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We have tested the implications and limitations of Program ACRITE, a scheme based
merely on Newtonian physies and accretion with unit. sticking efficiency, devised by Dole
in 1970 to simulate the origin of the planets. The dependence of the results on a variety
of radial and vertical density distribution laws, on the ratio of gas to dust in the solar nebula,
on the total nebular mass, and on the orbital eccentricity, ¢ of the accreting grains are ex-
plored. Only for a small subset of conceivable cases are planetary systems closely like our
own generated. Many models have tendencies toward one of two preferred configurations:
multiple-star systems, or planetary systems in which Jovian planets either have substantially
smaller masses than in our system or are absent altogether. But for a wide range of cases
recognizable planetary systems are generated, ranging from multiple-star systems with
accompanying planets, to systems with Jovian planets at several hundred astronomical units,
1o single stars surrounded only by asteroids. Many systems exhibit planets like Pluto and
objects of asteroidal mass, in addition {o usual terrestrial and Jovian planets. No terrestrial
planets were generated more massive than five Karth masses. The number of planets per system
is for most cases of order 10, and, roughly, inversely proportional to e. All systems generated
obey a relation of the Titius-Bode variety for relative planetary spacing. The ease with which
planetary systems are generated using such elementary and incomplete physical assumptions
supports the idea of abundant and morphologically diverse planetary systems throughout

the Galaxy.

1. INTRODUCTION

The ultimate problem 1in planetary
studies is the origin of the solar system.
Despite a serious recent attack on the
problem by many investigators, much of
which has been published in the pages of
Icarus over the last few years, it scems safe
to say that no generally acceptable detailed
model of the origin of the solar system
exists. Indeced, the rate of change of models
of origins, evenin the hands of experienced
individual investigators, s a clear indica-

tion of the uncertainty of the subject.

Furthermore, almost all of the detailed
models have concentrated on the important
carly stages of solar system history, partic-
ularly the solar nebula, and not on the
origins:of planets per se. I'or example, the
significant paper by Goldreich and Ward
(1973) carries the history of the solar
nebula up to the generation of planctesimals
of about the size of Phobos and Deimos.
On the observational side, the most recent
the
identifications  of

work has served to cast doubts on
reliability  of  claimed

extrasolar planctary systems (Gatewood,
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Fia. 1. Planetary systems generated by Dole

(1970) using program ACRETE. Solid circles

represent terrestrial planets, while open circles indicate Jovian planets that have accreted gas
as well as dust. The radius of each circle is scaled solely by the cube root of the planet’s mass,
given in the figures in units of Iarth masses. The positions of Jovian planets are given by the
centers of the circles. Those cases in which planets appear to be abutting or overlapping are,
of course, only artifacts of the schematic diagram. All planets produced are well-separated,
as the relative positions of their centers indicate. The fourth system displayed is our own; the

others are generated by ACRETE.

1976), rather than providing a data source
against which models of origins can be
tested. In these circumstances any model
which purports to generate planetary
systems recognizably similar to our own
deserves careful scrutiny.

Any acceptable model for the formation
of the solar system should be able to account
at least for its most obvious characteristics:
the distinction between terrestrial and
Jovian planets, the spacing of planetary
orbits, and the distribution of planetary
mass with heliocentric distance. Such
parameters as the rotation periods of the
planets, the orbital configuration of comets,
asteroids, and the particles in the rings of
Saturn, and the anomalous obliquities of
Uranus and Venus are presumably details
not essential to an understanding of the
formation processes—although it is possible
that they might provide significant elues.

To the best of our knowledge, the only

existing model which attempts to generate
mature planetary systems as opposed to
other stages in the evolution of solar
nebulae is that of Dole (1970). In his
computer simulation, ‘‘accretion nuclei”
of specified mass are injected in prograde
orbits in the invariable plane of a primitive
solar nebula composed of both gas and dust.
The physics are simply Newtonian mech-
anics and perfectly inelastic collisions.
When accretion nuclei collide with dust
grains the grains adhere with unit efficiency.
Growing accretion nuclei beyond a certain
mass gravitationally accrete gas as well.
When two aceretion nueclei collide they
stick also and produce a larger planetesimal.
The process is permitted to continue until
all the dust and some of the gas is gathered
into planets. IFor some choices of input
parameters the resulting planetary con-
figurations (Fig. 1) are remarkably like
those of the solar system.
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At first sight it appears quite extra-
ordinary that so simple a physical protocol
can lead to so recognizable a set of planetary
systems. The program takes no explicit
account of chemical segregation with helio-
centric distance in the solar nebula, of a
clearing out by solar radiation pressure and
the solar wind of the inner solar system
during the T Tauri stage of the Sun, of
hydromagnetic cffects, turbulent convee-
tion, or of planets dynamically unstable
because of rapid rotation. If the origin of
the planets can indeed be understood with
such elementary assumptions and with
plausible input parameters, the model
deserves much deeper attention.

Dole was able to produce planctary
systems of recognizable characteristics only
with a certain choice of input parameters
and assumed structure of the solar nebula.
The present paper is devoted to a critical
examinations of these assumptions and an
exploration of the consequences of varia-
tions of parameters and assumed solar
nebular structure. It does not attempt to
present a detailed model of solar system
formation much beyond the simple dy-
namical model employed by Dole.

For example, the coplanar character of
the simulated planetary systems is a dircet
consequence of the fact that the accretion
nuclel are injected with zero inclination in
prograde orbits. The formation and dynam-
ical properties of the accretion nuclei are
not further justified by Dole; we will dis-
cuss them further in the light of morerecent
research. The increased current skepticism
(Gatewood, 1976) on earlier reductions of
perturbations in the proper motion of
Barnard’s Star removes the props from
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the reduction by Black and Suffolk (1973)
according to which the planets of the
Barnard Star system would not have been
in coplanar orbits.

1I. THE COMPUTER MODEL

The computer simulation program, called
ACRETE, was written by J. Rice and
generously provided to us by S. Dole. We
have varied the program where necessary.
In this section we describe the essential
features of ACRETE.

1. The solar nebula is taken to have the
shape of an “exocone,” seen edge-on in
Iiig. 2. The shape is assumed to arise from
an originally spherical cloud of gas and
dust with some nonzero net angular momen-
tum in which dust particles with orbits
highly inclined to the invariable plane are
eventually degraded to orbits of lower
inclination through inelastic collisions. Most
models of the solar nebula assume either a
similar configuration or a cylindrical (disk-
shaped) distribution of matter in which the
density of gas and dust falls off away from
the central plane. In its original application,
ACRETE does not take account of the
vertical density distribution. A corrected
treatment will be discussed in a later
section.

2. The mass ratio of gas to dust in the
ncbula is a constant, K = p,/py, Where p,
and pq are, respectively, the radially
dependent  densities of gas and dust.
While it may be reasonable to cxpect that
this ratio will be independent of radial
distance in the central plane of the nebula,
the mass difference between a dust particle
and a gas molecule will ensure different

Fic. 2. The exocone. [n the original model, the density of gas and dust depended only on

the radial distance from the central star.
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scale heights for their respective vertical
density distributions. This correction, how-
ever, would complicate the computer
program greatly, and was not taken into
account either by Dole or by us. Dole used
the value K = 50, which will be shown
later to be a reasonable number.

