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Preface

In recent years, the teaching curriculum of Physical Chemistry in many Indian universities has been 

restructured with greater emphasis on theoretical and conceptual methodology and the applications 

of the underlying basic concepts and principles. This shift in the emphasis, as I have observed, has 

unduly frightened undergraduates whose performance in Physical Chemistry has been otherwise 

generally far from satisfactory. This poor performance is partly because of the non-availability of 

a comprehensive textbook which also lays adequate stress on the logical deduction and solution of 

numericals and related problems. Naturally, the students fi nd themselves unduly constrained when 

they are forced to refer to various books to collect the necessary reading material.

 It is primarily to help these students that I have ventured to present a textbook which provides a 

systematic and comprehensive coverage of the theory as well as of the illustration of the applications 

thereof.

 The present volumes grew out of more than a decade of classroom teaching through lecture 

notes and assignments prepared for my students of BSc (General) and BSc (Honours). The schematic 

structure of the book is assigned to cover the major topics of Physical Chemistry in six different 

volumes. Volume I discusses the states of matter and ions in solutions. It comprises fi ve chapters 

on the gaseous state, physical properties of liquids, solid state, ionic equilibria and conductance. 

Volume II describes the basic principles of thermodynamics and chemical equilibrium in seven 

chapters, viz., introduction and mathematical background, zeroth and fi rst laws of thermodynamics, 

thermochemistry, second law of thermodynamics, criteria for equilibrium and A and G functions, 

systems of variable composition, and thermodynamics of chemical reactions. Volume III seeks to 

present the applications of thermodynamics to the equilibria between phases, colligative properties, 

phase rule, solutions, phase diagrams of one-, two- and three-component systems, and electrochemical 

cells. Volume IV deals with quantum chemistry, molecular spectroscopy and applications of molecular 

symmetry. It focuses on atomic structure, chemical bonding, electrical and magnetic properties, 

molecular spectroscopy and applications of Molecular symmetry. Volume V covers dynamics of 

chemical reactions, statistical and irreversible thermodynamics, and macromolecules in six chapters, 

viz., adsorption, chemical kinetics, photochemistry, statistical thermodynamics, macromolecules 

and introduction to irreversible processes. Volume VI describes computational aspects in physical 

chemistry in three chapters, viz., synopsis of commonly used statements in BASIC language, list of 

programs, and projects.

 The study of Physical Chemistry is incomplete if students confi ne themselves to the ambit of 

theoretical discussions of the subject. They must grasp the practical signifi cance of the basic theory 

in all its ramifi cations and develop a clear perspective to appreciate various problems and how they 

can be solved.



 It is here that these volumes merit mention. Apart from having a lucid style and simplicity 

of expression, each has a wealth of carefully selected examples and solved illustrations. Further, 

three types of problems with different objectives in view are listed at the end of each chapter:

(1) Revisionary Problems, (2) Try Yourself Problems, and (3) Numerical Problems. Under Revisionary 

Problems, only those problems pertaining to the text are included which should afford an opportunity 

to the students in self-evaluation. In Try Yourself Problems, the problems related to the text but not 

highlighted therein are provided. Such problems will help students extend their knowledge of the 

chapter to closely related problems. Finally, unsolved Numerical Problems are pieced together for 

students to practice.

 Though the volumes are written on the basis of the syllabi prescribed for undergraduate courses of 

the University of Delhi, they will also prove useful to students of other universities, since the content 

of physical chemistry remains the same everywhere. In general, the SI units (Systeme International 

d’ unite’s), along with some of the common non-SI units such as atm, mmHg, etc., have been used 

in the books.

Salient Features

 • Brief synopsis of commonly used instructions/statements in BASIC language

 • Instructions/Statements illustrated through a few preliminary computer programs

 • Computer applications in the fi eld of Physical Chemistry highlighted through inclusion of 

programs 
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1 Synopsis of Commonly used 

Statements in BASIC Language

1.1 INTRODUCTION 

The BASIC is a high-level computer language which stands for “Beginner’s All-purpose Symbolic 

Instruction Code. 

 A program in BASIC is a formulation of a given problem in terms of instructions (also called statements) 

of BASIC language. Each statement is inserted in a new line which may or may not start with a number. In 

fact, numbering is optional. However, during a branching operation, the statement to which instruction is to 

be transferred must carry the appropriate number. More than one statement in a line may be inserted. These 

are separated by colons. However, if such statements are inserted after the statement which uses relation 

operator or logical operator, these statements are also not executed if the result of the operation is false. 

 If a statement is not written in accordance to the recommended format, an error message appears on the 

monitor indicating the nature of error. This may be rectifi ed in order to execute the program successfully.

REM Statement 

The REM (from remark) statement is used to add comment or explanatory note wherever required in a 

BASIC program. It is a nonexecutable statement. Another way of achieving it to add an apostrophe sign in 

the beginning of the comment statement. 

END Statement

The END statement indicates the end of a BASIC program and is inserted as the last statement of the 

program. 

STOP Statement

The STOP statement is used to terminate a BASIC program anywhere within the program. This is equivalent 

to transferring the control to the END statement. 

 A brief description of instructions commonly used in BASIC to formulate a computer program for a 

given problem is in order. 

1.2 NUMBERS (OR CONSTANTS) AND STRINGS

Numbers

Numerical quantities are referred to as numbers or constants. These include integral as well as decimal 

quantities. Examples are 22, 3.14 and 8.314. A scientifi c number such as 6.022 ¥ 1023 and 1.38 ¥ 10–23 are 

represented in E notation as 6.022E+23 and 1.38E–23, respectively. 
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 A negative quantity starts with a negative sign (" – ") and if no sign appears, it is understood to be 

a positive quantity. 

Strings

To express certain information in the program, such as name of a molecule, strings are used. These may 

include any alphabets, numbers and special characters (such as +, –, *,/, $, . . . , etc.) 

 String constants are enclosed within the double quotation marks such as "OXYGEN". The maximum 

length a string constant can be upto 254 characters. 

1.3 VARIABLES 

A number or a string may be represented by a name, known as variable. However, the variable name must 

not be the same as that of a BASIC reserved word (such as INT, ABS, SIN, etc). 

 The numerical or string variable always starts with an alphabet and may be followed by more alphabets 

or integers, However, the string variable always ends with the special character "$". The end letter is 

referred to as suffi x. Besides the suffi x, "$", the suffi xes shown in Table 1 are also used to represent the 

different types of variables. 

Table 1 Suffi xes used in BASIC

 Suffi x Example Variable

 % A% Integral 

 ! (or no suffi x) A! Real single-precision 

 # A# Double-precision 

 $ A$ String 

 The same variable name with different suffi xes represent different type of variables. 

 A double-precision constant in scientifi c notation is represented in D notation instead of E notation 

(e.g. 6.22D + 23). 

 A single-precision quantity contains six or seven signifi cant fi gures while a double-precision quantity 

contains sixteen signifi cant numbers.

 Integral quantities lies within the range of –32768 to 32767. 

 Real quantities lies within the range of 2.9E – 39 to 1.7E + 38. 

 A variable name can have a maximum of 40 alphabets or digits. It must start with an alphabet and 

should not include any special characters (such as comma, asterisk, period, etc.) except at the end indicating 

the type of variable. 

1.4 MATHEMATICAL OPERATIONS 

The mathematical operations between two quantities are executed by inserting the operators (Table 2) 

between the two quantities. 
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Table 2 Operators used in BASIC 

 Operator Explanation 

 + Plus sign for addition 

 – Minus sing for subtraction 

 * Asterisk for multiplication 

 / Slash for division 

 ^ Upper carret for exponentiation 

 \ Back slash for integer division 

 MOD MOD for integer remainder 

 In integer division and integer remainder, each of the two given number is fi rst rounded to an integer 

followed by division to yield a truncated quotient or remainder. A few examples to illustrate these two 

operations are as follows.

 Operation Answer Operation Answer 

 13\ 4 3 12 MOD 5 2 

 8.7 \2.8 3 8.7 MOD 2.8 0 

 8.1\2.7 2 8.1 MOD 2.7 2 

 8.4\ 2.3 4 8.4 MOD 2.3 0 

Hierarchy of Operations

If a mathematical statement involves more than one operation, these are executed from left to the right of 

the expression with the following hierarchy.

 (i) Exponentiation, (ii) multiplication and division, and (iii) addition and subtraction. 

Use of Parentheses

In a mathematical statement involving more than one operation, if some operations are to be carried out prior 

to the hierarchy of operations mentioned above, these are enclosed within the pairs of round parentheses. If 

there is a nest of pairs of parentheses, the operations within the innermost pairs of parantheses are performed 

fi rst followed by the operations within the second innermost pairs, and so on. After these evaluations, rest 

of the operations are carried out from left to the right of the expression following the hierarchy mentioned 

above.

Enlarging a String Variable

A string variable may be appended by adding string variable(s) to it. For example, if 

 A$ = "Delhi" 

 B$ = "University" 

then C$ = A$ + " " + B$

causes the string constant C$ to represent "Delhi University". 
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1.5 ASSIGNING VALUE OF A VARIABLE 

The value of a numerical or string variable can be assigned in the following ways. 

 T = 273 (or LET T = 273) 

 A$ = "Oxygen" (or LET A$ = "Oxygen") 

 The value of a string variable is enclosed within the double quotation.

Assigning the Value of a Variable During the Execution of a Programme

For this, either INPUT or READ and DATA statements are used. 

INPUT Statement

The INPUT statement goes as follows. 

 INPUT T 

 INPUT A$ 

 When the INPUT statement is encountered during the execution of a program, a question mark (?) 

appears on the console and the execution of the program is stopped until the required data is supplied on 

the key board followed by pressing the "ENTER" key. 

 It is not necessary to write separately INPUT statement for each variable. In fact, the values of a list of 

variables can be supplied by inserting a single INPUT statement as shown in the following. 

  INPUT T, A$ 

 Each variable is separated by a comma, In such a case, when the question mark appears on the console, 

the values of all variables listed in the INPUT statement have to be supplied together, each one is separated 

by a comma. The only care to be taken is that there should be one to one correspondence between the types 

of variables in the list and the supplied values of the variables. In the example given above, the values are 

supplied as follows.

  ? 12.5, OXYGEN 

 To increase the clarity about the nature of input variable, one can insert a string constant mentioning 

the nature of variable within a double quotations immediately after the INPUT statement followed by a 

semicolon and then the name of the variable. For example, if the variable T stands for temperature in 

kelvin, the variable T in INPUT statement may be inserted as follows.

  INPUT "Temperature in kelvin, T = "; T

where the information within the double quotations mark is the string constant. When this statement is 

executed, the string constant appears as such on the console followed by a question mark and the execution 

of the program is stopped until the value of T is supplied. The purpose of semicolon before T in the input 

statement is to hold cursor immediately after printing the string constant. Only one string constant can be 

inserted in one INPUT statement. 

READ and DATA Statement

The READ and DATA statements go as follows. 

  READ T 

  DATA 273 
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  READ A$ 

  DATA OXYGEN 

 The purpose of the DATA statement is to assign appropriate values to the variables listed in the READ 

statement. It is not necessary to write one DATA statement for each READ statement. In fact, the values of 

variables listed in sequence in all the READ statements can be supplied in a single DATA statement. In the 

above example, one can write only one DATA statement instead of two as shown in the following. 

  DATA 273, OXYGEN 

 It is also not necessary to write only one variable in a READ statement. In fact, a list of variables can 

be inserted one after the other separated by commas. For example, 

  READ T, A$ 

  DATA 273, Oxygen 

 The DATA statement can be inserted anywhere in the program, prior or after the READ statement(s). 

The only care to be taken is to have one to one correspondence between the types of variables appeared 

sequentially in the READ statement(s) and the assigned values of variables in the DATA statement. Reading 

of data sequentially is carried out by an internal pointer which is advanced to the next data item once a 

data is read. In fact, there are two such internal pointers, one for the numeric data and the other for string 

data. 

The RESTORE Statement

The RESTORE statement causes the internal pointer for reading a data to reset to the fi rst data item of the 

proper type so that the subsequent reading of the data starts from the beginning of the DATA items. This 

way, the same data is reused for the variables in the subsequent READ statements. 

1.6 PRINTING VALUE OF A VARIABLE

The values of variables (numeric or string) are printed on the console by the PRINT statement. The list of 

variables to be printed are inserted after the keyword PRINT. Successive variables are separated by either 

commas or semicolons. 

 If commas are used, fi ve variables are printed in one line with equal spacing in between. In fact, each 

line is divided in fi ve zones of equal length and one output value is printed in each zone. If a comma is also 

inserted in the last variable in a PRINT statement, then the output of the subsequent PRINT statement, is 

continued on the same line. The number of such items printed on the same line depends upon the number 

of free zones in the same line. If the space required to print a variable is larger than the space in a zone, 

then the subsequent variable is printed in second next zone.

 If semicolons are used, the variables are printed with less spacing in between them. This help printing 

more than fi ve outputs in a line. If a semicolon also appears after the last entry in a PRINT statement, then 

the output of the subsequent PRINT statement is continued on the same line. 

 If a PRINT statement does not contain any variable, then a blank line is appeared in between the two 

lines. 

 The string constant within a double quotation marks can be inserted before the variable name separated 

by a semicolon. This provides easy way of spelling the nature of variables to be printed. A PRINT statement 

may contain more than one quotation marks separated from a variable name or string constant by either a 

comma or a semicolon. The following example illustrates the above fact. 
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 Suppose T = 273 K and P = 2 atm. These values can be printed as shown in the following. 

 Statement PRINT "T = "; T; "K", "P = "; P; " atm" 

 Output T = 273K P = 2 atm 

 Note the two entries are separated by a comma thus, the two items are printed in the fi rst two zones of 

a line. If there appears two commas in between the two entries, then the two items are printed in the fi rst 

and third zones of a line. 

 Numerical output quantities are printed as follows. 

 An integer quantity that contains eight or fewer digits are printed as in integer number. If there are 

more than eight digits, it is rounded to six signifi cant digits and is printed as a decimal number with an 

exponent. 

 A decimal quantity is printed in a decimal notation. If a quantity contains more than six digits (including 

leading zeros to the right of the decimal point), it is rounded to six digits and is printed in the exponential 

notation.  

Formating Output Data

The numeric data can be printed in a decimal or exponential format by using the key word PRINT 

USING. 

 For a decimal format, the instruction to be given is 

  PRINT USING "##.###"; A; B; C

where hases in the string "##.###" indicates the number of digits to be printed before and after the decimal 

point. Fraction extending beyond the indicated number of digits are rounded. If a number is negative, then 

the miuns sign is counted within the number of hases before the decimal point. The string is followed by 

a semicolon and the list of variables separated from each other also by semicolons. 

 For an exponential format, the instruction to be given is 

  PRINT USING "##.###^^^^"; A; B; C 

 The four carets are for the exponential notation such as E+02 and E–02. 

 The spacing in the printed values of A, B and C may be created by inserting more hases before the 

decimal or inserting some blanks before the hases.

 If commas are to be inserted before the decimal point after each three digits from the decimal point, 

the instruction to be given is

  PRINT USING "######,.##"; A

1.7 BRANCHING STATEMENTS 

Unconditional Branching Operation

The statements in a BASIC program are executed in the same order as they appear. However, the control 

of execution of a statement can be altered by using the keyword GOTO followed by the number of the 

statement to which control is to be transferred, e.g. GOTO 5. 

Multiple Branching 

In multiple branching, the control of execution of a statement can be directed to different statements. The 

format of the statement is 

 ON Numeric variable or arithmetic expression GOTO List of statement numbers
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 For example, the statement ON K GOTO 10, 20, 30 implies the following. 

 The control is passed over to the statement number 10, 20, 30 depending upon the value of K 

equal to 1, 2 and 3, respectively. If K is not an integer, it is truncated to integer by ignoring the decimal 

portion. 

Conditional Branching — IF ____ THEN Statement 

If the execution of a statement depends upon the satisfaction of a relation or condition, then the following 

statement can be used to achieve the goal. 

 IF relation or condition THEN statement or number of statement to be executed

 If the relation or condition is not satisfi ed, the statement next to the IF___THEN statement is executed. 

The following two programs illustrate the use of IF___THEN statement.

 ∑ Suppose, it is desire to add the given ten numbers. This can be achieved as follows. 

  SUM = 0 

  I = 1 

 5 INPUT X 

  SUM = SUM + X 

  I = I + 1 

  IF I <= 10 THEN 5 

  PRINT SUM 

 ∑ Suppose it is desired to fi nd the roots of a quadratic expression. (ax2 + bx + c = 0). This can be 

achieved as follows. 

  DISC = b * b – 4 * a * c 

  IF DISC < 0 THEN 10  

  SQDISC = DISC ^ 0.5 

  ROOT1 = (– b + SQDISC) / (2 * a) 

  ROOT2 = (– b – SQDISC) / (2 * a) 

  PRINT "ROOT1 = "; ROOT1, "ROOT2 = "; ROOT2

  GOTO 15 

 10 PRINT "ROOTS ARE IMAGINARY" 

 15 ____

1.8 USE OF LOGICAL OPERATORS 

Relation Operators 

Relation operators are used to compare two quantities (numbers, variables or strings) so as to direct 

conditional branching depending upon the condition set in the relation operators. These operators are 

described in Table 3. 
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Table 3 Operators used in BASIC 

 Condition Operator 

 Equal to = 

 Not equal to < > 

 Less than < 

 Less than or equal to < = 

 Greater than > 

 Greater than or equal to > =

Logical Operators 

If the conditional branching depends on the outcome of two relation operators (either both are true or one 

of them is true) then these two operators are connected through logical operators (AND, OR and NOT). 

The following examples illustrate their use. 

 (i) IF X < 10 AND Y > 150 THEN 100 

  If both the conditions of X < 10 and Y > 150 are satisfi ed, the control is passed over to the 

statement number 100, otherwise the instruction is passed over to the statement next to this logical 

operation.

 (ii) IF M > 100 OR N$ = "Oxygen" THEN 100

  If either of the conditions of M > 100 or N$ = "Oxygen" is satisfi ed, the control is passed 

over to the statement 100 otherwise the next statement of this logical operation is executed.

 (iii) IF NOT X < 10 AND Y > 150 THEN 200

  The control is passed over to the statement 200 provided both the conditions of X < 10 and

Y > 150 are not satisfi ed. This statement is equivalent to 

   IF X >= 10 and Y <= 150 THEN 200 

IF___THEN___ELSE Statement 

In this case, the statement (or statements) following THEN are executed if the given relation or condition 

is satisfi ed, otherwise, the statement (or statements) following ELSE is executed. Statements illustrating 

IF__THEN__ELSE statement are as follows. 

 IF A > 0 THEN K = 1 ELSE K = 2 

 IF b * b > = 4 * a * c THEN PRINT "ROOTS ARE REAL" ELSE PRINT "ROOTS ARE 

IMAGINARY" 

 IF A > 0 THEN PRINT A : GOTO 10 ELSE B = A : GOTO 50 

Nested IF___THEN___ELSE Statement 

If there are more than one alternative of checking a relation or condition, than one can use the nested 

IF___THEN ___ELSE statement as illustrated in the following.

  VA = 50: CA = 0.1: CB = 0.05: VEQ = VA * CA/CB: VB = 0 

 5 IF VB = 0 THEN 

  H = CA 

  ELSEIF VB < VEQ THEN 



Synopsis of Commonly used Statements in BASIC Language 9

  H = (VA * CA – VB * CB)/(VA + VB) 

  ELSEIF VB = VEQ THEN 

  H = 1.0E –7 

  ELSEIF VB > VEQ THEN 

  OH = (VB – VEQ) * CB/(VA + VB) 

  H = 1E–14 / OH 

  END IF 

  PRINT H 

  IF VB > VEQ + 5 THEN 10 

  VB = VB + 0.01 

  GOTO 5 

 10 END 

 In the nested IF____THEN____ELSE statement, the end of the nest is done with the statement

END IF. 

1.9 USE OF LOOP STATEMENT

If a set of statements is to be repeated many times, the loop of FOR___TO___NEXT is the most convenient 

way of executing such statements. The loop comprises all statements included between the FOR___TO and 

the NEXT statements. The following example illustrates such a loop. 

  K = 1: N = 5: M = 1: FACT = 1 

 5 FOR I = K TO N STEP M 

  FACT = FACT * I 

  PRINT I, FACT 

 10 NEXT I 

  ______

  ______

 From the statement FOR I = K TO N STEP M to the statement NEXT I comprises a 

loop of I. The execution starts with I = K and all the statements prior to NEXT I are executed. On 

encountering NEXT I, the instruction is passed back to the start of the loop. The value of I is increased 

by the step M and is compared with the value of N. If its value is less than or equal to the value of N, the 

execution of the loop is continued. However, If the value of I is more than N, the excution of the loop is 

not carried out but the instruction is passed over to the statement following the statement NEXT I. 

 The loop will not be executed if 

 1. the values of K and N are equal and the step size M is zero. 

 2. the value of N is less than the value of K and the step size is positive. 

 The variables K, N and M can have any positive or negative integral or nonintegral values. The conditions 

to be satisfi ed are as follows. 

 1. The value of N may be equal to K and the value of M is nonzero. In this case, the loop is excuted 

only once. 

 2. For a positive value of M, the value of N must be equal to or greater than that of K. 
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 3. For a negative value of M, the value of N must be equal to or less than that of K. In this case, the 

value of K is decreased by a step M and the execution of the loop is continued until the value of K 

becomes less than N. 

 4. Control within a loop can be transferred outside the loop and not vice versa.

 5. The running variable I may be used within the loop but its value should not be altered.

Nested Loops 

One can use a nest of loops in which a loop is inserted within another loop. The following example 

illustrates the framework of nested loops. 

 

 Here, the K loop is within the J loop which itself is within the I loop. There is another L loop within 

the I loop. Each inner loop is completely imbeded within an outer loop. Control can be transferred from an 

inner loop to a statement in an outer loop or to a statement outside the entire nest of loops. The reverse of 

the above is not permitted. 

Conditional Looping

One can generate a conditional looping by using WHILE and WEND statements. The condition of executing 

the loop is defi ned in the WHILE statement. So long the condition is satisfi ed, the loop is executed otherwise 

not. The end of conditional loop is indicated by the WEND statement. The following example of getting real 

roots of a quadratic expression ax2 + bx + c = 0 illustrates the WHILE and WEND statements. 

 FOR I = 1 TO 10

 INPUT A, B, C

 DISC = B ^ 2 – 4 * A * C

 WHILE DISC >= 0

 ROOT1 = (– B + SQR(DISC))/(2 * A)

 ROOT2 = (– B – SQR(DISC))/(2 * A)

 PRINT A, B, C, ROOT1, ROOT2

 WEND

 NEXT I

 END
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1.10 SUBSCRIPTED VARIABLES 

Sometimes, a collection of either numerical quantities or strings is known by a single variable name. The 

individual elements of such a collection is represented by a subscripted variable. Any of such element can 

be referred to by stating the variable name, followed by the value of subscript enclosed within parantheses. 

The variable name of a collection of numerical quantities is a single letter. For a collection of strings, it is 

a single letter followed by a dollar sign. 

 For one-dimensional collection of elements (known as an array), the subscript is a single integral number 

and for two-dimensional array, the subscripts are two integral numbers separated by a comma. A subscript 

is never a negative number. Besides a constant, a subscript may be a variable, arithmetic expression or a 

function name. If the value of these are noninteger, these are truncated to yield integral value. 

DIM statement

BASIC automatically assigns 11 elements for a one-dimensional array and these are numbered from

0, 1, . . ., 10. For a two-dimensional array, 121 elements (11 rows and 11 columns) are automatically 

assigned. However, if the array contains larger number of elements, the size of array should be defi ned by 

using the keyword DIM (from dimension), followed by one or more array names separated by commas. 

The size of the array is mentioned by a number enclosed within parentheses immediately after the array 

name. 

Illustration DIM A(100), B(10, 10), C$(50) 

 BASIC assigns 101 elements for A, 11 rows and 11 columns for B and 51 elements for C$. 

 The DIM statement can be inserted anywhere in a BASIC program. However, it is a good practise to 

insert these in the beginning of the program. Also, an array with lesser than 11 elements (or 11 rows and 

11 columns for a two-dimensional array) can be included in the DIM statement. Though, their noninclusion 

has no affect on the execution of a program, yet their inclusion help assigning lesser storage than the 

storage automatically assigned in BASIC. 

 Dimensional arrays are very helpful in the arithmetic operations involving vectors and matrices. 

1.11 LIBRARY FUNCTIONS 

Some prewritten programs are available in BASIC which allows the direct evaluation of some functions. 

These are known as library functions. Each function is accessed simply by stating its name followed by 

relevant arguments within the parentheses. A few such functions are described in Table 4. 

ILLUSTRATIONS OF A FEW LIBRARY FUNCTIONS  

CHR$ Function

The use of this function may be illustrated by inserting a character on the screen which is not available on 

the keyboard. For example, 

 PRINT CHR$(94) 

causes the appearance of the character   on the screen. 
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Table 4 Some of the Library Functions 

 Function Its Format Description 

 ABS Y = ABS(X) Calculate the absolute value of X 

 ASC Y = ASC(X$) Returns ASCII code† of X$ 
   (which is a single character) 

 ATN Y = ATN(X) Calculate arctangent of X 

 CDBL Y# = CDBL(X) Converts X to double precision 

 CHR$ Y$ = CHR$(X) Returns a character of ASCII code X
 CINT Y% = CINT(X) Convert X into an integer 
 COS Y = COS(X) Calculate cosine of X, X is in radians 
 CSNG Y = CSNG(X#) Convert double precision X# into single   
   precision Y 
 EXP Y = EXP(X) Calculate the exponential of X 
 F1X Y% = FIX(X) Convert X into truncated integer 
 HEX$ Y$ = HEX$(X) Converts from decimal to hexadecimal 
 INPUT$(n) Y$ = INPUT$(4) Return a multicharacter string from the   
   keyboard. Here, n = 4 implies 4-character   
   string. 
 INT Y% = INT(X) Returns the largest integer that does   
   not exceed the specifi ed value 
 LEFT$ Y$ = LEFT$(X$, 3) Returns the left most n character of a string,   
   here n = 3 
 LEN Y = LEN(X$) Returns the number of characters in a string 
 LOG Y = LOG(X) Calculate natural logarithm of X 
 MID$ Y$ = MID$(X$, 2, 3) Returns an n-character of a string starting   
   from the mth location, here m = 2, n = 3 
 OCT$ Y$ = OCT$(X) Converts from decimal to octal 
 RIGHT$ Y$ = RIGHT$(X$, 3) Returns the right most n(= 3) characters of a   
   string 
 RND Y = RND Returns a random number from 0 to 1 
 SGN Y = SGN(X) Gives the sign of X, Y is +1 or –1 depending  
   upon positive or negative value of X 
 SIN Y = SIN(X) Calculate the sine of X, X is in radians 
 SPACE$ PRINT X; SPACE$(5); Y Returns a string which is a sequence of 5 
   blank spaces 
 SPC PRINT X; SPC(5); Y 5 Blank spaces in a PRINT statement   
   between X and Y 
 SQR Y = SQR(X) Calculate square root of X 
 STR$ Y$ = STR$(1000) Converts a numerical quantity into a string 
 TAB PRINT X; TAB(10); Y Printing Y in the specifi d position 
 TAN Y = TAN(X) Calculate the tangent of X, X is in radians 
 STRING$(m, n) Y$ = STRING$(2, 42) Returns an m-character string of characters   
 (m = 2, n = 42)   whose ASCII code is n. In the present case, 
   the ASCII code of 42 is *. Therefore, 
   Y$ = "**". This is also equivalent to   
   STRING$ (2, "*"). 

†
See Section 1.13 for ASCII code.
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LEFT$ Function 

The function LEFT$(X$, n) causes the return of a string consisting of n leftmost characters of the string 

X$. For example, the program

 X$ = "INDIA" 

 FOR I = 1 TO LEN(X$) 

 PRINT LEFT$(X$, I) 

 NEXT I 

causes the printing of the following characters on the screen. 

 I 

 IN 

 IND 

 INDI 

 INDIA  

RIGHT$ Function

The function RIGHT$(X$, n) causes the return of a string consisting of n right most characters of the 

string X$. For example, the program

 X$ = "INDIA" 

 FOR I = 1 TO LEN(X$)

 PRINT RIGHT$(X$, I) 

 NEXT I 

causes the printing of the following characters on the screen.

 A 

 IA 

 DIA 

 NDIA 

 INDIA 

MID$ Function 

The function MID$(X$, n, m) causes the return of a string consisting of m characters starting from 

nth character of the string X$. For example, the program

 X$ = "VOLUME" 

 FOR I = 1 TO LEN(X$) 

 PRINT MID$(X$, I, 1) 

 NEXT I 

causes the following printing of the string X$ in a vertical array, i.e. 
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 V

 O

 L

 U

 M

 E 

 If the value of m (i.e. number of characters to be returned) is not provided, the MID$ statement causes 

the return of all the characters from the nth character up to the end of the string. For example, 

 PRINT MID$(X$, 5) 

will case the printing of ME if X$ is "VOLUME". 

 The MID$ function is also used in replacing characters in a variable. For example, in a string variable 

 X$ = "MUMBAI UNIVERSITY" 

if MUMBAI is to be replaced by BARODA, then the statement to be given is 

 MID$(X$, 1, 6) = "BARODA" 

 PRINT X$ 

 The output of the above statements will be "BARODA UNIVERSITY". Even a simple statement 

 MID$(X$, 1) = "BARODA" 

will also replace MUMBAI by BARODA. The replacement starts from the indicated number in the MID$ 

statement and all characters equivalent to the number of characters of the string constant inserted on the 

right side are replaced. 

