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By observing the transit of various cloud features across the Jovian disk, Terrile and Westphal
(1977) have constructed limb-darkening curves for three regions in the 4.6 to 5.1 um band.
Several models currently employed in describing the radiative or dynamical properties of
planetary atmospheres are here examined to understand their implications for limb-darkening.
The statistical problem of fitting these models to the observed data is reviewed and methods for
applying multiple regression analysis are discussed. Analysis of variance techniques are intro-
duced to test the viability of a given physical process as a cause of the observed limb-darkening.
The intermediate flux region of the North Equatorial Belt appears to be in only modest depart-
ture from radiative equilibrium. The limb-darkening curve for the South Temperate Belt is rich
in structure and cannot be satisfactorily ascribed to any single physical mechanism; a com-
bination of several, as yet unidentified, processes is likely involved. The hottest areas of the
North and South Equatorial Belts exhibit limb-darkening curves that are typical of atmospheres
in convective equilibrium. In this case, we derive a measure of the departure of the lapse rate
from the dry adiabatic value (y =~ 1.68), which furnishes strong evidence for a phase transition
at unit optical depth in the NEB and SEB. Although the system NH;—HS cannot be entirely
ruled out, the freezing of an aqueous ammonia solution is shown to be consistent with the param-
eter fit and solar abundance data, while being in close agreement with Lewis’ (1969a) cloud

models.

I. INTRODUCTION

By applying a combination of radiative
transfer and statistical techniques to in-
frared observations of Jupiter, we can
enhance our understanding of the radiative
and dynamical processes that control the
make-up of the Jovian clouds and the
deeper atmosphere. Since Jupiter’s atmo-
sphere is widely believed to be significantly
stratified in its spectroscopically active
components, observationsmade over limited
wavelength regions permit us to look down
at levels in the atmospherc where those
components play an active role. Moreover,
by analyzing the intensity observed in

1 Present address: Institute for Advanced Study,
Princeton, New Jersey 08540.

different regions of the disk, some of the
underlying physics of Jupiter’s belts and
zones can be revealed.

The 5 um region is of particular interest
since it is transparent to the abundant
Jovian absorbers, gaseous hydrogen, meth-
ane and ammonia. Gillett et al. (1969) ob-
served that the 5 um brightness tempera-
ture, averaged over a large part of the
Jovian disk, was approximately 230°K.
This value is much higher than most
workers had expected and, since it corre-
sponds to deep atmospheric levels, was a
stimulus to further investigations. Westphal
(1969), in observations of the North Equa-
torial Belt, showed that the 5 um flux was
coming from localized hot spots with bright-
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ness temperatures >300°K. He concluded
that, if it is assumed that the cloud layer
was near the top of the convective zone, the
radiation was coming from below the
clouds. Keay et al. (1973) and Westphal
et al. (1974) produced high resolution maps
of Jupiter confirming the existence of local-
ized hot spots. In addition, they obscrved a
correlation of 5 um features with visual
featuresin color photography. High thermal
flux seemed to come from ‘‘blue’ or ““purple”’
regions whereas ‘‘orange’ or ‘“red” regions
were not sources of intense 5 um radiation.
They speculated that this dichotomy was
likely due to the absence or presence of
middle altitude red clouds. Sagan (1971)
had earlier proposed that the bluc coloration
was due to Rayleigh scattering at roughly
the 1 bar level when our view is not im-
peded by intervening clouds of red chromo-
phores. Westphal et al. concluded (by
studying the flux emanating from the
shadow of To as it passed across the Jovian
disk) that the 5 um flux was not reflected
or scattered sunlight but a genuine feature
of radiative sources deep within Jupiter’s
atmosphere.

To better understand the nature of some
of Jupiter’s 5 um features, Terrilec and
Westphal (1977) mecasured limb-darkening
by selecting a region of interest and mea-
suring its brightness as it rotated around
the planet. In particular, they observed
the hottest emitting arcas of the North and
South Equatorial Belts (with brightness
temperatures of about 230 to 255°K),
several bright 5 um areas in the South
Temperate Belt (with similar brightness
temperatures), and intermediate flux regions
in the North Equatorial Belt (with bright-
ness temperatures near 240°K). This en-
tailed the use of many different images of
Jupiter taken over several hours in order
to construct one limb-darkening curve.
Notably, this technique did not suffer from
the smearing effects of longitudinal inhomo-
gencities that would result from generating
Jimb-darkening curves from thermal maps.
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In parallel with these infrared observa-
tions, the atmosphere and composition of
Jupiter was undergoing extensive study.
Lewis (1969b) established that if the
Jovian atmosphere possessed the solar
abundance of water and ammonia, the
clouds were dominated by an aqueous
ammonia solution while the topmost cloud
layer was solid ammonia. He also showed
that if sulfur were present in solar abun-
dance, NHsSH would form an important
cloud layer. The infrared properties of
liquid and solid water (Irvine and Pollack,
1968 ; Robertson and Williams, 1971) and
ammonia (Robertson and Williams, 1973;
Robertson et al., 1975) have been investi-
gated at 5 um and arc known to have very
large absorption coefficients.

These 5 pm observations, together with
predictions obtained from models of Ju-
piter’s atmosphere and the infrared proper-
ties of its conjectured constituents, provide
a compelling reason for analyzing the ob-
served limb-darkening of various regions
of the planet. In this communication, we
present a combined radiative, dynamical
and chemical model that reproduces the
observed limb-darkening curves.

II. RADIATIVE AND DYNAMICAL MODELS

The planc-parallel approximation to the
cquation of radiative transfer is

p(d/dr) I(z,u) = I(r,) — S(7), (1)

where arccos u is the angle between the line
of sight and the local planetary normal, 7
is the optical depth, I is the intensity of
the radiation and S is the source function.
The optical depth is defined, in differential
form, to be dr = —«dz, where « is the ex-
tinction cocfficient, and z the altitude. All
quantities in (1) are considercd to have
been modulated by the spectral response
function of the InSb detector employed by
Terrile and Westphal and integrated over
the instrument’s 4.6 to 5.1 um bandwidth.
Formally, (1) can be integrated to give
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the limb-darkening function
10,0 = [ St exp(=r/idr
Jo

(Chandrasekhar, 1960). This equation is
ideally suited to our analysis since Terrile
and Westphal (1977) have evaluated I (0, u).
Thus, by inverting (2), we can determine
the source function S(7).