3. In Dole’s study, the density distribu-
tion of dust is pg = A exp(—ar'’?), where r
is the distance from the center of mass of
the cloud in astronomical units (AU), and
A and .« are adjustable parameters. In
addition to cxperimenting with 4 and «,
we have varied the functional form itself.
Dole was able to generate aesthetically
pleasing, i.e., solar-system-like, planctary
systems when 4 = 0.0015 M,/AU? and
a = 5. The justification for these particular
choices was one of convenience; Dole was
not striving for any generality, since he
stated that the object of his exercise was
to generatce planetary systems similar to
our own. We will examine other choices of
A and a as well as other choices for the
funectional form pq.

4. The dust particles comprising the
cloud (other than the accrction nuclei) are
all given the same orbital eccentricity €, an
input parameter (Dole’s value is € = 0.25),
and are taken to have randomly distributed
semimajor axcs and inclinations. We will
cxamine the consequences of other choices
of ¢, but for simplicity will not assume a
distribution function for various values of
the orbital ecccentricity of dust grains.

5. The accretion nuclei are taken to
have some initial mass m, which is an
input parameter of the program. The nuclei
are injected into prograde orbits of zero
inclination, with semimajor axes randomly
distributed between 0.3 and 50 AU, and
with eccentricitics given by the distribution
funetion e = 1 — (1 — Y)°077 where VY is
random between 0 and 1. This form is an
empirical distribution derived by Dole
which reproduces the distribution of planet-
ary eccentricities in the solar system. The
small exponent yields small eccentricities
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and, since any nucleus undergoing aceretion
would suffer numerous inelastic collisions
that would tend to circularize its orbit, it
was not felt necessary to change the
exponent even though it is an input
parameter. Similarly, the bounds of 0.3 and
50 AU for the semimajor axes arc also
input variables, but changing them changes
neither the physics of the problem nor (to
any substantial degree) the results. Occa-
sionally, these limits were moved closer
together for convenience when no planets
could be formed at the extremities of the
cloud.

6. A nucleus captures all dust particles
which cross its orbit (sticking coefficient
unity), plus those whose orbits fall in an
unstable region related to its gravitational
cross scction. The radial extent of this
region around the acerction nucleus is
given by x = rul’4 where r is the distance
of the nucleus from the center of the nebula
and u is its reduced mass with respect to
the Sun: u = m/(1 4+ m), where m is the
nuclear mass expressed in solar masses.
The expression for x is an approximation
of the solution of the restricted three-body
problem. Birn (1973) finds the exponent
to be % instcad of %, but this was not
changed in the program, since the cffect
of the change can be shown to be small
Also, it is implicitly assumed that the
semimajor axcs of all orbits precess through
all directions in the invariable plane via
accumulated gravitational perturbations.

7. Nuclei accrete only dust initially,
until their masses (and hence escape
velocities) are high cnough to permit the
retention of gas as well. If we assume that
an accreting planctoid of mass m has
uniform density, its escape velocity v, is
proportional to m'?, A gas molecule at
temperature T has a velocity proportional
to TV2 and, if we assume a temperature—
distance dependence of T(r) = Ty(r/re) 12
(where 7 is the radial distance from the
central star), then the gas velocity becomes
vy « r~14 The functional form chosen for
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T(r) is appropriate for an optically thin
solar nebula and for some  choices  of
optically thick nebulac. IFor retention of
gas above some critical mass m., we demand
Ve > Vg, or Cym? = Cor V4 so that m,
= (%4 where €y, Cs, and C3 arc con-
stants of proportionality. In practice, C;
is ~10=% when m. is measured in solar
masses and 7 is taken to be the perihelion
distance of the planctoid’s  orbit.  An
alternate form of the temperature distribu-
tiou, 7'(r) « »71, has been suggested by
Lewis (1974). In this case, m, « %2,

Once the eritical mass is reached, a
nucleus will acerete some gas along with the
dust. As the mass increases still further, a
larger fraction of the gas present near the
nucleus will be captured, so that in the
limit of a very large mass the net density
of captured material will he p = Kpg, which
corresponds to the capture of all gas near
the nucleus. I'or intermediate masses, the
“effeetive density’ of acereted matter is
taken to be

pe = Kpa[1 + (me/m)"* (K — 1) ],
m > m.,

which obeys the conditions p. = py when
m = m, and p, — Kpq when m — oo, This
function is arbitrary and was sclected by
Dole primarily for its simplicity and its
correet behavior in the limits, A functional
form which is more physically exaet would
require knowledge of the structure of the
accreting planct and a detailed dynamieal
analysis of the solar nebula, both of which
are beyond the scope of this treatment.
However, the expression is probably at
least qualitatively correet and implies that
the greater the mass of the planet, the
greater the gas/dust ratio of the acereted
mass.

8. The nuclei are injected sequentially,
with the newest nueleus growing to comple-
tion before the next is injeeted. The growth
of the nucleus is caleulated iteratively in
the program, and “completion” is defined
as a fractional mass inerease on a given
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iteration <107% Ideally, one would like to
have all of the nuelel growing simul-
tancously sinece, in the present form of the
calculation, the final appearance of a
planctary system is weakly dependent on
the order in which the aceretion nuelei
are injected into the nebula. However,
while this may change slightly the details
of a given planetary system, the overall
morphology of a sct of planctary systems
derived  from  similar initial conditions
remains unchanged.

When the radius of ecapture of a growing
planet intrudes on that of an alrcady-
formed planet, the two coalesee into a new
body which continues to grow until comple-
tion. The new semimajor axis of the orbit
of the component planet is taken to be

ay = [my + ma /[ (mi/a)) + (ms/as)],

where a, and a» are the semimajor axes
of the two coaleseing bodies, and m; and m.
are their masses. The value a; is the
maximum allowed from the conservation
of energy. The new  cecentrieity
caleulated from a; and the conservation of
angular momentum. Clearly, with no
information about the position angles of
the precollision semimajor axes of the two
orbits, the three-body problem admits no
unique solution and so (within the confines
of the conservation laws) the choice of as
and ez is somewhat arbitrary. The form
given above, however, is both physically
realizable and convenient.

9. A nucleus which is injeeted into a
region which has already been swept free
of dust by cexisting planets is a “dud”
and cannot grow, since a nucleus cannot
initially accumulate gas. Thus, the program
ends when all dust between 0.3 and 50 AU
has been swept up. A typical run of the
program will entail the injeetion of 100 to
300 nuclel, most. of which are duds. The
simulations in this paper were run on the
IBM 370/168 at Cornell University. The
running time neeessary for the formation
of a single planctary svstem was of the

ey 18
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order of 3 see, which (conveniently) is a
factor ~10'® faster than the process being
simulated. The cost was roughly $1 per
solar system, or 10 cents per planet.

III. THE ACCRETION PROCESS

Most models of the solar nebula employ
a sclf-gravitating disk or exocone <1 AU
thick and many astronomical units in
radius, with a total mass between 0.1 and
1.0 M o, exclusive of the mass of the Sun
itself. Goldreich and Ward (1973) have
hypothesized a disk some 10'? e¢m thick.
As the nebula cools, the vapor pressures of
some of the constituents fall below their
partial pressures, and the condensation of
small particles ensues. These particles then
fall towards the central plane of the disk,
accumulating matter as they fall from
viscous drag and collisions in the medium.
For ~1 AU from the center of the disk,
this oceurs on a time scale ~10 yr and
leads to particles with masses of ~100 g.
This mass is an upper limit, however,
being strongly dependent on the number
of nucleation sites, ic., the number of
particles descending upon the central planc.
ACRETE, in injecting the nuclei sequen-
tially, assumes a number of sites ~100,
as stated before. Hills (1973) suggests that
there were 100 major accretion sites before
mutual collisions led to fragmentation into
roughly 10° nuclei. The precise number,
however, is of only marginal importance,
for the resultant disk of particles in the
central plane is gravitationally unstable
and will clump together to form fewer
preplanctary aceretion nuclei. This clump-
ing leads to the formation of planetesimals
with radii r ~ 5 km and masses m ~ 108 g
on a time scale of only a few thousand
years. These planetesimals are largely in
prograde orbits of near-zero inclination,
and account plausibly for the coplanar
nature of the solar system.

