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Th is book has been written to give a thorough theoretical background to senior undergraduate and graduate 
students of mechanical engineering and also to practicing engineers involved in the design and analysis of 
fl uid fi lm lubricated bearings for rotating machinery, e.g., power generating turbines, turbo-generators, pumps 
and compressors, etc. Fluid fi lm lubrication is a very major and vital area of study in the broad subject of 
tribology which also deals with friction and wear of materials, surface science and technology. However, 
tribology is a very vast subject which requires knowledge and expertise in materials science, physics and 
chemistry of interacting surfaces. It is almost impossible to include and do justice to all aspects of tribology 
in a single text book. With a brief introduction to tribology in general authors have restricted themselves to 
the broad area of fl uid fi lm lubrication keeping in mind its vast application in bearings, seals, gears and variety 
of other mechanical components which are used in all mechanical devices and machinery. Fluid fi lm lubrica-
tion not only reduces friction very signifi cantly but eliminates wear almost completely resulting in long life of 
components. Th e topics chosen in the book cover all aspects of fl uid fi lm lubrication including rotor-bearing 
dynamics, thermo-hydrodynamic lubrication, gas lubrication, elastohydrodynamic lubrication, fl uid inertia 
eff ects and turbulence in fl uid fi lm lubrication, etc. which are generally not discussed in the text books avail-
able in this area.

Th e text material has been covered in fi fteen chapters.

• Chapter 1 gives a brief introduction to the subject of tribology.

• Chapters 2–5 cover the fundamentals of fl uid fi lm lubrication, viz., viscosity and rheology of lubri-
cants, mechanics of fl uid fi lms, hydrodynamic lubrication dealing with idealized bearings and fi nite 
bearings. Both analytical and numerical methods of solutions have been dealt with.

• Chapters 6–7 address thermo-hydrodynamic lubrication and design aspects of hydrodynamic 
bearings.

• Chapter 8 covers all aspects of dynamics of fl uid fi lms. Dynamic coeffi  cients and stability of rotor-
bearing systems, non-linear analysis of dynamically loaded bearings, squeeze fi lm lubrication, squeeze 
fi lm dampers, etc. have been discussed adequately.

• Chapter 9–11 discuss in detail externally pressurized lubrication, fl uid inertia eff ects and turbulence 
in fl uid fi lms, gas lubrication and gas bearings.

• Chapters 12–15 cover hydrodynamic lubrication of rigid non-conformal rolling contacts and elasti-
cally deformable rolling/sliding contacts. Estimation of lubricant fi lm thickness, traction coeffi  cients 
and thermal eff ect due to sliding on fi lm thickness, traction coeffi  cients and temperature rise in the 
contact has been discussed.

 Preface



vi  Preface

Wherever possible, solved examples and problems for practice have been included in the chapters. During 
the entire course of preparing this manuscript, it was realized that to do full justice to a vast interdisciplinary 
subject is extremely diffi  cult. Th e topics covered have been chosen looking into vast teaching, research 
experience and expertise of the authors. However, it is likely that some topics have not been covered as thor-
oughly as possible. Th e total length of the manuscript also prohibits doing this. Attempts have been made to 
do justice with the topics to the extent possible.

In recent decades very few text books have been written in the area of fl uid fi lm lubrication. It is therefore 
felt that this book will go a long way in fi lling this void in the availability of an advanced text book in this 
subject.

Mihir Kumar Ghosh
Bankim Chandra Majumdar

Mihir Sarangi
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Chapterr1
Introduction

1.1 | History of Lubrication

Tribology generally deals with the studies of the phenomena related to surfaces rubbing together. In other 
words, it is a systematic and scientifi c study of interacting surfaces. It encompasses the study of physics, 
chemistry, and mechanics of the interacting surfaces which include friction, lubrication, and wear of materi-
als. From the dawn of civilization, attempts were made to transport men and materials from one place to the 
other. Greatest challenges faced were related to minimizing friction. In this process of development, rolling 
wheel was invented, which reduced friction signifi cantly and formed the core of all surface transportation 
systems of today, for example, railroad vehicles and automobiles. Th e survival of these transportation systems 
depended on minimizing friction and wear. Th e Industrial Revolution of the nineteenth and twentieth cen-
turies also posed similar challenges. Lubrication of interacting surfaces became an essential requirement of all 
sliding systems. Th e lubricant may be considered a third body which is put between the interacting surfaces to 
avoid direct contact between the surfaces with the objective of reducing friction. It forms an interface between 
the interacting surfaces. Th erefore, if the rubbing surfaces can be properly lubricated by a suitable lubricant, 
both friction and wear can be reduced signifi cantly.

Th e genesis of fl uid fi lm lubrication and its development can be traced back to the experiments of 
Tower (1883). Tower, a railroad engineer, conducted a series of experiments on lubrication of railroad bear-
ings to minimize friction. In order to lubricate the bearing, a hole was drilled at the center of the bearing to 
feed the oil. However, when the shaft was rotated Tower observed that oil was oozing out of the hole. He 
tried to prevent this by putting a plug in the hole. However, he noticed that the plug was being thrown out of 
the hole. Tower believed that an oil fi lm was formed between the journal or the shaft and the bearing which 
generated suffi  ciently high pressure to throw the plug out. It was also noticed that the hole was drilled in the 
loaded region where the gap between the shaft and the bearing was minimum.

Petroff  (1883) at the same time was interested in estimating friction in journal bearings. He conducted 
experiments to measure frictional torque needed to run a shaft supported by a journal bearing with the 
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 clearance space fi lled with viscous oil under concentric position. Petroff  developed a relationship between the 
frictional force and operating parameters of the bearing as:

Friction force = viscosity of oil × surface speed of the journal
× bearing surface area/fi lm thickness of oil

However, he did not notice that fl uid fi lm could also generate pressure under eccentric operation. Tower 
can thus be given the credit for developing the concept of hydrodynamic/fl uid fi lm lubrication. Th ese devel-
opments motivated Reynolds (1886) to look into the mechanics of fl uid fi lm lubrication. He explained the 
mechanics of formation of hydrodynamic fi lm in journal bearings and developed the well-known Reynolds 
equation for hydrodynamic lubrication. It was also explained that presence of converging wedge-shaped 
fi lm, surface motion, and viscosity of the oil were responsible for the development of hydrodynamic pres-
sure. Reynolds gave solutions for the infi nitely long journal bearing and for squeeze fi lm lubrication of two 
approaching elliptic plates. He also suggested the boundary condition for fi lm rupture in the divergent portion 
of the bearing as that both pressure and pressure gradient must be zero at the fi lm rupture boundary. However, 
the solutions given by him were approximate and he did not go for integration of the Reynolds equation.

Sommerfeld (1904) integrated the Reynolds equation and obtained analytical expressions for pressure 
distribution, load capacity, locus of journal center for various loads, and friction factor for full 2p fi lm and 
half p fi lm using a substitution known as Sommerfeld substitution. Th ese developments formed the basis for 
engineers to design and develop bearings for diff erent types of machinery. Kingsbury (1897) and Mitchell 
(1905) both developed models of tilting pad bearings. Patents were eventually granted to both. Kingsbury also 
developed gas bearing in 1913 and showed that air fi lm can also be used to carry load.

Stodola (1927) and Newkirk and Taylor (1925) dealt with the dynamics of lubricant fi lms in bearings and 
rotors supported on such a fi lm. Th e concept of half frequency whirl instability was derived by Newkirk. Half fre-
quency whirl instability occurs in bearings when the rotor is run at a speed twice the critical speed of the system.

Foundation of modern lubrication theory was developed during 1945–1965 after the Second World War. 
Noteworthy among these are the short bearing solutions of Reynolds equation for journal bearings developed 
by DuBois and Ocvirk (1953). Experiments of Cole and Hughes (1956) revealed incomplete oil fi lm at the 
inlet of the journal bearing and the presence of fi nger-like striations in the divergent region of the oil fi lm. 
Experiments of Jacobson and Floberg (1957) on cavitations and fi lm rupture and the work of Floberg (1961) 
delineated the correct boundary conditions for fi lm rupture and also developed fi lm reformation boundary 
condition in the divergent portion of the fi lm at the inlet region.

Raimondi and Boyd (1958) developed a numerical procedure to solve Reynolds equation for pressure 
distribution using fi nite diff erence method. Design charts were also developed for the design of partial arc 
and full journal bearings. Rippel (1963) also developed design procedure and design charts for capillary and 
orifi ce compensated hydrostatic bearings.

Parallel to these, Hertz (1881) developed the theory of contact mechanics and gave the solution for 
contact stresses and deformation of cylindrical and spherical bodies in contact under a load. Th is formed the 
basis for the development of elastohydrodynamic lubrication theory of rolling/sliding solid contacts. Martin’s 
(1916) solution to determine hydrodynamic fi lm thickness in gears assuming the surfaces to be rigid and 
lubricated by an isoviscous lubricant, Grubin’s (1949) analysis for fi lm thickness in elastic contacts lubricated 
by a piezoviscous oil and Petrusevich’s (1951) simultaneous solution of elasticity equations with Reynolds 
equation giving pressure distribution and deformed shape of the surfaces proved to be milestones toward the 
development of present day elastohydrodynamic lubrication theory of rolling/sliding contacts.

Dowson and Higginson (1959) produced a series of publications in which numerical solution procedures 
were developed to solve elastohydrodynamic lubrication problems. Simultaneous solutions of Reynolds and 
elasticity equations, often coupled with energy equation were also obtained. Along with these, new machine 
elements, viz., pumping rings, rubber bearings, and foil bearings, appeared which required the application 
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of elastohydrodynamic lubrication theory to accurately estimate minimum fi lm thickness in these machine 
 elements as discussed by Pinkus (1987). An account of Hertz theory of solid–solid contact and its application 
to mechanical engineering problems over 100 years since its development has been given by Johnson (1982).

Hydrodynamic lubrication theory has also been extended to metal forming processes where bulk plastic 
deformations occur, for example, in metal forming processes such as cold rolling, extrusion, forging, etc.

1.2 | History of Friction and Wear

Friction and wear of materials of solid surfaces in relative sliding motion under dry or unlubricated condition of 
operation is also of tremendous technological importance. In many applications, where the Stribeck parameter 
is small, fl uid fi lm lubrication is not possible. Rough surfaces often rub against each other under unlubricated 
condition resulting in high friction and wear. Fundamental laws of friction, viz., (i) friction force is proportional 
to normal load, (ii) friction force is independent of apparent area of contact, (iii) static friction is greater than 
kinetic friction, and (iv) friction is not depended on sliding velocity were enunciated by Leonardo Da Vinci 
(1452–1519), Amonton (1699), and Coulomb (1785). Interlocking of asperities and its resistance to relative 
sliding was considered to be the major factor causing friction. Th ese basic laws are mostly accepted even today 
except the independence of kinetic friction on sliding velocity. Hardy (1936) proposed molecular attraction as 
the reason for friction between two interacting surfaces. Bowden and Tabor (1950) proposed the theory of cold 
welding, shearing, and ploughing of the soft metal by hard asperities as responsible factor for friction. Molecular 
attraction theory of Tomlinson (1929) attributed frictional resistance to rupture of molecular bond between 
two interacting surfaces. In fact, Bowden and Tabor’s welding and shearing is similar to this. Molecular bond 
is similar to cold welding or adhesion between two interacting surfaces. Bowen and Tabor’s theory is widely 
accepted now for metal to metal contacts, whereas molecular bond rupture theory is accepted for polymers. Wear 
is removal or loss of material during the process of sliding between the two rubbing surfaces. Major eff ort made 
in the study of wear had been to identify the modes of wear and to quantitatively assess the magnitude of wear. 
Burwell and Strang (1952) and Archard and Hirst (1956) gave empirical relations of sliding wear. Rabinowicz 
(1965) identifi ed four main types of wear, viz., sliding or adhesive wear, abrasive wear, corrosion, and surface 
fatigue. Noteworthy among recent development in understanding the mechanism of formation of wear particles 
are delamination theory developed by Suh (1973) and shake down theory of Kapoor et al. (1994).

1.3 | Regimes of Lubrication

Broadly speaking there are four main regimes of lubrication:

 1. Boundary lubrication
 2. Partial or mixed lubrication
 3. Elastohydrodynamic lubrication
 4. Hydrodynamic lubrication

However, lubrication of solid surfaces in relative motion can be classifi ed into the following regimes depend-
ing on the commonly known modes of lubrication in mechanical components:

• Hydrodynamic lubrication
• Elastohydrodynamic lubrication
• Hydrostatic/externally pressurized lubrication
• Squeeze fi lm lubrication
• Partial or mixed lubrication
• Boundary lubrication and lubrication by solid lubricants
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However, it is appropriate to mention that squeeze fi lm lubrication, elastohydrodynamic lubrication, 
externally pressurized lubrication can also be visualized as a form of hydrodynamic lubrication. Broadly all 
these modes of lubrication may be called as fl uid fi lm lubrication.

It is well known that surface roughness plays an important role in deciding the regime of lubrication in a 
mechanical component. Th e relationship between coeffi  cient of friction and fi lm thickness in various regimes 
of lubrication can be qualitatively and quantitatively visualized through Fig. 1.1 and Table 1.1, respectively. 
Coeffi  cient of friction and fi lm thickness are plotted against a parameter known as ‘Stribeck parameter’ which 
is equal to ηU/P, where η – viscosity of the oil, U – relative sliding speed and P – load per unit projected surface 
area of the contact. Various regimes of lubrication and fi lm thickness as related to Stribeck parameter can be seen 
in Fig. 1.1. Relationship between regimes of lubrication and surface roughness can be seen in Fig. 1.2. In this 
fi gure, the coeffi  cient of friction has been plotted against a fi lm parameter which is the ratio of minimum fi lm 
thickness in the contact to the composite root mean square value of roughness of the two surfaces.

Figure 1.1 | Stribeck Curves Showing Modes of Lubrication
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Table 1.1 | Operating Film Thickness, Coeffi  cient of Friction, and Wear for Various Lubrication Modes

Lubrication mode Film thickness (mm) Friction coeffi  cient

• Hydrodynamic lubrication    1–10 10–2–10–3

• Elastohydrodynamic lubrication 0.1–1 10–2–10–3

• Externally pressurized lubrication    5–50 10–3–10–6

Lubrication type Friction coeffi  cient Degree of wear

• Thick fi lm 0.001 None

• Boundary and mixed lubrication 0.05–0.15 Mild

• Unlubricated or dry   0.5–2.0 Severe
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Figure 1.2 | Friction Coeffi  cient versus Film Parameter

In dry/solid lubrication or boundary lubrication in the contact, the coeffi  cient of friction is generally 
high. As the fi lm parameter increases, the coeffi  cient of friction decreases proportional to inverse of the fi lm 
thickness, whereas for higher values of fi lm parameter which occur in the hydrodynamic lubrication regime, 
the coeffi  cient of friction increases in proportion to increase in fi lm thickness.

In hydrodynamic lubrication, 
2

1
W

h
∝ , whereas in elastohydrodynamic lubrication load W has little 

eff ect on fi lm thickness h. In both hydrodynamic and elastohydrodynamic lubrication friction, force F can be 

expressed as 
1

F
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∝ . Hence, 
2

1 /

1 /HL

h
h

h
µ ∝ ∝  and 

1 / 1

constantEHL

h
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Λ=
minimum film thickness

rms value of composite  surface roughness

1.4 | Hydrodynamic Lubrication

Hydrodynamic lubrication regime is generally observed in the lubrication of conformal surfaces where one 
surface envelope the other and the clearance space between the two surfaces is fi lled with a viscous fl uid. Th is 
is typically observed in hydrodynamic journal and thrust bearings as shown in Figs 1.3 and 1.4, respectively. 
Flow of a viscous fl uid through the convergent passage due to relative motion between the surfaces is respon-
sible for the generation of positive pressure in hydrodynamic journal and thrust bearings. Since the contact 
area is usually large, very high pressure is not generated. Usually the maximum pressure generated is less than 
20 MPa. Minimum fi lm thickness in these bearings is given as:

h
min

 α ⎛ ⎞
⎜ ⎟⎝ ⎠

0.5
U

W
> 1 μm

where U is relative surface speed or surface speed of the rotor, W is load.
Coeffi  cient of friction usually varies between 10−2 and 10−3. Th e fl ow is generally laminar. However, in 

case of high speed bearings the fl ow may become turbulent.
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1.5 | Hydrostatic or Externally Pressurized Lubrication

Externally pressurized lubrication is characterized by the supply of lubricant at high pressure into a deep 
groove or recess of the bearing through a fl ow restrictor, viz., capillary, orifi ce, or a constant fl ow valve. Recess 
area is usually large and pressure is constant in the recess area. Generation of load carrying capacity is due 
to high pressure in the recess area. Film thickness and recess pressure adjust itself depending on the load. 
A hydrostatic bearing is shown schematically in Fig. 1.5. A hydraulic pump and a pressure control system are 
necessary for the bearing. Film thickness varies between 5 and 50 μm and the coeffi  cient of friction is usually 
between 10−3 and 10−5.

Figure 1.3 | Hydrodynamic Journal Bearing

(a)  Tilting Pad Journal Bearing (b)  Rocker Pivot Tilting Pad Bearing

(c)  Spherical Pivot Tilting Pad Bearing
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+
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Figure 1.4 | Hydrodynamic Thrust Bearing
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Figure 1.5(a) | Hydraulic Thrust Bearing
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Figure 1.5(b) | Hydraulic Journal Bearing System
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1.6 | Elastohydrodynamic Lubrication

Elastohydrodynamic lubrication regime exists in nonconformal contacts, for example, in rolling element 
 bearings, gears, cams, etc. It is usually a line or a point contact, which under loaded condition becomes 
a rectangular or an elliptic contact, respectively. A typical rolling element bearing is shown in Fig. 1.6. 
Maximum pressure in the contact can vary between 0.2 and 2.0 GPa for contacts made of hard materials of 
high modulus of elasticity. Elastic deformation of the surfaces is signifi cant and comparable with the fi lm 
thickness of the lubricant. Minimum fi lm thickness usually lies between 0.1 and 1.0 μm and the coeffi  cient 
of friction between 10−3 and 10−2. Elastohydrodynamic regime of lubrication also occurs in the contacts 
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made of soft materials with low modulus of elasticity. Signifi cant elastic deformation of the surfaces can 
take place at relatively low pressure in the range of 2–10 MPa. Contrary to solid surfaces made of high 
modulus materials in which the viscosity of lubricant increase manifold due to high pressures, the contacts 
made of soft materials does not witness change in the viscosity. Human joints which are made of soft 
materials and lubricated by synovial fl uid as shown in Fig. 1.7 typically operate in soft elastohydrodynamic 
lubrication regime.

1.7 | Squeeze Film Lubrication

Squeeze fi lm lubrication shown in Fig. 1.8 is characterized by squeezing out of a viscous lubricant trapped 
between two approaching surfaces. Pressure is generated due to the normal relative approach velocity of the 
two surfaces when the fi lm thickness decreases due to squeeze fl ow of the viscous fl uid from the sides. Th is 
mode of lubrication is very vital in many practical situations. In I.C. engines, fl uid fi lm lubrication of piston 
pin and small end of the connection rod is possible because of squeeze action. Squeeze fi lm also plays impor-
tant role in dynamically loaded bearings. Damping coeffi  cient is obtained in rotor-bearing systems due to 
squeeze fi lm action.

Outer Race

Roller

Inner Race

Small Angle Large Angle

+

+

+

+

(a) Cylindrical Roller Bearing (b) Ball Thrust Bearing (c) Angular Contact Ball Bearing

(d) Tapered Roller Bearing (e) Spherical Roller Bearing

Figure 1.6 | Typical Rolling Element Bearing
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1.8 | Partial and Mixed Lubrication

Partial and or mixed lubrication regime is encountered when the Stribeck parameter is less than a critical 
value as can be seen in Fig. 1.1. Mixed or partial lubrication regime is characterized by some asperity to asper-
ity interaction depending on roughness of the surfaces in the presence of a lubricant. Th us, load is carried by 
both hydrodynamic eff ect due to lubricant fi lm and asperity contact. Friction coeffi  cient increases due to this. 
It is also some times referred to as partial lubrication regime. Mixed lubrication can thus be visualized as a 
combination of hydrodynamic/squeeze fi lm and asperity to asperity contact at macro level.

Figure 1.8 | Schematic Diagram of Squeeze Bearing
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Figure 1.7 | Human Joint Lubrication Model
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1.9 |  Boundary Lubrication and Lubrication 
by Solid Lubricants

Real surface of a mechanical component is shown in Fig. 1.9. Solid fi lms are usually oxides of the metal, and 
superimposed over the solid fi lms are layers of boundary lubricant. Boundary lubrication is a mode of lubrica-
tion provided by the boundary fi lms which are usually layers of chemisorbed fi lms of fatty acids or fi lms of 
chemical reactant products such as iron sulphides or chlorides. Th ese fi lms provide protection to the metal 
surfaces, exhibit low friction coeffi  cient, and adhere to the surfaces at increased temperatures too.

Solid lubrication is obtained when certain solid materials known as solid lubricants are coated or smeared 
over the metal surfaces to reduce friction and wear. For example, materials like graphite,  molybdenum 
 disulphide, tungsten disulphide, Tefl on, etc. when coated over metals exhibit low friction coeffi  cient. Solid 
lubricants possess a typical layer lattice or lamellar structure as shown in Fig. 1.10. Due to this, these materials 

Figure 1.9(a) | Lubrication of Rough Surfaces
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Figure 1.9(b) | Asperity with Surface Films
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are strong in compression and weak in shear which accounts for their low friction coeffi  cient. In  applications 
where other forms of lubrication are not possible, for example, in vacuum and at high temperatures solid 
lubricants are the only alternative that can provide lubrication. Usually solid lubricants are coated over the 
metal substrate by either physical vapor deposition or chemical vapor deposition techniques to obtain bet-
ter adhesion of the layer to the substrate. Th is increases life as well as load carrying capacity. Some ceramic 
materials like zirconia, alumina, titanium carbide, silicon nitride, boron nitride, etc. are coated over metals to 
reduce wear and provide lubrication at high temperatures.

1.10 | Micro and Nano Tribology 

With advances in technology, the size of mechanical, electrical, and optical components is reducing at a very 
fast pace. Development of micromachines and mechanical systems has reduced the size of components to the 
nano scale. Rapid actuation requires fast moving interacting surfaces. Th e chemical and mechanical stability 
of moving surfaces require study of friction, adhesion, and lubrication and wear at atomic dimensions and 
time scales. Th is has led to development of  ‘nano tribology’.

Nano tribology is a new discipline in which friction, adhesion, wear, and lubrication studies are put in 
a unifi ed framework at the micro and nano level. Nano tribology uses new tools and instruments designed 
for such studies, viz., atomic force microscope (AFM), surface force apparatus (SFA), and scanning tun-
neling microscope (STM). Atomic force microscopy is a very widely used tool for studies related to micro  
and nano tribology. AFM is used for measurement of friction force, surface texture, lubricant fi lm thick-
ness, etc.

Th e AFM basically relies on a scanning technique to produce very high resolution, three-dimensional 
images of sample surfaces. It also measures ultrasmall forces of the order of less than 1 nN present 
between the AFM tip surface mounted on a fl exible cantilever beam, and a sample surface as shown in 
Fig. 1.11. Such small forces are measured by measuring the defl ection of a nanosized fl exible cantilever 
beam having an ultrasmall mass by optical interference, capacitance, or tunneling current measurement 
methods. Th e defl ection of the order of 0.02 nm can be measured. For a typical cantilever, stiff ness of 
10 N/m a force of the order of 0.02 nN can be measured. Some important fi ndings from studies done 
using AFM are as follows:

Figure 1.10 | Structure of (a) Graphite and (b) Molybdenum Disulphide
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• Coeffi  cient of friction in regions which are not smooth is higher. Th erefore, friction force values vary 
from point to point in the scan.

• For small contact areas and very low loads used in microscale studies, indentation hardness and modu-
lus of elasticity are higher than macro scale measurements.

• Th e coeffi  cient of friction values on the microscale are much lower than that on the macro scale.

Surface topography image is derived from monitoring the vertical forces on the cantilever and friction 
image is acquired simultaneously by monitoring the lateral motion of the cantilever.

Lubricant fi lm thickness of the order of less than 100 nm can be measured using AFM. It is done by 
determining force/distance curve for a surface with no lubricant and one with a lubricant. Th e fi lm thick-
ness is determined from changes in these curves. Th e changes depend on cantilever stiff ness, lubricant 
density, probe geometry, and lubricant thickness. A typical surface topography obtained using AFM is 
shown in Fig. 1.12.

Figure 1.11 | Atomic Force Microscope
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Figure 1.12 | AFM Image of a Surface Roughness
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Z = 40 nm
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1.11 | Biotribology

Biotribology is a multidisciplinary fi eld consisting of mechanical engineering, bio-engineering, materials 
engineering, and bio-chemistry. It includes all eff ects created in the interface areas between two biological 
materials or between biological material and nonbiological materials. Th e term ‘biotribology’ was introduced 
by Dowson and Wright (1973) to cover all aspects of tribology related to biological systems. Th e best-known 
example of the subject is the numerous studies of natural synovial joint lubrication and the design, manufac-
ture, and performance of various forms of total joint replacements. Wear of bearing surfaces in humans and 
animals can result in pain and restricted movement. Th e consequences of excessive wear of the bearing mate-
rial, viz., articular cartilage in synovial joints are well known.

Typical examples of tribology applied to biological systems include:

• Wear of dentures
• Friction of skin and garments aff ecting the comfort of clothes, socks, shoes, and slipperiness
• Tribology of contact lenses and ocular tribology
• Tribology at microlevels inside cells, vessels, and capillaries such as lubrication by plasma of red blood 

cells in narrow capillaries
• Th e wear of replacement heart valves
• Th e lubrication of the pump in total artifi cial hearts
• Th e wear of screws and plates in bone fracture repair
• Lubrication in pericardium and pleural surfaces
• Tribology of natural synovial joints and artifi cial replacements

Th erefore, it is important to eliminate or minimize wear and friction in biological environment to 
improve quality of life of human beings. For details, the reader is suggested to look into the references listed 
at the end of this chapter (refer to Jin et al., 2006).

1.12 | Tribology and Economic Gain

Rapid growth of industries after the Second World War particularly in automobile and rail road sector, air 
transportation sector, energy sector, and computers/electronics and automation sectors called for improve-
ments in ‘tribology’ related issues so that loss of energy due to friction and materials loss due to wear could 
be reduced to a minimum level. Higher speeds and loads at which new generation machines started operat-
ing demanded utmost reliability of tribo-components. To assess the impact of tribology-related loss on the 
economy, the Institution of Mechanical Engineers, London, UK, formed a committee widely known as Jost 
Committee. Th e committee in its report identifi ed wear as the single most important factor responsible for 
failure and breakdown of a machinery thereby causing severe fi nancial loss. Th e total loss due to friction and 
wear was estimated as 750 million pounds for UK in 1981. Similar studies were also conducted in the United 
States, and the loss to the US economy was estimated to be approximately $21 billion in 1980. It can be imag-
ined that for every nation similar loss to economy occur in proportion to the size of their economy. Countries 
like the United Kingdom, the United States, Japan, Germany, France, and others realized that through better 
practice of ‘tribology’, potential savings can be achieved in the spending. Research and development activities 
were increased and ‘tribology’ emerged as an academic discipline in academic institutions.

Newer disciplines have emerged in ‘tribology’ in recent years, viz., ‘magnetic storage tribology’ which 
addresses the tribology problem of computer and data storage systems ‘biotribology’ which deal with issues 
related to biological and medical systems, ‘micro and nano tribology’ with particular reference to MEMS 
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and NEMS, mechatronic and robotic systems. Extreme environment tribology addresses the issues related 
to  tribology of systems that operate at high vacuum, cryogenic, and high temperature conditions. All such 
systems require special materials and lubricants to overcome tribological problems.

1.13 | Summary

Tribology plays a very signifi cant role in giving reliability and long life to mechanical component. Th e issues 
involved in this context can be depicted through the chart as shown below:

Tribology

Friction and Wear

of Materials
Lubrication

Fluid Film Lubrication Partial and Mixed

Lubrication

Hydrodynamic Lubrication Externally

Pressurized
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Lubrication by
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Chapter2
Viscosity and Rheology 
of Lubricants

2.1 | Introduction

All fl uids off er resistance to fl ow. Th e physical property of the fl uid that characterizes this resistance to fl ow is 
called the viscosity. Viscosity and rheology of fl uids are concerned with issues related to the resistance to fl ow 
of the fl uids under various operating conditions such as high pressures and temperatures and also the laws 
that govern the fl ow of viscous fl uids. Based on this, fl uids are characterized as Newtonian or non-Newtonian 
fl uids.

2.2 | Newtonian Behavior of Fluids

As shown in Fig. 2.1, let us consider a fl uid either liquid or gas contained between two parallel plates of 
area A separated by a small gap h. One of the plates is held stationary while the other is set in motion in the 
x direction at a constant velocity U.

U

u
h

y

x

O

y

Figure 2.1 | Flow of a Viscous Fluid Between Parallel Plates
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Th e fl uid gains momentum and attains a steady state velocity profi le in due course. Fluid layer  adhering 
to the moving plate has a velocity U, whereas the layer adhering to the stationary plate has zero velocity. 
A shear force F is necessary to move the nonstationary plate to overcome the viscous resistance of the fl uid. 
When steady state condition is reached, the velocity profi le is linear as shown in Fig. 2.1.

Newtonian fl uids obey Newton’s law of fl ow which states that the shear force per unit area or shear stress 
is proportional to the local velocity gradient or shear strain rate as expressed below:

 τ η ηγ= = �

du

dz
; τ =

F

A
 and γ =�

du

dz
 (2.1)

where the constant of proportionality h is called the coeffi  cient of absolute viscosity of the fl uid. Alternately 
coeffi  cient of dynamic viscosity n is defi ned as the ratio of absolute viscosity to density of the fl uid.

 ν η ρ= /  (2.2)

2.3 | Non-Newtonian Fluids

Fluids that are not described by Equation (2.1) and do not obey Newton’s law of fl ow are called non- Newtonian 
fl uids. Non-Newtonian behavior is generally characterized by a nonlinear relationship between shear stress τ 
and shear strain rate γ�  and fl uids are classifi ed according to this relationship as shown in Figs 2.2 and 2.3.

2.3.1 | Power Law or Oswald-de Walle Model

Power law fl uids are generally characterized by a power law relationship between shear stress and shear strain 
rate as described below:

 τ γ= �

nm  (2.3)

where m and n are constants for a particular fl uid, m is a measure of consistency of fl uid and n is a measure of 
the deviation of the fl uid from Newtonian behavior.
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Figure 2.2 | Shear Stress-strain Rate Curve for Non-Newtonian Fluids
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Fluids for which shear stress versus shear rate curve is characterized by a progressively decreasing slope, i.e., 
when n < 1, are called pseudo plastic fl uids. On the contrary, fl uids which are characterized by a progressively 
increasing slope of the curve are called dilatants fl uids, i.e., for n > 1.

2.3.2 | Bingham Plastic

Fluids which exhibit a yield stress at zero shear rate require a shear stress equal to yield stress to be applied 
prior to the fl ow. Th e relationship between shear stress and shear rate thereafter is similar to Newtonian fl uids, 
i.e., linear. Th e relationship can be expressed as:

 
τ τ η γ= + �

y p
 (2.4)

t
y
 is yield stress and h

p
 is the plastic viscosity

Greases, plastics, emulsions (e.g., paints), etc. exhibit this type of behavior.

2.3.3 | Viscoelastic Fluids

Viscoelastic fl uids exhibit both elastic and viscous characteristic. Linear elastic or Hookean and Newtonian 
viscous behavior can be described as:

G

τ τ
γ

η
= +

�

�  (2.5)

where ‘G’ is shear modulus of the fl uid. In steady state condition t◊ ⫽ 0 and the fl uid behaves as a Newtonian 
fl uid. Maxwell fi rst proposed the above relationship. It can be visualized as a combination of a spring and 
dashpot in series. On the other hand, Kelvin or Voigt model is the parallel arrangement of a spring and dash-
pot and the stress-strain relationship for Kelvin model is expressed as:

τ γ ηγ= + �G  (2.6)

Figure 2.3 | Rheological Models for Non-Newtonian Lubricants
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Above models are shown schematically in Fig. 2.3. Maxwell described the constant 
1

G

η −
⎛ ⎞
⎜ ⎟⎝ ⎠

 as relaxation 

time or the time constant for exponential decay of stress at a constant strain when the motion is stopped. 
Newtonian lubricant also behaves as viscoelastic fl uids often at high pressures. Some fl uids also exhibit time 
dependent behavior and are known as either thixotropic fl uids or rheopectic fl uids. Shear stress decreases with 
time for a rheopectic fl uids. Nonlinear viscoelastic behavior has also been observed of Newtonian lubricants 
at high pressure and shear rates.

2.3.4 | Nonlinear Constitutive Relationships

Nonlinear viscoelastic constitutive relationship was proposed by Johnson and Tevaarwerk (1977) based on 
two disc machine experiments. At high pressure and shear rates it is given as:

ϑ

ττ τ
γ γ γ

η τ
= + = +

�

� � �

e

sine

e
h

G
 (2.7)

where t
e
 is shear stress at which nonlinear behavior is observed. G is the limiting elastic shear modulus. Elastic 

behavior is important only at low shear–strain ratio.
Bair and Winer (1979a) observed in their experiments that lubricants exhibit limiting shear stress char-

acteristics which means that shear stress cannot exceed the limit shear stress. Shear stress approaches limiting 
shear stress value at infi nitely high shear strain rates. Following rheological equations were proposed by Bair 
and Winer (1979b):

ττ τ
γ γ γ

η τ
−

⎛ ⎞
= + = + ⎜ ⎟
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1tanL

e v

L

h
G

 (2.8a)

( )γ τ η
τ τ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

�

1
/ ln

1 /L

L

 (2.8b)

t
L
 is the limiting shear stress and is dependent on pressure and temperature, i.e., it increases linearly with 

pressure and decreases linearly with temperature.

2.3.5 | Emulsions as Lubricants

Liquid–liquid and liquid–gas mixtures have also been used as lubricants in emulsion form. Water in oil emul-
sion has been used as lubricant in rolling contact bearings and rolling processes. Air bubbles fi nely dispersed 
in oil called bubbly oil has also been used in bearings. Mass ratio and density of a gas–liquid mixture can be 
expressed as a function of the individual densities of the gas and liquid from the basic defi nition of density:

( ) ( )ρ ρ ρ

+ −
= = + = +

+ + +

1 1g l g g l l

m g l g lg g l l g l

V V V m V m X X

m m m m m m m m
 (2.9)

Subscripts m, l, and g stand for mixture, liquid, and gas, respectively.
Th erefore, if the mass ratio X and the densities of the gas and liquid are known, the density of mixture 

may be determined from Equation 2.9. Th e density of the liquid can be considered constant at a certain tem-
perature and independent of dissolved gas molecules. However, density of gas r

g
 and mass ratio X need to be 

specifi ed as a function of pressure.
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Similarly, relationships have given by several researchers for viscosity of mixtures in terms of viscosities 
of liquid and gas. However, these relationships are empirical in nature and thus uncertainties are involved. 
Following correlations are often used in a two phase system as given in the book by Hewitt and Hall–Taylor 
(1970):

η η=
m l

 (Owens) (2.10a)

( )η

η η

=
−

+

1

1m

g l

XX
 (Isbin) (2.10b)

( )η η η= + −1
m g l

X X  (Cicchitti) (2.10c)

( )ρ ρ
η η η

ρ ρ
= + −1m m

m g l

g l

X X  (Dukler) (2.10d)

2.4 | Units of Viscosity

Units of absolute viscosity in various systems are given below:

SI system–Pa-s or N s/m2, kgf s/m2

cgs system–dyn.s/cm2 or Poise (P), 1 cP = 10⫺2 P
British system–1bf.s/in2 or Reyn

Viscosity is usually expressed in cP and factors to convert cP into other units are as follows:

1cP = 10⫺3 N.s/m2 = 1.45 × 10⫺7 Reyn
1cP = 1.02 × 10⫺4 kgf . s/m2

Units of kinematic viscosity are:

SI system–m2/s
cgs system–cm2/s or a Stoke(S), 1cS = 10⫺2S
British system–in2/s

2.5 | Pressure–Temperature Eff ects on Viscosity

Viscosity of liquids signifi cantly increases with pressure and decreases with temperature. Extensive experi-
mental data are available in the open literature. Bridgeman (1926, 1949) studied the eff ects of pressure on 
viscosity of liquids.

In many practical applications where fl uid is in shear at very high pressure, it has been observed that 
viscosity increase by many orders of magnitude. Very high pressures of the order of 1GPa or more are often 
encountered in concentrated contacts, e.g., in gears and rolling element bearings. Lubricant viscosity increases 
manifold when it passes through these contacts. It has been of interest to express this variation in the form of 
an empirical relationship which can be used in calculations of pressures and lubricant fi lm thickness in these 
contacts.

Barus (1893) proposed an exponential relationship for viscosity pressure variation as follows:

αη η=
0

pe  (2.11)
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where h is viscosity at pressure p and h
0
 is the viscosity at ambient pressure and a is the pressure–viscosity 

coeffi  cient of the fl uid which has a unit m2/N in SI system. It is known that Barus’ relationship overestimates 
viscosity at high pressures and does not agree well with the experimental results at high pressures. However, it 
gives a reasonably good estimation of viscosity at moderate pressures and is widely used because of its simple 
relationship with pressure.

On the other hand, Roelands (1966) developed an empirical expression to determine viscosity of fl uids 
at elevated pressures given as follows:

( )
Ζ

η η
⎛ ⎞

+ = + +⎜ ⎟⎝ ⎠

1

10 10 0
log 1.2000 log 1.2000 1

2000

p
 (2.12)

where h is absolute viscosity of lubricant in cP at pressure p in kgf/cm2 and h
0
 is viscosity at atmospheric pres-

sure in cP, z
1
 is the viscosity–pressure index and is dimensionless. Th e above equation can also be expressed as:

( )
Ζ

ηη
η

η

⎡ ⎤⎛ ⎞⎢ ⎥− + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦= =

1

10 0
1.2 log 1 1

2000

0

10

p

 (2.13)

and can be rewritten as
Ζ

ηη
η

η η

⎛ ⎞
−⎜ + ⎟

⎜ ⎟⎝ ⎠
∞

°

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

1

1 1

0

p

p

c

 (2.14)

where ∞η  = 6.31 × 10⫺5 N.s/m2

p
c  = 1.96 × 108 N/m2

h
•
, c

p
 are constants for which same dimensions are to be used.

It can be shown that both Barus’ and Roelands’ formulae give the same result as the pressure tends to zero 
or atmospheric pressure, i.e.,

( ) ( )η η α
→ →

∂ ∂
= =

∂ ∂0 0
ln ln

                  
Roelands Barusp pp p

 (2.15)

Also there is a correlation between a and z
1
. z

1
 can be expressed in terms of a as:

( )
α

η η
∞

=
⎛ ⎞

−⎜ ⎟⎝ ⎠

1

0
1 ln ln

p

z

c

 (2.16)

where 1/c
p
 = 5.1 × 10⫺9 m2/N and ln h

•
 = 9.67

Th is gives

( )
α

η−
=

× +
1

9
0

5.1 10 ln 9.67
z

 (2.17)

Viscosity–pressure eff ect is shown in Fig. 2.4(a).
Viscosity of liquids decreases with increase in temperature signifi cantly as can be seen in Fig. 2.4(b). 

Similar to viscosity–pressure equations both Barus and Roelands gave viscosity–temperature relationships to 
calculate viscosity of fl uids at elevated temperatures as follows:
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Barus’ equation:

( ) ( )βη η −= 0

0

T TT e  (2.18)

where T is the fl uid temperature, T
0
 is the temperature for base viscosity and b is the temperature–viscosity 

coeffi  cient which has a dimension as reciprocal of temperature.

Figure 2.4(b) | Viscosity as a Function of Temperature at Atmospheric Pressure of Several SAE Petroleum-based Oils
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Roelands’ equation:

( )( )η ⎛ ⎞
+ = − + +⎜ ⎟⎝ ⎠10 10 0 10 10

log log 1.2000 log 1 log
135 o

T
T S G  (2.19)

where T is in °C, G
0
 and S

0
 are dimensionless constants indicative of viscosity grade of the lubricant and slope 

of viscosity–temperature relationship, respectively.
Using Equation (2.12), the above equation can be written as:

( ) ηη
η

η η

−
⎛ ⎞

+⎜ ⎟∞ ⎝ ⎠
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

0

1
135

0 0

10

S

o
T

GT
 (2.20)

Table 2.1 give the viscosities of some fl uids, values of pressure–viscosity coeffi  cients a, z
1
, and viscosity– 

temperature relationship may be found from the available open literature.
Viscosity–temperature variation is also represented quite accurately by Vogel’s equation as written below:

( )θη += /b Tke  (2.21)

where k, b, and q are constants. k has the units of viscosity and gives the inherent viscosity of oil, b is viscosity 
variation term which has the unit of temperature. q shows the infi nite viscosity temperature and for mineral 
oils q = 115. Mobil Limited, an oil company, provided data for viscosity and density of engine and gear oils 
at 25°C, 40°C, and 100°C, respectively, which are shown in Table 2.2. Vogel constants b and q in degree cen-
tigrade calculated using the given data are also shown in the table. q values range between 100 and 123 and 
usually an average value of 115 is taken in Equation (2.20).

2.5.1 | ASTM Chart

Viscosity–temperature relationship most commonly used in practical and industrial applications is based on 
Walther’s law and is given as follows:

( )ν γ+ = +
10 10

1
log log

c
n

T

where T is absolute temperature, g, n, c are constants. n is kinematic viscosity in centistokes. g is usually taken 
as 0.6. Viscosity–temperature chart known as ASTM chart employs the above relationship and works very 
well for all mineral oils.

Table 2.1 |  Viscosity, Pressure–Viscosity Coeffi  cient (α, m2/N), and Viscosity Pressure Index (z
1
) of Three Diff erent Oils 

[Jones et al. 1975]

Oil

Abs. viscosity, h(cP) 
at zero pressure

a(m2/N) ¥ 10-8
z

1
(Eq. 2.16)

Temperature, °C
38  99    149

Temperature, °C
38  99        149

Temperature, °C
38    99  149

Synthetic paraffi  nic oil (1) 414 34.3 10.9 1.77 1.51 1.09 0.40 0.47 0.42

Super-refi ned napthenic oil (2) 68.1  6.86 2.74 2.51 1.54 1.27 0.71 0.64 0.66

Synthetic hydrocarbon, i.e., 
traction fl uid (3)

34.3  3.53 1.62 3.12 1.71 0.939 0.97 0.83 0.57
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2.6 | Viscosity Grades of Oils

Society of Automotive Engineers of USA graded oils on the basis of the kinematic viscosity measured at 
100°F (38°C). Dynamic viscosity is expressed in terms of SUV unit or Saybolt seconds which is the time 
taken in seconds for 60 cm3 of oil to fl ow through the orifi ce of Saybolt universal viscometer at 38° C (100°F). 
Dynamic viscosity is expressed in centistokes as

η = −
180

0.22
k

t
t

 (2.22)

where t is in Saybolt seconds. Multigrade oils which are usually thin base oil thickened by addition of a 
polymer less than 5%. Multigrade oil viscosity changes much less with temperature in comparison to base oil. 
However, polymers suff er from shear degradation with prolonged use and permanent loss of viscosity may 
take place. Viscosities of some SAE graded oils are shown in Fig. 2.4(b) varying with temperature.

2.7 | Viscosity Index

Oils produced by various refi neries vary in respect of viscosity temperature behavior. Pennsylvania oils (1920) 
was supposed to be good in the sense that its viscosity varied less with temperature, whereas viscosity of Gulf 
coast oils varied much with temperature.

Th e viscosities of Pennsylvania oils and Gulf coast oils were measured at 210°F and 100°F. Pennsylvania 
oils were given a viscosity index (VI) of 100 and California oils a VI of 0 as shown in Fig. 2.5. For unknown 
oil viscosity is measured at 100°F. Viscosity index of the oil is given by

η η
η η

−
= ×

−
100l u

l h

VI  (2.23)

where h
l
 = Viscosity of low VI oil at 38°C

h
h
 = Viscosity of high VI oil at 38°C

h
u
 = Viscosity of unknown oil at 38°C

Table 2.2 | Kinematic Viscosity and Density of SAE Grade Oils

Kinematic viscosity
cSt Density

Oil SAE 25°C 40°C 100°C 25°C 40°C 100°C

5W 48.2 25.45 4.994 0.886 0.851 0.812

10W 86.9 42.75 6.786 0.877 0.867 0.829

15W 102 47.82 7.302 0.879 0.869 0.831

20W 259 112.7 12.52 0.886 0.876 0.839

20 129 59.57 8.387 0.880 0.870 0.832

30 259 112.7 12.52 0.886 0.876 0.839

40 361 151.1 15.27 0.891 0.881 0.884

50 639 250.3 21.11 0.899 0.889 0.852
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Viscosities h
l  
, h

h
 and h

u
 are measured using Saybolt universal viscometer and expressed in SUV units. 

Values of viscosities of oils are assumed to be equal at 100°C.

2.8 | Viscosity Measurement

Viscosity of a fl uid is measured with the help of an instrument called viscometer. Th ere are various types of 
viscometers commonly employed to measure viscosity. Th ese are devices which use viscous fl ow theory to 
relate the fl ow rate with pressure drop across the standardized fl ow path and viscosity of the fl uid.

Following types of viscometer are commonly used to measure viscosity:

• Capillary tube viscometer

• Concentric cylinder viscometer

• Cone and plate viscometer

• Falling sphere viscometer

2.8.1 | Capillary Tube Viscometer

In this type of viscometer as shown in Fig. 2.6, the fl uid fl ows through a long capillary tube of small diameter; 
the fl ow rate is measured and related to the pressure drop across the two points on the tube. Usually length to 
diameter ratio of the capillary tube is greater than 20, i.e., l

c
 > 20d

c
.

Th e volume fl ow rate, q, is the product of area and average fl ow velocity, thus

π π
ρ

η η
= Δ =

4 4

128 128
c c

c

d d
q p gh

l
; 

ρ
Δ =

c

gh
p

l
 (2.24)

where Δp is the pressure drop across the length of the capillary tube and p = rgh, r is the density of the fl uid. 
Th us, viscosity of the fl uid is given by:

π ρ π ρ
η = =

4 4

128 128 ( / )
c c

c c

d gh d gh

l q l V t
 (2.25) 

Figure 2.5 | Viscosity Index (VI)
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since =
V

q
t

, where V = known volume of liquid and t is the time taken for this volume to fl ow through the 

capillary. Th us, ct
η

ν
ρ

= = , where
π

=
4

128
c

c

d gh
c

l V
, is a constant for a given viscometer. Th is viscometer measures 

dynamic viscosity of the liquid.
Th e above relationship is true for incompressible laminar fl ow only and for Reynolds number less than 2100.

2.8.2 | Concentric Cylinder Viscometer

In this type of viscometer as shown in Fig. 2.7, two cylinders one enveloping the other is taken. Usually the 
inner cylinder is held stationary and outer cylinder is rotated at a constant angular speed with clearance 
space fi lled with the viscous fl uid for which the viscosity is to be determined. Clearance space or the fi lm of 
fl uid is thin relative to the radius of the cylinders. In steady state condition when the fl ow is laminar and the 
Reynolds number is low, the radial and axial fl ow velocities are zero, and there is no pressure gradient in the 
circumferential direction.

Figure 2.6 | Capillary Tube Viscometer
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Th e momentum equations in r, q, z, i.e., radial, circumferential, and axial directions, respectively, can be 
written as:

r – component:

θρ
∂

− = −
∂

2v p

r r
 (2.26)

q – component:

θ

∂ ∂⎛ ⎞
= ⎜ ⎟⎝ ⎠∂ ∂

1
0 ( )rv

r r r
 (2.27)

z –component:

ρ
∂

= +
∂

0
p

g
z

 (2.28)

v
r
, v

q
, v

z
 are fl uid velocity components in r, q, z, directions, respectively.

Integrating Equation (2.26) with respect to r with following boundary conditions at the inner and outer 
peripheries of the cylinder as:

θ = =0,
i

v r r ; θ = Ω =,
o o

v r r r  would yield

θ

⎛ ⎞
−⎜ ⎟⎝ ⎠

= Ω
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1

i

i

o

r r

r r
v r

k
k

 (2.29)

where = i

o

r
k

r
and the expression for the shear stress can be determined as:

θτ η
∂ ⎛ ⎞

= − ⎜ ⎟⎝ ⎠∂r

v
r

r r
; Since the fl ow is in the circumferential direction only v

r
 = v

z
 = 0.

Th us, shear stress is obtained using Equation (2.28) as:

θτ η ⎛ ⎞ ⎛ ⎞
= − Ω ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠−

2
2

2 2

1
2

1r o

k
r

r k
 (2.30)

Th e torque required to run the outer cylinder at an angular speed Ω can be determined as the moment of 
the shear force at the cylinder surface and is written as:

( )θπ τ
=

= −22
o

o r r r
M r L = πη ⎛ ⎞
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2
2

2
4

1o

k
Lr

k
 (2.31)

Viscosity of the fl uid can be determined from the measured torque to rotate the outer cylinder at a 
required speed. Th is viscometer measures absolute viscosity of the liquid.

2.8.3 | Cone and Plate Viscometer

Cone and plate viscometer is shown in Fig. 2.8. In this, an inverted cone is rotated on a plate with space 
between the cone and plate fi lled with a viscous fl uid of which viscosity is to be determined. Th e angle which 
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the cone makes with the plate is usually very small. Th e torque required to rotate the cone at an angular speed 
Ω is a measure of the viscosity of the fl uid. Th e angle between cone and fl at is usually kept very small, about 
a degree or two to ensure that the fl ow is such that only shear stress component t

qf
 is signifi cant, whereas 

other shear stress components practically do not exist. Th e magnitude of this shear stress component is almost 
constant in the entire fl uid fi lm between the surfaces.

Th us, the fl ow is assumed to be entirely tangential and therefore fl ow velocity component v
f
 is a function 

of r, q only, whereas fl ow velocities in radial and conical directions, i.e., r, q directions, i.e., v
r
, v

q
, are zero. Th us, 

momentum equations can be written as:

r – component:

φρ
∂

− = −
∂

2v p

r r
 (2.32)

q – component:

φρ θ
θ

∂
− = −

∂

2
1

cot
v p

r r
 (2.33)

f – component:

( ) θφ φ θφ
φ

τ τ τ
τ θ

θ

∂∂
= + + +

∂ ∂
2

2

1 1
0 2cot

r

r
r

r r r r r
 (2.34)

However, in case of slow viscous fl ow centrifugal inertia terms can be set equal to zero, i.e., terms 

 containing 
φ

2v

r
can be set to zero. Other shear stress components are zero.

Assuming v
f
 (r,q) = rf (q) which satisfy the boundary conditions at q = q

1
 and 

π
θ =

2
. Since the angular 

velocity 
φv

r
 is independent of r means that t

rf
 = 0. Th us, Equation (2.33) reduces to an ordinary diff erential 

equation as given below:

θφ
θφ

τ
τ θ

θ
= −2 cot

d

d
 (2.35)

Figure 2.8 | Cone and Plate Viscometer Confi guration
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Equation (2.34) can be integrated to give

θφτ
θ

= 1

2sin

C
 (2.36)

where C
1
 is a constant of integration which can be evaluated from the torque transmitted to the stationary 

plate by the fl uid by using the boundary condition for torque at 
π

θ =
2

. Th us, the torque at the stationary 
plate is given by:

π

πθφ θ
τ φ

=
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2

2

0 0 2

R

M r drd  = π
π

⎛ ⎞
⎜ ⎟
⎜ ⎟
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3
1

2

2

3
sin

2

CR
 (2.37)

Equations (2.35) and (2.36) can be combined to give:

3 2

3
.

2 sin

M

Rθφτ
π θ

=

However, for small values of cone angle a, sin2q would be equal to 1 and the torque would be independent 
of cone angle. Since only velocity component v

f
 exist while other velocity components are zero shear stress 

t
qf

 would be given by:

φ
θφτ η θ

θ θ π θ

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠ 3 2

/ 3
sin

sin 2 sin

v rd M

d R
 (2.38)

Integrating with respect to q one would obtain the velocity component as:

φ θ
θ θ

π η θ
⎡ ⎤+⎛ ⎞

= + +⎢ ⎥⎜ ⎟⎝ ⎠−⎣ ⎦
23

3 1 1 cos
cot ln sin

4 2 1 cos

v M
C

r R
 (2.39)

where C2 is a constant of integration. For very small cone angle a, 
π

θ =
2

. Since ϕ

π
θ= =0 for 

2
v  when 

substituted in the above equation would give C
2
 = 0.Th erefore,

π
θ α= −

2
, φ

π
α⎛ ⎞

= Ω −⎜ ⎟⎝ ⎠
sin

2
v r .

Equation (2.38) would reduce to:

α
α α α

π η α

⎡ ⎤⎛ ⎞+
Ω = +⎢ ⎥⎜ ⎟−⎝ ⎠⎢ ⎥⎣ ⎦

1

1 1 13
1

1 cos3
sin cot sin

4 1 cos

M
r

R
 (2.40)

where 
π

α α= −
1 2

.

Equation (2.39) can be used to determine the viscosity of the fl uid if the torque M is required to rotate 
the viscometer at an angular speed Ω is measured.

Alternatively, a simplifi ed expression can be determined for small cone angle a with shear stress 
φ

θφ

η
τ =

v

h
where h = r tan a ≅ ra, is fi lm thickness at a radius r and the surface velocity v

f
 = Ωr. Th e torque M required 

to rotate the viscometer at an angular speed Ω can be determined as:
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θφ

η πη
τ π π

α α
Ω Ω

= = =∫ ∫
3

2 2

0 0

2
.2 .2

3

R R
R

M r dr r dr  (2.41)

Measuring torque viscosity of the fl uid can be determined from the above equation also fairly accurately.

2.8.4 | Falling Sphere Viscometer (Fig. 2.9)

A sphere is allowed to fall from rest in a viscous fl uid; it will reach a terminal constant velocity after it acceler-
ates in the initial stage of falling. When this steady state condition is reached, the sum of force of gravity on 
the solid which acts in the direction of fall, the sum of buoyancy force, and the force due to fl uid motion which 
act in opposite direction balance each other.

Component of normal force F
n
 in the vertical direction is expressed in the integral form as:

( )
π π

θ θ θ φ= −∫ ∫
2

2

0 0

cos sin
n

F p R d d

Pressure on the surface of the sphere is given as:

η
ρ θ θ= − −

3
cos  cos

2
t

v
p gR

R

Substituting for pressure and integrating the normal force against the falling sphere is obtained as:

π ρ πη= +2
4

2
3n t

F R g Rv  (2.42)

where the fi rst term is due to buoyancy eff ect and second term is due to form drag eff ect.
Tangential force due to shear stress on the surface of the sphere is expressed as:

π π

θτ θ θ θ φ= ∫ ∫
2

2

0 0

sin  sin   
s r

F R d d

Figure 2.9 | Rigid Sphere Falling Under Gravity in a Viscous Fluid Medium
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Shear stress on the surface of the sphere is given by

θτ η θ=
3

sin
2r t

v R

Substituting for shear stress and integrating, the tangential force acting on the sphere is obtained as:

πη= 4
t t

F Rv  (2.43)

Th erefore, total force acting on the sphere can obtained by adding Equations (2.42) and (2.43).
Force–balance relationship for the sphere is obtained by equating the gravity force due to falling sphere 

to the total force acting on the sphere that resists the motion and can be written as:

π ρ π ρ π η= +3 3
4 4

6
3 3s f t

R g R v R  (2.44)

where R = radius of sphere

 
t

v  = terminal velocity of sphere in the fl uid

 ρ
s
 = density of the sphere

 ρ
f

 = density of the fl uid

 h = viscosity of the fl uid

or ( )η ρ ρ= −22 / 9
s f t

R g v  (2.45)

However, this result is valid when 2Rv
t
 r/h is less than 0.1.

Th us, measuring the terminal velocity of the sphere in the fl uid, viscosity of the fl uid can be determined 
using the above relationship. For further details related to viscometers, readers are referred to Bird, Stewart 
and Lightfoot (1960).

2.8.5 | High-Pressure Rheometers

Various types of rheometers have been designed and developed by many researchers to study the behavior of 
viscous fl uids at high pressure of the order of 1 GPa or more and at high shear rates as well.

High-pressure shear stress apparatus where pressures up to 1.2 GPa were generated was developed by 
Bair and Winer (1979) and is shown in Fig. 2.10. In this apparatus, an intensifi er piston is driven into 

Figure 2.10 | Schematic Diagram of Shear Stress Apparatus, 0.7 GPa [Bair and Winer, ASME JOLT, 1979]
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a high-pressure chamber which increases the pressure of the driving fl uid and test sample. Th e driving piston 
 displacement and velocity were measured by LVDT. Th e device is assembled and fi lled so that the intensifi er 
piston reaches the push piece when the desired pressure level is reached.

High shear stress viscometer also developed by Bair and Winer (1979) is shown in Fig. 2.11. In this case, 
the fl uid sample is sheared between a central rod and a cylindrical hole in which the rod is pushed or moved 
axially through the hole by a pressure diff erence imposed across a driving piston attached to the rod. Th e 
pressure diff erence is measured and is proportional to the shear stress. Th e rod displacement and velocity are 
measured by a LVDT permitting determination of the strain and strain rate. Based on these measurements, 
rheological models given in Equation (2.8) were proposed by Bair and Winer (1979).

Rheological behavior of lubricants at high pressures and shear rates have also been investigated by Johnson 
and Cameron (1967), Johnson and Roberts (1974), and Johnson and Tevaarverk (1977) using two disc rolling 
contact apparatus in which rolling with spin and rolling with side slip could be obtained, the apparatus was 
designed by Poon and Hains (1966). Nonlinear viscoelastic rheological model given by Equation (2.7) was 
developed using the data obtained through measurements in the disc apparatus. Details can be obtained in 
the reference cited above.

Earlier, Hirst and Moore (1974) also presented an investigation based on two disc experiments for pres-
sures up to 1 GPa and proposed an Erying type (sine hyperbolic) relationship.

Pressure shear plate impact experiments were also conducted by Ramesh and Clifton (1987, 1992) under 
high pressures and at high shear rates of the order of 106/s to study shear rheology of lubricants. Th e details 
of the experimental technique are available in the above references.

Jacobson (1984) used a new impact type of rheometer where a spherical ball is made to impact on two 
parallel fl at surfaces to study the rheology of lubricants under transient pressure and to measure the shear 
strength increase with pressure for pressurization times of 138 μs. Maximum pressure of the order of 5.5 GPa 
were generated during the impact time. Hoglund and Jacobson (1985) also developed an experimental appa-
ratus to measure the shear strength of lubricants subjected to high pressure and temperature. Maximum 

Figure 2.11 | Schematic Diagram of High-Pressure Shear Stress Apparatus, 1.2 GPa [Bair and Winer ASME, JOLT, 1979]
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 pressure of 2.5 GPa was generated in the experimental stage. Details of experimentation are available in 
the above references. Knowledge about high-pressure and temperature rheological behavior of lubricants 
is extremely important for successful lubrication of concentrated rolling/sliding solid contacts. Rheological 
models of lubricants are also required to estimate lubricant fi lm thickness, traction coeffi  cient, and tempera-
ture rise due to sliding in these contacts.

2.9 | Chemistry of Lubricants

Th e emulsifi able oils are either based on paraffi  n or naphthenic structures with sulfonated derivatives as 
emulsifi ers, with or without extra pressure additives. Th ese include fats, fatty acids other esters, sulfurized fats, 
mineral oils, and chlorinated fats and mineral oils. Th e so called ‘heavy duty products’ have increasing amounts 
of extra pressure additives and the expense of the mineral oil content (Rossmoore).

2.9.1 | Water-based and Oil-based Systems

Water- and oil-based systems are used in cutting tool operations to reduce the cutting force and to increase 
the life of the tool. Water is used as a coolant because of its high thermal capacity, but it cannot act as a good 
lubricant which increases the cutting force. Water will cause problems of corrosion to cutting tool and materi-
als. To overcome the lubrication eff ect and corrosion problems of water, oil is used in cutting operations. Oil 
gives lower cooling eff ect and its cost is higher than water. Oil added to water with good emulsifi er (soluble 
oils) gives good lubrication and cooling eff ect (Machodo and Wallbank, 1997). Fluid supply system in cutting 
tool operation is developed in which fl ow parameters (pressure, temperature, fl ow velocity, and humidity) and 
cooling distance (the distance between nozzle and cutting zone) are controllable ( Junyan Liu et al., 2005).

2.9.2 | Synthetic Lubricants

Synthetic lubricants are derived from animal fats and plant oils as raw materials and are thus renewable raw 
materials par excellence. Compared to mineral-based products oleo-chemical products are 2–5 times more 
expensive. Th e higher price of oleo-chemical esters is due to the costly multistep synthesis of these chemicals. 
Oleo-chemicals will not aff ect the carbon dioxide balance in the atmosphere. Due to the high cost of these 
lubricants, they are used in closed lubrication systems (Willing, 2001).

2.9.3 | Suspensions and Pastes

Suspensions are considered to be dispersed when the repulsive potential between the particles is of suffi  cient 
magnitude that the attractive Van der Waals potentials are counterbalanced or exceeded. Coagulation can be 
achieved by adding salt to dispersed suspension (Davies and Binner, 1999). Paste systems behave like particle 
suspensions because they share many of the same characteristics. Suspensions consist of a homogeneously 
distributed particulate solid phase carried by a liquid solution. Electrostatic, stearic, Van der Waals, or a com-
bination of these forces can result in a stable dispersion. Pastes consist of a mixture of solid phase mechani-
cally separated by a fl uid solution (Hurysz and Cochran, 2003).

2.9.4 | Solid Lubricants

Soft noble metals, inorganic fl uorides, and some metal oxides have been successfully employed as solid lubri-
cants. Th ese materials generally possess stable thermo-chemistry at elevated temperatures as well as low shear 
strength properties which make them good solid lubricants. Use of solid lubricants depends on selection of 
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appropriate counterface. Solid lubricants will form a transfer fi lm on the sliding counterface in order to reduce 
friction and wear (DellaCorte, 1996).

2.9.5 | Coatings and Additives

Coatings on the surfaces reduce the wear of the material. Composite coating (PS300) is a plasma sprayed 
nichrome bonded Cr

2
O

3
 coating with silver and BaF

2
/CaF

2
 eutectic solid lubrication additions. Coatings 

provide good tribological properties at temperatures as high as 900°C. Chrome oxide is used in the composite 
coating instead of chrome carbide, because of its low machinable cost. Chrome oxide is a high temperature 
lubricant which cannot oxidize (DellaCorte, 1996).

Lubricant additives improve tribological properties and reduce oxidation of petroleum lubricants. 
Considering environmental and biological eff ects, lubricant additives must be zincless and do not have 
 phosphorous. Th e derivatives of heterocyclic compounds are antiwear and extreme pressure additives. 
Heterocyclic compounds possess excellent anticorrosive, antirust, copper deactivating, and antiwear  properties 
(Huang et al., 2000).

2.9.6 | Toxicological and Biological Aspects of Metal Working Lubrication

Th e fl uids, after their usage have to be disposed. Th e disposal of fl uids will aff ect the environment. When fl uid 
is used as cutting fl uid in tool operations, it will cause several reactions on the skin and other parts of the body 
of the operator. Th ere are four types of oil induced skin diseases: dermatitis, oil folliculitis, oil acne, and fi nally 
keratoses and warts (Baradie, 1996). By considering environmental and toxicological problems, lubricating oil 
additives are added, which are zincless and do not contain phosphorous (Huang et al., 2000).

2.9.7 | Lubrication Clarifi cation, Recycling, and Disposal

Th e recycling of the lubricant is necessary to remove the contaminants in it. Th e contaminants are removed 
by selecting a clarifi cation process. Th e clarifi cation process is selected based on the type of the cutting fl uid, 
 fi neness of fi ltration required, proportion of contaminants in the coolant and volume fl ow of the fl uid. Th e 
straight oil fl uids can be removed by stirring and water contaminants were removed by heat treatment. 
Recycling of cutting fl uids will reduce the wastage of fl uid and disposal of fl uid to environment. Recycling 
system is a part of central fl uid system which can store and pump the fl uid to the machine parts. After the 
disposal of lubricant, the chemicals polluting the environment are oils, phenols, phosphates, and heavy metals. 
To reduce the disposal of fl uid, settling and addition of base concentrates usually restore the adequate quality 
for continuous use. When necessary, oil-based fl uids should be disposed by burning (Baradie, 1996).
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Chapter3
Mechanics of Lubricant Films 
and Basic Equations

3.1 | Introduction

Flow of lubricants through narrow gaps or clearance space of bearings, seals, gears, etc. is governed by the laws 
of fl ow of fl uids. Following four basic laws are concerned with fl ow of fl uids.

 1. Conservation of mass which is expressed in the form of continuity equation.
 2. Newton’s second law of motion or conservation of momentum usually expressed as momentum 

equation.
 3. Conservation of energy expressed in the form of energy equation derived using fi rst law of 

thermodynamics.
 4. Equation of state for a perfect gas. It is usually required for compressible fl ow or in gas/air as a lubricant.

Th e above laws apply to a control volume or a fi xed quantity of matter, i.e., a defi nite system.

3.2 | Momentum Equations

To derive momentum equations, we consider an elemental cube or volume of fl uid as shown in Fig. 3.1. 
Stresses acting on the cube faces are shown with directions. Th e stresses must be symmetric, that is:

τ τ τ τ τ τ= = =,  ,  
xy yx xz zx yz zy

Th e total force F is made up of the total surface force F
s
 due to stresses and body force B which is a force per 

unit volume. Th e momentum equation for a control volume then becomes:

.

       

s
volume surface

F Bdv V pdv V V dA
t

ρ
→ → →∂

+ = +
∂∫ ∫ ∫� � �  (3.1)
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where 
→

V  is the velocity vector and dv the elemental volume. Th is equation is valid only for noninertial 
 reference axes.

Momentum balance in the x direction can be written as:

 
τσ τ

ρ ρ
∂∂ ∂⎛ ⎞∂ ∂ ∂ ∂

= + + + = + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
xyx xz

x

Du u u u u
u v w B

Dt t x y z x y z
 (3.2)

Similarly, momentum equations in y and z directions, respectively, are given as:

 
τ σ τ

ρ ρ
∂ ∂ ∂⎛ ⎞∂ ∂ ∂ ∂

= + + + = + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
yx y yz

y

Dv v v v v
u v w B

Dt t x y z x y z
 (3.3)

 
ττ σ

ρ ρ
∂∂ ∂⎛ ⎞∂ ∂ ∂ ∂

= + + + = + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
zyzx z

z

Dw w w w w
u v w B

Dt t x y z x z z
 (3.4)

,
Du Dv

Dt Dt
 and 

∂
Dw

t
 are components of inertia forces in x, y, and z directions, respectively, and B

x
, B

y
, and B

z
 are 

components of body forces in x, y, and z directions, respectively.

3.3 | Stress–Strain Relationship for Fluids

For a Newtonian fl uid, it is assumed that stress and strain rate are linearly related and the general relationship 
can be expressed in Cartesian coordinates as:

 Strain rate; /
ij i j

e u x= ∂ ∂  for nonrotational fl ow (3.5)

 Stress: σ
ij

 = 2
ij ij ij

p eδ η δ λφ− + +  (3.6)

where f is the fl uid dilatation, i.e., the rate at which fl uid fl ows out from each or it measures the expansion of 
the fl uid and l is a second coeffi  cient of viscosity, d

ij
 is the Kronecker delta.

Figure 3.1 | Stresses on the Surface of a Fluid Volume Element
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Hydrostatic pressure p in the fl uid is the mean of the three normal stresses and therefore σ σ σ= = = −
xx yy zz

p 
since it is compressive in nature.

Also  σ σ σ+ + = −3
xx yy zz

p  (3.7)
Further

 2
xx

u
p

x
σ λφ η

∂
= − + +

∂
 (3.8.a)

 2
yy

v
p

y
σ λφ η

∂
= − + +

∂
 (3.8.b)

 2
zz

w
p

z
σ λφ η

∂
= − + +

∂
 (3.8.c)

where φ
⎛ ⎞∂ ∂ ∂

= + +⎜ ⎟∂ ∂ ∂⎝ ⎠
u v w

x y z
  (3.9)

Th us,

 ( )σ σ σ λ η φ+ + = − + +3 3 2
xx yy zz

p   (3.10)

therefore, λ η+ =3 2 0  (3.11)

or 
ηλ = −

2

3
 and this is known as Stoke’s condition and ensures that pressure p is defi ned as the average of 

normal stresses for a compressible fl uid at rest. Th e term λ η⎛ ⎞+⎜ ⎟⎝ ⎠
2

3
 is called the coeffi  cient of bulk viscosity 

and is equal to zero.
It is known for fl uids that normal component of strain rate e

ii
 is directly identifi ed with true normal strain 

rate. Th erefore,

 
∂ ∂ ∂

= = =
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, and
xx yy zz

u v w
e e e

x y z
 (3.12)

Whereas, shear rate components are equal to one half the true rate of shear strain components which is 

denoted as γ
ij , i.e., ( )γ= =

1

2ij ij
e i j

Th us,  
⎛ ⎞∂ ∂

= = +⎜ ⎟∂ ∂⎝ ⎠
1

2xy yx

u v
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y x
 (3.13a)
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Th erefore, shear stress τ
ij

 can be related to shear strain rate for a Newtonian fl uid as:

 

τ η
⎛ ⎞∂∂

= +⎜ ⎟∂ ∂⎝ ⎠

ji

ij

j i

uu

x x
 (3.14)

Th us,
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 (3.15a)
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 (3.15b)
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w u

x z
 (3.15c)

We arrive at Navier–Stokes equations for fl ow of a Newtonian fl uid by substituting the above relation-
ships for normal and shear stresses in terms of strain rates given by Equations (3.8) and (3.15), respectively, 
into momentum balance Equations (3.2), (3.3), and (3.4) as:

3.4 | Navier–Stokes Equations

 

( )2
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2

x

pDu
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Dt x x
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ρ ηφ

η η η
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 (3.17)

 

( )2

3

2  
y

z

pDw
B

Dt z z

w u w v w

z z x z x z y

ρ ηφ

η η η

∂ ∂
= − −

∂ ∂
⎡ ⎤⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞

+ + + + +⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.18)

Th e above equations are valid for viscous fl ow of a compressible, Newtonian fl uid with variable viscosity, and 
form the basis for all analytical work in fl uid mechanics. Th erefore, these equations also form the base for the 
development of mechanics of lubrication in bearings, seals, and almost all mechanical components.

3.5 | Continuity Equation

Integral form of mass continuity relationship can be developed beginning write

 ρ ρ
→

= −∫ ∫� �
. .

.
c s c v

V dA dv  (3.19)
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Th e above relationship can be rewritten applying Gauss’ theorem as:

 
. . .

. .
c v c v c v

V dv dv V dv
t t

ρ
ρ ρ ρ

→ →∂ ∂⎡ ⎤⎛ ⎞∇ + = ∇ +⎜ ⎟ ⎢ ⎥⎝ ⎠ ∂ ∂⎣ ⎦∫ ∫ ∫� � �  (3.20)

Since the volume is arbitrary, the integrand must be zero so the diff erential form of continuity equation 
is written as

 ( )ρ
ρ

∂
+ ∇ =

∂

��

. 0V
t

 (3.21)

For steady state fl ow 
ρ∂

=
∂

0
t

 and we get

 ( )ρ∇ =
��

. 0V  (3.22)

In Cartesian coordinates, it can be written as:

 
( ) ( ) ( )ρ ρ ρρ ∂ ∂ ∂∂

+ + + =
∂ ∂ ∂ ∂

0
u v w

t x y z
 (3.23)

It can also be written in Cartesian tensor notation as:

 ( )ρρ ∂∂
+ =

∂ ∂
0i

i

u

t x
 (3.24)

Continuity equation can also be developed from the mass fl ux balance in an elemental control volume 
shown in Fig. 3.2.

Th erefore, net mass fl ow rate out is:

( ) ( )

( )

u v
u dx dydz v dy dxdz

x y

w
w dz dxdy udydz vdxdz wdxdy

z

ρ ρ
ρ ρ

ρ
ρ ρ ρ ρ
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+ + +⎢ ⎥ ⎢ ⎥

∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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+ + − − −⎢ ⎥
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Figure 3.2 | Mass Flow Through a Fluid Volume Element Shown in Two Directions Only
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or

( ) ( ) ( )ρ ρ ρ⎡ ⎤∂ ∂ ∂
+ +⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
.

u v w
dxdydz

x y z

and this must be equal to rate of mass decrease in the elemental volume, i.e., 
ρ∂

∂
dxdydz

t

Th erefore, mass continuity equation is obtained as given by Equation (3.23), i.e.,

( ) ( ) ( )ρ ρ ρρ ∂ ∂ ∂∂
+ + + =

∂ ∂ ∂ ∂
0

u v w

t x y z

Fluid fl ow problems require solution of Navier–Stokes equations satisfying appropriate boundary condi-
tions and also require simultaneously satisfying mass fl ow continuity equation. In the case of thermal fl uid 
problems, thermal energy balance equation also needs to be solved satisfying appropriate thermal boundary 
conditions.

3.6 | Energy Equation

Energy equation is basically a thermal or heat balance relationship in a control volume, i.e., increase of total 
energy including kinetic, internal, and potential energy in the control volume is equal to the heat fl ow into the 
control volume, plus the rate of internal heat generation minus the work done by the fl uid on its surroundings.

It is expressed in the integral form as:

 ρ ρ σ
∂

+ = − + +
∂ ∫ ∫ ∫ ∫ ∫� � � �

*

. . . . . .
i i i i i ji j

c v c s c s c v

Edv Eu dA q dA u dA q dv
t

 (3.25)

where E is the total energy per unit mass, *q  is the internal heat generation rate per unit volume, i
q  is rate 

of heat fl ux by conduction and radiation fl owing out and σ
i ji

u  is the rate of total work done by the fl uid in 

the control volume per unit surface area, respectively. Because σ δ τ= − +
ij ij ij

p  using Gauss theorem for an 
arbitrary volume the integrand must be zero. Th erefore, the energy equation becomes:

 ( ) ( ) ( ) ( )ρ ρ τ
⎡ ⎤∂ ∂ ∂ ∂ ∂

+ + + + − =⎢ ⎥
∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

∫� *
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0
i i i j ij

c v i i i i

E Eu q q pu u dv
t x x x x

 (3.26)

Th us, the diff erential form of energy equation combined with the continuity equation becomes:

 
jii i

i i
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q u pDE
p u u q

Dt x x x x

τ
ρ ∗

∂∂ ∂ ∂
= − − − + + Φ +

∂ ∂ ∂ ∂
 (3.27)

where Φ = τ
∂

∂
j

ij

j

u

x
 is the dissipation function and is the rate of irreversible work done by shear stress. Since,

E (Total Energy) = 
k

E  (Kinetic Energy) + 
p

E  (Potential Energy) + 
i

E  (Internal Energy)
and

( ) τ
ρ

∂∂
+ = − +

∂ ∂
ji

k p i i

i j

pD
E E u u

Dt x x
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Th e energy equation reduces to

 ρ
∂ ∂

= − − + Φ +
∂ ∂

*i i i

i i

DE u q
p q

Dt x x
 (3.28)

It can be shown that the energy equation becomes:

 ( ) ( )ρ = − ∇ + ∇ ∇ − ∇ + Φ +
�

*.  . . r
v

DT
c p V k T q q

Dt
 (3.29)

where k  is the thermal conductivity of the fl uid, rq  is the radiation heat fl ux vector and 
v

c  is the specifi c heat 
of the fl uid at constant volume.

Since the dilatational work 
→

− ∇ =. 0p V  for an incompressible fl uid, the energy equation is written 
neglecting radiation heat fl ux as:

 ρ η
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞

+ + + = + + + Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠v

T T T T T T T
c u v w k k k

t x y z x x y y z z
 (3.30)

where dissipation function is expressed as:

 

2 2 22 2

2

2

2

3

u v w u v v w

x y z y x z y

w u u v w

x z x y z

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎢ ⎥Φ = + + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞

+ + − + +⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.31)

Energy equation for compressible fl ow is written as:

 ( ) *. . . r
p

DpDT
c k T p V q q

Dt Dt
ρ

→

= + ∇ ∇ − ∇ − ∇ + Φ +  (3.32)

for =* 0q  and = 0rq , i.e., no radiation it is expressed in Cartesian coordinates as:

 ( )ρ γ
→⎛ ⎞= − ∇ ∇ + ∇ ∇ + Φ +⎜ ⎟⎝ ⎠

. . .
p

DpDT
c p V k T T

Dt Dt
 (3.33)

or

 

p

T T T T T T T
c u v w k k k

t x y z x x y y z z

p p p p
T u v w

t x y z

ρ

γ η

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
+ + + = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂
+ + + + + Φ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (3.34)

where γ
ρ

∂⎛ ⎞∂⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂⎝ ⎠

1 1

p p

pv

v T T
 is the coeffi  cient of thermal expansion, the term γ

Dp
T

Dt
 is the heating 

or cooling of the fl uid by compression or expansion. c
p
 is the specifi c heat of the fl uid at constant pressure.
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Navier–Stokes equation, continuity equation and energy equation in cylindrical ( )θ, ,r z  coordinates are 
given in Appendix I. For further reading refer to Hughes and Brighton (1967).

3.7 | Reynolds Equation

Osborne Reynolds (1886) derived the Reynolds equation for incompressible fl ow of lubricants in the clear-
ance space of bearings. It owes its genesis to the experiments conducted by Tower (1883) which demonstrated 
the generation of pressure in the fl uid fi lm formed in the clearance space of the journal bearing due to wedge 
action, i.e., due to relative sliding of the surfaces with a convergent or wedge-shape clearance space fi lled with 
a viscous fl uid. Reynolds equation is a diff erential equation that governs the pressure distribution in the fl uid 
fi lm formed due to self-action.

From the point of view of fl uid mechanics, the fl ow of a viscous fl uid in the clearance space of a bearing 
or seal is considered as a slow viscous fl ow in which viscous forces dominate over the inertia forces. Reynolds 
equation combines Navier–Stokes and continuity equations into a single equation which can be derived from 
the Navier–Stokes equation by making basic assumptions given below.

Reynolds equation can now be derived under the following assumptions known as basic assumptions in 
the theory of lubrication that:

• Flow of lubricant is laminar

• Inertia eff ects are negligible, i.e., both temporal and convective inertia are negligible

• Viscosity and density of the lubricant does not vary across the fi lm thickness, i.e., viscosity across the 
fi lm thickness is constant and not dependent on temperature or pressure. However, it can vary along 

the direction of the fi lm, i.e., ( ) ( )η ρ= =
1 2

,  and  ,f x y f x y

• Pressure gradient across the fi lm thickness is zero or alternately pressure remains constant across the 

fi lm thickness, i.e., 
∂

=
∂

0
p

z

• All the velocity gradients along the fl uid fl ow direction or along the fi lm are negligible in comparison 
to the velocity gradients across the fi lm thickness which can be expressed referring to Fig. 3.3 as:

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
<<

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
, , , , , , , ,

u u v v w w u v w

x y x y x x z z z

Figure 3.3 | Coordinate Axes and Bearing Surfaces
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     Since the fi lm thickness is usually 10−2–10−3 times lower than the length dimensions the above condi-
tion is generally satisfi ed

• Body forces are negligible

• Th ere is no-slip at the fl uid-solid boundaries, i.e., fl uid layers adhere to the surfaces and will have the 
velocities of the surfaces

When the above assumptions are applied to the Navier–Stokes, Equations (3.16), (3.17), and (3.18) reduce 
to following equations:

 η
∂ ∂ ∂⎛ ⎞

= − + ⎜ ⎟⎝ ⎠∂ ∂ ∂
0

p u

x z z
 (3.35)

 η
∂ ∂ ∂⎛ ⎞

= − + ⎜ ⎟⎝ ⎠∂ ∂ ∂
0

p v

y z z
 (3.36)

 
∂

=
∂

0
p

z
 (3.37)

Integrating Equations (3.35) and (3.36) twice with respect to z we get:

 
η η

∂
= + +

∂

2

1 22

pz z
u C C

x
 (3.38)

 
η η

∂
= + +

∂

2

3 42

pz z
v C C

y
 (3.39)

where C
1
, C

2
, C

3
, C

4
 are constants of integrations.

Th e boundary conditions for fl uid velocities u and v are

at = = =
1

0,  ,  0z u u v

at = = =
2

,  ,  0z h u u v

Substituting the above boundary condition in Equations (3.37) and (3.38), we get the lubricant velocity 
distributions in the fi lm as:

 ( ) ( )
η η

∂ ∂⎛ ⎞
= − + − + = −⎜ ⎟⎝ ⎠∂ ∂

2 2
1 2

1 1
1   ;   

2 2

p pz z
u z zh u u v z zh

x h h y
 (3.40)

Substituting Equations (3.38) and (3.39) into continuity Equation (3.23), we get

 

( )

( ) ( )

2
1 2

2

1
2

0
2

p z z
z zh u u

t x x h h

wp
z zh

y y z

ρ ρ
ρ ρ

η
ρρ

η

∂⎡ ⎤∂ ∂ ⎛ ⎞
+ − + − +⎢ ⎥⎜ ⎟⎝ ⎠∂ ∂ ∂⎣ ⎦

∂⎡ ⎤∂∂
+ − + =⎢ ⎥∂ ∂ ∂⎣ ⎦

 (3.41)

Integrating Equation (3.40) across the fi lm thickness gives:

 

( ) ( )2 2

0 0

0 0

2

1 , 0

h h

h h

p p
z zh dz z zh dh

x x y y

z
u dh dz

x h t

ρ
η

ρ
ρ

⎡ ⎤∂ ∂⎡ ⎤∂ ∂
− + −⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤∂ ∂⎛ ⎞
+ − + =⎢ ⎥⎜ ⎟⎝ ⎠∂ ∂⎣ ⎦

∫ ∫

∫ ∫  (3.42)
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using the following general rule for integration

 ( ) ( ) ( )∂ ∂⎡ ⎤ = − +⎣ ⎦∂ ∂∫ ∫0 0
, , , , , ,

h hdh
f x y z dz f x y h f x y z dz

x dx x
 (3.43)

we get Reynolds equation for compressible fl ow as:

 

( )ρ ρ
ρ ρ

η η
ρ ρ

ρ

+⎛ ⎞⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂
+ = + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂ ∂
− +

∂ ∂

3 3
1 2

2 1

2

12 12 2

u up ph h
h w w

x x y y y

u h
x t

 (3.44)

where ( ) ∂
− =

∂2 1

h
w w

t

Equation (3.44) is rewritten as:

 
3 3

1 2

2
0

12 12 2

u up ph h h h
h u h

x x y y x t x t

ρ ρ ρ
ρ ρ ρ

η η
⎡ ⎤+⎛ ⎞⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞

+ = + − + =⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (3.45)

For incompressible fl ow the Reynolds equation becomes:

 ( ){ }
3 3

1 2 2
  

12 12

p ph h h h
u u h u

x x y y x t xη η
⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.46)

• Th e terms on the left hand side of Equation (3.46), i.e.,

3 3

,
12 12

p ph h

x x y y

ρ ρ
η η

⎛ ⎞∂ ∂⎛ ⎞∂ ∂
⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 are known as Poiseuille fl ow or pressure induced fl ow term.

• Th e term ρ
⎡ ⎤+⎛ ⎞∂
⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎢ ⎥⎣ ⎦

1 2

2

u u
h

x
 on the right is known as Couette fl ow term. Th is term is split into three 

diff erent terms, viz.,

 –
+⎛ ⎞ ∂

⎜ ⎟ ∂⎝ ⎠
1 2

2

u u h
h

x
 is known as the physical wedge term or the fl ow term due to wedge action. It is due 

to surface velocity and fi lm thickness variation in the direction of surface motion. Positive pres-
sures are generated due to decrease in fi lm thickness in the direction of surface motion or due to 
convergent fi lm shape.

 –
ρ+⎛ ⎞ ∂

⎜ ⎟ ∂⎝ ⎠
1 2

2

u u
h

x
 is known as density wedge term. Positive pressures would be generated if density 

varies along the fl ow direction. It is necessary that density decreases in the fl ow direction which 
is possible due to increase in temperature. Th is may result into pressure generation even in case of 
parallel fi lm shape, i.e., for constant fi lm thickness.
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 – ( )ρ
∂

+
∂ 1 22

h
u u

x
 is called stretch term. Generation of positive pressure is possible if the bearing 

surfaces are elastic or stretchable. Velocities must decrease in the fl ow direction. Since bearing 
surfaces are usually rigid this term is zero.

• Th e term ρ ρ
∂ ∂⎛ ⎞

−⎜ ⎟⎝ ⎠∂ ∂2

h h
u

t x
 is known as squeeze fl ow term and can lead to positive pressure generation 

if the surfaces approach each other.

• Th e term 
ρ∂

∂
h

t
 is known as local expansion term and is governed by local time rate of density. Th is 

term is related to thermal expansion of the lubricant between the bearing surfaces. Since it is a tran-
sient process, it is generally of no consequence in lubrication analysis.

3.8 | Lubricant Flow

Mass fl ow rate per unit length of the lubricant through a section of the fl uid fi lm is given as:

 ( )ρ= ∫0

h

x
m u dz   (3.47)

using Equation (3.40) it can be written as

 ( )ρ
ρ ρ

η
∂⎡ ⎤⎛ ⎞

= − + − +⎢ ⎥⎜ ⎟⎝ ⎠∂⎣ ⎦
∫ 1 20

1
2

h

x

p z
m z z h u u dz

x h
 (3.48)

 
( )ρ ρ

η
∂

= − + +
∂

3

1 212 2x

ph h
m u u

x  (3.49)

Similarly, fl ow rate per unit length in y direction is expressed as:

 ( )ρ= ∫0

h

y
m v dz  (3.50)

which reduces to using the expression for v from Equation (3.40) as

 ( )ρ
η

⎧ ⎫∂
= −⎨ ⎬∂⎩ ⎭

∫0 2

h

y

p
m z z h dz

y
 (3.51)

Integrating we get

 
ρ

η
∂

= −
∂

3

12y

ph
m

y
 (3.52)

In case of incompressible lubricants corresponding volume fl ow rates per unit length are given as:

 ( )η
∂

= − + +
∂

3

1 212 2x

ph h
q u u

x
 (3.53)

 
η

∂
= −

∂

3

12y

ph
q

x
 (3.54)
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3.9 | Shear Forces

Th e shear stresses on the surface of solids are given for a Newtonian fl uid as:

τ η
∂

=
∂xz

u

z

 τ η
∂

=
∂yz

v

z  (3.55)

Velocity gradients are obtained from Equation (3.40) by diff erentiating with respect to z as:

 

( ) ( )

( )

η

η

−∂∂
= − +

∂ ∂
∂∂

= −
∂ ∂

2 21
2

2

1
2

2

u upu
z h

z x h

pv
z h

z y
 (3.56)

Th erefore,

 

( ) ( )

( )

η
τ

τ

∂
= − + −

∂
∂

= −
∂

2 1

1
2

2

1
2

2

yz

yz

p
z h u u

x h

p
z h

y
 (3.57)

Shear stresses at z = 0 are given as:

 

( )η
τ

τ

∂
= − + −

∂
∂

= −
∂

2 12

2

xz

yz

ph
u u

x h

ph

y

 (3.58)

and the shear stresses at z = h are expressed as:

 

( )η
τ

τ

∂
= + −

∂
∂

=
∂

2 12

2

xz

yz

ph
u u

x h

ph

y
 (3.59)

Th e shear force can be evaluated on the solid surfaces as:

 τ= ∫∫
.S A

F dA  (3.60)

Th us, shear force at z = 0 and at z = h can be determined as:

 ( )η∂⎡ ⎤
= ± + −⎢ ⎥∂⎣ ⎦

∫∫0, 2 1
.

1

2h
S A

p
F h u u dxdy

x h
 (3.61)
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Reynolds equations for compressible and incompressible fl uids are given by Equations (3.45) and (3.46), 
respectively. Expressions for fl ow rates and shear force are also given in Equations (3.53), (3.54), (3.59), and 
(3.60), respectively.

Th ese equations will be directly used henceforth wherever applicable in this form. Th e above equations 
are valid for smooth surfaces only. For rough surfaces, Reynolds equation will have to be modifi ed to account 
for surface roughness eff ect. In a similar manner for non-Newtonian fl uids, Reynolds equation has to be 
modifi ed taking into consideration the non-Newtonian relationship between shear stress and shear strain 
rate. Reynolds equation given by (3.46) and (3.47) can incorporate piezoviscous and thermal eff ects of the 
lubricant in the fl ow directions (x, y), and thus thermohydrodynamic lubrication problems can be solved in 
conjunction with energy equation. However, variation of viscosity and density across the fl uid fi lm cannot be 
accounted. A fully thermal Reynolds equation needs to be developed and used for addressing temperature 
variations across the fi lm. Similarly, for turbulent lubrication, turbulent Reynolds equation has to be derived 
and used. Fluid inertia eff ects in laminar and turbulent fl ow can be incorporated for high speed bearings by 
suitably including fl uid inertia eff ects in the Reynolds equation.

