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1.  INTRODUCTION

While much media publicity points to exogenous causes of cancer such as cigarette smoking or occupational hazards, 
the evidence may be somewhat weaker as to the role of diet and nutrition. The monographs of the International Agency 
for Research on Cancer (IARC) provide excellent summaries, provided by international working groups, definitively 
showing that tobacco exposure [1], certain office working environments, and various other occupational exposures  
are unequivocally associated with human cancer risk [2]. DNA damage can occur through unintentional exposure to 
genotoxic chemicals in the diet, which may induce oxidation, DNA alkylation, cross-linking, dimerization, and strand 
breaks. As such, repair of this DNA damage (or protection against its formation) is essential to preserving genome sta-
bility.

Dietary factors play a well-established role in increasing cancer risk, through enhancing genomic instability. Vrom-
man et al. ranked food components and environmental contaminants of food in terms of their potential hazard [3]. They 
considered arsenic and lead to be of high concern, while cadmium, methylmercury, dioxins, polychlorinated biphenyls, and 
toxaphene were ranked as medium priority. Although posing some risk at high levels, polybrominated biphenyls, chlordane, 
heptachlor, dichlorodiphenyl-trichloroethane, hexachlorocyclohexane, polychlorophenols, and their salts were classed as 
lower priority. Many of the reported exposures to such compounds may be inadvertent, through environmental pollutants 
that are accumulated by plants and animals eaten by humans [4], through mycotoxin formation on badly stored foods [5], 
or exposure to various cooked food mutagens/carcinogens [6,7]. However, because we eat a mixed diet, definitive human 
proof of many of these effects may not be as easily obtained. Furthermore, it is unethical to continue exposure to a puta-
tive mutagen/carcinogen in the expectation of providing definitive evidence of human harm. Thus, molecular evidence of 
genomic instability as a biomarker of cancer risk or likely cancer protection may be both more desirable and more readily 
obtained [8].

Dietary factors also play an essential role in protection against genomic instability, and there is increasing evi-
dence for this [9]. In the long term, exploiting such beneficial dietary items and encouraging their increase in the 
diet may be the most constructive approach to protecting against human genomic instability and cancer initiation and 
progression.
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2.  DIETARY CAUSES OF GENOMIC INSTABILITY

2.1  Dietary Excess (Obesity)

Obesity results from excess weight accumulation, generally considered to be caused by an excess of caloric energy intake 
in comparison with the amounts used in metabolism or consumed through exercise (Fig. 31.1). Increased oxidative stress is 
distinctive of obesity [10]. This condition occurs where there is an excessive production of reactive oxygen species (ROS), 
in comparison with the level of natural antioxidants. Enhanced ROS production is associated with a mitochondrial dysfunc-
tion in these individuals [11], and may affect the regulation of DNA methylation [12]. Global hypomethylation in repetitive 
sequences of the genome provides an important mechanism by which cells develop genomic instability [13]. Hypomethyl-
ation may be especially important where it occurs on the promoter of oncogenes. Delgado-Cruzata and coworkers studied the 
effects of weight loss on global DNA methylation in Hispanic, African-American, and Afro-Caribbean breast cancer survivors 
[14]. They found that DNA methylation of long interspersed nucleotide element 1 (LINE-1) was statistically significantly 
elevated after the intervention. Conversely, excess weight accumulation is associated with lower DNA-methylation levels.

Various posttranslational modifications alter the function of histones [15]. For example, acetylation of the lysine residues 
at the N-terminus of histone proteins leads to a reduction in the affinity between histones and DNA, enabling the access of 
RNA polymerase and transcription factors to gene-promoter regions [16]. In general, transcription is enhanced by histone 
acetylation and repressed by histone deacetylation. Histone ubiquitination modifies DNA-repair capacity, leading to chromatin 
structures conducive to the assembly of nucleotide excision repair (NER) complexes on damaged DNA [17]. Histone phos-
phorylation is required for efficient DNA repair. The net impact of perturbation of epigenetic mechanisms contributes signifi-
cantly to genomic instability. Obesity has been found to have significant (adverse) effects on the function of histones [18,19].

