
Problem Solving

and

PYTHon Programming

About the Authors

 Ashok Namdev Kamthane is a retired Associate Professor of the Department
of Electronics and Telecommunication Engineering, S. G. G. S. Institute of
Engineering and Technology, Nanded, Maharashtra, India. An academic with
37 years of teaching experience, he has authored more than a dozen books and
presented several technical papers at national and international conferences.
He has earned a first class in ME (Electronics) from S. G. G. S. College of
Engineering and Technology. His ME dissertation work from Bhabha Atomic
Research Centre, Trombay, Mumbai, was on development of the hardware
and software using 8051 (8-bit microcontroller) Acoustic Transceiver System
required in submarines.

 Amit Ashok Kamthane is a Software Engineer (Python Developer) at HCL,
Pune. Recently in 2017, he worked as Research Assistant at National Centre for
Aerospace Innovation and Research, IIT Bombay. In the past, he was associated
as a lecturer with S. G. G. S. Institute of Engineering and Technology, Nanded and
as an Assistant Professor with P. E. S. Modern College, Pune. He completed his
ME (Computer Science and Engineering) from M. G. M. College of Engineering
and BE (Computer Science and Engineering) in first class from G. H. Raisoni
College of Engineering, Pune. A computer programming enthusiast, he also
imparts corporate training.

McGraw Hill Education (India) Private Limited
Chennai

McGraw Hill Education Offices

Chennai new York St Louis San Francisco auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

Ashok Namdev Kamthane

Retired Associate Professor
Department of Electronics and Telecommunication Engineering

Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded
Maharashtra, India

Amit Ashok Kamthane

Software Engineer
(Python Developer)

HCL, Pune
Maharashtra, India

Problem Solving

and

PYTHon Programming

McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

444/1, Sri Ekambara Naicker Industrial Estate, Alapakkam, Porur, Chennai 600 116

Problem Solving and Python Programming

Copyright © 2018 by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of

the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they may not

be reproduced for publication.

This edition can be exported from India only by the publishers,
McGraw Hill Education (India) Private Limited.

 1 2 3 4 5 6 7 8 9 22 21 20 19 18

Printed and bound in India.

Print Edition
ISBN (13): 978-93-5316-137-8
ISBN (10): 93-5316-137-1

E-Book Edition
ISBN (13): 978-93-5316-138-5
ISBN (10): 93-5316-138-X

Director—Science & Engineering Portfolio: Vibha Mahajan
Senior Portfolio Manager—Science & Engineering: Hemant K Jha
Associate Portfolio Manager: Tushar Mishra

Production Head: Satinder S Baveja

General Manager—Production: Rajender P Ghansela
Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable.
However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information
published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions, or
damages arising out of use of this information. This work is published with the understanding that McGraw Hill Education
(India) and its authors are supplying information but are not attempting to render engineering or other professional services.
If such services are required, the assistance of an appropriate professional should be sought.

Typeset at NuWave eSolutions Pvt. Ltd., New Delhi-110019 and printed at

Cover Design: APSCompugraphics

Cover Image Source: Shutterstock

Cover Printer:

Visit us at: www.mheducation.co.in

Write to us at: info.india@mheducation.com

CIN: U22200TN1970PTC111531

Toll Free Number: 1800 103 5875

Dedicated to

Sow Surekha Ashok Kamthane

(Mother of Amit Ashok Kamthane)

Preface

It gives us immense pleasure to bring the book ‘Python Programming and Problem Solving’. The book
is intended for the students in initial years of engineering and mathematics who can use this high-
level programming language as an effective tool in mathematical problem solving. Python is used
to develop applications of any stream and it is not restricted only to computer science.

We believe that anyone who has basic knowledge of computer and ability of logical thinking can
learn programming. With this motivation, we have written this book in a lucid manner. Once you
go through the book, you will know how simple the programming language is and at the same
time you will learn the basics of python programming. You will feel motivated enough to develop
applications using python.

Since this book has been written with consideration that reader has no prior knowledge of
python programming, before going through all the chapters, reader should know what are the
benefits of learning python programming. Following are some of the reasons why one should
learn python language.

 • Python language is simple and easy to learn. For example, it has simple syntax compared to
other programming languages.

 • Python is an object-oriented programming language. It is used to develop desktop, standalone
and scripting applications.

 • Python is also an example of free open source software. Due to its open nature one can write
programs and can deploy on any of platform, i.e., (Windows, Linux, Ubuntu and Mac OS),
without changing the original program.

Thus, due to the features enlisted above, python has become the most popular language and is
widely used among programmers.

Use of Python in Engineering Domains

Computer Engineering

Python is used in computer engineering

 • To develop web applications

 • By data scientists to analyse large amount of data

Prefaceviii

 • In automation testing

 • To develop GUI-based applications, cryptography and network security and many more
applications

Electronics & Telecommunication Engineering and Electrical Engineering

 • Image processing applications can be developed by using python’s ‘scikit-image’ library

 • Widely used in developing embedded applications

 • Develop IOT applications using Arduino and Raspberry pi

Python can also be used in other engineering streams such as mechanical, chemical, and
bioinformatics to perform complex calculations by making use of numpy, scipy, and pandas library.

Thus, the end user of this book can be anyone who wants to learn basics of python programming.
To learn the basics, the student can be of any stream/any engineering/Diploma/BCA/MCA
background and interested to develop applications using python.

Organization of the Book

The book contains five units.

The first unit deals with problem-solving techniques and it contains Chapter 1 that provides
information on Basics of Computer Programming and Problem-solving Techniques. Problem-
solving techniques include Algorithm, Flowcharts and Pseudocode.

Different data types, various operators, expressions, and assignments etc. to be used in Python
are described in Unit 2. Unit 2 covers two chapters, i.e. Chapters 2 and 3. Chapter 2 introduces
Basics of Python Programming and Chapter 3 explains Operators and Expressions.

Unit 3 contains four chapters covering Conditional or Decision Statements (Chapter 4), Loop
Control Statements (Chapter 5), Functions (Chapter 6) and Strings (Chapter 7).

The readers will be introduced to Lists (Chapter 8), Searching and Sorting Techniques
(Chapter 9) and Tuple and Dictionaries (Chapter 10) in Unit 4.

Unit 5 deals with File Handling (Chapter 11) and finally covers Exception Handling, Modules
and Packages (Chapter 12).

In the end, we would like to express gratitude to all our well-wishers and readers, whose
unstinted support and encouragement has kept us going as a teacher and author of this book. Any
suggestion regarding the improvement of the book will be highly appreciated.

Ashok NAmdev kAmthANe

Amit Ashok kAmthANe

Preface ix

Publisher’s Note

McGraw-Hill Education (India) invites suggestions and comments from you, all of which can be
sent to info.india@mheducation.com (kindly mention the title and author name in the subject line).
Piracy-related issues may also be reported.

We would like to express deep sense of gratitude to Professor B. M. Naik, former Principal of
S. G. G. S. College of Engineering and Technology, Nanded, who constantly praised and inspired
us to write books on technical subjects and whose enthusiasm and guidance led us to write this
book.

Special thanks are also due to Dr. Y. V. Joshi, Director, S. G. G. S. Institute of Engineering and
Technology, Professor Dr. U. V. Kulkarni, HOD, CSE of S. G. G. S. Institute of Engineering and
Technology, Nanded for encouraging us to write this book on Python. We are grateful to the Board
of Directors of Matoshri Group of Institutes, Kamaji Pawar, V. V. Chari and Dean Dr. Sadhna

Chidrawar who encouraged to write this book. We also acknowledge compliments offered by
Mr. Asrar Khan, Mr. Girish Mulke, Mr. Katakdound, Mr. Amol Patil and Mr. Satish Pawar
for authoring first book on Python Programming and that too through International Publisher
McGraw-Hill, Delhi.

We are grateful to Professor Dr. Mrs. S. A. Itkar, HOD, CSE and Professor Mrs. Deipali V. Gore
of P. E. S. Modern College of Engineering Pune, for supporting us while writing the book. We
are also thankful to the staff members (Santosh Nagargoje, Nilesh Deshmukh, Kunnal Khadake,
Digvijay Patil and Sujeet Deshpande) of P. E. S. Modern College of Engineering for their valuable
suggestions.

Furthermore, we would like to thank our friends—ShriKumar P. Ugale and Navneet Agrawal—
for giving valuable inputs while writing the book. Also, we would like to thank our students—
Suraj K, Pranav C, and Prajyot Gurav—who offered comments, suggestions and praise while
writing the book.

We are thankful to the following reviewers for providing useful feedback and critical suggestions
during the development of the manuscript.

Vikram Goyal IIIT Delhi

Partha Pakray NIT, Mizoram

Harish Sharma RTU, Kota

Shreedhara K.S. University BDT College of Engineering, Karnataka

S. Rama Sree Aditya Engineering College, Andhra Pradesh

Sansar Singh Chauhan IEC-CET, Greater Noida

Lastly, we are indebted to our family members—Mrs. Surekha Kamthane (mother of Amit
Kamthane), Amol, Swarupa, Aditya, Santosh Chidrawar, Sangita Chidrawar, Sakshi and Sartak for
their love, support and encouragement.

Ashok NAmdev kAmthANe

Amit Ashok kAmthANe

Acknowledgements

All chapters within the book have been structured into the following important pedagogical
components:

Visual Walkthr

4

Decision Statements

Learning OutcOmes

After completing this chapter, students will be able to:

• Describe Boolean expressions and bool data type

• Perform operations on numbers and strings using Boolean and Relational operators (>, <,>=, <= and !=)

• Write a simple decision making statement and its implementation with if statement, two-way decision
making statements and their implementation with if else statement, nested statements and their
implementation with if statements and multi-way decision making statements and their implementation
with if-elif-else statements

• Explain and use conditional expressions to write programs

• Write non-sequential programs using Boolean expressions

chapter OutLine

 4.1 Introduction

 4.2 Boolean Type

 4.3 Boolean Operators

 4.4 Using Numbers with Boolean Operators

 4.5 Using String with Boolean Operators

 4.6 Boolean Expressions and Relational
Operators

 4.7 Decision Making Statements

 4.8 Conditional Expressions

4.1 intrOductiOn

So far, we have seen programs that contain a sequence of instructions. These programs are
executed by the compiler line by line, in the way the program line appears. The control flow in

PrOgram 8.1
 Write a program to create a list with elements 1, 2, 3, 4 and 5. Display even elements of the list
using list comprehension.

List1=[1,2,3,4,5]

print(“Content of List1”)

print(List1)

List1=[x for x in List1 if x%2==0]

print(“Even elements from the List1”)

print(List1)

Output

Content of List1

 [1, 2, 3, 4, 5]

 [2, 4]

 • Learning Outcomes give a clear idea to the
students and programmers on what they will
learn in each chapter. After completion of
chapter, they will able to comprehend and apply
all the objectives of the chapter.

 • Introduction explains the basics of each topic
and familiarizes the reader to the concept being
dealt with.

 • Programs are the highlighting
feature of the chapters. Ample
programs have been provided
against each sub topic to effectively
strengthen the learnt concepts.

Program 11.3
 Generate 50 random numbers within a range 500 to 1000 and write them to file
WriteNumRandom.txt.

from random import randint # Import Random Module

fp1 = open(“WriteNumRandom.txt”,”w”) # Open file in write mode

for x in range(51): #Iterates for 50 times

 x = randint(500,1000) #Generate one random number

 x = str(x) #Convert Number to String

 fp1.write(x + “ “) #Write Number to Output file

fp1.close() #Finish Writing Close the file

output File

Visual Walkthroughxiv

 • Mini Project consists of a problem
statement that will compel the readers to
think and make use of various concepts
learnt to solve real-life problems through
programming.

mini prOject goods service tax (gst) calculator

What is gST?

Goods and services tax is a comprehensive tax levied on the manufacture, sale and consumption

of goods and services at a national level. This tax has substituted all indirect taxes levied on
goods and services earlier by the central and state governments in India.

Problem Statement

We all buy various goods from a store. Along with the price of the goods we wish to buy, we also
have to pay an additional tax, which is calculated as a specific percentage on the total price of the
goods. This is called GST on the products.

Note: Shifting the input number by N bits towards the right means the number is divided by 2s.
In short, it means Y = N/2s.
Where,
 N = The Number
 S = The Number of Bit Positions to Shift

Consider the above example 4 >> 2. Let us solve this using the above formula, i.e. y = N /2s

 = 4 / 22
 = 4 / 4
 = 1
Therefore, 4 >> 2 returns 1 in Python interactive mode.

 • Notes have been inserted in each chapter
to provide valuable insights based on
programming concepts. Notes shall
also act as precautionary statements for
readers to solve programming problems
effectively.

 • A concise Summary has been listed at
chapter-end to reiterate vital points and
describes in short, the complex concepts
covered within the chapter.

 • Key Terms enlists important keywords
and concepts covered within the chapter.

 • Extensive Review Questions presented
at the end of each chapter comprise
Multiple Choice Questions, True False
statements, Exercise Questions and
Programming Assignments. This would
help in analyzing the learnt information.

 Summary

  Programs written in high-level languages are similar to instructions written in English language.

  An interpreter or compiler is used to translate a program written in a high-level language into an
equivalent machine code for execution.

  An interpreter reads the source code line by line and converts it into object code.

  A compiler is a software which translates an entire program written in a high-level language into
machine language at one go.

  A loader is software used to load and relocate the executable program in the main memory
during execution.

  Python offers a built-in method called type to know the exact type of any value.

  Keywords are reserved words.

  Keywords cannot be used as identifiers or variables.

  An identifier is a name used to identify a variable, function, class or other objects.

  print() function is used to display contents on the screen.

  input() function is used to accept input from the user.

  The # symbol is used to comment a single line in Python.

  Triple single quotation ’’’ marks are used to comment multiple lines in Python.

 KEy TErmS

 � High-level Language: Programs are written in a manner similar to writing instructions in English
language.

 � Interpreter: It reads source code line by line and converts it into object code.

 � Compiler: It is a software which translates an entire program written in a high-level language into
machine language at one go.

 � Identifier: It helps to identify a variable.

 � input(): It is used to accept data from the user.

 �

 rEviEw QuESTionS

a. multiple Choice Questions

 1. Opening a file in read mode performs which operation?

 a. Creates a new file b. Reads consecutive characters from a file

 c. Reads all the content of a file d. None of the above

 2. If we have to open a file abc.txt using the statement

 Fp1 = open(‘abc.txt’,’r’)

 which statement will read the file into memory?

 a. Fp2 = open(Fp1) b. FP1.Open.read(Fp1)

 c. Fp1.read() d. None of the above

 3. The inbuilt method readlines() is used to:

 a. Read an entire file as a string b. Read one line at a time

 c. Read each line in a file as an item in a list d. None of the above

 4. If the statement Fp1 = open(‘demo.txt’,’r’) is used to open a file demo.txt in read mode then which
statement will be used to read 5 string characters from a file into memory?

 a. Ch = fp1.read[:10] b. Ch = fp.read(6)

 c. Ch = fp.read(5) d. All of the above

Contents

About the Authors ii

Preface vii

Acknowledgements xi

Visual Walkthrough xiii

UNIT 1 1

1. Basics of Computer Programming and Problem Solving Techniques 2

 Chapter Outline 2

 Illustrative Problems 2

 Learning Outcomes 2

 1.1 Introduction 3

 1.2 What is a Computer? 3

 1.3 Introduction To Problem Solving 4

 1.4 Algorithms 5

 1.5 Building Blocks Of Algorithms 7

 1.5.1 Sequence (Sequential Control) 7

 1.5.2 Decision (Selection Control) 9

 1.5.3 Repetition 9

 1.6 Flowcharts 10

 1.7. Pseudocode 17

 Illustrative Problems 18

 A. Guess an Integer Number in a Range 18

 B. Insert a Card in a List of Sorted Cards 20

 C. Tower of Hanoi 21

 Summary 25

 Key Terms 25

 Review Questions 25

 A. Exercise Questions 25

 B. Multiple Choice Questions 26

 C. True or False 26

Contentsxvi

UNIT 2 27

2. Basics of Python Programming 28

 Chapter Outline 28

 Illustrative Problems 28

 Learning Outcomes 28

 2.1 Introduction to Compiler, Interpreter, Linker and Loader 29

 2.1.1 Compiler 29

 2.1.2 Interpreter 30

 2.2 Introduction to Python 30

 2.2.1 Why Python? 30

 2.3 Installing Python on Windows 31

 2.4 Python Interactive and Idle Execution Modes 35

 2.4.1 Starting Python (Command Line) 35

 2.4.2 Starting Python Idle 37

 2.5 Executing Python Programs 39

 2.5.1 Writing First Python Program in Script Mode 40

 2.6 Values and Types 43

 2.6.1 Integer 43

 2.6.2 Floating Point Number 44

 2.6.3 String Type 45

 2.6.4 Lists 46

 2.6.5 Complex Number 47

 2.6.6 Boolean Data Type 47

 2.7 Python Keywords 47

 2.8 Identifier/Variable 48

 2.9 The print() Function 48

 2.9.1 The print() Function with end Argument 50

 2.10 Assigning Value to a Variable 51

 2.11 Writing Simple Programs in Python 52

 2.12 The input() Function 53

 2.12.1 Reading String from the Console 53

 2.13 The eval() Function 56

 2.13.1 Apply eval() to input() Function 57

 2.14 Commenting in Python 58

 2.15 Modules and Functions 59

 2.16 Parameters, Arguments in a Function 60

 2.17 Tuple and Tuple Assignment 60

 2.17.1 Tuple Assignment 61

 Illustrative Problems 61

 A. Exchange the Values of Two Variables 61

 B. Circulate the Values of N Variables 63

 Summary 64

 Key Terms 64

Contents xvii

 Review Questions 64

 A. Multiple Choice Questions 64

 B. True or False 65

 C. Exercise Questions 65

 D. Programming Assignments 66

3. Operators and Expressions 67

 Chapter Outline 67

 Learning Outcomes 67

 3.1 Introduction 67

 3.2 Operators and Expressions 68

 3.3 Arithmetic Operators 68

 3.3.1 Unary Operators 68

 3.3.2 Binary Operators 69

 3.4 Operator Precedence and Associativity 78

 3.4.1 Example of Operator Precedence 79

 3.4.2 Associativity 79

 3.5 Changing Precedence and Associativity

of Arithmetic Operators 80

 3.6 Translating Mathematical Formulae into Equivalent Python Expressions 82

 3.7 Bitwise Operator 83

 3.7.1 The Bitwise AND (&) Operator 84

 3.7.2 The Bitwise OR (|) Operator 85

 3.7.3 The Bitwise XOR (^) Operator 86

 3.7.4 The Right Shift (>>) Operator 88

 3.7.5 The Left Shift (<<) Operator 89

 3.8 The Compound Assignment Operator 90

 Mini Project: Goods Service Tax (GST) Calculator 91

 Summary 93

 Key Terms 93

 Review Questions 93

 A. Multiple Choice Questions 93

 B. True or False 94

 C. Exercise Questions 95

 D. Programming Assignments 97

UNIT 3 98

4. Decision Statements 99

 Chapter Outline 99

 Learning Outcomes 99

 4.1 Introduction 99

 4.2 Boolean Type 100

Contentsxviii

 4.3 Boolean Operators 101

 4.3.1 The not Operator 101

 4.3.2 The and Operator 101

 4.3.3 The or Operator 102

 4.4 Using Numbers with Boolean Operators 102

 4.5 Using String with Boolean Operators 103

 4.6 Boolean Expressions and Relational Operators 103

 4.7 Decision Making Statements 105

 4.7.1 The if Statements 105

 4.7.2 The if-else Statement 107

 4.7.3 Nested if Statements 111

 4.7.4 Multi-way if-elif-else Statements 112

 4.8 Conditional Expressions 116

 Mini Project: Finding the Number of Days in a Month 118

 Summary 119

 Key Terms 120

 Review Questions 120

 A. Multiple Choice Questions 120

 B. True or False 122

 C. Exercise Questions 123

 D. Programming Assignments 123

5. Loop Control Statements 124

 Chapter Outline 124

 Learning Outcomes 124

 5.1 Introduction 124

 5.2 The while Loop 125

 5.2.1 Details of while Loop 125

 5.2.2 Flowchart for while Loop 126

 5.2.3 Some More Programs on while Loop 128

 5.3 The range() Function 130

 5.3.1 Examples of range() Function 130

 5.4 The for Loop 131

 5.4.1 Details of for Loop 131

 5.4.2 Some More Programs on for Loop 132

 5.5 Nested Loops 136

 5.5.1 Some More Programs on Nested Loops 137

 5.6 The break Statement 140

 5.7 The continue Statement 142

 Mini Project: Generate Prime Numbers using Charles Babbage Function 144

 Summary 146

 Key Terms 146

Contents xix

 Review Questions 146

 A. Multiple Choice Questions 146

 B. True or False 148

 C. Exercise Questions 149

 D. Programming Assignments 150

6. Functions 151

 Chapter Outline 151

 Learning Outcomes 151

 6.1 Introduction 151

 6.2 Syntax and Basics of a Function 152

 6.3 Use of a Function 153

 6.4 Parameters and Arguments in a Function 154

 6.4.1 Positional Arguments 156

 6.4.2 Keyword Arguments 157

 6.4.3 Parameter with Default Values 158

 6.5 The Local and Global Scope of a Variable 160

 6.5.1 Reading Global Variables from a Local Scope 161

 6.5.2 Local and Global Variables with the Same Name 162

 6.5.3 The Global Statement 162

 6.6 The return Statement 163

 6.6.1 Returning Multiple Values 166

 6.6.2 Assign Returned Multiple Values to Variable(s) 167

 6.7 Recursive Functions 167

 6.8 The Lambda Function 168

 Mini Project: Calculation of Compound Interest and

Yearly Analysis of Interest and Principal Amount 169

 Summary 172

 Key Terms 172

 Review Questions 172

 A. Multiple Choice Questions 172

 B. True or False 175

 C. Exercise Questions 175

 D. Programming Assignments 176

7. Strings 177

 Chapter Outline 177

 Learning Outcomes 177

 7.1 Introduction 178

 7.2 The str class 178

 7.3 Basic Inbuilt Python Functions for String 178

 7.4 The index[] Operator 178

 7.4.1 Accessing Characters via Negative Index 179

Contentsxx

 7.5 Traversing String with for and while Loop 180

 7.5.1 Traversing with a while Loop 181

 7.6 Immutable Strings 181

 7.7 The String Operators 182

 7.7.1 The String Slicing Operator [start: end] 182

 7.7.2 String Slicing with Step Size 183

 7.7.3 The String +, * and in Operators 184

 7.8 String Operations 185

 7.8.1 String Comparison 185

 7.8.2 The String .format() Method() 186

 7.8.3 The split() Method 187

 7.8.4 Testing String 188

 7.8.5 Searching Substring in a String 189

 7.8.6 Methods to Convert a String into Another String 190

 7.8.7 Stripping Unwanted Characters from a String 192

 7.8.8 Formatting String 193

 7.8.9 Some Programs on String 194

 Mini Project: Conversion of HexDecimal Number into its Equivalent Binary Number 198

 Summary 201

 Key Terms 201

 Review Questions 201

 A. Multiple Choice Questions 201

 B. True or False 203

 C. Exercise Questions 203

 D. Programming Assignments 204

UNIT 4 205

8. Lists 206

 Chapter Outline 206

 Learning Outcomes 206

 8.1 Introduction 207

 8.2 Creating Lists 207

 8.3 Accessing Elements of a List 208

 8.4 Negative List Indices 208

 8.5 List Slicing [Start: End] 209

 8.6 List Slicing with Step Size 210

 8.6.1 Some More Complex Examples of List Slicing 210

 8.7 Python Built-In Functions for Lists 210

 8.8 The List Operator 212

 8.9 Mutability—List Aliasing and List Cloning 215

 8.9.1 List Aliasing 215

 8.9.2 Cloning List 216

 8.10 List Comprehensions 216

 8.10.1 Some More Examples of List Comprehension 218

Contents xxi

 8.11 List Methods 220

 8.12 List and Strings 224

 8.13 Splitting a String in List 224

 8.14 Passing List to a Function 225

 8.15 Returning List From a Function 227

 8.15.1 Some More Programs on List 228

 Summary 235

 Key Terms 235

 Review Questions 236

 A. Multiple Choice Questions 236

 B. True or False 237

 C. Exercise Questions 238

 D. Programming Assignments 239

9. List Processing: Searching and Sorting 241

 Chapter Outline 241

 Learning Outcomes 241

 9.1 Introduction 241

 9.2 Searching Techniques 242

 9.2.1 Linear/Sequential Search 242

 9.2.2 The Binary Search 244

 9.3 Introduction to Sorting 248

 9.3.1 Types of Sorting 248

 9.3.2 Bubble Sort 249

 9.3.3 Selection Sort 251

 9.3.4 Insertion Sort 254

 9.3.5 Quick Sort 255

 9.3.6 Merge Sort 260

 Mini Project: Sorting Based on the Length of Each Element 264

 Summary 266

 Key Terms 266

 Review Questions 266

 A. Multiple Choice Questions 266

 B. True or False 267

 C. Exercise Questions 267

 D. Programming Assignments 268

10 Tuple and Dictionaries 269

 Chapter Outline 269

 Learning Outcomes 269

 10.1 Introduction to Tuples 269

 10.1.1 Creating Tuples 269

 10.1.2 Inbuilt functions for Tuples 270

 10.1.3 Indexing and Slicing 271

 10.1.4 Operations on Tuples 272

Contentsxxii

 10.1.5 Lists and Tuples 273

 10.1.6 Sort the Tuples 274

 10.1.7 Tuple Assignment 274

 10.1.8 Tuple as Return values 275

 10.1.9 The Zip() and Inverse Zip(*) Function 275

 10.2 Dictionaries 278

 10.2.1 Need of Dictionaries 278

 10.2.2 Basics of Dictionaries 278

 10.2.3 Creating a Dictionary 279

 10.2.4 Adding and Replacing Values 280

 10.2.5 Formatting Dictionaries 281

 10.2.6 Deleting Items 282

 10.2.7 Comparing Two Dictionaries 282

 10.2.8 The Methods of Dictionary Class 282

 10.2.9 Traversing Dictionaries 283

 10.2.10 Nested Dictionaries 284

 10.2.11 Polynomials as Dictionaries 289

 Summary 291

 Key Terms 291

 Review Questions 291

 A. Multiple Choice Questions 291

 B. True or False 293

 C. Exercise Questions 293

 D. Programming Assignments 294

UNIT 5 296

11. File Handling 297

 Chapter Outline 297

 Learning Outcomes 297

 11.1 Introduction 297

 11.2 Need of File Handling 298

 11.3 Text Input and Output 298

 11.3.1 Opening a File 298

 11.3.2 Writing Text to a File 299

 11.3.3 Closing a File 301

 11.3.4 Writing Numbers to a File 301

 11.3.5 Reading Text from a File 303

 11.3.6 Reading Numbers from a File 304

 11.3.7 Reading Multiple Items on one Line 306

 11.3.8 Appending Data 311

 11.4 The seek() Function 311

 11.5 Binary Files 313

 11.5.1 Reading Binary Files 314

Contents xxiii

 11.6 Accessing and Manipulating Files and Directories on a Disk 314

 Mini Project: Extracting Data from a File and Performing Some Basic Mathematical

Operations on It 315

 Summary 317

 Key Terms 317

 Review Questions 318

 A. Multiple Choice Questions 318

 B. True or False 319

 C. Exercise Questions 319

 D. Programming Assignments 320

12. Exception Handling, Modules and Packages 321

 Chapter Outline 321

 Learning Outcomes 321

 12.1 Errors and Exception 321

 12.1.1 Exception 322

 12.2 Python Exception and its Hierarchy 322

 12.3 Handling Exception 324

 12.3.1 Divide by Zero Example Without Exception Handling 324

 12.3.2 The try and except Blocks to Handle Various Exceptions 326

 12.4 Raising Exception 328

 12.5 Modules 329

 12.5.1 Writing and Importing Modules 330

 12.6 Packages in Python 331

 12.6.1 Creating Package 331

 12.6.2 Working Example of Package 331

 Summary 332

 Key Terms 333

 Review Questions 333

 A. Multiple Choice Questions 333

 B. Exercise Questions 334

 C. Programming Assignments 335

Appendix: Problem-solving and Python Programming Laboratory 336

UNIT 1

 Basics of Computer Programming and
Problem Solving Techniques

1

Basics of Computer
Programming and Problem

Solving Techniques

LEARNING OUTCOMES

After completing this chapter, students will be able to:

• Understand the concepts of problem solving

• Understand the steps involved in algorithmic developments

• Produce the algorithms in pseudocode or flowchart to solve problems

• Understand algorithms written in a flow chart or pseudocode

ChApTER OUTLINE

 1.1 Introduction

 1.2 What is a Computer?

 1.3 Introduction to Problem Solving

 1.4 Algorithms

 1.5 Building Blocks of Algorithms

 1.6 Flowcharts

 1.7 Pseudocode

ILLUSTRATIVE pROBLEMS

 A. Guess an Integer Number in a Range

 B. Insert a Card in a List of Sorted Cards

 C. Tower of Hanoi

Basics of Computer Programming and Problem Solving Techniques 3

1.1 INTRODUCTION

Nowadays computers have become an integral part of our lives. Computers are being used
everywhere. For example, they are used for reservation of tickets, electricity bills payment, transfer
of money from one account to another, weather conditions forecast, Internet search for new
information, diagnosis of diseases and so on. In short, each one of us is directly or indirectly makes
use of computers. So, before going to learn about python programming language, the chapter is
initially going to explain about the basics of computer, different programming languages and then
about installing python and running python programs.

1.2 WhAT IS A COMpUTER?

The term ‘computer’ is derived from the word ‘to compute’. The word ‘compute’ means to calculate.
It is an electronic device that accepts the data from the user, processes data for calculations and
then generates output. All of these operations are performed by the Central Processor Unit of
a computer with some speed and accuracy. To perform all this operations, it makes the uses of
hardware and software. Whereas the hardware is visible physical elements of computer and
software consists of set of instructions to control this hardware. The following Figure 1.1 shows
the components of modern computing system.

Figure 1.1 Block diagram of modern computer system

As shown in Figure 1.1 above, the hardware of a computer system consists of three main
components, viz. i) Input/Output (I/O Unit), ii) Central Processing Unit and iii) Memory Unit.

 (i) Input/Output Unit: The users interact with the computer with the help of various Input/Output
units/devices. The input is provided to the computers using various input devices, such as,
keyboard, mouse, track ball, light pen etc. Data is accepted by the computer through an input
port whereas its output port is used to send the processed data to an output device. The input
unit of computer converts the data that it accepts from the user to a form which is readable by
the computer. The input given by the computer is immediately processed and sent to the output
device of the computer. The output devices can be monitor, printer, plotters etc.

 (ii) Central Processing Unit (CPU): CPU is one of the most important parts of a computer that
is responsible for processing data. So, it is called as the Heart of a computer. It consists
of Arithmetic Logic unit (ALU) and Control Unit (CU). The ALU performs all arithmetic
operations, such as, the addition, subtraction, multiplication, division, etc. and for the logical
operations, like, ‘AND’, ‘OR’, ‘NOT’ functions etc. The control unit produces the signals that

Problem Solving and Python Programming4

are needed for suitable operations of entire computer. Computer memory and the input and
output devices have to be responded according to the instructions received from a program
with the help of control unit of CPU.

 (iii) Memory Unit: The function of memory unit is to store program, data and result. Memory
unit is available in the form of large number of storage cells. Each cell is capable of storing
one bit of information. These cells can never read or write as individual cells. Generally, the
cells are processed in group of fixed size of units called ‘words’. In a broad sense, a computer
memory system can be logically divided into three groups as mentioned below.

 (a) Internal Memory: It refers to the set of registers confined to the CPU. These registers hold
temporary results when a computation is in progress.

 (b) Primary Memory: Primary memory is also called as main memory. It is a semiconductor
memory in the form of Integrated Circuits (ICs) to be used to store programs, data and
result on execution of program. It is a storage area in which all the programs are executed.
In order to speed up the execution, all programs and data must be within the primary
memory. Random access memory and Read only memory are the types of primary
memory.

 (c) Secondary Memory: Secondary memory is known as external memory or storage memory.
Programs and data are kept on a long-term basis in a secondary memory. Secondary
devices are preferred for keeping voluminous data. Hard disk, floppy disk, CDs, DVDs
and magnetic tapes are the different forms of secondary memory.

1.3 INTRODUCTION TO pROBLEM SOLVING

The computer cannot be intelligent. It cannot analyse a problem and come up with a solution.
A human programmer must analyse the problem, develop instructions for solving the problem
and then make use of computer to carry out the developed instructions. Thus, the common stages
involved in solving problems are given below.

 1. Problem Analysis: The problem has to be identified and understood at first.

 2. Alternative Ways to Solve: One can see any alternative ways to solve the problem too.

 3. Choosing the Suitable Approach: In order to solve the problem, the appropriate approach is
to be chosen.

 4. Breaking Apart the Problems: One can break apart the problems into smaller units or
subtasks (or sub-modules) as much as possible.

 5. Developing the Algorithms: As per respective subtasks, the algorithms are to be developed
then in different stages.

 6. Correctness of the Algorithms: Then one should check the designed algorithms for their
correctness. In order to achieve the desired results, the existing algorithms are to be modified
as well.

 7. Calculating Efficiency: The algorithmic efficiency is to be calculated then.

Once the problem is analysed, the humans or individuals are more interested to solve it by some
tools. As often, the characteristics of humans are to use tools in order to solve their problems. In
their day-to-day lives, such tools are hammer, scissors and others which are basically tangible

Basics of Computer Programming and Problem Solving Techniques 5

objects. Human being also makes the uses of mathematical equations to solve the problems.
Because, the problems come in many forms as they usually require different tools. The problems,
more it be larger, require the organizational tools. For example, in day-to-day life, to draw design of
a house, the planner, who designs the architecture of house, uses maps, paper and scale as the tools
to solve the problem of designing of house. Similarly, the programmer makes use of tools, such as,
algorithm, flowchart and pseudocode to solve the problems. All such tools which are used to solve
the problems are discussed in brief in the following sections.

1.4 ALGORIThMS

An algorithm is a method or a process to solve a problem. Informally, an algorithm is a well-
defined procedure that takes the set of values as input and produces output. In other words, an
algorithm is a set of steps required to solve a problem. These steps are performed on a sample
data representing an instance of the problem. Thus, the algorithm can be described as a sequence
of computational steps which transforms the set of input data to a set of output data through a
sequence of operations. Also, an algorithm should have following properties as they are shown in
Figure 1.2.

Algorithm

Input Output Finiteness Definitenes Effecƽveness

Figure 1.2 Properties of Algorithm

 1. Input: It is a set of values as input data.

 2. Output: This is the result of the program.

 3. Finiteness: This means that the algorithm always should terminate after a finite number of
steps with correct output.

 4. Definiteness: This means that all the steps as taken in algorithm should be clear and
unambiguous.

 5. Effectiveness: For every time, the designed algorithm should be feasible to convert in a
computer program.

Example

Write an algorithm to calculate the Greatest Common Divisor (GCD) of two numbers A and B.
Where GCD of two numbers A and B is the largest number which divides both A and B. Figure 1.3
depicts the GCD of two numbers.

Problem Solving and Python Programming6

Algorithm to

find GCD of

two numbers

First Number

Second Number

Returns GCD

Figure 1.3 Input and output Diagram Representation of GCD

Solution

As discussed above, the algorithm is described as step by step method in order to solve a problem.
All of these steps must be performed in a sequence. Each step of the algorithm is to be labelled.
The following are the steps required to find the GCD of two numbers.

 | STEP 1: Read two positive integers and store them in A and B.

 | STEP 2: Divide A by B. Store the remainder in r and quotient in q.

 | STEP 3: If r is Zero then go to Step 7.

 | STEP 4: Assign B to A.

 | STEP 5: Assign r to B.

 | STEP 6: Go to Step 2.

 | STEP 7: Print B as GCD of A and B.

Let us consider two integers, 24 and 15. The following Table 1.1 describes the use of above
algorithm to calculate the GCD of two numbers.

Table 1.1 GCD of Two Numbers

Values of the variables

CommentsFirst Number
(A)

Second Number
(B)

Quotient
(q)

Remainder
(r)

24 15 - -

24 15 1 09 Perform Step 2.

15 15 1 09 Step 4//Assign B to A.

15 09 1 09 Step 5//Assign r to B.

15 09 1 06 Step 2//Divide A by B.

09 09 1 06 Step 4//Assign B to A.

09 06 1 03 Step 5//Assign r to B.

09 06 1 03 Step 2//Divide A by B.

06 06 1 03 Step 4//Assign B to A.

(Contd.)

Basics of Computer Programming and Problem Solving Techniques 7

06 03 1 03 Step 5//Assign r to B.

06 03 2 00 Step 2// Divide A by B.

Print B as output. Step 7//A % B == 0
Therefore, B will be printed as
output as GCD(24, 15).

1.5 BUILDING BLOCKS OF ALGORIThMS

An algorithm is a sequence of simple steps that can be followed to solve a problem. These steps
must be organized in a logical and clear manner. Thus, we design algorithms using three basic
building blocks, namely, sequence (sequential control), decision (selection control) and repetition

(iteration).

1.5.1 Sequence (Sequential Control)

Sequence is an implicit form of control in which instructions are executed in the order as they
are written. In short, sequence is a series of steps that are followed one after another. Thus, the
program consisting of only sequential control is referred to as straight line programs where all
of the instructions are executed sequentially. Figure 1.4 illustrates sequential control flow of
a program.

Instrucƽon 1

Instrucƽon 2

Instrucƽon 3

Sequenƽal Execuƽon

of an Instrucƽon

Instrucƽon 4

Figure 1.4 The Sequential Control Flow of Program

Problem Solving and Python Programming8

Examples of Sequential statements are as follows.

PROGRAM 1.1
 Write an algorithm to read two numbers and find their sum.

Input

Two numbers Num1 and Num2

Output

Sum of two numbers, i.e. Num1 + Num2

Algorithm

 | STEP 1: Start.

 | STEP 2: Read two numbers Num1 and Num2.

 | STEP 3: Calculate sum, i.e. Total = Num1 + Num2.

 | STEP 4: Display Total.

 | STEP 5: Stop.

PROGRAM 1.2
 Write an algorithm to calculate the area of a circle.

Input

Radius of a circle.

Output

Area of the circle.

Algorithm

 | STEP 1: Start.

 | STEP 2: Read input r as radius of circle.

 | STEP 3: Calculate area, i.e. Area = 3.14 * r * r.

 | STEP 4: Display Area.

 | STEP 5: Stop

Basics of Computer Programming and Problem Solving Techniques 9

PROGRAM 1.3
 Write an algorithm to convert temperature expressed in degree Fahrenheit to degree Celsius.

Input

Temperature in degree Fahrenheit.

Output

Temperature in degree Celsius.

 | STEP 1: Start.

 | STEP 2: Read temperature in degree Fahrenheit.

 | STEP 3: Apply Conversion formula, i.e. (5/9) * (degree_farenheit – 32).

 | STEP 4: Display Result.

 | STEP 5: Stop.

1.5.2 Decision (Selection Control)

Decision control statements are generally used to alter the flow of control in a program. The action
is performed only when a particular condition is satisfied in a program. It helps the programmer to
transfer the controls from one part to another of the programs. Thus, by using decision statements,
the flow of program or execution of the statement cannot be set in sequence.

Example

Write algorithm to check if input number is odd or even.

 | STEP 1: Start.

 | STEP 2: Input number, i.e. Num1.

 | STEP 3: If Num1 %2 == 0. If yes, go to Step 4. Else go to Step 6.

 | STEP 4: Print number is even.

 | STEP 5: Go to Step 7.

 | STEP 6: Print number is odd.

 | STEP 7: End.

Thus from the above algorithm, we can conclude that the flow execution of the statement is not
in sequence.

1.5.3 Repetition

Sometimes we may want to execute the same lines of code for several times. Then, in such cases,
the repetition structure is used to repeat one or more statements for number of times.

Problem Solving and Python Programming10

Example

Write an algorithm to compute the average of ten numbers.

 | STEP 1: Start.

 | STEP 2: Initialize the total = 0, avg = 0, N = 0.

 | STEP 3: Increase the value of N by 1.

 | STEP 4: Add the contents of N to total. Steps 3 to 5 are

 | STEP 5: Check if N is greater than 10. executed repeatedly.

 If no, go to Step 3.
 If yes, go to Step 6.

 | STEP 6: Calculate avg, i.e. sum/10.

 | STEP 7: Display sum, avg and total.

 | STEP 8: End.

1.6. FLOWChARTS

The flowcharts are the visual representations of the sequence of steps for solving a problem. It
explains what comes first, second, third and so on. A complete flowchart enables us to organize the
problems into a plan of actions. This is an easy way to solve the complex problems.

In brief, a flowchart is alternative technique for solving a problem. Instead of descriptive steps,
we use pictorial representation for every step. It shows a sequence of operations. A flowchart is
a set of symbols, which indicates various operations of program. For every process, there is a
corresponding symbol in flowchart. Once an algorithm is written, its pictorial representation can
be done using flowchart symbols. In other words, a pictorial representation of textual algorithm
is done using flowcharts. Thus, in flowcharts, different actions are performed using different
geometric shapes. All of these shapes are said to be flowchart symbols. The figures below show
some commonly used flowchart symbols.

Flow Lines

All the symbols within the flowchart are connected to each other by using arrow keys. There are
four directional arrows (Figure 1.5), i.e., up, down, left and right.

Figure 1.5 Arrows within the Flowchart

Basics of Computer Programming and Problem Solving Techniques 11

Start and End

The Start and End symbols indicate both the beginning and the end of the flowcharts. Only one flow
line is combined with this kind of symbols. We write START, STOP or END within the symbols of
this kind. Usually, this symbol is used twice in one flowchart, i.e. at the beginning and end.

Start End

Figure 1.6 Start and End Symbols

Process Symbol

Process symbol looks like a rectangle. It is usually used for data handling. Values are assigned to
the variables in this symbol. The operations mentioned within the rectangular block will have to
be executed when this kind of block is entered in the flowchart. There are two flow lines connected
with the process symbol. One line is incoming and the other one goes out (Figure 1.7).

Sum = Num1 + Num2

Figure 1.7 Process Symbols

Input/Output Symbols

The Input/Output symbol looks like parallelogram. It is used to input and output the data. This
symbol is used when data is provided to the program for processing. There are two flow lines
connected with the input/output symbol. One line comes to the symbol and other line goes from
this symbol (Figure 1.8).

Read two numbers Num1, Num2

Figure 1.8 Input/Output Symbol

Problem Solving and Python Programming12

Decision Symbol

It is a diamond-shaped symbol. This symbol is used to take one of the decisions (Figure 1.9).
The basic decision symbol is as follows.

Condiƽon?

Figure 1.9 Decision Symbol

Depending on the condition, the decision block selects one of the alternatives. While solving
problems, one can take single, two or multiple alternatives depending upon the situations.
A decision symbol with a single alternative is shown in Figure 1.10.

Single Alternative Decision: In this case if the condition is satisfied or true, then a set of statements
will be executed otherwise control transfer to exit for the false condition.

Execution of Statement (s)

Exit

Entry

Condition?

True

False

Figure 1.10 Single Alternative Decision

Two Alternative Decisions: In Figure 1.11 below, two alternative paths have been shown. On
satisfying the condition statement(s) pertaining to 1, the action will be executed, otherwise the
other statement(s) for action 2 will be executed.

True

False

Basics of Computer Programming and Problem Solving Techniques 13

Execution of Action 1 Execution of Action 2

Condition?

Exit

True False

(a)

Example:

Print A is greater than B. B is greater than A.

If A > B

(b)

Figures 1.11a and b Decision-based Flowchart and Example

Connector Symbol

A connector symbol has to be shown in the form of circles. It is used to establish the connection
whenever it is impossible to directly join two parts in a flowchart. Quite often, two part of the
flowcharts may be on two separate pages. In such cases the connectors are used to join these two
parts. Figure 1.12 shows the connector symbols.

Problem Solving and Python Programming14

Figure 1.12 Connector Symbols

Thus, all of the symbols as discussed above are used to represent a flowchart. Following are the
some of the examples of algorithms and their representations into the flowcharts.

PROBLEM STATEMENT

Write Algorithm to calculate the sum of two numbers. Draw flow chart for the algorithm.

Algorithm

 | STEP 1: Start.

 | STEP 2: Read two numbers, i.e. Num1 and Num2.

 | STEP 3: Calculate the sum, i.e. Total = Num1 + Num2.

 | STEP 4: Display Total.

 | STEP 5: Stop.

Flowchart

Begin

Input two numbers,

i.e. Num1 and Num2

Total = Num1 + Num2

Print Total.

END

Flowchart 1.1

Basics of Computer Programming and Problem Solving Techniques 15

PROBLEM STATEMENT

Write algorithm and flow chart to find out the greater of two numbers.

Algorithm

 | STEP 1: Start.

 | STEP 2: Input two numbers, i.e. A and B.

 | STEP 3: If A > B?
 If Yes, go to Step 4.

 Else go to Step 6.

 | STEP 4: Print ‘A’ is greater than ‘B’.

 | STEP 5: Go to Step 7.

 | STEP 6: Print ‘B’ is greater than ‘A’.

 | STEP 7: Stop.

Flowchart

Begin

Input two numbers,

i.e. A and B.

A is greater than B. B is greater than A.

If A > B?
True False

Flowchart 1.2

Problem Solving and Python Programming16

PROBLEM STATEMENT

Write and draw algorithm to find the sum of first 5 natural numbers.

Algorithm

 | STEP 1: Start.

 | STEP 2: Initialize Sum and N equal to 0.

 | STEP 3: Increase the value of N by 1.

 | STEP 4: Add N to Sum, i.e. Sum = Sum + N.

 | STEP 5: Check if N > 5.
 If Yes, go to Step 6.

 If No, go to Step 3.

 | STEP 6: Print Sum.

 | STEP 7: End.

Flowchart

Begin

Sum = 0, N = 0

Sum = Sum + N

N = N + 1

Print

Sum.

End

Is N > 5?
True False

Flowchart 1.3

Basics of Computer Programming and Problem Solving Techniques 17

1.7. pSEUDOCODE

A Pseudo language is a combination of the constructs of a programming language together with
informal English statements. English language like words are used to represent the various
logical steps. It is a method of describing the logic and sequence of a system. It uses keywords and
constructs similar to those used in programming language, but without the strict use of syntax
required by formal languages. In short, it allows the logic of system to be defined in a language
independent format. In order to write the best pseudocode, the programmers should follow the
following three rules. 1. Use capital letters for keywords which are also closely used in programming language.

 2. Use lowercase letters for natural language descriptions.

 3. Use indentation to show the start and end of block of statements.

PSEUDOCODE EXAMPLE

Write pseudocode to add two numbers and store result into memory area called “total”.

The following pseudocode is for an algorithm that accepts two numbers. These two numbers
are added together and the result is stored in “total”. Finally the result is displayed to the end
user.

Pseudocode
INPUT num1

INPUT num2

Total ← num1 + num2

PRINT Total

Explanation In the above pseudocode, INPUT and PRINT are keywords used in python
programming language, therefore, they are represented by capital letters. Whereas the non-
keywords are written in lowercase.

Note: In pseudocode, ← this is an assignment operator. Instead of single equal operator (=),

this ← symbol is used to assign a value.

PSEUDOCODE EXAMPLE

Write pseudocode to display largest number between entered two numbers.

Pseudocode

INPUT num1

INPUT num2

IF num1 is greater than num2 then

 PRINT num1 is greater than num2

ELIF NUM2 is greater than NUM1 then //ELIF is else-if

 PRINT num2 is greater than num1

ELSE

 PRINT both numbers are equal

Problem Solving and Python Programming18

ILLUSTRATIVE pROBLEMS

A. Guess An InteGer number In A rAnGe

The problem is about to guess what number a computer has in mind. Write an algorithm and flow
chart that generates a random integer between the range (a, b). Where a is the start number and b is
the end number. The computers generate one number between the given range. Design algorithm
in such a way it prompts the user to enter numbers continuously until it matches the randomly
generated number.

Example

Suppose computer is going to select randomly generated integer from 1 to 20. The player has to
guess the number that the computer chooses.

Range(1,20)

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

Let us assume computer has selected random number as “16”. Now design an algorithm that
prompts the user to guess the number selected by the computer. Your algorithm should prompt
the user to enter numbers continuously until it matches the randomly generated number. The
algorithm should also report if guessed number by the player is too high or too low, so the player
can choose the next number intelligently.

Expected working of the game is follows.

Note: Suppose computer has selected random number as 16 from the range of 1 to 20.

Guess the number between 1 to 20:

Enter your Guess: 19

Sorry, Guess is too high.

Enter your Guess: 10

Sorry, Guess is too low.

Enter your Guess: 15

Sorry, Guess is too low.

Enter your Guess: 18

Sorry, Guess is too high.

Enter your Guess: 16

Yes, the Guess is correct!!

Basics of Computer Programming and Problem Solving Techniques 19

Algorithm

 | STEP 1: Start.

 | STEP 2: Input Start and End Number i.e. (a, b).

 | STEP 3: Generate random number between the range(a, b).

 | STEP 4: Prompt the user to make the guess.
 If guess is wrong go to then go to Step 4.1 else go to Step 5.

 | STEP 4.1: Check if guess made by the user is too low or greater than the selected
number generated by computer. If guessed number is too small then go
to Step 4.2 or else go to Step 4.3.

 | STEP 4.2: Print “Sorry Guess is too High” and go to Step 4.

 | STEP 4.3: Print “Sorry Guess is too Low” and go to Step 4.

 | STEP 5: Print “Yes the Guess is right!!”

 | STEP 6: End.

The flow chart for the above algorithm is shown in Figure 1.13.

Flowchart

Begin

Input start number and end number,

i.e. a and b.

N = random(range(a, b))

Guessed_No = Input(range(a,b))

if

Guessed_no == N

No

Yes

Yes

Print “Yes, the

Guess is Correct!!”

END
Print “Sorry Guess

is too High”

If Guessed_

no > N

Print “Sorry Guess

is too Low”

No

Figure 1.13 Guess Number Game Flow Chart

Problem Solving and Python Programming20

B. Insert A CArd In A LIst of sorted CArds

Inserting card in a list of sorted cards is based on the principle of inserting the cards at its correct
place in a previously sorted list. It always maintains a sorted sublist in the lower portion of the list.
Each new card is inserted back into the previous sublist. Thus, insertion sort, sorts a list of cards
repeatedly, inserting a new card into a sorted sublist until the whole list is sorted. The example of
inserting a card in a list of sorted card is as follows.

Consider unsorted list of cards with following numbers.

MyCards = [15,7,11,19,12,16,14]

Initially, the sorted sublist contains the first card in the list, i.e. 15.

15 7 11 19 12 16 14

Note: The shaded grey colour represent the ordered sublist of cards.

 | STEP 1: Initially, the sorted sublist contains the first element in the list, i.e. the card 15. Now
insert the next card from the list, i.e. 0 into the sublist.

7 15 11 19 12 16 14

 | STEP 2: The sorted sublist is [7,15]. Insert card 11 into the sublist.

7 11 15 19 12 16 14

 | STEP 3: The sorted sublist is [7,11,15]. Insert 19 into the sublist.

7 11 15 19 12 16 14

 | STEP 4: The sorted sublist is [7,11,15,19]. Insert 12 into the sublist.

7 11 12 15 19 16 14

 | STEP 5: The sorted sublist is [7,11,12,15,19]. Insert 16 into the sublist.

7 11 12 15 16 19 14

 | STEP 6: The sorted sublist is [7,11,12,15,16,19]. Insert 14, into the list.

7 11 12 15 16 19 14

 | STEP 7: The sorted sublist is [7,11,12,14,16,19].

7 11 12 14 15 16 19

Thus, finally we obtained the sorted list of cards.

Basics of Computer Programming and Problem Solving Techniques 21

Pseudocode for Insertion Sort

Input size of list (Number of Cards to be inserted)

Read all the cards

for i ← 1 to len(List)

 CurrentElement ← List[i]

k=i - 1

 while k>=0 and MyList[k] > CurrentElement:

 List[k+1] ← List[k]

 K ← k-1

 End while

 List[k+1] ← CurrentElement

end for

C. Tower of hanoi

The “Tower of Hanoi” problem is a classical problem that can be solved easily by using the concept
of recursion. In this problem, there are three poles and n disks. Initially, the entire disks are placed
on the first pole with the largest disk at the bottom and the smaller disk at the top. Player needs
to move the entire disks from the first pole to the third pole with the smallest disk at the top and
largest disk at the bottom. Following rules must be followed while transferring disks from one
pole to other pole.

 1. At a time only one disc may be moved.

 2. The disc may move from any of the pole to another pole but move should consists of taking
the upper disk from one of the pole and then placing it on the top of another pole.

 3. No larger disk may be placed on the smaller disk

Consider we have three disks and three poles are X, Y and Z. Let us consider these three disks,
first one to be the smallest disk, second one to be the disk of medium size and third one to be
the largest among them. Thus, our aim is to move the disks from X pole to Z using pole Y as
intermediate by obeying three conditions as mentioned above. The following Figures 1.14(a)–(h)
explains the clear stepwise processes of Tower-of-Hanoi for transferring disk from pole X to pole Z.

Initial State

× Y Z

(a)

Problem Solving and Python Programming22

In the above Figure 1.10(a), the three poles are displayed at their initial states. The pole X contains
three disks. The pole Y and Z do not contain any disk. The stepwise representation to display all of
the disks on pole X in same order is as follows.

 | STEP 1:

× ZY

× ZY

 (b) (c)

 | STEP 3:

× ZY

× Y Z

 (d) (e)

 | STEP 2:

 | STEP 4:

Basics of Computer Programming and Problem Solving Techniques 23

 | STEP 5:

× ZY

× ZY

 (f) (g)

 | STEP 7:

× ZY

(h)

Figures 1.10(a)–(h) Tower of Hanoi

Finally all of the disks from the source pole, i.e. X to target pole, i.e. Z are transferred. Overall
seven moves have been required to transfer these three disks. Following Table 1.2 gives the details
of disk(s) at each move. While solving above problem, we have considered three disks of varying
sizes, i.e.

 i. 1–Smallest disk

 ii. 2–Medium-size disk

 iii. 3–Largest size disk

 | STEP 6:

Problem Solving and Python Programming24

Table 1.2 Stepwise movement of Disks in TOH

Move Disks From Pole To Target Pole

1 X Z

2 X Y

1 Z Y

3 X Z

1 Y X

2 Y Z

1 X Z

Therefore, 2n - 1 number of moves are required to transfer n disk from source pole to target pole.

Algorithm to solve the Problem of Tower of Hanoi is as follows.

 | STEP 1: Start.

 | STEP 2: Read ‘N’ as Number of Disks.

 | STEP 3: Calculate move = pow(2, n) - 1.

 | STEP 4: Call Function T_O_H(n, Source, Intermediate, Target) recursively until n = 0.

 | STEP 4.1: If n = 0, then go to Step 5 else go to Step 4.2.

 | STEP 4.2: Call function T_O_H(n-1, Source, Target, Intermediate)

 | STEP 4.3: print ‘Move top disk from pole’ Source ‘to pole’ Intermediate.

 | STEP 4.4: Call function T_O_H(n-1, Target, Intermediate, Source).

 | STEP 5: End.

Pseudocode—Tower of Hanoi

INPUT ‘N’ as Number of disks

Read all the disks

Consider three poles Source, Intermediate, End

Call T_O_H(N, Source, Intermediate, Target)

 IF N == 0 then

 PRINT end

 ELSE

 Call T_O_H(n-1, Source, Target, Intermediate)

 PRINT ‘Move top disk from pole’ Source ‘to pole’ Intermediate

 Call T_O_H(n-1, Target, Intermediate, Source)

Basics of Computer Programming and Problem Solving Techniques 25

 SuMMARy

  Computer is an electronic device that accepts the data from the user, process data for calculations and
generates output.

  The hardware of computer system consists of three main components, viz. Input/output (I/O Unit),
Central Processing Unit (CPU) and Memory Unit.

  Computer programmer makes use of various tools, such as algorithms, flowchart and pseudocode to
solve problems.

  An Algorithm is step-by-step procedure designed to solve a problem.

  Good algorithms should have properties, such as Input, Output, Finiteness, Definiteness and
Effectiveness.

  A flowchart is the graphical or pictorial representation of an algorithm.

  A Pseudo language make use of programming language words al together with informal English
statements.

  Sequence (Sequential Control), decision (selection control) and repetition (iteration) are the three
different building blocks of algorithm.

 KEy TERMS

 � Central Processing Unit (CPU): Consist of arithmetic, logical unit and control unit.

 � Algorithm: Set of instructions designed to perform a specific task.

 � Flowchart: Graphical or pictorial representation of an algorithm

 � Pseudocode: Combination of programming keywords and formal English statements.

 REvIEw QuESTIOnS

A. Exercise Questions

 1. What is an algorithm? Explain in short.

 2. Describe the memory unit of computer system in brief.

 3. Explain building blocks of algorithm in brief.

 4. Draw a flowchart to find the area of circle.

 5. Write a pseudocode to find largest of three numbers.

 6. Write an algorithm, a pseudocode and a flowchart to calculate simple interest.

 7. Write a pseudocode to calculate sum and average of n numbers.

 8. Write an algorithm, a flowchart and a pseudocode to find the area of rectangle.

 9. Write an algorithm and flowchart to display the even numbers between 1 to 20.

 10. Write an algorithm to find the largest of three numbers.

Problem Solving and Python Programming26

B. Multiple Choice Questions

 1. Which of the following memory is used to store temporary results in registers when the computation
is in progress?

 a. Primary Memory b. Secondary Memory

 c. Internal Memory d. None of the above

 2. Secondary memory is also called _____________.

 a. Storage Memory b. External Memory

 c. Only b d. Both a and b

 3. CPU comprises of

 a. ALU

 b. Registers

 c. Control Unit

 d. All of the above

4. Pictorial representation of algorithm is defined as _______.

 a. Pseudocode

 b. Flowchart

 c. Algorithm

 d. None of the above

 5. Good algorithm should have which of the following properties?

 a. Input

 b. Output

 c. Finiteness

 d. All of the above

C. True or False

 1. The order in which actions are to be executed is unimportant in an algorithm.

 2. Pseudocode is not an actual programming language.

 3. All programs are written in terms of only three control structure sequence, control and repetition
structure.

 4. Algorithm is graphical representation of an algorithm.

 5. Algorithm is a step-by-step procedure designed to solve a problem.

 6. Computer analyses a problem and come up with a solution.

 7. CPU has only one component ALU.

 8. Main memory is made from semiconductors.

 9. Read Only Memory is the secondary memory.

 10. Control unit is part of a CPU.

UNIT 2

 Basics of Python Programming Operators and Expressions

2

Basics of Python
Programming

LEARNING OUTCOMES

After completing this chapter, students will be able to:

• Install Python, write and execute programs in Python

• Describe keywords supported by Python

• Read data from the console using input function

• Assign value or data to a variable and multiple values to multiple variables at a time

• Make use of built-in data type and functions supported by Python

ChApTER OUTLINE

 2.1 Introduction to Compiler, Interpreter,
Linker and Loader

 2.2 Introduction to Python

 2.3 Installing Python on Windows

 2.4 Python Interactive and Idle
Execution Modes

 2.5 Executing Python Programs

 2.6 Values and Types

 2.7 Python Keywords

 2.8 Identifier/Variable

 2.9 The print() Function

 2.10 Assigning Value to a Variable

 2.11 Writing Simple Programs In Python

 2.12 The input() Function

 2.13 The eval() Function

 2.14 Comments (Commenting in Python)

 2.15 Modules and Functions

 2.16 Parameters and Arguments in a
Function

 2.17 Tuple and Tuple Assignment

ILLUSTRATIVE pROBLEMS

 A. Exchange the Values of Two Variables

 B. Circulate the Values of N Variables

Basics of Python Programming 29

2.1 INTRODUCTION TO COMpILER, INTERpRETER,

LINKER AND LOADER

High-level languages are much easier to write than low-level languages because programs written
in these are similar to instructions written in the English language. Here ‘high’ does not imply that
the language is complicated. It means that the language is more problem oriented. Generally, high
level languages are platform independent. This means that one can write a program in a high-level
language and run it on different types of machines. Instructions written in high-level languages
are called statements.

For example, a statement to calculate the square of a number can be written in a high-level
language as

Square = number * number

There are many high-level languages and the selection of a language is based on the purpose
it is expected to fulfil. A program written in a high-level language is called source code or source

program. The process of executing programs written in high-level languages is given below.

 | STEP 1: An interpreter or compiler is used to translate a program written in a high-level
language into its equivalent machine code for execution.

 | STEP 2: A linker is used to combine the object code and the code stored in libraries into
machine language.

 | STEP 3: Finally, the machine language code generated in Step 2 is executed.

Figure 2.1 depicts the steps on how to execute a program written in a high-level language.

Figure 2.1 Steps to execute a high-level language program

The next section describes compiler, interpreter, linker and loader in detail.

2.1.1 Compiler

It is the software that translates a complete program written in a high-level language into machine
language. This compiled program is called object code. The object code is an executable code which
can run as a standalone code, i.e., it does not need the compiler to be present during execution.
Most of the programming languages, such as, C, C++ and Java, have their own compilers.

