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By observing the transit of various cloud features across the Jovian disk, Terrile and Westphal 
(1977) have constructed limb-darkening curves for three regions in the 4.6 to 5.1 µm band. 
Several models currently employed in describing the radiative or dynamical properties of 
planetary atmospheres are here examined to understand their implications for limb-darkening. 
The statistical problem of fitting these models to the observed data is reviewed and methods for 
applying multiple regression analysis are discussed. Analysis of variance techniques are intro­
duced to test the viability of a given physical process as a cause of the observed limb-darkening. 
The intermediate flux region of the North Equatorial Belt appears to be in only modest depart­
tnre from radiative equilibrium. The limb-darkening curve for the South Temperate Belt is rich 
in structure and cannot be satisfactorily ascribed to any single physical mechanism ; a com­
bination of several, as yet unidentified, processes is likely involved. The hottest areas of the 
North and South Equatorial Belts exhibit limb-darkening curves that are typical of atmospheres 
in convective equilibrium. In this case, we derive a measure of the departure of the lapse rate 
from the dry adiabatic value ('l � 1.68), which furnishes strong evidence for a phase transition 
at unit optical depth in the NEB and SEB. Although the system NH3-H2S cannot be entirely 
ruled out, the freezing of an aqueous ammonia solution is shown to be consistent with the param­
eter fit and solar abundance data, while being in close agreement with Lewis' (1969a) cloud 
models. 

I. INTRODUCTION 

By applying a combination of radiative 
transfer and statistical techniques to in­
frared observations of Jupiter, we can 
enhance our understanding of the radiative 
and dynamical processes that control the 
make-up of the Jovian clouds and the 
deeper atmosphere. Since Jupiter's atmo­
sphere is widely believed to be significantly 
stratified in its spectroscopically active 
components, observations made over limited 
wavelength regions permit us to look down 
at levels in the atmosphere where those 
components play an active role. lVIoreover, 
by analyzing the intensity observed in 

1 Present address : Institute for Advanced Study, 
Princeton, New Jersey 08540. 

different regions of the disk, some of the 
underlying physics of Jupiter's belts and 
zones can be revealed. 

The 5 µm region is of particular interest 
since it is transparent to the abundant 
Jovian absorbers, gaseous hydrogen, meth­
ane and ammonia. Gillett et al. (1969) ob­
served that the 5 µm brightness tempera­
ture, averaged over a large part of the 
Jovian disk, was approximately 230°K. 
This value is much higher than most 
workers had expected and, since it corre­
sponds to deep atmospheric levels, was a 
stimulus to further investigations. Westphal 
(1969), in observations of the North Equa­
torial Belt, showed that the 5 µm flux was 
coming from localized hot spots with bright-
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ness temperatures > 300°K. He concluded 
that, if it is assumed that the cloud layer 
was near the top of the convective zone, the 
radiation was coming from below the 
clouds. Keay et al. (1973) and Westphal 
et al. (1974) produced high resolution maps 
of Jupiter confirming the existence of local­
ized hot spots. In addition, they observed a 
correlation of 5 µm features with visual 
features in color photography. High thermal 
flux seemed to come from "blue" or "purple" 
regions whereas "orange" or "red" regions 
were not sources of intense 5 µm radiation. 
They speculated that this dichotomy was 
likely due to the absence or presence of 
middle altitude red clouds. Sagan (1971) 
had earlier proposed that the blue coloration 
was due to Rayleigh scattering at roughly 
the 1 bar level when our view is not im­
peded by intervening clouds of red chromo­
phores. Westphal et al. concluded (by 
studying the flux emanating from the 
shadow of Io as it passed across the Jovian 
disk) that the 5 µm flux was not reflected 
or scattered sunlight but a genuine feature 
of radiative sources deC'p within Jupiter's 
atmosphere. 

To better understand the nature of some 
of Jupiter's 5 µm features, Terrile and 
Westphal (1977) measured limb-darkening 
by selecting a region of interest and mea­
suring its brightness as it rotated around 
the planet. In particular, they observed 
the hottest emitting areas of the North and 
South Equatorial Belts (with brightness 
temperatures of about 2,:50 to 255°K), 
several bright 5 µm areas in the South 
Temperate Belt (with similar brightness 
temperatures) , and intermediate flux regions 
in the North Equatorial Belt (with bright­
ness temperatures near 240°K). This en­
tailed the use of many different images of 
Jupiter taken over several hours in order 
to construct one limb-darkening curve. 
Notably, this technique did not suffer from 
the smearing effects of longitudinal inhomo­
geneities that would result from g<merating 
limb-darkening curves from thermal maps. 

In parallel with these infrared observa­
tions, the atmosphere and composition of 
Jupiter was undergoing extensive study. 
Lewis (1969b) established that if the 
Jovian atmosphere possessed the solar 
abundance of water and ammonia, the 
clouds were dominated by an aqueous 
ammonia solution while the topmost cloud 
layer was solid ammonia. He also showed 
that if sulfur were present in solar abun­
dance, NH4SH would form an important 
cloud layer. The infrared properties of 
liquid and solid water (Irvine and Pollack, 
1968; Robertson and Williams, 1971) and 
ammonia (Robertson and Williams, 1973; 
Robertson et al., 197;'5) have been investi­
gated at .5 µm and arc known to have very 
large absorption coefficients. 

These 5 µm observations, together with 
predictions obtained from models of Ju­
piter's atmosphere and the infrared proper­
ties of its conjectured constituents, provide 
a compelling reason for analyzing the ob­
served limb-darkening of various regions 
of the planet. In this communication, we 
present a combined radiative, dynamical 
and chemical model that reproduces the 
observed limb-darkening curves. 

II. RADIATIVE AND DYNAMICAL MODELS 

The plane-parallel approximation to the 
equation of radiative transfer is 

µ (d/dr) I (r,µ) = J (r, µ) - S (r), (1) 

where arccos µ is the angle between the line 
of sight and the local planetary normal, r 

is the optical depth, I is the intensity of 
the radiation and S is the source function. 
The optical depth is defined, in differential 
form, to be dr = -Kdz, where K is the ex­
tinction coefficient, and z the altitude. All 
quantities in (1) are considered to have 
been modulated by the spectral response 
function of the InSb detector employed by 
Terrile and Westphal and intPgrated over 
the instrument's 4.6 to 5.1 µm bandwidth. 
Formally, (1) can be integrated to give 
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the limb-darkening function 

I (O, µ) = .f" S (r)µ-1 exp (-r/µ)dr (2) 

(Chandrasekhar, 1960). This equation is 
ideally suited to our analysis since Terrile 
and Westphal (1977) have evaluated J (O, µ). 
Thus, by inverting (2), we can determine 
the source function S ( r). 