Mitochondrial (mt) DNA alterations lead to oxidative phosphorylation and the generation of adenosine triphosphate 
(ATP) and ROS. Not only somatic mtDNA mutations, but also changes in mtDNA copy number have been shown to lead to 
mitochondrial dysfunction and increased genomic instability [20,21]. Mitochondrial dysfunctions have often been related 
to obesity and/or lipid imbalances in the diet, since mitochondrial membranes are lipid based and their maintenance is 
essential to the effective functioning of the mitochondria [22,23].

2.2  Alcohol

High alcohol consumption has been associated with increased carcinogenicity of the upper gastrointestinal tract. The pri-
mary mechanism of this has been suggested as through the formation of acetaldehyde, a metabolite of ethanol which can 
form DNA adducts [24].

2.3  Red Meats

Red meats include beef, veal, pork, lamb, mutton, horse, or goat meat. High red meat intake has been related to an increased 
risk of cancer, and this appears at least partly to associate with cooking processes (Fig. 31.2). Heterocyclic amines (HCAs) 

FIGURE 31.1 The significance of obesity in decreasing genomic stability, and of adequate diet and exercise in preventing this development.
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formed by high-temperature cooking can generate reactive oxygen species. Carvalho and coworkers [25] correlated high 
temperature–cooking processes of such meats with cancer risk, and by measuring oxidative stress as malondialdehyde 
concentration in the plasma found suggestive evidence of a causal relationship in their Sao Paulo population. DNA-reactive 
polycyclic aromatic hydrocarbons (PAHs) are also formed during cooking of such meats, especially following direct heat 
exposure [6,26]. A 2015 IARC evaluation has concluded that well done cooked red meats enhance oxidative stress and 
other measures of genomic instability, at least in model systems, and are possible human carcinogens [27,28].

Advanced glycation end products such as N(E)-(carboxymethyl)lysine are present in both cooked and uncooked foods, 
leading to oxidative stress, aberrant cell signaling, and genomic instability, and have been associated with at least one type 
of cancer [29]. These reactive metabolites are produced as a byproduct of sugar metabolism [30], and appear to be related to 
various socioeconomic and risk factors linked to cancer susceptibility. While these are present at low levels in unprocessed 
red meats, they increase significantly upon cooking, but this process is reduced by previous marination of the meat [29,30].

2.4  Mutagens Formed During Food Processing

The 2015 IARC evaluation concluded that the evidence for carcinogenesis by processed meat was significantly stronger 
than for unprocessed meats, and the former should be considered as human carcinogens [27,28]. Processed meats are those 
which have been modified by salting, curing, fermentation, or other processes to enhance flavor or preservation. N-nitroso 
compounds in particular are DNA reactive, and are often formed during processing of red meats [31,32]. Smoking of 
salmon was shown to lead to the formation of various types of PAHs [33]. In a study from Taiyuan, China, PAHs were also 
shown to be formed during the cooking of vegetables, wheat flour, and fruits [8].

2.5  Mutagens Formed During Storage of Foods

Styrene has been widely used in food storage and also food preparation, as well as being released in various industrial set-
tings. In workers exposed to this chemical, there is evidence of genotoxicity in the form of DNA adducts and strand breaks 
[34]. Styrene intake from various sources has also been associated with increased risk of invasive breast cancer in a popula-
tion study in Texas [35]. Inappropriate storage containers of various food and drinks may themselves create a hazard. For 
example, an alcoholic beverage (cachaça) was found to be contaminated with PAHs when stored in a polyethylene tank, but 
this contamination was much less of a problem when storage was in a glass container [36]. Refrigeration has been found to 
be an important factor in food storage that helps to protect against the formation of various fungal toxins [37,38]. Various 
aflatoxins including aflatoxin B1 and aflatoxin M1, as well as ochratoxin A and fumonisin B1, are examples of important 
fungal secondary metabolites on badly stored nuts, grains, and other plant foods that cause DNA damage and promote 
genomic instability [37,39–41].