In general, the inversion is unique only
if the limb-darkening function 7(0, x) has
a known functional form (Parker, 1977).
In the case of discrete data (particularly
data contaminated by noise), the inversion
is not unique and we must choose one of
two approaches. In one approach, we calcu-
late an approximate inversion kernel,
K (7, p), such that

S(r) ’i/ K(r, wI(0, p)du. 3)

[See the recent review article by Parker
(1977) for a description of ‘‘generalized in-
verse theory.”’]. Combining (2) and (3),
we require that

A(r, )
E/ K(‘r, wut eXp(—T'/#)d# (4)

“approximate”’ the Dirac delta function,
8(r — 7'); that is, that the integral of
A(r, 7") over 7 or 7’ is unity and A (r, 7’) is
strongly peaked when 7’ approaches 7.
The inversion is made complete by speci-
fying the approximate source function and
an estimate of the width of A(r, ') for
different values of r (which, in turn, pro-
vides a measure of the characteristic con-
volutional smoothing evident in the ap-
proximate source function). Orton (1977)
recently employed this technique in re-
covering the mean Jovian temperature
structure from spectrally resolved thermal
radiance data. This method, however, pro-
vides no direct insight into the physical
processes that are the source of the infrared
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radiation and, moreover, has several mathe-
matical deficiencies that are apparently
not well known (see Appendix I).

A less gencral but more physically moti-
vated approach is to construct several
radiative and dynamical models and obtain
their corresponding source and limb-darken-
ing functions. These models will depend,
often nonlinearly, on a small number of
parameters. By employing multiple regres-
sion methods, we then obtain numerical
estimates of the parameters that are in a
statistical sense most likely. By then em-
ploying analysis of wvariance techniques,
we can assess whether the residual errors
in the model fits are compatible with the
experimental noise. This approach can
demonstrate directly that a given physical
model could be responsible for the ob-
served limb-darkening while other models
must be rejected. This, however, does not
exclude the possibility that other (un-
tested) models could also satisfy the ob-
served data. By examining the models corre-
sponding to physical processes most likely
responsible for the observations, this possi-
bility is significantly reduced. It is im-
portant to note that the fit obtained is most
accurate for 7 >~ 1, the vicinity of the cloud
tops and the region of greatest physical
interest. The rcason for this is clear from
(2). The source function for » 2> 0 depends
strongly on 7(0, x) measured near the limb
where instrumental accuracy is least. The
source function for 7 >> 1 is strongly atten-
uated and could vary significantly without
seriously affecting the observed Ilimb-
darkening function. Also, Béhm (1961)
demonstrated, by an application of the
properties of convolutional filters, that we
are least capable of observing fluctuations
in the source function over optical-depth
wavelength-scales far from unity (i.e., for
A>1 or A <1). Because of the intuitive
valuc of the multiple regression approach,
we shall confine our attention to this
technique and turn now to a discussion of
models.
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A. Power Series Expansion Model

Although the power scries expansion
I(0, ) = 2 amw” (5)
n=0

has no direct physical interpretation, we
choose to include it for several rcasons.
The truncated expansion was uscful in an
analysis of the limb-darkening of Venus
(Goody, 1965 ; Newman, 1975). It can pro-
vide an estimate for the scatter in the data
duc to noise that is required in the analysis
of variance. Finally, assuming that 7(0, u)
is analytic and regular, the inversion of
(2) can be performed directly giving (5)
where the source function may be written

S(r) = é anr™/nl 6)

In one instance, the well-known Eddington
approximation, the truncated power scries
cxpansion is of special interest :

I10,p) = 1(0,0)(1 + £ u). ()

This limb-darkening function results if the
flux over the corresponding frequency pass-
band is conserved. If the flux over the
entire frequency spectrum is conserved, we
have radiative equilibrium.

B. Convective Equilibrium Model

In our terrestrial experience, clouds are
very efficient infrared absorbers of solar
radiation as well as heat from the surface
(additionally, in Jupiter’s case, heat gen-
crated internally). A warmed parcel of gas
will rise and adjust its pressure to that of
its surroundings, the pressure of which
varies according to the equation of hydro-
static equilibrium,

dP/dz = —pg, (8)

where P is the pressure, p the atmospheric
mass density, and g the local gravitational
acceleration. Thermal conduction times are
very slow comparced with dynamical times
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and may be neglected. Thus, the resulting
behavior of the parcel of gas is adiabatic
and the pressure in the parcel bchaves
according to

P e pv, 9)

where p is the parcel’s mass density and «
is the ratio of specific heats.

Assuming that the absorbers responsible
for the extinction arc well mixed with the
principal atmospheric constituents, we can
express the extinction coefficient as

(10)

K = aZp/Mans,

where ¢ is the cross section to absorption,
z is the mixing ratio of the absorbers to the
principal atmospheric constituents, and
s 18 the mean mass of a single absorber
molecule. Combining (2), (8), and (10),
wc obtain a lincar dependence of pressure
on optical depth, namely,

(11)

By terrestrial analogy, we expect clouds to
have a fairly sharp top at a level charac-
terized by a temperature T’y and a pressure
P;. The discontinuous boundary may result
from the transition from convective to
radiative equilibrium or from phase changes.
Defining 7 to be zcro above the cloud top
(where we assume there to be no significant
absorption), Eq. (11) is integrated as

P = Pt[]- + (gmabs;/gxpt)T]' (12)

dP/dr = gma,,/ox.

Pollack and Sagan (1965) derived a similar
expression for the Venus atmospherc. In
their case, however, the absorber was the
principal atmospheric constituent and 2 =1.