In general, the inversion is unique only 
if the limb-darkening function J (O, µ) has 
a known functional form (Parker, 1977). 
In the case of discrete data (particularly 
data contaminated by noise), the inversion 
is not unique and we must choose one of 
two approaches. In one approach, we calcu­
late an approximate inversion kernel, 
K (r, µ), such that 

S (r) ,...,_, 11 K (r, µ)I (O, µ)dµ. (3) 

[See the recent review article by Parker 
(1977) for a description of "generalized in­
verse theory."]. Combining (2) and (3), 
we require that 

A (r, r') 

= 11 K (r, µ)µ-1exp ( -r'/µ)dµ (4) 

"approximate" the Dirac delta function, 
o ( r - r') ; that is, that the integral of 
A ( r, r') over r or r' is unity and A ( r, r') is 
strongly peaked when r' approaches r. 
The inversion is made complete by speci­
fying the approximate source function and 
an estimate of the width of A ( r, r') for 
different values of r (which, in turn, pro­
vides a measure of the characteristic con­
volutional smoothing evident in the ap­
proximate source function). Orton (1977) 
recently employed this technique in re­
covering the mean .Jovian temperature 
structure from spectrally resolved thermal 
radiance data. This method, however, pro­
vides no direct insight into the physical 
processes that are the source of the infrared 

radiation and, moreover, has several mathe­
matical deficiencies that are apparently 
not well known (see Appendix I). 

A less general but more physically moti­
vated approach is to construct several 
radiative and dynamical models and obtain 
their corresponding source and limb-darken­
ing functions. These models will depend, 
often nonlinearly, on a small number of 
parameters. By employing multiple regres­
sion methods, we then obtain numerical 
estimates of the parameters that are in a 
statistical sense most likely. By then em­
ploying analysis of variance techniques, 
we can assess whether the residual errors 
in the model fits are compatible with the 
experimental noise. This approach can 
demonstrate directly that a given physical 
model could be responsible for the ob­
served limb-darkening while other models 
must be rejected. This, however, does not 
exclude the possibility that other (un­
tested) models could also satisfy the ob­
served data. By examining the models corre­
sponding to physical processes most likely 
responsible for the observations, this possi­
bility is significantly reduced. It is im­
portant to note that the fit obtained is most 
accurate for r � 1, the vicinity of the cloud 
tops and the region of greatest physical 
interest. The reason for this is clear from 
(2). The source function for r 2: 0 depends 
strongly on I (0, µ) measured near the limb 
where instrumental accuracy is least. The 
source function for r » 1 is strongly atten­
uated and could vary significantly without 
seriously affecting the observed limb­
darkening function. Also, Bohm (1961) 
demonstrated, by an application of the 
properties of convolutional filters, that we 
are least capable of observing fluctuations 
in the source function over optical-depth 
wavelength-scales far from unity (i.e., for 
X » 1 or X « 1). Because of the intuitive 
value of the multiple regression approach, 
we shall confine our attention to this 
technique and turn now to a discussion of 
models. 
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A. Power Series Expansion Model 

Although the power series expansion 
00 

I(O, µ) = L an µn (5) 
n=O 

has no direct physical interpretation, we 
choose to include it for several reasons. 
The truncated expansion was useful in an 
analysis of the limb-darkening of Venus 
(Goody, 196.5; Newman, 197Ei). It can pro­
vide an estimate for the scatter in the data 
due to noise that is required in the analysis 
of variance. Finally, assuming that J(O, µ) 
is analytic and regular, the inversion of 
(2) can be performed directly giving (5) 
where the source function may be written 

00 

S(r) = L anrn/n ! (6) 
n=O 

In one instance, the well-known Eddington 
approximation, the truncated power series 
expansion is of special interest: 

I(O, µ) = I(O, 0)(1 + ! µ). (7) 

This limb-darkening function results if the 
flux over the corresponding frequency pass­
band is conserved. If the flux over the 
entire frequency spectrum is conserved, we 
have radiative equilibrium. 

B. Convective Equilibrium Model 

In our terrestrial experience, clouds are 
very efficient infrared absorbers of solar 
radiation as well as heat from the surface 
(additionally, in Jupiter's case, heat gen­
erated internally). A warmed parcel of gas 
will rise and adjust its pressure to that of 
its surroundings, the pressure of which 
varies according to the equation of hydro­
static equilibrium, 

dP/dz = -pg, (8) 

where P is the pressure, p the atmospheric 
mass density, and g the local gravitational 
acceleration. Thermal conduction times are 
very slow compared with dynamical times 

and may be neglected. Thus, the resulting 
behavior of the parcel of gas is adiabatic 
and the pressure in the parcel behaves 
according to 

p ex: j/Y, (9) 

where p is the parcel's mass density and 'Y 
is the ratio of specific heats. 

Assuming that the absorbers responsible 
for the extinction are well mixed with the 
principal atmospheric constituents, we can 
express the extinction coefficient as 

K = crXp/lnabs, (10) 

where er is the cross section to absorption, 
xis the mixing ratio of the absorbers to the 
principal atmospheric constituents, and 
?nabs is the mean mass of a single absorber 
molecule. Combining (2), (8), and (10), 
we obtain a linear dependence of pressure 
on optical depth, namely, 

dP/rlr = gmabs/crx. (11) 

By terrestrial analogy, we expect clouds to 
have a fairly sharp top at a level charac­
terized by a temperature Tt and a pressure 
Pt. The discontinuous boundary may result 
from the transition from convective to 
radiative equilibrium or from phase changes. 
Defining r to be zero above the cloud top 
(where we assume there to be no significant 
abRorption), Eq. (11) iR integrated as 

P = Pt[l + (gmabs/ crXPt)r]. (12) 

Pollack and Sagan (196.'J) derived a similar 
expression for the Venus atmosphere. In 
their case, however, the absorber was the 
principal atmospheric constituent and x = 1 .  