In another model, Cameron (1973) states
that turbulence in the solar nebula can
cause grains to aggregate into bodies of a
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few tens of centimeters in radius which can
then grow to lunar-sized planetesimals as
they descend to the central plane. As before,
the process takes only a few thousand years.

Once the preplanetary accretion nuclei
have settled into the central plane of the
nebula, their masses are much greater than
the masses of the ambient dust particles,
so that further growth will be dominated
by the gravitational capture mechanism.
Weidenschilling (1974) has performed a
straightforward analysis of this process and
concludes that, from acerction nuclei no
larger than 102 of a terrestrial planctary
mass, the solar system could be formed in
about 108 yr.

The mass of the injection nuclei which
Dole used in ACRETE was mq = 10719 M 4
~ 108 g, coincidentally the same size as
the planctesimals of Goldreich and Ward,
but a good deal smaller than Camecron’s.
We find that varying the sced mass mo by
many orders of magnitude has absolutely
no effect on the final results, since the
amount of matter that the particle aceretes
from the nebula on the first iteration is in
most cases vastly greater than its initial
mass. Therefore, mq = 10~ M 5 was used
in all subsequent runs. We can postulate a
model similar to Goldreich and Ward’s
in which numerous bodies of mass 10'® g
are created by local gravitational insta-
bilities and which subsequently grow via
acerction processes such as those built
into the computer program. Since the
program is insensitive to the initial mass of
the accretion nuclei the number of nuclea-
tion sites in the solar ncbula becomes
unimportant. Numerous masses of 10'® g in
Keplerian orbits would eventually coalesce
into a smaller number of more massive
nuclei on which the aceretion process would
continue as before.

Having established some theoretical basis
for the specific model on which program
ACRETE is constructed, we procced to
alter the individual parameters one at a
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Fia. 3. Planetary systems generated by ACRETI for different, values of the gas:dust mass
ratio in the solar nebula. Dole emploved the value K = 5().

time, to approach physically more realistic
models than the model employed by Dole.

IV. K: THE GAS-TO-DUST MASS RATIO

In Ig. 3 are displayed three model

planctary systems generated with  the
anonical ACRETE program, but with

different values of the ratio of gas to dust.
As expeeted, decreasing the amount of gas
in the cloud has no effect on those plancts
which never reach their eritical mass m,
and henee never accumulate any gas in
the first place. This is apparent espeeially
for the cases K = 30 and K = 10 in which
the nuelei were injected into the same
orbits in the two ecases. (The orbits are
determined by a random number generator
This is fed a seed number which causes the
generation of a random series.) For K = 30
and K = 10, the five planets which did not
accumulate gas (filled cireles) underwent no
changes in mass, while the gas giants (open
circles) are considerably smaller in the
latter run. An extension of this result can
be seen qualitatively in the K = 100 run,
which has two very large gas giants.

What is a reasonable value for K? Taking
typical values for HI regions (Harwit,

1973), we find that the number density of
grains is ~107 em=3, and that their radii
ar¢e ~3 X 10=* em. The mass density of
gas in an HI region is ~2 X 10722 g em™3,
so that if we assume unit mass density for
cach grain, we obtain K = 20. The value
for a nebula of solar composition is ~ 100,
depending on the degree of condensation,
but sinee K in the program is taken to be
the mass ratio of hydrogen and helium to
all other (rather  than  the
volatile :refractory  ratio), this can be
treated as an upper limit. Thus, Dole’s
value of K = 50 is certainly an aceeptable
one, sinee even values as low as K = 10 in
ACRETI yield plausible planctary systems.

A more comprehensive model would
have included the variation of K with »,
Beeause  the incidence of  condensation
should inerease with declining temperature,
K should deerease with heliocentrie dis-
tance. However, we believe that a slowly
varying K, or a bimodal distribution of K
in which the values differ by a factor of no
more than about 4, will not alter our
results  profoundly. We  see  from  the
figures that the only pereeptible result of a
variation of K by a factor of 5 is a change

substances
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in the prevalence of gas giants. A distance-
dependent K of the sort deseribed would
probably have as its principal conscquence
a small inward displacement of the region
of the Jovian planets.

V. THE CENTRAL DENSITY AND
THE PARAMETER A4

Since an exponentially decreasing density
function leads to a total ncbular mass which
is directly proportional to the density at
r = 0, changing the paramcter 4 in the
expression pg = A exp (—arf) is equivalent
to scaling the mass of the cloud. More
fundamental changes in the functional
form itself will be discussed in a later
section. This particular form was used by
Dole because it has the mathematically
desirable properties of being monotonically
decreasing with r and of being integrable
over a spherical or cylindrical volume; and
because its use in program ACRETE leads
to the formation of planctary systems
resembling the solar system. To this latter
end, Dole used the values o« =5 and
8 = %, which for the moment we adopt.
He employed the value 0.0015 A/ ,/AU3
for A, or roughly 10—° g em=3, which leads
to a total ncbular mass of approximately
0.06 A 5 when the opening angle of the
exocone is taken to be 7/2 so that the
“cone” is actually a sphere (see Appendix).
(This mass, as the low central density
indicates, is exclusive of the mass of the
central star.)

A mass of 0.06 My is somewhat low
compared to that of most models. Urey
(1974), for example, derives a mass of 0.6
M o, although he refers to two other models
which call for nebular masses of 0.2 and
0.05 M. ACRETE does not ‘“know”
that some of the dust in the solar nebula is
left unaccreted. In the actual formation
process, 1t is possible that accretion onto
planetary bodies from the solar nebula is in
competition with a T Tauri solar wind
tending to sweep away material. Workers
concerncd with the carly stages of forma-
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tion of the solar nebula often quote values
of mass (exclusive of the mass of the
central star) of about 1 M 4 (e.g., Cameron,
1976). But we are concerned with the

values of solar ncbula mass after the
gencration of aceretion nueclei; in the
interim a substantial loss of necbular

material may have occurred, associated
with the T Tauri stage of the central star.
If we find that only a small range of
nebular density is consistent with familiar
solar systems, 1t follows that such systems
are correspondingly uncommon. The rela-
tive timing of the generation of aceretion
nuclei and the T Tauri stage of the central
star is an important and as yet unresolved
factor in understanding the origin of
planetary systems.

The results of decreasing the total mass
of the cloud by one-third (4 = 0.001 3 o/
AU?) and by two-thirds (4 = 0.0005 M o/
AU?®) arc shown in IFig. 4. In the latter case,
the density at every point in the nebula is
so low that only onc planet is able to
accrete cnough dust to exceed its critical
mass and begin to accumulate gas. Only
two planets have masses greater than onc
Earth mass. For the case A = 0.001 M,/
ATU? the accretion process is somewhat more
successful, although the resulting gas giants
are small compared to those in the solar
system.

