
A Practitioner’s Guide to

Test Automation using

Selenium

A Practitioner’s Guide to

Test Automation using

Selenium

Tata McGraw Hill Education Private Limited

NEW DELHI

McGraw-Hill Offi ces

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

Ashish Mishra and Aditya Garg

Co-founders of QAAgility Technologies

Tata McGraw-Hill

Published by Tata McGraw Hill Education Private Limited,
7 West Patel Nagar, New Delhi 110 008

Copyright © 2012, by Tata McGraw Hill Education Private Limited

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers. The
program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for
publication.

This edition can be exported from India only by the publishers,
Tata McGraw Hill Education Private Limited.

ISBN (13): 978-1-25-900593-0
ISBN (10): 1-25-900593-3

Vice President and Managing Director—Asia-Pacifi c Region: Ajay Shukla
Publishing Manager—Professional: Praveen Tiwari
Editorial Researcher—Science, Technology & Computing: Sushil Gupta
Sr. Copy Editor: Neha Sharma
Manager—Production: Sohan Gaur
Asst. General Manager—Sales and Business Development—Professional: S Girish
Deputy Marketing Manager—Science, Technology & Computing: Rekha Dhyani
General Manager—Production: Rajender P Ghansela
Manager—Production: Reji Kumar

Information contained in this work has been obtained by Tata McGraw Hill, from sources believed to be reliable. However,
neither Tata McGraw Hill nor its authors guarantee the accuracy or completeness of any information published herein, and
neither Tata McGraw Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this
information. This work is published with the understanding that Tata McGraw Hill and its authors are supplying information
but are not attempting to render engineering or other professional services. If such services are required, the assistance of an

appropriate professional should be sought.

Typeset at Text-o-Graphics, B-1/56 Arawali Apartment, Sector 34, Noida 201 301 and printed at Rajkamal Electric Press,
Plot No. 2, Phase IV, HSIIDC, Kundli, Sonepat, Haryana - 131028

Cover Printer: Rajkamal Electric Press

Cover Designer: Kapil Gupta

RCCLCRXHRBBLY

To

I would like to offer gratitude to the God Almighty and my parents Dr. R.K.
Mishra and Mrs. Sudha Mishra. I specially thank my wife Rashmi in making
this book a possibility by her unconditional support in all my endeavors and
misadventures. I would like to dedicate this book to my adorable sons Rishabh and
Devansh.

Ashish Mishra

I would like to thank Almighty for giving me this opportunity. I would like to
dedicate this book to my parents Dr. S P Garg, and Mrs. Madhur Mohini Garg
and to my entire family including my brother who has been a constant source of
inspiration. I would also like to specially thank my wife Prachi who has stood by
me, most importantly during our difficult times and my three loving daughters.

Aditya Garg

FOREWORD

The appetite for open-source test-execution automation tools is increasing at a rapid pace. More

and more organizations are shifting their automation from commercial tools to open-source and

effect of this is seen in the Job market where the demand for skills in these tools has increased

rapidly.

There is a gap in the market between what is demanded and what exists. The skills required to

become an expert in any of these tools can’t be acquired in a few weeks nor can it be acquired by

just reading a book. Acquiring any skill requires substantial amount of practice. It is said that to

know a subject you need to spend a few hundred hours but to become an expert you need to spend

thousands of hours practising and honing your skills. I sincerely hope that the present book will be

able to guide a practitioner of the craft in an appropriate direction with its emphasis on examples,

samples and hands-on exercises.

VIPUL KOCHER

President

Indian Testing Board

PREFACE

This book is result of our quest for excellence in the fi eld of test automation. This journey started

when Aditya (or Adi as we all fondly call him) and I left our respective jobs and started company of

our own, QAAgility. As the name suggested, our focus was Quality Assurance and achieving Agility

in that. We were mainly aimed at providing testing service with an edge and our main distinguisher

was the agility, and agility was largely driven by automation.

Scouting the Test Automation market there was no way that we would have missed on Selenium.

In order to cater for the Selenium related requirements, we actively looked out for Selenium

expects and also interviewed few them. Eventually we found that there was real dearth of Selenium

professional not only in India but globally. This situation lead us to evaluate and explore the tool

on our own to fulfi ll our client’s requirements. We documented our learnings as we picked up the

tool and used it to resolve various test automation related issues.

This documentation turned into a training course that we started to offer in public as well as

corporate training platform. While this was happening, we unknowingly became the ‘fl ag-bearers’

for Selenium as preferred automation tool in the market. We were extremely convinced regarding

the utility of the tool and wanted to propagate it to the best of our ability, somehow it was felt that

we owed it to the tool. However, there were some road blocks.

Being an open-source tool has made Selenium popular however it is a double-edge sword as it

can easily turn counter-productive. At times what happens that when you adopt a tool and you

don’t have to pay for it, you tend not to plan and strategize on the actual implementation of the

tool. This would also include untrained or self-learned test automation engineers who might have

the skewed picture of the tool and limited awareness of the features. This was also due to fact that

the testers who wished to learn this tool were manual testers with limited programming language.

When you are evaluating a tool which is free you tend to give up at the fi rst issue that you face, it

becomes a ‘show-stopper’.

So there were many organizations and testers who started to evaluate Selenium but gave up

too soon upon come across technical diffi culties, and they could do that as there was no real

investment made for the tool cost. We were witness to all this and our training course started to

impart knowledge of the tool to the budding ‘test automators’ who were maily manual testers and

then there were experts who were continuously compare it to other popular Test Automation tools,

x Preface

especially the paid ones. So we had to tread that road keeping balance between the technical details

while training the participants.

Our training courses evolved such they could get testers start automation work quickly and made

the learning curve less steep. The practical content of the training programs have been transformed

into this book. We have tried to give to enough details and step-by-step instructions and tips to get

started with the tool and fast track your learning.

As we are getting more and more involved with Selenium 2.0, we feel even more excited about

the tool and keep us going with more motivation and zeal than ever.

ASHISH MISHRA

ADITYA GARG

CONTENTS

Foreword vii

Preface ix

Introduction 1

 1. Test Automation 7

 2. Getting Started with Selenium IDE 11

 3. Install Java 28

 4. Useful Tools for Writing Test Cases—Firefox Add-Ons 34

 5. Basic HTML Theory 42

 6. Create Selenium Test Suite 47

 7. Tour of Selenium IDE—Simple Features 58

 8. Tour of Selenium IDE—Advanced Features 76

 9. Applying CSS to Selenium Test Cases 85

 10. Selenium Concepts 88

 11. Selenium Commands—SELENESE 92

 12. Pattern Matching 107

 13. Element Locators 113

 14. Selenium RC Overview 132

 15. Install and Run Selenium RC 140

 16. The Eclipse IDE 156

 17. Running a Test Using the JUnit Export from Selenium-IDE 171

 18. Running a Test Using the TestNG Export from Selenium-IDE 182

 19. Data Driven Testing Using TestNG 203

 20. Selenium Grid 217

 21. Selenium Test Management Using Bromine 226

 22. Selenium 2.0 – Future of Test Automation 247

xii Contents

INTRODUCTION

 Introduction

History

Selenium was invented in 2004 by Jason R. Huggins and team. Initially it was not called ‘Selenium’.

But then, even they were not aware of the fact that they were inventing a tool. They were simply

looking for a solution to the problem that they were facing in the application. They initially named

the solution as JavaScript Functional Tester [JSFT] but then it slowly evolved it as an Open source

browser based integration test framework built originally by Thoughtworks. It was 100% Javascript

and HTML and was designed to make test writing easy. It had ability to run whole suites of tests or

individual tests and also to step through individual tests. It was cross browser – IE 6/7, Firefox .8+,

Opera, Safari 2.0+

 Story about Selenium

Selenium was extracted from a web-based (Python + Plone!) time-and-expense (T&E) application

at ThoughWorks. One of the mandates for the new T&E app was that it needed to be fast. The

expense reports can get pretty long for people who travel a lot. No matter how many default rows

were put in a blank expense form, people often needed to add more rows of expense items to their

reports. So they added an “Add row” button to the expense report form. To make this fast and

scalable, they decided to use a button that triggered JavaScript to dynamically add one blank row

to the form. At the time (Spring 2004), however, JavaScript was considered buggy and evil by most

web developers.

2 Selenium

Introduction 3

They had a really diffi cult time testing that little “Add row” button and it broke often. One week

“Add row” would be working in Mozilla (Firefox was pre-1.0), but broken in Internet Explorer and

vice versa.

They had a very tiny budget and commercial testing tools were - and still are - ridiculously over-

priced on a per-seat basis. The T&E project was done the “Agile Way” - every developer does testing

- so shelling out thousands of dollars per developer for a testing tool wasn’t going to happen. Never

mind the fact that there were no commercial tools that did what we needed anyway!

After many months of trial and error and various code workarounds, they came to the conclusion

they needed a testing tool that would let them functional-test JavaScript-enhanced web user

interfaces (aka “DHTML” or now “Ajax”). There were no commercial apps at the time that could

do this. So they needed to write our own tool and Selenium was born.

But why the name ‘Selenium’?! After all Selenium is a chemical element with the atomic

number 34, represented by the chemical symbol Se. It is a nonmetal, chemically related to sulfur

and tellurium, and rarely occurs in its elemental state in nature. Absolutely no link with software

lest testing!!!

4 Selenium

Introduction 5

Selenium is used for treating “Mercury” Poisoning.

Hint: At that time tools like Quick Test Professional and Quality Center is developed by Mercury

Interactive Corporation (Now HP owns it).

 What is Selenium

Selenium is a portable software testing framework for web applications.

The tests can be written as HTML tables or coded in a number of popular programming languages

and can be run directly in most modern web browsers.

Selenium can be deployed on Windows, Linux, and Macintosh.

Selenium is used for UAT (User Acceptance Test).

Selenium Components

Selenium IDE (SIDE) is a complete Integrated Development Environment (IDE) for Selenium

tests (previously known as Selenium Recorder).

Firefox extension that allows recording and editing of tests

Allows easier development of tests

Selenium IDE Features:

 � Record and playback

 � Intelligent fi eld selection will use IDs, names, or XPath as needed

 � Auto complete for all common Selenium commands

 � Walk through test cases and test suites.

 � Debug and set breakpoints

 � Save tests as HTML, Java, PHP and other such formats

 � Support for Selenium user-extensions.js fi le

 � Option to automatically assert the title of every page

6 Selenium

Getting The Source-Code

Licensing

Selenium is open source software, released under the Apache 2.0 license and can be downloaded

and used without charge. For more details visit http://www.gnu.org/licenses/gpl.html

 Windows, Linux or Mac

Selenium is available for operating systems such as Windows, Linux and Mac.

EXERCISES

 1. What are the Testing Tools you know?

 2. Do you know any testing Tool which tests cross-browser compatibility?

 3. Find any fi ve testing tools. Provide brief description about the tool.

 4. Find any 5 differences between the Functional Unit Test Tools you know and

Selenium.

 5. What is a Open Source Project?

 6. What is a GPL (General Public License)?

 7. What are the web development mark-up languages you know?

 8. What are the scripting languages you know?

 What is Test Automation

Test Automation is much talked about topic in the world of software testing and quality. But

before we get into Test Automation, let’s fi gure out what is software testing? The classical defi nition

says “Software testing is a process used to identify the correctness, completeness and quality of

developed computer software.” However in real world, testing can never establish the correctness of

the software. It can only fi nd defects—it cannot prove that there are none left to discover.

This process is carried out either manually , using automation tools, but mostly it is combination

of both.

Manual Testing is defi ned as developing and executing tests that rely primarily on direct human

interaction throughout the entire test case - especially in terms of evaluating correctness and

ascertaining test status.

Automation Testing is defi ned as developing and executing tests that can run unattended,

comparing the actual to expected results and logging status. The rest of the book will concentrate

primarily on automation testing.

Simply put, “Automated Testing” is automating the manual testing process currently in use.

Minimal setup includes:

Detailed Test Cases

Predictable “Expected Results”

Dedicated Test Environment

And most importantly dedicated and skilled resources.

TEST AUTOMATION

1

8 Selenium

The obvious benefi ts of test automation can be listed as below:

 � Longer term reduction in the cost of testing

 � Accelerate time to market

 � Reduce cost of quality

 � Continuous Integration and Environment readiness

 � Consistency

 � Better coverage

 � Increased confi dence in code

 � Job satisfaction

 � Testability

Automated testing is expensive in terms of cost. It does not replace the need for manual testing or

enable you to down-size your testing department. Automated testing is an addition to your testing

process.

However, test automation can be cost-effective by following some of the time-tested techniques.

It is recommended that there is an automated test strategy defi ned for Automation projects. This

automated test strategy may not be the same for all the projects, as it needs to take into account the

environment and risks identifi ed for that project, as with the strategy for manual testing. This needs

to defi ne the business goals and objectives for the use of Automated Testing. As well as being aligned

with the business goals it also needs to fi t within the testing process.

Once the strategy is put in place a set of corresponding measurements must be defi ned to track

whether the automated testing is meeting the goals and objectives.

Having talked about automation, it needs to be considered that sometimes it makes sense to

execute manual tests fi rst before executing automated tests for a number of reasons. It may not be

economic or appropriate at that time to automate. Not all tests are suitable to automate.

The following list is considered to be “good practice” for the successfully use of test automation

to ensure a reasonable level of Return On Investment (ROI):

 � The test process is clearly defi ned and facilitates the use of existing test artefacts

 � Test automation requirements are clearly defi ned

 � Test automation has a defi ned architectural approach and supporting design to facilitate:

 ∑ A robust implementation that provides appropriate levels of reliability

 ∑ Repeatable automated tests

 ∑ Minimisation of software change impacts to the automated tests

 ∑ Clearly understood and documented levels of interdependency

 � Test automation standards are defi ned and followed

 � Test automation effort must be planned, documented, monitored and measured

Test Automation 9

 � Clear defi nition of roles and responsibilities for use of the developed framework and its

ongoing support and maintenance.

 � A champion has been clearly identifi ed within the organisation to perform a cultural change

management role to facilitate adoption and use of the framework within the organisation

 � Test environment is controlled to ensure a high level of stability which enables

repeatability

Most Commonly Used Test Automation Tools

Tool name Produced by Latest version

HP QuickTest Professional HP 11.5

IBM Rational Functional Tester IBM Rational 8.1.0.3

Parasoft SOAtest Parasoft 9.0

Ranorex Ranorex GmbH 3.0

Rational robot IBM Rational 2003

Selenium Open source 1.5.0

SilkTest Micro Focus 2010

TestComplete Smart Bear Software 8.2

TestPartner Micro Focus 6.3

Visual Studio Test Professional Microsoft 2010

WATIR Open source 1.8.0rc1

Test Automation Environment

For a successful Test Automation, we need to pick up the test environment carefully. We will be

using the following tools while we learn Test Automation using Selenium. This will effectively

constitute our test automation environment.

Selenium IDE

Selenium IDE is the Firefox plug-in that does record-and-playback of interactions with the browser.

Use this to either script simple scripts, or to speed up creation of Selenium RC scripts.

Minimum Recommended Version 1.0.10

Download from: http://seleniumhq.org/download/

Java

For execution of our test cases Java Runtime Environment (JRE) is suffi cient. But since we will also

be doing lot of development work thus we would need Java Development Kit (JDK).

10 Selenium

Minimum Recommended Version JDK 5+ (Java 1.6.xx)

Download from: http://www.oracle.com/technetwork/java/javase/downloads/index.html

Eclipse

Eclipse is a multi-language software development environment comprising an integrated

development environment (IDE) and an extensible plug-in system. It is written mostly in Java and

can be used to develop applications in Java and, by means of various plug-ins, other programming

languages including Ada, C, C++, COBOL, Perl, PHP, Python, Ruby (including Ruby on Rails

framework), Scala, Clojure, and Scheme. The IDE is often called Eclipse ADT for Ada, Eclipse CDT

for C/C++, Eclipse JDT for Java, and Eclipse PDT for PHP. We will use JDT.

Minimum Recommended Version : Galileo

Download from: http://www.eclipse.org/downloads/

Selenium-RC

Selenium Remote Control (RC) is a test tool that allows you to write automated web application

UI tests in any programming language against any HTTP website using any mainstream JavaScript-

enabled browser.

Minimum Recommended Version 1.0.3

Download from: http://selenium.googlecode.com/fi les/selenium-remote-control-1.0.3.zip

 Installing Firefox

Visit the Firefox download page like http://www.getfi refox.com in any browser (e.g. Microsoft

Internet Explorer). The page will automatically recommend the best version(s) of Firefox for you.

For installing and running Selenium RC, we need to have Firefox version 3.6.x. To access the

older versions of fi refox go to the URL http://www.mozilla.org/en-US/fi refox/all-older.html

GETTING STARTED

WITH SELENIUM IDE

2

12 Selenium

Click on the green download link to download the Firefox installer, then Run the fi le. It is

recommended that you exit all your other running programs.

 � (Windows Vista / Windows 7) You may see a User Account Control message. In this case,

allow the setup to run by clicking Yes.

Getting Started with Selenium IDE 13

You will be greeted with a welcome screen. Click Next to continue. This will bring you to the Setup

Type screen. A Standard setup is selected by default, which will install Firefox with a recommended

confi guration that will work for most users.

14 Selenium � Check Use Firefox as my default browser if you want to use Firefox when you open a link

in your mail application, an Internet shortcut, or any HTML document. Click Next.

Once the installation is complete, close the setup wizard by clicking Finish.

If the “Launch Firefox now” checkbox is checked, Firefox will start for the fi rst time immediately

after you click Finish button.

 Installing Selenium-IDE

Installing Selenium is a two step process:

First: If Firefox is not installed in your machine then Install Firefox (min version 3.6)

Second: If Selenium IDE is not installed on your machine then Install Selenium IDE Plug In

Is there an IE version of Selenium IDE?

No, at this time Selenium IDE works for Firefox only. You can write your test scripts via IDE and

then use the Selenium Core TestRunner or Selenium RC to execute them on IE.

Getting Started with Selenium IDE 15

Installations Steps:

 � Open the Firefox browser window (*1)

 � In the navigation tool bar type the below URL:

 – seleniumhq.org

 � In the menu tabs, Click on Download (*1)

Click Download

*1

 � Click on version number to download, click on the Firefox extensions link extension .xpi

(*2)

Click Download

*2

16 Selenium

 � If any installation warning message as below comes, click on Allow (*3)

*3

 � When the Software Installation Window appears, select “Selenium IDE” (*4)

*2

 � Press “Install Now” button

 � “Selenium IDE” Add on is installed (*5)

 � Click on “Restart Firefox” button

*5

Getting Started with Selenium IDE 17

 � Now, in the Firefox browser go to Tools and verify whether “Selenium IDE” is displayed (*6).

 � If found, then the Selenium IDE installation is completed. (Congrats!)

Selenium is

successfully installed

*6

 Recording a Script with the IDE

 � For our initial simple automated test follow the below steps

 – Open Firefox browser (*1)

 – In the navigation bar enter www.ge.com

 – Go to Tools � Selenium IDE (*2)

*1

18 Selenium

*2

 � Click the Red round button at the right side (*3)

 � Now go to the other Browser window

 – In the Search text box enter “energy effi cient” then click Search button (*4)

Click here to record

*3

Getting Started with Selenium IDE 19

*4

 � Right click on the Firefox window (*5)

 – Select assertTitle exact:GE Results

 � Highlight “energy effi cient” word (*6)

 – Select VerifyTextPresent

*5

Select assertTitle

20 Selenium

*6

Select verifyTextPresent

 � Now go to Selenium IDE (*6A)

 – What do you see?

 – All your actions are recorded and displayed sequentially under Command Table Tab

 – Click the Red circle again to stop recoding the actions.

Getting Started with Selenium IDE 21

Click here to stop
recording

Command Table

*6A

 Save the Test Case

 � Now Save the Test Case

 – File � Save Test Case (Short Cut, Ctrl+S) (*7)

 – Browse to “C:\BasicSelenium\Week1\Ex”

 – Enter name “TC_GE_EE.html” (*8)

22 Selenium

*7

Save Text Case As

*8

Don’t forget to add

.html extension

Getting Started with Selenium IDE 23

 � Congrats!!

 � You have completed recording the fi rst automatic test case using Selenium IDE

 � Now we’ll play back the recorded Test (*9)

 Test Play-Back

*9

Click to play the

test case

 � The commands will be executed one by one and the recorded actions will now be played

back in the browser window(*10)

24 Selenium

*10

Make the test run

in Slow mode

 What did we test?

So what did we do? Let’s recap

 � Open a specifi c URL (http://www.ge.com)

 � Search for a specifi c text (“energy effi cient”)

 � Check whether the windows title matches “GE Search Results”

 � Check whether the result set contains “energy effi cient” text

 � If you see all the command line rows turns at the end of the test Green color, then the test

is passed. If a specifi c test failed it will be shown with Red color.

Getting Started with Selenium IDE 25

 Must do Exercise

 � Create a new Test: TC_YAHOO_EE.html on similar lines to TC_GE_EE.html

 � Create a new Test: TC_GOOGLE_EE.html on similar line to above

 Test Condition Failure

Let’s make the test fail, how we will do that? We will change the expected title of the page to “GE:

New Search Results” and run the test case again.

Test failed at the

condition where we

validated the title

Why did this test condition fail?

The test case was recorded to validate the Title of the page exactly as “GE: New Search Results”

however the title was found to be “GE: Search Results” thus the error was found and was highlighted

as Red color to that step.

26 Selenium

 Things to Note

 � Don’t close the parent Firefox browser

 � To notice the play back of test case, keep it in slow mode

� Keep the Firefox browser window small size and Selenium IDE next to it. (*11)

� You can notice the steps done in both the windows simultaneously.

*11

Further Reading

The detailed description of the other Basic and Advanced features are covered in Chapter 6 and

Chapter 7.