FIGURE 31.2 Some of the various ways in which red meats can enhance genomic instability. Heterocyclic amines are common in well-cooked meats, 
and polycyclic aromatic hydrocarbons in charred meats, both leading to DNA damage including the formation of DNA adducts. Advanced glycation 
end products are present in low concentrations in uncooked meats, but increase upon cooking, which process may be reduced by marinating the meats. 
Processing of meats to various products including sausages increases the concentration of mutagenic N-nitroso compounds.
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2.6  Accumulation of Environmental Pollutants in Animal Flesh

Various chemical toxins may accumulate in the flesh of grazing animals or fish in polluted estuarine regions [42,43]. These 
may include pesticides [3,44] and heavy metals such as mercury, cadmium, or lead [45,46]. The latter have been found at 
high levels in the flesh of slaughter-house animals, and have recognized genotoxic effects [43].

2.7  Natural Pesticides in Food Plants

While much publicity focuses around red meat and adverse effects associated with cooked or processed animal flesh, it is 
also important to record that many food plants contain natural pesticides, or are able to release such products under some 
conditions. An apparently enigmatic example is provided by broccoli (Fig. 31.3). While this contains a number of important 
and generally beneficial phytochemicals, as will be discussed in the next section, it is also able to release toxins in response 
to tissue damage caused by insect or other pests [47]. For example, 1-methoxy-3-indoylmethyl (1-MIM) glucosinate is 
found at high levels in cruciferous vegetables such as broccoli and cabbage. This forms DNA adducts in vitro, and is 
mutagenic following activation by the myrosinase enzyme [48]. It is noteworthy that these two plant components (1-MIM 
glucosinate and myrosinase) are typically found in separate cells. But after pest-induced cell damage, the two components 
can combine to form a DNA-reactive end product, in vitro and in vivo [48].

3.  DIETARY PROTECTION AGAINST GENOMIC INSTABILITY

3.1  Classic Nutrients

Biomarkers relevant to genomic stability, including telomere length and mtDNA deletions, have been utilized in establish-
ing recommended daily intakes for nutrients [49,50]. Accumulating evidence shows that genome integrity is highly sensi-
tive to nutrient status, and that optimal levels may differ among individuals. Many investigations to date are limited by 
considering only the effects of single nutrients, without looking at the potential interactions among these, and of nutrients 
with toxicants in the diet. For example, Fenech has suggested that it is inappropriate to consider single nutrients, but we 
should be looking at nutrient combinations, using what he describes as a nutriome [51]. Nevertheless, it is clear that differ-
ent nutrients and classes of nutrients have some important functional differences in the maintenance of genomic stability. 
Examples of some important nutrients and bioactives are given in Table 31.1.

3.1.1  Lipids

As described earlier, high intakes of saturated fats from animal products have been associated with obesity, and conse-
quently detrimental effects on genomic stability [52]. Obesity and/or higher caloric intake also had a marked effect in 
promoting telomere shortening. While too high a fat intake overall may be detrimental, some fats may play an important 

FIGURE 31.3 The way in which certain food plants such as broccoli may function to either increase or reduce genomic instability. Glucosinolates such 
as 1-MIM glucosinate are innocuous unless activated by the release of myrosinase enzymes, usually contained in separate cells, when they release a DNA-
reactive component. In contrast, various phytochemicals from broccoli, including sulforaphane, act to protect the integrity of DNA.
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protective role in the maintenance of genomic stability. Those for which the most information is available are the omega-3 
and 6 (n-3 and n-6) polyunsaturated fatty acids (PUFAs). Within the n-3 PUFA family, the two long-chain PUFA eicosapen-
tanoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to affect various key events that may protect 
against DNA oxidation and leukocyte telomere shortening, while promoting apoptosis and reduction of damaged cells  
[53–57]. These two PUFA also play key roles in protection against inflammation, reducing the possibility that an overreac-
tion to immune stimulation may lead to DNA damage and genomic instability [22,58–61]. What may be almost as impor-
tant as the individual PUFA here are the ratios between n-6 PUFA (which may promote inflammation) and long-chain n-3 
PUFA.

There is considerable interest in mechanisms associated with the loss of function of the phosphatase and tensin homo-
log deleted on chromosome 10 (PTEN) tumor-suppressor gene in cancer [62–65]. The PTEN gene has lipid phosphatase 
activity and acts in the nucleus to promote genomic stability and DNA repair. Consequently, loss of this function leads to 
increased genomic instability [62]. In a PTEN-null mouse model, it was possible to demonstrate the importance of lipid-
modifying enzymes in converting saturated fatty acids to monosaturated fatty acids, and also the negative implications of 
an increased ratio of long-chain omega-6 PUFA to omega-3 PUFA in genomic stability and cancer risk [65].