For wvalues of 4 > 0.0015 2f,/AU3,
Dole has presented some results (IFig. 5).
Even a doubling of the total mass of the
cloud leads to a near-catastrophic accumu-
lation of gas by the large planets. Hydrogen
thermonuclear reactions occur in the core
of a star of mass 20.07 M, although
deuterium burning will have set in long
before that. Hence the planetary system
generated by A = 0.003 M ,/AU?in Fig. 5
would quite likely be a borderline case of a
double-star system, while those gencrated
by A =0.006 and 4 = 0.015 M,/AU3
would definitely be so. This is not neces-
arily a drawback to the model: The
statistical studies of Abt and Levy (1976)



518

ISAACMAN AND SAGAN

T T T 1717717 ll 1 T T T 171 |’ T T T TTT
A=0.0005 A o 0508 P8 oy oz oo
g 26 44 5.6 3
o3r o0z 1.2 : 7 o0z oor
A=0001 M ( > O
i bl ! Loy gaad ] L d 1 1111
0.1 1 10 100

a.u.

Fia. 4. The effect of decreasing the central density of the nebula, which is equivalent to scaling
the mass of the cloud. Densities are measured in units of Mo /AUS3,

suggest. that virtually all stars are compo-
nents of multiple systems, two-thirds of
which include stellar companions and one-
third, planctary companions. Hence the
tendeney for our aceretion model to give
rise to stellar or barely substellar com-
panions to the central star mimies a similar
tendeney in nature, and the probability
of the existenee of numerous extrasolar
planctary systems is correspondingly high.

Thus for the numerical values and
functional forms chosen, planctary systems
of roughly familiar aspect arc produced for
nebular masses (exclusive of the central
star) between about 0.02and about 0.2 M .
Systems with smaller nebular masses than
this will tend to be comprised exclusively of
terrestrial  plancts  and, cventually, of
asteroids only. Systems with larger nebular
masses will evolve with the largest second-
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Fig. 5. The effect of increasing the central density of the cloud from Dole’s value of 0.0015
Mc/AUS. In the pathological system (d), the sum of the masses of the bodies slightly exceeds

the original mass of the nebula.
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ary components undergoing thermonuclear
reactions, and therefore will become double-
or multiple-star systems. In this case there
will also be terrestrial and Jovian planets
produced, some of which will be in orbits
gravitationally unstable according to the
restricted three-body problem. But others
will be in one of the threc categories of
reasonably stable orbits: around the center
of mass of the system if the two stellar
components have a small separation;
around one or the other of the individual
stars if the two components have a large
separation; and in a figure-8 trajectory
around both components, though this is
unstable in the long term.

It is necessary to note, as Dole points
out, that the generation of multiple-star
systems pushes program ACRETE some-
what beyond the limits of its intended
application (which for Dole was the simula-
tion of planetary systems similar to our
own). When planet formation gives way to
star formation, ACRETE breaks down in
the sense that the total mass of the compan-
ions can cxceed the intended mass of the
original nebula. This effect can be seen in
Fig. 5d, in which the mass of the com-
panions comes to 0.61 M, as compared
with a nebular mass of 0.58 M, (decrived
from a central density of 0.015 M ,/AU3
and Dole’s radial density distribution).
We will refer to such a breadkown of
ACRETE as a pathological multiple-star
system. It arises from the breakdown of the
approximation p(r — b,) = p(r + b,) (see
Section VII) when an accreting body
becomes very massive.

VI. THE ORBITAL ECCENTRICITY OF THE
DUST PARTICLES: ¢

In ACRETE, the accretion nuclei are
assumed to capture all of those dust
particles whose orbits cross their own. If a
nucleus is injected with a high orbital
eccentricity, it will, of course, cross the
orbits of more dust particles, hence accu-
mulate more of them and end up corre-
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spondingly more massive. Similarly, if the
orbital eccentricities of the dust particles
are high, then a given dust particle is more
likely to cross the path of some nucleus.
Thus, more eccentric particle orbits should
give rise to more massive planets and, as a
corollary, fewer planets in a given planetary
system (since fewer nueclei are required to
sweep up all of the dust). The results of
varying e the eccentricity of the dust
particles in the solar nebula, between
e = 0.1 and ¢ = 0.5 arc shown in Figs. 6
and 7. The results arc as expected: A
typical e = 0.5 run yielded 6 planets,
three of which arc quite large, while an
e = 0.1 run yielded 15 relatively small
bodies. Curiously, for values of ¢ < 0.3,
the effect is nearly linear (IFig. 8) within
the limits of uncertainty caused by the
random injection of the nuclei (e = 0.1
planetary systems will generally have 14,
15, or 16 plancts, cte.). The function, of
course, must level off to N = 1, since for
the limiting case ¢ — 1.0 the dust particles
will have near-parabolic orbits, all of which
will cross the orbit of and hence be acereted
onto the first nucleus injected, leading to a
double-star system for all reasonable values
of the ncbular mass.

We have argued in Section II, however,
that frequent collisions in the early nebula
would lead to a circularization of the
orbits of accretion nuclei. This should
apply to the dust particles as well, so that it
is interesting that the program works
“best” (in the sense of generating planetary
systems similar to the solar system) when
e = 0.25, which is a rather high value.
Values of € more in accord with what we
would expect in the nebula (say e < 0.1)
lead to an inefficient accretion process when
inserted into ACRETE (Figs. 7b and c¢).

We have attempted to counteract this
effect by trying lower values of e and
increasing the mass of the cloud (by
increasing the central density) to com-
pensate. The results are shown in Fig. 9,
in which all three systems were generated
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Fia. 6. Increasing the eccentricity, € of the orbits of the dust particles in the nebula results
in a more efficient aceretion process and a higher incidence of Jovian planets. Results which
resemble the solar system are obtained when e ~ 0.25 as shown in (e¢).

with the same random number sequence.
I'igure 9a shows a run of ACRETE with
Dole’s parameters: A4 = 0.0015 M ,/AU?
and € = 0.25. In Iig. 9b, A = 0.003 A/ 5/
AU? ¢ 0.1, so that the mass of the

and e
cloud is now 1/, ~ 0.12 sin 0,... M o. This

condition was shown carlier to give rise to
a system of barely substellar companions
when e = 0.25, as shown in Fig. 5b. Now
the acercetion process has not run away as
dramatically ; the largest gas giant is only
seven times the mass of Jupiter.
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Fia. 7. Decreasing e leads to mumerous terrestrial bodies and relatively few gas gianis.

Small

values of € may have prevailed in the actual solar nebula.
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FiG. 8. Average number of planets N generated by ACRETE as a function of ¢, the orbital
eccentricity of dust particles in the solar nebula. For ¢ £ 0.3, the effect is nearly linear.

T llllllll T IIIIIIII T T T T TTTT
427
2390
(b)
A=0003 055 085 1.1
€=01 hd
3600
(c} 38
A=000375 0856 09300115 O& 11
€002 — &
Lol L1t LUt
0.1 1 10 100

a. u.

Fic. 9. Compensation for the inefficiency of the accretion process associated with small values
of ¢ by increasing the mass of the nebula, proportional to A. Although the results illustrated
in (b) compare favorably with the system shown in Fig. 5b, the central density A cannot be
increased much beyond the value 0.00375 M o/AU3, as shown in (c¢), without generating binary-
star systems.
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The effect of lowering e still further by
another factor of 5, to e = 0.02, and
increasing A again by only 259, (to
A =0.00375 M5/AU?) is illustrated in
Fig. 9¢. The mass of the largest companion
has inereased by 509, to 0.01 M 4. Clearly,
we have pushed A4 almost to the limit;
decreasing e to 0 and increasing A much
further will lead to a binary-star system,

With nebular masses of the order of
0.1 M an cccentricity of dust orbits of
roughly 0.15 scems to produce recognizable
planctary systems. Both values seem to
be in reasonable conformity with our
expectations for the solar nebula. We also
note that the mean cecentricity of the
asteroids 1s e >~ 0.15. However, because the
accretion process as simulated in ACRETE
produces familiar  solar systems  when
e =025 for A = 0.0015 M 5/AU* sub-
sequent computer runs will for convenience
usce that value, as we vary other parameters.
Finally, we note that the development of
orbital cceeentricities 1s a dynamic process
associated with the cumulative cffeets of
gravitational perturbations as the nebula
is depleted. Since ACRETE’s orbits are
initially cccentrie, this important carly
stage of solar system formation is here
unrealistically modeled.