EXERCISES

 1. Why do you choose Selenium over QTP for automation?

 2. What are the limitation of Selenium?

 3. Find the advantages of following testing Tools:

 ∑ Watir/WET (For Ruby)

 ∑ LiquidTest (Web App Agile Functional Testing)

 ∑ StoryTestIQ (STIQ, Selenium + FitNesse)

Getting Started with Selenium IDE 27

 ∑ Bromine (“QC” for Selenium)

 ∑ CubicTest (Eclipse Plug-in)

 ∑ Frankenstein (Java SWING Testing Framework)

 4. Find the advantages of following testing frameworks:

 ∑ JUnit,TestNG (Java)

 ∑ NUnit (.Net)

 ∑ Unittest (Python)

 ∑ RSpec, Test::Unit (Ruby)

 5. Test Specifi cation –

 ∑ Open a specifi c URL (www.amazon.com)

 ∑ Select “Books” under Search Select List

 ∑ Search for a specifi c text (“selenium IDE”) in #1 page

 ∑ Sort by “Price: Low to high”

 ∑ Check whether the windows title matches “Amazon.com: selenium IDE: Books”

 ∑ Check whether the result set contains “Selenium IDE” text

 ∑ Click the link #2

 ∑ Check whether the result set contains “Selenium IDE” text

 6. Test Specifi cation –

 ∑ Open a specifi c URL (http://www.barnesandnoble.com)

 ∑ Search for a specifi c text (“Javascript”) in #1 page

 ∑ Sort by “Price – Low to High”

 ∑ How do you check “Online Price: $$$” is in sorted order?

 Checking Java

 • Go to Start � Run � cmd

 – Java –version (*1)

 • If you see an older version (< 1.5) it is better to uninstall it.

*1

INSTALL JAVA

3

Install Java 29

 Remove Older versions of Java

Why should I remove older versions of Java from my system?

The latest version of Java is always the recommended version as it contains updates and

improvements to previous versions. You can confi rm that you have the latest version by visiting

the Java Verifi cation page.

Over time, you may have installed multiple versions of Java to run available Java content. In the

past, each Java update was installed in separate directories on your system. However, Java updates

are now installed in a single directory.

Should I Remove Older Versions of Java?

We highly recommend users remove all older versions of Java from your system.

Keeping old and unsupported versions of Java on your system presents a serious security risk.

Removing older versions of Java from your system ensures that Java applications will run with

the most up-to-date security and performance improvements on your system.

Do I need older versions of java?

The latest available version is always compatible with the older versions. However, some Java

applications (or applets) can indicate that they are dependent on a particular version, and may not

run if you do not have that version installed. If an application or web page you access requires an

older version of Java, you should report this to the provider/developer and request that they update

the application to be compatible with all Java versions.

How can I remove older versions of java?

You can safely remove older versions of Java from your system by following the instructions given

in the pages below.

Remove older versions of Java in the same way as you would remove any other software from

your Windows computer.

Windows 7 and Vista - Uninstall Programs

 1. Click Start

 2. Select Control Panel

 3. Select Programs

 4. Click Programs and Features

30 Selenium

 5. Select the program you want to uninstall by clicking on it, and then click the Uninstall

button.

You may need administrator privileges to remove programs.

Windows XP - Uninstall Programs

 1. Click Start

 2. Select Control Panel

 3. Click the Add/Remove Programs control panel icon

 4. The Add/Remove control panel displays a list of software on your system, including any

Java software products that are on your computer. Select any that you want to uninstall by

clicking on it, and then click the Remove button.

Install Java 31

 Installing JDK

Go to http://www.oracle.com/technetwork/java/javase/downloads/index.html

Select JDK

Note: Difference between JDK and JRE

JDK or the Java Development Kit is a set of a Java compiler, a Java interpreter, developer tools,

Java API libraries, documentation which can be used by Java developers to develop Java-based

applications.

JRE or the Java Runtime Environment is a minimum set that includes a Java interpreter, Java API

libraries, Java browser plug-in, which make up the minimum environment to execute Java-based

applications.

You need JDK, if at all you want to write your own programs, and to compile them. For running

java programs, JRE is suffi cient.

JDK includes a JRE as subset.

Select Platform and Language and click Continue.

32 Selenium

Click to Download

Save the JDK installable and run it. Accept the Security warnings and terms and continue with

installation.

Install Java 33

Verify the version again.

Go to Start � Run � cmd

 – Java –version

 � If you see newer version (>= 1.5) displayed you have successfully installed JDE.

 Firefox Add-ons allows extending the functionality of the Firefox browser.

 Large selection of add-ons available.

 Read the reviews and choose what you need the most.

 I have selected many add-ons which will enhance your learning of Selenium IDE testing.

 These Add-ons make your life easier by doing the expected jobs within your browser,

instead of looking for an answer outside.

 Dom Inspector

 Document Object Model (DOM) Inspector is a tool that can be used to inspect and edit the

live DOM of any web document or XUL (XML User Interface Language) application.

 The DOM hierarchy can be navigated using a two-paned window that allows for a variety

of different views on the document and all nodes within.

 This add-on depends on binary changes to Firefox, and will not work with Firefox 2.

 Inspects the structure and properties of a window and its contents.

 URL to Add:

 ∑ https://addons.mozilla.org/en-US/fi refox/addon/6622

 ∑ Click Add to Firefox

 ∑ Press Install Now button

 ∑ Press Restart Firefox Now button

USEFUL TOOLS FOR

WRITING TEST CASES—

FIREFOX ADD-ONS

4

Useful Tools for Writing Test Cases—Firefox Add-Ons 35

 Firebug

 Firebug integrates with Firefox to put a wealth of development tools at your fi ngertips while

you browse. You can edit, debug, and monitor CSS, HTML, and JavaScript live in any web

page.

 Firebug 1.2 requires Firefox 3. Firefox 2 users should install the older 1.05 version of

Firebug.

 URL to Add:

∑ https://addons.mozilla.org/en-US/fi refox/addon/1843

∑ Click Add to Firefox

∑ Select Firebug and Press Install Now button

∑ Press Restart Firefox Now button

36 Selenium

 Venkman Javascript Debugger

 Venkman is the code name for Mozilla’s JavaScript Debugger.

 Venkman aims to provide a powerful JavaScript debugging environment for Mozilla based

browsers.

 URL to Add:

 ∑ https://addons.mozilla.org/en-US/fi refox/addon/216

 ∑ Click Add to Firefox

 ∑ Select JavaScript and Press Install Now button

 Press Restart Firefox Now button

Useful Tools for Writing Test Cases—Firefox Add-Ons 37

 Web Developer

 Adds a menu and a toolbar with various web developer tools.

 URL to Add:

 ∑ https://addons.mozilla.org/en-US/fi refox/addon/60

 ∑ Click Add to Firefox

 ∑ Select Web Developer and Press Install Now button

 ∑ Press Restart Firefox Now button

38 Selenium

 Regular Expression Tester

 Allows you to test regular expressions. The tool includes options like case sensitive, global

and multi-line search, color highlighting of found expressions and of special characters, a

replacement function incl. back references, auto-closing of brackets, testing while writing

and saving and managing of expressions..

 URL to Add:

 ∑ https://addons.mozilla.org/en-US/fi refox/addon/2077

 ∑ Click Add to Firefox

 ∑ Select Regular Expression Tester and Press Install Now button

 ∑ Press Restart Firefox Now button

Useful Tools for Writing Test Cases—Firefox Add-Ons 39

 HTML Validator

 HTML Validator adds HTML validation inside Firefox and Mozilla. The number of errors

of a HTML page is seen on the form of an icon in the status bar when browsing. W3C

Validator for HTML 4.01 and XHTML.

 URL to Add:

 ∑ https://addons.mozilla.org/en-US/fi refox/addon/249

 ∑ Click Add to Firefox

 ∑ Select Html Validator and Press Install Now button

 ∑ Press Restart Firefox Now button

 ∑ Select SGML Parser (w3.org uses the same)

 ∑ Go through the user guide for more information

40 Selenium

 Xpather

 XPath generator, editor, inspector and simple extraction tool. Since FF3, it requires DOM

inspector plug-in .

 URL to Add:

 ∑ https://addons.mozilla.org/en-US/fi refox/addon/1192

 ∑ Click Add to Firefox

 ∑ Select XPather and Press Install Now button

 ∑ Press Restart Firefox Now button

Useful Tools for Writing Test Cases—Firefox Add-Ons 41

You cannot escape HTML, it is almost synonymous with website development and structure. No

matter what is the technology or programming language used to create the website, the output is

always in HTML. In this chapter we will look at the nuances of HTML that will be required to use

Selenium.

 What is HTML?

HTML is abbreviation for HyperText Markup Language. As the name has it, it’s a programming

language.

Let’s do a breakup: � Hypertext is simply a piece of text that works as a link. � Markup Language is a way of writing layout information within documents.

Basically an HTML document is a plain text fi le that contains text and nothing else.

When a browser opens an HTML fi le, the browser will look for HTML codes, known as tags, in

the text and use them to change the layout, insert images, or create links to other pages.

Since HTML documents are just text fi les they can be written in even the simplest text editor.

A more popular choice is to use a special HTML editor - maybe even one that puts focus on the

visual result rather than the codes - a so-called WYSIWYG editor (“What You See Is What You

Get”).

BASIC HTML THEORY

5

Basic HTML Theory 43

 HTML TAGS

HTML Tags are basically instructions to the browser to display the information in a certain manner.

All the HTML tags are enclosed in < and >. For a computer alphabet ‘A’ is simply an ‘A’ and it

doesn’t care for whether it is bold, italics, big or small. We need to use certain tag to tell the browser

that the alphabet will be displayed as bold. For example the line “This text is bold” needs to be

written as below using the HTML Tag:

This text is bold.

Notice that the is the starting tag and is the closing tag. There always has to be an

associated closing tag.

 HTML PAGE STructure

All HTML pages consist of head and body.

� The head contains the text and tags that do not show directly on the page.

� The body has text and tags that are shown directly on the page.

There needs to be <HTML> tag tell the browser where to start and end the page. Please look

below for example for a basic HTML web page:

<html>

<head>

<!— This section contains comments regarding the page. —>

</head>

<body>

<!— This section contains what you want to show on the page. —>

</body>

</html>

The Head Section

The head section of the webpage includes all the stuff that does not show directly on the resulting

page.

The <title> and </title> tags encapsulate the title of the page. The title is what shows in the top

of your browser window when the page is loaded.

44 Selenium

Quite often the head section contains javascript which is a programming language for more

complex HTML pages.

Finally, more and more pages contain codes for cascading style sheets (CSS). CSS is a rather new

technique for optimising the layout of major websites.

We will be using JavaScript and CSS while we create tests of Selenium IDE.

The BODY Section

The body of the document contains all that can be seen when the user loads the page.

There are different aspects of HTML that are used in Body section, including:

 � Text

 ∑ Formatting

 ∑ Resizing

 ∑ Layout

 ∑ Listing

 � Links

 ∑ To local pages

 ∑ To pages at other sites

 ∑ To bookmarks

 � Images

 ∑ Inserting images (GIF and jpg)

 ∑ Adding a link to an image

 � Backgrounds

 ∑ Colors

 ∑ Images

 ∑ Fixed Image

 � Tables � Frames � Forms � Metatags � Hexadecimal Colors

 HTML Tables

Tables are used on websites for two major purposes: � The obvious purpose of arranging information in a table

Basic HTML Theory 45 � The less obvious - but more widely used - purpose of creating a page layout with the use of

hidden tables.

However we are looking at the HTML tables from the view of Selenium IDE test cases/suites. As

we have seen already the Selenium Test Cases and Test Suites are stored as HTML tables.

Now let’s look at the HTML table structure and related tags.

Tables are defi ned with the <table> tag.

To insert a table on your page you simply add these tags where you want the table to occur:

<table>

</table>

The above table would be of no use since it has no rows and no columns.

ROWS:

To add rows to your table use the <tr> and </tr> tags.

Example:

<table>

<tr></tr>

<tr></tr>

</table>

COLUMNS:

You can divide rows into columns with <td> and </td> tags:

Example:

<table>

<tr> <td>This is row one, column one.</td> <td>This is row one, column two.</td> </tr>

<tr> <td>This is row two, column one.</td> <td>This is row two, column two.</td> </tr>

</table>

Result:

This is row one, column one. This is row one, column two.

This is row two, column one. This is row two, column two.

This page has shown the core basics of tables. In addition to these, there are different options for

customizing your tables.

46 Selenium

This should make you comfortable in the HTML concepts that are required for Selenium IDE

Test Cases/Suites. Now let’s move on to see how can we review, create and modify the HTML code

of the Selenium IDE Test Cases/Suite.

EXERCISES

 1. Create a simple page introducing yourself, how old you are, what you do, what you

like and dislike.

 2. Modify the introduction to include a bullet list of what you do and put list the 5 things

you like most and dislike as numbered lists.

 3. Create another page about your favourite hobby, and link it to (and from) your main

page.

 4. Center something, and put a quote on one of your pages

 5. Put an existing image on a web page.

 6. Create a table, use a heading and at least one use of rowspan/colspan

 7. Create a table with Calendar for the current month.

 8. Color a page and some text within the page.

 9. Add links to your favorite websites.

CREATE SELENIUM

TEST SUITE

6

 Concept of Test Case and Test Suite

Selenium understands two types of fi les

� Test Case

� Test Suite

Every test must be contained within a test suite.

Both test cases and test suites are defi ned by using simple tables in HTML.

Test Suites are needed to group the Test Cases in a particular sequence depending upon the Test

Requirements so that they can run in the order defi ned the Test Suite.

 Format of Selenium Test

Selenium HTML Table commands are called Selenese

commands.

Selenese provides simplicity and does not require

actual coding to be done. You need to aware of the

functionality of these Selenese commands and use them

as per your Testing requirements.

Selenese defi ned in HTML Table with 3 columns

 � First Column: Selenium command

 � Second Column: Required fi rst parameter

48 Selenium

� Third Column: Optional second parameter

Note: To avoid confusion, please try NOT to remember the Selenese commands by “Target” and

“Value”, instead use fi rst parameter and second parameter since the fi rst parameter doesn’t always

stores the target and second parameter doesn’t always stores the value. As depicted in the fi gure

above, the store command is storing “this text in” value in the target variable “var1” which is exactly

opposite to the labels the labels for the fi elds!

 Format of Selenium Test Suite

The format of Selenium Test Suite is similar to a Test Case, it is also an HTML table. However the

difference being that it points to the Selenium Test Cases and lists them in one column.

Download the TS_EE.jar fi le from http://www.qaagility.com/downloads/SeleniumBook/ Unzip/

Decompress the .jar fi le in a folder.

Just double Click on the HTML fi le and open the “TS_EE.html” in any browser.

Click the individual test cases link and you will see that it will open the HTML code of the Test

Cases stored in the test suite.

Create Selenium Test Suite 49

 Selenium Test Case writing in HTML

You can update or even write the Selenium Test directly in HTML and load in the IDE and run it.

However, please note that Selenium is very sensitive to the format of the table.

All selenium command rows must have three columns else they will not be recognised as

commands.

Try it yourself: If you edit the test script in HTML editor and add the forth column to the

command then the content of the forth column is taken as extension to the content of the third

column itself.

I don’t see many reasons why would anyone write the test cases from scratch in HTML instead

of recording them in IDE, however there might be a need to manually update them as per the

requirement.

Similar to Test Cases the Test Suites can also be created directly using HTML editor as they are

nothing but one-column HTML table. Let’s have a deeper look at ways to create Test Suites.

Test Suites can be created in two ways: � Editing the Basic Test Suite � Using Add Test Case Method

Editing the Basic Test Suite

This is manual way of editing Test Suite.

If you have only one test case (TC_GE_EE.html) in your test suite named TS_EE.html and you

want to add another Test Case TC_Google_EE.html to the Test Suite. As the fi rst step open it

Wordpad (or other HTML Editor of your choice).

50 Selenium

Add a line of code before the end of </tbody> tag

<tr><td>TC_Google_EE</td></tr>

File � Save then Exit.

Now you can double click and see the entire test suite in your browser.

Don’t forget to

keep all the test

cases in the same

directory

Try it yourself: Keep the test case that needs to be added in the Test Suite in a different folder and

update the Test Suite HTML to run that test. Hint – You will need to use the relative path which

mentioning the Test Case fi le name in the HTML code.

If you like this approach then you can edit the Test Suite in Wordpad when you want to:

 � Change the name of the test cases

 � Add, Remove, and Rename test cases

 � Arrange order of test cases.

There is another way to do this which is simpler and does not involve any HTML editing.

Using Add Test Case Method

This time we’ll use Selenium IDE to create the Test Suite for us.

Open Firefox

Open Tools � Selenium IDE

Create Selenium Test Suite 51

By default there will be one test case “Untitled”, even though we don’t want it in our Test Suite,

we will need to keep it there for now since if we try to delete it, we will get a message “There must

be at least 1 test case in a test suite”.

We will now select the fi rst test case that we want to be part of our Test Suite TC_GE_EE.html.

File � Open � TC_GE_EE.html (*1)

*1

52 Selenium

File � Add Test Case � TC_Google_EE.html (*2)

*2

Create Selenium Test Suite 53

Press Ctrl+D (menu short-cut for Adding Test Case), Select TC_Yahoo_EE.html (*3)

*3

54 Selenium

Now Enlarge the Test Case Section

You will see all your test cases listed

File � Save Test Suite As “TS_EE.html” (*4)

*4

Create Selenium Test Suite 55

Now Click on the “Play Entire Test Suite” icon (*5).

*5

Click here to play

your entire Test Suite

56 Selenium

 Edit Test Suite

If you need to edit the Test Suite then open the Test Suite

File � Open Test Suite…

Right Click on the Test Cases list panel and choose the appropriate action. For e.g. if you chose

“Delete” then the selected Test Case would be deleted.

Create Selenium Test Suite 57

The other options would result in the associated actions.

It is as simple as that.

EXERCISES

 1. Create a test suite with three Test cases that you have recorded in IDE. Run the

individual test case independently and then run them as a Suite.

 2. Change the sequence of execution of the Test cases from IDE. How will you do this

without using the IDE interface?

 3. If there was a failure of an Assert command in one of my test case then will execution

of my test suite halt?

 4. Can the test cases of the test suite be places in different folders? What are the

implications of this?

TOUR OF SELENIUM

IDE—SIMPLE FEATURES

7

Selenium IDE contains the following menus:

� File, Edit, Options, Help

Test Running IDE Provides

� Test Case List View

� Record/Review Test Case View

� Table/Source Test Case View

� Log/Reference/UI-Element/Rollup View

Tour of Selenium IDE—Simple Features 59

 Selenium IDE Menu Options

File Menu

It allows you to create, open, save, export and to view recent test cases.

Allows you to create, open, save and to view recent test suites.

Close menu item will allow you to save/discard last changes before closing the current test case/

suite.

Please note that Selenium IDE does not provide any way to Close a particular Test Case

Export Test Case As…

In Selenium IDE exporting Test Cases Available for the following languages:

� HTML

� Java

� JUnit

60 Selenium

 � TestNG

 � Groovy

 � C#

 � Perl

 � PHP

 � Python

 � Ruby

Edit Menu

Edit Menu allows you to redo or undo the actions you have performed

Allows you to Select All or Partial Test cases then cut, copy, paste and delete them.

Also, when the clipboard format (will be discussed later in Advanced Features chapter) is selected

on a specifi c language. Holds the copy in that specifi c language format.

Tour of Selenium IDE—Simple Features 61

Options Menu

Allows you set default values under General Options (*1)

Allows you to add new Formats for test cases (*2)

Select a specifi c format to use in the Selenium IDE (*3)

Select a clipboard format to copy from Selenium IDE (*4)

These options we will look in details in the sections below.

Options Menu – General Tab

 � Allows you to set default values for

 ∑ Encoding format of test fi les (UTF-8, UTF-16)

 ∑ Timeout value (15000, 45000)

62 Selenium

 � Allows you add extensions

 ∑ Selenium Core (user-extensions.js)

 ∑ Selenium IDE extensions

 � Settings to

 ∑ Remember Base URL, Record assertTitle automatically, Record absolute URL,

Activate Developer Tools, Start recording immediately on open

The options are described as below:

 � Remember base URL – This option records the starting URL of the application under test.

For e.g in this test the Base URL is recorded as http://www.ge.com

Tour of Selenium IDE—Simple Features 63

 � Record assertTitle automatically – For every new page opened while recording an

“assertTitle” command is added automatically.

 � Record absolute URL – This will record the URLs fully and not relative to the base URL.

For e.g. relative URL will be recorded as below:

Absolute URL will be as below:

 � Activate developers tools – You will need to restart the IDE every time you make changes to

the Core or IDE extension user-extension.js fi le, however with this option enabled you need

not do that and changes to the js fi le will take effect immediately.

64 Selenium

 � Enable experimental features – The formats available to convert the IDE code to Java or

PHP code using option Options-Format has been termed as experimental. If you need this

options then enable this else the menu Options – Format will be grayed out.

 � Disable format change warning messages – Whenever you will switch the IDE code to

another format using Options – Format, you will get following warning message:

If you wish to disable this message then enable this option.

 � Start recording immediately on open – If you wish to recording your actions as soon as IDE

is opened then enable this option.

Options Menu – Format Tab

Allows you to add a new language format for test cases.

Allows you to view the existing language format for test cases.

You can modify at the source code of each existing language formats.

It is an advanced feature, we’ll look at it in detail in the next chapter.

Currently available language formats are:

 � HTML

 � Java (JUnit, TestNG, Groovy)

 � C#

 � Perl

 � PHP

 � Python

 � Ruby

Tour of Selenium IDE—Simple Features 65

Other than the HTML, rest are handled by Selenium RC (Remote Control).

66 Selenium

Options Menu – Format Menu Items

Exercise:

Open the recorded Test case TC_Google_EE.html in IDE and look at the Source Tab. Now change

the Format of the Test Case to TestNG and look at the Source Tab.

Tour of Selenium IDE—Simple Features 67

Options Menu – Clipboard Format

Exercise

Open the recorded Test case TC_Google_EE.html in IDE and look at the Source Tab. Now switch

the Clipboard format to PHP and look at the Sorce Tab, notice that it remains the same. Now go

back to the Table tab and select all the rows in the table (Control+A), Copy the content and paste

in to Notepad. You will have the commands that you copied from the Table are pasted in PHP

language code.

You can also select few rows from the Table as paste them to get the target language (PHP in this

case) code for those Selenese commands.

Clipboard format helps us to quickly copy the code in our selected language and also for the

selected rows, while not disturbing the original IDE HTML code.

68 Selenium

What is clipboard?

Clipboard is a temporary storage area for information that you have copied or moved from one

place and plan to use somewhere else. You can select text or graphics and then use the Cut or

Copy commands to move your selection to the Clipboard, where it will be stored until you use the

Paste command to insert it elsewhere. For example, you might want to copy a section of test case

commands from command tables, and then paste that command into a different portion of the test

case. The Clipboard is available in most Windows programs.