Problem Solving and Python Programming30

2.1.2 Interpreter

It is also a type of software. While a compiler converts the whole source code into an equivalent
object code or machine code, the interpreter reads the source code line by line and converts them
into object code (i.e., a code understandable to the machine.)

Linker

It is a software program that links different program modules and libraries in order to form a
single executable program. A source code of a program is very large. It can consist of hundreds of
lines of code. Before the execution of a program, all the modules of the program and the required
libraries are linked together using software called a linker. The compiled and linked program is
called the executable code.

Loader

This software is used to load and relocate an executable program in the main memory during
execution. The loader assigns a storage space to a program in the main memory for execution.

2.2 INTRODUCTION TO pYThON

Python was developed by Guido van Rossum at National Research Institute for Mathematics and
Computer Science in Netherlands in 1990. Rossum wanted the name of his new language to be
short, unique and mysterious. Inspired by Monty Python’s Flying Circus, a BBC comedy series, he
named the language ‘Python’. Python became a popular programming language as widely used
in both industry and academia because of its simple, concise and extensive support of libraries. It
is a general purpose, interpreted and object-oriented programming language. Python source code
is available under General Public License (GPL) and maintained by a core development team at the
same institute.

2.2.1 Why python?

The COBOL, C#, C, C++ and Java are a few of the many programming languages available in the
age of information and technology today. Quite often, a common question, the beginners ask while
developing an application program is, ‘Why to use Python when there are so many programming
languages exist?’ While on one hand, it may just be a matter of personal preference; there are some
very well-known advantages of Python which makes it a popular programming language. These
are given below.

 1. Readability: Developer’s readability of code is one of the most crucial factors in programming.
The longest part of any software’s life-cycle is its maintenance. Therefore, if the software has
a highly readable code, then it is easier to maintain. The readability also helps a programmer
to reuse the existing code with ease to maintain and update software. Python offers more
readability of code as compared to other programming languages.

 2. Portability: Python is platform independent, i.e., its programs run on all of the platforms.
The language is designed for better portability.

 3. Vast support of libraries: Python has a large collection of in-built functionalities known as
standard library functions. Python also supports various third-party software like, NumPy

Basics of Python Programming 31

and else. The NumPy is an extension, i.e., it provides support for large, multi-dimensional
arrays and matrices.

 4. Software integration: An important aspect of Python is that it can easily extend, communicate
and integrate with several other languages. For example, Python code can easily invoke the
libraries of C and C++ programming languages. It can also be used to communicate with
Java and .net components. Python can sometimes act as an intermediary or agent between
two applications.

 5. Developer productivity: Compared to other programming languages, Python is a
dynamically typed language, which means there is no need to declare variables explicitly.
Again, there are various other features of Python due to which the size of code written is
typically smaller or half of the code written in some other languages, such as, C, C++ or
Java. As the size of code is reduced quite a bit, there is less to type and debug. The amount
of time needed to compile and execute is also very less as compared to other programming
languages. Python programs run immediately, i.e., without taking much time to link
and compile.

These benefits offered by Python make it the top-most choice for programmers to develop
application software or projects with Python.

2.3 INSTALLING pYThON ON WINDOWS

Python is available for almost all operating systems, such as, Windows, Mac, Linux/Unix, and so
on. The complete list of different versions of Python can be found at official website of Python.org
(http://www.Python.org/downloads). The step-wise details for installing Python in Windows are
given below.

 | STEP 1: Open an Internet browser like Internet Browser, Mozilla Firefox or Chrome. Type
‘http://www.Python.org/’ in the address bar and press ‘Enter’. Immediately, the
following page will appear (Figure 2.2).

Figure 2.2 Python home page

Problem Solving and Python Programming32

 | STEP 2: Click on Downloads and you will see the latest version of Python. Since all programs
in this book are written and executed on Python 3.4, download Python 3.4 version by
clicking on All Releases under Downloads as shown in Figure 2.3.

Figure 2.3 Python download page

 | STEP 3: After clicking on All Releases under Downloads, just browse the page at down side.
You will see the list of Python releases as follows in Figure 2.4.

Figure 2.4 Python release versions

 | STEP 4: Click on Python 3.4.2 and download it.

 | STEP 5: Open the folder where you have downloaded the Python 3.4 version pack and double
click on it to start the installation (Figure 2.5).

Basics of Python Programming 33

Figure 2.5 Python software

 | STEP 6: After clicking on it, you will see the first window to set up Python 3.4.2 (Figure 2.6).

Figure 2.6 Python first setup window

 | STEP 7: Click on Next and you will see a second window which tells you to specify the location
where you want to install Python (Figure 2.7).

Figure 2.7 Python second setup window

Problem Solving and Python Programming34

By default, Python will be installed in C:\. Then click on Next to continue the installation.
Just before completing the installation, it will show you the following two windows (Figures 2.8a
and b).

(a) (b)

Figures 2.8a and b Python final setup window

 | STEP 8: Click on Finish to complete the installation.

 | STEP 9: To check if Python is installed successfully just press windows key on Windows 7 or

Windows 8 and then in the search bar, type Python as shown in Figure 2.9.

Figure 2.9 Windows 8 showing successful installation of Python

Basics of Python Programming 35

2.4 pYThON INTERACTIVE AND IDLE EXECUTION MODES

After installing Python in Windows, you can start Python in two different modes, viz. Python
(Command Line) and Python (IDLE).

2.4.1 Starting python (Command Line)

Python is an interpreted language. You can directly write the code into the Python interpreter or
you can write a sequence of instruction into a file and then run the file.

When you execute Python expressions or statements from the command line then you are into
the interactive mode or interactive prompt.

Following are the steps to start Python Command Line in Windows 7.

 | STEP 1: Press Start button (Figure 2.10).

Figure 2.10

Problem Solving and Python Programming36

 | STEP 2: Click on All Programs and then click on Python 3.4. After clicking on Python 3.4, you
will see the list of options as shown in Figure 2.11.

Figure 2.11

 | STEP 3: In this list, click on Python (Command Line—32 bit). After clicking on it, you can see
the Python interactive prompt in Python command line as shown in Figure 2.12.

Figure 2.12 Python interactive mode as Python command line window

In Figure 2.10 above, a Python command prompt contains an opening message >>>, called
command prompt. The cursor at the command prompt waits for you to enter a Python command.

Basics of Python Programming 37

A complete command is called as statement. Following are the simple commands which are
executed in interactive mode of Python command line are shown in Figure 2.13.

Figure 2.13 Simple commands executed in interactive mode of Python command prompt

Thus, in Figure 2.13 above, we have written just two simple commands or statements. The first
statement, i.e., print(‘Hello World’) when executed in interactive mode of Python command prompt
gives the output as the entered command ‘Hello World’ for this message. More details about the
print and its syntax are explained later in this chapter.

The precautions to be taken while executing commands in Python interactive mode of Python
command line are given as follows.

If you try to put extra space between Python prompt, i.e., >>> and the command, then it
will produce an error called Indentation Error: Unexpected Indent. The simple example to
demonstrate this error is as follows.

Example:
>>> print(‘Hello World’)
File “<stdin>”, line 1
print(‘Hello World’)
^

IndentationError: unexpected indent

Thus, due to extra space between >>> and command, i.e., print(‘Hello world’), the Python
interpreter raises an error.

To exit from command line of Python 3.4, you can press Ctrl+z and press Enter key or type exit()
and press Enter.

2.4.2 STARTING pYThON IDLE

Launching Python IDLE is another way to start executing Python statements or commands in
interactive mode of Python IDLE. It is a graphical integrated development environment for Python.

The Python statements or commands, which run on interactive mode of Python IDLE are called
shell. The IDLE comes by default with the installation of Python itself. Launching Python IDLE is

Problem Solving and Python Programming38

the simplest way to open a Python shell. The steps to launch Python IDLE are similar to those used
to start a Python command line. Following are the steps to launch the Python IDLE.

 | STEP 1: Press the Start button.

 | STEP 2: Click on All Programs and then click on Python 3.4. After clicking on Python 3.4, you
will see the list of options as shown in Figure 2.14.

Figure 2.14

 | STEP 3: Click on IDLE (Python 3.4 GUI—32 bit). After clicking on it, you can see the Python
interactive prompt, i.e., an interactive shell as follows in Figure 2.15.

Figure 2.15 Python IDLE–Interactive shell

Basics of Python Programming 39

In Figure 2.12 above, a Python interactive shell prompt contains an opening message >>>, called

shell prompt. The cursor at the shell prompt waits for you to enter a Python command. A complete
command is called a statement. As soon as you write a command and press Enter, the Python

interpreter will immediately displays result.

Following (shown in Figure 2.16) are few simple commands which are executed in interactive
mode, i.e., interactive shell of Python IDLE.

Figure 2.16 Running Commands in Python IDLE’s interactive shell

Note: Hereafter all of the commands given as examples in upcoming chapters of this book are executed
in Python 3.4 IDLE’s interactive mode, i.e. the interactive shell prompt.

2.5 EXECUTING pYThON pROGRAMS

The previous section explained the installation of Python 3 in Windows. This section will describe
how to execute Python programs in script mode on Windows. All of the programs as written in
this book have been written and executed on Windows. Once IDLE is launched in Windows, a
programmer can write programs in script mode.

Running Python program from a script file is known as running python in script mode. You
can write sequence of instructions in one file and execute them. The steps required to write Python
programs in Python IDLE’s script mode are given as follows.

Problem Solving and Python Programming40

 | STEP 1: In Python IDLE’s—Shell Window, click on File and then click on New File or just click

Ctrl+N (Figure 2.17).

Figure 2.17 Python IDLE file menu bar

As soon as you click on New File, the window shown below will open (Figure 2.18).

Figure 2.18 Python script mode

You can write series of instructions and run it to view the output.

2.5.1 Writing First python program in Script Mode

Use the following steps to create and run your first Python program.

 | STEP 1: Writing Python Code in script mode

Let us consider the simple program to print the messages “Hello Welcome to

Python”, “Awesome Python!” and “Bye” on the console. The statements required to
print the above messages are as follows.

 print(‘Hello Welcome to Python’)

 print(“Awesome Python!”)

Enter Python Code Here

Basics of Python Programming 41

Once you write the above statements in Python script mode, they will look like as
given in Figure 2.19.

Figure 2.19 Writing program in Python script mode

 | STEP 2: Save the above code written in script mode by some name

In Figure 2.19 above, we can see the name *Untitled. If you don’t save the above code by some
specific name, then by default Python interpreter will save it by the name Untitled.py. In this
name, py indicates the code is written in Python language. The * in front of Untitled indicates that
the program is not still saved. To identify the purpose of program, you should give it a proper
name. Follow the steps given below to save the program.

 | STEP 2.1: Click on File and then click on Save button or press Ctrl+S. Then you will
see the default installation folder (Python34) to save the file (Figure 2.20).

Figure 2.20 Saving a Python program

Series of

Python

Commands in

Script Mode

Problem Solving and Python Programming42

 | STEP 2.2: Write the name of your Python program: As it is your first Python program,
you can save it as MyFirstProgram. Once you write the name of file, click
on Save button. After clicking on Save button, you can see the name of file
on the top, i.e., it will be displayed on title bar of the Python script window
as given in Figure 2.21.

Figure 2.21 File name appearing on the title bar

 | STEP 2.3: Executing a Python program: A Python program is executed only after
you save it with a specific file name. Thus, to run the above Python
program, click on Run and then click on Run Module (shown in
Figure 2.22) or you can directly press Ctrl+F5 to run the Python program.

Figure 2.22 Executing Python program

Thus, after clicking on Run Module you can see the output of program
if it is written correctly (Figure 2.23).

Figure 2.23 Output of a Python program in Python IDLE’s interactive shell prompt

Name of
Your First
Python
Program

Basics of Python Programming 43

Note: Hereafter all of the Python programs given as examples in the forthcoming chapters of this book
are executed in Python 3.4 IDLE’s script mode.

2.6 VALUES AND TYpES

Programming languages contain data in terms of input and output and any kind of data can be
presented in terms of value. Here value can be of any form, like literals, containing numbers,
characters and strings. Suppose, we have written ‘Hello World’ in single quotes, but we don’t know
the type of value in it. To know the exact type of any value, Python offers an in-built method called
type.

The syntax to know the type of any value is type(value).

Example

>>> type(‘Hello World’)
<class ‘str’>
>>> type(123)
<class ‘int’>

Thus, when the above examples are executed in Python interactive mode, return type of value
is passed to the in-built function type().

All features in Python are associated with an object. It is one of the primitive elements of
Python. Further, all kinds of objects are classified into types. One of the easiest types to work with
is numbers and the native data types supported by Python are string, integer, floating point and
complex numbers.

The following section details the basic data types supported by Python.

2.6.1 Integer

From simple Mathematics, we know that an integer is a combination of positive and negative
numbers including (zero) 0. In a program, integer literals are written without commas and a
leading minus sign to indicate a negative value. Following is an example of simple integer literals
displayed in Python interactive mode.

Example

>>> 10
10
>>> 1220303
1220303
>>> -87
-87

Integer literals can be octal or hexadecimal in format. All of the above examples are of decimal
type integers. Decimal integers or literals are represented by a sequence of digits in which the first
digit is non-zero. To represent an octal, 0o, i.e., a zero and a lower or uppercase letter O followed by
a sequence of digits from 0 to 7 is used. An example of octal literals is given as follows.

Problem Solving and Python Programming44

Example

>>> 0o12
10
>>> 0o100
64

 Note: In Python version 2.6 or earlier, octal literals were represented by the leading letter O, followed
by a sequence of digits. In Python 3.0, octal literals have to be accompanied by a leading 0o, i.e., a
zero and a lower or uppercase letter O.

In the previous section, we have learnt about representation of numbers as default decimal (base

10) notation and octal (base 8) notation. Similarly, numbers can also be represented as hexadecimal
(base 16) notation using 0x (zero and the letter x) followed by a sequence of digits. Simple examples
of hexadecimal literals displayed in Python interactive mode are given as follows:

Example

>>> 0x20
32
>>> 0x33
51

 Note: Integer in Python 2.6 (int and long)—In Python 2.6, there are two types of integers. One of
32 bits and another having unlimited precession. Python 2.6 automatically converts integers to long
integers if the value of the integer overflows 32 bits.

Integers in Python 3.0 (Only int type)—In Python 3.0, the normal int and long integer have been
merged. Hence, there is only one type called integer.

The int Function

The int function converts a string or a number into a whole number to integer. The int function
removes everything after the decimal point. Consider the following example.

Example

>>> int(12.456)
12

The following example converts a string to an integer.

Example

>>> int(‘123’)
123

2.6.2 Floating point Number

The value of π (3.14) is an example of a real number in mathematics. It consists of a whole number,
decimal point and fractional part. The length of real numbers has infinite precession, i.e., the digits
in the fractional part can continue forever. Thus, Python uses floating point numbers to represent

Basics of Python Programming 45

real numbers. A floating-point number can be written using a decimal notation or scientific
notation. Some examples of floating point numbers displayed in Python interactive mode are
given as follows:

Example

>>> 3.7e1
37.0
>>> 3.7
3.7
>>> 3.7*10
37.0

The above example shows the representation of floating point number 37.0 in both decimal and
scientific manner. Scientific notations are very helpful because they help programmers to represent
very large numbers. Table 2.1 shows decimal notations in scientific notation format.

Table 2.1 Example of floating point numbers

Decimal Notation Scientific Notation Meaning

2.34 2.34e0 2.34 * 100

23.4 2.34e1 2.34 * 101

234.0 2.34e2 2.34 * 102

The float Function

The float function converts a string into a floating-point number. A programmer can make use
of float to convert string into float. Consider the following example.

Example

>>>float(‘10.23’)
10.23

2.6.3 String Type

A string literal or string in Python can be created using single, double and triple quotes. A simple
example of type as string is given as follows:

Example

>>> D = ‘Hello World’
>>> D
‘Hello World’
>>> D=”Good Bye”
>>> D
‘Good Bye’
>>> Sentence
‘Hello, How are you? Welcome to the world of Python Programming. It is just the
beginning. Let us move on to the next topic.’

Problem Solving and Python Programming46

>>> Sentence
‘Hello, How are you? Welcome to the world of Python Programming. It is just the
beginning. Let us move on to the next topic.’
>>> p=’’’Hello’’’
>>> p
‘Hello’

In the previous examples, we presented string literals in three different formats, viz. single
quote, double quote and triple single quotes. The triple single quotes are used to write a multiline
string.

The str Function

The str function is used to convert a number into a string. The following example illustrates the
same.

Example

>>> 12.5 #Floating Point Number

12.5
>>> type(12.5)
<class ‘float’>
>>> str(12.5) #Convert floating point number to string

‘12.5’

2.6.4 Lists

A list is a sequence of values called items or elements. The elements can be of any types. The
structure of a list is similar to the structure of a string. A programmer can use a list’s constructor
to create a list. Consider the following example.

Example: Create a list using the constructor of the list class a. Create an empty list.
L1 = list();

 b. Create a list with any three integer elements, such as 10, 20 and 30.
L2 = list([10,20,30])

 c. Create a list with three string elements, such as “Apple”, “Banana” and “Grapes”.
L3 = list([“Apple”,”Banana”,”Grapes”]) d. Create a list using built-in range() function.
L4 = list(range(0,6)) #create a list with elements from 0 to 5

 e. Create a list with built-in characters X, Y and Z.
L5 = list(“xyz”)

Example: Creating a list without using the constructor of the list class

 a. Create a list with any three integer elements, such as 10, 20 and 30.
L1 = [10,20,30]

Basics of Python Programming 47

2.6.5 Complex Number

A complex number is a number that can be expressed in the form a+bj, where a and b are real
numbers and j is an imaginary unit. Simple example of complex numbers displayed in Python
interactive mode is given as follows:

Example

>>> 2+4j
(2+4j)
>>> type(2+4j)
<class ‘complex’>
>>> 9j
9j
>>> type(9j)
<class ‘complex’>

2.6.6 Boolean Data Type

The Boolean data type, i.e. represented in Python as of type bool. It is a primitive data type having
one of two values, viz. True or False. Internally the True value is represented as 1 and False as 0.
Consider the following example and check the type of True and False on Python interactive mode.

>>> type(True)
<class ‘bool’>
>>> False
False
>>> type(False)
<class ‘bool’>

The Boolean type is used to compare the two values. For example, when relational operators,
such as, == , != , <= , >= are used in between two operands, then it returns the value in terms of
True or False.

Example

>>> 5 == 4
False
>>> 5 == 5
True
>>> 4 < 6
True
>>> 6 > 3
True

2.7 pYThON KEYWORDS

The keywords are the reserved words. All of these keywords have been assigned to the fixed
meaning and they cannot be used as identifiers or variables. The Table 2.2 below displays the entire
list of keywords supported by Python.

Problem Solving and Python Programming48

Table 2.2 List of Python keywords for Python version 3.0

and def for is raise

as del from lambda return

assert elif global nonlocal try

break else if not while

class except import or with

continue finally in pass yield

2.8 IDENTIFIER/VARIABLE

Identifier is the name used to find a variable, function, class or other objects. All identifiers must
obey the following rules.

An identifier:

 • Is a sequence of characters that consists of letters, digits and underscore

 • Can be of any length

 • Starts with a letter which can be either lower or uppercase

 • Can start with an underscore ‘_’

 • Cannot start with a digit

 • Cannot be a keyword.

Some examples of valid identifiers are Name, Roll_NO, A1, _Address etc.

Python gives a syntax error if a programmer writes an invalid identifier. Some examples of
invalid identifiers are First Name, 12Name, for, Salary@.

If we type the invalid identifiers, given above in Python interactive shell, it will show an error
as these are invalid.

Example

>>> First Name
SyntaxError: invalid syntax

>>> 12Name
SyntaxError: invalid syntax

>>> for
SyntaxError: invalid syntax

2.9 ThE print() FUNCTION

In Python, a function is a group of statements that are put together to perform a specific task. The
task of print function is to display the contents on the screen. The syntax of print function is:

Syntax of print() function:
 print(argument

Basics of Python Programming 49

The argument of the print function can be a value of any type int, str, float etc. It can also
be a value stored in a variable. Simple examples of print() function executed in interactive mode
of Python are given as follows.

Example

Display messages using print()
>>> print(‘Hello Welcome to Python Programming’)
Hello Welcome to Python Programming
>>> print(10000)
10000
>>>print(“Display String Demo”)
Display String Demo

Suppose you want to print a message with quotation marks in the output as

print(“The flight attendant asked, “May I see your boarding pass?”)

If you try to run the above statement as is, Python will show an error. For Python, the second
quotation mark is the end of the string and hence it does not know what to do with the rest of
the characters. To overcome this problem, Python has a special notation to represent a special
character. This special notation consists of a backslash (\) followed by a letter or a combination of
digits and is called an escape sequence. Using backslash, the special characters within print can
be written as shown below.

Example

>>> print(“The flight attendant asked,\”May I see your boarding pass?\” “)
The flight attendant asked, “May I see your boarding pass?”

In the above example, we have used backslash before the quotation marks to display the
quotation marks in the output.

Table 2.3 illustrates a list of escape sequences used in Python.

Table 2.3 Python escape sequences

Character Escape Sequence Name

\’ Single Quote

\” Double Quote

\n Linefeed

\f Formfeed

\r Carriage return

\t Tab

\\ Backslash

\b Backspace

Problem Solving and Python Programming50

Note: The syntax of print function is different in Python 2.X. It is
print arguments

Python 2.X does not use an additional parenthesis. If you try to execute the print statement without
parenthesis, in Python 3, it will raise a syntax error.

Example:
>>> print ‘Hello World’

Syntax Error: Missing parentheses in call to ‘print’
Python programs are case sensitive. Python raises an error if a programmer tries to replace print by
print.

Example:
 >>> Print(‘hi’)
 Traceback (most recent call last):
 File “<pyshell#3>”, line 1, in <module>
 Print(‘hi’)
 NameError: name ‘Print’ is not defined

2.9.1 The print() Function with end Argument

Consider a simple program of a print statement.

PrOgram 2.1
 Write a program to display the messages “Hello”, “World” and “good Bye”. Each of the three
messages should get displayed on a different line.

print(‘Hello’)
print(‘World’)
print(‘Good Bye’)

Output

Hello
World
Good Bye

In the above program, we have displayed each message in a different line. In short, the print
function automatically prints a linefeed(\n) to cause the output to advance to the next line.
However, if you want to display the messages “Hello”, “World” and “Good Bye” in one line
without using a single print statement, then you can invoke the print function by passing a special
argument named end=’’. The following program illustrates the use of the end argument within the
print function.

Basics of Python Programming 51

PrOgram 2.2
 Write a basic program to make use of the end key and display the messages “Hello”, “World”
and “Good Bye” in one line.

print(‘Hello’,end=‘ ’)
print(‘World’,end=‘ ’)
print(‘Good Bye’)

Output

Hello World Good Bye

2.10 ASSIGNING VALUE TO A VARIABLE

In Python, the equal sign (=) is used as the assignment operator. The statement for assigning a
value to a variable is called an assignment statement. The syntax used to assign value to a variable
or identifier is:

Variable = expression

In the above syntax, expression may contain information in terms of values, even some time
expression may contain operands with operators which evaluates to a value.

Let us consider the following example of assigning and displaying the value of a variable in
Python interactive mode.

Example

>>> Z = 1 #Assign value 1 to variable Z

>>> Z #Display value of Z

1
>>> radius = 5 #Assign value 5 to the variable radius

>>> radius #Display value of variable radius

5
>>> R = radius + Z #Assign the addition of radius and Z to R

>>> R #Display value of Variable R

6
>>> E =(5 + 10 * (10 + 5)) #Assign the value of the expression to E

>>> E
155

This example explains how a variable can be used to assign a value and how a variable can be
used on both the sides of = operator. As given in the above example:

R = radius + Z

In the above assignment statement, the result of radius+Z is assigned to R. Initially the value
assigned to Z is 1. Once Python executes the above statement, it adds the most recent value of Z and
assigns the final value to a variable R.

Problem Solving and Python Programming52

Note: To assign a value to a variable, you must place the variable name to the left of the assignment
operator. If you write in the following manner, Python will display an error.

>>> 10 = X
Syntax Error: can’t assign to literal

 In Mathematics, E = (5 + 10 * (10 + 5)), denotes an equation, but in Python E = (5 + 10 * (10 + 5))
is an assignment statement that evaluates the expression and assigns the result to E.

2.11 WRITING SIMpLE pROGRAMS IN pYThON

How can a simple program to calculate the area of a rectangle be written in Python?

We know that a program is written in a step-wise manner. Consider the initial steps given as
follows:

 | STEP 1: Design an algorithm for the given problem.
An algorithm describes how a problem is to be solved by listing all the actions that

need to be taken. It also describes the order in which the series of actions need to be
carried out. An algorithm helps a programmer to plan for the program before actually
writing it in a programming language. Algorithms are written in simple English
language along with some programming code.

 | STEP 2: Translate an algorithm to programming instructions or code.

Let us now write an algorithm to calculate the area of a rectangle.

Algorithm to Calculate the Area of a Rectangle a. Get the length and breadth of the rectangle from the user.

 b. Use the relevant formula to calculate the area.

Area = Length * Breadth

 c. Finally display the area of the rectangle.

This algorithm can be written as code as shown in Program 2.3.

PrOgram 2.3 Write a program to calculate the area of a rectangle.

Length = 10
breadth = 20
print(‘ Length = ‘,length,’ Breadth = ‘,breadth)
area = length * breadth
print(‘ Area of Rectangle is = ‘,area)

Output

Length = 10 Breadth = 20
Area of Rectangle is = 200

Basics of Python Programming 53

Explanation In the above program, two variables, viz. length and breadth are initialized with
values 10 and 20, respectively. The statement area = length × breadth is used to compute the area

of the rectangle.

Here the values of the variables are fixed. However, a user may want to calculate the area of
different rectangles with different dimensions in future. In order to get the values according to
the user’s choice, a programmer must know how to read the input values from the console. This is
described in the next section.

2.12 ThE input() FUNCTION

The input() function is used to accept an input from a user. A programmer can ask a user to input
a value by making use of input().

input() function is used to assign a value to a variable.

Syntax

Variable_Name = input()

 OR

Variable_Name = input(‘String’)

2.12.1 Reading String from the Console

A simple program of input() function to read strings from the keyboard is given below.

PrOgram 2.4 Read string from the Console.

Str1 = input(‘Enter String1:’)
Str2 = input(‘Enter String2: ‘)
print(‘ String1 = ‘,Str1)
print(‘ String2 = ‘,Str2)

Output

Enter String 1: Hello
Enter String 2: Welcome to Python Programming

String1 = Hello
String2 = Welcome to Python Programming

Explanation The input() function is used to read the string from the user. The string values
entered from the user are stored in two separate variables, viz. Str1 and Str2. Finally all the values
are printed by making use of print() function.

Let us also check what happens if by mistake the user enters digits instead of characters.
Program 2.5 illustrates the same.

Problem Solving and Python Programming54

PrOgram 2.5 Write a program to enter digits instead of characters.

print(‘Please Enter the Number:’)
X = input()
print(‘Entered Number is: ’,X)
print(‘Type of X is:’)
print(type(X))

Output

Please Enter the number:
60
Entered Number is: 60
Type of X is:
<class ‘str’>

Explanation We know that Python executes statements sequentially. Hence, in the above program
the first print statement is printed, i.e. ‘Please Enter the Number.’ But when it runs the second
statement, i.e. X = input() the programming execution stops and waits for the user to type the
text using the keyboard. The texts that the user types are not committed until he/she presses Enter.
Once the user enters some text from the keyboard, the value gets stored in an associated variable.
Finally, the entered value is printed on the console. The last statement is used to check the type of
value entered.

Note: The input function produces only string. Therefore, in the above program even if the user enters a
numeric, i.e. integer value, Python returns the type of input value as string.

In the above program, how does a programmer read integer values using the input function?

Python has provided an alternative mechanism to convert existing string to int. A programmer
can use int to convert a string of digits into an integer. Program 2.6 illustrates the use of int and
input().

PrOgram 2.6 Write a program to demonstrate the use of int and input function.

print(‘ Please Enter Number’)
Num1 = input() #Get input from user

print(‘ Num1 = ‘,Num1) #Print value of Num1

print(type(Num1)) #Check type of Num1

print(‘ Converting type of Num1 to int ‘)
Num1 = int(Num1) #Convert type of Num1 from str to int

print(Num1) #print the value of Num1

print(type(Num1)) #Check type of Num1

(Contd.)

Basics of Python Programming 55

Output

Please Enter Number
12
 Num1 = 12
<class ‘str’>
 Converting type of Num1 to int
12
<class ‘int’>

Explanation The above program asks the user for input. The user has entered the input as 12 but it
is of type str. By making use of int, i.e. the statement Num1 = int(Num1), it converts the existing
type to int.

We can minimise the number of lines in a program directly by making use of int before input
function. A shorter version of the above program is given in Program 2.7.

PrOgram 2.7 Write a program to demonstrate the use of int before input.

Num1 = int(input(‘ Please Enter Number:’))
print(‘ Num1 = ‘,Num1) #Print the value of Num1
print(type(Num1)) #Check type of Num1

Output

Please Enter Number:
20
Num1 = 20
<class ‘int’>

PrOgram 2.8
 Write a program to read the length and breadth of a rectangle from a user and display the area
of the rectangle.

print(‘ Enter Length of Rectangle:’, end=’ ‘)
Length = int(input()) #Read Length of Rectangle

print(‘ Enter Breadth of Rectangle:’, end=’ ‘)
Breadth = int(input()) #Read Breadth of Rectangle

Area = Length * Breadth #Compute Area of Rectangle

print(‘-----Details of Rectangle------’)
print(‘ Length = ‘,Length) #Display Length

print(‘ Breadth = ‘,Breadth) #Display Breadth
print(‘ Area of rectangle is :’,Area)

(Contd.)

Problem Solving and Python Programming56

Output

Enter Length of Rectangle: 10
Enter Breadth of Rectangle: 20
-----Details of Rectangle------
Length = 10
Breadth = 20
Area of rectangle is: 200

Note: A programmer can make use of any type to convert the string into a specific type.

Example:
X = int(input()) #Convert it to int
X = float(input()) #Convert it to float

PrOgram 2.9 Write a program to add one integer and floating type number.

print(‘Enter integer number: ‘,end=’’)
Num1 = int(input()) # Read Num1
print(‘Enter Floating type number:’,end=’’)
Num2 = float(input()) #Read Num2
print(‘ Number1 = ‘,Num1) #Print Num1
print(‘ Number2 =’,Num2) #Print Num2
sum = Num1 + Num2 #Calculate Sum
print(‘ sum = ‘,sum) #Display Sum

Output

Enter integer number: 2
Enter Floating type number:2.5
Number1 = 2
Number2 = 2.5
sum = 4.5

Note: Python 3 uses input() method to read the input from the user.
Python 2 uses raw_input()method to read the input from the user.
In subsequent programs in this chapter we are going to use input() method only as all programs are
executed in Python 3.

2.13 ThE eval() FUNCTION

The full form of eval function is to evaluate. It takes a string as parameter and returns it as if it
is a Python expression. For example, if we try to run the statement eval(‘print(“Hello”)’) in
Python interactive mode, it will actually run the statement print(“Hello”).

Basics of Python Programming 57

Example

>>> eval(‘print(“Hello”)’)
Hello

The eval function takes a string and returns it in the type it is expected. The following example
illustrates this concept.

Example

>>> X = eval(‘123’)
>>> X
123
>>> print(type(X))
<class ‘int’>

2.13.1 Apply eval() to input() Function

In previous section, we learnt about the input() function in detail. We know that the input()
function returns every input by the user as string, including numbers. And this problem was
solved by making use of type before input() function.

Example

X = int(input(‘Enter the Number’))

Once the above statement is executed, Python returns it into its respective type.

By making use of eval() function, we can avoid specifying a particular type in front of input()
function. Thus, the above statement,

X = int(input(‘Enter the Number’))

can be written as:

X = eval(input(‘Enter the Number’))

With respective to the above statement, a programmer does not know what values a user can
enter. He/she may enter a value of any type, i.e. int, float, string, complex etc. By making
use of eval, Python automatically determines the type of value entered by the user. Program 2.10
demonstrates the use of eval().

PrOgram 2.10 Write a program to display details entered by a user, i.e. name, age, gender and height.

Name = (input(‘Enter Name :’))
Age = eval(input(‘Enter Age :’)) #eval() determine input type
Gender = (input(‘Enter gender:’))
Height = eval(input(‘Enter Height:’)) #eval() determine input type
print(‘ User Details are as follows: ‘)
print(‘ Name: ‘,Name)
print(‘ Age: ‘,Age)
print(‘ Gender: ‘,Gender)
print(‘ Height ‘,Height)

(Contd.)

Problem Solving and Python Programming58

Output

Enter Name: Donald Trump
Enter Age: 60
Enter Gender: M
Enter Height: 5.9
User details are as follows:
Name: Donald Trump
Age: 60
Gender: M
Height: 5.9

Explanation In the above program we have used eval() in front of input() function as:

Age = eval(input(‘Enter Age :’))

The above statement reads the input as a string and converts a string into a number. After the
user enters a number and presses Enter, the number is read and assigned to a variable name.

2.14 COMMENTING IN pYThON

Comments in Python are preceded by a hash symbol (#) on a line and called a line comment. Three
consecutive single quotation marks ’’’ are used to give multiple comments or comments on several
lines at once and called paragraph comment.

When the Python interpreter sees #, it ignores all the text after # on the same line. Similarly,
when it sees the triple quotation marks ’’’ it scans for the next ’’’ and ignores any text in between
the triple quotation marks. Thus, multi lines can be commented by making use of triple quotes.

The following program demonstrates the use of comment statements in Python.

Learn How to Comment in Python

print(‘I Learnt How to Comment in Python’)
‘’’ Amazing tool
in python called Comment’’’
print(‘Bye’)

Output

I Learnt How to Comment in Python
Bye

Explanation As explained above, Python ignores all the text in a statement if it is preceded by the
symbol. When the above program is executed, it ignores all the text followed by the # symbol and
triple quotation marks.

Basics of Python Programming 59

2.15 MODULES AND FUNCTIONS

It is difficult to prepare and maintain a large-scale program and the identification of the flow of
data subsequently gets harder to understand. The best way to create a programming application is
to divide a big program into small modules and repeatedly call these modules.

With the help of functions, an entire program can be divided into small independent modules
(each small module is called a function). This improves the code’s readability as well as the flow of
execution as small modules can be managed easily.

Function Definition A function is a self-contained block of one or more statements that performs a
special task when it is called. The syntax for function is given as follows:

def name_of_function(Parameters): Function Header

 statement1

 statement2

 statement3

 ……………………………

üï
ï
ï
ï
ïï
ý
ï
ï
ï
ï
ïïþ

 Function Body

 ……………………………

 statementN

Figure 2.24 Syntax of Function

The syntax of python function contains a header and body. The function header begins with

“def” keyword. The def is a reserved word that signifies the beginning of function definition. The
name of the function is followed by the def keyword. The function header may contain zero or
more number of parameters. These parameters are called formal parameters. If it contains more
than one parameter, then all the parameters are separated by commas. The function body is a
block of statements. The statement within function body defines the action that the function has
to perform.

A simple example for creating a function is explained in the following program.

PrOgram 2.11 Write a program to create a function having a name to display and print the message “Welcome
to Python Programming” inside the function.

def display():
print(“Welcome to Python Programming “)
Display() #call function

Output

Welcome to Python Programming

Explanation In the above program, function having name display() is created. This function
takes no parameters. The body of function contains only one statement. Finally function display()

is called to print the message ”Welcome to Python Programming” within the block of function.

Problem Solving and Python Programming60

2.16 pARAMETERS, ARGUMENTS IN A FUNCTION

Parameters are used to give input to a function. They are specified with the pairs of parentheses
in the function definition. When programmer calls the function, then the values are also passed
to the functions. In the function, parameters are defined by the names that appear in function
definition. Whereas, the arguments are the values actually passed to a function when they have
been called. Thus, parameters define what type of arguments a function can accept. Let us consider
the following example given in Figure 2.25 of passing parameters to a function and differentiate
between argument and parameter.

Example

def printMax(num1,num2):

 Statement1

 Statement2
 …………………………… #Define a Function

 ……………………………

 StatementN

printMax(10,20) call a function(Invoke)

Figure 2.25 Parameters and Argument in function

In Figure 2.25 above, printMax(num1, num2) has two parameters, viz. num1 and num2. The
parameters, num1 and num2, are called here formal parameters. The function is invoked by
calling the name of function, i.e. printMax(10, 20), where 10, 20 are the actual parameters. The
actual parameters are also called as arguments and the num1 and num2 are the parameters of the
function.

Note: With more Details about functions, their arguments and parameters, it has been described in detail
later in Chapter 6.

2.17 TUpLE AND TUpLE ASSIGNMENT

A tuple is an in-built data type in Python. In order to create a tuple, the elements of tuples are
enclosed in parentheses instead of square brackets. All of the elements of a tuple are separated
by commas. Once a tuple has been created, we cannot add or delete elements or even shuffle their
orders. Hence, the tuples are immutable. Since tuples are inflexible, their length has also been
fixed. A new tuple must be created by growing or shrinking an earlier one.

Example: Defining a tuple

T1 = () #Creates an empty tuple
T2 = (12,34,56,90) #Creates a tuple with 4 elements
T3 = (‘a’,’b’,’c’,’d’,’e’) #Creates a tuple of 5 characters
T4 = ‘a’,’b’,’c’,’d’,’e’ #Creates a tuple without parenthesis

üï
ï
ï
ï
ïï
ý
ï
ï
ï
ï
ïïþ

Basics of Python Programming 61

Note: #To create a tuple of a single element, it should be followed by a comma.
>>> T1=(4,)
>>> type(T1)
<class ‘tuple’>

Is it possible to create a tuple of a single element without a comma?
>>> T1=(4)
>>> type(T1)
<class ‘int’>

2.17.1 Tuple Assignment

Tuple assignment is a unique feature of Python language. It has the ability to have a tuple on the
left hand side of an assignment statement. It allows you to assign tuples of variable on the left of an
assignment and to assign the values from a tuple on the right side of the assignment.

Example on Tuple Assignment

>>> T1 = (‘Virat’,5554,9588)
>>> (Name, Run_Scored_Test, Run_ODI_Scored) = T1
>>> Name
‘Virat’
>>> Run_Scored_Test
5554
>>> Run_ODI_Scored
9588

In the above example, we have three sequences of elements. Thus, we have assigned the first
element to variable ‘Name’, second element to variable ‘Run_Scored_Test’ and third element to
‘Run_ODI_Scored’ respectively.

ILLUSTRATIVE pROBLEMS

A. ExchAngE thE VAluEs of two VAriAblEs

Assigning Value to Multiple Variables

Consider the following example where a value has been assigned to multiple variables.

Example

>>> P = Q = R = 100 #Assign 100 to P, Q and R
>>> P #Display value of Variable P
100
>>> Q #Display value of Variable Q
100
>>> R #Display Value of Variable R
100

Problem Solving and Python Programming62

In the above example, we have assigned value 100 to P, Q and R. The statement P = Q = R = 100
is equivalent to

 P = 100

 Q = 100

 R = 100

Multiple Assignments

Python supports simultaneous assignments to multiple variables. The syntax of multiple
assignments is

Var1, Var2, Var3, ………… = Exp1, Exp2, Exp3, …………… ExpN

In the above syntax, Python simultaneously evaluates all of the expressions on the right and
assigns them to a corresponding variable on the left. Consider the following statements to swap
the values of the two variables P and Q. The common approach to swap the contents of the two
variables is shown as follows:

>>> P = 20
>>> Q = 30
>>> Temp = P #Save value of variable P into a variable Temp
>>> P = Q #Assign value of Q to P
>>> Q = Temp #Assign the value of Temp to Q

#After exchanging the value of P, and Q are as follows.

>>> P
30
>>>
>>> Q
20

In the above code, we have used the following statements to swap the values of the two variables
P and Q.

Temp = P

P = Q

Q = Temp

However, by using the concept of multiple assignments, you can simplify the task of swapping
two numbers.

>>> P, Q = Q, P #Swap P with Q & Q with P

Thus, the entire code to swap two numbers using multiple assignments is as follows:

>>> P = 20 #Initial Values of P and Q

>>> Q = 30
>>> P
20
>>> Q
30
>>> P, Q = Q, P #Swap values of P and Q

>>> P #Display value of P

30
>>> Q #Display Value of Q

20

Basics of Python Programming 63

B. circulAtE thE VAluEs of N VAriAblEs

Consider the following example where a value has been assigned to multiple variables.
A = 10
B = 20
C = 30

Thus after circulating the values of A, B and C will be as follows.

A = 30
B = 10
C = 20

Thus, the entire code to circulate numbers on Python interactive mode is as follows.

#Before Circulation

>>> A = 10
>>> B = 20
>>> C = 30
>>> A
>>> 10
>>> B
>>> 20
>>> C
>>> 30

#Code for Circulation

>>> T = C
>>> C = B #Assign value of B to C
>>> B = A #Assign value of A to B
>>> A = T #Assign value of T to A

#After Circulation

>>> A #Print the value of A
>>> 30
>>> B #Print the value of B
>>> 10
>>> C #Print the value of C
>>> 20

However, by using the concept of multiple assignments, you can simplify the task of circulating
numbers.

>>> A, B, C = 10, 20, 30
>>> A, B, C = C, A, B
>>> A #Print the value of A
>>> 30
>>> B #Print the value of B
>>> 10
>>> C #Print the value of C
>>> 20

Problem Solving and Python Programming64

 Summary

  Programs written in high-level languages are similar to instructions written in English language.

  An interpreter or compiler is used to translate a program written in a high-level language into an
equivalent machine code for execution.

  An interpreter reads the source code line by line and converts it into object code.

  A compiler is a software which translates an entire program written in a high-level language into
machine language at one go.

  A loader is software used to load and relocate the executable program in the main memory
during execution.

  Python offers a built-in method called type to know the exact type of any value.

  Keywords are reserved words.

  Keywords cannot be used as identifiers or variables.

  An identifier is a name used to identify a variable, function, class or other objects.

  print() function is used to display contents on the screen.

  input() function is used to accept input from the user.

  The # symbol is used to comment a single line in Python.

  Triple single quotation ’’’ marks are used to comment multiple lines in Python.

 KEy TErmS

 � High-level Language: Programs are written in a manner similar to writing instructions in English
language.

 � Interpreter: It reads source code line by line and converts it into object code.

 � Compiler: It is a software which translates an entire program written in a high-level language into
machine language at one go.

 � Identifier: It helps to identify a variable.

 � input(): It is used to accept data from the user.

 � print(): It prints contents on the screen.

 � type(): It is used to know the exact type of any value.

 rEvIEW QuESTIOnS

a. multiple Choice Questions

 1. ______ is used to translate a program written in a high-level language into its equivalent machine
code.

 a. Compiler b. Linker

 c. Loader d. Both a and b

 2. ______ is used to relocate executable programs to the main memory during execution.

 a. Linker b. Compiler

 c. Interpreter d. Loader

Basics of Python Programming 65

 3. What is the correct syntax for the print statement in Python 3.0?

 a. print() b. print

 c. input() d. None of the above

 4. Which of the following is not a valid identifier?

 a. A_ b. _A

 c. 1a d. _1

 5. Which of the following is an invalid statement?

 a. w,X,Y,Z = 1,00,000,0000 b. WXYZ = 1,0,00,000

 c. W X Y Z =10 10 11 10 d. W_X_Y = 1,100,1000

 6. Which type of error will occur while executing the following statement?

 Name = MyName

 a. Syntax Error b. Name Error

 c. Type Error d. Value Error

 7. What will be printed if we write print() statement as
 PriNt(“Hello Python!”)

 a. Hello Python b. Syntax Error

 c. Name Error d. Both a and b

 8. Which of the following is a valid input() statement?

 a. x = input(Enter number:) b. X = Input(Enter number:)

 c. X = input(‘Enter number:’) d. X = Input(‘Enter Number:’)

 9. What will be the output of the following statement if the user has entered 20 as the value of x.

 x = input(‘Enter Number:’)

 print(10+x)

 a. 1010 b. 20

 c. 30 d. Error

B. True or False

 1. We can execute Python on Windows.

 2. We cannot comment on multiple lines in a Python program.

 3. Python is an interpreted language.

 4. Keywords can be used as identifiers or variables.

 5. An identifier is a name used to identify a variable, function etc.

C. Exercise Questions

 1. What is a compiler?

 2. What is an interpreter?

 3. Differentiate between a compiler and an interpreter.

 4. What is a linker?

 5. What is a loader?

 6. Explain the use of end keyword with a suitable example.

 7. Explain in brief all the data types supported by Python.

 8. Explain different types of comments supported by Python along with examples?

Problem Solving and Python Programming66

 1. Write a program to display the statement given below in two different lines.

“I am using Python” and “It’s my First Assignment”

 2. Write a program to display the statements given below.
ohhh!!!

What a Python language is!!!
It’s Easy! Get Started.

 3. Write a program to display the pattern given below.
A

A A
A A
A A

 4. Write a program to read and store the name of three different cities in three different
variables and print all the contents of variables on the console.

 5. Write a program to prompt the user to enter and display their personal details, such as,
name, address and mobile number.

 6. By making use of five different print statements, write a program to print ‘A’ to ‘F’ in one
single line.

 7. Write a program to read the radius of a circle and print the area of the circle.

 8. Translate the following algorithm into Python code.

 Step 1: Initialize variable named Pounds with value 10.

 Step 2: Multiply Pounds by 0.45 and assign it to a variable Kilogram.

 Step 3: Display the value of variable Pounds and Variable.

PrOgrammIng aSSIgnmEnTS

3

Operators and Expressions

Learning OutcOmes

After completing this chapter, students will be able to:

• Perform simple arithmetic operations

• Explain the difference between division and floor division operators

• Use unary, binary and bitwise operators, and perform multiplication and division operations using
bitwise left and right shift operators

• Evaluate numeric expressions and translate mathematical formulae into expressions

• Recognise the importance of associativity and operator precedence in programming languages

chapter OutLine

 3.1 Introduction

 3.2 Operators and Expressions

 3.3 Arithmetic Operators

 3.4 Operator Precedence and Associativity

 3.5 Changing Precedence and Associativity
of Arithmetic Operators

 3.6 Translating Mathematical Formulae
into Equivalent Python Expressions

 3.7 Bitwise Operator

 3.8 The Compound Assignment Operator

3.1 intrOductiOn

An operator indicates an operation to be performed on data to yield a result. In our day to day life,
we use various kinds of operators to perform diverse data operations. Python supports different

Problem Solving and Python Programming68

operators which can be used to link variables and constants. These include arithmetic operators,
Boolean operators, bitwise operators, relational operators and simple assignment and compound
assignment operators.

Table 3.1 lists basic operators in Python with their symbolic representation

Table 3.1 Types of operators

Type of Operator Symbolic Representation

Arithmetic Operators +, - , / ,// *, %, %%

Boolean Operators and, or, not

Relational Operators >, <, <=, >= ,!=

Bitwise Operators &, | , ,̂ >> , << , ~

Simple Assignment and Compound Assignment Operators = , +=,*=,/=,%=,**=

3.2 OperatOrs and expressiOns

Most statements contain expressions. An expression in Python is a block of code that produces
a result or value upon evaluation. A simple example of an expression is 6 + 3. An expression
can be broken down into operators and operands. Operators are symbols which help the user or
command computer to perform mathematical or logical operations. In the expression 6 + 3, the ‘+’
acts as the operator. An operator requires data to operate and this data is called operand. In this
example, 6 and 3 are the operands.

The following sections describe the various kinds of operators and their usage. The expressions
given in the examples are executed in Python interactive mode.

3.3 arithmetic OperatOrs

There are two types of arithmetic operators in Python, viz. binary and unary (as shown in Fig. 3.1).

Figure 3.1 Types of arithmetic operators

3.3.1 unary Operators

Unary arithmetic operators perform mathematical operations on one operand only. The ‘+’ and
‘-’ are two unary operators. The unary operator minus (-) produces the negation of its numeric

Operators and Expressions 69

operand. The unary operator plus (+) returns the numeric operand without change. Table 3.2 gives
the details of unary operators.

Table 3.2 Unary operators

Unary Operator Example Description

+ +X
(+X returns the same value, i.e. X)

Returns the same value that is provided as input

- -X
(-x returns the negation of x)

Negates the original value so that the positive
value becomes negative and vice versa

Examples of Unary Operators

>>> x=-5 #Negates the value of X

>>> x

-5

>>> x=+6 #Returns the numeric operand, i.e. 6, without any change

>>> x

6

Some More Complex Examples of Unary Operators

>>> +-5

-5

In the above expression +-5, the first ‘+’ operator represents the unary plus operation and the
second ‘-’ operator represents the unary minus operation. The expression +-5 is equivalent to
+(-(5)), which is equal to -5.

>>> 1--3 #Equivalent to 1-(-3)

4

>>> 2---3 #Equivalent to 2-(-(-3))

-1

>>> 3+--2 #Equivalent to 3+(-(-2))

5

3.3.2 Binary Operators

Binary operators are operators which require two operands. They are written in infix form, i.e. the
operator is written in between two operands.

The Addition (+) Operator

The ‘+’ operator in Python can be used with binary and unary form. If the addition operator is
applied in between two operands, it returns the result as the arithmetic sum of the operands. Some
examples of addition operators executed in Python interactive mode are given as follows:

Problem Solving and Python Programming70

Example

>>> 4+7 #Addition

11

>>>5+5 Addition

10

Table 3.3. explains the syntax and semantics of the addition operator in Python, using its three
numeric types, viz. int, float and complex.

Table 3.3 Addition operator

Syntax Example

(int, int)-> int 2+4 returns 6

(float, float)->float 1.0+4.0 returns 5.0

(int, float)->float 1+2.0 returns 3.0

(float, int)->float 2.0+1 returns 3.0

(complex, complex)->complex 3j+2j returns 5j

The Subtraction (-) Operator

The ‘-’ operator in Python can be used with binary and unary form. If the subtraction operator
is applied in between two operands, the result is returned as the arithmetic difference of the
operands. Some examples of subtraction operators executed in Python interactive mode are given
as follows:

Example

>>> 7-4 #Subtraction

3

>>>5-2 #Subtraction

3

Table 3.4 explains the syntax and semantics of the subtraction operator in Python, using its three
numeric types, viz. int, float and complex.

Table 3.4 Subtraction operator

Syntax Example

(int, int)-> int 4-2 returns 2

(float, float)->float 3.5-1.5 returns 2.0

(int, float)->float 4-1.5 returns 2.5

(float, int)->float 4.0-2 returns 2.0

(complex, complex)->complex 3j-2j returns 1j

Operators and Expressions 71

Program 3.1
 Read the cost and selling price of an object and write a program to find the profit earned by a
seller (in rupees). The selling price is greater than the cost price.

SP=eval(input(‘Enter the Selling Price of an Object:’))

CP=eval(input(‘Enter the Cost Price of an Object:’))

print(‘--’)

print(‘ Selling Price = ‘,SP)

print(‘ Cost Price =’,CP)

print(‘--’)

Profit=SP – CP #Formula to Calculate Profit

print(‘ Profit Earned by Selling = ‘,Profit)

output

Enter the Selling Price of an Object: 45

Enter the Cost Price of an Object: 20

--

 Selling Price = 45

 Cost Price = 20

--

 Profit Earned by Selling = 25

Explanation At the start of the program, the selling price and cost price of the object is read using
eval. The statement, Profit = SP - CP is executed to calculate the profit earned by the seller.

The Multiplication (*) Operator

The ‘*’ operator in Python can be used only with binary form. If the multiplication operator is
applied in between two operands, it returns the result as the arithmetic product of the operands.
Some examples of multiplication operators executed in Python interactive mode are given as
follows:

Example

>>> 7*4 #Multiplication

28

>>>5*2 #Multiplication

10

Table 3.5 explains the syntax and semantics of the multiplication operator in Python, using its
three numeric types, viz. int, float and complex.

Problem Solving and Python Programming72

Table 3.5 Multiplication operator

Syntax Example

(int, int)-> int 4*2 returns 8

(float, float)->float 1.5*3.0 returns 4.5

(int, float)->float 2*1.5 returns 3.0

(float, int)->float 1.5* 5 returns 7.5

(complex, complex)->complex 2j*2j returns -4+0j

Program 3.2 Write a program to calculate the square and cube of a number using * operator.

num=eval(input(‘Enter the number:’)) # Read Number

print(‘Number = ‘,num)

Square=num* num #Calculate Square

Cube = num * num * num #Calculate Cube

print(‘Square of a Number = ‘,num,’ is ‘,Square)

print(‘Cube of a Number = ‘,num,’ is ‘,Cube)

output

Enter the number: 5

Number = 5

Square of a Number = 5 is 25

Cube of a Number = 5 is 125

The Division (/) Operator

The ‘/’ operator in Python can be used only with binary form. If the division operator is applied
in between two operands, it returns the result as the arithmetic quotient of the operands. Some
examples of division operators executed in Python interactive mode are given as follows:

Example

>>> 4/2 #Division

2.0

>>> 10/3

3.3333333333333335 #Division

Table 3.6 explains the syntax and semantics of the division operator in Python, using its three
numeric types, viz. int, float and complex.

Operators and Expressions 73

Table 3.6 Division (/) operator

Syntax Example

(int, int)-> float 25/5 returns 5.0

(float, float)->float 0.6/2.0 returns 0.3

(int, float)->float 4/0.2 returns 20.0

(float, int)->float 1.5/2 returns 0.75

(complex, complex)->complex 6j/2j returns 3+0j

Note: When the division (/) operator is applied on two int operands, Python returns a float result.

Program 3.3
 Write a program to calculate simple interest (SI). Read the principle, rate of interest and number
of years from the user.

P=eval(input(‘Enter principle Amount in Rs = ‘)) #Read P

ROI=eval(input(‘Enter Rate of Interest = ‘)) #Read ROI

years=eval(input(‘Enter the Number of years =’))#Read years

print(‘ Principle = ‘,P)

print(‘ Rate of Interest = ‘,ROI)

print(‘ Number of Years = ‘,years)

SI = P*ROI*Years/100 #Calculate SI

print(‘Simple Interest = ‘,SI)

output

Enter Principle Amount in Rs = 1000

Enter Rate of Interest = 8.5

Enter the Number of Years = 3

Principle = 1000

Rate of Interest = 8.5

Number of Years = 3

Simple Interest = 255.0

Program 3.4 Write a program to read a temperature in Celsius from the user and convert it into Fahrenheit.

Celsius =eval(input(‘Enter Degree is Celsius:’))#Read Celsius from User

print(‘Celsius = ‘, Celsius) #Print Celsius

Fahrenheit = (9 / 5) * Celsius + 32 # Convert Celsius to Fahrenheit

print(‘ Fahrenheit = ‘, Fahrenheit) # Print Fahrenheit

(Contd.)

Problem Solving and Python Programming74

output

Enter Degree is Celsius: 23

Celsius = 23

Fahrenheit = 73.4

Note: Formula to convert Celsius into Fahrenheit is:
Fahrenheit = (9/5)*Celsius + 32

The Floor Division (//) Operator

The ‘//’ operator in Python can be used only with binary form. If the floor division operator is
applied in between two operands, it returns the result as the arithmetic quotient of the operands.
Some examples of floor division operators executed in Python interactive mode are given as follows:

Example

>>> 4//2 # Floor Division

2

>>> 10//3

3 #Floor Division

Table 3.7 explains the syntax and semantics of the floor division operator in Python, using its
numeric types, viz. int and float.

Table 3.7 Floor division (//) operator

Syntax Example

(int, int)-> int 25//5 returns 5

(float, float)->float 10.5//5.0 returns 2.0

(int, float)->float 11//2.5 returns 4.0

(float, int)->float 4.0//3 returns 1.0

Note: a. From the above example, it is clear that when the floor division (//) operator is applied on
two int operands, Python returns an int result.

b. In the second example 10.5//5.0, the result returned is 2.0. However, if 10.5/5.0 returns 2.1, it
means the floor division operator has been applied on two float operands. Hence, it returns the
result in float but ignores the decimal number after the decimal point.

The Modulo (%) Operator

When the second number divides the first number, the modulo operator returns the remainder.
The % modulo operator is also known as the remainder operator. If the remainder of x divided by
y is zero then we can say that x is divisible by y or x is a multiple of y.

Operators and Expressions 75

Consider the following example.

 3 Quotient

 Divisor 4 14 Dividend

 - 12

 2 Remainder

In the above example, 14 % 4 returns 3 as the remainder. Thus, the left-side operand, i.e. 14 is
the dividend and the right-side operand, i.e. 4 is the divisor. Some more examples of the modulo
operator executed in Python interactive mode are given below.

Example

>>> 10 % 4 # 10 is divided by 4 returns remainder as 2

2

>>> 13%5

3

Table 3.8 explains the syntax and semantics of the modulo (%) operator in Python, using its
numeric types, viz. int and float.

Table 3.8 Modulo (%) operator

Syntax Example

(int, int)-> int 25%4 returns 1

(float, float)->float 2.5 % 1.2 returns 0.10

(int, float)->float 13%2.0 returns 1.0

(float, int)->float 1.5 % 2 returns 1.5

Note: Mathematically, X%Y is equivalent to X – Y * (x//Y)

Example: 14%5 returns 4
 Therefore,
 14 % 5 = 14 – 5*(14//5)
 = 14 – 5* (2)
 = 14 – 10
 = 4

use of % modulo Operator in programming The modulo operator, i.e. the remainder operator
is very useful in programming. It is used to check if a number is even or odd, i.e. if number % 2
returns zero then it is an even number and if number % 2 == 1 then it is an odd number.

Program 3.5
 Write a program to read the weight of an object in grams and display its weight in kilograms
and grams, respectively.

Problem Solving and Python Programming76

Example

Input: Enter the weight of the object in grams: 2,500

Output: Weight of the object (kilograms and grams): 2 kg and 500 g

Note: 1 kilogram = 1,000 grams

W1 = eval(input(‘Enter the Weight of Object in grams:’)) #Input Weight

print(‘ Weight of Object = ‘,W1,’ grams’) # Print Weight

W2 = W1 // 1000 #Calculate No of kg

W3 = W1 % 1000 #Calculate No of g

print(‘ Weight of Object = ‘,W2,’ kg and ‘,W3,’ g’)

output

Enter the Weight of Object in g : 1250

Weight of Object = 1250 g

Weight of Object = 1 kg and 250 g

Program 3.6 Write a program to reverse a four-digit number using % and // operators.

Num=eval(input(‘Enter four-digit number: ‘))

print(‘Entered number is:’,num)

r1=num%10

q1=num//10

r2=q1%10

q2=q1//10

r3=q2%10

q3=q2//10

r4=q3%10

print(‘Reverse of ‘,num,’is:’,r1,r2,r3,r4)

output

Enter four-digit number: 8763

Entered number is: 8763

Reverse of 8763 is: 3 6 7 8

Explanation In the above program, initially the number is read from the user. For instance, the
number read through the user is 8763. To reverse the contents of the number, initially the operation
(8763 % 10) gives a remainder 3. To display the second digit 6, the number has to be divided by 10.
Hence, (8763//10) gives 876. After obtaining the quotient as 876, the modulus operation (876%10) is
performed again to obtain the digit 6. This process is continued three times to obtain the reverse
of the four-digit number entered by the user.

Operators and Expressions 77

The Exponent ** Operator

The ‘**’ exponent operator is used to calculate the power or exponent of a number. To compute xY (X
raised to Y), the expression is written as X**Y. The exponent operator is also called power operator.

Example

>>> 4**2 #Calculate Square of a Number 4

16

>>> 2**3 #Calculate Cube of a Number 2

8

Table 3.9 explains the syntax and semantics of the exponent (**) operator in Python, using its
numeric types, viz. int and float.

Table 3.9 Exponent(**) operator

Syntax Example

(int, int)-> int 2**4 returns 16

(float, float)->float 2.0**3.0 returns 8.0

(int, float)->float 5**2.0 returns 25.0

(float, int)->float 4.0 **3 returns 64.0

Program 3.7
 Write a program to calculate the distance between two points. The formula for computing
distance is

- + -2 2(2 1) (2 1)X X Y Y

We can use Z**0.5 to compute the square root of the expression Z . The program below prompts the user to read
the coordinates of the two points and compute the distance between them.

print(‘Point1’)

X1 = eval(input(‘Enter X1 coordinate:’)) #Read X1

Y1 = eval(input(‘Enter Y1 coordinate:’)) #Read Y1

print(‘point2’)

X2 = eval(input(‘Enter X2 coordinate: ‘)) #Read X2

Y2 = eval(input(‘Enter Y2 coordinate: ‘)) #Read Y2

L1=(X2-X1)**2 + (Y2-Y1)**2 #Computer inner expression

Distance = L1**0.5 #Compute Square root.

print(‘Distance between two point is as follows’)

print(‘(‘,X1,Y1,’)’,’(‘,X2,Y2,’)=’, Distance)

output

Point1

Enter X1 Coordinate :4

Enter Y1 Coordinate :6

(Contd.)

Problem Solving and Python Programming78

point2

Enter X2 Coordinate: 8

Enter Y2 Coordinate: 10

Distance between the two points is as follows

(4 6) (8 10)= 5.656854249492381

Program 3.8 Write a program to display the following table.

