
8051 Microcontroller:

Hardware, Software & Applications

ABOUT THE AUTHORS

V Udayashankara received his BE in Electronics and Communication Engineering (1984)

from Sri Jayachamarajendra College of Engineering (SJCE), Mysore. He then obtained his ME

and PhD from Indian Institute of Science (IISc), Bangalore. Currently, he is a Professor in the

department of Instrumentation Technology of SJCE. He has more than 24 years of teaching

experience. Dr Udayashankara has carried out many research projects in the area of Embedded

Systems. His research interests also include Rehabilitation Engineering, Speech and EEG Signal

Processing. He has authored more than 60 publications in journals and conferences related to

these subjects.

M S Mallikarjunaswamy obtained his BE in Instrumentation Technology (1993) from

Sri Jayachamarajendra College of Engineering (SJCE), Mysore and MTech in Industrial

Electronics from University of Mysore (1999). Currently, he is an Assistant Professor in the

department of Instrumentation Technology of SJCE. He has more than 14 years of teaching

experience and his areas of interest include Embedded Architectures, VLSI and Biomedical

Signal Processing. He has presented several papers in national and international conferences.

Tata McGraw-Hill Publishing Company Limited
NEW DELHI

McGraw-Hill Offi ces

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

8051 Microcontroller:

Hardware, Software & Applications

V Udayashankara
Professor,

Dept. of Instrumentation Technology,

Sri Jayachamarajendra College of

Engineering, Mysore

M S Mallikarjunaswamy
Assistant Professor,

Dept. of Instrumentation Technology,

Sri Jayachamarajendra College of

Engineering, Mysore

Published by the Tata McGraw-Hill Publishing Company Limited,

7 West Patel Nagar, New Delhi 110 008.

8051 Microcontroller: Hardware, Software & Applications

Copyright © 2009 by Tata McGraw-Hill Publishing Company Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of

the publishers. The program listing (if any) may be entered, stored and executed in a computer system, but they may not

be reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw-Hill Publishing Company Limited.

ISBN 13: 978-0-07-008681-4

ISBN 10: 0-07-008681-8

Managing Director: Ajay Shukla

General Manager: Publishing—SEM & Tech Ed: Vibha Mahajan

Sponsoring Editor: Shalini Jha

Jr. Sponsoring Editor: Nilanjan Chakravarty

Jr. Editorial Executive: Tina Jajoriya

Sr. Copy Editor: Dipika Dey

Production Executive: Suneeta S Bohra

General Manager: Marketing—Higher Education & School: Michael J Cruz

Product Manager: SEM & Tech Ed: Biju Ganesan

Controller—Production: Rajender P Ghansela

Asst. General Manager—Production: B L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be reliable.

However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information

published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions,

or damages arising out of use of this information. This work is published with the understanding that Tata

McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other

professional services. If such services are required, the assistance of an appropriate professional should be sought.

Published by the Tata McGraw-Hill Publishing Company Limited, 7 West Patel Nagar, New Delhi 110 008, typeset at

Bukprint India, B-180A, Guru Nanak Pura, Laxmi Nagar-110 092 and printed at SDR Printers, A-28, West Jyoti Nagar,

Loni Road, Shahdara, Delhi 110 094

Cover: SDR Printers

RALYCRLFRYCBB

This work is dedicated to

His Holiness

Dr Sri Sri Shivarathri Rajendra Mahaswamiji

—Authors

PREFACE

Latest developments in integrated-circuit technology and embedded processors have provided

a strong impetus to the design of microcontroller-based systems. The 8051—a highly popular

microcontroller—is used in a wide variety of control systems, telecom applications, robotics as

well as in the automotive industry. Its standard form encompasses numerous standard on-chip

peripherals (including timers, counters, and UARTs), 4 Kbytes of on-chip program memory and

256 bytes of data memory, making single-chip implementation possible. The study of architecture,

instruction set, interfacing circuits and programs of the 8051 has become a challenging pursuit for

many budding engineers.

WHY DID WE WRITE THIS BOOK?

This book has been written to fulfi ll the need of students pursuing degree or diploma courses

in engineering as well as technical modules. In an undergraduate study of engineering, students

are required to pursue a theory course on microcontrollers. Moreover, a laboratory course

on microcontrollers is a part of the curricula of electrical science branches. A large number of

students carry out their project work based on various aspects of microcontrollers. As teachers of

engineering discipline for several years, we have observed and felt the need for a good textbook

relevant to the requirement of students, for study of hardware, software and to develop necessary

skills to excel in project work.

Thus, we envisaged this present book to provide a stimulating learning experience while

facilitating students to become profi cient in designing with the 8051. The book fulfi lls the

objective of imparting knowledge about the complete hardware of microcontrollers, including

their architecture, instruction set and interfaces, and also provides a depiction of the software

used to develop programs with a good number of examples and applications. The treatment and

coverage of topics are an outcome of more than a decade of teaching experience and laboratory

work. After introducing the fundamentals and capabilities of the 8051, we have featured practical

designs so that readers can develop in-depth understanding of the applications. Basic acquaintance

with logic design and C programming will enable readers to easily grasp this book, without any

prerequisite of prior knowledge of microprocessors.

 viii Preface

WHO SHOULD READ IT?

8051 Microcontrollers: Hardware, Software and Applications is intended as an introductory course

on microcontrollers with coverage of architecture, hardware interfaces, software and description of

applications. It serves the purpose of a textbook for students at the undergraduate level in engineering

such as Computer Science & Engineering, Electronics & Communication Engineering, and Electronics

& Instrumentation Engineering. It can also be a valuable reference for students of BCA, MCA, diploma

courses and technical training institutes, as well as practicing engineers interested in knowing more about

the 8051. The objective-type and short-answer questions will benefi t candidates preparing for competitive

exams and technical interviews.

WHAT MAKES THIS BOOK OUTSTANDING?

The topics in this book—evolved based on our academic expertise of more than a decade—have been

presented to cover hardware, software and applications. A special feature is the inclusion of abundant

programming and interfacing examples; the example programs and hardware interfaces being a

careful compilation from our laboratory work with students. After elucidating the basics of computers,

microprocessors and microcontrollers, the text proceeds to explain the basics of the 8051 microcontroller,

peripheral interfacing and then programming both in assembly and C language. Also, a description of

software tools and their steps of usage have been provided to enhance the comprehension of the students.

This text is one-of-its-kind as it includes programs for interfacing experiments, both in 8051 assembly

and C language. It follows an integrated approach to architecture and programming. Comprehensive

coverage of important topics like A/D –D/A, and exhaustive discussion of software development tools like

A51 Assembler and S51 Simulator, SC51 C compiler, μVision C Compiler and Simulator (SIDE 51) have

been provided so that students gain in-depth knowledge about microcontrollers.

Salient Features

• Incorporates programs for interfacing experiments both in 8051 assembly and C language

• Offers a clear exposition of the fundamentals

• Writing style renders even complex topics easy to understand

• Text has a smooth fl ow and sections are properly interlinked to maintain continuity

• Topics illustrated with supportive diagrams and tables

• Students can implement the example programs to see how they work

• Includes interface experiments to give practical exposure

• Elucidates the hardware interface useful for laboratory work

• Discusses development tools

Throughout the book, the text is supplemented with pedagogical aids to provide better comprehension

of concepts. Chapter Objectives provide a quick overview of the concepts that will be discussed in the

chapter. Major topics like arithmetic instruction, instruction set, and timers/counters have been supported

with Solved Examples. Section-end Review Questions have been provided to reinforce important points.

Summary briefl y reviews the highlights of each chapter and will be helpful for a quick appraisal during

the examinations. Rich pool of pedagogy includes Exercises (Multiple-choice Questions and Review

Questions) at the end of each chapter to help students test their understanding of concepts. Programs

provided in this textbook are useful to conduct a laboratory course on the 8051 Microcontroller.

Preface ix

Pedagogical Features

• More than 200 Solved Examples • More than 250 Section-end Questions

• More than 100 Multiple Choice Questions • 200 Chapter-end Exercises

HOW IS THE BOOK ORGANISED?

Spanning over nine chapters, the structuring of this book provides a comprehensive understanding

of software, hardware and applications of the 8051. Each chapter begins with objectives, followed by a

thorough discussion of the concepts and culminates with a summary and plenty of exercises.

Chapter 1 covers the basics of computers, microprocessors, microcontrollers and related software. It

explains concepts of RISC and CISC and also discusses embedded systems in detail. Chapter 2 starts

with the features, architecture and pin diagram of 8051. Memory organisation and external memory

interfacing with examples are discussed in detail. It also explores the operation of stack with examples.

Features of 8052 are also been elucidated. Chapter 3 presents instruction syntax, data types and subroutine

concepts. It aptly covers addressing modes supported by 8051 with examples. Instruction classifi cation

and instruction timings are also discussed with examples. After each group of instructions, examples to

demonstrate their use are given. At the end of the chapter, a summary of the 8051 instruction set, syntax,

examples and fl ag conditions are presented in a tabular format. Chapter 4 covers programming concepts

for 8051 with 30 examples. Issues of delay programs are aptly explored. Chapter 5 provides an overview

of software-development tools. Software tools SIDE 51 of SPJ systems are used to test the programs. The

chapter also provides an overview of the development steps for evaluation software μVision of KEIL.

Chapter 6 introduces the basics of parallel I/O ports. Interfaces of push-button switches, matrix keyboard,

LED, seven segments and LCD displays are covered with circuits, assembly and C programs. Interfacing

of A/D and D/A converters are also discussed with circuits and programs. This chapter also includes

operation and interface of stepper and dc motors with necessary assembly and C programs. Chapter 7

covers concepts of interrupts, classifi cation and priority of interrupts. It also discusses timer and counter

functions. Operations of timer 0 and timer 1 are explained with programs to create time delay and to

generate waveforms. Chapter 8 is devoted to serial communication. It covers the basics and types of

serial communication. Serial communication of the 8051 microcontroller is discussed with programming

examples. This chapter introduces RS232 bus and plug connectors. It also incorporates MAX232IC

to convert TTL signals to RS232 standards. Chapter 9 covers the architecture and features of 8255A.

Interfacing of 8255A with 8051, and also interfacing of external devices such as printers, stepper motors

and D/A converters using 8255A are discussed with circuits and programs. This chapter also includes

design of signal-conditioning circuits and minimum embedded systems using 8051. The six appendices

include information on 89C60X2/61X2 Flash Microcontroller Data Sheets, ASCII Code Values, 74LS373

Latch Data Sheets, ADC0808 /0809 Data Sheets, DAC 0808 Data Sheets, 8052 Microcontroller data sheets,

80196 Architectural overview, and PIC 16F874 Microcontroller data sheets

WHAT DOES THE ONLINE LEARNING CENTER OFFER?

For answers to the multiple-choice questions and scheme description for project ideas given in the book, readers

can also refer the exhaustive resource bank on the website at http://www.mhhe.com/udayashankara/mhsa.

Resources for Instructors

• Solution Manual

• Chapter-wise PowerPoint Slides

• Test Bank offers a Collection of Model Exam Questions

 x Preface

Resources for Students

• Chapter-wise Learning Objectives and Summary

• Sample Chapter—Chapter 1 on Introduction to Computer, Microprocessor and Microcontroller

• Block Schematic Diagrams and Brief Description of Projects given in the Book

• Additional Chapter-wise Exercises

• Multiple Choice Questions

• Real-life Experiments for 8051 Microcontroller Laboratory

• Web Links to Reference Material

ACKNOWLEDGEMENTS

We wish to express our sincere gratitude to J S S Mahavidyapeetha for encouraging us to reach this

milestone. We would also like to thank Dr B G Sangameshwara, Principal, Sri Jayachamarajendra

College of Engineering, Mysore, for motivating us to write this book. Furthermore, we wish to extend

our appreciation to Dr M Sukumar, Ms Roopa Nanjaiah, Mr Bharath Hegde and Mr Srinidhi R for their

valuable comments and contributions.

Our grateful acknowledgement is also due to Advanced Electronic Systems (ALS), Bangalore and SPJ

Systems for their useful suggestions, and granting us permissions to use the SIDE51 compiler. Our special

thanks to KEIL Corporation for providing their μVision C-compiler evaluation software.

We are indebted to a number of colleagues and friends for their timely help in planning and execution

of this book. We are also grateful to members of our family for the support and cooperation extended to

us during the preparation of the manuscript. We would like to express our thanks to the entire team at

McGraw-Hill Education India for effi cient management of the project.

A note of acknowledgement is also due to the esteemed reviewers of this book for their valuable feedback.

Sanjeet Dwivedi Indira Gandhi Government Engineering College, Sagar, Madhya Pradesh

Sangeeta Shukla Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh

P K Malik SCR Institute of Engineering and Technology, Meerut, Uttar Pradesh

A K Sen Kalinga Institute of Industrial Technology, Bhubaneswar, Orissa

Ashok Kumar Turuk National Institute of Technology, Rourkela, Orissa

Dhruba Basu West Bengal University of Technology, Kolkata, West Bengal

Vivek Agarwal Indian Institute of Technology Bombay, Mumbai, Maharashtra

H Renganathan Indian Institute of Technology Madras, Chennai, Madras

G C Thyagarajan College of Technology, Coimbatore, Tamil Nadu

K E Srinivas Murthy G Pulliah College of Engineering and Technology, Kurnool, Andhra Pradesh

M S K Rayalu VR Siddhartha Engineering College, Vijayawada, Andhra Pradesh

If readers have any suggestions and comments, they are welcome to contact us at

tmh.csefeedback@gmail.com. Kindly mention the title and author names in the subject line.

V Udayashankara

M S Mallikarjunaswamy

CONTENTS

Preface vii

 1. Introduction to Computer, Microprocessor and Microcontroller 1

 1.1 What is a Computer? 2

 1.2 What is a Microprocessor? 6

 1.3 What is a Microcontroller? 7

 1.4 Von Neumann (Princeton) and Harvard architecture 9

 1.5 RISC and CISC Machines 10

 1.6 Computer Software 11

 1.7 An Overview of Embedded System 12

 Chapter Summary 17

 Multiple Choice Questions 17

 Review Questions 19

 2. The 8051 Microcontroller 20

 2.1 Features of 8051 20

 2.2 Architecture of 8051 21

 2.3 Pin Diagram of 8051 27

 2.4 Memory Organisation 30

 2.5 External Memory Interfacing 31

 2.6 Stacks 35

 2.7 8052 Microcontroller 37

 Chapter Summary 38

 Multiple Choice Questions 38

 Review Questions 40

 3. 8051 Addressing Modes and Instruction Set 41

 3.1 Instruction Syntax 41

 3.2 Data types 43

 3.3 Subroutines 43

 3.4 Addressing Modes 44

 3.5 Instruction Timings 49

 3.6 8051 Instructions 50

 3.7 Instruction Set Summary 88

 Chapter Summary 93

 Multiple Choice Questions 93

 Review Questions 95

 4. 8051 Assembly Programming 97

 4.1 Assembly Language Programs 97

 4.2 Assembler Directives 98

 4.3 Assembly Language Programs 99

 4.4 Time Delay Calculations 118

 Chapter Summary 121

 Exercises 121

 5. So ware Development Tools for 8051 124

 5.1 Integrated development environment 124

 5.2 A51 Assembler and S51 Simulator 125

 5.3 SC51 C Compiler (SIDE 51) 126

 5.4 mVision C Compiler and Simulator 129

 5.5 Burning the Hex File to Program Memory 132

 Chapter Summary 132

 Exercises 132

 6. 8051 Parallel I/O Ports 133

 6.1 Basic I/O Concepts 133

 6.2 Port Structures and Operation 134

 6.3 Interfacing Push Button Switches and LEDs 148

 6.4 Interfacing Matrix Keyboard and Seven-Segment Display 150

 6.5 Interfacing Matrix Keyboard and Liquid Crystal Display (LCD) 162

 6.6 Interfacing D/A Converter using Parallel Ports 171

 xii Contents

 6.7 Interfacing A/D Converter using Parallel Ports 176

 6.8 Interfacing Serial A/D Converter 180

 6.9 Interfacing Stepper Motor 182

 6.10 Interfacing DC Motor 188

 Chapter Summary 190

 Multiple Choice Questions 191

 Review Questions 192

 7. 8051 Interrupts and Timers/Counters 193

 7.1 Basics of interrupts 193

 7.2 8051 Interrupt Structure 195

 7.3 Timers and Counters 197

 7.4 8051 Timers/Counters 197

 7.5 Timer/Counter Operation Modes 199

 7.6 Programming 8051 Timers 203

 Chapter Summary 209

 Multiple Choice Questions 209

 Review Questions 210

 8. 8051 Serial Communication 212

 8.1 Data Communication 212

 8.2 Basics of Serial Data Communication 213

 8.3 8051 Serial Communication 215

 8.4 Serial Communication Modes 215

 8.5 Serial Communication Programming 218

 8.6 RS232 220

 Chapter Summary 224

 Multiple Choice Questions 224

 Review Questions 226

 9. 8255A Programmable Peripheral Interface 227

 9.1 Features of 8255A 227

 9.2 Architecture of 8255A 228

 9.3 I/O Addressing 235

 9.4 Interfacing 8255A with 8051 235

 9.5 I/O devices interfacing with 8051 using 8255A 241

Contents xiii

 9.6 Semiconductor sensors and signal conditioning circuits 248

 9.7 Design of Minimum Embedded System 250

 9.8 8051 Based Projects 252

 Chapter Summary 257

 Multiple Choice Questions 257

 Review Questions 258

 Appendix A P89C60X2/61X2 Flash Microcontroller-Data Sheets 259

 Appendix B ASCII Code Values 268

 Appendix C 74LS373, ADC 0808, DAC 0808-Data Sheets 270

 Appendix D 8052 Micro controller-Data Sheets 277

 Appendix E 80196 Micro controller-Data Sheets 282

 Appendix F PIC16F87X 291

 Bibliography 297

 Index 299

 xiv Contents

Learning Objectives

VISUAL WALKTHROUGH

Learning Objectives give an overview of the
concepts that will be discussed in the chapter.

Chapter 1 Introduction to Computer, Microprocessor and Microcontroller 19

 16. Which of the following is the unit for external storage device?

 (a) Bytes (b) Hertz (c) Clock cycles (d) None of the above

 17. ____________ is a semiconductor memory.

 (a) Bubble (b) Dynamic R/W (c) Both (a) & (b) (d) None of the above

 18. Embedded system contains ____________ .

 (a) ROM & RAM (b) Secondary memory (c) Both (a) and (b) (d) None of the above

 19. Full custom IC design is referred as ____________ .

 (a) Small scale integration design (b) Medium scale integration design

 (c) Large scale integration design (d) Very large scale integration design

 20. In a real time system, the constraint is ____________ .

 (a) Memory size (b) Time (c) Both (a) & (b) (d) None of the above

 1.1 What is a computer? Explain different sections of a processor.

 1.2 Why are input devices needed? Mention any three input devices.

 1.3 Why are output devices needed? Mention any three output devices.

 1.4 List the salient features of a microcontroller.

 1.5 Which register is used to keep track of the address of the next instruction to be executed?

 1.6 List the specifi c features of a microcontroller using diagrams.

 1.7 Give a brief summary of the evolution of Intel microprocessor.

 1.8 List different types of semiconductor memory and explain their differences.

 1.9 What are the differences between PROM, EPROM, EEPROM and Flash memory.

 1.10 Compare the differences between RISC and CISC.

 1.11 What are the advantages of RISC and CISC architecture?

 1.12 What are the differences between Von Neumann and Harvard architecture.

 1.13 Distinguish Harvard and Princeton architecture with diagrams.

 1.14 What is the difference between source code and object code?

 1.15 What are the advantages and disadvantages of assembly language programming?

 1.16 List the merits and demerits of high-level languages.

 1.17 Differentiate between

 (a) Interpreter and compiler (b) Assembler and compiler

 1.18 What is an embedded system? Explain the architecture of an embedded system with a block diagram.

 1.19 Compare the differences between full-custom IC, semi-custom IC and programmable logic devices.

 1.20 List and defi ne the characteristics of an embedded system.

 1.21 List and explain important processors used in an embedded system.

 1.22 Explain the design challenges encountered in an embedded system.

 1.23 List and defi ne important types of IC technologies. What are the benefi ts of using these technologies?

 1.24 Explain different types of embedded operating systems.

1.25 Differentiate between embedded and real time operating systems.

 202 8051 Microcontroller: Hardware, So ware & Applications

C/T = 0

Oscillator 1/12
f f/12

TL0
8 bit

TF0

Pin T0

GATE

INT0

C/T = 1

TR0

Overflow Interrupt

Control

Oscillator 1/12
TH0
8 bit

TF1

Overflow Interrupt

Control

TR1

Figure 7.10 Timer/Counter 0/1 in mode 3:Two 8 bit counters

 1. List the applications that require 8051 timers.

 2. The 8051 has ______________ number of timers.

 3. Timer 0 and 1 are 16 bit timer/counter. True/False?

 4. Timer 0 and 1 share TCON register and TMOD register. True/False?

 5. If C/T= 0, then the timer gets the clock pulses from outside the microcontroller. True/False?

 6. ______________ register controls the timer/counter operation.

 7. What is the signifi cance of IT1 bit of TCON register?

 8. List the special function registers of timer/counter.

 9. TCON is a bit addressable register. True/False?

 10. ______________ bit selects timer/counter operation.

 11. Timer 1 is enabled if gate = 0 and TR1 bit is set. True/False?

 12. Timer 0 is enabled if gate = 1, ______________ and ______________ bit are set.

 13. If an 8051 is operated with 18 MHz crystal frequency, then the timer clock frequency is

______________ MHz.

 14. If an 8051 system is operated with 11.0925 MHz crystal frequency, then the timer clock period

is 1.085 ms. True/False?

 15. In mode 0, timer register is confi gured as ______________ bit register.

 16. In mode 1, timer register is confi gured as 16-bit register. True/False?

 17. In timer/counter, which mode supports automatic reload operation?

 18. In mode 3, when TH0 register overfl ows, ______________ timer fl ag is set.

 19. Timer/counter operates in ______________ number of modes.

 20. Differentiate timer/counter operations.

Examples

A careful compilation of programming and
interfacing examples both in 8051 assembly
and C language strengthen understanding of
concepts.

Section-end and chapter-end review questions provide an opportunity to
the students to reinforce their learning and gain confi dence.

Review Questions

 xvi Visual Walkthrough

 138 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 6.2

Write 8051 ALP and C program to send 8 bit binary numbers from 0 to 9 to port 2, repetitively.

ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 S1:MOV A, #00H ; Load A 00H

 MOV R1, #0AH ; Load R1 0AH

 START: MOV P2, A ; Send the contents of accumulator to P2

 INC A ; Increment A

 CALL DELAY ; Call delay routine

 DJNZ R1, START ; Decrement. R1,if it is not zero, branch to

 START

 SJMP S1 ; Jump to S1

 DELAY: MOV R2,#100 ; Delay routine for 100 ms

 LOOP2: MOV R1,#125

 LOOP1: PUSH ACC

 POP ACC

 NOP

 NOP

 DNZ R1, LOOP1

 DNZ R2, LOOP2

 RET

 END

C PROGRAM

 // C program to send 0-9 to port2

 #include <Intel\8051.h> // Include header file of 8051

 #include<standard.h> // For delay routine

 #define period 100 // 100 ms

 void main ()

 {

 unsigned char a;

 while(1) // Always perform

 {

 for(a=0; a<10; a++) // Initialise variable a=0 and increment

 {

 P2=a; // Send 8-bit number to port 2

 delay_ms(period); // Delay routine for 100 ms

 }

 }

 }

Chapter Summary

Summary succinctly recapitulates the main
concepts of the chapter, making it ideal for
review.

Multiple Choice Questions

Numerous Multiple Choice Questions—a useful
study tool for knowledge assessment—have been
included.

Visual Walkthrough xvii

An Overview Embedded Systems

Chapter 1 includes embedded system
architecture, design challenges and
embedded operating system.

Software Development Tools

In-depth discussion of software development
tools like A51 assembler and S51 Simulator,
SC51 C compiler, µVision C Compiler and
Simulator (SIDE 51) provides comprehensive
knowledge about microcontrollers.

8051 Based Projects

Chapter 9 devoted to the architecture and
features of 8255A includes interfacing of
8255A with 8051 and interfacing of external
devices such as printers, stepper motors and
D/A converters using 8255A with circuits and
programs.

 xviii Visual Walkthrough

Appendices

Appendices include data sheets of relevant
microcontrollers along with ASCII codes to
apprise students of industry norms.

Online Learning Centre

A comprehensive, exclusive website
http://www.mhhe.com/udayashankara/mhsa
provides electronic resources for both
instructors and students.

Visual Walkthrough xix

P89C60X2/61X2 FLASH
MICROCONTROLLER-

DATA SHEETS

Features

• 80C51 Central Processing Unit

 – 64 Kbytes Flash

 – 512 bytes RAM (P89C60 2)

 – 1024 bytes RAM (P89C61 2)

 – Boolean processor

 – Fully static operation

• In-System Programmable (ISP) Flash memory

• 12-clock operation with selectable 6-clock

operation (via software or via parallel

programmer)

• Memory addressing capability

 – Up to 64 Kbytes ROM and 64 Kbytes RAM

• Power control modes

 – Clock can be stopped and resumed

 – Idle mode

Philips Semiconductors Product data

80C51 8 bit Flash microcontroller family P89C60X2/61X2

64KB Flash, 512B/1024B RAM

 – Power-down mode

• Two speed ranges

 – 0 to 20 MHz with 6-clock operation

 – 0 to 33 MHz with 12-clock operation

• LQFP, PLCC, and DIP packages

• Dual Data Pointers

• Three security bits

• Four interrupt priority levels

• Six interrupt sources

• Four 8 bit I/O ports

• Full-duplex enhanced UART

 – Framing error detection

 – Automatic address recognition

• Three 16 bit timers/counters T0, T1 (standard

80C51) and additional T2 (capture and

Appendix A

Web Supplements for Instructors and Students

8051 Microcontroller, 1/e
Hardware, Software & Applications

by

M S Mallikarjunaswamy & V Udayashankara

The web supplement is accompanied by a comprehensive set of supplements for both

students and instructors

Instructor Resources

∑ Solution Manual

∑ Chapter-wise PowerPoint Slides

∑ Test Bank offers a Collection of Model Exam Questions

Student Resources

∑ Chapter-wise Learning Objectives and Summary

∑ Sample Chapter—Chapter 1 on Introduction to Computer, Microprocessor and

Microcontroller

∑ Block Schematic Diagrams and Brief Description of Projects given in the Book

∑ Additional Chapter-wise Exercises

∑ Multiple Choice Questions

∑ Real-life Experiments for 8051 Microcontroller Laboratory

∑ Web Links to Reference Material

 visit

 http://www.mhhe.com/udayashankara/mhsa

Web Supplements for Instructors and Students

8051 Microcontroller, 1/e
Hardware, Software & Applications

by

M S Mallikarjunaswamy & V Udayashankara

The web supplement is accompanied by a comprehensive set of supplements for both

students and instructors

Instructor Resources

∑ Solution Manual

∑ Chapter-wise PowerPoint Slides

∑ Test Bank offers a Collection of Model Exam Questions

Student Resources

∑ Chapter-wise Learning Objectives and Summary

∑ Sample Chapter—Chapter 1 on Introduction to Computer, Microprocessor and

Microcontroller

∑ Block Schematic Diagrams and Brief Description of Projects given in the Book

∑ Additional Chapter-wise Exercises

∑ Multiple Choice Questions

∑ Real-life Experiments for 8051 Microcontroller Laboratory

∑ Web Links to Reference Material

 visit

 http://www.mhhe.com/udayashankara/mhsa

1
INTRODUCTION

TO COMPUTER,
MICROPROCESSOR AND

MICROCONTROLLER

Learning Objectives

After you have completed this chapter, you should be able to

 Defi ne or explain the following terms: Computer, CPU, Memory, Input unit,

Output unit, Bus, RAM and ROM

 Explain the difference between microprocessor and microcontroller

 Compare features of commercial microcontrollers

 Explain the difference between Von Neumann (Princeton) architecture and

Harvard architecture

 Explain the difference between RISC and CISC machines

 Explain the difference between machine language, assembly language and

high level language programming of a computer

 Explain embedded system architecture, design challenges and embedded

operating system

 2 8051 Microcontroller: Hardware, So ware & Applications

1.1 WHAT IS A COMPUTER?

A computer is a multipurpose programmable machine that reads binary instructions from its memory,

accepts binary data as input, processes data according to those instructions and provides result as output.

It is a programmable device, made up of hardware and software. The various components of the computer

are called hardware. A set of instructions written for the computer to solve a specifi c task is called a

program and a collection of programs is called software. The computer hardware consists of four main

components:

 1. Central Processing Unit (CPU), which acts as the computer’s brain.

 2. Input unit, through which program and data can be entered into the computer.

 3. Output unit, from which the results of computation can be displayed or viewed and

 4. Memory, in which the programs and data are stored. Figure 1.1 shows a simple block diagram of a

computer.

 Figure 1.1 Block diagram of a computer

The processor communicates with the memory and input/output devices using three sets of lines called

buses—address bus, data bus, and control bus. The bus is a communication path between the processor and

the peripherals.

1.1.1 Central Processing Unit

The Central Processing Unit (CPU), which is also called the processor, can be further divided into three

major parts:

Register File The register fi le consists of one or more registers. A register is a storage location in the

CPU. It is used to hold data and/or a memory address during execution of an instruction.

 Arithmetic Logic Unit The arithmetic logic unit is the computer’s numerical calculator and logical

operation evaluator. Under command from the control unit, it receives information from the memory. It

analyses and rearranges the data and carries out the sequence of arithmetic and logical operations to

accomplish the desired job.

 Control Unit It controls and coordinates all the activities in the computer. It decodes the instructions and

generates the necessary control signals for the execution of instructions. The system clock synchronises the

Chapter 1 Introduction to Computer, Microprocessor and Microcontroller 3

activities of the control unit. All CPU activities are measured by clock cycles. The control unit also contains

a register called the Program Counter (PC), which contains the memory address of the next instruction to

be executed.

1.1.2 Memory

The memory is a place where programs and data are stored. It is a storage device that stores instructions,

data and intermediate results and provides that information to the other units of the computer. A computer

contains Semiconductor, Magnetic or Optical memory. Semiconductor memory has been discussed in this

chapter. Figure 1.2 shows the classifi cation of semiconductor memory into two major types— Random

 Access Memory (RAM) and Read Only Memory (ROM).

Figure 1.2 Memory classifi cation

Random Access Memory Random access memory, popularly known as user memory, is used to store

user program and data. It is also known as read/write (R/W) memory because it is equivalent to a group of

addressable registers—you can either read the stored contents of memory location or write new contents

into the memory location. The R/W memory is volatile, which means that when the power is turned off, the

contents are lost. To communicate with the memory, the CPU should be able to

∑ Select the memory chip

∑ Select the register in the memory chip

∑ Read from or write into the register

Model of a typical read/write memory is shown in Fig. 1.3(a). The fi gure shows the chip select as CS,

write signal as WR and read signal as RD — these are active low signals indicated by the bar. They help

to select RAM and perform write and read operations. A fl ip-fl op that can store one binary bit is called a

 memory cell. If more than one fl ip fl op are grouped together, it is called a register.

In Fig. 1.3(b), the random access memory contains eight registers; each register contains eight memory

cells and are arranged in a sequence. Here, the size of the memory is 8 ¥ 8 bits or 8 bytes. To write into or

read from any one of the registers, a specifi c register has to be selected. This is achieved by using a 3 to 8

decoder. Three address lines A2, A1 and A0 are required for the decoder. These input lines can have eight

 4 8051 Microcontroller: Hardware, So ware & Applications

different bits combination (000, 001, 010, 011, 100, 101, 110, 111), and each combination can select one of

the registers.

Registers are made up of fl ip-fl ops and it stores bit as a voltage. Dynamic memory uses one MOS

transistor and one capacitor to store one bit of information in the form of electrical charge. Static memories

are designed to store binary information without needing periodic refreshes and require one fl ip-fl op to store

one bit of information (four to six transistors are needed to store one bit of information). Hence, it requires

the use of more complicated circuitry for each bit. The advantage of dynamic memory is that a large

number of transistor gates can be placed on the memory chip; thus it has high density and is faster than

static memory. The disadvantage is that the charge (bit information) leaks and hence, it requires periodic

refreshing, i.e. information needs to be read and written again after every few milliseconds.

Figure 1.3 Random Access Memory

 Read Only Memory The read only memory is the simplest kind of memory. It is equivalent to a group

of registers and each store a word permanently. It is a nonvolatile memory which means that it retains the

stored information even if the power is turned off. By applying control signal, we can read the contents of

any memory location and if the processor attempts to write data to a ROM location, ROM will not accept

the data. The model of a typical read only memory is shown in Fig. 1.4(a). The concept of ROM can be

explained with the diodes arranged in a matrix format, as shown in Fig. 1.4(b). The horizontal lines are

connected to the vertical lines using diodes to store ‘1’. The presence of diode stores ‘1’ and the absence of

diode stores ‘0’. When a register is selected, the voltage of that line goes high, and the output lines, where

the diodes are connected also go high. When the memory register 010 is selected, the data byte 00000110

(06H) can be read at the data lines.

Two types of ROM are presently available, permanent ROM and erasable ROM. Permanent ROM

includes two types of memory, Masked read only memory and Programmed read only memory.

 Masked Read Only Memory (MROM) MROM is a type of ROM where binary instruction/data are

stored during its fabrication. The semiconductor manufacturer places binary instruction/data in the memory

Chapter 1 Introduction to Computer, Microprocessor and Microcontroller 5

according to the request of the customer. MROM is used to hold microcontroller application program and

constant data.

Figure 1.4 Read Only Memory

 Programmed Read Only Memory (PROM) PROM is a type of read only memory that can be

programmed in the fi eld using a device called PROM programmer and here the programming is permanent.

In other words, the stored contents cannot be erased.

Erasable memory includes three types of memory—EPROM, EEPROM, and Flash memory.

 Erasable Programmable Read Only Memory (EPROM) The information stored in this memory is

semi-permanent. Data is stored with PROM programmer. Subsequently, all the information can be erased

by exposing the memory to ultraviolet light through a quartz window installed on top of the EPROM chip.

It can then be reprogrammed.

 Electrically Erasable Programmable Read Only Memory (EEPROM) EEPROM is a type of

nonvolatile memory that can be erased by electrical signals and reprogrammed. EEPROM allows the

user to selectively erase a single location, a row, or the whole chip. This feature requires a complicated

programming circuitry. Because of this, EEPROM cannot achieve the density of EPROM technology.

 Flash Memory Flash memory was invented to incorporate the advantages and avoid the drawback of

EPROM and EEPROM technologies. It achieves the density of EPROM, and can be programmed and

erased electrically like EEPROM. However, it does not allow individual location to be erased, but the user

can erase the whole chip.

1.1.3 Input Devices

The input device transfers data and instructions in binary form, from the outside world to the CPU. The

input device, also known as a peripheral is the means through which the user communicates data to the

 6 8051 Microcontroller: Hardware, So ware & Applications

computer. The user can enter instructions and data through an input device like a keyboard. Analog to

digital converters, and switches can also be used as input devices.

1.1.4 Output Devices

It receives the stored result from the memory or from the CPU, converts it into a form that the user can

understand and transfers this data to the outside world. Monitor, Liquid Crystal Display (LCD), seven-

segment display, printer, etc. are used as output devices.

 1. Name the four main components of a computer.

 2. List three types of buses in a computer.

 3. ___________ register contains the memory address of the next instruction to be executed.

 4. Differentiate volatile and nonvolatile memory.

 5. List the signals that helps the CPU to communicate with the memory.

 6. 8 ¥ 8 bit memory stores ___________ bit of information.

 7. ___________ number of address lines are required to address 16 ¥ 8 bit memory.

 8. Analog to digital converter is a ___________ device.

 9. LCD is a ___________ device.

 10. ___________ memory can be erased electrically.

1.2 WHAT IS A MICROPROCESSOR?

In the late 1960s, the CPU was designed with discrete logic gates. As semiconductor technology advanced,

it was possible to fabricate more than thousand gates on a single silicon chip—this came to be known as

 Large-scale integration. As technology moved from Small-scale Integration to Large-scale Integration, it

became possible to build a whole CPU with its related timing functions on a single chip. This came to be

known as Microprocessor. A computer that is designed using a microprocessor as its CPU, is known as a

Microcomputer.

Intel Corporation announced the fi rst 4 bit microprocessor 4004 in 1971. The number of bits refer

to the number of binary digits that the microprocessor can manipulate in one operation. Soon after this,

Intel developed an 8 bit microprocessor 8080 in 1974. The 8085 microprocessor that followed 8080, had

few more additional features compared to 8080 architecture. The instruction sets of 8080 and 8085 are

practically the same. The 8085 microprocessor has an 8 bit data bus, so it can read data from or write data

to memory or I/O ports only 8 bit at a time. It has a 16 bit address bus, so it can address any one of 216 or

65,536 memory locations. It operates with 3MHz clock signal. The limitations of 8085 microprocessor are

∑ It operates with low speed

∑ Less powerful addressing mode and instruction set

∑ Limited number of 8 bit general purpose registers

∑ Low memory (64 Kbytes) addressing capability

Chapter 1 Introduction to Computer, Microprocessor and Microcontroller 7

Because of these limitations, Intel Corporation announced the fi rst 16 bit microprocessor 8086 in 1978.

The 8086 microprocessor has 16 bit data bus and 20 bit address bus. It can read or write data to memory

or I/O ports either 16 bit or 8 bit at a time and it can address any one of 1,048,576 (220) memory locations.

Subsequently, Intel developed 16 bit processors such as 8088, 80186, 80188 and 80286. The Intel 8088

has the same instruction set and arithmetic unit as the 8086. It has 8 bit data bus and 20 bit address bus

and can read or write data to memory or I/O devices only 8 bit of data at a time. 80186 and 80188 are

an improved version of 8086 and 8088 respectively. Both the processors have a few additional instruction

sets compared to 8086 instruction set. 80286 is an improved version of 80186. It is designed to be used

as CPU in multitasking computers. It operates in real and virtual addressing mode. Later, in 1985, Intel

developed 32 bit microprocessor 80386. The 80386 can address directly up to 4 gigabytes of memory.

Intel’s second generation of 32 bit microprocessor 80486 was available in the year 1989. Intel introduced

a third generation 80586 (Pentium processor) in 1998. Motorola, Zilog, etc. also developed 8 bit, 16 bit

and 32 bit Microprocessors. Microprocessors have been widely used after their invention. However, the

following limitations of the microprocessor led to the invention of the microcontroller.

∑ A microprocessor requires external memory to execute a program.

∑ A microprocessor cannot be directly interfaced with I/O devices. Peripheral chips are needed to

interface I/O devices.

 1. The 8085 microprocessor has ___________ bit data bus and ___________ bit address bus.

 2. List the limitations of the 8085 microprocessor.

 3. The 8088 microprocessor has ___________ bit data bus and ___________ bit address bus.

 4. The 80386 is a ___________ bit microprocessor.

 5. List the limitations of microprocessor.

1.3 WHAT IS A MICROCONTROLLER?

As technology moved from LSI to VLSI, it became possible to build the microprocessor, memory and I/O

devices on a single chip. This came to be known as the ‘Microcontroller.’

A microcontroller contains a microprocessor and also one or more of the following components.

∑ Memory

∑ Analog to Digital (A/D) converter

∑ Digital to Analog (D/A) converter

∑ Parallel I/O interface

∑ Serial I/O interface

∑ Timers and Counters

Figure 1.5 shows the block diagram of a typical microcontroller, which is a true computer on-chip. The

fi rst 4 bit microcontroller was developed by different companies like Hitachi, National, Toshiba, etc. Soon

after this, 8 bit microcontrollers were developed by Intel, Motorola, Zilog, Philips, Microchip technology, etc.

 8 8051 Microcontroller: Hardware, So ware & Applications

 Microcontrollers with important features

 Device Register On-chip Speed No. of timers/ No. of On-chip
 Memory program MHz Counters I/O lines Peripherals
 On-chip memory
 (bytes) ROM/EPROM

 8031 128 ROM less 12 2 32 UART
 (MCS51-family)

 8051 128 4K ROM 12 2 32 UART
 (MCS51-family)

 8052 256 8K ROM 12 3 32 UART
 (MCS51-family)

Figure 1.5 Block diagram of a typical microcontroller

1.3.1 Applications of Microcontroller

Microcontrollers have been widely used in home appliances such as refrigerators, washing machines and

microwave ovens. It is used in displays, printers, keyboards, modems, charge card phones and also in

automobile engines, etc. as controllers.

1.3.2 Commercial Microcontroller Devices

A brief overview of some commercial microcontrollers, PIC microcontrollers, Intel microcontrollers and

Atmel microcontrollers is given in this section. Microcontrollers must be selected depending on the needs

of a given application. Table 1.1 lists the various microcontrollers with important features like on-chip

memory, number of timers, DMA, A/D converter and UART.

(Contd)

TABLE 1.1

Chapter 1 Introduction to Computer, Microprocessor and Microcontroller 9

 1. List the components in a microcontroller.

 2. The 8051 is a ___________ bit microcontroller.

 3. List few applications of a microcontroller.

 4. List few commercial microcontrollers with their important features.

 5. ___________ Intel microcontroller is ROM less.

 6. The 8052 has ___________ bytes of on-chip RAM and ___________ bytes of on-chip ROM.

 7. The 8751 has ___________ number of I/O lines.

 8. 16F874 microchip operates with speed ___________ MHz.

 9. List the features of ATMEL AT 89S252 microcontroller.

 10. List the on-chip peripherals in an 8051 microcontroller.

1.4 VON NEUMANN (PRINCETON) AND
HARVARD ARCHITECTURE

A microprocessor that fetches instruction and data using a single bus is called Von Neumann or Princeton

 architecture. In Von Neumann architecture, data memory (RAM) and Program memory (ROM) are

connected by using single address and data bus as shown in Fig. 1.6.

In Harvard architecture, program memory and data memory are connected using separate address

and data bus to achieve fast execution speed for a given clock rate as shown in Fig. 1.7. For example,

 8751 256 8K EPROM 12 3 32 UART
 (MCS51-family)

 87C58 256 32K EPROM 12-24 3 32 UART
 (MCS51-family)

 87C51GB 256 8K EPROM 12-16 3 48 UART, 8
 (MCS51-family) channel ADC
 DMA

 89C61x2 1024 64K Flash 20-33 3 32 UART
 (MCS51-family)

 AT89S8252 256 8K Flash 24 3 32 UART
 Atmel 2K EPROM SPI

 16C74 192 4K ROM 20 3 32 USART
 (Microchip) 8 bit ADC
 SPI

 16F874/877 256 8K 20 3 32 USART
 (Microchip) 10 bit ADC

(Contd)

 10 8051 Microcontroller: Hardware, So ware & Applications

8051 microcontroller by Intel and PIC microcontroller by microchip have Harvard architecture. Motorola

68HC11 microcontroller has Von Neumann architecture.

Figure 1.6 Von Neumann architecture Figure 1.7 Harvard architecture

 1. ___________ architecture contains single address and data bus.

 2. In ___________ architecture, two memory access can be made in one instruction cycle.

1.5 RISC AND CISC MACHINES

The microcontrollers with small instruction set are called Reduced Instruction Set Computer (RISC)

 machines and those with complex instruction set are called Complex Instruction Set Computer (CISC)

 machines. Intel 8051 microcontroller is an example of CISC machine and Microchip PIC16F87X is an

example of RISC machine. Comparison of features of RISC and CISC is shown in Table 1.2.

 Comparison of RISC and CISC machines

 RISC CISC

 1. Instruction takes one or two cycles 1. Instruction takes multiple cycles

 2. Only load/store instructions are used to 2. In addition to load and store instructions, memory
 access memory access is possible with other instructions also.

 3. Instructions executed by hardware 3. Instructions executed by the micro program

 4. Fixed format instructions 4. Variable format instructions

 5. Few addressing modes 5. Many addressing modes

 6. Few instructions 6. Complex instruction set

 7. Most of them have multiple register banks 7. Single register bank

TABLE 1.2

Chapter 1 Introduction to Computer, Microprocessor and Microcontroller 11

 1. CISC instruction takes multiple cycles. True or False?

 2. RISC has variable format instruction. True or False?

 3. CISC has multiple register banks. True or False?

 4. RISC has few addressing modes and less number of instructions. True or False?

1.6 COMPUTER SOFTWARE

A set of instructions written in a specifi c sequence for the computer to solve a specifi c task is called a

 program, and software is a collection of programs. The program stored in the computer memory in the form

of binary numbers is called machine instructions. The machine language program is called object code.

For example, in 8051 microcontroller, the instruction CLR A is represented by binary code 11100100

(E4 in hexadecimal). Because it is diffi cult to write programs in sets of 0’s and 1’s, assembly language was

then developed to simplify the programming job. Machine language and assembly language are low level

languages and both are microprocessor specifi c. Assembly language programs are written using assembly

instructions. An assembly instruction is the mnemonic representation of machine instructions.

For example, in the instruction CLR A, CLR stands for clear and A represents the accumulator. This

symbol suggests the operation of storing 00H in the accumulator. The assembly language program that a

programmer enters is called the source program or source code. A software program called an assembler is

then developed to translate the program (source code) written in assembly language into machine language

(object code), which is compatible with the microprocessor being used in the system as shown in Fig. 1.8.

Mnemonics are specifi c to microprocessors and each microprocessor has its own assembler.

Figure 1.8 Assembler

 The drawbacks in assembly language programming are:

∑ The programmer has to be very familiar with the processor of the computer in which the program is

to be executed.

∑ It is diffi cult to understand an assembly language program without the use of comments.

To avoid the drawbacks of assembly language programming, high-level languages such as Fortran,

Pascal, C and C++ were developed. A program written in high level language is also called a source

program. A software program called a compiler or an interpreter was then developed to translate the source

program into machine language as shown in Fig. 1.9.

Figure 1.9 Compiler/Interpreter

Thus, a compiler or an interpreter translates high level language program into machine language.

Each microprocessor needs its own compiler or an interpreter for each high level language. The primary

 12 8051 Microcontroller: Hardware, So ware & Applications

difference between a compiler and an interpreter lies in the process of generating machine code. The

compiler reads the entire program, translates it into object code and then it is executed by the processor. On

the other hand, the interpreter takes one statement of a high level language program as input and translates it

into object code and then executes. One of the major drawbacks of high level languages is that the machine

code compiled from high level language program cannot run as fast as machine codes of assembly language

program. For this reason, real time application programs are written in assembly language.

 1. ___________ languages are low level languages.

 2. In assembly language, programs are written using mnemonics. True or False?

 3. ___________ software translates assembly language to object code.

 4. List the drawbacks of assembly language programming.

 5. Differentiate compiler and interpreter.

1.7 AN OVERVIEW OF EMBEDDED SYSTEM

In our daily lives, we are surrounded by number of embedded systems, such as TVs, DVD players, mobile

phones, washing machines, digital cameras and automobiles. In this section, we will study defi nition of

embedded systems, architecture of embedded systems, and embedded operating systems.

1.7.1 What is an Embedded System?

An embedded system can be defi ned as a combination of computer hardware and software that does a

specifi c job. Embedded systems are used in consumer electronics, food processing industry, chemical

plants, cement plants, biomedical equipments, telecommunication and security. The embedded software that

is executed for specifi c job is called fi rmware.

1.7.2 Characteristics of Embedded Systems

Based on the processor and software, various types of embedded systems exist. Reliability, cost effective-

ness, low power consumption, fast execution time, effi cient use of memory, and processing power are the

characteristics of most of the embedded systems.

 Reliability Reliability of hardware and software is most important in embedded systems. The embedded

system should reboot and rest by itself without human intervention during failure. The co-design of

hardware and software is given importance in case of embedded system to meet these requirements.

 Cost effectiveness The embedded systems are developed to meet the requirements of specifi c

applications, in mass markets, and hence, keeping the product cost reasonable becomes essential. To meet

the requirements, the system is developed using general-purpose processor during prototype. Then, an

application specifi c integrated circuit is used to reduce the hardware and cost.

 Low power consumption Many embedded systems are battery operated. Power consumption has to

be limited to increase the life of the battery. This can be achieved by reducing the number of hardware

components or by designing the processor to revert to sleep mode when no operation is to be performed.

Chapter 1 Introduction to Computer, Microprocessor and Microcontroller 13

 Fast execution time In real time embedded systems, certain tasks must be performed within a specifi c

time. To meet the performance constraints of real time systems, special operating systems known as real

time operating systems run on these embedded systems. To fulfi ll the performance requirement, the code

should be optimal. The software is generally developed using high-level languages, some computationally

intensive units are developed in assembly language.

 Efficient use of memory Most of the embedded systems contain only ROM and RAM without any

secondary storage. Flash memory is used to store the program, including the operating system. Most of the

microcontrollers and digital signal processors are available with on-chip fl ash memory.

 Processing power The number of instructions executed per second is the processing power of the

processor. Most of the processors execute one instruction in one clock cycle. Therefore, the processing

power is in terms of million instructions per second (MIPS).

1.7.3 Embedded System Architecture

 Embedded system is a dedicated computer-based system for an application. The software is embedded in the

read only memory. The hardware of an embedded system consists of the following six main components:

 1. Central processing unit

 2. Memory

 3. Input unit

 4. Output unit

 5. Application specifi c circuitry

 6. Communication channels

Central processing unit The central processing unit (CPU), which is also called processor is the heart

of the embedded system. The CPU can be any of the following

∑ Microprocessor

∑ Microcontroller

∑ Digital signal processor

∑ Application specifi c processor

Figure 1.10 Block diagram of an Embedded System

 14 8051 Microcontroller: Hardware, So ware & Applications

TABLE 1.3

 Microprocessor Microprocessor is a single VLSI chip that has a CPU. It is used when large embedded

software is to be executed. Microprocessors are powerful and result in faster processing of instructions.

Table 1.3 lists the important microprocessors used in the embedded systems.

 Microcontrollers Microcontrollers are also single VLSI chip, which have a CPU, memory, parallel ports,

serial ports, analog to digital converters and timers. Microcontrollers are used when small-embedded

software is to be executed and stored in its internal memory. Table 1.3 lists the important microcontrollers

used in the embedded systems.

 Digital signal processors Digital signal processors are used where signal processing is involved such as

fi ltering, signal conversion from time to frequency domain, etc., and in applications like biomedical and

speech signal processing. Table 1.3 lists the important digital signal processors used in the embedded systems.

 Application specific processors In application specifi c processors, processors are designed for running

the application specifi c tasks. They are the best choice where faster solution is required, as compared to

microprocessor and microcontroller. Application specifi c processors are used in mobile phones, TV

decoders, etc.

 Important processors used in Embedded Systems

Microprocessors Microcontrollers Digital Signal Processors

68HCxxx 68HC11xx 5600xx
Motorola Motorola Motorola

80x86 8051, 80196, 89c61x2 TMS320Cxx
Intel Intel Texas

SPARC PIC16F84, PIC16F874 SHARC
SUN Microchip Analog Devices

Power PC ARM 7 ADSP 21xx
IBM ARM Analog Devices

Memory An embedded system contains two types of semiconductor memory—random access memory

(RAM) and read only memory (ROM). Random access memory stores user program and data. Firmware

(embedded software) is stored in read only memory. When power is switched on, the processor executes the

embedded software stored in read only memory.

Input Devices Some embedded systems have input devices like small keypad, analog to digital

converters, switches whereas others do not have any input device for user interaction.

Output Devices Embedded systems have output devices like seven segment displays’ light emitting

diodes (LED) and liquid crystal displays (LCD) to display important parameters.

 Application Specific Circuitry Depending on the application, embedded system contains transducers,

sensors, amplifi ers, and current to voltage conversion circuits. Function of these circuits is to convert

incoming signal to match the range of Analog-to-Digital (A/D) converter.

Chapter 1 Introduction to Computer, Microprocessor and Microcontroller 15

 Communication Interfaces An embedded system can interact with other embedded systems using

serial communication bus like RS232, RS422 and IEEE bus.

1.7.4 Full-custom processor, Semi-custom

processor and Programmable logic

devices

Processors are implemented on an integrated circuit (IC). IC, often called as chip consists of a set of transistors

interconnected with other devices. There are different processes to fabricate semiconductors namely nMOS,

pMOS and CMOS. The most widely used process is CMOS (complementary metal oxide semiconductor).

Semiconductors devices are built with different layers. The bottom-most layers are of transistors. The

middle layers form logic components. The top-most layers connect these logic components with wires to

build larger circuits like a processor.

 Full-custom design Full-custom IC design is also referred to as Very Large Scale Integration (VLSI)

design. Full-custom Design is the name given to the technique where the function and layout of every

transistor is optimised. A microprocessor is an example of full custom IC. In this design, care has been

taken to squeeze every last square of micron of chip space. Full-custom ICs are the most expensive to

manufacture and to design.

 Semi-custom design In case of semi-custom ICs, all of the logic cells are pre designed and some of

the mask layers are custom designed. The masks for the transistor and gate levels are already built. The

remaining design is to connect these gates to achieve a particular implementation. They provide good

performance with much less cost than full-custom ICs.

 Programmable logic devices In Programmable Logic Devices (PLDs), all of the logic cells are pre-

designed and none of the mask layers are customised. There are two types in this category, namely

Programmable Logic Devices (PLD) and Field Programmable Gate Array (FPGA). In case of PLDs, all

layers already exist. One can purchase the IC and program it for intended design. The programming consists

of creating or destroying connections between connected gates, either by blowing a fuse, or setting a bit in

a programmable switch. A new inclusion to this family is Field Programmable Gate Arrays (FPGAs) that

offer more general connectivity among blocks of logic, rather than just arrays of logic as with PLDs. These

ICs are bigger in size, have higher unit cost and are slower compared to full-custom or semi-custom but

provide reasonable performance with reduced design time.

1.7.5 Design Challenges in an Embedded System

The embedded system designers and developers have common design challenges like co-design, embedding

an operating system, and optimising the code.

 Co-design In an embedded system design, the task is implemented using hardware and software. The

design engineer has to decide which module needs to be implemented in hardware and which module is

to be realised by software. Hardware implementation imposes the constraints of size and cost. Software

implementation imposes the constraints of memory size and performance. To design an effi cient embedded

system, co-design is a challenge.

 16 8051 Microcontroller: Hardware, So ware & Applications

 Choice of operating system In the design of an embedded system, the designer has the option to develop

the software in assembly and C without using an operating system. This will result in effi cient code, saving

processing power and memory. The other option is to use a readily available operating system, so that the

designer can focus on application software development. This saves development time and cost.

 Optimizing of code In the design of embedded system, memory and execution time are the main

constraints. It is a challenge for the designer to optimise the code to meet the constraints.

1.7.6 Embedded Operating System

In the olden days, development of application embedded software was done in assembly language.

Debugging and maintaining assembly language program were very diffi cult and time consuming. Hence,

most of the development of application embedded software is now done using object oriented languages.

Embedded operating systems are designed to work on semiconductor memory with limited processing

power, since there is no secondary storage device in an embedded system. The advantages of using

 operating systems in embedded systems are

∑ The program can be written in a high-level language. Object oriented programming languages

particularly C++ and Java are extensively used for embedded software development.

∑ The programmer can focus on application program rather than memory and I/O management

program.

Operating systems used in embedded systems can be broadly divided into three types:

 Non real time embedded operating systems These operating systems are suitable for soft real time

embedded systems to perform tasks like memory management, I/O management, etc. They are not suitable

for hard real time applications. Examples are embedded windows XP, and embedded Linux.

 Real time operating systems These operating systems are suitable for hard real time operating systems.

They are used to provide the necessary system calls for real time deadlines. Examples are OS/9, RT Linux,

and Vx works.

 Mobile/handheld operating systems Operating systems that are used to work in mobile environments

are known as mobile operating systems. Examples are Embedded Windows NT, window CE, palm OS, and

symfi an OS.

In embedded systems, the operating system and the application software are integrated and stored in the

memory of the embedded system.

1.7.7 Real time Embedded Systems

In most embedded systems, it is important to perform some of the computations in a timely manner. Such

embedded systems in which strict deadlines are imposed to complete specifi c task are called real time

embedded systems.

In real time systems, an additional programming is necessary to meet the deadline constraints in its

functions. An operating system, which handles these multiple tasks with real time constraints, is called as

 real time operating system (RTOS). Note that real time system refers to embedded system that exhibits real

time characteristics. For example, a cell phone decodes audio signal and converts digital signal to voice. All

this takes place in a defi ned time period, else there will be a delay in reaching to the listener. Other systems

that have timing requirements are process control system, robots, networks and multimedia systems.

Chapter 1 Introduction to Computer, Microprocessor and Microcontroller 17

 1. Name few applications of an embedded system.

 2. The embedded software executed for a specifi c job is called ____________.

 3. List the characteristics of an embedded system.

 4. The processing power of an embedded system is in terms of MIPS. True or False?

 5. List the components of an embedded system.

 6. Name types of processors used in an embedded system.

 7. Name few digital signal processors used in an embedded system.

 8. An embedded system can interact with other embedded systems. True or False?

 9. List the different processes used to fabricate semiconductors.

 10. Full custom IC is also referred as ____________ integration.

 11. Differentiate between PLD and FPGA.

 12. Name most common challenges in designing an embedded system.

 13. List different types of operating system used in an embedded system.

 14. The operating system used to work in a mobile equipment is known as ____________.

 15. Defi ne real time embedded system (RTES).

This chapter describes the major components of a computer system, namely CPU, memory and

I/O devices. A memory is where software programs and data are stored. A computer may contain

semiconductor, magnetic and optical memory.

This chapter further explains the following:

∑ Characteristics of volatile and nonvolatile memory

∑ Fundamental differences between microprocessor and microcontroller, application of micro-

controller and types of microcontroller in the embedded market

∑ Difference between Von Neumann and Harvard architecture

∑ Computer languages such as high-level language, assembly language and machine language.

The chapter concludes with an overview of the embedded systems.

 1. Which was Intel’s fi rst microprocessor?

 (a) 8085 (b) 8086 (c) 4004 (d) 8088

 2. The basic operations performed by a computer are ____________ .

 (a) Arithmetic operations (b) Logical operations (c) Storage (d) All the above

 18 8051 Microcontroller: Hardware, So ware & Applications

 3. Word length of 8085 microprocessor is ____________ .

 (a) 4 bit (b) 8 bit (c) 16 bit (d) 32 bit

 4. Programs stored in ROM are called ____________ .

 (a) Hardware (b) Software (c) Firmware (d) None of these

 5. Integrated circuits are classifi ed on the basis of ____________ .

 (a) Manufacturing company (b) Number of transistors

 (c) Types of microprocessor (d) None of these

 6. A compiler ____________ .

 (a) Translates assembly level language into machine language

 (b) Translates high level language into machine language

 (c) Translates high level language into assembly language

 (d) None of these

 7. Machine language ____________ .

 (a) Is the language in which programs are written using mnemonics

 (b) Is the only language understood by the microprocessor

 (c) Is the language in which programs are written using ASCII code

 (d) None of these

 8. An assembler ____________ .

 (a) Translates Mnemonics into machine language

 (b) Translates high level language into machine language

 (c) Translates ASCII code into machine language

 (d) None of these

 9. A source program is a ____________ .

 (a) Program written in a machine language

 (b) Program to be translated into assembly language

 (c) Program written using mnemonics

 (d) None of these

 10. Which of the following is not an output device?

 (a) Scanner (b) Printer (c) Flat screen (d) Speaker

 11. ____________ address lines are required to address 8K ¥ 8 bit memory

 (a) 13 (b) 14 (c) 10 (d) 16

 12. PROM programmer can be used for ____________ .

 (a) Erasing the contents of EPROM (b) Reconstructing the contents of EPROM

 (c) Duplicating the contents of EPROM (d) None of the above

 13. Which of the following devices can understand the difference between data and programs?

 (a) Input device (b) Memory (c) Microprocessor (d) Output device

 14. In a dynamic read/write memory, ____________ is capable of storing a single binary bit.

 (a) Capacitor (b) Flip fl op (c) Resistor (d) Inductor

 15. A set of fl ip fl ops integrated together is called ____________ .

 (a) Counter (b) Register (c) Adder (d) Subtractor

Chapter 1 Introduction to Computer, Microprocessor and Microcontroller 19

 16. Which of the following is the unit for external storage device?

 (a) Bytes (b) Hertz (c) Clock cycles (d) None of the above

 17. ____________ is a semiconductor memory.

 (a) Bubble (b) Dynamic R/W (c) Both (a) & (b) (d) None of the above

 18. Embedded system contains ____________ .

 (a) ROM & RAM (b) Secondary memory (c) Both (a) and (b) (d) None of the above

 19. Full custom IC design is referred as ____________ .

 (a) Small scale integration design (b) Medium scale integration design

 (c) Large scale integration design (d) Very large scale integration design

 20. In a real time system, the constraint is ____________ .

 (a) Memory size (b) Time (c) Both (a) & (b) (d) None of the above

 1.1 What is a computer? Explain different sections of a processor.

 1.2 Why are input devices needed? Mention any three input devices.

 1.3 Why are output devices needed? Mention any three output devices.

 1.4 List the salient features of a microcontroller.

 1.5 Which register is used to keep track of the address of the next instruction to be executed?

 1.6 List the specifi c features of a microcontroller using diagrams.

 1.7 Give a brief summary of the evolution of Intel microprocessor.

 1.8 List different types of semiconductor memory and explain their differences.

 1.9 What are the differences between PROM, EPROM, EEPROM and Flash memory.

 1.10 Compare the differences between RISC and CISC.

 1.11 What are the advantages of RISC and CISC architecture?

 1.12 What are the differences between Von Neumann and Harvard architecture.

 1.13 Distinguish Harvard and Princeton architecture with diagrams.

 1.14 What is the difference between source code and object code?

 1.15 What are the advantages and disadvantages of assembly language programming?

 1.16 List the merits and demerits of high-level languages.

 1.17 Differentiate between

 (a) Interpreter and compiler (b) Assembler and compiler

 1.18 What is an embedded system? Explain the architecture of an embedded system with a block diagram.

 1.19 Compare the differences between full-custom IC, semi-custom IC and programmable logic devices.

 1.20 List and defi ne the characteristics of an embedded system.

 1.21 List and explain important processors used in an embedded system.

 1.22 Explain the design challenges encountered in an embedded system.

 1.23 List and defi ne important types of IC technologies. What are the benefi ts of using these technologies?

 1.24 Explain different types of embedded operating systems.

1.25 Differentiate between embedded and real time operating systems.

2.1 FEATURES OF 8051

A microcomputer is a computer implemented on a very large scale integration chip. The 8051 is the fi rst

microcontroller of the MCS-51 family, introduced by Intel Corporation at the end of the 1980s. The 8051

family with its many enhanced members enjoys the largest market share, estimated to be about 40%, among

the various microcontroller architectures. The architecture and pin diagram of the 8051 are presented in this

chapter. The block diagram of the 8051 microcontroller is as shown in Fig. 2.1.

The salient features of the 8051 microcontroller are given below:

• 8 bit CPU

• On-chip clock oscillator

• 4 Kbytes of on-chip program memory

• 256 bytes of on-chip data random access memory

2
THE 8051

MICROCONTROLLER

Learning Objectives

After you have completed this chapter, you should be able to

 Explain the features of the 8051 microcontroller

 Explain the architecture of the 8051 microcontroller

 Explain the pin diagram of the 8051 microcontroller

 Explain the memory organisation of the 8051 microcontroller

 Defi ne the stack and explain its uses

 Explain the additional features of the 8052 microcontroller

Chapter 2 The 8051 Microcontroller 21

• 64 Kbytes of program memory address space

• 64 Kbytes of data memory address space

• 32 bidirectional I/O lines can be either used as four 8 bit ports or 32 individually addressable I/O lines

• Two 16 bit timers/counters

• 16 bit address bus multiplexed with port 0 and port 2 and 8 bit data bus multiplexed with port 0

• Full duplex asynchronous receiver transmitter

• Five-vector interrupt structure with two priority levels

Figure 2.1 Block diagram of 8051 Microcontroller

2.2 ARCHITECTURE OF 8051

Figure 2.2 shows a functional block of the internal operations of an 8051 microcontroller. The 8051

includes an 8 bit CPU, memory, four 8 bit I/O ports, two timers/counters and a Universal Asynchronous

Receiver Transmitter (UART).