From (9) and the ideal gas law, we find 

P/Pt = (T/Tt)7f(7-o. (13) 

Let us now assume that the clouds radiate 
as a black body. By integrating the Planck 
function from 4.6 to ;j.1 µm (assuming a 
relatively uniform response in the InSb 
interference filter employed by Terrile and 
Westphal), we obtain the approximate 
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power-law dependence 

(14) 

Typical values for the exponent n are 12.3 
and 11.6 for temperatures of 240°K and 
250°K, respectively. Combining (12), (13), 
and (14) yields the intensity dependence 
on optical depth 

Bsµm(r) [ gmabs ]"('Y-llh 
= Bs,.m(O) 1 + -- 7 • 

uxPt 
(15) 

If we combine the equation of state with 
(8) and (9), we obtain the dry adiabatic 
lapse rate 

dT /dz = - (rnatm/k)[('Y - l)h Jg, (16) 

where m"tm is the mass of an atmospheric 
constituent and k is the Boltzmann con­
stant. (For an inhomogeneous atmosphere, 
the meaning of an "atmospheric constit­
uent" may be ambiguous. We define such a 
pseudoparticle as being characterized by a 
number-density weighted average of each 
component. In the terrestrial case, the mass 
of such a fictitious constituent would then 
be 0. 78 the mass of K 2, 0.21 times the mass 
of 02 and 0.01 the mass of a trace com;tit­
ucnt.) This equation indicates how the 
temperature of our parcel of gas decrea8e8 
as it rises. 

Suppose that the parcel of gas ha8 a trace 
of a substance that is undergoing a phase 
transition, for example water vapor in the 
terrestrial atmosphere. As the vapor con­
denses, it evolves heat and precipitates out 
of the parcel. Because of latent heat it 
deposits in the parcel, the lapse rate is 
reduced. In particular (sec Hess, 1959) 
the term ('Y - l)h in (15) and (16) should 
be replaced by ('Y - 1)/rJ'Y, where T/ is 
given by 

TJ = [1 + (tV/cpk)w/T2]/ 
(1 + Lw/kT) (17) 

and Cp is the mean heat capacity of an 

atmospheric con8tituent, w the mixing ratio 
of condensates to atmospheric constituents, 
e the ratio of the molecular weights of the 
condensates to that of the atmospheric 
constituents, and L the latent heat evolved 
by a single condensing molecule. Equation 
(16), when corrected for the condensate, 
defines the wet adiabatic lapse rate. 
Similarly, (15) becomes 

Bs,.m(r) - [ gmabs Jn('Y-ll/n = Bsµm(O) 1 + -- 7 
uxPt 

(18) 

and describes the effective black-body in­
tensity as a function of optical depth for a 

wet adiabat. 
Let us assume that the source function 

S(r) may be approximated by the effective 
black-body intensity. For simplicity we 
write (18) as 

S(r) = a(l + br)c, (19) 

where a, b, and c correspond to appropriate 
terms in the previous equation. Then, em­
ploying (2), we find 

I (01 µ) = a (bµ)c 

X exp[(bµ)-1]r[l + c, (bµ)-1], (20) 

where r is the incomplete Gamma Func­
tion (Abramowitz and Stegun, 1965). A 
convenient formula for evaluating (20) is 

I(O,µ) =a(bµ)0 exp[(bµ)-1]{I'(l+c) 
00 

- L  [-(bµ)-1Jn/n!(c+l+n)}, (21) 
n=O 

where r here denotes the complete Gamma 
Function. 

In our discussion, we had assumed that 
x and w, the mixing ratios of absorbers and 
condensates, were constant. This condition 
can be relaxed to allow for their variation 
provided that the distance over which 
significant absorption takes place is much 
less than one pressure scale height and 
much less than the vertical distance over 
which most of the condensation occurs. 
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Moreover, the model can be expanded to 
accommodate the presence of scatterers by 
defining K to be the total extinction coeffi­
cient and by making appropriate changes in 
the definitions of x, cr, etc. The character­
istic form of the limb-darkening function, 
however, remains unchanged. 

C. Cloud and Intermediate Zone Models 

These models were employed by Terrile 
and Westphal (1977) in analyzing their 
data. Their cloud model describes radiation 
from an optically thick, hot cloud deck 
passing through an optically thin, warm .. 
emitting layer. This may be represented by 

I(O, µ) = BH exp ( -rw/µ) 

+Bw[l - exp (-rw/µ)J, (22) 

where BH and Bw are the black body radia­
tion emitted from the hot and warm 
layers respectively, and rw is the optical 
depth of the warm layer. Radiation from an 
optically thick intermediate cloud deck 
passing through a cold absorbing layer (I, 
intermediate model) may be represented as 

I(O, µ) = B1 exp (-ri/µ) .  (23) 

Both of these models can be expressed in 
the form 

I (O, µ)=a+bexp (-r'/µ) ,  (24) 

where the corresponding source function is 
given by 

S(r) = 
{ a, 

a+ b, 

0 � T < T1 

T1 � T. 
(25) 

We do not expect these models to give 
particularly good fits because they require 
that each cloud and absorbing layer have a 
uniform temperature distribution. They 
are included, however, because they provide 
some insight into the nature of limb­
darkening functions produced by atmo­
spheres with relatively little temperature 
structure. 

D. Thin Shell Model 

It is also of interest to examine the limb­
darkening function of an atmosphere char­
acterized by the opposite extreme: an ex­
tremely hot, very thin emitter embedded at 
ro in a warm, absorbing atmosphere. The 
source function used is 

S (r) =a+ bO(r - ro), (26) 

where o is the Dirac delta function. The 
corresponding limb-darkening function is 

I(O, µ) = a + bµ-1 exp (-r0/µ) .  (27) 

Although this model has no known physical 
counterpart, it provides a useful measure of 
the impact of strong temperature variation 
and pronounced thermal structure on the 
limb-darkening function. 

Although our list of models is small, it 
describes a wide spectrum of behavior. The 
power series expansion describes virtually 
any continuous, smoothly varying limb­
darkening function. Moreover, it can be 
used to provide an estimate of the scatter 
in the data due to noise. A special case of 
the polynomial is the Eddington approxi­
mation which provides an accurate repre­
sentation of the limb-darkening curve when 
the radiative flux is conserved over a given 
passband, a hint of possible radiative 
equilibrium. We expect radiative equilib­
rium to be a dominant feature of high­
elevation clouds (not under the influence 
of direct heating from the planet's interior) 
if dynamical effects are unimportant (a 
situation found to be the case on Venus by 
Newman, 1975) . On the other hand, we 
expect that deeper clouds are dominated 
by dynamical effects and, from the sus­
pected composition and temperature range 
of these clouds (Lewis, 1969b), subject to 
phase transitions in their spectroscopically 
active components. For this reason, we 
have emphasized the derivation of the 
convective equilibrium model. Finally, as 
measures of the degree of thermal structure 
for the observed limb-darkening, we also 
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TABLE I 

L1Mu-U.\HK1-:N1Nu P1toP1-;RTms OF VAR!Ous MooELS 

Model 

Power-series expansion 
n=O 

Source 
function 

a(l + br)c 

Limb-darkening function 

n=O 

Convective equilibrium 

Cloud and intermediate zone a, 0 :$ r :$ r' 
a+ b, r' :$ r 

a(bµ)cexp[(bµ)-1]r[l + c, (bµ)·-1] 

a+ b exp(-r'/µ) 

Thin shell a+ bO(r - ro) a+ bµ-1 exp(-ro/µ) 

consider Terrile and W estphal's (1977) 
cloud and intermediate zone models as well 
as a thin, extremely hot shell model. The 
source and limb-darkening functions for the 
different models are given in Table 1. 