3.1.2  Vitamins

3.1.2.1  Carotenoids

Peto et al. [66] originally suggested a cancer-preventive role for β-carotene, based on a number of cross-sectional or case–
control studies. Most such studies showed a negative correlation between blood carotenoid levels and various biomarkers 
of DNA damage. However, some placebo-controlled carotenoid intervention trials using disease and mortality as outcomes 
have suggested a significant increase rather than decrease in mortality associated with vitamin A, β-carotene, or vitamin 
E supplements [67]. It is possible that this depends upon the concentration used in the supplement, and also the popula-
tion tested. Pro-vitamin A carotenoids include α- and β-carotene, β-cryptoxanthin, retinoic acid, retinal, and retinol, while 
non-vitamin A carotenoids include lycopene, lutein, astaxanthin, and zeaxanthin. A number of tissue culture studies have 
involved cotreatment with a DNA-damaging agent and various carotenoids [5,68–77]. While the non-vitamin A carotenoids 
usually decreased the DNA damage, thereby promoting genomic stability, the pro-vitamin A carotenoids had little or no 
effect at low concentrations but increased genomic instability at higher concentrations.

3.1.2.2  Other Vitamins

Various B vitamins have beneficial effects on the stability of both nuclear and mitochondrial genomes. These include niacin 
(vitamin B3), folate (vitamin B9), and vitamin B12. Folate is an essential factor in one-carbon metabolism, acting to supply 
the methyl units for DNA methylation. Folate deficiency, especially in the presence of suboptimal levels of vitamin B6 and 
vitamin B12, may have significant effects on chromosomal fragility, resulting in chromosome breaks and mtDNA deletions, 
as well as reduced telomere length [78,79]. Folate is a key component of a number of root vegetables, including pulses such as 
red kidney beans, chickpeas, and lentils [79]. The B vitamin class also includes choline, which also interacts with folate bio-
synthesis [80,81]. A deficiency of this nutrient can lead to DNA hypomethylation and an accumulation of strand breaks [80].

TABLE 31.1 Important Nutrients and Phytochemicals in the Maintenance of Genomic Stability

Processes Affected Nutrients or Bioactive Substances

DNA oxidation Vitamins (C, D, and E), Se, DHA, EPA, genistein, curcumin, RSV

DNA synthesis Folate, vitamin B12, zinc, magnesium

DNA repair Niacin, zinc, folate

DNA methylation Vitamins A and D, folate

Other epigenetic effects Vitamin D, RSV, EGCG, sulforaphane

Necrosis/apoptosis Vitamins A, C, D, K12, niacin, zinc, DHA, EPA, curcumin

Chromosome segregation Vitamin A, folate, magnesium

Telomere length Vitamin D, niacin, folate, Se, DHA, EPA, curcumin, RSV

Data from references identified in the text.
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Vitamin C has been considered to be an antioxidant. In human studies, the effects of vitamin C supplementation on 
various markers of genome stability depend on individual responses to vitamin C levels in the diet, and on concomitant 
exposure to oxidative stresses [82]. Vitamin C also protects against DNA damage, DNA strand breakage, and chromosomal 
aberrations [69,82].

Vitamin D is also critical in the maintenance of genome stability, preventing oxidative stress, chromosomal aberrations, 
telomere shortening, and inhibition of telomerase activity [83–86]. There is reason to believe that a primary function of 
vitamin D is in preventing DNA damage, while a secondary effect is in the regulation of cellular growth [83].

Other vitamins such as biotin (or vitamin H) and the vitamin-like co-enzyme Q10 are also important in the maintenance 
of genomic stability [87,88]. It is important to recognize that there are considerable interindividual differences in the ability 
to absorb and metabolize all of these vitamins [89]. Recognizing the optimal amount is of considerable importance.