2.2.1 Processor

The processor includes arithmetic and logic unit, instruction decoder and timing generation unit,

 Accumulator (A or Acc), B register and status register.

 Arithmetic and Logic Unit The Arithmetic and Logic Unit (ALU) performs the computing

functions. The accumulator is an 8 bit register. In arithmetic and logical operations, one of the operands is

in ‘A’ register. After the arithmetic/logical operations, are performed, the result is stored in ‘A’ register and

this affects various fl ags namely Carry (C), Auxiliary Carry (AC), Overfl ow (O), and Parity (P) of status

register.

 22 8051 Microcontroller: Hardware, So ware & Applications

 Instruction Decoder and Control The instruction decoder and control are parts of the timing and

control unit. When an instruction is fetched from program memory, it is loaded in the instruction register.

The decoder decodes the instruction and establishes the sequence of events to follow. The instruction

register is not programmable and cannot be accessed through any instruction. The timing generation and

control unit synchronises all the microcontroller operations with the clock and generates control signals

necessary for communication between the processor and peripherals.

Figure 2.2 Functional block diagram of 8051 (Courtesy Intel)

Chapter 2 The 8051 Microcontroller 23

 CPU Registers

 ‘A’ Register (E0H) Similar to any Intel microprocessor, the 8051 has an 8 bit A and in the instruction, it is

referred as ‘A’. The accumulator is used in all arithmetic and logical operations and has direct connection to

ALU. One of the operands is stored in the accumulator. After the operation is performed, the result is stored

in the A. In multiplication operation, one of the 8 bit operands is stored in ‘A’ register. After the operation,

it stores the lower byte of the result in ‘A’ register. In division operation, it holds an 8 bit dividend and after

the operation, the quotient is stored in the accumulator. It is also used in indexed addressing mode to access

information from program memory. ‘A’ is bit addressable register.

 ‘B’ Register (F0H) The 8 bit ‘B’ register is used during multiply and divide operations. In multiplication

operation, one of the 8 bit operands is stored in ‘B’ register. After the operation, it stores the higher byte of

the result in ‘B’ register. In division operation, it holds 8 bit divisor and after the operation the remainder

is stored in ‘B’ register. For other instructions, it can be used as an 8 bit general purpose register. ‘B’ is bit

addressable register.

 Program Status Word (D0H) The 8 bit Program Status Word (PSW) register contains the arithmetic

status of the ALU and the bank selects bits for the data memory. After the arithmetic and logic operations,

the C, AC, P, and O fl ags of PSW register are set or reset according to the result. In subtraction, the C and

AC bits operate as borrow and digit borrow fl ag respectively. PSW is bit addressable register

 CY AC F0 RS1 RS0 OV ---- P

 Bit 7 Bit 0

Bit 7: Carry/borrow bit When two 8 bit operands are added, the result may exceed 8 bit (may exceed

255 or FF H), and the 9th bit is copied in the carry bit. During subtraction, if the borrow occurs, the carry

bits is set and otherwise, it is cleared.

Bit 6: Auxiliary carry/borrow bit This bit indicates a carry from the lower nibble (lower 4 bit) during

8 bit addition. If auxiliary carry fl ag is set, it means there is a carry from 3rd to 4th bit position. In subtraction,

if there is a borrow from 4th bit to 3rd bit position, then AC is set, else it is cleared.

Bit 5: F0 Flag 0 is available to the user for general purpose.

Bit 4-3: RS1:RS0 Register Bank Select bits

11 = Selects register bank 3

10 = Selects register bank 2

01 = Selects register bank 1

00 = Selects register bank 0

Each bank contains eight 8 bit registers

Bit 2: OV OV fl ag is used to detect errors in signed arithmetic operations. When two signed numbers are

added, if the result exceeds the destination, overfl ow fl ag is set, else it is reset. OV is set, if there is a carry

from D6 to D7, but no carry from D7, or if there is a carry from D7 but no carry from D6 to D7.

Bit 1: Undefined flag

Bit 0: Parity flag P fl ag is set, if the result contains an even number of 1 bit, else it is reset, if the result

contains an odd number of 1 bit.

 24 8051 Microcontroller: Hardware, So ware & Applications

 Stack Pointer (81 H) Stack Pointer is an 8 bit register. It contains the address of the data item on the top

of the stack. It is incremented before the data is stored. While the stack may reside anywhere in on-chip

RAM, the Stack Pointer is initialised to 07H after a reset. The operation and instruction associated with the

stack will be discussed in detail in Chapter 3.

 Data Pointer (DPH-83 H and DPL-82 H) The Data Pointer (DPTR) consists of two 8 bit registers—a

high byte (DPH) and a low byte (DPL). Its intended function is to hold a 16 bit address. It is used to furnish

address information for internal and external program memory and for external data memory.

 Program Counter Program Counter (PC) is a 16 bit register. The 16 bit program counter specifi es

the address of the next instruction to be executed. After reset, the PC will be set to 0000H and the CPU

will start executing the fi rst instruction stored at program memory location 0000H. The 8051 fetches the

instruction one byte at a time and after fetching, it increments the PC by 1.

2.2.2 Memory

The 8051 devices have 4 Kbytes on-chip program memory and 256 bytes of on-chip data random access

memory. The program memory is used to hold the start up program that will be executed when the 8051 is

powered up. The 8051’s on-chip data random access memory is organised as follows:

 First 128 bytes: 00H to 1FH Register Banks

 20H to 2FH Bit Addressable RAM

 30H to 7FH General Purpose Registers

 Next 128 bytes: 80H to FFH Special Function Registers

The 256 bytes of internal memory are organised as shown in

Fig. 2.3. Data memory is divided into two groups of memory size

128 bytes each. In the fi rst 128 bytes, the user data can be stored

in register banks, bit addressable RAM and in general purpose

registers. The next 128 bytes are special function registers.

 Register Banks (00H to 1FH) The lowest 32 bytes are

grouped into four banks of eight registers. RS1 and RS0 of (bit

4-3) program status word select the bank. Each bank contains 8

general purpose registers R0–R7 (R0, R1, R2, R3, R4, R5, R6, and

R7). These registers are similar to the general-purpose registers of

the microprocessor. These registers are used in instructions such as:

ADD A, R2; adds the value contained in R2 to the accumulator

If RS1 = 0 and RS0 = 0, Bank 0 is selected, and then R2 is

the memory location 02H of the Internal RAM. The following

instruction has the same effect as the above instruction.

ADD A, 02H

 Bit Addressable RAM (20H to 2FH) The 8051 supports

a special feature which allows access to bit variables. The bit

addressable area of the RAM is just 16 bytes of internal RAM

located between 20H and 2FH. This is where individual memory
Figure 2.3 Internal RAM

 organisation

Chapter 2 The 8051 Microcontroller 25

TABLE 2.1

bits in internal RAM can be set or cleared. In total, there are 128 bits; addressed 00H to 7FH. Bit variables

can have a value of 0 or 1.

A bit variable can be set with a command such as SETB and cleared with a command such as CLR.

Example instructions are:

 SETB 25H ; sets the bit 25H (becomes 1)

 CLR 25H ; clears the bit 25H (becomes 0)

Note 1. Bit 25H is actually bit 5 of internal RAM location 24H.

 2. Bit addressing can also be performed on some of the SFR registers, which will be

discussed later on.

 Bit address of internal RAM

 Byte Address Bit Address Byte Address Bit Address

 7-0 7 - 0

 2F 7F-78 27 3F-38

 2E 77-70 26 37-30

 2D 6F-68 25 2F-28

 2C 67-60 24 27-20

 2B 5F-58 23 1F-18

 2A 57-50 22 17-10

 29 4F-48 21 0F-08

 28 47-40 20 07-00

 General Purpose RAM (30H to 7FH) These 80 bytes of internal RAM memory are available

for general-purpose data storage. Access to this area of memory is fast as compared to access to the main

memory, and instructions with single byte operands use this area for storage. However, the system stack

uses these 80 bytes and in practice, little space is left for general storage. The general purpose RAM can be

accessed using direct or indirect addressing modes.

 SFR Register The SFR registers are located within the internal memory in the address range 80H to

FFH, as shown in Fig. 2.3. Not all locations within this range are defi ned. Each SFR has a very specifi c

function. They have an address (within the range 80H to FFH) and a name, which refl ects the purpose of the

SFR. Although 128 bytes of the SFR address space is defi ned, yet only 21 SFR registers are defi ned in the

standard 8051. Undefi ned SFR addresses should not be accessed, as this might lead to some unpredictable

 26 8051 Microcontroller: Hardware, So ware & Applications

TABLE 2.2

results. Note that some of the SFR registers are bit addressable. SFRs are accessed just like normal internal

RAM locations. CPU and internal peripheral modules use special function registers for controlling the

desired operation of the device. The special function registers contain input and output ports, control

register for interrupts, timers, serial ports, etc. as shown in Table 2.2.

2.2.3 Digital I/O Port and Peripherals

It contains four 8 bit parallel ports, named as port 0, port 1, port 2, and port 3. Ports are used to send or

receive the data. Each bit of the port can be confi gured as an input or an output and also port 0 is used as

low order address and data pins (AD0–AD7), Port 2 is used as high order address pins (A8–A15) and port

3 is used by timers, serial port, external interrupt and for sending control signals (RD, WR) to external

data memory. It contains two versatile timers—timer 0 and timer 1. Both are 16 bit timers/counters and

each timer consists of two 8 bit registers. It supports serial data transmission using universal asynchronous

receiver transmitter.

 Special function registers (Courtesy Intel)

 Symbol Name Address

 *ACC Accumulator E0H

 *B B Register F0H

 *PSW Program Status Word D0H

 SP Stack Pointer 81H

 DPTR Data Pointer 2 Bytes

 DPL Low Byte 82H

 DPH High Byte 83H

 *P0 Port 0 80H

 *P1 Port 1 90H

 *P2 Port 2 A0H

 *P3 Port 3 B0H

 *IP Interrupt Priority Control B8H

 *IE Interrupt Enable Control A8H

 TMOD Timer/Counter Mode Control 89H

 *TCON Timer/Counter Control 88H

 TH0 Timer/Counter 0 High Byte 8CH

 TL0 Timer/Counter 0 Low Byte 8AH

 TH1 Timer/Counter 1 High Byte 8BH

 TL1 Timer/Counter 1 Low Byte 8DH

 *SCON Serial Control 98H

 SBUF Serial Data Buff er 99H

 PCON Power Control 87H

*bit addressable

Chapter 2 The 8051 Microcontroller 27

 1. The 8051 has ________Kbyte of program memory address space.

 2. The 8051 has ______________number of vector interrupts with _______ priority levels.

 3. In division operation, an 8 bit divisor is stored in ___________ register.

 4. In division operation, ____________ register is used to store quotient.

 5. _________ fl ag detects errors in signed arithmetic operations.

 6. _________ fl ag is set, if there is a borrow from fourth bit to third bit.

 7. Stack pointer is a ______ bit register.

 8. Stack pointer is initialised to _________ after reset.

 9. Bit 1 of program status word is _________ fl ag.

 10. __________ 16 bit register contains the address of program and external data memory.

 11. _________location to __________ location is bit addressable space in internal RAM.

 12. The 8051 contains ________ number of register banks and each register bank.

 contains _______ number of 8 bit registers.

 13. List bit addressable registers in the 8051 microcontroller.

 14. Name any fi ve byte-addressable registers.

 15. _________ and _________ control signals are used to interface external data memory.

 16. In the 8051, maximum power dissipation rating is ______________.

2.3 PIN DIAGRAM OF 8051

The 8051 microcontroller is a 40 pin DIP as shown

in Fig. 2.4. The crystal frequency is the basic

clock frequency of the microcontroller. The 8051

requires a +5V single power supply and is designed

for 1 MHz minimum clock frequency to 16 MHz

maximum clock frequency. A brief discussion of

these pins is given in this section.

Vcc (Pin no 40) Vcc pin is connected to +5 V

power supply with rated current 125 mA. In 8051,

maximum power dissipation rating is 1 W.

Vss (Pin no 20) Vss pin is connected to Ground

reference.

XTAL2 (Pin no 18) The output of the crystal

oscillator circuit is connected as shown in Fig. 2.5.

30 pF disc capacitors are recommended when

12 MHz quartz crystals is used. In case of external

clock, clock is connected to XTAL2.

XTAL1 (Pin no 19) The input of the crystal

oscillator circuit is connected to XTAL1. In case of

external clock, this pin is connected to ground.

Figure 2.4 Pin diagram of 8051

 28 8051 Microcontroller: Hardware, So ware & Applications

 Reset values of the SFRs

 SFR Reset Value

 PC 0000H

 ACC 00H

 B 00H

 PSW 00H

 SP 07H

 P0–P3 FFH

 TMOD 00H

 TCON 00H

 TH0 00H

 TL0 00H

 TH1 00H

 TL1 00H

 SCON 00H

 IP xxx00000B

 IE 0xx00000B

 PCON 0xxxxxxxB

 x-unknown

TABLE 2.3

Figure 2.5 8051 connected to 12 MHz crystal
 and reset circuit

RST (Pin no 9) The microcontroller provides a

reset mechanism to establish initial conditions. The

special function registers and few CPU registers must

be initialised before the microcontroller can operate

properly.

 Reset circuit is as shown in Fig. 2.5. For resetting

8051, RST pin is made high for two machine cycles

(24 oscillator periods). Table 2.3 lists the SFRs and their

reset values.

 Port 0 (Pins 32-39) Port 0 serves as true bi-directional

I/O port, and also as low order address and data bus for

external memory.

 Port 1 (Pins 1-8) Port 1 has no dual functions. It serves

as quasi bi-directional 8 bit I/O port.

 Port 2 (Pins 21-28) Port 2 is also an 8 bit

quasi bi-directional I/O port. The alternate use

of port 2 is to serve as high order address bus

for external memory.

 Port 3 (Pins 10-17) Port 3 is also an 8 bit

quasi bi-directional I/O port. The alternate

functions of port 3 are related to external

interrupts, serial ports, timers and read/write

control signals for external data memory. Table

2.4 lists the alternate functions of port 3.

 ALE (Pin 30) Address latch enable pin is

used to demultiplex AD0–AD7 of port 0. This

is a positive going pulse generated every time

during external memory access. This signal is

used primarily to latch low order address from

the multiplexed bus and generate a separate set

of eight address lines A0–A7 as shown in Fig.

2.6.

 PSEN (Pin 29) Program strobe signal is the

output control signal. It remains low while

fetching external program memory. During the

internal program execution, the condition of this

pin is high.

EA (Pin 31) If external access (EA) pin is

held high, it selects internal program memory

Chapter 2 The 8051 Microcontroller 29

for address 0000H to 0FFFH. Beyond this address (1000H to FFFFH), it selects external program memory

as shown in Fig. 2.8(a). Else if this pin is held low, it selects only external program memory for address

0000H to FFFFH.

Figure 2.6 Data and address multiplexing using ALE

 Alternate functions of port 3

 P3.0 Pin 10 RXD (serial input port)

 P3.1 Pin 11 TXD (serial output port)

 P3.2 Pin 12 INTO (external interrupt 0)

 P3.3 Pin 13 INTI (external interrupt 1)

 P3.4 Pin 14 T0 (timer/counter 0 external input)

 P3.5 Pin 15 T1 (timer/counter 1 external input)

 P3.6 Pin 16 WR (external data memory write strobe)

 P3.7 Pin 17 RD (external data memory read strobe)

 1. In an oscillator circuit, ________ disc capacitor is recommended when 12 MHz crystal is used.

 2. After reset, the value of P0–P3 will be __________.

 3. ___________ port has no dual functions.

 4. ____________ port contains control signals for external data memory.

 5. ______________ pin is used to demultiplex AD0–AD7.

 6. __________ to _____________ is the address of internal program memory.

 7. The 8051 contains ______________ external interrupts.

 8. ______________ port serves as low order address bus and _____________ port serves as

 high order address bus for external memory.

 9. For resetting 8051, RST pin is made high for _______ oscillator periods.

TABLE 2.4

 30 8051 Microcontroller: Hardware, So ware & Applications

2.4 MEMORY ORGANISATION

The 8051 devices have 4 Kbytes of on-chip program memory and 256 bytes of on-chip data random access

memory. In addition to internal memory, 64 Kbytes of program memory and 64 Kbytes of data memory

can be interfaced with 8051 using port 0, port 2, port 3.6, port 3.7, PSEN and EA pins. Program memory is

accessed using the program counter (PC) and A, or DPTR and A. Data memory is accessed using DPTR, R0

and R1 register. In 8051, port 0 and port 2 provide 16 bit address to access external memory. Port 0 provides

the lower 8 bit address (A0–A7) and 8 bit data (D0–D7). This is called address/data multiplexing. Port 2

provides the upper 8 bit address (A8–A15). ALE pin of 8051 and 74LS373 latch are used to demultiplex

AD0–AD7. Data, address and control buses for 8051 to interface external memory are as shown in Fig. 2.7.

Figure 2.7 Data bus, address bus and control signals of 8051

When EA is connected to the ground, 8051 fetches instructions from external ROM by using PSEN.

Then, the address of external ROM is 0000H to FFFFH. When EA is connected to Vcc, then it fetches

instructions from on-chip ROM 4 Kbytes. The address of on-chip ROM is 0000 to 0FFFH. For address

1000H to FFFFH, it fetches instructions from external ROM. In this mode, 60 Kbytes of external ROM can

be interfaced with 8051 microcontroller as shown in Fig. 2.8(a). The data can be stored both in internal and

64 Kbytes of external data memory as shown in Fig. 2.8(b).

Figure 2.8(a) On-chip and off -chip program Rom, (b) On-chip and off -chip data memory

Chapter 2 The 8051 Microcontroller 31

 1. The 8051 device has _________ on-chip program memory and ________ on-chip data memory.

 2. List the control signals used to interface the external memory.

 3. _________ Kbytes of program memory and _______ Kbytes of data memory can be interfaced

to 8051.

 4. If EA is connected to Vcc, the address of on-chip ROM is _______ to _________.

 5. _________ number of bytes is allocated for SFR in on-chip data memory.

2.5 EXTERNAL MEMORY INTERFACING

The 8051 devices have only 256 bytes of on-chip data random access memory. In applications where large

amount of data random access memory is required, the external data random access memory is interfaced

with 8051. Address, data, RD (P3.7) and WR (P3.6) pins are used to interface data RAM. P3.7 and P3.6 are

connected to RD and WR pins of data RAM as shown in Fig. 2.9.

Figure 2.9 Connection to external data RAM

The memory chip requires 14 address lines (A13–A0) to decode 16384 ¥ 8 registers. The remaining

address lines—A15 and A14 pin—are connected through OR gate to CS pin of external data RAM. When

the address lines A15 and A14 are low, then external data RAM is selected. The address of external data

RAM is 0000H to 3FFFH. Since EA is connected to Vcc, internal program memory is selected for address

0000H to 0FFFH.

 32 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 2.1

Design a microcontroller system using 8051 microcontroller, 4 Kbytes of ROM and 8 Kbytes of RAM.

Interface the external memory such that the starting address of ROM is 1000H and RAM is C000H.

Figure 2.10 shows the interfacing of 4 Kbytes of ROM and 8 Kbytes of RAM. Then, PSEN is used as

chip select pin for ROM containing program code, and RD (P3.7) is used as read control signal pin, and

WR is used as write control signal for RAM as shown in Fig. 2.10.

Table 2.5 gives the memory address. ROM requires 12 address lines (A11–A0) to decode 4096 ¥ 8

registers. The remaining address lines—A15, A14, A13, A12 and PSEN pin —are connected through

OR gate to CS and RD pin of ROM. When the address lines A15, A14, A13, PSEN are low and A12 is

high, then ROM is selected. RAM requires 13 address lines (A12–A0) to decode 8192 ¥ 8 registers.

The remaining address lines— A15, A14 and A13—are connected through OR gate to CS pin of RAM.

When the address lines A15, A14 are high and A13 is low, then RAM is selected. The address of ROM

is 1000H to 1FFFH and RAM is C000H to DFFFH.

 Memory address table

 Address A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

 ROM

 (4 K) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

 to

 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

 RAM

 (8 K) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 to

 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2.10 Connection to external ROM and external RAM

TABLE 2.5

Chapter 2 The 8051 Microcontroller 33

EXAMPLE 2.2

Design a microcontroller system using the 8051 microcontroller, 16 Kbytes of ROM and 32 Kbytes of

RAM. Interface the memory such that the starting address of ROM is 0000H and RAM is 8000H.

Figure 2.11 shows the interfacing of 16 Kbytes of ROM and 32 Kbytes of data RAM. Then, PSEN

is used as chip select pin for ROM containing program code, and RD (P3.7) is used as read control

signal pin, and WR is used as write control signal for RAM as shown in Fig. 2.11.

Table 2.6 gives the memory address. ROM requires 14 address lines (A13–A0) to decode 16384 ¥ 8

registers. The remaining address lines—A15, A14 and PSEN pin—are connected through OR gate to

CS and RD pin of ROM. When the address lines A15, A14 and PSEN are low, then ROM is selected.

The RAM requires 15 address lines (A14–A0) to decode 32768 × 8 registers. The address line A15 is

connected through NOT gate to CS pin of data RAM. When the address line A15 is high, then data

RAM is selected. The address of program ROM is 0000H to 3FFFH and data RAM is 8000H to FFFFH.

 Memory address table

 Address A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

 ROM

 (16 K) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 to

 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 RAM

 (32 K) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 to

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2.11 Connection to external ROM and external RAM

TABLE 2.6

 34 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 2.3

Design a microcontroller system using the 8051 microcontroller, 8 Kbytes Program ROM and 8

Kbytes of data ROM. Interface the memory such that the starting address of program ROM is 0000H

and data ROM is E000H.

Figure 2.12 shows the interfacing of 8 Kbytes of program ROM and 8 Kbytes of data ROM. Then

PSEN is used as chip select pin for ROM containing program code and RD (P3.7) is used as read

control signal pin for ROM containing data as shown in Fig. 2.12. Table 2.7 shows the memory

address. The memory chip requires 13 address lines (A12–A0) to decode 8192 × 8 registers.

 Memory address table

 Address A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

 Program ROM

 (8 K) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 to

 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

 Data ROM

 (8 K) 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 to

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2.12 Connection to external data ROM and external program ROM

TABLE 2.7

Chapter 2 The 8051 Microcontroller 35

The remaining address lines—A15, A14, A13 and PSEN pin—are connected through OR gate to CS

pin of program ROM. When the address lines A15, A14, A13 and PSEN are low, then program ROM

is selected. The address lines A15, A14 and A13 are connected through NAND gate to CS pin of data

ROM. When the address lines A15, A14 and A13 are high, then data ROM is selected. The address of

program ROM is 0000H to 1FFFH and data ROM is E000H to FFFFH.

 1. ________ number of address lines is used to decode 4 Kbytes of memory.

 2. Mention the functions of EA pin in memory interfacing.

 3. PSEN is used to select ____________ memory.

 4. _______maximum data memory and _______maximum program memory can be interfaced

with the 8051.

 5. 74LS373 is used to ________________ address and data bus.

2.6 STACKS

A stack is a last-in-fi rst-out (LIFO) memory. The stack allows all read and write operations to be carried

out through one end and hence, the information that goes in last will come out fi rst. The stack can be

implemented in hardware or by software. Hardware stack is designed by using a set of high-speed registers

in order to provide a fast response. The disadvantage of this approach is that the size of the stack is limited.

PIC microcontroller contains hardware stack and in the 8051 microcontroller, the stack is implemented

by software. A software stack is a last-in-fi rst-out data structure implemented by using a number of RAM

locations. The software stack provides an unlimited stack size, that depends on the size of RAM but the

disadvantage of this approach is slow response.

The address of the stack is contained in a register called the stack pointer. The stack pointer in 8051

is an 8 bit register. The 8051 has only 128 bytes of internal SRAM and can be used as stack space. Two

instructions, namely PUSH and POP are usually used in stack operations. The PUSH operation is defi ned

as writing to the top or bottom of the stack, whereas the POP operation means reading from the top or

bottom of the stack. When stack is accessed from the bottom, the stack pointer is incremented in a push and

decremented after a pop operation and when stack is accessed from the top, the stack pointer is decremented

after a push and incremented after a pop operation. In the 8051 microcontroller, the stack is accessed from

the bottom and the operation is as shown in Example 2.4 and 2.5.

EXAMPLE 2.4

Assume that the stack pointer points to memory location 3FH and the contents of the memory loca-
tion 30H, 31H and 32H are 00,88 and FF respectively. Illustrate the stack contents after the execution
of each of the following instructions.
 PUSH 30H
 PUSH 31H
 PUSH 32H

The PUSH 30H instruction increments SP by 1 and then copies the data of memory location 30H to
the location pointed by SP. Hence, 00 is copied to location 40H. If PUSH 31H instruction is executed,

 36 8051 Microcontroller: Hardware, So ware & Applications

SP is incremented by 1 and then content of location 31H is copied to the location 41H. Hence, 88
is copied to location 41H. If PUSH 32H instruction is executed, SP is incremented by 1 and then
content of location 32H is copied to the location 42H. Hence, FF is copied to location 42H as shown
in Fig. 2.13.

Figure 2.13 Contents of the stack a er 3 PUSH instructions

EXAMPLE 2.5

Assume that the stack pointer points to the memory location 52H and the contents of the memory

location 40H and 41H are 18 and 21 respectively Illustrate the operation of the stack after the execu-

tion of the following instructions.

POP 41H

POP 40H
POP 41H instruction copies the data pointed from the location pointed by SP to the memory location
41H and then decrements SP by 1. Hence, 88 is copied to location 41H. If POP 40H instruction is
executed, then data pointed from the location pointed by SP is copied to the memory location 40H
and then SP is decremented by 1. Hence, 00 is copied to location 40H as shown in Fig. 2.14.

Figure 2.14 Contents of memory and stack pointer a er 2 POP instructions

 1. What is a stack?

 2. Name two instructions used in a stack operation.

 3. In the 8051, the stack space is _________ bytes.

 4. The 8051 contains a software stack. True/False?

 5. In the 8051, the stack space is defi ned in ____________.

Chapter 2 The 8051 Microcontroller 37

Figure 2.15 Program memory
 organisation of 8052

2.7 8052 MICROCONTROLLER

The 8052 is an enhanced version of 8051 microcontroller. The pin diagram and instruction set of 8051

and 8052 are practically the same. The 8052 differs from 8051 by internal memory size and number

of on-chip timers. There are two timers/counters in 8051 as discussed in Section 2.2, whereas the

number of timers/counters in 8052 is three. As discussed in Section 2.2.2, the 8051 has 256 bytes

of on-chip data RAM. Also, the data memory is divided into two groups of memory size 128 bytes

each. The fi rst 128 bytes of on-chip data RAM with address 00H–7FH are used as register banks, bit

addressable RAM and scratch pad registers, and the remaining 128 bytes of on-chip RAM with address

80H–FFH are used as special function registers and are accessed by using direct addressing modes.

The 8052 has 8 Kbytes of on-chip program memory. The program memory can be extended upto

64 Kbytes with external memory as shown in Fig. 2.15.

The 8052 has two on-chip data RAM. In addition to 256 bytes of on-chip data RAM of 8051, the 8052

has another 128 bytes of data RAM with address 80H–FFH as shown in Fig. 2.16. The address of second

data RAM has the same address assigned to special function registers.

Direct addressing mode is used to access special function registers. To differentiate parallel address

space, indirect addressing mode is used to access second data RAM. Registers R0 and R1 are used as

pointers and instructions MOV A, @R0 and MOV @R0, A or MOV A, @R1 and MOV @R1, A are used

to access second data RAM. Timer 2 of 8052 operates either as a timer or as an event counter like timer/

counter 0 and timer/counter 1 and also operates in capture, auto load and as baud rate generator.

Figure 2.16 Data memory organisation of 8052

 1. The 8052 has ________bytes of internal data RAM.

 2. Name the addressing modes used in internal data memory of the 8052.

 3. The 8052 contains __________ number of timers.

 4. The 8052 has _________ bytes of on-chip data memory and ___________ bytes of on-chip

program memory.

 38 8051 Microcontroller: Hardware, So ware & Applications

 • This

chapter

describes the salient features, architecture and pin details of the 8051 microcontroller.

It provides an in-depth elucidation of the following.

 • Various registers, ‘A’, ‘B’, program status word, and four register banks R0–R7.

 • Various fl ags in program status word.

 • SFR related to timers/counters, serial and parallel I/O ports.

 • The internal organisation of the memory and interfacing of external data and program memory

with 8051 (discussed with examples).

 • Manipulation of the stack via PUSH and POP instructions.

 • Additional features of 8052 microcontroller.

 1. _______________ special function register is bit addressable.

 (a) Timer/Counter control (b) Stack pointer

 (c) Serial data buffer (d) Data Pointer Low Byte (DPL)

 2. _______________ of internal RAM are bit addressable memory.

 (a) 128 bit (b) 64 bit

 (c) 32 bit (d) 256 bit

 3. The 8051 contains.

 (a) 4 banks of 8 registers (b) 2 banks of 16 registers

 (c) 8 banks of 4 registers (d) 4 banks of 4 registers

 4. _______________ is used to detect errors in signed arithmetic operations.

 (a) AC fl ag (b) OV fl ag

 (c) CY fl ag (d) P fl ag

 5. Stack pointer in the 8051 is.

 (a) 8 bit register (b) 4 bit register

 (c) 16 bit register (d) None of the above

 6. The 8051 contains________________.

 (a) Four 8 bit parallel ports (b) Three 8 bit parallel ports

 (c) Three 16 bit parallel ports (d) None of the above

 7. ____________ special function register of 8051 is not bit addressable.

 (a) Accumulator (b) Program status word

 (c) Serial data buffer (d) Port 0

Chapter 2 The 8051 Microcontroller 39

 8. The alternate function of port 3.2 is.

 (a) Serial input port (b) External interrupt zero

 (c) Data memory write strobe (d) External interrupt 1

 9. The 8051 operates with _______________maximum clock frequency.

 (a) 12 MHz (b) 3 MHz

 (c) 16 MHz (d) 20 MHz

 10. The 8051 operates with _______________minimum clock frequency.

 (a) 1 MHz (b) 3 MHz

 (c) 2 MHz (d) 4 MHz

 11. ____________ pin is used to demultiplex address/data bus.

 (a) EA (b) ALE

 (c) PSEN (d) None of the above

 12. 8051 devices have ____________ on-chip program memory.

 (a) 1 Kbytes (b) 2 Kbytes

 (c) 3 Kbytes (d) 4 Kbytes

 13. 8051 devices have ______________ of on-chip data RAM.

 (a) 256 bytes (b) 1 Kbyte

 (c) 128 Kbytes (d) None of the above

 14. _________________ pin is the external data memory write strobe in 8051.

 (a) P3.4 (b) P3.5

 (c) P3.6 (d) P3.7

 15. If EA = Vcc in 8051, then

 (a) Only external program ROM is selected

 (b) Only internal program ROM is selected

 (c) Both internal and external program ROM is selected

 (d) None of the above

 16. ___________ pin is used to select external program ROM.

 (a) PSEN (b) EA

 (c) ALE (d) RESET

 17. ______________ number of minimum address lines required to select registers in 4 Kbytes of

ROM.

 (a) 10 (b) 12

 (c) 14 (d) 16

 18. In 8051, a stack is implemented in

 (a) Internal RAM (b) Internal ROM

 (c) External RAM (d) External ROM

 19. The 8051 has maximum _____________ of stack.

 (a) 128 bytes (b) 256 bytes

 (c) 64 bytes (d) 16 bytes

 40 8051 Microcontroller: Hardware, So ware & Applications

 20. The stack in 8051 is ____________________.

 (a) Last-in-fi rst-out (b) First-in-fi rst-out

 (c) Last-in-last-out (d) None of the above

 2.1 Enlist the salient features of the 8051.

 2.2 Describe the internal architecture of the 8051 microcontroller with a block schematic diagram.

 2.3 Explain why the data pointer (DPTR) is 16 bit wide and the stack pointer is 8 bit wide in 8051?

Justify.

 2.4 Enlist the various fl ags in the PSW register. Discuss the function of each fl ag.

 2.5 What is the difference between over fl ow and carry fl ag? Explain with an example.

 2.6 List the special function register associated with

 (a) Interrupts (b) I/O ports (c) Timers/Counters

 2.7 What are the functions of the following 8051 pins?

 (a) ALE (b) PSEN (c) EA (d) RST

 2.8 Explain the oscillator circuit and timing of the 8051 microcontroller.

 2.9 Explain the alternate functions of port 0, port 2 and port 3.

 2.10 Explain the function of registers A and B in multiplication and division operations.

 2.11 Explain the concept of memory banks.

 2.12 Explain the structure of internal RAM of 8051.

 2.13 Is it possible to address 8051 individual bits? What are the addresses of the bit addressable locations?

 2.14 Explain what are the advantages in having a provision for both internal and external program memory.

 2.15 Explain how bit addressing is distinguished from byte addressing in the 8051 microcontroller.

2.16 Explain how a stack is implemented in the 8051.

 2.17 What is a stack? Explain the operation of a stack with an example.

 2.18 Explain the functions of PUSH and POP with examples.

 2.19 Interface RAM and ROM with 8051. Explain how to access them.

 2.20 Interface 16 Kbytes of program ROM and 32 Kbytes of data ROM to the 8051 microcontroller, such

that the starting address of program ROM is 4000H and data ROM is 0000H.

2.21 Interface 16 Kbytes of ROM and 8 Kbytes of RAM to the 8051 microcontroller such that the starting

address of ROM is C000H and RAM is 8000H.

 2.22 Interface 8 Kbytes of ROM and 4 Kbytes of RAM to 8051 microcontroller such that the starting

address of ROM is 0000H and RAM is C000H.

 2.23 Compare the features of the 8051 and 8052.

 2.24 Explain the structure of internal RAM of the 8052 microcontroller.

 2.25 List bit addressable special function registers of the 8051 microcontroller.

8051 ADDRESSING
MODES AND

INSTRUCTION SET

Learning Objectives

After you have completed this chapter, you should be able to

 Explain the instruction syntax and data types of the 8051

 Defi ne a subroutine and Explain its uses

 Explain the addressing modes of the 8051

 Explain the instruction timings of the 8051

 Explain the instruction set of the 8051

3.1 INSTRUCTION SYNTAX

In assembly language, all operations and addresses can be identifi ed by symbols. This frees the programmer

from memorising or looking up the machine code for instructions and keeping track of the addresses of the

entire data and instructions. 8051 instructions are divided into four fi elds as follows.

3

 42 8051 Microcontroller: Hardware, So ware & Applications

LABEL: OPCODE OPERAND; COMMENT

 Label The label is the symbolic address for the instruction. As the program is assembled, the label

will be given the value of the address in which the instruction is stored. This facilitates referencing of

the instruction at any point in the given program. Of course, not all instructions will have labels. It is not

necessary to defi ne a symbol for the address of an instruction, unless that address is needed by a branch

statement elsewhere in the program. For instance in Example 3.1, only one instruction is referred by a

branch statement. A label can be any combination of upto 8 letters (A–Z), numbers (0–9) and period (.).

EXAMPLE 3.1

8051 program

 MOV R5,# 05H ; Load counter R5 = 05H

 MOV A, 40H ; Copy data from RAM location 40H to register A

 MOV R0, #30H ; Copy immediate data 30H to register R0

 LOOP: ADD A, R0 ; Add contents of register R0 with contents of

register A

 DJNZ R5, LOOP ; Repeat addition until R5 is zero

 END Opcode The opcode fi eld contains a symbolic representation of the operation. The operation tells

the assembler what action the statement has to perform. The 8051 assembler converts the opcode into a

unique machine language (binary code) that can be acted on by the 8051 internal circuitry. For instance, in

Example 3.1, the mnemonics MOV and ADD are the opcodes. MOV will copy data from one location to

register, or immediate data to register. ADD will add contents of one register to another register.

 Operand The opcode specifi es what action to perform, whereas the operand indicates where to

perform the action. The operand fi eld contains the address of the operand or the operand. For instance in

Example 3.1, MOV A, 40H; the operand fi eld contains two addresses. MOV will copy data from one

location (source) to another location (destination). In MOV R0, #30H; the operand fi eld contains operand

30H and it is moved to register R0.

 Comment To improve program clarity, a programmer uses comments throughout the program. A

comment always begins with a semicolon (;) and wherever we code it, the assembler assumes that all

characters to its right are comments. A comment may contain any printable character, including a blank. We

can insert a comment on a line all by itself or following an instruction on the same line. A comment appears

only on a listing of an assembled program and generates no machine code.

 1. Write the format of 8051 instructions.

 2. _________special character is used to begin comments.

Chapter 3 8051 Addressing Modes and Instruction Set 43

3.2 DATA TYPES

The 8051 microcontroller supports only 8 bit data. It supports both signed and unsigned 8 bit numbers.

Unsigned numbers are defi ned as data in which all the bits are used to represent the data. For 8 bit, the

data can be 00 to FFH or 00 to 255 in decimal. In signed number representation, the most signifi cant bit

identifi es the number as positive or negative, and the remaining bits are used to represent magnitude. If the

most signifi cant bit is zero, the number is positive, or if it is one, then the number is negative. In negative

numbers, the magnitude is represented in two’s complement form as shown in Table 3.1. For 8 bit, the data

can be from +127 to –128.

 TABLE 3.1 8051 data types

 Decimal Hex Binary

 – 128 80 10000000

 – 127 81 10000001

 – 1 FF 11111111

 0 00 00000000

 + 1 01 00000001

 + 127 7F 01111111

3.3 SUBROUTINES

Good program design is based on the concept of modularity—the partitioning of a large program into

 subroutines. A subroutine is a sequence of instructions stored in the memory at a specifi ed address for

performing repeatedly needed tasks. Subroutines are usually handled by special instructions, CALL and RET.

The CALL instruction is of the form CALL address. The subroutine processing is as shown in Fig. 3.1.

Figure 3.1 Subroutine processing

 44 8051 Microcontroller: Hardware, So ware & Applications

The address refers to the address of the subroutine. When CALL instruction is executed, the contents of

the program counter are saved in the stack and the program counter is loaded with the address, which is a

part of CALL instruction. The RET instruction is usually the last instruction in the subroutine. When this

instruction is executed, the return address previously saved in the stack is retrieved and is loaded into the

program counter. Thus, the control is transferred to the calling program.

 1. List types of data supported by the 8051.

 2. In signed numbers, __________ bit represents the sign.

 3. In signed numbers, the magnitude of the negative numbers is represented in __________.

 4. Name the instructions used in a subroutine.

 5. When CALL instruction is executed, then the contents of the program counter are saved

in __________.

3.4 ADDRESSING MODES

A microcontroller provides, for the convenience of the programmer, various methods for accessing data

needed in the execution of an instruction. The various methods of accessing data are called addressing

modes. The 8051 addressing modes can be classifi ed into the following categories

• Immediate addressing • Absolute addressing

• Register addressing • Long addressing

• Direct addressing • Indexed addressing

• Indirect addressing • Bit inherent addressing

• Relative addressing • Bit direct addressing

3.4.1 Immediate Addressing

 Immediate addressing means that the data is provided as part of the instruction (which immediately follows

the instruction opcode).

EXAMPLE 3.2

Instruction MOV A, #99d moves the value 99 into the A (since we used 99d, data is in decimal) as

shown in Fig. 3.2. The # symbol tells the assembler the immediate addressing mode is to be used.

Figure 3.2 Immediate addressing

Chapter 3 8051 Addressing Modes and Instruction Set 45

3.4.2 Register Addressing

 Register addressing mode involves the use of registers to hold the data to be manipulated. The lowest

32 bytes of the 8051 internal RAM are organised as four banks of eight registers. Only one bank is active

at a time. Using names, R0 to R7 can access any active register. One of the eight general registers (R0 to

R7) can be specifi ed as the instruction operand. The assembly language documentation refers to a register

generically as Rn.

EXAMPLE 3.3

Instruction MOV A, R5 copies contents of register R5 to A.

Here, the content of R5 is copied to the A as shown in Fig. 3.3. The advantage of register addressing

is that the instruction tends to be short and is a single–byte instruction.

Figure 3.3 Register addressing

3.4.3 Direct Addressing

 Direct addressing mode is provided to allow us access to internal data memory, including Special Function

Register (SFR). In direct addressing, an 8 bit internal data memory address is specifi ed as part of the

instruction and hence, it can specify the address only in the range of 00H to FFH. In this addressing mode,

data is obtained directly from the memory.

EXAMPLE 3.4

Consider the instruction: MOV A, 47H.

The instruction reads the data from internal RAM address 47H and copies this into the A as shown in

Fig. 3.4.

Figure 3.4 Direct addressing

3.4.4 Indirect Addressing

 Indirect addressing provides a powerful addressing capability, which needs to be appreciated. The indirect

addressing mode uses a register to hold the actual address that will be used in data movement. Registers R0,

 46 8051 Microcontroller: Hardware, So ware & Applications

R1, and DPTR are the only registers that can be used as data pointers. Indirect addressing cannot be used to

refer to SFR registers. Both R0 and R1 can hold 8 bit address and DPTR can hold 16 bit address.

EXAMPLE 3.5

The instruction which uses indirect addressing, is MOV A, @R0.

Figure 3.5 Indirect addressing

The @ symbol in the instruction indicates indirect addressing mode. R0 contains the address

of the internal RAM location (54H). It copies the contents of memory location pointed by R0 into

accumulator A.

MOVX A, @DPTR

It copies the contents of external data memory location pointed by DPTR into accumulator A.

3.4.5 Indexed Addressing

In indexed addressing, a separate register—either the program counter (PC), or the data pointer (DTPR)—is

used to hold the base address, and the A is used to hold the offset address. Adding the value of the base

address to the value of the offset address forms the effective address. Indexed addressing is used with JMP

or MOVC instructions. Look up tables are easily implemented with the help of index addressing.

EXAMPLE 3.6

Consider the instruction: MOVC A, @A+DPTR

MOVC is a move instruction, which copies data from the external code memory space. In this example,

adding the content of the DPTR register to the contents of accumulator forms the address of the

operand. Here, the DPTR value is referred as the base address and the accumulator value is referred

as the index address. This instruction copies the contents of memory location pointed by the sum of

the accumulator A and the data pointer DPTR into accumulator A.

MOVC A, @A+PC

This instruction copies the contents of memory location pointed by the sum of the accumulator A

and the program counter into accumulator A.

The above–discussed addressing modes are illustrated as shown in Fig. 3.6

Chapter 3 8051 Addressing Modes and Instruction Set 47

Figure 3.6 Addressing modes (a) Immediate (b) Direct (c) Indirect (d) Indexed

3.4.6 Relative Addressing

 Relative addressing is used only with conditional jump instructions. The relative address, often referred to

as an offset, is an 8 bit signed number, which is automatically added to the PC to make the address of the

next instruction. The 8 bit signed offset value gives an address range of +127 to –128 locations. The jump

destination is usually specifi ed using a label and the assembler calculates the jump offset accordingly.

EXAMPLE 3.7

Consider the example SJMP X.

Figure 3.7 Relative addressing mode

PC is set to next instruction address: 2002H, when SJMP begins execution. The target address is then

the sum of the PC + relative off set needed to reach X. If X is 4, then PC is set to 2002H + 4H = 2006H

as shown in Fig. 3.7. The advantage of relative addressing is that the program code is easy to relocate

and the address is relative to position in the memory.

 48 8051 Microcontroller: Hardware, So ware & Applications

3.4.7 Absolute Addressing

 Absolute addressing is used only by the AJMP (Absolute Jump) and ACALL (Absolute Call) instructions.

These are 2 bytes instructions. The absolute addressing mode specifi es the lowest 11 bit of the memory

address as part of the instruction. The upper 5 bit of the destination address are the upper 5 bit of the current

program counter. Hence, absolute addressing allows branching only within the current 2 Kbyte page of the

program memory.

EXAMPLE 3.8

Consider the instruction

AJMP loop1

 The instruction with the label loop1 will be executed after the current instruction.

ACALL loop1

Calls the subroutine that is started at the label loop1

3.4.8 Long Addressing

The long addressing mode within the 8051 is used with the instructions LJMP and LCALL. These are

3 byte instructions. The address specifi es a full 16 bit destination address so that a jump or a call can be

made to a location within a 64 Kbyte code memory space (216 = 64K).

EXAMPLE 3.9

Consider the instruction

LJMP 5000H

16 bit branch address is specifi ed in the instruction. The instruction with the address 5000H will be

executed after the current instruction.

LCALL 6000H

16 bit subroutine address is specifi ed in the instruction. It calls the subroutine, which starts at the

address 6000H.

3.4.9 Bit Inherent Addressing

In

this

addressing,

the

address

of

the

fl ag

which

contains

the

operand,

is

implied

in

the

opcode

of

the

instruction.

EXAMPLE 3.10

The following instruction illustrates bit inherent addressing.

CLR C ; Clears the carry fl ag to 0

Chapter 3 8051 Addressing Modes and Instruction Set 49

3.4.10 Bit Direct Addressing

The RAM space 20H to 2FH and most of the special function registers are bit addressable. Bit address

values are between 00H to 7FH.

EXAMPLE 3.11

The following instructions illustrate the bit direct addressing.

CLR 07H ; Clears the bit 7 of 20H RAM space

SETB 07H ; Sets the bit 7 of 20H RAM space.

 1. List addressing modes of the 8051 microcontroller.

 2. Immediate addressing is identifi ed by ____________ symbol in the assembler.

 3. MOV A, R4 is an example for ____________ addressing mode.

 4. List the types of addressing modes in memory operations.

 5. Direct addressing mode is used to access ____________ memory.

 6. List the registers used as data pointers in indirect addressing.

 7. Name the instructions used to access internal data memory using indirect addressing mode.

 8. In indexed addressing, ____________ register is used to hold the base address and

____________ register is used to hold the offset address.

 9. MOV C instruction moves data from ____________ memory.

 10. In relative addressing mode, offset address is ____________ .

 11. SJMP 25 is an example of ____________ addressing mode.

 12. Differentiate SJMP and AJMP instructions.

 13. CLRC instruction is an example for bit indirect addressing. True/False?

 14. MOVXA@DPTR is an example for indirect addressing. True/False?

 15. In bit direct addressing, bit values are ____________ to ____________ .

 16. SETB 07H is an example for ____________ addressing mode.

3.5 INSTRUCTION TIMINGS

The 8051 internal operations and external read/write operations are controlled by the oscillator clock input

signal. T-state, Machine cycle and Instruction cycle are terms used in instruction timings. Let us defi ne

these terms.

 T-state T-state is defi ned as one subdivision of the operation performed in one clock period. The terms

‘T-state’ and ‘clock period’ are often used synonymously.

 50 8051 Microcontroller: Hardware, So ware & Applications

 Machine cycle Machine cycle in 8051 is defi ned as 12 oscillator periods. According to the Intel literature,

a machine cycle consists of six states and each state lasts for two oscillator periods. The 8051, take one to

four machine cycles to execute an instruction.

 Instruction cycle Instruction cycle is defi ned as the time required for completing the execution of an

instruction. The 8051 instruction cycle consists of one to four machine cycles.

EXAMPLE 3.12

If 8051 microcontroller is operated with 12 MHz oscillator, fi nd the execution time for the following

four instructions.

 (a) ADD A, 45H

 (b) SUBB A, #55H

 (c) MOV DPTR, #2000H

 (d) MUL AB

Since the oscillator frequency is 12 MHz, the clock period is

Clock period = 1/12 MHz = 0.08333 ms.

Time for 1 machine cycle = 0.08333 ms × 12 = 1 ms.

Execution timings are tabulated in Table 3.2

 TABLE 3.2 Instruction timing

 Instruction Execution time in machine cycle Execution time in µsec

 ADD A, 45H 1 machine cycle 1 µs

 SUBB A, #55H 2 machine cycles 2 µs

 MOV DPTR, #2000H 2 machine cycles 2 µs

 MUL AB 4 machine cycles 4 µs

 1. If the 8051 operates with 6 MHz crystal, then the execution time for ADD A, # 45H instruction is

_____________.

 2. If the 8051 operates with 3MHz oscillator, then the clock period is _____________.

3.6 8051 INSTRUCTIONS

8051 instructions consist of 1 byte of opcode and 0 to 2 bytes of operands. The instructions use 8 bit register

A, B, R0, R1, R2, R3, R4, R5, R6, R7 and also 16 bit registers, DPTR (data pointer) and PC (program

counter). The instructions of 8051 can be broadly classifi ed under the following headings:

Chapter 3 8051 Addressing Modes and Instruction Set 51

 1. Data transfer instructions

 2. Arithmetic instructions

 3. Logical instructions

 4. Branch instructions

 5. Subroutine instructions

 6. Bit manipulation instructions

The following notations are used in the description of the instruction.

Rn means, any of the eight registers (R0 to R7) in the selected banks.

Ri means either of the pointing registers (R0 or R1) in the selected banks.

M means internal data memory.

E.D.M. means external data memory.

P.M. means internal or external program memory.

3.6.1 Data Transfer Instructions

In this group, the instructions perform data transfer operations of the following types.

 1. Move the contents of a register A to Rn

 2. Move the contents of a register Rn to A

 3. Move an immediate 8 bit data to register A or to Rn or to a memory location

 4. Move the contents of a memory location to A or A to a memory location using direct and indirect

addressing

 5. Move the contents of a memory location to Rn or Rn to a memory location using direct addressing

 6. Move the contents of memory location to another memory location using direct and indirect addressing

 7. Move the contents of an external memory to A or A to an external memory

 8. Move the contents of program memory to A

 9. Push and Pop instructions

 10. Exchange instructions

Note

In this group of instructions, none of the fl ags of status register are affected.

Move the contents of a register Rn to A: MOV A, Rn This instruction copies the contents of register Rn to

A. It is a 1 byte instruction.

EXAMPLE 3.13

 MOV A, R2 [A] ¨ [R2]

 Before execution After execution

 [A] 25 45

 [R2] 45 45

Move the contents of a register A to Rn: MOV Rn, A This instruction copies the contents of A to Rn.

It is a 1 byte instruction.

 52 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.14

 MOV R3, A [R3] ¨ [A]

 Before execution After execution

 [A] 25 25

 [R3] 45 25

Move an immediate 8 bit data to register A or to Rn or to a memory location. This type of instruction

loads the immediate data to A or to Rn or to the memory by using direct and indirect addressing.

MOV A, #data

EXAMPLE 3.15

 MOV A, #23 [A] ¨ 23

 Before execution After execution

 [A] F5 23

MOV Rn, #data

EXAMPLE 3.16

 MOV R2, #23 [R2] ¨ 23

 Before execution After execution

 [R2] F3 23

MOV direct, #data

EXAMPLE 3.17

 MOV 30, #23 M [30] ¨ 23

 Before execution After execution

 M [30] F3 23

MOV @Ri, #data

EXAMPLE 3.18

 MOV @R1, #23 M [[R1]] ¨ 23

 Before execution After execution

 [R1] 34 34

 M [34] F3 23

MOV DPTR, #16bitdata

Chapter 3 8051 Addressing Modes and Instruction Set 53

EXAMPLE 3.19

 MOV DPTR, #2300 [DPTR] ¨ 2300

 Before execution After execution

 [DPTR] 3422 2300

 [DPL] 22 00

 [DPH] 34 23

Move the contents of a memory location to A or A to a memory location using direct and indirect

addressing

 Direct addressing:

MOV A, direct

EXAMPLE 3.20

 MOV A, 40 A ¨ M [40]

 Before execution After execution

 [A] 23 55

 M [40] 55 55

MOV direct, A

EXAMPLE 3.21

 MOV 45,A M [45] ¨ [A]

 Before execution After execution

 [A] 23 23

 M [45] 55 23

Indirect addressing:

MOV A, @Ri

EXAMPLE 3.22

 MOV A,@R1 [A] ¨ M [[R1]]

 Before execution After execution

 [A] 23 55

 [R1] 42 42

 M[42] 55 55

MOV @Ri, A

 54 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.23

 MOV @R1, A M [[R1]] ¨ [A]

 Before execution After execution

 [A] 23 23

 [R1] 40 40

 M[40] 55 23

Move the contents of a memory location to Rn or Rn to a memory location using direct addressing

MOV Rn, direct

MOV direct, Rn

EXAMPLE 3.24

 MOV R2, 50 R2 ¨ M [50]

 Before execution After execution

 [R2] 23 55

 M [50] 55 55

EXAMPLE 3.25

 MOV 60,R3 M [60] ¨ R3

 Before execution After execution

 [R3] 23 23

 M [60] 55 23

Move the contents of a memory location to another memory location using direct and indirect

addressing

MOV direct1, direct2

EXAMPLE 3.26

 MOV 55,67 M [55] ¨ M [67]

 Before execution After execution

 M [55] 23 55

 M [67] 55 55

MOV direct, @Ri

Chapter 3 8051 Addressing Modes and Instruction Set 55

EXAMPLE 3.27

 MOV 57, @R0 M [57] ¨ M [[R0]]

 Before execution After execution

 [R0] 30 30

 M [30] 33 33

 M [57] 55 33

Move the contents of an external data memory location pointed by Ri or DPTR to A or A to an external

data memory pointed by Ri or DPTR.

MOVX A, @Ri

EXAMPLE 3.28

 MOVX A, @R1 A ¨ E.D.M[[R1]]

 Before execution After execution

 [A] 23 55

 [R1] 10 10

 E.D.M. [10] 55 55

MOVX @Ri,A

EXAMPLE 3.29

 MOVX @R1, A E.D. M [[R1]] ¨ [A]

 Before execution After execution

 [A] 23 23

 [R1] 20 20

 E.D.M [20] 55 23

MOVX A, @DPTR

EXAMPLE 3.30

 MOVX A, @DPTR A ¨ E.D.M[[DPTR]]

 Before execution After execution

 [A] 23 55

 [DPTR] 1000 1000

 E.D.M. [1000] 55 55

MOVX @DPTR, A

 56 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.31

 MOVX @DPTR,A E.D.M[[DPTR]] ¨ [A]

 Before execution After execution

 [A] 23 23

 [DPTR] 1000 1000

 EDM[1000] 55 23

Move code byte to accumulator: Copy the contents of program memory location pointed by A and

DPTR or A and PC to A

MOVC A, @A+PC

EXAMPLE 3.32

 MOVC A, @A+PC [A] ¨ P.M [[A]+[PC]]

 Before execution After execution

 [A] 23 55

 [PC] 1000 1000

 P.M.[1023] 55 55

MOVC A,@ A+DPTR

EXAMPLE 3.33

 MOVC A, @A+DPTR A ¨ P.M[[A]+[DPTR]]

 Before execution After execution

 [A] 23 55

 [DPTR] 1000 1000

 P.M. [1023] 55 55

The above data transfer instructions and addressing is illustrated in Fig. 3.8.

 Push and Pop instructions Push instruction increments SP by 1 and then copies the data at direct

address to the location pointed by SP.

 PUSH direct

 Operation: [SP] ¨ [SP]+1

 [[SP]] ¨ direct

Chapter 3 8051 Addressing Modes and Instruction Set 57

Figure 3.8 Addressing using MOV, MOVX and MOVC

EXAMPLE 3.34

 PUSH 20H

 Before execution After execution

 M [20] 23 23

 [SP] 00 01

 M [01] 99 23

 M [00] 55 55

Pop instruction copies the data at the location pointed by SP to the direct address and then

decrements SP by 1.

 POP direct

 Operation: direct ¨ [[SP]]

 [SP] ¨ [SP]-1

EXAMPLE 3.35

 POP 20H

 Before execution After execution

 M [20] 23 99

 [SP] 01 00

 M [01] 99 99

 M [00] 55 55

Exchange instructions

Exchange A with byte variable XCH loads the A with the contents of the indicated variable, at the

same time, it writes the original A contents to the indicated variable.

XCH A, Rn

 58 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.36

 XCH A, R2 [A] ´ [R2]

 Before execution After execution

 [A] 23 55

 [R2] 55 23

XCH A, direct

EXAMPLE 3.37

 XCH A, 35 [A] ´ M [35]

 Before execution After execution

 [A] 23 55

 M[35] 55 23

XCH A,@Ri

EXAMPLE 3.38

 XCH A, @R0 [A] ´ M[[R0]]

 Before execution After execution

 [A] 23 33

 [R0] 55 55

 M [55] 33 23

Exchange digit XCHD exchanges the low–order nibble of the A bits (bits 3–0), with that of the

internal RAM location indirectly addressed by the specifi ed register.

XCHD A, @Ri

EXAMPLE 3.39

 XCHD A, @R0 [A] ´ M[[R0]]

 Before execution After execution

 [A] 29 23

 [R0] 55 55

 M [55] 33 39

We will study following examples to become familiar with data transfer group instructions.

Chapter 3 8051 Addressing Modes and Instruction Set 59

EXAMPLE 3.40

Write 8051 instructions to load data 25H to A and to register R2.

 ALGORITHM

 Step 1: Load data 25H to A

 Step 2: Load data 25H to R2

 Instructions are as follows

 MOV A, #25H ; Load data 25H to A

 MOV R2, #25H ; Load data 25H to R2

EXAMPLE 3.41

Write 8051 instructions to load data 30H to A and copy the contents of A to register R3.

 ALGORITHM

 Step 1: Load immediate data 30H to A

 Step 2: Copy the contents A to R3

 Instructions are as follows

 MOV A, #30H ; Load data 30H to A

 MOV R3, A ; Copy contents of A to R3

EXAMPLE 3.42

Write 8051 instructions to copy the contents of external data memory location pointed by DPTR

register to internal data memory location pointed by R0.

 ALGORITHM

 Step 1: Load 16 bit external memory address to DPTR

 Step 2: Load 8 bit internal memory address to R0

 Step 3: Copy contents of external memory to A

 Step 4: Copy contents of A to internal memory

 Instructions are as follows

 MOV DPTR, #3000H ; Load 16 bit external memory address to DPTR

 MOV R0, #25H ; Load 8 bit internal memory address to R0

 MOVX A, @DPTR ; Copy contents of external memory to A

 MOV @R0,A ; Copy contents of A to internal memory

 60 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.43

Write 8051 instructions to copy the contents of external program memory location 3025H to internal

data memory location pointed by R0.

 ALGORITHM

 Step 1: Load 16 bit address (3000H) to DPTR

 Step 2: Load 8 bit address (25H) to A

 Step 3: Internal memory address to R0

 Step 4: Copy contents of external data memory to A

 Step 5: Copy contents of A to internal memory

 Instructions are as follows

 MOV DPTR, #3000H ; Load address 3000H to DPTR

 MOV A, #25H ; Load address 25H to A

 MOV R0, #25H ; Load 8 bit internal memory address to R0

 MOVC A, @A+DPTR ; Copy contents of external program memory to A

 MOV @R0,A ; Copy contents of A to internal memory

EXAMPLE 3.44

Write 8051 instructions to exchange contents of register R2 with the contents of A.

 ALGORITHM

 Step 1: Load data 35H to A

 Step 2: Load data 57H to R2

 Step 3: Exchange contents of A with R2

Instructions are as follows

 MOV A, #35H ; Load data 35H to A

 MOV R2, #57H ; Load data 57H to R2

 XCH A,R2 ; Exchange contents of A with R2

3.6.2 Arithmetic Instructions

The 8051 has powerful instructions in the arithmetic group compared to other microcontrollers. It can

perform addition, subtraction, multiplication and division operations on 8 bit numbers.

 ADD Group of Instructions

In this group, we have instructions to

 1. Add the contents of A with immediate data with or without carry.

 2. Add the contents of A with register Rn with or without carry.

 3. Add the contents of A with contents of memory with or without carry using direct and indirect

addressing.

Chapter 3 8051 Addressing Modes and Instruction Set 61

Note

CY, AC, and OV fl ags are affected in this group.

Add the contents of accumulator with immediate data with or without carry

ADD A, #data Add the immediate data to accumulator A and store the result in A.

EXAMPLE 3.45

 ADD A, #23 [A] ¨ 23 + [A]

 Before execution After execution

 [A] 23 46

ADDC A, #data Add the immediate data and the contents of carry fl ag to accumulator A and
store the result in A.

EXAMPLE 3.46

 ADDC A, #23 [A] ¨ 23 + [A]+[CY]

 Before execution After execution

 [A] 20 44

 [CY] 1 0

Add the contents of accumulator with register Rn with or without carry

ADD A,Rn Add the contents of register Rn to accumulator A and store the result in A.

EXAMPLE 3.47

 ADD A,R2 [A] ¨ [R2] + [A]

 Before execution After execution

 [A] 23 78

 [R2] 55 55

ADDC A, Rn Add the contents of register Rn and the contents of carry fl ag to accumulator A and
store the result in A.

 62 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.48

 ADDC A,R2 [A] ¨ [R2] + [A]+[CY]

 Before execution After execution

 [A] 23 79

 [R2] 55 55

 [CY] 1 0

Add the contents of accumulator with contents of memory with or without carry using direct and
indirect addressing

ADD A, direct Add the contents of direct memory to accumulator A and store the result in A.

EXAMPLE 3.49

 ADD A, 50 [A] ¨ M [50] + [A]

 Before execution After execution

 [A] 23 78

 M [50] 55 55

ADDC A, direct Add the contents of direct memory and the contents of carry fl ag to accumulator A

and store the result in A.

EXAMPLE 3.50

 ADDC A, 50 [A] ¨ M[50] + [A]+[CY]

 Before execution After execution

 [A] 23 79

 M [50] 55 55

 [CY] 1 0

ADD A,@Ri Add the contents of memory location pointed to by Ri to accumulator A and store

the result in A.

EXAMPLE 3.51

 ADD A, @R0 [A] ¨ M [[R0]] + [A]

 Before execution After execution

 [A] 23 78

 [R0] 23 23

 M [23] 55 55

ADDC A,@Ri Add the contents of memory location pointed to by Ri and the contents of carry fl ag

to accumulator A and store the result in A.

Chapter 3 8051 Addressing Modes and Instruction Set 63

EXAMPLE 3.52

 ADDC A, @R0 [A] ¨ M [[R0]] + [A] + [CY]

 Before execution After execution

 [A] 23 79

 [R0] 23 23

 M [23] 55 55

 [CY] 1 0

 SUB Group of Instructions

In this group, we have instructions to

 1. Subtract the immediate data and the contents of carry fl ag from A and store the result in A.

 2. Subtract the contents of register Rn and the contents of carry fl ag from A and store the result in A.

 3. Subtract the contents of memory and the contents of carry fl ag from A and store the result in A using

direct and indirect addressing.

Note

CY, AC, and OV fl ags are affected in this group.

Subtract immediate data and the contents of carry fl ag from A and store the result in A

SUBB A, #data

EXAMPLE 3.53

 SUBB A, #23 [A] ¨ [A] –23–[CY]

 Before execution After execution

 [A] 24 00

 [CF] 1 0

Subtract the contents register Rn and the contents of carry fl ag from A and store the result in A

SUBB A,R2

EXAMPLE 3.54

 SUBB A,R2 [A] ¨ [A]–[CY]–[R2]

 Before execution After execution

 [A] 23 CE

 [R2] 55 55

 [CY] 0 1

 64 8051 Microcontroller: Hardware, So ware & Applications

Subtract the contents of memory and the contents of carry fl ag from A and store the result in A using

direct and indirect addressing

SUBB A, direct Subtract the contents of direct memory and the contents of carry fl ag from A and

store the result in A.

EXAMPLE 3.55

 SUBB A, 45 [A] ¨ [A]–M[45] –[CY]

 Before execution After execution

 [A] 23 D3

 M [45] 50 50

 [CY] 0 1

SUBB A, @Ri Subtract the contents of memory location pointed by Ri and the contents of carry fl ag

from A and store the result in A.

EXAMPLE 3.56

 SUBB A, @R0 [A] ¨ [A] –M [[R0]] –[CY]

 Before execution After execution

 [A] 55 4F

 [R0] 23 23

 M [23] 05 05

 [CY] 1 0

 Multiplication

MUL AB Multiplies the unsigned 8 bit integer in the A and register B. Low order byte of the result is

stored in the A and high order byte of the result is stored in B. After the execution, the carry fl ag is cleared.