III. STATISTICAL METHODS1 
AND AN AL YSIS 

Suppose we have N measurements, at 
various zenith angles (arccos µi, i = 1, . . .  , 
N) of the limb-darkening function (which 
we denote by Ii) . For simple cases, a model 
may be considered composed of a linear 
combination of M different functions of µ, 
say f;(µ); j = 1, . . . , M. For example, a 
power series expansion employs the func­
tions 1 ,  µ, µ2, • • •  , µM-i and we make 
the identification jj(µ) = µi 1• Nonlinear 
modds will be treated later in this section. 
In addition, we assume that there is an 
additive Gaussian error noise component, 
Ei, whose mean vanishPs and has a variance 
of rr2• Therefore, we write 

M 
I; = L a1fi(µi) + Ei, i = 1, . . .  , N (28) 

j�l 

where the a1 are linear combination codfi-

1 No single reference provides an adequate survey 
of this problem. Ralston (1965) reviews some of the 
numerical problems associated with least-squares 
techniques. Jenkins and Watts (1968) examine the 
theory of maximum likelihood estimators and 
Gaussian least squares as well as providing some 
remarks on nonlinear problems. Graybill (1968) 
considers the general linear model and some sta­
tistical tests of confidence. 

cients. We consider the error to be Gaussian 
distributed, a reasonable assumption from 
the Central Limit Theorem. Systematic 
errors, notably those due to calibration, are 
not Gaussian, and are often intractable. 

Since the errors Ei defined by (28) are 
Gaussian distributed, the probability asso­
ciated with the estimates of the ai coeffi­
cients varies as 

N 
exp[ - L Ei2 / rr2]. 

·i=l 

Therefore, the most probable choice of the 
coefficients is that which minimizes 

N M 
u == I: [Ii - I: aif1(µi)J2• (29) 

i�l j�l 

The process of finding the values for the 
ai coefficients is called the maximum likeli­
hood method and is equivalent to the 
method of least squares. In this, the linear 
case, it is also known as the "multiple 
regression" model. We therefore require 
that the derivative of U with respect to 
each ai coefficient vanish, yielding the 
normal equations 

N M N 
I: Iif1(µi) =I: ak{L f1(µ;)fk(µ;)}. (30) 

i=l 

This set of linear equations is character­
ized by a matrix whose .i, k1h component is 
given by 

N 
(f ;, f k) I: f1(µ;)fk(µi). (31) 

i=l 
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The matrix is symmetric, scmipositive 
definite and the system of equations has a 
unique solution unless one of the functions 
Ji( µ;), evaluated at each µi, i = 1, .. . , N, 
could be represented by a linear combina­
tion of the remaining functions and is thus 
redundant. 

Although superficially simple to solve, 
the system of linear equations (30) is nu­
merically ill-conditioned. For example, an 
eighth-degree polynomial fit to an arbi­
trarily large data set will result in the loss 
of twelve significant places of accuracy if a 
direct method (e.g., Gaussian elimination 
with pivoting) is used! To reduce this 
source of computational error, one should 
use Gram-Schmidt orthogonalization of 
the functions Ji( µ) , j = 1, ... , M, with 
respect to the inner product operator 
defined in (31). The resulting matrix, asso­
ciated with the normal equations will then 
be diagonal and the system's solution will 
then be trivial to obtain. A relatively recent 
innovation in solving least-squares prob­
lems is the technique of singular value de­
composition. Although functionally equiva­
lent to the Gram-Schmidt procedure, it is 
somewhat faster in execution. Moreover, 
unless posed in a certain form, the Gram­
Schmidt procedure is susceptible to nu­
merical instabilities. Singular value decom­
position is a very complex procedure but 
is described in detail in Lawson and Hanson 
(1974) and Forsythe et al. (1977). Also, 
both texts contain tested ANSI Standard 
Fortran programs. 

Although the errors associated with an 
ideal experiment are independent of each 
other, the errors estimated by (28), where 
the ai coefficients satisfy (30), are not. In 
fact, combining (28) and (30) , we find 

N 
L: E;ji(µi) = 0 for j = 1, ... , M. (32) 
i=l 

So, although there are N values of Ei, Eqs. 
(32) introduce M conditions or constraints 
and we are left with N - M degrees of 

freedom. Morcovr�r, if we calculate the 
expectation value of U (the sum of the 
residual variances) defined by (29), we can 
show that 

N 
(U) L (Ei2) = (N - M)u2• (33) 

i=l 

The least-squares estimation processes in­
troduce a small bias (which vanishes as 
the number of data points becomes arbi­
trarily large) due to (32) into our estimates 
of the Ei. By increasing the number of ai 
coefficients, Eqs. (32) show that we reduce 
the noise level in each Ei until the number 
of coefficients M equals the number of 
data points N and all Ei vanish (i.e. ,  the 
fit is exact). This, qualitatively, is the 
result shown by (:33). We can approximate 
the latter by writing 

N 
u2 = [1/(X - M)] L: E;2• (34) 

i=l 

(This result is exactly only if we replace 
E;2 by (E;2).) Suppose, for example, that we 
know our limb-darkening function has an 
exact representation, apart from noise, as a 
polynomial of degree M'. Using (34), we 
can estimate u2• If we fit the data with a 
polynomial of degree M > M', our estimate 
of u2 from (:34) will remain approximately 
the same because the decrease in the noise 
level is exactly compensated for by the 
denominator 1V - M. However, if we use 
an estimate of the polynomial degree 
M < M', we will find that the residuals E; 
contain not only noise information but 
limb-darkening information as well, and 
our estimate of u2 will be too large. 

l!sing (34) we can now define a X2 vari­
able with N - M d0grees of freedom, 
namely 

N 
x2 = L Ei2/u2. 

i=l 
(35) 

If u2 is known (i.e., we have an absolute 
estimate of our sources of error) , we can 
employ the usual confidence-level tests. 
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TABLE II 