 X Y X**Y

 10 2 100

 10 3 1000

 10 4 10000

 10 5 100000

print(‘X \t Y \t X**Y’)

print(‘10 \t 2 \t ‘,10**2)

print(‘10 \t 3 \t ‘,10**3)

print(‘10 \t 4 \t ‘,10**4)

print(‘10 \t 5 \t ‘,10**5)

output

X Y X**Y

10 2 100

10 3 1000

10 4 10000

10 5 100000

3.4 OperatOr precedence and assOciativity

Operator precedence determines the order in which the Python interpreter evaluates the operators
in an expression.

Consider the expression 4+5*3.

Now, you may ask so how does Python know which operation to perform first? In the above
example 4+5*3, it is important to know whether 4+5*3 evaluates to 19 (where the multiplication is
done first) or 27 (where the addition is done first).

The default order of precedence determines that multiplication is computed first so the result
is 19. As an expression may contain a lot of operators, operations on the operands are carried out
according to the priority, also called the precedence of the operator. The operator having higher
priority is evaluated first.

Table 3.10 gives the list of operator precedence in the descending order. The operators on
the top rows have higher precedence and the operators on the bottom rows have lower
precedence. If a row contains multiple operators, it means all the operators are of equal priority or
precedence.

Operators and Expressions 79

Table 3.10 Operator precedence

Precedence Operator Name

** Exponential

+,-,~ Plus, Minus, Bitwise not

*,/,//,% Multiplication, division, integer division, and remainder

+, - Binary Addition, Subtraction

<< , >> Left and Right Shift

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

<,<=,>,>= Comparison

==, != Equality

=,%=,/=,//=,-=,+=,,*=,**= Assignment Operators

is, is not Identity Operators

in, not in Membership Operator

Not Boolean Not

And Boolean and

Or Boolean or

3.4.1 example of Operator precedence

Consider arithmetic operators *, /, // and %, which have higher precedence as compared to
operators + and -.

Example

4+5*3-10

As compared to + and * operators, the * operator has higher priority. Hence, the multiplication
operation is performed first. Therefore, above expression becomes,

4+15-10

Now in above expression, + and – have the same priority. In such a situation, the leftmost operation
is evaluated first. Hence, the above expression becomes

19 - 10

Consequentially, subtraction is performed last and the final answer of the expression will be 9.

3.4.2 associativity

When an expression contains operators with equal precedence then the associativity property
decides which operation is to be performed first. Associativity implies the direction of execution
and is of two types, viz. left to right and right to left.

Problem Solving and Python Programming80

(i) Left to Right: In this type of expression, the evaluation is executed from the left to right.

 4 + 6 – 3 + 2

 In the above example, all operators have the same precedence. Therefore, associativity rule is
followed (i.e. the direction of execution is from the left to right).

 The evaluation of the expression 4+6-3+2 is equivalent to
=((4+6)-3)+ 2

= ((10)-3)+ 2
=(7)+2

= 9

 (ii) Right to Left: In this type of expression, the evaluation is executed from the right to left.

 X = Y = Z = Value

 In the above example, assignment operators are used. The value of Z is assigned to Y and then
to X. Thus, the evaluation starts from the right.

Example of Associativity

 (i) When operators of the same priority are found in an expression, precedence is given to the
leftmost operator.

Z = 4 * 6 + 8 // 2

24 4

28

 In the above expression * is evaluated first, even though * and // have the same priorities. The
operator * occurs before // and hence the evaluation starts from the left. Therefore, the final
answer for the above expression is 28.

The examples so far illustrated how Python uses associativity rules for evaluating expressions.
Table 3.11 shows the precedence and associativity for arithmetic operators.

Table 3.11 Associativity table for arithmetic operators

Precedence Operators Associativity

Highest () Innermost to Outermost

** Highest

*,/,//,% Left to Right

Lowest + - Left to Right

3.5 changing precedence and assOciativity
Of arithmetic OperatOrs

One can change the precedence and associativity of arithmetic operators by using (), i.e. the
parentheses operator. The () operator has the highest precedence among all other arithmetic

Operators and Expressions 81

operators. It can be used to force an expression to evaluate in any order. Parentheses operator ()
also makes an expression more readable.

Some examples of parentheses operator executed in Python interactive mode are given as
follows:

Example

>>> z=(5+6)*10

>>> z

110

Explanation

In the above example, z is initialized with one expression (5+6)*10. The sub expression (5 + 6) is
evaluated first, followed by the multiplication operation.

Some More Complex Examples

>>> A= 100 / (2*5)

>>> A

10.0

>>> B= 4 + (5 * (4/2) + (4 + 3))

>>> B

21.0

Program 3.9
 Write a program to find the area and perimeter of a rectangle using (), i.e. the parenthesis
operator.

Length = eval(input(‘Enter the Length of Rectangle:’))

Breadth = eval(input(‘Enter the Breadth of Rectangle:’))

print(‘- - - - - - - - - - - - ‘)

print(‘ Length = ‘,Length)

print(‘ Breadth = ‘,Breadth)

print(‘- - - - - - - - - - - - ‘)

print(‘ Area = ‘, Length * Breadth)

print(‘ Perimeter = ‘,2 * (Length + Breadth))

output

Enter the Length of Rectangle: 10

Enter the Breadth of Rectangle: 20

- - - - - - - - - - - -

 Length = 10

 Breadth = 20

- - - - - - - - - - - -

Area = 200

Perimeter = 60

Problem Solving and Python Programming82

Explanation In the above program, the values of variables length and breadth of the rectangle
are initially read from the user. Then using the multiplication * operator, the area of the rectangle
is computed. Finally, in order to compute the perimeter, the addition of length and breadth is
performed and the result is multiplied by 2.

Note: Area of Rectangle = Length * Breadth
Perimeter of Rectangle = 2 * (Length + Breadth)

3.6 transLating mathematicaL fOrmuLae intO equivaLent
pythOn expressiOns

Consider the following quadratic equation written in normal arithmetic manner.

- ± -2 4

2

b b ac

a

The steps required to convert this quadratic equation into its equivalent Python expression are
given as follows:

 | STEP 1: The numerator and denominator are computed first to find the roots of the quadratic
equation. Division between the numerator and denominator is performed as the last
step. Hence, we can write the above expression as:

 Numerator/Denominator

 | STEP 2: The denominator is just 2a, so we can rewrite the formula as:

 Numerator/((2 *a))

 | STEP 3: Now we can split the numerator into two parts, i.e. left and right as follows:

 (Left+Right)/((2 *a))

 | STEP 4: Substitute –b for left. There is no need to put parenthesis for –b because unary operator
has higher precedence than binary addition. Hence, the above equation becomes:

 (-b+Right)/((2 *a))

 | STEP 5: The right contains the expression inside the square root. Therefore, the above equation
can be rewritten as:

 (-b+sqrt(expression)/((2 *a))

 | STEP 6: But the expression inside the square root contains two parts left and right. Hence, the
above equation is further rewritten as

 (-b+sqrt(left-right)/((2 *a))

 | STEP 7: Now the left part contains the expression b**2 and the right part contains the expression
4*a*c. There is no need to put parenthesis for b**2 because the exponent operator has

Operators and Expressions 83

higher precedence than the * operator since the expression 4*a*c is present on the right
side. The above equation can be rewritten as

 (-b+sqrt(b**2-4*a*c)/((2 *a))

Thus, we have converted the mathematical expression into a Python expression. While
converting an equation into a Python expression, one needs to only remember the rules of operator
precedence and associativity.

Program 3.10 Write the following numeric expression in Python and evaluate it.

 + - + +
- +

2 8 ()() ()
4 *

2 2 2

P P Q P Q P Q

 Consider the value of variables P and Q as 4 and 2, respectively.

P = 4

Q = 2

Z =(2 + 8 * P) / 2 - ((P-Q)*(P+Q))/2 + 4 * ((P+Q)/2)

print(‘(2 + 8 * P) / 2 - ((P-Q)*(P+Q))/2 + 4 * ((P+Q)/2)’)

print(‘ Where P = ‘,P,’ and Q = ‘, Q)

print(‘ Answer of above expression = ‘,Z)

output

(2 + 8 * P) / 2 - ((P-Q)*(P+Q))/2 + 4 * ((P+Q)/2)

 Where P = 4 and Q = 2

 Answer of above expression = 23.0

Explanation In the above program, initially the equation

2 8 ()() ()
4 *

2 2 2

P P Q P Q P Q+ - + +
- +

is translated into a Python expression as

(2 + 8 * P) / 2 - ((P - Q) * (P + Q))/2 + 4 * ((P + Q)/2).

Once the expression is converted into a Python expression, the values of P and Q are substituted
by the Python interpreter and finally the expression is evaluated considering Python precedence
and associativity rules.

3.7 Bitwise OperatOr

Python has six bitwise operators for bitwise manipulation. The bitwise operator permits a
programmer to access and manipulate individual bits within a piece of data. Table 3.12. shows
various bitwise operators supported by Python.

Problem Solving and Python Programming84

Table 3.12 Bitwise operators

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

>> Right Shift

<< Left Shift

~ Bitwise NOT

3.7.1 the Bitwise and (&) Operator

This operator performs AND operation on input bits of numbers. The Bitwise AND operator is
represented as ‘&’. The ‘&’ operator operates on two operands bit-by-bit. Table 3.13. explains the
AND operator.

Table 3.13 AND operator

Input Output

X Y X & Y

0 0 0

0 1 0

1 0 0

1 1 1

We can conclude from this table that the output is obtained by multiplying the input bits.

Example of AND Operator

>>> 1 & 3

1 # The bitwise & operator on 1 and 3 returns 1

>>> 5 & 4

4 # The bitwise & operator on 5 and 4 returns 4

Working of the bitwise operator is given as follows:

1 and 3 are converted into their equivalent binary format

 0 0 0 1 (one)

 &

 0 0 1 1 (Three)

Bitwise operation (0 & 0) (0 & 0) (0 & 1) (1 & 1)

 Result 0 0 0 1 (One)

 Decimal equivalent of (0 0 0 1) = 1

 Therefore, 1 & 3 = 1

Operators and Expressions 85

Program 3.11
 Write a program to read two numbers from the user. Display the result using bitwise & operator
on the numbers.

num1 = int(input(‘Enter First Number: ‘))

num2 = int(input(‘Enter Second Number: ‘))

print(num1,’ & ‘,num2,’ = ‘, num1 & num2)

output

#Test Case 1

Enter First Number: 1

Enter Second Number: 3

 1 & 3 = 1

#Test Case 2

Enter First Number: 5

Enter Second Number: 6

5 & 6 = 4

3.7.2 the Bitwise Or (|) Operator

This operator performs bitwise OR operation on the numbers. The bitwise OR operator is
represented as ‘|’. It also operates on two operands and the two operands are compared bit-by-bit.
Table 3.14 explains the ‘|’ (OR) operator.

Table 3.14 Bitwise OR operator

Input Output

X Y X | Y

0 0 0

0 1 1

1 0 1

1 1 1

We can conclude from this table that the output is obtained by adding the input bits.

Examples of Bitwise ‘|’ (OR) Operator

>>> 3 | 5

7 # The bitwise | operator on 3 and 5 returns 7

>>> 1 | 5

5 # The bitwise | operator on 1 and 5 returns 5

Problem Solving and Python Programming86

Working of the bitwise OR (‘|’) operator is given as follows:

Working of expression 3 | 5 is as below.

Initially 3 and 5 are converted into their equivalent binary format

 0 0 1 1 (Three)

 |

 0 1 0 1 (Five)

Bitwise operation (0 | 0) (0 | 1) (1 | 0) (1 | 1)

 Result 0 1 1 1 (seven)

 Decimal Equivalent of (0 1 1 1) = 7

 Therefore 3 | 5 = 7

Program 3.12
 Write a program to read two numbers from the user. Display the result using bitwise | operator
on the numbers.

num1 = int(input(‘Enter First Number: ‘))

num2 = int(input(‘Enter Second Number: ‘))

print(num1,’ | ‘,num2,’ = ‘, num1 | num2)

output

#Test Case 1

Enter First Number: 3

Enter Second Number: 5

3 | 5 = 7

#Test Case 2

Enter First Number: 6

Enter Second Number: 1

6 | 1 = 7

3.7.3 the Bitwise xOr (^) Operator

 This operator performs bitwise exclusive or XOR operation on the numbers. It is represented as ‘̂ ’.
The ‘̂ ’ operator also operates on two operands and these two operands are compared bit-by-bit.
Table 3.15. explains the ‘̂ ’ (XOR) operator.

Operators and Expressions 87

Table 3.15 The Table for Bitwise XOR Operator

Input Output

X Y X ^ Y

0 0 0

0 1 1

1 0 1

1 1 0

We can conclude from this table that the output is logic one when one of the input bits is logic
one.

Examples of Bitwise XOR (^) Operator

>>> 3 ^ 5

6 # The bitwise ^ operator on 3 and 5 returns 6

>>> 1 ^ 5

4 # The bitwise ^ operator on 1 and 5 returns 4

Working of the bitwise XOR (‘̂ ’) operator is given as follows:

Working of expression 3 ^ 5 is as below.

Initially 3 and 5 are converted into their equivalent binary format

 0 0 1 1 (Three)

 ^

 0 1 0 1 (Five)

Bitwise operation (0 ^ 0) (0 ^ 1) (1 ^ 0) (1 ^ 1)

 Result 0 1 1 0 (Six)

 Decimal Equivalent of (0 1 1 0) = 6

 Therefore 3 ^ 1 = 6

Program 3.13
 Write a program to read two numbers from the user. Operate bitwise ^ operator on them and
display the result.

num1 = int(input(‘Enter First Number: ‘))

num2 = int(input(‘Enter Second Number: ‘))

print(num1,’ ^ ‘,num2,’ = ‘, num1 ^ num2)

output

#Test Case 1

Enter First Number: 3

(Contd.)

Problem Solving and Python Programming88

Enter Second Number: 5

3 ^ 5 = 6

#Test Case 2

Enter First Number: 1

Enter Second Number: 2

1 ^ 2 = 3

3.7.4 the right shift (>>) Operator

The right shift operator is represented as >>. It also needs two operands. It is used to shift bits to
the right by n position. Working of the right shift operator (>>) is explained as follows:

Example

>>>4 >> 2 # The input data 4 is to be shifted by 2 bits towards the right side

1

>>>8>>2

2

Explanation

Consider the expression 4 >> 2.

Initially, the number 4 is converted into its corresponding binary format, i.e. 0 1 0 0

 0 0 0 0 0 0 1 0 0 Binary 4

 8 7 6 5 4 3 2 1 0 Bit Index

The input data 4 is to be shifted by 2 bits towards the right side.

The answer in binary bits would be

 0 0 0 0 0 0 0 0 1 Binary 1

 8 7 6 5 4 3 2 1 0 Bit Index

Note: Shifting the input number by N bits towards the right means the number is divided by 2s.
In short, it means Y = N/2s.
Where,
 N = The Number
 S = The Number of Bit Positions to Shift

Consider the above example 4 >> 2. Let us solve this using the above formula, i.e. y = N /2s

 = 4 / 22
 = 4 / 4
 = 1
Therefore, 4 >> 2 returns 1 in Python interactive mode.

Operators and Expressions 89

Program 3.14 Write a program to shift input data by 2 bits towards the right.

N = int(input(‘Enter Number: ‘))

S = int(input(‘Enter Number of Bits to be shift Right: ‘))

print(N,’ >> ‘,S,’ = ‘, N >> S)

output

Enter Number: 8

Enter Number of Bits to be shift Right: 2

8 >> 2 = 2

3.7.5 the Left shift (<<) Operator

The left shift operator is represented as <<. It also needs two operands. It is used to shift bits to the
left by N position. The working of the left shift operator is given as follows:

Example

>>> 4 << 2 # The input data 4 is to be shifted by 2 bits towards the left side

16

>>> 8 << 2 # The input data 8 is to be shifted by 2 bits towards the left side

32

Explanation

Consider the expression 4 << 2.

Initially, the number 4 is converted into its corresponding binary

format, i.e. 0 1 0 0

 0 0 0 0 0 0 1 0 0 Binary 4

 8 7 6 5 4 3 2 1 0 Bit Index

The input data 4 is to be shifted by 2 bits towards the left side.

The answer in binary bits would be

 0 0 0 0 1 0 0 0 0 Binary 16

 8 7 6 5 4 3 2 1 0 Bit Index

Problem Solving and Python Programming90

Note: Shifting the input number by N bits towards the left side means the number is multiplied by 2s.
In short, it means Y = N*2s.
Where,
 N = The Number
 S = The Number of Bit Positions to Shift

Consider the above example 4 << 2. Let us solve this using the above formula, i.e.

 y = N * 2s

 = 4 * 22
 = 4 * 4
 = 16
Therefore, 4 << 2 returns 16 in Python interactive mode.

Program 3.15 Write a program to shift input data by four bits towards the left.

N = int(input(‘Enter Number: ‘))

S = int(input(‘Enter Number of Bits to be shift Left: ‘))

print(N,’ << ‘,S,’ = ‘, N << S)

output

Enter Number: 4

Enter Number of Bits to be shift Left: 2

4 << 2 = 16

3.8 the cOmpOund assignment OperatOr

The operators +, *, //, /, % and ** are used with the assignment operator (=) to form the compound
or augmented assignment operator.

Example

Consider the following example, where the value of a variable X is increased by 1.

X = X + 1

Python allows a programmer to combine the assignment and addition operator. Thus, the above
statement X = X + 1 can also be written as

X + = 1

The += operator is called the addition operator. A list of all other compound assignment
operators is given in Table 3.16.

Operators and Expressions 91

Table 3.16 Compound assignment operators

Operator Example Equivalent Explanation

+= Z+=X Z=Z+X Add the value of Z to X

-= Z-=X Z=Z-X Subtract X from Z

= Z=X Z=Z*X Multiplies the value of X, Y and stores the result in Z

/= Z/=X Z=Z/X Performs floating point division operation and stores the result in Z

//= Z//=X Z=Z//X Performs normal integer floor division and stores the result in Z

= Z=X Z=Z**X The value of variable X is raised to Z and the result is stored in
variable Z

%= Z%=X Z=Z%X The Z modulo X operation is performed.

Program 3.16 Write a program using compound assignment operators to calculate the area of a circle.

radius = eval(input(‘Enter the Radius of Circle: ‘)) #Read Radius

print(‘ Radius = ‘,radius) #Display Radius

area = 3.14

radius **=2 #Radius = Radius ** 2

area*=radius #Area=Area*Radius

print(‘ Radius of Circle is = ‘,area) #Print area

output

Enter the Radius of Circle: 2

Radius = 2

Radius of Circle is = 12.56

Thus, to perform various operations in the above program we have to make use of compound
assignment operators such as **=, and *=.

mini prOject goods service tax (gst) calculator

What is gST?

Goods and services tax is a comprehensive tax levied on the manufacture, sale and consumption
of goods and services at a national level. This tax has substituted all indirect taxes levied on
goods and services earlier by the central and state governments in India.

Problem Statement

We all buy various goods from a store. Along with the price of the goods we wish to buy, we also
have to pay an additional tax, which is calculated as a specific percentage on the total price of the
goods. This is called GST on the products.

Problem Solving and Python Programming92

model of gST Using an Example

The GST has two components, viz. one which is levied by the central government (referred to as
central GST or CGST), and one levied by the state government (referred to as state GST or SGST).
The rates for central GST and state GST are given as follows:

Type of Tax Tax Rate

CGST @9%

SGST @9%

Example

Invoice of a product

Particulars GST on Particulars

Cost of Production 5,000

Add: CGST @ 9% 450

Add: SGST @ 9% 450

Total Cost of Product: `5,900

Formula to Calculate Total Cost

(CGST Tax Rate on product) + (SGST Tax Rate on product)

Note: Make use of proper operators to solve the above problem.

algorithm

 | STEP 1: Read Cost of Production

 | STEP 2: Input the CGST tax rate

 | STEP 3: Input the SGST tax rate

 | STEP 4: Calculate and print the total cost of the product.

Program

CP = float(input(‘Enter the Cost of Product:’))

CGST = float(input(‘Enter tax % imposed by Centre, i.e. CGST:’))

SGST = float(input(‘Enter tax % imposed by State, i.e. SGST:’))

total = 0

Amount_CGST = ((CGST/100) * CP)

Amount_SGST = ((SGST/100) * CP)

total = CP + Amount_CGST + Amount_SGST

print(‘Total Cost of Product: Rs ‘,total)

(Contd.)

Operators and Expressions 93

output

Enter the Cost of Product: 5000

Enter tax % imposed by Centre, i.e. CGST: 9

Enter tax % imposed by State, i.e. SGST: 9

Total Cost of Product: Rs. 5900.0

In the above example, we have calculated final cost of the product based on the tax rate.

 SUmmary

  Python supports various operators such as Arithmetic, Boolean, Relational, Bitwise and compound
Assignment Operator.

  Unary Operator perform operation on one operand only whereas Binary operator requires two
operands.

  The Divison(\) operator applied on two operands returns a float value.

  Modulo (%) operator return s remainder when first number is divided by the second.

  Exponent (**) operator calculates power of number.

  Operator precedence determines the order in which python evaluates the operators in an expression.

  Associativity gives direction of execution, i.e. left to right or right to left.

 KEy TErmS

 � Arithmetic Operators: Binary and Unary Operators

 � Bitwise Operators: and (&), or (|), xor (̂), left shift (<<) and right shift (>>)

 � Augmented Assignment Operator: Operators used with the assignment operator

 � Operator Precedence: Determines the order in which the Python interpreter evaluates an expression

 � Associativity: Determines which operation is to be performed first.

 rEviEW QUESTionS

a. multiple Choice Questions

 1. What will be the output of the following expression if it is executed in Python interactive mode?

 16 % 3

 a. 5 b. 1

 c. 0 d. -1

 2. What will be the output of the following program?

 X=5

 Y=5

 print(X/Y)

Problem Solving and Python Programming94

 a. 1 b. 1.0

 c. 0.1 d. None of the above

 3. What will be the output of the following statement?

 print(15 + 20 / 5 + 3 * 2 - 1)

 a. 19.0 b. 19

 c. 12.0 d. 24.0

 4. What will be the output of the following program?

 A=7

 B=4

 C=2

 print(a//b/c)

 a. 0.85 b. 0

 c. 0.5 d. 0.0

 5. Which one of the following operators belongs to floor division?

 a. % b. /

 c. // d. None of the above

 6. What will be the output of the following expression?

 4*1**2

 a. 16 b. 4

 c. 8 d. 1

 7. What will be the output of the following program?

 X=4.6

 Y=15

 Z=X//Y

 print(Z)

 a. 0 b. 0.0

 c. 0.30 d. None of the above

 8. Operators with the same precedence are evaluated in which of the following orders?

 a. Left to Right b. Right to Left

 c. Unpredictable d. None of the above

 9. What will be the output, if the input data 5 is shifted towards the left by 2 bits?

 a. 20 b. 10

 c. 1 d. 25

 10. Which of the following have the highest precedence in an expression?

 a. Addition b. Multiplication

 c. Exponent d. parenthesis

B. True or False

 1. Operators operate on operands.

 2. Binary operators operate on at least two operators.

 3. The ‘-’ operator in Python can be used with binary and unary form.

 4. 4.5-1.5 returns 3.0.

Operators and Expressions 95

 5. The unary arithmetic operator performs mathematical operations on more than one operand.

 6. The operator precedence determines the order in which the Python interpreter operates the operators
in an expression.

 7. Associativity implies the direction of execution of an expression.

 8. Shifting the input number by N bits towards the left means the number is divided by 2s.

 9. Shifting the input number by N bits towards the right means the number is divided by 2s.

 10. The right shift operator is represented as >>.

 11. The () operator has the highest precedence among all other arithmetic operators.

C. Exercise Questions

 1. State the results of the following expressions.

Expression Results

40/8

40//8

50%5

3%2

3**3

 2. State the output of each of the following expression, if each expression is independent. Assume the
value of X as 4.

Expression Output

 X +=10

X -=4

X *=6

 X **=2

X %=2

X /=2

 3. Values assigned to different variables are

 A = 10

 B = 20

 C = 40

 D = 4

 E = 5

 Evaluate each of the following Python expression.

 (i) (A + B) * C

 (ii) A + (B - E)

 (iii) A*B/E

 (iv) C/B//5

 (v) C+(A*E)/(B-A)

Problem Solving and Python Programming96

 4. Convert the following expressions into their shortest form.

Expression Equivalent Expression

Z = Z* 10 + 4

A = A % 20

B = B ** 10 + 2

C = C / 3

 5. Find the output of each expression given below if Python executes each expression separately.

 Initially the value of X = 4

Expression Output

X=X<<2

X=X>>2

X=x>>3

X=X<<3

 6. Determine the hierarchy of operations and evaluate the following expressions.

 X = 4/2*2+16/8+5

 Y = 3*4/2+2/2+6-4+4/2

 7. Convert the following equations into their corresponding Python expressions.

 (a)
2

10 4()

XY X

C Z D
-

+ +
 (b)

10 ()
0.8 2

1
()

Y ab C
b

dZ

x a
z

+
- +

=
Ê ˆ+ Á ˜Ë ¯

 8. The programmer has to find out the area of a rectangle but he/she has one constraint, viz. he/she has
to take the value of the length and breadth of the rectangle from the user. The programmer has written
the following program but he/she is unable to detect the bug in the program. Go through the following
program to find the bug and then rewrite the whole program.

 area=0

 length = 0

 breadth = 0

 area= length * breadth

 length=eval(input(‘Enter the Length of Rectange:’))

 breadth=eval(input(‘Enter the Breadth of Rectangle:’))

 print(‘Area of Rectange = ‘,area)

 9. Evaluate the expression, (X + Y – abs(X – Y))//2, when

 X = 4 and Y = 6

 X = 5 and Y = 4

Operators and Expressions 97

 1. Write a program to read the marks of 5 subjects through the keyboard. Find out the
aggregate and percentage of marks obtained by the student. Assume maximum marks that
can be obtained by a student in each subject as 100.

 2. Write a program to read a four-digit number through the keyboard and calculate the sum
of its digits.

 3. Write a program to read the distance between any two cities in kilometer (km) and print the
distances in meters (m), centimeters (cm)and miles.

 Note: 1 km = 1000 meter

 1 km = 100000 centimeter

 1 km = 0.6213 miles

 4. Write a program to read the weight of an object in kilogram and print its weight in pound
and tonne.

 Note: 1 kg = 2.20 pound

 1 kg = 0.001 tonne

 5. Read a distance in meters and a time in seconds through the keyboard. Write a program to
calculate the speed of a car in meter/second.

 Note: Speed =
Distance

Time

 6. Write a program to read the radius of a sphere from the user and calculate the volume of the
sphere.

 Note: Volume of sphere = 4/3*3.14*r3

 7. An ATM contains Indian currency notes of 100, 500 and 1000. To withdraw cash from this
ATM, the user has to enter the number of notes he/she wants of each currency, i.e. of 100,
500 and 1000. Write a program to calculate the total amount withdrawn by the person from
the ATM in rupees.

Programming aSSignmEnTS

UNIT 3

 Decision Statements

 Loop Control Statements

 Functions

 Strings

4

Decision Statements

Learning OutcOmes

After completing this chapter, students will be able to:

• Describe Boolean expressions and bool data type

• Perform operations on numbers and strings using Boolean and Relational operators (>, <,>=, <= and !=)

• Write a simple decision making statement and its implementation with if statement, two-way decision
making statements and their implementation with if else statement, nested statements and their
implementation with if statements and multi-way decision making statements and their implementation
with if-elif-else statements

• Explain and use conditional expressions to write programs

• Write non-sequential programs using Boolean expressions

chapter OutLine

 4.1 Introduction

 4.2 Boolean Type

 4.3 Boolean Operators

 4.4 Using Numbers with Boolean Operators

 4.5 Using String with Boolean Operators

 4.6 Boolean Expressions and Relational
Operators

 4.7 Decision Making Statements

 4.8 Conditional Expressions

4.1 intrOductiOn

So far, we have seen programs that contain a sequence of instructions. These programs are
executed by the compiler line by line, in the way the program line appears. The control flow in

Problem Solving and Python Programming100

such programs is sequential. Control flow refers to the order in which program statements are
executed, i.e. when the execution of one statement is complete, the computer control passes to the
next statement in the code. This process is similar to reading the text, figures and tables on a page
of a book.

In monolithic programs, instructions are executed sequentially one by one in the order in which
they come into sight in the program. Of course, this is a fundamental programming concept for
beginners to develop simple programs. It is not advisable to have a sequential program writing
style for solving every problem. Quite often, it is advantageous in a program to alter the sequence
of the flow of statements depending upon the circumstances. In real-time applications, there are a
number of situations where a programmer has to change the order of execution of statements based
on certain conditions. Therefore, when a programmer desires the control flow to be non-sequential
then he/she may use control structures or decision statements. Thus, decision making statements
help a programmer in transferring the control from one statement to another in the program. In
short, a programmer decides which statement is to be executed based on a condition. Decision
making statements use conditions which are similar to Boolean expressions.

After reading this chapter, a programmer is expected to take up real life problems/applications
and implement with Python programming containing conditional statements. Programmer
may think the programming pattern for preparation of mark sheet, grade sheet, preparation of
electricity bill for residential and commercial consumers, Railway tariff based on distances, simple
calculations of interest on deposits for banking problems, etc. Of course, unlimited problems are
existing in the nature for which a programmer is expected to give programming solution.

4.2 BOOLean type

Python has a type called ‘bool’. The bool has only two values, viz. true and false. The term,
‘Boolean’ comes from the name of the British mathematician, George Boole. In the 1840s, Boole
showed that the classical rules of logic could be expressed in purely mathematical form using
only two values, viz. true and false. The simplest Boolean expression in Python is True and False.
In Python interactive shell, a programmer can check if the type of two values, viz. true and false
belong to the type ‘bool’ in the following manner:

>>> True

True

>>> False

False

>>> type(True)

<class ‘bool’> #The Value True belongs to the class type bool

>>> type(False)

<class ‘bool’> #The Value False belongs to the class type bool

 Note: There are only two Boolean values, True and False. Capitalisation of the first letter is important
for these values and so true and false are not considered Boolean values in Python. As illustrated, the
Python interpreter will show an error if a programmer checks the type of ‘true’ or ‘false’.

(Contd.)

Decision Statements 101

>>> type(true)

Traceback (most recent call last):

File “<pyshell#10>”, line 1, in <module>

type(true)

NameError: name ‘true’ is not defined

4.3 BOOLean OperatOrs

The and, or and not are the only three basic Boolean operators. Boolean operators are also called
logical operators. The not operator has the highest precedence, followed by and and then or.

4.3.1 the not Operator

The not operator is a unary operator. It is applied to just one value. The not operator takes a single
operand and negates or inverts its Boolean value. If we apply the not operator on an expression
having false value then it returns it as true. Similarly, if we apply the not operator on an expression
having true value then it returns it as false.

Example

Use of the not operator on a simple Boolean expression in Python, i.e. true and false.

>>> True

True

>>> not True

False

>>> False

False

>>> not False

True

4.3.2 the and Operator

The and is a binary operator. The and operator takes two operands and performs left to right
evaluation to determine whether both the operands are true. Thus, and of Boolean operand is true
if and only if both operands are true. Table 4.1 explains the add operator.

Table 4.1 The and operator

X Y X and Y

True True True

True False False

False True False

False False False

Problem Solving and Python Programming102

Example

Evaluation of the and operator in Python interactive mode.

>>> True and True

True

>>> True and False

False

>>> False and True

False

>>> False and False

False

4.3.3 the or Operator

The or of two Boolean operands is true if at least one of the operands is true. Table 4.2 explains the
or operator.

Table 4.2 The or operator

X Y X or Y

True True True

True False True

False True True

False False False

Example

Evaluation of the or operator in Python interactive mode.

>>> True or True

True

>>> True or False

True

>>> False or True

True

>>> False or False

False

4.4 using numBers with BOOLean OperatOrs

A programmer can use numbers with Boolean operators in Python. One such example is given as
follows:

Example

>>> not 1

False

Decision Statements 103

>>> 5

5

>>> not 5

False

>>> not 0

True

>>> not 0.0

True

Explanation Here, Python uses the Boolean operator not on the numbers and treats all numbers
as True. Therefore, by writing not 1, Python substitutes 1 as True and evaluates not True, which
returns False. Similarly, not is used before 5 and Python substitute True in place of 5 and it again
evaluates the expression not True, which returns False. But in case of the numbers 0 and 0.0,
Python treats them as False. Therefore, while evaluating not 0, it substitutes False in place of 0 and
again evaluates the expression not False, which returns True.

4.5 using string with BOOLean OperatOrs

Like numbers, a programmer can use strings with Boolean operators in Python. One such example
is given as follows:

Example

>>> not ‘hello’

False

>>> not ‘’

True

Explanation Here, Python uses the Boolean operator not on string. The expression not hello

returns True since Python treats all strings as True. Therefore, it substitutes True in place of ‘hello’
and again reevaluates the expression not True, which returns False. However, if it is an empty
string, Python will treat it as False. Therefore, it substitutes False in place of an empty string ‘’and
reevaluates the expression not False, which in turn returns True.

4.6 BOOLean expressiOns and reLatiOnaL OperatOrs

A Boolean expression is an expression that is either true or false. The following example compares
the value of two operands using the == operator and produces the result true if the values of both
the operands are equal.

Example

The == operator compares two values and produces a Boolean value.

>>> 2==2

True

Problem Solving and Python Programming104

>>> a=2

>>> b=2

>>> a==b

True

Note: The comparison operator == contains two equal signs. Whereas the assignment operator =
contains only one equal sign.

From the above example, it is clear how we can compare two values or two operands. Thus, ==
is one of the Python relational operators. Other relational operators supported in Python are given
in Table 4.3.

Table 4.3 Relational operators

Operator Meaning Example Python Return Value

> Greater than 4>1 True

< Less than 4<9 True

>= Greater than or equal to 4>=4 True

<= Less than or equal to 4<=3 True

!= Not equal to 5!=4 True

Program 4.1
 Write a program to prompt a user to enter the values of the three different variables and display
the output of the following expressions.

 a. p>q>r

 b. p<q<r

 c. p<q and q<z

 d. p<q or q<z

p,q,r=eval(input(‘Enter Three Numbers:’))

print(‘ p =’,p,’ q = ‘,q,’ r = ‘,r)

print(‘(p > q > r) is ‘, p > q >r)

print(‘(p < q < r) is ‘, p < q <r)

print(‘ (p < q) and (q < r) is ‘, (p < q) and (q < r))

print(‘ (p < q) or (q < r) is ‘, (p < q) or (q < r))

output

Enter Three Numbers:1,2,3

 p = 1 q = 2 r = 3

(p > q > r) is False

(p < q < r) is True

(p < q) and (q < r) is True

(p < q) or (q < r) is True

Decision Statements 105

Note: An expression always returns a value and a statement does not return any value. A statement
may include one or more than one expression.

4.7 decisiOn making statements

Python supports various decision-making statements. These are:

 1. if statements

 2. if-else statements

 3. Nested if statements

 4. Multi-way if-elif-else statements

4.7.1 the if statements

The if statement executes a statement if a condition is true. The syntax for if statement is shown in
Figure 4.1.

if condition:

 statement(s)
OR

if condition:

 Block

Figure 4.1 Syntax for if statement

Details of the if Statement

The keyword if begins the if statement. The condition is a Boolean expression which determines
whether or not the body of if block will be executed. A colon (:) must always be followed by the
condition. The block may contain one or more statements. The statement or statements are executed
if and only if the condition within the if statement is true. The flow chart for if statement is given
in Figure 4.2.

Figure 4.2 Flowchart for if statement

Problem Solving and Python Programming106

Points to Remember

 (a) The statement(s) must be indented at least one space right of the if statement.

 (b) In case there is more than one statement after the if condition, then each statement must be
indented using the same number of spaces to avoid indentation errors.

The statement(s) within the if block are executed if the Boolean expression evaluates to true.

Program 4.2
 Write a program that prompts a user to enter two integer values. Print the message ‘Equals’ if
both the entered values are equal.

Flow Chart

True

print('Both the numbers

entered are equal')

num1-num2 == 0

Read two numbers num1

and num2 from User

num1=eval(input(“Enter First Number: “))

num2=eval(input(“Enter Second Number: “))

if num1-num2==0:

 print(“Both the numbers entered are Equal”)

output

Enter First Number: 12

Enter Second Number: 12

Both the numbers entered are Equal

Explanation In the above program, the two numbers are provided by a user. The statement within
the if block is executed if and only if the Boolean expression num1 – num2 evaluates to True.

Decision Statements 107

Precautions Sometimes a program may contain only one statement within the if block. In this
case a programmer can write the block of code in two different ways.

 (a) Consider the code given as:

Number=eval(input(“Enter the Number: “))

if Number>0:

 Number = Number * Number

 This code can also be written as:

Number=eval(input(“Enter the Number: “))

if Number>0:Number = Number * Number

 (b) The above code cannot be written as:

Number=eval(input(“Enter the Number: “))

if Number>0:

Number = Number * Number

The above code does not run and displays an error called indentation error. Thus, Python
determines which statement makes a block using indentation.

Program 4.3
 Write a program which prompts a user to enter the radius of a circle. If the radius is greater than
zero then calculate and print the area and circumference of the circle.

from math import pi

Radius=eval(input(“Enter Radius of Circle: “))

if Radius>0:

 Area=Radius*Radius*pi

 print(“ Area of Circle is = “,format(Area,”.2f”))

 Circumference=2*pi*Radius

 print(“Circumference of Circle is = “,format(Circumference,”.2f”))

output

Enter Radius of Circle: 5

 Area of Circle is = 78.54

Circumference of Circle is = 31.42

4.7.2 the if-else statement

The execution of the if statement has been explained in the previous programs. We know, the if
statement executes when the condition following if is true and it does nothing when the condition
is false. The if-else statement takes care of a true as well a false condition. The syntax for if-else
statement is given in Figure 4.3.

Problem Solving and Python Programming108

if condition:

 statement(s)

else:

 statement(s)

OR

if condition:

 if_Block

else:

 else_Block

Figure 4.3 Syntax for if-else statement

Details of if-else Statement

The if-else statement takes care of both true and false conditions. It has two blocks. One block is for
if and it may contain one or more than one statements. The block is executed when the condition
is true. The other block is for else. The else block may also have one or more than one statements.
It is executed when the condition is false. A colon (:) must always be followed by the condition. The
keyword else should also be followed by a colon (:) The flow chart for if-else statement is given in
Figure 4.4.

Figure 4.4 Flow chart for if-else statement

Program 4.4 Write a program to prompt a user to enter two numbers. Find the greater number.

num1=int(input(“Enter the First Number:”))

num2=int(input(“Enter the Second Number:”))

if num1>num2:

 print(num1,”is greater than “,num2)

else:

 print(num2,”is greater than “,num1)

(Contd.)

Decision Statements 109

output

Enter the First Number:100

Enter the Second Number:43

100 is greater than 43

Explanation The above program prompts a user to read any two numbers. The two numbers
entered are stored in variables num1 and num2, respectively. If the value of num1 is greater than
num2 is checked using the if condition. If the value of num1 is greater then the message ‘num1 is
greater than num2’ is displayed. Otherwise, the message ‘num2 is greater than num1’ is displayed.

Program 4.5
 Write a program to calculate the salary of a medical representative considering the sales
bonus and incentives offered to him are based on the total sales. If the sales exceed or equal to
`1,00,000 follow the particulars of Column 1, else follow Column 2.

Column 1 Column 2

Basic = 4̀000 Basic = 4̀000

HRA = 20% of Basic HRA = 10% of Basic

DA = 110 % of Basic DA = 110 % of Basic

Conveyance = 5̀00 Conveyance = 5̀00

Incentive = 10% of Sales Incentive = 4% of Sales

Bonus = 1̀000 Bonus = 5̀00

Sales=float(input(‘Enter Total Sales of the Month:’))

if Sales >= 100000:

 basic = 4000

 hra = 20 * basic/100

 da = 110 * basic/100

 incentive = Sales * 10/100

 bonus = 1000

 conveyance = 500

else:

 basic = 4000

 hra = 10 * basic/100

 da = 110 * basic/100

 incentive = Sales * 4/100

 bonus = 500

 conveyance = 500

salary= basic+hra+da+incentive+bonus+conveyance

print(‘Salary Receipt of Employee ‘)

(Contd.)

Problem Solving and Python Programming110

print(‘ Total Sales = ‘,Sales)

print(‘ Basic = ‘,basic)

print(‘ HRA = ‘,hra)

print(‘ DA = ‘,da)

print(‘ Incentive = ‘,incentive)

print(‘ Bonus = ‘,bonus)

print(‘ Conveyance = ‘,conveyance)

print(‘ Gross Salary = ‘,salary)

output

Enter Total Sales of the Month:100000

Salary Receipt of Employee

 Total Sales = 100000.0

 Basic = 4000

 HRA = 800.0

 DA = 4400.0

 Incentive = 10000.0

 Bonus = 1000

 Conveyance = 500

 Gross Salary = 20700.0

Explanation The program calculates the salary of a medical representative according to the total
sale of products. The basic salary is the same but other allowances and incentives change according
to the total sales. If the total sale is more than `1,00,000 the rate of allowances and incentive is
calculated as per Column 1, else as per Column 2. The if condition checks the given figure of total
sale. If the total sale is more than `1,00,000 the first block following the if statement is executed,
otherwise the else block is executed.

Points to remember

 (a) Indentation is very important in Python. The else keyword must properly line up with the if
statement.

 (b) If a programmer does not line up if and else in exactly the same columns then Python will
not know that if and else will go together. Consequentially, it will show an indentation error.

 (c) Both statements within the if block and else block must be indented and must be indented the
same amount.

Program 4.6 Write a program to test whether a number is divisible by 5 and 10 or by 5 or 10.

num=int(input(‘Enter the number:’))

print(‘Entered Number is: ‘,num)

(Contd.)

Decision Statements 111

if(num % 5 == 0 and num % 10==0):

 print(num,’ is divisible by both 5 and 10’)

if(num % 5 == 0 or num % 10 == 0):

 print(num,’is divisible by 5 or 10’)

else:

 print(num,’ is not divisible either by 5 or 10’)

output

#Test Case 1:

 Enter the number:45

Entered Number is: 45

45 is divisible by 5 or 10

#Test Case 2:

Enter the number:100

Entered Number is: 100

100 is divisible by both 5 and 10

100 is divisible by 5 or 10

Explanation In the above program, the number is read from the user. The Boolean expression
num % 5 == 0 and num % 10==0 checks whether the number is divisible by both 5 and 10. Again
the Boolean expression num % 5 == 0 or num % 10 == 0 is used to check if the number entered is
divisible either by 5 or by 10.

 Note: Conditional or Short Circuit AND Operator: If one of the operands of an AND operator is
false, the expression is false. Consider two operands OP1 and OP2. When evaluating OP1 and OP2,
Python first evaluates OP1 and if OP1 is True then Python evaluates the second operand OP2. Python
improves the performance of the AND operator, i.e. if the operand OP1 is False, it does not evaluate
the value of the second operand OP2. The AND operator is also referred to as conditional or short
circuit AND operator.

Conditional or Short Circuit OR Operator: We have seen in Table 4.2 that even if one of the operands
of an OR operator is True, the expression is True. Python improves the performance of the OR operator.
Consider two operands OP1 and OP2 and the expression OP1 or OP2. While evaluating the expression
OP1 or OP2, Python first evaluates OP1. If OP1 is False, it evaluates OP2. If OP1 is True, it does not
evaluate OP2. The OR operator is also referred to as conditional or short circuit OR operator.

4.7.3 nested if statements

When a programmer writes one if statement inside another if statement then it is called a nested

if statement. A general syntax for nested if statements is given as follows:

if Boolean-expression1:

 if Boolean-expression2:

 statement1

Problem Solving and Python Programming112

 else:

 statement2

else:

statement3

In the above syntax, if the Boolean-expression1 and Boolean-expression2 are correct then
statement1 will execute. If the Boolean-expression1 is correct and Boolean-expression2 is incorrect
then statement2 will execute. And if both Boolean-expression1 and Boolean-expression2 are
incorrect then statement3 will execute.

A program to demonstrate the use of nested if statements is given as follows:

Program 4.7
 Write a program to read three numbers from a user and check if the first number is greater or
less than the other two numbers.

num1=int(input(“Enter the number:”))

num2=int(input(“Enter the number:”))

num3=int(input(“Enter the number:”))

if num1>num2:

 if num2>num3:

 print(num1,”is greater than “,num2,”and “,num3)

else:

 print(num1,” is less than “,num2,”and”,num3)

print(“End of Nested if”)

output

Enter the number:12

Enter the number:34

Enter the number:56

12 is less than 34 and 56

End of Nested if

Explanation In the above program, three numbers—num1, num2 and num3—are provided from
the user through a keyboard. Initially, the if condition with Boolean expression num1>num2 is
checked if it is true and the then other nested if condition with Boolean expression num2>num3
is checked. If both the if conditions are true then the statements following the second if statement
are executed.

4.7.4 multi-way if-elif-else statements

The syntax for if-elif-else statements is given as follows:

If Boolean-expression1:

 statement1

 elif Boolean-expression2 :

Decision Statements 113

 statement2

 elif Boolean-expression3 :

 statement3

- - - - - - - - - - - - - -

- - - - - - - - - - - -- -

elif Boolean-expression n :

 statement N

else :

 Statement(s)

In this kind of statements, the number of conditions, i.e. Boolean expressions are checked from
top to bottom. When a true condition is found, the statement associated with it is executed and the
rest of the conditional statements are skipped. If none of the conditions are found true then the
last else statement is executed. If all other conditions are false and if the final else statement is not
present then no action takes place.

Program 4.8
 Write a program to prompt a user to read the marks of five different subjects. Calculate the
total marks and percentage of the marks and display the message according to the range of
percentage given in table.

Percentage message

per > = 90 Distinction

per > = 80 && per < 90 First Class

per > = 70 && per < 80 Second Class

per > = 60 && per < 70 First Class

per <60 Fail

Subject1=float(input(“Enter the Marks of Data-Structure:”))

Subject2=float(input(“Enter the Marks of Python:”))

Subject3=float(input(“Enter the Marks of Java:”))

Subject4=float(input(“Enter the Marks of C Programming:”))

Subject5=float(input(“Enter the Marks of HTML:”))

sum=Subject1+Subject1+Subject3+Subject4+Subject5

per=sum/5

print(“Total Marks Obtained”, sum, “Out of 500”)

print(“Percentage = “,per)

if per>=90:

 print(“Distinction”)

else:

 if per>=80:

 print(“ First Class”)

(Contd.)

Problem Solving and Python Programming114

 else:

 if per>=70:

 print(“Second Class”)

 else:

 if per>=60:

 print(“Pass”)

 else:

 print(“Fail”)

output

Enter the Marks of Data-Structure: 60

Enter the Marks of Python: 70

Enter the Marks of Java: 80

Enter the Marks of C Programming: 90

Enter the Marks of HTML: 95

Total Marks Obtained 385.0 out of 500

Percentage = 77.0

Second Class

Explanation In the above program, the marks of five subjects are entered through a keyboard.
Their sum and average is calculated. The percentage obtained is stored in the variable ‘per’. The
obtained percentages are checked with different conditions using if-else blocks and the statements
are executed according to the conditions.

Note: The above program consists of if-else-if statements. It can also be written in if-elif-else form
as shown in Figure 4.5(b).

if per>=90:

 print(“Distinction”)

else:

 if per>=80:

 print(“ First Class”)

 else:

 if per>=70:

 print(“Second Class”)

 else:

 if per>=60:

 print(“Pass”)

 else:

 print(“Fail”)

Equivalent

if per>=90:

 print(“Distinction”)

elif per>=80:

 print(“ First Class”)

elif per>=70:

 print(“Second Class”)

elif per>=60:

 print(“Pass”)

else:

 print(“Fail”)

(a) (b)

Figure 4.5 (a) if-else-if-else (b) if-elif-else

Decision Statements 115

The flowchart for multi-way if-else-if statements for the above program is given in Figure 4.6.

Figure 4.6 Flowchart for multi-way if-else-if statements

Program 4.9
 Write a program to prompt a user to enter a day of the week. If the entered day of the week is
between 1 and 7 then display the respective name of the day.

Day=int(input(“Enter the day of week:”))

if day==1:

 print(“ Its Monday”)

elif day==2:

 print(“Its Tuesday”)

elif day==3:

 print(“Its Wednesday”)

elif day==4:

 print(“Its Thursday”)

elif day==5:

 print(“Its Friday”)

elif day==6:

 print(“Its Saturday”)

elif day==7:

 print(“ Its Sunday”)

else:

 print(“Sorry!!! Week contains only 7 days”)

(Contd.)

Problem Solving and Python Programming116

output

Enter the day of week: 7

Its Sunday

Program 4.10
 Write a program that prompts a user to enter two different numbers. Perform basic arithmetic
operations based on the choices.

num1=float(input(“Enter the first number:”))

num2=float(input(“Enter the Second number:”))

print(“1) Addition “)

print(“2) Subtraction “)

print(“3) Multiplication “)

print(“4) Division “)

choice = int(input(“Please Enter the Choice:”))

if choice==1:

 print(“ Addition of “,num1,”and”,num2,”is:”,num1+num2)

elif choice==2:

 print(“ Subtraction of “,num1,”and”,num2,”is:”,num1-num2)

elif choice==3:

 print(“ Multiplication of “,num1,”and”,num2,”is:”,num1*num2)

elif choice==4:

 print(“ Division of “,num1,”and”,num2,”is:”,num1/num2)

else:

 print(“Sorry!!! Invalid Choice”)

output

Enter the first number:15

Enter the Second number:10

1) Addition

2) Subtraction

3) Multiplication

4) Division

Please Enter the Choice:3

 Multiplication of 15.0 and 10.0 is: 150.0

4.8 cOnditiOnaL expressiOns

Consider the following piece of code.

if x%2==0:

 x = x*x

Decision Statements 117

else:

 x = x*x*x

In the above code, initially, x is divided by 2. If x is divisible by 2 then the square of the number
is assigned to variable x, else the cube of the number is assigned. To improve the performance
of simple if-else statements, Python provides a conditional expression. Using this conditional
expression, the code above can be rewritten as:

 x=x*x if x % 2 == 0 else x*x*x

Therefore, the general form of conditional expression is:

Expression1 if condition else Expression2

Expression1 is the value of the conditional expression if the condition is true.

Condition is a normal Boolean expression that generally appears in front of an if statement.

Expression2 is the value of the conditional expression if the condition is false.

Consider the program without conditional expression given as follows:

Program 4.11 Write a program to find the smaller number among the two numbers.

num1=int(input(‘Enter two Numbers:’))

num2=int(input(‘Enter two Numbers:’))

if num1 < num2:

 min=num1

 print(‘min = ‘,min)

else:

 min=num2

 print(‘min = ‘,min)

output

Enter two Numbers: 20

Enter two Numbers: 30

min = 20

The same program can be written using conditional expression as follows:

num1=int(input(‘Enter two Numbers:’))

num2=int(input(‘Enter two Numbers:’))

min = print(‘min = ‘,num1) if num1 < num2 else print(‘min = ‘,num2)

output

Enter two Numbers: 45

Enter two Numbers: 60

min = 45

Problem Solving and Python Programming118

Note: Many programming languages, such as Java, C++ have a ‘?:’, i.e. ternary operator. This is a
conditional operator. The syntax for the ‘?:’ ternary operator is:

Boolean expression? if_true_return_value1: if_false_return_value2

The ternary operator works like if-else. If the Boolean expression is true, it returns value1 and if the
Boolean expression is false, it returns the second value.
Python does not have a ternary operator. It uses a conditional expression.

mini prOject Finding the number of days in a month

This mini project will make use of programming features such as if statement and elif statements.
It will help a programmer to know the number of days in a month.

Hint: If entered the month is 2 then read the corresponding year. To know the number of days
in month 2 check if the entered year is a leap year. If leap then num_days = 29 or not leap then
num_days = 28 for month 2, respectively.

Leap year: A leap year is divisible by 4 but not by 100 or divisible by 400.

algorithm

 | STEP 1: Prompt the month from the user.

 | STEP 2: Check if the entered month is 2, i.e. February. If so then go to Step 3, else go to Step 4.

 | STEP 3: If the entered month is 2 then check if the year is a leap year. If it is a leap year then
store num_days = 29, else num_days = 28.

 | STEP 4: If the entered month is one of the following from the list (1, 3, 5, 7, 8, 12) then store
num_days = 31. Or if the entered month is from the list (4, 6, 9, 11) then store num_days
= 29. If the entered month is different from the range (1 to 12) then display message
“Invalid Month”.

 | STEP 5: If the input is valid then display the message as “there are N number of days in the
month M”.

Program

#Number of Days in a Month

print(‘Program will print number of days in a given month’)

#init

flag = 1 # Assumes user enters valid input

#Get month from the user

month = (int(input(‘Enter the month(1-12):’)))

(Contd.)

Decision Statements 119

Check if entered month = 2 i.e. February

if month == 2:

 year = int(input(‘Enter year:’))

 if (year % 4 == 0) and (not(year % 100 == 0)) or (year % 400 == 0):

 num_days = 29

 else:

 num_days = 28

if entered month is one from (jan, march, may, july, august, october, or

december)

elif month in (1,3,5,7,8,10,12):

 num_days = 31

if entered month is one from (April, June, September November,)

elif month in (4, 6, 9, 11):

 num_days = 30

else:

 print(‘Please Enter Valid Month’)

 flag = 0

#Finally print num_days

if flag == 1:

 print(‘There are ‘,num_days, ‘days in’, month,’ month’)

output (Case 1)

Program will print number of days in a given month

Enter the month(1-12):2

Enter year: 2020

There are 29 days in 2 month

output (Case 2)

Program will print number of days in a given month

Enter the month(1-12):4

There are 30 days in 4 month

Thus, the above case study helps the user to know the number of days for the entered year.

 Summary

  A Boolean expression contains two values, viz. True and False.

  True and False are of type ‘bool’.

  The and, or and not are the three basic Boolean operators.

Problem Solving and Python Programming120

  The not operator has highest precedence, followed by and and then or.

  A programmer can use strings with Boolean operators.

  The == operator compares two values and produces a Boolean value.

  Python supports various relational Operators such as, >, <, >=, <= and !=.

  Applying relational operators on numbers and characters yields a Boolean value.

  Python Supports various decision statements, such as if, if-else and multi-way if-elif-else statements.

  Python does not have a ternary operator. It uses a a conditional expression instead.

 KEy TErmS

 � Boolean Expressions: An expression whose value is either True or False.

 � Logical Operators: Comprise the and, or and not operators.

 � Relational Operators: Comparison of two values with relational operators, such as <, <=, >, >=, != and
== operators. One of the operators among them is used while comparing two operands.

 � Conditional Expression: Evaluates expression based on condition.

 � Conditional or Short Circuit AND Operator: Improves performance. Python avoids executing the
second operand in case the first operand is false.

 � Conditional or Short circuit OR Operator: Improves performance. Python avoids executing the
second operand in case the first operand is true.

 rEviEw QuESTionS

a. multiple Choice Questions

 1. What will be the output of following program after the execution of the following code?

 x = 0

 y = 0

 if x > 0:

 y = y + 1

 else:

 if x < 0 :

 y = y + 2

 else:

 y = y + 5

 print(‘ Y =’,y)

 a. 1 b. 0

 c. 2 d. 5

 2. What will be stored in num after the execution of the following code?

 i=10

 j=20

 k=30

Decision Statements 121

 if j>k:

 if i > j:

 num = i

 else:

 num = j

 else:

 if i > k:

 num = i

 else:

 num = k

 print(‘Num = ‘,num)

 a. 10 b. 20

 c. 30 d. None of the above

 3. Which of the following Python logical expressions can determine whether x and y are greater than z?

 a. x & y > z b. (x > z) &(y > z)

 c. (y > z) & (x > y) d. Both b and c

 e. All of the above

 4. Evaluate the following Python expression and tell the value in terms of true and false.

 a. i=5

j=10

k=15

print(i == k / j)

 b. i=5

k=15

print(k % i < k / i)

 5. What will be the output of the following code fragment assuming num is 10?

 num=10

 if num == 20:

 print(‘Apple’)

 print(‘Grapes’)

 print(‘No Output’)

 a. Apple b. Grapes

 c. Apple Grapes d. No Output

 6. What will be the output of the following program?

 P=int(True)

 q=int(False)

 print(‘P = ‘,p)

 print(‘q = ‘,q)

 a. Error b. p=0 q=1

 c. p=True q=False d. p = 1 and q = 0

 7. Evaluate the following Boolean expressions. Consider the value of P, Q and R as 4, 5 and 6, respectively.

 a. P > 7 b. P < 7 and Q > 2

 c. P == 1 d. P > 2 || Q > 6

Problem Solving and Python Programming122

 8. What will be the output of the following program if the value stored in variable num is 19?

 if num % 2 == 1:

 print(num,’ is odd number’)

 print(num,’ is even number ‘)

 9. Consider the two different blocks of codes a) and b) given as follows. State which of the following codes
is better and why.

 a.

weight = 10

if weight>=55:

 print(‘ The person is eligible for Blood Donation ‘)

if weight<55:

 print(‘ The person is not eligible for Blood Donation’)

 b.

weight = 10

if weight>=55:

 print(‘ The person is eligible for Blood Donation ‘)

else:

 print(‘ The person is not eligible for Blood Donation’)

 10. What will be the output of the following program?

 if (20 < 1) and (1 < -1):

 print(“Hello”)

 elif (20>10) or False:

 print(‘Hii’)

 else:

 print(‘Bye’)

 a. Hello b. Hii

 c. Bye d. Error

B. True or False

 1. In monolithic programs, the instructions are executed sequentially one by one.

 2. There are only three Boolean values.

 3. The and, or and not are only three basic Boolean operators.

 4. The not operator is a binary operator.

 5. In Python, a programmer cannot use numbers along with Boolean operators.

 6. A Python programmer can use strings with Boolean operators.

 7. The if statement executes a statement if the condition is true.

 8. The == operator compares two values and produces a Boolean value.

 9. With if-elif-else statements, the number of Boolean expressions is checked from top to bottom. When a
true condition is found, the statement associated with it is executed.

 10. Integer equivalent of True is 0.

Decision Statements 123

C. Exercise Questions

 1. Write the following statement in terms of if-else statement in Python.

 a. If temperature is greater than 50 then temperature is hot, otherwise temperature is cold.

 b. If age is greater than 18 then fare is $400, otherwise fare is $200.

 2. Write the Boolean expressions for the following statements.

 a. If age is greater than 5 and less than 10.

 b. If age is less than 3 and greater than 70, display the message “No Air Fare”.

 3. What are Boolean operators? Explain each operator.

 4. Is it necessary to change the flow control in a program?

 5. What are the different ways in which the flow control can be changed in Python?

 6. List few Boolean expressions with relational operators.

 7. Give the syntax for if_else statement.

 8. Illustrate the nested if statements with a suitable example.

 9. What is a conditional expression?

 10. Draw and explain multi-way if-elif-else statements.

 1. Write a program to prompt (input) year and check if it is a leap year.

 2. Write a program to calculate an Internet browsing bill. Use the conditions specified as follows:

 a. 1 Hour – `20

 b. ½ Hour – `10

 c. Unlimited hours in a day – `100

 The owner should enter the number of hours spent on browsing.

 3. Write nested if statements to print the appropriate message depending on the value of the
variables temperature and humidity as given as follows. Assume that the temperature can
only be warm and cold and the humidity can only be dry and humid.

if temperature is if humidity is Print this activity

Warm Dry Play Basketball

Warm Humid Play Tennis

Cold Dry Play Cricket

Cold Humid Swim

 4. Write a program to calculate the square of only those numbers whose least significant digit is
5.

 Example: Enter the number: 25

 Square: 25*25 = 625

 5. Consider a college cricket club in which a student can enroll only if he/she is less than 18 and
greater than 15 years old. Write a program using the not operator.

Programming aSSignmEnTS

5

Loop Control Statements

Learning OutcOmes

After completing this chapter, students will be able to:

• Write programs using for and while loop to repeat a sequence of instructions

• Write a program and perform a task until a condition is satisfied

• Use loops to traverse the sequence of characters in string or traverse the sequence of integers

• Apply the syntax and working of range() function

• Control the execution of programs using break or continue statement

chapter OutLine

 5.1 Introduction

 5.2 The while Loop

 5.3 The range() Function

 5.4 The for Loop

 5.5 Nested Loops

 5.6 The break Statement

 5.7 The continue Statement

5.1 intrOductiOn

In our day-to-day life, we perform certain tasks repeatedly. It can be tedious to perform such tasks
using pen and paper. For instance, teaching multiplication tables to multiple classes can become
easier if the teacher uses a simple computer program with loop instructions instead of pen and
paper.

Loop Control Statements 125

Let us try to understand the concept of control statements in this context. Suppose a programmer
wants to display the message, “I Love Python” 50 times. It would be tedious for him/her to
write the statement 50 times on a computer screen or even on paper. This task can become very
easy, quick and accurate if the programmer completes it using loop instructions in a computer
programming language. Almost all computer programming languages facilitate the use of control
loop statements to repeatedly execute a block of code until a condition is satisfied.

Consider the example to print the statement, “I Love Python” 50 times. Assume that the
programmer doesn’t know the concept of control statements and writes the code in the following
manner.