Try this out:

Open TC_Google.EE.html

Change the Options � Clipboard format � HTML to Java

In the Command Table Select one or multiple rows then right click and copy

Now Open your notepad, press Ctrl+v or Edit � Paste

You can see your commands are now converted into Java format

Help Menu

Help Menu – UI Element Documentation

Help UI-Element Documentation is the only menu item related to Selenium

Rest of the Help menu items are as it is available as it is in Firefox browser

UI Element Documentation is a reference material, we’ll see the contents when we deep dive on

that subject.

Tour of Selenium IDE—Simple Features 69

 Selenium IDE – GUI

Test Running IDE GUI (Graphical User Interface) Provides

 � Test Case List View

 � Record/Review Test Case View

 � Table/Source Test Case View

 � Log/Reference/UI-Element/Rollup View

Test Case List View

Test Case List View

 � Test Case List View displays the test cases available within a test suite

 � Allows you to monitor the progress of the test cases while you are running the test suite

 � Displays the results of the test execution

70 Selenium

Record/Review Test Case View

Record/Review Test Case View

 � Shows/sets the base URL of current test case

 � Always better to verify the base URL shown is the one you are running the test case

 � Allows you to set the speed of the test case execution

 � Allows you to play current test case or the entire test suite

 � Pass/Resume the test case

 � Step through the test case

 � Record a test case (Default mode when Selenium IDE is opened)

 � Stop the current recording

 � To play the test case with Test Runner

 � To apply rollup rules

Tour of Selenium IDE—Simple Features 71

Table/Source Test Case View

Table/Source Test Case View

 � Displays the current test case

 � Allows you edit a specifi c test step

 � Based on the language format selected, the “Source” displays the test case on that language

format

 � Test Case Table view displays the command, target and values for each step

 � Displays the status of the test case execution Green indicates the step is passed. Red indicates

the step is failed.

 � Right Click allows you to

 ∑ insert new commands

 ∑ set breakpoints

 ∑ execute a specifi c step

 ∑ cut, copy, del a specifi c step or all the test cases

72 Selenium

Log/Reference/UI-Element/Rollup View

Log View

 � Provides current test case execution details

 � Contains each step processed result

 � Failed step will have a red text

 � Log is fi ltered into 4 different categories

 ∑ Debug – Debugging information

 ∑ Info – Execution information

 ∑ Error – Error Information (for failed test steps)

 ∑ Warn – Any warnings

Tour of Selenium IDE—Simple Features 73

Reference View

 � Provide current test steps command’s reference details.

 � Argument Details

 � Generated from which command

 � Details about the command

74 Selenium

Tour of Selenium IDE—Simple Features 75

EXERCISES

 • Open a specifi c URL (http://www.barnesandnoble.com/)

 • Search for a specifi c text (“Java”) in #1 page

 • By default only 10 items are listed.

 • How do you verify only 10 items are present?

 • Change the Items Per Page to 100.

 • Verify whether it contains 100 per page.

TOUR OF SELENIUM IDE—

ADVANCED FEATURES

8

 Options Menu

Adding New Format

Go to Tools � Selenium IDE � Options � Format Tab

Press the add button

Press on Add button

to add a new format

Tour of Selenium IDE—Advanced Features 77

Provide the name of format as “CSV Format”

Download the “seleniumIDE_CSV.js” from http://www.qaagility.com/downloads/SeleniumBook/

Open “seleniumIDE_CSV.js” fi le in notepad, (From the folder where you have stored, right click

on the fi le name and select Edit Option).

Press Ctrl+A to select all the Text from the notepad, and Press Ctrl+C to copy the contents

Paste the JavaScript contents in Selenium IDE Format Source window

78 Selenium

Press the “Save” button

Under the Separator Option, select “Comma” and Press “Ok” button

The other option is Tab delimited format and can be selected from the dropdown list.

Now we have created two new formats:

 1. Comma Separated Values (CSV)

Tour of Selenium IDE—Advanced Features 79

 2. Tab Delimited Values (TDV)

We’ll get into action to test the new formats

Open any of the existing test cases you have stored by going to

File � Open � TC_GE_EE.html

Select the Source Tab, what do you see, it is in html format

80 Selenium

Go to Format ? Select CSV Format from the available options

Now look at the source Tab, it is converted into Comma Separated Value format.

Save by going File � Save Test Case As option, TC_GE_EE.csv

Tour of Selenium IDE—Advanced Features 81

82 Selenium

Open the TC_GE_EE.csv in Excel Application

With little formatting, you can look at your test cases in a nice formatted way in Excel Sheet.

You can send your test cases to the Business Users easily through excel sheet.

If you are interested we can look at the JavaScript code which does this conversion.

Tour of Selenium IDE—Advanced Features 83

Javascript Code for CSV Format

84 Selenium

EXERCISES

 1. How do you convert your HTML Selenese test cases to XML compliant format? (Hint:

Your XML test cases should be read and processed by any XML parser)

APPLYING CSS TO

SELENIUM TEST CASES

9

 What is CSS

 � What is CSS?

 � CSS stands for Cascading Style Sheets

 � Styles defi ne how to display HTML elements

 � Styles are normally stored in Style Sheets

 � External Style Sheets can save you a lot of work

 � External Style Sheets are stored in CSS fi les

 � How to use it?

 � I have created a simple CSS fi le which will change the look and feel of any Selenium HTML

test cases.

 � After downloading “Selenium.css” in your machine, you need to add the following HTML

code in your existing test case.

86 Selenium

selenium.css

table {

 border: 4px solid black;

 background: Maroon;

 font-family: Verdana, Arial, sans-serif;

 font-size: 12px;

 font-weight: bold;

 text-align: center;

}

td {

 border: none;

 padding: 4px;

 margin: 0;}

thead {

 background: Darkgray;

 font-family: Verdana, Arial, sans-serif;

 font-size: 18px;

 font-weight: bold;

 text-align: center;

 color: #00ff00

}

tbody {

 background: Lightgrey;

 font-family: Verdana, Arial, sans-serif;

 font-size: 10px;

 font-weight: bold;

 text-align: left;

 color: Blue;

 }

 Applying CSS to your Test Cases

 1. Download Selenium.css from http://www.qaagility.com/downloads/SeleniumBook/

 2. Download the Test Case - Demo - Add - Admin - Company Info - Company Structure.html

from Exercises Section

 3. Open the fi le in WordPad (Right Click on the fi le, Select Open With à WordPad)

 4. Between the </title> and </head> tags insert the following HTML code

 5. <link rel=”stylesheet” type=”text/css” href=”selenium.css” />

 6. File � Save As � CSS Applied - Test Case - Demo - Add - Admin - Company Info -

Company Structure.html

 7. File � Exit

 8. Click and Open the “CSS Applied - Test Case - Demo - Add - Admin - Company Info -

Company Structure.html” fi le in fi refox browser.

Applying CSS to Selenium Test Cases 87

See the CSS applied HTML Test Case below:

EXERCISES

Create a CSS to apply for Selenium Suites

 • TIP 1: You can use the same selenium.css as a base and start to create a new one

 • TIP 2: When you open a test suite which should totally defer from the look and feel of

test cases.

 • TIP 3: You can easily distinguish test suites from test cases by applying unique CSS to

each.

 • TIP 4: Decide on the CSS formats before start writing the test cases and simply add

them to the header of test scripts you record.

SELENIUM CONCEPTS

10

 Selenium Commands

A command is what tells Selenium what to do.

Selenium commands are broken down into 3 types: � Actions – Command the browser to do something � Accessors – Store/retrieve data from selenium variables � Asserts – Verify that the browser is in a certain state

Actions

Actions are commands that generally manipulate the state of the application.

They do things like “click this link” and “select that option”.

If an Action fails, or has an error, the execution of the current test is stopped.

Many Actions can be called with the “AndWait” suffi x, e.g. “clickAndWait”.

Action suffi x tells Selenium that the action will cause the browser to make a call to the server, and

that Selenium should wait for a new page to load.

Accessors

Accessors examine the state of the application and store the results in variables, e.g. “storeTitle”.

They are also used to automatically generate Assertions.

Selenium Concepts 89

Asserts

Assertions are like Accessors, but they verify that the state of the application conforms to what is

expected.

� Examples include “make sure the page title is X” and “verify that this checkbox is

checked”.

All Selenium Assertions can be used in 3 modes: “assert”, “verify”, and “waitFor”.

� Example includes, “assertText”,”verifyText” and “waitForText”.

When an “assert” fails, the test is aborted. When a “verify” fails, the test will continue execution,

logging the failure.

This allows a single “assert” to ensure that the application is on the correct page, followed by a

bunch of “verify” assertions to test form fi eld values, labels, etc.

“waitFor” commands wait for some condition to become true (which can be useful for testing

Ajax applications).

 Selenium Parameters

Two types of Selenium Parameters

� Locators – Used to fi nd elements in html trees

� Pattern Matchers – Used to verify values

Lots of locator types. Some examples are:

� Id based,

� X-Path based, DOM Based

� CSS selector based

Pattern matchers are typically exact matches or regular expressions

 Selenium Element Locators

Element Locators tell Selenium which HTML element a command refers to.

Many commands require an Element Locator as the “target” attribute.

� Examples of Element Locator’s include “elementId” and “document.forms[0].element”.

� The format of a locator is: locatorType=argument.

To locate elements use identifi er, id, name, DOM, CSS, XPath, and link. Without an explicit

locator prefi x, Selenium uses the following default strategies:

90 Selenium � DOM, for locators starting with “document.” � XPath, for locators starting with “//” � identifi er, otherwise

 Selenium Element Filter

Element fi lters can be used with a locator to refi ne a list of candidate elements.

They are currently used only in the ‘name’ element-locator. Filters look much like locators, i.e. � fi lterType=argument

Supported element-fi lters are: � Based on their values match elements. It is useful for refi ning a list of similarly-named

toggle-buttons.

 ∑ value=patternValue � Selects a single element based on its position in the list (starting from zero).

 ∑ index=indexValue

 Selenium String Match Patterns

Various Pattern syntaxes are available for matching string values: � glob:patternValue: “Glob” is a limited regular expression syntax. Similar to DOS command-

line wildcards. In a glob pattern, “*” represents any sequence of characters, and “?” represents

any single character. Glob patterns match against the entire string. � regexp:regexpValue: Match a string using a regular-expression. The full power of JavaScript

regular-expression is available. � exact:stringValue: Match a string value exactly, without using any wildcards.

If no pattern prefi x is specifi ed, Selenium assumes that it’s a “glob” pattern.

 Selenium Recording Problems

Why doesn’t everything get recorded?

Selenium Concepts 91 � Not every event will be recorded by Selenium IDE. � Usually the ones that won’t be recorded are those that involve complex HTML (Hyper Text

Markup Language) and/or AJAX (Asynchronous JavaScript and XML)

Careful while testing HTTPS events

Why doesn’t event triggered when I select something from auto-complete history? � Auto-Complete does not trigger Javascript event � No event triggered means Selenium IDE cannot record it � Work Around: Manually type the input, instead of selecting it from auto-complete

EXERCISES

 1. What are the three categories into which the Selenium commands are divided?

 2. What is the difference between Accessors and Assertions?

 3. Where can we use the “waitFor…” set of commands?

 4. What is the need the pattern matching? What are the various syntax for pattern

matching?

SELENIUM COMMANDS—

SELENESE

11

 Selenese Commands

Selenese is the language of Selenium IDE and it is pure HTML. However you should not try to
compare it to the traditional programming languages or look for the features that they have. Selenese
doesn’t include any conditional “if” statements or “for” loops, or, in general, there isn’t any way to
reuse code (with functions or subroutines). However there are some “fl ow control” user extensions
available that provide support for “if/goto” statements in HTML Selenese. You can search for them
on internet and try them out.

The lack of these features is not the drawbacks of Selenese as the HTML, but Selenese is about
simplicity. Turning HTML Selenese into a full-blown scripting language, with all the advantages
that would bring, would still undermine its simplicity. If one needs to write a full blown program
then there are options to export the HTML Selenese to high level language of your choice and run
it in Selenium RC.

Now let’s look at the Selenese language.

In Selenese we have predefi ned set of commands.

Each command call is one line in the test table of the form:

Selenium Commands—SELENESE 93

A command is what tells Selenium what to do. Selenium commands come in three ‘fl avors’:
Actions, Accessors and Assertions.

� Actions – Command the browser to do something

� Accessors – Store/retrieve data from selenium variables

� Asserts – Verify that the browser is in a certain state

Actions are commands that generally manipulate the state of the application. They do things
like “click this link” and “select that option”. If an Action fails, or has an error, the execution of the
current test is stopped.

Many Actions can be called with the “AndWait” suffi x, e.g. “clickAndWait”. This suffi x tells
Selenium that the action will cause the browser to make a call to the server, and that Selenium
should wait for a new page to load.

Accessors examine the state of the application and store the results in variables, e.g. “storeTitle”.
They are also used to automatically generate Assertions.

Assertions are like Accessors, but they verify that the state of the application conforms to what
is expected. Examples include “make sure the page title is X” and “verify that this checkbox is
checked”.

All Selenium Assertions can be used in 3 modes: “assert”, “verify”, and “waitFor”. For example,
you can “assertText”, “verifyText” and “waitForText”.

When an “assert” fails, the test is aborted. When a “verify” fails, the test will continue execution,
logging the failure. This allows a single “assert” to ensure that the application is on the correct page,
followed by a bunch of “verify” assertions to test form fi eld values, labels, etc.

Example:

“waitFor” commands wait for some condition to become true (which can be useful for testing Ajax
applications). They will succeed immediately if the condition is already true. However, they will fail
and halt the test if the condition does not become true within the current timeout setting (see the
setTimeout action below).

Example:

Element Locators tell Selenium which HTML element a command refers to. Many commands require
an Element Locator as the “target” attribute. Examples of Element Locators include “elementId”
and “document.forms[0].element”. These are described more clearly in the further chapters.

Patterns are used for various reasons, e.g. to specify the expected value of an input fi eld, or
identify a select option. Selenium supports various types of pattern, including regular-expressions,
all of which are described in more detail in the further chapters.

94 Selenium

 Variable Substitution

You can store any value into a variable using selenium accessors.

Variable substitution provides a simple way to include a previously stored variable in a command
parameter.

If you give the variable name as intAmount. To use the variable anywhere else use ${intAmount}.
This will substitute the actual value in the place of ${intAmount}.

Use echo ${intAmount} to display the values in the Log.

Any of the selenium accessors can be used to store a value.

Some of the key accessors are:

storeText, storeValue, storeCookie, storeAlert and storeEval

Let’s try this out:

 1. Download Helloworld.html from http://www.qaagility.com/downloads/SeleniumBook/.
Open the fi le in Firefox

 2. Create a test case by opening Firefox Tools Selenium IDE (by default it is in Recording
mode)

 3. Update the base URL of Selenium IDE with the URL in the Firefox address

 4. Click on the link “Click here to enter your name”, when prompter for your name, enter
your name.

Selenium Commands—SELENESE 95

 5. Your name will be displayed in next line.

 6. Add the line for the assertText to check the name that you entered, and then stop the
recording in Selenium IDE.

 7. Rerun the test case in Selenium IDE

Your test case would look like as shown in the fi gure below:

 1. Try to run multiple time and make sure your test case is passed without any failures.

 2. Now save the test case as “Recorded_TestCase_HelloWorld.html”

 3. Double click and open the “Recorded_TestCase_HelloWorld.html” either in IE or Firefox.

96 Selenium

 4. You can see all the commands in an HTML table as below

Let’s try this out using variable substitution

 1. Now we’ll try to do the same exercise using variable substitution

 2. In the Selenium IDE, select “answerOnNextPrompt”, Right Click and Select a new
command

 3. Select the command “store”

 4. Target “Ashish”

 5. Value “vName”

 6. Store | Ashish | vName

 7. Underneath insert a new command and provide the below values

 8. echo | ${vName}

 9. Right click and copy the “echo” command, and paste before the assertText command line

 10. Now your test would look like below

See how the ${vName} is used in multiple places

Selenium Commands—SELENESE 97

Now let’s have a look at the commands and the log entries

98 Selenium

 storedVars

All the variables are internally stored in a map named “storedVars”. You can also imagine it as
storing values as arrays for Selenese.

storedVars allows you to access the ${varName} using the “varName” key within the map.

Using storedVars you can reference the values within Javascript Evaluation code.

What is a Map?

Maps provide a more general way of storing elements. An object that maps keys to values. A map
cannot contain duplicate keys (duplicate variable names); The Map collection type allows to store
pairs of elements, termed “keys” and “values”, where each key maps to one value. Here Keys refers
Selenium variable Names and values refers to their values.

Let’s try to see it using example.

 1. Open URL: http://mail.yahoo.com

 2. Type username: <username>

 3. Type password: <passwd>

 4. Press Sign In button

 5. verifyTextPresent <username>

 6. Press SignOut

 7. waitForTextNotPresent <username>

Selenium Commands—SELENESE 99

Why use variables in test scripts?

 Javascript Evaluation

JavaScript evaluation allows full power of JavaScript code in constructing the Command
Parameter

JavaScript snippet can be given using the following syntax.

 � Javascript { <code snippet goes here> }

 � Javascript keyword is optional

 � The code given is treated as a JavaScript code and executed.

 � storedVars Map can be used to access the previously stored variables

 � Variable substitution should be handled carefully within the JavaScript code.

 1. You can use any of the following Eval commands
 ∑ assertEval, assertNotEval, VerifyEval, verifyNotEval, waitForEval, waitForNotEval,

storeEval

 2. You can use any of the following Expression commands
 ∑ assertExpression, assertNotExpression,verifyExpression, verifyNotExpression,

waitForExpression, waitForNotExpression, storeExpression, store and
WaitForCondition

100 Selenium

 Exercises

 1. Open a specifi c URL (http://www.barnesandnoble.com/)

 2. Search for a specifi c text (“Javascript”) in #1 page

 3. Sort by “Pricev”

 4. How do you check “Online Price: $$$” is in sorted order?

Answers

 � In this case I have decided to check the fi rst two Amounts displayed on that page are in the
ascending order.

 � The fi rst value is A, the second value is B

 � If A <= B then we assume the fi rst two listed prices are in ascending order.

 � Now get the third value C

 � If B <= C then we assume that A, B and C are in ascending order. (i.e., A <= B <=C)

Selenium Commands—SELENESE 101

 Handling Alerts

 � storeAlert(seleniumVariableName)
 ∑ Checks for JavaScript Alert, stores the alert message. If no alert generated then throws

an exception.
 ∑ Getting an alert has the same effect as manually clicking OK.
 ∑ If an alert is generated but you do not get/verify it, then the next Selenium action will

fail.
 ∑ JavaScript alerts will NOT pop up a visible alert dialog.
 ∑ Selenium does NOT support JavaScript alerts that are generated in a page’s onload()

event handler. In this case a visible dialog WILL be generated and Selenium will hang
until someone manually clicks OK.

 � Returns:
 ∑ The message of the most recent JavaScript alert.

 � Other Alert commands are:
 ∑ assertAlert (pattern), assertNotAlert (pattern), verifyAlert (pattern)
 ∑ verifyNotAlert (pattern), waitForAlert (pattern),waitForNotAlert (pattern)

AlertPresent

 � verifyAlertPresent()
 ∑ The best way to check the alerts are using this command
 ∑ This command never throws an exception

 � Returns:
 ∑ True or False.

 � Other AlertPresent Commands are:
 ∑ storeAlertPresent(seleniumVariableName)
 ∑ assertAlertPresent()
 ∑ assertAlertNotPresent()
 ∑ verifyAlertNotPresent()
 ∑ waitForAlertPresent()
 ∑ waitForAlertNotPresent()

On load Alert will not be sensed by Selenium. You need to manually press “Ok” to continue the
test.

Example:

102 Selenium

 Browser Navigation

 � goBack and goBackAndWait are the two commands simulates a user clicking on the “back”
button of the browser.

 � Download the SelectAWebSite.html from http://www.qaagility.com/downloads/
SeleniumBook/

 � Record the test as listed below:
 ∑ Select Google, after going to Google assertTitle then go back
 ∑ Select QAAgility, after going to QAAgility assertTitle then go back
 ∑ Select Microsoft, after going to MicroSoft assertTitle then go back
 ∑ Select Yahoo, after going to MicroSoft assertTitle then go back

 � Run the test
 ∑ Why it fails?
 ∑ How do you fi x it?

Selenium Commands—SELENESE 103

 Handling Pop-Ups

 � waitForPopUp (windowID,timeout) and selectWindow (windowID) are the two
commands allows you to test the Popup Windows.

 � selectWindow selects a specifi c Popup, use null to select Parent window.

 � Download the Ex1.html, Ex2.html, Ex3.html , CreatePopUps.html from http://www.
qaagility.com/downloads/SeleniumBook/ and Open CreatePopUps.html in Firefox
browser

 � Record the test as listed below:
 ∑ Click Create Windows button
 ∑ Select win1, click the button “Click and get the Welcome Message”, minimize win1
 ∑ Select win3, select any option, press “Submit” button
 ∑ Go back to the parent window, press “close button”

 � Run the test
 ∑ Is it failing?
 ∑ How do you fi x it?

104 Selenium

 Navigator Properties

 � To get Browser information, you can use navigator object
 ∑ The common properties of navigator object is like
 � appName
 � appCodeName
 � appEnabled
 � JavaEnabled
 � language
 � cookieEnabled
 � navigator.userAgent
 � navigator.plugins
 � navigator.platform
 � navigator.mimeTypes
 ∑ The common properties of browserVersion object is like
 � browserVersion.name
 � browserVersion.browser

Selenium Commands—SELENESE 105

 � browserVersion.isFirefox

 � Download “TestCaseNavigatorProperties.html” from http://www.qaagility.com/
downloads/SeleniumBook/

 � Run the Test Case

 � Look at the Selenium IDE Log

 � You can See all the Navigator Properties

106 Selenium

EXERCISES

• Create a test case with the following steps:

 1. Open http://www.devry-degrees.com

 2. At the bottom of the page, you will see 4 footer links

 3. Click a link at a time, this will create a popup

 4. verifyTitle on the Popped Up window

 5. Close the Popup

 6. Click on the next link in the parent window, this will create a popup

 7. verifyTitle on the Popped Up window

 8. Close the Popup, Continue the same for all the 4 links

PATTERN MATCHING

12

Patterns frequently occur in the Selenium tests. There are several commands in Selenium that take
the pattern parameter. These enable you to match various content types on a web page – links, text,
elements. There are mainly three types of patterns you can use in your tests: globs, exact and regular
expressions.