EXAMPLE 3.57

 MUL AB [B][A] ¨ [B] ¥ [A]

 Before execution After execution

 [A] 23 9F

 [B] 55 0B

Chapter 3 8051 Addressing Modes and Instruction Set 65

 Division

DIV AB Divides the unsigned 8 bit integer in the A by the unsigned 8 bit integer in register B. The

quotient is stored in the A and the remainder is stored in B register. The carry and overfl ow fl ag are cleared.

If the content of B is zero, then OV is set.

EXAMPLE 3.58

 DIV AB Q –[A] R–[B] ¨ [A] / [B]

 Before execution After execution

 [A] 23 07

 [B] 05 00

 Decimal Adjustment After Addition

DA A When two Binary Coded Decimal (BCD) numbers are added, the answer is a non–BCD number.

To get the result in BCD, DA A instruction is executed after adding two BCD numbers and storing the result

in an A. The working of DA A is as follows.

∑ If lower nibble of A ≤ 9 and auxiliary fl ag is 0, then the lower nibble will not be altered.

∑ If lower nibble is greater than 9 or auxiliary fl ag is set, then 6 is added to lower nibble and after

addition, if there is a carry, then upper nibble is incremented by one.

∑ If upper nibble of A ≤ 9 and carry fl ag is 0, then the upper nibble will not be altered.

∑ If upper nibble is greater than 9 or carry fl ag is set, then 6 is added to upper nibble and after addition,

if there is a carry, carry fl ag is set.

 Operation:

 IF [(A3 – 0) > 9 V (AC) = 1]

 THEN (A3 – 0) ¨ (A3 – 0) + 6, (A7 – 4) ¨ (A7 – 4) + (AC)

 IF [(A7 – 4) > 9 V (CY) = 1]

 THEN (A7 – 4) ¨ (A7 – 4) + 6

EXAMPLE 3.59

 Before After execution After execution

 execution of ADD A, R1 of DA A

 [A] 23 78 78

 [R1] 55 55 55

 66 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.60

 Before After execution After execution

 execution of ADD A, R1 of DA A

 [A] 53 AB 11

 [R1] 58 58 58

 [CY] 0 0 1

Clear A

CLR A [A] ¨ 0, Flags are not aff ected.

EXAMPLE 3.61

 CLR A

 Before execution After execution

 [A] 23 00

 Increment and Decrement Instructions

INC <byte> INC increments the indicated variable by 1. Flags are not aff ected. Register, direct and

register indirect addressing modes are used.

INC A Increments the contents of A by 1: [A] ¨ [A]+1

EXAMPLE 3.62

 INC A

 Before execution After execution

 [A] FF 00

INC Rn

INC R5 Increments the contents of register 5 by 1: [R5] ¨ [R5]+1

EXAMPLE 3.63

 INC R5

 Before execution After execution

 [R5] FA FB

INC direct

INC 50 Increments the contents of memory location 50 by 1.

Chapter 3 8051 Addressing Modes and Instruction Set 67

EXAMPLE 3.64

 INC 50 M [50] ¨ M [50]+1

 Before execution After execution

 M [50] 0A 0B

INC @Ri

INC @R0 Increments the contents of memory location using indirect addressing mode by 1.

M [[R0]] ¨ M[[R0]]+1

EXAMPLE 3.65

 INC @R0

 Before execution After execution

 [R0] 65 65

 M[65] 0F 10

INC DPTR

INC DPTR Increments the 16 bits data pointer by 1: [DPTR] ¨ [DPTR] +1

EXAMPLE 3.66

 INC DPTR

 Before execution After execution

 [DPTR] 0F00 0F01

DEC <byte> DEC decrements the indicated variable by 1. Flags are not aff ected. Register, direct

and register indirect addressing modes are used.

DEC A Decrements the contents of A by 1: [A] ¨ [A] – 1

EXAMPLE 3.67

 DEC A

 Before execution After execution

 [A] 0F 0E

DEC Rn

DEC R5 Decrements the contents of register 5 by 1: [R5] ¨ [R5] – 1

 68 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.68

 DEC R5

 Before execution After execution

 [R5] FA F9

DEC direct

DEC 60 Decrements the contents of memory location 60 by 1.

M [60] ¨ M [60]–1

EXAMPLE 3.69

 DEC 60

 Before execution After execution

 M [60] 0A 09

DEC @Ri

DEC @R0 Decrements the contents of memory location using indirect addressing mode by 1.

M [[R0]] ¨ M [[R0]]–1

EXAMPLE 3.70

 DEC @R0

 Before execution After execution

 [R0] 61 61

 M [61] 0F 0E

We will study following examples to become familiar with arithmetic group instructions.

EXAMPLE 3.71

Write 8051 instructions to add contents of A with the contents of register R2 and store the result in

the A (assume result is 8 bit).

ALGORITHM

 Step 1: Load data 35H to A

 Step 2: Load data 57H to R2

 Step 3: Add contents of A with R2

Chapter 3 8051 Addressing Modes and Instruction Set 69

Instructions are as follows

 MOV A, #35H ; Load data 35H to A

 MOV R2, #57H ; Load data 57H to R2

 ADD A,R2 ; Add contents of A with R2

EXAMPLE 3.72

Write 8051 instructions to subtract contents of register R2 from the contents of A and store the result

in the A (assume result is 8 bit).

ALGORITHM

 Step 1: Load data 45H to A

 Step 2: Load data 27H to R2

 Step 3: Clear the carry fl ag

 Step 4: Subtract contents of R2 and CY fl ag from A

Instructions are as follows

 MOV A, #45H ; Load data 45H to A

 MOV R2, #27H ; Load data 27H to R2

 CLR C ; Clear carry fl ag

 SUBB A,R2 ; SUB contents of R2 and CY fl ag from A

EXAMPLE 3.73

Write 8051 instructions to multiply contents of register B with the contents of A and store the result

in locations 50H and 51H. Assume that the least signifi cant byte of result is stored in 50H.

ALGORITHM

 Step 1: Load data 45H to A

 Step 2: Load data 27H to B

 Step 3: Multiply contents of A with B

 Step 4: Store least signifi cant byte of result in 50H

 Step 5: Store most signifi cant byte of result in 51H

Instructions are as follows

 MOV A, #45H ; Load data 45H to A

 MOV B, #27H ; Load data 27H to B

 MUL AB ; Multiply contents of A and B

 MOV 50,A ; Store LSB of result in 50H

 MOV 51,B ; Store MSB of result in 51H

 70 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.74

Write 8051 instructions to divide the contents of an A with the contents of B register and store the

remainder in 60H and quotient in 61H.

ALGORITHM

 Step 1: Load data 45H to A

 Step 2: Load data 27H to B

 Step 3: Divide contents of A by B

 Step 4: Store remainder in 60H

 Step 5: Store quotient in 61H

Instructions are as follows

 MOV A, #45H ; Load data 45H to A

 MOV B, #27H ; Load data 27H to B

 DIV AB ; Divide contents of A with B

 MOV 60,B ; Store remainder in 60H

 MOV 61,A ; Store quotient in 61H

EXAMPLE 3.75

Write 8051 instructions to add two BCD numbers and store the result in BCD in register R1.

ALGORITHM

 Step 1: Load data 09 to A

 Step 2: Add data 07 to A

 Step 3: Convert the result to BCD

 Step 4: Store the result in R1

Instructions are as follows

 MOV A, #09 ; Load data 09 to A

 ADD A, #07 ; Add data 07 to A

 DAA ; Convert result to BCD

 MOV R1,A ; Move contents of R1 to A

3.6.3 Logical Instructions

 Logical instructions are very useful in input/output operations. They can perform various operations such as

AND, OR, EX-OR, Complement, Swap and Rotate. In this group, we have instructions for the following.

 1. AND the contents of A with immediate data or with contents of register or with contents of memory

using direct and indirect addressing mode.

 2. OR the contents of A with immediate data or with contents of register or with contents of memory

using direct and indirect addressing mode.

Chapter 3 8051 Addressing Modes and Instruction Set 71

 3. EX-OR the contents of A with immediate data or with contents of register or with contents of memory

using direct and indirect addressing mode.

 4. Complement the contents of A.

 5. Swap the upper and lower nibble of A.

 6. Rotate instructions: In this group we have instructions for the following.

 ∑ Rotate left contents of A

 ∑ Rotate right contents of A

 ∑ Rotate left including carry contents of A

 ∑ Rotate right including carry contents of A

Note

In AND, OR, EX-OR and SWAP, instructions fl ags are not affected.

 AND Instructions

AND the contents of A with immediate data

ANL A, #data This instruction AND the contents of an A with immediate data and stores the result in

the A.

EXAMPLE 3.76

 ANL A, #02 [A] ¨ [A] Λ02

 Before execution After execution

 [A] 24 00

AND the contents of A with contents of register Rn

ANL A, Rn This instruction AND the contents of an A with contents of register Rn and stores the

result in the A.

EXAMPLE 3.77

 ANL A,R2 [A] ¨ [A] Λ [R2]
 Before execution After execution
 [A] 24 00

 [R2] 00 00

AND the contents of A with contents of memory using direct addressing

ANL A, direct This instruction AND the contents of an A with contents of memory using direct

addressing mode and stores the result in the A.

 72 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.78

 ANL A, 67 [A] ¨ [A] Λ M[67]

 Before execution After execution
 [A] 24 00
 M [67] 00 00

AND the contents of A with contents of memory using indirect addressing

ANL A, @Ri This instruction AND the contents of an A with contents of memory using indirect
addressing mode and stores the result in the A.

EXAMPLE 3.79

 ANL A,@R0 [A] ¨ [A] Λ M[[R0]]

 Before execution After execution

 [A] 24 00

 [R0] 55 55

 M [55] 00 00

AND the contents of memory using direct addressing with the contents of A

ANL direct,A This instruction AND the contents of memory using direct addressing mode with the

contents of an A and stores the result in memory.

EXAMPLE 3.80

 ANL 76, A M[76] ¨ M[76] Λ [A]

 Before execution After execution

 [A] 00 00

 M [76] 55 00

AND the contents of memory using direct addressing with immediate data

ANL direct, #data This instruction AND the contents of memory using direct addressing mode

with immediate data.

EXAMPLE 3.81

 ANL 76, #55 M[76] ¨ M[76] Λ 55

 Before execution After execution

 M [76] 53 51

Chapter 3 8051 Addressing Modes and Instruction Set 73

 OR Instructions

OR the contents of A with immediate data

ORL A, #data This instruction OR the contents of A with immediate data and stores the result in

the A.

EXAMPLE 3.82

 ORL A, #22 [A] ¨ [A] V 22

 Before execution After execution

 [A] 24 26

OR the contents of A with contents of register Rn

ORL A, Rn This instruction OR the contents of an A with contents of register Rn and stores the

result in the A.

EXAMPLE 3.83

 ORL A, R2 [A] ¨ [A] V [R2]

 Before execution After execution

 [A] 24 24

 [R2] 00 00

OR the contents of A with contents of memory using direct addressing

ORL A, direct This instruction OR the contents of A with contents of memory using direct

addressing mode and stores the result in the A.

EXAMPLE 3.84

 ORL A, 50 [A] ¨ [A] V M [50]

 Before execution After execution

 [A] 24 2C

 M [50] 08 08

OR the contents of A with contents of memory using indirect addressing

ORL A, @ Ri This instruction OR the contents of an A with contents of memory using indirect
addressing mode and stores the result in the A.

 74 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.85

 ORL A, @R0 [A] ¨ [A] V M [[R0]]

 Before execution After execution

 [A] 24 25

 [R0] 55 55

 M[55] 01 01

OR the contents of memory using direct addressing with the contents of A

ORL direct, A This instruction OR the contents of memory using direct addressing mode with the
contents of an A and stores the result in memory.

EXAMPLE 3.86

 ORL 76, A M[76] ¨ M[76] V [A]

 Before execution After execution

 [A] 00 00

 M [76] 55 55

OR the contents of memory using direct addressing with immediate data

ORL direct, #data This instruction OR the contents of memory using direct addressing mode with
immediate data.

EXAMPLE 3.87

 ORL 76, #55 M[76] ¨ M[76] V 55

 Before execution After execution

 M [76] 53 57

 EX-OR Instructions

EX-OR the contents of A with immediate data

XRL A, #data This instruction Exclusive-OR the contents of an A with immediate data and stores
the result in the A.

EXAMPLE 3.88

 XRL A, #22 [A] ¨ [A]" 22

 Before execution After execution

 A 24 06

Chapter 3 8051 Addressing Modes and Instruction Set 75

EX-OR the contents of A with contents of register Rn

XRL A, Rn This instruction Exclusive–OR the contents of an A with contents of register Rn and
stores the result in the A.

EXAMPLE 3.89

 XRL A, R2 [A] ¨ [A]" [R2]

 Before execution After execution

 [A] 24 24

 [R2] 00 00

EX-OR the contents of A with contents of memory using direct addressing

XRL A, direct This instruction Exclusive–OR the contents of an A with contents of memory using
direct addressing mode and stores the result in the A.

EXAMPLE 3.90

 XRL A, 55 [A] ¨ [A]" M [55]

 Before execution After execution

 [A] 24 25

 M [55] 01 01

EX-OR the contents of A with contents of memory using indirect addressing

XRL A, @Ri This instruction Exclusive-OR the contents of an A with contents of memory using

indirect addressing mode and stores the result in the A.

EXAMPLE 3.91

 XRL A,@R0 [A] ¨ [A]" M[[R0]]

 Before execution After execution

 [A] 24 04

 [R0] 55 55

 M[55] 20 20

EX-OR the contents of memory using direct addressing with the contents of A

XRL direct, A This instruction EX-OR the contents of memory using direct addressing mode with

the contents of A and stores the result in memory.

 76 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.92

 XRL 76, A M[76] ¨ M[76] " [A]

 Before execution After execution

 [A] 02 02

 M [76] 55 57

EX-OR the contents of memory using direct addressing with immediate data

XRL direct, #data This instruction EX-OR the contents of memory using direct addressing mode

with immediate data.

EXAMPLE 3.93

 XRL 76, #55 M[76] ¨ M [76] " 55

 Before execution After execution

 M [76] 53 56

Complement Contents of A

This instruction performs logical inversion of the contents of A. It changes 0’s to 1’s and 1’s to 0’s. It

performs the NOT operation.

EXAMPLE 3.94

 CPL A

 Before execution After execution

 [A] FF 00 Swap the Upper and Lower Nibble of A

This instruction interchanges the low and high order nibbles of the A. The operation can also be

thought of as a 4 bit rotate instruction. No fl ags are aff ected.

EXAMPLE 3.95

 SWAP A [A
3–0
] ´ [A

7–4
]

 Before execution After execution

 [A] F8 8F

Chapter 3 8051 Addressing Modes and Instruction Set 77

 Rotate Instructions: In this group, we have instructions for the following.

∑ Rotate left contents of A

∑ Rotate right contents of A

∑ Rotate left including carry contents of A

∑ Rotate right including carry contents of A

Rotate left contents of A Rotate A left one place.

EXAMPLE 3.96

 RL A

 Before execution After execution

 [A] F8 F1

Rotate right contents of A Rotate A right one place.

EXAMPLE 3.97

 RR A

 Before execution After execution

 [A] F8 7C

Rotate left including carry contents of A Rotate A left one place through carry.

EXAMPLE 3.98

 RLC A

 Before execution After execution

 [A] F8 F 1

 [CY] 1 1

Rotate right including carry contents of A Rotate A right one place through carry.

 78 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 3.99

 RRC A

 Before execution After execution

 [A] F8 FC

 [CY] 1 0

We will study following examples to become familiar with logical group instructions.

EXAMPLE 3.100

 Write 8051 instructions to mask most signifi cant bit (MSB) and least signifi cant bit (LSB) of A.

 ALGORITHM

 Step 1: Load data 85H to A

 Step 2: Mask MSB and LSB using AND instruction

 Instructions are as follows

 MOV A, #85H ; Load data 85H to A

 ANL A, #7EH ; Mask MSB and LSB of A

EXAMPLE 3.101

 Write 8051 instructions to set LSB+1 and LSB of A.

 ALGORITHM

 Step 1: Load data 80H to A

 Step 2: Set LSB+1 and LSB using OR instruction

 Instructions are as follows

 MOV A, #80H ; Load data 80H to A

 ORL A, #03H ; set LSB+1 and LSB of A

Chapter 3 8051 Addressing Modes and Instruction Set 79

EXAMPLE 3.102

Write 8051 instructions to swap the upper and lower nibble of location 20H.

 ALGORITHM

 Step 1: Load contents of 20H to A

 Step 2: Swap contents of A

 Step 3: Copy contents of A to 20H

 Instructions are as follows

 MOV A, 20H ; Load contents of 20H to A

 SWAP A ; Swap lower and upper nibble of A

 MOV 20H, A ; Load contents of A to 20H

3.6.4 Branch (JUMP) Instructions

8051 instructions have very powerful branch instructions. When a branch instruction is executed by the

8051, a jump occurs, which can be a forward or a backward jump. It can perform branch unconditionally or

based on a fl ag value. The 8051 supports two types of jump instructions.

∑ Unconditional Jump Instructions

∑ Conditional Jump Instructions

 Unconditional Jump Instructions

The execution of this instruction always results in a branch. The destination address is provided as a part of

the instruction.

LJMP addr16 LJMP causes an unconditional branch to the indicated address, by loading the program

counter with 16 bits address i.e. the second and third byte of the instruction respectively.

EXAMPLE 3.103

 LJMP 1200 [PC] ¨ 1200

AJMP addr11 AJMP causes an unconditional branch to the indicated address, by loading the 11 bit

address to 0 to 10 bits of the program counter. The destination must therefore be within the same 2K blocks.

EXAMPLE 3.104

 AJMP 200 [PC 10–0] ¨ 200

 80 8051 Microcontroller: Hardware, So ware & Applications

SJMP rel The branch destination is computed by adding the signed displacement to the contents of

program counter. Therefore, it branches from 128 bytes preceding this instruction to 127 bytes following it.

EXAMPLE 3.105

 SJMP 25 [PC] ¨ [PC] + 2 + 25

JUMP Indirect The contents of an A is added (8 bit unsigned) with 16 bit contents of data pointer and

this 16 bit is loaded to program counter. Neither the A nor the data pointer is altered and no fl ags are affected.

EXAMPLE 3.106

 JUMP @A+DPTR: [PC] ¨ [A]+[DPTR]

Compare and jump if not equal (CJNE <dest–byte>, <src–byte>,rel) CJNE compares the magnitude

of the fi rst two operands, and branches if their values are not equal. Branch address is computed by adding

the signed displacement to the contents of Program Counter (PC). The carry fl ag is set, if unsigned integer

value of <dest–byte> is less than the unsigned integer value of <src–byte>, else carry fl ag is cleared.

CJNE A, direct, rel:

 Operation: [PC] ¨ [PC]+3

 IF [A] ≠ M[direct]

 THEN [PC] ¨ [PC]+displacement

 IF [A] < M[direct]

 THEN [CY] ¨ 1

 ELSE [CY] ¨ 0

CJNE A, #data,rel

 Operation: [PC] ¨ [PC]+3

 IF [A] ≠ #data

 THEN [PC] ¨ [PC]+displacement

 IF [A] < #data

 THEN [CY] ¨ 1

 ELSE [CY] ¨ 0

CJNE Rn,#data,rel

 Operation: [PC] ¨ [PC]+3

 IF [Rn] ≠ #data

 THEN [PC] ¨ [PC]+displacement

 IF [Rn] < #data

 THEN [CY] ¨ 1

 ELSE [CY] ¨ 0

Chapter 3 8051 Addressing Modes and Instruction Set 81

CJNE @Ri,#data,rel

 Operation: [PC] ¨ [PC]+3

 IF M [[Ri]] ≠ # data

 THEN [PC] ¨ [PC]+displacement

 IF M[[Ri]] < # data

 THEN [CY] ¨ 1

 ELSE [CY] ¨ 0

Decrement and jump if not zero (DJNZ <byte>,<rel–addr>) DJNZ decrements the contents of the

memory or register by 1, and if the resulting value is not zero, it branches to the relative address indicated

by the second operand. No fl ags are affected and the branch destination is computed by adding the signed

displacement value to the contents of program counter.

DJNZ Rn,rel

 Operation: [PC] ¨ [PC] + 2

 [Rn] ¨ [Rn] – 1

 IF [Rn] ≠ 0

 THEN [PC] ¨ [PC]+ displacement

DJNZ direct,rel

 Operation: [PC] ¨ [PC] + 2

 M[direct] ¨ M[direct] – 1

 IF M[direct] ≠ 0

 THEN [PC] ¨ [PC]+displacement

Jump if A is zero (JZ rel) If A is zero, branch to the address indicated; otherwise execute the next

instruction. The branch address is computed by adding the signed displacement to the contents of PC, after

incrementing the PC twice. Flags are not affected.

 Operation: [PC] ¨ [PC]+2

 IF [A] = 0 THEN [PC] ¨ [PC] + displacement

Jump if A is not zero (JNZ rel) If A is not zero, branch to the address indicated; otherwise execute the

next instruction. The branch address is computed by adding the signed displacement to the contents of PC,

after incrementing the PC twice. Flags are not affected.

 Operation: [PC] ¨ [PC]+2

 IF [A] ≠ 0 THEN [PC] ¨ [PC] + displacement

 Conditional Jump Instructions

In this group, the instruction performs a branch, based on the condition of a single status fl ag. The status

fl ag used in this instruction is only a carry fl ag.

Jump if carry is set (JC rel) If the carry fl ag is set, branch to the address indicated; otherwise execute

the next instruction. Flags are not affected. The branch destination is computed by adding the signed

displacement to the contents of PC, after incrementing the contents of PC by 2.

 82 8051 Microcontroller: Hardware, So ware & Applications

 Operation: [PC] ← [PC]+2

 IF [CY] = 1 THEN (PC) ← (PC)+displacement

Jump if carry is not set (JNC rel) If the carry fl ag is not set, branch to the address indicated; otherwise

execute the next instruction. Flags are not affected. The branch destination is computed by adding the

signed displacement to the contents of PC, after incrementing the contents of PC by 2.

 Operation: [PC] ← [PC]+2

 IF [CY]=0 THEN [PC] ← [PC]+displacement

We will study following examples to become familiar with JUMP instructions.

EXAMPLE 3.107

Write 8051 instructions to decrement the contents of R2 until it becomes zero.

 ALGORITHM

 Step 1: Load data to register R2

 Step 2: Decrement R2 until it becomes zero.

 Instructions are as follows

 MOV R2, #FFH ; Load FFH to R2

 LOOP: DJNZ R2, LOOP ; decrement R2 until it becomes zero

EXAMPLE 3.108

Write 8051 instructions to rotate the contents of A left by two positions.

 ALGORITHM

 Step 1: Load data to A

 Step 2: Load 02 to register R2

 Step 3: Rotate contents of A left by one position

 Step 4: Decrement R2 and repeat Step 3 until R2 becomes zero

 Instructions are as follows

 MOV A, #25H ; Load 25H to A

 MOV R2, #02H ; Load 02H to R2

 LOOP: RLA ; Rotate contents of A left by one position

 DJNZ R2, LOOP ; Decrement R2 and branch to LOOP until R2 becomes

zero

Chapter 3 8051 Addressing Modes and Instruction Set 83

EXAMPLE 3.109

Write 8051 instructions to compare the contents of A with the contents of 20H. If contents are equal,

store 00H in 21H, else store FFH in 21H.

 ALGORITHM

Step 1: Load data 25H to A

Step 2: Load data 15H to memory location 20H

Step 3: Load 00H to register R3

Step 4: Clear carry fl ag

Step 5: Sub contents of location 20H and contents of CY fl ag from

contents of A

Step 6: If contents are equal, branch to Step 8

Step 7: Decrement R3, then R3 contains FFH

Step 8: Store contents of R3 in location 21H

 MOV A, #25H ; Load data 25H to A

 MOV 20, #15H ; Load data 15H to location 20H

 MOV R3,#00 ; Load data 00H to R3

 CLR C ; Clear carry fl ag

 SUBB A, 20H ; Sub contents of location 20H and C fl ag

 from the contents of A

 JZ LOOP1 ; If result is zero, branch to LOOP1

 DEC R3 ; Decrement R3

 LOOP1: MOV 21H, R3 : If result is zero, store 00 in location 21H,

else store FF

EXAMPLE 3.110

Write 8051 instructions to add two 8 bit numbers and store 16 bit results in location 20H and 21H.

 ALGORITHM

 Step 1: Load data 77H to A

 Step 2: Load data 99H to register R2

 Step 3: Load 00H to register R3

 Step 4: Add contents of register R2 with the contents of A

 Step 5: Store contents of A (LSB result) in memory location 20H

 Step 6: If carry fl ag is reset, branch to Step 8

 Step 7: Increment R3, then R3 contains 01H

 Step 8: Store contents of R3 in location 21H

 84 8051 Microcontroller: Hardware, So ware & Applications

 MOV A, #77H ; Load data 77H to A

 MOV R2, #99H ; Load data 99H to R2

 MOV R3,#00 ; Load data 00H to R3

 ADD A,R2 ; Add contents of A with R2

 MOV 20H,A ; Store contents of A in location 20H

 JNC LOOP1 ; If carry fl ag is reset, branch to LOOP1

 INC R3 ; Increment R3

 LOOP1: MOV 21H, R3 ; Store contents of R3 in location 21H

3.6.5 Subroutine CALL and RET instructions

As discussed in Section 3.3 subroutines are handled by

∑ CALL instructions

∑ RET instructions

 CALL Instructions

The 8051 provides two types of CALL instructions.

LCALL addr16 This instruction is called long call instruction and it unconditionally calls a subroutine

located at the indicated address. This is a 3 byte instruction. The instruction increments program counter by

3 and generates the address of the next instruction and saves this address in a stack. The program counter is

then loaded with the 16 bit address of the LCALL instruction. Flags are not affected.

 Operation: [PC] ← [PC]+3

 [SP] ← [SP]+1

 [[SP]] ← [PC
7–0

]

 [SP] ← [SP]+1

 [[SP]] ← [PC
15–8

]

 [PC] ← addr 15–0

ACALL addr11 This instruction is called absolute call instruction and it unconditionally calls a

subroutine located at the indicated address. This is a 2 byte instruction. The instruction increments the

program counter by 2, and generates the address of the next instruction and saves this address in a stack.

The program counter (PC
10–0

) is then loaded with 11 bit address of the LCALL instruction. Flags are not

affected.

 Operation: [PC] ← [PC]+2

 [SP] ← [SP]+1

 [[SP]] ← [PC
7–0

]

 [SP] ← [SP]+1

 [[SP]] ← [PC
15–8

]

 [PC
10–0

] ← addr10–0

Chapter 3 8051 Addressing Modes and Instruction Set 85

 RET Instructions

The 8051 provides two types of RET instruction

RET: Return from subroutine RET instruction pops the top two contents of the stack and is loaded to

PC. It decrements the stack pointer by 2 and fl ags are not affected.

 Operation: [PC
15–8

] ← [[SP]]

 [SP] ← [SP] –1

 [PC
7–0

] ← [[SP]]

 [SP] ← [SP] – 1

RETI: Return from interrupt RETI instruction pops the top two contents of the stack and is loaded to

PC. It decrements the stack pointer by 2 and fl ags are not affected. It restores the interrupt logic at the same

priority level to accept the request from I/O devices.

 Operation: [PC
15–8

] ← [[SP]]

 [SP] ← [SP] –1

 [PC
7–0

] ← [[SP]]

 [SP] ← [SP] – 1

3.6.6 Bit Manipulation Instruction

The 8051 supports a single bit operation. The internal RAM contains 128 addressable bits (20H to 2FH) 00

to 7FH. SFR supports 128 addressable bits and all the I/O ports are bit addressable. Each I/O line can be

treated as a separate single bit port. The 8051 provides bit manipulation instructions to perform operations

such as and, or, set, clear, complement and also conditional bit manipulation jump instructions.

And

AND contents of carry fl ag with Boolean value of the source bit or with complemented Boolean value of

the source bit.

ANL C,bit: [CY] ← [CY] Λ [bit]

ANL C,/bit: [CY] ← [C Y] Λ [bit]

OR

OR contents of carry fl ag with Boolean value of the source bit or with complemented Boolean value of the

source bit.

ORL C,bit: [CY] ← [C Y] V [bit]

ORL C,/bit: [CY] ← [C Y] V [bit]

CLR bit

The indicated bit is cleared. No fl ags are affected. CLR can operate on the carry fl ag or any directly

addressable bit.

 CLR bit: [bit] ← 0

 CLR P1.2: [P1.2] ← 0

 CLR C: [CY] ← 0

 86 8051 Microcontroller: Hardware, So ware & Applications

CPL bit

Bit variable specifi ed is complemented. Mentioned bit, which had been a one, is changed to zero and

vice-versa.

 CPL bit: [bit] ← [bit]

 CPL P1.5: [P1.5] ← [p1.5]

 CPL C: [CY] ← [C]

 Bit Manipulation Branch Instructions

It checks the condition of the bit; if the condition is satisfi ed then it jumps to the address indicated;

otherwise executes the next instruction. Instruction increments the program counter by 3 and then branch

address is computed by adding the signed displacement to the contents of PC.

JB bit, rel: Jump if direct bit is set

 Operation: [PC] ← [PC]+3

 IF [bit] = 1 THEN [PC] ← [PC]+displacement

JNB bit, rel: Jump if direct bit is not set

 Operation: [PC] ← [PC]+3

 IF [bit] = 0 THEN [PC] ← [PC]+displacement

JBC bit, rel: Jump if direct bit is set and clear bit.

 Operation: [PC] ← [PC]+3

 IF [bit] = 1 THEN [PC] ← [PC]+displacement, [bit] ← 0

We will study following examples to become familiar with bit manipulation instructions

EXAMPLE 3.111

Write 8051 instructions to set carry fl ag and to complement MSB of 20H.

 ALGORITHM

 Step 1: Clear carry fl ag

 Step 2: Complement carry fl ag, carry fl ag is set

 Step 3: Complement MSB of register 20H

 Instructions are as follows

 CLR C ; Clear carry fl ag

 CPL C ; Complement the carry fl ag, carry fl ag is set

 CPL 07H ; Complement MSB of register 20H

Chapter 3 8051 Addressing Modes and Instruction Set 87

EXAMPLE 3.112

Write 8051 instructions to complement MSB of 22H. If bit is 1, store FFH in 40H, else store 00H.

 ALGORITHM

 Step 1: Load 00H to register R3

 Step 2: Complement MSB of register 22H

 Step 3: If bit=0, branch to step 5

 Step 4: Decrement R3, then R3 contains FFH

 Step 5: Store contents of R3 in location 40H

 MOV R3, #00 ; Load data 00H to R3

 CPL 17H ; Complement MSB of register 22H

 JNB 17H, LOOP1 ; If bit is 0, then branch to LOOP1

 DEC R3 ; Decrement R3, then R3 contains FFH

 LOOP1: MOV 40H, R3 ; Store contents of R3 in location 40H

 1. List the types of data transfer instructions.

 2. MOV R2, 50 is an example for _________ addressing.

 3. MOVX instruction is used to move data from __________ RAM.

 4. List various MOV instructions.

 5. If [SP]=00, after PUSH operation [SP]= ______________.

 6. ___________ instruction exchanges low order nibble of the A with internal RAM location.

 7. List the fl ags affected by arithmetic instructions.

 8. After multiplication operation, the carry fl ag is ______________.

 9. After division operation, OV fl ag is ____________.

 10. List the steps in working of DAA instruction.

 11. Write 8051 instructions to implement DEC DPTR instruction.

 12. ___________ instruction is used to MASK bits of A.

 13. List the logical type instructions which affect the fl ag registers.

 14. ____________ instruction interchanges low and high order nibble of the A.

 15. ___________ instruction is used to rotate contents of A left through carry fl ag.

 16. List the types of branch instructions.

 88 8051 Microcontroller: Hardware, So ware & Applications

 17. List the operation of JC 25 instruction.

 18. ___________ instruction restores the interrupt logic at the same priority level.

 19. List bit manipulation logical instructions.

 20. List bit manipulation branch instructions.

3.7 INSTRUCTION SET SUMMARY

Data Transfer Instructions

MNEMONIC EXAMPLE OPERATION DESCRIPTION BYTES CYS CY OV AC

MOV A,Rn MOV A,R1 [A] ¨ [R1] Copy contents of
Register R1 to A

1 1 – – –

MOV A,direct MOV A, 10H [A] ¨ M [10] Move direct byte to
ACC

2 1 – – –

MOV A,@Ri MOV A, @R1 [A] ¨ M [[R1]] Move indirect byte
to ACC

1 1 – – –

MOV A,#data MOV A, #21 [A] ¨ 21 Move immediate
data to ACC

2 1 – – –

MOV Rn,A MOV R5,A [R5] ¨ [A] Move ACC to
register

1 1 – – –

MOV
Rn,direct

MOV R5, 10H [R5] ¨ [10] Move direct byte to
register

2 2 – – –

MOV
Rn,#data

MOV R5, #21 [R5] ¨ 21 Move immediate
data to register

2 1 – – –

MOV direct,A MOV 10, A M[10] ¨ [A] Move ACC to direct
byte

2 1 – – –

MOV
direct,Rn

MOV 10, R3 M[10] ¨ [R3] Move register to
direct byte

2 2 – – –

MOV
direct,direct

MOV 10, 20 M[10] ¨ M[20] Move direct byte to
direct byte

3 2 – – –

MOV direct,@
Ri

MOV 10, @R0 M[10] ¨ M[[R0]] Move indirect RAM
to direct byte

3 2 – – –

MOV
direct,#data

MOV 10, #23 M[10] ¨ 23 Move immediate
data to direct byte

3 2 – – –

MOV @Ri,A MOV @R0,A M[[R0]] ¨ [A] Move ACC to
indirect RAM

1 1 – – –

MOV @
Ri,direct

MOV @R1,10 M[[R1]] ¨ M[10] Move direct byte to
indirect RAM.

2 2 – – –

MOV @
Ri,#data

MOV @R0,#23 M[[R0]] ¨ 23 Move immediate
data to indirect RAM

2 1 – – –

MOV
DPTR,#data16

MOV DPTR,
#2300

[DPTR] ¨ 2300 Load data pointer
with 16 bit constant

3 2 – – –

MOVC A, @ A
+ DPTR

MOVC A, @ A
+ DPTR

[A] ¨
PM[[A+DPTR]]

Move code byte at
ACC+DPTR to ACC

1 2 – – –

(Contd)

Chapter 3 8051 Addressing Modes and Instruction Set 89

MNEMONIC EXAMPLE OPERATION DESCRIPTION BYTES CYS CY OV AC

MOVC A,@
A+PC

MOVC A,@
A+PC

[A] ¨
PM[[A+PC]]

Move code byte at
ACC+PC to ACC

1 2 – – –

MOVX A,@Ri MOVX A, @R1 [A] ¨ EDM
[[R1]]

Move external RAM
to ACC

1 2 – – –

MOVX @Ri,A MOVX @R0, A EDM [[R0]] ¨ A Move ACC to
external RAM

1 2 – – –

MOVX A,@
DPTR

MOVX A,@
DPTR

[A] ¨ EDM
[[DPTR]]

Move external RAM
to ACC

1 2 – – –

PUSH direct PUSH 20 [[SP]] ¨ M[20] Push direct byte to
stack

2 2 – – –

POP direct POP 10 M[10] ¨ [[SP]] Pop direct byte from
stack

2 2 – – –

XCH A,Rn XCH A, R4 [A] ´ [R4] Exchange register
with ACC

1 1 – – –

XCH A,direct XCH A, 20 [A] ´ M [20] Exchange direct byte
with ACC

2 1 – – –

XCH A,@Ri XCH A, @R1 [A] ´ M [[R1]] Exchange indirect
RAM with ACC

1 1 – – –

XCHD A, @Ri XCHD A, @R0 [ALB] ´ M
[[R0]] LB

Exchange low order
digit indirect RAM
with ACC

1 1 – – –

Arithmetic Instructions

MNEMONIC EXAMPLE OPERATION DESCRIPTION BYTES CYS CY OV AC

ADD A, Rn ADD A, R2 [A] ¨ [A] + [R2] Add register to ACC 1 1 X X X

ADD A, direct ADD A, 10 [A] ¨ [A] + M[10] Add direct byte to
ACC

2 1 X X X

ADD A, @Ri ADD A, @R0 [A] ¨ [A]+
M[[R0]]

Add indirect RAM
to ACC

1 1 X X X

ADD A, #data ADD A, #23 [A] ¨ [A] + 23 Add immediate data
to ACC

2 1 X X X

ADDC A, Rn ADDC A, R3 [A] ¨ [A] + [R3]
+ [C]

Add register to ACC
with carry

1 1 X X X

ADDC A,
direct

ADDC A,10 [A] ¨ [A]+[C]+
M[10]

Add direct byte to
ACC with carry

2 1 X X X

ADDC A, @Ri ADDC A,@R1 [A] ¨ [A]+[C]+
M[[R1]

Add indirect RAM
to ACC with carry

1 1 X X X

ADDC A,
#data

ADDC A,#23 [A] ¨ [A] +23+[C] Add immediate data
to ACC with carry

2 1 X X X

SUBB A, Rn SUBB A,R6 [A] ¨ [A] – [C]
– [R6]

Subtract register
from ACC with
borrow

1 1 X X X

SUBB A,
direct

SUBB A,10 [A] ¨ [A] – [C]
– M[10]

Subtract indirect
RAM from ACC
with borrow

2 1 X X X

(Contd)

 90 8051 Microcontroller: Hardware, So ware & Applications

MNEMONIC EXAMPLE OPERATION DESCRIPTION BYTES CYS CY OV AC

SUBB A, @Ri SUBB A,@R1 [A] ¨ [A] – [C]
– M[[R1]]

Subtract indirect
RAM from ACC
with borrow

1 1 X X X

SUBB A, #data SUBB A, #23 [A] ¨ [A] – [C]
– 23

Subtract immediate
data from ACC with
borrow

2 1 X X X

INC A INC A [A] ¨ [A] +1 Increment ACC 1 1 – – –

INC Rn INC R3 [R3] ¨ [R3] +1 Increment register 1 1 – – –

INC direct INC 10 M[10] ¨ M[10] +1 Increment direct
byte

2 1 – – –

INC @Ri INC @R0 M[[R0]] ¨
M[[R0]] +1

Increment direct
RAM

1 1 – – –

DEC A DEC A [A] ¨ [A] – 1 Decrement ACC 1 1 – – –

DEC Rn DEC R7 [R7] ¨ [R7] – 1 Decrement register 1 1 – – –

DEC direct DEC 10 M[10] ¨ M[10]– 1 Decrement direct
byte

2 1 – – –

DEC @Ri DEC @R0 M[[R0]] ¨
M[[R0]] –1

Decrement indirect
RAM

1 1 – – –

INC DPTR INC DPTR [DPTR] ¨
[DPTR] + 1

Increment data
pointer

1 2 – – –

MUL AB MUL AB [B] [A] ¨ [A] x[B] Multiply A and B 1 4 0 X –

DIV AB DIV AB [A] [B] ¨ [A] /[B] Divide A by B 1 4 0 X –

DAA DAA [A
DEC
] ¨ [A

BIN
] Decimal adjust ACC 1 1 X – –

Logical Instructions

MNEMONIC EXAMPLE OPERATION DESCRIPTION BYTES CYS CY OV AC

ANL A,Rn ANL A,R3 [A]¨[A]L[R3] AND register to
ACC

1 1 – – –

ANL A,direct ANL A,20 [A]¨[A]LM[20] AND direct byte to
ACC

2 1 – – –

ANL A,@Ri ANL A,@R0 [A]¨[A]LM[[R0]] AND indirect RAM
to ACC

1 1 – – –

ANL A,#data ANL A,#27 [A]¨[A]L27 AND immediate
data to ACC

2 1 – – –

ANL direct,A ANL 10,A M[10] ¨

M[10]L[A]
AND ACC to direct
byte

2 1 – – –

ANL direct,
#data

ANL 10,#27 M[10] ¨ M[10]
L27

AND immediate
data to direct byte

3 2 – – –

ORL A,Rn ORL A,R3 [A] ¨ [A] ~ [R3] OR register to ACC 1 1 – – –

ORL A,direct ORL A,10 [A] ¨ [A] ~
M[10]

OR direct byte to
ACC

2 1 – – –

ORL A,@Ri ORL A,@R0 [A] ¨ [A] ~
M[[R0]]

OR indirect RAM
to ACC

1 1 – – –

(Contd)

Chapter 3 8051 Addressing Modes and Instruction Set 91

MNEMONIC EXAMPLE OPERATION DESCRIPTION BYTES CYS CY OV AC

ORL A,#data ORL A,#23 [A] ¨ [A] ~ 23 OR immediate data
to ACC

2 1 – – –

ORL direct,A ORL 10,A M[10] ¨ M[10] ~
[A]

OR ACC to direct
byte

2 1 – – –

ORL
direct,#data

ORL 10,#23 M[10] ¨ M[10]
~ 23

OR immediate data
to direct byte

3 2 – – –

XRL A,Rn XRL A,R5 [A] ¨ [A]" [R5] XOR register to ACC 1 1 – – –

XRL A,direct XRL A,10 [A] ¨ [A]"M[10] XOR direct byte to
ACC

2 1 – – –

XRL A,@Ri XRL A,@R1 [A] ¨ [A] "
[[R1]]

XOR indirect RAM
to ACC

1 1 – – –

XRL A,#data XRL A,#32 [A] ¨ [A]" 32 XOR immediate data
to ACC

2 1 – – –

XRL direct,A XRL 10,A M[10] ¨ M[10]
" [A]

XOR ACC to direct
byte

2 1 – – –

XRL
direct,#data

XRL 10,#32 M[10] ¨ M[10]
" 32

XOR immediate data
to direct byte

3 2 – – –

CLR A CLR A [A] ¨ 0 Clear the ACC 1 1 – – –

CPL A CPL A [A] ¨ [A] Complement the
ACC

1 1 – – –

RL A RL A Rotate the ACC le 1 1 – – –

RLC A RLC A Rotate the ACC le
through carry

1 1 X – –

RR A RR A Rotate the ACC right 1 1 – – –

RRC A RRC A Rotate the ACC right
through Carry

1 1 X – –

SWAP A SWAP A A
LSBN

 ´ A
MSBN

Swap nibbles in the
ACC

1 1 – – –

Branch Instructions

MNEMONIC EXAMPLE OPERATION DESCRIPTION BYTES CYS CY OV AC

ACALL
addr11

ACALL 200 STACK ¨ [PC]+2
[PC]

11–0
 ¨ 200

Absolute call within
2K page

2 2 – – –

LCALL addr16 LCALL 1200 STACK ¨ [PC]+3
[PC] ¨ 1200

Absolute call (long
call)

3 2 – – –

RET RET [PC] ¨ STACK Return from
subroutine

1 2 – – –

RETI RETI [PC] ¨ STACK &
Restores interrupt
logic

Return from
interrupt

1 2 – – –

(Contd)

 92 8051 Microcontroller: Hardware, So ware & Applications

MNEMONIC EXAMPLE OPERATION DESCRIPTION BYTES CYS CY OV AC

AJMP addr11 AJMP 200 [PC]
11–0
 ¨ 200 Absolute jump

within 2K page
2 2 – – –

LJMP addr16 LJMP 1200 [PC] ¨ 1200 Absolute jump (long
jump)

3 2 – – –

SJMP rel8 SJMP 25 [PC] ¨ [PC]+2+25 Relative jump within
+/– 127 bytes (short
jump)

2 2 – – –

JMP @A+DPTR JMP @A+DPTR [PC] ¨
[A]+[DPTR]

Jump direct relative
to DPTR

1 2 – – –

JZ rel8 JZ 25 [A]=0[PC] ¨ [PC]
+ 2 +25h

Jump if ACC is zero 2 2 – – –

JNZ rel8 JNZ 25 [A] π 0[PC] ¨
[PC] + 2 +25h

Jump if ACC is NOT
zero

2 2 – – –

CJNE A,direct,
rel8

CJNE A,25,30 [A] π M[25] [PC]
¨ [PC] +3 +30h

Compare direct byte
to ACC, jump if
NOT equal

3 2 X – –

CJNE A,#data,
rel8

CJNE A,#45,50h [A] π 45 [PC] ¨
[PC] +3 +50h

Compare immediate
to ACC, jump if
NOT equal

3 2 X – –

CJNE
Rn,#data, rel8

CJNE
R5,#45,25h

[R5] π 45 [PC] ¨

[PC] +3 +25h
Compare immediate
to register, jump if
NOT equal

3 2 X – –

CJNE@
Ri,#data, rel 8

CJNE @
R0,48,27h

M[[R0]] π 48 [PC]
¨ [PC] +3 +27h

Compare immediate
to indirect, jump if
NOT equal

3 2 X – –

DJNZ Rn, rel8 DJNZ R3,25 [R3]–1 π 0
[PC] ¨ [PC]+2+25

Decrement register,
jump if NOT zero

2 2 – – –

DJNZ direct,
rel8

DJNZ 10,25 M[10]–1 π 0
[PC] ¨[PC]+3+25

Decrement direct
byte, jump if NOT
zero

3 2 – – –

NOP NOP [PC] ¨ [PC]+1 No operation (skip
to next instruction)

1 1 – – –

Bit Manipulation Instructions

MNEMONIC EXAMPLE OPERATION DESCRIPTION BYTES CYS CY OV AC

CLR C CLR C [C] ¨ 0 Clear carry fl ag 1 1 0 – –

CLR bit CLR 67 M[MSB2C] ¨ 1 Clear direct bit 2 1 – –

SETB C SETB C [c] ¨ 1 Set carry fl ag 1 1 1 – –

SETB bit SETB 48H M[LSB 29] ¨ 0 Set direct bit 2 2 – –

CPL C CPL C [C] ¨ [C] Complement carry
fl ag

1 1 X – –

CPL bit CPL P1.0 [P1.0] ¨ [P1.0] Complement direct
bit

2 1 – – –

ANL C,bit ANL C,P2.5 [C] ¨ [C] ~ [P2.5] AND direct bit to
carry

2 2 X – –

(Contd)

Chapter 3 8051 Addressing Modes and Instruction Set 93

MNEMONIC EXAMPLE OPERATION DESCRIPTION BYTES CYS CY OV AC

ANL C,/bit ANL C,/P2.5 [C] ¨ [C] ~ [P2.5] AND complement of
direct bit to carry

2 2 X – –

ORL C,bit ORL C,P2.2 [C] ¨ [C] ~ [P2.5] OR direct bit to carry 2 2 X – –

ORL C,/bit ORL C,/P2.2 [C] ¨ [C] ~ [P2.5] OR complement of
direct bit to carry

2 2 X – –

MOV C,bit MOV C,P2.4 [C] ¨ [P2.4] Move direct bit to
carry

2 1 X – –

MOV bit,C MOV P2.4, C [P2.4] ¨ [C] Move carry to direct
bit

2 2 – – –

JC rel JC rel C=1
[PC] ¨ [PC]+2+rel

Jump if carry is set 2 2 – – –

JNC rel JNC rel C=0
[PC] ¨ [PC]+2+rel

Jump if carry is NOT
set

2 2 – – –

JB bit,rel JB PSW.2 rel Bit=1,
[PC] ¨ [PC]+3+rel

Jump if direct bit
is set

3 2 – – –

JNB bit,rel JNB P2.3,rel Bit=0,
[PC] ¨ [PC]+3+rel

Jump if direct bit is
NOT set

3 2 – – –

JBC bit,rel JBC P1.1,rel Bit=1,
[PC] ¨ [PC]+3+rel
[bit] ¨ 0

Jump if direct bit is
set and clear that bit

3 2 – – –

This chapter presents an in depth understanding of the following.

∑ Instruction syntax, data types and subroutines.

∑ The various addressing modes of 8051. It covers Immediate Addressing, Register Addressing,

Direct Addressing, Indirect Addressing, Relative Addressing, Absolute addressing, Long

Addressing, Indexed Addressing, Bit Inherent Addressing and Bit Direct Addressing.

∑ Classifi cation of 8051 instructions with examples.

∑ 8051 instruction set is summerized in a table with example, operation and description.

 1. _____________ instruction is an example for direct addressing mode.

 (a) MOV A, @R1 (b) MOV A, #21H (c) MOV A, 10H (d) MOV R5, A

 2. An alternate instruction for CLR C is _____________.

 (a) CLR PSW.0 (b) CLR PSW.7 (c) CLR PSW.2 (d) CLR PSW.5

 94 8051 Microcontroller: Hardware, So ware & Applications

 3. The 8051 supports _____________.

 (a) Unsigned 8 bit numbers (b) Signed 8 bit numbers

 (c) Both (a) and (b) (d) None of the above

 4. Direct addressing mode is used in _____________.

 (a) Internal data memory

 (b) External data memory

 (c) Internal program memory

 (d) External program memory

 5. MOVC A, @A+DPTR is example of _____________.

 (a) Immediate addressing

 (b) Direct addressing

 (c) Indirect addressing

 (d) Indexed addressing

 6. SETB 07H instruction is an example of_____________.

 (a) Bit inherent addressing (b) Bit direct addressing

 (c) Bit immediate addressing (d) Bit indirect addressing

 7. AJMP instruction is an example of _____________.

 (a) Absolute addressing (b) Long addressing

 (c) Indexed addressing (d) Relative addressing

 8. In the 8051, decimal data –127 is represented in binary as _____________.

 (a) 10000001 (b) 01111111

 (c) 10000000 (d) 11111111

 9. Execution time for MUL A, B instruction is _____________.

 (a) 1 Machine cycles (b) 2 Machine cycles

 (c) 3 Machine cycles (d) 4 Machine cycles

 10. If the 8051 is operated with 12 MHz, the clock period is _____________.

 (a) 1 ms (b) 0.08333 ms (c) 0.8333 ms (e) None of the above

 11. If the 8051 operates with 12 MHz, the clock signal execution time for the instruction MUL AB

is _____________.

 (a) 1 ms (b) 2 ms (c) 3 ms (e) 4 ms

 12. To mask MSB of the A, we must ANL it with _____________.

 (a) 7FH (b) 80H (c) FFH (d) 85H

 13. To set LSB+1 bit of the A, we must ORL it with _____________.

 (a) 02H (b) 01H (c) 04H (d) 08H

 14. [A] = 29H, [R0] = 55H and M[55] = 33H. After execution of instruction XCHG A, @ R0, the

contents of A will be _____________.

 (a) 92H (b) 55H (c) 33H (d) 23H

Chapter 3 8051 Addressing Modes and Instruction Set 95

 15. [A] = 24H and [CY] = 1. After execution of instruction SUBB A, #23H, the contents of A will be.

 (a) 01H (b) 02H (c) 00H (d) 23H

 16. INC R5 instruction affects _____________.

 (a) CY fl ag (b) AC fl ag (c) OV fl ag (d) None of the above

 17. If [A] =F8 before execution of instruction RRA, then after execution, [A] is _____________.

 (a) 7CH (b) FCH (c) F0H (d) F1H

 18. If AJMP instruction is executed, then the destination must be

 (a) Within the same 2 Kbytes

 (b) Within the same 4 Kbytes

 (c) Within the same 8 Kbytes

 (d) Within the same 16 Kbytes

 19. In JNC rel instruction, the operation is _____________.

 (a) Operation: [PC] ← [PC]+2, IF [CY]=1 THEN [PC] ← [PC]+displacement

 (b) Operation: [PC] ← [PC]+3, IF [CY]=1 THEN [PC] ← [PC]+displacement

 (c) Operation: [PC] ← [PC]+2, IF [CY]=0 THEN [PC] ← [PC]+displacement

 (d) Operation: [PC] ← [PC]+3, IF [CY]=0 THEN [PC] ← [PC]+displacement

 20. In JB bit, rel instruction the operation is _____________.

 (a) Operation: [PC] ← [PC]+3, IF [bit] = 1 THEN [PC] ← [PC]+displacement

 (b) Operation: [PC] ← [PC]+2, IF [bit] = 1 THEN [PC] ← [PC]+displacement

 (c) Operation: [PC] ← [PC]+3, IF [bit] = 0 THEN [PC] ← [PC]+displacement

 (d) Operation: [PC] ← [PC]+2, IF [bit] = 0 THEN [PC] ← [PC]+displacement

 3.1 What are the different addressing modes supported by the 8051? Explain with examples.

 3.2 State and explain the addressing modes used in each of the following instructions.

 (a) MOV A,#25H (b) MOV A,@Ri (c) MOV R2,40H

 (d) MOVC A,@A+PC (e) DA A (f) LCALL 2000H

 3.3 Explain with an example, the addressing mode used to access program memory.

 3.4 Explain with an example, the addressing mode used to access internal data memory.

 3.5 Defi ne

 (a) Instruction cycle (b) Machine cycle (c) T-state

 3.6 Find the contents of an A and carry fl ag after the execution of the following instructions. Assume [A]

= 25H and [C] = 1 before the execution of instructions.

 ADD A,#25H

 SUBB A,#50H

 ADDC A,#0FCH

 96 8051 Microcontroller: Hardware, So ware & Applications

 3.7 Find the contents of A after the execution of the following instructions.

 (a) ORL A,#75H

 (b) XRL A,#0F5H

 (c) ANL A,#23H

 3.8 With an example, explain the functions of rotate instruction.

 3.9 Explain the difference between AJMP, LJMP and SJMP instructions.

 3.10 With an example, explain the function of CJNE A, #data, rel instruction.

 3.11 With an example, explain how bit level XOR operation can be done in the 8051.

 3.12 Explain with an example, how the conditional jump instructions are useful in implementing ‘for’ loop

in a program.

 3.13 Explain the difference between MOV, MOVX and MOVC instruction with examples.

 3.14 Explain the functions of the following instruction with examples.

 (a) DIV A,B (b) CLR A (c) MOVX A,@Ri

 (d) XCHD A,@R0 (e) SUBB A,@R0 (f) JNZ 24

 3.15 Explain the difference between LCALL and ACALL instruction.

 3.16 Explain the instructions that access only the bit wise operand with examples.

 3.17 List and explain the instructions related to stack with an example.

 3.18 Write a sequence of instructions that clear the AC fl ag.

 3.19 Write an instruction that clears bit 3 of RAM location (23h) without affecting any other bits.

 3.20 Calculate the time required to execute the following instructions if the clock frequency is

11.0592 MHz.

 (a) CLR A (b) LJMP 3000H (c) MOV 10,R3

 3.21 Suppose an 8051 is operating under the control of an external crystal oscillator running at 16 MHz,

how much time does it take to execute the following instructions?

 (a) MUL AB (b) ANL 10,#27 (c) MOV @R1,10 (d) DAA

 3.22 Find the values of A and B after the execution of the MULAB instruction, if they contain the

following values.

 (a) 44H and 78H (b) 67H and 6DH

 3.23 What will be the value of the carry fl ag after the execution of each of the following instructions?

Assume A contains 6AH and the carry fl ag is 1 before the execution of each instruction.

 (a) ADD A,#45H (b) ADD A,#77H (c) SUBB A,#60H (d) SUBB A,#8FH

 3.24 What is the last instruction in the interrupt service routine? What does this instruction do?

 3.25 With reasons, explain why SP should pre-increment on a PUSH and post-decrement on a POP

instruction in the 8051.

 3.26 List the differences and similarities between CALL-RET and PUSH-POP instructions.

8051 ASSEMBLY
PROGRAMMING

Learning Objectives

After you have completed this chapter, you should be able to

 Explain the structure of an assembly language program

 Use assembler directives to allocate memory blocks, defi ne constants, etc.

 Write assembly programs to perform simple arithmetic operations

 Write assembly programs to set up time delays and to calculate time

delays in a given loop

4.1 ASSEMBLY LANGUAGE PROGRAMS

In the previous chapter, we have discussed architecture, addressing modes and the instruction set of the

8051 microcontroller. In this chapter, we will write assembly language programs. The 8051 assembly

program consists of two sections, namely, assembly language program and assembler directives. An

 assembly language program consists of a sequence of statements that tell the microcontroller to perform

the desired operations. Assembler directives instruct the assembler on how to process subsequent assembly

language instructions. Each assembler uses various directives and the assembler directives discussed here

correspond to 8051 Assembler.

4

 98 8051 Microcontroller: Hardware, So ware & Applications

4.2 ASSEMBLER DIRECTIVES

Assembler directives appear just like instructions in an assembly language program, but they tell the

assembler to do something other than creating the machine code for an instruction. In assembly language

programming, the assembler directives instruct the assembler to

• process subsequent assembly language instructions

• defi ne program constants

• reserve space for variables

Each assembler uses various directives. The following are the widely used 8051 assembler directives.

ORG (origin)

The ORG directive is used to indicate the starting address. It can be used only when the program counter

needs to be changed. The number that comes after ORG can be either in hex or in decimal.

EXAMPLE 4.1

 ORG 2000H ; Set program counter 2000

EQU and SET

The EQU and SET directives assign numerical value or register name to the specifi ed symbol name. EQU is

used to defi ne a constant without storing information in the memory. The symbol defi ned with EQU should

not be redefi ned, whereas the SET directive allows redefi nition of symbols at a later stage.

EXAMPLE 4.2

 Pointer SET R1 ; use R1 as pointer

 Counter EQU R3 ; use R3 as counter

 N EQU 35H

 MOV R3, #N ; 35h is stored in R3

DB (define byte)

The DB directive is used to defi ne an 8 bit data. DB directive initialises memory with 8 bit values. The

numbers can be in decimal, binary, hex or in ASCII formats. For decimal, the ‘D’ after the decimal number

is optional, but for binary and hexadecimal, ‘B’ and ‘H’ are required. For ASCII, the number is written in

quotation marks (‘ ’).

EXAMPLE 4.3

 DATA1: DB 40H ; hex

 DATA2: DB 01011100B ; binary

 DATA3: DB 48 ; decimal

 DATA4: DB ‘HELLOW’ ; ASCII

Chapter 4 8051Assembly Programming 99

END

The END directive signals the end of the assembly module. It indicates the end of the program to the

assembler. Any text in the assembly fi le that appears after the END directive is ignored. If the END

statement is missing, the assembler will generate an error message.

4.3 ASSEMBLY LANGUAGE PROGRAMS

EXAMPLE 4.4

Write a program to add the values of locations 50H and 51H and store the result in locations 52H and

53H.

ALGORITHM

Step 1: Load the memory contents 50H into A

Step 2: ADD the memory contents 51H with contents of A

Step 3: Store the contents of A in 52H

Step 4: Store the contents of carry fl ag in 53H.

The program is as follows

 ORG 0000H ; Set program counter 0000H

MOV A,50H ; Load the contents of memory location 50H into A

ADD A,51H ; Add the contents of memory location 51H with contents of A

MOV 52H,A ; Save the least signifi cant byte of the result in location

52H

MOV A, #00 ; Load 00H into A

ADDC A, #00 ; Add the immediate data and the contents of carry fl ag to A

MOV 53H,A ; Save the most signifi cant byte of the result in location 53

END

EXAMPLE 4.5

Write a program to subtract the values of locations 51H from 50H and store the result in location 52H.

If the result is positive, store 00H, else store 01H in 53H.

ALGORITHM

Step 1: Load the memory contents 50H into A A

Step 2: Clear the carry fl ag

Step 3: Subtract the memory contents 51H from the contents of A A

Step 4: Store the contents of A A in 52H

Step 5: Check the contents of carry fl ag, if the contents of carry fl ag

is 0 (result is positive) store 00H, else if the contents of

carry fl ag is 1 (result is negative) store 01H in 53H.

 100 8051 Microcontroller: Hardware, So ware & Applications

ORG 0000H ; Set program counter 0000H

MOV A,50H ; Load the contents of memory location 50H into A

CLR C ; Clear the borrow fl ag

SUBB A,51H ; Subtract the contents of memory location 51H from

content of A

MOV 52H,A ; Store the result in location 52H

MOV A,#00 ; Load 00H into A

ADDC A,#00 ; Add the immediate data and the contents of carry fl ag to A

MOV 53H,A ; Save the most signifi cant byte of the result in location 53

END

EXAMPLE 4.6

Write a program to store data FFH into RAM memory locations 50H to 58H using direct addressing

mode.

ORG 0000H ; Set program counter 0000H

MOV A, #0FFH ; Load FFH into A

MOV 50H,A ; Store contents of A in location 50H

MOV 51H,A ; Store contents of A in location 51H

MOV 52H,A ; Store contents of A in location 52H

MOV 53H,A ; Store contents of A in location 53H

MOV 54H,A ; Store contents of A in location 54H

MOV 55H,A ; Store contents of A in location 55H

MOV 56H,A ; Store contents of A in location 56H

MOV 57H,A ; Store contents of A in location 57H

MOV 58H,A ; Store contents of A in location 58H

END

EXAMPLE 4.7

Write a program to store data FFH into RAM memory locations 50H to 58H using indirect addressing

mode.

 ORG 0000H ; Set program counter 0000H

 MOV A, #0FFH ; Load FFH into A

 MOV R0, #50H ; Load pointer, R0=50H

 MOV R5, #08H ; Load counter, R5=08H

Start: MOV @R0,A ; Copy contents of A to internal data RAM pointed

by R0

 INC R0 ; Increment pointer

 DJNZ R5, start ; Repeat until R5 is zero

 END

Chapter 4 8051Assembly Programming 101

EXAMPLE 4.8

Write a program to add two 16 bit numbers stored at locations 51H–52H and 55H–56H and store the

result in locations 40H, 41H and 42H. Assume that the least signifi cant byte of data and the result is

stored in low address and the most signifi cant byte of data or the result is stored in high address.

The program is as follows

ORG 0000H ; Set program counter 0000H

MOV A,51H ; Load the contents of memory location 51H into A

ADD A,55H ; Add the contents of memory location 55H with contents of A

MOV 40H,A ; Save the least signifi cant byte of the result in location

40H

MOV A,52H ; Load the contents of memory location 52H into A

ADDC A,56H ; Add the contents of 56H and cy fl ag with contents of A

MOV 41H,A ; Save the second byte of the result in location 41H

MOV A,#00 ; Load 00H into A

ADDC A,#00 ; Add the immediate data 00H and the contents of carry fl ag

to A

MOV 42H,A ; Save the most signifi cant byte of the result in location 42H

END

EXAMPLE 4.9

Write a program to subtract a 16 bit number stored at locations 51H–52H from 55H–56H and store

the result in locations 40H and 41H. Assume that the least signifi cant byte of data or the result is

stored in low address. If the result is positive, then store 00H, else store 01H in 42H.

The program is as follows

ORG 0000H ; Set program counter 0000H

MOV A,55H ; Load the contents of memory location 55H into A

CLR C ; Clear the borrow fl ag

SUBB A,51H ; Sub the contents of memory location 51H from contents of A

MOV 40H,A ; Save the least signifi cant byte of the result in location 40H

MOV A,56H ; Load the contents of memory location 56H into A

SUBB A,52H ; Sub the content of memory location 52H from the contents of A

MOV 41H,A ; Save the most signifi cant byte of the result in location 41H

MOV A, #00 ; Load 00H into A

ADDC A, #00 ; Add the immediate data and the contents of carry fl ag to A

MOV 42H, A ; If result is positive, store 00H, else store 01H in location 42H

END

 102 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 4.10

Write a program to add two Binary Coded Decimal (BCD) numbers stored at locations 60H and 61H

and store the result in BCD at memory locations 52H and 53H. Assume that the least signifi cant byte

of the result is stored in low address.

The program is as follows

ORG 0000H ; Set program counter 0000H

MOV A,60H ; Load the contents of memory location 60H into A

ADD A,61H ; Add the contents of memory location 61H with contents of A

DA A ; Decimal adjustment of the sum in A

MOV 52H, A ; Save the least signifi cant byte of the result in location 52H

MOV A,#00 ; Load 00H into A

ADDC A,#00 ; Add the immediate data and the contents of carry fl ag to A

MOV 53H,A ; Save the most signifi cant byte of the result in location 53

END

EXAMPLE 4.11

Write a program to clear 10 RAM locations starting at RAM address 1000H.

