w w w

w
-

-

= =Ú
21 sin

d ; ( ) ( ) ( )
2

c
i t

yy xx

c

c
e t S H S

c c

  SYY(w) = 
2

2 2

sin
( )xx

c
S

c

w
w

w

 33. 2 2

2a

a w+
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 35. 
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Á ˜Ë ¯

 36. 2 2

2
2 ( )

a
pd w

w a
+

+

 38. 
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 39. 
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+
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 42. 2

3

1
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6 4
e e
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 45. 
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M
any random phenomena in physical problems including ‘noise’ are well 

approximated by a special class of random process, namely Gaussian 

random process. A number of processes such as the Wiener process 

and the shot-noise process can be approximated, as per central limit theorem, by 

a Gaussian process. Moreover the output of a linear system in which the input is 

a weighted sum of a large number of independent samples of a random process 

tends to approach a Gaussian process. Gaussian processes play an important 

role in the theory and analysis of random phenomena, because they are good 

approximations to the observations, and multivariate Gaussian distributions are 

analytically simple.

One of the most important uses of the Gaussian process is to model and 

analyse the effects of thermal noise in electronic circuits used in communication 

systems. Individual circuits contain resistors, inductors and capacitors as well 

as semiconductor devices. The resistors and semiconductor elements contain 

charged particles (free electrons) subjected to random motion due to thermal 

energy. The random motion of charged particles causes fl uctuations in the current 

waveforms or information bearing signals that fl ow through these components. 

These fl uctuations are called thermal noise, which are of suffi cient strength to 

disturb a weak signal and to make the recognition of signals a diffi cult task. 

Models of thermal noise are used to identify and minimise the effects of noise in 

signal recognition.

Defi nition of a Gaussian Process

A real-valued random process {X(t)} is called a Gaussian process or normal 

process, if the random variables X(t1), X(t2), …, X(tn) are jointly normal for every 

n = 1, 2, … and for any set of ti’s.

Chapter 7
Special Random 

Processes
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The nth order density of a Gaussian process is given by f(x1, x2, …, xn; t1, t2, 

…, tn)

1/2/2
1 1

1 1
exp ( ) (

2(2 )

n n

i i j jijn
i j

x xm m
p = =

È ˘
= - L - -Í ˙

LL Í ˙Î ˚
Â Â

where mi = E{Xt(ti)} and L is the nth order square matrix (lij), where lij = C{X(ti), 

X(tj)} and |L|ij = cofactor of lij in |L| (1)

Note  Gaussian process is completely specifi ed by the fi rst- and second-order moments, viz., 

mean and co-variances (variances).

Note  When we consider the fi rst-order density of  a Gaussian process,

 L = (l11) = [Cov{(X(t1), X(t1)}]

  = [Var {X(t1)}] = (s1
2)

\ |L| = s1
2 and |L|11 = 1

\ f(x1, tt) = m s
s p

- - 2 2
1 1 t

1

1
exp { ( x ) /2 }

( 2 )

Note  When we consider the second-order density of  a Gaussian process,

 L = 

2
11 12 1 12 1 2

2
21 22 21 1 2 2

r

r

l l s s s

l l s s s

Ê ˆÊ ˆ
= Á ˜Á ˜Ë ¯ Ë ¯

\ |L| = s1
2s2

2(1 – r2), where r12 = r21 = r

 |L|11 = 
2 2
2 1 2 1 2 112 21 22

, r , r ,s s s s s sL = - L = - L =

\ f(x1, x2; t1, t2) = s m
s sp s s

È
- -Í

-- Î

2 2
2 1 12 2 22

1 21 2

1 1
exp { ( x )

2 (1 r )2 1 r

 

s s m m s m
˘

- - - + - ˙
˚

2 2
1 2 1 1 2 2 1 2 2r ( x ) ( x ) ( x )2

i.e., f(x1, x2; t1, t2) = 
2

1 2

1
exp

2 1 rps s -

 

m mm m

s ss s

È ˘- -Ï ¸- -Ô Ô- - +Í ˙Ì ˝
- Ô ÔÍ ˙Ó ˛Î ˚

2 2
1 1 2 2 )1 1 2 2

2 2 2
1 21 2

2r( x ) ( x( x ) ( x )1

2(1 r )

which we have made use of  in many problems earlier.
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Properties

1. If a Gaussian process is wide-sense stationary, it is also strict-sense stationary.

Proof

The nth order density of a Gaussian process is given by f(x1, x2, …, xn; t1, t2, …, tn)

 
/2 1/2

1 1

1 1
exp | | ( ) ( )

2| |(2 ) | |

n n

ij i i j jn
i j

x xm m
p = =

È ˘
= - L - -Í ˙

LL Í ˙Î ˚
Â Â

where ui = E(X(ti) and L is the nth order square matrix (lij), i, j = 1, 2, …, n, 

where lij = C{X(ti), X(tj)} and |L|ij is the cofactor of lij in |L|.

If the Gaussian process is WSS, then lij = C{X(ti), X(tj)} = a function of (ti – tj) 

for all i and j.

Therefore, the nth order densities of {X(t1), X(t2), …, X(tn)} and {X(t1 + h), 

X(t2 + h), …, X(tn + h) are identical.

Therefore, the Gaussian process is a SSS process.

2. If the member functions of a Gaussian process are uncorrelated, then they are 

independent.

Proof

Consider n member functions X(t1), X(t2), …, X(tn) of the Gaussian process 

{X(t)}.

Since the members are uncorrelated,

 C{X(ti), X(tj)} = lij = 0, for i π j

  = si
2,  for i = j

Therefore, [L] is a diagonal matrix with terms in the principal diagonal equal 

to si
2,

\ |L| = s1
2 s2

2 … sn
2; |L|ij = s1

2 s2
2 … s2

i – 1 s
2
i + 1 .. sn

2

 |L|ij = 0, for i π j

Hence, the nth order density function of the Gaussian process becomes f(x1, 

x2, …, xn; t1, t2, …, tn).

  = m s
p s s s =

È ˘
- -Í ˙

Í ˙Î ˚
Â
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1 1
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2(2 )
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jn

x

  = 
2 2 2 2

1 1 1 2 2 2( ) /2 ( ) /2

1 2

1 1

2 2

x x
e e

m s m s

s p s p

- - - -Ï ¸ Ï ¸Ô Ô Ô Ô
Ì ˝ Ì ˝
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2 2( ) /21

2

n n nx

n

e
m s

s p

- -Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

  = f(x1, t1) f(x2, t2) ... f(xn, tn)
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i.e., X(t1), X(t2), …, X(tn) are independent.

3. If the input {X(t)} of a linear system is a Gaussian process, the output will also 

be a Gaussian process.

Proof

Let {Y(t)} be the output process.

Then Y(t) 

• •

-• -•

= - -Ú Ú( ) ( ) d (or) ( ) ( ) dX t u h u u h t u X u u

  1

{ ( ) } ( ), as
n

j j

j

h t u u X u n
=

= - D Æ •Â

Consider the n sample functions of the input process {X(t)}. Let them be X(t1), 

X(t2), …, X(tn).

Let the corresponding output sample functions be Y(t1), Y(t2), …, Y(tn).

\ Y(ti) = 
1

{ ( ) } ( )
n

i j j

j

h t u u X u
=

- DÂ  in the limit

i.e., Yi = 
1

,
n

ij j

j

h X
=

Â  say, where i = 1, 2, …, n (1)

\ yi = 
1

,
n

ij j

j

h x
=

Â  i = 1, 2, …, n (1a)

i.e., 

1

2

n

y

y

y

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯
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11 12 1 1
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i.e., Y  = ,H X  say

\ E(Y ) = ( ) (or)
Y X

HE X Hm m=

\ fY(y1, y2, …, yn) = |J(x1, x2, …, xn)| fX(x1, x2, …, xn)

where |J(x1, x2, …, xn) = |J(y1, y2, …, yn|
–1

Now, |J(y1, y2 … yn)|

  

1 1 1
11 12 1

1 2

21 22 2

1 2
1 2

| |

n
n

n

n n n
n n nn
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y y y
h h h

x x x
h h h

H

y y y
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x x x
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Since 
1 ( , 1, 2, ..., )ij

j

y
h i j n

x

∂
= =

∂
  [from (1)]

\ fY(y1, y2, …, yn) = 1 2

1
( , , ..., )

| |
X nf x x x

H

 = 
/2 1/2

1 1

1 1
exp | | ( )( )

2| || | (2 ) | |
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x ij i i j jn
i jxx

x x
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m m
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LL Í ˙Î ˚
Â Â  (2)

where Lx is the square matrix whose elements are the covariance functions of 

{X(t)}, viz.

 Lx = 

11 12 1

21 22 2

1 2

n
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n n nn

c c c

c c c

c c c

Ê ˆ
Á ˜
Á ˜
Á ˜
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where cij = C{X(ti), X(tj)}.

If we express the RS of (2) in matrix form, then fY (y1, y2, …, yn)

  = 
1

/2 1/2

1 1
exp ( ) (

2(2 ) | | | |
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 (3)

Now, let C¢ij = C{Y(ti), Y(tj)}

  = C{Yi, Yj}

  = E[{Yi – E(Yi)} {Yj – E(Yj)}]

  = 
1 1

( ( ) ( ( )
n n

ir r r js s s

r s

E h X E X h X E X
= =

È ˘
- -Í ˙

Í ˙Î ˚
Â Â  [by (1)]

  = 
1 1

n n

ir is rs

r s

h h c
= =
Â Â

Therefore, Ly = H Lx H
T, where Ly is the covariance matrix of the {Y(t)} process. 

\ Ly
-1 = (HT)–1 Lx

–1 H 
–1 (4)

and |Ly| = |H|2 |Lx| (5)
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Using (4) and (5) in (3), we get

 fY(y1, y2, …, yn) = 1

/2 1/2

1 1
exp ( ) ( )

2(2 ) | |

T
yY Yn

Y Ym m
p

-È ˘- - L -Í ˙L Î ˚
which is the nth order density function of a Gaussian process.

Therefore, the output process {Y(t)} is a Gaussian process.

Note  This property can be interpreted as follows:

Since 
=

= - D }Â
n

j j
j t

Y( t ) {h( t u ) u X( u ), Y( t )  is a linear combination of  X(uj)’s. 

Since each X(uj) follows a normal distribution, Y(t) also follows a normal distribution.

Processes Depending on a Stationary Gaussian 

Process

1. Square-Law Detector Process

If {X(t)} is a zero mean stationary Gaussian process and if Y(t) = X2(t), then 

{Y(t)} is called a square-law detector process.

 E{Y(t)} = E{X
2(t) = Var{X(t)} = Rxx(0)

 Ryy(t1, t2) = E{Y(t1) Y(t2)}

  = E{X
2(t1) X

2(t2)}

  = E{X
2(t1)} E{X

2(t2)} + 2E2{X(t1) X(t2)}

 [since when X and Y are joint normal] 

 E(X2
Y

2) = E(X2) E(Y2) + 2E
2(XY) (refer to Chapter 4)

  = R2
xx (0) + 2R

2
xx(t) [since X(t) is stationary]

Since the RS is function of t, LS is also a function of t = t1 – t2.

i.e,  Ryy(t) = R2
xx(0) + 2R

2
xx(t)

Therefore, {Y(t)} is also a stationary process (at least in the wide-sense).

We note that E{Y
2(t) = Ryy(0) = 3R

2
xx(0)

 Var{Y(t)} = 2R
2
xx(0) and Cyy(t) = 2R

2
xx(t)

Power spectral density of {Y(t)} is given by

 Syy(w) = 
2 2{ (0) 2 ( )} di
xx xxR R e

twt t
•

-

-•

+Ú

  = 2pR
2
xx (0) d(w) + 2F{Rxx(t) Rxx(t)} (1)

 [since F–1 {2pm
2 d(w)} = m2]

Consider F 
–1 {s(w) * s(w)}

  = 
1

( ) ( ) d d
2

i
s s e

tww a a a w
p

• •

-• -•
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Put w – a = b and a = g
i.e., w = b + g        a = g
Then from calculus,

 dw da = d d d d

w w

b g
b g b g

a a

b g

∂ ∂
∂ ∂

=
∂ ∂
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 (3)

Using (3) in (2),

 F 
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( ) ( ) d d
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i
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t b gb g b g
p
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+
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p p
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1 1
2 ( ) d ( ) d

2 2

i i
s e s e

  = 2pR(t)R(t) (4)

Using (4) in (1),

 Syy(w) = 2pR
2
xx (0) d(w) + 

p

1
 sxx(w)* sxx(w)

Two Important Results

We now consider two important results which will be used in the discussion of 

other processes depending on stationary Gaussian process, that will follow. 

 (i) If X and Y are two normal RVs with zero means, variances s1
2 and s2

2 

and correlation coeffi cient r, then the probability that they are of the 

same sign = 11 1
sin ( )

2
r

p
-+  and the probability that they are of opposite 

signs = 11 1
sin ( ).

2
r

p
--

  The joint density function of (X, Y) is

 fXY(x, y) = 
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2 2 22
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  If we put 
X

U
Y

=  and V = Y, then by the usual procedure, we can fi nd 

that the joint pdf of (U, V) is

 fUV(u, v) = 
2

1 2

1
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2 1 rp s s -
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2 2 2
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u ru
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  The pdf of U is simply the marginal pdf, given by

 fU(u) = 
2
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  which is a Cauchy’s distribution.

  Now, P{X and Y are of the same sign}
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  Similarly, P{X and Y are of opposite signs}

 = 0 ( 0)
X

P P U
Y

Ê ˆ< = <Á ˜Ë ¯

 = 11 1
sin ( )

2
r

p
--

 (ii) If X and Y are two normal random variables with zero means, variances 

s1
2 and s2

2 and correlation coeffi cient r, then E{|XY|} = 1 2

2
s s

p
 (cos a 

+ a sin a), where sin a = r.

  We make use of a theorem, called Price’s theorem, which we state next 

without proof:
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  If X and Y are two normal RVs as described above, then
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 where C = C(X, Y)

  is the covariance of X and Y.

  If we take g(X, Y) = |XY| and n = 1, then Price’s theorem gives
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 [by the previous result (i)]
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  Using (2) in (1), we get,
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p s s
- Ê ˆ

Á ˜Ë ¯

  Integrating both sides with respect to C, between 0 and C,

 E{|XY|} = E{|XY|}C = 0 + 1

1 20

2
sin d

C
C

C
p s s

- Ê ˆ
Á ˜Ë ¯Ú  (3)

  When C = 0, X and Y are uncorrelated.

  \ E{|XY|} = E{|X|}E{|Y|}

     = 
2 2 2 2

1 2/2 /2

1 2

1 1
d d

2 2

x y
x e x y e y

s s

s p s p

• •
- -

-• -•
Ú Ú
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     = 1 2

2 2
s s

p p

  i.e.,  E{|XY|}C = 0 = 1 2

2
s s

p
 (4)

  Using (4) in (3), we get,

 E{|XY|} = s s
p p s s s s

s s

-È ˘
+ -Í ˙

Í ˙
-Í ˙

Î ˚

Ú1
1 2

2
1 2 1 20

2 2
1 2

2 2 1
sin d

1

C
C C

C C
C

  = s s s s
p p p

-+ + -1 2 2 2
1 2 1 2 0

2 2 2
sin ( )

CC
r Ce j

  = s s
p

- + -1 2
1 2

2
sin 1r r re j

  = 1 2

2
s s

p
 (cos a + a sin a), putting r = sin a

2. Full-Wave Linear Detector Process

If {X(t)} is a zero mean stationary Gaussian process and if Y(t) = |X(t)|, then 

{Y(t)} is called a full-wave linear detector process.

 E{Y(t)} = E{|X(t)|} 

  = 
2 2/21

| | d
2

x
X e x

s

s p

•
-

-•
Ú

  = 
2 2/2

0

1 2
dx

xe x
s

s p

•
-Ú

  = 

2

2
0

2
, putting

2

t x
e dt ts

p s

•
- =Ú

  = 
2 (0)2 xxR

s
p p

=

 Ryy(t1, t2) = E{|X(t1) X(t2)|}

  = 
22

s
p

 (cos a + a sin a) (by the previous result)

where  sin a = r = 1 2

2

{ ( ), ( )}C X t X t

s

  = 1 2

2

{ ( ), ( )}E X t X t

s
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  = 1 2

2

( )xxR t t

s

-
 [since {X(t)} is stationary]

Therefore, {Y(t)} is wide-sense stationary, with Ryy(t) = 
2

(0)xxR
p

 (cos a + 

a sin a), where 

 sin a = 
( )

(0)

xx

xx

R

R

t

Now, E{Y
2(t)} = 

2
(0) (0) 0 1 ,

2
yy xxR R

p

p

Ï ¸= +Ì ˝
Ó ˛

since sin a = 
(0)

1 and
(0) 2

xx

xx

R

R

p
a= =

\ E{Y
2(t)} = Rxx(0) and Var{Y(t)} = 

2
1 (0)xxR

p

Ê ˆ-Á ˜Ë ¯

3. Half-wave Linear Detector Process

If {X(t)} is a zero mean stationary Gaussian process and if

 Z(t) = 
( ), for ( ) 0

0, for ( ) 0

X t X t

X t

≥Ï
Ì <Ó

then {Z(t)} is called a half-wave linear detector process.

Z(t) can be rewritten as Z(t) = 
1

{ ( ) | ( )|}
2

X t X t+

\ E{Z(t)} = 
1

[ { ( )} [ | ( )|}]
2

E X t E X t+

  = 
1 2

0 (0)
2

xxR
p

È ˘
+Í ˙

Í ˙Î ˚
 (refer to the previous process)

  = 
(0)

2

xxR

p

 E{Z(t) Z(t – t)} = E[E{Z(t) Z(t – t)/X(t) X(t – t)}] (1)

Now, Z(t) Z(t – t)/X(t) X(t – t) = 
1

{ ( ) ( ) | ( ) ( )|} (or) = 0
2

X t X t X t X tt t- + -

The fi rst value is assumed, when X(t) X(t – t) > 0, i.e., when X(t) and X(t – t) 

are both positive or both negative.

\ P{The fi rst value of assumed} = 
1 1 1

4 4 2
+ =

Similarly, P{the second value is assumed} = 
1

2

\ E{Z(t) Z(t – t)/X(t) X(t – t)} = 
1

{ ( ) ( ) | ( ) ( )|]
4

X t X t X t X tt t- + -  (2)
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Using (2) in (1), we get,

 E{Z(t) Z(t – t) = 
1

[ { ( ) ( ) {| ( ) ( )|}]
4

E X t X t E X t X tt t- + -

  = 
1

[ ( ) ( )]
4

xx yyR Rt t+   [where {Y(t)} is the full-wave

linear detector process]

i.e., Rzz(t) = 
1 2

[ ( ) (0) (cos sin )],
4

xx xxR Rt a a a
p

+ +

where sin a = 
( )

(0)

xx

xx

R

R

t

Therefore, the process {Z(t)} is wide-sense stationary.

Now  E{Z
2(t)} = Rzz(0) 

1
(0)

2
xxR

\ Var{Z(t)} = 
1 1

(0) (0)
2 2

xx xxR R
p

-

  = 
1 1

1 (0)
2

xxR
p

Ê ˆ-Á ˜Ë ¯

4. Hard Limiter Process

If {X(t)} is a zero mean stationary Gaussian process and if

 Y(t) = 
1 for ( ) 0

1 for ( ) < 0

X t

X t

+ ≥Ï
Ì-Ó

the {Y(t)} is called a hard limiter process or ideal limiter process.

 E{Y(t)} = 1 ¥ P{X(t) ≥ 0} – 1 ¥ P{X(t) < 0}

  = 0

Now Y(t) Y(t – t) = 1, if X(t) X(t – t) ≥ 0

  = –1, if X(t) X(t – t) < 0

i.e., P{Y(t) Y(t – t) = 1} = P{X(t) X(t – t)} ≥ 0 (i)

  = 11 1
sin ( )

2
xxr

p
-+  [by result (i) above]

  = 1 ( )1 1
sin

2 (0)

xx

xx

R

R

t

p
- Ï ¸

+ Ì ˝
Ó ˛

and P{Y(t) Y(t – t) = –1} = P{X(t) X(t – t) < 0}

  = 1 ( )1 1
sin

2 (0)

xx

xx

R

R

t

p
- Ï ¸

- Ì ˝
Ó ˛

 [by result (1)]

\ E{Y(t) Y(t – t)} = 1 ( )2
sin

(0)

xx

xx

R

R

t

p
- Ï ¸

Ì ˝
Ó ˛
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i.e., Ryy(t) = 1 ( )2
sin

(0)

xx

xx

R

R

t

p
- Ï ¸

Ì ˝
Ó ˛

 (1)

[(1) is called the arcsine law]

Therefore {Y(t)} is wide-sense stationary.

Also E{Y
2(t)} = 1 and Var{Y(t)} = 1

Band Pass Process (Signal)
If the power spectrum of a random process {X(t)} is zero outside a certain band 

(an interval in the w-axis),

i.e., Sxx(w) π 0, in |w – w0| £ 0and in | + |
2 2

B Bw w
w w £

  = 0, in |w – w0| > 
w w

w w+ >0and in | |
2 2

B B

the {X(t)} is called a band pass process.

Fig 7.1

If Sxx(w) π 0, in |w| £ wB

  = 0, in |w| > wB

the {X(t)} is called a low pass process or ideal low pass process.

Fig. 7.2

If the bandwidth wB of a band pass process is small compared with 

the centre frequency w0, the process is called narrow-band process or 

quasimonochromatic.

If the power spectrum Sxx(w) of a bandpass process {X(t)} is an impulse 

function, then the process is called monochromatic.

Narrow-Band Gaussian Process
In communication system, information bearing signals are often narrow-band 

Gaussian processes. When such signals are viewed on an oscilloscope, they 

appear like a sine wave with slowly varying amplitude and phase. Hence, a 

narrow-band Gaussian process {X(t)} is often represented as

 X(t) = RX(t) cos [w0 ± qX(t)] (1)

RX(t) and qX(t), which are low pass processes, are called the envelope and phase 

of the process {X(t)} respectively. (1) can be rewritten as
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 X(t) = [RX(t) cos qX(t)] cos w0t ∓ [RX(t) sin qX(t)] sin w0t (2)

RX(t) cos qX(t) is called the inphase component of the process {X(t)} and denoted 

as Xc(t) or I(t). RX(t) sin qX(t) is called the quadrature component of {X(t)} and 

denoted as Xs(t) or Q(t).

Both Xc(t) and Xs(t) are low pass processes.

Property

The envelope of a narrow-band Gaussian process follows a Rayleigh distribution 

and the phase follows a uniform distribution in (0, 2p).

We note that

 

2 2 1 ( )
( ) ( ) ( ) and tan ( )

( )

c
c s X x

c

X t
X t X t R t t

X t
q- Ï ¸

+ = =Ì ˝
Ó ˛

Refer to Worked Example 25 in Chapter 3, in which we have proved the 

following result:

If X and Y are two independent N(0, s) then R = 
2 2

X Y+  follows a Rayleigh 

distribution and 1tan
Y

X
f -=  follows a uniform distribution in (0, 2p).

According to this problem, the required property follows.

Quadrature Representation of a WSS Process

In order to represent a process in the quadrature form, it need not be a narrowband 

Gaussian process. Any arbitrary zero mean WSS process {X(t)} can be represented 

in the quadrature form as proved below.

Let {A(t)} and {B(t)} be any two zero mean, jointly WSS processes, a be a 

constant and {Y(t)} be the ‘dual’ process of the given process {X(t)}, defi ned below:

Y(t) is so chosen that

 X(t) + iY(t) = {A(t) + iB(t)}e
+ia t (1)

or, A(t) + iB(t) = {X(t) + iY(t)} e
–ia t (2)

Then A(t) = X(t) cos at + Y(t) sin at (3)

and B(t) = Y(t) cos at – X(t) sin at (4)

It is easily verifi ed, using (3) and (4), that E{A(t) A(t – t)}, E{B(t) B(t – t)} 

and E{A(t) B(t – t)} are independent of t, i.e., functions of t.

only if Rxx(t) = Ryy(t) (5)

and Rxy(t) = –Ryx(t) (6)

Since {A(t)} and {B(t)} are jointly WSS, conditions (5) and (6) must be 

satisfi ed by {X(t)} and its dual {Y(t)}.

When (5) and (6) are true, from (1) we get,

 X(t) = A(t) cos at – B(t) sin at (7)

 Y(t) = A(t) sin at – B(t) cos at (8)
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Thus, if we can get a suitable Y(t) and a, satisfying (5) and (6), X(t) can be 

expressed in form (7), which is the quadrature form.

Consider the linear time-invariant system

 Z(t) = ( ) ( ) dX h ta a a
•

-•

-Ú  (9)

where h(t) = 
1

tp
 (10)

We note that F{h(t)} = 
1

d
i t

e
t

t

w

p

• -

-•
Ú

  = 
1 cos sin

d d
t t

t i t
t t

w w

p

• •

-• -•

È ˘
-Í ˙

Í ˙Î ˚
Ú Ú

  = 
1

(0 )ip
p

-

(using well-known results in contour integration if w > 0)

  = –i, if w > 0

and F[h(t)] = i, if w < 0

i.e., H(w) = 
, if 0

, if 0

i

i

w

w

<Ï
Ì- >Ó

Using (10) in (9), we get

 Z(t) = 
1 ( )

d
X

t

a
a

p a

•

-• -Ú
which is called the Hilbert transform of X(t) and denoted as ( )X t

 
.

\ ( )X t
 

 = 
1

( )*X t
tp

Therefore, Property 3 of the linear time-invariant system,

 ( )
XX

S w  = H*(w) Sxx(w)

  = 
( ), if 0

( ), if 0

xx

xx

iS

iS

w w

w w

- <Ï
Ì+ >Ó

 (11)

and ( )
XX

S w  = H(w) Sxx(w)

  = 
( ), if 0

( ), if 0

xx

xx

iS

iS

w w

w w

<Ï
Ì- >Ó

 (12)

From (11) and (12), ( ) ( )
XX XX

S Sw w= -   (13)

Also, ( )
XX

S w   = |H(w)|2 Sxx(w)

i.e., ( )
XX

S w   = Sxx(w) (14)
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From (13) and (14), it follows that

 ( )
XX

R t  = ( )
XX

R t-   (15)

and ( )
XX

R t   = Rxx(t) (16)

Thus, conditions (5) and (6) are satisfi ed by Y(t) = ( )X t
 

.

Therefore, we can use ( )X t
 

 in the place of Y(t) for the quadrature representation 

of X(t).

Now, let X(t) + ( )iX t
 

 = 
w+ 0{ ( ) ( )}
i t

eI t iQ t  (17)

Then, replacing A(t), B(t), a, by I(t), Q(t) and w0 respectively in (7), we get 

X(t) = I(t) cos w0t – Q(t) sin w0t, which is the required quadrature representation 

of {X(t)}.

Note  1. I(t) and Q(t) are called the inphase and quadrature components of  {X(t)}.

2. The quadrature representation of  {X(t)} is not unique.

3.  The quadrature representation is useful, only when {X(t)} is a zero mean WSS bandpass 

process.

Noise in Communication Systems

Fig. 7.3

In communication systems, the message to be transmitted to a far-off location 

is fi rst converted into an electrical waveform called input signal, before being 

sent into the transmitter. The transmitter processes and modifi es the input signal 

for effi cient transmission. The transmitter output is then sent through the channel 

which is just a medium such as wire, coaxial cable or optical fi bre. The channel 

output or the received signal is then reprocessed by the receiver which sends out 

the output signal. The output signal is converted to its original form, namely the 

message.

When the message is communicated in this manner, the signal is not only 

distorted by the channel but also contaminated along the path by undesirable 

signals that are generally referred to by the term noise. The noise can come from 

many external and internal sources and take many forms.

External noise includes interfering signals from nearby sources, man-made 

noise generated by faulty contact switches for the electrical equipment, by ignition 

radiation, fl uorescent lights, natural noise from lighting and extraterrestrial 

radiation, etc. Internal noise results from thermal motion of electrons in 
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conductors, random emission and diffusion or recombination of charged carriers 

in electronic devices. By careful engineering techniques, the effects of many 

unwanted signals can be eliminated or minimised. But there always remain 

certain inescapable random signals that set a limit to system performance, i.e., 

on the effi ciency of communication.

One of the main reasons for introducing probability theory in the study of 

‘Signal Analysis’ is the random nature of noise. Because of this randomness, it is 

usual to describe noise as a random process and hence in terms of a probabilitic 

model. Such a model describes the noise amplitude or any other parameter by 

means of a probability density function f(x) [x represents voltage]. For many 

important types of noise, the density function can be determined theoretically 

and for others it has been estimated empirically.

Certain properties of noise, such as mean value, mean square value and the 

root-mean square value can be found by using the probability density function.

However the probability density function does not describe a noise waveform 

suffi ciently so as to determine its effect on the performance of a communication 

system. To achieve this, it is necessary to know how the noise change with 

time. This information is provided by a mean-square voltage spectrum, called 

the power spectrum or spectral density, that represents the distribution of signal 

power as a function of frequency.

Thermal Noise

Thermal noise is the noise because of the random motion of free electrons in 

conducting media such as a resistor. Thermal noise generated in resistors and 

semiconductors is assumed to be a zero mean, stationary Gaussian random 

process {N(t)} with a power spectral density that is fl at over a very wide range of 

frequencies, i.e., the graph of SNN(w) is a straight line parallel to the w-axis. Since 

SNN(w) contains all frequencies in equal amount, the noise is also called white 

Gaussian noise or simply white noise in analogy to white light which consists of 

all colours.

It is customary to denote the constant spectral density of white noise by 

0 or .
2 2

N hÊ ˆ
Á ˜Ë ¯

i.e., SNN(w) = 
0

2

N

The autocorrelation function of the white noise is given by

 RNN(t) = 0 ( )
2

N
d t  since

 
0 ( ) d

2

iN
e

wtd t t
•

-

-•
Ú  = 0

2

N
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The average power of the white noise {N(t)} is given by

 RNN(0) = 0( ) d d
2

NN

N
S w w w

• •

-• -•

= Æ •Ú Ú
Therefore, the spectral density of {N(t)} is not physically realisable. However, 

since the bandwidths of real processes are always fi nite and since

  
0( ) d

B

B

NN BS N

w

w

w w w
-

= < •Ú

for any fi nite bandwidth, the spectral density SNN(w) can be used over fi nite 

bandwidths.

Defi nition: Noise having a nonzero and constant spectral density over a fi nite 

frequency band and zero elsewhere is called band-limited white noise.

i.e., if {N(t)} is a band-limited white noise then

 SNN(w) = 
0

0, | |
2

0, elsewhere

N
w w

Ï
£Ô

Ì
ÔÓ

We give below a few properties of the band-limited white noise which can be 

easily verifi ed by the reader.

 1. E{N
2(t)} = 0

2

BN w

p

 2. RNN(t) = 0 sin

2

B B

B

N w w t

p w t

Ê ˆ
Á ˜Ë ¯

 3. N(t) and 
B

k
N t

p

w

Ê ˆ
+Á ˜Ë ¯

 are independent, where k is a nonzero integer.

Filters

Filtering is commonly used in electrical systems to reject undesirable signals and 

noise and to select the desired signal. A simple example of fi ltering occurs when 

we ‘tune’ in a particular radio to ‘select’ one of many signals.

Filtering actually means selecting carefully the transfer function H(w) in a 

stable, linear, time-invariant system, so as to modify the spectral components of 

the input signal. The system function H(w) or the linear system itself is referred 

to as fi lter, when it does the fi ltering.

The commonly used fi lters are narrow-band fi lters, i.e., band pass and low 

pass fi lters.

If the system function H(w) is defi ned as

 H(w) π 0. for w0 – e/2 < w < w0 + e/2

  = 0, otherwise

then the fi lter is called a band pass fi lter.
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If H(w) π 0, for –e/2 < w < e/2

  = 0, otherwise

then the fi lter is called a low pass fi lter.

The equation Syy(w) = |H(w)|2 Sxx(w) shows that the spectral properties of a 

signal can be modifi ed by passing it through a linear time-invariant system with 

the appropriate transfer function. By carefully choosing H(w), we can remove or 

fi lter out certain spectral components in the input. For example, let the input X(t) 

= S(t) + N(t), where S(t) is the signal of interest and N(t) is an unwanted noise 

process. If the spectral densities of {S(t)} and {N(t)} are non-overlapping in the 

frequency domain, the noise N(t) can be removed by passing X(t) through a fi lter 

H(w) that has a response of 1 for the range of frequencies of occupied by the 

signal and a response of 0 for the range of frequencies occupied by the noise. But 

in most practical situations there is spectral overlap and the design of optimum 

fi lters to separate signal and noise is somewhat diffi cult. The discussion of this 

problem and the various optimum fi lters in common use such as matched fi lter 

and Wiener fi lter may be found in textbooks on Random Signal Analysis. It is 

beyond the scope of this book.

Worked Example 7(A)

Example 1

If {X(t)} is a Gaussian process with m(t) = 10 and C(t1, t2) = 1 2| |
16

t t
e

- -
 fi nd the 

probability that (i) X (10) £ 8 and (ii) |X(10) – X(6)| £ 4.

Since {X(t)} is a Gaussian process, any member of the process is a normal 

RV.

Therefore, X(10) is a normal RV with mean m(10) = 10 and variance C(10, 

10) = 16.

 P{X(10) £ 8} = 
(10) 10

0.5
4

X
P

-Ï ¸£ -Ì ˝
Ó ˛

  = P{Z £ –0.5} (where Z is the standard normal RV)

  = 0.5 – P{0 £ Z £ 0.5}

  = 0.5 – 0.1915 (from normal tables)

  = 0.3085

  X(10) – X(6) is also a normal RV with mean m(10) – m(6) = 10 – 10 = 0.

 Var{X(10) – X(6)} = Var{X(10)} + Var{X(6)} – 2 Covar{X(10), X(6)}

  = C(10, 10) + C(6, 6) – 2C(10, 6)

  = 16 + 16 – 2 × 16e
–4

  = 31.4139

Now, P{|X(10) – X(6)| £ 4} = 
| (10) (6) | 4

5.6048 5.6048

X X
P

-Ï ¸£Ì ˝
Ó ˛
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  = P{|Z| £ 0.7137}

  = 2 × 0.2611

  = 0.5222

Example 2

The process {X(t)} is normal with mt = 0 and Rx(t) = 4e
–3|t|. Find a memoryless 

system g(x) such that the fi rst order density fY(y) of the resulting output Y(t) = 

g[X(t)] is uniform in the interval (6, 9).

Since {X(t)} is a normal process, a sample function X(t) follows a normal 

distribution with mean 0 and variance given by Rx(0) = 4.

\ fX(x) = 
2 /81

,
2 2

x
e x

p

- - • < < •

Now, Y(t) is to be uniform in (6, 9)

\ fY(y) = 
1

,6 9
3

y< <

Therefore, the distribution function of Y is given by

 FY(y) = 
0

( )d

y

Yf y yÚ

  = 
1

( 6)
3

y -  (1)

Now, FY(y) = P{Y(t) £ y}

  = P{g[X(t)] £ y}

  = P{X(t) £ g–1
 (y)}

  = P{X(t) £ x} [since y = g(x)]

  = FX(x)

But, from (1), FY{g(x)} = 
1

{ ( ) 6}
3

g x -

\ 
1

{ ( ) 6}
3

g x -  = FX(x)

\ g(x) = 6 + 3FX(x)

  = 
2 /81

6 3 d
2 2

x
e x

p

•
-

-•

+ Ú

Example 3

Let Z and q be independent RVs such that Z has a density function 

 f(z) = 2 /2

0, in 0

, in 0z

z

ze z
-

<ÏÔ
Ì

>ÔÓ
and q is uniformly distributed in (0, 2p). Show that {Xt; – • < t < •} is a Gaussian 

process; if Xt = Z cos (2pt + q).
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Let us fi rst fi nd the density function of

 W = cos(2pt + q), where fq(q) = 
1

2p

Since w = cos(2pt + q), q = cos–1 (w) – 2pt.

There are only two values of q in (0, 2p) for a given value of w. Let them be 

q1 and q2.

By the transformation rule (refer Chapter 3)

 fW(w) = 1 2
1 2( ) ( )

d d
f f

dw dw
q q

q q
q q+

  = 2

1 1
2

2 1 wp
¥ ¥ -

-

  = 
2

1
,| | 1

1
w

wp
<

-
Let us now fi nd the fi rst-order density of X = ZW, where Xt has been taken as X.

Introduce the auxiliary variable Y = W, so that we may fi nd the joint pdf of 

(X, Y)

 x = zw and y = w

i.e., z = 
x

y
 and w = y

\ fXY(x, y) = |J| fZW (z, w)

where  J = 2

1
1

| |
0 1

z z
x

x y
y y

w w y

x y

∂ ∂
-∂ ∂

= =
∂ ∂
∂ ∂

\ fX(x) is the marginal density function of X.

i.e., fX(x) = 

1

1

1
( ) ( ) d , where

| |
Z W

x
f z f w y z

y y-

=Ú  and w = y

 (by independence of Z and W)

  = 
2 2

1
/2

2
1

1 1
d , 0

| | 1

x yx x
e y

y y yyp

-

-

>
-

Ú

  = 

2 2

2 2

0
/2

2 2
1

1
/2

2 2
0

1 1
d , where 0 and 0 (1)

1

1 1
d , where 0 and 0 (2)

1

x y

x y

x
e y x y

y y

x
e y x y

y y

p

p

-

-

-

Ï
- < <Ô

-Ô
Ì
Ô > >Ô

-Ó

Ú

Ú
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Changing y to –y¢, we note that the integral in (1) becomes

2 2
1

/2

2 2
0

1 1

1

x yx
e dy

y yp
- ¢ ¢

¢ - ¢
Ú , which is the same as integral (2).

\ fX(x) = 
2 2

1
/2

2 2
0

1 1
,

1

x yx
e dy x

y yp
- - • < < •

-
Ú  (3)

Put 
2

22

x
t

y
=  in (3), treating x as a parameter,

Then fX(x) = 
2

2
/2

1 1
d

2

t

x

e t
t xp

•
-

-
Ú  (4)

Put 
2

2

x
t u- =  in (4), treating x as a parameter.

Then fX(x) = 
2 /2 1/2

0

1
d

2

x u
e u e u

p

•
- - -Ú

  = 
2 /21 1

22

x
e

p

- Ê ˆ
Á ˜Ë ¯

  = 
2 /21

,
2

x
e x

p

- • < < •

Thus, each member of the process {Xt} follows a normal distribution with 

mean zero and variance 1.

Therefore, 
1 21 2 nt t n ta X a X a X+ + +  also follows a normal distribution, for 

any set of a1, a2, ..., an.

Therefore, 
1 2

{ , ,..., }
nt t tX X X  are jointly normal for any n

[see the Problem 2 given in Exercise 8 (A)].

Therefore, the process {Xt} is Gaussian.

Example 4

It is given that Rx(t) = e
–|t| for a certain stationary Gaussian random process 

{X(t)}. Find the joint pdf of the RVs X(t), X(t + 1), X(t + 2).

Let us denote the given RVs by X(t1), X(t2), X(t3).

The joint pdf of {X(t1), X(t2), X(t3)} is given by

F(x1, x2, x3, t1, t2, t3) = 

3 3

3/2 1/2
1 1

1 1
exp | | ( )( )

2 | |(2 ) | |
ij i i j j

i j

x xm m
p = =

È ˘
- L - -Í ˙

LL Í ˙Î ˚
ÂÂ

where mi = E{X(ti)} and L is the third order square matrix (lij), where lij = 

C{X(ti), X(tj)} and |L|ij = cofactor of lij in |L|.
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 E{X(t)} = | |lim ( ) lim 0xR e
t

t t
t -

Æ• Æ•
= =

\ lij = C{X(ti) X(tj)} = R(ti – tj)

\ l11 = R(t1, t1) = R(t, t) = R(0) = 1

 l12 = R (t, t + 1) = R(1) = e–1 etc.

\ L = 

2

2

2

2

1 1
1

1 1 1
1 and | | 1

1 1
1

e e

e e e

ee

Ê ˆ
Á ˜
Á ˜

Ê ˆÁ ˜ L = -Á ˜Á ˜ Ë ¯
Á ˜
Á ˜
Ë ¯

 |L|11 = 12 132 3

1 1 1
1 | | | | 0

ee e
- L = - + L =  etc.

Therefore, the required joint pdf is given by 

 f(x1, x2, x3) = 
3/2

2

1
exp

1
(2 ) 1

e
p

Ê ˆ-Á ˜Ë ¯

2 2
1 1 2 22 2 2 4

2

1 1 2 1 1
1 1 1

1
2 1

x x x x
ee e e

e

È ÏÊ ˆ Ê ˆ Ê ˆ- - - - + -ÌÍ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ÓÊ ˆÍ -Á ˜Í Ë ¯Î

 

2
2 3 32 2

2 1 1
1 1x x x

e e e

˘¸Ê ˆ Ê ˆ ˙- - + - ˝Á ˜ Á ˜Ë ¯ Ë ¯ ˙˛˚

i.e., f(x1, x2, x3) = 
3/2

2

1
exp

1
(2 ) 1

e
p

Ê ˆ-Á ˜Ë ¯

2 2 2
1 1 2 2 2 3 32

2

1 2 1 2
1

1
2 1

x x x x x x x
e ee

e

È ˘
Í ˙Ï ¸Ê ˆÍ ˙- - + + - +Ì ˝Á ˜Ë ¯Í Ê ˆ ˙Ó ˛-Á ˜Í ˙Ë ¯Î ˚

Example 5

If {Y(t)} is the square-law detector process and if Z(t) = Y(t) – E{Y(t)}, show that 

the spectral density of {Z(t)} is given by Szz(w) = 
1

( ) ( )dxx xxS Sa w a a
p

•

-•

-Ú , 

where Sxx(w) is the input spectral density.
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Note  Z(t) is called the fl uctuation of  the square law detector.

 E{Z(t) Z(t – t)} = E[{(Y(t) – E[Y(t)]} {Y(t – t) – E[Y(t – t)}]

  = E{Y(t) Y(t – t)} – E{Y(t)} E{Y(t – t)}

i.e., Rzz(t) = Ryy(t) – E{Y(t)} E{Y(t – t)}

  = 2 2 2(0) 2 ( ) (0)xx xx xxR R Rt+ -  [see ‘square law detector process’]

  = 22 ( )xxR t

Taking Fourier transforms,

 Szz(w) = 
1

( ) ( dxx xxS Sa w a a
p

•

-•

- )Ú

Example 6

If {X(t)} is a band pass process, prove that its inphase and quadrature components 

are low pass processes (refer to the book-work on quadrature representation of a 

WSS process).

If we take the input of a system as X(t) and the impulse response function

 h(t) = 
1

( )t i
t

d
p

+

Then the output of the system is given by

 Z(t) = 
1

( ) ( ) d
( )

x t i
t

a d a a
p a

•

-•

È ˘
- +Í ˙-Î ˚

Ú

  = 
( )

( ) ( ) d d
i X

X t
t

a
a d a a a

p a

• •

-• -•

- +
-Ú Ú

  = ( ) ( )X t iX t+
 

,

[by the property of d(t) and by the defi nition of Hilbert transform]

\ Szz(w) = | H(w)|2 Sxx(w)

where H(w) = F{h(t)}

  = 
1

[ ( )]F t iF
t

d
p

È ˘+ Í ˙Î ˚

  = 
1 ( ), if 0

1 ( ), if 0

i i

i i

w

w

+ <Ï
Ì + - >Ó

  = 
0, if 0

2, if 0

w

w

<Ï
Ì >Ó

  = 2U(w),

where U(w) is the unit step function.
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\ Szz(w) = 4Sxx(w)U(w) (1)

Also, Z(t) Z*(t – t) = { ( ) ( )}{ ( ) ( )}X t iX t X t iX tt t+ - - -
  

  = ( ) ( ) ( ) ( ) { ( ) ( ) ( ) ( )}X t X t X t X t i X t X t X t X tt t t t- + - + - - -
    

\ Rzz(t) = ( ) ( ) { ( ) ( )}xx XX XX XX
R R i R Rt t t t+ + -    

  = 2{ ( ) ( )}xx XX
R iRt t+  , (2)

by steps (15) and (16) of the book-work

\ Szz(w) = 2{ ( ) ( )}xx XX
S iSw w+   (3)

From step (17) of the book-work

 I(t) + iQ(t) = 0{ ( ) ( )}
i t

X t iX t e
w-+

 

\ I(t) = 0 0( )cos ( )sinX t t X t tw w+
 

 (4)

 Q(t) = 0 0( ) cos ( )sinX t t X t tw w-
 

 (5)

From (4) and (5),

 RII(t) = 
0 0( )cos ( )sinxx xxR Rt w t t w t+  

 RQI(t) = – 0 0( )sin ( )cosxx xxR Rt w t t w t+  

\ RII(t) + iRQI(t) = 0[ ( ) ( )]
i

xx xxR iR e
w tt t -+  

  = 0
1

( )
2

i
zzR e

w tt

\ RII(t) = 0
1

{ ( ) }
2

i
zzRl R e

w tt -

\ SII(w) = 0

1
{ ( )}

2
zzRl S w w+

  = Sxx(w + w0) (6)

Changing t into –t in (2),

 Rzz(–t) = 2{ ( ) ( )}xx xxR iRt t- + - 

  = 2{ ( ) ( )}xx xxR iRt t-   (7)

From (2) and (7,)

 Rxx(t) = 
1

{ ( ) ( )}
4

zz zzR Rt t+ -

\ Sxx(w) = 
1

{ ( ) ( )}
4

zz zzS Sw w+ -  (8)

Using (8) in (6),

 SII(w) = 0 0

1
{ ( ) ( )

4
zz zzS Sw w w w+ + - +

  = Sxx(w + w0) U(w + w0) + Sxx(–w + w0)

  U(–w + w0) [by (1)] (9)
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Since RQQ(t) = RII(t), SQQ(w) = SII(w) (10)

Fig. 7.4

Therefore, when {X(t)} is a band pass process, both {I(t)} and {Q(t)} are low 

pass processes as given in the above fi gures.

Example 7

Obtain the autocorrelation for an ideal low pass stochastic process.

Let the spectral density function of the low pass process {X(t)} be Sxx(w), in 

|w| < wB.

Let the complex form of Fourier series of Sxx(w) in (–wB, wB) be

 Sxx(w) = 
/ Bin

n

n

c e
pw w

•

= - •
Â  (1)

where cn is given by

 cn = 
/1

( )e d
2

B

B

B

in
xx

B

S

w
pw w

w

w w
w

-

-
Ú  (2)

Taking the inverse Fourier transform of (1),

 Rxx(t) = 
/1

d
2

Bin i
nc e e

pw w tw w
p

•
¢ ¢

-•

¢ÂÚ

  = 
/1 1

( ) d d
2 2

B B

BB

B B

n
i

in
xx

B

S e e

pw w t w
wpw w

w w

w w w
p w

Ê ˆ
+ ¢Á ˜Ë ¯-

- -

¢Â Ú Ú
    [since {X(t)} is low pass]

  = 
1

d
2

B

B

B

n
i

xx

B B

n
R e

pw w
w

w

p
w w

w w

Ê ˆ
¢Á ˜Ë ¯

-

Ê ˆ
- ¢ ¢Á ˜Ë ¯

Â Ú

  = 

0

sin
1

B

B

xx

B B

B

n

n
R

n

w
p

t w
wp

w w p
t

w

Ï ¸Ê ˆ
+ ¢Ô ÔÁ ˜Ê ˆ Ë ¯Ô Ô- Ì ˝Á ˜ Ê ˆË ¯ Ô Ô+Á ˜Ô ÔË ¯Ó ˛

Â
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  = 

sin B

B

xx

n B

B

B

n

n
R

n

p
t w

wp

w p
t w

w

•

=-•

Ê ˆ
+Á ˜Ê ˆ Ë ¯

-Á ˜ Ê ˆË ¯
+Á ˜Ë ¯

Â

  = 

sin B

B

xx

n B

B

B

n

n
R

n

p
t w

wp

w p
t w

w

•

=-•

Ê ˆ
-Á ˜Ê ˆ Ë ¯

Á ˜ Ê ˆË ¯
-Á ˜Ë ¯

Â  (Changing n to –n)

Let us assume that the values of X(t) at t = nT, n = ...–3, –2, –1, 0, 1, 2, 3, ... 

are given, using which we can construct X(t), where T = 
B

p

w
.

\ Rxx(t) = 
sin ( )

( )
( )

B
xx

n B

nT
R nT

nT

w t

w t

•

=-•

-
-Â

Thus, when {X(t)} is a low pass process, its autocorrelation is found out by 

summation.

Example 8

If {X(t)} is a band limited process such that Sxx(w) = 0, when |w| > s, prove that 

2[Rxx(0) – Rxx(t)] £ s2 t2 Rxx(0).

 Rxx(t) = 
1

( ) d
2

i
xxS e

tww w
p

•

-•
Ú

  = 
1

( )cos d
2

xxS w tw w
p

•

-•
Ú  [since Sxx(w) is even]

 Rxx(0) – Rxx(t) = 
1

( ) (1 cos ) d
2

xxS

s

s

w tw w
p -

-Ú  [since {X(t)} is band limited]

  = 21
( ) 2sin d

2 2
xxS

s

s

tw
w w

p -

Ê ˆ¥ Á ˜Ë ¯Ú  (1)

From trigonometry, |sin q| £ q

\ sin2 q £ q 2

\          
2 2

22sin
2 2

tw t wÊ ˆ £Á ˜Ë ¯
 (2)

Inserting (2) in (1),

  

2 21
(0) ( ) ( ) d

2 2
xx xx xxR R S

s

s

t w
t w w

p -

- £ Ú
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2 2

( )d
4

xxS

s

s

s t
w w

p -

£ Ú

  

2 2

( ) d
4

xxS
s t

w w
p

•

-•

£ Ú

i.e.,  
2 2

(0)
2

xxR
s t

£

Example 9

Consider a white Gaussian noise of zero mean and power spectral density N0/2 

applied to a low pass RC fi lter whose transfer function is H(f) = 
1

1 2i fRCp+
.

Find the autocorrelation function of the output random process. 

The simple RC circuit for which the transfer function is given is a linear time-

invariant system.

The power spectral densities of the input {X(t)} and the output {Y(t)} of a 

linear system are connected by

 SYY(w) = |H(w)|2 Sxx(w)

In the problem, the transfer function is expressed in terms of the frequency f. 

Therefore, the above relation is

 Syy(f) = |H(f)|2 Sxx(f)

  = 
0

2 2 2 2

1

21 4

N

f R Cp+
 (since the input is a white noise)

\ Ryy(t) = 
2

0

2 2 2 2
d

2 1 4

i fN e
f

f R C

pt

p

•

-• +Ú

  = 
(2

0

2 2 2 2

2

d

8 1

2

i fN e f

R C
f

RC

pt

p

p

• )

-• Ê ˆ +Á ˜Ë ¯

Ú  (1)

Compare the integral in (1) with 
2 2

dimx
e x

a x

•

-• +Ú , which can be evaluated by 

contour integration technique [refer to the Worked Example 12 in Section 6(c) 

‘power spectral density’].

   
| |

2 2

dimx
m ae x

e
aa x

p
•

-

-•

=
+Ú  (2)
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Using (2) in (1),

 Ryy(t) = |2 |/20

2 2 2
2

8

RCN
RCe

R C

pt pp p
p

-¥

  = | |/0

4

RCN
e

RC

t-

The mean square value of {Y(t)} is given by

 E{Y
2(t)} = 0(0)

4
yy

N
R

RC
=

Example 10

If Y(t) = A cos (w0t + q) + N(t), where A is a constant, q is a random variable with 

a uniform distribution in (–p, p) and {N(t)} is a band-limited Gaussian white 

noise with a power spectral density

 SNN(w) = 
0

0, for | |
2

0, elsewhere

B

N
w w w

Ï
- <Ô

Ì
ÔÓ

fi nd the power spectral density of {Y(t)}. Assume that N(t) and q are 

independent.

 Y(t1) Y(t2) = {A cos (w0 t1 + q) + N(t1)} {A cos (w0t2 + q) + N(t2)}

  = A2 cos (w0 t1 + q) cos (w0t2 + q) + N(t1) N(t2)

+ A cos (w0 t1 + q) N(t2) + A cos (w0t2 + q) N(t1)

\ RYY(t1, t2) = A2
E {cos (w0 t1 + q) cos (w0t2 + q) + RNN(t1, t2)

   + AE {cos (w0 t1 + q)} E{N(t2)}

   + AE {cos (w0 t2 + q)} E{N(t1)} (by independence)

i.e., RYY(t) = 
2

0cos ( )
2

NN

A
Rw t t+  [since {N(t)} is stationary]

\ SYY(w) = 
2

0cos d ( )
2

i
NN

A
e S

wtw t t w
•

-

-•

+Ú

  = 
2

0 0{ ( ) ( ) ( )
2

NN

A
S

p
d w w d w w w- + + +

where SNN(w) is given in the problem.

Exercise 7(A)

Part-A (Short-answer Questions)

 1. Defi ne a Gaussian process.

 2. When is a random process said to be normal?
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 3. What is the output of (i) a dc meter and (ii) a true rms meter when it 

measures a voltage V(t) which is a Gaussian ergodic random process 

with a mean of zero and variance of 4 V?

 4. Give the nth order density of Gaussian process (or) the nth order normal 

density function.

 5. What is the importance of Gaussian process in signal analysis?

 6. State the properties of a Gaussian process.

 7. If a Gaussian process is WSS, prove that it is also SSS.

 8. If the member functions of a Gaussian process are uncorrelated, prove 

that they are independent.

 9. Name a few random processes that are defi ned in terms of stationary 

Gaussian process.

 10. Defi ne square law detector process.

 11. Defi ne full-wave linear detector process.

 12. Defi ne half-wave linear detector process.

 13. Defi ne hard limiter process.

 14. Defi ne a band pass process or band pass signal.

 15. Defi ne a low pass process or an ideal low pass process.

 16. Defi ne a narrow band process (or) when is a random process said to be 

quasimonochromatic?

 17. When is a random process called monochromatic?

 18. Give the representation of a narrow band Gaussian process {X(t)} that is 

frequently used in signal analysis.

 19. What is the justifi cation for the representation of a narrow band Gaussian 

process {X(t)} in the form

 X(t) = Rx(t) cos {w0 ± qx(t)}

 20. Defi ne the envelope and phase of a narrow-band Gaussian process.

 21. What are the distributions followed by the envelope and phase of a 

narrow-band Gaussian process?

 22. Defi ne the inphase and quadrature components of a narrow-band 

Gaussian process.

 23. What is the nature of the inphase and quadrature components of a band 

pass process.

 24. What do you mean by the quadrature representation of a WSS process?

 25. What kind of random processes can be represented in the quadrature form?

 26. For what kind of random processes is the quadrature representation 

useful in communication theory?

 27. What do you mean by ‘noise’ in signal transmission?

 28. How are external and internal noises caused?

 29. What is thermal noise? By what type of random process is it 

represented?

 30. If {N(t)} is a thermal noise, what is the nature of the graph of SNN(w)?

 31. Why is thermal noise called white noise?
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 32. If the input to a linear time-invariant system is white noise {N(t)}, what 

is PSDF of the output?

 33. If the PSD of white noise is 0

2

N
, fi nd its ACF.

 34. Find the average power (or) the mean square value of the white noise 

{N(t)}.

 35. Why is the spectral density of the white noise {N(t)} not physically 

reliable? How is this diffi culty overcome?

 36. Defi ne band-limited white noise.

 37. Sate a few properties of band-limited white noise.

 38. Find the ACF of the band-limited white noise.

 39. Find the average power of the band-limited white noise.

 40. What is meant by a fi lter in electrical systems.

 41. Explain band pass and low pass fi lters.

 42. How is fi ltering done in electrical systems?

Part-B

 43. Suppose that {X(t)} is a normal process with h(t) = 3 and C(t1, t2) = 

1 20.2| |
4

t t
e

- -
.

 (i) Find the probability that X(5) £ 2, and

 (ii) Find the probability that |X(8) – X(5)| £ 1.

 44. Prove that the RVs X1, X2, ..., Xn are jointly normal, if the sum a1X1 + 

a2X2 + ... + anXn is a normal RV for any set of constants a1, a2, ..., an.

  [Hint: From the given condition

 Z = w1X1 + w2X2 + … + wnXn is a normal RV

 E(Z) = 0 and E(Z)2 = sz
2 if E(Xi) = 0

 f(Z) = 
2 /2Ze

s-
]

 45. Let 
1

n

k

k

X
=

Â , where the Xk’s are a set of independent RVs each normally 

distributed with mean m and variance s2. Show that {Yn; n = 1, 2, …} is 

a normal (Gaussian) process.

 46. Given a normal process {X(t)} with mx = 0 and Rx(i) = 4e
–2|t|, we form the 

RVs Z = X(t + 1), W = X(t – 1).

  (i) Find E(ZW) and E{(Z + W)2} and

 (ii) Find fZ(z), P{Z < 1} and fZW(z, w).

 47. Show that, if the RVs X, Y, Z are jointly normal and independent in pairs, 

then they are independent.

  [Hint: Prove that fXYZ(x, y, z) = fX(x) fY(y) fZ(z).]

 48. A voltage V(t), which is Gaussian ergodic random process with a mean 

of zero and a variance of 4 V, is measured (i) by a dc meter, (ii) a true 

rms meter, and (iii) a meter which fi rst squares V(t) and then read its dc 

component. Find the output of each meter and justify your answer.
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  [Hint: If {X(t)} is an ergodic process such as a voltage waveform, mx can 

be measured by using a dc voltmeter and sx can be measured by using a 

true rms (ac coupled) voltmeter.]

 49. {X(t)} is a Gaussian random process with mean mx(t) and autocorrelation 

function Rxx(t1, t2). Find E{X(t2)/X(t1)}, t1 < t2.

 50. If Z(t) = X cos w0t + Y sin w0t, where X and Y are independent Gaussian 

RVs with zero mean and unit variance and w0 is a constant,

 (i) Show that {Z(t)} is a Gaussian random process.

 (ii) Find the joint pdf of Z(t1) and Z(t2).

 (iii) Is the process WSS?

 (iv) Is the process SSS?

 (v) Find E{Z(t2)/Z(t1)}, t2 > t1.

 51. If {X(t)} is a Gaussian process with mx = 0 and Rxx(t) = 0 for |t| > a, 

prove that it is correlation-ergodic.

 52. If {X(t)} is a zero mean low pass process with a bandwidth of wB, prove 

that

  E{X(t + t)} – X(t)}2 £ wB
2 t2 E{X

2(t)}

  [Hint: Refer to Worked Example 8.]

 53. If E{X(t)} is a band limited low pass process with bandwidth wB, prove 

that R(t) ≥ R(0) cos wBt, for | |
2

B

p
t

w
< .

 54. For a narrow band process

  X(t) = Xc(t) cos w0t + Xs(t) sin w0t , where {Xc(t)} and {Xs(t)} are 

stationary, uncorrelated, lowpass processes with

  ( )
c cx xS w  = 

( ), | |
( )

0, | |s s

B

x x
B

g
S

w w w
w

w w

<Ï
= Ì >Ó

  show that      Sxx(w) = 0 0

1
{ ( ) ( )}

2
g gw w w w- + +

 55. Determine the autocorrelation of white noise.

  (See the property of white noise)

 56. Show that the narrow band noise {N(t)} can be represented as n(t) = nc(t) 

cos wct – ns(t) sin wct , where nc(t) and ns(t) are inphase and quadrature 

phase components of n(t) and wc is the centre frequency of the band.

  [Hint: This is the same as the book-work on ‘quadrature representation’ 

of a WSS process. X(t), I(t) and q(t) are in the book-work must be 

replaced by n(t), nc(t) and ns(t) respectively].

 57. (i) If {N(t)} is a band limited white noise such that 

 SNN(w) = 0

2

N
, for |w| < wB

  = 0, elsewhere

   fi nd the autocorrelation of {N(t)}.
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 (ii) If {N(t)} is a band limited white noise centered at a carrier 

frequency w0 such that

  SNN(w) = 0

2

N
, for |w – w0| < wB

     = 0, elsewhere

  Find the autocorrelation of {N(t)}.

 58. A source of noise is a Gaussian with a mean of 0.4 V and a standard 

deviation of 0.15 V. For what percentage of time would you expect the 

measured noise voltage to exceed 0.7 V?

  [Hint: Noise is a normal RV with the given parameters.]

 59. If {N(t)} is a band-pass white noise and {Nc(t)} and {Ns(t)} are its 

quadrature components, prove that rms values of {N(t)}, {Nc(t)} and 

{Ns(t)} are equal.

 60. If X(t) = A cos w0t + B sin w0t, fi nd the Hilbert transform of X(t).

 61. If the input to a linear time-invariant system is a zero mean, white 

Gaussian process {N(t)} and {Y(t)} is the output, prove that

 (i) E{Y(t)} = 0,

 (ii) RYY(t) = 0 ( ) * ( ) * ( )
2

N
t h hd t t- , and

 (iii) SYY(w) = 20 | ( ) |
2

N
H w .

 62. The impulse response of a low pass fi lter is a e–a t 
U(t); where a = 

1
.

RC
 

If a zero mean, white Gaussian process {N(t)} is input into this fi lter, 

fi nd the mean square value and autocorrelation function of the output.

Poisson Process

There are many practical situations where the random times of occurrences of 

some specifi c events are of primary interest. For example, we may want to study 

the times at which components fail in a large system or the times at which jobs 

enter the queue in a computer system or the times of arrival of phone calls at an 

exchange or the times of emission of electrons from the cathode of a vacuum tube. 

In these examples, our main interest may not be the event itself but the sequence 

of random time instants at which the events occur. An ensemble of discrete sets of 

points from the time domain called a point process is used to model and analyse 

phenomena such as the ones mentioned above. An independent increments points 

process, i.e., a point process with the property that the number of occurrences in 

any fi nite collection of nonoverlapping time intervals are independent RVs, leads 

to a Poisson process.

Defi nition: If X(t) represents the number of occurrences of a certain event in 

(0, t), then the discrete random process {X(t)} is called the Poisson process, 

provided the following postulates are satisfi ed:
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  (i) P[1 occurrence in (t, t + Dt)] = lDt + 0(Dt)

  (ii) P[0 occurrence in (t, t + Dt)] = 1 – lDt + 0(Dt)

 (iii) P[2 or more occurrences in (t, t + Dt)] = 0(Dt)

 (iv) X(t) is independent of the number of occurrences of the event in 

any interval prior and after the interval (0, t).

 (v) The probability that the event occurs a specifi ed number of times 

in (t0, t0 + t) depends only on t, but not on t0.

Probability Law for the Poisson Process {X(t)}

Let l be the number of occurrences of the event in unit time.

Let Pn(t) = P{X(t) = n}

\ Pn(t + Dt) = P{X(t + Dt) = n}

  = P{(n – 1) calls in (0, t) and 1 call in (t, t + Dt)}

 + P{n calls in (0, t) and no call in (t, t + Dt)}

  = Pn – 1 (t) lDt + Pn(t) (1 – lDt) (by the postulates)

\    
( ) ( )

n n
P t t P t

t

+ D -
D

 = l{Pn – 1 (t) – Pn(t)}

Taking the limits as Dt Æ 0

 
d

( )
d

n
P t

t
 = l{Pn – 1 (t) – Pn(t)} (1)

Let the solution of the equation (1) be

 Pn(t) = 
( )

( )
n

t
f t

n

l
 (2)

Differentiating (2) with respect to t,

 P¢n(t) = 1{ ( ) ( )}
n

n n
nt f t t f t

n

l - + ¢  (3)

Using (2) and (3) in (1),

 ( )
n

n
t f t

n

l
¢  = 

( )
( )

n
t

f t
n

l
l-

i.e., f¢(t) = –lf(t)

\ f(t) = ke
–lt (4)

From (2), f(0) = P0(0) = P{X(0) = 0}

  = P{no event occurs in (0, 0)}

  = 1 (5)

Using (5) in (4), we get k = 1 and hence,

 f(t) = e–lt (6)
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Using (6) in (2),

 Pn(t) = P{X(t) = n} = 
( )

, 0,1, 2, ...,
t n

e t
n

n

l l-

= •

Thus the probability distribution of X(t) is the Poisson distribution with 

parameter lt.

Note  We have assumed that the rate of  occurrence of  the event l is a constant, but it can 

be function of  t also. When l is a constant, the process is called a homogeneous Poisson 
process. Unless specifi ed otherwise, the Poisson process will be assumed homogeneous.

Second-Order Probability Function of a 

Homogeneous Poisson Process

 P[X(t1) = n1, X(t2) = n2]

  = P[X(t1) = n1] P[X(t2) = n2/X(t1) = n1], t2 > t1
  = P[X(t1) = n1] P [the event occurs (n2 – n1) times in the

interval of length (t2 – t1)]

  = 
1 1 2 1 2 1( )

1 2 1
2 1

1 2 1

( ) { ( }
if

t n t t n n
e t e t t

n
n n n

n
l ll l- - - --

-
≥

  = 

12 2 2 1
1 2 1

2 1

1 2 1

( )
,

0, otherwise

nt n n n
e t t t

n
n n n

n
l l- -Ï -

Ô
◊ -Ì

Ô
Ó

≥

Proceeding similarly, we can get the third-order probability function as

 P[X(t1) = n1, X(t2) = n2, X(t3) = n3}

  = 

13 3 3 22 1
1 2 1 3 2

3 2 1

1 2 1 3 2

( ) ( )
,

0, otherwise

nt n n nn n
e t t t t t

n n n
n n n n n

l l- --Ï - -
≥ ≥Ô

- -Ì
Ô
Ó

Mean and Autocorrelation of the Poisson Process

The probability law of the Poisson process {X(t)} is the same as that of a Poisson 

distribution with parameter lt.

\ E{X(t)} = Var{X(t)} = lt

\ E{X
2(t)} = lt + l2

t
2 (1)

 Rxx(t1, t2) = E{X(t1) X(t2)}

  = E[X(t1) {X(t2) – X(t1) + X(t1)}]

  = E[X(t1) {X(t2) – X(t1)}] + E{X
2(t1)}

  = E[X(t1)] E[X(t2) – X(t1)] + E{X
2(t1)}.
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Since {X(t)} is a process of independent increments,

  = lt1 [l (t2 – t1] + lt1 + l2
t1

2, if t2 ≥ t1 [by (1)]

  = l2
t1t2 + lt1, if t2 ≥ t1

or Rxx(t1, t2) = l2
t1t2 + l min (t1, t2)

 Cxx(t1, t2) = Rxx(t1, t2) – E{X(t1)} E{X(t2)}

  = l2
t1t2 + lt1 – l2

t1t2

  = lt1, if t2 ≥ t1

or  = min (t1, t2)

 rxx(t1, t2) = 
1 2

1 2

( , )

Var{ ( )}Var{ ( )}

xx
C t t

X t X t

  = 1 1

2 1

21 2

, if
t t

t
tt t

t
l

l l
= ≥

Note  Poisson process is not a stationary process.

Properties of Poisson Process

1. The Poisson process is a Markov process.

Proof

Consider P[X(t3) = n3/X(t2) = n2, X(t1) = n1]

  = 
1 1 2 2 3 3

1 1 2 2

[ ( ) , ( ) , ( ) ]

[ ( ) , ( ) ]

P X t n X t n X t n

P X t n X t n

= = =
= =

  = 
3 2 3 2 3 2( )

3 2

3 2

( )
t t n n n n

e t t

n n

l l- - - --
-

[refer to the second- and third-order probability

functions of the Poisson process]

  = P[X(t3) = n3/X(t2) = n2]

This means that the conditional probability distribution of X(t3) given all the 

past values X(t1) = n1, X(t2) = n2 depends only on the most recent value X(t2) = n2.

That is, the Poisson process possesses the Markov property. Hence, the result.

2. Additive property: Sum of two independent Poisson processes is a Poisson 

process.

Proof

We have already derived in Chapter 4 the characteristic function of a Poisson 

distribution with parameter l as e–l(1 – eiw).
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Therefore, the characteristic functions of X1(t) and X2(t) are given by

 
1 ( ) ( )

X t
f w  = 1 2

2

(1 ) (1 )

( )and ( )
i i

t e t e

X t
e e

w wl lf w- - - -=

Since X1(t) and X2(t) are independent,

 
1 2( ) ( ) ( )

X t X t
f w+  = 

1 2( ) ( )( ) ( )
X t X t

f w f w

  = 1 2( ) (1 )i
t e

e
wl l- + -

which is characteristic function of Poisson distribution with parameter (l1 + l2)t.

Therefore, {X1(t) + X2(t)} is a Poisson process.

Alternative proof

Let X(t) = X1(t) + X2(t).

 P{X(t) = n} = 1 2

0

{ ( ) } { ( ) }
n

r

P X t r P X t n r
=

= = -Â

  = 

1 2

1 2

0

( ) ( )
t tr n rn

r

e t e t

r n r

l ll l- - -

= -Â

  = 1 2( )

1 2

0

1
( ) ( )

n
t r n r

r

r

e nC t t
n

l l l l- + -

=
Â

  = 
1 2( )

1 2[( ) ] /
t n

e t n
l l l l- + +

Therefore, X1(t) + X2(t) is a Poisson process with parameter (l1 + l2)t.

Note  The additive property holds good for any number of  independent Poisson processes.

3. Difference of two independent Poisson processes is not a Poisson process.

Proof

Let  X(t) = X1(t) – X2(t)

 E{X(t)} = E{X1(t)} – E{X2(t)}

  = (l1 – l2)t

 E{X
2(t)} = E{X1

2 (t)} + E{X2
2 (t)} – 2 E{X1(t)} E{X2(t)}

 (by independence)

  = 
2 2 2 2

1 1 2 2 1 2
( ) ( ) 2( ) ( )t t t t t tl l l l l l+ + + -

  = (l1 + l2)t + (l1 – l2)
2
t
2

  π (l1 – l2)t + (l1 – l2)
2
t
2

Recall that E{X
2(t)} for a Poisson process {X(t)} with parameter l is given by 

E{X
2(t)} = lt + l2

t
2.

Therefore, {X1(t) – X2(t)} is not a Poisson process.

4. The interarrival time of a Poisson process, i.e., the interval between two 

successive occurrences of a Poisson process with parameter l has an exponential 

distribution with mean 1/l.
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Proof

Let two consecutive occurrences of the event be Ei and Ei + 1.

Let Ei take place at time instant ti and T be the interval between the occurrences 

of Ei and Ei + 1. T is a continuous RV.

 P(T > t) = P{Ei + 1 did not occur in (ti, ti + t)}

  = P{No event occurs in an interval of length t}

  = P{X(t) = 0}

  = e–lt

Therefore, the cdf of T is given by

 F(t) = P{T £ t} = 1 – e
–lt

Therefore, the pdf of T is given by

 f(t) = l e–lt (t ≥ 0)

which is an exponential distribution with mean 1/l.

5. If the number of occurrences of an event E is an interval of length t is a Poisson 

process {X(t)} with parameter l and if each occurrence of E has a constant 

probability p of being recorded and the recordings are independent of each other, 

then the number N(t) of recorded occurrences in t is also a Poisson process with 

parameter lp.

Proof

 P{N(t) = n} = 
0r

P
•

=
Â { E occurs (n + r) times in t and n of them are 

recorded}

  = 
0

( )
( ) , 1

t n r

n r

n

r

e t
n r C p q q p

n r

l l- +•

=

+ = -
+Â

  = 
0

( )t n r

n r

r

e t n r
p q

n r n r

l l- +•

=

+
+Â

  = 
0

( ) ( )t n r

r

e pt qt

n r

l l l- •

=
Â

  = 
( )t n

qte pt
e

n

l
ll-

  = 
( )pt n

e pt

n

l l-
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Worked Example 7(B)

Example 1

Suppose that customers arrive at a bank according to a Poisson process with a 

mean rate of 3 per minute; fi nd the probability that during a time interval of 2 min 

(a) exactly 4 customers arrive, and (b) more than 4 customers arrive.

Mean of the Poisson process = lt

Mean arrival rate = mean number of arrivals per minute (unit time) = l
Given l = 3

 P{X(t) = k} = 
( )t k

e t

k

l l-

(a) P{X(2) = 4} = 
6 46

0.133
4

e
-

=

(b) P{X(2) > 4} = 1 – [P{X(2) = 0} + P{X(2) = 1} + P{X(2) = 2}

+ P{X(2) = 3} + P{X(2) = 4}]

  = 
4

6

0

1 6 /k

k

e k
-

=

- Â
  = 0.715

Example 2

A machine goes out of order, whenever a component fails. The failure of this part 

follows a Poisson process with a mean rate of 1 per week. Find the probability 

that 2 weeks have elapsed since last failure. If there are 5 spare parts of this 

component in an inventory and that the next supply is not due in 10 weeks, fi nd 

the probability that the machine will not be out of order in the next 10 weeks.

 (a) Here, the unit time is 1 week.

  Mean failure rate = mean number of failures in a week = l = 1.

  P{no failures in the 2 weeks since last failure}

  = P{X(2) = 0}

  = 
2 0

2(2
0.135

0

e
e

l l-
-)

= =

 (b) There are only 5 spare parts and the machine should not go out of order 

in the next 10 weeks.

 P{for this event} = P{X(10) £ 5}

  = 
105

0

10k

k

e

k

-

=
Â

  = 0.068
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Example 3

If {N1(t)} and {N2(t)} are 2 independent Poisson processes with parameters l1 

and l2 respectively, show that

 P[N1(t) = k/{N1(t) + N2(t) = n}] = nCk p
k
 q

n – k, where

 p = 1 2

1 2 1 2

and q
l l

l l l l
=

+ +
.

Required conditional probability

  = 1 1 2

1 2

[{ ( ) } { ( ) ( ) }]

{ ( ) ( ) }

P N t k N t N t n

P N t N t n

= « + =
+ =

  = 
1 2

1 2

[{ ( ) } { ( ) }]

{ ( ) ( ) }

P N t k N t n k

P N t N t n

= « = -
+ =

  = 

1 2

1 2

1 2

( )
1 2

( ) ( )

{( ) }

t tk n k

t n

e t e t

k n k

e t

n

l l

l l

l l

l l

- - -

- +

¥
-

+

 (by independence and additive property)

  = 1 2

1 2

( ) ( )

{( ) }

k n k

n

t tn

k n k t

l l

l l

-

- +

  = 1 2

1 2 1 2

k n k

k
nC

l l

l l l l

-
Ê ˆ Ê ˆ
Á ˜ Á ˜+ +Ë ¯ Ë ¯

  = nCk p
k
 q

n – k

Example 4

If customers arrive at a counter in accordance with a Poisson process with a mean 

rate of 2 per minute, fi nd the probability that the interval between 2 consecutive 

arrivals is (a) more than 1 min, (b) between 1 min and 2 min, and (c) 4 min or 

less.

Refer of Property 4 of Poisson processes.

The interval T between 2 consecutive arrivals follows an exponential 

distribution with parameter l = 2.

(a) P(T > 1) = 2 2

1

2 d 0.135t
e t e

•
- -= =Ú

(b) P(1 < T < 2) = 

2

2 2 4

1

2 d 0.117t
e t e e

- - -= - =Ú

(c) P(T £ 4) = 

4

2 8

0

2 d 1 0.999t
e t e

- -= - =Ú
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Example 5

A radioactive source emits particles at a rate of 5 per minute in accordance with 

Poisson process, each particle emitted has a probability 0.6 of being recorded. 

Find the probability that 10 particles are recorded in a 4-min period.

Refer to Property 5 of Poisson processes. The number of recorded particles 

N(t) follows a Poisson process with parameter lp.

Here, l = 5 and p = 0.6

\ P{N(t) = k} = 
3 (3 )t k

e t

k

-

\ P{N(4) = 10} = 
12 10(12)

10

e
-

  = 0.104

Example 6

The number of accidents in a city follows a Poisson process with a mean of 2 per 

day and the number Xi of people involved in the ith accident has the distribution 

(independent) P{Xi = k} = 
1

( 1).
2k

k ≥  Find the mean and variance of the number 

of people involved in accidents per week.

The mean and variance of the distribution P{Xi = k} = 
1

2k
, k = 1, 2, 3, …, • 

can be obtained as 2 and 2.

Let the number of accidents on any day be assumed as n.

The numbers of people involved in these accidents be X1, X2, …, Xn.

X1, X2, …, Xn are independent and identically distributed RVs with mean 2 

and variance 2.

Therefore, by central limit theorem, (X1 + X2 + … + Xn) follows a normal 

distribution with mean 2n and variance 2n, i.e., the total number of people 

involved in all the accidents on a day with n accidents = 2n.

If N denotes the number of people involved in accidents on any day, then

 P{N = 2n} = P{X(t) = n} [where X(t) is the number of accidents]

  = 
2 (2 )t n

e t

n

-

 (by data)

\ E{N} = 
2

0

2 (2 )t n

n

ne t

n

-•

=
Â

  = 2E{X(t)} = 4t

 Var{N} = E{N
2} – E2(N)
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  = 

2 2
2

0

4 (2 )
16

t n

n

n e t
t

n

-•

=

-Â

  = 4 E{X
2(t)} – 16t

2

  = 4[Var(X(t)} + E2{X(t)}] – 16t
2

  = 4[2t + 4t
2] – 16t

2 = 8t

Therefore, mean and variance of the number of people involved in accidents 

per week are 28 and 56 respectively.

Example 7

If Tn is the RV denoting the time of occurrence of the nth event in a Poisson 

process with parameter l, show that the distribution function Fn(t) of Tn is given 

by

 Fn(t) = 

1

0

( )
1 , if 0

0, if 0

kn
t

k

t
e t

k

t

ll-
-

=

Ï
- ≥Ô

Ì
Ô <Ó

Â

Deduce the density function fn(t) of Tn

 Fn(t) = P{Tn £ t}

  = 1 – P{Tn > t}

When Tn > t, i.e., the time of occurrence of the nth event > t, (n – 1) or less 

events must have occurred in (0, t).

\ Fn(t) = 1 – P{X(t) £ n – 1}

  = 

1

0

( )
1

kn
t

k

t
e

k

ll-
-

=

- Â , when t ≥ 0

Differentiating both sides with respect to t and noting that Fn¢(t) = fn(t)

 fn(t) = –

11

0

( ) ( )

1

k kn
t t

k

t t
e e

k k

l ll l
l l

--
- -

=

Ï ¸
- +Ì ˝-Ó ˛

Â

  = 
11

0

( ) ( )

1

k kn
t

k

t t
e

k k

l l l
l

--
-

=

Ï ¸
-Ì ˝-Ó ˛

Â

  = 

2 1 2( ) ( ) ( )
1 1

1 2 1 1 2

n n

t t t t t t
e

n n

l l l l l l
l

- -
- È ˘Ï ¸ Ï ¸Ï ¸

¥ + - + - + + -Ì ˝ Ì ˝ Ì ˝Í ˙- -Ó ˛ Ó ˛ Ó ˛Î ˚
 

  = 
1

, 0
1

n n t
t e

t
n

ll - -

≥
-
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Example 8

If {X(t)} is a Poisson process, prove that

 P{X(s) = r/X(t) = n} = 1

r n r

r

s s
nC

t t

-
Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯  where s < t

 P{X(s) = r/X(t) = n} = 
[{ ( ) } { ( ) }]

{ ( ) }

P X s r X t n

P X t n

= « =
=

  = 
{ ( ) ( ) }

{ ( ) }

P X s r X t s n r

P X t n

= « - = -
=

  = 
{ ( ) } { ( ) }

{ ( ) }

P X s r P X t s n r

P X t n

= - = -
=

 (by independence)

  = 

( ){ ( ) / }{ [ ( )] }/

( ) /

t r t s n r

t n

e s r e t s n r

e t n

l l

l

l l

l

- - - -

-

- -

  = 
( )r n r

n

n s t s

r n r t

--
-

  = 1

r n r

r

s s
nC

t t

-
Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯

Exercise 7(B)

Part-A (Short-answer Questions)

 1. What is a point process? Given an example.

 2. Defi ne a Poisson process.

 3. What are the postulates of a Poisson process?

 4. State the probability law of a Poisson process.

 5. When is a Poisson process said to be homogeneous?

 6. If {X(t)} is a homogeneous Poisson process, fi nd

 P{X(t1) = n1, X(t2) = n2}, t2 > t1

 7. Find the autocorrelation Rxx(t1, t2) of the Poisson process {X(t)}.

 8. State and prove the additive property of a Poisson process.

 9. Prove that the difference of 2 independent Poisson process is not a 

Poisson process.

 10. Prove that the interarrival time of a Poisson process follows an 

exponential distribution.

 11. If the customers arrive at a bank according to a Poisson process with 

mean rate of 2 per minute, fi nd the probability that, during an 1-min 

interval, no customer arrives.
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Part-B

 12. Find the fi rst-order characteristic function of a Poisson process.

 13. If particles are emitted form a radioactive source at the rate of 20 per 

hour, fi nd the probability that exactly 5 particles are emitted during a 

15-min period.

 14. On the average, a submarine on patrol sights 6 enemy ships per hour. 

Assuming that the number of ships sighted in a given length of time is a 

Poisson variate, fi nd the probability of sighting

 (i) 6 ships in the next half–an–hour,

 (ii) 4 ships in the next 2 h,

 (iii) at least 1 ship in the next 15 min, and

 (iv) at least 2 ships in the next 20 min.

 15. Patients arrive randomly and independently at a doctor’s consulting 

room from 8 a.m. at an average rate of one in 5 min. The waiting room 

can hold 12 persons. What is the probability that the room will be full 

when the doctor arrives at 9 a.m.?

 16. Messages arrive at a telegraph offi ce in accordance with the laws of a 

Poisson process with a mean rate of 3 messages per hour.

  (i) What is the probability that no message will have arrived during 

the morning hours, i.e., between 8 a.m. and 12 noon?

 (ii) What is the distribution of the time at which the fi rst afternoon 

message arrives?

 17. Assume that a circuit has an IC whose time to failure is an exponentially 

distributed RV with expected lifetime of 3 months. If there are 10 spare 

IC’s and time from failure to replacement is zero, what is the probability 

that the circuit can be kept operational for at least 1 year?

 18. Assume that an offi ce switchboard has 5 telephone lines and that 

starting at 8 am on Monday, the time that a call arrives on each line is 

an exponential RV with parameter l. Also assume that the calls arrive 

independently on the lines. Show that the time of arrival of the fi rst call 

(irrespective of which line it arrives on) is exponential with parameter 5l.

 19. A radioactive source emits particles at a rate of 6 per minute in accordance 

with Poisson process. Each particle emitted has a probability of 1/3 of 

being recorded. Find the probability that at least 5 particles are recorded 

in a 5-min period.

 20. Suppose that customers arrive at a counter independently from 2 different 

sources. Arrivals occur in accordance with a Poisson process with mean 

rate of 6 per hour from the fi rst source and 4 per hour from the second 

source. Find the mean interval between any 2 successive arrivals.

 21. Assume that a device fails when a cumulative effect of k shocks occur. If 

the shocks occur according to a Poisson process with parameter l, fi nd 

the density function for the life T of the device.

  [Hint: Refer of Worked Example 7]



Special Random Processes 7.45

 22. In the case of a Poisson process, show that the conditional probability 

that events have occurred at t1, t2, …, tn, given that n events have 

occurred in (0, t), is given by 
n

n

t
.

 23. Passengers arrive at a terminal for boarding the next bus. The times of 

their arrival are Poisson with an average arrival rate of 1 per minute. The 

times of departure of each bus are Poisson with an average departure 

rate of 2 per hour. Assume that the capacity of the bus is large. Find the 

average number of passengers in (i) each bus, and (ii) the fi rst bus that 

leaves after 9 a.m.

 24. Passengers arrive at a terminal after 9 a.m. The times of their arrival 

are Poisson with mean density l = 1 per minute. The time interval from

9 am to the departure of the next bus is a RV T. Find the mean number 

of passengers in this bus (i) if T has an exponential density with mean

30 min, and (ii) if T is uniform between 0 and 60 min.

Markov Process

Another interesting model of a random process is the one in which the value 

of the random process depends only upon the most recent previous value and 

is independent of all values in the more distant past. Such a model is called a 

Markov model and is often described by saying that a Markov process is one in 

which the future value is independent of the past values, given the present value. 

Models in which the future depends only upon the present are common among 

electrical engineering models.

Consider the experiment of tossing a fair coin a number of times. The possible 

outcomes at each trial are two—‘head’ with probability 1/2 and ‘tail’ with 

probability 1/2. If we denote the outcome of the nth toss, which is a RV, by Xn 

and the outcomes ‘head’ and ‘tail’ by 1 and 0 respectively, then

 P{Xn = 1} = 
1 1

and { 0} ; 1, 2, ...
2 2

n
P X n= = =

Thus we have a sequence of independent RVs X1, X2, …, since the trials are 

independent and hence the outcome of the nth trial does not depend in any way 

on the previous trials.

Consider now the RV that represents the total number of heads in the fi rst n 

trials and is given by Sn = X1 + … + Xn. The possible values of Sn are 0, 1, 2, …, 

n. If Sn = k(k = 0, 1, …, n), then the RV Sn + 1(=Sn + Xn + 1) can assume only 2 

possible values, namely k + 1 [if the (n + 1)th trial results in a head] and k [if the 

(n + 1)th trial results in a tail].

Thus, P{Sn + 1 = k + 1/Sn = k) = 
1

2

 P{Sn + 1 = k/Sn = k) = 
1

2
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These probabilities are not at all affected by the values of the RVs S1, S2, …, 

Sn – 1. Also the conditional probability of Sn + 1 give Sn depends on the value of 

Sn and not on the manner in which the value of Sn was reached. This is a simple 

example of a Markov chain. Random processes {X(t)} (with Markov property) 

which take discrete values, whether t is discrete or continuous, are called Markov 

chains. Poisson process, discussed earlier, is a continuous time Markov chain. In 

this section, we will discuss discrete time Markov chains.

Defi nition of a Markov Chain

If, for all n, P{Xn = an/Xn – 1 = an – 1, Xn – 2 = an – 2, …, X0 = a0} = P{Xn = an/Xn – 1 

= an – 1}, then the process {Xn}, n = 0, 1, …, is called a Markov chain.

(a1, a2, …, an, …) are called the states of the Markov chain. The conditional 

probability P{Xn = aj/Xn – 1 = ai} is called the one-step transition probability 

from state ai to state aj at the nth step (trial) and is denoted by pij(n – 1, n).

If the one-step transition probability does not depend on the step, i.e., pij(n – 1, 

n) = pij(m – 1, m) the Markov chain is called a homogeneous Markov chain or 

the chain is said to have stationary transition probabilities. The use of the word 

‘stationary’ does not imply a stationary random sequence.

When the Markov chain is homogeneous, the one-step transition probability 

is denoted by pij. The matrix P = {pij} is called (one-step) transition probability 

matrix, shortly, tpm.

Note  The tpm of  a Markov chain is a stochastic matrix, since pij ≥ 0 and =Â ij
j

p 1  

for all i, i.e., the sum of  all the elements of  any row of  the tpm is 1. This is obvious because the 

transition from state ai to any one of  the states (including ai itself) is a certain event.

The conditional probability that the process is in state aj at step n, given that 

it was in state ai at step 0, i.e., P{Xn = aj/X0 = ai} is called the n-step transition 

probability and denoted by pij(n).

Note  pij
(1) = pij.

Let us consider an example in which we explain how the tpm is formed 

for a Markov chain. Assume that a man is at an integral point of the x-axis 

between the origin and the point x = 3. He takes a unit step either to the right 

with probability 0.7 or to the left with probability 0.3, unless he is at the 

origin when he takes a step to the right to reach x = 1 or he is at the point x = 

3, when he takes a step to the left to reach x = 2. The chain is called ‘Random 

walk with refl ecting barriers’. 
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The tpm is given below:

   States of Xn

States of Xn – 1 = 

0 1 2 3

0 0 1 0 0

1 0.3 0 0.7 0

2 0 0.3 0 0.7

3 0 0 1 0

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

Note  p23 = the element in the 2nd row, 3rd column of  this tpm = 0.7. This means that, 

if  the process is at state 2 at step (n – 1), the probability that it moves to state 3 at step n = 

0.7, where n is any positive integer.