RND Function and RANDOMIZE Statement 

The RND function (statement to be given is Y = RND) causes the generation of random numbers by using 

a fi xed computational procedure Every time a program containing the RND function causes the generation 

of the same sequence of random numbers. If it is desireable to generate a different sequence of random 

numbers, the statement RANDOMIZE may be used. Its purpose is to provide a different starting point for 

the generation of random numbers. This statement is inserted prior to the use of RND function.  

INPUT$ Statement

INPUT$ function returns a string of n character from the keyboard. The statement to be given is

Y$ = INPUT$(n), where n can have values 1, 2, . . . and so on. 

 Unlike the INPUT statement, the use of this function does not generate a question mark requesting 

input data. The input string is simply entered from the keyboad without pressing the Enter key. The inserted 

character is not displayed on the screen. This is helpful in halting the program execution at any stage. 

1.12 FUNCTIONS AND SUBROUTINES 

A Single-Line Numeric Function 

Sometime, the evaluation of a certain expression is required at different places of a program. To avoid 

writing of the expression repeatedly, the programmer may defi ne his or her own function and then use this 

function just like a library function wherever it is required in the program. A single-line function is defi ned 

as follows
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 DEF FNA(arguments) = Defi ning expression of the functions

where, 
 
 DEF (from defi nition) is the keyword for defi ning the function, FNA(arguments) is the name of the 

function. In this, the fi rst two letters FN are fi xed and the third letter may be any alphabet from A to Z. 

The name is followed by nonsubscripted arguments (if any) separated by commas and enclosed within the 

parentheses. This is followed by equal sign and then the defi ning expression of the function

Illustrations  

  DFF FNA (X, Y, Z) = SQR(X ^ 2 + Y ^ 2 + Z ^ 2) 

  DFF FNB (T, X) = R * T * log(X) 

 In the function FNB, R is a variable whose value must be defi ned before using the function in the 

program. 

 Whenever, the function is required it is inserted by its name along with the appropriate set of arguments, 

separted by commas and enclosed in parentheses. The inserted arguments need not be the same as those in 

the function defi nition. These can be any constants, variables or algebraic expressions but their number and 

nature (numerical or string) must be the same. The inserted arguments are used in place of the corresponding 

arguments mentioned in the function defi nition. For example, the function FNA defi ned above may be used 

as follows. 

 Y = FNA(A, B, C) 

 A = FNA(2.0, K(I), 5 * (P + Q))

 B = FNA(LOG(P), SQR(P), Q) 

 The above statements are equivalent to the following expressions. 

 Y = SQR(A ^ 2 + B ^ 2 + C ^ 2) 

 A = SQR(2.0 ^ 2 + K(I) ^ 2 + (5 * (P + Q))^ 2) 

 B = SQR(LOG(P) ^ 2 + SQR(P)^ 2 + Q ^ 2) 

 Note that in the function reference, the arguments may be expressed as a subscripted variable, an 

algebraic expression and a reference to a library function. 

A Single-Line String Function 

A single-line string function can be defi ned in a similar way as a single-line numeric function. The only 

difference is that the name of the function must end with a dollar sign. Example is 

 DFF FNA$ = "MIXING OF COMPONENTS" 

 A numeric and a string function having the same three letters (such as FNA and FNA$) represent 

different functions and can be used in the same program. 

Multiline Function 

If the defi ning expression of a function requires more than one statement, one can incorporate these in a 

multiline function with the following format. 
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  DFF FNA(arguments) 

 ___ 

 ___

 FNA = ___ 

 END DEF 
 
where DFF is the keyword for defi ning the function, and FNA(arguments) is the name of the function. In 

this, the fi rst two letters FN are fi xed and the third letter may be any alphabet from A to Z. The name is 

followed by nonsubscripted arguments (if any) separted by commas and enclosed in parenthesis. 

 Unlike a single-line function, the defi ning expression of the function is not included in this statement. 

This is, however, inserted in the following statements, one of which is FNA = ___ which assigns a value 

to the function name and this value is returned to the main program. 

 END DEF is the last line of a multiline function which indicates the end of defi nition of the function. 

 A multiline function is referred to by the same way as a single-line function. 

 A multiline function may be illustrated by generating the factorial of a number. 

  DEF FNA (N) 

  FACT = 1 

  IF N = 0 THEN 5 

  FOR I = 1 TO N 

  FACT = FACT * I 

  NEXT I 

 5 FNA = FACT 

  END DEF 

Subroutine 

Another way to use some portion of a program at different locations of the main program is to treat the 

portion as a subroutine. The latter includes a set of statements which starts with a number assigned to the 

fi rst statement and ends with the keyword RETURN. In the main body of the program, the subroutine is 

referred to by the keyword GOSUB followed by the number assigned to the fi rst statement of the subroutine. 

Execution of this statement causes the transfer of the control to the subroutine. The execution of subroutine 

is continued until the statement of RETURN is encountered which causes the transfer of control back to the 

statement following GOSUB in the main program. 

 The following example of generating a factorial of a number illustrates the use of a subroutine. 
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 The arrows shown on the left side indicate only the transfer of control and is not the part of the 

program. 

Nest of Subroutines

One can also use a nest of subroutines in which one subroutine has a reference of another subroutine. The 

following example illustrates the use of the nested subroutines. 

  

 The arrows shown in the program indicate the transfer of control and are not part of the program. 

 The fi rst arrow indicates the transfer of control to the statement number 100 which indicates the start of 

fi rst subroutine. During the execution of this subroutine, encountering of GOSUB 150 causes the transfer 

of control to the second subroutine which starts with the statement number 150. This is indicated by the 

second arrow. When the statement RETURN is encounted in the second subroutine, the control is transferred 

to the following statement of GOSUB 150 in the fi rst subroutine. This is shown by the third arrow. Finally, 

when the statement RETURN is encountered in the fi rst subroutine, the control is transferred back to the 

following statement of GOSUB 100 in the main body of the program. This is shown by the fourth arrow. 

Thereafter, the execution of the remaining statements in the main program is continued. 

 Please note that if subroutine A references subroutine B, then subroutine B cannot reference subroutine 

A. However, subroutine B may be referenced from the main part of the program. 

1.13 AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE (ASCII) 

In the computer memory, every thing is stored in binary digits. Each digit, letter and special character is 

represented by its own unique number. 

 The conversion from characters to numbers, and vice versa, are carried out automatically within the 

computer. American standard code for information interchange (ASCII) is one of the commonly used coding 

scheme. Table 5 describes the numerical representations of some of the commonly used characters. 

CHANGE Statement

The CHANGE statement is used to convert a character into its ASCII number and vice versa. The formation 

of this statement is
  
 CHANGE string variable TO numeric list
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Table 5 A Few Commonly ASCII Representations of Some of the Characters† 

 Character ASCII Value Character ASCII Value Character ASCII Value

 Control  Y 89 S 228 

 Characters 00-31 Z 90 s 229

 Blank  32 [ 91 m 230 

 ! 33 \ 92 t 231 

 ,, 34 ] 93 F 232 

 # 35 Ÿ 94 q 233

 $ 36 _ 95 W 234 

 % 37 ‘ 96 d 235

 & 38 a 97 • 236
 , 39 b 98 f 237

 ( 40   Œ 238 

 ) 41 y 121 P 239 

 * 42 z 122 ∫ 240

 + 43 { 123 ± 241

 , 44 ¦ 124  ≥ 242

 – 45 } 125 £ 243

 . 46 ~ 126  

 / 47  127 ÷ 246 

 0 48    ª 247

 1 49 1/2
 171 ∞ 248

   1/4 172 . 249

 9 57 ↓
 

 173 - 250

 : 58 <<  174  ÷ 251

 ; 59 >> 175 h 252  

 < 60     2 253  

 =  61 ^ 193   

 > 62  194  blank 255 

 ? 63     

 @ 64 a 224  

 A 65 b 225 

 B 66  G 226      

   p 227    

†There are a total of 255 characters. 

 This statement causes each character in the string variable to be converted to its numerical equivalent 

and stored in a numeric list. The fi rst element of the numeric list has a subscript of zero and this indicates 

the number of encoded characters in the numeric list. 

 For example if A$ is "LIBRARY", than its conversion to numerical list may be achieved by using the 

statement. 

  CHANGE A$ TO A
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 The assigned value of the numerical list represented by the variable will be as follows. 

 A(0) = 7 (there are seven characters in A$ ) 

 A(1) = 76 (the numerical equivalent of L ) 

 A(2) = 73 (the numerical equivalent of I) 

 A(3) = 66 (the numerical equivalent of B ) 

 A(4) = 82 (the numerical equivalent of R ) 

 A(5) = 65 (the numerical equivalent of A)

 A(6) = 82 (the numerical equivalent of R) 

 A(7) = 89 (the numerical equivalent of Y) 

 The numerical equivalent of any character in the string A$ may be referred to by the corresponding 

subscripted variable A. 

 The inverse operation of a number list to the corresponding character list is also achieved by the 

CHANGE statement. The format of such a change is   CHANGE A TO A$ 

 The variable A(0) stores the number of encoded numbers in the string list. 

Conversion Using Library Functions 

Another way of converting a single character to its ASCII numerical quantity, and vice versa, is to use the 

library functions ASC and CHR$. 

 The format of the statements are as follows. 

 A = ASC(L) ; ASCII equivalent of L is 76. Hence A gets the value of 76 

 A$ = CHR$(X) ; If X is 80, then the corresponding character is P. Hence, A$ represents P. 

 The above two library functions can be used in any type of statement (e.g. conditional branching, 

printing, etc.). 

1.14 COMPUTER GRAPHICS 

BASIC includes instructions to display the data in graphical form on the monitor.

Graphical Mode

The fundamental elements in the display of graphs are small dots, called pixels (picture elements). To bring 

the computer to the graphical mode, the statement to be given is 

 SCREEN 1 or SCREEN 2 

 In SCREEN 1, known as medium-resolution graphics mode, there is a provision of 320 pixels in 

the horizontal direction and 200 pixels in the vertical direction. The position of a pixel on the monitor is 

governed by its coordinates. The scheme of coordinates is shown in Fig. 1. 

 In the scheme shown in Fig. 1, the top left-most corner of the monitor is assigned coordinates (0, 0). 

The bottom right-most corner of the monitor is assigned coordinates (319, 199).
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Fig. 1 Coordinate scheme in a medium-resolution graphics (SCREEN 1)

 

With this, the coordinates of top right-most and bottom left-most corners of the monitor have the coordinates 

(319, 0) and (0, 199), respectively. To display a dot at the desired position, the statement to be given is 

 PSET (X, Y) 

where X and Y are the coordinates of the desired position of pixels on the monitor. 

 In SCREEN 2, known as high-resolution graphics mode, there is a provision of 640 pixels horizontally 

and 200 pixels vertically, with the coordinate system shown in Fig. 2.

Fig. 2 Coordinate scheme in a high-resolution graphics (SCREEN 2).  

Colour Scheme

The SCREEN 1 mode has a provision to display graphs in colour whereas in SCREEN 2, only black and 

white format is available. The choice of colour in SCREEN 1 is specifi ed by the statement 

 COLOR X, Y 

where X and Y are the two parameters which decide the background colour and the choice of palette, 

respectively. The parameter X can have any one value from 0 to 15, thus providing with a choice of 16 

different colours as shown in Table 6. 

Table 6 Colour variables in BASIC 

 Value of X Colour Value of X Colour 

 0 black 8 gray 

 1 blue 9 light blue 

 2 green 10 light green 

 3 cyan 11 light cyan 

 4 red 12 light red 

 5 magneta 13 light magneta

 6 brown 14 yellow 

 7 white  15 high intensity white 
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 The parameter Y has a value of either 0 or 1. Thus, there are two schemes for the graphical display. 

These are shown in Table 7. 

Table 7 Palletes used in Colour Scheme of BASIC 

 Pallete 0 Pallete 1 

 Number Colour Number Colour

 0 background colour 0 background colour 

 1 green 1 cyan 

 2 red 2 magneta 

 3 brown 3 white 

 The choice of colour in either of the above two palettes is indicated along with the graphic statements 

PSET, LINE and CIRCLE. In the statement PSET, this number is indicated immediately after the closing 

parentheses with a comma in between. For example 

 PSET (X, Y), 1 

 If no number is mentioned, it is automatically taken to be 3.  

Colour Scheme in Textual Mode

In textual mode (SCREEN 0), the COLOR statement involves three parameters specifying the foreground 

(text) colour, the background colour and the border colour. The COLOR statement is inserted immediately 

after the statement SCREEN which specifi es text mode, with colour enabled. For example,

 SCREEN 0

 COLOR 14, 1, 4 

 These statements set yellow text against blue background with a red border. 

 The textual mode is a default mode when the execution of the program is started. The whole screen is 

divided into 25 rows and 80 columns. 

LINE Statement 

It is possible to draw a line between the two points on the screen. The format of the LINE statement is 

 LINE (X1, Y1)–(X2, Y2) 

where X1 and Y1 are the respective horizontal and vertical pixel coordinates of the one point, and X2 and 

Y2 are those of the second point. The coordinates are enclosed in parentheses with a comma in between. 

The two points are separated by a dash. If the line is to be drawn in a particular colour in SCREEN 1 mode, 

the number from 0 to 3 of the palette chosen is mentioned immediately after the coordinates of the second 

point with a comma in between. For example

 LINE (X1, Y1)–(X2, Y2), 1 

 If no number is mentioned, the computer assigns number 3 automatically. 

 If after drawing a line, a second line is to be drawn with the coordinates X2 and Y2 of the fi rst line as 

the fi rst point in the second line, this can be done by stating only the coordinates of the second point by 

the statement shown in the following.

 LINE –(X3, Y3) 

 This form of the LINE statement is useful in drawing more than are interconnected lines. 
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 It is also possible to draw a complete rectangle by a single LINE statement by adding two commas 

followed by inserting the symbol B as shown in the following. 

 LINE (X1, Y1)–(X2, Y2), , B

 If this rectangle is to be drawn in a particular colour of the chosen palette in SCREEN 1 mode, the 

number from 0 to 3 is inserted in between the two commas such as shown in the following. 

 LINE (X1, Y1)–(X2, Y2), 1, B 

 If no number is mentioned, it is automatically taken to be number 3. 

 If the rectangle is to fi lled with the chosen colour, then the symbol BF is inserted instead of B. For 

example, the statement 

 LINE (X1, Y1)–(X2, Y2), 1, BF 

generates a green rectangle against a choosen background colour if the palette 0 is mentioned in the 

COLOR statement. 

CIRCLE Statement 

It is possible to draw a circle of desired radius around a chosen point. The statement to be given is 

 CIRCLE (X1, Y1), Z, 1 

where X1 and Y1 are the respective horizontal and vertical pixel-coordinates of the centre of the circle, Z 

is the radius mentioned as the number of pixels and the last number is the colour of the circle (from 0 to 3) 

from the palette (either 0 or 1) inserted in the COLOR statement. For example, in palette number 1, the 

statement 

 CIRCLE (160, 100), 60, 2 

draw a circle around the point with horizontal and vertical pixel-coordinates equal to 160 and 100, 

respectively. The radius of the circle is 60 pixels and its colour is magneta. If the colour parameter is not 

inserted, the default value of 3 is automatically taken. 

 It is possible to draw an arc of a circle by stating a starting angle and an ending angle measured 

counterclockwise direction from the right half of the horizontal axis. These are inserted immediately after 

the parameter of colour separated by commas. Both the inserted angles are expressed in radians for example, 

the statements 

 SCREEN 1 

 COLOUR 14, 0 

 CIRCLE (160, 100), 60, 1, 0, 3.14 

generates the upper half of a circle of radius 60 pixels around the point (160, 100) pixels in green colour. 

 If the angles are expressed in negative, these are interpreted as positive but with an additional effect of 

connecting the end points of the arc with the centre of the circle for example, 

 SCREEN 1 

 COLOR 14, 0 

 CIRCLE (160, 100), 60, 1, –3.14, –6.28 

generates a bottom half of a circle of radius 60 pixels around the centre (160, 100) pixels in green colour 

with the end points joined to the centre (160, 100). 
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 Besides drawing circles and arcs, the CIRCLE statement can also be used to draw ellipses and elliptical 

arcs. This is achieved by inserting a positive parameter immediately after the angles separated by a comma. 

The value of the parameter goes as follows.  

 Value Figure 

 1 nearly circular 

 greater than 1 vertical ellipse 

 less than 1 horizontal ellipse 

 The eccentricity of the ellipse depends on the value of this parameter. Larger its difference from unity, 

larger the eccentricity. The radius parameter is half of the major axis of the ellipse. For drawing a complete 

ellipse, either angles 0 and 2p are inserted or their locations are left blank without disturbing the placement 

of commas. For example, the following three statements produce the same fi gure. 

 CIRCLE (160, 100), 80, , , , 0.5

 CIRCLE (160, 100), 80, 3, , , 0.5 

 CIRCLE (160, 100), 80, 3, 0, 6.28, 0.5 

Summary of the CIRCLE Statement 

The complete statement of CIRCLE is

  

PAINT Statement 

A fi gure enclosed in a closed boundary can be fi lled with a colour matching with the colour of the boundary 

by using the statement 

 PAINT (X1, Y1), 2 

where X1 and Y1 are the respective horizontal and vertical pixel-coordinates of a point within the closed 

boundary. The colour number should be the same as that of the closed boundary. 

 The colour parameter in the PAINT statement may be followed by one more parameter which explicitly 

indicates the colour of the boundary. For example, the statement 

 PAINT (X1, Y1), 3, 2 

causes the fi gure with boundary colour 2 to be fi lled with colour number 3. This statement helps fi lling a 

desired fi gure if the point represented by the pixels X1 and Y1 lies within more than one fi gure. 
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VIEW Statement

It is possible to choose a portion of the monitor within which the graphical display is to be restricted. This 

is achieved by the VIEW statement. Its format is 

 VIEW (X1, Y1)–(X2, Y2) 

where X1 and Y1 are the respective horizontal and vertical pixel coordinates of the left most top corner of 

the selected portion of the screen and X2 and Y2 are those of the right most bottom corner of the selected 

portion. For example, the statement 

 VIEW (20, 20)–(300, 180) 

causes the selection of the following portion of the monitor. 

 By selecting the appropriate portion of the screen, it is possible to display more than one graphical 

representation on the same screen.  

WINDOW Statement

The WINDOW statement helps replacing the pixel numbering system by the new coordinate system suitable 

for displaying graph on the full screen or the chosen portion of the screen via VIEW statement. The format 

of the WINDOW statement is 

 WINDOW (X1, Y1)–(X2, Y2) 

where X1 and Y1 are the respective horizontal and vertical coordinates of the bottom-left corner of the screen 

or view portion, and X2 and Y2 are those of the right-top corner. These are shown in the following. 

 With this coordinate system, the horizontal variation is from X1 to X2 and the vertical variation is 

from Y1 to Y2. The coordinates of the left-top and bottom-right corners are (X1, Y2) and (X2, Y1), 

respectively.

 The WINDOW statement is normally inserted immediately after the VIEW statement. The graphic 

statements PSET, LINE and CIRCLE are governed by the coordinate system inserted in the WINDOW 

statement. 
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LOCATE Statement 

It is possible to position the cursor in the desired location of the screen. This is achieved by the LOCATE 

statement, the format of which is

 LOCATE X, Y 

where X is the row number and Y is the column number. The entire screen has 25 rows (numbering starts 

from the top of screen) and 40 columns (numbering starts from the left of the screen). 

 For example, the statements 

 LOCATE 2, 10 

 PRINT "Plot of rate versus time" 

causes the cursor to position in the 2nd row and 10th column. Immediately after this, the printing of the 

given string constant is executed as given in the next statement. 

 Using the LOCATE statement, the cursor can be placed at the desired position on the screen without 

disturbing any text previously written on the screen. 
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2.1 A FEW ARITHMETIC CALCULATIONS

 (i) Calculate the volume (V) of a given amount (n) of an ideal gas at a given temperature (T) and pressure 

(p). Given: V = nRT/p.

Program CLS

  INPUT "Amount of gas in moles="; n

  INPUT "Temperature in kelvin="; T

  INPUT "Pressure in kPa="; p

  R = 8.314

 5 V = n * R * T / p

 10 PRINT "V="; V; "dm^3"

  END

Output  

 Comment: Instead of statements 5 and 10, a single statement

   PRINT "V = "; n * R * T / p ; "dm ^3"

   may be used. 

 (ii) Calculate the pressure (p) of a given amount (n) of O2 assuming it to follow van der Waals equation 

of state at the given temperature (T) and volume (V). Given:

   Van der Waals Equation ( p + n2a/V 2) (V – nb) = nRT

   a = 137.802 kPa dm6 mol– 2; b = 0.031 83 dm3 mol–1

Program CLS

 INPUT "Amount of gas="; N

 INPUT "Temperature in kelvin"; T

 INPUT "Volume in litres="; V

 R = 8.314: a = 137.802: b = .03183

 p = N * R * T / (V - N * b) - N ^ 2 * a / V ^ 2

 PRINT "p="; p; "kPa"

 END
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Output  

 (iii) Calculate the root mean square speed ( 3 / )RT M= , average speed ( 8 / )RT M= p  and most probable 

speed ( 2 / )RT M=  of oxygen molecules at a given temperature.

Program CLS

 INPUT "Molar mass of the gas in kg/mol="; M

 INPUT "Temperature in kelvin="; T

 R = 8.314: PI = 3.1415

 RMSS = (3 * R * T / M) ^ .5

 AVS = (8 * R * T / (PI * M)) ^ .5

 MPS = (2 * R * T / M) ^ .5

 PRINT "Root mean square speed="; RMSS; "m/s"

 PRINT "Average speed="; AVS; "m/s"

 PRINT "Most probable speed="; MPS; "m/s"

 END

Output 

 (iv) Calculate the molecular diameter of helium from its van der Waals constant b( = 24 cm3 mol–1). 

Given: b = 4NA(4p r3/3).

Program CLS

 INPUT "van der Waals constant,b,in cm3 ="; b

 NA = 6.022E+23: PI = 3.1415

 R = (3 * b / (16 * NA * PI)) ^ (1 / 3)

 D = 2 * R

 PRINT "Molecular diameter="; D; "cm"

 END

Output 

 (v) Calculate the values of molecular diameter (s), mean free path (l), number of collisions (Z) made by 

a single molecule with other molecules per unit time, and number of bimolecular collisions (Z11) per 

unit volume per unit time for oxygen molecules at 298 K and 101.325 kPa. Given:
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   s = 2(3b/16pNA)1/3; l = 1/ 2   ps 
2N * where N * = p / kBT;

   Z1 = uav / l where uav =  8 /RT Mp  and Z11 = Z1 N
*/2. b = 0.03183 dm3 mol–1.

Program CLS

 INPUT "Molar mass of oxygen in kg/mol="; M

 INPUT "Temperature in kelvin="; T

 INPUT "Pressure in Pa"; p

 INPUT "van der Waals constant in dm3/mol="; b

 R = 8.314: NA = 6.022E+23: PI = 3.1415

 kB = R / NA: b = b * .001       'conversion of b into m3/mol

 SIGMA = 2 * (3 * b / (16 * PI * NA)) ^ (1 / 3)

 NSTAR = p / (kB * T)

 UAV = (8 * R * T / (PI * M)) ^ .5

 SIGMA2 = SIGMA ^ 2: CON = 2 ^ .5

 LAMBDA = 1 / (CON * PI * SIGMA2 * NSTAR)

 Z1 = UAV / LAMBDA: Z11 = .5 * Z1 * NSTAR

 PRINT "SIGMA="; SIGMA; "m", "LAMBDA="; LAMBDA; "m"

 PRINT "Z1="; Z1; "/s", "Z11="; Z11; "/(m3 s)"

 END 

Output  

 (vi) The bimolecular decomposition of HI is given by the equation 2HI Æ H2 + I2. Assuming a collision 

diameter of 3.5 nm and an activation energy of 183.9 kJ mol–1, calculate (a) the collision rate of HI, 

(b) the rate of reaction, and (c) the rate constant of the reaction at 700 K and 1 atm. Given:

   Z = (1/ 2) ps2uavN
*2 where uav = 8 / /RT Mp  and N * = NA p/RT

   Rate of reaction, r = – (1/2)d[HI]/dt = Z exp(–Ea/RT)/NA

   Rate constant, k = r/ [HI]2 where [HI] = N */NA

Program CLS

 T = 700: P = 101325: PI = 3.14159: R = 8.314

 NA = 6.022E+23: EA = 183.9 * 10 ^ 3: SIGMA = 3.5E-09

 M = (1 + 127) * .001

 UAV = (8 * R * T / (PI * M)) ^ .5

 NSTAR = NA * P / (R * T)
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 Z = (1 / 2 ^ .5) * PI * SIGMA ^ 2 * UAV * NSTAR ^ 2

 RATE = Z * EXP(-EA / (R * T)) / NA

 K = RATE / (NSTAR / NA) ^ 2

 PRINT "COLLISION RATE="; Z; "/s"

 PRINT "RATE OF REACTION="; RATE; "mol/s"

 PRINT "RATE CONSTANT="; K; "dm^6/(mol s)"

 END

Output  

2.2 AVERAGE AND ROOT MEAN SQUARE AVERAGE OF THE GIVEN NUMBERS 

Program CLS

 INPUT "Number of data points="; N

 SUM = 0: SUM2 = 0

 FOR I = 1 TO N

 PRINT "X("; I; ")="; : INPUT X

 SUM = SUM + X

 SUM2 = SUM2 + X ^ 2

 NEXT I

 AV = SUM / N

 RMSA = SQR(SUM2 / N)

 PRINT "Average="; AV, "Root mean square average="; RMSA

 END

Output  

2.3 MAXIMUM / MINIMUM AMONGST THE GIVEN NUMBERS 

Program CLS

  INPUT "Number of data points="; N

  INPUT "Insert the fi rst number,X(1)="; MIN

  FOR I = 2 TO N
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  PRINT "X("; I; ")="; : INPUT X

 5 IF MIN > X THEN MIN = X

  NEXT I

 10 PRINT "Minimum amongst the given numbers is "; MIN

  END

Output    

Note For fi nding the maximum insert the operator "<" in the IF __ THEN statement (numbered 5) and 

replace minimum by maximum in the PRINT statement (numbered 10). 

2.4 ASCENDING/ DESCENDING ORDER OF THE GIVEN NUMBERS  

Program CLS

  INPUT "Number of data points="; N

  FOR I = 1 TO N

  PRINT "X("; I; ")="; : INPUT X(I): Y(I) = X(I)

  NEXT I

  A$ = INPUT$(1): CLS

  FOR I = 1 TO N - 1

  FOR J = I TO N

 5 IF Y(I) < Y(J) THEN 25

 10 DUMMY = Y(I): Y(I) = Y(J): Y(J) = DUMMY

 25 NEXT J

  NEXT I

  PRINT : PRINT "Unsorted list of numbers": PRINT

  FOR I = 1 TO N: PRINT X(I); : NEXT I

  PRINT : PRINT : PRINT "Sorted list of numbers": PRINT

  FOR I = 1 TO N: PRINT Y(I); : NEXT I

  END

Output  
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 Notes

 (i) The statement 5 and 10 may be replaced by a single statement 

   IF Y(I) > Y(J) THEN SWAP Y(I), Y(J) 

 (ii) For arranging in the descending order, replace the operator "<" by ">". 

2.5 ASCENDING / DESCENDING ORDER OF ALPHABETICAL NAMES

Since the ASCII values of alphabets increase from A to Z, the arrangement of names (represented by 

string variables) in the alphabetical order may be carried out by a program similar to the program involving 

arrangement of numerical variables in increasing order (Program 2.4). The only change to be carried out 

is to replace numerical variables by string variables (e.g. replace X, Y, DUMMY by X$, Y$, DUMMY$, 

respectively).

2.6 ROOTS OF A QUADRATIC EXPRESSION, ax
2 + bx + c = 0 

The roots of the expression ax2 + bx + c = 0 are given by the expression

  x =   
2– – 4

2

b b ac

a

±
  

provided b2 – 4ac ≥ 0. If it is less than zero, then the roots are imaginary.

Program CLS

 INPUT "The coeffi cient a="; a

 INPUT "The coeffi cient b="; b

 INPUT "The coeffi cient c="; c

 DEN = 2 * a: REAL = -b / DEN: DISC = b ^ 2 - 4 * a * c

 IF DISC < 0 THEN

 PRINT "Roots are imaginary"

 IMAG = SQR(-DISC) / DEN

 PRINT "Real part="; REAL

 PRINT "Imaginary part="; IMAG

 ELSEIF DISC = 0 THEN

 PRINT "Roots are real and equal"

 PRINT "Roots are "; REAL, REAL

 ELSEIF DISC > 0 THEN
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 REAL1 = SQR(DISC) / DEN

 ROOT1 = REAL + REAL1: ROOT2 = REAL - REAL1

 PRINT "ROOT1="; ROOT1, "ROOT2="; ROOT2

 END IF

 END

Output Run 1 Run 2

  

Exercises from Chemistry

 1. The concentration of H+ in a dilute solution of HCl (c < 10–6 M) is given by the expression 

  [H+]2 – [HCl]0 [H
+] – Kw = 0 

  Calculate the pH of 10–7 M HCl solution at 25 °C. (Hint: a = 1, b = – [HCl]0, c = –Kw.) 

 2. The degree of dissociation of a weak acid is given by the expression ca
2 + Kaa – Ka = 0. If [H+] = ca, 

calculate the pH of 10–3 M acetic acid (Ka = 1.80 ¥ 10–5 M) solution. 