Polynomial Case A 
Fit Equatorial 

ReRnlts Belt 
Hot 8pots 

N 100 

u 
1st degree 
2nd degree 
3rd degree 
4th degree 
5th degree 

r; 
1st degree 
2nd degree 
3rd degree 
4th degree 
5th degree 

UA 
1st degree 
2nd degree 
3rd degree 
4th degree 
5th degree 

0 . 1754 
0 . 1370 
0 . 1358 
0.1323 
0 . 1316 

0 . 04230 
0.03758 
0.03761 
0.03732 
0.03742 

0 . 1825 
0 . 1455 
0 .1471 
0 . 1462 
0 . 1484 

Case B 
8outh 
Tem­
perate 
Belt 

50 

0 . 2181 
0 . 1343 
0.1327 
0 . 1207 
0.1097 

0.06741 
0.05346 
0.05371 
0.05179 
0 . 04994 

0 . 2363 
0 . 1514 
0 . 1.558 
0 . 1475 
0 . 1397 

Case C 
Inter­

mediate 
Flux 

(NEB) 

24 

0.04681 
0 . 04677 
0.03832 
0.03667 
0 . 03586 

0 . 04613 
0 . 04719 
0.04377 
0.04393 
0 . 04463 

0.05532 
0 . 06010 
0 . 05365 
0 . 05598 
0.05976 

If u2 is not known, the X2 test cannot be 
used. The problem of finding the poly­
nomial degree M' is then complicated by 
the fact that (:34) is an approximation. In 
practice, we find that u2  decreases with 
increasing M, until M equals M'. For 
larger M, the estimate of <T2 tends to 
oscillate around a constant, making the 
task of identifying M' very difficult. 

By modifying a technique developed by 
Akaike (1969) in application to autore­
gressive decomposition, we can construct 
a variable that will better equip us to 
estimate M'. We note that, as M increases, 
the ai coefficients adapt to the properties 
of the noise in that experiment until the 
number of coefficients and data points are 
the same and no residual errors remain. 
Let us suppose that, next door to Terrile 
and Westphal, there was a competing 

group using equivalent inf-4trurnentation 
making the same observations at th(� same 
zenith angles. The underlying limb-darken­
ing function would be the same for both 
groups but the noise observed presumably 
would not. (The errors, of course, would 
be drawn from the same statistical popula­
tion.) We then ask how well the a i coeffi­
cients computed for Terrile and Westphal's 
observations would match their rivals' 
data. That is, if their competitors observed 
intensities I';, i = 1, . . . , N, how large 
would U A be, where we define 

N M 
ij A = L [J'; - L adj (µ;)]2 ? (36) 

i=l j=l 

A straightforward but tedious calculation 
reveals that 

(UA) = (N + M)<T2 

=[(N + M)/(X - M)](U) (37) 

when M > M'. As �1 increases beyond M', 
U A (as an approximation to ( U A)) increases 
because the surfeit of coefficients arc adding 
to U A some of the noise level observed in 
the first experiment. This variable U A there­
fore provides a test of the universality of the 
fit. In practice, we can only estimate (U A) 
by evaluating [(N + M)/(N - M)]U, for 
increasing values of M. The resulting locus 
of points is parabolic in character with M' 
corresponding to the minimum. Since we 
have obtained UA (and not (VA)), the 
points may oscillate, but the uncertainty in 
M' is characteristically reduced. Finally, 
knowing M', we can estimate u2 from (34). 
This value, however, is not accurate enough 
to permit anything but the crudest X2 test 
of significance. 

As an illustration of these methods, we 
provide some relevant quantities for poly­
nomials fitted to Terrile and W estphal's 
observations in Table II .  

In Case A, the Akaike criterion would 
clearly select a quadratic fit. The oscillation 
in U A is not a hindrance here. In Case B, 
the minimum is reached for a fifth degree 
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polynomial. However, that fit (as wdl a:-; 

the 6th-, 7th-, and 8th-order fits) extrapo­
lates to a negative intensity at the limb 
and must be disregarded. We consider, ac­
cordingly, a quartic polynomial to be ap­
propriate. Case C is somewhat ambiguous 
because of the strong oscillation in U A· 

Although M = 3 is a minimum, the corre­
sponding a; coefficients would provide 
a source function that was negative at 
T = 1.41 and must be excluded. Hence, 
the first-degree polynomial is selected. It is 
important to note that, in this case, 
physical and not statistical considerations 
resolved the degree of the polynomial fit. 

Nonlinear models are significantly more 
difficult to fit and analyze than their linear 
counterparts. Instead of linear combina­
tion coefficients ah we will employ param­
eters a;, j = 1 ,  2, . . .  , M, so that we can 
parallel equation (28) by writing 

Ii= F(µ;; a1, ... , a.ii) + �i, (38) 

where the function F describes our model 
(such as the convective or cloud models). 
We define U (the sum of the residual 
variances) by 

N 
U = :E [I; - F(µi; a1, . . .  , aM)]2. (39) 

i=l 

W c perform a variation of the parameters 
a; so as to minimize U, in compliance with 
the maximum likelihood principle. Unlike 
the linear case, there may be several 
minima and a global search must be 
performed. 

The maximum likelihood estimates of 
the parameters a; satisfy the normal equa­
tions (derived by differentiating U with 
respect to a;), 

N a 
:E l;-F(µi; a1, ... , aM) 
i�l aa; 

N 
:E F(µ;; a1, ... , aM) X 
i=l 

a 
-F(µ;;a1, ... , aM) j = 1 ,  ... , M. (40) 
aa; 

TABLE 111 

SlrMM.\RY OF F1TTIW R1·;:-;n:n; 

Sum of Case A Case B Case C 
variances 

Polynomial 1 0.1754 0 . 2181 0.04681 
degree 2 0.1370 0 . 1343 0 . 04677 

3 0 . 1358 0 . 1327 0 . 03832 
4 0 . 1323 0 . 1207 0.03668 
5 0 . 1316 0.1097 0.03586 

Convective 0 . 1371 0 . 1530 0 . 04683 

Shell 0.1516 0.1344 0 . 04538 

Cloud layer 0 . 1444 0.1347 0.04556 

Intermediate 0 . 05466 

The minimization of (39) or, alternatively, 
the solution of ( 40) is a very difficult 
computational problem [consider the con­
vective model (21) ,  for example]. A survey 
of this problem may be found in Luenberger 
(1973). 