3.1.3  Minerals

While a number of minerals are typically considered as toxicants, some of these are essential micronutrients, albeit usu-
ally with a narrow window of efficacy as compared with toxicity. These include iron [90], selenium (Se) [91], and zinc 
[92]. Se provides a useful illustration of these complexities, since the population generally shows a “U”-shaped response 
curve, with both low and high selenium levels increasing genomic instability. The optimal form of Se at the optimal level 
may protect against DNA or chromosome breakage, chromosome gain or loss, damage to mtDNA, and detrimental effects 
on telomere length and function [93]. However, the optimal level of Se differs among individuals, and also with the form 
incorporated into the diet [91,94]. Various genetic polymorphisms may affect both the uptake and utilization of selenium 
among individuals [94].

3.2  Bioactive Food Components

Bioactives, sometimes called phytochemicals, have been defined as “constituents in foods or dietary supplements, other 
than those needed to meet human nutritional needs, which are responsible for changes in health status” [95]. This group 
includes various polyphenols, defined as having several hydroxyl groups on one or more aromatic rings, and divided into 
various groups according to chemical structure [96]. There is compelling evidence that a considerable range of polyphenols 
may stabilize genomic DNA, through various processes, including effects on DNA methylation [96].

Both genistein and dadzein are soy-derived phytoestrogens that bind to estrogen receptors and have both weak estro-
genic and weak antiestrogenic effects [75,97,98]. Genistein has been shown to have antioxidant effects and may act in 
concert with other nutrients such as β-carotene in beneficially affecting genomic stability [75]. Genistein also showed ben-
eficial effects in combination with the DNA-damaging agent, bisphenol A [99]. However, in common with other such com-
pounds, genistein has been found to have adverse effects in combination with such compounds as diethylstilbestrol [100].

Curcumin is a polyphenol that is also the active ingredient in the spice, turmeric. In a rodent model of colorectal cancer, 
curcumin treatment led to downregulation of telomerase activity, and this effect was associated with cell-cycle arrest and 
induction of apoptosis [101]. Protection against genomic instability has also been shown by curcumin in combination with 
certain genotoxic agents. For example, in human hepatocyte LO2 cells, curcumin was able to protect against the genotox-
icity of quinocetone (QCT), a controversial compound which has been used as an antimicrobial feed additive in China. 
Curcumin pretreatment significantly attenuated the formation of ROS, DNA fragmentation, and micronucleus formation 
[102]. However, in a different tissue culture model using Raji cells, curcumin increased ROS and cell-cycle arrest, leading 
to structural chromosome abnormalities [103].

Resveratrol (RSV) is another polyphenol which is considered to be the beneficial component in red wine. High intakes 
of RSV have usually been considered beneficial to human health, including cancer-protective and antiaging effects. For 
example, it is generally considered to be an antioxidant, and has shown a chemopreventive effect in different mouse can-
cer models [97,104,105]. In HeLa S3 mammalian cells, RSV has effects on gene expression leading to the induction of 
telomere-maintenance factors, without effects on cell proliferation. That is, it can protect against changes in telomere length 
[106]. However, in the HeLa colon cancer cell model, RSV has also induced DNA damage through pro-oxidant effects, 
leading to apoptosis [105].

Indole-3-carbinol and epigallocatechin–3-gallate (EGCG) from green tea are both examples of polyphenols that show 
strong evidence of modulating genomic stability through various epigenetic mechanisms [9,95].

Some phytochemicals may have complementary activities in protection against genomic stability. For example,  
in broccoli (Fig. 31.3), the isothiocyanate, sulforaphane, and the polyphenol, quercetin, may complement one another in 
their epigenetic actions [107]. Duthie [108] suggested that the evidence is particularly strong for berry phytochemicals, 
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specifically anthocyanins (a class of flavonoids), which modulate various biomarkers of DNA damage and carcinogenesis, 
in both in vitro and in vivo animal studies. However, evidence for cancer-preventive effects of any of these phytochemicals 
in human studies is currently weak.

Tumor-promoting inflammation is inhibited by all of the compounds except vitamin B [79,93,109–121], while only 
vitamin D, carotenoids, and RSV prevent tumor cells from evading the immune system [122–124].