 3. The inversion temperature of a van der Waals gas may be computed from the expression 

  
2 2

i i

2 3
– – 0

a abp
b

RT R T
=

  

 This may be rearranged to

  (bR2)T 2 – (2aR)T + 3 abp = 0 

  Calculate and display T versus p for N2 gas for which a = 141 kPa dm6 mol–2 and b = 0.0392 dm3 mol–1. 

Vary p from 100 atm to 300 atm with a step of 50 atm. 

2.7 ROOT OF A FUNCTION 

Root of f(x) = 0 by the Bisection Method

If at x = x1 and x = x2, the function f (x) has opposite signs, then there exists at least one value of x 

between x1 and x2 at which f (x) = 0. In the bisection method, the value of x is determined by the following 

computational procedure.

 • Choose x1 and x2 such that f (x1) f (x2) < 0.

 • Take  
_
 x  = (x1 + x2)/2 and evaluate f ( 

_
 x ). 

 • If f(x1) f ( 
_
 x ) < 0, then the root of f (x) lies between x1 and  

_
 x . If not, then the root lies between  

_
 x  and x2 

for which f ( 
_
 x ) f (x2) < 0.
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 • Replace x2 or x1 by  
_
 x  and repeat the previous step until |f ( 

_
 x )| or |x(new) – x(old)| is less than a 

predecided minimum value. 

Illustration To fi nd a real root of f (x) = x3 – 5x + 3. The following program scans the root(s) from XI to XF 

in the step of XS.

Program CLS

  DEF FNA (X) = X ^ 3 - 5 * X + 3

  READ XI, XF, XS, XE: DATA -10,10,1,.0001

  3 PRINT

  'PRINT "Determining X1 & X2 corresponding"

  'PRINT "to opposite signs of function"

  'PRINT STRING$(50, "-")

  'PRINT "      X1          X2          F1          F2"

  'PRINT STRING$(50, "-")

  FOR I = XI TO XF - XS STEP XS

  X1 = I: X2 = I + XS: F1 = FNA(X1): F2 = FNA(X2)

  'PRINT USING "  ##.###^^^^"; X1; X2; F1; F2

  IF F2 = F1 OR F1 * F2 > 0 THEN 4

  X2 = I + XS: GOTO 6

  4 NEXT I

  'PRINT STRING$(50, "-")

  GOTO 15

  6 XI = I + XS

  'PRINT STRING$(50, "-"): A$ = INPUT$(1): CLS

  M = 0

  'PRINT STRING$(55, "-")

  'PRINT " N        X1           X2           XAV          F2"

  'PRINT STRING$(55, "-")

  8 M = M + 1

  F1 = FNA(X1): X = (X1 + X2) / 2: F2 = FNA(X)

  F1F2 = F1 * F2

  'PRINT USING "##"; M;

  'PRINT USING "   ##.###^^^^"; X1; X2; X; F2

  'A$ = INPUT$(1)

  IF ABS(X1 - X2) < XE THEN 10

  IF F1F2 < 0 THEN X2 = X: GOTO 8

  X1 = X: GOTO 8

  10 PRINT

  'PRINT STRING$(55, "-")

  PRINT "ROOT IS "; X1
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  A$ = INPUT$(1)

  'CLS

  GOTO 3

  15 PRINT "****SCANNING IS OVER****"

  20 END

Output  

Exercises 

 1. Determine the volume of 0.5 mol of the van der Waals gas CO2 at 2226 kPa and 298 K. Given: 

a = 363.76 kPa dm6 mol–2 and b = 42.67 cm3 mol–1. Scan volume from 0.1 dm3 to 2 dm3 in the step 

of 0.1 dm3. (Ans: 0.499 5117 dm3)

 2. Determine [H+] in 10– 4 M solution of glycine (Ka = 1.7 × 10– 10 M) at 20 °C by using the 

expression

[H+]3 + Ka[H
+]2 – (Kw + Ka [HG]) [H+] – Ka Kw = 0

  Scan [H+] from 1 × 10–7 M to 3 × 10–7 M in the step of 1 × 10 – 8 M. (Ans: 1.649 218 × 10– 7 M) 

Root of f (x) = 0 by the Method of False Position

If at x = x1 and x = x2, the function f (x) has opposite signs, then there exists at least one value of x between 

x1 and x2 at which f (x) = 0. In the method of false position, the value of x is determined by the following 

computational procedure. 

 • Choose x1 and x2 such that f (x1) f (x2) < 0. 

 • Replace the curve between [x1, f (x1)] and [x2, f (x2)] by a straight line and determine its point of 

intersection with x-axis. 

  Equation of straight line   1 2 1

1 2 1

– ( ) ( ) – ( )

– –

y f x f x f x

x x x x
=  

  Point of intersection with x-axis where y = 0 

   x0 = 1 2 2 1

2 1

( ) – ( )

( ) – ( )

x f x x f x

f x f x
 

 • If f (x1) f (x0) < 0, then the root of f (x) lies between x1 and x0. If not, then the root lies between x0 and 

x2 for which f (x0) f (x2) < 0. 

 • Replace x2 or x1 by x0 and repeat the previous step until |f (x0)| or |x(new) – x(old)| is less than a 

predecided minimum value. 
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Illustration To fi nd a real root of f (x) = x3 – 4x + 1. The following program scans the root(s) from XI to 

XF in the step of XS. 

Program CLS 

  DEF FNA (X) = X ^ 3 - 4 * X + 1

  READ XI, XF, XS, XE: DATA  -10, 10, .1, .0001

  3 PRINT

  'PRINT "Determining X1 & X2 corresponding to opposite signs ";

  'PRINT "of function"

  'PRINT STRING$(53, "-")

  'PRINT "       X1           X2           F1          F2"

  'PRINT STRING$(53, "-")

  FOR I = XI TO XF - XS STEP XS

  X1 = I: X2 = I + XS: F1 = FNA(X1): F2 = FNA(X2)

  'PRINT USING "   ##.###^^^^"; X1; X2; F1; F2: A$ = INPUT$(1)

  IF F2 = F1 OR F1 * F2 > 0 THEN 4

  X2 = I + XS: GOTO 6

  4 NEXT I

  'PRINT STRING$(53, "-")

  GOTO 15

  6 XI = I + XS

  'PRINT STRING$(53, "-"): A$ = INPUT$(1): CLS

  M = 0

  'PRINT STRING$(55, "-")

  'PRINT " M        X1          X2           X           FX"

  'PRINT STRING$(55, "-")

  XP = X1

  8 M = M + 1

  F1 = FNA(X1): F2 = FNA(X2)

  X = (X1 * F2 - X2 * F1) / (F2 - F1)

  FX = FNA(X): F1F2 = F1 * F2

  'PRINT USING "##"; M; : PRINT USING "   ##.###^^^^"; X1; X2; X; FX

  'A$ = INPUT$(1)

  IF ABS(XP - X) < XE THEN 10

  IF F1F2 < 0 THEN X2 = X: XP = X: GOTO 8

  X1 = X: XP = X: GOTO 8

  10 PRINT

  'PRINT STRING$(55, "-")

  PRINT "ROOT IS  "; X

  'LINE (X, -10)-(X, 0), 2: A$ = INPUT$(1)
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  'A$ = INPUT$(1)

  'CLS

  GOTO 3

  15 PRINT "**** SCANNING IS OVER ****"

  20 END 

Output  

Improvement of a Root of f (x) = 0 by the Newton-Raphson Method 

In the Newton-Raphson method, the fi rst improved root of f (x) = 0 is written as 

  x1 = x0 + h

where x0 is the approximate root of f(x) = 0 and h is the small refi nement. Writing f (x1) by Taylor’s series, 

we have 

  f (x1) = f (x0) + hf ¢(x0) + 
2

2!

h
   f ≤(x0) + ◊ ◊ ◊

 Neglecting the second- and higher-order derivatives, we get 

  f (x1) = 0 = f (x0) + h f ¢(x0) 

which gives h = – 0

0

( )

( )

f x

f x¢
 

 Hence, the refi ned root is 

  x1 = x0 – 0

0

( )

( )

f x

f x¢
  

 The above procedure may be repeated to get the second refi ned root and so on. The general expression 

of refi ned root is 

  xn + 1 = xn – 
( )

( )

n

n

f x

f x¢
  ; n = 0, 1, 2, º

Illustration 

To determine the volume of 0.5 mol of van der Waals gas (carbon dixide) at 2 226 Pa and 298 K. Take 

the starting volume as obtained from the ideal gas equation of state. Given: a = 363.76 kPa dm6 mol–2, 

b = 0.042 67 dm3 mol–1.
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 We have

  f (V) = V 3 – 
2 3

2 – 0
nRT n a n ab

nb V V
p p p

Ê ˆ
+ + =Á ˜Ë ¯

 From this, we get 

  f ¢(V) = 3 V 2 – 
2

2
nRT n a

nb V
p p

Ê ˆ
+ +Á ˜Ë ¯

 

Program CLS 

  P = 2226: A = 363.76: B = .04267: R = 8.314

  T = 298: N = .5

  NB = N * B: NRT = N * R * T: N2A = N ^ 2 * A

  N3AB = N ^ 3 * A * B

  DEF FNA (V) = V ^ 3 - (NB + NRT / P) * V ^ 2 + (N2A / P) * V - N3AB / P

  DEF FNB (V) = 3 * V ^ 2 - (NB + NRT / P) * 2 * V + (N2A / P)

  X1 = NRT / P

  6 N = 0

  PRINT STRING$(35, "-")

  PRINT " N       X1        X2       FNA"

  PRINT STRING$(35, "-")

  8 N = N + 1

  X2 = X1 - FNA(X1) / FNB(X1)

  PRINT N; : PRINT USING "   ##.####"; X1; X2; FNA(X1)

  A$ = INPUT$(1)

  IF ABS(X2 - X1) < .00001 THEN 10

  X1 = X2: GOTO 8

  10 PRINT STRING$(35, "-")

  20 END

Output

   

 

Root of f(x) = 0 by the Muller’s Method

In the Muller’s method, the function f (x) = 0 is approximated by a quadratic equation in the vicinity of 

its root. If xi is the approximation to a root of f (x) = 0, then the quadratic equation passing through xi is 

  p = A(x – xi)
2 + B(x – xi) + yi (1)
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where yi = f (xi). The values of A and B are determined by considering two other approximations of the root. 

If xi – 1 and xi – 2 are the roots then 

  yi – 1 = A (xi – 1 – xi)
2 + B (xi – 1 – xi) + yi

  yi – 2 = A (xi – 2 – xi)
2 + B (xi – 2 – xi) + yi

 Solving for A and B, we get 

  A = 
–1 –2

–1 –2 –1 –2 –2 –1

– –

( – )( – ) ( – )( – )

i i i i

i i i i i i i i

y y y y

x x x x x x x x
+        

  B = 
–1

–1

–

–

i i

i i

y y

x x
   – A (xi–1 – xi) 

 With these values of A and B, the root of Eq. (1) is considered to be new approximation xi + 1 of the 

root of f (x) = 0.

 Equation (1) provides

  xi + 1 – x  =   
2– – 4

2

iB B Ay

A

±
 (2)

 The above expression is written in its equivalent form as

  xi + 1 – xi = – 
2

2

– – 4

i

i

y

B B Ay±
  (3)

 The sign in the denominator of right-hand side of the above expression is chosen so as to have a larger 

value. 

 Considering xi + 1 as the new approximation of xi, the values of A and B are evaluated and then their 

substitution in Eq. (3) provides then next improved approximation of xi. The procedure is repeated to attain 

self consistency. 

Illustration 

To determine the volume of 0.5 mol of van der Waals gas (carbon dioxide) at 2 226 Pa and 298 K.

Given: a = 363.76 kPa dm6 mol–2 and b = 0.042 67 dm3 mol–1. Take x3 = 2, x2 = 0.6 and x1 = 0.2 as the 

approximations of the function 

  f (V) = V3 – 
2 3

2 – 0
nRT n a n ab

nb V V
p p p

Ê ˆ
+ + =Á ˜Ë ¯

 

Program CLS 

  P = 2226: A = 363.76: B = .04267: R = 8.314: T = 298: N = .5

  NB = N * B: NRT = N * R * T: N2A = N ^ 2 * A: N3AB = N ^ 3 * A * B

  DEF FNA (V) = V ^ 3 - (NB + NRT / P) * V ^ 2 + (N2A / P) * V - N3AB / P

  2 INPUT "X1="; X1: INPUT "X2="; X2: INPUT "X3="; X3

  A$ = INPUT$(1)
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  CLS : Y1 = FNA(X1): Y2 = FNA(X2)

  N = 0

  PRINT STRING$(47, "-")

  PRINT " N       A           B        ROOT       ER"

  PRINT STRING$(47, "-")

  5 Y3 = FNA(X3)

  N = N + 1

  TERM1 = (Y2 - Y3) / ((X2 - X1) * (X2 - X3))

  TERM2 = (Y1 - Y3) / ((X1 - X3) * (X1 - X2))

  A = TERM1 + TERM2

  B = (Y2 - Y3) / (X2 - X3) - A * (X2 - X3)

  DIS = B ^ 2 - 4 * A * Y3

  IF DIS < 0 THEN 8

  TERM = SQR(DIS)

  TERM1 = B + TERM: TERM2 = B - TERM

  IF TERM1 > TERM2 THEN DEN = TERM1 ELSE DEN = TERM2

  X4 = X3 - (2 * Y3) / DEN

  ER = 100 * (X4 - X3) / X4

  PRINT USING "##"; N; : PRINT USING "  ####.####"; A; B; X4; ER

  A$ = INPUT$(1)

  IF ABS(ER) < .001 THEN 10

  X3 = X4

  GOTO 5

  8 PRINT "ROOT IS IMAGINARY"

  PRINT "TRY DIFFERENT VALUES OF X1,X2 AND X3"

  GOTO 2

  10 PRINT STRING$(47, "-")

  END

Output  
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Method of Successive Approximation 

The exact expression of [H+] in a dilute solution of a weak acid is given by the expression

  [H+]3 + [H+]2 Ka – [H+] {Kw + Ka [HA]0} – KaKw = 0

Calculate [H+] in a 10–4 M solution of glycine which acts as a weak acid with Ka = 1.7 ¥ 10–10 M at 25°C.

 In the method of successive approximation, the above expression of [H+] is arranged as

  [H+]i + 1 = [[H+]i{Kw + Ka [HA]0} – [H+]i
2 Ka  + Ka Kw]1/3 

 With a reasonable val ue of [H+], the right-hand side of the above expression is evaluated to give a new 

value of [H+]. The procedure is repeated with the refi ned value of [H+] till the two successive values tally 

with each other within the certain range.

Program CLS

  INPUT "Ionization constant of the acid="; KA

  INPUT "Concentration of the acid="; C

  INPUT "Starting concentration of H+="; H

  KW = 1E-14

  PRINT STRING$(28, "_")

  PRINT "ITERATION"; SPC(10); "[H+]"

  PRINT STRING$(28, "-")

  FOR I = 1 TO 20

  HP = (H * (KW + KA * C) - H * H * KA + KA * KW) ^ (1 / 3)

  PRINT I, HP: A$ = INPUT$(1)

  IF ABS(HP - H) < 1E-10 THEN 5

  H = HP

  NEXT I

  5 PRINT STRING$(28, "_")

  PH = -LOG(HP) / LOG(10)

  PRINT : PRINT "pH="; : PRINT USING "##.##"; PH

  END

Output  
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Lin-Bairstow’s Method for Solving Cubic Equation

See Project 3.1 for the theory and computation by this method

Exercise

The concentration of OH– in a buffer solution of ammonium chloride (0.25 M) and ammonium hydroxide 

(0.05 M) containing Mg(OH)2 and Al(OH)3 is given by the expression 

  [OH–]3 = (3.6 ¥ 10–6 M)[OH–]2 + (7.12 ¥ 10–11 M2)[OH–] + 1.28 ¥ 10–15 M3

 Calculate the value of [OH–] by the method of successive approximation.

   (Ans. 1.45 × 10–5 M) 

2.8 GENERATION OF FIBONACCI NUMBERS 

To Generate Fibonacci numbers up to twenty.

 The Fibonacci numbers are numbers in which each number is equal to the sum of the previous two 

numbers. Start with the fi rst two numbers as 1 and 2.

Program CLS

 F1 = 1: F2 = 2

 PRINT F1, : PRINT F2,

 FOR I = 1 TO 20

 F = F1 + F2

 PRINT F,

 F1 = F2: F2 = F

 NEXT I

 END

Output 

2.9 GENERATION OF FACTORIALS 

To generate factorials up to twenty.

 By defi nition n! = 1 ¥ 2 ¥ .. . ¥ n with 0! = 1 
Program CLS

  N = 20

  FACT = 1

  FOR I = 0 TO N

  IF I = 0 THEN 5

  FACT = FACT * I
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  5 PRINT I, FACT

  NEXT I

  END

Output  

2.10 GENERATION OF PRIME NUMBERS 

To generate prime numbers up to fi fty.

 A number is a prime if it is not evenly divisible by a smaller integer. By defi nition, 1 and 2 are prime 

numbers.

 Carry out the integer division of the given number N by all integers from 2 to N – 1. If the integer 

remainder is nonzero for all divisions, the number is a prime number. The divisions can be carried out by 

using the statement “MOD”. 

 Alternatively, determine the quotient M in a division of the given number N one by one by integers from 

2 to INT ( )N , where “INT” is a library function that determines the largest integer not exceeding  N . 

If M and INT(M) are identical for any division, the giving number is not a prime number. 

Programs REM PROGRAM PRIMENO;GENERATION OF PRIME NUMBERS

  READ N: DATA 50

  REM -----METHOD 1------

  CLS : PRINT " 1", : PRINT " 2",

  FOR I = 3 TO N

  FOR J = 2 TO I - 1

  IF I MOD J = 0 THEN 5

  NEXT J
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  PRINT I,

  5 NEXT I

  REM -----METHOD 2-----

  PRINT

  PRINT " 1", : PRINT " 2",

  FOR I = 3 TO N

  FOR J = 2 TO INT(SQR(I))

  R = I / J

  RI = INT(R)

  IF R = RI THEN 15

  NEXT J

  PRINT I,

  15 NEXT I

  END

Output 

2.11 GENERATION OF PASCAL TRIANGLE 

A Pascal triangle involves the arrangement of numbers in a triangular form in which a number in a row is 

sum of the numbers placed on the left and right of the previous row as shown in the following.

 The numbers may be generated by the expression nCm = n!/(m!(n – m)!) where m = 0, 1, 2, . . ., n.

 The following program illustrates the generation of a Pascal triangle in the graphical or textual mode. 

For graphical mode, the variable OPT = 1 and for textual mode, OPT = 2.

Program  REM PROGRAM PASCAL;GENERATION OF PASCAL TRIANGLE

  REM OPT=1 FOR GRAPHICAL MODE;OPT=2 FOR TEXTUAL MODE

  CLS : READ N, OPT: DATA 9,1

  DEF FNF (I)

  FACT = 1

  IF I = 0 THEN 5
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  FOR J = 1 TO I

  FACT = FACT * J

  NEXT J

  5 FNF = FACT

  END DEF

  ON OPT GOTO 10, 15

  10 SCREEN 1: COLOR 14, 0

  15 FOR K = 0 TO N

  FOR L = 0 TO K

  BIN = FNF(K) / (FNF(L) * FNF(K - L))

  ON OPT GOTO 20, 25

  20 LOCATE K + 2, 20 - K * 2 + L * 4: PRINT BIN;

  GOTO 30

  25 PRINT TAB(38 - 4 * K + 8 * L); BIN;

  30 NEXT L

  PRINT

  NEXT K

  END

Output 

2.12 ROUNDING OF A NUMBER 

To carry out the rounding of a given number for a given number of digits after the decimal point. 

 Multiply the given number (N) by 10 raised to a power ND (where ND is the number of digits beyond 

which rounding is required) to give the number N1. 

 Determine the truncated integer N2 of the number N1 by using the statement "FIX" (or "INT"). 

 Determine the absolute of the difference between N1 and N2 to give the number N3. 

Step 1. If N3 is less than 0.5 then print the rounded number which is N2 divided by (10 raised to power 

ND).

Step 2. If N3 is more than 0.5, add one to N2 if N2 is positive otherwise subtract 1 (if N2 is negative). 

Print the rounded number which is N2 divided by (10 raised to power ND). 

 If N3 = 0.5, then determine whether N2 is even or odd. If even then print the rounded number as given 

in Step 1 otherwise print as given in Step 2.
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Program REM ROUNDING NUMBER AFTER DECIMAL

  CLS : INPUT "Given number is "; N

  INPUT "Number of digits after decimal "; ND

  N1 = N * 10 ^ ND: PRINT "N1="; N1: a$ = INPUT$(1)

  N2 = FIX(N1): PRINT "N2="; N2: a$ = INPUT$(1)

  N3 = ABS(N1 - N2): PRINT "N3="; N3

  IF N3 < .5 THEN 15

  IF N3 > .5 THEN 10

  IF ABS(N2) = ABS(2 * INT(N2 / 2)) THEN 15

  10 IF N2 < 0 THEN N2 = N2 - 1 ELSE N2 = N2 + 1

  15 PRINT "Rounded number is "; N2 / 10 ^ ND

  END

Output  Run 1

  

  Run 2

  

2.13 MATRIX MULTIPLICATION 

Expression to be used: Ci j = Sk Ai k Bk j

Program REM MATRIX MULTIPLICATION

  CLS

  INPUT "Number of rows of matrix A="; RA

  INPUT "Number of columns of matrix A="; CA

  INPUT "Number of rows of matrix B="; RB

  INPUT "Number of columns of matrix B="; CB

  IF CA <> RB THEN 5

  FOR I = 1 TO RA: FOR J = 1 TO CA

  PRINT "A("; I; ","; J; ") ="; : INPUT A(I, J)

  NEXT J: NEXT I

  FOR I = 1 TO RB: FOR J = 1 TO CB

  PRINT "B("; I; ","; J; ") ="; : INPUT B(I, J)
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  NEXT J: NEXT I

  FOR I = 1 TO RA: FOR J = 1 TO CB

  C(I, J) = 0

  FOR K = 1 TO CA

  C(I, J) = C(I, J) + A(I, K) * B(K, J)

  NEXT K

  NEXT J: NEXT I

  PRINT "A MATRIX"

  FOR I = 1 TO RA: FOR J = 1 TO CA

  PRINT A(I, J); : NEXT J: PRINT : NEXT I

  PRINT : PRINT "B MATRIX"

  FOR I = 1 TO RB: FOR J = 1 TO CB

  PRINT B(I, J); : NEXT J: PRINT : NEXT I

  PRINT : PRINT "Multiplied matrix"

  FOR I = 1 TO RA: FOR J = 1 TO CB

  PRINT C(I, J); : NEXT J: PRINT : NEXT I

  GOTO 10

  5 PRINT "Matrix multiplication is not possible because"

  PRINT "number of columns of A matrix is not equal to"

  PRINT "the number of rows of matrix B"

  10 END

Output  
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Explanation

In the printing of matrices, the insertion of the statement PRINT brings the cursor to the fi rst position of the 

next line because there is no semicolon immediately after this. This helps printing matrices row-wise. 

2.14 VALUE OF A DETERMINANT 

Conventional Method

The conventional method of evaluating the value of a determinant is determined from the expression 

  D = a11C11 + a12C12 + a13C13 + . . . + a1NC1N

where Cik is the cofactor of aik which is obtained by deleting ith row and kth column of the determinant 

multiplied by (– 1)i + k. The values of cofactors are determined in a similar manner. Each time, the order of 

the cofactor is decreased by one. This is continued till the order of cofactor is two. 

 The value of 2 × 2 determinant is determined by the expression 

  C = C11C22 – C12C21

 The above procedure is impractical for the larger determinant. However, this can be carried out with the 

help of a computer. 

Program REM PROGRAM DETERMIN;VALUE OF DETERMINANT(CONVENTIONAL)

 3 CLS : DIM A(5, 5), B(4, 4), C(3, 3), D(2, 2), X(5, 5), Y(5, 5)

 5 DEF FNY = Y(1, 1) * Y(2, 2) - Y(1, 2) * Y(2, 1)

 6 INPUT "ORDER OF THE DETERMINANT="; NA

 10 FOR I = 1 TO NA: FOR J = 1 TO NA

 15 PRINT "A("; I; ","; J; ")="; : INPUT A(I, J): Y(I, J) = A(I, J)

 20 NEXT J: NEXT I

 25 IF NA = 2 THEN DET1 = FNY: GOTO 235

 30 IA = 1: I1 = IA: SUMA = 0

 35 FOR JA = 1 TO NA

 38 NB = NA - 1: N = NA

 40 AIJ = A(IA, JA): J1 = JA

 42 FOR I = 1 TO NA: FOR J = 1 TO NA: X(I, J) = A(I, J): NEXT J: NEXT I

 45 GOSUB 170

 50 IF NB = 2 THEN SUMB1 = FNY: GOTO 155

 54 FOR I = 1 TO NB: FOR J = 1 TO NB

 56 B(I, J) = Y(I, J): 'PRINT "B("; I; ","; J; ")="; B(I, J),

 58 X(I, J) = Y(I, J)

 60 NEXT J

 62 NEXT I

 'A$ = INPUT$(1)

 64 IB = 1: I1 = IB: SUMB1 = 0

 75 FOR JB = 1 TO NB

 76 NC = NB - 1: N = NB

 80 BIJ = B(IB, JB): J1 = JB

 85 GOSUB 170
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 90 IF NC = 2 THEN SUMC = FNY: GOTO 145

 92 FOR I = 1 TO NC: FOR J = 1 TO NC

 94 C(I, J) = Y(I, J): X(I, J) = Y(I, J)

 96 NEXT J

 98 NEXT I

 100 IC = 1: I1 = IC: SUMC = 0

 112 FOR JC = 1 TO NC

 116 ND = NC - 1: N = NC

 120 CIJ = C(IC, JC): J1 = JC

 125 GOSUB 170

 130 IF ND = 2 THEN SUMD = FNY

 135 SUMC = SUMC + (-1) ^ (IC + JC) * CIJ * SUMD

 140 NEXT JC

 145 SUMB1 = SUMB1 + (-1) ^ (IB + JB) * BIJ * SUMC

 150 NEXT JB

 155 SUMA = SUMA + (-1) ^ (IA + JA) * AIJ * SUMB1

 160 NEXT JA

 165 GOTO 226

 170 K = 0

 175 FOR II = 1 TO N

 180 IF I1 = II THEN 220

 185 K = K + 1

 190 L = 0

 195 FOR JJ = 1 TO N

 200 IF J1 = JJ THEN 215

 205 L = L + 1

 210 Y(K, L) = X(II, JJ)

 215 NEXT JJ

 220 NEXT II

 225 RETURN

 226 DET1 = SUMA

 235 PRINT "VALUE OF DETERMINANT="; DET1

 240 END

Output 

Numerical Method

The numerical method involves the reduction of the determinant to a triangular form. This reduction is 

carried out by using the principle stated in the following.
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 The values of a determinant is left unchanged if the entries in a row (or column) are altered by adding 

to them any constant multiple of the corresponding entries in any other row (or column).

 The following expression may be used to reduce a given determinant of the order N in a triangular 

form.

  ajk = ajk – ai k 
ji

ii

a

a

Ê ˆ
Á ˜Ë ¯

 

where the variations in the indices i, j and k go as follows.

  i = 1 to N – 1

  j = i + 1 to N

  k = i to N

 Finally, the value of determinant is determined by multiplying the diagonal elements.

Program REM PROGRAM DETZERO;MAKING LOWER HALF EQUAL TO ZERO

 CLS : DIM A(5, 5)

 INPUT "ORDER OF THE DETERMINANT="; N

 FOR I = 1 TO N: FOR J = 1 TO N

 PRINT "A("; I; ","; J; ")="; : INPUT A(I, J)

 NEXT J: NEXT I

 FOR I = 1 TO N - 1

 FOR J = I + 1 TO N

 IF A(I, I) = 0 THEN 5

 DUM = A(J, I) / A(I, I)

 FOR K = I TO N

 A(J, K) = A(J, K) - A(I, K) * DUM

 NEXT K

 NEXT J

 5 NEXT I

 KK = 0

 FOR I = 2 TO N - 1

 IF A(I, I) <> 0 THEN 15

 KK = KK + 1

 FOR J = I + 1 TO N

 IF A(J, I) = 0 THEN 10

 FOR K = 1 TO N: SWAP A(I, K), A(J, K): NEXT K

 10 NEXT J

 15 NEXT I

 DET1 = 1

 FOR I = 1 TO N

 DET1 = (-1) ^ KK * DET1 * A(I, I)

 NEXT I

 PRINT : PRINT "THE VALUE OF THE DETERMINANT="; DET1

 END 
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Output 

2.15 INVERSE OF A MATRIX 

Conventional Method

The inverse of a nonsingular N ¥ N matrix A = [ajk] is given by 

 A–1 = 

11 21 1

12 22 2

1 2

1

det

n

n

n n nn

A A A

A A A

A A A

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

A
  

where Ajk is the cofactor of ajk in det A. Note that in A–1, the cofactor Ajk occupies the place of akj in det A. 

 The above procedure is impractical for the larger determinant. However, this can be carried out with the 

help of a computer.