As in the linear case, we have }v' measures 
of the error (38) and M constraints, Eqs. 
(40). By linearizing F(µ; a1, . . .  , aM), we 
can demonstrate the approximate validity 
of (33)-(3.5) in the nonlinear problem. 
Thus, once we have obtained the maximum 
likelihood estimate of the a; parameters, 
the statistical method of analysis is much 
the same as before. Because of nonlinearity, 
there is no direct analogue to Akaike's 
criterion. 

In comparing the sum of the residual 
variances U for different models, we require, 
following (34), that they have the same 
number of parameters or degrees of freedom. 
Thus, the intermediate zone model may be 
compared with a first degree polynomial, 
and the convective equilibrium, thin shell 
or cloud models with a second degree 
polynomial. Higher order power series must 
be treated on an individual basis. 

The sum of the residual variances U of the 
models considered are given in Table III. 

For large N - M, the X2 statistic, using 
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(35), defined by (2X2)1'2- (2N -2M -1)1'2, 
is approximately Gaussian distributed with 
vanishing mean and unit variance. Since 
we do not know u2, we cannot employ the 
X2 test directly. However, the asymptotic 
nature of the X2 distribution assures us that 
relative differences between model residual 
variances of only a few percent can be 
significant. 

One further statistical technique that 
should be mentioned is the F test. [See the 
handbook by Pollard (1977) for a descrip­
tion.] The F test is applied to the ratio of 
the sums of the residual variances U ob­
tained from two different fits and does not 
require that we know the value of u2• A 
correction factor is introduced if the two 
fits differ in the number of fitting param­
eters employed. This technique tests the 
hypothesis that the value of this ratio is 
compatible at some preassigned confidence 
level with random error. Should the F test 
reject the hypothesis, the poorer of the 
two fits would also be rejected by the X2 
test but we would be unable to say any­
thing about the viability of the better of 
the two fits. Should the F test accept the 
hypothesis, it is quite possible that one or 
both fits would be rejected by the X2 test. 
In principle, the F test is very useful, 
particularly since it does not require a 
priori knowledge of u2• In practice, the F 
test is relatively weak and the X2 test 
(when u2 is known) is much preferred. The 
application of the F test to our fits to Terrile 
and Westphal's data was inconclusive. 

In Case A, the hot areas of the North 
and South Equatorial belts, the quadratic 
power series and the convective equilibrium 
model provide almost equally reliable fits, 
while all other models are much less prob­
able. The convective equilibrium fit (19) 
gave the parameters b and c values of 2.01 
and 2.04, respectively. The value of b 
could be varied over a wide range (while 
that of c was adjusted in order to minimize 
U for a given b). However, the value of c 
did not change significantly. Since c "' 21 

the correspondence between the goodness of 
the quadratic and the convective equilib­
rium model fits is not unexpected. We 
discuss the physical implications of this 
result in the next section. 

The South Temperate Belt is more 
problematic. The investigation of power 
series expansions for Case B reveals a 
preference for a fit of high degree, indi­
cating significant structure. The convective 
equilibrium model is clearly rejected. How­
ever, the other three-parameter models 
(the quadratic polynomial, the thin shell 
model and the cloud layer models) are 
equally likely, statistically! The Akaike 
criterion results suggest that the residual 
variance for the three parameters is un­
acceptably high. We can only conclude 
that the physical mechanism responsible 
for the behavior of the South Temperate 
Belt is an amalgam of several of the physical 
processes discussed or a region of transition 
between two physical processes or some 
other process that we have not considered. 

Finally, the intermediate flux region of 
the North Equatorial Belt allows for 
several models as possible mechanisms. 
The preferred degree of a polynomial fit is 
unity, as we have discussed earlier, while 
the addition of a quadratic term does not 
significantly change the results. The con­
vective equilibrium model is viable and the 
associated parameter b can vary from 1 .4  
to 1 .6  (while c "'0.9) without significantly 
affecting the residual variance. Note that 
the Eddington approximation corresponds 
to b = 1 . 5  and c = 1. 0. This is highly 
suggestive of flux conservation and radia­
tive equilibrium. We also observe that the 
intermediate zone model of Terrile and 
Westphal is clearly rejected, while the 
thin shell and cloud layer models are 
approximately equally probable. The latter 
suggests that there is more thermal struc­
ture present than we normally associate 
with a state of radiative equilibrium. 

Finally, let us consider how Lewis' 
(1969a, 1969b) model is consistent with 
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these results. The hot spots have a bright­
ness temperature of 2.50 to 2fi5°K. This 
corresponds directly to the transition region 
from aqueous ammonia to ice, suggesting 
that a phase change coupled through the 
high opacity of aqueous ammonia (and the 
dynamic mixing that might arise from this 
low-lying cloud layer) to convective equi­
librium may be present. The intermediate 
flux zone of the North Equatorial Belt is 
cooler and at a higher altitude. Since no 
phase transition is predicted and higher­
level clouds are less likely to be dynamically 
coupled to what lies below, radiative equi­
librium might be a reasonable approxima­
tion to the mechanism present. Finally, 
the South Temperate Belt remains an 
enigma. Since it appears to be fairly hot, it 
could be intermediate in structure betwPen 
the other regions. 

IV. CHEMISTRY OF PHASE TRANSITIONS 

In Section III, WP argued for a phase 
transition in the hot spots of .Jupiter's 
equatorial belt. From the observation that 
the value of the convective Pquilibrium 
parameter c""' 2.04 and the identification, 
from (18) and (19), that 

c = n('Y - l)/1n, (41) 

(cf. Pollack and Sagan, 196.5), we can now 
estimate ri, the term defined by (17) that 
shows the departure from a dry adiabat. 
We adopt n ':"'-:'. 11.6. 