The program is as follows

 ORG 0000H ; Set program counter 0000H

 MOV DPTR, #1000H ; Copy address 1000H to DPTR

 CLR A ; Clear A

 MOV R6, #0AH ; Load 0AH to R6

again: MOVX @DPTR,A ; Clear RAM location pointed by DPTR

 INC DPTR ; Increment DPTR

 DJNZ R6, again ; Loop until counter R6 = 0

 END

EXAMPLE 4.12

Write a program to clear 10 RAM locations starting at RAM address 10H.

The program is as follows

 ORG 0000H ; Set program counter 0000H

 MOV R0, #10H ; Copy address 10H to R0

 CLR A ; Clear A

 MOV R6,#0AH ; Load 0AH to R6

Chapter 4 8051Assembly Programming 103

again: MOV @R0,A ; Clear RAM location pointed by R0

 INC R0 ; Increment R0

 DJNZ R6, again ; Loop until counter R6 = 0

 END

EXAMPLE 4.13

Write a program to compute 1 + 2 + …. + N (say 15) and save the sum at 70H

The program is as follows

 ORG 0000H ; Set program counter 0000H

 N EQU 15

 MOV R0, #00 ; Clear R0

 CLR A ; Clear A

again: INC R0 ; Increment R0

 ADD A, R0 ; Add the contents of R0 with contents of A

 CJNE R0, #N, again ; Loop until counter, R0 = N

 MOV 70H,A ; Save the result in location 70H

 END

EXAMPLE 4.14

Write a program to multiply two 8 bit numbers stored at locations 70H and 71H and store the result

at memory locations 52H and 53H. Assume that the least signifi cant byte of the result is stored in low

address.

The program is as follows

ORG 0000H ; Set program counter 0000H

MOV A,70H ; Load the contents of memory location 70H into A

MOV B,71H ; Load the contents of memory location 71H into B

MUL AB ; Perform multiplication

MOV 52H,A ; Save the least signifi cant byte of the result in location 52H

MOV 53H,B ; Save the most signifi cant byte of the result in location 53

END

EXAMPLE 4.15

Write a program to divide contents of 70H from contents of 71H (Assume contents of 70H is greater or

equal to contents of 71H). Store the remainder at memory location 53H and the quotient at memory

location 52H.

 104 8051 Microcontroller: Hardware, So ware & Applications

The program is as follows

ORG 0000H ; Set program counter 0000H

MOV A,70H ; Load the contents of memory location 70H into A

MOV B,71H ; Load the contents of memory location 71H into B

DIV AB ; Perform division

MOV 52H,A ; Save the quotient in location 52H

MOV 53H,B ; Save the remainder in location 53H

END

EXAMPLE 4.16

Ten 8 bit numbers are stored in internal data memory from location 50H. Write a program to

increment the data.

SOLUTION

Assume that ten 8 bit numbers are stored in internal data memory

from location 50H, hence R0 or R1 must be used as a pointer.

The program is as follows

 ORG 0000H ; Set program counter 0000H

 MOV R0,#50H ; Load pointer, R0=50H

 MOV R3,#0AH ; Load counter, R3=0AH

Loop1: INC @R0 ; Increment contents of internal data RAM pointed

by R0

 INC R0 ; Increment pointer

 DJNZ R3, loop1 ; Repeat until R3 is zero

 END

EXAMPLE 4.17

Write a program to store four 8 bit numbers in internal data RAM. Add these numbers and store the

result in 55H and 56H. Assume that the least signifi cant byte of the result is stored in low address.

The program is as follows

 ORG 0000H ; Set program counter 0000H

 MOV 41H,#55H ; Store the fi rst number in location 41H

 MOV 42H,#76H ; Store the second number in location 42H

 MOV 43H,#1AH ; Store the third number in location 43H

 MOV 44H,#9FH ; Store the fourth number in location 44H

 MOV R0,#41H ; Store the fi rst number address 41H in R0

 MOV R5,#04H ; Store the number 04H in R5

 CLR C ; Clear the carry fl ag

 MOV 56H,#00H ; Store the number 00H in location 56H

Chapter 4 8051Assembly Programming 105

 MOV 55H,#00H ; Store the number 00H in location 55

Loop: MOV A,55H ; Store the contents of location 55H in A

 ADD A,@R0 ; Add contents of memory with the contents of A

 MOV 55H,A ; Store the contents of A in location 55H

 MOV A,#00H ; Store the number 00H in A

 ADDC A,56H ; Add contents of 56H and the contents of carry fl ag

to A

 MOV 56H,A ; Store the contents of A in location 56H

 INC R0 ; Increment contents of register R0

 DJNZ R5,Loop ; Decrement R5, if it is not zero, branch to loop

 END

EXAMPLE 4.18

Write a program to fi nd the average of fi ve 8 bit numbers. Store the result in 55H. (Assume that after

adding fi ve 8 bit numbers, the result is 8 bit only)

The program is as follows

 ORG 0000H ; Set program counter 0000H

 MOV 40H,#05H ; Store the fi rst number in location 40H

 MOV 41H,#55H ; Store the second number in location 41H

 MOV 42H,#06H ; Store the third number in location 42H

 MOV 43H,#1AH ; Store the fourth number in location 43H

 MOV 44H,#09H ; Store the fi fth number in location 44H

 MOV R0,#40H ; Store the fi rst number address 40H in R0

 MOV R5,#05H ; Store the number 05H in R5

 MOV B,R5 ; Store the number 05H in B

 CLR A ; Clear the A

Loop: ADD A,@R0 ; Add contents of memory with the contents of A

 INC R0 ; Increment contents of register R0

 DJNZ R5,Loop ; Decrement R5, if it is not zero, branch to loop

 DIV AB ; Divide the result by 5 (A)/(B)

 MOV 55H,A ; Save the quotient in location 55H

 END

EXAMPLE 4.19

Write a program to fi nd the cube of an 8 bit number.

The program is as follows

ORG 0000H ; Set program counter 0000H

MOV R1,#N ; Load number to R1

MOV A,R1 ; Load number to A

MOV B,R1 ; Load number to B

 106 8051 Microcontroller: Hardware, So ware & Applications

MUL AB ; Square is computed

MOV R2,B ; Copy Contents of B(MSB of square) to R2

MOV B,R1 ; Load number to B

MUL AB ; Multiply LSB of square with B

MOV 50,A ; Store result in 51H and 50H

MOV 51,B

MOV A,R2 ; Copy MSB of square to A

MOV B,R1 ; Copy number to B

MUL AB ; Multiply MSB of square with B

ADD A,51H ; Add LSB of result to location 51H

MOV 51H,A ; Store result in 52H and 51H

MOV 52H,B

MOV A,#00H ; Clear A

ADDC A,52H ; Add contents of CF to contents of 52H

MOV 52H,A ; Cube is stored at locations 52, 51 and 50

END

EXAMPLE 4.20

Write a program to multiply two 16 bit unsigned numbers and store the result at 60H–63H. Numbers

are stored at 50H–51H and 52H–53H respectively. Assume that the least signifi cant byte of data is

stored in low address.

The 8051 provides only one multiplication instruction— MUL AB that multiplies the unsigned 8 bit

integers of registers A and B. As shown in Fig. 4.1, to multiply two 16 bit unsigned numbers, the

multiplier and the multiplicand must be broken down into 8 bit numbers as follows.

M = MH ML and N = NH NL

where MH, ML, NH, and NL are the upper and lower 8 bit of M and N respectively. Four 8 bit

multiplications must be performed and then partial products are added together.

Figure 4.1 16 bit by 16 bit multiplication

Chapter 4 8051Assembly Programming 107

The program is as follows

ORG 0000H ; Set program counter 0000H

MOV A,50H ; Place LSB of Multiplier in A

MOV B,52H ; Place LSB of Multiplicand in B

MUL AB ; Compute product

MOV 60H,A ; Store LSB of the result

MOV 61H,B ; Store MSB of the result

MOV A,51H ; Place MSB of Multiplier in A

MOV B,53H ; Place MSB of Multiplicand in B

MUL AB ; Compute product

MOV 62H,A ; Store LSB of the result

MOV 63H,B ; Store MSB of the result

MOV A,51H ; Place MSB of Multiplier in A

MOV B,52H ; Place LSB of Multiplicand in B

MUL AB ; Compute product

ADD A,61H ; Add the result to P+1

MOV 61H,A ; Store LSB of the result

MOV A,B

ADDC A,62H ; Add the result to P+2

MOV 62H,A

MOV A,63H

ADDC A,#0H

MOV 63H,A ; Store MSB of the result in P+3

MOV A,50H ; Place LSB of Multiplier in A

MOV B,53H ; Place MSB of Multiplicand in B

MUL AB ; Compute product

ADD A,61H ; Add the result to P+1

MOV 61H,A ; Store LSB of result in P+1

MOV A,B

ADDC A,62H ; Add the result to P+2

MOV 62H,A ; Store the result in P+2

MOV A,63H

ADDC A,#0H ; Add the result to P+3

MOV 63H,A ; Store the result in P+3

END

 108 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 4.21

Write a program to exchange the lower nibble of data present in external memory 6000H and

6001H.

The program is as follows

ORG 0000H ; Set program counter 0000H

MOV DPTR, #6000H ; Copy address 6000H to DPTR

MOVX A, @DPTR ; Copy contents of 6000H to A

MOV R0,#45H ; Load pointer, R0=45H

MOV @R0,A ; Copy contents of A to internal data RAM pointed by R0

INC DPL ; Increment pointer

MOVX A,@DPTR ; Copy contents of 6001H to A

XCHD A,@R0 ; Exchange lower nibble of A with RAM pointed by R0

MOVX @DPTR,A ; Copy contents of A to 6001H

DEC DPL ; Decrement pointer

MOV A,@R0 ; Copy contents of internal data RAM pointed by R0 to A

MOVX @DPTR,A ; Copy contents of A to data RAM pointed by DPTR

END

EXAMPLE 4.22

Write a program to count the number of 1’s and 0’s of 8 bit data stored in location 6000H.

The program is as follows

 ORG 0000H ; Set program counter 0000H

 MOV DPTR, #6000H ; Copy address 6000H to DPTR

 MOVX A, @DPTR ; Copy number to A

 MOV R0,#08 ; Copy 08 in R0

 MOV R2,#00 ; Copy 00 in R2

 MOV R3,#00 ; Copy 00 in R3

 CLR C ; Clear carry fl ag

 BACK: RLC A ; Rotate contents of A through carry fl ag

 JC NEXT ; If CF = 1, branch to next

 INC R2 ; If CF = 0, increment R2

 AJMP NEXT2

NEXT: INC R3 ; If CF = 1, increment R3

 NEXT2: DJNZ R0,BACK ; Repeat until R0 is zero

 END

Chapter 4 8051Assembly Programming 109

EXAMPLE 4.23

An 8 bit code word is stored in location 1000H of external data memory. Code word is valid, if three

MSBs are zero and it contains two ones in the remaining fi ve bits. If code word is valid, store FF, else

store 00 in 1001H.

SOLUTION

Code word is valid if three MSBs are zero and it contains two ones

in the remaining fi ve bits, for example—00010010, then code word is

valid.

The program is as follows

 ORG 0000H ; Set program counter 0000H

 MOV DPTR, #1000H ; Copy address 1000H to DPTR

 MOVX A, @DPTR ; Copy number to A

 MOV R1,A ; Copy number to R1

 INC DPTR

 MOV R2,#05 ; Copy 05 in R2

 MOV R3,#00 ; Copy 00 in R3

 MOV R4,#00 ; Copy 00 in R4

 CLR C ; Clear carry fl ag

 ANL A,#0EOH ; Mask lower 5 bit

 CJNE A,#00,LOOP1 ; If fi rst condition fails, branch to LOOP1

 MOV A,R1 ; Check the second condition

 BACK: RRC A

 JNC LOOP2

 INC R3

 LOOP2: DNZ R2,BACK

 MOV A,R3

 CJNE A, #02H, LOOP1 ; If second condition fails, branch to LOOP1

and store 00H

 DEC R4 ; Code word is valid, to store FF, decrement R4

 LOOP1: MOV A,R4

 MOVX @DPTR,A

 END

EXAMPLE 4.24

Ten 8 bit numbers are stored in external data memory from location 5000H. Write a program to

transfer a block of data to location 6000H.

SOLUTION

Assume ten 8 bit numbers are stored in external data memory from

location 5000H, hence DPTR must be used as a pointer.

 110 8051 Microcontroller: Hardware, So ware & Applications

The program is as follows

 ORG 0000H ; Set program counter 0000H

 MOV R4,#00H ; Load 00H to R4

 MOV R5,#50H ; Load 50H to R4

 MOV R2,#00H ; Load 00H to R2

 MOV R3,#60H ; Load 60H to R4

 MOV R6,#0AH ; Load counter, R6=0AH

Loop1: MOV DPL,R4 ; Copy contents of R5 and R4 to DPTR

 MOV DPH,R5

 MOVX A,@DPTR ; Copy contents of data RAM pointed by DPTR to A

 MOV DPL,R2 ; Copy contents of R3 and R2 to DPTR

 MOV DPH,R3

 MOVX @DPTR,A ; Copy contents of A to data RAM pointed by

DPTR

 INC R4 ; Increment R4

 INC R2 ; Increment R2

 DJNZ R6,Loop1 ; Repeat until R6 is zero

 END

EXAMPLE 4.25

Write a program to shift a 24 bit number stored at 57H–55H to the left logically four places. Assume

that the least signifi cant byte of data is stored in lower address.

The program is as follows

 ORG 0000H ; Set program counter 0000H

 MOV R1,#04 ; Set up loop count to 4

again: MOV A,55H ; Place the least signifi cant byte of data in A

 CLR C ; Clear the carry fl ag

 RLC A ; Rotate contents of A (55H) left by one position

through carry

 MOV 55H,A

 MOV A,56H

 RLC A ; Rotate contents of A (56H) left by one position

through carry

 MOV 56H,A

 MOV A,57H

 RLC A ; Rotate contents of A (57H) left by one

position through carry

 MOV 57H,A

 DJNZ R1, again ; Repeat until R1 is zero

 END

Chapter 4 8051Assembly Programming 111

EXAMPLE 4.26

Write a program to fi nd the smallest number of an array of N 8 bit unsigned numbers (N is an 8 bit

number). The starting address of the array is at 2000H and stores the result in 2500H.

SOLUTION

N 8 bit numbers are stored in external data memory from location 2000H, hence DPTR must be

used as a pointer.

ALGORITHM

 Step 1: Initialise data in memory

 Step 2: Initialise R4 with N-1

 Step 3: Initialise DPTR with address of the array

 Step 4: Load the element pointed by DPTR into A and increment DPTR

 Step 5: Load the next element to register TEMP

 Step 6: Compare contents of A with contents of TEMP

 Step 7: If A is greater, then copy the next elements into A

 Step 8: Increment the pointer and decrement R5 register

 Step 9: Check if all the elements have been compared in the array

(i.e. R5 = 0?)

 Step 10: No, go to step 5

 Step 11: If R4 is zero, terminate the program

The program is as follows

 ORG 0000H ; Set program counter 0000H

 TEMP EQU 40H

 N EQU 04H ; Array count

 MOV R4,#N-1 ; Load N-1 to R4

 MOV DPTR,#2000H ; Store the starting address of the array in DPTR

 MOVX A,@DPTR ; Copy fi rst number to A

 LOOP1: MOV R1,A ; Copy contents of A to R1

 again: INC DPTR ; Increment DPTR

 MOVX A,@DPTR ; Get the next number to A

 MOV TEMP,A ; Copy the next number to TEMP

 MOV A,R1

 CJNE A,TEMP, LOOP2 ; (A)≠(TEMP) branch to LOOP2

 SJMP LOOP3 ; (A)=(TEMP) branch to LOOP3

 LOOP2: JC LOOP3 ; (A)<(TEMP) branch to LOOP3

 MOV A,TEMP ; (A)>(TEMP) copy contents of TEMP to A

 LOOP3: DJNZ R4,LOOP1 ; Repeat until R4 is zero

 END

 112 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 4.27

N 8 bit numbers are stored in external data memory. Write a program to arrange the numbers in

ascending order.

ALGORITHM

Step 1: Initialise data in memory

Step 2: Initialise R4 with N-1

Step 3: Initialise DPTR with address of the array

Step 4: Copy the contents of R4 to R5 register

Step 5: Load the element pointed by DPTR into A and the next element

to register TEMP

Step 6: Compare contents of A with contents of TEMP

Step 7: If A is greater, then exchange the two elements in the

memory

Step 8: Increment the pointer and decrement R5 register

Step 9: Check if all the elements have been compared in the array

(i.e. R5 = 0?)

Step 10: No, go to step 5

Step 11: Yes, decrement R4; if it is not zero, go to step 3

Step 12: If R4 is zero, terminate the program

The program is as follows

 ORG 0000H ; Set program counter 0000H

 TEMP EQU 40H

 N EQU 04H ; Array count

 MOV R4,#N-1 ; Load N-1 to R4

 LOOPS: MOV DPTR,#2000H ; Store the starting address of the array in DPTR

 MOV R5,R4

 LOOP1: MOVX A,@DPTR ; Copy contents of memory pointed by DPTR to A

 MOV R1,A ; Copy contents of A to R1

 INC DPTR ; Increment DPTR

 MOVX A,@DPTR ; Get the next number to A

 MOV TEMP,A ; Copy the next number to TEMP

 MOV A,R1

 CJNE A,TEMP, Loop2 ; (A) ≠ (TEMP) branch to LOOP2

 SJMP LOOP3 ; (A) = (TEMP) branch to LOOP3

 LOOP2: JC LOOP3 ; (A) < (TEMP) branch to LOOP3

 MOVX @DPTR,A ; (A) > (TEMP) exchange contents of two locations

 MOV A,TEMP

 DEC DPL

Chapter 4 8051Assembly Programming 113

 MOVX @DPTR,A

 INC DPL

 LOOP3: DJNZ R5,LOOP1 ; Repeat until R5 is zero

 DJNZ R4,LOOPS ; Repeat until R4 is zero

 END

EXAMPLE 4.28

N 8 bit numbers are stored in internal data memory. Write a program to arrange the numbers in

descending order.

The program is as follows

 ORG 0000H ; Set program counter 0000H

 TEMP EQU 40H

 N EQU 04H ; Array count

 MOV R4,#N-1 ; Load N-1 to R4

 LOOPS: MOV R0,#41H ; Store the starting address of the array in R0

 MOV R5,R4

 LOOP1: MOV A,@R0 ; Copy contents of memory pointed by R0 to A

 MOV R1,A ; Copy contents of A to R1

 INC R0 ; Increment R0

 MOV A,@R0 ; Get the next number to A

 MOV TEMP,A ; Copy the next number to TEMP

 MOV A,R1

 CJNE A,TEMP, LOOP2 ; (A) ≠ (TEMP) branch to LOOP2

 SJMP LOOP3 ; (A) = (TEMP) branch to LOOP3

 LOOP2: JNC LOOP3 ; (A) > (TEMP) branch to LOOP3

 MOV @R0,A ; (A) < (TEMP) exchange contents of two locations

 MOV A,TEMP

 DEC R0

 MOV @R0,A

 INC R0

 LOOP3: DJNZ R5,LOOP1 ; Repeat until R5 is zero

 DJNZ R4,LOOPS ; Repeat until R4 is zero

 END

 114 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 4.29

Write a program to convert a binary number stored in location 6000H to BCD and store the result in

51H–50H.

The program is as follows

 ORG 0000H ; Set program counter 0000H

 MOV DPTR, #6000H ; Store the address of the memory in DPTR

 MOVX A, @DPTR ; Copy contents of memory pointed by DPTR to A

 MOV R0,#00H ; Clear R0

 CJNE A,#09, NEXT ; (A) ≠ 09 branch to NEXT

 AJMP LAST ; (A) = 09 branch to LAST

 NEXT: JC LAST ; (A) < 09 branch to LAST

 CJNE A,#63, NEXT1 ; (A) ≠ 63H branch to NEXT1

 AJMP NEXT2 ; (A) = 63H branch to NEXT2

 NEXT1: JC NEXT2 ; (A) < 63H branch to NEXT2

 MOV B,#64H ; (A) > 63H divide contents of A by 100 (64H)

 DIV AB ; divide contents of A by contents of B

 MOV R0,A

 MOV A,B

 NEXT2: CJNE A,#09H,NEXT3 ; (A) ≠ 09 branch to NEXT3

 AJMP LAST ; (A) = 09 branch to LAST

 NEXT3: JC LAST ; (A) < 09 branch to LAST

 MOV B,#0AH ; (A) > 09 divide contents of A by 10 (0A H)

 DIV AB ; After division, Q is in A and R is in B

 SWAP A ; Get Q in upper nibble of A

 ORL A,B ; Get R in lower nibble of A

 LAST: MOV 51H,R0 ; Store result in 51H and 50H.

 MOV 50H,A

 END

EXAMPLE 4.30

Write a program to convert BCD number stored in location 6000H to binary and store the result in

5100H.

The program is as follows

ORG 0000H ; Set program counter 0000H

MOV DPTR, #6000H ; Store the address of the memory in DPTR

MOVX A, @DPTR ; Copy contents of memory pointed by DPTR to A

ANL A,#0FH ; Mask upper nibble of A

MOV R1,A ; Copy contents of A in R1

MOVX A, @DPTR ; Copy contents of memory pointed by DPTR to A

Chapter 4 8051Assembly Programming 115

ANL A,#F0H ; Mask lower nibble of A

SWAP A ; Exchange upper and lower nibble of A

MOV B,A

MOV A,#0AH

MUL AB ; Multiply upper nibble with 10 (0AH)

ADD A,R1 ; Add lower nibble of A with result

MOV DPTR, #5100H

MOVX @DPTR, A ; Store result in 5100H

END

EXAMPLE 4.31

Write a program to convert an ASCII number stored in location 7000H of external data RAM to hex.

Store the result in 5000H.

The program is as follows

 ORG 0000H ; Set program counter 0000H

 MOV DPTR, #7000H ; Store the address of the memory in DPTR

 MOVX A, @DPTR ; Copy contents of memory pointed by DPTR to A

 CJNE A,#39H, NEXT1 ; (A) ≠ 39H branch to NEXT1

 AJMP NEXT2 ; (A) = 39H branch to NEXT2

 NEXT1: JC NEXT2 ; (A) < 39H branch to NEXT2

 CLR C

 SUBB A,#37H ; (A) > 39H Sub 37H

 AJMP NEXT5 ; Branch to NEXT5

 NEXT2: CLR C

 SUBB A,#30H ; (A) < 39H Sub 30H

 NEXT5: MOV DPTR, #5000H

 MOVX @DPTR, A ; Store the result in 5000H

 END

EXAMPLE 4.32

Write a program to convert hex number stored in location 7000H of external data RAM to ASCII.

Store the result in 5000H.

The program is as follows

 ORG 0000H ; Set program counter 0000H

 MOV DPTR, #7000H ; Store the address of the memory in DPTR

 MOVX A, @DPTR ; Copy contents of memory pointed by DPTR to A

 CJNE A,#9H, NEXT1 ; (A) ≠ 9H branch to NEXT1

 116 8051 Microcontroller: Hardware, So ware & Applications

 AJMP NEXT2 ; (A) = 9H branch to NEXT2

 NEXT1: JC NEXT2 ; (A) < 9H branch to NEXT2

 ADD A,#07H ; (A) > 9H add 37H

 NEXT2: ADD A,#30H ; (A) < 9H add 30 H

 MOV DPTR, #5000H

 NEXT5: MOVX @DPTR,A ; Store the result in 5000H

 END

EXAMPLE 4.33

Write a program to convert an 8 bit BCD number stored in location 7000H of external data RAM to

ASCII. Store the result in locations 5000H and 5001H.

The program is as follows

ORG 0000H ; Set program counter 0000H

MOV DPTR, #7000H ; Copy address 7000H to DPTR

MOVX A, @DPTR ; Copy number to A

MOV DPTR, #5000H ; Copy address 5000H to DPTR

MOV R2,A ; Copy BCD data in R2

ANL A,#0FH ; Mask the upper nibble

ORL A,#30H ; Convert the lower nibble to ASCII

MOVX @DPTR,A ; Store the result in 5000H

MOV A,R2 ; Get the original data

ANL A,#0F0H ; Mask the lower nibble

SWAP A

ORL A,#30H ; Convert the upper nibble to ASCII

INC DPTR ; Increment DPTR

MOVX @DPTR,A ; Store the result in 5001H

END

EXAMPLE 4.34

Write a program to convert an ASCII number stored in locations 7000H and 7001H of external data

RAM to packed BCD. Store the result in location 5000H.

The program is as follows

ORG 0000H ; Set program counter 0000H

MOV DPTR, #7000H ; Copy address 7000H to DPTR

MOVX A, @DPTR ; Copy contents of 7000H to A

CLR C ; Clear carry fl ag

Chapter 4 8051Assembly Programming 117

SUBB A,#30H ; Sub 30H, convert number to BCD

MOV R2,A

INC DPTR

MOVX A, @DPTR ; Copy contents of 7001H to A

CLR C

SUBB A,#30H ; Sub 30H, convert number to BCD

SWAP A

OR A,R2 ; Convert result to packed BCD

MOV DPTR, #5000H ; Copy address 5000H to DPTR

MOVX @DPTR,A ; Store the result in 5000H

END

EXAMPLE 4.35

Write a program to convert binary code stored in location 6000H to gray code. Store the result in

location 5000H.

ALGORITHM

 1. Copy data from memory to A and R0.

 2. Shift contents of A right by one position and store 0 in MSB.

 3. EX-OR contents of A with R0 and store the result in memory.

The program is as follows

ORG 0000H ; Set program counter 0000H

MOV DPTR, #6000H ; Copy address 6000H to DPTR

MOVX A, @DPTR ; Copy number to A

MOV DPTR, #5000H ; Copy address 5000H to DPTR

MOV R0,A ; Copy data in R0

CLR C ; Clear carry fl ag

RRC A ; Rotate contents of A right by one position

XRL A,R0 ; ER-OR contents of A with R0

MOVX @DPTR,A ; Store result in location 5000H

END

EXAMPLE 4.36

Two 8 bit numbers are stored in locations 1000H and 1001H of external data memory. Write a program

to fi nd the Greatest Common Divisor (GCD) of two numbers and store the result in location 2000H.

 118 8051 Microcontroller: Hardware, So ware & Applications

ALGORITHM

Step 1 : Initialise external data memory with data and DPTR with address

Step 2 : Load A and TEMP with the operands

Step 3 : Are the two operands equal? If yes, go to step 9

Step 4 : Is (A) greater than (TEMP)? If yes, go to step 6

Step 5 : Exchange (A) with (TEMP) such that A contains the bigger number

Step 6 : Perform division operation (contents of A with contents of TEMP)

Step 7 : If the remainder is zero, go to step 9

Step 8 : Move the remainder into A and go to step 4

Step 9 : Save the contents of TEMP in memory and terminate the program

 The program is as follows

 ORG 0000H ; Set program counter 0000H

 TEMP EQU 70H

 TEMP1 EQU 71H

 MOV DPTR, #1000H ; Copy address 1000H to DPTR

 MOVX A, @DPTR ; Copy First number to A

 MOV TEMP,A ; Copy First number to temp

 INC DPTR

 MOVX A, @DPTR ; Copy Second number to A

 LOOPS: CJNE A,TEMP,LOOP1 ; (A) ≠ (TEMP) branch to LOOP1

 AJMP LOOP2 ; (A) = (TEMP) branch to LOOP2

 LOOP1: JNC LOOP3 ; (A) > (TEMP) branch to LOOP3

 MOV TEMP1,A ; (A) < (TEMP) exchange (A) with (TEMP)

 MOV A,TEMP

 MOV TEMP,TEMP1

 LOOP3: MOV B,TEMP

 DIV AB ; Divide (A) by (TEMP)

 MOV A,B ; Move remainder to A

 CJNE A,#00,LOOPS ; (A) ≠ 00 branch to LOOPS

 LOOP2: MOV A,TEMP

 MOV DPTR,#2000H

 MOVX @DPTR,A ; Store the result in 2000H

 END

4.4 TIME DELAY CALCULATIONS

The 8051 instructions execution time is calculated either by the number of machine cycles or the oscillator

periods. A machine cycle depends on the frequency of the oscillator periods connected to the 8051 and is equal

to 12 oscillator periods. The frequency of the 8051 family can vary from 1 MHz to 30 MHz. The number of

machine cycles for 8051 instructions can be found from instruction set summary (Section 3.7). By knowing

the execution time for each instruction, delay programs to generate different delays can be created.

Chapter 4 8051Assembly Programming 119

EXAMPLE 4.37

Write a program to create a delay of 1 ms. Assume that the oscillator frequency is 12 MHz.

SOLUTION

Oscillator period = 1/12 MHz

1 Machine cycle = (1/12 MHz) × 12 = 1µs

Execution time for the following instruction sequence is 8 ¥ 1 µs

= 8 µs

 Start: PUSH ACC 2 Machine cycles

 POP ACC 2 Machine cycles

 NOP 1 Machine cycle

 NOP 1 Machine cycle

 DJNZ R1,Start 2 Machine cycles

To create a delay of 1 ms, the program must be executed 125 times

 = 1 ms / 8 µs = 1000 µs /8 µs = 125

Program to create 1 ms is as follows

 MOV R1,#125 2 Machine cycles

Start: PUSH ACC 2 Machine cycles

 POP ACC 2 Machine cycles

 NOP 1 Machine cycle

 NOP 1 Machine cycle

 DJNZ R1,Start 2 Machine cycles

Actual time is 2 µs more than 1 ms. The instruction MOV R1,#125

takes 2 Machine cycles to execute. This instruction is the overhead

for setting up the delay loop.

EXAMPLE 4.38

Write a program to create a delay of 0.1 second or 100 ms. Assume that the oscillator frequency is

12 MHz.

SOLUTION

Oscillator period = 1/12 MHz

1 Machine cycle = (1/12 MHz) × 12 = 1 µs

By repeating the previous program 100 times, a time delay of 0.1

second can be created.

 = (100 ms / 1 ms) = 100

Program to create 0.1 second is as follows

 MOV R2,#100 2 Machine cycles

 120 8051 Microcontroller: Hardware, So ware & Applications

 Start1: MOV R1,#125 2 Machine cycles

 Start: PUSH ACC 2 Machine cycles

 POP ACC 2 Machine cycles

 NOP 1 Machine cycle

 NOP 1 Machine cycle

 DNZ R1,Start 2 Machine cycles

 DNZ R2, Start1 2 Machine cycles

Actual time is 202 µs more than 0.1 second. The instruction MOV

R1,#125 and MOV R2,#100 take 2 Machine cycles to execute. Therefore

the total overhead is 202 µs.

EXAMPLE 4.39

Write a program to create a delay of 1 second or 1000 ms. Assume that the oscillator frequency is 12

MHz.

SOLUTION

Oscillator period = 1/12 MHz

1 Machine cycle = (1/12 MHz) × 12 = 1 µs

By repeating the previous program loop 10 times, a time delay of 1

second can be created i.e. (1000 ms/100 ms) = 10

Program to create 1 second delay is as follows

 MOV R3,#10 2 Machine cycles

 Start2: MOV R2,#100 2 Machine cycles

 Start1: MOV R1,#125 2 Machine cycles

 Start: PUSH ACC 2 Machine cycles

 POP ACC 2 Machine cycles

 NOP 1 Machine cycle

 NOP 1 Machine cycle

 DNZ R1,Start 2 Machine cycles

 DNZ R2, Start1 2 Machine cycles

 DNZ R3, Start2 2 Machine cycles

Actual time is (2 + 20 + 2500) µs = 2522 µs more than 1 second. The

instruction MOV R1,#125, MOV R2,#100 and MOV R3,#10 take 2 Machine

cycles to execute. Therefore the total overhead is 2522 µs.

Chapter 4 8051Assembly Programming 121

EXAMPLE 4.40

Find the time delay for the following subroutine, assuming a crystal frequency of 11.0592 MHz.

 MOV R2,#25 2 Machine cycles

 Start: NOP 1 Machine cycle

 NOP 1 Machine cycle

 NOP 1 Machine cycle

 NOP 1 Machine cycle

 DNZ R2, Start 2 Machine cycles

 RET 1 Machine cycle

SOLUTION

 Oscillator period = 1/11.0592 MHz

 1 Machine cycle = (1/11.0592MHz) × 12 = 1.085 µs

 Time delay inside the start loop is [25 (1 + 1 + 1 + 1 + 2)] × 1.085 µs

 = 150 × 1.085 µs = 162.75 µs.

 Adding 3 Machine cycles of MOV R2, #25 and RET instructions outside

the loop = 3 × 1.085 µs = 3.255 µs

Total Delay = 162.75 + 3.255 µs = 166.005 µs.

Note: For 8052 microcontroller, the calculation of time and delay

programs remain same as discussed.

Programming environment of the 8051 has been elucidated in this chapter. Assembler directives

are explained with examples. A proper study of this chapter will enable you to write simple

programs such as addition, subtraction, multiplication, arranging numbers in ascending/

descending order, etc. All instructions take some amount of time to execute. Writing delay

programs and calculation of time taken by the processor to execute the programs have been

discussed with examples.

 1. What are assembler directives? Explain any two directives.

 2. Explain the signifi cance of the following assembler directives in assembly language programming.

 (a) ORG (b) EQU (c) DB

 3. Write a program to subtract a 16 bit number stored in locations Y and Y + 1 from a 16 bit number

stored in locations X and X + 1. Store the result in locations Z and Z + 1.

 122 8051 Microcontroller: Hardware, So ware & Applications

 4. Write a program to store the following numbers in bank 0.

 98H, 10101100B, 22D, A4H, 11100011B, 99D, FBH and 60D

 5. Write a program to copy the contents of successive memory locations (30H to 37H) to bank 0, using

direct and indirect addressing mode.

 6. Write a program to fi nd the number of 1s in an 8 bit number stored at memory location 6000H.

 7. Write a program to fi nd the sum of two 32 bit numbers. The bytes of the fi rst number are stored in

40H–43H and the bytes of the second number are stored in 50H–53H. Store the result in memory

locations starting from 60H.

 8. Write a program to subtract the number in location 30H from the number in location 31H by using

2’s complement subtraction method. Store the result in location 33H. Store 00H in location 34H, if

the result is positive, else store 01, if the result is negative.

 9. Write a program to fi nd number of 1s and 0s in an 8 bit number stored at memory location 50H.

 10. Write a program to fi nd whether an 8 bit number at location 40H is 2 out of 5 code. The number is

valid, if the three MSBs are 1 and in the remaining 5 bit, at least 2 bit are 1. If code is valid, store

FFH at 41H, else store 00H.

 11. Can you call a subroutine using JMP? Explain with an example and corresponding assembly

language program.

 12. Write a program to store the numbers 00H to 05H at locations 30H to 35H using PUSH instructions.

Store these values at locations 40H to 45H using POP instructions.

 13. Write a program to fi nd the sum of N BCD numbers stored at successive locations starting from

41H. Store the result in BCD in locations 51H and 50H.

 14. Write a program to multiply two 32 bit numbers stored at internal data memory 43H–40H and

48H–45H. Store the result at 57H–50H.

 15. Write a program to swap the last element of an array with the fi rst element, the next to last element

with the second element, etc. Assume that the array has ten 8 bit numbers and the array starts at 40H

of internal data memory.

 16. An array contains signed twenty 8 bit numbers. Write a program to compute the sum of the positive

numbers of an array and store the result in external data memory.

 17. An array contains ten 8 bit numbers that are stored starting from location 1000H of external data

memory. Write a program to fi nd the average of the square of each element.

 18. Write a program for addition of two N byte BCD numbers.

 19. Write a program to compute X YI I

I=1

N

Â , where X
I
 and Y

I
 are 8 bits numbers and N = 8.

 20. Two 8 bit numbers are stored in external data memory. Write a program to fi nd LCM of these two

numbers.

 21. An array contains twenty 8 bit numbers that are stored starting from location 1000H of external data

memory. Write a program to add all the even numbers in an array and store the result in 2001H and

2000H.

 22. Write a program to fi nd the number of elements that are divisible by 4 from an array of twenty 8 bit

numbers. The array starts from 3000H of external data memory.

 23. Write a program to compute HCF of two 16 bit numbers.

 24. Write a subroutine to implement insertion sort algorithm to arrange the numbers in ascending or

descending order.

Chapter 4 8051Assembly Programming 123

 25. Write a program to fi nd the square root of an 8 bit number.

 26. Write a program to check whether the number stored in location 45H is a palindrome. Store FFH in

location 46H, if it is a palindrome, else store 00H.

 27. Write a program to create a delay of 200 msec. Assume that the oscillator frequency is

11.0592 MHz.

 28. Write a program to create a delay of 50 ms. Assume that the oscillator frequency is 6 MHz.

 29. Write a subroutine to create a delay of 20 ms. Assume that the oscillator frequency is 11.0592 MHz.

Using subroutine, write a program to create a delay of 0.1 second.

 30. Write a subroutine to create a delay of 50 ms. Assume that the oscillator frequency is 12 MHz.

Using subroutine, write a program to create a delay of 0.1 second.

SOFTWARE
DEVELOPMENT TOOLS

FOR 8051

Learning Objectives

After you have completed this chapter, you should be able to

 Explain Integrated Development Environment

 Work with A51 assembler and S51 simulator (DOS Version)

 Work with C compiler and simulator (SIDE 51)

 Work with C compiler and simulator (Keil µVision)

5.1 INTEGRATED DEVELOPMENT

ENVIRONMENT

Microcontrollers are programmed using an integrated development environment. In the process of code

development for microcontrollers, we make use of assembly language and high-level language. Programs

are developed and edited using personal computers. Computers are built with microprocessors (e.g.,

Pentium IV). These processors are used to develop codes for the targeted microcontroller. The processor

used to develop codes is called development processor. The processor for which codes are developed is

called target processor. In the process of developing codes for the microcontroller, we make use of

5

Chapter 5 So ware Development Tools for 8051 125

softwares, namely assembler, debugger, simulator and compiler. These softwares enable us to write, edit

and debug assembly and C programs. We simulate the functionality of a microcontroller using simulator

software on the computer. The simulator enables us to view various registers and memory contents after

running the program. Intermediate results in various registers and memory can also be verifi ed using a single

step mode. Finally, machine codes are downloaded to the memory of the target processor. The development

processor, software and target processor together are called Integrated Development Environment (IDE).

In Circuit Debugger

The developed program is downloaded to the microcontroller program memory (EPROM/FLASH)

using serial communication (RS232) and run on the hardware. The software program establishes serial

communication between development processor and target processor to download the code. After burning

of code, the program is executed on the hardware. In case of errors in the expected output, the program

can be modifi ed and reloaded again to the target microcontroller. This is called In Circuit Debugging. The

hardware setup and connectors used for this purpose is called In Circuit Debugger (ICD).

The program written using high-level language is compiled to the machine language of the

microcontroller. The software to edit, debug, simulate and compile is usually available as one package, e.g.

compiler SIDE51 from SPJ systems and compiler µVision of Kiel corp. A51 assembler and S51 simulator

are DOS-based assembler and simulator respectively. The programs written in C (.c fi les) or assembly

(.asm) are converted to machine language (.hex fi les) and loaded to the on-chip program memory of the

microcontroller. Development software generates .lst, .obj, and .hex fi les. Software like Flash magic is used

to burn the desired hex fi le to the program memory.

5.2 A51 ASSEMBLER AND S51 SIMULATOR

Earlier versions of software for the code development are based on DOS (e.g., A51 such assembler). The

following are the steps to develop the code.

To create an .asm fi le, compile, load and run

 1. Restart the computer in MS-DOS mode. Change the working directory to 8051. Create your fi le and

type in the mnemonics and save the fi le with .asm extension.

 (e.g., add.asm)

 2. To compile the program,

 8051>a51 add.asm

 When the .asm fi le is compiled, .lst and .obj fi les are generated by the assembler.

 3. To load and run the program,

 8051>s51

 The simulator window appears.

 ∑ Select ‘previous machine’ option.

 ∑ Enter ‘book.bss’ option (this initialises the simulator for loading the .obj fi le).

 ∑ Select ‘load’ option, Enter the fi le name with .obj extension (e.g., add.obj).

 ∑ Select the option ‘Run’. This will run the program using simulator software and generates .hex fi le.

 ∑ When you run the program, contents of various registers of 8051 and memory locations are

displayed in the window. Verify the results of your program.

 4. To download the .hex codes to the program memory of 8051, change the working directory to b30drv.

 8051>b30drv

 Select options F10, and then 3. Enter fi le name add.obj.

 126 8051 Microcontroller: Hardware, So ware & Applications

5.3 SC51 C COMPILER (SIDE 51)

SIDE 51 is a windows-based compiler developed by SPJ Systems. The following are the steps to develop

the code.

Starting the IDE

Click on START button and select Programs/SPJ Systems SC51/SIDE51. A window as shown in Fig. 5.1

appears on the screen.

Figure 5.1 Window to start IDE (Courtesy SPJ Systems)

Creating a New Project

A project is a fi le in which SIDE51 stores all information related to an application. For example, it stores

the name(s) of ‘C’ and/or assembler source fi le(s), memory model to be used and other options for compiler,

assembler and linker.

To open an existing project fi le, select Project/Open Project from the menu.

To create a new project, select Project/New Project from the menu.

Changing Project Settings

To change the project settings (such as adding or removing ‘C’ and/or assembler source fi le(s), changing

memory model, etc.), select Project/Settings from the menu. The screen displays the status as shown in

Fig. 5.2.

There are 3 tabs in the project settings window.

1. Source Files This tab is automatically selected when you open the Project Settings window. When this

tab is selected, you can see the list of fi les that are part of this project. This list is divided into groups of C

fi les, ASM fi les, OBJ fi les and LIB fi les. To remove a fi le from the project, select the fi lename by clicking

Chapter 5 So ware Development Tools for 8051 127

on it and then press the ‘Remove File’ button. To add a fi le to the project, press the ‘Add File’ button, select

desired fi le and then press ‘Open’ button. The SIDE51 allows adding up to 16 C fi les, 16 ASM fi les, 16 OBJ

fi les and 16 LIB fi les in a project.

Figure 5.2 Window to change project se ings (Courtesy SPJ Systems)

2. SC51 This tab lists some options for the SC51 compiler. You can select the ‘Target micro-controller’

by selecting the desired manufacturer’s name from the list, and then selecting the desired 8051 derivative

name from the list of micro-controllers. Depending on the processor selected, the amount of internal data

memory (128 or 256 bytes) is automatically selected. However, you may change it, if there is a need. You

can also enter the crystal frequency used in the target (this information may later be used by the simulator).

You may check the ‘Generate debug info’ option, if you wish to use the simulator. You also have the option

to check the ‘Include C source lines in generated ASM fi le’.

3. SLINK51 This tab lists some options for SLINK51 linker. You may enter the start and end address

of xdata memory. If you need the ROM image fi le (.BIN) fi le, you should check the option ‘Generate BIN

fi le’.

Set the necessary options in all the three tabs and then, press ‘Ok’ button. This will save the changed

settings in the project fi le. To discard the changes made, press ‘Cancel’ button.

Opening an Existing Project

Select Project/Open Project from the menu. Select the path where you had installed SC51 and select the

‘Examples’ folder. You will see a list of project fi les (Example . P51).

Compiling the Program

To compile the program, select Compile/Build or Compile/Re-build All from the menu. Doing this

may invoke one or more of these applications: C compiler, Assembler, and Linker. If there are no

errors, then Intel HEX format fi le (.HEX) and optionally .BIN fi le will be produced. The error and

warning messages produced by compiler, assembler, and linker will be displayed in the error window. If

there are errors, correct the errors and repeat the process until all errors are removed.

 128 8051 Microcontroller: Hardware, So ware & Applications

Running the Program

To run (i.e. debug) the program, select Tools/Simulator from the menu. Doing this will invoke the simulator

program. The window as shown in Fig. 5.3 appears on the screen.

∑ To monitor memory locations in the external RAM, select View / External RAM watch.

∑ To monitor memory locations in the internal RAM, select View / Internal RAM watch.

∑ To monitor the status of connected peripheral devices, select View / I/O watch from the menu.

∑ To monitor the internal registers / SFRs of 8051, select View / SFR watch from the menu.

∑ To monitor ‘C’ program variables, select View / C variable watch from the menu.

Figure 5.3 Window while running a program (Courtesy SPJ Systems)

Once the required window is visible, run the program either in continuous mode or in single step mode.

To execute the program in single step mode, select Run followed by Single step from the menu or press

F7. This executes a statement at a time. On the contrary, if you select Run followed by Run from the menu

(or press CTRL+F7), the program will run in continuous mode. To stop the program execution, select Run

followed by Terminate program (or press CTRL+F7).

For simulation of the program, the summarised steps are given below.

 1. Enter ‘SIDE 51’ software.

 2. Click open ‘Project’ menu in the window.

 3. Click on ‘New project’.

 4. Give the project fi le name as name. P51 (.P51 extension is created by default).

 5. In settings window, select Intel device as 8051 and click OK.

 6. In the workspace window, you can observe that the default .C fi le and .asm fi les are created. Remove

the default .C and .asm fi les.

 7. Click on ‘add fi le ‘ and enter the fi le name as name.asm or name.c.

 8. Open the fi le, enter the program and save the fi le.

Chapter 5 So ware Development Tools for 8051 129

 9. Open compile menu and click on build (or F7).

 10. Correct the errors indicated, if any and save.

 11. Open ‘tools’ menu and click open the simulator (F5).

 12. Open ‘run’ menu and run the program. Observe Special Function Register (SFR) contents.

 13. Close the simulator window.

5.4 mVISION C COMPILER AND SIMULATOR

µ Vision3 Overview

The µVision3 IDE is a Windows-based software development platform that combines a robust editor and

project manager. µVision3 integrates all tools including C compiler, macro assembler, linker/locator, and

HEX fi le generator. µVision3 helps expedite the development process of embedded applications.

Create Project File Folder and Specify Project Name

To create a new project fi le, from µVision3 menu, select Project/New/µVision Project…. The window

appears as shown in Fig. 5.4. This opens a standard Windows dialog that asks you for the new project fi le

name. Use a separate folder for each project. To get a new empty folder, use the icon ‘Create New Folder’

in the dialog.

Select this folder and enter the fi le name for the new project, i.e., Project1. µVision3 creates a new

project fi le with the name PROJECT1.UV2 that contains a default target and fi le group name. You can see

these names in the Project Workspace–Files.

Select Microcontroller from Device Database

When you create a new project, µVision3 asks you to select a CPU for the project. The Select Device dialog

box shows the µVision3 device database as shown in Fig. 5.5. Select the microcontroller, e.g., Philips

89C62x.

Figure 5.4 Window to create a project (Courtesy Keil Corp. Inc.)

Add Source Files to Project

Once the source fi le is created, add .asm or .c fi le to your project. µVision3 offers several ways to add

source fi les to a project as shown in Fig. 5.6.

 130 8051 Microcontroller: Hardware, So ware & Applications

Figure 5.5 Window to select target microcontroller (Courtesy Keil Corp. Inc.)

For example, you can select the fi le group in the Project Workspace and Files page and click the right

mouse key to open a local menu. The option ‘Add Files’ opens the standard fi les dialog. Select the fi le

MAIN.C just created.

 Build Project

To build a project, go to Options/Target, translate all source fi les and link the application with a click on the

Build Target toolbar icon. When you build an application with syntax errors, µVision3 will display errors

and warning messages in the Output Window–Build page as shown in Fig. 5.7. A double click on a message

line opens the source fi le on the correct location in a µVision3 editor window.

Figure 5.6 Window to add source fi les to the project (Courtesy Keil Corp. Inc.)

∑ Modify the existing source code or add new source fi les to the project. The Build Target toolbar

button translates only modifi ed or new source fi les and generates the executable fi le. µVision3

Chapter 5 So ware Development Tools for 8051 131

maintains a fi le dependency list and knows all the included fi les used within a source fi le. Even the

tool options are saved in the fi le dependency list, so that µVision3 can rebuild fi les when it is needed.

With the Rebuild Target command, all source fi les are translated, regardless of modifi cations.

Figure 5.7 Messages a er compile/build of the program (Courtesy Keil Corp. Inc.)

∑ Test programs with the µVision3 Debugger. The µVision3 Debugger offers two operating modes—

simulator allows verifying application on PC, or Target Debugging with an Evaluation Board.

∑ To program your application into Flash ROM, µVision3 integrates command-line driven Flash

Utilities ULINK USB JTAG. Create a HEX fi le to use Flash programming utilities.

Figure 5.8 Single stepping of the program (Courtesy Keil Corp. Inc.)

 Single Stepping

µVision supports various methods of single stepping through your application. The various options are

available on the menu as shown in Fig. 5.8.

 Click the ‘Step Into’ button on the toolbar to execute a single instruction or line of code

(single-step). ‘Step Into’ single-steps into all called functions.

 Click the ‘Step Over’ button on the toolbar to execute a single instruction or line of code

(single-step). ‘Step Over’ executes all called functions without stepping into them.

 Click the ‘Step Out’ button on the toolbar to step out of a function and return to the caller.

 Click the ‘Run to Cursor’ button on the toolbar to begin executing your target program until

the current cursor line is reached.

 132 8051 Microcontroller: Hardware, So ware & Applications

5.5 BURNING THE HEX FILE TO PROGRAM

MEMORY

Click open the fl ash magic software. A window as shown in Fig. 5.9 appears on the screen. Select the Com

1/Com2 port to which the target microcontroller is connected. Enter the baud rate say 9600. Select the

target device, e.g., 89F61x2. Oscillator frequency is 11.056 MHz.

Browse the target hex fi le (example test.hex). Click start icon on the window. Observe the message

window at the bottom. It erases and then programs the fl ash memory. When burning of the program is

completed, the message ‘fi nished’ is displayed. Then, the target board is ready for the intended application.

Figure 5.9 Burning of hex fi le to the program memory (Courtesy Flash magic)

In this chapter, components of Integrated Development Environment (IDE) and In Circuit Debugger

(ICD) have been discussed. It also explains the steps to work with assembler, simulator software

with DOS and windows-based operating systems.

 1. What is an Integrated Development Environment?

 2. What is the role of In Circuit Debugger (ICD) in development environment?

 3. What is a simulator? Explain its importance in code development?

6.1 BASIC I/O CONCEPTS

This chapter explores interfacing of peripheral devices, through which one interacts with a microcontroller.

Examples of peripheral devices include switches, light emitting diodes, printers, keyboards, and liquid

crystal displays. The speed and characteristics of these devices are different from that of the processor,

so they cannot be connected to the processor directly. Hence, interface chips are needed to resolve

the difference between processor and peripheral devices. The main function of an interface chip is to

synchronize data transfer between the processor and an I/O device.

6
8051 PARALLEL I/O PORTS

Learning Objectives

After you have completed this chapter, you should be able to

 Explain the data transfer synchronisation methods between the CPU and I/O

interface

 Explain 8051 parallel I/O ports

 Input data from simple switches and output data to light emitting diodes (LED)

 Input data from matrix keyboard and output data to seven segment display

 Input data from matrix keyboard and output data to LCD display

 Use D/A converter to generate digital waveforms

 Interface multi channel 8 bit A/D converter to the 8051

 Interface serial A/D converter to the 8051

 Explain the operation and interfacing of stepper motor

 Explain the operation and interfacing of DC motor

 134 8051 Microcontroller: Hardware, So ware & Applications

In case of input operation, the input devices place data in the data register of the interface chip and then,

the processor reads the data. In the output operation, the processor writes data into the data register in the

interface chip and the data register holds data until the output device fetches this data. An interface chip

has data pins that are connected to the processor data bus, and I/O port pins that are connected to the I/O

device. Data transfer between I/O devices takes place in serial (bits by bits) or in parallel (multiple bits).

Data is generally transferred serially, in long distance communication and low speed devices. High speed

I/O devices mainly use parallel data transfer. We will discuss only interfacing of parallel I/O in this chapter.

6.2 PORT STRUCTURES AND OPERATION

The 8051 has 32 I/O pins that are further divided into four ports— port 0, port 1, port 2 and port 3. These I/O

pins allow the 8051 to monitor and control other devices. Port 0, port 2 and port 3 pins are multiplexed with

an alternate function. Each port consists

of a D latch, an output driver and an

input buffer. To access external program

and data memory the output driver of

port 0 and port 2, and the input buffer of

port 0 are used. In this application, low

order address lines (A7–A0) and data bus

(D7–D0) are multiplexed on port 0. Port

2 outputs the high-order address lines

(A15–A8). Port 3 pins are used as external

interrupt, for serial transfer, timer and

external memory control signals as

listed in Table 6.1. Port 1 pins have no

dual functions. Port 3 is basically same

as port 1 except that its, extra circuit

allows dual functions. The output drivers

of port 0 and port 2 are switchable

to internal address/data (AD0–AD7)

and address bus (A8–A15) respectively

by an internal control signal during

access of external memory. Ports 1, 2

and 3 have internal pull ups and port 0

has open drain output. Open drain in

Metal Oxide Semiconductors (MOS)

means open collector in Transistor

Transistor Logic (TTL).

Input/Output Ports

All 8051 ports have both D-latch and

buffer as shown in Fig. 6.1 to 6.4. All

the ports can be defi ned as input or

output port. Port 0 has no internal pull

up resistors (as shown in Fig. 6.1), it is

Figure 6.1 PORT 0

Figure 6.2 PORT 1

Chapter 6 8051 Parallel I/O Ports 135

simply an open drain. Now by writing a ‘1’, to corresponding port 0 latch, both the transistors are OFF and

that causes the pin to fl oat in a high impedance state. When port 0 is used for simple data I/O, then external

pull up resistor is required.

 Output port All the bits of port register are physically connected with data bus. When the data is written

to port register, the data bit is latched to the D fl ip fl op in the port circuit. The processor generates WR

signal, when an instruction moves the data to the port. WR signal is connected as active low clock of the

D fl ip fl op. The data from the data bus line is latched to the D fl ip-fl op. If input is 0 (D = 0), then Q = 0 and

Q = 1 and transistor T2 is on and the condition of the output pin is 0. If input is 1 (D = 1), then Q = 1 and Q

= 0 and transistor T2 is off and the condition of the output pin is 1.

Figure 6.3 PORT 2

Figure 6.4 PORT 3 (Courtesy Intel)

 136 8051 Microcontroller: Hardware, So ware & Applications

 Input port While reading the ports, there are two po ssibilities:

1. Reading the input pin

2. Reading the latch

 Reading the input pin To defi ne any port of the 8051 as input, we must fi rst write ‘1’ to that port bit. By

writing ‘1’ to that port bit, Q = 1 and Q = 0. In port 0 and port 1, Q is connected to the transistor gate (T2);

in port 2, Q is connected through not gate to T2; and in port 3, Q is connected through nand gate to T2.

In all the cases, the transistor (T2) is turned off, the pin is simply pulled high by the pull up resistors, and

connected to the input buffer (B2). When we read the input port, it activates B2 and brings the data from the

pin into the CPU internal bus.

 Reading the latch When we read the latch, it activates tristate buffer (B1) and brings the data from the

Q latch into the CPU internal bus.

 Read modify write Some of the instructions like INC P2 and DEC P2 will read a latch, modify and

rewrite it to the latch. These instructions read the latch instead of reading the port pin. This happens for

those instructions where the destination operand is a port or a port bit. These instructions are called ‘read

modify write instructions’. The reason behind reading a latch rather than a port pin is to avoid possible

misinterpretation of voltage level at the port pin, when a port bit is driving an external circuit.

 Alternate Functions

Port 0 Port 0 is used as an address/data bus to external memory; internal control signals switch the AD0–

AD7 to the gates of the fi eld effect transistor. Logic 1 on an address bit will turn the upper FET on and

the lower FET off and provides logic 1 at the pin. When the address bit is 0, the lower FET is on and the

upper FET is off and provides logic 0 at the pin. The address latch latches the address into the external

circuit. After Address Latch Enable (ALE) pulse, port 0 is confi gured as data bus to read/write data from

the external memory. When Port 0 is confi gured as an input, logic 1 is automatically written by the internal

control logic to all port 0 latches.

Port 2 The alternate function of port

2 is to send high order address byte

(A8–A15). The logic 1 on the address

bit will turn off T2 and provides logic

1 at the output pin. The logic 0 on the

address bit will turn on T2 and provides

logic 0 at the output pin.

Port 3 Port 3 functions similar to

port 1 and also, it is used by internal

peripherals as listed in Table 6.1.

Each pin of port 3 can be programmed

individually as I/O or as one of the

alternate functions.

We can also access single pin of

all the four ports using bits address as

given in Table 6.2.

As discussed under Section 1.6,

the drawback in assembly language

 Port pin alternate functions

 Port Pin Alternate Functions

 P3.0 RXD (serial input port)

 P3.1 TXD (serial output port)

 P3.2 INT0 (external interrupt)

 P3.3 INT1 (external interrupt)

 P3.4 T0 (timer/counter 0 external input)

 P3.5 T1 (timer/counter 1 external input)

 P3.6 WR (external data memory write strobe)

 P3.7 RD (external data memory read strobe)

TABLE 6.1

Chapter 6 8051 Parallel I/O Ports 137

programming is that it is diffi cult and time consuming to write a program. Writing programs in a high level

language such as C is easier. For interfacing I/O devices, programs are given both in assembly language

and C. We will discuss few examples to become familiar with the syntax.

 Bit address of the ports

 Port 0 P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0

 Address 87H 86H 85H 84H 83H 82H 81H 80H

 Port 1 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

 Address 97H 96H 95H 94H 93H 92H 91H 90H

 Port 2 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0

 Address A7H A6H A5H A4H A3H A2H A1H A0H

 Port 3 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0

 Address B7H B6H B5H B4H B3H B2H B1H B0H

EXAMPLE 6.1

Write 8051 Assembly Language Program (ALP) and C program to send 8 bit hex number to

port 0.

 ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 MOV A, #0CH ;Load A hex number 0C

 MOV P0, A ;Send the data to port 0

 END

 C PROGRAM

 // C program to send hex data to port 0
 #include <Intel\8051.h>
 void main ()
 {
 unsigned char a;
 a=0x0c; //Initialise a variable to hex value
 P0=a; //Send hex number to port 0
 }

TABLE 6.2

 138 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 6.2

Write 8051 ALP and C program to send 8 bit binary numbers from 0 to 9 to port 2, repetitively.

 ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 S1:MOV A, #00H ; Load A 00H

 MOV R1, #0AH ; Load R1 0AH

 START: MOV P2, A ; Send the contents of accumulator to P2

 INC A ; Increment A

 CALL DELAY ; Call delay routine

 DJNZ R1, START ; Decrement. R1,if it is not zero, branch to
 START

 SJMP S1 ; Jump to S1

 DELAY: MOV R2,#100 ; Delay routine for 100 ms

 LOOP2: MOV R1,#125

 LOOP1: PUSH ACC

 POP ACC

 NOP

 NOP

 DNZ R1, LOOP1

 DNZ R2, LOOP2

 RET

 END

 C PROGRAM

 // C program to send 0-9 to port2

 #include <Intel\8051.h> // Include header fi le of 8051

 #include<standard.h> // For delay routine

 #defi ne period 100 // 100 ms

 void main ()

 {

 unsigned char a;

 while(1) // Always perform

 {

 for(a=0; a<10; a++) // Initialise variable a=0 and increment

 {

 P2=a; // Send 8-bit number to port 2

 delay_ms(period); // Delay routine for 100 ms

 }

 }

 }

Chapter 6 8051 Parallel I/O Ports 139

EXAMPLE 6.3

Write 8051 ALP and C program to toggle 8 bit of port 1.

ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 MOV A, #00H ; Load A 00H

 START: MOV P1, A ; Send the contents of A to P1

 CPL A ; Complement contents of A

 CALL DELAY ; Call delay routine

 AJMP START ; Branch to start

 DELAY: MOV R2,#100 ; Delay routine for 100 ms

 LOOP2: MOV R1,#125

 LOOP1: PUSH ACC

 POP ACC

 NOP

 NOP

 DNZ R1, LOOP1

 DNZ R2, LOOP2

 RET

 END

 C PROGRAM

 // C program to toggle LED’s at port 1

 #include <Intel\8051.h>

 #include<standard.h> // For delay routine

 #defi ne period 100 // 100 ms

 void main ()

 {

 while(1) // Always perform

 {

 P1=0xFF; // To send 1s to port1

 delay_ms(period);

 P1=0x00; // To send 0s to port 1

 delay_ms(period);

 }
 }

 140 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 6.4

Write 8051 ALP and C program to toggle alternate bits at port 1.

 ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 MOV A, #0AAH ;Load A AAH

 START: MOV P1, A ;Send the contents of A to P1

 CPL A ;Complement contents of A

 CALL DELAY ;Call delay routine

 AJMP START ;Branch to start

 DELAY: MOV R2,#100 ;Delay routine

 LOOP2: MOV R1,#125

 LOOP1: PUSH ACC

 POP ACC

 NOP

 NOP

 DNZ R1, LOOP1

 DNZ R2, LOOP2

 RET

 END

 C PROGRAM

 // C program to toggle alternate bits of port 1

 #include <Intel\8051.h>

 #include<standard.h> // For delay routine

 #defi ne period 100 // 100 ms

 void main ()

 {

 while(1) // Always perform

 {

 P1=0x55; // To send 01010101 to port 1

 delay_ms(period);

 P1=0xAA; // To send 10101010 to port 1

 delay_ms(period);

 }

 }

Chapter 6 8051 Parallel I/O Ports 141

EXAMPLE 6.5

Write 8051 ALP and C program to toggle MSB bit of port 1.

 ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 CLR P1.7 ;Clear the port 1.7

 START: CALL DELAY ;Call delay routine

 CPL P1.7 ;Complement contents of port 1.7

 AJMP START ;Branch to START

 DELAY: MOV R2,#100 ;Delay routine

 LOOP2: MOV R1,#125

 LOOP1: PUSH ACC

 POP ACC

 NOP

 NOP

 DNZ R1, LOOP1

 DNZ R2, LOOP2

 RET

 END

 C PROGRAM

 // C program to toggle MSB bit of port 1

 #include <Intel\8051.h>

 #include<standard.h> // For delay routine

 #defi ne period 100 // 100 ms

 BIT disp1 P1.7 // Identify port P1.7 as disp1

 void main ()

 {

 while(1) // Always perform

 {

 disp1=1; // Send 1 to port P1.7

 delay_ms(period);

 disp1=0; // Send 0 to port P1.7

 delay_ms(period);

 }

 }

 142 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 6.6

Write 8051 ALP and C program to toggle LSB bit of port 0.

 ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 CLR P0.0 ;Clear the port 0.0

 START: CALL DELAY ;Call delay routine

 CPL P0.0 ;Complement contents of port 0.0

 AJMP START ;Branch to START

 DELAY: MOV R2,#100 ;Delay routine

 LOOP2: MOV R1,#125

 LOOP1: PUSH ACC

 POP ACC

 NOP

 NOP

 DNZ R1, LOOP1

 DNZ R2, LOOP2

 RET

 END

 C PROGRAM

 // C program to toggle LSB bit of port 0

 #include <Intel\8051.h>

 #include<standard.h> // For delay routine

 #defi ne period 100 // 100 ms

 BIT disp1 P0.0 // Declare port P0.0 as disp1

 void main ()

 {

 while(1) // Always perform

 {

 disp1=1; // Send 1 to port P0.0

 delay_ms(period);

 disp1=0; // Send 0 to port P0.0

 delay_ms(period);

 }

 }

Chapter 6 8051 Parallel I/O Ports 143

EXAMPLE 6.7

Write 8051 ALP and C program to left shift data at port 1 repetitively.

 ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 MOV A, #01H ;Load A 01H

 MOV R1, #07H ;Load R1 07H

 START: MOV P1, A ;Send the contents of A to P1

 RL A ;Rotate contents of A left by one position

 CALL DELAY ;Call delay routine

 DJNZ R1, START ;Branch to START

 AJMP S1 ;Branch to S1

 DELAY: MOV R2,#100 ;Delay routine

 LOOP2: MOV R1,#125

 LOOP1: PUSH ACC

 POP ACC

 NOP

 NOP

 DNZ R1, LOOP1

 DNZ R2, LOOP2

 RET

 END
 C PROGRAM

 // C program to left shift the data at port 1

 #include <Intel\8051.h>

 #include<standard.h> // For delay routine

 #defi ne period 100 // 100 ms

 void main ()

 {

 unsigned char x;

 P1=0x01; // Send a number to port 1

 while(1) // Always perform

 {

 for(x=0;x<8;x++)

 {

 P1=P1<<1; // Shift data at port 1 to left by one bit.

 delay_ms(period);

 }

 }

 }

 144 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 6.8

Write 8051 ALP and C program to receive 8 bits data from port P0 and P1. Perform AND operation of

the received data and send the result to port P2.
 ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 MOV P0, #0FFH ;Defi ne port 0 as input

 MOV P1, #0FFH ;Defi ne port 1 as input

 MOV A, P1 ;Read data from port1

 MOV R1, A ;Copy contents of A to R1

 MOV A, P0 ;Read data from port 0

 ANL A, R1 ;or cont. of A with R1

 MOV P2,A ;send the contents of A to P2

 END

C PROGRAM

 // C program to AND 8 bits data of port 0 and port 1 and to
send result to port 2

 #include <Intel\8051.h>
 unsigned char input1;
 unsigned char input2;
 unsigned char result;
 void main ()
 {
 while(1) // Do always
 {

 input1=P1; //Read 8 bit data at port P1
 input2=P0; //Read 8 bit data at port P0
 result=input1 & input2; //AND operation
 P2=result; //Send result to P2
 }

 }

EXAMPLE 6.9

Write 8051 ALP and C program to receive 1 bit data from port P0.0 and P1.3. Perform AND operation

of the received bits and send the result to port P2.0.

 ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 MOV P0, #0FFH ;Defi ne port 0 as input

Chapter 6 8051 Parallel I/O Ports 145

 MOV P1, #0FFH ;Defi ne port 1 as input

 MOV A, P1 ;Read data from port1

 RR A ;Rotate contents of A, 3 times right

 RR A

 RR A

 MOV R1, A ;Copy contents of A in R1

 MOV A, P0 ;Read data from port 0

 ANL A, R1 ;Perform AND operation

 MOV P2, A ;Send the result to P2.0

 END

 C PROGRAM

 //C program AND P0.0 and P1.3 send result at P2.0

 #include <Intel\8051.h>

 BIT input1 P0.0 //Declare port P0.0 as input1

 BIT input2 P1.3 //Declare port P1.3 as input2

 BIT output P2.0 //Declare port P2.0 as output

 void main ()

 {

 while(1) // Always perform

 {

 output=input1 & input2; // AND operation

 }

 }

EXAMPLE 6.10

Write 8051 ALP and C program to receive 1 bit data from port P0.0 and P1.2. Perform OR operation

of the received bit and send the result to port P2.7.

ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 MOV P0, #0FFH ;Defi ne port 0 as input

 MOV P1, #0FFH ;Defi ne port 1 as input

 MOV A, P1 ;Read data from port 1

 RR A ;Rotate contents of A right by two positions

 RR A

 MOV R1, A ;Copy contents of A to R1

 MOV A, P0 ;Read data from port 0

 146 8051 Microcontroller: Hardware, So ware & Applications

 ORL A, R1 ;Perform OR operation

 RR A ;Rotate right to get LSB in MSB

 MOV P2, A ;Send the result to P2.7

 END

C PROGRAM

 // C program OR P0.0 and P1.2 send result at P2.7

 #include <Intel\8051.h>

 BIT input1 P0.0 //Declare port P0.0 as input1

 BIT input2 P1.2 //Declare port P1.2 as input2

 BIT output P2.7 //Declare port P2.7 as output

 void main ()

 {

 while(1)

 {

 output=input1|input2;

 }

 }

EXAMPLE 6.11

Write 8051 ALP and C program to send ASCII character data (‘A’, ‘@’, ‘!’, ‘*’) through port P0, P1, P2

and P3 respectively.

ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 MOV A, #41H ;Load ASCII code for A in hex 41H to A

 MOV P0, A ;Send the data to port 0

 MOV A, #40H ;Load ASCII code for @ in hex 40H to A

 MOV P1, A ;Send the data to port 1

 MOV A, #21H ;Load ASCII code for ! in hex 21H to A

 MOV P2, A ;Send the data to port 2

 MOV A, #2AH ;Load ASCII code for * in hex 2AH to A

 MOV P3, A ;Send the data to port 3

 END
C PROGRAM

 // C program to send ASCII values of the characters

 #include <Intel\8051.h>

 const unsigned char input[4]={ ‘A’, ‘@’, ‘!’, ‘*’}; //
 declare ASCII data array

Chapter 6 8051 Parallel I/O Ports 147

 void main ()

 {

 P0=input [0]; //Send ASCII value to P0

 P1=input [1]; //Send ASCII value to P1

 P2=input [2]; //Send ASCII value to P2

 P3=input [3]; //Send ASCII value to P3

 }

EXAMPLE 6.12

Write 8051 ALP and C program to read port 1. If the received data is equal to 20H, send FFH to port

2, otherwise send 00H to port 3.

ASSEMBLY LANGUAGE PROGRAM

 ORG 0000H

 MOV P1, #0FFH ;Defi ne port 1 as input

 MOV A, P1 ;Read data from port 1

 CLR C ;Clear carry fl ag

 SUBB A, #20H ;Compare (A) with 20H using sub operation

 JZ LOOP1 ;If data is equal, branch to Loop1

 MOV A, #00H ;If data is not equal, sends 00 to P3

 MOV P3, A

 SJMP LOOP2 ;Branch to Loop2

 LOOP1: MOV A, #0FFH ;Send FF to port2

 MOV P2, A

 LOOP2: NOP

 END

C PROGRAM

 // C program to read port 1 and send data to port 2 and port 3

 #include <Intel\8051.h>

 unsigned char a;

 unsigned char b=0x00; //Declare variable b=00H

 unsigned char c=0xFF; //Declare variable c=FFH

 void main ()

 148 8051 Microcontroller: Hardware, So ware & Applications

 {

 a=P1; //Read port P1 to a
 if (a!=20)
 P3=b; // Send 00H to port P3
 else
 P2=c; // Send FFH to port P2

 }

 1. The 8051 has ______________ I/O pins.

 2. In long distance communication, data is transferred ______________.

 3. List ports which have internal pull up resistors.

 4. List ports which have alternate functions.

 5. Port 1 has no dual functions. True/ False?

 6. List pins of port 3, which are used as serial ports.

 7. ______________ port is used as write strobe and ______________ port is used as read strobe for

external data memory.

 8. Open drain in MOS means ______________ in TTL.

 9. Port 3.2 is used as an external interrupt. True/False?

6.3 INTERFACING PUSH BUTTON SWITCHES
AND LEDs

EXAMPLE 6.13

 Write an ALP to monitor and sense the push button keys and display the key value by corresponding

LED.

In this problem, 8 push button keys are connected to port 1 and 8 LED’s are connected to port 0

as shown in Fig. 6.5. Port 1 is defi ned as input by storing FFh in port 1 and port 0 is used as output.

When a push button key is pressed, it bounces (makes and breaks) a few times before it makes a fi rm

contact.

Chapter 6 8051 Parallel I/O Ports 149

Figure 6.5 Push bu on key and LED interface

The solution to this problem is to wait for 10 to 20 ms until the key is settled and check the key again.
The display contains 8 common cathode LEDs. Interfacing eight keys of push button keyboard and
eight LEDs using ports 1 and 0 is as shown in Fig. 6.5. Programming of this problem can be divided
into the following steps:

 1. Check if a key is pressed

 2. Debounce the key

 3. Identify the key in binary format

 4. Display the key condition using 8 LEDs.

PROGRAM IS AS FOLLOWS:

 MOV P1,#0FF ;Make P1 input

 START:MOV A,P1 ;Read data from Port 1

 CJNE A,#0FFH,CHECK1 ;Key pressed branch to check1

 SJMP START ;Branch to start

 CHECK1:ACALL DELAY ;Call delay

 MOV A,P1 ;Read data from Port 1

 CPL A ;Complement A

 MOV P0,A ;Send the data to LED

 AJMP START ;Branch to start

 DELAY: MOV R6,#20h ;Delay program, R6 = 20h

 NEXT1: MOV R7,#0FFH ;R7 = FFH

 NEXT2: DJNZ R7, NEXT2 ;Stay until R7 becomes 0

 DJNZ R6, NEXT1 ;Dec. R6, if it not zero, branch to NEXT1

 RET

 END

 150 8051 Microcontroller: Hardware, So ware & Applications

 1. What is a key bounce?

 2. What is the software solution to a key bounce?

 3. Name the types of LED.

6.4 INTERFACING MATRIX KEYBOARD
AND SEVEN-SEGMENT DISPLAY

EXAMPLE 6.14

 Write ALP and C program to read a key from matrix keyboard and to display key value using seven-

segment display.

Matrix keyboard is commonly used as an input device, when more keys are required. A matrix

keyboard reduces the number of connections, e.g, a keyboard with 16 keys, arranged in a 4 × 4

matrix as shown in Fig. 6.6. It requires eight lines for the microcontroller to make all the connections

instead of 16 lines, if the keys are connected in a linear format. When a key is pressed, it shorts one

row and one column; otherwise, the row and column do not have any connections. For interfacing

4 × 4 matrix keyboard, it requires 4 bit port for row lines and 4 bit port for column lines. 4 bit

port (P1.3–P1.0) connected to row lines, are defi ned as output port and the remaining 4 bit port

(P2.3–P2.0) connected to column lines, are defi ned as input port as shown in Fig. 6.6.

Figure 6.6 Matrix keyboard connection to ports

Chapter 6 8051 Parallel I/O Ports 151

The seven-segment display consists of seven LED segments a, b, c, d, e, f, g and h for decimal point

(dp). The seven-segment display comes in either common cathode or common anode form. In a

common anode display, the anodes of all seven LED’s are shorted. A segment is ON whenever a OV is

applied to the corresponding segment’s input and common anode is connected to +5V. In a common

cathode display all, cathodes of seven segments are shorted. A segment is ON whenever a +5V is

applied to the corresponding segment’s input and common cathode is connected to ground. BCD to

seven-segment codes for common cathode display are given in Table 6.3

Circuit to interface matrix keyboard 4 × 4 and 4 common cathode seven-segment display are as shown

in Fig. 6.6 and 6.8. In Fig. 6.8, the common cathode of each display is connected to the collector of

a transistor. Port 2.4 and 2.5 are connected to a decoder, and the decoder output is connected to

transistors. Depending on the P2.4 and P2.5 port values, a particular transistor will be turned on and

driven into the saturation region, allowing the selection of the seven-segment display.

Figure 6.7 Seven-segment display

BCD to seven segment codes

 BCD Segments Corresponding

 Digit hex Number

 h g f e d c b a

 0 0 0 1 1 1 1 1 1 3FH

 1 0 0 0 0 0 1 1 0 06H

 2 0 1 0 1 1 0 1 1 5BH

 3 0 1 0 0 1 1 1 1 4FH

 4 0 1 1 0 0 1 1 0 66H

 5 0 1 1 0 1 1 0 1 6DH

 6 0 1 1 1 1 1 0 1 7DH

 7 0 0 0 0 0 1 1 1 07H

 8 0 1 1 1 1 1 1 1 7FH

 9 0 1 1 0 0 1 1 1 67H

 A 0 1 1 1 0 1 1 1 77H

 B 0 1 1 1 1 1 1 1 7FH

 C 0 0 1 1 1 0 0 1 39H

 D 0 0 1 1 1 1 1 1 3FH

 E 0 1 1 1 1 0 0 1 79H

 F 0 1 1 1 0 0 0 1 71H

TABLE 6.3

 152 8051 Microcontroller: Hardware, So ware & Applications

Programming of this problem is to read a key from matrix keyboard and display key value using seven-

segment display, can be divided into the following steps:

 1. Check whether all the keys are open.

 2. Check a key closure.

 3. Debounce the key.

 4. Identify the key.

 5. Find the binary code for the key.

 6. Find the seven-segment code for the binary code.

 7. Send seven-segment code to display.

Figure 6.8 Drivers for seven-segment displays

PROGRAM IS AS FOLLOWS:

 ORG 0000H

 SEL_DIGIT EQU 80H ;Init SEL_DIGIT to port 0

 SEL_SEG EQU 0A0H ;Init SEL-SEG to port 2

 KEY_ROW EQU 90H ;Init KEY_ROW to port 1

 KEY_COL EQU 0A0H ;Init KEY_COL to port 2

 MOV KEY_COL, #0Fh ;Defi ne KEY_COL as input port

 START:MOV KEY_ROW,#00 ;Ground all the row lines

 MOV A,KEY_COL ;Read all column lines

 ANL A,#0Fh ;Mask unused bits

 CJNE A,#0FH,CHECK1 ;Key pressed branch to check1

 SJMP START ;Branch to start till key pressed

 CHECK1:ACALL DELAY ;Wait debounce time

 MOV A,KEY_COL ;Check key closure

Chapter 6 8051 Parallel I/O Ports 153

 ANL A,#0Fh ; Mask unused bits

 CJNE A,#0Fh,NEXT ; Key pressed branch to next to fi nd row

 SJMP START ; Branch to start till key pressed

 NEXT:MOV KEY_ROW,#0Eh ; Ground row 0

 MOV A,KEY_COL ; Read all column lines

 ANL A,#0Fh ; Mask unused bits

 CJNE A,#0Fh,SCAN_ROW0 ; If key is in row 0, branch to SCAN_ROW0

 MOV KEY_ROW,#0Dh ; Ground row 1

 MOV A,KEY_COL ; Read all column lines

 ANL A,#0Fh ; Mask unused bits

 CJNE A,#0Fh,SCAN_ROW1 ; If key is in row 1, branch to SCAN_ROW1

 MOV KEY_ROW,#0Bh ;Ground row 2

 MOV A,KEY_COL ; Read all column lines

 ANL A,#0Fh ; Mask unused bits

 CJNE A,#0Fh,SCAN_ROW2 ; If key is in row 2, branch to SCAN_ROW2

 MOV KEY_ROW,#07h ; Ground row 2

 MOV A,KEY_COL ; Read all column lines

 ANL A,#0Fh ; Mask unused bits

 CJNE A,#0Fh,SCAN_ROW3 ; If key is in row 3, branch to SCAN_ROW3

 SJMP CHECK1 ; If none of the keys are pressed,

 branch to check1

 SCAN_ROW0:MOV DPTR,#ROW0 ; Copy row 0 address to DPTR

 SJMP FIND_KEY ; Find column

 SCAN_ROW1:MOV DPTR,#ROW1 ; Copy row 1 address to DPTR

 SJMP FIND_KEY ; Find column

 SCAN_ROW2:MOV DPTR,#ROW2 ; Copy row 2 address to DPTR

 SJMP FIND_KEY ; Find column

 SCAN_ROW3:MOV DPTR,#ROW3 ; Copy row 3 address to DPTR

 SJMP FIND_KEY ; Find column

 FIND_KEY: RRC A ; Find column and update DPTR

 JNC FOUND_KEY

 INC DPTR

 SJMP FIND_KEY

 FOUND_KEY: MOV SEL_SEG,#0Fh ; Select display

 CLR A ; Clear accumulator

 MOVC A,@A+DPTR ; Get the seven-segment code

 MOV SEL_DIGIT,A ; Send the data to display

 LJMP START ; Branch to start

 DELAY: MOV R6,#20h ; Delay program, R6 = 20h

 NEXT6: MOV R7,#0FFh ; R7 = FFh

 154 8051 Microcontroller: Hardware, So ware & Applications

 NEXT7: DJNZ R7,NEXT7 ;Stay until R7 becomes 0

 DJNZ R6,NEXT6 ;Stay until R6 becomes 0

 RET

 ROW0: db 3Fh, 06h, 5bh, 4Fh ;Seven-segment code for 0,1,2,3
 ROW1: db 66h, 6dh, 7dh, 07h ;Seven-segment code for 4,5,6,7
 ROW2: db 7Fh, 67h, 77h, 7Ch ;Seven-segment code for 8,9,A,B
 ROW3: db 39h, 5Eh, 79h, 71h ;Seven-segment code for C,D,E,F
 END

C PROGRAM

 #include <Intel\8051.h>
 #defi ne key_row P1 //Defi ne port 1 for row scan
 unsigned char i=0,temp1,temp2,key,var;
 const unsigned char
 seg[16]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,
 0x07,0x7f,0x67,0x77,0x7c,0x39,0x5e,0x79,0x71};
 // Declaration of segment table for seven-segment display
 void main ()
 {
 while(1)
 {
 P2 = 0x0f; // Confi gure port 2 lower as input port
 key_row =0x00; // Confi gure port 1 as output port

 do
 {
 temp1 = P2 & 0x0f;
 }while(temp1==0x0f);// Wait till the key is pressed
 while(i<100)
 {
 i=i+1;
 }// De bouncing
 P2= 0x0f;

 var = 0xf7;// For scanning rows
 temp2=0; // Key count

 for(i=0;i<4;i++)
 {
 var = var<<1;
 key_row =var>>4; // Scan rows
 temp1 = P2&0x0f; // Key Input

 if(temp1!=0x0f)

Chapter 6 8051 Parallel I/O Ports 155

 {
 // To check which key is pressed
 switch (temp1){
 case 0x0e:
 P0 = seg[temp2+0]; //Display on seven-segment
 break;
 case 0x0d:
 P0 = seg[temp2+1]; // Display on seven-segment
 break;
 case 0x0b:
 P0 = seg[temp2+2]; // Display on seven-segment
 break;
 case 0x07:
 P0 = seg[temp2+3]; // display on 7 segment
 break;
 }

 }
 temp2=temp2+4; // To go to next row
 } //End of For loop
 }
 } // end of main

EXAMPLE 6.15

 Write ALP and C program for hexadecimal up counter (0-F)

The program for hexadecimal up counter is as follows:

 ORG 0000h

 TEMP EQU 40h

 LOOP1:MOV A,#00h ;Clear A

 LOOP:MOV TEMP,A ;Store A in TEMP
 LCALL DISPLAY ;Call display-to-display counter value

 LCALL DELAY ;Call delay

 MOV A,TEMP ;Copy TEMP value to A

 ADD A,#01h ;Increment counter value

 CJNE A,#10h,LOOP ;Compare counter value with 10h,< branch to loop

 LJMP LOOP1 ;Else branch to loop1

 DISPLAY:ANL A,#0Fh ;Display program to display counter value

 MOV DPTR,#TABLE

 MOVC A,@A+DPTR

 156 8051 Microcontroller: Hardware, So ware & Applications

 MOV P0,A

 CLR P2.4

 CLR P2.5

 RET

 DELAY:MOV R2,#05h ;Delay program

 LOOP7:MOV R3,#0FFh

 LOOP3:MOV R4,#0FFh

 LOOP2:NOP

 NOP

 NOP

 DJNZ R4,LOOP2

 DJNZ R3,LOOP3

 DJNZ R2,LOOP7

 RET

 TABLE:DB 3Fh,06h,5Bh,4Fh,66h,6Dh,7Dh,07h,7Fh,6Fh,77h,7Fh,39h,3Fh,
 79h,71h
 END

 C PROGRAM

 #include <Intel\8051.h>

 idata unsigned int temp=0;

 unsigned char count;

 BIT disp1 P2.4 // Assign port 2.4 for display

 BIT disp2 P2.5 // Assign port 2.5 for display

 Const unsigned char

 value[16]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,

 0x07,0x7f,0x67,0x77,0x7c,0x39,0x5e,0x79,0x71};// Segment code for
 display

 void main ()

 {

 disp1=0;

 disp2=0;//Select display

 while(1)

 {

 count=0;

 do

 {

Chapter 6 8051 Parallel I/O Ports 157

 P0=value[count];//Data to display

 while(temp<0xFFFF){

 temp=temp+1;

 } //Generate delay

 temp=0;

 count=count+1; // Increment counter by 1

 }while(count<0x10); //End of loop

 }

 } //End of main

EXAMPLE 6.16

 Write ALP and C program for Decimal up counter (0-9).

The program for decimal up counter is as follows:

 ORG 0000h

 TEMP EQU 40h

 LOOP1:CLR A ;Clear A

 LOOP:MOV TEMP,A ;Store A in TEMP

 LCALL DISPLAY ;Call display to display counter value

 LCALL DELAY ;Call delay

 MOV A,TEMP ;Copy TEMP value to A

 ADD A,#01h ;Increment counter value

 DA A

 CJNE A,#10,LOOP ;Compare counter value with 10,< branch to loop

 LJMP LOOP1 ;Else branch to loop1

 DISPLAY:ANL A,#0Fh ;Display program to display counter value

 MOV DPTR,#TABLE

 MOVC A,@A+DPTR

 MOV P0,A

 CLR P2.4

 CLR P2.5

 RET

 DELAY:MOV R2,#05h ;Delay program

 LOOP7:MOV R3,#0FFh

 LOOP3:MOV R4,#0FFh

 LOOP2:NOP

 NOP

 158 8051 Microcontroller: Hardware, So ware & Applications

 NOP

 DJNZ R4,LOOP2

 DJNZ R3,LOOP3

 DJNZ R2,LOOP7

 RET

 TABLE:DB 3Fh,06h,5Bh,4Fh,66h,6Dh,7Dh,07h,7Fh,6Fh

 END

C PROGRAM

 #include <Intel\8051.h>

 idata unsigned int temp=0;

 unsigned char count;

 BIT disp1 P2.4 // Assign port 2.4 for display

 BIT disp2 P2.5 // Assign port 2.5 for display

 const unsigned char

 value[16]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x67,

 0x77,0x7c,0x39,0x5e,0x79,0x71};// Segment code for display

 void main ()

 {

 disp1=0; //Select display

 disp2=0;

 while(1)

 {

 count=0;

 do

 {

 P0=value[count];

 while(temp<0xFFFF){

 temp=temp+1; //Generate Delay

 }

 temp=0;

 count=count+1;// Increment counter by 1

 }while(count<0x0A); // Loop until 10 counts

 }

 } //End of main

Chapter 6 8051 Parallel I/O Ports 159

EXAMPLE 6.17

 Write ALP and C program for hexadecimal down counter (F-0).

The program for hexadecimal down counter is as follows:

 ORG 0000h
 TEMP EQU 40h
 LOOP1:MOV A,#0Fh
 LOOP:MOV TEMP,A ;Store A in TEMP
 LCALL DISPLAY ;Call display to display counter value
 LCALL DELAY ;Call delay
 MOV A,TEMP ;Copy TEMP value to A
 CLR C
 SUBB A,#01h ;Decrement counter value
 CJNE A,#0FFh,LOOP ;Comp counter value with FFh,< branch to loop
 LJMP LOOP1 ;Else branch to loop1
 DISPLAY:ANL A,#0Fh ;Display program to display counter value
 MOV DPTR,#TABLE
 MOVC A,@A+DPTR
 MOV P0,A
 CLR P2.4
 CLR P2.5
 RET

 DELAY:MOV R2,#05h ;Delay program
 LOOP7:MOV R3,#0FFh
 LOOP3:MOV R4,#0FFh
 LOOP2:NOP
 NOP
 NOP
 DJNZ R4,LOOP2
 DJNZ R3,LOOP3
 DJNZ R2,LOOP7
 RET

 TABLE:DB 3Fh,06h,5Bh,4Fh,66h,6Dh,7Dh,07h,7Fh,6Fh,77h,7Fh,39h,3Fh,
 79h,71h
 END

C PROGRAM

 #include <Intel\8051.h>

 idata unsigned int temp=0;
 unsigned char count;

 160 8051 Microcontroller: Hardware, So ware & Applications

 BIT disp1 P2.4 // Assign port 2.4 for display

 BIT disp2 P2.5 // Assign port 2.5 for display

 const unsigned char

 value[16]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,

 0x7f,0x67,0x77,0x7c,0x39,0x5e,0x79,0x71};// Segment code for
 seven-segment display

 void main ()

 {

 disp1=0;

 disp2=0;

 while(1)

 {

 count=0x0f;

 do

 {

 P0=value[count];

 while(temp<0xFFFF){

 temp=temp+1;// Generate delay

 }

 temp=0;

 count=count-1;// Decrement count by 1

 }while(count>=0); // Loop until count is 0

 }

 } // end of main

EXAMPLE 6.18

 Write ALP and C program for decimal down counter (9-0).

The program for decimal down counter is as follows:

 ORG 0000h

 TEMP EQU 40h

 LOOP1:MOV A,#09h

 LOOP:MOV TEMP,A ;Store A in TEMP

 LCALL DISPLAY ;Call display to display counter value

 LCALL DELAY ;Call delay

 MOV A,TEMP ;Copy TEMP value to A

 CLR C

 SUBB A,#01h ;Decrement counter value

 CJNE A,#0FFh,LOOP ;Compare counter value with FFh,< branch to Loop

Chapter 6 8051 Parallel I/O Ports 161

 LJMP LOOP1 ;Else branch to Loop1

 DISPLAY:ANL A,#0Fh ;Display program to display counter value

 MOV DPTR,#TABLE

 MOVC A,@A+DPTR

 MOV P0,A

 CLR P2.4

 CLR P2.5

 RET

 DELAY:MOV R2,#05h ;Delay program

 LOOP7:MOV R3,#0FFh

 LOOP3:MOV R4,#0FFh

 LOOP2:NOP

 NOP

 NOP

 DJNZ R4,LOOP2

 DJNZ R3,LOOP3

 DJNZ R2,LOOP7

 RET

 TABLE: DB 3Fh,06h,5Bh,4Fh,66h,6Dh,7Dh,07h,7Fh,6Fh

 END

C PROGRAM:

 #include <Intel\8051.h>

 idata unsigned int temp=0;

 unsigned char count;

 BIT disp1 P2.4 // Assign port 2.4 for display

 BIT disp2 P2.5 // Assign port 2.5 for display

 const unsigned char

 value[16]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x67,
 0x77, 0x7c,0x39,0x5e,0x79,0x71};// Segment code for display

 void main ()

 {

 disp1=0;

 disp2=0;

 while(1)

 162 8051 Microcontroller: Hardware, So ware & Applications

 {

 count=0x09;

 do

 {

 P0=value[count];

 while(temp<0xFFFF){

 temp=temp+1; // Generate delay

 }

 temp=0;

 count=count-1; // Decrement count by 1

 }while(count>=0);

 }

 } // end of main

 1. Name the types of seven-segment display.

 2. _________ seven-segment code is used to display 8 in common cathode display.

 3. 71H is seven-segment code to display F in common cathode display. True/ False?

 4. ________ number of I/O pins are required to interface 3 4 matrix keyboard.

 5. In matrix keyboard, the ports for row lines are defi ned as output ports. True/ False?

 6. To detect the key press in a matrix keyboard, one row at a time is grounded. True/ False?

 7. In 4 4 matrix keyboard, if 0 number key is pressed, then the condition of the column line in

hexadecimal will be ____________.

 8. List the steps to detect a key in 4 4 matrix keyboard.

6.5 INTERFACING MATRIX KEYBOARD AND
LIQUID CRYSTAL DISPLAY (LCD)

EXAMPLE 6.19

 Write ALP and C program to read a key from a matrix keyboard and display the key value using liquid

crystal display (LCD).

The matrix keyboard interfacing is as discussed in Section 6.4. The LCD is interfaced by using Port

0 and Port 2.4–2.6 as shown in Fig. 6.9 and the pin details of the LCD are given in Table 6.4. When

voltage is applied across the LCD segment, electrostatic fi eld is created that aligns crystals in the

liquid. This alignment allows light to pass through the segment. LCD needs a driving circuit. LCD and

Chapter 6 8051 Parallel I/O Ports 163

driving circuits are integrated in LCD display module. The display has one command register and one

data register. Data to be displayed should be in ASCII. Data and command registers are diff erentiated

by the RS input. The interfacing circuit allows the microcontroller to send commands and data to the

LCD and also to read the status. The commands for LCD are given in Table 6.5.

 Pin details of LCD

 Pin Symbol I/O Description

 1 Vss --- Ground

 2 Vcc -- +5 V power supply

 3 VEE -- Power supply to control contrast

 4 RS I RS = 0 to select command register,
 RS = 1 to select data register

 5 R/ W I R/ W = 0 for write, R/ W = 1 for read

 6 E I Enable

 7 D0 I/O The 8 bit data bus

 8 D1 I/O The 8 bit data bus

 9 D2 I/O The 8 bit data bus

 10 D3 I/O The 8 bit data bus

 11 D4 I/O The 8 bit data bus

 12 D5 I/O The 8 bit data bus

 13 D6 I/O The 8 bit data bus

 14 D7 I/O The 8 bit data bus

TABLE 6.4

Programming to read a key from matrix keyboard and display the key value using liquid crystal display

can be divided into the following steps:

• Initialise LCD

• Find the key value

 1. Check whether all keys are open

 2. Check a key closure

 3. Debounce the key

 4. Identify the key

• Find the binary code for the key

• Send the data to LCD

 1. Find the ASCII code for the binary

 2. Send the command code to LCD

 3. Check busy-bit for sending the data

 4. Send the ASCII code to LCD

 164 8051 Microcontroller: Hardware, So ware & Applications

 Commands of LCD

 Code Commands to LCD Instruction
 (Hex) Register

 1 Clear Display Screen

 2 Return Home

 4 Decrement Cursor

 6 Increment Cursor

 5 Shi Display Right

 7 Shi Display Le

 8 Display Off , Cursor Off

 A Display Off , Cursor On

 C Display On, Cursor Off

 E Display On, Cursor Blinking

 F Display On, Cursor Blinking

 10 Shi Cursor Position To Le

 14 Shi Cursor Position To Right

 18 Shi The Entire Display To The Le

 1C Shi The Entire Display To The Right

 80 Force Cursor To Beginning of 1st line

 C0 Force Cursor To Beginning of 2nd line

 38 2 Lines and 5 × 7 Matrix

TABLE 6.5

Figure 6.9 LCD Interface connections

Chapter 6 8051 Parallel I/O Ports 165

THE PROGRAM IS AS FOLLOWS:

 ORG 0000h

 LCDDATA EQU 80h ;Init LCD data lines to port 0

 LCDCTRL EQU 0A0h ;Init LCD control lines to port 2.4, 2.5

 and 2.6

 KEY_ROW EQU 90h ;Init KEY_ROW to port 1

 KEY_COL EQU 0A0h ;Init KEY_COL to lower port 2

 BUSY_BIT EQU 87h ;Init busy-bit to 87H

 REG_SEL EQU 0A4h ;Init LCD control line REG_SEL to port 2.4

 READ_WRITE EQU 0A5h ;Init LCD control line READ_WRITE to port 2.5

 ENABLE EQU 0A6h ;Init LCD control line ENABLE to Port 2.6

 MAIN:ACALL LCD_INIT ;Call LCD_INIT and initialise LCD

 BACK:ACALL FIND_KEY_PRESS ;Call FIND_KEY_PRESS and get the key value

 ACALL DISP_KEY ;Call DISP_KEY and display key value

 SJMP BACK

 LCD_INIT:MOV A,#38h ;Init LCD 2 lines, 5x7 matrix

 CALL CMD_WRITE ;Call CMD_WRITE

 MOV A,#0Ch ;Display ON cursor OFF

 ACALL CMD_WRITE ;Call CMD_WRITE

 MOV A,#01h ;Clear display screen

 ACALL CMD_WRITE ;Call CMD_WRITE

 MOV A,#06h ;Increment cursor

 ACALL CMD_WRITE ;Call CMD_WRITE

 MOV A,#80h ;Force cursor to the beginning of the

 fi rst line

 ACALL CMD_WRITE ;Call CMD_WRITE

 RET

 CMD_WRITE:ACALL CHK_BUSY_BIT ;Check LCD ready

 MOV LCDDATA,A ;Send command code

 CLR REG_SEL ;RS=0 for command

 CLR READ_WRITE ;R/W = 0 to write

 SETB ENABLE ;E = 1

 CLR ENABLE ;E = 0, to latch

 RET

 DATA_WRITE:ACALL CHK_BUSY_BIT ;Check LCD ready

 MOV LCDDATA, A ;Send data

 SETB REG_SEL ;RS=1 for data

 CLR READ_WRITE ;R/W = 0 to write

 SETB ENABLE ;E = 1

 CLR ENABLE ;E = 0, to latch

 RET

 166 8051 Microcontroller: Hardware, So ware & Applications

 CHK_BUSY_BIT:CLR ENABLE ;Check LCD ready, E = 0

 SETB BUSY_BIT ;BUSY_BIT = 1

 CLR REG_SEL ;RS = 0

 SETB READ_WRITE ;R/W = 1

 CHK_BUSY:CLR ENABLE ;E = 0

 SETB ENABLE ;E = 1

 JB BUSY_BIT, CHK_BUSY ;Stay until busy fl ag = 0

 CLR ENABLE ;E = 0

 RET

 FIND_KEY_PRESS:MOV KEY_COL, #0Fh ;Defi ne KEY_COL as input port

 START:MOV KEY_ROW, #00h ;Ground all the row lines

 MOV A, KEY_COL ;Read all the column lines

 ANL A, #0Fh ;Mask unused bits

 CJNE A, #0Fh, CHECK1 ;Key pressed branch to check1

 SJMP START ;Branch to start till key pressed

 CHECK1:LCALL DELAY ;Wait debounce time

 MOV A,KEY_COL ;Read all the column lines

 ANL A,#0Fh ;Mask unused bits

 CJNE A,#0Fh,NEXT ;Key pressed branch to NEXT

 SJMP START ;Branch to start till key pressed

 NEXT:MOV KEY_ROW, #0Eh ;Ground row 0

 MOV A, KEY_COL ;Read all column lines

 ANL A, #0Fh ;Mask unused bits

 CJNE A, #0Fh, SCAN_ROW0 ;If key is in row 0, branch to SCAN_ROW0

 MOV KEY_ROW, #0Dh ;Ground row 1

 MOV A, KEY_COL ;Read all column lines

 ANL A, #0Fh ;Mask unused bits

 CJNE A, #0Fh,SCAN_ROW1 ;If key is in row 1, branch to SCAN_ROW1

 MOV KEY_ROW, #0Bh ;Ground row 2

 MOV A, KEY_COL ;Read all column lines

 ANL A, #0Fh ;Mask unused bits

 CJNE A, #0Fh,SCAN_ROW2 ;If key is in row 1, branch to SCAN_ROW2

 MOV KEY_ROW, #07h ;Ground row3

 MOV A, KEY_COL ;Read all column lines

 ANL A, #0Fh ;Mask unused bits

 CJNE A, #0Fh,SCAN_ROW3 ;If key is in row 1, branch to SCAN_ROW3

 SJMP START ;If none of the keys are pressed,

 branch to start

 SCAN_ROW0:MOV DPTR, #ROW0 ;Copy ROW0 address to DPTR

 SJMP FINDKEY ;Find column

 SCAN_ROW1:MOV DPTR, #ROW1 ;Copy ROW1 address to DPTR

Chapter 6 8051 Parallel I/O Ports 167

 SJMP FINDKEY ;Find column

 SCAN_ROW2:MOV DPTR, #ROW2 ;Copy ROW2 address to DPTR

 SJMP FINDKEY ;Find column

 SCAN_ROW3:MOV DPTR, #ROW3 ;Copy ROW3 address to DPTR

 SJMP FINDKEY ;Find column

 FINDKEY:RRC A ;Find column and update DPTR

 JNC FOUND_KEY

 INC DPTR

 SJMP FINDKEY

 FOUND_KEY:RET

 DISP_KEY:MOV A,#80h ;Force cursor to the beginning of the fi rst line

 ACALL CMD_WRITE ;Call CMD_WRITE

 CLR A ;Clear A

 MOVC A, @A+DPTR ;Get ASCII code from the code memory

 ACALL DATA_WRITE ;Send the ASCII code to LCD

 RET

 DELAY:MOV R6,#20h ;Delay program

 NEXT6:MOV R7,#0FFh

 NEXT7:DJNZ R7,NEXT7

 DJNZ R6,NEXT6

 RET

 ROW0: dB ‘0’, ‘1’, ‘2’, ‘3’ ;ASCII code for 0,1,2,3

 ROW1: dB ‘4’,’5’,’6’,’7’ ;ASCII code for 4,5,6,7

 ROW2: dB ‘8’,’9’,’A’,’B ;ASCII code for 8,9,A,B

 ROW3: dB ‘C’,’D’,’E’,’F’ ;ASCII code for C,D,E,F

 END

C PROGRAM

 #include <Intel\8051.h>

 #defi ne key_row P1

 BIT reg_sel P2.4

 BIT read_write P2.5

 BIT enable P2.6

 BIT busy_bit 0x87 // port initialisation

 unsigned char i=0;

 idata unsigned char temp;

 idata unsigned char temp2,temp1;

 unsigned char var;

 168 8051 Microcontroller: Hardware, So ware & Applications

 idata unsigned char lcdvalue;

 const unsigned char seg[16]={‘0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,

 ’8’,’9’,’A’,’B’,’C’,’D’,’E’,’F’};

 // ASCII look up table

 void data_write();

 void cmd_write();

 void chk_busy();

 void main ()

 {

 // Initialise LCD display

 temp= 0x38; // Command to select 2 lines and 5x7 matrix display

 cmd_write();

 temp= 0x0c; // Command to select display on and cursor off

 cmd_write();

 temp= 0x01; // Command to clear display

 cmd_write();

 temp= 0x06; // Command to increment cursor

 cmd_write();

 temp= 0x80; // Command to force cursor to the beginning of

 the fi rst line

 cmd_write();

 while(1)

 {

 P2 = 0x0f;

 key_row =0x00;

 do

 {

 temp1 = P2 & 0x0f;

 }while(temp1==0x0f);// Wait till the key is pressed

 while(i<100)

 {

 i=i+1;

 }// De bouncing

 P2= 0x0f;

 var = 0xf7;// For Scanning rows

 temp2=0; // Key Count

Chapter 6 8051 Parallel I/O Ports 169

 for(i=0;i<4;i++)

 {

 var = var<<1;

 key_row =var>>4; // Scan rows

 temp1 = P2&0x0f; // Key input

 if(temp1!=0x0f)

 {

 switch (temp1){

 case 0x0e:

 lcdvalue= (seg[temp2+0]);

 break;

 case 0x0d:

 lcdvalue=(seg[temp2+1]);

 break;

 case 0x0b:

 lcdvalue= (seg[temp2+2]);

 break;

 case 0x07:

 lcdvalue= (seg[temp2+3]);

 break;

 }

 }

 temp2=temp2+4; // Move to next row

 } //End of for loop

 temp= 0x80; // Command to force cursor to the

 beginning of the fi rst line

 cmd_write();

 data_write(); //Write key value to LCD

 }

 }

 // Function to write command to LCD

 void cmd_write()

 {

 chk_busy();// Check LCD is Available

 P0=temp; // Write command

 170 8051 Microcontroller: Hardware, So ware & Applications

 reg_sel=0;

 read_write=0;

 enable=1;

 enable=0;//Latch

 }

 // Function to write data to LCD

 void data_write()

 {

 chk_busy(); //Check if LCD is available

 P0 = lcdvalue; //Write data

 reg_sel =1;

 read_write =0;

 enable =1;

 enable =0; //Latch

 }

 // Function to check if LCD is free

 void chk_busy()

 {

 enable=0;

 busy_bit =1;

 reg_sel =0;

 read_write =1;

 do

 {

 enable=0;

 enable =1;

 }while (busy_bit); //Wait until busy_bit is cleared

 enable =0;

 }

 1. ____________ pin of LCD selects the command and data register.

 2. List the registers in LCD.

 3. RS and E pins of LCD are input pin. True/False?

 4. Name the control pins of LCD.

 5. For LCD to display letters and numbers, the data is in ASCII. True/False?

Chapter 6 8051 Parallel I/O Ports 171

6.6 INTERFACING D/A CONVERTER USING
PARALLEL PORTS

EXAMPLE 6.20

 Interface DAC 08 and write ALP and C program to generate square wave.

 Digital to analog converters are required when a digital code must be converted to an analog signal.
Figure 6.10 shows interfacing of DAC 08, with reference current 2 mA by using +5 V power supply
and 2.5 KΩ resistance. It has eight digital input lines and an output line for analog signal. The
number of data bits decide the resolution of the DAC. The output pin Iout is connected to a current to
voltage converter circuit. The eight input lines can assume eight input combinations from 00000000
to 11111111. The range of D/A converter is 0 to +5 V. Then, for input 00000000, the output of D/A

converter is 0 V; for input 10000000, the output is +2.5 V; and for input 11111111, the output is +5 V.

Figure 6.10 8051 connection with DAC 08

 Generation of Square Wave

In this problem, since D/A converter is an output device, port 2 is used as an output port. Connect the

output of D/A converter to an oscilloscope. Delay program decides the ‘on period’ and ‘off period’ of

square wave. Program to generate a square wave is as follows:

 ORG 0000h
 CLR A ;Clear A
 BACK: MOV P2,A ;Send data to port 2 (to DAC)
 LCALL DELAY ;Delay decides period of square wave
 CPL A ;Complement content of A
 SJMP BACK ;Branch to BACK
 DELAY: MOV R1,#40h ;Delay program
 NEXT2: MOV R2,#0FFh
 NEXT1: DJNZ R2, NEXT1
 DJNZ R1, NEXT2
 RET
 END

 172 8051 Microcontroller: Hardware, So ware & Applications

C PROGRAM:

 #include <Intel\8051.h>
 #include <standard.h>
 # defi ne PERIOD 250 // Defi ne delay time 250 ms
 void main ()
 {
 unsigned char a;
 a=0xFF;
 while (1)
 {
 P2=a; //Out data to port2
 delay_ms (PERIOD); // Delay function defi ned in standard.h for
 delay in ms
 a=~a; // Toggle

 }
 } // End of main

EXAMPLE 6.21

 Interface DAC 08 and write ALP and C program to generate triangular wave.

 Generation of Triangular Wave

In this problem, since D/A converter is an output device, port 2 is used as an output port. To

generate a triangular wave, increment input to D/A from 00H to FFH, and then decrement from

FFH to 00H. The program to generate triangular wave is as follows:

 ORG 00h
 CLR A
 BACK: MOV P2,A ;Send data to port 2 (to DAC)
 LCALL DELAY ;DAC conversion time
 ADD A,#01h ;Increment contents of A
 CJNE A,#0FFh,BACK ;Increment contents of A up to FF (+5V)
 BACK1: MOV P2,A ;Send data to port 2 (to DAC)
 LCALL DELAY ;DAC conversion time
 CLR C ;Clear carry fl ag
 SUBB A,#01h ;Decrement contents of A
 CJNE A,#00h, BACK1 ;Decrement contents of A up to 00 (+0V)
 SJMP BACK
 DELAY: MOV R1,#0Fh ;Delay program
 NEXT: DJNZ R1,NEXT
 RET

Chapter 6 8051 Parallel I/O Ports 173

C PROGRAM

 #include <Intel\8051.h>
 #include <standard.h>
 void main ()
 {
 unsigned char a;
 while (1)
 {
 for (a=0; a<0xFF; a++) // To generate positive ramp
 {
 P2=a;
 delay_ms (1);
 }
 for (a=0xFF; a>0; a--) // To generate negative ramp
 {
 P2=a;
 delay_ms (1);
 // Delay function defi ned in standard.h for delay in ms
 }
 }
 } // End of main

EXAMPLE 6.22

 Interface DAC 08 and write ALP and C program to generate saw tooth waveform.

 Generation of Saw Tooth Wave

To generate saw tooth wave, increment input to D/A from 00H to FFH, and then the program will

be in loop. Program to generate saw tooth wave is as follows:

 ORG 0000h
 CLR A
 BACK: MOV P2,A ;Send data to port 2 (to DAC)
 INC A ;Increment contents of A
 LCALL DELAY ;DAC conversion time
 SJMP BACK ;Branch to BACK
 DELAY:MOV R1, #0Fh ;Delay program
 NEXT:DJNZ R1, NEXT
 RET

C PROGRAM

 #include <Intel\8051.h>
 #include <standard.h>
 void main ()
 {

 174 8051 Microcontroller: Hardware, So ware & Applications

 unsigned char a;
 while (1)
 {
 for (a=0; a<0xFF; a++)// To generate positive ramp

 {
 P2=a;
 delay_ms (1);
 // Delay function defi ned in standard.h for delay in ms
 }
 }
 } // End of main

EXAMPLE 6.23 Interface DAC 08 and write ALP and C program to generate sine wave.

 Generation of Sine Wave

Full-scale output +5 V is achieved when all the data inputs of the DAC are high. To generate a sine
wave, we fi rst need a table whose values represent the magnitude of the sine angles between 0 and
360 degree angles. Vout of DAC for various sine degrees is calculated as follows.

 Vout = 2.5 V + (2.5 V × Sin θ)
Table 6.6 shows the angles, the sine values, the voltage magnitude and the integer values
representing the voltage magnitude for each angle with 10 degree increment.

 Angle and voltage magnitude for Sine wave

 Angle q sin q Vout Values to DAC Angle q sin q Vout Values to DAC

 0 0 2.5 32 190 –0.173 2.067 27
 10 0.173 2.935 38 200 –0.342 1.645 21
 20 0.342 3.355 43 210 –0.500 1.250 16
 30 0.500 3.750 48 220 –0.642 0.895 12
 40 0.642 4.105 53 230 –0.766 0.585 8
 50 0.766 4.415 57 240 –0.866 0.335 4
 60 0.866 4.665 60 250 –0.939 0.152 2
 70 0.939 4.847 62 260 –0.984 0.040 1
 80 0.984 4.96 63 270 –1.000 0.000 0
 90 1.000 5.0 64 280 –0.984 0.040 1
 100 0.984 4.96 63 290 –0.939 0.152 2
 110 0.939 4.847 62 300 –0.866 0.335 4
 120 0.866 4.665 60 310 –0.766 0.585 8
 130 0.766 4.415 57 320 –0.642 0.895 12
 140 0.642 4.105 53 330 –0.500 1.250 16
 150 0.500 3.750 48 340 –0.342 1.645 21
 160 0.342 3.355 43 350 –0.173 2.067 27

 170 0.173 2.935 38 360 0.000 2.5 32

 180 0.000 2.5 32

TABLE 6.6

Chapter 6 8051 Parallel I/O Ports 175

Program to generate Sine wave is as follows:

 ORG 00h
 BACK1: MOV R2,#25h ; Defi ne R2 as counter
 MOV DPTR,#TABLE
 BACK: CLR A
 MOVC A,@A+DPTR ; Get the data from the memory pointed by DPTR
 MOV P2,A ; Send data to port 0
 LCALL DELAY
 INC DPTR

 DJNZ R2, BACK ; Decrement counter of R2, if it is not 0,
branch to BACK

 AJMP BACK1 ; Branch to BACK1
 DELAY: MOV R1,#0Fh ; Delay program
 NEXT:DJNZ R1,NEXT
 RET

 TABLE: dB 32, 38, 43, 48, 53, 57, 60, 62, 63, 64, 63, 62, 60, 57,
53, 48, 43, 38, 32, 27, 21, 16,

 dB 12, 08, 04, 02, 01, 00, 01, 02, 04, 08, 12, 16, 21, 27,
32

 END

C PROGRAM

#include <Intel\8051.h>

const unsigned char val [37]={32, 38, 43, 48, 53, 57, 60, 62, 63,
64, 63, 62, 60, 57, 53, 48, 43, 38, 32, 27, 21, 16, 12, 08, 04, 02,
01, 00, 01, 02, 04, 08, 12, 16, 21, 27}; // Look up table of sine

unsigned char count;

void main ()

 {

 while (1)

 {

 count=0;

 while (count<37) // up to 360

 {

 P2=val[count]; // Out data from table to port 2

 count=count+1; // Increment for next data

 }

 }

 } // End of main

 176 8051 Microcontroller: Hardware, So ware & Applications

 1. In DAC 08, the output is current. True/False?

 2. The reference current in DAC 08 is 2 mA. True/False?

 3. DAC 08 has eight input data lines. True/False?

 4. DAC 08 output pin Iout is connected to amplifi er circuit. True/False?

 5. In DAC 08, the input signal is analog. True/ False?

6.7 INTERFACING A/D CONVERTER USING
PARALLEL PORTS

EXAMPLE 6.24

Write ALP and C program to start an A/D conversion and store the result in accumulator.

 Analog to digital converters are required when an analog signal must be converted to a digital code.

Figure 6.11 shows the circuit to inter-face an eight-channel, 8 bit A/D converter. It has eight input

lines, three address lines (A B C) to select the input, ALE pin to latch the address and eight digital

output lines. SC is for Start Conversion, EOC is for End Of Conversion and OE is for Output Enable to

perform read operation. If Vref(+) = 5V and Vref(-) = GND, then the range of A/D converter is 0 to +5 V

and the step size is 5V/256 = 19.53 mV. The eight output lines can assume eight output combinations

from 00000000 to 11111111. For 0V input, the output of A/D converter is 00000000 (00H); for input

+2.5 V the output is 10000000 (80 H); and for input +5 V, the output is 11111111 (FF H).

Figure 6.11 ADC0808/0809

In this problem, since A/D converter is an input device, Port 2 should be defi ned as an input port,

P3.0 – P3.2 and P3.4 – P3.6 are used as output and P3.3 is defi ned as input. 2 seven-segment displays

Chapter 6 8051 Parallel I/O Ports 177

are connected by using port 0, port 1.0 and port 1.1. Port 1.0 and port1.1 select the display. Port 0,

port 1.1. and port 1.2 are used as output.

The program to start A/D conversion and display the result is as
follows.

 ORG 0000H

 SEL_DIGIT EQU 80h ; Send data to display using port 0

 SEL_SEGMENT EQU 90h ; Display is selected using P1.1 and P1.0

 AD_OE BIT P3.6 ; Output Enable is assigned to AD_OE

 AD_SC BIT P3.5 ; Start Conversion is assigned to AD_SC

 AD_EOC BIT P3.3 ; EOC is assigned to AD_EOC

 AD_ALE BIT P3.4 ; ALE is assigned to AD_ALE

 AD0 BIT P3.0 ; Multiplexer channel addressing

 AD1 BIT P3.1

 AD2 BIT P3.2

 MOV P2,#0FFh ; Make P2 input

 MOV P3,#08h ; Make P3.3 (EOC pin) input

 CLR AD_ALE ; ALE =0

 CLR AD0 ; Channel 0 is selected

 CLR AD1

 CLR AD2

 SETB AD_ALE ; ALE =1, latch the address

MAIN: SETB AD_OE ; Output buffer is enabled

 CLR AD_SC ; Send pulse to start conversion

 CALL DELAY

 SETB AD_SC

 CALL DELAY

 CLR AD_SC

LOOP1: MOV A,P3 ; Wait for end of conversion

 ANL A,#08h

 CJNE A,#08h,LOOP1

 MOV A,P2 ; Read the data

 MOV R2,A

LOOPD: MOV A,R2

 ANL A,#0FH

 MOV DPTR,#TABLE

 MOVC A,@A+DPTR

 MOV SEL_DIGIT,A ; Send the lower nibble data to display1

 CLR P1.0

 SETB P1.1

 178 8051 Microcontroller: Hardware, So ware & Applications

 CALL DELAY

 MOV A,R2

 SWAP A

 ANL A,#0FH

 MOVC A,@A+DPTR

 MOV SEL_DIGIT,A ; Send the upper nibble data to display2

 SETB P1.0

 CLR P1.1

 AJMP MAIN

DELAY: MOV R7,#100 ; Delay program

 D1:NOP

 NOP

 DJNZ R7,D1

 RET

TABLE: db 3Fh, 06h, 5bh, 4Fh, 66h, 6dh, 7dh, 07h, 7Fh, 67h, 77h, 7Ch,
39h, 5Eh, 79h, 71h

 END

C PROGRAM

#include <Intel\8051.h>

 // Port initialisation

BIT AD_OE P3.6; // Output Enable

BIT AD_SC P3.5; // Start Conversion

BIT AD_EOC P3.3; // End Of Conversion

BIT AD_ALE P3.4; // ALE signal

BIT AD0 P3.0;

BIT AD1 P3.1;

BIT AD2 P3.2; // Channel selection bits

BIT AD3 P1.0;

BIT AD4 P1.1;

unsigned char value,dig1,dig2,temp,i;

const unsigned char

seg[16]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x67,0x77,0
x7c,0x39,0x5e,0x79,0x71};

 // Segment codes for Seven-segment display

void delay(unsigned int count);

void main ()

{

 P2=0xff;

 P3= 0x08;

 AD_ALE=0;

Chapter 6 8051 Parallel I/O Ports 179

 // Select channel 0
 AD0=0;
 AD1=0;
 AD2=0;
 AD_ALE=1;// Generate ALE
 while(1)
 {
 AD_OE=1;
 // Generate start of conversion pulse
 AD_SC=0;
 delay(100);
 AD_SC=1;
 delay(0x100);
 AD_SC=0;
 Do {
 }while(!AD_EOC);// Wait till end of conversion is detected
 value =P2; // Read ADC output
 dig1=value&0x0f; // Display lower nibble in display 1
 P0=seg[dig1];
 AD4=0;
 AD5=1;
 while(i<100)
 {
 i=i+1;
 }
 i=0;
 AD4=1;
 AD5=0;
 dig2=value&0xf0; // Display higher nibble in display 2
 dig2=dig2>>4;
 P0=seg[dig2];
 }
}

 // Function to generate delay
void delay(unsigned int count)
{
 unsigned int j;
 for(j=0;j<count;j++)
 {
 }
}

 180 8051 Microcontroller: Hardware, So ware & Applications

 1. In ADC0808, input signal is analog. True/False?

 2. ADC0809 has three address lines to select the input lines. True/False?

 3. If range of 8 bit A/D converter is 0 to +5 V, the step rise is _________.

 4. If range of 8 bit A/D converter is 0 to +5 V for input +1.25 V, the output is _________.

 5. What is the function of ALE and EOC pin in ADC0808?

6.8 INTERFACING SERIAL A/D CONVERTER

EXAMPLE 6.25

Write ALP and C program to start serial A/D conversion (ADC 1031) and store the result in registers.

A/D converter as discussed in Section 6.7 is of parallel type. D0 to D7 data lines of the A/D converter

are connected to an 8 bit port of the 8051 microcontroller.

Figure 6.12 shows the circuit to interface ADC1031. ADC1031 serial ADC chip from National

semiconductor is 10 bit (D0–D9) serial A/D converter and most signifi cant bit is shifted out

fi rst through data output pin (D0). Serial clock (SCLK) input is used to bring data out; the falling

edge shifts the data on data output pin (D0). The clock frequency applied to CCLK pin can be from

700 KHz to 4 MHz. It operates with +5V power supply.

Figure 6.12 Interfacing serial A/D

In this problem, D0 is connected to P3.6. P3.6 should be defi ned as input port whereas P3.5 and P3.7

should be defi ned as output port. 3 MHz clock signal is connected to CCLK pin. Assume that 12 MHz

crystal is connected to the 8051 microcontroller and 3 MHz clock signal is connected to CCLK pin of

ADC 1031.

The program to get 10 bits data and store the data in registers R4

and R3 is as follows:

 ORG 0000H

 CLR A ; Clear A

 CLR P3.7 ; Select ADC 1031

Chapter 6 8051 Parallel I/O Ports 181

 SETB P3.6 ; Defi ne P3.6 as input

 MOV R2,#2 ; R2 is used as a counter to get MSB and MSB-1.

L1: SETB P3.5 ; Create falling edge in pin SCLK

 CLR P3.5

 MOV A, P1.6 ; Copy data of A/D converter to LSB of A

 RLC A ; Shift the bit

 DJNZ R2, L1 ; Get MSB and MSB-1 of A/D converter

 MOV R4,A ; Store the data in R4

 CLR A ; Clear accumulator

 MOV R2,#08 ; R2 is used as counter to get remaining 8 bit

L2: SETB P3.5 ; Create falling edge in pin SCLK

 CLR P3.5

 MOV A,P1.6 ; Copy data of A/D converter to LSB of A

 RLC A ; Shift the bit

 DJNZ R2, L2 ; Get the remaining 8 bit of A/D converter

 MOV R3,A ; Store the data in R3

 SETB P3.7 ; Disable ADC 1031

 END

C PROGRAM

#include<intel /8051.h>

BIT AD_SEL P3.7

BIT AD_INP P3.6

BIT AD_EDGE P3.5

Unsigned char count, data1, data2

Void main ()

 {

 AD_SEL=0; // Select ADC

 AD_INP=1; // Confi gure input

 For (count=0; count<10; count++)

 {

 AD_EDGE=1;

 AD_EDGE=0; // Create falling edge

 If (count<2)

 {

 DATA1= ADC_INP;

 DATA1<<=1;

 } else

 {

 182 8051 Microcontroller: Hardware, So ware & Applications

 DATA2= ADC_INP;

 DATA2<<=1;

 }

 } // End of loop

 AD_SEL=1;// Disable ADC

 } // End of main

 1. ADC 1031 is a serial A/D converter. True/False?

 2. ADC 1031 is _________ bit serial A/D converter.

 3. In ADC 1031, the falling edge of SCLK shifts the data on data output pin. True/False?

 4. ADC 1031 operates with clock frequency _________ to _________.

 5. Differentiate the functions of SCLK and CCLK pin of ADC 1031.

6.9 INTERFACING STEPPER MOTOR

EXAMPLE 6.26

 Interface stepper motor and write ALP and C program to rotate the stepper motor in the direction

given in the program.

Stepper motors, also known as stepping or step motors, are essentially
incremental motion devices. If rotor rotates 90° in each step (from
one pole segment to another), it is called a full step. In Fig. 6.13,
the rotor rotates 90° in each step.

The stepper motor may also be operated with a half step. A half
step occurs when the rotor is moved to 45°. Figure 6.14 illustrates
the half-stepping sequence. The common step angles of stepper motor
are 1.8°, 7.5° and 15°. If step size is 1.8°, then to complete one
rotation or 360 degrees, it requires 200 steps. The step angle and the
stepping code can be obtained from the stepper motor manufacturer,
and the rotation speed depends on the delay program between the
 stepping codes.

 The circuit to interface stepper motor is as shown in Fig. 6.15. The
stepper motor can be driven directly by the transistors. Transistors
are used to supply higher current to the motor. The microcontroller
outputs the drive pattern to make the motor rotate. The diodes in Fig.
6.15 are called fl y back diodes and are used to protect the transistors
from reverse biases.

Chapter 6 8051 Parallel I/O Ports 183

Figure 6.13 Full step operation of step motor

Figure 6.14 Half step operation of stepper motor

 184 8051 Microcontroller: Hardware, So ware & Applications

Figure 6.15 Driver circuit and port interface for stepper

In this problem, since the stepper motor is an output device, port
2 is used as an output port.

The program to rotate stepper motor is as follows.

 ORG 0000h

LOOP:MOV P2,#03h ; Load step sequence 03

 ACALL DELAY ; Call delay

 MOV P2,#09h ; Load step sequence 09

 ACALL DELAY ; Call delay

 MOV P2,#0Ch ; Load step sequence 0C

 ACALL DELAY ; Call delay

 MOV P2,#06h ; Load step sequence 06

 ACALL DELAY ; Call delay

 AJMP LOOP ; Repeat the above procedure

DELAY: MOV R5,#0FFh ; Delay program

DELAY1: MOV R7,#0FFh

 S1: DJNZ R7,S1

 DJNZ R5,DELAY1

 RET

 END

Chapter 6 8051 Parallel I/O Ports 185

EXAMPLE 6.27

Interface the stepper motor using port 2 and a switch using P1.6. Write ALP and C program to rotate

the stepper motor in clockwise direction, if switch is ON, else in anticlockwise direction.

PROGRAM

 ORG 0000

 MOV P1,#40H ; Defi ne P1.6 as Input

LOOP2:MOV A,P1 ; Read Port 1

 ANL A,#40H ; Mask all the bits, except D6

 CJNEA,#00h,LOOP1 ; If switch is off, branch to LOOP1

 MOV P2,#03H ; Switch is on, send step sequence for clockwise

 ACALL DELAY

 MOV P2,#09H

 ACALL DELAY

 MOV P2,#0CH

 ACALL DELAY

 MOV P2,#06H

 ACALL DELAY

 AJMP LOOP2

LOOP1:MOV P2,#06H ; Switch is off, send step sequence for

 anticlockwise

 ACALL DELAY

 MOV P2,#0CH

 ACALL DELAY

 MOV P2,#09H

 ACALL DELAY

 MOV P2,#03H

 ACALL DELAY

 AJMP LOOP2

DELAY: MOV R5,#0FFH ; Delay program

DELAY1: MOV R7,#0FFH

 S1: DJNZ R7,S1

 DJNZ R5,DELAY1

 RET

 END

C PROGRAM

#include <Intel\8051.h>

#defi ne phasea 0x03 // Data for stepper motor excitation

#defi ne phaseb 0x09 // Data for stepper motor excitation

 186 8051 Microcontroller: Hardware, So ware & Applications

#defi ne phasec 0x0c // Data for stepper motor excitation

#defi ne phased 0x06 // Data for stepper motor excitation

void clockwise(void);

void anticlockwise(void);

void delayl(void);

int i;

unsigned char test;

void main ()

{

// sense switch

 P1 = 0xFF;

 P1 |= 0x40;

//Depending on the switch position, the stepper motor will rotate
clockwise or anticlockwise

 while(1)

 {

 test = P1;

 test = test & 0x40;

 if(test == 0x40)

 {

 clockwise();

 }

 else

 {

 anticlockwise();

 }

 } // end of while(1)

} // end of main()

// Function for clockwise rotation

// Excitation sequence for clockwise a b c d

void clockwise(void)

{

Chapter 6 8051 Parallel I/O Ports 187

 P2 = phasea; delayl();

 delayl();

 P2 = phaseb;

 delayl();

 delayl();

 P2 = phasec;

 delayl();

 delayl();

 P2 = phased;

 delayl();

 delayl();

}

// Anticlockwise program

// Excitation sequence for anticlockwise d c b a

void anticlockwise(void)

{

 P2 = phased;

 delayl();

 delayl();

 P2 = phasec;

 delayl();

 delayl();

 P2 = phaseb;

 delayl();

 delayl();

 P2 = phasea;

 delayl();

 delayl();

}

// Function for delay in between steps

 188 8051 Microcontroller: Hardware, So ware & Applications

void delayl(void)

{

 delay_ms(250);

//for(i=0;i<=10000;i++)

}

 1. If step size is 1.8°, then to complete one rotation, it requires 200 steps. True/False?

 2. If step size is 7.5°, then to complete two rotations in clockwise, it requires _______ steps.

 3. If step size is 1.8° and stepper motor is operated with half step, then it requires ________ steps

to complete one rotation.

 4. The function of driving circuit in stepper motor is to amplify the current. True/False?

 5. What is the function of fl y back diodes in driving circuit?

6.10 INTERFACING DC MOTOR

EXAMPLE 6.28

Interface DC motor and write ALP and C program to rotate the DC motor for a given speed.

DC motor is used extensively in control system applications because
the speed and torque can be precisely controlled. The difference
between stepper motor and DC motor is that DC motor has a permanent
magnetic fi eld. When a voltage and subsequent current fl ow are applied
to the armature, the motor begins to rotate. The DC voltage applied
across the armature determines the speed of rotation. The circuit to
interface DC motor is as shown in Fig. 6.16.

Figure 6.16 Motor drive circuit

Chapter 6 8051 Parallel I/O Ports 189

DC motor speed and direction of rotation is controlled using port
pins—P2.4 and P2.5. The circuit utilises complementary pair NPN/PNP,
transistors T4/T5 and T2/T3. Motor is on, if a PWM signal is applied
to P2.4; and if P2.5 is held at logic 0, when the PWM is at logic 1,
T6 collector will be low; so T4 is OFF and T5 is ON. Since P2.5 is
held at logic 0, the collector of T1 will go high, so T2 is ON and
T3 is OFF. The motor rotates in reverse direction, if P2.4 is held
at logic 0; and if a PWM signal is applied to P2.5, then T4 will be
ON and T5 will be OFF. When PWM is at logic 1, transistor T2 is OFF
and T3 is ON giving a reverse conduction path. Motor is OFF if both
P2.4 and P2.5 are held at logic 0. The diodes in the fi gure are used
to protect the transistors from reverse biases.