Program REM PROGRAM INVCOF;INVERSE OF A MATRIX VIA COFACTOR

  4 CLS

  15 DIM A(4, 4), B(3, 3), COF(4, 4), C(4, 4)

  20 INPUT "ORDER OF THE MATRIX="; N

  25 FOR I = 1 TO N: FOR J = 1 TO N

  30 PRINT "A("; I; ","; J; ")="; : INPUT A(I, J)

  35 NEXT J: NEXT I

  50 'CLS

  55 PRINT : PRINT "PRINTING OF THE GIVEN MATRIX": PRINT

  60 FOR I = 1 TO N: FOR J = 1 TO N

  70 PRINT USING "  ###.###"; A(I, J);

  75 NEXT J: PRINT : NEXT I

  76 A$ = INPUT$(1)

  85 REM----TO GENERATE THE COFACTOR MATRIX----

  88 PRINT : PRINT "PRINTING OF COFACTOR": PRINT

  90 FOR IROW = 1 TO N: FOR JCOL = 1 TO N

  100 K = 1

  105 FOR I = 1 TO N

  110 L = 1

  IF I = IROW THEN 150
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  120 FOR J = 1 TO N

  125 IF J = JCOL THEN 140

  130 B(K, L) = A(I, J)

  135 L = L + 1

  140 NEXT J

  145 K = K + 1

  150 NEXT I

  155 REM TO DETERMINE THE DETERMINANT VALUE OF THE COFACTOR

  156 IF N - 1 = 1 THEN

  157 DET1 = B(1, 1)

  160 ELSEIF N - 1 = 2 THEN

  165 DET1 = B(1, 1) * B(2, 2) - B(1, 2) * B(2, 1)

  170 ELSE

  175 DET1 = B(1, 1) * (B(2, 2) * B(3, 3) - B(3, 2) * B(2, 3))

  180 DET1 = DET1 - B(1, 2) * (B(2, 1) * B(3, 3) - B(2, 3) * B(3, 1))

  185 DET1 = DET1 + B(1, 3) * (B(2, 1) * B(3, 2) - B(2, 2) * B(3, 1))

  205 END IF

  210 COF(IROW, JCOL) = (-1) ^ (IROW + JCOL) * DET1

  212 PRINT USING "  ###.###"; COF(IROW, JCOL);

  215 NEXT JCOL: PRINT : NEXT IROW: A$ = INPUT$(1)

  225 REM VALUE OF THE DETERMINANT

  230 DET1 = 0

  235 I = 1

  240 FOR J = 1 TO N

  245 DET1 = DET1 + A(I, J) * COF(I, J)

  250 NEXT J

  255 REM TRANSPOSE OF COFACTOR MATRIX

  260 FOR I = 1 TO N: FOR J = I + 1 TO N

  270 TEMP = COF(I, J): COF(I, J) = COF(J, I): COF(J, I) = TEMP

  285 NEXT J: NEXT I

  300 REM DIVISION OF TRANSPOSE OF COFACTOR MATRIX BY

  302 REM THE VALUE OF THE DETERMINANT OF THE GIVEN MATRIX

  305 FOR I = 1 TO N: FOR J = 1 TO N

  315 COF(I, J) = COF(I, J) / DET1

  320 NEXT J: NEXT I

  365 PRINT : PRINT "PRINTING OF THE INVERSE OF THE GIVEN MATRIX": PRINT

  370 FOR I = 1 TO N: FOR J = 1 TO N

  380 PRINT USING "  ###.###"; COF(I, J);

  385 NEXT J: PRINT : NEXT I

  400 REM VERIFICATION OF THE INVERSE MATRIX
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  405 FOR I = 1 TO N: FOR J = 1 TO N

  415 SUM = 0

  420 FOR K = 1 TO N

  425 SUM = SUM + A(I, K) * COF(K, J)

  430 NEXT K

  435 C(I, J) = SUM

  436 IF ABS(C(I, J)) < .001 THEN C(I, J) = 0

  440 NEXT J: NEXT I

  450 PRINT : PRINT "VERIFICATION OF THE INVERSE MATRIX": PRINT

  455 FOR I = 1 TO N: FOR J = 1 TO N

  465 PRINT USING "  ###.###"; C(I, J);

  470 NEXT J: PRINT : NEXT I

  485 END

Output 

 

Numerical Method (Gauss-Jordan Elimination Method)

The numerical method entitled "Gauss-Jordan Elimination" may be employed to obtain the inverse of a 

matrix. The procedure of this method involves the following steps. 
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 ∑ Supplement the given matrix with N ¥ N unit matrix. Thus, the dimensions of the matrix becomes

N ¥ 2N. 

 ∑ Make the lower-half of the original matrix (N ¥ N) equal to zero. This can be achieved by the 

expression

  Ajk = Ajk – Aik 

ji

ii

A

A

Ê ˆ
Á ˜Ë ¯

 

  where i varies from 1 to N – 1

   j varies from i + 1 to N; 

   k varies from 1 to N2 where N2 = 2 * N.

 ∑ Make AN, N equal to one by carrying out the operations 

   ANk = ANk/ANN

  where k varies from N to N2. 

 ∑ Make the upper half of the original matrix equal to zero by carrying out the operations  

   Aik = Aik – Ajk Aij 

  where i varies from 1 to N – 1 

   j vareis from i + 1 to N 

   k varies from j to N2 

 ∑ The supplemented matrix Ajk where 

   j varies from 1 to N 

   k varies from N + 1 to N2 

   represents the inverse matrix.

Program REM INVERSE OF A MATRIX BY GAUSS-JORDAN ELIMINATION METHOD

  5 CLS

  20 DIM A(10, 10), B(10, 10), C(10, 10)

  25 INPUT "ORDER OF THE MATRIX="; N

  26 N2 = N * 2

  REM ----ENTERING THE ELEMENTS OF THE MATRIX---- 

  30 FOR I = 1 TO N: FOR J = 1 TO N

  40 PRINT "A("; I; ","; J; ")="; : INPUT A(I, J)

  45 B(I, J) = A(I, J)

  50 NEXT J: NEXT I

  60 'CLS

  65 PRINT : PRINT "PRINTING OF THE GIVEN MATRIX": PRINT

  70 FOR I = 1 TO N: FOR J = 1 TO N

  75 PRINT USING "  ###.###"; A(I, J);

  80 NEXT J: PRINT : NEXT I

  REM ---SUPPLEMENTING GIVEN MATRIX WITH NxN UNIT MATRIX---
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  100 FOR I = 1 TO N

  105 K = I + N

  110 FOR J = N + 1 TO N2

  IF J = K THEN A(I, J) = 1 ELSE A(I, J) = 0

  125 NEXT J: NEXT I

  REM ---MAKING A(I,I) = 1 AND LOWER HALF ELEMENTS = 0----

  145 FOR I = 1 TO N - 1

  150 DUM = A(I, I)

  155 FOR J = 1 TO N2: A(I, J) = A(I, J) / DUM: NEXT J

  170 FOR J = I + 1 TO N

  175 DUM = A(J, I) / A(I, I)

  180 FOR K = 1 TO N2

  185 A(J, K) = A(J, K) - A(I, K) * DUM

  190 NEXT K: NEXT J: NEXT I

  REM ----MAKING A(N,N) EQUAL TO ONE----

  210 DUM = A(N, N)

  215 FOR J = N TO N2: A(N, J) = A(N, J) / DUM: NEXT J

  REM -----MAKE UPPER HALF MATRIX EQUAL TO ZERO----

  230 FOR I = 1 TO N - 1: FOR J = I + 1 TO N

  240 DUM = A(I, J)

  FOR K = J TO N2

  250 A(I, K) = A(I, K) - DUM * A(J, K)

  255 NEXT K: NEXT J: NEXT I

  270 PRINT : PRINT "PRINTING OF THE INVERSE MATRIX": PRINT

  275 FOR I = 1 TO N: FOR J = N + 1 TO N2

  285 PRINT USING "  ###.###"; A(I, J);

  290 NEXT J: PRINT : NEXT I

  REM ----VERIFICATION OF THE INVERSE MATRIX----

  305 FOR I = 1 TO N: FOR J = 1 TO N

  315 SUM = 0

  320 FOR K = 1 TO N: SUM = SUM + B(I, K) * A(K, J + N): NEXT K

  335 C(I, J) = SUM

  340 NEXT J: NEXT I

  350 PRINT : PRINT "VERIFICATION OF THE INVERSE MATRIX": PRINT

  355 FOR I = 1 TO N: FOR J = 1 TO N

  365 PRINT USING "  ###.###"; C(I, J);

  370 NEXT J: PRINT : NEXT I

  380 END
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Output 

2.16 SOLUTIONS OF LINEAR AND NONLINEAR EQUATIONS

I. Linear Equations

A set of n simultaneous linear equations is of the form 

 a11 x1 + ... + a1n xn = b1 

 a21 x1 + ... + a2n xn = b2 

 ani x1 + ... + ann xn = bn

where the coeffi cients ajk and the bj are numbers. In matrix notation, the above equations are represented as 

 

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙=
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Î ˚ Î ˚ Î ˚

12 12 1 1 1

21 22 2 2 2

1 2

. . .

. . .

. . .

n

n

n n nn n n

a a a x b

a a a x b

a a a x b

 i.e. A x = b

 One of the methods to determine x is to left-multiply the above expression by A–1 to give

 A–1 A x = A–1 b

or x = A–1 b 

 Thus, left multiplying the b by A–1 gives x.

 Alternatively, the following expressions (known as Cramer's rule) may be used to work out the solutions.

  x1 = = =1 2
2, , . . ., n

nx x
AA A

A A A
 

where Ak is the determinant obtained from the determinant A by replacing in A the kth column by the 

column with the entries in the vector b.
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Illustration

Solve the equations for x1, x2 and x3 satisfying the relations 3x1 + 5x2 + 2x3 = 8; 8x2 + 2x3 = – 7 and

6x1 + 2x2 + 8x3 = 26 

Program REM PROGRAM EQCRAMR0;DET VIA LOWER HALF ZERO

  4 CLS

  DIM A(5, 5), A1(5, 5), B(5), X(5), DET2(5)

  READ N

 FOR I = 1 TO N: FOR J = 1 TO N

 READ A(I, J): A1(I, J) = A(I, J)

 NEXT J: READ B(I): NEXT I

 'DATA 3,2,-1,2,2,1,10,-3,5,-1,1,1,-3

 DATA 3,3,5,2,8,0,8,2,-7,6,2,8,26

 'DATA 3,9,-2,0,1.5,2,-4,3,4,0,3,7,25.5

 PRINT : PRINT "GIVEN DATA"

 FOR I = 1 TO N: FOR J = 1 TO N

 PRINT A(I, J), : NEXT J: PRINT B(I): NEXT I: PRINT

 K1 = 0

 IF K1 = 0 THEN 25

 16 K1 = K1 + 1

 FOR J2 = 1 TO N

 FOR JJ = 1 TO N: FOR KK = 1 TO N

 IF J2 = KK THEN A(JJ, KK) = B(JJ): GOTO 23

 A(JJ, KK) = A1(JJ, KK)

 23 NEXT KK: NEXT JJ

 25 FOR I = 1 TO N - 1: FOR J = I + 1 TO N

 IF A(I, I) = 0 THEN 5

 DUM = A(J, I) / A(I, I)

 FOR K = I TO N: A(J, K) = A(J, K) - A(I, K) * DUM: NEXT K

 NEXT J

 5 NEXT I

 KK = 0

 FOR I = 2 TO N

 IF A(I, I) <> 0 THEN 15

 KK = KK + 1

 FOR J = I + 1 TO N

 IF A(J, I) = 0 THEN 10

 FOR K = 1 TO N: SWAP A(I, K), A(J, K): NEXT K

 10 NEXT J

 15 NEXT I

 DET1 = 1

 FOR I = 1 TO N: DET1 = DET1 * A(I, I): NEXT I

 IF K1 = 0 THEN DET = DET1: PRINT "MAIN DETERMINANT="; DET: PRINT : GOTO 16

 DET2(J2) = DET1



List of Programs 57

 PRINT "   D("; J2; ")="; : PRINT USING "####.###"; DET1;

 NEXT J2: PRINT

 FOR I = 1 TO N

 X(I) = DET2(I) / DET

 PRINT "   X("; I; ")="; : PRINT USING "####.###"; X(I);

 NEXT I

 END

Output 

Numerical Methods of Solving Simultaneous Equations

Many numerical methods are available. A few such methods are described in the following. 

I. Linear Equations

Gauss Elimination 

The matrix A is augmented with the vector b. The matrix A along with the vector b is reduced to a 

triangular form where the lower portion of A involves zero as the matrix elements. This is followed by the 

determination of x by back substitution. For example, the equations 

 3x1 + 5x2 + 2x3 = 8 

 8x2 + 2x3 = –7 

 6x1 + 2x2 + 8x3 = 26

are written as 

3 5 2 8

0 8 2 –7

6 2 8 26

È ˘
Í ˙
Í ˙
Í ˙Î ˚

.  This is converted into 

3 5 2 8

0 8 2 –7

0 0 6 3

È ˘
Í ˙
Í ˙
Í ˙Î ˚

   

 From which the vector x evaluated by back substition. This is given as 

 x = 

2 3

1

2 3

3

1
(8 – 5 – 2 ) 4

3

1
(–7 – 2 ) –1

8

3 1

6 2

x x

x

x x

x

È ˘=Í ˙
È ˘ Í ˙
Í ˙ Í ˙= =Í ˙ Í ˙
Í ˙ Í ˙Î ˚

Í ˙=
Í ˙Î ˚
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Program 5 REM SIMULTANEOUS EQUATIOS BY GAUSS ELIMINATION METHOD

  10 CLS : DIM A(5, 5), B(5), X(5), A$(5)

  15 A$(1) = "X1": A$(2) = "X2": A$(3) = "X3": A$(4) = "X4": A$(5) = "X5"

  20 PRINT "Number of Equations ="; : READ N

  25 FOR I = 1 TO N

  35 FOR J = 1 TO N: PRINT "A("; I; J; ")="; : READ A(I, J): NEXT J

  45 PRINT "B("; I; ")="; : READ B(I)

  50 NEXT I

  55 CLS

  60 PRINT "Printing of equation parameters": PRINT

  65 FOR I = 1 TO N

  75 FOR J = 1 TO N: PRINT USING "  ###.##"; A(I, J); : NEXT J

  85 PRINT USING "        ###.###"; B(I): PRINT

  95 NEXT I

  100 REM TO MAKE THE LOWER HALF MATRIX EQUAL TO ZERO

  105 FOR I = 1 TO N - 1

  110 REM CHECK IF A(I,I)=0 IF SO INTERCHANGE WITH THE ROW HAVING

     REM A(K<I) NOT EQUAL TO ZERO

  120 K = I

  125 IF A(K, K) <> 0 THEN 140

  128 K = K + 1

  130 GOTO 125

  140 IF K = I THEN 185

  145 FOR J = 1 TO N: SWAP A(K, J), A(I, J): NEXT J

  168 SWAP B(I), B(K)

  185 FOR J = I + 1 TO N

  190 DUM = A(J, I) / A(I, I)

  195 FOR K = 1 TO N: A(J, K) = A(J, K) - A(I, K) * DUM: NEXT K

  210 B(J) = B(J) - B(I) * DUM

  212 NEXT J

  214 PRINT "Step number "; I

  215 FOR JJ = 1 TO N: FOR KK = 1 TO N

  216 PRINT USING "   ###.##"; A(JJ, KK);

  218 NEXT KK: PRINT USING "   ###.##"; B(JJ)

  219 NEXT JJ: A$ = INPUT$(1)

  220 NEXT I

  225 REM CALCULATION OF UNKNOWN VARIABLES

  232 IF A(N, N) = 0 THEN 290

  235 X(N) = B(N) / A(N, N)

  240 FOR I = N - 1 TO 1 STEP -1

  245 X(I) = B(I)

  246 FOR J = I + 1 TO N: X(I) = X(I) - A(I, J) * X(J): NEXT J

  258 X(I) = X(I) / A(I, I)

  260 NEXT I
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  265 REM PRINTING OF THE VARIABLES

  266 PRINT : PRINT "Solution variables": PRINT

  270 FOR I = 1 TO N: PRINT "X("; I; ")=";

  PRINT USING "###.##"; X(I): NEXT I

  285 GOTO 320

  290 FOR I = N - 1 TO 1 STEP -1

  295 FOR J = I TO N: PRINT "+("; A(I, J); ")*"; A$(J); : NEXT J

  310 PRINT "="; B(I)

  315 NEXT I

  DATA 3, 3,5,2,8,0,8,2,-7,6,2,8,26

  'DATA 3,-1,1,2,2,3,-1,1,6,-1,3,4,4

  'DATA 2,2,1,4,5,-2,1

  'DATA 2,1,1,0,3,-4,1

  'DATA 3,-1,1,2,0,3,4,1,0,2,5,3,1

  'DATA 3,1,1,1,-1,0,4,6,6,0,1,1,1

  'DATA 3,2,2,-4,-1,0,3,2,9,-4,1,3,4.5

  ''DATA 3,0,2,-1,1,4,-10,3,5,3,-3,0,6

  'DATA 3,3,4,6,1,-2,8,-4,2,4,-8,8,-2

  'DATA 3,0,4,7,-13,5,-3,4,-23,-1,2,-8,29

  'DATA 4,1,1,1,0,3,-3,-17,1,2,1,4,-17,8,-5,1,0,-5,-2,1,1

  320 END

Output 



60 A Textbook of Physical Chemistry

Exercises

Determine the vlaues of variables in the following equations.

 1. 3x + 5y + 2z = 8 2.  –x + y + 2z = 2 3. 2x + y = 4

  8y + 2z = –7  3x – y + z = 6  5x – 2y = 1

  6x + 2y + z = 26  –x + 3y + 4z = 4

 4. x + y = 0 5. x + y + z = –1 6. 2x + 2y – 4z = –1

  3x – 4y = 1  4y + 6z = 6  3y + 2z = 9 

     y + z = 1  – 4x + y + 3z = 4.5

 7. 3x + 4y + 6z = 1 8. 4y + 7z = –13

  –2x + 8y – 4z = 2  5x – 3y + 4z = –23

  4x – 8y + 8z = – 2  –x + 2y – 8z = 29

LU-Factorization (Doolittle’s method)

The systems of equations represented by Ax = b is written as 

 (LU)x = b

where L is lower triangular and U is upper triangular. With this, the solution of Ax = b is reduced in two 

steps: 

 Ly = b where Ux = y 

 Firstly, Ly = b is solved for y and then Ux = y is solved for x.

 For example, the matrix A described on P.57 in the Gauss elimination is written as

 A = 

11 12 13

21 22 23

31 32 33

3 5 2 1 0 0

0 8 2 1 0 0

6 2 8 1 0 0

u u u

m u u

m m u

È ˘ È ˘È ˘
Í ˙ Í ˙Í ˙ = Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙Î ˚ Î ˚ Î ˚

   

 In the explicit form, the above expression is given by the following expressions. 

 A11 = u11 (1) A12 = u12 (2) A13 = u13 (3)

 A21 = m21 u11 (4) A22 = m21 u12 + u22 (5) A23 = m21 u13 + u23 (6)

 A31 = m31 u11 (7) A32 = m31 u12 + m32 u22 (8) A33 = m31 u13 + m32 u23 + u33 (9)

 The unknown parameters m21, ... and u11, ... are determined in the order shown above.

 Using the above expressions, we will get 
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 A =  

3 5 2 1 0 0 3 5 2

0 8 2 0 1 0 0 8 2

6 2 8 2 –1 1 0 0 6

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

   

 Firstly, we solve Ly = b 

  

1

2

3

1 0 0 8

0 1 0 –7

2 –1 1 26

y

y

y

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙=Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚

 This gives y = 

1

2 1

3 1 2

8/1

–7(0) –7

26 – 2 3

y

y y

y y y

=È ˘
Í ˙= =Í ˙
Í ˙= + =Î ˚

 Then, we solved Ux = y

  

1

2

3

3 5 2 8

0 8 2 –7

0 0 6 3

x

x

x

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙=Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚

 This gives x = 

1 2 2

2 3

3

1
(8 – 5 – 2 ) 4

3

1
(–7 – 2 ) –1)

8

3 1

6 2

x x x

x x

x

È ˘= =Í ˙
Í ˙
Í ˙= =Í ˙
Í ˙
Í ˙= =
Í ˙Î ˚

 

 (The generalized expressions of u¢ s and m¢s are as follows. 

 u1k = a1k ; k = 1, . . ., n 

 m j1 = 
1

11

ja

a
  ; j = 2, . . ., n 

 ujk = ajk – 
–1

1

j

js sk

s

m u
=
Â   ; k = j, . . ., n ; j ≥ 2 

 mjk = 
–1

1

1
–
k

jk js sk
kk s

a m u
u =

Ê ˆ
Á ˜
Ë ¯

Â     ; j = k + 1, . . ., n; k ≥ 2

Program REM PROGRAM LINEQLU;SOLUTION OF LINEAR EQUATIONS BY FACTORING

  CLS : DIM A(5, 5), B(5), M(5, 5), U(5, 5), X(5), Y(5)

  READ N: DATA 3

  FOR I = 1 TO N: FOR J = 1 TO N

  READ A(I, J): NEXT J: READ B(I): NEXT I

  FOR I = 1 TO N: FOR J = I TO N

  IF I = J THEN M(I, J) = 1 ELSE M(I, J) = 0

  NEXT J: NEXT I
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  FOR I = 2 TO N: FOR J = 1 TO I - 1: U(I, J) = 0: NEXT J: NEXT I

  FOR J = 1 TO N: FOR K = 1 TO N

  SUM = 0

  IF J = 1 THEN U(J, K) = A(J, K): GOTO 10

  IF J <= K THEN 5

  FOR L = 1 TO K - 1: SUM = SUM + M(J, L) * U(L, K): NEXT L

  M(J, K) = (A(J, K) - SUM) / U(K, K)

  GOTO 10

  5 FOR L = 1 TO J - 1: SUM = SUM + M(J, L) * U(L, K): NEXT L

  U(J, K) = A(J, K) - SUM

  10 NEXT K

  NEXT J

  PRINT "A MATRIX"

  FOR I = 1 TO N: FOR J = 1 TO N: PRINT A(I, J),

  NEXT J: PRINT B(I): NEXT I: PRINT

  PRINT "Lower Matrix"

  FOR I = 1 TO N: FOR J = 1 TO N: PRINT M(I, J),

  NEXT J: PRINT : NEXT I: PRINT

  PRINT "Upper Matrix"

  FOR I = 1 TO N: FOR J = 1 TO N: PRINT U(I, J),

  NEXT J: PRINT : NEXT I: PRINT

  FOR J = 1 TO N

  SUM = 0

  FOR K = 1 TO J - 1: SUM = SUM + M(J, K) * Y(K): NEXT K

  Y(J) = (B(J) - SUM) / M(J, J)

  NEXT J

  PRINT "Y vector"

  FOR J = 1 TO N: PRINT Y(J), : NEXT J: PRINT

  FOR J = N TO 1 STEP -1

  SUM = 0

  FOR K = J + 1 TO N: SUM = SUM + U(J, K) * X(K): NEXT K

  X(J) = (Y(J) - SUM) / U(J, J)

  NEXT J

  PRINT "X vector"

  FOR J = 1 TO N: PRINT X(J), : NEXT J

  DATA 3, 5, 2, 8, 0, 8, 2, -7, 6, 2, 8, 26

  'DATA 1,2,3,17,2,5,8,44,3,8,14,76

  'DATA 5,4,1,3.4,10,9,4,8.8,10,13,15,19.2

  'DATA 3,2,4,5.8,6,13,11,23.6,12,11,26,30.8

  'DATA 8,1,1,-1,18,-2,12,-1,0,-7,2,0,16,2,54,0,1,2,-20,-14

  'DATA 4,2,14,14,2,17,-5,-101,14,-5,83,155

  END
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Output 

Gauss-Seidel Method 

Gauss-Seidel method for solving linear equations is an iterative method in which we write linear equations 

  a11 x1 + a12 x2 + ◊ ◊ ◊ + a1n xn = b1 

  a21 x1 + a22 x2 + ◊◊◊ + a2n xn = b2 

  

  an1 x1 + an2 x2 + ◊ ◊ ◊ + ann xn = bn 

as  x1 = 
Ê ˆ

+ + +Á ˜Ë ¯
13 11 12

2 3
11 11 11 11

...– n
n

a ab a
x x x

a a a a
   

  x2 = 
Ê ˆ

+ + +Á ˜Ë ¯
23 22 21

1 3
22 22 22 22

...– n
n

a ab a
x x x

a a a a
   

  

  xn =  
Ê ˆ

+ + +Á ˜Ë ¯
, –11 2

1 2 –1
...–

n nn n n
n

nn nn nn nn

ab a a
x x x

a a a a
   

 Let x1
(1), x2

(1), ..., xn
(1) be the initial approximate solutions of the linear equations. These are substituted 

in the fi rst equation to yield refi ned value of x1
(2). This along with the rest of approximate x's are substituted 

in the second equation to yield x2
(2). This process is continued till all the refi ned solutions are obtained. The 

process is once again repeated starting from the fi rst equation and continued till all the refi ned solutions 

are obtained. This iteration provides the refi ned roots x1
(3), x2

(3), ..., xn
(3). This iteration is continued until the 

roots are obtained within the prescribed accuracy limit. 
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 Since the iterative equations involve division by aii, this element should not be equal to zero for any 

value of i. If this is so, the equations should be rearranged so as to provide nonzero value of aii.

 The Gauss-Seidel method converges provided the sum given below is almost equal to one or at least in 

one of the equations, this value is less than or near to one.

  
1j

j i

n
ij

ii

a

a=
π

Â  £ 1; (i = 1, 2, . . ., n)

Illustration 

Solve the equations 

  x1 – 0.25 x2 – 0.25 x3 = 50

  – 0.25 x1 + x2 – 0.25 x4 = 50

  – 0.25 x1 + x3 – 0.25 x4 = 25 

  – 0.25 x2 – 0.25 x3 + x4 = 25

Program REM Iterative method for the sollution of linear equations

CLS

READ ITER: DATA 10

READ N

PRINT "   ********** A Matrix **********  B Vector"

FOR I = 1 TO N: FOR J = 1 TO N

READ A(I, J): PRINT USING "  ###.##"; A(I, J);

NEXT J

READ B(I): PRINT USING "  ###.##"; B(I)

NEXT I

DATA 4, 1, -.25, -.25, 0, 50, -.25, 1, 0, -.25, 50

DATA -.25, 0, 1, -.25, 25, 0, -.25, -.25, 1, 25

'DATA 4,2,-1,0,0,0,-1,2,-1,0,0

'DATA 0,-1,2,-1,0,0,0,-1,2,1

'DATA 4,10,-2,-1,-1,3,-2,10,-1,-1,15

'DATA -1,-1,10,-2,27,-1,-1,-2,10,-9

'DATA 3,10,2,1,9,2,20,-2,-44,-2,3,10,22

FOR I = 1 TO N: X(I) = 0: NEXT I

PRINT : PRINT STRING$(48, "-")

PRINT "ITER    ";

FOR I = 1 TO N: PRINT "X("; I; ")     "; : NEXT I: PRINT

PRINT STRING$(48, "-")

FOR K = 1 TO ITER

PRINT USING "##"; K;

FOR I = 1 TO N

IF A(I, I) <> 0 THEN 10

FOR J = I + 1 TO N

IF I = J THEN 5

IF A(J, J) <> 0 THEN

FOR L = 1 TO N: SWAP A(I, L), A(J, L): NEXT L

SWAP B(I), B(J)

END IF
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5 NEXT J

10 X(I) = B(I) / A(I, I)

FOR J = 1 TO N

IF I = J THEN 20

X(I) = X(I) - (A(I, J) / A(I, I)) * X(J)

20 NEXT J

PRINT USING "    ####.##"; X(I);

NEXT I: PRINT

NEXT K

PRINT STRING$(48, "-")

END 

Output 

Exercises Solve the variables in the following equations.

 1. x + 2y + 3z = 17 2. 5x + 4y + z = 3.4

  2x + 5y + 8z = 44  10x + 9y + 4z = 8.8

  3x + 8y + 14z = 76  10x + 13y + 15z = 19.2

 3. 3x + 2y + 4z = 5.8 4. 4x + 2y + 14z = 14

  6x + 13y + 11z = 23.6  2x + 17y – 5z = –101

  12x + 11y + 26z = 30.8  14x – 5y + 83z = 155

II. Nonlinear Equations

Newton-Raphson Method 

Let the nonlinear equations may be represented as 

  f(x, y) = 0 and g(x, y) = 0 
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 Let the initial approximate roots of the above two equations may be equal to x0 and y0, respectively If 

x0 + h and y0 + k are the correct roots, then we will have 

  f(x0 + h, y0 + k) = 0 and g(x0 + h, y0 + k) = 0 

 If the functions are differentiable, then by Taylor’s series, the above two functions may be written as 

  f(x0 + h, y0 + k) = f0 + 
∂ ∂

+ + =
∂ ∂0 0

. . . 0
f f

h k
x y

 

  g(x0 + h, y0 + k) = g0 + 
∂ ∂

+ + =
∂ ∂0 0

. . . 0
g g

h k
x y

 

where the subscript 0 represents the values of functions and their derivatives at the initial approximate roots 

x0 and y0. If the higher-order terms in the above two expressions are neglected, then we can write 

  f0 + 
∂ ∂

+ =
∂ ∂0 0

0
f f

h k
x y

 

  g0 + 
∂ ∂

+ =
∂ ∂0 0

0
g g

h k
x y

 

 In the matrix notations, we have 

  

0 0 0

0 0 0

/ / –

/ / –

f x f y fh

g x g y gk

∂ ∂ ∂ ∂È ˘ È ˘È ˘
=Í ˙ Í ˙Í ˙∂ ∂ ∂ ∂ Î ˚Î ˚ Î ˚    

 Hence  

–1

0 0 0

0 0 0

/ – / –

/ / –

f x f y fh

g x g y gk

∂ ∂ ∂ ∂È ˘ È ˘È ˘
= Í ˙ Í ˙Í ˙ ∂ ∂ ∂ ∂Î ˚ Î ˚ Î ˚

 

   =  0 0 0

0 0 0

/ – / –1

– / / –( , )

g y f y f

g x f x gj f g

∂ ∂ ∂ ∂È ˘ È ˘
Í ˙ Í ˙∂ ∂ ∂ ∂Î ˚ Î ˚

 

where J( f, g) = 0 0

0 0

/ /

/ /

f x f y

g x g y

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

  

 Thus h =  0 0
0 0

1
–

( , )

g f
f g

J f g y y

Ê ˆ∂ ∂
+Á ˜∂ ∂Ë ¯

   

  k =  
0 0

0 0

1
–

( , )

g f
f g

J f g x x

Ê ˆ∂ ∂
Á ˜∂ ∂Ë ¯
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 The new roots are  x = x0 + h and y = x0 + k 

 The above process is repeated till the two roots are obtained within the desired accuracy. 