VII. MODIFICATIONS TO THI DENSITY
DISTRIBUTION
The mass density as a  function of

heliocentrie distance is a eritical attribute
of any model of the solar nebula. The
functional form of the density which Dole
used in ACRETE is pg = A exp (—ar'’?),
with A and « as free parameters. Morc gen-
crally, we may use the form (which we will
call form A) py = A4 exp(— ar?), and treat g
as a frec parameter as well. The mass which
a nucleus at radial distance r will accumu-
late 1s reughly proportional to r%. For form
A, with 8 =}, this reaches a maximum
when the » derivative of rPpy vanishes, i.e.,
when r. = (9/a)®. Dole used the value
« = 5, which leads to the largest planets
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near » ~ H.8 AU, ic., not very far from
Jupiter’s orbit. Thus, we ean move the posi-
tion of the largest planets by altering the
value of a. Large values of o will make the
exponential drop off faster, so that distant
planets become smaller as the maximum of
r*p moves inward.

The assumption of a solar nebula with a
density maximum at ~10 AU is supported
by the frequency histogram of separations
of double-star systems (Iuiper, 1951)
which 1s also peaked near 10 AU, This is
in reasonable accord with the implication
of program ACRETE that in many cascs
the formation of double stars is duce to the
condensation  of a  particularly massive
Jovian planet from a solar nebula. If we
arc to preserve the total mass of the nebula
as « Is increased we must inerease the value
of A. If we take an exocone of angle
6 = w/2, i.c., a sphere, then for a density
distribution with form A and g = 3, the
total mass of the cloud is (sce Appendix)
M. = 483 840rKA/a® M. For K = 50,
A =0.0015 M5 /AU and « =5, this
becomes M =~ 0.06 M 5. If we keep K = 50
and wish to preserve M, >~ 0.06 A 5, then
the relation between A and « is A4 = oY/
(1.3 + 10%) M o/AUS The results of vary-
ing @ (and A with @) are shown in Ifig. 10.
For small values of @, more planets would
be formed at »>> 50 AU if the program
were allowed to inject aceretion nuelel out
that far. For « = 1, for example, Jovian
plancts would be formed near 700 AU.

It is apparent that, although in principle
an exponentially deercasing  density  dis-
tribution is reasonable, the particular form
exp (—art’®) is quite arbitrary and only
serves well for values of @ not very different
from 5. This formi was used in the first
place because of its pleasing tendeney to
produce familiar end results. In fact,
however, it falls off much more rapidly
than most other theoretical models, de-
creasing to 19, of the central density at
only 0.78 AU (just outside the orbit of
Venus). This indicates that, for such a
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Fiac. 10. Systems generated by ACRETE by varying the steepness with which the density
profile falls off. a is the parameter in the expression py = 0.0015 exp(—ar'/3). In cases (a), (b),
and (c), more planets with orbital semimajor axes r > 50 would be formed if injected accre-

tion nuclei were allowed out that far.

model, planetary formation takes place at
a very late stage in the condensation of the
nebula.

Heppenheimer (1974) has managed to
find a meeting point between Cameron and
Pine’s models and a density distribution of
form A by matching the pressure implied

by such a distribution to the pressure
obtained by Cameron and Pine (their Fig.
2). If we assume that the nebular material
obeys the ideal gas law, Larson’s (1969)
adiabat gives p « p*% Hence Heppen-
heimer fits the relation p = p, exp[ — (5/3)
arf] to the pressure curve of Cameron



TABLE 1

DEPENDENCE OF DENSITY ON HELIOCENTRIC
Distancek ¥For Two Mobprus or Form A

I(A[') CX[)(—-")I'W‘) exp(«-4.4r° 22)
0.1 9.82 X 1072 7.06 X 1072
1 6.73 X 1073 1.23 X 107
2 1.84 X 1078 595 X 1078
10 2.10 X 107% 6.74 X 107
20 L.28 X 106 2.02 X 107
H0) 1.00 X 10-# 3.03 X 1079

and Pine and finds @« = 44 and g = 0.22.
The mass of the nebula then becomes

M, = 118 X 104 A sin 0, M.

In the model of Cameron and Pine, the
ncbula has roughly the exocone geometry,
with a semithickness of approximately 1 AU
at about 50 AU from the center. Henee
0ax ~ 0.02, leading to M. ~ 2364 M o for
A given in Mo/AUR If, to retain con-
sisteney with other models, we demand
M.=01 Mgy, we find A4 =42 X 107
Mo /AU

Running ACRETIS with the parameters
a=44 p=022 and A =42 X 10
leads to a pathological multiple-star system.
Clearly, this same result will oceur if A is
increased to 0.0015 A1 5 /ATU?, in which casc
all of the parameters will be identical to
those used by Dole exeept for 3, which
will be 0.22 instead of 0.33. The companion
star, then, forms near the edge of the
nchula; Table I indicates that it 1s the
more gradual deercase in the former easce
that is causing the difficulty.

V67

ISAACMAN AND SAGAN

It is nonctheless striking that a fairly
small change in the qualitative behavior
of p should lead to such violent changes in
the results, especially in light of the fact
that the form exp(—4.57"%), which is
ceven more similar to Heppenheimer’s result,
gives rise to a comfortably familiar planet-
ary system (sce Fig. 10d).

A more complicated aspeet of the entire
problem, and one which was not taken into
account at all in the original version of
ACRETI, is the wvariation of nebular
density with 2, the distance perpendicular
to the plane of symmetry. Since in general
the protoplanctary orbits will have some
nonzero inclination to the central plane, the
mass accreted on cach orbit will then
be  determined by the nebular  surface
density at appropriate heliocentrie distance.
ACRETLE, however, assumes orbits with
zero inchination so that the only acercted
material is that within the toroid (shown in
cross section in Fig. 11) defined by the
orbital cceentricities of the aceretion nuclel
and dust particles and the gravitational
cross scetion of the nucleus. The volume of
the toroid is approximately V= 2xr(b, + b,)
(v, + ), where @, and @, arc the gravita-
tional capture distances at aphelion and
perihelion (see Scetion II), and b, and b,
include the effeets of the dust’s orbital
cecentrieity. If the density does not vary
out of the plane, and if p(r — b,)>~<p (r + by),
the mass of dust within the toroid is
My >~ 2mr(b, 4+ b)) (0 4 )pa (1), a formu-
lation employed by Dole.