Defi nition: If the probability that the process is in state ai is pi (i = 1, 2, …, k) at 

any arbitrary step, then the row vector p = (p1, p2, …, pk) is called the probability 

distribution of the process at that time. In particular, p(0)
 = {p1

(0), p2
(0), …, pk

(0)} 

is the initial probability distribution.

[Remark: The transition probability matrix together with the initial probability 

distribution completely specifi es a Markov chain {Xn}. In the example given 

above, let us assume that the initial probability distribution of the chain is

 p
(0) 

 = 
1 1 1 1

, , ,
4 4 4 4

Ê ˆ
Á ˜Ë ¯

i.e., P{X0 = i} = 1/4, i = 0, 1, 2, 3

Then we have, for the example given above,

 P{X1 = 2/X0 = 1} = 0.7; P{X2 = 1/X1 = 2} = 0.3,

 P{X2 = 1, X1 = 2/X0 = 1}

  = P{X2 = 1/X1 = 2} × P{X1 = 2/X0 = 1}

  = 0.3 × 0.7 = 0.21 (1)

 P{X2 = 1, X1 = 2, X0 = 1}

  = P{X0 = 1} × P{X2 = 1, X1 = 2/X0 = 1}

  = 1/4 × 0.21 = 0.0525  [by (1)] (2)

 P{X3 = 3, X2 = 1, X1 = 2, X0 = 1}

  = P{X2 = 1, X1 = 2, X0 = 1}

× P{X3 = 3/X2 = 1, X1 = 2, X0 = 1}

  = 0.0525 P{X3 = 3/X2 = 1}  (Markov property) [by (2)]

  = 0.0525 × 0 = 0

Chapman–Kolmogorov Theorem

If P is the tpm of a homogeneous Markov chain, then the n-step tpm P(n) is equal 

to Pn.

i.e., [pij
(n)] = [pij]

n
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Proof

 pij
(2) = P{X2 = j/X0 = i}, since the chain is homogeneous.

The state j can be reached from the state i in 2 steps through some intermediate 

state k.

Now, pij
(2) = P{X2 = j/X0 = i} = P{X2 = j, X1 = k /X0 = i}

  = P{X2 = j/X1 = k, X0 = i} P{X1 = k/X0 = i}

  = pkj
(1) 

pik
(1)

  = pik pkj

Since the transition from state i to state j in 2 steps can take place through any 

one of the intermediate states, k can assume the values 1, 2, 3, …. The transitions 

through various intermediate states are mutually exclusive.

Hence, pij
(2) = 

ik kj

k

p pÂ
i.e., the ij-th element of 2 step tpm =

the ij-th element of the product of the 2 one-step tpm’s 

i.e., P
(2) = P2

Now, pij
(3) = P{X3 = j/X0 = i}

  = = = = =Â 3 2 2 0{ / } { / }
k

P X j X k P X k X i

  = (2)
kj ik

k

p pÂ
  = (2)

ik kj

k

p pÂ
Similarly, pij

(3) = (2)

ik kj

k

p pÂ
i.e., P

(3)
 = P2 P = P P2 = P3

Proceeding further in a similar way, we get

 P
(n) = Pn

For example, consider the problem of Random walk with refl ecting barriers, 

discussed above, for which the tpm is

 P = 

0 1 0 0

0.3 0 0.7 0

0 0.3 0 0.7

0 0 1 0

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

 P
2 = 

0.3 0 0.7 0

0 0.51 0 0.49

0.09 0 0.91 0

0 0.3 0 0.7

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯
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From this matrix, we see that p11
(2) = 0.51. This is so, because

 p11
(2) = p10 p01 + p11 p11 + p12 p21 + p13 p31

  = (0.3) (1) + (0) (0) + (0.7) (0.3) + (0) (0) = 0.51

Defi nition: A stochastic matrix P is said to be a regular matrix, if all the entries 

of Pm (for some positive integer m) are positive. A homogeneous Markov chain 

is said to be regular if its tpm is regular.

We state below two theorems without proof:

 1. If p = {pi} is the state probability distribution of the process at an arbitrary 

time, then that after one step is pP, where P is the tpm of the chain and 

that after n steps in pP
n.

 2. If a homogeneous Markov chain is regular, then every sequence of 

state probability distributions approaches a unique fi xed probability 

distribution called the stationary (state) distribution or steady-state 

distribution of the Markov chain.

  That is, ( )lim{ }n

n
p p

Æ•
= , where the state probability distribution at step n, 

p
(n) = 

( ) ( ) ( )

1 2( , ,..., )n n n

k
p p p  and the stationary distribution p = (p1, p2, …, 

pn) are row vectors.

 3. Moreover, if P is the tpm of the regular chain, then pP = p(p is a row 

vector). Using this property of p, it can be found out, as in the worked 

examples given below:

Classifi cation of States of a Markov Chain

If pij
(n) > 0 for some n and for all i and j, then every state can be reached from 

every other state. When this condition is satisfi ed, the Markov chain is said to be 

irreducible. The tpm of an irreducible chain is an irreducible matrix. Otherwise, 

the chain is used is said to be nonirreducible or reducible.

State i of a Markov chain is called a return state, if pij
(n) > 0 for some n > 1.

The period di of a return state i is defi ned as the greatest common divisor of all 

m such that pii
(m) > 0, i.e., di = GCD {m: pii

(m) > 0}. State i is said to be periodic 

with period di if di > 1 and aperiodic if di = 1.

Obviously state i is aperiodic if pii π 0. The probability that the chain returns 

to state i, having starte from state i, for the fi rst time at the nth step (or after 

n transitions) is denoted by fii
(n) and called the fi rst return time probability or 

the recurrence time probability. {n, fii
(n)}, n = 1, 2, 3, …, is the distribution of 

recurrence times of the state i.

If Fii = ( )

1

1n

ii

n

f
•

=

=Â , the return to state i is certain.

mii = ( )

1

n

ii

n

n f
•

=
Â  is called the mean recurrence time of the state i.

A state i is said to be persistent or recurrent if the return to state i is certain, 

i.e., if Fii = 1. The state i is said to be transient if the return to state i is uncertain, 
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i.e., if Fii < 1. The state i is said to be nonnull persistent if its mean recurrence 

time mii is fi nite and null persistent, if mii = •.

A non-null persistent and aperiodic state is called ergodic.

We give below two theorems, without proof, which will be helpful to classify 

the states of a Markov chain.

 1. If a Markov chain is irreducible, all its states are of the same type. They 

are all transient, all null persistent or all nonnull persistent. All its states 

are either aperiodic or periodic with the same period.

 2. If a Markov chain fi nite irreducible, all its states are nonnull persistent.

Birth and Death Process

Another random process that has wide applications in several fi elds of natural 

phenomena such as spread of epidemics, queueing problems, telephone exchange, 

traffi c maintenance and population growth is the birth and death process.

Defi nition: If X(t) represents the number of individuals present at time t in a 

population [or the size of the population at time t] in which two types of events 

occur—one representing birth which contributes to its increase and the other 

representing death which contributes to its decrease, then the discrete random 

process {X(t)} is called the birth and death process, provided the two events, 

viz., birth and death are governed by the following postulates:

If X(t) = n(n > 0),

 (i) P[1 birth in (t, t + Dt)] = ln(t) Dt + 0(Dt)

 (ii) P[0 birth in (t, t + Dt)] = 1 – ln(t) Dt + 0(Dt)

 (iii) P[2 or more births in (t, t + Dt)] = 0(Dt)

 (iv) Births occurring in (t, t + Dt) are independent of time since last birth.

 (v) P[1 death in (t, t + Dt)] = mn(t) Dt + 0(Dt)

 (vi) P[0 death in (t, t + Dt)] = 1 – mn(t) Dt + 0(Dt)

 (vii) P[2 or more deaths in (t, t + Dt)] = 0(Dt)

 (viii) Deaths occurring in (t, t + Dt) are independent of time since last death.

 (ix) The birth and death occur independently of each other at any time. 

Probability Distribution of X(t)

Let Pn(t) = P{X(t) = n} = probability that the size of the population is n at time 

t. Then Pn(t + Dt) = P{X(t + Dt) = n} = probability that the size of the population 

is n at time (t + Dt). Now the event X(t + Dt) = n can happen in any one of the 

following four mutually exclusive ways:

 (i) X(t) = n and no birth or death in (t, t + Dt) 

 (ii) X(t) = n – 1 and 1 birth and no death in (t, t + Dt)

 (iii) X(t) = n + 1 and no birth and 1 death in (t, t + Dt)

 (iv) X(t) = n and 1 birth and 1 death in (t, t + Dt)

\ Pn(t + Dt) = P(i) + P(ii) + P(iii) + P(iv)

  = Pn(t) (1 – ln Dt) (1 – mn Dt) + Pn – 1(t)·ln – 1 Dt
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(1 – mn – 1 Dt) + Pn + 1(t) (1 – ln + 1 Dt) mn + 1 Dt + mn(t)ln Dt · mn Dt, omitting higher 

 powers of Dt.

i.e., Pn(t + Dt) = Pn(t) – (ln + mn) Pn(t) Dt + ln – 1 · Pn – 1(t) ·Dt

   + mn + 1· Pn + 1(t). Dt, omitting terms containing (Dt)2.

\ 
( ) ( )

n n
P t t P t

t

+ D -
D

 = ln – 1· Pn – 1(t) – (ln + mn) Pn(t) + mn + 1 Pn + 1(t)… (1)

Taking limits on both sides of (1) as Dt Æ 0, we get

 P¢n(t) = ln – 1 Pn – 1(t) – (ln + mn) Pn(t) + mn + 1 Pn + 1(t) (2)

The difference-differential equation (2) holds good for n ≥ 1. It is not valid when 

n = 0, as no death is possible in (t, t + Dt) and X(t) = n – 1 = –1 is meaningless.

\ P0(t + Dt) = P0(t) (1 – l0 Dt) + P1(t) (1 – l1 Dt) m1 Dt

i.e., 0 0( ) ( )P t t P t

t

+ D -
D

 = – l0 P0(t) + m1 P1(t) (3)

Proceeding to limits as Dt Æ 0, we get

 P¢0(t) = – l0 P0(t) + m1 P1(t) (4)

On solving equations (2) and (4), we get Pn(t) [n ≥ 0] which gives P{X(t) = n},

the probability distribution of X(t).

Note  The equations (2) and (4) characterize the generalised birth and death process, which 

assume that the collective birth and death rates in (t, t + Dt) are ln and mn respectively) which 

depend on the size n of  the population at time t.

If  we further make the simplifying assumptions that the birth rate in (t, t + Dt) is l for each 

individual in the population and the death rate in (t, t + Dt) is m for each individual, then ln 

= nl and mn  = nm.

In this case, equations (2) and (4) become

 Pn¢(t) = (n – 1) lPn – 1(t) – n(l + m) Pn(t) + (n + 1)m Pn + 1(t) (5)

and Po¢(t) = mP1(t) (6)

 Equations (5) and (6) are said to characterize the simple birth and death process or Linear 

Growth Process.

Value of Pn(t) for the Simple Birth and Death Process

We defi ne the probability generating function G(z, t) = 
0

( ) n

n

n

P t z
•

=
Â .

For the simple birth and death process, Pn(t) is given by

 P¢n(t) = (n – 1) lPn – 1(t) – n(l + m) Pn(t) + (n + 1)m Pn + 1(t) (1)

Multiplying both sides of (1) by zn and summing over all values of n, we have

 
0

( ) n

n

n

P t z
•

=

¢Â  = 1 1

0 0 0

( 1) ( ) ( ) ( ) ( 1) ( )n n n

n n n

n n n

n P t z nP t z n P t zl l m m
• • •

- +
= = =

- - + + +Â Â Â
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  = 
2 1 1 1

0 0 0

( ) ( ) ( ) ( )n n n

n n n

n n n

z nP t z z nP t z nP t zl l m m
• • •

- - -

= = =

- + +Â Â Â

i.e., 
G

t

∂
∂

 = 
2 ( )

G G G
z z

z z z
l l m m

∂ ∂ ∂
- + +

∂ ∂ ∂
,

since 
G

z

∂
∂

 = 1

0

( ) n

n

n

nP t z
•

-

=
Â

i.e., 
G

t

∂
∂

 = ( ) ( 1)
G

z z
z

l m
∂

- -
∂

  (2)

This equation (2) is a Lagrange’s linear equation. The corresponding subsidiary 

simultaneous equations are 

 
1

dt

-
 = 

( ) ( 1) 0

dz dG

z zl m
=

- -
 (3)

From the fi rst two ratios, we have

 
1

dt

-
 = 

1

1

dz dz

z z

l

l m l m

Ê ˆ
-Á ˜- Ë - - ¯

, by partial fractions

\ one solution of (3) is

 
1

log
z

zl m

Ê ˆ-
Á ˜Ë - ¯

 = (m – l)t – log c1

i.e., 
1z

zl m

-
-

 = ( ) ( )

1

1
or

1

t tz
e c e

c z

l m l ml m- - --
=

-
 (4)

The second solution (4) is obviously G = c2 (5)

\ the general solution of (2) is

 G(z, t) = ( )

1

tz
f e

z

m ll m -Ï - ¸Ê ˆ
Ì ˝Á ˜Ë ¯-Ó ˛

 (6)

where f is an arbitrary function.

Now, G(z, 0) = 
0

(0) n

n

n

P z
•

=
Â

  = z, since Pn (0) = P{X(0) = n} = 1, for n = 1 and = 0, for all n π 1

Using this in (6), we have

 
z

f
l m

l

-Ê ˆ
Á ˜Ë ¯-1

 = z (7)

When z is replaced by f(z), let the argument of f reduce to z.

Then 
( )

( ) 1

z

z

lf m

f

-
-

 = z ( )
z

z
z

m
f

l

-
\ =

-

But by (7), f(z) = 
z

z

m

l

-
-
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Using (8) in (6), the required solution is

 G(z, t) = 

( )

( )

1

1

t

t

z
e

z

z
e

z

m l

m l

l m
m

l m
l

-

-

-Ê ˆ- Á ˜Ë ¯-
-Ê ˆ- Á ˜Ë ¯-

  = 

)

( )

( 1)( ( )

( 1) ( )

t

t

z e z

z e z

l m

l m

m l m

l l m

- -

-

- - -
- - -

  = 
( ) ( )

( ) ( )

{1 } { }

{ } {1 }

t t

t t

e e z

e z e

l m l m

l m l m

m l m

m l l

- -

- -

- - -
- - -

Putting a(t) = 
( )

( )

{1 }t

t

e

e

l m

l m

m

m l

-

-

-
-

and b(t) = 

( )

( )

{1 }
( )

t

t

e
t

e

l m

l m

l l
a

m m l

-

-

-
=

-
, we get

 G(z, t) = 
( ) {1 ( ) ( )}

1 ( )

t t t z

t z

a a b

b

+ - -
-

  = 1[ ( ) {1 ( ) ( )} {1 ( ) }t t t z t za a b b -+ - - -

  = 
0

[ ( ) {1 ( ) ( )} { ( )}n n

n

t t t z t za a b b
•

=

+ - - Â
Now, Pn(t) = coeffi cient of zn in the expansion of G(z, t)

  = a(t) {b(t)}n + {1 – a(t) – b(t)} {b(t)}n – 1

  = [a(t) b(t) + 1 – a(t) – b(t)] {b(t)}n – 1

  = {1 – a(t)} {1 – b(t)} {b(t)}n – 1; n ≥ 1.

Now, P0(t) = 
1

1 ( )n

n

P t
•

=

- Â

  = 1

1

1 {1 ( )}1 ( )} { ( )}n

n

t t ta b b
•

-

=

- - - Â
  = 1 – {1 – a(t)} {1 – b(t)} {1 – b(t)}– 1

  = a(t)

Note  Had we assumed that X(0) = m, instead of  X(0) = 1, we would have got

  G(z, t) = 
a a b

b

È ˘+ - -
Í ˙-Î ˚

m
( t ) {1 ( t ) ( t )z}

1 ( t )z
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Mean and Variance of the Population Size in a 

Linear Birth and Death Process

The probability distribution of the size X(t) of the population in the linear birth 

and death process is given by

{n, Pn(t)}; n = 0, 1, 2, …, •

\ E{X(t)} = 
0

( )
n

n

n P t
•

=
Â

  = 
1

1

(1 ) (1 n

n

na b b
•

-

=

- - )Â , where a = a(t) and b = b(t)

  = (1 – a) (1 – b) {1 + 2b + 3b2 + …•}

  = 
1

1

a

b

-
-

  = 

( ) ( )

( ) ( )

t t

t t

e e

e e

l m l m

l m l m

m l m m

m l l l

- -

- -

- - +
- - +

  = 
( )

( )( ) t

te
e

l m
l mm l

m l

-
--

=
-

Note  When l < m (viz., birth rate is smaller than death rate), E{X(t)} Æ 0 as t Æ 

•.

 When l > m (viz., birth rate is greater than the death rate), E{X(t)} Æ • as t Æ •. Of  

course, when l = m, E{X(t)} = 1 = X(0)]

Now, E{X
2(t)} = 

2

0

( )
n

n

n P t
•

=
Â

  = 1

1

(1 ) (1 ) { ( 1) } n

n

n n na b b
•

-

=

È ˘
- - + -Í ˙

Î ˚
Â

  = (1 – a) (1 – b) [{1.2 + 2.3b + 3.4b2 + …} – {1 + 2b + 3b2 + …}]

  = 
3 2

2 1
(1 ) (1 )

(1 ) (1 )
a b

b b

È ˘
- - -Í ˙- -Î ˚

  = 
2

(1 )

(1

a b

b

- )(1+
- )

 Var {X(t)} = E{X
2(t)} – E2{X (t)}

  = 
2

2 2

(1 ) (1

(1 (1

a b a

b b

- )(1+ - )
-

- ) - )
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  = 
2

(1 ) ( )

(1 )

a a b

b

- +
-

  = 
( ) ( ){ 1}t t

e e
l m l ml m

l m
- -Ê ˆ+

-Á ˜Ë - ¯

Pure Birth Process

If X(t) represents the size of a population at time t, in which only births can 

take place, then the discrete random process {X(t)} is called pure birth process, 

provided the births are governed by the postulates (i), (ii), (iii) and (iv) of the 

birth and death process.

The difference-differential equations representing a pure birth process are

 Pn¢(t) = ln – 1 Pn – 1(t) – ln Pn (t) (1)

and P0¢(t) = l0 P0 (t) (2)

which are obtained from the corresponding equations representing birth and 

death process by putting mn = 0, for n ≥ 1.

If we assume that ln = nl, where l is the birth-rate for all individuals at time 

t, the pure birth process is called Yule-Furry process or simple birth process.

In this case, equation (2) becomes P0¢(t) = 0 and so P0(t) = constant = 0.

Solution of equation (1) is obtained by putting m = 0 in the solution of linear 

birth and death process.

viz., Pn(t) = e–lt (1 – e–lt)n – 1; n ≥ 1.

Also for the simple birth process {X(t)}, E{X(t)} = e
lt and Var {X(t)}

= elt{e
lt – 1}.

Queueing Processes

When the generalised birth and death process is in steady-state, viz., when Pn(t) 

and P0(t) are independent of time, P¢n(t) and P¢0(t) become zero. Hence, the 

difference-differential equations that characterise the generalised birth and death 

process reduce to the difference equations.

 ln – 1 Pn – 1 – (ln + mn) Pn + mn + 1 Pn + 1 = 0 (1)

and –l0 P0 + m1 P1 = 0 (2)

These equations (1) and (2) characterise the Poisson queueing systems, which 

are discussed in detail in the chapter on “Queueing Theory”. In the single server 

queueing models, ln = l and mn = m.

In the multiserver (‘s’ servers) queueing models,

 ln = l and mn = 
, if 0

, if

n sn

s n s

m

m

£ <Ï ¸
Ì ˝≥Ó ˛
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Renewal Process

Renewal process is a generalisation of Poisson process. In Poisson process, 

the time interval between two consecutive occurrences of the event follows an 

exponential distribution, whereas in renewal process, the inter-arrival times are 

independent identically distributed continuous Random Variables.

Defi nition

If N(t) represents the number of occurrences of a certain event (the number 

of renewals of a certain component in a machine) in (0, t), then the discrete 

random process {N(t); t ≥ 0} is called a renewal counting process or simply 

renewal process, provided the inter-arrival times X1, X2, X3, … are non-negative, 

independent and identically distributed random variables (i · i · d · r · v¢ · s) with 

a common distribution function F(x).

Note  If  Xi is assumed to represent the life-time of  the components being replaced and the 

fi rst component is installed at time t = 0, then it is replaced instantaneously at time t = X1 (viz., 

the fi rst renewal has taken place at t = X1). The replaced component is again replaced at time 

t = X1 + X2 and so on. If  Sn = X1 + X2 +… + Xn then Sn represents the time at which 

the nth replacement is made. N(t) is the largest value of  n for which Sn £ t.]

Probability Distribution of the Number of 

Renewals, N(t) and E{N(t)}

The distribution of N(t) is related to that of Sn = X1 + X2 + …+ Xn, because N(t) < 

n, if and only if Sn > t, as seen from the fi gure given below.

Fig. 7.5

\ P{N(t) < n} = P{Sn > t}

  = 1 – P{Sn £ t}

  = 1 – Fn(t)

where Fn(t) is the distribution function of Sn such that F0(t) = 1

\ P{N(t) ≥ n} = Fn(t)

Now, P{N(t) = n} = P{N(t) ≥ n} – P{N(t) ≥ n + 1}

  = Fn(t) – Fn + 1(t).
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 E{N(t)} = 
0

( )
n

n

nP t
•

=
Â , where Pn(t) = P{N(t) = n} 

  = 1

0

{ ( ) ( )}
n n

n

n F t F t
•

+
=

-Â
  = {F1(t) – F2(t)} + 2{F2(t) – F3(t)} + 3{F3(t) – F4(t)} + … •
  = F1(t) + F2(t) + F3(t) + … •

  = 
1 1

( ) or { }
n n

n n

F t P S t
• •

= =

£Â Â

Note  M(t) = E{N(t)} is called the renewal function of  the process {N(t)}

M¢(t) = m(t) is called the renewal density of  the process {N(t)}

\ m(t) = 
• •

= =
¢Â Ân n

n 1 n 1

F ( t ) or f ( t ) , where fn(t) is the density function of  Sn

Renewal Equation

The integral equation satisfi ed by the renewal function M(t), called the renewal 

equation is given by M(t) = 
0

( ) ( ) ( )d

t

F t M t x f x x+ -Ú .

Proof:
 M(t) = E{N(t)} (1)

  = 1

0

{ ( )/ } ( )dE N t X x f x x

•

=Ú
where f(x) is the common pdf of Xr (r = 1, 2, 3, …)

If x > t and X1 = x, no renewal occurs in (0, t), so that E{N(t)}/X1 = x} = 0,

 (2)

If 0 £ x £ t and X1 = x, one renewal has occurred at time x and the expected 

number of renewals in the remaining time interval of length t – x is E{N(t – x)}.

\ E{N(t)}/X1 = x} = 1 + E{N(t – x)}

   = 1 + M(t – x) (3)

Using (2) and (3), we have

 M(t) = 
0

{1 ( )} ( )d

t

M t x f x x+ -Ú

  = 
0 0

( )d ( ) ( )d

t t

f x x M t x f x x+ -Ú Ú
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  = 
0

( ) ( ) ( )d

t

F t M t x f x x+ -Ú

Poisson Process as a Renewal Process

In the Poisson process, the inter-arrival times X1, X2, X3, … follow identical 

exponential distributions with pdf le
–lx, x ≥ 0, l > 0

\ Sn = X1 + X2 + … + Xn

follows the Erlang distribution with pdf 
1

, 0
( 1)!

n n x
x e

x
n

ll - -

≥
-

.

\ Fn(t) = P{Sn £ t}

  = 
1

0

d
( 1)!

t n n x
x e

x
n

ll - -

-Ú  (1)

  = 

1

1 d
( 1)!

n n x

t

x e
x

n

ll
• - -

-
-Ú  (∵ the integrand is a pdf)

  = 1

0

1 ( ) d
( 1)!

n t

n ye
y t e y

n

l
ll

•-
- -- +

- Ú , on putting x = y + t

  = 
1

1

00

1 ( 1) d
( 1)!

nn t

n i i y

i

i

e
n C y t e y

n

l
ll

• --
- - -

=

- -
- ÂÚ

  = 
1

1

0 0

1 ( 1) d
( 1)!

nn t

i n i y

i

i

e
n C t y e y

n

l
ll

•--
- - -

=

- -
- Â Ú

  = 
1

0

( 1)! ( 1 )!
1

( 1)! !( 1 )!

inn t

n i
i

e n t n i

n i n i

ll

l

--

-
=

- - -
-

- - -Â

  = 

1

0

( )
1

!

n i

t

i

t
e

i

l l-
-

=

- Â
\ P{N(t ) = n} = Fn(t) – Fn + 1(t)

  = 
1

0 0

( ) ( )
1 1

! !

i in n
t t

i i

t t
e e

i i

l ll l-
- -

= =

È ˘ È ˘
- - -Í ˙ Í ˙

Î ˚ Î ˚
Â Â

  = e–lt (lt)n/n!, which is the probability law of a Poisson process.

 E{N(t)} = 
1

{ }n

n

P S t
•

=

£Â

  = 

1

1 0

d ,
( 1)!

t n n x

n

x e
x

n

ll - -•

= -Â Ú  by (1)
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  = 
1

10

( )
d

( 1)!

t n
x

n

x
e x

n

l l
l

-•
-

=

Ï ¸Ô Ô
Ì ˝-Ô ÔÓ ˛
ÂÚ

  = 

0

d

t
x x

e e x t
l ll l- ◊ =Ú

i.e., renewal function of the Poisson process = lt.

\ Renewal density of the Poisson process = l

Corollary If the inter-arrival times X1, X2, X3, ... follow identical Erlang 

distributions with pdf 1 ; 0
( )

k
k x

x e x
k

ll - - ≥ , then Sn will also follow an Erlang 

distribution with pdf 1 ; 0
( )

nk
nk x

x e x
nk

ll - - ≥

(by the reproductive property of Erlang distribution). Proceeding as in the 

previous case, we can get

 (i) Fn(t) = 
( 1)

0

( )
1

!

ink
x

i

t
e

i

l l-
-

=

- Â

 (ii) P{N(t) = n} = 

( 1) 1 ( )
; 0,1, 2,...

!

in k
x

i nk

t
e n

i

l l+ -
-

=

=Â

For example,

 P{N(t) = 0} = 
2( ) ( )

1
1! 2! ( )!

k i
x t t t

e
k i

l l l l -
- Ï ¸Ô Ô+ + + +Ì ˝-Ô ÔÓ ˛

 

and (iii) E{N(t)} = 
t

k

l

Worked Example 7(C)

Example 1

The transition probability matrix of a Markov chain {Xn}, n = 1, 2, 3, ..., having 

3 states 1, 2 and 3 is

 P = 

0.1 0.5 0.4

0.6 0.2 0.2

0.3 0.4 0.3

Ê ˆ
Á ˜
Á ˜
Ë ¯

and the initial distribution is p(0) = (0.7, 0.2, 0.1).
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Find (a) P{X2 = 3}, and (b) P{X3 = 2, X2 = 3, X1 = 3, X0 = 2}.

 P
(2) = P

2
 =

0.1 0.5 0.4 0.1 0.5 0.4

0.6 0.2 0.2 0.6 0.2 0.2

0.3 0.4 0.3 0.3 0.4 0.3

Ê ˆ Ê ˆ
Á ˜ Á ˜
Á ˜ Á ˜
Ë ¯ Ë ¯

  = 

0.43 0.31 0.26

0.24 0.42 0.34

0.36 0.35 0.29

Ê ˆ
Á ˜
Á ˜
Ë ¯

(a) P{X2 = 3} = 
3

2 0 0

1

{ 3/ } { }
i

P X X i P X i
=

= = ¥ =Â

  = (2) (2) (2)
13 0 23 0 33 0( 1) ( 2) ( 3)p P X p P X p P X= + = + =

  = 0.26 × 0.7 + 0.34 × 0.2 + 0.29 × 0.1

  = 0.182 + 0.068 + 0.029

  = 0.279

(b) P{X1 = 3/X0 = 2} = p23 = 0.2 (1)

 P{X1 = 3, X0 = 2} = P{X1 = 3/X0 = 2} × P{X0 = 2}

  = 0.2 × 0.2 = 0.04 [by (1)] (2)

 P{X2 = 3, X1 = 3, X0 = 2} = P{X2 = 3/X1 = 3, X0 = 2} × P{X1 = 3, X0 = 2}

  = P{X2 = 3/X1 = 3} × P{X1 = 3, X0 = 2}

 (by Markov property)

  = 0.3 × 0.04 [by (2)]

  = 0.012 (3)

  P{X3 = 2, X2 = 3, X1 = 3, X0 = 2}

  = P{X3 = 2/X2 = 3, X1 = 3, X0 = 2}

 × P{X2 = 3, X1 = 3, X0 = 2}

  = P{X3 = 2/X2 = 3} × P{X2 = 3, X1 = 3, X0 = 2}

 (by Markov property)

  = 0.4 × 0.012 [by (3)]

  = 0.0048

Example 2

A fair dice is tossed repeatedly. If Xn denotes the maximum of the numbers 

occurring in the fi rst n tosses, fi nd the transition probability matrix P of the 

Markov chain {Xn}.

Find also P2 and P(X2 = 6)

State space: {1, 2, 3, 4, 5, 6}
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The tpm is formed using the following analysis.

Let Xn = the maximum of the numbers occurring in the fi rst n trials = 3, say

Then Xn + 1 = 3, if the (n + 1)th trial results in 1, 2, or 3

  = 4, if the (n + 1)th trial results in 4

  = 5, if the (n + 1)th trial results in 5

  = 6, if the (n + 1)th trial results in 6

\ P{Xn + 1 = 3/Xn = 3} = 
1 1 1 3

6 6 6 6
+ + =

 P{Xn + 1 = i/Xn = 3} = 
1

6
, when i = 4, 5, 6

Therefore, the transition probability matrix of the chain is

 P = 

1/6 1/6 1/6 1/6 1/6 1/6

0 2/6 1/6 1/6 1/6 1/6

0 0 3/6 1/6 1/6 1/6

0 0 0 4/6 1/6 1/6

0 0 0 0 5/6 1/6

0 0 0 0 0 1

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

 P
2
 = 

1 3 5 7 9 11

0 4 5 7 9 11

0 0 9 7 9 111

0 0 0 16 9 1136

0 0 0 0 25 11

0 0 0 0 0 36

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

Initial state probability distribution is p(0) = 
1 1 1 1 1 1

, , , , ,
6 6 6 6 6 6

Ê ˆ
Á ˜Ë ¯

 since all the 

values 1, 2, ..., 6 are equally likely.

 P{X2 = 6} = 

6

2 0 0

1

{ 6/ } { }
i

P X X i P X i
=

= = ¥ =Â

  = 
6

(2)
6

1

1

6
i

i

p
=
Â

  = 
1 1

(11 11 11 11 11 36)
6 36

¥ ¥ + + + + +

  = 
91

216
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Example 3

A man either drives a car or catches a train to go to offi ce each day. He never 

goes 2 days in a row by train but if he drives one day, then the next day he is 

just as likely to drive again as he is to travel by train. Now suppose that on the 

fi rst day of the week, the man tossed a fair die and drove to work if and only if 

a 6 appeared. Find (a) the probability that he takes a train on the third day, and

(b) the probability that he drives to work in the long run.

The travel pattern is a Markov chain, with state space = (train, car)

The tpm of the chain is

 P = 
0 1

1/2 1/2

T C

T

C

Ê ˆ
Á ˜Ë ¯

The initial state probability distribution is p(1) = 
5 1

,
6 6

Ê ˆ
Á ˜Ë ¯

,

since P(travelling by car) = P(getting 6 in the toss of the die)

  = 
1

6

and P(travelling by train) = 
5

6

 p
(2) = 

(1) 0 11 1 11
, ,

1/2 1/26 6 12 12
p P

Ê ˆ5Ê ˆ Ê ˆ= =Á ˜ Á ˜Á ˜Ë ¯ Ë ¯Ë ¯

 p
(3) = 

(2) 0 11 11 11 13
, ,

1/2 1/212 12 24 24
p P

Ê ˆÊ ˆ Ê ˆ= =Á ˜ Á ˜Á ˜Ë ¯ Ë ¯Ë ¯

\ P(the man travels by train on the third day) = 
11

24

Let p = (p1, p2) be the limiting form of the state probability distribution or 

stationary state distribution of the Markov chain.

By the property of p, pP = p

i.e., 1 2

0 1
( , )

1/2 1/2
p p

Ê ˆ
Á ˜Ë ¯

 = (p1, p2)

i.e., 2

1

2
p  = p1 (1)

and 1 2

1

2
p p+  = p2 (2)

Equations (1) and (2) are one and the same.

Therefore, consider (1) or (2) with p1 + p2 = 1, since p is a probability 

distribution.
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Solving, p1 = 2

1 2
and

3 3
p =

\ P{the man travels by car in the long run} = 
2

3
.

Example 4

Consider a communication system which transmits the 2 digits 0 and 1 through 

several stages. Let Xn(n ≥ 1) be the digit leaving the nth stage of the system and 

X0 be the digit entering the fi rst stage (or leaving the 0th stage). At each stage 

there is a constant probability q that the digit which enters will be transmitted 

unchanged (i.e., the digit will remain unchanged when it leaves) and the 

probability p otherwise (i.e., the digit changes when it leaves), where p + q = 

1. Write down the tpm P of the homogeneous two-state Markov chain {Xn}. 

Find Pm, P• and the conditional probability that the digit entering the fi rst stage 

is 0, given that the digit leaving the mth stage is 0. Assume that the initial state 

probability distribution is p(0) = (a, 1 – a).

State space = (0, 1); 

1State of

0 1

0
State of

1

n

n

X

q p
P X

p q

+

Ê ˆ
∫ Á ˜Ë ¯

Now, P
2 = 

q p q p

p q p q

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

  = 

2 2

2 2

2

2

p q pq

pq p q

Ê ˆ+
Á ˜

+Ë ¯

  = 

2 2 2 2

2 2 2 2

1 1
[( ) ( ) ] [( ) ( ) ]

2 2

1 1
[( ) ( ) ] [( ) ( ) ]

2 2

q p q p q p q p

q p q p q p q p

Ê ˆ+ + - + - -Á ˜
Á ˜
Á ˜+ - - + + -Ë ¯

  = 

2 2

2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

r r

r r

Ê ˆ+ -Á ˜
Á ˜
Á ˜- +Ë ¯

, where q – p = r

 P
3 = 

3 3

3 3

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

r r

r r

Ê ˆ+ -Á ˜
Á ˜
Á ˜- +Ë ¯
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The values of P2 and P3 make us guess that

 P
m = 

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

m m

m m

r r

r r

Ê ˆ+ -Á ˜
Á ˜
Á ˜- +Ë ¯

It is correct as can be proved by induction as follows:

 P
m + 1 = 

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

m m

m m

r r
q p

p q
r r

Ê ˆ+ -Á ˜Ê ˆ
Á ˜Á ˜Ë ¯ Á ˜- +Ë ¯

  = 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

m m m m

m m m m

q q p p q q p p
r r r r

p p q q p p q q
r r r r

Ê ˆ+ + - - + +Á ˜
Á ˜
Á ˜+ + - - + +Ë ¯

  = 

1 1

1 1

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

m m

m m

r r

r r

+ +

+ +

Ê ˆ+ -Á ˜
Á ˜
Á ˜- +Ë ¯

\ P
m = 

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

m m

m m

r r

r r

Ê ˆ+ -Á ˜
Á ˜
Á ˜- +Ë ¯

, where m is a positive integer ≥ 1

 p
• = 

1 1

2 2
lim ( )

1 1

2 2

m

m
P

Æ•

Ê ˆ
Á ˜

= Á ˜
Á ˜
Ë ¯

 since |r| < 1

Now, P{Xm = 0, X0 = 0} = P{Xm = 0/X0 = 0} × P{X0 = 0}

      = 
( )
00
m

ap

and P{Xm = 0, X0 = 1} = 
( )
10

m
bp  where b = 1 – a

Now, P{X0 = 0/Xm = 0} = 0 0

( ) ( )
0 00 0 10

{ 0} { 0/ 0}

{ 0} { 1}

m

m m

p X P X X

p X p p X P

= ¥ = =
= ¥ + = ¥

  (by Bayes’ theorem)

  = 

1 1

2 2

1 1 1 1

2 2 2 2

m

m m

a r

a r b r

Ï ¸+Ì ˝
Ó ˛

Ï ¸ Ï ¸+ + -Ì ˝ Ì ˝
Ó ˛ Ó ˛
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  = 
(1 )

1 ( )

m

m

a r

a b r

+
+ -

, where b = 1 – a

Example 5

A gambler has Rs. 2/-. He bets Re. 1 at a time and wins Re. 1 with probability 

1/2. He stops playing if he loses Rs. 2 or wins Rs. 4 (a) What is the tpm of the 

related Markov chain? (b) What is the probability that he has lost his money at 

the end of 5 plays? (c) What is the probability that  the game lasts more than 7 

plays?

Let Xn represent the amount with the player at the end of the nth round of the play.

State space of {Xn} = (0, 1, 2, 3, 4, 5, 6), as the game ends, if the player loses 

all the money (Xn = 0) or wins Rs. 4, i.e., has Rs. 6 (Xn = 6). The tpm of the 

Markov chain is

 P = 

0 1 2 3 4 5 6

0 1 0 0 0 0 0 0

1 10 0 0 0 01 2 2

1 10 0 0 0 02 2 2

1 10 0 0 0 03
2 2

1 10 0 0 0 04 2 2

1 15 0 0 0 0 0
2 2

0 0 0 0 0 0 16

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜Á ˜Ë ¯

Note  This is called a random walk with absorbing barriers at 0 and 6, since the chain 

cannot come out of  the states 0 and 6, once it has entered them.

The initial probability distribution of {Xn} is p(0) = (0, 0, 1, 0, 0, 0, 0), as the 

player has got Rs. 2/- to start with.

 p
(1) = p(0)

P = (0, 1/2, 0, 1/2, 0, 0, 0)

 p
(2) = p(1)

P = (1/4, 0, 1/2, 0, 1/4, 0, 0)

 p
(3) = p(2)

P = (1/4, 1/4, 0, 3/8, 0, 1/8, 0)

 p
(4) = p(3)

P = (3/8, 0, 5/16, 0, 1/4, 0, 1/16)

 p
(5) = p(4)

P = (3/8, 5/32, 0, 9/32, 0, 1/8, 1/16)

P{the man has lost his money at the end of 5 plays}

  = P{X5 = 0} = the entry corresponding to state 0 in p(5)

       = 3/8

Again, p
(6) = p(5) 

P = 
29 7 13 1

, 0, , 0, , 0,
64 32 64 8

Ê ˆ
Á ˜Ë ¯



7.66 Probability, Sta  s  cs and Random Processes

 p
(7) = p(6) 

P = 
29 7 27 13 1

, , 0, , 0, ,
64 64 128 128 8

Ê ˆ
Á ˜Ë ¯

P{the game lasts more than 7 rounds} = P{the system is neither in state 0 nor 

in 6 at the end of the seventh round}

  = P{X7  = 1, 2, 3, 4 or 5}

  = 
7 27 13 27

0 0
64 128 128 64

+ + + + =

Example 6

There are 2 white marbles in urn A and 3 red marbles in urn B. At each step of 

the process, a marble is selected from each urn and the 2 marbles selected are 

interchanged. Let the state ai of the system be the number of red marbles in A 

after i changes. What is the probability that there are 2 red marbles in A after 3 

steps? In the long run, what is the probability that there are 2 red marbles in urn 

A?

State space of the chain {Xn} = (0, 1, 2), since the number of balls in the urn 

A is always 2.

Let the tpm of the chain {Xn} be

 P = 

00 01 02

10 11 12

20 21 22

0 1 2

0

1

2

p p p

p p p

p p p

Ê ˆ
Á ˜
Á ˜Á ˜Ë ¯

p00 = 0 (since the state cannot remain at 0 after interchange of marbles)

p02 = p20 = 0 (since the number of red marbles in urn cannot increase or 

decrease by 2 in one interchange)

To start with, A contains 0 red marble. After an interchange. A will contain

1 red marble (and 1 white marble) certainly.

\ p01 = 1

Let Xn = 1, i.e., A contains 1 red marble (and 1 white marble) and B contains 

1 white and 2 red marbles.

Then Xn + 1 = 0, if A contains 0 red marble (and 2 white marbles) and B contains 

3 red marbles, i.e., if 1 red marble is chosen from A and 1 white marble is chosen 

from B and interchanged.

\ P{Xn + 1 = 0/Xn = 1} = 10

1 1

2 3 6
p

1
= ¥ =

Similarly, we can fi nd p12 = 
2 1

2 3 3

1
¥ =

Since P is a stochastic matrix,

 p10 + p11 + p12 = 1
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\ p11 = 
1

2

Similarly, p21 = 
2

3
 and p22 = 1 – (p20 + p21) = 

1

3

\ P = 

0 1 0

1/6 1/2 1/3

0 2/3 1/3

Ê ˆ
Á ˜
Á ˜
Ë ¯

Now, p(0) = (1, 0, 0), as there is no red marble in A in the beginning.

 p
(1) = p(0) P = (0, 1, 0)

 p
(2) = p(1) P = 

1 1 1
, ,

6 2 3

Ê ˆ
Á ˜Ë ¯

 p
(3) = p(1) P = 

1 23 5
, ,

12 26 18

Ê ˆ
Á ˜Ë ¯

\ P{there are 2 red marbles in A after 3 steps}

  = P{X3 = 2} = (3)
2

5

18
p =

Let the stationary probability distribution of the chain be p = (p0, p1, p2).

By the property of p, pP = p and p0 + p1 + p2 = 1

i.e., 
0 1 2

0 1 0

1/6 1/2 1/3

0 2/3 1 3

,

/

,p p p

Ê ˆ
Á ˜
Á ˜
Ë ¯

 = (p0, p1, p2)

i.e., 
1

1

6
p  = p0

 
0 1 2

1 2

2 3
p p p+ +  = p1

 1 2

1 1

3 3
p p+  = p2

and p1 + p2 + p3 = 1

Solving, p0 = 1 2

1 6 3
, ,

10 10 10
p p= =

\ P{there are 2 red marbles in A in the long run} = 0.3

Example 7

Find the nature of the states of the Markov chain with the tpm

 P = 

0 1 2

0 0 1 0

1 1/2 0 1/2

2 0 1 0

Ê ˆ
Á ˜
Á ˜
Ë ¯
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 P
2 = 

1/2 0 1/2

0 1 0

1/2 0 1/2

Ê ˆ
Á ˜
Á ˜
Ë ¯

; p3 = P

\ p
4 = p2

and so on. In general, P
2n = P2, P2n + 1 = P

We note that 
(2) (1) (2)
00 01 020, 0, 0p p p> > >

  
(1) (2) (1)
10 11 120, 0, 0p p p> > >

  
(2) (1) (2)
20 21 220, 0, 0p p p> > >

Therefore, the Markov chain is irreducible.

Also (2) (4) (6)... 0ii ii iip p p= = > , for all i, all the states of the chain are periodic, 

with period 2.

Since the chain is fi nite and irreducible, all its states are nonnull persistent. All 

states are not ergodic.

Example 8

Three boys A, B and C are throwing a ball to each other. A always throws the ball 

to B and B always throws the ball to C, but C is just as likely to throw the ball 

to B as to A. Show that the process is Markovian. Find the transition matrix and 

classify the states.

The transition probability matrix of the process {Xn} is given below:

1

State of

0 1 0

State of 0 0 1 , say

1/2 1/2 0

n

n

X

A B C

A

X B P

C

-

Ê ˆ
Á ˜ ∫
Á ˜
Ë ¯

States of Xn depend only on states of Xn – 1, but not on states of Xn – 2, Xn – 3, ..., 

or earlier states. Therefore, {Xn} is a Markov chain.

Now  P
2 = 

3

0 0 1 1/2 1/2 0

1/2 1/2 0 ; 0 1/2 1/2

0 1/2 1/2 1/4 1/4 1/2

P

Ê ˆ Ê ˆ
Á ˜ Á ˜=
Á ˜ Á ˜
Ë ¯ Ë ¯

(3) (2) (2) (2) (2)
11 13 21 22 330, 0, 0, 0, 0p p p p p> > > > >  and all other (1) 0ijp > .

Therefore, the chain is irreducible.

 P
4 = 

5 6

0 1/2 1/2 1/4 1/4 1/2 1/4 1/2 1/4

1/4 1/4 1/2 ; 1/4 1/2 1/4 ; 1/4 3/8 1/2

1/4 1/2 1/4 1/8 3/8 1/2 1/8 3/8 3/8

P P

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜= =
Á ˜ Á ˜ Á ˜
Ë ¯ Ë ¯ Ë ¯

and so on.
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We note that (2) (3) (5) (6), , ;ii ii ii iip p p p  etc. are > 0 for i = 2, 3, and GCD of 2, 3, 5, 

6, ... = 1.

Therefore, the states 2 and 3 (i.e., B and C) are periodic with period 1, i.e., 

aperiodic.

We note that 
(3) (5) (6)
11 11 11, ,p p p  etc. are > 0 and GCD of 3, 5, 6, ... = 1

Therefore, the state 1 (i.e., state A) is periodic with period 1, i.e., aperiodic.

Since the chain is fi nite and irreducible, all its states and nonnull persistent. 

Moreover all the states are ergodic.

Exercise 7(C)

Part-A (Short-answer Questions)

 1. Defi ne a Markov process.

 2. Defi ne a Markov chain and give an example of a Markov chain.

 3. Prove that the Poisson process is a Markov process.

 4. When is a Markov chain called homogeneous?

 5. When is a homogeneous Markov chain said to be regular?

 6. Defi ne transition probability matrix of a Markov chain.

 7. What is a stochastic matrix? When is it said to be regular?

 8. Prove that the tpm of a Markov chain is a stochastic matrix.

 9. Defi ne n-step transition probability in a Markov chain.

 10. State the Chapman-Kolmogorov theorem.

 11. What do you mean by probability distribution of a Markov chain?

 12. When is a Markov chain completely specifi ed?

 13. What is meant by steady-state distribution of a Markov chain?

 14. Write down the relation satisfi ed by the steady-state distribution and the 

tpm of a regular Markov chain.

 15. If the tpm of a Markov chain is 
0 1

1/2 1/2

Ê ˆ
Á ˜Ë ¯

 fi nd the steady-state 

distribution of the chain.

 16. When is a Markov chain said to be irreducible or ergodic?

 17. Prove that the matrix 

0 1 0

0 0 1

1/2 1/2 0

Ê ˆ
Á ˜
Á ˜
Ë ¯

 is the tpm of an irreducible Markov 

chain.

 18. What do you mean by an absorbing Markov chain. Give an example.

 19. If the initial state probability distribution of a Markov chain is p(0) = 

5 1
,

6 6

Ê ˆ
Á ˜Ë ¯

 and the tpm of the chain is 
0 1

1/2 1/2

Ê ˆ
Á ˜Ë ¯

, fi nd the probability 

distribution of the chain after 2 steps.
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Part-B

 20. The tpm of a Markov chain with three states 0, 1, 2 is

 P = 

3/4 1/4 0

1/4 1/2 1/4

0 3/4 1/4

Ê ˆ
Á ˜
Á ˜
Ë ¯

  and the initial state distribution of the chain is 0

1
{ } , 0,1, 2.

3
P X i i= = =

  Find (i) P{X2 = 2}, and (ii) P{X3 = 1, X2 = 2, X1 = 1, X0 = 2}.

 21. A man is at an integral point on the x-axis between the origin and the 

point 3. He takes a unit step to the right with probability 
1

3
 or to the left 

with probability 2/3, unless he is at the origin, where he takes a step to 

the right to reach the point 1 or is at the point 3, where he takes a step to 

the left to reach point 2. What is the probability that (i) he is at the point 

1 after 3 walks? and (ii) he is at the point 1 in the long run?

 22. Suppose that the probability of a dry day (state 0) following a rainy day 

(state 1) is 
1

3
 and that the probability of a rainy day following a dry day 

is 
1

2
. Given that May 1 is a dry day, fi nd the probability that (i) May 3 

is also a dry day, and (ii) May 5 is also a dry day.

 23. A gambler has Rs. 3/-. At each play of the game, he loses Re. 1 with 

probability 
3

4
, but wins Rs. 2/- with probability 

1

4
. He stops playing 

if he has lost his initial amount of Rs. 3/- or he has won at least Rs. 3/-. 

Write down the tpm of the associated Markov chain. Find the probability 

that there are at least 4 rounds to the game.

 24. A communication source can generate 1 of 3 possible messages 1, 2 

and 3. Assume that the generation can be described by a homogeneous 

Markov chain with the following transition probability matrix

Current message Next message

1 2 3

1 0.5 0.3 0.2

2 0.4 0.2 0.4

3 0.3 0.3 0.4

  and the initial state probability distribution p(0) = (0.3, 0.3, 0.4). Find 

p
(3).

 25. Assume that the weather in a certain locality can be modeled as the 

homogeneous Markov chain whose transition probability matrix is given 

below.
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Today’s weather Tomorrow’s weather

Fair Cloudy Rainy

Fair 0.8 0.15 0.05

Cloudy 0.5 0.3 0.2

Rainy 0.6 0.3 0.1

  If the initial state distribution is given by p(0) = (0.7, 0.2, 0.1), fi nd p(2) 

and ( )lim n

n
p

Æ•
.

 26. A fair coin is tossed until 3 heads occur in a row. Let Xn be the sequence 

of heads ending at the nth trial. What is the probability that there are at 

least 8 tosses of the coin?

 27. There are 2 white marbles in urn A and 4 red marbles in urn B. At each 

step of the process, a marble is selected from each urn and the 2 marbles 

selected are interchanged. The state of the related Markov chain is the 

number of red balls in A after the interchange. What is the probability 

that there are 2 red balls in urn A (i) after 3 steps, and (ii) in the long 

run?

 28. A student’s study habits are as follows: If he studies one night, he is 70% 

sure not to study the next night. On the other hand, if he does not study 

one night, he is 60% sure not to study the next nights as well. In the long 

run, how often does he study?

 29. A salesman’s territory consists of 3 cities A, B and C. He never sells in 

the same city on successive days. If he sells in city A, then the next day 

he sells in B. however, if he sells either in B or C, then the next day he 

is twice as likely to sell in city A as in the other city. How often does he 

sell in each of the cities in the steady state?

 30. A housewife buys 3 kinds of cereals, A, B and C. She never buys the 

same cereal in successive weeks. If she buys cereal A, the next week she 

buys cereal B. However, if she buys B or C, the next week she is 3 times 

as likely to buy A as the other cereal. In the long run, how often she buy 

each of the three cereals?

 31. Two boys B1, B2 and two girls G1, G2 are throwing a ball from one to 

another. Each boy throws the ball to the other boy with probability 1/2 

and to each girl with probability 1/4. On the other hand, each girl throws 

the ball to each boy with probability 1/2 and never to the other girl. In 

the long run, how often does each receive the ball?

 32. A gambler’s luck follows a pattern. If he wins a game, the probability 

of his winning the next game is 0.6. However if he loses a game, the 

probability of his losing the next game is 0.7. There is an even chance 

that the gambler wins the fi rst game. What is the probability that he wins 

(i) the second game, (ii) the third game, and (iii) in the long run?
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 33. The three-state Markov chain is given by the tpm

 P = 

0 2/3 1/3

1/2 0 1/2

1/2 1/2 0

Ê ˆ
Á ˜
Á ˜
Ë ¯

  Prove that the chain is irreducible and all the states are aperiodic and 

non-null persistent. Find also the steady-state distribution of the chain.

 34. A man tosses a fair coin until 3 heads occur in a row. Let Xn = k, if at 

the nth trial, the last tail occurred at the (n – k)th trial; i.e., Xn denotes the 

longest string of heads ending at the nth trial. Show that the process is 

Markovian. Find the transition matrix and classify the states.

ANSWERS

Exercise 7(A)

 3. DC meter measures the mean of the input process;

  \ output of the dc meter = 0 V

  True rms metre measure the SD of the input process.

  \ output of the true rms meter = 2 V

 5. Gaussian process is used to model and analyse the effects of thermal 

noise in electronic circuits used in communication system.

 9. Square law detector process, Full-wave linear detector process, Half-

wave linear detector process and Hard limiter process.

 18. X(t) = Rx(t) cos {w0 ± qx(t)}

 19. In communication systems, information bearing signals are often 

narrow-band Gaussian processes. When such signals are viewed on an 

oscilloscope, they appear like a sine wave with slowly varying amplitude 

and phase. Hence, the representation.

 21. Rx(t) (envelope) follows a Rayleigh distribution and qx(t) (phase) follows 

a uniform distribution in (0, 2p).

 23. They are low pass processes.

 24. A zero mean WSS process {X(t)} can be represented in the form X(t) 

= I(t) cos w0t – Q(t) sin w0t. This kind of representation is called the 

quadrature representation.

 25. WSS processes with zero mean can be represented in the quadrature 

form.

 26. The quadrature representation is useful in communication theory, only 

when {X(t)} is a zero mean, WSS, band pass process.

 30. The graph of SNN(w) is a straight line parallel to the w-axis.

 31. SNN(w) is a constant for all values of w, i.e., SNN(w) contains all 

frequencies in equal amount. White noise is called so in analogy to white 

light which consists of all colours.
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 32. SYY(w) = 20 | ( ) | ,
2

N
H w  where {Y(t)} is the output process and H(w) is 

the power transfer function.

 33. 0 ( )
2

N
F d t

Ï ¸
Ì ˝
Ó ˛

 = 0 0( )
2 2

i tN N
e d

wd t t
•

-

-•

=Ú

  \  RNN(t) = 1 0 0 ( )
2 2

N N
F d t- =

 34. E{N
2(t)} = RNN(0) = 0( ) d d

2
NN

N
S w w w

• •

-• -•

= Æ •Ú Ú

 35. Since ( )d ,NNS w w
•

-•

Æ •Ú  it is not physically realisable. If the frequency 

band is taken to be fi nite, say (–wB, wB), then ( ) d
B

B

NNS

w

w

w w
-
Ú  = N0 wB < •.

Thus, the spectral density becomes realisable.

 38. SNN(w) = 
0 , in | |

2

0, elsewhere

B

N
w w

Ï
£Ô

Ì
ÔÓ

  RNN(t) = 0 0 0

0

sin1
d cos d

2 2 2 2

B B

B

i BN N N
e

w w
tw

w

tw
w tw w

p p p t-

= =Ú Ú

 39. E{N
2(t)} = RNN(0) = 0 0

0

sin
lim

2 2

B BB

B

N N

t

w wtw

p tw pÆ

Ê ˆ
=Á ˜Ë ¯

 42. Filtering in a stable, linear, time-invariant system is done by selecting 

carefully the power transfer function H(w) so that certain undesired 

spectral components of the input signal are removed or fi ltered out.

 43. (i) 0.309; (ii) 0.4

 46. 
24 4 /81

4 ;8(1 ); ;0.6915;
2 2

z
e e e z

p

- - -+ - • < < •

  

2 4 2

88

1 1
exp ( 2 ) ,

8(1 )8 1
z e zw z

ee
w w

p

-
--

È ˘
- - + - • < < •Í ˙

-Î ˚-

 48. 0, 2, 4 volts

 49. 

2

12

{ ( ) }
( ),

(0)

xx x

x x

R
X t

R

t m

m

-
-

 where t = |t1 – t2|

 50. (i)  Z(t) is a Gaussian RV for all t and hence {Z(t)} is a Gaussian process.

  (ii)  f(z1, z2) = 
2 2
1 1 2 222

1 1
exp 2

2(1 )2 1
z rz z z

rrp

Ï ¸
- - +Ì ˝

-Ó ˛-
where r = cos w(t1 – t2)
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  (iii) Yes   (iv) Yes  (v) Rzz(t)·z(t1) where t = |t1 – t2|

 55. 0 ( )
2

N
d t

 57. (i) 0 sin

2

B B

B

N w w t

p w t

Ê ˆ
Á ˜Ë ¯

 (ii) 0
0

sin
cos

2

B B

B

N w w t
w t

p w t

Ê ˆ
Á ˜Ë ¯

 58. 2.3% of the time

 60. ( )X t
 

 = A sin w0t – B cos w0t

 62. 0 0; , 0
4 4

N N
e

ata a
t ≥

Exercise 7(B)

 1. An ensemble of discrete sets of points from the time domain is called 

point process, e.g. the times at which components fail in a large system; 

the times at which phone calls arrive at an exchange.

 11. P{X(t) = k} = 
( )

!

t k
e t

k

l l-

, where l = 2; P{X(1) = 0} = e–2

 12. e
–lt (1 – eiw)

 13. 0.1755

 14. (i) 0.0504 (ii) 0.0054 (iii) 0.7769 (iv) 0.5941

 15. 0.1144

 16. (i) e–12 (ii) 1 – e–3(t – 12), t ≥ 12

 17. 0.9972

 19. 0.9707

 20. 6 minutes

 21. fT(t) = 
1

, 0
1

k k t
t e

t
k

ll - -◊
>

-

 23. (i) 30 (ii) 60

 24. (i) 30 (ii) 30

Exercise 7(C)

 7. A square matrix, in which the sum of all the elements of each row is 1, 

is called a stochastic matrix. A stochastic matrix P is said to be regular 

if all the entries of Pm (for some positive integer m) are positive.

 12. A Markov chain is completely specifi ed when the initial probability 

distribution and the tpm are given.

 14. If p = (p1, p2, ..., pn) is the steady-state distribution of the chain whose 

tpm is the nth order square matrix P, then pP = p.
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 15. If (p1, p2) is the steady-state distribution of the chain, (p1, p2). 

0 1

1 1

2 2

Ê ˆ
Á ˜
Á ˜Ë ¯

 

  = 1 2 2 1 1 2 2

1 1
( , ); and

2 2
p p p p p p p= + = , i.e., 2p1 = p2. Also p1 + p2 = 1

  \ p1 = 2

1 2
,

3 3
p = .

 18. A state i of a Markov chain is said to be an absorbing state if pii = 1, i.e., 

if it is impossible to leave it.

  A Markov chain is said to be absorbing if it has at least one absorbing 

state.

  Example: 

1 2 3 4

1 1 0 0 0

2 1/2 0 1/2 0

3 0 1/2 0 1/2

4 0 0 0 1

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

 19. p
(1)

 = p(0)
P = P(2) = p(1)

P = 
11 13

,
14 24

Ê ˆ
Á ˜Ë ¯

.

 20. 1/6; 3/64

 21. P = 

0 1 0 0

2/3 0 1/3 0

0 2/3 0 1/3

0 0 1 0

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

  (i) 
22

27
 (ii) 

3

7

 22. (i) 
5

12
 (ii) 

173

432

 23. 
27

64

 24. (∑ 4083, ∑ 2727, ∑ 3190)

 25. (∑ 7245, ∑ 1920, ∑ 0835); 
114 30 13

, ,
157 157 157

Ê ˆ
Á ˜Ë ¯

 26. 81/128

 27. 3/8; 2/5

 28. 4/11 of the nights
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 29. P = 

0 1 0

2/3 0 1/3

2/3 1/3 0

Ê ˆ
Á ˜
Á ˜
Ë ¯

;  (40%, 45%, 15%)

 30. P = 

0 1 0
15 16 4

3/4 0 1/4 ; , ,
35 35 35

3/4 1/4 0

Ê ˆ
Ê ˆÁ ˜ Á ˜Á ˜ Ë ¯

Ë ¯

 31. 
1 1 1 1

, , ,
3 3 6 6

Ê ˆ
Á ˜Ë ¯

 32. 
9 87 3

, ,
20 200 7

 33. 
9 10 8

, ,
27 27 27

Ê ˆ
Á ˜Ë ¯

 34. 

1

0 1 2 3

0 1/2 1/2 0 0

1 1/2 0 1/2 0

2 1/2 0 0 1/2

3 0 0 0 1

n

n

X

X

+

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

  The chain is not irreducible. State 3 is absorbing and other states are 

aperiodic.



T
here are many situations in daily life when a  queue is formed. For exam  ple, 

machines waiting to be repaired, patients waiting in a Doctor’s room,   cars 

waiting at a traffi c signal and passengers waiting to buy tickets in counters 

form queues. Queue is formed if the service required by the customer (machine, 

patient, car, etc.) is not immediately available, that is, if the current demand for a 

particular service exceeds the capacity to provide the service.

 Queues may be decreased in size or prevented from forming by providing 

additional service facilities which results in a drop in the profi t. On the other 

hand, excessively long queues may result in lost sales and lost customers. Hence 

the problem of interest is how to achieve a balance between the cost associated 

with long waiting (queues) and the cost associated with the prevention of waiting 

in order to maximise the profi ts. As queue ing theory provides an answer to this 

problem, it has become a topic of interest. Before we consider the solutions 

of queueing problems, we shall consider the general framework of a queueing 

system.

Although there are many types of queueing systems, all of them can be 

classifi ed and described according to the following char acteristics:

1. The  Input (or Arrival)  Pattern

The input describes the manner in which the customers arrive and join the 

queueing system. It is not possible to observe and control the actual moment 

of arrival of a customer for service. Hence the number of arrivals in one time 

period or the interval between successive arrivals is not treated as a constant, but 

a random variable. So the mode of arrival of customers is expressed by means 

of the probability distribution of the number of arri vals per unit of time or of the 

inter-arrival time.

We shall mostly deal with only those queueing systems in which the number 

of arrivals per unit of time has a poisson distribution with mean l. In this case, 

the time between consecutive arrivals has an exponential distribution with 

Chapter 8
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mean 
1

l
 [Refer to Property 4 of the poisson process discussed in the previous 

Chapter 7].

Further the input process should specify the number of queues that are 

permitted to form, the maximum queue length and the maximum number of 

customers requiring service, viz., the nature of the source (fi nite or infi nite) from 

which the customers emanate.

2. The  Service Mechanism (or Pattern)

The mode of service is represented by means of the probability distribution of 

the number of customers serviced per unit of time or of the inter-service time. 

We shall mostly deal with only those queueing systems in which the number of 

customers serviced per unit of time has a Poisson distribution with mean m or 

equivalently the inter-service time (viz. the time to complete the service for a 

custo mer) has an exponential distribution with mean 
1

m
.

Further the service process should specify the number of servers and the 

arrangement of servers (in parallel, in series, etc.), as the behaviour of the 

queueing system depends on them also. The following fi gures represent the 

framework of queueing systems in which only one queue is permitted to form:

Fig. 8.1 Single server queueing system

 

Fig. 8.2 Multiple servers (in parallel) queueing system

 

Fig. 8.3 Multiple servers (in series) queueing system
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3. The  Queue Discipline

The queue discipline specifi es the manner in which the customers form the queue 

or equivalently the manner in which they are selected for service, when a queue 

has been formed. The most common discipline is the FCFS (First Come First 

Served) or FIFO (First In First Out) as per which the customers are served in the 

strict order of their arrival. If the last arrival in the system is served fi rst, we have 

the LCFS or LIFO (last in First Out) discipline. If the service is given in random 

order, we have the SIRO discipline. In the queueing systems which we deal with, we 

shall assume that service is provided on the FCFS (First Come First Served) basis.

Symbolic Representation of a  Queueing Model

Usually a queueing model is specifi ed and represented symboli cally in the form 

(a/b/c):(d/e), where a denotes the type of distribution of the number of arrivals 

per unit time, b the type of distribution of the service time, c the number of 

servers, d the capacity of the system, viz., the maximum queue size and e the 

queue discipline.

Accordingly, the fi rst four models which we will deal with will be denoted 

by the symbols (M/M/1):(•/FIFO), (M/M/s): (•/FIFO), (M/M/1): (k/FIFO) and 

(M/M/s): (k/FIFO).

In the above symbols, the letter ‘M’ stands for Markov’ indicating that the 

number of arrivals in time t and the number of complet ed services in time t 

follow Poisson process which is a continu ous time Markov chain.

Difference Equations Related to  Poisson Queue 

Systems

If the characteristics of a queueing system (such as the input and output 

parameters) are independent of time or equivalently if the behaviour of the 

system is independent of time, the system is said to be in  steady-state. Otherwise 

it is said to be in  transient-state.

Let Pn(t) be the probability that there are n customers in the system at time 

t (n > 0). Let us fi rst derive the differential equation satisfi ed by Pn(t) and then 

deduce the difference equa tion satisfi ed by Pn(probability of n customers at any 

time) in the steady-state.

Let ln be the average arrival rate when there are n customers in the system 

(both waiting in the queue and being served) and let mn be the average service 

rate when there are n customers in the system.

Note  The system being in steady-state does not mean that the arrival rate and service rate 

are independent of  the number of  customers in the system.

Now, Pn(t + Dt) is the probability of n customers at time t + Dt.
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The presence of n customers in the system at time t + Dt can happen in any one 

of the following four mutually exclusive ways:

 (i) Presence of n customers at t and no arrival or departure during Dt time.

 (ii) Presence of (n – 1) customers at t and one arrival and no departure during 

Dt time.

 (iii) Presence of (n + 1) customers at t and no arrival and one departure during 

Dt time.

 (iv) Presence of n customers at t and one arrival and one depar ture during Dt 

time (since more than one arrival/departure during Dt is ruled out).

\ Pn(t + Dt) =  Pn(t) (1 – ln Dt) (1 - mn Dt) + Pn – 1(t) ln–1Dt (1– mn – 1 Dt) 

+  Pn + 1(t) (1 – ln + 1 Dt) mn + 1Dt + Pn(t) ◊ ln Dt ◊ mn Dt

[since P(an arrival occurs during Dt time) = l Dt, etc.]

i.e.,  Pn(t + Dt) = Pn(t) – (ln + mn) Pn(t) Dt + ln – 1 Pn – 1(t) Dt

  + mn + 1 Pn + 1 (t), Dt, on omitting terms containing (Dt)2 which is 

  negligibly small.

\ 
+ D -

D
( ) ( )n nP t t P t

t
  = ln – 1 Pn – 1 (t) – (ln + mn) Pn(t) + mn + 1 Pn + 1(t) (1)

Taking limits on both sides of (1) as Dt Æ 0, we have

 Pn¢(t) = ln – 1Pn–1(t) – (ln + mn) Pn(t) + mn + 1 Pn + 1(t) (2)

Equation (2) does not hold good for n = 0, as Pn – 1(t) does not exist. Hence 

we derive the differential equation satisfi ed by P0(t) independently. Proceeding 

as before,

 P0(t + Dt) = P0(t) (1 – l 0 Dt) + P1(t) (1 – l1 Dt) m1 Dt, 

[by the possibilities (i) and (iii) given above and

as no depar ture is possible when n = 0]

\  + D -
D

0 0( ) ( )P t t P t

t
  = – l0P0(t) + m1P1(t) (3)

Taking limits on both sides of (3) as Dt Æ 0, we have 

 P0¢ (t) = – l0 P0(t) + m1 P1(t) (4)

Now, in the steady-state, Pn(t) and P0(t) are independent of time and hence 

Pn¢(t) and P0¢(t) become zero. Hence, the differential equations (2) and (4) reduce 

to the difference equations

 ln – 1 Pn – 1 – (ln + mn) Pn + mn + 1 Pn + 1 = 0 (5)

and  – l0 P0 + m1 P1 = 0 (6)

Values of P0 and Pn for Poisson Queue Systems

From equation (6) derived above, we have

 P1 = 0
0

1

P
l

m
  (7)
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Putting n = 1 in (5) and using (7), we have

 m2P2 = (l1 + m1) P1 – l0P0

  = (l1 + m1) 
0

1

l

m
P0 – l0 P0 =  0 1

1

l l

m
P0

\  P2 = 0 1
0

1 2

P
l l

m m
 (8)

Successively putting n = 2, 3, … in (5) and proceeding similarly, we can get  

P3 = 0 1 2

1 2 3

l l l

m m m
P0, etc.

Finally,  Pn = 
0 1 2 1

1 2 3

n

n

l l l l

m m m m

- 

 

. P0, for n = 1, 2, … (9)

Since the number of customers in the system can be 0 or 1 or 2 or 3, etc., 

which events are mutually exclusive and exhaustive, we have 

•

=

=Â
0

1.n

n

P

i.e.,   P0 + 
0 1 1

1 1 2

n

n n

l l l

m m m

•
-

=

Ê ˆ
Á ˜Ë ¯

Â
 

 

P0 = 1

\  P0 = 
0 1 1

1 21

1

1
n

nn

l l l

m m m

•
-

=

Ê ˆ
+ Á ˜Ë ¯

Â
 

 

 (10)

Equations (9) and (10) will be used to derive the important characteristics of 

the four queueing models.

Characteristics of Infi nite Capacity, Single Server 

Poisson Queue Model I [M/M/1): (•/FIFO) model], 

when ln = l and mn == m (l << m)

 1. Average number Ls of customers in the system: Let N denote the number 

of customers in the queueing system (i.e., those in the queue and the one 

who is being served).

  N is a discrete random variable, which can take the values 0, 1, 2, …, • 

such that P(N = n) = Pn = 

n
l

m

Ê ˆ
Á ˜Ë ¯

 
P0, from equation (9) of the previous 

discussion.

  From equation (10), we have

 P0 = 

1

1

1

n

n

l

m

•

=

Ê ˆ
+ Á ˜Ë ¯Â

 = 

0

1
n

n

l

m

•

=

Ê ˆ
Á ˜Ë ¯Â

  = 1 –  
l

m
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\ Pn = 1

n
l l

m m

Ê ˆ Ê ˆ
-Á ˜ Á ˜Ë ¯ Ë ¯

Now, Ls = E(N) = 
•

=
Â

0n

n  ¥ Pn

  = 
l l l

m m m

-•

=

Ê ˆ Ê ˆ Ê ˆ
-Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Â

1

1

1

n

n

n

  = 
l l l

m m m

-
Ê ˆ Ê ˆ

- -Á ˜ Á ˜Ë ¯ Ë ¯

2

1 1 , by binomial summation

  = 

1

l

m

l

m
-

 = 
l

m l-
 (1)

 2. Average number Lq of customers in the queue or Average length of the 

queue:

  If N is the number of customers in the system, then the number of 

customers in the queue is (N – 1)

\ Lq = E(N – 1) = 

•

=

-Â
1

( 1) n

n

n P

  = 
l l

m m

•

=

Ê ˆ Ê ˆ
- -Á ˜ Á ˜Ë ¯ Ë ¯Â

1

1 ( 1)

n

n

n

  = 
l l l

m m m

-•

=

Ê ˆ Ê ˆ Ê ˆ
- -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Â

2 2

2

1 ( 1)

n

n

n

  =  
l l l

m m m

-
Ê ˆ Ê ˆ Ê ˆ

- -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

2 2

1 1

  = 

l

m l

l m m l

m

Ê ˆ
Á ˜Ë ¯

=
--

2

2

( )
1

 (2)

 3. Average number Lw of customers in non-empty queues

 Lw = E{(N – 1)/(N – 1) > 0}, since the queue is non-empty

  = 
-

- >
( 1)

( 1 0)

E N

P N
 =  

2

2

1

( )
n

n

P

l

m m l •

=

¥
-

Â
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  = ( )
2

2

1

1

n

n

l

m m l l l

m m

•

=

¥
- Ê ˆ Ê ˆ

-Á ˜ Á ˜Ë ¯ Ë ¯Â

  = ( )
2

2

0

1

1

n

n

l

m m l l l l

m m m

•

=

¥
- Ê ˆ Ê ˆ Ê ˆ

-Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Â

  = 
m m

m l m ll l

m m

-¥ =
- -Ê ˆ Ê ˆ

- -Á ˜ Á ˜Ë ¯ Ë ¯

1

1

1 1

 (3)

 4. Probability that the number of customers in the system exceeds k

 P(N > k) = 
l l

m m

• •

= + = +

Ê ˆ Ê ˆ
= -Á ˜ Á ˜Ë ¯ Ë ¯Â Â

1 1

1

n

n

n k n k

P

  =  

( )1 1

1

1

k n k

n k

l l l

m m m

+ - +•

= +

Ê ˆ Ê ˆ Ê ˆ
-Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Â

  = 

1

0

1

k n

n

l l l

m m m

+ •

=

Ê ˆ Ê ˆ Ê ˆ
◊ -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Â

  = 

1 1

1 1

k
l l l

m m m

+ -
Ê ˆ Ê ˆ Ê ˆ

◊ - -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
 = 

1k
l

m

+
Ê ˆ
Á ˜Ë ¯

 (4)

 5. Probability density function of the waiting time in the system

  Let Ws be the continuous random variable that represents the waiting 

time of a customer in the system, viz, the time between arrival and 

completion of service.

  Let its pdf be f(w) and let f(w/n) be the density function of Ws subject to 

the condition that there are n customers in the queue ing system when the 

customer arrives,

Then f(w) = 

•

=
Â

0

( / )
n

f w n  Pn (5)

  Now, f(w/n) =  pdf of sum of (n + 1) service times (one part-service time 

of the customer being served + n complete service times)

  =  pdf of sum of (n + 1) independent random variables, each 

of which is exponentially distributed with parameter m

  = 
1

!

n

n

m +

e
- mw 

w
n; w > 0  which is the pdf of Erlang distribution.
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  [∵ the mgf of the exponential distribution (m) is 

1

1
t

m

-
Ê ˆ

-Á ˜Ë ¯
 and hence 

the mgf of the sum of (n + 1) independent exponential (m) variables is 
1

1

n
t

m

- +
Ê ˆ

-Á ˜Ë ¯
, which is the mgf of Erlang distribution with parameters m 

and (n + 1)] (refer to Erlang distribution in Chapter 5).

\ f(w) = 

1

0 !

n

n n

m +•

=
Â  e–mw wn 1

n
l l

m m

Ê ˆ Ê ˆ
-Á ˜ Á ˜Ë ¯ Ë ¯

, by (5)

  = me
–mw 

0

1
1

!n n

l

m

•

=

Ê ˆ
-Á ˜Ë ¯ Â  (lw)n

  = m 1
l

m

Ê ˆ
-Á ˜Ë ¯

 e–mw elw, by exponential summation

  = (m – l) e–(m – l)w (6),  which is the pdf of an expo nential 

distribution with parameter (m – l).

 6. Average waiting time of a customer in the system: 

  Ws follows an exponential distribution with parameter (m – l).

\ E(Ws) = 
1

m l-
 (7)

  (∵ the mean of an exponential distribution is the reciprocal of its 

parameter).

 7. Probability that the waiting time of a customer in the system exceeds t

 P(Ws > t) = 

•

Ú ( )d
t

f w w

  = 

•

Ú
t

 (m – l) e–(m – l)w dw

  = [– e–(m – l)w]•
t = e–(m – l) t (8)

 8. Probability density function of the waiting time Wq in the queue:

  Wq represents the time between arrival and reach of service point.

  Let the pdf of Wq be g(w) and let g(w/n) be the density function of Wq 

subject to the condition that there are n customers in the system or there 

are (n – 1) customers in the queue apart from one customer receiving 

service. Now g(w/n) = pdf of sum of n service times [one residual service 

time + (n – 1) full service times]

 = 
m

-( 1) !

n

n
 e–mw wn–1; w > 0
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\ g(w) = 
m•

= -Â
1 ( 1) !

n

n n
e

–mw wn – 1 1

n
l l

m m

Ê ˆ Ê ˆ
-Á ˜ Á ˜Ë ¯ Ë ¯

 

  = 1
l

m

Ê ˆ
-Á ˜Ë ¯

l  e–mw 

•

= -Â
1

1

( 1)!n n
 (lw)n–1

  = 
l

m
 (m – l) e–mw elw

  = 
l

m
 (m – l) e–(m – l) w; w > 0 (9)

and  g(w) = 1 – 
l

m
, when w = 0

Note  1. Wq is a continuous random variable in w > 0 and it takes the value 0 with a 

non-zero probability. 2. Wq does not follow an exponential distribution.

 9. Average waiting time of a customer in the queue

 E(Wq) = 
l

m
(m – l) 

•

Ú
0

w e–(m – l)w dw

  = 
l

m

•

Ú
0

x e
–x 

dx

m l-

  = 
l

m m l-( )
 [x(–e

–x) – e–x]•
0

  = 
l

m m l-( )
 (10)

 10. Average waiting time of a customer in the queue, if he has to wait

 E(Wq/W  > 0) = 
>

( )

( 0)

q

q

E W

P W
 

  =  
- =

( )

1 ( 0)

q

q

E W

P W

  = 
-

( )

1 (no customer in the queue)

qE W

P
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  = 
- 0

( )

1

qE W

P

  = 
l m

m m l l
¥

-( )
 0 1P

m

l

Ê ˆ= -Á ˜Ë ¯
∵

  = 
1

m l-
 (11)

Relations among E(Ns), E(Nq), E(Ws) and E(Wq)

 (i) E(Ns) = 
l

m l-
 = lE(Ws) [∵ E(Ns) = Ls]

 (ii) E(Nq) = 
l

m m l-

2

( )
 = lE(Wq) [∵ E(Nq) = Lq]

 (iii) E(Ws) = E(Wq) +  
1

m

 (iv) E(Ns) = E(Nq) + 
l

m
 

Note  1.  If any one of the quantities E(Ns), E(Nq), E(Ws) and E(Wq) is known, the 

other three can be found out using the rela tions given above.

 2.  The above relations, called  Little’s formulas hold good for the models with infi nite capacity, 

but with a slight modifi cation for the models with fi nite capacity.

Characteristics of Infi nite Capacity, Multiple 

Server Poisson Queue Model II [M/M/s): (•/FIFO) 

model], When ln == l for all n(l << sm)

 1. Values of P0 and Pn

  For the Poisson queue system, Pn is given by

 Pn = 
0 1 2 1

1 2 3

n

n

l l l l

m m m m

- 

 

 ¥ P0, n ≥ 1, (1)

  where P0 = 

1

0 1 1

1 1 2

1
n

n n

l l l

m m m

-
•

-

=

È ˘Ê ˆ
+Í ˙Á ˜Ë ¯Í ˙Î ˚

Â
 

 

 (2)

  If there is a single server, mn = m for all n. But there are s servers working 

independently of each other.

  If there be less than s customers, i.e., if n < s, only n of the s servers will 

be busy and the others idle and hence the mean service rate will be nm.
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  If n ≥ s, all the s servers will be busy and hence the mean service rate = 

sm.

  hence, mn = 
, if 0

, if

n n s

s n s

m

m

£ <Ï
Ì ≥Ó

 (3)

  Using (3) in (1) and (2), we have

 Pn = 
1 2 3

n

n

l

m m m m◊ ◊  

 P0, if 0 £ n < s

  = 
1

!

n

n

l

m

Ê ˆ
Á ˜Ë ¯

P0, if 0 £ n < s (4)

and  Pn = 
l

m m m m m◊ - ◊ - +  {1 2 ( 1) }{ ( 1) times}

n

s s s n s
P0

  = 
l

m m- - + ◊
- 01 1( 1)! ( )

n

s n s
P

s s

  = 
1

!

n

n s
s s

l

m-

Ê ˆ
Á ˜Ë ¯

 P0, if n ≥ s (5)

Now, P0 is given by 

•

=
Â

0

n

n

P  = 1

i.e. 
1

0

1 1

! !

n ns

n s
n n sn s s

l l

m m

- •

-
= =

È ˘Ê ˆ Ê ˆ
Í ˙+Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Â Â P0 = 1

i.e., 
1

0

1

! !

n ns s

n n s

s

n s s

l l

m m

- •

= =

È ˘Ê ˆ Ê ˆ
Í ˙+Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Â Â P0 = 1

i.e.,  

1

0

1 1

! !
1

n ss s

n

s

n s s

s

l l

lm m

m

-

=

È ˘
Í ˙Ê ˆ Ê ˆ
Í ˙+Á ˜ Á ˜Ë ¯ Ë ¯Í ˙-Í ˙Î ˚

Â P0 = 1

i.e., 
1

0

1 1

!
! 1

n ss

n n
s

s

l l

m ml

m

-

=

È ˘Ï ¸
Í ˙Ô ÔÏ ¸Ê ˆ Ê ˆÔ Ô Ô ÔÍ ˙+Ì ˝ Ì ˝Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Ê ˆÔ Ô Ô ÔÓ ˛Í - ˙Á ˜Ô ÔË ¯Í ˙Ó ˛Î ˚

Â P0 = 1



8.12 Probability, Sta  s  cs and Random Processes

or  P0 = 

1

0

1

1

! ! 1

s
ns

n n s
s

l
l

ml
m

m

-

=

Ï ¸Ê ˆ1Ï ¸Ê ˆ Ô ÔÔ Ô Á ˜+Ì ˝ Ì ˝Ë ¯Ê ˆÁ ˜Ë ¯ -Ô Ô Ô ÔÁ ˜Ó ˛ Ë ¯Ó ˛

Â

 (6)

 2. Average number of customers in the queue or average queue length

 Lq = E(Nq) = E(N – s) = 

•

=
Â
n s

(n – s)Pn

  = 
•

=
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0x

x Px + s
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 (7)

 3. Average number of customers in the system 

  By Little’s formula (iv),

 E(Ns) = E(Nq) + 
l

m

  = 

l

m l

ml

m

+
Ê ˆ
Á ˜Ë ¯

◊ +
◊ Ê ˆ

-Á ˜Ë ¯

1

02

1

!
1

s

P
s s

s

 (8)

  Result (8) can also be directly derived by using the defi nition E(Ns) =

0n

n
•

=
Â Pn.
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 4. Average time a customer has to spend in the system

  By Little’s formula (i),

 E(Ws) = 
1

l
 E(Ns)

  = 02

1 1 1

!
1

s

P
s s

s

l

m

m m l

m

Ê ˆ
Á ˜Ë ¯
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 (9)

 5. Average time a customer has to spend in the queue

  By Little’s formula (ii),

 E(Wq) = 
1

l
 E(Nq)

  = 
2

1 1
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1
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s s

s

l

m

m l

m

Ê ˆ
Á ˜Ë ¯

◊ ◊
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-Á ˜Ë ¯

P0 (10)

 6. Probability that an arrival has to wait 

  Required probability = Probability that there are s or more customers in 

the system

i.e., P(Ws > 0) = P(N ≥ s)

  = n

n s

P
•

=
Â  = 

0

1
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n

n s
n s

P
s s

l

m

•
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Ê ˆ
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P
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m

Ê ˆ
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Ê ˆ
-Á ˜Ë ¯

 (11)

 7. Probability that an arrival enters the service without waiting

  Required probability

  = 1– P(an arrival has to wait)
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 (12)

 8. Mean waiting time in the queue for those who actually wait.

 E(Wq/Ws > 0) = 
>

( )

( 0)

q

s

E W

P W

  = 02
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! 1
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 [using (10) and 11)]
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1

sm l-
 (13)

 9. Probability that there will be someone waiting 

  Required probability = P(N ≥ s + 1)

 = 
1

n

n s

P
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= +
Â  = 
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=
Â n

n s
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 [using (10) and (5)]
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 (14)

 10. Average number of customers (in non-empty queues), who have to 

actually wait.

 Lw = E(Nq/Nq ≥ 1)

 = E(Nq)/P(N ≥ s)

 =  

1

0

2

0

! 1
1

!
1

s

s

P s
s

s s
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l l

m m
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 = 

1

s

s

l

m

l

m

Ê ˆ
Á ˜Ë ¯

-
 (15)

Characteristics of Finite Capacity, Single-Server 

Poisson Queue Model III [(M/M/1): (k/FIFO) Model]

1. Values of P0 and Pn

For the Poisson queue system, Pn = P(N = n) in the steady-state is given by the 

difference equations

  ln –1 Pn – 1 – (ln + mn) Pn + mn + 1 Pn + 1 = 0; n > 0

  and – l0 P0 + m1P1 = 0; n = 0

This model represents the situation in which the system can accommodate 

only a fi nite number k of arrivals. If a customer arrives and the queue is full, the 

customer leaves without join ing the queue.

Therefore, for this model,

 mn  = m, n = 1, 2, 3, …

and  ln = 
l = -Ï

Ì = +Ó

 

 

, for 0,1, 2, ( 1)

0 , for , 1,

n k

n k k

Using these values in the difference equations given above, we have

 mP1 = lP0 (1)

 mPn + 1 = (l + m) Pn – lPn – 1, for 1 £ n £ k – 1 (2)

and  mPk = lPk – 1, for n = k  (3) (∵Pk + 1 has no meaning)

From (1),  P1 = 
l

m
 P0

From (2),  mP2 = (l + m) 
l

m
◊  P0 – lP0

\  P2 = 

2
l

m

Ê ˆ
Á ˜Ë ¯

 P0 and so on

In general, Pn = 

n
l

m

Ê ˆ
Á ˜Ë ¯

 P0, true for 0 £ n £ k – 1 (3)

From (3), Pk = 

1k
l l

m m

-
Ê ˆ

◊Á ˜Ë ¯
 P0 = 

k
l

m

Ê ˆ
Á ˜Ë ¯

P0
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Now, 
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which is valid even for l > m
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2. Average number of customers in the system

 E(N) = 

l

m l
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◊
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Â  (xn), where x = 
l

m
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( 1)

1
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k

, if l π m (8)

and  E(N) = 
=

=
+Â

0

,
1 2

k

n

n k

k
 if l = m (9)

3. Average number of customers in the queue.

 E(Nq) = E(N – 1) = 
=

Â
1

k

n

(n – 1)Pn

  = 
0 1

k k

n n

n n

n P P
= =

-Â Â

  = E(N) – (1 – P0) (10)

As per Little’s formula (iv),

 E(Nq) = E(N) – 
l

m
,

which is true when the average arrival rate is l throughout. Now, we see that, in 

step (8), 1 – P0 
l

m
π , because the average arrival rate is l as long as there is a 

vacancy in the queue and it is zero when the system is full.
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Hence, we defi ne  the overall effective arrival rate, denoted by l¢ or leff, by using 

step (8) and Little’s formula as

 
l

m

¢
 = 1 – P0  or  l¢ = m (1 – P0) (11)

Thus, step (8) can be rewritten as

 E(Nq) = E(N) – 
l

m

¢
, (12)

which is the modifi ed Little’s formula for this model.

4. Average waiting times in the system and in the queue:

By the modifi ed Little’s formulas,

 E(Ws) = 
1

l ¢
 E(N) (13)

and  E(Wq) = 
1

l ¢
 E(Nq) (14)

where l¢ is the effective arrival rate, given by step (9).

Characteristics of Finite Queue, Multiple Server 

Poisson Queue Model IV [(M/M/s): (k/FIFO) 

Model]

1. Values of P0 and Pn

For the Poisson queue system, Pn is given by

 Pn = 
0 1 1

1 2

n

n

l l l

m m m

- ◊
 

 

 P0, n ≥ 1, (1)

where P0 = 

1

0 1 1

1 1 2
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 (2)

For this (M/M/s): (k/FIFO) model,

 ln = 
, for 0,1, 2, , 1

0, for , 1,

n k

n k k

l = -Ï
Ì = +Ó

 

 

 mn = 
, for 0,1, 2, , 1

, for , 1,

n n s

s n s s
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m
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Using these values of ln and mn in (2) and noting that 1 < s < k, we get
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–1 = 

l l l l

m m m m m
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2. Average queue length or average number of customers in the queue

 E(Nq) = E(N – s) = 
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m
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3. Average number of customers in the system
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s s n P  so that step (6) represents Little’s formula.