Illustration To obtain the roots of x2 – y2 = 4 and x2 + y2 = 16 by the Newton-Raphson method. 

Program DEF FNA (X, Y) = X ^ 2 - Y ^ 2 - 4

  DEF FNB (X, Y) = 2 * X: DEF FNC (X, Y) = -2 * Y

  DEF FND (X, Y) = X ^ 2 + Y ^ 2 - 16

  DEF FNE (X, Y) = 2 * X: DEF FNF (X, Y) = 2 * Y

  'DEF FNA (X, Y) = X ^ 2 - 3 * X * Y + 7

  'DEF FNB (X, Y) = 2 * X - 3 * Y: DEF FNC (X, Y) = -3 * X

  'DEF FND (X, Y) = Y - 2 * X - 2

  'DEF FNE (X, Y) = -2: DEF FNF (X, Y) = 1

  M = 1: XD = 3

  5 ON M GOTO 10, 20, 30, 40, 80

  10 X0 = -XD: Y0 = -XD: GOTO 50

  20 X0 = -XD:  Y0 = XD: GOTO 50

  30 X0 = XD: Y0 = -XD: GOTO 50

  40 X0 = XD: Y0 = XD

  50 PRINT "Given approximate roots are    ";

  PRINT "X0="; X0; "   Y0="; Y0

  55 F0 = FNA(X0, Y0): G0 = FND(X0, Y0)

  DFDX = FNB(X0, Y0): DFDY = FNC(X0, Y0)

  DGDX = FNE(X0, Y0): DGDY = FNF(X0, Y0)

  DET = DFDX * DGDY - DFDY * DGDX

  IF DET = 0 THEN 70

  H = (-F0 * DGDY + G0 * DFDY) / DET

  K = (-G0 * DFDX + F0 * DGDX) / DET

  IF ABS(H) < .0001 AND ABS(K) < .0001 THEN 60

  X0 = X0 + H: Y0 = Y0 + K

  'PRINT "F0="; F0; "   DFDX="; DFDX; "   DFDY="; DFDY

  'PRINT "G0="; G0; "   DGDX="; DGDX; "   DGDY="; DGDY

  'PRINT "DET="; DET

  'PRINT "H="; H; "  K="; K; "  X0="; X0; "  Y0="; Y0

  'A$ = INPUT$(1)

  'PRINT

  GOTO 55

  60 PRINT "Roots of the given equations are    ";

  PRINT "X="; : PRINT USING "##.####"; X0;

  PRINT "  Y="; : PRINT USING "##.####"; Y0: PRINT

  M = M + 1: A$ = INPUT$(1): GOTO 5

  70 PRINT "SOLUTION IS NOT POSSIBLE"

  80 END
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Output 

 

Exercise

Determine the roots of the equations x2 = 3xy – 7 and y = 2 (x + 1)

(Ans: – 1.9267, – 1.8533; 0.7266, 3.4533)

2.17 BALANCING CHEMICAL EQUATION

The procedure to be adopted is described by considering the chemical equation 

 CH4 + O2 Æ CO2 + H2O 

 In this equation, the number of different elements appeared are identifi ed. These are C, O and H. A 

matrix is formed in which rows are identifi ed with elements and columns are identifi ed with the different 

species appeared in the chemical equation. The elements of the matrix are the number of elements appeared 

in different chemical species of the chemical equation. In the present case, we have 

  

 Note That one element is selected from each reactant in sequence until all the elements are inserted. 

 The above matrix is transformed into an equivalent matrix with all off-diagonal on the left of diagonal 

elements equal to zero.

 The above matrix is thus transformed into the following matrix.

  A = 

1 0 1 0

0 2 2 1

0 0 –4 2

È ˘
Í ˙
Í ˙
Í ˙Î ˚
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 From this matrix, the following coeffi cients are computed by back substitution (see P.57) using the 

expressions. 

 XM–1 = 
,

,

N M

N N

A

A
  where N = 3 and M = 4 

 Xi = 

, ,

1

,

–
N

i M i j j

j i

i i

A A X

A

= +

¥Â
 where i goes from N – 1 to 1 

 The stoiciometric numbers are negative of the above coeffi cients with the stoichimetric number of Mth 

species equal to 1. The negative coeffi cients are those of reactants while the positive ones are for products.

 Balance the chemical equation 

 Na2CO3 + Br2 Æ NaBr + NaBrO3 + CO 2

REM PROGRAM BALEQ;BALANCING CHEMICAL EQUATION

  REM No. OF ELEMENTS MUST BE ONE LESS THAN No. OF SPEICES

  CLS : DIM A(10, 10), B(10), X(10), M$(10), NE$(10)

  PRINT "NUMBER OF ELEMENTS ="; : READ N: PRINT N

  PRINT "NUMBER OF SPEICES IN THE EQUATION ="; : READ M: PRINT M

  FOR I = 1 TO M: READ M$(I): PRINT I; M$(I), : NEXT I: PRINT

  FOR I = 1 TO N: READ NE$(I): NEXT I

  FOR I = 1 TO N: PRINT NE$(I): FOR J = 1 TO M

  PRINT "A("; I; ","; J; ")="; : READ A(I, J): PRINT A(I, J),

  NEXT J: PRINT : NEXT I

  A$ = INPUT$(1): CLS

  PRINT "Printing of equation parameters": PRINT

  FOR I = 1 TO N: FOR J = 1 TO M

  PRINT USING "  ###.#"; A(I, J);

  NEXT J: PRINT : NEXT I

  REM TO MAKE THE LOWER HALF MATRIX EQUAL TO ZERO

  FOR I = 1 TO N - 1

  REM CHECK IF A(I,I)=0 IF SO INTERCHANGE WITH THE ROW HAVING

  REM A(K,I) NOT EQUAL TO ZERO

  K = I

  10 IF A(K, K) <> 0 THEN 20

  K = K + 1

  GOTO 10

  20 IF K = I THEN 30

  FOR J = 1 TO M: SWAP A(K, J), A(I, J): NEXT J

  30 FOR J = I + 1 TO N

  DUM = A(J, I) / A(I, I)
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  FOR K = 1 TO M

  A(J, K) = A(J, K) - A(I, K) * DUM

  NEXT K: NEXT J

  PRINT "Step number "; I

  FOR JJ = 1 TO N: FOR KK = 1 TO M

  PRINT USING "   ###.#"; A(JJ, KK);

  NEXT KK: PRINT : A$ = INPUT$(1)

  NEXT JJ

  NEXT I

  REM CALCULATION OF STOICHIOMETRIC NUMBERS

  IF A(N, N) = 0 THEN 290

  X(N) = A(N, M) / A(N, N)

  290 FOR I = N - 1 TO 1 STEP -1

  X(I) = A(I, M)

  FOR J = I + 1 TO N: X(I) = X(I) - A(I, J) * X(J): NEXT J

  X(I) = X(I) / A(I, I)

  NEXT I

  MIN = 10

  FOR I = 1 TO N

  IF ABS(X(I)) < MIN THEN MIN = ABS(X(I))

  NEXT I

  FOR I = 1 TO N: X(I) = X(I) / MIN: NEXT I

  REM PRINTING OF STOICHIOMETRIC NUMBERS

  PRINT : PRINT "Stoichimetric numbers": PRINT

  FOR I = 1 TO N: PRINT "X("; I; ")=";

  PRINT USING "##.#   "; -X(I); : NEXT I

  PRINT USING "   ##.#"; 1 / MIN

  PRINT : PRINT "Balanced chemical equation is": PRINT

  PRINT "0 =";

  FOR I = 1 TO M - 1

  PRINT "("; : PRINT USING "##.#"; -X(I); : PRINT ")"; M$(I); "+";

  NEXT I

  PRINT "("; : PRINT USING "##.#"; 1 / MIN; : PRINT ")"; M$(M)

  GOTO 40

  PRINT "SOLUTION IS NOT UNIQUE"

  REM Combustion of methane

  'DATA 3,4,CH4,O2,CO2,H2O,C,O,H

  'DATA 1,0,1,0,0,2,2,1,4,0,0,2

  REM Combustion of pentane

  'DATA 3,4,C5H12,O2,CO2,H2O,C,O,H

  'DATA 5,0,1,0,0,2,2,1,12,0,0,2:

  REM Combustion of sucrose

  'DATA 3,4,C12H22O11,O2,CO2,H2O,C,O,H
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  'DATA 12,0,1,0,11,2,2,1,22,0,0,2

  'DATA 4,5,Zn,HNO3,Zn(NO3)2,N2O,H2O,Zn,H,N,O

  'DATA 1,0,1,0,0,0,1,0,0,2,0,1,2,2,0,0,3,6,1,1

  'DATA 4,5,Pb3O4,H2SO4,PbSO4,H2O,O2,Pb,O,H,S

  'DATA 3,0,1,0,0,4,4,4,1,2,0,2,0,2,0,0,1,1,0,0

  'DATA 4,5,P4O11,HNO2,H2O,HPO3,N2O5,P,O,H,N

  'DATA 4,0,0,1,0,11,2,1,3,5,0,1,2,1,0,0,1,0,0,2

  'DATA 4,5,HNO3,I2,NO2,HIO3,H2O,N,I,O,H

  'DATA 1,0,1,0,0,0,2,0,1,0,3,0,2,3,1,1,0,0,1,2

  'DATA 4,5,Mg,HNO3,Mg(NO3)2,NH4NO3,H2O,Mg,N,H,O

  'DATA 1,0,1,0,0,0,1,2,2,0,0,1,0,4,2,0,3,6,3,1

  'DATA 4,5,P4,HNO3,H3PO4,NO2,H2O,P,N,H,O

  'DATA 4,0,1,0,0,0,1,0,1,0,0,1,3,0,2,0,3,4,2,1: REM e

  'DATA 5,6,Zn,NaNO3,NaOH,NH3,Na2ZnO2,H2O,Zn,Na,N,O,H

  'DATA 1,0,0,0,1,0,0,1,1,0,2,0,0,1,0,1,0,0,0,3,1,0,2,1,0,0,1,3,0,2: REM q

  'DATA 5,6,KClO3,H2SO4,HClO4,KHSO4,H2O,ClO2,K,S,Cl,O,H

  'DATA 1,0,0,1,0,0,0,1,0,1,0,0,1,0,1,0,0,1,3,4,4,4,1,2,0,2,1,1,2,0: REM y

  'DATA 4,5,Cu,HNO3,Cu(NO3)2,NO,H2O,Cu,N,H,O

  'DATA 1,0,1,0,0,0,1,2,1,0,0,1,0,0,2,0,3,6,1,1: REM o

  'DATA 5,6,Au,HNO3,HCl,HAuCl4,NO,H2O,Au,N,Cl,H,O

  'DATA 1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,4,0,0,0,1,1,1,0,2,0,3,0,0,1,1: REM r

  'DATA 4,5,MnO2,KOH,O2,K2MnO4,H2O,Mn,K,O,H

  'DATA 1,0,0,1,0,0,1,0,2,0,2,1,2,4,1,0,1,0,0,2

  DATA 4,5,Na2CO3,Br2,NaBr,NaBrO3,CO2,Na,Br,C,O

  DATA 2,0,1,1,0,0,2,1,1,0,1,0,0,0,1,3,0,0,3,2

  40 END
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Exercises

Balance the following chemical equations.

 1. CH4 + O2 Æ CO2 + H2O

 2. C5H12 + O2 Æ CO2 + H2O

 3. C12H22O11 + O2 Æ CO2 + H2O

 4. Zn + HNO3 Æ Zn(NO3)2 + N2O + H2O

 5. Pb3O4 + H2SO4 Æ PbSO4 + H2O + O2

 6. P4O11 + HNO2 + H2O Æ HPO3 + N2O5

 7. HNO3 + I2 Æ NO2 + HIO3 + H2O
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 8. Mg + HNO3 Æ Mg(NO3)2 + NH4NO3 + H2O

 9. P4 + HNO3 Æ H3PO4 + NO2 + H2O

 10. Zn + NaNO3 + NaOH Æ NH3 + Na2ZnO2 + H2O

 11. KClO3 + H2SO4 Æ HClO4 + KHSO4 + H2O + ClO2

 12. Cu + HNO3 Æ Cu(NO3)2 + NO + H2O

 13. Au + HNO3 + HCl Æ HAuCl4 + NO + H2O

 14. MnO2 + KOH + O2 Æ K2MnO4 + H2O

2.18 NUMERICAL INTERPOLATION 

To carry out the numerical interpolation of f (x) for a given value of x.

 Interpolation implies fi nding the value of f (x) for a given x in between the given x’s at which the values 

of f (x) are known. We consider here a few standard methods available to carry out the interpolation.

Linear Interpolation

This involves interpolation by means of the straight line. The expression to be used is 

 p1(x) = f0 + (x – x0) f [x0, x1]

where p1(x) is the estimated value of f at x and f [x0, x1] is given by 

 f [x0, x1] = 
0 1

0 1

–

–

f f

x x
   

Quadratic Interpolation

This involves interpolation by means of the equation of at most second degree satisfying the three data 

points (x0, f0), (x1, f1) and (x2, f2). 

 The equation to be used is

 p2(x) = f0 + (x – x0) f [x0, x1] + (x – x0) (x – x1) f [x0, x1, x2]

where f [x0, x1, x2], known as the second divided difference, is given by 

 f [x0, x1, x2] = 0 1 1 2

0 2

( , ) – ( , )

–

f x x f x x

x x
   

Newton’s Divided Difference Interpolation

 From the defi nition of divided differences, we have

  f [x, x0] = 0

0

–

–

xf f

x x
    (1)

 This gives fx = f0 + (x – x0) f [x, x0] (2)

 Again f [x, x0, x1] =  
 

0 0 1

0 1

[ , ] – [ , ]

–

f x x f x x

x x
   (3)
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 This gives  f [x, x0] = f [x0, x1] + (x – x1) f [x, x0, x1] (4)

 Substituting Eq. (4) in Eq. (2), we get 

  fx = f0 + (x – x0) f [x0, x1] + (x – x0) (x – x1) f [x, x0, x1] (5)

 Again f [x, x0, x1, x2] = 0 1 0 1 2

2

[ , , ] – [ , , ]

–

f x x x f x x x

x x
  (6)

 This gives  f [x, x0, x1] = f [x0, x1, x2] + (x – x2) f [x, x0, x1, x2] (7)

 Substituting Eq. (7) in Eq. (5), we get 

  fx = f0 + (x – x0) f [x0, x1] + (x – x0) (x – x1) f [x0, x1, x2]

    + (x – x0) (x – x1) (x – x2) f [x, x0, x1, x2] (8)

 Continuing this process, we get the general expression 

  fx = f0 + (x – x0) f [x0, x1] + (x – x0) (x – x1) f [x0, x1, x2]

    + (x – x0) (x – x1) (x – x2) f [x0, x1, x2, x3] + ...

    + (x – x0) (x – x1) ... (x – xn – 1) f [x0, x1, x2, ..., xn] (9) 

where  f [x0, x1] = 0 1

0 1

–

–

f f

x x
 

  f [x0, x1, x2] = 0 1 1 2

0 2

[ , ] – [ , ]

( – )

f x x f x x

x x

  f [x0, x1, x2, x3] = 0 1 2 1 2 3

0 3

[ , , ] – [ , , ]

( – )

f x x x f x x x

x x

  

 Diagrammatically, the expressions f [x0, x1], f [x0, x1, x2], ..., etc, may be represented as follows.

 j xj fj f [xj, xj+1] f [xj, xj+1, xj+2] f [xj , xj+1, xj+2, xj+3] 

 0 x0 f0 

 1 x1 f1 

f [x0, x1]
 f [x0, x1, x2] 

f [x0, x1, x2, x3]
 2 x2 f2  

f [x1, x2] f [x1, x2, x3]

 3 x3 f3 

f [x2, x3] f [x2, x3, x4] 
f [x1, x2, x3, x4]

 4 x4 f4 

f [x3, x4]

  To determine the value of ln 9.2 Given: ln x, when x = 8, 8.5, 9, and 9.5.

REM PROG19A

REM PROGRAM INTERNDD;NEWTON DIVIDED DIFFERENCE INTERPOLATION

CLS : DIM X(20), F(20, 20)
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DEF FNA (X) = LOG(X)

READ N: DATA 3

FOR I = 0 TO N: READ X(I): NEXT I

DATA 8,8.5,9,9.5

READ XX: DATA 9.2

FOR J = 0 TO N: F(0, J) = FNA(X(J))

PRINT "X("; J; ")="; X(J); "  F(0"; ","; J; ")="; F(0, J),

NEXT J: PRINT

FOR I = 1 TO N: FOR J = 0 TO N - I

F(I, J) = (F(I - 1, J + 1) - F(I - 1, J)) / (X(J + I) - X(J))

PRINT "F("; I; ","; J; ")="; F(I, J),

NEXT J: PRINT : NEXT I: PRINT

FX = F(0, 0) + F(1, 0) * (XX - X(0))

FX = FX + F(2, 0) * (XX - X(0)) * (XX - X(1))

FX = FX + F(3, 0) * (XX - X(0)) * (XX - X(1)) * (XX - X(2))

PRINT "X="; XX, "INTERPOLATED VALUE="; FX, "ACTUAL VALUE="; FNA(XX)

END

Netwon’s Forward Difference Formula for Regularly Spaced xj’s

If xj’s are regularly spaced such as x0, x1 = x0 + h, x2 = x0 + 2h, . . ., xn = x0 + nh 

and the forward difference of f at xj are defi ned as 

 First forward difference D fj = fj+1 – fj 

 Second forward difference D2fj = D fj+1 – D fj

 

 kth forward difference Dk fj = D k–1fj+1 – Dk–1fj 

then it can be proved by induction that 

 f [x0, ...,  xk] =  D 0

1

!

k

k
f

k h
 

 With this, the Netwton’s Divided Difference formula can be written as 
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 f (x) = 
=

Ê ˆ
DÁ ˜Ë ¯Â 0

0

n
s

s

r
f

s
 

where r = (x – x0)/h 

 
( – 1)( – 2)...( – 1)

!

r r r r r s

ss

Ê ˆ +
=Á ˜Ë ¯

      ;(s > 0, integer)

with 1
0

rÊ ˆ
=Á ˜Ë ¯

Writing explicitly, the formula is 

 f (x) = f0 + r Df0 + 
+

D + + D2
0 0

...( – 1) ( – 1) ( – 1)...
2! !

nr r r r r n
f f

n

 Diagrammatically, the values of Dnfj may be written as follows. 

 j xj fj D fj D2fj D3fj 

 0 x0 f0  

 1 x1 f1 

D f0
 D2 f0 

D3 f0 2 x2 f2 

D f1
 D2 f1

 3 x3 f3 

D f2

Newton’s Backward Difference Formula for Regularly Spaced xj¢s

The backward difference of f at xj are defi ned as 

 First backward difference —fj = fj – fj
 
–
 
1

 Second backward difference — 2fj = —fj – —fj
 
–
 
1

  

 kth backward difference — kfj = — k – 1fj – — k – 1fj
 
–
 
1

 Diagrammatically, the values of — kfj may be written as follows.

 j xj fj —fj —2fj —3fj 

 0 x0 f0 

    —f1

 1 x1 f1  —2f2

    —f2  —3f3

 2 x2 f2  —2f3

    —f3

 3 x3 f3
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 The Newton’s backward difference formula is 

  fn(x) =  

=

+Ê ˆ
—Á ˜Ë ¯Â

0

– 1
;

n
s
n

s

r s
f

s
   r = (x – xn)/h

 Writing it explicitly, we have 

  fn(x) = fn + r —fn + 
+ + +

— + + —2
...( 1) ( 1) ( – 1)...

2! !

n
n n

r r r r r n
f f

n

Determine the interpolated values of sin x at x = 0.52 and x = 0.67 radian. Given are the 

values at 0.5, 0.55, 0.6, 0.65 and 0.7.

REM NEWTON FORWARD/BACKWARD DIFFERENCE INTERPOLATION

  CLS : DIM X(20), F(20, 20)

  'DEF FNA (X) = LOG(X) / LOG(10)

  DEF FNA (X) = SIN(X)

  READ N: DATA 4

  READ XI, H: DATA .5,.05

  REM Give either of the following statements for

  REM the forward(F) or backward(B) interpolation

  'READ N$, XX: DATA F,.52

  READ N$, XX: DATA B,.67

  FOR I = 0 TO N

  X(I) = XI + I * H: F(0, I) = FNA(X(I))

  PRINT "I="; I; "  X("; I; ")="; X(I), "F(0,"; I; ")="; F(0, I)

  NEXT I': PRINT

  FOR I = 0 TO N

  IF H < 0 THEN 2

  IF XX <= X(I) THEN 4

  GOTO 3

  2 IF XX >= X(I) THEN 4

  3 NEXT I

  4 IF N$ = "F" THEN M = I - 1 ELSE M = I

  PRINT : PRINT "No. of data point used ="; M: PRINT

  FOR I = 1 TO N: FOR J = 0 TO N - I

  F(I, J) = F(I - 1, J + 1) - F(I - 1, J)

  NEXT J: NEXT I

  'FOR J = 0 TO N - 1: FOR I = 1 TO N - J

  'PRINT "F("; I; J; ")="; F(I, J), : NEXT I: PRINT : NEXT J

  R = (XX - X(M)) / H
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  'PRINT : PRINT "Details of interpolation"

  IF N$ = "F" THEN J1 = N: J2 = -1 ELSE J1 = M: J2 = 1

  FOR S = 0 TO J1

  IF N$ = "F" THEN J3 = M ELSE J3 = M - S

  FACT = 1: BIN = 1

  IF S = 0 THEN 5

  FOR I = 0 TO S - 1: BIN = BIN * (R + J2 * I): NEXT I

  FOR I = 1 TO S: FACT = FACT * I: NEXT I

  5 FX = FX + (BIN / FACT) * F(S, J3)

  'PRINT "+("; BIN; "/"; FACT; ")("; F(S, J3); ")";

  'A$ = INPUT$(1)

  NEXT S

  'PRINT "="; FX: PRINT

  PRINT "X ="; XX; "  Interpolated value ="; FX;

  PRINT "  Actual value ="; FNA(XX)

  END

For Forward Interpolation 

 

For Backward Interpolation 

Output 
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Centre Difference Interpolation Formulae

Newton’s forward and backward interpolation formulae are useful to carry out interpolation near the 

beginning and end of tabulated values, respectively. If the interpolation is required near the centre of 

tabulated value, the following scheme is adopted.

 X Y D D2 D3 D4 D5 D6

 X1 Y1

   DYK – 3

 XK – 2 YK – 2  D2YK – 3

   DYK – 2  D3YK – 3

 XK – 1 YK – 1  D2YK – 2  D4YK – 3

   DYK – 1  D3YK – 2  D5YK – 3

 XK YK  D2YK – 1  D4YK – 2  D6YK – 2

   DYK  D3YK – 1  D5YK – 2

 XK + 1 YK + 1  D2YK  D4YK – 1

   DYK + 1  D3YK

 XK + 2 YK + 2  D2YK + 1

   DYK + 2

 The above scheme connected through dashed or dotted lines is known as central difference interpolation 

scheme. Based on this scheme, the following interpolation formula are used.

1. Gauss Forward Formula 

The formula is 

  Yp = YK + G1 DYK + G2 D
2YK – 1 + G3 D

3YK – 1 + G4 D
4YK – 2 (1)

where Yp is the value at Xp. The value of p is given by p = (X – XK)/h.

 The unknown in the above expressions are G1, G2, .... There are determined as follows.

 By defi nition† 

  Yp = E p YK = (1 + D)p YK

   = YK + p DYK + 
( – 1)

2!

p p
 D2YK + 

( – 1)( – 2)

3!

p p p
 D3YK + . . . (2)

 The operation D2YK – 1 can be expressed in terms of operations on YK as shown in the following.

† The shift operator is defi ned by the equation  EYr = Yr + 1.

 We have E2Yr = E(EYr) = E(Yr + 1) = Yr + 2 and so on. By defi nition, DY0 = Y1 – Y0 = EY0 – Y0 = (E – 1)Y0 Thus, the identity 

between operators D and E is D ∫ E – 1 or E = 1 + D

B
BBBBB

F F FF F F
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  D2YK – 1 = D2(E –1 YK) = D2 (1 + D)–1YK

   = D2 (1 – D + D2 – D3 + . . .) YK

   = D2YK – D3YK + D4YK – D5YK + . . . (3)

 Similarly,  D3YK – 1 = D3YK – D4YK + D5YK – D6YK + . . . (4)

 Now D4YK – 2 = D4 (E–2 YK)

   = D4 (1 + D)–2 YK 

   = D4 (1 – 2D + 3D2 – 4D3 + . . .) YK

   = D4 YK – 2 D5 YK + 3D6 YK – 4D7 YK + . . . (5) 

 Substituting Eqs (2), (3), (4) and (5) in Eq. (1), we get 

  YK + p DYK + D + D +2 3( – 1) ( – 1)( – 2) . . .
2! 3!

K K

p p p p p
Y Y

   = YK + G1 DYK

    + G2 ( D2YK – D3YK + D4YK – D5YK + . . .)

     + G3 ( D3YK – D4YK + D5YK – D6YK + . . .)

     + G4 (  D4YK – 2D5YK + 3D6YK – . . .) + . . .

 Equating the coeffi cients of DYK, D2YK, ..., etc. on both sides of the above expression, we get 

  G1 = p  G2 = 
( – 1)

2!

p p
 

  G3 =   
( 1)( )( – 1)

3!

p p p+
  G4 = 

( 1)( )( – 1)( – 2)

4!

p p p p+
 

2. Gauss Backward Formula

The formula is 

  Yp = YK + G ¢1 DYK – 1 + G¢2 D
2YK – 1 + G¢3 D

3YK – 2 + G¢4 D
4YK – 2 + . . .

 As derived in Gauss forward formula, the expressions of G¢ s are

  G¢1  = p G¢2 = 
( 1)

2!

p p +
 



List of Programs 81

  G¢3 =   
( 1)( )( – 1)

3!

p p p+
  G¢4 = 

( 2)( 1)( )( – 1)

4!

p p p p+ +

3. Stirling’s Formula

The Stirling’s formula involves the mean of Gauss forward and backward formula. 

4. Bessel’s Formula 

The Bessel’s formula involves the following scheme.

 

  
 
 
XK

   
XK+1

 
 
  

1

K

K

Y

Y +

Ê ˆ
Á ˜Ë ¯

 DYK  

2
–1

2

K

K

Y

Y

Ê ˆD
Á ˜Á ˜DË ¯

 D3YK – 1 

4
–2

4
–1

K

K

Y

Y

Ê ˆD
Á ˜
Á ˜DË ¯

 D5YK – 2

 

where the brackets involves taking the average of indicated values.

 The Bessel’s formula is

  Yp = 1

2

K KY Y ++
 + B1DYK + B2 

2 2
–1

2

K KY YD + D
 + B3D

3YK–1 + B4 

4 4
–2 –1

2

K KY YD + D
 + . . .

   = YK + 1

1

2
B

Ê ˆ+Á ˜Ë ¯
 DYK + B2 

2 2
–1

2

K KY YD + D
 + B3D

3YK–1 + B4 

4 4
–2 –1

2

K KY YD + D
 + . . .

 Following the above method to determine constants, the expressions of B’s are

  B1 + 
1

2
p=  B2 = 

( – 1)

2!

p p

  B3 =  
( – 1)( – 1/2)

3!

p p p
 B4 =   

( 1)( )( – 1)( – 2)

4!

p p p p+

5. Everett’s Formula

The Everett’s formula uses the following scheme.

 XK YK — D2YK – 1 — D4YK – 2 — D6YK – 3

 XK + 1 YK + 1 — D2YK — D4YK – 1 — D6YK – 2

 The Everett formula is 

Yp = E0YK + E2 D
2YK – 1 + E4 D

4YK – 2 + E6 D
6YK – 3 + . . . + F0YK + 1 + F2 D

2YK + F4 D
4YK –1 + . . .

where the constants are given by the expressions

  E0 = q (= 1 – p) F0 = p
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  E2 = 
2 2( –1 )

3!

q q   F2 = 
2 2( – 1 )

3!

p p

  E4 = 
2 2 2 2( – 1 )( – 2 )

5!

q q q
 F4 =   

2 2 2 2( – 1 )( – 2 )

5!

p p p

Interpolate the value of e1.17. Given the values of ex where x = 1, 1.05, 1.1, 1.15, 1.2, 1.25 

and 1.3.