3.10 | Reynolds Equation Assumptions Justifi ed

An order of magnitude analysis is necessary to ensure that the terms neglected in the Navier–Stokes 
equations are couple of orders of magnitude lower that the terms retained to derive the Reynolds equation. 
It is commonly known that fi lm thickness in the fl uid fi lms in lubricated contacts is usually 1000 times 
smaller than the radius of the journal and axial length of bearings or seals. Th erefore, terms neglected must 
be at least 10−3 times lower than the terms retained to derive the Reynolds equation. To establish this, order 
of magnitude of various terms have to be determined of Equations (3.16) to (3.18). Equation (3.16) can be 
rewritten as:

1

2x

pu u u u u v w
u v w B

t x y z x y x y z
ρ η

⎧ ⎫⎧ ⎫ ⎛ ⎞∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪+ + + = − − +⎨ ⎬ ⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎪ ⎪⎩ ⎭ ⎩ ⎭

2
u u v u w

x x y y x z z x
η η η

⎡ ⎤⎛ ⎞ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
+ + + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦

Following dimensionless parameters are defi ned to rewrite the above equation in the nondimensional 
form as:

0

0 0 0

2
0 0 0

, , , ,  , , , / ,

/ a nd  h / ,  (gravity  force)
x

yx z u v w
x y wt u vz

l l h u u u

p p u l B g

τ υ ρ ρ ρ

η η η η ρ

= = = = = = = =

= = =

It can be shown that the Equation (3.16) becomes after manipulations as written below:

* * *
1 1pu u u h w u

R u R v R w
x y l z x z z

σ η
τ ρ ρ

∂∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
+ + + = − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂

2
1 1

2
h u h w

l x x l x x
η η

ρ ρ
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂
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l
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u
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⎥
 (3.62)

where Reynolds number R is given as:

R = 
ρ

η
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0 0

0

inertia

viscous

u l

and fi lm Reynolds numbers are expressed as:

⎛ ⎞
= ⎜ ⎟⎝ ⎠

2

*
h

R R
l

and the squeeze number σ  is given by:

ρ υ
σ

η
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

2
0

0

h

It can be easily examined that all the terms in Equation (3.55) except the pressure term
2

1 1
 and  are of the order of  or 

p u h h

z z lx l
ηρρ

∂ ∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∂∂ ∂ ⎝ ⎠ ⎝ ⎠

since 
h

l
 is usually of the order of 10−3, all terms other than 1 p

xρ
∂
∂

 and 
1 u

z z
ηρ

∂ ∂⎛ ⎞
⎜ ⎟⎝ ⎠∂ ∂

 are at least 10−3 times 

these terms and therefore can be neglected. In a similar manner, it can be shown that in Equation (3.17) also 

only the pressure terms 
1 p

yρ
∂

∂
 and 

1

zρ
∂

∂
v

z
η

∂⎛ ⎞
⎜ ⎟⎝ ⎠∂

 would be of the order of 1 and rest of the terms would be 

of the order of 10−3 to 10−6 and can be neglected.
Th us, we see that Navier–Stokes equations reduce to Equations (3.35), (3.36), and (3.37) with the 

assumptions made to derive the Reynolds equation and the assumption are valid as shown above. For more 
details refer to Hamrock (1994).

3.11 | Derivation of Thermal Reynolds Equation

In the derivation of generalized Reynolds equation, several assumptions were made. One of the assumptions made 
was that fl uid properties, i.e., viscosity and density do not vary across the fi lm thickness. Th is assumption also 
implies that temperature and pressure do not vary across the fi lm. But there are situations when viscous heat gen-
eration is very signifi cant and the heat carried away by the lubricant is signifi cantly lower than the heat generation 
then the balance heat is transferred to the surrounding solids by conduction. Th is would result in signifi cant tem-
perature variation across the fl uid fi lm resulting in variation of both viscosity and density across the fi lm. Pressure 
variation across the fi lm is insignifi cant though and therefore pressures across the lubricant fi lm remain constant.

Th ermal Reynolds equation is derived retaining all the assumptions made to derive the Reynolds 
Equations (3.45) and (3.46) except that viscosity and density are now allowed to vary across the fi lm thickness.

Th ermal Reynolds equation was developed by Dowson (1962) and was later given in simpler form by 
Fowles (1970).
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To derive generalized thermal Reynolds equation, we rewrite Equations (3.35) and (3.36) as below:

η
∂ ∂ ∂⎛ ⎞

= ⎜ ⎟⎝ ⎠∂ ∂ ∂
p u

x z z

η
∂ ∂ ∂⎛ ⎞

= ⎜ ⎟⎝ ⎠∂ ∂ ∂
p v

y z z

Th e gradients of fl ow velocities u and v across the fi lm can now be found by integrating the above 
equations with respect to z as:

 
( )

η η
∂∂

= +
∂ ∂

,B x ypu z

z x
 (3.63)

 
( )

η η
∂∂

= +
∂ ∂

,C x ypv z

z y
 (3.64)

where B and C are constants of integration. Integrating once again with respect to z and introducing follow-
ing boundary conditions.

 

= = =
= = =

1

2

0,  , and 0
,  , and 0

z u u v
z h u u v

 (3.65)

Expressions for velocity components are obtained as:

 
η η

⎛ ⎞−∂ ∂
= + + −⎜ ⎟∂ ∂⎝ ⎠∫ ∫2 1

1
0 00

 
z zu up pz dz

u u dz z
x f x

 (3.66)

 
η η

∂ ∂
= −

∂ ∂∫ ∫
0 0

z zp pz dz
v dz z

y y
 (3.67)

where

η η

η η

= = =

=

∫ ∫

∫ ∫

0 1 00
0

0 0

;

 z /

h
h

h h

dz zdz
f f zf

z dz
dz

Integrating the continuity equation with respect to z between limits 0 and h gives the following expression:

 
( ) ( )

00 0
0

0
h

h h hu vp
dz dz dz w

t x y

ρ ρ
ρ

∂ ∂∂
+ + + =⎡ ⎤⎣ ⎦∂ ∂ ∂∫ ∫ ∫  (3.68)

Th e above equation can be expanded according to the general integration rule, i.e.,

 ( ) ( ) ( ) ( )∂ ∂∂ ∂
= − +

∂ ∂ ∂ ∂∫ ∫
2 2

2 1

2 11 1
, , , , , , , ,

h h

h h

h h
f x y z dz f x y z dz f x y h f x y h

x x x x
 (3.69)
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which gives

 
( ) ( ) ( )

020 0 0

h h h hh
dz u dz v dz u w

t x y x

ρ
ρ ρ ρ ρ

∂ ∂ ∂ ∂
+ + − + ⎡ ⎤⎣ ⎦∂ ∂ ∂ ∂∫ ∫ ∫

 (3.70)

Th e integrals of ( )ρu  and ( )ρv  can be evaluated by parts to give

 
( )

2

00 0 0
0

h h h
h

u u v
dz h z zu dz z zv dz w

t x x z z y z z

ρρ ρ ρ
ρ ρ ρ

⎡ ⎤∂∂ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤
+ − + − + + =⎡ ⎤⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

∫ ∫ ∫  (3.71)

Th e expressions for u and v can now be introduced from Equations (3.66), (3.67), and Equation (3.71) 
then becomes:

 

( ) ( ) ( ) ( )( )

( ) ( )

ρ

ρ
ρ ρ

⎡ ⎤− +⎡ ⎤∂ ∂⎡ ⎤∂ ∂ ∂ ∂ ∂⎡ ⎤ ⎢ ⎥+ + + = − +⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∂
+ + −

∂∫

2 1 3 2

2 1 2 1 1 32
0

12
0

h

u u f gp p
f g f g h u u g

x x y y x x x f

w w
t

 (3.72)

where

0 1 00 0
;

h hdz z z
f f zf

η η
∂

= = =∫ ∫
( )ρ ρ
η η

−
= =∫ ∫2 30 0

;
h hz z z z

f dz f dz

ρ
η η

⎡ ⎤⎛ ⎞∂
= −⎢ ⎥⎜ ⎟⎝ ⎠∂⎣ ⎦

∫ ∫ ∫1 0 0 0

h z zz dz
g z dz z dz

z

ρ
η

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦

∫ ∫2 0 0

h z dz
g z dz

z

ρ∂
=

∂∫3 0

h

g z dz
z

Equation (3.73) represents the thermal Reynolds equation applicable to fl uid fi lm lubrication problems 
which include variation of lubricant properties along and across the fi lm. It may be noted that all the ‘g’ func-

tions contain 
ρ∂

∂z
 and since the density is more often constant across the fl uid fi lm in majority of lubrication 

conditions, these can be neglected.
Fowles (1970) gave the simpler form of the thermal Reynolds equation as:

 

( ) ( )

( ) ( )

3 1

2 2 1 2 1

0

2 1
0

h

I Ip p
I I u u u

x x y x x x f

dz w w
t

ρ
ρ ρ

∂ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ = + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦

∂
+ + −

∂∫  (3.73)
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where

1

2 1 0 0
0

h zf z
I I dz dz

f
ρ

η
⎛ ⎞

= − ⎜ ⎟⎝ ⎠∫ ∫

1 0 0

h z dz
I dzρ

η
⎛ ⎞

= − ⎜ ⎟⎝ ⎠∫ ∫

3 1 00 0 0
;  ;

h h hz dz
I dz f dz fρ

η η
= = =∫ ∫ ∫

3.12 |  Reynolds Equation for Lubrication with Non-Newtonian Fluids

Several non-Newtonian rheological relationships have been developed for thin fi lm lubricant fl ows. Most of 
these use explicit rheological relationships which are given below:

• Newtonian model:

 γ τ
η

=�
1

ij ij
 (3.74)

• Linear viscoelastic model: Maxwell’s model

 
τ τ

γ
η

= +�
1 ij ij

ij

d

G dt
 (3.75)

• Nonlinear viscoelastic model I: Johnson and Tevaarwerk (1975)

 
τ ττ τ

γ
τ η τ

⎛ ⎞ ⎛ ⎞
= + ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
� 01

sinh
ij ij e

ij

e e

d

G dt
 (3.76)

• Nonlinear viscoelastic model II: Bair and Winer (1979)

 
τ ττ τ

γ
τ η τ

⎛ ⎞ ⎛ ⎞
= + ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
� 0

0

1
tanh

ij ij e

ij

e

d

G dt
 (3.77)

• Viscoelastic plastic model: Bair and Winer (1979)

 
τ τ τ τ

γ
τ η τ

= − −�
1

ln 1
ij ij L e

ij

e L

d

G dt
 (3.78)

• Oswald-de Walle power law model:

 
( )τ γ γ γ

−

= =� � �
1n

n
ij ij ij ij

m m
 (3.79)

and

 η γ

−

−⎧ ⎫⎪ ⎪⎛ ⎞= =⎨ ⎬⎜ ⎟⎝ ⎠⎪ ⎪⎩ ⎭

1
2 2 1.

2

n

n

ij
m I  (3.80)
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where viscosity η  is dependent on the second invariant of strain rate tensor which reduces to

 
∂ ∂⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂

2 2
u v

I
z z

 (3.81)

Th e constitutive relation then becomes
 ( )η η= I  (3.82)

and is suitable for incompressible inelastic fl uid.
In case of Newtonian fl uids, the velocities and their derivatives are linearly dependent on the pressure 

gradient. However, in the case non-Newtonian fl uids, it is assumed that the strain rates within the fl uid are 
principally generated by relative surface velocities. Th erefore, it is applicable to Coquette-dominated highly 
non-Newtonian fl uids.

In the above relationships described in Equations (3.74) to (3.80)

γ�
ij

 = Shear strain rate 

τ
ij

 = Shear stress
G  = Shear modulus of the fl uid

τ
e
 = Equivalent shear stress up to which linear relationship holds

τ
L

 = Limiting shear stress

τ
0

 = Reference shear stress at ambient pressure and temperature

τ τ and 
xz yz

 = Shear stresses in x and y directions, respectively,

u, v, w are velocity components in x, y, and z directions, respectively.
It is necessary to know the pressure, velocity, shear fi eld, and temperature fi eld in order to determine shear 

forces and friction in lubrication of surfaces with non-Newtonian fl uids. With the usual assumptions made 
to derive Reynolds equation for Newtonian fl uids, i.e., fl uid inertia and body forces are negligible; length 
dimension across the fi lm is small in comparison to other length dimensions. Th us, the equilibrium equations 
reduce to following forms:

 

τ

τ

∂ ⎫∂
= ⎪∂ ∂ ⎪

∂ ⎪∂ ⎪= ⎬∂ ∂ ⎪
⎪∂
⎪=

∂ ⎪⎭
0

xz

yz

p

x z

p

y z

p

z

 (3.83)

In addition to this, following equations have also to be satisfi ed to describe
the fl ow and temperature fi elds, viz.,

• Equation of continuity of fl ow

• Equation of rheological behavior of fl uid

• Th e energy equation for thermal energy balance

Th e velocity gradients for non-Newtonian fl uids are written in terms of several types of rheological relation-
ship, i.e., in terms of ( )τ

e
f  as:

 
( )ττ

τ
τ

∂∂
= +

∂
. exz

xz

e

fu
a

z dt
 (3.84)



54  Theor y of Lubrication

( )τ τ
τ

τ

∂∂
= +

∂
yz e

yz

e

fv
a

z dt

where a = 0 if the fl uid elasticity is neglected and a = 
1

G
 if fl uid elasticity is considered and ( )τ τ τ= +

1
22 2

e xz yz
; 

τ
e
 is equivalent shear stress when fl ow is two dimensional.

Lubricant characteristics in terms of pressure (p) and temperature (T) are described by the following 
relationship:

 ( )η η α β
⎛ ⎞⎛ ⎞

= + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

0

0

1 1
, expp T p

T T
 (3.85)

where h
0
 is the viscosity of fl uid at reference temperature T

0 
and at ambient pressure, ,α β  are viscosity pres-

sure and viscosity temperature coeffi  cients, respectively.
Similar relationships can be written for limiting shear stress of the fl uid, e.g., 

 ( )τ ,
L

p T  = ( )τ + + −
0 0L

ap b T T  (3.86)

where a and b are constants that describe pressure and temperature dependence of the limiting shear stress.
Generalized Reynolds equation for non-Newtonian fl uids was developed by Najji et al. (1989) for incom-

pressible lubrication, and by Wolff  and Kubo (1996) for compressible lubrication.
Th e energy equation for non-Newtonian fl uids is similar to the energy equation for Newtonian fl uids as 

given in Equations (3.30) and (3.34), except that the dissipation function, φ , is to be incorporated for non- 
Newtonian fl uids as:

 ( )φ τ τ=
e e

f  (3.87)

Generalized Reynolds equation for non-Newtonian lubricating fi lms can be developed following Najji 
et al. (1989) and Wolff  and Kubo (1996).

Th e Rheological behavior of the fl uid can be expressed as:

 
( )

( )

e xz

xz

e

yze

yz

e

du
a

z dtf

dv
a

z dtf

τ τ
τ

τ
ττ

τ
τ

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

  (3.88)

Substituting τ τand 
xz yz

 as given above in equations of equilibrium (3.83), we get

 

( )

( )

τ τ

τ

ττ

τ

⎡ ⎤⎛ ⎞∂ ∂ ∂⎢ ⎥= −⎜ ⎟∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞∂ ∂ ∂⎢ ⎥= −⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∂
=

∂
0

e xz

e

yze

e

dp u
a

x z z dtf

dp v
a

y z z dtf

p

z

 (3.89)
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Integrating Equation (3.89) twice with respect to z and substituting following boundary conditions for 
no slip at the boundaries:

= = = =
= = = =

1 1 1

2 2 2

,  ,   for 0
,  ,   for 

u u v v w w z
u u v v w w z h

Velocity distributions are obtained as:

 
( ) ( ) ( ) ( )2 11

1
0 0 0 00 0

z z z z
e e x e xz

e e e

f f u u k f dfp
u u zdz dz dz a dz

x f f dt

τ τ τ τ
τ τ τ

⎡ ⎤ − −∂
⎢ ⎥= + − + +

∂ ⎢ ⎥⎣ ⎦
∫ ∫ ∫ ∫  (3.90)

( ) ( ) ( ) ( )2 11

1 0 0
0 00 0

z z
z zy yze e e

e e e

v v k df f ffp
v v zdz dz dz a dz

y f f dt

ττ τ τ

τ τ τ

− −⎡ ⎤∂
⎢ ⎥= + − + +

∂ ⎢ ⎥⎣ ⎦
∫ ∫ ∫ ∫  (3.91)

Velocity gradients are obtained by the diff erentiation of Equations (3.90) and (3.91) with respect to z

 

( ) ( ) ( )τ τ τ
τ τ

− −⎛ ⎞∂∂
= − + +⎜ ⎟∂ ∂ ⎝ ⎠

2 11

0 0

e e x xz

e e

f f u u k dfpu
z a

z x f f dt
 (3.92)

 
( ) ( ) ( ) ττ τ

τ τ

− −⎛ ⎞∂∂
= − + +⎜ ⎟∂ ∂ ⎝ ⎠

2 11

0 0

y yze e

e e

v v k df ffpv
z a

z y f f dt
 (3.93)

where

( )
00 0

;
h h exz

x

e

fd
k a dz f dz

dt

ττ
τ

= =∫ ∫

( )
1 0

0

;
h

hyz e

y

e

d f
k a dz f zdz

dt

τ τ

τ
= =∫ ∫

Flow continuity equation can be written in the integral form as:

 ( )∂ ∂
+ + − =

∂ ∂∫ ∫ 2 1
0 0

0
h h

udz vdz w w
x y

  (3.94)

Using Leibnitz’s rule for integration as given in Equation (3.69) one can write

 
∂ ∂ ∂ ∂

+ = + + −
∂ ∂ ∂ ∂∫ ∫ 2 2 2 1

0 0

h h
h h

udz vdz u v w w
x y x y

 (3.95)

Integrating by parts the left hand side of above equation gives:

2
0 0

h h
u

udz u h z dz
z

∂⎛ ⎞
= − ⎜ ⎟⎝ ⎠∂∫ ∫

and 
2

0 0

h h
v

vdz v h z dz
z

∂⎛ ⎞
= − ⎜ ⎟⎝ ⎠∂∫ ∫   (3.96)
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Substituting Equations (3.92) and (3.93) into the above equations and integrating across the fi lm 
 thickness,  generalized Reynolds equation for non-Newtonian fl uids is obtained as:

( ) ( )2 2

2 2 2 2

u h v hp p h h
I I h u v

x x y y x y x y

⎡ ⎤∂ ∂⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥+ = + − − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦

 

( ) ( )

( ) ( ) ( )

1

1 2 2 1

0

1

1 2 2 1 2 1

0

x

yx

y

I
u u k u u h

x f

III
v v k v v h w w

y f x y

⎡ ⎤∂
− − + −⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
∂⎛ ⎞⎡ ⎤ ∂∂

− − + − − + + −⎢ ⎥ ⎜ ⎟∂ ∂ ∂⎢ ⎥ ⎝ ⎠⎣ ⎦  

(3.97)

where

( )τ

τ

⎛ ⎞
= − ⎜ ⎟⎜ ⎟⎝ ⎠

∫ ∫1 0 0

h z e

e

f
I dz dz

( )τ

τ

⎛ ⎞
= − − ⎜ ⎟⎜ ⎟⎝ ⎠

∫ ∫1 1

2 0 0
0

h z e

e

ff I
I zdz dz

f

τ⎛ ⎞
= − ⎜ ⎟⎝ ⎠∫ ∫0 0

h z
xz

x

d
I a dz dz

dt

τ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫ ∫0 0

h z yz

y

d
I a dz dz

dt

Usually surface velocities in y direction, i.e., v
1
 and v

2
 are zero or in other words surfaces are not moving 

in y direction and v
1
=v

2
=0. Only one of the surfaces moves in x direction, i.e., either u

1 
= 0 or u

2 
= 0.

Equation (3.94) is the generalized Reynolds equation for non-Newtonian fl uids developed by Wolff  and 

Kubo (1996) for elastic viscoplastic lubrication. When a = 0, the fl uid is viscoplastic and in that case 
x

I  and 

y
I

 
are zero. In case of 

( )τ

τ
e

e

f
 = 

η
1

 and a = 0, it becomes the Equation (3.73) developed by Fowles (1970) as 

generalized thermal Reynolds equation. For h = constant, it reduces to the Reynolds equation for isoviscous 
and incompressible lubricants developed by Najji et al. (1989). Regarding derivation of Reynolds’ equation for 
bubbly fl uids and emulsions readers can refer to Szeri (1998).

3.13 | Reynolds Equation for Power Law Fluids

Dien and Elrod (1983) adopted perturbation procedure to develop a generalized Reynolds equation for 
power law fl uids. With the usual assumptions made for the derivation of Reynolds equation, the simplifi ed 
momentum equations are written as:

 

η

η

∂ ∂⎛ ⎞∂
= ⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂ ∂⎛ ⎞
= ⎜ ⎟⎝ ⎠∂ ∂ ∂

p p

x z z

p v

y z z
 (3.98)
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Th e viscosity h is dependent on the second invariant of the strain rate tensor which reduces to:

 I = 
∂ ∂⎛ ⎞ ⎛ ⎞

+⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂

2 2
u v

z z
 (3.99)

Th e relationship for viscosity then becomes:

 h = h(I ) (3.100)

To proceed further, the pressure gradient is expressed in the form:

 λ∇ = ∇
1

p  (3.101)

where λ  is the amplitude parameter for expansion and 1
p  is the reference pressure.

Following fi rst order perturbations we can write in terms of ‘λ ’ as:

 
( ) ( )
( ) ( )

λ
λ

= + +
= + +

0 1

0 1

, , ...........

, , ...........

u u x y u x y

v v x y v x y  (3.102)

Th e second invariant of strain rate tensor then expands to

 λ
∂ ∂∂ ∂⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞

= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

2 2

0 01 12
u vu vu v

I
z z z z z z

 (3.103)

 
λ= +

0 1
I I I

 
(3.104)

Since the viscosity depends only on the second invariant, it is written:

( ) η
η η λ η λ

∂⎛ ⎞
= + + = + + =⎜ ⎟⎝ ⎠∂0 0 1 0

, .......... ( ) ......I I I I I I
I

 ( ) η
η η η

=

∂⎛ ⎞
= = =⎜ ⎟⎝ ⎠∂

0

0 0 1 1
;

I I

I I
I

 (3.105)

Substituting Equation (3.105) into Equation (3.98) the zeroth order equations are obtained as:

 

η

η

∂⎛ ⎞∂
=⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞∂
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0

0

0

0

0

0

u

z z

v

z z

 (3.106)

Integration of Equation (3.106) and substitution of following boundary conditions

= = =

= = =

0 0

0 0

 and  at 

0 at 0

u U v V z h

u v z

we get

 = =
0 0

,
z z

u U v V
h h

 (3.107)
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Th e fi rst order equations, being the coeffi  cients of λ  are:

 

01 1

0 1

01 1

0 1

uu p

z z z z x

vv p

z z z z y

η η

η η
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∂∂ ∂⎛ ⎞⎛ ⎞∂ ∂
+ =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (3.108)

η
1 in Equations (3.108) is given by Equations (3.105) and using Equation (3.105) the above equations 

reduce to:

 

η
η

η
η
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z h I z h z h z y
 (3.109)

Th e above equations are linear with constant second derivatives of fi rst order velocities 
1

u  and 
1

v . 
Solutions of above equations give:
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η
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 (3.111)

Usually the surface velocity = 0V  since the surface moves in only one direction. Th erefore, the above 
equations reduce to
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η
η
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π

η
∂ ∂

=
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2
1

2
0

1v

z y
 (3.113)

and
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Having both zeroth and fi rst order velocities, the total velocities are given as:

 

λ
λ

= +
= +

0 1

0 1

u u u
v v v

 
(3.114)

Th e mass fl ux is determined by integrating u and v across the fi lm thickness and is written in general as:

 
( )

ρ ρ
η

η

⎧ ⎫
⎪ ⎪

∇⎪ ⎪
= − ∇ −⎨ ⎬

⎛ ⎞∂⎪ ⎪+⎜ ⎟⎪ ⎪∂⎝ ⎠⎩ ⎭

3

1
2

ˆ ˆ.

2 12 ln
1

ln

o

s s pSh h
M p

I
  (3.115)

where ŝ  is the direction unit vector of local surface velocity S.
In the case of Newtonian fl uids, h is independent of I and the last term in the above equation varnishes. 

In general case of non-Newtonian fl uids, h
0
 and 

η
∂
∂

1/2ln

ln

I
 should be evaluated from the local Couette strain 

rate.
Since, in case of a power law fl uid

 

1

1

n n

xz

n n

yz

u u u u
m m

z z z z

v v v v
m m

z z z z

τ η

τ η

−

−

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂

 (3.116)

and η

−

−⎧ ⎫∂⎛ ⎞⎪ ⎪= =⎨ ⎬⎜ ⎟⎝ ⎠∂⎪ ⎪⎩ ⎭

1
2 2 1

2

n

nu
m I

z
 (3.117)

Th erefore,

η
∂

=
∂ −

1
2ln 1

ln 1

I

n

Alternately mass fl ux M is written as:

 ( )ρ
ρ

η
⎧ ⎫−⎛ ⎞

= − ∇ − ∇⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭

3 1
ˆ ˆ.

2 12
o

Sh h n
M p s s p

n  (3.118)

where n is the local power law exponent

η
−

=
1

2
0 0

n

mI

since

 

⎧ ⎫∂ ∂⎛ ⎞ ⎛ ⎞⎪ ⎪= +⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

2 2

0 0

0

u v
I

z z
 (3.119)

and similarly
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Using Equation (3.97) and for = 0V ,

 η
−

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 1

0 0
and  

n
U U

I m
h h

 (3.120)

Mass fl ux in x-direction is given as:

 
ρ

η η
∂

= −
∂

3

0

1

12x

ph
M

x
 (3.121)

Mass fl ux in y-direction is given as:

 
ρ

η η
∂

= −
∂

3

0

1

12y

ph
M

y
 (3.122)

Th e generalized Reynolds equation for power law fl uids can be determined using mass fl ow continuity 
relationship as given below:

 ( ) ( ) ρ
∂∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂

0
x y

p h
M M h

x y t t  (3.123)

Th us, the generalized Reynolds equation is determined as:

 ( ) ( )
2 2

6 12
n n

n
ph h

U h h
x nm y y m t x t

ρ ρ
ρ ρ

+ +⎛ ⎞ ∂⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

 (3.124)

For incompressible lubrication it reduces to

 
+

+
⎛ ⎞∂∂ ∂ ∂ ∂ ∂⎛ ⎞

+ = +⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

2
2 6  12

n
n n

ph h h
h m U

x n x y y x t
 (3.125)

3.14 | Examples of Slow Viscous Flow

3.14.1 | Flow of Two Immiscible Liquids Down an Inclined Plane

Figure 3.4 shows schematically the fl ow of two immiscible liquids designated as ‘a’ and ‘b’ down an incline 
plane. Th e fl ow is due to gravity force acting on the fl uids.

Figure 3.4 | Falling Film on Inclined Plane Pressure p
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Th ere is an interface between the layers of fl uids and an interface with air at the top surface of the 

fl uid b. Th e viscosities and densities of the fl uids are defi ned as η η,
a b

 and ρ ρ,
a b , respectively. Th e possible 

nature of velocity distributions are also shown in the fi gure. Th e liquid fi lm thicknesses are ,  
a b

h h , respectively. 
Inclination of the plane with vertical is θ .

Th e generic momentum equation in direction normal to the plane, i.e., in z direction can be written as:

 0 sin
p

g
y

ρ θ
∂

= − −
∂   (3.126)

ρ can be replaced by ρ ρ
b

 or 
a  for fl uids a and b.

A partial integration with respect to y gives:

 ( )sinp y g f xρ θ= − +   (3.127)

Th e arbitrary function ( )f x  is evaluated using the fact that atmospheric pressure a
p  exists on top of 

liquid b. Th us, using this condition we obtain the expression for pressure in the liquid layer b as:

 ( )ρ θ= − +sin
b b a

p g h y p ; ≤ ≤
a b

h y h  (3.128)

Interface pressure ( )ρ θ= − +sin
i b b a a

p g h h p

Th e pressure in the liquid ‘a’ is written as:

 ( )ρ θ= − +sin
a a i

p g h y g p ; ≤ ≤0
a

y h  (3.129)

x-directional momentum equation for the fl ow of a viscous fl uid is expressed as:

 
2

2
0 cos

u
g

y
η ρ θ

∂
= +

∂
 (3.130)

No slip condition is applicable at the wall and also at the interface. Th us,

 ( ) ( ) ( )= = −0 0 and 
a a a b b a

u u h u h h  (3.131)

A second condition is that the shear stress is continuous across the interface. Th us,

  at a b

a b a

du du
y h

dy dy
η η= =  (3.132a)

Since air exerts negligible shear stress on the liquid.

 0 at b

b b

du
y h

dy
η ≅ =  (3.132b)

Integrating Equation (3.130) twice with respect to y one would obtain the velocity distributions of the 
fl ow of fl uids ‘a’ and ‘b’ as given below:

 θ
ν

= − + +2
1 2

cos
a

a

g
u y C y C  (3.133)

 θ
ν

= − + +2
3 4

cos
b

b

g
u y C y C  (3.134)
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Th e constants of integration C
1
, C

2
, C

3,
 and C

4
 can be determined using Equations (3.131) and (3.132). 

Th us,

ρ
θ

ν ρ
⎡ ⎤

= +⎢ ⎥
⎢ ⎥⎣ ⎦

1
cos 1a b

a

a a

gh
C h ; θ

ν
= =

2 3
0 ; C cosb

b

h
C g ;

( )θ θ ρ θ
ν ν ρ ν
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2

4

cos cos cos
2 1

2
b a b b

b a a b a

b a a b

gh gh gh
C h h h h h

Th e fl uid velocities are thus obtained as:
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g
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 (3.135)
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3.14.2 | Flow of a Viscous Fluid Through a Vertical Annulus

Figure 3.5 shows schematically a vertical annulus through which a viscous fl uid fl ows due a pressure gradient 
along the fl ow direction. It is desired to fi nd out an expression of velocity distribution within the clearance 
space of the annulus.

Figure 3.5 | Flow Through an Annulus
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Force acting on the elemental area due to pressure gradient 
∂
∂

p

y
 in the fl ow direction, i.e., along the 

length of the annulus is written as:

 ( )π π ρ π ρ π
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂

− + + = − +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
2 .2 2 2

p p
p rdr p dy rdr g rdrdy g rdrdy

y y
 (3.137)

Net viscous force acting on the element from right to left is obtained as:

 ( )τ τ
τ π τ π π τ

∂ ∂⎡ ⎤ ⎡ ⎤
+ + − = +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

2 2 2dr r dr dy rdy r drdy
r r

  (3.138)

For fully developed laminar fl ow through the annulus, Equations (3.137) and (3.138) can be combined 
to give:

τ
ρ π π τ

⎛ ⎞∂ ∂⎛ ⎞
− + + + =⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂⎝ ⎠

2 2 0
p

g rdrdy r drdy
y r

Th is reduces to:

 
τ

τ ρ
∂∂

+ = −
∂ ∂

p
r r gr

r y  (3.139)

Since shear stress τ η
∂

=
∂

u

r
, above equation reduces to,

 η ρ
∂∂⎛ ⎞

= −⎜ ⎟⎝ ⎠∂ ∂
pd u

r r gr
dr r y

 (3.140)

Integrating Equation (3.130) with respect r successively it can be shown that fl ow velocity can be 
expressed as:

 ρ
η η η

= − + +
2 2

ln
2 4

dpr r A
u g r B

dy
 (3.141)

where A and B are constants of integration which can be determined by substituting the boundary conditions 
for fl uid velocity as mentioned below:

= =
1 2

0 at  and u r r r

Th e constants of integration are obtained using above boundary conditions as:

2 2
2 1

2
1

1
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4
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ρ
ρ

η
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Th us, velocity distribution can be written as:

 

2 2
2 1 2

2 1

1
ln

4 ln( / )

r rdp
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dy r r
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η
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 (3.142)

Maximum velocity occurs when = 0
du

dr
 and it can be shown that it occurs at a radius given by:

 

ρ
=

−

2 A
r

dp
g

dy

  (3.143)

For further examples of fl ow of viscous fl uids through narrow gaps readers can refer to Bird, Stewart and 
Lightfoot (1960) and Hamrock (1994).

Examples

E.3.1 Consider the system shown in Fig. 3.6 in which the cylindrical rod is being moved with an axial 
 velocity V. Th e rod and the cylinder are coaxial. Determine the expressions of the steady state velocity dis-
tribution and volume rate of fl ow. Determine the force per unit length to move the rod. Pressure gradient is 
zero. Proceed from the fundamentals.

Figure 3.6 | A Cylindrical Rod Driven through a Viscous Fluid in a Pipe

Fluid Pressure p Fluid Pressure p

Radius R

Rod Radius kR

Force F

Moving Rod

Velocity n

S o l u t i o n :

Navier–Stokes equation in the direction of fl ow is written in cylindrical coordinates as:

 θρ η
θ

∂ ∂ ∂∂⎛ ⎞ ∂
+ + + = − + ∇⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

2z z zr

r z z z

v v v vv p
v v B v

t r r z z
 (3.1a)

where

θ
∂ ∂ ∂ ∂

∇ = + + +
∂ ∂ ∂ ∂

2 2 2
2

2 2 2 2

1 1

r r r r z

Following assumptions are made to get the solution:

• Inertia forces and body forces are negligible

• Velocity gradients in the direction of fl ow are also negligible and therefore

θ

θ
∂ ∂ ∂

>>
∂ ∂ ∂

 , z z
v v v

r z

• Density and viscosity are constant
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Given that pressure gradient = 0
dp

dz
, the equation of motion reduces to

 η
∂ ∂⎛ ⎞

+ =⎜ ⎟∂ ∂⎝ ⎠

2

2

1
0z z

v v

r r r
 or 

∂⎛ ⎞∂
=⎜ ⎟∂ ∂⎝ ⎠

0z
v

r
r r

 (3.2a)

Integrating above equation twice with respect to r, we can get

 
= +

1 2
ln

z
v c r c

 (3.3a)

Boundary conditions for the axial velocity are

= = = = at  and 0 at 
z z

v V r kR v r R

Substituting the boundary conditions, constants of integration c
1
 and c

2
 are determined as

=
1 ln

V
c

k
, = −

2
ln

ln

V
c R

k

and the expression of axial velocity is obtained by substituting the constants in Equation (3.3a) as

 

⎛ ⎞
= ⎜ ⎟⎝ ⎠

ln
lnz

V r
v

k R  (3.4a)

Volume fl ow rate of the fl uid Q is determined as:

2
R

z
kR

Q v rdrπ= ∫

Using the expression of axial velocity given in Equation (3.4a), the volume fl ow rate is obtained after 
integration as:

 

2 2
2

1
2

2 ln(1/ ) ln(1/ )

R V k
Q k

k k

π −⎡ ⎤
= −⎢ ⎥⎣ ⎦  (3.5a)

Force per unit length required to move the rod is determined as:

 τ π η π
∂

= =
∂∫ ∫2 2

R R

z

kR kR

v
F rdr rdr

r
 (3.6a)

Substituting for 
∂

∂
z

v

r
 using the expression for v

z
 and integrating the force required to move the rod is 

obtained as:

 ( )πη
= −

22
1

ln

VR
F k

k
 (3.7a)

E.3.2 A thin fi lm of viscous fl uid is held between two parallel circular plates that are separated by a distance 
h apart as shown in Fig. 3.7. One plate is held stationary while the other rotates at an angular speed w about 
its axis. Fluid fl ows out in the radial direction due to a pressure gradient in the radial direction. Determine the 
expression of the radial velocity distribution. Analyze for following fl ow conditions:
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 1. Couette fl ow
 2. Poiseuille fl ow
 3. A fl ow for which volume fl ow is zero
 4. Zero shear stress on the moving plate
 5. Zero shear stress on the fi xed plate

S o l u t i o n :

Assume that the fl ow is laminar and the fl uid is Newtonian. All inertia and body forces are neglected and 
pressure gradient in the circumferential direction is zero for a parallel fi lm. Fluid fi lm is thin so that only 
velocity gradient across the fi lm is considered and all other velocity gradients are negligible.

Navier–Stokes equation reduces to:

 η
∂∂

=
∂ ∂

2

2

r
vp

r z
 (3.8a)

Integrating the above equation and satisfying following velocity boundary conditions = =0 at 0
r

v z

ω= =and  at 
r

v R z h , the velocity distribution is determined as:

 ( ) ω
η

∂
= − +

∂
1

2r

p R z
v z z h

r h
 (3.9a)

Th us, mean velocity can be determined as

 = ∫
0

1
h

m r
v v dz

h
 (3.10a)

Using Equation (3.9a) mean velocity is obtained as

η
∂

= −
∂

2

2m

ph
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η

⎛ ⎞∂ ⎛ ⎞
= − − +⎜ ⎟⎜ ⎟⎝ ⎠∂ ⎝ ⎠

2
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2r

ph z z R z
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r h h h
 (3.11a)

Figure 3.7 | A Circular Disc Rotating on a Film of Viscous Fluid
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or

 ( ) ( )ξ ξ ξ λ ξ ξ ξ
ω ω

= − + = − +2 2
6

mr
vv

R R
 (3.12a)

where              λ ξ
ω

= =
6

 and m
v z

R h

 1. In case of Couette fl ow, pressure gradient is taken as zero, i.e., λ = 0, therefore

ξ
ω

=r
v

R

 2. In Poiseuille fl ow,

( )λ ξ ξ
ω

= − 2r
v

R
, ( )λ

ω ξ ξ
=

− 2

1
.r

v

R

 3. Volume fl ow rate is determined as:

= ∫
0

h

r
Q v dz

Substituting for v
r
 using Equation (3.11a), fl ow rate is obtained after integrating as

ω
η

ω

∂
= − +
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2m

ph R h
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R h
Q v h

For zero volume fl ow rate = 0Q  and thus ω= − / 2
m

v R
Th erefore,

λ
ω

= = −
6

3m
v

R

 4. Flow with zero shear stress at the fi xed surface

Shear stress on the fi xed surface τ =
=

∂
= =

∂0

0

0r

z

z

v

z

Th erefore, using Equation (3.12a) and substituting ξ = 0, gives,

( )ξτ η λ
=

= + =
0

1 0

Th us,

λ = −1  
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 5. Flow with zero shear stress at the moving surface

Shear stress at the moving surface τ =
=

∂
= =

∂
0r

z h

z h

v

z

Using Equation (3.12a) and substituting ξ = 1, gives,

( )ξτ η λ
=

= − + =
1

1 0

Th us,
λ = 1

Problems

P.3.1 Two immiscible incompressible fl uids are fl owing through a horizontal thin slit of length L and width 
W under the infl uence of a pressure gradient. Th e fl ow rates are so adjusted that the slit is half fi lled with 
fl uid 1(denser) and half fi lled with fl uid 2(less dense). It is desired to analyze the system in terms of velocity 
distributions and momentum fl ux. Refer to Fig. P.3.1. Determine the fl ow rates, velocity at the interface, and 
drag on the walls when density of fl uid A is twice the density of fl uid B. Both fl uids have same viscosity.

Figure P.3.1 | Flow of Two Immiscible Fluids Through a Slit

Liquid A

Liquid B

P.3.2 A shaft of radius r
1
 concentric with a sleeve of radius r

2
 is held stationary when the sleeve moves with 

an axial velocity V. Th e clearance space between the shaft and the sleeve is fi lled with a fl uid of viscosity h. 
Determine the expression of velocity profi le of the fl uid and volume fl ow rate when there is pressure gradient 

Figure P.3.2 | Flow of a Viscous Fluid Between a Shaft and a Sleeve

Moving Sleeve Axial Velocity v

Stationary

Shaft

r
2

r
1
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in the axial direction. Density and the viscosity of the fl uid are assumed constant. Fluid inertia eff ects and 

body forces are negligible. Assume −
⎛ ⎞−

=⎜ ⎟
⎝ ⎠

2 1 3

1

10
r r

r
.

P.3.3 Develop the expression of fl uid velocity for the fl ow of a Bingham plastic fl uid through an annulus 
and determine the expression of volume fl ow rate. Extend the analysis for the fl ow of a power law fl uid 
through an annulus.

P.3.4 Determine the expression of velocity profi le of axial fl ow of a fl uid between two coaxial station-
ary cylinders under an axial pressure gradient. Determine the expressions of fl ow rate and shear stresses at 
both surfaces. Take 

2 1
/r rκ = . Determine the maximum velocity of fl uid between two coaxial cylinders given 

= =
2 1

7.5  and 5r cm r cm and fl ow rate Q = 5.4 × 10−3 m3/sec. Determine (i) pressure drop, (ii) maximum value 
of fl ow velocity, and (iii) shear stress at the wall of both cylinders.

P.3.5 Analyze the fl ow of a Newtonian fl uid between two concentric rotating cylinders. Assume the fl ow to 
be peripheral so that only tangential velocity component θv  exists. Assume the inner and outer cylinders to be 
rotating at angular velocities ω ω

1 2
 and , respectively.
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Chapter

Hydrodynamic Lubrication

4.1 | Introduction

Hydrodynamic fi lms in mechanical components are formed due to self-action or wedge action which results in 
the generation of pressure to carry the load avoiding metal to metal contact. Film thickness in  nonconformal 
contacts, e.g., line and point contacts, which are encountered in rolling element bearings, gears, etc., is usu-
ally 1 μm or less, and the lubrication is referred to as thin fi lm lubrication. On the contrary, fi lm thickness in 
conformal contacts, viz., in journal bearings, thrust bearings and seals, etc. are thick usually between 2–10 μm 
and the lubrication is generally referred to as thick fi lm lubrication.

Th is chapter deals with the analytical solutions of hydrodynamic lubrication in journal and thrust 
bearings. Classical solutions usually fall in the category of isoviscous and isothermal regime of lubrica-
tion. Th is implies that viscosity–pressure–temperature eff ects are not considered. It also implies that 
 pressures and  temperatures are not high enough to have signifi cant infl uence on the viscosity of the 
lubricant which can be considered as constant. However, isothermal conditions are idealizations which 
in practice seldom exist.

4.2 | Hydrodynamic Journal Bearings

Journal bearings are mechanical components used to support shafts of a machine. Journal bearings are there-
fore designed to carry radial loads. Th e load carrying capacity is developed due to the generation of pressure 
by the fl uid fi lm formed in the clearance space between the bearing and journal. Th e lubricant is dragged or 
entrained into the clearance space because of rotation of the journal or the shaft. Th e clearance space is con-
vergent divergent when the journal center is eccentric with respect to the bearing center subject to a radial 
load that is acting either due to the weight of the rotor or due to an external force. A journal bearing-rotor 
system is shown schematically in Fig. 4.1.

r4
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Th e journal is eccentric with respect to the bearing under loaded condition. Th e shape of the clearance 
space is shown in Fig. 4.2.

Th e expression for fi lm thickness can be easily determined from the geometry of the fi lm shape. Figure  4. 2 
is referred to determine the expression of fi lm thickness.

Film thickness h = AB which is the fi lm thickness at B at angle q from the line of center, i.e., = −
b b

h BO AO ;

Figure 4.1 | Journal Bearing and Shaft

Figure 4.2 | Journal Bearing Geometry
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From the triangle 
j b

O AO , one can write

γ θ β
= =

sin sin sin
b

AO R e
 (4.1)

where

=
j

R O A , radius of the journal

=
j b

e O O , eccentricity of the journal center with respect to bearing center since,

γ θ β= −

γ
θ β

θ θ
= = −⎡ ⎤⎣ ⎦

sin
sin

sin sinb

R R
AO

since,

β θ− ⎛ ⎞
= ⎜ ⎟⎝ ⎠

1sin sin
e

R

and

θ θ
θ

−
⎡ ⎤⎛ ⎞

−⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
1sin sin sin

sinb

R e
AO

R

Film thickness is expressed as:

 ( ) θ θ
θ

−
⎡ ⎤⎛ ⎞

= + − −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
1sin sin sin

sin

R e
h R C

R
 (4.2)

Since =
b b

R BO  radius of the bearing, = +
b

R R C , where C is radial clearance between the bearing and 
journal centers in concentric position.

Th e above expression on simplifi cation with the assumption that << 1
e

R
 yields the expression of the 

fi lm thickness

θ= + cosh C e

 ε θ= +(1 cos )h C  (4.3)

where ε =
e

C
 which lies between 0 and 1 and is called the eccentricity ratio. C

R
is usually of the order of 10−3 

in liquid lubricated bearings.

When angle q is measured from a fi xed reference, the fi lm thickness is written as:

 ( )α φ ψ⎡ ⎤= + − +⎣ ⎦cosh C e  (4.4)
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Time rate of change in fi lm thickness or squeeze velocity ∂
∂
h

t
 can be determined by diff erentiating h 

with respect to time, t as:

( ) ( ) ( )α φ ψ φ ψ α φ ψ
∂ ⎧ ⎫⎡ ⎤ ⎡ ⎤= − + + + − +⎨ ⎬⎣ ⎦ ⎣ ⎦∂ ⎩ ⎭

cos .sin
h de d

e
t dt dt

; 

( )θ φ ψ θ∂
= + +

∂
�

�
�cos sin

h
e e

t
 (4.5)

where 
ψψ ∂

=
∂

�

t
 is angular velocity of the rotation of the load and 

φφ ∂
=

∂
�

t
 is the rate of change of attitude 

angle with respect to the load.
Th e Reynolds equation for an incompressible lubricant can now be written for a journal bearing as:

 ( )ω θ φ ψ θ
η η

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ⎡ ⎤+ = + + +⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
�

�
�

3 3

6 12 cos sin
p ph h h

R e e
x x y x x

 (4.6)

where ε θ= +(1 cos )h C

Under steady state condition, the terms φ ψ= = =�

�
� 0e  and Equation (4.6) reduces to

 ω
η η

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

3 3

6
p ph h h

R
x x y x x

 (4.7)

Hydrodynamic lubrication of journal bearings require solution of the above equation satisfying appropri-
ate boundary conditions, to determine load carrying capacity for a known eccentricity ratio, oil fl ow rate, and 
frictional power loss in terms of known viscosity of lubricant, geometry, e.g., diameter of the journal, bearing 
length, and operating speed of the journal.

Analytical solution of hydrodynamic journal bearings will be discussed in the following sections.

4.3 | Long Bearing Solution

Long bearing solution assumes that the axial length of bearing is very large in comparison to its diameter, 
i.e., L/D >>1. In this case, it is assumed that fi lm pressure in the axial direction does not vary and therefore 

the term ∂
∂

p

y
 in the Reynolds equation can dropped, i.e., ∂

=
∂

0
p

y
. It also implies that the fl ow of the lubricant 

from the bearing ends is also negligible or zero.

Th e Reynolds Equation (4.7) can be written neglecting ∂
∂

p

y
 term for a constant viscosity lubricant as:

 η
⎛ ⎞∂

=⎜ ⎟⎝ ⎠
3 6

dp dh
h U

dx dx dx
 where ω=U R  (4.8)

Substituting θ=x R , the above equation becomes

 η
θ θ θ

⎛ ⎞∂
=⎜ ⎟⎝ ⎠

3 6
dp dh

h UR
d d d

 (4.9)

where ε θ= +(1 cos )h C
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Th e relationship between the load carrying capacity of the oil fi lm and the eccentricity ratio can be 
 determined by integrating the pressure distributed over the fi lm domain area. Pressure distribution in the oil 
fi lm can be determined by integrating the above equation satisfying appropriate boundary conditions.

Oil or the lubricant is usually fed to the bearing through an oil hole or a groove made at a location coin-
cident with the maximum fi lm position, i.e., at q = 0. It is also assumed that pressure is equal to ambient pres-
sure at q = 0 or otherwise equal to oil feed pressure if the oil is fed at a pressure higher than the atmospheric 
pressure. Integration of the Reynolds Equation (4.9) is necessary to determine the pressure distribution and 
load capacity for a known eccentricity ratio. Sommerfeld (1904) gave what is known as Sommerfeld substitu-
tion which made it possible to integrate the Reynolds equation.

Integrating Equation (4.9) with respect to q once yields:

 η
θ

−
=

3
6

dp h h
UR

d h
 (4.10)

where h  is the fi lm thickness at which 
θ

∂
=

∂
0

p

Equation (4.10) is sometimes known as integrated Reynolds equation.

Integrating Equation (4.10) once again with respect to q gives

 
( ) ( )

η θ θ

ε θ ε θ

⎡ ⎤
⎢ ⎥= − +
⎢ ⎥+ +⎣ ⎦
∫ ∫2 32

6

1 cos 1 cos

UR d h d
p A

C C
 (4.11)

A is the constant of integration which can be determined satisfying the following boundary conditions:
p = 0 at q = 0

Integrals 
( ) ( )

θ θ

ε θ ε θ+ +
∫ ∫2 3

 and 
1 cos 1 cos

d d
 can be determined by invoking Sommerfeld substitution 

as stated below:

 ( ) ε
ε θ

ε γ
−

+ =
−

21
1 cos

1 cos
 (4.12)

γ is the Sommerfeld variable

Alternately,

γcos  = ( )
ε θ

ε θ
+

+
cos

1 cos
 ; γsin = 

( )
( )

ε θ
ε θ

−

+

1
2 21 sin

1 cos

θsin  = 
( )ε γ

ε γ
−

+

1
2 21 sin

1 cos
 (4.13)

θcos  = γ ε
ε γ

−
+

cos

1 cos
 and

θd  = 
( )ε γ

ε γ
−

−

1
2 21

1 cos

d
 (4.14)
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using the substitutions given by Equations (4.12) and (4.14) in the Equation (4.11), the pressure distribution 
is obtained as:

 
( )

( )( )
ε θ θη ε

ε ε θ

+
=

+ +
22 2

2 cos sin6

2 1 cos

UR
p

C
 (4.15)

Th e fi rst boundary condition p = 0 at q = 0 yields the constant of integration A = 0 in Equation (4.11).

Th e second boundary conditions 
θ

= 0
dp

d
at =h h  gives the value of fi lm thickness h  as:

 
( )

( )
ε

ε
−

=
+

2

2

2 1

1

C
h  (4.16)

Th us, the expression of maximum pressure p
m
 is obtained as:

 ( ) ( )
( )( )

ε θ ε θ
η

ε ε θ

+
=

+ +
2

2
2

6 sin 2 cos
/

2 1 cos

m m

m

m

p UR C  (4.17)

which occurs at a location, θ
m

 and is determined as:

 θsin
m

= 
( )

( )
ε ε

ε
− +

+

1
2 4 2

2

4 5

2
 (4.18)

Load carrying capacity, attitude angle and fl ow rate of the lubricant in the circumferential direction, 
coeffi  cient of friction or frictional loss of energy etc can be determined using the pressure distribution given 
by Equation (4.15). Sommerfeld assumed that the entire bearing clearance is full of lubricant and thus 
while determining load capacity the integration process was carried between θ π= 0 and 2 .Th is is known 
as Sommerfeld full fi lm boundary condition. However, Sommerfeld boundary condition leads to generation 
of negative pressure in the divergent portion of the lubricant fi lm, i.e., between π to 2π which are equal in 
magnitude to the positive pressures generated in the convergent portion of the fi lm between 0 and π. Pressure 
distribution thus obtained is shown in Fig. 4.3 schematically.
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Figure 4.3 | Circumferential Pressure Distribution in Journal Bearing Film
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4.3.1 | Load Capacity

Components of load along the line of centers and perpendicular to it, respectively, are given as:
Load component along the line of centers of the bearing is determined as:

 
π

θ θ φ= − =∫
2

0
. cos cos

r
W L p R d W  (4.19)

Load component of the bearing in the direction normal to the line of centers is given by:

 
2

0
sin sin

t
W L pR d W

π
θ θ φ= =∫  (4.20)

Substituting for p from Equation (4.15) gives

 
( )
( )( )

π ε ε θ θ θη
θ

ε ε θ

+
=

+ +
∫

2 2

22 0 2

2 cos sin cos6

2 1 cos
r

UR L
W d

C
 (4.21)

and

  
( )

( )( )
π ε ε θ θη

θ
ε ε θ

+
=

+ +
∫

22 2

22 0 2

2 cos sin6

2 1 cos
t

UR L
W d

C
 (4.22)

Integrations yield

 
= 0

r
W ; 

( )
( )( )

πη ε

ε ε
=

+ −

2

1
2 2 2

12 /

2 1
t

U R C L
W  (4.23)

Attitude angle φ is determined as

φ =tan t

r

W

W
; 

π
φ −= =1tan

2
t

r

W

W

Th is means that displacement of the journal takes place in the direction normal to the load. Th is is because 
of inclusion of negative pressures of the divergent portion of the fi lm due to use of full fi lm Sommerfeld 
boundary condition. It is well known that lubricating oils/fl uids can only with stand very small negative pres-
sure or in other words low vacuum condition and therefore the oil fi lm ruptures in the divergent region of the 
clearance space. Sommerfeld boundary condition or full fi lm condition is therefore unrealistic and should not 
be used to estimate bearing performance parameters.

Th e total load capacity W is thus given by:

 
( )

( )( )
πη ε

ε ε
= =

+ −

2

1
2 2 2

12 /

2 1
t

UL R C
W W  (4.24)

Th is can be expressed in terms of a dimensionless parameter S known as Sommerfeld number, S as given 
below:

 
( )( )ε εη

π ε
+ −⎛ ⎞

= =⎜ ⎟⎝ ⎠

12 2 2 2

2

2 1

12

N R
S

P C
 (4.25)

where =
W

P
LD

, N is rps of journal
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4.3.2 | Friction Force

Friction force at the journal surface can be determined by integrating shear stress on the journal surface over 
the journal surface area. Th erefore, the friction force is written as:

 
π
τ θ= ∫

2

0j j
F LRd  (4.26)

η
τ

θ
= +

2j

dpU h

h R d

Substituting t
j
 in Equation (4.26) and integrating we get

 
( )

( )( )
π ε

η
ε ε

+⎛ ⎞
= ⎜ ⎟⎝ ⎠ + −

2

1
2 2 2

4 1 2

2 1
j

R
F UL

C
 (4.27)

and coeffi  cient of friction on the journal surface is given as:

 
ε

μ
ε

+⎛ ⎞
= = ⎜ ⎟⎝ ⎠

21 2

3

j

j

F R

W C
 (4.28)

Similarly, friction force at the bearing surface can be determined as:

 
π
τ θ= ∫

2

0b b
F LRd  (4.29)

where τ
θ

= −
2b

dph

d
 substituting this in Equation (4.29) and integrating the friction force at the bearing 

surface is obtained as:

 
( )

( )
π εη

ε
−

=
+

1
2 2

2

4 1

2b

ULR
F

C
 (4.30)

since F
j
 > F

b
 the relationship between load and friction forces is given by:

 = +
j b

RF RF We  (4.31)

Th erefore, it is appropriate to evaluate friction force at the journal surface only.
It has been seen that Sommerfeld’s full fi lm condition does not exist in practice and also leads to incorrect 

result, a more realistic boundary condition must be used to determine bearing performance parameters such 
as load capacity, oil fl ow rate, friction coeffi  cient, etc.

Experimental observations of Cole and Hughes (1956) confi rmed that oil fi lm breaks down or ruptures 
in the divergent portion of the clearance space. Continuous oil fi lm does not exist beyond the rupture bound-
ary and oil fi lm in this region breaks into fi nger like striations separated by air fi lm until it builds up again 
at the reformation boundary near the position of oil entry at θ = 0 where convergent shape of the clearance 
space starts. Th is is shown in Fig. 4.4. Th is phenomenon is known as cavitation. Th erefore, proper fi lm rupture 
boundary condition must be used to identify the fi lm rupture boundary that satisfi es the continuity of fl ow of 
lubricant in the circumferential direction.

Alternatively, the bearing performance parameters were determined assuming that fi lm ruptures at q = π 
where pressure becomes equal to zero or ambient. Th is boundary condition was suggested by Gümbel and is 
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more commonly known as half Sommerfeld boundary condition or π –fi lm boundary condition. Th erefore, 
load components in radial and normal directions are expressed, respectively, as:

π
θ θ= − ∫0

cos
r

W L pR d  and 
π

θ θ= ∫0
sin

t
W L pR d

Substituting for p from Equation (4.15) and carrying out above integrations, we get

 ( )( )
ε

η
ε ε

⎛ ⎞
= ⎜ ⎟⎝ ⎠ + −

2
2

2 2
12

2 1r

R
W U L

C
 (4.32)

 
( )( )

πε
η

ε ε

⎛ ⎞
= ⎜ ⎟⎝ ⎠ + −

2

1
2 2 2

6
2 1

t

R
W U L

C
 (4.33)

and the total load capacity W is given as:

= +2 2
r t

W W W ;

Using Equations (4.32) and (4.33) load capacity of the bearing is obtained as:

 
( )

( )( )
ε π ε π

η
ε ε

⎡ ⎤− −⎛ ⎞ ⎣ ⎦= ⎜ ⎟⎝ ⎠ + −

1
2 22 2 2

2 2

4
6

2 1

R
W UL

C
 (4.34)

and attitude angle, f, is determined as:

 

φ

π
φ ε

ε

−

−

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

⎛ ⎞
= − −⎜ ⎟⎝ ⎠

1

1 2

tan

tan 1
2

t

r

W

W
 (4.35)

Although half Sommerfeld boundary condition yields satisfactory and realistic results, it does not satisfy 
the requirement of fl ow continuity in the cavitation region. Flow continuity condition is fulfi lled at the fi lm 
rupture or cavitation boundary satisfying following boundary conditions, i.e.,

Figure 4.4 | Open View Journal Bearing Surface Showing Cavitation Striations
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θ= = 00 at 0p  and θ θ
θ

= = =0 at
c

dp
p

d

where q
c
 is location of fi lm rupture boundary, and usually occurs beyond p.

Th e above boundary condition is known as Swift–Steiber or Reynolds boundary condition and the nature 
of pressure distribution obtained using above boundary conditions can be seen in Fig. 4.5.

Th e fi lm rupture location, θ
c
, can be determined following Reynolds boundary conditions at q

c
 , i.e., 

 θ
= = 0

dp
p

d
 at

c
θ θ=

 
(4.36)

Equation (4.15) gives the pressure variation with q and satisfi es the inlet boundary condition of
θ= =0 at 0p . Equations (4.9) and (4.10) give

( ) ( )
η

θ ε θ ε θ

⎡ ⎤∂
⎢ ⎥= −

∂ ⎢ ⎥+ +⎣ ⎦

*

2 32

6 1 1

1 cos 1 cos

p UR h

C C

Substituting 
θ

= 0
dp

d
 at θ θ=

c
 gives the fi lm thickness at θ θ=

c
 as:

 ( ) ε
ε θ

ε γ
−

= + =
−

* 21
1 cos

1 cosc

c

h

C
 (4.37)

where g
c
 is the Sommerfeld variable at the cavitation or fi lm rupture boundary. Pressure distribution can be 

expressed in terms of Sommerfeld variable g as:

 ( )
( )

( )
( )

ε γ ε γ ε γ γη
γ γ ε γ

ε γ πε

⎧ ⎫+ − +⎪ ⎪= − −⎨ ⎬
⎡ ⎤+ −⎪ ⎪− ⎣ ⎦⎩ ⎭

2 2

3
2 2 2

2 4  sin sin cos6
sin   

2 1 cos1 c

UR
p

C
 (4.38)

putting γ =( ) 0
c

p  we get ,

 ε γ γ γ γ γ γ− + − =′ ′ ′ ′[sin cos ] 2[ cos sin ] 0
c c

 (4.39)

where γ γ π= −′
c

0 p q
cp
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Figure 4.5 | Circumferential Pressure Distribution for Reynolds Boundary Condition
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Th erefore, for a given e, g
c
 can be determined from Equation (4.39) and thereby q

c
 is also determined. Th e 

two load components are obtained as:

 
( )

( )( )
ε γ

η
ε ε γ

+ ′⎛ ⎞
= − ⎜ ⎟⎝ ⎠ − + ′

2
2

2

1 cos
3

1 1 cos

c

r

c

R
W UL

C
 (4.40)

 
( )

( ) ( )
γ γ γ

η
ε ε γ

−′ ′⎛ ⎞
= ⎜ ⎟⎝ ⎠ − + ′

2

1
2 2

cos sin
6

1 1 cos

c c c

t

c

R
W UL

C
 (4.41)

Th e load W, attitude angle f and coeffi  cient of friction m
j
 can be determined as:

 
( )

( ) ( )
( ) ( )ε γη

γ γ γ
εε ε γ

⎡ ⎤+ ′⎢ ⎥= + −′ ′
⎢ ⎥−− + ′ ⎣ ⎦

1
4 22 2

2

1 2
2 2

1 cos3 /
4 cos sin   

11 1 cos

c

c c c

c

UL R C
W  (4.42)

Attitude angle is given as:

 
( ) ( )

( )
ε γ γ γ

φ
ε γ

− −′ ′
= −

+ ′

1
2 2

2

2 1 sin cos
tan

1 cos

c c c

c

 (4.43)

Friction factor is obtained as:

 
( )

ε φ π
μ

ε

⎛ ⎞
= +⎜ ⎟⎝ ⎠ −

2

1
2 2

sin 2

2 1

R S

C
 (4.44)

where the Sommerfeld number S is defi ned as:

( )η
= =

2
/

 and 
2

N R C W
S P

P LR
 and it is obtained as:

 

( ) ( )
( )

( ) ( )

ε ε γ

ε γ
π

ε γ γ γ

− + ′
=

⎡ ⎤+ ′⎢ ⎥
⎢ ⎥− + −′ ′⎣ ⎦

1
2 2

1
4 2

2

2
2

1 1 cos

1 cos
3

1 4 cos sin

c

c

c c c

S
 (4.45)

4.4 | Boundary Conditions

We have seen that usually Reynolds or Swift–Steiber (1931, 1933) boundary condition is used for fi lm rupture 
near the divergent portion of the fi lm. It has been observed that divergent portion near the fi lm formation 
region close to the lubricant entry causes upstream cavitations too.

Th erefore, correct boundary condition at the start of the hydrodynamic fi lm in divergent space formu-
lated by Floberg (1961), i.e., fi lm reformation boundary condition as given below should be used to satisfy 
fl ow continuity requirement at the inlet of the oil.
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η

⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪− − =⎨ ⎬⎜ ⎟∂ ∂ ⎝ ⎠⎪ ⎪⎩ ⎭

3
1 1

12 12 2
s

UhUh h p p dx

x y dy
 (4.46)

Th e location of starting line will thus depend on L/D ratio, q
s
, e and q

E 
as seen in Fig. 4.6, which shows 

how widely such starting lines may diff er from each other. It is known that Reynolds or Swift–Steiber bound-
ary conditions at the fi lm rupture do not predict the subambient pressures that occur just prior to cavitation 
boundary. Since, most liquids can withstand only a small magnitude of tensile stresses or subambient pres-
sures, and therefore a very small region of subambient pressures will exist in reality. Th e boundary conditions 
proposed by Floberg and Coyne–Elrod (1971) can predict subambient pressure regions too. Pressure profi les 
based on these boundary conditions are of the type shown in Fig. 4.7.

Th e boundary condition given by Coyne–Elrod (1970) at the fi lm-cavity interface is as given below:

 
σ
γ

= − + Δp p  (4.47)
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Figure 4.7 | Circumferential Pressure Distributions for Various Cavitation Boundary Conditions
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where g is the radius of curvature of the interface and s is the surface tension of the lubricant. Th e pressure 
correction Dp is dependent on the surface tension parameter /Uη σ  and is negligible for small values of sur-
face tension parameter.

It was observed by Cole and Hughes (1956) in their experiment that in the cavitation region, the oil fl ow 
breaks into oil streams in the form of narrow strips adhering to the runner. Cavities between strips are occu-
pied by air or gases at constant pressure equal to saturation pressure or vapor pressure of dissolved gases. It is 
usually referred to as gaseous cavitations. Subcavity pressures are usually negligible and the pressure is equal 
to vapor pressure in the cavity. Floberg (1965) suggested the following condition at the end of the pressure 
build up and in the cavitations region, i.e., the oil fl ow leaving the upstream fi lm region:

 
2

down
cav

Uh
aθ =  (4.48)

where a is the fractional width of the oil in the cavitations zone.
Th erefore, for fl ow balance

 ( ) ∂
− − =

∂

3

1 0
2 12

pUh h
a

x
 (4.49)

Th e above equation is satisfi ed only for

∂
= = ≥ < <

∂
0  and  1, where as for  and 0 1

cav

p
a p p a

x

which means that oil fi lls the whole width at the fi lm cavity interface. However, there are usually a fi nite 
number of oil strips in the cavitation zone separated by gaseous regions. According to Floberg, the following 
relationship is applicable at both fi lm region and cavitation region:

 
η⎛ ⎞∂ ∂ ∂

− =⎜ ⎟∂ ∂ ∂⎝ ⎠ 2

6
.

p p x U

x y y h
 (4.50)

4.5 | Short Bearing Solution

If the L/D <<1, i.e., the length of the bearing is very small in comparison to its diameter, the bearing is 
referred to as a short bearing. Th is results in increased axial fl ow and decreased circumferential fl ow. Usually, 

when ≅ 0.25
L

D
, the axial pressure gradient is far greater than circumferential pressure gradient which is 

approximately zero. Th erefore, axial fl ow dominates. Dubois and Ocvirk (1953) assumed that circumferential 

pressure gradient 
θ

∂
=

∂
0

p
and proposed a theoretical solution for full journal bearing.

With the above assumption, the Reynolds equation reduces to:

 η
⎛ ⎞∂∂

=⎜ ⎟∂ ∂⎝ ⎠
3 6

p dh
h U

y y dx
 (4.51)

Substituting θ=x R , the above equation becomes

 η
θ

⎛ ⎞∂∂
=⎜ ⎟∂ ∂⎝ ⎠

3 6
p dh

h U
y y Rd

 (4.52)
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Integrating Equation (4.52) twice with respect to y pressure distribution in the lubricant fi lm is obtained as:

 
η

θ
= + +

2

1 23

6

2

yU dh
p A y A

Rh d
 (4.53)

where constants A
1
 and A

2
 has to be determined by applying the following boundary conditions:

= = ±0  at  / 2p y L

Pressure distribution is thus given by:

 
( )

η ε θ

ε θ

⎛ ⎞
= −⎜ ⎟⎝ ⎠ +

2
2

32

3 sin

4 1 cos

U L
p y

RC
 (4.54)

Th e load capacity can be determined by integrating the pressure over the fl uid fi lm area for the fi lm 
extent of p. Radial component of the load capacity is determined as:

π
θ θ= − ∫ ∫ 2

0 0
2 cos

L

r
W p Rd dy  (4.55)

 
( )

πη ε θ θ
θ

ε θ
= −

+
∫

3

32 0

sin cos

2 1 cos
r

UL
W d

C
 (4.56)

using Sommerfeld substitution and integrating the radial component of the load capacity is obtained as:

 
( )

η ε

ε
= −

−

3 2

22 21
r

UL
W

C
 (4.57)

Load component perpendicular to the line of centers is given by:

 
π

θ θ= ∫ ∫ 2

0 0
2 sin     

L

t
W p R d dy  (4.58)

and is obtained substituting p given by Equation (4.15) and integrating using Sommerfeld substitution as:

 
( )

η πε

ε
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3

32
2 24 1

t

UL
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C
 (4.59)

Th e load capacity W is

 
( )

( )η ε
π ε ε

ε
⎡ ⎤= + = − +⎣ ⎦

−

3 1
22 2 2 2 2

22 2
1 16

4 1
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 (4.60)

and the attitude angle f is

 
( )επ

φ
ε

− −
⎧ ⎫−⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

1
2 2

1 1
1

tan tan
4

t

r

W

W
 (4.61)
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Th e friction on the journal is

 
( )

π η π
η θ

ε
= =

−
∫

2

10 2 2

2

1
j

U ULR
F LRd

h C
 (4.62)

and normalized coeffi  cient of friction is

 
( )

π
μ

ε

⎛ ⎞
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1
2 2

2

1

R S
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 (4.63)

where 
η ⎛ ⎞

= ⎜ ⎟⎝ ⎠

2
N R

S
P C

Th e volume fl ow rate of the lubricant from bearing sides is

 
π

θ ε
η =

∂
= − =
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3

0
2

2   
12 L

y

pRh
Q d ULC

y
 (4.64)

Short bearing theory is applicable for low L/D ratios only usually L/D ≤ 0.25. However, the solution can 
be extended up to L/D = 0.5 when very accurate results are not required.

Load capacity of the long bearing solution can be compared with the load capacity obtained from short 
bearing theory and is given below for p fi lm:

 
( )
( )

( ) ( )
( ) ( )

2 2 2 22

1
22 2 2 2

12 16 1Short  bearing 2
Long bearing 6 1 4

W L

DW

ε ε π ε

ε π ε π

⎡ ⎤+ + −⎛ ⎞ ⎣ ⎦= ⎜ ⎟⎝ ⎠ ⎡ ⎤− − −⎣ ⎦

 (4.65)

It can be seen that the ratio is dependent on L

D
 and e. It is known that short bearing theory gives better 

estimate for bearings with < 0.5
L

D
, whereas long bearing theory generally overestimates load capacity and 

should be used for > 2.0
L

D
.

4.6 | Oil Flow

Oil fl ow generally consists of two components:

 1.  Oil fl ow from the sides of the bearing due to hydrodynamic pressure of the oil fi lm and can be calcu-
lated using hydrodynamic pressure gradients due to relative rotation of the journal. Th is is referred to as 
hydrodynamic fl ow or circumferential fl ow Q

c
.

 2.  Usually the lubricant is fed to the bearing through a hole or a groove at a pressure higher than the atmo-
sphere pressure. Pressure feeding of oil results in fl ow of oil through the bearing sides also. It is more 
through the region where fi lm thickness is high, i.e., around the region of maximum fi lm thickness and 
gradually reduces as the feed pressure eff ect reduces in the region of minimum fi lm thickness. Th is is 
referred so as hydrostatic fl ow or fl ow due to feed pressure (Q

p
).

Th erefore, total oil fl ow rate is the sum of circumferential fl ow and feed pressure fl ow.

= +
c p

Q Q Q
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4.6.1 | Circumferential Oil Flow

Th e oil fl ow through the bearing sides or side leakage is determined by the axial pressure gradient and can be 
determined using short bearing theory as:

 
3

/2
2

12

c

i

c s L

ph
Q Q Rd ULC

y

θ

θ

θ ε
η ±

∂
= = =

∂∫  (4.73)

where θ
i
 angular coordinate at which the pressure build up begins

 θ
c
  angular coordinate at which the fi lm ruptures or cavitations begin

Alternately, it can also be determined as the diff erence of the oil fl ow rate entering into the clearance 
space at the beginning of the fi lm and that fl owing out at the fi lm rupture boundary in the circumferential 
direction. Th erefore, it can be expressed as:

 ( ) ( )
θ θ θ θ− −= =

= −∫ ∫
/2 /2

/2 /2
i c

L L

c x y x yL L
Q Q d Q d  (4.74)

Since the pressure gradient at the start of the fi lm pressure, i.e., θ θθ =

∂
≅

∂
0

i

p
 and pressure gradient at the 

fi lm rupture boundary, i.e., 
θ θθ =

∂
∂ c

p
is also zero, the equation can be written as: 

θ θ θ θ= =

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠2 2

i c

c

UhL UhL
Q  (4.75)

Since ( ) ( ) ( ) ( )θ ε θ θ ε θ= + = +1 cos  and 1 cos
i i c c

h C h C

( )ε
θ θ= −cos cos

2c i c

ULC
Q  (4.76)

Th e fi lm rupture takes place at a location down stream of minimum fi lm thickness, therefore θ π γ= +
c

where g is measured from the location of minimum fi lm thickness.

For θ = 0
i

 θ π=
c

, i.e., for p fi lm, the fl ow rate is obtained as:

 ε=
c

Q ULC  (4.78)

4.6.2 |  Feed Pressure Flow in Journal Bearings

Bearing and the groove geometry is shown in Fig. 4.8. Feed pressure fl ow in plain journal bearings for various 
groove geometries have been determined by Martin and Lee (1982) as feed pressure fl ow equations by curve 
fi tting of the computed results from an accurate fi nite diff erence model. Very useful data on fl ow from oil 
holes, few selected axial groove shapes have also been presented prior to Martin and Lee’s work by Wilock 
and Booser [1975] and Hirano and Shodai [1958]. Various equations for fl ow due to feed pressure were also 
given by Shaw and Macks [1949] and Cameron [1981].
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Martin and Lee (1982) developed equation for feed pressure fl ow through a rectangular groove at any 
position in the bearing and for any journal eccentricity ratio and angular position of the journal center given 
as below:

• Rectangular groove (concentric journal)

 
η

⎛ ⎞−⎜ ⎟⎝ ⎠
= +

⎛ ⎞⎛ ⎞ −− ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

0..3333

1.25 0.25
1 1 /

3 3
11

p

f

a
Q L b L

C p aL
La

 (4.79)

where p
f
 = feed pressure, a-axial length of the groove, b = circumferential length of the groove, C = 

radial clearance, L = bearing length.

• Eccentric position of journal for groove extent up to 270°
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 (4.80)

where ε θ ε θ= + + +3 3
1 1 2

(1 cos ) (1 cos )f
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Figure 4.8 | Groove Geometry (Martin and Lee, ASLE, 1982)
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and 

θ

θ

θ
θ ε θ ε θ θ ε θ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

2

1

3
2 3

2

3 sin
3 sin 1.5 sin 2 sin

4 3
f .

However, there is a small loss of accuracy at large angular-groove extents. For bearings of L

D
 ratio up to 

0.5 above equations can be used with confi dence for any groove extent up to 270°. For long bearings of 
L

D
 

ratio equal to 1.0, the equation can be applied upto a groove extent of 180°. For steadily loaded bearings, the 

angular extent of the groove is more commonly less than 30°. For circumferentially grooved eccentric journal 

bearings, θ θ= =0 0
1 2

0  and 360 , the groove fl ow is given as:

 ( ) ( )
η π

ε= +
−

2

3
1 1.5

3

p

f

Q D

C p L a
 (4.81)

Dimensionless feed pressure fl ow through a single circular oil hole is given as:

 
η ⎛ ⎞ ⎛ ⎞
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3
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p g h

f

Q h d
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 (4.82)

where d
h
 = hole diameter, h

g
 is fi lm thickness at the groove mid point, L is bearing length

Cameron had also developed similar equations for feed pressure fl ow through feed grooves (18) which 
are given below:

• Single circular oil hole:
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 (4.83)

• Rectangular feed groove of small angular extent

 ( )0.333 23

1 1
.
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 (4.84)

• Expressions for rectangular feed groove of large angular extent for zero eccentricity are not available

• Circumferential oil groove (360°)

 ( ) ( )
η

π ε= + 2

3
1 1.5 / 3

p

f

Q
D l

C p
 (4.85)

where = 3( )
g

h
M

C
, l is sum of the axial land lengths

For two grooves at 90° to load line

 M = 

3 3

1 2g g
h h

C C

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4.86)
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4.7 | Hydrodynamic Thrust Bearings

Hydrodynamic thrust bearings meant to carry the axial load of a rotor in its simplest design comprises of two 
inclined plane surfaces that slide relative to each other. Th e bearing surface is usually fi xed while the rotor 
surface moves at a speed relative to the bearing surface. Th e bearing surface may be a fi xed inclined surface or 
otherwise it can be a plane surface pivoted at a point through which the center of pressure or the load passes. 
Th ese are also called fi xed inclined pad or pivoted pad thrust bearings. Th ese pads can also be of the shape of 
a sector in which case the bearing is called sector pad thrust bearing as shown in Figs 4.9 and 4.10. Various 
profi les may also be provided to the pad surface of thrust bearings, viz., exponential, cycloid, catenary, poly-
nomial, and parallel steps which may improve the performance of the bearings.

4.7.1 | Inclined Pad Thrust Bearing

Th e geometry of an inclined pad thrust bearing is shown in Fig 4.11. To generate pressure, the runner has to 
feed oil into a converging wedge. Th e expression of fi lm thickness can be written as:

W
T Sliding Surface

or Runner

N

PadsPivot

Figure 4.10 | Tilting Pad on Levelling Linkage

W
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Figure 4.9 | Tapered Land (Fixed Pad)
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Figure 4.11 | Inclined Pad Thrust Bearing
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( ) ( )α α
−

= − = 1 2

1
  where 

h h
h x h x

B

Th e Reynolds equation for the plane slider can be written in one dimensional form for infi nite width of 
the plane as:

 η
⎛ ⎞

=⎜ ⎟⎝ ⎠
3 6

dpd dh
h U

dx dx dx
 (4.87)

which can be expressed after integrating with respect to x as:

 η
⎛ ⎞−

= ⎜ ⎟⎝ ⎠3
6

dp h h
U

dx h
 (4.88)

where h  is the fi lm thickness at which maximum pressure is obtained, i.e.,

= =0 at 
dp

h h
dx

Th e boundary conditions at the inlet and exit of the pad are as:

= 0p  at = 0x and = 0p  at =x B

Integrating Equation (4.88) with respect to x, the pressure distribution is obtained as:
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A is the constant of integration which is determined by substituting boundary conditions. After integrat-
ing and applying the boundary conditions, one can get the pressure distribution as:
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α α
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where  
( )=

+
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a
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Th e maximum pressure in the pad is determined from Equation (4.90) as:
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ηη
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−−
= =

+
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1 2

1 2 1 2

33 1

2 1 2m

UB h hU a
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a a h h h th
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Load capacity of the pad obtained using the pressure distribution over the pad length is shown in 
Fig. 4.12 (b) for various values of fi lm thickness ratio ‘a’.
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4.7.2 | Bearing Performance Parameters

• Load carrying capacity is calculated using the pressure distribution given by Equation (4.90) as:

 
= ∫0

B

W L pdx  (4.93)

where L is the width of the pad. Substituting p given by Equation (4.90) and carrying out the integra-
tion load capacity is obtained as:
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• Dimensionless load capacity,
2
2

26

Wh
W

UB Lη
=

• Friction force on the moving plane is determined as:

 
τ= ∫0

 
B

F L dx   (4.95)

Figure 4.12(a) | Velocity Distribution Across the Film of Inclined Pad Thrust Bearing
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Figure 4.12 (b) | Dimensionless Load Capacity Versus Film Thickness Ratio of Inclined Pad Thrust Bearing
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where t is the shear stress on the moving surface which is determined as: 

 

η
τ = +

2

dph U

dx h
 (4.96)

Substituting t in Equation (4.95) and integrating one gets friction force as:
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Th e coeffi  cient of friction can be determined as:
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• Center of pressure is the location along the pad at which the resultant force acts. If x
cp
 is the distance 

of the center of pressure from the inlet then it can be expressed as:

 

= ∫cp 0

1 B

x pxdx
W

 (4.99)

Substituting p from Equation (4.90) and integrating x
cp
 is obtained in the dimensionless form as:
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Film thickness ratio ‘a’ for which the load capacity is maximum can be determined by diff erentiat-
ing expression of load capacity given by Equation (4.94) with respect to a and equating it to zero, i.e., 

= 0
dW

da
. Th is gives a = 2.18. Using Equation (4.94) and substituting for a = 2.18 in Equation (4.94) 

one obtains W
max

 as:
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(4.101)

• Velocity profi le and oil fl ow rate can be determined as:
Flow velocity is given below as:

 
( ) ( )
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z h z U h zdp
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Velocity profi les obtained using above equation is shown in Fig. 4.12 (a).

• Oil fl ow rate per unit width of the bearing can be expressed as:
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Oil fl ow rate can be evaluated at the location, where = =0  i.e. at  
dp

h h
dx

as:

 ( )= =
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2
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2 1x

ah UUh
Q

a
 (4.104)

4.7.3 | Pad Shape Variations

Lord Rayleigh in 1918 proposed step bearing consisting of two parallel regions which he showed 
to give biggest load carrying capacity (Fig. 4.13). It is commonly known as Rayleigh step bearing. 
The pressure gradients in two parallel regions are constant and maximum pressure occurs at the step 
(Fig. 4.13).

To maintain continuity of fl ow throughout the bearing
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Figure 4.13 | Rayleigh Step Thrust Bearing
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Load capacity per unit width is determined as the area under the triangle as:

 =
2
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p BW

L
 (4.106)

Both 1

2

h

h
and 1

2

B

B
 ratios can be varied and optimum confi guration works out as =1

2

1.87
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h
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B
. 

Th e optimum load capacity of bearing per unit width of the pad is determined as:

 η= 2
2

0.206 /
W

UB h
L

 (4.107)

Th us, it is seen that for the same length of the pad, a Rayleigh step bearing gives higher load capacity than 
fi xed inclined pad bearing. However, this advantage is lost in the case of square pad bearing when =L B.

It can be shown that for square inclined pad bearing the optimum confi guration gives load coeffi  cient 
of 0.072, whereas square Rayleigh step results in load coeffi  cient of 0.0725. Th ere is practically no diff erence 
between the two.

An alternative confi guration known as tapered land bearing as shown in Fig. 4.14 is also often used. 
Th e optimum confi guration for infi nite width bearing results in the load coeffi  cient of 0.192 for optimum 

confi guration of =1

2

2.25
h

h
 and =1

2

0.8
B

B
.

Any design problem in bearings usually begins with certain given data, e.g., diameter of the journal, load 
acting, and operating speed. Design solution boils down to choosing a length to diameter ratio, selecting an 
oil of appropriate viscosity, proper clearance ratio to ensure a minimum fi lm thickness during operation, and 
achieving a proper heat balance to obtain an eff ective oil temperature during operation to ensure an eff ective 
viscosity of the oil to develop necessary load carrying capacity satisfying minimum fi lm thickness require-
ment. To ensure a proper heat balance, the following relationship must be satisfi ed:

Heat generated due to viscous friction = Heat carried by the outgoing lubricant + Heat dissipation to 
surrounding media including heat conduction to the solids.

Figure 4.14 | Tapered Land Thrust Bearing
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Examples

E.4.1 A journal bearing is operating under following operating conditions: Journal diameter = 20 cm, 
bearing length = 10 cm and journal speed = 600r.p.m. Clearance ratio may be chosen between 0.5, 1, 1.5, 
and 2.0 mm/m. Select a clearance ratio and determine load carrying capacity, oil fl ow rate, power loss, and 
eff ective operating temperature when the oil entry temperature is 55°C while the viscosity of the oil at 38°C 
is 100cS and at 100°C is 12cS. Specifi c gravity of the oil is 0.9. Th e bearing is designed to run at an eccen-
tricity ratio 0.6.

S o l u t i o n :

Given data: Journal diameter, D = 20 cm, bearing length, L = 10 cm. Since L/D ratio = 0.5,

ν = 0 0100  at 38  and 12  at 100cS C cS C . Short bearing theory may be used to seek solution to this problem.
Using ASTM relationship given in Chapter 2, kinematic viscosity of the oil is determined at inlet 

 temperature of 55°C. Th us,

( )ν + = +
10 10 10

log log 0.6 logn T c

n and c are constants to be determined using given data. T is absolute temperature in degree Kelvin and ν is 
kinematic viscosity in centistokes. Th erefore,

( )+ = +
10 10 10

log log 100 0.6 log 311n c

( )+ = +
10 10 10

log log 12 0.6 log 373n c

Solving the above equations, n  and c  are determined as = −3.2n and = 8.28c
Kinematic viscosity of oil is determined at T = 328°K, i.e., 55°C from the following equation

( )ν + = − +
10 10 10

log log 0.6 3.2 log 328 .28, kinematic viscosity is obtained as:

ν −= = ×
2

648.76 48.76 10
m

cS
s

Absolute viscosity of the oil at 55°C can be determined from the above value of ν as

η νρ −= = × × =648.76 10 900 0.044 Pas

For short bearing approximation load carrying capacity W is determined as:

ε = 0.6 , Selecting 3 42 10 , 2 10
C

C
R

− −= × = × , shaft speed, N = 600 rpm

π π × ×
= = =

2 2 600 0.1
6.28 m/s

60 60

NR
U

• 
( )

( )
η ε π ε π

ε

− −
=

−

3 2 2 2

2
2 2

16

4 1

UL
W

C

( )
( )−

× × × × × × − −
= = ×

× × × × −
3

2
6

0.044 6.28 0.1 0.1 0.1 0.6 9.87 0.36 9.87 16
8.79 10 N

4 0.2 0.2 10 1 0.36
W
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• Oil fl ow rate,

 ε −= = × × × × = ×3 30.6 6.28 0.1 0.2 10 0.07536 10Q ULC Nm3/sec

Frictional power loss, =P FU where F is friction force at the journal surface and using short 
bearing theory it is determined as

• 
η π

ε
= ×

− 2

2

1

ULR
F

C
=

π
−

× × ×
× = ×

× −
3

3

0.044 6.28 0.1 0.1 2
0.1355 10

0.2 10 1 0.36
N

• = × × =30.1355 10 6.28 W  0.85 kWP

• Eff ective operating temperature (T
e
) is determined as:

Rise in temperature of the oil ( )ΔT  is determined using heat balance relationship. Th erefore,

Heat generated = 
FU

J
, Heat carried by the fl owing lubricant = ρ Δ

p
Qc T , Th us

ρ
Δ =

p

FU
T

J Qc

where J is mechanical equivalent of heat and c
p
 is specifi c heat of lubricant at constant pressure. In SI 

unit J = 1 Nm and 
p

c = 2000 Joule/kg/ °K
Temperature rise of the lubricant is determined as

ρ
Δ =

p

FU
T

J Qc
 = 

−

× ×
=

× × × ×

3

3 3

0.1355 10 6.28
6.25

0.9 10 0.07536 10 2000
0C

using 0.8 rule eff ective operating temperature is determined as

= + Δ = + × = 00.8 55 0.8 6.25 60 C
e i

T T T

E.4.2 A full journal bearing of width 20 cm with a journal of diameter 10 cm has diametric clearance of 
100 micro meters. Th e journal rotates at 1200 rpm. Th e absolute viscosity of lubricant at 20° C is 0.04 Pas. 
For an eccentricity ratio of 0.6, determine the minimum fi lm thickness, load carrying capacity, attitude angle, 
Sommerfeld number, friction factor. Mass density, and specifi c heat of the oil at constant pressure may be 
taken as 900 kg/m3 and 2.0 J/g/0K, respectively.

S o l u t i o n :

Given data: Journal diameter, D = 10 cm, Bearing length, L = 20 cm, diametric clearance = 100 μm , viscosity 
of oil at 20° C = 0.04 Pas, oil density, ρ = 900 kg/m3, specifi c heat of oil, 

p
c = 2.0 J/g/0K. Since L/D ratio = 2.0 

long bearing approximation may be used.

Radial clearance, C = 50 μm , Eccentricity ratio, =ε 0.6, R = 5.0cm, N = 1200 rpm, = 310
R

C

Minimum fi lm thickness ( ) ( )ε − −= − = ∗ − = ∗6 6
min

1 50 10 1 0.6 20 10h C or 20 μm

Load carrying capacity ( )( ) ( )η
ε π ε π

ε ε
⎛ ⎞

= − −⎜ ⎟⎝ ⎠+ −

2

2 2 2

2 2

6
4

2 1

UL R
W

C
where 

π
=

2

60

RN
U
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π × ×
= =

2 .05 1200
6.28 m/s

60
U

( )( ) ( )π π
× × × ×

= × − − = ×
+ −

6
2 2 6

6 0.04 6.28 0.2 10
0.6 0.36 4 0.3335 10  

2 0.36 1 0.36
W N

Sommerfeld number
η × × × ×⎛ ⎞

= =⎜ ⎟⎝ ⎠ × ×

2
6

6

0.04 1200 0.2 0.1 10

60 0.3335 10

NLD R
S

W C
 = 0.04797

Attitude angle, 
π ε π

φ
ε

− −
⎛ ⎞− ×

= = =⎜ ⎟
⎝ ⎠

2
1 1 0

1 0.64
tan tan 59.157

2 1.2

Friction factor 
( )

ε φ π
μ

ε

⎛ ⎞
= +⎜ ⎟⎝ ⎠ −

2

1/2
2

sin 2

2 1

R S

C
=

( )
π× ×

+
−

0 2

1/2

0.6 sin 59.157 2 0.04797

2 1 0.36
 = 1.4412

E.4.3 An inclined pad thrust bearing is operating with following data:
Pad width = 0.1 m, pad length = 0.15 m, sliding speed = 3m/s, absolute viscosity of the oil = 0.02 Pas, mini-
mum oil fi lm thickness = 25 ×  10−6m, maximum oil fi lm thickness = 50 ×  10−6m. Determine the load carry-
ing capacity, oil fl ow rate, friction factor, and center of pressure. Determine also the value of maximum load 
carrying capacity.

S o l u t i o n :

Given data: Pad width, L = 0.1 m, Pad length, B = 0.15 m, minimum fi lm thickness, h
2 
= 25 μm , maximum 

fi lm thickness, h
1 
= 50 μm, a = h

1 
/h

2 
= 2, sliding speed, U = 3m/s.