Example

print(“I Love Python”)

print(“I Love Python”)

print(“I Love Python”)

.

.

¸
Ô
Ô
Ô
Ô
˝
Ô
Ô
Ô
Ô
˛

 print “I Love Python” for 50 times

.

.

.

print(‘I Love Python’)

In the above example, the print statement is written for displaying the message 50 times. This
can be done more easily using loop in Python. Loops are used to repeat the same code multiple
times. Python provides two types of loop statements, viz. while and for loops. The while loop
is a condition controlled loop. It is controlled by true or false conditions. The for loop is a count

controlled loop which repeats for a specific number of times.

After understanding the concept of loop, a programmer can take up any challenging application
in which statements/actions are to be repeated several times.

5.2 the while LOOp

The while loop is a loop control statement in Python and frequently used in programming for
repeated execution of statement(s) in a loop. It executes a sequence of statements repeatedly as long
as a condition remains true. The syntax for while loop is given as follows:

 while test-condition:

 #Loop Body

 statement(s)

5.2.1 details of while Loop

The reserved keyword while begins with the while statement. The test condition is a Boolean
expression. The colon (:) must follow the test condition, i.e. the while statement be terminated with
a colon (:). The statement(s) within the while loop will be executed till the condition is true, i.e. the
condition is evaluated and if the condition is true then the body of the loop is executed. When the

Problem Solving and Python Programming126

condition is false, the execution will be completed out of the loop or in other words, the control
goes out of the loop. The flowchart in Fig. 5.2 shows the execution of the while loop.

5.2.2 Flowchart for while Loop

Figure 5.1 Flowchart of while loop

Program 5.1 Write a program to print the numbers from one to five using the while loop.

count=0 #initialize the counter

while count<=5: # Test condition

 print(“Count = “,count) # print the value of count

 count=count+1 # Increment the value of count by 1

output

Count = 0

Count = 1

Count = 2

Count = 3

Count = 4

Count = 5

Explanation In the above program, initially the value of a variable count is initialised to 0. The
loop checks whether the value of the count is less than 5 (count<=5). If the condition is true, it
executes the part of the loop that contains the statements to be repeated in order to display the
value of count and it increments the value of count by 1. It repeatedly executes the statements
within the loop until count<=5. The loop terminates when the value of count reaches 6.

Note: Precaution is to be taken while writing statements within the while loop.

Loop Control Statements 127

Consider the program as shown in Figure 5.2.

count=0

while count<=5:

 print(“Count = “,count)

count=count+1

count=0

while count<=5:

 print(“Count = “,count)

 count=count+1

(a) Good Code (b) Bad Code

Figure 5.2 Precautions regarding the while loop

In Figure 5.2 (a) the value of count is initially set to 0. Then it increments to 2, 3, 4 and 5. When
the value of count becomes 6, the condition count<=5 is false and the loop exits.

Consider the Figure 5.2 (b) where the loop is mistakenly written as:

count=0

while count<=5:

 print(“Count = “,count)

count=count+1

The above code is called bad code because the entire loop body must be indented inside the loop.
Since the statement count=count+1 is not in the loop body, the loop executes for infinite number of
times. And because the value of count is always 0, the condition count <=5 is always true.

Note: All statements within the while block must be indented with the same number of spaces.

Program 5.2 Write a program to add 10 consecutive numbers starting from 1 using the while loop.

count=0 #initialize the counter

sum=0 #initialize sum to zero

while count<=10: #test condition if true

 sum= sum +count #add sum + count

 count=count+1 #increase the value of count by
1

print(“Sum of First 10 Numbers = “,sum) #print sum

output

Sum of First 10 Numbers = 55

Program 5.3 Write a program to find the sum of the digits of a given number.

For example, if a user enters 123. The program should return (3+2+1), i.e. 6 as the sum of all the digits in a number.

num=int(input(“Please Enter the number:”))#Read Number from User

x=num #Assign value of num to x

(Contd.)

Problem Solving and Python Programming128

sum=0

rem=0

while num>0:

 rem=num % 10

 num=num // 10

 sum=sum + rem

print(“Sum of the digits of an entered number “,x,” is = “,sum)

output

Please Enter the number: 12345

Sum of the digits of an entered number 12345 is = 15

Explanation The integer number is read from the user through the keyboard and it is stored in
variable num. Initially, the value of sum and rem are initialised to 0. Unless and until the value of
num>0 the statements within the loop continue to be executed. The modulus operator, i.e. num%10
and the division operator, i.e. num//10 are used frequently to obtain the sum of the numbers
entered.

5.2.3 some more programs on while Loop

Program 5.4 Write a program to display the reverse of the number entered.

For example, if a user enters 12345. The program should return (54321), i.e. the reverse of the number entered.

num =int(input(“Please Enter the number: “))

x=num

rev=0

while num>0:

 rem=num % 10

 num=num // 10

 rev=rev*10+rem

print(“Reverse of a entered number “,x,” is = “,rev)

output

Please Enter the number: 8759

Reverse of a entered number 8759 is = 9578

Program 5.5
 Write a program to print the sum of the numbers from 1 to 20 (1 and 20 are included) that are
divisible by 5 using the while loop.

count=1

sum=0

(Contd.)

Loop Control Statements 129

while count<=20:

 if count%5 == 0:

 sum=sum+count

 count=count+1

print(“The Sum of Numbers from 1 to 20 divisible by 5 is: “,sum)

output

The Sum of Numbers from 1 to 20 divisible by 5 is: 50

Program 5.6 Write a program using the while loop to print the factorial of a number.

 Factorial of 6 = 6*5*4*3*2*1 = 720

Num=int(input(“Enter the number:”))

fact=1

ans=1

while fact<=num:

 ans=ans*fact

 fact=fact+1

print(“Factorial of”,num,” is: “,ans)

output

Enter the number:6

Factorial of 6 is: 720

Note: The factorial of a number is defined as the product of all the numbers from 1 to n.

Program 5.7 Write a program to check whether the number entered is an Armstrong number or not.

 153 = 13 + 53 + 33 = 153

num=int(input(“Please enter the number: “))

sum=0

x=num

while num>0:

 d=num%10

 num=num // 10

 sum=sum+(d*d*d)

(Contd.)

Problem Solving and Python Programming130

if(x==sum):

 print(“The number “, x ,”is Armstrong Number”)

else:

 print(“ The number “, x ,”is not Armstrong Number”)

output

Please enter the number: 153

The number 153 is Armstrong Number

Note: An Armstrong number is a number which is equal to the sum of the cube of its digits.

5.3 the range() FunctiOn

There is a inbuilt function in Python called range(), which is used to generate a list of integers.
The range function has one, two or three parameters. The last two parameters in range() are
optional.

The general form of the range function is:

 range(begin, end, step)

The ‘begin’ is the first beginning number in the sequence at which the list starts.

The ‘end’ is the limit, i.e. the last number in the sequence.

The ‘step’ is the difference between each number in the sequence.

5.3.1 examples of range() Function

Example 1

Create a list of integers from 1 to 5.

>>> list(range(1,6))

 [1,2,3,4,5]

range(1,6) function is used in the above example. It generates a list of integers starting from 1 to
5. Note that the second number, i.e. 6 is not included in the elements of this list. By default, the
difference between the two successive numbers is one.

Note: The above range (1,6) is equivalent to range(6). The output of both the range functions will be
the same.

Example 2

Create a list of integers from 1 to 20 with a difference of 2 between two successive integers.

>>> list(range(1,20,2))

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

Loop Control Statements 131

range(1,20,2) function is used in the above example. It generates a list of integers starting from 1
with a difference of two between two successive integers up to 20.

Table 5.1 shows different examples of the range() function with relevant outputs.

Table 5.1 Examples of range() function

Example of Range Function Output

 range(5) [0, 1, 2, 3, 4]

 range(1,5) [1, 2, 3, 4]

 range(1,10,2) [1, 3, 5, 7, 9]

 range(5,0,-1) [5, 4, 3, 2, 1]

 range(5,0,-2) [5, 3, 1]

 range (-4,4) [-4, -3, -2, -1, 0, 1, 2, 3]

 range (-4,4,2) [-4, -2, 0, 2]

 range(0,1) [0]

 range(1,1) Empty

 range(0) Empty

5.4 the for LOOp

The for loops in Python are slightly different from the for loops in other programming languages.
The Python for loop iterates through a sequence of objects, i.e. it iterates through each value in a
sequence, where the sequence of object holds multiple items of data stored one after another.

In the forthcoming chapters, we will study various sequence type objects of Python, such as
string, list and tuples. The syntax of for loop is given as follows:

for var in sequence:

 statement(s)

 ………………………………

 ……………………………

 ………………………………

5.4.1 details of for Loop

The for loop is a Python statement which repeats a group of statements for a specified number
of times. As described in the syntax, the keywords for and in are essential keywords to iterate
the sequence of values. The variable var takes on each consecutive value in the sequence and the
statements in the body of the loop are executed once for each value. A simple example of for loop is:

 for var in range(m,n):

 print var

As discussed in Section 5.3, the function range(m, n) returns the sequence of integers starting
from m, m+1, m+2, m+3…………… n-1.

Problem Solving and Python Programming132

Program 5.8 Use for loop to print numbers from 1 to 5.

for i in range(1,6):

 print(i)

print(“End of The Program”)

output

1

2

3

4

5

End of The Program

Explanation In the above program, the sequence of numbers from 1 to 5 is printed. These numbers
are generated using the inbuilt range() function. The expression range(1, 6) creates an object
known as an iterable. This allows the for loop to assign the values 1, 2, 3, 4 and 5 to the iteration
variable i. During the first iteration of the loop, the value of i is 1 within the block. During the
second iteration, the value of i is 2 and so on.

Program 5.9 Display capital letters from A to Z.

print(“ The Capital Letters A to Z are as follows:”)

for i in range(65,91,1):

 print(chr(i),end=” “)

output

The Capital Letters A to Z are as follows:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Explanation The range() function contains three different parameters, viz. (begin, end, step_

size). As in the above program, the range function contains the values 65, 90 and 1. It indicates
to print the characters whose ASCII value starts from 65 and ends at 90. Therefore, the statement
print(chr(i),end=” “) is used to print equivalent character value of ASCII value.

5.4.2 some more programs on for Loop

Program 5.10 Use for loop to print numbers from 1 to 10 in the reverse order.

print(“Numbers from 1 to 10 in Reverse Order: “)

for i in range(10,0,-1):

 print(i,end=” “)

print(“\n End of Program”)

(Contd.)

Loop Control Statements 133

output

Numbers from 1 to 10 in Reverse Order:

10 9 8 7 6 5 4 3 2 1

End of Program

Program 5.11 Write a program to print squares of the first five numbers.

for i in range(1,6):

 square=i*i

 print(“Square of “,i,” is: “,square)

print(“End of Program”)

output

Square of 1 is: 1

Square of 2 is: 4

Square of 3 is: 9

Square of 4 is: 16

Square of 5 is: 25

End of Program

Program 5.12 Write a program to print even numbers from 0 to 10 and find their sum.

sum=0

print(“Even numbers from 0 to 10 are as follows”)

for i in range(0,11,1):

 if i%2==0:

 print(i)

 sum=sum+i

print(“Sum of Even numbers from 0 to 10 is = ”,sum)

output

Even numbers from 0 to 10 are as follows

0

2

4

6

8

10

Sum of Even numbers from 0 to 10 is = 30

Problem Solving and Python Programming134

Program 5.13 Write a program to calculate the sum of numbers from 1 to 20 which are not divisible 2, 3 or 5.

Sum=0

print(“Numbers from 1 to 20 which are not divisible by 2,3,or 5”)

for i in range(1,20):

 if i%2==0 or i%3==0 or i%5==0:

 print(“”)

 else:

 print(i)

 sum=sum+i

print(“Sum of Even numbers from 1 to 10 is = ”,sum)

output

Numbers from 1 to 20 which are not divisible by 2, 3, and 5

1

7

11

13

17

19

Sum of Even numbers from 1 to 10 is = 68

Program 5.14
 Write a program that prompts a user to enter four numbers and find the greatest number
among the four numbers entered.

Num1=int(input(“Enter the first Number:”))

num2=int(input(“Enter the first Number:”))

num3=int(input(“Enter the first Number:”))

num4=int(input(“Enter the first Number:”))

sum=num1+num2+num3+num4

print(“The sum of Entered 5 Numbers is = “,sum)

for i in range(sum):

 if i==num1 or i==num2 or i==num3 or i==num4:

 Large=i

print(“ Largest Number = “,Large)

print(“End of Program”)

output

Enter the first Number: 4

Enter the first Number: 3

Enter the first Number: 12

(Contd.)

Loop Control Statements 135

Enter the first Number: 2

The sum of Entered 5 Numbers is = 21

Largest Number = 12

End of Program

Program 5.15 Write a program to generate a triangular number.

If the number entered is 5, its triangular number would be (1+2+3+4+5) = 15.

Num=int(input(“Please enter the Number: “))

Triangular_Num=0

for i in range(Num,0,-1):

 Triangular_Num=Triangular_Num+i

print(“ Triangular Number of “,Num,” is = “,Triangular_Num)

output

Please enter the Number: 10

Triangular Number of 10 is = 55

Note: A triangular number is nothing but the summation of 1 to the given number.

Program 5.16 Write a program to print Fibonacci series up to 8.

 First_Number = 0

 Second_Number = 1

 Fibonacii Series = 0 1 1 2 3 5 8 13 21 34 55

First_Number=int(input(“Please enter First Number:”))

Second_Number=int(input(“Please enter First Number:”))

Limit=int(input(“ Number of Fibonacci Numbers to be Print: “))

print(First_Number,end=” “)

print(Second_Number,end=” “)

for i in range(Limit+1):

 sum=First_Number+Second_Number

 First_Number=Second_Number

 Second_Number=sum

 print(sum,end=” “)

(Contd.)

Problem Solving and Python Programming136

output

Please enter First Number:0

Please enter First Number:1

 Number of Fibonacci Numbers to be Print: 8

0 1 1 2 3 5 8 13 21 34 55

5.5 nested LOOps

The for and while loop statements can be nested in the same manner in which the if statements
are nested. Loops within the loops or when one loop is inserted completely within another loop,
then it is called nested loop.

Program 5.17 Write a program to demonstrate the use of the nested for loop.

for i in range(1,4,1): #Outer Loop

 for j in range(1,4,1): #Inner Loop

 print(“i = “,i,” j = “,j,” i + j =”,i + j)

print(“End of Program”)

output

i = 1 j = 1 i + j = 2

i = 1 j = 2 i + j = 3

i = 1 j = 3 i + j = 4

i = 2 j = 1 i + j = 3

i = 2 j = 2 i + j = 4

i = 2 j = 3 i + j = 5

i = 3 j = 1 i + j = 4

i = 3 j = 2 i + j = 5

i = 3 j = 3 i + j = 6

End of Program

Explanation In the above program, we have used two loops. One is the outer loop and the other
is the inner loop. The inner loop ‘j’ terminates when the value of j exceeds 3. Whereas, outer loop ‘i’
terminates when the value of i exceeds 3.

Program 5.18 Write a program to display multiplication tables from 1 to 5.

Print(“Multiplication Table from 1 to 5 “)

for i in range(1,11,1): #Outer Loop

 for j in range(1,6,1): #Inner Loop

(Contd.)

Loop Control Statements 137

 print(format(i * j,”4d”),end=” “)

 print()

print(“End of Program”)

output

Multiplication Table from 1 to 5

 1 2 3 4 5

 2 4 6 8 10

 3 6 9 12 15

 4 8 12 16 20

 5 10 15 20 25

 6 12 18 24 30

 7 14 21 28 35

 8 16 24 32 40

 9 18 27 36 45

 10 20 30 40 50

End of Program

Explanation The program contains two for loops. The ‘j’ for loop is the innermost for loop and
the ‘i’ for loop is the outermost for loop. The outermost loop ‘i’ executes for 10 times. For each value
of ‘i’, the innermost loop ‘j’ executes 5 times. At the same time for each value of ‘i’, the product
i*j is carried out. To align the numbers properly, the program formats the product of i*j using
format(i*j,”4d”). The digit 4d within format() specifies a decimal integer format with width 4.

5.5.1 some more programs on nested Loops

Program 5.19 Write a program to display the pattern of stars given as follows:

 * * * * *

 * * * *

 * * *

 * *

 *

print(“ Star Pattern Display”)

num=7

x=num

for i in range(1,6,1):

 num=num-1;

 for j in range(1,num,1):

 print(“ * “,end=” “)

 x=num-1

(Contd.)

Problem Solving and Python Programming138

 print()

print(“End of Program”)

output

Star Pattern Display

 * * * * *

 * * * *

 * * *

 * *

 *

End of Program

Program 5.20 Write a program to display the pattern of stars given as follows:

 *

 * *

 * * *

 * * * *

 * * * * *

print(“ Star Pattern Display”)

num=1

x=num

for i in range(1,6,1):

 num=num+1;

 for j in range(1,num,1):

 print(“ * “,end=” “)

 x=num+1

 print()

print(“End of Program”)

output

Star Pattern Display

 *

 * *

 * * *

 * * * *

 * * * * *

End of Program

Program 5.21 Write a program to display the pattern of numbers given as follows:

1

1 2

Loop Control Statements 139

1 2 3

1 2 3 4

1 2 3 4 5

print(“ Number Pattern Display”)

num=1

x=num

for i in range(1,6,1):

 num=num+1;

 for j in range(1,num,1):

 print(j, end=” “)

 x=num+1

 print()

print(“End of Program”)

output

Number Pattern Display

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

End of Program

Program 5.22 Write a program to display the pattern of numbers given as follows:

1

1 2

1 2 3

1 2 3 4

1 2 3

1 2

1

print(“ Number Pattern Display”)

num=1

x=num

for i in range(1,5,1):

 num=num+1;

 for j in range(1,num,1):

 print(j, end=” “)

 x=num+1

 print()

(Contd.)

Problem Solving and Python Programming140

num=5

x=num

for i in range(1,5,1):

 num=num-1;

 for j in range(1,num,1):

 print(j, end=” “)

 x=num-1

 print()

output

Number Pattern Display

1

1 2

1 2 3

1 2 3 4

1 2 3

1 2

1

5.6 the break statement

The keyword break allows a programmer to terminate a loop. When the break statement is
encountered inside a loop, the loop is immediately terminated and the program control automatically
goes to the first statement following the loop. The flowchart for break is shown in Figure 5.3.

Figure 5.3 Flowchart for break statement

Loop Control Statements 141

The working of break in while and for loop is shown as follows:

Working of break in while loop:

while test-Boolean-expression:

 body of while

 if condition:

 break

 body of while

statement(s)

Working of break in for loop:

for var in sequence:

 body of for

 if condition:

 break

 body of for

 statement(s)

Program 5.23 Write a program to demonstrate the use of the break statement.

print(“The Numbers from 1 to 10 are as follows:”)

for i in range(1,100,1):

 if(i==11):

 break

 else:

 print(i, end=” “)

output

The Numbers from 1 to 10 are as follows:

1 2 3 4 5 6 7 8 9 10

Explanation The above program prints the numbers from 0 to 10 on the screen. The loop terminates
because ‘break’ causes immediate exit from the loop.

Program 5.24 Check if the number entered is prime or not.

num=int(input(“Enter the Number:”))

x=num

for i in range(2,num):

 if num%i==0: #Check if entered number is divisible by i

 flag=0

 break

 else:

(Contd.)

Problem Solving and Python Programming142

 flag=1

if(flag==1):

 print(num,” is Prime “)

else:

 print(num,” is not prime “)

output

#Test case 1:

Enter the Number:23

23 is Prime

#Test case 2:

Enter the Number:12

12 is not prime

Explanation The number is read from the user through the keyboard. A prime number should
be divisible by 1 and itself. Therefore, the variable ‘i’ is iterated from 2 to one less than the number
entered. Each value of ‘i’ is used to check if ‘i’ can divide the number entered.

5.7 the continue statement

The continue statement is exactly opposite of the break statement. When continue is encountered
within a loop, the remaining statements within the body are skipped but the loop condition is
checked to see if the loop should continue or exit. Flowchart for continue statements is shown in
Figure 5.4.

Figure 5.4 Flowchart for continue statement

Loop Control Statements 143

The working of continue in while loop is shown as follows:

while test-boolean-expression:

 body of while

 if condition:

 continue

 body of while

 statement(s)

Alternatively, the working of continue in for loop is shown as follows:

for var in sequence:

 body of for

 if condition:

 continue

 body of for

 statement(s)

The difference between break and continue is given in Table 5.2.

Table 5.2 Difference between break and continue functions

Break Continue

Exits from current block or loop. Skips the current iteration and also skips the
remaining statements within the body.

Control passes to the next statement. Control passes at the beginning of the loop.

Terminates the loop. Never terminates the loop.

Program 5.25 Demonstrate the use of continue keyword.

for i in range(1,11,1):

 if i == 5:

 continue

 print(i, end=” “)

output

1 2 3 4 6 7 8 9 10

Explanation In each iteration in the above program, the value of the variable ‘i’ is checked. If
the value of ‘i’ is 5 then continue statement is executed and the statements following the continue
statement are skipped.

Program 5.26
 Read the string “Hello World” from the user. Make use of continue keyword and remove
space.

Problem Solving and Python Programming144

str1=str(input(“Please Enter the String: “))

print(“ Entered String is : “, str1)

print(“ After Removing Spaces, the String becomes:”)

for i in str1:

 if i==” “:

 continue

 print(i, end=””)

output

Please Enter the String: Hello World

Entered String is : Hello World

After Removing Spaces, the String becomes:

HelloWorld

Explanation The string str1 is read from the user. Each character of entered string is iterated
through the variable ‘i’. The statement if i ==” “: is used to check if the entered string contains
any space. If it contains space, the continue statement is executed and the rest of the statements
following the continue statement are skipped. Finally, we obtain the string without spaces.

mini prOject
generate prime numbers using charles Babbage
Function

Charles Babbage discovered the first calculating machine to print prime numbers for a given
equation. This mini project will make use of if, if –else, if-elif and for loop concepts of programming.

Let us consider the formula used by Charles Babbage:

 T = X2 + X + 41

The above formula generates a sequence of values for T, which happen to be prime numbers.
Thus, calculate the sequence of prime numbers T for the values of x starting from 0 to 5. The
following table contains prime numbers generated by the Charles Babbage function.

Table 5.3 Evaluation of Charles Babbage function

D2 D1 T = X2 + X + 41 (Value of X)

41 0

2 2 43 1

2 4 47 2

2 6 53 3

2 8 61 4

2 10 71 5

Loop Control Statements 145

In Table 5.3, we have calculated prime numbers for all the values of x, i.e. from 0 to 5 using the
Charles Babbage function. The D1 is the first difference column and D2 is the second difference
column.

Program Statement

Write a program to generate prime number using the Charles Babbage formula, (T = X2 + X + 41).
The output should be as shown in Table 5.3

algorithm

 | STEP 1: Since we want 5 values of x, i.e. from 0 to 5. Iterate x as i 5 times.

 | STEP 2: For each value of i, assign the value to x.

 | STEP 3: Calculate the value of T for the value of x

 | STEP 4: If the value of i is equal to 0 then print the values of T and i.

 | STEP 5: If the value of i is greater than 0 and less than 2 then print the values of D, T and i. Else
go to Step 6

 | STEP 6: Print value of D2, D, T and i.

Program

########## x2 + x + 41 = T ##############

Charles Babbage Function

########### for second order #############

x = 0;

print(‘{}\t{}\t{}\t{}’.format(‘D2’,’D1’,’T’,’X’))

print(‘--------------------------’)

for i in range(0,5):

 x = i

 T = (x*x) + x + 41

 if(i == 0):

 print(‘\t\t{}\t{}’.format(T,i))

 elif(i > 0 and i < 2):

 a = ((x-1)*(x-1) + (x-1) + 41)

 print(‘\t{}\t{}\t{}’.format(T -(a),T,i))

 else:

 a = ((x-1)*(x-1) + (x-1) + 41)

 b = ((x-2)*(x-2) + (x-2) + 41)

 c = (T - a)-(a - b)

 print(‘{}\t{}\t{}\t{}’.format(c,(T - a),T,i))

Thus, the above program generates all the prime numbers for all the values of x, i.e. from 0 to
5 for the given equation T = x2 + x + 41. The format() method is used to print data in a well-
formatted manner.

Problem Solving and Python Programming146

 Summary

  Loop is the process of executing a set of statements for fixed number of times.

  Iteration refers to one time execution of a statements within a loop.

  Python supports two types of loop control statements, i.e. for loop and while loop.

  While loop is condition controlled loop.

  for loop is count controlled loop and it execute statements within the body of loop for fixed number of
times.

  The break and continue keywords can be in the loops.

  The break statement exits from the current block or loop and control passes to the next statement.

  The continue statement skips the current iteration and also skips the remaining statements within the
body of a loop.

 KEy TErmS

 � while Loop: Condition controlled loop

 � for Loop: Count controlled loop

 � range(): Generates a list of integers

 � nested Loop: Loop within a loop

 � break Statement: The break statement within a loop helps a programmer to terminate the loop
immediately

 � continue Statement: Skips the current iteration and also skips the remaining statement within the
body.

 rEviEw QuESTionS

a. multiple Choice Questions

 1. How many times will a loop with header for count in range(5): execute statements in its body?

 a. 5 times b. 4 times

 c. 6 times d. 3 times

 2. What will be the output of the following program?

count = 35

for x in range(0,10):

 count = count - 1

 if x == 2:

 break

print(count)

 a. 35 b. 32

 c. 35, 34 , 33 d. 34, 33, 32

Loop Control Statements 147

 3. What will be the output of the following program?

Z = 1

while Z<5:

 if Z % 7 == 0:

 break

 Z = Z + 2

print(Z)

 a. 5 b. 3

 c. 4 d. 2

 4. What will be the output of the following program?

My_str = “I LOVE PHYTHON”

count = 0

for char in my_str:

 if char == “O”:

 continue

 else:

 count = count + 1

print(count)

 a. 10 b. 9

 c. 11 d. 12

 5. What will be the output of the following program?

my_str = “I LOVE PYTHON”

count = 0

for char in my_str:

 count = count + 1

 if char == “E”:

 break

print(count)

 a. 11 b. 13

 c. 10 d. 12

 6. What will be the output of the following program?

i = 1

for x in range(1,4):

 for y in range(1,3):

 i = i +(i * 1)

print(i)

 a. 32 b. 62

 c. 63 d. 64

Problem Solving and Python Programming148

 7. What will be the output of the following program?

count = 0

for x in range (1,3):

 for y in range (4,6):

 count = count + (x * y)

print (count)

 a. 32 b. 27

 c. 57 d. 64

 8. What will be the output of the following program?

i = 0

for x in range (1,3):

 j = 0

 for y in range (-2,0):

 j = j + y

 i = i + j

print (i)

 a. 10 b. –10

 c. 0 d. None of the above

 9. By default, while is:

 a. Condition control statement b. Loop control statement

 c. Both a and b d. None of the above

 10. What will be the output of the following program?

Count = 0

num = 10

while num > 8:

 for y in range(1,5):

 count = count + 1

 num = num - 1

print(count)

 a. 10 b. 8

 c. 12 d. 11

B. True or False

 1. Python facilitates the use of control statements to change the flow of execution of programs.

 2. The while loop is not a keyword supported by Python.

 3. A loop cannot repeatedly execute a block of statements for a specified number of times.

 4. A loop cannot be nested.

 5. The continue statement is a keyword.

 6. The break statement is used to terminate from the loop.

 7. The break statement is not a keyword.

 8. The while statement is terminated by a semicolon (;).

Loop Control Statements 149

 9. The meaning of while(1) implies it is true.

 10. Indentation does not play a major role for the statements within the body of a loop.

C. Exercise Questions

 1. Give the syntax for control statements supported by Python.

 2. Explain the working of the while loop with a flowchart.

 3. What happens if we create a loop that never ends?

 4. What is meant by nested loops?

 5. Find the bugs in the following programs.

 a. count = 0

s=0

while count<10:

s += count

 count=count+1

 print(s)

 b. count=0

for i in range(10,0,-1)

 print(i)

 6. Is it possible to nest the while loop within for loops?

 7. When is the break statement used?

 8. When is the continue statement used?

 9. Convert the following for loop into while loop.

for i in range(50,0,-2):

 print(i,end=’ ‘)

 10. Answer the following questions.

 a. How many times will the following loop execute and what will be its output for both the programs,
a and b?

sum=0

for i in range(20,0,-2):

 sum=sum+i

 print(i)

 if i==14:

 continue

print(sum)

sum=0

for i in range(20,0,-2):

 sum=sum+i

 print(i)

 if i==14:

 break

print(sum)

 (a) (b)

 11. Convert the following while loop into for loop

i=0

s=0

while i<=50:

 if i%7==0:

 s = s+i

 i = i+7

print(s)

Problem Solving and Python Programming150

 1. Write a program that asks for input n and prints a sequence of powers of 5 from 5^0 to 5^n
in separate lines.

 Note: The input number n should be positive.

 Example:

 Input: N=4

 Output: 1

 5

 25

 125

 625

 2. Write a program to display the following table.

 Kilogram Gram

1 1000

2 2000

3 3000

 Note: 1 kilogram = 1000 grams

 3. Write a program to display the numbers of a series 1, 4, 9, 16, 25,…..n by using for loop.

 4. Write a program using the while loop, which prints the sum of every fifth number from 0
to 500 (including both 0 and 500).

 5. Write a program using the while loop to read the positive integer and count the number of
decimal digits in a positive integer.

 6. Write a program to read the password from a user. If the user types the correct password,
i.e. “Python” then display the message, “Welcome to Python Programming”.

 Note: Only three attempts are allowed to enter the right password.

 7. Write programs for the following series using the while loop.

 a. x+x2/2!+x3/3!+..n

 b. 1+x+x2+x3+….xn

 8. Consider a scenario where a son eats five chocolates every day. The price of each chocolate
is different. His father pays the bill to the chocolate vendor at the end of every week.

 Develop a program that can generate the bills for the chocolates and send to the father. Also
state which loop will be used to solve this problem.

Programming aSSignmEnTS

6

Functions

Learning OutcOmes

After completing this chapter, students will be able to:

• Describe the necessity and importance of functions in programming languages

• Invoke functions with actual parameters and write a program by invoking a function using keyword
or positional arguments

• Use local and global scope of a variable appropriately

• Define recursive function and its implementation with programs

• Write functions that return multiple values with programs

chapter OutLine

 6.1 Introduction

 6.2 Syntax and Basics of a Function

 6.3 Use of a Function

 6.4 Parameters and Arguments in a Function

 6.5 The Local and Global Scope of a
Variable

 6.6 The return Statement

 6.7 Recursive Functions

 6.8 The Lambda Function

6.1 intrOductiOn

It is difficult to prepare and maintain a large-scale program and the identification of the flow of
data subsequently gets harder to understand. The best way to create a programming application is
to divide a big program into small modules and repeatedly call these modules.

Problem Solving and Python Programming152

With the help of functions, an entire program can be divided into small independent modules
(each small module is called a function). This improves the code’s readability as well as the flow of
execution as small modules can be managed easily.

6.2 syntax and Basics Of a functiOn

A function is a self-contained block of one or more statements that performs a special task when
called. The syntax for function is given as follows:

def name_of_function(Parameters): Function Header

 statement1

 statement2

 statement3

 ……………………………

üï
ï
ï
ï
ïï
ý
ï
ï
ï
ï
ïïþ

 Function Body

 ……………………………

 statementN

The syntax for the Python function contains a header and body. The function header begins
with the ‘def’ keyword. The def keyword signifies the beginning of the function’s definition. The
name of the function is followed by the def keyword. The function header may contain zero or
more number of parameters. These parameters are called formal parameters. If a function contains
more than one parameter then all the parameters are separated by commas. A function’s body is a
block of statements. The statements within the function’s body define the actions that the function
needs to perform.

A simple example for creating a function is explained in the following program.

Program 6.1
 Write a program to create a function having a name, display. Print the message, “Welcome to
Python Programming” inside the function.

def Display():

 print(“Welcome to Python Programming “)

Display() #call function

output

Welcome to Python Programming

Explanation In the above program, a function having the name display() is created. This
function takes no parameters. The body of the function contains only one statement. Finally,
function display() is called to print the message “Welcome to Python Programming” within
the block of the function.

Program 6.2
 Write a program to prompt the name of a user and print the welcome message, “Dear Name_
of_user Welcome to Python Programming!!!”

Functions 153

def print_msg():

 str1=input(“Please Enter Your Name:”)

 print(“Dear “,str1,” Welcome to Python Programming “)

print_msg() #call function

output

Please Enter Your Name: Virat

Dear Virat Welcome to Python Programming

Explanation The function named print _ msg() is created. Initially, the function print _

msg() is called and the control of the program passes to the called function print _ msg(). The
function reads the name of the user by making use of the input reserved keyword and finally the
welcome message is printed.

6.3 use Of a functiOn

A programmer wants to find the sum of numbers starting from 1 to 25, 50 to 75 and 90 to 100.
Without functions, he/she will write the code in the following manner.

Program 6.3
 Write a program to add the sum of digits from 1 to 25, 50 to 76 and 90 to 101 using three
different for loops.

sum=0

for i in range(1,26):

 sum=sum+i

print(‘Sum of integers from 1 to 25 is:’,sum)

sum=0

for i in range(50,76):

 sum=sum+i

print(‘Sum of integer from 50 to 76 is:’,sum)

sum=0

for i in range(90,101):

 sum=sum+i

print(‘Sum of integer from 90 to 100 is:’,sum)

output

Sum of integers from 1 to 25 is: 325

Sum of integer from 50 to 76 is: 1625

Sum of integer from 90 to 100 is: 1045

Problem Solving and Python Programming154

The programmer has created the above code. Observe that the code to compute the sum of
numbers is conventional. However, there is a slight difference in the range of numbers, i.e. starting
integers and ending integers. Here, all the three for loops contain a different range, i.e. from 1 to
26, 50 to 76 and 90 to 101. Thus, by observing the above code, we can say that it would be better
if we could simply write the common code once and then use it repeatedly. A programmer can
accomplish this by defining function and using it repeatedly. The code above can be simplified and
written using functions as shown in Program 6.4.

Program 6.4 Write a program to illustrate the use of functions.

def sum(x,y):

 s=0;

 for i in range(x,y+1):

 s=s+i

 print(‘Sum of integers from ‘,x,’ to ‘,y,’ is ‘,s)

sum(1,25)

sum(50,75)

sum(90,100)

Explanation The function named sum is created with two parameters ‘x’ and ‘y’. Initially, the
function invokes the first function call, i.e. sum(1, 25) to compute the sum of numbers from 1 to 25.
After computing the sum of numbers from 1 to 25 the control passes to the next function call, i.e.
sum(50, 75). After computing the sum of integers from 50 to 75, the third function is finally called,
i.e. sum(90,100).

Thus, a programmer can effectively make use of functions to write this program.

 a. If a programmer wants to perform a task repetitively, then it is not necessary to re-write the
particular block of the program repeatedly. A particular block of statements can be shifted
in a user-defined function. The function defined can be then called any number of times to
perform a task.

 b. Large programs can be reduced to smaller ones using functions. It is easy to debug, i.e. find
out the errors in it and hence, it also increases readability.

6.4 parameters and arguments in a functiOn

Parameters are used to give inputs to a function. They are specified with a pair of parenthesis in
the function’s definition. When a programmer calls a function, the values are also passed to the
function.

While parameters are defined by names that appear in the function’s definition, arguments
are values actually passed to a function when calling it. Thus, parameters define what types of
arguments a function can accept.

Let us consider the example of passing parameters to a function given as follows and use it to
differentiate between argument and parameter.

Functions 155

Example

def printMax(num1,num2):

 Statemen1

 Statemen2

üï
ï
ï
ï
ïï
ý
ï
ï
ï
ï
ïïþ

 #Define a Function

 ………………………

 ………………………

 StatementN

printMax(10,20) Call a function(Invoke)

In the above example, printMax(num1, num2) has two parameters, viz. num1 and num2.
The parameters num1 and num2 are also called formal parameters. A function is invoked by
calling the name of the function, i.e. printMax(10,20), where 10, 20 are the actual parameters.
Actual parameters are also called arguments. num1 and num2 are the parameters of a function.

Program 6.5 demonstrates the use of parameters and arguments in a function.

Program 6.5 Write a program to find the maximum of two numbers.

def printMax(num1,num2): #Function Definition

 print(“ num1 = “,num1)

 print(“ num2 = “,num2)

 if num1>num2:

 print(“The Number “,num1,” is Greater than “,num2)

 elif num2>num1:

 print(“The Number “,num2,” is Greater than “,num1)

 else:

 print(“ Both Numbers “,num1,”,and”,num2,”are equal”)

printMax(20,10) #call to function printMax

output

num1 = 20

num2 = 10

The Number 20 is Greater than 10

Explanation In the above program we have defined a function printMax(). The function contains
two parameters, viz. num1 and num2. The function printMax() is called by passing the values
as arguments to the function. The statement printMax(10, 20) causes the value of 10 and 20 to be
assigned to parameters num1 and num2, respectively. Finally, based on the values of num1 and
num2 within the function, greatest of the two numbers is calculated and displayed.

Problem Solving and Python Programming156

Program 6.6 Write a program to find the maximum of two numbers.

def calc_factorial(num):

 fact=1

 print(“ Entered Number is: “,num)

 for i in range(1,num+1):

 fact=fact*i

 print(“Factorial of Number “,num,” is = “,fact)

number=int(input(“Enter the Number:”))

calc_factorial(number)

output

Enter the Number:5

Entered Number is: 5

Factorial of Number 5 is = 120

6.4.1 positional arguments

Consider the question—If there are more than one parameters, how does Python know which
argument in the call statement has to be assigned to which parameter?

The answer is quite simple. The parameters are assigned by default according to their position,
i.e. the first argument in the call statement is assigned to the first parameter listed in the function
definition. Similarly, the second argument in the call statement is assigned to the second parameter
listed in the function’s definition and so on.

Consider a simple example to demonstrate the use of positional arguments.

Example

 def Display(Name,age):

 print(“Name = “,Name,”age = “,age)

Display(“John”,25)

Display(40,”Sachin”)

In the above example, the evaluation of statement Display(“John”,25) prints the result as
Name = John and age = 25. However, the statement Display(40,”Sachin”) has a different meaning.
It passes 40 to name and Sachin to age. It means the first argument binds to the first parameter
and the second argument binds to the second parameter. This style of matching up arguments and
parameter is called positional argument style or positional parameter style.

In the above example, the function definition Display(Name, age) contains two parameters.
Thus, the call is made to function Display() by passing exactly two parameters.

Functions 157

What will be the output of the following program?

def Display(Name,age):

 print(“Name = “,Name,”age = “,age)

Display(“John”)

output

Prints the error message

Traceback (most recent call last):

File “C:\Python34\keyword_1.py”, line 3, in <module>

Display(“John”)TypeError: Display() missing 1 required positional
argument: ‘age’

Explanation In the above program, there is no output due to an error. The third line of the
program contains the statement Display(“John”), i.e. the statement has made a call to function
Display(name, age). As the function call contains lesser number of arguments as compared to the
function definition, Python will report a missing argument error.

Note: Python will show an error when an incorrect number of arguments are passed to the function call.
The arguments must match the parameters in order, number and type as defined in the function.

6.4.2 Keyword arguments

An alternative to positional argument is keyword argument. If a programmer knows the parameter
name used within the function then he/she can explicitly use the parameter name while calling the
function. A programmer can pass a keyword argument to a function by using its corresponding
parameter name rather than its position. This can be done by simply typing Parameter_name =

value in the function call.

Syntax to call a function using keyword argument is:

Name_of_Function(pos_args,keyword1=value,keyword2=value2………)

Program 6.7 Write a simple program on keyword argument.

def Display(Name,age):

 print(“Name = “,Name,”age = “,age)

Display(age=25,Name=”John”) #Call function using keyword
 arguments

output

Name = John age = 25

Problem Solving and Python Programming158

Explanation Thus, in the above program, the statement Display(age=25,Name=”John”) passes
the value 25 to the parameter ‘age’ and ‘John’ to the parameter ‘Name’. It means arguments can
appear in any order using keyword arguments.

Precautions for Using Keyword Arguments

 1. A positional argument cannot follow a keyword argument.

 Example: Consider the function definition,

 def Display(num1,num2):

 Thus, a programmer can invoke the above Display() function as:

 Display(40,num2=10)

 But, he/she cannot invoke the function as:

 Display(num2=10,40)

 because the positional argument 40 appears after the keyword argument num2=10.

 2. A programmer cannot duplicate an argument by specifying it as both, a positional argument
and a keyword argument.

 Example: Consider the function definition,

 def Display(num1,num2):

 Thus, a programmer cannot invoke the above Display() function as

 Display(40,num1=40) #Error

 because he/she has specified multiple values for parameter num1.

6.4.3 parameter with default Values

Parameters within a function’s definition can have default values. We can provide default value to
a parameter by using the assignment (=) operator.

Program 6.8 Write a program to illustrate the use of default values in a function’s definition.

def greet(name,msg=”Welcome to Python!!”):

 print(“ Hello “,name,msg)

greet(“Sachin”)

output

Hello Sachin Welcome to Python!!

In the above example, the function greet() has the parameter name. The parameter name
does not have any default value and is mandatory during a function call. On the other hand,
the parameter msg has a default value as “Welcome to Python!!”. Hence, it is optional during

Functions 159

a function call. If a value is provided, it will overwrite the default value. Here are some valid
function calls to this function.

#Test case 1

>>> greet(“Amit”)

Output

Hello Amit Welcome to Python!!

#Test case 2

>>> greet(“Bill Gates”,”How are You?”)

Output

Hello Bill Gates How are You?

The above example has two test cases. In the first test case, only one argument is passed to
the function greet() during the function call. And the second parameter is not passed. In such
a case, Python uses the default value of a parameter specified during function definition. But in
case of test case 2, both the parameters greet(“Bill Gates”,”How are You?”) are passed during the
function call. In such a situation, the new argument value overwrites the default parameter value.

 Note: During a function’s definition, any number of parameters in a function can have default values.
But once we have a default value to a parameter, all the parameters to its right must also have default
values. For example, if we define a function’s definition as:

def greet(msg=”Welcome to Python!!”, name): #Error

Python will give the error as:

Syntax Error: Non-default argument follows default argument

Program 6.9 Write a program to calculate the area of a circle using the formula:

 Area of Circle = pi*(r) 2

Declare the default parameter value of pi as 3.14 and radius as 1.

def area_circle(pi=3.14,radius=1):

 area=pi*radius*radius

 print(“radius=”,radius)

 print(“ The area of Circle = “,area)

area_circle()

area_circle(radius=5)

output

radius= 1

(Contd.)

Problem Solving and Python Programming160

The area of Circle = 3.14

radius= 5

The area of Circle = 78.5

What will be the output of the following program?

def disp_values(a,b=10,c=20):

 print(“ a = “,a,” b = “,b,”c= “,c)

disp_values(15)

disp_values(50,b=30)

disp_values(c=80,a=25,b=35)

output

a = 15 b = 10 c= 20

a = 50 b = 30 c= 20

a = 25 b = 35 c= 80

Explanation In the above program, the function named disp_values has one parameter without a
default argument value, followed by two parameters with default argument values.

During the first function call disp_values(15), parameter a gets the value 15 and parameters b
and c get the default values 10 and 20, respectively.

During the function call disp_values(50,b=30), parameter a gets the value 50, parameter b gets
the value 30, i.e. the value of b is overwritten and parameter c gets the default value 20.

During the function call disp_values(c=80,a=25,b=35), the default values of parameters b and c
are replaced by the new values 35 and 80, respectively.

6.5 the LOcaL and gLOBaL scOpe Of a VariaBLe

Variables and parameters that are initialised within a function including parameters, are said to
exist in that function’s local scope. Variables that exist in local scope are called local variables.
Variables that are assigned outside functions are said to exist in global scope. Therefore, variables
that exist in global scope are called global variables.

Program 6.10 Write a program to show local scope vs global scope.

p = 20 #global variable p

def Demo():

 q = 10 #Local variable q

 print(‘The value of Local variable q:’,q)

 #Access global variable p within this function

 print(‘The value of Global Variable p:’,p)

Demo()

(Contd.)

Functions 161

#Access global variable p outside the function Demo()

print(‘The value of global variable p:’,p)

output

The value of Local variable q: 10

The value of Global Variable p: 20

The value of global variable p: 20

Explanation In the above example, we have created one local variable ‘q’ and one global variable

‘p’. As global variables are created outside all functions and are accessible to all functions in their
scope, in the above example as well the global variable ‘p’ is accessed from the function Demo()
and it is also accessed outside the function.

Local Variables Cannot be Used in Global Scope

Program 6.11 Write a program to access a local variable outside a function.

def Demo():

 q = 10 #Local variable q

 print(‘The value of Local variable q:’,q)

Demo()

#Access local variable q outside the function Demo()

print(‘The value of local variable q:’,q) #Error

output

The value of Local variable q: 10

Traceback (most recent call last):

 File “C:/Python34/loc1.py”, line 6, in <module>

 print(‘The value of local variable q:’,q) #Error

NameError: name ‘q’ is not defined

Explanation The local variable ‘q’ is defined within the function Demo(). The variable ‘q’ is accessed
from the function Demo(). The scope of a local variable lies within the block of the function, i.e. it
starts from its creation and continues up to the end of the function. Therefore, any attempt to access
the variable from outside of the function causes an error.

Note: Accessing a local variable outside the scope will cause an error.

6.5.1 reading global Variables from a Local scope

Consider the following program where global variables are read from a local scope.

Problem Solving and Python Programming162

Program 6.12 Write a program where global variables are read from a local scope.

def Demo():

 print(S)

S=’I Love Python’

Demo()

output

I Love Python

Explanation Before calling the function Demo(), the variable ‘s’ is defined as a string, “I Love
Python”. However, the body of the function Demo() contains only one statement print(s) statement.
As there is no local variable ‘s’ defined within the function Demo(), the print(s) statement uses the
value from the global variable. Hence, the output of the above program will be ‘I Love Python’.

6.5.2 Local and global Variables with the same name

What will be the output of the above program if we change the value of ‘s’ inside the function
Demo()? Will it affect the value of the global variable? Program 6.13 demonstrates the change in
value ‘s’ within the function Demo().

Program 6.13 Write a program to change the value ‘s’ within the function.

def Demo():

 S=’I Love Programming’

 print(S)

S=’I Love Python’

Demo()

print(S)

output

I Love Programming

I Love Python

Explanation As we know, the scope of a local variable lies within the block of a function. Initially,
the value of ‘s’ is assigned as ‘I Love Python’. But after calling the function Demo(), the value of ‘s’ is
changed to ‘I Love Programming’. Therefore, the print statement within the function Demo() will
print the value of the local variable ‘s’, i.e. ‘I Love Programming’. Whereas the print statement after
the Demo() statement, will print the old value of the variable ‘s’, i.e. ‘I Love Python’.

6.5.3 the global statement

Consider a situation where a programmer needs to modify the value of a global variable within
a function. In such a situation, he/she has to make use of the global statement. The following
program demonstrates the use of the global statement.

Functions 163

Program 6.14 Write a program without using the global statement.

a = 20

def Display():

 a = 30

 print(‘ The value of a in function:’,a)

Display()

print(‘The value of an outside function:’,a)

output

The value of a in function: 30

The value of an outside function: 20

Explanation In the above program, we have assigned the value of an outside function as 20. By
chance, a programmer uses the same name, i.e. ‘a’ inside the function. But in this case the variable
‘a’ within the function is local to the function. Therefore, any changes to the value associated with
the name inside the function will change the value of the local variable itself and not the value of
the global variable ‘a’.

Program 6.15 Write a program using the global statement.

a = 20

def Display():

 global a

 a = 30

 print(‘ The value of a in function:’,a)

Display()

print(‘The value of an outside function:’,a)

output

The value of a in function: 30

The value of an outside function: 30

Explanation The program demonstrates the use of the global keyword. The global keyword has
been used before the name of the variable to change the value of the local variable. Since the value
of the global variable is changed within the function, the value of ‘a’ outside the function will be
the most recent value of ‘a’.

6.6 the return statement

The return statement is used to return a value from the function. It is also used to return from a
function, i.e. break out of the function.

Problem Solving and Python Programming164

Program 6.16 Write a program to return the minimum of two numbers.

def minimum(a,b):

 if a<b:

 return a

 elif b<a:

 return b

 else:

 return “Both the numbers are equal”

print(minimum(100,85))

output

8 is minimum

Explanation The minimum function returns the minimum of the two numbers supplied as
parameters to a function minimum. It uses simple if..elif..else statement to find the minimum value
and then returns that value.

Program 6.17
 Write a function calc_Distance(x1, y1, x2, y2) to calculate the distance between two points
represented by Point1(x1, y1) and Point2 (x2, y2). The formula for calculating distance is:

Distance = ()- + - 22
(x2 x1) y2 y1

import math

def calc_Distance (x1, y1, x2, y2):

 print(“ x1 = “,x1)

 print(“ x2 = “,x2)

 print(“ y1 = “,y1)

 print(“ y2 = “,y2)

 dx=x2-x1

 dx=math.pow(dx,2)

 dy=y2-y1

 dy=math.pow(dy,2)

 z = math.pow((dx + dy), 0.5)

 return z

print(“Distance = “,(format(calc_Distance(4,4,2,2),”.2f”)))

output

 x1 = 4

 x2 = 2

 y1 = 4

 y2 = 2

Distance = 2.83

Functions 165

Program 6.18
 For a quadratic equation in the form of ax2+bx+c, the discriminant D, is b2 - 4ac. Write a
function to compute the discriminant D, that returns the following output depending on the
discriminant D.

 if D > 0: The Equation has two Real Roots

 if D = 0: The Equation has one Real Root

 if D < 0: The Equation has two Complex Roots

def quad_D(a,b,c):

 d=b*b-4*a*c

 print(“a = “,a)

 print(“a = “,b)

 print(“a = “,c)

 print(“D = “,d)

 if d>0:

 return “The Equation has two Real Roots”

 elif d<0:

 return “The Equation has two Complex Roots”

 else:

 return “The Equation has one Real Root”

print(quad_D(1,2,5))

output

a = 1

a = 2

a = 3

D = -8

The Equation has two Complex Roots

Note: The return statement without a value is equivalent to return ‘None’. Where, ‘None’ is a special
type in Python that represents nothingness.

Program 6.19
 Write a program to pass the radius of a circle as a parameter to a function area_of_circle().
Return the value none if the value of the radius is negative or return the area of the circle.

def area_of_Circle(radius):

 if radius<0:

 print(“ Try Again, Radius of circle cannot be Negative “)

 return

 else:

 print(“Radius = “,radius)

(Contd.)

Problem Solving and Python Programming166

 return 3.1459*radius**radius

print(“Area of Circle =”,area_of_Circle(2))

output

Radius = 2

Area of Circle = 12.5836

Explanation In the above program, the user has to pass the radius of the circle as a parameter to
the function area_of_circle(). If the radius of the circle is positive then it calculates and returns the
area of the circle. Whereas, if the entered radius of the circle is negative, it returns a none value, i.e.
it returns nothing.

What will be the output of the above program?

def calc_abs(x):

 if x<0:

 return -x

 elif x>0:

 return x

print(calc_abs(0))

output

None

Explanation The above piece of code is incorrect because when the user has passed the value 0
as a parameter to the function calc_abs(), the value of x happened to be 0. Then neither condition
is true and the function ends without executing any return statement. In such a situation, the
function returns a special value called None.

6.6.1 returning multiple Values

It is possible to return multiple values in Python.

Program 6.20
 Write a function calc_arith_op(num1, num2) to calculate and return at once the result of
arithmetic operations such as addition and subtraction.

def calc_arith_op(num1, num2):

 return num1+num2, num1-num2 #Return multiple values

print(“ “,calc_arith_op(10,20))

output

 (30, -10)

Functions 167

Explanation In the above program, two parameters, viz. num1 and num2 are passed to a function
calc_arith_op(). Within the body of the function, the single return statement computes the addition
and subtraction of the two numbers. Finally, the single return statement returns the result of both
the arithmetic operations, viz. addition and subtraction.

6.6.2 assign returned multiple Values to Variable(s)

It is also possible for a function to perform certain operations, return multiple values and assign
the returned multiple values to a multiple variable.

Program 6.21 Write a program to return multiple values from a function.

def compute(num1):

 print(“Number = “,num1)

 return num1*num1, num1*num1*num1

square,cube=compute(4)

print(“Square = “,square,”Cube = “,cube)

output

Number = 4

Square = 16 Cube = 64

Explanation The number is passed to the function compute(). The return statement calculates the
square and cube of a passed number. After computation, it returns both the values simultaneously.
The returned square of a number is assigned to a variable square and the returned cube of a
number is assigned to a variable cube.

6.7 recursiVe functiOns

So far, we have seen that it is legal for one function to call another function. In programming, there
might be a situation where a function needs to invoke itself. Python also supports the recursive
feature, which means that a function is repetitively called by itself. Thus, a function is said to be
recursive if a statement within the body of the function calls itself.

Let us consider a simple example of recursion. Suppose we want to calculate the factorial value
of an integer. We know that the factorial of a number is the product of all the integers between 1
and that number, i.e. n! is defined as n * (n-1)!.

Consider the following example.

Formula to calculate the factorial of a number (n)! = n*(n-1)!

 5!= 5*(4)!

 = 5*4*(3)!

 = 5*4*3*(2)!

 = 5*4*3*2*(1)

 = 120

Problem Solving and Python Programming168

Program 6.22 Calculate the factorial of a number using recursion.

def factorial(n):

 if n==0:

 return 1

 return n*factorial(n-1)

print(factorial(5))

output

120

Explanation In the above program, factorial() is a recursive function. The number is passed
to function factorial(). When the function factorial is executed, it is repeatedly invoked by itself.
Every time a function is invoked, the value of ‘n’ is reduced by one and multiplication is carried out.
The recursion function produces the number 5, 4, 3, 2 and 1. The multiplication of these numbers is
carried out and returned. Finally, the print statement prints the factorial of the number.

Program 6.23
 Write a recursive function which computes the nth Fibonacci number. Fibonacci numbers are
defined as:

 Fib(0)= 1,
 Fib(1) = 1
 Fib(n)= Fib(n-1)+Fib(n-2).

Write this as a Python code and then find the 8th Fibonacci number.

def fib(n):

 if n==0:

 return 1

 if n==1:

 return 1

 return fib(n-1)+fib(n-2)

print(“ The Value of 8th Fibonacci number = “,fib(8))

output

The Value of 8th Fibonacci number = 34

6.8 the LamBda functiOn

Lambda functions are named after the Greek letter l (lambda). These are also known as anonymous

functions. Such kind of functions are not bound to a name. They only have a code to execute that
which is associated with them. The basic syntax for a lambda function is:

 Name = lambda(variables): Code

Functions 169

Let us consider a simple example which calculates the cube of a number using simple concepts
of a function.

>>> def func(x):

 return x*x*x

>>> print(func(3))

27

Without the lambda function Now we will calculate the cube of a number using the lambda
function.

>>> cube = lambda x: x*x*x #Define lambda function

>>> print(cube(2)) #Call lambda function

8

using the lambda function Thus, in the above example, both the functions func() and cube()
do exactly the same thing. The statement cube = lambda x: x*x*x creates a lambda function called
cube, which takes a single argument and returns the cube of a number.

Note: (a) A lambda function does not contain a return statement.
(b) It contains a single expression as a body and not a block of statements as a body.

mini prOject
calculation of compound interest and yearly analysis
of interest and principal amount

This mini project will use programming features, such as decision, control statements and
functions to calculate the interest deposited for a principal amount for some period of time ‘n’ at
some interest ‘r’.

Explanation and Calculation of Compound Interest

Compound interest is the addition of interest to the initial principal amount and also to the
accumulated interest over preceding periods of a deposit or loan.

Compound interest is different from simple interest. In simple interest, there is no interest on
interest. Simply interest is added to the principal amount.

The formula to calculate annual compound interest including principal amount is

CI =
tn

r
 P

t

Ê ˆ+ -Á ˜Ë ¯
 * 1 P

where,

P = Principal investment amount

r = Annual interest rate

n = Number of years the money is invested

t = Number of times the interest is compounded per year

Problem Solving and Python Programming170

The formula to calculate interest if it is compounded once per year is

I = P * (1 + r)n------- {A}

Thus, ‘I’ gives future values of an investment or loan which is compound interest plus the
principal. So, we are going to use formula ‘A’.

Example

Let principal (P) amount = `10,000

Rate (R) of interest = 5

Number of Years = 7

Value of compound interest per year (t) = 1

We will use the above formula ‘A’ to calculate the interest accumulated each year.

Year Starting Balance Interest Ending Balance

1 10000.00 500.00 10500.00

2 10500.00 525.00 11025.00

3 11025.00 551.25 11576.25

4 11576.25 578.81 12155.06

5 12155.06 607.75 12762.82

6 12762.82 638.14 13400.96

7 13400.96 670.05 14071.00

algorithm to Calculate Compound Interest

 | StEP 1: Read the principal amount, rate of interest and number of years the amount is to be
deposited. (Assuming interest is compounded once per year).

 | StEP 2: Pass the principal, rate of interest and the number of years to the function named
Calculate_Compund_Interest().

 | StEP 3: Iterate for loop for ‘n’ number of times to calculate interest generated per year by using
the formula for compound interest as discussed above.

 | StEP 4: Display the final compound interest.

Program StatEmEnt
 Write a program to calculate compound interest for principal amount as `10,000, at

rate of interest as 5% and number of years the amount is deposited as 7 years.

def Calculate_Compund_Interest(p,n,r):

 print(‘StartBalance\t’,’\tInterest\t’,’Ending Balance’)

 total = 0

(Contd.)

Functions 171

 x= r/100

 tot = 0

 for i in range(1,n+1):

 z_new = p*(1 + x) **i - p

 z_old = p*(1 + x)**(i-1) - p

 tot = tot + (z_new - z_old)

 if(i == 1):

 print(‘{0:.2f}\t’.format(p),end=’’)

 print(‘\t{0:.2f}\t’.format(z_new - z_old),end=’’)

 print(‘\t\t{0:.2f}\t’.format(z_new+p))

 else:

 print(‘{0:.2f}\t’.format(p+z_old),end=’’)

 print(‘\t{0:.2f}\t’.format(z_new - z_old),end=’’)

 print(‘\t\t{0:.2f}\t’.format(z_new+p))

 print(‘Total Interest Deposited:Rs{0:.2f}’.format(tot))

p = int(input(‘Enter the Principal amount:’))

r = int(input(‘Enter the rate of interest:’))

n = int(input(‘Enter number of year:’))

Calculate_Compund_Interest(p,n,r)

output

Enter the Principal amount:10000

Enter the rate of interest:5

Enter number of year:7

Start Balance Interest Ending Balance

10000.00 500.00 10500.00

10500.00 525.00 11025.00

11025.00 551.25 11576.25

11576.25 578.81 12155.06

12155.06 607.75 12762.82

12762.82 638.14 13400.96

13400.96 670.05 14071.00

Total Interest Deposited: Rs 4071.00

In the above program, initially principal amount, rate of interest and number of years are
read from the user. The same values are passed as a parameter to the function Calculate _

Compund _ Interest(). The for loop is iterated for n number of times to calculate the annual
interest generated per year. The difference between Z_new and Z_old in above program gives the
interest generated per year. At last, the compound interest is displayed.

Problem Solving and Python Programming172

 Summary

  A function is a self-contained block of one or more statements that perform a special task when called.

  A function’s definition in Python begins with the def keyword followed by the function’s name,
parameter and body.

  The function header may contain zero or more number of parameters.

  Parameters are the names that appear in a function’s definition.

  Arguments are the values actually passed to a function while calling a function.

  Arguments to a function can be passed as positional or keyword arguments.

  The arguments must match the parameters in order, number and type as defined in the function.

  A variable must be created before it is used.

  Variables defined within the scope of a function are said to be local variables.

  Variables that are assigned outside of functions are said to be global variables.

  The return statement is used to return a value from a function.

  Functions in Python can return multiple values.

  Python also supports a recursive feature, i.e. a function can be called repetitively by itself.