REM Gauss,Stirling,Bessel & Everett Interpolation Formulae

  CLS

  DEF FNA (X) = EXP(X)

  READ XI, H, XG: DATA 1.0, .05, 1.17

  K = -1: N = 7

  FOR I = 1 TO 10

  K = K + 1

  IF H < 0 THEN 2

  IF XG < (XI + K * H) THEN 5

  GOTO 4

  2 IF XG > (XI + K * H) THEN 5

  4 NEXT I

  5 PRINT " X               Y"

  X = XI

  FOR I = 1 TO N

  A(I) = FNA(X)

  PRINT X, : PRINT USING "#.######"; A(I)

  X = X + H

  NEXT I

  A$ = INPUT$(1): PRINT : PRINT " DEL";

  FOR I = 1 TO N - 1

  B(I) = A(I + 1) - A(I)

  PRINT USING "    #.######"; B(I);

  NEXT I

  A$ = INPUT$(1): PRINT : PRINT "DEL2";

  FOR I = 1 TO N - 2

  C(I) = B(I + 1) - B(I)

  PRINT USING "    #.######"; C(I);

  NEXT I

  A$ = INPUT$(1): PRINT : PRINT "DEL3";

  FOR I = 1 TO N - 3
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  D(I) = C(I + 1) - C(I)

  PRINT USING "    #.######"; D(I);

  NEXT I

  A$ = INPUT$(1): PRINT : PRINT "DEL4";

  FOR I = 1 TO N - 4

  E(I) = D(I + 1) - D(I)

  PRINT USING "    #.######"; D(I);

  NEXT I

  A$ = INPUT$(1): PRINT : PRINT "DEL5";

  FOR I = 1 TO N - 5

  F(I) = E(I + 1) - E(I)

  PRINT USING "    #.######"; F(I);

  NEXT I

  A$ = INPUT$(1): PRINT : PRINT

  M = K - 1: PRINT "M="; M: A$ = INPUT$(1)

  p = (XG - (XI + M * H)) / H

  T1 = p * (p - 1): T2 = (p + 1) * T1: T3 = T2 * (p - 2)

  T4 = p * (p + 1): T5 = T4 * (p - 1): T6 = (p + 2) * T5

  GF = A(K) + p * B(K) + (T1 / 2) * C(K - 1)

  GF = GF + (T2 / 6) * D(K - 1)

  GF = GF + (T3 / 24) * E(K - 2)

  GB = A(K) + p * B(K - 1) + (T4 / 2) * C(K - 1)

  GB = GB + (T5 / 6) * D(K - 2)

  GB = GB + (T6 / 24) * E(K - 2)

  BS = A(K) + p * B(K) + (T1 / 2) * (C(K - 1) + C(K)) / 2

  BS = BS + (T1 * (p - .5) / 6) * D(K - 1)

  BS = BS + (T3 / 24) * (E(K - 2) + E(K - 1)) / 2

  q = 1 - p: T7 = q * (q ^ 2 - 1): T8 = p * (p ^ 2 - 1)

  EV = q * A(K) + (T7 / 6) * C(K - 1)

  EV = EV + (T7 * (q ^ 2 - 4) / 120) * E(K - 2)

  EV = EV + p * A(K + 1) + (T8 / 6) * C(K)

  EV = EV + (T8 * (p ^ 2 - 4) / 120) * E(K - 1)

  PRINT "Value of"; XG; "by Gauss forward formula="; GF

  PRINT "Value of"; XG; "by Gauss backward formula="; GB

  PRINT "Value of"; XG; "by Stirling formula="; (GF + GB) / 2

  PRINT "Value of"; XG; "by Bessel formula="; BS

  PRINT "Value of"; XG; "by Everett formula="; EV

  PRINT "ACTUAL VALUE OF"; XG; "="; FNA(XG)

  END
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Output

Lagrange’s Interpolation Formula 

In the Lagrange’s interpolation formula, a Lagrange polynomial of degree n for a function y(xi) is devised 

so as to satisfy the requirement 

  Ln(xi) = y(xi);   i = 0, 1, 2, ..., n 

 Such a polynomial is expressed as 

  Ln = 
=
π=

È ˘Ê ˆ
Í ˙Á ˜Í ˙Ë ¯Î ˚

Â ’
00

–

–j
j i

n n
j

i
i ji

x x
y

x x
 (1)

 For n = 1, the polynomial passes through two points (x0, y0) and (x1, y1) and is given by 

  L1 = 
01

0 1
0 1 1 0

––

– –

x xx x
y y

x x x x

Ê ˆ Ê ˆ
+Á ˜ Á ˜Ë ¯ Ë ¯

 Obviously, for x = x0, L1(x0) = y0 and for x = x1, L1(x1) = y1 

 For n = 2, the polynomial passes through three points (x0, y0), (x1, y1) and (x2, y2) and is given by 

  L2 = 0 01 2 2 1
0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

– –– – – –

– – – – – –

x x x xx x x x x x x x
y y y

x x x x x x x x x x x x
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 Obviously, for x = x0, L2(x0) = y0;  x = x1, L2(x1) = y1  and x = x2, L2(x2) = y2. 

 Thus, Eq. (1) is the required interpolation formula and can be used for equally or unequally spaced xi.

To estimate the value of ln 302. Given are the values at 300, 304, 305 and 307.

CLS

  DIM X(20), Y(20)

  DEF FNA (X) = LOG(X)

  READ N: DATA 3

  PRINT "  X                Y"

  FOR I = 0 TO N

  READ X(I): Y(I) = FNA(X(I))

  PRINT X(I), Y(I): A$ = INPUT$(1)

  NEXT I

  DATA 300,304,305,307

  READ XG: DATA 302

  SUM = 0

  FOR I = 0 TO N

  TERM = 1

  FOR J = 0 TO N

  IF I = J THEN 5

  TERM = TERM * (XG - X(J)) / (X(I) - X(J))

  5 NEXT J

  SUM = SUM + TERM * Y(I)

  NEXT I

  PRINT : PRINT "ESTIMATED VALUE OF "; XG; "= "; SUM

  PRINT "ACTUAL VALUE OF "; XG; "= "; FNA(XG)

  END 

Output

 

Hermite’s Interpolation Formula 

The Hermite’s interpolation formula requires both the functional value and its fi rst derivative at each point 

of interpolation. The expression yields 
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  H(xi)= yi and H¢(xi) = y ¢i;   i = 0, 1, 2, ..., n 

 The expression of Hermite polynomial is 

  H(x) =  
0 0

( ) ( )
n n

i i i i

i i

u x y v x y
= =

+ ¢Â Â  (1)

 This satisfi es the conditions 

  ui(xj) = dij and u¢i(x) = 0 for all i (2a)

  vi(x) = 0 for all i and v ¢i(xj) = dij (2b)

where dij is Kronecker delta; it is equal to 1 for i = j and is equal to zero for i π j.

 The expressions of ui(x) and vi(x) are 

  ui(x) = (ai x + bi) [li(x)]2 (3a)

  vi(x) = (ci x + di) [li(x)]2 (3b) 

where  li(x) = 
0

–

–j
j i

n
j

i j

x x

x x=
π

Ê ˆ
Á ˜
Ë ¯

’    (4)

 Obviously, li(xi) = 1 and li(xj) = 0. (5)

 For x = xi, Eqs (3a) and (3b) become 

  ui(xi) = (ai xi + bi) [li(xi)]
2 (6a)

  vi(xi) = (ci xi + di) [li(xi)]
2 (6b) 

which according to the conditions as given by Eqs (2a), (2b) and (5) become 

  ai xi + bi = 1 and ci xi + di = 0 (7a) 

 The fi rst derivatives of Eqs (6a) and (6b) are 

  u ¢i (xi) = ai [li(xi)]
2 + (ai xi + bi) [2{li(xi)} {l¢i (xi)}] 

  v ¢i (xi) = ci [li(xi)]
2 + (ci xi + di) [2{li(xi)} {l¢i (xi)}] 

which according to Eqs (2a), (2b), (5) and (7a) become 

  ai + 2l ¢i (xi) = 0 and ci = 1 (7b) 

 From Eqs (7a) and (7b), we get 

  ai = – 2 l ¢i (xi) bi = 1 – ai xi = 1 + 2xi [l ¢i (xi)]

  ci = 1 di = – xi 

 With these, Eqs (3a) and (3b) become 

  ui(x) = [{– 2l ¢i (xi)}x + 1 + 2 xi {l ¢i (xi)}] [li(x)]2 

   = [1 – 2 (x – xi) {l¢i (xi)}] [li(x)]2 (8a) 
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  vi(x) = [(1)x + (– xi)] [li(x)]2 

   = (x – xi) [li(x)]2 (8b) 

 Finally, Hermite polynomial (Eq.1) becomes 

  H(x) =  
2 2

0 0

[1 – 2( – ){ ( )}][ ( )] ( – ) [ ( )]
n n

i i i i i i i i

i i

x x l x l x y x x l x y
= =

+¢ ¢Â Â  (9) 

To estimate the value of ln 303. Given are the values at 300, 304, 305, 307 and 308 .

CLS

  DIM X(20), Y(20), YD(20)

  DEF FNA (X) = LOG(X): DEF FND (X) = 1 / X

  READ N: DATA 5

  PRINT "  X                Y            YD"

  FOR I = 1 TO N

  READ X(I): Y(I) = FNA(X(I)): YD(I) = FND(X(I))

  PRINT X(I), Y(I), YD(I): A$ = INPUT$(1)

  NEXT I

  DATA 300,304,305,307,308

  READ XG

  DATA 303

  SUM = 0: SUMH = 0: TERM1 = 0: TERM2 = 0

  FOR I = 1 TO N

  NUM = 1: DEN = 1

  FOR J = 1 TO N

  IF J = I THEN 5

  NUM = NUM * (XG - X(J)): DEN = DEN * (X(I) - X(J))

  5 NEXT J

  TERM = NUM / DEN: SUM = SUM + TERM * Y(I)

  SUMD = 0

  FOR K = 1 TO N

  IF K = I THEN 10

  NUM = 1

  FOR J = 1 TO N

  IF J = I OR J = K THEN 8

  NUM = NUM * (X(I) - X(J))

  8 NEXT J

  SUMD = SUMD + NUM / DEN

  10 NEXT K
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  T1 = (1 - 2 * (XG - X(I)) * SUMD) * TERM ^ 2 * Y(I)

  TERM1 = TERM1 + T1

  T2 = (XG - X(I)) * TERM ^ 2 * YD(I)

  TERM2 = TERM2 + T2

  NEXT I

  SUMH = TERM1 + TERM2

  PRINT : PRINT "Estimated value of "; XG; "by Lagrange formula = "; SUM

  PRINT : PRINT "Estimated value of "; XG; "by Hermite formula = "; SUMH

  PRINT : PRINT "Actual value of "; XG; "= "; FNA(XG)

  END 

Output 

  

Spline Interpolation 

The given interpolation of a value between the given interval is carried out by dividing the entire interval 

into various subintervals. For each subinterval, a polynomial of low degree is devised to predict interpolation 

in that range. The devised polynomial may be linear, quadratic, cubic or of higher order. However, a 

cubic polynomial is commonly used in engineering applications. We construct linear, quadratic and cubic 

polynomials to highlight their mode of applications.

Linear Splines Let the given data point be represented as 

   (xi, yi),    i = 0, 1, 2, ..., n 

 For each subinterval, say (x0, y0) – (x1, y1), (x1, y1) – (x2, y2), ..., a linear polynomial is given by the 

expression  

  si(x) = yi –1 + mi (x – xi – 1) (1) 

where mi = (yi – yi – 1)/(xi – xi – 1) (2) 

 For example, for the data points (1, 1), (2, 8), (3, 27), we have 
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 Subinterval (1, 1) – (2, 8);

  s1(x) = 1 + 
8 – 1

2 – 1
 (x – 1) = 7x – 6 

 Subinterval (2, 8) – (3, 27);

  s2(x) = 8 + 
27 – 8

3 – 2
 (x – 2) = 19x – 30

 The polynmial s1(x) is used to predict the interpolation for a value of x between the fi rst subinterval 

(say, x = 1.5) and s2 is used to predict the value for x between second subinterval (say, x = 2.5). 

 Linear splines are continuous but their slopes are discontinuous. 

Quadratic Spline Let the spline in the interval [xi – 1, xi] be represented as si(x). 

 Let si(x) and its fi rst derivative s¢i(x) be continuous in the entire range [x0, xn].

 Since si(x) is a quadratic, it follows that s¢i(x) is a linear function and let it be written as 

  s¢i(x) = 
1

ih
 [(xi – x) mi – 1 + (x – xi – 1) mi] (3) 

where hi = xi – xi –1. From the above expression, it follows that 

  mi = s¢i(xi) and mi – 1 = s¢i(xi – 1) (4) 

 Integrating s¢i(x) with respect to x, we get 

  si(x) = 

22
–1

–1

( – )( – )1
–

2 2

ii
i i i

i

x xx x
m m c

h

È ˘
Í ˙+ +
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  (5) 

where ci is constant of integration. Its expression may be derived by putting x = xi – 1 where si (xi – 1) = yi – 1. 

Hence 

  yi – 1 =  
È ˘

+ +Í ˙
Í ˙Î ˚

2 2
–1 –1 –1

–1

( – ) ( – )1
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h
 (6) 

which gives  ci = yi – 1 + 
2

ih  mi – 1 (7) 

 With this, the expression of spline si(x) as given by Eq. (5) becomes 

  si(x) =  
È ˘

+ + +Í ˙
Í ˙Î ˚

22
–1

–1 –1 –1

( – )( – )1
–

2 2 2

ii i
i i i i

i

x xx x h
m m y m

h
 (8) 

 In the above expression, mi – 1 and mi are unknown, these are determined based on the fact that the 

function si(x) is continuous at x = xi, for which we have 
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  si(xi –) = si + 1(xi+) (9) 

 For xi– = 
0

lim
h¢Æ  (xi – h¢), Eq. (8) yields 

  si(xi–) =   

2

–1 –1

1
0

2 2

i i
i i i

i

h h
m y m

h

È ˘
+ + +Í ˙
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                          = –1 –1[ ]
2

i
i i i

h
m m y+ +  (10) 

 For xi+ = 
0

lim
h¢Æ  (xi + h¢), we fi rst write the spline si + 1(x) from Eq. (8) by replacing the subscript i by 

i + 1. Thus

   si + 1(x) = 

2 2
1 1

1
1
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which gives  si + 1(xi+) =  
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 Equating Eqs (10) and (11), we get 

  
–1 –1[ ]

2

i
i i i i

h
m m y y+ + =  

or  mi – 1 + mi = –1

2
( – );i i

i

y y
h

   i = 1, 2, ..., n (12) 

 Equation (12) is a recurrence relation. This given n equation for n + 1 unknowns (which are m0, m1, ..., mn). 

The one extra unknown is fi xed for selecting a natural spline for which s≤1(x1) = 0. Differentiating Eq. (3), 

we get 

  s≤i (x) = –1

1
[– ]i i

i

m m
h

+  

 Hence, s≤1 (x1) = 0 gives 

  0 = 0 1

1
(– )

i

m m
h

+  

or  m0 = m1 (13) 

 Equation (12) and (13) can be used to determine various mi¢s which can be used in Eq. (8) for the 

required interpolation. 

 For example, for the data points (1, 1), (2, 8), (3, 27), we have 

Subinterval (1, 1) – (2, 8): h1 = x1 – x0 = 2 – 1 = 1

  s1(x) = 
22

01 1
0 1 0 0
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2 2 2i
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   = 
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Subinterval (2, 8) – (3, 27): h2 = x2 – x1 = 3 – 2 = 1 

  s2(x) = 

2 2
2 1 2

1 2 1 1
2

( – ) ( – )1
–

2 2 2

x x x x h
m m y m

h

È ˘
+ + +Í ˙

Í ˙Î ˚
   

   = 
2 2

1 2 1

(3 – ) ( – 2) 1
– 8

2 2 2

x x
m m m

È ˘
+ + +Í ˙

Í ˙Î ˚
 

 The expressions of mi s in the above expressions as given by Eq. (12) are 

  m0 + m1 = 
1

2

h
 (y1 – y0) = 2 (8 – 1) = 14 

  m1 + m2 = 
2

2

h
 (y2 – y1) = 2 (27 – 8) = 38

 Since m0 = m1, (Eq. 13), we get 

  m0 = m1 = 7 and m2 = 31 

 Hence, the fi nd expressions are 

  s1(x) = 
È ˘

+ + +Í ˙
Í ˙Î ˚
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s1(x) is used to predict the interpolation for a value of x between the fi rst interval (say, 

x between the second subinterval (say, x = 2.5).

si(x) will be linear and continuous for which, 

x) = 
1

ih
 [(xi – x) Mi – 1 + (x – xi – 1 ) Mi] (14) 

s≤i (xi) = Mi

x gives 

  si(x) = 
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 + ci (xi – x) + di (x – xi – 1) (15)

 The constants of integration ci and di are determined from the fact that si(xi) = yi and si(xi – 1) = yi – 1. 

For x = xi, we have 
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  yi = 
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For x = xi – 1, we have 
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 With these, Eq. (15) becomes 

  si(x) = 
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 In Eq. (16), the second derivatives, Mi and Mi – 1 are not yet defi ned. To determine their expressions, 

the continuity of the fi rst derivatives may be used, for which we write 

  s¢i(xi–) = s¢i + 1(xi+) (17)

The fi rst derivative of Eq. (16) is

  s¢i(x) = 
È ˘Ê ˆ Ê ˆ

+ +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
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 For s¢i (xi–), we get

  s¢i(xi–) =   
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 For s¢i + 1(xi+), fi rst we write the expression of s¢i + 1(x). Replacing i by i + 1 in Eq. (18), we get

   s¢i + 1(xi) = 
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 Hence, s¢i + 1(xi+) is given by 
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 Equating Eqs (19) and (20), we get 
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 (21) 

 In Eq. (21), i = 1, 2, ..., n – 1. Thus, there are n – 1 equations, but there are n + 1 unknown M’s 

(viz., M0, M1, ..., Mn. For the natural cubic splines, the derivatives M0 and Mn are set equal to zero. From 

Eq. (21), the values of M1 to Mn – 1 are determined. These along with M0 = 0 and Mn = 0 are used in Eq. 

(16) to determine the interpolated value of x.

 The values of M1 to Mn – 1 can be represented as follows. 
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 Writing it as H M = R, we get

  M = H – 1 R 

 Thus, detrmining H –1 and right multiplying it with R gives M vector.

 For equal intervals of h (i.e. hi = hi + 1 = ... = h), Eq. (21) takes the form of 

  Mi – 1 + 4Mi + Mi + 1 = 
2

6

h
 (yi + 1 – 2yi + yi – 1); (i = 1, 2, ..., n – 1) (22) 

 In the matrix notation, we have
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i.e.  H M = R 

 From this, we have M = H–1 R 

Illustration To determine dy/dx and d2y/dx2 for the function y = sin x at x = 15°, 35°, 55° and 75°. 

Given are the function values for 0° to 180° at the regular interval of 18°.

CLS

  DEF FNA (X) = SIN(X): DEF FNB (X) = COS(X): DEF FNC (X) = -SIN(X)

  'DEF FNA (X) = X ^ 3: DEF FNB (X) = 3 * X ^ 2: DEF FNC (X) = 6 * X

  DIM X(30), Y(30), M(30), C(30), A(30, 30), A1(30, 30)

  READ N: DATA 10

  PRINT STRING$(30, "-")

  PRINT " I  Angle   Angle       Y"

  PRINT "    Degree  Radian": PRINT STRING$(30, "-")

  FOR I = 0 TO N

  XD = I * 180 / N: X(I) = I * 3.14159 / N

  'X(I) = I

  Y(I) = FNA(X(I))

  PRINT USING "##"; I; : PRINT USING "  ###"; XD;

  PRINT USING "  ###.#####"; X(I); Y(I)

  NEXT I

  PRINT STRING$(30, "-")

  H = X(1) - X(0): PRINT "Value of h="; H: A$ = INPUT$(1)

  NM1 = N - 1

  FOR I = 1 TO NM1

  A(I, I) = 4

  C(I) = (6 / H ^ 2) * (Y(I + 1) - 2 * Y(I) + Y(I - 1))

  FOR J = I + 1 TO NM1

  IF J = I + 1 THEN A(I, J) = 1 ELSE A(I, J) = 0

  A(J, I) = A(I, J)

  NEXT J

  NEXT I

  'PRINT : PRINT "M MATRIX"

  'PRINT STRING$(7.3 * N, "-")

  'FOR I = 1 TO NM1: PRINT USING "     ##"; I; : NEXT I

  'PRINT "    RHS": PRINT STRING$(7.3 * N, "-")

  FOR I = 1 TO NM1

  FOR J = 1 TO NM1

  A1(I, J) = A(I, J)

  'PRINT USING "  #.###"; A(I, J);

  NEXT J

  'PRINT USING "  ##.####"; C(I): A$ = INPUT$(1)

  NEXT I
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  'PRINT STRING$(7.3 * N, "-"): A$ = INPUT$(1)

  N2 = 2 * NM1

  FOR I = 1 TO NM1

  K = I + NM1

  FOR J = NM1 + 1 TO N2

  IF J = K THEN A(I, J) = 1 ELSE A(I, J) = 0

  NEXT J

  NEXT I

  FOR I = 1 TO NM1 - 1

  DUM = A(I, I)

  FOR J = 1 TO N2: A(I, J) = A(I, J) / DUM: NEXT J

  FOR J = I + 1 TO NM1

  DUM = A(J, I) / A(I, I)

  FOR K = 1 TO N2: A(J, K) = A(J, K) - A(I, K) * DUM: NEXT K

  NEXT J

  NEXT I

  DUM = A(NM1, NM1)

  FOR J = NM1 TO N2: A(NM1, J) = A(NM1, J) / DUM: NEXT J

  FOR I = 1 TO NM1 - 1

  FOR J = I + 1 TO NM1

  DUM = A(I, J)

  FOR K = J TO N2: A(I, K) = A(I, K) - DUM * A(J, K): NEXT K

  NEXT J

  NEXT I

  M(0) = 0: M(N) = 0: PRINT : PRINT "M(0)=0",

  FOR I = 1 TO NM1

  SUM = 0

  FOR J = 1 TO NM1: SUM = SUM + A(I, J + NM1) * C(J): NEXT J

  M(I) = SUM: PRINT "M("; I; ")="; M(I),

  NEXT I

  PRINT "M("; N; ")=0": PRINT

  A$ = INPUT$(1): PRINT STRING$(78, "-")

  PRINT " I  Angle   Angle   Estimated  Actual  ";

  PRINT " First       Actual  Second      Actual"

  PRINT "    Degree  Radian  Value      Value   ";

  PRINT " Derivative  Value   Derivative  Value"

  PRINT STRING$(78, "-")

  FOR J = 15 TO 90 STEP 20

  XG = (J / 180) * 3.14159

  'FOR J = .5 TO N

  'XG = J
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  FOR I = 0 TO N

  IF XG <= X(I) GOTO 5

  NEXT I

  5 S = (X(I) - XG) ^ 3 * M(I - 1) / 6

  S = S + (XG - X(I - 1)) ^ 3 * M(I) / 6

  S = S + (Y(I - 1) - H ^ 2 * M(I - 1) / 6) * (X(I) - XG)

  S = S + (Y(I) - H ^ 2 * M(I) / 6) * (XG - X(I - 1))

  S = S / H

  SFD = -(X(I) - XG) ^ 2 * M(I - 1) / 2

  SFD = SFD + (XG - X(I - 1)) ^ 2 * M(I) / 2

  SFD = SFD - (Y(I - 1) - H ^ 2 * M(I - 1) / 6)

  SFD = SFD + (Y(I) - H ^ 2 * M(I) / 6)

  SFD = SFD / H

  SSD = (X(I) - XG) * M(I - 1) + (XG - X(I - 1)) * M(I)

  SSD = SSD / H

  PRINT I; : PRINT USING " ###"; J;

  PRINT USING "  ###.####"; XG; S; FNA(XG); SFD; FNB(XG); SSD; FNC(XG)

  NEXT J

  PRINT STRING$(78, "-")

  END

Output

 



List of Programs 97

Inverse Interpolation by the Method of Successive Approximation Applied to Newton’s 

Forward Difference Formula

Newton’s forward difference formula is 

  yr = yn + r Dyn +   D + D +2 3( – 1) ( – 1)( – 2) . . .
2! 6

n n

r r r r r
y y  (1)

where r = (x – xn)/h. 

 In the method of successive approximation, we start with Eq. (1) in which the second and higher 

differences are ignored. This gives 

  yr = yn + r1 Dyn fi r1 = (yr – yn)/Dyn (2)

 The next approximation of r is obtained by including the second difference term in Eq. (2) with the 

use of r = r1. This gives

  r2 =  
21 1( – 1)1

– –
2

r n n
n

r r
y y y

y

È ˘DÍ ˙D Î ˚
 

 This is continued by including each time the next higher difference trem with the use of r2 in each 

term. This gives

  r3 = 2 32 2 2 2( – 1) ( – 1)1
– – –

2! 3!
r n n n

n

r r r r
y y y y

y

È ˘D DÍ ˙D Î ˚
 

and so on. The process is repeated till the two successive values of r agree with in the required accuracy.

To determine the value of x in x3 = 9

REM INVERSE INTERPOLATION BY METHOD OF SUCCESSIVE APPROXIMATION

  REM APPLIED TO NEWTON FORWARD DIFFERENCE FORMULA

  CLS : DIM X(20), F(20, 20)

  READ N: DATA 4

  DEF FNA (X) = X ^ 3

  DEF FNB (X) = X ^ (1 / 3)

  READ XI, H, YG: DATA 2,1,9

  FOR I = 0 TO N
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  X(I) = XI + I * H: F(0, I) = FNA(X(I))

  PRINT "X("; I; ")="; X(I), "F(0,"; I; ")="; F(0, I)

  NEXT I: PRINT : A$ = INPUT$(1)

  FOR I = 1 TO N: FOR J = 0 TO N - I

  F(I, J) = F(I - 1, J + 1) - F(I - 1, J)

  NEXT J: NEXT I

  FOR J = 0 TO N - 1: FOR I = 1 TO N - J

  PRINT "F("; I; ","; J; ")="; F(I, J),

  NEXT I: PRINT : NEXT J: PRINT

  RP = 0

  FOR I = 0 TO N

  IF F(0, 2) < F(0, 1) THEN 7

  IF YG <= F(0, I) THEN 4

  GOTO 8

  7 IF YG >= F(0, I) THEN 4

  8 NEXT I

  4 M = I - 1: PRINT " Value of M is"; M: PRINT

  FOR I = 0 TO 20

  A$ = INPUT$(1)

  IF I = 0 THEN R0 = YG - F(0, M): R = R0 / F(1, M): GOTO 5

  SUM = 0

  FOR L = 1 TO I

  PROD = 1

  FOR J = 0 TO L: PROD = PROD * (R - J): NEXT J

  FACT = 1: FOR K = 1 TO L + 1: FACT = FACT * K: NEXT K

  TERM = (PROD / FACT) * F(L + 1, M)

  SUM = SUM + TERM

  NEXT L

  R = (R0 - SUM) / F(1, M)

  5 PRINT "ITERATION="; : PRINT USING "##"; I;

  PRINT USING "    ###.#####"; R

  IF ABS(RP - R) < .00001 THEN 10

  RP = R

  NEXT I

  10 PRINT : PRINT "Required value for"; YG; "=";

  PRINT USING "###.#####"; X(M) + R * H

  PRINT "Actual value for"; YG; "=";

  PRINT USING "###.#####"; FNB(YG)

  END 
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Output

2.19 NUMERICAL INTEGRATION 

To carry out the numerical integration by (i) rectangular rule, (ii) trapezoidal rule, and (iii) Simpson’s rule. 

 The integral 

 J = Ú
6

( )d
a
f x x   

may be evaluated numerically by approximating the integrand f by polynomials. 

Rectangular Rule

In rectangular rule, the interval of integration is divided into n equal subintervals of length h = (b – a)/n and 

approximate f in each such interval by a constant function f (xj*) where xj* is the mid point of the interval. 

The function is multiplied by h to give the area under the function in the chosen interval. The value of 

integral is obtained by summing these areas, i.e. 

 J = h[ f (x1*) + f (x2* ) + . . . + f (xn* )] 
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Trapezoidal Rule

In trapezoidal rule, the function f is approximated by a piecewise linear function, and the areas of trapezoids 

are 

  
1

2
 [ f (a) + f (x1)] h ; 

1

2
 [ f(x1) + f (x2)]h ; . . . 1

2
 [ f (xn–1) + f(b)]h 

 On summing, we get 

  J = h 
È ˘+ + + + +Í ˙Î ˚

1 2 –1

1 1. . .( ) ( ) ( ) ( ) ( )
2 2

nf a f x f x f x f b  

Simpson Rule

In Simpson’s rule, the function f is approximated by piecewise quadratic expressions. The interval of 

integration is divided into even numbers of equal subintervals such that h = (b – a)/2n. The entire interval 

is thus labelled as

  x0 (= a); x1 (= xo + h) ; x2 (= x0 + 2h), . . . and so on.

The function f(x) in the interval x0 £ x £ x2 is approximated by the Lagrange polynomial L2(x) through 

(x0, f0), (x1, f1) and (x2, f2).