In order to make (6) to assume the form of Little’s formula, we defi ne the 

 overall effective arrival rate l¢  or leff as follows:
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¢
 = s – 
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=
Â
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s
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(s – n)Pn

i.e.,  l¢ = m 
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With this defi nition of l¢, step (6) becomes 

 E(N) = E(Nq) + 
l

m

¢
 (8)

which is the modifi ed Little’s formula for this model.

4. Average waiting time in the system and in the queue:

By the modifi ed Little’s formulas,

 E(Ws) = 
1

l ¢
 E(N) (9)
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and  E(Wq) = 
1

l ¢
 E(Nq) (10)

where l¢  is the effective arrival rate, given by step (7).

More Poisson Queue Models

In the topic ‘Birth and Death process’ discussed in pages 7.50 and 7.51 of the 

Chapter 7 on “Special Random Processes”, we have derived that

 P¢n(t) = ln–1 Pn–1(t) – (ln + mn)Pn(t) + mn+1Pn+1(t) (2)

and P¢0(t) = –l0 P0(t) + m1P1(t) (4)

where Pn(t) = P{X(t) = n} and X(t) represents the number of individuals present 

at time t in a population.

In the discussion of the topic “Difference equation related to Poisson Queue 

Systems” given in pages 8.3–8.5, we have noted that in the steady-state, Pn(t) 

and P0(t) are independent of time and hence P¢n(t) and P¢0(t) become zero. Also 

the differential equations (2) and (4) reduce to the difference equations

 ln–1 Pn–1 – (ln + mn)Pn + mn+1Pn+1 = 0 (5)

and  –l0 P0 + m1P1 = 0  (6)

Solving (5) and (6), we have derived the values of P0 and Pn as given below:

       
1 0 1 1
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1 1 2

1 n

n n

P
l l l

m m m

•
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=

Ê ˆ
= + Á ˜Ë ¯
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 (10)

and Pn = 
l l l l

m m m m
- ◊

 

 

0 1 2 1
0

1 2 3

n

n

P , for n = 1, 2, 3, etc. ... (9)

Particular Cases

(i) Queues with impatient customers

In this case, 
1

n
n

l
l =

+
, for n ≥ 0 and mn = m, for n ≥ 1 viz., the arrival rate 

decreases with increases in queue length, while the service rate mn is independent 

of n and remains the same as m. This situation arises due to baulking and reneging 

of the customers. The word “baulking” means refusing to go forward, viz. to join 

the queue. The word “reneging” means going back on one’s determination to join 

the queue. In this case, the queue itself is called the queue with discouragement.

Using 
1

n
n

l
l =

+
 and mn = m in steps (10) and (9), we get

      

rl r r r

m

•
-

=

= + = + + + + • =Â  

2 3
1

0

1

1 1
1! 2! 3!!

n

n
n

P e
n

and so P0 = e–r, where r = 
l

m
.
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and Pn = 0

1

1. 2 3 !

n
P e

n n

rl l l l
r

m m m m
-Ê ˆ◊ ◊ = Á ˜Ë ¯

 , for n ≥ 0

Since Pn = P(X = n), X, the number of customers in the system at any time 

follows a poison distribution with parameter 
l

r
m

= .

Note  For this model, E(NS) = E(X) = r. By Little’s formulas,

 E(NQ) = E(NS) – r = 0, Q Q

1
E(W ) E( N ) 0

l
= =

and E(WS) = E(WQ) + 
1 1

m m
=

(ii) Self-service Mode

In this case, ln = l, for n ≥ 0 and mn = nm, for n ≥ 1. viz., the arrival rate ln(=l) 

is independent of n, while the service rate mn(= nm) increases with increases of n. 

viz., if there are n customers in the system, n servers will be available for serving 

for n = 1, 2, 3, ... •. Thus, each arrival will enter the service facility without 

waiting and act as a server himself/herself. Hence, the queue model is called 

self-service model.

As the number of servers is unlimited, since each customer is also the server, 

the queue itself is called Queue with infi nite number of channels and is denoted 

as (M/M/•): (•/FIFO).

Note  For this model also, P0 = e–r and n
n

1
P e

n !

rr -= , for n ≥ 0 where 
l

r
m

= . Moreover

E(NQ) = 0, E(WQ) = 0, as no queue will be formed and E(NS) = r and S

1
E(W )

m
= .

Worked Example 8

Example 1

Arrivals at a telephone booth are considered to be Poisson with an average 

time of 12 min. between one arrival and the next. The length of a phone call is 

assumed to be distributed exponentially with mean 4 min.

 (a) Find the average number of persons waiting in the system.

 (b) What is the probability that a person arriving at the booth will have to 

wait in the queue?

 (c) What is the probability that it will take him more than 10 min. altogether 

to wait for the phone and complete his call?
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 (d) Estimate the fraction of the day when the phone will be in use.

 (e) The telephone department will install a second booth, when convinced 

that an arrival has to wait on the average for at least 3 min. for phone. 

By how much the fl ow of arrivals should in crease in order to justify a 

second booth?

 (f) What is the average length of the queue that forms from time to time?

 Mean inter-arrival time = 
1

l
 = 12 min.

 Therefore, mean arrival rate = l = 
1

12
 per minute.

 Mean service time = 
1

m
 = 4 min.

 Therefore, mean service rate = m = 
1

4
 per minute.

 (a) E(N) = 
l

m l-
, (by formula (1) of model I)

 = 

1

12
1 1

4 12
-

 = 0.5 customer

 (b) P(W > 0) = 1 – P(W = 0)

 = 1 – P (no customer in the system)

 = 1 – P0

 = 1 – 
l

m

Ê ˆ
-Á ˜Ë ¯

1  (by the formula for P0 of model I)

 = 
1/12 1

1/4 3

l

m
= =

 (c) P(W > 10) = e–(m – l) ¥ 10 [by formula (8) of model I]

 =  

1 1
10

4 12e

Ê ˆ- - ¥Á ˜Ë ¯

 = 

5

3e
-

 = 0.1889

 (d) P(the phone will be idle) = P(N = 0) = P0

 = 1 – 
l

m
 =  

2

3
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  \ P (the phone will be in use) = 1 – 
2 1

3 3
=

  or the fraction of the day when the phone will be in use = 
1

3
.

 (e) The second phone will be installed, if E(Wq) > 3.

  i.e.,  if 
l

m m l-( )
 > 3 [by formula (10) of model I]

  i.e.,  if 
1 1

4 4

R

R

l

l
Ê ˆ-Á ˜Ë ¯

 > 3,

  where lR is the required arrival rate.

  i.e.,  if lR >  
3

4

1

4
Rl

Ê ˆ-Á ˜Ë ¯
 

  i.e., if lR >  
3

28

  Hence, the arrival rate should increase by 
3 1

28 12
-  = 

1

42
 per minute, to 

justify a second phone.

 (f) E(Nq/the queue is always available)

 = E(Nq/Nq > 0)

 = E(Nq/N > 1)

 = 
>

( )

( 1)

qE N

P N
  = 

- -0 1

( )

1

qE N

P P

 = 
l

m m l l

m

¥
- Ê ˆ

- +Á ˜Ë ¯

2

0

1

( )
1 1 P

 [by formula (2) of model 1]

 =  ( )
2 1

1 1 1

l

m m l l l

m m

◊
- Ê ˆ Ê ˆ

- + -Á ˜ Á ˜Ë ¯ Ë ¯

 = ( )
l m m

m m l m ll
◊ = =

- - -

2 2

2

1/4

1/4 1/12
 = 1.5 persons.



Queueing Theory 8.25

Example 2  

Customers arrive at a one-man barber shop according to a Poisson process with 

a mean interarrival time of 12 min. Customers spend an average of 10 min in the 

barber’s chair.

 (a) What is the expected number of customers in the barber shop and in the 

queue?

 (b) Calculate the percentage of time an arrival can walk straight into the 

barber’s chair without having to wait.

 (c) How much time can a customer expect to spend in the barber’s shop?

 (d) Management will provide another chair and hire another bar ber, when a 

customer’s waiting time in the shop exceeds 1.25 h. How much must the 

average rate of arrivals increase to warrant a second barber?

 (e) What is the average time customers spend in the queue?

 (f) What is the probability that the waiting time in the system is greater than 

30 min?

 (g) Calculate the percentage of customers who have to wait prior to getting 

into the barber’s chair.

 (h) What is the probability that more than 3 customers are in the system?

  
1

l
 = 12  \ l = 

1

12
 per minute

  
1

m
 = 10  \ m = 

1

10
 per minute

 (a) E(Ns) = 
l

m l-
 = 

1/12

1/10 1/12-
 = 5 customers [by formula (1) of model I]

 E(Nq) = 
l

m m l-

2

( )
 [by formula (2) of model I]

  = 

1

144

1 1 1

10 10 12

Ê ˆ-Á ˜Ë ¯

 = 4.17 customers

 (b) P(a customer straight goes to the barber’s chair)

 = P(No customer in the system)

 = P0 = 1 – 
l

m
 = 1 – 

1

12
1

10

 = 
1

6
 

  Therefore, percentage of time an arrival need not wait = 16.7.
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 (c) E(W) = 
1

m l-
, [by formula (7) of model I]

 = 
1

1 1

10 12
-

 = 60 min or 1 h

 (d) E(W) > 75, if 
1

rm l-
 > 75

  i.e., if lr > m – 
1

75

  i.e.,  if lr > 
1 1

10 75
-

  i.e.,  if lr > 
13

150
 

  Hence, to warrant a second barber, the average arrival rate must increase 

by 
13 1

150 12
-  = 

1

300
 per minute.

 (e) E(Wq) = 
l

m m l-( )
, [by formula (10) of model I]

 = 

1

12

1 1 1

10 10 12

Ê ˆ-Á ˜Ë ¯

 = 50 min

 (f) P(W > t) = e–(m – l)t, [by formula (8) of model I]

\ P(W > 30) = 

1 1
30

10 12e

Ê ˆ- - ¥Á ˜Ë ¯

    = e–0.5 = 0.6065

 (g) P(a customer has to wait) = P(W > 0)

 = 1 – P(W = 0)

 = 1 – P(N = 0) = 1 – P0

 = 
1/12 5

1/10 6

l

m
= =

  \ Percentage of customers who have to wait

 = 
5

6
 ¥ 100 = 83.33
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 (h) P(N > 3) = P4 + P5 + P6 + …

 = 1 – {P0 + P1 + P2 + P3}

 = 1 – 

2 3

1 1
l l l l

m m m m

Ï ¸Ê ˆ Ê ˆ Ê ˆÔ Ô- + + +Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Ô ÔÓ ˛

 [since Pn = 1

n
l l

m m

Ê ˆ Ê ˆ
-Á ˜ Á ˜Ë ¯ Ë ¯

, for n ≥ 0, for model I]

  =  

4
l

m

Ê ˆ
Á ˜Ë ¯

 = 

4
5

6

Ê ˆ
Á ˜Ë ¯

 = 0.4823

Example 3 

At what average rate must a clerk in a supermarket work in order to ensure a 

probability of 0.90 that the customer will not wait longer than 12 min? It is 

assumed that there is only one counter at which customers arrive in a Poisson 

fashion at an average rate of 15 per hour and that the length of the service by the 

clerk has an exponential distribution.

 l = 15/hour; m = mR/hour

 P 
1

5
qW

Ê ˆ£Á ˜Ë ¯
 = 0.90

i.e.,  P
1

5
qW

Ê ˆ>Á ˜Ë ¯
 = 0.10

i.e., 

•

Ú
0.2

( )g w dw = 0.10

i.e., 
0.2

l

m

•

Ú (m – l) e–(m – l)w dw = 0.10 [by formula (9) of model I]

i.e.,  
( )m ll

m

•
- -È ˘

-Í ˙
Î ˚0.2

W
e  = 0.1

i.e.,  
15

Rm
e

–(mR – 15) ¥ 0.2 = 0.1

i.e., (15 – mR) ¥ 0.2 = log (0.1) – log 15 + log mR

i.e., 0.2 mR + log mR = 3 + log 150   8 (1)

Solving (1), we get mR = 24 approximately.

That is, the clerk must serve at the rate of 24 customer per hour.



8.28 Probability, Sta  s  cs and Random Processes

Example 4

If people arrive to purchase cinema tickets at the average rate of 6 per minute, 

it takes an average of 7.5 seconds to purchase a ticket. If a person arrives 2 min 

before the picture starts and if it takes exactly 1.5 min to reach the correct seat 

after purchasing the ticket,

 (a) Can he expect to be seated for the start of the picture?

 (b) What is the probability that he will be seated for the start of the 

picture?

 (c) How early must he arrive in order to be 99% sure of being seated for the 

start of the picture?

 l = 6/minute; m = 8/minute

 (a) E(W) = 
1

m l-
 [by formula (7) of model I]

 =  =
-
1 1

8 6 2
 min

  \ E(total time required to purchase the ticket and to reach the seat)

 = 
1 1

1
2 2

+  = 2 min

  Hence, he can just be seated for the start of the picture.

 (b) P(total time < 2 min)

 = 
1

2
P W

Ê ˆ<Á ˜Ë ¯
 = 1 –  

1

2
P W

Ê ˆ>Á ˜Ë ¯

 = 1 – e–m 
1

1
2

l

m

Ê ˆ
- ¥Á ˜Ë ¯

  [by formula (8) of model I]

 = 1 – e–1 = 0.63

 (c) P(W < t) = 0.99

  i.e.,  P(W > t) = 0.01

  i.e.,  e
–(m – l)t = 0.1

  i.e.,  –2t = log (0.1) = –2.3

  \  t = 1.15 min

  i.e., P(ticket purchasing time < 1.15) = 0.99

  \ P[total time to get the ticket and to go to the seat < (1.15 + 1.5)] = 

0.99

  Therefore, the person must arrive at least 2.65 min early so as to be 99% 

sure of seeing the start of the picture.
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  Example 5  

A duplicating machine maintained for offi ce use is operated by an offi ce assistant 

who earns Rs. 5 per hour. The time to complete each job varies according to 

an exponential distribution with mean 6 min. Assume a Poisson input with an 

average arrival rate of 5 jobs per hour. If an 8-h day is used as a base, determine 

 (a) the percentage idle time of the machine,

 (b) the average time a job is in the system, and

 (c) the average earning per day of the assistant.

 l = 5/hour; m = 
60

6
 = 10/hour

 (a) P(the machine is idle) = P(N = 0) = P0

 = 1 – 
l

m
 (by the formula for P0 in model I)

 = 1 – 
5 1

10 2
=

  \ Percentage of idle time of the machine = 50

 (b) E(W) = 
1

m l-
 [by formula (7) of model I]

 = 
1

10 5-
 = 

1

5
 h or 12 min

 (c) E(earning per day)

 = E(number of jobs done/day) ¥ earning per job 

 = E(number of jobs done/day) ¥ E (time in hour/job) ¥   

  earning/hour

 = (8 ¥ 5) ¥ 
1

5
 ¥ 5 = Rs. 40.

Example 6

The mean rate of arrival of planes at an airport during the peak period is 20 per 

hour, but the actual number of arrivals in any hour follows a Poisson distribution. 

The airport can land 60 planes per hour on an average in good weather or 30 

planes per hour in bad weather, but the actual number landed in any hour follows 

a Poisson distribution with respective averages. When there is congestion, the 

planes are forced to fl y over the fi eld in the stack awaiting the landing of other 

planes that arrived earlier.

 (a) How many planes would be fl ying over the fi eld in the stack on an 

average in good weather and in bad weathers?
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 (b) How long a plane would be in the stack and in the process of landing in 

good and bad weathers?

 (c) How much stack and landing time to allow so that priority to land out of 

order will have to be requested only 1 in 20 times.

 l = 20 per hour

 m = 
60 per hour in good weather

30 per hour in bad weather

Ï
Ì
Ó

Note  Landing time is service time; the planes fl ying over the fi eld in the stack are assumed 

to form the queue.

 (a) E(Nq) = Average number of planes fl ying over the fi eld = 
l

m m l-

2

( )
 [by 

formula (2) of model I]

 = 
( )

( )

2

2

20
, in good weather

60 60 20

20
, in bad weather

30 30 20

Ï
Ô -Ô
Ì
Ô
Ô -Ó

 

 = 

1
, in good weather

6

4
, in bad weather

3

Ï
ÔÔ
Ì
Ô
ÔÓ

 (b) E(W) = Average time for fl ying in the stack and for landing

 = 
1

m l-
 [by formula (7) of model I]

 = 

1
h or 1.5 min in good weather

40

1
h or 6 min in bad weather

10

Ï
ÔÔ
Ì
Ô
ÔÓ

 (c) Let tR be the maximum stack and landing time to be allowed, beyond 

which priority out of order is to be requested.

  Then P(W > tR) = 
1

20

  i.e.,  
1 Rt

e

l
m

m

Ê ˆ
- -Á ˜Ë ¯

 = 0.05 [by formula (8) of model I]
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  i.e.,  
40

10

0.05, for good weather

0.05, for bad weather

R

R

t

t

e

e

-

-

Ï =Ô
Ì

=ÔÓ

  i.e., 
0.075 h or 4.5 min for good weather

0.299 h or 18 min for bad weather

Rt =Ï
Ì =Ó

 

Example 7

There are three typists in an offi ce. Each typist can type an average of 6 letters 

per hour. If letters arrive for being typed at the rate of 15 letters per hour,

 (a) What fraction of the time all the typists will be busy?

 (b) What is the average number of letters waiting to be typed?

 (c) What is the average time a letter has to spend for waiting and for being 

typed?

 (d) What is the probability that a letter will take longer than 20 min waiting 

to be typed and being typed?

 l = 15/hour; m = 6/hour; s = 3.

  Hence, this is a problem in multiple server [(M/M/s): (•/FIFO)] model, 

i.e., model II.

 (a) P(all the typists are busy) = P(N ≥ 3)

 = 

3

0

3! 1
3

P
l

m

l

m

Ê ˆ
◊Á ˜Ë ¯

Ê ˆ
-Á ˜Ë ¯

 [by formula (11) of model II]

 = 
Ê ˆ¥ -Á ˜Ë ¯

3
0(2.5)

2.5
6 1

3

P
  (1)

Now, P0 = 

1

0

1

1 1

!
! 1

n ss

n n
s

s

l l

m ml

m

-

=

Ê ˆ
Á ˜Ï ¸Ê ˆ Ê ˆÔ Ô Á ˜+ ◊Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ê ˆÁ ˜Ô ÔÓ ˛ -Á ˜Á ˜Ë ¯Ë ¯

Â

 [by formula (6) of model II]

 =  

( ) ( )2 3

1

1 1
1 2 5 2 5 2 5

52
6 1

6

Ï ¸
Ô ÔÔ ÔÏ ¸+ ◊ + ¥ ◊ + ¥ ◊Ì ˝ Ì ˝

Ê ˆÓ ˛ Ô Ô¥ -Á ˜Ë ¯Ô ÔÓ ˛
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 = 
1

22.25
 = 0.0449 (2)

  Using (2) in (1), we have P(N ≥ 3) = 0.7016.

  Hence, the fraction of the time all the typists will be busy = 0.7016.

 (b) E(Nq) = 

1

0

2

1

. !
1

s

P

s s

s

l

m

l

m

+
Ê ˆ

◊Á ˜Ë ¯
◊

Ê ˆ
-Á ˜Ë ¯

 [by formula (7) of model II]

  = 
( )4

2

2.51

3 6 2.5
1

3

¥
¥ Ê ˆ-Á ˜Ë ¯

  ¥ 0.0449 = 3.5078

 (c) E(W) = 
1

l
 E(N) [by Little’s formula (i)]

 = 
l

l m

Ï ¸
+Ì ˝

Ó ˛

1
( )qE N ’ [by Little’s formula (iv)]

 = 
1

15
 {3.5078 + 2.5} = 0.4005 h

or = 24 min, nearly

 (d) P(W > t) = e–mt 

1

01

1

! 1 1

s
t s

e P

s s
s

l
m

ml

m

l l

m m

Ê ˆ
- - -Á ˜Ë ¯

Ï ¸È ˘Ê ˆÔ ÔÍ ˙-Á ˜Ô ÔÍ ˙Ë ¯
Ô ÔÎ ˚+Ì ˝

Ê ˆ Ê ˆÔ Ô- - -Á ˜ Á ˜Ô ÔË ¯ Ë ¯
Ô Ô
Ó ˛

  (This formula has not been derived; it may be assumed.)

\  1
>

3
P W

Ê ˆ
Á ˜Ë ¯

 = 

1
6

3e
- ¥

 =  
3 ( 2 0.5)(2.5) {1 } 0.0449

1
2.5

6 1 ( 0.5)
3

e
- ¥ -

È ˘
Í ˙- ¥Í ˙+
Í Ê ˆ ˙- -Á ˜Í ˙Ë ¯Î ˚

      = e–2 
È ˘-

+Í ˙-Î ˚

0.7016 (1 )
1

( 0.5)

e

      = 0.4616
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Example 8

Given an average arrival rate of 20 per hour, is it better for a customer to get 

service at a single channel with mean service rate of 22 customers per hour or at 

one of two channels in parallel with mean service rate of 11 customers per hour 

for each of the two channels. Assume both queues to be of Poisson type.

For the single-channel service,

 l = 20/hour and m = 22/hour.

 E(W) = 
1

m l-
 [by formula (7) of model I]

  = 
1

2
 h

For the two-channel service,

 l = 20/hour and m = 11/hour.

 E(W) = 
2

1 1 1

!
1

s

s s

s

l

m

m m l

m

Ê ˆ
Á ˜Ë ¯

+ ◊ ◊
◊ Ê ˆ

-Á ˜Ë ¯

 ¥ P0 

[by formula (9) of model II]

  = 

2

2

20

1 1 11

11 11 2 2 20
1

22

Ê ˆ
Á ˜Ë ¯

+ ¥
¥ ¥ Ê ˆ-Á ˜Ë ¯

 ¥ P0

  = 0.0909 + 9.0909 ¥ P0 (1)

Now, P0
–1 = 

1

0

1 1

!
! 1

n ss

n n
s

s

l l

m ml

m

-

=

Ï ¸
Ô ÔÏ ¸Ê ˆ Ê ˆÔ Ô Ô Ô◊ + ◊Ì ˝ Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ê ˆÔ Ô Ô ÔÓ ˛ -Á ˜Ô ÔË ¯Ó ˛

Â

 [by formula (6) of model II]

  = 1 + 

2
20 1 20

111 11
2

11

Ê ˆ+ ¥ Á ˜Ë ¯¥

  = 21

\  P0 = 0.0476 (2)

Using (2) in (1), we have

 E(W) = 0.5236 h
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As the average waiting time in single channel service is less than that in two 

channel service, the customer has to prefer the former.

Example 9

A telephone company is planning to install telephone booths in a new airport. 

It has established the policy that a person should not have to wait more than 

10% of the times he tries to use a phone. The demand for use is estimated 

to be Poisson with an average of 30 per hour. The average phone call has an 

exponential distribution with a mean time of 5 min. How many phone booths 

should be installed?

 l = 30/hour and m = 12/hour

In order that infi nite queue may not build up,  the traffi c intens ity 
s

l

m
  < 1, for 

multiserver model.

i.e.,  s > 
l

m
 

i.e.,  s > 
30

12
  (= 2.5)

Therefore, the telephone company must install at least 3 booths.

Now, we have to fi nd the number s of telephone booths such that

 P(W > 0) £ 0.10 or equivalently 

 P(N ≥ s) £ 0.10

i.e., we have to fi nd s such that

 

l

m

l

m

Ê ˆ
◊Á ˜Ë ¯

Ê ˆ
-Á ˜Ë ¯

0

! 1

s

P

s
s

  £ 0.10 [by formula (11) model II]

This inequation is not easily solvable. Hence, we proceed by trials and fi nd 

out the least value of s that satisfi es this inequation.

Let s = 3:

Then P(W > 0) = 
◊

Ê ˆ-Á ˜Ë ¯

3
0(2.5)

2.5
6 1

3

P
 = 15.625 P0,

where P0 = 

1

1

0

1

!
! 1

s

ns

n n
s

s

l

ml

m l

m

-

-

=

È ˘Ê ˆ
Í ˙Á ˜Ï ¸ Ë ¯Ê ˆÔ ÔÍ ˙+Ì ˝Á ˜Í ˙Ë ¯ Ê ˆÔ ÔÍ ˙Ó ˛ -Á ˜Ë ¯Í ˙Î ˚

Â  

 [by formula (6) of model II]
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i.e.,  P0 = 

-
È ˘
Í ˙Ï ¸Í ˙+ + ¥ +Ì ˝
Í Ê ˆ ˙Ó ˛ ¥ -Á ˜Í ˙Ë ¯Î ˚

1

3
21 (2.5)

1 2.5 (2.5)
2.52

6 1
3

 

  = (22.25)–1 = 0.0449

\  P(W > 0) = 15.625 ¥ 0.0449 = 0.7022 </ 0.10

Let s = 4:

Then P(W > 0) = 
◊

Ê ˆ-Á ˜Ë ¯

4
0(2.5)

2.5
24 1

4

P
  = 4.3403 P0

where P0 = 
( )

-
È ˘
Í ˙Ï ¸Í ˙+ + ¥ + ¥ +Ì ˝
Í Ê ˆ ˙Ó ˛ -Á ˜Í ˙Ë ¯Î ˚

1

4

2 3
2.51 1

1 2.5 (2.5) (2.5)
2.52 6

24 1
4

 

  = 0.0737

\ P(W > 0) = 4.3403 ¥ 0.0737 = 0.3199 </ 0.10

Similarly, when s = 5, P(W > 0) = 0.1304 </ 0.10.

When s = 6, P(W > 0) = 0.047 < 0.10.

Hencem the number of booths to be installed = 6.

Example 10

A bank has two tellers working on savings accounts. The fi rst teller handles 

withdrawals only. The second teller handles deposits only. It has been found that 

the service time distributions for both deposits and withdrawals are exponential 

with a mean service time of 3 min per customer. Depositors are found to arrive 

in a Poisson fashion throughout the day with mean arrival rate of 16 per hour. 

Withdrawers also arrive in a Poisson fashion with a mean arrival rate of 14 per 

hour. What would be the effect on the average waiting time for the customers 

if each teller could handle both withdrawals and deposits. What would be the

effect, if this could only be accomplished by increasing the service time to 3.5 

min?

When there is a separate channel for the depositors, l1 = 16/hour, m = 20/hour

\ E(Wq for depositors) = 
l

m m l-
1

1( )
  [by formula (10) of model I]

  = 
-

16

20 (20 16)
  = 

1

5
  h or 12 min
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When there is a separate channel for the withdrawers, l2 = 14/hour, m = 20/

hour.

\ E(Wq for withdrawers) = 
l

m m l-
2

2( )
 

  = 
-

14

20(20 14)
 = 

7

60
 h or 7 min

If both tellers do both services,

 s = 2, m = 20/hour, l = l1 + l2 = 30/hour

\ E(Wq for any customer) = 

0

2

1 1

. !
1

s

P

s s

s

l

m

m l

m

Ê ˆ
¥Á ˜Ë ¯

◊ ◊
Ê ˆ

-Á ˜Ë ¯

 ,

[by formula (10) of model II]

  = ¥ ¥ ¥
¥ -

2

02

1 1 (1.5)

20 2 2 (1 0.75)
P  (1)

  = 0.45 ¥ P0

Now  P0 = 

1

1

0

1 1

!
! 1

n ss

n n
s

s

l l

m ml

m

-

-

=

È ˘
Í ˙Ï ¸Ê ˆ Ê ˆÔ ÔÍ ˙◊ +Ì ˝Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Ê ˆÔ ÔÓ ˛ -Í ˙Á ˜Ë ¯Í ˙Î ˚

Â  

[by formula (6) of, model II]

  = 

-
È ˘

+ +Í ˙¥Î ˚

1
2(1.5)

1 1.5
2 0.25

  = 
1

7
 (2)

Using (2) in (1),

 E(Wq for any customer) = 0.45 ¥ 
1

7
  h or 3.86 min

Hence, if both tellers do both types of service, the customers get benefi ted as 

their waiting time is considerably reduced.

Now, if both tellers do both types of service but with increased service time,

 s = 2, l = 30, m = 
60

3.5
 = 

120

7
 per hour.
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   E(Wq of any customer)

  = ¥ ¥ ¥
¥ Ê ˆ-Á ˜Ë ¯

2

2

7 1 (1.75)

120 2 2 7
1

8

P0 = 2.86 P0, where

 P0 = 
( )

1

2
1.75

1 1.75
1

2
8

-
È ˘
Í ˙

+ +Í ˙
Í ˙¥
Í ˙Î ˚

 = 
1

15
 

\ E(Wq of any customer) = 
2.86

15
 h or 11.44 min

If this arrangement is adopted, withdrawers stand to lose as their waiting time 

is increased considerably and depositors get slightly benefi ted.

Example 11

A supermarket has two girls attending to sales at the counters. If the service time 

for each customer is exponential with mean 4 min and if people arrive in Poisson 

fashion at the rate of 10 per hour,

 (a) what is the probability that a customer has to wait for service?

 (b) what is the expected percentage of idle time for each girl?

 (c) if the customer has to wait in the queue, what is the expect ed length of 

his waiting time?

 s = 2, l = 
1

6
 per minute, m = 

1

4
 per minute 

 (a) P(a customer has to wait for service)

  = P(N ≥ 2) = 1 – P0 – P1 (1)

 P0 = 

1

1

0

1

!
! 1

s

ns

n n
s

s

l

ml

m l

m

-

-

=

È ˘Ï ¸Ê ˆÍ ˙Ô ÔÁ ˜Ï ¸ Ë ¯Ê ˆÍ ˙Ô Ô Ô Ô+Ì ˝ Ì ˝Í ˙Á ˜Ë ¯ Ê ˆÔ Ô Ô ÔÍ ˙Ó ˛ -Á ˜Ô ÔÍ ˙Ë ¯Ó ˛Î ˚

Â  

[by formula (6) of model II]

  = 

1
2

2

2 3
1

13
2 1

3

-
È ˘Ê ˆ
Í ˙Á ˜Ë ¯Í ˙+ +Í ˙Ê ˆ¥ -Í ˙Á ˜Ë ¯Í ˙Î ˚

 = 
2

1
 (2)

 P1 = 
l

m
◊ P0, [by formula (4) of model II]
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  = ¥ =
2 1 1

3 2 3
 (3)

 Using (2) and (3) in (1), we have

 P(N ≥ 2) = 
1 1

1
2 3

- -   = 
1

6

 (b) Fraction of time when the girls are busy = 
s

l

m
 = 

1

3

  \ Fraction of time when the girls are idle = 
2

3
 

  \ Expected percentage of idle time for each girl = 
2

3
 ¥ 100 = 67

 (c) E(Wq/Ws > 0) = 
1

sm l-
 [by formula (13) of model II]

   = 
1

1 1
2

4 6
¥ -

 = 3 min

Example 12

A petrol pump station has 4 pumps. The service times follow the exponential 

distribution with a mean of 6 min and cars arrive for service in a Poisson process 

at the rate of 30 cars per hour.

 (a) What is the probability that an arrival would have to wait in line?

 (b) Find the average waiting time, average time spent in the system and the 

average number of cars in the system.

 (c) For what percentage of time would a pump be idle on an aver age?

 s = 4, l = 30/hour, m = 10/hour

 (a) P(an arrival has to wait) = P(W > 0)

  = 
0

! 1

s

P

s
s

l

m

l

m

Ê ˆ
◊Á ˜Ë ¯

Ê ˆ
-Á ˜Ë ¯

 [by formula (11) of model II]

  = 
4

03

3
24 1

4

P¥
Ê ˆ¥ -Á ˜Ë ¯

  = 13.5 ¥ P0 (1)

 P0 = 

l

ml

m l

m

-

-

=

È ˘Ê ˆ
Í ˙Á ˜Ï ¸ Ë ¯Ê ˆÔ ÔÍ ˙◊ +Ì ˝Á ˜Í ˙Ë ¯ Ê ˆÔ ÔÍ ˙Ó ˛ -Á ˜Ë ¯Í ˙Î ˚

Â

1

1

0

1

!
! 1

s

ns

n n
s

s

 [by formula (6) of model II]
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  = 

1

41 1 3
1 3 9 27

32 6
24 1

4

-
È ˘
Í ˙Ê ˆÍ ˙+ + ¥ + ¥ +Á ˜Ë ¯Í Ê ˆ ˙¥ -Á ˜Í ˙Ë ¯Î ˚

  = 0.0377 (2)

 Using (2) in (1), P(W > 0) = 0.5090

 (b) E(Wq) = 
2

1 1

!
1

s

s s

s

l

m

m l

m

Ê ˆ
Á ˜Ë ¯

◊ ¥ ¥
¥ Ê ˆ

-Á ˜Ë ¯

P0 [by formula (10) of model II]

  = 
4

2

1 3

10 4 24 3
1

4

¥ ¥
¥ ¥ Ê ˆ-Á ˜Ë ¯

0.0377 = 0.0509 h

  or  3.05 min

 E(Ws) = 
1

m
 + E(Wq) [by formulas (9) and (10) of model II]

  = 6 + 3.05 = 9.05 min

 E(N) = 

1

2

1

!
1

s

s s

s

l

m

l

m

+
Ê ˆ
Á ˜Ë ¯

¥
¥ Ê ˆ

-Á ˜Ë ¯

 ¥ P0 + 
l

m
  [by formula (8) of model II]

  = 
5

2

1 3

4 24 3
1

4

¥
¥ Ê ˆ-Á ˜Ë ¯

 ¥ 0.0377 + 3

  = 4.53 cars

 (c) The fraction of time when the pumps are busy = traffi c in tensity = 
s

l

m
 

= 
3

4
 

  \ The fraction of time when the pumps are idle = 
1

4

  Therefore, required percentage = 25%

Example 13

In a single server queueing system with Poisson input and expo nential service 

times, if the mean arrival rate is 3 calling units per hour, the expected service time 
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is 0.25 h and the maximum possible number of calling units in the system is 2, 

fi nd Pn(n ≥ 0), average number of calling units in the system and in the queue and 

average waiting time in the system and in the queue.

 The situation in this problem is one of fi nite capacity, single server 

Poisson queue models.

 l = 3, m = 4 and k = 2

As l π m, P0 = 
1

1

1

k

l

m

l

m

+

-

Ê ˆ
- Á ˜Ë ¯

 [by formula (4) of model III]

  = 
3

3
1

4

3
1

4

-

Ê ˆ- Á ˜Ë ¯

 = 
16

37
 = 0.4324

Since l π m, Pn = 1

1

1

n

k

l

l m

m l

m

+

È ˘
Í ˙-

Ê ˆ Í ˙
Á ˜ Í ˙Ë ¯ Ê ˆÍ ˙- Á ˜Í ˙Ë ¯Î ˚

 [by formula (6) of model III]

  = (0.4324) (0.75)n

 E(N) = 

( )
1

1

1

1

k

k

k
l

ml

m l l

m

+

+

Ê ˆ
+ Á ˜Ë ¯

-
- Ê ˆ

- Á ˜Ë ¯

 [by formula (8) of model IV]

  = 

3

3

3
3

3 4

4 3 3
1

4

Ê ˆ¥ Á ˜Ë ¯
-

- Ê ˆ- Á ˜Ë ¯

 = 3 – 
81 30

37 37
=    0.8 calling unit

 E(Nq) = E(N) – (1 – P0)  [by formula (10) of model III]

  = 
30 16

1
37 37

Ê ˆ- -Á ˜Ë ¯
  = 

9

37
 = 0.24 calling unit

 E(Ws) = 
1

l ¢
  E(N) [by formula (13) of model III]

where  l¢ = m (1 – P0 ), [by formula (11) of model III]
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  = 4
16

1
37

Ê ˆ-Á ˜Ë ¯
  = 

84

37
 

\ E(Ws) = 
37 30

84 37
¥  = 

5

14
 h or 21.4 min

 E(Wq) = 
1

l ¢
 E(Nq) [by formula (14) of model III]

  = 
37 9

84 37
¥

  = 
3

28
 h or 6.4 min

Example 14 

The local one-person barber shop can accommodate a maximum of 5 people at a 

time (4 waiting and 1 getting hair-cut). Customers arrive according to a Poisson 

distribution with mean 5 per hour. The barber cuts hair at an average rate of 4 per 

hour (Exponen tial service time).

 (a) What percentage of time is the barber idle?

 (b) What fraction of the potential customers are turned away?

 (c) What is the expected number of customers waiting for a hair-cut?

 (d) How much time can a customer expect to spend in the barber shop?

 l = 5, m = 4, k = 5

 (a) P(the barber is idle) = P(N = 0)

  = P0 = 1

1

1

k

l

m

l

m

+

-

Ê ˆ
- Á ˜Ë ¯

 [by formula (4) of model III]

  = 
6

5
1

4

5
1

4

-

Ê ˆ- Á ˜Ë ¯

  = 0.0888

  \ Percentage of time when the barber is idle   9.

 (b) P(a customer is turned away) = P(N > 5)

  = 

5

1

1

1

k

l

ml

m l

m

+

È ˘-Í ˙Ê ˆ Í ˙◊Á ˜ Í ˙Ê ˆË ¯
-Í ˙Á ˜Ë ¯Î ˚

  [by formula (6) of model III]
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  = 

5

6

5
1

45

54
1

4

È ˘-Í ˙Ê ˆ Í ˙◊Á ˜Ë ¯ Ê ˆÍ ˙- Á ˜Í ˙Ë ¯Î ˚

  = 
3125

11529
 = 0.2711

 Therefore, 0.2711 ¥ potential customers are turned away.

 (c) E(Nq) = E(N) – (1 – P0)

  = 

( )
1

1

1

1

k

k

k
l

ml

m l l

m

+

+

Ê ˆ
+ Á ˜Ë ¯

-
- Ê ˆ

- Á ˜Ë ¯

 – (1 – P0), 

  [by formulas (6) and (10) of model III]

  = 

6

6

5
6

4
5

5
1

4

Ï ¸Ê ˆ¥Ô ÔÁ ˜Ë ¯Ô Ô- -Ì ˝
Ê ˆÔ Ô- Á ˜Ô ÔË ¯Ó ˛

  – (1 – 0.0888)

  = 

15625
6

4096
11529

4096

¥
 – 5.9112    2.2 customers

 (d) E(W) = 
1

l ¢
 E(N) [by formula (13) of model III]

       = 
m - 0

1

(1 )P
 ¥ E(N)

       = 
3.1317

3.6448
   0.8592 h

or   51.5 min

Example 15

At a railway station, only one train is handled at a time. The railway yard is 

suffi cient only for 2 trains to wait, while the other is given signal to leave the 

station. Trains arrive at the station at an average rate of 6 per hour and the railway 

station can handle them on an average of 6 per hour. Assuming Poisson arrivals 

and exponential service distribution, fi nd the probabil ities for the numbers of 

trains in the system. Also fi nd the average waiting time of a new train coming 
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into the yard. If the handling rate is doubled, how will the above results get modi-

fi ed?

 (a) l = 6 per hour, m = 6 per hour, k = 2 + 1 = 3

 Since l = m, P0 = 
1

1k +

  = 
4

1
 [by formula (5) of model III]

 Pn = 
1

1 4k

1
=

+
 for n = 1, 2, 3 [by formula (7) of model III]

 E(N) = 
2

k
 [by formula (9) of model III]

  = 1.5 trains

 E(W) = 
1

l ¢
 E(N) [by formula (13) of model III]

  = 
m - 0

1.5

(1 )P

  = 
1.5

3
6

4
¥

 = 
1

3
 h or 20 min

 (b) l = 6; m = 12, k = 3

 Since l π m, P0 = 
1

1

1

k

l

m

l

m

+

-

Ê ˆ
- Á ˜Ë ¯

 [by formula (4) of model III]

  = 
4

1
1

2

1
1

2

-

Ê ˆ- Á ˜Ë ¯

 = 
8

15

 Pn = 
1

1

1

n

k

l

l m

m l

m

+

Ï ¸
Ô Ô-

Ê ˆ Ô Ô
Ì ˝Á ˜Ë ¯ Ê ˆÔ Ô- Á ˜Ô ÔË ¯Ó ˛

 [by formula (6) of model III]

  = 
8 1

15 2

n
Ê ˆ◊Á ˜Ë ¯

, for n = 1, 2, 3.
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 E(N) = 

l

ml

m l l

m

+

+

Ê ˆ
+ Á ˜Ë ¯

-
- Ê ˆ

- Á ˜Ë ¯

1

1

( 1)

1

k

k

k

 [by formula (8) of model III]

 = 1 – 

4

4

1
4

2

1
1

2

Ê ˆ¥ Á ˜Ë ¯

Ê ˆ- Á ˜Ë ¯

 = 1 – 
4

15
 = 

11

15
    0.73 train

 E(W) = 
1

l ¢
  E(N) [by formula (13) of model III]

  = 
m - 0

1

(1 )P
 ¥ E(N)

  = 

11

15

8
12 1

15

Ê ˆ-Á ˜Ë ¯

  = 
11

84
 h or 7.9 min

Example 16

Patients arrive at a clinic according to Poisson distribution at a rate of 30 patients 

per hour. The waiting room does not accom modate more than 14 patients. 

Examination time per patient is exponential with mean rate of 20 per hour.

 (a) Find the effective arrival rate at the clinic.

 (b) What is the probability that an arriving patient will not wait?

 (c) What is the expected waiting time until a patient is dis charged from the 

clinic?

 (a) l = 30 per hour, m = 20 per hour, k = 14 + 1 = 15

  Since l π m, P0 = 1

1

1

k

l

m

l

m

+

-

Ê ˆ
- Á ˜Ë ¯

 [by formula (4) of model III]

     = 
16

3
1

2

3
1

2

-

Ê ˆ- Á ˜Ë ¯

 = 0.00076

  Effective arrival rate l¢ = m (1 – P0) [by formula (11) of model III]
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 = 20 ¥ (1 – 0.00076)

 = 19.98 per hour

 (b) P(a patient will not wait)

 = P0 = 0.00076

 (c) E(N) = 

l

ml

m l l

m

+

+

Ê ˆ
+ Á ˜Ë ¯

-
- Ê ˆ

- Á ˜Ë ¯

1

1

( 1)

1

k

k

k

 

  = – 3 – 

16

16

3
16

2

3
1

2

Ê ˆ¥ Á ˜Ë ¯

Ê ˆ- Á ˜Ë ¯

 = 13 patients nearly

 E(W) = 
l ¢
( )E N

 = 
13

19.98
 = 0.65 h or 39 min

Example 17 

A 2-person barber shop has 5 chairs to accommodate waiting customers. Potential 

customers, who arrive when all 5 chairs are full, leave without entering barber 

shop. Customers arrive at the average rate of 4 per hour and spend an average of 

12 min in the barber’s chair. Compute P0 P1, P7, E(Nq) and E(W).

The situation in this problem is one of fi nite capacity, multi server Poisson 

queue models.

 l  = 4 per hour, m = 5 per hour, s = 2, k = 2 + 5 = 7

 (a) P0 = 

1
1

0

1 1

! !

n s n ss k

n n sn s s

l l l

m m m

---

= =

È ˘Ê ˆ Ê ˆ Ê ˆ
Í ˙+Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
Â Â  

 [by formula (3) of model IV]

 = 

1
2 21 7

0 2

1 4 1 4 2

! 5 2 5 5

n n

n nn

--

= =

È ˘Ê ˆ Ê ˆ Ê ˆ+ ◊Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
Â Â

 = 

1
2 3 4 5

4 8 2 2 2 2 2
1 1

5 25 5 5 5 5 5

-
È ˘Ï ¸Ê ˆ Ê ˆ Ê ˆ Ê ˆÔ ÔÍ ˙+ + + + + + +Ì ˝Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Ô ÔÓ ˛Î ˚

 = 

-
È ˘Ï ¸-Ô Ô+Í ˙Ì ˝-Ô ÔÍ ˙Ó ˛Î ˚

1
79 8 1 (0.4)

5 25 1 0.4
 = 0.4287
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 (b) Pn = 
1

!

n

n

l

m

Ê ˆ
Á ˜Ë ¯

P0, for n £ s [by formula (4) of model IV]

\  P1 = 
4

5

Ê ˆ
Á ˜Ë ¯  ¥ 0.4287 = 0.3430

 (c) Pn = 
1

!.

n

n s
s s

l

m-

Ê ˆ
◊Á ˜Ë ¯

 P0, for s < n £ k [by formula (4) of model IV]

\ P7 = 

7

7 2

1 4

52 2 -
Ê ˆ¥ Á ˜Ë ¯¥

 ¥ 0.4287

  = 0.0014

 (d) E(Nq) = P0 
l r

m r

Ê ˆ
◊Á ˜Ë ¯ - 2!(1 )

s

s
 [1 – pk–s – (k – s) (1 – r) rk–s],

where r  = 
s

l

m
 [by formula (5) of model IV]

  = (0.4287). (0.8)2.

¥ 2

(0.4)

2 (0.6)
 [1 – (0.4)5 – 5 ¥ 0.6 ¥ (0.4)5]

  = 0.15 customer

 (e) E(N) = E(Nq) + s – 

1

0

s

n

-

=
Â (s – n) Pn [by formula (6) of model IV]

 = 0.1462 + 2 – 
=

Â
1

0n

 (2 – n)Pn

 = 2.1462 – (2 ¥ P0 + 1 ¥ P1)

 =  2.1462 – (2 ¥ 0.4287 + 1 ¥ 0.3430)

 = 0.95 customer

 E(W) = 
1

l ¢
. E(N) [by formula (9) of model IV]

 where l¢ = m
-

=

È ˘
- -Í ˙

Í ˙Î ˚
Â

1

0

( )
s

n

n

s s n P  [by formula (7) of model IV]

 = 4[2 – (2 ¥ 0.4287 + 1 ¥ 0.3430)]

 = 3.1984

 \ E(W) = 
0 9458

3 1984

◊
◊

 = 0.2957 h or 17.7 min
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Example 18

At a port there ar 6 unloading berths and 4 unloading crews. When all the berths 

are full, arriving ships are diverted to an over fl ow facility 20 kms down the river.

Tankers arrive  according to a Poisson process with a mean of 1 every 2 h. It takes 

for an unloading crew, on the average, 10 h to unload a tanker, the unloading time 

following an exponential distribution. Find 

 (a) how many tankers are at the port on the average?

 (b) how long does a tanker spend at the port on the average?

 (c) what is the average arrival rate at the overfl ow facility?

 l = 
1

2
 per hour, m = 

1

10
 per hour, s = 4, k = 6

 (a) 

1
1

0

0

1 1

! !

n s n ss k

n n s

P
n s s

l l l

m m m

---

= =

È ˘Ê ˆ Ê ˆ Ê ˆ
Í ˙= +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
Â Â  

 [by formula (3) of model IV]

 = 

1
0 1 2

2 3 41 1 1 5 5 5
1 5 5 5 5

2 6 24 4 4 4

-
È ˘Ï ¸Ê ˆ Ê ˆ Ê ˆ Ê ˆÔ ÔÍ ˙+ + ¥ + ¥ + ¥ ¥ + +Ì ˝Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Ô ÔÓ ˛Î ˚

 

    = 0.0072

 E(Nq) = P0 

l r

m r

Ê ˆ
◊Á ˜Ë ¯ - 2!(1 )

s

s
[1 – rk–s – (k – s) (1 – r) rk–s],

where r = 
s

l

m
 [by formula (5) of model IV]

 = 0.0072 ¥ 54 ¥ 
¥ 2

1.25

24 (.25)
 [1 – (1.25)2 – 2 ¥ (–.25)(1.25)2]

 = 0.8203 tanker

 E(N) = E(Nq) + s – 
-

=
Â

1

0

s

n

(s – n) Pn [by formula (6) of model IV]

 = 4.8203 – (4 P0 + 3 P1 + 2 P2 + P3)

 = 4.8203 – {4 ¥ 0.0072 + 3 ¥ 0.0360 + 2 ¥ 0.09 + 0.15}

 = 4.3535 tankers
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 (b) E(W) = 
1

l ¢
 E(N) [by formula (9) of model IV]

where l¢ = m
-

=

È ˘
- -Í ˙

Í ˙Î ˚
Â

1

0

( )
s

n

n

s s n P  [by formula (7) of model IV]

 = 
1

10
 [4 – {4P0 + 3P1 + 2P2 + P3}]

 = 
1

10
 [4 – 0.4668] = 0.3533

\ E(W) = 
4.3535

0.3533
 = 12.32 h

 (c) When N = 6, i.e., when the number of tankers in the port is 6, overfl ow 

occurs.

 P(N = 6) = 
1

!

n

n s
s s

l

m-

Ê ˆ
Á ˜Ë ¯

P0, for n = k [by formula (4) of model IV]

  = 
2

1

24 4¥
 ¥ 56 ¥ 0.0072

  = 0.2930

Average arrival rate at the overfl ow facility =  (Average arrival rate at the port) ¥ 

(Probability that overfl ow occurs)

      = 
1

2
  ¥ 0.2930 = 0.586 per hour

Example 19

A car servicing station has 2 bays where service can be offered simultaneously. 

Because of space limitation, only 4 cars are accepted for servicing. The arrival 

pattern is Poisson with 12 cars per day. The service time in both the bays is 

exponentially distributed with m = 8 cars per day per bay. Find the average 

number of cars in the service station, the average number of cars waiting for 

service and the average time a car spends in the system.

 l = 12 per day, m = 8 per day, s = 2, k = 4

 (a) P0 = 

1
1

0

1 1

! !

n s n ss k

n n sn s s

l l l

m m m

---

= =

È ˘Ê ˆ Ê ˆ Ê ˆ
Í ˙+Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
Â Â

 [by formula (3) of model IV]
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  = 

-
È ˘+ + ¥ + +Í ˙Î ˚

1

2 21.5 1
1 (1.5) {1 (.75) (.75) }

1 2

  = 0.1960

 E(Nq) = P0

l r

m r

Ê ˆ
◊Á ˜Ë ¯ - 2!(1 )

s

s
 [1 – rk–s – (k – s) (1 – r) rk–s],

where r = 
s

l

m
 [by formula (5) of model IV]

i.e., E(Nq) = 0.1960 ¥ (1.5)2 ¥ 
◊

¥ 2

0 75

2 (0.25)
 ¥

 [1 – (0.75)2 – 2 ¥ 0.25 ¥ (0.75)2]

 = 0.4134 car

 (b) E(N) = Average number of cars in the service station

 = E(Nq) + s – 
-

=
Â

1

0

s

n

(s – n) Pn [by formula (6) of model IV]

 = 0.4134 + 2 – 
=

Â
1

0n

(2 – n)Pn

 =  2.4134 – (2P0 + P1)

 =  2.4134 – (2 ¥ 0.1960 + 1.5 ¥ 0.1960)

 = 1.73 cars

 (c) E(W) = 
1

l ¢
 E(N) [by formula (9) of model IV]

where  l¢ = m
-

=

È ˘
- -Í ˙

Í ˙Î ˚
Â

1

0

( )
s

n

n

s s n P  [by formula (7) of model IV]

 = 8[2 – (2P0 + P1)]

 = 10.512

  \  E(W) = 
1.73

10.512
 = 0.1646 day

Example 20

A group of engineers has 2 terminals available to aid in their calculations. The 

average computing job requires 20 min of terminal time and each engineer 

requires some computation about once every half an hour. Assume that these are 

distributed according to an exponential distribution. If there are 6 en gineers in 

the group, fi nd
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 (a) the expected number of engineers waiting to use one of the terminals 

and in the computing centre, and 

 (b)  the total time lost per day.

 l = 2 per hour, m = 3 per hour, s = 2, k = 6

 (a) P0 = 

1
1

0

1 1

! !

n s n ss k

n n sn s s

l l l

m m m

---

= =

È ˘Ê ˆ Ê ˆ Ê ˆ
Í ˙+Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
Â Â  

 [by formula (3) of model IV]

  = 

1
2 2 3 4

2 1 2 1 1 1 1
1 1

3 2 3 3 3 3 3

-
È ˘Ï ¸Ê ˆ Ê ˆ Ê ˆ Ê ˆÔ ÔÍ ˙+ + ¥ + + + +Ì ˝Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Ô ÔÓ ˛Î ˚

 

  = 0.5003

 E(Nq) = P0 ¥ 
l r

m r

Ê ˆ
¥Á ˜Ë ¯ - 2!(1 )

s

s
 [1 – rk–s– (k – s) (1 – r) rk–s],

where r = 
s

l

m
 [by formula (5) of model IV]

i.e., E(Nq) = 0.5003 ¥ 
2

2

3

Ê ˆ
Á ˜Ë ¯

 ¥ 

Ê ˆ
Á ˜ È ˘Ë ¯ Ê ˆ Ê ˆ- - ¥ ¥Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Ê ˆ Î ˚¥ Á ˜Ë ¯

4 4

2

1

1 2 13
1 4

3 3 32
2

3

 

 = 0.0796

 E(N) = E(Nq) + s – 
-

=
Â

1

0

s

n

 (s – n)Pn [by formula (6) of model IV]

 = 0.0796 + 2 – 
=

Â
1

0n

(2 –n)Pn

 = 2.0796 – (2P0 + P1)

 = 2.0796 – 
2

2 0.5003 0.5003
3

Ê ˆ¥ + ¥Á ˜Ë ¯
 

 = 0.75

 (b) E(Wq) = 
1

l ¢
 E(Nq) [by formula (10) of model IV]

where l¢ = m
-

=

È ˘
- -Í ˙

Í ˙Î ˚
Â

1

0

( )
s

n

n

s s n P  [by formula (7) of model IV]

 = 3
=

È ˘
- -Í ˙

Í ˙Î ˚
Â

1

0

2 (2 ) n

n

n P
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 = 3 [2 – (2P0 + P1)]

 = 3
2

2 2 0.5003 0.5003
3

È ˘Ê ˆ- ¥ + ¥Í ˙Á ˜Ë ¯Î ˚
 = 1.9976

 \  E(Wq) = 
0.0796

1.9976
 = 0.0398 h

  Every time an engineer approaches the computer centre, he has to lose 

0.0398 h by way of waiting.

  If the day consists of 8 working hours, he has to approach the centre 16 

times.

  \ Time lost in waiting in a day per engineer

 =  16 ¥ 0.0398 = 0.6368 h

  \ Total time lost in waiting in a day by all the 6 engineers = 6 ¥ 0.6368 = 

3.82 h.

Example 21

A shipping company has a single unloading berth with ships arriving in a Poisson 

fashion at an average rate of 3 per day. The unloading time distribution for a ship 

is found to be exponential with average unloading time of 
1

2
 day. The company 

has a large labour supply without regular working hours and to avoid waiting of 

ships for getting unloaded, the company will use as many unloading labourers 

as there are arriving ships for getting unloaded. Under these conditions, (a) what 

will be the average number of unloading labourers working at any time? (b) what 

is the probability that more than 4 labourers will be needed?

Mean arrival rate = l = 3 ships/day

Mean unloading (service) time = 
1

2
 day

\ Mean service rate = m = 2 ships/day

Given that ln is a constant (=l) and mn increases with n i.e., mn = n m.

\ this is a problem under case (ii) of the birth and death process/self-service 

model with 
3

2

l
r

m
= =

 (a) \ E(NS) = The average number of workers unloading at any time

   = 
3

2
r =  = 1.5 workers

 (b) P (more than 4 labourers will be needed)

  = P(NS ≥ 5) or P(X ≥ 5) or Pn ≥ 5

  = 1 – (P0 + P1 + P2 + P3 + P4)
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  = -Ï ¸
- + + + +Ì ˝

Ó ˛

2 3 4
1.51.5 (1.5) (1.5) (1.5)

1 1
1! 2! 3! 4!

e

  = 0.019

Example 22

In a general Poisson queue system, fi nd the steady-state probability Pn and the 

average number of customers in the system, given that

 ln = 
for 0,1,2,...,( 1)

0, for , ,...

n k

n k k

l, = -Ï
Ì = +1Ó

and mn = n m, for n = 1, 2, ...

 P0
–1 = 0 1 2 1

1 1 2 3

1
k

n

n n

l l l l

m m m m
-

=

Ê ˆ
+ Á ˜Ë ¯

Â
 

 

  = 
1 0

1 1
1 or

! !

n nk k

n nn n

l l

m m= =

Ê ˆ Ê ˆ
+ Á ˜ Á ˜Ë ¯ Ë ¯Â Â

 Pk = 
0 1 1

0

01 2

1 1
,

! !

k nk
k

nk

P
k n

l l l l l

m m m m m
-

=

Ê ˆ Ê ˆ
= ∏Á ˜ Á ˜Ë ¯ Ë ¯Â

 

 

and E(Ns) = 
0

k

k

kP
•

=
Â

Example 23

In a general Poisson queue system, fi nd the steady-state probability Pr and the 

average number of customers in the system, given that

 lr = 
( ) for 0,1,2,...,( 1)

0, for , ,...

k r r k

r k k

l- , = -Ï
Ì = +1Ó

and mr = rm, for r ≥ 1

 P0
–1 = 

0 1 2 1

1 1 2 3

1
k

r

r r

l l l l

m m m m
-

=

Ê ˆ
+ Á ˜Ë ¯

Â
 

 

  = 
( 1) 1 ( 2) ( 1)

1
1! 2! 3! !

k k k k k k k k

k

l l l l l l l l l

m m m m

- ( - ) - ◊ - 1
+ + + +

 

 

  = 01 1

k k

P
l l

m m

-
Ê ˆ Ê ˆ

+ \ = +Á ˜ Á ˜Ë ¯ Ë ¯

 Pr = 0 1 1
0

1 2

( 1) ( 1)
1

!

r k

r

r

k k k r
P

r

l l l l l

m m m m m

-
- Ê ˆ Ê ˆ◊ - - +

= ◊ +Á ˜ Á ˜◊ Ë ¯ Ë ¯
  

 



Queueing Theory 8.53

  = 

r k

rkC
l m

m l m

Ê ˆ Ê ˆ
◊ ◊Á ˜ Á ˜+Ë ¯ Ë ¯

  = 

k r r r

rkC
m m l

l m l m m

-
Ê ˆ Ê ˆ Ê ˆ

◊ ◊Á ˜ Á ˜ Á ˜+ +Ë ¯ Ë ¯ Ë ¯

  = 

k r r

rkC
m l

l m l m

-
Ê ˆ Ê ˆ
Á ˜ Á ˜+ +Ë ¯ Ë ¯

     [r = 0, 1, 2, ..., k] which is the probability law of a 

binomial distribution, with andp q
l m

l m l m
= =

+ +

\ E(Ns) = ( )
k

E X kp
l

l m
= =

+

Exercise 8

Part-A (Short-answer Questions)

 1. What are the characteristics of a queueing system?

 2. What do the letters in the symbolic representation (a/b/c): (d/e) of a 

queueing model represent?

 3. What do you mean by transient state and steady-state queueing 

systems?

 4. Write down the difference equations that give the probability that there 

are n customers (n ≥ 0) in a Poisson queueing system in steady-state.

 5. Write down the formulas for P0 and Pn in a Poisson queue system in the 

steady-state.

 6. Give the formulas for the average number of customers (i) in the system, 

(ii) in the queue, and (iii) in the non-empty queues for the (M/M/1):

(•/FIFO) model.

 7. Obtain the variance of queue length for the (M/M/1): (•/FIFO) model.

 8. In the usual notation of a (M/M/1): (•/FIFO) queue system, fi nd P(N > 2),

if l = 12 per hour and m = 30 per hour.

 9. In the usual notation of a (M/M/1): (•/FIFO) queue system if l = 12 per 

hour and m = 24 per hour, fi nd the average number of customers in the 

system and in the queue. 

 10. Give the formulas for the waiting time of a customer in the queue and in 

the system for the (M/M/1): (•/FIFO) model.

 11. If a customer has to wait in a (M/M/1): (•/FIFO) queue sys tem, what is 

his average waiting time in the queue, if l = 8 per hour and m = 12 per 

hour?
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 12. What is the probability that a customer has to wait more than 15 min to 

get his service completed in a (M/M/1): (•/FIFO) queue system, if l = 

6 per hour and m = 10 per hour?

 13. Write down the probability density function of the waiting time of a 

customer in the (M/M/1): (•/FIFO) queue system.

 14. Write down the Little’s formulas that hold good for all the Poisson queue 

models.

 15. Write down the Little’s formulas that hold good for the infi nite capacity 

Poisson queue models.

 16. What is the probability that there are no customers in the (M/M/s): (•/

FIFO) queueing system?

 17. Write down the formula for Pn in terms of P0 for the (M/M/s): (•/FIFO 

queueing system.

 18. Give the formulas for the average number of customers in the system 

and in the queue for the (M/M/s): (•/FIFO) queueing model.

 19. If there are 2 servers in an infi nite capacity Poisson queue system with 

l = 10 per hour and m = 15 per hour, what is the percentage of idle time 

for each server?

 20. In a 3-server infi nite capacity Poisson queue model if l /sm = 
2

3
 , fi nd 

P0.

 21. In a 3-server infi nite capacity Poisson queue model if l /sm = 2/3 and 

P0 = 1/9 fi nd the average number of customers in the queue and in the 

system.

 22. If l/sm = 
2

3
  in a (M/M/s): (•/FIFO) queue system fi nd the average 

number of customers in the non-empty queue.

 23. What is the probability that an arrival to an infi nite-capac ity 3-server 

Poisson queue system with l/sm = 2/3 and P0 = 1/9 will have to wait? 

 24. What is the probability that an arrival to an infi nite-capac ity 3-server 

Poisson queue system with l/sm = 2/3 and P0 = 1/9 enters the service 

without waiting?

 25. Give the formulas for the average waiting time of a customer in the 

system and in the queue for the (M/M/s):(•/FIFO) queueing model.

 26. What is the average waiting time of a customer in the 3-server infi nite-

capacity Poisson queue if he happens to wait, given that l = 6 per hour 

and m = 4 per hour.

 27. Give the probability that there is no customer in an (M/M/1):(k/FIFO) 

queueing system.

 28. Write down the probability that there are n customers in an (M/M/1):

(k/FIFO) queueing system.

 29. If l = 4 per hour and m = 12 per hour in an (M/M/1):(4/FIFO) queueing 

system, fi nd the probability that there is no customer in the system. If l 

= m, what is the value of this probability?
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 30. Write the formulas for the average number of customers in the (M/M/1): 

(k/FIFO) queueing system and also in the queue.

 31. Defi ne effective arrival rate with respect to an (M/M/1):(k/FIFO) 

queueing model.

 32. How are Ns and Nq related in an (M/M/1):(k/FIFO) queueing model?

 33. Write down the Little’s formulas for the average waiting time in the 

system and in the queue for an (M/M/1):(k/FIFO) queueing model.

 34. If l = 3 per hour, m = 4 per hour and maximum capacity k = 7 in a 

(M/M/1):(k/FIFO) system, fi nd the average number of custo mers in the 

system.

 35. Write the formula for the probability that there is no custo mer in an 

(M/M/s):(k/FIFO) queue system.

 36. Write the formula for the probability that there are n custo mers in an 

(M/M/s):(k/FIFO) queueing system.

 37. Write down the formula for the average queue length in an (M/M/s):(k/

FIFO) queueing model.

 38. Defi ne effective arrival rate with respect to an (M/M/s):(k/FIFO) 

queueing model.

 39. How are Ns and Nq related in an (M/M/s):(k/FIFO) queueing model?

 40. Write down Little’s formulas for the average waiting time in the system 

and in the queue for an (M/M/s):(k/FIFO) queueing model.

Part B

 41. Arrivals at a telephone booth are considered to be Poisson with an 

average time of 10 min between one arrival and the next. The length of a 

phone call is assumed to be distributed exponen tially with mean 3 min.

 (i) Find the average number of persons waiting in the system.

 (ii) What is the probability that a person arriving at the booth will have 

to wait in the queue? 

 (iii) What is the probability that it will take him more than 10 min 

altogether to wait for phone and complete his call?

 (iv) Estimate the fraction of the day when the phone will be in use.

 (v) The telephone department will install a second booth when 

convinced that an arrival has to wait on the average for at least 3 

min for phone. By how much the fl ow of arrivals should increase 

in order to justify a second booth?

 42. Customers arrive at a one man barber shop according to a Poisson 

process with a mean interarrival time of 20 min. Custo mers spend an 

average of 15 min in the barber’s chair.

 (i) What is the expected number of customers in the barber shop? in 

the queue?

 (ii) What is the probability that a customer will not have to wait for a 

hair cut?

 (iii) How much can a customer expect to spend in the barber shop?
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 (iv) Management will put another chair and hire another barber when 

a customer’s average waiting time in the shop exceeds 1.25 h. 

How much must the average rate of arrivals increase to warrant a 

second barber?

 (v) What is average time customers spend in the queue?

 (vi) What is the probability that the waiting time in the system is 

greater than 30 min?

 (vii) What is the probability that there are more than 3 customers in the 

system?

 43. If customers arrive for service according to a Poisson dis tribution at the 

average rate of 5 per day, how fast must they be serviced on the average 

(assume exponential service time) in order to keep the average number 

of customers in the system less than 4?

 44. Patients arrive at an hospital for emergency service at the rate of one 

every hour. Currently only one emergency can be handled at a time. 

Patients spend an average of 20 min for re ceiving emergency service. 

How much the average service time need to be decreased to keep the 

average time to wait and receive the service less than 25 min?

 45. A departmental secretary receives an average of 8 jobs per hour. Many 

are short jobs, while others are quite long. Assume, however, that the time 

to perform a job has an exponential dis tribution with a mean of 6 min.

 (i) What is the average elapsed time from the time the secretary 

receives a job until it is completed?

 (ii) Calculate E(N), E(Wq), P(W > 2h), P(N > 5) and the fraction of 

time the secretary is busy.

 46. A service station expects a customer every 4 min on the average. Service 

takes, on the average, 3 min. Assume Poisson input and exponential 

service.

 (i) What is the average number of customers waiting for service?

 (ii) How long can a customer expect to wait for service?

 (iii) What is the probability that a customer will spend less than 15 min 

waiting for and getting service?

 (iv) What is the probability that a customer will spend longer than 10 

min waiting for and getting service?

 47. A dress shop has 3 sales persons. Assume that arrivals follow Poisson 

pattern with an average of 10 min between arrivals. Also assume that 

any salesperson can provide the desired service for any customer. If the 

time to provide service for a customer is exponentially distributed with 

a mean of 20 min per customer, calculate E(N), E(Nq) E(W), E(Wq) and 

Pn for 
n = 0, 1 and 2.

 48. If the mean arrival rate is 24 per hour, fi nd from the custo mer’s point 

of view of the time spent in the system, whether 3 channels in parallel 

with a mean service rate of 10 per hour is better or worse than a single 

channel with mean service rate of 30 per hour.
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 49.  Four counters are being run on the frontier of a country to check the 

passports and necessary papers of the tourists. The tourists choose a 

counter at random. If the arrivals at the frontier is Poisson at the rate 

of l and the service time is exponential with parameter 
2

l
 , what is the 

steady-state average queue at each counter?

 50. An insurance company has 3 claim registers in its branch offi ce. People 

with claims against the company are found to arrive in a Poisson fashion 

at an average rate of 20/8-h day. The amount of time that an adjuster 

spends with a claimant is found to have exponential distribution with 

mean service time 40 min. Claimants are processed in the order of their 

appearance.

 (i) How many hours a week can an adjuster expect to spend with 

claimants?

 (ii) How much time, on the average, does a claimant spend in the 

branch offi ce?

 51. A telephone exchange has 2 long-distance operators. The telephone com-

pany fi nds that during the peak load, long distance calls arrive in a Poisson 

fashion at an average rate of 15 per hour. The length of service on these 

calls is approximately exponentially distributed with mean length 5 min.

 (a) What is the probability that a subscriber will have to wait for his 

long distance call during the peak hours of the day?

 (b) If the subscribers will wait and are serviced in turn, what is the 

expected waiting time?

 52. A petrol pump station has 4 pumps. The service times follow the 

exponential distribution with a mean of 6 min and cars arrive for service 

in a Poisson process at the rate of 30 cars per hour.

 (i) What is the probability that an arrival would have to wait in line?

 (ii) Find the average waiting time in the queue, average time spent in 

the system and the average number of cars in the system.

 (iii) For what percentage of time would a pump be idle on an aver-

age?

 53. A one-person barber shop has 6 chairs to accommodate people waiting 

for a hair cut. Assume that customers who arrive when all the 6 chairs 

are full leave without entering the barber shop. Customers arrive at the 

average rate of 3 per hour and spend an average of 15 min in the barber’s 

chair.

 (i) What is the probability that a customer can get directly into the 

barber’s chair upon arrival?

 (ii) What is the expected number of customers waiting for a hair cut?

 (iii) How much time can a customer expect to spend in the barber shop?

 (iv) What fraction of potential customers are turned away?

 54. Assume that the goods trains are coming in a yard at the rate of 30 trains 

per day and suppose that the inter-arrival times follow an exponential 
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distribution. The service time for each train is assumed to be exponential 

with an average of 36 min. If the yard can admit 9 trains at a time, 

calculate the probability that the yard is empty and the average queue 

length.

 55. A car park contains 5 cars. The arrival of cars is Poisson at a  mean rate 

of 10 per hour. The length of time each car spends in the car park has 

negative exponential distribution with mean of 2 min. How many cars 

are in the car park on an average and what is the probability of a newly 

arriving customer fi nding the car park full and leaving to park his car 

elsewhere.

 56. A stenographer is attached to 5 offi cers for whom she performs 

stenographic work. She gets calls from the offi cers at the rate of 4 per 

hour and takes on the average 10 min to attend to each call. If arrival rate 

is Poisson and service time is exponential fi nd (i) the average waiting 

time for an arriving call (ii) the average number of waiting calls, and (iii) 

the average time an arriving call spends in the system.

 57. A 2-person barber shop has 5 chairs to accommodate waiting customers. 

Potential customers, who arrive when all the 5 chairs are full, leave 

without entering the barber shop. Customers arrive at the average rate 

of 3.7634 per hour and spend an average of 15 min in the barber’s chair. 

Compute P0, P1, P7, E(Nq) and E(W).

 58. A barber shop has 2 barbers and 3 chairs for waiting custo mers. Assume 

that customers arrive in Poisson fashion at a rate of 5 per hour and that 

each barber services customers according to exponential distribution with 

mean of 15 min. Further, if a customer arrives and there are no empty 

chairs in the shop, he will leave. Find the steady-state probabilities. What 

is the probability that the shop is empty? What is the expected number of 

customers in the shop?

 59. An automobile inspection station has 3 inspection stalls. Assume that 

cars wait in such a way that when a stall becomes vacant, the car at the 

head of the line pulls up to it. The station can accommodate at most 4 cars 

waiting (7 in the station) at one time. The arrival pattern is Poisson with 

a mean of 1 car every minute during the peak hours. The service time 

is exponen tial with mean 6 min. Find the average number of customers 

in the system during peak hours, the average waiting time and the aver-

age number of cars per hour that cannot enter the house because of full 

capacity.

 60. A mechanic repairs 4 machines. The mean time between service 

requirements is 5 h for each machine and forms an exponential 

distribution. The mean repair time is 1 h and also follows the same 

distribution pattern. Machine downtime costs Rs. 25 per hour and the 

mechanic costs Rs. 55 per day.

 (i) Find the expected number of machines under service and in waiting.

 (ii) Determine the expected downtime cost per 8-h day?
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 (iii) Would it be economical to engage 2 mechanics, each repairing 

only 2 machines?

 61. For the general queue system, fi nd the steady-state probability, when ln 

= l, for n ≥ 0 and mn = nkm, for n ≥ 1.

 62. For the general queue system, fi nd the steady-state probability and the 

average number of customers in the system, when 

 ln = 
for 0,1,2,...,( 1)

0, for

n k

n k

l, = -Ï
Ì ≥Ó

  and mn = m, for n ≥ 1.

 63. Research students visit a computer centre to solve their problems (one 

problem each) in a Poisson fashion at an average rate of 5 per day. The 

time to solve a problem by a student has an exponential distribution 

with a mean time of 
1

3
 day. Assuming that the centre can provide any 

number of computers to the students and that the average solving time is 

inversely proportional to the number of students working on the problem, 

fi nd the average time spent by a student in the centre.

 64. In a big departmental store, self-service pattern is allowed. Customers 

enter the store in a Poisson fashion at an average rate of 15 per hour. 

The time taken by a customer to select his/her requirements follows an 

exponential distribution with a mean time of 10 minutes. Assuming that 

billing and payment take negligible time, fi nd the average number of 

customers in the store and the probability that there are no customers in 

the store.

 65. There are two sections—cosmetics and provisions—in a big departmental 

store, where self-service of customers is permitted. Customers enter 

the cosmetics section and provisions section in Poisson fashion at an 

average rate of 15 per hour and 20 per hour respectively. The time taken 

by a customer to select his/her requirements follows an exponential 

distribution with a mean time of 6 minutes in the cosmetics section 

and 12 minutes in the provisions section. Assuming that billing and 

payment take negligible time in both sections, fi nd the average number 

of customers in the stores and the probability that there are less than 5 

customers in both the sections put together.

ANSWERS

Exercise 8

 11. 5 min 12. 0.3679 19. 50% 20. 
1

9
 

 21. 
8

9
 , 

26

9
  22. 2 23. 

4

9
  24. 

5

9
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 26. 10 min 29. 
81

121
 , 

1

5
  34. 2.11

 41. (i)  0.43 (ii) 0.3 (iii) 0.097 (iv) 0.3

  (v)  0.16 person per minute

 42. (i) 3; 2.25 (ii) 0.25 (iii) 1 h (iv) 3.2 per hour

  (v)  
3

4
 h (vi)  0.61  (vi)  0.32

 43. 3.84 h/service

 44. 17.65 min per patient

 45. (i) 30 min (ii) 4; 24 min; 0.0183; 0.2621; 0.8

 46. (i) 2.25 (ii) 9 min (iii) 0.7135 (iv) 0.8465

 47. 2.1739; 0.1739; 21.739 min; 1.739 min; P0 = 0.1304, P1 = 0.2608;

  P2 = 0.2602

 48. Single channel is better

 49. 
4

23
 

 50.  22.2 h; 49 min 

 51.  (i) 0.48 (ii) 3.2 min

 52. (i) 0.3826 (ii) 3.05 min; 9.054 min; 4.53 cars;   (iii) 24.98%

 53. (i) 0.2778 (ii) 1.3878 (iii) 43.8 min (iv) 3.7%

 54. 0.28; 1.55

 55. 0.49, 0.0027

 56. (i) 12.45 min   (ii) 0.79 customer (iii) 22.42 min

 57. 0.36133; 0.33996; 0.00368; 0.2457; 19 min

 58. Pn = (0.56) (0.625)n, for 2 £ n £ 5; P1 = 0.35; P0 = 0.28; 2.956

 59. 6.06 cars; 12.3 min; 30.4 cars

 60. (i) 1 (ii) Total cost = Rs. 255

  (iii)  Total cost with 2 machines = Rs. 270; Use of 2 machines is not 

economical.

 61. 1
0 0

0

, where
( !) ( !)

n n

n

n

P P P
n n

a a

l l

m m•
-

=

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

= ◊ = Â

 62. 
1

1
,0 , where

1

n
n k

P n k
r l

r r
mr +

Ê ˆ-
= ◊ £ < =Á ˜-Ë ¯

  E(NS) = [1 – (1 + k)rk + k rk + 1]r/(1 – r)(1 – rk+1)

 63. 8 hours

 64. 2.5; e–2.5

 65. 
4

5.5

0

1
5.5; (5.5)

!

r

r

r
r

-

=

◊Â



Finite Source Model

So far in all the queue models we have discussed, we assumed that the number 

of customers who require service is very large. In other words, the customers 

requiring service emanate from an infi nite population (source). However, there 

are situations, where maximum limit is imposed on the incoming customers. In 

other words, the fl ow of customers is from a fi nite source.

A practical situation corresponding to this model is that of machine servicing 

where the calling population is that of machines and the arrival corresponds to 

the broken-down machine. The repairmen/mechanics are of course the servers. 

Symbolically, this machine-servicing model is represented as (M/M/1): (k/k/

FIFO) or (M/M/s): (k/k/FIFO), depending on the number of repairmen.

Characteristics of Machine-Service Model 

(M/M/s): (k/k/FIFO)

For the general Poisson queue systems, the steady-state probabilities P0 and Pn 

are given by

 P0
–1 = 0 1 1

0 1 2

1 n

n n

l l l

m m m

•
-

=

Ê ˆ
+ Á ˜Ë ¯

Â
 

 

 (1)

and Pn = 0 1 1
0

1 2

n

n

P
l l l

m m m
- 

 

,   for n ≥ 1 (2) 

For the machine-service model, we assume that there are k machines, one or 

more of which are likely to break down and, hence, become customers for the 

queue system in which there are ‘s’ repairmen or servers.

Thus, ln = 
( ) for 0

0, for

k n n k

n k

l- , £ <Ï
Ì ≥Ó

 (3)

Chapter 9
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and mn = 
for 0

, for

n n s

s s n k

m

m

, £ <Ï
Ì £ £Ó

 (4)

Using these value in (1) and (2), we get

 P0
–1 = 

1

0

!
, where

!

s k
n n

n n n s
n n s

n
kC kC

s s

l
r r r

m

-

-
= =

+ =Â Â  (5)

and Pn = 
0

0

, for 0

!
, for

!

n
n

n
n n s

kC P n s

n
kC P s n k

s s

r

r-

Ï ◊ £ <
Ô
Ì

◊ £ £ÔÓ

 (6)

 E(NQ) = 
1

( )
k

n

n s

n s P
= +

-Â  (7)

 E(NS) = ( )QE N
l

m

¢
+  (8)

where l¢ = 
1

0

( ) ( ) { ( )}
k

n n S

n

E k n P k E Nl l l
-

=

= - = -Â  (9)

 E(WQ) = 
1

( )QE N
l ¢

 (10)

 E(WS) = 
1

( )SE N
l ¢

 (11)

Note  If  there is only one repairman (server), viz., s = 1, the results (5) to (11) become

 P0
–1 = r

=

◊Â
1

n
n

n 0

kC  (5)¢;

 Pn = kCnr
n·P0; 0 £ n £ 1  (6)¢;

 E(NQ) = 
r

Ê ˆ
- + -Á ˜Ë ¯ 0

1
k 1 (1 P )  (7)¢;

 E(NS) = 
r

- - 0

1
k (1 P )  (8)¢;

 l¢ = m(1 – P0) or 
l

r
- 0(1 P )  (9)¢;

 E(WQ) = 
l ¢ Q

1
E( N )  (10)¢;

and E(WS) = 
l ¢ S

1
E( N )  (11)¢
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Non-Markovian Queueing Model [(M/G/1):

(•/GD) Model]

So far we have discussed Markovian queue models in which the inter-arrival 

and inter-service times were assumed to follow exponential distributions with 

parameters l and m. When the arrivals and departures do not follow Poisson 

distributions, the discussion of the queueing models is tedious. However we can 

derive the characteristics of a particular non-Markovian model (M/G/1) : (•/GD), 

where M indicates that the number of arrivals in time t follows a Poisson process, 

G indicates that the service time follows a general (arbitrary) distribution and GD 

indicates general queue discipline (viz., any kind of queue discipline).

The average number L of customers in the M/G/1 queueing system is given by 

a formula, known as Pollaczek–Khinchine formula, which is derived below:

Pollaczek-Khinchine Formula

Let N and N¢ be the numbers of customers in the system at times t and t + T, when 

two consecutive customers have just left the system after getting service.

Thus, T is the random service time, which is a continuous random variable. 

Let f(t), E(T), Var (T) be the pdf, mean and variance of T. Also let M be the 

number of customers arriving in the system during the service time T.

Hence N¢ = 
, if 0

1 , if 0

M N

N M N

=Ï
Ì - + >Ó

where M is a discrete random variable, taking the values 0, 1,2, ….

Equivalently, N¢ = N –1 + M + d (1)

where d = 
1, if 0

0, if 0

N

N

=Ï
Ì >Ó

\ E(N¢) = E(N) – 1 + E(M) + E(d) (2)

When the system has reached the steady-state, the probability of the number 

of customers in the system will be a constant.

Hence, E(N) = E(N¢) and E(N2) = E(N¢2) (3)

Using this in (2), we get E(d) = 1 – E(M) (4)

Squaring both sides of (1), we have

 N¢2 = N2 + (M – 1)2 + d2 + 2N(M – 1) + 2(M – 1)d + 2Nd (5)

Now, d2 = d (∵ d2 = 0 or 1, according as d = 0 or 1)

and Nd =  
0 1, if 0

0, if 0

N

N N

¥ =Ï
Ì ¥ >Ó

 = 0
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Using these values in (5), we have

 N¢2 = N2 + M2 + 2N(M – 1) + (2M – 1) d – 2M + 1

i.e., 2N (1 – M) = N2 – N¢2 + M2 + (2M – 1)d – 2M + 1

\ 2E {N(1 – M)} = E(N2) – E(N¢2) + E(M2) + E{(2M – 1)d} – 2E(M) + 1

i.e., 2E(N) {1 – E(M)} = E(M2) + {2E(M) – 1} E(d) – 2E(M) + 1

[by independence and by (3)}

\ E(N) = 
2( ) {2 ( ) 1}{1 ( )} 2 ( ) 1

2{1 ( )}

E M E M E M E M

E M

+ - - - +
-

, by (4)

 = 

2( ) 2 ( ) ( )

2{1 ( )}

E M E M E M

E M

- +
-

 (6)

Since the number M of arrivals in time T follows a Poisson pro cess with 

parameter l, say, then E(M) = lT and Var (M) = l T or E(M2) = (lT)2 + lT

Now, E(M) = E {E(M/T)}

 = E(lT) = lE(T) (7)

 E(M2) = E{E(M2/T)} = E{l2 T2 + lT}

 = l2 {Var (T) + E2(T)} + lE(T) (8)

Using (6) and (7) in (5), we have

 Ls = E(N) = 
2 2 2 2 2( ) ( ) ( ) 2 ( ) ( )

2{1 ( )}

V T E T E T E T E T

E T

l l l l l

l

+ + - +
-

 = 
2 2{ ( ) ( )}

( )
2{1 ( )}

V T E T
E T

E T

l
l

l

+
+

-
 

Note  1.  The other characteristics Lq = E(Nq), E(Ws) and E(Wq) of  this model can be 

obtained by using Little’s formulas.

 2. lE(T) must be less than 1, otherwise Ls becomes negative, which is meaningless.

 3.  In this M/G/1 model, if G ∫ M, viz., the service time T fol lows an exponential distribution 

with parameter m, then

 E(T) = 
m m

=
2

1 1
and V( T )

 Ls = 

l
m ml l

m m ll

m

Ï ¸
+Ì ˝

Ó ˛+ =
-Ê ˆ

-Á ˜Ë ¯

2

2 2

1 1

1 1

which has already been derived for M/M/1 model.
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Particular Cases

1. (M/D/1):(•/FIFO) Model
This is a particular case of the (M/G/1): (•/GD) Model, where D means that the 

service time T is not random, but it is fi xed. In this case, E(T) is assumed as 
1

m
 

and V(T) = 0.

Using these values in the Pollaczek–Khinchine formula for E(NS), we get

 

2

2
2

1
0

( )
2(1 )

2 1

SE N

l
ml r

r
m rl

m

Ï ¸
+Ì ˝

Ó ˛= + = +
-Ï ¸

-Ì ˝
Ó ˛

where 
l

r
m

=  or lE(T)

2. (M/Ek/1):(•/FIFO) Model
Here, Ek means that the service time T follows an Erlang’s distribution with k 

exponential phases, each with parameter m.

Hence, 
2

( ) and ( )
k k

E T V T
m m

= =

Using these values in the Pollaczek–Khinchine formula for E(NS), we get

 E(NS) = 

2
2

2 2

2 1

k k

k

k

l
m ml

m l

m

Ï ¸Ô Ô+Ì ˝
Ô ÔÓ ˛+
Ï ¸

-Ì ˝
Ó ˛

  = 
2( 1)

, where
2(1

k k
k

k

r l
r r

r m

+
+ =

- )

Worked Example 9(A)

Example 1

A machine shop has 4 machines in working condition initially and one mechanic 

is attached to the shop. The mean time between service requirements is 5 hours 

and forms an exponential distribution. The mean service time is 1 hour and follows 

an exponential distribution. Machine downtime costs Rs. 55/- per day. Determine 

(a) the probability that the service facility will be idle, (b) the average number of 

machines waiting to be repaired and being repaired, and (c) the expected down-

time cost per day.
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This is a problem in the machine-service model (M/M/1):(k/k/FIFO).

Here, k = the number of machines in the calling population = 4; 
1

5
l =  per 

hour; m = 1 per hour; 0.2
l

r
m

= =

 (a) P0
–1 = 4C0 r

0 + 4C1 r
1 + 4C2·2! r2 + 4C3·3! r3 + 4C4·4! r4 

  = 1 + 4 × 0.2 + 6 × 2 × 0.04 + 4 × 6 × 0.008 + 24 × 0.0016, since s = 1

  = 2.5104

  \ P0 = P (the service facility is idle) = (2.5104)–1 = 0.3983

 (b) 0

1
( ) (1 )SE N k P

r
= - -  = 4 – 5 × (1 – 0.3983) = 0.9915

 (c) l¢ = m(1 – P0) = 1 × (1 – 0.3983) = 0.6017

  
1 0.9915

( ) ( )
0.6017

S SE W E N
l

= =
¢

 = 1.6478 hours

E(Downtime cost) = 
8

55 25
1.6478

+ ¥ , assuming that the machine shop works 

for 8 hours a day = 55 + 121.37 = Rs. 176.37

Example 2

In the machine shop of a small-scale industry, machines break down with a mean 

rate of 2 per hour. The maintenance shop of the industry has 2 mechanics who 

can attend to the breakdown machines individually. The service rate of each of 

the mechanics is 1.5 machines per hour. Initially there are 5 working machines in 

the workshop. Find P0, E(NQ), E(NS), E(WQ) and E(WS).

This is a problem in the machine-service model (M/M/s):(k/k/FIFO), when s 

= 2 and k = 5

 P0
–1 = r r

-

-
= =

+Â Â
1

0

!

!

s k
n n

n n n s
n n s

n
kC kC

s s
,

where 
2 4

1.5 3

l
r

m
= = =

  
2 3

1 2 30 1

2! 3!
1 5 5 5

2! 2 2! 2
C C Cr r r= + ◊ + ◊ ◊ + ◊

◊ ◊

  
4 5

4 52 3

4! 5!
5 5 140.0122

2! 2 2! 2
C Cr r+ ◊ ◊ + ◊ ◊ =

◊ ◊
\ P0 = 0.0072

5 5

02
1 3 3

!
( ) ( ) ( 2) ( 2)5

2 2

k

Q n n n n
n s n n

n
E N n s P n P n C P-

= + = =

= - = - = - ◊ ◊
¥

Â Â Â

        = 1.604 machines
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 l¢ = l
-

=

- ◊Â
1

0

( )
k

n

n

k n P

 = 2[5 × P0 + 4 × P1 + 3 × P2 + 2 × P3 + 1 × P4]

 = 2[5 + 26.6667 + 53.3333 + 35.5556 + 47.4074] × 0.0072

 = 2.937/hour

 E(NS) = 
2.937

( ) 1.604
1.5

QE N
l

m

¢
+ = +  = 3.562 machines

 E(WQ) = 
1 1.604

( )
2.937

QE N
l

=
¢

 = 0.546 hour

 E(WS) = 
1 3.562

( )
2.937

SE N
l

=
¢

 = 1.213 hour

Example 3

The town police department has 5 patrol cars. A patrol car breaks down and 

requires service once in every 30 days. The police department has 2 repair 

workers, each of whom takes an average of 3 days to repair a car. Break times 

and service times are exponential. (a) Determine the average number of patrol 

cars in good condition, (b) Find the average downtime for a patrol car that needs 

service, and (c) Find the fraction of time a service mean is idle.