Globs

Globs or the verb Globbing is familiar to most people who have ever used fi le matching patterns. If
you have ever searched for a fi le in Linux or DOS using a line like *.exe or photos*, then you have
used globs. But globbing in Selenium is not as rich as the one in Linux – it supports only three
special characters: *, ? and [].

* matches any number of characters, by any we mean ‘nothing’, ‘a single character’ or ‘many
characters’.

? , matches a single character.

[] , called a character class, lets you match any single character found within the brackets. e.g

[0-9] matches any digit

[a-zA-Z] matches any alphabet, regardless of case

To specify a glob in a selenium command, prefi x the pattern with the glob: string. For example
if you would like to search for the texts color or colour then you can use the colo*r glob as shown
below.

Command Target Value

clickAndWait link=search

verifyValue glob: colo*r

108 Selenium

However you are free to eliminate the glob: prefi x and only specify the text pattern because
globbing patterns are the default in Selenium.

Example:

If you have dropdown combo box then you can use global pattern matching

<select id=”combo”>

<option id=”v1” value=”option1”>First Dropdown Value</option>

<option selected=”selected” id=”v2” value=”option2”>Second Dropdown Value</option>

<option id=”v3” value=”option3”>Third Dropdown Value</option>

</select>

To select the dropdown option and verify like this:

assertEquals(“Second *”, selenium.getSelectedLabel(“combo”));

Regular Expression Patterns

Of the three types of patterns, Regular Expressions are the one that are the most useful. Selenium
supports the complete set of RegEx patterns that Javascript supports. So now you are not limited by
the *,? And [] globbing patterns. To use RegEx patterns you need to prefi x each RegEx with either
regexp: or regexpi:, the latter being case-insensitive.

For example the following will test if a input fi eld with the id ‘name’ contains the string ‘javascript’,
‘JavaScript’ or ‘Javascript’.

Command Target Value

clickAndWait link=search

verifyValue id=name regexp:[Jj]ava([Ss]cript)

Below are a few common regular expression patterns: � Date

 regexp:(0[1-9]|1[012])[- /.](0[1-9]|[12][0-9]|3[01])[- /.](19|20)\d\d

 This will match a date in ‘mm/dd/yyyy’ format with any of the ‘-’, ‘/’, ‘.’ as separators. � Email

 regexpi:^[A-Z0-9+_.-]+@[A-Z0-9.-]+$

 This will match a generic email address. � Zip Code

 regexp:^[0-9]{5}(?:-[0-9]{4})?$

 This will match a ZIP code (U.S. postal code), allowing both the fi ve-digit and nine-digit
(ZIP + 4) formats.

Pattern Matching 109 � Social Security Number

 regexp:^(?!000|666)(?:[0-6][0-9]{2}|7(?:[0-6][0-9]|7[0-2]))-?(?!00)[0-9]{2}-(?!0000)[0-9]
{4}$

 This will match U.S Social Security numbers in the in the AAA-GG-SSSS format. � URL

 regexp:^(https?|ftp|fi le)://.+$

 This will match almost any url.

Example:

<select id=”combo”>

<option id=”v1” value=”option1”>First Dropdown Value</option>

<option selected=”selected” id=”v2” value=”option2”>Second Dropdown Value</option>

<option id=”v3” value=”option3”>Third Dropdown Value</option>

</select>

To select the dropdown option and verify like this:

assertEquals(“regexp:Second .*”, selenium.getSelectedLabel(“combo”));

Exact Patterns

Patterns with the prefi x ‘exact:’ will match the given text as it is. For example if you give the search
pattern as below, then it will match a glob pattern ‘*’ or ‘*.java’.

Command Target Value

clickAndWait link=search

verifyValue glob: *.java

But if you want an exact match with the value string, i.e. without the glob operator doing its work
then you use the ‘exact’ pattern as below. In this example the ‘*’ (asterisk) will work as a normal
character rather than a pattern-matching wildcard character.

Command Target Value

clickAndWait link=search

verifyValue exact: *.java

Example:

<select id=”combo”>

<option id=”v1” value=”option1”>First Dropdown Value</option>

110 Selenium

<option selected=”selected” id=”v2” value=”option2”>Second Dropdown Value</option>

<option id=”v3” value=”option3”>Third Dropdown Value</option>

</select>

To select the dropdown option and verify like this:

assertEquals(“exact:Second Dropdown Value”, selenium.getSelectedLabel(“combo”));

In conclusion the glob: and the exact: patterns are the subsets of the Regular Expression pattern
matcher. Everything you can do with glob: or exact: you can accomplish with RegExp.

 Selenium Commands

A command is what tells Selenium what to do.

Selenium commands are broken down into 3 types: � Actions – Command the browser to do something � Accessors – Store/retrieve data from selenium variables � Asserts – Verify that the browser is in a certain state

Actions

Actions are commands that generally manipulate the state of the application.

They do things like “click this link” and “select that option”.

If an Action fails, or has an error, the execution of the current test is stopped.

Many Actions can be called with the “AndWait” suffi x, e.g. “clickAndWait”.

Action suffi x tells Selenium that the action will cause the browser to make a call to the server, and
that Selenium should wait for a new page to load.

Accessors

Accessors examine the state of the application and store the results in variables, e.g. “storeTitle”.

They are also used to automatically generate Assertions.

Asserts

Assertions are like Accessors, but they verify that the state of the application conforms to what is
expected. � Examples include “make sure the page title is X” and “verify that this checkbox is

checked”.

Pattern Matching 111

All Selenium Assertions can be used in 3 modes: “assert”, “verify”, and “waitFor”. � Example include, “assertText”,”verifyText” and “waitForText”.

When an “assert” fails, the test is aborted. When a “verify” fails, the test will continue execution,
logging the failure.

This allows a single “assert” to ensure that the application is on the correct page, followed by a
bunch of “verify” assertions to test form fi eld values, labels, etc.

“waitFor” commands wait for some condition to become true (which can be useful for testing
Ajax applications).

 Selenium Parameters

Two types of Selenium Parameters � Locators – Used to fi nd elements in html trees � Pattern Matchers – Used to verify values

Lots of locator types. Some examples are: � Id based, � X-Path based, DOM Based � CSS selector based

Pattern matchers are typically exact matches or regular expressions

 Selenium Element Locators

Element Locators tell Selenium which HTML element a command refers to.

Many commands require an Element Locator as the “target” attribute. � Examples of Element Locator’s include “elementId” and “document.forms[0].element”. � The format of a locator is: locatorType=argument.

To locate elements use identifi er, id, name, DOM, CSS, XPath, and link. Without an explicit
locator prefi x, Selenium uses the following default strategies: � DOM, for locators starting with “document.” � XPath, for locators starting with “//” � identifi er, otherwise

112 Selenium

 Selenium Element Filter

Element fi lters can be used with a locator to refi ne a list of candidate elements.

They are currently used only in the ‘name’ element-locator. Filters look much like locators, i.e. � fi lterType=argument

Supported element-fi lters are: � Based on their values match elements. It is useful for refi ning a list of similarly-named
toggle-buttons.

 ∑ value=patternValue � Selects a single element based on its position in the list (starting from zero).
 ∑ index=indexValue

 Selenium String Match Patterns

Various Pattern syntaxes are available for matching string values: � glob:patternValue: “Glob” is a limited regular expression syntax. Similar to DOS command-
line wildcards. In a glob pattern, “*” represents any sequence of characters, and “?” represents
any single character. Glob patterns match against the entire string. � regexp:regexpValue: Match a string using a regular-expression. The full power of JavaScript
regular-expression is available. � exact:stringValue: Match a string value exactly, without using any wildcards.

If no pattern prefi x is specifi ed, Selenium assumes that it’s a “glob” pattern.

EXERCISES

 1. I have a dropdown with values: Large Size, Medium Size, Small Size. How can I use

regular expression to pick the second value from the list?

 2. What is the difference between “Glob” and “Exact” keywords of pattern matching?

 3. For questions one, if I wish to make my pattern matching independent of the case,

how will the regular expression look like?

 4. What will be regular expression for match any vowel?

 5. Make regular expression for match any whitespace (space, tab, newline, carriage

return, form feed)?

ELEMENT LOCATORS

13

A big part of implementing your browser based automation solution effectively is choosing locators

wisely. There are various locators that Selenium’s commands support to locate elements on the

page to interact with. Using the right locator ensures your tests are faster, more reliable or has lower

maintenance over releases. This chapter explains how and when to use these locators.

Simply put, locators are a way to tell selenium which specifi c element we want it to act on. All

the visible elements of a web application are refl ected in the Document Object Model (DOM) in

HTML, and they can be addressed in various ways: the directions from the root of the document

to the element using XPath; unique identifi ers; or characteristics possessed by the elements, such

as class names, attributes, or link text. Some examples of these addressing options are shown in the

Navigation Options illustration below. The navigation using XPath could be much slower than

using IDs; and IDs should be unique. Let’s look at this in details in the sections below.

 Selenium Element Locators

Element Locators tell Selenium which HTML element a command refers to. What do we mean by

this? Suppose we want to click on a link on the webpage then we need to supply the details regarding

that link to the ‘click’ command in the target fi eld. Please see the command reference for ‘click’:

Click (locator)

Arguments: � locator - an element locator

 Clicks on a link, button, checkbox or radio button. If the click action causes a new page to

load (like a link usually does), call waitForPageToLoad.

114 Selenium

For e.g. in the page below, if we need to click on the ‘Gmail’ link then we need to give the details

regarding that link to the ‘click’ command.

Click on this ‘Gmail’ link

In this case we will use the name of the link to locate the object. So we will put ‘link=Gmail’ in

the target fi eld of the command, please see below:

Element Locators 115

Now if you click on the ‘Find’ button next the target fi eld, you will notice that it will highlight the

link in green box, as below:

This will tell us that our locator is working fi ne. Now if you execute the command, it will click on

the link and the Gmail page will be launched.

We could use this approach to locate the object using name, however what can we do when

the link name is not unique. Please download the following example (SelectAWebSite.html) from

http://www.qaagility.com/downloads/SeleniumBook/ and open it in FireFox browser.

116 Selenium

Here our approach will not work as all the links have same name ‘link’ so if we call command

click | link=link then it will always launch the fi rst link.

So how do we handle such situation? Let’s look at other ways to locate elements.

In the section below you will see various ways to use Element Locators from the simplest to the

most complex way. The simpler the element locator the less likely the test is to fail in future, and it

is easy to read when coming back to the test later. Complex XPath elements may be required, but

they may also be very fragile and one small change on the website may break the test in future.

Note: This does not cover speed of locating the elements, there are many other blog posts about

that – XPath may be slower, but sometimes it is the only way.

 1. Direct Reference

We can use the direct references to the HTML element via the Name or, the ID. We saw the

example of this in the section above where we located the object using the link name. This is the

most straightforward way of fi nding the correct element.

ID=win_button (NOTE IN THIS CASE, “ID =” IS NOT EVEN REQUIRED)

NAME=name_desc

VALUE=Click

LINK=link_gmail

Let’s use the tool Firebug () to view the internals of the web page and create strategy to

locate web elements. Please refer to Chapter 4 for more details in installation of Firebug.

If not already downloaded, download HelloWorldDay3.html fi le from http://www.qaagility.

com/downloads/SeleniumBook/ and open in FireFox browser as below.

Click on this Firebug icon

Element Locators 117

Click on the Firebug icon in the status bar, this will open the Firebug window as the horizontal

pan.

You can expand the collapsed HTML code in the main window of fi rebug to review the web page

code. It should be simple enough to review this web page as it is simple, however when you have a

complex web application page then it would be diffi cult to fi nd the object that you wish to locate

using Selenium. We use the Element Inspector feature of Firebug.

118 Selenium

Click on the icon, it is used to inspect any element on the webpage and take the mouse over

to the object that you want to inspect. This will expand the HTML page source and will highlight

the code responsible for the object. Please see below:

1. Take the mouse to button

2. This will show the associated

HTML code

This gives you the information regarding the web element and you can use this information to

locate these objects as required in your Selenium tests.

Element Locators 119

Using ID to locate object using IDE

Click on the ‘Find’ button to ensure that the correct object gets highlighted in green border. If

the ‘Find’ button works then any command that uses this object locator would also work. As in this

case, running the command ‘click’ would fi nd the button ‘Enter Name’ and click on it.

120 Selenium

Using Name to locate object using IDE

Inspect the second button to fi nd the code associated with it to get the object name, as below:

1. Take the mouse to button

2. This will show the associated

HTML code

We can see that the name of the object (button) is ‘but2’.

Use the following locator using object name to fi nd the button using IDE as below. As a good

practice always use the ‘Find’ button on IDE next to the target fi eld to ensure you got the locator

correct.

Element Locators 121

 2. XPath References

XPath is a short way of referencing an element on a web page. It stand for XML path, when the

HTML page is rendered on a browser, the various web elements are stored under the tags. We can

have an address to those elements using these tags.

122 Selenium

In selenium it is used for identifying a html element that does not have an easy, unique identifi er

such as id, name, text.

You can also optimize the full length XPath to a shorter address which uses the address by the

relative address to the web elements. It searches the web page, top to bottom, looking for elements

that match the criteria.

Let’s talk about html. Here is an example element: google

link. This will show up on the page as a text link displaying the words “google link” and it will

take you to www.google.com.

For each web element there are three main parts: � the type � the attributes, and � the text.

Our element is of type a. It has an attribute called href equal to http://www.google.com and it has

text equal to “google link”. We can use all three of these things to search for our elements.

Nodes in XPath

Let’s understand the idea of nodes, and the familial relationship of html elements. Look at this

example code:

 <div title=”Section1”>

 <td name=”Search”>

 <tr class=”Yahoo”>Yahoo Search</tr>

 <tr class=”Google”>Google Search</tr>

 </td>

 </div>

Do you notice the </div> at the bottom? That means the td and tr elements are contained within

the div. These other elements are considered descendants of the div. The td is a child, and the tr is

a grandchild (and so on and so forth). The two tr elements are considered siblings. This is vital, as

XPath uses these relationships to fi nd your element

So suppose I wanted to fi nd the google item. Any of the following expressions will work:

 //tr[@class=’Google’]

 /div/td/tr[2]

 //div[@title=”Section1”]//tr[text()=”Google Search”]

So let’s analyse these expressions. We start at the top element (also known as a node). The //

means to search all descendants, / means to just look at the current element’s children. So //div

means look through all descendants for a div element. The brackets [] specify something about

Element Locators 123

that element. So we can look for an attribute with the @ symbol, or look for text with the text ()

function. We can chain as many of these together as we can.

Here is a quick reference: � // search all descendant elements � / search all child elements � [] The predicate (specifi es something about the element you are looking for) � @ Specifi es an element attribute. (For example, @title) � text() Gets the text of the element. � . specifi es the current node (useful when you want to look for an element’s children in the

predicate) � .. specifi es the parent node � contains() Use this in the predicate if you can’t do a full string match on an attribute or

text() value.

Xpath - Structure

XPath is an optimum way to locate your elements, considering the ease of use against possibility of

breaking. Few “experts” in selenium consider that XPath is bad, it’s slow, and it needs to be avoided

at all costs. This is bit of an exaggeration and generalisation, we need to take an educated judgment

as to using XPath based upon the need of the situation. Ultimately we need to reference an item in

the most clean and concise method possible. So if an item has a unique id or name, you should use

that and avoid an XPath expression. However, there are so many times when the element you’re

trying to locate does not have a unique identifi er, and you need to fi nd it.

The problem with XPath is the way most XPath generating programs work. They generate a

string of absolute locators a million miles long. So something like this:

/html/body[@id=’sc’]/div[2]/div[2]/div[3]/ul/li[1]/div/table/tbody/tr/td/p/a[3]

This might be accurate however you do NOT want to use XPath like this as this is highly dependent

upon the structure of the web page and can break even with slight modifi cation to it. The resulting

paths can be brittle for a fully qualifi ed path like above and it will break if any elements are added in

the tree, and different browsers may insert things like tbody’s in different places. This style of XPath

expression should be your very LAST resort on locating an element. But what is the alternative?

Start with the parent.

First off, I strongly recommend the use of // instead of /. It may be slightly slower locating an

element, but it allows you to construct a much more transparent, and reliable XPath expression.

So something like this would be a more appropriate XPath from the above example: //div[@

class=’object1’]/a. This looks through the entire page for a div with attribute “class” equal to

“object1”. It then looks for a child <a> element. This is fi ne as long as there is only one div with

124 Selenium

class=object1. However, class is not a unique identifi er, and it’s quite possible there is more than

one item on the page that matches our expression. What is the solution? Add another parent.

//td[@title=’Row1’]//div[@class=’object1’]/a. Neither title nor class are unique, but hopefully

the combination of both should be. However, maybe not.

If you can’t fi nd a parent or grandparent to start with that is unique, you can also try a sibling

node. Suppose we have a table where nothing has attributes. We want to type into the text fi eld in

an adjacent row to a link. We can fi nd the link, because the link text is unique. But we can’t fi nd

the text fi eld without resorting to some caveman XPath expression. The easiest way to do this is to

start with the parent node, and in the predicate (the []) look for a child node, then select another

node. For example:

 //tr[.//a[text()=”book1”]]//input

This expression select a row, looks for a descendant link with text “book1”, then selects any

descendant input. You have to use the period inside to select the current node.

Simple XPath

Relatively straightforward to compose and read later down the track.

 //td[text()=’My Cell Contents’] (the fi rst table cell with the specifi ed text)

 //td[normalize-space(text())=’My Cell Contents’] (for fi nding text that is surrounded by spaces).

 //p[contains(text(), ‘My Para Contents’)]

 //div(@class=’MyClass’)

 //input[contains(@id, ‘myTextField’)]

Complex XPath

These may be necessary if there are no unique ID’s or names in elements nearby the element you

need to click on. As mentioned above, try not to use the fully qualifi ed or the raw XPath that

Selenium records with, but refi ne the XPath to be a bit more robust and readable in future.

/html/body/div[1]/div[5]/div/table/tbody/tr/td/p/a[3] (An example bad XPath – it will break as soon
as the page layout changes a bit)

//td[contains(text()),’My Label’]/following-sibling::td[2]/input (an un-named input box that has a
known label 2 table cells away from it).

You can validate your generated XPaths using the $x function of Firebug. For example, you can

build the XPath for the “Google Search” and “I am feeling lucky” button on Google website as

below:

 XPath = /html/body/center/form/table/tbody/tr/td[2]/span/span/input

Element Locators 125

You can verify the XPath by putting it in the $x() function of Firebug in the Console tab as shown

below. This will give you the matching Web Elements in the next line, when you hover the mouse

over them, it takes you to the derived web elements from the XPath.

Notes

 1. Set selectors [1] [2] etc are numbered from 1, not 0

 2. If you use multiple classes on an element (e.g. <div class=”foo bar”>) you can use //

div[contains(@class, “foo”)] to fi nd matching elements.

126 Selenium

 3. Don’t forget that id’s can’t start with numbers.

 4. Don’t forget that <a> elements have name’s not id’s.

Why won’t this XPath work in IE6?!

 1. for some reason the XPath expression id(‘foo’)/span doesn’t work in IE6. Try: //div[@

id=’foo’]/span instead.

 2. //div[5][@class=”foo”] (select the fi fth div with class foo that occurs in the document tree)

doesn’t work in IE6. Try /descendant::div[@class=”foo”][5] instead.

Using Regular Expressions in xpath

Here is an example where I have used regular expressions in xpath.

This includes a code sample that demonstrates how you can use the starts-with XPath string

function to implement this requirement.

Here is my HTML source code:

 <h1 id=”c100Item_P100”>Abrasion Resistance</h1>

 <h1 id=”c100Item_P101”>Access Panels</h1>

 <h1 id=”c100Item_P102”>Access Solutions</h1>

 <h1 id=”c100Item_P103”>Accessories</h1>

 <h1 id=”c100Item_P104”>Acoustic Performance</h1>

 <h1 id=”c100Item_P105”>Affordable Playground Equipment</h1>

 <h1 id=”c100Item_P106”>Aged Care Facilities</h1>

 <h1 id=”c100Item_P107”>Aggregates</h1>

 <h1 id=”c100Item_P108”>Air Circulation</h1>

 <h1 id=”c100Item_P109”>Air Conditioning Filter Cleaning</h1>

 <h1 id=”c100Item_P110”>Air Conditioning Maintenance</h1>

 <h1 id=”c100Item_P111”>Air Conditioning Services</h1>

 <h1 id=”c100Item_P112”>Air Flow</h1>

 <h1 id=”c100Item_P113”>Air Fresheners</h1>

 <h1 id=”c100Item_P114”>Air Movement</h1>

 <h1 id=”c100Item_P115”>Alarm Monitoring</h1>

 <h1 id=”c100Item_P116”>Alfresco</h1>

 <h1 id=”c100Item_P117”>Alternative Waterproofi ng</h1>

 <h1 id=”c100Item_P118”>Aluminium Composite</h1>

 <h1 id=”c100Item_P119”>Amplifi ers</h1>

 <h1 id=”c100Item_P120”>Anodising</h1>

 <h1 id=”c100Item_P121”>Anti Slip</h1>

 <h1 id=”c100Item_P122”>Anti Vandal</h1>

Element Locators 127

 <h1 id=”c100Item_P123”>Anti-graffi ti</h1>

 <h1 id=”c100Item_P124”>Anti-Rust</h1>

 <h1 id=”c100Item_P125”>Apartments</h1>

 <h1 id=”c100Item_P126”>Appliances</h1>

Here is the verifyElement command in Java to verify for the xpath element.

 verifyTrue(selenium.isElementPresent(“//*[starts-with(@id, \”c100Item_P\”)]”));

 3. CSS Path

In general terms, CSS locators are suppose to be faster than XPath and they are more readable. Also,

it would make more sense to use CSS if you are testing a website based on jQuery as CSS is jQuery’s

locating strategy. Let’s see some advanced CSS rules and pseudo-classes that will help you move

your XPath locators to CSS, a native approach on all browsers.