 The expression of L2(x) in the interval x0 to x2 is

 L2(x) = 
0 2 0 11 2

0 1 2
0 1 0 2 1 0 1 2 2 0 2 1

( – )( – ) ( – )( – )( – )( – )

( – )( – ) ( – )( – ) ( – )( – )

x x x x x x x xx x x x
f f f

x x x x x x x x x x x x
+ +

 The denominators are 2h2, – h2 and 2h2, respectively Let s = (x – x1)/h. We will have 

  x – x0 = x – (x1 – h) = 1( – )x x h

h

+È ˘
Í ˙Î ˚

 h = (s + 1)h 

  x – x1 = sh 

  x – x2 = (s – 1)h 

 Thus L2 (s) = 
1

2
 s(x – 1) f0 – (s + 1) (s – 1) f1 + 

1

2
 (s + 1)s f2 

with s = (x – x1)/h, we get

  ds = 
dx

h

with limits of integration given as

  s0 = 0 1 0 0– – ( )
–1

x x x x h

h h

+
= =  
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  s1 =  2 1 1 1– ( ) –
1

x x x h x

h h

+
= = +

 Hence, 
2

0

1

2
–1

( ) d ( ) d
x

x
f x x L s h s

+
=Ú Ú  

 
 = 

1

0 1 2
–1

1 1
( – 1) – ( 1)( – 1) ( 1) d

2 2
s s f s s f s s f h s

È ˘+ + +Í ˙Î ˚Ú  

 = 0 1 2

1 4 1

3 3 3
h f f f

Ê ˆ+ +Á ˜Ë ¯
 

A similar formula holds for the next two subintervals from x2 to x4, and so on. If we sum all these 

expressions, we will get the Simpson’s rule as

 ( ) d
3

b

a

h
f x x =Ú  [ f0 + 4 f1 + 2 f2 + 4 f3 + . . . + 2 f2n–2 + 4 f2n–1 + f2n] 

where h = (b – a) /2n and fj = f (xj) 

Make a program to carry out the integration 

  
Ê ˆÊ ˆ

p Á ˜Á ˜pË ¯ Ë ¯Ú
3/2 2

24 exp – d
2 2

B

A

M Mu
u u

RT RT

with du = (B – A)/N where A = 0, B = 1500 and N = 100 by the three methods described above.

REM PROGRAM INTSTR;INTEGRATION RECTANGULAR,TRAPZOID AND SIMPSON

  CLS : M = .032: A = 0: B = 1500: N = 100

  SU = (B - A) / N: PI = 3.1415: R = 8.314

  DEF FNA (M, T, U)

  X = 4 * PI * (M / (2 * R * PI * T)) ^ 1.5

  X = X * EXP(-M * U ^ 2 / (2 * R * T)) * U ^ 2

  FNA = X

  END DEF

  PRINT STRING$(52, "_")

  PRINT " T/K          Rectangular    Trapezoidal   Simpson"

  PRINT STRING$(52, "_")

  FOR T = 298 TO 398 STEP 20

  INTS = 0: INTR = 0: INTT = 0: U = A - SU

  FOR I = O TO N

  U = U + SU: F = FNA(M, T, U)

  IF I = 0 OR I = N THEN MULT = 1: GOTO 5

  IF I = 2 * INT(I / 2) THEN MULT = 2 ELSE MULT = 4

  5 INTS = INTS + MULT * F
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  UR = U + SU / 2: INTR = INTR + FNA(M, T, UR)

  IF I = 0 OR I = N THEN MULT = .5 ELSE MULT = 1

  INTT = INTT + MULT * F

  NEXT I

  INTS = INTS * SU / 3: INTR = SU * INTR: INTT = SU * INTT

  PRINT T, INTR, INTT, INTS

  NEXT T

  PRINT STRING$(52, "_")

  END

 

Consider the integration 

  I = 
1 1

0 0

( , ) d d
x y

x y
f x y y xÚ Ú  

 The numerical integration of the above expression can be carried out with the following procedure. 

 Take x = x0 and carry out the numerical integration over y. To the obtained value, add the new value of 

integration over y with x = x0 + h and so on.

 The above procedure may be outlined mathematically as follows. 

  I = 
0 0

( , )
n n

i j i i

i j

hk
f x y

N = =

Ê ˆ
l lÁ ˜

Ë ¯
Â Â  

where xi = x0 + i ¥ h with h = (xN – x0)/N

  yj = yj + j ¥ k with k = (yN – y0)/N

 The symbols li, lj and N are constants, their values are as follows. 

Rectangular Method

  li = lj = N = 1 
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Trapezoidal Method 

  l0 = lN = 1 and all other l’s = 2 

  N = 2 × 2 = 4 

Simpson method 

  l0 = lN = 1 

  l’s = 2 if i or j is even 

  l’s = 4 if i or j is odd 

N = 3 × 3 = 9 

To carry out the numerical integration 

I = 
4 2 2 2

0 –2
( – ) d dx xy y y x

+
+Ú Ú  

REM Double Integration by Rectangular,Trapezoid & Simpson Methods

  REM M=No. of Divisions: XI & XF=Initial & Final X

  REM YI & YF=Initial & Final Y

  CLS

  DEF FNA (X, Y) = X ^ 2 - X * Y + Y ^ 2

  N = 0: M = 10

  READ XI, XF, YI, YF

  DATA 0,4,-2,2                                 

  PRINT STRING$(52, "_")

  PRINT "  N          Rectangular    Trapezoidal    Simpson"

  PRINT STRING$(52, "_")

  FOR L = 1 TO M

  N = N + 4

  XS = (XF - XI) / N: YS = (YF - YI) / N

  INTS = 0: INTR = 0: INTT = 0

  FOR I = 0 TO N

  X = XI + I * XS

  IF I = 0 OR I = N THEN MULTS = 1: GOTO 10

  IF I = 2 * INT(I / 2) THEN MULTS = 2 ELSE MULTS = 4

  10 IF I = 0 OR I = N THEN MULTT = 1 ELSE MULTT = 2

  FOR J = 0 TO N

  Y = YI + J * YS: F = FNA(X, Y)

  IF J = 0 OR J = N THEN MULT = 1: GOTO 15

  IF J = 2 * INT(J / 2) THEN MULT = 2 ELSE MULT = 4

  15 INTS = INTS + MULTS * MULT * F

  INTR = INTR + F

  IF J = 0 OR J = N THEN MULT = 1 ELSE MULT = 2
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  INTT = INTT + MULTT * MULT * F

  NEXT J

  NEXT I

  INTS = INTS * XS * YS / 9

  INTR = XS * YS * INTR: INTT = INTT * XS * YS / 4

  PRINT N, INTR, INTT, INTS

  NEXT L

  PRINT STRING$(52, "_")

  END

 

2.20 NUMERICAL DIFFERENTIATION 

The derivative of a function f available in the form of tabulated values is normally carried out by the 

differentiation of the interpolation formula. 

Using Newton’s Forward/Backward Difference formula 

 For the Newton’s forward difference formula, we have 

  y = ym + r Dym + 2( – 1) ( – 1)( – 2)

2! 3!
m

r r r r r
yD +  D3 ym + . . . ;   (r = (x – xm)/h) 

 We have

  
d d d

d d d

y y r

x r x

Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯

   = 
+ + +È ˘ºD + D + D +Í ˙Î ˚

2 31 ( – 1) {( – 1)( – 2)} { ( – 2)} { ( – 1)}

2! 3!
m m m

r r r r r r r r
y y y

h
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 The expression of second derivative is 
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 For the Newton’s backward difference formula, we have 

  y = ym + r —ym + 
+ + + º— + — +2 3( 1) ( 1)( 2)

2! 3!
m m

r r r r r
y y  

we have 

  y¢ =   
+ + + + + + + +È ˘º— + — + — +Í ˙Î ˚

2 31 ( 1) {( 1)( 2)} { ( 2)} { ( 1)}

2! 3!
m m m

r r r r r r r r
y y y

h
  

  y≤ = 
+ + + + + + + + +È ˘º— + — +Í ˙Î ˚

2 3

2

1 {( 2) ( 1)} {( 2) } {( 1) }

3!
m m

r r r r r r
y y

h
    

Determine the fi rst and second derivatives df /dx and d2f /dx2 of f = sin x (where x is in radians) 

REM NEWTON FORWARD/BACKWARD DIFFERENTIATION

  CLS : DIM X(20), F(20, 20), FXD(20), SXD(20)

  REM Give either of the following two statements

  REM depending upon the forward or backward differentiation

  READ N$, XX: DATA F,1.25

  'READ N$, XX: DATA B,2.1

  DEF FNA (X) = SIN(X): DEF FNB (X) = COS(X): DEF FNC (X) = -SIN(X)

  'DEF FNA (X) = EXP(X): DEF FNB (X) = EXP(X): DEF FNC (X) = EXP(X)

  READ N: DATA 6

  READ XI, H: DATA 1,.2

  FOR I = 0 TO N

  X(I) = XI + I * H: F(0, I) = FNA(X(I))
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  PRINT "I="; I; "   X("; I; ")="; X(I),

  PRINT "F(0,"; I; ")="; F(0, I)

  NEXT I: PRINT

  FOR I = 1 TO N: FOR J = 0 TO N - I

  F(I, J) = F(I - 1, J + 1) - F(I - 1, J)

  NEXT J: 'PRINT

  NEXT I: 'PRINT

  'FOR J = 0 TO N - 1: FOR I = 1 TO N - J

  'PRINT "F("; I; J; ")="; F(I, J),

  'NEXT I: PRINT : NEXT J

  'A$ = INPUT$(1)

  FOR M = 0 TO N

  IF H < 0 THEN 1

  IF XX <= X(M) THEN 3

  GOTO 2

  1 IF XX >= X(M) THEN 3

  2 NEXT M

  3 PRINT "No. of data point used ="; M

  U = (XX - X(M)) / H: J3 = M

  IF N$ = "F" THEN J1 = N: J2 = -1 ELSE J1 = M: J2 = 1

  FOR S = 0 TO J1

  FXD(S) = 0: FACT = 1: FD = 0: SD = 0

  SXD(S) = 0

  FOR I = 0 TO S

  FDN = 1: FD = 0: SD = 0

  FOR J = 0 TO S

  IF I = J THEN 6

  FDN = FDN * (U + J2 * J): SDN = 1

  FOR K = 0 TO S

  IF K = I OR K = J THEN 4

  SDN = SDN * (U + J2 * K)

  4 NEXT K

  SD = SD + SDN

  6 NEXT J

  FD = FD + FDN: SXD(S) = SXD(S) + SD

  FXD(S) = FXD(S) + FD

  NEXT I

  NEXT S

  FIRST = 0
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  'PRINT : PRINT "DETAILS OF FIRST DERIVATIVE": PRINT

  'PRINT "[";

  IF N$ = "F" THEN K3 = J1 ELSE K3 = J3 - 1

  FOR S = 0 TO K3

  IF N$ = "F" THEN J4 = 0 ELSE J4 = S + 1

  FACT = 1: FOR I = 1 TO S + 1: FACT = FACT * I: NEXT I

  'PRINT "+("; FXD(S); "/"; FACT; ")("; F(S + 1, J3 - J4); ")";

  'A$ = INPUT$(1)

  FIRST = FIRST + (FXD(S) / FACT) * F(S + 1, J3 - J4)

  NEXT S

  'PRINT "]/"; H; "="; FIRST / H

  PRINT "  First derivative at"; XX; "="; FIRST / H

  PRINT "  Correct value at"; XX; "="; FNB(XX): PRINT

  'PRINT "DETAILS OF SECOND DERIVATIVE": PRINT

  'PRINT "[";

  FOR S = 2 TO K3

  IF N$ = "F" THEN J4 = 0 ELSE J4 = S

  FACT = 1: FOR I = 1 TO S: FACT = FACT * I: NEXT I

  'PRINT "+("; SXD(S - 1); "/"; FACT; ")+("; F(S, J3 - J4); ") ";

  'A$ = INPUT$(1)

  SECOND = SECOND + (SXD(S - 1) / FACT) * F(S, J3 - J4)

  NEXT S

  'PRINT "]/"; H ^ 2; "="; SECOND / H ^ 2

  PRINT "  Second derivative at"; XX; "="; SECOND / H ^ 2

  PRINT "  Correct value at"; XX; "="; FNC(XX)

  END 

Output of Forward Differentiation
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Output of Backward Differentiation 

  

Using Lagrange’s Interpolation Formula

The Lagrange’s interpolation formula is

  Ln = 
==
π
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where Ln (xi) = y (xi). 

 The differentiation of Ln gives
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 The expression of second derivative is 
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Differentiation of ln (x) 

CLS

  REM Differentiation via Lagrange's interpolation formula

  DEF FNA (X) = LOG(X): DEF FNB (X) = 1 / X

  DEF FNC (X) = -1 / X ^ 2

  READ N: DATA 4
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  FOR I = 0 TO N

  READ X(I): Y(I) = FNA(X(I)): PRINT X(I), Y(I)

  NEXT I

  DATA 300,302,304,306,308

  READ XG: DATA 305

  REM Calculation of the fi rst derivative

  SUMI = 0

  FOR I = 0 TO N

  SUMJ = 0

  FOR J = 0 TO N

  IF J = I THEN 10

  TERM = 1 / (X(I) - X(J))

  FOR K = 0 TO N

  IF K = I OR K = J THEN 5

  TERM = TERM * (XG - X(K)) / (X(I) - X(K))

  5 NEXT K

  SUMJ = SUMJ + TERM

  10 NEXT J

  SUMI = SUMI + SUMJ * Y(I)

  NEXT I

  PRINT "Calculated fi rst derivative at"; XG; "="; SUMI

  PRINT "Actual value at"; XG; "="; FNB(XG)

  REM Calculation of the second derivative

  SUMI = 0

  FOR I = 0 TO N

  SUMJ = 0

  FOR J = 0 TO N

  IF J = I THEN 25

  TERM = 1 / (X(I) - X(J))

  SUMK = 0

  FOR K = 0 TO N

  IF K = I OR K = J THEN 20

  TERM1 = 1 / (X(I) - X(K))

  SUML = 1

  FOR L = 0 TO N

  IF L = I OR L = J OR L = K THEN 15

  SUML = SUML * (XG - X(L)) / (X(I) - X(L))

  15 NEXT L

  SUMK = SUMK + SUML * TERM1

  20 NEXT K
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  SUMJ = SUMJ + SUMK * TERM

  25 NEXT J

  SUMI = SUMI + SUMJ * Y(I)

  NEXT I

  A$ = INPUT$(1): PRINT

  PRINT "Calculated second derivative at "; XG; "="; SUMI

  PRINT "Actual value at "; XG; "="; FNC(XG)

  END

  

2.21 SINE AND COSINE OF AN ANGLE BY SERIES SUMMATION

To determine the values of sin x and cos x by carrying out the summations 

 sin x =

2 1

0

(–1)

(2 1)!

m m

m

x

m

+•

= +Â    

 cos x = 

2

0

(–1)

(2 )!

m m

m

x

m

•

=
Â   

where x is expressed in radians. Continue the summation until the term is less than 10 – 4. 

 Also display the graphical variations of (i) sin q versus q, (ii) cos q versus q, (iii) tan q versus q. 

 Since q and q + n(2p) have the same values of sin q and cos q, all angles greater than 2p may be 

reduced to the principal value lying between 0 and 2p. 

REM PROGRAM SINCOS;PLOTS OF SINE OR COSINE OF ANGLES

 REM OPT$=SINE IF SINE REQUIRED ELSE COSINE IF COSINE REQUIRED

 REM OPT=1 IF NUMERICAL VALUES REQUIRED ELSE 2 IF PLOTTING REQUIRED

 CLS : READ ANGMAX, OPT, ANGD, OPT$

 DATA 1080,2,2 ,SINE

 KK = 1

 ON OPT GOTO 5, 10

 5 PRINT STRING$(30, "-")

 PRINT "THETA    ";

 IF OPT$ = "SINE" THEN PRINT "SINE";  ELSE PRINT "COSINE";



List of Programs 111

 PRINT "       LIBRARY ": PRINT STRING$(30, "-")

 GOTO 15

 10 SCREEN 1: COLOR 15, 0

 VIEW (25, 20)-(310, 170)

 WINDOW (0, -1)-(ANGMAX, 1): LINE (0, -1)-(ANGMAX, 1), , B

 LOCATE 2, 7: PRINT "PLOT OF ";

 IF OPT$ = "SINE" THEN PRINT " SINE";  ELSE PRINT "COSINE";

 PRINT "(THETA) V. THETA"

 LOCATE 3, 2: PRINT "1": LOCATE 13, 2: PRINT "0"

 LOCATE 22, 2: PRINT "-1"

 15 FOR ANG = 0 TO ANGMAX STEP ANGD

 IF ANG > KK * 360 THEN KK = KK + 1

 IF KK = 1 THEN THETA = ANG ELSE THETA = ANG - (KK - 1) * 360

 SINE = 0: RAD = 3.14159 * THETA / 180

 FOR M = 0 TO 12

 IF OPT$ = "SINE" THEN K = 2 * M + 1 ELSE K = 2 * M

 GOSUB 100

 TERM = (-1) ^ M * RAD ^ K / FACT: SINE = SINE + TERM

 IF ABS(TERM) < .00001 THEN 50

 NEXT M

 50 ON OPT GOTO 60, 65

 60 IF OPT$ = "SINE" THEN CAL = SIN(RAD) ELSE CAL = COS(RAD)

 PRINT ANG; : PRINT USING "     ##.####"; SINE; CAL

 a$ = INPUT$(1)

 GOTO 70

 65 PSET (ANG, SINE), 2

 70 FOR LL = 1 TO 100 STEP .001: NEXT LL: NEXT ANG

 ON OPT GOTO 80, 90

 80 PRINT STRING$(30, "-")

 GOTO 200

 90 LOCATE 23, 2: PRINT "  0           ANG----->           ";

 PRINT USING "####"; ANGMAX

 FOR I = 1 TO 19

 XX = ANGMAX * I / 20: YY = -1 + 2 * I / 20

 LINE (XX, -1)-(XX, 1), 1: LINE (0, YY)-(ANGMAX, YY), 1

 NEXT I

 LINE (0, 0)-(ANGMAX, 0)

 GOTO 200

 100 FACT = 1

 FOR J = 1 TO K: FACT = FACT * J: NEXT J

 RETURN

 200 END
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Calculate the value of the following functions by carrying out the indicated summations.

 (i)  ex = 
0 !

m

m

x

m

•

=
Â    (ii) ln (1 – x) = 

0

–
!

m

m

x

m

•

=
Â ;    (|x| < 1) 

 (iii)  arctan x =

2 1

0

(–1)

(2 1)

m m

m

x

m

+•

= +Â ;    (|x| < 1) 

 Also display the graphical variations of these functions for increasing value of x.

2.22 HISTROGRAM OF THE RATIO nCm /(nCm)maximum

To draw histogram displaying the ratio 

maximum( )

n
m

n
m

C

C
 where m = 0, 1, 2, . . ., n 

 Maximum value of nCm is obtained when m = n/2 for even value of n and when m = Integer(n/2) + 1 

for odd value of n.

REM BINOMIAL;BINOMIAL FRACTIONS

   CLS : DIM NCM(25)

   READ N: DATA 10

   DEF FNA (J)

   FACT = 1

   IF J = 0 THEN 5

   FOR I = 1 TO J: FACT = FACT * I: NEXT I

   5 FNA = FACT
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   END DEF

   NCMMAX = 0

   PRINT STRING$(35, "_")

   PRINT "  N            M            NCM"

   PRINT STRING$(35, "_"): A$ = INPUT$(1)

   FOR M = 0 TO N

   NCM(M) = FNA(N) / (FNA(M) * FNA(N - M))

   IF NCMMAX < NCM(M) THEN NCMMAX = NCM(M)

   PRINT N, M, NCM(M)

   NEXT M

   PRINT STRING$(35, "_"): A$ = INPUT$(1)

   SCREEN 1: COLOR 15, 0

   VIEW (25, 20)-(310, 170)

   WINDOW (0, 0)-(N, 1): LINE (0, 0)-(N, 1), , B

   FOR I = 0 TO N

   LINE (I, 0)-(I, 1): LINE (0, I * .1)-(N, I * .1)

   NEXT I

   FOR M = 0 TO N

   ND = N / 100: MD = NCM(M) / NCMMAX

   LINE (M - ND, 0)-(M + ND, MD), 1, BF

   NEXT M

   LOCATE 2, 5: PRINT "BINOMIAL FRACTION OF THE MAXIMUM"

   LOCATE 3, 3: PRINT "1": LOCATE 12, 1: PRINT "NCM"

   LOCATE 22, 3: PRINT "0"

   LOCATE 23, 3: PRINT " 0          M---->         "; : PRINT N

   END
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2.23 EVALUATION OF THERMODYNAMIC QUANTITIES OF A MONATOMIC GASEOUS   

 SUBSTANCE

To determine the molar thermodynamic quantities (U°
m, CV,m, H°

m, S°
m, A°

m and G°
m) of a monatomic fl uorine 

gas at 1 bar and 1000 K. 

 For fl uorine (relative atomic mass: 19), the fi rst two electronic energy levels are as follows.

 (1s)2(2s)2(2p)5 2P3/2 0 

  2P1/2 404 cm–1 

 For translation contribution, the expressions to be used are 

 U°
m = (3/2)RT ; CV,m = (3/2) R 

 H°
m = (5/2)RT ; Cp,m = (5/2) R 

 S°
m =  

È ˘Ê ˆÊ ˆ+ +Í ˙Á ˜ Á ˜Ë ¯ ∞Ë ¯Î ˚
r

3 5
–1.1541 ln ln – ln

2 2 K

T p
R A

p
  

 A°
m = U °

m – T S°
m : G°

m = H°
m – T S°

m

 For electronic contribution, the expressions to be used are:

  qe = S i gi exp(–ei /kT ) qe¢ = S i gi (ei/kT) exp(–ei/kT )

  qe≤ = S igi (ei /kT)2 exp(–ei /kT ) – qe¢ (U
 
°
m)e = (H °m)e = RT ln (qe¢/qe)
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  (Cp, m)e = (CV, m)e = 

2

e e e

e e

–
q q q

R
q q

È ˘Ê ˆ+¢ ¢¢ ¢Í ˙Á ˜Ë ¯Í ˙Î ˚
  (S°

m)e = e
e

e

ln
q

R q
q

È ˘¢
+Í ˙

Î ˚
  

  (G°
m)e = (H°

m)e – T(S°
m)e (A°

m)e = (U °m)e – T(S
 
°
m)e 

REM

  REM PROGRAM STMONO;THERMODYNAMIC DATA OF MONOATOMIC GAS

  CLS : DIM J(5), WN(5), G(5), EBKT(5)

  READ T, Ar, P: DATA 1000,19,1,1.5,0,.5,40400       

  R = 8.314: H = 6.626E-34: C = 3E+08: KB = R / 6.022E+23

  UT = 1.5 * R * T: CVT = 1.5 * R

  HT = 2.5 * R * T: CPT = 2.5 * R

  ST = R * (-1.1541 + 1.5 * LOG(Ar) + 2.5 * LOG(T) - LOG(P))

  AT = UT - T * SM: GT = HT - T * ST

  QE = 0: QEP = 0: QEDP = 0

  FOR I = 1 TO 2

  READ J(I), WN(I): G(I) = 2 * J(I) + 1

  EBKT(I) = H * C * WN(I) / (KB * T)

  QE = QE + G(I) * EXP(-EBKT(I))

  QEP = QEP + G(I) * EBKT(I) * EXP(-EBKT(I))

  QEDP = QEDP + G(I) * EBKT(I) ^ 2 * EXP(-EBKT(I))

  NEXT I

  QEDP = QEDP - QEP

  UE = R * T * (QEP / QE)

  CVE = R * ((QEP + QEDP) / QE - (QEP / QE) ^ 2)

  HE = UE: CPE = CVE

  SE = R * (LOG(QE) + QEP / QE)

  AE = R * T * LOG(QE): GE = AE

  UM = UT + UE: CVM = CVT + CVE

  HM = HT + HE: CPM = CPT + CPE

  SM = ST + SE: AM = AT + AE: GM = GT + GE

  PRINT "FLUORINE ATOM AT 1000 K": PRINT

  PRINT "U in J/mol": PRINT "UT ="; UT,

  PRINT "UE ="; UE, "UM ="; UM: PRINT

  PRINT "Cv in J/(K mol)": PRINT "CVT ="; CVT, "CVE ="; CVE,

  PRINT "CVM ="; CVM: PRINT

  PRINT "H in J/mol": PRINT "HT ="; HT, "HE ="; HE,

  PRINT "HM ="; HM: PRINT

  PRINT "Cp in J/(K mol)": PRINT "CPT ="; CPT, "CPE ="; CPE,
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  PRINT "CPM ="; CPM: PRINT

  PRINT "S in J/(K mol)": PRINT "ST ="; ST, "SE ="; SE,

  PRINT "SM ="; SM: PRINT

  PRINT "A in J/mol": PRINT "AT ="; AT, "AE ="; AE,

  PRINT "AM ="; AM: PRINT

  PRINT "G in J/mol": PRINT "GT ="; GT, "GE ="; GE,

  PRINT "GM ="; GM

  END

2.24 EVALUATION OF THERMODYNAMIC QUANTITIES OF A DIATOMIC GASEOUS   

 SUBSTANCE

To determine the molar thermodynamic quantities (U°
m, CV,m,  H°

m, Cp,m, S°
m, A°

m and G°
m) for a diatomic gas 

at 1 bar and 298 K. 

 For translational contribution, the expressions to be used are 

 U°
m = (3/2) RT ; H °m = (5/2) RT

 CV,m = (3/2) R ; Cp, m = (5/2) R 

 S°
m = 

È ˘Ê ˆÊ ˆ+ +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
r

0

3 5
–1.1541 ln ( ) ln – ln

2 2 K

T p
R M

p
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 A°
m = U °

m – TS°
m ; G°

m = H°
m – TS°

m

 For rotational contribution, the expressions to be used are 

 m1 = [M1  M2 / (M1 + M2)] (1/NA) ; I = m r2 

 qr = h2/ (8p2 kB I) ; qr = T/s qr

 Ur = RT ; CV, m = R

 Hr = RT ; Cp,m = R 

 Sr = R(ln qr + 1) ; Ar = –RT ln qr

 Gr = Ar . 

 For vibrational contribution, the expressions to be used are 

 qv = hn/kB ; qv = 
v

1

1 – exp(– / )Tq
    

 Uv = 
v

vexp(– / ) – 1

R

T

q

q
   ; CV = 

2
v v

2
v

( / ) exp( / )

{exp( / ) – 1}

R T T

T

q q

q
  

 Hv = Uv ; Cp = CV 

 Sv = R
È ˘

+Í ˙
Î ˚

v
v

v

/
–ln{1 – exp(– / )}

exp( / ) – 1

T
T

T

q
q

q
 

 Av = RT ln [1 – exp (–qv/T)]

 Gv = Av 

 For electronic contribution, the expressions to be used are

 qe = 0 ; qe¢ = 0 ; qe≤ = 0 

 Ue = 0 ; (CV)e = 0 ; He = 0 ; (CP)e = (CV)e

 Se = R ln g0 ; Ae = –RT ln g0 ; Ge = Ae 

Data

 Molecule Internuclear s n /Hz g0 

  distance

 O2  121 pm 2 4.74 E + 13 3 

 H2 74.17 pm 2 1.32 E + 14 1 

 F2 140.9 pm 2 2.77 E + 13 1 

 Cl2 198.8 pm 2 1.68 E + 13 1 

 HCl 127.46 pm 1 8.97 E + 13 1 

 Thermodynamic quantities of HCl.
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REM

  REM PROGRAM STDI1;THERMODYNAMIC DATA FOR DIATOMIC GAS-TABULAR

  REM M1 & M2 ARE RELATIVE ATOMIC MASSES,DIS IN pm

  CLS : READ NAME$, T, M1, M2, P, DIS, SIGMA, NU, G0

  PRINT NAME$, "T="; T; "K": M1M2 = M1 + M2

  R = 8.314: H = 6.626E-34: C = 3E+08: NA = 6.022E+23: KB = R / NA

  UT = 1.5 * R * T: CVT = 1.5 * R: HT = 2.5 * R * T: CPT = 2.5 * R

  ST = R * (-1.1541 + 1.5 * LOG(M1M2) + 2.5 * LOG(T) - LOG(P))

  AT = UT - T * SM: GT = HT - T * ST

  RM = (M1 * M2) / (M1M2 * NA): MI = RM * (DIS * 1E-12) ^ 2

  THETR = H ^ 2 / (8 * 3.14159 ^ 2 * MI * .001 * KB)

  QR = T / (SIGMA * THETR): UR = R * T: CVR = R: HR = R * T

  CPR = R: SR = R * (LOG(QR) + 1): AR = -R * T * LOG(QR): GR = AR

  'THETV = H * C * WN0 * 100 / KB

  THETV = H * NU / KB: THETVT = THETV / T

  EXTHET = EXP(THETVT) - 1: QV = 1 / (1 - EXP(-THETVT))

  UV = R * THETV / EXTHET

  CVV = R * THETVT ^ 2 * EXP(THETVT) / EXTHET ^ 2: HV = UV

  CPV = CVV: SV = R * (-LOG(1 - EXP(-THETVT)) + THETVT / EXTHET)

  AV = R * T * LOG(1 - EXP(-THETVT)): GV = AV

  QE = 0: QEP = 0: QEDP = 0: UE = 0: CVE = 0

  HE = UE: CPE = CVE: SE = R * LOG(G0)

  AE = -R * T * LOG(G0): GE = AE

  UM = UT + UR + UV + UE: CVM = CVT + CVR + CVV + CVE

  HM = HT + HR + HV + HE: CPM = CPT + CPR + CPV + CPE

  SM = ST + SR + SV + SE: AM = AT + AR + AV + AE

  GM = GT + GR + GV + GE: PRINT

  PRINT STRING$(74, "-")

  PRINT TAB(14); "TRANSLATIONAL   ROTATIONAL   VIBRATIONAL   ELECTRONIC   TOTAL"

  PRINT STRING$(74, "-")

  PRINT "U/(J/mol)    "; : PRINT USING "  ######.###"; UT; UR; UV; UE; UM

  PRINT "Cv/(J/(K mol))"; : PRINT USING "  ######.###"; CVT; CVR; CVV; CVE; CVM

  PRINT "H/(J/mol)    "; : PRINT USING "  ######.###"; HT; HR; HV; HE; HM

  PRINT "Cp/(J/(K mol))"; : PRINT USING " ######.###"; CPT; CPR; CPV; CPE; CPM

  PRINT "S/(J/(K mol)) "; : PRINT USING "  ######.###"; ST; SR; SV; SE; SM

  PRINT "A/(J/mol)    "; : PRINT USING "  ######.###"; AT; AR; AV; AE; AM

  PRINT "G/(J/mol)    "; : PRINT USING "  ######.###"; GT; GR; GV; GE; GM

  PRINT STRING$(74, "-")

  'DATA O2,298,16,16,1,121,2,4.74E+13,3

  'DATA H2,298,1,1,1,74.17,2,1.32E+14,1
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  'DATA F2,298,19,19,1,140.9,2,2.77E+13,1

  'DATA Cl2,298,35,35,1,198.8,2,1.68E+13,1

  DATA HCl,298,1,35,1,127.46,1,8.97E+13,1

  END

Determine the thermodynamic properties of the following molecules

 (a) O2 at 298 K and 1 atm pressure (b) H2 at 298 K and 1 atm pressure 

  Internuclear distance 121 pm  Internuclear distance 74.17 pm

  g0 = 3; nvib = 4.74E + 13, s = 2  g0 = 1; nvib = 1.32E+14 ; s = 2

 (c) F2 at 298 K and 1 atm pressure (d) Cl2 at 298 K and 1 atm pressure

  Internuclear distance 140.9 pm  Internuclear distance 198.8 om

  g0 = 1; nvib = 2.77E+ 13, s = 2  g0 = 1, nvib = 1.68 E + 13, s = 2

2.25 EVALUATION OF THERMODYNAMIC QUANTITIES OF A TRIATOMIC GASEOUS   

 SUBSTANCE

To determine the molar thermodynamic quantities of a triatomic molecule at a given temperature and 

pressure. 