The program to control the speed of DC motor is as follows:

 ORG 0000H

 CLR P2.5 ; Make P2.5 low

NEXT:SETB P2.4 ; Make P2.4 high

 MOV R4, #0FH

 B1:MOV R5,#0FFH

 B2:MOV R7,#0FFH

 B3:DJNZ R7,B3

 DJNZ R5,B1

 DJNZ R4,B1

 CLR P2.4 ; Make P2.4 low

 MOV R4, #05H

 B1:MOV R5,#05H

 B2:MOV R7,#05H

 B3:DJNZ R7,B3

 DJNZ R5,B1

 DJNZ R4,B1

 SJMP NEXT

 END

C PROGRAM

#include <Intel\8051.h>

#include<standard.h>

#defi ne DTIME 10 // Delay for 10 ms

BIT out P2.4 // Port for dc motor

void main ()

{

 while(1)

 190 8051 Microcontroller: Hardware, So ware & Applications

 {

 out=1;

 delay_ms(DTIME); // Generate pulse of 10 ms

 out =0;

 delay_ms(DTIME);

 }

}

Note
All C Programs are executed by using SIDE 51 compiler (SPJ). To execute programs by

using μvision compiler (KEIL Corp), few changes specifi c to the compiler need to be done.

replace header #include <Intel\8051.h> with # include <reg51.h>

replace bit disp1 P1.5 with sbit disp1= P1^5 or sbit
disp1=0X95.

 1. DC motor has __________ magnetic fi eld.

 2. In DC motor, the voltage applied across the armature determines the speed of rotation.

True /False?

 3. The speed of DC motor is proportional to armature voltage. True/False?

 4. Mention the important differences between stepper and DC motor.

 5. The speed of the DC motor is controlled by pulse width modulation. True/False?

In this chapter, we have elucidated the following important concepts:

• Structure and functions of parallel ports—port 0, port 1, port 2 and port 3.

• Alternate functions of port 0, port 1 and port 3.

• Circuits and programs to interface real world devices such as LED, LCD, and seven-segment

display, and keyboard.

• The programming and interfacing of ADC and DAC.

• Basic operations of stepper motor and DC motor.

• Circuits and programs to interface stepper motor with microcontroller

Chapter 6 8051 Parallel I/O Ports 191

 1. Which port has no alternate functions?

 (a) Port 0 (b) Port 1 (c) Port 2 (d) Port 3

 2. The alternate function of Port 3.4 is ____________.

 (a) Timer/counter 0 external input (b) Timer/counter 1 external input

 (c) Serial input port (d) Serial output port

 3. Port 0 has ____________.

 (a) No internal pull up resistance (b) Internal pull up resistance

 (c) No external pull up resistance (d) None of the above

 4. The alternate function of Port 2 is ____________.

 (a) For sending high order address (A8–A15) (b) For sending low order address (A0–A7)

 (c) For sending data (D0–D7) (d) None of the above

 5. For read and write operations, strobe signals are obtained by using ____________.

 (a) P3.0 and 3.1 (b) P3.2 and 3.3 (c) P3.4 and 3.5 (d) P3.6 and 3.7

 6. DAC 08 output is connected to ____________.

 (a) Current to voltage converter circuit (b) Amplifi er

 (c) Attenuator circuit (d) None of the above

 7. Consider 4 rows × 4 columns keypad, connected by using P0.0 to P0.3 and P0.4 to P0.7. The key

values are 0 to F respectively. When key 0 is pressed, the values at port P0.7 to P0.4 values will be

____________.

 (a) 1110 (b) 0111 (c) 1011 (d) 1101

 8. To display ‘A’ using common cathode seven-segment display, the code required is ____________.

 (a) 77H (b) 7FH (c) 79H (d) 06H

 9. If the step angle is 1.8 degree for a stepper motor, then the number of steps required to complete half

rotation would be ____________.

 (a) 200 (b) 100 (c) 360 (d) 180

 10. If the range of an 8 bit A/D converter is 0 to +5 V, then the step size is ____________.

 (a) 19.53 mv (b) 2.5 V (c) 0.625V (d) 256 mv

 11. The driver circuit for stepper motor functions as ____________.

 (a) Buffer (b) Voltage amplifi er (c) Attenuator (d) None of the above

 12. Which of the following ports in 8051 does not require external pull-up resistors to function as an I/O

port ____________.

 (a) Port 1, 2 and 3 (b) Port 0, 1 and 2 (c) Port 0 and 2 (d) Port 0 and 3

 13. The number of analog input channel for ADC 0809 is ____________.

 (a) 8 (b) 9 (c) 1 (d) 4

 14. ADC 0808 is an ____________ bit converter.

 (a) 8 (b) 4 (c) 1 (d) 16

 15. ____________ Pin of ADC 0808 indicates that the analog signal is converted to digital.

 (a) EOC (b) SC (c) OE (d) ALE

 16. DAC 08 is ____________ digital to analog converter.

 (a) 8 bit (b) 1 bit (c) 4 bit (d) None of the above

 17. The output pins of DAC 08 ____________.

 (a) Sources the current (b) Sinks the current (c) Both a and b (d) None of the above

 192 8051 Microcontroller: Hardware, So ware & Applications

 18. ____________ value is sent to 0–10V DAC to generate 7.5 V.

 (a) 192 (b) 238 (c) 128 (d) 255

 19. Stepper motor rotates by one step when the ____________ .

 (a) Current is transferred from one coil to next coil.

 (b) Current is switched OFF in the next coil.

 (c) Current is switched ON in the next coil.

 (d) When the current is switched ON in all the coils.

 20. ____________ ADC provides the best resolution.

 (a) 4 bit (b) 8 bit (c) 12 bit (d) 16 bit

 6.1 With a diagram, explain the operation of port 0.

 6.2 Explain the alternate functions of port 3.

 6.3 Explain two types of reading operations in 8051 ports.

 6.4 Explain the alternate functions of port 0 and port 2.

 6.5 Write a program to implement binary up counter (count up from 00H to FFH) with a delay of

1 second. Output the count value to port 0.

 6.6 Write a program to implement binary down counter (count down from FFH to 00H) with a delay of

0.5 second. Output the count value to port 1.

 6.7 Write a program to implement decimal up counter (count up from 00 to 99) with a delay of 1 second.

Output the count value to port 2.

 6.8 Write a program to implement decimal down counter (count down from 99 to 00) with a delay of

1 second. Output the count value to port 2.

 6.9 Write a program to toggle the bits of port 1 with a delay of 10 ms.

 6.10 Write a program to generate a square wave of 50% duty cycle at bit 0 of port 1.

 6.11 Write a program to display values from 00–49 four times and then stop.

 6.12 Write a program to display 0 to 9 in a seven-segment display card, which contains four seven-segment

displays.

 6.13 Write a program to display ADC output value using an LCD.

 6.14 Write a program to rotate stepper motor in clockwise direction to complete ten rotations and then

rotate in anticlockwise direction.

 6.15 Write a program to generate stair case waveform using 8 bit DAC.

 6.16 Write a program to implement stopwatch.

 6.17 Construct an 8051-based system to read 4 analog inputs one after the another and generate the

following outputs.

 If Input 1 > Input 2 output square wave of 2 KHz

 (Input1 + Input 2) > Input 3 Saw tooth wave of 500 Hz.

 (Input1+Input2+Input3) > Input 4 Pulse output with 75% duty cycle

 Otherwise out constant DC

 Select suitable ADC and DAC.

 6.18 Write a program to implement real time clock using an LCD.

 6.19 Write a program to rotate DC motor with different speeds in clockwise direction.

 6.20 Interface an 8 bit DAC to the 8051 microcontroller and write a program to generate negative ramp

waveform.

8051 INTERRUPTS AND
TIMERS/COUNTERS

Learning Objectives

After you have completed this chapter, you should be able to

 Explain interrupts and their classifi cation

 Explain 8051 interrupt structure

 Understand the timers/counters of the 8051

 Comprehend the operation of Timer 0 and Timer 1 in various modes

 Write programs for timers/counters

7.1 BASICS OF INTERRUPTS

 Interrupt is an input to a processor, whereby an external device or a peripheral can inform the processor that

it is ready for communication. When peripheral devices activate an interrupt signal, the processor branches

to a program called interrupt service routine. This program is written by the user for performing tasks that

the interrupting device wants the processor to execute. After executing the interrupt service routine, the

processor returns to the main program as shown in Fig. 7.1.

When peripheral devices interrupt the processor, branching takes place to interrupt service subroutine.

Before branching, the actions taken by the processor are as follows:

7

 194 8051 Microcontroller: Hardware, So ware & Applications

 1. It completes the execution of current instruction.

 2. Program status word register value is pushed onto the stack.

 3. Program counter value is pushed onto the stack.

 4. Interrupt fl ag is reset.

 5. Program counter is loaded with Interrupt Service Subroutine (ISS) address.

Main program
Interrupt Service

Subroutine

RETI

.

.

.

XXXXINT

Figure 7.1 Interrupt service subroutine processing

When program counter is loaded with interrupt service subroutine address, branching to ISS takes place.

During execution of ISS, interrupts are disabled because interrupt fl ag is reset. The ISS is ended with RETI

instruction. The execution of RETI instruction results in the following:

 1. POP from the stack top to the program counter.

 2. POP from the stack top to program status word register.

Thus, after executing the interrupt service routine, processor returns to the main program with program

status word register value unchanged.

7.1.1 Classification of Interrupts

Interrupt is classifi ed into two types— external and internal interrupt. Peripheral devices via the micro-

controller interrupt pins initiate external interrupts. Internal interrupts are activated by the peripherals of the

microcontroller and by the execution of interrupt instructions.

7.1.2 Interrupt Maskability

Interrupt requests are classifi ed into two categories— maskable and non-maskable interrupts. Micro-

processors and microcontrollers have the option to disable the interrupts. These types of interrupts are

called maskable interrupts. Other types of interrupts, which the processor cannot disable, are called non-

maskable interrupts.

7.1.3 Interrupt Vector

The term ‘interrupt vector’ refers to the starting address of the interrupt service routine. The processor needs

to determine the starting address of the interrupt service routine before it can provide service. The interrupt

vector can be determined by one of the following methods:

Chapter 7 8051 Interrupts and Timers/Counters 195

 Vectored Interrupts In this method, the starting address of the interrupt service routine is predefi ned when

the microcontroller is designed. These types of interrupts are called vectored interrupts.

 Non-vectored Interrupts In this method, when the microcontroller receives the interrupt signal from the

external devices, the processor completes the current instruction and sends a signal called INTA interrupt

acknowledge (active low). After receiving the INTA signal, external hardware sends the interrupt vector to

the microcontroller. These types of interrupts are called non-vectored interrupts.

7.2 8051 INTERRUPT STRUCTURE

The 8051 provides fi ve vectored interrupt sources. There are two external interrupts, external interrupt

0 (INT0) and external interrupt 1 (INT1) and three internal interrupts, 2 timer interrupt and a serial port

interrupt. When an interrupt is generated, the contents of pogram status word register and program counter

(PC) are pushed onto the stack. Vector address as shown in Table 7.1 is loaded in the program counter. As it

branches to interrupt service routine, the interrupt fl ag of that particular interrupt is cleared by the hardware.

In 8051, the interrupt fl ags are IE0, IE1, TF0, TF1, RI and TI. The interrupt service routine is ended with

RETI instruction. The RETI instruction will POP from the stack top to the program counter and program

status word register, and set the interrupt fl ag of that particular interrupt. The processor will start executing

from where the main program was interrupted.

TABLE 7.1 Interrupt service routines

 Interrupt Source Vector Address Priority within Level

 External Interrupt 0 0003H Highest

 Timer 0 Interrupt 000BH

 External Interrupt 1 0013H

 Timer 1 Interrupt 001BH

 Serial Port Interrupt 0023H Lowest Interrupt Enable Each of the interrupt sources can be individually enabled or disabled by setting or

clearing a bit in Interrupt Enable (IE) register. Figure 7.2 shows the IE register in the 8051. This register

also contains a global disable bit, which can be cleared to disable all the interrupts.

 Interrupt Priority Priority of the interrupt can be programmed by setting or clearing a bit in the Interrupt

Priority (IP) register. When more than one interrupt is enabled, the user fi rst programs the interrupt priority

register. Figure 7.3 shows the Interrupt Priority (IP) register in the 8051.

If two interrupt requests of different priority levels are received simultaneously, the request of highest

priority level is serviced. If interrupt requests of same priority levels are received simultaneously, an

internal polling sequence as shown in Table 7.1, determines which interrupt should be serviced fi rst. Thus,

within each priority level there is a second priority structure determined by the polling sequence.

 196 8051 Microcontroller: Hardware, So ware & Applications

EA ES ET1 EX1 ET0 EX0

MSB LSB

– –

Enable bit = 1 enables the interrupt
Enable bit = 0 disables the interrupt

Symbol Position Function

EA

ES

ET1

EX1

ET0

EX0

IE.7

IE.6

IE.5

IE.4

IE.3

IE.2

IE.1

IE.0

If EA = 0, disables all interrupts
If EA = 1, each interrupt source is individually enabled or
disabled by setting or clearing its enable bit

reserved*

reserved*

Serial Port Interrupt Enable Bit

Timer 1 Overflow Interrupt Enable Bit

External Interrupt Enable Bit

Timer 0 Overflow Interrupt Enable Bit

External Interrupt 0 Enable Bit

*These reserved bits are used in other MCS-51 devices.

—

—

Figure 7.2 IE (Interrupt Enable) Register in 8051

PS PT1 PX1 PT0 PX0

MSB LSB

– –

Priority bit = 1 Assigns high priority

bit = 0Priority Assigns low priority

–

Symbol Position Function

PS

PT1

PX1

PT0

PX0

IP.6

IP.5

IP.4

IP.3

IP.2

IP.1

IP.0

reserved*

reserved*

Serial Port Interrupt Priority Bit

Timer 1 Interrupt BitPriority

External Interrupt 1 BitPriority

Timer 0 Interrupt BitPriority

External Interrupt 0 BitPriority

*These reserved bits used other MCS-51 devices

—

—

— IP.7 reserved*

Figure 7.3 (Interrupt Priority) Register in 8051

Chapter 7 8051 Interrupts and Timers/Counters 197

 1. The 8051 has 5 vectored interrupt sources. True/False?

 2. Differentiate vectored and non-vectored interrupts.

 3. Differentiate maskable and non-maskable interrupts.

 4. List the steps taken by the processor after receiving the interrupt.

 5. List the functions of RETI instructions.

 6. The 8051 contains two external interrupts and 3 internal interrupts. True/False?

 7. External interrupt 0 has the highest priority. True/False?

 8. When the 8051 receives interrupt through INT1 pin, it branches to ___________ address.

 9. EX0 bit of IE register enables external interrupt 0. True/False?

 10. The 8051 has _____________ priority levels in interrupts.

7.3 TIMERS AND COUNTERS

In a microcontroller, physical time is represented by the count value of a timer. By interpreting the count

value of a timer properly, many timer applications can be realised. There are many applications that require

a dedicated timer system, including

∑ Time reference

∑ Time delay creation

∑ Pulse width, period and frequency measurement

∑ Periodic interrupt generation (to remind the processor to perform routine tasks)

∑ Waveform generation

A basic timer consists of a register that can be read from or written to by the processor and is driven

by some frequency source. The register is usually of 8 or 16 bit. The timer/counter clock source is either

microcontrollers clock or an external clock. The value of the register can be read or a new value can be

written during the processor operation. When the counter overfl ows (in 8 bit—FF to 00), an interrupt is

generated.

7.4 8051 TIMERS/COUNTERS

The 8051 has two timers, Timer 0 and Timer 1. Both are 16 bit timers/counters. Both timers consist of two

8 bit registers. Timer 0 consists of two 8 bit registers—TH0 and TL0 and Timer 1 consists of two 8 bit

registers, TH1 and TL1. Both share the timer control (TCON) register and timer mode register (TMOD).

The timer registers are as shown in Fig. 7.4.

A timer can be used to create time delay, or as a counter to count the external events happening outside

the micrcontroller that occurred within a time interval. The only difference between counter and timer is

the source of the clock pulse as shown in Fig. 7.5. The C/T bit in the TMOD register decides the source

of the clock for the timer. If C/T = 1, then timer is used as counter and gets the clock from outside the

microcontroller, else if C/T = 0, then timer gets the clock pulses from the crystal.

 198 8051 Microcontroller: Hardware, So ware & Applications

Timer 1 Timer 0

TH1
(8 bit)

TL1
(8 bit)

TH0
(8 bit)

TL0
(8 bit)

Timer Control (TCON)

Timer Mode (TMOD)

Figure 7.4 Timer registers

1/12
f f/12

Pin Tx

C/T = 0

C/T = 1

Timer/Counter

From Timer Control Logic

Oscillator

Figure. 7.5 Timer or Counter operation

When used as a timer, the clock pulse is obtained from the oscillator through divide by 12 d circuit.

When used as counter, pin T0 (P3.4) supplies pulses to counter 0, and pin T1 (P3.5) supplies pulses to

counter 1. If 12 MHz crystal is connected to the 8051, then the clock period will be equal to 1 μs. Registers

are incremented after 1 μs. In the counter function, the registers are incremented in response to a transition

from 1 to 0, at external input pin P3.4 for counter 0 and P3.5 for counter 1. When the registers overfl ow

from FFFF h to 0000 h, it sets a fl ag (TF fl ag) and generates an interrupt. Timer control register controls the

timer/counter operation. Figure 7.6 shows TCON register. This register is an 8 bit register.

Bit 7 Bit 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

TF1

TR1

TF0

TR0

IE1

IT1

IE0

IT0

Timer 1 overflow flag set when timer/counter overflows

Timer 1 run control bit

Timer 0 overflow flag set when timer/counter overflows

Timer 0 run control bit

Interrupt 1

Timer 1 interrupt, ITI = 0 low level triggered, ITI = 1 falling edge trigger

Interrupt 0

Timer 0 interrupt, IT0 = 0 low level triggered, IT0 = 1 falling edge trigger

Figure 7.6 Timer Control Register (TCON)

Chapter 7 8051 Interrupts and Timers/Counters 199

TR0 and TR1 fl ags turn the timer ON or OFF. The upper 4 bit are used to store the TF and TR bits of

both Timer 0 and Timer 1. The lower 4 bit are used for controlling the interrupt. TCON is a bit addressable

register. Instructions SETB TCON.6 and CLR TCON.6 can be used to store 1 and 0 in TR1 fl ag of TCON

register. Figure 7.7 shows Timer mode control register (TMOD). The lower 4 bit are used for controlling

Timer 0 and the upper 4 bit are used for controlling Timer 1. C/T selects timer or counter operation and M1

and M0 select the mode.

Bit 7 Bit 0

GATE C/T M1 M0 GATE C/T M0M1

Timer 1 Timer 0

GATE If GATE = 0, Timer 0 or 1 is enabled, If TR or TR control

bit is set
0 1

If GATE = 1, Timer 0 or 1 is enabled, If INT0 = 1 and TR = 1

or INT1 = 1 and TR = 1
0

1

C/T 0 = timer mode, 1 = counter mode

M1

0

0

1

1

M0

0

1

0

1

mode 0

mode 1

mode 2

mode 3

M1 M0
Timer mode

selection

Figure 7.7 Timer Mode Control Register (TMOD)

EXAMPLE 7.1

If an 8051-based system is controlled by the following crystal frequencies, fi nd the timer clock

frequency and its period.

 1. 12 MHz

 2. 18 MHz

 3. 11.0592 MHz

SOLUTION

 1. Timer clock frequencies = 1/12 × 12 MHz = 1 MHz

Period T = 1/1MHz = 1 μs.

 2. Timer clock frequencies = 1/12 × 18 MHz = 1.5 MHz

Period T = 1/1.5 MHz = 0.667 μs.

 3. Timer clock frequencies = 1/12 × 11.0592 MHz = 921.6 KHz

Period T = 1/921.6 KHz = 01.085 μs

7.5 TIMER/COUNTER OPERATION MODES

In addition to the timer or counter selection, both timer 0 and timer 1 have operating modes. Modes are

selected by using Timer Mode Control Register (TMOD). Figure 7.7 shows TMOD register. The timers

may operate in any one of the four modes that are determined by mode bits, M1 and M0, in TMOD register.

 200 8051 Microcontroller: Hardware, So ware & Applications

MODE 0 Figure 7.8 shows the mode 0 operation for timer 0 and timer 1. In this mode, timer register is

confi gured as a 13 bit register. The 13 bit timer register consists of all 8 bit of THx and the lower 5 bit of

TLx register. The upper 3 bit of TLx register are ignored. As the counter changes from all 1’s to 0’s, it sets

the timer interrupt fl ag, TFx. The timer is enabled when TRx = 1, and either gate = 0 or INTx = 1.13 bit

registers can hold values between 0000H to 1FFFH in TH and TL. When the register reaches its maximum

1FFFH, it rolls over to 0000H i.e. when the register overfl ows, then it sets the timer interrupt fl ag (TF1 for

timer 1 and TF0 for timer 0). Example 7.2 gives the program to initialise timer 0 in mode 0.

Oscillator 1/12
f f/12

THx
8 bit

TLx
5 bit

TFx

Control Overflow

Note: x = 0 Timer 0

x = 1 Timer 1

Pin Tx

GATE

INTx

C/T = 1

C/T = 0

TRx

Interrupts

Figure 7.8 Timer/Counter 0/1 in mode 0

For mode 0, loading TLx and THx with values derived from the formula can create a specifi c time delay.

Time delay = [12 × [5110 – Init Value]]/ Freq

Where Init Value = TLx + [256 × THx]

Where the values of THx and TLx are in decimal, the values must be converted to hexadecimal, then it

must be loaded to THx and TLx registers.

EXAMPLE 7.2

Write 8051 program to initialise Timer 0 and Timer 1 in mode 0. The external pin 12 (INT0) controls

Timer 0, and Timer 1 is fully controlled by TR1.

SOLUTION

MOV TMOD,#08h ; Timer 0 and 1 in mode 0 and timer 0 is controlled by

pin INT 0

SETB TR1 ; Start timer 1

SETB TR0 ; Start timer 0

END

Mode 1 Mode 1 is the same as mode 0 except that the timer register uses all 16 bit. In this mode, THx

and TLx are cascaded. For mode 1, loading TLx and THx with values derived from the formula can create a

specifi c time delay.

Time delay = [12 × [65,536 – Init Value]]/ Freq

where Init Value = TLx + [256 × THx]

Chapter 7 8051 Interrupts and Timers/Counters 201

If the values of THx and TLx are in decimal, the values must be converted to Hexadecimal, then it must be

loaded to THx and TLx registers.

Mode 2 The operation is same for timer 0 and timer 1. In this mode, timer register is confi gured as TLx.

When TLx overfl ows from FFh to 00H it, sets the fl ag TFx and it loads TLx with the contents of THx. The

reload leaves THx unchanged. In this mode, timer 1or timer 0 supports the automatic reload operation. The

timer control logic is same as mode 0 or mode 1 as shown in Fig. 7.9. Example 7.3 gives the program to

initialise timer 0 in mode 2.

Oscillator 1/12
f f/12

TLx
8 bit

TFx

Note: x = 0 Timer 0

x = 1 Timer 1

Pin Tx

GATE

INTx

C/T = 1

C/T = 0

TRx

Overflow Interrupt

Reload

THx
8 bit

Control

Figure 7.9 Timer/Counter 0/1 in mode 2:8 bit auto reload

EXAMPLE 7.3

Write 8051 program to initialise Timer 0 in mode 2. Load TH0 with preset value, 55H and load TL0

with starter value, 55H.

SOLUTION

MOV TMOD, #02h ; Load TMOD to operate timer 0 in mode 2

MOV TH0,#55h ; Load TH0 with preset value to be reloaded

MOV TL0,#55h ; Load TL0 with starting value = preset value

SETB TR0 ; Start timer 0

END

Mode 3 Timer 0 in mode 3 establishes TL0 and TH0 as two separate registers as shown in Fig. 7.10. TL0

uses Gate, TR0, INT0 and TF0 control bits of timer 0 and TH0 uses TR1 and TF1 control bits of timer 1.

When TL0 overfl ows from FF to 00, then it sets the timer fl ag TF0. If control bit TR1 is set, TH0

receives the timer clock (oscillator divided by 12). When the counter TH0 overfl ows from FF to 00, then it

sets the fl ag TF1.

Timer 1 may still be used in mode 0, mode 1 and mode 2, but it neither interrupts the processor nor sets

the fl ag. When timer 0 is in mode 3, timer 1 can be used for baud rate generation in serial communication.

 202 8051 Microcontroller: Hardware, So ware & Applications

C/T = 0

Oscillator 1/12
f f/12

TL0
8 bit

TF0

Pin T0

GATE

INT0

C/T = 1

TR0

Overflow Interrupt

Control

Oscillator 1/12
TH0
8 bit

TF1

Overflow Interrupt

Control

TR1

Figure 7.10 Timer/Counter 0/1 in mode 3:Two 8 bit counters

 1. List the applications that require 8051 timers.

 2. The 8051 has ______________ number of timers.

 3. Timer 0 and 1 are 16 bit timer/counter. True/False?

 4. Timer 0 and 1 share TCON register and TMOD register. True/False?

 5. If C/T= 0, then the timer gets the clock pulses from outside the microcontroller. True/False?

 6. ______________ register controls the timer/counter operation.

 7. What is the signifi cance of IT1 bit of TCON register?

 8. List the special function registers of timer/counter.

 9. TCON is a bit addressable register. True/False?

 10. ______________ bit selects timer/counter operation.

 11. Timer 1 is enabled if gate = 0 and TR1 bit is set. True/False?

 12. Timer 0 is enabled if gate = 1, ______________ and ______________ bit are set.

 13. If an 8051 is operated with 18 MHz crystal frequency, then the timer clock frequency is

______________ MHz.

 14. If an 8051 system is operated with 11.0925 MHz crystal frequency, then the timer clock period

is 1.085 ms. True/False?

 15. In mode 0, timer register is confi gured as ______________ bit register.

 16. In mode 1, timer register is confi gured as 16-bit register. True/False?

 17. In timer/counter, which mode supports automatic reload operation?

 18. In mode 3, when TH0 register overfl ows, ______________ timer fl ag is set.

 19. Timer/counter operates in ______________ number of modes.

 20. Differentiate timer/counter operations.

Chapter 7 8051 Interrupts and Timers/Counters 203

7.6 PROGRAMMING 8051 TIMERS

EXAMPLE 7.4

Assume an oscillator running at 12 MHz controls an 8051 micrcontroller. Write a subroutine to create

a time delay of 20 ms.

SOLUTION

Step 1: If C/T = 0, then clock source to timer 1 = oscillator /12

 = 12 MHz/12 = 1 MHz.

Step 2: For 20 ms, 20 ms/1 μs = 20,000.

Step 3: Timer register (TH1 and TL1) value = (65,536-20,000) = 45,536 d

 = B1E0 H.

Algorithm to create a delay of 20 ms is as follows:

Step 1: Confi gure timer 1 to operate in mode 1 and choose

oscillator/12 as the clock input

(C/T = 0), Gate = 0 and TF1 = 0.

Step 2: Place value B1E0h, into timer 1 register and wait until the

overfl ow fl ag is set to 1.

PROGRAM

Main Program Subroutine

∑ DELAY: MOV TMOD,#10h ; Set up timer 1 in mode 1

∑ CLR TF1 ; Clear timer 1 overfl ow fl ag

∑ CLR ET1 ; Clear timer 1 interrupt fl ag

LCALL DELAY MOV TH1, #B1h ; Store upper byte of count

∑ MOV TL1, #E0h ; Store lower byte of count

 SETB TR1 ; Enable timer 1

∑ WAIT: JNB TF1, WAIT ; Wait until TF1 is set to 1

 RET

EXAMPLE 7.5

Assume an oscillator running at 12 MHz controls an 8051 micrcontroller. Write a subroutine to create

a time delay of 1 second.

SOLUTION

Step 1: If C/T = 0, then clock source to timer 1 = oscillator/12 = 12

MHz/12 = 1 MHz.

Step 2: For 50 ms, 50 ms/1 μs = 50,000.

 204 8051 Microcontroller: Hardware, So ware & Applications

Step 3: Timer register (TH1 and TL1) value = (65,536-50,000) = 15,536

d = 3CAF H.

Step 4: For 1 second, 1 second/50 ms = 20, if it is repeated 20 d

times, we get 1 second.

Algorithm to create a delay of 1 second is as follows:

Step 1: Confi gure timer 1 to operate in mode 1 and choose oscillator/12

as the the clock input (C/T = 0), Gate = 0 and TF1 = 0.

Step 2: Place value 3CAF into timer 1 register and wait until the

overfl ow fl ag is set to 1.

Step 3: Repeat step 20d (14 h) times.

PROGRAM

 Main Program Subroutine

∑ DELAY1: MOV R1, #14h ; Repeat the delay 20 times

 MOV TMOD, #10h ; Setup timer 1 in mode 1

 CLR ET1 ; Disable timer 1 interrupt

 LOOP2: CLR TF1 ; Clear timer 1 overfl ow fl ag

LCALL DELAY1 MOV TH1, #3C h ; Place 15536 into timer register

∑ MOV TL1, #0AF h

 SETB TR1 ; Enable timer 1 to operate

∑ WAIT: JNB TF1, WAIT ; Wait until TF1 is set

 DJNZ R1, LOOP2

 RET

EXAMPLE 7.6

Assume an oscillator running at 12 MHz controls an 8051 micrcontroller. Write a program to generate

2 KHz square wave on port 1.0 (pin 1).

SOLUTION

To generate a square wave on port 1.0 (pin 1) is as follows

Step 1: If C/T = 0, then clock source to timer 1 = oscillator/12 = 12

MHz/12 = 1 MHz.

Step 2: Period of square wave: T = 1/f = 1/2KHz = 500 μs.

Step 3: Duration of high and low portion of the pulse is = 250 μs.

Step 4: Timer register value is: 250 μs/1 μs = 250 and (65,536 – 250)

= 65,286 d = FF06 h is loaded to TH and TL register.

PROGRAM

MOV TMOD,#10h ; Setup timer 1 in mode 1

CLR ET1 ; Disable timer 1 interrupt

LOOP: CLR TF1 ; Clear timer 1 overfl ow fl ag

Chapter 7 8051 Interrupts and Timers/Counters 205

MOV TH1, #0FFh ; Place 65,286 into timer register

MOV TL1, #06h

SETB TR1 ; Enable timer 1 to operate

WAIT: JNB TF1, WAIT ; Wait until TF1 is set

CLR TR1 ; Stop timer 1

CPL P1.0 ; Complement P1.0 to get high and low

SJMP LOOP

EXAMPLE 7.7

Assume an oscillator running at 12 MHz controls an 8051 micrcontroller. Write a program to generate

4 KHz square wave on port 1.2 (pin 3) using timer 0 in auto reload mode.

SOLUTION

To generate a square wave on port 1.2 (pin 3) is as follows

Step 1: If C/T = 0, then clock source to timer 1 = oscillator/12 = 12

MHz/12 = 1 MHz.

Step 2: Period of square wave: T = 1/f = 1/4KHz = 250 μs.

Step 3: Duration of high and low portion of the pulse = 125 μs.

Step 4: Timer register value is : 125 μs/1μs = 125 and (256 – 125) =

131 d (83 h) is loaded to TH0 and TL0 register .

PROGRAM

MOV TMOD, #02h ; Setup timer 0 in auto reload mode

CLR TF0 ; Clear timer 0 overfl ow fl ag

CLR ET0 ; Disable timer 0 interrupt

LOOP:MOV TH0, #83h ; Place 83 h into timer register

MOV TL0, #83h

SETB TR0 ; Enable timer 0 to operate

BACK: JNB TF0, BACK ; Wait until TF0 is set

CLR TR0 ; Stop timer 1

CPL P1.2 ; Complement P1.2 to get high and low

CLR TF0 ; Clear timer fl ag1

SJMP BACK

 206 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 7.8

Assume an oscillator running at 11.0592 MHz controls an 8051 microcontroller. Write a program to

generate 2 KHz square wave on port 1.3 (pin 4) using timer 0 interrupt.

SOLUTION

To generate a square wave on pin 4 of port 1.3 is as follows

Step 1: If C/T = 0, then clock source to timer 1 = oscillator/12 =

11.0592 MHz/12 = 0.9216 MHz.

Step 2: Period of square wave: T = 1/f = 1/2KHz = 500 μs.

Step 3: Duration of high and low portion of the pulse = 250 μs.

Step 4: Timer register value is: 250 μs/1.085 μs = 230 and (65,536

– 230)= 65,306 d = FF1A h is loaded to TH and TL register.

PROGRAM

ORG 0000

LJMP MAIN ; Bypass interrupt vector table

ORG 000B ; ISR for timer 0

CLR TR0 ; Disable timer 0

CPL P1.3 ; Complement P1.3 to get high and low

MOV TL0,#1Ah

MOV TH0,#0FFh

RETI ; Return from interrupt service routine

ORG 0030

MAIN: MOV TMOD, #00000001B ; Timer 0 in mode 1

 MOV TLO,#1Ah ; Place 65306 into timer register

 MOV TH0,#0FFh

 CLR TF0 ; Clear TF fl ag

 MOV IE,#82h ; Enable timer 0 interrupt

LOOP1:SETB TR0 ; Start timer 0

HERE: SJMP HERE

 AJMP LOOP1

EXAMPLE 7.9

Assume an oscillator running at 11.0592 MHz controls an 8051 micrcontroller. Write a program to

generate 1 KHz square wave from port 1.1 using timer 0.

SOLUTION

To generate a square wave from port 1.1 is as follows

Step 1: If C/T = 0 then clock source to timer 1 = oscillator /12 =

11.0592 MHz/12 = 0.9216 MHz.

Chapter 7 8051 Interrupts and Timers/Counters 207

Step 2: Period of square wave: T = 1/f = 1/1 KHz = 1 ms.

Step 3: Duration of high and low portion of the square wave = 500 μs.

Step 4: Timer register value is: 500 μs/1.085 μs = 461 (to nearest

whole number) and (65,536 – 461) = 65,075 d = FF1A h is

loaded to TH and TL register.

C PROGRAM

#include <Intel\8051.h>

#defi ne on 1

#defi ne off 0

bit Squarewavepin =P1.1; //Pin 1 of port 1

void delay1KHz() ; //Delay on() returns nothing and takes nothing

main(){ // Start the program

 TMOD = 0x01; // Timer 0 : Gate = 0, C/T = 0, M1 = 0, M0 = 1; mode 1

 While (1){ // Do for ever

 Squarewavepin = on; // P1.1 set to 1

 delay 1KHz (); // Wait for on time

 Squarewavepin = off; // P1.1 set to 0

 delay 1KHz (); // Wait for off time

 } // While ()

 } // Main ()

void delay1KHz (){

 TH0 =0X FF;

 TL0 = 0X1A ;

 TR0 = on; //Set TR0 of TCON to run timer 0

 While (!TF0); //Wait for timer 0 to set the fl ag TF0?

 TR0 = off; //Stop the timer 0

 TF0 = off; //Clear the TF0

 }

 //Delay ()

EXAMPLE 7.10

Assume an oscillator running at 11.0592 MHz controls an 8051 microcontroller. Write a program to

generate 5 KHz square wave from port 1.5 using timer 1.

SOLUTION

Solution to generate a square wave from port 1.5 is as follows

 208 8051 Microcontroller: Hardware, So ware & Applications

Step 1: If C/T = 0, then clock source to timer 1 = oscillator /12 =

11.0592 MHz/12 = 0.9216 MHz.

Step 2: Period of square wave: T = 1/f = 1/5 KHz = 0.2 ms.

Step 3: Duration of high and low portion of the square wave = 0.1

ms.

Step 4: Timer register value is: 100 μs/1.085 μs = 92 (to nearest whole

number) and (65,536 – 92) = 65,444 d = FF5A h is loaded to

TH and TL register.

C PROGRAM

#include <Intel\8051.h>

#defi ne on 1

#defi ne off 0

bit Squarewavepin P1.5; //Pin 5 of port1

void delay1KHz(); //Delay on() returns nothing and takes

 nothing

 main(){ // Start the program

 TMOD = 0100; // Timer0 : Gate = 0, C/T =0, M1 = 0, M0 = 1; mode 1

 While (1){ // Do for ever

 Squarewavepin = on; // P1.5 set to 1

 delay 5KHz (); // Wait for on time

 Squarewavepin = off; // P1.5 set to 0

 delay 5KHz (); // Wait for off time

 } // While ()

 } // Main ()

void delay5KHz ()

 {

 TH1 = 0XFF ;

 TL1 = 0X5A ;

 TR1 = on; //Set TR0 of TCON to run timer 1

 While (!TF1); //Wait for timer 1 to set the

 fl ag TF1

 TR1 = off; //Stop the timer 1

 TF1 = off; //Clear the TF1

 } //Delay ()

Chapter 7 8051 Interrupts and Timers/Counters 209

In this chapter, we have discussed the interrupts and timers/counters. There are two 16 bit timers

in the 8051. Timers support 4 different modes. This chapter covers applications of interrupts and

timers/counters with relevant examples.

 1. ________________ memory address in the interrupt vector table is assigned to INT0.

 (a) 000BH (b) 0003H (c) 0013H (d) 001BH

 2. The 8051 has ________________ external interrupt(s).

 (a) 1 (b) 2 (c) 3 (d) 4

 3. Which is the highest priority interrupt in the 8051?

 (a) Ext. Int. 0 (b) Timer 0 interrupt (c) Serial port interrupt (d) Ext. Int. 1

 4. Which is the lowest priority interrupt in the 8051?

 (a) Ext. Int. 0 (b) Timer 0 interrupt (c) Serial port interrupts (d) Ext. Int. 1

 5. ________________ memory address in the interrupt vector table is assigned to Timer 0.

 (a) 000BH (b) 0023H (c) 0003H (d) 001BH

 6. Which bit of the IE register is used to set/reset the timer 0 overfl ow interrupt?

 (a) bit 0 (b) bit 1 (c) bit 2 (d) bit 3

 7. Which port of the 8051 is used as external interrupt 0 (INT0)?

 (a) P3.2 (b) P3.4 (c) P3.3 (d) P3.5

 8. Bit EA enables ________________ .

 (a) All maskable interrupts (b) Only timer interrupts

 (c) Only external interrupt (d) Only serial interrupt

 9. Polling of next ISR to be executed is done ________________ .

 (a) After completion of each ISR instruction (b) After completion of RETI instruction

 (c) At all instances (d) None of the above

 10. Number of registers associated with Timer 0 and 1 are ________________ .

 (a) 2 (b) 4 (c) 6 (d) 8

 11. ________________ timer register is bit addressable.

 (a) TH0 (b) TH1 (c) TCON (d) TMOD

 12. If an 8051-based system is controlled by a crystal frequency of 18 MHz, then timer clock frequency

is ________________ .

 (a) 1 MHz (b) 1.5 MHz (c) 18 MHz (d) 1.8 MHz

 210 8051 Microcontroller: Hardware, So ware & Applications

 13. If an 8051-based system is controlled by a crystal frequency of 12 MHz, then timer clock period is.

 (a) 1 ms (b) 0.5 ms (c) 12 ms (d) 6 ms

 14. Timers of the 8051 operate in ________________ as 8 bit auto reload mode.

 (a) Mode 0 (b) Mode 1 (c) Mode 2 (d) Mode 3

 15. The 8051 contains ________________ internal interrupts.

 (a) Three (b) Two (c) Five (d) None of the above

 16. The 8051 contains ________________ external interrupts.

 (a) Three (b) Two (c) Five (d) None of the above

 17. In mode 0, timer 1 register overfl ows when the register reaches ________________ .

 (a) 1FFF (b) FFFF (c) FF (d) None of the above

 18. Timer 0 in mode 3 uses ________________ .

 (a) TL0 and TH0 as two separate registers (b) only TLO register

 (c) Only THO register (d) TL0 and TH0 as single register

 19. Timer 0 interrupt can be programmed as ________________ .

 (a) Low level triggered or falling edge triggered (b) Only low level triggered

 (c) Only falling edge triggered (d) None of the above

 20. Reset pin acts as ________________ .

 (a) Non-maskable vectored interrupt (b) Non-maskable, non-vectored interrupt

 (c) Maskable vectored interrupt (d) Maskable, non-vectored interrupt

 7.1 What is an interrupt? Explain interrupt structure of the 8051 microcontroller.

 7.2 Distinguish between

 (a) Maskable and non-maskable interrupts

 (b) Vectored and non-vectored interrupts

 7.3 What are the various SFRs required to use 8051 interrupts?

 7.4 Explain two level interrupt priority. If two requests of interrupts are received simultaneously, how are

these handled by the 8051?

 7.5 Discuss the various timer modes supported by the 8051 and write a program to initialise timer 0 in

auto reload mode.

 7.6 Explain the functions of two hardware interrupt pins—INT0 and INT1 of the 8051 with its concerned

registers. Give an application which uses these pins.

 7.7 How does the 8051 determine which interrupt to service when there are several pending interrupts?

 7.8 What is the last instruction in most interrupt service routines? What does this instruction do?

 7.9 List the various interrupts of the 8051 and their corresponding vector addresses.

 7.10 Assume IP register is set by the instruction MOV IP,#00001100B. Discuss the sequence in which the

interrupts are serviced.

 7.11 Write a program using INT0 to receive data from port 2 and send it to port 1.

 7.12 List the features of timer 0 and timer 1.

Chapter 7 8051 Interrupts and Timers/Counters 211

 7.13 Distinguish counting and timing requirements. Explain the modes of operation of timer/counter of

the 8051 with a diagram.

 7.14 Write a program using timer 1 for turning ON and OFF the LED connected to P0.5 every second.

 7.15 Write a program using timer 0 for generating a square wave of 2 KHz.

 7.16 Write the instructions to

 (a) Enable timer 1 interrupt and external hardware interrupt 1

 (b) Disable timer 1 interrupt

 (c) To disable all the interrupts

 7.17 Explain the functions of TCON.0, TCON.1, TCON.2, and TCON.3 in the execution of external

interrupt 0 and 1.

 7.18 Explain the operation of timer 1 in interrupt mode with the necessary program.

 7.19 Generate a square wave with frequency 5 KHz on port 1.0 using timer 1.

 7.20 Write a program to implement up counter 00–99. The counter is implemented after every one second

and the delay program is implemented by using timer 1.

8051 SERIAL
COMMUNICATION

Learning Objectives

8.1 DATA COMMUNICATION

The 8051 microcontroller is a parallel device that transfers eight bits of data simultaneously over eight

data lines to parallel I/O devices. The parallel I/O devices are printer, D/A converter and stepper motor.

Interfacing of parallel I/O devices has been discussed in Chapter 6. However, in many situations, parallel

data transfer is impractical. For example, parallel data transfer over a long distance is very expensive.

Hence, serial data communication is widely used in long distance data communication, and in this mode,

one bit of information, at a time is transferred over a single line.

Transmitter Receiver Transmitter Receiver

Serial Transfer Parallel Transfer

D0 – D7

Figure 8.1 Serial and parallel data transfer

8

After you have completed this chapter, you should be able to

 Defi ne parallel and serial data transfer

 Defi ne different types of communication links

 Defi ne synchronous and asynchronous serial communication

 Explain the operation of serial port of the 8051 microcontroller

 Program the serial port for data transfer

 Explain the RS232 bus and function of the MAX232 IC

Chapter 8 8051 Serial Communication 213

8.2 BASICS OF SERIAL DATA COMMUNICATION

In serial data communication, 8 bit data is converted to serial bits using a parallel in serial out shift register,

and then it is transmitted over a single data line. The data byte is always transmitted with least signifi cant

bit fi rst.

8.2.1 Communication Links

Serial communication is classifi ed into three types of communication links as shown in Fig. 8.2.

Simplex

Half Duplex

Transmitter Receiver

Transmitter

Receiver

Receiver

Transmitter

Transmitter

Receiver

Receiver

Transmitter

Full Duplex

Figure 8.2 Simplex, Half duplex and Full duplex data transfer

 Simplex In simplex transmission, the line is dedicated for transmission. The transmitter sends and the

receiver receives the data..

 Half duplex In half duplex, the communication link can be used for either transmission or reception. Data

is transmitted in only one direction at a time.

 Full duplex If the data is transmitted in both ways at the same time, it is a full duplex, i.e. transmission

and reception can proceed simultaneously. This communication link requires two wires for data, one for

transmission and one for reception.

8.2.2 Types of Serial Data Communication

Serial data communication uses two types of communication

∑ Synchronous serial data communication

∑ Asynchronous serial data communication

 Synchronous Serial Data Communication In synchronous serial data communication, transmitter and

receiver are synchronised. It uses a common clock signal to synchronise the receiver and the transmitter, as

 214 8051 Microcontroller: Hardware, So ware & Applications

shown in Fig. 8.3. The fi gure shows the transmission of data; fi rst the sync character and then, the data is

transmitted. This format is generally used for high-speed transmission.

Transmitter ReceiverSync

Data

Clock

Figure 8.3 Synchronous transmission format

 Asynchronous Serial Data Communication In asynchronous serial data communication, different clock

sources are used for transmitter and receiver. In this mode, data is transmitted with start and stop bits.

Transmission begins with start bit, followed by data and then stop bit. Figure 8.4 shows the transmission of

10 bit in the asynchronous format: one start bit, eight data bit and one stop bit. For error checking purpose,

parity bit is included just prior to stop bit.

Transmitter Receiver

Data

Start
Bit Stop

Bit

Clock 1 Clock 2

D0 D1 D2 D3 D4 D5 D6 D7

Figure 8.4 Asynchronous transmission format

8.2.3 Baud Rate

The rate at which the bits are transmitted (bits/second) is called baud or transfer rate. The baud rate is the

reciprocal of the time to send 1 bit. In asynchronous transmission, baud rate is not equal to number of bits

per second. This is because, each byte is preceded by a start bit and followed by parity and stop bit. For

example, in synchronous transmission, if data is transmitted with 9600 baud, it means that 9600 bits are

transmitted in one second. For one bit, transmission time = 1 second/9600 = 0.104 ms.

 1. The 8051 supports parallel and serial data transfer. True/False?

 2. In serial data transfer, _____________ bit is transmitted fi rst.

 3. In half duplex, data is transmitted in only one direction at a time. True/False?

 4. If transmission and reception are done simultaneously, then the serial communication is called

_____________ .

 5. Mention the advantages and disadvantages of parallel data communication.

 6. List the types of serial data communication.

 7. In _____________ serial communication, fi rst sync character and then the data is transmitted.

 8. In asynchronous communication, _____________ bit is included for error checking purpose.

 9. The rate at which the bits are transmitted is called _____________ .

 10. In asynchronous transmission, the baud rate is not equal to number of bits/second. True/False?

Chapter 8 8051 Serial Communication 215

8.3 8051 SERIAL COMMUNICATION

The 8051 supports a full duplex serial port. Full duplex means that it can transmit and receive a byte

simultaneously. The 8051 has TXD (pin 11 or P3.1) and RXD (pin 10 or P3.0) pins for transmission and

reception of serial data respectively. These pins are TTL compatible. The 8051 transfers and receives data

serially with different baud rates. Three special function registers support serial communication, namely,

SBUF Register, SCON Register and PCON Register.

 SBUF Register SBUF is an 8 bit register. It has separate SBUF registers for data transmission and for

data reception. These two registers are accessed by the same name, SBUF. One of the registers is write only

and used to hold data to be transmitted via TXD pin. The other is read only and holds the received data

from external source via RXD pin. For a byte of data to be transferred via the TXD line, it must be placed

in the SBUF register. Similarly, SBUF holds the 8 bit data received by the RXD pin.

 SCON Register The contents of SCON register are shown in Fig. 8.5. This register contains mode

selection bits, serial port interrupt bit (TI and RI) and also the ninth data bit for transmission and reception

(TB8 and RB8).

SM0

SM1

SM2

REN

TB8

RB8

TI

RI

Serial communication mode selection bits

SM0 SM1 Mode Description Baud rate

0 0 Mode 0 8 bit shift register mode fosc/12

0 1 Mode 1 8 bit UART Variable (set by timer 1)

1 0 Mode 2 9 bit UART fosc/32 or fosc/164

1 1 Mode 3 9 bit UART variable (set by timer 1)

In modes 2 and 3, if set, this will enable multiprocessor communication

Enables serial reception

This is the 9 data bit that is transmitted in modes 2 and 3th

9 data bit that is received in modes 2 and 3, it is not used in mode 0

In mode 1, if SM2 = 0, then RB8 is the stop bit that is received

th

Transmit interrupt flag, set by hardware must be cleared by software

Receive interrupt flag, set by hardware must be cleared by software

SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit 7 Bit 0

Figure 8.5 Serial Control Register (SCON)

 PCON Register The smod bit (bit 7) of PCON register controls the baud rate in asynchronous mode

transmission.

8.4 SERIAL COMMUNICATION MODES

The serial port can operate in four modes. SM0 and SM1 are D7 and D6 bits of SCON register, and these

two bits determine the 4 serial modes. Serial port runs in both synchronous and asynchronous mode.

 216 8051 Microcontroller: Hardware, So ware & Applications

 Mode 0 In mode 0, the serial port runs in synchronous mode. In this mode, data is transmitted and

received by RXD pin, and TXD pin is used for clock output. In this mode, processor clock is used and

the baud rate is 1/12 of the oscillator frequency. Eight bits are transmitted/received with least signifi cant

bit fi rst. Figure 8.6 shows the timing for mode 0 data transmission. This mode is also called shift register

mode.

D0 D1 D2 D3 D4 D5 D6 D7

D0 D1 D2 D3 D4 D5 D6 D7

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Shift Data Out

TXD Clock

RXD Data Out

RXD Data In

Shift Data In

External Data Bits Shifted Out

External Data Bits Shifted In

Figure 8.6 Mode 0 Timing diagram

In the remaining three modes, the data transmission is asynchronous and provides two different ways of

clocking as well as 8 and 9 bit data transfer.

 Mode 1 In this mode, SBUF becomes a 10 bit full duplex receiver/transmitter that may receive and

transmit data at the same time. In this mode, ten bit are transmitted or received—1 start bit, 8 data bits and

1 stop bit. The interrupt fl ag TI is set, once all the ten bits have been sent. On reception, the stop bit goes

into bit RB8 of the SCON register. The baud rate is variable and is determined by Timer 1 overfl ow rate.

The value of SMOD of PCON register is as follows

Baud rate = [2smod /32] × [Timer 1 overfl ow rate]

Timer 1 interrupt should be disabled and is confi gured in auto-reload mode. In this case, if upper nibble

of TMOD register is loaded with value 2H, then the baud rate is given by the formula.

Baud rate = [2smod / 32] × [oscillator frequency] / [12 × [256 – [TH1]]]

For example, if TH1 contents are 230d, SMOD bit in PCON is 0 and if 12 MHz is the oscillator

frequency, then the baud rate is 1201. To get exactly 1200 baud, the oscillator frequency must be

11.059 MHz. Table 8.1 lists the baud rates and how they can be obtained from Timer 1.

Mode 2 Mode 2 is similar to mode 1 except that eleven bits are transmitted or received—1 start bit,

8 data bits, a programmable ninth data bit, and 1 stop bit. During transmission, the ninth data bit is copied

from bit TB8 of SCON and on reception, the ninth data bit goes into bit RB8 of the SCON register, while

stop bit is ignored. The baud rate is programmable to either 1/32 or 1/64 of the oscillator frequency and

depends on the SMOD bit of PCON register.

Baud rate = [2smod / 64] × [oscillator frequency]

Chapter 8 8051 Serial Communication 217

 TABLE 8.1 Timer 1 generated commonly used baud rates

Baud Rate fosc

Timer 1

SMOD C/T Mode Reload
Value

Mode 0, Max: 1000K 12 MHz X X X X

Mode 2, Max: 375K 12 MHz 1 X X X

Modes 1,3:62.5K 12 MHz 1 0 2 FFH

19.2K 11.059 MHz 1 0 2 FDH

9.6K 11.059 MHz 0 0 2 FDH

4.8K 11.059 MHz 0 0 2 FAH

2.4K 11.059 MHz 0 0 2 F4H

1.2K 11.059 MHz 0 0 2 E8H

137.5 11.986 MHz 0 0 2 1DH

110 6 MHz 0 0 2 72H

110 12 MHz 0 0 1 FEEBH

Mode 3 Mode 3 is identical to mode 2 except that the baud rate is determined as in mode 1. In mode 3,

eleven bits are transmitted or received, a start bit, 8 data bits, a programmable ninth data bit and a stop bit.

 1. Name the SFRs that support serial communication.

 2. _____________ pin is used for transmission and _____________ pin is used for reception in

8051 serial communication.

 3. The 8051 has two SBUF registers. True/False?

 4. _____________ register controls the baud rate in asynchronous mode of transmission.

 5. 9 bit data is transmitted in mode 2 and mode 3 using TB8 bit of SCON register. True/False?

 6. _____________ bit of SCON enables serial reception.

 7. _____________ interrupt fl ag is used during serial transmission.

 8. Serial interrupt has lowest priority in 8051 interrupts. True/False?

 9. In mode 0 of serial communication, baud rate is Fosc/12. True/False?

 10. If SMOD bit of PCON is zero, then baud rate in mode 2 of serial communication is oscillator

frequency/64. True/False?

 218 8051 Microcontroller: Hardware, So ware & Applications

8.5 SERIAL COMMUNICATION PROGRAMMING

EXAMPLE 8.1

Write a subroutine to initialise 8051 serial port to operate with the following parameters:

 ∑ Disable interrupt for transmission and receiving

 ∑ Baud rate 9600

 ∑ One start bit, eight data bits and one stop bit; and to enable receiving and transmission

Step 1: Disable transmit and receive interrupt, clear bit 4 of IE register

Step 2: To set baud rate = 9600, the following parameters are selected

 a. Use 11.059 MHz crystal oscillator

 b. Choose mode 2 operation for timer 1

 c. Load 0010xxxx b to TMOD register

 d. Load reload value FD H to TH1 and TL1

 e. Clear SMOD bit of the PCON register

Baud rate = [2smod / 32] x [oscillator frequency] / [12 x (256 – (TH1))]

Step 3: Value 01010000 b is written in SCON to operate serial port

in mode 1 and transmission and receiver is enabled.

CLR IE.4 ; Disable serial port interrupt

MOV TMOD,#20H ; Choose mode 2 operation for timer 1

MOV TL1,#0FDH ; Set the initial value

MOV TH1,#0FDH ; Set the reset value

MOV PCON,#7FH ; Clear MSB of PCON

SETB TR1 ; Start timer 1

MOV SCON,#50H ; Operate serial port in mode 1

RET

EXAMPLE 8.2

Write a subroutine to initialise 8051 serial port to operate in mode 0 for transmission.

CLR IE.4 ; Disable serial port interrupt

MOV SCON, #00H ; Operate serial port in mode 0

MOV SBUF, #44H ; Load SBUF

CLR TI ; Clear TI bit

LOOP: JNB TI, LOOP ; Wait for the last bit to transfer

RET

Chapter 8 8051 Serial Communication 219

EXAMPLE 8.3

Write a subroutine to initialise 8051 serial port to operate in mode 1 for transmission and timer 1 in

auto-reload mode.

CLR IE.4 ; Disable serial port interrupt

MOV TMOD, #20H ; Choose mode 2 operation for timer 1

MOV SCON, #40H ; Operate serial port in mode 1

MOV TL1, #0FDH ; Set the initial value

MOV TH1, #0FDH ; Set the reset value

SETB TR1 ; Start timer 1

MOV SBUF, #56H ; Load SBUF

CLR TI ; Clear TI bit

LOOP: JNB TI LOOP ; Wait for last bit to transfer

RET

EXAMPLE 8.4

Write a program to initialise 8051 serial port to operate in mode 1 for receiving a serial byte through

RXD pin, send the received data to port 2 and operate timer 1 in auto reload mode.

CLR IE.4 ; Disable serial port interrupt

MOV TMOD, #20H ; Choose mode 2 operation for timer 1

MOV SCON, #50H ; Operate serial port in mode 1

MOV TL1, #0FDH ; Set the initial value

MOV TH1, #0FDH ; Set the reset value

SETB TR1 ; Start timer 1

AGAIN: CLR RI ; Clear RI bit

LOOP1: JNB RI, LOOP1 ; Wait for last bit to receive

MOV A, SBUF ; Save incoming data in A

MOV P2, A ; Send to port 2

SJMP AGAIN ; Keep getting data

EXAMPLE 8.5

An 8051 micrcontroller has an oscillator frequency of 11.0592 MHz. Using timer 1 and confi guring the

UART in mode 1, write a C program that transmits ASCII character D at a baud rate of 9600.

 220 8051 Microcontroller: Hardware, So ware & Applications

#include <Intel\8051.h>

main () { //Start the program

 SCON = 0x42; //Serial mode 1

 TMOD = 0x20; // Timer 1 in mode 2

 TH1 = 0xFA; // Baud rate = 9600

 TL1 = 0xFA;

 TR1 = 1; //Start Timer1

 While (1) {

 SBUF = ‘D’; // Load ‘D’ into serial buffer

 While (!TI); // Wait for completion of transmission

 TI = 0; // Clear transmission fl ag

 } // While (1)

 } // End of the program

8.6 RS232

 RS232 is the most widely used serial I/O interfacing standard. The RS232 standard was published by

the Electronic Industry Association (EIA) in 1960. The COM1 and COM2 ports in IBMPC are RS232

compatible ports. In RS232, 1 is represented by –3 to –25 V and 0 is represented by +3 to +25 V. In a

microcontroller, serial TXD and RXD lines are TTL compatible i.e. 1 and 0 are represented by +5 V and

0 V. For this reason, in order to connect a microcontroller to RS232 bus, voltage converters are used. MAX

232 IC is commonly used to convert the TTL logic levels to the RS232 voltage levels. The signifi cance of the

number 232 is that 2 is transmission line, 3 is receiving line, and 7 (2+3+2) is signal ground line. In RS232,

ground line is common to the transmitter and receiver, and they are usable up to one meter without any shield.

8.6.1 RS232 PLUG Connectors

Basic data communication link is shown in Fig. 8.7. The communication link consists of Data Terminal

 Equipment (DTE) and an associated modem (DCE) at each end. The function of modem is to process digital

information received from the computer into a form suitable for analog transmission. Also, it receives

analog signal and processes it into digital information.

DTE DCE DCE DTE

Computer or
Terminal

Modem Modem Computer or
Terminal

RS232 RS232Communication Link

Figure 8.7 Data communication system

RS232 uses a 25 pin plug connector for all interface circuits and is commonly referred to as the DB-

25 pin connector. DB-25P refers to the plug connector (male) and DB-25S refers to the socket connector

(female). Since all the 25 pins are not used in PC, IBM introduced DB-9 connector. These plug connectors

are shown in Fig. 8.8

Chapter 8 8051 Serial Communication 221

(Contd)

1 5

6 9

13 1 1 13

25 14 14 25

DB-9 Male Connector DB-25 Female Connector DB-25 Male Connector

Figure 8.8 DB-25 and DB-9 connectors

A microcontroller with minimum three lines—TXD, RXD and ground—can be connected to another

microcontroller as shown in Fig. 8.9. The remaining pins in the connector are used for handshaking signals.

In this section, the functions of important signals in RS232 bus will be discussed.

Microcontroller 1 Microcontroller 2

TxD

RxD

Gnd

TxD

RxD

Gnd

Figure 8.9 Interface of two microcontrollers with minimum signals

 TABLE 8.2 RS232 pins (DB-25 and DB-9)

DB-25 DB-9 I/O Pin Description

1 x Protective Ground

2 3 I Transmi ed Data

3 2 O Received Data

4 7 I Request To Send

5 8 O Clear To Send

6 6 O Data Set Ready

7 5 x Signal Ground

8 1 O Received Line Signal Detector

9 x Reserved For Data Set Testing

10 x Reserved For Data Set Testing

11 x Unassigned

12 O Secondary Rcvd Line Signal Detector

13 O Secondary Clear To Send

14 I Secondary Transmi ed Data

 222 8051 Microcontroller: Hardware, So ware & Applications

DB-25 DB-9 I/O Pin Description

15 O Transmission Signal Element Timing

16 O Secondary Received Data

17 O Receiver Signal Element Timing

18 x Unassigned

19 I Secondary Request To Send

20 4 I Data Terminal Ready

21 O Signal Quality Detector

22 9 O Ring Indicator

23 I/O Data Signal Rate Selector

24 I Transmit Signal Element Timing

25 x Unassigned

Transmitted Data Data Terminal Equipment (DTE) transmits data through this pin.

Received Data Data Terminal Equipment (DTE) receives data through this pin.

Signal Ground This circuit establishes a common ground reference potential for all interface circuits.

Data Terminal Ready (DTR) When Data Terminal Equipment (DTE) is turned on, it sends active low

signal DTR and indicates that DTE is ready for communication. If DTE is not ready for communication,

then this signal is not activated.

Data Set Ready (DSR) When modem is turned on, it sends an active low signal DSR and indicates that

it is ready for communication.

Request To Send (RTS) DTE asserts this signal to its associated DCE (modem) when it has data to

transmit. RTS is an active low output from DTE and an input to the modem.

Clear To Send (CTS) In response to RTS, the modem sends out signal CTS to DTE and indicates that it

is ready to receive the data.

Data Carrier Detect (DCD) DCD is an output from the modem (DCE) and an input to DTE. The modem

asserts signal DCD to inform DTE that a valid carrier has been detected.

Ring Indicator (RI) RI is an output from the modem (DCE) and an input to DTE. This signal indicates

that the telephone is ringing and is used when DTE is in charge of answering the phone.

8.6.2 MAX232

The 8051 microcontroller has two pins TXD and RXD, specifi cally used for transmitting and receiving data

serially. In microprocessors and microcontrollers, the pins are TTL compatible. Therefore, it requires a line

driver such as MAX232 IC to convert TTL levels to RS232 voltage levels, and vice versa.

 MAX232 MAX232 is 16 pin IC and requires +5 V power supply. It converts RS232 voltage levels to

TTL voltage levels, and vice versa. As shown in Fig. 8.10, it has two sets of line drivers for transferring and

receiving the data.

(Contd)

Chapter 8 8051 Serial Communication 223

T1 IN or T2 IN pins in the TTL side are connected to TXD pin of the microcontroller, while T1 OUT or

T2 OUT pins in the RS232 side are connected to RXD pin of RS232 DB connector. Similarly, R1 IN or R2

IN pins in the RS232 side are connected to TXD pin of RS232 DB connector and R1 OUT or R2 OUT pins

in the TTL side are connected to RXD pin of the microcontroller.

RS232 LogicTTL Logic

1

3

4

5

11

12

10

9

2

16

6

14

13

7

8

15

MAX232

T1IN

R1OUT

T2IN

R2OUT

T1OUT

R1IN

T2OUT

R2IN

Vcc

Figure 8.10 MAX232 pin diagram

 MAX233 IC is a 20 pin IC and requires +5 V. MAX233 IC also converts RS232 voltage levels to TTL

voltage levels and vice versa. As shown in Fig. 8.11, external capacitors are not required in MAX233, but it

is expensive compared to MAX232.

RS232 LogicTTL Logic

7

6

MAX233

T1IN

R1OUT

T2IN

R2OUT

T1OUT

R1IN

T2OUT

R2IN

Vcc

13

14

12

17

2

3

1

20

11

15

16

10

5

4

18

19

9

Figure 8.11 MAX233 pin diagram

 224 8051 Microcontroller: Hardware, So ware & Applications

 1. Which voltage levels are used to represent 1 and 0 in an RS232 bus?

 2. In an RS232 bus, pin no 2 is a transmission line. True/False?

 3. What is the function of modem in data communication system?

 4. _____________ signal is used when data terminal equipment is in charge of answering the

phone.

 5. MAX232 converts RS232 voltage levels to TTL voltage levels and vice versa. True/False?

In this chapter, we have discussed fundamentals and types of serial communication. The 8051

supports full duplex serial I/O, which is a need in many desired applications. UART with

programming examples for serial communication and interfacing the 8051 with RS232 connectors

have been presented in this chapter.

 1. _____________ port is used for transmission of serial data.