 KEy tErmS

 � The def Keyword: Reserved word to define a function

 � Positional Arguments: By default, parameters are assigned according to their position

 � Keyword Arguments: Use syntax keyword = Value to call a function with keyword arguments

 � Local and Global Scope of a Variable: Describes two different scopes of a variable

 � The Return Keyword: Used to return single or multiple values

 � Lambda: An anonymous function

 rEvIEw QuEStIonS

a. multiple Choice Questions

 1. A variable defined outside a function is referred to as

 a. Local variable b. Only variable

 c. Global variable d. None of the above

 2. Which of the following function headers is correct?

 a. def Demo(P, Q = 10): b. def Demo(P=10,Q = 20):

 c. def Demo(P=10,Q) d. Both a and c

 3. What will be the output of the following program?

x = 10

def f():

 x= x + 10

 print(x)

f()

Functions 173

 a. 20

 b. 10

 c. Error: Local variable X referenced before assignment

 d. None of the above

 4. What will be the output of the following program?

def Func_A(P = 10, Q = 20):

 P = P + Q

 Q = Q + 1

 print(P, Q)

Func_A(Q = 20, P = 10)

 a. Error: P and Q are not defined. b. 20 10

 c. 10 20 d. 30 21

 5. What will be the output of the following program?

Def test():

 x=10

Main Program

x = 11

test()

print(x)

 a. 10 b. 11

 c. Garbage value d. None of the above

 6. If a function does not return any value, then by default which type of value is returned by the function?

 a. int b. double

 c. str d. None

 7. What will be the output of the following program?

def test():

 global x

 x=’A’

Main Program

x = ‘Z’

test()

print(x)

 a. Z b. A

 c. Garbage value d. None of the above

 8. What will be the output of following program?

def test(x):

 x = 200

Main Program

x = 100

test(x)

print(x)

Problem Solving and Python Programming174

 a. 100 b. Garbage value

 c. 200 d. None of the above

 9. What will be the output of the following program?

def test(x):

 p = 90

Main Program

p = 50

print(test(p))

 a. 90 b. 50

 c. Error d. None

 10. What will be the output of the following program?

def evaluate_expression_1(Z):

 Z = Z + 5

 def evaluate_expression_2(Z):

 print(‘Hello’)

 return Z

 return Z

value = 10

print(evaluate_expression_1(value))

 a. Hello 10 b. 10

 c. 15 Hello d. 15

 11. What will be the output of the following program?

def evaluate_expression_1():

 global x

 x = x - 5

 def evaluate_expression_2():

 global x

 return x + 3

 return evaluate_expression_2()

Main Program

x = 10

print(evaluate_expression_1())

 a. 5 b. 8

 c. 10 d. 13

 12. What will be the output of the following program?

def perform_multiplication(Num1, Num2):

 Num2 = Num1 * Num2

 return Num1, Num2

Functions 175

Main Program

Num2, Num1 = perform_multiplication(5,4)

print(Num1, Num2)

 a. 5, 4 b. 5, 20

 c. 20, 5 d. 4, 5

 13. What will be the output of the following program?

def Display(Designation, Salary):

 print(“Designation = “,Designation, “Salary = “,Salary)

Display(“Manager”,25000)

Display(300000,’Programmer’)

 a. Error: Type Mismatch

 b. Manger 25000

 300000 Programmer

 c. 300000 Programmer

 Manger 25000

 d. None of the above

B. true or False

 1. A function divides a program in small independent modules.

 2. The syntax of Python function contains a header and body.

 3. The function header begins with the definition keyword.

 4. Parameters are used to give inputs to a function.

 5. Parameters are specified with a pair of parenthesis in the function’s definition.

 6. In a function, parameters are defined by the names that appear in the function’s definition.

 7. Arguments are values actually passed to a function when calling it.

 8. The return statement is used to return a value from a function.

 9. A function invoking itself is called a recursive function.

 10. A function is said to be recursive if a statement within the body of the function calls itself.

C. Exercise Questions

 1. What are the advantages of functions?

 2. What does a function do?

 3. Write the definition of a function.

 4. Write the syntax for a function.

 5. Differentiate between user-defined and library-defined functions.

 6. How does a function work? Explain how arguments are passed and results are returned?

 7. What are arguments? How are arguments passed to a function?

 8. What is the use of a return statement?

 9. Is it possible to return multiple values from a function?

 10. What are local and global variables?

Problem Solving and Python Programming176

 1. Write a function eval_Quadratic_Equa(a, b, c, x) which returns the value of any quadratic
equation of form

 ax2 + bx + c

 2. Write a function calc_exp(base, exp) which computes the exponent of any number, i.e.
baseexp. The function should take two values as base, which can be float or integer. Exp will
be an integer greater than 0.

 3. Write a function Calc_GCD_Recurr(a, b) which calculates the GCD recursively of two
numbers. The function should take two positive integers and should return one integer as
GCD.

 Note: The greatest common divisor (GCD) of two positive integers is the largest integer that
divides each of them without a remainder.

 Example:

 gcd(12 , 2) = 2

 gcd(6 , 12) = 6

 gcd(9 , 12) = 3

 4. Write a function reverse_number() to return the reverse of the number entered.

 Example:

 Reverse_number(1234) displays 4321

 5. A four-digit integer is entered through the keyboard. Write a function to calculate the sum
of the four-digit number both without recursion and using recursion.

 6. A positive integer is entered through the keyboard. Write a function factors(num) to obtain
the factors of the given numbers.

 7. Write a program to define function dec_bin(num) to convert the existing decimal number
into its equivalent binary number.

ProgrammIng aSSIgnmEntS

7

Strings

Learning OutcOmes

After completing this chapter, students will be able to:

• Create and use string in programming

• Write programs to access characters within a string using index operators, including accessing
characters via negative index

• Use str[start : end] slicing operator to get a substring from larger strings

• Use various inbuilt functions of strings, such as len(), min() and max() functions

• Apply inbuilt operators on strings +, * and compare two different strings using >,>=, <, <=, ==,!=
operators

• Use various methods of strings such as capitalise(), upper(), lower(), swapcase(), and
replace() to convert string from one form to another

• Search substrings from a given string using various methods of string such as find(), rfind(),
endswith(), startwith()

• Format strings by using ljust(), rjust(), centre(),format() functions

chapter OutLine

 7.1 Introduction

 7.2 The str class

 7.3 Basic Inbuilt Python Functions for String

 7.4 The index[] Operator

 7.5 Traversing String with for and while
Loop

 7.6 Immutable Strings

 7.7 The String Operators

 7.8 String Operations

Problem Solving and Python Programming178

7.1 intrOductiOn

Characters are building blocks of Python. A program is composed of a sequence of characters.
When a sequence of characters is grouped together, a meaningful string is created. Thus, a string
is a sequence of characters treated as a single unit.

In many languages, strings are treated as arrays of characters but in Python a string is an object
of the str class. This string class has many constructors.

The next section describes constructors and how to access strings.

7.2 the str cLass

Strings are objects of the str class. We can create a string using the constructor of str class as:

S1=str() #Creates an Empty string Object

S2=str(“Hello”) #Creates a String Object for Hello

An alternative way to create a string object is by assigning a string value to a variable.

Example

S1 = “” # Creates a Empty String

S2= “Hello” # Equivalent to S2=str(“Hello”)

All the characters of a string can be accessed at one time using the index operator. This has been
explained in Section 7.4.

7.3 Basic inBuiLt pythOn FunctiOns FOr string

Python has several basic inbuilt functions that can be used with strings. A programmer can make
use of min() and max() functions to return the largest and smallest character in a string. We can
also use len() function to return the number of characters in a string.

The following example illustrates the use of the basic function on strings.

>>> a = “PYTHON”

>>> len(a) #Return length i.e. number of characters in string a

6

>>> min(a) #Return smallest character present in a string

‘H’

>>> max(a) #Return largest character present in a string

‘Y’

7.4 the index[] OperatOr

As a string is a sequence of characters, the characters in a string can be accessed one at a time
through the index operator. The characters in a string are zero based, i.e. the first character of the
string is stored at the 0th position and the last character of the string is stored at a position one less
than that of the length of the string. Figure 7.1 illustrates how a string can be stored.

Strings 179

S I N D I A

S[0] S[1] S[2] S[3] S[4]

Figure 7.1 Accessing characters in a string using the index operator

Example

>>> S1=”Python”

>>>S1[0] #Access the first element of the string.

‘P’

>>>S1[5] #Access the last element of the String.

‘n’

 Note: Consider a string of length ‘n’, i.e. the valid indices for such string are from 0 to n-1. If you try to
access the index greater than n-1, Python will raise a ‘string index out of range’ error. The following
example illustrates the same.

>>> a=’IIT’

>>> a[3]

Traceback (most recent call last):

 File “<pyshell#1>”, line 1, in <module>

 a[3]

IndexError: string index out of range

7.4.1 accessing characters via negative index

The negative index accesses characters from the end of a string by counting in backward direction.
The index of the last character of any non-empty string is always -1, as shown in Figure 7.2.

S P Y T H O N

S[–6] S[–5] S[–4] S[–3] S[–2] S[–1]

Figure 7.2 Accessing characters in a string using negative index

Example

>>> S=”PYTHON”

>>> S[-1]#Access the last character of a String ‘S’

‘N’

>>> S[-2]

‘O’

>>> S[-3]

‘H’

>>> S[-4]

Problem Solving and Python Programming180

‘T’

>>> S[-5]

‘Y’

>>> S[-6]#Access the First character of a String ‘S’

‘P’

 Note: 

S[-n] == S[Length _ of(S)-n]
Example:

S=”IIT-Bombay”

>>> S[-3]

>>>‘b’

Explanation

S[-3]==S[Len(S)-3]=S[10-3]=S[7].

Thus, S[-3]==S[7] prints the character stored at index 7 counting in a forward direction or we can
say it prints the character stored at index -3 counting in backward direction from the string S.

7.5 traversing string with for and while LOOp

A programmer can use the for loop to traverse all characters in a string. For example, the following
code displays all the characters of a string.

Program 7.1 Write a program to traverse all the elements of a string using the for loop.

S=”India”

for ch in S:

 print(ch,end=””)

output

India

Explanation The string ‘India’ is assigned to the variable S. The for loop is used to print all the
characters of a string S. The statement ‘for ch in S:’ can read as ‘for each character ch in S print ch’.

Program 7.2 Write a program to traverse every second character of a string using the for loop.

S=”ILOVEPYTHONPROGRAMMING”

for ch in range(0,len(S),2):#Traverse each Second character

 print(S[ch],end=” “)

output

I O E Y H N R G A M N

Strings 181

7.5.1 traversing with a while Loop

A programmer can also use the while loop to traverse all the elements of a string. The following
example illustrates the use of the while loop to traverse all the characters within a string using the
while loop.

Program 7.3 Write a program to traverse all the elements of a string using the while loop.

S=”India”

index=0

while index<len(S):

 print(S[index],end=””)

 index=index+1

output

India

Explanation The while loop traverses a string and displays each character. The condition
index<len(S) is checked in each iteration. When the value of an index is equal to the length of the
string, the condition is false and the body of loop is not executed. The last character accessed is one
less than that of that of the length of the string.

7.6 immutaBLe strings

Character sequences fall into two categories, i.e. mutable and immutable. Mutable means changeable
and immutable means unchangeable. Hence, strings are immutable sequences of characters.

Consider the following example. Let’s see what happens if we try to change the contents of the
string.

Example

Str1=”I Love Python”

Str1[0]=”U”

print(Str1)

ERROR:

TypeError: ‘str’ object does not support item assignment

Explanation

In the above example, we have assigned the string “I Love Python” to Str1. The index [] operator
is used to change the contents of the string. Finally, it shows an error because the strings are
immutable, which means one cannot change the existing string.

Problem Solving and Python Programming182

Note: If you want to change the existing string, the best way is to create a new string that is a
variation of the original string.
Str1=”I Love Python”

Str2=”U”+Str1[1:]

print(Str2)

Output

U Love Python

Consider the following two similar strings. “Hello” is assigned to two different variables as:

Str1=”Hello”

Str2=”Hello”

In the above example both the variables, str1 and str2 have the same content. Thus, Python uses
one object for each string which has the same content as shown in Figure 7.3. str1 and str2 refers to
the same string object, whereas str1 and str2 have the same ID number.

>>>str1=”Hello”

>>>str2=”Hello”

>>>id(Str1)

53255968

>>>id(Str2)

53255968

str

str object for “Hello”

str1

str2

Figure 7.3 String with the same contents share the similar id

7.7 the string OperatOrs

String contains the slicing operator and the slicing with step size parameter is used to obtain
the subset of a string. It also has basic concatenation ‘+’, ‘in’ and repetition ‘*’ operators. The next
section describes string operators in more detail.

7.7.1 the string slicing Operator [start: end]

The slicing operator returns a subset of a string called slice by specifying two indices, viz. start
and end. The syntax used to return a subset of a string is:

Name_of_Variable_of_a_String[Start_Index: End_Index]

Strings 183

Example

>>> S=”IIT-BOMBAY”

>>> S[4:10]#Returns a Subset of a String

‘BOMBAY’

The S[4:10] returns a subset of a string starting from start index, i.e. 4 to one index less than that
of end parameter of slicing operation, i.e. 10 - 1 = 9.

7.7.2 string slicing with step size

In the above section, we learnt how to select a portion of a string. But how does a programmer
select every second character from a string?

This can be done using step size. In slicing, the first two parameters are start index and end

index. We need to add a third parameter as step size to select the characters from a string with
step size.

Syntax

Name_of_Variable_of_a_String[Start_Index:End_Index:Step_Size]

Example

>>>S=”IIT-BOMBAY”

>>> S[0:len(S):2]

>>>’ITBMA’

Explanation

Initially we have assigned a string “IIT-Bombay” to S. The statement S[0:len(S):2] indicates us to
select the portion of a string which starts at index 0 and ends at index 10, i.e. the length of the string
“IIT-BOMBAY”. The step size is 2. It means that we first extract a slice or a portion of the string
which starts with the index 0, ends with the index 10 and selects every other second character from
the string S.

Some More Complex Examples of String Slicing

>>> S=”IIT-MADRAS”

>>> S[::]#Prints the entire String

‘IIT-MADRAS’

>>> S[::-1]

‘SARDAM-TII’#Display the String in Reverse Order

>>>S=”IIT-MADRAS”

>>> S[-1:0:-1]#Access the characters of a string from index -1

>>>’SARDAM-TI’

>>>S=”IIT-MADRAS”

>>> S[-1:0:-1]#Access the characters of a string from index -1

>>>’SARDAM-TI’

Problem Solving and Python Programming184

>>> S[:-1]

#start with the character stored at index 0 & exclude the last character stored
at index -1.

‘IIT-MADRA’

7.7.3 the string +, * and in Operators

 1. The + Operator: The concatenation operator ‘+’ is used to join two strings.

 Example:

>>> S1=”IIT “ #The String “IIT” assigned to S1

>>> S2=”Delhi”#The String “Delhi” assigned to S1

>>> S1+S2

‘IIT Delhi’

 2. The * Operator: The multiplication (*) operator is used to concatenate the same string multiple
times. It is also called repetition operator.

 Example:

>>> S1=”Hello”

>>> S2=3*S1#Print the String “Hello” three times

>>> S2

‘HelloHelloHello’

 Note: S2=3*S1 and S2=S1*3 gives same output

 3. The in and not in Operator: Both Operators in and not in are used to check whether a string
is present in another string.

 Example:

>>> S1=”Information Technology”

#Check if the string “Technology” is present in S1

>>> “Technology” in S1

True

#Check if the string “Technology” is present in S1

>>> “Engineering” in S1

False

>>> S1=”Information Technology”

Check if the string “Hello” is not present in S1

>> “Hello” not in S1

True

Program 7.4 Write a program to print all the letters from word1 that also appear in word2.

Example: Word1 = USA North America

word2= USA South America

Strings 185

#Print the letter that appear in word1 &also appears in word2

output

USA orth America

Solution

word1=”USA North America”

word2=”USA South America”

print(“word1=”,word1)

print(“word2=”,word2)

print(“The words that appear in word1 also appears in word2”)

for letter in word1:

 if letter in word2:

 print(letter,end=””)

output

word1= USA North America

word2= USA South America

The words that appear in word1 also appears in word2

USA orth America

Explanation

In the above program, the string “USA North America” is assigned to word1 and the string “USA
South America” is assigned to the String word2. In the for loop, each letter of word1 is compared
with all the letters of word2. If a letter of word1 appears in word2 then the particular letter is
printed. A programmer can read the above for loop as for each letter in the first word, if it appears

in the second word then print that letter.

7.8 string OperatiOns

The str class provides different basic methods to perform various operations on a string. It helps to
calculate the length of a string, to retrieve the individual characters from the given string and to
compare and concatenate the two different strings.

7.8.1 string comparison

Operators such as ==,<,>,<=,>=and != are used to compare the strings. Python compares strings by
comparing their corresponding characters.

Example

>>> S1=”abcd”

>>> S2=”ABCD”

>>> S1>S2

True

Problem Solving and Python Programming186

Explanation

The string ‘abcd’ is assigned to the string S1 and the String ‘ABCD’ is assigned to S2. The statement
S1 > S2 returns True because Python compares the numeric value of each character. In the above
example, the numeric value, i.e. ASCII value of ‘a’ is 97 and ASCII numeric value of ‘A’ is 65. It
means 97 > 65. Thus, it returns True. However, character by character comparison goes on till the
end of the string.

Some More Examples of String Comparison

>>> S1=”abc”

>>> S2=”abc”

>>> S1==S2

True

>>> S1=”ABC”

>>> S2=”DEF”

>>> S1>S2

False

>>> S1=”AAA”

>>> S2=”AAB”

>>> S2>S1

True

>>> S1=”ABCD”

>>> S2=”abcd”.upper()

>>> S2

‘ABCD’

>>> S1>S2

False

>>> S1>=S2

True

7.8.2 the string .format() method()

In Python 2 and 3, programmers can include %s inside a string and follow it with a list of values
for each %.

Example

>>> “My Name is %s and I am from %s”%(“JHON”,”USA”)

‘My Name is JHON and I am from USA’

In the above example, we have seen how to format a string using % (modulus) operator. However,
for more complex formatting, Python 3 has added a new string method called format() method.
Instead of % we can use {0}, {1} and so on. The syntax for format() method is:

template.foramt(P0,P1,…………,k0=V0,K1=V1…}

Strings 187

whereas the arguments to the .format() method are of two types. It consists of zero or more
positional arguments Pi followed by zero or more keyword arguments of the form, Ki=Vi.

Example

>>> ‘{} plus {} equals {}’.format(4,5,’Nine’)

‘4 plus 5 equals Nine’

Explanation

The format() method is called on the string literal with arguments 4,5 and ‘nine’. The empty {} are
replaced with the arguments in order. The first {} curly bracket is replaced with the first argument
and so on. By default, the index of the first argument in format always start from zero. One can also
give a position of arguments inside the curly brackets. The following example illustrates the use of
index as argument inside the curly bracket.

Example

>>>”My Name is {0} and I am from {1}”.format(“Milinda”,”USA”)

‘My Name is Milinda and I am from USA’

Explanation

The format() method contains various arguments. In the above example, the format() method
has two arguments, viz. “Milinda” and “USA”. The index of the first argument of the format()
method always starts from 0. Therefore, {0} replaces the 0th argument of the format. Similarly {1}
replaces the first argument of the format.

Keyword Argument and format() Method

We can also insert text within curly braces along with numeric indexes. However, this text has to
match keyword arguments passed to the format() method.

Example

>>> “I am {0} years old.I Love to work on {PC} Laptop”.format(25,PC=”APPLE”)

‘I am 25 years old.I Love to work on APPLE Laptop’

7.8.3 the split() method

The split() method returns a list of all the words in a string. It is used to break up a string into
smaller strings.

Example

Consider the following example where names of different programming languages such as C, C++,
Java and Python is assigned to a variable Str1. Applying split() method on str1 returns the list of
programming languages.

>>>Str1=”C C++ JAVA Python”#Assigns names of Programming languages to Str1

>>>Str1.split()

[‘C,C++,JAVA,Python’]

Problem Solving and Python Programming188

Program 7.5
 Consider a input string that has a list of names of various multinational companies, such as TCS,
INFOSYS, MICROSOFT, YAHOO and GOOGLE. Use split method and display the name of
each company in a different line.

TOP_10_Company=”TCS,INFOSYS,GOOGLE,MICROSOFT,YAHOO”

Company=TOP_10_Company.split(“,”)

print(Company)

for c in Company:

 print(end=””)

 print(c)

output

[‘TCS’, ‘INFOSYS’, ‘GOOGLE’, ‘MICROSOFT’, ‘YAHOO’]

TCS

INFOSYS

GOOGLE

MICROSOFT

YAHOO

Note: The split() method can be called without arguments. If it is called without a delimiter, then
by default the space will act as a delimiter.

7.8.4 testing string

A string may contain digits, alphabets or a combination of both of these. Thus, various methods
are available to test if the entered string is a digit or alphabet or is alphanumeric. Methods to test
the characters in a string are given in Table 7.1.

Table 7.1 The str class methods for testing its characters

Methods of str Class for Testing its Character Meaning

bool isalnum()
Example:

>>>S=”Python Programming”

>>>S.isalnum()

False

>>> S=”Python”

>>>S.isalnum()

True

>>> P=”1Jhon”

>>>P.isalnum()

True

Returns True if characters in the string are
alphanumeric and there is at least one character.

(Contd.)

Strings 189

bool isalpha()
Example:

>>> S=”Programming”

>>>S.isalpha()

 True

>>> S=”1Programming”

>>>S.isalpha()

False

Returns True if the characters in the string are
alphabetic and there is at least one character.

bool isdigit()
Example:

>>> Str1=”1234”

>>> Str1.isdigit()

True

>>> Str2=”123Go”

>>> Str2.isdigit()

False

Returns True if the characters in the string
contain only digits.

bool islower()
Example:

>>> S=”hello”

>>>S.islower()
True

Returns True if all the characters in the string
are in lowercase.

bool isupper()
Example:

>>> S=”HELLO”

>>>S.isupper ()

True

Returns True if all the characters in the string
are in uppercase.

bool isspace()
Example:

>>> S=” “

>>>S.isspace()

True

>>> Str1=”Hello Welcome to Programming
World”

>>> Str1.isspace ()

False

Returns true if the string contains only white
space characters.

7.8.5 searching substring in a string

Table 7.2 contains methods provided by the str class to search the substring in a given string.

Problem Solving and Python Programming190

Table 7.2 Methods to search a substring in a given string

Methods of str Class for Searching the Substring in a Given String Meaning

bool endswith(str Str1)
Example:

>>> S=”Python Programming”

>>>S.endswith(“Programming”)

True

Returns true if the string ends
with the substring Str1.

bool startswith(str Str1)
Example:

>>> S=”Python Programming”

>>>S.startswith(“Python”)

True

Returns true if the string starts
with the substring Str1.

int find(str Str1)
Example:

>>> Str1=”Python Programming”

>>> Str1.find(“Prog”)

7#Returns the index from where the string “Prog”
begins

>>> Str1.find(“Java”)

-1#Returns -1 if the string “Java” is not found in
the string str1

Returns the lowest index where
the string Str1 starts in this string
or returns -1 if the string Str1 is
not found in this string.

int rfind(str Str1)
Example:

>>> Str1=”Python Programming”

>>> Str1.rfind(“o”)

9#Returns the index of last occurrence of string “o”
in Str1

Returns the highest index where
the string Str1 starts in this string
or returns -1 if the string Str1 is
not found in this string.

int count(str S1)
Example:

>>> Str1=”Good Morning”

>>> Str1.count(“o”)

3

Returns the number of
occurrences of this substring.

7.8.6 methods to convert a string into another string

A string may be present in lower case or upper case. The string in lower case can be converted
into upper case and vice versa using various methods of the str class. Table 7.3 contains various
methods to convert a string from one form to another.

Strings 191

Table 7.3 Methods to convert string from one form to another

Methods of Str Class to Convert a String from One Form to Another Meaning

str capitalize()
Example:

>>> Str1=”hello”

>>> Str1.capitalize ()

 ‘Hello’ #Convert first alphabet of String Str1 to
uppercase

Returns a copy of the string
with only the first character
capitalised.

str lower()
Example:

>>> Str1=”INDIA”

>>> Str1.lower ()

‘india’

Returns a copy of the string with
all the letters converted into
lower case.

str upper()
Example:

>>> Str1=”iitbombay”

>>> Str1.upper()

‘IITBOMBAY’

Returns a copy of the string with
all the letters converted into
upper case.

str title()
Example:

>>> Str1=”welcome to the world of programming”

>>> Str1.title()

‘Welcome To The World Of Programming’

Returns a copy of the string with
the first letter capitalised in each
word of the string.

str swapcase()
Example:

>>> Str1=”IncreDible India”

>>> Str1.swapcase ()

‘iNCREdIBLE iNDIA’

Returns a copy of the string which
converts upper case characters
into lower case characters and
lower case characters into upper
case characters.

str replace (str old, str new [,count])
Example:

>>> S1=”I have brought two chocolates, two cookies
and two cakes”

#Replace the old string i.e “two” by new string i.e.
“three”.

>>> S2=S1.replace(“two”,”three”)

#Replace all occurrences of old string “two” by
“three”

>>> S2

‘I have brought three chocolates, three cookies and
three cakes’

Returns a new string that
replaces all the occurrences of the
old string with a new string. The
third parameter, i.e. the count is
optional. It tells the number of
old occurrences of the string to be
replaced with new occurrences of
the string.

(Contd.)

Problem Solving and Python Programming192

Q. Replace two chocolates and two cookies by three chocolates and
three cookies.

>>> S1=”I have brought two chocolates, two cookies
and two cakes”

>>> S1.replace(“two”,”three”,2)

#Replace only first 2 occurrences of old string
“two” by “three”

‘I have brought three chocolates, three cookies and
two cakes’

7.8.7 stripping unwanted characters from a string

A common problem when parsing text is leftover characters at the beginning or end of a string.
Python provides various methods to remove white space characters from the beginning, end or
both the ends of a string.

Note: Characters such as ‘’, \f,\r, and \n are called white space characters.

Methods to strip leading and trailing white space characters are given in Table 7.4.

Table 7.4 Methods to strip leading and trailing white space characters

Methods of str Class for Stripping White Space Characters Meaning

str lstrip()
Example:

>>> Scentence1=” Hey Cool!!.”

>>> Scentence1#Display Scentence1

‘ Hey Cool!!.’#Before Stripping left white space

>>> Scentence1.lstrip()#Remove left white space characters

‘Hey Cool!!.’#After Stripping left white space characters
Example:

>>>Bad_Sentence=” \t\tHey Cool!!.”

>>>Bad_Sentence#print Bad_Scentence before removing whitespace

‘ \t\tHey Cool!!.’

>>>Bad_Sentence.lstrip()#Print Bad_Sentence after removing

‘Hey Cool!!.’

Returns a
string with the
leading white
space characters
removed.

str rstrip()
Example:

>>> Scentence1=”Welcome!!!\n\n\ “

>>> Scentence1.rstrip()#Remove trailing white space character

‘Welcome!!!\n\n\\’#After Removing white space character

Returns a
string with the
trailing white
space characters
removed.

(Contd.)

Strings 193

str strip()
Example:

>>> Str1=” Hey,How are you!!!\t\t\t “

>>> Str1#Print string str1 before stripping

‘ Hey,How are you!!!\t\t\t ‘

>>> Str1.strip()#Print after Stripping

‘Hey,How are you!!!’
Example:

>>> s1=”@Cost Prize of Apple Laptop is at Rs = 20 Dollars $$$$”

>>> s1#Before removing unwanted characters @ and $

‘@Cost Prize of Apple Laptop is at Rs = 20 Dollars $$$$’

>>> s1.strip(‘@$’)

‘Cost Prize of Apple Laptop is at Rs = 20 Dollars ‘#After Removing

Returns a string
with the leading
and trailing white
space characters
removed.

Note: Stripping does not apply to any text in the middle of a string. It only strips the white space
characters from the beginning and end of a string.

Example

>>> S1=”Python Programming”

>>> S1#Print S1 before stripping

‘Python Programming’

>>> S1.strip()

‘Python Programming’#Print S1 after stripping

In the above example, there are multiple spaces between the two string “Python” and
“Programming”. Even though after applying strip() method on S1, The string S1 remain
unchanged. The white space characters are not removed from the string S1.

7.8.8 Formatting string

Table 7.5 Methods to format a string

Methods of str Class for Formatting Characters Meaning

str center(int width)
Example

>>> S1=”APPLE MACOS”

#Place the string S1 in the center of a string with 11
characters

>>> S1.center(15)

‘APPLE MACOS’

Returns a copy of the string
centered in a field of the
given width.

(Contd.)

Problem Solving and Python Programming194

str ljust(int width)
Example:

>>> S1=”APPLE MACOS”

#Place the string S1 at the left of a string with 15
characters.

>>> S1.ljust(15)

‘APPLE MACOS’

Returns a string left justified
in a field of the given width.

str rjust(int width)
Example:

>>> S1=”APPLE MACOS”

#Place the string S1 at the right of a string with 15
characters.

>>> S1.rjust(15)

‘APPLE MACOS’

Returns a string right
justified in a field of the
given width.

7.8.9 some programs on string

Program 7.6
 Write the function countB(word) which takes a word as the argument and returns the number of
‘b’ in that word.

def countB(word):

 print(word)

 count = 0

 for b in word:

 if (b == ‘b’):

 count = count + 1

 return count

print(“ Number of ‘b’ = “,countB(“abbbabbaaa”))

output

abbbabbaaa

Number of ‘b’ = 5

Program 7.7
 Write the function count_Letter(word, letter) which takes a word and a letter as arguments and
returns the number of occurrences of that letter in the word.

def count_Letter(word,letter):

 print(“Word = “,word)

 print(“Letter to count = “,letter)

 print(“Number of occurrences of ‘”,letter,”’ is =”,end=””)

 count = 0

for i in word:

(Contd.)

Strings 195

 if (i == letter):

 count = count + 1

 return count

x=count_Letter(‘INIDA’,’I’)

print(x)

output

Word = INIDA

Letter to count = I

Number of occurrences of ‘ I ‘ is =2

Program 7.8
 Write the function modify_Case(word) which changes the case of all the letters in a word and
returns the new word.

def modify_Case(word):

 print(“Original String = “,word)

 print(“After Swapping String = “,end=””)

 return word.swapcase()

print(modify_Case(“hi Python is intresting, isn’t it ? “))

output

Original String = hi Python is intresting, isn’t it ?

After Swapping String = HI PYTHON IS INTRESTING, ISN’T IT ?

Program 7.9
 A string contains a sequence of characters. Elements within a string can be accessed using an
index which starts from 0. Write the function getChar(word, pos) which takes a word and a
number as arguments and returns the character at that position.

def getChar(word,pos):

 print(“Word = “,word)

 print(“Character at Position “,pos,” = “,end=””)

 counter = 0

 for i in word:

 counter = counter + 1

 if (counter == pos):

 return i

print(getChar(“Addicted to Python “,3))

output

Word = Addicted to Python

Character at Position 3 = i

Problem Solving and Python Programming196

Program 7.10
 Write a function Eliminate_Letter(word, letter) which takes a word and a letter as arguments
and removes all the occurrences of that particular letter from the word. The function will return
the remaining letters in the word.

def Eliminate_Letter(word,Letter):

 print(“String = “ ,word)

 print(“After Removing Letter : “,Letter)

 print(“String = “,end=””)

 newstr = ‘’

 newstr = word.replace(Letter,””)

 return newstr

#Sample test

x = Eliminate_Letter(‘ PYTHON PROGRAMMING’,’P’)

print(x)

output

String = PYTHON PROGRAMMING

After Removing Letter: P

String = PYTHON ROGRAMMING

Program 7.11
 Write the function countVowels(word) which takes a word as an argument and returns the
vowels (‘a’, ‘e’, ‘i’, ‘o’, ‘u’) in that word.

def countVowels(word):

 print(“ Word = “,word)

 word = word.lower()

 return {v:word.count(v) for v in ‘aeiou’}

print(countVowels(“I Love Python Programming”))

output

Word = I Love Python Programming

{‘u’: 0, ‘i’: 2, ‘o’: 3, ‘e’: 1, ‘a’: 1}

Program 7.12
 Write the function UpperCaseVowels(word) which returns the word with all the vowels
capitalised.

def UpperCaseVowels(word):

 new= ‘’

 print(“string = “,word)

 print(“ After Capitializing Vowels”)

 print(“String = “,end=””)

 for i in word:

(Contd.)

Strings 197

 if(i == ‘a’ or i == ‘e’ or i == ‘i’ or i == ‘o’ or i == ‘u’):

 new = new + i.upper()

 else:

 new = new + i

 return new

#Sample run

x = UpperCaseVowels(‘aehsdfiou’)

print(x)

output

string = aehsdfiou

 After Capitializing Vowels

String = AEhsdfIOU

Program 7.13
 Write the function replacevowels(word) which removes all the vowels (‘a’, ‘e’, ‘i’, ‘o’, ‘u’) in a
word and returns the remaining letters in the word.

def removeVowels(word):

 new = ‘’

 print(“String =”,word)

 print(“String After Removing Vowels =”,end=””)

 for i in word:

 if(i!= ‘a’ and i!= ‘e’ and i!= ‘i’ and i!= ‘o’ and i!= ‘u’):

 new = new + i

 return new

#Sample run

x = removeVowels(‘abceiodeuf’)

print(x)

output

String = abceiodeuf

String After Removing Vowels =bcdf

Program 7.14
 Write the function isReverse(word1, word2) which takes two words as arguments and returns
True if the second word is the reverse of the first word.

def isReverse(word1,word2):

 print(“First Word = “,word1)

 print(“Second Word = “,word2)

 if(word1 == word2[::-1]):

 return True

(Contd.)

Problem Solving and Python Programming198

 else:

 return False

x = isReverse(‘Hello’,’olleH’)

print(x)print(x)

output

First Word = Hello

Second Word = olleH

True

Program 7.15
 Write a function mirrorText(word1, word2) which takes two words as arguments and returns a
new word in the following order: word1word2word2word1.

def mirrorText(word1, word2):

 print(“String1 = “,word1)

 print(“String2 = “,word2)

 print(“Mirror String = “,end=””)

 return word1+word2+word2+word1

x = mirrorText(‘PYTHON’,’STRONG’)

print(x)

output

String1 = PYTHON

String2 = STRONG

Mirror String = PYTHONSTRONGSTRONGPYTHON

mini prOject
conversion of hexdecimal number into its equivalent
Binary number

Table 7.6. contains conversion of a hexadecimal number into its equivalent binary number.

Table 7.6 Hexadecimal into equivalent binary form

Hexadecimal Number Equivalent Binary Number Equivalent Decimal Number

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

(Contd.)

Strings 199

7 0111 7

8 1000 8

9 1001 9

‘A’ 1010 10

‘B’ 1011 11

‘C’ 1100 12

‘D’ 1101 13

‘E’ 1110 14

‘F’ 1111 15

Program Statement

Write a program to convert a hexadecimal number entered as a string into its equivalent binary
format.

Note: Use ord() to obtain the ASCII value of a character.

Sample Input

Please Enter Hexadecimal Number: 12FD

output

Equivalent Binary Number is

0001 0010 1111 1101

algorithm

 | STEP 1: Read the hexadecimal number as string from the user.

 | STEP 2: Pass ‘h’, i.e. the number as string to function named ‘hex_to_bin(h)’

 | STEP 3: Inside function hex_to_bin(h), traverse each character of string ‘h’.

Check if the character inside the string contains values in between ‘A’ and ‘F’. Then
add 10 to the difference between ASCII values, i.e. (ord(‘ch’) – ord(‘A’)) + 10 and pass
the obtained sum ‘X’ as string to function dec_bin(X).

 | STEP 4: Calculate the equivalent binary number of x and print the same.

def dec_bin(x): #Decimal to Binary

 k=[]

 n=x

 while (n>0):

 a=int(float(n%2))

 k.append(a)

(Contd.)

Problem Solving and Python Programming200

 n=(n-a)/2

 k.append(0)

 string=””

 for j in k[::-1]:

 string=string+str(j)

 if len(string)>4:

 print(string[1:],end=’ ‘)

 elif len(string)>3:

 print(string,end=’ ‘)

 elif len(string)>2:

 print(‘0’+string,end=’ ‘)

 else:

 print(‘00’+string,end=’ ‘)

def hex_to_bin(h): #Hexdeciaml Number ‘h’ passed to function

 print(‘’,end=’’)

 for ch in range(len(h)):

 ch = h[ch]

 if ‘A’ <= ch <=’F’:

 dn = 10 + (ord(ch)-ord(‘A’))

 dec_bin(dn)

 else:

 dn = (ord(ch)-ord(‘0’))

 dec_bin(dn)

n=input(‘Please Enter Hexadecimal Number:’)

print(‘Equivalent Binary Number is as follows:’)

hex_to_bin(n)

output

Please Enter Hexadecimal Number:12FD

Equivalent Binary Number is as follows:

0001 0010 1111 1101

In the above program, initially the number as string is read from the user and passed to the
function hex_to_bin(). The function traverses all the characters. For each character it converts
into its equivalent decimal form ‘X’, the equivalent decimal number ‘X’ is passed to the function
dec_bin(X), to calculate the binary of a number. Thus, finally we obtain an equivalent binary
number for a given hexadecimal number.

Strings 201

 Summary

  String is the object of the str class.

  String object is immutable.

  The index[] operator is used to access individual characters in a string.

  You can use the for loop and the while loop to traverse the contents of a string.

  Various string methods can be used to manipulate strings and perform various operations such as
conversion of lower to uppercase, reversal, concatenation, comparison, search and replacement of
string elements.

 KEy TErmS

 � The index[] Operator: Access character

 � The +, * and in Operator: Concatenate, repetition, check characters in a string

 � Slicing str[start: end] Operation: Obtain substring

 � Comparison Operators: ==,!= , >=, <=

 � Immutable Strings: Cannot change the existing string

 � The split() Method: Returns a list of words

 � The format() Method: Format string, i.e. left justify, right justify or center

 � Testing String: Check if the string contains digits, numbers or alphanumeric characters.

 rEvIEw QuESTIonS

a. multiple Choice Questions

 1. What will be the output of the following program?

S1=”Welcome to JAVA Programming”

S2=S1.replace(“JAVA”,”Python”)

print(S1)

print(S2)

 a. Welcome to JAVA Programming b. Welcome to Python Programming

 c. Welcome to Java Python Programming d. None of the above

 2. What will be the output of the following program?

Str1 = “Hello”

Str2=Str1[:-1]

print(Str2)

 a. olle b. Hello

 c. el d. Hell

 3. What will be the output of the following program?

Str1= “The Sum of {0:b} and {1:b} is {2:b}”.format(2,2,4)

print(Str1)

Problem Solving and Python Programming202

 a. The Sum of 10 and 10 is 0100 b. The Sum of 2 and 2 is 100

 c. The Sum of 10 and 10 is 100 d. The Sum of 2 and 2 is 4

 4. What will be the output of the following program?

Str1=”ABBCCDEEBBFFERBBJJUIBB”

print(Str1.count(“BB”),end=’ ‘)

print(Str1.count(“BB”,1),end=’ ‘)

print(Str1.count(“BB”,2),end=’ ‘)

print(Str1.count(“BB”,3),end=’’)

 a. 4 4 3 3 b. 4 3 4 3

 c. 3 4 3 4 d. 4 4 4 3

 5. What will be the output of the following program?

Str1=”Python Programming”

Str1[0]=”J”

print(Str1)

 a. Jython Programming b. Jython

 c. Jython Jrogramming d. Error

 6. What will be the output of the following program?

S=”Programming”

for char in S:

 print(char, end=””)

 a. Programming b. P r o g r a m m i n g

 c. Error d. None of the above

 7. What will be the output of the following program?

S=”ILOVEWORLD”

for ch in range(0,len(S),3):

 print(S[ch],end=” “)

 a. I V O D b. I O W L

 c. I V W L d. I L O V

 8. What will be the output of the following program?

def countbc(word):

print(word)

count = 0

for bc in word:

 if (bc == ‘bc’):

 count = count + 1

return count

print(“ Number of ‘bc’ = “,countbc(“abcbabcaaa”))

 a. 0 b. 10

 c. 2 d. 1

 9. How would you print ‘UK’ for the given list?

Countries = [‘India’, ‘USA’, ‘UK’]

Strings 203

 a. Countries[2] b. Countries[-1:]

 c. Both a and b d. Only a

 10. What will be the output of the following program?

a = ‘\t\t\tPython\n\n’

print(a.strip())

 a. Python\n b. Python\n\n

 c. Python d. \t\tPython

 11. Which of the following is the equivalent of s[:-1]?

 a. s[:len(s)] b. s[len(s):]

 c. s[::] d. S[:-1]

B. True or False

 1. We cannot create an empty string.

 2. The negative index accesses characters from the beginning of a string.

 3. A programmer cannot use the for loop to traverse all characters in a string.

 4. It is impossible to traverse every third character of a string using the for loop.

 5. A programmer can only use the while loop to traverse all characters in a string.

 6. Mutable strings mean changeable strings.

 7. The slicing operator returns a subset of a string.

 8. The + operator concatenates two strings.

 9. The > is the comparison operator in strings.

 10. The format() is one of the methods used in strings.

 11. The isdigit() is used to test for integers.

 12. Python provides various methods to remove white space characters.

 13. Strings cannot be formatted.

 14. The rjust(int width) returns a string right justified in a field of the given width.

 15. The is Reverse(word1, word2) is used in Python.

C. Exercise Questions

 1. What is a string?

 2. How to create a string using a constructor of the str class?

 3. What is an index operator? How does it help in accessing characters? Give an example.

 4. Consider Str1, Str2, Str3, Str4 - the four different strings given as

 Str1=“Welcome to Python Programming”

 Str2 =”Welcome to Python Programming”

 Str3=Str1

 Str4=”to”

 What are the results of the following expressions?

 a. len(Str1) e. Str1[5:10]

 b. Str1[-7] f. Str1.count(‘m’)

 c. Str1[-3-1] g. Str1[8].capitalize()

 d. Str3==Str1 h. Str1+” “+Str1

Problem Solving and Python Programming204

 5. Write a procedure to traverse every third character of a string.

 6. How can all the elements of a string be traversed using the while loop?

 7. What is meant by immutable strings?

 8. What is the use of the slicing operator?

 9. How is a subset of a string obtained?

 10. How is step size in a string used?

 11. List the comparison operators in a string. Create a table indicating comparison operators and their
meaning.

 12. What is the use of the format () method?

 13. How can a string be broken?

 14. Explain the various methods to test if the strings entered contain digits or alphabets or alphanumerics.

 15. What do you mean by formatting a character?

 1. Write a program to read string and display ‘Total number of uppercase and lowercase
letters’.

 2. Write the function Echo_Word(word) which takes a word as the argument and returns a
word that repeats itself based on the number of letters in the word.

 3. Write the function Reverse_Word(word) which returns the word in the reverse order.

 4. Write the function startEndVowels(word) which returns True if the word starts and ends
with vowels.

 5. Write the function getVowels(word) which takes a word as an argument and returns the
vowels (‘a’, ‘e’, ‘i’, ‘o’, ‘u’) in that word.

 6. Write a program to read a string containing binary digits and convert it into its equivalent
decimal integer.

ProgrammIng aSSIgnmEnTS

UNIT 4

 Lists

 List Processing: Searching and Sorting

 Tuples and Dictionaries

8

Lists

LEARNING OUTCOMES

After completing this chapter, students will be able to:

• Explain the necessity and importance of ‘list’ in programming languages

• Create a list of different and mixed types

• Write programs to access the elements of a list using the positive index operator and the negative index
operator

• Explain list slicing with different features and programs

• Use various operators, such as +, * and in operators on lists

• Understand the concepts of Mutability and List Aliasing and Cloning

• Create a new list from an existing list, learn to pass a list to a function and write programs to return
lists from a function

ChApTER OUTLINE

 8.1 Introduction

 8.2 Creating Lists

 8.3 Accessing Elements of a List

 8.4 Negative List Indices

 8.5 List Slicing [Start: end]

 8.6 List Slicing with Step Size

 8.7 Python Built-in Functions for Lists

 8.8 The List Operator

 8.9 Mutability—List Aliasing and List
Cloning

 8.10 List Comprehensions

 8.11 List Methods

 8.12 List and Strings

 8.13 Splitting a String in List

 8.14 Passing List to a Function

 8.15 Returning List from a Function

Lists 207

8.1 INTRODUCTION

We need to store variables of the same data type on many occasions. For example, the currency
notes used in daily life in India are of denominations Rs. 5, 10, 20, 100, 5000 and 2000. In case, if the
programmer wants to display all these six currency notes, then by normal way of programming,
the programmer may print it by reading all the currency notes in six different variables. But, by
making uses of lists, the programmer can use just single variable to store all of the elements of same
type or different type and print it using single variable. Similarly, in day-to-day life applications,
we can make use of the lists to display the list of top 100 countries in the world, the list of students
qualifying GRE exams, a shopping list of grocery store and many more.

In Python, a list is a sequence of values called items or elements. The elements can be of any
types. The structure of list is similar to the structure of a string. More details about the lists in
Python are explained as follows.

8.2 CREATING LISTS

The List class define lists. The programmer can use list’s constructor to create a list. The following
example will give you a clear idea to create a list using the constructor of list class.

Example: Creating a list using constructor of list class

 a. Create an Empty List.
L1 = list();

 b. Create a list with any three integer elements, such as, 10, 20 and 30.
L2 = list([10,20,30])

 c. Create a list with three string elements, such as, “Apple”, ”Banana” and ”Grapes”.
L3 = list([“Apple”,”Banana”,”Grapes”])

 d. Create a list using built-in range() function.
L4 = list(range(0,6)) # create a list with elements from 0 to 5

 e. Create a list with built-in characters X, Y and Z.
L5=list(“XYZ”)

Example: Creating a list without using the constructor of list class

 a. Create a list with any three integer elements, such as, 10, 20 and 30.
L1=[10,20,30]

 b. Create a list with three string elements, such as, “Apple”, ”Banana” and ”Grapes”.
L2 = [“Apple”, “Banana”, “Grapes”]

Note: A list can contain the elements of mixed type.
Example:

L3=list([“Jhon”,”Male”,25,5.8])

The above example creates a list L3, which is of mixed type. It contains elements of different types, such
as, string, float and integer.

Problem Solving and Python Programming208

8.3 ACCESSING ELEMENTS OF A LIST

The elements of a list are identified by their positions. The index[] operator is used to access the
elements of a list. The following syntax is used to access the elements of a list.

Syntax

Name_of_Variable_of_a_List[index]

Example

>>> L1=([10,20,30,40,50]) #Create a List with 5 Different Elements

>>> L1 #print the complete List

[10, 20, 30, 40, 50]

>>> L1[0] # Print the first element of the List

10

Explanation The above example L1 creates a list of five elements.

 L1 = [10,20,30,40,50]

Where L1 is the reference variable of a list.

L1[4] 50

L1[3] 40

L1[2] 30

L1[1] 20

L1[0] 10

Figure 8.1 The list has five elements with index from 0 to 4

Note: a. The list retains its original order.
b. The list is an ordered set of elements enclosed in square brackets and separated by commas.
c. The index of a non-empty list always starts from zero.

8.4 NEGATIVE LIST INDICES

The negative index accesses elements from the end of the list counting in backward direction. The
index of last element of any non-empty list is always –1, as shown in Figure 8.2.

List1 = 10 20 30 40 50 60

–6 –5 –4 –3 –2 –1

Figure 8.2 List with negative index

Lists 209

Accessing the elements of a list using a negative index.

Example

>>> List1=[10,20,30,40,50,60] #Create a List

>>> List1[-1] #Access Last element of a List

60

>>> List1[-2] #Access the Second last element of List

50

>>> List1[-3] #Access the Third last element of List

40

>>>List1[-6] #Access the First Element of the List

10

Note: List[-n] == List[Length_of(List)-n]
Example:

>>>List1=[10,20,30,40,50,60]

>>>List1[-3]

40

Explanation:

List1[-3]==List1[Len(List1)-3]=List1[6-3]=List1[3].

 Thus, List1[-3]==List1[3] prints the element stored at index 3 counting in a forward direction from
the list or we can say it prints the element stored at index -3 counting in a backward direction from the list.

8.5 LIST SLICING [START: END]

The slicing operator returns a subset of a list, called slice by specifying two indices, i.e. start and
end. The following syntax is used to return the subset of a list.

Name_of_Variable_of_a_List[Start_Index: End_Index]

Example

>>> L1=([10,20,30,40,50]) #Create a List with 5 Different Elements

>>> L1[1:4]

20,30,40

The L1[1:4] returns the subset of list starting from the start index 1 to one index less than that
of end index, i.e. 4-1=3.

Example

>>> L1=([10,20,30,40,50]) #Create a List with 5 Different Elements

>>> L1[2:5]

[30, 40, 50]

In the example above, L1 creates a list of five elements. The index operator L1[2:5] returns all
the elements stored between the index 2 and the one less than the end index, i.e. 5-1=4.

Problem Solving and Python Programming210

8.6 LIST SLICING WITh STEp SIZE

So far, we have learnt how to select a portion of a list. In this section, we will explore how to select
every alternate second or third element of a list using step size. In slicing, the first two parameters
are start index and end index. Thus, we need to add a third parameter as step size to select a list
with step size.

Syntax

List_Name[Start_Index:End_Index:Step_Size]

Example

>>>MyList1=[“Hello”,1,”Monkey”,2,”Dog”,3,”Donkey”]

>>>New_List1=MyList1[0:6:2]

print(New_List1)

[‘Hello’, ‘Monkey’, ‘Dog’]

Explanation Initially, we have created a list named Mylist1 with five elements. The statement
MyList1[0:6:2] indicates to select the portion of list which starts on index 0 and ends at index 6 with
the step size as 2. It means that we, first, extract a section or slice of the list which starts at the index
0 and ends with index 6 and then selects every other second element.

Example

>>> List1=[“Python”,450,”C”,300,”,C++”,670]

>>> List1[0:6:3] #Start from Zero and Select every Third Element

[‘Python’, 300] #Output

8.6.1 Some More Complex Examples of List Slicing

>>> List1=[1,2,3,4] #List with Four Elements

>>> MyList1[:2] #Access first two elements of the List.

[1, 2]

>>> MyList1[::-1] #Display List in Reverse Order

[4, 3, 2, 1]

#Start index with -1 and End Index with 0 and step size with -1

>>> MyList1[-1:0:-1]

[4, 3, 2]

8.7 pYThON BUILT-IN FUNCTIONS FOR LISTS

Python provides various built-in functions that can be used with lists. Some of these are listed in
Table 8.1.

Lists 211

Table 8.1 In-built functions that can be used with the lists

In-built Functions Meaning

Len() Returns the number of elements in a list.

Max() Returns the element with the greatest value.

Min() Returns the element with the lowest value.

Sum() Returns the sum of all the elements.

random.shuffle() Shuffles the elements randomly.

Example

#Creates a List to store the names of Colors and return size of list.

>>> List1=[“Red”,“Orange”,“Pink”,“Green”]

>>> List1

[‘Red’, ‘Orange’, ‘Pink’, ‘Green’]

>>> len(List1) #Returns the Size of List

4

#Create a List, find the Greatest and Minimum value from the list.

>>> List2=[10,20,30,50,60]

>>> List2

[10, 20, 30, 50, 60]

>>> max(List2) #Returns the greatest element from the list.

60

>>> min(List2) #Returns the minimum element from the list.

10

#Create a List and Shuffle the elements in random manner.

#Test Case 1

>>>import random

>>> random.shuffle(List2)

>>> List2

[30, 10, 20, 50, 60]

>>> List2

[30, 10, 20, 50, 60]

#Test Case2

>>> random.shuffle(List2)

>>> List2

[20, 10, 30, 50, 60]

Problem Solving and Python Programming212

#Create a List and find the sum of all the elements of a List.

>>> List2=[10,20,30,50,60]

>>> List2

[10, 20, 30, 50, 60]

>>> sum(List2) #Returns the sum of all the elements

170

8.8 ThE LIST OpERATOR

 1. The + Operator: The concatenation operator ‘+’ is used to join two lists.

Example

>>> a=[1,2,3] #Create a list with three elements 1,2 and 3

>>> a #Prints the list

[1, 2, 3]

>>> b=[4,5,6] #Create a list with three elements 4,5 and 6

>>> b #print the list

[4, 5, 6]

>>> a+b #Concatenate the list a and b

[1, 2, 3, 4, 5, 6]

 2. The * Operator: The multiplication operator ‘*’ is used to replicate the elements of a list.

Example

>>> List1=[10,20]

>>> List1

[10, 20]

>>> List2=[20,30]

>>> List2

[20, 30]

>>> List3=2*List1 #Print each element of a List1 twice.

>>> List3

[10, 20, 10, 20]

 3. The in Operator: The in operator used to determine whether an element is in a list or not.
It returns true if the element is present in the list and returns false if the element is absent in
the list.

Example

>>> List1=[10,20]

>>> List1

[10, 20]

>>> 40 in List1 #To Check if 40 is present in List1

False

>>> 10 in List1 #To Check if 10 is present in List1

True

Lists 213

 4. The is Operator: Let us execute the following two statements:
 A=’Python’
 B=’Python’

We know that both A and B refer to a string but we don’t know whether they refer to the same
string or else. There are two possible situations as follows.

A ‘Python’

B ‘Python’

A ‘Python’

B

Figure 8.3 The is operator

In the first case, A and B refer to two different objects that have same values. In second case,
they refer to the same object. To understand whether two variables refer to the same object, a
programmer can use the ‘is’ operator.

Example

>>> A=’Microsoft’

>>> B=’Microsoft’

>>> A is B #Check if two variables refer to the same object

True

From the above example, it is clear that Python created only one string object and both A and B
refer to the same object. However, when we create two lists with the same elements, Python creates
two different objects as well.

Example

>>> A=[‘A’,‘B’,‘C’]

>>> B=[‘A’,‘B’,‘C’]

>>> A is B #Check if two lists refer to the same object

False

Explanation In the above example, the two lists A and B contain exactly the same number of
elements. The is operator is used to check if both the variables A and B refer to the same object.
But it returns False. It means that even if these two lists are same, Python creates two different
objects. For the above example, the ‘State’ diagram is as follows.

A [‘A’,’B’,’C’]

B [‘A’,’B’,’C’]

Figure 8.4 Effect of is Operator on list

Problem Solving and Python Programming214

It is important to note that in the above example, we can say that the two lists are equivalent,
because they have the same elements. We cannot say that both lists are identical, because, they
don’t refer to the same object.

Note: 1. In case of strings, if both the variables contain same values, then both of them refer to the same
object.

2. In case of a list, if two variables contain the list with the same number of elements, then both
of the variables refer to two different objects.

3. If two objects are identical then they are also equivalent.
4. But if two objects are equivalent, then it is not necessary that they will be identical.

 5. The del Operator: The del operator stands for Delete. The del operator is used to remove
the elements from the list. To delete the element of a list, the elements of the list are accessed
using their index position, and the del operator is placed before them.

Example

Lst=[10,20,30,40,50,60,70]

>>> del Lst[2] #Removes 3
rd
 element from the List

>>> Lst

[10, 20, 40, 50, 60, 70]

Lst=[10,20,30,40,50,60,70]

>>> del Lst[-1]

>>> Lst #Removes last element from the List

[10, 20, 30, 40, 50, 60]

>>> Lst=[10,20,30,40,50,60,70]

>>> del Lst[2:5] #Removes element from index position 2 to 4

>>> Lst

[10, 20, 60, 70]

>>> Lst=[10,20,30,40,50,60,70]

>>> del Lst[:] #Removes all the element from the List

>>> Lst

[]

Note: The del operator uses index to access the elements of a list. It gives a run-time error if the index is
out of range.

Example:

>>> del Lst[4]

Traceback (most recent call last):
File “<pyshell#37>”, line 1, in <module>

 del Lst[4]

IndexError: list assignment index out of range

Lists 215

8.9 MUTABILITY—LIST ALIASING AND LIST CLONING

The lists are mutable but the strings are immutable. As we know mutable means that where we
can change the contents of the lists by accessing it directly. Therefore, we can make the use of index
operators, i.e. square brackets to the change the contents of list.

Example

>>> A = [‘INDIA’,’USA’,’RUSSIA’]

>>> A

[‘INDIA’, ‘USA’, ‘RUSSIA’]

>>> A[1] = ‘France’

>>> A

[‘INDIA’, ‘France’, ‘RUSSIA’]

8.9.1 List Aliasing

We know that the variables refer to the objects. If we assign one variable to another, both variables
refer to the same object. Consider the following diagram explaining the concept of referencing.

A

B

10 20 30

Figure 8.5 Both variables refer to the same object

In Figure 8.5 above, the same list has two different names A and B, therefore, we can say that it
is aliased. The changes made with one alias will affect the other. The following statements being
executed on Python interactive mode will give in-depth information about aliasing.

Table 8.2 List Aliasing

Statement Graphical Representation of statement Output

A = [10, 20, 30] A

10 20 30

B = [10, 20, 30] A

10 20 30

B

10 20 30

print(A==B) True

print(A is B) False

B = A A

10 20 30

B

(Contd.)

Problem Solving and Python Programming216

print(A==B) True

print(A is B) True

print(A) [10,20,30]

print(B) [10,20,30]

B[0] = 100 B

100 20 30

print(B) [100, 20, 30]

Print(A) [100, 20, 30]

In the example above, as the same list has two different names, so we can say that it is aliased.
Therefore, from the Table 8.1 above, we can conclude the changes made with one alias affect to
the other.

8.9.2 Cloning List

If the programmer wants to modify the existing list and also wants to keep the original one, then
he needs to make a copy of the list itself. Thus, the process of copying list sometimes called cloning.

The slice operator is used to clone the list. If the cloning has been done, then the changes made to
the one list will not affect to the original existing list. The Table 8.3 below explains the graphical
step-wise execution of cloning list.

Table 8.3 List Cloning

Statement Graphical Representation of statement Output

A = [10, 20, 30] A

10 20 30

B = A[:] A

10 20 30

B

10 20 30

print(A == B) True

print(A is B) False

B[0] = 100 A

10 20 30

B

100 20 30

print(B) [100, 20, 30]

Print(A) [10, 20, 30]

8.10 LIST COMpREhENSIONS

The list comprehension is used to create a new list form existing sequences. It is a tool for
transforming a given list into another list.

Lists 217

Example: (Without List Comprehension)

Create a list to store five different numbers such as 10, 20, 30, 40 and 50. Using the ‘for’ loop, add
number 5 to the existing elements of the list.

>>> List1= [10, 20, 30, 40, 50]

>>> List1

[10, 20, 30, 40, 50]

>>> for i in range(0,len(List1)):

List1[i]=List1[i]+5 #Add 5 to each element of List1

>>> List1 #print the List1 After Performing

[15, 25, 35, 45, 55]

The above code works and thus it is fine. But the above written code is not the optimal code or
the best way to write the code in Python. Using list comprehension, we can replace the loop with a
single expression that produces the same result.

The syntax of list comprehension is based on set builder notation in mathematics. Whereas the
set builder is a mathematical notation for describing a set by stating the property which its member
should satisfy. The syntax is as follows.

Syntax of List Comprehension

[<expression> for <element> in <sequence> if <conditional>]

The syntax is designed to read like English as “Compute the expression for each element in the

sequence if the conditional is true.”

Example: (Using List Comprehension)

>>> List1= [10, 20, 30, 40, 50]

>>> List1

 [10, 20, 30, 40, 50]

>>>for i in range(0,len(List1)):

 List1[i]=List1[i]+10

>>>List1

[20, 30, 40, 50, 60]

>>> List1= [10,20,30,40,50]

>>> List1= [x+10 for x in List1]

>>> List1

[20, 30, 40, 50, 60]

 Without list comprehension Using list comprehension

In the above example, the output for both without list comprehension and using list
comprehension is the same. But using list comprehension, it requires less code and also it runs
faster. With reference to the above example we can say list comprehension contains:

 a. An input sequence

 b. A variable referencing the input sequence

 c. An optional expression

 d. An output expression or output variable

Problem Solving and Python Programming218

Example

List1= [20, 30, 40, 50, 60]

List1= [x+10 for x in List1]

 (An output (An input sequence)

 variable)

 (A variable referencing

 an input sequence)

Output [20, 30, 40, 50, 60]

PrOgram 8.1
 Write a program to create a list with elements 1, 2, 3, 4 and 5. Display even elements of the list
using list comprehension.

List1=[1,2,3,4,5]

print(“Content of List1”)

print(List1)

List1=[x for x in List1 if x%2==0]

print(“Even elements from the List1”)

print(List1)

Output

Content of List1

 [1, 2, 3, 4, 5]

Even elements from the List1 List1

 [2, 4]

Explanation The List1 contains elements 1,2,3,4 and 5. The statement List1=[x for x in

List1 if x%2==0] consist of an output variable x and an input sequence List1 and an expression
x%2==0.

8.10.1 Some More Examples of List Comprehension

PrOgram 8.2 Consider the following mathematical expressions.

 A = {X2: x in {0………9}}

 B = {X3: x in {0……9}}

 C = {X : x in A and even}

Write a program to create a list ‘A’ to generate squares of a number (from 1 to 10), list ‘B’ to generate cubes of
a number (from 1 to 10) and list ‘C’ with those element that are even and present in list ‘A’.

Lists 219

print(“ListA = “,end=” “)

A=[x**2 for x in range(11)] #Computes Square of a number X

print(A)

B=[x**3 for x in range(11)] #Computes Cube of a number X

print(“ListB = “,end=” “)

print(B)

print(“Only Even Numbers from ListA = “,end=” “)

C=[x for x in A if x%2==0]

print(C)

Output

ListA = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

ListB = [0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

Only Even Numbers from ListA = [0, 4, 16, 36, 64, 100]

PrOgram 8.3 Consider the list with five different Celsius values. Convert all the Celsius values into Fahrenheit.