Next Sibling

Let’s see how we can navigate lists of elements, such as forms or ul items. The next sibling will tell

selenium to fi nd the next adjacent element on the page that’s inside the same parent. Let’s take an

example using a form to select the fi eld after username.

<form>

<input id=”id_inp2” class=”username”></input>

<input id=”id_inp3” class=”alias”></input>

<input value=”435435435-7a3e-23f4-af1d-a83b5fe03f4d” name=”vid” type=”hidden”><input value=”FL_
d10dr3e3” name=”fl _cid” type=”hidden”></form>

Let’s write a css selector that will choose the input fi eld after “username”. This will select the

“alias” input, or will select a different element if the form is reordered.

css=form input.username + input

Attribute Values

If you don’t care about the ordering of child elements, you can use an attribute selector in selenium

to choose elements based on any attribute value. A good example would be choosing the ‘username’

element of the form without adding a class.

<form>

<input id=”id_inp6” name=”username”></input>

<input id=”id_inp7” name=”password”></input>

<input name=”continue” type=”button”></input>

128 Selenium

<input name=”cancel” type=”button”></input>

<input value=”435435435-7a3e-23f4-af1d-a83b5fe03f4d” name=”vid” type=”hidden”><input value=”FL_
d10dr3e3” name=”fl _cid” type=”hidden”></form>

We can easily select the username element without adding a class or an id to the element.

 css=form input[name=’username’]

We can even chain fi lters to be more specifi c with our selections.

 css=input[name=’continue’][type=’button’]

Here Selenium will act on the input fi eld with name=”continue” and type=”button”

Choosing a Specific Match

CSS selectors in Selenium allow us to navigate lists with more fi nesse than that the above methods.

If we have an ul and we want to select its fourth li element without regard to any other elements, we

should use nth-child or nth-of-type.

 <ul id=”recordlist”>

 <p>Heading</p>

 Cat

 Dog

 Car

 Goat

If we want to select the fourth li element (Goat) in this list, we can use the nth-of-type, which will

fi nd the fourth li in the list.

 css=ul#recordlist li:nth-of-type(4)

On the other hand, if we want to get the fourth element only if it is a li element, we can use a

fi ltered nth-child which will select (Car) in this case.

 css=ul#recordlist li:nth-child(4)

Note, if you don’t specify a child type for nth-child it will allow you to select the fourth child

without regard to type. This may be useful in testing css layout in selenium.

 css=ul#recordlist *:nth-child(4)

Sub-string matches

CSS in Selenium has an interesting feature of allowing partial string matches using ̂ =, $=, or *=.

I’ll defi ne them, then show an example of each:

^= Match a prefi x

Element Locators 129

$= Match a suffi x

*= Match a substring

 css=a[id^=’id_prefi x_’]

A link with an “id” that starts with the text “id_prefi x_”

 css=a[id$=’_id_sufi x’]

A link with an “id” that ends with the text “_id_sufi x”

 css=a[id*=’id_pattern’]

A link with an “id” that contains the text “id_pattern”

Matching by Inner Text

And last, one of the more useful pseudo-classes, :contains() will match elements with the desired

text block:

 css=a:contains(‘Log Out’)

This will fi nd the log out button on your page no matter where it’s located.

Note: Elements may have more than one class, however you don’t need to list them all. Only

specify enough to unambiguously locate the element. You can chain classes by separating them will

a period.

Readability Compared to XPath

XPath CSS

//input[@id=”myId”] input#myId

//input[@class=”myClass”] input.myClass

//input[@name=”myName”] input[name=myName]

//*[@id=”myId”] #myId

//table[@id=”myId”]//tr[@class=”myClass”]//td[3] table#myId tr.myClass td:nth(3)

Limitation of CSS Locators

The only thing that I don’t like with CSS locators is that indexing specifi c sibling elements is more

verbose—it must be done with nth-child():

.content .sidebar:nth-child(1) a

With XPath you can use a simple pair of brackets:

 //div[@class=’content’]/div[@class=’sidebar’][1]/a

130 Selenium

It would be really nice if CSS selectors had the same bracket-style indexing syntax as XPath. (Of

course, this is a limitation of CSS itself, not Selenium.)

In addition, nth-child() is a little more brittle in that it isn’t constrained to the current selection

scope. For example, assume you have markup like so:

 <div class=”content”>

 <div class=”something_else”>…</div>

 <div class=”sidebar”>…</div>

 </div>

There is now a non-sidebar sibling <div> appearing before the sidebar <div>. In this case, there

will be no element that matches .sidebar:nth-child(1)—the sidebar is matched by .sidebar:nth-
child(2). This means that adding additional unrelated mark-up to your page can break your tests

if you’re using CSS locators. If you were using the XPath locators in this case, the indexing of the

element in question would remain constant because the index doesn’t refer to children, but to

elements matching that specifi c XPath. (If you added additional sidebar <div>’s the XPath would

break as well, but all the same it’s still less brittle.)

One fi nal point to note is that there’s also a bug in the cssQuery library that prevents nth-child()

from working correctly—it’s Selenium bug #698. Unfortunately, the patch posted on the bug does

not fi x the problem for me. Instead, you have to resort to suffi xing any nth-child() selector with a

child or sibling combinator like so:

.content .sidebar:nth-child(1) > a

Despite these minor wrinkles, I fi nd that the CSS locators used with Selenium are less verbose in

general and lead to faster running tests.

 4. Click and Mouse Events

Sometimes to replicate a specifi c Javascript event that occurs, there are a few tricks that need to be

tried. The Javascript may not activate on the selenium Click event. It may actually activated on the

Mouse Up Event. There is no way to know this except testing each different scenario (if you don’t

have access to the developer, who may be able to help).

Some of the useful commands are: � Click and ClickAt � MouseDown and MouseDownAt � MouseUp and MouseUpAt � MouseMove and MouseMoveAt � DragDrop (useful for moving slider bars that calls a JavaScript event to change a value when

the slider is moved).

Element Locators 131

You usually need to use these in combination with each other.

e.g. doing a ClickAt, MouseDownAt and MouseUpAt in sequence on the same locator, may

actually make the Javascript work, whereas a Click will not.

 5. Keyboard and Coordinates

There will be time when all your locators can fail, such situations can occur and we need to have

some locator strategy. If all else fails, you may actually have to resort to simulate the key press

events on locators to get the right action (or it could very well for fi lling text into a text fi eld).

Usually the type command works fi ne, but there may be cases where the javascript is called after

every single key press and you need to replicate that (e.g. like the Google search box that shows the

results after each key stroke). In this case you will need to use typeKeys commands.

You can also go to the extreme of KeyDown and KeyUp – rather than the equivalent command of

KeyPress as the Javascript may be called on KeyUp. You can use Selenium for keyboard commands

to test a website for keyboard only accessibility. This can also be a fantastic use for Selenium and

shows just how powerful it is.

In the absolute worst case scenario you could use a clickAt event with X,Y coordinates from the

top left hand corner of the page.

Fortunately, most of the times such extremely situations do not arise but you need to be prepared

for such complex Selenium testing. I have found that even if it takes a while, there is usually a way

to fi nd the locator and work with it using one of the tricks listed above.

EXERCISES

 1. What are different ways of locating an element other than use of Xpath and CSS?

 2. If you had three buttons on the web page in the AUT with unique IDs, would you use

Xpath pr CSS path? Why?

 3. How does this locator work, css=label:contains(Email:) >> This locates the fi rst label

element on the page that has text contents of ‘Email:’

 4. How does this locator work, xpath=id(‘register’)/input[2] >> This locates the second

input element beneath the element with an id value of ‘register’

 5. Using the regular expression in my locator, xpath=//div[matches(@id,’che.*boxes’)]

>> This would click the div with ‘id=checkboxes’, or ‘id=cheANYTHINGHEREboxes’

SELENIUM RC

OVERVIEW

14

Remember that Selenium consists of

 � Selenium IDE

 � Selenium RC

 � Selenium Grid

Let’s look at Selenium RC now.

The Selenium RC Server is used for testing complex AJAX-based web user interfaces under a

Continuous Integration system.

Selenium RC is used with Selenium Core/Selenium IDE to write tests in programming languages

other than the Selenese HTML table format.

The RC server is bundled with Selenium Core and automatically loads it into the browser.

Without using special modes, using Selenium RC test script, one cannot test domain changing

web applications or within the same domain to change from insecure (http) page to secure (https)

page.

 Selenium-RC Architecture

 � Selenium Remote Control (RC) is a test tool that allows testers to write automated Web

Application User Interface tests in many programming languages against any HTTP website

using any mainstream JavaScript-enabled browser.

 � Selenium RC comes in two parts.

 ∑ A server which automatically launches and kills browsers, and acts as a HTTP proxy

for web requests from them.

Selenium RC Overview 133

∑ Client libraries for computer languages.

How Selenium acts as proxy and overcomes Same-origin policy:

What is Proxy?

The proxy is a third person in the middle that passes the ball between the two parts. It acts as a “web

server” that delivers the AUT to the browser. Being a proxy gives Selenium Server the capability of

“lying” about the AUT’s real URL.

What is Same-origin Policy?

The main restriction that Selenium faces is the Same Origin Policy. This security restriction is

applied by every browser in the market and its objective is to ensure that a site’s content will never

be accessible by a script from another site. The Same Origin Policy dictates that any code loaded

within the browser can only operate within that website’s domain. It cannot perform functions on

another website. So for example, if the browser loads JavaScript code when it loads www.mysite.

com, it cannot run that loaded code against www.mysite2.com–even if that’s another of your sites.

If this were possible, a script placed on any website you open would be able to read information on

your bank account if you had the account page opened on other tab. This is called XSS (Cross-site

Scripting).

134 Selenium

To work within this policy, Selenium-Core (and its JavaScript commands that make all the magic

happen) must be placed in the same origin as the Application Under Test (same URL).

Historically, Selenium-Core was limited by this problem since it was implemented in JavaScript.

Selenium RC is not, however, restricted by the Same Origin Policy. Its use of the Selenium Server as

a proxy avoids this problem. It, essentially, tells the browser that the browser is working on a single

“spoofed” website that the Server provides.

Proxy Injection

The fi rst method Selenium used to avoid the The Same Origin Policy was Proxy Injection. In Proxy

Injection Mode, the Selenium Server acts as a client-confi gured HTTP proxy, that sits between the

browser and the Application Under Test. It then masks the AUT under a fi ctional URL (embedding

Selenium-Core and the set of tests and delivering them as if they were coming from the same

origin).

As a test suite starts in your favorite language, the following happens:

 1. The client/driver establishes a connection with the selenium-RC server.

 2. Selenium RC server launches a browser (or reuses an old one) with a URL that injects

Selenium-Core’s JavaScript into the browser-loaded web page.

 3. The client-driver passes a Selenese command to the server.

 4. The Server interprets the command and then triggers the corresponding JavaScript execution

to execute that command within the browser.

 5. Selenium-Core instructs the browser to act on that fi rst instruction, typically opening a

page of the AUT.

 6. The browser receives the open request and asks for the website’s content from the Selenium

RC server (set as the HTTP proxy for the browser to use).

 7. Selenium RC server communicates with the Web server asking for the page and once it

receives it, it sends the page to the browser masking the origin to look like the page comes

from the same server as Selenium-Core (this allows Selenium-Core to comply with the

Same Origin Policy).

 8. The browser receives the web page and renders it in the frame/window reserved for it.

Selenium RC Overview 135

Heightened Privileges Browsers

This workfl ow in this method is very similar to Proxy Injection but the main difference is that the

browsers are launched in a special mode called Heightened Privileges, which allows websites to

do things that are not commonly permitted (as doing XSS, or fi lling fi le upload inputs and pretty

useful stuff for Selenium). By using these browser modes, Selenium Core is able to directly open

136 Selenium

the AUT and read/interact with its content without having to pass the whole AUT through the

Selenium RC server.

Here is the architectural diagram.

As a test suite starts in your favorite language, the following happens:

 1. The client/driver establishes a connection with the selenium-RC server.

 2. Selenium RC server launches a browser (or reuses an old one) with a URL that will load

Selenium-Core in the web page.

Selenium RC Overview 137

 3. Selenium-Core gets the fi rst instruction from the client/driver (via another HTTP request

made to the Selenium RC Server).

 4. Selenium-Core acts on that fi rst instruction, typically opening a page of the AUT.

 5. The browser receives the open request and asks the Web Server for the page. Once the

browser receives the web page, renders it in the frame/window reserved for it.

 Platforms Supported by Selenium-RC

 � Browsers

 ∑ Firefox, IE, Safari and Opera

 � Operating Systems

 ∑ Windows, Mac OS X, Linux, and Solaris

 � Programming Languages

 ∑ C#, Java, Perl, PHP, Python, and Ruby

 � Testing Frameworks

 ∑ Bromine, JUnit & TestNG (Java), NUnit (.Net), RSpec & Test::Unit (Ruby), unittest

(Python)

 Selenium-RC Command Line Options

Usage: java -jar selenium-server.jar [-interactive] [-options]

port <nnnn>:(default 4444)

 the port number the selenium server should use

timeout <nnnn>: (eg: 180)

 an integer number of seconds

interactive:

 Interactively enter the commands.

multiWindow:

 Tests are executed in a separate window and supports web pages with frames.

forcedBrowserMode <browser>: (eg: *iehta)

 sets the forced default browser mode (e.g. “*iexplore”) for all sessions, no matter what is

passed in getNewBrowserSession

138 Selenium

userExtensions <fi le>:

 indicates a JavaScript fi le that will be loaded into selenium

browserSessionReuse:

 stops re-initialization and spawning of the browser between tests

avoidProxy:

 Uses by default proxy for browser request

 set this fl ag to make the browser use proxy only for URLs containing ‘/selenium-server’

fi refoxProfi leTemplate <dir>:

 By default generates a fresh empty Firefox profi le for every test.

 Provide a directory to use your profi le directory instead.

debug:

 Debug mode provides more trace information and used for diagnostics purpose

log:

 When enabled writes debug information out to a log fi le

htmlSuite <browser> <startURL> <suiteFile> <resultFile>:

 Provide browser and URL to run a single HTML Selenese Test suite and then exit

immediately.

 Provide absolute path to the HTML test suite, and HTML results fi le.

proxyInjectionMode:

 A proxy injection mode is a mode where the selenium server acts as a proxy server for all

content going to the AUT. Under this mode, multiple domains can be visited.

The following additional fl ags are supported for proxy injection mode:

 � dontInjectRegex <regex>: an optional regular expression that proxy injection mode can

use to know when to bypass injection

 � userJsInjection <fi le>: specifi es a JavaScript fi le which will then be injected into all pages

userContentTransformation <regex> <replacement>:

 � A regular expression which is matched against all test HTML content; the second is a string

which will replace matches. These fl ags can be used any number of times. A simple example

of how this could be useful: if you add “-userContentTransformation https http” then all

“https” strings in the HTML of the test application will be changed to be “http”.

Java system properties:

 � Dhttp.proxyHost and -Dhttp.proxyPort

Selenium RC Overview 139

Normally Selenium RC overrides the proxy server confi guration, using the Selenium Server as

a proxy. Use these options if you need to use your own proxy together with the Selenium Server

proxy.

Use the proxy settings like this:

 � java -Dhttp.proxyHost=myproxy.com -Dhttp.proxyPort=1234 -jar selenium-server.jar

 � HTTP proxy requires authentication, you will also need to set -Dhttp.proxyUser and

-Dhttp.proxyPassword, in addition to http.proxyHost and http.proxyPort.

 � java -Dhttp.proxyHost=myproxy.com -Dhttp.proxyPort=1234 -Dhttp.proxyUser=joe

-Dhttp.proxyPassword=example -jar selenium-server.jar

INSTALL AND RUN

SELENIUM RC

15

Step One - Download & Install Selenium-Rc

Installing Selenium Remote Control (RC) requires three step process:

 � First: Install JRE 1.5 or later version (for execution install JDK)

 � Second: Install the Selenium RC

 � Third: Install Java Client

Install JDK

 � Go to Start . Run . cmd

 ∑ Java – version (*1)

 � If you see an older version (< 1.5) it is better to uninstall it

Install and Run Selenium RC 141

Please refer to Chapter 1 for details on JDK installation.

Install RC

Go to http://code.google.com/p/selenium/downloads/detail?name=selenium-remote-control-

1.0.3.zip

Select selenium-remote-control-1.0.3.zip fi le (*1) link

*1*3*2

UnZip the selenium-remote-control-1.0.3.zip in C:\ (*3)

Rename the selenium-remote-control-1.0.1 folder into SeleniumRC (optional)

Rename the selenium-java-client-driver-1.0.1 folder into JavaClient (optional)

Rename the selenium-server-1.0.1 into JavaServer (optional)

Overview of the Contents of the Selenium Archive

Step Two - Run Selenium-RC

Open Windows Explorer go to (or to the folder where you have unpacked your selenium-server.

jar fi le)

142 Selenium

C:\SeleniumRC\JavaServer

Go to Start � Run � Cmd (enter the following command)

 � Java -jar selenium-server.jar –interactive

Check selenium-server.jar

is available

If you see the below message, then you have successfully installed the Selenium RC

 � Entering interactive mode... type Selenium commands here (e.g: cmd=open&1=http://

www.yahoo.com)

Provide the below command

cmd=getNewBrowserSession&1=*fi refox&2=http://www.yahoo.com

Install and Run Selenium RC 143

Check selenium-server.jar

is available

This will launch two windows of Firefox, which will align horizontally.

In your cmd window, go to menu by clicking the left corner, Select Edit � Mark, then select the

last two rows, then press Enter.

Now open your Wordpad. Paste the contents

Selenium RC opens

in the Top Window

Browser opens in the bottom

window where AUT will run

Session id

144 Selenium

This is session id. Each run will have a

new session id which can be accessed

using getNewBrowserSession

Step Three – Stop The Selenium Server

From the command line

Press Control+C and you will get message INFO-Shutting Down

Install and Run Selenium RC 145

From a browser url

Type http://localhost:4444/selenium-server/driver/?cmd=shutDownSeleniumServer in the URL,

you will see OKOK on the browser content area.

On the RC server side, you will fi nd message on server shutdown

 Running Selenium-Rc In Interactive Mode

The “interactive mode (IM)” allow you to run your test case commands on the Selenium Server

interactively.

146 Selenium

This works like Ruby IRB shell, where you can type the code and see the results immediately.

Likewise Selenium Server shows the executed commands results into a browser interactively.

This approach is suited for novice programmers to understand.

To completely automate the test suites, it is best practice to write your tests in a suitable

programming language. Not using interactive mode.

Type exit to quit from interactive mode

Selenium-RC Browser Launch Mode

Browser Launch Mode Description Cross Domain

*iexplore, *iehta Internet Explorer in HTA mode Yes

*iexploreproxy Internet Explorer HTML mode No

*fi refox, *chrome Firefox in Chrome mode Yes

*fi refoxproxy Firefox normal No

*opera Opera mode No

*safari Safari mode No

*custom Custom mode Dynamic

Parameters for Interactive Mode

During the “interactive mode” one can get the current browser Session ID using the

getNewBrowserSession command.

This command accepts two parameters.

Both are mandatory parameters.

First Parameter: Browser Launch mode

Example: *iexplore, *fi refox, etc

Second Parameter: URL

Example: http://www.google.com

testComplete command will stop the current session. No longer you can use the same session for

further testing after executing this command.

Selenium RC – Interactive Mode Command Line

Interactive mode allows you to execute commands using cmd command

The format of the command is as follows:

cmd={Selenese Command}&1={First Parameter}&2={Second Parameter} &sessionId={sessionID

got using getNewBrowserSession}

Install and Run Selenium RC 147

Example:

cmd=type&1=q&2=energy effi cient&sessionId=500b9ffb521d4c67b37e649a7bd5e527

cmd=close&sessionId=500b9ffb521d4c67b37e649a7bd5e527

cmd=waitForTextPresent&1=energy effi ciency&sessionId=500b9ffb521d4c67b37e649a7bd5e5

27

The session ID is optional. Use session ID when you have multiple sessions.

Selenese Command Parameter is mandatory.

Both &1 and &2 parameters are optional. If the Selenese command requires these parameter

then you may need it.

Example:

For this test, we’ll use the example from Chapter 2, TC_GE_EE.html (*1)

First we need to convert this test into interactive mode format.

The converted code is available under the name Test Case Google Search Energy Effi cient

Interactive Mode No Session ID.txt (*2)

*1

*2

Closes the AUT

Browser

Open your Windows explorer, go to C:\SeleniumRC\JavaServer

Goto Start � Run � cmd

148 Selenium

If necessary - change the directory to the location where SeleniumRC is installed.e.g. on the

command prompt - type cd “C:\SeleniumRC\JavaServer and then type ssi.bat (*3).

Download ssi.bat fi le from http://www.qaagility.com/downloads/SeleniumBook/

Or you can type

Java -jar Selenium-server.jar -interactive

*3

Start Selenium-RC server

Copy the fi rst line of the code and paste in the interactive mode (*4)

cmd=getNewBrowserSession&1=*fi refox&2=http://www.ge.com

Press Enter Key

*4

Enter your command here

Install and Run Selenium RC 149

Your Browser session ID

Your AUT Browser

All the executed commands

are shown here

*5

Execute the next lines one by one on IM (*6) until the assert commands

cmd=type&1=textToSearch&2=energy effi cient

cmd=clickAndWait&1=searchSubmit

cmd=assertTitle&1=exact:GE: Search Results

cmd=assertTextPresent&1=energy effi cient

After fi nishing each command press Enter Key

150 Selenium

*6

Install and Run Selenium RC 151

Your AUT Browser

All the executed commands

are shown here

*7

Execute the next two lines one by one in interactive mode (*8)

cmd=close

// Closes the AUT browser

cmd=testComplete

// Stops the current Session and Closes Selenium Command Browser

*8

152 Selenium

Finally Type Exit to quit from Interactive mode (*9)

*9

Posting Ide Test Suite Results Using Selenium-Rc

You must have noticed that Selenium IDE does not give any consolidated output reports. The only

out that we see is in the form of IDE Logs and Color coding of the commands (Light Green, Dark

Green and Red). We can run Selenium-RC in htmlSuite mode to post results as an HTML fi le. This

can work as an acceptable reports that consolidates the actual run time logs, commands snapshots

and summary of the Test Suite. The tests need to be run as Test Suite in this mode.