From (9) and the ideal gas law, we find

P/P, = (T/T)"/ oD (13)

Let us now assume that the clouds radiate
as a black body. By integrating the Planck
function from 4.6 to 5.1 pm (assuming a
relatively uniform responsec in the InSb
interference filter employed by Terrile and
Westphal), we obtain the approximate
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power-law dependence

Bg‘,m oC T". (14)

Typical values for the exponent n are 12.3
and 11.6 for temperatures of 240°K and
250°K, respectively. Combining (12), (13),
and (14) yields the intensity dependence
on optical depth

Bﬁnm(T)

JMabs n(y—1) /vy
= Bsun(0) [1 +— r] . (15)

gz P,

If we combine the equation of state with
(8) and (9), we obtain the dry adiabatic
lapse rate

— Mo/ B[ (v — 1)/vJg, (16)

where m i is the mass of an atmospheric
constituent and k is the Boltzmann con-
stant. (For an inhomogeneous atmosphere,
the mecaning of an ‘“‘atmospheric constit-
uent” may be ambiguous. We define such a
pseudoparticle as being characterized by a
number-density weighted average of each
component. In the terrestrial case, the mass
of such a fictitious constituent would then
be 0.78 the mass of N, 0.21 times the mass
of O, and 0.01 the mass of a trace constit-
ucnt.) This equation indicates how the
temperaturc of our parcel of gas decreases
as it riscs.

Suppose that the parecl of gas has a trace
of a substance that is undergoing a phasc
transition, for cxample water vapor in the
terrestrial atmosphere. As the vapor con-
denses, it evolves heat and preeipitates out
of the parcel. Because of latent heat it
deposits in the parcel, the lapse rate is
reduced. In particular (sce Hess, 1959)
the term (y — 1)/ in (15) and (16) should
be replaced by (y — 1)/%y, where % is
given by

7 = [1+ (el2/cpk)w/T*]/
(1 + Lw/kT)

AT /dz =

(17)

and ¢, is the mean hecat capacity of an
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atmospheric constituent, w the mixing ratio
of condensates to atmospheric constituents,
e the ratio of the molecular weights of the
condensates to that of the atmospheric
constituents, and L the latent heat evolved
by a single condensing molecule. Equation
(16), when corrected for the condensate,

defines the wet adiabatic lapse rate.
Similarly, (15) becomes
Bsum(T>
gMabs D10y
= Bs,n(0) [1 + r] (18)
ozP;

and describes the effective black-body in-
tensity as a function of optical depth for a
wet adiabat.

Let us assume that the source function
S(7) may be approximated by the effective
black-body intensity. For simplicity we
write (18) as

S(r) = a(l + br)e, (19)

where @, b, and ¢ correspond to appropriate
terms in the previous equation. Then, em-
ploying (2), we find
1(0, 1) = a(bu)

X exp[(bw) 7' IT[1 + ¢, (bu)~*],
where I' is the incomplete Gamma Fune-

tion (Abramowitz and Stegun, 1965). A
convenient formula for evaluating (20) is

10,1 = a(bu)* expl (bw)1]{T (14)
—éo[—(b#)_’]”/n!(chl—i-n)}, @1)

(20)

where T’ here denotes the complete Gamma
Function.

In our discussion, we had assumed that
z and w, the mixing ratios of absorbers and
condensates, were constant. This condition
can be relaxed to allow for their variation
provided that the distance over which
significant absorption takes place is much
less than one pressure scale height and
much less than the vertical distance over
which most of the condensation occurs.
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Moreover, the model can be expanded to
accommodate the presence of scatterers by
defining « to be the total extinction coeffi-
cient and by making appropriate changes in
the definitions of z, o, ete. The character-
istic form of the limb-darkening function,
however, remains unchanged.

C. Cloud and Intermediate Zone Models

These models were employed by Terrile
and Westphal (1977) in analyzing their
data. Their cloud model describes radiation
from an optically thick, hot cloud deck
passing through an optically thin, warm,
emitting layer. This may be represented by

1(0, ) = By exp(—r1w/k)
+Bw[1 — exp(—7v/u)],

where By and By, are the black body radia-
tion emitted from the hot and warm
layers respectively, and 7. is the optical
depth of the warm layer. Radiation from an
optically thick intermediate cloud deck
passing through a cold absorbing layer (I,
intermediate model) may be represented as

(23)

(22)

I(0, u) = Brexp(—r1/p).

Both of these models can be cxpressed in
the form

I(0,p) = a+bexp(—7'/u), (24)

where the corresponding source function is
given by

a, 0<r<7

S(r) =
a+b <7

(25)

We do not expect these models to give
particularly good fits because they require
that each cloud and absorbing layer have a
uniform temperature distribution. They
arc included, however, because they provide
some insight into the nature of limb-
darkening functions produced by atmo-
spheres with relatively little temperature
structure.
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D. Thin Shell Model

It is also of interest to examine the limb-
darkening function of an atmosphere char-
acterized by the opposite extreme: an ex-
tremely hot, very thin emitter embedded at
7o In a warm, absorbing atmosphecre. The
source function used is

S(r) = a + bs(r — 79), (26)

where 6§ is the Dirac delta function. The
corresponding limb-darkening function is

I(0,p) = a + butexp(—ro/u). (27)

Although this model has no known physical
counterpart, it provides a useful measure of
the impact of strong temperature variation
and pronounced thermal structure on the
limb-darkening function.