 (a) P3.0 (b) P3.1 (c) P3.2 (d) P3.3

 2. _____________ type of communication is used in long distance.

 (a) Serial communication (b) Parallel communication

 (c) Both serial and parallel communication (d) None of the above

 3. In _____________ , communication link can be used for either transmission or reception.

 (a) Simplex (b) Half duplex (c) Full duplex (d) None of the above

 4. Asynchronous transmission begins with _____________ .

 (a) Start bit (b) Stop bit (c) Parity bit (d) Sync bit

 5. Synchronous transmission transmits data with _____________.

 (a) Start bit and stop bit (b) Start and parity bit (c) Sync and parity bit (d) First sync bit

 6. Baud means _____________ .

 (a) Bits transmitted in one second (b) Bits transmitted in one minute

 (c) Bytes transmitted in one second (d) Bytes transmitted in one minute

 7. If data is transmitted with 9600 baud, then transmission rate is _____________ .

 (a) 0.104 ms (b) 1.04 ms (c) 10.4 ms (d) None of the above

Chapter 8 8051 Serial Communication 225

 8. Baud rate is dependent on timer 1 _____________ .

 (a) Mode 1 and mode 3 (b) Mode 2 and mode 3

 (c) Mode 0 and mode 2 (d) Mode 0 and mode 1

 9. 9th data bit is transmitted in mode 2 and mode 3 using _____________ .

 (a) TB8 bit of SCON (b) TI bit of SCON (c) SM0 bit of SCON (d) None of the above

 10. _____________ register holds the serial data interrupt fl ag.

 (a) SCON (b) PCON (c) IE (d) IP

 11. If timer 1 operates in mode 2, with reload value FAH, SMOD=0 and Fosc = 11.059 MHz, then baud

rate is _____________ .

 (a) 4.8 K (b) 19.2 K (c) 1.2 K (d) 9.6 K

 12. In mode 2, baud rate is calculated using _____________ .

 (a) Baud rate = [2smod / 64] × [oscillator frequency]

 (b) Baud rate = [2smod / 32] × [oscillator frequency]

 (c) Baud rate = [2smod / 64] × [Timer 1 overfl ow rate]

 (d) Baud rate = [2smod / 32] × [Timer 1 overfl ow rate]

 13. PS bit in _____________ register must be set to give the serial data interrupt highest priority.

 (a) IP (b) IE (c) SCON (d) PCON

 14. PCON register controls the baud rate in _____________ .

 (a) Synchronous transmission

 (b) Asynchronous transmission

 (c) In synchronous and asynchronous transmission

 (d) None of the above

 15. 9th data bit is transmitted in mode 2 and mode 3 using _____________ .

 (a) SCON register (b) SBUF register (c) PCON register (d) Accumulator

 16. In mode 0, baud rate is _____________ .

 (a) 1/12th of the oscillator frequency (b) 1/6th of the oscillator frequency

 (c) Oscillator frequency (d) None of the above

 17. RS232 bus is used _____________ .

 (a) For serial transmission (b) For parallel transmission

 (c) For both serial and parallel transmission (d) None of the above

 18. In RS232, logic 1 is represented by _____________ .

 (a) –3 to –25 V (b) +3 to +25 V (c) +5 V (d) None of the above

 19. The signifi cance of number 3 in RS232 bus is _____________ .

 (a) is transmission line (b) is receiving line (c) is ground (d) None of the above

 20. DB-25 is.

 (a) 25-pin connector (b) 20-pin connector (c) 9-pin connector (d) 22-pin connector

 226 8051 Microcontroller: Hardware, So ware & Applications

 8.1 List the merits and demerits of parallel and serial communication.

 8.2 Differentiate between

 (a) Simplex and half duplex

 (b) Half duplex and full duplex

 8.3 Distinguish between synchronous and asynchronous communication.

 8.4 Explain the role of Timer 1 in serial communication.

 8.5 List the SFRs and their functions used in serial communication.

 8.6 Write a program to receive serial data and store it in internal data RAM.

 8.7 Explain the functions of the.

 (a) SBUF Register (b) SCON Register (c) PCON Register

 8.8 Write a program to receive 8 bits data through port 1 and transfer this data serially.

 8.9 Find the baud rate, when it operates in mode 1, oscillator frequency = 12 MHz and SMOD = 0 in the

following.

 (a) [TH1] = 20H (b) [TH1] = 30H (c) [TH1] = 45H (d) [TH1] = 90H

 8.10 Find the baud rate, when it operates in mode 1, oscillator frequency = 11.059 MHz and SMOD = 1 in

the following.

 (a) [TH1] = 25H (b) [TH1] = 35H (c) [TH1] = 45H (d) [TH1] = 75H

 8.11 Find the baud rate, when it operates in mode 2, oscillator frequency = 11.059 MHz and SMOD = 0.

 8.12 Find the baud rate, when it operates in mode 2, oscillator frequency = 16 MHz and SMOD = 1.

 8.13 Interface two 8051 microcontrollers with minimum signals.

 8.14 Write a subroutine to initialise 8051 with the following specifi cations.

 (a) Enable interrupt for transmission

 (b) Baud rate is 4800

 (c) One start bit, eight data bits and one stop bit

 8.15 Connect two 8051 microcontrollers using transmitter and receiver pins of serial port. Write a program

to transmit data from one 8051 to another.

 8.16 List and explain the important signals in RS232 bus.

 8.17 Give the scheme to convert micrcontroller signals to RS232 compatible signals.

 8.18 Explain the role of Max232/233 in serial communication.

 8.19 Write a program to transfer the numbers 0 to F serially.

 8.20 Serial data is being transmitted through RS232 with a baud rate of 10 KHz

 (a) Estimate the total time taken to transmit one byte of information in each protocol, including all

framing/addressing/error correcting.

 (b) Estimate the time required by each, if 80 bytes are to be sent, optimising each transmission in

any way possible.

8255A PROGRAMMABLE
PERIPHERAL INTERFACE

Learning Objectives

After you have completed this chapter, you should be able to

 List the ports of the 8255A Programmable Peripheral Interface (PPI) and

explain their features

 Explain various operating modes of the 8255A

 Design an interface circuit to interface the 8255A with the 8051 micro-

controller

 Interface the 8255A with external devices such as printer, stepper motor

and D/A converter

 Understand the semiconductor sensors and signal conditioning circuits

 Understand the design of minimum embedded systems

The 8051 microcontroller has only four 8 bit ports. If external memory is required, then port 0, port 2, port

3.6 and port 3.7 of the 8051 are used for external memory interfacing and also port 3 is used by external

interrupts, serial ports and timers (as discussed in Section 2.4). If more I/O ports are needed, then 8255A

 Programmable Peripheral Interface (PPI) chip is interfaced with the 8051 microcontroller to expand the

number of parallel ports.

9.1 FEATURES OF 8255A

• It is a 40 Pin DIP chip.

• It has three 8 bit ports—Port A, Port B and Port C.

9

 228 8051 Microcontroller: Hardware, So ware & Applications

• Port A can be programmed as either input or output port, with or without handshake signals, and also

it can be programmed as bi-directional port.

• Port B can be programmed as input or output port, and with or without handshake signals.

• Port C is grouped in two 4 bit ports: PC4–PC7 (Port C upper) and PC3–PC0 (Port C lower)—each

can be programmed as input or output port. Port C lines can be individually set or reset to generate

control signals for controlling external I/O devices.

9.2 ARCHITECTURE OF 8255A

The internal organisation of the 8255A is shown in Fig. 9.1(a) and pin diagram of 8255A is shown in

Fig. 9.1(b). It has two 8 bit ports—Port A and Port B, two 4 bit ports—Port C upper and Port C lower, data

bus buffer, and read/write control logic. Port can be programmed to function as an input or an output port.

When the ports are defi ned as output, they act as latches. When the ports are defi ned as input, they act as

buffers. Group A controls port A and upper port C, and Group B controls port B and lower port C.

Group A
Control

Group A
Port A

(8)

Group A
Port C
Upper

(4)

Group B
Port C
Lower

(4)

Group B
Port B

(8)

Group B
Control

Read
Write

Control
Logic

Data
Bus

Buffer

8 bit
Internal

Data Bus

Bi-directional
Data Bus

D7–D0

RD

WR

A1

A0

RESET

CS

I/O
PA7–PA0

I/O
PC7–PC4

I/O
PC3–PC0

I/O
PB7–PB0

Figure 9.1(a) Block diagram of Intel 8255A programmable peripheral interface

Read/write control logic has six lines. Their functions are as follows:

• CS Signal is the master select—when this pin is low, it selects the entire chip.

• A1 and A0 select the specifi c ports and control register as shown in Table 9.1.

Chapter 9 8255A Programmable Peripheral Interface 229

 TABLE 9.1 Selection of specifi c ports and control register

CS A1A0 Port

0 00 A

0 01 B

0 10 C

0 11 Control Register

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

PA3

PA2

PA1

PA0

RD

CS

GND

A1

A0

PC7

PC6

PC5

PC4

PC0

PC1

PC2

PC3

PB0

PB1

PB2

PA4

PA5

PA6

PA7

WR

RESET

D0

D1

D2

D3

D4

D5

D6

D7

VCC

PB7

PB6

PB5

PB4

PB3

8255

Figure 9.1(b) Pin diagram of 8255A

• RD, an active low control signal, is input to the 8255A and enables the read operation. When the

signal is low, the microcontroller reads the data from a selected I/O port.

• WR, an active low control signal, is input to the 8255A and enables the write operation. When the

signal is low, the microcontroller writes the data into a selected I/O port or control register.

• RESET is an active high signal; when this signal goes high, it clears the control register and all ports

(port A, port B and port C) are defi ned as input.

Control Register

Control register is an 8 bit register, and its content is called control word. Control register controls the over

all operations of the 8255A. Control register is divided into two blocks—Group A control and Group B

control. Group A control, controls the port A and upper port C, and group B control, controls the port B and

lower port C. Figure 9.2 shows the functions of control word, and control register must be programmed to

select the operations of Port A, B and C. The 8255 operates in BSR mode or I/O mode as shown in Fig. 9.2.

If D7 = 0, port C operates in the bit set/reset (BSR) mode. In this mode, any of the eight bits of port C is

selected by using D3, D2 and D1 bits and it is set or reset by D0 bit as shown in Fig. 9.3. These can be used

to generate strobe signals for controlling external devices.

 230 8051 Microcontroller: Hardware, So ware & Applications

Figure 9.2 Control word format of 8255A (Courtesy Intel)

D7 D6 D5 D4 D3 D2 D1 D0

0 X X X Bit Select S/R

000 = Bit 0

001 = Bit 0

010 = Bit 0

011 = Bit 0

100 = Bit 0

101 = Bit 0

110 = Bit 0

111 = Bit 0

BSR Mode

Not Used
Generally set = 0

Set = 1
Reset = 0

Figure 9.3 Control word format in BSR mode (Courtesy Intel)

Chapter 9 8255A Programmable Peripheral Interface 231

Bit D7 = 1 selects I/O functions, then bits D6–D0 determine I/O function operation in three modes—

mode 0, mode 1 and mode 2 as shown in Fig. 9.2.

Mode 0

In this mode, ports are used for simple input and output operations. No handshaking is required for I/

O operations. Port A and B can be programmed as simple input/output 8 bit port, and port C can be

programmed as simple input/output 4 or 8 bit port.

Mode 1

In mode 1, Port A and B can be used as input or output port in handshake mode, and port C is used to

generate or accept these handshake signals. Port A uses three bits on port C, and port B uses three bits

on port C to generate or accept handshake signals. The remaining two bits on port C are used as general

purpose I/O.

Mode 1 Input When port A and B are confi gured as input port, as shown in Fig. 9.4, port A uses PC5,

PC4 and PC3, and port B uses PC2, PC1 and PC0 for handshake signals. The remaining PC6 and PC7 are

used as general purpose I/O. The functions of the handshake signals are as shown in Fig. 9.5.

Port A input

8255

INTEA

PA7

PA0

PC4

PC5

PC3

PC2

PC1

PC0

INTEB

1
1

STBA

IBFA

INTRA

STBB

IBFB

INTRB

1
1

RD
Port B input

I/OPC6–7

Control word—mode 1 input

D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 1 10 X1/0

I/O Mode

Port A mode 1

Port A input

Port B input

Port B mode 1

PC
1 = input
0 = output

6–7

Figure 9.4 8255A Model: Input confi guration (Courtesy Intel)

STB (Strobe Input) This is an active low signal. When the buffer is not full, an input device generates

this signal. The input device places the data on input port and then pulses the STB signal. In response to

STB, the 8255 generates IBF and INTR as shown in Fig. 9.5.

 232 8051 Microcontroller: Hardware, So ware & Applications

STB

IBF

RD

INTR

Input from
peripheral

Figure 9.5 Timing diagram of 8255 in mode 1 for strobed input (Courtesy Intel)

IBF (Input Buffer Full) When the input receives the data, the 8255A sends the acknowledgement using

an IBF line. The IBF line is reset, when processor reads the data.

Port A output

8255

INTEA

PA7

PA0

PC7

PC6

PC3

PC1

PC2

PC0

INTEB

OBFA

ACKA

INTRA

INTRB

WR Port B output

PC4–5

Control word—mode 1 output

D7 D6 D5 D4 D3 D2 D1 D0

1 1 0 1 00 X1/0

I/O Mode

Port A mode 1

Port A output

Port B output

Port B mode 1

PC
1 = input
0 = output

4–5

OBFB

ACKB

Figure 9.6 8255A model: Output confi guration (Courtesy Intel)

INTR (Interrupt Request) This is an output signal; the 8255A asserts the interrupt request signal INTR

and when the processor reads the data, then this is reset by the falling edge of RD signal.

INTE (Interrupt Enable) Port A uses an internal fl ip-fl op INTE
A
 and port B uses an internal fl ip INTE

B.

These fl ip-fl ops are used to enable or disable the INTR signal. INTE
A
 and INTE

B
 are enabled or disabled

using PC4 and PC2 respectively.

Chapter 9 8255A Programmable Peripheral Interface 233

Mode 1 output When port A and B are confi gured as output port as shown in Fig. 9.6. port A uses PC3,

PC6 and PC7, and port B uses PC0, PC1 and PC2 for handshake signals. The remaining PC4 and PC5 are

used as general purpose I/O. The functions of the handshake signals are as shown in Fig. 9.7.

Figure 9.7 Timing diagram of 8255A for strobed output (Courtesy Intel)

INTR (Interrupt Request) When the output buffer is not full, then this signal is set. It is used to interrupt

the processor to request the data for output and it is reset by the falling edge of WR.

OBF (Output Buffer Full) The OBF goes low, when the processor writes data into the output port, and

goes high again, after the 8255 receives the ACK signal from the output device.

ACK When the output device receives the data from the 8255, it asserts ACK signal to the 8255, in order

to acknowledge the receipt of the data.

INTE (Interrupt Enable) Port A uses an internal fl ip-fl op INTE
A
 and port B uses an internal FLIP-FLOP

INTE
B
. These fl ip-fl ops are used to enable or disable the INTR signal. INTE

A
 and INTE

B
 are enabled or

disabled using PC6 and PC2 respectively.

Mode 2

In mode 2, Port A can be confi gured as an 8 bit bi-directional port, and 5 bit of port C are used as

handshaking signals. In this mode, in both input and output confi gurations, port A acts as latch. Port B can

be used either in mode 0 (simple I/O) or in mode 1 (I/O with handshake) as shown in Fig. 9.8.

When port B operates in mode 0, the remaining three signals of port C can be used as simple I/O, and

when port B operates in mode 1, the remaining three signals of port C are used as handshake signals for

port B. The functions of the handshake signals for Port A are as shown in Fig. 9.9.

 234 8051 Microcontroller: Hardware, So ware & Applications

Figure 9.8 8255A mode2 input/output confi guration (Courtesy Intel)

Figure 9.9 Timing diagram for 8255A mode 2 (Courtesy Intel)

INTR
A
 (Interrupt Request) High on this pin can be used to interrupt the CPU for both input and output.

Data Output

OBF
A
 Low on this pin indicates that processor has written data to port A.

ACK
A

Low on this pin indicates that the O/P device has received the data from 8255A port or peripheral

has acknowledged the receipt of the data.

Data Input

STB
A

(Strobe Input) Low on this pin, generated by the input device, indicates that it has transmitted

8 bit data.

IBF (Input Buffer Full) High on this pin indicates that data has been loaded into the input latch.

Chapter 9 8255A Programmable Peripheral Interface 235

 1. List the various ports of the 8255A.

 2. __________ port of the 8255A operates as simple output port (without hand shaking).

 3. __________ port of the 8255A is used to generate or accept handshake signals.

 4. __________ port is used in BSR mode.

 5. In mode 1, port A and B can be used as input or output port in handshake mode. True/False?

 6. In mode 2, __________ port can be confi gured as an 8 bit bi-directional port.

 7. In mode 2, __________ port can be used either in mode 0 and mode 1.

 8. In mode 2, port A uses fi ve bits of __________ as handshake signals.

 9. Find the control word, if all the ports are defi ned as output port.

 10. Find the control word, if all the ports are defi ned as input port.

9.3 I/O ADDRESSING

The 8255A can be interfaced with the processor by two methods, namely,

 • Isolated I/O

 • Memory mapped I/O

Few microprocessors have dedicated instructions for input and output operations. This method is called

 isolated I/O or I/O mapped I/O. In this approach, IN instruction reads the data from input device into the A of

the microprocessor and OUT instruction writes the data from the A of the microprocessor to the output device.

In Memory mapped I/O, the microprocessor uses the same memory read and write instructions for I/O

read and write operations. In this method, if the input device is interfaced for address 5000H, then the

address 5000H is placed in the DPTR register. The move instruction MOVX A, @DPTR is then executed to

get the data from the input device. If output device is interfaced for address 4000H, then the 4000H address

is placed in the DPTR register. The move instruction MOVX @DPTR, A is then executed to output the data

from A to output device. Intel processors 8085, 8086, etc. use both isolated I/O and memory mapped I/O

method. The 8051 microcontroller has no separate I/O instructions, and uses only memory mapped I/O for

interfacing peripherals.

9.4 INTERFACING 8255A WITH 8051

The 8051 uses memory mapped I/O for interfacing the 8255A—same as interfacing RAM memory. Since

memory mapped space is used to access I/O device, MOVX instruction is used to access the 8255. If 16

address lines (A15 to A0) are used to interface the 8255, then base address is 16 bit and 16 bit address is

stored in DPTR register. Instructions MOVX A, @DPTR and MOVX @DPTR, A are executed. If 8 address

lines are used to interface the 8255, then base address is 8 bit and 8 bit address is stored in R0 or R1

register and instructions MOVX A, @R0 and MOVX @R0, A or MOVX A, @R1 and MOVX @R1, A

are executed. Port 0 provides the lower 8 bit address and 8 bit data (D0–D7). Port 2 provides the upper 8

bit address (A8–A15). ALE pin of the 8051 and 74LS373 latch are used to demultiplex AD0–AD7. Data

pins of D0–D7 of the 8255 are connected directly to Port 0 (data pins) of the 8051 microcontroller. Two

address lines, A0 and A1 (latch O/P) are connected directly to the address lines of A0 and A1 of 8255A.

The remaining address lines are used to select 8255A (connected to CS pin of 8255A).

 236 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 9.1

Interface the 8255A with the 8051 microcontroller such that the control register is selected for

address 1003H. Find the address of port A, port B and port C.

SOLUTION

The control register is selected for address 1003H. Table 9.2 gives

the condition of the address lines A15–A0 for the ports A, B and C,

and the control register.

 TABLE 9.2 Address table

 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Port

 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Port A

 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 Port B

 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 Port C

 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 Control register

The address of port A is 1000H, port B is 1001H, port C is 1002H

and control register is 1003H. RD (P3.7) and WR(P3.6) are connected

to RD and WR pins of the 8255A as shown in Fig. 9.10. Address lines

A1 and A0 are connected directly to A1 and A0 pins of the 8255. The

remaining address lines—A15, A14, A13, A12, A11…A2 are connected to

decoder 74LS138. Y0 output line of the decoder is connected to CS

pin of the 8255. Data pins of the 8255 are connected directly to

data bus of the 8051.

Figure 9.10 Interfacing 8255A

Chapter 9 8255A Programmable Peripheral Interface 237

EXAMPLE 9.2

Interface the 8255 with the 8051 microcontroller such that port A is selected for address C000H, port

B is selected for address C002H, Port C for address C004H and control register for address C006H.

SOLUTION

Table 9.3 gives the condition of address lines A15 to A0 for port

A, port B, port C and control register. Conditions of address lines

A2 and A1 are 00 for port A, 01 for port B, 10 for port C, and 11

for control register.

TABLE 9.3 Address table A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Port

 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Port A

 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Port B

 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Port C

 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 Control register

The interfacing connection is as shown in Fig. 9.11. Address lines

A2 and A1 of the 8051 microcontroller are connected to A1 and A0

lines of the 8255. The remaining address lines—A15, A14, A13, A12…

A3, A0 are connected to 74LS138 decoder. Y0 output line of decoder

is connected to CS pin of the 8255 as shown in Fig. 9.11.

Figure 9.11 Interfacing 8255A

 238 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 9.3

Interface two 8255A with the 8051 microcontroller such that port A of 8255(1) is selected for address

2000H and port A of 8255(2) is selected for address 4000H.

SOLUTION

Table 9.4 gives the condition of address lines A15 to A0 for 8255(1)

and 8255(2). The condition of A1 and A0 is same for port A, port B,

port C and control register in both 8255.

TABLE 9.4 Address table A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Port

8255(1) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Port A

 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 Port B

 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 Port C

 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 Control register

8255(2) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Port A

 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Port B

 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Port C

 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 Control register

As shown in Fig. 9.12, A1 and A0 address lines are connected directly

to A1 and A0 pins of 8255(1) and 8255(2). The remaining address lines—

A15, A14, A13, A12…A2 are connected to 74LS138 decoder. Y1 output line

of the decoder is connected to CS of 8255(1) and Y2 output line of

the decoder is connected to CS of 8255(2).

Figure 9.12 Interfacing 8255

Chapter 9 8255A Programmable Peripheral Interface 239

EXAMPLE 9.4

Interface the 8255A with the 8051 microcontroller such that the control register is selected for

address 03H. Find the address of port A, port B and port C.

SOLUTION

The control register is selected for address 03H. Table 9.5 gives

the condition of the address lines A7–A0 for the ports A, B and C,

and the control register.

TABLE 9.5 Address table A7 A6 A5 A4 A3 A2 A1 A0 Port

 0 0 0 0 0 0 0 0 Port A

 0 0 0 0 0 0 0 1 Port B

 0 0 0 0 0 0 1 0 Port C

 0 0 0 0 0 0 1 1 Control register

The address of port A is 00H, port B is 01H, port C is 02H and

control register is 03H. RD (P3.7) and WR (P3.6) are connected to

RD and WR pins of the 8255 as shown in Fig. 9.13. Address lines A1

and A0 are connected directly to A1 and A0 pins of the 8255A. The

remaining address lines—A7…A2 are connected through OR gate to CS

pin of the 8255A. Data pins of 8255A are connected directly to data

bus of 8051 as shown in Fig. 9.13.

Figure 9.13 Interfacing 8255

 240 8051 Microcontroller: Hardware, So ware & Applications

EXAMPLE 9.5

Interface the 8255 with the 8051 microcontroller such that port A is selected for address

C0H, port B is selected for address C2H, Port C for address C4H and control register for address

C6H.

SOLUTION

Table 9.6 gives the condition of address lines A7 to A0 for port A,

port B, port C and control register. Conditions of address lines A2

and A1 are 00 for port A, 01 for port B, 10 for port C, and 11 for

control register.

TABLE 9.6 Address table

 A7 A6 A5 A4 A3 A2 A1 A0 Port

 1 1 0 0 0 0 0 0 Port A

 1 1 0 0 0 0 1 0 Port B

 1 1 0 0 0 1 0 0 Port C

 1 1 0 0 0 1 1 0 Control register

The interfacing connection is as shown in Fig. 9.14. Address lines

A2 and A1 of the 8051 microcontroller are connected to A1 and

A0 lines of the 8255. The remaining address—lines A7…A3, A0 are

connected using NAND and OR gate to CS pin of 8255 as shown in

Fig. 9.14.

Figure 9.14 Interfacing 8255

Chapter 9 8255A Programmable Peripheral Interface 241

 1. The 8051 uses memory mapped I/O for interfacing the 8255A. True/False?

 2. If 16 address lines are used to interface the 8255A, then _____________ register of the 8051 is

used to store the address.

 3. Name the registers of the 8051, if 8 address lines are used to interface the 8255A.

 4. Name the instructions of the 8051, if 8 address lines are used to interface the 8255A.

 5. When the 8255A is reset, all the ports A, B and C are defi ned as _____________.

 6. The control register of the 8255A is selected, if the condition of pin A1 and A0 is ___________.

 7. Port B of the 8255A is selected, if the condition of pin A1 and A0 is _____________.

 8. If A2–A7 address lines are connected through NAND gate to CS pin of the 8255A, then control

register address is _____________ .

9.5 I/O DEVICES INTERFACING WITH 8051

USING 8255A

I/O devices are interfaced using port A or port B or port C. If the peripheral is an input device, then the port

is defi ned as input port. If the peripheral is an output device, then the port is defi ned as output port. If I/O

devices are 8 bit, then port A or B or C is used. If I/O devices are 4 bit, then upper port C or lower port C is

used. We will discuss 4 bit and 8 bit I/O devices interfacing in this section.

9.5.1 Interfacing push button switches and

LED using 8255A

EXAMPLE 9.6

Interface four push button switches to PC0–PC3 and display the key value by four LEDs connected to PC4–PC7.

Figure 9.15 Push bu on key and LED interface

SOLUTION

In this problem, 4 push button switches are connected to lower port

C—lower port C must be defi ned as input port, and 4 LEDs are connected

 242 8051 Microcontroller: Hardware, So ware & Applications

to upper port C—upper port C must be defi ned as output port. The

control word is

100X00X1 ------- 81H

The programming can be divided into the following categories:

1. Defi ne lower port C as input port and upper port C as output port.

2. Check if a key is pressed.

3. Debounce the key.

4. Identify the key in binary format.

5. Display the key condition using four LEDs.

Assume that the 8255A is interfaced to the 8051 as shown in Fig. 9.13.

Then Port A address is 00H, Port B address is 01H, Port C address

is 02H and control register address is 03H.

 MOV A,#81H ; Move control word to A

 MOV R1,03H ; Load control register address to R1

 MOVX @R1,A ; Move contents of A to control register

 MOV R1,02H ; Load port C address to R1

START: MOVX A,@R1 ; Move contents of lower port C to A

 ANL A,#0FH ; Mask the upper nibble

 CJNE A,#0FH,CHECK ; Key pressed branch to CHECK

 SJMP START ; Branch to START, still key is pressed

CHECK: ACALL DELAY ; Call delay

 SWAP A ; Exchange upper and lower nibble of A

 CPL A ; Complement A

 MOVX @R1,A ; Move contents of A to upper port C

 SJMP START ; Branch to START

DELAY: MOV R6, #20H ; Delay program

NEXT 2: MOV R7, # OFFH

NEXT 1: DJNZ R7, NEXT 1

 DJNZ R6, NEXT 2

 RET

 END

9.5.2 Interfacing stepper motor using 8255A

EXAMPLE 9.7

 Interface stepper motor using port A and write a program to rotate stepper motor in clockwise direction.

SOLUTION

The circuit to interface stepper motor is as shown in Fig. 9.16.

The functions of driver circuit are discussed in section 6.9. The

Chapter 9 8255A Programmable Peripheral Interface 243

stepper motor is connected to PA0–PA3 as shown in Fig. 9.16. Port A

must be defi ned as output port. The control word is

1000X0XX ------- 80H

Figure 9.16 Driver circuit and port interface for stepper

Assume that the 8255 is interfaced to the 8051 as shown in Fig. 9.11.
Then Port A address is C000H, Port B address is C002H, Port C
address is C004H and control register address is C006H.

 MOV A,#80H ; Move control word to A

 MOV DPTR,#0C006H ; Load control register address to DPTR

 MOVX @DPTR,A ; Move contents of A to control register

 MOV DPTR,#0C000H ; Load port A address to DPTR

LOOP1: MOV A,#03H ; Move step sequence 03 to A

 MOVX @DPTR,A ; Move contents of A to port A

 ACALL DELAY ; Call delay program

 MOV A,#09H ; Move step sequence 09 to A

 MOVX @DPTR,A ; Move contents of A to port A

 ACALL DELAY ; Call delay program

 MOV A,#0CH ; Move step sequence 0C to A

 MOVX @DPTR,A ; Move contents of A to port A

 ACALL DELAY ; Call delay program

 MOV A,#06H ; Move step sequence 06 to A

 MOVX @DPTR,A ; Move contents of A to port A

 ACALL DELAY ; Call delay program

 AJMP LOOP1

 244 8051 Microcontroller: Hardware, So ware & Applications

DELAY: MOV R5,#0FFH ; Delay program

S2: MOV R7,#0FFH

S1: DJNZ R7,S1

 DJNZ R5,S2

 RET

9.5.3 Interfacing DAC 08 using 8255A

EXAMPLE 9.8

 Interface DAC 08 using port B and write a program to generate square wave and ramp.

SOLUTION

Assume that the 8255A is interfaced to the 8051 as shown in Fig. 9.14.
Then, Port A address is C0H, Port B address is C2H, Port C address
is C4H and control register address is C6H. The circuit to interface
DAC 08 is as shown in Fig. 9.17. Functions of DAC 08 have been
discussed in Section 6.7. DAC 08 is connected to port B as shown in
Fig. 9.17. Port B must be defi ned as output port. The control word
is

100XX00X ------- 80H

Program to generate square wave

 MOV A,#80H ; Move control word to A

 MOV R1,C6H ; Load control register address to R1

 MOVX @R1,A ; Move contents of A to control register

 MOV R1,C2H ; Load port B address to R1

 CLR A ; Clear A

START: MOVX @R1,A ; Move contents of A to port B

 LCALL DELAY ; Delay decides the period of square wave

 CPL A ; Complement contents of A

 SJMP START ; Branch to start

DELAY: MOV R1,#30H ; Delay program

S2: MOV R2,#0FFH

S1: DJNZ R2,S1

 DJNZ R1,S2

 RET

 END

Program to generate ramp

 MOV A,#80H ; Move control word to A

 MOV R1,C6H ; Load control register address to R1

Chapter 9 8255A Programmable Peripheral Interface 245

 MOVX @R1,A ; Move contents of A to control register

 MOV R1,C2H ; Load port B address to R1

 CLR A ; Clear A

START: MOVX @R1,A ; Move contents of A to port B

 INC A ; Increment A

 LCALL DELAY ; DAC conversion time

 SJMP START ; Branch to START

DELAY: MOV R1,#0FH ; Delay program

NEXT: DJNZ R1,NEXT

 RET

 END

Figure 9.17 8051 connection to DAC 08

9.5.4 Interfacing printer using 8255A

EXAMPLE 9.9

 Interface a printer using port B and write a program to print ABCD.

SOLUTION

In this interfacing, printer interface allows the transfer of data

under the control of two-handshake signals—strobe and busy. The

printer is connected to the 8051 microcontroller using the 8255A as

shown in Fig. 9.18. Data lines are connected to port B, the busy line

is connected to PC1 and the strobe line is connected to PC4.

 246 8051 Microcontroller: Hardware, So ware & Applications

Figure 9.18 Interfacing printer using 8255

Printer timing is as shown in Fig. 9.19. First, the strobe line is

kept high and then, the busy line is checked for low—if busy line is

low, then data is placed on the data line and the strobe line is made

low. This is repeated for the entire data. The fl owchart is as shown

in Fig. 9.20. Port B is defi ned as output port, lower port C is defi ned

as input and the upper port C is defi ned as output port. The control

word is

100X0001-----81H

Figure 9.19 Timing diagram printer signals

Assume that the printer operates in normal mode. The ASCII code for

normal mode, carriage return and line feed are 00H, 0DH and 0AH

respectively. Assume that FFH indicates end of the data, and FFH is

stored in internal data memory location 40H. Assume that printer data

is stored in internal RAM, from location 30H as shown in Table 9.7.

Assume that 8255A is interfaced to the 8051 as shown in Fig. 9.11.

Then port A address is C000H, port B address is C002H, port C address

is C004H and control register address is C006H.

 ORG 0000H

 TEMP EQU 40H ; Init. TEMP to 40H

 MOV R1,#30H ; Init. R1 to 30H

 MOV DPTR,#0C006H ; Load control register address to DPTR

 MOV A,#81H ; Port B and PC4 as output, PC1 as input

Chapter 9 8255A Programmable Peripheral Interface 247

Figure 9.20 Flow chart of printer

 MOVX @DPTR,A

 MOV DPTR,#0C004H ; Load port C address to DPTR

BACK: MOV A,#10H ; To make (PC4) = 1

 MOVX @DPTR,A ; Strobe = 1

 CALL DELAY ; Call delay program

LOOP1: MOVX A,@DPTR ; Check busy line (PC1)

 ANL A,#02H ; Mask other bits

 JNZ LOOP1 ; Busy = 1, branch to loop1

 MOV A,@R1 ; Copy contents of internal memory to A

 CJNE A,TEMP,LOOP2 ; (A) π (TEMP) branch to loop2

 SJMP LOOP3 ; (A) = (TEMP) branch to loop3

LOOP2: MOV DPTR,#0C002H ; Load port B address to DPTR

 MOVX @DPTR,A ; Send data to printer

 MOV A,#00H ; To make (PC4) = 0

 MOV DPTR,#0C004H ; Load port C address to DPTR

 MOV @DPTR,A ; Strobe = 0

 INC R1 ; INC R1

 JMP BACK ; Branch to BACK

DELAY: MOV R0,#0FH ; Delay program

NEXT: DJNZ R0,NEXT

 RET

LOOP3: NOP

 END

TABLE 9.7 Data stored in internal memory to
 print ABCD

 Address of
Data stored

 internal memory

 40 FF

 30 00

 31 41

 32 42

 33 43

 34 44

 35 0D

 36 0A

 37 FF

 248 8051 Microcontroller: Hardware, So ware & Applications

9.6 SEMICONDUCTOR SENSORS AND

SIGNAL CONDITIONING CIRCUITS

Semiconductor sensors are transducers that convert non-electrical signals into electrical signals. For

example, temperature sensor is used to convert temperature into voltage. Semiconductor sensors are widely

used for measurement and control of physical variables. Important specifi cations to keep in mind when

selecting a sensor are

• Accuracy • Size • Packaging

• Long-term stability • Repeatability

Temperature, pressure, level, fl ow, and humidity are the most important measurements in the industry.

Temperature sensors are used in automotive systems. Pressure sensors are used in pneumatic and tactile

detection systems. Humidity sensors are used to measure the water vapour content in air or other gases.

Semiconductor sensors require additional signal conditioning circuits to amplify and shift the sensor

output signal to match the range of A/D converter. In this section, we will discuss signal conditioning

circuits and an algorithm to interface temperature, pressure, and humidity sensors with the 8051

microcontroller using 8255A programmable peripheral chip. The overall process is as shown in Fig. 9.21.

The operating parameters of temperature, pressure and humidity sensors are listed in Table 9.8.

Figure 9.21 Block diagram

TABLE 9.8 Operating parameters of temperature, pressure and humidity sensors

 Parameters Pressure Sensor Temperature Sensor Humidity Sensor
 BPT LM34 IH-3605

 Operating range 800–1100 mbar –50 to 300° F 0–100 % RH

 Supply voltage 7–24 V dc 5 V to 30 V +5 V

 Voltage output 4.5 V to 5.5 V Linear to +10 mV/°F 0.8 to 3.9 V

Chapter 9 8255A Programmable Peripheral Interface 249

 Signal Conditioning Circuits

Table 9.8 shows the transducer output voltages for pressure, temperature and humidity sensors. Signal

conditioning circuits can be used to match the full range of the A/D converter. The signal conditioning

circuit (shown in Fig. 9.22) is to amplify the sensor’s span to full range of A/D converters. The signal

conditioning circuit consists of

• Voltage follower

• Voltage shifter

Figure 9.22 Signal conditioning circuit

Voltage Follower

 Voltage follower circuits are useful as current amplifi er or impedance converter for isolating the signals

from high impedance sources. The output voltage of the voltage follower is given by

 V
F
 = –V

IN
 (9.1)

Voltage shifting circuits are used to match the range of A/D converter. The V
out

 of the voltage shifting

circuits are given by

 V
O
 = –

R

R
VL

2
IN() ()- +

È

Î
Í

˘

˚
˙

R

R
VL

ref
3

 (9.2)

 = (9.3)

By selecting appropriate values of resistors and adjusting voltage V
ref

, the signal conditioning circuits

can be designed to match the range of A/D converter. The algorithm for measuring and displaying the

temperature or pressure is as follows

• Initialise the 8255A port as input port.

• Take one sample from the transducer and convert to digital value.

• Read the value of the port.

• Using look up table, get the corresponding temperature or pressure or humidity value.

• Display the value.

The results can be displayed using seven-segment display or LCD. The A/D conversion program and

display program have been discussed in Section 6.7. Hence, this program has been left to the students as an

exercise.

 250 8051 Microcontroller: Hardware, So ware & Applications

 1. Transducers are used to convert non-electrical to electrical signals. True/False?

 2. List the specifi cations for selecting a sensor/transducer.

 3. __________ sensor is used to convert water vapour content in air to voltage.

 4. The operation range of LM324 sensor is –50º to 300ºF. True/False?

 5. __________ is used for measurement of pressure.

9.7 DESIGN OF MINIMUM EMBEDDED

SYSTEM

Figure 9.23 shows the circuit diagram of a simple 8051-based embedded system. An embedded system

is designed by using 8KX8 bit program ROM, 8255A programmable peripheral interface, 7 push button

switches and liquid crystal display. The address and data bus are shown in Fig. 9.23. The 8051 sends out the

lower 8 bit of the address on the data bus. External latch 74LS373 is used to demultiplex address and data

bus using ALE signal as discussed in Section 2.4. 12 MHz crystal is connected to pins XTAL1 and XTAL2.

The control bus consists of PSEN, RD and WR that help to select program ROM and to perform read and

write operations.

Figure 9.23 shows interfacing of 8 Kbytes program ROM. Program ROM requires 13 address lines

(A12–A0) to decode 8192 8 registers. The remaining address lines—A15, A14, A13 and PSEN are used

as chip select pin for program ROM. Table 9.9 gives the memory address. Rom is selected for address

0000H –1FFFH.

TABLE 9.9 Memory address table

 Address A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

 Program 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 ROM to

 (8 K) 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

The 8255A is interfaced with the 8051 microcontroller such that the data bus is connected to data lines

of the 8255A. A1 and A0 lines of address bus are connected to A1 and A0 pins of the 8255A. The remaining

address lines—A7, A6, A5, A4, A3 and A2 are connected to decoder 74LS138. Y0 of decoder is connected

to CS of 8255. Seven push button switches are connected using P1.0 to P1.6 of the 8051 and LCD is

selected for address 47H.

TABLE 9.10 8255-address table

 A7 A6 A5 A4 A3 A2 A1 A0 Port

 0 0 1 0 0 0 0 0 Port A

 0 0 1 0 0 0 0 1 Port B

 0 0 1 0 0 0 1 0 Port C

 0 0 1 0 0 0 1 1 Control register

Chapter 9 8255A Programmable Peripheral Interface 251

F
ig

u
re

 9
.2

3
M
in
im
u
m
 e
m
be
dd
ed
 s
ys
te
m
-u
si
n
g
80
51

 252 8051 Microcontroller: Hardware, So ware & Applications

Table 9.10 gives the address of port A, B, C and control register. Port A is selected for address 40H, port B

is select ed for address 41H, port C is selected for address 42H and control register is selected for address 43H.

9.8 8051 BASED PROJECTS

Project 1

Title

 Blue Tooth Based Security System for Process Industry

Objective Design and implement a security system using blue tooth, which sends a warning message to

the administrator regarding any undesired condition in the process industry.

Description The system consists of temperature sensor, blue tooth transmitter and receiver, and also LDR,

which is used as smoke and intruder detector. Sensors are interfaced to the 8051 microcontroller, which is

programmed to send a message to the blue tooth transmitter. The blue tooth receiver is connected to the

computer of the administrator. When the computer receives a warning message, it automatically puts off the

power and turns on a buzzer.

Project 2

Title

Automated Food Processing System

Objective Design an automated food processing machine, which provides a user friendly and effi cient

means for food processing.

Description In food processing, a constant temperature is to be maintained throughout the vessel. A

heating coil heats the vessel uniformly. The temperature of the vessel is sensed by thermocouple. The 8051

microcontroller is programmed to switch the heating coil ON and OFF, when the vessel is heated to setpoint

temperature. The LCD is connected to the microcontroller to display the desired temperature of the vessel.

The microcontroller also drives a stepper motor, which rotates the stirrer in clockwise and anticlockwise

direction alternatively. The rotation of the stirrer is done at equal intervals in both the directions to provide

uniform mixing of the ingredients.

Project 3

Title

 Data Acquisition and Navigation Control of Robot

Objective Design a system to acquire data from remote location using navigational robot.

Description LM35 temperature sensor on the robot is connected to ADC. The digitised data is encoded

and transmitted using RF transmitter. At the other end, the data is received, decoded and displayed on LCD.

Chapter 9 8255A Programmable Peripheral Interface 253

The commands are issued using matrix keyboard interfaced to a microcontroller. The microcontroller sends

the signals through encoder and RF transmitter. In the robot, the RF receiver decodes the signal and drives

the DC motors of the robot. The path traced by the robot is detected using a camera on the chassis and

monitored using a PC.

Project 4

Title

 Measurement of Wobbling of Vehicle Tyres

Objective Design a measurement system for wobbling of tyres using IR sensor.

Description The distance between Infrared sensor and tyre is measured using IR sensor. The sensor output

is connected to ADC. The microcontroller is interfaced to ADC. The microcontroller program compares the

measured values with ISO standard values. The micrcontroller is connected with the LCD, to display the

message ‘Tyre under test is OK’ or ‘not OK’.

Project 5

Title

Wireless Controlled Rotorcraft

Objective Control the speed and direction of the rotorcraft using RF.

Description Rotorcraft is the hybridisation of both helicopter and aircraft. Varying the speed of left wing

and right wing controls the engine speed and direction of the rotorcraft. Control signals from ground are

sent through RF transmitter. In the rotorcraft onboard, RF receiver receives control signals. The receiver

is interfaced to the microcontroller. The microcontroller controls speed of motors and direction of the

rotorcraft.

Project 6

Title

 GSM Based Process Control System

Objective Control instruments or high end appliances in process plant through mobile phones.

Description Temperature sensor, pressure sensor and heater coil are connected to the micrcontroller using

suitable signal conditioning circuits. A program is written to compare the set point values and measured

values. If the measured value crosses the set point value, the 8051 microcontroller sends an alert SMS to

the process engineer’s mobile phone. The GSM module is used for transferring the alert message to the

GSM network. An FBUS data cable is used to interface GSM module with the microcontroller.

Project 7

Title

 PIR Security System using GSM

 254 8051 Microcontroller: Hardware, So ware & Applications

Objective Design a security system to protect homes and offi ces using passive infrared (PIR) sensor and

GSM.

Description In this system, PIR sensor, LCD, keyboard and GSM module are interfaced to the 8051

microcontroller. GSM modem is interfaced via serial port. PIR module senses human radiations. The

microcontroller is programmed to send an alert SMS message to the authorised person through mobile, and

the message is displayed using LCD.

Project 8

Title

 Measurement of GAIT Parameters using Ultrasonic Transducers

Objective Design a system to measure GAIT parameters step length and cadence using ultrasonic

transducers and foot switches.

Description In this system, ultrasonic transducers and foot switches are interfaced to the microcontroller.

GAIT analysis is the process of quantifi cation and interpretation of human locomotion, which refl ects

pathologies. Cadence is the measurement of speed in steps taken per minute. Foot switches are placed on

the heel. When a person walks, the heel is pressed which in turn presses the foot switch. At that instant,

the timer in microcontroller is turned ON. When the other heel touches the ground, the timer is turned

OFF. In this manner, the time taken for a single step is computed. Ultrasonic transmitter is placed at the

tip of one foot, and receiver is placed at the heel of the other foot. Ultrasonic pulses are sent, when the foot

switch is turned ON and the timer is also turned ON at the same instant. When the pulse of the other foot is

received, the timer is turned OFF. Timer indicates the time taken for ultrasonic waves to traverse from the

transmitter to receiver—thus the step length is obtained. The output is displayed on an LCD interfaced to

the microcontroller.

Project 9

Title

Measurement of Heart Rate and Body Temperature

Objective Design a module to measure and display heart rate and body temperature.

Description The temperature is sensed using LM35. Heart beat stethoscope and microphone combination

are used as sensor. These sensors are interfaced to the microcontroller via signal conditioning circuit, fi lters

and ADC. The microcontroller program is written to display body temperature and heart rate using an LCD.

Project 10

Title

 Muscle Stimulator

Objective Design a muscle stimulator that produces a series of electrical shocks to stimulate the muscles.

Chapter 9 8255A Programmable Peripheral Interface 255

Description Using a microcontroller, pulses of short time duration are generated. These pulses are

connected to surface electrode through power amplifi er and step up transformer. When the electrodes are

connected to human body, these pulses stimulate the muscle. The microcontroller is interfaced to keyboard

and LCD. Here, the user can adjust the stimulation time and magnitude. Entire setup is battery operated to

avoid electrical hazards.

Project 11

Title

Voice Operated Home Appliances for the Physically Challenged

Objective Design a voice recognition system to aid physically challenged to perform their day-to-day

activities.

Description AP7003-02 voice recognition IC is used. It consists of built-in microphone amplifi er,

ADC, and speech processor. After pre-recording, AP70003 can recognise 12 sentences of 1.5 seconds

length. Speech processor is interfaced to the microcontroller. Microcontroller output is transmitted via RF

transmitter. Receiver is also interfaced to another microcontroller. Microcontroller is interfaced to various

home appliances. Physically challenged person can give a voice command, which is recognised, encoded

and transmitted to the receiver. The microcontroller at the receiving end controls the appliances based on

the command.

Project 12

Title

 ECG Analysis and Telemetry using GSM

Objective Design a portable system for remote monitoring of cardiac activity.

Description ECG signals are acquired, signal conditioned and digitised using ADC. In this system,

ADC, LCD, keyboard and GSM modem are interfaced to the 8051 microcontroller. The microcontroller is

programmed to calculate heart rate and send SMS using GSM, when arrhythmia conditions arise. Heart rate

is displayed using an LCD.

Project 13

Title

 Obstacle Detection for Vehicles using Ultra Sound Signals

Objective Design a collision prevention system for vehicles using ultrasound transmitter and receiver.

Description Ultra sound transmitter and receiver are mounted on the vehicle. The ultrasound signals

received are converted to audio frequency signals and amplifi ed. Amplifi ed signals are connected

to a loudspeaker. Transmitter and receiver are also interfaced to the 8051 microcontroller. The 8051

microcontroller is programmed to calculate the distance between the obstacle and the vehicle. The distance

is displayed on an LCD.

 256 8051 Microcontroller: Hardware, So ware & Applications

Project 14

Title

Automated Parking Lot Billing System

Objective Design and implement a secure and automated parking lot billing system.

Description At the entry end of a parking lot, data is entered using a keyboard. The data includes

registration number, and other description like two-wheeler, four wheeler, time, etc. The keyboard and LCD

are interfaced to the 8051 microcontroller. The data entered for the vehicle is also displayed on the LCD.

This data is sent to the PC via RS232 interface and the data is stored in the database. The PC acknowledges

the valid entry of data. The printer interfaced to the microcontroller prints the details. The printed slip is

retained by the owner of the vehicle, which is later used at the exit end. At the exit end, a microcontroller

system is used to enter the data and transmit the same to the PC. When the details are entered at the exit

end, the program residing in the PC calculates the time of parking and prepares the bill. The bill with details

is printed and displayed on LCD.

Project 15

Title

 Electric Guitar Tuner

Objective Design a simple electric guitar tuner using the 8051 microcontroller.

Description A magnetic pick up connected guitar is used as transducer. The signal from magnetic pickup

is in the form of damped sinusoidal voltage. After signal conditioning, the signal is converted to square

wave. The frequency of the wave corresponds to the frequency of the string of the guitar. This frequency is

used to trigger a counter of the 8051 microcontroller. The microcontroller program compares the frequency

with standard frequencies and indicates the message to increase or decrease the tension of the string.

Project 16

Title

 RFID based Offi ce Automation

Objective Design RFID based automation system to calculate stay hours and attendance of employees in

an offi ce.

Description RFID card reader is interfaced to the 8051 microcontroller. When card is read, the

employee code is recorded in the microcontroller. The same data is transmitted to PC via RS232 bus.

The microcontroller is also interfaced to LCD and buzzer. When the card is read, the employee number is

displayed on the LCD.

Chapter 9 8255A Programmable Peripheral Interface 257

In this chapter extension of I/O ports using the 8255A has been discussed. Architecture and

interfacing of the 8255A with the 8051 microcontroller has been elucidated with examples. Different

types of sensors and design of signal conditioning circuits have been covered. At the end of the

chapter, the design of minimum embedded system is shown with the help of a circuit diagram.

 1. In the 8255A, BSR or I/O mode is selected by ____________ .

 (a) D7 bit of control register (b) D0 bit of control register

 (c) D6 bit of control register (d) D1 bit of control register

 2. In the 8255A, if control word is 00H, then ____________ .

 (a) PC0 bit is reset (b) PC1 bit is reset (c) PC2 bit is reset (d) PC3 bit is reset

 3. In the 8255A, if the control word is E0H, then port A operates ____________ .

 (a) As input or output port without handshake signals

 (b) As input or output port with handshake signals

 (c) Bi-directional port with handshake signals

 (d) Bi-directional port without handshake signals

 4. ____________ control word sets all the ports as output ports.

 (a) 80H (b) C0H (c) 70H (d) F0H

 5. If the 8255A is reset, then all the ports function as ____________ .

 (a) Latches (b) Unidirectional buffers

 (c) Bi-directional buffers (d) None of the above

 6. ____________ control word is used to defi ne port A as input, port B as output and port C as input.

 (a) 99H (b) 80H (c) 88H (d) 85H

 7. If A1 and A0 pins of the 8255A are 10, then ____________ is selected.

 (a) Port A (b) Port B (c) Port C (d) Control register

 8. If D6 and D5 bits of control word are 11, then the 8255A operates in __________ .

 (a) Mode 0 (b) Mode 1 (c) Mode 2 (d) Mode 3

 9. If CS pin of the 8255A is 1, then all the ports of the 8255A __________ .

 (a) are driven to high impedance state (b) are driven to logic 1 state

 (c) are driven to logic 0 state (d) None of the above

 10. Operating range of temperature sensor LM34 is __________ .

 (a) –50° to 300° F (b) 0° to 100° F (c) 0° to 100° C (d) 50° to 200° C

 258 8051 Microcontroller: Hardware, So ware & Applications

 11. __________ in the 8255A is bit addressable.

 (a) Port A (b) Port B (c) Port C (d) None of the above

 12. Transducer converts __________ .

 (a) Electrical signal to electrical signal (b) Physical signal to electrical signal

 (c) Electrical signal to physical signal (d) Voltage to current

 13. Voltage output of BPT pressure sensor is __________ .

 (a) 0 to 5 V (b) 0 to 5 mV (c) 4.5 to 5.5 V (d) 4.5 mV to 5.5 mV

 14. Voltage output of humidity sensor IH 3605 is __________ .

 (a) 0.8 to 3.9 V (b) 0.3 to 3 V (c) 0 to 5 mV (d) 0.8 to 3.9 mV

 15. Unit for measurement of humidity is __________ .

 (a) mbar (b) RH (c) F (d) Webbers

 9.1 What are handshake signals? Explain the functions of handshake signals in mode 1 operation of the

8255A.

 9.2 With the necessary block and timing diagram, explain mode 1 operation of the 8255A.

 9.3 Explain with the necessary timing diagram, mode 2 operation of the 8255A.

 9.4 List and explain various registers in the 8255A.

 9.5 With the necessary control word, explain the operation of the 8255 in BSR mode and mode 0.

 9.6 Explain with the necessary diagram, 8 bit A/D converter and seven-segment display interface using

the 8255A. Write 8051 ALP to display A/D converter value.

 9.7 Explain with the necessary diagram, the application of the 8255A to interface keyboard and display

system in mode 1.

 9.8 Interface a printer using the 8255A and write a program to print the message ‘HELLO’.

 9.9 Interface a stepper motor to the 8051 using the 8255 and write an ALP to rotate the stepper motor one

and half revolution clockwise.

 9.10 Show the parallel printer interface to the 8051 using the 8255A and write timing waveform for

transfer of data using handshake signals.

 9.11 Design the necessary signal conditioning circuit for interfacing temperature sensor LM34.

 9.12 Design the necessary signal conditioning circuit for interfacing humidity sensor IH-3605.

 9.13 Design the necessary signal conditioning circuit for interfacing pressure sensor BPT.

 9.14 Interface the 8255A with the 8051 microcontroller such that port A, B, C, and control register are

selected for address E000H, E004H, E008H and E00CH respectively.

 9.15 Interface the 8255A with the 8051 microcontroller such that port A, B, C, and control register are

selected for address E0H, E2H, E4H and E6H respectively.

P89C60X2/61X2 FLASH
MICROCONTROLLER-

DATA SHEETS

Features

• 80C51 Central Processing Unit

 – 64 Kbytes Flash

 – 512 bytes RAM (P89C60 2)

 – 1024 bytes RAM (P89C61 2)

 – Boolean processor

 – Fully static operation

• In-System Programmable (ISP) Flash memory

• 12-clock operation with selectable 6-clock

operation (via software or via parallel

programmer)

• Memory addressing capability

 – Up to 64 Kbytes ROM and 64 Kbytes RAM

• Power control modes

 – Clock can be stopped and resumed

 – Idle mode

Philips Semiconductors Product data

80C51 8 bit Flash microcontroller family P89C60X2/61X2

64KB Flash, 512B/1024B RAM

 – Power-down mode

• Two speed ranges

 – 0 to 20 MHz with 6-clock operation

 – 0 to 33 MHz with 12-clock operation

• LQFP, PLCC, and DIP packages

• Dual Data Pointers

• Three security bits

• Four interrupt priority levels

• Six interrupt sources

• Four 8 bit I/O ports

• Full-duplex enhanced UART

 – Framing error detection

 – Automatic address recognition

• Three 16 bit timers/counters T0, T1 (standard

80C51) and additional T2 (capture and

Appendix A

 260 8051 Microcontroller: Hardware, So ware & Applications

interrupt

FLASH EPROM MEMORY

GENERAL DESCRIPTION

Philips Semiconductors Product data

80C51 8 bit Flash microcontroller family P89C60X2/61X2

64KB Flash, 512B/1024B RAM

The P89C60×2/61×2 Flash memory augments

EPROM functionality with in-circuit electrical

erasure and programming. The Flash can be read

and written as bytes. The Chip Erase operation

will erase the entire progaram memory. The

Block Erase function can erase any Flash block.

Figure 1 Block diagram of Flash Microcontroller

compare)

• Programmable clock-out pin

• Watchdog timer

• Asynchronous port reset

• Low EMI (inhibit ALE, 6-clock mode)

• Wake-up from Power Down by an external

Appendix A P89C60X2/61X2 Flash Microcontroller-Data Sheets 261

In-system programming (ISP) and standard parallel

programming are both available. On-chip erase and

write timing generation contribute to a user friendly

programming interface.

The P89C60×2/61×2 Flash reliably stores

memory contents even after 10,000 erase and

program cycles. The cell in designed to optimise the

erase and programming mechanisms. In addition, the

combination of advanced tunnel oxide processing

and low internal electric fi elds for erase and

programming operations produced reliable cycling.

The P89C60X2/61X2 uses a +5 V Vpp supply

to perform the Program/Erase algorithms (12 V

tolerant).

FEATURES

• Flash EPROM internal program memory with

Block Erase.

• Internal 1 Kbyte fi xed BootROM, containing

low-level in-system programming routines

and a default serial loader.

• Loader in BootROM allows in-system

programming via the serial port.

• Up to 64 Kbytes external program memory,

if the internal program memory is disabled

(EA = 0)

• Programming and erase voltage + 5 V (+12 V

tolerant).

• Read/Programming/Erase using ISP:

 – Byte Programming (8 ms).

 – Typical erase times:

 Block Erase (4 Kbytes) in 3 seconds.

 Full-chip erase in 15 seconds.

• Parallel programming with 87C51 compatible

hardware interface to programmer.

• Programmable security for the code in the

Flash.

• 10,000 minimum erase/program cycles for

Philips Semiconductors Product data

80C51 8 bit Flash microcontroller family P89C60X2/61X2

64KB Flash, 512B/1024B RAM

each byte.

• 10-year minimum data retention.

FLASH PROGRAMMING

AND ERASURE

There and two methods of erasing or programming

of the Flash memory that may be used. First, the on-

chip ISP boot loader may be invoked. Second, the

Flash may be programmed or erased using parallel

method by using a commercially available EPROM

programmer. The parallel programming method used

by these devices is similar to that used by EPROM

87C51, but it is not identical, and the commercially

available programmer will need to have support for

these devices.

Flash Memory

Characteristics

Flash User Code Memory Organisation

The P89C60X2/61X2 contains 64 Kbytes Flash

user code program memory organised into 4 Kbyte

blocks (see Figure 1).

Boot ROM

When the microcontroller programs its Flash

memory during ISP, all of the low level details

are handled by code that is contained in a 1 Kbyte

BootROM. BootROM operations include: erase

block, program byte, verify byte, program security

bit, etc.

Clock Mode

The clock mode feature sets operating frequency

to be 1/12 or 1/6 of the oscillator frequency. The

clock mode confi guration bit, FX2, is located

in the Security Block (See Table 1). FX2, when

programmed, will override the SFR clock mode bit

 262 8051 Microcontroller: Hardware, So ware & Applications

Philips Semiconductors Product data

80C51 8 bit Flash microcontroller family P89C60X2/61X2

64KB Flash, 512B/1024B RAM

Figure 1 Flash Memory Configuration

Figure 2 In-System programming with a minimum of pins

(X2) in the CKCON register. If FX2 is erased, then

the SFR bit (X2) may be used to select between

6-clock and 12-clock mode.

In-System Programming (ISP)

The In-System Programming (ISP) is performed

without removing the microcontroller from the

Appendix A P89C60X2/61X2 Flash Microcontroller-Data Sheets 263

system. The In-System Programming (ISP) facility

consists of a series of internal hardware resources

coupled with internal fi rmware to facilitate remote

programming of the P89C60X2/61X2 through the

serial port. This fi rmware is provided by Philips and

embedded within each P89C60X2/61X2 device.

The Philips In-System Programming (ISP) facility

has made in-circuit programming in an embedded

appplication possible with a minimum of additional

expencse in components and circuit board area.

The ISP function uses fi ve pins: T D, R D, V
SS

,

V
CC

, and V
PP

 (see Figure 2). Only a small connector

needs to be available to interface your application to

an external circuit in order to use this feature. The

V
PP

 supply should be adequately decoupled and V
PP

not allowed to exceed datasheet limits.

Free ISP software is available from the

Embedded Systems Academy. “FlashMagic”

 1. Direct your browser to the following page:

h t tp : / /www.esacademy.com/sof tware /

fl ashmagic/

 2. Download Flashmagic

 3. Execute “fl ashmagic.exe” to install the software

Using the In-System Programming (ISP)

The ISP feature allows for a wide range of baud

rates to be used in your application, independent

of the oscillator frequency. It is also adaptable

Philips Semiconductors Product data

80C51 8 bit Flash microcontroller family P89C60X2/61X2

64KB Flash, 512B/1024B RAM

to a wide range of oscillator frequencies. This

is accomplished by measuring the bit-time of a

single bit in a received character. This information

is then used to program the baud rate in terms of

timer counts based on the oscillator frequency. The

ISP feature requires that an initial character (an

uppercase U) be sent to the P89C60X2/61X2 to

establish the baud rate. The ISP fi rmware provides

auto-echo of received characters.

Once baud rate initialisation has been performed,

the ISP fi rmware will only accept intel Hex-

type records. Intel Hex records consist of ASCII

characters used to represent hexadecimal values and

are summarised below:

:NNAAAARRDD..DDCC<crif >

In the Intel Hex record, the “NN” represents the

number of data bytes in the record. The P89C60X2/

61X2 will accept up to 16 (10H) data bytes. The

“AAAA” string represents the address of the fi rst

byte in the record. If there are zero bytes in the

record, this fi eld is often set to 0000. The “RR”

string indicates the record type. A record type of

“00” is a data record type. A record type of “01”

indicates the end-of-fi le mark. In this application,

additional record types will be added to indicate

either commands or data for the ISP facility.