Load carrying capacity is determined as:

( )
( )

( )
2 2

2 22 6
2

3

2 16 1 6 0.02 3 0.15 0.1 2
ln ln 2

1 31 25 10 1

35 10 N

aUB L
W a

h aa

η
−

⎡ ⎤− × × × × ⎡ ⎤
= − = −⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎢ ⎥− × ×⎣ ⎦
= ×

Oil fl ow rate ( )=
+

2
2

1x

ah U
Q

a
=

−× × × ×62 2 25 10 3

3
 = 10−4 m3/s

Friction factor 
( ) ( )
( ) ( )

μ ⎡ ⎤− − −
⎢ ⎥=

+ − −⎢ ⎥⎣ ⎦

2
2

2

2 1 ln 3 1

3 1 ln 6 1

a a aB

h a a a
 where μ =

F

W
 is coeffi  cient of friction and F is friction 

force. Th us,

( ) ( )
( ) ( )

μ ⎡ ⎤− − − −⎢ ⎥= = = =
−+ − −⎢ ⎥⎣ ⎦

2
2

2

2 2 1 ln 2 3 2 1 6 ln 2 3 1.15888
4.863

9 ln 2 6 0.23833 2 1 ln 2 6 2 1

B

h

Coeffi  cient of friction μ
−

−× ×
= = ×

6
3

4.863 25 10
0.81 10

0.15
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Center of pressure 
( ) ( ) ( )

( ) ( )
⎡ ⎤⎡ ⎤+ − − − +⎣ ⎦⎢ ⎥=
⎢ ⎥− − −⎣ ⎦

2
2

2 ln 1 2.5 1 3

1 ln 2 1
cp

a a a a a
x B

a a a

( ) ( ) ( )
( ) ( )2

2

2 2 2 ln 2 2 1 2.5 2 1 3
0.15

2 1 ln 2 2 2 1

8 ln 2 5.5
0.15 0.0853

3ln 2 2

cp
x

m

⎡ ⎤⎡ ⎤+ − − − +⎣ ⎦⎢ ⎥= ×
⎢ ⎥− − −⎣ ⎦

−
= × =

−

Center of pressure is located at a distance of 0.0853m from the inlet end, i.e., maximum fi lm thickness end
Maximum load capacity is obtained at fi lm thickness ratio a = 2.18 and can be determined from the 

 following expression

η
=

2

max 2
2

0.1602
ULB

W
h

 = 
( )−

× × ×
= ×

×

2
3

2
6

0.02 3 0.15 0.1
0.1602 216 10

25 10
 N

Problems

P.4.1 A turbine rotor operates at a speed of 9000 rev/min and weighs 35kN. Th e shaft diameter is 150mm. 
What L/D ratio and radial clearance is to be chosen for a pair of journal bearings to support the load. Th e 
operating eccentricity ratio should not go below 0.6. Th e oil recommended is SAE 30 with an absolute 
viscosity of 112.7cS at 40°C and 12.5cS at 100°C. Oil inlet temperature is 50°C. Th e Sommerfeld variable 

η
=

2

2

ULR
S

WC
 for eccentricity ratio of 0.6 is given below for three diff erent L/D ratios.

L/D 1 0.5 0.25

S 0.4 1.0 3.4

P.4.2 A 15 cm diameter bearing, L/D = 0.5 of clearance ratios 1 and 2 mm/m supports a rotor at a speed 
of 10000 rev/min. Oil used is SAE 30 with an absolute viscosity of 112.7cS at 40°C and 12.5cS at 100°C. Th e 
oil inlet temperature is 50°C. Determine the load carrying capacity, oil fl ow rate, temperature rise using 0.8 
rule, and power loss.

P.4.3 A thrust pad of infi nite width and length B has an exponential fi lm shape given by following expression:
/

0
ax Bh h e= where h

0
 is the minimum fi lm thickness at the exit point of the lubricant. Show that value of 

fi lm thickness where the pressure gradient = 0
dp

dx
 is: 

−

−

−⎛ ⎞
= ⎜ ⎟⎝ ⎠−

2

3

3 1

2 1

a

a

e
h

e
 where =

0
/h h h . Find the value 

of dimensionless load 
( )
η

=
2
0

2

h W
W

U B
 and W is load per unit width of the thrust pad, U is surface speed and

η  is the viscosity of the oil. Also prove that the coeffi  cient of friction at the moving surface is obtained as:

η
μ = ,

U
k

W
 k is a constant. Determine the value of k for a = 1.
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P.4.4 A thrust pad of short width has wave shape oil fi lm where fi lm thickness is given by:

π⎛ ⎞⎛ ⎞
= + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

2
1 sin 1

2m

x
h h a

B
,

where a, is the wave amplitude and 
m

h is the mean fi lm thickness. Determine the expression of pressure dis-

tribution, load capacity, oil fl ow rate, and friction coeffi  cient using short bearing theory. Bearing width L<<B, 
when B is length of the pad in the fl ow direction. Assume moving surface speed as U, a = 0.2. Determine the 

performance variables when U = 5 m/s, 20 ,
m

h mμ=  B = 10 cm, and viscosity of the oil is 0.03 N.s/m2.

P.4.5 An infi nitely wide hydrodynamic thrust bearing can be designed with Rayleigh step or tapered land 
pad shapes as shown in Figs. 4.13 and 4.14, respectively. Analyze the bearings and determine optimum con-
fi gurations to carry maximum load. Determine the expressions for load capacity, oil fl ow rate, and friction 
coeffi  cient. Determine the value of parameters when the moving surface speed is 8 m/s, pad length is 30 cm, 
minimum fi lm thickness is 15 mμ , and viscosity of the oil is 0.03 N.s/m2.
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Chapter

Finite Bearings

5.1 | Introduction

In Chapter 4, the Reynolds equation for idealized (infi nitely long and short) journal bearings was solved. 
Th ese gave closed form solutions for load carrying capacity and coeffi  cient of friction. Practical journal bear-
ings have length to diameter ratio (L/D) between 0.5 and 1.5. Th e infi nitely short or narrow bearing theory 
is valid for L/D of about 0.25 and that of infi nitely long bearing can be applied for bearing having L/D equal 
to or greater than 4. Hence the theories (developed in Chapter 4) which yielded analytical solutions can-
not be applied in practice, although these indicate the trends of the results. However, for accurate results, 
the Reynolds equation in two dimensions is to be solved. Due to diffi  culty in obtaining analytical solution, 
a method using electric analogy was devised by Kingsbury (1930). But this method is very approximate. 
Approximate analytical solutions due to Boegli (1947) and numerical solutions using fi nite diff erence and 
fi nite element methods using digital computer are given. At the end of this chapter, cavitation and cavitation 
boundary conditions are discussed.

5.2 | Analytical Solution

5.2.1 | Approximate Solution

Th e solution given by Boegli (1947) makes two approximations: 

 1. Th e pressure functions along the length and width of the bearing are independent. 
 2. Th e pressure function along the bearing in the direction of motion is the same as that of an infi nitely 

long bearing. Although the method of solution given here is for a fi nite slider bearing, it can be easily 
applied to a fi nite journal bearing also.

rr5



Finite Bearings 101

Th e governing diff erential equation for a fi nite oil bearing having constant viscosity can be written as:

 3 3 6
p p dh

h h U
x x y y dx

η
⎛ ⎞∂ ∂⎛ ⎞∂ ∂

+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (5.1)

Equation (5.1) can be nondimensionalized as

 
2

3 3
p pB dh

h h
x x L y y dx

⎛ ⎞∂ ∂⎛ ⎞∂ ∂⎛ ⎞
+ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (5.2)

where 
2

, ,
yh x

h x y
h B L

= = =   and  
2
2

6

ph
p

UBη
=

Here h
2
 is the minimum fi lm thickness, and L and B are length and width of the rectangular slider. Let 

( ) ( )p f x f y=  and substituting this into Equation (5.2) and using assumption (1), we get

 ( ) ( ) ( ) ( )2 2

3 3

2

d f ydf x B dh
h f y h f x

x dx L dy dx

⎛ ⎞∂ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ⎝ ⎠

 (5.3)

In Equation (5.3) h  is assumed to be a function of x only implying there is no misalignment. 
Equation (5.3) is solved at the point where the pressure is maximum, i.e., 

where ( )
0

df x

dx
=

Th e following equation is the result

 
( )

( )

( ) ( )

( )

22

2 22 2

3

dh
f y d f yd f x dx

dx dyB B
f x h f x

L L

+ =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (5.4)

with the use of assumption (2), one can write

 
( ) ( )2

2 3

2
3

df x d f xdh dh
h h

dx dx dx dx
+ =  (5.5)

At the point of maximum pressure 
( )

0
df x

dx
=  

hence 
( )2

2 3

dh
d f x dx

dx h
=  (5.6)

Equation (5.6) is now substituted into Equation (5.4) and one obtains
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( ) ( )

( ) ( )

2

2 22 3

3

dh dh
d f y f y dx dx

dy h f xB B
h f x

L L

+ =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (5.7)

Putting ( )3

dh

dxM
h f x

= , Equation (5.7) can be written as

 
( ) ( )

2

2 22

d f y M M
f y

dy B B

L L

+ =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (5.8)

Th e solution of Equation (5.8) is given by

 ( ) ( )( )11k
k yky

k k

e
f y e e

e e
− −

−

−⎛ ⎞
= − +⎜ ⎟⎝ ⎠−

 (5.9)

where 
2

M
k

B

L

= −
⎛ ⎞
⎜ ⎟⎝ ⎠

Th e value of M can be evaluated at 
m

h h=  and 
max

p p=

When this method is to be applied in a journal bearing, M is to be calculated at the position of 
m

h h=  

where max
p p= .

Th e ratio of W

W
∞

can be calculated from the foregoing analysis. As ( )f x is p
∞

, the pressure function of 

the infi nite bearing, the ratio W

W
∞

is simply the integral of ( )f y of Equation (5.9).

Hence, 
( )
( )

2

2

2 1
1

1

k

k

eW

W k e

−

−
∞

−
= −

−
 (5.10)

Knowing the load capacity of an infi nitely long bearing, the actual load capacity can be computed from 
Equation (5.10).

5.3 | Numerical Solution

5.3.1 | Finite Diff erence Method

In this section, a numerical solution of two-dimensional Reynolds equation for a fi nite journal bearing using 
fi nite diff erence method is given.
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Equation (5.1) when nondimensionalizing with the following substitutions:

 

2x
 , , ,

R 6

2

y pCh
y h p

C URL
θ

η
= = = =

⎛ ⎞
⎜ ⎟⎝ ⎠

results in  

2 2
3 3

2

p pD dh
h h

L y dθ θ θ
∂ ∂⎛ ⎞∂ ⎛ ⎞

+ =⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂⎝ ⎠
 (5.11)

Equation (5.11) assumes that h  is only a function of θ , so can be expressed as

 

22 2

2 2 3

3

dh

dp p pD h

L y h h

θ
θ θ θ

⎛ ⎞
⎜ ⎟∂ ∂ ∂ ⎝ ⎠∂⎛ ⎞

+ + =⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂
 (5.12)

and 1 cosh ε θ= + , ε  being eccentricity ratio. (5.13)
A developed view for the half of the bearing is drawn (see Fig. 5.1). Th e area is divided into a number 

of mesh sizes ( )yθΔ × Δ  and using the central diff erence quotients, Equation (5.12) can be written in the 
form as

 

( ) ( )

( )

2

1, , 1, , 1 , , 1

2 2

1, 1,

3

2 2

sin3
sin

2

i j i j i j i j i j i j

i j i j i

i

i i

p p p p p pD

L y

p p

h h

θ

θε θ ε
θ

+ − + −

+ −

⎡ ⎤⎡ ⎤− + − +⎛ ⎞ ⎢ ⎥⎢ ⎥ + ⎜ ⎟⎝ ⎠ ⎢ ⎥⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦

−⎡ ⎤
− = −⎢ ⎥

Δ⎢ ⎥⎣ ⎦

 (5.14)

Figure 5.1 | A Developed View of a Bearing Showing the Mesh Size ( )yθΔ × Δ

p
i+1, j

p
i, j

p
i–1, j

p
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p
i, j –1

y, j

yD

Dq
(0, 0)

q, i
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where 
,i j

p  and 
i

h  are the pressure and fi lm thickness at any mesh point (i,j), 1,i j
p

+ , 1,i j
p

− , , 1i j
p

+ , and , 1i j
p

−  

are pressures at the four adjacent points, and 
( )2

i

i D

θ
θ

Δ
= , (i,j) is the numerical coordinate system.

On simplifi cation Equation (5.14), it boils down to

 

( )

( ) ( ) ( )

22

1, 1, , 1 , 1

,

21, 1,

3

sin3
sin

2

i j i j i j i j

i j

i j i j i

i

i i

D
p p p p

L y
p

p p

h h

θ

ε θ
ε θ θ θ

+ − + −

+ −

⎡ ⎤
⎛ ⎞⎢ ⎥Δ⎛ ⎞

+ + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ Δ⎝ ⎠⎢ ⎥= ⎢ ⎥
⎢ ⎥−
⎢ ⎥− Δ + Δ
⎢ ⎥⎣ ⎦

( )
2

2

2 1 D
L y

θ⎡ ⎤⎧ ⎫⎛ ⎞Δ⎪ ⎪⎢ ⎥+⎨ ⎬⎜ ⎟Δ⎢ ⎥⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦  

(5.15)

For a square mesh, i.e., yθΔ = Δ = Δ (say), Equation (5.15) reduces to

( )
( )

2

1, 1, , 1 , 1

,

1, 1, 2

3

sin3
sin

2

i j i j i j i j

i j

i j i j i

i

i i

D
p p p p

L
p

p p

h h

ε θ
ε θ

+ − + −

+ −

⎡ ⎤
⎢ ⎥⎛ ⎞+ + +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥= ⎢ ⎥
⎢ ⎥−
⎢ ⎥− Δ + Δ
⎢ ⎥⎣ ⎦

( )2

2 1 D
L

⎡ ⎤⎧ ⎫+⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

 

(5.16)

It is seen that the pressure at any mesh point (i, j) is expressed in terms of pressures at the four adjacent 
points. To start with iteration method, the pressures at all the mesh points are assumed and those at the 
boundaries are set. Equation (5.15) is then solved for all the mesh points. As the pressures were assumed in 
the beginning, Equation (5.15) will not be satisfi ed. Th e error at the point (i,j) is

 ( )
,i j

Error  = RHS of Equation (5.15) − ,i j
p  (5.17)

Th e new pressure can be computed using a successive over-relaxation scheme (SOR) as

 ( ) ( ) ( ), , ,
.orf

i j i j i jnew old
p p error= +  (5.18)

where ‘orf ’ is the over-relaxation factor.
Th e use of over-relaxation factor in Equation (5.18) accelerates the convergence of the numerical process. 

It is, however, very diffi  cult to estimate the optimum value of this factor. From experience it has been found 
orf generally varies from 1.2 to 1.5.

Th e process will be repeated till the specifi ed accuracy is attained by a convergence criterion as

 
( ) ( )

( )
, ,1

,

i j i jN N

i j N

p p

p

−
−

≤
∑ ∑

∑
 a very small quantity, where N is the number of iterations.

Th e allowable error is to be kept to a very small fraction of 1%. Once the pressure distribution is 
obtained, the load capacity, volume rate fl ow, coeffi  cient of friction can be calculated numerically. Usually the 
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Table 5.1 | Performance of Plane Slider Bearings

L/B • 2 1.5 1.0 0.75 0.5

2
2

2

Wh
W

UB Lη
= 0.1589 0.1096 0.0946 0.0689 0.0504 0.0289

2
Fh

F
UBLη

= 0.7726 0.7480 0.7404 0.7276 0.7183 0.7076

2

Q
Q

Uh B
= 0 0.2589 0.2586 0.2462 0.2229 0.1788

1
x

B
0.5687 0.5730 0.5756 0.5818 0.5838 0.6005

Simpson’s 1/3 rule for numerical integration and three-point backward or forward diff erence rule is applied 
for diff erentiation. For details of such numerical method, refer to any book on numerical analysis.

Th e above numerical procedure can be easily applied to a plain slider bearing. Th e dimensions of the 
bearing in this case will be L and B and h will be a function of x only. Th e fi nite diff erence form of concerned 
diff erential equation can also be easily written.

Th e load capacity and coeffi  cient of friction for a plain slider bearing can be calculated numerically in the 
similar way. In Table 5.1, the dimensionless load capacity and friction force, etc. are given for n = 2 and for 
various L/B ratios. Th e coeffi  cient of friction from these results can be easily calculated.

In Table 5.2, the performance characteristics in terms of Sommerfeld number, friction variable, and 

attitude angle of full (360°) journal bearings having /L D = ∞ , 1,
1 1

,
2 4

 are shown (Pinkus 1958).

5.3.2 | Error Analysis

Th e above equation is elliptical in nature. From the fi nite diff erence equations it is seen that the mesh size 

plays a signifi cant role in error analysis. Hence the order of error is ( )2
O xΔ  or ( )2

O yΔ . If we solve a Laplace 
equation with given boundary conditions using mesh size x yΔ = Δ = Δ  and / 2x yΔ = Δ = Δ , the error will 
be reduced signifi cantly. For details, refer to Sarkar (2004).

5.3.3 | Finite Element Method *

Th e fi nite element method was incepted in the early 1950s as a method to primarily solve structural  problems. 
Later due to the eff orts of Zienkiwickz and others (1990), the method was applied to diff erent  problems and 
gained acceptance as a general technique to solve engineering problems and in particular fi eld problems which 
can be formulated as an extremum or stationary value problem (Reddy 1993).

*Th is section is contributed by Dr Ram Turaga and this is highly appreciated by the authors.
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Table 5.2 | Full Journal Bearings

L/D e S m (R/C) f 0

∞ 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.247
0.123
0.0823
0.0628
0.0483
0.0389
0.0297
0.0211
0.00114

—
2.57
1.90
1.53
1.32
1.20
1.10
0.962
0.721

69
67
64
62
58
54
49
42
32

1 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.35
0.632
0.382
0.261
0.179
0.120
0.0765
0.0448
0.0191

—
12.9
8.04
5.80
4.31
3.21
2.36
1.71
1.06

79
74
68
62
56
50
43
36
25

1

2

0.1
0.2
0.3
0.4
0.5

4.30
2.01
1.235
0.785
0.497

—
40.9
25.7
17.11
11.95

81
75
68
62
55

0.6
0.7
0.8
0.9

0.320
0.185
0.092
0.031

8.08
5.48
3.25
1.59

48
41
33
23

1

4

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

15.9
7.58
4.69
2.85
1.78
1.07
0.591
0.266
0.0738

—
153
98.5
61.4
40.0
26.7
16.6
8.93
3.49

83
75
68
61
54
47
39
31
8

For solving lubrication problems, the fi nite element method off ers several advantages:

• It off ers complete generality with regard to geometry and fi eld property variation.

• Prescription of boundary conditions in terms of pressure or fl ow.
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• Prescription of symmetry conditions which are due to symmetry of equations generated by this method 
result in banded, defi nitive matrices which can be solved with minimum computational storage and time.

Th is technique has since been widely used in the solution of lubrication problems and a summary of 
some of the early contributions is given in Reddy (1969), Booker and Huebner (1972), and Huebner and 
Th ornto (1982).

In the fi nite element method, we reduce a fi eld problem described by an extremum principle to one where 
there are a fi nite number of unknowns. To achieve this, a number of localized functions called interpolation 
functions, each valid for a small subregion of the domain of interest are used. Th us, the overall state of the 
unknown fi eld variable is represented piecewise, with continuity of the variables across the boundaries of 
the subregions or elements being assured by suitable requirements placed on the choice of the interpolation 
functions. Further the fi nite element method assumes that the state of fi eld variable within the subregion or 
element is described completely by values of the unknown variable at the fi nite number of points or nodes 
located on the boundary of the element.

Th e main steps in the solution of a problem using the fi nite element method and computer implementa-
tion are given in Fig. 5.2.

As the fi nite element method is a technique for constructing approximate function required in an 
 element-wise application of any variation method, the weak formulation facilitates the classifi cation of the 
boundary conditions into natural and essential boundary conditions which play a crucial role in the deriva-
tion of the approximate functions and the selection of the nodal degrees of freedom in the fi nite element 
model. Th e primary purpose of developing a weighted integral statement of a diff erential equation is to have 
the means to obtain N linearly independent algebraic relations which is accomplished by choosing N linearly 
independent weight functions in the integral statement.

Preprocessor

• Read input data

• Read input geometry

• Mesh the geometry

Processor

• Compute element matrices

(column vectors)

• Assemble element equations

• Impose boundary conditions

• Solve the equations

Postprocessor

• Compute solution at points

other than nodes

• Compute the gradient of the

solution

• Print/plot the results

Figure 5.2 | Main Steps in the Solution Procedure
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Starting with the governing equation:

 3 3 6 2 12
p p h h

h h r
x x y y t x t

φ
η ω η

⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞
+ = − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (5.19)

Weak Form

 3 30 6 2 12
p p h h

w h h r dA
x x y y t x t

φ
η ω η

Ω

⎛ ⎞⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞
= + − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠∫  (5.20)

Using the following expressions

1

1 1

1

1 1

( )

( )

F w
w F wF

x x x

F w
w F wF

x x xΩ Ω Ω

∂ ∂ ∂
− = −

∂ ∂ ∂

∂ ∂ ∂
− = −

∂ ∂ ∂∫ ∫ ∫
Using Greens theorem

1

1

wF
dA wF nds

xΩ Γ

∂
=

∂∫ ∫ 

3 3 3

3 3

p p pw
w h dA h wh dA

x x x x x x

p pw
h dA wh nds

x x x

Ω Ω

Ω Γ

⎡ ⎤⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

∂ ∂⎛ ⎞∂
= −⎜ ⎟∂ ∂ ∂⎝ ⎠

∫ ∫

∫ ∫ 

3 3 3
p p pw

w h dA h wh dA
y y y y y yΩ Ω

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂
= −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∫ ∫

                                  

3 3
p pw

h dA wh nds
y y yΩ Γ

⎛ ⎞∂ ∂∂
= −⎜ ⎟∂ ∂ ∂⎝ ⎠∫ ∫ 

3 3 6 2 12
p pw w dw dh

h h r h w dA
x y y y t dx dt

φ
η ω

Ω

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ⎛ ⎞∂ ∂ ∂⎛ ⎞
+ − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠∫

                                                      3 3 6 2 0
x y x

p p
wh n ds wh n ds w r hn ds

x y t

φ
η ω

Γ Γ Γ

∂ ∂ ∂⎛ ⎞
− − − − =⎜ ⎟⎝ ⎠∂ ∂ ∂∫ ∫ ∫    (5.21)

Th e above Equation (5.21) is called the weak form of the diff erential Equation (5.19). Th e term ‘Weak’ 
refers to the reduced continuity of ‘p’, which is required to be only once diff erentiable.
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Th is can be expressed as,

 ( ) ( )0 ,B w p L w= −  (5.22)

where

 
( )

3 3

,

6 2 12

p pw w
h h

x y y y
B w p dA

dw dh
r h w

t dx dt

φ
η ω

Ω

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂
⎜ ⎟+⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎛ ⎞∂⎛ ⎞

− − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠∂⎝ ⎠⎝ ⎠

∫  (5.23)

( ) 3

3

12

6 2

x

y x

pdh
L w w dA wh n ds

dt x

p
wh n ds w r hn ds

y t

φ
η ω

Ω Γ

Γ Γ

∂⎛ ⎞
= −⎜ ⎟⎝ ⎠ ∂

∂ ∂⎛ ⎞
− −⎜ ⎟⎝ ⎠∂ ∂

∫ ∫

∫ ∫

 

  

 (5.24)

Using the variational
=( , ) ( )B w p L w

Th is holds for any w  that satisfi es the homogeneous form of the specifi ed essential boundary conditions 
and continuity conditions implied by the weak form.

Th e weak form or the variational form (used interchangeably) is equivalent to the original diff erential 
equation and the specifi c natural boundary conditions of the problem. Th e weak form exists for all diff erential 
equation and when the equation is linear and of even order, the resulting weak form will have a symmetric 
bilinear form in the dependent variable p and weight function w.

Th us, when ( ),B w p  is bilinear and symmetric and ( )L w  is linear the associated quadratic functional 
can be derived as follows.

Th e function w can be viewed as a variation of the actual solution p*.

*p p w= +

w pδ=

( ) ( )0 ,B p p l pδ δ= −

As ( ),B i i  is symmetric

( ) ( )

( )

1
0 ,

2
B p p l p

I p

δ δ

δ

⎛ ⎞
= −⎜ ⎟⎝ ⎠

=

where

 ( ) ( ) ( )1
,

2
I p B p p l p= −  (5.25)
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In the derivation of the functional ( )I p  from the weak form, the linearity and symmetry of the bilinear 

form ( ),B p p  is essential.

Th e functional ( )I p  can be written as

 

3

3

1 2
( ) [( ) 6 (1 )] 12

2

2
[6 (1 ) ]

h
I p h p U p p dA

t t

n U h h p ds
t

φ
η

ω

φ
η

ω

Ω

Γ

∂ ∂⎡ ⎤
= ∇ − − • ∇ −⎢ ⎥∂ ∂⎣ ⎦

∂
− • − − ∇

∂

∫

∫ 

 (5.26)

Functional

(a)

(b) (c)

3

1 2

C
1

R

C
2

C
2

n

E
m

C
1

Figure 5.3 | Shape Functions
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Th is can be simplifi ed and written as

 3

2

1 2
( ) [( ) (6 (1 )] 12

2

2
(6 (1 ) )

h
I p h p U p p dA Qpds

t t

Q q n hu n h U h p n
t

φ
η

ω

φ
η

ω

Ω Γ

∂ ∂⎡ ⎤
= ∇ − − ∇ − +⎢ ⎥∂ ∂⎣ ⎦

∂
= = = − − ∇

∂

∫ ∫i

   

i i i

 
 

(5.27)

where

Th e boundary conditions are

1. 
_

1
( , )  p p x y onC=  

(5.28)

2. 2
2

2
(6 (1 ) )  q h U h p n onC

t

φ
η

ω
∂

= − − ∇
∂

 

i

Equation (5.27) after substituting for shape functions can be restated to the form

 { } { }
.

( ) ( )T
p u h

I p P K K U K h Q P
⎧ ⎫= − + +⎨ ⎬
⎩ ⎭

 (5.29)

Th e fi rst variation of the functional with respect to the nodal pressures yields

 

{ } { }

1

.

( )
( )

( )
2 0

N

i
i i

p u h

i

I p
I p p

p

I p
K K U K h Q

p

δ
=

∂
= ∂

∂

∂ ⎧ ⎫= − + + =⎨ ⎬∂ ⎩ ⎭

∑
 (5.30)

Neglecting the squeeze term we get

 { } { } { }2
p u

K P K U Q⎡ ⎤ ⎡ ⎤= −⎣ ⎦⎣ ⎦  (5.31)

Element Equations

Using the area co-ordinates 
1 2 3
, ,L L L for the triangle 1, 2, 3 (Fig. 5.3b), the relation between these and 

Cartesian system is (1990):

1 1 2 2 3 3

1 1 2 2 3 3

1 2 3
1

x L x L x L x
y L y L y L y

L L L

= + +
= + +
= + +
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and in terms of 
1 2 3
, ,L L L

1 1 1 1

2 2 2 2

3 3 3 3

( ) / 2

( ) / 2

( ) / 2      and

2 123                        and

L a b x c y

L a b x c y

L a b x c y

area

= + + Δ

= + + Δ

= + + Δ

Δ =

1 2 3 3 2

1 2 3

1 2 3

a x y x y
b y y
c x x

= −
= −
= −

Th e shape functions are defi ned for a triangular element as shown in Fig. 5.3b.

1 1 2 2 3 3
, ,N L N L N L= = =

5.3.4 | Finite Bearings

Th e fi nal expressions neglecting the squeeze term for the deterministic case using 3-node linear triangular 
elements are:

 

{ } { } { }

1 2 3

2
1

1

1

1

2

48

2

p u

N
i j

p m m
m

N
i

u m j m
m

N

m
m

K P K U Q

b b c c
K h dA

b c
K h M dA

Q qN ds

η=

=

=

⎡ ⎤ ⎡ ⎤= −⎣ ⎦⎣ ⎦

+⎛ ⎞
⎡ ⎤ = ⎜ ⎟⎣ ⎦ Δ⎝ ⎠

+⎛ ⎞
⎡ ⎤ = ⎜ ⎟⎣ ⎦ Δ⎝ ⎠

=⎡ ⎤⎣ ⎦

∑ ∫ ∫

∑ ∫ ∫

∑ ∫

 (5.32)

Th e bearing surface is developed as shown in Fig. 5.3c. For a fi nite slider bearing the length and width of 
the developed surface are equal to the length and width of the bearing dimensions. For the journal bearing, 
the length is equal to the developed cylindrical surface. One can solve either for the full developed surface or 
half surface by using the geometric symmetry and applying the appropriate boundary conditions.

Th e boundary conditions for the prescribed pressure are applied by changing the appropriate rows in the 
matrix form for the assembly of elements. Th is means 0p = , when q = 0, 2p, also on the other two sides. To 
account for cavitation the pressure is made equal to zero whenever 0p < .

Th e assembled K
p
 matrix is banded, symmetric, and sparse. Th ese properties can be used in the optimum 

storage on the computer and solution of the linear equations.
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Steady–State Characteristics

Steady-state characteristics for fi nite slider bearings are calculated using fi nite element method.

• Load carrying capacity

W pdA= ∫∫

 ( )
1

N

i i j j k k m
m

N p N p N p dA
=

= + +∑∫∫  (5.33)

• Friction force

F dAτ= ∫∫

2

pH U

x H
τ η

∂
= +

∂

 
1

N
m

m m

UAU
dA

h h
η η

=

= ∑∫∫  (5.34)

where 
m

h  is the average fi lm thickness for the element m.

• Co-effi  cient of friction

 
F

W
μ =  (5.35)

• Flow in the direction of motion:

 

3

3

1

2 12

1

2 12 2

x

i i j j k k

x

pU
q h h dy

x

b p b p b pU
q h dy h dy

η

η

⎛ ⎞∂⎛ ⎞
= − ⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

+ +⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟⎝ ⎠ Δ⎝ ⎠

∫

∫ ∫

 (5.36)

Mean fl ow is calculated by integrating Equation (5.36) after substituting for h and h3. Similarly, the 
side fl ow can be calculated from

 

( )

3

3

1

12

1

12 2

x

i i j j k k

x

p
q h dx

y

c p c p c p
q h dy

η

η

⎛ ⎞⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

+ +⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠ Δ⎝ ⎠

∫

∫

 (5.37)

For a fi nite journal bearing, similar procedure as shown above is adopted.
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Solution of Dynamic Equations

Th e dynamic equations can be solved on principles developed in the earlier sections. Since these have already 
been developed and reported in literature (Majumdar 1986), we can proceed to use the same with necessary 
modifi cations. Th e real and imaginary parts of the equations are formulated separately.

Taking the pressure distribution in the interior of the element as

 ( )
1

,
n

ei ij ij
j

p N z pθ
=

= ∑  (5.38)

Introducing Equation (5.38) in the variational, we get the following

 

( )i j

ij

I p

p

∂
=

∂

2

3
0 0

1 1

( 6 0
n n

ij ij jik ik

ik ikA
k k

N N NN Nd
h p p h dA

b y yθ θ θ= =

∂ ∂ ∂⎛ ⎞∂ ∂⎛ ⎞
− − + + =⎜ ⎟⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠

∑ ∑∫
 

(5.39)

Here n is the number of element nodes, index j indicates node number and

0i
p p=

( ) 2

3
0

1 1

(
n n

i j ij ijik ik

ik ikA
k kij

I p N NN Nd
h p p

p b y yθ θ= =

∂ ∂ ∂⎛ ⎞∂ ∂⎛ ⎞
= − − +⎜ ⎟⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠

∑ ∑∫

 

2

0 02 2
0 0

3 cos 6cos 3 cos ) 0
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N Np pd
h h dA
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θ θ θ

θ θ
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− − − =⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (5.40)

In Equation (5.40) 1i
p p=

( ) 2

3
0

1 1

(
n n

i j ij ijik ik

ik ikA
k kij

I p N NN Nd
h p p

p b y yθ θ= =

∂ ∂ ∂⎛ ⎞∂ ∂⎛ ⎞
= − − +⎜ ⎟⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠

∑ ∑∫

 

2

0 02 2
0 0

3 cos 6cos 3 cos ) 0
j j

N Np pd
h h dA

b y y
θ θ θ

θ θ
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 (5.41)

In Equation (5.41) 2i
p p=

( )i j

ij

I p

p

∂
=

∂

2

3
0

1 1

(
n n

ij ijik ik

ik ikA
k k

N NN Nd
h p p

b y yθ θ= =

∂ ∂⎛ ⎞∂ ∂⎛ ⎞
− − +⎜ ⎟⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂⎝ ⎠

∑ ∑∫

 12 sin ) 0
j

N
dAλ θ

θ

∂
− =

∂
 (5.42)
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In Equation (5.42) 1i
p p=  imaginary component

( )i j

ij

I p

p

∂
=

∂

2

3
0

1 1

(
n n

ij ijik ik

ik ikA
k k

N NN Nd
h p p

b y yθ θ= =

∂ ∂⎛ ⎞∂ ∂⎛ ⎞
− − +⎜ ⎟⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂⎝ ⎠

∑ ∑∫

 24 cos ) 0
j

N
dAλ θ

θ

∂
− =

∂
 (5.43)

In Equation (5.43) 2i
p p=  imaginary component. Th e above equations reduce to the form

 { }{ } { }p i ui
K p K=  (5.44)

where 0,1, 2i =
Th e boundary conditions are—in Equation (5.39) 

0
0p = , when q = 0, 2p, also on the other two sides, 

and also when 
0

0p < . In Equations (5.40 to 5.43) 1
p  and 2

p are made equal to zero at the same q and nodes 

at which 0
p  was equal to zero.

From Equation (5.39) we get 0
p  which on integration gives steady-state load (non-dimensional). On 

solving Equations (5.40 to 5.43), we can obtain 1
p  and 2

p  which on integrations give us 4 stiff ness and 
4 damping coeffi  cients, respectively.

Examples

E.5.1 Calculation of Load Carrying Capacity of a Finite Plane Slider Bearing:
A plane slider bearing with a fi xed shoe is operating under the following conditions (Majumdar 1986):
Width of the bearing B = 50 mm
Length to width ratio (L/B) = 1.0
Sliding velocity U = 5 m/s

Minimum Film thickness 
2

h  = 0.02 mm
Absolute viscosity of the lubricant η  = 0.02 Pa.s
Find the load carrying capacity and friction force

S o l u t i o n :

Th e steady-state solution of the slider bearing problem is obtained by solving the governing Reynolds 
Equation (5.19). In this equation, the time derivative components are ignored.

 1. Th e key preprocessing steps are (a) read the data given in the problem, (b) form the geometry of the 
slide bearing, and (c) mesh it using 3 node triangular elements as shown in Figs 5.3b and c.

 2. In the processor stage, (a) compute the element matrices using Equations 5.32, (b) assemble the ele-
ment matrices, (c) apply boundary conditions, and (d) solve the assembled equations to get the pres-
sures at each node.

 3. In postprocessor, compute (a) load carrying capacity by integrating the nodal pressures (Equation 5.33), 
(b) compute gradients to calculate the friction force and coeffi  cient of friction (Equation 5.34). We can 
compute other quantities of interest also.
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Re s u l t s

Th e results obtained by the fi nite element method are given in Table 5.3. Th ey are compared to results obtained 
by fi nite diff erence method (shown in bracket) as given in Majumdar (1986).

Th e results show an excellent correlation for load carrying capacity and are fairly close while calculating 
derived quantities such as friction force.

E.5.2 Calculation of Load Carrying Capacity of a Finite Journal Bearing:
A full journal bearing is having the following specifi cations:
Journal Diameter D = 100 mm
Length to Diameter ratio L/D = 1.0
Radial Clearance C = 0.025 mm
Journal Speed N = 3000 rpm
Operating Eccentricity ε = 0.6
Average Viscosity of Lubricant η  = 0.02 Pa.s
Calculate the Load Carrying Capacity and Friction Force of the Bearing

Figure 5.4 | A Plane Slider Bearing
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Table 5.3 | Plane Slider Bearings

L/B 2 1.5 1.0 0.75 0.5

2
2

2

Wh
w

ULBη
− =

0.109
(0.109)

0.09455
(0.0946)

0.06887
(0.06889)

0.0503
(0.0504)

0.02898
(0.0289)

2
Fh

F
ULBη

−
=

0.8576
(0.748)

0.8349
(0.740)

0.7964
(0.727)

0.7687
(0.718)

0.7366
(0.707)
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Re s u l t s

Th e results obtained by the fi nite element method are given in Table 5.4. Th ey are compared with results 
obtained by fi nite diff erence method (shown in bracket) as given in Majumdar (1986). Th e results show a 
good correlation for load carrying capacity and friction force.

5.4 | Cavitation and Cavitation Boundary Conditions

In oil fi lm bearing usually there are two types of cavitation (Taylor 1974). Th ese are gaseous cavitation and 
vapour cavitations. Th e fi rst type is observed when a gas dissolved in oil that is emitted from the solution 
as the pressure falls to the saturation pressure of the gas in the liquid. Th e second one is found to occur in 
situations where the liquid is subjected to rapid changes in pressure as in dynamically loaded bearings and 
hydraulic machinery. Here the vapour bubbles collapse on to the boundary surfaces that can cause ‘pitting’.

Th e location of the fi lm-cavity interface is of interest to us as such information is important in esti-
mating proper boundary conditions for the Reynolds equation. Th e Swift–Stieber (1931, 1933) conditions, 
presently used, ends the fi lm where both pressure and pressure gradient become zero or equal to cavitation 
pressure. Th ese conditions are also known as Reynolds boundary conditions. Th e Swift–Stieber conditions 
were derived independently in the 1930s. Th e former used stability consideration, but the latter employed the 
concept of fl ow continuity.

Table 5.4 | Finite Journal Bearings

L/D = 1 ε S
R

c
μ⎛ ⎞

⎜ ⎟⎝ ⎠ f °

0.1  1.404
(1.35)

 27.85 84.93
(79)

0.2  0.676
(0.632)

 13.62
(12.9)

79.80
(74)

0.3  0.4228
(0.3282)

 8.744
(8.04)

74.56
(68)

0.4  0.288
(0.261)

 6.198
(5.8)

69.118
(62)

0.5  0.2012
(0.179)

 4.582
(4.31)

63.368
(56)

0.6  0.1389
(0.12)

 3.425
(3.21)

57.157
(50)

0.7  0.09135
(0.0765)

 2.52
(2.36)

50.224
(43)

0.8  0.0535
(0.0448)

 1.758
(1.71)

42.048
(36)

0.9  0.0233
(0.0191)

 1.0533
(1.06)

31.251
(25)
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In the recent years, Floberg (1961) proposed a boundary condition for lightly loaded bearings having 
the familiar fi nger-like cavities. His boundary condition is that no fl uid fl ows past the cavity boundary and 
the fl uid pressure is same as the cavity pressure. Coyne and Elrod (1968) gave an analysis which took into 
account not only the liquid-gas interface which developed in practice but also the other eff ects like inertia, 
gravity, and surface tension.

In short, there are three realistic boundary conditions: 

 1. Th e Swift–Stieber or continuity conditions

 2. Th e separation conditions

 3. Th e Floberg conditions are well known

One of the advantages of the Swift–Stieber (sometimes Reynolds) boundary conditions is easy to apply. 
Numerical solution of Reynolds equation with this condition is straightforward for both one-dimensional 
and two-dimensional fl ow. Although the separation condition has often been suggested for lightly loaded 

bearings, not many design information are available. For an infi nitely long bearing it is shown that 
2

2
0

p

x

∂
=

∂
at the cavitated region. Th e Floberg boundary conditions are not easy to apply numerically. However, there is 

an experimental evidence (Cole 1956), which leads strong support to Floberg’s approach. Cavitation bound-
ary conditions have been discussed in Chapter 4. For exact boundary condition, one can look into details 
given there.

It has been shown by Christopherson (1942) that in the process of iteration whenever the pressure 
becomes negative at any mesh point (in case of a numerical solution), it should be made equal to zero or the 
cavitation pressure and then further iteration can be carried out. Th is process is likely to satisfy the boundary 
conditions of both 0p = and 0p∇ =  at the cavitation boundary. Th e method shown by Christopherson has 
been used by Raimodi and Boyd (1958). Majumdar and Hamrock (1981) have also found that it satisfi ed the 
Swift–Stieber condition for infi nitely long and fi nite oil journal bearings.

In recent years, Kicinski (1986) proposed a cavitation model taking into account the oil fi lm history 
(Fig. 5.4). Th e following general observation should be considered to formulate exact mathematical model of 
a cavitation model:

• Th e process occurring in the cavitation zone is described on the assumption that the shape of the 
bubbles and the fl ows are determined by the fl ow continuity equation. Th is assumption allows 
neglecting the processes induced by surface tension, diff usion, bubble implosion, and it suggests that 
the large cavitation bubbles are generated mainly by air which is sucked in across the bearing lateral 
edges.

• Th e boundaries of the cavitation zone can be determined under the condition that positive pres-
sure occurs only when the oil fi lls the oil gap completely. Th e time and space varying shape of the 
fl ows illustrates the fl ow prehistory under consideration. Th e Reynolds equation is integrated within 
boundaries determined from the continuity equation.

• Th e above procedure gives a unique solution which does not depend on the initial condition, except 
for periodically varying load.

For the cavitation zone, it is assumed that

• Th e fl ow within the real cavitation zone, which includes several more or less regular ‘fi nger-like’ bub-
bles, corresponds to the fl ow in the theoretical zone with only one ‘analytical’ bubble.
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• All oil fl ows around the analytical bubble which has a fl at surface in the direction of the fi lm thick-
ness and therefore the shape of the analytical bubble, resulting from the continuity equation will be 
defi ned by its width.

• Th e fl ow within the cavitated zone is gradient less and the pressure is equal to atmosphere pressure.

In the fi gure, *
10

ψ  and *
20

ψ  are the arbitrary initial boundaries, 
CAV

L  is the dimensionless width of the 
analytical bubble, θ  is the oil gap fi lling coeffi  cient, H is the oil gap height, π is the dimensionless pressure, 
τ  is the dimensionless time.

Examples

Th e following examples show the results for slider and journal bearings using fi nite diff erence method.

E.5.1 (repeated) For a slider bearing, L = B = 50 mm, U = 5 m/s, h
2
 = 0.02 mm, n = 2.0 and 0.02η =  Pas. 

From Table 5.1, we get for L/B = 1.0, n = 2, the dimensional load capacity, friction force, and end fl ow as 
0.0689, 0.7276, and 0.2462, respectively. Th e absolute value of these parameters can be found as 2.153 kN. 
9.035 N and 1.231 × 310−  m3/s. Th e coeffi  cient of friction is 4.197 × 310− .

E.5.2 (repeated) For a full fi nite journal bearing having L/D = 1.0, D = 100 mm, C = 0.025 mm, N = 
3000 rpm, 0.6ε = and 0.02η =  Pas, we get 333.33W = kN, 31.615 10μ −= ×  (Refer to Table 5.2 for 
L/D = 1.0, 0.6ε = ).

Figure 5.4 | Theoretical Model of Cavitation Zone
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As expected, actual load and coeffi  cient of friction are lower and higher, respectively, than the infi nitely 
long journal bearing solution. Th is is also revealed from the experimental fi ndings (1930).
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Chapterrr6
Thermohydrodynamic Analysis 
of Fluid Film Bearings

6.1 | Introduction

Th ermohydrodynamic analysis of fl uid fi lm lubrication of mechanical components, viz., bearings, gears, and 
seals is basically a heat transfer analysis wherein heat generated due to viscous shear of the lubricant is 
 dissipated through convection, conduction and to some extent by radiation is balanced. However, gener-
ally the dominant mode of heat dissipation in fl uid fi lm lubrication is due to convection, i.e., heat is carried 
away by the fl uid fl owing out of boundaries open to atmosphere and into the sump to collect the fl uid. In 
some situations, conduction to solid bodies surrounding the fl uid will also carry away signifi cant amount of 
heat generated. Generally, radiation is negligible. Th erefore, in the analysis heat transfer due to convection 
and conduction is considered to seek balance between the heat generated and heat dissipated to achieve an 
equilibrium condition. Th is helps in determining the temperature rise in the fl uid fi lm and the surrounding 
solids. Th e following sections will describe the methods to take into account the thermal eff ect and to perform 
 thermohydrodynamic analysis of bearings. Th e procedures discussed are general and can be applied to any 
fl uid fi lm lubrication problem.

6.2 |  Thermal Analysis of Sector-Shaped Tilting 
Pad Thrust Bearings

In large turbo generator bearings, signifi cant amount of heat is generated due to viscous shear and churning 
of oil. Th ese bearings can operate either in laminar or turbulent regime in case of large-sized thrust bearings 
depending on the rotor speed. Higher speeds usually increase power losses and temperature rise, whereas the 
oil fl ow is reduced. Power consumed in these bearings and their supporting systems becomes a substantial 
drain on the output of the system. Th e most important parameter for thrust bearings for evaluating their 
power effi  ciency is to evaluate the ratio of the load carried to power consumed. Since the power consumed is 



122  Theor y of Lubrication

dependent on the load bearing area, this requires raising the average loading at which the bearing operates 
in order to reduce its gross area. In general, this reduces the minimum fi lm thickness in the bearing, so that 
various design alternatives can be studied based on a safe and reliable minimum fi lm thickness. Also white 
metal or Babbitt metal temperature rise is an important consideration. Th erefore, a thermal analysis of the 
entire system is essential to the solution of the problem. In the case of pivoted pad thrust bearings which are 
the most widely used confi guration, it is also necessary to estimate the thermoelastic distortion of the pad to 
accurately predict the fi lm shape and minimum fi lm thickness under its actual operating conditions.

A generalized analysis for sector-shaped pivoted pad thrust bearings developed by Ettles (1976) would 
be discussed. Th is methodology is an eff ective design tool and can also be used for trouble shooting in indus-
tries. Heat transfer analysis details have been dealt with by Vohr (1981).

Sector-shaped thrust bearing and pad are shown in Figs 6.1 and 6.2, respectively.
Th e analysis incorporates several factors, for example:

 1. Simultaneous solutions of coupled Reynolds equation having viscosity variation with temperature 
incorporated into it and energy equation for pad temperature distribution.

 2. Complete heat transfer analysis including conduction to bearing surface and convection due to side 
leakage, conduction to the runner and heat transferred to the cold oil in the groove between pads. 
A detailed investigation to account for the complete heat transfer presented by Vohr (1981) is also 
included in the analysis.

 3. Elastic distortion of pad in bending and shear and thermo elastic distortion of pad is incorporated.
 4. Hot oil carryover from one pad to the other is accounted for.

Figure 6.1 | Fixed or Tapered Land Thrust Bearing
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Figure 6.2 | Thrust Pad Bearings
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Th e Reynolds equation for a sector pad in cylindrical coordinates (r, q) is written for an incompressible 
fl uid as:

ω
θ η θ η θ

∂ ∂⎛ ⎞ ⎧ ⎫∂ ∂ ∂
+ =⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎩ ⎭

3 31
6

p ph rh h
r

r r r
 (6.1)

where both fi lm pressure p and viscosity of the oil, h, are function of (r, θ).
Equation (6.1) is subject to boundary conditions such that p = 0 everywhere at the boundary of the pad 

and cavitation boundary condition, i.e., 
θ

= = 0
dp

p
d

 at the locations where the pressure in the lubricant fi lm 
falls below ambient pressure.

Th e energy equation for temperature distribution in the lubricant fi lm with the assumption that tem-
perature across the fi lm remains constant is a function of r, q only. It is expressed in cylindrical coordinates as:
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+ − + −  (6.2)

where r and c
p
 are density and specifi c heat of the lubricant at constant pressure, respectively, and T is lubri-

cant fi lm temperature.
Equation (6.2) is basically a heat balance equation. Lubricant fl ow rates q

q
 and q

r
 in r and q directions, 

respectively, are written as:

θ ω
η θ

∂
= −

∂

3 1
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q r

r
 (6.3)

η
∂

= −
∂

3

12r

ph
q

r
 (6.4)

Th e viscosity h, density ρ and c
p
 of the oil are known a priori. Th e viscosity of the lubricant is a function 

of temperature T, whereas density r and c
p
 are considered constant, i.e., independent of temperature. Pressure 

dependence of h, r, and c
p
 is ignored.

T
u
 is the temperature of upper surface, i.e., runner; T

b
 is the temperature of the bottom surface of the pad. 

H
u
 and H

l
 are heat transfer coeffi  cients at the upper and lower surface of the fi lm, respectively. Th e last two 

terms on the right side of the energy equation represent heat fl ow due to conduction from the fl uid fi lm to 
the runner and lower side of the pad. It is again presumed that the heat transfer coeffi  cients are either known 
or can be determined.

Th e expression for fi lm thickness h in case of a sector-shaped pivoted bearing can be expressed as:

( ) ( ){ }
( ) ( ){ }
sin / 2 sin / 2

cos / 2 cos / 2

p t p p

r p p

h h r r

r r w

α θ β θ β

α θ β θ β

= + − − −

− − − − +  (6.5)

where w includes elastic and thermal distortion of the pad, a
t
, and a

r
 are pad inclination in q and r directions, 

respectively. h
p
 is the fi lm thickness at the pivot location.

Elastic bending due to pressure of the fi lm and thermal distortion of the pad due to temperature gradient 
can be calculated following Ritz procedure (1961) as shown by Sternlicht et al. (1961).
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According to the procedure outlined by Sternlicht et al., the pad deformation due to bending of the pad 
as a result of pressure load and thermal gradient through the pad (w) is expressed as:

=

= = + + + + +∑
6

1 1 2 2 3 3 4 4 5 5 6 6
1

i i
i

w A f A f A f A f A f A f A f  (6.6)

Coeffi  cients A
1 
to A

6
 are determined by solving the following matrix equation
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where k
j
 are determined from pressure and temperature distribution in the bearing fi lm. I

i, j
 are calculated 

using mode shape functions as given below:
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where f
c
 is the angle shown in Fig. 6.3 of sector pad.

Figure 6.3 | Coordinate System for Bearing Pad [Vohr, ASME JOLT, 1980]
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Ettles and Cameron (1976) developed a simplifi ed analysis to evaluate the distortion of the pad due to 
pressure of lubricant fi lm and thermal eff ects.

Boundary conditions for the Reynolds Equation (6.1) are written as:

β= =(0, ) ( , ) 0p r p r  

(6.9)θ θ= =
0

( , ) ( , ) 0
i

p r p r

At the cavitation boundary both pressure and pressure gradient in θ direction would be zero, i.e.,

( ) ( )θ θ
θ

= =, , 0
dp

p r r
d

 (6.10)

Boundary conditions for the energy Equation (6.2) are:

( ) ∂
= = =

∂
0, 0 and 0 at   and  

i o

T
T r r r r

r
 (6.11)

Both Reynolds and energy equation are discretized using fi nite diff erence method and solved by an itera-
tive procedure described briefl y as follows:

• Initial input data are read, viz., T
in
 (oil inlet temperature), fi lm thickness at the pivot h

p
, initial pressure 

and temperature distributions over the pad, pad inclinations a
r
, a

t
 and initial pad deformation w is 

calculated using these data.

• Determine pressure and temperature distributions by solving Equations (6.1) and (6.2) satisfying 
appropriate boundary conditions and pad deformation, w is calculated using new pressure and tem-
perature distributions. Load carrying capacity of the pad, W is also calculated.

• Determine the fi lm thickness at the pivot h
p
 and pad inclinations by satisfying moment balance equa-

tion at the pivot.

Steps 1 and 2 must be repeated until a preassigned convergence criterion is satisfi ed. Step 3 is to be repeated 
also until the correct fi lm thickness at the pivot is obtained which ensures load convergence. Th e foregoing 
process must be repeated till the solution to the problem is obtained.

Th e load capacity of the pad is determined as:

0

0
i

r

r
W prd dr

β
θ= ∫ ∫  (6.12)

Th e friction coeffi  cient due to torque is defi ned as:

= r
M

f
Wr

 (6.13)

where 
r

M  is the frictional torque and is found from:
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Th e load and torque are determined using a suitable numerical integration method.
To develop complete heat transfer analysis the following steps have to be done after the above procedure 

is completed without accounting for heat transfer from the liquid fi lm to bearing pad and runner surface. Th e 
procedure to account for the heat transfer from the fl uid fi lm to the pad and to the rotor surface has been 
described in detail by Vohr (1981) as given below.
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6.2.1 | Heat Transfer Modes

Th e modes of heat transfer in the thrust bearing as described by Vohr (1981) are:

• Heat removal by the lubricant side leakage from the pad edges.

• Heat conduction from the fi lm to runner and from runner oil to the bearing tub oil.

• Heat conduction from the bearing fi lm to the pad and to the tub oil.

• Heat transferred to the cold oil in the groove between pads by convection along the runner.

Ettles and Cameron (1968, 1970) investigated the aspects of groove fl ow and developed solutions for groove 
fl ow. Hot oil carryover aspect in thrust bearings was also investigated. According to this analysis, a hot oil 
carry over factor k is defi ned as:
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where T
s
 – oil supply temperature in the groove, T

r
 – bearing runner temperature which is assumed as average 

of the pad inlet and outlet temperatures, i.e., T
in
 and T

o
, 

thus, 
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T T
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Pad inlet temperature is thus given by:
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According to Ettles (1970), hot oil carryover factor varies between 0.71 and 0.93.
Heat transfer by various modes mentioned above can be estimated in following way (Fig. 6.4):
1. Heat transferred by the side leakage fl ow (Q

l
) is given by
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 (6.18)

Figure 6.4 | Schematic Diagram of Heat Transfer Analysis [Vohr, ASME JOLT, 1980]
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2.  Heat conduction from the fl uid fi lm to the bearing pad through the runner assuming the runner 
temperature to be constant at T

r
, i.e., for isothermal condition is given as:

 ( ) ( )= − = −
r u s f r r r b

Q H A T T U T T  (6.19)

where ( )π= −2 2
s o i

A r r  is the surface area of the pad, T
f
 is the average pad fi lm temperature. Heat transfer 

coeffi  cient H
u
 is determined by the assumption that the mean Nusselt number of fl uid fi lm 2 /

u u p
N H h k=

where thermal conductivity of the lubricant is k. It has been shown by Kays (1980) that an approximate value 
of N

u
 may be taken as 7.2 based on convective heat transfer solutions for laminar fl ow between parallel plates.  

U
r
 is the overall heat transfer coeffi  cient through the runner and is given by U

r
 = 466 R, W/°C, R is the radius 

of the runner in meter.
3.  Heat conduction from the lubricant fi lm to the bearing pad can be determined by solving heat con-

duction equation for the pad which is expressed as:

 
θ

∂ ∂ ∂⎡ ⎤∂
+ + =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

2 2
1 1 1

2 2 2

1 1
0

T T T
r

r r r r z
 (6.20)

where T
1
 is bearing pad temperature, z is the coordinate normal to the pad surface, i.e., across the pad thick-

ness. Equation (6.20) must be solved along with the energy Equation (6.2). Th is is computationally intensive 
and also prone to numerical instability. Th erefore, generally heat fl ow in the plane of the pad is neglected, 

i.e., 
∂

∂
1

T

r
 and 1

T

θ
∂

∂
 are taken to be zero. Th is approach has been adopted by Safar and Szeri (1974), Suganami 

and Szeri (1979). In that case, Equation (6.20) reduces to

 
∂

=
∂

2
1

2
0

T

z
 (6.21)

For temperature continuity at the interface of bearing pad and lubricant fi lm it is required that 
T

1
 = T at z = 0,  i.e., at the upper surface of the pad.

At the bottom surface of the pad

 ( )=

∂
− = −

∂
1

p z t p l b

T
k H T T

z
 (6.22)

where k
p
 is thermal conductivity of the pad material and t its thickness. H

p
 is the heat transfer coeffi  cient at 

the pad bottom surface. Th us, overall heat transfer coeffi  cient (H
l
) in Equation (6.2) can be written as:

or 

1 1

  

l p p

p p

l

p p

t

H H k

H k
H

H t k

= +

⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

 (6.23)

Heat transfer on the bottom of the pad varies approximately linearly with runner peripheral velocity, 
Rw as has been reported by many researchers. For large pads of approximately 0.8 m long radial the values of 
H

p
 can lie between 260 to 450 W/m2 °C. A suitable value can be chosen for H

p
 depending on size of the pad 

and speed of the runner. Heat transferred through the bearing pads to the tub oil is given by:

 ( )= −
p l f b p

Q H T T A  (6.24)

where A
p
 is the total pad surface area.
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4. Heat transferred to the cold oil in the groove between pads Q
g
 is given by:

 ( )( )= − −
g g r b p p

Q H T T A A  (6.25)

where H
g
 – groove heat transfer coeffi  cient.

Ettles (1968) studied the problem of groove heat transfer. It was concluded that the characteristic Nusselt 
number lie in the range of 55–60. H

g
 for a groove dimension of 0.025 m worked out as 340 W/m2 –°C which 

is very low. Test program undertaken by Vohr (1981) yielded the value of H
g
 in the range of 2550–3670. For 

details, one can look into the work of Vohr (1981). Th e algorithm followed by Vohr is shown in Fig. 6.5. 

Figure 6.5 | Flowchart According to Vohr, ASME JOLT, 1980
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Th erefore, to determine pad inlet temperature heat transferred from the bearing must be equal to the power 
dissipated in the lubricant fi lm P

b
. Th us,

 + + + =
l r p g b

Q Q Q Q P  (6.26)

Once all the performance characteristics are determined for the initialized T
in
 and h

p
, heat balance is 

done evaluating all heat transfer quantities. If the heat balance is satisfi ed, the solution is accepted or else 
T

in
 is adjusted and the process is repeated. Th ereafter, load convergence is checked. If the calculated load 

does not match the desired input load, h
p
 is adjusted and the process is repeated until the T

in
, h

p
 and load 

convergence is obtained. Vohr (1981) observed that entire iteration scheme converged quickly. Th is entire 
approach is very vital for successful design of pivoted pad thrust bearings for vertical hydro turbo genera-
tors. Th ermal analysis of sector pad thrust bearings including elasticity eff ect was developed by Castelli and 
Malanoski (1969). It has been seen by several investigators that high operating speeds can result in tur-
bulence. Power loss in the bearing increases and pad temperature also increases. Gregory (1974), Capitao 
(1974), Huebner (1974), and Hashimoto and Wada (1985) have investigated thermohydrodynamic 
 lubrication problem of thrust bearings in the turbulent fl ow regime. Frictional losses in  hydrodynamic 
thrust bearings of high speed turbines in power plants can be as high as 0.2% of total output. In a 500 
MW station with a turbine speed of 3600 rpm these losses are about 1000 kW in thrust bearings only as 
reported by Pinkus et al. (1977). One method of reducing this power loss is to adopt directed lubrication 
as shown by New (1974) and Mikula and Gregory (1983). Directed lubrication is also referred as leading 
edge lubrication in which lubricant is supplied to each pad over a confi ned region of its leading edge which 
eliminates churning losses in the bearing casing. It can reduce friction loss by almost 50%. However, it can 
also result in incomplete fi lm and reduce load capacity of the bearing by reducing lubricated area of the pad 
as has been analyzed by Etsion and Barkan (1981). 

6.3 | Thermohydrodynamic Analysis of Journal Bearings

Th ermal eff ect in journal bearings is generally evaluated by calculating an eff ective temperature and the cor-
responding eff ective viscosity of the lubricant through a heat balance between heat generated and heat dissi-
pated using isothermal analysis. However, in high speed lubrication temperature variations are signifi cant and 
important. Th erefore, variation of fl uid properties due to temperature, especially viscosity is very important 
because of strong dependence of lubricant viscosity on temperature. Th ermal analysis of journal bearings must 
take into account the viscosity variation due to temperature. Experimental results of Dowson et al. (1966), 
Tonnesen and Hansen (1981), and De Choudhary and Barth (1981) lend strong support to the need for a 
rigorous analytical approach to handle the thermal eff ect problem in journal bearings. Dowson (1962) devel-
oped generalized Reynolds equation which accounts for viscosity as well as density variation of lubricant 
with temperature not only in the fl ow direction but also across the fi lm thickness. In Chapter 3, a generalized 
Reynolds equation has been developed. Since the development of generalized Reynolds equation several 
thermohydrodynamic analyses of journal bearings have been presented. A review of these methods has been 
reported by Pinkus and Wilcock (1980). Briefl y stating there are mainly three diff erent approaches to solve 
the thermohydrodynamic (THD) lubrication problems in journal bearings.

 1. Adiabatic solutions in which viscosity variations across the fi lm thickness are neglected. Heat generated 
is removed totally by convection due to fl ow of the fl uid.

 2. THD lubrication solution with more accurate heat transfer considerations which take into account heat 
fl ux continuity conditions at fl uid solid boundaries.

 3. THD lubrication analysis including thermoelastic deformation and other considerations such as reverse 
fl ow in the inlet and cold oil mixing at the inlet groove, etc.
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A general analysis of THD lubrication of journal bearings is being discussed now following Ferron et al. 
(1983), Gethin (1987), and Singh and Majumdar (2005). Th ese analyses account for thermoelastic deforma-
tion of the bush. Laminar fl ow regime is assumed to prevail.

A developed view of the journal bearing and the coordinate system is shown in Fig. 6.6 and Fig. 6.7 
respectively.

Th e generalized thermal Reynolds equation as derived by Dowson (1962) can be written for steady-state 
incompressible Newtonian lubricant as:

 
θ θ θ θ
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Figure 6.7 | Coordinate System

R
b

O
b

O
j

x

R

R

W

e

q =
f

w

Figure 6.6 | Developed View of Bearing Surface Showing Cavitation

Oil Film

0

y Cavitation Zone

Air or Gas

L

2pp q
c
 (Film Rupture Location)q



Thermohydrodynamic Analysis of Fluid Film Bearings 131

where

η
= ∫

1

0 0

dz
F

η
= ∫

1

1 0

zdz
F

η
⎛ ⎞
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1
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2 0
0

Fz
F z d z

F

Density of the lubricant has been assumed to remain constant.
Dimensionless variables are defi ned as:

η ω η η η θ= = = = = =2 2
0 0

/ ,  / ,  / ,  x/R,  / ;  /p pC R h h C z z h y y L

Energy equation for the lubricant fl ow in the bearing can be expressed as:

 

2 2

p f

T T T u v T
c u v w k

x y z z z z
ρ η
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 (6.28)

where u, v, w are fl ow velocity components in x, y, and z directions, r and c
p
 are density and specifi c heat of the 

lubricant, k
f
 – lubricant thermal conductivity. It is assumed that conductivity of lubricant does not infl uence 

the heat taken away by the lubricant. Heat generation is due to viscous shear and heat dissipation is through 
convection by the lubricant in the fl ow directions and conduction across the fi lm thickness.

Energy Equation (6.28) can be written in the dimensionless form as:
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 (6.29)

where dimensionless variables are defi ned as:

2/ , / ; , / ; ;
e p f

i

wR T
u u U U w P c UC Rk T

CU T
ν ν ρ= = = = =

, journal speedU Rω=
P

e
  = Peclet number of the fl uid 

2
0

/ dissipation number
f i

U k Tα η=
T

i
  = inlet oil temperature

T  = lubricant fi lm temperature

Th e operator 
θ θ θ
∂ ∂ ∂

= −
∂ ∂ ∂*

z dh

h d z
 is introduced to allow for change of shape of fi lm from cylindrical to 

rectangular coordinate. In the inactive or cavitation zone, there is no pressure developed so the fl ow is uniform 
in the axial direction. Th erefore, temperature is also constant in the axial direction.

Viscosity–temperature relationship can be given as:

 η η η= = − + 2
0 0 1 2

/ k k T k T  (6.30)

where k
0
, k

1
, k

2
 are constants which characterize the viscosity–temperature relationship of the lubricant.
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Alternatively, Barus or Roelands relationship given by Equations (2.18) and (2.20) can be used also.
In addition to the above equations, heat transfer in the bearing is determined from the solution of fol-

lowing heat conduction equation in the solid bush neglecting convection as:

 ( )
2 2 2

2

2 2 2 2

1 1
/ 0

T T T T
R L

r r r r yθ
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

 (6.31)

where = /r r R
Same equation can be used for heat conduction in the shaft with the assumption that the temperature is 

independent of q. Alternatively adiabatic boundary condition can also be assumed and shaft temperature can 
be taken as constant and equal to the lubricant temperature on the shaft surface.

Heat transfer in the shaft assuming that the temperature of the shaft is independent of q, is given by 
neglecting convection as:
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Boundary conditions for the Equations (6.27), (6.29), (6.31), and (6.32), are given as:

 1. Boundary conditions for Reynolds equation are:

( )θ θ π± = ≤ ≥, 1 / 2 0 for 0 2p

 θ θ
θ

∂
= = =

∂
0 and 0 at 

cav

p
p , fi lm rupture boundary condition (6.33)

( )θ θ π
⎛ ⎞∂

= ≤ ≥⎜ ⎟∂⎝ ⎠
,0 0 for 0 2

p

y

Reynolds boundary conditions have been assumed for fi lm rupture in the divergent portion of the fi lm.

 2. Temperature boundary condition are as follows:

 (a) At the ends of the shaft, i.e., for = ± 1
2 ,y  a free convection is assumed to prevail which gives

 ( )=± =±

∂
= − −

∂ 1 1
2 2

1
isy y

T
B T

y
 (6.34)

B
is
 is the Biot number for the shaft and

 = s

is

s

h L
B

k
 (6.35)

 (b) For the outer surface of the bush, free convection and radiation modes of heat transfer is assumed 
which gives

 ( )= =

∂
= − −

∂ 2 2

1
ibr R r R

T
B T

r
 (6.36)

where B
ib
 is Biot number for the bush and

 = b b

ib

b

h R
B

k
 (6.37)

R
b
 is outside radius of the bush
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 (c) On the surface between the bush and the fl uid, the temperature is given by

 
( )θ

= =

∂ ∂
= −

∂ ∂1 0

1
r y

b

kT R T

r k C h y
 (6.38)

where k(q) is the thermal conductivity of the lubricant in the active zone and is equal to k
f
 and k

b
 

is thermal conductivity of the bush.

In the inactive zone

( ) ( ) ( )a a f

L
k k k k

L

θ
θ

′
= − −

k
a
 is the thermal conductivity of the air and L′(q) is defi ned as the apparent length of the liquid 

zone in the cavitations region (Fig. 6.6).

 (d) For the lateral surface of the bush

 ( )=± =±

∂
= − −

∂ 1 1
2 2

1
iby y

T L
B T

y R
 (6.39)

 (e) At shaft fl uid interface, the shaft temperature is assumed to be independent of q, heat fl ux continu-
ity condition gives:
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In the boundary condition defi ned in (a) and (b), h
s
 and h

b
 are heat transfer coeffi  cients of shaft and bush, 

respectively.

6.4 | Solution Procedure

Solution of thermohydrodynamic lubrication problem in journal bearings with heat transfer requires simulta-
neous solutions of Reynolds Equation (6.27) satisfying proper boundary conditions given by Equation (6.33) 
and energy Equation (6.29) and heat conduction equations for the bush and shaft given by Equations (6.31) 
and (6.32) satisfying appropriate boundary conditions given through Equations (6.34) to (6.40) following an 
iterative numerical technique. Finite diff erence and Gauss-Seidel methods with an over-relaxation factor are 
generally adopted to solve the equations.

Th e iterative procedure begins with an initial pressure and temperature fi eld prescribed to determine the 
integrals in the generalized Reynolds equation. Reynolds equation is then solved for pressure distribution in 
the bearing. Reynolds boundary condition is satisfi ed by following Christopherson algorithm, i.e., by setting 
negative pressure equal to zero as and when it appears in the process of iteration. Energy equation and heat 
transfer equations in the solids are then solved simultaneously to determine new temperature distribution. 
Th e process is repeated with the new temperature distribution to determine the new pressure  distribution by 
solving Reynolds equation. Th is process is continued until the converged solution is obtained, i.e., diff erences 
between two successive iterations converge within a prescribed error limit. Th is procedure has been followed 
by most researchers, for example, Dowson and March (1966), Mitsui (1978), Ferron et al. (1985), and Singh 
and Majumdar (2005) adopted similar procedure. Most of investigators observed that the iterative procedure 
converged fairly quickly. Th e algorithm followed by Singh and Majumdar is given in Fig. 6.8. Sample of 
results of above analysis in terms of pressure, load, temperature, etc. as obtained are shown in Figs 6.9 and 6.10 
for a load of 6000 N at a journal speed of 4000 rpm. Bearing geometrical dimensions and fl uid properties, 
etc. are given in Table 6.1. It is worth mentioning and  necessary too that thermo hydrodynamic analysis of 
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bearings is very bearing specifi c since the heat transfer analysis, etc. are dependent on the size of the  bearing 
and are also lubricant and material specifi c due its dependence on thermo-physical properties. Th erefore, 
generalization of results in the form of design charts or design curves is extremely diffi  cult and no such design 
charts are available. Singh and Majumdar (2005) have developed empirical relationships for load capacity, oil 
fl ow rate, and friction factor based on  numerical calculations which are given below:

Dimensionless load:

 ( ) ( ) ( )( )2
/

1 2 3 0 0
/ /

d
b

c L D fW a a L D e a L Dε ε
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where
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Figure 6.8 | Design Flowchart



136  Theor y of Lubrication

0 30 60 12090 150 180

Degrees

210 240 270 300 330 360

1

2

P
re

s
s
u
re

, 
M

P
a

Figure 6.9 | Typical Pressure Distribution in Circumferential Direction [Ferron et al., ASME JOLT, 1983]

Figure 6.10 | Typical Mid-Film Temperature Distribution [Ferron et al., ASME JOLT, 1983]
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Fiction factor:
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where

= = = = = − =
1 2 3 4 5 6

0.5509, 0.9468, 0.2233, 7.2743, 3.2285, 1.4227a a a a a a

ω
=

32

QL
Q

R C
,

Q is the fl ow rate.
Equations (6.41), (6.42), and (6.43) relate to dimensionless load, friction factor, and fl ow rate with L/D 

and static eccentricity ratio. Figs 6.11, 6.12, and 6.13 present the variation of nondimensional load, fl ow 
rate, and friction factor against eccentricity ratio, respectively, and compare the theoretical values with values 

Table 6.1 | Bearing Geometrical and Material Properties

Material and Oil Properties

Inlet temperature T
i
 = 40°C

Lubricant viscosity at 40°C h
0
 = 0.0277 Pa s

Viscosity coeffi  cients k
0
 = 3.287, k

1
 = 3.064,

k
2
 =0.777

Lubricant density at 40°C r
f
 = 860 kg /m3

Bush material density r
b
 = 8522 kg/m3

Shaft material density r
s
 = 7753 kg/m3

Lubricant specifi c heat capacity c
r
 = 2000 J/kg °C

Bush material specifi c heat capacity c
b
 = 385 J/kg °C

Shaft material specifi c heat capacity c
s
 = 486 J/kg °C

Lubricant thermal conductivity k
f
 = 0.13 W/m °C

Air thermal conductivity k
a
 = 0.25 W/m °C

Bush thermal conductivity k
b
 = 111 W/m°C

Shaft thermal conductivity k
s
 = 36 W/m°C

Convection heat transfer coeffi  cient h
b
 = 80 W/m°C,

h
s
 = 100 W/m°C
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Figure 6.11 | Curve Fitted Load Capacity for L/D = 1 [Singh and Majumdar, IMechE, UK, 2005]
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Figure 6.12 | Curve Fitted Flow Rate for L/D [Singh and Majumdar, IMechE, UK, 2005]
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Figure 6.13 | Curve Fitted Friction Factor for L/D [Singh and Majumdar, IMechE, UK, 2005]
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obtained from empirical equations. Th erefore, the empirical equations generated give very accurate results and 
can be used to design a journal bearing.

It has also been found that in high speed bearings temperature rise in the bush, etc. is signifi cant and 
thermal distortions of the shaft and bush signifi cantly alter the fi lm shape in the bearing. In other words, 
pressure distribution and temperature distribution also depend on the thermal distortion particularly at high 
operating eccentricity ratios when both pressure and temperature generated could be high. Gethin (1985, 
1987) solved the problem including thermoelastic deformation of the bush. Finite element method was 
employed by them to analyze the thermo hydrodynamic lubrication problem. Oil is generally supplied to the 
bearing through an oil groove. Mixing of cold and hot oil takes place in groove due to recirculation of oil in 
the groove. Th is aff ects the temperature of the oil entering the bearing fi lm. Heshmat and Pinkus (1985) have 
investigated this problem theoretically.

6.5 |  Thermoelastic Deformation of Shaft–Bush System Using Finite 
Element Method

Th e distortions of the bush and shaft due to imposed temperature and pressure fi eld can be determined using 
equation of solid mechanics and fi nite element method. Gethin (1987) used fi nite element method with the 
assumption that the axial temperature variation is small and for moderate eccentricity ratios the pressure fi eld 
is not too severe. Th erefore, distortion of the bush at the center line was only calculated. Ghosh and Brewe 
(1993) also used fi nite element method to calculate thermoelastic deformations due to known temperature 
and pressure fi eld in a bearing system. Th e method is general and can be used in any tribo system.

Th ermoelastic stresses and deformation in an elastic isotropic solid are due to mechanical loading by 
surface and body forces and thermal state given by the temperature fi eld in the solid.

Following Hooke’s law, stress–strain equations for an isotropic material including thermal eff ects are 
given as:

 { } { } { }ε σ ε= +⎡ ⎤⎣ ⎦ 0
D  (6.44)

e
0
 – initial strain due to non-uniform temperature distribution

s, e are stress and strain, respectively, and [D] is material fl exibility matrix.
In an isotropic solid, the strains due to thermal expansion are uniform in all directions, hence, only 

 normal strains are altered, shear strains are unaltered. In a three dimensional state, the thermal strains are 
given by:

 ( ) ( ) ( ), , ,0,0,0
i i i

T T T T T Tε α α α⎡ ⎤= − − −⎡ ⎤⎣ ⎦ ⎣ ⎦  (6.45)

Stresses in the solid may be computed by solving equation (6.44) for the stress vector. Th e stress-strain 
law may then be written as:

 { } { } { }σ ε ε= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ 0
C C  (6.46)

Utilizing the principle of minimum potential energy which states that among all the displacement 
fi elds of an admissible form, one which satisfi es the equilibrium conditions makes the potential energy of a 
deformed body minimum.

Th us, for minimum potential energy of a deformed body an expression of the following form can be 
written following Zienkiewicz (1977).

 { }T

v v s

B C B dv pdv qdsδ = −⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦∫∫∫ ∫∫∫ ∫∫�� �  (6.47)
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or

{ } { }δ =⎡ ⎤⎣ ⎦K F

is obtained which can be solved for {d}, the displacement in the domain.
In the above equation, the integral over the volume domain of the solid includes thermal loading due to 

temperature while the surface integral over surface domain, contains contributions due to imposed pressure 
that is at the elemental level.

Th us,

 ( )
ν

α=∫ ∫� �qdv f T dv  (6.48)

where f (T ) is the temperature fi eld over the element and

 ( )=∫ ∫�s s
f p ds  (6.49)

where ( )f p  is the pressure fi eld over the element edge.

Th e strain–displacement relationship is written as

 { } { }ε δ
⎧ ⎫
⎪ ⎪= =⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦
⎪ ⎪
⎩ ⎭

u
B B v

w
 (6.50)

coordinates u, v, w are displacement vectors in Cartesian coordinates.
Th e matrix [C] is the material stiff ness matrix and is written for an isotropic elastic solid as:
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 (6.51)

and matrix [B] is written as:
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Th e displacement vector for an element with r nodes is

 { }( )δ

⎧ ⎫
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 (6.53)

Th e displacement fi eld is approximately related to its nodal values by r interpolating function N
i
 (x, y, z) 

so that displacement fi eld is expressed as

 { }( )
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 (6.54)

where [N ] is the interpolation function matrix.
Th erefore, within an element the matrix [B] relating to strain and displacement at node q takes the form:
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 For q = 1, 2 … r (6.55)

Using Equations (6.54) and (6.55), Equation (6.47) can be reduced to the form as written below:

 { } { }δ =⎡ ⎤⎣ ⎦K F  (6.56)

Displacement matrix {d } can be determined from the above relationship. Th is is a general procedure and 
can be adopted for all types of thermo mechanical stress and deformation analysis including bearing deforma-
tion in thermohydrodynamic lubrication.

Th e steps involved in thermohydrodynamic lubrication including thermo elastic deformation are:

 1. Solve the thermohydrodynamic lubrication and energy equation in the fi lm and heat transfer equations 
in the solid.

 2. Solve for the stresses and deformation in the bush and shaft using the fi lm pressure and temperature fi eld.
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 3. Update the fi lm thickness profi le, i.e., δ δ= − −′
B S

h h , d
B
 and d

S
 are bush and shaft deformations 

respectively.

Th is process is repeated until convergence is obtained within preassigned error limit.

6.6 |  Adiabatic Solution for Thermohydrodynamic Lubrication 
Problem in Journal Bearing

Th e geometry of the journal bearing is shown in Fig. 6.14.
In adiabatic solution for thermohydrodynamic lubrication problems, it is assumed that viscosity of the 

lubricant remains constant across the fi lm and therefore temperature across the fi lm is constant. Heat gener-
ated due to viscous shear heating is fully removed by the lubricant fl ow from the bearing fi lm and there is no 
other mode of heat transfer. Th is decouples the energy equation from the Reynolds equation if the pressure 
gradient terms in the energy equation are neglected as have been shown by McCallion et al. (1970) in their 
analysis. Th is assumption does not introduce any signifi cant error in bearing performance over the full range 
of possible eccentricity ratios.

With the above assumptions, the energy equation is written in the reduced form as:

 
η

θ β
∂ Ε

=
∂ 2

T

H
 (6.57)

where

 ( )η
η β

η
⎡ ⎤= = − −⎣ ⎦

0

exp
i

T T  (6.58)

T is the fi lm temperature and b is temperature–viscosity coeffi  cient of the lubricant
h

0
 is lubricant viscosity at temperature T

i
, the inlet temperature of the lubricant

Figure 6.14 | Hydrodynamic Journal Bearing
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Shear stress τ η
∂⎛ ⎞

= ⎜ ⎟⎝ ⎠∂
u

z
 and shear strain rate 

∂ ⎛ ⎞
= ⎜ ⎟⎝ ⎠∂

u U

z h

where U is the journal surface velocity and h is the fi lm thickness

( )
( )

ω

ρ βη
Ε =

2

0

2 /
;

/
p

R C

c g
 ω=U R

Combining Equations (6.57) and (6.58), the energy equation takes the form of

 
θ η

⎛ ⎞ Ε
= =⎜ ⎟⎝ ⎠ 2

1
; /

d
H h C

d H
 (6.59)

Equation (6.59) is integrated to give

 ( ) ( )θ θ
η

⎡ ⎤= + Ε −′ ′⎣ ⎦
1

1
i

I I  where θ θ φ= −′
0
 (6.60)

Th e integral

 

( ) ( )

( ) ( ) ( )

θ
θ

θ

ε θ δ ε θ
θ

ε θ ε θε ε
−

⎛ ⎞
=⎜ ⎟

⎝ ⎠
⎡ ⎤+⎛ ⎞⎢ ⎥= − + ⎜ ⎟⎝ ⎠+ +− ⎢ ⎥−⎣ ⎦

∫

1
2

2

1

2 2

1 sin cos
cos

1 cos 1 cos1 1

d
I

H

I  (6.61)

where 1 for sin 0 and 1 for sin 0δ θ δ θ= > = − < .

Adiabatic Reynolds equation for an incompressible lubricant is given by

 
θ η θ η θ

⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂
+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

3 3p pH H H

y y
 (6.62)

where

πη
⎛ ⎞

= =⎜ ⎟⎝ ⎠

2

0

,   is  film  pressure and 
12

p yC
p p y

N R R
;

R is the radius of the journal.

Substituting ψ = 3/2G  
where

 η= 1/3/G H  (6.63)

Th e Reynolds equation becomes

 ( ) ( )ψ ψ
θ ψ θ

θ
∂ ∂

+ + =
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 (6.64)
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and

( )θ
θ

∂
=

∂3/2

1 H
g

G

A fi nite diff erence approach is generally used to solve Equation (6.61) which reduces to

 ( )ψ ψ ψ ψ ψ θ
−− + +

+ + + + = Δ
1 1 1, 1

2

1 1 1 1
j i i j i

i j j i j j i
a b b g  (6.65)

( ) ( )2

2

2 1
j j

a b f

b
y

θ

θ

= − + + Δ
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A Gaussian elimination technique is used to get the solution of Equation (6.65) satisfying following 
which boundary condition:

2

0  at  / 2
0  at  

0  at     cavitation boundary.

i
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p
p

θ θ

θ θ
θ

= = ± =
= =

∂
= = =

∂

Th e above procedure was developed by Pinkus and Bupara (1979) to analyze thermohydrodynamic 
 lubrication of fi nite journal bearings. Th e procedure is general and can be adopted to get solution of thermo 
 hydrodynamic lubrication problems in bearings.

6.7 |  Thermohydrodynamic Analysis Using Lobatto 
Quadrature Method

Lobatto quadrature technique to solve thermohydrodynamic lubrication problems wherein viscosity variation 
across the fi lm thickness is taken into account was developed by Elrod and Brewe (1986) and Elrod (1991). 
It is a computationally very effi  cient and accurate method in comparison to fi nite diff erence and fi nite  element 
methods. Th is theory is now presented below.

Th e momentum equation for noninertial laminar lubricating fi lms and the corresponding energy  equation 
are, respectively, as follows:

 η
∂ ∂⎛ ⎞

∇ = ⎜ ⎟⎝ ⎠∂ ∂
,

u
p

z z
 (6.66)

 ρ φ
∂ ∂ ∂⎛ ⎞

= +⎜ ⎟⎝ ⎠∂ ∂ ∂
,

p

T T
c u k

x z z
 (6.67)

where f = ( )2
/u zη ∂ ∂  is the viscous dissipation function.

Along with Equations (6.66) and (6.67), following mass continuity equation for an incompressible fl uid 
must also be satisfi ed:

 ∇⋅ = 0u  (6.68)
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Th e numerical solution to the fl ow fi eld is sought by sampling the velocities, pressures, and temperatures 
over chosen grid points and appropriate physical laws mentioned above are satisfi ed through an algorithm 
to which these values are interlinked. For a given confi guration in Fig. 6.15 which represents an inclined pad 
hydrodynamic thrust bearing, the temperature variation across the fi lm is represented by a Legendre poly-
nomial of order N, P

N
 (ζ) and the sampling points then are N Lobatto points. It can be shown that N such 

internally selected points permit exact numerical integration of a polynomial of order 2N + 1 over range – 
1 < ζ < 1. Th us,

( )ζ ζ
−

= ∑∫
1

1 k k
T d w T

and for N = 2, the Lobatto location ζ
k
 and weight factor w

k
 are as follows and includes end-point values as 

given in Table 6.2. Th erefore, if end-point temperatures are known, then it requires only two interior Lobatto 
point temperatures to be determined. Th e fl uidity ξ η= 1 /  is also collocated to its Lobatto point values by 

the series ( )ζ ζ=
k k

T . Th e Galerkin style analysis used here involves the expansion of the temperature in a 

truncated series of Legendre polynomials.

Figure 6.15 | Coordinate Defi nition for Slider Bearing
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Table 6.2 | Lobatto Locations and Weight Factors for N = 2

Location Weight factor 

−1 1/6

−1/ 5 5/6

1/ 5 5/6

1 1/6
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Satisfaction is required of as many moments of the energy equation as there are unknowns in this series. 
Th e ensuing partial diff erential equations for the Legendre components are then solved. In the present solu-
tion, only two unknowns are used and for these it is feasible to carry out explicit integration as follows:
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∫ ∫  (6.69)

and for the second moment
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∫ ∫  (6.70)

Th e temperature distribution which passes through the Lobatto points expressed in Legendre polynomials as

 ( ) ( )ζ ζ
=
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3

0

,
k k

k

T T P  (6.71)

then the Legendre coeffi  cients are easily evaluated by integration
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Th e above linear set of equations can be solved for the 
k

T�  For N = 2

 { }− −
= + + +�

0 2 1 1 2

1
5 5 ,

12
T T T T T  (6.73a)

 ( ){ }1 2 2 1 1
5  4T T T T T

− −
= − + +�  (6.73b)

 ( ){ }2 2 2 1 1

5
,

12
T T T T T

− − −
= + − +�  (6.73c)

 ( ){ }3 2 2 1 1
5 4 ,T T T T T

− −
= − + +�  (6.73d)
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Th e wall or surface temperatures T
2
 and T−2

 are considered known for purposes of fi lm calculation. 
Th us,

 ( )−
= + −� �

2 2 2 0,
/ 2T T T T  (6.73e)

 
( )−

= − −� �

3 2 2 1,
/ 2T T T T

 (6.73f )

Similar expressions are obtained for fl uidity with the Lobatto point temperatures. Th us,

 { }0 2 1 1 2

1
5

12
ξ ξ ξ ξ ξ

− −
= + + +�  (6.74)

and fl uidity distribution is

 ( )
3

0

,
k k

k

Pξ ξ ζ
=

= ∑ �  (6.75)

6.7.1 | Velocity Distribution and Mass Flux

A double integration of Equation (6.66) with 1/ξ η=  gives the tangential velocity vector
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and

⎛ ⎞
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Th e linear mass fl ux is obtained as

 ζ
ρ −
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1
,

2
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ud  (6.78)
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For symmetric cross-fi lm temperature distribution arithmetic averaging of fl uidities at Lobatto points 
can be done and therefore, mass fl ux is given by

 ( )
3 1

2
2 2 1

3
.

2 12 2

m h h
u u p dξζ ζ

ρ − −
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Th e cross-fi lm temperature distribution would be symmetric when the surface velocities u
2
 and u−2

 are 
equal and so also the surface temperatures T

2
 and T−2

.
Mass continuity given by Equation (6.68) when applied to mass fl ux leads to the generalized Reynolds 

equation, as follows:

 ( ){ } ξ ξ ξ
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m d h d h d h
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dx dx dx
 (6.80)

6.7.2 | Temperature Equation

With the aid of the Legendre series for temperature and fl uidity integrals in the zeroth and fi rst moment of 
energy, Equations (6.69) and (6.70) can be evaluated as follows:

Equation (6.69) becomes

 ( ) ( )α α φ
ρ

−

−

+⎧ ⎫
+ + + = +⎨ ⎬

⎩ ⎭
∫� � � �

/2
2 2

0 7 0 1 8 1 /2

12 12 1
0.

4 4 2

h

h
p

T Tk h d h d k
T T T T dz

h dx dx h c
 (6.81)

Th e temperature �

0
T  is ζ – space mean temperature where the integral of the dissipation function is:
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and Equation (6.70) becomes:
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where the moment of the dissipation function is:

 ( )φζ ζ ξ ξ ξ ξ ξ
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Th e constants of Equations (6.81) and (6.83) are given in the Appendix.

Two simultaneous partial diff erential Equations (6.81) and (6.83) with two variables �

0
T  and �

1
T  are 

obtained by eliminating �

2
T  and �

3
T  via Equations (6.73e) and (6.73f ) coupled with the generalized Reynolds 

Equation (6.80) provide the solution to the thermohydrodynamic lubrication problem for laminar fi lms.

6.7.3 | Computational Procedure

Th e solution to the thermohydrodynamic lubrication problems begins with the known pressure distribution 
within the lubricant fi lm as obtained from Equation (6.80) for isothermal fi lms assume that the temperature 
in the entire fl uid fi lm is equal to the inlet oil temperature at 311 K.

Fluid fi lm is discretized in the fl ow direction and the terms ( ) ( )0 1
/  and /dT dx dT dx� �  in Equations 

(6.81) and (6.83) are expressed in fi nite-diff erence form with backward diff erencing. Separating the terms, 
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 simultaneous algebraic equations in terms of two unknowns � �

0 1
andT T  are obtained which are solved to 

determine them. Th is is done starting from the inlet to the outlet of the fi lm in a forward marching manner. 
Iterations are done to obtain a converged solution. For known surface temperatures T

2
 and T−2

 equal to the 
inlet oil temperature 311° K, the temperature distribution within the fi lm region T

1
 and T−1

 are thus obtained. 
Reverse fl ow situations, whenever occur, are handled by resorting to upwind diff erencing for the terms in 
Equations (6.81) and (6.83).

Once the Lobatto point temperatures are known over the entire fi lm domain, fl uidity functions given 
in the appendix are evaluated afresh. Th en the generalized Reynolds Equation (6.80) is solved iteratively for 
pressure distribution following the fi nite-diff erence method with appropriate boundary conditions satisfi ed 
at the inlet and exit of the fi lm.

For the pressure distribution thus known, we return to determine the temperature distribution within the 

entire fi lm region for the new pressures by solving Equations (6.81) and (6.83) for � �

0 1
 and T T .

As discussed earlier, this process is repeated until both pressure and temperature converge simultaneously.
Pressure and temperature are treated as converged when the following convergence criteria are satisfi ed:

For pressure

( ) ( )
( )

−
∑ − ∑

≤
∑

1 0.0001.
i iN N

i N

p p

p

For temperature

( ) ( )
( )

−
∑ − ∑

≤
∑

1 0.0001.
i iN N

i N

T T

T

where N is the number of iterations. However, convergence is quick and is obtained in only four or fi ve 
iterations.

6.7.4 | Load Capacity and Friction Force

Load capacity per unit width of the pad is determined as:

 = ∫ e

i

x

x

W
pdx

L
 (6.85)

and the friction force per unit width of the pad is expressed as:

 η
∂⎛ ⎞

= ⎜ ⎟⎝ ⎠∂∫
0,

.
e

i

x

x
h

F u
dx

L z
 (6.86)

when expressed in dimensionless form these are:

Load Capacity

 
η

= min

0
24

Wh
W

LRu
 (6.87)
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Friction Force

 
η

= min

0
24

Fh
F

LRu
 (6.88)

and the coeffi  cient of friction μ =
F

W
.

Results of temperature distribution for thermohydrodynamic lubrication of an infi nitely wide inclined 
pad thrust bearing using this method are shown in Fig. 6.16. Th e geometry and fl uid properties are given 
below.