Although our list of models is small, 1t
describes a wide spectrum of behavior. The
power series expansion describes virtually
any continuous, smoothly varying limb-
darkening function. Moreover, it can be
used to provide an estimate of the scatter
in the data due to noise. A special case of
the polynomial is the Eddington approxi-
mation which provides an accurate repre-
sentation of the limb-darkening curve when
the radiative flux is conserved over a given
passband, a hint of possible radiative
cquilibrium. We expect radiative equilib-
rium to be a dominant feature of high-
elevation clouds (not under the influence
of dircet heating from the planct’s interior)
if dynamical effects arc unimportant (a
situation found to be the case on Venus by
Newman, 1975). On the other hand, we
expeet that deeper clouds are dominated
by dynamical effects and, from the sus-
pected composition and temperature range
of these clouds (Lewis, 1969b), subject to
phase transitions in their spectroscopically
active components. For this rcason, we
have emphasized the derivation of the
convective equilibrium model. Finally, as
measures of the degree of thermal structure
for the observed limb-darkening, we also
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TABLI I

LiMB-DARKENING PrOPERTIES OF VARIOUS MODELS

Model Source Limb-darkening function
function
Power-series expansion > a,m/n! > app™
n=90 a=0
Convective equilibrium a(l 4+ b7)° a(bu)cexp (bu) 11 + ¢, (bu) ]
Cloud and intermediate zone a,0< <7 a+ bexp(—r'/u)
a+b <7
Thin shell a+ bd(r — 7o) a + but exp(—ro/n)
consider Terrile and Westphal’s (1977) cients. We consider the error to be Gaussian

cloud and intermediate zone models as well
as a thin, extremely hot shell model. The
source and limb-darkening functions for the
different models are given in Table 1.

II1. STATISTICAL METHODS!
AND ANALYSIS

Suppose we have N measurements, at
various zenith angles (arccos p;, ¢ = 1, ...,
N) of the limb-darkening function (which
we denote by I.). For simple cases, a model
may be considered composed of a linear
combination of M different functions of p,
say fi(u); =1, ..., M. For example, a
power scries expansion employs the funec-
tions 1, u, p? , ! and we make
the identification f;(u) w’ L. Nonlincar
modecls will be treated later in this section.
In addition, we assume that there is an
additive Gaussian error noisc componcent,
¢;, whose mean vanishes and has a variance
of 2. Thercfore, we write

M
Ii= 3 aifi(u) + &, i=1,...,N (28)
=1

where the a; are lincar combination coeffi-

1 No single reference provides an adequate survey
of this problem. Ralston (1965) reviews some of the
numerical problems associated with least-squares
techniques. Jenkins and Watts (1968) examine the
theory of maximum likelihood estimators and
Gaussian least squares as well as providing some
remarks on nonlinear problems. Graybill (1968)
considers the general linear model and some sta-
tistical tests of confidence.

distributed, a rcasonable assumption from
the Central Limit Theorem. Systematic
errors, notably those due to calibration, are
not Gaussian, and are often intractable.

Since the errors e; defined by (28) are
Gaussian distributed, the probability asso-
ciated with the estimates of the a; coeffi-
cients varices as

N
expl — 2 €2/a%].
=1

Therefore, the most probable choice of the
cocfficients is that which minimizes

N M
U = é (I, — Ea;‘fj(ﬂi)]2- (29)

The process of finding the values for the
a; coeflicients is called the maximum likeli-
hood method and is equivalent to the
mecthod of least squares. In this, the linear
case, it is also known as the ‘“‘multiple
regression’”’ model. We therefore require
that the derivative of U with respect to
each a; coefficient vanish, yiclding the
normal equations

é Lifi(ui) = El ak{é Jilw) fe(ua}. (30)

This set of linear equations is character-
ized by a matrix whose j, k*» component is
given by

(fs fo) = §1 Fiue) fr(us)- (31)
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The matrix is symmetrie, semipositive
definite and the system of equations has a
unique solution unless one of the functions
fi(p,), evaluated at each p;, 7 =1, ..., N,
could be represented by a linear combina-
tion of the remaining functions and is thus
redundant.

Although superficially simple to solve,
the system of linear equations (30) is nu-
merically ill-conditioned. For example, an
eighth-degrec polynomial fit to an arbi-
trarily large data set will result in the loss
of twelve significant places of accuracy if a
direct method (e.g., Gaussian climination
with pivoting) is used! To reduce this
source of computational error, one should
use Gram—Schmidt orthogonalization of
the functions f;(u), j =1, ..., M, with
respeet to the inner produet operator
defined in (31). The resulting matrix, asso-
ciated with the normal equations will then
be diagonal and the system’s solution will
then be trivial to obtain. A relatively recent
innovation in solving least-squarcs prob-
lems is the technique of singular value de-
composition. Although functionally cquiva-
lent to the Gram—Schmidt procedure, it is
somewhat faster in exccution. Morcover,
unless posed in a certain form, the Gram-—
Schmidt procedure is susceptible to nu-
merical instabilitics. Singular value decom-
position is a very complex procedure but
is deseribed in detail in Lawson and Hanson
(1974) and Forsythe et al. (1977). Also,
both texts contain tested ANSI Standard
Fortran programs.

Although the errors associated with an
ideal experiment are indecpendent of each
other, the errors estimated by (28), wherc
the a; coefficients satisfy (30), are not. In
fact, combining (28) and (30), we find

.
2 &fi(w) =0 for j=1,..

i=1

L M. (32)

So, although there arc N values of ¢;, Eqgs.
(32) introduce M conditions or constraints
and we are left with NN — M degrecs of
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frcedom. Morcover, if we calculate the
expectation value of U (the sum of the
residual variances) defined by (29), we can
show that

(U) = é(eﬁ) = (N — M)s% (33)

The least-squares cstimation processes in-
troduce a small bias (which vanishes as
the number of data points becomes arbi-
trarily large) due to (32) into our estimates
of the e;. By increasing the number of a;
coefficients, Eqs. (32) show that we reduce
the noise level in each e; until the number
of coefficiecnts M equals the number of
data points N and all e; vanish (i.e., the
fit is exact). This, qualitatively, is the
result shown by (33). We can approximate
the latter by writing

ot = [1I/(N = M)] X e

i=1

(34)

(This result is exactly only if we replace
;> by (e?).) Suppose, for cxample, that we
know our limb-darkening function has an
exact representation, apart from noise, as a
polynomial of degree M’. Using (34), we
can cstimate o% If we fit the data with a
polynomial of degree M > M’, our cstimate
of ¢ from (34) will remain approximately
the same because the deercase in the noise
level is exactly compensated for by the
denominator N — M. However, if we use
an estimate of the polynomial degree
M < M’', we will find that the residuals e,
contain not only noise information but
limb-darkening information as well, and
our cstimate of ¢* will be too large.