The maximum number of data bytes in a record

is limited to 16 (decimal). ISP commands are

TABLE 1

 CLOCK MODE CONFIG BIT (FX2) X2 bit in CKCON DESCRIPTION

 erased 0 12-clock mode (default)

 erased 1 6-clock mode

 programmed x 6-clock mode

Note

 1. Default clock mode after ChipErase is set to 12-clock.

 264 8051 Microcontroller: Hardware, So ware & Applications

TABLE 2 Intel-Hex records used by In-System programming

 RECORD TYPE COMMAND/DATA FUNCTION

 00 Program Data
 :nnaaaa00dd....ddcc
 Where:
 nn = number of bytes (hex) in record
 aaaa = memory address of fi rst byte in record
 dd....dd = date bytes
 cc = checksum
 Example:
 : 10008000AF5F67F0602703E0322CFA92007780C3FD

 01 End of File (EOF), no operation
 : xxxxxx01cc
 Where:
 xxxxxx = required fi eld, but value is a “don’t care”
 cc = checksum
 Example:
 : 00000001FF

 03 Miscellaneous Write Functions
 :nnxxxx03ff ssddcc
 Where:
 nn = number of bytes (hex) in record
 xxxx = required fi eld, but value is a “don’t care”
 03 = Write Function
 ff = subfunction code
 ss = selection code
 dd = data input (as needed)
 cc = checksum
 Subfunction Code = 04 (Set Status Byte to 00h)
 ff = 04
 ss = don’t care
 Example:
 : 020000030400F7 set status byte to 00h (device executes user code a er Reset)
 Subfunction Code = 05 (Program Security Bits)
 ff = 05
 ss = 00 program security bit 1 (inhibit wiriting to Flash)
 01 program security bit 2 (inhibit Flash verify)
 02 program security bit 3 (disable external memory)
 Example:
 : 020000030501F5 program security bit 2
 Subfunction Code = 06 (Program Flash X2 bit)
 ff = 06
 ss = 02 program FX2 bit (dd = 80) 6-clk. mode enabled
 dd = data
 Example 1:
 : 0300000306028072 program FX2 bit (enable 6-clk. mode)

Appendix A P89C60X2/61X2 Flash Microcontroller-Data Sheets 265

T
A

B
L

E
 3

T

h
e

M
C

S
51

 f
a

m
il

y
 o

f
m

ic
ro

co
n

tr
o

ll
er

s

D

E
V

IC
E

R

O
M

/E
P

R
O

M

R
eg

is
te

r
S

p
ee

d

I/
O

T

im
er

/
U

A
R

T

In
te

rr
u

p
t

P
C

A

A
/D

S

E
P

G

S
C

D

M
A

L

o
ck

P

o
w

er
 D

o
w

n

(b

y
te

s)

R
A

M

(M
H

z)

P
in

s
C

o
u

n
te

rs

S

o
u

rc
es

C

h
an

n
el

s
C

h
an

n
el

s

C

h
an

n
el

s
B

it
s

&
 I

d
le

 M
o

d
es

(b

y
te

s)

80
51
 P
ro
d
u
ct
 L
in
e

80
31
A
H

R
O
M
L
E
S
S

12
8

12

32

2
1

5
0

0
0

0
0

-
-

80
51
A
H

4K
 R
O
M

12
8

12

32

2
1

5
0

0
0

0
0

0
-

80
51
A
H
P

4K
 R
O
M

12
8

12

32

2
1

5
0

0
0

0
0

p

-

87
51
H

4K
 E
P
R
O
M

12
8

12

32

2
1

5
0

0
0

0
0

1
-

87
51
B
H

4K
 E
P
R
O
M

12
8

12

32

2
1

5
0

0
0

0
0

2
-

80
52
 P
ro
d
u
ct
 L
in
e

80
32
A
H

R
O
M
L
E
S
S

25
6

12

32

3
1

6
0

0
0

0
0

-
-

80
52
A
H

K
 R
O
M

25
6

12

32

3
1

6
0

0
0

0
0

0
-

87
52
B
H

K
 E
P
R
O
M

25
6

12

32

3
1

6
0

0
0

0
0

2
-

80
C
51
 P
ro
d
u
ct
 L
in
e

80
C
31
B
H

R
O
M
L
E
S
S

12
8

12
,1
6

32

2
1

5
0

0
0

0
0

-
Y
es

80
C
51
B
H

4K
 R
O
M

12
8

12
,1
6

32

2
1

5
0

0
0

0
0

0
Y
es

80
C
51
B
H
P

4K
 R
O
M

12
8

12
,1
6

32

2
1

5
0

0
0

0
0

p

Y
es

87
C
51

4K
 E
P
R
O
M

12
8

12
,1
6,
20
,2
4

32

2
1

5
0

0
0

0
0

3
Y
es

I

8X
C
52
/5
4/
58
 P
ro
d
u
ct
 L
in
e

80
C
32

R
O
M
L
E
S
S

25
6

12
,1
6,
20
,2
4

32

3
1

6
0

0
0

0
0

-
Y
es

I

80
C
52

8K
 R
O
M

25
6

12
,1
6,
20
,2
4

32

3
1

6
0

0
0

0
0

1*

Y
es

I

87
C
52

8K
 E
P
R
O
M

25
6

12
,1
6,
20
,2
4

32

3
1

6
0

0
0

0
0

3
Y
es

I

80
C
54

16
K
 R
O
M

25
6

12
,1
6,
20
,2
4

32

3
1

6
0

0
0

0
0

1
Y
es

I

87
C
54

16
K
 E
P
R
O
M

25
6

12
,1
6,
20
,2
4

32

3
1

6
0

0
0

0
0

3
Y
es

I

80
C
58

32
K
 R
O
M

25
6

12
,1
6,
20
,2
4

32

3
1

6
0

0
0

0
0

1
Y
es

I

87
C
58

32
K
 E
P
R
O
M

25
6

12
,1
6,
20
,2
4

32

3
1

6
0

0
0

0
0

3
Y
es

8X
C
52
/5
4/
58
 P
ro
d
u
ct
 L
in
e

80
L
52

8K
 R
O
M

25
6

12
,1
6,
20
*

32

3
1

6
0

0
0

0
0

1
Y
es

87
L
52

8K
 O
T
P
 R
O
M

25
6

12
,1
6,
20
*

32

3
1

6
0

0
0

0
0

3
Y
es

80
L
54

18
K
 R
O
M

25
6

12
,1
6,
20
*

32

3
1

6
0

0
0

0
0

1
Y
es

87
L
54

16
K
 O
T
P
 R
O
M

25
6

12
,1
6,
20
*

32

3
1

6
0

0
0

0
0

3
Y
es

80
L
58

32
K
 R
O
M

25
6

12
,1
6,
20
*

32

3
1

6
0

0
0

0
0

1
Y
es

87
L
58

32
K
 O
T
P
 R
O
M

25
6

12
,1
6,
20
*

32

3
1

6
0

0
0

0
0

3
Y
es (C

o
n
td

)

 266 8051 Microcontroller: Hardware, So ware & Applications

D

E
V

IC
E

R

O
M

/E
P

R
O

M

R
eg

is
te

r
S

p
ee

d

I/
O

T

im
er

/
U

A
R

T

In
te

rr
u

p
t

P
C

A

A
/D

S

E
P

G

S
C

D

M
A

L

o
ck

P

o
w

er
 D

o
w

n

(b

y
te

s)

R
A

M

(M
H

z)

P
in

s
C

o
u

n
te

rs

S

o
u

rc
es

C

h
an

n
el

s
C

h
an

n
el

s

C

h
an

n
el

s
B

it
s

&
 I

d
le

 M
o

d
es

(b

y
te

s)

8X
C
51
FA
/F
B
/F
C
 P
ro
d
u
ct
 L
in
e

80
C
51
FA

R
O
M
L
E
S
S

25
6

12
,1
6

32

3
1

7
5

0
0

0
0

-
Y
es

83
C
51
FA

8K
 R
O
M

25
6

12
,1
6

32

3
1

7
5

0
0

0
0

0
Y
es

87
C
51
FA

8K
 E
P
R
O
M

25
6

12
,1
6,
20
,2
4

32

3
1

7
5

0
0

0
0

3
Y
es

I

83
C
51
F
B

16
K
 R
O
M

25
6

12
,1
6,
20
,2
4

32

3
1

7
5

0
0

0
0

1
Y
es

I

87
C
51
F
B

16
K
 E
P
R
O
M

25
6

12
,1
6,
20
,2
4

32

3
1

7
5

0
0

0
0

3
Y
es

I

83
C
51
F
C

32
K
 R
O
M

25
6

12
,1
6,
20
,2
4

32

3
1

7
5

0
0

0
0

1
Y
es

I

87
C
51
F
C

32
K
 E
P
R
O
M

25
6

12
,1
6,
20
,2
4

32

3
1

7
5

0
0

0
0

3
Y
es

I

8X
L
51
FA
/F
B
/F
C
 P
ro
d
u
ct
 L
in
e

80
L
51
FA

R
O
M
L
E
S
S

25
6

12
,1
6,
20
*

32

3
1

7
5

0
0

0
0

-
Y
es

83
L
51
FA

8K
 R
O
M

25
6

12
,1
6,
20
*

32

3
1

7
5

0
0

0
0

1
Y
es

87
L
51
FA

8K
 O
T
P
 R
O
M

25
6

12
,1
6,
20
*

32

3
1

7
5

0
0

0
0

3
Y
es

83
L
51
F
B

16
K
 R
O
M

25
6

12
,1
6,
20
*

32

3
1

7
5

0
0

0
0

1
Y
es

87
L
51
F
B

16
K
 O
T
P
 R
O
M

25
6

12
,1
6,
20
*

32

3
1

7
5

0
0

0
0

3
Y
es

83
L
51
F
C

32
K
 R
O
M

25
6

12
,1
6,
20
*

32

3
1

7
5

0
0

0
0

1
Y
es

87
L
51
F
C

32
K
 O
T
P
 R
O
M

25
6

12
,1
6,
20
*

32

3
1

7
5

0
0

0
0

3
Y
es

8X
C
51
G
X
 P
ro
d
u
ct
 L
in
e

80
C
51
G
B

R
O
M
L
E
S
S

25
6

12
,1
6

48

3
1

15

10

8
1

0
0

-
Y
es

83
C
51
G
B

8K
 R
O
M

25
6

12
,1
6

48

3
1

15

10

8
1

0
0

1
Y
es

87
C
51
G
B

8K
 E
P
R
O
M

25
6

12
,1
6

48

3
1

15

10

8
1

0
0

3
Y
es

8X
C
15
22
 P
ro
d
u
ct
 L
in
e*

80
C
15
2J
A

R
O
M
L
E
S
S

25
6

16
,5

40

2
1

11

0
0

1
1

2
-

Y
es

80
C
15
2J
B

R
O
M
L
E
S
S

25
6

16
,5

58

2
1

11

0
0

1
1

2
-

Y
es

83
C
15
2J
A

8K
 R
O
M

25
6

16
,5

40

2
1

11

0
0

1
1

2
0

Y
es

8X
C
51
S
L
 P
ro
d
u
ct
 L
in
e

80
C
51
S
L
-B
G

R
O
M
L
E
S
S

25
6

16

24

2
1

10

0
4

0
1

0
-

Y
es

81
C
51
S
L
-B
G

8K
 *
R
O
M

25
6

16

24

2
1

10

0
4

0
1

0
0

Y
es

83
C
51
S
L
-B
G

8K
 R
O
M

25
6

16

24

2
1

10

0
4

0
1

0
0

Y
es

80
C
51
S
L
A
H

R
O
M
L
E
S
S

25
6

16

24

2
1

10

0
4

0
1

0
-

Y
es

81
C
51
S
L
A
H

16
K
 *
R
O
M

25
6

16

24

2
1

10

0
4

0
1

0
0

Y
es

83
C
51
S
L
A
H

16
K
 R
O
M

25
6

16

24

2
1

10

0
4

0
1

0
0

Y
es

87
C
51
S
L
A
H

16
K
 E
P
R
O
M

25
6

16

24

2
1

10

0
4

0
1

0
0

Y
es

80
C
51
S
L
A
L

R
O
M
L
E
S
S

25
6

16

24

2
1

10

0
4

0
1

0
-

Y
es

81
C
51
S
L
A
L

16
K
 *
R
O
M

25
6

16

24

2
1

10

0
4

0
1

0
0

Y
es

83
C
51
S
L
A
L

16
K
 R
O
M

25
6

16

24

2
1

10

0
4

0
1

0
0

Y
es

87
C
51
S
L
A
L

16
K
 E
P
R
O
M

25
6

16

24

2
1

10

0
4

0
1

0
0

Y
es

R
O
M
/O
T
P
 R
O
M
/E
P
R
O
M
 (
b
y
te
s)
:

*R
O
M

=
S
y
st
em

S
o

 S
ta
n
d
ar
d
 B
IO
S

S
p
ee
d
 (
M
H
z)
;

24

=
24
 M
H
z
in
te
rn
al
-o
n
ly
 o
p
er
at
io
n

20
*

=
20
 M
H
z
A
v
ai
la
b
le
 f
o
r
C
o
m
m
er
ic
al
 T
em

p
er
at
u
re
 R
an
g
e
O
n
ly

L
o
ck
 B
it
s:

1*

=
1
L
o
ck
 B
it
 f
o
r
20
 M
H
z
&
 2
4
M
H
z
p
ar
ts
, n
o
 L
o
ck
 B
it
 f
o
r
12
 &
 1
6
M
H
z
p
ar
ts

P

=
P
ro
g
ra
m
 v
er
ifi
 c
at
io
n
 d
is
ab
le
d
, e
x
te
rn
al
 m
em

o
ry
 a
cc
es
s
li
m
it
ed
 t
o
 4
K

8X
C
15
2
P
ro
d
u
ct
 L
in
e*

=
C
o
m
m
u
n
ic
at
io
n
 C
o
n
tr
o
ll
er

8X
C
51
S
L
 P
ro
d
u
ct
 L
in
e*

=
K
ey
b
o
ar
d
 C
o
n
tr
o
ll
er

Appendix A P89C60X2/61X2 Flash Microcontroller-Data Sheets 267

summarised in Table 2.

As a record is received by the P89C60X2/61X2,

the information in the record is stored internally and

a checksum calculation is performed. The operation

indicated by the record type is not perfomed untill

the entire record has been received. Should an

error occur in the checksum, the P89C60X2/61X2

will send an “X” out the serial port indicating a

checksum error. If the checksum calculation is

found to match the checksum in the record, then

the command will be executed. In most cases,

successful reception of the record will be indicated

by transmitting a “.” character out the serial port

(displaying the contents of the internal program

Philips Semiconductors Product data

80C51 8 bit Flash microcontroller family P89C60X2/61X2

64KB Flash, 512B/1024B RAM

memory is an exception).

In the case of a Data Record (record type 00),

an additional check is made. A“.” character will

NOT be sent unless the record checksum matched

the calculated checksum and all of the bytes in the

record were successfully programmed. For a data

record, an “X” indicates that the checksum failed

to match, and an “R” character indicates that one of

the bytes did not properly program. It is necessary to

send a type 02 record (specify oscillator frequency)

to the P89C60X2/61X2 before programming data.

The ISP facility was designed to that specifi c

crystal frequencies were not required in order to

generate baud rates or time the programming pulses.

ASCII CODE VALUES

Appendix B

 029 1D (LEFT)

 030 1E (UP)

 031 1F (DOWN)

 032 20 (SPACE)

 033 21 !

 034 22 “

 035 23 #

 036 24 $

 037 25 %

 038 26 &

 039 27 ‘

 040 28 (

 041 29)

 042 2A *

 043 2B +

 044 2C ,

 045 2D -

 046 2E .

 047 2F /

 048 30 0

 049 31 1

 050 32 2

 051 33 3

 052 34 4

 053 35 5

 054 36 6

 055 37 7

 056 38 8

 057 39 9

 058 3A :

 059 3B ;

 060 3C <

 061 3D =

 062 3E >

 063 3F ?

 064 40 @

 065 41 A

 066 42 B

 067 43 C

 068 44 D

 069 45 E

 070 46 F

 071 47 G

 072 48 H

 073 49 I

 074 4A J

 075 4B K

 076 4C L

 077 4D M

 078 4E N

 079 4F O

 080 50 P

 081 51 Q

 082 52 R

 083 53 S

 084 54 T

 085 55 U

 086 56 V

 087 57 W

 088 58 X

 089 59 Y

 090 5A Z

 091 5B [

 092 5C \

 ASCII ASCII CHAR-
 (DECIM- (HEXADE- ACTER
 AL) CIMAL)

 000 0 (NUL)

 001 1 A

 002 2 B

 003 3 ª

 004 4 ©
 005 5 ¨

 006 6 «
 007 7 (BEEP)

 008 8

 009 9 (TAB)

 010 A (LF)

 011 B (HOME)

 012 C (FF)

 013 D (CR)

 014 E

 015 F -

 016 10 I

 017 11 J

 018 12 K

 019 13 L

 020 14 M

 021 15 N

 022 16 O

 023 17 P

 024 18 Q

 025 19 R

 026 1A S

 027 1B (ESC)

 028 1C (RIGHT)

Appendix B ASCII Code Values 269

 093 5D]

 094 5E ^

 095 5F _

 096 60 ‘

 097 61 A

 098 62 B

 099 63 C

 100 64 D

 101 65 E

 102 66 F

 103 67 G

 104 68 H

 105 69 I

 106 6A J

 107 6B K

 108 6C L

 109 6D M

 110 6E N

 111 6F O

 112 70 P

 113 71 Q

 114 72 R

 115 73 S

 116 74 T

 117 75 U

 118 76 V

 119 77 W

 120 78 X

 121 79 Y

 122 7A Z

 123 7B {

 124 7C |

 125 7D }

 126 7E ~

 127 7F T

74LS373, ADC 0808,
DAC 0808-DATA SHEETS

Appendix C

The user thus needs to provide the P89C60X2/61X2 with information required to generate the proper

timing. Record type 02 is provided for this purpose.

OCTAL TRANSPARENT LATCH WITH 3-STATE
OUTPUTS; OCTAL D-TYPE FLIP-FLOP WITH
3-STATE OUTPUT

The SN54/74LS373 consists of eight latches with 3-state outputs for bus organised system applications. The

fl ip-fl ops appear transparent to the data (data changes asynchronously) when Latch Enable (LE) is HIGH.

When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output

Enable (OE) is LOW. When OE is HIGH, the bus output is in the high impedance state.

The SN54/74LS374 is a high-speed, low-power Octal D-type Flip-Flop featuring separate D-type inputs

for each fl ip-fl op and 3-state outputs for bus oriented applications. A buffered Clock (CP) and Output

Enable (OE) is common to all fl ip-fl ops. The SN54/74LS374 is manufactured using advanced LOW Power

Schottky technology and is compatible with all Motorola TTL families.

• Eight Latches in a Single Package

• 3-State Outputs for Bus interfacing

• Hysteresis on Latch Enable

• Edge-Triggered D-Type Inputs

• Buffered Positive Edge-Triggered Clock

• Hysteresis on Clock Input to Improve Noise Margin

• Input Clamp Diodes Limit High Speed Ter mination Ef

PIN NAMES

D
0
– D

7
 Data Inputs

LE Latch Enable (Active HIGH) Input

CP Clock (Active HIGH going edge) Input

OE Output Enable (Active LOW) Input

O
0
– O

7
 Outputs (Note b)

LOADING (Note a)

 HIGH LOW

 0.5 U.L. 0.25 U.L.

 0.5 U.L. 0.25 U.L.

 0.5 U.L. 0.25 U.L

 0.5 U.L. 0.25 U.L.

 65 (25) U.L. 15 (7.5) U.L.

Appendix C 74LS373, ADC 0808, DAC 0808-Data Sheets 271

ADC0808/ADC0809 8-BIT µP COMPATIBLE A/D
CONVERTERS WITH 8-CHANNEL MULTIPLEXER

General Description

The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8 bit analog-

to-digital converter, 8-channel multiplexer and microprocessor compatible control logic. The 8 bit A/

D converter uses successive approximation as the conversion technique. The converter features a high

impedance chopper stabilised comparator, a 256R voltage divider with analog switch tree and a successive

approximation register. The 8-channel multiplexer can directly access any of 8-single-ended analog signals.

The device eliminates the need for external zero and full-scale adjustments. Easy interfacing to

microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL

TRI-STATE* outputs.

The design of the ADC0808, ADC0809 has been optimised by incorporating the most desirable

aspects of several A/D conversion techniques. The ADC0808, ADC0809 offers high speed, high accuracy,

minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal

power. These features make this device ideally suited to applications from process and machine control to

consumer and automotive applications.

Features

• Easy interface to all microprocessors

• Operates ratiometrically or with 5 V
DC

 or analog span adjusted voltage reference

• No zero or full-scale adjust required

• 8-channel multiplexer with address logic

• 0 V to 5 V input range with single 5 V power supply

• Outputs meet TTL voltage level specifi cations

• Standard hermetic or molded 28-pin DIP package

• 28-pin molded chip carrier package

• ADC0808 equivalent to MM74C949

• ADC0809 equivalent to MM74C949-1

Pin diagram of SN54/74LS373

 272 8051 Microcontroller: Hardware, So ware & Applications

Key Specifications

• Resolution 8 bit

• Total Unadjusted Error ±½ LSB and ±1 LSB

• Single Supply 5 V
DC

• Low Power 15 mW

• Conversion Time 100 ms

Block Diagram

Pin diagram

Appendix C 74LS373, ADC 0808, DAC 0808-Data Sheets 273

FUNCTIONAL DESCRIPTION

Multiplexer

The device contains an 8-channel single-ended analog signal multiplexer. A particular input channel is selected

by using the address decoder. Table 1 shows the input states for the address lines to select any channel. The

address is latched into the decoder on the low-to-high transition of the address latch enable signal.

Table 1

 Selected
Address line

 Analog C B A
 Channel

 IN0 L L L

 IN1 L L H

 IN2 L H L

 IN3 L H H

 IN4 H L L

 IN5 H L H

 IN6 H H L

 IN7 H H H

Converter Characteristics

The Converter

The heart of this single chip data acquisition system is its 8 bit analog-to-digital converter. The converter is

designed to give fast, accurate, and repeatable conversions over a wide range of temperatures. The converter

is partitioned into 3 major sections: the 256R ladder network, the successive approximation register, and the

comparator. The converter’s digital outputs are positive true.

The 256R ladder network approach (Figure 1) was chosen over the conventional R/2R ladder because of

its inherent monotonicity, which guarantees no missing digital codes. Monotonicity is particularly important

in closed loop feedback control systems. A non-monotonic relationship can cause oscillations that will be

catastrophic for the system. Additionally, the 256R network does not cause load variations on the reference

voltage.

The bottom resistor and the top resistor of the ladder network in Figure 1 are not the same value as the

remainder of the network. The difference in these resistors causes the output characteristic to be symmetrical

with the zero and full-scale points of the transfer curve. The fi rst output transition occurs when the analog

signal has reached +½ LSB and succeeding output transitions occur every 1 LSB later up to full-scale.

The successive approximation register (SAR) performs 8 iterations to approximate the input voltage. For

any SAR type converter, n-iterations are required for an n-bit converter. Figure 2 shows a typical example

of a 3 bit converter. In the ADC0808, ADC0809, the approximation technique is extended to 8 bit using the

256R network.

The A/D converter’s successive approximation register (SAR) is reset on the positive edge of the

start conversion (SC) pulse. The conversion is begun on the falling edge of the start conversion pulse. A

conversion in process will be interrupted by receipt of a new start conversion pulse. Continuous conversion

 274 8051 Microcontroller: Hardware, So ware & Applications

may be accomplished by tying the end-of-conversion (EOC) output to the SC input. If used in this mode, an

external start conversion pulse should be applied after power up. End-of-conversion will go low between 0

and 8 clock pulses after the rising edge of start conversion.

The most important section of the A/D converter is the comparator. It is this section which is responsible

for the ultimate accuracy of the entire converter. It is also the comparator drift which has the greatest

infl uence on the repeatability of the device. A chopper-stabilised comparator provides the most effective

method of satisfying all the converter requirements.

The chopper-stabilised comparator converts the DC input signal into an AC signal. This signal is then fed

through a high gain AC amplifi er and has the DC level restored. This technique limits the drift component

of the amplifi er since the drift is a DC component which is not passed by the AC amplifi er. This makes the

entire A/D converter extremely insensitive to temperature, long term drift and input offset errors. Figure 4

shows a typical error curve for the ADC0808 as measured using the procedures outlined in AN-179.

Figure 1 Resistor Ladder and Switch Tree

Figure 2 3 bit A/D Transfer curve

Appendix C 74LS373, ADC 0808, DAC 0808-Data Sheets 275

Figure 3 3 bit A/D absolute accuracy curve

Figure 4 Typical error curve

DAC0808
8-BIT D/A CONVERTER

General Description

The DAC0808 is an 8 bit monolithic digital-to-analog converter (DAC) featuring a full scale output current

setting time of 150 ns while dissipating only 33 mW with ±5 V supplies. NO reference current (I
REF

)

trimming is required for most applications since the full scale output current is typically ±1 LSB of 255

I
REF

/256. Relative accuracies of better than ±0.19% assure 8-bit monotonicity and linearity while zero level

output current of less than 4 mA provides 8 bit zero accuracy for I
REF

 ≥ 2 mA. The power supply currents of

the DAC0808 is independent of bit codes, and exhibits essentially constant device characteristics over the

entire supply voltage range.

The DAC0808 will interface directly with popular TTL, DTL or CMOS logic levels, and is a direct

replacement for the MC1508/MC1408. For higher speed applications, see DAC0800 data sheet.

Features

• Relative accuracy: ±0.19% error maximum

• Full scale current match: ±1 LSB typ

• Fast settling time: 150 ns typ

• Noninverting digital inputs are TTL and CMOS compatible

 276 8051 Microcontroller: Hardware, So ware & Applications

• High speed multiplying input slew rate: 8 mA/ms

• Power supply voltage range: ±4.5 V to ±18 V

• Low power consumption: 33 mW @ ±5 V

Block and Connection Diagrams

8052 MICRO-
CONTROLLER-DATA

SHEETS

Figure 1 8052 Program memory

Figure 2 8052 Program memory

MEMORY ORGANISATION OF 8052

8052 Program memory and Data memory is as shown in Fig. 1 and 2.

Appendix D

 278 8051 Microcontroller: Hardware, So ware & Applications

T2CON: TIMER/COUNTER 2 CONTROL
REGISTER, BIT ADDRESSABLE

8052 Only

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2

TF2 T2CON. 7 Timer 2 overfl ow fl ag set by hardware and cleared by software. TF2 cannot be set
when either RCLK = 1 or CLK = 1

EXF2 T2CON. 6 Timer 2 external fl ag set when either a capture or reload is caused by a negative
transition on T2EX, and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1
will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared
by software.

RCLK T2CON. 5 Receive clock fl ag. When set, causes the Serial Port to use Timer 2 overfl ow pulses
for its receive clock in modes 1 & 3. RCLK = 0 causes Timer 1 overfl ow to be used
for the receive clock.

TLCK T2CON. 4 Transmit clock fl ag. When set, causes the Serial Port to use Timer 2 overfl ow pulses
for its transmit clock in modes 1 & 3. TCLK = 0 causes Timer 1 overlows to be used
or the transmit clock.

EXEN2 T2CON. 3 Timer 2 external enable fl ag. When set, allows a capture or reload to occur as a result
of negative transition on T2EX if Timer 2 is not being used to clock the Serial Port.
EXEN2 = 0 causes Timer 2 to ignore events at T2EX.

TR2 T2CON. 2 Software START/STOP control for Timer 2. A logic 1 starts the Timer.
C/T2 T2CON. 1 Timer or Counter select.
 0 = Internal Timer. 1 = External Event Counter (falling edge triggered).
CP/RL2 T2CON. 0 Capture/Reload fl ag. When set, captures will occur on negative transitions at T2EX if

EXEN2 = 1. When cleared, Auto-Reloads will occur either with Timer 2 overfl ows or
negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1,

this bit is ignored and the Timer is forced to Auto-Reload on Timer 2 overfl ow.

TIMER/COUNTER 2 SET-UP

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2

bit. Therefore, bit TR2 must be set, separately, to turn the Timer on.

As a Timer

TABLE 7

 Mode Internal External

 Control Control

 (Note 1) (Note 2)

 16 bit Auto-Reload 00H 08H

 16 bit Capture 01H 09H

 BAUD rate generator receive &

 transmit same baud rate 34H 36H

 receive only 24H 26H

 transmit only 14H 16H

T2 CON

Appendix D 8052 Microcontroller-Data Sheets 279

As a Counter

TABLE 8

 TMOD

 Mode Internal External

 Control Control

 (Note 1) (Note 2)

 16 bit Auto-Reload 02H 0AH

 16 bit Capture 03H 0BH

Notes

1. Capture/Reload occurs only on Timer/Counter overfl ow.

2. Capture/Reload occurs on Timer/Counter overfl ow and a 1 to 0 transition on T2EX

(P1.1) pin except when Timer 2 is used in the baud rate generating mode.

Figure 3 Timer 2 in capture mode

The serial port can operate in 4 modes:

Mode 0 Serial data enters and exits through RXD.TXD outputs the shift clock. 8 bit are transmitted/

received: 8 data bits (LSB fi rst). The baud rate is fi xed at 1/12 the oscillator frequency.

Mode 1 10 bit are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB

fi rst), and a stop bit (1). On receive, the stop bit goes into RB8 in Special Function Register SCON. The

baud rate is variable.

Mode 2 11 bit are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB

fi rst), a programmable 9th data bit, and a stop bit (1). On Transimit, the 9th data bit (TB8 in SCON) can be

assigned the value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. ON

 280 8051 Microcontroller: Hardware, So ware & Applications

receive, the 9th data bit goes into RB8 in Special Function Register SCON, while the stop bit is ignored.

The baud rate is programmable to either 1/32 or 1/64 the oscillator frequency.

Mode 3 11 bit are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB

fi rst), a programmable 9th data bit and a stop bit (1). In fact, Mode 3 is the same as Mode 2 in all respects

except the baud rate. The baud rate in Mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register.

Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other

modes by the incoming start bit of REN = 1.

Multiprocessor Communications

Modes 2 and 3 have a special provision for multiprocessor communications. In these modes, 9 data bits are

received. The 9th one goes into RB8. Then comes a stop bit. The port can be programmed such that when

the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by

setting bit SM2 in SCON. A way to use this feature in multiprocessor systems is as follows.

When the master processor wants to transmit a block of data to one of several slaves, it fi rst sends out

an address byte which identifi es the target slave. An address byte differs from a data byte in that the 9th

bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data byte.

An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and

see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes

that will be coming. The slaves that weren’t being addressed leave their SM2s set and go on about their

business, ignorng the coming data bytes.

SM2 has no effect in Mode 0, and in Mode 1 can be used to check the validity of the stop bit. In a Mode

1 reception, if SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

Serial Port Control Register

The serial port control and status register is the Specail Function Register SCON, shown in Figure 5. This

register contains not only the mode selection bits, but also the 9th data bit for transmit and receive (TB8

and RB8), and the serial port interrupt bits (TI and RI).

Figure 4 Timer 2 in Auto-Reload mode

Appendix D 8052 Microcontroller-Data Sheets 281

Figure 5 SCON: Serial Port Control Register

In the Capture Mode there are two options which are selected by bit EXEN2 in T2CON. If EXEN2 =

0, then Timer 2 is a 16 bit timer or counter which upon overfl owing sets bit TF2, the Timer 2 overfl ow

bit, which can be used to generate an interrupt. If EXEN2 = 1, then Timer 2 still does the above, but with

the added feature that a 1-to-0 transition at external input T2EX causes the current value in the Timer 2

registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. (RCAP2L and

RCAP2H are new Special Function Registers in the 8052.) In addition, the transition at T2EX causes bit

EXF2 in T2CON to be set, and EXF2, like TF2, can generate an interrupt.

The Capture Mode is illustrated in Figure 3.

In the auto-reload mode there are again two options, which are selected by bit EXEN2 in T2CON. If

EXEN2 = 0, then when Timer 2 rolls over it not only sets TF2 but also causes the Timer 2 registers to be

reloaded with the 16 bit value in registers RCAP2L and RCAP2H, which are preset by software. If EXEN2

= 1, then Timer 2 still does the above, but with the added feature that 1-to-0 transition at external input

T2EX will also trigger the 16 bit reload and set EXF2.

The auto-reload mode is illustrated in Figure 4.

The baud rate generator mode is selected by RCLK = 1 and/or TCLK = 1. It will be described in

conjunction with the serial port.

Serial Interface

The serail port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered,

meaning it can commence reception of a second byte before a previously received byte has been read from

the receive register. (However, if the fi rst byte still hasn’t been read by the time reception of the second byte

is complete, one of the bytes will be lost). The serial port receive and transmit registers are both accessed at

Specail Function Register SBUF. Writing to SBUF loads the transmit register, and reading SBUF accesses a

physically separate receive register.

80196-ARCHITECTURAL OVERVIEW

The 16 bit 8XC196Kx, 8XC196Jx, and 87C196CA CHMOS microcontrollers are designed to handle high-

speed calculations and fast input/output (I/O) operations. They share a common architecture and instruction

set with other members of the MCS® 96 microcontroller family. Figure 1 shows pin details of 8XC196Kx

and Table 1 signal classifi cation according to functions.

80196 MICRO-
CONTROLLER-DATA

SHEETS

Figure 1 8XC196Kx 68-lead PLCC package

Appendix E

Appendix E 80196 Microcontroller-Data Sheets 283

TABLE 1 8xC196Kx signals arranged by functional categories

 Input/Output Input/Output Programming Bus Control &
 (Cont’d) Control Status

 P0.7:0/ACH7:0 P6.5/SD0 AINC# ALE/ADV#

 P1.0/EPA0/T2CLK P6.6/SC1 CPVER BHE#WRH#

 P1.1/EPA1 P6.7/SD1 PACT# BREQ#

 P1.2/EPA2/T2DIR PALE# BUSWIDTH

 P1.7:3/EPA7:3 Processor Control PBUS.15:0 CLKOUT

 P2.0/TXD EA# MPODE.3:0 HOLD#

 P2.1/RXD EXTINT PROG# HLDA#

 P2.7:2 NMI PVER INST

 P3.7:0 ONCE# INTOUT#

 P4.7:0 RESET# Power & Ground READY

 P5.7:0 SLPINT ANGND RD#

 P6.0/EPA8/COMP0 XTAL1 V
CC
 SLPALE†

 P6.1/EPA9/COMP1 XTAL2 V
PP
 SLPCS#†

 P6.2/T1CLK V
REF
 SLPWR#†

 P6.3/T1DIR Address & Data V
SS
 SLPRD#†

 P6.4/SCO AD15:0 WR#/WRL#

 SLP7:0†

†Slave port signal

TYPICAL APPLICATIONS

MCS 96 microcontrollers are typically used for high-speed event control systems. Commercial applications

include modems, motor-control systems, printers, photocopiers, air conditioner control systems, disk drives,

and medical instruments. Automotive customers use MCS 96 microcontrollers in engine-control systems,

airbags, suspension systems, and antilock braking systems (ABS).

DEVICE FEATURES

Table-1 lists the features of each member of the 8XC196Kx family.

 284 8051 Microcontroller: Hardware, So ware & Applications

Device Pins OTPROM/ Register Code/ I/O EPA SIO/ A/D External
 EPROM/ RAM (2) Data Pins pins SSIO Channels Inte-
 ROM (1) RAM Ports rrupt

8XC196JV (3) 52 48 K 1536 512 56 6 3 6 1

8XC196KT 68 32 K 1024 512 56 10 3 8 2

8XC196JT (3) 52 32 K 1024 512 41 6 3 6 1

87C196CA (4) 68 32 K 1024 256 51 6 3 6 2

8XC196KS (3) 68 24 K 1024 256 56 10 3 8 2

8XC196KR 68 16 K 512 256 56 10 3 8 2

8XC196JR 52 16 K 512 256 41 6 3 6 1

8XC196KQ 68 12 K 384 128 56 10 3 8 2

8XC196JQ 52 12 K 384 128 41 6 3 6 1

Notes

1. Optional. The second character of the device name indicates the presence and type of

nonvolatile memory. 80C196xx = none; 83C196xx = ROM; 87C196xx = OTPROM or

EPROM.

2. Register RAM amounts include the 24 bytes allocated to core SFRs and the stack pointer.

3. The 8XC196JT, JV, and KS are offered in automotive temperature ranges only. The

87C196CA, 8XC196JQ, JR, KQ, KR, and KT are offered in both automotive and

commercial temperature ranges.

4. The 87C196CA also has an on-chip networking peripheral that supports CAN

specifi cation 2.0.

BLOCK DIAGRAM

Figure 2.1 shows the major blocks within the device. The core of the device (Figure 2.2) consists of the

central processing unit (CPU) and memory controller. The CPU contains the register fi le and the register

Figure 2.1 8XC196Kx Block diagram

Appendix E 80196 Microcontroller-Data Sheets 285

arithmetic-logic unit (RALU). The CPU connects to both the memory controller and an interrupt controller

via a 16 bit internal bus. An extension of this bus connects the CPU to the internal peripheral modules.

In addition, an 8 bit internal bus transfers instruction bytes from the memory controller to the instruction

register in the RALU.

Figure 2.2 Block diagram of the Core

CPU Control

The CPU is controlled by the microcode engine, which instructs the RALU to perform operations using

bytes, words, or double words from either the 256 byte lower register fi le or through a window that directly

accesses the upper register fi le. CPU instructions move from the 4 byte queue in the memory controller

into the RALU’s instruction register. The microcode engine decodes the instructions and then generates the

sequence of events that cause desired functions to occur.

Register File

The register fi le is divided into an upper and a lower fi le. In the lower register fi le, the lowest 24 bytes

are allocated to the CPU’s special-function registers (SFRs) and the stack pointer, while the remainder is

available as general-purpose register RAM. The upper register fi le contains only general-purpose register

RAM. The register RAM can be accessed as bytes, words, or doublewords.

The RALU accesses the upper and lower register fi les differently. The lower register fi le is always

directly accessible with register-direct addressing. The upper register fi le is accessible with register-direct

addressing only when windowing is enabled. Windowing is a technique that maps blocks of the upper

register fi le into a window in the lower register fi le.

Register Arithmetic-logic Unit (RALU)

The RALU contains the microcode engine, the 16 bit arithmetic logic unit (ALU), the master program

counter (PC), the program status word (PSW), and several registers. The registers in the RALU are the

instruction register, a constants register, a bit-select register, a loop counter, and three temporary registers

(the upper-word, lower-word, and second-operand registers).

The PSW contains one bit (PSW.1) that globally enables or disables servicing of all maskable interrupts,

one bit (PSW.2) that enables or disables the peripheral transaction server (PTS), and six Boolean fl ags that

refl ect the state of your program.

 286 8051 Microcontroller: Hardware, So ware & Applications

All registers, except the 3 bit bit-select register and the 6 bit loop counter, are either 16 or 17 bit (16

bit plus a sign extension). Some of these registers can reduce the ALU’s workload by performing simple

operations.

The RALU uses the upper- and lower-word registers together for the 32 bit instructions and as temporary

registers for many instructions. These registers have their own shift logic and are used for operations that

require logical shifts, including normalize, multiply, and divide operations. The six-bit loop counter counts

repetitive shifts. The second-operand register stores the second operand for two-operand instructions,

including the multiplier during multiply operations and the divisor during divide operations. During

subtraction operations, the output of this register is complemented before it is moved into the ALU. The

RALU speeds up calculations by storing constants (e.g., 0, 1, and 2) in the constants register so that they

are readily available when complementing, incrementing, or decrementing bytes or words. In addition, the

constants register generates single-bit masks, based on the bit-select register, for bit-test instructions.

Code Execution

The RALU performs most calculations for the device, but it does not use an accumulator. Instead it

operates directly on the lower register fi le, which essentially provides 256 accumulators. Because data does

not fl ow through a single accumulator, the device’s code executes faster and more effi ciently.

Instruction Format

MCS 96 microcontrollers combine a large set of general-purpose registers with a three-operand instruction

format. This format allows a single instruction to specify two source registers and a separate destination

register. For example, the following instruction multiplies two 16 bit variables and stores the 32 bit result in

a third variable.

MUL RESULT, FACTOR_1, FACTOR_2 ; multiply FACTOR_1 and FACTOR_2

 ; and store answer in RESULT

 ;(RESULT)¬(FACTOR_1 × FACTOR_2)

Interrupt Service

The device’s fl exible interrupt-handling system has two main components: the programmable interrupt

controller and the peripheral transaction server (PTS). The programmable interrupt controller has a

hardware priority scheme that can be modifi ed by your software. Interrupts that go through the interrupt

controller are serviced by interrupt service routines that you provide. The peripheral transaction server

(PTS), a microcoded hardware interrupt processor, provides high speed, low-overhead interrupt handling.

You can confi gure most interrupts (except NMI, trap, and unimplemented opcode) to be serviced by the

PTS instead of the interrupt controller. The PTS can transfer bytes or words, either individually or in blocks,

between any memory locations, manage multiple analog-to-digital (A/D) conversions, and generate pulse-

width modulated (PWM) signals. PTS interrupts have a higher priority than standard interrupts and may

temporarily suspend interrupt service routines.

INTERNAL PERIPHERALS

The internal peripheral modules provide special functions for a variety of applications.

Appendix E 80196 Microcontroller-Data Sheets 287

I/O Ports

The 8XC196Kx, 8XC196Jx, and 87C196CA have seven I/O ports, ports 0–6. Individual port pins

are multiplexed to serve as standard I/O or to carry special-function signals associated with an on-chip

peripheral or an off-chip component. If a particular special-function signal is not used in an application, the

associated pin can be individually confi gured to serve as a standard I/O pin. Ports 3 and 4 are exceptions.

Their pins must be confi gured either as all I/O or as all address/data. Port 0 is an input-only port that is

also the analog input for the A/D converter. Ports 1, 2, and 6 are standard, bi-directional I/O ports. Port

1 provides pins for the EPA and timers. Port 2 provides pins for the serial I/O (SIO) port, interrupts,

bus control signals, and clock generator. Port 6 provides pins for the event processor array (EPA) and

synchronous serial I/O (SSIO) port. Ports 3, 4, and 5 are memory-mapped, bi-directional I/O ports. Ports 3

and 4 serve as the external address/data bus. Port 5 provides bus control signals; for the 8XC196Kx, it can

also provide pins for the slave port.

Serial I/O (SIO) Port

The serial I/O (SIO) port is an asynchronous/synchronous port that includes a universal asynchronous

receiver and transmitter (UART). The UART has one synchronous mode (mode 0) and three asynchronous

modes (modes 1, 2, and 3) for both transmission and reception. The asynchronous modes are full duplex,

meaning that they can transmit and receive data simultaneously. The receiver is buffered, so the reception of

a second byte may begin before the fi rst byte is read. The transmitter is also buffered, allowing continuous

transmissions.

Synchronous Serial I/O (SSIO) Port

The synchronous serial I/O (SSIO) port provides for simultaneous, bidirectional communications between

two 8XC196 family devices or between an 8XC196 device and another synchronous serial I/O device. The

SSIO port consists of two identical transceiver channels with a dedicated baud-rate generator. The channels

can be programmed to operate in several modes.

Slave Port (8XC196Kx Only)

The slave port offers an alternative for communication between two CPU devices. Traditionally, system

designers have had three alternatives for achieving this communication a serial link, a parallel bus without a

dual-port RAM (DPRAM), or a parallel bus with a DPRAM to hold shared data.

A serial link, the most common method, has several advantages: it uses only two pins from each

device, it needs no hardware protocol, and it allows for error detection before data is stored. However, it is

relatively slow and involves software overhead to differentiate data, addresses, and commands. A parallel

bus increases communication speed, but requires more pins and a rather involved hardware and software

protocol. Using a DPRAM offers software fl exibility between master and slave devices, but the hardware

interconnect uses a demultiplexed bus, which requires even more pins than a simple parallel connection

does. The DPRAM is also costly, and error detection can be diffi cult. The SSIO offers a simple means for

implementing a serial link. The multiplexed address/data bus can be used to implement a parallel link, with

or without a DPRAM. The slave port offers a fourth alternative. The slave port offers the advantages of

the traditional methods, without their drawbacks. It brings the DPRAM on-chip. With this confi guration,

an external processor (master) can simply read from and write to the on-chip memory of the 8XC196

 288 8051 Microcontroller: Hardware, So ware & Applications

(slave) device. The slave port requires more pins than a serial link does, but fewer than the number used

for a parallel bus. It requires no hardware protocol, and it can interface with either a multiplexed or a

demultiplexed bus. The master simply reads or writes as if there were a DPRAM device on the bus. Data

error detection can be handled through the software.

Event Processor Array (EPA)

and Timer/Counters

The event processor array (EPA) performs high-speed input and output functions associated with its

timer/counters. In the input mode, the EPA monitors an input for signal transitions. When an event occurs,

the EPA records the timer value associated with it. This is a capture event. In the output mode, the EPA

monitors a timer until its value matches that of a stored time value. When a match occurs, the EPA triggers

an output event, which can set, clear, or toggle an output pin. This is a compare event. Both capture and

compare events can initiate interrupts, which can be serviced by either the interrupt controller or the PTS.

Timer 1 and timer 2 are both 16 bit up/down timer/counters that can be clocked internally or externally.

Each timer/counter is called a timer if it is clocked internally and a counter if it is clocked externally.

Analog-to-digital Converter

The analog-to-digital (A/D) converter converts an analog input voltage to a digital equivalent. Resolution

is either 8 or 10 bit; sample and convert times are programmable. Conversions can be performed on the

analog ground and reference voltage, and the results can be used to calculate gain and zero-offset errors.

The internal zero-offset compensation circuit enables automatic zero offset adjustment. The A/D also has

a threshold-detection mode, which can be used to generate an interrupt when a programmable threshold

voltage is crossed in either direction. The A/D scan mode of the PTS facilitates automated A/D conversions

and result storage. The main components of the A/D converter are a sample-and-hold circuit and an 8 bit or

10 bit successive approximation analog-to-digital converter.

Watchdog Timer

The watchdog timer is a 16 bit internal timer that resets the device if the software fails to operate properly.

CAN Serial Communications

Controller (87C196CA Only)

The 87C196CA device has a peripheral not found on 8XC196Jx or 8XC196Kx devices, the CAN (controller

area network) peripheral. The CAN serial communications controller manages communications between

multiple network nodes. This integrated peripheral is similar to Intel’s standalone 82527 CAN serial

communications controller, supporting both the standard and extended message frames specifi ed by the

CAN 2.0 protocol parts A and B.

SPECIAL OPERATING MODES

In addition to the normal execution mode, the device operates in several special-purpose modes. Idle

and powerdown modes conserve power when the device is inactive. On-circuit emulation (ONCE) mode

electrically isolates the microcontroller from the system, and several other modes provide programming

options for nonvolatile memory.

Appendix E 80196 Microcontroller-Data Sheets 289

Reducing Power Consumption

In idle mode, the CPU stops executing instructions, but the peripheral clocks remain active. Power

consumption drops to about 40% of normal execution mode consumption. Either a hardware reset or any

enabled interrupt source will bring the device out of idle mode. In powerdown mode, all internal clocks are

frozen at logic state zero and the oscillator is shut off. The register fi le, internal code and data RAM, and

most peripherals retain their data if VCC is maintained. Power consumption drops into the µW range.

Testing the Printed Circuit Board

The on-circuit emulation (ONCE) mode electrically isolates the 8XC196 device from the system. By

invoking ONCE mode, you can test the printed circuit board while the device is soldered onto the board.

Programming the Nonvolatile Memory

MCS 96 microcontrollers that have internal OTPROM or EPROM provide several programming options:

• Slave programming allows a master EPROM programmer to program and verify one or more slave MCS

96 microcontrollers. Programming vendors and Intel distributors typically use this mode to program a

large number of microcontrollers with a customer’s code and data. • Auto programming allows an MCS

96 microcontroller to program itself with code and data located in an external memory device. Customers

typically use this low-cost method to program a small number of microcontrollers after development and

testing are complete.• Serial port programming allows you to download code and data (usually from a

personal computer or workstation) to an MCS 96 microcontroller asynchronously through the serial I/O

port’s RXD and TXD pins. Customers typically use this mode to download large sections of code to the

microcontroller during software development and testing. • Run-time programming allows you to program

individual nonvolatile memory locations during normal code execution, under complete software control.

Customers typically use this mode to download a small amount of information to the microcontroller after

the rest of the array has been programmed. For example, you might use run-time programming to download

a unique identifi cation number to a security device. • ROM dump mode allows you to dump the contents of

the device’s nonvolatile memory to a tester or to a memory device (such as fl ash memory or RAM).

CAN SERIAL COMMUNICATIONS CONTROLLER

The 87C196CA has a peripheral not found in the 8XC196Kx and 8XC196Jx controllers the CAN (controller

area network) peripheral. The CAN serial communications controller manages communications between

multiple network nodes. This integrated peripheral is similar to Intel’s standalone 82527 CAN serial

communications controller. It supports both the standard and the extended message frames specifi ed by

CAN 2.0 protocol parts A and B developed by Robert Bosch, GmbH.

CAN FUNCTIONAL OVERVIEW

The integrated CAN controller transfers messages between network nodes according to the CAN protocol.

The CAN protocol uses a multiple-master, contention-based bus confi guration, which is also called CSMA/

CR (carrier sense, multiple access, with collision resolution). Each CAN controller’s input and output pins

are connected to a two-line CAN bus through which all communication takes place.

 290 8051 Microcontroller: Hardware, So ware & Applications

Figure 3 A system using CAN controller

28/40-PIN 8-BIT CMOS FLASH
MICROCONTROLLERS

Devices Included in this Data Sheet

• PIC16F873 • PIC16F876

• PIC16F874 • PIC16F877

Microcontroller Core Features

• High performance RISC CPU

• Only 35 single word instructions to learn

• All single cycle instructions except for program branches which are two cycle

• Operating speed: DC - 20 MHz clock input

 DC - 200 ns instruction cycle

• Up to 8K 14 words of FLASH Program Memory,

 Up to 368 8 bytes of Data Memory (RAM)

 Up to 256 8 bytes of EEPROM Data Memory

• Pinout compatible to the PIC16C73B/74B/76/77

• Interrupt capability (up to 14 sources)

• Eight level deep hardware stack

• Direct, indirect and relative addressing modes

• Power-on Reset (POR)

• Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)

• Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation

• Programmable code protection

• Power saving SLEEP mode

• Selectable oscillator options

• Low power, high speed CMOS FLASH/EEPROM technology

PIC16F87X

Appendix F

 292 8051 Microcontroller: Hardware, So ware & Applications

• Fully static design

• In-Circuit Serial ProgrammingTM (ICSP) via two pins

• Single 5 V In-Circuit Serial Programming capability

• In-Circuit Debugging via two pins

• Processor read/write access to program memory

• Wide operating voltage range: 2.0 V to 5.5 V

• High Sink/Source Current: 25 mA

• Commercial, Industrial and Extended temperature ranges

• Low-power consumption:

 - < 0.6 mA typical @ 3 V, 4 MHz

 - 20 µA typical @3 V, 32 kHz

 - < 1 µA typical standby current

Pin Diagram

Peripheral Features

• Timer 0: 8 bit timer/counter with 8 bit prescaler

• Timer 1: 16 bit timer/counter with prescaler, can be incremented during SLEEP via external crystal/

clock

• Timer 2: 8 bit timer/counter with 8 bit period register, prescaler and postscaler

• Two Capture, Compare, PWM modules

 - Capture is 16 bit, max. resolution is 12.5 ns

 - Compare is 16 bit, max. resolution is 200 ns

 - PWM max. resolution is 10 bit

• 10 bit multi-channel Analog-to-Digital converter

• Synchronous Serial Port (SSP) with SPITM (Master mode) and I2CTM (Master/Slave)

Appendix F PIC Microcontroller 16F874-Data Sheets 293

• Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9 bit address

detection

• Parallel Slave Port (PSP) 8 bit wide, with external RD, WR and CS controls (40/44-pin only)

• Brown-out detection circuitry for Brown-out Reset (BOR)

Pin diagram of PIC 16F877/16F874

DEVICE OVERVIEW

There are four devices (PIC16F873, PIC16F874, PIC16F876 and PIC16F877) covered by this data sheet.

The PIC16F876/873 devices come in 28-pin packages and the PIC16F877/874 devices come in 40-pin

packages. The Parallel Slave Port is not implemented on the 28-pin devices.

MEMORY ORGANISATION

There are three memory blocks in each of the PIC16F87X MCUs. The Program Memory and Data Memory

have separate buses so that concurrent access can occur and is detailed in this section.

Additional information on device memory may be found in the PICmicroTM Mid-Range Reference

Manual, (DS33023).

 294 8051 Microcontroller: Hardware, So ware & Applications

Data Memory Organisation

The data memory is partitioned into multiple blanks which contain the General Purpose Registers and the

Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

Figure 1.1 PIC16F873 and PIC16F876 block diagram

Appendix F PIC Microcontroller 16F874-Data Sheets 295

 RP1:RP0 Bank

 00 0

 01 1

 10 2

 11 3

Figure 2.1 PIC16F877/876 Program memory

map and stack

Figure 2.2 PIC16F874/873 Program memory

map and stack

Program Memory Organisation

The PIC16F87X devices have a 13 bit program counter capable of addressing an 8K 14 program

memory space. The PIC18F877/876 devices have 8K 14 words of FLASH program memory, and the

PIC16F873/874 devices have 4K 14. Accessing a location above the physically implemented address will

cause a wraparound.

 296 8051 Microcontroller: Hardware, So ware & Applications

The RESET vector is at 0000H and the interrupt vector is at 0004H.

Each bank extends up to 7FH (128 Bytes). The lower locations of each bank are reserved for the Special

Function Registers. Above the Special Function Registers are General Purpose Registers, implemented

as static Ram. All implemented banks contain Special Function Registers. Some frequently used Special

Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

BIBLIOGRAPHY

 1. Ramesh S. Goankar, ‘Microprocessor Architecture Programming and Applications with the 8085’,

3rd edition, Penram International, 1997.

 2. David Calcutt, Fred Cowan, Hassan Parchizadeh, ‘8051 Microcontrollers: an Application Based

Introduction’, 1st edition, Elsevier, 2006

 3. Han-Way Huang, ‘Using the MCS-51 Microcontroller’, Oxford University Press, 2000.

 4. Kenneth J. Ayala, ‘The 8051 Microcontroller: Architecture, Programming and Applications’,

2nd edition, Thomson Delmar Learning, 1997.

 5. Muhammed Ali Mazidi, Janice Gillispie Mazidi, ‘The 8051 Microcontroller and Embedded Systems’,

7th edition, Pearson Education, 2004.

 6. Data Sheets, P89C60X2/61X2, 80C51 8-bit Flash microcontroller family, Philips, 2003.

 7. Data sheets, SN54/74LS373/374, Octal Transparent Latch with 3-State Outputs; Octal D-Type

Flip-Flop with 3-State Output, Motorola.

 8. Data sheets, DAC0808 8-Bit D/A Converter, ADC0808/ADC0809 8-Bit µP Compatible A/D

Converters with 8-Channel Multiplexer, National Semiconductors, 1999.

 9. Data Sheets, PIC16F87X 28/40-Pin 8-Bit CMOS FLASH Microcontrollers, Microchip Technology

Inc., 2001.

 10. MCS-51 Microcontroller Family User’s Manual, Intel, 1994.

INDEX

Symbols

‘A’ Register (E0H) 21

‘B’ Register (F0H) 23

‘Microcontroller.’ 7

µVision 124

8051 Based Projects 252

8051 Instructions 41, 118

8051-based embedded system 219

8052 Microcontroller 37

8085 microprocessor 6

8086 microprocessor 7

A

Absolute addressing 44, 48

Access Memory 3

Accumulator 21, 26

ADC0808/0809 176

ADD Group of Instructions 60

addressing modes 42, 43, 44

ALE 28, 29

Alternate functions of port 3 28, 29

Alternate Functions 136

Analog to digital converters 176

AND Instructions 71

Application Specifi c Circuitry 14

Application specifi c processors 14

Applications of Microcontroller 8

architecture 9

Architecture of 8255A 228

Arithmetic and Logic Unit 20

Arithmetic Logic Unit 2

assembler 11

Assembler directives 97, 98

assembly language program 98

assembly language programming 11

Asynchronous Serial Data Communication 213,

214

auto reload mode 205

Auxiliary carry/borrow bit 23

B

baud or transfer rate 214

baud rate generation 201

baud rate 214, 216

BCD to seven-segment codes 151

Bit address of internal RAM 25

Bit address of the ports 136

Bit Addressable RAM 24

Bit Direct Addressing 40

 300 8051 Microcontroller: Hardware, So ware & Applications

Bit Inherent Addressing 44, 48

Bit Manipulation Branch Instructions 86

Bit Manipulation Instruction 51, 85

Blue Tooth 252

Body Temperature 254

branch instructions 86, 91

Build Project 130

C

CALL Instructions 84

CALL 84

called address/data multiplexing 30

Carry/borrow bit 23

Central Processing 2

Characteristics of Embedded Systems 13

Choice of operating system 16

CMOS 15

Co-design 15

Commands of LCD 164

Comment 42

commercial microcontrollers, PIC

microcontrollers 8

Communication Interfaces 15

Comparison of features of RISC and CISC 10

compiler 11

Complex Instruction Set Computer 10

computer 1

Conditional Jump Instructions 69

Control Unit 2

Control word format of 8255A 230

control word 229

Cost effectiveness 12

CPU Resisters 23

crystal oscillator 27

D

Data Acquisition 252

Data memory organisation of 8052 37

Data Pointer 24

Data Terminal 220

Data Types 43

DB directive 98

Decimal Adjustment After Addition 65

decimal down counter 159

Decimal up counter (0-9) 157

delay of 0.1 second 119

delay of 1 ms 119

delay of 1 second 120

Design a microcontroller system 32

development processor 124

Digital I/O Port 26

Digital signal processors 14

Digital to analog converters 171

Direct addressing mode 45

Division 65

Driver circuit 184

Drivers for seven-segment displays 152

Dynamic memory 4

E

ECG Analysis 255

Effi cient use of memory 13

Electric Guitar 256

Electrically Erasable Programmable Read Only

Memory 5

Embedded system 12, 13, 14

END directive 99

EQU and SET directives 198

Equipment (DTE) 220

Index 301

Erasable Programmable Read Only Memory 5

execution time 118

EX-OR Instructions 74

external and internal interrupt 194

External Memory Interfacing 31

F

Fast execution time 12

Features of 8051 20

Field Programmable Gate Array (FPGA) 15

fi rmware 14

Flash magic 125

Flash Memory 5

fl y back diodes 182

Food Processing System 252

Full duplex 213

Full step operation 183

Full-custom design 15

Functional block diagram of 8051 22

G

General Purpose RAM 25

generate square wave 171

Generation of Saw Tooth Wave 173

Generation of Sine Wave 174

Generation of Square Wave 171

Generation of Triangular Wave 172

GSM 252

H

Half duplex 213

Half step operation 183

half step 182

handshake signals 227

hardware 2

Harvard architecture 9

Heart Rate 254

hexadecimal down counter 159

hexadecimal up counter (0-F) 155

I

Immediate addressing 44

In Circuit Debugger 125

In Circuit Debugging 125

Increment and Decrement Instructions 66

indexed addressing 46

Indirect addressing 46

input device 5, 14

Input port 136, 241

Input unit, through 2

Instruction cycle 49

Instruction Decoder and Control 22

Instruction Timings 49

integrated circuit 15

integrated development environment 124

Interface a printer 245

Interface DAC 08 171, 172, 174, 244

Interface DC motor 188

Interface stepper motor 182, 242

interpreter 11

Interrupt Enable (IE) register 196

Interrupt Enable 195

Interrupt Priority (IP) register 196

Interrupt Priority 195

Interrupt service routines 195

Interrupt 193

isolated I/O or I/O mapped I/O 235

L

Label 42

Large-scale integration 6

 302 8051 Microcontroller: Hardware, So ware & Applications

last-in-fi rst-out (LIFO) 35

liquid crystal display (LCD) 162

Logical instructions 51

long addressing 44

Low power consumption 12

M

Machine cycle 49

machine instructions 11

machines 10

maskable and non-maskable interrupts 194

Masked Read Only Memory 4

matrix keyboard 150

MAX232 pin diagram 223

MAX232 222

MAX233 pin diagram 222

MAX233 223

MCS-51 family 20

Measurement of GAIT 254

Measurement of Wobbling 253

Memory 2, 3, 14

memory cell 3

Memory classifi cation 3

Memory mapped I/O 235

Memory Organisation 30

Microcontrollers 14

Microprocessor 6, 14

Mobile/handheld operating systems 16

Mode 0 200

Mode 1 200

modem 220

Motor drive circuit 188

MUL AB 96

Multiplication 60

Muscle Stimulator 254

N

Non real time embedded operating systems 16

Non-vectored Interrupts 195

O

object code 11

Object oriented programming languages 16

Obstacle Detection 255

on-chip program memory 20

Opcode 42

Operand 42

operating systems 16

Optimizing of code 16

OR Instructions 73

ORG directive 98

Output Devices 6, 14

Output port 134, 228, 241

Output unit, 2

OV fl ag 23

P

Parity fl ag 23

Parking Lot Billing 256

PCON Register 215

Physically Challenged 255

Pin details of LCD 163

Pin Diagram of 8051 27

Pin diagram of 8255A 228

PIR Security System 253

Port 0 28

port 0, port 1, port 2 and port 3 134

Port 1 28

Port 2 28

Port 3 28

Port pin alternate functions 136

Index 303

Processing power 12

processor 21

program 11

Program Counter 24

Program memory organisation of 8052 37

Program Status Word (D0H) 23

Programmable logic devices 15

Programmable Peripheral 227

Programmed Read Only Memory 5

PSEN 28

Push and Pop instructions 51

PUSH and POP 35

Push button key and LED interface 149, 241

push button keys 149

PWM signal 189

R

Random 3

Read modify write 136

Read Only Memory 3, 4

Reading the input pin 136

Reading the latch 136

real time embedded systems 16

Real time operating system (RTOS) 16

Reduced Instruction Set Computer 10

Register addressing mode 45

Register Banks 24

Relative addresing mode 47

Relative addressing 47

Reliability 12

Reset values of the SFRs 28

RET Instructions 121

RET 84

RETI 194

RFID 256

Rotate Instructions 71

Rotorcraft 253

RS232 pins 221

RS232 220

S

SBUF Register 215

SCON Register 215

Semi-custom design 15

serial A/D conversion (ADC 1031) 180

seven-segment 150

SFR Register 25

SIDE51 125

Signal Conditioning Circuits 218, 248, 249

Simplex 213

Single Stepping 131

software 2, 10

source code 10

source program 10

Special function registers 26

Stack Pointer 24, 35

Stacks 35

step size 176

stepper motor 182

stepping codes 182

SUB Group of Instructions 63

subroutines 43

Swap 70

Synchronous Serial Data Communication 213

T

target processor 124

Telemetry 255

time delay of 1 second 203

time delay of 20 ms 203

timer 1 in auto-reload mode 219

timer control (TCON) register 197

 304 8051 Microcontroller: Hardware, So ware & Applications

Timer Control Register (TCON) 198

Timer Mode Control Register (TMOD) 198

timer mode register (TMOD) 197

Timer or Counter operation 197

Timer registers 197

timer 196

Timer/Counter Operation Modes 199

T-state 49

types of communication 213

U

Ultra Sound Signals 255

Unconditional Jump Instructions 79

V

Vectored Interrupts 195

Voltage follower 249

Von Neumann or Princeton 9

	1. Introduction to Computer, Microprocessor and Microcontroller
	1.1 What is a Computer?
	1.2 What is a Microprocessor?
	1.3 What is a Microcontroller?
	1.4 Von Neumann (Princeton) and Harvard architecture
	1.5 RISC and CISC Machines
	1.6 Computer Software
	1.7 An Overview of Embedded System
	Chapter Summary
	Multiple Choice Questions
	Review Questions

	2. The 8051 Microcontroller
	2.1 Features of 8051
	2.2 Architecture of 8051
	2.3 Pin Diagram of 8051
	2.4 Memory Organisation
	2.5 External Memory Interfacing
	2.6 Stacks
	2.7 8052 Microcontroller
	Chapter Summary
	Multiple Choice Questions
	Review Questions

	3. 8051 Addressing Modes and Instruction Set
	3.1 Instruction Syntax
	3.2 Data types
	3.3 Subroutines
	3.4 Addressing Modes
	3.5 Instruction Timings
	3.6 8051 Instructions
	3.7 Instruction Set Summary
	Chapter Summary
	Multiple Choice Questions
	Review Questions

	4. 8051 Assembly Programming
	4.1 Assembly Language Programs
	4.2 Assembler Directives
	4.3 Assembly Language Programs
	4.4 Time Delay Calculations
	Chapter Summary
	Exercises

	5. So ware Development Tools for 8051
	5.1 Integrated development environment
	5.2 A51 Assembler and S51 Simulator
	5.3 SC51 C Compiler (SIDE 51)
	5.4 mVision C Compiler and Simulator
	5.5 Burning the Hex File to Program Memory
	Chapter Summary
	Exercises

	6. 8051 Parallel I/O Ports
	6.1 Basic I/O Concepts
	6.2 Port Structures and Operation
	6.3 Interfacing Push Button Switches and LEDs
	6.4 Interfacing Matrix Keyboard and Seven-Segment Display
	6.5 Interfacing Matrix Keyboard and Liquid Crystal Display (LCD)
	6.6 Interfacing D/A Converter using Parallel Ports
	6.7 Interfacing A/D Converter using Parallel Ports
	6.8 Interfacing Serial A/D Converter
	6.9 Interfacing Stepper Motor
	6.10 Interfacing DC Motor
	Chapter Summary
	Multiple Choice Questions
	Review Questions

	7. 8051 Interrupts and Timers/Counters
	7.1 Basics of interrupts
	7.2 8051 Interrupt Structure
	7.3 Timers and Counters
	7.4 8051 Timers/Counters
	7.5 Timer/Counter Operation Modes
	7.6 Programming 8051 Timers
	Chapter Summary
	Multiple Choice Questions
	Review Questions

	8. 8051 Serial Communication
	8.1 Data Communication
	8.2 Basics of Serial Data Communication
	8.3 8051 Serial Communication
	8.4 Serial Communication Modes
	8.5 Serial Communication Programming
	8.6 RS232
	Chapter Summary
	Multiple Choice Questions
	Review Questions

	9. 8255A Programmable Peripheral Interface
	9.1 Features of 8255A
	9.2 Architecture of 8255A
	9.3 I/O Addressing
	9.4 Interfacing 8255A with 8051
	9.5 I/O devices interfacing with 8051 using 8255A
	9.6 Semiconductor sensors and signal conditioning circuits
	9.7 Design of Minimum Embedded System
	9.8 8051 Based Projects
	Chapter Summary
	Multiple Choice Questions
	Review Questions

	Appendix A P89C60X2/61X2 Flash Microcontroller-Data Sheets
	Appendix B ASCII Code Values
	Appendix C 74LS373, ADC 0808, DAC 0808-Data Sheets
	Appendix D 8052 Micro controller-Data Sheets
	Appendix E 80196 Micro controller-Data Sheets
	Appendix F PIC16F87X
	Bibliography
	Index