Density: 1.7577 × 106 kg/m3

Th ermal diff usivity: 7.306 × 10−8 m2/s
Viscosity of lubricant: 0.13885 × exp (−0.045(T−311.11)) PaS
Lubricant entrance temperature: 311.11 K
Solid surface temperatures: Uniformly at 311.11 K
Runner velocity: 31.946 m/s
Bearing length: 0.18288 m
Minimum gap: 0.00009144 m

Th e computations involved are much less in comparison to fi nite diff erence method.
Th is method has been extensively used in recent years by several researchers. Sharma and Pandey (2006) 

presented results of temperature contours of an inclined pad hydrodynamic thrust bearing as shown in 
Fig. 6.17 and 6.18, and also investigated the accuracy of the presented method in comparison to parabolic 
 approximation of temperature variation across the fi lm.

Figure 6.16 | Temperature Versus Film Position in the Gap
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Figure 6.17(b) |  Temperature Variation Across the Sliding Direction Computed with LPTPA [Sharma and Pandey, 
Tribology Online, JST, 2006]
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Figure 6.17(a) |  Coordinate System for Legendre Polynomial Temperature Profi le [Sharma and Pandey, Tribology 
Online, JST, 2006]
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Figure 6.18 | Temperature (in °C) Contours in the Fluid and Pad [Sharma and Pandey, Tribology Online, JST, 2006]
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Chapter

Design of Hydrodynamic Bearings

7.1 | Introduction

Th e theory of hydrodynamic oil bearings is given in Chapters 4 and 5. Th e three important parameters 
concerning bearing design are

 1. Load capacity
 2. Coeffi  cient of friction
 3. Oil fl ow

A bearing designed should be able to support the applied thrust or radial load calculated from other 
design considerations. Th e coeffi  cient of fl uid friction upon which depends the frictional power loss should 
be minimum. Finally, the fl ow rate of lubricant through the bearing is to be determined correctly so that the 
bearing does not starve and consequently oil fi lm which supports the load does not break. Furthermore, an 
adequate oil fl ow is required for dissipating the heat generated due to fl uid friction.

7.2 | Practical Considerations

Th eoretical load carrying capacity derived in Chapter 5 shows that it increases with increase in the eccen-
tricity ratio. Th us, a reduction in minimum fi lm thickness gives to higher load capacity. If one can make an 
infi nitesimal minimum fi lm thickness, an infi nite load can be achieved. However, the value of minimum oil 
fi lm thickness depends on several practical considerations, like surface fi nish, rigidity of shaft, geometry of 
bearing surface, etc. Th e choice of bearing materials which plays a vital role is briefl y outlined. For details refer 
to Radzimovsky (1959).

A few practical considerations will now be discussed (Etchells, 1942). Most of these are based on experi-
ence. Th ese may help in fi nding the initial bearing dimensions. Amongst the various practical considerations, 

r7
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length to diameter (L/D) ratio in the case of journal bearing (width to length ratio in slider bearing), radial 
clearance, C (sometimes minimum fi lm thickness), and bearing pressure, P (unit load) are most important. In 
the following sections, factors which play important role on L/D ratio, C and P are discussed.

7.2.1 | Length to Diameter Ratio

Th eoretical analysis of load capacity shows that it can be increased with an increase in bearing length because 
of large projected area. It has also been found that rate of fl ow of oil decreases with increase in the length of 
bearing. Th us, a longer bearing gives higher load and less fl ow, whereas the reverse is true for a shorter bearing. 
A shorter bearing is preferable when the problem of heat dissipation in the bearing is critical.

Rigidity of the shaft and the bearing is an important factor for deciding a correct L/D ratio. If the bearing 
is rigidly supported and cannot defl ect with the shaft, the journal may be damaged at the ends due to surface 
contact. When the bearing is relatively long and the bearing material has poor conformability, this problem 
is severe.

Th e space sometimes puts a limitation on L/D ratio. A smaller L/D is generally preferred in aircraft 
engine bearings because of space limitation.

Th ere are many such practical aspects which determine the possible L/D ratio for longer service life. But 
there is no general rule for the best L/D ratio, since both large and small L/D ratios have their advantages and 
disadvantages. Th erefore, a designer has to rely mostly on the operating conditions. It is usually the practice 
that L/D ratio should be taken close to 1, with fl exibilities to increase when alignment and cooling the bear-
ing do not pose a serious problem; to decrease when the fl ow rate is a primary consideration or when the 
bearing material has a poor conformability.

7.2.2 | Radial Clearance

Under given operating conditions, the clearance in a journal bearing has a signifi cant eff ect on load capacity 
and fl ow rate. For a given operating condition, an increase in radial clearance decreases the load capacity 
and increases the oil fl ow rate. As the oil fl ow rate is directly proportional to cube of radial clearance, a 
slight increase in clearance will increase the oil fl ow rate substantially thereby reducing the temperature of 
bearing surface.

Some practical considerations, such as properties of bearing alloy, geometry of bearing (L and D), and 
nature and magnitude of load and speed are important in deciding initial bearing clearance. Table 7.1 may 
give a preliminary idea for selection of radial clearance.

It has also been recommended (Shaw 1949) to use a slightly higher C/R for small bearings and lower 
C/R for large bearings.

Table 7.1 | Recommended Radial Clearance Ratio for Diff erent Bearing Alloys

Alloys C/R ratio

Tin-base Babbitt 0.0005

Cadmium-silver 0.0008

Copper-lead 0.0010

Sliver-lead-indium 0.0010

Aluminum 0.0010
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7.2.3 | Bearing Unit Load

Th e unit load P is defi ned as the load per unit projected area of bearing. Th is unit load is a function of 
Sommerfeld number. If for a bearing, C/R, η , and N are kept constant, Sommerfeld number is inversely 
 proportional to the unit load. Th erefore, for successful hydrodynamic lubrication the bearing load should be 
such that the Sommerfeld number does not become critical (S ≥ 0.04) . Th is is from the theoretical point 
of view. When the active oil fi lm is short and the attitude is relatively high, the maximum hydrodynamic 
 pressure p

max
 in the oil fi lm is several times higher than the unit load P. Th e bearing may fail by fatigue if the 

 maximum pressure in the oil fi lm exceeds the fatigue strength of the bearing material. A number of  factors 
which infl uence the fatigue life of a bearing are the fatigue strength, the operating temperature, and the 
character and the frequency of load application. It is also quite diffi  cult to have correlation of fatigue life and 
the unit load of a particular bearing. However, as a guide to preliminary selection of unit load the data (1942) 
given in Table 7.2 may be recommended.

It is expected that life of bearing used in various applications is from 1000 to 20 000 hours. Th e shortest 
life may be expected in aircraft engines, whereas the largest one in stationary heavy engines. For automobile 
engine bearing, the average life expectancy is usually between 2000 and 4000 hours.

An accurate design procedure recently published (2005) is given in Section 7.4.1.

7.3 | Bearing Materials

7.3.1 | Introduction

When fl uid fi lm bearings are operated under hydrodynamic lubrication (i.e., no metal-to-metal contact), any 
pair of materials can be used as bearing materials provided they have enough strength to support the applied 
load and their ability to be machined. Unfortunately, fl uid fi lm bearings do not always operate under this 
hydrodynamic lubrication. Th ere will always be some amount of metal-to-metal contact between the surfaces 
during starting and stopping when adequate fl uid fi lm pressure will not be generated. In some situations bear-
ing operates under a heavy load or with too low a speed to develop pressures that are not adequate to support 
applied load avoiding metal-to-metal contact. In addition to

• Th e shaft and bearing surfaces are not always smooth enough to avoid contact.

• Th ere may be misalignment between the journal and bearing.

• Th e lubricant supply may be inadequate for forming required fl uid fi lm.

Table 7.2 | Maximum Unit Load for Various Bearing Metals

Bearing metals Maximum P in kN/m2

Lead-base Babbitt 4200–5600

Tin-base Babbitt 5600–7000

Cadmium-base bearing metal 8400–10 500

Copper-lead (Pb 45%, Cu 55%) 14 000–21 000

Copper-lead (Pb 25%, Sn 3%, Cu 72%) 21 000–28 000

Silver (lead-indium overlay) 35 000 and up

Bronzes 70 000
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Due to the above reasons, there is a possibility of contact between the surfaces having relative motion 
under load. In the previous chapters, it was assumed that the applied load is constant and unidirectional. Many 
bearings, such as connecting rod and main bearings in I.C. engines and in piston pumps and  compressors 
operate where the load is fl uctuating during loading cycle.

Th ese situations place additional requirements on choice of bearing materials. As bearings operate under 
various conditions, a particular material will never satisfy all the requirements of bearing material. For exam-
ple, a bearing material having good deformability has low compressive and fatigue strength. Hence, the 
 selection of a proper bearing material is a matter of judgment.

7.3.2 | Properties

A good bearing material is required to have the properties, like

• Compatibility

• Conformability

• Embedability

• Compressive strength

• Fatigue strength

• Th ermal conductivity

• Machinability, and so on.

Th e above properties are well known and do not require further explanation.
Th e bearings are likely to adhere or weld under heavy load to the shaft if there is a contact between 

them. Th is situation is observed in the case of boundary lubrication. Th e measure of anti-weld or anti-scoring 
property of a bearing material operating particularly with a journal bearing material is called compatibility. 
Amongst the available bearing materials, tin-base and lead-base alloys are common where score resistance is 
a primary requirement. Nylon and zinc alloy give the best and the worst anti-scoring properties, respectively. 
Normally bearing alloys having the best anti-scoring resistance have low hardness and strength.

Th e conformability of a bearing material is its ability to yield to deformation under running condition. 
Th e situation is highly critical if defl ection of shaft occurs, thereby giving a possibility of having good con-
formability adjusts itself by wearing without disturbing the normal operation. White metal alloys, particularly 
tin-base Babbitt have the ability to conform other geometric errors.

Embedability is the ability to absorb the foreign particles present in the lubricant to avoid scoring and to 
some extent wear. Bearing materials with good conformability and embedability have low hardness, fatigue 
strength and Young’s modulus. Babbitts have good embedability and conformability but have less hardness 
and poor fatigue strength.

A bearing material having a good compressive strength resists pressure without plastic deformation. Th e 
compressive strength is calculated as load per unit projected area of the bearing. A material with good com-
pressive strength is having poor conformability and embedability.

Th e fatigue strength of a bearing material depends on the range and number of stress cycles to which it 
is subjected to. Th is is important when the load fl uctuates and changes in direction. Such a load is applied to 
reciprocating I.C. engines and piston compressors. Under the action of such load application fatigue cracks 
and surface pits may develop. Bronzes have the high fatigue strength, whereas lead- and tin-base Babbitts 
are relatively weak in fatigue strength. A thin layer of Babbitt is bonded on a backing material (steel) having 
higher strength and rigidity.

Lubricants sometimes tend to form organic acid and oxidize with time and temperature. Th is is usually 
seen on the piston and cylinder walls of an I.C. engine. Th ese give rise to corrosion and as a result insoluble 
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organic soaps are deposited in the system. Alloys having lead, cadmium, zinc, copper, and silver are subjected 
to corrosion. Tin-base Babbitt is the most corrosion-resistant alloy. Antimony, arsenic, or indium when added 
to lead-base Babbitt may increase the corrosion resistance. It is advisable to replace the used oil periodically 
by fresh one to avoid corrosion.

7.3.3 | Materials

Th e most common bearing materials found in use are alloys of tin, lead, and copper as Babbitts or white metals. 
A white metal usually comprises nearly 90% tin, 9% antimony, and 1% copper. Babbitts are  classifi ed as tin-
base and lead-base alloys. In the fi rst category, tin-base alloys have the same structure of the  original Babbitt. 
Th e lead-base alloys have pure lead and compounds of tin and antimony. Th ese alloys are having low hardness 
and excellent anti-scoring properties. Th ese are quite good as far as the conformability and  embedability are 
concerned. However, these alloys have low fatigue strength that decreases rapidly with increase in the tem-
perature. Hence, these alloys are used at low temperatures. To improve the fatigue strength, a thin layer of 
Babbitt is used as an intermediate layer of high fatigue-strength material and bonded to a steel backing. Th ese 
bearing materials can support high load and have anti-scoring resistance and embedability. Tin-base Babbitt 
has better corrosion resistance and is harder than lead-base one at room temperature. Th ey can be bonded to 
steel backings fairly easily. However, the tin-base Babbitts are expensive.

If small amount of calcium, tin, or mercury is added to a lead-base Babbitt, the hardness of the lead 
increases to a great extent. Th ese are called alkali-hardened lead and can be used at a moderately high tem-
perature. Th ese alloys have poor corrosion resistance properties.

Cadmium-base alloys (alloys of cadmium contain nearly 1% nickel, 0.5% copper, and 1% silver) have 
good conformability and embedability. Th ese have better hardness than Babbitts and can be used at higher 
temperatures. Th ey have higher strength than Babbitts. However, these alloys do not have good corrosion 
resistance.

A commonly used bearing material is bronze. Bronzes are fairly strong so that these can be used with-
out any backing. Th e fatigue strength for bronze is high. Bronzes can be quite easily cast and machined. Th e 
amount of lead and tin present in the alloy is vital as it can make bronze softer or harder. A typical leaded 
bronze has nearly 10% to 25% lead and 2% to 10% tin. Lead provides anti-scoring properties whereas tin 
increases the hardness and fatigue strength. If more than 20% tin and about 10% lead are present, these are 
called tin bronze. Although these are quite hard, they have low conformability and embedability.

Some alloys, such as copper-lead alloys, aluminum alloys, silver sintered metals and cast iron, are used as 
bearing materials.

Sintered bearings which are used in some specialized applications are made from two powder metals. 
Th ese are mixed and pressed in dies and then sintered by heating at a high temperature. As these bearings can 
be mass produced, their cost is relatively less. A typical composition of such a bearing is about 10% of tin and 
the rest copper. Th ese bearings are some times called porous bearings that impregnated in oil before use. Th e 
oil is supplied through the interconnected pores. Hence, porous bearings are self-lubricating.

7.4 | Bearing Design

7.4.1 | Design Procedure

In the previous chapters, the steady state performance characteristics of journal bearings are found considering 
constant viscosity of oil. As already mentioned, for an accurate solution the Reynolds equation is to be solved 
simultaneously with the energy and the heat conduction equations. Th e solution can be obtained numerically 
using inverse method satisfying the appropriate pressure and temperature boundary conditions using fi nite 
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diff erence method with successive over-relaxation scheme under steady state condition. Th e details of the 
solution procedure are available (2005).

Th e data bank for load, fl ow, and coeffi  cient of friction is created from a large number of L/D and eccen-
tricity ratios for given lubricant and material properties. Th ese data are curve fi tted to frame the relations 
dealing with various design parameters. Th e relations for load, fl ow, and coeffi  cient of friction are given as:
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, ω  is the angular velocity of journal
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Flow Rate
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Friction Factor

 ( ) ( )( )ε εμ = + + +
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where μ μ=
R

C

= − = − = = −

= = = − =
1 2 3 4

5 6 7 8

0.0264,  3.6662,  0.4695,  34.5477
1.0892,  88.4788,  2.0146,  28.2124

a a a a
a a a a

Th ese equations are found iteratively using least square optimization technique. Th e values obtained from 
the above expressions for load, fl ow, and coeffi  cient of friction agrees very well with the theoretical prediction. 
Th e relations given in Equations (7.1), (7.2), and (7.3) are used to design a journal bearing.

Knowing the specifi c application of the bearing, assume L/D ratio. Th e bearing length L is then found. 
Choose a suitable bearing material and accordingly assume the clearance C. Th e operating eccentricity ratio e

0
 

can be determined from Equation (7.1) for the applied load and the chosen L/D ratio. Th en Equations (7.2) 
and (7.3) are used to fi nd fl ow rate and coeffi  cient of friction, respectively.

7.4.2 | Design Example

A full journal is operating under the following conditions:

• Shaft (journal) diameter = 100 mm

• Shaft speed N = 3500 rpm

• Radial load W = 250 kN
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It is assumed that inlet oil temperature is 400C and the corresponding viscosity of oil used is 0.018 
Pa-s. From the consideration of space and other limitations let the L/D be 1. Hence L = 100 mm. From the 
consideration of surface fi nish of the shaft and bush, the clearance ratio C/R be taken as 0.0005. Th e radial 
clearance C is then equal to 0.025 mm. Th e dimensionless load is = 1.228W . From Equation (7.1), the 
eccentricity ratio e

0
 is obtained as 0.469. Th e volume rate of fl ow and coeffi  cient of friction then determined 

from Equations (7.2) and (7.3) are 6.165 × 10−6 m3/s and 0.0029, respectively.
Th e conventional design of such a bearing deals with the design data of journal bearings under steady 

state condition. Heat balance, i.e., heat generated, g
H  is made equal to heat dissipated 

d
H  is satisfi ed 

using Cameron and Woods’ so–called ‘two-thirds’ temperature rise rule. Th e average equilibrium temperature, 
(hence average viscosity) is then determined for a given oil.

In the forgoing study, a rigorous analysis considering energy and heat conduction equations are solved 
simultaneously with Reynolds equation. Th e temperature distribution (hence viscosity) in the fi lm is known. 
To carry out heat balance, the following steps are suggested:

 1. Calculate H
g
 from coeffi  cient of friction determined above.

 2. Calculate heat dissipated H
d 1

, due to convection from the classical equation: ρ ΔQS T , where ρ = mass 
density of oil, Q = volume rate of fl ow, S = specifi c heat of oil and ΔT  = temperature rise. ΔT  can be 

approximately estimated as ( )Δ = −
max i

T T T , where 
max

T  = maximum oil temperature and =
i

T inlet oil 
temperature.

 3. Heat dissipation 
2d

H  due to conduction from oil fi lm to shaft and that to bush after knowing the tem-
perature distributions in the shaft and the bush.

 4. For heat balance the Equation (7.4) is to be satisfi ed.

 = +
1 2g d d

H H H  (7.4)

 5. If Equation (7.4) is not satisfi ed in the fi rst attempt, choose diff erent L/D, and C/R ratios and other 
parameters relating to properties of oil and bearing materials given in reference Singh and Majumdar 
(2005). It may sometimes be necessary to generate a new set of data with the above variables.

Once Equation (7.4) is satisfi ed, the design is all right.
Using the above method, preliminary design dimensions are found. Th en the journal speed is checked for 

the given load and see if the bearing is operating stably for complete design.
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Chapterrr8
Dynamics of Fluid Film Bearings

8.1 | Introduction

In the previous chapters, analysis for load capacity, oil fl ow rate, power loss, and heat balance has been 
presented for hydrodynamic bearings under steady load. However, in reality, the bearings are invariably 
subjected to time dependent dynamic loads. For example, rotors of turbines, pumps and compressors are 
subjected to dynamic load due to rotor unbalance which becomes very high at high speeds. Dynamic force 
also rotates at the same frequency as that of rotational speed of the journal. Similarly rotors/crank shafts 
of reciprocating machines, e.g., diesel and petrol engines, reciprocating pumps, and compressors are also 
subjected to large variations in magnitude and direction of the load. Fluid fi lm bearings of these machines 
are therefore subjected to severe dynamic loading. Maintaining a minimum value of fi lm thickness is a 
challenging task for the designers of the fl uid fi lm bearings. Ensuring stability of the rotors supported on 
hydrodynamic bearings is of utmost importance. Rotors are subjected to self excited vibrations and instabil-
ity may occur due to unsteady fl uid fi lm forces. Journal bearing stability is one of the most important and 
vital aspects of design of rotor-bearing systems. Besides, there are numerous applications where relative slid-
ing velocity is very small or zero but the surfaces approach each other during the course of action. In other 
words, there exists a normal velocity of approach. In the absence of lubrication, surfaces would impact each 
other and would get damaged. However, if the gap between the surfaces is fi lled with a viscous lubricant, 
then a positive pressure would be generated due to squeezing out of the lubricant from the gap and thereby 
a load carrying capacity would be generated. Th is mode of lubrication is generally referred to as squeeze fi lm 
lubrication. It was recognized immediately after the Second World War that squeeze fi lm lubrication plays 
an important role in the lubrication of piston- cylinder contact, piston pin, and connecting rod lubrication 
of internal combustion engines. It has also been recognized that mode of lubrication in human joints is 
also due to squeeze action when synovial fl uid in the joints is squeezed out due to movement of limbs. Th is 
chapter deals with the issues related to squeeze fi lm lubrication, dynamic loading, and stability aspects of 
fl uid fi lm bearings.
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8.2 |  Derivation of Reynolds Equation for Journal Bearing under 
Dynamic Condition

Th e Reynolds equation for incompressible, isoviscous lubrication has been derived in Chapter 3 and is 
 rewritten as

 

3 3 6 12
p p h h

h h U
x x y y x t

η η
⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  

(8.1)

where U  is the surface speed of the journal and U Rω= . h

t

∂
∂

, is the velocity of approach of journal surface 

toward the bearing surface and is usually referred to as squeeze velocity. Figure 8.1 shows the journal bearing 
under dynamic loading condition. It shows the journal center velocities in radial and tangential directions. 
In this situation, attitude angle f changes with time, i.e., attitude line has an angular velocity φ� . It is also 
assumed that the load magnitude and direction can change. In other words, load line can also rotate with an 
angular velocity ψ�  while its magnitude may also change. Th is situation is generally encountered in the main 
bearing of internal combustion engines. Turbo-generator rotors are usually very heavy and can weigh few 
tons in the case of 500–2000 MW power plant. Rotors are generally balanced precisely but in spite of that a 
small amount of unbalance exists which would introduce large centrifugal force. Th erefore, the journal center 
undergoes an orbital motion around its steady state equilibrium position.

Th e velocity of the journal center 
h

t

∂
∂

 can be determined by diff erentiating fi lm thickness expression with 
respect to time.

Film thickness expression is written as

 
( ){ }1 cosh C ε α φ ψ⎡ ⎤= + − +⎣ ⎦  

(8.2)

y

x

A

R

B

z

O
b

e

O
j

q q

CL

w

f

b g

a

e (   +   )f
◊

y
◊

Y

W

R
b

Figure 8.1 | Journal Bearing Geometry and Nomenclature
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or ( )1 cosh C ε θ= +  where ( )θ α φ ψ= − +  and for 0α = , i.e., a fi xed position we get

 
( ){ }cos sin

h
C

t
ε θ ε ϕ Ψ θ∂

= + +
∂

�� �

 
(8.3)

Equation (8.1) with the substitution of Equation (8.3) becomes:
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Since 1 cos   and  
h

h x / R
C

ε θ θ= = + =

Equation (8.4) can be written as
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or
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(8.6)

8.3 | Dynamics of Rotor-Bearings Systems

Rotor-bearing systems of high speed turbo-machinery are susceptible to severe vibrations and instabilities. 
Unbalance causes severe dynamic loading while the rotor moves beyond its fi rst or second critical speed. 
Hydrodynamic bearings aff ect the dynamics of a rotor in a far more complex way than does a rolling-element 
bearing. Fluid fi lm bearings can induce self-excited vibrations in a rotor-bearing system which may damage 
the rotor and the bearing. In liquid lubricated bearings, this phenomenon is known as oil whirl, resonant 
whirl, or half frequency whirl in case of lightly loaded rotors. Th e onset of self-excited vibrations is caused 
by the fact that rotor-bearing system becomes unstable. Because, the instabilities occur more readily as the 
dynamic eff ects become stronger, for instance, at higher speeds one may say that the application of fl uid fi lm 
bearings to support rotor literally stands or falls with the possibilities of controlling the dynamics of the 
 system in such a way as to avoid instabilities.

Rotor-bearing stability study can be outlined as follows:

• To evaluate the rotor dynamic coeffi  cients, i.e., stiff ness and damping coeffi  cients of fl uid fi lm of a 
bearing using lubrication theory and linear perturbation theory for small amplitude vibrations. Rotor 
dynamic coeffi  cients thus determined are used to fi nd the stability of a rotor-bearing system.

• To study bearing confi gurations which are known to have favorable infl uence on rotor stability, viz., 
tilting pad bearings, noncircular bearings, pressurized bearings, support fl exibility, etc. Stiff ness and 
damping coeffi  cients of these confi gurations along with support fl exibility are known to infl uence the 
stability of the rotor favorably.
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• To determine critical speeds of large fl exible rotors and balancing of such rotors to minimize vibrations 
and support reactions. Some of these aspects will be dealt with in the following sections.

8.4 | Stiff ness and Damping Coeffi  cients

8.4.1 | Analytical Approach for Short and Long Bearings

Stiff ness and damping coeffi  cients of plain journal bearings can be determined using short and long bearing 
assumptions from the dynamic fi lm forces obtained from the solution of dynamic Reynolds equation with 
appropriate assumptions. Holmes (1960) derived expressions for rotor dynamic coeffi  cients using short 
bearing assumptions. Lund (1966), Lund and Saibel (1967), Kirk and Gunter (1976), Badgley and Booker 
(1969), Reddy and Trumpler (1962), and Muszynska (1986) also investigated various aspects of rotor dynamics 
including oil whirl using short and long bearing theories.

Short Bearing Approximation

Integrating Reynolds Equation (8.6) by substituting 0
p

θ
∂

=
∂

 and 0ψ =�  for nonrotating load, subject to 

appropriate boundary conditions would yield the pressure distribution as
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(8.7)

Th e boundary conditions are given as

 

,  0
2

L
p θ⎛ ⎞
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(8.8)

Th e pressure distribution given by Equation (8.7) can be used to determine the dynamic fi lm forces of 
the bearing for π  fi lm extent in the circumferential direction (see Fig. 8.2), which can be used to fi nd stiff ness 
and damping coeffi  cients of the bearing.
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Figure 8.2 | Schematic Diagram of an Oil Journal Bearing
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Dynamic fi lm force components along the line of centers and normal to it are written as:
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For short bearing p fi lm solution, modifi ed Sommerfeld number is expressed as

 

2 2

/

2
8

L L DL
S S

D C W

ηω
π ⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠  

(8.11)

and at steady state position of the journal
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Dimensionless stiff ness and damping coeffi  cients are given in two perpendicular directions as

Stiff ness Coeffi  cients
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Damping Coeffi  cients
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Stiff ness and damping coeffi  cients in ,x y  directions can also be determined after obtaining fl uid fi lm forces.
Dimensionless stiff ness and damping coeffi  cients in ,x y coordinates may be expressed as

Stiff ness Coeffi  cients
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Damping Coeffi  cients
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where
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In Equations (8.11) to (8.16), the dimensional stiff ness and damping coeffi  cients can be obtained from 
their respective dimensionless quantities as per the relationships given below:
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Figures 8.3 and 8.4 show the plots of variation of rotor dynamic coeffi  cients with eccentricity ratio as 
obtained from the above equations for short bearings. Similar plots of rotor dynamic coeffi  cients of short 
journal bearings were also presented by Holmes (1960). Th ese are very useful in determining stability and 
small amplitude unbalance vibration response of the journal center.

Pivoted pad journal and thrust bearings are also very widely used bearing confi gurations. Lund (1964), 
Nicholas et al. (1979), Allaire et al. (1981), and Raimondi and Szeri (1984) investigated stiff ness and damping 
coeffi  cients of pivoted pad journal and thrust bearings.

Long Bearing Approximation

Pressure distribution in the lubricant fi lm can be determined using long bearing assumption by integrating 

Equation (8.6) after substituting 0
p

y

∂
=

∂
 and 0ψ =�  for nonrotating load satisfying appropriate boundary 

conditions given by Equation (8.8) as

 

( ) ( ) ( )
( )( ) ( ) ( )

ω ϕ ε θ ε θη ε
θ

εε ε θ ε θ ε

⎧ ⎫⎡ ⎤− +⎪ ⎪⎢ ⎥= + −⎨ ⎬
⎢ ⎥+ + + +⎪ ⎪⎣ ⎦⎩ ⎭

� �
2

2 2 22 2

2 sin 2 cos6 1 1

2 1 cos 1 cos 1

R
p

C

 

(8.19)

Figure 8.3 |  Stiff ness and Damping Coeffi  cients of Short Bearing Versus Sommerfeld Number [Lund, 1966]
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Dynamic fl uid fi lm forces can be determined using the pressure distribution as given above. Stiff ness 
and damping coeffi  cients can be calculated in a similar manner as has been done for short bearing 
approximation.

8.4.2 | Finite Length Bearings

It is assumed that the journal center undergoes small amplitude vibration around its steady state eccentric 
position under dynamic loading. Further, that the dynamic load responsible for vibration is not large in 
comparison to steady state load. Th e frequency of dynamic load may be same as that speed of rotation of 
the journal as in the case of unbalance load or may be diff erent if the loading is from an external source. To 
determine the rotor dynamic coeffi  cients, the steady state journal center position is given small perturbations, 
i.e., displacements and velocities to estimate the perturbed fl uid fi lm forces which are used to determine the 
rotor-dynamic coeffi  cients.

Th e Reynolds equation is written for nonrotating load, i.e., for 0ψ =�  as
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(8.20)

Fluid fi lm forces are calculated from the pressure distribution after solving Reynolds equation for a 

known equilibrium position ( )0 0
,ε ϕ  of the journal center satisfying appropriate boundary conditions.

In the case of small amplitude orbital motion of the journal center, linear vibration theory can be used and 
perturbation theory can be employed to determine the characteristics of the fl uid fi lm in terms of its  stiff ness 

Figure 8.4 |  Stiff ness and Damping Coeffi  cients of Short Bearing Versus Eccentricity Ratio [Lund, 1966]
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and damping coeffi  cients. Components of the dynamic fl uid fi lm forces can be determined by integrating the 
pressure over the bearing area for a given equilibrium position as [Refer to Fig. 8.2].

Force along the line of centers 

 ( ), cosF p y Rd dyε θ θ θ= −∫∫�  (8.21)

Force perpendicular to the line of centers
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Th ese forces when resolved in the Cartesian coordinates are
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Under dynamic condition lubricant pressure, p , depends only on the position of the journal center or 

fi lm thickness, h  and its time derivative, h

t

∂
∂

.

If it is further assumed that the displacements of the journal center from its equilibrium position 

( ) ( )0 0 0 0
,  or ,x yε φ  are so small that the linearization of additional reaction forces due to fl uid fi lm pressure 

is permissible and that the eff ects of misalignment is negligible, one can write with the assumptions that 

0 0
  and  d dε ε ε φ φ φ= + = + . Th us, fi lm forces can be expressed as
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where
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In the above expressions, all higher order derivatives have been neglected. Th us, stiff ness and damping 
coeffi  cients of the fl uid fi lm are defi ned as

Stiff ness Coeffi  cients
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Damping Coeffi  cients

 

0

0

;

;

F F
B B

C C

F F
B B

C C

ε ε
εε εϕ

ϕ ϕ
ϕε ϕϕ

ε ε ϕ

ε ε ϕ

⎛ ⎞∂ ∂⎛ ⎞
= − = − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

� �

� �

 

(8.26)

K εε , Kϕϕ  are called direct stiff ness coeffi  cients, whereas K εϕ , Kϕε  are cross stiff ness coeffi  cients. Similarly, 

Bεε , Bϕϕ  are referred to as direct damping coeffi  cients and Bεϕ , Bϕε  are cross damping coeffi  cients.

Th e above partial derivatives of the fl uid fi lm forces are obtained at the equilibrium position of the journal 

center given by 0
ε , 0

ϕ . Perturbed forces are then determined by giving small displacement and velocity to the 
journal center from its equilibrium position in two directions alternately. Derivatives of the force components 
are determined from the change in the fi lm forces in two directions obtained by perturbing the equilib-
rium position of the journal center. To determine damping coeffi  cients, journal center equilibrium position is 
s ubjected to small velocities to determine change in the fl uid fi lm forces in two directions, respectively.

In Cartesian coordinates, dynamic fl uid fi lm forces are expressed as

0x x x
F F F= + Δ

0y y y
F F F= + Δ

0 0
 and 

x y
F F , represent fl uid fi lm forces that correspond to the journal center equilibrium position ( )0 0

,x y  

and  and 
x y

F FΔ Δ  are perturbed fl uid fi lm forces.
Th e perturbed fl uid fi lm forces in Cartesian coordinates are

 
cos sin

sin cos

x

y

F F F

F F F

ε ϕ

ε ϕ

ϕ ϕ

ϕ ϕ

Δ = Δ − Δ

Δ = Δ + Δ  (8.27)

 
x xx xy xx xy

y yy yx yx yy

F K x K y B x B y

F K y K x B x B y

Δ = − − − −

Δ = − − − −

� �

� �  (8.28)

Stiff ness Coeffi  cients

 

;

;

x x

xx xy

y x

yx yy

F F
K K

x y

F F
K K

x y

∂ ∂⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂⎛ ⎞ ∂⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

 

(8.29)

Damping Coeffi  cients

 

;

;

x x

xx xy

y x

yx yy

F F
B B

x y

F F
B B

x y

∂ ∂⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂⎛ ⎞ ∂⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

� �

� �

 

(8.30)
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and
x y

F FΔ Δ , are to be determined by perturbing the equilibrium position of the journal center 
0 0
,x y  by 

giving small displacement ,x y , and velocities ( ),x y� � , respectively, about the equilibrium position.
An alternative approach to determine the rotor dynamic coeffi  cients is to determine the dynamic fl uid 

fi lm forces by solving the perturbed dynamic Reynolds equations. To illustrate this, it is assumed that the 
journal center undergoes small amplitude harmonic oscillations about its steady state equilibrium position

0 0
,ε φ  and therefore dynamic position of the journal center is written as

 0 1 0 1
and ivt ivte eε ε ε φ φ φ= + = +

 (8.31)

where 
1 1
,ε φ  are dynamic amplitudes of oscillations and ν  is the frequency of oscillation.

Th us, dynamic pressure and fi lm thickness can be expressed as

0 1 1 0 1 2
ivt ivtp p e p e pε ε φ= + +

 0 1 0 1
cos sinivt ivth h e eε θ ε φ θ= + +

 

(8.32)

where 1
p  and 2

p  are dynamic fi lm pressures and ( )0 0
1 cosh ε θ= +  is steady state fi lm thickness.

Substituting the above equations into dynamic Reynolds Equation (8.20) and collecting only zeroth and 
fi rst order terms, neglecting all higher order terms one gets:

Zeroth order terms

 

2
3 3

0 0 02
0 0 6

p p hR
h R h

y y C
ηω

θ θ θ
∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ⎛ ⎞

+ = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

(8.33)

First order terms

 

3 3 3
01 12

0 0 0

2 2
2

12
0

3 cos

3 cos 12 cos 6 sin

pp p
h h R h

y y

p R R
R h i

y y C C

θ
θ θ θ θ

θ η γω θ ηω θ

∂∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

∂⎛ ⎞∂ ⎛ ⎞ ⎛ ⎞
+ = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠∂ ∂⎝ ⎠

 

(8.34)

0 1
ie τε φ  terms

 

3 3 3
2 0 22

0 0 0

2 2
2

02
0

3 sin

3 sin 12 sin 6 cos

p p p
h h R h

y y

p R R
R h i

y y C C

θ
θ θ θ θ

θ η γω θ ηω θ

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂⎛ ⎞∂ ⎛ ⎞ ⎛ ⎞
+ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠∂ ∂⎝ ⎠  

(8.35)

where whirl frequency ratio ' 'γ  is defi ned as the ratio of the frequency of oscillation to the angular  frequency 
of rotation of the journal. Th us,

 

ν
γ

ω
=

 
(8.36)

In synchronous whirl when the frequency of oscillation is same as the frequency of rotation of the jour-
nal, i.e., 1.0γ = . Synchronous vibration occurs when the vibration is caused by the unbalance.
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Stiff ness and damping coeffi  cients can be used to determine either the unbalance response of the rotor or 
the stability of the rotor. Th erefore, dynamic fl uid fi lm forces can be determined for the synchronous condition 
of the vibration of the rotor, i.e., by substituting ν ω=  in the dynamic Reynolds Equations (8.20) and (8.21). 
To determine stiff ness and damping coeffi  cients it is necessary to determine steady state pressure distribution, 

0
p  for the equilibrium position of the journal center ( )0 0

,ε φ . Perturbed dynamic pressure distributions 1
p  and 

2
p  are determined from the solution of dynamic Reynolds equations (8.34) and (8.35) satisfying appropriate 
boundary conditions at inlet, cavitations boundary and bearing sides.

8.4.3 | Stiff ness and Damping Coeffi  cients

Th e pressures 1
p  and 2

p  in the fi lm region are developed due to the dynamic displacements of the journal 

center ( )1
Re iC e τε  parallel to and ( )0 1

Re iC e τε φ  perpendicular to the line of centers. Th e components of the 
load due to pressure 1

p  along and perpendicular to the line of centers can be written as

 ( )
2

1

/2

1 1
0

2 cos   
L

W p R d dy

θ

ε
θ

θ θ= − ∫ ∫   (8.37a)

 ( )
2

1

/2

1 1
0

2 sin   
L

W p R d dy

θ

ϕ
θ

θ θ= ∫ ∫   (8.37b)

Since the pressure 1
p  is complex, the load components will consists of two parts, i.e., real and imaginary parts.

Th e fl uid fi lm which supports the rotor is treated as equivalent to a spring and a dashpot system. Since 
the journal executes small harmonic oscillation about its steady state position, the dynamic load carrying 
capacity can be expressed as a spring and a viscous damping force as given below

 ( )1 1
 i

dX
W e K X B

dt
τ

εε εεε
ε− = +  (8.38a)

 ( )1 1
 i

dX
W e K X B

dt
τ

φε φεφ
ε− = +  (8.38b)

where the position of the journal center is given by 
1

iX C e τε= , tτ ω= .
Now,

 ( ) ( )1

1

W K C B C
W i

W W W
ε εε εε

ε

ω
− = − = +  (8.39a)

 ( )
( )1

1

W K C B C
W i

W W W

φ φε φε

φ

ω
− = − = +  (8.39b)

Since 1
p  is complex, the dynamic load 

1
W  is also complex and can be expressed in terms of real and 

imaginary parts as

 ( ) ( )1 1 1
Re ImW W W= +  (8.40)
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Th us, stiff ness and damping coeffi  cients can be expressed in dimensionless form as

 ( ) ( )1 1
Re  ; Re

K CK C
k W k W

W W

φεεε
εε φεε φ

= − = = − =  (8.41a)

 ( ) ( )1 1
Im  ; Im

B CB C
b W b W

W W

φεεε
εε φεε φ

ωω
= − = = − =  (8.41b)

Similarly, considering the dynamic displacement of the journal center along f-direction as 
0 1

iY C e τε φ=
we can get another set of equations given by

 ( )
2

1

/2

2 2
0

2 cos   
L

W p R d dy

θ

ε
θ

θ θ= − ∫ ∫  (8.42a)

 ( )
2

1

/2

2 2
0

2 sin   
L

W p R d dy

θ

φ
θ

θ θ= ∫ ∫  (8.42b)

Since 2
p  is complex, the dynamic load 

2
W  is also complex and can be expressed in terms of real and 

imaginary parts as

( ) ( )2 2 2
Re ImW W W= +

 ( ) ( )2

2

W K C B C
W i

W W W

εφ εφε
ε

ω
− = − = +  (8.43a)

 ( )
( )2

2

W K C B C
W i

W W W

φ φ φφ

φ

ω
− = − = +  (8.43b)

 ( ) ( )2 2
Re  ; Re

K C K C
k W k W

W W

εφ φφ
εφ φφε φ

= − = = − =  (8.44a)

 ( ) ( )2 2
Im  ; Im

B C B C
b W b W

W W

εφ φφ
εφ φφε φ

ω ω
= − = = − =  (8.44b)

8.5 | Stability of Rigid Rotors Supported on Fluid Film Bearings

Stability of rigid rotors supported on plain journal bearings can be analyzed in two diff erent ways. Th e fi rst 
approach investigates the stability of small amplitude vibration of a rigid rotor about its steady equilibrium 
position. Th is approach uses the rotor dynamic coeffi  cients of journal bearings to write down the equations 
of motion of the rotor. Concept of rotor dynamic coeffi  cients was fi rst postulated by Stodola (1927) and was 
later evaluated by Pestel (1954). Newkirk and Taylor(1925) discovered the phenomenon of bearing induced 
vibration which was originally called oil whip and later generalized as half frequency whirl. Th e second 
approach uses the nonlinear dynamic equations of motion of the rotor to predict the onset of instability of 
the rotor equilibrium position which result in orbital motion of the journal center around its equilibrium 
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 position. Hori (1959) fi rst developed the theory of oil whip subsequent to initial eff orts by Hagg (1946). 
Tondl (1965) and Holmes et al. (1965–66) investigated the vibration of a rigid rotor on short journal bearings 
and oil whirl of a rigid rotor, respectively. Reddi and Trumpler (1962) found the stability of high speed journal 
bearing under steady load for incompressible lubricant fi lm. However, pioneering work on rotor dynamics of 
rigid and fl exible rotors was done by Lund (1965) and that was followed by further work in subsequent years. 
Antiwhirl bearing confi gurations, e.g., multilobe, noncircular, pivoted pad, and pressure dam journal bearings 
have also been investigated by several researchers to enhance the stability of rotors supported on fl uid fi lm 
journal bearings to suppress oil whirl.

A symmetric rotor bearing system is shown in Fig. 8.5. Th e rotor can execute harmonic vibrations in 
either translational mode or conical mode. In translational mode, rotor axis undergoes mere translational 
motion with rotor and bearing axes parallel to each other. In conical mode centre of gravity of the rotor 
remains stationary. Equations of motion for translational and conical mode of vibration of the rotor are given 
in Cartesian coordinates as

Figure 8.5(a) | Symmetric Rotor and Bearing System

G

X

Z

b′

a′

L

b

a

Z

W

X

Y

VU

G

q

X

(0,0,)L/2

ΔF
X

ΔF
Y

Figure 8.5(b) | Coordinates of Conical Motion



D ynamics of Fluid Film Bearings 177

8.5.1 | Translational Mode

 
2

2 x

d x
M F

dt
= Δ  (8.45)

 
2

2 y

d y
M F

dt
= Δ   (8.46)

where x
FΔ , y

FΔ  are components of the dynamic fl uid fi lm forces in x, y directions, respectively. X and Y are 
vibration amplitudes of the rotor in x, y directions, respectively. M is the mass of rotor per bearing.

8.5.2 | Conical Mode

It can be shown that equations of motion for conical mode are as follows

 
2

2 2 2

2 2
x

dyJ d x
I F

L dt L dt

ω
+ = Δ   (8.47)

 
2

2 2 2

2 2
y

d yJ dx
I F

L dt L dt

ω
+ = Δ  (8.48)

where ω  Angular speed of rotation of the journal
  J Moment of inertia of the rotor about x and y axes
  I Moment of inertia of the rotor about z axis

Th e above equations can be expressed in dimensionless form as

 ( )2
x

M x y fγ γλ− = Δ�� �  (8.49)

 ( )2
y

M y x fγ γλ− = Δ�� �  (8.50)

λ  is the gyroscopic parameter, 0λ =  for translational mode and 
I

J
λ =  for conical mode

0

x

x

F
f

F

Δ
Δ = ; 

0

y

y

F
f

F

Δ
Δ = ; 

2

0

MC
M

F

ω
=  for translational mode and for conical mode 

2

2
0

2 JC
M

F L

ω
=

0
F – Reference force and usually 

0
F W= , i.e., rotor weight on the bearing

,
yx

x y
C C

= = , where C  is the radial clearance

tτ ν= ; ν  is the angular frequency of vibration of the journal

ν
γ

ω
= , is defi ned as whirl frequency ratio

Derivatives of x and y are with respect to t.
Δf

x
 and Δf

y
 can be expressed in the dimensionless form using rotor dynamic coeffi  cients as

 x xx xy xx xy
f k x k y b x b yΔ = − − − −� �  

(8.51)

 y yx yy yx yy
f k x k y b x b yΔ = − − − −� �  (8.52)
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In the above equations, the rotor dynamic coeffi  cients are expressed as

0 0

;
xyxx

xx xy

K CK C
k k

F F
= =

0 0

;
yy yx

yy yx

K C K C
k k

F F
= =

 

0 0

;
xyxx

xx xy

C BC B
b b

F F

ωω
= =  (8.53)

0 0

;
yy yx

yy yx

C B C B
b b

F F

ω ω
= =

Rotor dynamic coeffi  cients are evaluated for a known journal speed, i.e., w rad/sec at its equilibrium 
position due to steady load W. Equations (8.49) and (8.50) can be expressed in terms of dimensionless rotor 
dynamic coeffi  cients as

 ( )2 0
xx xx xy xy

M x k x b x b M y k yγ γ γ γλ+ + + + + =�� � �  (8.54)

 ( )2 0
yy yy yx yx

M y k y b y b M x k xγ γ γ γλ+ + + − + =�� � �  (8.55)

Substituting 
0

ix x e τ=  and 
0

iy y e τ= , Equations (8.54) and (8.55) are reduced to

 

( ) ( )
( ) ( )
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2

    

    

xx xx xy xy

yx yx yy yy

M k i b i b M k

k i b M M k i b

γ γ γ γλ

γ γλ γ γ

⎡ ⎤− + + + +
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⎢ ⎥+ − − + +⎢ ⎥⎣ ⎦

0

0

0

0

x

y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

(8.56)

Th e characteristic equation for the threshold of stability is given as

 

( ) ( )
( ) ( )
2

2

    
0

    

xx xx xy xy

yx yx yy yy

M k i b k i b M

k i b M M k i b

γ γ γ γλ

γ γλ γ γ

− + + + +
=

+ − − + +
 

(8.57)

At the stability threshold, the above equation must be satisfi ed. To satisfy the above equation, real and 
imaginary part on the left hand side must become zero. Th e stability parameters, viz., critical mass of the rotor 

cr
M  and whirl frequency ratio γ  can be determined in terms of rotor dynamic coeffi  cients of the bearing from 
the above determinant as:

From the imaginary part being set to zero yields for translational mode, i.e., λ= 0

 
( ) ( )

( )
2

1

xx yy yy xx xy yx yx yx

cr

xx yy

b k b k b k b k
C M

b b
γ

+ − +
= =

+
 (8.58)
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Similarly, setting real part equal to zero, yields for λ= 0

 
( )( )

( )
2 2

2
2

cr xx cr yy xy yx

xx yy xy yx

M k M k k k
C

b b b b

γ γ
γ

− − −
= =

−
 (8.59)

Th erefore,

Whirl frequency ratio, 
2

Cγ =  (8.60)

Critical Mass,    
1 2

/
cr

M C C=  (8.61)

Similarly, both critical mass and whirl ratio can be determined for conical mode also. Plots of critical 
mass and whirl frequency ratio for plain journal bearings are shown in Figs 8.6 and 8.7 for various eccentric-

ity ratios. If the rotor mass M  < 
cr

M  the system is stable, whereas for M  > cr
M  the system would become 

unstable. Figure 8.6 shows that at high eccentricity ratios, i.e., 
0

0.7ε >  the rotor is inherently stable. On the 
other hand, at low eccentricity ratios, the rotor critical mass for the stability threshold is very low and the 
rotors are likely to become unstable.

Whirl frequency ratio at 
0

0.0ε ≅  is 0.5, which indicates that very light rotors or rotors of vertical 
machines are prone to half frequency whirl oscillations. At higher eccentricity ratios, whirl frequency ratio 
drops and is far less than 0.5, indicating more stable operation. Muszynska (1986) has shown that in the case 
of fl exible vertical rotors, half frequency whirl occurs at an angular speed of rotor twice that of the natural 

Figure 8.6 |  Instability Threshold Curves Indicating Bearing Assumptions After Small Initial Velocity Disturbances 
[ASME, JOLT, 1969]
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frequency of the rotor and grows further with increasing speed of the rotor until it is twice the natural 
frequency or critical speed of the rotor. Further increase in speed shows that vibration grows further with 
frequency remaining the same as the natural frequency of the rotor. Th is phenomenon is generally described 
as ‘oil whip’, and can be very damaging.

Recently, Singh and Majumdar (2005) presented an empirical equation to determine the critical mass 
of a rigid rotor supported by journal bearings for its stable operation in terms of a known /L D  ratio and 
eccentricity ratio as given below.

 ( )
5

3

1 0 2 0 4
exp( 1

a
a L

MW a a a
D

ε ε
⎛ ⎞⎛ ⎞

= − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (8.62)

where

1 2 3 4 5
0.6755,  4.2711,  0.1730,  0.7484,  0.2768a a a a a= = = − = − =

2MC
M

W

ω
=  and 

2

3
0

WC
W

R Lη ω
= ,  and M W are rotor mass per bearing and load acting on the bearing, 

respectively.
Based on the results of numerical experiments carried out by Sarangi and Majumdar, the following 

empirical relationships have been developed to evaluate dimensionless stiff ness and damping coeffi  cients of 
journal bearings.

Figure 8.7 | Whirl Frequency Ratio ( )λ  versus Equilibrium Eccentricity Ratio for the Short-π  Bearing [Lund, 1966]

0.4

0.6

0.5

0 0.2 0.4 0.6 0.8 0.9

0.2

0.1

0

0.3

0.1 0.50.3 0.7

e
o

l



D ynamics of Fluid Film Bearings 181

Stiff ness Coeffi  cients

( ){ }D

C
EL

k A B e
D

ε
εε

⎛ ⎞
= + ⎜ ⎟⎝ ⎠

where A = −2.4213, B = 3.4615, C = 0.59607, D = 2.8659, E = 4.5796

( ){ }D

C
EL

k A B e
D

ε
εφ

⎛ ⎞
= + ⎜ ⎟⎝ ⎠

where A = −1.0852 B = 2.8685, C = 0.75742, D = 1.6876, E = 1.1125

( ){ }D

C
EL

k A B e
D

ε
φε

⎛ ⎞
= + ⎜ ⎟⎝ ⎠

where, A = 2.4507, B = −5.0640, C = 0.57466, D = 3.6776, E = 2.8886

( ){ }D

C
EL

k A B e
D

ε
φφ

⎛ ⎞
= + ⎜ ⎟⎝ ⎠

where A = −0.70359, B = 0.93196, C = 0.62544, D = 2.1563, E = 3.0589

Damping Coeffi  cients

( ){ }D

C
EL

b A B e
D

ε
εε

⎛ ⎞
= + ⎜ ⎟⎝ ⎠

where A = −2.3549, B = 6.3994, C = 0.74104, D = 2.4433, E = 3.3566

( ){ }D

C
EL

b A B e
D

ε
εφ

⎛ ⎞
= + ⎜ ⎟⎝ ⎠

where A = 2.4578, B = −4.6640, C = 0.76365, D = 1.9043, E = 2.6587

( ){ }D

C
EL

b A B e
D

ε
φε

⎛ ⎞
= + ⎜ ⎟⎝ ⎠

where A = 1.5692, B = -2.7366, C = 0.71807, D = 2.0439, E = 2.4963

( ){ }D

C
EL

b A B e
D

ε
φφ

⎛ ⎞
= + ⎜ ⎟⎝ ⎠

where A = −3.2643, B = 12.690, C = 0.87248, D = 3.1030, E = 0.96971
Alternately, the equations of motion of the rotor for stability analysis can also be written in e and f 

 coordinates for translational mode as

 
( )2

0d d
M C C Fεε ε φ− = Δ���

  
(8.63)
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 ( )2
00

2
d d t

M C C Fε φ ε φ+ = Δ�� ��  (8.64)

where derivatives are respect to time, t. FεΔ  and FφΔ  can be written in terms of stiff ness and damping 
 coeffi  cients of the bearing. Dimensionless form of equations of motion thus become

 ( )2 2
0

0
d d d d d d d

M k k b bεε εφ εε εφγ ε ε φ ε ε φ γ ε γ ε− + + + + =�� � �  (8.65)

 ( )2
0 0 0

2 0
d d d d d d d

M k k b bφφ φε φε φφγ ε φ ε φ ε ε φ γ ε γ ε φ+ + + + + =�� � �� �  (8.66)

where d
ε  and d

φ  are dynamic eccentricity ratio and attitude angle, respectively, and for small amplitude 
oscillations around the equilibrium position of the journal it can be written as

 
0 1 0 1

,  and i i
d d

e e t tτ τε ε ε φ φ φ τ ν γω= + = + = =  (8.67)

ν , is the frequency of vibration and γ  is the whirl frequency ratio. 
1

ε  and 0 1
ε φ  are the amplitudes of 

harmonic vibration of the journal center about its equilibrium position. 
cr

M and γ  can be determined in the 
same way as described earlier for the system equations in Cartesian coordinates, neglecting higher order terms 

since 1 0
ε ε<<  and 1 0

φ φ<< .
In the above equations, rotor dynamic coeffi  cients are written following Equations (8.41) and (8.44) as

..

..K C
k

Fo
= , and ..

0

..B C
b

F

ω
=

Critical mass of the rotor for stability 
cr

M  and whirl frequency ratio, γ  are thus expressed as

 ( ) ( )
( )

2
cr

b k b k b k b k
M

b b

εε φφ φφ εε εφ φε φε εφ

εε φφ

γ
+ − +

=
+

 (8.68)

and

 
( )( )

( )
2 2

2 cr cr
M k M k k k

b b b b

εε φφ εφ φε

εε φφ εφ φε

γ γ
γ

− − −
=

−
 (8.69)

Plain journal bearings are susceptible to instability, and therefore to improve stability noncircular geom-
etries have been studied. Li et al. (1980) investigated stability of rigid rotors supported on multilobe bearings. 
Two lobe (or elliptical), three lobe, four lobe, and off set cylindrical confi gurations shown in Fig. 8.8 have been 
investigated to ascertain their stability characteristics.

Plots of critical mass parameter and whirl ratio against Sommerfeld number are shown in Figs 8.9 and 
8.10, respectively, as determined by Li et al.

Higher critical mass parameter and lower whirl ratio confi rm that these confi gurations are more stable 
than plain circular bearing. Tilting pad bearings shown in Fig. 8.11 completely eliminate rotor instability and 
are widely used in power plant turbo machinery.
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Figure 8.9 | Linearized Bearing Stability for a Rigid Rotor [Li et al., ASME, JOLT, 1980]
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8.6 | Rotor Instability: Nonlinear Analysis

We have seen that threshold of stability and small amplitude oscillation orbits of rotors can be investigated 
using linear vibration theory and rotor dynamic coeffi  cients. However, large unbalance response represent-
ing some emergency situations in turbo rotors, e.g., large initial velocities due to blade loss are observed to 
produce unstable vibrations leading to large orbital motion of the journal center. Nonlinear analysis is used 
to investigate such situations. Assuming that only plane journal motion occurs, this motion can be described 
by the following equations:

 

2
2

0

2 2 2
cos

F Wd d

d MC MC d
εε φ

φ ε
τ ω ω τ

⎛ ⎞
= + + ⎜ ⎟⎝ ⎠

 (8.70)

 
2

2 2 2

sin 2o
F Wd d d

d MC MC d d

φ φφ ε φ
τ εω εω ε τ τ

⎛ ⎞ ⎛ ⎞
= + − ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (8.71)

Sommerfeld Number, S

W
h
ir

l 
R

a
ti
o
 l

0.01 0.1 1.0 10.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Offset

3 Lobe

4 Lobe

Elliptical

Half Frequency Whirl

Figure 8.10 | Whirl Speed Ratio versus Sommerfeld Number [Li et al., ASME, JOLT, 1980]

Figure 8.11 | Loading for Four Pad Tilting Pad Bearing

w

W

(a) On Pad (b) Between Pad

e

w

W

e



D ynamics of Fluid Film Bearings 185

where  ω  =  angular velocity of the rotor and tτ ω=
  

0
W  =  static load and usually 

0
W Mg=

  M  =  rotor mass per bearing

Th e accelerations 
2

2

d

d

ε
τ

 and 
2

2

d

d

φ
τ

 can be evaluated using equations for the given initial values of ε , f, 

d

d

ε
τ

 and 
d

d

φ
τ

. If these four initial values are specifi ed, the resulting initial value problem may be solved by

standard numerical marching techniques such as Runge–Kutta extrapolation technique or Newton’s predic-
tor-corrector method. Results of such solutions are shown in Fig. 8.12. It can be seen that initial transients, 
e.g., small initial velocity given to the journal center from its equilibrium position simulate the condition of 
an impact or an initial displacement given to the journal center from its equilibrium position result into the 

kind of response shown in Fig. 8.13. While determining the response, fl uid fi lm forces Fε  and Fφ  have to be 
evaluated at each time step by solving Reynolds equation based on short, long, or fi nite bearings as the case 
may be. Similar approach is also adopted to determine journal center orbit for dynamically loaded bearings.

0
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Figure 8.12 | Journal Center Trajectory for a Unidirectional Constant Load (L/D = 1.0, 
0

0.8,  M 5, 0.5ε = = Ω = )
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Figure 8.13 | Journal Center Trajectory for a Unidirectional Periodic Load (L/D = 1.0,
0

0.8,  M 5, 0.5ε = = Ω = )
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8.7 | Dynamically Loaded Bearings: Nonlinear Analysis

Response of rotors can be determined using the equations of motion based on small amplitude vibration 
theory written in terms of stiff ness and damping coeffi  cients of the bearing at its equilibrium position.

However, equations of motion can be expressed in general case of an unbalanced dynamically loaded 
rotor in Cartesian coordinates as

 ( ) 2
0

cos
x x u

Mx W t F Me t Wω ω= + + +��  (8.72)

 ( ) 2 sin
y y u

My W t F Me tω ω= + +��  (8.73)

where 
x

W  and 
y

W  are dynamic load components, x
F  and y

F  are fl uid fi lm forces, u
e  is unbalance of the 

rotor, i.e., distance of the journal center from its geometric center.
Diff erentiating with respect to dimensionless time, t we get the dimensionless form of the above 

equations as:

 ( ) 0
cos

x x u
x W f Wτ ε τ= + + +��  (8.74)

 ( ) sin
y y u

y W fτ ε τ= + +��

 (8.75)

where

0

02 2 2
; , ,x x

x x

W F Wx
W f x W

MC MC C MCω ω ω
= = = =

2 2
, , , / ,

y y

y y u u

W Fy
y W f e C t

C MC MC
ε τ ω

ω ω
= = = = =

Nonlinear response of the rotor can be determined following Runge–Kutta method in a time marching 
solution starting from a known initial condition. Th is approach is adopted to determine orbital motion of 
rotors of I.C. engines, pumps and compressors of reciprocating type, etc. A few typical response of a rigid 
rotor subject to dynamic loading of the bearing is shown in Fig. 8.14 (Majumdar et al., 1987).
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Figure 8.14 | Journal Center Trajectory for a Variable Rotating Load
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8.8 | Squeeze Film Lubrication

In this section squeeze fi lm lubrication of mechanical components which is a prevalent mode of lubrication when 
surfaces approach each other under the action of dynamic load will be dealt. Positive pressure is generated due to 
squeezing of lubricant held in the gap between the surfaces, which is responsible for supporting load and thus pre-
vent direct contact between the surfaces. We now discuss squeeze fi lm lubrication in various conformal contacts.

8.8.1 | Squeeze Film Lubrication between Parallel Surfaces

Th e bearing confi guration is shown in Fig. 8.15. Assuming that the bearing pad is infi nitely wide in y- direction, 
the Reynolds equation for parallel surfaces approaching each other with a velocity V  reduces to

 
2

2 3

12d p V

dx h

η
=  (8.76)

Integrating Equation (8.76) twice with respect to x gives the expression for pressure generated due to 
squeeze action as

 
2

1 23

6 V
p x C x C

h

η
= − + +  (8.77)

Using the boundary conditions for pressure as 0 at 
2

B
p x= = ± , one obtains 

2

1 2 3

3
0 and 

2

VB
C C

h

η
= =

Th erefore, ( )2 2

3

3
4

2

V
p B x

h

η
= −  (8.78)

Th e pressure distribution in dimensionless form can be written as

 ( )2
3

1 4
2

p x= −  (8.79)

where 
3

2
 and   /

ph
p x x B

VBη
= =

Since, the pressure distribution is symmetrical about the center of the bearing, the maximum pressure 
will occur at 0x =

Hence, max

3

2
p =  (8.80)

V = − ∂h
∂t

h

B

X

Y

Figure 8.15 | Squeeze Film Between Parallel Surfaces
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Th e squeeze load capacity W is determined as

 
/2

/2

B

B
W L pdx

−
= ∫  (8.81)

where L is the length of bearing pad
Substituting for p given by Equation (8.78) into Equation (8.81) and integrating we get

 
3

3

VLB
W

h

η
=  (8.82)

Th e volume rate of fl ow of lubricant is evaluated as

 
3

12

dpLh
Q

dxη
= −  (8.83)

Using Equation (8.78) in Equation (8.83), the fl ow rate is obtained as

 Q LxV=  (8.84)

Th e fl ow rate increases from zero at the center of the bearing to a maximum value of 
1

2
LBV  at the edge 

of the bearing.
Th e time of approach can be calculated in the following way

Since, ,
h

V
t

∂
= −

∂
 one can write

 
3

3

LB h
W

h t

η ∂
= −

∂
 (8.85)

or 
2 2

1 1

3 3

t h

t h

W dh
dt

LB hη
− =∫ ∫

or, 
3

2 1 2 2
2 1

1 1

2

LB
t t t

W h h

η ⎡ ⎤
Δ = − = −⎢ ⎥

⎢ ⎥⎣ ⎦
 (8.86)

Th e fi nal fi lm thickness 2
h  can be expressed in terms of the initial fi lm thickness 1

h  and the time interval 
tΔ  as

 1

2 2
1

3

2
1

h
h

W th

LBη

=
Δ⎛ ⎞

+⎜ ⎟⎝ ⎠

 (8.87)

Using Equations (8.86) and (8.87) time of approach of the surfaces from gap 
1

h to 2
h or otherwise the 

fi nal fi lm thickness after a lapse of time tΔ can be determined, respectively.

8.8.2 | Squeeze Film Lubrication between Parallel Circular Plates

Consider a circular plate of radius R approaching a parallel plane surface as shown in Fig. 8.16.
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For an axisymmetric case and using polar coordinates, Reynolds equation can be written as

 3
1

12
dpd

rh V
r dr dr

η
⎛ ⎞

= −⎜ ⎟⎝ ⎠
 (8.88)

Integrating Equation (8.88), we get

 
1

3 3

6 Cdp rV

dr h rh

η
= − +  (8.89)

Since 
dp

dr
 will not be infi nity at 

1
0,  0r C= =

Hence, 
3

6dp rV

dr h

η
= −  (8.90)

Integration of Equation (8.90) with respect to r  yields

 
2

23

3 r V
p C

h

η
= − +  (8.91)

Th e constant 2
C  can be evaluated from the boundary condition that 0 at 0.p R= =  Th us,

2

2 3

3 R V
C

h

η
=

Th e pressure distribution is now given by

 ( )2 2

3

3 V
p R r

h

η
= −  (8.92)

Th e squeeze fi lm load capacity W  is
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Figure 8.16 | Squeeze Film Between Parallel Circular Plates
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or 
4

3

3

2

R V
W

h

πη
=  (8.93)

Since 
dh

V
dt

= , the time of approach can thus be determined as

4

3

3

2

R dh
dt

W h

η
= −∫ ∫

or

 
4

2 2
2 1

3 1 1

4

R
t

W h h

πη ⎛ ⎞
Δ = −⎜ ⎟

⎝ ⎠
 (8.94)

8.8.3 | Squeeze Film Lubrication between a Sphere and a Spherical Seat

Figure 8.17 shows a sphere of Radius R on a hemispherical seat.
Th e amount of lubricant fl ow from the control volume due to Poiseuille and Couette fl ow can be written as

 ( )3 sin
6

dpd d
rh x V rh x

dx dx dx

π
δ π θ δ

η
⎛ ⎞

− −⎜ ⎟⎝ ⎠
 (8.95)

Th e rate of reduction of fl ow due to squeeze action is 2 cosrV xπ θδ . To satisfy fl ow continuity relation-
ship this is equated to terms in Equation (8.95). Th us, we get Reynolds equation as

 ( )3 6 sin 12 cos
dpd d

rh V rh Vr
dx dx dx

η θ η θ
⎛ ⎞

+ = −⎜ ⎟⎝ ⎠
 (8.96)

Since, ( )6 sin
d

V rh
dx

η θ  is smaller than the other terms, it can be neglected.

Again, since x Rθ=  and sinr R θ= we get

 
3 2sin  6 sin 2

dpd
h R V

d d
θ η θ

θ θ
⎛ ⎞

= −⎜ ⎟⎝ ⎠  (8.97)

Integrating Equation (8.97)

 
12

3 3

sin
6

sin

Cdp
R V

d h h

θ
η

θ θ
= − +  (8.98)

where C
1
 is a constant and

 ( )1 cosh C ε θ= −  (8.99)

For the confi guration shown in Fig. 8.17 the boundary conditions are

 (i) 0 when 0
dp

d
θ

θ
= =

(ii) 0 when /2p θ π= =  (8.100)
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Using condition (i) of Equation (8.100) in Equation (8.98), we get C
1
 = 0

Th erefore, 2

3

sin
6

dp
R V

d h

θ
η

θ
= −  (8.101)

Integration of Equation (8.101) gives expression of pressure as

 ( )
2

2 23

3 1

1 cos

R V
p C

C

η
ε ε θ

⎡ ⎤
⎢ ⎥= +
⎢ ⎥−⎣ ⎦

 (8.102)

Using second boundary condition of Equation (8.100), we get

2

2 3

3 R V
C

C

η
ε

= −

Introducing this in Equation (8.102), the pressure distribution becomes

 
( )

2

23

3 1
1

1 cos

R V
p

C

η
ε ε θ

⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

 (8.103)

Th e squeeze load capacity W  is determined as
/2

0
  2 cosW RpR d

π
π θ θ= ∫ . Th is can be rewritten as

 
/2

2

0
2     sin cosW R p d

π
π θ θ= ∫  (8.104)

Substituting p  in equation (5.98) and integrating, one gets

 ( )

/24

23
0

6 sin cos
sin cos

1 cos

R V
W d

C

ππη θ θ
θ θ θ

ε ε θ

⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

∫  (8.105)

Th us, squeeze load capacity is obtained on integration as

 ( ) ( )
4

2

3 3

6 1 1 1
ln 1

21

R V
W

C

πη
ε ε

ε εε

⎡ ⎤
= + − −⎢ ⎥

−⎢ ⎥⎣ ⎦
 (8.106)
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Figure 8.17 | Squeeze Film Between a Sphere on a Spherical Seat
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Th e time of approach may be evaluated using the relationship given below.

cos cos
dh d

V C
dt dt

ε
θ θ= − = −  or 

d
V C

dt

ε
=

Th us, one obtains from Equation (8.106) by substituting for V  from above the expression for time of 
approach as

( ) ( )
4

2 32

6 1 1 1
ln 1

21

R
dt dt

C W

πη
ε

ε εε ε

⎡ ⎤
= + − −⎢ ⎥− ⎦⎢⎣

∫ ∫

Th us, ( )
2

1

4 2

2 2

6 1 1
ln 1

R
t

C W

ε

ε

πη ε
ε

ε ε
⎡ ⎤+⎛ ⎞

Δ = + −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
 (8.107)

8.8.4 | Squeeze Film Lubrication of Journal Bearing

In squeeze fi lm lubrication, pressure generation is due to dynamic motion of the nonrotating journal as shown 
in Fig. 8.18.

In the absence of journal rotation, i.e., for normal squeeze velocity of the journal center, the Reynolds 
equation reduces to

 
3 3

2 212
p ph h h

R R
y y tθ η θ η

⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂
+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

  (8.108)

where 
h

t

∂
∂

 is the normal squeeze velocity, the fi lm shape is given as

( )1 cosh C ε θ= −

where q is measured from the location of minimum fi lm thickness.

For long bearing approximation, 0
p

y

∂
=

∂
 and the Reynolds equation becomes

 
3

212 cos
ph

R Cε θ
θ η θ

∂⎛ ⎞∂
= −⎜ ⎟∂ ∂⎝ ⎠

�  (8.109)

Figure 8.18 | Squeeze Film Journal Bearing

W

Journal

Bearing

Oil

dh
dt



D ynamics of Fluid Film Bearings 193

Integrating with respect to θ , we get

 ( ) ( )
2

3 3
2 3

12 sin

1 cos 1 cos

dp R A

d C C

η ε θ
θ ε θ ε θ

= − +
− −

�

 (8.110)

For symmetry about the line of centers

0 at 
dp

d
θ π

θ
= = , when substituted in the above equation, gives the constant of integration 0A = .

Th erefore,
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3

sin
12

1 cos

dp R

d C

ε θ
η

θ ε θ

⎛ ⎞
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�

 (8.111)

Integrating further gives pressure distribution as

 
( )

2

2
6

1 cos

R
p B

C

ε
η

ε ε θ

⎛ ⎞
= − +⎜ ⎟⎝ ⎠ −

�

 (8.112)

0 at /2 and 3 /2p θ π π= = . Since p is also zero at 0θ = , this condition makes it easier to compute the 
constant B. Th en,

( )

2

2
6

1

R
B

C

ε
η

ε

⎛ ⎞
= − ⎜ ⎟⎝ ⎠ −

�

Th us,
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1 1
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η

ε ε ε θ

⎧ ⎫⎛ ⎞ ⎪ ⎪= −⎨ ⎬⎜ ⎟⎝ ⎠ − −⎪ ⎪⎩ ⎭

�

 (8.113)

Th e normal load carrying capacity can be determined as

0
2 cos

s
W L pR d

π
θ θ= ∫

Substitution of p from Equation (8.113) and integrating, we get

 
( )

3

32
2 2

 12
1

s

R
W L

C

ε
πη

ε
=

−

�

 (8.114)

s
W , is the squeeze fi lm load capacity of the journal bearing.
In a similar way, squeeze fi lm load capacity of the journal bearing can also be determined for short 

bearing assumption.
Th e lubrication of connecting rod bearings of I.C. engines, reciprocating pumps, and compressors are due 

to squeeze fi lm action. Besides many other engineering manifestations of squeeze fi lm action in real life, for 
example, lubrication of human joints and animal joints is also possible due to squeeze action of synovial fl uid 
trapped in the joints. Engineering manifestations include failure of action in clutches and brakes due to oil or 
water entrapment and also skidding of vehicles due to water layer between the tire and wet road.



194  Theor y of Lubrication

8.9 | Squeeze Film Damper

Rolling element bearings are used to support the rotors of modern aircraft engines due to high stiff ness and 
high reliability. However, these bearings provide almost negligible damping to vibrations due to unbalance. 
To provide additional damping squeeze fi lm dampers are used in an arrangement shown in Fig. 8.19. It is a 
journal bearing in which the journal i.e. outer race of rolling element bearing and housing are constrained to 
move. Short bearing approximation is generally used since most dampers have a low L/D ratio.

Th e Reynolds equation for short journal bearings can be written in Cartesian coordinates as

 
3

12
ph h

y y tη
⎛ ⎞∂∂ ∂

=⎜ ⎟∂ ∂ ∂⎝ ⎠
  (8.115)

where cos sinh C x yθ θ= − −
θ , is measured from the x axis as shown in Fig. 8.19.
Th e pressure distribution is obtained by integrating Equation (5.110) as

 ( ) ( )2

3

3
, 2

h
p y y Ly

h t

η
θ

∂⎛ ⎞
= − ⋅ ⎜ ⎟⎝ ⎠∂

  (8.116)

Bearing forces can be expressed in Cartesian coordinates as

 
( )

( )
3 2

30

cos2 cos sin
sin2 cos sin

x

y

F x yRL
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π θθ θη
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∫
� �

 (8.117)

Since full fi lm condition has been assumed, integration is performed between the limits 0 to 2p . However, 
cavitations occur and the fi lm is ruptured.

Figure 8.19 | Schematic Diagram Geometry of Squeeze Film Damper [Gunter et al., ASME, JOLT, 1977]
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Assuming steady state precession of the journal center, the Reynolds equation for short journal bearing 
for nonrotating journal is written as

 ( )
3

12 cos sin
ph

C
y y

ε θ εφ θ
η

⎛ ⎞∂∂
= +⎜ ⎟∂ ∂⎝ ⎠

��  (8.118)

where ( )1 cosh C ε θ= − angle θ  being measured from the location of minimum fi lm thickness.

Th e force components in ε , φ  coordinates, i.e., along and normal to the line of centers are

 ( )1

3 2

32

cossin cos
sin

1 cos

F RL
dF C

θε

θφ

θη φε θ ε θ
θθε θ

⎧ ⎫ ⎧ ⎫− +⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪+⎩ ⎭ ⎩ ⎭

∫
� �

 (8.119)

1
θ , 

2
θ  defi ne the domain of positive fi lm pressure. Th e fi lm extent is usually taken as π .  It is assumed that the 

damper exhibits circular precession about the bearing center, and therefore 0;ε φ ω= =��

Th e force components Fε  and Fφ
 are given as

 
( ) ( )

3 3

2 3
3 2 3 2 2

2
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1 2 1

RL e RL e
F F
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ε φ

η ε ω η π ω

ε ε

−
= = −

− −
 (8.120)

where ω =  angular velocity of precession of journal center. Equivalent damper stiff ness and damping coef-
fi cients can be determined as follows:

Damper stiff ness coeffi  cient 
d

K  is given as
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Damper damping coeffi  cient d
B  as
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For full fi lm condition, the stiff ness and damping coeffi  cients are determined from Fε  and Fφ  which are 
obtained as
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ε φ
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 (8.123)

Th us, damper stiff ness is zero and damping is obtained as

 ( )
3

3 3 2 2/ 1
d

B RL Cπη ε= −  (8.124)

Th e above expressions are derived for a plain damper but can be used for other damper confi gurations also. 
Generally two other confi gurations are commonly employed, viz., damper with circumferential oil feed groove with 
ends open which permit full end leakage or with end seals to prevent end leakage. In case of damper without end 
seals, hydrodynamic forces and damper coeffi  cients decrease by a factor of 4. For dampers with end seals hydro-
dynamic pressure distribution is similar to a plain land with pressure at center equal to zero as shown in Fig. 8.20.
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For further reading, one can look into investigations of Cunningham et al. (1975), Mohan and Hahn 
(1974), Gunter et al. (1977), Tonnesen (1976), Bansal and Hibner (1978), Lund et al. (1983), and Zeidan and 
Vance (1988,89).

Problems

P.8.1 Neglecting side leakage obtain the expressions for pressure distribution, oil fl ow, and time taken for 
the fi lm thickness to reduce by half in case of parallel surface squeeze fi lm bearing of infi nite width. Calculate 

Figure 8.20(a) | Squeeze Film Damper Installation [Pan and Tonnesen, ASME, JOLT, 1978]
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Figure 8.20(b) |  Squeeze Film Damper with Circumferential Oil Supply Groove with and without End Seals [Gunter 
et al., ASME, JOLT, 1977]
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the theoretical separation velocity required to reduce the oil fi lm pressure between two parallel plates 0.025 m 
long and infi nitely wide to a pressure of absolute zero. Th e fi lm thickness separating the plates is 25 micro-
meters and the oil viscosity is 0.5 Pas. If the load per unit width of 20 KN/m is applied to the conditions as 
above, calculate the time required to reduce fi lm thickness to 2.5 micro meters.

P.8.2 (a) Using long bearing theory, calculate the time taken for the journal center to move from an 
eccentricity ratio of 0.5 to 0.8 in a 8 cm diameter journal with a radial clearance of 40 mm. Th e viscosity of 
the oil is 1 poise when the load per unit length is 20 KN/m and L/D = 1.5. L is width of the bearing and 
D journal diameter.

 (b) What diff erence will it make if L/D = 0.5? Use short bearing theory to do the calculations and 
derive the expressions used.

P.8.3 Use theory of narrow bearing, evaluate the stiff ness and dynamic coeffi  cients of a hydrodynamic 
 journal of following specifi cations:

 Journal diameter = 7.0 cm, Bearing length = 7.0 cm, Radial clearance = 0.02 mm, Journal angular 
speed = 1000 rpm, Mean viscosity of oil = 0.025 Pas, operating eccentricity ratio = 0.6. Determine the critical 
mass for stable operation of bearing at the operating eccentricity ratio.
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Chapterr9
Externally Pressurized Lubrication

9.1 | Introduction

It has been seen that hydrodynamic bearings can exhibit high load carrying capacity due to pressure 
 developed by wedge action or self-action at high shaft speeds. However, hydrodynamic bearings are not 
good in  generating suffi  cient load carrying capacity at low speeds and also for low viscosity fl uids. Since high 
 operating speed is essential to generate hydrodynamic fl uid fi lm by self-action, hydrodynamic bearings are 
mostly used in high speed machinery such as turbines, pumps, turbo generators, and turbo pumps. On the 
contrary, in externally pressurized bearings, the fl uid fi lm is generated by supplying high pressure fl uid from 
an external source. Th erefore, these bearings can operate at very low speeds. In many applications,  operating 
speed may not be high enough to generate adequate load capacity by hydrodynamic action alone. In this 
situation, a combination of hydrostatic (or externally pressurized) and hydrodynamic lubrication have to be 
resorted to. Th ese bearings are usually known as hybrid bearings.

Externally pressurized lubrication is extensively used now-a-days in aerospace and machine tool 
 industries mainly due to high load capacity, high stiff ness, and low frictional resistance. Multirecess externally 
pressurized journal and thrust bearings are often used in machine tools. Th e load capacity can be attributed to 
the presence of deep recesses which constitute large areas of uniform pressure, and high stiff ness is generally 
attributed to the use of fl ow restrictors, e.g., capillary, orifi ce, constant fl ow control valve, and diaphragm type 
variable fl ow restrictor in between the recesses and the supply line.

Th e bearing confi guration can either have axial drain grooves in between the recesses or can be  without 
drain grooves. Th e bearings without axial grooves have better characteristics due to interaction of fl uid 
between the recesses and have become popular. Bearings employing fl ow control valve or diaphragm type 
variable fl ow restrictors usually operate on a bearing pressure feedback system and can be designed for high 
stiff ness. However, capillary and orifi ce restrictors being simpler in construction, more reliable in operation, 
and easier in maintenance are commonly used.
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Th e initial cost of these bearings is high because of additional requirement of pump and its accessories to 
supply high pressure fl uid, but this disadvantage is off set in most cases since the hydraulic system is already 
available in the machine for other functions and is also used for supplying oil to the bearing. Bearings are 
usually designed either for maximum load or maximum stiff ness.

9.2 | Circular Step Externally Pressurized Thrust Bearing

A circular step pressurized thrust bearing system is shown in Fig. 9.1. Oil is supplied to the recess through a 
fl ow restrictor either a capillary or an orifi ce.

Th e Reynolds equation for the fl ow of lubricant is written in polar coordinates, i.e., r, θ coordinates as
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 (9.1)

In case of parallel fi lm, i.e., constant fi lm thickness, pressure gradient in the circumferential direction 

would be zero, i.e., 0
p

θ
∂

=
∂

 and constanth = . Since viscosity is also assumed to be constant, the Reynolds 

equation thus reduces to for w = 0 as given below:
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 (9.2)

Th e boundary conditions are
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Integrating Equation (9.2) with respect to r and substituting boundary conditions given by Equation 
(9.3), pressure distribution over bearing land area is obtained as
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 (9.4)

Bearing performance parameters, viz., load capacity, lubricant fl ow rate, and power loss due to viscous 
friction, etc. can be evaluated using the above expression of pressure distribution.

Figure 9.1 | Single Recess Externally Pressurized Bearing
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Th e expression for load capacity W is written as

 2 2
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W r p prdrπ π= + ∫  (9.5)

using Equation (9.4) for p and integrating, load capacity W is obtained as
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which reduces to on integration as
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where 2 ,
o

A rπ=  bearing pad area.

While determining the expression for pressure distribution over the bearing pad area, it has been assumed 
that the depth of recess is very large in comparison to the fi lm thickness, and therefore pressure in the recess 
area is constant at p

r
.

Th e fl ow rate of the lubricant through the periphery of the bearing at radius r = r
o
 can be determined in 

following manner.
Th e radial velocity of the lubricant
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 (9.8)

Outfl ow rate of the lubricant is given by
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Substituting for 
p
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 and integrating with respect to z, we get
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Pumping power necessary to pump the above volume of lubricant into the bearing is given by:

Pumping power, 
p s

P p Q=

where p
s
 is supply pressure of the lubricant into the recess.

Power required to pump the fl uid into the recess is thus determined as
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Frictional power loss due to rotation of the runner at an angular speed of w, can be determined as
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Shear stress t due to rotation of the journal is given as: /r hτ η ω= . Th erefore,
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or

 

4

2 2
1

2

i

o o

f

r

r r A
P

h

η ω

⎛ ⎞
− ⎜ ⎟⎝ ⎠

=  (9.14)

where 2 ,
o

A rπ=  total pad area including the recess.
Following coeffi  cients, viz., load, fl ow, and frictional power coeffi  cients which are purely dependent on 

the geometry of pad, i.e., recess and bearing radii are introduced and defi ned as
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Th us, load capacity, oil fl ow rate through the bearing, pumping, and frictional power loss can be expressed 
in terms of the above coeffi  cients as
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Th erefore, one can say that for a given geometry of the bearing, the load capacity is not dependent directly 
on the fi lm thickness h or viscosity of the oil h, whereas pumping power and friction power loss are dependent 
on fi lm thickness and viscosity of oil. In the case of uncompensated bearing when the fl ow restrictor is not put 
between the recess and supply line, the recess pressure p

r
 would be equal to oil supply pressure p

s
, and the bear-

ing would always give a constant load capacity irrespective of the fi lm thickness. Th us, stiff ness of the bearing 

defi ned as 
dW

dh

⎛ ⎞
−⎜ ⎟⎝ ⎠

 would be zero. Restrictors, e.g., orifi ce or capillary are therefore required to obtain vari-

able recess pressure p
r
 with the variation in the fi lm thickness h and provide necessary stiff ness to the bearing.
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Recess pressure is determined from the balance of fl ow of lubricant into recess from supply line through 
the restrictor and the fl ow out of the bearing.

Th us, recess fl ow continuity equation can be written for capillary and orifi ce compensation as:

For Capillary Compensation
Flow through the capillary into the recess = fl ow out of the bearing periphery. Th us,
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Capillary design parameter k
c 
, a dimensionless parameter is defi ned as
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d
c
 = diameter of the capillary tube

l
c 
 = length of the capillary tube

h = fi lm thickness
k

c
 = capillary parameter

For capillary restrictor, recess fl ow continuity equation reduces to
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For Orifi ce Compensation
Similarly for orifi ce compensation, recess fl ow continuity equation can be written as
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In the dimensionless form, the above equation becomes
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d
0
 = orifi ce diameter

c
d
 = discharge coeffi  cient of orifi ce

r = density of lubricant
k

0
 = orifi ce parameter

Total power required to operate the bearing system is P
t
 which can be determined as

t p f
P P P= +
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where 
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.U r ω=
Th e procedure to design the bearing is to optimize or minimize the total power required to operate the 

system. Besides, the bearing geometry and a chosen value of recess to supply pressure ratio b, the power loss 
is dependent on fi lm thickness h and viscosity of the oil h. Th erefore, optimization can be done with respect 
to either fi lm thickness for a given viscosity of the oil or with respect to viscosity for a given fi lm thickness 
of lubricant fi lm.

For optimum fi lm thickness 0t
P

h

∂
=

∂
 when viscosity of oil h is known. Total power given by Equation 

(9.23) is diff erentiated with respect to fi lm thickness and set equal to zero for minimum power, i.e., 0t
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∂which gives the optimum fi lm thickness as:
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Substituting h = h
opt

 in Equation (9.23), minimum power consumption is determined as:
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Similarly for a given fi lm thickness h, optimum viscosity can be determined as
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9.2.1 | Stiff ness of the Bearing

Load capacity and fl ow of the lubricant of the bearing given by Equation (9.16) can be expressed as

 ;
eff r eff s

W A p A pβ= =  (9.27a)
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Stiff ness, K of the bearing is defi ned as
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Using Equations (9.27a) and (9.27b), it can be shown that for a constant fl ow rate the stiff ness of the 
bearing can be obtained as:
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Th us, dimensionless stiff ness
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9.2.2 | Optimum Design of the Bearing

Th e approach generally adopted in the design of externally pressurized bearings is to either optimize the load 
capacity or the stiff ness of the bearing. Ling (1962) has shown that for a given fi lm thickness bearing stiff ness 
can be optimized with respect to recess to supply pressure ratio b.

Th e procedure to optimize either load or stiff ness is as follows.
Recess fl ow continuity Equations (9.19) and (9.21) for capillary and orifi ce compensations, respectively, 

can be used to determine optimum stiff ness of the bearing. From these it is clear that
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and
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Th erefore, to determine optimum stiff ness it is necessary to diff erentiate stiff ness K with respect to b and 
equate to zero. Th us,
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For a given restrictor parameter k or a given fi lm thickness h above equation reduces, respectively, to

 0 and 0
K h K k

h kβ β
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= =
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 (9.32)

Satisfying the above conditions, one obtains values of b for which maximum stiff ness would be obtained as:
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and
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Graphs of pad coeffi  cients versus recess to bearing radius ratio, i.e., (r
i
 / r

o
) and stiff ness of the bearing for 

capillary and orifi ce restrictors versus pressure ratio b are shown in Figs 9.2 and 9.3, respectively. For a given 

Figure 9.2 | Capillary Compensated Thrust Bearing Stiff ness versus Pressure Ratio b
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Figure 9.3 | Orifi ce Compensated Thrust Bearing Stiff ness versus Pressure Ratio b
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fi lm thickness, restrictor can be chosen to give either optimum load or stiff ness for a given supply pressure p
s
 

and viscosity of oil h. For a given oil and fi lm thickness, increase in supply pressure would increase the load 
capacity and stiff ness of the bearing.

9.3 |  Externally Pressurized Multirecess Journal 
Bearing with Short Sills

An excellent general method of analysis of multirecess externally pressurized journal bearing was developed 
by Davies (1969–70). Th e analysis is simple but very useful. It is valid for bearings with large recess area, i.e., 
when recess area is greater than 60% of the bearing area or in other words for bearings with short land/sill 
dimensions. Th erefore, it assumes that the pressure drop across each axial and circumferential land is linear 
and pressure gradient is constant. It also assumes that variation of clearance across the circumferential land is 
negligible. A multirecess hydrostatic bearing system is shown in Fig. 9.4.

Th e position of the journal center is specifi ed in this analysis by its eccentricity ratio, e and an  attitude 
angle, a, measured from the center line of a chosen circumferential land as shown in Fig. 9.5. Recess 
 pressures are fi rst determined and load, load angle, fl ow rate of the lubricant, power required, etc. are 
 determined later.

To determine recess pressures for an operating eccentricity ratio, e and at a speed N
s
 of the shaft for a 

bearing of diameter D, radial clearance C for known orifi ce/capillary dimensions, viscosity of the oil h, etc, it 
is necessary to write down recess fl ow continuity equation.

In a N recess bearing recess, pressures are assumed as 
1 2 3
, , ........ .

N
p p p p  For the nth recess pressure p

n
 

and adjacent recess pressures 
1 1
,

n n
p p

− +  are assumed to be in increasing order, i.e., 
1 1

.
n n n

p p p
− +

> >
Flow continuity equation for nth recess can be expressed as a fl ow balance relationship between the 

volume of the fl uid entering into the recess from the restrictor and the fl uid volume going out of the recess 
boundaries per unit time.

Figure 9.4 | Externally Pressurized Multirecess Journal Bearing System
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 1. For a supply pressure of lubricant at p
s
, the fl ow rate entering the recess from the restriction in to nth 

recess is:

( )2
2

4 d s n
c d p p

π
ρ

−

For Orifi ce Restrictor

( )
4

128 s n

t

d
p p

l

π
η

−

For Capillary Restrictor
d  = capillary or orifi ce diameter as the case may be
l
t
  = length of the capillary tube

r, h  = density and viscosity of the lubricant respectively
c

d
  = discharge coeffi  cient of the orifi ce

Axial fl ow rate of lubricant out of the nth recess at pressure p
n
 is

 ( )
2

2

3
3

( 1)
1 cos

12

N

N

n
n

n

DC p
d

l

π

π

α

α
ε θ θ

η
−

− −
−∫  (9.34)

 2. Flow rate of lubricant out from nth recess into the (n + 1)th recess is

 

( )
33

1

2
1 cos

12

2
1 cos

2

r

n n

c

r s

l C
p p n

l N

DCl N n
N

π
ε α

η

π π
ε α

+

⎧ ⎫⎛ ⎞
− − −⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞
+ − −⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭

 (9.35)

Th e fi rst term is due to pressure induced fl ow and second term is due to the shaft velocity induced fl ow.

Figure 9.5 |  Schematic Diagram of the General Multirecess Hydrostatic Journal Bearing with N Recesses [Davies, 
Proc. IMechE, UK, 1969–70]
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 3. Similarly, the fl ow into the nth recess form the (n-1)th recess is:

 

( )
33

1

2
1 cos

12

2 ( 1)
1 cos

2

r

n n

c

r s

l C n
p p

l N

n
DCl N

N

π
ε α

η

π π
ε α

−

⎧ ⎫⎛ ⎞
− − −⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭

⎧ ⎫−⎛ ⎞
+ − −⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭

 (9.36)

Continuity of fl ow for the recess requires that lubricant fl ow rate into the recess from the restrictor be equated 
to the fl ow rate out of the recess which is sum of axial fl ow rate out of nth recess and fl ow rate out of the nth 
recess into (n+1)th recess minus the fl ow into nth recess from (n-1)th recess. Th e recess fl ow continuity equa-
tion for nth recess is written in dimensionless form as:

For Orifi ce Compensated Bearing

 ( )1 1 1 1 1 0
1

n n n n n n n n n n
C p A C C p C p p Sδ ω

− − − − +
− + + + − = − −  (9.37)

For Capillary Compensated Bearing

 ( ) ( )1 1 1 1 1
1

n n n n n n n n c n n
C p A C C p C p p Sδ ω

− − − + +
− + + + − = − −  (9.38)

where aspect ratio,

2

6
;   / ;  s rr

n n s

c s

N llll
m p p p

Dl C p

πη
ω= = =

speed parameter,

 ( )
2

2

. 3

( 1)
1 cos

N

N

n

n n
A d

π

π α
ε θ θ

− −
= −∫  (9.39)

3
2

1 cos
n

C m
N

π
ε η α

⎧ ⎫⎛ ⎞
= − −⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭

( )2 2
cos 1 cos

n
S

N N

π π
ε η α η α

⎧ ⎫⎛ ⎞ ⎛ ⎞
= − − − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎭

2

0 3

3 2
,d

c d l

C D ps

π η
δ

ρ
=  dimensionless orifi ce design parameter

4

3

3
,

32c

t

d l

l DC

π
δ =  dimensionless capillary design parameter.