Using (34) we can now define a X? vari-
able with N — M degrees of freedom,
namecly

N
X2 =3 e2/o (35)
i=1
If o? is known (i.c., we have an absolute
estimate of our sources of error), we can
employ the usual confidence-level tests.
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TABLIS 11

Power SERriES KXPANSION PARAMETERS

Polynomial Case A Case B Case C
Fit Equatorial South Inter-
Results Belt Tem- mediate
Hot Spots perate Flux
Belt (NEB)
N 100 50 24
Lf
1st degree 0.1754 0.2181 0.04681
2nd degree 0.1370 0.1343 0.04677
3rd degree 0.1358 0.1327 0.03832
4th degree 0.1323 0.1207 0.03667
5th degree 0.1316 0.1097 0.03586
14
1st degree 0.04230 0.06741 0.04613
2nd degree 0.03758 0.05346 0.04719
3rd degree 0.03761 0.05371 0.04377
4th degree 0.03732 0.05179 0.04393
5th degree 0.03742 0.04994 0.04463
Ua
1st degree 0.1825 0.2363 0.05532
2nd degree 0.1455 0.1514 0.06010
3rd degree 0.1471 0.1558 0.05365
4th degree 0.1462 0.1475 0.05598
5th degree 0.1484 0.1397 0.05976

If o2 is not known, the X2 test cannot be
used. The problem of finding the poly-
nomial degrece M’ is then complicated by
the fact that (34) is an approximation. In
practice, we find that ¢? deccrcases with
increasing M, until M equals M’. For
larger M, the estimate of ¢® tends to
oscillate around a constant, making the
task of identifying M’ very difficult.

By modifying a technique developed by
Akaike (1969) in application to autore-
gressive decomposition, we can construct
a variable that will better equip us to
estimate M’. We note that, as M increases,
the a; coefficients adapt to the properties
of the noise in that experiment until the
number of coefficients and data points are
the same and no residual errors remain.
Let us suppose that, next door to Terrile
and Westphal, there was a competing
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group using cquivalent instrumentation
making the same observations at the same
zenith angles. The underlying limb-darken-
ing function would be the same for both
groups but the noise observed presumably
would not. (The errors, of course, would
be drawn from the same statistical popula-
tion.) We then ask how well the a; coefhi-
cients computed for Terrile and Westphal’s
obscrvations would match their rivals’
data. That is, if their competitors observed
intensities I’;, 1 =1, ..., N, how large
would U 4 be, where we define

N M
Us=Z I — Zaifs(w)F? (36)

A straightforward but tedious calculation
reveals that

(Us) = (¥ + M)o?
=[N+ M)/(N - M)KU) (37)

when M > M’. As M increases beyond M/,
U4 (as an approximation to (U 4)) increases
because the surfeit of coefficients arc adding
to U4 some of the noise level observed in
the first experiment. This variable U 4 there-
fore provides a test of the universality of the
fit. In practice, we can only estimate (Ua)
by evaluating [ (V 4+ M)/ (N — M)]U, for
increasing values of M. The resulting locus
of points is parabolic in character with M’
corresponding to the minimum. Since we
have obtained U, (and not (U,)), the
points may oscillate, but the uncertainty in
M’ is characteristically reduced. Finally,
knowing M’, we can estimate o? from (34).
This value, however, is not accurate enough
to permit anything but the crudest X2 test
of significance.

As an illustration of these methods, we
provide some relevant quantities for poly-
nomials fitted to Terrile and Westphal’s
observations in Table II.

In Case A, the Akaike criterion would
clearly seleet a quadratic fit. The oscillation
in Uy is not a hindrance here. In Case B,
the minimum is reached for a fifth degree
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polynomial. However, that fit (as well as
the 6th-, 7th-) and Sth-ordcr fits) cxtrapo-
lates to a ncgative intensity at the limb
and must be disregarded. We consider, ac-
cordingly, a quartic polynomial to be ap-
propriate. Case C is somewhat ambiguous
because of the strong oscillation in Ua.
Although M = 3 is a minimum, the corre-
sponding a; cocfficients would provide
a source function that was negative at
7 = 1.41 and must be excluded. Hence,
the first-degree polynomial is selected. It is
important to note that, in this case,
physical and not statistical considerations
resolved the degree of the polynomial fit.

Nonlinear models are significantly more
difficult to fit and analyze than their linear
counterparts. Instead of linear combina-
tion coeflicients a;, we will employ param-
eters a;, j=1,2 ..., M, so that we can
parallel equation (28) by writing

Ii = F’([..Li;al, .o ey a_‘u) + €;,

where the function F describes our model
(such as the convective or cloud models).
We define U (the sum of the residual

variances) by

(38)

N
UEZ[Ii—F(p.i;al, ..

=1

Loam P (39)
We perform a variation of the paramecters
a; so as to minimize U, in compliance with
the maximum likelihood principle. Unlike
the lincar case, there may be scveral
minima and a global search must be
performed.

The maximum likelihood cstimates of
the parameters a; satisfy the normal equa-
tions (derived by differentiating U with
respeet to a;),

N d
ZI«;—F([.Li;ah ...,aM)
=1 0a;
N
= Z F(”i; ay, ..., aM) X
=1
— F(piay, ...,an) j=1,..., M. (40)
da;

7
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TABLE 11I

SUMMARY OF FitTicp Resuurs

Sum of Case A Case B Case C
variances

Polynomial 1 0.1754 0.2181 0.04681

degree 2 0.1370 0.1343 0.04677

3 0.1358 0.1327 0.03832

4 0.1323 0.1207 0.03668

5 0.1316 0.1097 0.03586

Convective 0.1371 0.1530 0.04683

Shell 0.1516 0.1344 0.04538

Cloud layer 0.1444 0.1347 0.04556

Intermediate — — 0.05466

The minimization of (39) or, alternatively,
the solution of (40) is a very difficult
computational problem [consider the con-
vective model (21), for example]. A survey
of this problem may be found in Lucnberger
(1973).