4.  THE SIGNIFICANCE OF GENETIC POLYMORPHISMS

There is no question but that genetic polymorphisms in various genes such as breast cancer 1 early onset (BRCA1) and 
breast cancer 2 early onset (BRCA2) affect cancer susceptibility, independent of nutrition [125]. However, it is also increas-
ingly clear that the risk of developing cancer depends upon a complex interplay among genetic susceptibility, lifestyle, and 
diet, and that a number of the important genes are associated with nutrient uptake, transport, metabolism, and excretion 
[9]. While general population recommendations for nutrients are clearly of benefit, these do not necessarily indicate the 
optimal diet for an individual [50,51,89,126]. Folate provides an excellent example of a vitamin for which there is strong 
influence of the interplay between the nutrient intake, and also certain genetic polymorphisms [51]. There is also consider-
able interest in vitamin D, where there have been several hundred genes reported, which may affect uptake and function of 
the nutrient in various ways [84]. The minerals Se, zinc, and iron are also required at different concentrations according to 
genotype [90,92,94].

5.  CONCLUSIONS

Genomic instability plays a critical role in cancer initiation and progression. The fidelity of the genome is protected at 
every stage of the cell cycle. In cancer, the presence of aneuploid or tetraploid cells indicates the failure of one or many of 
these safety nets. The resultant genomic heterogeneity may offer the cancer cells a selection advantage against the selective 
nature of emerging therapies. Understanding these protective mechanisms, and how they are bypassed in cancer cells, may 
highlight new and more specific mechanisms for therapeutic attack and/or cancer prevention.

While much work has focused on the development of new cancer drugs, this review makes it clear that focusing on 
nutrition, both in terms of preventing cancer development and also its progression, may be more fruitful. Vitamins (such 
as B, C, and D), minerals (such as Se), and phytochemicals (such as RSV, sulforaphane, and EGCG) have shown remark-
able potential for diminishing tumor risk and tumor progression. In addition to their protective properties against genomic 
instability, these compounds are known to inhibit proliferative signaling [119,127,128], attenuate oncogenic metabolism 
[126,129–134], and block inflammation [79,93,109–121].

Despite progress in antitumor therapies, the death rates from cancer remain alarming [135,136]. However, diet and 
lifestyle are increasingly being shown for their potential in reducing cancer risks and/or slowing tumor progression. In 
particular, antioxidants are critical for the prevention of DNA damage that enables cancer initiation and growth. Growing 
evidence shows that vitamins, minerals, and other dietary factors have profound and protective effects against cancer cells, 
whether they are grown in the laboratory, in animals, or studied in human populations. A better understanding of the effects 
and synergy of these dietary factors in the prevention and treatment of genomic instability is critical to the future reduction 
of mortality associated with cancer.

GLOSSARY
Anthocyanins Water-soluble vacuolar pigments that may appear red, purple, or blue depending on the pH, belonging to a parent class of molecules 

called flavonoids.
Bioactives Constituents in foods or dietary substances, other than those required to meet nutritional needs, which are responsible for health status.
Nutriome The combination of nutrients and their doses that optimizes genomic stability for an individual.
Polyphenols A structural class of mainly natural, but also synthetic or semisynthetic, organic chemicals characterized by the presence of large 

multiples of phenol structural units.
Phytoestrogen Plant-derived xenoestrogens not generated within the endocrine system but consumed by eating phytoestrogenic plants.

LIST OF ABBREVIATIONS
1-MIM 1-Methoxy-3-indoylmethyl
ATP Adenosine triphosphate
BRCA1 Breast cancer 1 early onset
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BRCA2 Breast cancer 2 early onset
DHA Docosahexaenoic acid
EGCGE Pigallocatechin gallate
EPA Eicosapentaenoic acid
HCA Heterocyclic amine
IARC International Agency for Research on Cancer
LINE-1 Long interspersed nucleotide element 1
mtDNA Mitochondrial DNA
n-3 Omega-3
n-6 Omega-6
NER Nucleotide excision repair
PAH Polycyclic aromatic hydrocarbon
PTEN Phosphatase and tensin homolog
PUFA Polyunsaturated fatty acid
QCT Quinocetone
ROS Reactive oxygen species
RSV Resveratrol
Se Selenium
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