Equations (9.37) and (9.38) are general continuity equation for nth recess which would lead to 

N  equation for a bearing with N recesses. To determine recess pressures 
1 2
, ,...

N
p p p  N simultaneous nonlinear 
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algebraic equations would have to solved in case of orifi ce compensated bearings. Similarly, N-simultaneous 
algebraic linear equations have to be solved using methods to solve simultaneous algebraic linear equations to 

determine recess pressures 
1 2
, ,...

N
p p p  in case of capillary compensated bearings. For example, equations for 

a 4-recess orifi ce compensated bearing the equations can be written in matrix notation as:

1 1 4 1 4

1 2 2 1 2

2 3 3 2 3

4 3 4 4 3

( ) 0

( ) 0
.

0 ( )

0 ( )

A C C C C

C A C C C

C A C C C

C C A C C

+ + −⎡ ⎤
⎢ ⎥− + + −⎢ ⎥
⎢ ⎥− + + −
⎢ ⎥
− − + +⎢ ⎥⎣ ⎦

 

11 1

2 2 2

0
3 33

4 4
4

1

1

1

1

pp S

p p S

p Sp

p Sp

δ ω

⎡ ⎤−⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= −⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 (9.40)

For capillary compensated bearing this reduces to

1 1 4 1 4

1 2 2 1 2

2 3 3 2 3

4 3 4 4 3

( ) 0

( ) 0
.

0 ( )

0 ( )

c

c

c

c

A C C C C

C A C C C

C A C C C

C C A C C

δ
δ

δ
δ

+ + + − −⎡ ⎤
⎢ ⎥− + + + −⎢ ⎥
⎢ ⎥− + + + −
⎢ ⎥
− − + + +⎢ ⎥⎣ ⎦

 

1 1

2 2

3 3

4 4

c

c

c

c

p S
p S
p S
p S

δ ω
δ ω
δ ω
δ ω

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (9.41)

Once the recess pressures are calculated for a given eccentricity ratio e and other bearing parameters 
using Equations (9.40) and (9.41) for orifi ce and capillary compensation, respectively, as the case may be, 

bearing performance can be evaluated in terms of load variable ( ),W  fl ow variable ( ),Q  and energy loss 

variable ( ).H  Th e orifi ce and capillary design parameters d
0
 and d

c
 can be expressed in terms of concentric 

pressure ratio ( )β  following continuity equation.
For orifi ce compensated bearing Equation (9.40) gives for concentric position of the journal:

 0

21

N δβ
πβ

=
−

 (9.42)

Similarly for capillary compensated bearing Equation (9.41) gives

 
1 2

c
N δβ

β π
=

−
 (9.43)
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Load variable W  is defi ned as load supported per unit bearing area at a supply pressure p
s
. It is 

expressed as:

( )
( )

Total  Load Carried

r s

W
W

D l l p
=

+

 ( )
1

22 2

x yW W W= +  (9.44)

where

1

2 1
sin sin

2

N

x n
n

W p n
N N

π π

=

⎛ ⎞
= −⎜ ⎟⎝ ⎠∑

1

2 1
cos sin

2

N

y n
n

W p n
N N

π π

=

⎛ ⎞
= −⎜ ⎟⎝ ⎠∑

Load angle

 1tan
x

y

W

W
φ −=  (9.45)

Flow variable Q  is written as:

3

Total lubricant flow rate through the bearing

2
12

s

Q
DC p

l

π
η

=

and 0

1

1 for orifice compensation
2

N

n
n

Q p
δ
π =

= −∑  

1

1 for capillary compensation
2

N
c

n
Q p

η

δ
π =

= −∑
 

(9.46)

Energy loss variable P  is determined as: 
3

Total Energy Dissipation

2

12
s

s

P
DC p

Qp
l

π
η

=

Th is assumes that frictional losses are signifi cant only in the bearing land area. Th us,

 
2

2

2
1

1 2 1
1

6 21 1 cos

N

n

P mL
Q mL

n
N

ω π
π πε ε α=

⎛ ⎞
⎜ ⎟⎛ ⎞
⎜ ⎟= + +⎜ ⎟⎝ ⎠ ⎛ ⎞−⎜ ⎟− −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑  (9.47)

where c
l

L
l

=  is defi ned as land width ratio.
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Optimum clearance C
o
 can be found for known values of fl uid properties and supply pressure by  minimizing 

the energy loss variable .P  Th is can be found by equating 0
dP

dC
=  from the dimensional form of energy loss 

variable. Minimum value of P  is obtained as 4. Alternately, optimum speed N
s
 can also be  determined for 

a known value of clearance C by substituting 4.P =  Th us, optimum speed variable is found as:

 

1
2

0 2

2
3

2
ml

Nml

πβ
ω

π
⎧ ⎫

= ⎨ ⎬+⎩ ⎭
 (9.48)

Variation of maximum and minimum values of load variable as function of concentric pressure ratio b 
for an eccentricity ratio of 0.8 and speed variable of 0, 0.25, 0.5, and 1 times the optimum speed variable w

0
 is 

shown in Fig. 9. 6. for a 4-recess bearing. As can be seen in the fi gure, there is a maximum and minimum value 
of load variable, which depend on load angle f. For load angle, f = 45° maximum load is obtained, whereas 
for f = 0° minimum load is obtained. It is seen that load variable increases with increase in speed variable. For 
a known eccentricity ratio, there is a pressure ratio b for which maximum load is obtained. Th is is dependent 
on speed variable and load angle.

9.4 |  Multirecess Externally Pressurized Journal Bearings 
with Large Sill Dimensions

Multirecess externally pressurized journal bearings of large sill/land dimensions are very widely used as load 
support system in high speed turbo pumps and high speed machine tools. Reducing the recess size reduces 
the power required to pump large volume of lubricant in the case of bearings with large size recesses.

Figure 9.6 |  Variations of Maximum and Minimum Values of Load Variable as Functions of Pressure Ratio for an 
Eccentricity Ratio of ε = 0.8 and for Various Values of Speed [Davies, Proc. IMechE, UK 1969–70]
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Th is also reduces the load capacity and stiff ness when the bearing is used at low speed of operation. 
However, reducing the recess size or increasing bearing land area also results in additional load capacity due 
to hydrodynamic eff ect over the land area in case of high speeds of journal rotation.

Although pumping power to supply the lubricant is reduced, the frictional power loss over the land area 
increases at high speeds. Th erefore, an optimization is done to minimize the power consumption and reduce 
the temperature rise.

Th e eff ect of shaft rotation on the steady state and dynamic behavior of multirecess externally pressur-
ized bearings with large land area have been investigated by several researchers. O’Donoghue et al. (1970) and 
Cusano and Conry (1974) outlined a procedure for optimum design of multirecess hydrostatic journal bear-
ings based on minimum power consumption and temperature rise. Optimum land width ratio and optimum 
speed parameters were determined. Optimum land width ratio was found to be 0.25 and it was also found 
that in optimized bearings cavitations of oil fi lm do not occur at eccentricity ratios <0.6. However, at high 
eccentricity ratios (≥ 0.7) and at high speed parameters cavitations may occur. At high speeds, these bearings 
often operate in turbulent fl ow regime. Redcliff e and Vohr (1969) and Heller (1974) investigated the steady 
state and dynamic behavior in turbulent fl ow regime. Shinkle and Hornung (1965) and Ghigliazza and 
Michelini (1968) studied the frictional behavior of liquid hydrostatic bearings. Later on lot of studies were 
done by Ghosh and Majumdar (1978), Ghosh et al. (1979) on the steady state and dynamic behavior of mul-
tirecess externally pressurized oil journal bearings in the laminar fl ow regime. A methodology to determine 
recess pressures under eccentric condition was developed by Ghosh and Majumdar (1978). In bearings with 
fi nite sill dimensions, Reynolds equation for fi nite journal bearings has to be solved to determine the pressure 
distribution over the bearing lands.

Steady state analysis of multirecess hydrostatic journal bearings with shaft rotation is now presented for 
bearings with large sill dimensions.

9.4.1 | Steady State Analysis of Multirecess Journal Bearings with Large Sills

A multirecess externally pressurized journal bearing system is shown in Fig. 9.7. Th e developed view of the 
bearing surface is shown in Fig. 9.8. It is assumed that depth of the recesses is very large in comparison to the 
radial clearance between the journal and the bearing so that pressures in the recesses remain constant.

Figure 9.7 | A Multirecess Hydrostatic Oil Journal Bearing
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Th e oil is supplied to the recesses from a constant pressure source at a supply pressure, p
s
 and it enters 

into each recess through a restrictor either a capillary or an orifi ce. Th e journal position within the bearing 

depends on the steady load acting on the journal. For an N recess bearing, recess pressures 1 2 3
, , .........

N
p p p p  

get adjusted in such a way as to carry the net load acting on the journal. Some of assumptions inherent in the 
geometrical confi guration of the bearing and the compensating devices may be noted as follows:

• Th e recesses are symmetrically spaced and the recess depth is large in comparison to the radial clear-
ance of the bearing to ensure approximately uniform pressure in the recesses.

• Th e fl ow in the capillary tube restrictor is laminar while the fl ow through the orifi ce restrictor is 
turbulent in the vicinity of the edge of the orifi ce and the discharge coeffi  cient of the restrictors is 
constant and the same for all the restrictors.

Th e Reynolds equation which gives the pressure distribution of the oil fi lm over the sill surface is given for an 
incompressible lubricant of constant viscosity as

 3 3 6
p p h

h h U
x x y y x

η
⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂

+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (9.49)

where ,U Rω=  surface speed of the journal which rotates at an angular velocity w rad/sec.
With the following substitution, the above equation is expressed in dimensionless form as:

( )2

6
/ , / , ; and /

/
s

s

h h C p p p x R y y L
p C R

ηω
θ= = Λ = = =

 

2

3 3
p pR h

h h
L y yθ θ θ

⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂⎛ ⎞
+ = Λ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (9.50)

To determine the bearing performance parameters, i.e., load capacity, oil fl ow rate, friction coeffi  cient, 
etc. for a given eccentricity ratio under loaded condition, it is necessary to determine the recess pressures

1 2
, .

N
p p p− − −  Ghosh and Majumdar (1978) adopted a procedure as described below:

Th e procedure adopted solves the Reynolds Equation (9.50) satisfying following boundary conditions 
by assigning a defi nite value to the recess pressures. Th e pressure distribution over the bearing surface is thus 
determined by solving Reynolds equation satisfying the necessary boundary conditions which is then used to 
determine the lubricant fl ow rate out of each recess from one recess into other.

Boundary conditions for Equation (9.50) are

 1. ( ) ( )1 1, , 0
2 2

p pθ θ− = + = , for bearing ends open to ambient pressure

Figure 9.8 | Developed View of the Bearing
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 2. ( ),0 0 at  0
p

y
y

θ
∂

= =
∂

, at the center line of the bearing because of symmetry

 3. , 1, 2,3....... ,
i

p p i N= =  pressure at i th recess (assigned value)

 4. ( ) ( ), , 0,
p

p y yθ θ
θ

∂
= =

∂
 Reynolds’ boundary condition at fi lm rupture boundary

Th e dimensionless recess pressure, say at the ith recess is assigned an arbitrary value equal to 1 while all the 
other recess pressures are assigned a value equal to zero. Equation (9.50) is solved with the boundary condi-
tions mentioned using fi nite diff erence method and following Gauss–Seidel iterative procedure described in 

Chapter 5. Th e dimensionless volume rate of fl ow of lubricant from ith recess, i.e., ( ),
c

Q i i  and lubricant fl ow 

rate into the other recesses due to pressure assigned at ith recess, i.e., ( ),
c

Q i j are evaluated using Equation 
(9.51) in the dimensionless form:

 ( ) 2

1

1 2

3 3

,

ˆ, r

r

r r

y

c r y

p pL
Q i j p h ndl h h d y

s R θ θθ
∂ ∂⎛ ⎞⎛ ⎞

= − + Λ −⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂⎝ ⎠∫ ∫�  (9.51)

where / ,
r r s

p p p= , dimensionless recess pressure r th recess, r = i for the ith recess and r = j when the fl ow 

is evaluated at the jth recess due to pressure assigned at ith recess. 1r
y  and 2r

y  are axial boundaries of r th 
recess, whereas q

r1 
and q

r2 
are the circumferential boundaries of the r th recess where

dl  = elementary length

p

s

∂
∂

  = pressure gradient in the direction perpendicular to dl

n   = normal unit vector

Th e above integral is evaluated around all the four edges of the recesses for the fi rst part and for the second 
part is to be evaluated for two sides of the recess only, i.e., edges at q

r1
 and q

r2 
for r th recess.

( ) ( ) ( )3, , / 12 /
c c s

Q i j Q i j C pη=

Th is process is repeated by alternately assigning one of the recess pressures as 1 and keeping other recess 

pressures equal to 0. Th e fl ow coeffi  cients ( ),
c

Q i j  are thus evaluated for N recesses and are expressed in the 
matrix form as:

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1,1 1, 2 1,

2,1 2, 2 2,

,1 , 2 ,

c c c

c c c

c c c

Q Q Q N

Q Q Q N

Q N Q N Q N N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (9.52)

Continuity equation for ith recess may be written as
Flow from the restrictor into the ith recess = fl ow out from ith recess – fl ow into ith recess from recesses 

adjacent to it.
Th e above relationship can be expressed as

For Capillary Compensated Bearings

 ( ) ( ) ( )
1

1 , ,
N

c i c i ij c j
j

p Q i i p Q j i pδ δ
=

− = − ∑  (9.53)
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For Orifi ce Compensated Bearings

 ( ) ( ) ( )1/2

0
1

1 , ,
N

i c i ij c ij
j

p Q i i p Q j i pδ δ
=

− = − ∑  (9.54)

where 
4

3

3
,

32
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c
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δ =  dimensionless parameter for capillary compensated bearing

d
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  = diameter of the capillary tube

l
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  = length of the capillary tube
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dimensionless parameter for orifi ce compensated bearings and
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δ

δ
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= ≠

For a bearing with N number of recesses, the above equations can be expanded into N simultaneous 
algebraic equations

For Capillary Compensated Bearings

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2

2 1 2
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...................................................
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c N c c

p Q N p Q N pδ − = − ( )................  ,
c N

Q N N p+

 (9.55)

Th e above is a set of N linear algebraic equations and can be solved to determine recess pressures 

1 2
, ,...

N
p p p  using Gauss elimination process.

For Orifi ce Compensated Bearings
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0 1 1 2
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0 2 1 2

1     1,1 -   2,1  - ..... ........... .................. -  ,1

1   - 1, 2   2, 2  -  ................................ - , 2
.................................................

c c c N

c c c N

p Q p Q p Q N p
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..........................................................           
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1   -  1,  
N c

p Q N p Qδ − = − ( ) ( )2
2, - .............................. ,

c c N
N p Q N N p+

 (9.56)

Th is is a set of N simultaneous nonlinear algebraic equations which can be solved using Newton–Raphson 

method to determine recess pressures 
1 2
, ,...

N
p p p .
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Having determined the recess pressures for a known eccentricity ratio bearing performance parameters, 
viz., load capacity, oil fl ow rate, friction force, etc. can be evaluated.

Load components can be expressed as:

 
/2 2

0 0
2 cos Rd

L

W p dy
π

ε θ θ= − ∫ ∫  (9.57)

 
/2 2

0 0
2 sin Rd

L

W p dy
π

φ θ θ= − ∫ ∫  (9.58)

Hence the load capacity of the bearing is given by

 ( )1/2
2 2W W Wε φ= +  (9.59a)

and attitude angle f is given as

 ( )1tan /W Wφ εφ −=  (9.59b)

Th e total friction force exerted on the moving journal due to shearing action of the viscous lubricant is 
given by

 
2 /2

0 0
2

2

L

j

ph U
F R d dy

x h

π
η θ

∂⎛ ⎞
= +⎜ ⎟∂⎝ ⎠∫ ∫  (9.60)

and hence, the coeffi  cient of friction is given as

 /
j

F Wμ =  (9.61)

Friction parameter is defi ned as .
R

C
μ⎛ ⎞

⎜ ⎟⎝ ⎠
 Th e total oil fl ow rate from the bearing edges is determined as
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0
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2
12

y L
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y

π
θ

η
=±

∂
= −

∂∫  (9.62)

Th is fl ow rate must be equal to the sum of oil fl ow rate from all the recesses.
Heller (1974) adopted an iterative procedure to determine the recess pressures in loaded condition in a 

hybrid bearing.
In the iterative process which is followed, the dimensionless pressures in all the recesses are set equal to 1 

and Reynolds Equation (9.50) is solved satisfying the boundary conditions to determine the pressure distri-
bution in the bearing. Th en fl ow of lubricant out of each recess is calculated using Equation (9.51) and recess 
pressures are evaluated by satisfying recess fl ow continuity equations as expressed below:

For Capillary Compensation

 ( ) ( )1   for  1, 2,....
c i c i

p Q i p i Nδ − = =  (9.63)

For Orifi ce Compensation

 ( ) ( )1/2

0
1   for  1, 2,.....

i c i
p Q i p i Nδ − = =  (9.64)
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For the next iteration, recess pressures are set equal to the calculated values of the recess pressures from 

the previous iteration, i.e., , 1, 2,.....
i

p i N=  and Equation (9.50) is again solved satisfying proper bound-
ary conditions. Flows through the recesses are again calculated and using Equations (9.63) and (9.64). New 
values of recess pressures are calculated using Equations (9.63) and (9.64). Th is process is repeated until the 
diff erence between two successive iterations in recess pressures is below a prescribed convergence value. Th is 
convergence is obtained in a few iterations only.

Results of load capacity, oil fl ow are presented for orifi ce and capillary compensated bearings for non-
rotating journal against concentric pressure ratio b for various eccentricity ratios for loading through the 
 center line of a recess in Figs 9.9 to 9.14. Figure 9.9 shows that there is an optimum value of concentric pres-
sure ratio b at which maximum load capacity is obtained. Load capacity of orifi ce compensated bearing is 
higher than the load carrying capacity of capillary compensated bearing. Figure 9.10 shows that with increase 
in L/D ratio load capacity decreases, whereas the load capacity increases with increase in eccentricity ratio.

Similarly, results for load capacity are plotted against orifi ce and capillary design parameters in Figs 9.11 
and 9.12.

Optimum values of d
0
 and d

c
 at which maximum load capacity is obtained can be determined for a 

given bearing geometry. Variation of lubricant fl ow rate against concentric pressure ratio b and L /D ratio are 
shown in Figs 9.13 and 9.14, respectively. Oil fl ow rate increases with increase in b which is quite obvious 
and it also decreases with increase in L /D ratio. In the case of nonrotating journal, the power consump-
tion is due to requirement to pump the lubricant to the recesses at a supply pressure p

s
. Hybrid bearings 

Figure 9.9 | Load Capacity of Compensated Bearing Versus Concentric Pressure Ratio
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Figure 9.10 | Load Capacity of Compensated Bearing Versus L/D Ratio

Orifice Compensated Bearing

Capillary Compensated Bearing

0.3

0

0.2

0.4

0.5

0.1

0.6

0 2.00.5 1.0 1.5 2.5

0.4

0.6

0.2

0.8

0.6

0.4

0.2

W
C

L /D

e
o
 = 0.8

N = 4

a = b = 0.6

b = 0.6

Figure 9.11 | Load Capacity Versus Capillary Design Parameter
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Figure 9.12 | Load Capacity Versus Orifi ce Design Parameter

d
o

0

0.3

8
0

2

0.2

4 6

0.4

10

0.5

0.1

12 14

0.6

Curves of Maximum Load Capacity

0.6

0.4

0.2

e
o
 = 0.8

N = 4

a = b = 0.6

L /D = 1.0

W
C

Figure 9.13 | Oil Flow of Capillary Compensated Bearing Versus Pressure Ratio
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 (combined  hydrostatic and hydrodynamic lubrication in which journal rotates) the results of recess pressures 
are given in Table 9.1. Results of load capacity, attitude angle, and friction factor are shown in Figs 9.15 to 
9.17, respectively.

9.4.2 | Dynamic Behavior of Externally Pressurized Bearings

Dynamic characteristics of externally pressurized bearings have been the subject of several studies to determine 
their stiff ness and damping characteristics. Dynamic response of rotors supported on externally  pressurized 
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Figure 9.14 | Oil Flow of Orifi ce Compensated Bearing Versus L/D Ratio
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Table 9.1 | Recess Pressures and Lubricant Flow for a Capillary Compensated Hybrid Bearing

β δ= = = = = =( 4, / 1.0, 0.5, 0.6, 7.795)
c

N L D a b

0
ε Λ 1

p
2

p
3

p
4

p
h

Q

0.2 0.1 0.4934 0.5933 0.7187 0.5888 12.5656

0.5 0.4928 0.6025 0.7187 0.5796 12.5603

1.0 0.4927 0.6142 0.7187 0.5679 12.5587

2.0 0.4927 0.6374 0.7187 0.5445 12.5581

5.0 0.4929 0.7066 0.7187 0.4744 12.5573

0.5 0.1 0.3659 0.5543 0.8853 0.5435 12.9574

0.5 0.3642 0.5773 0.8853 0.5219 12.9384

1.0 0.3638 0.6051 0.8853 0.4939 12.9308

2.0 0.3639 0.6603 0.8853 0.4380 12.9211

5.0 0.3639 0.7483 0.8853 0.3557 12.9005

bearings depends very much on the dynamic properties of the bearings. Sternlicht and Elwell (1960), Brown 
(1961), Hunt (1964), Licht and Cooley (1964), Schwarzenback and Gill (1966), Rhode and Ezzat (1976), 
Ghosh (1978), Ghosh and Vishwanath (1987), Ghosh et al. (1989), and Ghosh and Majumdar (1982) inves-
tigated on the dynamic behavior of hydrostatic thrust and journal bearings. In the following sections, we will 
discuss the procedure to determine the dynamic behavior of hydrostatic bearings with orifi ce and capillary 
compensation.
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Figure 9.15 | Load Capacity of Capillary Compensated Hybrid Bearing Versus Bearing Number
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Figure 9.16 | Attitude Angle of Capillary Compensated Hybrid Bearing Versus Bearing Number

N = 4

a = b = 0.5

L /D = 1.0

0

Λ

50

10–2

60

0.2

10–1 1 10

10

20

30

40

70

e
o
 = 0.5

f
 (

D
e
g
re

e
)

Figure 9.17 | Friction Parameter of Capillary Compensated Hybrid Bearing Versus Bearing Number
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9.4.3 | Dynamic Behavior of Compensated Hydrostatic Thrusts Bearings

A circular step thrust bearing is shown in Fig. 9.18. With the usual assumptions of an incompressible 
 isothermal lubrication and following Dowson’s (1961) approach which includes centrifugal fl uid inertia, the 
momentum equations for the fl uid fi lm are written as

 
2 2

2

r
v vp

r r z
θρ η

∂∂
− = − +

∂ ∂
 (9.65)

 
2

2
0

v

z
θ∂

=
∂

 (9.66)

and the continuity equation is expressed as

 ( )1
0z

r

v
rv

r r z

∂∂
+ =

∂ ∂
 (9.67)

v
r
, v

q
 and v

z
; are fl ow velocity components in radial, circumferential, and normal directions, i.e., along r, q and z 

coordinates.
Integrating Equation (9.66) with following boundary conditions

0,  0 and ,  z v z h v rθ θ= = = = Ω

where Ω is the angular speed of the runner in rad/sec, the tangential velocity, v
q
 is given as

 /v r z hθ = Ω  (9.68)

Substituting Equation (9.68) into Equation (9.65) and integrating with the boundary conditions 

0 at 0 and 
r

v z z h= = = , the radial velocity component of the fl uid is obtained as

 ( ) ( )
2

2 3 4

2

1

2 12r

p r
v z zh zh z

r h

ρ
η η

∂ Ω
= − + −

∂
 (9.69)

Figure 9.18 |  Hydrostatic Thrust Bearing System
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Substituting Equations (9.69) into continuity Equation (9.67) and on integration with respect to z within 
limits 0 to h yields the Reynolds equation as given below

 3 2 3
1

0.6 12
p h

h r h
r r r t

ρ η
∂⎛ ⎞∂ ∂

= Ω +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (9.70)

Parallel surfaces have been assumed with squeeze velocity 
h

t

∂
∂

 for dynamic motion of the runner along 

the fi lm thickness. Equation (9.70) is written in dimensionless form using the following substitutions

 
0

/ ; / ; / , /
s i r r s

p p p r r r h h h p p p= = = =  (9.71)

h
0
, is steady state fi lm thickness and p

r
 recess pressure.

Equation (9.70) with above substitutions reduces to

 3 3
1 p h

h r Sh
r r r

σ
τ

∂⎛ ⎞∂ ∂
= +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (9.72)

where 20.6 /
i s

S r pρ= Ω , is defi ned as the speed parameter and

2 2
0

12 / ,
i s

r p hσ ηυ=

is defi ned as the squeeze number.
It has been assumed that the system undergoes small amplitude vibrations at a frequency u, and therefore 

fi lm thickness and pressure can be expressed as

 
0 1

1 ; ;i t i th e p p e p tυ υε ε τ υ= + = + =  (9.73)

where dimensionless steady state fi lm pressure is 0
p

 and 1
p

is the dimensionless dynamic fi lm pressure.
Substituting Equation (9.73) into Equation (9.72) and retaining only up to fi rst order terms, we get

 01 p
r S

r r r

∂⎛ ⎞∂
=⎜ ⎟∂ ∂⎝ ⎠

 (9.74)

 11 p
r i

r r r
σ

∂⎛ ⎞∂
=⎜ ⎟∂ ∂⎝ ⎠

 (9.75)

Integration of Equation (9.74) satisfying the following boundary conditions at the recess boundary and 
bearing periphery yields steady state fi lm pressure distribution. Boundary conditions for Equation (9.74) are

 
0 0 0

  at  1; 0  at  
r o

p p r p r r= = = =  (9.76)

Steady state pressure distribution is obtained as

 ( ) ( )2 2
0 0 0

ln
1 1

4 4 lnr o r

o

S S r
p p r r p

r

⎡ ⎤
= + − − − +⎢ ⎥⎣ ⎦

 (9.77)

Steady state load capacity is obtained as

 2 2
0 01

R

r i s i s
W p r p r p p rdrπ π= + ∫  (9.78)
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Th is is determined in dimensionless form as

 ( ) ( )2

02 2
1

0.5 1 1
ln 4 ln

or

o o

o o

rp S
W r r

r r

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥= − − + −⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (9.79)

where,

2/
i s

W W r pπ=

Th e oil fl ow from the recess boundary is determined as
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r r r

ph
Q rd
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π
θ
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∂
= −

∂∫  (9.80)

It is expressed in the dimensionless form as

 ( )0 02
0 1

1 / ln
2 4 ln

r

r r o o

o

p pS S
Q r r

r r=

∂ ⎡ ⎤
= − = − − − +⎢ ⎥∂ ⎣ ⎦

 (9.81)

where

0

0 3
0

6
r

r

s

Q
Q

p h

η
π

= −

Friction torque can be determined as
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M r d dr
h

π η
θ
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= ∫ ∫  (9.82)
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π⎛ ⎞Ω
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⎝ ⎠
 (9.83)

Equation (9.79), (9.81), and (9.83) give values of load capacity, oil fl ow rate, and frictional torque of the 
bearing at fi lm thickness h

0
.
.

Dynamic characteristics of the bearing, i.e., stiff ness and damping coeffi  cients can be determined from 
the solution of dynamic Reynolds Equation (9.75) satisfying following boundary conditions.

 
1 1 1

  at   1,  0  at  
r o

p p r p r r= = = =  (9.84)

Dynamic pressure distribution 
1

p  is obtained on integration of Equation (9.75) satisfying above bound-
ary condition as

 ( ) ( )2 2
1 1 1

ln
1 1

4 4 lnr o r

o

r
p p i r i r p

r

σ σ⎡ ⎤
= + − − − +⎢ ⎥⎣ ⎦

 (9.85)

Dynamic load capacity of the bearing can be determined as

 2
1 1

2
o

i

r

d i r r
W r p p rdrπ π= + ∫  (9.86)
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1 11

2
o

r

d r
W p p rdr= + ∫  (9.87)

Th is is determined in the dimensionless form from the above expression substituting for 
1

p  from 
Equation (9.86) as

 ( ) ( )2
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d o o
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rp
W r i r
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σ

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥= − − + −⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (9.88)

where

2/
d d i s

W W r pπ=

Dynamic load capacity can be expressed in the form of stiff ness and damping coeffi  cients as

 
0 0

i t i t i t
d d d

e W K h e i B h eυ υ υε ε υ ε= − −  (9.89)
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d d
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i s i s
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K
d 
, B

d
 are stiff ness and damping coeffi  cients of the bearing, respectively, which can be written in the dimen-

sionless form as
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 (9.90)

Th e steady state recess pressure 
0r

p  and dynamic recess pressure 
1r

p are determined from the recess fl ow 
continuity equation as described below:

Recess fl ow continuity equation can be written in the dimensionless form including the recess volume 
fl uid compressibility eff ect as:

Capillary Compensation
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12 12 1
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η η
δ ρ

ρ

δ πσ πσγ
τ τ
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∂ ∂

∂∂
− = + +

∂ ∂

 (9.91)
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Orifi ce Compensation
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 (9.92)

where 2
r i

A rπ=  is recess area and 
0 1r r

V A d V= +  is volume of fl uid contained between the recess and the 
restrictor. d

r
 is recess depth, V

1
 is the volume between the restrictor to the entrance of the recess. Fluid in the 

recess volume experiences compressibility eff ect under dynamic conditions when recess pressure is a harmonic 
function of time. Th us, g is defi ned as the recess volume compressibility parameter and is given as

0 0 0

1
 ; V V /  and ;

s r
V p A h

p

ρ
γ β β

ρ
⎛ ⎞∂

= = = ⎜ ⎟∂⎝ ⎠

b is the bulk modulus of the fl uid.
For small amplitude oscillations, fi rst order perturbations are valid, therefore, one can express fi lm thick-

ness and recess pressure as

 
0 1

1 ;i i
r r r

h e p p e pτ τε ε= + = +  (9.93)

Substituting Equation (9.93) into Equation (9.91) and (9.92), one can obtain:

For Capillary Compensation

0
/

r c
p δ λ=
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( )0r c
Qλ δ= +

For Orifi ce Compensation
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 (9.94)

Dynamic recess pressure 
1r

p  as
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where  
1 1
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=  are capillary and orifi ce design parameters defi ned earlier in 

Equations (9.91) and (9.92).
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Results of this analysis for stiff ness and damping coeffi  cients are shown in Figs 9.19a and 9.19b, 

respectively. Stiff ness coeffi  cient 
d

K  increases with squeeze parameter s for s > 50 and is dependent on 
recess volume compressibility parameter g. Stiff ness increases with g.

On the contrary, damping coeffi  cient 
d

B  decreases with frequency or squeeze parameter as well as with 
compressibility parameter g. For b = 0, dimensionless stiff ness and damping coeffi  cients reduce to its static 
value and is independent of s. Th us, fl uid compressibility eff ect in the recess volume results in frequency 
dependence of both stiff ness and damping coeffi  cient of the bearing.

Figure 9.19(a) |  Dimensionless Stiff ness Coeffi  cient Versus Squeeze Number for Various Recess Parameters for 
Capillary Compensated Bearings
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Figure 9.19(b) |  Dimensionless Damping Coeffi  cient Versus Squeeze Number for Various Recess Parameters for 
Orifi ce Compensated Bearings
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9.5 |  A General Analysis of Dynamic Characteristics of Multirecess 
Externally Pressurized Journal Bearings with Large Sills

Dynamic behavior of multirecess hydrostatic journal bearings has been investigated by several researchers. 
Preliminary investigations were made by Davies and Leonard (1970) and Leonard and Rowe (1973) for 
bearings with short lands. Later studies concentrated on the dynamic performance of bearings with fi nite sill 
dimensions. Most of investigations determined stiff ness and damping coeffi  cients of hydrostatic/hybrid bear-
ings and the stability of the bearing. Noteworthy amongst the studies are those of Singh et al. (1979), Ghosh 
and Majumdar (1978), Ghosh et al. (1979), Ghosh and Vishwanath (1987), and Ghosh et al. (1989) in the 
laminar fl ow regime. Investigations were also made in the turbulent fl ow regime by Heller (1974), Artiles 
et al. (1982), Braun et al. (1985), and San Andres (1990).

A general procedure adopted by Ghosh et al. (1978, 1989) will be discussed here. Th e procedure is suit-
able for both hydrostatic and hybrid bearings in laminar fl ow.

Th e bearing confi guration is shown in Fig. 9.7, whereas vibrating hybrid bearing confi guration is shown 
in Fig. 9.20.

To determine the dynamic characteristics of a bearing, it is assumed that the journal rotates about its 
own axis and also undergoes small amplitude oscillations about its steady state equilibrium position given by 
(eθ, f0

).
For an isoviscous, incompressible lubricant, the Reynolds equation for fl ow of lubricant on the bearing 

lands is given as:

 
3 3
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x x y y x tη η
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 (9.96)

Th e above equation is written in the dimensionless form as tτ υ= with the following substitutions
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/  and ,  / / 2
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h
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Figure 9.20 | Vibrating Hybrid Journal Bearing
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where u is the frequency of vibration of the journal center about its equilibrium position.
Th us, Equation (9.96) becomes
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3 3
p pD h h
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σ
θ θ θ θ
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 (9.97)

where
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ηω
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is defi ned as bearing number and
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s

C
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R
σ ηυ ⎛ ⎞
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is defi ned as squeeze number or frequency parameter.
First order perturbations can be used to express dynamic pressures and fi lm thickness as
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Th e above expressions are written with the assumption that
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e
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= +  (9.99)

where

1 0 1 0
 and ε ε φ φ<< <<

Th e steady state fi lm thickness 
0

h  is given as

 
0 0

1 cosh ε θ= +  (9.100)

Substituting Equation (9.98) into Equation (9.97) and collecting terms only up to fi rst order, we obtain 
the following equations:

Zeroth Order
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0 0 03 3
0 0

p p hD
h h

L y yθ θ θ
∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞

+ = Λ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (9.101)
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First Order
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0 0 0
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3 cos cos sin

pp pD
h h h
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h i

L y y
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θ θ θ θ
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∂⎛ ⎞∂⎛ ⎞
+ = − Λ⎜ ⎟ ⎜ ⎟⎝ ⎠ ∂ ∂⎝ ⎠

 (9.102)

and
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2 0 23 3 3
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3 sin

3 sin sin cos

p p pD
h h h
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pD
h i

L y y

θ
θ θ θ θ

θ σ θ θ

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞
+ + ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂⎛ ⎞∂⎛ ⎞
+ = + Λ⎜ ⎟ ⎜ ⎟⎝ ⎠ ∂ ∂⎝ ⎠

 (9.103)

Th e appropriate boundary conditions for the above equations are expressed as

( ), 1 ( , 1) 0,
i i

p pθ θ− = + =  for ambient pressure at the bearing edges

( ),0 0,i
p

z
θ

∂
=

∂
 for symmetry of pressure about the bearing center line

i ri
p p= , at the r th recess (9.104)

( ) ( ), 2 , ,
i i

p y p yθ θ π= +  for cyclic continuity

where i = 0, 1, 2 for Equations (9.101), (9.102), and (9.103), respectively.
Th e above equations are written in the fi nite diff erence form and solved using Gauss–Seidel iterative 

procedure with an over relaxation factor in a high speed digital computer until convergence is obtained within 
a prescribed error criterion.

However, the solution of the above equations is dependent on the condition that recess pressures, i.e., 

steady state and dynamic pressures 0r
p , 1r

p  and 2r
p  are known for a prescribed steady state position of the 

journal center.

Methodology to determine the recess pressures ( )0r
p  under steady state eccentric position of the journal 

center given by 
0 0
,ε φ  has been described in detail in Section 9.4.1, and one of the procedures described there 

can be used to determine steady state recess pressures 0
,  1,  2,  ...

r
p r N= .

To determine dynamic recess pressures 1r
p  and 2r

p  recess fl ow continuity equation for capillary and 
orifi ce compensation developed by Ghosh et al. (1987 and 1989) is adopted as described below:

For Capillary Compensation

 ( ) ( ) ( )
4

0

1

128
c

s r r r r

c

d
p p Q A h V

l t t

π
ρ

η ρ
∂ ∂

= + +
∂ ∂

 (9.105)

where A
r
 = recess area

V
0
 = recess volume

h
r
 = fi lm thickness at the center of r th recess

Q
r
 = fl ow from r th recess
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Th e above equation is expressed in the dimensionless form by multiplying the equation by 312 /
s

C pη  as

 ( ) ( ) ( )02 3

12 12 1
1

c r r r r r

s s

p Q p A h V
C p C p

ηυ ηυ
δ ρ

τ ρ τ
∂ ∂

− = + +
∂ ∂

 (9.106)

Similarly, recess fl ow continuity equation for r th recess for orifi ce compensation is written as

 ( ) ( ) ( )
2

0.5
0

0

1

2 2
s r r r r

d
p p Q A h V

t t

π
ρ

ρρ
∂ ∂

− = + +
∂ ∂

 (9.107)

In the dimensionless form, it reduces to

 ( ) ( ) ( )1
2

0 02 3

12 12 1
1

r r r r r

s s

p Q p A h V
C p C p

ηυ ηυ
δ ρ

τ ρ τ
∂ ∂

− = + +
∂ ∂

 (9.108)

In the above expressions, pressure drop due to fl uid inertia eff ect at the recess edges have been neglected. 
It has been quite convincingly demonstrated by Heller (1974) that although fl uid inertia eff ect at the recess 
edges grossly aff ect bulk fl ow rate at high Reynolds number fl ow regime, the bearing performance parameters 
are not aff ected signifi cantly.

Th e dynamic recess pressures 1r
p and 2r

p  can be evaluated following perturbation theory for small 

amplitude oscillations of ,
r r

p Q  and 
r

h  as given below

 

0 1 1 0 1 2

0 1 1 0 1 2

0 1 0 1
cos sin

i i
r r r

i i
r r r r

i i
r r r r

p p e p e p

Q Q e Q e Q

h h e e

τ τ

τ τ

τ τ

ε ε φ

ε ε φ

ε θ ε φ θ

= + +

= + +

= + +

 (9.109)

where

( )
0

0 0 1
1 cos ,   r

r r r

Q
h Q ε εε θ

ε =

∂
= + =

∂
 and 

0
2

0

1 r

r

Q
Q φ φε φ =

∂
=

∂

Th e dynamic recess pressures 1r
p  and 

2r
p are obtained by substituting Equation (9.109) into Equations 

(9.106) and (9.108). For capillary and orifi ce compensation, respectively, 1r
p  and 2r

p  are obtained as

 

( )

( )

2
1 0

1 2 2 2

1 0

2 2 2

cos

cos

r r r

r

r r r

Q p
p

Q p
i

λ ψ γ θ
λ ψ γ

ψλ θ ψγ
λ ψ γ

+
= − −

+
−

+
 (9.110)

and

 

( )

( )

2
2 0

2 2 2 2

1 0

2 2 2

sin

sin

r r r

r

r r r

Q p
p

Q p
i

λ ψ γ θ
λ ψ γ

ψλ θ ψγ
λ ψ γ

+
= − −

+
−

+
 (9.111)
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where

( )

4 3

1
22

0 0
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3 / 32

3 / /2
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d s

s r

d C l
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1212
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r
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rr

r r

r r

A
p C R

R
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Q Q
C p C p

σ
ψ σ ηυ

ηη

= =

= =

Th e steady state recess pressures are determined for capillary and orifi ce compensations, respectively, as 
follows:

For Capillary Compensation

 

0

0

c

r

r c

p

Q

δ
λ

λ δ

=

= +  (9.112a)

For Orifi ce Compensation

 

1
2 4 2 2

0 0 0

0

0 0 0

0.5 0.5 4
r

r r r

p
Q Q Q

δ δ δ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (9.112b)

( ) 0.5

0 0 0
0.5 1

r r
p Qλ δ

−
= − +

9.5.1 | Stiff ness and Damping Characteristic of the Bearing

Th e components of the restoring dynamic load due to dynamic fi lm pressure 
1 1

ie pτε  can be determined along 
 and ε φ  directions, i.e., along the line of centers and normal to it as

 

( )
( )

/2 2

1 1 10 0

/2 2

1 1 10 0

2   cos      

2   sin     

L
i i

L
i i

W e e p R d dy

W e e p R d dy

π
τ τ

ε
π

τ τ
φ

ε θ θ

ε θ θ

= −

= −

∫ ∫
∫ ∫  (9.113)

Th e dynamic load resulting from small periodic pressure 
1 1

ie pτε  can be expressed in terms of linear 
spring and damping coeffi  cients as

 

( )

( )
1

1

i

i

dy
W e K y B

dt
dy

W e K y B
dt

ετ
εε ε εεε

ετ
φε ε φεφ

= − −

= − −  (9.114)
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where the amplitude of oscillation of the journal center along the direction of eccentricity is given by

 
1

iy C e τ
ε ε=  (9.115)

Substituting Equation (9.115) into Equations (9.114), we obtain

 

( ) ( )

( )
( )

1

1

1

1

1

1

s s s

s s s

W K C B C
W i

LDp LDp LDp

W K C B C
W i

LDp LDp LDp

ε εε εε
ε

φ φε φε

φ

υ
ε

υ

ε

= = − −

= = − −  (9.116)

K
ee

, K
fe

 are direct and cross stiff ness coeffi  cients, respectively, and B
ee

 and B
fe

 are direct and cross damping 
coeffi  cients, respectively. Stiff ness and damping can be expressed in dimensionless form as

( ){ }1
Re

s

K C
k W

LDp
εε

εε ε
= − =

 ( ){ }1
Re

s

K C
k W

LDp

φε
φε φ

= − =  (9.117)

( ){ }
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3
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24 /

W B
b

L R C

ε εε
εε σ η

= − =

( ){ }
( )

1

3

Im

24 /

W B
b

L R C

φ φε
φε σ η

= − =

Similarly, the components of restoring dynamic load due to perturbed fi lm pressure 
0 1 2

ie pτε φ can be 
written as

 ( )

/2 2

2 0 1 20 0

/2 2

2 0 1 20 0

( ) 2  cos

2  sin

L
i i

L
i i

W e e p R d dy

W e e p R d dy

π
τ τ

ε

π
τ τ

φ

ε φ θ θ

ε φ θ θ

= −

=

∫ ∫
∫ ∫  (9.118)

Th e dynamic load can be expressed in terms of linear spring and damping coeffi  cients as

 

( )

( )

2

2

i

i

dy
W e K y B

dt
dy

W e K y B
dt

φτ
εφ φ εφε

φτ
φφ φ φφφ

= − −

= − −  (9.119)

Th e amplitude of oscillation of the journal center along the direction normal to the line of centers is 
given as

 
0 1

iy C e τ
φ ε φ=  (9.120)
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Substituting Equation (9.115) into Equation (9.114), we obtain

 

( ) ( )
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s s s

s s s
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W i

LDp LDp LDp
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εφ εφε
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φ φφ φφ
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υ

ε φ
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ε φ

= = − −

= = − −

 (9.121)

K
rt
 and K

tt
, are spring coeffi  cients and B

rt
 and B

tt
 are damping coeffi  cients of the fl uid fi lm which can be 

expressed in the dimensionless form as
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( ){ }
( ){ }
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σ η

σ η

= − =
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= − =

 (9.122)

In case the journal is not rotating, the Reynolds Equation (9.97) can be rewritten as

 

2

3 3
p pD h

h h
L y y

σ
θ θ τ

⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂⎛ ⎞
+ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (9.123)

Th e dynamic pressure and fi lm thickness can be expressed in the dimensionless form assuming the 
 oscillations to be harmonic and in one plane only as

 

0 1 1 0 1

0 1

 and  cosi i

i

p p e p h h e

e

τ τ

τ

ε ε θ

ε ε ε

= + = +

= +  (9.124)

Substituting the above equation into Equation (9.123) and collecting only zeroth and fi rst order terms 
 following equations can be obtained as:
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 (9.125)

and
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Th e dynamic recess pressure boundary condition as given by Equation (9.110) in terms of 
1r

p  would 
describe the boundary condition for Equation (9.126). For Equation (9.125) the boundary conditions given 
by Equation (9.112) would be used. Stiff ness and damping coeffi  cients are determined from dynamic load 
given as

 
/2 2

10 0
2 cos      

L

d
W p R d dy

π
θ θ= − ∫ ∫  (9.127)

or

 
1

;  i
d

dy
e W Ky B t

dt
τε τ υ= − − =  (9.128)

where

 
1

iy C e τε=  (9.129)

Substituting Equation (9.129) into Equation (9.128), we get

d
W KC iBCυ= − −

which can be expressed in as the dimensionless form

 d

d

s s s

W KC BC
W i

LDp LDp LDp

υ
= = − −  (9.130)

Dimensionless stiff ness of the bearing K
S
 is defi ned as:

 ( )Re
S d

s

KC
K W

LDp
= − =  (9.131)

and dimensionless damping coeffi  cient, B
S
 as :

 
( )

( )3

Im

24 /

d

S

W B
B

L R Cσ η
= − =  (9.132)

Neglecting fl uid compressibility eff ect in the recess volume, i.e., for g = 0, stiff ness K
S
 and damping B

S
 

characteristics of capillary and orifi ce compensated bearings are plotted against concentric pressure ratio b 
and orifi ce and capillary design parameters d

0
 and d

c
 in Figs 9.21 to 9.26 for nonrotating journal.

For both capillary and orifi ce compensated bearings, an optimum value of concentric pressure ratio b 
is observed at an eccentricity ratio where the bearing stiff ness is maximum. Orifi ce compensated bearings 
exhibit higher stiff ness than capillary compensated bearings. For a particular bearing, an optimum value of d

0 
 

or d
c
 is also observed at which stiff ness is maximum. It is also observed that damping decreases considerably 

with increase in concentric pressure ratio b.
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Figure 9.21 | Stiff ness Coeffi  cient Versus Capillary Parameter
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Figure 9.22 | Stiff ness Coeffi  cient Versus Capillary Parameter
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Damping is an important parameter which helps in attenuating vibration amplitude under dynamic 
conditions. From the static and dynamic characteristics, it is found that a bearing which has good damping 
characteristics will have poor load capacity and stiff ness. Damping ratio is high at high eccentricity ratios. 
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Figure 9.23 | Stiff ness Coeffi  cient Versus Orifi ce Parameter
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Figure 9.24 | Damping Coeffi  cient Versus Concentric Pressure Ratio

Orifice Compensated Bearing

Capillary Compensated Bearing

0.6
0.6

0.8

0.2 0.4

0.4

0.0

0.2

0.0

0.8

0
0.2

0.2

0.4

0.4

1.0

0.6

0.6 0.8

0.9

0.1

0.7

0.5

0.3

B
s

b

e
o
 = 0.8

N = 4

a = b = 0.6

L /D = 1.0



Externally Pressurized Lubrication 239

Figure 9.26 | Damping Coeffi  cient Versus Orifi ce Parameter
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Figure 9.25 | Damping Coeffi  cient Versus Capillary Parameter
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Hybrid bearing dynamic characteristics is shown in Figs 9.27 and 9.28 for a capillary compensated bearing. 
Dynamic behavior of hybrid bearing has been presented in terms of the critical mass of a rigid rotor for stabil-
ity and whirl ratio, which has been determined following linear small amplitude vibration theory and using 
stiff ness and damping coeffi  cients of the bearing.
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Dynamic characteristic of externally pressurized bearings considering recess volume fl uid compressibility 
eff ect are presented through Figs 9.29 to 9.34 for a nonrotating journal.

Investigation carried out by Ghosh and Viswanath (1987) shows the recess volume fl uid compressibility 
eff ect in terms of parameter ‘g ’. It has been found that stiff ness and damping coeffi  cients become frequency 
dependent. Stiff ness increases with frequency parameter s and attains a high constant value at high 

Figure 9.27 | Stability Parameter Versus Bearing Number for Diff erent Value of Concentric Pressure Ratios

Capillary

0.4

0.4

Orifice

0.8

0.8

0.5 1.0 2.0 5.0 20.010.00.1 50.0

4.0

1.5

3.0

3.5

2.5

2.0

Λ

m
c

0.2

0.2

Unstable

0.6

Stable

4.5

b = 0.6

e
o
 = 0.0N = 4, a = b = 0.5, L /D = 1.0,

Figure 9.28 |  Stability Parameter Versus Bearing Number for Diff erent Eccentricity Ratios

0.5 1.0 2.0 5.0 20.010.00.1 50.0

11.0

1.0

7.0

9.0

5.0

3.0

Λ

m
c

0.2

Unstable

0.5

0.2

Stable

0.0

e
o
 = 0.0

b = 0.0N = 4, a = b = 0.5, L /D = 1.0,



Externally Pressurized Lubrication 241

Figure 9.29 | K
S
 Versus s for Diff erent Values of g of an Orifi ce-compensated Bearing
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Figure 9.30 | K
S
 Versus s for Diff erent Values of e

0
 of an Orifi ce-compensated Bearing
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 frequencies. Th e frequency at which it attains a constant value is referred to as the break frequency which 
decreases with increases in g. On the other hand, damping coeffi  cient decreases with increase in g and attains 
a reduced constant value at high frequencies. Th us, it is observed that recess volume compressibility parameter 
has a very signifi cant infl uence on the dynamic coeffi  cients. A proper value of recess depth or recess volume 
must be chosen at the design stage to achieve a suitable dynamic response.
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Figure 9.31 | K
S
 Versus s for Diff erent Values of g of an Orifi ce-compensated Bearing
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Figure 9.32 | B
S
 Versus s for Diff erent Values of g of an Orifi ce-compensated Bearing
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9.6 | Analysis of Fluid Seals

Seals are mechanical components generally used in fl uid machinery to prevent leakage of high pressure fl uid 
to low pressure region or to the surrounding medium from the casing of the machine. Two types of seals are 
very commonly employed, viz., mechanical face seals and annular pressure seals.
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A typical mechanical face seal is shown schematically in Fig. 9.35. Prevention of leakage is the primary 
task of a face seal. Similarly, an annular pressure seal is shown schematically in Fig. 9.36. Its primary task is 
to reduce leakage of fl uid between high pressure stages to an intermediate or low pressure stage in multistage 
fl uid machinery. Fluid seals are generally similar to externally pressurized bearing, and therefore their analysis 
is also usually based on fl uid fi lm theories applicable to bearings with large clearances.

9.6.1 | Mechanical Face Seals–Laminar Flow Analysis

A mechanical face seal consists of a fl exibly mounted seal ring which usually has fi ve degrees of freedom. It 
is basically a dynamic system in which the fl exibly mounted primary seal ring is separated by a thin fl uid fi lm 
from the rotating seat as shown in Fig. 9.35.
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Th e presence of fl uid fi lm was established in the early 1960s by Denny ( 1961). Since then, various 
mechanism which provide sources of fl uid fi lm have been proposed. Th ese mechanisms include surface wavi-
ness, angular misalignment, thermal and mechanical distortions, and phase change as summarized in the 
state-of-the-art review by Ludwig and Greiner (1978), Nau (1980), Lebeck (1980), and Hughes and Cho 
(1980). Sharoni and Etsion (1981) investigated the eff ects of diametric tilt and coning. Prior to these studies, 
Sneck (1968) presented a general analysis to determine seal leakage, load capacity, and torque in both laminar 
and turbulent fl ow including the eff ects of geometry and fl uid inertia.

Th e analysis presented here follows the work of Sneck (1968) for laminar fl ow. Th e analysis is based on 
short bearing lubrication theory.

Geometry of the seal is shown in Fig. 9.37. X-axis is chosen so that it passes always through the point of 
minimum fi lm thickness.

Expression for fi lm thickness is written as

 
0

cos tanh h r θ λ= −  (9.133a)

l is angle of misalignment and q the angular coordinate, r-radial coordinate, z-axial coordinate. However, for 
small angle of misalignment the expression of fi lm can be written as:

 
0

cosh h rλ θ= −  (9.133b)

Figure 9.35 | Radial Face Seal [Etsion and Dan, ASME JOLT, 1983]
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Radial momentum equation including centrifugal inertia but neglecting gyroscopic eff ect in rotating 
coordinate system reduces to

 
2 2

2

r
v vp

r r z
θρ η

∂⎛ ⎞ ∂
− = − +⎜ ⎟ ∂ ∂⎝ ⎠

 (9.134)

Th e tangential momentum for small leakage rates reduces to

 
2

2
0

v

z
θ∂

=
∂

 (9.135)

 and 
r

v vθ  are radial and tangential velocity components of the fl uid.

Referring to Fig. 9.37(b) the surface velocity of a point on upper disc is given by

 ( ) ( )sin
z

V x r e r eθω ρ ω ωλ θ= = +
� � � �

 (9.136)

 and  
z

e eθ

� �
 are unit vectors.

Solution of Equation (9.134) is of the form

 ( ) ( ), ,v f r z g rθ θ θ= +  (9.137)

Application of the boundary conditions given by equation (9.136) gives

 ( ) z
v r

hθ ω=  (9.138)

Th us, equation (9.134) with the substitution of (9.138) becomes

 

22

2

2

r
v p z

r
z r h

η ρ ω
∂ ∂ ⎛ ⎞

= − ⎜ ⎟⎝ ⎠∂ ∂
 (9.139)

Integrating (9.139) twice with respect to z, one obtains

 ( ) ( )
2 4

2

2
, ,

2 12r

pz rz
v f r z g r

r h

ρ
ω θ θ

η η
∂

= − + +
∂

 (9.140)

Applying the boundary conditions of (9.134) and (9.139), Equation (9.135) reduces to

 ( )
2 4

2 4 3

22 12r

pz zh r
v z zh

r h

ρ
ω

η η
∂⎛ ⎞−

= − −⎜ ⎟⎝ ⎠ ∂
 (9.141)

Reynolds equation for pressure distribution is obtained by integrating the continuity equation across the 
fi lm thickness h as follows:

 ( )
0 0

0

1 1
0

h
h h

z

r

v v
rv dz dz

r r r z
θ

θ
∂ ∂∂

+ + =
∂ ∂ ∂∫ ∫ ∫  (9.142)

Th e Reynolds equation is obtained for short bearing and steady state condition as

 ( )3 2 2 3 20.3 6
p h

rh r h r
r r r

ρω η ω
θ

∂⎛ ⎞∂ ∂ ∂
= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.143)
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Pressure distribution is obtained by integrating above equation twice with respect to r as

 ( ) ( )
2

2 2

3 3
0.15 2 sin

r dr dr
p r

h rh
ρω ηλω θ φ θ ψ θ= + + +∫ ∫  (9.144)

Th e integrals are defi ned as

 ( ) ( )
2

1 23 3
, ;  ,

r dr dr
I r I r

h rh
θ θ= =∫ ∫  (9.145)

Figure 9.37(a) | Face Seal, Inertial Coordinate System [H. J. Sneck, ASME, JOLT, 1968]
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Th e boundary conditions are given as

 
1 1

2 2

    
    

p p at r r
p p at r r

= =
= =  (9.146)

f (q) and y (q) are obtained as

 ( ) ( )

( )
( ) ( )

( ) ( ){ }

ρω ηωλ θ

θ θ
φ θ

θ θ

⎧ ⎫− +⎪ ⎪
⎨ ⎬⎡ ⎤−⎪ ⎪⎣ ⎦⎩ ⎭= −

−

2 2 2
2 1

1 2 1 1

2 1

2 2 2 1

0.15 2 sin

, ,

, ,

r r

I r I r
p p

I r I r
  (9.147)

 ( ) 2 2
1 1

0.15p rψ θ ρω= −  (9.148)

Seal Leakage Flow (Q)

Volumetric leakage through the seal is given by

 ( )2 2

0 0 0

1

12

h

r
Q v rdzd d

π π
θ φ θ θ

η
= = −∫ ∫ ∫  (9.149)

Substituting for f (q) and integrating the seal leakage fl ow rate is obtained as

 

( ) ( )

( )
( )
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2 1 2 1

02 1 2 1
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3 31
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 (9.150a)
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 (9.150b)

Above expression retains terms up to 

2

0
h

λ⎛ ⎞
⎜ ⎟
⎝ ⎠

 only. Higher order terms have been neglected.

Plot of dimensionless leakage fl ow rate is shown in Fig. 9.38 against misalignment parameter. However, 

2

0

r

h

λ⎛ ⎞
⎜ ⎟
⎝ ⎠

 must be less than one to avoid physical contact between two surfaces. Increase in leakage rate is seen 

to be proportional to 

2

2

0

r

h

λ⎛ ⎞
⎜ ⎟
⎝ ⎠

, the misalignment parameter.
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For zero misalignment leakage fl ow rate is:

 ( ) ( )
3
0 2 2 2

1 2 2 1

2 1

0.15
6 ln /

h
Q p p r r

r r

π
ρω

η
⎡ ⎤= − + −⎣ ⎦  (9.151)

Seal Force (F)

Seal force due to fl uid fi lm pressure tending to separate the two surfaces is given by
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Figure 9.38 | Dimensionless Leakage Q  Rate Versus Misalignment Parameter
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For an aligned seal the seal force F is given as

 

( ) ( )( )
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π
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= − + −
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⎢ ⎥− − ⎡ ⎤−⎛ ⎞⎢ ⎥ ⎢ ⎥+ × − ⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠⎢ ⎥⎢ ⎥ ⎣ ⎦⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2
2 2 2 2 2

1 2 1 2 1

2 2 2
2 1

2 2 1 2 1

2

1

0.15
2

3
ln /202

2 2
ln

F p r r r r

p p r r r r r

r

r

 (9.153)

Seal Torque (T)

Seal torque T is determined as

2

1

2
2

0

r

rr
T r drd

π

θτ θ= ∫ ∫
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2
2

0
cos

r

r

r
T r drd

h

π
η ω ωλ θ θ⎡ ⎤

= +⎢ ⎥⎣ ⎦∫ ∫  (9.154)
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 (9.155a)
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 (9.155b)

For zero misalignment seal torque reduces to:

 
( )4 4

2 1

0
2

r r
T

h

πηω −
=  (9.156)

Dimensionless seal torque is plotted against misalignment parameter in Fig. 9.39.

Seal torque is proportional to misalignment parameter 

2

2

0

r

h

λ⎛ ⎞
⎜ ⎟
⎝ ⎠

 but is less sensitive to misalignment 

parameter. A small amount of misalignment is not avoidable in face seals. Film thickness in face seals varies 
radically due to thermal or elastohydrodynamic distortion which infl uence leakage fl ow rate. Besides, there is 
experimental evidence that face seals do not remain fl at after long use and tangential waviness is observed in 
seals. Cavitation or regions of subambient pressures occur in face seals. In the regions of subambient  pressure, 
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it is assumed that dissolved gases in the fl uid, i.e., air mostly come out and rupture the fi lm. Cavitations 
region where the pressure is equal to the saturation pressure of the liquid with the air is observed to occur. 
Cavitations phenomena and two phase fl ow in seals have been investigated by Nau (1980) and Hughes et al., 
Lebeck (1980). Dynamics of primary seal ring in face seals have been investigated Etsion and Dan (1981), 
and Etsion (1982).

9.6.2 | Analysis of Liquid Annular Seals

Liquid annular seals are similar to journal bearings with external pressurization or journal bearings with 
pressure induced axial fl ow. Fig. 9.40 shows the neck ring or wearing ring seal which prevent leakage fl ow 
from impeller discharge to inlet and interstage seal which prevent leakage between the stages of a multistage 
centrifugal pump. Th e full head of the pump is dropped across the balance-piston seal with resultant leak-
age bypassed to the pump inlet. Th e major diff erence between bearings and seals is in the radial clearance to 
journal radius ratio, i.e., C/R ratio. In bearings, it is of the order of 0.001, whereas in seals it is of the order 
of 0.003.

Due to large clearance and high pressure at the seal entrance, the fl ow in the seal clearance is often 
highly turbulent. It is generally accepted that Reynolds equation for turbulent lubrication is not adequate to 
analyze annular pump seals, since, it does not consider the fl uid inertia eff ects. Due to high pressure, annular 
seals develop large direct stiff ness. Th e early analysis of pump seals by Lomakin (1958) proved this. Bulk 
fl ow models which include fl uid inertia eff ect were adopted by Black (1969), and Black and Jenssen (1970). 

Figure 9.39 | Dimensionless Seal Torque Versus Misalignment Parameter
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Childs (1973) used Hirs’ (1973) bulk fl ow theory to analyze turbulent fl ow in annular seals. In bulk fl ow 
theory, the velocity distribution across the seal clearance is neglected and an average velocity component is 
used to do the calculations. Shear stress as a function of local Reynolds number is used as a turbulence model.

Th e annular seal geometry is shown in Fig. 9.40. In bulk fl ow analysis usually adopted for plain liquid 
seals, the velocity components u, w are the bulk fl ow velocities averaged over the clearance h in the circum-
ferential and axial directions, respectively. Th e shaft and seal axes are parallel; therefore, fi lm thickness in the 
seal is not a function of axial coordinate z.

Th e continuity equation for an eccentric seal is written as

 ( ) ( )1
0

h
hw hu

z R tθ
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (9.157)

In steady state condition, 0
h

t

∂
=

∂
.

In the axial direction equation of motion is written as:

 ( )rz sz

p w u w w
h h w

z z R t
τ τ ρ

θ
∂ ∂ ∂ ∂⎡ ⎤

− = + + + +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
 (9.158)

where t
rz
 and t

sz
 are turbulent shear stresses at the rotational and stationary surfaces, respectively.

Similarly, circumferential direction equation of motion is given as

 ( )r s

ph u u u u
h w

R t R zθ θτ τ ρ
θ θ

∂ ∂ ∂ ∂⎡ ⎤
− = + + + +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 (9.159)

where t
rq

 and t
sq
 are turbulent shear stresses at the rotational and stationary surfaces, respectively.

Hirs in his bulk fl ow model used a Blasius-type pipe friction model to describe the shear stresses in the 
annulus with inner cylinder rotating. Th us, shear stresses are expressed as

 2 2/2 and /2
s s s r r r

f u f uτ ρ τ ρ= =  (9.160)

where f
s
 and f

r
 are friction factors and u

s
 and u

r
 are bulk fl ow velocities at the stationary and rotating surfaces, 

respectively. Friction factors are defi ned as:

 ( ) ( )Re and  Re
s s

m m

s s s s s s
f n hu f n hu= =  (9.161)

where n
s
 and m

s
 characterize the fl ow resistance at the stationary surface, n

r
 and m

r
 characterize the fl ow resis-

tance at the rotating surface. Re is the fl ow Reynolds number.

0.079 and 0.25
s s s r

n m m m m= = = = = −

are the values adopted for smooth pipes in Blasius-type friction model.
In case of centered annular seal under steady condition, the equations reduce to

 ( )rz sz

p w u w
h h w

z z R
τ τ ρ

θ
∂ ∂ ∂⎡ ⎤

− = + + +⎢ ⎥∂ ∂ ∂⎣ ⎦
 (9.162)
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 ( )r s

ph u u u
h w

R R zθ θτ τ ρ
θ θ

∂ ∂ ∂⎡ ⎤
− = + + +⎢ ⎥∂ ∂ ∂⎣ ⎦

 (9.163)

Inlet pressure boundary condition is expressed in terms of kinetic head loss at the inlet as

 ( ) ( ) ( )20, 1 0,
2i s

p p w
ρ

θ ξ θ= − +  (9.164)

x is inlet loss coeffi  cient which usually varies between 0 and 0.5.
Seal leakage for a known seal pressure p

s
 can be determined from the solution of Equations (9.162) and 

(9.163) subject to boundary conditions given by Equation (9.164) simultaneously satisfying fl ow continuity 
equation given by Equation (9.157). For further details, readers can refer to the book by Childs (1993).

Examples

E.9.1 A circular step externally pressurized capillary compensated thrust bearing has the following 
specifi cations:

Pad outer diameter, d
0
 = 40 cm, diameter of the recess, d

i
 = 20 cm, Journal speed, N = 500 rpm, oil supply 

pressure, p
s
 = 400 kN/m2, viscosity of oil h = 0.05 Pa-s, fi lm thickness, h = 0.08 mm. If the capillary length, 

l
c
 = 20 mm and length to diameter ratio l

c
 / d

c
 = 20, determine the recess pressure, load carrying capacity, 

stiff ness, and oil fl ow rate of the bearing. What would be the value of fi lm thickness for minimum power 
consumption?

S o l u t i o n :

Th e given data is as follows: d
0
 = 40 cm, d

i
 = 20 cm, N = 500 rpm, 2400 / ,

s
p kN m=  h = 0.05 Pa-s, h = 0.08 mm, 

20 ,
c

l mm=  / 20
c c

l d =  or 1
c

d mm= .

Using recess fl ow continuity equation for capillary compensation, the following relationship can be 
written

( ) ( )
4 3

0
128 6 ln /

c

s r

c i

d h
p p

l r r

π π
η

− =

where

0 0
/ 2 20cm and / 2 10cm

i i
r d r d= = = =

and p
r
 is recess pressure.

Substituting the values of parameters in the above relationship, one obtains

( )
( )

( ) ( )

3
3 3 3

44 3
0

128 128 20 10 0.08 10
1 1 2.315

6 ln / 6 ln 2 0.8 10

s c

r i c

p l h

p r r d

− −

−

× × × ×
= + = + =

× ×

2
400

216 kN/m
2.315 2.315

s

r

p
p = = =
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Load Capacity

( ) ( )2 2 3 2 2
0

0

216 10 0.15 0.1
10,457.5 N

0.15
2 ln2 ln

0.1

10.4575 kN

r i

i

p r r
W

r

r

W

π π− × × × −
= = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

=

Stiff ness of Bearing Pad

8

3

3 3 10457.5
3.92 10 N/m

0.08 10

W
k

h −

×
= = = ×

×

Oil Flow Rate

( )
( )

( )

3
3 3 3

6 3

0

3

0.08 10 216 10
2.855 10 m /sec

6 0.05 ln 0.15 / 0.16 ln /

2.855m /s

r

i

h p
Q

r r

Q

π π

η

−
−

× × ×
= = = ×

× ×

=

E.9.2 A three recess capillary compensated journal bearing has a length to diameter ratio 1. Axial length of 
recess is 0.75L where L is axial length of the bearing. Total circumferential length of each recess is 0.25pD, 
where D is diameter of the journal. Th e supply pressure of the oil is 500 KN/m2 and journal diameter is 60 
mm. Determine for concentric position of the journal, the optimum speed for minimum power consumption 
when the radial clearance is 0.02 mm and the optimum radial clearance for minimum power consumption 
when the journal speed is 500 rpm. Determine the power consumption and oil fl ow rate for either case. Th e 
viscosity of the oil is given as 0.05 Pas.

S o l u t i o n :

Number of recesses N = 3, axial length of the recess 0.75
r

l L= , circumferential length of the recess 

0.25
c

l Dπ= , D = 60 mm, supply pressure 2500 kN/m
s

p =

Since L
b
/D is 1, the axial length of the bearing is 60 mm and radial clearance C = 0.02 mm. Th us,

0.75 0.75 60 45 mm
r b

l L= = × =

axial land width

0.125 0.125 60 7.5 mm
b

l L= = × =

where L
b
 is the axial width of the bearing.

Th e expression for power consumption is written as

2

2

2
1

1 2 1
1

6 21 1 cos

N

n

P mL
Q mL

n
N

ω π
π πε ε α=

⎧ ⎫
⎪ ⎪⎛ ⎞ ⎪ ⎪= + +⎨ ⎬⎜ ⎟⎝ ⎠ ⎛ ⎞−⎪ ⎪− −⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑
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Q β=  when the eccentricity ratio is zero, i.e., in concentric position of the journal center. Th us, optimum 

speed for minimum power consumption is obtained by substituting 4P = .

1
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0 2

2
3 where and
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is width of circumferential land

3 3
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Assuming the optimum value of concentric pressure ratio b for capillary compensated bearing as 0.5, 
optimum value of dimensionless speed is obtained as:

1/2
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Th us, optimum shaft speed N
s0
 is determined as:
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Substituting appropriate values in the above expressions, optimum shaft speed is obtained as:

( )2
3 3

0 3 3

0.02 10 500 10 1.25
0.786 rps

6 0.05 7.5 10 45 10s
N

π

−

− −

× × × ×
= =

× × × × ×

For a known speed of the shaft, optimum clearance C
0
 can be determined from the following expression:
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For shaft speed N
s
 = 500 rpm, optimum clearance can be determined by substituting
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Problems

P.9.1 Derive the expressions for load capacity, oil fl ow rate, and power consumption for an annular recess 
externally pressurized circular thrust bearing. Determine the expressions for optimum fi lm thickness and 
shaft speed for minimum power consumption. An annular recess hydrostatic thrust bearing has the following 
dimensions:

Outer radius of the bearing = 40 cm, inner radius of the bearing = 20 cm, recess inner and outer radii are 
25 cm and 35 cm, respectively. Recess to supply pressure ratio is 0.65. Oil supply pressure is 400.0 KN/m2. 
Assume a shaft speed of 200 rpm and fi lm thickness = 0.05 mm determine load capacity, oil fl ow rate, 
and power consumption. Also determine the optimum shaft speed and fi lm thickness for minimum power 
consumption.

P.9.2 A centrifuge weighing 50 N and rotating at 105 rpm is supported by an uncompensated circular step 
hydrostatic thrust bearing. Th e recess pressure is 0.05 MPa and the ratio of outer to inner radii 1.67, while the 
fi lm thickness is 50 micro meter. Calculate the bearing dimensions, lubricant fl ow rate, and friction torque. 
Lubricant viscosity is 0.05 Pas.

P.9.3 A shaft is supported on two 3-recess hydrostatic journal bearings which are symmetrically placed with 
respect to a radial load W. Th e shaft rotates at an angular speed of N

s
 rps. For a capillary compensated bear-

ing, the supply pressure is 2.0 × 106 N/m2. Th e shaft diameter is 6.0 cm. Th e bearing length L is 6.0 cm. Th e 
width of the axial land is 0.1L and angular extent of circumferential land is 200. Th e operating eccentricity 
ratio is 0.4. Calculate the optimum radial clearance for minimum power consumption for a shaft speed of 500 
rpm. Determine the recess pressures, load capacity, and oil fl ow rate. Th e viscosity of the oil is 0.05 Pas and 
oil density is 900 Kg/m3.

P.9.4 A single recess orifi ce compensated bearing has L/D = 1. Th e axial recess length is 0.8L and circum-
ferential recess length is 0.8πD. Journal diameter D = 10 cm and radial clearance is 0.02 mm. Find the load 
capacity, oil fl ow rate, and power loss if the oil supply pressure is 450 kN/m2, operating eccentricity ratio = 0.3 
and oil viscosity is 0.02 Pas. Assume concentric pressure ratio as 0.65 and that the journal is rotating at its 
optimum speed for minimum power loss. Th e load is acting through the center of the recess.
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Chapter

Fluid Inertia Effects and Turbulence 

in Fluid Film Lubrication

Generally, the fl ow of lubricant in the clearance space of bearings and other mechanical components are 
 categorized as slow viscous fl ow. Th e Reynolds numbers are low and the fl ow is in the laminar regime. 
Th erefore, fl uid inertia eff ects are neglected because the viscous forces are few orders of magnitude higher 
than the inertia forces. It has been shown earlier in Chapter 3 that this assumption is generally valid in 
majority of lubrication problems in mechanical components of various machines. However, at high speeds 
of operation, the Reynolds number increase and inertia eff ects become signifi cant as well as comparable to 
viscous eff ect. Neglecting fl uid inertia eff ect in such situations can lead to inaccurate results and inadequacies 
in the design of bearings. Both journal and thrust bearings of high speed turbomachinery, e.g., bearings of 
machines in power plants generating 500 megawatt or more often operate in fl ow regimes where fl uid inertia 
eff ects cannot be neglected. Th e fl ow is often in the turbulent regime also.

Power losses in these bearings increase and the temperatures in the bearings also increase. Th rust bear-
ings usually operate at higher Reynolds numbers than journal bearings. In either case, it is desired to achieve 
an effi  cient design that will reduce power loss and temperature rise. An effi  cient design should achieve higher 
load carried to power loss ratio and minimum fi lm thickness of the lubricant should be decided on the basis 
of safe and reliable operation. It thus becomes imperative to account for fl uid inertia eff ects and turbulence 
in fl uid fi lm bearings operating at high Reynolds numbers. Th ere are other application domains also where 
Reynolds numbers can range from 5000–100 000, e.g., in cryogenic turbopumps, nuclear systems, etc. where 
low viscosity lubricants are generally used. Invariably a transition fl ow regime exists between laminar and 
turbulent fl ow regimes of lubrication which is characterized by formation of Taylor vortices. Th is transition 
regime is called vortex fl ow regime. In hydrodynamic journal bearings it occurs at Reynolds numbers from 
1500–2000.

In the following section, theoretical approach to incorporate fl uid inertia eff ects in the analysis of hydro-
dynamic bearings, squeeze fi lm lubrication, and externally pressurized lubrication will be dealt with. Turbulent 
lubrication theory and its application to fl uid fi lm bearings shall be subsequently considered.

r10
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10.1 | Fluid Inertia Eff ects In Lubrication

At high Reynolds numbers, all the assumptions made in the derivation of Reynolds equation also remain 
valid except that fl uid inertia forces are no more negligible in comparison to viscous forces. Th erefore, the 
Governing equations for lubricant fl ow in the clearance space including fl uid inertia terms can now be written 
for an incompressible fl uid of constant viscosity as:
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Continuity equation for an incompressible fl uid is written as:
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Following dimensionless variables are used to get dimensionless equations.
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tτ υ= , where u is frequency of vibration.
Equations (10.1), (10.2), and (10.3) can be further expressed as
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Th e continuity equation reduces to
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Re  is fi lm Reynolds number and s is squeeze number as defi ned in Chapter 3.
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Re is fl ow Reynolds number which is usually less than 1000 for slow viscous fl ows in thin fi lm lubrica-
tion. In slow viscous fl ows typical of fi lm lubrication Re << 1 and s is also of the same order. Th erefore, all 
the inertia terms are neglected in comparison to pressure and viscous terms. In Equations (10.5) and (10.6), 
the terms on the left hand side consists of fl uid acceleration terms which are referred as temporal inertia 
terms characterized by multiplication of s and convective inertia terms characterized by multiplication of Re, 
respectively. In case of small amplitude high frequency oscillations, s >> Re or s >> 1, Re << 1, the convective 
inertia terms become negligible and can be omitted. Th e Equations (10.1) to (10.3) reduce to: 
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Investigation of temporal inertia eff ects was carried out by several researchers. Kuhn and Yates (1964), 
Kuzma (1967), Tichy and Winer (1970), Fritz (1972), Modest and Tichy (1978), Mulachi (1980), Szeri et al. 
(1983), Ghosh et al. (1989), and San Andres (1990) have investigated problems related to circular plates in 
normal oscillation, squeeze fi lm dampers, externally pressurized, and hybrid bearings. In these investigations, 
it has been shown that temporal inertia plays a dominant infl uence on the damping coeffi  cients and also con-
tributes toward added mass coeffi  cient for bodies moving in fl uid media. Added mass coeffi  cient is regarded 
as the ratio of total mass of the fl uid which has to be accelerated to the mass of fl uid displaced by the body 
to accelerate in the media.

Contrary to the above situation, when Re >> 1 and σ << 1, temporal inertia terms can be omitted and 
convective inertia terms are only retained. Th is situation occurs in high Reynolds number fl ows.

Investigation of convective inertia eff ect on the pressure generation and performance of journal thrust 
bearings have been dealt with adequately for the past several decades.

10.2 | Fluid Inertia Eff ect in Thrust Bearings

Navier–Stokes equations for an incompressible fl uid of constant viscosity including both convective and 
temporal inertia terms can be expressed in cylindrical (r,θ,z) coordinates with usual assumptions of thin fi lm 
lubrication as
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Flow continuity equation is expressed as
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where v
r
, v

q 
and v

z
 are radial, circumferential, and axial components of fl uid velocities.

It can be shown that besides centrifugal inertia eff ect, i.e., 
2v

r
θρ  and the term r

v v

r
θρ

, rest of the iner-

tia terms are at least two orders of magnitude smaller and therefore can be neglected without any tangible 
error. In large thrust bearings, circumferential velocity is large whereas in mechanical face seals and rotating 
discs also centrifugal eff ect is signifi cantly high. Th erefore, infl uence of inertia forces in large thrust bearings, 
face seals, and rotating discs can result in modifi cation of both velocity and pressure distributions. Usually, 
centrifugal inertia is the major contributor amongst the inertia eff ects. It has been investigated by Chen and 
Dareing (1976) and Pinkus and Lund (1981) in thrust bearings and seal-like confi gurations. It has also been 
shown that large areas of bearings and seals may also witness cavitation or otherwise get starved of lubricant. 
Th is may also lead to signifi cant reduction in load carrying capacity. Existence of incomplete fi lms was also 
observed by Etsion (1981) in sector shape thrust pads.

Th us, retaining only the centrifugal inertia terms, the momentum Equations (10.12) and (10.13) and 
continuity Equation (10.15) reduce to

Momentum Equations
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Continuity Equation
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Boundary conditions for Equations (10.16) and (10.17) are given as

0,   at  z 0
r

v v rθ ω= = = , at the runner surface

 0, 0 at 
r

v v z hθ= = = , at the bearing surface  (10.19)
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Integration of Equations (10.16) and (10.17) twice with respect to z and using the above boundary 
conditions yields:
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Flow continuity, Equation (10.18) can be written in the integral form by integrating across the fi lm 
thicknesses as:
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using Liebnitz’s rule for integration it becomes,
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Combining Equations (10.20), (10.21), and (10.23), modifi ed Reynolds equation including centrifugal 
inertia of fl uid is obtained as:
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Th is is a general equation for incompressible lubrication which account for variable viscosity fi eld. In 
other words, viscosity pressure and temperature eff ects can be incorporated in the fl uid fi lm lubrication 
 problems. However, to incorporate thermal eff ect, temperature fi eld will have to be determined by solving 
energy equation satisfying appropriate boundary conditions.

10.3 |  Performance of Circular Step Hydrostatic Thrust Bearing 
Including Centrifugal Inertia and Using Bubbly Lubricant

Infl uence of presence of air bubbles in the lubricant has been investigated considering centrifugal inertia eff ect 
on the performance of hydrostatic thrust bearing. Bearing confi guration is shown in Fig. 10.1. A mechanical 
face seal confi guration is also similar to this.

Th e important aspect of hydrostatic thrust bearing and face seals at high rotational speed is that cavitations 
occur which reduce the fi lm domain and become severe when centrifugal eff ect is taken into consideration. 
It occurs in the region of low pressure and high temperature near the outer periphery. Usually two types 
of cavitation are observed, viz., separation cavitation or true cavitation. Separation cavitation occurs when 
the bearing/seal is immersed in the sealing fl uid. When the outer perimeter is exposed to air, the fi lm may 
separate from the stationary surface and remain attached to the rotating surface. Otherwise, in the regions 
of subambient pressure dissolved air come out and the fi lm raptures, which is known as true cavitation. Th is 
produces a cavity which extends completely across the clearance space. Cavity pressure is close to saturation 
pressure of the liquid. Th erefore, theory dealing with hydrostatic step thrust bearings and mechanical face 
seals including centrifugal inertia must also involve thermal analysis. Th us, Reynolds equation and energy 
equation have to be solved simultaneously. Reynolds equation is rewritten as
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 (10.25)

Figure 10.1 | Tilted Circular Step Hydrostatic Thrust Bearing
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and the corresponding energy equation is written as
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  (10.26)

where qθ and q
r
 are lubricant volume fl ow rates in q and r directions which can be given by

h

o

h

r ro

q v dz

q v dz

θ θ=

=

∫
∫

Expressions for vθ and v
r
 are given in Equations (10.20) and (10.21), respectively. Substituting and inte-

grating qθ and q
r
 are obtained as
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  (10.27)
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  (10.28)

Neglecting pressure and temperature eff ects the viscosity and density of a bubbly lubricant are given by 
following expressions given in Chapter 2 as:

 
1 1

a l

x x

η η η
−

= +   (10.29)

 ( ) ( )
1 1

a l

x x

ρ ρ ρ
−

= +   (10.30)

where x is volume fraction of air and symbols a and l stand for air and liquid, respectively. To investigate 
the infl uence of centrifugal inertia eff ects, Equation (10.25) and (10.26) have to be solved using available 
numerical procedures, e.g., fi nite diff erence method satisfying proper boundary conditions.

Lubricant fi lm thickness expression of a misaligned or tilted seal confi guration shown in Fig. 10.2 is 
written as

 0
cos tanh h r θ λ= −

   (10.31)
where λ is angle of misalignment or tilt and h

0
 is fi lm thickness in parallel position.

Air viscosity and density are functions of temperature and pressure which can be written as

 ( ) 2, 1 0.00275 4.75 7
a a ia

p
T e T

RT
ρ η η ⎡ ⎤= = + − −⎣ ⎦    (10.32a)

Lubricant density and viscosity are dependent on temperature only in following manner as given below:

 ( ){ } ( ){ }exp , 1
l il in l il in

T T T Tη η β ρ ρ α= − = + −   (10.32b)
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T
in
 is the inlet temperature of the lubricant. β, α are viscosity and density temperature coeffi  cients, 

respectively. Subscripts a and l refer to air and lubricant and i for inlet values. Boundary conditions used are 
expressed as:

( ) 1
supply  pressure   r r

s
p p at= =

2
0 at p r r= =

 0
dp dp

p
d drθ

= = = , at the cavitation boundary (10.33)

1
 at 

in
T T r r= =

Th e algorithm and fl owchart for the solution of the problem is given in Fig. 10.3. Th e input data used for 
the case study are given in Table 10.1.

Load capacity, frictional power loss, and mass fl ow rate are determined for known pressure distribution. 
Th us,

Load capacity, 
2

1

2

0

r

r

W prdrd
π

θ= ∫ ∫    (10.34)

Frictional power loss factor is determined from frictional torque as:
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π ω
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Figure 10.2 | Coordinate System of Tilted Circular Step Hydrostatic Thrust Bearing
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Table 10.1 | Input Data

Recess radius 0.16 m

Outer radius 0.237 m

Film clearance 10−4 m

Radial extent of bearing 0.077 m

Angular speed, w 0-500 rad/s

Supply pressure, p
s

1.5 × 105 N/m2

Lubricant inlet temperature, T
in

300 C

Lubricant inlet density, r
il

855 Kg/m3

Lubricant inlet viscosity,
 
h

il
0.05 Ns/m2

Coeffi  cient of thermal expansion of lubricant, a 7.34 × 10−4/0C

Temp. viscosity coeffi  cient of lubricant, b 4.91 × 10−2/0C

Angle of misalignment, λ 0.001265 radian

Specifi c heat at constant pressure, c
p

2.02 × 103 Joule/Kg 0C

Gas constant of air, R 287 Joule/Kg mole/0K

Air viscosity, h
a

1.9 × 10−5Ns/m2

Lubricant mass fl ow rate is determined as

 
2

0
0

h

r
M v rd dz

π

ρ θ= ∫ ∫    (10.36)

Dimensionless load capacity W , frictional power loss 
f

P  and mass fl ow rate M  are determined from the 
following expressions.
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;
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p rπ
=    (10.37a)
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3 2
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P h
P

r rη ω
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

;   (10.37b)

 
2

2i

M
M

L hρ ω
=   (10.37c)

where ( )2 1
L r r= −  and h

2
 is the minimum fi lm thickness at the outer periphery of the bearing.

Performance of misaligned step bearing in terms of pressure, temperature, load capacity, power loss, and 
mass fl ow rate are presented which show the infl uence of speed of rotation and air bubble content.

Load capacity reduces with speed, whereas power loss and mass fl ow rate, on the other hand, increase. 
It is seen that air bubble content signifi cantly infl uences the bearing performance. Improvement in load 
capacity is observed with increase in air bubble content, whereas power loss factor and mass fl ow rate reduce 
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with increase in air bubble content. Th us, inclusion of air bubble in small amount may be benefi cial toward 
 improving the performance of the bearing. Typical pressure and temperature variation at diff erent speeds of 
rotation are shown in Figs 10.4 and 10.5, respectively.

Figure 10.6 shows the infl uence of air bubble content on the pressure distribution. Pressure distribution 
for both isothermal and thermal analysis is shown in Fig. 10.7.

Similarly, infl uence of air bubble content on mass fl ow rate, load capacity and power loss are shown in 
Figs 10.8, 10.9, and 10.10, respectively. Infl uence of air bubble content on the cavitation zone can be seen in 
Fig. 10.11 in the bearing for both parallel and misaligned confi gurations. One can clearly see that cavitation 
zone is reduced with inclusion of air bubble in the lubricant.

Figure 10.4 | Eff ect of Speed on Pressure Distribution at x = 0.1 in Circular Step Hydrostatic Thrust Bearing
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Figure 10.5 | Eff ect of Speed on Temperature Distribution at x = 0.1 in Circular Step Hydrostatic Thrust Bearing
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Figure 10.6 |  Eff ect of Air Bubble on the Pressure Distribution in Circular Step Hydrostatic Thrust Bearing at a Speed 
of 200 rad/sec
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Figure 10.7 | Pressure Distributions Along Radial Direction at a Speed of 200 rad/sec
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Figure 10.8 | Variation in Mass Flow Rate due to Variation in Air Bubble Content
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Figure 10.10 | Variation in Frictional Power Loss due to Variation in Air Bubble Content
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Figure 10.11(a) | Cavitations Zone on Bearing Land Surface in Circular Step Hydrostatic Thrust Bearing
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Figure 10.9 | Variation of Load Carrying Capacity due to Variation in Air Bubble Content
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Figure 10.11(b) | Cavitations Zone on Bearing Land Surface for Circular Step Hydrostatic Thrust Bearing
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Figure 10.11(c) | Cavitations Zone on Bearing Land Surface for Tilted Hydrostatic Thrust Bearing (λ = 0.001265  rad )
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Figure 10.11(d) |  Cavitations Zone on Bearing Land Surface for Tilted Hydrostatic Thrust Bearing (λ = 0.001265 rad)
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10.4 |  Reynolds Equation for Journal Bearings Including 
Fluid Inertia Eff ects

Th ere are several applications which are of practical importance where Reynolds numbers are quite high, e.g., 
liquid metal bearings used in nuclear installation, after Re = 5000 in cryogenic application using liquid gases 
as lubricant where Re = 5000 and in some air bearings/air cushions where Re ≅ 200,000, etc. In other words, 
in applications where low viscosity fl uid is used as lubricant, Reynolds number is likely to be high and convec-
tive inertia begins to infl uence the performance of the bearings. Th is problem was studied by several research-
ers, viz., Milne (1959), Osterle et al. (1957), Constantinescu (1970), etc. Eff ect of fl uid inertia was reported 
to be generally small. However, theoretical procedures to incorporate fl uid inertia eff ects in journal bearings 
have been developed by Reinhardt and Lund (1965) and Kakoty and Majumdar (2000) using perturbation 
method. Th e procedure is briefl y presented below.