As in the linear case, we have N measures
of the error (38) and M constraints, Eqs.
(40). By linearizing F(p; a;, ..., ayu), We
can demonstrate the approximate validity
of (33)—(35) in the nonlinear problem.
Thus, once we have obtained the maximum
likelihood estimate of the a; paramecters,
the statistical method of analysis is much
the same as before. Because of nonlinearity,
there is no direct analogue to Akaike's
criterion.

In comparing the sum of the residual
variances U for different models, we require,
following (34), that they have the same
number of parameters or degrees of freedom.
Thus, the intermediate zone model may be
compared with a first degree polynomial,
and the convective equilibrium, thin shell
or cloud models with a second degree
polynomial. Higher order power scries must
be treated on an individual basis.

The sum of the residual variances U of the
models considered are given in Table III.

For large .V — M, the X? statistic, using
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(35), defined by (2x*)'2— (2N —2M —1)'/2,
is approximately Gaussian distributed with
vanishing mean and unit variance. Since
we do not know ¢? we cannot employ the
Xx? test directly. However, the asymptotic
nature of the X2 distribution assures us that
relative differences between model residual
variances of only a few percent can be
significant.

One further statistical technique that
should be mentioned is the F test. [See the
handbook by Pollard (1977) for a descrip-
tion.] The F test is applied to the ratio of
the sums of the residual variances U ob-
tained from two different fits and does not
require that we know the value of o2 A
correction factor is introduced if the two
fits differ in the number of fitting param-
eters employed. This technique tests the
hypothesis that the value of this ratio is
compatible at some preassigned confidence
level with random error. Should the ¥ test
reject the hypothesis, the poorer of the
two fits would also be rejected by the X2
test but we would be unable to say any-
thing about the viability of the better of
the two fits. Should the F test accept the
hypothesis, it is quite possible that one or
both fits would be rejected by the X? test.
In principle, the F test is very useful,
particularly since it does not require a
priori knowledge of ¢% In practice, the F
test is relatively weak and the X? test
(when ¢? is known) is much preferred. The
application of the F test to our fits to Terrile
and Westphal’s data was inconclusive.

In Case A, the hot areas of the North
and South Equatorial belts, the quadratic
powecr series and the convective equilibrium
model provide almost equally reliable fits,
while all other models are much less prob-
able. The convective equilibrium fit (19)
gave the parameters b and ¢ values of 2.01
and 2.04, respectively. The value of b
could be varicd over a wide range (while
that of ¢ was adjusted in order to minimize
U for a given b). However, the value of ¢
did not change significantly. Since ¢ >~ 2,
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the correspondence between the goodness of
the quadratic and the convective equilib-
rium model fits is not unexpected. We
discuss the physical implications of this
result in the next section.

The South Temperate Belt is more
problematic. The investigation of power
series expansions for Case B reveals a
preference for a fit of high degree, indi-
cating significant structure. The convective
equilibrium model is clearly rejected. How-
ever, the other three-parameter models
(the quadratic polynomial, the thin shell
model and the cloud layer models) are
equally likely, statistically! The Akaike
criterion results suggest that the residual
variance for the three parameters is un-
acceptably high. We can only conclude
that the physical mechanism responsible
for the behavior of the South Temperate
Belt is an amalgam of several of the physical
processes discussed or a region of transition
between two physical processes or some
other process that we have not considered.

Finally, the intermediate flux region of
the North Equatorial Belt allows for
several models as possible mechanisms.
The preferred degree of a polynomial fit is
unity, as we have discussed earlier, while
the addition of a quadratic term does not
significantly change the results. The con-
vective equilibrium model is viable and the
associated parameter b can vary from 1.4
to 1.6 (while ¢ >~ 0.9) without significantly
affecting the residual variance. Note that
the Eddington approximation corresponds
to b = 1.5 and ¢ = 1.0. This is highly
suggestive of flux conservation and radia-
tive cquilibrium. We also observe that the
intermediate zone model of Terrile and
Westphal is clearly rejected, while the
thin shell and cloud layer models are
approximately equally probable. The latter
suggests that there is more thermal strue-
ture present than we normally associate
with a state of radiative equilibrium.

Finally, let us consider how Lewis’
(1969a, 1969b) model is consistent with
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these results. The hot spots have a bright-
ness temperature of 250 to 255°K. This
corresponds directly to the transition region
from aqueous ammonia to ice, suggesting
that a phase change coupled through the
high opacity of aqueous ammonia (and the
dynamic mixing that might arise from this
low-lying cloud layer) to convective equi-
librium may be present. The intermediate
flux zone of the North Equatorial Belt is
cooler and at a higher altitude. Since no
phase transition is predicted and higher-
level clouds are less likely to be dynamically
coupled to what lies below, radiative equi-
librium might be a reasonable approxima-
tion to the mechanism present. Finally,
the South Temperate Belt remains an
enigma. Since it appears to be fairly hot, it
could be intermediate in structure between
the other regions.

IV. CHEMISTRY OF PHASE TRANSITIONS

In Section III, we argued for a phase
transition in the hot spots of Jupiter’s
equatorial belt. From the observation that
the value of the convective cquilibrium
parameter ¢ >~ 2.04 and the identification,
from (18) and (19), that

¢c=n(y —1)/7v, (41)

(cf. Pollack and Sagan, 1965), we can now
estimate », the term defined by (17) that
shows the departure from a dry adiabat.
We adopt n >~ 11.6.