We now assume that the a tmospherc of 
.Jupiter is 88.6% hydrogen and 11.2% 
helium, from W eidenschilling and Lewis 
(197:3). This is consistent with solar abun­
dances and with the{) Seo occultation data 
(Elliot et al., 1974), Pioneer 10 ultraviolet 
photometer data (Carlson and .Judge, 
1974), Pioneer 10 infrared radiometer 
data (Orton, 1975) and the infrared spec­
trum determination by Houck et al. (197.5). 
A variation of 5% in our assumed He 
abundance will affect our results, through 
I', only about 1 %. A simple calculation then 

shows that I' ""' 1.42. Combining these re­
sults, we find that ri ""' 1.68. The latent 
heats of water and ammonia are, respec­
tively, 333.6 and 3.51 .Joules per gram 
(International Critical Tables, 1928). �ow, 
neither water nor ammonia will freeze at 
250°K and the corresponding (Sagan and 
Salpeter, 1976) P""' 2 bars (water freezes 
at a higher temperature and ammonia at a 
lower one) . If they could, (17) would pro­
vide for mixing ratios of 0.04.52 and 0.0494. 
These values are 5.3.5 and 42.8 times the 
estimates given by Weidenschilling and 
Lewis for solar abundance. Since, for clouds, 
we expect to find an excess of the spectro­
scopically active materials, these excess 
values are not excluded. It is necessary, 
however, that these mixing ratios (which 
are mass-weighted, following the meteoro­
logical convention) be less than or near the 
saturation equilibrium concentration for 
their associated temperature and pressure. 
Recently, Klein and Gulkis (1978) em­
ployed microwave radiometry to show that 
the mixing ratio for ammonia was near the 
solar abundance value at a somewhat higher 
altitude (and lower temperaturP) . This very 
likely rules out ammonia as the responsible 
condensate, leaving water as the most 
probable candidate, if only a mechanism 
for depressing its frePzing point can be 
found. 

A mixture of water and ammonia, how­
ever, provides for a large range of freezing 
points. (See Zcmansky, 1968 and Castellan, 
1971 for a discussion of eutectic curves and 
freezing mixtures.) The eutectic properties 
of aqueous ammonia solutions were investi­
gated over half a century ago by Potsma 
(1920) and Elliott (1924). At low tempera­
tures, water does not readily dissociate in 
the presence of ammonia to form ammonium 
hydroxide. Ammonia can, however, form 
two hydrates, NH3·H20 and XH3·2H20 
by hydrogen bonding. The two hydrates 
also exist on the freezing point diagram. 
Therefore, depending on the strength of 
the initial aqueous ammonia solution, the 
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sequence in which freezing takes place can 
be very complex. Moreover, unlike the 
laboratory situation, the behavior in the 
Jovian atmosphere is considerably com­
plicated by precipitation. Water is denser 
than ice which is denser than frozen 
ammonia which is denser than liquid 
ammonia (Kuiper, 1952). So, once the 
temperature drops to that on the eutectic 
curve, one of the four active constituents 
(H20 , NHa · 2H20, NHa · H20, NH a) will 
begin to freeze and either rise or sink faRter 
than the mixture. The depletion of this 
constituent from the solution changes its 
concentration and lowers its associated 
freezing point. As the solution is buoyed 
higher by convection, it further cools and 
loses more of one of its conRtituents. As a 
result, the freezing point can be sm0arcd 
out over as much as 100°K (for the 
NHa-NHa·H20 system) . Since the latent 
heats of fusion for water and ammonia are 
quite similar, and the bonding associated 
with the hydrates of ammonia arc quite 
weak, the latent heats of the two hydrates 
should not be significantly chang<'d and 
this picture remains unaltered. 

Water and ammonia vapors arc relatively 
poor absorbers from 4.6 to 5 . 1  µm. More­
over, as we expect both ammonia and 
frozen ammonia to form above the water 
or ice clouds (from the above buoyancy 
arguments and Lewis, 1969b) , we expect 
that it would be very difficult to sec down 
to the water or ice clouds at this wavelength. 
[Perhaps most water vapor that exists 
above the water clouds readily dissolves 
in the ammonia clouds and immediately 
freezes out. Since we expect large-scale 
moist convection to occur below this level 
(Gicrasch, 1976) , the amount of water 
vapor present at lower levels will depend 
on whether we arc seeing a convective up­
draft or downdraft. In the case of a down­
draft, the large-scale convective model 
predicts the pres0nce of very little water 
vapor. The reduction in the expected ab­
sorption from water vapor in the downdraft 

would result in observations of much deeper 
and hotter levels in the Jovian atmosphere. 
The combination, then, of a freeze-out 
mechanism at higher levels and convective 
downdrafts below could explain the un­
expectedly low water vapor abundance and 
high observed brightness temperature of 
Larson et al. (1975) .]  

The possibility of hydrogen sulfide play­
ing a major role in convective equilibrium 
models cannot definitely be excluded. Un­
like water, H2S readily dissociates in 
ammonia. Moreover, all attempts to freeze 
such mixtures in laboratories have pro­
duced many compounds of ammonia and 
hydrogen sulfide. The eutectic curve for 
the NH3-H2S system is incompletely known 
and appears to have at least one incon­
gruent melting point (Schcflan and Mc­
Crosky, 1932); in addition the relevant 
latent heats have not been tabulated. For 
a reasonable estimate of the latent heat, 
the required mixing ratios are far in excess 
of that predicted from Rolar abundances. 
If hydrogen sulfide, however, iR not wdl 
mixed in the atmosphere, its role in the 
chemistry and coloration of the hot spots 
cannot be discounted (cf. Khare and 
Sagan, 197.5) . 

Although carbon monoxide has recently 
been detected in the 5 µm band in the 
Jovian atmosphere (Beer, 1975) , it is un­
likely that CO could be responsible for 
Terrile and W cstphal's observations. It is 
believed to be formed deep in the atmo­
sphere (Larson et al., 1 978) . In the tem­
perature range of interest, it can be expected 
to react with molecular hydrogen and to 
form methane (which is transparent at 
5 µm) and water. Moreover, to fit the con­
vective equilibrium wct-adiabat model, 
carbon monoxide would have to undergo 
a phase change near 2fi0°K and would 
necessarily be many tens or hundreds of 
times more abundant than solar values 
would suggest. 

The analysis techniques of the present 
paper should be applicable to high-spatial 
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resolution multifrequency limb-darkening 
scans of Jupiter with the Voyager space­
craft (Hanel et al., 1978)-which can poten­
tially clarify much about the lateral and 
vertical structure, chemistry and cloud 
constituents of the Jovian atmosphere. 
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APPENDIX I 

Orton (1977) employed Conrath's (1972) 
formulation of the Backus-Gilbert gen­
eralized inverse theory. In the discrete case 
in the absence of noise, the method can be 
stated quite succinctly. Consider the prob­
lem of best approximating some function 
!lT(x) given m observations Ill; defined by 

Ill; = 1xt k;(x)flT(x)dx, 

i = 1 ,  . . .  , m. (I-1)  

(We adhere strictly to Conrath's notation. 
The discussion that follows, however, is 
independent of the choice of the limits of 
integration, provided they are finite.) We 
then wish to construct an approximate in-

./'... 
verse !lT(x) from a linear combination of 
the observed data, namely 

./'.... 
!lT(x) = L: a;(x)!ll;, (I-2) 

where we have 
selecting a;(x). 
A (x,x') by 

A (x, x') 

i=l 

yet to specify a rule for 
If we define a function 

L: ai(x)ki(x'), (I-3) 
;�i 

we see that 

./'.... rt !lT(x) =Jo A(x, x')!lT(x')dx'. (I-4) 