Kakoty and Majumdar (2000) followed a procedure discussed below to derive modifi ed Reynolds equa-
tion that includes convective inertia eff ects. Referring to Fig. 10.12, dimensionless form of momentum equa-
tions and continuity equation are written as
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Figure 10.12 | Schematic Diagram of a Journal Bearing
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Since the velocity profi les remain unaltered, i.e., parabolic, when inertia eff ect is included, velocity com-
ponents are expressed as
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  (10.42)
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Substituting these into momentum equations and integrating yields
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Using the continuity equation modifi ed Reynolds equation including convective inertia can be obtained as

 
( ) ( )

2

3 3 12 6 2Re x

y

hIp pD h D
h h V I h

L y y L yθ θ θ θ

⎡ ⎤∂⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎢ ⎥+ = − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦
  (10.46)

where
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and
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where Ω = ,  whirl ratio.
p

ω

ω
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It is assumed that the journal whirls about its mean steady state position given by
0 0
 and ε ϕ .Th erefore, 

for fi rst order perturbation pressure p, fl ow parameters 
y

 and qqθ , and fi lm thickness h  can be written as:
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0 1 0 1

cos sini ih h e eτ τε θ ε ϕ θ= + +   (10.52)

where 
0 1 1 0

,  ie τε ε ε ε ε= + <<    (10.53)

 0 1 1 0
,  ie τϕ ϕ ϕ ϕ ϕ= + <<    (10.54)

Substituting these equations into Equation (10.44) to (10.46), we can obtain perturbed equations retain-
ing only up to fi rst order terms. Th us, fi ve sets of equations are obtained as:

First Set

 
2

0 0

0 0
Re

2 x

h p
q Iθ θ

∂
= +

∂
   (10.51)

 
2

0 0

0 0
Re

2y y

h pD
q I

L y

∂
= +

∂
   (10.52)

 
( ) ( )

2

0 00 03 3
0 0 0 0

6 2Re x

y

h Ip pD h D
h h I h

L y y L yθ θ θ θ

⎡ ⎤∂∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎢ ⎥+ = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦
  (10.53)

where

 
22

0 0 0 00 0 0 0 0 02 2
0 0 0 0

1 1 1

6 12 60 24 60 30 12 60

y y y

x

q h q qq q h q q qD D
I h h h

L y L y
θ θ θ θ θ

θ θ

∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + − − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   (10.54)

 
2

0 0 0 00 0 0 02
0 0 0 0

1 1
2

24 60 24 60 60

y y y

y y

q h q qq h q q D
I h q h

L y
θ θ θ

θ θ θ

∂ ∂⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞
= − + − − + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   (10.55)

Boundary conditions for steady state pressure distribution are given below

( )0 1 2
, 0 for  and p yθ θ θ θ= =

( )0
, 1 0p θ ± =

      ( )0 ,0 0
p

y
θ

∂
=

∂
   (10.56)

0

2
0 at 

p
θ θ

θ
∂

= =
∂

where 
1 2
 and θ θ  are the coordinates at which fi lm begin and cavitates, respectively.
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Second Set

 
2

0 0

0
cos Re

2
x

x xx

p h p
q h Iθ θ

θ θ
∂ ∂

= + +
∂ ∂

   (10.57)

 
2

0 0

0
cos Re

2
x

yx yx

p h pD D
q h I

L y L y
θ

∂ ∂
= + +

∂ ∂
   (10.58)

 
( ) ( ) ( ) ( )

2 2

0 02 3 3 2
0 0 0 0

0

0 0 0

3 cos 3 cos

6sin 2Re cos cos

x x

xx

yx x y

p p p pD D
h h h h

L y y L y y

h I D D
I h I I

L y L y

θ θ
θ θ θ θ

θ θ θ
θ θ

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎡∂ ⎤∂ ∂ ∂⎛ ⎞⎢= − − × + + + ⎥⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂⎢ ⎦⎣
  (10.59)

where

 1 2 3 4 5 6 7
sin cos

yx x x

xx x yx

q q qD D
I C C C q C q C C C

L y L y
θ θ

θθ θ
θ

∂ ∂ ∂
= + + + + + +

∂ ∂ ∂
   (10.60)

 1 2 3 4 5 6 7
sin cos

yx yxx

yx x yx

q qq D
I K K K q K q K K K

L y
θ

θθ θ
θ θ

∂ ∂∂
= + + + + + +

∂ ∂ ∂
  (10.61)

Third Set

 
2

0 0

0
sin Re

2
z

z xz

p h p
q h Iθ θ

θ θ
∂ ∂

= + +
∂ ∂

   (10.62)

 
2

0 0

0
sin Re

2
z

yz yz

p h pD D
q h I

L y L y
θ

∂ ∂
= + +

∂ ∂
   (10.63)

 
( ) ( ) ( ) ( )

2 2

0 02 3 3 2
0 0 0 0

0

0 0 0

3 sin 3 sin

6cos 2Re sin sin

y y

xz

yz x y

p pp pD D
h h h h

L y y L y y

h I D D
I h I I

L y L y

θ θ
θ θ θ θ

θ θ θ
θ θ

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎡∂ ⎤∂ ∂ ∂⎛ ⎞⎢= − × + + + ⎥⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂⎢ ⎦⎣
 (10.64)

where

 
1 2 3 4 5 6 7
cos sin

yz z z

xz z yz

q q qD D
I C C C q C q C C C

L y L y
θ θ

θθ θ
θ

∂ ∂ ∂
= − + + + + + +

∂ ∂ ∂
   (10.65)

 
1 2 3 4 5 6 7
cos sin

yz yzz

yz z yz

q qq D
I K K K q K q K K K

L y
θ

θθ θ
θ θ

∂ ∂∂
= − + + + + + +

∂ ∂ ∂
   (10.66)



Fluid Iner tia Effects and Turbulence in Fluid Film Lubrication 277

Fourth Set

 
2

0 Re
2

x

x xx

h p
q Iθ θ

∂
= +

∂
�

� �

   (10.67)

 
2

0 Re
2

x

yx yx

h pD
q I

L y

∂
= +

∂
�

� �

   (10.68)

 
( ) ( )

2

03 3
0 0 0

12 cos 2Re xxx x

yx

h Ip pD D
h h I h

L y y L y
θ

θ θ θ

⎡ ⎤∂∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎢ ⎥+ = Ω − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦

�

� �

�

   (10.69)

where

 
1 2 3 4 5 6 7
cos

yx x x

xx x x yx

q q qD D
I A A q A q A q A A A

L y L y
θ θ

θ θθ
θ

∂ ∂ ∂
= + + + + + +

∂ ∂ ∂
�

� �

� � �

   (10.70)

 
1 2 3 4 5 6 7
cos

yx yx x

yx yx x yx

q q qD
I B B q B q B q B B B

L y
θ

θθ
θ θ

∂ ∂ ∂
= + + + + + +

∂ ∂ ∂
� �

�

� � �

   (10.71)

Fifth Set

 
2

0 Re
2

z

z xz

h p
q Iθ θ

∂
= +

∂
�

� �

   (10.72)

 
2

0 Re
2

z

yz yz

h pD
q I

L y

∂
= +

∂
�

� �

   (10.73)

 
( ) ( )

2

03 3
0 0 0

24 sin 2Re xzz z

yz

h Ip pD D
h h I h

L y y L y
θ

θ θ θ

⎡ ⎤∂∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎢ ⎥+ = Ω − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦

�

� �

�

   (10.74)

where

 0

1 2 3 4 5 6 7
sin

2

yz z z

xz z z yz

qh q qD D
I A A q A q A q A A A

L y L y
θ θ

θ θθ
θ

∂⎛ ⎞ ∂ ∂
= + Ω + + + + + +⎜ ⎟ ∂ ∂ ∂⎝ ⎠

�

� �

� � �

   (10.75)

 
1 2 3 4 5 6 7
sin

yy yz z

yz yz z yz

q q qD
I B B q B q B q B B B

L y
θ

θθ
θ θ

∂ ∂ ∂
= + + + + + +

∂ ∂ ∂
��

�

� � �

   (10.76)

Th e coeffi  cients A
1
, A

2
… B

1
, B

2
……., C

1
, C

2
 ….K

1
, K

2
...are given in the Appendix 10.1 at the end of this 

chapter.
Th e boundary conditions for the above sets of equations are as follows

• 1 2
( , ) 0 for  and ,

i
p yθ θ θ θ= =

• ( , 1) 0
i

p θ ± = ,

• ( )/ ,0 0,  i x,x,z,z
i

p y θ∂ ∂ = = ��
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Th e dimensionless dynamic forces along e and j directions (Fig.10.10) are given as follows

 ( ) ( )2
1

i

d
F k i b a e τ

ε εε εε εε ε= − − Ω + Ω + ( )2
0 1

ik i b a e τ
εϕ εϕ εϕ ε ϕ− − Ω + Ω  (10.77)

 ( ) ( )2
1

i

d
F k i b a e τ

ϕ ϕε ϕε ϕε ε= − − Ω + Ω + ( )2
0 1

ik i b a e τ
ϕϕ ϕϕ ϕϕ ε ϕ− − Ω + Ω  (10.78)

Under steady state condition

 
( ) 0 00

cosF Wε ϕ= −
   (10.79)

 
( ) 0 00

sinF Wϕ ϕ=
   (10.80)

where

 ( )
2

1

12

30
0

cos
r

F C
F p d dy

R L

θ
ε

θ

θ θ
ηω

⎛ ⎞
= =⎜ ⎟⎝ ⎠ ∫ ∫    (10.81)

 ( )
2

1

2 1

30
0

sin
F C

F p d dy
R L

θ
ϕ

ϕ
θ

θ θ
ηω

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∫ ∫    (10.82)

 ( ) ( ) ( )
( )

1/222
01

0 00 0

0

 and tan
F

W F F
F

ϕ

ε ϕ
ε

ϕ −

⎡ ⎤
⎡ ⎤ ⎢ ⎥= + = −⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

   (10.83)

where 
1 2
 and θ θ  are the coordinates at which the fi lm starts and cavitates, respectively. Th e steady load can 

be expressed in terms of Sommerfeld number S where ( )0
1 /S Wπ= . Th e dynamic coeffi  cients 

.. .. ..
 , , k b a

….which are dimensionless stiff ness, damping, and inertia coeffi  cients, respectively, can be calculated from 

, , ,
x y x z

p p p p
��

 and are given in Appendix 10.2 at the end of this chapter.

Using the dynamic coeffi  cients stability of a rigid rotor can be analyzed in the following manner.
Th e equations of motions of a rigid rotor supported on two identical bearings under steady load are 

expressed for small amplitude oscillations about the equilibrium position as

 ( )2 2
0 0

cosMW F Wεε εϕ ϕΩ − = +�� �    (10.84)

 ( )2
0 0

2 sinMW F Wϕεϕ εϕ ϕΩ + = −�� � �    (10.85)

Since

 ( ) ( )
0

 and 
d

F F Fε ε ε= + ( ) ( )
0

 
d

F F Fϕ ϕ ϕ= +    (10.86)

Substituting Equations (10.53) and (10.54) into Equations (10.77) to (10.80), the equations of motion 
can be expressed in the following form:

 ( ) 02 2 2
0 1 0 0 1

0

               sin 0i i
W

k i b a MW e k i b a eτ τ
εε εε εε εφ εφ εφε φ ε φ

ε
⎛ ⎞

+ Ω − Ω − Ω + + Ω − Ω + =⎜ ⎟
⎝ ⎠

 (10.87)
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 ( ) 02 2 2
1 0 0 0 1

0

            cos 0i i
W

k i b a e k i b a MW eτ τ
φε φε φε φφ φφ φφε φ ε φ

ε
⎛ ⎞

+ Ω − Ω + + Ω − Ω − Ω + =⎜ ⎟
⎝ ⎠

   (10.88)

For a nontrivial solution the determinant of the two equations should be zero. Equating the imaginary 
and real parts of the determinant separately to zero following two equations are obtained.

 

(
)

0

0

0

0 2
0 0

0

0

cos

sin

0

W
k b k b b k b k b

W
b b a b MW b a

W Mb b a b a

εε ϕϕ ϕϕ εε εε ϕε εϕ εϕ ϕε

ϕε εε ϕϕ εε ϕϕ εε

ϕϕ ϕε εϕ εϕ ϕε

ϕ
ε

ϕ
ε

+ + − −

− + Ω − − −

− + + =  (10.89)

 

(

( )

εε ϕϕ εε ϕε εϕ

εε ϕϕ εε ϕϕ εε ϕϕ εε

εε ϕϕ

ϕε εϕ ϕε εϕ εϕ ϕε ϕε

εε ϕϕ εε ϕϕ ϕε εϕ

ϕ ϕ
ε ε

ϕ ϕ
ε ε

ϕ
ε

⎛ ⎞
+ − −⎜ ⎟

⎝ ⎠

+Ω − − −

− − −

⎞
+ + + − ⎟

⎠

+Ω + + + + =

0 0

0 0

0 0

2
0

2
0 0

0 0 0

0 0

0

0

0

4 2 2
0 0 0

cos sin

cos cos

sin

0

W W
k k k k k

k a MW k b b k a

W W
a MW k M

W
k a b b k a a

a a MW a MW a M W a a   (10.90)

Solution of fi rst set of equations satisfying the boundary conditions determines the steady state pressure 
and fl ow parameters. Newton–Raphson method and fi nite diff erence scheme are used to obtain converged 

solution of set of equations. Convergence was achieved up to a value of Re = 1.5. Load capacity and attitude 
angle are calculated using the pressure distribution. After determining steady state pressure distribution, 
the remaining four sets of equations are solved satisfying the boundary conditions to determine perturbed 
pressure distributions and fl ow parameters. Finite diff erence scheme with successive over-relaxation is used 
to obtain converged solutions of the set of equations. Th ese pressure distributions are then used to evaluate 
dynamic coeffi  cients. Dynamic coeffi  cients are initially evaluated for an assumed value of whirl ratio. Th ese 
dynamic coeffi  cients are then used to determine mass parameter using Equation (10.89). Th e evaluated mass 
parameter and assumed whirl must satisfy Equation (10.90). If it does not then another value of whirl ratio 
is assumed and the process is repeated till Equation (10.90) is satisfi ed. Results of this analysis are given in 
Table 10.2 for steady state performance in terms of load capacity, attitude angle for various eccentricity ratios, 
and Reynolds numbers.

In general, it is observed that fl uid inertia eff ect is not very signifi cant. Table 10.3 gives the results of mass 
parameters and whirl ratios for various lengths to diameter ratios, eccentricity ratios, and Reynolds numbers 
including fl uid inertia eff ects and neglecting fl uid inertia eff ects. It is seen that fl uid inertia considerably infl u-
ences the magnitude of critical mass. Th erefore, to ascertain the stability of the rotor fl uid inertia eff ect need 
to be taken into account when the Reynolds number is high.
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10.5 |  Infl uence of Temporal Inertia on the Performance 
of Journal Bearings

Temporal inertia eff ects are due to fl uid accelerations and are generally seen under unsteady conditions when 
fl ow velocities become time dependent. It has been seen that convective inertia eff ects are usually small and 
therefore, to investigate the infl uence of temporal inertia, convective inertia terms may be omitted. Navier–
Stokes equations with usual assumptions made to derive Reynolds equation can thus be written for incom-
pressible fl ow neglecting convective inertia eff ects as (San Andres and Vance, 1987).

 

2

2
Re

pu u

zτ θ
∂∂ ∂

= − +
∂ ∂ ∂   (10.91)

 
2

2
Re

pv v

y zτ
∂∂ ∂

= − +
∂ ∂ ∂

  (10.92)

Continuity equation becomes

 0
u v w

y zθ
∂ ∂ ∂

+ + =
∂ ∂ ∂   (10.93)

Table 10.2 | Comparison of Steady State Characteristics of Journal Bearings for L/D = 1

Re* e
0

W
0
 (Present) W

0
 [Chen et al.] f 0 (Present) f 0 [Chen et al.]

0 0.2 0.5042 0.5013 73.71 73.9

0.5 1.7903 1.779 56.64 56.8

0.8 7.4597 7.146 34.66 36.2

0.9 17.7139 16.982 23.90 26.4

0.28 0.2 0.5055 0.5041 73.75 74.2

0.5 1.8058 0.5041 73.75 57.0

0.8 7.4837 7.151 34.72 36.3

0.9 17.7615 16.993 23.93 26.4

0.56 0.2 0.5070 0.5051 73.79 74.5

0.5 1.8058 1.790 56.79 57.2

0.8 7.5081 7.159 34.78 36.4

0.9 17.809 17.002 23.97 26.4

1.4 0.2 0.5112 0.5086 73.95 75.3

0.5 1.837 1.587 57.05 58.0

0.8 7.5852 7.187 35.02 36.7

0.9 — 17.030 — 26.6
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where

( )
2

2
Re ,  ,  ,  ,  

pC u v w
u v w p

R R C R
C

ρ ω
η ω ω ω ηω

= = = = = ,

, , ,
yx z

y z
R R C

θ = = =

C is radial clearance of the bearing and w is the characteristic frequency.
Boundary conditions for velocity components are in the dimensionless form as

0    0

0;     

u v w at z
H

u v w at z H
τ

= = = =
∂

= = = =
∂

where,    and 
h

H t
C

τ ω= = , h is fi lm thickness.

Table 10.3 |  Comparison of Critical Mass Parameter and Whirl Ratio Calculated by Incorporating and Neglecting 
Acceleration Coeffi  cients

Considering Acceleration 
Coeffi  cients

Neglecting Acceleration 
Coeffi  cients

L/D Re* e
0

M W M W

0.5 0.5 0.1 8.20 0.530 9.54 0.530

0.5 0.5 0.3 7.78 0.550 8.17 0.550

0.5 0.5 0.6 7.52 0.570 7.64 0.570

1.0 0.5 0.1 7.44 0.536 8.53 0.536

1.0 0.5 0.3 7.45 0.532 7.87 0.530

1.0 0.5 0.6 7.39 0.549 7.58 0.547

2.0 0.5 0.1 6.10 0.558 7.17 0.556

2.0 0.5 0.3 5.78 0.553 6.23 0.530

2.0 0.5 0.6 7.27 0.506 7.55 0.504

0.5 1.0 0.1 7.69 0.530 9.88 0.530

0.5 1.0 0.3 7.76 0.543 8.49 0.540

0.5 1.0 0.6 7.57 0.570 7.72 0.570

1.0 1.0 0.1 6.98 0.538 9.19 0.536

1.0 1.0 0.3 7.09 0.536 7.89 0.533

1.0 1.0 0.6 7.14 0.554 7.48 0.557

2.0 1.0 0.1 5.89 0.563 8.16 0.560

2.0 1.0 0.3 5.36 0.542 6.27 0.537

2.0 1.0 0.6 6.95 0.513 7.50 0.509
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It is assumed that for small amplitude motions, the fl ow within the clearance space of the bearing is 
governed by Equations (10.91) to (10.93). It is considered that fl ow in the clearance space is governed by 
following mean fl ow equations

Continuity equation:  
y

qq H

y
θ

θ τ

∂∂ ∂
+ = −

∂ ∂ ∂
  (10.94)

Momentum equation:  Re
z

q p
Hθ

θτ
τ θ

∂ ∂
= − + Δ

∂ ∂
   (10.95)

 Re y

yz

q p
H

y
τ

τ

∂ ∂
= − + Δ

∂ ∂
   (10.96)

where 
0

H

q udzθ = ∫  and 
0

H

y
q vdz= ∫ , α  is inertial wall shear stress coeffi  cient for small amplitude eccentric 

motions.

,
y

q qθ  are local dimensionless fl ow rates and ,
z yzθτ τΔ Δ  dimensionless wall shear stress diff erence in 

circumferential and axial direction, respectively. It is generally assumed that velocity fi elds are altered by fl uid 
inertia at low or moderate Reynolds numbers.

Th erefore, wall shear stress diff erences can be expressed as

 ( )
2

12
Re 1

z

q q

H
θ θ

θτ α
τ

∂
Δ = − + −

∂
   (10.97)

 ( )
2

12
Re 1

y y

yz

q q

H
τ α

τ

∂
Δ = − + −

∂
   (10.98)

α is a function of Re. For long and short bearings, α takes the asymptotic values as 1.2 α →
as Re 0 and 1.0 as Reα→ → → ∞. However, these values are generally found to give good result up to 
Re = 25, which cover the range where the fl ow remains laminar.

Substituting Equations (10.97) and (10.98) into (10.95) and (10.96) give

 2Re 12 /
q p

H q Hθ
θα

τ θ
∂ ∂

= − −
∂ ∂

   (10.99)

 2Re 12 /
y

y

q p
H q H

y
α

τ

∂ ∂
= − −

∂ ∂
   (10.100)

Equations (10.99) and (10.100) combined with Equation (10.94) can be reduced to the following modi-
fi ed form of Reynolds equation which includes temporal inertia eff ect

 

2
2

3 3 2

2

2
12 Re

p p H H H
H H H

y y H
α

θ θ τ τ τ

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞
+ = + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦

   (10.101)
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10.6 |  Temporal Inertia Eff ect on the Dynamic Performance 
of Multi-recess Hydrostatic Journal Bearing

Ghosh et al. (1988) investigated on the infl uence of temporal inertia on the dynamic performance of multi-
recess hydrostatic journal bearing. Reynolds Equation (10.66) can be expressed with some modifi cation for 
α = 1 as

 

2 2
2 2

3 3

2

Re 2

12

p pD H H H H
H H

L y y H

σ
σ

θ θ τ τ τ

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
+ = + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦

   (10.102)

where  ( )2
12 / /

s
p C Rσ ηω=  

= = = =
2

/ , , ,
s

y h x
p p p y H

L C R
θ , 

2Re /Cρ ω η=

s
p  – supply pressure of oil

Perturbation method is adapted to express pressure and local fi lm thickness assuming that the journal 

center executes harmonic motion with { }1
Re ie τε  around its steady state position given by eccentricity ratio, 

ε
0
 as shown in Fig. 10.12.

Th us, pressure and fi lm thickness are written neglecting higher order terms as:

 0 1 1
ip p e pτε= +

; 0 1
cosiH H e τε θ= +

  (10.103)

where 0 0
1 cosH ε θ= +  

Substituting Equation (10.103) into Reynolds Equation (10.102) and collecting zeroth and fi rst order 
terms we get:
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p pD

H H
L y yθ θ

∂⎛ ⎞ ⎛ ⎞∂∂ ∂⎛ ⎞
+ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

   (10.104)
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  (10.105)

Th e above equations are solved to determine pressure distribution ( )0
,p yθ  and ( )1

,p yθ  over the bear-
ing land area following fi nite diff erence method using Gauss–Seidel iterative procedure with an over-relax-
ation factor satisfying proper boundary conditions.

Th e boundary conditions for Equations (10.107) and (10.108) are given as

For 0
p

• ( ) ( )0 0
, 1 , 1 0p pθ θ− = + =

• ( )0 ,1 0
p

y
θ

∂
=

∂

• 0 0r
p p=  at the rth recess

• ( ) ( )0 0
, 2 ,p y p yθ θ π= +  (10.106)
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For 
1

p

• ( ) ( )1 1
, 1 , 1 0p pθ θ− = + =

• ( )1 ,0 0
p

y
θ

∂
=

∂

• 1 1r
p p=  at the rth recess

• ( ) ( )1 1
, 2 ,p y p yθ θ π= +  (10.107)

Steady state recess pressure ( 0r
p ) and dynamic recess pressure ( 1r

p ) are given by the following equations

2
1 0 1 0

1 2 2 2 2 2 2

cos cos
r r r r r r
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Q p Q p
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λ ψ γ θ ψλ θ ψγ
λ ψ γ λ ψ γ
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For Orifi ce Compensation
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  (10.108)

( )0.5

000
0.5 1

rr
p Qλ δ= − +

For Capillary Compensation

 
0

c

r
p

δ
λ

=  and ( )0r c
Qλ δ= +   

  
(10.109)

Also, 
0 s

V pγ β= , recess volume compressibility parameter and 2/A Rψ σ= , recess frequency parameter. 
Derivation of Equations (10.108) and (10.109) has been described in Chapter 9.

10.6.1 | Dynamic Load Capacity

Dynamic load capacity of the bearing is evaluated using the known dynamic pressure distribution as:

 
/2 2

1 1 10 0
2 cos

L
i i

d
W e e p Rd dy

π
τ τε ε θ θ= − ∫ ∫    (10.110)

Since the journal executes harmonic motion with amplitude 
1

i ty C e ωε=  the dynamic load capacity (
d

W ) 
can be expressed as:

 i t
d

W e Ky By Eyω = − − −� ��    (10.111)

 2
d

W KC iBC ECω ω= − − +    (10.112)

In the dimensionless form it is expressed as
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d

d

s s s s

W KC BC EC
W i

LDp LDp LDp LDp

ω ω
ε

= = − − +    (10.113)
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where

Stiff ness coeffi  cient, ,
s

s

KC
K

LDp
= −  

Damping coeffi  cient, 
( )

3

Im

24

d

s

W B
B

R
L

C

σ
η

= − =
⎛ ⎞
⎜ ⎟⎝ ⎠

 

Inertia coeffi  cient, 
Re

s

s

E
E

CLDp

ηω
=  

Temporal inertia eff ect is seen in the form of added mass coeffi  cient or inertia coeffi  cient (E
s
) which 

is dependent on Reynolds number. It can be combined with stiff ness coeffi  cient K
s 
and together can be 

expressed as dynamic stiff ness coeffi  cient K
d
 which would be dependent on Reynolds number. Th us,

( ) ( )Re
d d s s

K W K E= − = −

Result of dynamic stiff ness (K
d
) of capillary and orifi ce compensated bearings against Reynolds number 

(Re) are shown in Figs 10.13 to 10.17 for various values of s and g. Infl uence of Reynolds number for various 
values of recess volume parameter (g ) from 0.01 to 0.05 are shown in Fig. 10.13. Role of g appears to be very 
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Figure 10.15 | K
d
 versus Re for Various Values of L/D a Capillary Compensated Bearing
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Figure 10.16 | K
d
 versus Re for Various Values of σ  a Capillary Compensated Bearing
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signifi cant. Figure 10.17 shows comparison between orifi ce and capillary compensated bearings. It can be 
seen that orifi ce compensated bearing is better and give higher values of dynamic stiff ness.

A suitable bearing design must account for fl uid inertia eff ect and choose a suitable value of g. Th ere is 
a short range of Re and s for a particular value of g when there is a sharp decline in the dynamic stiff ness of 
the bearing. Eff ect of eccentricity ratio and L/D ratio can be seen in Figs 10.14 and 10.15. A short L/D ratio 
appears to witness larger eff ect of fl uid inertia.

Figure 10.17 shows relative performance of capillary and orifi ce compensated bearings. Infl uence of fl uid 
inertia is more pronounced in capillary compensated bearings. When Re → 0 and recess volume compress-
ibility eff ect is neglected, i.e., 0γ = , dynamic stiff ness is equivalent to the static stiff ness of the bearing.

10.7 | Theory of Turbulent Lubrication

Transition from laminar fl ow to turbulence usually occurs when Reynolds number is >2100 in pipe fl ow. 
In journal bearings, this transition occurs through a regime known as vortex fl ow which is characterized by 
appearance of Taylor vortices and is observed at a Reynolds number >1700. Taylor (1923) showed that when 
laminar fl ow of a viscous fl uid between two concentric cylinders becomes unstable, toroidal vortices equally 
spaced along the axis of the cylinder is witnessed as shown in Fig. 10.18. Taylor showed that this occurs due 
to centrifugal inertia and that when the radial clearance between the cylinders is small as is the case in jour-
nal bearings, this transition occurs at a Reynolds number=1700. Th is is also known as Taylor number (T

a
) or 

 critical Reynolds number (Re) critical.
Taylor number is expressed as

T
a
=41.2 

1
2R

C

⎛ ⎞
⎜ ⎟⎝ ⎠ , R– journal radius, C– radial clearance

Instability of laminar fl ow between eccentric cylinders due to rotation of inner cylinder with outer 
cylinder stationary have been investigated by Diprima (1963), Kamal (1966) and Dai et al. (1992). Castle 
and Mobbs (1961, 1968) and Mobbs and Younes (1973) conducted experiments on vortex fl ow. However, 
when Reynolds number exceeds 2000, fl ow in case of concentric cylinders becomes turbulent. Turbulence 
may be visualized as an irregular condition of fl ow in which velocity, pressure, etc. show random variations 
in time and space. It occurs in nature more often and also in fl ows through closed space, i.e., confi ned 

Figure 10.18 | Taylor Vortices

Inner Cylinder

Outer Cylinder
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between boundaries such as ducts, pipes, concentric cylinders, rotating discs, etc. It is usually seen that 
in turbulent fl ows velocities, pressures, etc. show random variations superposed over a distinct statistical 
average value as depicted in Fig. 10.19. It is generally known that turbulence in lubrication of bearings and 
seals occur due to use of low dynamic viscosity process fl uids, e.g., in bearings of cryogenic turbomachinery 
using liquid hydrogen and oxygen, in nuclear applications where liquid metals (sodium) is employed, water 
lubricated bearings, bearings and seals in advanced gas turbines, etc. Th ese applications drew the attention 
of engineers toward the need to develop adequate theoretical models to address the issue of turbulence 
in lubrication.

10.8 | Fluctuations and Average Values in Turbulent Flow

Random fl uctuations in turbulent fl ow are at a scale with order of magnitude comparable to bulk motion of 
the fl uid. Fluctuating velocities can be measured with precision instruments such as hot wire anemometer, 
Laser doppler anemometer, etc. Taylor and Von Karman suggested that turbulence can be generated by the 
fl ow of layers of fl uids at various velocities past over another or by fl uid fl ow over solid surfaces. Based on this, 
it can be said that there are two types of turbulence, i.e., turbulence generated due to viscous eff ect in fl ow past 
or over solid walls known as wall turbulence and free turbulence generated by fl ow of layers of fl uids in free 
stream at diff erent velocities. In lubrication of bearings and seals, turbulence originates from solid surfaces 
and is designated as wall turbulence.

Let u, v, and w be the fl uid velocity components in Cartesian coordinates and are functions of time. Th en 
mean or average velocities at a time ‘t

0
’ are defi ned as:
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∫
   (10.114)

where T is the sampling period.

Th us, fl uctuating components of the velocities are ( ){ } ( ){ }/ /,u u t u v v t v= − −  and ( ){ }/w w t w= − , 
and it can be said that mean or average of the fl uctuations are zero over the sampling period, T.

Figure 10.19 | Velocity Profi le
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10.9 |  Momentum Equations and Reynolds Stresses 
for an Incompressible Flow

Multiplying continuity equation for incompressible fl ow by ru and adding to the momentum equation in 
x-direction neglecting body force, we get

 ( ) ( ) ( )2
xx yx zx

u
u uv uw

t x y z
ρ σ ρ τ ρ τ ρ

∂ ∂ ∂ ∂
= − + − + −

∂ ∂ ∂ ∂
 (10.115)

In a similar manner, multiplying continuity equation for incompressible by rv and rw and adding to 
momentum equations in y and z directions, respectively, one would obtain

 ( ) ( ) ( )2
xy yy zy

v
vu v vw

t x y z
ρ τ ρ σ ρ τ ρ

∂ ∂ ∂ ∂
= − + − + −

∂ ∂ ∂ ∂
 (10.116)

 ( ) ( ) ( )xz yz zz

w
wu wv w

t x y z
ρ τ ρ τ ρ σ ρ

∂ ∂ ∂ ∂
= − + − + −

∂ ∂ ∂ ∂
 (10.117)

Th ese are momentum equations written in another manner. If now all terms in these equations and the 
continuity equation are averaged, one would get for quasi steady fl ows the momentum equations when 

0
u v w

t t t

∂ ∂ ∂
= = =
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 as
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⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
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   (10.120)

and continuity equation as

 0
u v w

x y z

∂ ∂ ∂
+ + =
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  (10.121)

Substituting for stresses in terms of pressure and velocity gradients using average velocities, the momen-
tum equations for Newtonian fl uids can be written as

 ( ) ( ) ( )2

2 2 2

2 2 2

/ / / / /

pu u u u u u
u v w

x y z x x y z

u u v u w
x y z

ρ η

ρ ρ ρ ρ

⎛ ⎞ ⎛ ⎞∂∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤∂ ∂ ∂
− + +⎢ ⎥∂ ∂ ∂⎣ ⎦

  (10.122)

Th e terms underlined represent Reynolds stresses or stresses due to exchange of energy in the turbulent 
mixing process. Equations in y and z directions can be written in a similar manner.

It is almost impossible to solve the above equations. Th erefore, models have been developed which pro-
vide solutions to engineering problems but may not be physically correct. In general, it is considered that very 
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close to a wall or a solid boundary there is a layer known as viscous sub layer in which viscous stresses are 
much larger than turbulent stresses followed by an intermediate layer where viscous and turbulent stresses are 
of the same order. Beyond this, there is a free turbulence region where turbulent stresses are much larger than 
viscous stresses and the mean velocity distribution is described by a logarithmic type of law of the wall. Th is 
region is larger than the other two regions. Th is type of turbulent fl ow is generally seen over a fl at plate. Fully 
developed boundary layer fl ow in pipes and ducts are similar to fl at plate fl ow. However, shear stresses vary 
linearly with distance from the wall. Flow through bearings and seals are similar to fl ow through an annulus. 
A detailed survey of turbulent lubrication theory and its application to design was presented by Taylor and 
Dowson (1974), and Wilcock (1981) discussed aspects of effi  cient design of turbulent thrust bearings.

10.10 | Turbulent Lubrication Theories

Generally, three models have been developed which relate Reynolds stresses to mean or average fl ow veloci-
ties. However, these models can be applied to two-dimensional fl ows only. Th ese models are as follows:

10.10.1 | Prandtl Mixing Length Theory

Prandtl proposed a momentum mixing length concept for modeling wall turbulence which originates from 
a solid boundary. He assumed that there is a length between layers where transfer of momentum or mixing 
occurs which is given by,

 / / 2  
u u

u w l
z z

ρ ρ
∂ ∂

− =
∂ ∂

  (10.123)

where l is the mixing length and is related to independent variable by a constant k.
Constantinescu adopted this approach in the analysis of bearings operating in turbulent regime. Th us, he 

assumed strong Couette fl ow and mixing length l is given by l kz=  where k is usually taken as 0.4.

10.10.2 | Eddy Viscosity or Turbulent Viscosity Model

Th e most widely accepted theory for turbulent fl ow was given by Boussinesq. According to this theory, in 
two-dimensional turbulent fl ows, eff ective shear stress is given by

 ( )τ η ρ η
ν

∂ ∂∈⎛ ⎞
= + ∈ = +⎜ ⎟⎝ ⎠∂ ∂

1i i

ij

j j

u u

x x
   (10.124)

where ∈ is known as eddy viscosity and is expressed in terms of Reynolds stresses as:

 / /
1

/ i j

i j

u u
u x

∈= −
∂ ∂

  (10.125)

Th us, the eff ective shear stress can be expressed in terms of mean or average velocities. However, ∈ is 
diff erent for diff erent fl ow conditions and not constant for a given fl ow. It is dependent on local conditions 
or in other words varies spatially.

A turbulent fl ow which experiences a shear stress 
w

τ  at the impermeable stationary wall at 0z = , law of 
wall correlates mean velocity profi le near the wall by

 ( )u g z+ +=    (10.126)
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where          ( )1/2

/ ,  ,  /
w

u z
u u u z uτ

τ τ τ ρ
ν

+ += = =

Th is correlation can be defi ned as eddy viscosity, thus

 / /
u

u w
z

∂
− =∈

∂
   (10.127)

Reichardt in 1951 proposed following empirical relation for eddy-diff usivity:

 tanh
l

l

z
k z

v
δ

δ

+
+ +

+

⎛ ⎞∈
= −⎜ ⎟

⎝ ⎠
   (10.128)

where k and 
l

δ + were chosen as 0.4 and 10.7 by Ng (1964) which correlate with known data. Ng and Pan 
(1965) derived Reynolds equation for turbulent lubrication using Reichardt’s formula for eddy diff usivity and 
generalized law of wall given above.

Hirs (1973) proposed a theory for turbulent lubrication based on bulk fl ow. Th is is an extension of basic 
work of Blasius which uses relationship between wall shear stress and mean velocity of fl ow relative to wall. 
According to this, the following simple equation is assumed for all types of fl ow, viz., pressure fl ow, drag fl ow, 
or combination of both ,i.e.,
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m
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n

u

τ ρ
ηρ

⎛ ⎞
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  (10.129)

where t = wall shear stress, r = density of fl uid, h = viscosity of fl uid, u  = mean velocity of fl ow relative to wall 

or surface at which shear stress acts, h = fi lm thickness, n and m are empirical constants, 2
1

/
2

uτ ρ = friction 

factor. n and m values were obtained by curve fi tting data from experimental results for diff erent fl ows. For 
details, refer to the papers by Hirs (1973, 1974).

10.11 | Derivation of Reynolds Equation for Turbulent Lubrication

Th is section deals with the derivation of Reynolds equation for turbulent lubrication neglecting convective 
and temporal inertia eff ects. Th e Navier–Stokes equations for turbulent fl ow is thus written as:

 ( )
2

/ /

2
0

p u
u w

x z z
η ρ

∂ ∂ ∂
= − + + −

∂ ∂ ∂   (10.130)

 ( )
2

/ /

2
0

p v
v w

y z z
η ρ

∂ ∂ ∂
= − + + −
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  (10.131)

General assumptions made in the derivation of Reynolds equation for laminar lubrication in Chapter 3 
are also valid for the above equations.

Using the concept of eddy-diff usivity, the above equations can be rewritten as
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 η
ν
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0 1
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For details, refer to the papers by Ng and Pan (1965) and Elrod and Ng (1967). It is necessary to mention 
that while applying Reichardt’s formula, it is considered that each half channel has its own wall and therefore,
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An assumption is made that terms corresponding to mean inertia and variation of shear stresses along 
the surface coordinates, thus

 xz
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z x
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Integrating Equations (10.135) and (10.136) with respect to z, we get
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 and 
2 2xz yz

h h
τ τ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 are constants of integration which are to be determined using velocity boundary con-

dition given below
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In the turbulent fl ow, it is also assumed that fl ow fi eld is a small perturbation of Couette fl ow and there-
fore shear stresses can be expressed as

  and 
xz c x yz y

τ τ δτ τ δτ= + =   (10.140)

since

 ( ) ( ) ( )
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τ τ τ τ δτ δ= + = + +   (10.141)
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where 
c

τ  is shear stress in Couette fl ow. Eddy viscosity can also be approximated using small perturbation as
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with 
τ

ν ρ
+ = c

c

h
h  

ξ should be replaced by (1 – ξ) in the range of 1/2 ≤ ξ ≥ 1 which makes ( )c
f ξ  and ( )c

g ξ  symmetrical with 
respect to ξ = 1/2. Integrating Equations (10.137) and (10.138) and substituting Equations (10.142) to 
(10.144) neglecting 0(δ) terms one obtains
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It can be shown that, since, ( )c
f ξ  and ( )c

g ξ  are symmetrical while 
1

2
ξ−  is antisymmetrical about 

1 / 2ξ =  it is found that

 ( ) ( )1 / 2  and 1 / 2 0
xz c yz

τ τ τ= =    (10.147)

For Couette-dominated turbulent fl ow Equation (10.145) reduces to
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or, in the dimensionless form it is,

 ( ) ( )
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0h c
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Uh d
R h

v f

ξ
ξ

+= = ∫    (10.150)

h
R  is Couettte Reynolds number in term of 

c
h+

Equation (10.145) and (10.146) are simplifi ed using Equation (10.148) to (10.150)
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Equations (10.151) and (10.152) when integrated across the channel width or fi lm thickness yields

 
2

0

1

2

h

x

ph
udz Uh G

U xη
∂⎛ ⎞

= −⎜ ⎟∂⎝ ⎠∫    (10.153)

and

 
2

0

h

y

ph
vdz Uh G

U yη
⎛ ⎞∂

= − ⎜ ⎟∂⎝ ⎠∫   (10.154)
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Substituting Equations (10.153) and (10.154) into fl ow continuity equation for an incompressible fl uid 
fi lm, i.e.,
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h h h
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Reynolds equation for turbulent lubrication is obtained as:
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G
x
 and G

y
 depend on Reynolds number R

h
 and are thus functions of local fi lm thickness h. Th e above 

equation is similar to Reynolds equation for laminar fl ow. Variation of G
x
 and G

y
 depend on Reynolds number 

Re and are thus functions of local fi lm thickness h. Th e above equation is in a form similar to Reynolds equa-
tion for laminar fl ow. Variation of G

x
 and G

y
 with Reynolds number is shown in Fig. 10.20 for Re ≤ 2 × 105.

For dominant Couette fl ows empirical expressions for 
1 1

 and  
x y

x y

K K
G G

= =  were developed based on 

the work of Ng and Pan by Constantinescu (1970) as given below
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Elrod and N
g
 (1967) extended the work of Ng and Pan to turbulent hydrostatic and hybrid bearings, 
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For dominant Poiseuille fl ow the values of K
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 and K
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are given as below (Taylor and Dowson 1974)
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 is Poiseuille Reynolds number determined using mean fl ow velocity.

Hirs (1974) also gave following relationships for K
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 for dominant Couette fl ows as
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( )0.751
0.0392 Re

y

y

K
G

= =

Th e values of K
x 
and K

y
 must not be less than 12. 12

x
K =  when Re = 977 and 12

y
K =  when Re = 2060.

Hirs (1974) used n = 0.066 and m = –0.25 for smooth surfaces and Re ≤ 105.
However, it has been observed that at high Reynolds numbers the values obtained by Ng, Pan, and Elrod 

and by Hirs are almost identical. Discrepancies occur in the transition regime when the fl ow changes from 
turbulent to laminar, i.e., at low Reynolds numbers.

Steady state analysis of plain journal bearings in turbulent fl ow was done by Kumar and Rao (1995). 

Reynolds Equation (10.156) with 0
h

t

∂
=

∂
 was solved using fi nite diff erence method satisfying proper bound-

ary conditions and performance characteristics of journal bearings in terms of Sommerfeld number (S) and 

friction parameter 
R

f
C

⎛ ⎞
⎜ ⎟⎝ ⎠

 versus eccentricity ratio (e) were presented for various Reynolds numbers and 

L/D ratios as shown in Figs 10.21 to 10.22. Turbulence is equivalent to operating with a lubricant of 
increased viscosity, other factors remaining same. Th erefore, it manifests in increased load capacity and 
frictional drag for the bearing. Whereas increased load capacity is benefi cial, on the other hand, increased 
frictional drag means more power consumption which is a major drawback.
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11
Gas-lubricated Bearings

11.1 | Introduction

Th e operating principle of gas-lubricated bearings is essentially same as that of liquid-lubricated bearings. In 
hydrodynamic gas bearings (sometimes called aerodynamic bearings), the pressure is generated by the action 
of shearing and squeezing the environmental gas between the surfaces in relative motion, whereas in  externally 
pressurized gas bearings (aerostatic bearings) pressurized gas is fed from a compressor for development of 
 pressure. Hence, both axial and radial loads can be supported avoiding metal-to-metal contact. Like liquid-
lubricated bearings, gas bearings can operate entirely aerodynamically or aerostatically or by  combination of 
both. In some  applications, it becomes necessary to supply externally pressurized gas to  aerodynamic bearing 
to prevent instabilities.

Some of the exclusive advantages of gas bearings are that gases are chemically stable for a wide range 
of temperature and have extremely low viscosities. Gas-bearing electric motors with ceramic windings can 
be operated at temperature up to 500° C for long periods. It has also been reported that aerostatic ceramic 
bearings were operated at temperatures up to 800° C at a speed of 65,000 rpm. Various types of expansion 
turbines, gas liquefi ers, and refrigeration plants use gas bearings at low temperatures. A small high-speed 
expansion turbine developed by the British Oxygen Company operates at 350 000 rpm using helium gas at a 
temperature between 50° and 13° K. Th e low viscosity of gases as compared to liquids are exploited in special-
ized applications such as dynamometers, wind-tunnel balances, and mechanical instruments which operate at 
extreme low-static frictional torque. When air is used as a lubricant, a special advantage can be gained since 
the exhaust gas can be released to the surroundings giving rise to large fl ow rates. Low-friction characteristics 
of aerostatic bearings can also be exploited in the slideways of machine tools.

Like oil-lubricated bearings, the total power consumption (power loss due to viscous friction and power 
supply to the pressure sources) is not necessarily low. However, there are several disadvantages too. Th ese bear-
ings are more prone to instability. In gas bearings, the fi lm thickness is much thinner than bearings using oil as 

Chapter
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lubricant. Th erefore, the surfaces are to be fi nished with close tolerances so that the minimum fi lm thickness 
is not of the same order as the roughness of the surfaces.

For successful operation of gas bearings, a few precautions are to be taken such as the surfaces are to be 
fi nished with high accuracy, there should be no misalignment between the journal and bearing, operating 
speed must be high, and applied load is kept at a relatively low level.

While dealing with oil-lubricated bearings as discussed in the previous chapters, the density of the 
lubricant has been treated as constant. However, in gas-lubricated bearings the density variation with pres-
sure should be taken into account. At low speeds, the density may be kept as constant, but at high speed 
the density variation with pressure must be considered. Th e expansion of gas, in most cases, can be taken as 
 isothermal, although at moderate speeds there will be some amount of friction loss, thereby the slight increase 
in temperature. Th is is advantageous since the viscosity of gas increases with increase in the temperature.

Th e Reynolds equation has been derived under no slip condition, that is, fl uid particles adhering to the 
bearing surfaces will have the velocities of the surfaces. Th is condition is valid for continuum fl ow theory. 
When the fi lm thickness is comparable to mean free molecular path of the gas, the continuum fl ow theory is 
not valid and the slip fl ow will occur.

When Knudsen number, K
n
 < 0.01, fl ow may be treated as continuum. Knudsen number K

n 
is defi ned as

n
K

h

λ
= , where λ  is the mean free molecular path and h is the fi lm thickness. If 0.01 < K

n
 < 15, slip fl ow will 

occur. Th e load capacity decreases with Knudsen number.
Th e eff ect of compressibility on liquid and gas lubricated bearings can be analyzed in the following ways.
It is known that fl uid velocity in the direction of motion of a plane slider is given by:
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u z hz U

dx hη
⎛ ⎞

= − + −⎜ ⎟⎝ ⎠
 (11.1)

Th e mass fl ow rate per width can be written as

0

h

m udzρ= ∫

( )2

0

1
1

2

h dp z
z hz U dz

dx h
ρ

η
⎛ ⎞⎛ ⎞

= − + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫

 
3

2 12

dpUh h

dx
ρ

η
⎛ ⎞

= −⎜ ⎟⎝ ⎠
 (11.2)

or  
3

12

2

dp Uh m

dx h

η
ρ

⎛ ⎞
= −⎜ ⎟⎝ ⎠

 (11.3)

For liquid lubricated bearing ρ  is constant, hence the volume rate of fl ow per unit width is constant.

For gases, the density increases as the pressure increases. Th us, m

ρ
 term in Equation (11.3) decreases 

and dp

dx
 increases. Hence is the variation of pressure (Fig. 11.1). Th e rise in pressure curve is less abrupt in 

the region 0
dp

dx
> , whereas the drop is signifi cant when 0

dp

dx
< . One can observe that the shape of pressure 
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variation in the direction of motion is not the same for the two bearings. In case of gas bearings, the eff ect 
of ambient pressure is noticeable if the pressure variation in the bearing is large; the eff ect of compressibility 
is more when compared with the ambient pressure. On the other hand, when the pressure variation is small 
compared to the ambient pressure, the compressibility is quite less.

For a given operating condition, U increases due to compressibility. Th e increase inside the lubricant fi lm 
is signifi cant.

11.2 | Governing Equations

Th e generalized Reynolds equation which is already derived earlier can be written as

 
( ) ( )3 3

6 12
h hp ph h

U
x x y y x t

ρ ρρ ρ
η η

∂ ∂⎛ ⎞∂ ∂⎛ ⎞∂ ∂
+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (11.4)

Equation (11.4) is the governing equation for the gas-lubricated bearings. Here viscosity varies insig-
nifi cantly with pressure. Viscosity can be assumed to be constant. To consider the variation of density with 
pressure, it is assumed that gas bearings operate isothermally and for perfect gas, the relationship of density 
with pressure can be given by p RTρ= , where R is the gas constant and T is the absolute temperature.

If it is assumed that a gas obeys a polytropic relation,

then 
npρ−

 = constant (11.5) 

n = polytropic gas-expansion exponent.

Th e polytropic index, n = /
p v

c c .

When the fl ow is isothermal, n = 1.

Substituting Equation (11.5) into Equation (11.4),

 
1 1 1 1

3 3 6 12n n n n
p p

p h p h U p h p h
x x y y x t

η η
⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞

+ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (11.6)
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Figure 11.1 | Pressure and Velocity Profi le of Incompressible and Compressible Lubricant
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For an isothermal fi lm, Equation (11.6) will reduce to

 ( ) ( )3 3 6 12
p p

ph ph U ph ph
x x y y x t

η η
⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (11.7)

Equation (11.7) is a nonlinear partial diff erential equation in p.
Substituting /

a
p p p= , 

2
/h h h= , /x x B= , /y y L=  in equation (11.7) under steady-state condition, we 

get

 ( )
2

3 3
p pB

ph ph ph
x x L y y x

⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂⎛ ⎞
+ = Λ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (11.8)

where 
2
2

6

a

UB

p h

η
Λ =  is called bearing number, which is mainly a function of speed.

11.3 | Limiting Solution

Before obtaining the general solution two limiting solutions, for small Λ  (i.e., for small speed) and large Λ  
(a very large speed) are tried here. Equation (11.8) can be written as

 

2 22
3

3 3
p p p p pB h h h

h h
x x L y y p x z x p x

⎡ ⎤⎛ ⎞ ⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎢ ⎥+ + + = Λ +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎢ ⎥ ⎣ ⎦⎣ ⎦
 (11.9)

For small bearing numbers, Equation (11.9) can be approximated and it can be shown that the diff eren-
tial equation for gas and oil-lubricated bearings will be identical.

When 0, 1pΛ → →  and the pressure rise, 0.pΔ →

Th e terms 
p

x

∂
∂

 and 
p

y

∂
∂

 are small, and 

2
p

x

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 and 

2
p

y

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

 are still smaller.

Again 
ph h

p x x

∂ ∂
<<

∂ ∂

Th erefore, Equation (11.9) for small bearing numbers reduces to

 

2

3 3
p pB h

h h
x x L y y x

⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂⎛ ⎞
+ = Λ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (11.10)

Equation (11.10) corresponds to the Reynolds equation using incompressible lubricant.

For large bearing numbers, i.e., for Λ → ∞ , pressure can remain fi nite only if ( ) 0ph
x

∂
→

∂
 i.e. 

ph  = constant. Th erefore, at values of high bearing number, pressures generated are independent of bearing 
number.

Th ere exists a fundamental diff erence between oil lubrication and gas lubrication. In oil lubrication, the 
pressure is proportional to speed and viscosity of lubricant and is independent of ambient pressure, whereas 
in self-acting gas-lubricated bearings at high speeds, the pressure is independent of speed, and viscosity is 
dependent on ambient pressure.
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It follows from the above discussion that for small values of Λ the eff ect of compressibility can be ignored. 
Th e equations of gas-lubricated bearings become identical with those of oil-lubricated bearings. Despite this 
fact, the two phenomena are not identical, because some characteristic properties of gases continue to mani-
fest themselves even though the eff ect of compressibility is small. Th is is mainly due to expansibility of gas.

For an example, if we consider the case of an infi nitely long journal bearing the pressure distribution 

using boundary condition, ( ) ( )0 2 ,p pθ π= =  can be given by

( )
( )22

2 cos sin
1

2 1 cos
a

p p
ε θ θε

ε ε θ

⎛ ⎞+Λ
= +⎜ ⎟

⎜ ⎟+ +⎝ ⎠

where 
2

6

a

C
p

R

ηω
Λ =

⎛ ⎞
⎜ ⎟⎝ ⎠

We can see ( )a

a

p p

p

−
 increases linearly with Λ . Th e pressure variation is antisymmetric with respect to 

the line θ π=  (Fig.11.2). In case of liquid lubricant, the region 2π θ π≤ ≤  is inactive as the cavitation sets 
in and fi lm breaks down. On the other hand, for gases there can be depressions, but the expression for pres-

sure distribution given above is valid for the entire circumference of the bearing ( )2π θ π≤ ≤ . Hence the 
fi lm is full.

For oil lubricated bearings, we can fi nd the load capacity considering 0 π−  fi lm. Similarly, the load 
capacity can be found for gas-lubricated bearing for 0 π−  fi lm. From these, the ratio of load capacity of 

 gas-lubricant to that of oil lubricant will be given by 
( )

( )( )
2

2
2

1
2

41 1

ε

επ

−

− −
 for small values of Λ .

Th is ratio is larger than unity for 0.94ε ≤ . Hence, the load capacity of a gas-lubricated bearing at 
0Λ →  is relatively larger than the load corresponding to an oil lubricant of same viscosity h. However, in 

practice one can hardly fi nd a gas lubricant having same viscosity of that of oil.
Because of nonlinearity of diff erential equation, it is diffi  cult to obtain a closed form solution. Th erefore, 

several methods of linearizing the diff erential equations are adopted.

p − p
a (p

liq 
)Λ > 0

(p
gas 

)Λ > 0
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)Λ          0

0

→

2pπ

p
liq 

q

Figure 11.2 | Variation of Pressure at Low Speeds for Liquid and Gas Lubricants
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11.4 | Infi nitely Long Plane Slider

For an infi nitely long plane slider bearing shown in Fig.11.3, the fundamental equation for pressure distribu-
tion under steady-state condition can be written as

 
( )3

6
hph

U
x x x

ρρ
η

∂∂⎛ ⎞∂
=⎜ ⎟∂ ∂ ∂⎝ ⎠

 (11.11)

For an isothermal fl ow and using constant viscosity, Equation (11.11) reduces to

 
( )

3 6
php

ph U
x x x

η
∂∂⎛ ⎞∂

=⎜ ⎟∂ ∂ ∂⎝ ⎠
 (11.12)

With the following substitutions, /x x B= /
a

p p p= , and 
2

/h h h= , nondimensional form of 
Equation (11.12) is given by

 
( )

3
php

ph
x x x

∂∂⎛ ⎞∂
= Λ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (11.13)

where 
2
2

6

a

UB

p h

η
Λ =

Th e dimensionless fi lm thickness h  is given by

 ( 1)h n n n x= − −  (11.14)

where 1

2

h
n

h
=  and 

x
x

B
=

Integrating Equation (11.13),

 ( )3
1

p
ph ph C

x

∂
= Λ −

∂
 (11.15)

where 
1

C  = constant.

Figure 11.3 | An Infi nitely Long Plane Slider
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Substituting phΦ = , Equation (11.15) then becomes

 
2

1

d dh

C h

Φ Φ
=

Φ − ΛΦ + Λ
 (11.16)

where .
1n

Λ
Λ =

−

Th e boundary conditions are:

nΦ =  at 0x =  and 1Φ =  at 1x =  (11.17)

Integrating Equation (11.16), we obtain

 ( )2 2
1 2

C C hΦ − ΛΦ + Λ = Ψ Φ  (11.18)

where 
2

C  is a constant of integration and ( )Ψ Φ  is given by the following form:

( )1
Ψ Φ = exp

( ) ( )
1

1 1

2 2
1 1

2 2
tan

4 4C C

−

⎧ ⎫
⎪ ⎪Λ Φ − Λ

− ⎨ ⎬
⎪ ⎪⎡ ⎤ ⎡ ⎤Λ − Λ Λ − Λ⎣ ⎦ ⎣ ⎦⎩ ⎭

for 
1

4CΛ <  

( )cΨ Φ  = exp 1
8

2

C

Φ − Λ
 for 

1
4c CΛ =

and ( )2
Ψ Φ  = 

( )
( )

( ) 1 2

1
41

2
1

1

2
1

2 4

2 4

C

C

C

⎡ ⎤Λ Λ −Λ⎣ ⎦⎧ ⎫
⎡ ⎤Φ − Λ + Λ − Λ⎪ ⎪⎣ ⎦

⎨ ⎬
⎪ ⎪⎡ ⎤Φ − Λ − Λ − Λ⎣ ⎦⎩ ⎭

 for 
2

4CΛ >

1
C  and 

2
C  can be evaluated using the boundary conditions given in Equation (11.17).

Th e load-carrying capacity is

 ( )
0

B

a
W L p p dx= −∫  (11.19)

( )
1

0

1
a

LBp p dx= −∫

or ( )
1

0

1
a

W
W p dx

LBp

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠ ∫

or 

1

0

1
( 1)

W dx
n n x

Φ⎡ ⎤
= −⎢ ⎥− −⎣ ⎦∫  (11.20)
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Substituting ( )Φ  in Equation (11.19) and integrating numerically gives load capacity.
For bearing number approaching 0 and ∞ the load capacities are given by

and 

( ) ( )( )1 1
2

0
1 ln 2 1 1 1

1
1

W n n n n

n
W

n

− −

Λ→

Λ→∞

⎫⎡ ⎤= Λ − − − + − ⎪⎢ ⎥⎣ ⎦ ⎪
⎬
⎪= −
⎪− ⎭

 (11.21)

Th e isothermal load-carrying capacity and centre of pressure for infi nitely long slider bearings for various 
attitudes and speeds are given in Table 11.1

11.5 | Finite Journal Bearings

Th e Reynolds equation under steady-state condition for isothermal fi lm is 

 ( )3 3 6
p p

ph ph U ph
x x y y x

η
⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂

+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (11.22)

Table 11.1 | Load Capacity and Centre of Pressure for Infi nitely Long Plane Sliders Under Isothermal Condition

n ΛΛ W
C

x

1.5 0.5 0.01091 0.5456

1.0 0.02172 0.5520

5.0 0.09570 0.5861

10.0 0.14860 0.6168

25.0 0.19420 0.6585

2.0 0.5 0.01323 0.5724

1.0 0.02640 0.5761

5.0 0.12340 0.6008

10.0 0.21240 0.6235

50.0 0.36390 0.6870

3.0 0.5 0.01232 0.6095

1.0 0.02063 0.6116

5.0 0.12010 0.6264

10.0 0.22520 0.6402

50.0 0.56180 0.6950



Gas-lubricated Bearings 311

Equation (11.22) can be nondimensionalized with the following substitutions: 

/ , / , / , / ,
a

x R y y R h h C p p pθ = = = =  and .U Rω=

Th e dimensionless form of Equation (11.22) will be

 ( )3 3
p p

ph ph ph
yyθ θ θ

⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂
+ = Λ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠∂

 (11.23)

where 

( )2

6
.

/
a

p C R

ηω
Λ =

Equation (11.23) is a nonlinear partial diff erential equation in p  and its solution satisfying the boundary 
conditions is extremely diffi  cult. For this reason, some approximate methods of solution are tried.

11.5.1 | The Perturbation Method [Ausman (1957)]

Th e perturbation method is one of the techniques employed to linearize Equation (11.23) in order to obtain 
an approximate solution. Th e pressure is expressed in power series of increasing eccentricity ratio e.

 2 3
1 2 3

1 .....p p p pε ε ε= + + + +  (11.24)

where 1 1 , 2 2 , 3 3a a a
p p p p p p p p p= = =  etc.

Th e fi lm thickness is expressed by

 1 cosh ε θ= +  (11.25)

Substituting Equations (11.24) and (11.25) in Equation (11.23), the following set of linear diff erential 
equations is obtained:

 
2 2

1 1 1

2 2
sin

p p p

y
θ

θ θ
∂ ∂ ∂⎛ ⎞

+ = Λ −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (11.26)

 22
2 2 2

2 2 21 1 1 1 1

2 2

3
3 sin sin 2 2 cos

2

p p pp p p p p
h

y y
θ θ θ

θ θ θ θ θ θ

⎡ ⎤∂ ∂ ∂∂ ∂ ∂ ∂ ∂⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥+ + + − = Λ + − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦

 

(11.27)

Similarly, a diff erential equation in 3
p  can be found. Equation (11.26) can be solved for 1

p  which can 

be substituted in Equation (11.27) as a known function. Equation (11.27) can be solved for 2
p , which in turn 

can be used for the equation in 3
p  and so on. It will be shown later that 1

p  comes out to be quite lengthy and 
its substitution in the right hand side of Equation (11.27) makes the equation complex. Th is does not permit 

to get 2
p , 3

p ,etc. Moreover, the 2
p  does not contribute to the load carrying capacity because of orthogonality. 

Th us, load capacity can be calculated using the fi rst-order perturbation solution with fair accuracy for small 

eccentricity ratios ( )0.3ε ≤ .
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Th e fi rst-order solution.

Let 1
p  be taken as

 
( ) ( ) ( )1 1

p p Y y θ= ∞ + Θ
 (11.28)

where Y  is a function of y  alone, Θ  is a function of θ  alone, and 
1
( )p ∞  is the fi rst-order perturbation 

solution for an infi nitely long journal bearing.

Th e ( )1
p ∞  is given by

 
( ) ( )1 2

sin cos
1

p θ θ
Λ

∞ = − Λ
+ Λ  

(11.29)

On substitution of Equation (11.28) into Equation (11.29), a homogeneous equation in Y and Θ is 
obtained. It can be then solved by separation of variables method.

Th e boundary conditions are:

• ( ) ( )1 1
, 2 ,p y p yθ θ π= +

• 1 0
p

y

∂
=

∂
 at 0y =  (11.30)

• 
1

0p =  at 
L

y
D

= ±

Solution of Equation (11.26) with the help of Equations (11.28), (11.29) and the fi rst two boundary 
condition of Equation (11.30) gives pressure distribution.

Th e load components parallel to and perpendicular to the line of centres are calculated from

 
/ 2

2

/ 0

cos
L D

r
L D

W R p d d y
π

θ θ
−

= − ∫ ∫  (11.31)

/ 2

2

/ 0

sin
L D

L D

W R p d d y
π

θ θ θ
−

= ∫ ∫

Th e load components in terms of perturbed pressure 1
p  are

 
/ 2

2
1

/ 0

cos
L D

r a
L D

W R p p d d y
π

ε θ θ
−

= − ∫ ∫  (11.32)

/ 2

2
1

/ 0

sin
L D

a
L D

W R p p d d y
π

θ ε θ θ
−

= ∫ ∫
Substitution of perturbed pressures and integration yields

 
( ) ( )

2
2

sin (2 / ) sinh (2 / )

1
1 [cosh(2 / ) cos (2 / )]

r

a

W L D L D

p RL L
L D L D

D

α β β α β α
πε α β

⎡ ⎤
⎢ ⎥− Λ − Λ +Λ ⎢ ⎥= Λ +

+ Λ ⎢ ⎥⎛ ⎞ + Λ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (11.33a)
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and 

( ) ( )
2

2

2 2
sinh sin

1
1

1 [cosh(2 / ) cos(2 / )]a

L L
W D D

p RL L
L D L D

D

θ

α αα β α β

πε α β

⎡ ⎤⎛ ⎞ ⎛ ⎞− Λ + Λ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠Λ ⎢ ⎥= −
+ Λ ⎢ ⎥⎛ ⎞ + Λ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (11.33b)

where 
2

2
1 1

2
α

+ Λ +
=  and 

2
2

1 1

2
β

+ Λ −
=

Th e total load 2 2
r

W W Wθ= +  (11.34)

and the attitude angle 1tan
r

W

W
θφ −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (11.35)

For an infi nitely long journal bearing, 
L

D
→ ∞ , the load components for this case will be

 ( ) 2

21
r

a

W

p RLπε
∞ Λ

=
+ Λ

 (11.36a)

and 
( )

21
a

W

p RL
θ

πε
∞ Λ

=
+ Λ

 (11.36b)

Th e above results are true for small ( )0.3ε ε ≤ . Th e dimensionless load and attitude angle against bearing 
number are shown in Fig. 11.4
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Figure 11.4 | Isothermal Load and Attitude Angle Using First Order Perturbation Method
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11.5.2 | The Linearized ‘ph’ Method [Ausman (1960)]

Th e linearized ‘ph’ method corrects the defi ciency of the fi rst-order perturbation method at high  eccentricities. 
Th e general method of linearization is essentially the same as the perturbation method except that the ‘ph’ is 
considered to be the dependent variable.

Letting ,  , ,
yx

ph y U R
R R

θ ωΦ = = = =  and

1 cos ,h ε θ= +  the dimensionless form of the Reynolds equation is

 
2 2

2 2
cos

y
ε θ

θ θ
∂ Φ ∂ Φ ∂Φ

+ = Λ −
∂ ∂ ∂

 (11.37)

where 2

6

a

C
p

R

ηω
Λ =

⎛ ⎞
⎜ ⎟⎝ ⎠

Th e boundary conditions are:

• hΦ =  at 
L

y
D

= ±

• ( ) ( ), 2 ,y yθ θ πΦ = Φ +  (11.38)

• 0
y

∂Φ
=

∂
 at 0y =

Solution of Equation (11.37) with the above boundary conditions Φ  is obtained.

Th e load components 
r

W  and Wθ , parallel and perpendicular to the line of centres, are given by 

Equation (11.29), which upon substitution of p
h

Φ⎛ ⎞
=⎜ ⎟⎝ ⎠  and subsequent integration yields

2 2

22
2

2 1 1
1

11

L

D
a

r
L

D

R p
g y d yW

π ε
ε ε −

Λ⎛ ⎞− −
−= ⎜ ⎟⎝ ⎠+ Λ−

∫

and ( )
2

2
12

2
1 1

1

L

D
a

L

D

R p
W g y d yθ

π
ε

ε −

Λ⎛ ⎞
= − − ⎜ ⎟⎝ ⎠+ Λ∫

For functions 
1

g y and 
2

g y  one can see Ausman (1960).
Th e load components can be expressed as

 ( )
2

1

2 2

2 1 1

1
r r

W W
ε

ε ε
− −⎛ ⎞

= ⎜ ⎟⎝ ⎠ −
 (11.39a)

 
( ) ( )1 2

2

2
1 1W Wθ θ ε

ε
⎛ ⎞

= − −⎜ ⎟⎝ ⎠  (11.39b)

where ( )1

r
W  and 1Wθ  are the fi rst-order perturbation solutions.
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Th e total load and attitude angle are

 ( ) ( ) ( )
2

1 12 2

2 2

1 12
1 sin

1
W W

ε
ε φ

ε ε

− −⎛ ⎞
= −⎜ ⎟⎝ ⎠ −

 (11.40)

and ( )12tan 1 tanφ ε φ= −  (11.41)

where ( )1W  and ( )1φ  are load and attitude angle, Φ obtained from the fi rst-order perturbation solution. Th e 
( )1W  and ( )1Φ  can be found from Fig. 11.4.

11.6 | Externally Pressurized Gas Bearings

Th e operating principle of an externally pressurized (hydrostatic) gas bearing is basically same as that of a 
hydrostatic oil bearing. Here the compressed gas at a constant supply pressure via a restrictor (usually an 
 orifi ce) is fed to the bearing clearance which, in turn, takes the load avoiding metal-to-metal contact and 
fi nally it exhausts at ambient pressure from the bearing ends.

11.6.1 | Circular Step Thrust Bearings

For a circular thrust bearing shown in Fig.11.5, the volume rate of fl ow of gas
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r
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η
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 (11.42)

r r
pQ p Q=  = constant (11.43)

From continuity consideration
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Figure 11.5 | A Circular Step Thrust Gas Bearing
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Separating the variables and integrating
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 (11.45)

At 
0
, ,

a
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π
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 (11.46)

From which r
Q  can be found and when it is substituted in Equation (11.45), one obtains
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 (11.47)
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 (11.48)

Th e load capacity W is
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where p
r
 is recess pressure.

As it is diffi  cult to perform integration, it is assumed that the pressure drops linearly from 
i

r  to 0
r ,
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 (11.50)

11.6.2 | Stiff ness

Using an orifi ce as a restrictor, the mass fl ow rate, G , into the bearing through a single orifi ce when unchoked 
fl ow occurs, i.e.,

for 
/ 1

2

1

k k

r

s

p

p k

−
⎛ ⎞

≥ ⎜ ⎟⎝ ⎠+
 (11.51a)
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for choked fl ow condition,

i.e., for 
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 (11.51b)

d
C  = coeffi  cient of discharge of orifi ce restrictor and

0
A  = area of orifi ce restrictor,

For an adiabatic fl ow of air through the orifi ce, 1.4k = . When 0.528r

s

p

p
>  the fl ow is unchoked, and for 

0.528r

s

p

p
< , the fl ow is constant and depends on supply pressure.

Th e mass rate of fl ow through the bearing is
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 (11.52)

Th is equation can be written as
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where 
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From continuity consideration fl ow through the orifi ce should be equal to the bearing outfl ow. For 
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 (11.54b)

where 
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Equation (11.54) can be solved numerically using Newton–Raphson method in order to obtain the 
 pressure at the downstream of the orifi ce for various values of restrictor parameter δ  and pad shape ratio.

Th us, knowing the pressure in the recess r
p  the load capacity and fl ow rate of compensated bearing can 

be found.
Th e static stiff ness S can be calculated from

 
dW

S
dh

= −  (11.55)

11.7 | Journal Bearings

An approximate method of solution is adopted here by treating the feed sources as a ‘line source’. At small 
eccentricity ratio, this analysis considers only axial fl ow. Heinrich (1959) used this approach for evaluating 
load, fl ow, and stiff ness characteristics of this type of bearing.

For a stationary journal (Fig. 11.6) the governing diff erential equation under isothermal condition is

 
2 2

3 3 0
p p

h h
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+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (11.56)

If fl ow through the bearing is purely axial which is a reasonable assumption for small eccentricity ratios, 
Equation (11.56) reduces to

 
2 2

2
0

p

y

∂
=

∂
 (11.57)

Here h is replaced by radial clearance C .

Figure 11.6 | An Externally Pressurized Gas Journal Bearing
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Integrating Equation (11.57) with the boundary conditions

(i) r
p p= at 0y =  and (ii) a

p p=  at 2

L
y = ,

we get, ( )2 2 2 2

/ 2a r r

y
p p p p

L
= − +  

or ( )2 2 21
r r

p p y p= − +  (11.58)

where , r

r

a a

pp
p p

p p
= =  and / 2

y
y

L
= . 

Equating the mass rate of fl ow per unit circumferential length at the mid plane,
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24 / 2
a

y

C p p N
G

y DRT L πη =

− ∂
=

∂
 (11.59)

where N is the number of orifi ces and G is the mass rate of fl ow through a single orifi ce.
Using fl ow through orifi ce for unchoked and choked conditions, one obtains

for 
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and for 
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 (11.60b)
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Equations (11.60a & b) are nonlinear algebraic equations in r

s

p
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⎛ ⎞
⎜ ⎟
⎝ ⎠

 and can be solved using Newton–

Raphson iteration method for constant values of , ,
L

N
D

δ  and a

s

p

p

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Th e pressure distribution can be calculated 
from Equation (11.58).
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Th e load capacity W is
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θ θ= − ∫  (11.61)
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W
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LDp
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Introducing p and integrating Equation (11.62), dimensionless load can be calculated.
When the journal rotates with constant angular velocity, w, the diff erential equation under isothermal 

condition is
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For small eccentricity ratios, Equation (11.63) can be linearized by using fi rst-order perturbation method 
with respect to ε . Representing discrete feeding holes by a continuous line feed, Lund (1964) obtained a solu-
tion using pressure perturbation theory. When Equation (11.63) is normalized, it will reduce to
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where 
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p C R

ηω
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Th e pressure and fi lm thickness can be written as

 ( ) ( ) ( )0 1
, ,p y p y p yθ ε θ= +  (11.65)

and 1 cosh ε θ= +  (11.66)

Substituting Equations (11.65) and (11.66) into Equation (11.64) and retaining up to fi rst linear terms,
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and 
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 (11.68)

Following an approach used by Heinrich (1959) for nonrotating journal, Lund (1964) solved 
0

p  and 
1

p  
and calculated load capacity and attitude angle for various operating conditions. A more accurate solution 
considering discreteness of feed holes is available in (Majumdar 1972).
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11.8 | Porous Gas Bearings

11.8.1 | Journal Bearings

Gas-lubricated bearings using porous surfaces are being employed in recent years in many applications. A few 
analyses on the subject are available in studies conducted in 1962 and 1964. Constantinescu (1962) obtained 
a closed form solution of pressure distribution and load capacity using short bearing theory. Sneck and Yen 
(1964) provided a solution taking ε  as a perturbation parameter. In 1975, the static characteristics were found 
numerically for any eccentricity ratio and porous bushing thickness considering three- dimensional fl ow of 
gas in porous medium.

An analytical solution (Majumdar 1977) considering one-dimensional (radial) gas fl ow through the 
porous bushing is obtained here. Th e fl ow through the porous medium is governed by Darcy’s law. Th e porous 
bushing has both the ends sealed for economy of gas consumption.

Using conventional assumption of gas-lubricated porous bearings under static condition for the bearing 
shown in Fig. 11.7, the governing equations in porous medium and bearing clearance are:
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 (11.69)
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 (11.70)

where p′ and p  are dimensionless pressures in the porous medium and bearing clearance, respectively, and 

p
Λ  is feeding parameter which is given by 

2

3

12
z

p

k R

C H
Λ = , z

k  is the permeability coeffi  cient of porous material 

in the radial direction, H is the thickness of porous bush.
Th e boundary conditions for Equations (11.69) and (11.70) are:

• at 0,
s

z p p= =′

• at 1,z p p= =′

• ( ) ( ), 2 ,p y p yθ θ π= +  (11.71)

• ( ), 1 1p θ ± =

Equations (11.69) and (11.70) are linearized by a fi rst-order perturbation method with respect to ε . 
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Figure 11.7 | A Porous Gas Bearing
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Substitution of Equations (11.72) into Equations (11.69) and (11.70) results in the following equations:
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Th e boundary conditions of Equation (11.72) are accordingly modifi ed. After evaluating 
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 at 1z = , Equation (11.75) and (11.76) reduce to
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Equation (11.77) when solved using the conditions that 
0

1p =  at 1y =  and 0 0
dp

dy
= at 0y =  results
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Equation (11.78) is solved in the following way:
Assuming a solution of the type

 ( )0 1
cosp p g y θ=  (11.80)

Using Equations (11.79) and (11.80), Equation (11.78) will be obtained as
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Equation (11.81) when solved yields
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and A and B constants, are evaluated from the conditions

• at 1, 0y g= =

• at 0, 0.
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y
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= =  (11.84)

Th e g will come out to be
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Th e load capacity W can be found from
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Equation (11.86) can be written as
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Introducing g and 0
p  in Equation (11.87) and subsequent integration gives the dimensionless load 

capacity. Th e load capacity versus feeding parameter for various 
L

D
 ratios is plotted in Fig. 11.8.

Th e mass rate of fl ow from bearing ends can be calculated from
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Th e variation of fl ow is insignifi cant with ε . Th e fl ow of concentric position will be nearly equal to that 
of any small eccentricity ratio. Th us, G can be written as
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After substituting the value of 0
p  in Equation (11.89) and performing integration
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Figure 11.8 | Load Capacity of Journal Bearing
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For a rotating journal bearing the dimensionless Reynolds equation in the bearing clearance is 

 
( )22 2 2 2

3 3

2
1

2
p

z

php p pD
h h

L y zθ θ θ =

∂∂ ∂ ∂ ′⎛ ⎞ ⎛ ⎞∂ ⎛ ⎞
+ = Λ + Λ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (11.91)

Th e pressure distribution in the porous medium will be Equation (11.64). Th e boundary conditions for 
these equations are still given by Equation (11.71). Th e method follows, in general, from Majumdar (1978).

Th e solution can be obtained using a fi rst-order perturbation theory with respect to ε . Th e pressures p′ 
and p  are written in the same form as given by Equation (11.72). With the introduction of Equation (11.72) 
in Equations (11.69) and (11.91), one can obtain Equation (11.73), (11.74), and (11.75) and
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 (11.92)

Th e steady-state pressure in the bearing clearance will be same as that of Equation (11.79). Now for the 
solution of Equation (11.92), assume

 
( ){ }0 1

Re ip p g y e θ−=
 (11.93) 

Substituting Equation (11.93) and replacing 
2 2
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p
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∂

∂
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, Equation (11.92) boils 
down to 
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 (11.94)

Equation (11.94) is solved numerically by fi nite diff erence scheme with the boundary conditions g = 0 

at 1y =  and 0
dg

dy
=  at 0y = .

Th e two load components are calculated from:

( )
/2 2

1
0 0

cos 2 cos
L

r
W W p R d dy
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φ ε θ θ= = − ∫ ∫

and ( )
/2 2

1
0 0

sin 2 sin
L

W W p R d dy
π

θ φ ε θ θ= = ∫ ∫  (11.95)
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Equation (11.95) can be written as
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2
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On performing intergrations of Equation (11.96), the load capacity and attitude angle can be calculated 
from:

 2 2

rW W W θ= +  (11.97)

and ( )1tan / rW Wθφ −=  (11.98) 

Th e load capacity and attitude angle are shown in Fig. 11.9 for various 
L

D
 ratios and journal speeds.

In the preceding section, the static characteristics of externally pressurized gas journal bearings have been 
given assuming fl ow of gas occurring only in the radial direction of the porous matrix. If such an assumption 
is not made and gas is considered to fl ow in circumferential, axial, and radial directions in the porous medium, 
the performance characteristics are given in Majumdar (1976).

Figure 11.9 | Load Capacity and Attitude Angle for Various Journal Speeds and 
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11.9 | Circular Porous Thrust Bearing

For a porous bearing having circular shape as shown in Fig. 11.10, the governing equation at the porous 
matrix is

 
' 2 ' 2
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1
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p p
r

r r r z

∂ ∂⎛ ⎞∂
+ =⎜ ⎟∂ ∂ ∂⎝ ⎠  (11.99)

Th e Reynolds equation in the clearance gap is:
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z H
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r dr dr dzη η
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Th e associated boundary conditions of bearing are:

• '
s

p p=  at z = 0 and 
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• a
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∂
 at 0r =  (11.101)

Integrating Equation (11.95) and using the fi rst two boundary conditions of Equation (11.101),
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 (11.102)

Using Equation (11.102), Equation (11.100) can be written as
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dpd
r p p
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 (11.103)

Figure 11.10 | A Circular Porous Thrust Bearing
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where 
2

0 3

12
/ , , / , /z o

p a s s a

k r
r r r p p p p p p

Hh
= Λ = = =  

Th e solution of Equation (11.103) and using the last two boundary condition of Equation (11.101) is 
given by

 ( ) ( )0
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s s
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I r
p p p

I

Λ
= + −

Λ
 (11.104)

where I
0
 is the modifi ed Bessel function of fi rst kind. Th e load capacity and mass rate of fl ow are
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 (11.106)

Th e stiff ness S can be calculated from
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 (11.107)

or ( )2
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p
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Sh dW
S

dr p pπ
= = Λ

Λ−
 (11.108)

Th us, the stiff ness can be calculated from the slope of W  vs. 
p

Λ  curve.
Th e load capacity, fl ow rate, and stiff ness for diff erent operation conditions are given in Figs 11.11 and 11.12.

Figure 11.11 | Variation of Load Capacity With Feeding Parameter and Supply Pressure
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11.9.1 | Eff ect of Slip Flow on Porous Bearings

In all previous solutions concerning porous gas bearings, the no-slip condition was assumed. In the following 
analysis, modifi ed Beavers–Joseph (1972) slip velocity condition is used to fi nd the static characteristics of a 
circular thrust bearing. Th e eff ect of slip on the performance characteristics will be shown (Rao 1979).

Here no-slip condition is assumed at the impermeable runner surface and the modifi ed Beavers–Joseph 
boundary condition is applied at the porous surface of the bearing pad. Th is condition is

 

y

u

y k

α∂
=

∂
 at z H=  (11.109)

where α  is a dimensionless constant which depends on the characteristics of porous material and does not 
depend on the lubricant properties and fi lm thickness.

Th e fl ow through the porous medium is governed by the steady-state mass continuity equation

 ( ) ( ) ( )1 1
' ' ' 0ru v w

r r r z
ρ ρ ρ
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∂ ∂ ∂

+ + =
∂ ∂ ∂

 (11.110)

Using Darcy’s law equation of state and taking 0
p

θ
∂ ′

=
∂

, Equation (11.110) reduces to
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 (11.111)

Th e modifi ed Reynolds equation considering slip velocity of Equation (11.109) and Darcy’s law is

 ( ) 2 2'3 4 1 1
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z H

ks dp ph d
r

s r dr dr zη η =
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 (11.112)

Figure 11.12 | Variation of Flow Rate With Feed Parameter and Supply Pressure
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where s a slip parameters, is 
y

k

hα .

Assuming that pressure gradient is varying linearly, Equation (11.112) will be 
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 (11.113)

where 36 /
z

k H hψ =

When 0ψ =  the fl ow will be purely axial and s = 0 corresponds to no-slip boundary. Th e solution of 
Equation (11.113) is
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where ( )( )
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p s s ψ

Λ
Λ =

+ + +
 (11.115)

Th e load, mass rate of fl ow, and stiff ness can be calculated with the usual method, and W , G, and S  will 

be given by Equation (12.105) to (12.108) where p
Λ  is to be replaced by *

p
Λ . Th e eff ect of slip on the load 

and fl ow is shown in Figs 11.11 and 11.12, respectively.
In the recent year, Saha (2004) has obtained a solution of two-layered porous gas bearings (Fig. 11.13). 

Table 11.2 provides the steady-state characteristics of these bearings. Th ese bearings also provide better 
 stability (Fig. 11.14).
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Figure 11.13 | An Externally Pressurized Two-layered Porous Gas Journal Bearing
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For a single-layered porous bearings working at 5 mμ  to 15 mμ  clearance, the permeability coeffi  cient 

ranges from 3.1 1510−×  to 148.4 10−× m2. For two-layered bearing, the fi ne layer has a typical permeability 

coeffi  cient ranging from 2.6 1410−×  to 157.0 10−×  m2. Th e coarse layer should have permeability coeffi  cient at 
least 200 times that of the fi ne layer, so that most of the pressure drop occurs across the thin restricting layer. If 

2z
k  is taken as 200, ρ  for the two-layered decreases by 20 times as compared to conventional (single-layered) 

porous bearing for 1 1
H

H
=  . Some typical results are shown in Fig. 11.14 in which one can see a better load

carrying capacity for the two-layered bearing. Th e friction variable has been reduced considerably for two-
layered bearings. Th us, by introducing a fi ne layer, the load bearing capacity improves and friction variable 
reduces considerably.

Table 11.2 |  Comparison of Steady State Performance of Single-Layered With Those of Two-Layered Porous 
Journal Bearing

L/D = 1.0, H/R = 0.1, P
–

s
 = 2.0, β = 1.0 (wrt 2-layered) K

–
x1

 = K
–

x2
 = K

–
z1

 = K
–

z2
 = 1.0

00ε ΛΛ
0

W
0

φφ ( )μμ
f

R / C G

0.2

0.0
1.0
2.0
3.0
4.0
5.0

0.1144 (0.0803)
0.1162 (0.0812)
0.1214 (0.0836)
0.1249 (0.0875)
0.1400 (0.0927)
0.1520 (0.0989)

0.0000 (0.0000)
8.0518 (7.0878)

15.5513 (13.8454)
20.4272 (20.0088)
27.1733 (25.4347)
31.2167 (30.0772)

0.0000 (0.0000)
4.6062 (6.5908)
8.8175 (12.7956)

12.8566 (18.3386)
15.2937 (23.0852)
17.5999 (27.0469)

50.7117 (72.5467)
50.7058 (72.5439)
50.6936 (72.5370)
50.6028 (72.5246)
50.6259 (72.5081)
50.5762 (72.4865)

0.4

0.0
1.0
2.0
3.0
4.0
5.0

0.2241 (0.1582)
0.2277 (0.598)
0.2336 (0.1647)
0.2542 (0.1724)
0.2751 (0.1825)
0.2991 (0.1948)

0.0000 (0.0000)
8.2823 (7.1539)

14.4051 (13.9753)
22.3972 (20.2020)
27.8400 (25.6904)
32.0113 (30.3962)

0.0000 (0.0000)
2.5233 (3.5864)
4.9156 (6.9628)
6.7816 (9.9782)
8.3544 (12.5618)
9.6036 (14.7154)

51.6123 (74.4645)
51.5904 (74.4550)
51.4727 (74.4268)
51.4087 (74.3796)
51.2652 (74.3140)
51.0763 (74.2302)

0.6

0.0
1.0
2.0
3.0
4.0
5.0

0.3246 (0.2306)
0.3299 (0.2331)
0.3454 (0.2402)
0.3694 (0.2515)
0.4001 (0.2664)
0.4359 (0.2844)

0.0000 (0.0000)
8.5983 (7.2846)

16.5895 (14.2330)
23.3761 (20.5785)
28.9481 (26.1794)
33.3600 (30.9900)

0.0000 (0.0000)
2.0062 (2.8274)
3.8326 (5.4876)
5.3747 (7.8612)
6.6153 (9.8917)
7.5894 (11.5821)

53.0321 (77.7918)
52.9864 (77.7719)
52.8578 (77.7116)
52.6252 (77.6111)
52.3136 (77.4714)
51.9231 (77.2928)

0.8 0.0
1.0
2.0
3.0
4.0
5.0

0.4110 (0.2945)
0.4173 (0.2977)
0.4295 (0.3069)
0.4701 (0.3217)
0.5101 (0.3412)
0.5621 (0.3647)

0.0000 (0.0000)
9.1633 (7.4969)

15.5978 (14.6444)
24.8833 (21.1770)
30.6473 (26.9388)
35.2747 (31.8951)

0.0000 (0.0000)
2.1230 (2.9578)
4.1175 (5.7374)
5.6526 (8.2102)
6.9446 (10.3208)
7.8775 (12.0712)

55.0223 (82.8624)
55.0537 (82.8291)
54.8085 (82.7294)
54.4652 (82.5637)
53.9465 (82.3327)
53.0489 (82.0374)

Note: Single-layered results are given within brackets.
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Th e two-layered structure would allow the designer the freedom to optimize the geometry of the coarse 
layer with low permeability to suit the fl ow restriction performance, provided the pressure drops across 
the coarse substrate is insignifi cant compared with that across the restricting layer. By choosing a suffi  ciently 
large particle size ratio between the coarse substrate and the thin surface layer, it is possible to control the 
fl uid fl ow through the two-layered structure such that over 90% − 95% of the pressure occurs in the fi ne layer, 
even when its thickness is only 5%–10% of that of the coarse layer.
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11.10 | Dynamic Characteristics of Gas-lubricated Bearings

As externally pressurized gas bearings give zero friction at zero speed and its use in low-speed instruments 
has enabled stick-slip to be completely eliminated. At high speeds, these bearings off er friction torque but its 
relative magnitude is extremely small compared to bearings using oil as lubricant.

Due to the above advantages, gas bearings are being used in high speed applications. But these bear-
ings are prone to instability. Over a wide range of speeds there are a number of critical speeds in which 
large amplitude of whirl develops. Whirl may be synchronous or self-excited. Synchronous whirl is excited 
by unbalance of rotor and self-excited (so-called half-speed) whirl is self-excited at small eccentricities. In 
aerodynamic bearings, occurrence of self-excited whirl limits the operating speeds. Th us, an understanding 
of whirl instabilities is of great importance in the design of a bearing for a particular application. However, 
accurate balancing of a rotor can avoid synchronous whirl.

In externally pressurized gas bearings, another type of instability known as ‘pneumatic’ or ‘air hammer’ 
may occur even when there is no relative motion at zero speed. In thrust bearings, this instability produces 
axial vibration of the rotor; while in journal bearings, it causes radial vibration. Usually the pneumatic instabil-
ity is a kind of self-excited instability at very low speed or zero speed. When such an instability occurs at fi nite 
speeds, it is termed as ‘hybrid instability’.

In the following sections, a theoretical estimate of identifying the stable operation limit of externally 
pressurized thrust and journal bearings at zero speed is given. Th e method of analysis involves a lot of math-
ematical complexity, and in most cases one has to go for numerical solution.

11.10.1 | A Circular Step Thrust Bearing

Th e steady-state characteristics of a circular step thrust bearing have been found earlier. It is assumed that the 

pressure drops linearly from radius 
i

r  to radius r
o
 (Fig. 11.5); and for small deviation from equilibrium point, 

this type of pressure distribution is likely to be preserved. Th ere is no external damping and the motion of the 
runner is assumed to be vertical.

Let m be the mass of the runner, the equation of motion using linear pressure drop can be written as
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r r

r
r

mh p rdr prdrπ
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 (11.117)

From mass continuity consideration
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When an orifi ce is used as a restrictor, G
in
 is given by Equation (11.51) for unchoked and choked fl ow 

conditions. Th e outfl ow G
out 

can be calculated from Equation (11.52). Here G
in 

is a function of r
p

 
only. G

out 

depends on both r
p  and h. Th ese can be expressed in the following form:

 in r
G pα= −

 (11.119)

 out r
G p hβ θ= +

 
(11.120)

where a, b and q are all positive

and 
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Th e values of a, b and q can be easily calculated from Equations (11.51) and (11.52). Th e suffi  x 0 denotes 
equilibrium condition.
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 (11.122)

Substituting Equations (11.119), (11.120), and (11.122) in Equation (11.118), one obtains
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From Equation (11.117), r

e

m
p h

A
= ����  (11.124)

Equation (11.123) can now be written as
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and 
( )

2
C

q

α β+
=  

Th e coeffi  cients C
0 , 

C
1,
 and C

2
 are all positive.

Applying Routh’s stability criteria for stability

 
1 2 0

C C C>  (11.128)

or 
q

s

α β
θ
+

>  (11.129)

From Equation (11.129) it is seen that the values of 0r
p  and 0

h  have an opposite eff ect on the magni-

tude of the ratios from the two sides of inequality. If 0r
p  and 0

h  are held constant, it is clear that for better 
stability Δ  should be as small as possible. From the physical point of view, this can also be explained. If the 
load is increased, the bearing surfaces move closer, the fl ow through the feed hole is reduced, and the recess 
pressure is increased. In a recess with a relatively small volume, the recess pressure will be in a position to 
adjust quickly to changes of clearance. Th e change in pocket pressure can lag to such an extent that following 
a disturbance from equilibrium position, a vibration of higher amplitude can be generated. Th us, it causes 
pneumatic instability.

11.10.2 | Orifi ce-compensated Externally Pressurized Journal Bearings

Th e study of pneumatic instability made by Lund (1967) for orifi ce-compensated externally pressurized jour-
nal bearings assumed a ‘line source’ supply and a suitable correction factor between source feeding and line 
feeding was used. Th e present analysis does not make such an assumption (Nidhi et al. 1979). Th e confi gura-
tion to be analyzed is that of a journal bearing that has two circumferential rows of orifi ces at quarter station. 

It is assumed that journal executes a small harmonic plane oscillation with frequency 
p

ω  in the absence of 
shaft rotation.