We now assume that the atmosphere of
Jupiter is 88.69, hydrogen and 11.29
helium, from Weidenschilling and Lewis
(1973). This is consistent with solar abun-
dances and with the 8 Sco occultation data
(Elliot et al., 1974), Pioneer 10 ultraviolet
photometer data (Carlson and Judge,
1974), Pioneer 10 infrared radiometer
data (Orton, 1975) and the infrared spec-
trum determination by Houck et al. (1975).
A variation of 59, in our assumed He
abundance will affect our results, through
v, only about 19,. A simple calculation then
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shows that y ~ 1.42. Combining these re-
sults, we find that » ~ 1.68. The latent
heats of water and ammonia are, respec-
tively, 333.6 and 351 Joules per gram
(International Critical Tables, 1928). Now,
neither water nor ammonia will freeze at
250°K and the corresponding (Sagan and
Salpeter, 1976) P ~ 2 bars (water freezes
at a higher temperature and ammonia at a
lower one). If they could, (17) would pro-
vide for mixing ratios of 0.0452 and 0.0494.
These values are 5.35 and 42.8 times the
cstimates given by Weidenschilling and
Lewis for solar abundance. Since, for clouds,
we expect to find an excess of the spectro-
scopically active materials, these excess
values are not cxcluded. It is necessary,
however, that these mixing ratios (which
are mass-weighted, following the meteoro-
logical convention) be less than or near the
saturation equilibrium concentration for
their associated temperaturc and pressure.
Recently, Klein and Gulkis (1978) em-
ployed microwave radiometry to show that
the mixing ratio for ammonia was necar the
solar abundance value at a somewhat higher
altitude (and lower temperature). This very
likely rules out ammonia as the responsible
condensate, leaving water as the most
probable candidate, if only a mechanism
for depressing its freezing point can be
found.

A mixture of water and ammonia, how-
ever, provides for a large range of freezing
points. (See Zemansky, 1968 and Castellan,
1971 for a discussion of eutectic curves and
freezing mixtures.) The eutectic properties
of aqueous ammonia solutions were investi-
gated over half a century ago by Potsma
(1920) and Elliott (1924). At low tempera-
tures, water does not readily dissociate in
the presence of ammonia to form ammonium
hydroxide. Ammonia can, however, form
two hydrates, NH;-H,O and NH;-2H,0
by hydrogen bonding. The two hydrates
also cxist on the freezing point diagram.
Therefore, depending on the strength of
the initial aquecous ammonia solution, the
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sequence in which freczing takes place can
be very complex. Moreover, unlike the
laboratory situation, the behavior in the
Jovian atmospherc is considerably com-
plicated by precipitation. Water is denser
than ice which is denser than frozen
ammonia which is denser than liquid
ammonia (Kuiper, 1952). So, once the
temperature drops to that on the eutectic
curve, one of the four active constitucnts
(Hzo, NH3'2H20, NHa'HgO, NH:;) will
begin to freezc and either risc or sink faster
than the mixture. The depletion of this
constituent from the solution changes its
concentration and lowers its associated
frcezing point. As the solution is buoyed
higher by convection, it further cools and
loses more of one of its constituents. As a
result, the freezing point can be smeared
out over as much as 100°K (for the
NH;-NH;-H»O system). Since the latent
heats of fusion for water and ammonia are
quite similar, and the bonding associated
with the hydrates of ammonia are quite
weak, the latent heats of the two hydrates
should not be significantly changed and
this picture remains unaltered.

Water and ammonia vapors are relatively
poor absorbers from 4.6 to 5.1 pm. More-
over, as we expect both ammonia and
frozen ammonia to form above the water
or ice clouds (from the above buoyancy
arguments and Lewis, 1969b), we expect
that it would be very difficult to sce down
to the wateror ice clouds at this wavelength.
[Perhaps most water vapor that exists
above the water clouds readily dissolves
in the ammonia clouds and immediately
freezes out. Since we expect large-scale
moist convection to occur below this level
(Gicrasch, 1976), the amount of water
vapor present at lower levels will depend
on whether we arc sceing a convective up-
draft or downdraft. In the case of a down-
draft, the large-scale convective model
predicts the presence of very little water
vapor. The reduction in the expected ab-
sorption from water vapor in the downdraft
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would result in observations of much deeper
and hotter levels in the Jovian atmosphere.
The combination, then, of a freeze-out
mechanism at higher levels and convective
downdrafts below could explain the un-
expectedly low water vapor abundance and
high observed brightness temperature of
Larson et al. (1975).]

The possibility of hydrogen sulfide play-
ing a major role in convective equilibrium
models cannot definitely be excluded. Un-
like water, H,S readily dissociates in
ammonia. Moreover, all attempts to freeze
such mixtures in laboratories have pro-
duced many compounds of ammonia and
hydrogen sulfide. The eutcctic curve for
the NH;—H,S system is incompletely known
and appears to have at lecast one incon-
gruent melting point (Scheflan and Me-
Crosky, 1932); in addition the relevant
latent heats have not been tabulated. For
a reasonable estimatc of the latent heat,
the required mixing ratios are far in cxcess
of that predicted from solar abundances.
If hydrogen sulfide, however, is not well
mixed in the atmosphere, its role in the
chemistry and coloration of the hot spots
cannot be discounted (ef. IKhare and
Sagan, 1975).

Although carbon monoxide has rccently
been detected in the 5 um band in the
Jovian atmosphere (Beer, 1975), it is un-
likely that CO could be responsible for
Terrile and Westphal’s observations. It is
believed to be formed deep in the atmo-
sphere (Larson et al., 1978). In the tem-
peraturerange of interest, it can be expected
to react with molccular hydrogen and to
form methane (which is transparent at
5 pm) and water. Morcover, to fit the con-
vective equilibrium wet-adiabat model,
carbon monoxide would have to undergo
a phase change near 250°K and would
neccessarily be many tens or hundreds of
times more abundant than solar values
would suggest.