This is a problem in the machine-service model (M/M/s):(k/k/FIFO), where s 

= 2 and k = 5.

1

30
l =  per day and 

1

3
m =  per day

 P0
–1 = 

2 5

2
0 3

!
5 5

2!2

n n
n n n

n n

n
C Cr r-

= =

◊ + ◊ ◊Â Â , where 0.1
l

r
m

= =

  = {1 + 5 × 0.1 + 10 × (0.1)2} + 

3 4 56 24 120
10 (0.1) 5 (0.1) 1 (0.1)

2 2 2 4 2 8

Ï ¸¥ + ¥ ¥ + ¥ ¥Ì ˝¥ ¥ ¥Ó ˛
  = 1.6166

\ P0 = 0.6186

 E(NQ) = r-
= + = +

- = - ◊ ◊Â Â 0

1 1

!
( ) ( )

!

k k
n

n n n s
n s n s

n
n s P n s kC P

s s

  

È ˘¥ ¥ ¥ + ¥ ¥Í ˙¥Í ˙= ¥
Í ˙¥ + ¥ ¥ ¥Í ˙¥ ¥Î ˚

3

1

4 5

2 3

3!
1 10 (0.1) 2 5

2 2
0.6186

4! 5!
(0.1) 3 1 (0.1)

2 2 2 2

  = 0.0112
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 l¢ = 

4

0

(5 ) n

n

n Pl
=

-Â

 l¢ = 0 1 2 3 4

1
[5 4 3 2 ]

30
P P P P P+ + + +

  = 
0.6186

30
 = [5 + 2 + 0.3 + 0.0075 + 0.003] = 0.1507

 E(NS) = 
l

m

¢
+ = + =

0.1507
( ) 0.0112 0.4633;

(1 / 3)
QE N

 ( )SE N  = 5 – 0.4633

  = 4.5367

 E(WS) = 
1 0.4633

( ) 3.0743
0.1507

SE N
l

= =
¢

 days

Example 4

In a college canteen, it was observed that there is only one waiter who takes 

exactly 4 minutes to serve a cup of coffee once the order has been placed with 

him. If students arrive in the canteen at an average rate of 10 per hour, how much 

time one is expected to spend waiting for his turn to place the order.

This is a problem in (M/D/1):(•/FIFO) model, where D indicates that the 

service T is a constant.

Here, E(T) = 4 minutes and l = 10 per hour or 
1

6
 per minute. By the 

Pollackzek–Khinchine formula,

 E(NS) = 
l

l
l

+
+

-

2 2{ ( ) ( )}
( )

2{1 ( )}

V T E T
E T

E T

  = 

+
¥ +

Ï ¸-Ì ˝
Ó ˛

1
{0 16}

1 364
46

2 1
6

, since V(T) = 0, as T is a constant

  = + ¥ =
2 4 3 4

3 9 2 3

By Little’s formula, 
1 4

( ) ( ) 6 8
3

S SE W E N
l

= = ¥ =  minutes

 E(WQ) = m
m

Ï ¸
- = - =Ì ˝

Ó ˛

1 1
( ) 8 4 since

( )
SE W

E T

     = 4 minutes
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Example 5

A one-man barber shop takes exactly 25 minutes to complete one haircut. If 

customers arrive at the barber shop in a Poisson fashion at an average rate of one 

every 40 minutes, how long on the average does a customer spend in the shop? 

Also, fi nd the average time a customer must wait for service.

The service time T is a constant = 25 min viz., T follows a distribution with 

E(T) = 25 and V(T) = 0. Also l = 
1

40
 .

\ by the Pollaczek–Khinchine formula,

 E(Ns) = lE(T) + 
2 2{ ( ) ( )}

2{1 ( )}

V T E T

E T

l

l

+
-

 

  = 
25

40
  + 

2

2

1
{0 25 }

40

1
2 1 25

40

+

Ï ¸- ¥Ì ˝
Ó ˛

 

  = 
5 25/64

8 2 (3/8)
+

¥
  = 

55

48
 

By Little’s formula,

 E(Ws) = 
1

l
 E(Ns) = 40 ¥ 

55

48
  = 45.8 minutes

 E(Wq) = E(Ws) – 
1

m
  = E(Ws) – E(T) = 20.8 min.

i.e., a customer has to spend 45.8 minutes in the shop and has to wait for service 

for 20.8 minutes on the average.

Example 6

For an (M/E2/1):(•/FIFO) model with 
6

5
l =  per hour and 

3

2
m =  per hour, fi nd 

the average waiting time of a customer. Also fi nd the average time he spends in 

the system.

The service time T follows on Erlang distribution with k = 2 exponential 

phases

Hence, 
4

( )
3

k
E T

m
= =  hours and 

2

8
( )

9

k
V T

m
= =

By the Pollackzek–Khinchine and Little’s formulas,

 E(WQ) = Average waiting time of a customer

  = 
l

m m l

+Ê ˆ ◊Á ˜Ë ¯ -
1

2 ( )

k

k
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  = ◊ = ¥ ¥ ¥ =
Ê ˆ-Á ˜Ë ¯

3 6/5 3 6 2 10
2

3 3 64 4 5 3 3

2 2 5

 hours

 E(WS) = Average time spent in the system

  = 
m

Ê ˆ+ = +Á ˜Ë ¯
1 2

( ) 2
3

QE W  hours = 2 hours, 40 minutes

Example 7

A patient who goes to a single-doctor clinic for a general check-up has to go 

through 4 phases. The doctor takes on the average 4 minutes for each phase of 

the check-up and the time taken for each phase is exponentially distributed. If the 

arrivals of the patients at the clinic are approximately Poisson at the average rate 

of 3 per hour, what is the average time spent by a patient (a) in the examination? 

(b) waiting in the clinic?

Let X1, X2, X3, X4 denote the times required for the 4 phases of the check-up.

Each Xr is exponential with a mean of 4 min or with parameter 
1

4
 .

Since the Xr¢s independent, (X1 + X2 + X3 + X4) follows an Er lang’s distribution 

with parameters ‘l’ = 
1

4
  and ‘k’ = 4 [Refer to Problem (43) in Exercise 5(B)]

The mean and variance of Erlang’s distribution with parameters ‘l’ and ‘k’ 

are 
k

l
 and 

2

k

l
.

Thus, if T represents the service time for a patient,

 E(T) = 
k

l
  = 

4

1/4
  = 16

and V(T) = 
2

k

l
  = 

4

1/16
  = 64

\ Average time for examination of each patient = 16 min. If lc represents the 

arrival rate in the clinic, then by P – K formula,

 E(Ns) = lc E(T) + 

2 2{ ( ) ( )}

2{1 ( )}

c

c

V T E T

E T

l

l

+
-

 

  = 

1
{64 256}

1 40016
120

2 1 16
20

+
¥ +

Ï ¸- ¥Ì ˝
Ó ˛

 
1

3/hour or /min
20

cl
Ê ˆ=Á ˜Ë ¯
∵
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  = 

4

4 5
15

2
5

+
¥

  = 
14

5
 

By Little’s formula,

 E(Ws) = 
1

cl
 E(Ns) = 20 ¥ 

14

5
  = 56 minutes

and E(Wq) = E(Ws) – 
1

m
  = 56 – 

1

1/ ( )E T
  = 56 – 16 = 40 min.

i.e., a patient has to wait 40 minutes for check-up in the cli nic.

Example 8

A car-wash facility operates with only one bay. Cars arrive according to a Poisson 

distribution with a mean of 4 cars per hour and may wait in the facility’s parking 

lot if the bay is busy. The parking lot is large enough to accommodate any number 

of cars. Find the average number of cars waiting in the parking lot, if the time for 

washing and cleaning a car follows

 (a) uniform distribution between 8 and 12 minutes,

 (b) a normal distribution with mean 12 minutes and S.D. 3 minutes, and

 (c) a discrete distribution with values equal to 4, 8 and 15 minutes and 

corresponding probabilities 0.2, 0.6 and 0.2.

(a) l = 4/hour or 
1

15
  per minute.

 E(T) = mean of the uniform distribution in (8, 12)

  = 
1

2
  (8 + 12) = 10 minutes

 V(T) = 
1

12
  (12 – 8)2 = 

4

3
 

  By P-K formula,

 E(Ns) = lE(T) + 
2 2{ ( ) ( )}

2{1 ( )}

V T E T

E T

l

l

+
- ◊

 

  = 
1

15
  ¥ 10 + 

1 4
100

225 3

1
2 1 10

15

Ï ¸+Ì ˝
Ó ˛

Ï ¸- ¥Ì ˝
Ó ˛

 

  = 
2 152

3 225
+  = 1.342 cars.
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  By Little’s formula,

 E(Nq) = E(Ns) – 
l

m
 = 1.342 – 

1

15

1

10

Ê ˆ
Á ˜Ë ¯
Ê ˆ
Á ˜Ë ¯

  
1

( )E T
m

Ê ˆ
=Á ˜Ë ¯

∵  

 = 0.675 car

 (b) l = 
1

15
 ; E(T) = 12 min. and V(T) = 9

\ m = 
1

( )E T
 = 

1

12
 

  By P-K formula,

 E(Ns) = 
1

15
 ¥ 12 + 

1
{9 144}

225

1
2 1 12

15

+

Ï ¸- ¥Ì ˝
Ó ˛

 

  = 
4 153

5 90
+  = 2.5 cars

  By Little’s formula,

 E(Nq) = E(Ns) – 
l

m
 = 2.5 – 

(1/15)

(1/12)
 = 1.7 cars

 (c) The service time T follows the discrete distribution given below:

 T: 4 8 15

 p(T): 0.2 0.6 0.2

 E(T) = S T ◊ p(T) = 0.8 + 4.8 + 3 = 8.6 minutes

 E(T2) = ST
2 ◊ p(T) = 3.2 + 38.4 + 45 = 86.6

 V(T) = E(T2) – E2(T) = 86.6 – (8.6)2 = 12.64

  By P-K formula,

 E(Ns) = 
1

15
 ¥ 8.6 + 

1
{12 64 73 96}

225

1
2 1 8 6

15

◊ + ◊

Ï ¸- ¥ ◊Ì ˝
Ó ˛

 

  = 0.573 + 
86 6 15

225 12 8

◊
¥

◊
 = 0.573 + 0.451 = 1.024 cars

  By Little’s formula,

 E(Nq) = E(Ns) – 
l

m
 = 1.024 – 

(1/5)

(1/8 6)◊
 = 0.451 car
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Exercise 9(A)

Part-A (Short-answer Questions)

 1. Explain the symbolic representation (M/M/s):(k/k/FIFO) of the machine-

service model.

 2. Write down the formulas for P0 and Pn for the (M/M/s):(k/k/FIFO) 

model.

 3. How do the relations between (i) E(NQ) and E(WQ), and (ii) E(NS) and 

E(WS) get modifi ed from the usual Little’s formulas in the case of (M/M/

s):(k/k/FIFO) model.

 4. Write down the formulas for E(NQ) and E(NS) for the (M/M/1):(k/k/

FIFO) model.

 5. Write down the general Pollaczek–Khinchine formula for E(NS).

 6. Write down the simplifi ed formulas for E(NS) for the (M/D/1):(•/FIFO) 

and (M/Ek/1):(•/FIFO) models.

Part-B

 7. In the machine shop of a medium-scale industry, machines break down 

with a mean rate of 2.5 per hour. The maintenance shop of the industry 

has only one mechanic who can attend to the broken-down machines. 

The service rate of the mechanic is 1.5 machines per hour. Initially, there 

are 6 working machines in the machine shop. Compute P0, E(NQ), E(NS), 

E(WQ) and E(WS).

 8. A mechanic services 4 machines. For each machine, the mean time 

between service requirements is 10 hours and is assumed to form an 

exponential distribution. The repair time tends to follow the same 

distribution and has a mean time of 2 hours. When a machine is down for 

repair, the time last has a value of Rs. 20 per hour. The mechanic costs 

Rs. 50 day. Find (i) the expected number of machines in operation and 

(ii) the expected cost of downtime per day. (iii) Would it be desirable to 

engage two mechanics, each to service only two machines?

 9. There are 5 machines in a workshop, each of which suffers breakdown 

at an average rate of 2 per hour. There are 2 servicemen and only one 

man can work on a machine at a time. If n machines are out of order 

when n > 2, then (n – 2) of them wait until a serviceman is free. Once 

a serviceman starts work on a machine, the time to complete the repair 

has an exponential distribution with a mean of 5 minutes. Find the 

distribution of the number of machines out of action at a given time. 

Find also the average time an out of action machine has to spend waiting 

for the repairs to start.

 10. 2 repairmen are attending to 5 machines in a workshop. Each machine 

breaks down according to exponential distribution with a mean of 3 

per hour. The repair time per machine is exponential with a mean of
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15 minutes. (i) Find the probability that the two repairmen are idle,

(ii) that one repairman is idle, and (iii) the expected number of idle 

machine not being serviced.

 11. The 5 machines in a machine shop break down periodically and the 

company has 2 repairmen to service the machines when breakdown 

occurs. When a machine is fi xed, the time until the next breakdown 

is exponentially distributed with a mean of 30 hours. The repair time 

of each repairman is exponentially distributed with a man of 3 hours. 

Find the average number of machines in operation at any given time, the 

expected down-time of a machine that require repair and the expected 

percent of idle time of each repairman.

 12. In a car-manufacturing plant, a loading crane takes exactly 10 minutes to 

load a car into a wagon and again come back to position to load another 

car. If the arrival of cars is a Poisson stream at an average of 1 every 20 

minutes, calculate the average waiting time of a car.

 13. A barber runs his own saloon. It takes him exactly 25 minutes to complete 

one hair cut. Customers arrive in a Poisson fashion at an average rate of 

one every 35 minutes. (i) For what per cent of time would the barber be 

idle? (ii) What is the average time a customer spent in the shop?

 14. Repairing a certain type of faulty machine consists of 5 basic steps 

that must be performed sequentially. The time taken to perform each 

of the 5 steps is exponentially distributed with a mean of 5 minutes 

and independent of the other steps. If the ma chines become faulty in a 

Poisson fashion at an average rate of 2 per hour and if there is only one 

repairman, what is the average idle time for each faulty machine?

 15. In a certain bank, the customers arrive according to an exponential 

distribution with a mean of 4 per hour. From observations on the teller’s 

performance, the mean service time is estimated to be 10 minutes, with a 

variance of 25. It is felt that the Erlang would be a reasonable assumption 

for the distribution of the teller’s service times. Also it is assumed that 

there is no limit on the number of customers. Bank offi cials wish to 

know, on the average, how long a customer must wait until he gets the 

service and how many customers are waiting for service.

 [Hint: Find the value of k, using m s
m

= = =2

2

1 1
and 25

10 k
]

QUEUE NETWORKS

Introduction

Queue network can be regarded as a group of ‘k’ inter-connected nodes, where 

each node represents a service facility of some kind with si servers at node i.

(si ≥ 1)
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Series Queues

A series queue model or a tandem queue model is, in general, one in which 

(i) customers may arrive from outside the system at any node and may leave 

the system from any node, (ii) customers may enter the system at some node, 

traverse from node to node in the system and leave the system from some node, 

not necessarily following the same order of nodes, and (iii) customers may return 

to the nodes previously visited, skip some nodes and even choose to remain in 

the system for ever.

In the following sections, we shall discuss a few kinds of series queues.

Series Queues with Blocking

This is a sequential queue model consisting of two service points S1 and S2, at 

each of which there is only one server and where no queue is allowed to form at 

either point.

Note  It is a misnomer by which we called the model as a series queue model!

An entering customer will fi rst go to S1, after he gets the service completed at 

S1, he will go to S2 if it is empty or will wait in S1 until S2 becomes empty [viz., 

the system is blocked for a new customer.] This means that a potential customer 

will enter the system only when S1 is empty, irrespective of whether S2 is empty 

or not, since the model is a sequential model, viz., all the customers require 

service at S1 and then at S2.

Let us now proceed to fi nd the steady-state probabilities P(m, n) that there 

is m customer (m = 0 or 1) in S1 and n customer (n = 0 or 1) in S2. Any state of 

the model will be denoted by (m, n). The possible states of the system are given 

below with their interpretation:

State Interpretation

(0, 0) No customer in either service point

(1, 0) Only one customer in S1

(0, 1) Only one customers in S2

(1, 1) One customer each in S1 and S2

(b, 1) One customer each in S1 and S2 but the customer in S1 having fi nished 

his work at S1 is waiting for S2 to become free, while the customer in S2 

is being served.

We assume that potential customers arrive in accordance with a Poisson 

process with parameter l and the service times at S1 and S2 follow exponential 

distributions with parameters m1 and m2 respectively. To get the values of P(m, 

n), we shall fi rst write down the steady-state balance equations using a state 

transition diagram, as given below, which consists of a small circle for each state 

and directed lines labeled by the rates at which the process goes from one state 

to another.
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Fig. 9.1 State Transition Diagram

Note  The arrow from state (0, 0) to state (1, 0) is labeled l. This means that when the 

system (consisting of  S1 and S2) is empty, it goes to state (1, 0) through an arrival which enters 

the system at a rate l. Similar explanation holds good for the arrow from (0, 1) to (1, 1). The 

transition from (1, 0) to (0, 1) takes place, when the customer fi nishes his job at S1 at the rate m1. 

Similar explanation holds good for the arrow from (1, 1) to (b, 1). When in state (b, 1), the process 

will go to state (0, 1), when the customer at S2 completes his service, that occurs at the rate m2. 

Similar explanations hold good for the transitions from (1, 1) to (1, 0) and from (0, 1) to (0, 0).

Now, the balance equation corresponding to any state (m, n) is obtained by 

equating the rate at which the process leaves that state and the rate at which the 

process enters that state. The rate at which the process leaves the state (m, n) = 

P (m, n) × sum of the labels of the arrows that leave the state (m, n). The rate at 

which the process enters the state (m, n) = sum of the labels of the arrows that 

enter (m, n) multiplied by the relevant probabilities of the states from which they 

emanate. Accordingly, we get the following balance equations for the 5 states of 

the system:

State Balance equation

(0, 0) l P (0, 0) = m2 P (0, 1) (1)

(1, 0) m1 P (1, 0) = l P (0, 0) + m2 P (1, 1) (2)

(0, 1) (l + m2) P (0, 1) = m1 P (1, 0) + m2 P (b, 1) (3)

(1, 1) (m1 + m2) P (1, 1) = l P (0, 1) (4)

(b, 1) m2 P (b, 1) = m1 P (1, 1) (5)

Since the process has to be in any one of the 5 mutually exclusive and 

exhaustive states, we have

 P (0, 0) + P (1, 0) + P (0, 1) + P (1, 1) + P (b, 1) = 1 (6)

Solving the above six equations, we can get the fi ve steady-state probabilities.

Two-Stage (Service Point) Series Queues

(Two-Stage Tandem Queues)

Let us consider a two (service) stage queuing system in which customers arrive 

from outside at a Poisson rate l to S1. After being served at S1, they then join 

the queue in front of S2. After receiving service at S2, they leave the system.
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It is assumed that there is infi nite waiting (queueing space) at each service point. 

Each server serves one customer at a time and the service times at S1 and S2 

follow exponential distributions with parameters m1 and m2 respectively.

Fig. 9.2

To fi nd the steady-state joint probability P(m, n) of m customers in S1 and 

n customers in S2, where m ≥ 0 and n ≥ 0, we shall write down the balance 

equations using the state transition diagrams given below. By taking (m, n) as the 

central state, we have shown only the arrows entering into and leaving from it.

Note  The state transition diagram [Fig. 9.4] for the central state (0, 0) is extracted from 

Fig. 9.3 by retaining only those states for which m ≥ 0 and n ≥ 0 and the connecting arrows. 

Similarly the state transition diagrams [Fig. 9.5 and Fig. 9.6] for the central states (m, 0) and 

(n, 0) are obtained.

  

 Fig. 9.3 Fig. 9.4

  

 Fig. 9.5 Fig. 9.6
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The balance equations for this model are obtained as given below:

 l P (0, 0) = m2 P (0, 1) (1)

 (l + m1) P (m, 0) = l P (m – 1, 0) + m2 P (m, 1) [m > 0] (2)

 (l + m2) P (0, n) = m1 P (1, n – 1) + m2 P (0, n + 1) [n > 0] (3)

 (l + m1 + m2) P (m, n) = l P (m – 1, n) + m1 P (m + 1, n – 1)

     + m2 P (m, n + 1) (4)

Also    ( , ) 1
m n

P m n =ÂÂ  (5)

We shall not attempt to solve the above balance equations directly, but shall 

guess the solution by using Burke’s theorem which is stated below without proof:

For an M/M/s queueing system, the output (departure) process is also Poisson 

with the same rate l as the input (arrival) process in the steady-state, where

s ≥ 1.

This means that that the arrival process to S2, which is the same as the departure 

process from S1, is also Poisson with parameter l. Thus, the queuing systems at 

both S1 and S2 are M/M/1 models (if we assume that there is only one server at 

S1 and at S2).

From the discussion on the characteristics of M/M/1 model

P(m customers at S1 system) = 

1 1

1

m
l l

m m

Ê ˆ Ê ˆ
-Á ˜ Á ˜Ë ¯ Ë ¯

 and

P(n customers at S2 system) = 
2 2

1

n
l l

m m

Ê ˆ Ê ˆ
-Á ˜ Á ˜Ë ¯ Ë ¯

Since the number of customers at S1 and S2 are independent random variables, 

the joint probability of m customers at S1 and n customers at S2 is given by

  P(m, n) = 
1 1 2 2

1 1

m m n n
l l l l

m m m m

Ê ˆ Ê ˆ Ê ˆ Ê ˆ
◊ - ◊ ◊ -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

, for m ≥ 0 and n ≥ 0 (6)

Note  It is easily verifi ed that (6) satisfi es the balance equations (1) to (5). For example, 

on using (6) in (4),

 R.S. of  (4) = 
1 2

1 1
l l

m m

Ê ˆ Ê ˆ
- -Á ˜ Á ˜Ë ¯ Ë ¯

 

m 1 n m 1 n 1 m n 1

1 2
1 2 1 2 1 2

l l l l l l
l m m

m m m m m m

- + - +È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ
Í ˙◊ ◊ + ◊ + ◊Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

  = 
l l l l l l l

m m m m m m m m

- - È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ
- - + +Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Î ˚

m 1 n 1 2 2 3

1 2 1 2 2 1 1 2

1 1
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  = 
l l l l l

l m m
m m m m m m

- -
Ê ˆ Ê ˆ Ê ˆ Ê ˆ

- - + +Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

m 1 n 1 2

1 2
1 2 1 2 1 2

1 1 ( )

  = 

m n

1 2
1 1 2 2

( ) 1 1
l l l l

l m m
m m m m

È ˘ È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ
Í ˙ Í ˙+ + - -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

  = (l + m1 + m2) P(m, n)

   = L.S. of  (4)]

The average number of customers in the system is given by

 LS = ( ) ( , )
m n

m n P m n+ÂÂ

  = 
0 01 1 2 2

1 1

m n

m n

m n
l l l l

m m m m

• •

= =

Ê ˆ Ê ˆ Ê ˆ Ê ˆ
- + -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

Â Â

  = 

2 2

1 1 1 2 2 2

1 1 1 1
l l l l l l

m m m m m m

- -
Ê ˆ Ê ˆ Ê ˆ Ê ˆ

- ◊ ◊ - + - ◊ ◊ -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

  = 1 2

1 2

S SL L
l l

m l m l
+ = +

- -
The average waiting time of a customer in the system is given by

 E(WS) = 
1

SL
l

, by Little’s formula.

  = 1 2

1 2

1 1
( ) ( )S SE W E W

m l m l
+ = +

- -

Note  1. As the arrival rate l in a 2-state tandem queue model increases, the node with 

the larger value of  ri = 
i

l

m
 will introduce instability. Hence, the node with the larger value of  

ri is called the bottleneck of  the system.

 2. The discussion given above holds good, even when there are many servers at each stage, 

provided the service time of  each server at stage i(i = 1, 2) is exponential with mean 
1

im
.

In this case, it is to be noted that the queueing system at each stage is an M/M/s model 

and hence the relevant results corresponding to this model should be used.

Open Jackson Networks

A network of k service facilities or nodes is called an open Jackson network, if it 

satisfi es the following characteristics:

 1. Arrivals, from outside, to the node i follow a Poisson process with mean 

rate ri and join the queue at i and wait for his turn for service.
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 2. Service times at the channels at node i are independent and each is 

exponentially distributed with parameter mi.

 3. Once a customer gets the service completed at node i, he joins the queue 

at node j with probability Pij (whatever be the number of customers 

waiting at j for service), where i = 1, 2, ..., k and j = 0, 1, 2, ..., k. Pi0 

represents the probability that a customer leaves the system from node i 

after getting the service at i.

Note  Derivations and the methods of  solving the balance equations for this model are 

beyond the scope of  the book. However we just give below Jackson’s solution for the balance 

equations of  this model.

If we denote the total arrival rate of customers to server j [viz., the sum of 

the arrival rate rj (Note: It is not lj) to j coming from outside and the rates of 

departure li from the servers i] by lj, then

 lj = 
1

; 1, 2, ...,
k

j i ij

i

r P j kl
=

+ =Â  (1)

Pij is the probability that a departure from server i joins the queue at server 

j and hence li Pij is the rate of arrival to server j from among those coming out 

from server i.

Equations (1) are called Traffi c equations or Flow balance equations.

Jackson has proved that the steady-state solutions of these traffi c equations 

with single server at each node is

 P(n1, n2,..., nk) = 
1 2

1 1 2 2(1 ) (1 ) ... (1 )knn n

k kr r r r r r- ◊ - -  (2)

where rj = 
j

j

l

m
, provided rj < 1 for all j.

Since   P(n1, n2,..., nk) = 1 2
1 1 2 2[ (1 )] [ (1 )] ... [ (1 )]knn n

k kr r r r r r- - -
viz., the joint probability is equal to the product of the marginal probabilities, we 

can interpret that the network acts as if the queue at each node i is an independent 

M/M/1 queue with rates li and mi.

Note  1. Even though (2) may be misinterpreted as the arrival process at node i is Poisson 

in this network model, it need not be so, as the customer may visit a server more than once 

(known as feedback situation).

 Thus, whether the arrival processes at various nodes are Poisson or not, step (2) alone holds good 

and hence the network behaves as if  its nodes were independent M/M/1 queue models.

  2.  
=

=

=Â
Â

i

k

s s sk
i 1

i
i 1

1
E{N }, but E(W ) E( N )

r

  3.  Jackson’s open-network concept can be extended when the nodes are multi server nodes. In 

this case the network behaves as if  each node is an independent M/M/s model.
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Closed Jackson Networks

A queueing network of k nodes is called a closed Jackson network, if new 

customers never enter into and the existing customers never depart from the 

system, viz., if ri = 0 and Pi0 = 0 for all i. In other words, it is equivalent to a 

fi nite source queueing system of N customers who traverse continuously inside 

the network where the service time of server i is exponentially distributed with 

rate mi; i = 1, 2, ..., k.

When a customer completes service at Si, he then joins the queue at Sj, j = 1, 2, 

..., k with probability Pij where it is assumed that 
1

k

ij

j

P
=

Â  = 1 for all i = 1, 2, ..., k.

We note that the matrix P = [Pij] is similar to one-step transition probability 

matrix of a Markov chain, that is stochastic and irreducible.

The fl ow balance equations of this model become

 lj = 
1

; 1, 2, ..., [ 0] ...
k

i ij j

i

P j k rl
=

= =Â ∵  (1)

The matrix [Pij] is called the routing probability matrix in this context. Jackson 

has proved that the steady-state solution of equation (1) is

 P(n1, n2, ..., nk) = 1 2
1 2 ... knn n

N kC r r r , where

 CN
–1 = 1 2

1 2

1 2 ... , wherek

k

jnn n

k j

n n n N j

l
r r r r

m+ + + =

=Â
 

Note  N customers must be allocated among k nodes, such that n1 + n2 +... + nk = N. 

This allocation can be done in 
+ -Ê ˆ

Á ˜Ë ¯

N k 1

N
 ways.

If there are si servers at node i, the solution is given by

 P(n1, n2,..., nk) = 
1 2

1 1

1 1 2 2

,
( ) ( ) ( )

knn n

k
N

k k

C
a n a n a n

rr r
◊  ,

where CN
–1 = 

rr r

+ + + =
Â
 

 

1 2

1 2

1 1

1 1 2 2( ) ( ) ( )

k

k

nn n

k

n n n N k ka n a n a n
,

where ai (ni) = 

if,

if,
i i

i i i

n s
i i i i

n n s

s s n s
-

<ÏÔ
Ì

≥ÔÓ

Mean-Value Analysis (MVA)

This is another method which does not require evaluating CN to fi nd P(n1, n2,..., 

nk), that is cumbersome and time consuming, for large values of N and k. It is 
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based on a concept called the Arrival Theorem which we simply state below 

without proof:

The queue length observed by an arrival at node i is the same as the general 

queue length in a closed network with one less customer.

Using this, we can fi nd the average waiting time at a node i in terms of the 

mean service time in the node and the average number of customers in the system 

as observed by an arrival at that node.

For the M/M/1 model, we know that L = E(Ns) = 
l

m l-
 and W = E(Ws) = 

1

m l-
. From these, it follows that W = 

1
(1)

L

m

+
. Assuming that all the nodes in 

the closed network have a single server, (1) takes the form

 Wi(N) = 
1 ( 1)

(2)i

i

L N

m

+ -
,

 Wi(N) = mean waiting time at node i for the closed network containing N 

customers

 mi = mean service rate for the single server at node i

 Li(N – 1) = mean number of customers at node i in a closed network containing 

(N – 1) customers.

Note  Formula for Wi(N) in (2) does not hold good for a multiple server closed network. 

It is modifi ed later.

Assuming that Little’s formula E(Ns) = l E(Ws) holds good for all the nodes 

of the closed network, we have Li(N) = li Wi (N) (3), where li is the throughput 

(arrival) rate for node i in an N-customer closed network.

Equations (2) and (3) give us a method for recursively by calculating Li(N) 

and Wi(N) for any given N starting with an empty network for which Li(0) = 0 

and Wi(0) = 
1

im
. The method is explained below in the form of an algorithm 

(MVA algorithm for a k-node, single server-per-node network).

 (1) Solve the modifi ed traffi c equations vj = 
=
Â

1

k

i ij

i

v P  (j = 1, 2, ..., k) obtained 

from lj = 
1

k

i ij

i

Pl
=
Â  (j = 1, 2, ..., k), where vi = i

l

l

l
 so that vl = 1, for some l.

(2) Initialise, Li(0) = 0, for i = 1, 2, ..., k.

(3) For r = 1 to N, calculate

 (a) Wi(r) = 
1 ( 1)i

i

L r

m

+ -
, for i = 1, 2, ..., k

 (b) ll(r) = 

1

( )
k

i i

i

r

v W r
=
Â

, where vl = 1
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 (c) ll(r) = vi ll(r), for i = 1, 2, ..., k; i π l

 (d) Li (r) = li(r) Wi(r) for i = 1, 2, ..., k.

MVA algorithm for fi nding Li(N) and Wi(N) in a k-node, multiple-server

(si servers at node i) closed network with routing matrix P = {Pij}

Note  Before we give the algorithm, we denote the marginal probability that there are m 

customers at node i in an N-customer, multiple server, closed network by Pi (m, N).

Also Pi (m, N) = 
l

a m
£ £ -- - 1

( )
( 1, 1), for

( )

i
i

i i

m N
N

P m N i
m

,

where ai(m) = 
, for( )

, for( 1)

ii

i ii

m m sm

s m sm

a

a

£Ï ¸
= Ì ˝≥- Ó ˛

 1. Solve the modifi ed traffi c equations vj = 
0

k

i ij

m

v P
=

Â  (j = 1, 2, ..., k), where 

vl = 1, for some l. [These equations hold good, even for a multiple server 

closed network]

 2. Initialise Li(0) = 0; Pi(0, 0) = 1; Pi(m, 0) = 0, (m π 0)

 3. For r = 1 to N, calculate

 (a) Wi(r) = 

2

0

1
1 ( 1) ( 1 ) ( , 1)

is

i i i

mi i

L r s m P m r
s m

-

=

È ˘
+ - + - - -Í ˙

Í ˙Î ˚
Â , for i = 1, 

2, ..., k.

 (b) ll(r) = 
1

( )
k

i i

i

r v W r
=
Â , where vl = 1

 (c) li(r) = vl ll(r), for i = 1, 2, ..., k; i π l

 (d) Li(r) = li(r) Wi(r), for i = 1, 2, ..., k

 (e) Pi (m, r) = 
( )

( 1, 1)
( )

i
i

i i

r
P m r

m

l

a m
- - , for m = 1, 2, ..., r, i = 1, 2, ..., k.

Note  Even if  we are interested only in the values of  Wi and Li, we still require the 

marginal probabilities Pi (m, r – 1), for m = 0, 1, 2, ..., (si – 2).

Worked Example 9(B)

Example 1

There are two salesmen in a ration shop, one in charge of billing and receiving 

payment and the other in charge of weighing and delivering the items. Due to 

limited availability of space, only one customer is allowed to enter the shop, that 

too when the billing clerk is free. The customer who has fi nished his billing job 
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has to wait there until the delivery section becomes free. If customers arrive in 

accordance with a Poisson process at rate 1 and the service times of two clerks 

are independent and have exponential rates of 3 and 2, fi nd

 (a) the proportion of customers who enter the ration shop,

 (b) the average number of customers in the shop, and

 (c) the average amount of time that an entering customer spends in the 

shop.

The system in this problem is a sequential queue model with blocking; l = 1, 

m1 = 3 and m2 = 2

The balance equations for this model with the given value of l, m1, m2 are 

 P(0, 0) = 2P(0, 1), ... (1);   3 P(1, 0) = P(0, 0) + 2 P(1, 1) ...(2);

 3 P(0, 1) = 3P(1, 0) + 2 P(b, 1) ... (3);   5 P(1, 1) = P(0, 1) ...(4); 

 2 P(b, 1) = 3P(1, 1), ... (5)   and   P(0, 0) + P(1, 0) + P(0, 1)

+ P(1, 1) + P(b, 1) = 1 ...(6)

From (1), P(0, 1) = 
1

(0,0)
2

P  (7)

Using (7) in (4), P11 = 
1

(0,0)
10

P  (8)

Using (8) in (5), P(b, 1) = 
3

(0,0)
20

P  (9)

Using (8) in (2),  P(1, 0) = 
1 1 2

(0,0) or (0,0)
3 15 5

P P
Ê ˆ+Á ˜Ë ¯  (10)

Using (7), (8) (9) and (10) in (6), we get

 
2 1 1 3

1 (0,0)
5 2 10 20

P
Ê ˆ+ + + +Á ˜Ë ¯

 = 1

i.e.,   
43

(0,0)
20

P  = 1 or 
20

(0,0)
43

P =

\   P(0, 1) = = = =
10 8 2 3

, (1, 0) , (1,1) , ( ,1)
43 43 43 43

P P P b

 (a) Proportion of customers entering the shop

  = 
30

(0,0) (0,1)
43

P P+ =

 (b) Average number of customers in the shop

  = 1 × {P(1, 0) + P(0, 1)} + 2{P(1, 1) + P(b, 1)}

  = 
18 5 28

1 2
43 43 43

¥ + ¥ =
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 (c) Average amount of time that an entering customer spends in the shop is 

given by

 E(Ws) = 
1

( )s

a

E N
l

◊ , where la = average rate of entering the shop

         = l · {P(0, 0) + P(0, 1)}

  = 
28 14

or
30 15

                      = 
30

1
43

¥

Example 2

If, in Example (1), customers reach the ration shop (not enter) according to 

Poisson process at the rate of 5 per hour and both the salesmen take 6 minutes 

each to serve a customer on the average and the service times follow exponential 

distribution, fi nd the average number of customers in the shop and the average 

time spent by a customer who has entered the shop.

Here, l = 5/hour and m1 = m2 = 10/hour

The balance equations are

 5 P(0, 0) = 10 P(0, 1) ...(1);   10 P(1, 0) = 5 P(0, 0) + 10 P(1, 1) ...(2)

 15 P(0, 1) = 10 ·P(1, 0) + 10 P(b, 1) ... (3);  20 P(1, 1) = 5 P(0, 1) ...(4)

 10 ·P(b, 1) = 10 ·P(1, 1)...(5); P(0, 0) + P(1, 0) + P(0, 1)

 + P(1, 1) + P(b, 1) = 1...(6)

Solving the above questions, we get

 P(0, 1) = = = =
1 1 5

(0, 0); (1,1) (0, 0) ( ,1); (1,0)
2 8 8

P P P P b P

=
19

(0, 0) and (0, 0) 1
8

P P

\ P(0, 0) = = = = =
8 4 5 1

, (0,1) , (1, 0) , (1,1) ( ,1)
19 19 19 19

P P P P b

Average number of customers in the shop

  = 
5 4 1 1 13

1 2
19 19 19 19 19

Ê ˆ Ê ˆ¥ + + ¥ + =Á ˜ Á ˜Ë ¯ Ë ¯

Average time spent by the customers inside the shop

  = 

13

1319

8 4 60
5

19 19

=
Ê ˆ+Á ˜Ë ¯

 hour or 13 minutes

Example 3

In an ophthalmic clinic, there are two sections-one section for assessing the 

power approximately and the other for fi nal assessment and prescription of 

glasses. Patients arrive at the clinic in a Poisson fashion at the rate of 3 per 
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hour. The assistant in the fi rst section takes nearly 15 minutes per patient for 

approximate assessment of power and the doctor in the second section takes 

nearly 6 minutes per patient for fi nal prescription. If the service times in the 

two sections are approximately exponential, fi nd the probability that there are 

3 patients in the fi rst section and 2 patients in the second section. Find also the 

average number of patients in the clinic and the average waiting time of a patient 

in the clinic. Assume that enough space is available for the patients to wait in 

front of both sections.

The situation in this problem is comparable with 2-stage Tandem queue with 

single server at each state.

l = 3/hour; m1 = 4/hour and m2 = 10/hour

 (a) P(m, n) = P(m customers in the fi rst section and n customers in the 

second section)

  = 
1 1 2 2

1 1

m n
l l l l

m m m m

Ê ˆ Ê ˆ Ê ˆ Ê ˆ
- ◊ -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

\ P(3, 2) = 

3 2
3 3 3 3 1701

1 1
4 4 10 10 2,56,000

Ê ˆ Ê ˆ Ê ˆ Ê ˆ- ◊ ◊ - =Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

 (b) Average number of patients in the clinic

  = 
1 2

1 1

m l m l
+

- -

  = 
3 3 3

3
4 3 10 3 7

+ =
- -

 (c) Average waiting time of a patient in the clinic

  = 
1 2

1 1

m l m l
+

- -

  = 
1 1 1

1
4 3 10 3 7

+ =
- -

 hour

Example 4

A repair facility shared by a large number of machines has 2 sequential stations 

with respective service rates of 2 per hour and 3 per hour. The cumulative failure 

rate of all the machines is 1 per hour. Assuming that the system behaviour may 

be approximated by the 2-stage tandem queue, fi nd

 (a) the average repair time including the waiting time

 (b) the probability that both the service stations are idle, and (c) the bottleneck 

of the repair facility.

  Here, l = 1; m1 = 2 and m2 = 3
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 (a) The average number of machines in service at both the stations

  = 
1 2

l l

m l m l
+

- -

  = 
1 1 1

1
2 1 3 1 2

+ =
- -

.

  The average repair time including the waiting time

  = 
1 2

1 1

m l m l
+

- -

  = 
1 1 1

1
2 1 3 1 2

+ =
- -

 hours

 (b) P(both the service stations are idle)

  = P(0, 0)

  = 

0 0

1 1 2 2

1 1
l l l l

m m m m

Ê ˆ Ê ˆ Ê ˆ Ê ˆ
◊ - ◊ ◊ -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

  = 
1 1 1

1 1
2 3 3

Ê ˆ Ê ˆ- - =Á ˜ Á ˜Ë ¯ Ë ¯

 (c) Since 
1 2

l l

m m
> , the service station 1 is the bottleneck of the repair 

facility.

Example 5

In a busy medical shop located in the heart of a city, there are 3 salesmen who 

receive the customers, supply the drugs and prepare the bills. On fi nishing the job 

with any one of the salesmen, the customer goes to the payment counter, manned 

by the owner himself and leaves the shop after paying the bill. If customers enter 

the medical shop in a Poisson fashion at the rate of 30 per hour, each salesman 

takes on the average 5 minutes to serve a customer in an exponential fashion 

and the owner takes on the average 1 minute per customer to check the bill 

and receive the payment in an exponential fashion, fi nd the average number of 

customers in the shop and the average time each customer spends in the shop. 

If the owner wishes that no customer should stay in the shop for more than 8 

minutes and the number of customers in the shop should not exceed 5 and at the 

same time he wishes to take on the average 1.5 minutes per customer for his job, 

fi nd if these can be accomplished by appointing one more salesman of the same 

calibre as others.

Case (i) For the multiple server queueing system in the supply section, l = 30/

hour, m1 =12/hour and s = 3
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 E(Ns) = 

l

m l

ml

m

+
Ê ˆ

◊Á ˜Ë ¯
+

◊ Ê ˆ
-Á ˜Ë ¯

1

0
1

2
1

1

1

1

s

P

s s

s

 (1)

where P0
–1 = 

l l

m ml

m

-

=

Ï ¸Ê ˆ Ê ˆ
Ô Ô+Á ˜ Á ˜Ì ˝Ê ˆË ¯ Ë ¯

-Ô ÔÁ ˜Ë ¯Ó ˛

Â
1

0 1 1

1

1 1

1

r s
s

r r
s

s

  = 

=

Ï ¸Ê ˆ Ê ˆÔ Ô+ ◊Á ˜ Á ˜Ë ¯ Ë ¯Ì ˝Ê ˆ-Á ˜Ô ÔË ¯Ó ˛

Â
32

0

1 5 1 5

52 2
3 1

6

r

r r

  = 
5 25 125 89

1
2 8 8 4

+ + + =  (2)

Using (2) in (1),

 E(Ns) = 

4

2

5

1 4 52
6.01

3 3 89 21

6

Ê ˆ
Á ˜Ë ¯

◊ ¥ + =
◊ Ê ˆ

Á ˜Ë ¯

 E(Ws) = 
1 6.01

( ) 60
30

sE N
l

◊ = ¥  minutes or 12.02 minutes.

For the payment section, l = 30/hour; m2 = 60/hour and the system is a single 

server system.

 E(Ns) = 
2

30
1

60 30

l

m l
= =

- -

and E(Ws) = 
1 1

( )
30

sE N
l

=  hour or 2 minutes

\ Number of customer in the shop = 7.01 and total waiting time in the shop for 

each customer = 14.02 minutes

Case (ii): For the supply section, l = 30, m2 = 12 and s = 4

 P0
–1 = 

4

3

0

5

1 5 2

52
4 1

8

r

r r=

Ï ¸Ê ˆ
Ô ÔÁ ˜Ë ¯Ê ˆ Ô Ô◊ + Ì ˝Á ˜Ë ¯ Ê ˆÔ Ô◊ -Á ˜Ë ¯Ô ÔÓ ˛

Â

  = 
5 25 125 625 1954 977

1 or
2 8 48 144 144 72

+ + + + =
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 E(Ns) = 

5

2

5

1 72 52
3.03

4 4 977 23

8

Ê ˆ
Á ˜Ë ¯

◊ ¥ + =
◊ Ê ˆ

Á ˜Ë ¯

 E(Ws) = 
1

3.03
30

¥  hour or 6.06 minutes

For the payment section, l = 30, m2 = 40

 E(Ns) = 
2

30
3

40 30

l

m l
= =

- -

 E(Ws) = 
1

3
30

¥  hour or 6 minutes.

\ Number of customers in the shop = 6.03 and the total waiting time in the shop 

for each customer = 12.06 minutes. Though there is some advantage due to the 

appointment of one more customer, the owner’s wish could not be accomplished 

fully.

Example 6

In the railway reservation section of a city junction, there is enough space for 

the customers to assemble, form a queue and fi ll up the reservation forms. There 

are 5 reservation counters in front of which also there is enough space for the 

customers to wait. Customers arrive at the reservation section at the rate of 50/

hour according to Poisson process, take 1 minute each on the average to fi ll up 

the forms and then move to the reservation counter section. Each reservation 

clerk takes 5 minutes on the average to complete the business of a customer in 

an exponential manner. (a) Find the probability that a customer has to wait to 

get the service in the reservation counter section, (b) fi nd the total waiting time 

for a customer in the entire reservation section, and (c) fi nd the total number of 

customers in the entire section. Assume that only those who have the fi lled up 

reservation forms will be allowed into the counter section.

The queueing system in the form-fi lling portion is only a M/M/1 model, since 

each customer is served by himself or herself (viz., one server)

For this system, l = 50/hour and m = 60/hour.

 E(Ns) = 
50

5
60 50

l

m l
= =

- -
;

 E(Ws) = 
1 1

10m l
=

-
 hour or 6 min

The queuing system in the reservation counter section in an M/M/s model 

with l = 50/hour, m = 12/hour and s = 5 [Since the output of the M/M/1 system 

is the same as the input of that system, by Burke’s theorem and the output of this 

system (namely, 50/hour) becomes the input of the M/M/s system.]
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 (a) P(a customer has to wait in the counter section)

  = 

0

1

s

P

s
s

l

m

l

m

Ê ˆ
◊Á ˜Ë ¯

Ê ˆ
-Á ˜Ë ¯

,

where P0
–1 = 

1

0

1 ( / )

1

r ss

r r
s

s

l l m

m l

m

-

=

Ï ¸
Ô ÔÊ ˆ Ô Ô◊ + Ì ˝Á ˜Ë ¯ Ê ˆÔ Ô-Á ˜Ô ÔË ¯Ó ˛

Â

  = 

5

1

0

25

1 25 6

56
5 1

6

rs

r r

-

=

Ê ˆ
Á ˜Ë ¯Ê ˆ +Á ˜Ë ¯ Ê ˆ◊ -Á ˜Ë ¯

Â

  = 

5

2 3 4

25

25 1 25 1 25 1 25 6
1

6 2 6 6 6 24 6 20

Ê ˆ
Á ˜Ë ¯Ê ˆ Ê ˆ Ê ˆ+ + ◊ + + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

  = 164.0490

\ P0 = 0.0061

\ Required probability = 

5
25

0.0061
6

0.3824
1

5
6

Ê ˆ ¥Á ˜Ë ¯
=

◊
.

 (b) Average number of customers in the counter section is given by

 E(Ns) = 

1

02

1 ( /

(1 / )

s

P
s s s

l m l

ml m

+)
◊ +

-

  = 

6

2

25

1 256
0.0061 6.0819

5 5 65
1

6

Ê ˆ
Á ˜Ë ¯

◊ ¥ + =
◊ Ê ˆ-Á ˜Ë ¯

  \ Average waiting time of a customer in the counter section is E(Ws) = 

1
( ) 0.1216sE N

l
=  hour or 7.298 minutes

\ Total waiting time of a customer in the entire reservation room

= 6 + 7.298 = 13.298 minutes.

 (c) Total number of customers in the entire reservation room = 5 + 6.0819 

= 11.0819.
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Example 7

In a book shop, there are two sections, one for textbooks and the other for note-

books. Customers from outside arrive at the textbook section at a Poisson rate of 

4 per hour and at the notebook section at a Poisson rate of 3 per hour. The service 

rates of the T.B. section and N.B. section are respectively 8 and 10 per hour. A 

customer upon completion of service at T.B. section is equally likely to go to the 

N.B. section or to leave the book shop, whereas a customer upon completion of 

service at N.B. section will go to the T.B. section with probability 
1

3
 and will 

leave the book shop otherwise. Find the joint steady-state probability that there 

are 4 customers in the T.B. section and 2 customers in the N.B. section. Find 

also the average number of customers in the book shop and the average waiting 

time of a customer in the shop. Assume that there is only one salesman in each 

section.

The system given in this problem is a Jackson’s open queueing system.

Let l1 and l2 be the total (resultant) arrival rates of S1 (T.B. section) and 

S2(N.B. section).

Jackson’s fl ow balance equations for this open model are lj = rj + 
1

k

i ij

i

Pl
=
Â ,

j = 1, 2, ..., k.

Thus l1 = 

2

1 1 11 2 21

1

4 4i i

i

P P Pl l l
=

+ = + +Â

i.e., l1 = 2

1
4

3
l+  (Since P11 = 0) (1)

 l2 = 
2

2 1 12 2 22

1

3 3i i

i

P P Pl l l
=

+ = + +Â

i.e., l2 = 1

1
3

2
l+  (Since P22 = 0) (2)

Solving (1) and (2), we get l1 = 6 and l2 = 6

P(n1 customers in S1 and n2 customers in S2)

  = 

1 2

1 1 2 2
1 2

1 1 2 2

( , ) 1 1

n n

P n n
l l l l

m m m m

Ê ˆ Ê ˆ Ê ˆ Ê ˆ
= - -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

\ P(4, 2) = 

4 2
6 6 6 6

1 1
8 8 10 10

Ê ˆ Ê ˆ Ê ˆ Ê ˆ◊ - ◊ ◊ -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

  = 

4 2
3 1 3 2

0.0114
4 4 5 5

Ê ˆ Ê ˆ◊ ◊ =Á ˜ Á ˜Ë ¯ Ë ¯
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 E(Ns) = 
1 2

[ ( )] [ ( )]s S s SE N E N+

  = 
1 2

1 1 2 2

6 6
4.5

8 6 10 6

l l

m l m l
+ = + =

- - - -

 E(Ws) = 
1

( )sE N
l

, where l = r1 + r2 = 4 + 3 = 7

\ E(Ws) = 
9 9

2 7 14
=

¥
 hour or 38.6 minutes.

Example 8

In a network of 3 service stations 1, 2, 3, customers arrive at 1, 2, 3, from outside, 

in accordance with Poisson process having rates 5, 10, 15 respectively. The 

service times at the 3 stations are exponential with respective rates 10, 50, 100. 

A customer completing service at station 1 is equally likely to (a) go to station 2, 

(b) go to station 3, or (c) leave the system. A customer departing from service at 

station 2 always goes to station 3. A departure from service at station 3 is equally 

likely to go to station 2 or leave the system.

 (i) What is the average number of customers in the system, consisting of all 

the three stations?

 (ii) What is the average time a customer spends in the system?

The system given is a Jackson’s open queue system.

Let l1, l2, l3, be the resultant arrival rates at S1, S2 and S3 respectively.

Jackson’s fl ow balance equations are

 lj = 

3

1

, 1, 2, 3j i ij

i

r p jl
=

+ =Â  (1)

We note that P12 = 13 23 32

1 1 1
, , 1,

3 3 2
P P P= = =

Putting j = 1 in (1), we get

 l1 = 5 + l1 P11 + l2 P21 + l3 P31 

i.e., l1 = 5 (2)

 (since P11 = P21 = P31 = 0)

Putting j = 2 in (1), we get

 l2 = r2 + l1 P12 + l2 P22 + l3 P32

i.e., l2 = 1 3 22

1 1
10 (since 0)

3 2
Pl l+ + =

i.e., l2 = 3

35 1

3 2
l+  (3)

by using (2)
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Putting j = 3 in (1), we get

 l3 = r3 + l1 P13 + l2 P23 + l3 P33

i.e., l3 = 
1 2

1
15

3
l l+ +  (since P33 = 0)

i.e., l3 = 2

50

3
l+  (4)

by using (2)

Solving (3) and (4), we get l2 = 40 and l3 = 
170

3

 (i) E(Ns) = 31 2

1 1 2 2 3 3

ll l

m l m l m l
+ +

- - -

  = 
5 40 170/3

17010 5 50 40
100

3

+ +
- - -

  = 
170 4

1 4 or 6
130 13

+ +

 (ii) E(Ws) = 
( )sE N

l
, where l = r1 + r2 + r3 = 30

        = 
82 41

13 30 195
=

¥

Example 9

Customers arrive at a service centre consisting of 2 the service points S1 and S2 

at a Poisson rate of 35/hour and form a queue at the entrance. On studying the 

situation at the centre, they decide to go to either S1 or S2. The decision making 

takes on the average 30 seconds in an exponential fashion. Nearly 55% of the 

customers go to S1, that consists of 3 parallel servers and the rest go to S2, that 

consist of 7 parallel servers. The service times at S1 are exponential with a mean 

of 6 minutes and those at S2 with a mean of 20 minutes. About 2% of customers, 

on fi nishing service at S1 go to S2 and about 1% of customers, on fi nishing service 

at S2 go to S1. Find the average queue sizes in front of each node and the total 

average time a customer spends in the service centre.

The system given is a Jackons’s open queue system with 3 nodes. At the fi rst 

node, we have a single server queue and at the second and third nodes, we have 

multiple server queues.

Let l1, l2, l3 be the resultant arrival rates at the 3 nodes. r1 = 35, r2 = 0, r3 = 

0 are the arrival rates at the 3 nodes from outside.

Jackson’s fl ow balance equations are given by

 lj = 
3

1

; 1, 2, 3j i ij

i

r P jl
=

+ =Â  (1)
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Noting that P12 = 0.55, P13 = 0.45, P23 = 0.02 and P32 = 0.01 and using them 

in (1), we get

 l1 = 35 (2)

 l2 = 0.55 l1 + 0.01 l3, i.e., l1 – 0.01 l3 = 19.25 (3)

 l3 = 0.45 l1 + 0.02 l2,  i.e., 0.02 l2 – l3 = –15.75 (4)

Solving (3) and (4), we get l2 = 19.4114 and l3 = 16.1382

Also m1 = 120, m2 = 10 and l3 = 3

At node 1, we have a single server system

\ (Lq)1 = 
2
1

1 1 1

35 35
0.1201

( ) 120 85

l

m m l

¥
= =

- ¥

At node 2, have a 3-server queue system.

For this system, P0
–1 = 

l

ml

m l

m
=

Ï ¸Ê ˆ
Ô ÔÁ ˜Ê ˆ Ë ¯Ô Ô

+ Ì ˝Á ˜ Ê ˆË ¯ Ô Ô-Á ˜Ô ÔË ¯Ó ˛

Â

3

2

2
22

0 2 2

2

1

3 1
3

r

r r

  = 
3

21 (1.9411)
1 1.9411 (1.9411)

2 6 (1 0.6470)
+ + ¥ +

¥ -
  = 8.2782

\ P0 = 0.1208

Now (Lq)2 = 

2 1

2

2

02
2 2

2

2 2

1

1

s

P
s s

s

l

m

l

m

+
Ê ˆ
Á ˜Ë ¯

◊
◊ Ê ˆ

-Á ˜Ë ¯

  = 
4

2

1 (1.9411)
0.1208 0.7646

3 6 (0.3530)
¥ ¥ =

¥
At node 3, we have a 7 server queue system.

For this system, P0
–1 = 

76
3 3 3

0 3 3
3

3 3

( / )1

1

r

r r
s

s

l l m

m l

m
=

Ê ˆ
+Á ˜ Ê ˆË ¯

-Á ˜Ë ¯

Â

  = 2 31 1
1 5.3794 (5.3794) (5.3794)

2 6
+ + ¥ + ¥

4 51 1
(5.3794) (5.3794)

24 120
+ ¥ + ¥

7
61 (5.3794)

(5.3794)
720 7 0.2315

+ ¥ +
¥
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  = 1 + 5.3794 + 14.4690 + 25.9448 + 34.8919

+ 37.5395 + 33.6566 + 111.7263

  = 2640.6075

\ P0 = 0.0038

Now, (Lq)3 = 

3 1

3

3

02
3 3

3

3 3

1

1

s

P
s s

s

l

m

l

m

+
Ê ˆ
Á ˜Ë ¯

◊ ◊
Ê ˆ

-Á ˜Ë ¯

  = 
8

2

1 (5.3794)
0.0038

7 7 (1 0.7685)
¥ ¥

¥ -
  = 1.4094

 (Ls)1 = 
1 1

1

1 1 1

( ) or 0.4118qL
l l

m m l
+ =

-

 (Ls)2 = 
2

2

2

( ) 0.7646 1.9411 2.7057qL
l

m
+ = + =

 (Ls)3 = 3
3

3

( ) 1.4094 5.3794 6.7888qL
l

m
+ = + =

Total waiting time for a customer in the system is given by

 E(Ws) = 1 2 3

1 2 3

( ) ( ) ( )s s sL L L

r r r

+ +
+ +

  = 0.2830 hour or 17 minutes nearly

Example 10

There are 2 clerks in a bank, one processing housing loan applications and 

the other processing agricultural loan applications. While processing, they get 

doubts according to an exponential distribution each with a mean of 
1

2
. To get 

clarifi cations, a clerk goes to the Deputy manager with probability 
3

4
 and to the 

senior manager with probability 
1

4
. After completing the job with D.M. a clerk 

goes to S.M. with probability 
1

3
 and returns to his seat otherwise. Completing the 

job with S.M., a clerk always returns to his seat. If the D.M. clarifi es the doubts 
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and advises a clerk according to an exponential distribution with parameter 1 and 

the S.M. with parameter 3, fi nd

 (a) the steady-state probabilities P(n1, n2, n3) for all possible values of n1, 

n2, n3

 (b) the probability that both the managers are idle

 (c) the probability that at least one manager is idle.

The situation in this problem is a Jackson’s closed network.

We assume that the processing point by the clerks is node 1 and the service 

points by D.M. and S.M. are node 2 and node 3 respectively.

Now l = m1 = 2, m2 = 1, m3 = 3, and P12 = 
13 23

3 1 1
, ,

4 4 3
P P= =

P(n1, n2, n3) means the probability that there are n1 clerks in their seats, n2 

customers in D.M.’s room and n3 customers in S.M.’s room.

There are 6 possible combinations for the values of n1, n2, n3, namely (2, 0, 0), 

(0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1) and (0, 1, 1), since n1 + n2 + n3 = 2.

The fl ow balance equations lj = 
3

1

, ( 1, 2, 3)i ij

i

P jl
=

=Â  can be put in the matrix 

form as

 (l1, l2, l3) = 

12 13

1 2 3 21 23

31 32

0

( , , ) 0

0

P P

P P

P P

l l l

Ê ˆ
Á ˜
Á ˜Á ˜Ë ¯

 (1)

Putting i
i

i

l
r

m
=  and noting that 1

i

l
r

l
=  in (1), we get (lr1, r2 m2, r3 m3)

  = 1 2 2 3 3

3 1
0

4 4

2 1
( ) 0

3 3
,

0 0

,

1

lr r m r m

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Ë ¯

i.e., 2 3

2
3

3
r r+  = 2r1 (2)

 
1

3

2
r  = r2 (3)

 1 2

1 1

2 3
r r+  = 3r3 (4)

Equations (2), (3) and (4) are homogeneous linear equations in r1, r2 and r3. 

to get one solution we put r2 = 1 and solve the equations.
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We then get

 r1 = 2 3

2 2
, 1 and

3 9
r r= =

Since there are 2 clerks (customers) at node 1, the system there is a 2-server 

queueing model.

\ P(n1, n2, n3) = 
1

32

1

1
2 3

1( )

, .

n
nn

N

n

C
a

r
r r ,

where N = n1 + n2 + n3 = 2

Now, CN
–1 = 

1

32

1 2 3

1
2 3

2 1

n
nn

n n n n

r
r r

+ + =

◊ ◊Â , since

 a1(n1) = 
1 1

1 1 1

1 1 1 1

when,

when
n s

n n s

s s n s
-

<ÏÔ
Ì

◊ ≥ÔÓ
for all possible combinations of n1, n2, n3 such that n1, n2, n3 = 2

Thus, CN
–1 = 

2 0 0
0 0 2 0 0 21 1 1
2 3 2 3 2 3

2 0 0

r r r
r r r r r r◊ ◊ + ◊ ◊ + ◊ ◊

 

1 1 0
1 0 0 1 1 11 1 1
2 3 2 3 2 3

1 1 0

r r r
r r r r r r+ ◊ + ◊ ◊ + ◊ ◊

  = 
2 4 2 4 2 187

1
9 81 3 27 9 81

+ + + + + =  or 2.3086

\ CN = 
1

2.3086
 = 0.4332

Now,  P(2, 0, 0) = 
2(2/3)

0.4332 0.0962; (0, 2, 0) 0.4332
2

P¥ = =

 P(0, 0, 2) = 0.0214; P(1, 1, 0) = 0.2888; P(1, 0, 1) = 0.0642;

 P(0, 1, 1) = 0.0962

P(both the managers are idle) = P(2, 0, 0) = 0.0962

P(at least one manager is idle) = P(1, 1, 0) + P(1, 0, 1) + P(2, 0, 0)

  = 0.2888 + 0.0642 + 0.0962

  = 0.4492

Example 11

Assuming that there is only one clerk (i.e., N = 1) in the loan section in the 

previous example, compute the probabilities that he is in nodes 1, 2, and 3. Verify 

that these are the same as the average lengths of the queues at the nodes. Check 

the correctness of these values by comparing with the values obtained by using 

mean-value Aanalysis.
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Let Pi(1) = probability that the single clerk is in node 1.

When N = 1 = n1 + n2 + n3, we have single server queue systems at all the 

nodes 1, 2, 3.

\ P(n1, n2, n3) = 31 2
1 2 3

nn n

NC r r r◊ , where CN ∫ C1

  = 

1 3

1

2 2

3 9

n n

C
Ê ˆ Ê ˆ◊Á ˜ Á ˜Ë ¯ Ë ¯

C1 is found out more easily as follows:

 P(1, 0, 0) = 1 1 1

2 2
; (0,1,0) ; (0,0,1)

3 9
C P C P C◊ = = ◊

Since the presence of the lonely clerk in the nodes is mutually exclusive and 

exhaustive,

P(1, 0, 0) + P(0, 1, 0) + P(0, 0, 1) = 1

i.e., 
2 2

1
3 9

Ê ˆ+ +Á ˜Ë ¯ C1 = 1 \ C1 = 
9

17

\ P1(1) = P(1, 0, 0) = 2

6 9
; (1) (0,1,0)

17 17
P P= = ;

    P3(1) = P(0, 0, 1) = 
2

17
Now, L1(1) = Average length of the queueing system at node 1

  = 

1

0r

r P
=
Â  (r clerk in node 1)

  = 
9 2 6 6

0 1
17 17 17 17

Ê ˆ¥ + + ¥ =Á ˜Ë ¯

Similarly, L2(1) = 
6 2 9 9

0 1
17 17 17 17

Ê ˆ¥ + + ¥ =Á ˜Ë ¯

and  L3(1) = 
6 9 2 2

0 1
17 17 17 17

Ê ˆ¥ + + ¥ =Á ˜Ë ¯

Thus, Pr(1) = Lr(1), for r = 1, 2, 3.

Now, let us use the MVA algorithm and compute Lr(1)

The fl ow balance equations of Example (10) are

 (l1, l2, l3) = 
1 2 3

3 1
0

4 4

2 1
( , , ) 0

3 3

1 0 0

l l l

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Ë ¯

 (1)
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Putting vi = 
2

il

m
 and taking vl = v2 = 1 in (1), we have

 (v1, 1, v3) = 1 3

3 1
0

4 4

2 1
( ,1, ) 0

3 3

1 0 0

v v

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Ë ¯

i.e., v1 = 3

2

3
v+  (2)

 1 = 1

3

4
v  (3)

and v3 = 1

1 1

4 3
v +  (4)

Solving (2), (3) and (4), we get 1 2 3

4 2
, 1,

3 3
v v v= = =

Assuming L1(0) = L2(0) = L3(0) = 0 and taking r = 1, from step 3 (a) of M.V.A. 

algorithm, we have

 W1(1) = 2

1 2

1 1 1 1
; (1) 1

2
W

m l m
= = = = ;

 W3(1) = 
3

1 1

3m
=

For r = 1, from step 3 (b) of M.V.A.A.,

 l2(1) = 
3

1

1 1 9

4 1 2 1 17
1 1(1)

3 2 3 3i i

i

v W
=

= =
¥ + ¥ + ¥Â

For r = 1, from step 3 (c) of M.V.A.A.,

 l1(1) = v1l2(1) = 
4 9 12

3 17 17
¥ =

 l3(1) = v3l2(1) = 
2 9 6

3 17 17
¥ =

From r = 1, from step 3 (d) of M.V.A.A.,

 L1(1) = 1 1

12 1 6
(1) (1)

17 2 17
Wl ◊ = ¥ =

 L2(1) = 2 2

9 9
(1) (1) 1

17 17
Wl ◊ = ¥ =
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 L3(1) = 3 3

6 1 2
(1) (1)

17 3 17
Wl ◊ = ¥ =

These values of Li(1) agree with the corresponding values obtained otherwise.

Example 12

Use M.V.A. algorithms for (a) single server, (b) multiple servers to compute 

L1(2), L2(2) and L3(2), where Li(N) denotes the average length of the queueing 

system at node i, assuming that there are N = 2 clerks in the system of Example 

(10).

Case (i): For r = 2, from step 3(a) of M.V.A.A.,

 W1(2) = 
1 2

2

1 2

6 9
1 1

1 (1) 1 (1)23 2617 17; (2) ;
2 34 1 17

L L
W

m m

+ ++ +
= = = = =

 W3(2) = 3

3

2
1

1 (1) 1917

3 51

L

m

++
= =

For r = 2, from step 3(b) of M.V.A.A.,

 l2(2) = 
2 153

4 23 26 2 19 205
1

3 24 17 3 27

=
¥ + ¥ + ¥

For r = 2, from step 3(c) of M.V.A.A.,

 l1(2) = 1 2

4 153 204
(2)

3 205 205
v l = ¥ =

 l3(2) = 3 2

2 153 102
(2)

3 205 205
v l = ¥ =

For r = 2, from step 3(d) of M.V.A.A.,

 L1(2) = 1 1

204 23 138
(2) (2) 0.6732

205 34 205
Wl ◊ = ¥ = =

 L2(2) = 2 2

153 26 234
(2) (2) 1.1415

205 17 205
Wl ◊ = ¥ = =

 L3(2) = 3 2

102 19 38
(2) (2) 0.1853

205 51 205
Wl ◊ = ¥ = =

It can be verifi ed that L1(2) + L2(2) + L3(2) = 2.

Case (ii): When r = 1 = N, step 3 (a) of the multiple server M.V.A. algorithm 

reduces to the step 3 (a) of the single server M.V.A. algorithm

Also steps 3(b), 3(c) and 3(d) hold good for r = 1

\ proceeding as in Example 11, we get

 L1(1) = 2 3

6 9 2
, (1) and (1)

17 17 17
L L= =
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Step 3(e) of the algorithm gives

 P1(1, 1) = 
1

1

1 1

(1) 12/17 6
(0,0)

(1) 1 2 17
P

l

a m
◊ = =

◊ ¥

 P2(1, 1) = 
2

2

2 2

(1) 9/17 9
(0,0)

(1) 1 1 17
P

l

a m
◊ = =

◊ ¥

 P3(1, 1) = 
3

3 3

(1) 6/17 2

(1) 1 3 17

l

a m
= =

◊ ¥

Now P1(0, 1) = P(0, 1, 0) + P(0, 0, 1) = 
9 2 11

17 17 17
+ =

 P2(0, 1) = P(0, 0, 1) + P(1, 0, 0) = 
2 6 8

17 17 17
+ =

 P3(0, 1) = P(0, 1, 0) + P(1, 0, 0) = 
9 6 15

17 17 17
+ =

We now proceed to the second iteration with r = 2. Step 3(a) gives

 W1(2) = 1 1

1

1
{1 (1) (2 1) (0,1)}

2
L P

m
+ + -

  = 
1 6 11 1

1 0.5
4 17 17 2

Ê ˆ+ + = =Á ˜Ë ¯

[Why W1(2) values got by the two algorithms differ?]

 W2(2) = 2

2

1 9 26
{1 (1) 0} 1 1.5294

17 17
L

m
+ + = + = =

 W3(2) = 3

3

1 1 2 19
{1 (1) 0} 1 0.3725

3 17 51
L

m

Ê ˆ+ + = + = =Á ˜Ë ¯
Step 3(b) gives

 l2(2) = 
1 1 2 2 3 3

2

(2) (2) (2)v W v W v W+ +

  = 
2

0.8182
4 2

0.5 1 1.5294 0.3725
3 3

=
¥ + ¥ + ¥

Step 3(c) gives

 l1(2) = v1·l2(2) = 
4

0.8182 1.0909
3

¥ =

 l3(2) = v3 l2(2) = 
2

0.8182 0.5455
3

¥ =
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Step 3(d) gives

 L1(2) = l1(2)· W1 (2) = 1.0909 × 0.5 = 0.5455

 L2(2) = l2(2)· W2 (2) = 0.8182 × 1.5294 = 1.2513

 L3(2) = l3(2)· W3 (2) = 0.5455 × 0.3725 = 0.2032

We note that 
3

1

(2)i

i

L
=
Â  = 2.

Exercise 9(B)

Part-A (Short-answer Questions)

 1. What is meant by queue network?

 2. What are the features of a general tandem queue?

 3. What do you mean by series queue with blocking?

 4. Draw the state transition diagram of a two-stage sequential queue model 

with blocking for the stage 2.

 5. Write down the balance equations for the model given in (4) above.

 6. Defi ne a two stage series queue.

 7. Draw the state transition diagrams for a 2-stage series queue by taking 

(n1, n2) as the central state, when n1 ≥ 0 and n2 ≥ 0.

 8. Write down the balance equations for a 2-stages series queue model.

 9. Stage Burke’s theorem used in queueing theory.

 10. Write the formula for the steady-state joint probability for m and n 

customers in the nodes S1 and S2 respectively for a 2-stage series queue 

model.

 11. Defi ne an open Jackson network.

 12. Write down the fl ow balance equations for an open Jackson network.

 13. Write down the formula for P(n1, n2 ..., nk) for a single server Jackson’s 

open network.

 14. Defi ne a closed Jackson network.

 15. Write down the fl ow balance equations for a closed Jackson network.

 16. Write down the formula for the steady-state probability P(n1, n2 ..., nk) 

for a single server Jackson’s closed network.

 17. Write down the formula for the steady-state probability P(n1, n2 ..., nk) 

for multiple server Jackson’s closed network.

 18. State ‘Arrival theorem’ used in the study of Jackson’s network.

 19. Write down the M.V.A. algorithm used to fi nd the characteristics of a 

k-node, single server per node, Jackson’s closed network.

 20. Write down the M.V.A. algorithm used to study a k-node multiple server 

Jackson’s closed network.
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Part-B

 21. For a 2-stage (service point) sequential queue model with blockage, 

compute the average number of customers in the system and the average 

time that a customer has to spend in the system, if l = 1, m1 = 2 and

m2 = 1.

 22. For a 2-stage (service point) sequential queue model with blockage, 

compute Ls and Ws, if l = 1, m1 = 1 and m2 = 2.

 23. If, in a 2-stage (service point) sequential queue model with blocking, the 

arrivals follow Poisson process with parameter l and the service times 

are equal with the same parameter m, fi nd the steady-state probability 

P(0, 0) in terms of l and m.

 24. There are 2 chairs in a barber shop, each of which is managed by a barber. 

B1 is a specialist in hair-cutting and B2 is a specialist in shaving and 

washing. B1 and B2 do their jobs according to exponential distributions 

with parameters 1 and 3 respectively. Customers who require both hair-

cutting and shaving enter the shop only if B1 is free. If a customer has 

fi nished his job with B1 goes to B2, if he is free; otherwise he waits in 

B1 chair until B2 becomes free. Find the average number of customers 

in the shop and the average amount that an entering customer has to 

spend in the shop.

 25. For a walk-in interview conducted by a company, candidates arrive 

at the interview hall at a Poisson rate of 6/hour. In the interview hall, 

verifi cation of certifi cates is done by a clerk and the personal interview 

is conducted by an offi cer in different rooms. Both of them do their 

jobs in an exponential manner, each taking 6 minutes on the average. If 

no queue is allowed to form in front of the rooms and a candidate has 

to wait in the clerk’s room when the offi cer is busy, fi nd the average 

number of candidates present in the interview hall and the average time 

spent by a candidate in the hall.

 26. On the fi rst day of admission of freshers in an engineering college, 

freshers, after surrendering the original certifi cates, join the queue in 

front of the Principal’s chamber for getting actual admission at the 

rate of 18 per hour in a Poisson manner. After getting the nod from the 

Principal, they join the queue in front of the cash collection counter to 

make payment of fees. If the Principal and the cashier do their service 

in an exponential fashion taking 2.5 and 3 minutes respectively, fi nd 

the average number of freshers inside the college offi ce and the average 

time spent by a fresher inside the offi ce. Find also the probability that 

there are 3 students in front of the Principal’s chamber and 4 students in 

front of the cash counter.

 27. In a big factory, there are a large number of operating machines and 

two sequential repair shops, which do the service of the damaged 

machines exponentially with respective rates of 1/hour and 2/hour.
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If the cumulative failure rate of all the machines in the factory is 0.5/

hour, fi nd (i) the probability that both repair shops are idle, (ii) the 

average number of machines in the service section of the factory, and 

(iii) the average repair time of a machine.

 28. In a festival season cracker shop, there are 4 salesman and 1 manage. 

Customers arrive at the cracker shop according to Poisson process at the 

rate of 15/hour. On entry, the customer stands in the queue, goes to any of 

the salesmen and gets his requirements and also the bill. After fi nishing 

the job with the salesman the customer goes to the manager’s counter 

and joins the queue there. The manager checks the bill and receives the 

payment. If the service time of each salesman is exponentially distributed 

with a mean 6 minutes and the same for the manager is 3 minutes, fi nd 

the average number of customers in the cracker shop and the average 

waiting time for a customer in it.

 29. During peak hours, customers arrive at a super market according to a 

Poisson process at a mean rate of 40/hour. In the self-service shopping 

section it takes 
3

4
 hour for a customer to fi ll his shopping cart, the fi lling 

times being approximately exponentially distributed. Further the check-

out times are also approximately exponentially distributed with a mean 

of 4 minutes, regardless of the particular check-out counter chosen by a 

customer. Assume that any number of customers (with their carts) can be 

accommodated both in the shopping section and the check-out lounge.

 (i) What is the minimum number of check-out counters required for 

operation during peak periods?

 (ii) If it is decided to add one more than the minimum number of 

counters required for operation what is the average waiting time in 

the check-out lounge?

 (iii) How many customers will be in (a) the lounge and (b) the entire 

super market on the average?

 30. In the outpatient section of a private nursing home, there are 3 doctors 

and 2 salesmen in the attached medical shop. Patients arrive at the 

nursing home according to Poisson process with a mean of 30 per hour 

and join the queue in front of the O.P. section. After getting diagnosed 

and getting the prescription of medicines by any one of the doctors, the 

patients go out and join the queue in front of the medical shop. After 

purchasing the medicines, the patients leave the nursing home. If the 

service time of each doctor is exponential with a mean of 3 minutes, 

and that of a salesman is exponential with a mean of 3 minutes fi nd the 

average number of out patients in the nursing home and the average time 

spent by a patient in the nursing home.

 31. There are 2 counters in a snack stall, one dealing with sweets and 

savouries and the other with cakes and biscuits. Customers arrive at the 

stall according to a Poisson process with a mean rate of 20/hour. 60% of 



Advanced Queue Models and Queue Networks 9.45

the arrivals go to the sweets counter and the rest to the bakery counter. 

After fi nishing the purchase in the sweets counter, 20% go to the bakery 

section and the rest leave the stall. 10% of those who have completed their 

purchase in the bakery then go to the sweets section and the rest leave 

the stall. It takes on the average 4 minutes for a customer to complete his 

purchase in the sweets section and 5 minutes in the bakery section, the 

service times being exponential. (i) how many, on the average, are in the 

snack stall? (ii) What is the average waiting time at each counter? (iii) If 

a customer wants both sweet items and bakery items, how long, on the 

average, does he spend in the stall?

 32. In a departmental store, there are 2 sections, namely grocery section and 

perishable (vegetables and fruits) section. Customers from outside arrive 

at the G-section according to a Poisson process at a mean rate of 10/

hour and they reach the P-section at a mean rate of 2/hour. The service 

times at both the sections are exponentially distributed with parameters 

15 and 12 respectively. On fi shing the job in the G-section, a customer 

is equally likely to go to the P-section or to leave the store, whereas a 

customer on fi nishing his job in the P-section will go to the G-section 

with probability 0.25 and leave the store otherwise. Assuming that there 

is only one salesman in each section, fi nd the probability that there are 

3 customers in the G-section and 2 customers in the P-section. Find also 

the average number of customers in the store and the average waiting 

time of a customer in the store.

 33. In a textile shop, there are 3 sections, namely, Gents’ (GS), Ladies’ (LS) 

and Kids’ (KS) sections, in each of which there is only one salesman. 

Customers, from outside arrive at the 3 sections in a Poisson manner 

at the rates of 3, 5 and 6 per hour respectively. The service rates in 

the 3 sections are exponential with rates 40, 60 and 50 respectively. A 

customer completing purchase in G.S. will go to L.S. with probability 

0.5 and to the K.S. with probability 0.3; otherwise leaves the shop. A 

customer completing purchase in this L.S. is equally likely to go to the 

G.S. and to the K.S. A customer completing purchase in the K.S. will 

go to the G.S. with probability 0.2 and to the L.S. with probability 0.6; 

otherwise he leaves the shop. Find the average number of customers in 

the entire textile shop. Find also the average time that a customer has to 

spend in the shop.

 34. In a factory there are 2 machines which are expected to be operational 

at all times and 2 service men, one of whom will rectify ordinary 

defects and the other will do the service in respect of serious defects. 

The machines break down according to an exponential distribution 

with parameter 2. When a machine breaks down, it has a probability 

0.8 of being serviced for ordinary defect and a probability 0.2 of being 

serviced for serious defect. After service for ordinary defect, a machine 
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will require service for serious defect with probability 0.4 and return 

to operation otherwise. After service for serious defect, the machine 

will always become operational. Treating the operational status of the 

machines as node 1, fi nd the probability that (i) both the servicemen are 

idle, and (ii) at least one machine is operational. Assume that the service 

times of the repairmen are exponentially distributed with parameters 3 

and 4 respectively.

 35. In problem (34), if there is only one machine in operation, fi nd the 

average lengths of the machines in the 3 nodes of the system (i) directly, 

and (ii) using M.V.A. algorithm.

 36. In problem (34), assuming that there are 2 machines in operation, fi nd 

the average number of machines in the 3 nodes of the system, using 

single server M.V.A. algorithm.

 37. Solve problem (36), using multiple server M.V.A. algorithm.

ANSWERS

Exercise 9(A)

 7. P0 = 0.00003556; E(NQ) = 4.4; E(NS) = 5.4; E(WQ) = 2.9335 hours; 

E(WS) = 3.6 hours.

 8. (a) 3; (b) Rs. 160 per day; (c) Engaging only one mechanic is desirable.

 9. 

Ï Ê ˆ ◊ £ £Ô Á ˜Ë ¯Ô= Ì
Ô Ê ˆ◊ ◊ ◊ £ £Á ˜Ô Ë ¯Ó

0

0

0

1
5 , when 0 2

6648
;

1993 1
5 2 ! , when 2 5

12

n

n

n n

n

C P n

P p

C n P n

  =
33

( )
41

QE W  minutes

 10. (a) 0.04305; (b) 0.16144; (c) 0.911

 11. 4.53 machines; 3.11 hours and 78%

 12. 5 minutes

 13. (a) 29%; (b) 30 minutes

 14. 100 minutes

 15. 12.5 minutes; 0.832 customer

Exercise 9(B)

 21. LS = 1, WS = 
11

6

 22. LS = 
28

37
, WS = 

28

18

 23. P(0, 0) = 2m3/(3l2 + 4 m l + 2 m2)
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 24. L = 
41

46
, W = 

41

30

 25. L = 0.5883, W = 10 min

 26. L = 12, W = 40 min, P = 0.0069

 27. 
3 4 8

, ,
8 3 3

 28. LS = 4.54, WS = 18.18 min

 29. 3, 1.136 min, 0.7573, 3.424

 30. 8.9, 17.8 min

 31. 14.3885, (W S)1 = 30.947 min, (Ws)2 = 43.2339 min, 43.1505 min

 32. 0.0152, 6, 30 min

 33. 10, 42.8 min

 34. 0.2815, 0.7263

 35. (i) 0.5587, 0.2961, 0.1452; (ii) 0.5576, 0.2974, 0.1450

 36. 1.2229, 0.5433, 0.2338

 37. 1.0048, 0.6958, 0.2294.





Introduction

Every statistical investigation aims at collecting information about some 

  aggregate or collection of individuals or of their attributes, rather than the 

  individuals themselves. In statisti cal language, such a collection is called a 

population or uni verse. For example, we have the population of products turned 

out by a machine, of lives of electric bulbs manufactured by a compa ny etc. A 

population is fi nite or infi nite, according as the number of elements is fi nite or 

infi nite. In most situations, the population may be considered infi nitely large. A 

fi nite subset of a population is called a sample and the process of selection of 

such samples is called sampling. The basic objective of the theory of sampling is 

to draw inference about the population using the information of the sample.

Parameters and Statistics

Generally, in statistical investigations, our ultimate interest will lie in one or 

more characteristics possessed by the members of the population. If there is only 

one characteristic of importance, it can be assumed to be a variable x. If xi be the 

value of x for the ith member of the sample, then (x1, x2, ...., xn) are referred to as 

sample observations. Our primary interest will be to know the values of different 

statistical measures such as mean and variance of the population distribution 

of x. Statistical measures, calculated on the basis of population values of x are 

called parameters. Corresponding measures computed on the basis of sample 

observations are called statis tics.

Sampling Distribution

If a number of samples, each of size n, (i.e. each containing n elements) are drawn 

from the same population and if for each sample the value of some statistic, say, 

mean is calculated, a set of values of the statistic will be obtained.

Chapter 10
Tests of Hypotheses
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Note  The values of  the statistic will normally vary from one sample to another, as the 

values of  the population members in cluded in different samples, though drawn from the same 

popula tion, may be different. These differences in the values of  a statistic are said to be due to 

sampling fl uctuations.

If the number of samples is large, the values of the statistic may be classifi ed 

in the form of a frequency table. The probability distribution of the statistic that 

would be obtained if the number of samples, each of same size were infi nitely 

large is called the sampling distribution of the statistic. If we adopt random 

sampling technique that is the most popular and frequently used method of 

sampling [the discussion of which is beyond the scope of this book], the nature 

of the sampling distribution of a statistic can be obtained theoretically, using 

the theory of probability, provided the nature of the population distribution is 

known.

Like any other distribution, a sampling distribution will have its mean, standard 

deviation and moments of higher order. The standard deviation of the sampling 

distribution of a statistic is of particular importance in tests of hypotheses and is 

called the standard error of the statistic.

Estimation and Testing of Hypotheses

In sampling theory, we are primarily concerned with two types of problems 

which are given below:

 (i) Some characteristic or feature of the population in which we are interested 

may be completely unknown to us and we may like to make a guess 

about this characteristic entirely on the basis of a random sample drawn 

from the population. This type of problem is known as the problem of 

estimation.

 (ii) Some information regarding the characteristic or feature of the 

population may be available to us and we may like to know whether the 

information is tenable (or can be accepted) in the light of the random 

sample drawn from the population and if it can be accepted, with what 

degree of confi dence it can be accept ed. This type of problem is known 

as the problem of testing of hypotheses.

Tests of Hypotheses and Tests of Signifi cance

When we attempt to make decisions about the population on the basis of sample 

information, we have to make assumptions or guesses about the nature of the 

population involved or about the value of some parameter of the population. Such 

assumptions, which may or may not be true, are called statistical hypotheses. 

Very often, we set up a hypothesis which assumes that there is no signifi cant 

difference between the sample statistic and the corresponding population 

parameter or between two sample statistics. Such a hypothesis of no difference is 
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called a null hypothesis and is denoted by H0. A hypothesis that is different from 

(or complementary to) the null hypothesis is called an alternative hypothesis and 

is denoted by H1. A procedure for deciding whether to accept or to reject a null 

hypothesis (and hence to reject or to accept the alternative hypothesis respec-

tively) is called the test of hypothesis.

If q0 is a parameter of the population and q is the corresponding sample 

statistic, usually there will be some difference between q0 and q since q is based 

on sample observations and is different for different samples. Such a difference 

which is caused due to sampling fl uctuations is called insignifi cant difference. The 

difference that arises due to the reason that either the sampling procedure is not 

purely random or that the sample has not been drawn from the given population is 

known as signifi cant difference. This procedure of testing whether the difference 

between q0 and q is signifi cant or not is called the test of signifi cance.

Critical Region and Level of Signifi cance

If we are prepared to reject a null hypothesis when it is true or if we are prepared 

to accept that the difference between a sample statistic and the corresponding 

parameter is signifi cant, when the sample statistic lies in a certain region or 

interval, then that region is called the critical region or region of rejection. The 

region complementary to the critical region is called the region of acceptance.

In the case of large samples, the sampling distributions of many statistics tend 

to become normal distributions. If ‘t’ is a statistic in large samples, then t follows 

a normal distribution with mean E (t), which is the corresponding population 

parameter, and S.D. equal to S.E. (t). Hence, Z = 
( )

S E ( )

t E t

t

-
◊ ◊

 is a standard normal 

variate, i.e., Z (called the test statistic) follows a normal distribution with mean 

zero and S.D. unity.

It is known from the study of normal distribution, that the area under the 

standard normal curve between t = –1.96 and t = +1.96 is 0.95. Equivalently 

the area under the general normal curve of ‘t’ between [E (t) – 1.96 S.E. (t)] and

[E (t) + 1.96 S.E. (t)] is 0.95. In other words, 95 per cent of the values of t will 

lie between [E (t) ∓ 1.96 S.E. (t)] or only 5 per cent of values of t will lie outside 

this interval.

Fig. 10.1
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If we are prepared to accept that the difference between t and E (t) is signifi cant 

when t lies in either of the regions [– •, E (t) – 1.96 S.E. (t)] and [E (t) + 1.96 S.E. 

(t), •] then these two regions constitute the critical region of ‘t’.

The probability ‘a’ that a random value of the statistic lies in the critical region 

is called the level of signifi cance and is usually expressed as a percentage.

From the study of normal distributions, it is known that

 P {E (t) – 1.96 S.E. (t) < t < E (t) + 1.96 S.E. (t)} = 0.95

i.e.      P 
( )

1.96
S E ( )

t E t

t

Ï ¸-Ô Ô<Ì ˝◊ ◊Ô ÔÓ ˛
 = 0.95

i.e. P {|Z| > 1.96} = 0.05 or 5%

Thus, when t lies in either of the two regions constituting the critical region 

given above, the level of signifi cance is 5 per cent. 

Note  The level of  signifi cance can also be defi ned as the maximum probability with which 

we are prepared to reject H0 when it is true. In other words, the total area of  the region of  

rejection expressed as a percentage is called the level of  signifi cance.  

(The specifi cation of critical region and the choice of level of signifi cance will 

depend upon the nature of the problem and is a matter of judgement for those 

who carry out the investi gation. Usually, the levels of signifi cance are taken as 

5%, 2% or 1%.)

Errors in Hypotheses Testing

The level of signifi cance is fi xed by the investigator and as such it may be fi xed 

at a higher level by his wrong judgement. Due to this, the region of rejection 

becomes larger and the probability of rejecting a null hypothesis, when it is true, 

becomes greater. The error committed in rejecting H0, when it is really true, 

is called Type I error. This is similar to a good product being rejected by the 

consumer and hence Type I error is also known as producer’s risk. The error 

committed in accepting H0, when it is false, is called Type II error. As this error 

is similar to that of accepting a product of inferior quality, it is also known as 

consumer’s risk.

The probabilities of committing Type I and II errors are denoted by a and b 

respectively. It is to be noted that the probability a of committing Type I error is 

the level of signifi cance.