2 N

Central
Star

L opa 0]

Fra. 11. Cross-section of the toroidal volume swept out by an accretion nucleus with orbital
semimajor axis 7. r, and x,, are related to the gravitational cross-section of the nucleus. b, and b,
are also related to this cross-section as well as to the orbital eccentricities of both the nucleus

and the dust particles in the nebula.
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From studies of a self-gravitating set of
mass points, originally due to Ledoux and
to Chandrasekhar, Urey (1974) argues
that the vertical variation takes the form

p(r, 2) = p(r) sech? [2/H (r)],

where H(r) is some radially dependent
characteristic vertical scale height. In this
case, the mass of the dust within the toroid
becomes

Ma~ 2x7(ba + bp) [/

0

ra

sech?[zdz/H (r)]

+ / N sech?[zdz/H (r)]] pa(r, 0),

= 27r(ba + bp)H (r) {tanh [a./H ()]
+ tanh [z,/H (r)]}pa(r, 0),

which approaches Dole’s form in the limit
Zap/H (r) = 0. Urey finds (his Table III)
that H (r) = 0.00267r AU, for r measured
in astronomical units. For a planet of mass
m with a circular orbit, we have z.,/H
= 374 (m/M )Y, so that tanh (x./H)
will differ appreciably from its argument
(and thercfore depart from Dole’s limiting
case) whenever m 2 101! M ;. Since this
is <107? the mass of the Moon, we can
conclude that, for every case of interest,
Urey’s vertical density distribution will
lead to results substantially different from
Dole’s vertically uniform model.

A sech?z vertical decrease in density is
faster than exponential. Urey’s nebula,
therefore, is much thinner than Dole’s
A characteristic scale height of 0.00267r
leads to a semithickness of roughly 0.1 AU
at r = 50 AU, or about one order of
magnitude thinner than the nebular model
of Cameron and Pine. Hills (1973) also
concludes that the scale height for gas and
dust in the solar nebula is very small:
roughly 0.17 AU for H, gas and 103 AU
for dust. IFor models which are so concen-
trated into the central plane, however,
radial density distributions as steep as
Dole’s (see Table I) lead to very low
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nebular masses. Consider an exocone of
radius R and opening angle 6,,,x in which
the only density variation is radial, p(r).
Then the mass of the cloud is

R
M. pole = 4% / 720 (1) $in Opmaxdr.
0

Urey’s nebula has a vertical density
distribution as well, and has ecylindrical
geometry which we will characterize by
some thickness 4. Then the mass becomes

R h
A'Ic'Urey = 27/ / Tp(T)
0 —h

X seeh? (z/vyr)drdz,

where yr = 0.00267r = H(r). If we let
h > yr (true for » 2 025 AU) we can, to
good approximation, extend the limits on
the z integral to + « and integrate to get

R
M Urey = 47r/ yr2p(r)dr
0

so that M. urey/Mcpote = /SN Omax. In
Cameron and Pine’s nebula, 0.« =~ 0.02,
so that if we were to apply this opening
angle to Dole’s exocone, we could get
M ¢ vrey/ Mepote ~ 0.1. For a complete
sphere, the ratio becomes 2 X 1073, Thus,
for identical radial density distributions,
Urey’s model leads to nebular masses much
smaller than Dole’s.

In principle the masses of the two models
could be reconciled by either increasing
the central density in Urey’s model or
inserting a radial density function that is
less steep than Dole’s. We have simulated
a sech? (z/4r) dependence in the vertical
direction by modifying the mass contained
in a toroidal volume in the fashion derived
earlier. Using a radial density function of
form A with o« = 5, 3 = } (Dole’s values),
and a central density increased by an
order of magnitude from Dole’s value (to
0.015 M5/AU%), ACRETE consistently
generates pathological multiple-star sys-
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tems. Nonpathological systems are gen-
crated with any degree of regularity only
when  the central  density  becomes  pg
< 0.006 M 5/AU3 This implies that

Mo pote = 0.23 80 0,05 M o,
jl[(w"rey = G X 10_4 11‘[.7

which are unrealistically low for reasonable
values of 6. The failure of ACRETE to
generate recognizable solar systems with
plausible vertical density distributions must
be interpreted as evidence cither (1) for
a uniform p(z) nebula, or (2) for the exclu-
sion of some pertinent physics from the
computer model. Tt seems elear that a verti-
sal distribution will exist in a rotating pre-
planctary nebula and that the acerction
nuclet, like the plancts, will travel in orbits
with nonzero inclination. The importance
of the surface density (as opposed to the
vertical and radial volume densities) arises
from these conditions, but is overlooked in
the computer program in the assumption of
perfectly coplanar orbits.

VIIT. THE ARBITRARY NATURI OF p(r)

A rigorous derivation of the radial
density distribution requires a detailed
knowledge of the equation of state at all
points in the cloud, a treatment which is
well beyond the scope of this paper, and,
apparently, many others. Numerous as-
sumptions, including consideration of the
ambient magnetie field and the solar wind,
enter into the problem;, and the final
results must be strongly model-dependent.

Any formulation of the density funetion
in the eloud must at present be, to a eertain
extent, arbitrary, so that it is perhaps the
safest course to choose one which is char-
acterized solely by physically reasonable
qualitative attributes. This is essentially
what Urcey, Dole, Cameron, and Pine all
did, and what we shall proceed to do.

One of the most obvious forms to try,
because of its simplicity and wide applic-
ability, 1s a simple cxponential. This s
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just another manifestation of form A, with
B = 1. Since form A contains r#, we sce
that, because 1 > 3, p will now fall off more
quickly thanin Dole’s form. Various radial
scale lengths and central densities were
tried, with the most succeess in generating
planctary systems obtained with seale
lengths of ~0.4 £ 0.1 AU. The results of
the density funetions

p(r,2) = 0.004e¢=%" sech? (2/yr)M o /AU?
and
p(r, 2) = 0.002e~% sech? (z/yr)M o/AU?

(for r in astronomical units) are shown in
Figs. 12b and e. The masses of the nebulace
in these cases are 1078 M o, and are kept
deliberately low because of a propensity
for this form of the density distribution to
generate pathological multiple-star systems.
Removing the vertical density dependence
Poes not help; the resultant inerease in
mass concentrated into the inner region of
the nebula only exaggerates the tendency
towards pathological results.

Another obvious form to try is a power
law, p(r) « = where n > 0. This form
has the disadvantage of diverging at zero,
although this is clearly not a problem
physically, since we are only interested in
the nebula at » 2 0.1 AU, For the form to
be integrable, we further require that » be
greater than 2 in a strictly eylindrical
nebula and » be greater than 3 in a spherical
one (although this is not a rigid restrietion
since the ncbula has a finite diameter).
We can deal in another way with the
divergenee at small » with the following
ad hoc argument: Most models of the
formation of the solar system suggest that
the young Sun was in a T Tauri stage
during the epoch of planctary formation.
The T Tauri solar wind would considerably
deplete the interior portion of the nebula of
both refractory and gaseous material.
lividence for the size of a depleted region is
suggested by recent observations of the
T Tauri star RU Lupi by Gahm et ai.
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Fic. 12. The effect of including Urey’s sech?z vertical density profile. Figure (a) was gen-
erated by the insertion of 0.0015 exp(—5r'3). Figures (b) and (c) were obtained by using a
simple exponential radial density profile, with scale length of 4 and } AU, respectively.

(1975), who found concentrations of dust,
presumably driven out by the stellar wind,
at distances of a few tenths of an astronom-
ical unit from the star. We therefore choose
to modify our power law distribution so that
it reflects some flattening of the mass
density function in regions close to the
star. This we refer to as form B: p(r)
= pi(r* + C)7%, where C is some dimen-
sionless constant and r is measured in astro-
nomical units. p(r) approaches the simple
power law r—” when r 3> CV», For a givenn,
we can solve for p; and C by demanding a
particular central density py = p1/C and a
particular nebular mass, which for Dole’s
exocone 1s

R
M pote = 41er1/ [r2dr/(rm + C)]
0

X sin Omax Mo

if p1/C is the central value of pa(r) and R
is the radius, in the symmetry plane, of the
nebula. From the arguments given earlier,
when one includes the sech?z vertical distri-

bution the mass becomes approximately
M Urey = M ¢ Doley/SIN O,

where v = 0.00267. M, is evaluated for
various values of n in the Appendix.