The analysis techniques of the present
paper should be applicable to high-spatial
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resolution multifrequency limb-darkening
scans of Jupiter with the Voyager space-
craft (Hanel et al., 1978)—which can poten-
tially clarify much about the lateral and
vertical structure, chemistry and cloud
constituents of the Jovian atmosphere.
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APPENDIX I

Orton (1977) employed Conrath’s (1972)
formulation of the Backus—Gilbert gen-
eralized inverse theory. In the discrete case
in the abscnce of noise, the method can be
stated quite succinetly. Consider the prob-
lem of best approximating some function
AT (x) given m observations AI; defined by

x4
Al; =/ ki(x)AT (x)dzx,
0

i=1,...,m (1)

(We adhere strictly to Conrath’s notation.
The discussion that follows, however, is
independent of the choice of the limits of
integration, provided they are finite.) We
then wish to construct an approximate in-

PN

versc AT (x) from a linear combination of
the observed data, namely

(I-2)

where we have yet to specify a rule for
selecting a;(x). If we define a function
A (z,2") by

A@ ) = ¥ a@k),  (13)
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we sec that

A~ [
AT (x) =/ Az, ')AT (2")dx’. (I-4)

The function A4 (z,z’), ideally, should tend
to a Dirac é-function. In practice, it will
have a finite width or spread and tends to
smooth AT (x). For this reason, it is called
an ‘“‘averaging kernel.”” In order to estimate
the width of A(z,2’), we define a ‘“‘spread
function” s(z) by

s(x) = 12/It (x — 2')2A%(x, 2')da’.  (I-5)

We then perform a variation on the a;(x)
in order to minimize the “spread” (5), sub-
ject to the normalization constraint.

1 =/“ A(z, «')dz'. (I-6)

The factor 12 in (I-5) is introduced so that,
if A(x,2’) is a rectangle of unit area and
width w, s(z) = w. This variation can most
simply be achieved using Lagrange multi-
pliers (Conrath, 1972).

The mecthod is conceptually attractive
since it will provide the estimate of AT (z)
with what seems to be the best possible
resolution. Although the method can be of
significant value in certain applications, it
suffers from important mathematical short-
comings which can seriously affect its per-
formance. In the absence of any further
information about the physical processes in-
volved, two mathematical principles should
be employed when devising an ad hoc in-
version scheme. First, all available informa-
tion should be incorporated into the
method so that the solution obtained re-
produces the available data. Second, the
method should yield increased resolution
over other approaches.

The variational procedure employed in
estimating a;(x) never uscs the information
obtained by thc observations (I-1) as
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cquations of constraint. As a result, the
P
approximate inverse AT (x) will not, in

general, reproduce the observed data AI,.
By not fully introducing the observational
information available into the method, we
compound our ignorance of the solution.
The second problem arises in the deter-
mination of the resolution or, alternatively,
the spread. Although s(z) reproduces
reasonably well the width of a number of
functions, it can give spurious results when
applied to some averaging kernels. Con-
sider, for example, a hypothetical experi-
ment where we measure A, defined by

1
AL = / Pis(2)AT (2)dz,
—1

1=1,...,m (I-7)
where P;(z) is the 7th Legendre polynomial.

P
Let us sclect a;(z) and, therefore, AT (z)
to be given by

N
AT (z) =

(I-8)

M=

[(20 — 1)/2]P; a(x)AL.

=1

(In many circumstances, we customarily
make this choicc of expansion since it
provides the best approximation, in an
integrated least-squares sense, to a given
function.) Although Conrath’s variational
procedure would not make this identifica-
tion for a;(x), it is instructive to consider
the spread function that results from this
choice.
Now, the averaging kernel becomes

Az, z')

- '"g [@ + 1)/2]P.()Pu(z). (1-9)

(We know, incidentally, from the complete-
ness relation for Legendre polynomials that
this kernel ““tends’’ to a Dirac é-function.)
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Using the recurrcnce relation

I+ 1)Pya(x) — (21 + 1)zPi(x)
+IP,_1(z) = 0, (I-10)

we obtain the Christoffel-Darboux identity
A(z, ')
m[Pm(x)Pm_l (') — Pm(x’)Pm_l(x)]

2

z—z
(I-11)

Then, using (I-5) with integration limits
—1 to 1, we observe that

s(x) = 6m2[Pm_2(x)/(2m + 1)

+P2(x)/(2m — 1)] (I-12)
and the average spread (s) is
1 1
(s) = —/ s(z)dx
2J.
(1-13)

= 12m?/(4m? — 1).

This result shows that the average spread
decercases as we add more terms (and
corresponding data points) beginning with
a value of 4 (when m = 1) and, as m
approaches infinity, rcaches a limiting
value of 3 (which is larger than the region
over which we arc calculating the spread).
The measure of spread that we use must,
in the limit of an infinitc amount of avail-
able data, tend to zero. The spread func-
tion of (I-5) is incompatible with this
conceptual requirement.

Although we have shown that the spread
function (I-5) can be a misleading indicator
of resolution, it is important to understand
in practical terms why this is so. The
morphology of a typical averaging kerncl
is characterized by a central peak, for z
near x’, and some kind of “sidclobe’ struc-
ture. Theorctical kernels (e.g., rectangles,
Gaussians, cte.) for which (I-5) is a reason-
able measure of spread have no sidelobes.
The kind of kernel morc likely to be en-
countered in practice will have a complex
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sidelobe structure. If these sidelobes do not
decay much faster than (z — z’)-1, they
will provide a significant if not dominant
contribution to the spread funection (I-5).
In practice, the highly oscillatory character
of the sidclobes tends to cause cancellations
and diminish any sizeable contribution.
However, since (I-5) contains the square
of the kernel, this cancelling feature of the
sidelobes is lost and their effects arc
grossly exaggerated.

This form of generalized inverse theory,
then, has two scrious drawbacks. It will
not reproduce the given data and can
provide a very spurious cstimate of the
resolution of the result. A more detailed
discussion of these difficultics together with
illustrative examples, is given clsewhere
(Newman, 1978). For completeness, we
citc an approximate inversion formula
(see, for cxample, Foster, 1961) that
satisfics

g A
/ ki(x){AT (x) — AT (z)}dx = 0,
0

1=1,...,m; (I-19)

that is, any crror in our approximate in-
verse cannot be scen from available ob-
scervational data. We define a matrix C by
its 2, j components

Coy = / k@), (2)dz,
0

i j=1 ..., m (I-15)
Then,
ai@) = £ [C1k(@),
A @) = ¥ [ luk@kE), (16)
AN m
ATG) = % [C00ibliks(),

1,7=1

where [C-1];,; denotes the 7, jth component
of the inverse matrix to C.
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