It is actually a command line run options for RC, however as we have eight parameters to pass to

the commands line, we can simplify it by using the batch fi le. Please follow the steps below:

 1. Open notepad/wordpad

 2. Cut and Paste the below code.

 3. Save the batch fi le with name “GE_TC1.bat”

 4. Please ensure that the GE_TS1.html fi le is stored in C:\EX\GE\GE_TS1.html folder.

Download the GE_TS1.html fi le from the QAAgility site if not created earlier.

 5. Please ensure that the following folder exists: C:\EX\GE\FF

@echo off

java -jar C:\selenium-rc\selenium-server.jar -htmlSuite “*fi refox”

“http://www.ge.com” “C:\Ex\GE\GE_TS1.html”

“C:\Ex\GE\FF\GE_TS1_Result.html”

pause

Install and Run Selenium RC 153

Param 1,2,3 - For launching RC

Param 4 - RC Mode

Param 5 - Browser

Param 6 - Base URL of Test Suite

Param 7 - Test Suite fi le with full path

Param 8 - Name of the Report html fi le

Please check: � Before running bat fi le, run Test Suite manually to ensure that it runs and also check the fi le

paths. � Also ensure that the folder name used do not have any spaces in them, at times bat fi les can

have issue with that. � Please make sure that you have write access to the folder mentioned in param 8.

Now Double click on the GE_TS1.bat fi le

Command window open and run the test suite (*1)

After completing the test, double click on the “GE_TS1_Result.html” (*2)

*1

154 Selenium

Test Summary Stats

Test #1 Snapshot

Test #2 Snapshot

Test Outcome

*2

Install and Run Selenium RC 155

Test Log Snapshot

In order to run the Test in another browser, you need to change the param 5. This is also the only

way to make your IDE tests run in various browsers.

EXERCISES

 1. How can you run your IDE scripts in browsers other than Firefox?

 2. What browsers are supported by Selenium RC?

 3. What is interactive mode in RC?

 4. How can I avoid launching RC from long command line control?

 5. Can I have multiple versions of RC installed on one machine?

THE ECLIPSE IDE

16

 Install Eclipse

Eclipse requires an installed Java Runtime. I recommended to use Java 6 (also known as Java 1.6).

Download “Eclipse IDE for Java Developers” from the website Eclipse Downloads http://www.

eclipse.org/downloads/ and unpack it to a directory.

The Eclipse IDE 157

Use a directory path that does not contain spaces in its name as Eclipse sometimes have problems

with that. After unpacking the download Eclipse is ready to be used; no additional installation

procedure is required.

Run Eclipse

To start Eclipse double-click on the fi le “eclipse.exe” (Microsoft Windows) or eclipse (Linux / Mac)

in the directory you unpacked Eclipse. The system will prompt you for a workspace. The workspace

is the place there you store your Java projects (more on workspaces later). Create a directory under

C: drive (or where you want to save all your work) as C:\ 1SeleniumWorkspace (you can give any

name as you want). Select this directory when you launch eclipse and press Ok.

158 Selenium

Eclipse will start and show the Welcome page. Close the welcome page by press the “X” besides

the “Welcome”.

 Eclispe Ui Overview

Eclipse provides perspectives, views and editors. Views and editors are grouped into perspectives.

All projects are located in a workspace.

Workspace

The workspace is the physical location (fi le path) you are working in. You can choose the workspace

during startup of eclipse or via the menu (File-> Switch Workspace-> Others). All your projects,

sources fi les, images and other artefacts will be stored and saved in your workspace.

You can predefi ne the workspace via the startup parameter -data path_to_workspace, e.g. “c:\

eclipse.exe -data “c:\temp” Please note that you have to put the path name into brackets. To see the

current workspace directory in the title of Eclipse use -showLocation as additional parameter.

The Eclipse IDE 159

Perspective

A perspective is a visual container for a set of views and editors. You can change the layout within

a perspective (close / open views, editors, change the size, change the position, etc.). Eclipse allows

you to switch to another perspective via the menu Window � Open Perspective � Other. For Java

development you usually use the “Java Perspective”.

Tip

A common problem is that you closed a view and don’t know how to re-open this view. You can

reset a perpective it to it original state via the menu “Window” -> “Reset Perspective”.

Views and Editors

A view is typically used to navigate a hierarchy of information or to open an editor. Changes in a view

are directly applied to the underlying data structure. Editors are used to modify elements. Editors

can have code completion, undo / redo, etc. To apply the changes in an editor to the underlying

resources, e.g. Java source fi le, you usually have to save.

Create a New Java Project

When you enter the Eclispe IDE after selecting the appropriate workspace (C:\1SeleniumWorkspace),

the package explorer window would be blank. Right click on the view and select Java Project

160 Selenium

Enter the project name as “SeleniumTestProject”

Click on Next button (*1)

Click on Finish button as the last step to create Java Project.

The project is created and visible in the Package Explorer window. (*2)

Add the required JAR files

Right click on Project and

Create ‘lib’ folder for keeping JAR fi les (*3)

‘lib’ folder is created (*4)

The Eclipse IDE 161

162 Selenium

Add the required JAR fi les to the newly created ‘lib’ folder. We would need the following JARS: � selenium-server.jar (to be found in folder C:\SeleniumRC1.0.1\selenium-rc\JavaServer if

you have renamed the folders as mentioned in Chapter XX) � selenium-java-client-drive.jar (to be found in folder C:\SeleniumRC1.0.1\selenium-rc\

JavaClient if you have renamed the folders as mentioned in Chapter XX)

You can simply open the File Explorer and drag and drop the JAR fi les to the lib folder:

The Eclipse IDE 163

Add JARs to the build-path of the Project

 1. Right click Project and Click Properties option

 2. Select Java Build Path option and Libraries tab

Click “Add JARs..” button and select all the JAR fi les under ‘lib’ folder and click OK (*7)

This will add JAR fi les to the Project classpath (*8)

164 Selenium

The Eclipse IDE 165

Create folder for Source files

Create folder in project where we will keep all the Test Scripts and Data

Right Click on project, select New – Source Folder, give name as “test”, click Finish.

166 Selenium

Create folder for scripts

Create a Package within the source folder. Right click on ‘test’ select New – Package option, name

as ‘script’. Click on Finish.

The Eclipse IDE 167

Create Folder for data files

Create folder under the ‘test’ where we will keep the data fi les, name as ‘data’.

168 Selenium

 Eclipse Shortcuts

Table 1. Navigation

Shortcut Description

CTRL + SHIFT + R Open / Search for resources, e.g. fi les

CTRL + SHIFT + T Open / Search for Types

CTRL + T Used on a method or class shows the whole inheritance tree, for

example all methods which implement an interface.

STRG + O In place outline view (displayed in editor), allows to search directly for

elements in the selected fi le via type-ahead

ALT + LEFT ARROW KEY or

ALT + RIGHT ARROW KEY

Go to prev/ next editor position in history

Ctrl-PageUp/PageDown Previous/next tab

F3 Go to declaration of this variable

CTRL + SHIFT + P Go to matching bracket

CTRL + Q Go to editor area and position the cursor at the last changed position

Table 2. Search

Shortcut Description

Ctrl + . Go to next problem

Ctrl + , Go to previous problem

F3 on a variable Goto Declaration of this variable

F4 on a variable Show type hierarchy

Strg + J , Strg +k Incremental search, fi nd next

STRG + SHIFT + G Search for reference in the workspace

Table 3. Run

Shortcut Description

Ctrl F11 Run last launched

Alt + Shift + X - J Run as Java application

Table 4. Handling the editor

Shortcut Description

CTRL + 1 Quickfi x, dependend on cursor position

F12 Focuses the editor (especially helpful if you working with Fast Views

(Contd.)

The Eclipse IDE 169

Ctrl + M Maximize Java editor

CTRL + Shift + F Format source code

CTRL + Shift + O Organize the imports/Will import the missing imports.

CTRL + Shift + S Source generation related operations such as creating getter/setter

CTRL + Q Last edited position

Table 5. Arrow Keys

Shortcut Description

CTRL + Left Move one element to the left

CTRL + Right Move one element to the right

CTRL + ALT + Up/Down Copy line

ALT + Up / Down Move line up / down

ALT + SHIFT Up / Down Select the previous / next syntactical element

ALT + SHIFT Up / Down / Left / Right Extending / Reducing the selection of the previous / next

syntactical element

CTRL + Up / Down Scroll up / down a line in the editor

Table 6. Delete

Shortcut Description

Ctrl + D Deletes line

STRG + SHIFT + DELE Delete until end of line

Ctrl + DELE Delete next element

Ctrl + BACKSPACE Delete previous element

Table 7. Variable assignment

Shortcut Description

Ctrl + 2 + L Assign statement to new local variable

Ctrl + 2 + F Assign statement to new fi eld

Table 8. Coding

Shortcut Description

Shift + F2 Call the Javadoc for the selected type / class / method

Alt+Shift + N + Letter Type shortcut for the command, e.g. njc to create a new Java

class or npip to create a new Plugin project.

Alt + Shift + Z Surround block with try and catch

Table 4. (Contd.)

170 Selenium

Table 9. Refactoring

Shortcut Description

ALT- SHIFT +R Rename

ALT- SHIFT +R Quick refactoring menu

ALT- SHIFT + T Opens the quick refactoring menu

Table 10. Debugging

Shortcut Description

F11 Debug last run

Ctrl + Shift + B Toggle breakpoint

F5 Single Step (Down)

F6 Single Step (Jump)

F7 Up

EXERCISES

 1. What is the Eclipse platform?

 2. What is a project in Eclipse?

 3. How can I import a project into Eclipse?

 4. What is a plug-in in Eclipse?

 5. How does a java program compile in Eclipse/

 6. Where can I fi nd the class fi les?

 7. What are the imported Jar fi les in the class path?

RUNNING A TEST USING

THE JUNIT EXPORT FROM

SELENIUM-IDE

17

 Introduction

In this section we are going to export the recorded script in IDE, which is in HTML format to JUnit,

and then run it in Eclipse.

 Export an IDE script as a JUnit test

Open the script that you want to run in RC in Selenium IDE fi rst.

172 Selenium

Select TC_GE_EE.html and it will be loaded as below.

Change the format of the script to JUnit3.

Running a Test Using the JUnit Export from Selenium-IDE 173

This is open the Source Tab with JUnit code as below.

Copy this code and you can save it temporarily as we prepare Eclipse to run this JUnit code.

 Create a New Class in Eclipse

All test code for Java needs to created as new class so we will create new class under the selected

project. File � New � Class

174 Selenium

New Class wizard window will appear where provide the name of the Java class, we prefer to keep

the name same as what we gave in IDE to avoid confusion later.

Running a Test Using the JUnit Export from Selenium-IDE 175

When you press Finish the following empty class will be created with default code as below:

Now we need to add the code from Source tab of IDE to Eclipse.

Overwrite the default content of the Eclipse class fi le with the copied code from IDE.

As you can see there is an error displayed in Eclipse with ‘x’ sign on red color, if you also see a

bulb then it means that Eclipse has suggestion to fi x it. Just hover your mouse on ‘X’ and you will

see details of the error.

176 Selenium

You can see the suggestion to fi x the error by clicking on the ‘x’ sign

In this case we know that the package name should be ‘script’ so we select the second option and

the script is updated accordingly.

Running a Test Using the JUnit Export from Selenium-IDE 177

Now we don’t see any red ‘x’ however an ‘!’ sign in yellow background is shown. These are

warnings and hover your mouse on the ‘!’ sign to see the details.

Click on the yellow ‘!’ sign to see the suggestions from Eclipse

Depending upon what works best for you, you can select the fi x for the warning. We suggest you

select “Organise imports”. The code will be fi xed accordingly as below:

178 Selenium

Now you can save your code by choosing Ctrl+S.

 Run the JUnit test

Notice the elements of the class on the package explorer view:

Right click on the fi le and select Run As � JUnit Test

The test does not run and the results are displayed in the JUnit tab and highlighted in red color

which indicates error:

Please evaluate the error and see that the failure trace shows that java.lang.RuntimeException:

Could not contact Selenium Server; have you started it on ‘localhost:4444’ ?

It means that the Selenium Server is not running. Let’s start the server and run the test again. The

test should launch the two Firefox windows – one for RC and other for AUT.

Running a Test Using the JUnit Export from Selenium-IDE 179

 Seeing the Test Running

The output of the test would appear in the JUnit log in green color, which indicates successful

execution of test.

Check the Results

Run the Test in Debug Mode

You can double click on the left frame of the editor window and add the toggle break-point.

180 Selenium

Don’t run it this time, debug it using the menu option Debug As � JUnit Test.

 Execute Some More Imported Tests from IDE

Similarly import few earlier test cases that you have created and execute them using JUnit.

Running a Test Using the JUnit Export from Selenium-IDE 181

EXERCISES

 1. What is JUnit, how is it different from Java class?

 2. Is Selenium RC server needs to be running while running JUnit script?

 3. How do you distinguish between compilation errors and warnings/

 4. How do you know whether your JUnit code has run or failed?

 5. Which option needs to be enabled to change the format of IDE code?

RUNNING A TEST USING

THE TESTNG EXPORT

FROM SELENIUM-IDE

18

 Setting up TestNG in Eclipse

Go to URL http://testng.org/doc/download.html

Running a Test Using the TestNG Export from Selenium-IDE 183

Installing TestNG JAR file

As fi rst, we can download the latest testNG zip fi le from the link #1 and install it manually.

Unzip the testng-xxxx.zip (in this case testng-6.0.1.zip)

Navigate through the zipped folders to fi nd testng-6.0.1.jar fi le.

Copy this fi le in the ‘lib’ folder of your Eclipse Workspace.

184 Selenium

Now go to Eclipse and right click on the Project to select properties, select Java Build Path

option.

Click on “Add JARs…” option, in the opened window expand the ‘lib’ folder and select the newly

added jar for TestNG. Click on OK-OK to return to Eclispe workspace.

Running a Test Using the TestNG Export from Selenium-IDE 185

TestNG Plug-in for Eclispe

For Eclipse plug-in and to ensure seamless integration with Eclipse, we will use the link #2. As we

are using the higher version of Eclipse, we will use http://beust.com/eclipse , copy this URL.

Launch Eclipse and select menu option Help � Install New Software…

186 Selenium

Paste the URL copies in the above step and wait for “TestNG” to appear in the list. Select the

checkbox and click on Next button.

Select TestNG (plug-in for Eclipse) and click on Next button.

Running a Test Using the TestNG Export from Selenium-IDE 187

Read and accept the License and click on Finish.

188 Selenium

Running a Test Using the TestNG Export from Selenium-IDE 189

Installation would start, let it continue

You might get warning like one below, click OK to continue

At the end of installation, you will get the following message, click on Yes to restart Eclipse.

190 Selenium

Now, we are ready to run Tests in TestNg format in Eclispe. Let’s try one.

Import IDE Tests In Testng Format

Similar to JUnit in the previous Chapter, we will Open the script that we want to run in RC in

Selenium IDE fi rst.

Select TC_GE_EE.html and it will be loaded as below

Running a Test Using the TestNG Export from Selenium-IDE 191

Change the format of the script to TestNG

This would open the source tab with converted code in TestNG. Copy the code on clipboard.

192 Selenium

Note: As a good practice, it is always advisable to switch back the format to HTML

Now switch to Eclipse and create a new Class for this test as ‘TC_GE_EE_TNG’. This will give a

blank class with default package.

Paste the TestNG code that you copied from IDE.

Running a Test Using the TestNG Export from Selenium-IDE 193

Now those are lots of errors, let fi x them. Please make following changes to the copied code:

 1. Change the package name to the package that you have created ‘script’.

 2. Change the class name to match the fi le name ‘TC_GE_EE_TNG’

 3. Change the class extension from ‘SeleneseTestNgHelper’ to ‘SeleneseTestCase’

This should remove all the errors and you might be left with couple if warnings.

You can leave the warnings to comment those line to get rid of them.

194 Selenium

Now we are error free and warnings free as there are no compilation errors, we can save the test

case by File – Save or Control + S.

For running the test, right click on the fi le and select Run As � TestNG Test

The Test did not run!! What happened? Let’s investigate…

Double click on the tab ‘Results of running class TC_GE_EE_TNG’ to open the results page

Running a Test Using the TestNG Export from Selenium-IDE 195

196 Selenium

It seems we got java “NullPointerException” error, this is a typical run-time error and it doesn’t

give us much to debug the error.

If you compare with the JUnit test script, you will notice that this TestNG script is missing the

setup method. Let’s add that

 public void setUp() throws Exception {

 setUp(“http://www.ge.com/”, “*fi refox”);

 }

Let’s run again, but the error NullPointerException error persists. We got to be doing something

wrong. Notice that gray color @Test in the code that we copied from IDE, it was not there in JUnit

code. There is our lead, these are called annotation of TestNG, let’s investigate further…

Running a Test Using the TestNG Export from Selenium-IDE 197

What is TestNG?

TestNG is next step towards writing test cases, here ‘NG’ stands for Next Generation. TestNG is

a testing framework derived from JUnit and NUnit and it has taken the best from both and also

addressed their shortcomings. Here are certain features of TestNG: � Annotations. Basically instructions for the defi ned set of code. � Test that your code is multithread safe. � Using XML do Flexible test confi guration. � Support for data-driven testing (with @DataProvider). � Powerful execution model (no more TestSuite). � Dependent methods for application server testing. � Supported ignore, time, parameters, Suite and exception Test. � Supported by Eclipse, IDEA, Ant, Maven, Netbean, Hudson and so on. � Test that your source code is multithread-safe. � Never superfl uous code, No required extend specifi ed class. � Easy to Migrate from JUnit

We need to focus on the Annotations feature of TestNG, let’s have a closer look.

What are Annotations?

As mentioned before Annotations are kind of an instruction for the set of code. A TestNG test can

be confi gured by @BeforeXXX and @AfterXXX annotations which allows to perform some Java

logic before and after a certain point.

Following is the list of all the annotations with a brief explanation. This will give you an idea of

the various functionalities offered by TestNG: � @BeforeSuite: The annotated method will be run before all tests in this suite have run. � @AfterSuite: The annotated method will be run after all tests in this suite have run. � @BeforeTest: The annotated method will be run before any test method belonging to the

classes inside the <test> tag is run. � @AfterTest: The annotated method will be run after all the test methods belonging to the

classes inside the <test> tag have run. � @BeforeGroups: The list of groups that this confi guration method will run before. This

method is guaranteed to run shortly before the fi rst test method that belongs to any of these

groups is invoked.

198 Selenium � @AfterGroups: The list of groups that this confi guration method will run after. This method

is guaranteed to run shortly after the last test method that belongs to any of these groups is

invoked. � @BeforeClass: The annotated method will be run before the fi rst test method in the current

class is invoked. � @AfterClass: The annotated method will be run after all the test methods in the current

class have been run. � @BeforeMethod: The annotated method will be run before each test method. � @AfterMethod: The annotated method will be run after each test method.

Other important Annotations are:

@DataProvider(name = “XYX”) Marks a method as supplying data for a test method. The an-

notated method must return an Object[][] where each Object[] can be assigned the parameter list

of the test method. The @Test method that wants to receive data from this DataProvider needs to

use a dataProvider name equals to the name of this annotation.

name The name of this data provider. If it’s not supplied, the name of this data provider will

automatically be set to the name of the method.

@Parameters Describes how to pass parameters to a @Test method.

value The list of variables used to fi ll the parameters of this method.

Updating the Imported Testng Script with Annotations

Let’s use the @BeforeXXX and @AfterXXX annotation to fi x our imported TestNG script. In this

case we will use @BeforeTest and @AfterTest.

As we have learned that @BeforeTest code runs before the actual test code and @AfterTest runs

the code after the test. It makes sense to start the Selenium server before running the test, as it is the

prerequisite. Also the browser needs to be setup in this section. Also, the browser windows need to

be closed after the test has run so we will take care of it in the @AfterTest annotated code. We have

incorporated these changes to our imported code.

Running a Test Using the TestNG Export from Selenium-IDE 199

Please see below for the updated code.

200 Selenium

Now, let’s run the test. The Results will be displayed in the appropriate tab as below:

What is Testng xml Configuration File?

A confi guration fi le, testng.xml needs to be created for every TestNG script, in Eclipse it is created

by default. You can typically fi nd it under test-output folder. If you wish to run the TestNG script

from commands line then you will need this fi le. The format of this confi guration fi le is as below:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE suite SYSTEM “http://testng.org/testng-1.0.dtd”>

<suite verbose=”0” name=”Default suite”>

<test verbose=”2” name=”Default test” preserve-order=”false”>

<classes>

<class name=”script.TC_GE_EE_TNG”/>

</classes>

</test>

</suite>

To run the test, please compile the class TC_GE_EE_TNG and then invoke TestNG with the

following command:

java -ea -classpath .; testng-6.0.1.jar org.testng.TestNG testng.xml

Parallel Testing Using Testng

As testing projects progress and the requirements are added, it is not uncommon to see organizations

running thousands of tests. Not all these tests are similar in complexity and some of these tests take

a long time to run. In terms of code optimization one can not do much about it because they just

happen to test code that takes a long time to execute. This can become a potential bottleneck and

jeopardize the testing project.

Running a Test Using the TestNG Export from Selenium-IDE 201

TestNG’s parallel mode comes in handy in those situations, but on a larger scale, you need

distributed testing. You can run your test cases in parallel by using the parallel attribute for Test

Suite.

The parallel attribute on the <suite> tag can take one of following values:

<suite name=”My suite” parallel=”methods” thread-count=”5”>

<suite name=”My suite” parallel=”tests” thread-count=”5”>

<suite name=”My suite” parallel=”classes” thread-count=”5”> � parallel=”methods”: TestNG will run all your test methods in separate threads. Dependent

methods will also run in separate threads but they will respect the order that you specifi ed.

 � parallel=”tests”: TestNG will run all the methods in the same <test> tag in the same thread,

but each <test> tag will be in a separate thread. This allows you to group all your classes

that are not thread safe in the same <test> and guarantee they will all run in the same thread

while taking advantage of TestNG using as many threads as possible to run your tests.

 � parallel=”classes”: TestNG will run all the methods in the same class in the same thread, but

each class will be run in a separate thread.

Additionally, the attribute thread-count allows you to specify how many threads should be

allocated for this execution.

Note: the @Test attribute timeOut works in both parallel and non-parallel mode.