One-Tailed and Two-Tailed Tests

If q0 is a population parameter and q is the corresponding sample statistic and if 

we set up the null hypothesis H0 : q = q0, then the alternative hypothesis which is 

complementary to H0 can be any one of the following:

 (i) H1 : q π q0, i.e. q > q0 or q < q0

 (ii) H1 : q > q0
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 (iii) H1 : q < q0.

H1 given in (i) is called a two tailed alternative hypothesis, whereas H1 given 

in (ii) is called a right-tailed alternative hypothesis and H1 given in (iii) is called 

a left-tailed alterna tive hypothesis.

When H0 is tested while H1 is a one-tailed alternative (right or left), the test of 

hypothesis is called a one-tailed test.

When H0 is tested while H1 is two-tailed alternative, the test of hypothesis is 

called a two-tailed test.

The application of one-tailed or two-tailed test depends upon the nature of 

the alternative hypothesis. The choice of the appro priate alternative hypothesis 

depends on the situation and the nature of the problem concerned.

Critical Values or Signifi cant Values

The value of the test statistic z for which the critical region and acceptance region 

are separated is called the critical value or the signifi cant value of z and denoted 

by za, when a is the level of signifi cance. It is clear that the value of za depends 

not only on a but also on the nature of alternative hypothesis.

When z = 
( )

( )

t E t

S E t

-
◊ ◊

, we have seen that

 P (|z| < 1.96) = 95 per cent and P (|z| > 1.96) = 5 per cent .

Thus, z = ± 1.96 separate the critical region and the acceptance region at 5% 

level of signifi cance for a two-tailed test. That is the critical values of z in this 

case are ± 1.96.

In general, the critical value za for the level of signifi cance a is a given by the 

equation P(|z| > za) = a for a two-tailed test, by the equation P(z > za) = a for the 

right-tailed test and by the equation

P(z < – za) = a for the left-tailed test. These equations are solved by using the 

normal tables.

Note  If  za is the critical value of  z corresponding to the level of  signifi cance a in the 

right-tailed test, then P(z > za) = a.

By symmetry of the standard normal distribution followed by z, 

P (z < – za) = a.

\ P (|z| > za) = P {(z > za) + (z < – za)}

  = P {z > za) + P (z < – za)

  = 2a

That is, za is the critical value of z corresponding to the LOS (level of 

signifi cance) 2a. 

Thus, the critical value of z for a single tailed test (right or left) at LOS ‘a’ is 

the same as that for a two-tailed test of LOS ‘2a’].

The critical values for some standard LOS’s are given in the following table 

both for two-tailed and one-tailed tests.
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Table 10.1

LOS

Nature of test

1% (.01) 2% (.02) 5% (.05) 10% (.1)

Two-tailed |za| = 2.58 |za| = 2.33 |za| = 1.96 |za| = 1.645

Right-tailed za = 2.33 za = 2.055 za = 1.645 za = 1.28

Left-tailed za = – 2.33 za = – 2.055 za = – 1.645 za = – 1.28

Procedure for Testing of Hypothesis

 1. Null hypothesis H0 is defi ned.

 2. Alternative hypothesis H1 is also defi ned after a careful study of the 

problem and also the nature of the test (whether one-tailed or two tailed) 

is decided.

 3. LOS ‘a’ is fi xed or taken from the problem if specifi ed and za is noted.

 4. The test-statistic z = 
( )

S E ( )

t E t

t

-
◊ ◊

 is computed.

 5. Comparison is made between |z| and za. If |z| < za, H0 is accepted or H1 

is rejected, i.e., it is concluded that the di fference between t and E(t) is 

not signifi cant at a % L.O.S.

On the other hand, if |z| > za, H0 is rejected or H1 is accepted, i.e. it is concluded 

that the difference between t and E (t) is signifi  cant at a% L.O.S.

Interval Estimation of Population Parameters

It was pointed out that the objective of the theory of sampling is to estimate 

population parameters with the help of the corresponding sample statistics. 

Estimation of a parameter by single value is referred to as point estimation, 

the study of which is beyond the scope of this book. However, an alternative 

procedure is to give an interval within which the parameter may be supposed to 

lie. This is called interval estimation. The interval within which the parameter is 

expected to lie is called the confi dence interval for that parameter. The end points 

of the confi dence interval are called confi dence limits or fi ducial limits.

We have already seen that

 P{|z| £ 1.96} = 0.95

i.e. P 
( )

1.96
S E ( )

t E t

t

Ï ¸-Ô Ô£Ì ˝◊ ◊Ô ÔÓ ˛
 = 0.95

i.e. P {t – 1.96 S.E. (t) £ E (t) £ t + 1.96 S.E. (t)} = 0.95

This means that we can assert, with 95% confi dence, that the parameter E (t) 

will lie between t – 1.96 S.E. (t) and t + 1.96 S.E. (t). Thus, {t – 1.96 S.E. (t), 

t + 1.96 S.E. (t) are the 95% confi dence limits for E (t).

Similarly, {t – 2.58 S.E. (t), t + 2.58 S.E. (t)} is the 99% confi dence interval 

for E (t).
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Tests of Signifi cance for Large Samples
It is generally agreed that, if the size of the sample exceeds 30, it should be 

regarded as a large sample. The tests of signifi  cance used for large samples are 

different from the ones used for small samples for the reason that the following 

assumptions made for large samples do not hold for small samples:

 1. The sampling distribution of a statistic is approximately normal, irre-

spective of whether the distribution of the popula tion is normal or not.

 2. Sample statistics are suffi ciently close to the corresponding population 

parameters and hence may be used to calculate the standard error of the 

sampling distribution.

Test 1 Test of signifi cance of the difference between sample proportion and 

population proportion.

Let X be the number of successes in n independent Bernoulli trials in which the 

probability of success for each trial is a constant = P (say). Then it is known that X 

follows a binomial distribution with mean E(X) = nP and variance V (X) = nPQ.

When n is large, X follows N (nP, n PQ ), i.e. a normal distribution with 

mean nP and S.D. n PQ , where Q = 1 – P.

\ 
X

n
 follows N 

2
,

n P n PQ

n n

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

Now, 
X

n
 is the proportion of successes in the sample consisting of n trials, 

that is denoted by p. Thus, the sample proportion p follows N ,
PQ

P
n

Ê ˆ
Á ˜
Ë ¯

. 

Therefore, test statistic z = 
p P

PQ

n

-
.

If |z| £ za, the difference between the sample proportion p and the population 

proportion P is not signifi cant at a % L.O.S.

Note  1. If  P is not known, we assume that p is nearly equal to P and hence S.E. (p) is 

   taken as 
p q

n
. Thus z = 

p P

p q

n

-
.

 2.  95 per cent confi dence limits for P are then given by 
-P p

p q

n

 £ 1.96, i.e. they are 

Ê ˆ
Á ˜
Ë ¯

p q p q
p – 1.96 , p +1.96

n n
.

Test 2 Test of signifi cance of the difference between two sample proportions.

Let p1 and p2 be the proportions of successes in two large samples of size n1 

and n2 respectively drawn from the same popu lation or from two population with 

the same proportion P.
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Then, p1 follows N 
1

,
PQ

P
n

Ê ˆ
Á ˜
Ë ¯

 and p2 follows N 
2

,
PQ

P
n

Ê ˆ
Á ˜
Ë ¯

.

Therefore, p1 – p2, which is a linear combination of two normal variables, also 

follows a normal distribution.

Now  E (p1 – p2) = E (p1) – E (p2) = P – P = 0

 V (p1 – p2) = V (p1) + V (p2) (∵ the two samples are independent)

  = PQ 
1 2

1 1

n n

Ê ˆ
+Á ˜

Ë ¯

\ (p1 – p2) follows N 
1 2

1 1
0, P Q

n n

Ï ¸Ê ˆÔ Ô+Ì ˝Á ˜
Ë ¯Ô ÔÓ ˛

\ the test statistic z = 
1 2

1 2

1 1

p p

P Q
n n

-

Ê ˆ
+Á ˜

Ë ¯

.

If P is not known, an unbiased estimate of P based on both sam ples, given by

 P̂  = 
1 1 2 2

1 2

n p n p

n n

+

+
, is used in the place of P.

As before, if |z| £ za, the difference between the two sample proportions p1 and 

p2 is not signifi cant at a per cent L.O.S.

Note  A sample statistic q is said to be an unbiased estimate of  the parameter q0, if  

E(q) = q0. In the present case, 

 
1 1 2 2

1 2

n p n p
E

n n

Ï ¸+Ô Ô
Ì ˝+Ô ÔÓ ˛

 = 
+1 2

1

n n
 {n1 E( p1) + n2 E( p2)}

  = 
1 2

1

n n+
 (n1P + n2P) = P.

\ an unbiased estimate of P is 
1 1 2 2

1 2

n p n p

n n

Ê ˆ+
Á ˜+Ë ¯

.

Test 3 Test of signifi cance of the difference between sample mean and 

population mean.

Let X1, X2, ..., Xn be the sample observations in a sample of size n, drawn from 

a population that is N (m, s).

Then each Xi follows N (m, s).
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It is known that if Xi (i = 1, 2, ..., n) are independent normal variates with 

mean mi and variance si
2, then S ci xi is a normal variate with mean m = S ci mi 

and variance s2 = S ci
2 si

2.

Now, putting ci = 
1

n
, mi = m and si = s, we get

 S ci xi = 
1

n
 Sxi = X , Sci mi = 

1

n
m + 

1

n
m +....+ 

1

n
m  (n terms) = m

and S ci
2 si

2
 = 

2 2 2

2 2 2

1 1 1
....

n n n
s s s+ + +  (n terms)

  = 
2

n

s
.

Thus, if Xi are n independent normal variates with the same mean m and same 

variance s 2, then their mean X  follows a N ,
n

s
m

Ê ˆ
Á ˜Ë ¯

. Even if the population, 

from which the sample is drawn, is non-normal, it is known (from central limit 

theorem) that the above result holds good, provided n is large.

\ the test statistic z = 
/

X

n

m

s

-
.

As usual, if |z| £ za, the difference between the sample mean X  and the 

population mean m is not signifi cant at a % L.O.S.

Note  1. If  s is not known, the sample S.D. ‘s’ can be used in its place, as s is nearly 

   equal to s when n is large.

 2.  95% confi dence limits for m are given by 
m

s

- X

/ n
 £ 1.96, i.e. 

X 1.96 , X 1.96
n n

s sÊ ˆ
- +Á ˜

Ë ¯
, if  s is known. If  s is not known, then the 95% 

confi dence interval is 
1.96 s 1.96 s

X , X
n n

Ê ˆ
- +Á ˜

Ë ¯
.

Test 4 Test of signifi cance of the difference between the means of two samples.

Let X 1 and X 2 be the means of two large samples of sizes n1 and n2 drawn from 

two populations (normal or non-normal) with the same mean m and variances s1
2 

and s2
2 respectively.

Then X 1 follows a N 
1

1

,
n

s
m

Ê ˆ
Á ˜
Á ˜Ë ¯

 and X 2 follows a N 
2

1

,
n

s
m

Ê ˆ
Á ˜
Á ˜Ë ¯

 either exactly 

or approximately.

\ X 1 – X 2 also follows a normal distribution.
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 E ( X 1 – X 2) = E ( X 1) – E ( X 2) = m – m = 0.

 V ( X 1 – X 2) = V ( X 1) + V ( X 2) 

(∵ X 1 and X 2 are independent, as the samples are independent)

  = 

2 2
1 2

1 2n n

s s
+

Thus, ( X 1 – X 2) follows a N 

2 2
1 2

1 2

0,
n n

s sÏ ¸Ô Ô+Ì ˝
Ô ÔÓ ˛

\ the test statistic z = 
1 2

2 2
1 2

1 2

X X

n n

s s

-

+

 (1)

If |z| £ za, the difference between ( X 1 – X 2) and 0 or the difference between 

X 1 and X 2 is not signifi cant at a per cent  L.O.S.

Note  If  the samples are drawn from the same population, i.e., if  s1 = s2 = s then

  z = 
1 2

1 2

X X

1 1

n n
s

-

+
 (2)

 2.  If s1 and s2 are not known and s1 π s2, s1 and s2 can be approximated by the sample 

S.D.’s s1 and s2. Hence, in such a situation,

   z = 
1 2

2 2
1 2

1 2

X X

s s

n n

-

+

 (3) [from (1)]

 3.  If s1 and s2 are equal and not known, then s1 = s2 = s is approximated by 

s2 = 

2 2
1 1 2 2

1 2

n s n s

n n

+

+
. Hence, in such a situation,

   z = 
1 2

2 2
1 1 2 2

1 2 1 2

X X

n s n s 1 1

n n n n

-

Ê ˆ Ê ˆ+
+Á ˜ Á ˜+ Ë ¯Ë ¯

, from (2)

  i.e.  z = 
1 2

2 2
1 2

2 1

X X

s s

n n

-

+

 (4)

 4. The difference in the denominators of the values of z given in (3) and (4) may be noted.
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Test 5 Test of signifi cance of the difference between sample S.D. and 

population S.D.

Let ‘s’ be the S.D. of a large sample of size n drawn from a normal population 

with S.D. s. Then it is known that s follows a N ,
2 n

s
s

Ê ˆ
Á ˜
Ë ¯

 approximately.

\ the test statistic z = 
/ 2

s

n

s

s

-

As before, the signifi cance of the difference between s and s is tested.

Test 6 Test of signifi cance of the difference between S.D.’s of two large 

samples.

Let s1 and s2 be the S.D.’s of two large samples of sizes n1 and n2 drawn from 

a normal population with S.D. s.

s1 follows a N 
1

,
2 n

s
s

Ê ˆ
Á ˜
Á ˜Ë ¯

 and s2 follows a N 
2

,
2 n

s
s

Ê ˆ
Á ˜
Á ˜Ë ¯

.

\ (s1 – s2) follows a N 
1 2

1 1
0,

2 2n n
s

Ï ¸Ô Ô+Ì ˝
Ô ÔÓ ˛

.

\ the test statistic z = 
1 2

1 2

1 1

2 2

s s

n n
s

-

+
.

As usual, the signifi cance of the difference between s1 and s2 is tested.

Note

 If  s is not known, it is approximated by 

2 2
1 1 2 2

1 2

n s n s

n n

Ê ˆ+
Á ˜+Ë ¯

, when n1 and n2 

are large. In this situation,

  z = 
1 2

2 2
1 1 2 2

1 2 1 2

s s

n s n s 1 1

n n 2 n 2 n

-

Ê ˆ Ê ˆ+
+Á ˜ Á ˜+ Ë ¯Ë ¯

 i.e.  z = 
1 2

2 2
1 2

2 1

s s

s s

2 n 2 n

-

+
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Worked Example 10(A)

Example 1

Experience has shown that 20 per cent of a manufactured product is of top quality. 

In one day’s production of 400 articles, only 50 are of top quality. Show that 

either the production of the day chosen was not a representative sample or the 

hypothesis of 20 per cent was wrong. Based on the particular day’s production, 

fi nd also the 95 per cent confi dence limits for the percentage of top quality pro-

duct.

 H0 : P = 
1

5
, i.e., 20 per cent of the products manufactured is of top quality.

 H1 : P π 
1

5
.

 p = proportion of top quality products in the sample 

  = 
50 1

400 8
=

From the alternative hypothesis H1, we note that two-tailed test is to be used.

Let us assume that LOS (level of signifi cance)

  = 5%. \ za = 1.96

 z = 

1 1

8 5

1 4 1

5 5 400

p P

PQ

n

--
=

¥ ¥
, since the size of the sample = 400.

  = – 
3

40
 ¥ 50 = – 3.75

Now, |z| = 3.75 > 1.96.

The difference between p and P is signifi cant at 5 per cent level.

Also, H0 is rejected. Hence H0 is wrong or the production of the particular day 

chosen is not a representative sample.

95 per cent confi dence limits for P are given by

 
p P

pq

n

-
 £ 1.96

Note
 We have taken 

p q

n
 in the denominator, because P is assumed to be unknown, 

for which we are trying to fi nd the confi dence limits and P is nearly equal to p.
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i.e.  p – 
pq

n
 ¥ 1.96 £ P £  p + 

pq

n
 ¥ 1.96

i.e.  0.125 – 
1 7 1

8 8 400
¥ ¥  ¥ 1.96 £ P £ 0.125 + 

1 7 1

8 8 400
¥ ¥  ¥ 1.96

i.e.  0.093 £ P £ 0.157

\ 95 per cent confi dence limits for the percentage of top quality product are 9.3 

and 15.7.

Example 2

The fatality rate of typhoid patients is believed to be 17.26 per cent. In a certain 

year 640 patients suffering from typhoid were treat ed in a metropolitan hospital 

and only 63 patients died. Can you consider the hospital effi cient? 

H0 : p = P, i.e. the hospital is not effi cient. H1 : p < P.

One-tailed (left-tailed) test is to be used

Let us assume that LOS = 1%. \ za = – 2.33

 z = 
p P

PQ

n

-
, where p = 

63

640
 = 0.0984 and 

 P = 0.1726 and hence Q = 0.8274.

 z = 
0.0984 0.1726

0.1726 0.8274

640

-

¥
 = – 4.96

\ |z| > |za|

\ the difference between p and P is signifi cant, i.e., H0 is rejected and H1 is 

accepted.

i.e. the hospital is effi cient in bringing down the fatality rate of typhoid patients.

Example 3

A salesman in a departmental store claims that at most 60 percent of the shoppers 

entering the store leaves without making a purchase. A random sample of 50 

shoppers showed that 35 of them left without making a purchase. Are these sample 

results consistent with the claim of the salesman? Use a level of signifi cance of 

0.05.

Let P and p denote the population and sample proportions of shoppers not 

making a purchase.

 H0 : p = P

 H1 : p > P, since p = 0.7 and P = 0.6

One-tailed (right-tailed) test is to be used.
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 LOS  = 5% \ za = 1.645

 z = 
0.7 0.6

0.6 0.4

50

p P

PQ

n

- -
=

¥
 = 1.443

\ |z| < za

\ the difference between p and P is not signifi cant at 5 percent level.

i.e. H0 is accepted and H1 is rejected.

i.e. the sample results are consistent with the claim of the salesman.

Example 4

Show that for a random sample of size 100, drawn with replacement, the standard 

error of sample proportion cannot exceed 0.05.

The items of the sample are drawn one after another with replace ment.

\ the proportion (probability) of success in the population, i.e. P remains a 

constant.

We know that the sample proportion p follows a N ,
PQ

P
n

Ê ˆ
Á ˜
Ë ¯

i.e. standard error of p = 
1

10

PQ
PQ

n
=  (∵ n = 100) (1)

Now  - 2( )P Q  ≥ 0

i.e. P + Q – 2 PQ  ≥ 0

i.e. 1 – 2 PQ  ≥ 0 or 
1

2
PQ £  (2)

Using (2) in (1), we get,

S.E. of p £ 
1

20
. i.e. S.E. of p cannot exceed 0.05.

Example 5

A cubical die is thrown 9000 times and a throw of three or four is observed 3240 

times. Show that the die cannot be regarded as an unbiased one and fi nd the 

extreme limits between which the proba bility of a throw of three or four  lies.

H0 : the die is unbiased, i.e. P = 
1

3
 (= the probability of getting 3 or 4)

H1 : P π 
1

3
Two-tailed test is to be used.

Let LOS = 5% \ za = 1.96
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Though we may test the signifi cance of the difference between the sample and 

population proportions, we shall test the signifi cance of the difference between 

the number X of successes in the sample and that in the population.

When n is large, X follows a N ( , )n P n P Q  [Refer to Test 1].

\ z = 

1
3240 9000

3
5.37

1 2
9000

3 3

X n P

n PQ

Ê ˆ- ¥Á ˜Ë ¯-
= =

¥ ¥

\ |z| > za

\ The difference between X and nP is signifi cant. i.e., H0 is rejected.

i.e., the die cannot be regarded as unbiased.

If X follows a N (m, s), then the reader can easily verify that P (m – 3s  £ X 

£ m + 3s) = .9974.

The limits m ± 3s are considered as the extreme (confi dence) limits within 

which X lies.

Accordingly, the extreme limits for P are given by

 
P p

pq

n

-
 £ 3 [Refer to Example (1)]

i.e., p – 3
pq

n
 £ P £ p + 3

pq

n

i.e., 0.36 – 
0.36 0.64

3
9000

¥
 £ P £ 0.36 + 

0.36 0.64
3

9000

¥

i.e., 0.345 £ P £ 0.375.

Example 6

In a large city A, 20 per cent of a random sample of 900 school boys had a slight 

physical defect. In another large city B, 18.5 percent of a random sample of 

1600 school boys had the same defect. Is the difference between the proportions 

signifi cant?

 p1 = 0.2, p2 = 0.185, n1 = 900 and n2 = 1600

 H0 : p1 = p2

 H1 : p1 π p2

Two-tailed test is to be used.

Let L.O.S. be 5% \ za = 1.96

 z = 
1 2

1 2

1 1

p p

PQ
n n

-

Ê ˆ
+Á ˜

Ë ¯

 (1)
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Since P, the population proportion, is not given, we estimate it as P̂  = 

1 1 2 2

1 2

n p n p

n n

+

+
 = 

180 296

900 1600

+
+

 = 0.1904.

Using in (1), we have

 z = 
0.2 0.185

0.92
1 1

0.1904 0.8096
900 1600

-
=

Ê ˆ¥ ¥ +Á ˜Ë ¯

|z| £ za. Therefore, the difference between p1 and p2 is not signifi cant at 5 

per cent level.

Example 7

Before an increase in excise duty on tea, 800 people out of a sample of 1000 

were consumers of tea. After the increase in duty, 800 people were consumers of 

tea in a sample of 1200 persons. Find whether there is signifi cant decrease in the 

consumption of tea after the increase in duty.

Let p1 and p2 be the proportions of the consumers before and after the increase 

in duty respectively. 

Then p1 = =
800 4

1000 5
 and p2 = 

800 2

1200 3
= .

 H0 : p1 = p2

 H1 : p1 > p2

One-tailed (right-tailed) test is to be used. Let LOS be 1%. \ za = 2.33.

 z = 
- +

+Ê ˆ
+Á ˜

Ë ¯

 
1 2 1 1 2 2

1 2

1 2

, where

1 1

p p n p n p
p

n n
PQ

n n
       = 

800 800
0.7273

2200

+
=

  = 
0.8 0.67

1 1
0.7273 0.2727

1000 1200

-

Ê ˆ¥ ¥ +Á ˜Ë ¯

  = 
0.13 1000 1200

0.7273 0.2727 2200

¥ ¥

¥ ¥
 = 6.82

Now, |z| > za.

\ the difference between p1 and p2 is signifi cant at 1% level.

i.e., H0 is rejected and H1 is accepted.

i.e., there is signifi cant decrease in the consumption of tea after the increase 

in duty.
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Example 8

15.5 per cent of a random sample of 1600 undergraduates were smokers, 

whereas 20% of a random sample of 900 postgraduates were smokers in a 

state. Can we conclude that less number of undergraduates are smokers than the 

postgraduates?

 p1 = 0.155 and p2 = 0.2; n1 = 1600 and n2 = 900

 H0 : p1 = p2

 H1 : p1 < p2

One-tailed (left-tailed) test is to be used. Let LOS be 5%. \ za = – 1.645.

 z = 
1 2 1 1 2 2

1 2

1 2

, where 

1 1

p p n p n p
P

n n
PQ

n n

- +

+Ê ˆ
+Á ˜

Ë ¯

  = 0.1712

  = 
0.155 0.2 0.045 1200

0.1712 0.8288 25001 1
0.1712 0.8288

1600 900

- - ¥
=

¥ ¥Ê ˆ¥ ¥ +Á ˜Ë ¯
  = – 2.87

Now, |z| > |za|

\ the difference between p1 and p2 is signifi cant. 

i.e. H0 is rejected and H1 is accepted.

i.e. The habit of smoking is less among the undergraduates than among the 

postgraduates.

Example 9

A sample of 100 students is taken from a large population. The mean height of 

the students in this sample is 160 cm. Can it be reasonably regarded that, in the 

population, the mean height is 165 cm, and the S.D. is 10 cm?

 x  = 160, n = 100, m = 165 and s = 10.

 H0 : x  = m (i.e. the difference between x  and m is not signifi  cant)

 H1 : x  π  m.

Two-tailed test is to be used.

 Let LOS be 1% \ za = 2.58

 z = 
160 165

5
/ 10 / 100

x

n

m

s

- -
= = -

Now, |z| > za.

\ the difference between x  and m is signifi cant at 1% level.

i.e. H0 is rejected.

i.e. it is not statistically correct to assume that m = 165.
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Example 10

The mean breaking strength of the cables supplied by a manufacturer is 1800 with 

a S.D. of 100. By a new technique in the manufacturing process, it is claimed 

that the breaking strength of the cable has increased. In order to test this claim, 

a sample of 50 cables is tested and it is found that the mean breaking strength is 

1850. Can we support the claim at 1 per cent level of signifi cance?

 x  = 1850, n = 50, m = 1800 and s  = 100

 H0 : x  = m

 H1 : x  > m

One-tailed (right-tailed) test is to be used.

 LOS = 1% \ za = 2.33

 
z = 

1850 1800
3.54

/ 100 / 50

x

n

m

s

- -
= =

Now, |z| > za.

\ the difference between x  and m is signifi cant at 1 per cent level.

i.e. H0 is rejected and H1 is accepted.

i.e. based on the sample data, we may support the claim of increase in 

breaking strength.

Example 11

The mean value of a random sample of 60 items was found to be 145 with a S.D. 

of 40. Find the 95% confi dence limits for the popula tion mean. What size of the 

sample is required to estimate the population mean within fi ve of its actual value 

with 95% or more confi dence, using the sample mean? 

95% confi dence limits for m are given by

 
/

x

n

m

s

-
 £ 1.96

Since the population S.D. s too is not given, we can approximate it by the 

sample S.D.s. therefore 95% confi dence limits for m are given by 
/

x

s n

m -
 £ 1.96

i.e., x  – 1.96 
s

n
 £ m  £ x  + 1.96 

s

n
.

i.e., 145 – 
1.96 40

60

¥
 £ m  £ 145 + 

1.96 40

60

¥

i.e., 134.9 £ m  £ 155.1
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We have to fi nd the value of n such that

 P { x  – 5 £ m £ x  + 5} ≥ ◊ 95

i.e., P {– 5  £ m – x  £ 5} ≥ ◊ 95

i.e., P {|m – x | £ 5} ≥ ◊ 95 or

 P {| x  – m| £ 5} ≥ ◊ 95

\ P 
5

/ /

x

n n

m

s s

Ï ¸-Ô Ô£Ì ˝
Ô ÔÓ ˛

 ≥ ◊ 95

i.e., P
s

Ï ¸Ô Ô£Ì ˝
Ô ÔÓ ˛

5 n
z  ≥ ◊ 95, where z is the standard normal variate (1)

We know that P {|z| £ 1.96} = ◊ 95

\ the least value of n = nL that will satisfy (1) is given by 
5 Ln

s
 = 1.96

i.e., Ln  = 
1.96

5

s
 (∵ s   s)

i.e., nL = 

2
1.96 40

5

¥Ê ˆ
Á ˜Ë ¯

i.e., nL = 245.86

\ the least size of the sample = 246.

Example 12

A normal population has a mean of 0.1 and S.D. of 2.1. Find the probability that 

the mean of a sample of size 900 drawn from this population will be negative.

Since x  follows a N , ,
/

x
z

n n

s m
m

s

Ê ˆ -
=Á ˜

Ë ¯
 is the standard normal variate.

Now, P ( x  < 0) = P { x  – 0.1 < – 0.1}

  = P 
0.1 0.1

(2.1)/ 900 (2.1)/ 900

xÏ ¸- -Ô Ô<Ì ˝
Ô ÔÓ ˛

  = P {z < – 1.43}

  = P {z > 1.43},

by symmetry of the standard normal distribution.

  = 0.5 – P {0 < z < 1.43}

  = 0.5 – 0.4236 (from the normal tables)

  = 0.0764.
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Example 13

In a random sample of size 500, the mean is found to be 20. In another independent 

sample of size 400, the mean is 15. Could the samples have been drawn from the 

same population with S.D. 4?

 x 1 = 20, n1 = 500; x 2 = 15, n2 = 400; s = 4

 H0 : x 1 = x 2, i.e. the samples have been drawn from the same popu lation.

 H1 : x 1 π x 2.

Two-tailed test is to be used.

 Let LOS be 1% \ za = 2.58

 z = 
1 2

1 2

1 1

x x

n n
s

-

+
 (Refer to Note 1 under Test 4)

  = 
20 15

18.6
1 1

4
500 400

-
=

+

Now, |z| > za

\ the difference between x 1 and x 2 is signifi cant at 1% level.

i.e. H0 is rejected

i.e. the samples could not have been drawn from the same popula tion.

Example 14

A simple sample of heights of 6400 Englishmen has a mean of 170 cm and a 

S.D. of 6.4 cm, while a simple sample of heights of 1600 Americans has a mean 

of 172 cm and a S.D. of 6.3 cm. Do the data indicate that Americans are, on the 

average, taller than Englishmen?

 n1 = 6400, x 1 = 170 and s1 = 6.4

 n2 = 1600, x 2 = 172 and s2 = 6.3

 H0 : m1 = m2 or x 1 = x 2, 

i.e., the samples have been drawn from two different populations with the same 

mean.

 H1 : x 1 < x 2 or m1 < m2.

Left-tailed test is to be used.

Let LOS be 1%. \ za = – 2.33

 z = 
1 2 1 2

2 2 2 2
1 2 1 2

1 2 1 2

x x x x

s s

n n n n

s s

- -
=

+ +

[∵ s1   s1 and s2   s2. Refer to Note 2 under Test 4]
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  = 
2 2

170 172
11.32

(6.4) (6.3)

6400 1600

-
= -

+

Now, |z| > |za|

\ the difference between x 1 and x 2 (or m1 and m2) is signifi  cant at 1% level.

i.e. H0 is rejected and H1 is accepted.

i.e. Americans are, on the average, taller than Englishmen.

Example 15

Test the signifi cance of the difference between the means of the samples, drawn 

from two normal populations with the same S.D. from the following data:

Table 10.2

Size Mean S.D.

Sample 1 100 61 4

Sample 2 200 63 6

 H0 : x 1 = x 2 or m1 = m2

 H1 : x 1 π x 2 or m1 π m2

Two-tailed test is to be used.

 Let LOS be 5% \ za = 1.96

 z = 
1 2

2 2
1 2

2 1

x x

s s

n n

-

+

 

[Refer to Note 3 under Test 4; The populations have the same S.D.]

  = 
2 2

61 63

4 6

200 100

-

+

 = – 3.02

Now, |z| > za

\ the difference between x 1 and x 2 (or m1 and m2) is signifi  cant at 5% level.

i.e. H0 is rejected and H1 is accepted.

i.e. The two normal populations, from which the samples are drawn, may not 

have the same mean, though they may have the same S.D.

Example 16

The average marks scored by 32 boys is 72 with a S.D. of 8, while that for 36 

girls is 70 with a S.D. of 6. Test at 1% level of signifi cance whether the boys 

perform better than girls.
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 H0 : x 1 = x 2 (or  m1 = m2)

 H1 : x 1 > x 2

Right-tailed test is to be used.

 LOS = 1% \ za = 2.33

 z = 
1 2

2 2
1 2

1 2

x x

s s

n n

-

+

 

(The two populations are assumed to have S.D.’s s1   s1 and s2   s2)

  = 
2 2

72 70

8 6

32 36

-

+

 = 1.15

 |z| < za.

\ the difference between x 1 and x 2 (m1 and m2) is not signifi  cant at 1% 

level.

i.e., H0 is accepted and H1 is rejected.

i.e., statistically, we cannot conclude that boys perform better than girls.

Example 17

The heights of men in a city are normally distributed with a mean of 171 cm 

and S.D. of 7 cm, while the corresponding values for women in the same city are 

165 cm and 6 cm respectively. If a man and a woman are chosen at random from 

this city, fi nd the probability that the woman is taller than the man.

Let x 1 and x 2 denote the mean heights of men and women respec tively.

Then x 1 follows a N (171, 7) and x 2 follows a N (165, 6)

\ x 1 – x 2 also a follows a normal distribution.

 E ( x 1– x 2) = E (x1) – E ( x 2) = 171 – 165 = 6

 V ( x 1 – x 2) = V ( x 1) + V ( x 2) = 49 + 36 = 85 [Refer to Test 4]

\ S.D. of ( x 1 – x 2) = 85  = 9.22.

\ x 1 – x 2 follows a N (6, 9.22)

Now, P ( x 2 > x 1) = P ( x 1 – x 2 < 0)

  = P 
1 2( ) 6 6

9.22 9.22

x xÏ ¸- - -
<Ì ˝

Ó ˛
  = P {z < – 0.65}, where z is the standard normal variate.

  = P {z > 0.65}, by symmetry.

  = 0.5 – P (0 < z < 0.65)

  = 0.5 – 0.2422 = 0.2578.
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Example 18

Two populations have the same mean, but the S.D. of one is twice that of the other. 

Show that in samples, each of size 500, drawn under simple random conditions, 

the difference of the means will, in all probability, not exceed 0.3 s, where s is 

the smaller S.D. 

Let x 1 and x 1 be the means of the samples of size 500 each. Let their S.D.’s 

be s and 2s respectively.

 x 1 follows a N ,
500

s
m

Ê ˆ
Á ˜Ë ¯

 and

 x 2 follows a N 
2

,
500

s
m

Ê ˆ
Á ˜Ë ¯

\ x 1 – x 2 also follows a normal distribution

 E ( x 1 – x 2) = E ( x 1) – E ( x 2) = m – m = 0

 V ( x 1 – x 2) = V ( x 1) + V ( x 2)

  = 
2 2 24

500 500 100

s s s
+ =

\ S.D. of ( x 1 – x 2) = 
10

s

Thus, ( x 1 – x 2) follows a N 0,
10

sÊ ˆ
Á ˜Ë ¯

.

\  P {| x 1 – x 2| £ 0.3 s}

  = P 
1 2( ) 0 0.3

/ 10 / 10

x x s

s s

Ï ¸- -Ô Ô£Ì ˝
Ô ÔÓ ˛

  = P {|z| £ 3}, where z is the standard normal variate

  = 0.9974   1.

\ | x 1 – x 2| will not exceed 0.3 s  almost certainly.

Example 19

A manufacturer of electric bulbs, according to a certain process, fi nds the S.D. 

of the life of lamps to be 100 hours. He wants to change the process, if the new 

process results in a smaller variation in the life of lamps. In adopting a new 

process, a sample of 150 bulbs gave an S.D. of 95 hours. Is the manufacturer 

justifi ed in changing the process?

 s = 100, n = 150 and s = 95
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 H0 : s = s

 H1 : s < s

Left-tailed test is to be used.

 Let LOS be 5%. \ za = – 1.645

 z = 
95 100

/ 2 100 / 300

s

n

s

s

- -
=  = – 0.866

Now, |z| < |za|

\ the difference between s and s is not signifi cant at 5% level.

i.e. H0 is accepted and H1 is rejected.

i.e. The manufacturer is not justifi ed in changing the process.

Example 20

The S.D. of a random sample of 1000 is found to be 2.6 and the S.D. of another 

random sample of 500 is 2.7. Assuming the samples to be independent, fi nd 

whether the two samples could have come from populations with the same S.D.

 n1 = 1000, s1 = 2.6 ; n2 = 500, s2 = 2.7

 H0 : s1 = s2 (or s1 = s2)

 H1 : s1 π s2

Two-tailed test is to be used.

Let LOS be 5%. \ za = 1.96

 z = 
1 2

2 2
1 2

2 12 2

s s

s s

n n

-

+

, since s is not known.

  = 
2 2

2.6 2.7

(2.6) (2.7)

1000 2000

-

+

 = – 0.98

Now, |z| < za

\ the difference between s1 and s2 (and hence between s1 and s2) is not signifi cant 

at 5% level,

i.e., H0 is accepted.

i.e., the two samples could have come from populations with the same S.D.

Exercise 10(A)

Part-A (Short-answer Questions)

 1. What is the difference between population and sample?

 2. Distinguish between parameter and statistic.
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 3. What do you mean by sampling distribution?

 4. What is meant by standard error?

 5. What do you mean by estimation?

 6. What is meant by hypothesis testing?

 7. Defi ne null hypothesis and alternative hypothesis.

 8. What is meant by test of signifi cance?

 9. What do you mean by critical region and acceptance region?

 10. Defi ne level of signifi cance.

 11. Give the general form of a test statistic.

 12. Defi ne type I and type II errors.

 13. Defi ne producer’s risk and consumer’s risk.

 14. What is the relation between type I error and level of sig nifi cance?

 15. Defi ne one-tailed and two-tailed tests.

 16. Defi ne critical value of a test statistic.

 17. What is the relation between the critical value and level of signifi cance?

 18. What is the relation between the critical values for a single tailed test and 

a two-tailed test?

 19. Write down the 1% and 5% critical values for right-tailed and two-tailed 

tests.

 20. What do you mean by interval estimation and confi dence li mits?

 21. Write down the general form of 95% confi dence limits of a population 

parameter in terms of the corresponding sample statis tic.

 22. What is the standard error of the sample proportion, when the population 

proportion is (i) known, and (ii) not known?

 23. What is the standard error of the difference between two sample 

proportions when the population proportion is (i) known, and (ii) not 

known?

 24. What do you mean by unbiased estimate? Give an example.

 25. Write down the form of the 98% confi dence interval for the population 

mean in terms of (i) population S.D., and (ii) Sample S.D.

 26. What is the standard error of the difference between the means of two 

large samples drawn from different populations with (i) known S.D.’s, 

and (ii) unknown S.D.’s?

 27. What is the standard error of the difference between the means of two 

large samples drawn from the same population with (i) known S.D., and 

(ii) unknown S.D.?

 28. What is the standard error of the difference between the S.D.’s of two 

large samples drawn from the same population with (i) known S.D., and 

(ii) unknown S.D.?

Part-B

 29. Out of 200 individuals, 40 per cent show a certain trait and the number 

expected on a certain theory is 50 per cent. Find whether the number 

observed differs signifi cantly from expectation.
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 30. A coin is thrown 400 times and is found to result in ‘Head’ 245 times. 

Test whether the coin is a fair one.

 31. A manufacturer of light bulbs claims that on the average 2 per cent  of 

the bulbs manufactured by his fi rm are defective. A random sample of 

400 bulbs contained 13 defective bulbs. On the basis of the this sample, 

can you support the manufacturer’s claim at 5% level of signifi cance?

 32. 100 people were affected by cholera and out of them only 90 survived. 

Would you reject the hypothesis that the survival rate, if affected by 

cholera, is 85 per cent  in favour of the hypothesis that it is more at 5 per 

cent  level of signifi cance?

 33. A random sample of 400 mangoes was taken from a big consign ment 

and 40 were found to be bad. Prove that the percentage of bad mangoes 

in the consignment will, in all probability, lie between 5.5 and 14.5.

 34. A random sample of 64 articles produced by a machine con tained 

14 defectives. Is it reasonable to assume that only 10 per cent  of the 

articles produced by the machine are defective? If not, fi nd the 99 per 

cent  confi dence limits for the percentage of defective arti cles produced 

by the machine.

 35. Certain crosses of the pea gave 5321 yellow and 1804 green seeds. The 

expectation is 25 per cent  of green seeds based on a certain theory. Is 

this divergence signifi cant or due to sampling fl uc tuations?

 36. During a countrywide investigation, the incidence of T.B. was found to 

be 1 per cent . In a college with 400 students, 5 are reported to be affected 

whereas in another with 1200 students, 10 are found to be affected. Does 

this indicate any signifi cant difference?

 37. A random sample of 600 men chosen from a certain city contained 400 

smokers. In another sample of 900 men chosen from another city, there 

were 450 smokers. Do the data indicate that (i) the cities are signifi cantly 

different with respect to smok ing habit among men? (ii) the fi rst city 

contains more smokers than the second?

 38. A sample of 300 spare parts produced by a machine contained 48 

defectives. Another sample of 100 spare parts produced by another 

machine contained 24 defectives. Can you conclude that the fi rst machine 

is better than the second?

 39. In two large populations, there are 30 per cent and 25 per cent respectively 

of fair haired people. Is this difference likely to be hidden in samples of 

sizes 1200 and 900 respectively drawn from the two populations?

  

0 1 2 1 2

1 2

1 1 2

1 1 2 2

1 2
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H P P P P

p p
H P P z
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 40. A machine produces 16 defective bolts in a batch of 500 bolts. After the 

machine is overhauled, it produces three defective bolts in a batch of 100 

bolts. Has the machine improved?

 41. There were 956 births in a year in town A, of which 52.5 per cent were 

males, while in towns A and B combined together this propor tion in a 

total of 1406 births was 0.496. Is there any signifi  cant difference in the 

proportion of male births in the two towns?

 42. A cigarette-manufacturing company claims that its brand A cigarettes 

outsells its brand B by 8 per cent. It is found that 42 out of a sample 

of 200 smokers prefer brand A and 18 out of another sample of 100 

smokers  prefer brand B. Test at 5 per cent L.O.S. whether the 8 per cent 

difference is a valid claim.

  0 1 2 1 1 2: .08; : .08 andH P P H P P

È
Í
Í - = - π
Í
Í
Î

Hint:
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n n
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˘
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˙+Ê ˆ ˙+Á ˜ ˚Ë ¯

 43. A sample of 900 items is found to have a mean of 3.47 cm. Can it be 

reasonably regarded as a simple sample from a population with mean 

3.23 cm and S.D. 2.31 cm?

 44. A sample of 400 observations has mean 95 and S.D. 12. Could it be 

a random sample from a population with mean 98? What should be 

the maximum value of the population mean so that the sample can be 

regarded as one drawn from it almost certainly?

 45. A manufacturer claims that, the mean breaking strength of safety belts 

for air passengers produced in his factory is 1275 kgs. A sample of 100 

belts was tested and the mean breaking strength and S.D. were found to 

be 1258 kg and 90 kg respec tively. Test the manufacturer’s claim at 5 

per cent level of signifi  cance.

 46. An I.Q. test was given to a large group of boys in the age group of 18 

to 20 years, who scored an average of 62.5 marks. The same test was 

given to a fresh group of 100 boys of the same age group. They scored 

an average of 64.5 marks with a S.D. 12.5 marks. Can we conclude that 

the fresh group of boys have better I.Q.?

 47. The guaranteed average life of a certain brand of electric bulb is 1000 

hours with a S.D. of 125 hours. It is decided to sample the output so as 

to ensure that 90 per cent of the bulbs do not fall short of the guaranteed 

average by more than 2.5 per cent. What should be the minimum sample 

size?
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 48. A random sample of 100 students gave a mean weight of 58 kg with a 

S.D. of 4 kg. Find the 95 per cent  and 99 per cent confi dence limits of 

the mean of the population.

 49. The means of two simple samples of 1000 and 2000 items are 170 cm and 

169 cm. Can the samples be regarded as drawn from the same population 

with S.D. 10, at 5 per cent level of signifi cance?

 50. The mean and S.D. of sample sizes of 400 are 250 and 40 respectively. 

Those of another sample of size 400 are 220 and 55. Test at 1% level of 

signifi cance whether the means of the two populations from which the 

samples have been drawn are equal.

 51. Intelligence tests were given to two groups of boys and girls of the same 

age group chosen from the same college and the fol lowing results were 

got:

Table 10.3 

Size Mean S.D.

Boys 100 73 10

Girls 60 75 8

  Examine if the difference between the means is signifi cant.

 52. A sample of 100 bulbs of brand A gave a mean lifetime of 1200 hours 

with a S.D. of 70 hours, while another sample of 120 bulbs of brand B 

gave a mean lifetime of 1150 hours with a S.D. of 85 hours. Can we 

conclude that brand A bulbs are superior to brand B bulbs?

 53. In a college, 60 junior students are found to have a mean height of 171.5 

cm and 50 senior students are found to have a mean height of 173.8 cm. 

Can we conclude, based on this data, that the juniors are shorter than 

seniors at (i) 5% level of signifi cance, and (ii) 1% level of signifi cance, 

assuming that the S.D. of students of that college is 6.2 cm?

 54. Two samples drawn from two different populations gave the following 

results:
Table 10.4

Size Mean S.D.

 Sample I 400 124 14

 Sample II 250 120 12

  Find the 95% confi dence limits for the difference of the popula tion 

means.

2 2 2 2
1 2 1 2

1 2 1 2 1 2

1 2 1 2
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 55. Two samples drawn from two different populations gave the following 

results:

Table 10.5

Size Mean S.D.

Sample I 100 582 24

Sample II 100 540 28

  Test the hypothesis, at 5% level of signifi cance, that the di fference of the 

means of the populations is 35.
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1 2
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 56. Two populations have their means equal, but the S.D. of one is twice the 

other. Show that, in the samples of size 2000 drawn one from each, the 

difference of the means will in all probability, not exceed 0.15 s, where 

s is the smaller S.D.

 57. In a certain random sample of 72 items, the S.D. is found to be 8. Is it 

reasonable to suppose that it has been drawn from a population with 

S.D.7?

 58. In a random sample of 200 items, drawn from a population with S.D. 

0.8, the sample S.D. is 0.7. Can we conclude that the sample S.D. is less 

than the population S.D. at 1% level of signifi  cance?

 59. The S.D. of a random sample of 900 members is 4.6 and that of another 

independent sample of 1600 members is 4.8. Examine if the two samples 

could have been drawn from a population with S.D. 4.0?

 60. Examine whether the two samples for which the data are given in Table 

10.6 could have been drawn from populations with the same S.D.:

Table 10.6

Size S.D.

Sample I 100 5

Sample II 200 7
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Tests of Signifi cance for Small Samples

The tests of signifi cance discussed in the previous section hold good only for 

large samples, i.e., only when the size of the sample n ≥ 30. When the sample 

is small, i.e., n < 30, the sampling distributions of many statistics are not 

normal, even though the parent populations may be normal. Moreover, the 

assumption of near equality of population parameters and the corresponding 

sample statistics will not be justifi ed for small samples. Consequently, we 

have to develop entirely different tests of signifi cance that are applicable to 

small samples.

Student’s t-Distribution

A random variable T is said to follow student’s t-distribution or simply 

t-distribution, if its probability density function is given by

 f (t) = 

( 1)/2
21

1
1

,
2 2

t
n

n n
n b

- +
Ê ˆ

◊ +Á ˜Ê ˆ Ë ¯
Á ˜Ë ¯

, – • < t < •.

n is called the number of degrees of freedom of the t-distribution.

Note  t-distribution was defi ned by the mathematician W.S.D. Gosset whose pen name is 

Student.

Properties of t-Distribution

 1. The probability curve of the t-distribution is similar to the standard normal 

curve and is symmetric about t = 0, bell-shaped and asymptotic to the 

t-axis as shown in Fig. 10.2.

 2. For suffi ciently large value of n, the t-distribution tends to the standard 

normal distribution.

 3. The mean of the t-distribution is zero.

 4. The variance of the t-distribution is 
2

n

n -
, if n > 2 and is greater than 1, 

but it tends to 1 as n Æ •.

Uses of t-Distribution

The t-distribution is used to test the signifi cance of the di fference between

 1. The mean of a small sample and the mean of the population.

 2. The means of two small samples and

 3. The coeffi cient of correlation in the small sample and that in the 

population, assumed zero.
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Fig. 10.2

Note on Degree of Freedom

The number of degrees of freedom, usually denoted by the Greek alphabet n, 

can be interpreted as the number of useful bits of information generated by a 

sample of given size for estimating a population parameter. Suppose we wish 

to fi nd the mean of a sample with observations x1, x2, ..., xn. We have to use all 

the ‘n’ values taken by the variable with full freedom (i.e., without putting any 

constraint or restriction on them) for computing x . Hence, x  is said to have n 

degrees of freedom.

Suppose we wish to further compute the S.D. ‘s’ of this sample using the 

formula s2 = 21
( )ix x

n
-Â . Though we use the n values x1 – x , x2 – x , ....,

xn – x  for this computation, they do not have ‘n’ degrees of freedom, as they 

depend on x  which has been already calculated and fi xed. Since there is one 

restriction regarding the value of x , ‘s’ is said to have (n – 1) degrees of 

freedom.

If we compute another statistic of the sample based on x  and s, then that 

statistic will be assumed to have (n – 2) degrees of freedom, and so on.

Thus, the number of independent variates used to compute the test statistic 

is known as the number of degrees of freedom of that statistic. In general, the 

number of degrees of freedom is given by n = n – k, where n is the number of 

observations in the sample and k is the number of constraints imposed on them 

or k is the number of values that have been found out and specifi ed by prior 

calculations.

Critical Values of t and the t-Table

The critical value of t at level of signifi cance a and degrees of freedom n is given 

by P {|t| > tn (a)} = a for two-tailed test, as in the case of normal distribution and 

large samples and by P {t > tn (a)} = a for the right-tailed test also, as in the case 
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of normal distri bution. The critical value of t for a single (right or left) tailed test 

at LOS ‘a’ corresponding to n degrees of freedom is the same as that for a two-

tailed test at LOS ‘2a’ corresponding to the same degrees of freedom.

Critical values tn (a) of the t-distribution for two-tailed tests corresponding 

to a few important levels of signifi cance and a range of values of n have been 

published by Prof. R.A. Fisher in the form of a table, called the t-table, which is 

given in the Appendix.

Test 1 Test of signifi cance of the difference between sample mean and 

population mean.

If x  is the mean of a sample of size n, drawn from a population N (m, s), we 

have seen that z = 
/

x

n

m

s

-
 follows a N (0, 1).

If s, the S.D. of the population is not known, we have to esti mate it using the 

sample S.D.‘s’. From the theory of estimation, it is known that 
1

n
s

n -
 is an 

unbiased estimate of s with (n – 1) degrees of freedom. When n is large, 
1

n

n -
   1

and, hence, s was taken as a satisfactory estimate of s and hence z = 
/

x

s n

m-
 was 

assumed to follow a N (0, 1). But when n is small, we cannot use s as an estimate 

of s, since

 
/

x

n

m

s

-
 = 

1 / 1

1

x x

n s n
s

n n

m m- -
=

-
◊

-

Now, 
/ 1

x

s n

m-
-

 does not follow a normal distribution, but follows a 

t-distribution with number of degrees of freedom n = n – 1. Hence, 
/ 1

x

s n

m-
-

 is 

denoted by t and is taken as the test-statistic.

Sometimes t = 
/ 1

x

s n

m-
-

 is also taken as t = 
/

x

S n

m-
,

where S2 = 2

1

1
( )

1

n

r

r

x x
n =

-
- Â  and is called students ‘t’.

We shall use only t = 
/ 1

x

s n

m-
-

, where s is the sample S.D.
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We get the value of tn(a) for the L.O.S. a and n = n – 1 from the t-table.

If the calculated value of t satisfi es |t| < tn(a), the null hypothesis H0 is 

accepted at L.O.S.‘a’ otherwise, H0 is rejected at L.O.S.‘a’.

Note  95% confi dence interval of  m is given by 

0.05

x
t

s / n 1

m-
£

-
, since  P 0.05

x
t

s / n 1

mÏ ¸-Ô Ô£Ì ˝
-Ô ÔÓ ˛

 = 0.95

i.e. by x – t0.05 
s

n 1-
 £ m  £  x + t0.05 × 

-
s

n 1
, where t0.05 is the 5 per cent 

critical value of t for n (= n – 1) degrees of freedom for a two-tailed test.

Test 2 Test of signifi cance of the difference between means of two small 

samples drawn from the same normal population.

In Test (4) for large samples, the test statistic used to test the signifi cance of the 

difference between the means of two samples from the same normal population 

was taken as

 z = 
1 2

1 2

1 1

x x

n n
s

-

+
, which follows a N (0, 1) (1)

If s is not known, we may assume that s   
+

+

2 2
1 1 2 2

1 2

n s n s

n n
, when n1 and n2 

are large, where s1 and s2 are the sample S.D.’s. This assumption no longer holds 

good when n1 and n2 are small.

In fact, it is known from the theory of estimation, that an estimate of s is 

2 2
1 1 2 2

1 2 2

n s n s

n n

+

+ -
 with (n1 + n2 – 2) degrees of freedom, when n1 and n2 are small. 

Using this value of s in (1), the test statis tic becomes

-

Ê ˆ Ê ˆ+
+Á ˜ Á ˜+ - Ë ¯Ë ¯

1 2

2 2
1 1 2 2

1 2 1 2

,

1 1

2

x x

n s n s

n n n n

which does not follow a N (0, 1), but follows a t-distribution with 

n = (n1 + n2 – 2) degrees of freedom. Hence, the t-test is applied in this case.
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Note  1. If  n1 = n2 = n and if  the samples are independent i.e., the observations in the 

two samples are not at all related, then the test statistic is given by

  t = 
1 2

2 2
1 2

x x

s s

n 1

-

+

-

 with n = 2n – 2 (2)

2.  If  n1 = n2 = n and if  the pairs of  values of  x1 and x2 are asso ciated in some way (or 

correlated), the formula (2) for t in Note (1) should not be used. In this case, we shall assume 

that H0 : d (= x – y) = 0 and test the signifi cance of  the difference between d  and 0, using 

the test statistic t = 
d

s/ n 1-
 with n = n – 1, where di = xi – yi (i = 1, 2, ....., n),

d  = x – y; and s = S.D. of  d’s = 
n

2
i

i 1

1
( d d )

n =

-Â .

Snedecor’s F-Distribution

A random variable F is said to follow snedecor’s F-distribution or simply 

F-distribution, if its probability density function is given by

 f (F) = ( )

n

n n

n n

n n nb
n

-

+
◊

Ê ˆ Ê ˆÁ ˜ +Ë ¯ Á ˜Ë ¯

1

1

1 2

1/ 2
2

1 2

/ 2
1 2

1

2

( / )

, 12 2

v

F

F

, F > 0.

Note  (The mathematical variable corresponding to the random variable F is also taken as 

F.) n1 and n2 used in f  (F ) are the degrees of  freedom associated with the F-distribution.

Properties of the F-Distribution

 1. The probability curve of the F-distribution is roughly sketched in Fig. 

10.3.

Fig. 10.3
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 2. The square of the t-variate with n degrees of freedom follows a 

F-distribution with 1 and n degrees of freedom.

 3. The mean of the F-distribution is 
2

2 2

n

n -
 (n2 > 2).

 4. The variance of the F-distribution is 
n n n

n n n

+ -

- -

2
2 1 2

2
1 2 2

2 ( 2)

( 2) ( 4)
 (n2 > 4).

Use of F-Distribution

F-distribution is used to test the equality of the variance of the populations from 

which two small samples have been drawn.

F-test of signifi cance of the difference between population variances and F-table.

To test the signifi cance of the difference between population variances, we 

shall fi rst fi nd their estimates, s
2
1

ˆ  and 2
2ŝ  based on the sample variances s1

2 and 

s2
2 and then test their equality. It is known that s =

-

2
1 12

1

1

ˆ
1

n s

n
 with the number of 

degree of freedom n1 = n1 – 1 and s =
-

2
2 22

2

2

ˆ
1

n s

n
 with the number of degrees of 

freedom n2 = n2 – 1.

It is also known that F = 

2
1

2
2

ˆ

ˆ

s

s
 follows a F-distribution with n1 and n2 degrees of 

freedom. If s s=2 2
1 2

ˆ ˆ , then F = 1. Hence, our aim is to fi nd how far any observed 

value of F can differ from unity due to fl uctuations of sampling.

Snedecor has prepared tables that give, for different values of n1 and n2, the 5 

per cent and 1 per cent  critical values of F. An extract from these tables is given 

in the Appendix. If F denotes the observed (calculated) value and n n1 2,F (a) 

denotes the criti cal (tabulated) value of F at LOS a, then P {F > n n1 2,F (a)} = a.

Note  F-test is not a two-tailed test and is always a right-tailed test, since F cannot be 

negative. Thus, if  F > n n1 2,F (a), then the difference between F and 1, i.e., the difference 

between 2
1ŝ  and 2

2ŝ  is sig nifi cant at LOS ‘a’. In other words, the samples may not be 

regarded as drawn from the same population or from populations with the same variance. If  F 

< n n1 2,F (a), the difference is not signifi cant at LOS a.

 1. We should always make F > 1. This is done by taking the larger of  the two estimates of  

s 2 as s1
2 and by assuming that the corre sponding degree of  freedom as n1.

 2. To test if  two small samples have been drawn from the same normal population, it is not 

enough to test if  their means differ sig nifi cantly or not, because in this test we assumed that 

the two samples came from the same population or from populations with equal variance. 

So, before applying the t-test for the signifi  cance of  the difference of  two sample means, we 

should satisfy ourselves about the equality of  the population variances by F-test.
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Worked Example 10(B)

Example 1

Tests made on the breaking strength of 10 pieces of a metal wire gave the 

results: 578, 572, 570, 568, 572, 570, 570, 572, 596 and 584 kg. Test if the mean 

breaking strength of the wire can be assumed as 577 kg.

Let us fi rst compute sample mean x  and sample S.D.‘s’ and then test if x  

differs signifi cantly from the population mean m = 577.

 We take the assumed mean A = 
568 596

2

+
 = 582

 di = xi – A

\ xi = di + A

\ x  = 
1

ix
n

Â  = 
1

id
n

Â  + A

  = 
1

10
 ¥ (– 68) + 582 = 575.2 (see Table 10.7 given below) 

Table 10.7

xi di = xi – A di
2

578 – 4 16

572 – 10 100

570 – 12 144

568 – 14 196

572 – 10 100

570 – 12 144

570 – 12 144

572 – 10 100

596 14 196

584 2 4

Total – 68 1144

 s
2 = 

Ê ˆ- Á ˜Ë ¯Â Â
2

21 1
i id d

n n

  = 
1

10
 ¥ 1144 – 

Ê ˆ¥ -Á ˜Ë ¯

2
1

68
10

 = 68.16

\ s = 8.26
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Now, t = 
m- ◊ -

=
- ◊

575 2 577

/ 1 8 26 / 9

x

s n
 = – 0.65

and n = n – 1 = 9.

 H0 : x  = m and H1 : x  π m.

Let LOS be 5%. Two-tailed test is to be used.

From the t-table, for n = 9, t5% = 2.26. Since |t| < t5%, the difference between 

x  and m is not signifi cant or H0 is accepted. \ the mean breaking strength of the 

wire can be assumed as 577 kg at 5% LOS

Example 2

A machinist is expected to make engine parts with axle diameter of 1.75 cm. 

A random sample of 10 parts shows a mean diameter 1.85 cm. with a S.D. of 

0.1 cm. On the basis of this sample, would you say that the work of the machinist 

is inferior?

 x  = 1.85, s = 0.1, n = 10 and m = 1.75.

 H0 : x  = m ; H1 : x  π m

Two-tailed test is to be used. Let L.O.S. be 5%

 t = 
m- ◊

=
- ◊

0 10

/ 1 0 1/ 9

x

s n
 = 3 and n = n – 1 = 9.

From the t-table, for n = 9, t0.05 = 2.26 and t0.01 = 3.25.

\  |t| > t0.05 and |t| < t0.01

\ H0 is rejected and H1 is accepted at 5% level, but H0 is ac cepted and H1 is 

rejected at 1% level. That is, at 5% LOS, the work of the machinist can be assumed 

to be inferior, but at 1% LOS, the work cannot be assumed to be inferior.

Example 3

A certain injection administered to each of 12 patients resulted in the following 

increases of blood pressure:

5, 2, 8, – 1, 3, 0, 6, – 2, 1, 5, 0, 4.

Can it be concluded that the injection will be, in general, accompanied by an 

increase in B.P.?

The mean of the sample is given by x  = =Â1 31

12
x

n
 = 2.58

The S.D. ‘s’ of the sample is given by

 s
2 = 

Ê ˆ- =Á ˜Ë ¯Â Â
2

21 1 1

12
x x

n n
 ¥ 185 – (2.58)2 = 8.76

\ s = 2.96

 H0 : x  = m, 

where m = 0, i.e. the injection will not result in increase in B.P.

 H1 : x  > m
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Right-tailed test is to be used. Let L.O.S. be 5%. Now, t5% for one-tailed test 

for (n = 11) = t10% for two-tailed test for (n = 11) = 1.80 (from t-table)

Now t = 
m- ◊ -

=
- ◊

2 58 0

/ 1 2 96 / 11

x

s n
 = 2.89

We see that |t| > t10% (n = 11)

\ H0 is rejected and H1 is accepted.

i.e. we may conclude that the injection is accompanied by an increase in B.P.

Example 4

The mean lifetime of a sample of 25 bulbs is found as 1550 hours with an S.D. of 

120 hours. The company manufacturing the bulbs claims that the average life of 

their bulbs is 1600 hours. Is the claim acceptable at 5% level of signifi cance?

 x  = 1550, s = 120, n = 25 and m = 1600.

 H0 : x  = m and H1 : x  < m.

Left-tailed test is to be used. LOS = 5%

Now, t = 
m- -

=
-

50 24

120/ 1

x

s n
 = – 2.04 and n = 24

t5% for one-tailed test for (n = 24) =  t10% for two-tailed test for (n = 24) = 1.71.

We see that |t| > |t10%|

\ H0 is rejected and H1 is accepted at 5% LOS,

i.e., the claim of the company cannot be accepted at 5% LOS

Example 5

The heights of ten males of a given locality are found to be 175, 168, 155, 

170, 152, 170, 175, 160, 160 and 165 cms. Based on this sample, fi nd the 95% 

confi dence limits for the height of males in that locality.

We shall fi rst fi nd the mean x  and S.D. ‘s’ of the sample, by taking the 

assumed mean A = 165 (Table 10.8).

 di = xi – A

\ x  = A + d

  = 165 + 
1

10
 ¥ 0 = 165.

 s
2 = 

Ê ˆ- Á ˜Ë ¯Â Â
2

21 1
i id d

n n

  = 
1

10
 ¥ 578 = 57.8

\ s = 7.6

From the t-table,

 t5% (n = 9) = 2.26.
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The 95% confi dence limits for m are

  

Ê ˆ
- ◊ + ◊Á ˜

- -Ë ¯
2 26 , 2 26

1 1

s s
x x

n n

i.e.  
Ê ˆ◊ ¥ ◊ ◊ ¥ ◊

- +Á ˜
Ë ¯

2 26 7 6 2 26 7 6
165 , 165

9 9

i.e.  (159.3, 170.7)

i.e. the heights of males in the locality are likely to lie within 159.3 cm and 170.7 cm.

Table 10.8

xi di = xi – A di
2

175 10 100

168 3 9

155 – 10 100

170 5 25

152 – 13 169

170 5 25

175 10 100

160 – 5 25

160 – 5 25

165 0 0

Total 0 578

Example 6

Two independent samples of sizes 8 and 7 contained the following values:

 Sample I : 19, 17, 15, 21, 16, 18, 16, 14

 Sample II : 15, 14, 15, 19, 15, 18, 16

Is the difference between the sample means signifi cant?

Table 10.9

Sample I Sample II

x1 d1 = x1 – 18 d1
2

x2 d2 = x2 – 16 d2
2

19 1 1 15 – 1 1

17 –1 1 14 – 2 4

15 – 3 9 15 – 1 1

21  3 9 19 3 9

16 – 2 4 15 – 1 1

18 0 0 18 2 4

16 – 2 4 16 0 0

14 – 4 16

Total – 8 44 Total 0 20
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For sample I, x 1 = 18 + d1 = 18 + Â 1

1

8
d

  = 18 + 
1

8
 ¥ (– 8) = 17.

 s1
2 = 

Ê ˆ
- Á ˜

Ë ¯
Â Â

2

2
1 1

1 1

1 1
d d

n n

  = 
Ê ˆ¥ - ¥ -Á ˜Ë ¯

2
1 1

44 8
8 8

 = 4.5

\ s1 = 2.12.

For sample II, x 2 = 16 + d2 = 16 + Â 2

1

7
d  = 16.

 s2
2 = 

Ê ˆ
- Á ˜

Ë ¯
Â Â

2

2
2 2

2 2

1 1
d d

n n

  = 
Ê ˆ¥ - ¥Á ˜Ë ¯

2
1 1

20 0
7 7

 = 2.857

\ s2 = 1.69

 H0 : x1 = x2 and H1 : x1 π x2

Two-tailed test is to be used. Let LOS be 5 %

 t = 
-

Ê ˆ Ê ˆ+
+Á ˜ Á ˜+ - Ë ¯Ë ¯

1 2

2 2
1 1 2 2

1 2 1 2

1 1

2

x x

n s n s

n n n n

 = 
-

¥ ◊ + ¥ ◊Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯

17 16

8 4 5 7 2 857 1 1

13 8 7

  = 0.93

Also, n = n1 + n2 – 2 = 13.

From the t-table, t5% (n = 13) = 2.16

Since |t| < t5%, H0 is accepted and H1 is rejected.

i.e. the two sample means do not differ signifi cantly at 5% LOS

Example 7

Table 10.10 gives the biological values of protein from cow’s milk and buffalo’s 

milk at a certain level. Examine if the average values of protein in the two samples 

signifi cantly di ffer.

Table 10.10

Cow’s milk (x1): 1.82 2.02 1.88 1.61 1.81 1.54

Buffalo’s milk (x2): 2.00 1.83 1.86 2.03 2.19 1.88
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 n = 6

 x1 = 
1

6
 ¥ 10.68 = 1.78

 s1
2 = 

1

6
 ¥ Sx

2
1 – ( x1)

2 = 
1

6
 ¥ 19.167 – (1.78)2 = 0.0261

 x2 = 
1

6
 ¥ 11.79 = 1.965

 s2
2 = 

1

6
 ¥ Sx

2
2 – ( x2)

2 = 
1

6
 ¥ 23.2599 – (1.965)2 = 0.0154

As the two samples are independent, the test statistic is given by

 t = 
-

+

-

1 2

2 2
1 2

1

x x

s s

n

with n = 2n – 2 [Refer to Note (2) under Test (2)]

 t = 
◊ - ◊

◊ + ◊

1 78 1 965

0 0261 0 0154

5

 = 
- ◊

◊

0 185

0083
 = – 2.03 and n = 10.

 H0 : x1 = x2 and H1 : x1 π x2.

Two-tailed test is to be used. Let LOS be 5%

From t-table, t5% (n = 10) = 2.23.

Since |t| < t5% (n = 10), H0 is accepted.

i.e., the difference between the mean protein values of the two varieties of 

milk is not signifi cant at 5% level.

Example 8

Samples of two types of electric bulbs were tested for length of life and the 

following data were obtained.

Size Mean S.D.

Sample I 8 1234 hours 36 hours

Sample II 7 1036 hours 40 hours

Is the difference in the means suffi cient to warrant that type I bulbs are superior 

to type II bulbs?

 x1 = 1234, s1 = 36, n1 = 8; x2 = 1036, s2 = 40, n2 = 7

 H0 : x1 = x2 ; H1 : x1 > x2.

Right-tailed test is to be used. Let  LOS be 5%.

 t = 
-

Ê ˆ Ê ˆ+
+Á ˜ Á ˜+ - Ë ¯Ë ¯

1 2

2 2
1 1 2 2

1 2 1 2

1 1

2

x x

n s n s

n n n n

 = 
Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯

198

21568 1 1

13 8 7

 = 
◊
198

21 0807
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  = 9.39

 n = n1 + n2 – 2 = 13

t5% (n = 13) for one-tailed test = t10% (n = 13) for two tailed test = 1.77 (from 

t-table)

Now, t > t10% (n = 13)

\ H0 is rejected and H1 is accepted.

i.e. Type I bulbs may be regarded superior to type II bulbs at 5%  LOS.

Example 9

The mean height and the S.D. height of eight randomly chosen soliders are 

166.9 cm. and 8.29 cm. respectively. The corresponding values of six randomly 

chosen sailors are 170.3 cm and 8.50 cm. respec tively. Based on this data, can we 

conclude that soldicers are, in general, shorter than sailors?

 x1 = 166.9, s1 = 8.29, n1 = 8; x2 = 170.3, s2 = 8.50, n2 = 6.

 H0 : x1 = x2 ; H1 : x1 < x2.

Left-tailed test is to be used. Let LOS be 5%.

 t = 
-

Ê ˆ Ê ˆ+
+Á ˜ Á ˜+ - Ë ¯Ë ¯

1 2

2 2
1 1 2 2

1 2 1 2

1 1

2

x x

n s n s

n n n n

 = 
- ◊

◊Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯

3 4

983 29 1 1

12 8 6

  = – 0.695

 n = n1 + n2 – 2 = 12

t5% (n = 12) for one-tailed test = t10% (n = 12) for two tailed test = 1.78 (from  

t-table)

Now, |t| < t10% (n = 12)

\ H0 is accepted and H1 is rejected.

i.e. based on the given data, we cannot conclude that soldicers are in general, 

shorter than sailors.

Example 10

The following data relate to the marks obtained by 11 students in two tests, one 

held at the beginning of a year and the other at the end of the year after intensive 

coaching. Do the data indi cate that the students have benefi ted by coaching?

 Test 1: 19, 23, 16, 24, 17, 18,  20, 18,  21, 19, 20

 Test 2: 17, 24, 20, 24,  20, 22, 20, 20, 18, 22, 19

The given data relate to the marks obtained in two tests by the same set of 

students. Hence, the marks in the two tests can be regarded as correlated and so 

the t-test for paired values should be used.

Let  d = x1 – x2, 

where x1, x2 denote the marks in the two tests.
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Thus, the values of d are 2, – 1 – 4, 0, – 3, – 4, 0, – 2, 3, – 3, 1.

 Sd = – 11 and Sd
2 = 69

\ d  = 
1

n
 Sd = 

1

11
 ¥ – 11 = – 1

 s
2 = sd

2 = 
1

n
 Sd

2 – ( d )2 = 
1

11
 ¥ 69 – (– 1)2 = 5.27

\ s = 2.296

 H0 : d  = 0, i.e. the students have not benefi ted by coaching; H1 : d  < 0

(i.e. x1 < x2).

One-tailed test is to be used. Let LOS be 5%

 t = 
-

=
- ◊

1

/ 1 2 296 / 10

d

s n
 = – 1.38 and n = 10

t5% (n = 10) for one-tailed test = t10% (n = 10) for two-tailed test = 1.81 (from 

t-table).

Now,  |t| < t10% (n = 10)

\ H0 is accepted and H1 is rejected.

i.e. there is no signifi cant difference between the two sets of marks.

i.e. the students have not benefi tted by coaching.

Example 11

A sample of size 13 gave an estimated population variance of 3.0, while another 

sample of size 15 gave an estimate of 2.5. Could both samples be from populations 

with the same variance?

 n1 = 13, s 2
1

ˆ  = 3.0 and n1 = 12

 n2 = 15, s 2
2

ˆ  = 2.5 and n2 = 14.

H0 : s
2
1

ˆ  = s
2
2

ˆ , i.e. The two samples have been drawn from populations with 

the same variance.

 H1 : s
2
1

ˆ  π s
2
2

ˆ . Let L.O.S. be 5%

 F = 
s

s

◊
=

◊

2
1

2
2

ˆ 3 0

ˆ 2 5
 = 1.2

 n1 = 12 and n2 = 14.

 F5% (n1 = 12, n2 = 14) = 2.53, from the F-table.

 F < F5%. \ H0 is accepted

i.e. the two samples could have come from two normal populations with the 

same variance.
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Example 12

Two samples of sizes nine and eight gave the sums of squares of devia tions from 

their respective means equal to 160 and 91 respective ly. Can they be regarded as 

drawn from the same normal popula tion?

 n1 = 9, S(xi – x )2 = 160, i.e. n1 s1
2 = 160

 n2 = 8, S (yi – y )2 = 91, i.e. n2 s2
2 = 91

 s 2
1

ˆ  = 

2
1 1

1

1
160 20

1 8

n s

n
= ¥ =

-
; s 2

2
ˆ  = 

2
2 2

2

1
91 13

1 7

n s

n
= ¥ =

-

Since s 2
1

ˆ  > s
2
2

ˆ , n1 = n1 – 1 = 8 and n2 = n2 – 1 = 7

 H0 : s
2
1

ˆ  = s
2
2

ˆ  and H1 : s
2
1

ˆ  π s
2
2

ˆ .

Let the LOS be 5%.

 F = 

2
1

2
2

ˆ 20
1.54

ˆ 13

s

s
= =

F5% (n1 = 8, n2 = 7) = 3.73, from the F-table. 

Since F < F5%, H0 is accepted.

i.e. the two samples could have come from two normal populations with the 

same variance.

We cannot say that the samples have come from the same population, as we 

are unable to test if the means of the samples differ signifi cantly or not.

Example 13

Two independent samples of eight and seven  items respectively had the following 

values of the variable.

 Sample 1 : 9, 11, 13, 11, 15, 9, 12, 14

 Sample 2 : 10, 12, 10, 14, 9, 8, 10

Do the two estimates of population variance differ signifi cantly at 5% level 

of signifi cance?

For the fi rst sample, Sx1 = 94 and S x2
1 = 1138

\ s1
2 = 

2

2
1 1

1 1

1 1
x x

n n

Ê ˆ
- Á ˜

Ë ¯
Â Â

  = 

2
1 1

1138 94 4.19
8 8

Ê ˆ¥ - ¥ =Á ˜Ë ¯

For the second sample, Sx2 = 73 and Sx2
2 = 785

\ s2
2 = 

2

2
2 2

2 2

1 1
x x

n n

Ê ˆ
- Á ˜

Ë ¯
Â Â
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  = 

2
1 1

785 73
7 7

Ê ˆ¥ - ¥Á ˜Ë ¯
 = 3.39

 
2
1ŝ  = 

1 22 2 2
1 2 2

1 2

ˆ4.79 and
1 1

n n
s s

n n
s= =

- -
 = 3.96

Since s 2
1

ˆ  > s
2
2

ˆ , n1 = 7 and n2 = 6

 H0 : s
2
1

ˆ  = s s sπ2 2 2
2 1 1 2

ˆ ˆ ˆand  :H

 F = 

2
1

2
2

ˆ 4.79
1.21

ˆ 3.96

s

s
= =

F5% (n1 = 7, n2 = 6) = 4.21, from the F-table. Since F < F5%, H0 is accepted.

i.e. 2 2
1 2

ˆ ˆands s  do not differ signifi cantly at 5% level of signifi cance.

Example 14

Two random samples gave the following data:

Size Mean Variance

Sample I 8 9.6 1.2

Sample II 11 16.5 2.5

Can we conclude that the two samples have been drawn from the same normal 

population? 

Refer to Note (2) under F-test. To conclude that the two samples have been 

drawn from the same population, we have to check fi rst that the variances of the 

populations do not differ signifi cantly and then check that the sample means (and 

hence the population means) do not differ signifi cantly.

 
2
1ŝ  = 

8 1 2

7

¥ ◊
 = 1.37 ; 

2
2

11 2.5
ˆ 2.75

10
s

¥
= =

 F = 

2
2

2
1

ˆ 2.75
2.007

ˆ 1.37

s

s
= =  with degrees of freedom 10 and 7.

From the F-table, F5% (10, 7) = 3.64

If H0 : 
2
1ŝ  = s s sπ2 2 2

2 1 1 2
ˆ ˆ ˆand :H ,

H0 is accepted, since F < F5%

i.e. the variances of the populations from which samples are drawn may be 

regarded as equal.

 t = 
1 2

2 2
1 1 2 2

1 2 1 2

6 9

9 6 27 5 1 11 1
17 8 112

x x

n s n s

n n n n

- - ◊
=

◊ + ◊Ê ˆ Ê ˆ Ê ˆÊ ˆ+ +Á ˜ Á ˜+Á ˜ Á ˜ Ë ¯ Ë ¯+ - Ë ¯Ë ¯

  = 
6 9

0 6864

◊
-

◊
 = – 10.05
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and n = n1 + n2 – 2 = 17.

 t5% (n = 17) = 2.11, from the t-table.

If H0 : x1 = x2 and H1 : x1 π x2, H0 is rejected, since |t| > t5%.

i.e. the means of two samples (and so the populations) differ signifi cantly.

\ the two samples could not have been drawn from the same normal population.

Example 15

The nicotine contents in two random samples of tobacco are given below.

 Sample I : 21 24 25 26 27

 Sample II : 22 27 28 30 31 36.

Can you say that the two samples came from the same population?

 x1 = Mean of sample I = 
123

5
 = 24.6

 x2 = Mean of sample II = 
174

6
 = 29.0

 s1
2 = Variance of sample I = 

1

5
 S(xi – 24.6)2 = 4.24

 s
2
2 = Variance of sample II = 

1

6
 S(xi – 29.0)2 = 18.0

 s 2
1

ˆ  = 
5

4
 ¥ 4.24 = 5.30 and n = 4; 2

2

6
ˆ 18.0 21.60

5
s = ¥ =  and n = 5

 H0 : s
2
1

ˆ  = s s sπ2 2 2
2 1 1 2

ˆ ˆ ˆ; :H

 F = 

2
2

2
1

ˆ 21 60

ˆ 5 30

s

s

◊
=

◊
 = 4.07

 F5% (5, 4) = 6.26.

Since F < F5%, H0 is accepted.

\ the variances of the two populations can be regarded as equal.

 t = 
1 2

2 2
1 1 2 2

1 2 1 2

4 4

21 2 108 0 1 11 1
9 5 62

x x

n s n s

n n n n

- - ◊
=

◊ + ◊Ê ˆ Ê ˆ Ê ˆÊ ˆ+ +Á ˜ Á ˜+Á ˜ Á ˜ Ë ¯ Ë ¯+ - Ë ¯Ë ¯

  = 
4 4

2 2943

- ◊
◊

 = – 1.92

and n = 9.

From t-table, F5% (n  = 9) = 2.26.

If H0 : x1 = x2 and H1 : x1 π x2, H0 is accepted 

since  |t| < F5%.
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That is, the means of two samples (and hence the populations) do not differ 

signifi cantly. Therefore, the two samples could have been drawn from the same 

normal population.

Exercise 10(B)

Part-A (Short-answer Questions)

 1. Write down the probability density of student’s t-distribution.

 2. State the important properties of the t-distribution.

 3. Give any two uses of t-distribution.

 4. What do you mean by degrees of freedom?

 5. How will you get the critical value of t for a single-tailed test at level of 

signifi cance a?

 6. What is the test statistic used to test the signifi cance of the difference 

between small sample mean and population mean?

 7. Give the 95% confi dence interval of the population mean in terms of the 

mean and S.D. of a small sample.

 8. What is the test statistic used to test the signifi cance of the difference 

between the means of two small samples?

 9. Give an estimate of the population variance in terms of variances of two 

small samples. What is the associated number of degrees of freedom?

 10. What is the test statistic used to test the signifi cance of the difference 

between the means of two small samples of the same size? What is the 

associated number of degree of freedom?

 11. What is the test statistic used to test the signifi cance of the difference 

between the means of two small samples of the same size, when the 

sample items are correlated?

 12. Write down the probability density function of the F-distribution.

 13. State the important properties of the F-distribution.

 14. What is the use of F-distribution?

 15. Why is the F-distribution associated with two numbers of degrees of 

freedom?

Part-B

 16. A random sample of ten boys had the following I.Q.’s: 70, 120, 110, 

101, 88, 83, 95, 98, 107, 100. Does the data support the assumption of a 

population mean I.Q. of 100? Find a reasonable range in which most of 

the mean I.Q. values of samples of ten boys lie.

 17. A random sample of 16 values from a normal population showed a mean 

of 103.75 cm. and the sum of the squares of deviations from this mean 

is equal to 843.75 square cms. Show that the assumption of a mean of 

108.75 cm for the population is not reasonable. Obtain 95% and 99% 

fi ducial limits for the same.
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 18. The mean weekly sales of soap bars in departmental stores is 145 bars 

per store. After an advertising campaign, the mean weekly sales in 17 

stores for a typical week increased to 155 and showed a S.D. of 16. Was 

the advertising campaign successful?

 19. The annual rainfall at a certain place is normally distrib uted with mean 

30. If the rainfalls during the past eight years are 31.1, 30.7, 24.3, 28.1, 

27.9, 32.2, 25.4 and 29.1, can we con clude that average rainfall during 

the past eight years is less than the normal rainfall

 20. A machine is expected to produce nails of 7 cm length. A random sample 

of 10 nails were found to measure : 7.2, 7.3, 7.1, 6.9, 6.8, 6.5, 6.9, 6.8, 

7.1 and 7.2 cm. On the basis of this sample, what can be said about the 

reliability of the machine?

 21. A random sample of eight envelopes is taken from the letterbox of a post 

offi ce and their weights in grams are found to be: 12.2, 11.9, 12.5, 12.3, 

11.6, 11.7, 12.2 and 12.4. Find the 95% and 99% confi dence limits for 

the mean weight of the envelopes in the letter box.

 22. The average production of 16 workers in a factory was 107 with a S.D. 

of 9, while 12 workers in another comparable factory had an average 

production of 111 with a S.D. of 10. Can we say that the production rate 

of workers in the latter factory is more than that in the former factory?

 23. Two different types of drugs A and B were tried on certain patients for 

increasing weight. 5 persons were given drug A and 7 persons were 

given drug B. The increase in weight (in kg.) is given below

  Drug A : 3.6 5.5 5.9 4.1 1.4

  Drug B : 4.5 3.6 5.5 6.8 2.7 3.6 5.0

  Do the two drugs differ signifi cantly with regard to their effect in 

increasing weight?

 24. Samples of 12 foremen in one division and 10 foremen in another 

division of a factory were selected at random and the following data 

were obtained (Table 10.11).

Table 10.11

Division I Division II

Sample size 12 10

Average monthly salary of foremen (Rs.) 5250 4900

S.D. of salary (Rs.) 152 165

  Can you conclude that foremen in Division I get more salary than 

foremen in Division II?

 25. Two independent groups of 10 children were tested to fi nd how many 

digits they could repeat from memory after hearing them. The results are 

as follows.
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  Group A: 8 6 5 7 6 8 7 4 5 6

  Group B: 10 6 7 8 6 9 7 6 7 7

  Is the difference between mean scores of the two groups signifi  cant?

 26. Table 10.12 gives the marks obtained by 12 students in two tests, one held 

before coaching and the other after coach ing. Does the data indicate that 

the coaching was effective in improving the performance of students?

Table 10.12

Test I: 55, 60, 65, 75, 49, 25, 18, 30, 35, 54, 61, 72

Test II: 63, 70, 70, 81, 54, 29, 21, 38, 32, 50, 70, 80

 27. In one sample of 8 items, the sum of the squares of devia tions of the 

sample values from the sample mean was 84.4 and in another sample of 

10 observations it was 102.6. Test whether this difference is signifi cant 

at 5% level.

 28. Two random samples drawn from two normal populations gave the 

following observations.

  Sample I: 20, 16, 26, 27, 23, 22, 18, 24, 25, 19

  Sample II: 17, 23, 32, 25, 22, 24, 28, 18, 31, 33, 20, 27

  Test whether the two populations have the same variance.

 29. Two random samples gave the following results. (Table 10.13)

Table 10.13

Sample No. Size Mean Variance

I 16 440 40

II 25 460 42

  Test whether the samples have been drawn from the same normal 

population.

 30. Two random samples gave the following results. (Table 10.14)

Table 10.14

Sample 

No.

Size Sum of the 

values

Sum of the squares 

of values

I 10 150 2340

II 12 168 2460

  Test whether the samples have been drawn from the same normal 

population.

Chi-Square Distribution

If X1, X2, ...., Xn are normally distributed independent random variables, then it 

is known that (X2
1 + X2

2 + ... + X2
n) follows a probability distribution, called chi-

square (c2-distribution) distribution with n degrees of freedom.
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The probability density function of the c2-distribution is given by 

 f ( c2) = n c

n

c
n

- -◊
Ê ˆ
Á ˜Ë ¯

22 /2 1 / 2

/ 2

1
( )

2
2

e

0 < c2 < •, where n is the number of degrees of freedom.

Properties of cc 2-Distribution

 1. A rough sketch of the probability curve of the c2-distribution for n = 3 

and n = 6 is given in Fig. 10.4.

Fig. 10.4

 2. As n becomes smaller and smaller, the curve is skewed more and 

more to the right. As n increases, the curve becomes more and more 

symmetrical.

 3. The mean and variance of the c2-distribution are n and 2n respectively.

 4. As n tends to •, the c2-distribution becomes a normal distri bution.

Uses of c c 2-Distribution

 1. c2-distribution is used to test the goodness of fi t. i.e., it is used to judge 

whether a given sample may be reasonably regard ed as a simple sample 

from a certain hypothetical population.

 2. It is used to test the independence of attributes. i.e., if a population is 

known to have two attributes (or traits), then c2-distribution is used to 

test whether the two attributes are associated or independent, based on a 

sample drawn from the population.

c c 2-Test of Goodness of Fit

On the basis of the hypothesis assumed about the population, we fi nd the 

expected frequencies Ei(i = 1, 2, ..., n), corresponding to the observed frequencies
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Oi(i = 1, 2, ..., n) such that ÂEi = ÂOi. It is known that c2 = 
=

-
Â

2

1

( )n
i i

i i

O E

E
 

follows approximately a c2-distribution with degrees of freedom equal to the 

number of independent frequencies. In order to test the goodness of fi t, we have 

to determine how far the differences between Oi and Ei can be attributed to 

fl uctuations of sampling and when we can assert that the differences are large 

enough to conclude that the sample is not a simple sample from the hy pothetical 

population. In other words, we have to determine how large a value of c2 we 

can get so as to assume that the sample is a simple sample from the hypothetical 

population.

The critical value of c2 for n degrees of freedom at a level of signifi cance, 

denoted by cn
2 (a) is given by

 P [c2 > c2
n (a)] = a.

Critical values of the c2-distribution corresponding to a few important levels 

of signifi cance and a range of values of n are available in the form of a table 

called c2-table, which is given in the Appendix.

If the calculated c2 < c2
n (a), we will accept the null hypothesis H0 which 

assumes that the given sample is one drawn from the hypothetical population, 

i.e. we will conclude that the di fference between the observed and expected 

frequencies is not signifi cant at a % LOS If c2 > c2
n (a), we will reject H0 and 

conclude that the difference is signifi cant.

Conditions for the Validity of cc 2-Test

 1. The number of observations N in the sample must be reasonably large, 

say ≥ 50.

 2. Individual frequencies must not be too small, i.e. Oi ≥ 10. In case Oi < 10, 

it is combined with the neighbouring frequen cies, so that the combined 

frequency is ≥ 10.

 3 The number of classes n must be neither too small nor too large i.e., 4 £ 

n £ 16.

c c 2-Test of Independence of Attributes

If the population is known to have two major attributes A and B, then A can be 

divided into m categories A1, A2, ..., Am and B can be divided into n categories 

B1, B2, ..., Bn. Accordingly the members of the population and hence those of 

the sample can be divided into mn classes. In this case, the sample data may be 

presented in the form of a matrix containing m rows and n columns and hence 

mn cells and showing the observed frequencies Oij, in the various cells, where 

i = 1, 2, ..., m and j = 1, 2, ... n. Oij means the number of observed frequencies 

possessing the attrib utes Ai and Bj. The matrix or tabular form of the sample data, 

called an (m ¥ n) contingency table is given below:
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Table 10.15

A\B B1 B2 - Bj - Bn Row Total

A1 O11 O12 - O1j - O1n O1*

A2 O21 O22 - O2j - O2n O2*

: - - - - - - -

Ai Oi1 Oi2 - Oij - Oin Oi*

: - - - - - - -

Am Om1 Om2 Omj - - Omn Om*

Column Total O*1 O*2 - O*j - O*n N

Now, based on the null hypothesis H0, i.e., the assumption that the two 

attributes A and B are independent, we compute the ex pected frequencies Eij for 

various cells, using the following formula Eij = 
* *i jO O

N

◊
, i = 1, 2, .... m; and

j = 1, 2, .... n

i.e. Eij = 

Ï ¸¥
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ó ˛

th

th

(Total of observed frequencies in the  row)

(total of observed frequencies in the  column)

Total of all cell frequecies

i

j

Then we compute  c2= 
= =

Ï ¸-Ô Ô
Ì ˝
Ô ÔÓ ˛

Â Â
2

1 1

( )m n
i j i j

i J i j

O E

E

The number of degrees of freedom for this c2 computed from the (m ¥ n) 

contingency table is n = (m – 1) (n – 1).