Note that for any density distribution of
form B, the function 7% reaches a maximum
at rm = (3C/n — 3)V=. As stated carlicr,
rm represents the distance at which the
largest planets in the system will tend to
form.

If we choose to simulate Urey’s r—3
density function with the T Tauri modifica-
tion, we must decide on R, since, with an
infinite upper limit, r2(r®* + C)~! is not
integrable. Taking R = 70 AU and, as
before, K = 50, the mass becomes

M ¢.pote = 67mp1In (14-70C~V3) Sin Orax M .

Letting Omax = 7/2, the conditions M ¢ poie
= 0.06 Mg and p1 = po/C = 0.0015 Mo/
ATU? yield the approximate solution

pa(r) = 5 X 105/(r* 4 0.032) M o/AUS.

The distribution remains fairly flat out to
r ~ 0.032V3 >~ (0.3 AU. A planetary system
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Fic. 13. Planetary systems obtained with radial density distributions different from an expo-
nential. Figure (a) was derived for the form py = p(* 4+ €)™, Fig. (b) for pa = p1(r¢ + C)7,

where p; and (' are constants., Figure (¢) shows

generated by ACRETE with this density
distribution is shown in Iig. 13a. Two of
the planets are very large, but are still
substellar (the largest is 10 times the mass
of Jupiter). Note, however, that for n = 3,
r®p has no maximum at a finite 7,; in
models of this type, the largest plancts will
always be formed at the outer edge of
the nebula.

If we insert the sech?z vertical distribu-
tion, a tendency towards pathological
multiple-star systems develops. As before,
we can combat this only by lowering the
total mass of the cloud by a factor that
inhibits the formation of gas giants. The
resultant.  planctary systems,  generated
when M ey ~ 1073 M, resemble  the
system in Fig. 10a.

The choiee of n is arbitrary and is open
to considerable experimentation. When
n =06, for example, the integral
vields the result

[‘”(.'1)01(. ~ (27!'2,/3) (Kpl(j'*”?) Si]l 0,,“.\-.

mass

In this case, the integral converges as
R — =. Taking 6,.x = 7/2, M. pue = 0.06

the solar system.

Mg, and py = pi/C = 0.0015 M 5/AU? as
in the 7 = 3 case, the density becomes

pa(r) =2 X 107°/(r* 4+ 0.014) M 5/AU?,
Now r3p

reaches a maximum at
rw = (0.052/3)V6 ~ 0.5 AU,

out to which distance p is flat. The result of
this distribution is shown in Iig. 13b. Gas
giants can only form close to the Sun,
followed by terrestrial planets and aster-
oids, moving outward. That such a planet-
ary system can form at all is highly
questionable; the inner terrestrial planets
might not have stable orbits, and both
the T Tauri wind and Jeans escape would
make the aceretion of large amounts of gas
by a planct so close to the Sun unlikely.

Introducing the vertical density function
:auses the same problems as before. A low
cloud mass permits  the formation of
terrestrial plancts close to the Sun, but
otherwise gas  giants  turn into stellar
companions.

Finally, we note that Larson’s adiabat
suggests a power law. If T(r) = p*® and
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we use the simple temperaturc law men-
tioned earlier, T(r) « r~ V2, we obtain
p(r) « r=34 If T(r) « rY p(r) o r=32,
Such extremely shallow distributions, how-
ever, generate only pathological systems.

IX. PLANETARY DISTANCES

The geometric spacing of the planets in
the solar system is one of its most striking
propertices, represented by a number of
formal schemes, the most famous of which
is the so-called Titius-Bode “law,” in
which the semimajor axes of planctary
orbits in astronomical units are written
r = 04 + 0.3 X 27 The value — o must
be assigned to n in order to explain Mer-
cury ; thereafter, integer values are adopted
beginning with 0. It is then necessary to
identify Ceres as a planet. Even so the
values for n =7 (Neptune) and n = 8
(Pluto) are in unsatisfactory agreement
with the observations. Thus Bode’s law can
be described as a fit to eight numbers by an
equation with five or six free parameters or
arbitrary indexing conventions—not a very
impressive “law.”’

Dermott (1968), however, has proposed
a simple, quasigeometric form which de-
scribes adequately the spacing of satellites
around some of the major planets and
meets with moderate suceess when applied
to the solar system as a whole. If P, is
taken to be a constant of proportionality
then the periods of the plancts can be
expressed approximately as P, = P.j»?2
where j is a small integer (7 = 6 for the
solar system) and n is a given planet’s

“orbital” integer, generally about the same
as its serial position outward from the Sun.
Differences between n and the serial posi-
tion arise becasuse Dermott allows that
two planets can share the same value of »
and furthermore that all values of n in a
sequence need not be used. For the solar
system, both Earth and Venus are in the
n = 2 orbital, and both Neptune and
Pluto sharethe valuen = 8. The advantage
of this “law” over Bode’s is that the
relationship between P, and n can be
graphed as a straight line semilogarithmic-
ally; in light of the amount of freedom in
the choice of P, j, and the n’s, however,
it is probably no less arbitrary.

A measure of the adequacy of the
relation, used in part by Dermott, can be
made by comparing the »’s to the m’s in
the equation P, = P.j™?: Here, the P,
values represent the actual periods of the
planets, and m takes on any values (not
neceessarily integer) to ensure that such
is the case. Taking Dermott’s quantity
An =m —n, we define the quantity
o = [N,712(an)?]V2: the rms derivation
from the law per planet when N, is the
number of planets in the system.

In order to compare our simulated
planctary systems against Dermott’s law,
we reformulate the latter as a, = C.j"?,
using IXepler’s third law to utilize the
orbital semimajor axcs a, rather than the
periods (all appropriate constants arc now
absorbed into C,). Values of j, C, N,,
and ¢ for the solar system and for some of
the systems generated in this paper are

TABLE II

Firs oF REAL AND MobpEL SoLAR SysTiMs TO A MobpIFiip DERMOTT ReELATION

System N, Cs (AU) j T Comments
Solar system 10 0.263 6 0.217 Includes Ceres
Solar system 10 0.230 6.5 0.169 22%, improvement in o
Fig. 6a 6 0.185 8 0.195 Form A
Fig. 12a 11 0.236 4 0.174 sech?z vertical distribution
Fig. 13a 8 0.235 7 0.134 p(r) « 1/ + C)
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shown in Table II. Note that allowing a
half-integer value of j (6.5) for the solar
system results in a significant improvement
in ¢ over the integral case; this serves to
illustrate the somewhat arbitrary nature
of the procedure. It must also be borne in
mind that ceven for randomly distributed
values of m and #n, the rms value of An is
$(312) = 0.289. Since ¢ is nearly half this
value in even the best case, it is apparent
that our model planctary systems follow a
Bode-type law about as well as the solar
system.

The agreement of Bode-type laws with
our model solar systems ceven in such
bizarre cases as, say, Fig. 12a or 13a, is
of some interest. It cannot be due to
multiple resonances in the n-body problem
as proposed by Molehanov (1968) because
the appropriate physies is not contained
in the computer simulations. [Sce also
other ecriticisms and Molchanov’s reply:
Backus (1969), Henon (1969), Molchanov
(1969a,b), Gingerich  (1969), Dermott
(1969).]