You can also specify that a @Test method should be invoked from different threads. You can use

the attribute threadPoolSize to achieve this result:

@Test(threadPoolSize = 3, invocationCount = 10, timeOut = 10000)

public void testServer() {

In this example, the function testServer will be invoked ten times from three different threads.

Additionally, a time-out of ten seconds guarantees that none of the threads will block on this thread

forever.

EXERCISES

 1. What does TestNG name signifi es?

 2. In order to run TestNG scripts in Eclipse, what else do we need to do in addition to

adding TestNGxxx.jar fi le?

202 Selenium

 3. What are annotations in TestNG?

 4. Can I write @BeforeTest annotation after @Test code block?

 5. Where is testing.xml fi le is created? Can you edit that?

 6. What would be ideal code as part of @BeforeTest and @AfterTest annotations?

DATA DRIVEN TESTING

USING TESTNG

19

 What is Data Driven Testing?

Test Data is one of the most important aspect of testing, be it manual or automation. There are

several testing techniques that focus on preparing test data set for e.g. equivalence partitioning,

boundary value analysis. Test data can be said to be ideal if for the minimum size of data set all

the application errors get identifi ed. Try to prepare test data that will incorporate all application

functionality, but not exceeding cost and time constraint for preparing test data and running tests.

When we record a test case it is for one set of data identifi ed for the application workfl ow.

We can record/update the same test and run it again for a different set of data. However when

the combination of this data grows it calls for data driven testing. In Data Driven Testing we can

generate multiple test scenarios with different data set using the same test.

For example suppose you want to create an account in yahoo for 1000 people, we can put all the

user information an excel fi le and use a single script to do exactly the same action on yahoo website.

204 Selenium

 Advantages of TestNG Framework in Data driven testing

Selenium does not provide any out of box solution or framework for data driven testing. TestNG

makes it easy to implement data driven testing in Selenium. The @DataProvider annotation in

TestNG provides the basic engine for this. The data listed or retrieved in the DataProvider feeds

the data to the test method. So effectively the method in Test annotation runs for each data set in

DataProvider.

For e.g.

//The following method will provide data to any test method that declares that it’s Data Provider.

This is named “dp1”

@DataProvider(name = “dp1”)

public Object[][] createData() {

 return new Object[][] {

 { “Ashish”, new Integer(10) },

 { “Aditya”, new Integer(11)},

 };

}

//The following test method declares that its data should be supplied by the Data Provider named

as “dp1”

@Test(dataProvider = “dp1”)

public void verifyData(String n1, Integer n2) {

 System.out.println(“The data for test is: “ + n1 + “ and “ + n2);

}

This will print:

The data for test is Ashish and 10

The data for test is Aditya and 11

In the above example we have hard-coded the data in the createData() method which returns

two dimensional array of string and integer data. The test method verfyData() is linked to the data

provider by the parameter dataProvider=”dp1”.

However in the practical scenarios data set will be large and it might not be a good idea to hard-

code values in the dataProvider class. Anyways, in order to have fl exibility in our automation it

would be better to keep the test data separate than the test automation code. The test data can be

stored in a simple spreadsheet or XML or it can be stored in some back-end database.

Data Driven Testing Using TestNG 205

 Test Automation Scenario for Data Driven Testing

Let’s try to automate the following:

 1. Open website http://www.fl ipkart.com

 2. Search for Book titled as “The Time Of My Life”

*2

 3. On the result page, click on the matching book’s title to open the book details.

*3

 4. On the book details page, confi rm the following:

 a. The Author name is “Cecelia Ahern”

 b. The ISBN-13 Number is “9780007463305”

 c. The Book summary is “The stunning and magical new novel from the Number One

bestselling author”

206 Selenium

*4a

*4b

*4c

Data Driven Testing Using TestNG 207

Recorded IDE Script

The equivalent IDE script would be as below:

If we were to run this script for different set of data then we will have to record and playback the

same test for that data set. It would defi nitely not be good use of IDE and of our time. If we need to

loop then we should work on Java (or other high level languages).

Converted Java (TestNG) Code

The TestNG format code for the above IDE script would be as below:

package com.example.tests;

import com.thoughtworks.selenium.*;

import org.testng.annotations.*;

import static org.testng.Assert.*;

import java.util.regex.Pattern;

208 Selenium

public class Flipkart extends SeleneseTestNgHelper {

 @Test public void testFlipkart() throws Exception {

 selenium.open(“http://www.fl ipkart.com/”);

 selenium.click(“id=fk-menuSelIcon”);

 selenium.click(“//div[@id=’fk-mI’]/ul/li[2]/div”);

 selenium.type(“id=fk-top-search-box”, “The Time Of My Life”);

 selenium.click(“name=Search”);

 selenium.waitForPageToLoad(“30000”);

 selenium.click(“link=The Time Of My Life”);

 selenium.waitForPageToLoad(“30000”);

 verifyTrue(selenium.isTextPresent(“Cecelia Ahern”));

 verifyTrue(selenium.isTextPresent(“9780007463305”));

 verifyTrue(selenium.isTextPresent(“The stunning and magical new novel from the Number One

bestselling author”));

 }

}

Please refer to the previous chapters to see the changes needed in order to run this code successfully

in Eclipse.

 The Data Set

We would like to run our test for the following data set:

bookTitle authorName bookSummary isbnNumber

The Time Of My

Life

Cecelia Ahern The stunning and magical new novel from

the Number One bestselling author

9780007463305

New Moon Stephenie Meyer I stuck my fi nger under the edge of the

paper and jerked it under the tape. ‘Shoot,’ I

muttered when the paper sliced my fi nger.

9781904233886

A Dance With

Dragons

George R R

Martin

The future of the Seven Kingdoms hangs in

the balance.

9780007455997

Code Name God Mani Bhaumick The split between man and maker has long

been widening, and many acknowledge that

the wedge is science

9780144001033

The Passionate

Programmer

Chad Fowler Success in today’s IT environment requires

you to view your career as a business

endeavor. In this book, you’ll learn how to

become an entrepreneur, driving your career

in the direction of your choosing.

9789350234310

Data Driven Testing Using TestNG 209

If we store this data in MS-Excel, it would look as below:

Please note that the fi le name is “book_data1.xls” and the sheet name is “DataPool”. Also we

have two cells in addition to the data labeled “bookTestData1”. These cells are to enable us to

identify the test data without hard coding on the number of rows and columns, simply by moving

around these labels we can change the scope of Test data.

Fetching the data

We will need to incorporate some way to fetch this data to our DataProvider annotation method

which will be passed to the Test annotation method (as described in TestNg section above)

Here we plan to use Java Excel API (http://jexcelapi.sourceforge.net/) to fetch this data. We will

get jxl.jar library for this and will get access to the MS Excel related methods such as:

Workbook.getWorkbook(new File(fi leName));

workbook.getSheet(sheetName);

sheet.fi ndCell(labelName);

210 Selenium

This will help us traverse through the MS Excel fi le and fetch the data. The entire code is as

below:

// The method will accept following 3 parameters;

// 1. xlFilePath - the path of XL fi le/workbook containing the data, the

// path is relative to java project

// 2. sheetName- name of the xl sheet that contains the table

// 3. labelName- Name of the label between which you wish to fetch the

// data

// The function returns a String type array of array, 2-dimentional

// array. The in-line comments below for explanation of the code.

public String[][] getTableArray(String xlFilePath, String sheetName, String labelName){

// Initialize the array as NULL

 String[][] tabArray=null;

// Put the code in try-catch block to trap any exceptions

 try{

// The workbook object will hold the handle to the Excel fi le path/name

 Workbook workbook = Workbook.getWorkbook(new File(xlFilePath));

// The sheet object will get handle to the Excel sheet from worksbook handle

 Sheet sheet = workbook.getSheet(sheetName);

// The cell object will fi nd the fi rst cell within the sheet with mentioned label

 Cell tableStart=sheet.fi ndCell(labelName);

// Initialize the counters

 int startRow,startCol, endRow, endCol,ci,cj;

// As we have the fi rst cell , we can get the start row/column

 startRow=tableStart.getRow();

 startCol=tableStart.getColumn();

// Same approach for fi nding out the last cell with label

// fi ndCell(java.lang.String contents, int fi rstCol, int fi rstRow, int lastCol, int lastRow, boolean reverse)

 Cell tableEnd= sheet.fi ndCell(labelName, startCol+1,startRow+1, 100, 64000, false);

// This will give us the last row and last column

 endRow=tableEnd.getRow();

 endCol=tableEnd.getColumn();

// As now we have start row/column and end row/column, we can get size of the array declared in line one

 tabArray=new String[endRow-startRow-1][endCol-startCol-1];

Data Driven Testing Using TestNG 211

// Initialize the counter for rows

 ci=0;

// Outer for loop for traversing through the rows

 for (int i=startRow+1;i<endRow;i++,ci++){

// Initialize the counter for column

 cj=0;

// Inner for loop for traversing through the columns

 for (int j=startCol+1;j<endCol;j++,cj++){

// Populate the array element with the data for the row/column combination

 tabArray[ci][cj]=sheet.getCell(j,i).getContents();

 }

 }

 }

 catch (Exception e) {

// Catch and print the exception

 System.out.println(“error in getTableArray()” + e.getMessage());

 }

// Return the populated array to the calling function

 return(tabArray);

 }

The Required Jars

 1. testng.jar should be in the class path. (http://testng.org/doc/download.html)

 2. testng eclipse plug-in must be installed. Refer to previous chapter to install this plug-in.

 3. jxl.jar should be in the class path Java Excel API. Download the jexcelapi.zip, unzip to get

the jxl.jar (http://sourceforge.net/projects/jexcelapi/fi les/jexcelapi/)

 4. Selenium-server.jar and selenium-java-client-driver.jar (As part of the Selenium RC

installation)

 5. junit.jar (selenium classes need junit) fi les must in class path. (https://github.com/KentBeck/

junit/downloads)

212 Selenium

The data fi le book_data1.xls should be kept at test\\resources\\data\\book_data1.xls

The path mentioned is relative to the project.

 Parametrizing the Test Code

Now we need to prepare the Test code which will accept the data from the excel fi le. The fastest

and ideal approach is that we record the test for one set of data in IDE and get the TestNG format

converted code. We already did this in the steps above. We need to remove the hard-coded values

and parameterize our code. Please note that we need to maintain the order of the variables that we

use to match the data in the Excel fi le. Let’s see how we do that as below:

// @Test public void testFlipkart() throws Exception {

 @Test public void testFlipkart(String bookTitle, String authorName, String bookSummary, String

isbnNumber) throws Exception {

 selenium.open(“http://www.fl ipkart.com/”);

Data Driven Testing Using TestNG 213

 selenium.click(“id=fk-menuSelIcon”);

 selenium.click(“//div[@id=’fk-mI’]/ul/li[2]/div”);

// selenium.type(“id=fk-top-search-box”, “The Time Of My Life”);

 selenium.type(“id=fk-top-search-box”, bookTitle);

 selenium.click(“name=Search”);

 selenium.waitForPageToLoad(“30000”);

// selenium.click(“link=The Time Of My Life”);

 selenium.click(“link=”+bookTitle);

 selenium.waitForPageToLoad(“30000”);

// verifyTrue(selenium.isTextPresent(“Cecelia Ahern”));

 verifyTrue(selenium.isTextPresent(authorName));

// verifyTrue(selenium.isTextPresent(“The stunning and magical new novel from the Number One

bestselling author”));

 verifyTrue(selenium.isTextPresent(bookSummary));

// verifyTrue(selenium.isTextPresent(“9780007463305”));

 verifyTrue(selenium.isTextPresent(isbnNumber));

 }

 The end-to-end Code

When we put together all this along with the confi guration of Eclipse for the jar fi les, we get the

following code.

//Data Driven Test Framework using Selenium and TestNG

//This Test performs search for the books and looks for the attributes on the result page

//Data is read from the Excel SS - book_data1.xls

package script;

import com.thoughtworks.selenium.*;

import org.openqa.selenium.server.SeleniumServer;

import org.testng.annotations.*;

import java.io.File;

import jxl.*;

public class DDTFlipkart extends SeleneseTestCase{

214 Selenium

 @BeforeTest

 public void setUp() throws Exception {

 SeleniumServer seleniumserver=new SeleniumServer();

 seleniumserver.boot();

 seleniumserver.start();

 Integer port = 4444;

 String browserString= “*fi refox”;

 String url = “http://www.fl ipkart.com”;

 selenium = new DefaultSelenium(“localhost”,port,browserString,url) {

 public void open(String url) { commandProcessor.doCommand(“open”, new String[] {url,”true”});};

 };

 selenium.start();

 selenium.setTimeout(“120000”);

 selenium.open(“/”);

 selenium.windowMaximize();

 selenium.windowFocus();

 }

 @DataProvider(name = “DP1”)

 public Object[][] createData1() {

 Object[][] retObjArr=getTableArray(“test\\resources\\data\\book_data1.xls”,

 “DataPool”, “bookTestData1”);

 return(retObjArr);

 }

 @Test (dataProvider = “DP1”)

 public void testFlipkart(String bookTitle,

 String authorName, String bookSummary, String isbnNumber) throws Exception {

 selenium.open(“/”);

 selenium.click(“id=fk-menuSelIcon”);

 selenium.click(“//div[@id=’fk-mI’]/ul/li[2]/div”);

 selenium.type(“id=fk-top-search-box”, bookTitle);

 selenium.click(“name=Search”);

 selenium.waitForPageToLoad(“120000”);

 selenium.click(“link=”+bookTitle);

 selenium.waitForPageToLoad(“120000”);

 verifyTrue(selenium.isTextPresent(authorName));

Data Driven Testing Using TestNG 215

 verifyTrue(selenium.isTextPresent(bookSummary));

 verifyTrue(selenium.isTextPresent(isbnNumber));

 }

 @AfterClass

 public void tearDown(){

 selenium.close();

 selenium.stop();

 }

 public String[][] getTableArray(String xlFilePath, String sheetName, String tableName){

 String[][] tabArray=null;

 try{

 Workbook workbook = Workbook.getWorkbook(new File(xlFilePath));

 Sheet sheet = workbook.getSheet(sheetName);

 Cell tableStart=sheet.fi ndCell(tableName);

 int startRow,startCol, endRow, endCol,ci,cj;

 startRow=tableStart.getRow();

 startCol=tableStart.getColumn();

 Cell tableEnd= sheet.fi ndCell(tableName, startCol+1,startRow+1, 100, 64000, false);

 endRow=tableEnd.getRow();

 endCol=tableEnd.getColumn();

 tabArray=new String[endRow-startRow-1][endCol-startCol-1];

 ci=0;

 for (int i=startRow+1;i<endRow;i++,ci++){

 cj=0;

 for (int j=startCol+1;j<endCol;j++,cj++){

 tabArray[ci][cj]=sheet.getCell(j,i).getContents();

 }

 }

 }

 catch (Exception e) {

 System.out.println(“error in getTableArray()” + e.getMessage());

216 Selenium

 }

 return(tabArray);

 }

}//end of class

The output result will be displayed as below:

EXERCISES

 1. What is need for data driven testing?

 2. Where can the data for testing be stored?

 3. Which annotation of TestNG support data driven testing?

 4. How can we avoid hard-coding of rows/columns of data fi le?

 5. How can IDE help in data driven considering it will be an RC (TestNG) code?

SELENIUM GRID

20

 What is Grid Computing

Grid Computing is an age old computer engineering concept, its classic defi nition can be “grid

computing is a form of distributed computing in which an organisation (business, university,

etc.) uses its existing computers (desktop and/or cluster nodes) to handle its own long-running

computational tasks.”

The above concept has been extended to create Selenium Grid, which is nothing, but topology of

various RCs controlled by a HUB RC.

 Need for Selenium Grid

As our test suite grows in size and complexity, it demands more power from the RC server and also

the execution time grows considerably. Depending upon our hardware confi guration and stability

we can be certain to some extent that our RC server will not freeze or hang (however that can

happen).

Even though we might be certain about stability of RC server, we might want to divide our run

time across multiple RCs, another requirement could be that of parallel running the same tests

for various combination of operating systems/browsers.So Selenium Grid extends Selenium RC

by running tests on different servers in parallel. It reduces the time, and subsequently the cost, for

testing in various browsers under multiple operation systems.

In Grid topology, various copies of Selenium RC servers are controlled by a central HUB. The

HUB and Spoke architecture conceptually displays as below:

218 Selenium

Selenium Grid architecture:

The testers who write the test automation scripts need not worry about the underlying architecture

of the Grid. So, if testers can write and run automation scripts on RC then they don’t need to learn

Selenium Grid 219

the intricacies of Selenium Grid, which in fact is nothing but network topology of various RCs.

However, Selenium Grid itself does not provide a parallel running strategy. If you want to take

advantage of Selenium Grid, you need to write your selenium tests in parallel mode.

 TestNg Configuration for Parallel Execution

We are using TestNG as the scripting language and test framework as TestNG is designed to simplify

a broad range of testing needs and to extend the JUnit. Example of a simple TestNG confi guration

fi le is shown as below:

<!DOCTYPE suite SYSTEM “http://testng.org/testng-1.0.dtd”>

<suite name=”Suite1” parallel=”methods” thread-count=”2”>

<test name=”Testcase” >

 <classes>

 <class name=”com.test.workfl ow.device.testcase”/>

 </classes>

 </test>

</suite>

The <suite> tag can represent one TestNG XML fi le containing one or more tests. The <test> tag

allows a test to contain one or more TestNG classes. The <class> tag signifi es that a TestNG class

can contain one or more test methods. The test method is defi ned in Java fi les, as shown below:

@Test

public void testMethod()

{

}

 Installing GRID

You need to have Java JDK version 5+ installed on your system. Download from link http://www.

java.com/en/download/index.jsp. Please refer to chapter 3 for more details.

To run Grid you need to have Ant (Another Neat Tool from Apache) installed, version 1.7+.

Download Ant from Binary distribution link http://ant.apache.org/bindownload.cgi. Follow the

steps as below:

 1. Download the binary distribution zip fi le for e.g. apache-ant-1.7.1-bin.zip

 2. Unzip the fi le to your preferred folder where you wish to install Ant for e.g. c:\ant\

220 Selenium

 3. Add the ‘bin’ folder to your environment PATH variable. For e.g. C:\ant\apache-ant-1.7.1\

bin\ (Please ensure you have included the trailing ‘\’ in the path, at times it can create

problem when not included). Close the command prompt if any.

 4. Try command ant –version to see if Ant has been installed properly. You will get message

‘Apache Ant version 1.x.x compiled on date’.

Now we are ready to install Grid. Download the latest binary from link http://selenium-grid.

seleniumhq.org/download.html for e.g. selenium-grid-1.0.8-bin.zip and unzip the content to the

folder in which you would like to install Grid for e.g. c:\selenium-grid-1.0.8

Selenium Grid 221

To check whether Grid has been installed properly, go to the Grid installation directory in

command prompt and type command “ant sanity-check” and you shall get message conveying that

the build was successful.

 Configuring GRID

Launching HUB

Open command prompt and go to the Selenium Grid installation directory and type command:

Title HUB

Ant launch-hub

The Title command is to set the Title of the commands prompt to make it easier to identify the

window later.

At this point we can view the Grid console on http://localhost:4444/console as below:

222 Selenium

As now RCs are available, we will add one.

Launching RC

Open new command prompt and type following commands:

Title RC1

Ant launch-remote-control

Now check on the Hub Console, we have one Remote Control available:

Please note that the RC was launched as default port 5555 and browser *fi refox.

If we wish to add more RCs to hub, we can do it one by one as per the required confi guration.

For e.g. if we want to add a node to the same machine to run Internet Explorer browser then we call

following commands in the new commands prompt:

Title RC2_IE

Ant –Dport=5556 –Denvironment=*ieplore launch-remote-control

Selenium Grid 223

Please note that we have given next port number as 5556 and browser as Internet Explorer.

If you are adding this RC at another machine one LAN then add two more parameters as –Dhost

and –DhubURL.

For e.g.

ant -Dhost=192.161.118.106 DhubURL=http://192.161.118.75:4444

 -Denvironment=*fi refox launch-remote-control

For each remote control, set the port to something different; you can’t have two remote controls

using the same port.

 � Dport is the port that the Hub will use to talk to the remote control. This must be unique.

 � Denvironment is the environment you’ll be using. Set it to something in the available

environments list (check the Hub console in the browser).

 � Dhost is the IP address (or name) of the machine that is running the remote control.

 � DhubURL is the full URL (including http:// and the port) of the machine that’s running the

Hub

Now we should have this newly added RC visible in the console as below:

224 Selenium

Simply following this process more RCs can be added to the Grid.

If you wish remove some machine from the available RC list then you can stop and shutdown

that RC. However if that RC has crashed then you can remove it from your grid by the command

below in browser:

http://<hub ip address/machine name>:4444/registration-manager/unregister?host=<node

machine>&port=<Port of the frozen RC>&environment=<environment setup>

This will unregister it from the hub. For e.g http://localhost:4444/registration-manager/unregist

er?host=locahost&port=5556&environment=*iexplore

 Running Test on Grid

While creating our tests for Grid we need to ensure that they are independent i.e. suppose if we need

to login before fi lling the registration page then we need to ensure that each of our test (which we

plan to run parallel on Grid) has login process before the registration test. We need to instruct the

test to run on Grid HUB, this can be done on the @setUp() method in our test as below:

 @BeforeTest

 public void setUp() throws Exception {

 Integer port = 4444;

 String browserString= “*fi refox”;

 String url = “http://www.qaagility.com”;

 selenium = new DefaultSelenium(“192.161.118.75”,port,browserString,url) {

 public void open(String url) { commandProcessor.doCommand(“open”, new String[]

{url,”true”});};

 };

 selenium.start();

 selenium.setTimeout(“120000”);

 selenium.open(“/”);

 selenium.windowMaximize();

 selenium.windowFocus();

 }

Where 192.161.118.75 is the IP Address of HUB Machine.

Selenium Grid 225

We need to utilize the parallel test execution option of TestNG which can be confi gured in the

TestNG.xml fi le as below:

<suite name=”TestEnvSuite” parallel=”classes” thread-count=”2” verbose=”1”>

<test name=”EETestBase”>

 <classes>

 <class name=”script.TC_Google_EE”></class>

 <class name=”script.TC_Yahoo_EE”></class>

</classes>

</test>

</suite>

EXERCISES

 1. Why do we need Grid?

 2. What is the default port number for the HUB?

 3. What is the default port number and browser for the fi rst RC?

 4. Where the Grid HUB related information can be saved in the tests?

 5. Why the tests that need to be run on grid in parallel needs to be independent?

 6. What is the use of TestNG while running tests on Grid?

SELENIUM TEST

MANAGEMENT USING

BROMINE

21

 What is Bromine?