Note: Formulae to convert Celsius Values to Fahrenheit.
Fahrenheit = (9/5) * Celsius + 32

print(“All the elements with Celsius Value:”)

print(“Celsius= “,end=” “)

Celsius=[10,20,31.3,40,39.2] #List with Celsius Value

print(Celsius)

print(“ Celsius to Fahrenheit Conversion “)

print(“Fahrenheit = “,end=” “)

Fahrenheit=[((float(9)/5)*x + 32) for x in Celsius]

print(Fahrenheit)

Output

All the elements with Celsius Value:

Celsius= [10, 20, 31.3, 40, 39.2]

Celsius to Fahrenheit Conversion

Fahrenheit = [50.0, 68.0, 88.34, 104.0, 102.56]

Problem Solving and Python Programming220

PrOgram 8.4
 Consider the list with mixed type of elements, such as L1 = [1, ’x’, 4, 5.6, ’z’, 9, ‘a’, 0, 4]. Create
another list using list comprehension which consists of only the integer element present within
the list L1.

print(“List With Mixed Elements”)

L1 = [1, ‘x’, 4, 5.6, ‘z’, 9, ‘a’, 0, 4]

print(L1)

print(“List With only Integer Elements:”)

L2 = [e for e in L1 if type(e) == int]

print(L2)

Output

List with Mixed Elements:

 [1, ‘x’, 4, 5.6, ‘z’, 9, ‘a’, 0, 4]

List with only Integer Elements:

 [1, 4, 9, 0, 4]

8.11 LIST METhODS

Once a list is created, we can use the methods of list class to manipulate the list. Table 8.4 below
contains the methods of the list class along with examples.

Table 8.4 The methods of list along with examples

Methods of Lists Meaning

None append(object x) Adds an element x to the end of the list. None is the return
type of the appended method.

Example:
>>> List1=[‘X’,’Y’,’Z’]

>>> List1

[‘X’, ‘Y’, ‘Z’]

>>> List1.append(‘A’) #Append element ‘A’ to the end of the List1

>>> List1

[‘X’, ‘Y’, ‘Z’, ‘A’]

Note: Append method is equivalent to doing:

 List1[len(List1):]=[Element_Name]

Example:
>>>List1=[“Red”,”Blue”,”Pink”]

>>> List1

[‘Red’, ‘Blue’, ‘Pink’]

>>> List1[len(List1):]=[‘Yellow’]

>>> List1

[‘Red’, ‘Blue’, ‘Pink’, ‘Yellow’]

None clear() Removes all the items from the list.

(Contd.)

Lists 221

Example:
>>> List1=[“Red”,”Blue”,”Pink”]

>>> List1

[‘Red’, ‘Blue’, ‘Pink’]

>>> List1.clear() # Removes all the elements of List

>>> List1 # Returns Empty List after removing all elements

[]

int count(object x) Returns the number of times element x appears in the list.

Example:
>>> List1=[‘A’,’B’,’C’,’A’,’B’,’Z’]

>>> List1

[‘A’, ‘B’, ‘C’, ‘A’, ‘B’, ‘Z’]

#Count the number of times the element ‘A’ has appeared in the list

>>> List1.count(‘A’)

2 # Thus, ‘A’ has appeared 2 times in List1

List copy() This method returns a shallow copy of the list.

Example:
>>> List1=[“Red”,”Blue”,”Pink”]

>>> List1

[‘Red’, ‘Blue’, ‘Pink’]

>>> List2=List1.copy() #Copy the contents of List1 to List2

>>> List2

[‘Red’, ‘Blue’, ‘Pink’]

Note: Copy() Method is equivalent to doing
List2=List1[:] # Copies the content of List1 to List2

Example:
>>> List1=[“Red”,”Blue”,”Pink”]

>>> List2=List1[:]

>>> List2

[‘Red’, ‘Blue’, ‘Pink’]

None extend(list L2) Appends all the elements of list L2 to the list.

Example:
>>> List1=[1,2,3]

>>> List2=[4,5,6]

>>> List1

[1, 2, 3]

>>> List2

[4, 5, 6]

>>> List1.extend(List2) #Appends all the elements of List2 to List1

>>> List1

[1, 2, 3, 4, 5, 6]

int index(object x) Returns the index of first occurrence of element x from the list.

(Contd.)

Problem Solving and Python Programming222

Example:
>>> List1=[‘A’,’B’,’C’,’B’,’D’,’A’]

>>> List1

[‘A’, ‘B’, ‘C’, ‘B’, ‘D’, ‘A’]

#Returns the index of first occurrence of element ‘B’ from the list1

>>> List1.index(‘B’)

1 #Returns the index of element B

None insert(int index,Object X) Insert the element at given index.
Note: The index of first element of a list is always zero.

Example:
>>> Lis1=[10,20,30,40,60]

>>> Lis1

[10, 20, 30, 40, 60]

>>> Lis1.insert(4,50) #Insert Element 50 at index 4

>>> Lis1

[10, 20, 30, 40, 50, 60]

Object pop(i) Removes the element from the given position. Also it
returns the removed element.

Note: The parameter ‘i’ is optional. If it is not specified,
then it removes the last element from the list.

Example:
>>> Lis1=[10,20,30,40,60]

>>> Lis1

[10, 20, 30, 40, 60]

>>> Lis1.pop(1) #Remove the element which is at index 1.

20

>>> Lis1 #Display List after removing the element from index 1.

[10, 30, 40, 60]

>>> Lis1.pop() #Remove the last element from the list

60

>>> Lis1

[10, 30, 40] #Display the list after removing last element

None remove(object x) Removes the first occurrence of element x from the list.

Example:
>>> List1=[‘A’,’B’,’C’,’B’,’D’,’E’]

>>> List1

[‘A’, ‘B’, ‘C’, ‘B’, ‘D’, ‘E’]

>>> List1.remove(‘B’) #Removes the first occurrence of element B

>>> List1

[‘A’, ‘C’, ‘B’, ‘D’, ‘E’]

None reverse() Reverse the element of the list.

(Contd.)

Lists 223

Example:
>>> List1=[‘A’,’B’,’C’,’B’,’D’,’E’]

>>> List1

[‘A’, ‘B’, ‘C’, ‘B’, ‘D’, ‘E’]

>>> List1.reverse() #Reverse all the elements of the list.

>>> List1

[‘E’, ‘D’, ‘B’, ‘C’, ‘B’, ‘A’]

None sort() Sort the elements of list.

Example:
>>> List1=[‘G’,’F’,’A’,’C’,’B’]

>>> List1

[‘G’, ‘F’, ‘A’, ‘C’, ‘B’] #Unsorted List

>>> List1.sort()

>>> List1 #Sorted List

[‘A’, ‘B’, ‘C’, ‘F’, ‘G’]

 Q.1 What is the output of following program?

my_list = [‘two’, 5, [‘one’, 2]]

print(len(my_list))

Output

3

Explanation [‘one’, 2] is one element so the overall length is 3.

 Q.2 What is the output of the following program?

Mixed_List=[‘pet’, ‘dog’, 5, ‘cat’, ‘good’, ‘dog’]

Mixed_List.count(‘dog’)

Output

2

Explanation It returns the number of occurrence of “dog” in the list.

 Q.3 What will be the output of the following program?

Mylist=[‘Red’, 3]

Mylist.extend(‘Green’)

print(Mylist)

Output

[‘Red’, 3, ‘G’, ‘r’, ‘e’, ‘e’, ‘n’]

Problem Solving and Python Programming224

Explanation Extend the list by adding each character to it.

 Q.4 What is the output of the following program?

Mylist=[3, ‘Roses’, 2,’ Chocolate ‘]

Mylist.remove(3)

Mylist

Output

[‘Roses’, 2, ‘Chocolate’]

Explanation Remove the item from the list whose value is 3.

8.12 LIST AND STRINGS

A string is a sequence of characters and list is sequence of values, but a list of characters is not the
same as string. To convert from the string to a list of characters, you can use the list.

Example: Convert String to list of Characters

>>> p=’Python’

>>> p

‘Python’

>>> L=list(p)

>>> L

[‘p’, ‘y’, ‘t’, ‘h’, ‘o’, ‘n’]

8.13 SpLITTING A STRING IN LIST

In the above example, we have used the built-in function list. The list() function breaks a string
into individual letters. In this section, we will explore how to split a string into word.

The str class contains the split method. It is used to split the string into words.

Example

>>> A=”Wow!!! I Love Python Programming” #A Complete String

>>> B=A.split() #Split a String into Words

>>> B #Print the contents of B

[‘Wow!!!’, ‘I’, ‘Love’, ‘Python’, ‘Programming’]

Explanation In the above example, initially we have initialized string to A as “Wow!!! I Love
Python Programming”. In the next line, the statement, B = A.split() is used to split the Wow!!! I Love
Python Programming” into the list [‘Wow!!!’, ‘I’, ‘Love’, ‘Python’, ‘Programming’].

Lists 225

Note: In the above Program, we have used following two lines to split string into words:
>>> A=”Wow!!! I Love Python Programming”

>>> B=A.split()

We can also write the split method as follows.

>>> A=”Wow!!! I Love Python Programming”.split()

It is fine to split the string without delimiter. But what will be happened if the string contains
the delimiter? A string containing a delimiter can be split into words by removing the delimiter. It
is also possible to remove delimiter from the strings and convert the entire string into list of words.
In order to remove delimiter the split() method has one parameter called split(delimiter). The

parameter delimiter specifies the character to be removed from the string. The following example
illustrates the use of delimiter inside the split() method.

Example

>>> P=”My-Data-of-Birth-03-June-1991” #String with Delimiter ‘-‘

>>> P #Print the Entire String

‘My-Data-of-Birth-03-June-1991’

>>> P.split(‘-’) #Remove the delimiter ‘–‘ using split

 method.

[‘My’, ‘Data’, ‘of’, ‘Birth’, ‘03’, ‘June’, ‘1991’]

8.14 pASSING LIST TO A FUNCTION

As list is a mutable object. A programmer can pass a list to a function and can perform various
operations on the list. Even one may change the contents of the list after passing a list to a function.
Since a list is an object, passing a list to a function is just like passing an object to a function.

Consider the following example to print the contents of a list after the list is passed to a function.

PrOgram 8.5
 Create a List of five elements. Pass list to a function and print the contents of the list inside
the function.

def Print_List(Lst):

 for num in Lst:

 print(num,end=” “)

Lst=[10,20,30,40,100]

Print_List(Lst) #Invoke Function by Passing List as Parameter

Output

10 20 30 40 100

Problem Solving and Python Programming226

PrOgram 8.6 Create a list of five elements. Pass the list to a function and compute the average of five numbers.

def Calculate_Avg(Lst):

 print(‘Lst= ‘,Lst)

 print(‘ Sum = ‘,sum(Lst))

 avg=sum(Lst)/len(Lst)

 print(‘ Average = ‘,avg)

Lst=[10,20,30,40,3]

Calculate_Avg(Lst)

Output

Lst = [10, 20, 30, 40, 3]

Sum = 103

Average = 20.6

PrOgram 8.7
 Write a function Split_List(Lst,n), where list Lst is split in two parts and the length of the first part
is given as n.

Example

Lst = [1, 2, 3, 4, 5, 6]

Split_List(Lst,2)

Lst1=[1,2]

Lst2=[3,4,5,6]

Solution

def Split_List(Lst,n) :

 list1 = Lst[:n]

 list2 = Lst[n:]

 print(‘First List with ‘,n,’ elements’)

 print(list1)

 print(‘Second List with ‘,len(Lst)-n,’ elements ‘)

 print(list2)

#Sample test:

Lst = [100,22,32,43,51,64]

print(‘List Lst Before Splitting’)

print(Lst)

Split_List(Lst,4)

(Contd.)

Lists 227

Output

List Lst Before Splitting

[100, 22, 32, 43, 51, 64]

First List with 4 elements

[100, 22, 32, 43]

Second List with 2 elements

[51, 64]

8.15 RETURNING LIST FROM A FUNCTION

We can pass a list while invoking a function. Similarly, a function can return a list. When a function
returns a list, the list’s reference value is returned.

Consider the following example to pass a list to a function. After passing, reverse the elements
of the list and returned the list.

PrOgram 8.8
 Write a program to pass a list to a function

def Reverse_List(Lst):

print(‘List Before Reversing = ‘,Lst)

Lst.reverse() #The reverse() to reverse the contents of list

return Lst #Return List

Lst=[10,20,30,40,3]

print(‘List after Reversing = ‘,Reverse_List(Lst))

Output

List before reversing = [10, 20, 30, 40, 3]

List after reversing = [3, 40, 30, 20, 10]

PrOgram 8.9
 Write a function that accepts a positive integer k and returns a list that contains the first five
multiples of k.

Example

The first five multiples of 3 are 3, 6, 9, 12, and 15.

Solution

def list_of_multiples(k):

my_list=[]

for i in range(1,6):

res=k*i

my_list.append(res)

(Contd.)

Problem Solving and Python Programming228

return my_list

print(list_of_multiples(3))

Output

[3, 6, 9, 12, 15]

8.15.1 Some More programs on List

PrOgram 8.10
 Write a function that accepts two positive integers, viz. a and b and returns a list of all the even
numbers between a and b (including a and not including b).

Example: Even Numbers between 10 and 20

[10,12,14,16,18]

def list_of_even_numbers(start, end):

output_list = []

for number in range(start, end):

check if the number is even

if number % 2 == 0:

if true put the numbers in the output list

output_list.append(number)

return output_list

print(list_of_even_numbers(10, 20))

Output

[10, 12, 14, 16, 18]

PrOgram 8.11
 Write a function is_Lst_Palindrome(Lst) to check whether a list is palindrome. It should return true
if Lst is palindrome and false if Lst is not palindrome.

Note: List is palindrome if it contains the same elements in forward direction & reverse direction.

Example

Lst = [1,2,3,2,1] #Should return true

Lst = [1,2,3] #Should return false.

Lists 229

Solution

def is_Lst_Palindrome(Lst):

r = Lst[::-1]

for i in range (0, (len(Lst) + 1)//2):

if r[i] != Lst[i]:

return False

return True

#Sample test

Lst = [1,2,3,2,1]

x = is_Lst_Palindrome(Lst)

print(Lst,”(is palindrome): “,x)

Lst1 = [1,2,3,4]

x = is_Lst_Palindrome(Lst1)

print(Lst1,”(is palindrome): “,x)

Output

[1, 2, 3, 2, 1] (is palindrome): True

[1, 2, 3, 4] (is palindrome): False

PrOgram 8.12
 Write a function check_duplicate(Lst) that returns true if a list Lst contains duplicate elements. It
should return false if all the elements in the list Lst are unique.

Example

Lst = [4,6,2,1,6,7,4]

Should return true as 4 and 6 appears more than once.

Lst = [1,2,3,12,4]

Should return false as all the elements appears only once.

Solution

def check_duplicate(Lst) :

dup_Lst = []

for i in Lst:

if i not in dup_Lst:

dup_Lst.append(i)

else:

return True

return False

#Sample test:

Lst = [4,6,2,1,6,7,4]

(Contd.)

Problem Solving and Python Programming230

print(Lst)

x = check_duplicate(Lst)

print(x)

Lst1 = [1,2,3,12,4]

print(Lst1)

x = check_duplicate(Lst1)

print(x

Output

[4, 6, 2, 1, 6, 7, 4]

True #Returns true since 4 and 6 is repeated twice

[1, 2, 3, 12, 4]

False

#Returns false since no element from above list is repeated twice

PrOgram 8.13
 Write a Program that prompts the user to enter the element of list and add the element to a
list. Write a function maximum(Lst) and minimum(Lst) to find the maximum and minimum
number from the List.

Example

Lst = [12,34,45,77]

#Should return 12 as Minimum and 77 as Maximum.

Solution

lst = []

for i in range(0,4):

x = input(‘Enter element to add to the list:’)

x = int(x)

lst.append(x)

print(‘Elements of List are as follows:’)

print(lst)

def maximum(lst):

 myMax = lst[0]

 for num in lst:

 if myMax < num:

 myMax = num

 return myMax

def minimum(lst):

 myMin = lst[0]

 for num in lst:

 if myMin > num:

 myMin = num

 return myMin

(Contd.)

Lists 231

#Sample test

y = maximum(lst)

print(‘Maximum Element from List = ‘,y)

y = minimum(lst)

print(‘Minimum Element from the List = ‘,y)

Output

Enter element to add to the list:665

Enter element to add to the list:234

Enter element to add to the list:213

Enter element to add to the list:908

Elements of List are as follows:

[665, 234, 213, 908]

Maximum Element from List = 908

Minimum Element from the List = 213

PrOgram 8.14
 Write a function Assign_grade(Lst), that read the marks of student from the list and assign grade
based on the following conditions.

 if Marks >=90 then grade A

 if Marks >=80 && <90 then grade B

 if Marks >65 && < 80 then grade C

 if Marks > =40 && <=65 then grade D

 if Marks <40 then grade F

Example: Consider the List of Marks of five students in English Subject.

Lst=[78,90,34,56,89]

#Should return

 Student 1 Marks 78 grade C

 Student 2 Marks 90 grade A

 Student 3 Marks 34 grade F

 Student 4 Marks 56 grade D

 Student 5 Marks 89 grade B

def Assign_grade(Lst):

 for Marks in Lst :

 if Marks >= 90:

 print(‘Student’,Lst.index(Marks) + 1,’Marks =’,Marks,’ grade A’)

 elif Marks >=80 and Marks<90:

 print(‘Student’,Lst.index(Marks) + 1,’Marks =’,Marks,’ grade B’)

(Contd.)

Problem Solving and Python Programming232

 elif Marks >65 and Marks< 80 :

 print(‘Student’,Lst.index(Marks) + 1,’Marks =’,Marks,’ grade C’)

 elif Marks >=40 and Marks<=65:

 print(‘Student’,Lst.index(Marks) + 1,’Marks =’,Marks,’ grade D’)

 else:

 print(‘Student’,Lst.index(Marks) + 1,’Marks =’,Marks,’ grade F’)

#Sample test

Lst=[78,90,34,56,89]

print(‘Marks of 5 Student = ‘,Lst)

Assign_grade(Lst)

Output

Marks of 5 Student = [78, 90, 34, 56, 89]

Student 1 Marks = 78 grade C

Student 2 Marks = 90 grade A

Student 3 Marks = 34 grade F

Student 4 Marks = 56 grade D

Student 5 Marks = 89 grade B

PrOgram 8.15
 Write a function check_duplicate(Lst) that returns true if a list Lst contains duplicate elements.
It should return false if all the elements in the list Lst are unique.

Example

Lst = [4,6,2,1,6,7,4]

Should return true as 4 and 6 appears more than once.

Lst = [1,2,3,12,4]

Should return false as all the elements appears only once.

Solution

def check_duplicate(Lst) :

 dup_Lst = []

 for i in Lst:

 if i not in dup_Lst:

 dup_Lst.append(i)

 else:

 return True

 return False

#Sample test:

Lst = [4,6,2,1,6,7,4]

print(Lst)

x = check_duplicate(Lst)

print(x)

Lists 233

Lst1 = [1,2,3,12,4]

print(Lst1)

x = check_duplicate(Lst1)

print(x)

Output

[4, 6, 2, 1, 6, 7, 4]

True #Returns true since 4 and 6 is repeated twice

[1, 2, 3, 12, 4]

False #Returns false since no element from above list is repeated twice

PrOgram 8.16
 Write a function print_reverse(Lst) to reverse the elements of a list.

Note: Reverse the contents of a list without using reverse() method of a list and without using slicing.

Lst=[12,23,4,5]

Should reverse the contents of list as follows

Lst=[5,4,23,12]

Solution
def print_reverse(Lst):

 print(‘List Before Reversing’)

 print(Lst)

 lst = []

 count = 1

 for i in range(0,len(Lst)):

 lst.append(Lst[len(Lst)-count])

 count += 1

 lst = str(lst)

 lst = ‘ ‘.join(lst)

 return lst

#Sample test:

Lst=[12,23,4,5,1,9]

x = print_reverse(Lst)

print(‘List After Reversing’)

print(x)

Output

List before reversing

 [12, 23, 4, 5, 1, 9]

List after reversing

 [9, 1, 5, 4, 23, 12]

(Contd.)

Problem Solving and Python Programming234

PrOgram 8.17
 Write a function that accepts two positive integers, viz. a and b where a is smaller than b. It
returns a list that contains all the odd numbers between a and b (including a and including b if
applicable) in descending order.

Example: Odd Numbers between 10 and 20 should create the list and print the list in
descending order as follows.

[19, 17, 15, 13, 11]

Solution

def list_of_odd_numbers(start, end):

 output_list = []

 for number in range(start, end+1):

 #check if the number is odd

 if number % 2 == 1:

 #if true put the numbers in the output list

 output_list.append(number)

 #Sort the List

 output_list.sort()

 #Reverse the list to displat elements in descending order

 output_list.reverse()

 return output_list

print(list_of_odd_numbers(10, 20))

Output

[19, 17, 15, 13, 11]

PrOgram 8.18
 Write a program to return prime numbers from a list.

Solution

List1=[3,17,9,2,4,8,97,43,39]

print(‘List1= ‘,List1)

lst = []

print(‘Prime Numbers from the List are as Follows:’)

for a in List1 :

 prime = True

 for i in range(2, a):

 if (a%i == 0):

 prime = False

 break

(Contd.)

Lists 235

 if prime:

 lst.append(a)

print(lst)

Output

List1 = [3, 17, 9, 2, 4, 8, 97, 43, 39]

Prime Numbers from the List are as follows:

[3, 17, 2, 97, 43]

 SUmmary

  A list is a sequence of zero or more elements.

  The element within a list can be of any types.

  The list is mutable kind of data structure.

  A list can be initialized in different ways, i.e. with and without using constructor lists.

  The index operator is used to access elements of a list.

  The negative index accesses elements from the end of a list by counting in backward direction.

  The slicing operator and list slicing with step-size returns a subset of a list.

  Various built-in functions can be used with lists.

  The ‘for’ loop can be used to traverse the elements of a list.

  List comprehension can be used to create a new list from existing sequences. It is a tool for transforming
a given list into another list.

  Methods, such as copy(), reverse() and sort() can be used to copy, reverse and sort the elements of a list.

  Methods, such as append(), extend(), insert(), pop() and remove() to add, insert and remove contents
from the list.

  Proficiency in a list is impossible unless the unanswered problems are taken up for solving.

 KEy TErmS

 � The index[] Operator: It accesses elements of a list.

 � List Slicing: It returns a subset of a list.

 � List Comprehensions: It creates a new list from an existing list.

 � The split() Method: It splits a string into words.

 � The List Built-in Method: min(), max(), shuffle(), len() and sum().

Problem Solving and Python Programming236

 rEviEW QUESTiOnS

a. multiple Choice Questions

 1. Given: List1 = [‘a’,’b’,’c’,’d’].

 What will be the output of the following statement?
List1 = [x for x in List1 if ord(x) > 97]

print(List1)

 a. [‘a’,’b’,’c’] b. [‘b’,’c’,’d’]

 c. [‘a’,’b’,’c’,’d’] d. None of the above

 2. Consider the list, L = [‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’]. Which one of the following outputs is correct?

 a. >>> L[0::3] b. >>> L[0:-1]

 [‘a’, ‘c’, ‘f’, ‘i’] [‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’]

 c. >>> L[0:2] [‘a’,’b’,’c’] d. None of the above

 3. Consider the list L1 containing the elements L1= [1,2,3].

 What will be the output of the following statement?
L1 = L1 + [4, 5, 6]

 a. L1 =[1,2,3,5,7,9] b. L1 =[4,5,6]

 c. L1 =[5,7,9] d. L1 =[1,2,3,4,5,6]

 4. What will be the output of the following statement?

List1 = [[n, n + 1, n + 2] for n in range(0, 3)]

 a. [0,1 ,2]

 b. [[0,1,2],[0,1,2],[0,1,2]]

 c. [[0,1,2],[1,2,3],[2,3,4]]

 d. [[0,1,2],[2,3,4],[4,5,6]]

 5. What will be the output of the following statement?

>>> string = ‘DONALD TRUMPH’

>>> k = [print(i) for i in string if i not in “aeiou”]

>>> print(k)

 a. DONALD TRUMPH b. DNLD TRMPH

 c. DNLD d. None of the above

 6. What will be the output of the following program?
def func1(L):

 L[0]=’A’

 L1=[1,2,3]

 func1(L1)

 print(L1)

 a. [1,2,3] b. [1,’A’,’2’]

 c. [‘A’,1,2] d. [‘A’,’1’,’2’]

Lists 237

 7. What will be the output of the following statement?

>>> L1=[‘A’,’B’,3,4,5]

>>> L1[::-1]

>>> print(L1)

 a. [5,4,3,’B’,’A’]

 b. [‘A’,’B’,3,4,5]

 c. [‘A’,3,5]

 d. [5,3,’A’]

 8. How will a new element be added to the empty list L1?

 a. L1.append(10) b. L1.add(10)

 c. L1.appendLast(10) d. L1.addLast(10)

 9. What will be the output of the following program?

list1=[10,30]

list2 = list1

list1[0] = 40

print(list2)

 a. 10, 30 b. 40, 30

 c. 10, 40 d. 30, 40

 10. List1 = [‘A’,’B’,’C’] and List2 = [‘B’,’A’,’C’]

 Is List1 == List2?

 a. Yes c. Cannot predict

 b. No d. None of the above

B. True or False

 1. The list() is used to create an empty list.

 2. The range() is used for creating a list with elements from 0 to 5.

 3. A list can be created without using a constructor.

 4. The elements of a list are not identified by their positions.

 5. The negative index accesses elements from the start of a list.

 6. List1[-1] accesses the first element of a list.

 7. L1[2:5] returns all the elements stored between the index 2 and the one less than the end index,
i.e. 5-1=4.

 8. It is possible to access the elements of a list only in sequence.

 9. The len() returns a number of elements in a list.

 10. The sum() returns the sum of all the elements in a list.

 11. It is impossible to shuffle elements randomly in a list.

 12. The concatenation operator ‘+’ is used to join two lists.

 13. The multiplication operator ‘*’ is used to replicate the elements in a list.

 14. The del operator is used to remove a specific element from a list.

 15. Odd elements of a list can be displayed using list comprehension.

 16. One can insert an element at a given index.

 17. The pop(1) removes an element from a list which is at index 1.

Problem Solving and Python Programming238

 18. The pop() removes the last element from a list.

 19. A string is a sequence of characters.

 20. A programmer can pass a list to a function and perform various operations.

C. Exercise Questions

 1. How is a list created?

 2. Explain the different ways to create a list with suitable examples.

 3. What is meant by slicing operation?

 4. What is the benefit of step size in a list?

 5. Explain the supporting inbuilt functions used to create lists.

 6. List and clarify the operators supporting lists.

 7. What is the use of the ‘is’ operator in Python?

 8. Which operator is used to delete elements from a list?

 9. What application is used for list comprehension?

 10. What facilitates counting of similar elements in a list?

 11. How are elements of a list reversed?

 12. How is a string converted into characters?

 13. How is an empty list and list with five integers, i.e. 10, 15, 30, 50 and 40 created?

 14. Given: List1 = [‘a’,’b’,’c’,’d’,’e’] and List2 = [1,2,3]. What is return value of each of the following statements?

 a. List2+List1 b. List1+List2

 c. List2*2 d. 2*List2

 15. Given: List1 = [100,200,400,500]. What is return value of following statements?

 a. min(List1) b. max(List1)

 c. sum(List1) d. List.count(400)

 e. List1.count(100)+List1.count(200)

 16. Given: List1 = [12,23,45,23]. What is return value of following statements?

 a. List1*List1.count(23) b. List1+List1[:]

 c. List1+List1[-1:] d. List1+List1[::]

 e. List1+List1[::-1]

 17. Given: List Lst = [10,23,5,56,78,90]. Evaluate the following expressions.

 a. Lst[:] b. Lst[0:4]

 c. Lst[:-1] d. Lst[-1:]

 e. Lst[-1] f. Lst[::-1]

 g. Lst[:-1:] h. Lst[:-2:]

 18. Given: List1 = [12,45,7,89,90]. What is return value of following statements?

 a. List1.reverse() b. List1.sort()

 c. List1.appned(10) d. List.pop(2)

 e. List1.clear()

Lists 239

 1. Write a function Replicate_n_times(Lst,n) to replicate the elements of a list n times, i.e. to replicate
the elements of a list for given number of times.

 Example:

Lst = [1, 2, 3, 4]

Replicate_n_time(Lst,2)

Lst = [1,1,2,2,3,3,4,4]

 2. Write a program to count the occurrences of each element within a list.

 Example:
Lst = [1, 23, 0, 9, 0 ,23]

 1 occurs 1 time

 23 occurs 2 times

 0 occurs 2 times

 9 occurs 1 times

 3. Write the function remove_negative(Lst) to remove negative elements and return positive
elements from a list.

 Example:

Lst = [-1, 0,2,-4,12]

#Should return list with positive elements

Lst = [0,2,12]

 4. Write a program to duplicate all the elements of a list.

 Example:

Lst=[1,2,3]

#Should return

Lst=[1,1,2,2,3,3]

 5. Write a program to check if an element of a list is a prime number. If it is prime, return True or
else return False.

 Example:

List1=[3,17,9,2,4,8]

#Should display

List1=[True, True, False, False, False, False]

PrOgramming aSSignmEnTS

 19. What is the output of following program?

List1=[‘a’,’b’,’c’,’d’]

List2=List1

print(List1)

List1[1]=’f’

print(List1)

print(List2)

 20. Write a program to pass a list to a function and return it in the reverse order.

(Contd.)

Problem Solving and Python Programming240

PrOgramming aSSignmEnTS (Contd.)

 6. Write a function remove_first_last(list) to remove first and last element from the list.

 Example:

List1=[10,20,30,40,50]

removeFirstAndLast(List1)

#Should return

[20, 30, 40]

 7. Write a function Extract_Even(List) to return all even numbers from a list.

 Example:

List1=[1,2,3,4,5,6]

Extract_Even(List1)

#Should return

[2,4,6]

9

List Processing: Searching
and Sorting

Learning OutcOmes

After completing this chapter, students will be able to:

• Develop applications based on different searching and sorting techniques

• Explain the importance of information retrieval

• Perform program implementation on linear/sequential search method and analysis of sequential
search method

• Search an element from a list using binary search

• Sort the elements of a list using different sorting techniques, such as bubble sort, selection sort, quick
sort, insertion and merge sort

chapter OutLine

 9.1 Introduction

 9.2 Searching Techniques

 9.3 Introduction to Sorting

9.1 intrOductiOn

Numerous applications are available today to search and sort objects or items. For example, many
a times, official files or list of meritorious students based on marks are stored alphabetically and
sorted in a descending order. Thereby, making it easier to search for a specific item from the sorted
list. A common and time-consuming task is retrieval of information from large data sets, which
requires extensive research. A computer can easily manage this task. It can store everything from
a small collection of personal data, phonebook information, photo catalogue to more detailed

Problem Solving and Python Programming242

financial records, information of employees, medical records, etc. Computers are widely used to
search information, music, movies, readings etc. A computer rearranges the searched information
to make it easier for a user to sort what he/she needs. For example, sorting a list of contacts by name
or sorting a list of movies in an alphabetical order or arranging a list of files in increasing order of
size etc. To be able to perform all such activities, two fundamental operations, viz. searching and
sorting are needed.

9.2 searching techniques

Searching is a technique of quickly finding a specific item from a given list of items, such as a
number in a telephone directory. Each record has one or more fields such as name, address and
number. Among the existing fields, the field used to distinguish records is called the key. Imagine
a situation where you are trying to find the number of a friend. If you try to locate the record
corresponding to the name of your friend, the ‘name’ will act as the key. Sometimes there can
be various mobile numbers allotted to the same name. Therefore, the selection of the key plays
a major role in defining the search algorithm. If the key is unique, the records are also identified
uniquely. For example, mobile number can be used as the key to search for the mobile number of
a specific person. If the search results in locating the desired record then the search is said to be
successful, else the search is said to be unsuccessful. Depending on way the information is stored
for searching a particular record, search techniques are categorised as:

 (a) Linear or sequential search

 (b) Binary search

These search techniques are explained in detail in this chapter.

9.2.1 Linear/sequential search

In linear search, elements are examined sequentially starting from the first element. Element to be
searched, i.e. the (key element), is compared sequentially with each element in a list. The search
process terminates when the element to be searched, i.e. the key element, matches with the element
present in the list or the list is exhausted without a match being found in it. If the element to be
searched is found within the list, the linear search returns the index of the matching element. If the
element is not found, the search returns -1.

Program 9.1 Write a program to search an element from a list.

def Linear_Search(My_List,key):

 for i in range(len(My_List)):

 if(My_List[i]==key):

 #print(key,”is found at index”,i)

 return i

 break

 return -1

My_List=[12,23,45,67,89]

(Contd.)

List Processing: Searching and Sorting 243

print(“Contents of List are as follows:”)

print(My_List)

key=(int(input(“Enter the number to be searched:”)))

L1=Linear_Search(My_List,key)

if(L1!=-1):

 print(key ,” is found at position”,L1+1)

else:

 print(key,” is not present in the List”)

output

#Test Case 1

Contents of List are as follows:

[12, 23, 45, 67, 89]

Enter the number to be searched:23

23 is found at position 2

#Test Case 2

Contents of List are as follows:

[12, 23, 45, 67, 89]

Enter the number to be searched:65

65 is not present in the List

Explanation In the above program, we have defined the function called Linear _ Search().
The list and element to be searched, i.e. the key, is passed to the function. The comparison starts
from the first element of the list. The comparison goes on sequentially till the key element matches
the element present within the list or the list is exhausted without a match being found.

Unordered List—Analysis of Sequential Search

Table 9.1 shows that the analysis has been made with respect to the unordered list, i.e. if the content
of the list is not in any order, either ascending or descending.

Table 9.1 Sequential search analysis in an unordered list

Case Best Case Worst Case Average Case

Element is present in the list 1 N N/2

Element is not present in the list N N N

Sorted List—Analysis of Sequential Search

Expected number of comparisons required for an unsuccessful search can be reduced if the list is
sorted.

Problem Solving and Python Programming244

Example

 List1[] = 10 15 20 25 50 60 70 80

Element to be searched = 30

 Search should terminate here.

Assuming the elements are stored in an ascending order, the search should terminate as soon as
the value of the element in the list is greater than value of the element (key) to be searched or the
key (element to be searched) is found (Table 9.2).

Table 9.2 Sequential search analysis on a sorted list

Best Case Worst Case Average Case

Element is present in the list 1 N N/2

Element is not present in the list 1 N N/2

9.2.2 the Binary search

In the previous section, we learnt linear search algorithm. Linear search is convenient for a small
list. What happens if the size of a list is large? Let us consider the size of the list is 1 Million (220).
So, if we want to search using a sequential search algorithm then in the worst case we require 220
comparisons. This means that a sequential search algorithm is not suitable for a large list. Thus,
we require more efficient algorithms. In this section, we will explore how binary search is a simple
and efficient algorithm.

For binary search, the elements in a list must be in a sorted order. Let us consider the list is in
ascending order. The binary search compares the element to be searched, i.e. the key element with
the element in the middle of the list. The binary search algorithm is based on the following three
conditions:

 1. If the key is less than the list’s middle element then a programmer has to search only in the
first half of the list.

 2. If the key is greater than the list’s middle element then a programmer has to search only in
the second half of the list.

 3. If the element to be found, i.e. the key element is equal to the middle element in the list then
the search ends.

 4. If the element to be found is not present within the list then the it returns None or -1 which
indicates the element to be searched is not present in the list.

Example of Binary Search

Consider the sorted list of 10 integers given below.

 10 18 19 20 25 28 48 55 62 70

Element to be searched = 48

List Processing: Searching and Sorting 245

Iteration 1

Index 0 1 2 3 4 5 6 7 8 9

Element of List 10 18 19 20 25 28 48 55 62 70

Low=0 Mid=4 High=9

 Mid = (Low + High)/2

 = (0 + 9)/2

 = 4

Now we will compare the middle element which is 25 with the element that we want to search,
i.e. 48.

Since 48>25,

we will eliminate the first half of the list and we will search again in the second half of the list.

Now,

 Low = Mid + 1 = 4 + 1 = 5 #Change the Position of Low

 High = 9 # High will remain as earlier.

Iteration 2

Index 0 1 2 3 4 5 6 7 8 9

Element of List 10 18 19 20 25 28 48 55 62 70

Low=5 Mid=7 High=9

 Mid = (Low +High)/2

 = (5 + 9)/2

 = 7

Now we will compare the middle element which is 55 with element we want to search, i.e. 48.

Since 48 < 55,

we will search the element in the left half of the list.

Now,

 Low = 5 #It will remain as it is.

 High = Mid-1 = 7-1 #Change the Position of High

 = 6

Problem Solving and Python Programming246

Iteration 3

Index 0 1 2 3 4 5 6 7 8 9

Element of List 10 18 19 20 25 28 48 55 62 70

Low=5
Mid=5

High=6

 Mid = (Low +High)/2

 = (5 + 6)/2

 = 5

Now we will compare the middle element which is 28 with the element we want to search, i.e.
48.

Since 28 < 48,

we will search the element in the right portion of the mid of the list.

Now,

 Low = mid+1 = 6 #Change the Position of Low

 High = 6 #High will remain as it is.

Iteration 4

Index 0 1 2 3 4 5 6 7 8 9

Element of List 10 18 19 20 25 28 48 55 62 70

Low=6 High= Mid=6

 Mid = (Low + High)/2

 = 6

Now we will compare the middle element which is 48 with the element we want to search, i.e.
48.

Since 48=48, the number is found at index position 6.

Program 9.2 Write a program for binary search.

def Binary_Search(MyList,key):

 low=0

 high=len(MyList)-1

 while low<=high:

(Contd.)

List Processing: Searching and Sorting 247

 mid=(low+high)//2 #Find the middle index

 if MyList[mid]==key: If key matches the mid index element

 return mid #If so return index

 elif key>MyList[mid]: # else if key is greater

 low=mid+1

 else:

 high=mid-1

 return -1 #If no match return -1

MyList=[10,20,30,34,56,78,89,90]

print(MyList)

key=(eval(input(“Enter the number to Search:”)))

x=Binary_Search(MyList,key)

if(x==-1):

 print(key,”is not present in the list”)

else:

 print(“ The Element “,key,” is found at position “,x+1)

output

#Test Case1

[10, 20, 30, 34, 56, 78, 89, 90]

Enter the number to Search: 20

The Element 20 is found at position 2

#Test Case 2

[10, 20, 30, 34, 56, 78, 89, 90]

Enter the number to Search: 43

43 is not present in the list

Explanation In the above program, we have defined the list with the elements [10 20 30 34 56 78 89
90]. The number to be searched is prompted from the user. The list and the number to be searched
both are passed as parameters to the function. In each iteration, the value of low, middle and high
is calculated. The element to be searched, i.e. the key element is compared with the middle element.
Then depending on the condition, i.e. the value of the key element and the element found at the
mid position, the values of low and high are changed.

Searching a List of Words from a Dictionary is Similar to Binary Search

The binary search algorithm works in a manner similar to searching a word from a dictionary.
Let us assume we want to search for a word starting with a particular letter, say ‘L’. Next, we
open the dictionary. If the page we have opened contains the word staring with ‘L’ then we have
found what we are looking for. But if the page we have opened contains words starting from ‘G’
then we have to search again. So far, to find our word starting from ‘L’ we will not search the left

(Contd.)

Problem Solving and Python Programming248

part of the dictionary anymore, i.e. words starting from A to G. Hence, we will eliminate this
part without looking anymore.

Next, we will search the remaining right side of the dictionary, i.e. from H to Z. As before, we
will open any page from H to Z and check the words appearing on that page. If the opened page
contains words starting from L, our search is successful. If not, we check the words appearing
on the page and if they start with a letter which comes after ‘L’ in the alphabetical order then we
eliminate this second part and continue searching in the remaining part.

We will repeat this process in the remaining part, i.e. open a page check again. As the process
is repeated, the size of the dictionary to be searched keeps reducing by about half each time until
the word is not found on the current page.

9.3 intrOductiOn tO sOrting

Consider a situation where a user wants to pick up a book from a library but finds that the books
are stacked in no particular order. In this situation, it will be very difficult to find any book quickly
or easily. However, if the books were placed in some order, say alphabetically, then a desired title
could be found with little effort. As in this case, sorting is used in various applications in general
to retrieve information efficiently.

Sorting means rearranging the elements of a list, so that they are organised in some relevant
order. The order can be either ascending or descending. Consider a list L1, in which the elements
are arranged in an ascending order in a way that L1[0] < L1[1] < ………… < L1[N].

Example

If a list is declared and initialised as:

L1 = [9, 3, 4, 2, 1]

The sorted list in an ascending order can be:

 L1 = [1, 2, 3, 4, 9]

Form the above example, it is clear that sorting is a process of converting an unordered set of
elements into an ordered set.

9.3.1 types of sorting

Sorting algorithms are divided into two main categories, viz.

 1. Internal sorting

 2. External sorting

If all the records to be sorted are kept internally in the main memory then they can be sorted
using internal sort. However, if a large number of records are to be sorted and kept in secondary
storage then they have to be sorted using external sort.

 1. Internal sorting algorithms: Any sorting algorithm which uses the main memory exclusively
during sorting is called an internal sort algorithm. It takes advantage of the random access
nature of the main memory. Internal sorting is faster than external sorting.

List Processing: Searching and Sorting 249

 2. External sorting algorithms: External sorting is carried on secondary storage. Therefore,
any sorting algorithm which uses external memory, such as tape or disk during sorting is
called external sort algorithm. It is carried out if the number of elements to be stored is too
large to fit in the main memory. Transfer of data between secondary and main memory is best
done by moving blocks of contiguous elements.

The various sorting algorithms are Bubble sort, Selection sort, Insertion sort, Quick sort and
Merge sort. Details of implementation of all these sorting algorithms are given ahead in this
chapter.

9.3.2 Bubble sort

Bubble sort is the simplest and oldest sorting algorithm. Bubble sort sorts a list of elements by
repeatedly moving the largest element to the highest index position of the list. The consecutive
adjacent pair of elements in both the lists is compared with each other. If the element at lower index
is greater than the element at higher index then the two elements are interchanged so that the
element with the smaller value is placed before the one with a higher value. The algorithm repeats
this process till the list of unsorted elements is exhausted. This entire procedure of sorting is called
bubble sort. The algorithm derives its name as bubble sort because the smaller elements bubble to
the top of the list.

Example of Bubble Sort

Consider the elements within a list as:

L1 = [30, 50, 45, 20, 90, 78]

Sort the list using bubble sort.

Solution

Iteration 1

30 40 45 20 90 78 No Exchange

30 40 45 20 90 78 No Exchange

30 40 45 20 90 78 Exchange

30 40 20 45 90 78 No Exchange

30 40 20 45 90 78 Exchange

30 40 20 45 78 90 Output of bubble sort after the first iteration. But

still the output is not in a sorted order. Repeat the

above steps for iteration 2.

Problem Solving and Python Programming250

Iteration 2
Apply bubble sort to the output of the first iteration.

30 40 20 45 78 90 No Exchange

30 40 20 45 78 90 Exchange

30 20 40 45 78 90 No Exchange

30 20 40 45 78 90 No Exchange

30 20 40 45 78 90 Output of bubble sort after the second iteration.

But still the output is not in a sorted order. Repeat

the above steps for iteration 3.

Iteration 3

Apply bubble sort to the output of the second iteration.

30 20 40 45 78 90 Exchange

20 30 40 45 78 90 No Exchange

20 30 40 45 78 90 No Exchange

20 30 40 45 78 90 No Exchange

20 30 40 45 78 90 No Exchange

Thus, in third iteration itself we have obtained a sorted list of elements in an ascending order.

Working of Bubble Sort

In the above example, the working of bubble sort can be generalised as:

 1. In each iteration, the first element of the list, i.e. L[1] is compared with the second element of
the list, i.e. L[2] then L[2] is compared with L[3], L[3]is compared with L[4] and so on. Finally,
L[N-1] is compared with L[N]. This process is continued till we obtain the list in a sorted
order.

 2. In the second iteration, L[1] is compared with L[2], L[2]is compared with L[3] and so on. Finally,
L[N-2] is compared with L[N-1]. The iteration 2 just requires N-2 comparisons. Therefore, at
the end of the second iteration, the second biggest element is placed at the second highest
index position of the list.

 3. Similarly, the above process is continued for the subsequent iterations. Therefore, in the last
iteration we obtain all the elements within the list in a sorted order.

List Processing: Searching and Sorting 251

Program 9.3 Write a program to implement bubble sort.

def Bubble_Sort(MyList):

 for i in range(len(MyList)-1,0,-1):

 for j in range(i):

 if MyList[j]>MyList[j+1]:

 temp, MyList[j]=MyList[j], MyList[j+1]

 MyList[j+1] = temp

MyList = [30, 50, 45,1,6,3,20, 90, 78]

print(‘Elements of List Before Sorting: ‘, MyList)

Bubble_Sort(MyList)

print(‘Elements of List After Sorting: ‘,end=’’)

print(MyList)

output

Elements of List Before Sorting: [30, 50, 45, 1, 6, 3, 20, 90, 78]

Elements of List After Sorting: [1, 3, 6, 20, 30, 45, 50, 78, 90]

Explanation In the above program, the unsorted list is declared and initialised. The same list
is passed as an argument to the function bubble sort. The list slicing operation is used to iterate
through the loop. Each element is compared with its adjacent element and interchanged if the first
element is greater than the second. Swapping of elements is done using Python’s simultaneous
assignment as shown.

if MyList[j]>MyList[j+1]:

 temp,MyList[j]= MyList[j],MyList[j+1]

 MyList[j+1] = temp

Therefore, the above code is used to swap two elements. The above code is equivalent to the
code below. Thus, a programmer should make use of the code above since it reduces the number
of code lines.

if MyList[j]>MyList[j+1]:

 temp = MyList[j]

 MyList[j]= MyList[j+1]

 MyList[j+1] = temp

9.3.3 selection sort

Consider a list of 10 elements list[0], list[1,……list[N-1]. First you will search for the position of the
smallest element from list[0] to list[N-1] and then interchange the smallest element with list[0].
Now you will search for the position of the second smallest element from list[1] to list[n-1] and then
interchange that smallest element with list[1]. This process continues till the end and finally we
obtain the sorted list. The whole process of selection sort will be as shown.

Problem Solving and Python Programming252

Iteration 1

 1. Search the smallest element from list[0] to list[N-1].

 2. Interchange list[0] with the smallest element.

Result: list[0] is sorted.

Iteration 2

 1. Search the smallest element from list[1] to list[N-1].

 2. Interchange list[1] with the smallest element.

Result: list[0],list[1] is sorted.

Iteration N-1

 1. Search the smallest element from list[N-1] to list[N-1].

 2. Interchange list[N-1] with the smallest element.

Result: list[0]…………list[N-1].

Example of Selection Sort

Consider the unsorted list of 8 elements as

[74, 34, 42, 13, 87, 24, 64, 57]

operation

Select 13 as the smallest 74 34 42 13 87 24 64 57

element and swap it with

74 as the first element within

the list.

Select 24 as the smallest 13 34 42 74 87 24 64 57

element and swap it with

34 in the remaining list.

Select 34 as the smallest 13 24 42 74 87 34 64 57

element and swap it with

42 in the remaining list.

Select 42 as the smallest 13 24 34 74 87 42 64 57

element and swap it with

74 in the remaining list.

List Processing: Searching and Sorting 253

Select 57 as the smallest 13 24 34 42 87 74 64 57

element and swap it with

87.

Select 64 as the smallest 13 24 34 42 57 74 64 87

element and swap it with

74 in the remaining list.

Final Sorted List 13 24 34 42 57 74 64 87

 Note: Selection sort repeatedly selects the smallest element and swaps it with the first element in the
remaining list.

Program 9.4 Write a program for selection sort.

def Selection_Sort(MyList):

 #i - Outer Loop

 #j - Innner Loop

 #k - Index of the smallest Element

 for i in range(len(MyList)-1):

 k=i #i th element is assumed to be smallest

 for j in range(i+1,len(MyList)):

 if(MyList[j]<MyList[k]):

 k=j

 if (k!=i):

 temp=MyList[i]

 MyList[i]=MyList[k]

 MyList[k]=temp

MyList=[12,34,2,7,45,90,89,9,1]

print(‘Elements before Sorting’)

print(MyList)

Selection_Sort(MyList)

print(‘Elements After Sorting’)

print(MyList)

output

Elements before Sorting

[12, 34, 2, 7, 45, 90, 89, 9, 1]

Elements After Sorting

[1, 2, 7, 9, 12, 34, 45, 89, 90]

Problem Solving and Python Programming254

9.3.4 insertion sort

Insertion sort is based on the principle of inserting an element in its correct place in a previously
sorted list. It always maintains a sorted sublist in the lower portion of the list. Each new element is
inserted back into the previous sub list. Thus, insertion sort sorts a list of elements repeatedly by
inserting a new element into a sorted sublist until the whole list is sorted. An example of insertion
sort is given below.

Example

Consider the unsorted list as

MyList = [15,0,11,19,12,16,14]

Initially, the sorted sublist contains the first element in the list, i.e. 15

15 0 11 19 12 16 14

 Note: The shaded gray color represents the ordered sublist.

 | STEP 1: Initially, the sorted sublist contains the first element in the list, i.e. 15. Now insert the
next element from the list, i.e. 0 into the sublist.

0 15 11 19 12 16 14

 | STEP 2: The sorted sublist is [0, 15]. Insert 11 into the sublist.

0 11 15 19 12 16 14

 | STEP 3: The sorted sublist is [0,11,15]. Insert 19 into the sublist.

0 11 15 19 12 16 14

 | STEP 4: The sorted sublist is [0,11,15,19]. Insert 12 into the sublist.

0 11 12 15 19 16 14

 | STEP 5: The sorted sublist is [0,11,12,15,19]. Insert 16 into the sublist.

0 11 12 15 16 19 14

 | STEP 6: The sorted sublist is [0,11,12,15,16,19]. Insert 14, into the sublist.

0 11 12 15 16 19 14

 | STEP 7: The sorted sublist is [0,11,12,14,16,19].

0 11 12 14 15 16 19

Finally, we obtain the sorted list of elements in Step 7.

List Processing: Searching and Sorting 255

Program 9.5 Write a program to implement insertion sort.

def Insertion_Sort(MyList):

 for i in range(1,len(MyList)):

 CurrentElement=MyList[i]

 k=i-1

 while k>=0 and MyList[k]>CurrentElement:

 MyList[k+1]=MyList[k]

 k=k-1

 MyList[k+1]=CurrentElement

MyList=[12,23,5,2,21,1,4]

print(‘Elements before Sorting’)

print(MyList)

Insertion_Sort(MyList)

print(‘Elements After Sorting’)

print(MyList)

output

Elements before Sorting

[12, 23, 5, 2, 21, 1, 4]

Elements After Sorting

[1, 2, 4, 5, 12, 21, 23]

9.3.5 quick sort

Quick sort is one of the fastest internal sorting algorithms. It is based on the following three main
strategies:

 1. Split or Partition: Select a random element called pivot from the sequence of elements to be
sorted. Suppose the selected element is X, where X is any number. Now split (divide) the list
into the two small lists, viz. Y and Z such that:

 ∑ All the elements of the first part Y are less than the selected element pivot.

 ∑ All the elements of the second part Z are greater than the selected element pivot.

 2. Sort the sub-arrays.

 3. Merge (join/concatenate) the sorted sub-array.

The split divides the lists into two smaller sublists. When these sublists are ultimately sorted
recursively using quick sort these sublists are called conquered. Therefore, the quick sort algorithm
is also so called the divide and conquer algorithm.

Suppose there are N elements as a[0], a[1], a[2],……a[N-1]. The steps for using the quick sort
algorithm are given below.

 | STEP 1: Select any element as the pivot. For example, select the element stored at the first
position in a list as the pivot element. Although there are many ways to choose the

Problem Solving and Python Programming256

pivot element, we will use the first item from the list. It helps to split a list into two
parts.

 Pivot = a[First] //Select Pivot Element

where the value of First is 0.

 | STEP 2: Initialize the two pointers i and j.

 i = First+1 (The first (low) index of a list)

 j = Last (The last (upper) index of a list)

 | STEP 3: Now increase the value of i until we locate an element that is greater than the pivot
element.

 while i<=j and a[i] <= Pivot

 i++

 | STEP 4: Decrease the value of j until we find a value less than the pivot element.

 while i<=j and a[j]>=Pivot

 j--

 | STEP 5: If i<j interchange i a[i] and a[j].

 | STEP 6: Repeat Steps 2 to 4 until i>j.

 | STEP 7: Interchange the selected data element pivot and a[j].

Example

Consider the elements of a list as 50, 30, 10, 90, 80, 20, 40 and 60.

 | STEP 1: Select the pivot element.

0 1 2 3 4 5 6 7

50 30 10 90 80 20 40 60

From the above Step 1 it is clear that we have selected the first element as the pivot

value, i.e. 50.

 | STEP 2: Initialize the two pointers i and j.

The goal of selecting the pivot element is to place the elements less than the pivot
towards the left and the elements greater than the pivot towards the right.

0 1 2 3 4 5 6 7

50 30 10 90 80 20 40 60

i j

30 < 50. Therefore, move the
pointer i towards the right.

List Processing: Searching and Sorting 257

50 30 10 90 80 20 40 60

i j

Again 10 < 50. Therefore, move

the pointer i towards the right.

50 30 10 90 80 20 40 60

i j

50 30 10 90 80 20 40 60

i j

But now the element
90 > 50. Therefore, don’t move
the pointer i. Now move the
pointer j towards the left if a[j]
>= Pivot.

50 30 10 90 80 20 40 60

i j

The value of a[j] is 60. As
a[j]>=50, decrease the pointer j
by 1.

50 30 10 90 80 20 40 60

i j

As A[j] is not greater than the
pivot, i.e. 50. Therefore, don’t
move the pointer j towards the
left.

0 1 2 3 4 5 6 7

50 30 10 90 80 20 40 60

i j

Now we have got the value of i and j, i.e. the index values are 3 and 6, respectively. As i<j,
swap(a[i], a[j]).

After swaping a[i] and a[j], the content of the list becomes

50 30 10 40 80 20 90 60

i j

Now continue moving left and right until i crosses j.

50 30 10 40 80 20 90 60

i j

As 40 < 50 (pivot), increase the
value of i by 1. Now 80 > pivot,
i.e. (50), hence stop moving
i towards the right and start
moving j towards the left.

Problem Solving and Python Programming258

0 1 2 3 4 5 6 7

50 30 10 40 80 20 90 60

i j

i<j, swap(a[i], a[j]) after swapping the contents of list are as follows.

50 30 10 40 20 80 90 60

i j

0 1 2 3 4 5 6 7

50 30 10 40 20 80 90 60

i, j

0 1 2 3 4 5 6 7

50 30 10 40 20 80 90 60

i, j

0 1 2 3 4 5 6 7

50 30 10 40 20 80 90 60

j i

As A[j], i.e. 80 is greater than
pivot, i.e. 50, move the pointer j
towards the left.

From the above condition, it is clear that i crosses j. Thus, we stop at the point where the value
of j becomes less than i. Therefore, the position of j is now the split point, i.e. the partition point.

 As j < i Swap(pivot, a[j])

After swapping,

20 30 10 40 50 80 90 60

All the elements are less
than pivot.

All the elements are
greater than pivot.

From the above example, it is clear that 50 is placed in its proper position. Elements less than 50
are placed towards the left and those greater than 50 are placed towards the right. Now apply the
same method recursively for the two sublists, viz. Y(20, 30, 10, 40) and Z(80,90,60).

The value of a[j] is 90. As a[j]>=
50, decrease the pointer j by 1.
The new value of a[j] is 20 and
A[j] is not greater than pivot,
i.e. 50. Hence, don’t move the
pointer j towards the left. Thus,
we have found the final value
of i and j.

After, swapping we have to
move the pointer i towards the
left and j towards the right.

Now 20<50 (pivot), so increase
the value of i by 1 towards the
right.

The new index value of i is 5. As
80>50 stop moving i towards
the right and find the index
value of j.

List Processing: Searching and Sorting 259

Program 9.6 Write a Python program to sort elements of a list using quick sort.

def quickSort(MyList):

 “”” Sorts an array or list using the recursive quick sort algorithm. “””

 print(‘Elements of List are as follows’)

 print(MyList)

 n = len(MyList)

 Rec_Quick_Sort(MyList, 0, n-1)

def Rec_Quick_Sort(MyList, first, last):

 “”” The recursive implementation. “””

 if first < last:

 pos = Partition(MyList, first, last)

 “”” Split the List into two sublists Left and Right. “””

 Rec_Quick_Sort(MyList, first, pos - 1)

 Rec_Quick_Sort(MyList, pos + 1, last)

def Partition(MyList, first, last):

 “”” Partitions the sublists or subarrays using the first key as the pivot.

“””

 pivot = MyList[first] #Select the Pivot element

 # Find the pivot position and move the elements around the pivot.

 i = first + 1

 j = last

 while i < j :

 # Find the first key larger than the pivot.

 while i <= j and MyList[i] <= pivot :

 i = i + 1

 #Find the key from the list that is smaller than or equal to the pivot.

 while j >= i and pivot <= MyList[j] :

 j = j - 1

 # Swap the two keys if we have not completed this partition.

 if i < j :

 temp= MyList[i]

 MyList[i] = MyList[j]

 MyList[j] = temp

(Contd.)

Problem Solving and Python Programming260

 # Put the pivot in the proper position.

 #Swap pivot with MyList[j]

 temp=MyList[first]

 MyList[first] = MyList[j]

 MyList[j] = temp

 # Return the index position to partition into left and right

 return j

MyList=[50, 30, 10, 90, 80, 20, 40, 60];

quickSort(MyList)

print(‘Elements of List after Sorting Using Quick Sort’)

print(MyList)

output

Elements of List are as follows

[50, 30, 10, 90, 80, 20, 40, 60]

Elements of List after Sorting Using Quick Sort

[10, 20, 40, 30, 50, 60, 80, 90]

9.3.6 merge sort

As discussed in the previous sections all sorting algorithms are mainly used for internal sorting
where the data to be sorted fits in the main memory. When the data to be sorted resides in a file or
on a disk and does not fit in the available memory, the merge sort method is used. Merge sort is a
well-known and efficient method for external sorting.

Like quick sort, merge sort is also based on three main strategies:

 (a) Split the list into two sub lists (Split or Divide): Split implies partitioning the n elements of a
list into two sublists, where each sublist contains n/2 elements.

 (b) Sort sublists (Conquer): Sorting two sub-arrays recursively using merge sort.

 (c) Merge the sorted sublists (Combine): Combine implies merging two sorted sublists, each of
size n/2, to produce a sorted list of n elements.

Example of Merge Sort

Consider the following elements within a list.

List Processing: Searching and Sorting 261

[24, 11, 9, 2, 17, 16, 14, 3]

24 11 9 2 17 16 14 3

 24 11 9 2 17 16 14 3

24 11 9 2

17 16 14 3

24 11 9 2

17 16 14 3

11 24 2 9

16 17 3 14

 2 9 11 24 3 14 16 17

2 3 9 11 14 16 17 24

Figure 9.1 Example of merge sort

The list in Figure 9.1 has 8 elements. The index of the first element is i=0 and the index of the last
element is j=7. In order to divide the above list around the middle element, the index of the middle
element is found, i.e. mid=(i+j)/2.

Therefore, i = 0 and j = 7

 Mid = (i + j)/ 2 = (0+7)/2 = 3.

Merge sort is applied recursively to the left part of the list from i = 0 to j = 3. After sorting of the
left half of the list, the right half of the list is sorted from i= 4 to j = 7 recursively using merge sort.
After sorting the left half of the list from i = 0 to j = 3 and right half of the list from i=4 to j=7, the
two lists are merged to produce a single sorted list.

Merging Operation in Merge Sort

A fundamental operation in the merge sort algorithm is merging of two sorted lists. The merging
algorithm takes two sorted lists a[] and b[], i.e. (left and right list) as the input and the third list
c[] as the output list. Each element of a list, i.e. (LeftList) a[i] is compared with the elements of the
(RightList) b[j]. The smaller element among a[i] and b[j] is copied to the output list c[k]. When
either of the input list is exhausted, the remainder of the other list is copied to the output list c.

In the above example, we obtained two sorted sublists, viz. a[] as the left list and b[] as the right
list, as shown.

Problem Solving and Python Programming262

Left List a[] Right List b[] Output List

2 9 11 24 3 14 16 17

i=0 j=0 k=0

 | STEP 1:

2 9 11 24 3 14 16 17 2

i=0 j=0 k=0

 | STEP 2:

2 9 11 24 3 14 16 17 2 3

i=1 j=0 k=1

 | STEP 3:

2 9 11 24 3 14 16 17 2 3 9

i=1 j=1 k=2

 | STEP 4:

2 9 11 24 3 14 16 17 2 3 9 11

i=2 j=1 k=3

 | STEP 5:

2 9 11 24 3 14 16 17 2 3 9 11 14

i=3 j=1 k=4

 | STEP 6:

2 9 11 24 3 14 16 17 2 3 9 11 14 16

i=3 j=2 k=5

List Processing: Searching and Sorting 263

 | STEP 7:

2 9 11 24 3 14 16 17 2 3 9 11 14 16 17

i=3 j=3 k=6

 | STEP 8: In Step 7, the list b[] is exhausted. Therefore, the remaining elements of the list a[] are
added to the output list.

2 9 11 24 3 14 16 17 2 3 9 11 14 16 17 24

i=3 k=7

Finally, in Step 8, all the elements of the list are sorted.