Th e Reynolds equation for isothermal case can be written as

 
( )22 2 2

3 3

2
2

php pD
h h

L y
σ

θ θ τ
∂∂ ∂⎛ ⎞∂ ⎛ ⎞

+ =⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂⎝ ⎠
 (11.130)

where σ  (squeeze number) = 
2

12

( / )

p

a
p C R

ηω
 

As the journal executes harmonic oscillations with Re ie τε⎡ ⎤⎣ ⎦  and since for small vibrations fi rst order 
perturbation is valid, pressure and local fi lm thickness can be expressed as

0 1
ip p e pτε= +

and 1 cosih e τε θ= +  (11.131)

where ( ), , ,p p yθ τ=  ( )0 0
,p p yθ=  and ( )1 1

,p p yθ=  

Substituting Equation (11.131) in Equation (11.130) and neglecting higher order terms

 

22 2 2 2

2 2
0

p pD

L yθ
∂ ∂⎛ ⎞

+ =⎜ ⎟⎝ ⎠∂ ∂
 (11.132)
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and 
( ) ( )22 2 2

0 1 0 1 0 0 1

02 2

3
sin cos

2

p p p p p p pD
i p

L y p
θ σ θ

θ θ

∂ ∂ ∂ ⎡ ⎤⎛ ⎞
+ − = +⎢ ⎥⎜ ⎟⎝ ⎠∂ ∂ ∂ ⎣ ⎦

 (12.133)

Solution of Equation (11.132) satisfying the appropriate boundary conditions yields static pressure 0
p  in 

the clearance space from which the lubricant fl ow can be calculated. Th e solution of Equation (11.133) gives 

dynamic pressure 1
p  from which the stiff ness and damping coeffi  cients can be found. Th ese coeffi  cients will 

then be used for identifying pneumatic instability.
Th e boundary conditions of Equations (11.132) and (11.133) are:

• ( )0
, 1 1p θ ± =

• ( )0 ,0 0
p

y
θ

∂
=

∂

• 0 0
/

q q a
p p p=  at qth station

• ( ) ( )0 0
, 2 ,p y p yθ θ π= +  (11.134)

and

• ( )0
, 1 1p θ ± =

• ( )1 ,0 0
p

y
θ

∂
=

∂

• 
1 1

/
q q a

p p p=  at qth station

• ( ) ( )1 1
, 2 ,p y p yθ θ π= +  (11.135)

Th e pressures 0q
p  and 1q

p  of Equations (11.134) and (11.135) are unknown. Th ese are fi rst estimated and 
then solution of Equations (11.132) and (11.133) will be obtained.

Equation (11.132) is solved numerically using fi nite diff erence methods using 0
1p =  at ( ), 1θ ±  and with 

an arbitrary value of 0q
p  at each orifi ce station, when the mass rate of fl ow from the bearing ends is calculated 

from

 

2 23
0

0
0 2

2

24q L
y

pC
G rd

RT y

π

θ
η =

∂
= −

∂∫
 

(11.136)

from which the dimensionless fl ow is

 
( )

0

0
3 2 2

0

24
q

q

q a

RTG
G

C p p

η
=

−
 

(11.137)

From continuity consideration

 
( )2

q
G G Na h

t
ρ

∂ ⎡ ⎤= + Δ +⎣ ⎦∂  
(11.138)

at qth station, where G is the mass rate of fl ow through orifi ces and 
q

G  at qth station a = area of recess and 
Δ  is the depth of recess.
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Using the mass rate of fl ow through 2N number of orifi ces (such equations are given earlier) and 

 perturbing q
p , 

q
G , and 

q
h  with following relations:

0 1
ir

q q q
p p e pε= +

 0 1
ir

q q q
G G e Gε= +  (11.139)

and 1 cosi
q q

h e τε θ= +  

where 1 0
0

3 cos
q

q q
q

G
G Gε θ

ε =

∂
= =

∂
 

Th e continuity equations will come out as

for 
10 2

1

k

kq

s

p

p k

−⎛ ⎞ ⎛ ⎞
≥⎜ ⎟ ⎜ ⎟⎝ ⎠+⎝ ⎠

 

 

1
1 22 2 21

2
0 0 0

02 0
1

k
k k

q q q a
q

s s s s

p p p pk
N G

k p p p p
δ

+⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎢ ⎥ ⎢ ⎥− − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠− ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦

 (11.140)

 

1
2 12 1 21

2
0 0 0 0 12 2 1

1

kk
k k k k

q q q q q

s s s s s

p p p p pk
N

k p p k p k p p
δ

− −+ ⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+⎛ ⎞ ⎢ ⎛ ⎞ ⎥⎢ ⎥− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠− ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

2 2

01 0
0 1

1 1 0

2

2 cos 0

qq q a
q q

s s s s

q q q

a

s s s

pp p p
G G

p p p p

p p pC
i N

p p p
ψ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎢ ⎥− − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥− + + =⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦

 
(11.141)

where 3

2
p

s

a

C p

η ω
ψ

Δ
=  

Similar equations for 
0q

s

p

p

⎛ ⎞
⎜ ⎟⎝ ⎠

< 
12

1

k

k

k

−⎛ ⎞
⎜ ⎟⎝ ⎠+

 can be written.

Th e above equations are solved by Newton–Raphson iteration method for various values of 
L

D
, δ , ψ , 

C

Δ
 and a

s

p
p

. Equations (11.132) and (11.133) are now solved with real-boundary values.

Th e dynamic load capacity 
1

W  can be calculated from
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/2 2

1 1
0 0

2 cos
L

W p r d dy
π

θ θ= ∫ ∫  (11.142)

Since 1
p  is complex, the dynamic load 1

W  can be expressed in terms of real and imaginary part as

 
( ) ( )1 1 1

Re ImW W i W= +
 (11.143)

Again as the journal executes small harmonic motion, the dynamic load can also be written as

 
1

i
dZ

W e SZ B
dt

τε = − −  (11.144)

where, S and B are stiff ness and damping coeffi  cients of gas fi lm.
Th e amplitude of journal is given by

 iZ C e τε=  (11.145)

Substituting Equation (12.146) in Equation (12.144)

 
1

1
p

a a a

BCW SC
W i

LDp LDp LDp

ω
= = − −  (11.146)

Dimensionless stiff ness and damping can be defi ned as

( )1ReS W= −

and 
( )

( )
1

3

12 Im

2

W B
B

RL
C

σ η
= − =  (11.147)

Equation of motion for rotor mass can be written as

 

2

12

i
d Z

m W e
dt

τε=
 (11.148)

or 
2

1

p

a

mC
W

LDp

ω
− =  

or ( ) ( )1 1
Re Imm W i W= − −  (11.149)

where 

2
p

a

mC
m

LDp

ω
=  

At the threshold of instability,

 ( )1
Rem W= −  (11.150)

and ( )1Im 0W =  (11.151)

Equation (11.150) can be written as

m S=
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As both  and m S  are dependent on 
p

ω , another mass parameter 
1

m  which is independent of 
p

ω  can be 
defi ned as

 
5

1 2 2

( / )
288a

mp C R S
m

Lη σ
= =  (11.152)

Th e variation of mass parameter 
1

m  for various s
p  and δ  is shown in Fig. 11.15. For stability, one should 

operate the bearing with small supply pressures, small feeding parameter, and small design parameters.

11.10.3 | Porous Gas Journal Bearings

An externally pressurized porous gas journal bearing is shown in Fig. 11.7. Th e journal is stationary and its 
axis is parallel to the bearing axis. When no-slip condition is assumed, the equation of continuity of fl ow 
through porous medium and the modifi ed Reynolds equation in the bearing clearance are

 
2 2

2

' '
2 0

p p

z
σγ

τ
∂ ∂

− =
∂ ∂

 (11.153)

 
( )22 2 2 23

3

2
1

'
2

z

php p pD
h h p

L y z
σ

θ θ τ =

∂∂ ∂ ∂⎛ ⎞∂ ⎛ ⎞
+ = + Λ⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠

 (11.154)

where 
2 2

212
z

C H

k R

μ
γ = , a porosity parameter

and μ  = porosity of bushing material

Figure 11.15 | Stability Characteristics
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Th e boundary conditions of the bearing are:

'
s

p p=  at 0z =  and 0 2θ π≤ ≤

'p p=  at 1z =  and 0 2θ π≤ ≤

0
p

z

∂
=

∂
 at 0y =  and 0 2θ π≤ ≤

1p =  at 1y = ±  and 0 2θ π≤ ≤  

 
( ) ( ), 2 ,p y p yθ θ π= +

 (11.155)

A fi rst-order perturbation method is used to linearize the diff erential Equations (11.153) and (11.154). 
Th e perturbation equation of pressure and fi lm thickness can be written as

0 1 1
irp p e pε= +

 
0 1 1

ip p e pτε= +′ ′ ′  (11.156)

0 1
cosih h e τε θ= +

where 
0 0

1 cosh ε θ= + , 
1

ε  is a perturbation parameter and 
0

ε  is steady-state eccentricity ratio.

Substituting Equation (11.156) in Equations (11.153) and (11.154) and neglecting higher powers of 
1

ε , 
the two sets of linear diff erential equations will be obtained

 
2 2

0

2
0

p

z

∂ ′
=

∂
 (11.157)

 
( ) ( )

2
0 1

0 12
0

0
'

p p
i p p

z p

σγ∂
− =′ ′

∂
 (11.158)

 

22 2 2
0 0 03 3

0 2

1

p

z

p p pD
h h

L y zθ θ
=

∂ ∂ ∂ ′⎛ ⎞∂ ⎛ ⎞
+ = Λ⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂⎝ ⎠  (11.159)

and 
( ) ( ) ( )22 2

0 1 0 1 0 10

2 2
0

3p p p p p ph D

z h L yθ θ

∂ ∂ ∂∂ ⎛ ⎞
+ + ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂

 

 

( )

( )

2 2 2
00 0

22
0 00

2 2 2
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22
0 00

0 1

3 3
0 0 0

1

1.5 3 1.5
cos cos

sin

1.5
cos

cos
p

z

p ph

h hh

p ppD i

h L y ph

p pi

h p h z

θ θ
θ θ θθ

σθ

σ θ
=

⎛ ⎞∂ ∂∂
+ + −⎜ ⎟∂ ∂ ∂⎝ ⎠

∂⎛ ⎞+ =⎜ ⎟⎝ ⎠ ∂

Λ ∂ ′ ′
+ +

∂

 
(11.160)
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Solution of Equation (11.160) with the boundary conditions '
s

p p=  at 0z =  and 'p p=  at 1z = ,

we get ( )2 2 2 2
0 0 s s

p p p z p= − +′  (11.161)

and ( )
2

0 2 2
0

1

s

z

p
p p

z
=

∂ ′
= −

∂
 (11.162)

Using Equation (11.162) and noting 0

0
sin

h
ε θ

θ
∂

= −
∂

, Equation (11.159) can be written as

 
( )

( )
2 2 22 2 2 2 2

00 0 0 0

32 2
0

0

3 sin

1 cos 1 cos

s

p

p pp p pD

L y

ε θ
θ ε θ θ ε θ

−⎛ ⎞∂ ∂ ∂⎛ ⎞
+ − = Λ⎜ ⎟⎜ ⎟⎝ ⎠∂ ∂ + ∂⎝ ⎠ +

 (11.163)

Equation (11.163) is solved numerically by fi nite diff erence method to obtain 0
p . Equation (11.158) is 

solved using a W.K.B.J. approximation.

Using the modifi ed boundary conditions 
0

0p =′  at 0z =  and 1 1
p p=′  at 1z = , one gets

 
( ) 1

2
0 1

0 1

0
1z

p p i
p p

z p

σγ

=

∂ ′ ′ ⎛ ⎞
= ⎜ ⎟∂ ⎝ ⎠

 (11.164)

After substituting Equation (11.164) in Equation (11.160), this equation is solved numerically by fi nite 

diff erence method to obtain 1
p .

Th e dynamic force 
1

W  along the line of centers is

 
/2 2

1 1
0 0

2 cos
L

W p rd dy
π

θ θ= ∫ ∫  (11.165)

or 
1 2

1

1 1
0 0

1
cos

2
a

W
W p rd dy

LDp

π

θ θ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠ ∫ ∫  (11.166)

Following the approach used in the previous problem,

 ( )1
Rem W S= − =  (11.167)

and 
1 2

288S
m

σ
=  (11.168)

Th e eff ect of supply pressure, feeding parameter, and porosity parameter on the mass parameter 
1

m  is 
shown in Figs 11.16 and 11.17. It may be noted that though the porosity μ  decreases the threshold mass 

parameter 
1

m , thereby decreasing the stability.
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Figure 11.16 | Stability Versus Feeding Parameter for Various Supply Pressures

0.5
5.0 10.0

5.0

p
s 
= 2.0

106

105

104

103

102

101

Λr

Unstable

8.0

Stable

0

L
D

= 1.0, e
o
 = 0.0,

g
 
 = 1.0

1

m
1

Figure 11.17 | Stability Versus Feeding Parameter for Various Porosity Parameters
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11.11 | Whirl Instability of Gas Bearings

Reynolds equation under dynamic condition is 

 ( ) ( ) ( ) ( )∂ ∂ ∂∂ ∂⎛ ⎞∂ ⎛ ⎞
+ = Λ − + Λ⎜ ⎟⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

�

22 2 2
3 3 2 1 2 4

ph ph php pD
h h

L y
φλ λ

θ θ τ θ τ
 (11.169)

where                 
p

ω
λ

ω
= .

It is assumed that at the onset of whirl the position of the journal center can be defi ned as a steady-state 

value ( )0 0
,e φ  together with harmonic vibration of frequency p

ω , thus

0 1
ie τε ε ε= +

 0 1
ie τφ φ φ= +  

(11.170)

where 
1 0

ε ε�  

and 
0 1 0

ε φ ε�  

Th e pressure and local fi lm thickness are

 
0 1 1 0 1 2

i ip p e p e pτ τε ε φ= + +  (11.171)

and 
0 0 0 1

cos sinih h e τε θ ε φ θ= + +  (11.172)

Substitution of Equations (11.171) and (11.172) into Equation (11.169) yields

 
22 2 2 2 2

0 0 0 0 03 2 3
0 0 0 02 2

3 2
p h p p hD

h h h p
L yθ θ θ θ

∂ ∂ ∂ ∂ ∂⎛ ⎞
+ + − Λ⎜ ⎟⎝ ⎠∂ ∂ ∂ ∂ ∂

0

0
2 0

p
h

θ
∂

− Λ =
∂

 (11.173)
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∂ ∂
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 (11.174)

and
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(11.175)

where 1 0 1
Q p p=  and 2 0 2

Q p p=  

Solution of Equation (11.173) gives a steady-state pressure. Th ese are used to fi nd 1
Q  and 2

Q .
Nonlinearity of Equation (11.173) poses a great diffi  culty in fi nding analytical solution. Hence, 

Equation (11.173) is solved by Newton–Raphson iterative (NRI) method.

11.11.1 | NRI Method

Pressure in the clearance space can be written as

 ( ) ( )0 0 1new old
p p p= + Δ  where 

1 0
p pΔ �  (11.176)

Here 1
p  represents a small increment. Since increment is small equation (11.177) can be expressed as:

 
= + Δ2

0 0 1
2p p p p

 
(11.177)

Substituting Equation (11.177) in Equation (11.173), we get
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22 2 2
10 03

0 0 12 2 2

2 2
10 02

0 0 0 12

2 22 2 2
10 03

0 0 12 2 2

10

0 0 1 0

2

3 sin 2

2

2 sin

pp p
h p p

pp p
h p p

pp pD
h p p

L y y y

pp
p p h

θ θ θ

ε θ
θ θ θ

ε θ
θ θ

⎡ ⎤⎛ ⎞∂ Δ∂ ∂
⎢ ⎥+ +⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ Δ∂ ∂
⎢ ⎥− + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
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(11.178)
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Equation (11.178) is a linear equation in 1
p  for assumed values of 0

p  and is solved by fi nite diff erence 

method with successive over-relaxation scheme. Th e new values of 0
p  for the next iteration are determined in 

the following manner: Let 
1

0
Np +

 be the guess value of the thN  iteration. Hence,

1 1
0 0 1
N N Np p p+ += + Δ

Th e convergence criterion in pressure used is

( ) 0.001
old new

p p∑ ∑ ≤
.

Th e associated boundary conditions are:

For p
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For p
1
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Th e boundary conditions for 
1

Q  and 2
Q  are:
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(11.181)
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Following the similar approach as given in for an oil bearing, we can obtain the stiff ness and damping 
coeffi  cients.

Unlike oil bearings, the damping coeffi  cients for gas bearings are frequency dependent ( )p
ω . Th e stiff -

ness and damping coeffi  cients thus obtained can be used to study the stability of a rigid rotor.
Following the similar line as given for oil bearings, we get the following two equations:

 ( )
( ) ( )

( )2 0

0 0

0

1

cos sin

rr rr r r r r

rr rr r

D K D K D K D K

M W
D D D D

φφ φφ φ φ φ φ

φφ φ
λ φ φ

ε

⎡ ⎤+ − +
⎢ ⎥

= ⎢ ⎥
+ ⎢ ⎥+ +

⎣ ⎦
 (11.182)
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φφ φ φ φ
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ε

φ φ
ε

⎡ ⎤⎛ ⎞
− + + + −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

+ + + + =
 

(11.183)

Th e mass parameter 
2

0

MC
M

W

ω⎛ ⎞
=⎜ ⎟

⎝ ⎠
 is calculated in the following way. Th e dynamic coeffi  cients are

initially evaluated for an assumed value of λ . Th ese coeffi  cients are used to fi nd the mass parameter from 
Equation (11.182). Th e mass parameter so evaluated and the assumed whirl ratio should satisfy Equation 

(11.183). If not, choose a new value of λ  and continue till it is nearly equal to zero. Th us, M  and λ  are critical 
values.
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Chapter

Hydrodynamic Lubrication 
of Rolling Contacts

12.1 | Introduction

Hydrodynamic lubrication regime is generally encountered in lightly and moderately loaded nonconformal 
contacts, viz., in line and point contacts in rolling element bearings, gears, cams, etc. Pressure in the contact 
is not high enough to cause signifi cant elastic deformation to alter the shape of lubricant fi lm in the contact. 
Th ese conjunctions are considered as rigid contacts for the purpose of analyzing fl uid fi lm lubrication prob-
lems. For very lightly loaded contacts, isoviscous lubrication regime prevails, whereas in moderately loaded 
contacts, piezoviscous eff ects become signifi cant and lubrication of the contact is infl uenced by variation of 
viscosity due to pressure in the contact. Hydrodynamic fl ow condition prevails in the lubrication of roller-
cage and ball-cage contacts. Viscous losses are also important in these contacts.

12.2 | Lubrication of Rolling Rigid Cylinders

Lubrication of rigid cylinders in rolling motion has been a vexing issue in the development of railroad and 
automobile industry. To maintain a minimum fi lm thickness in the contact under load has been an utmost 
necessity for the safe operation of roller bearings, gears, etc. Martin (1916) developed a solution to determine 
the expressions for minimum fi lm thickness and friction for lightly loaded cylinders operating in isoviscous 
lubrication regime. Rolling and sliding speeds were not high enough to cause signifi cant thermal eff ects. Th e 
solution was developed for isothermal conditions. Geometry of the rolling contact is shown in Fig. 12.1.

 1. Neglecting side leakage the Reynolds equation for isoviscous incompressible lubrication in pure rolling 
is written as

η
⎛ ⎞

=⎜ ⎟⎝ ⎠
3 6
dpd dh

h U
dx dx dx

(12.1)

r12
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where U = u
1
 + u

2
, u

1
 and u

2
 are velocities of surfaces 1 and 2, respectively. In pure rolling u

1
 = u

2
 = u.

Referring to Fig. 12.1 expression for variation of fi lm thickness in terms of x can be determined. Th us,

( )0 1
cosOB OC CB h DC DA φ= + = + − , h

0
 is fi lm thickness at the center of the contact

with 
2 2 6

cos
2 4 6

φ φ φ
φ = − + − + ... 

If f is small then only fi rst two terms may be retained. With f
1
 = x / R

1
 and f

2
 = x / R

2 
 where x is measured 

from the center of the contact. R
1
, R

2
 are radii of rollers 1 and 2, respectively.

Th erefore,

2

0 1

1

1 1
2

x
OB h R

R

⎧ ⎫⎛ ⎞⎪ ⎪= + − −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

Similarly, we get

2
/

2

1

0 1 1
2

x
B R

R

⎧ ⎫⎛ ⎞⎪ ⎪= − −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

Film thickness
/ /h AA OB OB= = +

and 
2 2 2

0 0

1 2
2 2 2

x x x
h h h

R R R
= + + = +  (12.2)

Where

1 2

1 1 1

R R R
= +

R is the equivalent radius of a roller on a plane.

Figure 12.1 | Cylindrical Rollers in Contact Separated by Oil Film
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It can be shown that in the case of rollers in internal contact (Fig. 12.1), the expression for fi lm thickness 
is expressed as

 

2

0 2

x
h h

R
= +

 
(12.3)

where

1 2

1 1 1

R R R
= −

Integrating Reynolds Equation (8.1) once with respect to x, we get

 
3

6
dp h h

U
dx h

η
−

=
 

(12.4)

where
 

0;  at 
dp

h h
dx

= =

To determine pressure distribution, Equation (12.4) is further integrated with respect to x. Th e following 
substitution is made to integrate Equation (12.4), i.e.,

 0

tan
2

x

Rh
γ =

 

(12.5)

With the above substitution, the expression for fi lm thickness reduces to

 ( )2 2
0 0

1 tan sech h hγ γ= + =
 (12.6)

and

 
2

0

1

sec2

dx
d

Rh
γ

γ
=

Integrating Equation (8.4) with the above substitution, we can obtain

 

2 2
0 0 2

03 6
0

sec sec
6 2 sec

sec

h h
dp U Rh d

h

γ γ
η γ γ

γ
−

=
 

(12.7)

Let 
2
0

0
6 2

h p
p

U Rhη
=  (12.8)

4
2

2

cos
cos

cos
dp d d

γ
γ γ γ

γ
= −

Integrating we get

 
2

sin 2 1 3 sin 2 sin 4

2 4 cos 8 4 32
p c

γ γ γ γ γ
γ

⎡ ⎤
= + − + + +⎢ ⎥⎣ ⎦

 (12.9)
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In the case of fully fl ooded lubrication where it is believed that copious amount of lubricant is available 
to lubricate the contact and therefore theoretically it can be assumed that pressure build up will start at a 
location far to the left of center of the contact, i.e., at x = −• or γ = −p / 2.

Th erefore, inlet boundary condition is given as:

0 at /2p p γ π= = = −

Th is gives constant of integration, 
2

1 3

4 cos 16
c

π π
γ

⎛ ⎞
= − ⎜ ⎟⎝ ⎠

Hence,

 
2

sin 2 1 3 sin 2 sin 4

2 4 4 cos 8 2 4 32
p

γ π γ π γ γ
γ

γ
⎡ ⎛ ⎞ ⎤

= + + − + + +⎢ ⎜ ⎟ ⎥⎝ ⎠ ⎦⎣
 (12.10)

Boundary condition at the exit or where the lubricant fi lm breaks down is given by Reynolds boundary 
condition as

0  i.e.   0 at  or ,  
dp dp

p p x x h h
d dx

γ γ
γ

= = = = = = =

Substituting
0 at , we getp γ γ= =

2

1 sin 2 1 3 sin 2 sin 4
0

2 2 2 cos 4 2 2 16

π γ π γ γ
γ γ

γ
⎡ ⎤⎧ ⎫⎛ ⎞

+ + − + + + =⎨ ⎬⎢ ⎥⎜ ⎟⎝ ⎠⎩ ⎭⎣ ⎦

Above is a transcendental equation which can be solved by successive approximation to give

2 0sec 1.22575,  or 25 25γ γ= = ′

Th us,

 1 sin 2 3 sin 2 sin 4
1.226

2 2 2 4 2 2 16
p

π γ π γ γ
γ γ

⎡ ⎧ ⎤⎛ ⎞ ⎫
= + + − + + +⎨ ⎬⎢ ⎥⎜ ⎟⎝ ⎠ ⎭⎩ ⎦⎣

 (12.11)

Pressure distribution obtained using Equation (8.11) is shown in Fig. 12.2. g and f coincide only at f = 0 
and p/2, i.e., when f = 0, respectively. At other angles both diff er from each other.

Figure 12.2 | Pressure Distribution for Reynolds Boundary Condition
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Load capacity is obtained by integrating pressure over the fi lm domain on surface 2, therefore load 
capacity is given as

 
e

x

W L pdx
−∞

= ∫  (12.12a)

 2

/2
0

12
sec

U R
W L p d

h

γ

π

η
γ γ

−
= ∫  (12.12b)

Substituting for p  using Equation (12.11) and 0.44355γ = , 2sec 1.226γ = , tan 0.47513γ = , the load 
capacity per unit width of the roller is obtained as:

 
0

2.44748
W UR

L h

η
=  (12.13)

where U = u
1
 + u

2
 and R is composite radius as defi ned in Equations (12.2) and (12.3).

Th e viscous drag forces on the two surfaces of rollers are given as

 ( ) ( )1 2 2
  and 

e e
x x

xz xz
f L dx f L dxτ τ

−∞ −∞
= =∫ ∫  (12.14)

Th e shear stresses t
xz

 on surfaces 1 and 2 are expressed as

 ( ) ( )2 1

1 2xz
z h

u upu h

z x h
τ η η

=
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 (12.15a)
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u upu h
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τ η η

=
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 (12.15b)

Substituting for shear stresses using Equation (12.15) into (12.14) it can be shown that friction forces 
per unit width of roller can be obtained as

 
( )

( )

1
2

1

2 1
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1
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2 1
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2.84
2

2.84
2

x

x

Wf R
u u

L h

f W R
u u

L h

η

η

⎛ ⎞
= − + − ⎜ ⎟

⎝ ⎠

⎛ ⎞
= − − − ⎜ ⎟

⎝ ⎠

 (12.16)

where W
x
 is the horizontal component of the force per unit length of roller due to fl uid pressure which is given by

 sin
e e

i i

h

x h
W L pdh R p d

φ

φ
φ φ= − = −∫ ∫  (12.17)

and is obtained as:

 ( )
1/2

1 2

0

4.58
x

R
W u u

h
η

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 (12.18)

Th e above results are very commonly known as Martin’s solution and minimum fi lm thickness in the 
contact is proportional to speed and inversely to load as can be seen in Equation (12.13).
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 2.  For short cylinders, when L/D << 1 the short bearing approximation or Ocvirk’s theory may be used and 
the Reynolds equation is thus written as

 ( )3
1 2

6
p dh

h u u
y y dx

η
⎛ ⎞∂∂

= +⎜ ⎟∂ ∂⎝ ⎠
 (12.19)

assuming 0
p

x

∂
=

∂
.

Th e pressure distribution is obtained after integrating with respect to y with boundary conditions that 
p = 0 for y = ± L/2 as

 
( ) ( )1 2 2

3

3
2

4

u u dh
p y L

h dx

η +
= −  (12.20)

From Equation (12.3) we obtain

/
dh

x R
dx

= ,

and the pressure distribution is given by
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 (12.21)

Pressure is zero at x = 0 or at the center of the contact.
Th e vertical load capacity is obtained by integrating Equation (12.21) as

 
/2 0

/2

L

L
W pdxdy

− −∞
= ∫ ∫  (12.22)

 
( ) 3

1 2

2
0

4

u u L
W

h

η +
=  (12.23)

It has been assumed that fi lm breaks down at the center of the contact, i.e., at x = 0 where it starts diverg-
ing. Th is assumption is similar to p fi lm assumption made for short bearing solution of journal bearings. Th e load 
capacity is independent of size or diameter of rollers. Dowson and Whomes (1967) presented solution of Reynolds 
equation for fi nite length rollers operating in isoviscous lubrication regime using fi nite diff erence method.

12.3 | Isoviscous Lubrication of Rigid Spherical Bodies in Rolling

Hydrodynamic lubrication of ellipsoidal solids in rolling is important in many engineering applications. Th ese 
contacts are encountered in general in ball bearings of all types, spiral and hypoid gears, etc. Kapitza (1955) was 
the fi rst to determine an expression for fi lm thickness in case of isoviscous lubrication of spheres. Later Brewe 
et al. (1979) investigated the problem theoretically in detail and developed expressions for minimum fi lm thick-
ness in the contact including geometrical parameters for fully fl ooded and starved contacts as well in 1982.

A pair of ellipsoidal solids in contact is shown in Fig. 12.3. Contact geometry of the two rigid solids 
separated by a lubricant fi lm is shown in Fig. 12.4.
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Figure 12.3 | Elliptical Solids in Contact
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Expression for fi lm thickness can be written as

 
0

( , ) ( , )h x y h S x y= +  (12.24)

where h
0
 is minimum fi lm thickness at the center of the contact and S(x,y) is the separation due to geometry 

of solids.
It can be shown in a manner similar to what has been done for rollers in contact looking into the curva-

tures of solids about two perpendicular axes x, y, that geometrical separation S(x, y) can be written as

 ( )
22

,
2 2

x y

yx
S x y

R R
≅ +  (12.25a)

where
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1 1 1

1 1 1
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R R R
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and

y

x

R

R
α =

Th erefore, fi lm thickness h(x, y) can be expressed as

 ( )
22

0
,

2 2
x x

yx
h x y h

R Rα
= + +  (12.26)

Reynolds equation for isothermal, isoviscous, and incompressible lubrication is expressed as

 ( )3 3
1 2

6
p p h

h h u u
x x y y x

η
⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂

+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (12.27)

Th e equation can be written in the dimensionless form using the following substitution
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x x x

x

Ryx
h h R x y

R R R

u u pR
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+
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 (12.28)

With the above substitutions, Equation (12.27) reduces to

 3 3 12
p p h

h h
x x y y x

⎛ ⎞∂ ∂⎛ ⎞∂ ∂ ∂
+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (12.29)
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Th e boundary conditions for Equation (12.29) are given by:

0  at  ; or  
in in

p x x h h= = − =  and 0
p

p
x

∂
= =

∂
Reynolds’ fi lm rupture boundary condition at exit, i.e., at 

e
x x= .

It is assumed that the contact is fully fl ooded, i.e., enough lubricant is available to the contact for fi lm 
build up. More lubricant than this amount, if made available, would not increase the minimum fi lm thickness 
in the contact.

Brewe et al. (1979) used fi nite diff erence method to solve the Reynolds equation (12.29) satisfying appro-
priate boundary conditions mentioned. Variable mesh was used to provide more number of meshes around 
the pressure peak. Coarse mesh size of 0.1 and fi ne mesh size of 0.002 was used for highly peaked pressure 
distribution. For the known pressure distribution due to a known value of minimum fi lm thickness at the 
center of the contact, normal load component is determined by integrating pressure over the fi lm domain as 
expressed below

w pdxdy= ∫∫
or

 
x

w uR pdxdyη= ∫ ∫  (12.30)

Brewe et al. (1974) defi ned dimensionless load and speed parameters as

 
2

,
x x

w u
W U

E R E R

η
= =

′ ′
 (12.31)

Pressure distribution in the contact is shown in Fig. 12.5 for two diff erent values of a = 1.0 and 36.54.
Th e expression for minimum fi lm thickness at the center of contact was determined by Brewe et al. 

(1979) after determining the load capacity for various rolling speeds and geometry parameters for known 
values of fi lm thickness at the center of the contact. Th e expression for minimum fi lm thickness as a function 
of dimensionless rolling speed (U ), dimensionless load (W ), and geometry parameter (a) was determined 
following regression analysis of the data generated through theoretical analysis. Minimum fi lm thickness at 
the center of the contact is given by

 
2

min 0
128
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h h

W

φ
α ⎛ ⎞
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 (12.32)

where

10.131 tan 1.683
2

L
α

−= +

and 

1
2

1
3

φ α
−

⎛ ⎞
= +⎜ ⎟⎝ ⎠

, is referred as Archard–Cowking side leakage factor.

Th e minimum fi lm thickness equation developed by Kapitza (1955) using half-Sommerfeld boundary 
condition at the exit, i.e., p = 0 at x = 0, is given as

 
2

min 0
128

2

U
h h

W

ϕ π
α ⎛ ⎞

= = ⎜ ⎟⎝ ⎠
 (12.33)
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Brewe and Hamrock (1982) modifi ed the equation to include starvation eff ect into it. Th e minimum fi lm 
formula was modifi ed as Integrating Equation (12.35) with respect to x

 
( )

2

1min 0
2

/
3.02

128

W U
h h

Lφ α

−
⎡ ⎤
⎢ ⎥= = +⎢ ⎥
⎢ ⎥⎣ ⎦

 (12.34)

Experiments conducted by Boness (1970), Wedeven (1971), and theoretical analysis of Chiu (1974) revealed 
that often the contacts operate under starved condition of lubrication when adequate amount of lubricant is 
not available to the contact. Starvation is also caused by kinematic conditions due to high rolling speed and 
reverse fl ow in the inlet region which reduces the supply of lubricant to the contact. Starvation also signifi -
cantly aff ects the load capacity and friction in the contact.

Figure 12.5 |  Three-dimensional Representations of Pressure Distributions as Viewed from Outlet Region for Two 
Radius a. (a) a = 1.00; (b) a = 36.54 [From Brewe et al. (1979)]
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12.4 | Squeeze Film Lubrication in Nonconformal Contacts

Squeeze fi lm lubrication is a mode of lubrication when the surfaces approach each other in the absence of 
relative sliding velocity. Positive pressures are generated when the lubricant held between the surfaces is 
squeezed out due to normal approach velocity and this is responsible to carry the load and prevent direct 
contact between the surfaces. Th is kind of situation occurs in many practical applications.

12.4.1 | Squeeze Film Lubrication Between a Cylinder and a Plane

Th e geometry of cylinder and coordinate system are shown in Fig. 12.6. Th e length of the cylinder is assumed 
to be large relative to the radius of the cylinder so that the side leakage can be neglected.

Th e governing equation is

 3 12
dpd

h V
dx dx

η
⎛ ⎞

= −⎜ ⎟⎝ ⎠
 (12.35)

Integrating Equation (12.35) with respect to x
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V C
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η= − +  (12.36)

Since

1
0 at 0,  0

dp
x C

dx
= = =

Integrating Equation (12.36) again with respect to x, pressure distribution is obtained as
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12
x

p V dx C
h

η= − +∫
 

(12.37)

Th e fi lm thickness h is a function of x and an approximate equation of h is given by Equation (12.3) and 
is reproduced here below
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(12.38)

Figure 12.6 | Squeeze Film Between a Cylinder and a Plane
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Th erefore,

 /
dh

x R
dR

=  or Rdh xdx=  (12.39)

Using Equation (12.39), Equation (12.37) can be written as
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or
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As 
2
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Th e load capacity W can be calculated from using Equation (12.41) for p as
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To solve
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Th erefore, the squeeze load capacity W is obtained as
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Th e time of approach can be found from
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where 
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12.4.2 | Squeeze Film Lubrication Between a Sphere and a Plane

It is assumed that a rigid sphere of radius R is approaching a plane as shown in Fig. 12.7.

Figure 12.7 | Squeeze Film Between a Sphere and a Plane
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Th e fundamental equation in this case may be rewritten as
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Integrating Equation (12.46) with respect to r, we get
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Th e fi lm thickness h can be expressed as
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Making use of Equation (12.49), Equation (12.47) can be written as
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Using the boundary condition that p = 0 at h = h
0
 + R in Equation (12.50), the constant C
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It is known that pressure acts normal to the surface of the sphere. Th erefore, defi ning q as the angle 
between line of pressure and the vertical, the load capacity W is determined as:
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Th e integration of right hand side of Equation (12.52) yields

 

0

0 0 0

3

0

0

3
6 1 1 ln 1

2

1
1 2 1

2 1

R R R
W Vh

h h h

R

hR

h

πη
⎧ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪= − − + + +⎨ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪⎩
⎫
⎪⎡ ⎤⎛ ⎞ ⎪⎢ ⎥+ + ⎬⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠ ⎪⎣ ⎦+⎜ ⎟ ⎪⎝ ⎠ ⎭

 (12.53)

In most cases
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Th e time of approach may be found after substituting dh
V

dt
= −  in Equation (12.54).
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Th erefore, the time of approach for fi lm thickness to reduce from h
01

 to h
02

 is given by

2
01

02

6
ln

hR
t

W h

πη ⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠

12.5 | Eff ect of Squeeze Motion on the Lubrication of Rigid Solids

Under dynamic loads, the solid surfaces either approach each other at a velocity or separate from each other. 
Rollers and balls in rolling elements move around the races in rolling and thus pass through loaded and 
unloaded regions. Load variations also induce squeeze motion in the rollers and balls which bring the surfaces 
either closer or separate them. Squeeze motion is superposed over the entrainment motion and the action 
thus combines the two motions. Th is infl uences the fi lm thickness and results in variations in the load capac-
ity of the bearing.

Sasaki et al. (1962) presented a solution for the isothermal lubrication of rigid cylinders subject to 
sinusoidal load for a non-Newtonian fl uid by using superposition of pressure curves generated by normal 
approach and entraining velocities. Vichard (1971) analyzed theoretically the transient eff ect associated with 
squeeze fi lm action under both hydrodynamic and elastohydrodynamic lubrication. It was observed that at 
low fi lm thickness the damping phenomenon associated with normal approach was more important under 
elastohydrodynamic conditions than in hydrodynamic condition.
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Dowson, Markho, and Jones (1976) presented a general theoretical analysis of the hydrodynamic 
 lubrication of rigid cylindrical contacts by an isoviscous lubricant in combined rolling and normal. 
Experimental investigations were also reported by Markho and Dowson (1976). Results showed that normal 
motion signifi cantly infl uences the load capacity and fi lm rupture boundary. Ghosh et al. (1985) investigated 
in detail the eff ect of normal motion on the performance of rigid nonconformal contacts in combined rolling 
and normal motion for both fully fl ooded and starved contacts.

12.6 |  Hydrodynamics of Rigid Point Contacts in Combined 
Rolling and Normal Motion

Figure 12.8 shows the lubricant fl ow in the contact under rolling and normal motion.
Reynolds equation for hydrodynamic lubrication of two rigid spherical solids separated by incompress-

ible, isoviscous lubricant fi lm is expressed as:
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Expressions for R
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 are given in Equation (12.25b). Substituting
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Equation (12.55) can be expressed in dimensionless form as
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where 
0

/ 2
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q U H=  is the dimensionless normal velocity parameter which incorporates both normal 
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U  and central fi lm thickness H
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 in it.

Boundary conditions of Equation (12.57) are given as 0p =  at the inlet boundary, i.e., at H = H
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; 

0
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∂
 at the cavitations boundary (i.e., Reynolds boundary condition), where N is normal to the 

boundary. Film shape is described as
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A pressure distribution satisfying above boundary conditions is determined for a given speed, viscosity, 
central fi lm thickness, fl uid inlet level, and normal velocity parameter using the Gauss–Siedel iterative proce-
dure with over-relaxation following a fi nite diff erence scheme of discretization. A fi ne meshing of 0.001 and a 
coarse mesh spacing of 0.01 was used for a = 1, whereas for other values of a, boundaries of computation zone 

were located according to 0.5y xα=  and correspondingly coarse grid were used for a values higher than 1.0.
Hydrodynamic load capacity is determined as

 A

w pdxdy= ∫∫�
 

(12.59)

where A is the domain of integration which is dependent on both the fl uid inlet level and cavitations boundary.
Instantaneous load carrying capacity is expressed as a ratio

 0q

w

w
β

=

=

 

(12.60)

w
q=0 

represents the dimensionless steady-state value of load for identical conditions to that of instanta-
neous load.

Computations were done for a large range of normal velocity parameter q varying between −1.0 and 0.75 
for fully fl ooded lubrication. It was observed that H

in
 = 0.035 ensured that fully fl ooded condition existed 

in the contact, i.e., H
in
 > 0.035 did not change the pressure distribution in the contact and the performance 

parameters as well. Central fi lm thickness fi lm was varied from 10−3 to 10−5, geometry parameter a was var-
ied from 0.2 to 35.0. Dimensionless speed parameter or rolling speed values ensured that fi lm thickness and 
lubrication domain remained in the isoviscous lubrication regime. Variation of dynamic load ratio b is shown 
in Fig. 12.9 with dimensionless normal velocity parameter |q| for H

0
 = 1 × 10−4, a = 1.0 and H

in
 = 0.035.

Parameter q clearly has a signifi cant pressure generating eff ect in normal approach and thereby increas-
ing the dynamic load ratio b with increase in q. On the contrary, b was signifi cantly reduced during normal 
separation, i.e., for |q| > 0. Pressure distributions for various values of |q| are shown in Fig. 12.10. It can be 
seen that during normal approach the fi lm rupture boundary moves down stream into the exit region or away 
from the center of the contact.
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During separation it moves upstream toward the inlet side. Th e location of pressure peak and the entire 
pressure distribution in the contact also shifts accordingly.

Peak pressure ratio, max

max 0q

p

p
ξ

=

=  variation with |q| is shown in Fig. 12.10 against |q|. Pressures of the 

order of three or four times the peak pressure in steady-state situation are generated during normal approach. 
On the other hand, similar reductions are observed during separation. Eff ect of geometry parameter a on 
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the dynamic load ratio b and peak pressure ratio x are shown in Figs 12.11 and 12.12 against a for q = −1.0 
during normal approach and q = 0.75 during normal separation. In case of a >>1.0 resembles the usual case 
of rigid cylinders in contact.

Geometry parameter a has a very signifi cant infl uence on b and x both. Parameters b and x both increase 
with a during normal approach until it reaches a maximum value. Further increase in a does not change 
b and x. Reverse trend is seen in case of normal separation.

Figure 12.10 |  Variation of Dynamic Load Ratio with Dimensionless Normal Velocity Parameter. Dimensionless 
Central Film Thickness H

0
 = 1 × 10−4; Dimensionless Geometry Parameter a = 1.0; and Dimensionless 

Inlet Starvation Parameter H
in

 = 0.035 [Ghosh and Hamrock, ASME, 1985]
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Ghosh et al. (1985) developed the following relationships for dynamic load ratio b and peak pressure 
ratio x as given below by curve fi tting large number of data generated by computation.

 { } 1
0.028 sec  1.68 qh qβ α −=  (12.61)

 ( ){ } 1
0.032 sec 2 qh qξ α −=  (12.62)

Infl uence of starvation on the dynamic load ration b and peak pressure ratio x are shown in Figs 12.13 
and 12.14, respectively. It is observed that starvation signifi cantly aff ects the dynamic load ratio and peak 
pressure ratio.

Figure 12.13 |  Variation of Dynamic Peak Pressure Ratio with Dimensionless Geometry Parameter. Dimensionless 
Central Film Thickness H

0
 = 1 × 10−4; and Dimensionless Inlet Starvation Parameter H

in
 = 0.035 [Ghosh 

and Hamrock, ASME, 1985]
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Problems

P.12.1 A 5 cm diameter steel roller 2.5 cm width is held between two parallel fl at steel plates. Th e plates are 
considered infi nitely wide and long enough to cover its ends. Th e top plate is held on the roller by a normal 
force 10 N and the oil viscosity at the contact surfaces is 0.35 Poise. Estimate the oil fi lm thickness using 
Martin’s theory between the roller and the top plate if it moves at 25 m/sec in positive x direction while the 
lower plate is held stationary. Assume the surfaces to be rigid and viscosity of oil constant. Compare the 
 magnitude of fi lm thickness obtained using short roller approximation.

P.12.2 A wheel on a rail contact can be treated similar to a cylinder of radius 0.5 m rolling on a track with 
transverse radius of 0.3 m. Th e radial load on each wheel is 100 KN and the rolling speed is 50 m/sec. Th e 
contact between rail and wheel may be treated as rigid. If the rail track is covered with oil of viscosity 0.01 Pas, 
determine the minimum fi lm thickness using rigid contact lubrication theory. However, if the track is covered 
with water which has a viscosity 0.001 Pas what will be the ratio of minimum fi lm thickness compared to the 
oil on the track.

P12.3 Two rollers each of 50 mm length and 25 mm radius are rotating at an angular speed 30 rev/s. Th e 
viscosity of the lubricant used is 0.01 Ns/m2. Calculate the minimum fi lm thickness using long bearing theory 
when the load acting on the rollers is 3.0 KN. If the two rollers approach each other at a normal velocity, 
determine the time taken for the fi lm thickness to reduce from 1 to 0.1 micro meter when the rollers are not 
rotating about their axes.

Figure 12.14 |  Variation of Dynamic Load Ratio, b, with Central Film Thickness, H
0
 for Various Inlet Starvation 

Parameters, for Geometry Parameter, a = 1.0. Curve 1 for Normal Approach, q = −1.0. Curve 2 for 
Normal Separation, q = 0.75. [Ghosh and Hamrock, ASLE, 1987]
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P.12.4 A cylindrical roller bearing has following specifi cations: Inner race diameter = 64 mm, outer race 
diameter = 96 mm, diameter of rollers = 16 mm, axial length of rollers = 16 mm, number of rollers = 9, inner 
race angular velocity = 524 rad/sec, viscosity of oil = 0.01 Ns/m2, radial load on the bearing = 10.8 KN, outer 
race is fi xed. Calculate the minimum fi lm thickness at roller inner race and outer race using Martin’s formula.
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Chapterr13
Elastohydrodynamic Lubrication

13.1 | Introduction

Machine components such as rolling-element bearings, gears, cams have nonconformal contacts. Under 
heavy load condition, the pressure generated within the contact zone is much higher, generally in the order of 
giga Pascals (GPa). Th e surfaces which carry this load are likely to deform. Due to hydrodynamic action, the 
lubricant is drawn into the contact zone. When the lubricant is exposed to such a high pressure, the viscosity 
of the lubricant is increased exponentially. It is due to this increase in viscosity of lubricant and elastic defor-
mation of contact surfaces that the components are able to carry the load and perform satisfactorily. Th is type 
of lubrication is called elastohydrodynamic lubrication (EHL).

Probably, the fi rst work on the theory of EHL started with Martin (1916). Th e formula of load capacity 
derived by Martin really does not consider the eff ect of fi lm thickness. It is interesting to notice that it took 
about half a century before Ertel (1939) and Gurbin (1949) combined both eff ects of elastic deformation and 
hydrodynamic action into what is known as elastohydrodynamic lubrication (EHL). Since then, however, 
considerable progress has been made in theory as well as in experiment.

Petrusevich (1951) was the fi rst to present numerical solution that satisfi ed both the Reynolds equa-
tion and the equation describing the elastic deformation. Many researchers like Weber and Saalfeld (1954), 
and then by Archard et al. (1961) using detailed analysis solved EHL line contact problems. Dowson and 
Higginson (1959) presented numerical solutions for a wide range of the parameters involved and combined 
these solutions to the fi rst fi lm thickness formula. Archard and Cowking (1965) studied EHL point contacts. 
Cameron (1952) and Archard and Kirk (1963) carried out experiments on EHL contacts.

Up to the mid-1970s elliptical contacts in ball bearings were treated as circular contacts or equivalent line 
contacts to avoid computational time and cost. But afterwards availability of faster computers made the way 
for researchers to work on actual elliptical contacts. A number of techniques have been proposed to solve the 
set of equations describing EHL contacts. For instance, iteration is performed by means of Gauss–Seidel iter-
ation or by Newton–Raphson algorithms, to solve the Reynolds and the elasticity equation  simultaneously. 
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During this period, Hertnett (1979) presented a novel method for the estimation of elastic  deformation 
profi les, computationally eff ective to implement. Hamrock and Dowson (1976 a,b; 1977a,b) presented a 
comprehensive range of numerical solution for fully fl ooded point contacts in which the infl uence of elliptic-
ity ratio was considered. Th e empirical expressions presented in their work are widely used in the design and 
analysis of machine element representing elliptical, lubricated conjunctions. Similar work was reported by 
Chittenden et al. (1985). An inverse method, which includes the method of Dowson and Higginson (1959), 
has been proposed. Th is method was applied to circular contacts by Evans and Snidle (1981). With the intro-
duction of multilevel methods in lubrication by Lubrecht (1987) and with the later developments by Venner 
(1991), the effi  ciency and the stability of the numerical methods improved dramatically. Based on numerical 
calculations, function fi t formula for the prediction of fi lm thickness were proposed by Moes, Nijienbanning, 
and Venner (1992; 1994), using a minimum number of similarity parameters and validation for a wide range 
of operating conditions.

In the late 1950s, Crook (1957) made a disc machine and experiments were performed. Th e fi lm thick-
ness was measured by capacitance and oil fl ow methods. Martin’s theory was verifi ed by these experiments 
for isoviscous fl uid. Crook found that the infl uence of surface temperature of disc was one of the important 
considerations in determining the fi lm thickness. Crook also investigated the rolling friction under EHL and 
concluded that rolling friction was independent of load and proportional to fi lm thickness. Sibley and Orcut 
(1961) gave a detailed experiment investigation based on x-ray transmission technique. Th e fi lm thickness 
measured by them was in agreement with Crook’s experimental and theoretical results. Cameron and cowork-
ers (1966) were the pioneers of optical interferometry in lubrication.

EHL analysis is generally carried out with line and point contacts. Th e machine elements like cylindrical 
roller bearings, spur gears are the cases of line contact, whereas ball bearings are the example of point contact. 
In the following section, EHL line contact and point contact analysis will be presented.

13.2 | Line Contact Analysis

In case of the line contact problem, the contacting elements are assumed to be infi nitely long in one direc-
tion. In fact, the radius of curvature of the paraboloid approximating the surface in this direction is infi nitely 
large. In the unloaded dry contact situation, the surfaces touch along a straight line. If a load is applied a strip-
shaped contact region is formed because of the elastic deformation. Figure 13.1(a) shows the approximation 
of the line contact situation. R

1
 and R

2
 are the radii of solid 1 and 2, respectively. Figure 13.1(b) shows the 

reduced geometry of the contact. Th e reduced radius of curvature R is given by

 
1 2

1 1 1

R R R
= +  (13.1)

Figure 13.1 | The EHL Line Contact and Reduced Geometry
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13.2.1 | Elastic Deformation

Consider defl ection V at a point B due to application of a point load W at A as shown in Fig. 13.2, where the 
distance between B and A is l. Th is defl ection is

 
21 W

V
E l

ν
π
−

=  (13.2)

where n = Poisson’s ratio and E = Young’s modulus.
When the point load is distributed over a small area, then W can be replaced by pdrds. Equation (13.2) 

can, thus be written as

 
21 pdrds

V
E l

ν
π
−

= ∫∫  (13.3)

If two long cylinders are in contact, the pressure distribution occurs over a rectangular area of sides 
x b= ±  and y a= ± . Th e deformation at a point B due to a load pdrds  can be written as

 
21

a b

a b

pdsdr
V

E l

ν
π − −

−
= ∫ ∫  (13.4)

For long (infi nite) cylinder the pressure does not vary with y. the displacement at y = 0 can be considered,

 
( )( )1/2

2
2 2 2l x r s sρ= − + = +

 

where ( )2
2 x rρ = −

Let us take the integral

2 2 2 2
0

2
a a

a

pdr pdr

s sρ ρ−

=
+ +∫ ∫

( )2 2

0
2 ln

a

p s sρ= + +

2 2

2 ln
a a

p
ρ
ρ

⎛ ⎞+ +
= ⎜ ⎟

⎝ ⎠

If a is very large as compared to r, r2 can be neglected with respect to a2, giving

2 2
2 ln(2 ) 2 ln( )

a

a

pdr
p a p

s
ρ

ρ−

= −
+∫

Figure 13.2 | Defl ection due to Point Load
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Th us, Equation (13.4) can be written as

( )( )
21

2 ln 2 2 ln( )
b

b

V p a p ds
E

ν
ρ

π −

−
= −∫

     
21 2

ln(2 ) 2 ln( )
b

b

W
a p ds

E L

ν
ρ

π −

⎛ ⎞−
= −⎜ ⎟⎝ ⎠∫  (13.5)

where L is the length of the contact.
As a → ∞, the fi rst term in the bracket tends to infi nity and constant deformation. Th is constant is 

ignored and the constant term vanishes, as the diff erence of the defl ection is needed. Hence the defl ection is,

 
( )22 1

ln
b

b

V p x s ds
E

ν
π −

−
= − −∫  (13.6)

If two surfaces of n
1
, E

1
 and n

2
, E

2 
are considered, the deformation V can be written as

 
4

ln
s

s

V p x s ds
Eπ −

= − −
′ ∫  (13.7)

where 
22
21

1 2

111 1

2E E E

νν⎛ ⎞−−
= +⎜ ⎟′ ⎝ ⎠

 (13.8)

From Equation (13.7) it is evident that one cannot fi nd the integration by a straightforward numerical 
integration, because at x = s the integral goes to infi nity. Various methods have been used by researchers to 
overcome this diffi  culty. Some of the methods are discussed below.

Dowson and Higginson (1959) calculated the deformation V by expressing the pressure as a function 
which permits integration, so that the singularity is avoided. It is assumed that the pressure distribution can 
be represented by a polynomial,

 =

= ∑0
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 (13.9)
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 (13.10)

Th e expression for deformation is

( )
2

1

4
ln

s

s

V p x s ds
Eπ

= − −
′ ∫
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n n
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A f
=

= ∑  (13.11)
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If the fi rst three terms of the series are used, it gives fairly accurate results.
Cameron (1966) calculated the elastic deformation in the following way. If the pressure distribution is 

considered to be of the same form as that of dry contact, the pressure inside the contact zone will be

 

1/22

max
1

x
p p

b

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (13.12)

where 
max

2W
p

Lbπ
=  

and b is the half the length of Hertzain contact, which is given by the expression,

 

1/2
8WR

b
E Lπ

⎛ ⎞
= ⎜ ⎟⎝ ⎠′

 (13.13)

Under this condition, the singularity at x = s has been avoided by Cameron (1966), and the deformation 
within the contact zone was found as

 
2

max 2

2 1
ln

2 2

x b
V p b

E b

⎛ ⎞⎛ ⎞
= − + −⎜ ⎟⎜ ⎟⎝ ⎠′ ⎝ ⎠

 (13.14)

Majumdar et al. (1981), has evaluated the deformation V in the following way. Th e pressure curve is 

divided into small mesh size ( )0.0004 with 1RΔ = =  and treating the pressure as constant in this interval, 
the deformation equation is integrated numerically between s

1
 and s

2
 excluding the point x = s. Th e value of 

V at x = s is taken as the average defl ection of the two neighboring points. Th e accuracy of this method has 
been verifi ed by comparing defl ection at the central point for Hertzian pressure distribution. Th e agreement 
is within 1%.

Venner (1991) calculated the deformation V by approximating the pressure profi le by a piecewise con-

stant function with value ( )j j
p p x=  in the region / 2 / 2

j j
x h x x h− ≤ ≤ +′  on a uniform grid with mesh 

size h. To avoid the singularity, the integration is performed as

( ) ( )
/2

/2

4
ln
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j

x h
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i i
x h

p
V x x s ds

Eπ

+

−

= − −
′ ∫

     
1

4 n

j ij
j

p K
Eπ =

=
′ ∑  (13.15)

where K
ij
 is defi ned by,

 ( )( ) ( )( )/ 2 ln / 2 1 / 2 ln / 2 1
ij i j i j i j i j

K x x h x x h x x h x x h= − − − − − − − + − + −  (13.16)

Th is method is convenient in implementing multilevel multi-integration technique.

13.2.2 | Hydrodynamic Equation

Th e governing Reynolds equation for the steady state isothermal EHL line contact for smooth surfaces with 
incompressible Newtonian lubricant, can be written as,

 
( )1 23 12

2

u up h
h

x x x
η

+∂⎛ ⎞∂ ∂
=⎜ ⎟∂ ∂ ∂⎝ ⎠

 (13.17)
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where 
1 2

u u u= + , 
1

u  and 
2

u  are velocities of two surfaces.
Th e pressure inside the contact zone is likely to be of considerable magnitude. Th us, the viscosity in this 

case cannot be treated as constant. Th e variation of viscosity with pressure is given by Barus (1893) relation,

 ( )0
exp pη η α=  (13.18)

where h = viscosity at pressure p
h

0
 = viscosity at atmospheric pressure

and a = pressure viscosity coeffi  cient
Substituting Equation (13.18) in Equation (13.17), we get

 3
0

6
q h

h u
x x x

η
∂⎛ ⎞∂ ∂

=⎜ ⎟∂ ∂ ∂⎝ ⎠
 (13.19)

where q is called as modifi ed pressure which is given as

 

( )1 exp p
q

α
α

− −
=

 
(13.20)

13.2.3 | Film Thickness Equation

Th e equation for fi lm thickness reads to be,

 
( ) ( ) ( ) ( )0

0h x h S x V x V= + + −
 

where h
0
 = central fi lm thickness

S(x) = separation due to the geometry of solids which is approximated to be parabolic

V(x) = elastic deformation

V (0) = elastic deformation at the center of contact

Th erefore, for the cylindrical contacts

 ( ) ( ) ( )
2

0
0

2

x
h x h V x V

R
= + + −  (13.21)

where R is the reduced radius of curvature.

13.2.4 | Force Balance Equation

Th e entire contact load exerted on the contacting elements is carried by the lubricant fi lm. Hence, the integral 
of pressure in the fi lm over the contact domain must be equal to the applied load. Th is condition is generally 
referred as the force balance equation and in the line contact problem it reads,

 
2

1

s

s

pdx W=∫  (13.22)

where W = external load per unit length.
Th e solution for the pressure p and fi lm thickness h must simultaneously satisfy Equations (13.19), 

(13.21), and (13.22). Furthermore, the solution is subjected to cavitation condition. A full analytical close 
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form solution is not available up to now. But many of the researchers have solved the problem numerically. 
Some of the solution methods are presented in the following section.

13.2.5 | Grubin Type Solution

Th e EHL line contact problem has been solved using a method originally given by Grubin (1949). He made 
the assumption that the deformed shape within the contact zone is constant. He also made another simplify-
ing assumption that the shape outside the Hertzain zone is the same, irrespective of the lubricant.

From Equation (13.19), the integrated form of modifi ed Reynolds equation will be

 

0

0 3
6

h hdq
u

dx h
η

−
=

 
(13.23)

0 s
h h h= + , Equation (13.23) can be written as

 ( )30

0

6 s

s

hdq
u

dx h h
η=

+
 (13.24)

Th e fi lm thickness outside the contact zone is given by

 0 s
h h h= +

 (13.25)
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R
= +

 

  
2 2

22

b x
V

R b
= +  (13.26)

Using Equation (13.13) and (13.14), we get

 

2 2

max 2 2

2
1 ln 1
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x x x x
h p b

E b b b b

⎛ ⎞⎛ ⎞
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(13.27)

Putting
max

2W
p

Lbπ
= , Equation (13.27) can be written as

 

π ⎛ ⎞⎛ ⎞′
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(13.28)

Figure 13.3 | Modifi ed Pressure and Film Thickness Curves 
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If we defi ne 
π ′

=
/

h E
h

W L
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h E
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W L  
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= + = +
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E
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Equation (13.24) now can be written as
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(13.30)

putting 
( )3

0

/

6

W L E
q q

ub

π
η

′
= , Equation (13.30) is nondimensionalized as
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s
hdq

dx h
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(13.31)

To fi nd q one has to integrate Equation (13.31) numerically between limits x = −∞ to x = −b or 
 to 1x x= −∞ = − . Th e integral will be

 

1

3s

dx
q h

h

−

−∞

= ∫
 

(13.32)

When q  is solved numerically, it can be transformed to p by using Equation (13.20).
From the above equation it will be shown that at x / b = −1, the pressure q  can be approximated by
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(13.33)

again at 
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 (13.34)

If both surfaces are of same material, Equation (13.34) can be expressed in the following form
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Th e above expression gives the fi lm thickness equation for a line contact problem. Because of simplifying 
assumption, this h

0
 is constant throughout the contact zone. Th is method of fi nding elastohydrodynamic fi lm 

thickness is simple, but this does not give a correct value at the exit of the contact zone.

13.2.6 | Accurate Solution

Many researchers like Weber and Saalfeld (1954), Dowson and Higginson (1959), and Archard (1961) using 
detailed analysis solved EHL line contact problems. Dowson and Higginson (1959) give a single expression 
for minimum fi lm thickness as

 

( ) ( )0.70.6

0min

0.13

/E u E Rh

R W

LE R

α η′ ′
=

⎛ ⎞
⎜ ⎟⎝ ⎠′

 

(13.36)

Th e Dowson–Higginson formula for minimum fi lm thickness is based on numerical solution of 
Equation  (13.23) using a diff erent approach for fi nding deformation as mentioned in Section 13.2.1. 
However, their analysis has made two assumptions, which may be revealed from the pressure distribution 
shown in Fig. 13.4. Th ey used central pressure as the maximum Hertzian pressure and during the process of 
calculation; this pressure was kept at a constant value. Th e other assumption that the pressure at x = b was put 
equal to zero. Th is is really not so at the exit end. Majumdar et al. (1981) has made a similar analysis by remov-
ing those two assumptions. Th e two plots given in Fig. 13.4 show the diff erence of the pressure distribution 
and location of peak pressures.

A sudden peak pressure near the outlet is a characteristic of EHL for nonconformal contact. In the 
 contact zone, the pressure is nearly Hertzain and the fi lm thickness is almost parallel. Th e gap diverges rapidly 
at x = b. For matching fl ow continuity, the pressure should end nearly at this point. Prior to this, there is a large 
negative pressure gradient causing a marked increase of oil fl ow. Th e continuity of fl ow can be maintained if 
there is a local restriction of fl ow. Due to this reason, there is a sharp decrease in fi lm thickness at the outlet. 
Th e EHL fi lm thickness thus is dependent on material parameters n and E, the speed of roller, the composite 
radius of curvature, and the magnitude of applied load.

Figure 13.4 | Comparision of Pressure Distribution
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EHL line contact problem is solved by using the relaxation process in accordance to Venner (1991). From 
Equations (13.17) and (13.18) the integrated form of Reynolds equation in nondimensional form will be

 

dpd dh

dx dx dx
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⎛ ⎞
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(13.37)

where /x x R= , /p p E= ′, /h h R= , 
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u u
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From Equation (13.21), fi lm thickness in nondimensional form is given as

 
( )

2

0
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2

x
h h V V= + + −  (13.38)

where /V V R=  
From Equation (13.22), the force balance equation in nondimensional form is written as

 
pdx W=∫  (13.39)

where ( )/W W E RL= ′  

Th e boundary conditions are ( ) 0
in

p x = , ( ) 0
out

p x =  

( ) 0p x ≥
 
( )in out
x x x< <

Th e elastic deformation V is calculated as per Equation (13.15). Th e calculation domain for numer-

ical analysis is taken as 4.5
in

x b= − , 1.5
out

x b= , where /b b R= . Th e domain is divided into 305 nodes. 
Hertzain pressure distribution is taken as initial guess values of the pressure. Using the fi nite diff erence 
method, a steady-state pressure distribution is obtained by simultaneous solution of the pressure governing 
Equation (13.37), the fi lm thickness Equation (13.38), and the force balance Equation (13.39), satisfying the 
boundary conditions. To satisfy the force balance equation, the constant 

0
h  is adjusted in the following way,

 
( )( )0 0

1 /h h C pdx W pdx= + −∫ ∫  (13.39a)

where C is the suitably chosen constant.
An under-relaxation factor varying from 0.5 to 1 is used for Gauss–Seidel relaxation changes and simi-

larly an under-relaxation factor varying from 0.3 to 0.6 is used for the Jacobi dipole changes. Th e results of 
central fi lm thickness and minimum fi lm thickness are in close agreement with that of the central fi lm thick-
ness and central minimum fi lm thickness values provided by Dowson and Toyoda (1977). From the results 
obtained by the authors using the analysis of Venner (1991), the eff ect of nondimensional parameters, load 

(W ), speed ( )U , and material parameter (G), on pressure and fi lm thickness are shown in Figs 13.5–13.7.
Figure 13.5 shows that an increase in load will produce a decrease in central and minimum fi lm thickness. 

Pressure spike is seen at the exit end of the contact for moderate load, whereas for higher load, the pressure 
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profi le approaches to Hertzian distribution is observed. Figure 13.6 indicates the eff ect of material parameter 
G on pressure profi le and fi lm thickness. With the increase in material parameter G, fi lm thickness increases. 
However, there is no much change in pressure profi le. Figure 13.7 shows the eff ect of speed parameter on 
pressure and fi lm thickness. With increase in the speed parameter, the pressure profi le departs from Hertzain 
distribution. Central and minimum fi lm thickness increases with increase in speed parameter.

Figure 13.5 | Eff ect of Load Parameter on Pressure and Film Thickness (Line Contact)
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Figure 13.6 | Eff ect of Material Parameter (G) on Pressure and Film Thickness (Line Contact)
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13.3 | Point Contact Analyses

Th e generalized undeformed geometry of contacting solids can be represented by two ellipsoids. Th e two 
solids with diff erent radii of curvature in principal planes x and y make contact at a single point, owing to 
the concept of ‘point contact’ as shown in Fig. 13.8. Th e point contact spreads to form a circular or elliptical 
contact due to deformation of mating surfaces under normal load depending on radii of curvature. Th e radii 
of curvature are denoted by r’s.

Figure 13.7 | Eff ect of Speed Parameter (U) on Pressure and Film Thickness (Line Contact)
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Figure 13.8 | Geometry of Contacting Elastic Solids
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Curvatures in x and y directions are defi ned as

 

1 1 1 1 1 1
   and   

x ax bx y ay by
R r r R r r

= + = +  (13.40)

and equivalent radius of curvature of the contact is

 

1 1 1

x y
R R R

= +

 

(13.41)

13.3.1 | Elastic Deformation

When two elastic solids are brought together under a load, a contact area forms, the shape and size of which 
depend on the applied load, the elastic properties of materials, and the curvatures of the surfaces. Th is con-
tact area (Fig. 13.9) typically attains the shape of an ellipse with a being the semimajor and b the semiminor 
lengths and k = a/b is defi ned as the ellipticity parameter. For the special case where r

ax
 = r

ay
 and r

bx
 = r

by
, the 

resulting contact is a circle rather than an ellipse.
Hertz (1881) considered the stress and deformations in two perfectly smooth, ellipsoidal, contacting 

elastic solids. Th e classical theory of Hertz is equally applicable for machine elements such as ball and roller 
bearings, gears, and cams. Th e theory is based on the following assumptions:

• Th e materials are homogeneous and yield stress is not exceeded.

• No tangential forces are induced between the solids.

• Contact is limited to a small portion of the surface such that the dimensions of the contact region are 
small compared with the radii of the ellipsoids.

• Th e solids are at rest and in equilibrium.

According to Hertz, the pressure within the ellipsoidal contact is (Fig. 13.9)
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 (13.42)

Figure 13.9 | Pressure Distribution in an Ellipsoidal Contact
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where p
max

 is referred as the maximum pressure inside the contact envelope and given by

 
max

3

2

F
p

abπ
=  (13.43)

Figure 13.9 shows the distribution of pressure or compressive stress on the common interface, it is clearly 
a maximum at the center of the contact and decreases to zero at the periphery. When the ellipticity param-
eter k, the normal applied load F, Poisson’s ratios n, and the moduli of elasticity E of the contacting solids 
are known, the parameters a, b , and d, the deformation at the center of the contact can be written from the 
analysis of Hertz as
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where ¡ and z are elliptic integrals of fi rst and second kinds, respectively, and given by

 

1 2
2

2

20

1
1 1 sin d

k

π
ϕ ϕ

−
⎡ ⎤⎛ ⎞

ℑ = − −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
∫  (13.47)

 

1 2
2

2

20

1
1 1 sin d

k

π
ζ ϕ ϕ

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

∫
 (13.48)

and ( ) ( )2 2

2

1 1
a a b b

E
E Eν ν

=′
− + −

Brewe and Hamrock (1977) used a linear regression analysis by the method of least squares to obtain 
simplifi ed equations for k, ¡, and z as
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Although these simplifi ed relations give a quick estimation of deformation at the center of the contact, 
the same over the contact envelope cannot be found. Th is problem can be solved making use of the formula-
tion given by Timoshenko and Goodier (1951). Figure 13.10 shows a rectangular area of uniform  pressure 
with the coordinate system to be used. Th e elastic deformation at a point (x, y) of a semi-infi nite solid 
 subjected to uniform pressure p at the point ( ,x y� � ) can be written as

 
( ) ( )
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,
, 1
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π
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� � � �

�

 (13.52)

Th en the combined elastic deformation of the two mating ellipsoidals at a point (x, y) due to the uniform 
pressure over the entire contact envelope is thus
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 (13.53)

Equation (13.53) possesses singularity at x x= �  and z z= � . One has to avoid this singularity to obtain 
elastic deformation. While the numerical solution of this equation is possible following a fl exibility method 
of solution given by Hertnett (1979). Th e integral can be evaluated over the contact envelope as shown in 

Fig. 13.8 after dividing to small segments of area 2 2a b× �

�  and assuming constant pressure over each small 
segment. Th at makes the Equation (13.53) as,
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where p
j
 is the distributed pressure over segment j and f

ij
 is the infl uence coeffi  cient representing the defl ec-

tion of segment i because of uniform pressure over j. Th e infl uence coeffi  cient is given by
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Figure 13.10 | Discretization of the Contact Region
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Use of this fl exibility method facilitates to avoid the aforesaid singularity in the solution of the integral 
Equation (13.53). From Equation (13.54) deformation over the contact envelope can be found using the 
infl uence coeffi  cient. Infl uence coeffi  cient f

ij
 is a geometrical property and can be generated in advance once 

the domain for the solution is set.

13.3.2 | Hydrodynamic Equation

Th e governing Reynolds equation for the steady-state isothermal EHL elliptical contact for smooth surfaces 
with incompressible Newtonian lubricant can be written as,
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 (13.55)

In nondimensional form, Equation (13.55) is written as,
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Considering the eff ect of pressure on viscosity by using Equation (13.18), Reynolds equation is written as
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 (13.57)

where q  is the modifi ed reduced pressure as defi ned by Equation (13.20)

13.3.3 | Film Thickness Equation

Th e equation for fi lm thickness reads to be,

 ( ) ( ) ( )0 0
, , ,h x y h S x y V x y V= + + −

 
where  h

0
 = central fi lm thickness

S(x, y) = separation due to the geometry of solids
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V(x, y) = elastic deformation
V

0
 = elastic deformation at the center of contact

Th erefore,
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In nondimensional form, the fi lm thickness equation is written as,
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13.3.4 | Force Balance Equation

Th e force balance equation is given as

 
pdxdy W=∫∫  (13.60)

where W is the external applied load.
In the nondimensional form, Equation (13.60) is given as

 
pdxdy W=∫∫  (13.61)

where,
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Th e boundary conditions used are at the edges of the rectangular envelop of computation, the pressure is 

zero at the cavitation boundary, 0
p p

p
x y

∂ ∂
= = =

∂ ∂
.

13.3.5 | Numerical Solution

Using the fi nite diff erence method, a steady-state pressure distribution is obtained by simultaneous solution of 
the pressure governing Equation (13.57), fi lm thickness Equation (13.59), and force balance Equation (13.61), 
by satisfying the boundary condition. To satisfy the force balance equation, the constant 

0
h  is adjusted in the 

following way,

 
( )( )0 0

1 /h h C pdxdy W pdxdy= + −∫ ∫ ∫ ∫  (13.61a)

where C is the suitably chosen constant. Th e calculation domain is considered as 4
in

x b= − , 1.65
out

x b= , 

1.75
in

y a= − , and 1.75
out

y a= , where /
x

a a R= , /
x

b b R= . A mesh size of 69 points in rolling direction and 
33 points in transverse direction is used in the numerical solution. Nonuniform mesh (fi ner in the contact 

zone) is used in the computation method. Mesh sizes of 0.055x bΔ =  and 0.081y aΔ =  are used in the 

contact area, while rest of the portion uses mesh sizes of 0.165x bΔ =  and 0.245y aΔ = . Th e adopted con-

vergence criteria for pressure distribution p  and desired input load W  are 510−  and 310− , respectively.
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Figure 13.11 shows the nondimensional pressure distribution as obtained under steady-state condition. 

Th e nondimensional minimum fi lm thickness ( −× 40.11878 10 ) obtained by the authors is close to that of 

Hamrock and Dowson (1981) empirical relation ( −× 40.12072 10 ).
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( )0.68 0.49 0.073 0.68
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3.63 1 kh U G W e− −= −  (13.63)

Equations (13.62) and (13.63) are the empirical relations for central fi lm thickness and minimum fi lm 
thickness given by Hamrock and Dowson (1981).

EHL point contact problem is solved by the authors using the technique proposed by Venner (1991), as 
discussed in the previous section of line contact solution.

From Equations (13.55) and (13.18), Reynolds equation in nondimensional form will be
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where 
3

12 exp( )

h

U Gp
ξ =

 
Using the multigrid method, a steady-state pressure distribution is obtained by simultaneous solution of 

the pressure governing Equation (13.64) and the fi lm thickness Equation (13.59) and force balance Equation 
(13.61) by satisfying the boundary conditions. Elastic deformation Equation (13.54) is solved by multilevel 
multi-integration method as proposed by Brandt and Lubrecht (1990). A Jacobi distributive line relaxation is 
used in the contact region. Whereas in the noncontact zone, a simple Gauss–Seidel line relaxation method is 

used. Th e calculating domain is considered as 4.5
in

x b= − , 1.5
out

x b= , 2
in

y a= − , and 2
out

y a= . Th e numbers 

1

0.8
U = 0.420 × 10–1, G = 4522, k = 6

W = 0.3234 × 10–6

0.6

0.4

0.2

0

0

–1

x 10–3

Rolling Direction

N
o
n
d
im

e
n
s
io

n
a
l 
P

re
s
s
u
re

 D
is

tr
ib

u
ti
o
n

–4 –3 –2 –1
0

1

1

Figure 13.11 | Steady State EHL Pressure Distributin (U = 0.4208 x 10−11, G = 4522, k = 6,⎯W = 0.3234 x 10−6)



388  Theor y of Lubrication

of nodes in x-direction is 513 and in y-direction is 513. Th e adopted convergence criteria for pressure distri-

bution p and desired input load W  are 510−  and 310− , respectively.
Figure 13.12 shows the nondimensional pressure distribution as obtained under steady-state condition. 

Th e results of central fi lm thickness and minimum fi lm thickness are in close agreement with Hamrock and 
Dowson (1981) empirical relation.

From the results obtained by this analysis, the eff ect of nondimensional parameters, load (W ), speed (U ), 
ellipticity parameter (k), and material parameter (G), on pressure and fi lm thickness are shown in Figs. 13.13–
13.16, in the rolling direction along the midplane.

Figure 13.13 shows the eff ect of load parameter on fi lm thickness and pressure profi le. Peak pressure 
increases with load because the lubricant has to carry more load with smaller fi lm thickness. Central and mini-
mum fi lm thickness decreases with increase in load parameter. Pressure spike is visible at the exit of the contact 
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for moderate loads. However, the pressure profi le approaches the Hertzain distribution for higher values of 
load parameter. Th e variation of pressure and fi lm thickness with ellipticity parameter is shown in Fig. 13.14. 
Peak pressure increases with decrease in ellipticity parameter, whereas the central and minimum fi lm thickness 
increases. Figure 13.15 show the eff ect of material parameter on fi lm thickness and pressure profi le. Central and 
minimum fi lm thickness increases with increase in material parameter. Figure 13.16 show the eff ect of speed 
parameter on pressure and fi lm thickness. For higher values of speed parameter, the pressure profi le departs 
from the Hertzain distribution. Central and minimum fi lm thickness increases with increase in speed parameter.

Figure 13.14 | Eff ect of Elliptical Parameter (k) on Pressure and Film Thickness (Rolling Direction)
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13.4 | Diff erent Regimes in EHL Contacts

Th e lubrication of concentrated contact is normally infl uenced by two major physical eff ects such as  elastic 
deformation and the increase in fl uid viscosity with pressure. Th ere may be several regimes of lubrication 
depending on the magnitude of the above two eff ects. Th e regimes are

• isoviscous-rigid,

•  piezoviscous-rigid,

• isoviscous-elastic, and

• piezoviscous-elastic.

In isoviscous-rigid regime, the elastic deformation of the solids can safely be neglected because it is very 
insignifi cant in magnitude. Th is type of lubrication is seen to occur in circular arc thrust bearing pads and in 
industrial coating processes.

In piezoviscous-rigid regime, the pressure within the conjunction is quite high and it may be necessary to 
consider the pressure-viscosity characteristics of the lubricant. However, the deformation within the contact 
zone is neglected. Th is type of lubrication may be encountered in moderately loaded cylindrical taper roller, 
and between the piston rings and cylinder liners.

In isoviscous-elastic regime, the elastic deformation of the surfaces is adequate to warrant inclusion of 
elastic equation along with hydrodynamic equation. Th is form of lubrication can be seen in the materials of 
low elastic modulus or seals and human joints.

In heavily loaded concentrated contacts, the elastic deformation of solids as well as the variation of viscos-
ity with pressure must be considered. Th e lubrication regime which considers both these two aspects is called 
piezoviscous regime. Th is type of lubrication is typically encountered in ball and roller bearings, gears, and cams.

Th e various approximate equation for fi lm thickness of the above four regimes have been found by Moes 
(1965–1966), Th eyse (1966), Archard (1968), Greenwood (1969), Johnson (1970), and Hooke (1977). Th is 
can be listed as follows:

Figure 13.16 | Eff ect of Speed Parameter (U) on Pressure and Film Thickness (Rolling Direction)
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For Isoviscous-rigid Regime
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For Isoviscous-elastic Regime
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Th e dimensionless fi lm thickness parameter ĥ , viscosity parameter V
g  and elasticity parameter E

g , 
 respectively, given by Archard (1968) is defi ned as
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For the fi rst two cases (i.e., for isoviscous-rigid regime and piezoviscous-rigid regime) the central fi lm 
thickness is equal to the minimum fi lm thickness. However, for the last two cases, the central fi lm thickness 
is given by

 
( ) ( )0.67 0.28ˆ 11.15 1 0.72 k

c EIE
h g e−= −  (13.69)

and
 

( ) ( )0.53 0.13 0.73ˆ 3.61 1 0.61 k
c V EPVE

h g g e−= −  (13.70)

Th e procedure for mapping diff erent lubrication regimes is given by Hamrock and Dowson (1981), and 
the maps of lubrication regimes for various ellipticity parameters can also be found in this reference.

13.5 | Mixed Lubrication

Th e concept of mixed lubrication is relatively new in the fi eld of elastohydrodynamic lubrication. Under 
this condition, fi lm thickness in the contact region is of the order of few microns. Th is does not ensure pure 
elastohydrodynamic lubrication. Apart from the lubricant fi lm, a part of the load is shared by asperities under 
direct contact between two contacting surfaces, when the surfaces are rough. Hence, surface roughness should 
be modeled accurately to describe the asperity contact area and contact load along with hydrodynamic load.



392  Theor y of Lubrication

A typical stochastic analysis for rough surfaces was developed by Zhu and Cheng (1988). Th ey employed 
Patir and Cheng’s average fl ow model (1978) for hydrodynamic lubrication and Greenwood and Tripp’s load 
compliance relation (1970–1971) for asperity contacts. Hydrodynamic and contact pressure were separately 
obtained and then simply superimposed to balance the applied load. Later on, mixed lubrication model 
by Jiang et al. (1999) represented a signifi cant advancement in the area of mixed lubrication for the fi rst 
time solving hydrodynamic and asperity contact pressure simultaneously. In their analysis, three-dimensional 
rough surface profi le is used and the Reynolds equation is solved with the multigrid scheme. Eff ect of rough 
surface topography and orientation on the characteristic of EHD and mixed lubrication were investigated by 
Zhu and Hu (2001). Few developments considering surface topography in the fi eld of mixed lubrication have 
been reported by Qiu and Cheng (1998) and Wang et al. (2004).

In another approach to the development of mixed lubrication model, Zhu (2002) has published a series 
of papers presenting a novel method to handle mixed lubrication theory. Th e theory deals with an extended 
parameter range. According to the theory, when load is very high, fi lm thickness reduces to support the load, 
theoretically it will approach zero at contact. Th en hydrodynamic pressure in the contact is absent and pres-
sure diff erential in the Reynolds equation can be neglected, this facilitates to solve only remaining fi lm thick-
ness diff erential terms. Contradiction to the theory was reported by Holmes et al. (2003), who showed that 
some of the results could not be validated with the experimental values.

In the following section, Patir and Cheng’s average fl ow model (1978) is used to consider the surface 
roughness and asperity contact using Greenwood and Tripp’s load compliance relation (1970–1971).

13.5.1 | Theory of Lubricated Rough Surfaces

Although the derivation of modifi ed Reynolds equation considering surface roughness eff ect is available 
elsewhere, Patir and Cheng (1978, 1979), it is summarized here for completeness.

13.5.2 | Film Thickness Equation

Th e local fi lm thickness h
T
 between any two rough surfaces as shown in Fig. 13.17 will be of the form

 T a b
h h δ δ= + +  (13.71)

where h is the nominal fi lm thickness (compliance) and is equal to the distance between the mean levels of 
the two surfaces. d

a
 and d

b
 are the random roughness amplitudes of the two surfaces measured from their 

mean levels. It is assumed that d
a 
 and d

b
 have a Gaussian distribution of heights with zero mean and standard 

deviations s
a
 and s

b
, respectively. Th e combined roughness d = d

a 
+ d

b
 has a variance of 2 2 2

a b
σ σ σ= + . Th e 

average gap h
Tav

 is defi ned as:

Figure 13.17 | Film Thickness Function
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where E is the expectancy operator and ( )f δ  the probability density function of δ . In the case of noncontact 

Tav
h h=  since ( ) ( ) 0

a b
E Eδ δ= = . Now 

Tav
h  can be written as:

 ( ) ( )Tav h
h h f dδ δ δ

∞

−
= +∫  (13.73)

since 0
T

h =  at the contact points.

13.5.3 | Surface with Directional Patterns

Most engineering surfaces have directional patterns resulting from diff erent manufacturing processes or 
because of running-in. Th ese directional patterns are mostly in the longitudinal or transverse directions. 
Th e directional properties of roughness are described by a surface pattern parameter γ , fi rst introduced by 

Peklenik (1967–1968). If 
0.5

λ  is the length at which the autocorrelation function of a profi le reduces to 50% 

of its initial value, the surface pattern parameter γ  is defi ned as the ratio of 0.5
λ  lengths of x and z profi les, i.e.,

 0.5

0.5

x

z

λ
γ

λ
=  (13.74)

γ  can be visualized as the length-to-width ratio of a representative asperity. Purely transverse, isotropic, and 
longitudinal roughness patterns correspond to 0γ = , 1 and ∞, respectively, as shown in Fig. 13.18.

13.5.4 | Hydrodynamic Equation

Hydrodynamic pressure and the mean fi lm thickness are obtained from the numerical solution of hydrody-
namic equation. Th e governing hydrodynamic equation for rough surfaces for steady-state condition by using 
Patir and Cheng model (1978) can be written as
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Figure 13.18 | Surfaces with Directional Patterns



394  Theor y of Lubrication

where 
x

φ , 
y

φ  = pressure fl ow factors

s
φ  = shear fl ow factor
σ  = combined standard deviation of rough surfaces

and 
T

h  is the average gap height, given by

( ) ( )
T

h

h h f dδ δ δ
∞

−

= +∫
2

22
1

( )
2

f e
δ
σε

σ π
−

=  is the probability density function of combined roughness δ .

After performing integration and diff erentiating 
T

h  with respect to x  or t , we get
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Th e expressions of fl ow factors given by Patir and Cheng (1978) are

( )
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1
g h
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c e
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1
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−
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and 
1

, ,
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h h
φ γ φ

σ σ γ
⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

where c
1
 and g are constants and g is defi ned as the ratio of length at which autocorrelation functions of the 

x and y profi les reduce to 50% of the initial value. Th is can be thought of as the length-to-width ratio of a rep-
resentative asperity. As per defi nition, transverse, isotropic, and longitudinal roughness patterns correspond to 

1, 1γ γ< = , and 1γ > , respectively. Th e constants c
1
 and g are given in Table 13.1 for diff erent values of g.

Depending on the type of lubricant, a suitable viscosity variation function can be assumed. For piezovis-
cous lubricant, the following exponential pressure viscosity relationship is used.

 
0

.peαη η=  (13.78)

Table 13.1 | Coeffi  cients of Pressure Flow Factors

g cw
1 g

1/9
1/6
1/3
1
3
6
9

1.480
1.380
1.180
0.900
0.225
0.520
0.870

0.42
0.42
0.42
0.56
1.50
1.50
1.50
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Th en pressure can be represented with viscosity variation as

 1 pe
q

α

α

−−
= . (13.79)

For the case of pure rolling condition, shear contribution term, second in the R.H.S. of Equation (13.75) 
vanishes. Making use of Equations (13.75–13.79) and considering pure rolling, the hydrodynamic governing 
equation can be written in nondimensional form as

 3 3 6 1 erf
2

x y

c

q q h h
h h U

x x y y h x
φ φ

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂⎛ ⎞∂ ∂ Λ ∂
+ = +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (13.80) 

with fi lm thickness

 ( )
22

2 2
c c

y x

yx
h h V V

R R
= − + + +  (13.81)

where 
c

h σΛ =  quantifi es the severity of roughness. It can be seen from the expressions for f
x 
and h

T
 that 

when Λ approaches a large value, f
x
 approaches 1 and /T

h x∂ ∂  approaches /h x∂ ∂ . Th en Equation (13.80) 
becomes classical two-dimensional Reynolds equation used for smooth surfaces. Generally, Λ varies from 
‘1’ (rough surface) to ‘6’ (smooth surface). Now the solution of Equation (13.80) with appropriate boundary 
conditions will give the pressure distribution and fi lm thickness in the contact zone.

13.5.5 | Asperity Contact Pressure

Although the force–compliance relation has been investigated by many researchers, a unifi ed theory appli-
cable to all roughness confi gurations is not available. Th e asperity contact pressure is usually small fraction of 
the total pressure in the region Λ > 0.5. Th is facilitates one to use an approximate relationship. Th e asperity 
pressure distribution can be calculated using Greenwood and Tripp model (1970–1971) as given by:

 ( )5/2a
p K E F λ= ′ ′  (13.82)

where ( )8
2

15 a a
K Nπ ρ σ σ ρ=′

N = number of asperities per unit area

a
ρ  = mean radius of curvature of asperities

( ) ( ) ( )25 2
2

5 2

1

2

s
F s e ds

λ
λ λ

π

∞ −
= −∫

Th e value of K ′ given by Majumdar and Hamrock (1981) varies from 0.003 to 0.0003 for the range of 

a
σ ρ  between 0.01 and 0.0001. Th e nondimensional contact pressure can be written as

 ( )2

5 2

21
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∫ ∫  (13.83)
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Th e boundary conditions used are at the edges of the rectangular envelop of computation, the pressure is 

zero at the cavitation boundary, 0
p p

p
x y

∂ ∂
= = =

∂ ∂
.

13.5.6 | Numerical Solution and Results

Th e steady-state pressure distribution is obtained by simultaneous solution of elastic deformation Equation 
(13.54), lubricant fi lm pressure governing Equation (13.82), fi lm thickness Equation (13.81), and asperity 
contact pressure Equation (13.84) satisfying the boundary conditions and using fi nite-diff erence method 
with successive relaxation scheme (Equation (13.85)). Th e numbers of mesh points used in the rolling and 
transverse directions are 69 and 33, respectively. Nonuniform mesh size (fi ner in the contact zone) is used 

Figure 13.19 | Steady-State EHD Mixed Lubricated Pressure Distributions
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in the computation method. Th e convergence criteria for pressure distribution q  and desired input load 
i

W  
adopted are 10−5 and 10−3, respectively. A direct solution method is employed providing relaxation for the 
change of central fi lm thickness based on the convergence of desired input load.

 

( ) with,  1.2 to 1.5

1 with, 0.01 to 1

new old new old

inew i

cnew cold

i

q q orfq q q orfq

W W
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 (13.84)

i
W  the total load carrying capacity of EHL contact is

ln(1 )
          where, 

i a
A A

Gq
W p dxdy p dxdy p

G

−
= + = −∫∫ ∫∫

Th e nondimensional lubricant fi lm pressure and contact pressure distributions as obtained from pres-

ent solution are shown in Fig. 13.19 for the set of values, G = 4522, 110.1683 10U −= × , 60.0567 10W −= × , 
k = 1.75, 4Λ = , 6γ = , and 0.003K =′ . It can be seen from Fig. 13.19(b) that the contact pressure is maxi-
mum at the outlet region where a pressure spike exists in Fig. 13.19(a) because of more asperities are in direct 
contact in the minimum fi lm thickness zone. Eff ect of surface roughness parameter Λ on maximum contact 
pressure increases is shown in Fig. 13.20 for various values of roughness pattern parameter γ . Th is indicates 
that more and more asperities are in direct contact when the surface roughness increases.

Figure 13.20 | Maximum Contact Pressure Variation with Surface Roughness Parameters
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Chapterr14
Vibration Analysis with Lubricated 
Ball Bearings

14.1 | Introduction

In many industries the demand for high power and high speed together with uninterrupted and reliable 
operation is increasingly important. Th e accurate prediction and control of dynamic behavior (unbalance 
response, critical speeds, and instability) is another vital requirement. Th e bearings clearly constitute a vital 
component in any turbomachine. Today’s high precision ball bearing draws more interest toward the noise 
and vibration-free operation in industrial as well as household appliances. Over a decade-long research and 
development on the linear and nonlinear vibration analysis of dry contact ball bearings put some eff ort into 
the understanding of basic phenomenon.