Bromine is an open source QA tool that uses selenium RC as its testing engine.

It provides project management, OS/browser specifi cation, test-case creation as well as user

management.

Bromine substantially eases the process of creating, maintaining and running Selenium RC tests.

The tests are created with the custom Selenium IDE format and uploaded to Bromine. The test can

then be run on test machines (we refer to them as nodes) which are confi gured in Bromine.

Another nice thing about using bromine is now you can run your tests in other languages, not

just the Selenium IDE, which is limited to the IDE’s generated “Selenese” commands for tests. You

can export your IDE into PHP or Java, and then on the bromine server you can change the code as

per your requirements.

Its lofty aim is to be the open source alternative to commercial tools (such as HP Quality

Center).

 Installation

Prerequisites: � Java

Selenium Test Management Using Bromine 227

� Selenium RC

� Webserver (eg. Apache)

� MySQL database

By now, you must have got Java and Selenium RC, if not please refer to previous chapters.

For Apache webserver and MySQL database, easiest and most effi cient option is to use XAMPP

server, it gives Apache, MySQL, PHP (and Perl which we won’t use here) as a unit. (http://www.

apachefriends.org/en/xampp.html)

After you have taken care of these prerequisites, we can proceed with Bromine installation.

Download Bromine

� Download Bromine from http://brominefoundation.org/download.php?f=zipupdate_

v1.zip (or http://seleniumhq.org/download)

� Unpack and copy all fi les to your webroot. Bromine must be served directly from the

webroot!

� If you are using XAMPP this is the C:\xammp\htdocs directory. The fi le structure should

be:

 htdocs

 – cake

 – app

 – IDE-Formats

 – vendors

 – .htaccess

 – index.php

 – README

228 Selenium

Configure Apache Server and MySQL

 � From the XAMPP control panel, start the Apache server and MySQL

Selenium Test Management Using Bromine 229

 � Open http://localhost/phpmyadmin/ in browser, this will point to XAMPP SQL databases,

select ‘bromine’

 � Click on ‘Priviledges’ tab

230 Selenium

 � Click on Add a new User

Create new user using following information:

User name: Use test fi eld:/bromine

Host: Local/localhost

Password: Use text fi eld:/password of your choice

Retype: password of your choice

Database for user: chose option ‘Create database with same name and grant all privileges’

Click on ‘Go’ button at the bottom of the page.

 � Edit the PHP.ini fi le at C:\xampp\php, make following changes:

max_execution_time = 60001

max_input_time = 60001

magic_quotes_gpc = Off

 � Open the URL http://localhost/bromine/install.php and fi ll the form with following value:

Host: localhost

Username: root

Selenium Test Management Using Bromine 231

Password: as you wish

Database: bromine

 � Click on Install

 � You would get message that “Install Complete”

232 Selenium

Launching Bromine

 � Open URL http://localhost/ and enter Name/password to enter Bromine. ‘admin’/’admin’

as default values.

 � Once login, select default project (optional)

Selenium Test Management Using Bromine 233

 � This will take you inside the project and display screen as below:

 � If you don’t have a project (when you start there will not be any projects), you need to

create one as below:

Control Panel () � Projects � New Project

234 Selenium

Click on Submit to save.

Selenium Test Management Using Bromine 235

 � Let’s look at the Menu option Planning, this is where we can create Requirements and Test

Cases for the project

Using this option we can create Requirements and allocate Test Case to them. We can also

import Requirements/Test Case from CSV fi le. Example fi les as below:

236 Selenium

 � If we need to create Requirement from Menu option then go back to ‘Workspace’ ()

 � We can then edit to save the O.S./Browser requirement

 � We can then click on ‘Add Testcase’ link to add new test cases to this requirement.

Selenium Test Management Using Bromine 237

 � We can also create new test case from menu option Planning – Add Testcase and link to

Requirement (one or more)

238 Selenium

 � Now we can Edit the Testcase to add Testscript as there is no script uploaded.

 � We can add our IDE scripts to this test case, however we need to have them in Bromine

format. Refer to Chapter 8 for more details on adding new format to IDE. We will pickup

the formats from folder C:\xampp\htdocs\IDE-Formats

 � As we need the PHP format, we will use BR3.php.txt code and add that as new format to

IDE

Selenium Test Management Using Bromine 239

 � Subsequent to this, we can pick up any recorded script in IDE and convert to Bromine-PHP

format. This format code can be loaded to the Test case created in Bromine.

 Running Test case in Bromine

After you have converted the IDE script to PHP Code, you can save it to your preferred folder. Edit

the Testcase in which you would like to run this script and upload it.

240 Selenium

After the PHP Script has been uploaded, it can be viewed using the ‘View testscript’ link (Please

note, you can only view it here, editing is not possible… for editing you need to edit the script at

source fi le and then upload again)

In order to run this script you need to go to the Test Lab menu option. Since there is no RC

running, it will give you following screen with error:

Selenium Test Management Using Bromine 241

To fi x this we need to start the RC. After starting RC on machine, click on link ‘Clear the node

cache’ and the error should go away, however some warnings may remain if certain combination of

O.S./Browser that is part of our requirement does not exists.

242 Selenium

By clicking on the horizontal green arrow, we can run the test. While the tests run we can track

its progress.

Upon completion, you will get the Dashboard of Tests, error ration and also screenshots of the

test steps (IDE like).

Selenium Test Management Using Bromine 243

As your test run, the dashboard will show you the Project Overview Pie-chart.

You can run Java test similarly by getting the Java code using the Bromine-Java format and

saving it in jar fi le as Bromine only accepts PHP or Jar fi les.

 Evaluating and managing results

Test Lab view

Testlabs is where you review results and run your test scripts.

Results are always based on the newest run, and a ‘parent’ will inherit the worst results from it’s

children, meaning that if a sub-requirement has any failed test cases the parent requirement will be

marked as failed.

244 Selenium

Planning View

Planning is where you plan all your testing activities, meaning you setup your requirements and

test cases.

Projects Everything belongs to a project. Projects have multiple users attached to them. Projects

have multiple sites attached to them. Sites are the various URLs that the project uses e.g. development/

production URLs. Add/edit the sites by editing the project.

Requirements work as containers for test cases as well as other sub-requirements. You can add

requirements from the Planning menu. Requirements contain the OS/browser combinations that

contained test cases will be run in.

A test case can have a single test script attached to it. Attach the test script by using the upload test

script functionality. Test cases can have steps attached to them. Steps are a step by step description

of the test, e.g. open google.com, google.com opens. Test cases must be linked to a requirement. A

single test case can be linked to multiple requirements.

Selenium Test Management Using Bromine 245

Control Panel View

Control panel is where you confi gure Bromine. You shouldn’t need to spend much time here once

Bromine has been setup.

 � Projects add/edit/delete projects- Projects can have many requirements, test cases, users,

sites and results.

 � Nodes add/edit/delete- Nodes are the RC servers Bromine runs test scripts on. Nodes can

have many browsers and has one operating system.

 � Browsers add/edit/delete browsers- Name is the humanly readable form, e.g. fi refox, path is

the selenium command to open the browser, e.g. *fi refox

 � Operating systems add/edit/delete operating systems- You can use operating systems more

loosely if you like to provide more nitty-gritty environment defi nitions for your tests to be

run on. e.g. “XP with service pack. 1” or “Vista quad core” or “XP javascript disabled”.

 � Users add/edit/delete users- User belongs to group. Groups add/edit/delete groups here.

Groups can be used to set permissions on a larger scale than user-specifi cally. Manage

access Use this to set permissions for users/groups. � State of the system Use this to check for the most common errors when using Bromine, e.g.

not having write permissions to various folders and such � Plugins Install/uninstall, activate/deactivate plugins- Installed and activated plugins can be

accessed from a plugins menu.

246 Selenium

EXERCISES

 1. What is the purpose of Bromine?

 2. Can Bromine run without IDE?

 3. Can Bromine run without RC?

 4. Can we run IDE test cases directly in Bromine?

 5. Which two languages Bromine supports?

 6. Where can we fi nd the two formats of Bromine?

 7. What is a Node in Bromine?

 8. What language Bromine built by?

 9. What does XAMPP stand for?

SELENIUM 2.0 – FUTURE

OF TEST AUTOMATION

22

 Selenium 2.0 and Webdriver Project

Webdriver has been integrated with Selenium to give Selenium 2.0 (more precisely Selenium 2.x).

How does this impact Selenium as a tool?

Webdriver defi nition:

Shorter version: A developer-focused tool for the automated testing of webapps.

Longer version: WebDriver is a tool for automating testing web applications, and in particular

to verify that they work as expected. It aims to provide a friendly API that’s easy to explore and

understand, which will help make your tests easier to read and maintain. It’s not tied to any

particular test framework, so it can be used equally well with JUnit, TestNG or from a plain old

“main” method.

 Comparsions to Selenium

Selenium 2 is a next-generation web testing framework that does a better job of controlling browsers

than Selenium 1. Selenium 2 includes a brand-new remote protocol for driving browsers across a

network. Sauce OnDemand leverages this new protocol to help you run your Selenium 2 tests in

the cloud.

Selenium, a popular and well established testing framework is a wonderful tool that provides a

handy unifi ed interface that works with a large number of browsers, and allows you to write your

tests in almost every language you can imagine (from Java or C# through PHP to Erlang!). It was

248 Selenium

one of the fi rst Open Source projects to bring browser-based testing to the masses, and because it’s

written in JavaScript it’s possible to quickly add support for new browsers that might be released.

Like every large project, it’s not perfect. Selenium is written in JavaScript which causes a signifi cant

weakness: browsers impose a pretty strict security model on any JavaScript that they execute in order

to protect a user from malicious scripts. Examples of where this security model makes testing harder

are when trying to upload a fi le (IE prevents JavaScript from changing the value of an INPUT fi le

element) and when trying to navigate between domains (because of the single host origin policy

problem).

WebDriver takes a different approach to solve the same problem as Selenium. Rather than being a

JavaScript application running within the browser, it uses whichever mechanism is most appropriate

to control the browser. For Firefox, this means that WebDriver is implemented as an extension. For

IE, WebDriver makes use of IE’s Automation controls. By changing the mechanism used to control

the browser, we can circumvent the restrictions placed on the browser by the JavaScript security

model.

In those cases where automation through the browser isn’t enough, WebDriver can make use of

facilities offered by the Operating System. For example, on Windows we simulate typing at the OS

level, which means we are more closely modeling how the user interacts with the browser, and that

we can type into “fi le” input elements.

Additionally, being a mature product, the API for Selenium RC has grown over time, and

as it has done so it has become harder to understand how best to use it. For example, it’s not

immediately obvious whether you should be using “type” instead of “typeKeys” to enter text into

a form control. Although it’s a question of aesthetics, some fi nd the large API intimidating and

diffi cult to navigate.

With Selenium you need to start a server to execute the integration tests, but with WebDriver

you only need to pick a driver and you are good to go. You basically just create a unit test without

any dependencies of a server.

One of the other advantages of WebDriver is the clear API. In the next sections I will explain how

the API of WebDriver works.

Selenium 2.0 – Future of Test Automation 249

250 Selenium

 Drivers in Selenium 2.x

When you start with WebDriver you have to make a choice which driver you want to use. WebDriver

currently supports four different drivers: � HtmlUnitDriver � FirefoxDriver � InternetExplorerDriver � ChromeDriver

 HTMLUnit Driver

This is currently the fastest and most lightweight implementation of WebDriver. As the name

suggests, this is based on HtmlUnit.

� Pros

 ∑ Fastest implementation of WebDriver

 ∑ A pure Java solution and so it is platform independent.

 ∑ Supports Javascript � Cons

 ∑ Emulates other browser’s JS behaviour

The HtmlUnitDriver is really fast, but does not allow you to see what is actually happening. This

can become interesting when you just want to execute the test and get an overview of the results.

So when you want to display the steps that are executed you have to chose one of the other three

drivers.

Emulating a Specific Browser

Notwithstanding other considerations above, it is possible to get HtmlUnitDriver to emulate a

specifi c browser. You should not really be doing this, as web-applications are better coded to be

neutral of which reasonably recent browser you are using. There are two more constructors for

HtmlUnitDriver that take allow us to indicate a browser to emulate. One takes a browser version

directly:

HtmlUnitDriver driver = new HtmlUnitDriver(BrowserVersion.FIREFOX_3);

The other uses a broader capabilities mechanism:

HtmlUnitDriver driver = new HtmlUnitDriver(capabilities);

Selenium 2.0 – Future of Test Automation 251

 Firefox Driver � Pros

 ∑ Runs in a real browser and supports Javascript

 ∑ Faster than the InternetExplorerDriver � Cons

 ∑ Slower than the HtmlUnitDriver

Firefox Driver Installation

The FirefoxDriver contains everything it needs in the JAR fi le. If you’re just interested in using

this driver, then all you need to do is put the webdriver-fi refox.jar or webdriver-all.jar on your

CLASSPATH, and WebDriver will do everything else for you.

Important System Properties:

The following system properties (read using System.getProperty() and set using System.

setProperty() in Java code or the “-DpropertyName=value” command line fl ag) are used by the

FirefoxDriver:

Property What it means

webdriver.fi refox.bin The location of the binary used to control fi refox.

webdriver.fi refox.profi le The name of the profi le to use when starting fi refox. This defaults to

webdriver creating an anonymous profi le

webdriver.reap_profi le Should be “true” if temporary fi les and profi les should not be deleted

webdriver.fi refox.useExisting Never use in production Use a running instance of fi refox if one is pres-

ent

webdriver.development Never use in production Indicates that we’re in development mode.

Normally the Firefox binary is assumed to be in the default location for your particular operating

system:

OS Expected Location of Firefox

Linux fi refox (found using “which”)

Mac /Applications/Firefox.app/Contents/MacOS/fi refox

Windows %PROGRAMFILES%\Mozilla Firefox\fi refox.exe

By default, the Firefox driver creates an anonymous profi le

252 Selenium

InternetExporer Driver

This driver has been tested with IE 6, 7 and 8 on XP, but should also work with IE 5.5. It has also

been successfully tested on Vista. � Installing

Simply add the webdriver-all.jar or webdriver-ie.jar to your CLASSPATH. You do not need to

run an installer before using the InternetExplorerDriver, though some confi guration is required. � Pros

 ∑ Runs in a real browser and supports Javascript � Cons

 ∑ The InternetExplorerDriver will only work on Windows

 ∑ Comparatively slow (though still pretty snappy :) � Required Confi guration

* Add every site you intend to visit to your “Trusted Sites” If you do not do this, then you will

not be able to interact with the page.

ChromeDriver

Note that ChromeDriver is one of the newest drivers. Please report any problems through the

mailing list/issue tracker. � Installation

The ChromeDriver contains everything it needs in the JAR fi le. If you’re just interested in using

this driver, then all you need to do is put the webdriver-chrome.jar or webdriver-all.jar on your

CLASSPATH, and WebDriver will do everything else for you.

The ChromeDriver works with any version of Google Chrome >= 4.0. � Pros

 ∑ Runs in a real browser and supports Javascript

 ∑ Because Chrome is a Webkit-based browser, the ChromeDriver may allow you to

verify that your site works in Safari. Note that since Chrome uses its own V8 javascript

engine rather than Safari’s Nitro engine, javascript execution may differ. � Cons

 ∑ Slower than the HtmlUnitDriver

 Emulating Selenium RC

The Java version of WebDriver provides an implementation of the Selenium RC API. � Pros:

Selenium 2.0 – Future of Test Automation 253

 ∑ Allows for the WebDriver and Selenium APIs to live side-by-side

 ∑ Provides a simple mechanism for a managed migration from the Selenium RC API to

WebDriver’s

 ∑ Does not require the standalone Selenium RC server to be run � Cons:

 ∑ Does not implement every method

 ∑ More advanced Selenium usage (using “browserbot” or other built-in JavaScript

methods from Selenium Core) may not work

 ∑ Some methods may be slower due to underlying implementation differences

 Which Implementation to Use

Name of driver Available on which OS? Class to instantiate

HtmlUnitDriver All org.openqa.selenium.htmlunit.HtmlUnitDriver

FirefoxDriver All org.openqa.selenium.fi refox.FirefoxDriver

InternetExplorerDriver Windows org.openqa.selenium.ie.InternetExplorerDriver

ChromeDriver All org.openqa.selenium.chrome.ChromeDriver

For sheer speed, the HtmlUnitDriver is great, but it’s not graphical, which means that you can’t

watch what’s happening. As a developer, you may be comfortable with this, but sometimes it’s good

to be able to test using a real browser, especially when you’re showing a demo of your application

(or running the tests) for an audience. Often, this idea is referred to as “safety”, and it falls into two

parts.

Firstly, there’s “actual safety”, which refers to whether or not the tests works as they should. This

can be measured and quantifi ed. Secondly, there’s “perceived safety”, which refers to whether or not

an observer believes the tests work as they should. This varies from person to person, and will depend

on their familiarity with the application under test, WebDriver and your testing framework.

To support higher “perceived safety”, you may wish to choose a driver such as the FirefoxDriver.

This has the added advantage that this driver actually renders content to a screen, and so can be

used to detect information such as the position of an element on a page, or the CSS properties that

apply to it. However, this additional fl exibility comes at the cost of slower overall speed. By writing

your tests against the WebDriver interface, it is possible to pick the most appropriate driver for a

given test.

254 Selenium

 Migrating from Selenium RC to Webdriver

You can use the underlying WebDriver technology using the Selenium-RC API. This is primarily

provided for backwards compatibility. It allows those who have existing test suites using the

Selenium-RC API to use WebDriver under the covers.

Download latest Selenium 2.x (referred as Selenium Server) fi les from the URL http://seleniumhq.

org/download/

For e.g. For version 2.19.0, selenium-server-standalone-2.19.0.jar and selenium-java-2.19.0.zip

(selenium-java-2.19.0.jar)

Keep these two jar fi les in the classpath of your project in Eclipse. Now we need to change our

RC code to make it Selenium 2.x compatible.

Using WebdriverBackedSelenium:

Replace:

Selenium selenium = new DefaultSelenium(“localhost”, 4444, “*fi refox”, “http://www.yoursite.

com”);

selenium.start();

With:

WebDriver driver = new FirefoxDriver();

Selenium selenium = new WebDriverBackedSelenium(driver, “http://www.yoursite.com”);

And keep your test script block as it is.

 Exceptions

Not every script from RC works with WebdriverBackedSelenium. For e.g.

The javascript evaluations

Replace:

String title = selenium.getEval(“browserbot.getCurrentWindow().document.title”);

With:

((JavascriptExecutor) driver).executeScript(“return document.title;”);

Selenium 2 continues to be a moving target with its API, so you’ll want to keep up to date.

For e.g. Recently, we found that the toggle() and select() commands have not only been

deprecated but removed completely from the implementation. If you try to issue these commands,

the Selenium server simply doesn’t recognize the commands and WebDriverExceptions are raised.

Selenium 2.0 – Future of Test Automation 255

Selenium 1 users will fi nd that is_text_present() and wait_for_condition() commands no longer

exist, and are replaced by a more DOM-driven approach of selecting the element fi rst before fi ring

click() events or retrieving attribute values through get_attribute().

You no longer have to have wait_for_condition() for page loads. Instead, you set implicitly_

wait() to a certain timeout limit to rely on fi nd_element_by_id() to wait for the presence of DOM

elements to appear to between page loads.

 Limitations

Selenium 2.0 has some known issues while playback.

 � Explicit waits for Ajax calls are highly recommended.

 � While playing back with Firefox 4.x, if you get error like this.getWindow() is null you can

get around the problem with the following code fragment, before the line of script that

raises this error.

 browser.switchTo().defaultContent()

 � Because of browser security reasons, while recording fi le uploads, WebDriver is able to

access only the name of the fi le being uploaded and not the absolute path. You have to go

and edit the path in the recorded script.

 � Selenium 2 (WebDriver) requires users to either enable or disable all protection modes

under IE security settings. Check here for more details.

EXERCISES

 1. What is the relation between Selenium 2.x and Webdriver?

 2. Can Selenium RC script run in Selenium 2.x?

 3. What are the available driver implementations in Selenium 2.x?

 4. What is the use of HTMLUnit driver? What is so peculiar about it’s test execution?

AUTHORS’ PROFILES

Ashish Mishra is the founder director at QAAgility Technologies and has worked

with Selenium as consultant and trainer for various clients. He deals with the

ground realities of the test automation requirements and challenges in projects of

varied sizes and complexities. Ashish is a big movie afi cionado and is fascinated

by art of movie making.

Aditya Garg is the founder director at QAAgility Technologies and has led

and setup large testing organizations. Aditya loves testing and trainings on

the testing topics. Aditya is a bollywood fan and also loves eating and cooking

Indian food.

	TITLE
	CONTENTS
	INTRODUCTION
	1 TEST AUTOMATION
	2 GETTING STARTED WITH SELENIUM IDE
	3 INSTALL JAVA
	4 USEFUL TOOLS FORWRITING TEST CASES—FIREFOX ADD-ONS
	5 BASIC HTML THEORY
	6 CREATE SELENIUMTEST SUITE
	7 TOUR OF SELENIUMIDE—SIMPLE FEATURES
	8 TOUR OF SELENIUMIDE—SIMPLE FEATURES
	9 APPLYING CSS TOSELE NIUM TEST CASES
	10 S ELENIUM CONCEPTS
	11 SELENIUM CONCEPTS
	12 PATTERN MATCHING
	13 ELEMENT LOCATORS
	14 SELENIUM RC OVERVIEW
	15 INSTALL AND RUNSELENIUM RC
	16 THE ECLIPSE IDE
	17 RUNNING A TEST USING THE JUNIT EXPORT FROM SELENIUM-IDE
	18 RUNNING A TEST USING THE TESTNG EXPORT FROM SELENIUM-IDE
	19 DATA DRIVEN TESTINGUSING TESTNG
	20 SELENIUM GRID
	21 SELENIUM TEST MANAGEMENT USING BROMINE
	22 SELENIUM 2.0 – FUTURE OF TEST AUTOMATION
	AUTHORS’ PROFILES