Program 9.7 Write a program to implement merge sort.

def mergeSort(MyList):

 if len(MyList)>1:

 mid = len(MyList)//2

 leftList = MyList[:mid]

 rightList = MyList[mid:]

 ‘’’Merge sort to the left part of the list from 0 to mid-1.’’’

 mergeSort(leftList)

‘’’Merge sort to the right part of the list from mid to len(List)’’’

 mergeSort(rightList)

 i=0

 j=0

 k=0

 ‘’’ Merge Two Sorted List i.e. LeftList and RightList’’’

 while i < len(leftList) and j < len(rightList):

 if leftList[i] < rightList[j]:

 MyList[k]=leftList[i]

 i=i+1

 else:

 MyList[k]=rightList[j]

 j=j+1

 k=k+1

 while i < len(leftList):

 MyList[k]=leftList[i]

(Contd.)

Problem Solving and Python Programming264

 i=i+1

 k=k+1

 while j < len(rightList):

 MyList[k]=rightList[j]

 j=j+1

 k=k+1

MyList = [54,26,93,17,77,31,44,55,20]

print(‘List Before Sorting’,MyList)

mergeSort(MyList)

print(‘List After Sorting’,MyList,end=’’)

output

List Before Sorting [24, 11, 9, 2, 17, 16, 14, 3]

List After Sorting [2, 3, 9, 11, 14, 16, 17, 24]

Explanation In the above program, initially the list of elements are declared. The list is passed as
argument to the function mergesort(). If the list contains more than one element then the index
of the middle element is calculated and the existing list is divided into two parts. Once the merge
sort function is invoked on the left and right part of the list, the rest of the code is responsible for
merging the two smaller sorted lists into a larger sorted list.

While merging the two sorted lists, the elements of the left list are compared with the elements of
the right list. The elements with smaller values are placed in the output list. The process continues
till we obtain the sorted list.

mini prOject sorting Based on the Length of each element

This mini project will use programming features, such as lists, functions and sorting algorithms

to sort the sequence of elements from a list based on some conditions.

ProblEm STaTEmENT
 Sort list according to the length of the elements. Assume that the elements within the list
are of type integers.

Input

Elements of a list (before sorting) based on the length of the element are

 [23, 10, 4566, 344, 123, 121]

output

Elements of a list (after sorting) based on the length of the elements are

 [23, 10, 344, 123, 121, 4566]

List Processing: Searching and Sorting 265

algorithm

 | STEP 1: Define the list with n number of elements of your choice.

 | STEP 2: Pass the list to the function Bubble_Sort()

 | STEP 3: Calculate the length of each element by calling calc() function.

 | STEP 4: In each iteration, compare the length of each element with the length of the neighbouring
element and swap the elements accordingly.

 | STEP 5: Print the sorted list according to the length of each element.

Program

def calc(n): #Function to Calculate length of an element

 c = 0

 while n > 0:

 n = n//10

 c = c + 1

 return c #return length of an element

def Bubble_Sort(MyList):

 for i in range(len(MyList)-1,0,-1):

 for j in range(i):

 if calc(MyList[j]) > calc(MyList[j+1]):

 temp,MyList[j]=MyList[j],MyList[j+1]

 MyList[j+1] = temp

MyList = [23,10,4566,344,123,121]

print(‘List before sorting based on length of each element:’)

print(MyList)

Bubble_Sort(MyList)

print(‘List after Sorting based on length of each element:’)

print(MyList)

output

List before sorting based on length of each element:

[23, 10, 4566, 344, 123, 121]

List after Sorting based on length of each element:

[23, 10, 344, 123, 121, 4566]

Thus, this program will help a user to sort the elements of a list based on the length of each
element.

Problem Solving and Python Programming266

 Summary

  Binary search is faster than linear search. However, data within a list must be in a sorted order while
using binary search to search the elements within a list.

  Sorting is a method which rearranges the elements of a list, so that they are kept in some relevant order.
The order can be either ascending or descending.

 KEy TErmS

 � Linear Search: Searches sequentially

 � Binary Search: Divides a sorted list in two parts until an element is found

 � Bubble Sort: Adjacent elements of a list are compared frequently

 � Selection Sort: Selects the smallest element and swaps it with the first element in the remaining list

 � Insertion Sort: Inserts a new element into a previously sorted list

 � Quick Sort: Sorting of elements within the list is based on selection of a pivot element

 rEvIEw QuESTIoNS

a. multiple Choice Questions

 1. Which sorting algorithm selects the smallest element from a list and interchanges it with the first
position?

 a. Insertion sort b. Selection sort

 c. Bubble sort d. Quick sort

 2. Insertion sort is based on which principle?

 a. Inserting an element at the correct place in a previously unsorted list.

 b. Inserting an element at the correct place in a previously sorted list.

 c. Cannot predict

 d. None of the above

 3. Quick sort is also known as:

 a. Merge sort b. Partition and exchange sort

 c. Shell sort d. None of the above

 4. Which sorting algorithm is of divide and conquer type?

 a. Bubble sort b. Insertion sort

 c. Selection sort d. Quick sort

 5. The worst case while searching an element in linear search is _____________.

 a. Element is present in the middle of the list

 b. Element is present at the last

 c. Element is not present in the list at all

 d. Element is present at the first position

List Processing: Searching and Sorting 267

 6. A pivot element to partition unsorted list is used in:

 a. Selection sort b. Merge sort

 c. Insertion sort d. Quick sort

 7. Which strategy is used by merge sort?

 a. Divide and conquer b. Divide

 c. Greedy approach d. None of the above

 8. If a list is sorted or nearly in a sorted order then which algorithm gives a better performance?

 a. Selection sort b. Insertion sort

 c. Quick sort d. Merge sort

 9. Which search algorithm requires the list to be in a sorted order?

 a. Linear search b. Binary search

 c. Both a and b d. None of the above

 10. The best case while searching an element in a binary search is __________________.

 a. Element found at first position b. Element found at last position

 c. Element found at middle position d. None of the above

b. True or False

 1. In linear search, the elements are examined sequentially starting from the first element.

 2. In binary search, the elements in a list must be in a sorted order.

 3. Any sort algorithm that uses the main memory exclusively during sorting is called an internal sort
algorithm.

 4. Binary search algorithm compares an element to be searched with the last element of a list in each
iteration.

 5. Internal sorting is slower than external sorting.

 6. Insertion sort is based on the principle of inserting the elements at their correct place in a previously
sorted list.

 7. Insertion sort always maintains a sorted sublist in the lower portion of a list.

 8. Quick sort divides a list into two smaller sublists.

 9. In selection sort, the smallest element from an array is obtained and placed at the last position of the
array.

 10. Internal memory is used for external sort algorithm.

C. Exercise Questions

 1. Write the steps to implement the binary search method.

 2. Sort the following list in the ascending order using selection sort: 55, 58, 90, 33, 42, 89, 59, 71.

 3. Explain sequential searching and give its time analysis.

 4. What is sorting and searching? List the different types of searching and sorting techniques.

Problem Solving and Python Programming268

 1. Write a Python program to implement bubble sort.

 2. Write a Python program to implement quick sort.

 3. Sort recursive elements using selection sort.

 4. Write a Python program to find the desired element in a list using binary search.

 5. Write a Python program to implement merge sort.

ProgrammINg aSSIgNmENTS

10

Tuples and Dictionaries

Chapter outline

 10.1 Introduction to Tuples

 10.2 Dictionaries

10.1 introduCtion to tuples

Tuples work exactly like lists. A tuple contains a sequence of items of many types. The elements of
tuples are fixed. Once a tuple has been created, we cannot add or delete elements or even shuffle
their order. Hence, the tuples are immutable. This means that once created, they cannot be changed.
Since the tuples are immutable, their length is also fixed. A new tuple must be created to grow or
shrink an existing one.

10.1.1 Creating tuples

A tuple is an in-built data type in Python. In order to create a tuple, the elements of tuples are
enclosed in the parentheses instead of the square brackets. All of the elements of a tuple are
separated by commas.

learninG outCoMes

After completing this chapter, students will be able to:

• Create tuples and dictionaries and explain their necessity and importance in programming

• Create dictionaries and add, retrieve, modify and delete the values of dictionaries

• Traverse the contents of tuples and dictionaries using the ‘for’ loop function

Problem Solving and Python Programming270

Example: Defining a tuple

T1 = () #Create an empty

T2 = (12,34,56,90) #Create Tuple with 4 elements

T3 = (‘a’,’b’,’c’,’d’,’e’) #Create Tuple of 5 characters

T4 = ‘a’,’b’,’c’,’d’,’e’ #Create tuple without parenthesis

 Note: #To create a tuple of single element, it should be followed by comma.
>>> T1=(4,)

>>> type(T1)

<class ‘tuple’>

Is it possible to create a tuple of single element without Comma?
>>> T1=(4)

>>> type(T1)

<class ‘int’>

Point to Remember

A single value in parentheses is not a tuple.

The tuple() Function

As in the above section, we have seen how to create a tuple. For example an empty tuple is created
using the empty parentheses.

>>> t1=() #Create Empty tuple

>>> t1 #Print Empty tuple

()

>>> type(t1) #Check the type of t1

<class ‘tuple’>

An alternate way of creating a tuple is by using the tuple() function.

Example

>>> t1=tuple() #Create Empty tuple using tuple() function

>>> t1 #Print tuple t1

()

If the argument to a tuple() function is a sequence, i.e. string, list or a tuple, then the result is
a tuple with the elements of the sequence.

10.1.2 in-built Functions for tuples

Python provides various in-built functions that can be used with the tuples. Some of these are
shown in Table 10.1.

Tuples and Dictionaries 271

Table 10.1 In-built functions that can be used with tuples

In-built Functions Meaning

len() Returns the number of elements in the tuple

max() Returns the element with the greatest value

min() Returns the element with the minimum value

sum() Returns the sum of all the elements of tuple

index(x) Returns the index of element x

count(x) Returns the number of occurrence of element x

Example

>>> t1=(“APPLE”)
>>> len(t1) #Return the length of tuple t1
5
>>> max(t1) #Return Element from tuple with Maximum Value
‘P’
>>> min(t1) #Return Element from tuple with Minimum Value
‘A’
>>> t1.index(‘A’)
0
>>> t1.count(‘P’)

2

10.1.3 indexing and slicing

Since tuples are like lists, the indexing and slicing of tuples is also similar to that of lists. The
index[] operator is used to access the elements of a tuple.

Example

 t[0] t[1] t[2] t[3] t[4] t[5] Positive Index

P Y T H O N
 t[-6] t[-5] t[-4] t[-3] t[-2] t[-1] Negative Index

>>> t=(‘P’,’Y’,’T’,’H’,’O’,’N’) #Create Tuple

>>>t #Print Tuple

>>>(‘P’, ‘Y’, ‘T’, ‘H’, ‘O’, ‘N’)

>>> t[0]

‘P’

>>> t[5]

‘N’

>>> t[-1]

‘N’

>>> t[-6]

‘P’

Problem Solving and Python Programming272

Tuple Slicing Example

>>> t=(‘P’,’Y’,’T’,’H’,’O’,’N’) #Create Tuple

>>>t #Print Tuple

>>>(‘P’, ‘Y’, ‘T’, ‘H’, ‘O’, ‘N’)

>>>t[0:] #Print the contents of tuple t starting from index 0

(‘P’, ‘Y’, ‘T’, ‘H’, ‘O’, ‘N’)

>>> t[0:3] #Print the contents of tuple t starting from 0 to 2

(‘P’, ‘Y’, ‘T’)

 Note: More details of slicing can be found in Chapter 8: Lists.

10.1.4 operations on tuples

Tuples don’t support all of the methods which are supported by the lists. A tuple supports the
usual sequence operations supported by a list.

1. The + Operator: The concatenation + operator is used to join two tuples.

 >>>(1,2)+(3,4) #The concatenation operator

 (1, 2, 3, 4)

2. The * Operator: The multiplication operator is used to replicate the elements of tuple.

 >>> (1,2)*3 #The Repetition Operator

 (1, 2, 1, 2, 1, 2)

Passing Variable Length Arguments to a Tuple

We can pass the variable number of parameters to a function. An argument which begins with the
* in function definition, there it gathers all of the arguments into a tuple.

Program 10.1
 Write a program to create a function create_tup() which accepts a variable number of
arguments and prints all of them.

def create_tup(*args):

 print(args)

output

Run the above program from interactive mode of Python.

>>> create_tup(1,2,3,4)

(1, 2, 3, 4)

>>> create_tup(‘a’,’b’)

(‘a’, ‘b’)

The in-built sum() function takes two parameters to add the elements within it.

How can we create a function that takes variable arguments and adds all the elements present in it?

Tuples and Dictionaries 273

The following program creates the function sum_all() which accepts a variable number of
arguments and displays the sum of all the arguments.

Program 10.2
 Write a program to create a function sum_all() to accept a variable number of arguments
and display thesum of all the elements present in it.

def sum_all(*args):

 t=()

 s=0

 for i in args:

 s=s+i

 print(s)

output

#Running the above program on the python interactive mode.

>>>sum_all(10,20,30,40) #Function sum_all with variable arguments

100

>>> sum_all(1,2,3)

6

10.1.5 lists and tuples

A tuple can also be created from a list. This is illustrated in following example.

Example

>>> List1=[1,2,3,4] #Create List

>>> print(List1) #Print List1

[1, 2, 3, 4]

>>> type(List1) #Print the type of variable List1

<class ‘list’>

>>> t1=tuple(List1) #Convert List to tuple

>>> t1 #print t1

(1, 2, 3, 4)

>>> type(t1) #Check type of t1 after converting List to Tuple

<class ‘tuple’>

Traverse Tuples from a List

A tuple assignment can be used in the ‘for’ loop to traverse a list of tuples.

Problem Solving and Python Programming274

Program 10.3 Write a Program to traverse the tuples from a list.

T=[(1, ”Amit”),(2, ”Divya”),(3, ”Sameer”)]

for no, name in t:

 print(no, name)

output

1 Amit

2 Divya

3 Sameer

10.1.6 sort the tuples

If a programmer wants to sort a tuple, he/she can use the inbuilt sort() method. A tuple does not
contain any method named ‘sort’. Therefore, to sort a tuple, a programmer will have to first convert
a tuple into a list. After conversion, he/she can use sort() method for lists and then again convert
the sorted list into a tuple.

>>> t1=(7,2,1,8) #Create Tuple t1

>>> t1 #Print t1

(7, 2, 1, 8)

>>> L1=list(t1) #Convert Tuple t1 to List

>>> L1 #Print L1

[7, 2, 1, 8]

>>> L1.sort() #Sort List

>>> t2=tuple(L1) #Convert Sorted List to Tuple

>>> t2 #Print sorted tuple

(1, 2, 7, 8)

10.1.7 tuple assignment

Tuple assignment is a unique feature of python language. It has the ability to have a tuple on the left
hand side of an assignment statement. It allows you there to assign the tuples of variable laying on
the left to be assigned with the values from a tuple laying on the right side of the same assignment.

Example on Tuple Assignment

>>> T1 = (‘Virat’, 5554, 9588)

>>> (Name, Run_Scored_Test, Run_ODI_Scored) = T1

>>> Name

‘Virat’

>>> Run_Scored_Test

5554

>>> Run_ODI_Scored

9588

Tuples and Dictionaries 275

In above example, we have the elements having with three sequences. Thus, we have assigned
the first element to variable ‘Name’, second element to variable ‘Run_Scored_Test’ and the third
element assigned to ‘Run_ODI_Scored’.

10.1.8 tuple as return values

In many other programming languages, we cannot return multiple values from a function, but
python has the ability to return multiple values from a function call. The following program
demonstrates about the return multiple values to the caller.

Program 10.4
 Write a program to demonstrate the return multiple values to the caller.

def Return_Multiple_Values(a,b):

 sum1 = a + b

 diff = a - b

 mul = a * b

 div = a / b

 return sum1,diff,mul,div

ans = Return_Multiple_Values(20,10)

print(ans)

print(type(ans))

output

30, 10, 200, 2)

<type ‘tuple’>

10.1.9 the zip() and inverse zip(*) Function

The zip() Function

The zip() is an in-built function in Python. It takes items in sequence from a number of collections
to make a list of tuples, where each tuple contains one item from each of the collections. The
function is often used to group items from a list which has the same index.

Example

>>> A1=[1,2,3]

>>> A2=”XYZ”

>>> list(zip(A1,A2)) #Zip List A1 and A2

[(1, ‘X’), (2, ‘Y’), (3, ‘Z’)]

Explanation The result of list (zip(A1,A2)) is a list of tuples where each tuple contains an
index-wise element from each list as a pair.

Problem Solving and Python Programming276

Example

>>> L1=[‘Laptop’, ’Desktop’, ’Mobile’] #Create List1

>>> L2=[40000, 30000, 15000] #Create List2

>>> L3=tuple((list(zip(L1,L2)))) #Group item from Lists 1 and 2

>>> L3 #print L3

((‘Laptop’, 40000), (‘Desktop’, 30000), (‘Mobile’, 15000))

Note: If the sequences are not of the same length, then the result of zip() has the length of the
shorter sequence.

Example:
>>> a=”abcd” #Sequence of length 4

>>> b=[1,2,3] #Sequence of length 3

>>> list(zip(a,b)) #Zip() on a and b returns list of tuples

[(‘a’, 1), (‘b’, 2), (‘c’, 3)]

Program 10.5
 Consider two lists, viz. Lists L1 and L2. Here, L1 contains a list of colours and L2 contains their
colour code as:

 L1=[‘Black’,’White’,’Grey’]
 L2=[255,0,100]

Display the contents as follows.

 (‘Black’,255)

 (‘white’,0)

 (‘Grey’,100)

Solution

L1=[‘Black’,’White’,’Grey’] #Create List L1
L2=[255,0,100] #Create List L2
for Colour, Code in zip(L1,L2): #Use of zip in for loop
 print((Colour,Code))

output

(‘Black’, 255)
(‘White’, 0)
(‘Gray’, 100)

The Inverse zip(*) Function

The * operator is used within the zip() function. The * operator unpacks a sequence into positional
arguments. A simple example of the * operator on positional arguments is given as follows.

Tuples and Dictionaries 277

Program 10.6 Demonstrate the use of the * operator on positional arguments.

def print_all(Country,Capital):
 print(Country)
 print(Capital)

#Run the above program on interactive mode of Python

output

>>> args=(“INDIA”,”DELHI”)
>>> print_all(*args)
INDIA
DELHI

Explanation In Program 10.6 above, the function print_all() is created. When *args are
assessed to the function print_all, its values are unpacked into the function’s positional
arguments arg1 to Country and Capital to arg2.

The function zip(*) also performs the same operation, i.e. unpacks a sequence into positional
arguments.

Program 10.7 Demonstrate the use of the zip(*) function.

X=[(“APPLE”,50000),(“DELL”,30000)] #List of tuples

Laptop,Prize=zip(*X) #Unpacking Values

print(Laptop)

print(Prize)

output

 (‘APPLE’, ‘DELL’)

(50000, 30000)

Explanation In Program 10.7 above, initially the list is created. List x contains a sequence of tuples.
The function zip(*) is used to unpack the values of x.

More Examples on zip(*) Function

#Transpose of a matrix

>>> Matrix=[(1,2),(3,4),(5,6)]

>>> Matrix

[(1, 2), (3, 4), (5, 6)]

>>> x=zip(*Matrix)

>>> tuple(x)

((1, 3, 5), (2, 4, 6))

Problem Solving and Python Programming278

10.2 diCtionaries

10.2.1 need of dictionaries

In the previous chapter, we learnt about a Python data structure called list. Lists organises their
elements by position and this kind of structuring is useful when we want to locate elements in a
specific order, i.e. locate either first, last element or visit each element in a sequence.

There may be situation where a programmer is not so much interested in the position of the
item or element in the structure but in association of that element with some other elements in the
structure.

For example, to look up Amit’s phone number, we are just interested in his number from the
phonebook and don’t care much where the number is located in the phonebook. It means that the
name of the person is associated with his phone number.

10.2.2 Basics of dictionaries

In Python, a dictionary is a collection that stores the values along with the keys. The sequence of
such key and value pairs is separated by the commas. These pairs are sometimes called entries

or items. All entries are enclosed in curly brackets { and }. A colon separates a key and its value.
Sometimes, the items within dictionaries are also called associative arrays because they associate
a key with a value.

Phonebook Example

{“Amit”:“918624986968”, “Amol”:“919766962920”}

Country Code Information

{“India”: “+91”,“USA”:“+1”,“Singapore”: “+65”}

The above phone book example is kept in dictionary as follows The simple structure of the
dictionary is shown in Figures 10.1a and b.

Key

Key

Value

Value

Amit 918624986968

Amol 919766952920

Item

 yeK hcraeS
Corresponding Value

 of that Key

 elpmaxE ebooknohP)b(yrano d A

Figures 10.1a and b Dictionary—structure and example

Tuples and Dictionaries 279

Keys are like an index operator in a dictionary. A key can be of any type. Therefore, a dictionary
maps a set of objects, i.e. keys to another set of objects, which is the values. It is a mapping of
unique keys to values, i.e. each key is mapped to one value. Also, the dictionaries do not contain
any duplicate keys.

10.2.3 Creating a dictionary

We can create a dictionary by enclosing the items inside a pair of curly brackets {}. One way to start
a dictionary is to create an empty dictionary first and then add items to it.

Creating Empty Dictionary

Example

>>> D1 = {} #Create Empty Dictionary

>>> D1 #Print Empty Dictionary

{}

>>> type(D1) #Check the type of D1

<class ‘dict’>

Note: Python uses curly brackets for sets and dictionaries. Therefore to create an empty dictionary we
use {} and to create empty set we use the function set().

Creating Dictionary with Two Items

To create dictionary of two items, The item should be in the form of key:value and be separated
by commas.

Example: Creating Dictionary of Two Items

>>> P={“Amit”: ”918624986968”, “Amol”: ”919766962920”}

>>> P #Display P

{‘Amit’: ‘918624986968’, ‘Amol’: ‘919766962920’}

Creating Dictionaries in Four Different Ways

Example

#Way 1:

>>> D1={‘Name’:’Sachin’,’Age’:40}

>>> D1

{‘Name’: ‘Sachin’, ‘Age’: 40}

#Way 2:

>>> D2={}

>>> D2[‘Name’]=’Sachin’

>>> D2[‘Age’]=40

>>> D2

{‘Name’: ‘Sachin’, ‘Age’: 40}

Problem Solving and Python Programming280

#Way 3:

>>> D3=dict(Name=’Sachin’,Age=40)

>>> D3

{‘Name’: ‘Sachin’, ‘Age’: 40}

#Way 4:

>>> dict([(‘name’,’Sachin’),(‘age’,40)])

{‘age’: 40, ‘name’: ‘Sachin’}

Explanation In the example above, we have created dictionaries in four different ways. We can
select the first way if we know all the contents of a dictionary in advance. We can use the second
way if we need to add one field at a time. The third way requires all of the keys to string. The fourth
way is good if we want to build the keys and values at runtime.

10.2.4 adding and replacing Values

To add a new item to a dictionary, we can use the subscript[] operator. The syntax to add and
an item to a dictionary is:

Dictionary_Name[key] = value

Example

P[“Jhon”]=”913456789087”

In the example above, the name of the dictionary is P. We are adding the phone number of “Jhon”
into our phonebook. The “Jhon” will act as the key and the phone number of Jhon will be its value.

#Running the above example in Python Interactive mode

#Create Dictionary of Phonebook

P={“Amit”:”918624986968”, “Amol”:”919766962920”}

>>> P #Display P

{‘Amit’: ‘918624986968’, ‘Amol’: ‘919766962920’}

#Add another element to the existing Dictionary of Phonebook P

>>> P[“Jhon”]=”913456789087” #Add New element

>>> P

{‘Jhon’: ‘913456789087’, ‘Amit’: ‘918624986968’, ‘Amol’: ‘919766962920’}

Note: If a key is already present in a list then it replaces the old value for the said key with the new value.

Example

P={“Amit”:”918624986968”, “Amol”:”919766962920”}

>>> P #Display P

{‘Amit’: ‘918624986968’, ‘Amol’: ‘919766962920’}

Tuples and Dictionaries 281

>>> P[“Amit”]=”921029087865” #Replace the Old value by New

>>> P #Print After Replacing

{‘Amit’: ‘921029087865’, ‘Amol’: ‘919766962920’}

Retrieving Values

The subscript[] can also be used to obtain the value associated with a key. The syntax is:

Dictinoary_Name[Key] #Retrieve the value associated with the key.

Example

P={“Amit”:”918624986968”, “Amol”:”919766962920”}

>>> P #Display P

{‘Amit’: ‘918624986968’, ‘Amol’: ‘919766962920’}

>>> P[“Amol”] #Display the value associated with the key “Amol”

‘919766962920’

Note: If the key is not in the dictionary python raises an error.

Example

>>>P={“Amit”:”918624986968”, “Amol”:”919766962920”}

>>> P[“Sachin”]

Traceback (most recent call last):

 File “<pyshell#48>”, line 1, in <module>

 P[“Sachin”]

KeyError: ‘Sachin’

10.2.5 Formatting dictionaries

The % operator is used to substitute values from a dictionary, into a string by a name.

Example

>>> D={}

>>> D[“Laptop”]=”MAC”

>>> D[“Count”]=10

>>> D #Print Dictionary D

{‘Laptop’: ‘MAC’, ‘Count’: 10}

>>> P=”I want %(Count)d %(Laptop)s Laptops”%D

>>> P

‘I want 10 MAC Laptops’

In the example above, initially a dictionary is created containing two keys, viz. ‘Laptop’ and
‘Count’. In the statement, “I want %(Count)d %(Laptop)s Laptops”%D.” The characters ‘d’ and ‘s’
for integer and string.

Problem Solving and Python Programming282

10.2.6 deleting items

We can delete any entry from a dictionary. The del operator is used to remove a key and its
associated value. If a key is in a dictionary, then it is removed, otherwise Python raises an error.
The syntax used to remove an element from a dictionary is

del dictionary_name[key].

Example

>>> P={“Amit”:”918624986968”, “Amol”:”919766962920”}

>>> del P[“Amit”] #delete key “Amit”

>>> P #Print after deleting

{‘Amol’: ‘919766962920’}

10.2.7 Comparing two dictionaries

The ‘==’ operator is used to test if two dictionaries contain the same items. Also, the ‘!=’ operator
returns True if the items within dictionaries are not the same.

Example

>>> A={“I”:”India”,”A”:”America”}

>>> A

{‘I’: ‘India’, ‘A’: ‘America’}

>>> B={“I”:”Italy”,”A”:”America”}

>>> B

{‘I’: ‘Italy’, ‘A’: ‘America’}

>>> A==B

False

>>> A!=B

True

10.2.8 the Methods of dictionary Class

Python contains dict class for dictionaries. To see the complete documentation for dictionaries we
can run help(dict) in Python interactive mode. Table 10.2 contains the methods of the dictionary
class along with suitable examples.

Table 10.2 Some commonly used dictionary operations

Methods of dict Class What It Does?

keys() Returns the sequence of keys.

Example:
>>> ASCII_CODE={“A”:65,”B”:66,”C”:67,”D”:68}
>>> ASCII_CODE #Print Dictionary named ASCII_CODE

{‘D’: 68, ‘B’: 66, ‘A’: 65, ‘C’: 67}
>>> ASCII_CODE.keys() #Return all keys

dict_keys([‘D’, ‘B’, ‘A’, ‘C’])

(Contd.)

Tuples and Dictionaries 283

Values() Returns the sequence of values.

Example:
>>> ASCII_CODE={“A”:65,”B”:66,”C”:67,”D”:68}
>>> ASCII_CODE.values() #Return Values
dict_values([68, 66, 65, 67])

items() Returns the sequence of tuples.

Example:
>>>ASCII_CODE={“A”:65,”B”:66,”C”:67,”D”:68}
>>>ASCII_CODE.items()
dict_items([(‘D’, 68), (‘B’, 66), (‘A’, 65), (‘C’, 67)])

clear() Deletes all entries.

Example:
>>>ASCII_CODE={“A”:65,”B”:66,”C”:67,”D”:68}
>>> ASCII_CODE.clear() # Delete all entries
>>> ASCII_CODE # Print after
{}

get(key) Returns the value for a key.

Example:
>>> Temperature={“Mumbai”:35,”Delhi”:40,”Chennai”:54}
>>> Temperature.get(“Mumbai”)
35

pop(key) Removes the key and returns the value
if the key exist.

Example:
>>> Temperature.pop(“Mumbai”)
35
>>> Temperature #Print after removing key “Mumbai”.
{‘Delhi’: 40, ‘Chennai’: 54}

clear() Remove all the keys.

Example:
>>> Temperature={“Mumabai”:35,”Delhi”:40,”Chennai”:54}
>>> Temperature.clear()
>>> Temperature

10.2.9 traversing dictionaries

The ‘for’ loop is used to traverse all of the keys and values of a dictionary. A variable of the ‘for’
loop is bound to each key in an unspecified order. It means that it retrieves the key and its value in
any order. The following program shows the traversing elements of a dictionary.

Problem Solving and Python Programming284

Program 10.8 Program to traverse the elements of a Dictionary

>>> Grades={“Tammana”:”A”,”Pranav”:”B”,”Sumit”:”C”}

>>> for key in Grades:

 print(key,”:”,str(Grades[key]))

output

Tammana: A

Sumit: C

Pranav: B

 Note: Write the above program in Python shell and then execute it in Python Interpreter. The latter will
display all of the items in different order.

Program 10.9
 Write program to assign grades to students and display all of the grades using keys() and
get() method of dictionary.

Grades={“Tammana”:”A”,”Pranav”:”B”,”Sumit”:”C”}

for key in Grades.keys():

 print(key,’’,Grades.get(key,0))

output

Sumit C

Pranav B

Tammana A

Explanation Grades of students are assigned to the dictionary grades as discussed in Table 10.2.
The keys() method is used in for loop to return the sequence of keys. All returned keys are stored
in variable key. Finally, get() method is used to return values associated with the particular key.

10.2.10 nested dictionaries

A dictionary within a dictionary is called a nested dictionary. To understand this, let us make a
dictionary of Indian cricket players with some information about them. The key for this dictionary
will consist of the cricketers’ names. The value will include information, such as, the runs scored
in test and ODI matches.

>>> Players={“Virat Kohli” : {“ODI”: 7212, ”Test”:3245},

 “Sachin Tendulkar” : {“ODI”: 18426, ”Test”:15921}}

>>> Players[‘Virat Kohli’][‘ODI’] #Display run scored by Kohli in ODI

7212

Tuples and Dictionaries 285

>>> Players[‘Virat Kohli’][‘Test’] #Display run scored by Kohli in Test

3245

>>> Players[‘Sachin Tendulkar’][‘Test’]

 15921

>>> Players[‘Sachin Tendulkar’][‘ODI’]
18426

Traversing a Nested Dictionary

We used the ‘for’ loop to traverse simple dictionaries. It can also be used to traverse nested
dictionaries. Let us write the above example and use the ‘for’ loop to go through the keys of the
dictionaries.

Players={“Virat Kohli” : {“ODI”: 7212, ”Test”:3245},

 “Sachin Tendulkar” : {“ODI”: 18426, ”Test”:15921}}

#Way 1

for Player_Name, Player_Details in Players.items():

 print(“”,Player_Name)

 print(“”,Player_Details)

#Way 2

for Player_Name, Player_Details in Players.items():

 print(“Player: “, Player_Name)

 print(“Run Scored in ODI:\t”,Player_Details[“ODI”])

 print(“Run Scored in Test:\t”,Player_Details[“Test”])

output

Sachin Tendulkar

 {‘Test’: 15921, ‘ODI’: 18426}

Virat Kohli

 {‘Test’: 3245, ‘ODI’: 7212}

Player: Sachin Tendulkar

 Run Scored in ODI: 18426

 Run Scored in Test: 15921

Player: Virat Kohli

 Run Scored in ODI: 7212

 Run Scored in Test: 3245

Explanation The above program shows the two different ways to print the details of the
dictionaries. The first way contains the code:

for Player_Name, Player_Details in Players.items():

 print(“”,Player_Name)

 print(“”,Player_Details)

Problem Solving and Python Programming286

In the above code, Player_Name stores the keys, i.e. the name of the player from the outer
dictionary and the variable Player_Details stores the value associated with the key, i.e. Player_Name.

However, the second way is used to access specific information about a player. The code for the
second way is:
for Player_Name, Player_Details in Players.items():
 print(“Player: “,Player_Name)
 print(“Run Scored in ODI:\t”,Player_Details[“ODI”])
 print(“Run Scored in Test:\t”,Player_Details[“Test”])

In the ‘for’ loop, we have used Player_Name, which displays the name of the player as key of a
dictionary. To access the specific details of that player, the index[] operator key is used.

The above program code is much shorter and easier to maintain, but even this code will not
keep up with our dictionary. If we add more information to the dictionary later we have to update
our print statements as well. Let us minimize the above piece of code and put a second ‘for’ loop
inside the first ‘for’ loop in order to run through all the information about each player.

Players={“Virat Kohli” : { “ODI”: 7212 ,”Test”:3245},

 “Sachin Tendulkar” : {“ODI”: 18426 ,”Test”:15921}}

for Player_Name, Player_Details in Players.items():

 print(“ “,Player_Name)

 for key in Player_Details:

 print(key,’:’,str(Player_Details[key]))

output

Sachin Tendulkar

Test: 15921

ODI: 18426

Virat Kohli

Test: 3245

ODI: 7212

Explanation The first loop gives us all the keys in the main dictionary, which consist of the name
of each player. Each of these names can be used to unlock the dictionary for each player. The
inner loop goes through the dictionary for that individual player and pulls out all the keys in that
player’s dictionary. The inner ‘for’ loop prints the key, which tells us the kind of information we are
about to see and the value for that key.

Simple Programs on Dictionary

Program 10.10
 Write a function histogram that takes string as parameter and generates a frequency of
characters contained in it.

Example

S = “AAPPLE”

Tuples and Dictionaries 287

The program should create a dictionary.

D = {‘A’: 2, ‘E’: 1, ‘P’: 2, ‘L’: 1}

Solution

def Histogram(S):

 D = dict() #Initially Create Empty Dictionary

 for C in S:

 if C not in D:

 D[C] = 1

 else:

 D[C]=D[C]+1

 return D

H=Histogram(“AAPPLE”)

print(H)

output

{‘A’: 2, ‘E’: 1, ‘P’: 2, ‘L’: 1}

Explanation In the Program 10.10 above, we created a function Histogram(S). A string S is
passed as the parameter to the function. Initially, an empty dictionary is created. The ‘for’ loop is
used to traverse the string. While traversing, each character is stored in C. If the character C is not
in the dictionary, then we inserted a new item into the dictionary with key C and initial value as 1.
If C is already in the dictionary, then we incremented D[C].

Program 10.11 Write a program to count the frequency of characters using get() method of dictionary.

def Histogram(S):

 D = dict()

 for C in S:

 if C not in D:

 D[C] = 1

 else:

 D[C]=D.get(C,0)+1

 return D

H = Histogram(“AAPPLE”)

print(H)

output

{‘P’: 2, ‘L’: 1, ‘A’: 2, ‘E’: 1}

Problem Solving and Python Programming288

Program 10.12 Write a program to print and store squares of numbers into a dictionary.

def Sq_of_numbers(n):

 d = dict() #Creates A Empty Dictionary

 for i in range(1,n+1): #Iterates from 1 to N

 if i not in d:

 d[i]=i*i #Store the Square of a Number i into Dictionary

 return d

print(‘Squares of Number:’)

Z=Sq_of_numbers(5)

print(Z)

output

Squares of Number:

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Program 10.13 Write a program to pass list to a function. Calculate total number of positive and negative
numbers from the list. Finally display the count in terms of the dictionary.

Example

Input: L=[1,-2,-3,4]

Output: {‘Neg’: 2, ‘Pos’: 2}

Solution

def abc(L):

 D={} #Empty Dictionary

 D[“Pos”]=0

 D[“Neg”]=0

 for x in L:

 if x>0:

 D[“Pos”]+=1

 else:

 D[“Neg”]+=1

 print(D)

L=[1,-2,-3,4]

abc(L)

output

{‘Pos’: 2, ‘Neg’: 2}

Explanation In Program 10.13 above, the empty dictionary D is created. Initially, two keys are
added to the dictionary, i.e. Pos and Neg with count 0 as their respective values. The List L is passed
to the function abc(). If the number is positive or negative, then the count is increased accordingly.

Tuples and Dictionaries 289

Program 10.14 Write a program to convert an octal number to binary.

Example

Input: (543)8

Output: (101100011)

Solution

def Convert_Oct_Bin(Number,Table):

 binary=‘’

 for digit in Number:

 binary = binary + Table[digit]

 return binary

octToBinaryTable={‘0’:’000’, ‘1’:’001’, ’2’:’010’,

 ‘3’:’011’, ‘4’:’100’, ’5’:’101’,

 ‘6’:’110’, ‘7’:’111’}

output

#Sample Input 1:

>>> Convert_Oct_Bin(“553”,octToBinaryTable)

‘101101011’

#Sample Input 2:

>>> Convert_Oct_Bin(“127”,octToBinaryTable)

‘001010111’

Explanation In Program 10.14 above, we created the function Convert_oct_Bin(). It accepts
two parameters. The first parameter is the octal number as a string, which we want to convert
into binary and the second parameter is the dictionary, which contains the decimal number and
its equivalent binary number as well. The above algorithm visits each digit of the octal number,
selects the corresponding three bits, which represent the same digit in binary and adds these bits
to the result string binary.

10.2.11 polynomials as dictionaries

As we learnt in previous chapters, Python has two data types, viz. mutable and immutable. Python
objects that cannot change their contents are known as immutable data types. The immutable data
types consist of str and tuple. List and dictionaries can change their contents, so they are called
mutable objects. The keys in a dictionary are not restricted to be strings. Any immutable Python
object can be used as a key. However, a common type of key used in a dictionary is included
in integer type. Let us consider the following example of how dictionaries with integers as keys
represent a polynomial.

Problem Solving and Python Programming290

Example of Polynomial

 P(Y) = −2 + Y2 + 3Y6

The above example is a polynomial of a single variable, i.e. y. The above polynomial consists of three
terms, viz. (−2), (Y2) and (3Y6). All the terms can be viewed as set of powers and coefficient terms. The
first term, i.e. (−2) contains power of y as 0 and with the coefficient as −2. Similarly, the second term,
i.e (Y2) contains the power of Y as 2 and with the coefficient as 1. And, the last term (3Y6) contains the
power of y as 6 and with the coefficient as 3. A dictionary can be used to map a power to a coefficient.

Representing above Polynomial using Dictionaries

P = {0:-2, 2:1, 6:3}

The above polynomial can also be represented as list. But, we have to fill in all zero (0) coefficients
too, since the index must match with the power. Therefore, representing the above polynomial as
list, it shows:

P(Y) = -2 + Y2 + 3Y6

P = [-2, 0, 1, 0, 0, 0, 3]

After representing the said polynomial in terms of list, we can compare the representation of
polynomial in terms of dictionary and list. The advantage of dictionary is that the user has to store
only the non-zero coefficients. For the polynomial 1+x50, the dictionary holds 51 elements.

Program 10.15 Write a program to evaluate polynomial of one variable, i.e. x, if the value of x is 2.

Example

P(X) = -2 + X2+3X3

P(2) = 26

def Eval_Poly(P,X):
 sum = 0
 for Power in P:
 sum = sum + P[Power]*X**Power
 print(‘The Value of Polynomial after Evaluation:’,sum)
P ={0:-2, 2:1, 3:3}
Eval_Poly(P,2)

output

The Value of Polynomial after Evaluation: 26

Explanation The function Eval_Poly() is created. The Polynomial P is represented in the form
of dictionary. The argument to the function is a dictionary of polynomial P. Where P[Power] holds
the coefficient associated with the term X**Power.

Tuples and Dictionaries 291

 Summary

  A tuple contains a sequence of items of any type.

  The elements of tuples are fixed.

  Tuples are immutable.

  A tuple can also be created from a list.

  The elements of tuples are enclosed in parentheses instead of square brackets.

  Tuples do not contain any method named sort.

  A tuple contains a sequence of items of any type.

 KEy TErmS

 � Tuple: It is a sequence of elements of any type.

 � Dictionary: It is a collection of key and value pair.

 � Immutable: It is a sort of Python objects, which can’t be changed.

 � Nested Dictionary: It is a sort of dictionary laying within another dictionary.

 � zip() Function: It is a sort of in-built Python function as used to make a list of tuples.

 � zip(*) Function: It is the function of zip inverse.

 rEviEw QuESTionS

a. multiple Choice Questions

 1. What will be the output of the following code?

def main():

Average_Rainfall={}

Average_Rainfall[‘Mumbai’]=765

Average_Rainfall[‘Chennai’]=850

print(Average_Rainfall)

main()

 a. [‘Mumbai’: 765, ‘Chennai’: 850]

 b. {‘Mumbai’: 765, ‘Chennai’: 850}

 c. (‘Mumbai’: 765, ‘Chennai’: 850)

 d. None of the above

 2. What will be the output of the following code?

init_tuple=()

print(init_tuple.__len__())

 a. 1 b. 0

 c. NULL d. Empty

Problem Solving and Python Programming292

 3. What will be the output of the following code?
t = (1, 2, 3, 4)
t[2] = 10
print(t)

 a. 1,2,10,4 b. 1,10,2,4

 c. Error d. 1,10,10,4

 4. What will be the output of the following code?

a = ((1,2),)*7

print(len(a[3:6]))

 a. 2 b. 3

 c. 4 d. Error

 5. What will be the output of the following program?

my_dict={}

my_dict[(1, 2, 3)] = 12

my_dict[(4,5)] = 2

print(my_dict)

 a. {12,12,12,2,2} b. Error

 c. {(4, 5): 2, (1, 2, 3): 12} d. {(1, 2, 3): 12 ,(4, 5): 2}

 6. What will be the output of the following code?

jersey = {‘sachin’:10,’Virat’:18}

jersey[10]

 a. Sachin b. Virat

 c. Error d. None of the above

 7. What will be the output after the execution of the following statements?

capital = {‘India’:’Delhi’,’SriLanka’:’Colombo’}

capital=list(captial.values)

 a. Delhi b. [‘Delhi’, ‘Colombo’]

 c. [‘Colombo’] d. Error

 8. Which dictionary has been created correctly?

a. d={1:[‘+91’,’India’],2:[‘+65’,’USA’]}

b. d={[‘India’]:1,[‘USA’]:2}

c. d={(‘India’):1,(‘USA’):2}

d. d={1:”INDIA”,2:”USA”}

e. d={“Payal”:1,”Rutuja”:2}

 a. Only d b. Only b

 c. a, b and c d. a, c, d and e

 9. What will be the output of the following code?

Fruits = (‘Banana’,’Grapes’,’Mango’,’Water Melon’)

print(max(fruits))

print(min(fruits))

 a. Water Melon, Mango b. Water Melon, Banana

 c. Water Melon, Grapes d. Banana, Water Melon

Tuples and Dictionaries 293

B. True or False

 1. A tuple contains non-sequential items of any type.

 2. The elements of tuples are fixed.

 3. Elements can be added after a tuple has been created.

 4. A tuple is an in-built data type in Python.

 5. In order to create a tuple, the elements of tuples are enclosed in parentheses instead of square
brackets.

 6. The elements of tuples are not separated by commas.

 7. Indexing and slicing of tuples is similar to that of lists.

 8. The index[] operator is used to access the elements of a tuple.

 9. The zip() function takes items in a sequence from a number of collections to make a list of tuples.

 10. The * operator unpacks a sequence into positional arguments.

 11. A dictionary within a dictionary is called a nested dictionary.

 12. A ‘for’ loop can be used to traverse nested dictionaries.

 13. Python objects which cannot change their contents are known as mutable data types.

 14. Immutable data types consist of int, float, complex, str and tuple.

 15. List and dictionaries can change their contents, so they are called immutable.

 16. A dictionary holds only two elements for the polynomial 1+x50.

C. Exercise Questions

 1. What is meant by a tuple and how is it created?

 2. What are the functions of tuples?

 3. Compare tuples and lists.

 4. How is a single element using a tuple created?

 5. List the in-built functions supported by tuples.

 6. How is indexing and slicing of tuples done?

 7. Which operator is used to access the elements in a tuple?

 8. Can a programmer pass a variable to a function? If yes, how?

 9. Consider the example of a tuple as follows.
x = (11, 12, (13, ‘Sachin’, 14), ‘Hii’)
a. x[0] b. x[2]
c. x[-1] d. x[2][2]
e. x[2][-1] f. x[-1][-1]
g. x[-1][2] h. x[0:1]
i. x[0:-1] j. len(x)
k. 2 in x l. 3 in x
m. x[0] = 8

 Write the output for the expression.

 10. What is the function of zip()?

 11. What is the role of the * operator within the zip() function?

 12. Describe the basics of dictionaries.

 13. A dictionary named ‘Grades’ is created as
Grades = {“Sahil”:90,”Abhijeet”:65}

Problem Solving and Python Programming294

 What do the following statements do?

 a. print(Grades.keys()) b. print(Grades.values()) c. print(len(Grades))

 d. Grades[“Karsus”]=99 e. Grades[“Abhijeet”] += 5 f. del Grades[“Abhijeet”]

 g. print(Grades.items())

 What will be the output of the following code?

Set1 = {10, 20, 30, 40}

 a. S1.issubset({10,20,30,40,50,60}) b. S1.issuperset({20,30,40}) c. print(10 in S1)

 d. print(101 in S1) e. print(len(S1)) f. print(max(S1))

 g. print(sum(s1))

 14. What will be the output of the following code?

T = (10, 34, 22, 87, 90)

 a. print(t) b. t[0]

 c. print(t[0:4]) d. print(t[:-1])

 15. How can all keys and values of a dictionary be traversed?

 16. How are the nested dictionaries created?

 17. How can a polynomial be represented using dictionaries?

 1. Write a function which takes a tuple as parameter and returns new tuple as a output. Where
every other elements of the input tuple is copied starting with first one.

 Example:

T = (‘Hello’,’Are’,’You’,’Loving’,’Python?’)

Output_Tuple = (‘Hello’, ‘You’, ‘Python?’)

 2. Write a function, called how_many, which returns the sum of the number of values associated
with a dictionary.

 Example:
T= animals = {‘L’:[‘Lion’],’D’:[‘Donkey’],’E’:[‘Elephant’]}
>>>print(how_many(animals))
3

 3. Write a function ‘biggest’ which takes a dictionary as a parameter and returns the key
corresponding to the entry with the largest number of values associated with it.

 Example:

>>>animals = {‘L’:[‘Lion’],’D’:[‘Donkey’,’Deer’],’E’:[‘Elephant’]}

>>>biggest(animals)

>>>d #Since d contains two values

Programming aSSignmEnTS

(Contd.)

Tuples and Dictionaries 295

Programming aSSignmEnTS (Contd.)

 4. Write a function Count_Each_vowel which accepts string from user. The function should return
dictionary which contains the count of each vowel.

 Example:

>>> Count_Each_vowel(“HELLO”)

>>>{‘H’:1, ‘E’:1, ‘L’:2 , ‘O’:2}

UNIT 5

 File Handling Exception Handling, Modules and
Packages

11

File Handling

Learning OutcOmes

After completing this chapter, students will be able to:

• Explain the need and importance of file handling

• Open a file and perform different operations on files, such as reading and writing

• Read the contents of a file using the read, readline and readline methods

• Read and write text and numerical data from and to a file, and append data to an existing file

• Access files and directories through various inbuilt functions

• Remove new line characters and other white spaces using the split() function

chapter OutLine

 11.1 Introduction

 11.2 Need of File Handling

 11.3 Text Input and Output

 11.4 The seek() Function

 11.5 Binary Files

11.6 Accessing and Manipulating Files and
Directories on a Disk

11.1 intrOductiOn

A file is a collection of records. A record is a group of related data items. These data items may
contain information related to students, employees, customers, etc. In other words, a file is a
collection of numbers, symbols and text and can be considered a stream of characters.

Problem Solving and Python Programming298

11.2 need Of fiLe handLing

Often the output screen of a laptop or monitor is not enough to display all the data. This usually
happens when the data is large and only a limited amount can be displayed on the screen and
stored in the memory. Computer memory is volatile, so even if a user tries to store the data in the
memory, its contents would be lost once a program is terminated. If the user needs the same data
again, either it has to be entered through a keyboard or regenerated programmatically. Obviously,
both these operations are tedious. Therefore, to permanently store the data created in a program,
a user needs to save it in a File on a disk or some other device. The data stored in a file is used to
retrieve the user’s information either in part or whole.

Various operations carried out on a file are

 (a) Creating a file

 (b) Opening a file

 (c) Reading from a file

 (d) Writing to a file

 (e) Closing a file

All these operations are discussed in detail in this chapter.

11.3 text input and Output

To read data from a file or to write data to a file, a user needs to use the open function to first create
a file object.

11.3.1 Opening a file

A file needs to open before we can perform read and write operations on it. To open a file, a user
needs to first create a file object which is associated with a physical file. While opening a file, a user
has to specify the name of the file and its mode of operation. The syntax to open a file is:

 file object = open(File_Name, [Access_Mode],[Buffering])

The above syntax to open a file returns the object for file name. The mode operation used in the
syntax above is a string value which indicates how a file is going to be opened. Table 11.1 describes
the various modes used to open a file. The third parameter within the open function is an optional
parameter, which controls the buffering of a file. If this parameter is set to 1, line buffering is
performed while accessing the file. If the buffering value is set to 0 then no buffering takes place. If
we specify the buffering value as an integer greater than 1 then the buffering action is performed
with the indicated buffer size.

Table 11.1 Different modes to open a file

Mode Description

R Opens a file for reading

W Opens a new file for writing. If a file already exists, its contents are destroyed.

(Contd.)

File Handling 299

A Opens a file for appending data from the end of the file

Wb Opens a file for writing binary data

Rb Opens a file for reading binary data

Example

F1 = open (“Demo.txt”,”r”) #Open File from Current Directory

F2 = open(“c:\Hello.txt”,”r”)

The above example opens a file named Hello.txt located at C: in read mode.

11.3.2 Writing text to a file

The open function creates a file object. It is an instance of _io.TextIOWrapper class. This class
contains the methods for reading and writing data. Table 11.2 lists the methods defined in the
_io.TextIOWrapper class.

Table 11.2 Methods for reading and writing data

_io.TextIOWrapper Meaning

str readline() Returns the next line of a file as a string

list readlines() Returns a list containing all the lines in a file

str read([int number]) Returns a specified number of characters from a file. If the argument is
omitted then the entire content of the file is read.

Write (str s) Writes strings to a file

close() Closes a file

Once a file is opened, the write method is used to write a string to a file. Program 11.1 demonstrates
the use of write method to write content to a file Demo1.txt.

Program 11.1 Write a program to write the sentences given below the file Demo1.txt.

Hello, How are You?

Welcome to The chapter File Handling.

Enjoy the session.

def main():

 obj1 = open(“Demo1.txt”,”w”) #Opens file in Write mode

 obj1.write(“ Hello, How are You ? \n”)

 obj1.write(“ Welcome to The chapter File Handling. \n “)

 obj1.write(“ Enjoy the session. \n “)

main() # Call to main function

Explanation In the above program, initially the file Demo1.txt is opened in ‘w’ mode, i.e. write

mode. If the file Demo1.txt does not exist, the open function creates a new file. If the file already
exists, the contents of the file will be over written with new data.

Problem Solving and Python Programming300

When a file is opened for reading or writing, a special pointer called file pointer is positioned
internally in the file. Reading and writing operation within the file starts from the pointer’s
location. When a file is opened, the file pointer is set at the beginning of the file. The file pointer
moves forward as soon as we start reading from the file or write the data to the file.

The step-wise execution and position of the file pointer is updated in the following manner by
the Python interpreter.

Initially, a call is made to the main() function. The statement obj1 = open(“Demo1.txt”,”w”)

opens Demo1.txt in write mode. The file is created and initially the file pointer is at the starting of
the file as shown in Figure 11.1.

Figure 11.1 Initial position of the file pointer

The following statement within the program invokes the write method on the file object to write
strings into the file.

 obj1.write(“ Hello, How are You ? \n”)

After successful execution of the above statement, the file pointer is located as shown in
Figure 11.2.

Figure 11.2

After successful execution of a second statement, i.e. obj1.write(“Welcome to The chapter File

Handling. \n “), the file pointer is located as shown in Figure 11.3.

Figure 11.3

File Handling 301

Finally, after the execution of the third statement, i.e. obj1.write(“ Enjoy the session.\n”), the
contents of the file are updated as shown in Figure 11.4.

Figure 11.4

 Note: When print(str) function is invoked, the function automatically inserts new line character. But
when write function is invoked, we have to explicitly write the new line character to the file.

11.3.3 closing a file

When we have finished reading or writing from a file, we need to properly close it. Since an open
file consumes system resources (depending on the mode of the file), closing it will free resources
tied to it. This is done using the close() method. The syntax to close a file is:

 Fileobject.close()

Example

 fp1 = open(‘Demo1.txt’,’w’)

 fp1.close()

11.3.4 Writing numbers to a file

In the above program, we have seen that the write (str s) method is used to write a string to a
file. However, if we try to write numbers to a file, the Python interpreter shows an error. The
following program uses the write method to show the error generated by the Python interpreter
upon execution.

def main():

 obj1 = open(“Demo1.txt”,”w”) #Open file in Write mode

 for x in range(1,20):

 obj1.write(x) #Write number X to a file

 obj1.close()

main()

#Error

Traceback (most recent call last):

 File “C:\Python34\Demo1.py”, line 6, in <module>

 main()

 File “C:\Python34\Demo1.py”, line 4, in main

Problem Solving and Python Programming302

 obj1.write(x)

TypeError: must be str, not int

The write () method expects a string as an argument. Therefore, if we want to write other
data types, such as integers or floating point numbers then the numbers must be first converted
into strings before writing them to an output file. In order to read the numbers correctly, we need
to separate them using special characters, such as “ “ (space) or ‘\n’ (new line). Program 11.2 uses
str method to convert numbers into strings and write numbers to an output file.

Program 11.2 Write numbers from 1 to 20 to the output file WriteNumbers.txt.

def main():

 obj1 = open(“WriteNumbers.txt”,”w”) #Open File in Write mode

 for x in range(1,21): # Iterates from 1 to 20

 x=str(x) # Convert Number to String

 obj1.write(x) # Write Number to a output file

 obj1.write(“ “) # Space to separate Numbers

 obj1.close() # Close File

main() # Call to main function

Explanation The program opens a WriteNumbers.txt file in w mode, i.e. write mode. The for loop
iterates 20 times to write numbers from 1 to 20 to the file. The numbers are converted into strings
using the str method before being written to the file.

Program 11.3
 Generate 50 random numbers within a range 500 to 1000 and write them to file
WriteNumRandom.txt.

from random import randint # Import Random Module

fp1 = open(“WriteNumRandom.txt”,”w”) # Open file in write mode

for x in range(51): #Iterates for 50 times

 x = randint(500,1000) #Generate one random number

 x = str(x) #Convert Number to String

 fp1.write(x + “ “) #Write Number to Output file

fp1.close() #Finish Writing Close the file

output File

File Handling 303

Explanation The above program generates 50 random integers within range (500 to 1000) and
writes them to a text file WriteNumRandom.txt. The randint module is imported from random to
generate random numbers.

11.3.5 reading text from a file

Once a file is opened using the open () function, its content is loaded into the memory. The
pointer points to the very first character of the file. To read the content of the file, we open the file
in ‘r’ (read) mode. The following code is used to open the file ReadDemo1.txt.

>>> fp1 = open(“ReadDemo1.txt”,”r”)

There are several ways to read the content of a file. The two common approaches are:

 a. Use read() method to read all the data from a file and return as one complete string.

 b. Use readlines() method to read all data and return as a list of strings.

The following program demonstrates the use of the read() method to read the content of the
file ReadDemo1.txt. The content of the file is as shown in Figure 11.5.

Figure 11.5

Program 11.4 Write a program to read the content of the file ReadDemo1.txt using the read() method.

fp = open(“ReadDemo1.txt”,”r”) #Open file in read mode

text = fp.read() # Read Whole File exactly once

print(text) #Print the contents of file

output

I

Love

Python

Programming

Language

Explanation Initially the file ReadDemo1.txt is opened in read mode. The content of the file is read
using the read() method. It reads all the content of the file exactly once and returns all the data
as a single string.

Problem Solving and Python Programming304

Alternatively, a programmer can write the for loop to read one line of a file at a time, process it
and continue reading the next line until it reaches the end of the file.

fp = open(“ReadDemo1.txt”,”r”)

for line in fp:

 print(line)

output

I

Love

Python

programming

Language

Explanation In the above program, the for loop views the file object as a sequence of lines of text.
In each iteration of the for loop, the loop variable line is bound to the next line from the sequences
of lines present in the text file. Note the output of above program. The print() statement prints one
extra new line. This is because each line of the input file retains its new line character.

11.3.6 reading numbers from a file

Syntax used to open a file in read mode is

fp1 = open (“numbers.txt”,”r”);

The content of the file numbers.txt is as shown in Figure 11.6.

Figure 11.6

The first line of file number.txt contains a single integer ‘n’, indicating the total number of values
appearing in the file. Immediate to the next of the first line we have ‘n’ lines with one number on
each line. Thus, by making use of read() method, all the content of the file is read at once and
returned as string. The following program reads the content of the file numbers.txt in ‘r’ mode.

File Handling 305

Program 11.5 Write a program to read the content of the file ‘numbers.txt’.

fp1 = open(“numbers.txt”,”r”) #open file in read mode

num = fp1.read() #return entire contents of file as string

print(num) #print the contents of file stored in num

print(type(num)) # Check the type of num

output

5

2

4

6

8

10

<class ‘str’>

In the above program we use the read() method. It returns all the input content of the file as
a single string. Assume that our goal is to add all the numbers present in a file except for the first
one, which indicates the total numbers present in the file.

In order to add the numbers present in the file numbers.txt, the readline() function is used
to read the content of the whole line. Program 11.6 illustrates the use of the readline() method.

Program 11.6
 Write a program to add the content of a file numbers.txt and display the sum of all the numbers
present in the file.

fp1 = open(“numbers.txt”,”r”)

num = int(fp1.readline())

print(num)

sum = 0

print(‘The ‘, num ,’ numbers present in the file are as follows:’)

for i in range(num):

 num1 = int(fp1.readline())

 print(num1)

 sum = sum + num1

print(‘Sum of all the numbers (except first):’)

print(sum)

output

5

The 5 numbers present in the file are as follows:

2

4

(Contd.)

Problem Solving and Python Programming306

6

8

10

Sum of all the numbers (except first):

30

Explanation In the above program, initially we have opened a file numbers.txt in read mode. The

num = int(fp1.readline()) statement instructs Python to read an entire line from a designated file.
Since this is the first line after the file was opened, it will read the first line of the file. As readline()

function returns string, using (int) function, the string is converted to int. This step is repeated to
read the remaining lines from the file.

11.3.7 reading multiple items on one Line

In the above program, we were able to read only one item per line. Many text files contain multiple
items in a single line. The method split () for strings allows us to read more than one piece of
information in a line. The split () returns all the items in a list. In short, it splits a string into
separate items and all the items are separated by spaces or tabs.

The following example written in Python IDLE interpreter gives more details about the split()
method.

>>> str = ‘I am Loving The Concepts of File Handling’

>>> str.split()

[‘I’, ‘am’, ‘Loving’, ‘The’, ‘Concepts’, ‘of’, ‘File’, ‘Handling’]

#

>>> for i in range(len(str)):

 print(str[i])

I

am

Loving

The

Concepts

of

File

Handling

Explanation The above example simply splits the string and stores the content to a list. Finally, the
for loop is used to access and display each item of the list.

Let us look at a program which reads more than one piece of information in a line. Consider
the problem of calculating the total and percentage marks obtained by students, stored in a file
Grades.txt.

File Handling 307

The content of Grades.txt file is as shown in Figure 11.7.

Figure 11.7

The first line of the input file Grades.txt has a single positive integer ‘n’ which represents the
number of students in a class. The following ‘n’ lines next to the first line contain five positive
integers in between 0 and 100, which represent the marks obtained by the students in five different
subjects.

Program 11.7
 Write a program to read the contents of a file Grades.txt and calculate the total marks and
percentage obtained by a student.

fp1 = open(“Grades.txt”,”r”) #Open file in read mode

n = int(fp1.readline()) #Read first line of file

print(‘Total Number of Students: ‘,n)

for i in range(n):

 print(‘Student #’,i+1,’:’, end = ‘ ‘)

 allgrades = (fp1.readline().split())

 print(allgrades)

 sum = 0

 for j in range(len(allgrades)):

 sum = sum + int(allgrades[j])

 per = float((sum/500)*100)

 print(‘Total = ‘,sum, ‘ \nPercentage = ‘,per)

 print(‘\n’)

output

Total Number of Students: 5

Student # 1 : [‘60’, ‘70’, ‘80’, ‘90’, ‘100’]

Total = 400

Percentage = 80.0

(Contd.)

Problem Solving and Python Programming308

Student # 2 : [‘55’, ‘65’, ‘75’, ‘85’, ‘60’]

Total = 340

Percentage = 68.0

Student # 3 : [‘70’, ‘60’, ‘80’, ‘90’, ‘67’]

Total = 367

Percentage = 73.4

Student # 4 : [‘89’, ‘76’, ‘56’, ‘43’, ‘90’]

Total = 354

Percentage = 70.8

Student # 5 : [‘67’, ‘89’, ‘76’, ‘54’, ‘90’]

Total = 376

Percentage = 75.2

Explanation Initially, the file Grades.txt is opened in read mode. The statement n = int(fp1.

readline()) reads the first line of the file. It returns the details about number of students present in
the file. The for loop is used to go through each student. For each student, the marks obtained for
five different subjects are stored in a list. Since list stores strings, each item of the list is converted
into int to carry out the desired calculations.