If c2 < c2
n (a), H0 is accepted at a % LOS, i.e., the attributes A and B are 

independent. 

If c2 > c2
n (a), H0 is rejected at a %  LOS, i.e., A and B are not independent.

Worked Example 10(C)

Example 1

The following table shows the distribution of digits in the numbers chosen at 

random from a telephone directory:

Table 10.16

Digit: 0 1 2 3 4 5 6 7 8 9 Total

Frequency: 1026, 1107, 997, 966, 1075, 933, 1107, 972, 964, 853 10,000
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Test whether the digits may be taken to occur equally frequently in the 

directory.

H0 : The digits occur equally frequently, i.e., they follow a uniform 

distribution.

Based on H0, we compute the expected frequencies.

The total number of digits = 10,000.

If the digits occur uniformly, then each digit will occur 

 
10,000

10
 = 1000 times

 Oi : 1026, 1107, ....., 853

 Ei : 1000, 1000, ....., 1000

 c2 = 
-

Â
2( )i i

i

O E

E

  = 
1

1000
 {(26)2 + (107)2 + (– 3)2 + (– 34)2 + (75)2 

 + (– 67)2 + (107)2 + (– 28)2 + (– 36)2 + (– 147)2}

  = 58.542

Since SEi was taken equal to SOi (i.e., an information from the sample),

n = n – 1 = 10 – 1 = 9. From the c2
–table, 

 c2
5% (n = 9) = 16.919

Since c2 > c2
5%, H0 is rejected, i.e., the digits do not occur uniformly in the 

directory.

Example 2

Table 10.17 gives the number of air-craft accidents that occurred during the 

various days of a week. Test whether the accidents are uniformly distributed over 

the week.

Table 10.17 

Day: Mon Tues Wed Thu Fri Sat

No. of accidents: 15 19 13 12 16 15

H0 : Accidents occur uniformly over the week.

Total number of accidents = 90

Based on H0, the expected number of accidents on any day = 
90

6
 = 15.

Oi : 15 19 13 12 16 15

Ei : 15 15 15 15 15 15
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 c2 = 
-

=Â
2( ) 1

15

i i

i

O E

E
 (0 + 16 + 4 + 9 + 1 + 0) = 2.

Since ÂEi = ÂOi, n = 6 – 1 = 5

From the c2-table, c2
5% (n = 5) = 11.07.

Since c2 < c2
5%, H0 is accepted.

i.e. accidents may be regarded to occur uniformly over the week.

Example 3

Table 10.18 shows defective articles produced by four ma chines:

Table 10.18 

Machine: A B C D

Production time: 1 hour 1 hour 2 hours 3 hours

No. of detectives: 12 30 63 98

Do the fi gures indicate a signifi cant difference in the perfor mance of the 

machines?

H0 : Production rates of the machines are the same.

Total number of detectives = 203.

Based on H0, the expected numbers of defectives produced by the machines 

are

 Ei : 
1

7
 ¥ 203,  

1

7
 ¥ 203, 

2

7
 ¥ 203, 

3

7
 ¥ 203

i.e. Ei : 29,  29,  58,  87

 Oi : 12, 30, 63, 98

 c2 = 
-

= + + +Â
2 2 2 2 2( ) 17 1 5 11

29 29 58 87

i i

i

O E

E
 = 11.82

Since ÂEi = ÂOi, n = 4 – 1 = 3

From the c2-table, c2
5% (n = 3) = 7.815

Since c2 > c2
5%, H0 is rejected.

i.e., there is signifi cant difference in the performance of machines.

Example 4

The following data represents the monthly sales (in Rs) of a certain retail stores 

in a leap year. Examine if there is any seasonality in the sales.

6100, 5600, 6350, 6050, 6250, 6200, 6300, 6250, 5800, 6000, 6150 and 6150.

H0 : There is no seasonability in the sales, i.e. the daily sales are uniform 

throughout the year or the daily sales follow a uniform distribution.

Based on H0, we compute the expected frequencies.
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The total sales in the year = Rs. 73,200.

If the daily sales are uniform, then the sales on each day 

   = 
73,200

366
 = Rs 200

Oi : 6100, 5600, 6350, 6050, 6250, 6200, 6300, 6250, 5800, 6000, 6150, 6150.

Assuming that the months are taken in the usual calendar order, namely, 

January, February etc. the expected monthly sales are

Ei : 6200, 5800, 6200, 6000, 6200, 6000, 6200, 6200, 6000, 6200, 6000, 6200

Then c2 = 
-

Â
2( )i i

i

O E

E

  = 
- - -

+ + +
2 2 2( 100) ( 200) ( 50)

...
6200 5800 6200

 = 38.913

Since ÂEi was found as ÂOi from the sample, n = n – 1 = 12 – 1 = 11.

From the c2-table, c2
5% (n = 11) = 19.675.

Since c2 > c2
5%, H0 is rejected, i.e., the daily sales are not uniform throughout 

the year.

Example 5

Theory predicts that the proportion of beans in four groups A, B, C, D should be 

9 : 3 : 3 : 1. In an experiment among 1600 beans, the numbers in the four groups 

were 882, 313, 287 and 118. Does the experiment support the theory?

H0 : The experiment supports the theory, i.e., the numbers of beans in the four 

groups are in the ratio 9 : 3 : 3 : 1

Based on H0, the expected numbers of beans in the four groups are as follows:

 Ei : 
9

16
 ¥ 1600, 

3

16
 ¥ 1600, 

3

16
 ¥ 1600, 

1

16
 ¥ 1600

i.e. Ei : 900, 300, 300, 100

 Oi : 882, 313, 287, 118

 c2 = 
-

= + + +Â
2 2 2 2 2( ) 18 13 13 18

900 300 300 100

i i

i

O E

E
 = 4.73

Since ÂEi = ÂOi, n = 4 – 1 = 3

From the c2-table, c2
5%(n = 3) = 7.82

Since c2 < c2
5%, H0 is accepted.

i.e., the experimental data support the theory.

Example 6

A survey of 320 families with fi ve children each revealed the fol lowing 

distribution:
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Table 10.19

No. of boys: 0 1 2 3 4 5

No. of girls: 5 4 3 2 1 0

No. of families: 12 40 88 110 56 14

Is this result consistent with the hypothesis that male and female births are 

equally probable?

H0 : Male and female births are equally probable, i.e., P (male birth) = p = 

1/2 and P (female birth) = q = 1/2.

Based on H0, the probability that a family of 5 children has r male children 

= 5Cr 

5
1

2

Ê ˆ
Á ˜Ë ¯

 (by binomial law)

\ Expected number of families having r male children = 320 ¥ 5 Cr ¥ 
5

1

2
         = 10 ¥ 5 Cr.

Thus Ei : 10 50 100 100 50 10

and Oi : 12 40 88 110 56 14

 c2 = 
-

= + + + + +Â
2 2 2 2 2 2 2( ) 2 10 12 10 6 4

10 50 100 100 50 10

i i

i

O E

E

  = 7.16

We have used the sample data to get ÂEi only. The values of p and q have not 

been found by using the sample data.

\ n = n – 1 = 6 – 1 = 5 and c 25% (n = 5) = 11.07

Since c2 < c2
5%, H0 is accepted.

i.e. male and female births are equally probable.

Example 7

Twelve  dice were thrown 4096 times and a throw of six was considered a success. 

The observed frequencies were as given below.

No. of successes: 0 1 2 3 4 5 6 7 and over

Frequency: 447 1145 1180 796 380 115 25 8

Test whether the dice were unbiased.

H0 : All the dice were unbiased, i.e., P (getting 6) = p = 
1 5

6 6
q\ = .

Based on H0, the probability of getting exactly ‘r’ successes = 12 Cr p
r q12–r

(r = 0, 1, 2, ...., 12)

\ Expected number of times in which ‘r’ successes are obtained 

  = 4096 ¥ 12 Cr 

12
1 5

6 6

r r-
Ê ˆ Ê ˆ◊Á ˜ Á ˜Ë ¯ Ë ¯
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  = 4096 ¥ 12 Cr ¥ 

12

12

5

6

r-

 (r = 0, 1, 2, ..., 12)

i.e. E0 = N (0 success) = N (r = 0) = 459.39

 E1 = N (r = 1) = 1102.54

 E2 = N (r = 2) = 1212.80

 E3 = N (r = 3) = 808.53

 E4 = N (r = 4) = 363.84

 E5 = N (r = 5) = 116.43

 E6 = N (r = 6) = 27.17

 E7 = N (r ≥ 7) = 5.30

Converting Ei’s into whole numbers subject to the condition that ÂEi = 4096, 

we get

 Ei : 459, 1103, 1213, 809, 364, 116, 27, 5 

 Oi : 447, 1145, 1180, 796, 380, 115, 25, 8,

Since E and O corresponding to the last class, i.e., 5 and 8 are less than 10, we 

combine the last two classes and consider as a single class.

 c2 = 
-

= + + + + + +Â
2 2 2 2 2 2 2 2( ) 12 42 33 13 16 1 1

459 1103 1213 809 364 116 32

i i

i

O E

E

  = 3.76

 n = n – 1, since only ÂEi has been found using the sample data.

  = 7 – 1 [n must be taken as the number of classes after combina tion 

of end classes, if any]

  = 6

and c2
5% (n = 6) = 12.59, from the c2

–table. Since c2 < c2
5%, H0 is accepted, i.e. 

the dice were unbiased.

Example 8

Fit a binomial distribution for the following data and also test the goodness of 

fi t.

 x : 0 1 2 3 4 5 6 Total

 f : 5 18 28 12 7 6 4 80

To fi nd the binomial distribution N (q + p)n, which fi ts the given data, we 

require p.

We know that the mean of the binomial distribution is np, from which we 

can fi nd p. Now the mean of the given distribution is found out and is equated 

to np.

 x : 0 1 2 3 4 5 6 Total

 f : 5 18 28 12 7 6 4 80

 fx : 0 18 56 36 28 30 24 192
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 x  = 
192

80

f x

f
=Â

Â
 = 2.4

i.e. np = 2.4 or 6 p = 2.4, since the maximum value taken by x is n.

\ p = 0.4 and hence q = 0.6

\ the expected frequencies are given by the successive terms in the expansion 

of 80 (0.6 + 0.4)6.

Thus, Ei : 3.73, 14.93, 24.88, 22.12, 11.06, 2.95, 0.33

Converting the Ei’s into whole number such that ÂEi = ÂOi = 80, we get

 Ei : 4 15 25 22 11 3 0

Let us now proceed to test the goodness of binomial fi t.

 Oi : 5 18 28 12 7 6 4

The fi rst class is combined with the second and the last two classes are 

combined with the last but second class in order to make the expected frequency 

in each class greater than or equal to 10. Thus, after regrouping, we have,

 Ei : 19 25 22 14

 Oi : 23 28 12 17

 c2 = 
-

= + + +Â
2 2 2 2 2( ) 4 3 10 3

19 25 22 14

i i

i

O E

E
 = 6.39

We have used the given sample to fi nd

 ÂEi  (= ÂOi ) and p through its mean.

Hence, n = n – k

  = 4 – 2 = 2

 c2
5% (n = 2) = 5.99, from the c2-table.

Since c2 > c2
5%, H0, which assumes that the given distribution is 

approximately a binomial distribution, is rejected, i.e., the binomial fi t for the 

given distribution is not satisfactory.

Example 9

Fit a Poisson distribution for the following distribution and also test the goodness 

of fi t.

 x : 0 1 2 3 4 5 Total

 f : 142 156 69 27 5 1 400

To fi nd the Poisson distribution whose probability law is 

  P (X = r) = 
!

r
e

r

l l-

, r = 0, 1, 2, ..., 

we require l, which is the mean of the Poisson distribution.
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We fi nd the mean of the given distribution and assume it as l.

 x : 0 1 2 3 4 5 Total

 f : 142 156 69 27 5 1 400

 fx : 0 156 138 81 20 5 400

 x  = 
400

1
400

f x

f
l= = =Â

Â
The expected frequencies are given by

 
1400

or
! !

r
N e e

r r

l l- -◊ ¥
, r = 0, 1, 2, ....•

Thus,

 Ei : 147.15, 147.15, 73.58, 24.53, 6.13, 1.23

The values of Ei are very small for i = 6, 7, ... and hence ne glected.

Converting the values of Ei’s into whole numbers such that ÂEi = 400, we 

get

 Ei : 147, 147, 74, 25, 6, 1

Let us now proceed to test the goodness of Poisson fi t.

 Oi : 142, 156, 69, 27, 5, 1

The last three classes are combined into one, so that the expect ed frequency in 

that class may be ≥ 10. Thus, after regrouping, we have

 Oi : 142 156 69 33

 Ei : 147 147 74 32

 c2 = 
-

= + + +Â
2 2 2 2 2( ) 5 9 5 1

147 147 74 32

i i

i

O E

E

  = 1.09

We have used the sample data to fi nd ÂEi and l. Hence,

  n = n – k = 4 – 2 = 2

From the c2-table, c2
5% (n = 2) = 5.99.

Since c2 < c2
5%, H0, which assumes that the given distribution is nearly Poisson, 

is accepted,

i.e., the Poisson fi t for the given distribution is satisfactory.

Example 10

Test the normality of the following distribution by using c2-test of goodness of 

fi t

 x : 125, 135, 145, 155, 165, 175, 185, 195, 205 Total

 f : 1, 1, 14, 22, 25, 19, 13, 3, 2 100

Let us fi rst fi t a normal distribution to the given data and then test the goodness 

of fi t.
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To fi t a normal distribution and hence fi nd the expected frequencies, we 

require the density function of the normal dis tribution which involves the mean 

and S.D. Let us now compute the mean x  and S.D. ‘s’ of the sample distribution 

and assume them as m and s.

Table 10.20

x f
-

=
165

10

x
d fd fd

2

125 1 – 4 – 4 16

135 1 – 3 – 3 9

145 14 – 2 – 28 56

155 22 – 1 – 22 22

165 25 0 0 0

175 19 1 19 19

185 13 2 26 52

195 3 3 9 27

205 2 4 8 32

Total 100 – 5 233

 x  = A + 
c

f d
N

Â = 165 + 
10

100
 ¥ 5 = 165.5

 s
2 = 

2

2 21 1
c f d f d

N N

Ï ¸Ê ˆÔ Ô-Ì ˝Á ˜Ë ¯Ô ÔÓ ˛
Â Â

  = 102 (2.33 – 0.0025) = 232.75

\ s = 15.26

\ the density function of the normal distribution which fi ts the given distribution 

is f (x) = 
p

- - ◊ ◊

◊

2( 165 5) /465 51

15 26 2

x
e .

To fi nd the expected frequency corresponding to a given x, we fi nd y = f (x) 

and multiply y by the class-width and then by the total frequency N.

Note
 y = 

( )2 2x /21
e

2

m s

s p

- -
. If  we put 

x m

s

-
 = z, then y = 

2z /21 1
e

2s p

-
Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

 = 
( z )f

s
, where f (z) is density function of  the standard normal 

distribution. Values of  f  (z) are got from the normal table given in the Appendix.
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Table 10.21

x
- ◊

=
◊
165 5

15 26

x
y f (z)

f f

s

◊
=

◊
( ) 10 ( )

15 26

c z z Expected frequency 

= N f (z)/s

125 – 2.65 .0119 .0078 0.78

135 – 2.00 .0540 .0354 3.54

145 – 1.34 .1626 .1066 10.66

155 – 0.69 .3144 .2060 20.60

165 – 0.03 .3988 .2613 26.13

175 0.62 .3292 .2157 21.57

185 1.28 .1758 .1152 11.52

195 1.93 .0620 .0406 4.06

205 2.59 .0139 .0091  0.91

Converting the expected frequencies as whole numbers such that ÂEi = 100, 

we get

 Ei : 1, 3, 11, 21, 26, 22, 11, 4, 1

Let us now proceed to test the goodness of normal fi t.

Combining the end classes so as to make the individual frequen cies greater 

than 10,

 Ei : 15, 21, 26, 22, 16

 Oi : 16, 22, 25, 19, 18

 c2 = 
-

= + + + +Â
2 2 2 2 2 2( ) 1 1 1 3 2

15 21 26 22 16

i i

i

O E

E

  = 0.82

We have used the sample data to fi nd ÂEi, m and s. Hence n = n – k = 

5 – 3 = 2.

From the c2-table, c2
5% (n = 2) = 5.99.

Since c2 < c2
5%, H0, which assumes that the given distribution is nearly 

normal, is accepted.

i.e. the normal fi t for the given distribution is satisfactory.

Example 11

The following data are collected on two characters (Table 10.22).

Table 10.22

Smokers Non-smokers

Literates : 83 57

Illiterates : 45 68

Based on this, can you say that there is no relation between smoking and literacy?
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H0 : Literacy and smoking habit are independent.

Table 10.23

Smokers Non-smokers Total

Literates 83 57 140

Illiterates 45 68 113

Total 128 125 253

Table 10.24

O E E (rounded) (O – E)
 2

/E

83
¥

=
128 140

70.83
253  

71 122/71 = 2.03

57
¥

=
125 140

69.17
253  

69 122/69 = 2.09

45
¥

=
128 113

57.17
253  

57 122/57 = 2.53

68
¥

=
125 113

55.83
253  

56 122/56 = 2.57

c2 = 9.22

 n = (m – 1) (n – 1)

  = (2 – 1 (2 – 1) = 1.

From the c2-table, c2
5% (n = 1) = 3.84

Since c2 > c2
5%, H0 is rejected.

i.e. there is some association between literacy and smoking.

Example 12

Prove that the value of c2 for the 2 ¥ 2 contingency table 
a b

c d
 is given by

 c2 = 
-

+ + + +

2( )

( ) ( ) ( ) ( )

N a d bc

a b c d a c b d
, where N = a + b + c + d.

Hence, compute c2 for the 2 ¥ 2 contingency table given in Example 11.

The value of E corresponding to the cell in which O = a is given by 

E = 
+ +
+ + +

( ) ( )

( )

a b a c

a b c d
.
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\ the value of c2 corresponding to this cell is given by 

 c2 = 
Ï ¸+ + + +

- ∏Ì ˝+ + + + + +Ó ˛

2
( ) ( ) ( ) ( )

( )

a b a c a b a c
a

a b c d a b c d

  = 
+ + + - + +

+ +

2{ ( ) ( ) ( )}

( ) ( )

a a b c d a b a c

N a b a c

  = 
-

+ +

2( )

( ) ( )

a d bc

N a b a c

Similarly, the value of c2 are found out for the other three cells.

\ c2 for the table 

 =  
Ï ¸-

+ + +Ì ˝+ + + + + + + +Ó ˛

2( ) 1 1 1 1

( ) ( ) ( )( ) ( )( ) ( ) ( )

ad bc

N a b a c a b b d a c c d b d c d
 

 = 
-

+ + + +

2( )

( ) ( ) ( ) ( )

a d bc

N a b c d a c b d
 {(b + d) (c + d) + (a + c) (c + d) 

+ (a + b) (b + d) + (a + b) (a + c)}

 = 

È ˘- +Î ˚
+ + + +

Â Â2 2( ) 2

( ) ( ) ( ) ( )

a d bc a ab

N a b c d a c b d
 = 

- + + +
+ + + +

2 2( ) ( )

( ) ( ) ( ) ( )

a d bc a b c d

N a b c d a c b d

 = 
-

+ + + +

2( )

( ) ( ) ( ) ( )

N a d bc

a b c d a c b d
 (1)

Using (1) for the contingency table in Example 11,

we get c2 = 
¥ - ¥

¥ ¥ ¥

2253 (83 68 45 57)

140 113 128 125
 = 9.48.

Example 13

Two batches each of 12 animals are taken for test of inoculation. One batch was 

inoculated and the other batch was not inoculated. The numbers of dead and 

surviving animals are given in Table 10.25 in both cases. Can the inoculation be 

regarded as effective against the disease? Make Yate’s correction for continuity 

of c2.
Table 10.25

Dead Survived Total

Inoculated 2 10 12

Not inoculated 8 4 12

Total 10 14 24

Note on Yate’s correction for continuity of c2.
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The c2-table was prepared using the theoretical c2-distribution which is 

continuous, whereas the approximate values of c2 that we are using are discrete. 

To rectify this defect, Yates has shown that, when

 c2 = 

È ˘Ï ¸- -Í ˙Ì ˝
Ó ˛Í ˙

Í ˙
Î ˚

Â

2
1

0
2

i i

i

E

E

is used, the c2-approximation is improved. Yate’s correction is used only when 

n = 1 and, hence, for a 2 ¥ 2 contingency table. It is used only when some cell 

frequency is small, i.e., less than 5.

In the present problem, two cell frequencies are less than 5 each. Hence, we 

apply Yate’s correction (Table 10.26).

Table 10.26

O E |O – E| – 0.5 {|O – E| – 0.5}
2
/E

2
¥

=
12 10

5
24  

2.5 6.25/5 = 1.25

10
¥

=
12 14

7
24  

2.5 6.25/7 = 0.89

8
¥

=
12 10

5
24

2.5 6.25/5 = 1.25

4
¥

=
12 14

7
24

2.5 6.25/7 = 0.89

n = (2 – 1) (2 – 1) = 1 c2 = 4.28

From the c2-table, c2
5% (n = 1) = 3.84

If H0 : Inoculation and effect on the diseases are independent, then H0 is 

rejected as c2 > c2
5% i.e. Inoculation can be regard ed as effective against the 

disease.

Note  Even if  Yate’s correction is not made, we would have arrived at the same conclusion.

Example 14

A total number of 3759 individuals were interviewed in a public opinion survey 

on a political proposal. Of them, 1872 were men and the rest women. 2257 

individuals were in favour of the propo sal and 917 were opposed to it. 243 men 

were undecided and 442 women were opposed to the proposal. Do you justify or 

contradict the hypothesis that there is no association between sex and attitude?

A careful analysis of the problem results in the following con tingency 

(Table 10.27).
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Table 10.27

Favoured Opposed Undecided Total

Men 1154 475 243 1872

Women 1103 442 342 1887

Total 2257 917 585 3759

H0 : Sex and attitude are independent, i.e., there is no associa tion between sex 

and attitude.
Table 10.28

O E (rounded E) (O – E)
2
/E

1154
¥

 
1872 2257

3759
1124 302/1124 = 0.80

475
¥

 
1872 917

3759
457 182/457 = 0.71

243
¥

 
1872 585

3759
291 482/291 = 7.92

1103
¥

 
1887 2257

3759
1133 302/1133 = 0.79

442
¥

 
1887 917

3759
460 182/460 = 0.70

342
¥

 
1887 585

3759
294 482/294 = 7.84

n = (3 – 1) (2 – 1) = 2 c2 = 18.76

From the c2-table, c2
5% (n = 2) = 5.99

Since c2 > c2
5%, H0 is rejected.

That is, sex and attitude are not independent i.e. there is some association 

between sex and attitude.

Example 15

The following table gives for a sample of married women, the level of education 

and the marriage adjustment score:

Table 10.29

L
ev

el
 o

f 
ed

u
ca

ti
o
n Marriage adjustment

Very low low high very high Total

College 24 97 62 58 241

High school 22 28 30 41 121

Middle school 32 10 11 20 73

Total 78 135 103 119 435
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Can you conclude from the above data that the higher the level of education, 

the greater is the degree of adjustment in marriage?

H0 : There is no relation between the level of education and adjustment in 

marriage.

 n = (4 – 1) (3 – 1) = 6

 c2
5% (n = 6) = 12.59

Table 10.30

O E (rounded) (O–E)
2
/E

24 43 192/43 = 8.40

97 75 222/75 = 6.45

62 57 52/57 = 0.44

58 66 82/66 = 0.97

22 22 02/22 = 0.00

28 37 92/37 = 2.19

30 29 12/29 = 0.03

41 33 82/33 = 1.94

32 13 192/13 = 27.77

10 23 132/23 = 7.35

11 17 62/17 = 2.12

20 20 02/20 = 0.00

c2
5% (n = 6) = 12.59 c2 = 57.66

Since c2 > c2
5%, H0 is rejected.

That is, the level of education and adjustment in marriage are associated.

Thus, we may conclude that the higher the level of education, the greater is the 

degree of adjustment in marriage.

Exercise 10(C)

Part-A (Short-answer Questions)

 1. Defi ne Chi-square distribution.

 2. Write down the probability density function of the c2-distribution.

 3. State the important properties of c2-distribution.

 4. Give two uses of c2-distribution.

 5. What is c2-test of goodness of fi t?

 6. State the conditions under which c2-test of goodness of fi t is valid.

 7. What is c2-test of independence of attributes?

 8. What is contingency table?

 9. Write down the value of c2 for a 2 ¥ 2 contingency table with cell 

frequencies a, b, c and d.
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 10. What is Yate’s correction for continuity of c2?

Part-B

 11. In 250 digits from the lottery numbers, the frequencies of the digits were 

as follows:

  Digit: 0 1 2 3 4 5 6 7 8 9

  Frequency: 23 25 20 23 23 22 29 25 33 27

  Test the hypothesis that the digits were randomly drawn.

 12. The following table gives the number of fatal road accidents that 

occurred during the seven days of the week. Find whether the accidents 

are uniformly distributed over the week.

  Day : Sun Mon Tues Wed Thu Fri Sat

  Number : 8   14 16 12 11 14  9

 13. In 120 throws of a single dice, the following distribution of faces are 

obtained:

  Face : 1 2 3 4 5 6

  Frequency : 30 25 18 10 22 15

  Do these results support the equal probability hypothesis?

 14. The number of demands for a particular spare part in a shop was found 

to vary from day to day. In a sample study, the follow ing information 

was obtained:

  Day : Mon Tues Wed Thu Fri Sat

  No. of demands : 124 125 110 120 126 115

  Test the hypothesis that the number of parts demanded does not depend 

on the day of the week.

 15. According to genetic theory, children having one parent of blood type M 

and the other of blood type N will always be one of the three types-M, 

MN and N and the average proportions of these types will be 1 : 2 : 1. 

Out of 300 children, having one M parent and one N parent, 30 per cent 

were found to be of type M, 45 per cent of type MN and the remaining of 

type N. Test the genetic theory by c2-test.

 16. 5 coins are tossed 256 times. The number of heads observed is given 

below. Examine if the coins are true.

  No. of heads : 0 1 2 3 4 5

  Frequency : 5 35 75 84 45 12

 17. 5 dice were thrown 243 times and the numbers of times 1 or 2 was 

thrown (x) are given below:

  x :  0 1 2 3 4 5

  Frequency : 30 75 76 47 13 2

  Examine if the dice were unbiased.

 18. Fit a binomial distribution for the following data and also test the 

goodness of fi t.

 x : 0 1 2 3 4

 f : 5 29 36 25 5
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 19. Fit a binomial distribution for the following data and also test the 

goodness of fi t

  x : 0 1 2 3 4 5 6 7 8 9

  f : 3 8 11 15 16 14 12 11 9 1

 20. Fit a Poisson distribution for the following distribution and also test the 

goodness of fi t.

  x : 0 1 2 3 4 5 6 7

  f : 314 335 204 86 29 9 3 0

 21. Fit a Poisson distribution for the following distribution and also test the 

goodness of fi t.

  x : 0 1 2 3 4

  f : 123 59 14 3 1

 22. The fi gures given below are (i) the observed frequencies of a distribution, 

and (ii) the expected frequencies of the normal distribution having the 

same mean, S.D. and total frequency as in (i).

  (i) 1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1

  (ii) 2, 15, 66, 210, 484, 799, 943, 799, 484, 210, 66, 15, 2

  Do you think that the normal distribution provides a good fi t to the 

data?

 23. Fit a normal distribution to the following data and fi nd also the goodness 

of fi t.

  x : 4 6 8 10 12 14 16 18 20 22 24

  f : 1 7 15 22 35 43 38 20 13 5 1

 24. In an epidemic of certain disease, 92 children contacted the disease. Of 

these 41 received no treatment and of these 10 showed after effects. Of 

the remainder who did receive the treatment, 17 showed after effects. 

Test the hypothesis that the treatment was not effective.

 25. Out of 1660 candidates who appeared for a competitive exami nation, 

422 were successful. Out of these, 256 had attended a coaching class 

and 150 of them came out successful. Examine whether coaching was 

effective as regards the success in the examination.

 26. In a pre-poll survey, out of 1000 rural voters, 620 favoured A and the rest 

B. Out of 1000 urban voters, 450 favoured B and the rest A. Examine if 

the nature of the area is related to voting preference.

 27. The following information was obtained in a sample of 40 small general 

shops:
Table 10.31

Shops in urban areas Shops in rural areas

Owned by men 17 18

Owned by women 3 12

  Can it be said that there are more women owners in rural areas than in 

urban areas? Use Yate’s correction for continuity.
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 28. A certain drug is claimed to be effective in curing cold. In an experiment 

on 500 persons with cold, half of them were given the drug and half of 

them were given the sugar pills. The pa tients’ reaction to the treatment 

are recorded in the following table.

Table 10.32

Helped Harmed No effect

Drug 150 30 70

Sugar pills 130 40 80

  On the basis of this data, can it be concluded that the drug and sugar pills 

differ signifi cantly in curing cold?

 29. A survey of radio listeners’ preference for two types of music under 

various age groups gave the following information.

Table 10.33

Type of music
Age group

 19-25 26-35 Above 36

Carnatic music : 80 60 90

Film music : 210 325  44

Indifferent : 16 45 132

  Is preference for type of music infl uenced by age?

 30. The table given below shows the results of a survey in which 250 

respondents were classifi ed according to levels of education and attitude 

towards students’ agitation in a certain town. Test whether the two 

criteria of classifi cation are independent.

Table 10.34

Education
Attitude

Against Neutral For

Middle school: 40 25 5

High school: 40 20 5

College: 30 15 30

Postgraduate: 15 15 10

ANSWERS

Exercise 10(A)

 29. z = 2.83 ; signifi cant 30.  z = 4.5 ; the coin is not fair

 31. z = 1.79 ; claim cannot be supported.
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 32. No, since z (= 1.40) < za ( = 1.645).

 34. No ; (16.7, 27.0) 

 35. difference due to sampling fl uctua tions

 36. z = 0.725 ; not signifi cant

 37. z = 6.49 ; Yes; Yes.

 38. Yes, since z (= 1.80) > z.05 (= 1.645)

 39. z = 2.56 ; the difference cannot be hidden

 40. z (= .104) < z.05 (= 1.645) ; the machine has improved

 41. z (= 3.17) > z.05 (= 1.96) ; difference signifi cant.

 42. |z| = 1.02 ; the claim is valid

 43. z = 3.12 ; No

 44. No, since z = 5 ; 96.8

 45. Claim cannot be true as z = 1.89 and z5% = 1.645

 46. Yes, since z (= 1.6) < z5% (= 1.645)

 47. 41

 48. (57.2, 58.8) and (57.0, 59.0)

 49. No, since z = 2.58

 50. No, since z = 8.82

 51. No, since z = 1.32

 52. Yes, since z (= 4.78) > z1% (= 2.33)

 53. Yes, at 5% level, since |z| (= 1.937) > z5% (= 1.645) and No, at 1% level, 

since |z| (= 1.937) < |za| (= 2.33)

 54. (1.98, 6.02)

 55. H0 : m1 – m2 = 35 accepted, as z = 1.90

 57. Yes, as z = 1.71

 58. Yes, as |z| (= 2.5) > z1% (= 2.33)

 59. Yes, as z = 1.70

 60. No, as z = 3.61.

Exercise 10(B)

 16. |t| = 0.62 ; Yes ; 83.66 < m < 110.74

 17. |t| = 2.67; (99.76, 107.74) and (98.22, 109.29)

 18. t = 2.5 ; the campaign was successful

 19. |t| = 1.44; t10% = 1.90 ; x  is not less than m.

 20. |t| = 0.26; machine is reliable

 21. (11.82, 12.38); (11.69, 12.51)

 22. t = – 1.067 ; No

 23. |t| = 0.424 ; No

 24. t = 4.33 ; Yes

 25. |t| = 1.85 ; Not signifi cant

 26. t = 4.0 ; coaching was effective

 27. F = 1.057 ; Not signifi cant

 28. The populations have the same variance
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 29. No, though the difference between variances is not signifi cant, the 

difference between the mean is signifi cant.

 30. Yes, as the differences between the means and between the variance are 

not signifi cant.

Exercise 10(C)

 11. c2 = 5.2 ; n = 9 ; digits randomly drawn.

 12. c2 = 4.17 ; n = 6 ; accidents occur uniformly.

 13. c2 = 12.9 ; n = 5 ; equal probability hypothesis is refuted.

 14. c2 = 1.68 ; n = 5 ; the demand does not depend on the day of the week

 15. c2 = 4.5 ; n = 2 ; genetic theory may be correct

 16. c2 = 3.54 ; n = 3 ; coins are true.

 17. c2 = 2.76 ; n = 4 ; dice are unbiased

 18. Ei : 7, 26, 37, 24, 6 ; c2 = 0.06; n = 1 ; binomial fi t is good. (Ei: 1, 5, 11, 

18, 21, 19, 13, 8, 3, 1)

 19.  c2 = 11.30 ; n = 4 ; binomial fi t is not satisfactory; 

 20. Ei : 301, 362, 217, 87, 26, 6, 1; c2 = 5.40 ; n = 4 ; Poisson fi t is good.

 21. Ei : 121, 61, 15, 3, 0 ; c2 = 0.99 ; n = 1 ; Poisson fi t is good.

 22. x
2 = 3.84 ; n = 8 ; Normal fi t is good.

 23. Ei : 2, 5, 13, 25, 37, 42, 36, 23, 12, 4, 1, ; c2 = 1.68 ; n = 4; Normal fi t is 

good.

 24. c2 = 0.85 ; n = 1 ; No association between treatment and after-effect.

 25. c2 = 176.12 ; n = 1 ; coaching was effective.

 26. c2 = 10.09 ; n = 1 ; some relation between area and voting preference

 27. c2 = 2.48 ; n = 1 ; No, as there is no relation between area and sex of 

ownership

 28. c2 = 3.52 ; n = 2 ; do not differ signifi cantly

 29. c2 = 373.40 ; n = 4 ; preference for type of music infl uenced by age.

 30. c2 = 35.42 ; n = 6 ; the two criteria are not independent.





B
y ‘experiment’, we mean collection of data (which usually consist of a 

  series of measurement of some feature of an object) for a scientifi c 

  investigation, according to certain specifi ed sampling procedures. 

Statistics provides not only the principles and the basis for the proper planning 

of the experiments but also the methods for proper interpretation of the results 

of the experiment.

In the beginning, the study of the design of experiments was associated only 

with agricultural experimentation. The need to save time and money has led to 

a study of ways to obtain maximum information with the minimum cost and 

labour. Such motivations resulted in the subsequent acceptance and wide use of 

the design of experiments and the related analysis of variance techniques in all 

fi elds of scientifi c experimentation. In this chapter we consider some aspects of 

experimental design briefl y and analysis of data from such experiments using 

analysis of variance tech niques.

Aim of the Design of Experiments

A statistical experiment in any fi eld is performed to verify a particular hypothesis. 

For example, an agricultural experiment may be performed to verify the claim 

that a particular manure has got the effect of increasing the yield of paddy. Here 

the quanti ty of the manure used and the amount of yield are the two varia bles 

involved directly. They are called experimental variables. Apart from these two, 

there are other variables such as the fertility of the soil, the quality of the seed used 

and the amount of rainfall, which also affect the yield of paddy. Such variables 

are called extraneous variables. The main aim of the design of experiments is to 

control the extraneous variables and hence to minimise the experimental error so 

that the results of the experiments could be attributed only to the experimental 

variables.

Chapter 11
Design of Experiments



11.2 Probability, Sta  s  cs and Random Processes

Basic Principles of Experimental Design
In order to achieve the objective mentioned above, the following three principles 

are adopted while designing the experiments– (1) randomisation, (2) replication, 

and (3) local control.

1. Randomisation

As it is not possible to eliminate completely the contribution of extraneous 

variables to the value of the response variable (the amount of yield of paddy), 

we try to control it by randomisation. The group of experimental units (plots 

of the same size) in which the manure is used is called the experimental group 

and the other group of plots in which the manure is not used and which will 

provide a basis for comparison is called the control group. If any information 

regarding the extraneous variables and the nature and magnitude of their effect 

on the response variable in question is not available, we resort to randomisation. 

That is, we select the plots for the experimental and control groups in a random 

manner, which provides the most effective way of eliminat ing any unknown bias 

in the experiment.

2. Replication

In a comparative experiment, in which the effects of different manures on the 

yield are studied, each manure is used in more than one plot. In other words, 

we resort to replication which means repetition. It is essential to carry out more 

than one test on each manure in order to estimate the amount of the experimen tal 

error and hence to get some idea of the precision of the estimates of the manure 

effects.

3. Local Control

To provide adequate control of extraneous variables, another essential principle 

used in the experimental design is the local control. This includes techniques 

such as grouping, blocking and balancing of the experimental units used in the 

experimental design. By grouping, we mean com bining sets of homogeneous 

plots into groups, so that different manures may be used in different groups. The 

number of plots in different groups need not necessarily be the same. By blocking, 

we mean assigning the same number of plots in different blocks. The plots in the 

same block may be assumed to be relatively homogeneous. We use as many 

manures as the number of plots in a block in a random manner. By balancing, we 

mean adjusting the procedures of grouping, blocking and assigning the manures 

in such a manner that a balanced confi guration is obtained.

SOME BASIC DESIGNS OF EXPERIMENT

1. Completely Randomised Design (CRD)

Let us suppose that we wish to compare ‘h’ treatments (use of ‘h’ different 

manures) and there are n plots available for the ex periment.
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Let the ith treatment be replicated (repeated) ni times, so that n1 + n2 + ... 

+ nh = n.

The plots to which the different treatments are to be given are found by the 

following randomisation principle. The plots are numbered from 1 to n serially. 

n identical cards are taken, numbered from 1 to n and shuffl ed thoroughly. The 

numbers on the fi rst n1 cards drawn randomly give the numbers of the plots to 

which the fi rst treatment is to be given. The numbers on the next n2 cards drawn 

at random give the numbers of the plots to which the second treatment is to be 

given and so on. This design is called a completely randomised design, which is 

used when the plots are homogeneous or the pattern of heterogeneity of the plots 

is unknown.

Analysis of Variance (ANOVA)

The analysis of variance is a widely used technique developed by R.A. Fisher. It 

enables us to divide the total variation (repre sented by variance) in a group into 

parts which are ascribable to different factors and a residual random variation 

which could not be accounted for by any of these factors. The variation due to 

any specifi c factor is compared with the residual variation for signifi cance by 

applying the F-test, with which the reader is familiar. The details of the procedure 

will be explained in the sequel.

Analysis of Variance for One Factor of Classifi cation

Let a sample of N values of a given random variable X (representing the yield of 

paddy) be subdivided into ‘h’ classes according to some factor of classifi cation 

(different manures).

We wish to test the null hypothesis that the factor of classifi cation has no 

effect on the variable, viz., there is no difference between various classes, viz., 

the classes are homoge neous. Let xij be the value of the jth member of the ith class, 

which contains ni members. Let the general mean of all the N values be x  and 

the mean of ni values in the ith class be xi.

Now, 
2( )ij

i j

x x-Â Â  = { }2
( ) ( )ij i i

i j

x x x x- + -Â Â

  = 
2 2( ) ( )ij i i

i j i j

x x x x- + -Â Â Â Â

   
2 ( ) ( )ij i i

i j

x x x x+ - -ÂÂ

  = 2 2

1

( ) ( )
in

ij i i

i j i j

x x x x
=

- + -Â Â Â Â

   
1

2 ( ) ( )
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i ij i

i j

x x x x
=

+ - -Â Â
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  = 2 2( ) ( )ij i i i

i j i

x x n x x- + -Â Â Â

th

1

( ) = sum of the deviations of values of the in the class from
jn

ij i i ij

j

x x n x i
=

È ˘
-Í ˙

Í ˙Î ˚
Â∵

       their mean = x
i = 0

i.e.,  Q = Q2 + Q1, say, where

Q1 = 2( )i i

i

n x x-Â  = sum of the squared deviations of class means from the 

general mean (variation between classes)

Q2 = 2( )ij i

i j

x x-Â Â  = sum of the squared deviations of variates from the 

corresponding class means (variation within classes) and Q = total variation.

Since Q2 = Q – Q1, viz., the variation Q2 within classes is got after removing 

the variation Q1 between classes from the total variation Q, Q2 is the residual 

variation.

If s
2 is the variance of a sample of size n drawn from a popula tion with 

variance s 
2, then it is known from the theory of esti mation that 

2

1

ns

n

Ê ˆ
Á ˜-Ë ¯

 is an 

unbiased estimate of s 
2. 

i.e.,  E 
2

1

ns

n

Ê ˆ
Á ˜-Ë ¯

 = s 
2.

Since the items in the i
th class with variance 2

1

1
( )

in

ij i

ji

x x
n =

-Â  may be 

considered as a sample of size ni drawn from a population with variance s 
2,

 E 
2

1

1
. ( )

1

in

i
ij i

ji i

n
x x

n n =

Ï ¸Ô Ô-Ì ˝-Ô ÔÓ ˛
Â  = s 

2

i.e.,  E 
2( )ij i

j

x x
È ˘

-Í ˙
Í ˙Î ˚
Â  = (ni  – 1) s 

2

\ E 2( )ij i

i j

x x
È ˘

-Í ˙
Í ˙Î ˚
Â Â  = 

2

1

( 1)
h

i

i

n s

=

-Â

i.e.,  E(Q2) = (N – h) s2 or E 
2Q

N h

Ï ¸
Ì ˝-Ó ˛

 = s2
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i.e., 2Q

N h-
 is an unbiased estimate of s2 with (N – h) degrees of freedom.

Now, if we consider the entire group of N items with variance 
21

( )ij

i j

x x
N

-ÂÂ  

as a sample of size N drawn from the same population,

 E 
21

( )
1

ij

i j

N
x x

N N

Ï ¸-Ì ˝-Ó ˛
ÂÂ  =  s 

2

i.e.,  E 
1

Q

N

Ê ˆ
Á ˜-Ë ¯

 = s 
2

i.e., 
1

Q

N -
 is an unbiased estimate of s 

2 with (N – 1) degrees of freedom.

Now, Q1 = Q – Q2

\ E (Q1) = E (Q) – E (Q2)

 = (N – 1)s 
2 – (N – h)s 

2

 =  (h – 1) s 
2 or E 1

1

Q

h

Ê ˆ
Á ˜-Ë ¯

 = s 
2

i.e., 1

1

Q

N -
 is also an unbiased estimate of s 

2 with (h – 1) degrees of freedom.

If we assume that the sampled population is normal, then the estimates 

1

1

Q

h -
 and 2Q

N h-
 are independent and, hence, the ratio 1

2

/ ( 1)

/ ( )

Q h

Q N h

-
-

 follows a 

F-distribution with (h  – 1, N – h) degrees of freedom or the ratio 2

1

/ ( )

/ ( 1)

Q N h

Q h

-
-

 

follows a F-distribution with (N – h, h – 1) degrees of freedom. Choosing the 

ratio which is greater than one, we employ the F-test.

If the calculated value of F < F5%, the null hypothesis is accepted, viz., 

different treatments do not contribute signifi  cantly different yields.

These results are displayed in the form of a table, called the ANOVA table, 

as given below:
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Table 11.1 ANOVA table for one factor of classifi cation

Source of 

variation 

(S.V.)

Sum of 

squares

(S.S.)

Degree of 

freedom

(d.f.)

Mean square 

(M.S.)

Variance ratio 

(F)

Between 

classes
Q1 h – 1 Q1/(h – 1)

1

2

/ ( 1)

/ ( )

Q h

Q N h

-
-

(OR)

Within classes Q2 N –  h Q2/(N – h)
2

1

/ ( )

/ ( 1)

Q N h

Q h

-
-

Total Q N – 1 –  –

Note  For calculating Q, Q1, Q2, the following computational formulas may be used:

  Q =  N 2 2
ij

1
x x

N

Ï ¸
-Ì ˝

Ó ˛
ÂÂ

  = N
2

2
ij ij

1 1
x x

N N

Ï ¸Ê ˆ-Ì ˝Á ˜Ë ¯Ó ˛
ÂÂ ÂÂ

  = 

2
2
ij ij

T
x ,where T x

N
- =ÂÂ ÂÂ

 Similarly, for the ith class,

  
2

ij i

j

( x x )-Â  = 
2

2 i
ij i ij

ij j

T
x , where T x .

n
- =Â Â

 \ Q2 =  

2
2 2 i

ij i ij

ii j i j i

T
( x x ) x

n
- = -ÂÂ ÂÂ Â

 Hence, Q1 =  Q  – Q2

  = 

2 2
i

ii

T T

n N
-Â

2. Randomised Block Design (RBD)

Let us consider an agricultural experiment using which we wish to test the effect 

of ‘k’ fertilizing treatments on the yield of a crop. We assume that we know some 

information about the soil fertility of the plots. Then we divide the plots into ‘h’ 

blocks, according to the soil fertility, each block containing ‘k’ plots. Thus, the 

plots in each block will be of homogeneous fertility as far as possible.
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Within each block, the ‘k’ treatments are given to the ‘k’ plots in a perfectly 

random manner, such that each treatment occurs only once in any block. But 

the same ‘k’ treatments are repeated from block to block. This design is called 

Randomised Block Design.

Analysis of Variance for Two Factors of Classifi cation

Let the N variate values {xij} (representing the yield of paddy) be classifi ed 

according to two factors. Let there be ‘h’ rows (blocks) representing one factor 

of classifi cation (soil fertility) and ‘k’ columns representing the other factor 

(treatment), so that N = hk.

We wish to test the null hypothesis that the rows and columns are homogeneous 

viz., there is no difference in the yields of paddy between the various rows and 

between the various columns.

Let xij be the variate value in the ith row and jth column.

Let x  be the general mean of all the N values, *ix  be the mean of the k values 

in the ith row and * jx  be the mean of the h values in the jth column.

Now, ijx x-  = * * * *( ) ( ) ( )ij i j i jx x x x x x x x- - + + - + -

\ 2( )ijx x-ÂÂ  = 
2 2

* * *( ) ( )ij i j ix x x x x x- - + + -ÂÂ ÂÂ
  + - + - - + -ÂÂ ÂÂ2

* * * *( ) 2 ( ) ( )j ij i j ix x x x x x x x

  + - - + -ÂÂ * * *2 ( ) ( )ij i j jx x x x x x

  + - -ÂÂ * *2 ( ) ( )i jx x x x  (1)

Now, the fourth member in the R.H.S. of (1)

 = 
* * *

1

2 ( ) ( )
k

i ij i j

i j

x x x x x x
=

- - - +Â Â

 = 
* * *2 ( ) ( )i i i

i

x x k x k x k x k x- - - +Â
 = 0

Similarly, the last two members in the R.H.S. of (1) also become zero each.

Also, 
2

*( )i

i j

x x-ÂÂ  = 2
*( )i

i

k x x-Â  = Q1, say 

 2
*( )j

i j

x x-ÂÂ  = 2
*( )j

j

h x x-Â  = Q2, say

Let  Q = 2( )ijx xÂÂ -  and

 Q3 = 2
* *( )ij i jx x x xÂÂ - - +

Using all these in (1), we get

 Q = Q1 + Q2 + Q3, where
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 Q = total variation.

 Q1 = sum of the squares due to the variations in the rows,

 Q2 = that in the columns and

 Q3 = that due to the residual variations.

Proceeding as in one factor of classifi cation, we can prove that 1 2,
1 1

Q Q

h k- -
, 

3

( 1) ( 1)

Q

h k- -
 and 

1

Q

hk -
 are unbiased estimates of the population variance s 

2 

with degrees of freedom h – 1, k – 1, (h – 1) (k – 1) and (hk – 1) respectively. If 

the sampled population is assumed normal, all these estimates are independent. 

\ 1

3

/ ( 1)

/ ( 1) ( 1)

Q h

Q h k
¢

-
- -

 follows a F-distribution with {h – 1, (h – 1) (k – 1)} 

degrees of freedom and 2

3

/ ( 1)

/ ( 1) ( 1)

Q k

Q h k

-
- -

 follows a F-distribution with {k – 1, 

(h – 1) (k – 1)} degrees of freedom. Then the F-tests are applied as usual and the 

signifi cance of difference between rows and between columns is analysed.

Table 11.2 The ANOVA table for two factors of classifi cations

S.V. S.S. d.f. M.S. F

Between 

rows
Q1 h – 1 Q1 / (h – 1)

1

1

3

/ ( 1)

/ ( 1) ( 1)

Q h

Q h k

±
È ˘-
Í ˙- -Î ˚

Between 

columns
Q2 k – 1 Q2 / (k  – 1)

1

2

3

/ ( 1)

/ ( 1) ( 1)

Q k

Q h k

±
È ˘-
Í ˙- -Î ˚

Residual Q3 (h – 1) (k – 1) Q3/(h – 1)(k – 1) –

Total Q hk – 1 – –

Note  The following working formulas that can be easily derived may be used to compute 

Q, Q1, Q2 and Q3:

1. Q = 
2

2
ij

T
x

N
-ÂÂ , where T = ijxÂÂ

2. Q1 = 
2

2
i

1 T
T

k N
-Â , where Ti = 

k

ij

j 1

x
=
Â

3. Q2 = 

2
2
j

1 T
T

h N
-Â , where Tj = 

h

ij

i 1

x
=
Â

4. Q3 = Q – Q1 – Q2

 It may be verifi ed that i j

i j

T T=Â Â  = T.
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3. Latin Square Design (LSD)

We consider an agricultural experiment, in which n2 plots are taken and arranged 

in the form of an n × n square, such that the plots in each row will be homogeneous 

as far as possible with respect to one factor of classifi cation, say, soil fertility and 

plots in each column will be homogeneous as far as possible with respect to 

another factor of classifi cation, say, seed quality.

Then n treatments are given to these plots such that each treat ment occurs 

only once in each row and only once in each column. The various possible 

arrangements obtained in this manner are known as Latin squares of order n. 

This design of experiment is called the Latin Square Design.

Analysis of Variance for Three Factors of Classifi cations

Let the N (= n2) variate values {xij}, representing the yield of paddy, be classifi ed 

according to three factors. Let the rows, columns and letters stand for the three 

factors, say soil fertil ity, seed quality and treatment respectively.

We wish to test the null hypothesis that the rows, columns and letters are 

homogeneous, viz., there is no difference in the yield of paddy between the rows 

(due to soil fertility), between the columns (due to seed quality) and between the 

letters (due to the treatments).

Let xij be the variate value corresponding to the ith row, jth column and kth 

latter.

Let x  = *2

1
,ij ix x

n
ÂÂ  = *

1
,ij j

j

x x
n
Â  = 

1
ij

i

x
n
Â  and xk be the mean of the 

values of xij corresponding to the kth
 treatment.

Now, xij – x  = * * * *( ) ( ) ( ) ( 2 )i j k ij i j kx x x x x x x x x x x- + - + - + - - - +  

\ 2( )ijx x-ÂÂ  = 2 2
* *( ) ( )i j

i j

n x x n x x- + -Â Â

   + 2 2
* *( ) ( 2 )k ij i j k

k i j

n x x x x x x x- + - - - +Â ÂÂ
 (∵ all the product terms vanish as in two factor classifi cation)

i.e., Q = Q1 + Q2 + Q3 + Q4

As before, we can prove that 31 2 4, , ,
1 1 1 ( 1) ( 2)

QQ Q Q

n n n n n- - - - -
 and 

2 1

Q

n -
 

are unbiased estimates of the population variance s 
2 with degrees of freedom 

n – 1, n – 1, n – 1, (n – 1) (n – 2) and (n2 – 1) respectively.

If the sampled population is assumed normal, all these estimates are 

independent.
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\ each of 
- -

- - - -
1 2

4 4

/( 1) /( 1)
,

/( 1)( 2) /( 1)( 2)

Q n Q n

Q n n Q n n
 and 

-
- -

3

4

/( 1)

/( 1)( 2)

Q n

Q n n
 

follows a F-distribution with {(n – 1), (n – 1) (n – 2)} degrees of freedom.

Then the F-tests are applied as usual and the signifi cance of differences 

between rows, columns and treatments is analysed.

Table 11.3 The ANOVA table for three factors of classifi cation 

S.V. S.S. d.f. M.S. F

Between rows Q1 n – 1 Q1 / (n – 1) = M1

1

1

4

M

M

±
Ê ˆ
Á ˜Ë ¯

Between 

columns
Q2 n – 1 Q2 / (n – 1) = M2

1

2

4

M

M

±
Ê ˆ
Á ˜Ë ¯

Between 

letters
Q3 n – 1 Q3 / (n – 1) = M3

1

3

4

M

M

±
Ê ˆ
Á ˜Ë ¯

Residual Q4 (n – 1) (n – 2) Q4 / (n – 1) (n – 2) = M4 –

Total Q n
2 – 1 –  –

Note  The following working formulas may be used to compute the Q’s:

 1. Q = 

2
2
ij 2

T
x

n
-ÂÂ , where T = ijxÂÂ

 2. Q1 = 
2

2
i 2

1 T
T

n n
-Â , where Ti = 

n

ij

j 1

x
=
Â

 3. Q2 = 

2
2
j 2

1 T
T

n n
-Â , where Tj = 

n

ij

i 1

x
=
Â

 4. Q3 = 

2
2

k 2

1 T
T

n n
-Â , where Tk is the sum of  all xij’s receiving the kth treatment.

 5. Q4 = Q – Q1 – Q2 – Q3.

  Also T = i

i

TÂ  = j k

j k

T T=Â Â
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Comparison of RBD and LSD

 1.  The number of replications of each treatment is equal to the number of 

treatments in LSD, whereas there is no such restrictions on treatments 

and replication in RBD.

 2.  LSD can be performed on a square fi eld, while RBD can be performed 

either on a square fi eld or a rectangular fi eld.

 3.  LSD is known to be suitable for the case when the number of treatments 

is between 5 and 12, whereas RBD can be used for any number of 

treatments.

 4.  The main advantage of LSD is that it controls the effect of two extraneous 

variables, whereas RBD controls the effect of only one extraneous 

variable. Hence the experimental error is reduced to a larger extent in 

LSD than in RBD.

Note on Simplifi cation of Computational Work

The variance of a set of values is independent of the origin and so a shift of 

origin does not affect the variance calculations. Hence, in analysis of variance 

problems, we can subtract a convenient number from the original values and 

work out the problems with the new values obtained. Also, since we are con-

cerned with the variance ratios, change of scale also may be introduced without 

affecting the values of F.

Worked Example 11

Example 1

A completely randomised design experiment with 10 plots and 3 treatments gave 

the following results:

Plot No. : 1 2 3 4 5 6 7 8 9 10

Treatment : A B C A C C A B A B

Yield : 5 4 3 7 5 1 3 4 1 7
Analyse the results for treatment effects.

Rearranging the data according to the treatments, we have the following 

table:

Treatment Yield from plots (xij) Ti Ti
2

ni

2

i

i

T

n

A 5 7 3 1 16 256 4 64

B 4 4 7 – 15 225 3 75

C 3 5 1  – 9 81 3 27

Total T = 40 – N = 10 166



11.12 Probability, Sta  s  cs and Random Processes

 2
ijxÂÂ  = (25 + 49 + 9 + 1) + (16 + 16 + 49) + (9 + 25 + 1)

 =  84 + 81 + 35 = 200

 Q = 
2

2
ij

T
x

N
-ÂÂ  = 200 – 

240

10
 = 200 – 160 = 40

 Q1 = 

2 2
i

i

T T

n N
-Â  = 166 – 160 = 6

\ Q2 = Q – Q1 = 40 – 6 = 34

ANOVA table

S.V. S.S. d.f. M.S. F0

Between classes (treatments) Q1 = 6 h – 1 = 2 3.0
4.86

3.0

Within classes Q2 = 34 N – h = 7 4.86 = 1.62

Total Q = 40 N – 1 = 9 – –

From the F-table, F5% (v1 = 7, v2 = 2) = 19.35

We note that F0 < F5%

Let H0: The treatments do not differ signifi cantly.

\ the null hypothesis is accepted.

i.e., the treatments are not signifi cantly different.

Example 2

The following table shows the lives in hours of four brands of electric lamps:

Brand

A : 1610, 1610, 1650, 1680, 1700, 1720, 1800

B : 1580, 1640, 1640, 1700, 1750

C : 1460, 1550, 1600, 1620, 1640, 1660, 1740, 1820

D : 1510, 1520, 1530, 1570, 1600, 1680

Perform an analysis of variance and test the homogeneity of the mean lives of 

the four brands of lamps.

We subtract 1640 (= the average of the extreme values) from the given values and 

work out with the new values of xij

Brand Lives of lamps (xij) Ti ni

2
i

i

T

n

A – 30 – 30 10 40 60 80 160 – 290 7 12014

B – 60 0 0 60 110 – – – 110 5 2420

C – 180 – 90 – 40 – 20 0 20 100 180 – 30 8 113

D – 130 – 120 – 110 – 70 – 40 40 – – – 430 6 30817

Total – 60 26 45364
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2
ijxÂÂ  = (900 + 900 + 100 + 1600 + 3600 + 6400 + 25600)

  + (3600 + 0 + 0 + 3600 + 12100)

  + (32400 + 8100 + 1600 + 400 + 0 + 400 + 10000 + 32400)

  + (16900 + 14400 + 12100 + 4900 + 1600 + 1600)

 =  39100 + 19300 + 85300 + 51500 = 195200

 Q =  

2
2
ij

T
x

N
-ÂÂ  = 1,95,200 – 138 = 1,95,062

 Q1 =  
2 2

i

i

T T

nn
-Â  = 45,364 – 138 = 45,226

 Q2 =  Q – Q1 = 1,95,062 – 45,226 = 1,49,836

ANOVA table

S.V. S.S. d.f. M.S. F0

Between brands Q1 = 45,226 h – 1 = 3 15,075
15,075

6,811

Within brands Q2 = 1,49,836 N – h = 22 6,811 = 2.21

Total Q = 1,95,062 N – 1 = 25 – –

From the F-tables, F5% (v1 = 3, v2 = 22) = 3.06

F0 < F5%

Hence, the null hypothesis H0, namely, the means of the lives of the four 

brands are homogeneous, is accepted viz., the lives of the four brands of lamps 

do not differ signifi cantly.

Note  We could have used a change of  scale also. viz., we could have made the change

 New xij = 
ijold x 1640

10

-
 and simplifi ed the numerical work still further

Example 3

A car rental agency, which uses 5 different brands of tyres in the process of 

deciding the brand of tyre to purchase as standard equipment for its fl eet, fi nds 

that each of 5 tyres of each brand last the following number of kilometres (in 

thousands):



11.14 Probability, Sta  s  cs and Random Processes

Tyre brands

A B C D E

36 46 35 45 41

37 39 42 36 39

42 35 37 39 37

38 37 43 35 35

47 43 38 32 38

Test the hypothesis that the fi ve tyre brands have almost the same average 

life.

We shift the origin to 40 and work out with the new values of xij.

Tyre 

brand
xij Ti ni

2
i

i

T

n

5
2

1

ij

j

x
=
Â

A – 4 – 3 2 – 2 7 0 5 0 82

B 6 – 1 – 5 – 3 3 0 5 0 80

C – 5 2 – 3 3 – 2 – 5 5 5 51

D 5 – 4 – 1 – 5 – 8 – 13 5 33.8 131

E 1 – 1 – 3 – 5 – 2 – 10 5 20 40

Total – 28 25 58.8 384

 T =  i

i

TÂ  = – 28; 
2 2
ij ij

i j

x x
Ê ˆ

= Á ˜
Ë ¯

ÂÂ Â Â  = 384

 Q =  
2 2

2 ( 28)
384

25
ij

T
x

N

-
- = -ÂÂ  = 352.64

 Q1 =  

2 2
i

i

T T

n N
-Â  = 58.8 – 31.36 = 27.44

 Q2 =  Q – Q1 = 352.64 – 27.44 = 325.20

ANOVA table

S.V. S.S. d.f. M.S. F0

Between tyre brands Q1 = 27.44 h – 1 = 4 6.86
16.26

6.86

Within tyre brands Q2 = 325.20 N – h = 20 16.26 = 2.37

Total Q = 352.64 N – 1 = 24 – –

From the F-tables, F5% (v1 = 20, v2 = 4) = 5.80

F0 < F5%
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Hence, ‘H0 : the fi ve tyre brands have almost the same average life is accepted 

viz., the fi ve tyre brands do not differ sig nifi cantly in their lives.

Example 4

In order to determine whether there is signifi cant difference in the durability of 

3 makes of computers, samples of size 5 are selected from each make and the 

frequency of repair during the fi rst year of purchase is observed. The results are 

as follows:

Makes

A B C

5 8 7

6 10 3

8 11 5

9 12 4

7 4 1
In view of the above data, what conclusion can you draw?

Make xij Ti ni

2
i

i

T

n

2
ij

j

xÂ

A 5 6 8 9 7 35 5 245 255

B 8 10 11 12 4 45 5 405 445

C 7 3 5 4 1 20 5 80 100

Total 100 15 730 800

 T =  
2100; 800; 15i ij iT x N n= = = =Â ÂÂ Â

 Q = 
2 2

2 100
800

15
ij

T
x

N
- = -ÂÂ  = 133.33

 Q1 =  

2 2
i

i

T T

n N
-Â  = 730  – 666.67 = 63.33

 Q2 =  Q – Q1 = 70

ANOVA table

S.V. S.S. d.f. M.S. F0

Between 

makes
Q1 = 63.33 h – 1 = 2 31.67

31.67

5.83

Within makes Q2 = 70 N – h = 12 5.83 5.43

Total Q = 133.33 N – 1 = 14 – –
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From the F-tables, F5% (v1 = 2, v2 = 12) = 3.88

F0 > F5%

Hence, the null hypothesis (H0: the 3 makes of computers do not differ in the 

durability) is rejected.

viz., there is signifi cant difference in the durability of the 3 makes of 

computers.

Example 5

Three varieties of a crop are tested in a randomised block design with four 

replications, the layout being as given below: The yields are given in kilograms. 

Analyse for signifi cance.

C48 A51 B52 A49

A47 B49 C52 C51

B49 C53 A49 B50

Rewriting the data such that the rows represent the blocks and the columns 

represent the varieties of the crop (as assumed in the discussion of analysis of 

variance for two factors of classi fi cation), we have the following table:

Crops

Blocks A B C

1 47 49 48

2 51 49 53

3 49 52 52

4 49 50 51

We shift the origin to 50 and work out with the new values of xij.

Crops

Blocks A B C Ti T
2
i / k

2
ij

j

xÂ

1 – 3 – 1 – 2 – 6 36/3 = 12 14

2 1 – 1 3 3 9/3 = 3 11

3 – 1 2 2 3 9/3 = 3 9

4  – 1 0 1 0 0/3 = 0 2

Tj – 4 0 4 T = 0
  

2

18iT

k
=Â

 
36

T 
2
j /h

16
4

4
=

0
0

4
=

 

16
4

4
=

 

2

8iT

h
=Â

 

2
ij

i

xÂ 12 6 18 36



Design of Experiments 11.17

 Q = 

2 2
2 0

36
12

ij

T
x

N
- = -ÂÂ  = 36

 Q1 =  
2

21
i

T
T

k N
-Â  = 18 – 0 = 18

 Q2 = 
2

21
j

T
T

h N
-Â  = 8 – 0 = 8

 Q3 = Q – Q1 – Q2 = 36 – 18 – 8 = 10

ANOVA table

S.V. S.S. d.f. M.S. F0

Between rows 

(blocks)
Q1 = 18 h – 1 = 3 6

6
3.6

1.67
=

Between columns 

(crops)
Q2 = 8 k – 1 = 2 4

4
2.4

1.67
=

Residual Q3 = 10 (h – 1) (k – 1) = 6 1.67 –

Total  Q = 36 hk – 1 = 11 – –

From F-tables, F5% (v1 = 3, v2 = 6) = 4.76 and F5% (v1 = 2, v2 = 6) = 5.14 

Considering the difference between rows, we see that F0 (= 3.6) < F5% (= 4.76)

Hence, the difference between the rows is not signifi cant. (H0 is accepted) 

viz., the blocks do not differ signifi cantly with respect to the yield.

Considering the difference between columns, we see that F0 (= 2.4) < F5% (= 

5.14)

Hence, the difference between the columns is not signifi cant. (H0 is accepted) 

viz., the varieties of crop do not differ signifi  cantly with respect to the yield.

Example 6

Five breeds of cattle B1, B2, B3, B4, B5 were fed on four differ ent rations R1, 

R2, R3, R4. Gains in weight in kg. over a given period were recorded and given 

below:

B1 B2 B3 B4 B5

R1 1.9 2.2 2.6 1.8 2.1

R2 2.5 1.9 2.3 2.6 2.2

R3 1.7 1.9 2.2 2.0 2.1

R4 2.1 1.8 2.5 2.3 2.4

Is there a signifi cant difference between (a) breeds, and (b) rations?

We effect the change of origin and scale using yij = 
2

1 / 10

ijx -
 = 10(xij – 2) and 

work out with yij values.
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B1 B2 B3 B4 B5 Ti

2
iT

k

2
ij

j

yÂ

R1 – 1 2 6 – 2 1 6 7.2 46

R2 5 – 1 3 6 2 15 45.0 75

R3 – 3 – 1 2 0 1 –1 0.2 15

R4 1 – 2 5 3 4 11 24.2 55

Tj 2 – 2 16 7 8 T = 31
2

76.6iT

k
=Â

 
191

T
2
j / h 1 1 64 12.25 16

2 / 94.5jT h =Â
 

2
ij

i

yÂ 36 10 74 49 22 191

 Q =  
2 2

2 (31)
191

20
ij

T
y

N
- = -ÂÂ  = 142.95

 Q1 =  
2

21
i

T
T

k N
-Â  = 76.6 – 48.05 = 28.55

 Q2 =  
2

21
j

T
T

h N
-Â  = 94.25 – 48.05 = 46.20

 Q3 =  Q – Q1 – Q2 = 142.95 – (28.55 + 46.20) = 68.20

ANOVA table

S.V. S.S. d.f. M.S. F0

Between rows 

(rations)

Q1 = 28.55 h – 1 = 3 9.52 9.52/5.68 = 1.68

Between Cols. 

(breeds)

Q2 = 46.20 K – 1 = 4 11.55 11.55/5.68 = 2.03

Residual Q3 = 68.20 (h – 1) (k – 1) = 12 5.68 –

Total Q = 142.95 hk – 1 = 19 – –

From the F-tables, F5% (v1 = 3, v2 = 12) = 3.49 and F5% (v1 = 4, v2 = 12) = 

3.26

With respect to the rows, F0(= 1.68) < F5% (= 3.49)

With respect to the columns, F0 (= 2.03) < F5% (= 3.26)

Hence, the difference between the rations and that between the breeds are not 

signifi cant.
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Example 7

The following data represent the number of units of production per day turned 

out by 5 different workers using 4 different types of machines:

Machine Type

A B C D

1 44 38 47 36

2 46 40 52 43

Workers: 3 34 36 44 32

4 43 38 46 33

5 38 42 49 39

 (a) Test whether the fi ve men differ with respect to mean produc tivity.

 (b) Test whether the mean productivity is the same for the four different 

machine types.

  We subtract 40 from the given values and work out with new values of xij.

Worker
 Machine Type

Ti T
2
i / k

2
ij

j

xÂ
A B C D

1 4 – 2 7 – 4 5 6.25 85

2 6 0 12 3 21 110.25 189

3 – 6 – 4 4 – 8 – 14 49.00 132

4 3 – 2 6 – 7 0 0 98

5 – 2 2 9 – 1 8 16.00 90

Tj 5 – 6 38 – 17 T = 20
2

181.5
jT

k
=Â

 

594

T
2
j/h 5 7.2 288.8 57.8

2 / 358.8jT h =Â
 

2
ij

i

xÂ 101 28 326 139 594

 Q =  
2

2 400
594

20
ij

T
x

N
- = -ÂÂ  = 574

 Q1 =  
2 2

iT T

k N
-Â  = 181.5 – 20 = 161.5

 Q2 =  

2 2
jT T

h N
-Â  = 358.8 – 20 = 338.8

 Q3 =  Q – Q1 – Q2 = 574 – (161.5 + 338.8) = 73.7
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ANOVA table

S.V. S.S. d.f. M.S. F0

Between rows 

(workers)
Q1 = 161.5 h – 1 = 4 40.375

40.375
6.57

6.142
=

 

Between Cols. 

(machines)
Q2 = 338.8 k – 1 = 3 112.933

112.933
18.39

6.142
=

 

Residual Q3 = 73.7 (h – 1) (k – 1) = 12 6.142 –

Total Q = 574 hk – 1 = 19 – –

From the F-tables, F5% (v1 = 4, v2 = 12) = 3.26

and F5% (v1 = 3, v2 = 12) = 3.49

With respect to the rows, F0( = 6.57) > F5% (= 3.26)

With respect to the columns, F0( = 18.39) > F5% (= 3.49)

Hence, the 5 workers differ signifi cantly and the 4 machine types also differ 

signifi cantly with respect to mean productivity.

Example 8

Four doctors each test four treatments for a certain disease and observe the 

number of days each patient takes to recover. The results are as follows (recovery 

time in days)

Doctor
Treatment

1 2 3 4

A 10 14 19 20

B 11 15 17 21

C 9 12 16 19

D 8 13 17 20

Discuss the difference between (a) doctors, and (b) treatments.

We subtracted 15 from the given values and work out with the new values of xij.

Doctor

Treatment

Ti

2
iT

k

2
ij

j

xÂ
1 2 3 4

A – 5 – 1 4 5 3 2.25 67

B – 4 0 2 6 4 4.00 56

C – 6 – 3 1 4 – 4 4.00 62

D – 7 – 2 2 5 – 2 1.00 82

Tj – 22 – 6 9 20 T = 1
2

11.25
jT

k
=Â 267

2 /jT h 121 9 20.25 100
2 / 250.25jT h =Â

 

2
ij

i

xÂ
 

126 14 25 102 267
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 Q =  

2
2 1

267
16

ij

T
x

N
- = -ÂÂ  = 266.94

 Q1 =  

2 2
iT T

k N
-Â  = 11.25 – 0.0625 = 11.19

 Q2 =  

2 2
jT T

h N
-Â  = 250.25 – 0.0625 – 250.19

 Q3 =  Q – Q1  – Q2 = 266.94 – 261.38 = 5.56

ANOVA table

S.V. S.S. d.f. M.S. F0

Between rows 

(doctors)
Q1 = 11.19 h – 1 = 3 3.73

3.73
6.02

0.62
=

Between cols. 

(treatments)
Q2 = 250.19 k – 1 = 3 83.40

83.40
134.52

0.62
=

 

Residual Q3 = 5.56 (h – 1) (k – 1) = 9 0.62 –

Total Q = 266.94 hk – 1 = 15 – –

From the F-tables, F5% (v1 = 3, v2 = 9) = 3.86

Since F0 > F5% with respect to rows and columns, the difference between the 

doctors is signifi cant and that between the treat ments is highly signifi cant.

Example 9

The following data resulted from an experiment to compare three burners B1, B2 

and B3. A Latin square design was used as the tests were made on 3 engines and 

were spread over 3 days.

Engine 1 Engine 2 Engine 3

Day 1 B1 – 16 B2 – 17 B3 – 20

Day 2 B2 – 16 B3 – 21 B1 – 15

Day 3 B3 – 15 B1 – 12 B2 – 13

Test the hypothesis that there is no difference between the burners.

We subtract 16 from the given values and work out with new values of xij.
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E1 E2 E3 Ti

2
iT

n

2
ij

j

xÂ

D1 0(B1) 1(B2) 4(B3) 5 8.33 17

D2 0(B2) 5(B3) –1(B1) 4 5.33 26

D3 –1(B3) –4(B1) –3(B2) –8 21.33 26

Tj –1 2 0 T = 1
2 / 35iT n =Â 69

T
2
j / n 0.33 1.33 0

2 / 1.66iT n =Â
2
ij

i

xÂ 1 42 26 69

Rearranging the data values according to the burners, we have

Burner xk Tk T
2
k / n

B1 0 – 1 – 4 – 5 8.33

B2 1 0 – 3 – 2 1.33

B3 4 5 – 1 8 21.33

Total T = 1
2

31kT

n
=Â

 Q =  
2

2 1
69

9
ij

T
x

N
- = -ÂÂ  = 68.89

 Q1 = 
2

21 1
35

9
i

T
T

n N
- = -Â  = 34.89

 Q2 =  
2

21 1
1.67

9
j

T
T

n N
- = -Â  = 1.56

 Q3 =  
2

21 1
31

9
k

T
T

n N
- = -Â  = 30.89

 Q4 =  Q – Q1 – Q2 – Q3 = 1.55
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ANOVA table

S.V. S.S. d.f. M.S. F0

Between rows 

(days)
Q1 = 34.89 n – 1 = 2 17.445

17.445
22.51

0.775
=

 

Between Cols. 

(engines)
Q2 = 1.56 n – 1 = 2 0.780

0.780
1.01

0.775
=

 

Between letters 

(burners)
Q3 = 30.89 n – 1 = 2 15.445

15.445
19.93

0.775
=

 

Residual Q4 = 1.55 (n – 1) (n – 2) = 2 0.775 –

Total Q = 68.89 n
2
 – 1 = 8 – –

From the F-tables, F5% (v1 = 2, v2 = 2) = 19.00

Since F0(= 19.93) > F5% (= 19.00) for the burners, there is signifi cant difference 

between the burners.

Incidentally, since F0 > F5% for the rows, the difference between the days is 

signifi cant and since F0 < F5% for the columns, the difference between the engine 

is not signifi cant.

Example 10

Analyse the variance in the following Latin square of yields (in kgs) of paddy 

where A, B, C, D denote the different methods of cultivation:

D122 A121 C123 B122

B124 C123 A122 D125

A120 B119 D120 C121

C122 D123 B121 A122

Examine whether the different methods of cultivation have given signifi cantly 

different yields.

We subtract 120 from the given values and work out with the new values of 

xij.
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j

i
1 2 3 4 Ti T

2
i / n

2
ij

j

xÂ

1 D2 A1 C3 B2 8 16 18

2 B4 C3 A2 D5 14 49 54

3 A0 B-1 D0 C1 0 0 2

4 C2 D3 B1 A2 8 16 18

Tj 8 6 6 10 T = 30
2 / 81iT n =Â 92

T
2
j / n 16 9 9 25

2 / 59jT n =Â

2
ij

i

xÂ 24 20 14 34 92

Rearranging the data according to the letters, we have

Letter xk Tk Tk
2
/n

A 1 2 0 2 5 6.25

B 2 4 – 1 1 6 9.00

C 3 3 1 2 9 20.25

D 2 5 0 3 10 25.00

Total 30 60.50

 Q = 
2 2

2 30
92

16
ij

T
x

N
- = -ÂÂ  = 35.75

 Q1 =  
2

21
i

T
T

n N
-Â  = 81 – 56.25 = 24.75

 Q2 =  
2

21
j

T
T

n N
-Â  = 59 – 56.25 = 2.75

 Q3 =  
2

21
k

T
T

n N
-Â  = 60.50 – 56.25 = 4.25

 Q4 =  Q – Q1 – Q2 – Q3 = 35.75 – (24.75 + 2.75 + 4.25) 

      = 4.0
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ANOVA table

S.V. S.S. d.f. M.S. F0

Between rows Q1 = 24.75 n – 1 = 3 8.25

Between columns Q2 = 2.75 n – 1 = 3 0.92

Between letters Q3 = 4.25 n – 1 = 3 1.42
1.42

2.12
0.67

=

Residual Q4 = 4.0 (n – 1) (n – 2) = 6 0.67 –

Total Q = 35.75 n
2 – 1 = 15 – –

From the F-tables, F5% (v1 = 3, v2 = 6) = 4.76.

Since F0(= 2.12) < F5% (= 4.76) with respect to the letters, the difference 

between the methods of cultivation is not signifi cant.

Exercise 11

Part-A (Short-answer Questions)

 1.  What do you mean by the term ‘experiment’ in Design of experi ments?

 2.  What motivated the adoption of design of experiments technique in 

scientifi c problems?

 3.  What is the aim of the design of experiments?

 4.  Distinguish between experimental and extraneous variables.

 5.  Name the basic principles of experimental design.

 6.  What do you mean by experimental group and control group?

 7.  What are the techniques frequently used in the local control of extraneous 

variables?

 8.  Name three basic designs of experiment.

 9.  What do you mean by analysis of variance.

 10.  Explain completely randomised design briefl y.

 11.  Write down the format of the ANOVA table for one factor of 

classifi cation.

 12.  Explain randomised block design briefl y.

 13.  Write down the format of the ANOVA table for two factors of 

classifi cation.

 14.  Explain Latin square design briefl y.

 15.  Is a 2 ¥ 2 Latin square design possible? Why?

  [Hint: No, as the degree of freedom for the residual variation is zero]

 16.  Write down the format of ANOVA table for three factors of 

classifi cation.

 17.  Compare RBD and LSD.

 18.  What is the main advantage of LSD over RBD?
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 19.  What is the total number of all possible Latin squares of order 3?

 20.  What is the total number of all possible Latin squares of order 4?

Part B

 21.  The following tables gives the yields of wheat from 16 plots, all of 

approximately equal fertility, when 4 varieties of wheat were cultivated 

in a completely randomised fashion. Test the hypothesis that the varieties 

are not signifi cantly differ ent.

 Plot No. :  1 2 3 4 5 6 7 8 9 10

 Variety : A B D C B C A D B D

 Yield : 32 34 29 31 33 34 34 26 36 30

 Plot No. : 11 12 13 14 15 16

 Variety : A C B A B C

 Yield : 33 35 37 35 35 32

 22.  A random sample is selected from each of 3 makes of ropes and their 

breaking strength (in certain units) are measured with the following 

results:

  I :  70, 72, 75, 80, 83

  II :  60, 65, 57, 84, 87, 73

  III :  100, 110, 108, 112, 113, 120, 107

  Test whether the breaking strength of the ropes differ signifi  cantly.

 23.  The weights in gm of a number of copper wires, each of length 1 metre, 

were obtained. These are shown classifi ed accord ing to the dye from 

which they come:

  D1 :  1.30, 1.32, 1.36, 1.35, 1.32, 1.37

  D2 :  1.28,  1.35,  1.33,  1.34

  D3 :  1.32,  1.29,  1.31,  1.28,  1.33,  1.30

  D4 :  1.31,  1.29,  1.33,  1.31,  1.32

  D5 : 1.30,  1.32,  1.30,  1.33

  Test the hypothesis that there is no difference between the mean weights 

of wires coming from different dyes.

 24.  It is suspected that four machines used in a canning opera tion fi lls cans 

to different levels on the average. Random sam ples of cans produced 

by each machine were taken and the fi ll (in ounces) was measured. The 

results are tabulated below:

Machine

 A B C D

 10.20 10.22 10.17 10.15

 10.18 10.27 10.22 10.27

 10.36 10.26 10.34 10.28

 10.21 10.25 10.27 10.40

 10.25 – – 10.30

  Do the machines appear to be fi lling the cans at different aver age 

levels?
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 25.  Different numbers of leaves were taken from each of 6 trees and their 

lengths measured. The following are the lengths in millimetres:

Tree Lengths

1 82 87 86 90 81 84

2 85 84 91 92 88

3 92 90 84 86 88 93 89 90

4 80 86 87 81 82 82

5 87 86 88 90 85 86 87

6 90 86 84 85 85 86 87 84 87

  Can all these leaves be regarded as having come from the same species 

of trees?

 26.  There are 3 typists working in an offi ce. The times (in minutes) they 

spend for tea-break in addition to the allowed lunch tea break are 

observed and noted below:

  A : 25 18 30 32 35 37 19

  B : 24 22 26 28 30 32 28 26

  C : 28 20 27 19 29 35 30 23 27 32

  Can the difference in average times that the 3 typists spend for tea break 

be attributed to chance variation?

 27.  Four machines A, B, C, D are used to produce a certain kind of cotton 

fabric. 4 Samples with each unit of size 100 square metres are selected 

from the outputs of the machines at random and the number of fl aws in 

each 100 square metres are counted, with the following results:

 A B C D

 8 6 14 20

 9 8 12 22

 11 10 18 25

 12 4 9 23

  Do you think that there is a signifi cant difference in the per formance of 

the four machines?

 28. The following table shows the yield (in certain units) of lima beans on 20 

plots of land subject to 4 different treatments, 5 plots per treatment. Set 

up an analysis of variance table to test the signifi cance of the differences 

between the yields due to different treatments.

  T1 : 26.3 30.0 54.2 25.7 52.4

  T2 : 18.5 21.1 29.3 17.2 12.4

  T3 : 36.9 21.8 24.0 18.5 10.2

  T4 : 39.8 28.7 21.2 39.4 29.0

 29.  To test the signifi cance of the variation of the retail prices of a certain 

commodity in the 4 principal cities Mumbai, Kolkata, Delhi and 

Chennai, 7 shops were chosen at random in each city and the prices (in 

Rs.) observed were as follows:
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 Mumbai :  100, 97,  91,  87,  87,  81,  79

 Kolkata :  102,  100, 98,  97,  94,  86,  80

 Delhi : 106, 102,  98,  86,  86, 84,  84

 Chennai : 97,  95,  94,  92,  90,  86,  82

  Do the data indicate that the prices in the 4 cities are signifi  cantly 

different?

 30.  Steel wire was made by 4 manufacturers A, B, C and D. In order to 

compare their products, 10 samples were randomly drawn from a batch 

of wires made by each manufacturer and the strength of each piece of 

wire was measured. The (coded) values are given below:

  A : 55, 50, 80, 60, 70, 75, 40, 45, 80, 70

  B : 70, 80, 85, 105, 65, 100, 90, 95, 100, 70

  C : 70, 60, 65, 75, 90, 40, 95, 70, 65, 75

  D : 90, 115, 80, 70, 95, 100, 105, 90, 100, 60

  Carry out an analysis of variance and give your conclusions.

 31.  A randomised block experiment was laid out (with 4 blocks, each block 

containing 4 plots) to test 4 varieties of manure A, B, C, D and the yields 

per acre are given as below. Test for the signifi cance of the difference 

among the 4 varieties of manure.

  Block I A155 B152 C157 D156

  Block II B152 C150 D156 A154

  Block III C156 D153 A161 B162

  Block IV D153 A154 B156 C155

 32.  The following table gives the gains in weights of 4 different types of 

pigs fed on 3 different rations over a period. Test whether

 (i) the difference in the rations signifi cant

 (ii) the 4 types of pigs differ signifi cantly in gaining weight

Types of pig

Ration I II III IV

A 13.8 15.7 16.0 20.2

B 8.7 11.8 9.0 12.9

C 12.0 16.5 13.3 12.5

 33.  Four experiments determine the moisture content of samples of a powder, 

each observer taking a sample from each of six consign ments. The 

assessments are given below:

Observer
Consignment

1 2 3 4 5 6

1 9 10 9 10 11 11

2 12 11 9 11 10 10

3 11 10 10 12 11 10

4 12 13 11 14 12 10

  Perform an analysis of variance on these data and discuss whether there is 

any signifi cant difference between consignments or between observers.
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 34.  In order to compare three burners B1, B2 and B3, one observation is made 

on each burner on each of four successive days. The data are tabulated 

below:

B1 B2 B3

Day 1 21 23 24

Day 2 18 17 23

Day 3 18 21 20

Day 4 17 20 22

  Perform an analysis of variance on these data and fi nd whether the differ-

ence between (i) the days, and (ii) the burners signifi  cant at 5% LOS.

 35.  A company appoints 4 salesmen A, B, C and D and observes their sales 

in 3 seasons summer, winter and monsoon. The fi gures (in lakhs of Rs) 

are given in the following table:

Salesmen

 Season A B C D

Summer 36 36 21 35

Winter 28 29 31 32

Monsoon 26 28 29 29

  Carry out an analysis of variance.

 36.  The following data represent the numbers of units of production per day 

turned out by 4 different workers using 5 different types of machines:

Machine type

Worker A B C D E

1 4 5 3 7 6

2 6 8 6 5 4

3 7 6 7 8 8

4 3 5 4 8 2

  On the basis of this information, can it be concluded that (i) the mean 

productivity is the same for different machines (ii) the workers do not 

differ with regard to productivity?

 37.  The number of automobiles arriving at 4 toll gates were recorded for a 2 

hours time period (10 am to 12 noon) for each of six working days. The 

data are as follows:

Day Gate 1 Gate 2 Gate 3 Gate 4

Mon 200 228 212 301

Tues 208 230 215 305

Wed 225 240 228 288

Thur 223 242 224 212

Fri 228 210 235 215

Sat 220 208 245 200



11.30 Probability, Sta  s  cs and Random Processes

  Determine whether the rate of arrival (i) is the same at each toll gate,

and (ii) differs signifi cantly during the six days or not.

 38.  The following table gives the number of refrigerators sold by 4 salesmen 

in 3 months:

Months
Salesman

I II III IV

May 50 40 48 39

June 46 48 50 45

July 39 44 40 39

  Determine whether (i) there is any difference in average sales made by the 

four salesmen, and (ii) the sales differ with respect to different months.

 39.  Four different drugs have been developed for a certain dis ease. These 

drugs are used in 3 different hospitals and the results, given below, show 

the number of cases of recovery from the disease per 100 people who 

have taken the drugs:

D1 D2 D3 D4

H1 19 8 23 8

H2 10 9 12 6

H3 11 13 13 10

  What conclusions can you draw based on an analysis of variance ?

 40.  The following table gives the additional hours of sleep due to 3 soporofi c 

drugs A, B, C tried on one patient each from 4 different age groups. 

Examine whether age has got any signifi cant effect on the gain in sleep. 

Also examine whether the 3 drugs are similar in their effects or not

Drug
Age group

30–40 40–50 50–60 60–70

A 2.0 1.2 1.0 0.3

B 1.1 0.8 0.0 – 0.1

C 1.5 1.3 0.9 0.1

 41.  The following table gives the results of experiments on 4 varieties 

of a crop in 5 blocks of plots. Prepare the ANOVA table to test the 

signifi cance of the difference between the yields of the 4 varieties:

Variety B1 B2 B3 B4 B5

A 32 34 33 35 37

B 34 33 36 37 35

C 31 34 35 32 36

D 29 26 30 28 29

 42.  In the table given below are the yields of 6 varieties of a crop in a 4 

replicate RBD experiment. Analyse the data:
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Replicates
Varieties

1 2 3 4 5 6

1 18.5 15.7 16.2 14.1 13.0 13.6

2 11.7 14.25 12.9 14.4 14.9 12.5

3 15.4 14.6 15.5 20.3 18.4 21.5

4 16.5 18.6 12.7 15.7 16.5 18.0

 43.  Analyse the variance in the following Latin square:

 A8 C18 B9

 C9 B18 A16

 B11 A10 C20

 44. Analyse the variance in the following Latin square:

20 17 25 34

B C D A

23 21 15 24

A D C B

24 26 21 19

D A B C

26 23 27 22

C B A D

 45.  A varietal trial was conducted on wheat with 4 varieties A, B, C, D in a 

Latin square design. The plan of the experiment and the per plot yield 

are given below.

  C25 B23 A20 D20

  A19 D19 C21 B18

  B19 A14 D17 C20

  D17 C20 B21 A15

  Analyse the data and interpret the result.

 46.  The following is the Latin square layout of a design when 4 varieties 

of seeds are tested. Set up the analysis of variance table and state your 

conclusions.