Gupta (1975, 79a–d) has published a series of papers, describing the dynamics of rolling element 
 bearings. He presented the analysis with transient ball motion (1975). Here a set of generalized equations of 
motion of ball operating under elastohydrodynamic traction conditions is formulated and solved  numerically, 
in which the traction in the EHL contact was predicted by semiempirical model of Gu (1973) describing 
the relationship of traction with slip. In an another approach (1979a–d), the generalized equations of motion 
describing the rolling element, cage, and race motion were formulated and analyzed in detail for both roller 
and ball bearings. Gupta et al. (1977) presented the numerical solution of the diff erential equations describing 
the motion of the ball in an angular contact thrust loaded ball bearing. Two characteristic natural frequencies 
were identifi ed and their existence was verifi ed with experimental data. Work of Gupta in the fi eld giving 
detailed vibration analysis of ball bearing is highly recognized by intellectuals, but such described phenom-
enon never validated experimentally. Th is is perhaps due to complexity of experimental facility that needs 
to describe the vibrational characteristics, hardly possible to isolate of each individual components of a ball 
bearing. Datta and Farhang (1997a,b) presented a nonlinear model for structural vibration in rolling element 
bearings with Hertz contact stiff ness. Recently, a study of ball size variation on the dynamics of ball bear-
ing has been reported by Harsha (2004). In his work, the contact stiff ness was modeled by nonlinear springs 
considering Hertzian elastic contact deformation theory. Similar studies on vibration of ball  bearing are 
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also available, Lim and Singh (1990a,b) and Tiwari et al. (2000a,b). Aktürk et al. (1997) suggested from the 
experimental investigation that the preload and the number of balls in a ball bearing are two of the important 
governing parameters aff ecting the dynamic behavior and have to be considered at the design stage. Th ey 
found that the vibration characteristics of the shaft and its bearings change when the bearings operates in 
diff erent regions of their nonlinear load-defl ection characteristics.

Dareing and Johnson (1975) experimentally evaluated the damping characteristics of two steel discs under 
contact. In their analysis, damping generated by elastohydrodynamic lubrication was separated from other 
form of contact damping, indicating EHL damping contributes signifi cantly to the total contact damping and 
is dependent on lubricant viscosity. El-Sayed (1980) derived an equation for predicting the stiff ness of deep-
groove ball bearings and expressed it in terms of available bearing dimension for practical use. Th e experimen-
tal investigation of Walford and Stone (1983) concluded that joints in a rolling element bearing was a source 
of damping and should not be neglected in theoretical analysis. Kraus et al. (1987) and Mitsuya et al. (1998) 
investigated the eff ects of speed and preload on radial and axial bearing damping in deep-groove ball bearings, 
and arrived at the same conclusion that damping decreases with speed and preload. Zeillinger et al. (1994) 
presented an experimental work on the calculation of damping coeffi  cients of a ball bearing. A theoretical 
work of Dietl (1997) followed subsequently. In this theoretical study, an elliptical EHL contact was converted 
to an equivalent line contact considering major-axis of the ellipse and the mixed-lubrication stiff ness and 
damping coeffi  cients are evaluated. Relatively high axial load was applied which allows one to assume equal 
load distribution of each ball in the race. Measurement and theoretical estimation of damping coeffi  cients and 
related rotor dynamics behavior are available, Yhland and Johansson (1970), Elsermans et al. (1976), Braun and 
Datner (1979), Igarashi et al. (1982), Wijnant (1998), Hendrikx et al. (1998), and Wensing (1998).

Recently, Sarangi et al. (2004a,b; 2005a,b) presented the linear as well as nonlinear prediction of vibra-
tional characteristics of ball bearing depends on the stiff ness and damping capability of individual ball having 
contact with raceways transmitting vibration to the supporting members. Based on his work, a relatively sim-
pler linear vibration analysis of rotor supported on lubricated bearings using fi nite element method (FEM) 
and nonlinear structural vibration analysis has been presented in this chapter.

14.2 | Rotor Supported on Lubricated Ball Bearings

Finite element procedures are at present very widely used in engineering analysis. Each fi nite element pos-
sesses a mathematical formula which is associated with a simple geometric description, irrespective of the 
overall geometry of the structure. Th us, the method leads to the construction of a discrete system of matrix 
equations to represent the mass, damping, and stiff ness eff ects of a continuous structure. Th e overall system 
equation of the structure is represented by global stiff ness, damping, and mass matrices assembled from the 
individual constituents. Th erefore, the formulation of stiff ness, damping, and mass matrices of individual 
constituents is a prerequisite.

Th e empirical relationship of single lubricated contact stiff ness and damping coeffi  cients were given by 
Sarangi et al. (2004b). Th e overall equivalent bearing stiff ness and damping directional matrices are obtained 
from static load distribution using these empirical relations for individual ball contact stiff ness and damping 
coeffi  cients. Th ereafter, the bearing stiff ness and damping matrices are used directly in the FEM analysis of 
rotor-bearing system, and dynamic response is predicted.

14.2.1 | Overall Equivalent Stiff ness and Damping Matrices of Ball Bearings

Overall stiff ness and damping of a ball bearing are the result of inner and outer race contact stiff ness and 
damping of individual load sharing balls, which vary with contact geometry and load carrying capacity.
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A radially loaded ball bearing with radial clearance p
d
 is shown in Fig. 14.1(a), the inner ring makes 

contact under static and no load condition. It is noticeable that the clearance at the load line is zero and 
increases with the angle j, which can be written as

( )1 cos
2

d
p

c ϕ= −

Now application of load causes elastic deformation of balls over the arc 2j
l 
, and with dynamic condition 

there will be lubricant fi lm to support this external load. Th en total interference along the load line (j = 0) is 
given by, (Fig. 14.1 b)

0 0 0
c c

V hδ = −

where V
c
0 is the combined inner and outer race elastic deformation of the ball along load line (j = 0). h

c
0 is the 

combined inner and outer race lubricant fi lm thickness in the load line contact (j = 0).
Interference at any angular position from the load line can be represented in terms of total radial distance 

of inner ring or shaft from the concentric position d.

 0cos           where, 
2 2

d d
p p

ϕδ δ ϕ δ δ
⎛ ⎞

= − = +⎜ ⎟⎝ ⎠
 (14.1)

Using Hertz elastic deformation and Hamrock and Dowson (1981) fi lm thickness empirical relations, 
one can write

 2/3 0.067
H EHL

K W K Wϕ ϕ ϕδ −= −  (14.2)

where K
H
 is the proportionality of load deformation constant from Hertz contact theory.

( ) ( )0.73 0.730.67 0.53 0.67 0.532.69 1 0.61 2.69 1 0.61i o
k k

EHL i i o o
K U G e U G e− −= − + −

K
EHL

 is the proportionality constant for load and central fi lm thickness (Hamrock and Dowson 1977a), 
 suffi  xes ‘i’ and ‘o’ correspond to the inner and outer race contacts, respectively.
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Figure 14.1 | Radially Loaded Ball Bearing
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K
H
 can be found using the empirical relations as given by Brewe and Hamrock (1977) for elliptical 

 integrals z and ℑ of Hertz contact,

( )y x
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1.0003  and =1.5277+0.6023ln R R

/
/

y x
R R

ζ = + ℑ

Th e deformation at the center of contact is expressed as
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and combining the deformation due to inner and outer race contacts
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Now the total load carrying capacity of the bearing is
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∑  (14.3)

Equation (14.3) is for pure radial load. Th e radial, axial loads, and moment due to misalignment for a 
bearing having contact angle b are given by
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∑

Once the radial load is known, the other two components of load W
a
,M can be found. Equations (14.1) 

are (14.3) are solved using nonlinear least-square method and iteratively with successive over-relaxation with 
the change of d as follows.

1         with 0.1 to 1xnew x

new old

x

W W
orfd orfd

W
δ δ

⎡ ⎤⎛ ⎞−
= + ⋅ =⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

Having obtained the load sharing of each ball contact on race, the empirical relations (Equation 14.4) 
from Sarangi et al. (2004b) are used to obtain the stiff ness and damping coeffi  cients of inner race and outer 
race contact of each ball.

 

( )( )
( )

6 8
2 3 7 94

7 9
2 3 6 8 104

1 5

1

5

k

c c

kk k k kk k

c c c c cc k

K k G W U k ke e

c
C G W U c k e e

R

γ

γ

−Λ
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= − Λ  (14.4)

where the constants are given in Table 14.1.
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If two linear spring-damper combinations are connected in series as in Fig. 14.2, the resulting 
equivalent frequency dependent stiff ness and damping can be determined with the help of complex equation 
(Dietl 1997),
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1 1
b b

i i o o

K j C
K j C K j C

ω
ω ω

−
⎛ ⎞

+ = +⎜ ⎟+ +⎝ ⎠
 (14.5)

where w is the angular frequency, which is generally of the inner race, outer race, cage, or ball pass frequen-
cies or combinations of two or more of these (Goodwin 1989). It is appropriate to take the combination of 
inner and outer race ball pass frequencies, as they contribute more in dynamics of the system. Replacing a ball 
with equivalent spring-damper system (Fig. 14.2b), one may be able to fi nd the overall stiff ness and damping 
matrices from compatibility and coordinate transformation matrix.
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Table 14.1 | Constants Used for the Empirical Relations (Equation 14.4)

k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

k
9

−5.284 1.237 −0.671 −0.263 −0.475 −0.344 −0.267 −0.397 −0.021

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9

c
10

−304.105 1.155 −0.406 −0.773 1.978 0.204 −0.316 −0.276 −0.385 −0.013

Figure 14.2 | Equivalent Stiff ness and Damping Model of Ball Bearing
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where z is the number of balls under contact (within arc 2j
l
 ) and N is the transformation matrix with global 

displacement vector { , , , }T
x y x y

u u u θ θ= . Th e displacement along the axial direction is not considered for 
simplicity.

cos cos
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sin sin

cos sin

T
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i
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e i
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r

r

ϕ β
ϕ β
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ϕ β

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪

−⎪ ⎪
⎩ ⎭

Similarly, stiff ness matrix of dry contact ball bearing is obtained, where K
EHL

 = 0 in the Equation (14.2); 
Equations (14.4) and (14.6) are replaced by

12 3 2 3

1 33 1 1

2
b

i o

K W
K K

−
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

Stiff ness and damping matrices obtained for lubricated ball bearing (Table 14.2) with a rotational speed 
of 3600 rpm of journal and the speed independent stiff ness of dry contact ball bearing are given as example.

Case-I

Bearing radial load = 420 N
Bearing axial load   = 0 N
Lubricated ball bearing

8 3

5.3786 2.6419 0 0 4.4599 2.2210 0 0

2.6419 3.5310 0 0 2.2210 3.0065 0 0
10      10

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

b b
K C

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Dry contact ball bearing

8

1.1176 0.5786 0 0

0.5786 0.7964 0 0
10

0 0 0 0

0 0 0 0

b
K

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Case-II

Bearing radial load = 420 N
Bearing axial load = 50 N
Moment due to misalignment = −1.7896 Nm
Ball contact angle b = 5°
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Lubricated ball bearing

8 8 6 6

8 8 6 6

6 6 3 3

6 6 3 4

5.337 10 2.622 10 1.231 10 2.505 10

2.622 10 3.505 10 1.645 10 1.231 10   
1.231 10 1.645 10 7.724 10  5.778 10

2.505 10 1.231 10 5.778 10 1.176 10

b
K

⋅ ⋅ ⋅ − ⋅⎡ ⎤
⎢ ⎥⋅ ⋅ ⋅ − ⋅= ⎢ ⎥

⋅ ⋅ ⋅ − ⋅⎢ ⎥
⎢ ⎥− ⋅ − ⋅ − ⋅ ⋅⎣ ⎦

        

3 3

3 3

4.405 10 2.194 10 10.299 20.677

2.194 10 2.970 10 13.943 10.299     
10.299 13.943 0.065  0.048 
20.677 10.299 0.048 0.097

b
C

⋅ ⋅ −⎡ ⎤
⎢ ⎥⋅ ⋅ −= ⎢ ⎥

−⎢ ⎥
⎢ ⎥− − −⎣ ⎦

Dry contact ball bearing

8 7 5 5

7 7 5 5

5 5 3 3

5 5 3 3

1.1091 10 5.743 10 2.695 10 5.206 10

5.743 10 7.903 10 3.710 10 2.695 10
  

2.695 10 3.710 10 1.741 10 1.265 10

5.206 10 2.695 10 1.265 10 2.444 10

b
K

× × × − ×⎡ ⎤
⎢ ⎥× × × − ×⎢ ⎥= ⎢ ⎥× × × − ×
⎢ ⎥

− × − × − × ×⎢ ⎥⎣ ⎦

14.2.2 | Application to Rotor-bearing Systems

Th e stiff ness and damping matrices as formulated in Equation (14.6) can be used in rotor-bearing systems. 
Characteristic equations are summarized for the case of a rotor-bearing system to understand the infl uence 
of lubricated ball bearings on the dynamics of rotor systems (Nelson and McVaugh 1976). Rotor-bearing 
system model as shown in Fig. 14.3 has been simulated with bearings model considering EHL with surface 
roughness eff ect.

Th e system characteristic equation will be assembled considering individual components using fi nite 
 element method (Nelson 1980; Ozguven and Ozkan 1984).

Finite Rotor Element

A two-dimensional beam element shown in Fig. 14.4 having four degrees of freedom per node is used for 
modeling the shaft.

Figure 14.3 | Rotor-bearing System Models
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When the rotor is very thin, the eff ect of rotary inertia and shear deformation can be neglected. In 
other words, Euler–Bernoulli beam theory is accurate enough as compared to the Timoshenko beam theory 
which considers the rotations due to shear deformation and is therefore more appropriate for thick beams. 
A Timoshenko beam element with four degrees of freedom per node is considered for present analysis 
(Ozguven and Ozkan 1984), whose equation of motion is given as

 ( ) ( ) ( )R T e e B A e eee e
M M u B G u K K u F+ + − Ω + − =�� �  (14.7)

where M
R
 is the rotational mass matrix

M
T
 is the translational mass matrix

K
B
 is the bending stiff ness matrix of  Timoshenko beam

K
A
 is axial stiff ness matrix due to axial load

B is the damping and G is the gyroscopic matrices, respectively

{ , , , }T
x y y x

u u uθ θ=  is the generalized degrees of freedom
F is the external excitation force
‘e’ stands for the element degrees of freedom
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Figure 14.4 | Rotor Element
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All system matrices are represented conventional notations, they can be found in Bettig (1996), Nelson 
and McVaugh (1976). Values of a, F, and T are considered to be zero for simplicity.
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Bearing Element

Most rotors are supported on oil-fi lm bearings or in rolling contact bearings. Th e bearings infl uence the rotor 
vibrations to a certain degree by their dynamic properties. Th is infl uence originates essentially from the ratio 
of the rotor stiff ness to the bearing stiff ness. Th e bearings are modeled by stiff ness and damping elements 
horizontal as well as in vertical plane as shown in Fig. 14.3, where , 1, 2..., 4i j =  for four degrees of freedom. 
Neglecting the mass of bearing, the equation of motion for bearing can be written as,

 
b b b b b

C u K u F+ =�  (14.8)

where suffi  x ‘b’ corresponds to the bearing degrees of freedom, for example, in Fig. 14.3 suffi  x ‘b’ is referred to 
node numbers 1 and 15.

Rigid Disc

Th e disc is assumed to have an eff ect like a concentrated mass and so it can be characterized solely by kinetic 
energies. Mass and inertia properties can be concentrated on the corresponding node on the shaft (Nelson 
and McVaugh 1976). Hence, disc element with a single node and four degrees of freedom (as in Fig. 14.3) 
has been used for modeling the disc.

 
d d d d d

M u G u F− Ω =�� �  (14.9)

where M
d
 and G

d
 are the mass and gyroscopic matrices of the disc. Suffi  x ‘d’ corresponds to the disc nodal 

degrees of freedom, for example, in Fig. 14.3 suffi  x ‘d’ is referred to the node number 8.
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System Equation of Motion

After assembling Equations (14.6) to (14.8), the system equation of motion becomes

 
s s s s s s s

M u D u K u F+ + =�� �  (14.10)

where ‘s’ stands for system, M
s
 is the global mass matrix of the system that includes the mass matrices of shaft 

and disc. D
s
 matrix includes damping matrices of shaft and bearings as well as gyroscopic matrices of shaft 

and disc. Th e global stiff ness matrix K
s
 is the contribution of stiff ness matrices of shaft and bearings.

Assembly of System Matrices
Th e component equations are assembled for the rotor system. Th e assembly process is explained for the stiff -
ness matrix in the following way. Th e procedure is repeated for the other matrices similarly.

For example, consider two elements connected as shown in Fig. 14.5. Th e fi rst element no. 1 has the 
degrees of freedom (D.O.F) as (q

1 
− q

4
) at node 1 and (q

5 
− q

8
) at node 2. Using the conditions of compat-

ibility, the second element will have the D.O.F. of (q
5
− q

8
) at 2’ same as that of the node 2. At the node 3, the 

second node of the element 2, the D.O.F are (q
9
− q

12
). When both the elements are combined as in Fig. 14.5, 

the total D.O.F of the assembly becomes 3 × 4 = 12 (which is number of nodes X 4 D.O.F at each node).
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Th us, this way all the elements of rotor system are assembled, the equations in Matrix forms, including 
the bearings are developed. Th e stiff ness matrix, [K] for the entire rotor system thus exhibits the following 
band structure as shown in Fig. 14.6. Th e bearings are assembled at the appropriate D.O.F of the assem-
bly as per the location of the bearings. For example, consider the bearing at 2nd node. Th e D.O.F of this 
node 2, where the bearing is located, are (5–8). Th e bearing stiff ness matrix elements in X-Y coordinates are 
(K

xx
,….K

yy
), these correspond to D.O.F, 5–8 are included at the corresponding D.O.F, in the assembly as 

shown below in Fig. 14.6. Th e rotational components of the stiff ness are not shown here for this example, 
whereas in the analysis those are included.

Equation (14.10) can be solved using state-space method in the absence of external excitation for the 
eigen analysis. Th e forced vibration characteristics can be studied with inclusion of external excitation force.

Eigenvalue Problem
Th e eigenvalue problem becomes complex due to the inclusion of damping in the equation of motion. Such 
problems are not amenable to direct numerical applications as the computational costs involved would be 

Figure 14.5 | Joining of Finite Beam Elements
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higher than for the simple undamped case (Ewins 2000). Th erefore, the equations will normally be  transformed 
into the state-space form.

Th e equation of motion for free vibration is given by

 0
s s s

M u D u K u+ + =�� �  (14.11)

Assuming a harmonic response, the rotor displacement can be represented by,

 ˆ i tu ue ω=  (14.12)

Substituting Equation (14.12) with Equation (14.11) leads to

 2 0
s s s

M i D Kω ω⎡ ⎤− + + =⎣ ⎦  (14.13)

which constitutes a complex eigenvalue problem. To transform the equation (14.13), into state-space form, a 
new state vector is defi ned as

 
u

r
u

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
�

 (14.14)

Finally from Equations (14.11) and (14.14), the state space form is given as,

0 0

0 0 0
s s s

s s

D M u K u

M u M u

⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ =⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬−⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

�

�� �

or in general

 
1 2

0B r B r+ =�  (14.15)

Th e formulation is often called the state-space analysis, by contrast with usual vector-space analysis. B
1
 and 

B
2
 are 2 2N N×  real-symmetric matrices. Equation (14.15) is in a standard eigenvalue form which can be 

easily solved for 2N eigenvalues and eigenvectors. Assuming a solution form, 
0

tr r eλ=  for the homogeneous 
case of Equation (14.10), the associated eigenvalue problem is

 0A Iλ− =  (14.16)

where 1
1 2

A B B−= − . Th e eigenvalues evaluated from Equation (14.16) are in complex form, l
i
 = z

i
 (Ω) + j w

i
 

(Ω). Th e imaginary part of the eigenvalue will give the system natural whirl frequency and real part will give 
about system damping. Th e logarithmic decrement defi ned as d

i
 = −2 π z

i
 / w

i
 , indicates the stability threshold 

when d
i
 < 0.

Unbalance Response
Considering only the unbalance of disc, force for Equation (14.10) can be of the form

 cos sin
s c s

F f t f t= Ω + Ω  (14.17)

A steady-state solution of the same form,

 cos sin
s

u a t b t= Ω + Ω  (14.18)
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is assumed and substituted in Equation (14.10), which yields the solutions

 

( )
( )

1
2

2

s s s c

ss s s

a K M D f

b fD K M

−
⎡ ⎤− Ω Ω⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬−Ω − Ω⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

 (14.19)

Th e back substitution of Equation (14.19) into Equation (14.18) provides system unbalance response.

14.2.3 | Numerical Solution and Results

Stiff ness and damping of bearings can alter the dynamics of rotor-bearing system. To understand the eff ect of 
lubricated ball bearings, dynamic study of rotor system supported on these bearings was carried out and com-
pared with that of other two diff erent bearing types, viz., dry contact ball bearing and plain journal bearing 
supports. Th ree bearings were tested numerically on a rotor system as shown in Fig. 14.3 for the values given 
in Table 14.2. Th e journal bearing data have chosen in such a way that the rotor has nearly critical speeds 
more or less as that of rotor with ball bearing supports. All the three bearing types support same load for a 
given rotor-bearing system.

Dynamic equation of the rotor-bearing system is solved using FEM, where stiff ness and damping matri-
ces generated for bearings are assembled into the global stiff ness and damping matrices of rotor. Stiff ness and 

Table 14.2 | Parameters Selected for Numerical Simulation

Parameter Value

Rotor and disc data

Length of shaft 1.04 m

Shaft radius 0.035 m

Disc radius 0.176 m

Disc width 0.070 m

Young’s modulus 2.1 ⋅ 1011 N/m2

Density 7800 kg/m3

Unbalance 10−4 kg-m

Unbalance phase 600

Ball bearing data: Deep groove ball bearing - 6214

Ball diameter 0.0195 m

No. of balls 10

Oil viscosity 0.06 Pa s

Pressure viscosity coeffi  cient 2 ⋅ 10−8 m
2/N

Plain journal bearing data

Radial clearance ratio 0.001

Length to diameter ratio 1

Oil viscosity 0.01 Pa s
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damping matrices of plain journal bearing are evaluated numerically from theory (Majumdar et al., 1988), 
given in Chapter 8. In case of the dry contact ball bearing, the dry contact damping is neglected, as this is very 
small compared to lubricated contact.

Th e mode shapes of the rotor supported on a dry contact ball bearing is shown in Fig. 14.7. Four modes 
have been plotted with corresponding natural frequencies in both horizontal and vertical directions, where 
the fundamental natural frequency of the system is 57.8 Hz.

Figures 14.8 and 14.9 show the frequency response and unbalance response for all the three kinds of 
bearing. Th e response characteristics of rotor with lubricated ball bearing are in between those of the rotor 
with dry contact and fl uid fi lm bearing. It can be interpreted from the result that lubricated ball bearing 
retains both the properties of fl uid fi lm bearing and dry contact ball bearings. In other way, lubricated ball 
bearing gives a damping capability comparable to fl uid fi lm bearing.

From the response plots, it is noticed that the nature of the lubricated ball bearing is close to the plain 
journal bearing. Th erefore, in case of lubricated ball bearing, an attempt has been made to search for the 
existence of oil whirl or whip instability phenomenon as present in case of a plain journal bearing. Oil whirl 
and whip are the self-induced instabilities caused by small unbalance masses. Apart from the spinning, the 
journal center exhibits an eccentric motion about the centroidal axis, this is known as whirling of the journal. 
Generally, whirling occurs at a frequency close to the half of the spinning speed of the journal. Th erefore, it is 
sometimes called as half frequency whirl. As the spinning speed of journal increases, the whirling frequency 
also increases maintaining a ratio close to 0.5. However, when the journal spinning speed approaches the 
value twice of the system’s 1st natural frequency, the frequency of whirl coincides with the 1st natural fre-
quency of the system. Th is is known as oil whip. Frequency of whip does not change further with the spinning 
speed of journal. Th e system fails at this stage due to large vibration caused by oil whip mechanism.

Figure 14.7 | Mode Shapes of the Rotor
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Figure 14.10 shows the waterfall plot for the plain journal bearing and lubricated ball bearing, 
 respectively. Th ese waterfall plots have been plotted with the frequencies of vibration on x-axis, speed of the 
rotor on y-axis. Oil whirl and whip mechanisms can be identifi ed easily from a waterfall plot and clearly 
visible in case of a plain journal bearing (Fig. 14.10a), whereas these mechanisms are not present in case of a 
lubricated ball bearing as shown in Fig. 14.10(b).

Th e stability threshold speed of the journal bearing is found to be 9984 rpm (166.4 Hz) and shown in the 
Fig. 14.10(a). Th e stability threshold speed is the speed at which whip occurs and the system vibrate violently. 
Th is speed is referred to as the value of the rotor speed above which the system becomes unstable. Th e stability 
threshold speed has been evaluated from the eigenvalue analysis, as the rotor speed at which the real value of 
the natural frequency changes sign from negative to positive.

Figure 14.9 | Unbalanced Response at Left End Bearing

2000 4000 6000 8000 10000 12000 14000 16000 18000
0

20

40

60

Rotor Speed [rpm]

U
n
b
a
la

n
c
e
d
 R

e
s
p
o
n
s
e
 [

m
]

Dry Ball Bearing 

Lubricated Ball Bearing 

Journal Bearing 

Figure 14.8 | Frequency Response Function at Left End Bearing

10–6

10–8

10–10

F
re

q
u
e
n
c
y
 R

e
s
p
o
n
s
e
 F

u
n
c
ti
o
n
 [
N

/m
]

50 100 150 200 250
–200

0

200

Frequency [Hz]

P
h
a
s
e
 [
d
e
g
]

Dry Ball Bearing 

Lubricated Ball Bearing 

Journal Bearing 



416  Theor y of Lubrication

Figure 14.10 | Waterfall Plot
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14.3 |  Nonlinear Structural Vibration Analysis in Lubricated 
Ball Bearings

Th e two non-dimensional empirical relations for the stiff ness and damping coeffi  cients were obtained Sarangi 
et al. (2005a) from the curve fi tted numerical results. Following the work of Sarangi et al. (2005b), these 
empirical relations are used to develop a nonlinear contact model. Th e motion of balls as well as cage, inner 
race, and outer race for a lubricated ball bearing has been investigated using this nonlinear contact model. 
In the derivation of equation of motion, it is assumed that only rolling contact exists between the races and 
rolling elements. A system of nonlinear diff erential equations describing the motion of the bearing system is 
derived applying Lagrange’s equations and solved using the fourth order Runge–Kutta integration technique.

14.3.1 | Formulation of Equation of Motion

A model for studying structural vibration in ball bearing has been developed following a procedure given by 
Datta and Farhang (1997a, b). First the expression for energies of the individual components of the bearing 
is formulated. Using these energies, the equations of motion are derived with the help of Lagrange’s equation. 
Th e mathematical model developed is based on the following assumptions.

• Th e contact is of pure rolling type and any form of sliding is absent in ball to race contact.

• All the elements of the bearing have motion in the plane of bearing only. Th at means there is no axial 
motion.

• Th e motion of the balls is restricted by small elastic deformations and thin lubricant fi lm present in 
the contact zone avoiding any plastic deformation.

• All balls in the race separated by an equal angular gap with the help of cage and maintains throughout 
the operation. Th e interaction of cage to that of balls is isolated and neglected.

• Th e bearing is assumed to operate under isothermal condition. Th ereby variation of lubricant proper-
ties with temperature is ignored.

• All the components of the bearing are rigid enough to undergo bending.

Energy Expressions

Figure 14.11 shows a schematic diagram of a ball bearing containing balls, inner race, outer race, and cage. 
Point ‘A’ and ‘B’ are the centers of inner and outer races, respectively, under loaded condition. Th e total energy 
of this system is considered to be the sum of kinetic energy, potential energy, strain energy of the springs 
representing contact, and dissipation energy due to contact damping. Figure 14.12 shows the contact model 
of the ball on races represented by nonlinear springs and dampers.

Kinetic Energy

Kinetic energy of the system is the sum of individual kinetic energies of each element and can be formulated 
separately. Th e total kinetic energy of balls is

 ( ) ( ) 2

1 1

1 1

2 2

N N

e i i i a i a i i
i i

T T m R R Iρ ρ φ
= =

= = + ⋅ + +∑ ∑ � �

� � �  (14.20)

where N is the number of balls in the bearing and f
i
 is the angular displacement of the ball about its center, 

then the displacements in vectorial form are

 ( ) ( )ˆ ˆcos sin
i i i i i

i jρ ρ θ ρ θ= +  (14.21)
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and

 ˆ ˆ
a a a

R x i y j= +  (14.22)

Considering pure rolling at ball inner race contact as shown in Fig. 14.13, the linear velocity relation of the 
contact point is given by

( ) ( )r i i a i
rρ φ θ φ θ− = − −� �� �

Figure 14.11 | A Schematic Diagram of a Ball Bearing
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then

 ( )i i a i

r

r
φ θ φ θ

ρ
= − −� �� �  (14.23)

Similarly, considering pure rolling at ball outer race contact

 1
b i a

r r

R R
φ θ φ⎛ ⎞

= + −⎜ ⎟⎝ ⎠
�� �  (14.24)

Now kinetic energy given by Equation (14.20) of the balls can be simplifi ed using Equations 
(14.21–14.23) as

 ( )

2 2 2 2

2
1

2

2 cos1

2 sin 2 sin 2 cos2

1

2

i

N
i i i a a i

e i
i a i i i a i i a i i i a

i i a i

r

x x
T m

x y y y

r
I

ρ ρ θ ρ θ

ρ θ θ ρ θ ρ θ θ

θ φ θ
ρ

=

⎡ ⎤+ + +⎧ ⎢ ⎥= ⎨ − + + +⎢ ⎥⎩ ⎣ ⎦
⎫⎡ ⎤ ⎪+ − −⎢ ⎥ ⎬

⎢ ⎥ ⎪⎣ ⎦ ⎭

∑
�

� �
� �

� �

�
� � � �

� ��  (14.25)

Kinetic energy of the inner race is

 ( ) 2
1 1

2 2a a a a a a
T m R R I φ= ⋅ +� �

�  (14.26)

Substituting Equation (14.22) with Equation (14.26), the kinetic energy expression for the inner race 
will become

 ( )2 2 2
1 1

2 2a a a a a a
T m x y I φ= + + �

� �  (14.27)

Th e kinetic energy associated with the outer race is

 ( ) 2
1 1

2 2b b b b b b
T m R R I φ= ⋅ +� �

�  (14.28)

Figure 14.13 | Inner Race to Ball in Pure Rolling Contact
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Th e displacement of outer race can be considered relative to the inner race

 
b a ab

R R R= +  (14.29)

where,

ˆ ˆ
ab b b

R x i y j= +

Using Equations (14.24, 14.28–14.29), the expression for the kinetic energy of the outer race can be 
written as

 ( ) ( )
2

2 21 1
1

2 2b b a b a b b i a

r r
T m x x y y I

R R
θ φ

⎫⎡ ⎤⎛ ⎞ ⎪⎡ ⎤= + + + + + − ⎬⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎪⎭

� �  (14.30)

It is assumed that the center of the cage remains coincident with that of the inner race that facilitates one 
to write the kinetic energy expression of cage as

 ( )2 2 2
1 1

2 2c c a a c
T m x y I θ= + + �

� �  (14.31)

Total kinetic energy of the bearing is the sum of individual components (Equations 14.25, 14.27, 14.30 
and 14.31)

 
e a b c

T T T T T= + + +  (14.32)

Potential Energy

Potential energy of all the individual elements in the bearing can be formulated considering the datum as the 
horizontal plane through the global origin. Th e total potential energy of balls is the sum of potential energy 
of each ball that maintains diff erent elevation from the datum.

 ( )
1

sin
N

e i i i a
i

V m g yρ θ
=

= +∑  (14.33)

Potential energy for inner race

 
a a a

V m gy=  (14.34)

for outer race

( )b b a b
V m g y y= +

and for cage considering the center to be coincident with inner race

c c a
V m gy=

Th en the total potential energy of the system is

 
e a b c

V V V V V= + + +  (14.35)
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Strain Energy

Strain energy of the contact is thought to be conserved due to the nonlinear springs. Generally, the nonlinearity 
in the load-defl ection relation is expressed as

 1
nF kη=  (14.36)

where n
1
 is the power index representing the nonlinearity, h is the total approach of two contacting ellipsoids 

and k is the stiff ness constant, then the strain energy associated with the load-defl ection is

 1 1
1

0 1
1

x

n nk
U k dx

n
η η += =

+∫  (14.37)

Using Equation (14.37), the total strain energy of all contacts can be written as

 ( ) ( )1 1
1 1

1 11 1
1 1

N N
n n

ai bi

i a i b
i i

k k
U L R x L

n n
ρ

+ +

= =

= − + − −
+ +∑ ∑  (14.38)

where suffi  ces ‘a’ and ‘b’ correspond to the inner and outer race ball contacts and L is the unstressed length of 
the springs. Hence, fi rst part of Equation (14.38) is referred as the strain energy of the inner-race-ball contact, 
and last part as that of outer-race-ball contact. Th is strain energy of the spring is conservative and can be 
summed up with the total potential energy.

Dissipation Energy

Dissipation energy of the contact is nonconservative caused by nonlinear relation of load and velocity and 
generalized as

 2
nF cη= �  (14.39)

where n
2
 is the power index representing the nonlinearity of load velocity relation and c is the damping 

 constant, then the associated dissipation energy is

 2 2
1

0 2
1

x

n nc
D c dx

n
η η += =

+∫  (14.40)

Using Equation (14.40), the total dissipation of the contact can be written as

 ( ) ( )2 2
1 1

1 12 2
1 1

N N
n n

ai bi

i i
i i

c c
D x

n n
ρ

+ +

= =

= + −
+ +∑ ∑�

�  (14.41)

14.3.2 | Equations of Motion

Knowing all aforesaid energies a set of equations in generalized coordinates can be written with the help of 
Lagrange’s equations

 
( )

k

k k k k

V Ud T T D
Q

dt q q q q

⎛ ⎞ ∂ +∂ ∂ ∂
− + + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠� �

 (14.42)
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where q
k
 and Q

k
 are the k-th generalized coordinates and corresponding generalized forces, respectively. Th e 

total number of generalized coordinates is N+2, N numbers of balls ( r
i = 1, 2,...,N

 ) and the relative outer race 
displacement to that of inner race x

b
 and y

b
. It is assumed that the balls are separated with a constant angular 

gap and maintains throughout the operation, hence

 ( )1
1

i
Nθ θ ϕ= + −  (14.43)

where j = 2p /N, the angular velocities of all the balls are then reduced to be same

1 2
....

N
θ θ θ θ= = = =� � � �

Using Equation (14.42) for generalized coordinates of balls, ri = 1, 2,...,N 
, the equations of motion are

 ( ) ( )

( ) ( )

1 1

2 2

2cos sin sin

0

n n
ai bi i

i a i a i i i i a i b

i i i
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ai bi i

i i

i i i

k k x
x y g L R x L

m m

c c x
x

m m

ρ θ θ ρ θ θ ρ
ρ

ρ
ρ

∂
+ + − + + − − − −

∂
∂

+ − − =
∂

�

��
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�

�
�

�

 (14.44)

Equation of motion for generalized coordinate x
b
 is

 ( ) ( )1 2

1 1

N N
n n

bi i bi i x

b a i b i
i ib b b b b

k x c x F
x x R x L x

m x m x m= =

∂ ∂
+ − − − − − =

∂ ∂∑ ∑
�

�� �� �

�

 (14.45)

and for the generalized coordinate y
b

 ( ) ( )1 2

1 1

N N
n n ybi i bi i

b a i b i
i ib b b b b

Fk x c x
y y g R x L x

m y m y m= =

∂ ∂
+ + − − − − − =

∂ ∂∑ ∑
�

�� �� �

�

 (14.46)

where F
x
 and F

y
 are the generalized forces in X and Y directions acting on the outer race corresponding to x

b
 

and y
b
 generalized coordinates, respectively. Th e deformation of the outer-race-ball contact is defi ned with the 

help of x
i
, which can be found from the relations

 

cos cos

sin sin

i i b i i

i i b i i

x x

x y

α ρ θ

α ρ θ

+ =

+ =  (14.47)

From these relations, we can get x
i
 as

 ( ) ( )
1

2 2 2
cos sin

i i i b i i b
x x yρ θ ρ θ⎡ ⎤= − + −⎢ ⎥⎣ ⎦

 (14.48)

Now we can obtain the partial derivatives of x
i
 appear in the equations of motion

 
cos sin

i i i b i b i

i i i

x x x y
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ρ θ θ
ρ ρ
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 (14.49)
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 (14.50)
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sin

i i b i i

b b i

x x y

y y x

ρ θ∂ ∂ −
= =

∂ ∂

�

�

 (14.51)

Th is is a system of N+2 second order nonlinear ordinary diff erential equations (14.44–14.46) and can be 
solved using Runge–Kutta fourth order numerical integration for known stiff ness and damping constants 
and corresponding indices.

14.3.3 | Nonlinear Model of the Lubricated Contact

Th e equations of motion formulated in the previous section can be solved if the power indices n
1
 and n

2
 of the 

contact nonlinear stiff ness and damping properties are known. Th ese indices can be found using the empirical 
relations for stiff ness and damping given by Sarangi et al. (2005a). For the case of elastohydrodynamically 
mixed lubricated contacts, the lubricant stiff ness, lubricant damping, and contact stiff ness coeffi  cients are 
expressed in Equations (14.52–14.54).

Lubricant Film Stiff ness

 ( )( )6 9
2 3 7 8 104

1 5

aaa a a a aa k
l

K a G U W a ke K e γ−Λ= − ′ Λ  (14.52)

where

1 2 3 4 5

6 7 8 9 10

0.4053,  0.2521, 0.6995, 1.1678, 0.5891,

0.3102, 0.0358, 0.3368, 0.928, 0.0399

a a a a a

a a a a a

= − = − = − = = −

= − = − = − = − = −

Lubricant Film Damping

 ( )( )( )7 10
2 3 6 8 94 11

1

5

c ckc c c c cc c

l

c
C G U W c k e K e

R
γ−Λ= − Λ′  (14.53)

where

1 2 3 4

5 6 7 8

9 10 11

0.7300, 0.7511, 0.5871, 1.1963,

0.5188 , 0.1275, 0.4548,  0.0013,

0.3521, 0.8472, 0.0366

c c c c

c c c c

c c c

= − = − = − =

= − = = − =

= − = − = −

Contact Stiff ness

 ( )( )7 10
2 3 6 8 94 11

1 5

b bkb b b b bb b

a
K b G U W b k e K e γ−Λ= − ′ Λ  (14.54)

where

1 2 3 4

8 9 10 11

0.1828,  0.1065,  0.4931,  0.7239,  

1.0418,  0.5396,  1.6221,  0.0861

        for 4        for 4

b b b b

b b b b

k k

= − = = − =

= = = =

< = >
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5

6

7

  0.1263 0.0588

      0.2377 0.4420

      0.2462 0.1081

b

b

b

= −

=

=

Figure 14.14 shows the equivalent nonlinear stiff ness and damping model representing a rough surface 
lubricated contact. It is assumed that damping is caused by the squeezing eff ect and predominant at the inlet 
zone rather than the center of the contact region where stiff nesses are higher. Th erefore, damping from the 
lubricated contact is considered to be parallel to the stiff nesses. Here h and d are the lubricant fi lm thickness 
and elastic deformation at the contact region, respectively. All the stiff ness and damping terms in the fi gure 
are shown corresponding to the equivalent force system. K

l
 and C

l
 are the lubricant fi lm stiff ness and damp-

ing, respectively, whereas K
a
 denotes the asperity contact stiff ness and K

h
 denotes the Hertz stiff ness constant. 

Using these quantities an equivalent force system with nonlinear load-defl ection relation representing stiff -
ness constant k and damping constant c can be formulated as:

Th e total approach of two ellipsoids (h) under the lubricated contact is governed by both elastic deforma-
tion (d) and lubricant fi lm thickness (h) as

 hη δ= −  (14.55)

From Fig. 14.14, same load is carried by elastic deformation stiff ness as well as the lubricant stiff ness and 
asperities contact stiff ness, hence

 3/2
h l

F K C hδ= + �  (14.56)

and

 ( )l a l
F K K h C h= + + �  (14.57)

Using complex relation h i hω=�  in Equations (14.55 and 14.56) and substituting d and h in Equation 
(14.55) one obtains

 ( ) ( )

2/32/3

1 l

h l a l l a l

i CF F

K K K i C K K i C

ω
η

ω ω

⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟ + + + +⎢ ⎥⎝ ⎠ ⎣ ⎦

 (14.58)

Figure 14.14 | Equivalent Stiff ness and Damping of Lubricated Contact
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Equation (14.58) is the required nonlinear load-defl ection relationship, where w is the angular frequency, 
which is generally of the inner race, outer race, cage or ball pass frequencies or combinations of two or more 
of these [19]. For known bearing geometry and operating conditions this load-defl ection relation can be 
reduced to more suitable form as follows.

Th e geometrical and operating properties of the bearing selected for the present simulation are given 
in Table 14.3. Using these values, the stiff ness and damping present in Equation (14.58) can be found for 
both inner-race-ball and outer-race-ball contacts. Now we have one Equation (14.58) with two unknowns 
F and h. For a operating load range of F = 0 to 20 N of each contact, corresponding displacement h can be 
found, which will give a nonlinear relational curve of F Vs h. Th en a suitable curve can be fi tted using the 
generalized nonlinear Equation (14.59).

 21

1

nnF k icη η= +  (14.59)

In this expression, k and c
1
 are equivalent stiff ness and damping constants with power indices n

1
 and n

2
, 

respectively. Th is has been derived using nonlinear least-square curve fi tting technique and the expression is 
found to be

For Inner-race-ball Contact

 8 1.26 6 1.269.447 10 2.511 10
a

F iη η= ⋅ + ⋅  (14.60)

For Outer-race-ball Contact

 8 1.26 6 1.269.268 10 5.726 10
b

F iη η= ⋅ + ⋅  (14.61)

Th e curve fi tted results are shown in Figs 14.15 and 14.16, where the real and imaginary parts of h signify the 
amount of equivalent stiff ness and damping present in the system, respectively. A close agreement has been 
achieved. Th ese two Equations (14.60 and 14.61) can be further approximated using relation iη ωη=�  as

For Inner-race-ball Contact

 8 1.26 1.269.447 10 1247.3
a

F η η= ⋅ + �  (14.62)

For Outer-race-ball Contact

 8 1.26 1.269.268 10 2844.7
b

F η η= ⋅ + �  (14.63)

Th e constants and indices from these two Equations (14.61 and 14.62) can be substituted in Equations (14.44–

14.46) of motion such as 89.447 10
ai

k = ⋅ , 89.268 10
bi

k = ⋅ , 1247.3,
ai

c =  2844.7
bi

c = , and 
1 2

1.26n n= = .

14.3.4 | Numerical Solution and Results

Th e properties of the ball bearing selected for the analysis are similar to those of Datta and Farhang (1997a,b) 
with additional roughness and lubricant properties as given in Table 14.3 and 14.4. When the model of the 
lubricated contact is known, the equations of motion (Eqns. 14.44–14.46) can be solved utilizing Runge–Kutta 
numerical integration method. Th e equations are modeled and solved in Simulink with MATLAB functions. 
Th e mass of each ball is assumed to be same as m and the initial values are set as given in Table 14.4. Keeping 
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Figure 14.15 | Curve Fitted Load-Defl ection Relation for Inner-Race-Ball Contact
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Table 14.3 | Geometric and Operational Parameters Used for the Ball Bearing

Parameters Value

Outside diameter of the bearing 68 mm

Radius of inner race at point of contact with the ball (r) 23 mm

Radius of inner race at point of contact with the ball (R) 31 mm

Radius of each ball (r) 4 mm

Radius of inner race groove (r
i
) 4.31 mm

Radius of outer race groove (r
o
) 4.35 mm

Contact angle (b) 00

Angular velocity of the inner ring (
a

φ� ) 1000 rpm

Angular velocity of the outer ring (
b

φ� ) 130 rpm

Surface roughness parameter (Λ) 2

Roughness pattern parameter (g) 1

Pressure viscosity coeffi  cient (a) 2E-8 m2/N

Ambient viscosity (m
0
) 0.068 Pas

Equivalent Young’s modulus (E ′) 2.7E+11 N/m2

Constant for asperity contact stiff ness (K ′) 0.0008

Number of balls 8
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Figure 14.16 | Curve Fitted Load-Defl ection Relation for Outer-Race-Ball Contact
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Table 14.4 |  Additional Physical and Operational Model Parameters Used for the Ball Bearing

Parameters Value

Mass of the bearing 0.22 Kg

Mass of each ball (m) 0.009 Kg

Mass of the inner ring (m
a
) 0.060 Kg

Mass of the outer ring (m
b
) 0.065 Kg

Mass of the cage (m
c
) 0.023 Kg

Moment of inertia of each ball (I) 7.2 × 10−8 Kgm2

Moment of inertia of inner ring (I
a
) 2.7 × 10−5 Kgm2

Moment of inertia of outer ring (I
b
) 6.9 × 10−5 Kgm2

Moment of inertia of cage (I
c
) 1.7 × 10−8 Kgm2

Unstressed length of inner-race-ball contact (L
a
) 27 mm

Unstressed length of outer-race-ball contact (L
b
) 4 mm

Initial radial position of the i-th ball (r
i
) 27 mm

Initial angular position of 1st ball (q
1
) 00

Other initial conditions ( , , , ,
i i b b b

x x xρ ρ� ��
� �� ) are assumed 0
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in mind a problem of stiff  system, variable time step size is adopted with a maximum permissible time step of 
10−6 and the initial time step could be as small as 10−20. Th e system equations are integrated over time until the 
steady-state solution is reached. Two cases have been analyzed covering free and forced vibration with both 
undamped and damped conditions. Due to space limitation, only vibration of alternative balls is given for all 
the cases analyzed.

Case-1: Free Vibration Analysis

Although vibrating structure without external load is uncommon in real-life operations, it is more suitable in 
predicting the natural behavior. Figure 14.17 shows the undamped free vibrating response of four alternative 
balls and outer race with respect to the inner race. Th e resulting signals are extracted for a prolonged period of 

Figure 14.17 | Free Undamped Vibration for Prolonged Period of Time
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time 0.4s concerning the stability of the system. Without the consideration of damping, the system is said to be 
conservative, hence all the individual elements in the bearing share the total energy which is constant. Hence, the 
vibrating amplitudes of some elements increase corresponding to the reduction of others which can be noticed 
clearly between the vibrating amplitudes of outer race. Figure 14.18 shows vibrating response for 2 milliseconds, 
which has been extracted from Fig.14.17. Th is gives a clear picture of vibrating amplitudes and frequencies 
involved. All the responses reveal the existence of two characteristic frequencies as reported by Gupta (1977).

Th e associated two characteristic frequencies of individual elements of the bearing are identifi ed from 
the FFT spectrum of the vibrating signals. Two frequencies close to 2804 Hz and 8468 Hz as identifi ed 
from the FFT of outer race horizontal signal (x

b
) are shown in Fig. 14.19. All the characteristic frequencies 

Figure 14.18 | Free Undamped Vibration for 2 Milliseconds
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of individual components are more or less same, and the second characteristic frequency is close to the thrice 
of fi rst one. On the whole, the elements of the bearing have oscillatory response. Th e amplitudes of vibration 
are not uniform, however, the rms of the amplitudes are uniform over a prolonged period of time. Th e motion 
of outer race with respect to the inner race is more or less of the same order as the motion of the balls. Due 
to the presence of gravity, the average value of the vertical displacement of the outer race always falls on the 
fourth quadrant, whereas the mean value of horizontal displacement is close to zero.

Figure 14.20 shows the vibrating response of bearing under free damped condition. It can be noticed 
that the oscillatory motion dies out rapidly within 2 milliseconds time. Th e energy is damped out from the 
system with the damping provided by the lubricant present in the contact region leaving the bearing with the 
static defection resulting from gravitational force. Under single ball angular position, ball has two contacts 
with one to inner and outer races which gives more damping to the balls rather than the races. Th is could 
be the explanation that the oscillatory vibrating amplitude of balls dies faster as compared to the outer race.

Case-2: Forced Vibration Analysis

Th is is the most common application of bearing. A radial rotating load is allowed to act on the bearing mostly 
caused by unbalance mass. Th e radial load is considered on the outer race of the bearing while rotating syn-
chronously as given in Equation (14.64).

 

cos

sin

x b

y b

F A

F A

φ

φ

=

=  (14.64)

where A is the amplitude of the radial force which is equal to the product of eccentric mass and square of 
the angular velocity of the outer race. For the present analysis, value of A is considered to be 0.0027 N and 
the forcing frequency is same as that of outer race (2.1667 Hz) given in Table 14.3. Th e vibrating responses 
as obtained under the forced undamped condition are shown in Fig. 14.21. It is noticeable that apart from 
the high frequencies one low frequency exists in all the vibration responses. Th is frequency is calculated and 
found nearly equal to 2.1 Hz corresponds to the forcing frequency synchronous with outer race.

Figure 14.22 shows the forced damped vibration response of the bearing. Th e energy associated with 
the higher frequencies is damped out rapidly within 2 milliseconds, whereas the low frequency amplitude 
response to the external force remains. Th e existing vibration shows clearly a vibrating frequency nearly 2.1 Hz 
and the amplitude of vibration is less than the mean amplitude as observed under undamped  condition in 

Figure 14.19 | FFT Spectrum of Outer Race Response (x
b
)
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Figure 14.20 | Free Damped Vibration
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Figure 14.21 | Forced Undamped Vibration
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Figure 14.22 | Forced Damped Vibration
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Fig. 14.21. Th e higher frequency vibrations are generally induced due to the contact stiff ness while the low 
frequency vibration is caused by the external load. Th ereby the contact damping is eff ective in reducing the 
higher frequency vibrations completely and also it reduces the low frequency vibration up to some extent.

Damping present in a lubricated bearing may reduce sometimes consequence to the interruption in lubri-
cation then the higher frequency amplitudes will appear in the signature similar to Fig. 14.21. Monitoring of 
such signature will enable to predict the condition of the bearing.
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Chapterr15
Thermal Effect in Rolling–Sliding 
Contacts

At high rolling speeds, viscous shear heating can be very signifi cant which may result in substantial reduction 
in the minimum fi lm thickness in the contact. It can also reduce rolling friction and friction due to sliding 
when rolling is associated with sliding. A few percentage of sliding is always associated with rolling and in 
gears sliding can be quite high. It is therefore, necessary to look into thermal eff ect at high rolling speeds both 
in pure rolling and rolling with sliding.

Th ermal problem requires coupled solution of thermal Reynolds equation and energy equation satisfying 
proper boundary conditions at the inlet and exit of lubricant fi lm.

15.1 | Thermal Analysis of Rigid Rolling–Sliding Contacts

Th e theory now presented is based on the procedure developed for the solution of thermohydrodynamic lubri-
cation problems under laminar fl ow by Elrod and Brewe (1986) and Elrod (1991). Th e momentum equation 
for noninertial laminar lubricating fi lms and the corresponding energy equation are, respectively, as follows:

,
u

p
z z

η
∂ ∂⎛ ⎞
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 (15.1)

  ,
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c u k

x z z
ρ φ

∂ ∂ ∂⎛ ⎞
= +⎜ ⎟⎝ ⎠∂ ∂ ∂

 (15.2)

where f = ( )2
/u zη ∂ ∂  is the viscous dissipation function.

Along with Equations (15.1) and (15.2) following mass continuity equation for an incompressible fl uid 
must be satisfi ed:

0u∇⋅ =  (15.3)
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Numerical solution to the fl ow fi eld is sought by sampling the velocities, pressures, and temperatures over 
chosen grid points, and the appropriate physical laws mentioned above are satisfi ed through an algorithm to 
which these values are interlinked. For a given geometry of line contact shown in Fig. 15.1, which represents 
an equivalent roller bearing, the temperature variation across the fi lm is represented by a Legendre polynomial 
of order N, P

N
 (ζ) and the sampling points then are N Lobatto points. It can be shown that N such internally 

selected points permit exact numerical integration of a polynomial of order 2N + 1 over range – 1<ζ<1. Th us,

( )1

1 k k
T d w Tζ ζ

−
= ∑∫

and for N = 2 the Lobatto location z
k
 and weight factor w

k
 are as follows and includes end-point values as 

given in Table 15.1. Th erefore, if end-point temperatures are known, then it requires only two interior Lobatto 

point temperatures to be determined. Th e fl uidity 1
ξ

η
=  is also collocated to its Lobatto point values by the 

series z
k
 = z(T

k
). A Galerkin style analysis used here involves the expansion of the temperature in a truncated 

series of Legendre polynomials. Satisfaction is required of as many moments of the energy equation as there 
are unknowns in this series. Th e ensuing partial diff erential equations for the Legendre components are then 
solved. In the present solution, only two unknowns are used, and for these it is feasible to carry out explicit 
integration as follows:

Table 15.1 | Lobatto Locations and Weight Factors for N = 2

Location Weight factor

−1 1/6

−1/ 5 5/6

1/ 5 5/6

1 1/6

Figure 15.1 | Geometry of Line Contact
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and for the second moment
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Th e temperature distribution which passes through the Lobatto points expressed in Legendre poly-
nomials as
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Th en the Legendre coeffi  cients are easily evaluated by integration
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Th e above linear set of equations can be solved for the T
i
. For N = 2
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Th e wall or surface temperatures T
2
 and T−2

 are considered known for purposes of fi lm calculation. Th us,

 ( )2 2 2 0,
/ 2T T T T

−
= + −� �  (15.8e)
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 ( )3 2 2 1,
/ 2T T T T

−
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Similar expressions are obtained for fl uidity with the Lobatto point temperatures. Th us,
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and fl uidity distribution is
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Velocity Distribution and Mass Flux
A double integration of Equation (15.1) with z = 1/x gives the tangential velocity vector

 
2 1 1

u u A d B d
ζ ζ

ξ ζ ξζ ζ
− − −

= + +∫ ∫  (15.11)
where

 

1

2 2 1

1

u u B d
A

d

ξζ ζ

ξ ζ

− −

−

− −
=

∫
∫

 (15.12)

and
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Th e linear mass fl ux is obtained as
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For symmetric cross-fi lm temperature distribution arithmetic averaging of fl uidities at Lobatto points 
can be done and therefore, mass fl ux is given by
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Th e cross-fi lm temperature distribution would be symmetric in pure rolling conditions when the surface 
velocities u

2
 and u−2

 are equal and so also the surface temperatures T
2
 and T−2

.
Mass continuity given by Equation (15.3) when applied to mass fl ux leads to the generalized Reynolds 

equation, as follows:
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Th e temperature equation with the aid of the Legendre series for temperature and fl uidity integrals in the 
zeroth and fi rst moment of energy Equations (15.4) and (15.5) can be evaluated as follows:

Equation (15.4) becomes
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Th e temperature 
0

T�  is z — space mean temperature where the integral of the dissipation function is
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and Equation (15.5) becomes
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where the moment of the dissipation function is
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Constants of Equations (15.16) and (15.18) are given in the Appendix. Two simultaneous partial diff er-

ential Equations (15.16) and (1.18) with two variables 0
T�  and 

1
T�  are obtained by eliminating 

2
T�  and 3

T�  via 
Equations (15.8e) and (15.8f ) coupled with the generalized Reynolds Equation (15.15) provide the solution 
to the thermohydrodynamic lubrication problem for laminar fi lms.

Boundary conditions for the generalized Reynolds equation are

 0     and   0 at 
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p at x x p x x
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= = = = =  (15.20)

Isothermal pressure distribution required to initiate the solution procedure is written following refer-
ence [13] as:
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0
 are average rolling speed and viscosity of the lubricant at inlet temperature.
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15.1.1 | Computational Procedure

Th e solution to the thermohydrodynamic line-contact problem begins with the known pressure distribution 
within the contact as obtained from Equation (15.21) for isothermal fi lms which assumes that the tempera-
ture in the entire fl uid fi lm is equal to the inlet oil temperature at 3110K.

Fluid fi lm is discretized in the fl ow direction and the term ( ) ( )0 1
 /  and  /dT dx dT dx� �  in Equations (15.16) 

and (15.18) are expressed in fi nite-diff erence form using backward diff erencing. Separating the terms, simul-

taneous algebraic equations in terms of two unknowns 0
 and T T� �  are obtained which are solved to deter-

mine them. Th is is done starting from the inlet to the outlet of the fi lm in a forward marching manner. 
Iterations are done to obtain a converged solution. For known surface temperatures T

2
 and T−2

 equal to the 
inlet oil temperature 3110 K, the temperature distribution within the fi lm region T

1
 and T

–1
 are thus obtained. 

Reverse fl ow situations, whenever they occur, are handled by resorting to upwind diff erencing for the terms 
in Equations (15.16) and (15.18).

Once the Lobatto point temperatures are known over the entire fi lm domain, fl uidity functions given in 
the Appendix are evaluated afresh. Th en the generalized Reynolds Equation (15.15) is solved iteratively for 
pressure distribution following the fi nite-diff erence method with appropriate boundary conditions satisfi ed 
at the inlet and exit of the fi lm.

For the pressure distribution thus known, we return to determine the temperature distribution within the 

entire fi lm region by solving Equations (15.16) and (15.18) for 0 1
 and T T� �

As discussed earlier, this process is repeated until both pressure and temperature converge simultaneously.
Pressure and temperature are treated as converged when the following convergence criteria are satisfi ed:
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where N is the number of iterations
However, convergence is quick and is obtained in only four or fi ve iterations.

15.1.2 | Load Capacity and Rolling Traction

Load capacity per unit length of the roller is
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and the friction force per unit length of roller is
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When expressed in dimensionless form these are
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Coeffi  cient of friction, 
F

f
W

= .

Th is procedure was adopted by Ghosh and Gupta (1998) to investigate thermal eff ect on fi lm thickness 
and traction coeffi  cient in a rigid rolling sliding contact operating at high rolling speeds. Rolling speeds from 
5 to 40 m/s and dimensionless fi lm thickness between 10–4 and 10–3 were used as data to investigate thermal 
eff ect. It was observed that there is a marked infl uence of viscous shear heating on load carrying capacity, fi lm 
thickness, and rolling traction at high rolling speeds. Lubricant properties and geometric parameters of the 
contact are given in Table 15.2. Results of calculations are presented for temperature and pressure distribu-
tions, fi lm thickness, and traction coeffi  cients in the graphical form.

15.1.3 | Temperature and Pressure Distribution

Variation of mid-fi lm temperature within the contact region is plotted for various minimum fi lm thicknesses 
in Fig. 15.2 for a rolling speed of 25 m/s. Mid-fi lm temperature variation for diff erent rolling speeds are 
shown in Figs 15.3 and 15.4 for two diff erent values of dimensionless minimum fi lm thickness of 2.5 × 10–4 
and 10–3, respectively. It is observed in Fig. 15.3 that for a given minimum fi lm thickness of 2.5 × 10–4, mid-
fi lm temperature increases considerably as the rolling speed increases due to increase in viscous shear heating.

Peak temperature of approx. 400° K is obtained which indicates an increase of 89° K from the inlet oil 
temperature of 311° K. As the fi lm thickness increases, however, the temperature rise is relatively low. Th e 
temperature distribution also changes and the peak temperature is observed near the exit. Th is is due to the 
heat being convected away from the inlet and contact regions toward the exit.

When the fi lm thickness is low, a temperature peak is observed in the inlet region, conduction across the 
fi lm playing a dominant role. Th e energy equation considers the mechanism of the generation as due to vis-
cous shear heating, while the heat removal is due to conduction across the fi lm and convection by the fl owing 

Table 15.2 | Lubricant Properties and Geometric Parameters of the Contact

Inlet temperature of lubricant, K 311.11

Inlet viscosity of lubricant, Pa s 0.13885

Temperature-viscosity coeffi  cient of lubricant K−1 0.045

Thermal diff usivity of lubricant, m2/s 7.306 × 10−8

c
p
 of the lubricant, J/m3K 1.7577 × 10−6

Radius of equivalent roller on plane, cm 1.11125

Dimensionless inlet fi lm thickness 0.035

Thermal conductivity of lubricant, W/m−k 0.1284
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fl uid along the rolling direction. However, in high-speed hydrodynamic conjunctions the major mechanism of 
heat removal is convection by the fl uid and these results in insignifi cant rise of the solid surface temperatures. 
Th us, roller surface temperatures are assumed constant in this analysis and equal to the inlet oil temperature, 
i.e., 311° K. Compression heating and decompression cooling were neglected too. Th is assumption is gener-
ally valid for hydrodynamic lubrication and is therefore invariably adopted. Figure 15.4 shows corresponding 
thermal pressure distribution for various fi lm thicknesses at a rolling speed of 25 m/s. Pressure within the 
contact rises considerably as the fi lm thickness decreases. It is also seen that for a given fi lm thickness, increase 
in rolling speed results in higher pressures.

Pressure distributions so obtained are typical of hydrodynamic lubrication. Peak pressure obtained for 
the minimum fi lm thickness of 2.5 × 10−4 is 7.5 × 107 Pa when the rolling speed is 40 m/s. Th is is the highest 
pressure that has been obtained in the conjunction. At this pressure, perhaps some piezoviscous eff ect might 
be observed. Some calculations done to estimate piezoviscous eff ects revealed that it was not signifi cant. At 
these pressures, elastic deformation would also be negligible. Th erefore, neglecting piezoviscous and elastic 
eff ects in the analysis appears to be well justifi ed. Th e highest value of shear rate is obtained at a sliding 
speed of 20 m/s (i.e., for slide-to-roll ratio of 0.5 and rolling speed of 40 m/s) and the minimum fi lm thick-

Figure 15.3 | Variation of Mid-fi lm Temperature for Diff erent Rolling Speeds
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Figure 15.2 | Variation of Mid-fi lm Temperature for Rolling Speed of 25 m/s
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Figure 15.4 | Variation of Peak Pressure
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ness (dimensionless) of 2.5 × 10–4 is of the order of 105/s. At such values of shear rates and pressures of the 
order 50–75 MPa, the non-Newtonian eff ects would also be negligible. Th erefore, neglecting non-Newtonian 
eff ects in the analysis is also justifi ed. Higher rolling speeds of the order of 30–40 m/s are usually obtained in 
large bearings of 50–100 mm diameters operating at speeds in the range of 5000–10 000 rpm.

15.1.4 | Thermal Load Capacity and Rolling Traction

It is important to estimate the reduction in the fi lm thickness and rolling friction due to viscous shear heating 
for a given operating condition of load and rolling speed. For a given load, the fi lm thickness reduction due 
to viscous shear heating increases with rolling speed. Th erefore, it can be said that isothermal calculation at 
311° K would result in gross overestimation of fi lm thickness at high rolling speeds and thermal eff ect must 
be taken into account to get an accurate estimate of fi lm thickness and rolling traction.

Variations of dimensionless load capacity and rolling friction versus rolling speed are shown in Fig. 15.5 
for various fi lm thickness values. Th ermal eff ect reduces the load carrying capacity considerably. For fi lm 
thickness of 2.5 × 10–4, the reduction in load capacity is much higher at high rolling speeds.

For a constant fi lm thickness, the coeffi  cient of friction is observed to increase with rolling speed as can 
be seen in Fig. 15.5 for fi lm thickness of 2.5 × 10–4 and 5.0 × 10–4. Th is is due to the larger reduction in load 
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capacity and altered pressure distribution with higher pressures and a steeper pressure gradient. Th ermal 
eff ect on load capacity and rolling friction are shown in Tables 15.3 and 15.4, respectively. Figures 15.6 and 
15.7 show the variation of load capacity and rolling friction coeffi  cient, respectively, against fi lm thickness 
for various rolling speeds. It can be seen that at lower values of fi lm thickness rolling friction increases with 
rolling speed. However, rolling friction is observed to approach a constant value with increase in fi lm thick-
ness irrespective of rolling speed. Th ermal eff ect on load capacity is observed to be highly dependent on fi lm 
thickness for low rolling speeds.

Eff ects of slide to roll ratio on the load capacity and friction coeffi  cient are shown in Figs 15.8 and 
15.9, respectively. Slip result in further reduction of the load capacity and an increase in friction coeffi  cient. 

Figure 15.5 | Variations of Dimensionless Load Capacity and Rolling Friction
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Table 15.3 | Isothermal and Thermal Minimum Film Thickness

Rolling 
speed
(m/s)

W = 15000 N/m W = 17000 N/m W = 19000 N/m W = 21000 N/m

H
iso

× 104

H
th

× 104

H
iso

H
th

H
iso

× 104 

H
th

× 104

H
iso

H
th

H
iso

× 104

H
th

× 104

H
iso

H
th

H
iso

× 104

H
th

× 104

H
iso

H
th

5 2.2656 1.777 0.7846 1.999 1.555 0.7781 1.7886 1.3704 0.7662 1.6183 1.222 0.7552

10 4.5312 2.8518 0.6294 3.9981 2.4814 0.6206 3.5772 2.1851 0.6108 3.2386 1.9259 0.5950

15 6.7968 4.1111 0.6048 5.9971 3.5555 0.5929 5.3659 3.051 0.5686 4.8548 2.7037 0.5569

20 9.0624 5.3704 0.5926 7.9962 4.6666 0.5836 7.1545 4.037 0.5643 6.4731 3.5555 0.5493

25 11.3279 6.6296 0.5852 9.9952 5.7777 0.5780 8.9431 5.000 0.5591 8.0914 4.4074 0.5447

30 13.5935 7.8148 0.5749 11.9943 6.8148 0.5682 10.7317 5.963 0.5556 9.7097 5.2591 0.5416

35 15.8591 9.0000 0.5675 13.9933 7.8889 0.5638 12.5203 6.9259 0.5531 11.3289 6.1111 0.5394

40 18.1247 10.1852 0.5615 15.9924 8.9260 0.5581 14.3090 7.8888 0.5513 12.9462 6.963 0.5378

Note:  H
iso

 = Dimensionless isothermal fi lm thickness. 

H
th

 = Dimensionless thermal fi lm thickness.
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Figure 15.6 | Variation of Load Capacity With Dimensionless Minimum Film Thickness
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Table 15.4 | Isothermal and Thermal Friction Coeffi  cient

Rolling 
speed
(m/s)

W = 15000 N/m W = 17000 N/m W = 19000 N/m W = 21000 N/m

f
iso

× 102

f
th

× 102

f
iso

× 102

f
th

× 102

f
iso

× 102

f
th

× 102

f
iso

× 102

f
th

× 102

5 1.2433 1.0494 1.1743 0.9898 1.1168 0.9322 1.0728 0.8833

10 1.6488 1.3648 1.5731 1.2879 1.2030 1.2059 1.4433 1.1437

15 1.9200 1.6231 1.8322 1.5420 1.7555 1.4778 1.6931 1.4298

20 2.1055 1.8035 2.0254 1.7268 1.9488 1.6601 1.8843 1.6047

25 2.2627 1.9798 2.1681 1.8881 2.0977 1.8176 2.0342 1.7429

30 2.4064 2.1154 2.3043 2.0221 2.2243 1.9446 2.1555 1.8823

35 2.5255 2.2518 2.4285 2.1382 2.3421 2.0550 2.2658 1.9901

40 2.6242 2.3695 2.5364 2.2443 2.4464 2.1455 2.3701 2.0770

Note:  f
iso

 = Dimensionless isothermal friction coeffi  cient. 

f
th

 = Dimensionless thermal friction coeffi  cient.

Figure 15.7 | Variation of Coeffi  cient of Friction With Dimensionless Minimum Film Thickness
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However, thermal eff ect due to the slip is relatively less signifi cant in hydrodynamic rolling conjunction. 
A formula was also proposed for the thermal correction factor (C) to calculate the minimum fi lm thickness 
under thermal condition in terms of isothermal minimum fi lm thickness as follows:

 = ×
, ,min Th min I

H C H  (15.26)

where the thermal correction factor C is given as:

= >
+

4
for 1

4 log
e

C Q
Q

Th ermal loading parameter,       2
0

/ .
r

Q u kγ η=

As can be seen in Table 15.3, the load dependence is not signifi cant and, therefore, has been neglected 
in the above formula, Comparison of thermal eff ect as obtained from Equation (15.26) and the computed 
results can be obtained from the values of C given in Table 15.5.

Figure 15.8 | Variation of Slide-to-roll Ration on Load Capacity for Dimensionless Film Thickness = 10 × 10−4
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Figure 15.9 | Variation of Slide-to-roll Ration on Coeffi  cient of Friction for Dimensionless Film Thickness = 10 × 10−4
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Table 15.5 | Thermal Correction Factor for Minimum Film Thickness

Rolling speed
(m/s)

5 10 15 20 25 30 35 40

Thermal loading 
parameter (Q)

1.2166 4.8660 10.9500 19.4660 30.4150 43.8000 59.6 77.86

Thermal correlation 
factor (C)

0.9533 0.7170  0.6266  0.5740  0.5395  0.5142  0.4946  0.4787

Th e above analysis and parametric investigation of thermal eff ect in fl uid fi lm lubricated roller  bearings 
operating at high speeds reveal that thermal eff ect due to viscous shear heating is very signifi cant and there-
fore must be accounted for to get a correct estimate of fi lm thickness and rolling traction for a known 
operating load. Th ermal eff ect on fi lm thickness due to the slip is relatively less signifi cant in hydrodynamic 
rolling-sliding rigid conjunctions.

15.2 |  Thermal Analysis of Elastohydrodynamic Lubrication 
of Line Contacts

It is important to estimate the reduction in the fully fl ooded minimum fi lm thickness in EHD lubricated con-
tacts due to viscous shear heating at high rolling speeds. Th ermal eff ect on the fi lm thickness were investigated 
by Dowson and Whitaker (1965), Cheng and Sternlicht (1965), Cheng (1965, 1967), Murch and Wilson 
(1975), Ghosh and Hamrock (1983, 1985). Dowson and Higginson (1959), and Hamrock and Jacobson 
(1983) presented a solution for isothermal problem of line contacts wherein computations were carried out 
from inlet to the outlet of the conjunction as one complete solution. While the analysis of Murch and Wilson 
(1975) and Cheng (1967) were essentially restricted to the inlet zone only, the others presented a complete 
solution of fully fl ooded line contact problem.

An inlet zone analysis using Lobatto Quadrature method was done by Pandey and Ghosh (1998) to 
evaluate thermal eff ect on fully fl ooded minimum fi lm thickness in line contacts. To evaluate the thermal 
eff ect, it is necessary to seek simultaneous solutions of the fl uid fl ow and elasticity equations along with the 
energy equation in the contact. Th e following sections will deal with thermal analysis of fully fl ooded line 
contact problem.

15.2.1 |  Thermal Analysis of Fully Flooded Elastohydrodynamic Lubrication 
of Line Contacts (Ghosh and Hamrock 1985)

Th e generalized thermal Reynolds in written for the line contact problem is written as:

 ( ) ( )1

2 2 3 1 2

0

mp
m u m u u

x x x x f

⎡ ⎤∂⎛ ⎞∂ ∂ ∂
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 (15.27)
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= =∫ ∫1 00
,

h h

o

z dz
f dz f

η η

Boundary conditions for Equation (15.27) are

0;  x  at film inlet 
i

p x= = − ; 0 at  at film exit
e

dp
p x x

dx
= = =

Figure 15.10 show the undeformed geometry of the rollers. It has been assumed that convex surfaces 
exhibit positive curvature and concave surfaces negative curvature. Th erefore, if the center of curvature lies 
within the solid, the radius of curvature is positive or otherwise it is negative.

Film shape in the contact is given as:

 ( ) ( ) ( )0
h x h s x xδ= + +  (15.28)

where ( ) 2 / 2
x

s x x R= , separation due to geometry of undeformed solids

 ( ) ( )2

1 1

2
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e
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x

x
x p x x dx

E
δ

π −
= − −∫  (15.29)

where
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E E

ν ν
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+⎜ ⎟⎝ ⎠

p, is the pressure at x
1
, p (x

1
) varies in the fi lm domain from −x

i
 to x

e
, i.e., from inlet to exit. d (x) is elastic 

deformation at a point x due to pressure distribution in the entire fl uid fi lm.
Th e temperature distribution within the lubricant fi lm is determined from the solution of the energy 

equation which is written for the lime contact problem as:
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Figure 15.10 | Undeformed Geometry of the Rollers
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T is lubricant fi lm temperature
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Th e boundary conditions for the above equations are given below as:

= = −∞0;  i.e. at the inlet 
i

p x x

 = = =0; at the film exit i.e. 
e

dp
p x x

dx  
(15.33)

and

= = −∞
0
 at T T x

( ) ( )= =
2 1

,0 and ,T x T T x h T

where T
1
 and T

2
 are surface temperatures of solids which are evaluated by solving the transient heat conduc-

tion equation of Carlsaw and Jaeger (1969).
Surface temperatures are given as:
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∫  For solid 1 (15.34)

and
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∫  For solid 2 (15.35)

ζ, is a dummy variable used for integration. k
s
, r

s
 and c

ps
, are thermal conductivity, density, and specifi c heat at 

constant pressure for the solid surfaces (rollers), k, r and c
p
 are thermal conductivity, density and specifi c heat 

of the lubricant. Th ese equations are valid when 10
p

s

c
ul

k

ρ⎛ ⎞
>⎜ ⎟

⎝ ⎠
 which is usually satisfi ed and l is a charac-

teristic length. Viscosity (h) and density (r) of the lubricant are functions of both pressure and temperature 
according to following description:
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ε, is thermal expansivity of the lubricant and is defi ned as 
1 V

V T
ε

∂⎛ ⎞
= ⎜ ⎟⎝ ⎠∂

, V is the volume, a and b are pressure 
and temperature–viscosity coeffi  cients of the lubricant.

Th e heat generated due to viscous shear heating in the lubricant is removed due to convection by the 
fl ow of the lubricant through the contact and conduction to the solid surfaces in contact with the lubricant.

Ghosh and Homrock adopted a numerical procedure using fi nite diff erence method to simultaneously 
solve the equations in an iterative manner satisfying the required boundary conditions. Flowchart for the 
computational procedure is shown in Fig. 15.11. Fluid properties and properties of solid materials are given 
in Table 15.6. Results of computation are given in terms minimum fi lm thickness, mid fi lm temperature rise, 
and traction coeffi  cients in the Tables 15.7 to 15.9.

Typical pressure, fi lm thickness, and mid-fi lm temperature variations in the contact are shown in 
Figs  15.12 to 15.14. Traction coeffi  cients in pure rolling and rolling/sliding condition are also shown in 
Fig. 15.15. Temperature rise in the contact in pure rolling is usually not very high, whereas with sliding 
temperature distribution in the conjunction is altered totally. Both mid-fi lm and solid surface temperatures 
rise considerably due to sliding. Sliding results in diff erent surface temperatures, the slower surface attiring 
higher temperature than the faster moving surface.

Ghosh and Hamrock developed a relationship to determine the ratio of thermal minimum fi lm thickness 
to isothermal minimum fi lm thickness determined using Equation (15.39) as:

 =
+

,

0.4
,

10

10

min Th

min I

H

H Q
 (15.37)

where Q  is the thermal loading parameter defi ned as:

 
2

0
/

s
Q u kβη=

 (15.38)

0
η -Viscosity of the lubricant at inlet temperature 

0
T .

From the data generated through computer solutions for wide range of speed and load parameters for 
hard materials, Hamrock and Jacobson generated relationship to determine isothermal minimum fi lm thick-
ness in line contacts as given below:

 −= 0.71 0.57 0.11
,

 3.07   
min I

H U G W  (15.39)

Hamrock and Dowson (1976, 1977) developed equations to determine isothermal minimum and central 
fi lm thickness for point contacts following rigorous numerical analysis as given below:

 0.68 0.49 0.073 0.067
min,

 3.63   (1 )k
I

H U G W e− −= −  (15.40)

 0.67 0.53 0.067 0.73
,

2.69   (1 )k
c I

H U G W e− −= −  (15.41)

where /k a b=  is ellipticity parameter. Th eoretical results of Hamrock and Dowson have been verifi ed experi-
mentally by Koye and Winer (1980) using optical interferometer to measure fi lm thickness. Measurements 
have also shown that starvation or inadequate supply of lubricant results in signifi cant reduction of mini-
mum fi lm thickness (Wedeven 1971). Measurements of fi lm thickness using capacitance method by Coy 
and Zaretsky (1981) have revealed that at high speeds, the fi lm thickness in ball bearings reduce signifi cantly 
due to viscous shear heating eff ect. Kinematics starvation due to high speed can reduce fi lm thickness and 
also lead to failure of lubrication in ball bearings as revealed by the theoretical analysis of the inlet zone of 
Bonneau and Frene (1983).
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Figure 15.11 | Flowchart for Computation
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Table 15.6 | Input Data, Material and Lubricant Properties

Radius of equivalent roller on plane, cm 1.11125

Inlet temperature of lubricant, K 313

Inlet viscosity of lubricant, pa-s 0.0411

Inlet density of lubricant, kg/m3 866

Pressure-viscosity coeffi  cient of lubricant, a, GPa−1 22.76

Temperature-viscosity coeffi  cient of lubricant, K−1 0.04666

Pressure-density coeffi  cient of lubricant, GPa−1

A 0.582744

C 1.68348

Thermal expansivity of lubricant, K−1 6.5 × 10−4

Thermal conductivity of lubricant, W/m − K 0.12

Specifi c heat of lubricant, kJ/kg − K 2.0

Thermal conductivity of steel rollers, W/m − K 52

Specifi c heat of steel rollers, J/kg − K 460

Density of steel rollers, kg/m3 7850

Elastic modulus of steel rollers, GPa 200

Poissons ratio of steel rollers 0.3

Table 15.7 | Isothermal and Thermal Minimum Film Thickness, Rolling Traction Coeffi  cient

[Dimensionless load, W = 2.0478 × 10−5, material parameter G = 5000]

Case Dimensionless 
speed, U × 1011

Dimensionless 
isothermal 
minimum fi lm 
thickness, 
H

min
 × 106

Dimensionless 
thermal 
minimum fi lm 
thickness, 
H

min
 × 106

Ratio of 
thermal to 
isothermal 
fi lm thickness

Isothermal 
rolling 
traction 
coeffi  cient
× 103

Thermal 
rolling 
traction 
coeffi  cient
× 103

1 1.000 20.015 20.015 1.000 0.537 0.537

2 2.000 335.384 34.581 0.9773 0.683 0.683

3 3.000 44.978 43.884 0.9773 0.836 0.836

4 5.000 65.144 61.995 0.9516 0.968 0.968

5 7.575 87.943 83.123 0.9452 1.074 1.051

6 10.000 113.66 105.240 0.9259 1.7097 1.563

7 13.466 138.06 125.74 0.9108 1.9097 1.678

8 20.000 177.88 156.71 0.8810 2.1610 1.733
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Table 15.9 |  Comparison of Computed Thermal and Isothermal Film Thickness with Results of Kaludjercic 
and Murch and Wilson

[Dimensionless load,  W = 2.0478 ¥ 10−5, material parameter G = 5000]

Dimensionless 
speed parameter, 
U × 1011

Dimensionless 
thermal loading 
parameter,
Q × 102

Dimensionless 
peclet group 
parameter, Pe 
W 3/2 ¥ 102

Ratio of thermal to isothermal 
fi lm thickness

Present 
formula

Kaludjercic 
et al.’s(1980) 
formula

Murch and 
Wilson’s (1975) 
formula

1.000 0.564 0.883 0.9875 0.994 0.9890

2.000 2.256 1.766 0.9785 0.9876 0.9764

3.000 5.076 2.649 0.9705 0.9812 0.9616

5.000 14.1 4.415 0.9563 0.9682 0.9299

7.575 32.36 6.688 0.9401 0.9517 0.8880

10.000 56.4 8.298 0.9263 0.9361 0.8489

13.466 102.27 11.89 0.9083 0.9150 0.7953

20.000 225.6 17.66 0.8784 0.8767 0.7040

Table 15.8 | Midfi lm and Solid Surface Temperatures, Coeffi  cient of Sliding Friction for Rolling-Sliding Contact

[Dimensionless rolling speed, U = 1 ¥ 10−11, material parameter  G = 5000 dimensionless load, W = 2.0478 ¥ 10−5]

Slide-to-roll ratio Sliding 
coeffi  cient 
of friction

Dimensionless 
mid-fi lm temperature 
rise at center of contact
× 103

Dimensionless solid surface 
temperature rise at center 

of contact × 103

Faster surface Slower surface

0 0 0 0 0

0.04 0.0145 0.528 0.124 0.124

0.08 0.0319 3.552 1.615 1.638

0.16 0.0384 13.799 6.416 6.736

0.2 0.046 20.217 9.359 9.975

0.3 0.0547 38.000 17.46 19.32

0.5 0.0677 73.142 33.04 39.49

15.2.2 |  Inlet Zone Analysis for Thermal Film Thickness in Elastohydrodynamic 
Lubrication of Line Contact

Ghosh and Pandey (1998) used Lobatto Quadrature method to analyze the inlet zone of the line contact 
problem similar to what Murch and Wilson (1975) and Cheng (1967) had done to determine thermal eff ect 
on fi lm thickness. A detailed analysis was carried out, which also incorporated eff ect of slide to roll ratio on 
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Figure 15.12 | Variation of Dimensionless Film Thickness and Pressure for Diff erent Speed
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Figure 15.13 | Variation of Dimensionless Temperature for Diff erent Speed
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Figure 15.14 | Variation of Dimensionless Temperature Rise for Diff erent Slide-to-roll Ratio
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minimum fi lm thickness. Figure 15.16 shows the contact confi guration. Results of the analysis are shown in 
Figs 15.17 and 15.18 which clearly depict thermal eff ect on fi lm thickness at various rolling speeds and also 
infl uence of sliding, respectively.

Ghosh and Pandey developed the following formula for estimation of the thermal fi lm thickness more 
accurately in comparison to what Murch and Wilson’s formula does.

 ( )= =
+ +

,

0.152 0.359 3..96
,

1.0

1.0 1.6 1 3.96

min Th

min I

H
C

H Q S
 (15.41)

Murch and Wilson (1975) also developed similar relationship using their inlet zone analysis as given 
below:

 = =
+

,

0.62
,

3.94

3.94

min Th

min I

H
C

H Q
 (15.42)

However, this relationship signifi cantly overestimates the thermal eff ect on the minimum fi lm thickness.
Th e method adopted by Ghosh and Pandey is more accurate and computationally very effi  cient to ana-

lyze thermohydrodynamic lubrication problems.

Figure 15.15 | Variation of Rolling and Sliding Friction Coeffi  cient With Speed Parameter and Slide-to-roll Ratio
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15.3 |  Thermal Traction and Temperature Rise in 
the Eastohydrodynamic Line Contacts

Th ermal eff ect on fi lm thickness in EHL contacts have been discussed in the previous section. It has been 
seen that pure rolling traction coeffi  cient is generally very low, whereas with sliding associated along with 
rolling, traction coeffi  cient increases very signifi cantly. Sliding traction is mainly governed by the contact 
region where the pressure distribution is similar to Hertzian pressure distribution in the case of heavily 
loaded contacts. Sliding causes severe heating in the contact zone and temperature of the fl uid fi lm increases 

Figure 15.17 |  Eff ect of Thermal Loading Parameter on the Ratio of Thermal Film Thickness to Isothermal Film 
Thickness
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very signifi cantly which reduces traction coeffi  cient. Th erefore, for contacts operating under heavy loads, an 
 accurate analysis is necessary to determine traction coeffi  cient due to sliding. Characteristics of traction coef-
fi cient in EHL contacts were investigated experimentally by Crook (1963), Johnson and Cameron (1967–68), 
and Smith (1965). On the other hand, theoretical predictions were done by Cheng and Sternlicht (1965), 
Gupta et al. (1981), and Kannel and Walowit (1971). Pandey and Ghosh (1998) presented accurate theoreti-
cal analysis of traction and temperature rise due to sliding in heavily loaded EHL line contacts.

Th eoretical model of the typical contact zone of elastohydrodynamic line contact is shown in Fig. 15.19.
Based on the assumptions of Kannel and Walowit, the contact zone problem was analyzed using an 

effi  cient numerical analysis procedure developed by Elrod and Brewe (1986).

Figure 15.18 | Eff ect of Temperature on Nondimensional Film Thickness for Various Rolling Speed
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Th e line contact problem for temperature distribution takes into account convective heat transfer in the 
lubricant fi lm along with variations in the viscosity and density of the lubricant with pressure and temperature 
using a more realistic model for viscosity and density, i.e., Roeland’s relationship. Th e relevant equations to be 
solved are, viz., the energy equation, which is written neglecting convection across the fi lm, conduction along 
the fi lm, and heat of compression term as:

 

2

p

T T u
c u k

x z z z
ρ η
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 (15.43)
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Roeland’s viscosity model and Dowson and Higginson’s mass density relationships are given as:
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z-exponent in Roeland’s viscosity model
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β  and ε  are temperature-viscosity coeffi  cient and thermal expensively of the lubricant, respectively.
Boundary conditions for the energy equation are as given below:

( ) ( )1 2
, / 2 , , / 2T x h T T x h T= − =

where T
1
 and T

2
 are surface temperatures of upper and lower discs, respectively, which are given by Equations 

(15.34) and (15.35).
A simplifi ed semielliptical pressure distribution has been assumed in the contact zone as expressed below:
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 (15.46)

For heavily loaded line contacts, this assumption is more realistic. In such a situation, fi lm thickness in 
the contact may be treated as constant and its value can be evaluated using the Dowson and Higginson for-
mula for minimum fi lm thickness as:

 −= = 0.6 0.13 0.7
,

1.6min

min I

h
H G W U

R
 (15.47)

A fl owchart for computational procedure is given in Fig. 15.20.
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Th e computation process is repeated until the convergence criteria for temperature as given below is 
satisfi ed.

( ) ( )
( )

1 0.001N N

N

T T

T

−
−

≤
∑ ∑

∑

where N is the number of iterations. For further details, Pandey and Ghosh (1998) may be referred.
Disc and lubricant properties used in the calculations are given Tables 15.10 and 15.11, respectively. 

Results of traction coeffi  cient are shown in Fig.15.21.
Th e variation of traction coeffi  cient is quite similar to those reported by various investigators. Th e trac-

tion coeffi  cient increases linearly for low slip or low slide to roll ratios, for high slip due to thermal eff ect it 
decreases very signifi cantly. Figures 15.22 and 15.23 show comparison with the results of other investigators. 
Figure 15.24 shows comparison of mid-fi lm and solid surface temperatures in the contact as obtained from 

Figure 15.20 | Flowchart for Thermo EHL Line Contact
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Figure 15.21 | Variation of Traction Coeffi  cient With % Slip
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Table 15.10 | Disc Properties

Equivalent radius (m) 0.0175

Elastic modulus (Pa) 2.0 × 1011

Density (kgm–3) 7850

Thermal conductivity (Wm–1 K–1) 52

Specifi c heat (Jkg–1 K–1) 460

Poisson’s ratio 0.30

Table 15.11 | Lubricant Properties

P-150 Santotrac-50 MIL-L-7808

Inlet temperature (K) 323.00 323.00 321.9

Inlet viscosity (Pa s) 0.01539 0.02513 0.0009

Pressure viscosity coeffi  cient (Pa–1) 22.89 × 10–9 26.43 × 10–9 1.088 × 10–9

Temperature viscosity coeffi  cient(K –1) 0.03 0.038 0.034

Exponent in Roelands viscosity formula 0.63 0.90 0.43

Inlet density (kgm–3) 864 889 846

Coeffi  cient of thermal expansivity (K–1) 6.5 × 10–4 6.5 × 10–4 6.5 × 10–4

Thermal conductivity (Wm–1 K–1) 0.12 0.12 0.096

Specifi c heat (Jkg–1 K–1) 2000 2332 1675
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Figure 15.22 |  Variation of Traction Coeffi  cient With % Slip (Comparison of the Obtained Results With the Available 
Experimental and Theoretical Results)
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Figure 15.23 |  Variation of Traction Force With % Slip (Comparison of the Obtained Results With the Available Results 
in the Literature)
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analysis done by Pandey and Ghosh (1998) with those of Manton et al. (1968). Th e observed discrepancies 
are due to the fact that the analysis of Manton et al. is very approximate for the solution of energy equation. 
Pandey and Ghosh also developed empirical relationships to determine thermal traction coeffi  cient and mid-
fi lm temperature rise using large number of data generated through computation as given below:

Traction Coeffi  cient

 0.8 0.66 0.722.31
s

W Q Sμ − −=  (15.48)

Mid-fi lm Temperature

 
0.249 0.0265 0.20111.08 Q

mf
T W S e=�

 (15.49)

where 
0

/
mf mf

T T T=�  

( )
( )

2 2

2 2

2 u u
S

u u

−

−

−
=

+
, slide to roll ratio

W, is dimensionless load as defi ned earlier in the text and Q is thermal loading parameter also defi ned in the 
text. Th ese relationships are generally valid for heavily loaded contacts. Further information regarding this can 
be obtained from the papers cited in the text.

Figure 15.24 | Mid-fi lm and Solid Surface Temperatures in the Contact
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Adiabatic solution, 142
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B
Ball bearing vibration, 401
Barus equation, 20, 22
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Roller, 8

Bearing Materials, 158
Bingham Plastic, 18
Biotribology, 13
Boundary conditions, 80
Boundary Lubrication, 10
Bubbly lubricant, 263

C
Capillary tube viscometer, 25
Capillary compensation, 203, 215–217, 226–227
Cavitation, 117
Cavitation boundary conditions, 117
Cavitation zones, 119, 130
Centrifugal inertia, 263
Circular plate squeeze fi lm, 188
Circular step thrust bearing, 200, 263, 315, 333
Computational procedure, 148, 442
Concentric cylinder viscometer, 26
Cone and Plate viscometer, 27

Conical mode whirl, 177
Continuity equation, 39
Critical mass, 179, 182

D
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Design and design procedure, 160
Design fl ow chart, 135
Dynamic behavior, 220, 223
Dynamic characteristics, 229, 233
Dynamic equations, 114
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Eddy viscosity, 291
Elastohydrodynamic lubrication, 7, 370

Line contact analysis, 371
Point contact analysis, 381
Numerical solutions, 386, 396

Elastic deformation, 372, 382
Element equations, 111
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Energy equation, 41
Error analysis, 105
Externally pressurized lubrication, 199
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Falling sphere viscometer, 30
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Porous journal bearing, 339
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