Program 11.8
 Write a function Find_Largest() which accepts a file name as parameter and reports the
longest line in the file.

The content of Demo1.txt file is as shown in Figure 11.8.

Figure 11.8

File Handling 309

def Find_Largest(fp1):

 fp1 = open(‘Demo1.txt’,’r’) #Open File in read Mode

 long = “ “ #Assume Longest Line = 0

 L = 0

 count = 0

 for line in fp1:

 count= count + 1

 print(‘ Line No: ‘,count)

 print(line)

 print(‘ Number of Character = ‘,len(line))

 print(‘-----------------------------------’)

 if(len(line) > len(long)):

 long = line

 L = line

 print(L, ‘is the Longest Line with’, len(long),’characters’)

fp = open(‘Demo1.txt’,’r’)

Find_Largest(fp)

output

Line No: 1

India, officially the Republic of India is a country in South Asia.

Number of Character = 70

Line No: 2

It is the seventh-largest country by area.

Number of Character = 43

Line No: 3

The second-most populous country with over 1.2 billion people.

Number of Character = 64

Line No: 4

The most populous democracy in the world.

 Number of Character = 42

India, officially the Republic of India is a country in South Asia.

is the Longest Line with 70 characters

Problem Solving and Python Programming310

Explanation The file Demo1.txt is opened in read mode. Initially, we have assumed the length
of the longest line is 0 characters. The for loop is used to traverse all the lines of the file Demo1.

txt. While traversing, the length of each line is measured and compared with the previous longest
length of a line present in the file. Finally, the line with the longest length is stored in the variable
‘long’.

Program 11.9
 Write a program to copy lines which start with an uppercase letter only from the input file
Demo1.txt and ignore the lines which start with a lowercase letter. The output file Demo2.
txt should contain only those lines from the file Demo1.txt which start with an uppercase
letter.

The content of Demo1.txt and Demo2.txt is as shown below. Initially, Demo2.txt is an empty file (Figure 11.9).

Figure 11.9

IP_File = open(‘Demo1.txt’,’r’)

Out_File = open(‘Demo2.txt’,’w’)

for line in IP_File:

 if line[0] not in ‘abcdefghijklmnopqrstuvwxyz’:

 Out_File.write(line)

Out_File.close()

output

File Handling 311

Explanation The file Demo1.txt is opened in read mode. The for loop is used to go through all
the lines present in it. Initially, the file Demo2.txt is an empty file. The statement if line[0] not in

‘abcdefghijklmnopqrstuvwxyz’: is used to check if a line starts with an uppercase letter. If the
condition is satisfied, the corresponding line is copied to the file Demo2.txt.

11.3.8 appending data

The append ‘a’ mode of a file is used to append data to the end of an existing file. The following
program demonstrates the use of append mode.

Program 11.10 Write a program to append extra lines to a file name appendDemo.txt.

The content of appendDemo.txt file is as shown in Figure 11.10.

Figure 11.10

fp1=open(‘appendDemo.txt’,’a’) # Open file in append file

fp1.write(‘\nWow, Cant Believe.’)# Append contents to a file

fp1.close() #Close file

output

11.4 the seek() functiOn

So far, we have learnt that data is stored and subsequently read from a file in which it is stored.
When a file is opened, we can imagine an imaginary pointer positioned at the beginning of the
file. What about reading the content of files from random positions? Python provides an inbuilt
function called seek() for moving the pointer explicitly to any position in a file.

Thus, the seek() method is used to set the file pointer to a specific position in a file. The syntax
for seek() function is:

Problem Solving and Python Programming312

 File_object.seek(offset, whence)

where offset indicates the number of bytes to be moved from the current position of the pointer
and whence indicates the point of reference from where the bytes are to be moved from. The value
of whence can be determined from Table 11.3.

Table 11.3 Seek file pointer

Value Meaning

0 The position is relative to the start of the file, i.e. it sets the pointer at the beginning of the file. This
is a default setting if we don’t supply ‘0’ as the second argument to the seek() function.

1 The position is relative to the current position.

2 The position is relative to the end of the file.

Examples

#Create Seek_Demo1.txt file in write mode

>>> fp1= open(‘Seek_Demo1.txt’,’w+’)

#Write some data to the file

>>> fp1.write(‘Oh!God!SaveEarth!’)

17 #returns number of characters written in a file

#By default second argument of seek function is zero

>>> fp1.seek(3)

2

>>> fp1.readline()

‘God!SaveEarth!’

Explanation

In the above example the file Seek_Demo.txt contains 17 characters. The statement fp1.seek(3) tells
Python to read the content of the file from the third position.

 Note: The statement fp1.seek(3) does not contain a second argument. Thus, by default, it is set to zero.
The first argument cannot be negative if we don’t supply a second argument.

Program 11.11 Write a program to perform the following operation using seek() and basic file operations.

 (a) Open file weekdays.txt in write mode.

 (b) Write weekdays from Monday to Friday in a file weekdays.txt.

 (c) Use seek() to read the content of the file.

 (d) Set the pointer to the end of the file and append two remaining weekdays, i.e. Saturday and Sunday to the
existing file weekdays.txt.

 (e) Read and print all content of the file.

File Handling 313

fp1 = open(‘weekdays.txt’,’w+’) #Open file in w+ mode

fp1.write(‘Monday\n’) #Write to file

fp1.write(‘Tuesday\n’)

fp1.write(‘Wednesday\n’)

fp1.write(‘Thursday\n’)

fp1.write(‘Friday\n’)

fp1.seek(0) #Set file pointer to start of the file

#t = fp1.read() #Read file from current file pointer till end

fp1.seek(0,2)#Move file pointer at the end of file

fp1.write(‘Saturday\n’) #Write at the end of file

fp1.write(‘Sunday’)

fp1.seek(0)

t = fp1.read()

print(t)

output

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Explanation In the above program, initially we have opened a file and written the content to the
file. The statement fp1.seek(0) is used to reposition the pointer to the starting point of the file and
read the whole content at once. Similarly, seek(0, 2) points to the end of the file and the remaining
content is written to the file.

11.5 Binary fiLes

Binary files can be handled in a manner similar to that used for text files. Access mode ‘r’ is required
to open normal text files. In order to open binary files, we should include ‘b’, i.e. ‘rb’ to read binary
files and ‘wb’ to write binary files.

Binary files don’t have text in them. They might have pictures, music or some other kind of data.
There are no new lines in binary files, which means we cannot use readline() and readlines() on
them.

Problem Solving and Python Programming314

11.5.1 reading Binary files

Many proprietary applications use binary file formats. This type of file format begins with a specific
series of bytes to identify the file type. For example, the first one byte in a jpg image is always b’\

xff\xd8’ , i.e. it indicates the type of the file. Similarly, \xff\xd9 indicates the end of a file.

The following example shows how we can read the content of a jpeg file.

Example

>>> fp1 = open(‘C:\\Users\\shree\\Desktop\\demo.jpg’,’rb’)

>>> fp1.read()

b’\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x01\x00`\x00`\x00\x00 \xff\xdb\x00C\

x00\x02\x01………………………………………………………,\xff\xd9’

11.6 accessing and manipuLating fiLes and

directOries On a disk

Python supports various inbuilt functions for accessing and manipulating files and directories.
Most file manipulation functions live in the os module and associated module are called os.path.
The os provides basic file handling functions and the os.path handles operations on paths and
filenames. Table 11.4 contains a list of inbuilt functions related to files and directories provided by
Python.

Table 11.3 Inbuilt functions to access files and directories

Module and Function Description

os.getcwd()

Example:

>>> import os # import os module

>>> os.getcwd() # Returns Current Working Directory

‘C:\\Python34’

Returns the path of the
current working directory.

os.chdir(newdir)

Example:

>>> os.chdir(‘C:\\Python34\\Lib’)

>>> os.getcwd()

‘C:\\Python34\\Lib’

Changes the current working
directory.

os.path.isfile(fname)

Example:

>>> os.path.isfile(‘Demo1.py’)

True # Returns true since the file is present on the

said path

Returns True if a file exists on
the said path or else returns
False.

(Contd.)

File Handling 315

os.path.isDir(DirName)

Example:

>>> os.path.isdir(‘C:\\Python34’)

True

Returns True if the said
directory exists or else
returns False.

os.mkdir(DirName)

Example:

>>> os.mkdir(‘Prac’)

>>> os.chdir(‘C:\\Python34\\Prac’)

Creates a new directory in the
said path or else by default
it creates one in the current
working directory.

os.listdir(path)

Example:

>>>

os.listdir(‘c:\\Python34\Practice’)

[‘apps.py’,’CDemo.py’,’ColorDemo.py’, ‘cprime.py’]

Lists the names of files and
directories in the said path.

os.rename(old, name)

Example:

>>> os.getcwd() #Get path of Current Working Directory

‘C:\\Python34\\Prac’

>>> os.chdir(‘c:\\Python34\Practice’) #Change Path

>>> os.listdir() #List Names of Files and Directories

[‘apps.py’, ‘CDemo.py’, ‘ColorDemo.py’, ‘cprime.py’]

>>> os.rename(‘apps.py’,’MyApps.py’) #Rename file

‘apps.py’

>>> os.getcwd()

‘c:\\Python34\\Practice’

>>> os.listdir()

[‘CDemo.py’, ‘ColorDemo.py’, ‘cprime.py’, ‘MyApps.py’]

Renames the old file name to
a new file name.

getsize(path)

Example:

>>> import os

>>> os.path.getsize(‘Demo1.py’)

173

Return the size, in bytes for
the said path.

os.path.exists (path)

Example:

>>> os.path.exists(‘Demo1.py’)

True

Returns True if the path exists
otherwise returns False.

mini prOject
extracting data from a file and performing some Basic
mathematical Operations on it

Let us assume an individual spends ‘x’ amount (in three digits) on ’Y’ item each month. The
amount spent each month is stored in a file Expenses.txt in the format MonthNo:X\n. Create an
application using file handling to calculate the total amount spent on ‘Y’ item in the last six months.

Problem Solving and Python Programming316

Example

Consider the Expenses.txt file given below. The information contained within the file is:

Month1 : 100

Month2 : 200

Month3 : 079

Month4 : 090

Month5 : 097

Month6 : 100

Total expense in the last six months: 566

algorithm

 | STEP 1: Open file Expenses.txt in w+ mode.

 | STEP 2: Insert all the entries for the last six months in the said format.

 | STEP 3: Reset the file pointer to the initial position.

 | STEP 4: Iterate file. For each iteration, search for ‘:’ and store the content after ‘:’ in the variable
‘exp’.

 | STEP 5: Compute the sum of all the expenses for last six months and display the total expense.

Program

fp1=open(‘Expenses.txt’,’w+’) #Open file in write mode

fp1.write(‘Month1:100\n’)

fp1.write(‘Month2:200\n’)

fp1.write(‘Month3:079\n’)

fp1.write(‘Month4:090\n’)

fp1.write(‘Month5:097\n’)

fp1.write(‘Month6:100\n’)

print(‘Contents of File Expenses.txt are as follows:’)

fp1.seek(0) #Reposition pointer to the start of file

print(fp1.read()) #Read entire file at once

fp1.seek(0) #Again reposition pointer to the start of file

txt = fp1.readlines()#Read contents of file line wise

count = 0

sum = 0

for ch in txt:

 fp1.seek(7+count)

(Contd.)

File Handling 317

 exp = fp1.readline().strip(‘\n’)

 sum = sum + int(exp)

 count += 12

print(‘Expenses of last six month:’,sum)

output

Contents of File Expenses.txt are as follows:

Month1:100

Month2:200

Month3:079

Month4:090

Month5:097

Month6:100

Expenses of last six month: 666

 Summary

  Read, write and append are the basics modes of a file.

  A file is opened in ‘wb’ mode for writing binary content to the file.

  A file is opened in ‘rb’ mode for reading binary content of the file.

  The open function is an instance of _io.TextIOWrapper class.

  The write (str s) method is used to write a string to a file.

  The method readlines() returns a list containing all the lines in a file.

  The read() method is used to read all the data from a file.

  The read() method returns all the data as one complete string.

  The os module and os.path handle various operations related to the file name and path.

 KEy TErmS

 � open(): Used to open a specified file

 � Mode: R (read), W (write), A (Append), Wb (write binary data) and Rb(read binary data) are different
modes to open a file

 � write(): Method to write text and numbers to a file

 � read, readline and readlines(): Various methods to read the content of a file

 � split(): Reads more than one piece of information in a line and returns all the items in a list

 � os.path(): Handles operations related to files and directories

 � seek(): Places the file pointer at specific locations

Problem Solving and Python Programming318

 rEviEw QuESTionS

a. multiple Choice Questions

 1. Opening a file in read mode performs which operation?

 a. Creates a new file b. Reads consecutive characters from a file

 c. Reads all the content of a file d. None of the above

 2. If we have to open a file abc.txt using the statement

 Fp1 = open(‘abc.txt’,’r’)

 which statement will read the file into memory?

 a. Fp2 = open(Fp1) b. FP1.Open.read(Fp1)

 c. Fp1.read() d. None of the above

 3. The inbuilt method readlines() is used to:

 a. Read an entire file as a string b. Read one line at a time

 c. Read each line in a file as an item in a list d. None of the above

 4. If the statement Fp1 = open(‘demo.txt’,’r’) is used to open a file demo.txt in read mode then which
statement will be used to read 5 string characters from a file into memory?

 a. Ch = fp1.read[:10] b. Ch = fp.read(6)

 c. Ch = fp.read(5) d. All of the above

 5. The close() method is used to conserve memory because:

 a. It closes all unused memory created by Python

 b. It deletes all the text related to a file

 c. It compresses a file

 d. It removes the reference created by files open() function

 6. If we have to open a file to read its content using the statement

 Convert_Demo = open(‘Story.txt’,’r’)

 which is a valid statement to convert each character of the first line of a file into uppercase?

 a. print(Convert_Demo[0].upper())

 b. print(Convert_Demo.upper())

 c. print(Convert_Demo.readline().upper())

 d. All of the above

 7. If content of a file cities.txt is:

 &Delhi&Chennai&

 &Mumabi&Kolkata&Madras&

 &Pune&Nagpur&Aurangabad&

 What will be the output of the following code?

fp1 = open(“cities.txt”, “r”)

name = fp1.readline().strip(‘&\n’)

while name:

 if name.startswith(“M”):

 print(name)

File Handling 319

 else:

 pass

 name = fp1.readline().strip(‘&\n’)

 a. &Mumbai&Kolkata&Madras& b. Mumabi&Kolkata&Madras

 c. Mumabi Kolkata&Madras d. &Mumabi Kolkata Madras

 8. What is the use of ‘a’ mode in file handling?

 a. Read b. Write

 c. Append d. Alias

 9. Which statement is used to move the pointer in a file to the beginning of the first character?

 a. .seek(-1) b. .seek(1)

 c. .seek(0) d. .seek(2)

 10. Which statement is used to move the pointer in a file to the end of the file?

 a. .seek(-1) b. .seek(1)

 c. .seek(0) d. .seek(2)

B. True or False

 1. ‘w+’ mode opens a file for write plus read.

 2. The statement seek(5,1) is used to move the pointer 5 characters past the current position.

 3. A file once opened in read mode cannot be used to write.

 4. The .listread() statement is used to read each line of a file as an item in a list.

 5. The readline() is used to read a line as string.

 6. The readline() method can be used to read the content of each line in a binary file.

 7. Binary files contain \n.

C. Exercise Questions

 1. Define a file and its advantages.

 2. How are files opened and what operations can be done on them?

 3. State the syntax to open, write text and close a file.

 4. How is data appended to an existing file?

 5. What are the applications of the seek() function?

 6. State the syntax for seek() function.

 7. Enlist the inbuilt functions supported by Python.

 8. What is a binary file? List its applications.

 9. Explain any five inbuilt file functions.

 10. Using an example, write the procedure to read numbers from a file.

Problem Solving and Python Programming320

 1. Write a program to add the contents of a file salary.txt and display the sum of salaries of all
employees present in the file. The content of file salary.txt is

 2. Write a function Find_Samllest() which accepts the file name as parameter and reports the
smallest line in the file. The content of file Demo.txt is

 3. Write a program to copy lines which start with a lowercase letter only from the input file
Demo.txt” and ignore the lines which start with an uppercase letter. The output file Demo2.
txt should contain only those lines from the file Demo.txt which start with a lowercase
letter.

 4. Write a program to copy the content of one file to another.

 5. Write a program to read the content of a Python file and display all the lines without
comments.

Programming aSSignmEnTS

12

Exception Handling,
Modules and Packages

LEARNING OUTCOMES

After completing this chapter, students will be able to:

• Handle the exceptions using in-built Python keywords

• Use the keywords like try, except and finally in the programs during exception handling

• Execute the exceptions using raise keyword

• Make use of packages and modules

ChApTER OUTLINE

 12.1 Errors and Exception

 12.2 Python Exception and Its Hierarchy

 12.3 Handling Exception

 12.4 Raising Exception

 12.5 Modules

 12.6 Packages in Python

12.1 ERRORS AND EXCEpTION

How often did it happen that the program you wrote ran successfully in its very first attempt?
Very rarely, right? There were always some errors in the program. This is what this chapter is all
about. It is common to make mistakes while typing as well as developing a program. Such types
of mistakes are called errors. An error is something that can produce incorrect or irrelevant output
or even make the system crash. It is, therefore, very important to find out these errors and fix them
so that the program will not terminate or crash during its execution. Error can be of two types,
viz. the compile-time errors and the runtime errors. Thus, this entire chapter helps to deal with all
such kind of errors without terminating the program by the aid of the concept as called exception

handling. Details of exception handling are explained in the next section.

Problem Solving and Python Programming322

12.1.1 Exception

An exception is an error that occurs at run time.

OR

An exception is an erroneous condition that arises while program is running.

The runtime errors occur while program is in execution or program is in running mode.
The Example of such conditions includes dividing a number by zero produces ZeroDivisionError—
division by zero exception.

Example: Division by Zero Exception

>>> a=10
>>> b=0
>>> a/b
Traceback (most recent call last):
 File “<pyshell#5>”, line 1, in <module>
 a/b
ZeroDivisionError: division by zero

If a programmer attempts to open a file which doesn’t exist, then it produces the error
FileNotFoundError; similarly, if you try to access an index of a list which is out-of-bound, i.e.
trying to access the index of an array more than the size of list, it produces then IndexError:
list index out of range exception and many more exceptions are also raised.

Thus, an exception is an object that represents an error. Also it is a condition that prevents the
execution of statements in Python from proceeding normally. So, if exceptions are not handled, the
programs will terminate abnormally. In order to run the program without termination, there is
always a need of exception handling.

12.2 pYThON EXCEpTION AND ITS hIERARChY

In Python, all of the exceptions are the instances of a class which is derived from BaseException
class. Each exception type is a separate class. Python organizes exception in hierarchical way. The
Table 12.1 below contains all in-built exceptions where the indentation indicates how exceptions
are structured hierarchically.

Table 12.1 Python exception hierarchy

BaseException #The base class for all built in exceptions
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception #All in-built exceptions and user defined exception are derived
from this class.

 +-- StopIteration
 +-- StandardError
 | +-- BufferError

(Contd.)

Exception Handling, Modules and Packages 323

 | +-- ArithmeticError #The base class for those in-built exceptions that
are raised for various arithmetic operations given as follows.

 | | +-- FloatingPointError
 | | +-- OverflowError
 | | +-- ZeroDivisionError
 | +-- AssertionError
 | +-- AttributeError
 | +-- EnvironmentError
 | | +-- IOError
 | | +-- OSError
 | | +-- WindowsError (Windows)
 | | +-- VMSError (VMS)
 | +-- EOFError #This exception is raised when input() function hits an
end of file condition (EOF) without reading any data.

 | +-- ImportError
 | +-- LookupError
 | | +-- IndexError#
 | | +-- KeyError
 | +-- MemoryError
 | +-- NameError
 | | +-- UnboundLocalError
 | +-- ReferenceError
 | +-- RuntimeError
 | | +-- NotImplementedError
 | +-- SyntaxError #Raised when parser encounters a syntax error.
 | | +-- IndentationError
 | | +-- TabError
 | +-- SystemError
 | +-- TypeError
 | +-- ValueError
 | +-- UnicodeError
 | +-- UnicodeDecodeError
 | +-- UnicodeEncodeError
 | +-- UnicodeTranslateError
 +-- Warning#
 +-- DeprecationWarning
 +-- PendingDeprecationWarning
 +-- RuntimeWarning
 +-- SyntaxWarning
 +-- UserWarning
 +-- FutureWarning
 +-- ImportWarning
 +-- UnicodeWarning
 +-- BytesWarning

Problem Solving and Python Programming324

12.3 hANDLING EXCEpTION

The exception handling in Python is managed by three keywords try, except and finally.
The working of all these keywords is explained below.

The program statements that you want to monitor for exception should be in try block.
If an exception occurs within the try block, then the particular exception is raised (or thrown).
The syntax for exception handling that might raise or (throw) an exception in a try block is as
follows (Figure 12.1).

try:

#Body of try block
exceptException _ Type1

#Perform of some kind of exception handling
#It is Exception Handler for Exception Type 1, Alerts the user
exceptException _ Type2

#Exception Handler for Exception Type 2
………………………………………..
…………………………………………
………………………………………..
…………………………………………
exceptException _ TypeN

#Exception Handler for Exception Type N

Figure 12.1 Syntax—exception handling

Thus, Figure 12.1 explains when an exception is raised (thrown), it is caught by its corresponding
except statement, which then processes the exception. As the general form shows, there can be
more than one except statements associated with a try. The type of the exception determines
which except statement needs to be executed. That is, if the exception type specified by an except
statement matching that of the exception, then that except statement is executed (and all others
are bypassed). If no exception is raised or thrown, then a try block ends normally, and all of its
except statements are bypassed.

Points to Remember

When error occurs in a piece of code, exception mechanism performs the following tasks.

 1. Finds the problem (Get the exception)

 2. Informs an error has occurred. (Raise the exception)

 3. Receives the error information. (The except statement)

 4. Takes the remedial actions. (Handle the exception)

12.3.1 Divide by Zero Example Without Exception handling

Let us consider the following small programming example which demonstrate what will happen
when the error arises in the programs not using the exception handling.

Exception Handling, Modules and Packages 325

Program 12.1
 Write a program to read two numbers from user and find the quotient by dividing first number
by second number.

a = int(input(‘Enter the first number:’))
b = int(input(‘Enter the second number:’))
c = a/b
print(‘ a = ‘,a)
print(‘ b = ‘,b)
print(‘ a/b = ‘,c)

output

#Case 1:

Enter the first number: 10
Enter the second number: 2
a = 10
b = 2
a/b = 5

#Case 2:

Enter the first number: 10
Enter the second number: 0
Traceback (most recent call last):

 File “C:\Python34\Exce1.py”, line 3, in <module>

 c = a/b

ZeroDivisionError: division by zero

Explanation The above program asks the user to enter two numbers and calculate the quotient by
dividing first number by second number. But, in output we can see two sample outputs. In the first
sample execution, the user enters two numbers 10 and 2 and it shows the output as 5. Thus, for the
first case, it shows a successful division.

But in the second case, the user enters two numbers as 10 and 0. Since, the second number
entered by user is 0, a run-time error occurs. In any case, we cannot divide an integer by 0.
The following is the exception generated by Python, if you try to divide a number by 0.

Traceback (most recent call last):

File “C:\Python34\Exce1.py”, line 3, in <module>

 c = a/b

ZeroDivisionError: division by zero

Note:
1. All of the above information generated as errors are known as Stack-trace.
2. This includes the name of Exception ZeroDivisionError.

The next section by the help of the program will demonstrate you how to handle these exceptions and
enable the programs to run till the normal completion.

Problem Solving and Python Programming326

12.3.2 The try and except Blocks to handle Various Exceptions

Handling Arithmetic Exception

Program 12.2
 Demonstrate the use of try and except blocks to handle ZeroDivisionError divided
by zero.

try:
a = int(input(‘Enter the first number:’))
b = int(input(‘Enter the second number:’))
c = a/b
print(‘ a = ‘,a)
print(‘ b = ‘,b)
print(‘ a/b = ‘,c)

except ZeroDivisionError:
print(‘You cannot Divide number by Zero’)

output

#Case 1:

Enter the first number: 10
Enter the second number: 2
a = 10
b = 2
a/b = 5.0

#Case 2:

Enter the first number: 10
Enter the second number: 0
You cannot Divide number by Zero

Explanation In Program 12.2 above, the statements that produce the exceptions are written within
the try block. Thus, the try block asks the user to enter two numbers and divide first number
by the second one. If the user enters the second number as 0 then Python generates a run-time
exception, i.e. ZeroDivisionError. As soon as the exception has occurred, the exception is
raised and it is caught by except keyword.

Multiple except Blocks

In Program 12.2, we have seen that the code inside the try block generates only one type of
exception and that is handled by a single except block. But, sometimes the code generates multiple
exceptions. In such cases, we need to define multiple except blocks to handle those exceptions.
The Program 12.3 below is going to illustrate the implementation of multiple except blocks.

Exception Handling, Modules and Packages 327

Program 12.3 Write a Python program to include multiple exceptions.

try:
n1 = int(input(‘Enter the number:’))
print(n1)
q = 200/n1

except ValueError:
print(‘Entered string is not of type int’)

except ZeroDivisionError:
print(‘Number cannot be divided by Zero’)

output

#Case 1:

Enter the number: svsvadbs
Entered string is not of type int

#Case 2:

Enter the number: 0
0
Number cannot be divided by Zero

Explanation In Program 12.3 above, the statements which we want to monitor for exceptions are
kept in try block. Initially, through the input the number is prompt from the user. If user fails to
enter the value of type int, then Python raises an error, i.e. ValueError. Even if, the user tries to
enter the second value as 0, Python interpreter will raise exception ZeroDivisionError while
executing the statement q = 200/n1. Thus, try statement may contain more than one except

block to specify handlers for different exceptions.

The try-except-finally blocks

The finally block sometime referred to as finally clause. The finally block consists of the
finally keyword. The finally block is placed after the last except block. If there is no except
block, the finally block should immediately follow the try block. The finally block will
execute whether or not an exception is thrown from try block. If an exception is thrown, the
finally block will execute even if no except statement matches that exception. The syntax to
define the finally block in exception handling is as follows (Figure 12.2).

try:

#Body of try block
exceptException _ Type1

#Perform of some kind of exception handling
#It is Exception Handler for Exception Type 1, Alerts the user
exceptException _ Type2

#Exception Handler for Exception Type 2
…………………………………………
…………………………………………

(Contd.)

Problem Solving and Python Programming328

exceptException _ TypeN

#Exception Handler for Exception Type N
finally:

…………………………………………
…………………………………………

Figure 12.2 Syntax try—catch finally

As we have seen in previous section, a try statement can have more than one except clauses to
handle different exceptions. Thus, along with try and except statements in exception handling
block, we can also have an optional finally statement.

Program 12.4
 Demonstrate the use of finally keyword using try–except blocks.

L1 = [1,2,3,4,5]
try:

print(L1)
n = int(input(‘Enter the index to retrieve the element:’))
print(‘ index = ‘,n,’ Element = ‘,L1[n])

except IndexError:
print(‘Please check the index’)
print(‘Index out of bounds’)

finally:
print(‘No one can Stop Me from Running’);

output

 [1, 2, 3, 4, 5]
Enter the index to retrieve the element: 10
Please check the index
Index out of bounds
No one can Stop Me from Running

Explanation In Program 12.4 above, the list of five numbers is created initially. In try block,
the index is prompt from the user to retrieve the element stored at index n. If the entered index
is greater than the size of the list, the exception block is executed. At last, the finally block is
executed despite what has been happened in try and except blocks.

12.4 RAISING EXCEpTION

In previous section of this chapter, we have seen the Python interpreter raises exception whenever
it tries to execute the invalid code. Raising an exception is also like to stop running the code in
the function and move the program execution to the except statement. All these exceptions

Exception Handling, Modules and Packages 329

are wrapped in objects and are created from classes. Therefore, the programmer can raise this
exception using the raise statement. The syntax to raise an exception is as follows.

Syntax

raise Exception(value)

Where, the exception is the exception type.

Example

raise ArithmeticError(‘Something is wrong’)

Program 12.5
 Write a program to raise the exception.

A = 10
b = 0
try:

raise ArithmeticError(‘Cannot divide number by zero’)
c = a/b

except ZeroDivisionError:
print(‘Something is Wrong’)
raise

Output

Traceback (most recent call last):
File “C:\Python34\asacs.py”, line 4, in <module>

raise ArithmeticError(‘Something is Wrong’)
ArithmeticError: Cannot divide number by zero

Explanation In Program 12.5 above, the raise statement allows the programmer to force the

specified exception, i.e. ArithmeticError: Cannot divide number by zero to occur.

12.5 MODULES

A module is a piece or part of something. In Python, we can say modules are smaller pieces of
bigger program. Each module is a separate file on hard disk. Programmer can take a big program
and split it up into more than one modules. We know that the Python programs are written in
script mode of Python’s IDLE. Once the code is written, the file is saved by .py extension. In short,
the modules are Python’s .py files which contain Python codes. In order to use something that is
already in a module, you first have to tell Python which module you want to use. The Python then
will import keyword to help you to include other modules in your program. The reason behind
using modules is as follows.

 a. It makes file smaller and helps the programmer to find the things easily into the written code.

 b. Once module is created, it can be used in lot of programs. This feature saves the programmer
from starting all over again next time if the programmer needs the same function.

Problem Solving and Python Programming330

12.5.1 Writing and Importing Modules

Writing a module is like writing a simple Python program in a file and saving it in .py extension.
Modules contain definitions of functions, classes and variables which can be utilized in other
programs. Let us create a simple file, e.g. Demo.py.

def Display():
print(‘Hello, Welcome all!’)

If we try to execute the above code, nothing will happen because we have just written the function
and it has not been called from elsewhere to perform its action. So, let us create another file named
main.py, so that we can import the module Demo.py which we have just created and then call the
function Display() being present in the file from a new file, i.e. main.py. Therefore, we have to
create another file named main.py. In the file main.py, we will make use of import statement to
import the module named Demo.py. The contents of the main.py file will be as follows.

#main.py

import Demo #Importing Module named Demo

demo.Display() #Call function Display present within Demo.py

Output

‘Hello, Welcome all!’

In the program above, we have imported a module, therefore, we need to call the function by
referencing the module by “.”, i.e. the dot notation. Thus, we use the ModuleName.FuncionName()
to reference the function present within the module. The statement demo.Display() calls the
function Display() from module named demo.py. The above code contains two lines as follows.

import Demo

demo.Display()

We can use the from keyword and replace the above two lines as

from Demo import Display

 Note: The module which we have imported and the file in which we have used the import statement,
they should be in the same directory. With respect to the above example, Demo.py and main.py
should be stored or located at the same location.

Thus, we can get the same output even if we use the from keyword. In the above example, we
have seen how a function being present in another file can be called using the import statement.
A programmer can use the import statement to import variables and classes present in another
file in this manner.

Exception Handling, Modules and Packages 331

12.6 pACKAGES IN pYThON

We know that the modules are the smaller pieces of bigger program where each of these modules is
a separate file on hard disk and each file contains the Python statements, definitions like functions
and other class definitions. The following section will tell us how we can handle multiple modules
together in order to form a package

A package is basically a directory with Python file and file with the extension as _init_.py.
In short, every directory residing inside the Python path which contains a file named _init_.
py will be treated as a package by Python when the programmer can put multiple modules into a
package. A package can be imported like a normal module.

12.6.1 Creating package

Let us create a simple package with some Python modules. First step is to create a folder. The name
of the folder will be the name of the package which we want to create. Let the name of package be
My_First_Package. The sample directory structure for creating package is shown in Figure 12.3
as follows.

My First Package Folder name

init.py a.py b.py Files within the Directory

Figure 12.3 Package directory structure

 Note: • The Package (folder or directory structure) should contain _init_.py file.
• It should also contain one or multiple .py file.
• Apart from _.init_.py files, all of the files will be used as modules and these modules will be

imported in _init_.py file.

12.6.2 Working Example of package

 | STEP 1: Let us create a package (folder). The name of package, say, My _ First _ Package.

 | STEP 2: Create _ init _ .py file inside the created package My_First_Package.
The directory should contain a file named _init_.py. This file can be empty
or it may contain valid Python code. Let keep it as empty file.

 | STEP 3: Inside the package, let us create two different .py files, i.e. a.py and b.py.

Problem Solving and Python Programming332

 | STEP 4: Write Python code inside a.py and b.py files. The contents of a.py and b.py are as
follows.

#a.py

def call_A():
print(“I am in File a.py”)

#b.py

def call_B():
print(“I am in File b.py”)

Execute both the files, i.e. a.py and b.py. Make sure that there no errors exist in it.

 | STEP 5: Import My_First_Package from the interactive Python as follows.

>>> from My _ First _ Package import a, b
>>> a.call _ A() #Call method Call _ A() present in file a.py

I am in File a.py
>>> b.call _ B() #Call method Call _ B() present in file b.py

I am in File b.py

In above example, we have created three files, i.e. _init_.py, a.py and b.py. But the file, _
init_.py, is empty. We have used the statement from My_First_Package import a, b to import
the contents of files a.py and b.py. Alternatively, we have minimized the statement too and
automatically loaded these modules using _init_.py file. Thus, the open empty file _init_.py
and the following code as follows.

import My_First_Package.a
import My_First_Package.b

In order to check if imported modules within _init_.py works, then execute the following
instructions onto the interactive mode as follows.

>>> My_First_Package.a.call_A()
I am in File a.py
>>> My_First_Package.b.call_B()
I am in File b.py

 Summary

  An exception is an error that occurs during its execution.

  All of the exceptions are the instancees of a class which are derived from BaseException class.

  Three keywords try, except, and finally are used to handle the exceptions.

  The raise keyword is used to raise the exception.

  Modules are smaller pieces of a big program.

Exception Handling, Modules and Packages 333

 KEy TErmS

 � exception: It is an erroneous condition that arises while program is running.

 � try: The program statements are placed within the try block to monitor any exception.

 � except: The raised exception is caught by the except keyword.

 � finally: The statements within finally block will execute even if no except matches the exception.

 � package: The folder with_init_.py and multiple other .py files forms a package.

 rEviEw QuESTionS

a. multiple Choice Questions

 1. What is the output of the following program?
def getMonth(month):

 if month<1 or month>12:
 raise ValueError(“Invalid”)
 print(month)

getMonth(13)

 a. 13 b. 13 and Invalid

 c. ValueError: Invalid d. None of the above

 2. How many except statements can a try block have?

 a. More than 1 b. More than 0

 c. 1 d. 2

 3. When the finally block is executed?

 a. When there is an exception. b. When there is no exception.

 c. Always d. Never executes

 4. What is the output of the following program?
def demo():

 try:
 return 1
 finally:
 return 2

n = demo()

print(n)

 a. 1 b. 2

 c. None d. 1 and 2

 5. Which of the following is not a standard exception in Python?

 a. IOError b. Wrong Assignment Error

 c. NameError d. ValueError

 6. Name the error when the following code is executed.

Area = 3.14 * radius

 a. ValueError b. NameError

 c. SyntaxError d. Key Error

Problem Solving and Python Programming334

 7. Name the error when the following code is executed.
 A = 6
 B = 6 - 12
 C = A /(A + B)

 a. NameError b. ValueError

 c. ZeroDivisionError d. None of the above

B. Exercise Questions

 1. Explain the need of exception handling.

 2. Explain the mechanism to handle exception handling.

 3. Write a program to handle arithmetic exception.

 4. Can we have multiple except blocks while handling exceptions? If yes, then how?

 5. What is the use of raise keyword? Explain with simple program.

 6. How can we create a module? Explain how we can use a module in another program with examples.

 7. Explain how we can create a package.

Exception Handling, Modules and Packages 335

 1. Write a program that will ask the user for an input and will try to handle the error when the
programmer will try to type cast the input to an int using try and except blocks.

 2. Write a function which takes two arguments to concatenate two different strings. Assume
the type of first argument is unknown but the second argument is the known string.
Write a program to handle the errors if the programmer will try to concatenate unknown
input (unknown input can be of type integer or float) type to the string using try and
except blocks.

 3. Write a function which takes two parameters to perform the certain task. The first argument
is float but you are unaware about the second argument. Write a program that will try to
handle the error when you try to divide the float by the unknown input as entered by the
user using the try–except blocks.

 4. Write a function which takes three parameters. First parameter to the function is the list,
second parameter is the index position and third one is the string. The function will insert
the string at the given index position within the list. In case of a failure, the function needs
to return in the original list. Write a function that will ensure this task using the try and
except blocks.

 5. Write a program to create package as named Arithmetic_Operation_Package. Inside
the package, create two .py files containing the names, viz. add.py and sub.py respectively.
Now, write the code to perform the addition and subtraction into add.py and sub.py files.
Execute the modules add.py and sub.py using your created package.

Programming aSSignmEnTS

Problem-solving and Python
Programming Laboratory

COMPUTE THE GCD OF TWO NUMBERS

The Greatest Common Divisor (GCD) of two numbers, viz. A and B, is the largest number that
divides both A and B.

Solution

As discussed earlier, the algorithm is described as step-by-step method aiming to solve the
problems. All of these steps must be performed in a sequence where each of the steps of the
algorithm is labelled. The following are the steps required to find the GCD of two numbers.

 | Step 1: Read two positive integers and store them in A and B.

 | Step 2: Divide A by B. Store remainder in r and quotient in q.

 | Step 3: If r is zero, then go to Step 7.

 | Step 4: Assign B to A.

 | Step 5: Assign r to B.

 | Step 6: Go to Step 2.

 | Step 7: Print B as the GCD of and A and B.

Let us consider two integers, viz. 24 and 15. The following Table A.1 describes the uses of above
algorithm in order to calculate the GCD of two numbers.

Values of the variables

CommentsFirst Number
(A)

Second Number
(B)

Quotient
(q)

Remainder
(r)

24 15 – –

24 15 1 09 Perform Step 2.

(Contd.)

appendix

Problem-solving and Python Programming Laboratory 337

15 15 1 09 Step 4 //Assign B to A.

15 09 1 09 Step 5 //Assign r to B.

15 09 1 06 Step 2 //Divide A by B.

09 09 1 06 Step 4 //Assign B to A.

09 06 1 03 Step 5 //Assign r to B.

09 06 1 03 Step 2 //Divide A by B.

06 06 1 03 Step 4 //Assign B to A.
06 03 1 03 STEP 5 //Assign r to B.

06 03 2 00 STEP 2 //Divide A by B.

Print B as output. STEP 7 //A % B == 0.
Therefore, B will be printed as
output as GCD(24, 15).

table A.1 The GCD of two numbers

Program a.1 Find the GCD of two numbers

num1 = int(input(‘Please Enter the first number:’))
num2 = int(input(‘Please Enter the second number:’))
print(‘GCD of ‘, num1 ,’ and ‘, num2 ,’ is: ‘,end=’ ’)
rem = num1 % num2
while rem!=0:
 num1 = num2
 num2 = rem
 rem = num1 % num2
print(num2)

output

Please Enter the first number: 24
Please Enter the second number: 15
GCD of 24 and 15 is: 3

FIND THE SQUARE ROOT OF A NUMBER (NEWTON’S METHOD)

In numerical analysis, Newton method (also known as the Newton–Raphson method) is named after
Isaac Newton and Joseph Raphson. It is a method for finding successively better approximations to
the roots of a real-value function.

It is one of the best examples to find square root of a number.
The steps to calculate square root of a number are described in following steps.

 1. Start with any arbitrary positive starting value x0 (the closer to the actual square root of
number N).

 2. Let Xn+1 be the average of Xn and N/Xn

Problem Solving and Python Programming338

 3. Repeat Step 2 until the desired accuracy is achieved.
 The t is also represented as
 X0 ≈ √N

 Xn+1 =
1

2
 (Xn + N

X
0

)

Program a.2

def Find_Sqrt_NewtonMethod(n, numberoftime):
 approx = 0.5 * n
 for i in range(numberoftime):
 betterapprox = 0.5 * (approx + n/approx)
 approx = betterapprox
 return betterapprox

print(Find_Sqrt_NewtonMethod(10, 3))
print(Find_Sqrt_NewtonMethod(10, 5))
print(Find_Sqrt_NewtonMethod(10, 10))

output

3.162319422150883
3.162277660168379
3.162277660168379

EXPONENTIATION (POWER OF A NUMBER)

 Input Number: 4
 Cube: 64

Simple Program Without Unit Test Cases

Program a.3 #Cube.py

def power(x):
print(' Cube of ',x ,' is ',x**3)

>>> power(4)
Cube of 4 is 64

Program a.4 With Unit test Cases

#Cube.py
def power(x):

return x**3

Problem-solving and Python Programming Laboratory 339

Program a.5 #cube_test.py

from cube import power
import unittest
class TestArithmetic(unittest.TestCase):
 ##Your test methods go here.
 def tcube(self):
 self.assertEqual(64, power(4))

unittest.main() #Outside the class, which tells the framework to run

output

--

Ran 0 tests in 0.000s

OK

FIND THE MAXIMUM OF A LIST OF NUMBERS

Input: [10, 20, 34, 2, 5]

Output: (returns maximum from it), i.e., 34

Program a.6 Find maximum from the list using in-built max function

size = int(input(‘Please Enter size of list:’))
L1 = []
for X in range(size):
 element = int(input(‘Enter the number to add into the list:’)
 L1.append(element)

print(‘Contents of List are as follows:’, L1)
print(‘Maximum from List is: ‘)
print(max(L1))

output

Please enter size of list: 5
Enter the number to add into the list: 10
Enter the number to add into the list: 20
Enter the number to add into the list: 34
Enter the number to add into the list: 2
Enter the number to add into the list: 5
(‘Contents of List are as follows: ‘, [10, 20, 34, 2, 5]
 Maximum from List is:
34

Problem Solving and Python Programming340

LINEAR SEARCH AND BINARy SEARCH

Linear Search

In linear search, the elements are examined sequentially starting from the first element. It compares
the elements to be searched, i.e., the Key element as sequentially with each element in the list. The
process of searching terminates when the expected element has been searched, i.e. the key element
matches with the element being present in the list or the list is exhausted without a match as found
inside the list.

Program a.7 Write a program to search the element from the list using linear search

Def Linear_Search(My_List, key):
 for i in range(len(My_List)):
 if(My_List[i]==key):
 #print(key,”is found at index”, i)
 return i
 break
 return -1
My_List=[12, 23, 45, 67, 89]
print(“Contents of List are as follows:”)
print(My_List)
key=(int(input(“Enter the number to be searched:”)))
L1=Linear_Search(My_List, key)
if(L1!=-1):
 print(key, “ is found at position”,L1+1)
else:
 print(key, “ is not present in the List”)

output

#Test Case 1

Contents of List are as follows:
[12, 23, 45, 67, 89]
Enter the number to be searched: 23
23 is found at position 2

#Test Case 2

Contents of List are as follows:
[12, 23, 45, 67, 89]
Enter the number to be searched: 65
65 is not present in the List

Explanation In Program A.7 above, we have defined the function called Linear_Search(). The
list and element to be searched, i.e. key is passed to the function. The comparison starts from the
first element of the list. The comparison goes on sequentially till the key element matches the
element as present within the list or the list is exhausted without any matches being found.

Problem-solving and Python Programming Laboratory 341

Binary Search

For binary search, the elements in a list must be in sorted order. Let us consider the list is in
ascending order. The binary search compares the element to be searched, i.e. the key element with
the element in the middle of the list. The binary search algorithm is based on the following four
conditions.
 1. If the key is less than the list’s middle element, then the programmer has to search only in the

first half of the list.
 2. If the key is greater than the list’s middle element, then the programmer has to search only in

the second half of the list.
 3. If the element to be found, i.e., the key element is equal to list’s middle element, then the

search ends there.
 4. If the element to be found is not present within the list, then it returns ‘None’ or ‘-1’, which

indicates that the element to be searched is not present in the list.

Program a.8

def Binary_Search(MyList,key):
 low=0
 high=len(MyList)-1
 while low<=high:
 mid=(low+high)//2 #Find the middle index
 if MyList[mid]==key: If key matches the mid index element
 return mid #If so return index
 elif key>MyList[mid]: #else if key is greater
 low=mid+1
 else:
 high=mid-1
 return -1 #If no match return -1
MyList=[10,20,30,34,56,78,89,90]
print(MyList)
key=(eval(input("Enter the number to Search:")))
x=Binary_Search(MyList,key)
if(x==-1):
 print(key, "is not present in the list")
else:
 print("The Element ",key,"is found at position ",x+1)

output

#Test Case 1

[10, 20, 30, 34, 56, 78, 89, 90]
Enter the number to Search: 20
The Element 20 is found at position 2
#Test Case 2

[10, 20, 30, 34, 56, 78, 89, 90]
Enter the number to Search: 43
43 is not present in the list

Problem Solving and Python Programming342

Explanation: In Program A.8 above, the number to be searched is prompted from the user. Both
the list and the number to be searched are passed as parameters to the function. In each iteration,
the high, middle and low values are calculated. The element to be searched, i.e., the key element, is
compared with the middle element. Then depending on the condition, i.e. by checking the values
of key element and the element found at the mid-position, the high and low values are changed.

SELECTION SORT AND INSERTION SORT

Selection Sort

Consider a list of 10 elements, list[0], list[1] till list[N-1]. First, you will search the position
of smallest element from list[0] to list[N-1]. Then, you will interchange that smallest element
with list[0]. Now you will search position of second smallest element from list[1] to list[n-1].
Then, again interchange that smallest element with list[1]. This process will continue till end
and finally you can obtain the sorted list.

Program a.9

def Selection_Sort(MyList):
 #i - Outer Loop
 #j - Innner Loop
 #k - Index of the smallest Element
 for i in range(len(MyList)-1):
 k=i #ith element is assumed to be smallest
 for j in range(i+1,len(MyList)):
 if(MyList[j]<MyList[k]):
 k=j
 if (k!=i):
 temp=MyList[i]
 MyList[i]=MyList[k]
 MyList[k]=temp
MyList=[12,34,2,7,45,90,89,9,1]
print(‘Elements before Sorting’)
print(MyList)
Selection_Sort(MyList)
print(‘Elements After Sorting’)
print(MyList)

output

Elements before Sorting
[12, 34, 2, 7, 45, 90, 89, 9, 1]
Elements After Sorting
[1, 2, 7, 9, 12, 34, 45, 89, 90]

Problem-solving and Python Programming Laboratory 343

Insertion Sort

Insertion sort is based on the principle of inserting the elements at its correct place in a previously
sorted list. It always maintains a sorted sub-list in the lower portion of the list. Each new element
is inserted back into the previous sub-list.

Program a.10 Write a program to implement insertion sort

def Insertion_Sort(MyList):
 for i in range(1,len(MyList)):
 CurrentElement=MyList[i]
 k=i-1
 while k>=0 and MyList[k]>CurrentElement:
 MyList[k+1]=MyList[k]
 k=k-1

 MyList[k+1]=CurrentElement
MyList=[12,23,5,2,21,1,4]
print('Elements before Sorting')
print(MyList)
Insertion_Sort(MyList)
print('Elements After Sorting')
print(MyList)

output

Elements before Sorting
[12, 23, 5, 2, 21, 1, 4]
Elements After Sorting
[1, 2, 4, 5, 12, 21, 23]

Merge Sort

The Merge Sort is based on three main strategies as follows.
 a. Split the List into Two Sub-Lists (Split or Divide): The Split means partitioning the n

elements of list into two sub-lists where each sub-list contains n/2 elements each.
 b. Sort Sub-Lists (Conquer): Sorting two sub-arrays recursively using merge sort.
 c. Merge the Sorted Sub-Lists (Combine): Combine means merging two sorted sub-lists each

of size n/2 to produce the sorted list of n elements.

Program a.11 Write a program to implement merge sort

def mergeSort(MyList):
 if len(MyList)>1:
 mid = len(MyList)//2
 leftList = MyList[:mid]
 rightList = MyList[mid:]
 ‘‘‘Merge sort to the left part of the list from 0 to mid-1.’’’
 mergeSort(leftList)

(Contd.)

Problem Solving and Python Programming344

 ‘‘‘Merge sort to the right part of the list from mid to len(List)’’’
 mergeSort(rightList)
 i=0
 j=0
 k=0
 ‘‘‘Merge Two Sorted Lists i.e. LeftList and RightList’’’
 while i < len(leftList) and j < len(rightList):
 if leftList[i] < rightList[j]:
 MyList[k]=leftList[i]
 i=i+1
 else:
 MyList[k]=rightList[j]
 j=j+1
 k=k+1

 while i < len(leftList):
 MyList[k]=leftList[i]
 i=i+1
 k=k+1

 while j < len(rightList):
 MyList[k]=rightList[j]
 j=j+1
 k=k+1

MyList = [54,26,93,17,77,31,44,55,20]
print(‘List Before Sorting’,MyList)
mergeSort(MyList)
print(‘List After Sorting’, MyList,end=’’)

output

List Before Sorting [24, 11, 9, 2, 17, 16, 14, 3]
List After Sorting [2, 3, 9, 11, 14, 16, 17, 24]

Explanation In Program A.11 above, initially the list of elements has been declared. The list is
passed as argument to the function mergesort(). If the list contains more than one element, then
the index of middle element is calculated and the existing list is divided into two parts. Once the
Merge Sort function is invoked on the left part and right part of the list, then the rest of the code is
responsible for merging two smaller sorted lists into a larger sorted one.

Problem-solving and Python Programming Laboratory 345

FIRST N PRIME NUMBERS

Enters the value of N = 7
First seven prime Numbers: 2, 3, 5, 7, 11, 13 and 19.

Program a.12

Starting_value = 1
count = 0
Total_prime_Number = int(input('Enter number of prime numbers you want to print'))
#Taking input from the user
End_Number = int(input("Enter the number up to which you want prime number: "))

print("Prime numbers between", Starting_value, "and", End_Number, "are:")
for number in range(Starting_value, End_Number + 1):
 if num > 1:
 for i in range(2, int(num/2)+1):
 if (num % i) == 0:
 break
 else:
 count = count + 1
 print(num)
 if count == Total_prime_Number:
 break

output

Enter number of prime number you want to print: 7
Enter the numbers up to which you want prime number: 100
('Prime numbers between', 1, 'and', 100, 'are:')
2
3
5
7
11
13

MULTIPLy MATRICES

Algorithm to Multiply Two Matrices

 | StEP 1: Initialize Matrix A.

 | StEP 2: Initialize Matrix B.

 | StEP 3: Iterate Matrix A Row wise

 Iterate Matrix B Column wise

 result = Perform Matrix Multiplication A * B

 | StEP 4: Display final result.

Problem Solving and Python Programming346

Program a.13

#take a 3x3 matrix

A = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]

#take a 3x3 matrix

B = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]

result = [[0, 0, 0],
 [0, 0, 0],
 [0, 0, 0]]

#iterating by row of A

for i in range(len(A)):

 #iterating by column of B

 for j in range(len(B[0])):

 #iterating by rows of B

 for k in range(len(B)):
 result[i][j] += A[i][k] * B[k][j]

for r in result:
 print(r)

output

[30, 36, 42]
[66, 81, 96]
[102, 126, 150]

PROGRAMS THAT TAKE COMMAND LINE ARGUMENTS (WORD COUNT)

Program a.14

import sys
def Word_Count(fp1):
 wordDict = {}
 fp1 = open(‘Demo.txt’,‘r’) #Open File in read Mode
 long = “ ” #Assume Longest Line = 0
 L = 0
 count = 0
 for line in fp1:

 wordList = line.split()
 for word in wordList:
 count = count + 1

(Contd.)

Problem-solving and Python Programming Laboratory 347

 if word in wordDict:
 wordDict[word] += 1
 else:
 wordDict[word] = 1

 print(wordDict)
 print(' Total Words in file:',count)

fp = sys.argv[0]
print(fp)
fp = open('Demo.txt','r')
Word_Count(fp)

output

C:/Python27/try.py
{'and': 1, 'Zuckerberg': 1, 'Jobs': 1, 'Apple': 1, 'founder': 3, 'of': 3, 'is': 2,
'Bill': 1, 'Microsoft.': 1, 'Mark': 1, 'Steve': 1, 'MAC': 1, 'Facebook.': 1, 'PC.': 1,
'Gate': 1, 'was': 1}
('Total Words in file:', 21)

FIND THE MOST FREQUENT WORDS IN A TEXT READ FROM A FILE

Program a.15

def Find_Max_Occurrence_Words(dict1):
 v=list(dict1.values())
 k=list(dict1.keys())
 return k[v.index(max(v))]

def Count_Word_Occurrence(fp1):
 wordDict = {}
 fp1 = open(‘Demo.txt’,’r’) #Open File in read Mode
 long = “ “ #Assume Longest Line = 0
 L = 0
 count = 0
 for line in fp1:
 wordList = line.split()
 for word in wordList:
 if word in wordDict:
 wordDict[word] += 1
 else:
 wordDict[word] = 1
 print(wordDict)
 print(Find_Max_Occurrence_Words(wordDict),’word has occurred most of the time
within the file’)

(Contd.)

Problem Solving and Python Programming348

 return wordDict

fp = open(‘Demo.txt’,’r’)
Count_Word_Occurrence(fp)

output

{‘and’: 1, ‘Zuckerberg’: 1, ‘Jobs’: 1, ‘Apple’: 1, ‘founder’: 3, ‘of’: 3, ‘is’: 2,
‘Bill’: 1, ‘Microsoft.’: 1, ‘Mark’: 1, ‘Steve’: 1, ‘MAC’: 1, ‘Facebook.’: 1, ‘PC.’: 1,
‘Gate’: 1, ‘was’: 1}
(‘founder’, ‘word has occurred most of the time within the file’)

SIMULATE ELLIPTICAL ORBITS IN PygAME

Note: Install Pygame package by using PIP utility

Program a.16

import pygame
import math
import sys

pygame.init()

screen = pygame.display.set_mode((800,500))
pygame.display.set_caption(“Elliptical orbit Demo using Pygame”)

clock = pygame.time.Clock()
done = False

while not done:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 done = True

 xRadius = 250
 yRadius = 100

 for degree in range(0,360,10):
 x1 = int(math.cos(degree * 2 * math.pi / 360) * xRadius) + 300
 y1 = int(math.sin(degree * 2 * math.pi / 360) * yRadius) + 150
 screen.fill((0, 0, 0))
 pygame.draw.circle(screen, (255, 0, 0), [300, 150], 35)
 pygame.draw.ellipse(screen, (255, 255, 255), [50, 50, 500, 200], 1)
 pygame.draw.circle(screen, (0, 0, 255), [x1, y1], 15)

 pygame.display.flip() #update the screen
 clock.tick(1)
pygame.quit()

Problem-solving and Python Programming Laboratory 349

SIMULATE BOUNCING BALL USING PygAME

 | Step 1: Declare basic requirements, such as, background colour of the window, list of balls
with different colour and size of window.

import Pygame
import random

#Define some colours

BLACK = (255, 255, 255)
Different_Ball_Colours = [(0,0,255),(227,207,87),(139,35,35),(102,205,0)]
Ball_Colour = (0,0,255)

SCREEN_WIDTH = 500
SCREEN_HEIGHT = 500
BALL_SIZE = 30

 | Step 2: Class to keep track of ball’s location

class Ball:
 def __init__(self):
 self.x = 0
 self.y = 0
 self.change_x = 0
 self.change_y = 0

 | Step 3: Method to select ball colour

def Change_Ball_Colour(Different_Ball_Colours):
 Ball_Colour=Different_Ball_Colours[random.randrange(len(Different_Ball_

Colours))]
 return Ball_Colour

 | Step 4: Set position of new ball

def SetPosition_New_Ball():
 ball = Ball()
 #Starting position of the ball.

 ball.x = random.randrange(BALL_SIZE, SCREEN_WIDTH - BALL_SIZE)
 ball.y = random.randrange(BALL_SIZE, SCREEN_HEIGHT - BALL_SIZE)

 #Speed and direction

 ball.change_x = random.randrange(-2, 3)
 ball.change_y = random.randrange(-2, 3)

 return ball

Problem Solving and Python Programming350

 | Step 5: Main part of the program consists of following things.
 a. Set the height and width of the screen.
 b. Even Handling to create new ball on press of “b” button.
 c. Logic to bounce ball and update the screen.

Def main():

 pygame.init()

 #Set the height and width of the screen

 size = [SCREEN_WIDTH, SCREEN_HEIGHT]
 screen = pygame.display.set_mode(size)

 pygame.display.set_caption("Bouncing Ball Game....Enjoy it!!!")

 #Loop until the user clicks the close button.

 done = False

 clock = pygame.time.Clock()

 ball_list = []

 ball = SetPosition_New_Ball()
 ball_list.append(ball)

 while not done:
 #Event Processing
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 elif event.type == pygame.KEYDOWN:
 #On Click of Key B creates new ball
 if event.key == pygame.K_b:
 ball = SetPosition_New_Ball()
 ball_list.append(ball)

 for ball in ball_list:
 #Move the ball's centre
 ball.x += ball.change_x
 ball.y += ball.change_y

 #Bounce the ball
 if ball.y > SCREEN_HEIGHT - BALL_SIZE or ball.y < BALL_SIZE:
 ball.change_y * = -1
 if ball.x > SCREEN_WIDTH - BALL_SIZE or ball.x < BALL_SIZE:
 ball.change_x * = -1

Problem-solving and Python Programming Laboratory 351

 Ball_Colour = Change_Ball_Colour(Different_Ball_Colours)
 #Set the screen background
 screen.fill(BLACK)
 for ball in ball_list:
 pygame.draw.circle(screen, Ball_Colour, [ball.x, ball.y], BALL_SIZE)

 clock.tick(20)

 #update the screen
 pygame.display.flip()

 #Close everything down

 pygame.quit()

if __name__ == “__main__”:
 main()

#Entire Program (Containing all Steps 1 to 5)

import Pygame
import random

#Define some colours

BLACK = (255, 255, 255)
Different_Ball_Colours = [(0,0,255),(227,207,87),(139,35,35),(102,205,0)]
Ball_Colour = (0,0,255)

SCREEN_WIDTH = 500
SCREEN_HEIGHT = 500
BALL_SIZE = 30

class Ball:
 def __init__(self):
 self.x = 0
 self.y = 0
 self.change_x = 0
 self.change_y = 0

def Change_Ball_Colour(Different_Ball_Colours):
 Ball_Colour =
Different_Ball_Colours[random.randrange(len(Different_Ball_Colours))]
 return Ball_Colour

(Contd.)

Problem Solving and Python Programming352

def SetPosition_New_Ball():
 ball = Ball()
 #Starting position of the ball.
 ball.x = random.randrange(BALL_SIZE, SCREEN_WIDTH - BALL_SIZE)
 ball.y = random.randrange(BALL_SIZE, SCREEN_HEIGHT - BALL_SIZE)

 #Speed and direction
 ball.change_x = random.randrange(-2, 3)
 ball.change_y = random.randrange(-2, 3)

 return ball

def main():

 pygame.init()

 #Set the height and width of the screen
 size = [SCREEN_WIDTH, SCREEN_HEIGHT]
 screen = pygame.display.set_mode(size)

 pygame.display.set_caption("Bouncing Ball Game Enjoy it!!!")

 #Loop until the user clicks the close button.
 done = False

 clock = pygame.time.Clock()

 ball_list = []

 ball = SetPosition_New_Ball()
 ball_list.append(ball)

 while not done:
 #Event Processing
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 elif event.type == pygame.KEYDOWN:
 #On Click of Key B creates New Ball
 if event.key == pygame.K_b:
 ball = SetPosition_New_Ball()
 ball_list.append(ball)

(Contd.)

Problem-solving and Python Programming Laboratory 353

 for ball in ball_list:
 #Move the ball’s centre
 ball.x += ball.change_x
 ball.y += ball.change_y

 #Bounce the ball
 if ball.y > SCREEN_HEIGHT - BALL_SIZE or ball.y < BALL_SIZE:
 ball.change_y *= -1
 if ball.x > SCREEN_WIDTH - BALL_SIZE or ball.x < BALL_SIZE:
 ball.change_x *= -1

 Ball_Colour = Change_Ball_Colour(Different_Ball_Colours)
 #Set the screen background
 screen.fill(BLACK)
 for ball in ball_list:
 pygame.draw.circle(screen, Ball_Colour, [ball.x, ball.y], BALL_SIZE)

 clock.tick(20)

 #Update the screen
 pygame.display.flip()

 #Close everything down
 pygame.quit()

if __name__ == “__main__”:
 main()

	Title
	Contents
	Unit 1
	1 Basics of Computer Programming and Problem Solving Techniques

	Unit 2
	2 Basics of Python Programming
	3 Operators and Expressions

	Unit 3
	4 Decision Statements
	5 Loop Control Statements
	6 Functions
	7 Strings

	Unit 4
	8 List
	9 List Processing: Searching and Sorting
	10 Tuples and Dictionaries

	Unit 5
	11 File Handling
	12 Exception Handling, Modules and Packages

	Appendix