  A105 B95 C125 D115

  C115 D125 A105 B105

  D115 C95 B105 A115

  B95 A135 D95 C115

 47.  The table given below shows the yield of a certain crop in kg per plot. 

The letters A, B, C, D refer to 4 different ma nurial treatments. Carry out 

an analysis of variance.

  A260 B300 C335 D371

  B280 A300 D300 C410

  D320 C345 B340 A254

  C372 D395 A290 B328
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 48.  The following results were obtained in a textile experiment to compare 

the effects of sizing treatments A, B, C, D on the number of warps 

breaking per hour. Is the difference between the treatments signifi cant?

Loom

1 2 3 4

P
er

io
d

1
A B C D

54 31 70 45

2
B A D C

59 23 100 22

3
C D B A

40 41 74 33

4
D C A B

83 29 100 28

 49.  An agricultural experiment on the Latin square plan gave the following 

results for the yield of wheat per acre, letters corre sponding to 

varieties.

  A16 B10 C11 D9 E9

  E10 C9 A14 B12 D11

  B15 D8 E8 C10 A18

  D12 E6 B13 A13 C12

  C13 A11 D10 E7 B14

  Discuss the variation of yield with each of the factors corre sponding to 

the rows and columns.

 50.  The following is a Latine square design of fi ve treatments:

  A13 B9 C21 D7 E6

  D9 E8 A15 B7 C16

  B11 C17 D8 E10 A17

  E8 A15 B7 C10 D7

  C11 D9 E8 A11 B15

 Analyse the data and interpret the results.

ANSWERS

Exercise 11

 19.  12 20. 576

 21.  Q1 = 46.08, Q2 = 73.67, F0 = 2.50, F5% = 3.49;

  Difference between varieties not signifi cant.

 22.  Q1 = 5838.4, Q2 = 1126, F0 = 38.89, F5% = 3.68; Breaking strengths of 

ropes differ signifi cantly.

 23. Q1 = 35.98, Q2 = 99.38, F0 = 1.81, F5% = 2.87; Mean weights of wires 

do not differ signifi cantly.
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 24.  Q1 = 44.44, Q2 = 696, F0 = 2.98, F5% = 3.35; No, the machines appear to 

fi ll at same level.

 25.  Q1 = 151.95, Q2 = 255, F0 = 4.17, F5% = 2.50; Leaves have not come 

from the same species.

 26.  Q1 = 2.52, Q2 = 29.27, F0 = 11.62, F5% = 19.45; Difference may be 

attributed to chance variation.

 27.  Q1 = 540.65, Q2 = 85.75, F0 = 25.21, F5% = 3.49; Performances of the 

machines differ signifi cantly.

 28. Q1 = 34845.93, Q2 = 10032.78, F0 = 3.47, F5% = 3.24; Treatments give 

signifi cantly different yields.

 29.  Q1 = 94.97, Q2 = 1446.03, F0 = 1.9, F5% = 8.64; Prices do not differ 

signifi cantly.

 30.  Q1 = 5151, Q2 = 8348, F0 = 7.41, F5% = 8.60; Strengths of wire do not 

differ signifi cantly.

 31.  Q1 = 42.75, Q2 = 6.75, Q3 = 96.25, F0 = 4.75, F5% = 8.82; Difference 

between manures is not signifi cant.

 32.  Q1 = 3393.59, Q2 = 878.44, Q3 = 344.36,

  F0 (rows) = 9.85 and F5% = 5.14,

  F0 (columns) = 2.55 and F5% = 4.76;

  Difference between rations signifi cant. Difference between pigs is not 

signifi cant.

 33. Q1 = 13.13, Q2 = 9.71, Q3 = 13.12,

  F0 (rows) = 5.03 and F5% = 3.29,

  F0 (columns) = 2.23 and F5% = 5.05;

  Difference between observers is signifi cant, Difference between 

consignments is not signifi cant.

 34.  Q1 = 22.00, Q2 = 28.17, Q3 = 14.50,

  F0 (rows) = 3.03 and F5% = 4.76,

  F0 (columns) = 5.83 and F5% = 5.14%;

  Difference between days is not signifi cant; Difference between burners 

is signifi cant.

 35.  Q1 = 32, Q2 = 42, Q3 = 136,

  F0 (rows) = 1.42 and F5% = 19.33,

  F0 (columns) = 1.62, and F5% = 8.94;

  Differences between seasons and between salesmen are not signifi  cant.

 36.  Q1 = 22.0, Q2 = 12.8, Q3 = 30.0;

  F0 (rows) = 2.93 and F5% = 3.49;

  F0 (columns) = 1.28 and F5% = 3.26;

  Differences between the workers and between machine types are not 

signifi cant.

 37.  Q1 = 2279.83, Q2 = 1470.05, Q3 = 820.12,

  F0 (rows) = 1.80 and F5% = 4.64,

  F0 (columns) = 1.79 and F5% = 3.29;

  Differences between the days and between the gates are not sig nifi cant.
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 38.  Q1 = 109.5, Q2 = 42.0, Q3 = 64.5,

  F0 (rows) = 5.09 and F5% = 5.14,

  F0 (columns) = 1.30 and F5% = 4.76;

  Differences between the months and between salesmen are not 

signifi cant.

 39.  Q1 = 55.17, Q2 = 113.0, Q3 = 89.5,

  F0 (rows) = 1.85 and F5% = 5.14;

  F0 (columns) = 2.52 and F5% = 4.76;

  Differences between the hospitals and between the drugs are not 

signifi cant.

 40.  Q1 = 98.17, Q2 = 341.58, Q3 = 25.17,

  F0 (rows) = 11.69 and F5% = 5.14,

  F0 (columns) = 27.11 and F5% = 4.76;

  Age has signifi cant effect on the gain in sleep; Drugs differ signifi cantly 

in their effect.

 41.  Q1 = 134.0, Q2 = 21.7, Q3 = 29.5,

  F0 (row) = 18.16 and F5% = 3.49,

  F0 (columns) = 2.21 and F5% = 3.26;

  Difference between the yields of 4 varieties is signifi cant.

 42. Q1 = 56.76, Q2 = 12.58, Q3 = 80.18,

  F0 (rows) = 3.30 and F5% = 3.34,

  F0 (columns) = 2.27 and F5% = 4.65;

  Difference between the varieties is signifi cant.

 43.  Q1 = 11.56, Q2 = 68.23, Q3 = 29.56, Q4 = 68.21,

  F0 (rows) = 5.90, F0 (cols.) = 1, F0 (letters) = 2.31,

  F5% (for all) = 19.0;

  The differences between rows, between columns and between letters are 

not signifi cant.

 44.  Q1 = 34.19, Q2 = 22.69, Q3 = 141.19, Q4 = 96.87, F0 (rows) = 1.42 and 

F5% = 8.94; F0 (columns) = 2.14 and F5% = 8.94; F0(let ters) = 2.91 and 

F5% = 4.76; Differences between rows, between columns and between 

letters are not signifi cant.

 45.  Q1 = 46.5, Q2 = 7.5, Q3 = 48.5, Q4 = 10.5,

  F0 (rows) = 8.86, F0 (columns) = 1.43, F0 (letters) = 9.24, F5% = 4.76. 

Difference between varieties is signifi cant.

 46.  Q1 = 2, Q2 = 4, Q3 = 22, Q4 = 60, F0 (rows) = 15, F0 (columns) = 7.5,

F0 (letters) = 1.36, F5% = 8.94; Difference between rows is signifi cant, but 

differences between columns and between letters are not signifi cant.

 47.  Q1 = 2540.5, Q2 = 2853.75, Q3 = 18690, Q4 = 7515.75, F0 (rows) = 1.48, 

and F5% = 8.94; F0 (columns) = 1.32 and F5% = 8.94; F0 (letters) = 4.97 

and F5% = 4.76; Differences between rows and between columns are not 

signifi cant, but difference between treatments is signifi cant.
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 48.  Q1 = 376, Q2 = 8184, Q3 = 1547.5, Q4 = 284.5

  F0 (rows) = 2.64, F0 (columns) = 57.53, F0 (letters) = 10.88; F5% (for 

all) = 4.76; Difference between periods is not signifi cant; Differences 

between looms and between treatments are signifi cant.

 49.  Q1 = 2.16, Q2 = 66.56, Q3 = 122.56, Q4 = 5.28, F0 (rows) = 1.2, 

F0 (columns) = 37.8, F0 (letters) = 69.6, F5% (for all) = 3.26; Difference 

between rows is not signifi cant, but differences between columns and 

between varieties are signifi cant.

 50.  Q1 = 26, Q2 = 34, Q3 = 224.4, Q4 = 103.6, F0 (rows) = 1.33 and 

F5% = 5.91, F0 (columns) = 1.02 and F5% = 5.91, F0 (letters) = 6.50 and 

F5% = 3.26; Differences between rows and between columns are not 

signifi cant, but difference between treatments is signifi  cant.





Introduction

In these days of tough business competition, it has become essen tial to maintain 

the quality of the goods manufactured and market them at reasonable price. If 

the consumers feel satisfi ed with regard to the quality, price, etc. of the product 

manufactured by a certain company, it will result in goodwill for the product and 

in increase in sales. If not and if proper attention is not given to the complaints 

of the consumers regarding quality, the manu facturer cannot push through 

his product in the market and ul timately he has to quit the market. Hence it is 

important to maintain and improve the quality of the manufactured products for 

the manufacturer to remain and fl ourish in his business.

Quality does not mean the highest standard of the manufactured product, 

but conforming to the prescribed standard of the product so as to satisfy the 

consumers, even if it may be below the highest absolute standard.

Though the quality standard might have been specifi ed, it is not possible to 

avoid some variation in the quality of the product. For example, a machine is 

set and hence expected to produce per day 10,000 bolts, each of length 2 cm. It 

is very unlikely that all the bolts are of length 2 cm exactly. Some of them may 

be slightly less than 2 cm and some slightly more than 2 cm in length. Such 

variation in quality of the product can be divided into two kinds, namely, chance 

variation and assignable varia tion.

Chance variation is the variation in the quality of the product which occurs 

due to many minor, but random causes, such as slight changes in temperature, 

pressure and metal hardness. Assignable variation is the variation that occurs 

due to non-random causes like poor quality of input raw material, mechanical 

faults, handling of machines by inexperienced operators, etc. Though no method 

is available by which the chance variation can be con trolled or eliminated, 

assignable variation can be eliminated, if detected early during the production 

process.

Chapter 12
Statistical Quality 

Control



12.2 Probability, Sta  s  cs and Random Processes

Statistical Quality Control (SQC) is a statistical method for fi nding whether 

the variation in the quality of the product is due to random causes or assignable 

causes. SQC does not involve inspecting each and every item produced for quality 

standards, but involves inspection of samples of items produced and applica tion 

of tests of signifi cance.

Statistical Quality Control methods are applied to two distinct phases of 

manufacturing operation. Process control and Acceptance sampling or product 

control.

Process Control means control of the quality of the goods while they are in 

the process of production. To achieve process control, repeated random samples 

are taken from the population of items, as and when they are being produced, the 

sample results are subjected to statistical analysis by means of simple graphical 

device, known as control charts and the faults in the production process are 

rectifi ed then and there.

Control Chart is a graphical device mainly used for the study and control of 

the manufacturing process. It is simple to construct and easy to interpret. The 

manufacturer can fi nd out, at a glance, whether or not the process is under control 

so that the proportion of defective items is not excessive. Control chart is also 

called shewhart chart.

There are two types of control charts, namely,

 1. Control charts of variables (Mean and range charts).

 2. Control charts of attributes (p-chart and c-chart).

Variables are the quality characteristics of a product that are measurable e.g., 

diameter of a hole bored by a drilling machine. For the construction of control 

charts of a variable, a record of the actual measurements of that variable for the 

sampled items must be known.

Attributes are the quality characteristics of a product that are not amenable for 

measurement, but are identifi ed by their pres ence or absence, e.g. the presence 

(and hence the number) of defective items in a sample.

Control Charts of Variables

Normally, a production process is expected to turn out quality products or to be 

under control. So the production process is allowed to operate and to produce 

items. To ensure that the process continues to be in a state of control, a sample of 

the produced items is drawn periodically and tested for their quali ty. If the quality 

of the sampled items is satisfactory in the statistical sense, the production process 

is allowed to continue. Otherwise, corrective measures are taken to restore the 

quality of the items.

Instead of inspecting each item in a sample for its quality, it will be 

advantageous and prudent to arrive at a conclusion re garding the quality of the 

items on the basis of the sample mean. Hence, the control chart for the sample 

mean is constructed and used for taking decisions regarding the quality of the 

items. The sample mean alone may not refl ect the quality variations of the items, 
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but the range of the sampled values is known to be a simple measure of the quality 

variations. Hence the control chart for the sample range is also constructed and 

used for taking decisions regarding the quality of the items.

Control Limits for the Sample Mean X
–

 and Sample Range R

Let X be the random variable that represents the measurable quality characteristic 

of the population of the items produced. We assume that X follows a normal 

distribution with mean m and standard deviation s.

Then X , the mean of a sample of size n, is also a random variable that is 

normally distributed with mean m and S.D. 
n

s
.

We know, from the property of normal distribution that

P
3 3

X
n n

s s
m m

Ï ¸- £ £ +Ì ˝
Ó ˛

 = 0.9973. This means that 99.73% of the sample 

means (viz., almost all the sample mean values) will be within m – 
3

n

s
 and

m + 
3

n

s
. The variation in the sample mean values within these limits is due to 

random causes. If an observed value of X  lies outside m ± 
3

n

s
, it indicates the 

presence of some assignable cause. m ± 
3

n

s
 are called the control limits for the 

sample mean X ; m – 
3

n

s
 is called the Lower Control Limit (LCL) and m + 

3

n

s
 

is called the Upper Control Limit (UCL).

Similarly R, the sample range follows a normal distribution with mean R  

and S.D. sR. Since P { R  – 3 sR £ R £ R  + 3sR} = 0.9973, the lower and upper 

control limits for the sample range R are 3R∓  sR, where R  = Â1
iR

N
, where 

N is the number of samples each of size n.

Now, m and s are not known and computation of sR involves some numerical 

work. Hence, they are estimated approximately by using m = X  = 
1

iX
N

Â , 

3

n

s
 = A2 R , sR (in LCL) = 

1

3
 (1 – D3) R  and sR (in UCL) = 

1

3
 (D4 – 1) R ,

where A2, D3 and D4 are control chart constants, whose values depend on the 

sample size n and which are readily available in the table of control chart constants 

(Table 12.1), given at the end of the chapter. Using these approximations, the 

control limits are obtained as follows:

 LCL for X   = X  – A2 R  and UCL for X  = X  + A2 R

 LCL for R = D3 R  and UCL for R = D4 R
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Procedure to Draw the X
–

-chart and R-chart

 1. The sample values in each of the N samples each of size n will be given. 

Let X1, X2, ..., XN be the means of the N samples and R1, R2, ..., RN be 

the ranges of the N samples. By range of a sample, we mean the maximum 

sample value minus the minimum sample value in that sample.

 2. We then compute = + + +1 2

1
( ... )Nx x x x

N
 and R  = 

1

N
 (R1 + R2 + ... 

+ RN).

 3. The values of A2, D3, D4 for the given sample size n are taken from the 

table of control chart constants.

 4. Then the values of the control limits 2X A R±  (for the mean chart) and 

the control limits D3 R  and D4 R  (for the range chart) are computed.

 5. On the ordinary graph sheet, the sample numbers are represent ed on the 

x-axis and the sample means on the y-axis (for the mean chart) and the 

sample ranges on the y-axis (for the range chart).

 6. For drawing the mean chart, we draw the three lines y = X , y = 2X A R-  

and y = 2X A R-  which represent respectively the central line, the LCL. 

line and UCL line. Also we plot the points whose coordinates are (1, X1),

(2, X2), ..., (N, XN) and join adjacent points by line segments. The graph 

thus obtained is the X -chart.

 7. For drawing the range chart, we draw the three line y = R , y = D3 R  and 

y = D4 R  which represent respectively the central line, the LCL line and 

UCL line. Also we plot the points whose co-ordinates are (1, R1), (2, R2), 

..., (N, RN) and join adjacent points by line segments. The graph thus 

obtained is the R-chart.

Comments on State of Control of the Process

If the plotted points fall within the LCL and UCL lines, there is nothing to worry, 

as in such a case the variation between the samples is attributed to chance causes 

and the process is under control.

But when one or more plotted points lie outside the control lines, it is to be 

considered as a danger signal, indicating that the variations between samples are 

caused by assignable causes and the process is out of control and that necessary 

corrective action should be taken at once.

Sometimes even though the plotted points may lie between the control lines, 

a sizeable number of successive points may show a tendency to lie on defi nite 

curves going towards the LCL or UCL lines or may lie on the same side of 

the central line. Such a pattern of sample points should also be considered as a 

danger signal, warranting a change in the production process.
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Control Chart for Sample Standard Deviation or s-chart

Since the standard deviation is an ideal measure of dispersion, a combination of 

control charts for the sample mean X  and the sample S.D. s is more appropriate 

than the combination of X  and R charts for controlling process average and 

process variability. We know that s, the S.D. of a sample of size n, is a random 

variable that is normally distributed with mean s and S.D. 
2

s

n
, where s is the 

S.D. of the population from which the sample is drawn.

Hence, P 
3 3

2 2
s

n n

s s
s s

Ï ¸
- £ £ +Ì ˝

Ó ˛
 = 0.9973

\ the lower and upper control limits for s are s – 
3

2n

s
 and s + 

3

2n

s
.

Since s is not known, it is estimated approximately by =
1

s
N

 (s1 + s2 + 

  + sN), where si is the S.D. of the ith sample and N is the number of samples 

considered. Hence, LCL for s = 
3

1
2n

Ê ˆ
-Á ˜Ë ¯

 s   B3 s  and UCL for s = 
3

1
2n

sÊ ˆ
+Á ˜Ë ¯

 

s   B4 s .

The values of B3 and B4 can be read for various values of sample size n from 

the table of control chart constants.

The procedure for drawing the s-chart is similar to that for x -chart and 

R -chart.

If x  values and s values only are given, then CL for x  = x , LCL for x  = 

1

1n
X A s

n

-
-  and UCL for 

-
= + 1

1n
X X A s

n
, when n £ 25.

Note  The diffi culty of computation of s makes the use of s-chart almost impractical in most 

industrial situations. R-chart is preferred to s-chart because of its computational ease.

Control Charts for Attributes

To control the quality of certain products whose attributes are available, the 

following control charts are used:

 (i) p-chart for proportion of defectives

 (ii) np-chart for number of defectives

 (iii)  c-chart for the number of defects in a unit

Of the above, p-chart is used when all the samples drawn from the produced 

items are of the same size or of different size; np-chart is used only when all the 

samples are of the same size n; c-chart is used only when each sample consists 

of only one item.
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np-chart

If the proportion of defectives (successes) in the population of items produced 

is p and the number of defectives in a sample of size n (viz., n trials) is X, then 

X follows a binomial distribution with mean np and S.D. npq . When n is 

suffi ciently large and when neither p nor q is very small, X follows a normal 

distribution with mean np and S.D. npq .

Hence, P{np – 3 npq  £ X £ np + 3 npq} = 0.9973.

\ the control limits for X, the number of defectives, are np ∓ 3 npq.

As the population proportion of defectives p will not be known, it is 

estimated approximately as p  = 
1

N
 (p1 + p2 +   + pN) or equivalently =

1
np

N
 

(np1 + np2   + npN), where all the samples are of the same size n, the number of 

samples is N and the number of defectives in the ith sample is npi.

Hence, the control limits for the number of sample defectives are 

± -3 (1 )np np p , where each sample is of size n. Here, the target value or the 

central (line) value of np is np. To draw the np-chart, the sample number is 

represented on the x-axis and the number of defectives is represented on the 

y-axis.

The lines y = np, y = - -3 (1 )np np p  and y = + -3 (1 )np np p , which 

represent respectively the central line, LCL line and UCL line are drawn. We 

plot the points (1, np1), (2, np2), …, (N, npN) on the graph sheet and adjacent 

points are joined by line segments. The state of control of the process is decided 

as before.

p-chart

Under the same assumptions as those of np-chart, since X follows a normal 

distribution with mean np and S.D. npq , the proportion of defectives, viz; 
X

n
 

follows a normal distribution with mean p and S.D. 
pq

n
.

Hence, P 3 3
pq X pq

p p
n n n

Ï ¸Ô Ô- £ £ +Ì ˝
Ô ÔÓ ˛

 = 0.9973.

\ the control limits for 
X

n
, the proportion of defectives, are 3

pq
p

n
+ .

As in the previous case, p is estimated as =
1

p
N

 (p1 + p2 +   + pN), where 

the proportion of defectives in the ith sample is pi.

Hence, the control limits for the fraction or proportion of sample defective are

 p  ∓ 
-(1 )

3
p p

n
 (1)
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The formula (1) holds good when all the samples are of the same size n.

If the size of the sample differs from sample to sample, then the formula for 

the control limits will be 
-

+
(1 )

3
p p

p
n

, where n  is the average sample size 

given by =
1

n
N

 (n1 + n2 +   + nN), where ni is the size of the ith sample. This 

holds good, when ni values do not differ very much from n . This method is 

applied if 0.75 n  < ni < 1.25 n  for all i.

To draw the p-chart, the sample number is represented on the x-axis and the 

proportion of defectives is represented on the y-axis. The lines

 y = p , y = 
È ˘- -

- = -Í ˙
Í ˙Î ˚

(1 ) (1 )
3 or 3

p p p p
p y p

n n

and y = 
È ˘- -

+ = +Í ˙
Í ˙Î ˚

(1 ) (1 )
3 or 3

p p p p
p y p

n n

which represent respectively the central line, LCL line and UCL line are drawn. 

We plot the points (1, p1), (2, p2), ..., (N, pN) on the graph paper and adjacent 

points are joined by line seg ments. The state of control of the process is decided 

as before.

Note  np-chart and p-chart are used when p
–
 ≥ 0.05 or np

–
 ≥ 4.

c-chart

When it is required to control (minimise) the number of defects per unit, c-chart 

is used. ‘c’ represents the number of defects in a unit. For construction of c-chart, 

a record of the number of defects in each of the N articles inspected should be 

known. Since the probability of occurrence of a defect in a unit is very small, 

the number X of defects in a unit follows a Poisson dis tribution with parameter 

l, viz., with mean l and S.D. l . In the limit, X follows a normal distribution 

with mean l and S.D. l .

Hence, P {l – 3 l  £ X £ l + 3 l } = 0.9973

\ the control limits for X, the number of defects in a unit are 3l l+ .

As the value of l will not be known, it is estimated approximately by c,

where c  = 
1

N
 (c1 + c2 +   + cN), where ci is the number of defects in the ith unit.

Hence, the control limits for the number of defects c in a unit are 3c c+ .

To draw the c-chart, the item number is represented on the x-axis and the 

number of defects in a unit is represented on the y-axis. The lines y = c , y = 

3c c-  and y = 3c c+ , which represent respectively the central line, LCL 

line and UCL line are drawn. We plot the points (1, c1), (2, c2), …, (N, cN) on 
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the graph sheet and the adjacent points are joined by line segments. The state of 

control of the process is decided as before.

Note  c-chart is used when c– ≥ 4 or when c– is small compared with the maximum number 

of defects given in the data.

Specifi cation Limits and Tolerance Limits

Though it is desirable to specify a single target value as the acceptable quality 

standard of a manufactured product, it is not possible to avoid some variation 

from the target value due to chance and assignable causes. Hence, the quality of 

the product is taken as acceptable, if the measurement of the quality characteristic 

lies within an interval that encloses the target value. The end values of such an 

interval are called specifi cation limits. For example, when the target length of a 

bolt is 2.5 cm, the specifi cation limits may be assumed as 2.4 cm and 2.6 cm, 

viz., 2.5 ± 0.1 cm.

Tolerance Limits of a quality characteristic are defi ned as those values 

between which nearly all the manufactured items will lie.

If the measurable quality characteristics X is assumed to be normally 

distributed with mean m and S.D. s, then the tolerance limits are usually taken as 

m ± 3s, since only 0.27% of all the items produced can be expected to fall outside 

these limits.

As m and s will not be known, we get the tolerance limits approximately using 

the control charts for X  and R as explained below: N samples, each of size n, are 

taken from the population of items produced. Let 1 2, , , NX X X…  be the means of 

these samples and R1, R2, …, RN be the ranges of these samples. The X -chart 

and R-chart are constructed using these values. If the variations of the sample 

mean and range values are due to chance causes only, viz., if the process is under 

control with respect to both X  and R, then the tolerance limits are computed as 

2

3
R

X
d

± , since the estimates of the mean and S.D. of the population are given 

by m̂  = X  and ŝ  = 
2

R

d
, where d2 is a control chart constant to be read from the 

table of control chart constants.

If the process is not under control with respect to X  or R or both, then the 

samples whose means or ranges go out of control are removed and a new set 

of X  and R  values are computed using the remaining samples. Using these 

values, a new set of control limits are computed and the control of the process is 

checked. This procedure is repeated until the process comes under control. After 

ascertaining that the process is under control with respect to both the sample 

mean and range, the tolerance limits are computed as 
2

3
ˆ

R
X

d
m = ± , where X  

and R  are computed using the samples that remain under control ultimately.
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If these tolerance limits are within the specifi cation limits, then the process is 

assumed to operate at an acceptable level. If they do not fall within the specifi cation 

limits, the process is bound to produce some defective (unacceptable) items, even 

though the process may be under control.

Worked Example 12

Example 1

Given below are the values of sample mean X  and sample range R for 10

samples, each of size 5. Draw the appropriate mean and range charts and comment 

on the state of control of the process.

Sample No. : 1 2 3 4 5 6 7 8 9 10

Mean : 43 49 37 44 45 37 51 46 43 47

Range : 5 6 5 7 7 4 8 6 4 6

 X  = 
1

ix
N

Â

 = 
1

10
 (43 + 49 + 37 +   + 47)

 = 44.2

 R  = 
1

iR
N

Â

 = 
1

10
 (5 + 6 + 5 +   + 6)

 = 5.8

From the table of control chart constants, for sample size n = 5, we have

 A2 = 0.577, D3 = 0 and D4 = 2.115

=

= =

Control limit for chart:

CL (central line) 44.2

X

X

 LCL = X  – A2 R  = 44.2 – 0.577 ¥ 5.8 = 40.85

 UCL = X  + A2 R  = 44.2 + 0.577 ¥ 5.8 = 47.55

Control Limit for R-chart

CL = R  = 5.8; LCL = D3 R  = 0; UCL = D4 R  = 2.115 ¥ 5.8 = 12.27

The mean chart and range chart relevant to this problem are given in Fig. 12.1 

(a) and (b):
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Fig. 12.1

State of Control
All the sample points in the range chart lie within the control lines. Hence, as far 

as the variability of the sample values is concerned, the process is under control. 
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But in the mean chart, two points lie above the upper control line and two points 

lie below the lower control line. Hence, as far as the average of the sample values 

is concerned, the process is not under control. On the whole, we conclude that 

the process is out of control.

Note  Even though we could have arrived at this conclusion regarding the state of control 

without drawing the control charts, it is necessary to draw the control charts, as it is a part of the 

solution to the given problem.

Example 2

A machine fi lls boxes with dry cereal. 15 samples of 4 boxes are drawn randomly. 

The weights of the sampled boxes are shown as follows. Draw the control charts 

for the sample mean and sample range and determine whether the process is in 

a state of control.

Sample Number 1 2 3 4 5 6 7 8

Weights of boxes 

(X)

10.0 10.3 11.5 11.0 11.3 10.7 11.3 12.3

10.2 10.9 10.7 11.1 11.6 11.4 11.4 12.1

11.3 10.7 11.4 10.7 11.9 10.7 11.1 12.7

12.4 11.7 12.4 11.4 12.1 11.0 10.3 10.7

9 10 11 12 13 14 15

11.0 11.3 12.5 11.9 12.1 11.9 10.6

13.1 12.1 11.9 12.1 11.1 12.1 11.9

13.1 10.7 11.8 11.6 12.1 13.1 11.7

12.4 11.5 11.3 11.4 11.7 12.0 12.1

As the X-chart and R-chart are to be drawn, we fi rst compute the means and 

ranges of the given samples.

Sample 

No. (i)

1 2 3 4 5 6 7 8 9 10

SX 43.9 43.6 46.0 44.2 46.9 43.8 44.1 47.8 49.6 45.6

X
–

i 11.0 10.9 11.5 11.1 11.7 11.0 11.0 12.0 12.4 11.4

Ri 2.4 1.4 1.7 0.7 0.8 0.7 1.1 2.0 2.1 1.4

11 12 13 14 15

47.5 47.0 47.0 49.1 46.3

11.9 11.8 11.8 12.3 11.6

1.2 0.7 1.0 1.2 1.5
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Now, X  = 
1

iX
N

Â  = 
1

15
 (11.0 + 10.9 + 11.5 +   + 11.6)

 = 
173.4

15
 = 11.56

 R  = 
1

iR
N

Â  = 
1

15
 (2.4 + 1.4 + 1.7 +   + 1.5)

 = 
19.9

15
 = 1.33

From the table of control chart constants, for the sample size n = 4, we have

 A2 = 0.729, D3 = 0 and D4 = 2.282

Control Limits for X
–

-chart

 CL = X  = 11.56; LCL = X  – A2 R  = 11.56 – 0.729 ¥ 1.33

 = 10.59

 UCL = X  + A2 R  = 11.56 + 0.729 ¥ 1.33 = 12.53

Control Limits for R-chart

 CL = R  = 1.33; LCL = D3 R  = 0 and UCL = D4 R  = 2.282 ¥ 1.33

 = 3.04
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State of Control
Since all the sample points lie within upper and lower control lines both in the 

X-chart and in the R-chart, the process is under control.

Example 3

The values of sample mean X  and sample standard deviation s for 15 samples, 

each of size 4, drawn from a production process are given below. Draw the 

appropriate control charts for the process average and process variability. 

Comment on the state of control.

Sample No. 1 2 3 4 5 6 7 8 9 10

Mean 15.0 10.0 12.5 13.0 12.5 13.0 13.5 11.5 13.5 13.0

S.D. 3.1 2.4 3.6 2.3 5.2 5.4 6.2 4.3 3.4 4.1

11 12 13 14 15

14.5 9.5 12.0 10.5 11.5

3.9 5.1 4.7 3.3 3.3

 X  = 
1

iX
N

Â  = 
1

15
 ¥ 185.5 = 12.36

 s  = 
1

is
N

Â  = 
1

15
 ¥ 60.3 = 4.02

From the table of control chart constants, for sample size n = 4, we have

 A1 = 1.880, B3 = 0 and B4 = 2.266
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Control Limits for X
–

-chart

 CL = X  = 12.36

 LCL = 1
1

n
X A s

n
-

-
 = 12.36 – 1.880 

4

3
 ¥ 4.02 = 3.63

 UCL = 1
1

n
X A s

n
+

-
 = 12.36 + 1.880 

4

3
 ¥ 4.02 = 21.09

Control Limits for s-chart

 CL = s  = 4.02; LCL = B3
s  = 0;

 UCL = B4
s  = 2.266 ¥ 4.02 = 9.11

The mean chart and S.D. chart relevant to this problem are given in Fig. 12.3.

State of Control
Even before drawing the control charts, we observe that the given sample mean 

values lie between 3.63 and 21.09 and that the given S.D. values fall within 0 and 

9.11. Hence, the process is under control with respect to average and variability.
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Fig. 12.3

Example 4

The following data give the coded measurements of 10 samples each of size 5, 

drawn from a production process at intervals of 1 hour. Calculate the sample 

means and S.D.’s and draw the control charts for X  and s.

Sample Number 1 2 3 4 5 6 7 8 9 10

Coded 

measurements 

(X)

9 10 10 8 7 12 9 15 10 16

15 11 13 13 9 15 9 15 13 14

14 13 8 11 10 7 9 10 14 12

9 6 12 10 4 16 13 13 7 14

13 10 7 13 5 10 5 17 11 14

We fi rst compute mean and S.D. for each sample.

Sample Number 1 2 3 4 5 6 7 8 9 10

Â X 60 50 50 55 35 60 45 70 55 70

X 12 10 10 11 7 12 9 14 11 14

-Â 2( )X X 32 26 26 18 26 54 32 28 30 8

s 2.5 2.3 2.3 1.9 2.3 3.3 2.5 2.4 2.4 1.3
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 X  = 
1

iX
N

Â

 = 
1

10
 ¥ (12 + 10 + 10 +   + 14) = 

110

10
 = 11

 s  = 
1

is
N

Â

 = 
1

10
 ¥ (2.5 + 2.3 +   + 1.3) = 

23.2

10
 = 2.32

From the table of control chart constants, for sample size n = 5, we have

 A1 = 1.596; B3 = 0 and B4 = 2.089

Control Limits for X
–

-chart [Fig. 12.4 (a)]

 CL = X  = 11;

 LCL = X  – A1 ◊ 
1

n
s

n -

 = 11 – 1.596 
5

4
 ¥ 2.32 = 6.86

 UCL = X  + A1 ◊ 
1

n
s

n -

 = 11 + 1.596 
5

4
 ¥ 2.32 = 15.14

Control Limits for s-chart [Fig. 12.4 (b)]

 CL = s  = 2.32

 LCL = B3 s  = 0

 UCL = B4 s  = 2.089 ¥ 2.32 = 4.85

(s-chart is given on page 12.17)

State of Control
The given sample mean ( X ) values lie between 6.86 and 15.14 and the given 

S.D. (s) values between 0 and 4.85. Hence the process is under control with 

respect to average and variability.

Note  Had we computed LCL and UCL for X
–

 chart using (
2X A R∓ ), the process 

would be out of control with respect to the mean.
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Example 5

In a factory producing spark plugs, the number of defectives found in the 

inspection of 15 lots of 100 each is given below: Draw the control chart for the 

number of defectives and comment on the state of control.

Sample number (i) : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of defective 

(np) 

: 5 10 12 8 6 4 6 3 4 5 4 7 9 3 4

 Ânp  = 5 + 10 + 12 +   + 3 + 4 = 90

\ np  = =Â1 90

15
np

N
 = 6

and p  = ¥ = ¥
1 1

6 6
100n

 = 0.06 (∵ each sample contains 100 items)

For the np-chart (Fig. 12.5)

 CL = np  = 6

 LCL = - -3 (1 )np np p  = 6 – 3 6 0.94¥  = – 1.12

Since LCL cannot be negative, LCL = 0

 UCL = + -3 (1 )np np p  = 6 + 3 6 0.94¥  = 13.12

N
o
.
o
f
d
e
fe
c
ti
v
e
s
(

)
n
p

y = 13.12 (UCL)
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Fig. 12.5



Sta  s  cal Quality Control 12.19

Since all the sample points lie between the upper and lower control lines, the 

process is under control.

Example 6

15 samples of 200 items each were drawn from the output of a process. The 

number of defective items in the samples are given below. Prepare a control chart 

for the fraction defective and comment on the state of control.

Sample No. 

(i) 

: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of 

defective (np) 

: 12 15 10 8 19 15 17 11 13 20 10 8 9 5 8

 Ânp = 12 + 15 + 10 +   + 5 + 8 = 180

\ np  = 
1

np
N

Â  = 
180

15
 = 12

\ p  = 
12

200
 (∵ each sample contains 200 items)

 = 0.06

For the p-chart

 CL = p  = 0.06

 LCL = 
-

-
(1 )

3
p p

p
n

 = 0.06 – 3
0.06 0.94

200

¥
 = 0.01

 UCL = 
-

+
(1 )

3
p p

p
n

 = 0.11

The fraction defectives (values of p) for the given samples are

0.06, 0.075, 0.05, 0.04, 0.095, 0.075, 0.085, 0.055, 0.065, 0.1, 0.05, 0.04, 

0.045, 0.025, 0.04 (1) p-chart is given on page 12.20.

Since all the sample points lie between the LCL and UCL lines, the process 

is under control.

Example 7

10 samples each of size 50 were inspected and the number of defectives in the 

inspection were: 2, 1, 1, 2, 3, 5, 5, 1, 2, 3. Draw the appropriate control chart for 

defectives.

Since the number of defectives in 10 samples, each of size 50, are given, we 

may construct either number of defectives (np) chart or proportion of defectives 

(p) chart. We shall construct both and compare the charts.

 Ânp = 2 + 1 + 1 +   + 2 + 3 = 25
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\ np  = 
1

np
N

Â  = 
25

10
 = 2.5

and p  = ¥
1

np
n

 = 
1

50
 ¥ 2.5 = 0.05

For the np-chart [Fig. 12.7 (a)]

 CL = np  = 2.5;

 LCL = - -3 (1 )np np p  = 2.5 – 3 2.5 0.95¥  = – 2.12

Since LCL cannot be negative, we take LCL = 0.

 UCL = + -3 (1 )np np p  = 2.5 + 3 2.5 0.95¥  = 7.12

For the p-chart [Fig. 12.7 (b)]

 CL = p  = 0.05;

 LCL = 
-

-
(1 )

3
p p

p
n

 = 0.05 – 3
0.05 0.95

50

¥
 = – 0.042

As LCL cannot be negative, we take LCL = 0.

 UCL = p  + 3 
-(1 )p p

n
 = 0.05 + 3 

0.05 0.95

50

¥
 = 0.142
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The proportion of defecties (p) for the given samples are 0.04, 0.02, 0.02, 

0.04, 0.06, 0.10, 0.10, 0.02, 0.04, 0.06.
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Since all the sample points lie within the LCL and UCL lines in both np and 

p-charts, the process is under control. If we use suitable scales, we may see that 

the np-chart and p-chart are identical.

Example 8

Construct a control chart for defectives for the following data:

Sample No. : 1 2 3 4 5 6 7 8 9 10

No. inspected : 90 65 85 70 80 80 70 95 90 75

No. of defectives : 9 7 3 2 9 5 3 9 6 7

We note that the size of the sample varies from sample to sample. Hence, we 

cannot construct the np-chart. We can construct p-chart, provided 0.75 n  < ni < 

1.25 n , for all i

Here, n  = =Â1 1

10
in

N
 ¥ (90 + 65 +   + 90 + 75)

 = 
1

10
 ¥ 800 = 80

Hence, 0.75 n  = 60 and 1.25 n  = 100

The values of ni be between 60 and 100. Hence, p-chart, given in Fig. 12.8, 

can be drawn by the method given below.

Note  If the condition (0.75 n  < ni < 1.25 n ) is not satisfi ed, other available methods 

may be used. They are beyond the scope of this book.

Now, p  = 
Total no. of defectives

Total no. of items inspected

 = 
60

800
 = 0.075

Hence, for the p-chart to be constructed,

 CL = p  = 0.075

 LCL = p  – 3
-(1 )p p

n
 = 0.075 – 3

0.075 0.925

80

¥

 = – 0.013

Since LCL cannot be negative, it is taken as 0.

 UCL = p  + 3 
-(1 )p p

n
 = 0.075 + 3

0.075 0.925

80

¥

 = 0.163
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The values of pi for the various samples are 0.100, 0.108, 0.035, 0.029, 0.113, 

0.063, 0.043, 0.095, 0.067, 0.093.

Since all the sample points lie within the control lines, the process is under 

control.

Example 9

15 tape-recorders were examined for quality control test. The number of defects 

in each tape-recorder is recorded below. Draw the appropriate control chart and 

comment on the state of con trol.

Unit no. (i) : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of defects (c) : 2 4 3 1 1 2 5 3 6 7 3 1 4 2 1



12.24 Probability, Sta  s  cs and Random Processes

Since the number of defects per sample containing only one item is given, we 

can draw the c-chart (Fig. 12.9).

 c  = 
1

ic
N

Â  = 
1

15
 (2 + 4 + 3 +   + 2 + 1)

 = 
45

15
 = 3

Note  Even though c  < 4, we draw the c-chart, as it is the only possi ble chart.

 CL = c  = 3; LCL = c  – 3 c  = 3 – 3 3  – 2.20

Since LCL cannot be negative, we take LCL = 0

 UCL = 3c c+  = 3 3 c+  = 8.20
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Fig. 12.9

Since all the sample points lie within the LCL and UCL lines, the process is 

under control.

Example 10

A plant produces paper for newsprint and rolls of paper are inspected for defects. 

The results of inspection of 20 rolls of papers are given below: Draw the c-chart 

and comment on the state of control.
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Roll No. (i): 1 2 3 4 5 6 7 8 9 10

No. of defects (c): 19 10 8 12 15 22 7 13 18 13

(i) 11 12 13 14 15 16 17 18 19 20

(c) 16 14 8 7 6 4 5 6 8 9

 c  = 
1

ic
N

Â  = 
1

20
 ¥ 220 = 11

For the c-chart (Fig. 12.10),

 CL = c  = 11; LCL = 3c c-  = 11 – 3 11  = 1.05

 UCL = 3c c+  = 11 + 3 11  = 20.95

y = 20.95 (UCL)
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Since one point falls outside the control lines, the process is out of control.

Example 11

The specifi cations for a certain quality characteristic area 15.0 ± 6.0 (in coded 

values). 15 samples of 4 readings each gave the following values for X  and R.

Sample No. (i): 1 2 3 4 5 6 7

X
– 

: 16.1 15.2 14.2 13.9 15.4 15.7 15.2

R: 3.0 2.1 5.6 2.4 4.1 2.7 2.3

i: 8 9 10 11 12 13 14 15

X
–

: 15.0 16.5 14.9 15.3 17.8 15.9 14.6 15.2

R: 3.8 5.0 2.9 13.8 14.2 4.8 5.0 2.2

Compute the control limits for X  and R-charts using the above data for all 

the samples. Hence, examine if the process is in control. If not, remove the 

doubtful samples and recompute the values of X  and R . After testing the state 

of control, estimate the tolerance limits and fi nd if the process will meet the re-

quired specifi cations.

Let us consider all the 15 samples given.

 X  = 
1

X
N

Â  = 
1

15
 (16.1 + 15.2 +   + 15.2)

 = 
1

15
 ¥ 230.9 = 15.39

 R  = 
1

R
N

Â  = 
1

15
 (3.0 + 2.1 +   + 2.2)

 = 
1

15
 ¥ 73.9 = 4.93

For the X
–

-chart

 CL = X  = 15.39;

 LCL = X  – A2 R  = 15.39 – 0.729 ¥ 4.93 = 11.80

 UCL = X  + A2 R  = 15.39 + 0.729 ¥ 4.93 = 18.98

For the R-chart

 CL = R  = 4.93; LCL = D3 R  = 0

 UCL = D4 R  = 2.282 ¥ 4.93 = 11.25
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The process is under control with respect to the average ( X -chart), but it is 

not under control with respect to variability (R-chart), since R11 (R value for the 

sample No. 11) = 13.8 and R12 = 14.2 exceed UCL = 11.25.

Hence, the process is not under control. So we remove the samples numbered 

11 and 12 from the given data.

Let us now recompute X  and R  based on the remaining 13 samples.

 X  = 
1

13
 (16.1 + 15.2 +   + 14.9 + 15.9 + 14.6 + 15.2)

 = 
1

13
 ¥ 197.8 = 15.22

 R  = 
1

13
 (3.0 + 2.1 +   + 2.9 + 4.8 + 5.0 + 2.2)

 = 
1

13
 ¥ 45.9 = 3.53

Let us now recompute the revised control limits for X  and R charts.

For the X
–

-chart,

 CL = X  = 15.22;

 LCL = X  – A2 R  = 15.22 – 0.729 ¥ 3.53

 = 12.65

 UCL = X  + A2 R  = 15.22 + 0.729 ¥ 3.53 = 17.79

For the R-chart

 CL = R  = 3.53; LCL = D3 R  = 0;

 UCL = D4 R  = 2.282 ¥ 3.53 = 8.06

We see that the process is under control with respect to the 13 samples 

considered.

Now we can compute the tolerance limits using the revised values of X  and

R .

The tolerance limits are given by

  X  ∓ 
2

3R

d

 = 15.22 
3 3.53

2.059

¥
∓
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(The value of d2 is read from the table of control chart con stants for n = 4)

 = 15.22 ∓ 5.14

Thus, the required tolerance limits are (10.08, 20.36)

Since these tolerance limits lie within the specifi cation limits (9.0, 2.10), the 

process meets the required specifi cations.

Example 12

The specifi cations for a certain quality characteristic are (60 ± 24) in coded values. 

The table given below gives the measurements obtained in 10 samples. Find the 

tolerance limits for the process and test if the process meets the specifi cations.

Sample No. (i) 1 2 3 4 5 6 7 8 9 10

Measurements (X) 75 48 57 61 55 49 74 67 66 62

66 79 55 71 68 98 63 70 65 68

50 53 53 66 58 65 62 68 58 66

62 61 61 69 62 64 57 56 52 68

52 49 72 77 75 66 62 61 58 73

70 56 63 53 63 64 64 66 50 68

The values of X  and R computed for all the samples are tabulated below:

i : 1 2 3 4 5 6 7 8 9 10

ÂXi : 375 346 361 397 381 406 382 388 349 405

iX
: 62.5 57.7 60.2 66.2 63.5 67.7 63.7 64.7 58.2 67.5

Ri : 25 31 19 24 20 49 17 14 16 11

Now, X  = 
1

iX
N

Â  = 
1

10
 ¥ 631.9 = 63.19

 R  = 
1

iR
N

Â  = 
1

10
 ¥ 226 = 22.6

For the X
–

-chart

 CL = X  = 63.19;

 LCL = X  – A2 R  = 63.19 – 0.483 ¥ 22.6 = 52.27

 UCL = X  + A2 R  = 63.19 + 0.483 ¥ 22.6 = 74.11
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For the R-chart

 CL = R  = 22.6; LCL = D3 R  = 0;

 UCL = D4 R  = 2.004 ¥ 22.6 = 45.29

We note that

 LCL (= 52.27) < 
iX  < UCL (= 74.11),

but R6 (sample 6) > 45.29.

Hence, the process is not under control.

Now, we remove sample No. 6 from the data and recompute the values of X  

and R  based on the remaining 9 samples.

 X  = 
1

9
 ¥ (62.5 + 57.7 +   + 63.5 + 63.7 +   + 67.5)

 = 
1

9
 ¥ 564.2 = 62.69

 R  = 
1

9
 ¥ (25 + 31 +   + 20 + 17 +   11)

 = 
1

9
 ¥ 177 = 19.67

Let us now recompute the revised control limits for X - and R-charts.

For the X
–

-chart

 CL = X  = 62.69;

 LCL = X  – A2 R  = 62.69 – 0.483 ¥ 19.67 = 53.19

 UCL = X  + A2 R  = 62.69 + 0.483 ¥ 19.67 = 72.19

For the R-chart

 CL = R  = 19.67, LCL = D3 R  = 0;

 UCL = D4 R  = 2.004 ¥ 19.67

 = 39.42

Now, 53.19 < 
iX  < 72.19 and 0 < Ri < 39.42, for all i (π 6)

Hence, the process is under control.

The tolerance limits are given by

  2

3R
X

d
∓
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 = 62.69 
3 19.67

2.534

¥
∓  (∵ d2 = 2.534, for n = 6)

 = 62.69 ∓ 23.29

i.e., the tolerance limits are (39.40, 85.98)

The specifi cation limits are (36, 84).

Since the upper tolerance limit exceeds the upper specifi cation limit, the 

process does not meet the specifi cations.

Exercise 12

Part-A (Short-answer Questions)

 1. What is meant by ‘quality’ in the term Statistical Quality Control?

 2. What do you mean by Statistical Quality Control?

 3. What is the difference between chance variation and assignable 

variation?

 4. What do you understand by process control?

 5. What is control chart? Name the types of control charts.

 6. Distinguish between variables and attributes in connection with the 

quality characteristics of a product.

 7. Name any two control charts, for each, of variables and at tributes.

 8. Find the lower and upper control limits for X -chart and R-chart, when 

each sample is of size 4 and X  = 10.80 and R  = 0.46.

 9. When do you say that a process is out of control?

 10. Find the lower and upper control limits for X -chart and s-chart, if n = 5

X  = 15 and s  = 2.5.

 11. Under what situations p-chart is drawn instead of np-chart?

 12. When n is constant, will the p-chart and np-chart lead to the same 

conclusions regarding the process of control?

 13. Find the lower and upper control limits for p-chart and np-chart, when 

n = 100 and p  = 0.085.

 14. Distinguish between p-chart and c-chart.

 15. Find the lower and upper control limits for the c-chart, when c  = 6.

 16. What do you mean by specifi cation limits in a manufacturing process?

 17. What is meant by tolerance limits?

 18. Distinguish between control limits and tolerance limits.

 19. When the process is under control and if n = 5, X  = 1.1126 and 

R  = 0.0054, fi nd the tolerance limits.

 20. How will you decide whether a process is operating at an acceptable 

level?
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Part-B

 21. The following data give the average life in hours and range in hours of 

12 samples each of 5 lamps. Construct the control charts for X  and R 

and comment on the state of control.

X : 120 127 152 157 160 134 137 123 140 144 120 127

R: 30 44 60 34 38 35 45 62 39 50 35 41

 22. Draw the mean chart and range chart using the following data relating to 

15 samples each of size 5 and comment on the state of control.

X : 65.0 64.6 64.1 68.5 68.4 67.9 65.0 64.6

X : 64.1 63.2 62.9 62.4 67.0 66.6 66.1

R: 9.8 9.8 8.4 3.9 7.6 8.7 0.1 9.7

R: 7.7 7.5 1.2 9.8 6.4 0.6 6.3

 23. A food company puts mango juice in cans, each of which is advertised 

to contain 10 ounces of the juice. The weights of the juice drained from 

cans immediately after fi lling 20 samples each of 4 cans are taken by 

random sampling method (at an interval of 30 minutes) and given in the 

following table in units of 0.01 ounce in excess of 10 ounces. To control 

the excess weights of mango juice drained while fi lling, draw the X -chart 

and R-chart and comment on the nature of control.

Sample No. 1 2 3 4 5 6 7 8 9 10

Weights drained

15 10 8 12 18 20 15 13 9 6

12 8 15 17 13 16 19 23 8 10

13 8 17 11 15 14 23 14 18 24

20 14 10 12 4 20 17 16 5 20

Sample No. 11 12 13 14 15 16 17 18 19 20

Weights drained

5 3 6 12 15 18 13 10 5 6

12 15 18 9 15 17 16 20 15 14

20 18 12 15 6 8 5 8 10 12

15 18 10 18 16 15 4 10 12 14

 24. The table below gives the (coded) measurements obtained in 20 samples. 

Construct control charts based on mean and range and comment on the 

state of control:
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Sample No. 1 2 3 4 5 6 7 8 9 10 11 12 13

Values of X

2 0 1 1 –1 –1 –1 1 1 1 1 1 1

1 1 0 0 0 2 0 2 –1 –2 –3 –1 –3

0 0 0 –1 0 0 –2 –1 0 2 2 0 2

1 1 1 0 –1 –2 1 0 0 1 1 0 1

Sample No. 14 15 16 17 18 19 20

Values of X

0 –1 1 2 2 0 3

0 2 –1 1 0 2 –3

–1 1 2 –1 1 1 –1

0 1 0 0 0 –1 1

1 2 2 0 1 1 2

 25. The following data give the coded values of the crushing strengths of 

concrete blocks obtained from 20 samples each of size. 5. Draw the X  

and R-charts and comment on the state of control.

Sample No. 1 2 3 4 5 6 7 8 9 10

Values of X 11.1 9.6 9.7 10.1 12.4 10.1 11.0 11.2 10.6 8.3

9.4 10.8 10.0 8.4 10.0 10.2 11.5 10.0 10.4 10.2

11.2 10.1 10.0 10.2 10.7 10.2 11.8 10.9 10.5 9.8

10.4 10.8 9.8 9.4 10.1 11.2 11.0 11.2 10.5 9.5

10.1 11.0 10.4 11.0 11.3 10.1 11.3 11.0 10.9 9.8

Sample No. 11 12 13 14 15 16 17 18 19 20

Values of X 10.6 10.8 10.7 11.3 11.4 10.1 10.7 11.9 10.8 12.4

9.9 10.2 10.7 11.4 11.2 10.1 12.8 11.9 12.1 11.1

10.7 10.5 10.8 10.4 11.4 9.7 11.2 11.6 11.8 10.8

10.2 8.4 8.6 10.6 10.1 9.8 11.2 12.4 9.4 11.0

11.4 9.9 11.4 11.1 11.6 10.5 11.3 11.4 11.6 11.9

 26. The following data gives the measurements of 10 samples each of size 

5, in a production process taken at intervals of 2 hours. Draw the control 

charts for the mean and range and comment on the state of control.
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Sample No. 1 2 3 4 5 6 7 8 9 10

Measurements

(X)

47 52 48 49 50 55 50 54 49 53

49 55 53 49 53 55 51 54 55 50

50 47 51 49 48 50 53 52 54 54

44 56 50 53 52 53 46 54 49 47

45 50 53 45 47 57 50 56 53 51

 27. The following table gives the sample means and S.D.’s for 15 samples, 

each size 4, in the production of a certain component. Draw the X  and 

s-charts and comment on the state of control.

Sample No. (i): 1 2 3 4 5 6 7 8 9

X : 1.75 1.32 1.18 0.48 2.30 1.25 1.52 1.78 1.90

s: 0.36 0.53 0.14 0.18 0.55 0.74 0.38 0.45 0.87

Sample No. (i): 10 11 12 13 14 15

X : 1.72 2.40 3.20 2.52 2.05 1.68

s: 0.83 0.76 0.99 0.65 0.22 0.14

 28. The following data give the mean and S.D. values of 10 sam ples, each 

of size 5 drawn from a production process taken at intervals of one 

hour. Construct the mean and S.D. charts and comment on the state of 

control.

Sample No.: 1 2 3 4 5 6 7 8 9 10

X : 54 51 54 49 52 47 51 50 50 52

s: 3.3 2.4 3.8 3.3 3.4 4.6 1.9 2.5 2.5 2.9

 29. The mean and S.D. values of 15 samples each of size 5 are given in the 

following table. Draw the mean and S.D. charts and comment on the 

state of control.

Sample No. (i): 1 2 3 4 5 6 7 8 9

X : 11.0 12.4 8.6 12.2 9.2 10.6 10.0 9.4 10.6

s: 3.63 3.14 2.87 3.49 1.47 3.01 2.45 3.98 2.15

Sample No. (i): 10 11 12 13 14 15

X : 11.4 14.8 10.6 11.6 9.0 12.8

s: 2.15 2.14 3.01 3.14 1.67 2.56

 30. Draw the mean and S.D. charts using the data values for the fi rst 10 

samples given in Exercise 24 and comment on the state of control.
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 31. 15 samples of 4 machined items were taken periodically from 

production and inside diameter of whole in each item was meas ured. 

The measurements (coded) are given in the following table. Draw the 

X  and s-charts and comment on the state of control:

Sample No. (i): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Measurements 

(X)

15 11 8 15 6 13 16 12 15 18 11 14 11 12 5

14 16 11 14 7 7 10 9 11 16 13 12 9 6 10

13 6 9 5 10 11 7 16 10 14 10 15 12 4 6

15 15 9 15 7 11 7 10 10 7 8 12 14 9 10

 32. Fifteen samples each of size 50 were inspected and the number of 

defectives in the inspection were

 2, 3, 4, 2, 3, 0, 1, 2, 2, 3, 5, 5, 1, 2, 3

  Draw the control chart for the number of defectives and comment on the 

state of control.

 33. In a manufacturing company where spark-plugs are produced, the 

number rejected by inspection of 20 lots of 100 plugs each is given 

below: Construct the np-chart and comment on the state of control.

Lot No. (i): 1 2 3 4 5 6 7 8 9 10

No. rejected (np): 10 6 5 10 8 5 12 8 4 3

Lot No. (i): 11 12 13 14 15 16 17 18 19 20

No. rejected (np): 6 5 2 8 7 6 3 3 5 4

 34. Using the following data, construct the np-chart and comment on the 

state of control. Assume that 200 items are inspected each day.

Day (i): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of defective (np): 6 6 6 5 0 0 6 14 4 0 1 8 2 4 7

 35. On inspection of 20 lots each of 50 items, the following numbers of 

defectives were found: Construct the control chart for the fraction 

defectives and comment on the state of control.

  1, 4, 3, 4, 4, 3, 2, 4, 2, 3, 5, 1, 2, 4, 2, 4, 8, 3, 2, 2

 36. In an integrated circuit production line, 15 samples of 100 units are 

checked for electrical specifi cations on alternate days of a month and the 

number of defectives found are tabulated below: Draw the p-chart and 

comment on the nature of control.

 24, 62, 26, 38, 33, 44, 45, 34, 30, 52, 44, 52, 36, 34 and 38.
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 37. On inspection of 10 samples, each of size 400, the numbers of defective 

articles were

 19, 4, 9, 12, 9, 15, 26, 14, 15, 17.

  Draw the np-chart and p-chart and comment on the state of con trol.

 38. Draw the appropriate control chart for the following data and comment 

on the state of control:

Day: 1 2 3 4 5 6 7 8 9 10

No. inspected: 150 184 181 196 180 174 210 210 195 210

No. of defectives: 25 10 3 14 6 15 43 28 39 25

 39. Ten samples of varying size are taken from a production line and the 

number of defectives is found in each sample. The results are given 

below. Draw the appropriate control chart and comment on the state of 

control.

Sample No. 1 2 3 4 5 6 7 8 9 10

No. inspected: 155 160 156 156 164 160 161 173 148 167

No. of defectives: 8 8 8 7 8 6 5 10 7 9

 40. Twenty half-litre milk bottles are selected at random from a process and 

the numbers of air bubbles (defects) observed from the bottles are given 

in the following table. Draw the appro priate control chart and comment 

on the nature of control.

Bottle 

no. (i):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of 

defects 

(c):

4 5 7 3 3 5 6 2 4 8 3 5 4 3 4 5 7 3 6 13

 41. The following data relate to the number of defects in each of 15 units 

drawn randomly from a production process. Draw the control chart for 

the number of defects and comment on the state of control.

  6, 4, 9, 10, 11, 12, 20, 10, 9, 10, 15, 10, 20, 15, 10.

 42. Construct a c-chart for the number of defects from the following data 

which represent the number of imperfections in 20 pieces of cloth 

of equal length in a certain production of a mill. Is the process under 

control?

  No. of imperfections: 3, 3, 4, 10, 10, 3, 3, 3, 6, 5, 6, 10, 4, 7, 4, 7, 4, 8, 4 

and 7.

 43. The specifi cations for the length of a certain product are (30 ± 10) mm. 

15 samples each of size 5 gave the following values for X  and R in mm. 
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Compute the tolerance limits of the production process and also fi nd if 

the process will meet the specifi ca tions:

Sample 

no. (i) :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X : 25 30 23 38 15 28 38 18 25 40 29 39 37 29 36

R : 20 10 20 21 11 22 22 11 20 19 14 9 16 18 34

 44. The specifi cation limits for a quality characteristic are 1.100 and 1.120 

(in certain units). 15 samples of 5 measurements each gave the following 

values for X  and R (Range values are multiplied by 103). Compute the 

tolerance limits of the process and check if the process will meet the 

specifi cations:

Sample no. (i): 1 2 3 4 5 6 7 8

X : 1.115 1.116 1.114 1.112 1.114 1.112 1.114 1.112

R: 18 17 8 6 7 5 5 7

Sample no. (i): 9 10 11 12 13 14 15

X : 1.113 1.111 1.113 1.114 1.111 1.113 1.111

R: 3 4 6 4 3 5 7

 45. The following data give the measurements of 10 samples, each of size 

5, drawn from a process at regular intervals. Find the tolerance limits 

for the process and test if the specifi cations (50 ± 10) are met by the 

process.

Sample no. 1 2 3 4 5 6 7 8 9 10

Measurement (X)

49 50 50 48 47 52 49 55 53 54

55 51 53 53 49 55 49 55 50 54

54 53 48 51 50 47 49 50 54 52

49 46 52 50 44 56 53 53 47 54

53 50 47 53 45 50 45 57 51 56
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Guide for using appropriate control chart constants

Quality 

Controlled

Central 

Line
LCL size (n) UCL Sample Remarks

X  (Mean) m m – As m + As
Any value 

of n

When m, s 
are given

X X - 2X A R + 2X A R n £ 10

When m, 

s are not 

known,

X X
-

- 1

1n
X A

n

-
+ 1

1n
X A

n

n £ 25

(n constant)

When m, 

s are not 

known, but 

X s , are 

known

X X
3s

x
n

-
3s

X
n

+
n > 25

(n varying 

slightly)

-Do-

R (Range) d2s D1s D2s n £ 10
When s is 

given

R R D3 R D4 R n £ 10
When s is 

not known

s(S.D.) s
-2

1

n
c

n
s

-1
1

n
B

n
s

-2
1

n
B

n

Any value 

of n

When s is 

given

s s B3 s B4 s
n £ 25

(n constant)

When s is 

not known, 

but s  is 

known

s s
3

2

s
s

n
-

3

2

s
s

n
+

n > 25

(n varying 

slightly)

-Do-

ANSWERS

Exercise 12

 8. For X -chart, LCL = 10.46, UCL = 11.14;

  For R-chart, LCL = 0, UCL = 1.05.

 10. For X -chart, LCL = 11.43, UCL = 18.57;

  For s-chart, LCL = 0, UCL = 5.22.

 13. For p-chart, LCL = 0.0013, UCL = 0.1687;

  For np-chart, LCL = 0.134, UCL = 16.867.
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 19. 1.1056, 1.1196

 21. For X -chart, LCL = 112.08, UCL = 161.42;

  For R-chart, LCL = 0, UCL = 90.42

  Process under control.

 22. For X -chart, LCL = 61.61, UCL = 69.11;

  For R-chart, LCL = 0, UCL = 13.75.

  Process under control.

 23. LCL for X  = 5.46, UCL for X  = 20.84;

  LCL for R = 0, UCL for R = 24.84; under control

 24. LCL for X  = 1.488, UCL for X  = 2.148;

  LCL for R = 0, UCL for R = 6.662; under control

 25. LCL for X  = 9.74, UCL for X  = 11.58;

  LCL for R = 0, UCL for R = 3.35; out of control

 26. LCL for X  = 47.25, UCL for X  = 54.75;

  LCL for R = 0, UCL for R = 13.75; out of control

 27. LCL for X  = 0.67, UCL for X  = 2.93;

  LCL for s = 0, UCL for s = 1.18; out of control

 28. LCL for X  = 45.5, UCL for X  = 56.5;

  LCL for s = 0, UCL for s = 6.39; under control

 29. LCL for X  = 6.09, UCL for X  – 15.81;

  LCL for s = 0, UCL for s = 5.69; under control

 30. LCL for X  = – 1.55, UCL for X  = 2.07;

  LCL for s = 0, UCL for s = 2.12; under control

 31. LCL for X  = 5.62, UCL for X  = 16.18;

  LCL for s = 0, UCL for s = 5.51; under control

 32. LCL = 0, UCL = 7.18; under control

 33. LCL = 0, UCL = 13.12; under control

 34. LCL = 0, UCL = 10.96; out of control

 35. LCL = 0, UCL = 0.166; under control

 36. LCL = 0.2481, UCL = 0.5413; out of control

 37. LCL for np = 2.97, UCL for np = 25.03;

  LCL for p = 0.028, UCL for p = 0.063; out of control.

 38. LCL = 0.042, UCL = 0.178; out of control.

 39. LCL = 0, UCL = 0.0979; under control.

 40.  LCL = 0, UCL = 11.708; out of control.

 41. LCL = 1.27, UCL = 21.13; under control.

 42. LCL = 0, UCL = 12.62; under control.

 43. (7.77,56.39); does not meet the specifi cations.

 44. (1.1056, 1.1196); meets the specifi cations.

 45. (42.98, 59.90); meets the specifi cations.





z Ordinate Area = 
0

z

Ú z Ordinate Area = 
0

z

Ú
0.00 0.3989 0.0000 1.55 0.1200 0.4394

0.05 0.3984 0.0199 1.60 0.1109 0.4452

0.10 0.3970 0.0398 1.65 0.1023 0.4505

0.15 0.3945 0.0596 1.70 0.941 0.4554

0.20 0.3910 0.0793 1.75 0.0863 0.4099

0.25 0.3867 0.0987 1.80 0.0790 0.4641

0.30 0.3814 0.1179 1.85 0.0721 0.4678

0.35 0.3752 0.1368 1.90 0.0656 0.4719

0.40 0.3683 0.1554 1.95 0.0596 0.4744

0.45 0.3605 0.1736 2.00 0.0540 0.4773

0.50 0.3521 0.1910 2.05 0.0488 0.4798

0.55 0.3429 0.2088 2.10 0.0440 0.4821

0.60 0.3332 0.2258 2.15 0.0396 0.4842

0.65 0.3230 0.2422 2.20 0.0355 0.4861

0.70 0.3123 0.2080 2.25 0.0317 0.4878

0.75 0.3011 0.2734 2.30 0.0283 0.4893

0.80 0.2897 0.2882 2.35 0.0252 0.4906

0.85 0.2780 0.3023 2.40 0.0224 0.4918

0.90 0.2661 0.3159 2.45 0.0224 0.4929

0.95 0.2541 0.3289 2.50 0.0198 0.4938

1.00 0.2420 0.3413 2.55 0.0175 0.4946

1.05 0.2299 0.3531 2.60 0.0155 0.4953

1.10 0.2179 0.3643 2.65 0.0136 0.4960

1.15 0.2059 0.3749 2.70 0.0119 0.4965

1.20 0.1942 0.3849 2.75 0.0104 0.4970

Appendix

Statistical Tables
(Normal Table, t-table, cc 

2-table and F-table)

(Contd.)
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z Ordinate Area = 
0

z

Ú z Ordinate Area = 
0

z

Ú
1.25 0.1827 0.3944 2.80 0.0091 0.4974

1.30 0.1714 0.4032 2.85 0.0079 0.4978

1.35 0.1604 0.4115 2.90 0.0060 0.4981

1.40 0.1497 0.4192 2.95 0.0051 0.4984

1.45 0.1394 0.4265 3.00 0.0044 0.4987

1.50 0.1295 0.4332 3.05 0.0038 0.4989

t-Table

n
Probability

0.9 0.1 0.05 0.02 0.01

1 0.158 6.314 12.706 31.821 63.657

2 0.142 2.920 4.303 6.965 9.925

3 0.137 2.353 3.182 4.541 5.841

4 0.134 2.132 2.776 3.747 4.604

5 0.132 2.015 2.571 3.365 4.032

6 0.131 1.943 2.447 3.143 3.707

7 0.130 1.895 2.365 2.998 3.496

8 0.130 1.860 2.306 2.896 3.355

9 0.129 1.833 2.262 2.821 3.250

10 0.129 1.812 2.228 2.764 3.169

11 0.129 1.796 2.201 2.718 3.106

12 0.128 1.782 2.179 2.681 3.055

13 0.128 1.771 2.160 2.650 3.012

14 0.128 1.761 2.145 2.624 2.977

15 0.128 1.753 2.131 2.602 2.947

16 0.128 1.746 2.120 2.583 2.921

17 0.128 1.740 2.110 2.567 2.898

18 0.127 1.734 2.101 2.552 2.878

19 0.127 1.729 2.093 2.539 2.861

20 0.127 1.725 2.086 2.528 2.845

21 0.127 1.721 2.080 2.518 2.831

22 0.127 1.717 2.074 2.508 2.819

23 0.127 1.714 2.069 2.500 2.807

24 0.127 1.711 2.064 2.492 2.797

25 0.127 1.708 2.060 2.485 2.787

30 0.127 1.697 2.042 2.457 2.750

40 0.126 1.684 2.021 2.423 2.704

60 0.126 1.671 2.000 2.390 2.660

120 0.126 1.658 1.980 2.358 2.617

• 0.126 1.645 1.960 2.326 2.576
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c
2-Table

n Probability

0.99 0.95 0.10 0.05 0.02 0.01

1 0.000157 0.00393 2.706 3.841 5.412 6.635

2 0.0201 0.103 4.605 5.991 7.824 9.210

3 0.115 0.352 6.251 7.815 9.837 11.345

4 0.297 0.711 7.779 9.488 11.668 13.277

5 0.554 1.145 9.236 11.070 13.388 15.086

6 0.872 1.635 10.645 12.592 15.033 16.812

7 1.238 2.167 12.017 14.067 16.622 18.475

8 1.646 2.733 13.362 15.507 18.168 20.090

9 2.088 3.325 14.684 16.919 19.670 21.666

10 2.558 3.940 15.987 18.307 21.161 23.209

11 3.053 4.575 17.275 19.675 22.618 24.725

12 3.571 5.226 18.549 21.026 24.054 26.217

13 4.107 5.982 19.812 22.362 25.472 27.688

14 4.660 6.571 21.064 23.685 26.873 29.141

15 5.229 7.261 22.307 24.996 28.259 30.578

16 5.812 7.962 23.542 26.296 29.633 32.000

17 6.408 8.672 24.768 27.587 30.995 33.409

18 7.015 9.390 25.989 28.869 32.346 34.805

19 7.633 10.117 27.204 30.114 33.687 36.191

20 8.260 10.851 28.412 31.410 35.020 37.566

21 8.897 11.581 29.615 32.671 36.343 38.932

22 9.542 12.338 30.813 33.924 37.659 40.289

23 10.196 13.091 32.007 35.172 38.968 41.638

24 10.856 13.848 33.196 36.415 40.270 42.980

25 11.524 14.611 34.382 37.652 41.566 44.314

26 12.198 15.379 35.563 38.885 42.856 45.642

27 12.879 16.151 36.741 40.113 44.140 46.963

28 13.565 16.928 37.916 41.337 45.419 48.278

29 14.256 17.708 39.087 42.557 46.693 49.588

30 14.953 18.493 40.256 43.773 47.962 50.892

For larger values of n, the expression 22 2 1nc - -  may be used as a 

normal variate with unit variance.
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Table of F (Variance ratio)—1 Per Cent Points

v2

v1

1 2 3 4 5 6 8 12 24 •

1 4052 4999 5403 5625 5764 5859 5981 6106 6234 6366

2 98.49 99.01 99.17 99.25 99.30 99.33 99.36 99.42 99.46 99.50

3 34.12 30.81 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.12

4 21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37 13.93 13.46

5 16.26 13.27 12.06 11.39 10.97 10.67 10.27 9.89 9.47 9.02

6 13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88

7 12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65

8 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.28 4.86

9 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91

11 9.65 7.20 6.22 5.67 5.32 5.07 4.74 4.40 4.02 3.60

12 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.78 3.36

13 9.07 6.70  5.74 5.20 4.86 4.62 4.30 3.96 3.59 3.16

14 8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.43 3.00

15 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.18 2.75

17 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65

18 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57

19 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 2.92 2.49

20 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36

22 7.94 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.75 2.31

23 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26

24 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21

25 7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17

26 7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.58 2.13

27 7.68 5.49 4.60 4.11 3.79 3.56 3.26 2.93 2.55 2.10

28 7.64 5.45 4.57 4.07 3.76 3.53 3.23 2.90 2.52 2.06

29 7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.49 2.03

30 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01

40 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.81

60 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.12 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.66 2.34 1.95 1.38

• 6.64 4.60 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00
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Table of F—5 Per Cent Points

v2

v1

1 2 3 4 5 6 8 12 24 •

1 161.4 199.5 215.7 224.6 230.2 234.0 238.9 243.9 249.0 253.4

2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.45 19.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40

12 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30

13 4.67 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.42 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.48 2.29 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.00 1.76

24 4.26 3.40 3.10 2.78 2.62 2.51 2.36 2.18 1.98 1.73

25 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71

26 4.22 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69

27 4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.13 1.93 1.67

28 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65

29 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1.90 1.64

30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51

60 4.00 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.70 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.02 1.83 1.61 1.25

• 3.84 2.99 2.60 2.37 2.21 2.09 1.94 1.75 1.52 1.00





Solved Question Papers

BE/BTech Degree Examination, April/May 2011
Fourth Semester

Electronics and Communication Engineering

MA2261—Probability and Random Process

(Common to Bio-Medical Engineering)

(Regulation 2008)

Time: Three hours Maximum: 100 marks

Answer ALL Questions

Part-A (10 × 2 = 20 marks)

1. The CDF of a continuous random variable is given by 

/5

0, 0
( )

1 , 0x

x
F x

e x
-

<ÏÔ= Ì
- £ < •ÔÓ

. Find the PDF and mean of X.

2. Establish the memoryless property of the exponential density function.

3. Let X and Y be continuous random variables with joint probability density 

function 
( )

( , )
8

XY

x x y
f x y

-
= , 0 < x < 2, –x < y < x and fXY(x, y) = 0 elsewhere. 

Find fY/X(y/x).

4. Find the acute angle between the two lines of regression, assuming the two 

lines of regression.

5. Prove that a fi rst-order stationary process has a constant mean.

6. State the postulates of a Poisson process.

7. The autocorrelation function of a stationary random process is

R(t) = 
2

9
16

1 16t
+

+
. Find the mean and variance of the process.

8. Prove that for a WSS process {X(t)}, RXX(t, t + t) is an even function of t.

9. Find the system transfer function, if a linear time invariant system has an 

impulse function

   H(t) = 

1
; | |

2

0; | |

c
c

c

t

t

Ï £Ô
Ì
Ô ≥Ó

10. Defi ne white noise.
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Part-B (5 × 16 = 80 marks)

11. (a) The probability density function of a random variable X is given by

   fX(X) = 

, 0 1

(2 ), 1 2

0, otherwise

x x

k x x

< <Ï
Ô - £ £Ì
Ô
Ó

  (1) Find the value of ‘k’. (4)

  (2) Find P(0.2 < x < 1.2) (3)

  (3) What is P[0.5 < x < 1.5/x ≥ 1] (4)

  (4) Find the distribution function of f(x). (5)

Or

 (b) (i)  Derive the mgf of a Poisson distribution and, hence, or otherwise 

deduce its mean and variance.

  (ii)  The marks obtained by a number of students in a certain subject 

are assumed to be normally distributed with a mean of 65 and a 

standard deviation of 5. If 3 students are selected at random from 

this set, what is the probability that exactly 2 of them will have 

marks over 70?

12. (a) (i)  If X and Y are independent Poisson random variables with respective 

parameters l1 and l2, calculate the conditional distribution of X, 

given that X + Y = n.

  (ii)  The regression equation of X on Y is 3Y – 5X + 108 = 0. The mean 

value of Y is 44 and the variance of X is 9/16th of the variance of Y. 

Find the mean value of X and the correlation coeffi cient.

Or

 (b) (i) If X and Y are independent random variables with density function

    fX(X) = 
1, 1 2

0, otherwise

x£ £Ï
Ì
Ó

 and 
, 2 4

( ) 6

0, otherwise
Y

y
y

f y

Ï £ £Ô= Ì
ÔÓ

, fi nd the 

density function of Z = XY.

  (ii)  The lifetime of a particular variety of electric bulb may be 

considered as a random variable with a mean of 1200 hours and a 

standard deviation of 250 hours. Using the central limit theorem, 

fi nd the probability that the average life of 60 bulbs exceeds 1250 

hours.

13. (a) (i)  A random process X(t) defi ned by X(t) = A cos t + B sin t, –• < t < 

•, where A and B are independent random variables each of which 

takes a value of –2 with a probability of 1/3 and a value of 1 with a 

probability of 2/3. Show that X(t) is wide-sense stationary.

  (ii)  A random process has sample functions of the form

X(t) = A cos (wt + q), where w is constant, A is a random variable 

with mean zero and variance one and q is a random variable that is 

uniformly distributed between 0 and 2p. Assume that the random 

variables A and q are independent. Is X(t) a mean-ergodic process?
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Or

 (b) (i)  If {X(t)} is a Gaussian process with m(t) = 10 and C(t1, t2) = 

1 2| |
16

t t
e

- -
, fi nd the probability that

   (1) X(10) £ 8

   (2) |X(10) – X(6)| £ 4

  (ii)  Prove that the interval between two successive occurrences of a 

Poisson process with parameter l has an exponential distribution 

with mean 
1

l
.

14. (a) (i)  The power spectral density function of a zero mean WSS process 

X(t) is given by S(w) = 
01, | |

0, otherwise

w w<Ï
Ì
Ó

. Find R(t) and show that 

X(t) and 
0

X t
p

w

Ê ˆ
+Á ˜Ë ¯

 are uncorrelated.

  (ii)  The autocorrelation of a WSS process is given by R(t) = a2
e

–2l|t| 

determine the power spectral density of the process.

Or

 (b) (i) State and prove the Weiner–Khintchine theorem.

  (ii)  The cross-power spectrum of a real random processes {X(t)} 

and {Y(t)} is given by Sxy(w) = 
, for | | 1

0, elsewhere

a bjw w+ <Ï
Ì
Ó

.

Find the cross correlation function.

15. (a) (i)  Consider a system with transfer function 
1

1 jw+
. An input signal 

with autocorrelation function md(t) + m
2 is fed as input to the 

system. Find the mean and mean-square value of the output.

  (ii)  A stationary random process X(t) having the autocorrelation 

function RXX(t) = Ad(t) is applied to a linear system at time t = 0 

where f(t) represents the impulse function. The linear system has 

the impulse response of h(t) = e–bt u(t) where u(t) represents the 

unit step function. Find RYY(t). Also fi nd the mean and variance of 

Y(t).

Or

 (b) (i)  A linear system is described by the impulse response 

1
( ) ( )

t

RCh t e u t
RC

-

= . Assume an input process whose autocorrelation 

function is Bd(t). Find the mean and autocorrelation functions of 

the output process.
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  (ii)  If {N(t)} is a bandlimited white noise centred at a carrier frequency 

w0 such that SNN(w) = 
0

0, for | |
2

0, elsewhere

B

N
w w w

Ï
- <Ô

Ì
ÔÓ

.

   Find the autocorrelation of {N(t)}.

Solutions

Part-A

1. F(x) = 
/5

0, in 0

1 , in 0x

x

e x
-

<ÏÔ
Ì

- £ < •ÔÓ

 \ f(x) = F1(x) = 
/5

0, in 0

1
, in 0

5

x

x

e x
-

<Ï
Ô
Ì

£ < •ÔÓ

 E(x) = 
/5 /5

0 0

1 1
( ) 25 5

5 1/5 1/25 5

x x
e e

x f x dx x

•• - -È ˘
= - = ¥ =Í ˙-Î ˚

Ú

2. Standard property, the derivation is available in the book.

3. This is a worked example in the book. ‘c’ given in the book must be taken 

as 
1

8
.

4. This is a worked example in the book.

5. This property is proved in the note under ‘stationarity’.

6. Postulates of a Poisson process are available in the book.

7. RXX(t) = 
2

9
16

1 16t
+

+

 
2 lim [ ( )] 16X XXR

t
m t

Æ•
= =  \ mX = 4

 E[X2(t)] = RXX(0) = 25

 \ V{X(t)} = E{X
2(t)} – E2{X(t)} = 25 – 16 = 9

8. RXX(t) = E{X(t)·X(t + t)} \ RXX{–t} = E{X(t)· X(t – t)} = RXX(t)

 \ RXX(t) is an even function of t.

9. 
1

( ) { ( )} ( )
2

c
i t i t

c

H F H t H t e dt e dt
c

w ww
•

- -

-• -

= = =Ú Ú

    = [ ]0
0

1 1 sin
cos sin

c
c c

t dt t
c c c

w
w w

w w
= =Ú

10. Defi nition of ‘White Noise’ is available in the book.
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Part-B

11. (a) (1) 
1 2

0 1

( ) 1; viz., (2 ) 1

XR

f x dx x dx k x dx= + - =Ú Ú Ú

   i.e., 

1 2
2 2

0 1

2 1
2 2

x x
k x

È ˘ È ˘
+ - =Í ˙ Í ˙

Î ˚ Î ˚

   i.e., 
1 3

2 1 1
2 2

k k
Ê ˆ+ - = \ =Á ˜Ë ¯

  (2) P(0.2 < x < 1.2) = 
1,2 1,21 1

0.2 1 0.2 1

( ) ( ) (2 )f x dx f x dx x dx x dx+ = + -Ú Ú Ú Ú

    = 

1 1.2
2 2

0.2 1

1 1
2 (1 0.04) (3.36 3)

2 2 2 2

x x
x

Ê ˆ Ê ˆ
+ - = - + -Á ˜ Á ˜Ë ¯ Ë ¯

    = 
1

1.32 0.66
2

¥ =

  (3) P{0.5 < x < 1.5/x ≥ 1} = 
{(0.5 1.5) ( 1)}

( 1)

P x x

P x

< < ≥
≥
∩

   = 

1.5 2

1 1

(1 1.5)
(2 ) (2 )

(1 2)

P X
x dx x dx

P X

£ £
= - ∏ -

£ £ Ú Ú

   = 

1.5 2
2 2

1 1

1.875 1.5 0.375
2 2 0.75

2 2 2 1.5 0.5

x x
x x

Ê ˆ Ê ˆ -
- ∏ - = = =Á ˜ Á ˜ -Ë ¯ Ë ¯

  (4) Distribution function of X [not f(x) as given in the question]

   F(x) = P(X £ x) = 0, when x < 0

    = 
2

0 0

( )
2

x x
x

f x dx x dx= =Ú Ú , when 0 £ x £ 1

    = 
1

0 1

(2 )

x

x dx x dx+ -Ú Ú

    = 
2 2

1

1
2 2 1

2 2 2

x

x x
x x

Ê ˆ
+ - = - -Á ˜Ë ¯

, when 1 £ x £ 2

    = 

1 2

0 1 2

(2 ) 0

x

x dx x dx dx+ - + ◊Ú Ú Ú , when x ≥ 2

    = 1, when x ≥ 2
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11. (b) (i) MX(t) = 
0 0

/ ( ) /
t

tr r t r e

r r

e e r e e r e e
l l l ll l

• •
- - -

= =

= =Â Â

       = 
(1 )t

e
e

l- -

   MX(t) 

2

1 2

22 2 2

1 1 (1)
1 2 2 2

t t

e

t t t
t

l

l l

Ê ˆ
+ +Á ˜

Ë ¯=

Ê ˆ Ê ˆ
= + + + + + + +Á ˜ Á ˜Ë ¯Ë ¯

 

   

   E(X) = coeffi cient of 
1

t
 in (1) = l

   E(X2) = coeffi cient of 
2

2

t
 in (1) = l + l2;

   V(X) = E(X2) – E2(X) = l
  (ii)  Let X represent the marks obtained by the students in the subject. 

Then X follows a N(65, 5)

   P(a student scores over 70) = 
65 70 65

( 70)
5 5

X
P X P

- -Ï ¸> = >Ì ˝
Ó ˛

     = P(z > 1) = P(1 < z < •) = 0.5 – P(0 < z < 1)

     = 0.5 – 0.3413 = 0.1587

    Let p = P(a student scores above 70) = 0.1587 and q = 0.8413;

n = 3

    Since p is the same for all the students, the number Y of (successes) 

students scoring more than 70, follows a binomial distribution.

   P(exactly 2 students score more than 70) = P(2 success)

   = “nCrp
r
q

n – r” = 3C2 × (0.1587)2 × (0.8413)1 = 0.0636

12. (a)  (i) This is a worked example in the book.

  (ii) Regression line of X on Y is 3y – 5x + 108 = 0, i.e., x = 
3 108

5 5
y +

 (1)

   Standard formula for the regression line of X on Y is

   x – x  = bXY(y – y )

   i.e.,   x = bXY y + ( x  – bXY y ) (2)

   Comparing (1) and (2); bXY = 
3 3 108

and 44
5 5 5

x - ¥ =

   \ x  = 
132 108

( ) 48
5 5

E X = + =

   

2

2

9

16

XY X

YX Y

b

b

s

s
= =  \ 

16 16 3 16

9 9 5 15
YX XYb b= ¥ = ¥ =
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   r
2 = bXY, bYX = 

3 16 16 4

5 15 25 5
XYr¥ = \ =

12. (b) (i) Z = XY. Let the auxiliary RV be W = Y

   \ 
z

x
w

=  and y = w; 2

1
1

0 1

z

J w w
w

-
= =

   \ The joint pdf of (Z, W) is given by fZW(z, w) = 
1

( , )
| |

XYf x y
w

    i.e., 
1 1 1

( , ) or
6 6 6

ZW

y w
f z w

w w
= ◊ ◊ = , since ( , ) 1

6
X

y
f x y = ¥ , as X 

and Y are independent.

   Range space of (X, Y) is given by 1 £ x £ 2 and 2 £ y £ 4

   \ Range space of (Z, W) is given by w £ z £ 2w and 2 £ w £ 4

O

(2, 2)

(4, 4)
(8, 4)

(4, 2)

w
=

w

z

w
z
=

z
—2

Fig. 1

   The pdf of Z is given by

   fZ(z) = 
2

4

/2

1
, if 2 4

6

1
if 4 8

6

z

z

dw z

dw z

È
£ £Í

Í
Í
Í , £ £ÍÎ

Ú

Ú

   i.e., fZ(z) = 

1
( 2), if 2 4

6

1
(8 ) if 4 8

12

z z

z z

È - £ £Í
Í
Í - £ £ÍÎ

  (ii) This is a worked example in the book.
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13. (a) (i)  E{X(t)} = cos t·E(A) + sin t·E(B), where the probability distribution 

of A or B is given below:

   \ E(A) = E(B) = 
2 2

0
3 3

- + =

   and E(A2) = E(B2) = 
4 2

2
3 3

+ =

    E{X(t)} = 0 and 

or 2 1

1 2
( ) or ( )

3 3

A B

P A P B

-

 E(AB) = E(A)·E(B) = 

0, since A and B are independent.

   E{X
2(t)} = cos2

t·E(A2) + sin2 
t·E(B2) + 2 sin t cos t E(AB) = 2

   \ V{X(t)} = 2

   Since E{X(t)} and V{X(t)} are constants {X(t)} is a WSS process.

  (ii) Let 
1 1

( ) cos( )
2 2

T T

T

T T

X X t dt A t dt
T T

w q
- -

= = +Ú Ú

   
1

( ) ( ) {cos( )} 0
2

T

T

T

E X E A E t dtw q
p -

= ◊ + =Ú , since E(A) = 0

   R(t1, t2) = E{X(t1) × (t2)} = E{A
2 cos (wt1 + q)·cos (wt2 + q)}

    = 2
1 2 1 2

1
( ) {cos ( ) 2 } cos ( )}

2
E A E t t t tw q w

È ˘+ + + -Í ˙Î ˚

    = 
2

1 2 1 2

0

1 1
{cos ( ) 2 } cos ( )

2 2
t t t t d

p

w q w q
p

+ + + -Ú ,

since E(A2) = 1

    = 1 2

1
cos ( )

2
t tw -

   

2
1 2 1 22

1
( ) ( )

4

T T

T

T T

X X t X t dt dt
T - -

= Ú Ú

   \ 2
1 2 1 2 1 2 1 22 2

0

1 1
{ } ( , ) cos ( )

4 4

T T T T

T

T T T

E X R t t dt t t t dt dt
T T

w
- - -

= = -Ú Ú Ú Ú

    = 1

1
1 2 22 0

1 1
sin ( )

4

T
t T

t
T

t t dt
T

w
w

=

=
-

-È ˘Î ˚Ú

    = 2 2 22

1
{sin ( ) sin }

4

T

T

T t t dt
T

w
w -

- +Ú

    = 0 Var{ } 0 lim Var{ } 0T T
T

X X
Æ•

\ = \ =
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   \ by Mean-Ergodic theorem, {X(t)} is a mean-ergodic process.

13. (b)  (i) This is a worked example in the book.

  (ii)  This is a standard property, the proof of which is available in the 

book.

14. (a)  (i) This is a worked example in the book.

  (ii) This is a worked example in the book.

14. (b) (i)  Statement and proof of Weiner–Khinchine theorem is available in 

the book.