The function A (x,x'), ideally, should tend 
to a Dirac o-function. In practice, it will 
have a finite width or spread and tends to 
smooth !lT(x). For this reason, it is called 
an "averaging kernel." In order to estimate 
the width of A (x,x'), we define a "spread 
function" s(x) by 

rt s(x) = 12 J
o 

(x - x')2A2(x, x')dx'. (I-5) 

We then perform a variation on the a;(x) 
in order to minimize the "spread" (5) , sub­
ject to the normalization constraint. 

rt 1 =} 0 A (x, x')dx'. (I-6) 

The factor 12  in (I-5) is introduced so that, 
if A (x,x') is a rectangle of unit area and 
width w, s(x) = w. This variation can most 
simply be achieved using Lagrange multi­
pliers (Conrath, 1972). 

The method is conceptually attractive 
since it will provide the estimate of !lT(x) 
with what seems to be the best possible 
resolution. Although the method can be of 
significant value in certain applications, it 
suffers from important mathematical short­
comings which can seriously affect its per­
formance. In the absence of any further 
information about the physical processes in­
volved, two mathematical principles should 
be employed when devising an ad hoc in­
version scheme. First, all available informa­
tion should be incorporated into the 
method so that the solution obtained re­
produces the available data. Second, the 
method should yield incrt>ased resolution 
over other approaches. 

The variational procedure cmployPd in 
estimating a;(x) never uses the information 
obtained by the observations (I-1) as 
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<·quatiorn; of constraint. As a rPsuH, the 
./"-.... 

approximate inverse t:..T(x) will not, in 
general, reproduce the observed data t:..J;. 
By not fully introducing the observational 
information available into the method, we 
compound our ignorance of the solution. 

The second problem arises in the deter­
mination of the resolution or, alternatively, 
the spread. Although s(x) reproduces 
reasonably well the width of a number of 
functions, it can give spurious results when 
applied to some averaging kernels. Con­
sider, for example, a hypothetical experi­
ment where we measure t:..l; defined by 

t:..l; = f_1

1 
P;_1(x)t:..T(x)dx, 

i=l, ... , m  (I-7) 

whcrP Pi(x) is the 1:th Legendre polynomial. 
./"-.... 

Let us select a;(x) and, therefore, t:..T(x) 
to be given by 

a;(x) = [(2i - 1)/2]P;_1(x), 

./"-.... 
t:..T(x) 

m 
I: [(2i - 1)/2]P;_1(x)t:..l;. 
i=l 

(I-8) 

(In many circumstances, we customarily 
make this choice of expansion since it 
provides the best approximation, in an 
integrated least-squares sense, to a given 
function.) Although Conrath's variational 
procedure would not make this identifica­
tion for a;(x), it is instructive to consider 
the spread function that results from this 
choice. 

Now, the averaging kernel becomes 

A (x, x') 
m-1 

= I.; [(2l + 1)/2]P1(x)P1(x1). (I-9) 
z�o 

(We know, incidentally, from the complete­
ness relation for Legendre polynomials that 
this kernel "tends" to a Dirac o-function.) 

e:-iing the rPCUfrencc relation 

(l + l)P1+1(x) - (2Z + l)xP1(x) 

+ZP1-1(x) = 0, (I-10) 

we obtain the Christoffcl-Darboux identity 

A (x, x') 

= 
m[Pm(x)Pm-1(x1) - Pm(x')Pm-1(x)J. 
2 x-x' 

(l-11) 

Then, using (I-5) with integration limits 
-1 to 1 ,  we observe that 

s(x) = 6m2[Pm_12(x)/(2m + 1 )  

+Pm2(x)/(2m - 1 )]  (I-12) 

and the average spread (s) is 

1 fl 
(s) = - s(x)dx 

2 -1 

= 12m2/ (4m2 - I). 
(I-13) 

This result shows that the average spread 
decreases as we add more terms (and 
corresponding data points) beginning with 
a value of 4 (when m = 1) and, as m 
approaches infinity, reaches a limiting 
value of 3 (which is larger than the region 
over which we arc calculating the spread). 
The measure of spread that we use must, 
in the limit of an infinite amount of avail­
able data, tend to zero. The spread func­
tion of (I-5) is incompatible with this 
conceptual requirement. 

Although we have shown that the spread 
function (I-5) can be a misleading indicator 
of resolution, it is important to understand 
in practical terms why this is so. The 
morphology of a typical averaging kernel 
is characterized by a central peak, for x 
near x', and some kind of "sidelobe" struc­
ture. Theoretical kernels (e.g., rectangles, 
Gaussians, etc.) for which (I-5) is a reason­
able measure of spread have no sidelobes. 
The kind of kernel more likely to be en­
countered in practice will have a complex 
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sidelobe ::;tructure. If the::;e ::;idclobes do not 
decay much fa::;ter than (x - x')-·1, they 
will provide a significant if not dominant 
contribution to the spread function (I-fl ) .  
In  practice, the highly oscillatory character 
of the sidelobes tends to cause cancellation::; 
and diminish any ::;izeable contribution. 
However, since (I-5) contains the square 
of the kernel, this cancelling feature of the 
sidelobes is lost and their effects are 
grossly exaggerated. 

This form of generalized inverse theory, 
then, has two serious drawbacks. It will 
not reproduce the given data and can 
provide a very spurious estimate of the 
resolution of the result. A more detailed 
discussion of these difficulties together with 
illustrative examples, is given elsewhere 
(�ewman, 1978) . For completeness, we 
cite an approximate inversion formula 
(see, for example, Foster, 1961) that 
satisfies 

r· � 
) 0 k;(x) { AT(x) AT(x) } dx 0, 

i = 1 ,  . . .  , m ;  (I-14) 

that is, any error in our approximate in­
verse cannot be seen from available ob­
servational data. We define a matrix C by 
its i, j components 

C;,j  = 1x' k i(x) kJ (x) dx, 

Then, 

a; (x) 

A (x, x') 

� 
AT(x) 

i, J 1, . . . , m. (I-1 5) 

m 

I: [G-1]; , jkj(x) , 
j�l 

m 

L [C- 1] ; ,jk;(x)kJ(x'), (I-16) 
i , f=l 

I: [G-1J; ,,AI;k1(x) , 
i , j=l 

where [G-·1] i , J  denotes the i, jth component 
of the inverse matrix to C. 
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