Instead, what clearly seems to be happen-
ing is a kind of collisional natural scleetion.
The solar system begins with gas, aceretion
nuclei, and dust grains, and a varicty of
orbital cecentricities and heliocentrie dis-
tances. But because of the high sticking
efficiency in nucleus—grain and nucleus-
nucleus collisions, those acereting plancts
with interacting orbits merge. In all cases
the final configuration shows plancts nicely
scparated one from another. Because larger
quantitics of mass arc required to generate
the Jovian planets, they are required to
sweep up larger volumes of dust and
therefore have larger mutual separations
than do the terrestrial plancts. Because
there were then more objeets on more
the
completion of this collisional natural sclee-
tion, the rate of planctary collision very
carly in the history of the solar system

cecentric orbits ina  time  before

may have been considerable, quite apart
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from the infall or matter in debris rings in
the vieinity of forming plancts.

X. CONCLUSIONS

The original results of Dole’s program
are so provocative that it is natural to
question whether the remarkable planctary
systems generated by ACRETE are the
results of careful tailoring of the assumed
radial and vertical density distributions
in the solar nebula and the accompanying
free parameters; or whether they
propertics of any reasonable set of assump-

are

tions about the solar nchbula. We have
confirmed that for a perhaps plausible
radial density law  (form A) and the
arbitrary choices o =5 and g = 0.33

rccognizable planctary systems of solar-
system  type are generated for nebular
masses between 0.02 and about 0.2 A
and dust grain orbital eccentricitics not
extremely high or extremely low. However,
in Scetion VII we found that an apparently
small change from g = 0.33 to g = 0.22
leads to a striking change in the end
product. Tt is, of course, possible that a
correet reconstruction of  the underlying
physies of the solar nebula will yield values
of 8 near 0.33 and density distributions like
form A. But in the absence of such a
justification we can only conclude cither
(a) that ACRISTE is missing some of the
essential physies of solar system cosmogony,
or (b) that planctary systems of our type
arc only one example in a rich array of
alternative varictics of planctary systems.
Likewise, more fundamental changes in the
nebular morphology, c.g., from an expo-
nential to a power law density distribution
function, generate planctary systems some
of which, although they do not closely
resemble our own, are not fundamentally
objectionable (Iigs. 12 and 13).

Abt and Levy (1976) have found that the
frequency of scecondary masses for binaries
with periods of less than a eentury varies as
the one-third power of the secondary mass.
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If this function can be extrapolated, it
implies that about 209, of stars of solar
mass have a largest companion of mass
~10=2 M, and about 109 of stars of
solar mass have a largest companion of
mass ~10=3 M 4. In at least a crude way
this result is consistent with our findings:
Where the solar ncbular mass is between
about 1 M4 and 10' M, binary stars
form, while for smaller solar nebular masses
during accretion, Jovian planets form.
(This is a modcl-dependent consistency,
however, because Abt and Levy believe
that the short-period binaries are fission
systems from a single protostar.)

Perhaps the most striking result of this
exercise is that in all cases planetary
systems are generated which satisfy a
Titius-Bode sort of law; and in all cases
the number of planets generated is between
several and about 20, that is, ~10. This
property may be understood in a very
qualitative way: An accreting planet can
be expected to perturb the orbits of dust
particles in the solar nebula up to a few
astronomical units distant, depending on
the planetary mass, and to sweep up
material in such a zone. The number of
such zones of a few astronomical units in
width in a ncbula 50 AU in radius is ~10;
hence the number of planets. The remark-
able result on the number of planets then
is attributable to the size of the solar
nebula which is given as an input param-
eter. However, there is at least a hint in
our results (see I'ig. 13a) that morc massive
and extensive solar nebulae lead to very
large Jovian planets or very small stars;
but that, even in such a case, the number of
dust lanes swept up is still ~10. The width
of the lanes, i.c., the spacing of the planets,
arises in part from the dependence of the
accreting planets’ gravitational capture
lengths on their orbital radii,  « r (see
Section II). In many models a terrestrial
planet is found beyond the Jovians, as is
true in our system for Pluto, suggesting
that the latter need not be an escaped
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satellite of Neptune. In many models,
objects of asteroidal mass are formed.

The computer simulations described in
this paper and in Dole’s take no explicit
account of chemical fractionation, the T
Tauri stage of early stellar evolution,
nebular opacity, frozen-in magnetic fields,
and a number of other factors. The accre-
tion process is imagined to be purely
dynamical, and in that respect is similar to
the work of Weidenschilling (1974). Fur-
thermore, for purposes of computational
convenicnce even the dynamies is simpli-
fied; as, for example, when all dust grains
arc taken to have the same cccentricity.
We have found that both major and minor
changes in the model, of equal apparent
plausibility as the initial conditions assumed
by Dole, lead to dramatic changes in the
resulting planctary systems. Of course, it
must be borne in mind that with at least
six frce parameters to describe the model
necbula, we have investigated only a small
fraction of our parameter space. In fact,
there exists a multitude of such spaces,
cach defined by distinet, plausible density
distributions, of which only two, forms A
and B, wecre considered in this work.
Considering these, we have covered a
relatively minute number of cases indeed.

Nevertheless, in all cases, even when
pathological binary-star systems are gen-
erated, planetary systems are formed. One
intercsting result is that while terrestrial
planets can be formed without Jovian
planets (in very low-mass solar nebulae)
the converse never occurs. We continue
to be impressed that so simple and incom-
plete a dynamical model generates rec-
ognizable if not familiar planetary systems
with ~10 planets per system and a
Bode’s-law spacing for a wide variety of
initial conditions. It would be interesting
to determine whether more complete models
continue to display such regularities. Thus
far, the results suggest that planctary
systems are widely prevalent in the Milky
Way Galaxy, but that substantial morpho-
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logical differences between extrasolar plan-
ctary systems and our own can be expected.

APPLENDIX: EVALUATION OF THE
MASS OF THE NEBULA

The total mass density throughout the
cloud (both gas and dust) is

p(r) = pa(r) + pu(r) = pa + Kpa >~ Kpy

since K ~ 50 >> 1. Thus, for the geometry
of an exocone of opening angle 6.« and
radius R, the mass of the cloud is

-R
M, = 47rK/ pa (Pyridr sin 0y ..

0

FFor a eylindrical geometry with Urey’s
sech?z vertical distribution this becomes
(see Section VII)

M, = 41rK'y/

0

R
pa(r)ridr.

If the density distribution takes form A,
pa = A exp(—arf), the mass in cither case
is

R
My = 41rKA£/ 2 exp (—arf)dr,
0

where & = sin 6, for an exocone, and
£ = v = 0.00267 for Urey’s eylinder. Typ-
ically, R ~ 50 and a ~ 5. If 8 =1, the
centroid of the distribution is at ». = }
K 50, so that, to excellent approximation,
we can extend the upper limit on the
integral to o. This approximation is still
quite good for 8 < 1, so that we can make
the substitution w = r and perform the
semi-infinite integral to find

Ma = (ArKAE/B)a 8T (3/8).

If the distribution takes form B, pq4
= p:(r* + )7, the integral becomes
R
My = 41er,E/ vqlr/ (4 ()
[

= $xKE(p/CY2) tan™! (R/C'?), n = G
(3m)KE(or/C1)  as

R— «.
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The approximation 2 — % is good pro-
vided only that the weaker condition
R/CY?> 1 holds, and, since R ~ 50 and
C ~ 1072 this is generally true.

If =23, My does not converge as
R — oc. The result of the integration is

My = (4m)KtpIn (1 + RC-Y3), n = 3.

Fortunately, the divergence is logarithmice-
ally slow, so that the choice of R is not
critical. Since ACRETE is usually run so
as to inject nuclei out as far as » = 50 AU,
we ealeulate My with R = 70.
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