  (ii) RXY(t) = 

1

1

1 1
( ) ( )

2 2

i i
XYS e d a ib e d

tw tww w w w
p p

•

-• -

= +Ú Ú

    = 

1 1

0 0

1
cos sina d b dtw w w tw w

p

È ˘
-Í ˙

Í ˙Î ˚
Ú Ú

    = 

11

2
0 0

1 sin cos sin
a b

tw tw tw
w

p t t t

È ˘Ï ¸-Ê ˆ Ê ˆÍ ˙- +Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Ó ˛Î ˚

    = 
2

1 sin cos sin
a b

t t t

p t t t

È ˘Ï ¸- - +Ì ˝Í ˙
Ó ˛Î ˚

    = 
2

1
sin cos sin

a b b
t t tw

p t t t

È ˘+ -Í ˙Î ˚

15. (a) (i) RXX(t) = md(t) + m2; \ 2( ) ( ) ( )i
XXS m e d F m

wtw d t t
•

-

-•

= +Ú

         = m + 2pm
2 d(w)

   SYY(w) = 2 2

2

1
( ) | ( ) | [ 2 ( )]

1
XXS H m mw w p d w

w
◊ = + ◊

+

   \ RYY(t) = F 
–1{SYY(w)}

    = 2

2 2

1 1
( )

2 1 1

i im
e d m e d

tw tww d w w
p w w

• •

-• -•

+
+ +Ú Ú

    = 2 2

2
1

2 2 1

iaz
am m e

e m e m dz e
z

t tp p
p

-•
- - -

-•

È ˘
+ ◊ = + =Í ˙

+Í ˙Î ˚
Ú∵

   
2 2{ ( )} lim[ ( )]YYE Y t R m

t
t

Æ•
= = ; \ E{Y(t)} = m

   

2 2{ ( )} (0)
2

YY

m
E Y t R m= = +
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  (ii) ( ) ( ( )} ( ) i
XX XXS F R A e d A

wtw t d t t
•

-

-•

= = =Ú

   

( )

0

( ) { ( )} ( )bt i b i t
H F h e U t e dt e dt

wt ww t
• •

- - - +

-•

= = =Ú Ú

                         = 
( )

0

1

( )

b i t
e

b i b i

w

w w

•- +È ˘
=Í ˙- + +Î ˚

   SYY(w) = 2

2 2
( ). | ( ) |XX

A
S H

b
w w

w
=

+

   \ RYY(t) = 1

2 2

1
{ ( )}

2

i
YY

A
F S e d

b

tww w
p w

•
-

-•

=
+Ú

    = 
2 2

b bA A
e e

b b

t tp

p
- -◊ =

   

2 lim ( ) 0Y YYR
t

m t
Æ•

= =

   2{ ( )} (0)
2

YY

A
E Y t R

b
= =

   \ 2 2{ ( )} { ( )} { ( )}
2

A
V Y t E Y t E Y t

b
= - =

15. (b) (i) SXX(w) = F{RXX(w)} = ( ) i
B e d B

wtd t t
•

-

-•

=Ú

   H(w) = F{h(t)} = / /

0

1 1
( )t RC i t t RC i t

e U t e dt e e dt
RC RC

w w
• •

- - - -

-•

=Ú Ú

          = 

1

0

1 1

1 1

i t
RCe

RC iRC
i

RC

w

w
w

•
Ê ˆ- +Á ˜Ë ¯

È ˘
Í ˙
Í ˙ =

+Í Ê ˆ ˙- +Á ˜Í ˙Ë ¯Î ˚

   SYY(w) = SXX(w)·|H(w)|2 = 2 2 21

B

R C w+

   \ RYY(t) = 1

2 2 2 2 2 2

2
1 2 1

i
B B e

F d
R C R C

RC

tw

w
w p

w

•
-

-•

Ï ¸ =Ì ˝
+Ó ˛ Ê ˆ +Á ˜Ë ¯

Ú
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        = 
/ /

2 2
,
(1/ ) 22

RC RCB B
e e

RC RCR C

t tp

p

- -=

   

2 lim [ ( )] 0 0Y YY YR
t

m t m
Æ•

= = \ =

  (ii) RNN(t) = F–1{SNN(w)}

    = 
0

0

01
( )

2 4

B

B

i i
NN

N
S e d e d

w w
tw tw

w w

w w w
p p

+•

-• -

=Ú Ú

    = 

0

0 )0

0

(( )0 0 { }
4 4

B

BB

B

i
iiN Ne

e e
i i

w w
tw

t w wt w w

w w
p t p t

+
-- +

-

È ˘
= -Í ˙

Î ˚

    = 
0

0

2 2

B Bi i iN e e e

i

tw tw tw

pt

-Ï ¸-Ô Ô
Ì ˝
Ô ÔÓ ˛

    = 00 sin
2

i
B

N
e

tw tw
pt



BE/BTech Degree Examination, April/May 2011
Fourth Semester

Computer Science and Engineering

MA2262—Probability and Queueing Theory

(Common to BTech Information Technology)

(Regulation 2008)

Time: Three hours Maximum: 100 marks

Answer ALL Questions

Part-A (10 × 2 = 20 marks)

1. The cumulative distribution function of the random variable X is given by

 FX(x) = 

0, 0

1 1
, 0

2 2

1
1,

2

x

x x

x

Ï
Ô <
Ô
Ô + £ £Ì
Ô
Ô >ÔÓ

. Compute P[X > 1/4].

2. Let the random variable X denote the sum obtained in rolling a pair of fair 

dice. Determine the probability mass function of X.

3. Given the two regression lines 3X + 12Y = 19, 3Y + 9X = 46, fi nd the 

coeffi cient of correlation between X and Y.

4. State the Central Limit theorem.

5. Defi ne:

 (a) Continuous-time random process

 (b) Discrete state random process

6. Find the transition probability matrix of the process represented by the state 

transition diagram.

7. Arrival rate of telephone calls at a telephone booth is according to Poisson 

distribution with an average time of 9 minutes between two consecutive 

arrivals. The length of a telephone call is assumed to be exponentially 

distributed with a mean of 3 minutes. Determine the probability that a 

person arriving at the booth will have to wait.

8. Trains arrive at the yard every 15 minutes and the service time is 33 minutes. 

If the line capacity of the yard is limited to 4 trains, fi nd the probability that 

the yard is empty.
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9. Given that the service time is Erlang with parameters m and m. Show that the 

Pollaczek–Khintchine formula reduces to Ls = 
2(1 )

2(1

m m
m

m

r
r

r

+
+

- )
.

10. Give any two examples for series queueing situations.

Part-B (5 × 16 = 80 marks)

11. (a)  (i)  Find the moment-generating function of the binomial random 

variable with parameters m and p and, hence, fi nd its means and 

variance. (10)

  (ii)  Defi ne Weibull distribution and write its mean and variance. (6)

Or

 (b)  (i)  Derive mean and variance of a geometric distribution. Also establish 

the forgetfulness property of the geometric distribution.

  (ii)  Suppose that telephones calls arriving at a particular switchboard 

follow a Poisson process with an average of 5 calls coming per 

minute. What is the probability that up to a minute will elapse until 

2 calls have come in to the switchboard?

12. (a)  Given the joint density function f(x, y) = 

2(1 3 )
, 0 2, 0 1

4

0, elsewhere

y
x x y

Ï +
Ô < < < <
Ì
ÔÓ

.

Find the marginal densities g(x), h(y) and the conditional density f(x/y) 

and evaluate 
1 1 1

/
4 2 3

P x Y
È ˘< < =Í ˙Î ˚

.

Or

 (b) (i)  Determine whether the random variables X and Y are 

independent, given their joint probability density function as

f(x, y) = 

2 , 0 1, 0 2
3

0, otherwise

xy
x x y

Ï + £ £ £ £Ô
Ì
ÔÓ

.

  (ii)  If X and Y are independent random variables having density functions 

f(x) = 
22 , 0

0, 0

x
e x

x

-Ï ≥Ô
Ì

<ÔÓ
 and f(y) = 

33 , 0

0, 0

y
e y

y

-Ï ≥Ô
Ì

<ÔÓ
, respectively, fi nd 

the density functions of z = X – Y.

13. (a)  (i)  Show that random process {X(t)} = A cos t + B sin t, –• < t < • 

is a wide sense stationary process where A and B are independent 

random variables, each of which has a value of –2 with a probability 

of 
1

3
 and a value of 1 with a probability of 

2

3
.

  (ii)  Derive probability distribution of Poisson process and, hence, fi nd 

its autocorrelation function.



Q1.14 Probability, Sta  s  cs and Random Processes

Or

 (b) (i)  Find the limiting-state probabilities associated with the following 

transition probability matrix 

0.4 0.5 0.1

0.3 0.3 0.4

0.3 0.2 0.5

È ˘
Í ˙
Í ˙
Í ˙Î ˚

.

  (ii)  Show that the difference of two independent Poisson processes is 

not a Poisson process.

14. (a)  (i)  Customers arrive at a one window drive-in bank according to 

Poisson distribution with a mean of 10 per hour. Service time per 

customer is exponential with a mean of 5 minutes. The space in front 

of the window, including that for the serviced car can accommodate 

a maximum of three cars. Other cars can wait outside this space.

   (1)  What is the probability that an arriving customer can drive 

directly to the space in front of the window?

   (2)  What is the probability that an arriving customer will have to 

wait outside the indicated space?

   (3)  How long is an arriving customer expected to wait before being 

served? (10)

  (ii)  Show that for the (M/M/1): (FCFS/•/•), the distribution of waiting 

time in the system is w(t) = (m – l)e–(m – l)t, t > 0 (6)

Or

 (b) Find the steady-state solution for the multiserver M/M/C model and 

hence fi nd L9, W9, Ws and Ls by using Little formula.

15. (a)  Derive the expected steady-state size for the single server queues with 

Poisson input and General service. (16)

Or

 (b) Write short notes on

   (i) Series queues (8)

  (ii) Open and closed queue networks (8)

Solutions

Part-A

1. 
1

(
4

P X >  = 
1 1 1 1 1

( ) 1
4 4 4 2 4

P X F F
Ê ˆ Ê ˆ Ê ˆ< < • = • - = - + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

2. X takes the values 2, 3, 4, ...12.

 P(X = 2) = P(1 from D1 and 1 from D2) = 
1 1 1

6 6 36
◊ =

 P(X = 3) = P{1 from D1 and 2 from D2 or 2 from D1 and 1 from D2) = 
2

36
 

and so on.
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X: 2 3 4 5 5 7 8 9 10 11 12

P(X):
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

 is the required pmf of X.

3.  Rewriting 3x + 12y = 19, y = 
3 19

12 12
x- +  is the regression line of Y on X.

 Rewriting 3y + 9x = 46, x = 
3 46

9 9
y- +  is the regression line of X on Y.

 \ bYX = 23 3 9 1
and ;

12 9 108 12
XY XY YX XYb r b b- = - = ◊ = =

 \ rXY = 
1

2 3
-  (–sign is taken, since bYX and bXY = are both –ve)

4. Statement of CLT is available in the book.

5. Defi nitions is available in the book.

6. The question is incomplete, as the state transition diagram is not given.

7. 
1

l
 = 9 min \ l = 

1 1 1
/ min; 3 min / min

9 3
m

m
= \ =

 P(W > 0) = 1 – P(W = 0) = 1 – P0 = 

1

191 1
1 3

3

l

m

Ê ˆ
- - = =Á ˜Ë ¯

8. l = 
1 1

/ min; / min; 4
15 33

km = =

 P0 = 
1 5

111 1
5 0.0237

11
11

5

k

l

m

l

m

+

- -
= =

Ê ˆ Ê ˆ-- Á ˜Á ˜ Ë ¯Ë ¯

9. P.H. formula is LS = 

2 2{ ( ) ( )}
( )

2{1 ( )}

V T E T
E T

E T

l
l

l

+
+

-

 T follows Er(m, m) \ E(T) = 
2

and ( )
m m

V T
m m

=

 \ LS = 
2

2

2 2
2 1

m m m m
l l l

mm m m

È ˘Ï ¸ Ï ¸Ô Ô◊ + + - ◊Í ˙Ì ˝ Ì ˝
Ô Ô Ó ˛Í ˙Ó ˛Î ˚

   = 
2(1 )

, where
2(1 )

m m
m

m

r l
r r

r m

+
+ =

-
.
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10. (i) A ration shop in which one queue is to be formed in the billing section 

and the other in the ration issuing section.

 (ii) A medical shop in which one queue is formed to receiving drugs and the 

other in the billing and payment counter.

Part-B

11. (a) (i) Standard Book-work (available in the book).

  (ii)  Defi nition, mean and variance of Weibull distribution (available in 

the book)

11. (b) (i) Standard book-work and property (available in the book).

  (ii) l = 5/min;

   P{X(t) = k} = 

5 2
5( ) 5 25

{ (1) 2}
! 2! 2

t k
e t e

P X e
k

l l- -
-◊

\ = = =

12. (a) g(x) 

1 1
2

0 0

3 1
0

( , ) (1 3 )
4

( ) ;0 2
4 2

x
f x y dy y dy

x x
y y x

= = +

= + = < <

Ú Ú

  h(y) 

2 2 2

0 0

2
2 2 2

0

1 3
( , )

4

1 3 1 3
;0 1

4 2 2

y
f x y dx x dx

y x y
y

Ê ˆ+
= = Á ˜Ë ¯

Ê ˆ Ê ˆ+ +
= = < <Á ˜ Á ˜Ë ¯ Ë ¯

Ú Ú

  f(x/y) = 
2 2( , ) (1 3 ) (1 3 )

( ) 4 2 2

f x y x y y x

h y

+ +
= ∏ = ; 0 < x < 2.

  

1 1 1

4 2 31 1 1

4 2 3 1

3

P x y

P x y

P y

Ï ¸Ê ˆ< < « =Ì ˝Á ˜Ë ¯È ˘Ê ˆ Ó ˛< < = =Á ˜Í ˙Ë ¯ Ê ˆÎ ˚ =Á ˜Ë ¯

   

1

22

1

4

2 2

0

1 3

4

1 3

4

y
x dy

y
x dy

Ê ˆ+
Á ˜Ë ¯

=
Ê ˆ+
Á ˜Ë ¯

Ú

Ú

   

1
2

2 22

1
0

4

2 2

x xÊ ˆ Ê ˆ
= ∏Á ˜ Á ˜Ë ¯ Ë ¯
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   = 

1 1

34 16

4 0 64

-
=

-

  [Note: 
1

3
y =  is meant as 

1 1

3 2 3 2

dy dy
y- £ £ + ]

12. (b) (i) g(x) = 

22 2 2
2 2 2

0 0 0

2
( , ) 2

3 6 3

y

y

xy xy
f x y dy x dy x y x x

=

=

Ê ˆÊ ˆ= + = + = +Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú ; 

     0 £ x £ 1

   h(y) = 

11 1 3 2
2

0 0 0

1
( , )

3 3 6 3

x

x

xy x yx y
f x y dx x dx

b

=

=

Ê ˆÊ ˆ= + = + = +Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú ;

    0 £ y £ 2

   f(x, y) π g(x)· h(y) \ X and Y are not independent.

  (ii) fXY(x, y) = 6e
–(2x + 3y); x, y ≥ 0 (∵ X and Y are independent)

   Let V = X – Y and V = Y \ x = u + v and y = v

   \ J = 
u v

u v

x x

y y
 = 1

   fUV(u, v) = |J|·fXY(x, y) = 6e
–(2x + 3y) = 6e

–(2u + 5v)

   fU(u) = (2 5 ) 36
6

5

u v u

u

e dv e

•
- +

-

=Ú , when u < 0

   fU(u) = (2 5 ) 2

0

6
6

5

u v u
e dv e

•
- + -=Ú , when u > 0

13. (a)  E{X(b)} = cos t·E(A) + sin t·E(B), where the probability distribution of 

A or

  (i) B is 

: 2 1

1 2
( ) :

3 3

A

p A

-Ï ¸
Ô Ô
Ì ˝
Ô ÔÓ ˛

   \ E(A) = E(B) = 2 22 2 4 2
0 and ( ) ( ) 2

3 3 3 3
E A E B- + = = = + =

   E(AB) = E(A)·E(B) = 0; E{X(t)} = 0

   E{X
2(t)} = cos2

t·E(A2) + sin2
t· E(B2) + 2 sin t cos t E(A)·E(B)

 (∵ A and B are independent).

      = 2(cos2
t + sin2

t) = 2

   \ Var{X(t)} = 2

    Since E{X(t)} and Var{X(t)} are constants, {X(t)} is a WSS process.

  (ii) Standard Book-work (available in the book)
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13. (b) (i)  Let p ∫ (p1, p2, p3) be the limiting state probability distribution of 

the Markov chain.

   Then pP = p; i.e., (p1, p2, p3) 

0.4 0.5 0.1

0.3 0.3 0.4

0.3 0.2 0.5

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 = (p1, p2, p3)

   viz., –6p1 + 3p2 + 3p3 = 0, 5p1 – 7p2 + 2p3 = 0, p1 + 4p2 – 5p3 = 0

   Solving, p1 = p2 = p3 = k. But p1 + p2 + p3 = 1 \ k = 
1

3

  (ii) Standard property (proof available in the book)

14. (a) (i) l = 10 hour; 
1

5min
m

= . \ m = 
1

/ min
5

 or 12/hour; k = 3

   (1) P(an arriving car gets service immediately on arrival) =

    P0 = 1 4

51 1
6 0.3219
5

11
6

k

l

m

l

m

+

- -
= =

Ê ˆ Ê ˆ-- Á ˜Á ˜ Ë ¯Ë ¯

   (2) P(an arriving car has to wait outside the indicated space) 

    P3 = 

3

4

1

0.5787 0.3219 0.1863

1

l

l m

m l

m

Ï ¸
Ô Ô-

Ê ˆ Ô Ô = ¥ =Ì ˝Á ˜Ë ¯ Ê ˆÔ Ô- Á ˜Ô ÔË ¯Ó ˛

   (3)  E(WQ) = 
1

( )QE N
l ¢

, where l¢ = m(1 – P0)  = 12 × (1 – 0.1863)

= 9.7644

    E(NS) 

1

1

4

4

( 1)

1

5
4

10 4 0.482256
5

12 10 0.517755
1

6

k

k

k
l

ml

m l l

m

+

+

Ê ˆ
+ Á ˜Ë ¯

= -
- Ê ˆ

- Á ˜Ë ¯

Ê ˆ¥ Á ˜Ë ¯ ¥
= - = -

- Ê ˆ- Á ˜Ë ¯

       = 1.2743
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   E(NQ) = ( )SE N
l

m
-  = 1.2743 – 0.8333 = 0.4110

   \ E(WQ) = 
0.4110 0.4110

hour or 60 min 2.5255 min
9.7644 9.7644

¥ =

(ii) A standard characteristic of (M/M/1): (•/FCFS) model; derivation available 

in the book.

14. (b) Steady-state solution for the (M/M/C): (•/FIFO) model and the 

derivations of the formulas for LQ [E(NQ)], WQ, WS and LS [E(NS)] are 

standard results (available in the book).

15. (a) What is required is the formula for E(NS) in a (M/G/1) model. This is the 

same as the derivation of Pollaczek–Khinchine formula (available in the 

book).

15. (b) (i) and (ii) Answers are to be lifted from the relevant pages in the book.
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Time: Three hours Maximum: 100 marks

Statistical Tables may be permitted.

Answer ALL Questions

Part-A (10 × 2 = 20 marks)

1. Check whether the following is a probability density function or not:

  

, 0,

0, elsewhere

x
e x

ll l-Ï £ > 0Ô
Ì
ÔÓ

2. If a random variable has the moment-generating function given by

MX(t) = 
2

2 t-
, determine the variance of X.

3. The regression equations of X on Y and Y on X are respectively 5x – y = 22 

and 64x – 45y = 24. Find the means of X and Y.

4. State the Central Limit theorem.

5. Defi ne wide sense stationary process.

6. If the initial state probability distribution of a Markov chain is

p
(0) = 

5 1

6 6

Ê ˆ
Á ˜Ë ¯  and the transition probability matrix of the chain is 

0 1

1 1

2 2

Ê ˆ
Á ˜
Á ˜Ë ¯

,

fi nd the probability distribution of the chain after 2 steps.

7. State Little’s formula for a (M/M/1): (GD/N/•) queueing model.

8. Defi ne steady-state and transient state in Queueing theory.

9. When will an M/G/1 queueing model become a classic M/M/1 queueing 

model?

10. State Pollaczek–Khinchine formula for the average number of customers in 

an M/G/1 queueing model.
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Part-B (5 × 16 = 80 Marks)

11. (a) (i) A random variable X has the following probability function:

X 0 1 2 3 4 5 6 7

P(x) 0 k 2k 2k 3k k
2 2k

2 7k
2 + k

   (1) Find the value of k.

   (2) Evaluate p(X < 6), P(X ≥ 6)

   (3) If 
1

( )
2

p X c£ > , fi nd the minimum value of c.

  (ii)  Find the moment-generating function of an exponential random 

variable and, hence, fi nd its mean and variance.

Or

 (b) (i)  X is a Poisson variate such that

p(X = 2) = 9p(X = 4) + 90 p(X = 6). Find

   (1) Mean and E(X2)

   (2) p(X ≥ 2).

  (ii)  In a certain city, the daily consumption of electric power in millions 

of kilowatt-hours can be treated as a random variable having 

Gamma distribution with parameters l = 
1

2
 and v = 3. If the power 

plant of this city has a daily capacity of 12 million kilowatt-hours, 

what is the probability that this power supply will be inadequate on 

any given day?

12. (a) (i)  Let X and Y be two random variables having the joint probability 

function f(x, y) = k(x + 2y) where x and y can assume only the integer 

values 0, 1 and 2. Find the marginal and conditional distributions.

  (ii)  Two random variables X and Y have the joint probability density 

function 

   f(x, y) = 
(4 ), 0 2, 0 2

0, elsewhere

c x y x y- - £ £ £ £Ï
Ì
Ó

. Find cov(X, Y)

Or

 (b) (i)  Two dimensional random variables (X, Y) have the joint probability 

density function f(x, y) = 8xy, 0 < x < y < 1

          = 0, elsewhere

   (1) Find 
1 1

2 4
P X Y

Ê ˆ< <Á ˜Ë ¯
∩

   (2) Find the marginal and conditional distributions.

   (3) Are X and Y independent?

  (ii)  Suppose that in a certain circuit, 20 resistors are connected in 

series. The mean and variance of each resistor are 5 and 0.20 

respectively. Using the central limit theorem, fi nd the probability 
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that the total resistance of the circuit will exceed 98 ohms assuming 

independence.

13. (a) (i)  The process {X(t)} whose probability distribution under certain 

condition is given by

    P[X(t) = n] 

1

1

( )
, 1, 2, 3,...

(1 )

, 0
1

n

n

at
n

at

at
n

at

-

+= =
+

= =
+

. Show that {X(t)} is not 

stationary.

  (ii)  A salesman territory consists of three cities, A, B and C. He never 

sells in the same city on successive days. If he sells in city-A, then 

the next day he sells in city-B. However, if he sells in either city-B 

or city-C, the next day he is twice as likely to sell in city-A as in 

the other city. In the long run, how often does he sell in each of the 

cities?

Or

 (b) (i)  The transition probability matrix of a Markov chain {X(t)}, n = 1, 

2, 3, ..., having three states 1, 2 and 3 is P = 

0.1 0.5 0.4

0.6 0.2 0.2

0.3 0.4 0.3

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 and 

the initial distribution is p(0) = (0.7  0.2  0.1).

   Find  (1)  p[X2 = 3]

       (2)  p[X3 = 2, X2 = 3, X1 = 3, X0 = 2].

  (ii)  Suppose that customers arrive at a bank according to a Poisson 

process with mean rate of 3 per minute. Find the probability that 

during a time interval of two minutes,

   (1) exactly 4 customers arrive

   (2) greater than 4 customers arrive

   (3) fewer than 4 customers arrive.

14. (a) (i)  A T.V. repairman fi nds that the time spent on his job has an 

exponential distribution with a mean of 30 minutes. The repair 

sets in the order in which they came in and if the arrival of sets is 

approximately Poisson with an average rate of 10 per 8 hour day.

   (1) What is the repairman’s expected idle time each day?

   (2) How many jobs are ahead of average set just brought?

  (ii)  A supermarket has 2 girls running up sales at the counters. If the 

service time for each customer is exponential with mean 4 minutes 

and if people arrive in Poisson fashion at the rate of 10 per hour, 

fi nd the following:

   (1) What is the probability of having to wait for service?

   (2) What is the expected percentage of idle time for each girl?

   (3) What is the expected length of a customer’s waiting time?
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Or

 (b) (i)  Trains arrive at the yard every 15 minutes and the service time is 

33 minutes. If the line capacity of the yard is limited to 5 trains, 

fi nd the probability that the yard is empty and the average number 

of trains in the system, given that the inter-arrival time and service 

time are following exponential distribution.

  (ii)  There are three typists in an offi ce. Each typist can type an average 

of 6 letters per hour. If letters arrive for being typed at the rate of 15 

letters per hour, what fraction of times will all the typists be busy? 

What is the average number of letters waiting to be typed?

15. (a) (i)  An automatic car-wash facility operates with only one bay. Car 

arrive according to a Poisson distribution with a mean of 4 cars 

per hour and may wait in the facility’s parking lot if the bay is 

busy. The parking lot is large enough to accommodate any number 

of cars. If the service time for all cars is constant and equal to 10 

minutes, determine

   (1) mean number of customers in the system, Ls

   (2) mean number of customers in the queue, Lq

   (3) mean waiting time of a customer in the system, Ws

   (4) mean waiting time of a customer in the queue, Wq

  (ii)  An average of 120 students arrive each hour (inter-arrival times 

are exponential) at the controller offi ce to get their hall tickets. To 

complete the process, a candidate must pass through three counters. 

Each counter consists of a single server, service times at each 

counter are exponential with the following mean times: counter 1, 

20 seconds; counter 2, 15 seconds and counter 3, 12 seconds. On 

the average, how many students will be present in the controller’s 

offi ce?

Or

 (b) (i)  Derive the P–K formula for (M/G/1):(GD/•/•) queueing model 

and hence deduce that with the constant service time the P–K 

reduces to Ls = 

2

2(1

r
r

r
+

- )
 where m = 

1
and

( )E T

l
r

m
= .

  (ii)  For an open queueing network with three nodes 1, 2 and 3, let 

customers arrive from outside the system to node j according to 

a Poisson input process with parameters rj and let Pij denote the 

proportion of customers departing from facility i to facility j. Given 

(r1, r2, r3) = (1,  4,  3) and Pij = 

0 0.6 0.3

0.1 0 0.3

0.4 0.4 0

È ˘
Í ˙
Í ˙
Í ˙Î ˚

, determine the 

average rate lj to the node j for j = 1, 2, 3.
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Solutions

Part-A

1. f(x) = le
–lx ≥ 0, for all x ≥ 0, since l > 0

 and 

0 0

( ) 1
x

e
f x dx

l

l
l

•• -Ê ˆ
= =Á ˜-Ë ¯Ú  \   f(x) is a genuine pdf.

2. MX(t) = 
22

1
2 4

2 1
2

t t

t
= + + + •

Ê ˆ-Á ˜Ë ¯

 

 E(X) = coeffi cient of 
2

21 1
; ( ) coefficient of

1 2 2 2

t t
E X= = =

 \ V(X) = E(X2) – E2(X) = 
1 1 1

2 4 4
- =

3. (X , Y ) is the point of intersection of the two regression lines.

 5X  – Y  = 22 or 225X  – 45Y  = 990...(1); 64X  – 45Y  = 24...(2)

 Solving of (1) and (2); X  = 6 and Y  = 8.

4. Statement of CLT available in the book.

5. Defi nition of WSS available in the book.

6. p
(1) = p(0)

p = 

0 1
5 1 1 11

, ,1 1
6 6 12 12

2 2

Ê ˆ
Ê ˆ Ê ˆÁ ˜ =Á ˜ Á ˜Ë ¯ Ë ¯Á ˜Ë ¯

 p
(2) = p(1)

p = 

0 1
1 11 11 13

, ,1 1
12 12 24 24

2 2

Ê ˆ
Ê ˆ Ê ˆÁ ˜ =Á ˜ Á ˜Ë ¯ Ë ¯Á ˜Ë ¯

7. Statements of Little’s formulas are available in the book.

8. Defi nitions are available in the book.

9. In the (M/M/1) model, the number of customers serviced follows a Poisson 

process or the service time follows an exponential distribution, whereas is the 

(M/G/1) model, the service time follows an arbitrary (general) distribution.

10. Pollaczek–Khinchine formula for LS or E[NS] is available in the book.

Part-B

11. (a) (i) This is a worked example in the book.

    Part (2) of the problem is not given in the book, which is given 

below:

   (2) P( X < 6) = P(X = 0 or 1 or ... or 5)

   = 8k + k2 = 
8 1 81 81 19

and ( 6) 1
10 100 100 100 100

P X+ = ≥ = - =
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  (ii) Pdf of the exponential RV X is f(x) = le
–lx; x ≥ 0; l > 0

   MX(t) = 
( )

0 0
( )

t x
tx x e

e e dx
t t

l
l l

l l
l l

•• - -
- Ï ¸Ô Ô= =Ì ˝- - -Ô ÔÓ ˛

Ú

   MX(t) = 

1 2

2
1 1 (1)

t t t

l l l

-
Ê ˆ- = + + + •Á ˜Ë ¯

  

   E(X) = coeffi cient of 
1

in (1)
1

t

l
=

   E(X2) = coeffi cient of 
2

2

2
in (1)

2

t

l
=

   V(X) = E(X2) – E2(X) = 2 2 2

2 1 1

l l l
- =

11. (b) (i) Let X follow a P(l) \   P(X = r) = ; 0
r

e

r

l l
l

- ◊
>

   Given:  P(X = 2) = 9P(X = 4) + 90 P(X = 6)

   \ 
2

2

e
l l-

 = 

4 69 90

4 6

e e
l ll l- -

+ ; i.e., 360 l2 = 270 l4 + 90 l6

   Since l2 π 0, l4 + 3l2 – 4 = 0; i.e., (l2 – 1) (l2 + 4) = 0

   Since l2 π –4, we get l2 = 1; Since l > 0, l = 1

   (1) E(X) = l = 1; V(X) = l = 1; i.e., E(X2) – E2(X) = 1 \ E(X2) = 2

   (2) P(X ≥ 2) = 1 – P(X < 2) = 1 –{P(X = 0) + P(X = 1)}

      = 1 –{e
–l + le

–l} = 1 – 2e
–l

      = 
2

1
e

-

  (ii) This is a worked example in the book.

12. (a) (i)

   

Y

X
0 1 2

0 0 2 4

1 3 5

2 2 4 6

k k

k k k

k k k

 

2 2

0 0j j

ij

y x

p
= =

Â Â  = 1; i.e., 27 k = 1

       \   k = 
1

27
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    Marginal distribution of X Marginal distribution of Y

    

0 6/27

1 9/27

2 12/27

X P

 

0 3/27

1 9/27

2 15/27

Y P

    CPD of X/Y = 0 CPD of X/Y = 1

    

( / ) 0

0 0

1
1 / 3

3

2
2 2 /3

3

X P X Y

k k

k k

=

=

=

 

( / ) 1

2
0

9

3
1

9

4
2

9

X P X Y =

    CPD of X/Y = 2 CPD of Y/X = 0

    

( / ) 2

4
0

15

5
1

15

6
2

15

X P X Y =

 

( / 0)

0 0

2
1

6

4
2

6

Y P Y X =

    CPD of Y/X = 1 CPD of Y/X = 2

    

( / 1)

1
0

9

3
1

9

5
2

9

Y P Y X =

 

{ ( 2)}

2
0

12

4
1

12

6
2

12

Y P Y X =

  (ii) ( , )

XYR

f x y dx dyÚÚ  = 1;  i.e., 
2 2

0 0

(4 ) 1x y dx dy- - =Ú Ú

   i.e., 

22 2

0 0

4
2

x
c x yx dy

Ê ˆ
◊ - -Á ˜Ë ¯Ú  = 1; i.e., 

2

0

(6 2 ) 1c y dy- =Ú
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   i.e., c(6y – y2)0
2 = 1; i.e., 8C = 1 \   C = 

1

8

   E(X) = 

2 2 2 2
2

0 0 0 0

1
( , ) (4 )

8
x f x y dx dy x x yx dx dy= - -Ú Ú Ú Ú

      = 

22 23 2
2

0 00

1 1 16 5
2 2

8 3 2 8 3 6

x x
x y dy y dy

Ê ˆ Ê ˆ- - = - =Á ˜Á ˜ Ë ¯Ë ¯Ú Ú

          = E(Y), by symmetry

      E(XY) = 

2 2 2 2
2 2

0 0 0 0

1
( , ) (4 )

8
x f x y dx dy xy x y xy dx dy= - -Ú Ú Ú Ú

     = 

22 23 2
2 2 2

0 00

1 1 8 2
2 8 2

8 3 2 8 3 3

x x
yx y y dy y y dy

Ê ˆ Ê ˆ- - = - - =Á ˜Á ˜ Ë ¯Ë ¯Ú Ú

   \ Cov (X, Y) = E(XY) – E(X)·E(Y) = 
2 25 1

3 36 36
- = -

12. (b) (i)
y

B A

D C

O x

Fig. 1

   (1) 
1 1

2 4
P X Y

Ê ˆ< « <Á ˜Ë ¯  = 

1 1

4 4
3

0 0 0

8 4

y

xy dx dy y dy=Ú Ú Ú  = 
1

256

   (2) fX(x) = 
1

2 1 38 4 ( ) 4 4 ; 0 1x

x

xy dy x y x x x= = - < <Ú

    fY(y) = 2 3
0

0

8 4 ( ) 4 ; 0 1

y

y
xy dx y x y y= = < <Ú

   (3) fX(x)· fY(y) π f(x, y) \   X and Y are not independent.

  (ii) E(Xi) = 5 and V(Xi) = 0.20

    By the central limit theorem, S20 = X1 + X2 + ... + X20 follows 

( , )N n nm s
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   i.e., S20 follows N(100, 2)

   \ P(S20 > 98) = 20 100 98 100

2 2

S
P

- -Ï ¸
>Ì ˝

Ó ˛
          = P(Z > –1) = P(0 < Z < 1) + 0.5 = 0.8413

13. (a)  (i) This is a worked example in the book.

  (ii)  The one-step tpm of the corresponding Markov chain is 

0 1 0

2 1
0

3 3

2 1
0

3 3

A B C

A

B

C

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

. If (p1, p2, p3) is the stationary state probability 

distribution, then (p1, p2, p3) 

0 1 0

2 1
0

3 3

2 1
0

3 3

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

 = (p1, p2, p3)

   i.e., 3p1 – 2p2 –2p3 = 0

      3p1 – 3p2 + p3 = 0

                         p2 = 3p3

   Solving these equations, we get

31 2
1 2 3and 1

8 9 3
k

pp p
p p p= = = + + =

- - -

   i.e., p1 = 2 3

2 9 3
, and

5 20 20
p p= =

    i.e., the salesman sells in the cities A, B, C, 40%, 45% and 15% of 

the days respectively.

13. (b)  (i) This is a worked example in the book.

  (ii)  This is a worked example in the book. Solution for part (3) is not 

available in the book, which is given below:

   (3) P{X(2) < 4} = 1 – P{X(2) ≥ 4} = 1 – (0.133 + 0.715) = 0.152

14. (a) (i) 
1

m
 = 30 min; \   m = 

1 10 5
/ min or 2/ hour; or /hour

30 8 4
l =

   (1) P(the repairman is idle) = P(no customer in the system)

                 = 0

5 3
1 1

8 8
P

l

m
= - = - =
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   \ Expected idle time each 8 hour day = 
3

8 3 hours
8

¥ =

   (2) E(No. of customers in the system) = 
5

( )
3

SE N
l

m l
= =

-
  (ii) This is a worked example in the book.

14. (b) (i)  
1

l
 = 15 min or l = 

1
/ min

15
 or 4/hour; 

1

m
 = 33 min or m = 

1
/ min

33
 

or 
20

/hour
11

   k = 5, P0 = 
1 6

1
1 (2.2)

0.0187
1 (2.2)

1

k

l

m

l

m

+

-
-

= =
-Ê ˆ

- Á ˜Ë ¯

   E(NS) = 

1

1

( 1)
132 6 113 380

5
131 112 380

1

k

k

k
l

ml

m l l

m

+

+

Ê ˆ
+ Á ˜Ë ¯ ¥ ◊

- = - +
- ◊Ê ˆ

- Á ˜Ë ¯

 

  (ii) This is a worked example in the book.

15. (a) (i) l = 4/hour or 
1

15
/min E(T) = 10 and V(T) = 0

   (1) By P.K. formula, E(NS) = LS = 
2 2{ ( ) ( )}

( )
2{1 ( )}

V T E T
E T

E T

l
l

l

+
◊ +

-

    i.e., LS = 

1
(0 100)

1 422510
115 3

2 1 10
15

+
¥ + =

Ï ¸- ¥Ì ˝
Ó ˛

   (2) LQ = E(NQ) = 

1

4 215( )
13 3

10

SE N
l

m
- = - =

   (3) E(WS) = 
1 4

( ) 15 20 min
3

SE N
l

= ¥ =

   (4) E(WQ) = E(WS) – 
1

m
 = 20 – 10 = 10 min

  (ii)  l = 120/hour or 
1

30
/second; m1 = 

1

20
/second; m2 = 

1

15
/second;

m3 = 
1

12
/second
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1 2 3

( )

1 1 1 1

1 1 1 1 1 130

20 30 15 30 12 30

SE N
l l l

m l m l m l
= + +

- - -

Ï ¸
Ô Ô

= + +Ì ˝
Ô Ô- - -
Ó ˛

       = 
1 600 450 360 60 30 20 11

30 10 15 18 30 3

+ +Ï ¸+ + = =Ì ˝
Ó ˛

15. (b) (i)  Derivation of P.K. formula is available in the book.

    P.K. formula is a LS = 
2 2{ ( ) ( )} 1

( ) ; ( )
2{1 ( )

V T E T
E T E T

E T

l
l

l m

+
+ =

-
 and 

V(T) = 0

   = 

2

22

1

2(1 )
2 1

l
l rm

r
m rl

m

◊
+ = +

-Ê ˆ
-Á ˜Ë ¯

  (ii) Jackson’s fl ow balance equations are lj = 
3

1

j i ij

i

r Pl
=

+ ◊Â ; (j = 1, 2, 3)

   i.e., l1 = 1 + l1P11 + l2P21 + l3P31 (when j = 1)

   i.e., l1 = 1 + 0.1l2 + 0.4 l3 (1)

   When j = 2,

   l2 = 4 + l1P12 + l2P22 + l3P32

   i.e., l2 = 4 + 0.6l1 + 0.4 P3 (2)

   When j = 3,

   l3 = 3 + l1P13 + l2P23 + l3P33

   i.e., l3 = 3 + 0.3l1 + 0.3 l2 (3)

   Solving (1), (2) and (3); l1 = 5, l2 = 10, l3 = 
15

2
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Answer ALL Questions.

Part-A (10 × 2 = 20 marks)

1. A random variable X has cdf

  FX(x) = 

0; 1

1/2( 1); 1 3

1; 3

x

x x

x

<Ï
Ô - £ <Ì
Ô ≥Ó

 Find the pdf of X and the expected value of X.

2. Find the moment-generating function of a binomial distribution.

3. The joint pmf of two random variables X and Y is given by

  PX, Y(x, y) = 
, 1, 2, 3; 1, 2, 3

0, otherwise

kxy x y= =Ï
Ì
Ó

 Determine the value of the constant k.

4. The joint pdf of a random variable (X, Y) is fxy(x, y) = 
2

2 , 0 2
8

x
xy x+ £ £ , 

0 £ y £ 1. Find P{X < Y}.

5. Defi ne wide sense stationary process.

6. Show that a binomial process is Markov.

7. A random process X(t) is defi ned by X(t) = K cos wt, t ≥ 0, where w is a 

constant and K is uniformly distributed over (0, 2). Find the autocorrelation 

function of X(t).

8. Defi ne cross correlation function of X(t) and Y(t). When do you say that they 

are independent?

9. Defi ne a linear time invariant system.

10. State the convolution form of the output of a linear time invariant system.
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Part-B (5 × 16 = 80 marks)

11. (a) (i) A random variable X has pdf

   fX(x) = 
2 ; 0

0; otherwise

x
kx e x

-Ï >Ô
Ì
ÔÓ

    Find the rth moment of X about the origin. Hence, fi nd the mean and 

variance. (8)

  (ii) A random variable X is uniformly distributed over (0, 10). Find

   (1) P(X < 3), P(X > 7) and P(2 < X < 5)

   (2) P(X = 7) (8)

Or

 (b) (i)  An offi ce has four phone lines. Each is busy about 10% of the time. 

Assume that the phone lines act independently.

   (1) What is the probability that all four phones are busy?

   (2) What is the probability that at least two of them are busy? (6)

  (ii)  Describe gamma distribution. Obtain its moment generating 

function. Hence, compute its mean and variance. (10)

12. (a) (i) Two independent random variables X and Y are defi ned by

   fX(x) = 
4 ; 0 1

0; otherwise

ax x< <Ï
Ì
Ó

 and 
4 ; 0 1

( )
0; otherwise

Y

by x
f y

< <Ï
= Ì

Ó
   Show that U = X + Y and V = X – Y are uncorrelated. (8)

  (ii)  State and prove the central limit theorem for the case of iid random 

variables. (8)

Or

 (b) (i)  The equations of two regression lines are 3x + 12y = 19 and

3y + 9x = 46. Find ,x y  and the correlation coeffi cient between X 

and Y. (8)

  (ii) Give the joint pdf of X and Y

   fX, Y(x, y) = 
( ); 0 2,

0; otherwise

CX x y x x y x- < < - < <Ï
Ì
Ó

  (1) Evaluate C.

  (2) Find the marginal pdf of X.

  (3) Find the conditional density of Y|X. (8)

13. (a) (i)  Defi ne a semirandom telegraph signal process and prove that it is 

evolutionary. (10)

  (ii)  Mention any three properties each of autocorrelation and of cross 

correlation functions of a wide sense stationary process. (6)

Or

 (b) (i)  A random process X(t) is defi ned by

   X(t) = A cos t + B sin t; –• < t < •
    where A and B are independent random variables, each of which 

has a value of –2 with a probability of 1/3 and a value of 1 with 
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a probability of 2/3. Show that X(t) is a wide sense stationary 

process. (8)

  (ii)  Defi ne a Poisson process. Show that the sum of two Poisson 

processes is a Poisson process. (8)

14. (a)  (i)  Defi ne spectral density of a stationary random process X(t). Prove 

that for a real random process X(t), the power spectral density is an 

even function. (8)

  (ii) Two random processes X(t) and Y(t) are defi ned as follows:

    X(t) = A cos (wt + q) and Y(t) = B sin(wt + q) where A, B and w 

are constants; q is a uniform random variable over (0, 2p). Find the 

cross correlation function of X(t) and Y(t). (8)

Or

 (b)  (i) State and prove the Wiener–Khintchine theorem. (8)

  (ii) If the cross power spectral density of X(t) and Y(t) is

    SXY(w) = 
; , 0

0; otherwise

ib
a

w
a w a a

a

Ï + - < < >Ô
Ì
ÔÓ

   where a and b are constants. Find the cross correlation function.

 (8)

15. (a)  (i)  A random process X(t) is the input to a linear system whose impulse 

function is h(t) = 2e
–t; t ≥ 0. The autocorrelation function of the 

process is RXX(t) = 
| |2

e
t-

. Find the power spectral density of the 

output process Y(t). (8)

  (ii)  A wide sense stationary noise process N(t) has an autocorrelation 

function RNN(t) = 
| |3

Pe
t-  where P is a constant. Find its power 

spectrum.

Or

 (b)  (i)  If the input to a time invariant stable, linear system is a wide sense 

stationary process, prove that the output will also be a wide sense 

stationary process. (8)

  (ii)  Let X(t) be a wide sense stationary process which is the input to 

a linear time invariant system with unit impulse h(t) and output 

Y(t). Then prove that SYY(w) = |H(w)|2 SXX(w) where H(w) is the the 

Fourier transform of h(t). (8)

Solutions
Part-A

1. f(x) = 

33 2

1 1

0, in 1

1
( ) , in 1 3; ( ) 2

2 2 4

0, in 3

x

d x x
F x x E X dx

dx

x

<Ï
Ô È ˘Ô= £ < = = =Ì Í ˙

Î ˚Ô
≥ÔÓ

Ú .
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2. P(X = r) = pr = nCrp
r
q

n–r; r = 0, 1,..., n

 MX(t) = 
0 0

( ) ( )
n n

tr r n r t r n r t n
r r

r r

e nC p q nC pe q q pe
- -

= =

◊ = = +Â Â

3. 
/ 1 2 3

1 2 3

2 2 4 6

3 3 6 9

x y

k k k

k k k

k k k

      
3 3

1 1

1xy

y x

p
= =

=ÂÂ ; i.e., 36k = 1

      \ 
1

36
k =

4. This is a part of a worked example in the book.

5. Defi nition of WSS process—available in the book.

6. When P(Xn = 1) = p and P(Xn = 0) = q, where p + q = 1, then {Xn} is a 

Bernoulli’s process.

 If Sn = 
1

n

n

n

X
=

Â , then {Sn; n ≥ 1} is a Binomial process.

 Now, P(Sn+1 = k + 1/Sn = k} = p and P(Sn+1 = k/Sn = k) = q

 \   {Sn} is a Markov process.

7. K is U (0, 2) \   Var(K) = 
2(2 0) 1

; ( ) 1
12 3 2

b a
E K

- +
= = =

 Var(K) = E(K)2 – E2(K); E(K2) = 
4

3

 R(t, t2) = E{X(t1)·X(t2)} = E{K
2 cos wt1·cos wt2} = 2

4
cos , cos

3
t tw w

8. RXY(t) = E{X(t)·Y(t – t)}

 {X(t)} and {Y(t)} are independent, if RXY(t) = mX·mY

9. Defi nition is available in the book.

10. Y(t) = ( ) ( )h u X t n du

•

-•

-Ú , where X(t) and Y(t) are the input and output process 

and h(t) is the system weighting function.

Part-B

11. (a) (i) 2

0

1x
kx e dx

•
- =Ú ; i.e., 2

0[ ( ) 2 ( ) 2( )] 1x x x
k x e x e e

- - - •- - + - =

   i.e., 2k = 1 \   k = 1/2

   2

0

1 1

2 2

r x
r x e dxm

•
+ - -

= =¢ Ú   [{x
r+2 + (r + 2) xr + 1 + (r + 2) (r + 1) xr + 

... (r + 2) (r + 1) ...2.1}e
–x]0

 •= 
1

2
2

r +
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   E(X) = 
2

1 2

1 1
3 3; ( ) 4 12

2 2
E Xm m= = = = =¢ ¢

   V(X) = E(X2) – E2(X) = 12 – 9 = 3.

  (ii) X is U(0, 10) \   fX(x) = 
1

10

   (1) P(X < 3) = P(0 < X < 3) = 

3

0

1 3

10 10
dx =Ú

    P(X > 7) = P(7 < X < 10) = 

10

7

1 3

10 10
dx =Ú

    P(2 < X < 5) = 

5

2

1 3

10 10
dx =Ú

   (2) Since X is a continuous RV, P(X = 7) = 0

11. (b) (i) X ∫ Number of busy phones; p = 0.1, q = 0.9, n = 4

   (1) P(X = 4) = 4C4·(0.1)4·(0.9)0 = 0.0001

   (2) P(X = 2, 3 or 4)  = 1 – {P(X = 0) + P(X = 1)}

= 1 – {4C0·(0.1)0·(0.9)4 + 4C1·(0.1)1·(0.9)3}

= 1 –(0.6561 + 0.2916) = 0.0523

  (ii)  If X is a continuous RV with f(x) = 1 / ( )n x
x e n

- - ; x ≥ 0, then X is 

said to follow Gamma distribution with parameter n > 0

   MX(t) = 1 1 (1 )

0 0

1
/ ( )

( )

tx n x n t x
e x e n dx x e dx

n

• •
- - - - -=Ú Ú

       

1

0

1

0

1

1 1( )

1 1
(1 )

(1 )( )

n

y

n y n

n

y dy
e

t tn

y e dy t
tn

-•
-

•
- - -

Ê ˆ= Á ˜Ë ¯- -

= ◊ = -
-

Ú

Ú

   MX(t) = 2( 1)
1 (1)

1 2

n n n
t t

+
+ + + 

   E(x) = coeffi cient of 
1

t
 in (1) = n

   E(X2) = coeffi cient of 
2

2

t
 in (1) = n(n + 1)

   \ Var(X) = E(X2) – E2(X) = n
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12. (a) (i)
y

O
x

Fig. 1

   fXY(x, y) = 16 abxy; 0 < x, y < 1

   E(U) = 
1 1

0 0

( ) ( ) 16E X Y x y abxy dx dy+ = +Ú Ú

    = 

11 3 2
2

0 0

16
3 2

x x
ab y y dy

Ê ˆ
+Á ˜Ë ¯Ú

    = 

11 2 2 3

0 0

16
16 16

3 2 6 6 3

y y y y
ab dy ab ab

Ê ˆ Ê ˆ
+ = + =Á ˜ Á ˜Ë ¯ Ë ¯Ú

   E(V) = E(X – Y) = 

1 1

0 0

( )16x y abxy dx dy-Ú Ú

    = 

11 13 2 2
2

0 00

16 16
3 2 3 2

x x y y
ab y y dy ab dy

Ê ˆ Ê ˆ
- = -Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú

    = 

1
2 3

0

16 0
6 6

y y
ab

Ê ˆ
- =Á ˜Ë ¯

   E(UV) = 

1 1
2 2 2 2

0 0

( ) ( )16E X Y x y ab xy dx dy- = -Ú Ú

    = 

11 4 2
3

0 0

16
4 2

x y x
ab y dy

Ê ˆ
-Á ˜Ë ¯Ú

    = 

11 3 2 4

0 0

16 16 0
4 2 8 8

y y y y
ab dy ab

Ê ˆ Ê ˆ
- = - =Á ˜ Á ˜Ë ¯ Ë ¯Ú

   C(U, V) = E(UV) – E(U)·E(V) = 0; \  rUV = 0;

   \  U and V are uncorrelated.
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  (ii)  Statement of Lindeberg-Levy’s form of CLT—available in the 

book. Proof is beyond the scope of the syllabus and the book.

12. (b) (i) ( , )X Y  is the point of intersection of the two regression lines.

   
3 12 19x y+ =

 (1)

   9 3 46x y+ =  (2)

   Solving (1) and (2), we get 
1

5 and
3

X Y= =

   Rewriting the regression equations, we have 
1 19

4 12
y x= - +  (1)

   and x = 
1 46

3 9
y- +  (2)

   \ bYX = 
1 1

and
4 3

XYb- = -

    rXY
2 = 

1 1 1
or

12 12 2 3
XY YX XYb b r

-
◊ = \ = -

   (– sign is taken, since both bXY and bYX are –ve).

  (ii) This is a worked example in the book.

13. (a) (i) This is a worked example in the book.

  (ii) Properties of ACF and CCF are available in the book.

13. (b) (i)  E{X(t)} = cos t E(A) + sin t·E(B), where the probability distribution 

of A or B is given below:

   

or 2 1

1 2
( ) or ( )

3 3

A B

P A P B

-

   \ E(A) = 
2 2

( ) 0
3 3

E B = - + =  and

   E(A2) = E(B2) = 
4 2

2
3 3

+ =

   E(AB) = E(A)·E(B) = 0, since A and B are independent.

   \ E{X(t)} = 0

   E{X
2(t)} = cos2 t·E(A2) + sin2 t·E(B2) + 2 sin t cos t·E(AB) = 2

   \ V{X(t)} = 2

   Since E{X(t)} and V{X(t)} are constants, {X(t)} is a WSS process.

  (ii)  Defi nition and property of Poisson process are available in the 

book.

14. (a) (i) Defi nition and property of spectral density are available in the book.

  (ii) 
1

( )
2

fq q
p

=  in 0 < q < 2p
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   E{X(t1)}·Y(t2)} = E{A cos (w t1 + q)·B sin (w t2 + q)}

    = 
2

1 2

0

1
cos( ) sin(

2
AB t t d

p

w q w q q
p

◊ + ◊ + )Ú

    = 
2

1 2 1 2

0

[sin{ ( ) 2 } sin{ ( )}]
4

AB
t t t t d

p

w q w q
p

+ + - -Ú

    = 

2

1 2 1 2

0

1
cos{ ( ) 2 sin{ ( )}

4 2

AB
t t t t

p

w q w q
p

È ˘- + + } - -Í ˙Î ˚

    = 1 2sin ( )
2

AB
t tw- -

   i.e., RXY(t1, t2) = RXY(t1 – t2) = 1 2sin ( )
2

AB
t tw- -

   \ RXY(t) = sin
2

AB
wt-

14. (b) (i)  Wiener–Khinchine theorem—statement and proof are available in 

the book.

  (ii) RXY(t) = 1 1
{ ( )}

2

i
XY

b
F S a i e d

a

tww w w
p

•
-

-•

Ê ˆ= +Á ˜Ë ¯Ú

    = 
1

(cos sin )
2

a

a

ib
a i d

a

w
tw tw w

p -

Ê ˆ+ +Á ˜Ë ¯Ú

    = 

0

1
cos sin

a
b

a d
a

tw w tw w
p

Ê ˆ-Á ˜Ë ¯Ú

    = 
2

0 0

1 sin cos sin
aa

b
a

a

tw tw tw
w

p t t t

È ˘Ï ¸Ê ˆ Ê ˆÍ ˙- - +Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Ó ˛Î ˚

    = 
2

1 sin cos sina a b a
a b

a

t t t

p t t t

È ˘+ -Í ˙Î ˚

15. (a) (i) H(w) = F{h(t)} = 
0

( ) 2i t t i t
h t e dt e e dt

w w
• •

- - -

-•

= ◊Ú Ú

        = 
(1 )

0

2
2

(1 ) 1

i t
e

i i

w

w w

•- +È ˘
=Í ˙- + +Î ˚

   SXX(w) = 2| |{ ( )} i
XXF R e e d

t wtt t
•

- -

-•

= Ú
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       = 
0

2 2

0

i i
e e d e e d

t wt t wtt t
•

- - -

-•

◊ + ◊Ú Ú

       = 

0
(2 ) (2 )

0
2 (2 )

i i
e e

i i

w t w t

w w

•- - +

-•

È ˘ È ˘
+Í ˙ Í ˙- +Î ˚ Î ˚

       = 
2

1 1 4

2 2 4i iw w w
+ =

- + +

   SYY(w) = 2

2 2 2 2

4 4 16
| ( )| ( )

1 4 ( 1)( 4)
XXH Sw w

w w w w
= ◊ =

+ + + +

  (ii) SNN(w) = F{RNN(t)} = 
0

3 3

0

i i
P e e d e e d

t wt t wtt t
•

- - -

-•

È ˘
+Í ˙

Í ˙Î ˚
Ú Ú

      = 

0
(3 ) (3 )

0
3 (3 )

i i
e e

P
i i

w t w t

w w

•- - +

-•

È ˘Ï ¸ Ï ¸Ô Ô Ô ÔÍ ˙+Ì ˝ Ì ˝- - +Í ˙Ô Ô Ô ÔÓ ˛ Ó ˛Î ˚

      = 
2

1 1 6

3 3 9

P
P

i iw w w

È ˘+ =Í ˙- + +Î ˚
15. (b) (i) A standard property; proof is available in the book.

  (ii) A standard result, the derivation is available in the book.
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Probability and Queueing Theory

(Common to Information Technology)
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Time: Three hours Maximum: 100 marks

Answer ALL Questions.

Part-A (10 × 2 = 20 marks)

1. If X and Y are two independent random variables with variances 2 and 3, 

fi nd the variance of 3X + 4Y.

2. State memoryless property of exponential distribution.

3. If the joint pdf of (X, Y) is given by f(x, y) = 2, in 0 £ x £ y £ 1, fi nd E(X).

4. State the Central Limit theorem.

5. Defi ne wide sense stationary process.

6. If the transition probability matrix (tpm) of a Markov chain is 

0 1

1 1

2 2

Ê ˆ
Á ˜
Á ˜Ë ¯

, fi nd 

the steady-state distribution of the chain.

7. What are the characteristics of a queueing system?

8. What is the probability that a customer has to wait more than 15 minutes to 

get his service completed in a M/M/1 queueing system, if l = 6 per hour and 

m = 10 per hour?

9. State Polaczek–Khinchine formula.

10. Defi ne closed network of a queueing system.

Part-B (5 × 16 = 80 marks)

11. (a) (i)  A continuous random variable has the pdf f(x) = kx
4, –1 < x < 0. 

Find the value of k and also 
1 1

2 4
P X X

Ï ¸Ê ˆ Ê ˆ> - < -Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ó ˛
. (8)

  (ii)  Find the moment-generating function of uniform distribution. 

Hence, fi nd its mean and variance. (8)
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Or

 (b)  (i)  Find the moment-generating function and r
th moment for the 

distribution whose pdf is f(x) = Ke
–x, 0 £ x £ •. Hence, fi nd the 

mean and variance. (8)

  (ii)  In a large consignment of electric bulbs, 10 percent are defective. 

A random sample of 20 is taken for inspection. Find the probability 

that (1) all are good bulbs (2) at most there are 3 defective bulbs,

and (3) exactly there are 3 defective bulbs. (8)

12. (a)  (i)  The joint probability density function of a two-dimensional random 

variable (X, Y) is f(x, y) = 
1

(6 ),0 2, 2 4
8

x y x y- - < < < < . Find 

(1) P(X < 1 « Y < 3) (2) P(X + Y < 3) (3) P(X < 1/Y < 3). (8)

  (ii)  If X and Y each follow an exponential distribution with parameter I 

and the independent, fi nd the pdf of U = X – Y. (8)

Or

 (b)  (i)  The marks obtained by 10 students in Mathematics and Statistics 

are given below. Find the correlation coeffi cient between the two 

subjects.

Marks in mathematics 75 30 60 80 53 35 15 40 38 48

Marks in statistics 85 45 54 91 58 63 35 43 45 44

  (ii)  A distribution with unknown mean m has variance equal to 1.5. 

Use the central limit theorem to fi nd how large a sample should be 

taken from the distribution in order that the probability will be at 

least 0.95 that the sample mean will be within 0.5 of the population 

mean. (8)

13. (a) (i)  Show that the process X(t) = A cos lt + B sin lt is wide sense 

stationary, if E(A) = E(B) = 0, E(A2) = E(B2) and E(AB) = 0, where 

A and B are random variables.

  (ii)  A gambler has Rs. 2. He bets Re. 1 at a time and wins Re. 1 with 

probability of 1/2. He stops playing if he loses Rs. 2 or wins Rs. 4. 

(1) What is the tpm of the related Markov chain? (2) What is the 

probability that he has lost his money at the end of 5 plays? (8)

Or

 (b)  (i)  Find the nature of the states of the Markov chain with the tpm 

0 1 0

1 1
0

2 2

0 1 0

P

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Î ˚

 (8)

   (ii)  Prove that the differences of two independent Poisson processes is 

not a Poisson process. (4)

  (iii) Prove that the Poisson process is a Markov process. (4)
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14. (a) (i)  Derive (1) Ls, average number of customers in the system (2) Lq, 

average number of customers in the queue for the queueing model 

(M/M/1): (N/FIFO). (8)

  (ii)  There are three typists in an offi ce. Each typist can type an average 

of 6 letters per hour. If letters arrive for being typed at the rate of 15 

letters per hour, what fraction of time will all the typists be busy? 

What is the average number of letters waiting to be typed? (Assume 

Poisson arrivals and exponential service times) (8)

Or

 (b) Customers arrive at a one-man barber shop according to a Poisson 

process with a mean inter-arrival time of 20 minutes. Customers 

spend an average of 15 minutes in the barber chair. The service time is 

exponentially distributed. If an hour is used as a unit of time, then

   (i)  What is the probability that a customer need not wait for a hair 

cut?

   (ii)  What is the expected number of a customer in the barber shop and 

in the queue?

  (iii)  How much time can a customer expect to spend in the barber 

shop?

  (iv) Find the average time that a customer spends in the queue.

  (v) Estimate the fraction of the day that the customer will be idle.

  (vi) What is the probability that there will be 6 or more customers?

  (vii)  Estimate the percentage of customers who have to wait prior to 

getting into the barber’s chair. (16)

15. (a)  An automatic car-wash facility operates with only one bay. Cars arrive 

according to a Poisson process at the rate of 4 cars per hour and may 

wait in the facility’s parking lot if the bay is busy. The service time for 

all cars is constant and equal to 10 minutes. Determine Ls, Lq, Ws and 

Wq. (16)

 (b) Consider a system of two servers where customers from outside the 

system arrive at server 1 at a Poisson rate of 4 and at server 2 at a Poisson 

rate of 5. The service rates for servers 1 and 2 are 8 and 10 respectively. 

A customer upon completion of service at server 1 is likely to go to 

server 2 or leave the system; whereas a departure from server 2 will go 

25 percent of the time to server 1 and will depart the system otherwise. 

Determine the limiting probabilities Ls and Ws. (16)

Solutions

Part-A

1. Let Z = 3X + 4Y \ Z – E(Z) = 3{X – E(X)} + 4{Y – E(Y)}

 \  V(Z) = E{Z – E(Z)}2 = 9E{X – E(X)}2 + 16E{Y – E(Y)}2

+ 24[E{X – E(X)} {Y – E(Y)}2]
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  = 9 × 2 + 16 × 3 + 24 × 0  (∵   X and Y are independent)

  = 66

2. Statement available in the book.

3.
y

O
x

Fig. 1

 E(X) = 
1 1

2

0 0 0

1
2

3

y

x dx dy y dy= =Ú Ú Ú
4. Statement of CLT available in the book.

5. Defi nition of WSS available in the book.

6. Let the steady-state distribution be (p1, p2).

 Then (p1, p2) = 1 2 2 1

0 1
1

( , ); viz.,1 1
2

2 2

p p p p

È ˘
Í ˙ =
Í ˙
Í ˙Î ˚

 and 1 2 2

1

2
p p p+ =

or 1 2

1

2
p p=  (1)

 Also, 1 1(2)
2

p
p + = ; solving (1) and (2); 1 2

1 2
and

3 3
p p= =

 \ the required distribution is 
1 2

,
3 3

Ê ˆ
Á ˜Ë ¯

7. Answer for this question is available in the book.

8. l = 6/hour and m = 10/hour

 P(WS > t) = ( (( ) w t

t

e dw e
m l m lm l

•
- - ) - - )- =Ú

 \ 
1

4
SP W

Ê ˆ>Á ˜Ë ¯
 = 

1
(10 6)

4
1

e
e

- - ◊
=

9. Statement of P.K. formula is available in the book.

10. Defi nition of closed network of a queueing system is available in the book.

Part-B

11. (a) (i) 

0
4

1

kx dx

-
Ú  = 1, i.e., 

0
5

1

1; i.e., 1 5
5 5

x k
k k

-

Ê ˆ
= = =Á ˜Ë ¯

∵
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1 1

2 4
P x x

Ï ¸> - < -Ì ˝
Ó ˛

 = 

1 1

4 4
4 4

1 1

2

1 1

2 4
5 5

1
1

4

P X

x dx x dx

P X

- -

--

Ï ¸- < < -Ì ˝
Ó ˛ = ∏
Ï ¸- < < -Ì ˝
Ó ˛

Ú Ú

        

1
1/45 5 4
1/2 1

( ) ( )

1 1 1 1
1

1024 32 1024 33

x x
--

- -= ∏

Ê ˆ Ê ˆ= - + ∏ - + =Á ˜ Á ˜Ë ¯ Ë ¯

  (ii) Let X follow U(a, b) \   
1

( )f x
b a

=
-

   MX(t) = 
1 1 ( )

b bt at
tx

a

e e
e dx

b a b a t

-
=

- -Ú

     = 

2 2 3 3

2 2 3 3

1
1 2 31 1

1
1 2 3

bt b t b t

b a t at a t a t

È ˘Ï ¸Ô Ô+ + + +Í ˙Ì ˝
Ô ÔÍ ˙Ó ˛◊ Í ˙- Ï ¸Ô ÔÍ ˙- + + + +Ì ˝Í ˙Ô ÔÓ ˛Î ˚

 

 

     = 
2 2

21
2 6

b a b ba a
t t

+ + +Ê ˆ+ + ◊ +Á ˜Ë ¯
  (1)

   E(X) = coeffi cient of in (1)
1 2

t b a+
=

   E(X2) = coeffi cient of 
2 2 2

in (1)
2 3

t b ba a+ +
=

   V(X) = E(X2) – E2(X)

      = 
2 2 2 2 2 22 2

3 4 12

b ba a b ba a b ba aÊ ˆ Ê ˆ+ + + + - +
- =Á ˜ Á ˜Ë ¯ Ë ¯

      = 
2( )

12

b a-

11. (b) (i) ( )

XR

f x dxÚ  = 1; i.e., 

0

1x
k e dx

•
- =Ú  \  k = 1; i.e., f(x) = e–x; x ≥ 0

   MX(t) = 
(1 )

0 0

1

(1 ) 1

t x
x tx e

e e dx
t t

•• - -
- Ï ¸Ô Ô= =Ì ˝- - -Ô ÔÓ ˛

Ú
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   MX(t) = 1 + t + t2 + ... + tr + ... (1)

   \ mr¢ =  coeffi cient of in (1)
r

t
r

r
=

   E(X) = mr¢ = 1; E(X2) = m2¢ = 2 \   V(X) = E(X2) – E2(X) = 1

  (ii) p = P(a bulb is defective) = 0.1 and q = 0.9; n = 20

   (i) P(all the bulbs are good) = P(no defective bulb)

    = P(X = 0) = 20C0 p
0·q20-0 = (0.9)20

   (ii) P(at most 3 bulbs are defective) = P(X = 0, 1, 2, 3)

    = 
3

20

0

20 r r
r

r

C p q
-

=
Â

    = [(0.9)20 + 20 × (0.1) × (0.9)19 + 190 × (0.1)2 × (0.9)18

+ 1140 × (0.1)3 × (0.9)17]

   (iii)  P(exactly 3 bulbs are defective)

     = P(X = 3) = 20C3 × (0.1)3 × (0.9)17.

12. (a) (i)
y

O

x

y = 4

x = 2

x y+ = 3

y = 2

x = 0

A
B

C

Fig. 2

   (1) P(X < 1 « Y < 3) = P(0 < X < 1 and 2 < Y < 3)

    = 

3 1 3

2 0 2

1 1 11
(6 )

8 8 2
x y dx dy y dy

Ê ˆ- - = -Á ˜Ë ¯Ú Ú Ú

    = 

3
2

2

1 11 3

8 2 2 8

y
y

Ê ˆ
- =Á ˜Ë ¯

   (2) P(X + Y < 3) = 

33

2 0

1
( , ) (6 )

8

y

ABC

f x y dx dy x y dx dy

-

D

= - -ÚÚ Ú Ú

     = 

33
2 3

22

1 1 1 5
(3 )(9 ) 27 6

16 16 3 24
y y dy y y y

Ê ˆ- - = - + =Á ˜Ë ¯Ú
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   (3) P(X < 1/Y < 3) = 

3 2

2 0

( 1 3) 3 1
(6 )

(2 3) 8 8

P X Y
x y dx dy

P Y

< « <
= ∏ - -

< < Ú Ú

        = 

3
2 3

2

2

3 1 3
(10 2 ) 3 (10 )

8 8 5
y dy y y∏ - = ∏ - =Ú

  (ii) This is a worked example in the book.

12. (b)  (i) x = Marks in Mathematics; y = Marks in Statistics

   Sx = 471; Sy = 563; Sx
2 = 26,132; Sy

2 = 34, 815; Sxy = 29, 591

   rXY 
2 2 2 2{ ( ) }{ ( ) }

295910 265173

(261320 221841) (348150 316969)

n xy x y

n x x n y y

S - S ◊ S
=

S - S S - S

-
=

- -

    

30737
0.876

39479 31181
= =

¥

   (ii) This is a worked example in the book.

13. (a)  (i) This is a worked example in the book.

   (ii) This is a worked example in the book.

13. (b)   (i) This is a worked example in the book.

   (ii) This is a standard property, proof is available in the book.

  (iii)  This is a standard property, proof is available in the book.

14. (a)  (i) Derivation is available for this model in the book.

  (ii) This is a worked example in the book.

14. (b) 
1

l
 = 20 \   

1 1 1
/ min; 15 / min

20 15
l m

m
= = \ =

  (i) P(the customers need not wait for a haircut)

   = P(No customer in the system)

   = P0 = 
1 1

1 1 15
20 4

l

m
- = - ¥ =

  (ii) E(Number of customers in the shop) = E(NS) = 

1

20 3
1 1

15 20

l

m l
= =

- -

   E(Number of customers in the queue) =

     E(NQ) = 
2

1

400 2.25
1 1 1(

15 15 20

l

m m l
= =

- ) Ê ˆ-Á ˜Ë ¯
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  (iii) E(waiting time in the shop) = E(WS) = 
1 1

60 min
1 1

15 20

m l
= =

- -

  (iv) E(waiting time in the queue) = 

    E(WQ) = 

1

20 45 min
1 1 1(

15 15 20

l

m m l
= =

- ) Ê ˆ-Á ˜Ë ¯
  (v)  The fraction of the day when the barber (it is not customer as given 

in the problem) will be idle = 0

1

4
P =

  (vi) P(NS ≥ 6) = 1 – {P0 + P1 + P2 + P3 + P4 + P5}

    = 

2 5

1 1 1
l l l l

m m m m

Ï ¸Ï ¸Ê ˆ Ê ˆ Ê ˆÔ Ô Ô Ô- - + + + +Ì ˝ Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Ô ÔÓ ˛ Ô ÔÓ ˛
 

    = 

6

6 61
3

1 1 0.178
4

1

l

ml l

lm m

m

Ê ˆ
- Á ˜Ë ¯Ï ¸ Ê ˆ Ê ˆ- - ¥ = = =Ì ˝ Á ˜Á ˜ Ë ¯Ë ¯Ó ˛ -

  (vii) Fraction of customers who have to wait in the queue

              = 
( ) 2.25

0.75
( ) 3

Q

S

E N

E N
= =

   \ % of customers who have to wait in the queue = 75.

15. (a) We shall assume that the parking lot is large enough to accommodate 

any number of cars.

  l = 4/hour or 
1

/ min
15

; E(T) = 10 and V(T) = 0

  (1) By P.K. formula,  LS = E(NS) = 
2 2{ ( ) ( )}

( )
2{1 ( )}

V T E T
E T

E T

l
l

l

+
◊ +

-

       = 

1
{0 100}

1 422510
115 3

2 1 10
16

+
¥ + =

Ï ¸- ¥Ì ˝
Ó ˛

  (2) LQ = E(NQ) = 
2

( )
3

SE N
l

m
- =

  (3) E(WS) = 
1

( ) 20 minSE N
l

=
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  (4) E(WQ) = 
1

( ) 10 minQE N
l

=

15. (b) r1 = 4, r1 = 5; P11 = 0, P12 = 
1

2
 [Note: It is to be assumed that a customer 

upon completion of service at S1 is equally likely to go to S2 or leave the 

system. The word ‘equally’ is missing in the question.]

  P21 = 22

1
, 0

4
P =  and m1 = 8, m 2 = 10

  Jackson’s fl ow balance equation for this open network is

  ly = 
2

1

( 1, 2)j i ij

i

r P jl
=

+ =Â ; \   l1 = 
2 2 1

1 1
4 and 5

4 2
l l l+ = +

  Solving these equations, l1 = 6 and l2 = 8

  LS = E(NS) = 
1 2

1 1 2 2

6 8
7

8 6 10 8

l l

m l m l
+ = + =

- - - -

  E(WS) = 
1 2

1 1 7
( ) ( )

9
S SE N E N

r rl
= =

+
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Random Processes
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Time: Three hours Maximum: 100 marks

Use of Statistical Tables is permitted.

Answer ALL Questions.

Part-A (10 × 2 = 20 marks)

1. X and Y are independent random variables, with variances of 2 and 3. Find 

the variance of 3X + 4Y.

2. A continuous random variable X has a probability density function (pdf)

 f(x) = 

23 ; 0 1

0; otherwise

x xÏ £ £Ô
Ì
ÔÓ

. Find k such that P(X > k) = 0.5.

3. State the Central Limit theorem for iid random variables.

4. State the basic properties of joint distribution of (X, Y) when X and Y are 

random variables.

5. State the properties of an ergodic process.

6. Explain any two applications of a binomial process.

7. Defi ne cross-correlation function and state any two of its properties.

8. Find the variance of the stationary ergodic process {X(t)} whose 

autocorrelation function is given by RXX(t) = 25 + 4/(1 + 6t2).

9. Defi ne a system. When is it called a linear system?

10. Defi ne band-limited white noise.

Part-B (5 × 16 = 80 marks)

11. (a) (i)  Defi ne the moment-generating function (MGF) of a random variable. 

Derive the MGF, mean, variance and the fi rst four moments of a 

Gamma distribution. (8)

  (ii)  Describe binomial B (n, p) distribution and obtain the moment-

generating function. Hence, compute (1) the fi rst four moments, 

and (2) the recursion relation for the central moments. (8)
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Or

 (b) (i) A random variable X has the following probability distribution:

X: 0 1 2 3 4 5 6 7

P(x): 0 K 2K 2K 3K K
2 2K

2 7K
2 + K

   Find

   (1) the value of K

   (2) P(1.5 < X < 4.5/X > 2), and

   (3) the smallest value of n for which P(X £ n) > 1/2. (8)

  (ii)  Find the MGF of a random variable X having the pdf

    f(x) = /2
; 0

4

0; otherwise

x

x
x

e
+

Ï >Ô
Ì
ÔÓ

   Also deduce the fi rst four moments about the origin. (8)

12. (a) If the joint pdf of a two-dimensional random variable (X, Y) is given by

  f(x, y) = 

2 , 0 1; 0 2
3

0, otherwise

xy
x x y

Ï + < < < <Ô
Ì
ÔÓ

  Find

   (i) 
1

2
P X

Ê ˆ>Á ˜Ë ¯
,

   (ii) P(Y < X),

  (iii) P[X + Y ≥ 1], and

  (iv) The conditional density functions. (16)

Or

 (b)  (i)  The joint pdf of the random variable (X, Y) is

   f(x, y) = 3(x + y) 0 £ x £ 1, 0 £ y £ 1, x + y £ 1, fi nd Cov (X, Y). (8)

   (ii)  Marks obtained by 10 students in Mathematics (x) and statistics (y) 

are given below:

x: 60 34 40 50 45 40 22 43 42 64

y: 75 32 33 40 45 33 12 30 34 51

   Find the two regression lines. Also fi nd y when x = 55. (8)

13. (a) (i)  A process {X(t)} has a probability distribution under a certain 

condition given by P{X(t) = n} = 

1

1

( )
, 1, 2

(1 )

, 0
1

n

n

at
n

at

at
n

at

-

+

Ï
=ÔÔ +

Ì
Ô =Ô +Ó

.

    Find the mean and variance of the process. Is the process fi rst-order 

stationary?
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  (ii)  If the WSS process {X(t)} is given by X(t) = 10 cos (100t + q), 

where q is uniformly distributed over (–p, p), prove that {X(t)} is 

correlation ergodic.

Or

 (b) (i)  If the process {X(t); t ≥ 0} is a Poisson process with parameter l, 

obtain P{X(t) = n}. Is the process fi rst-order stationary? (10)

  (ii)  Prove that a random telegraph signal process Y(t) = aX(t) is a Wide 

Sense Stationary Process where a is a random variable which 

is independent of X(t) and assumes values –1 and +1 with equal 

probability and RXX(t1, t2) = 1 22 | |t t
e

l- -
. (6)

14. (a) (i) Find the mean and autocorrelation of the Poisson process. (8)

  (ii)  Prove that the random processes X(t) and Y(t) defi ned by

    X(t) = A cos wt + B sin wt and Y(t) = B cos wt – AB sin wt are jointly 

wide sense stationary. (8)

Or

 (b) State and prove the Weiner–Khintchine Theorem. (16)

15. (a) (i)  Show that if the input {X(t)} is a WSS process for a linear system 

then output {Y(t)} is a WSS process. Also fi nd RXX(t). (8)

  (ii)  If {X(t)} is the input voltage to a circuit and {Y(t)} is the output 

voltage, {X(t)} is a stationary random process with mX = 0 and 

Rxx(t) = e–a|t|. Find the mean mY and power spectrum SYY(w) of the 

output if the power transfer function is given by H(w) = 
R

R iLW+
.

 (8)

Or

 (b) (i)  If Y(t) = A cos (wt + q) – N(t), where A is a constant, q is a random 

variable with a uniform distribution in (–p, p) and {N(t)} is a 

bandlimited Gaussian white noise with power spectral density

   SNN(w) = 

0
0 0, for | |

2

0, elsewhere

B

N
w w w

Ï
- <Ô

Ì
ÔÓ

    Find the power spectral density Y(t). Assume that {N(t)} and q are 

independent. (10)

  (ii)  A system has an impulse response h(t) = e–bt
U(t), fi nd the power 

spectral density of the ouput Y(t) corresponding to the input X(t).

 (6)

Solutions

Part-A

1. Z = 3X + 4Y; E(Z) = 3E(X) + 4E(Y);

 \  Z – E(Z) = 3{X – E(X)} + 4{Y – E(Y)}
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 Var(Z) = E{Z – E(Z)}2 = 9 Var(X) + 16 Var(Y) + 24 E{X – E(X)} {Y – E(Y)}

    = 9 × 2 + 16 × 3 + 24 × 0    (∵  X and Y are independent)

    = 66

2. P(X > k) = 

1
2 3 13 0.5; [ ] 0.5k

k

x dx x= =Ú ; i.e., 1 – k
3 = 0.5 or k

3 = 0.5 and

k = 0.794.

3. Statement of CLT for iid RV’s is available in the book.

4. Properties of F(x, y) is available in the book.

5. Defi nitions of ergodic process, mean ergodic, correlation ergodic and 

distribution ergodic processes will form the answer for this question.

6. As binomial process is a Markov process, viz., a discrete time Markov chain, 

we can consider (1) random walk with refl ecting barriers, and (2) random 

walk with absorbing barriers as applications of binomial process.

7. Defi nition and properties of cross-correlation function RXY(t) are available 

in the book.

8. This is a worked example in the book.

9. Defi nitions of a system and a linear system are available in the book.

10. Defi nition is available in the book.

Part-B

11. (a) (i)  Defi nition of MGF of a random variable is available in the book.

   Gamma distribution is defi ned by fx(x) = 
11

( )

n x
x e

n

- -
; x ≥ 0, n > 0.

   MX (t) = 1 1 (1 )

0 0

1 1

( )

tx n x n t x
e x e dx x e dx

n n

• •
- - - - -◊ = ◊Ú Ú

    = 1

0

1 1

(1 )( )

n y

n
y e dy

tn

•
- -◊

- Ú , on putting (1 – t) x = y

    = 
1

(1 )n
t-

 or (1 – t)–n

   MX (t) = 2 3( 1) ( 1)( 2)
1

1 2 3

n n n n n n
t t t

+ + +
+ + +

     4( 1)( 2)( 3)

4

n n n n
t

+ + +
+ + • 

   m¢1 = E(X) = n; m¢2 = E(X2) = n(n + 1); Var(X) = m¢2 – m¢1
2 = n;

   m¢3 = n(n + 1) (n + 2); m¢4 = n(n + 1) (n + 2) (n + 3)
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  (ii) Binomial distribution is defi ned by pr = P(X = r) = nCrp
r
q

n – r

   MX (t) = 
0 0

( )
n n

tr r n r t r n r
r r

r r

e nC p q nC pe q
- -

= =

=Â Â

        = 
( 0,1,2,... )

( )
r n

t n
pe q

=
+

   Derivation of the fi rst four moments.

   MX (t) = 

2 3 4

1
1 2 3 4

n

t t t t
p q

È ˘Ê ˆ
+ + + + + +Í ˙Á ˜Ë ¯Í ˙Î ˚

 

    = 
2 3

1 1
2 6 24

n

t t t
pt

Ï ¸Ê ˆÔ Ô+ + + + +Ì ˝Á ˜Ë ¯Ô ÔÓ ˛
 

    = 

2
2

2 2( 1)
1 1 1

1 2 2 2 6

n t n n t t
pt p t

Ê ˆ-Ê ˆ+ + + + + +Á ˜ Á ˜Ë ¯ Ë ¯
 

     

3
2 3

3 3( 1)( 2)
1

3 2 6 24

n n n t t t
p t

Ê ˆ- -
+ + + +Á ˜Ë ¯

     

4
2 3

4 4( 1)( 2)( 3)
1

4 2 6 24

n n n n t t t
p t

Ê ˆ- - -
+ + + + +Á ˜Ë ¯

 

   (1) m¢1 = coeffi cient of 
1

t
 = np;

    m¢2 = coeffi cient of 
2

2

t
 = np + n(n – 1)p2;

    m¢3 = coeffi cient of 
3

3

t
 = np + 3n (n – 1)p2 + n(n   – 1) (n – 2) p3

    m¢4 = coeffi cient of 
4

4

t
 = np  + 7n (n – 1) p2 + 4n (n – 1) (n – 2) 

p
3 + n(n – 1) (n – 2) (n – 3)

   (2)  Recurrence formula for the central moments is given in the 

book.

11. (b) (i) This is a worked example in the book.

  (ii) f(x) = /21
; 0

4

x
xe x

- >

   MX(t) = 

1

2

0 0

1
( )

4

t
tx

e f x dx xe dx

Ê ˆ• • - -Á ˜Ë ¯=Ú Ú
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   = 

1 1

2 2
2

2 2

0

1 1 1
(1 2 )

14 41 1

2 2 2

t x t x

e e
x t

t t t

•
Ê ˆ Ê ˆ- - - -Á ˜ Á ˜Ë ¯ Ë ¯

-

È ˘Ï ¸
Í ˙Ô ÔÔ ÔÍ ˙- = ◊ = -Ì ˝Í ˙Ê ˆ Ê ˆ Ê ˆÔ Ô- -Í ˙- -Á ˜ Á ˜ Á ˜Ë ¯Ô Ô Ë ¯ Ë ¯Ó ˛Í ˙Î ˚

   MX(t) = 1 + 2(2t) + 3(2t)2 + 4(2t)3 + 5(2t)4 + ... • (1)

   m¢1 = coeffi cient of 
1

t
 in (1) = 4; m¢2 = 24; m¢3 = 192; m¢4 = 1920.

12. (a) (i)

O

Fig. 1

    
1

2
P X

Ê ˆ>Á ˜Ë ¯
 = 

12 1 2 3 2
2

10 1/2 0
2

3 3 6

xy x x
x dx dy y dy

Ê ˆÊ ˆ+ = +Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú Ú

     = 

22 2

0 0

7 7 5

24 8 24 16 6

y y
dy y

Ê ˆÊ ˆ+ = + =Á ˜ Á ˜Ë ¯ Ë ¯Ú

  (ii)

O

y

(1, 1)

x

y
x

=

Fig. 2
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   P(Y < X) = 

11 1 1 3 2
2

0 0
3 3 6

y y

xy x yx
x dx dy dy

Ê ˆÊ ˆ+ = +Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú Ú

         = 

11 3 3 2 4

0 0

1 7

3 6 3 6 3 12 8 24

y y y y y y
dy

Ê ˆ Ê ˆ
+ - - = + - =Á ˜ Á ˜Ë ¯ Ë ¯Ú

  (iii)

O
x

y

Fig. 3

   P(X + Y ≥ 1) = 

21 2 1 2
2 2

0 1 0 1
3 6

x x

xy xy
x dy dx x y dx

- -

Ê ˆÊ ˆ+ = +Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú Ú

    = 

1
2 2 2

0

2
2 (1 ) (1 )

3 6

x
x x x x x dx

Ï ¸+ - - - -Ì ˝
Ó ˛Ú

    = 

1
2 3

0

1 4 5

2 3 6
x x x dx

Ê ˆ+ +Á ˜Ë ¯Ú

    = 
1 4 5 65

4 9 24 72
+ + =

  (iv) fX(x) = 

2
2 2

0

2
2 ; 0 1

3 3

xy
x dy x x x

Ê ˆ+ = + < <Á ˜Ë ¯Ú

   \ fY/X(y) = 

2

2

( , ) 3 ; 0 2
2( )

2
3

X

xy
x

f x y
y

f x
x x

+
= < <

+

   fY(y) = 

1
2

0

1
; 0 2

3 3 6

xy y
x dx y

Ê ˆ+ = + < <Á ˜Ë ¯Ú

   \ fX/Y(x) = 

2

( , ) 3 ; 0 1
1( )

3 6
Y

xy
x

f x y
x

tf y

+
= < <

+
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12. (b) (i)

O
x

y

x y+ = 1

Fig. 4

   E(X) = 

111 1
3 2

00 0 0

3
3 ( )

2

yy

x x y dx dy x yx dy

-- Ê ˆ+ = +Á ˜Ë ¯Ú Ú Ú

       = 

1 1 3
3 2

0 0

3 3 3
(1 ) (1 ) 1

2 2 2 8

y
y y y dy y dy

Ê ˆÈ ˘- + - = - + =Á ˜Í ˙ Ë ¯Î ˚Ú Ú

   By symmetry, E(Y) = 
3

8

   E(XY) = 

111 1
3 2 2

00 0 0

3
3 ( )

2

yy

xy x y dx dy yx y x dy

-- Ê ˆ+ = +Á ˜Ë ¯Ú Ú Ú

 = 

1 1 4
3 2 2 2

0 0

3 3 1
(1 ) (1 )

2 2 2 10

y
y y y y dy y y dy

Ê ˆÈ ˘- + - = - + =Á ˜Í ˙ Ë ¯Î ˚Ú Ú

   Cov(X, Y) = E(XY) – E(X)·E(Y) = 
1 9 13

10 64 320
- = -

  (ii) Sx = 440; Sy = 385; Sx
2 = 20,674; Sy

2 = 17,253; Sxy = 18,499

   Let y = ax + b be the regression line of Y on X.

    The normal equations are 440a + 10b = 385 and 20,674a + 440 b = 

18,499.

   Solving these equations, a = 1.186 and b = –13.684

   \ regression line of Y on X is y = 1.186x – 13.684

   \ [y]x = 55 = 51.546

   Let x = cy + d be the regression line of X on Y.

    The normal equations are 385 c + 10 d = 440 and 17253 c + 385 d 

= 18499.

   Solving these equations, c = 0.520 and d = 23.990

   \ regression line of X on Y is x = 0.520 y + 23.990.

13. (a) (i) This is a worked example in the book.

   Since E{X(t)} = 1, a constant, {X(t)} is fi rst order stationary.

  (ii) This is a worked example in the book.
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13. (b)  (i) This is a standard book-work available in the book.

    Since E{X(t)} = lt, a function of t, {X(t)} is not fi rst order 

stationary.

   (ii) This is a worked example in the book.

14. (a)  (i) This is a book-work, available in the book.

   (ii) This is a worked example in the book.

14. (b) Statement and proof of Weiner–Khinchine theorem available in the 

book.

15. (a)  (i)  A standard property, derivation of which is available in the book. 

To fi nd RXX(t) without the defi nition of {X(t)} is not possible.

  (ii) This is a worked example in the book.

15. (b)  (i) This is a worked example in the book.

  (ii) H(w) = F{h(t)} = 
0

( ) i t i
h t e dt e e dt

wt b wt
• •

- - -

-•

= ◊Ú Ú

        = 
( )

0

1

( )

i t
e

i i

b w

b w b w

•- +Ï ¸Ô Ô =Ì ˝- + +Ô ÔÓ ˛

    SYY = |H(w)|2 SXX(w) = 
2 2

1
( )XXS w

b w+
, where SXX(w) and SYY(w) 

are the power spectral densities of {X(t)} and {Y(t)}.
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