LINEAR MOLECULE 

For Translational Contribution

 U m = (3/2) RT ; H m = (5/2) RT 

 Sm = 
È ˘Ê ˆÊ ˆ+ +Í ˙Á ˜ Á ˜Ë ¯ ∞Ë ¯Î ˚

r–1.1541 1.5ln 2.5ln – ln
K

T p
R M

p
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 A m = U m – TS m ; G m = H m – TS m

For Rotational Contribution 

 I = 

–1

r 1 1

1
N N

i j ij

i i j

m m r
m = = +

Â Â  ; mr =  S 
i

   

 

    mi

 qr = h2/ 8p2Ik ; qr = T/s qr

 Ur = RT ; Hr = RT ; CV = R ; Cp = R 

 Sr = R ln qr + Ur / T ; Ar = – RT ln qr ; Gr = Ar  

For Vibrational Contributions 

 qv = hn/k ; qv = 1/[1 – exp (–qv/T) ] 

 Uv = Rqv / [exp (qv /T) – 1] ; Uv¢ = Uv +   
1
 __ 

2
   NAhn 

 CV = R(qv/T )2 exp(qv /T )/[exp (qv/T ) – 1] 

 Hv = Uv ; Cp = CV 

 Sv = R ln qv + Uv /T ; Av = RT ln [1 – exp (– qv/T)] 

 G v = Av. 

Moment of Inertia for Nonlinear Molecules

The moment of inertia (IxIy) for a nonlinear molecule may be computed as follow.  

 A = S S2 2

r

1
– ( )i i i i i im y m y
M

 ; B = S S2 2

r

1
– ( )i i i i i im x m x
M

 C = S + S S2 2 2 2

r r

1 1
( ) – ( ) – ( )i i i i i i i i i im x y m x m y

M M

 D = Si mi xi yi – 

r

1

M
 (Si mi xi) (Si mi yi) ; E = 0 and F = 0 

where mi' s are relative atomic masses.

 Ix Iy = 

– –

– –

– –

A D E

D B F

E F C

 

 qr = 8p2(Ix Iy)
1/2(2pkT)3/2/sh3 ; Ur = Hr = 1.5 RT ; Cp = CV = 1.5 R. 
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 Rest of the expressions are the same as those of linear molecules.

 Thermodynamic quantities of H2O

REM PROGRAM STTRI1;THERMODYNAMIC DATA FOR A TRIATOMIC GAS-TABULAR

  CLS

REM M1 & M2 IN GRAMS;WN0 IN cm-1:DIS IN pm; M$ IS LINEAR OR NONLINEAR

  REM OPTNU=0 FOR FREQUNCY,OTHERWISE 1 IF WAVENUMBER IN CM-1

  R = 8.314: H = 6.626E-34: C = 3E+08: NA = 6.022E+23: KB = R / NA

  READ M$, NAME$, OPTNU, T, P, SIGMA, G0, NC

  PRINT M$, NAME$, T; "K": RMM = 0

  IF M$ = "LINEAR" THEN NV = 4 ELSE NV = 3

  FOR I = 1 TO NC: READ X(I), Y(I), RM(I)

  RMM = RMM + RM(I)

  NEXT I

  RMMIN = 1 / RMM

  FOR I = 1 TO NV: READ NU(I): NEXT I

  IF OPTNU = 0 THEN 4

  FOR I = 1 TO NV: NU(I) = NU(I) * C * 100: NEXT I

  4 TERM1 = R * T / (P * 101325)

  TERM2 = 2 * 3.14159 * 1.66 * RMM * (KB / 1E-23) * T

  TERM2 = TERM2 / (H / 1E-34) ^ 2

  QT = TERM1 * (TERM2 * 1E+18) ^ 1.5

  UT = 1.5 * R * T: CVT = 1.5 * R

  HT = 2.5 * R * T: CPT = 2.5 * R

  ST = R * (-1.1541 + 1.5 * LOG(RMM) + 2.5 * LOG(T) - LOG(P))

  'ST = R * (LOG(QT / NA) + 2.5)

  AT = UT - T * ST: GT = HT - T * ST

  IF M$ = "NONLINEAR" THEN 10

  MI = 0

  FOR I = 1 TO NC

  FOR J = I + 1 TO NC

  DIS = ((X(J) - X(I)) ^ 2 + (Y(J) - Y(I)) ^ 2) ^ .5: DIS = DIS * 1E-12

  TERM = RM(I) * DIS ^ 2: MI = MI + TERM * RM(J)

  NEXT J: NEXT I

  MI = RMMIN * MI / NA

GOTO 20

10 SY = 0: SY2 = 0: SX = 0: SX2 = 0: SXY = 0: SX2Y2 = 0

FOR I = 1 TO NC

SY2 = SY2 + RM(I) * Y(I) ^ 2: SY = SY + RM(I) * Y(I)

SX2 = SX2 + RM(I) * X(I) ^ 2: SX = SX + RM(I) * X(I)

SX2Y2 = SX2Y2 + RM(I) * (X(I) ^ 2 + Y(I) ^ 2)

SXY = SXY + RM(I) * X(I) * Y(I)

NEXT I
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AA = SY2 - RMMIN * SY ^ 2: BB = SX2 - RMMIN * SX ^ 2

CC = SX2Y2 - RMMIN * (SX ^ 2 + SY ^ 2)

DD = SXY - RMMIN * SX * SY: EE = 0: FF = 0

MI = AA * (BB * CC - FF ^ 2) + DD * (-DD * CC - EE * FF)

MI = MI - EE * (DD * FF + BB * EE): MI = MI * 4.57E-12

GOTO 30

20 THETR = H ^ 2 / (8 * 3.14159 ^ 2 * MI * KB)

THETR = THETR / .001

IF M$ = "NONLINEAR" THEN 30

QR = T / (SIGMA * THETR)

UR = R * T: CVR = R: HR = R * T: CPR = R

GOTO 40

30 QR = 8 * 3.14159 ^ 2 * MI ^ .5

QR = QR * (2 * 3.14159 * (KB / 1E-23) * T) ^ 1.5

QR = QR / (SIGMA * (H / 1E-34) ^ 3)

QR = QR * .01 ^ 1.5: UR = 1.5 * R * T: CVR = 1.5 * R

HR = UR: CPR = CVR

40 SR = R * LOG(QR) + UR / T

AR = -R * T * LOG(QR): GR = AR

FOR I = 1 TO NV

THETV = H * NU(I) / KB: THETVT = THETV / T

EXTHET = EXP(THETVT) - 1: QV = 1 / (1 - EXP(-THETVT))

UV(I) = R * THETV / EXTHET: UVP(I) = UV(I) + .5 * NA * H * NU(I)

CVV(I) = R * THETVT ^ 2 * EXP(THETVT) / EXTHET ^ 2

HV(I) = UV(I): CPV(I) = CVV(I): SV(I) = R * LOG(QV) + UV(I) / T

AV(I) = R * T * LOG(1 - EXP(-THETVT)): GV(I) = AV(I)

NEXT I

UM = UT + UR: UMP = UT + UR: CVM = CVT + CVR

HM = HT + HR: CPM = CPT + CPR

SM = ST + SR: AM = AT + AR: GM = GT + GR

FOR I = 1 TO NV

UM = UM + UV(I): CVM = CVM + CVV(I): UMP = UMP + UVP(I)

HM = HM + HV(I): CPM = CPM + CPV(I)

SM = SM + SV(I): AM = AM + AV(I): GM = GM + GV(I)

NEXT I

PRINT STRING$(79, "-")

PRINT TAB(18); "TRANS    ROT           VIBRATIONS             ELEC   TOTAL"

  PRINT STRING$(79, "-")

  PRINT "U/(J/mol)     "; : PRINT USING "######.#"; UT; UR;

  FOR I = 1 TO NV: PRINT USING " ####.##"; UV(I); : NEXT I

  PRINT USING "###.##"; UE; : PRINT USING " #####.##"; UM

  'PRINT TAB(40); : FOR I = 1 TO NV

  'PRINT USING " #####.##"; UVP(I); : NEXT I
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  'PRINT USING "      #####.##"; UMP

  'PRINT : PRINT "U is in J/mol": PRINT

  'PRINT "UT="; UT, "UR="; UR

  'FOR I = 1 TO NV: PRINT "UV("; I; ")="; UV(I), : NEXT I

  'PRINT "UE="; UE, "U="; UM

  'FOR I = 1 TO NV: PRINT "UVP("; I; ")="; UVP(I), : NEXT I

  'PRINT "UP="; UMP: A$ = INPUT$(1)

  PRINT "Cv/(J/(K mol))"; : PRINT USING " ####.##"; CVT; CVR;

  FOR I = 1 TO NV: PRINT USING "  ###.##"; CVV(I); : NEXT I

  PRINT USING "###.##"; CVE; : PRINT USING " #####.##"; CVM

  'PRINT : PRINT "CV is in J/(K mol)": PRINT

  'PRINT "CVT="; CVT, "CVR="; CVR

  'FOR I = 1 TO NV: PRINT "CVV("; I; ")="; CVV(I), : NEXT I

  'PRINT "CVE="; CVE, "CV="; CVM: A$ = INPUT$(1)

  PRINT "H/(J/mol)     "; : PRINT USING "######.#"; HT; HR;

  FOR I = 1 TO NV: PRINT USING " ####.##"; HV(I); : NEXT I

  PRINT USING "###.##"; HE; : PRINT USING "######.##"; HM

  'PRINT : PRINT "H is in J/mol": PRINT

  'PRINT "HT="; HT, "HR="; HR

  'FOR I = 1 TO NV: PRINT "HV("; I; ")="; HV(I), : NEXT I

  'PRINT "HE="; HE, "H="; HM: A$ = INPUT$(1)

  'PRINT : PRINT "CP is in J/(K mol)": PRINT

  PRINT "Cp/(J/(K mol))"; : PRINT USING " ####.##"; CPT; CPR;

  FOR I = 1 TO NV: PRINT USING "  ###.##"; CPV(I); : NEXT I

  PRINT USING "###.##"; CPE; : PRINT USING " #####.##"; CPM

  'PRINT "CPT="; CPT, "CPR="; CPR

  'FOR I = 1 TO NV: PRINT "CPV("; I; ")="; CPV(I), : NEXT I

  'PRINT "CPE="; CPE, "CP="; CPM: A$ = INPUT$(1)

  PRINT "S/(J/(K mol)   "; : PRINT USING "#####.##"; ST; SR;

  FOR I = 1 TO NV: PRINT USING "  ###.##"; SV(I); : NEXT I

  PRINT USING "###.##"; SE; : PRINT USING "######.##"; SM

  'PRINT : PRINT "S is in J/(K mol)": PRINT

  'PRINT "ST="; ST, "SR="; SR

  'FOR I = 1 TO NV: PRINT "SV("; I; ")="; SV(I), : NEXT I

  'PRINT "SE="; SE, "S="; SM: A$ = INPUT$(1)

  PRINT "A/(J/mol)    "; : PRINT USING "#######.#"; AT; AR;

  FOR I = 1 TO NV: PRINT USING " #####.#"; AV(I); : NEXT I

  PRINT USING "##.##"; AE; : PRINT USING "#######.#"; AM

  'PRINT : PRINT "A is in J/mol": PRINT

  'PRINT "AT="; AT, "AR="; AR

  'FOR I = 1 TO NV: PRINT "AV("; I; ")="; AV(I), : NEXT I

  'PRINT "AE="; AE, "A="; AM: A$ = INPUT$(1)

  PRINT "G/(J/mol)    "; : PRINT USING "#######.#"; GT;
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  PRINT USING " ######.#"; GR;

  FOR I = 1 TO NV: PRINT USING " #####.#"; GV(I); : NEXT I

  PRINT USING "##.##"; GE; : PRINT USING "#######.#"; GM

  'PRINT : PRINT "G is in J/mol": PRINT

  'PRINT "GT="; GT, "GR="; GR

  'FOR I = 1 TO NV: PRINT "GV("; I; ")="; GV(I), : NEXT I

  'PRINT "GE="; GE, "G="; GM: A$ = INPUT$(1)

  PRINT STRING$(79, "-")

  DATA NONLINEAR,H2O,0

  DATA 298,1,2,1,3

  DATA 0,0,16,-75.75,58.65,1,75.75,58.65,1

  DATA 1.1E+14,4.78E+13,1.13E+14

  'DATA LINEAR,CO2,0

  'DATA 1200,1,2,1,3

  'DATA 0,0,16,116.2,0,12,232.4,0,16

  'DATA 4.03E+13,2E+13,2E+13,7.05E+13

  'DATA LINEAR,N2O,1

  'DATA 298,1,1,3,3

  'DATA 0,0,14,112.82,0,14,231.24,0,16

  'DATA 1276.5,589.2,589.2,2223.7

  END

Execute the program for CO2 and N2O for which data is provided in the program.

2.26 EVALUATION OF EQUILIBRIUM CONSTANT OF N2(g)  2N(g)

To determine the equilibrium constant of the reaction N2(g)  2N(g) at 5000 K. Given:

 req(N2) = 110 pm, n (N2) = 7.07 × 1013 s–1
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 D (N2) = 940.3 kJ mol–1. 

 Degeneracy of ground electronic level of N2 is 1 and that of N is 4. 

 The expression to be used is  
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REM PROG25

  REM PROGRAM STEQUIL;EQUILIBRIUM CONSTANT STATISTICALLY

  REM DIS IN UNIT OF pm

  CLS : R = 8.314: KB = 1.38: H = 6.626: C = 3: AU = 1.66

  READ NC, T, P

  FOR I = 1 TO NC

  READ M(I), AT(I), GE(I), NU(I)

  IF AT(I) = 1 THEN 5

  READ M1(I), M2(I), SIGMA(I), NU0(I), DIS(I), DISE(I)

  5 NEXT I

  KP = 1

  FOR I = 1 TO NC

  QT = ((2 * 3.14159 * M(I) * AU * KB * T / H ^ 2) * 1E+18) ^ 1.5

  ON AT(I) GOTO 10, 40

  10 QE = GE(I): Q(I) = QT * QE

  GOTO 80

  40 MU = AU * M1(I) * M2(I) / (M1(I) + M2(I))

  MI = MU * DIS(I) ^ 2

  QR = (8 * 3.14159 ^ 2 * MI * KB / H ^ 2) * T / SIGMA(I)

  QR = QR * .000001: THETAV = (H * NU0(I) / KB) * 1E-11

  QV = 1 / (1 - EXP(-THETAV / T)): QE = GE(I)

  Q(I) = QT * QR * QV * QE
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  80 KP = KP * (Q(I) * KB * T / 9.999999E+27) ^ NU(I)

  RE = RE + NU(I) * DISE(I)

  NEXT I

  KP = KP * EXP(RE / (R * T))

  PRINT "REACTION: N2=2N", : PRINT "  Kp="; KP

  DATA 2,5000,100000,28,2,1,-1,14,14,2,7.07E13,110,9.403E5,14,1,4,2

  END

2.27 EVALUATION OF RATE CONSTANT OF H + HBr Æ H2 + Br

To determine the rate constant of the reaction H + HBr Æ H2 + Br at 300 K. Given:

 Barrier height from zero-point level = 5.0 kJ mol–1; r (H – Br) = 141.4 pm ; n(H – Br) = 7.95 ¥ 103 Hz 

 Activated complex is linear  H 
  150 pm  

  H 
142 pm

 Br     

                                       

 Its n (symmetrical stretch) = 7.02 ¥ 1013 Hz 

  n (bending mode) = 1.38 ¥ 1013 Hz (doubly degenerate)

 Electronic contribution is negligible. 

 The expression to be used is 
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where  
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REM PROG26   H+HBr --> H2+Br

  REM PROGRAM STTST;RATE OF REACTION STATISTICALLY

  CLS

  REM M1 & M2 ARE RELATIVE MOLAR MASSES; DIS IN pm

  REM WN0 IN cm-1 OTHERWISE IT REPRESENTS FREQUENCY

  R = 8.314: H = 6.626: C = 3: NA = 6.022: KB = 1.38: AU = 1.67

  PI = 3.14159: READ NC, T, P, BH

  FOR I = 1 TO NC: READ NAME$(I), M(I), AT(I), NU(I)

  QT = ((2 * PI * M(I) * AU * KB * T / H ^ 2) * 1E+18) ^ 1.5

  ON AT(I) GOTO 5, 10, 15

  5 Q(I) = QT: GOTO 60

  10 READ M1(I), M2(I), SIGMA(I), NU0(I), DIS(I)

  MU = AU * M1(I) * M2(I) / (M1(I) + M2(I)): MI = MU * DIS(I) ^ 2

  QR = (8 * PI ^ 2 * MI * KB / H ^ 2) * T / SIGMA(I)

  QR = QR * .000001: THETAV = (H * NU0(I) / KB) * 1E-11

  QV = 1 / (1 - EXP(-THETAV / T)): Q(I) = QT * QR * QV

  GOTO 60

  15 READ M$(I), SIGMA(I)

  IF M$(I) = "LINEAR" THEN NV = 3 ELSE NV = 2

  FOR J = 1 TO NC: READ X(J), Y(J), RM(J)

  RMM = RMM + RM(J): NEXT J

  RMMIN = 1 / RMM

  FOR J = 1 TO NV: READ NU0(J): NEXT J

  'FOR J = 1 TO NV: READ NU(J): NU0(J) = NU(J) * C * 100: NEXT J

  IF M$ = "NONLINEAR" THEN 18

  MI = 0

  FOR J = 1 TO NC - 1: FOR K = J + 1 TO NC

  DIS = ((X(K) - X(J)) ^ 2 + (Y(K) - Y(J)) ^ 2) ^ .5
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  DIS = DIS * 1E-12: TERM = RM(K) * DIS ^ 2: MI = MI + TERM

  NEXT K

  MI = MI * RM(J)

  NEXT J

  MI = RMMIN * MI / NA

  GOTO 20

  18 SY = 0: SY2 = 0: SX = 0: SX2 = 0: SXY = 0: SX2Y2 = 0

  FOR J = 1 TO NC

  SY2 = SY2 + RM(J) * Y(J) ^ 2: SY = SY + RM(J) * Y(J)

  SX2 = SX2 + RM(J) * X(J) ^ 2: SX = SX + RM(J) * X(J)

  SX2Y2 = SX2Y2 + RM(J) * (X(J) ^ 2 + Y(J) ^ 2)

  SXY = SXY + RM(J) * X(J) * Y(J)

  NEXT J

  AA = SY2 - RMMIN * SY ^ 2: BB = SX2 - RMMIN * SX ^ 2

  CC = SX2Y2 - RMMIN * (SX ^ 2 + SY ^ 2)

  DD = SXY - RMMIN * SX * SY: EE = 0: FF = 0

  MI = AA * (BB * CC - FF ^ 2) + DD * (-DD * CC - EE * FF)

  MI = MI - EE * (DD * FF + BB * EE): MI = MI * 4.57E-12

  GOTO 30

  20 THETR = (H ^ 2 / (8 * PI ^ 2 * MI * KB)) * 1E-19

  IF M$ = "NONLINEAR" THEN 30

  QR = T / (SIGMA(I) * THETR): GOTO 40

  30 QR = 8 * PI ^ 2 * MI ^ .5 * (2 * PI * (KB / 1E-23) * T) ^ 1.5

  QR = QR / (SIGMA * (H / 1E-34) ^ 3): QR = QR * .01 ^ 1.5

  40 Q(I) = QT * QR

  FOR J = 1 TO NV

  THETV = H * 1E-34 * NU0(J) / (KB * 1E-23)

  THETVT = THETV / T: EXTHET = EXP(THETVT) - 1

  QV = 1 / (1 - EXP(-THETVT)): Q(I) = Q(I) * QV

  NEXT J

  60 PRINT NAME$(I), "Q("; I; ")="; Q(I)

  NEXT I

  RATE = (R * T / (H * 1E-34)) * EXP(-BH / (R * T))

  FOR I = 1 TO NC: RATE = RATE * Q(I) ^ NU(I): NEXT I

  PRINT "RATE OF REACTION="; : PRINT USING "##.####^^^^"; RATE;

  PRINT "  mol-1 m3 s-1"

  DATA 3,300,1,5000

  DATA H,1,1,-1

  DATA HBr,80.9,2,-1
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  DATA 1,79.9,1,7.95E13,141.4

  DATA HHBr,81.9,3,1

  DATA LINEAR,1

  DATA 0,0,1,150,0,1,292,0,79.9

  DATA 7.02E13,1.38E13,1.38E13

  END

2.28 LEAST SQUARE FITTING FOR y = a0 + a1x

To carry out the least square fi tting of the given data points (xi, yi) as per the equation y = a0 + a1x. 

 Calculate the standard deviation of computed yi¢s from the given yi¢s.

 Also display the regression line between computed y versus xi.

 The straight line y = a0 + a1x is fi tted through the given points (x1, y1), (x2, y2), . . . , (xn, yn) so that 

the sum of squares of ( ycomputed – ygiven ) is minimum. If the minimum is represented as 
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 The equation of the type y = a ebx can be converted into linear equation by taking its natural 

logartihm:

  ln y = ln a + bx

 Hence, the parameters a and b can be computed by carrying out the least square fi tting between

ln y and x. 

 In the following program, the values of x and y are suitably changed by defi ning the functions FNX and 

FNY. Suppose the regression line to be fi tted is 

  ln (p/kPa) = – vap m 1H
I

R T

D
+   

then defi ne FNX (X) = 1/X and FNY (Y) = LOG(Y)

Least square fi tting for the data of Exercise 18 given after the fi gure in the output. 

REM PROG27

  REM PROGRAM LSFLIN;LEAST SQUARE FITTING-LINEAR

  CLS : DIM XX(20), YY(20), X(20), Y(20), YCAL(20), YER(20)

  REM ------defi ne functions according to the requirement-------

  DEF FNX (X) = X: DEF FNY (Y) = (Y - 1) / (Y + 2) * V * 17

  READ N: SX = 0: SY = 0: SX2 = 0: SXY = 0: SD = 0

  FOR I = 1 TO N

  READ XX(I), YY(I), V

  X(I) = FNX(1 / XX(I)): Y(I) = FNY(YY(I))

  SX = SX + X(I): SX2 = SX2 + X(I) * X(I)

  SY = SY + Y(I): SXY = SXY + X(I) * Y(I)

  NEXT I

  DEN = SX * SX - N * SX2

  a0 = (SX * SXY - SX2 * SY) / DEN

  a1 = (SX * SY - N * SXY) / DEN

  FOR I = 1 TO N

  YCAL(I) = a0 + a1 * X(I): YER(I) = YCAL(I) - Y(I)

  SD = SD + YER(I) * YER(I)

  NEXT I

  SD = (SD / N) ^ .5

  PRINT "   Y="; : PRINT USING "##.##^^^^"; a0;

  PRINT "+("; : PRINT USING "##.##^^^^"; a1; : PRINT ")*X"

  PRINT STRING$(45, "-")

  PRINT "       X          Y        YCAL        YER"

  PRINT STRING$(45, "-")

  FOR I = 1 TO N

  PRINT USING "  ####.####"; X(I); Y(I); YCAL(I); YER(I)

  NEXT I

  PRINT STRING$(45, "-"): PRINT
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  PRINT "STANDARD DEVIATION="; SD

  a$ = INPUT$(1)

  XMIN = X(1): YMIN = Y(1): XMAX = X(N): YMAX = Y(N)

  FOR I = 1 TO N

  IF XMIN > X(I) THEN XMIN = X(I)

  IF XMAX < X(I) THEN XMAX = X(I)

  IF YMIN > Y(I) THEN YMIN = Y(I)

  IF YMAX < Y(I) THEN YMAX = Y(I)

  NEXT I

  XD = (XMAX - XMIN) / 10: YD = (YMAX - YMIN) / 10

  XI = XMIN - XD: XF = XMAX + XD: YI = YMIN - YD: YF = YMAX + YD

  SCREEN 1: COLOR 15, 0

  VIEW (40, 20)-(310, 170)

  WINDOW (XI, YI)-(XF, YF): LINE (XI, YI)-(XF, YF), , B

  FOR I = 1 TO N

  PSET (X(I), Y(I)), 2: CIRCLE (X(I), Y(I)), XMAX / 400, 2

  NEXT I

  FOR X1 = XMIN TO XMAX STEP XD / 20

  Y1 = a0 + a1 * X1

  PSET (X1, Y1), 2

  NEXT X1

  XD = (XF - XI) / 10: YD = (YF - YI) / 10

  FOR I = 1 TO 9

  LINE (XI + XD * I, YI)-(XI + XD * I, YI + YD / 4)

  LINE (XI, YI + YD * I)-(XI + XD / 8, YI + YD * I)

  NEXT I

  LOCATE 2, 13: PRINT "LINEAR REGRESSION"

  LOCATE 3, 1: PRINT USING "##.##"; YF

  LOCATE 5, 15: PRINT "A0="; : PRINT USING "##.##^^^^"; a0

  LOCATE 6, 15: PRINT "A1="; : PRINT USING "##.##^^^^"; a1

  LOCATE 10, 4: PRINT CHR$(94)

  FOR I = 1 TO 3: LOCATE 10 + I, 4: PRINT CHR$(124): NEXT I

  LOCATE 14, 4: PRINT "Y"

  LOCATE 22, 1: PRINT USING "##.##"; YI

  LOCATE 23, 3: PRINT USING ".####"; XI;

  PRINT "        X---->            "; : PRINT USING ".####"; XF

  REM KINETICS;PROBLEM 11;FNX(X)=X and FNY(Y)=Y

  'DATA 7,0,-.602,200,-.652,400,-.703,600,-.759,800,-.818

  'DATA 1000,-.873,1200,-.921

  REM KINETICS;PROBLEM 13;FNX(X)=X and FNY(Y)=Y

  'DATA 8,0,2.23,3,2.20,6,2.18,9,2.15,12,2.13

  'DATA 15,2.1,18,2.08,21,2.05

  REM CONDUCTANCE;PROBLEM 3
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  'DATA  6,16,53.1,32,72.4,64,96.8

  'DATA 128,127.7,256,164,512,205.8

  DATA 4,250,1.0085,1180,275,1.0071,1305,300,1.0061,1420

  DATA 350,1.0045,1670: REM dipole moment;problem 18

  END

Exercises for Least Square Fitting 

 1. The vapour pressure of n-propyl alcohol varies with temperature as follows. 

  t/°C 50 60 70 80 

  p/kPa 11.626 19.600 31.864 50.129 

  Carry on the least-square fi tting for a straight line 

  ln (p/kPa) = – vap m 1H
I

R T

D
+
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  to determine the value of DvapHm, where T/K = t /°C + 273. 

  Here y = ln ( p/kPa). Thus  FNY (Y) = LOG (Y)

   X = 1/T. Thus FNX (X) = 1/ (X + 273)

  From a1 = – Dvap Hm/R, calculate DvapHm. (Ans. 46.16 kJ mol–1) 

 2. The viscosity of diethyl ether varies with temperature as follows.

  t /°C 0 20 40

  h /millipoise 2.84 2.33 1.97 

  Determine the value of activation energy of viscous fl ow through a least square fi tting for the 

equation 

  ln (h/h°) = ln (A/h°) +  
E

RT
  

  Here y = ln (h/h°). Thus FNY (Y) = LOG (Y) 

   x = 1/T. Thus FNX (x) = 1/ (x + 273) (Ans. 6.5 kJ mol1) 

 3. The following are the conductivities of chloroacetic acid in aqueous solution at 25 °C. 

  mol dm–3/c 16 32 64 128 256 512 

  Lm / S cm2 mol–1 53.1 72.4 96.8 127.7 164 205.8 

  Also given, L• = 362 S cm2 mol–1. Determine the value of Ka of the acid through the least square 

fi tting for the equation 

  

2
a

( – )

c

c

K

c• • =
L

L L L  

  Here X = 1/c. Thus FNX (X) = X

    Y = 

2

.
( – )

c

c
• •

L

L L L
 Thus FNY (Y) = Y ^ 2/ (362 * (362 – Y)) (Ans: 1.46 ¥ 10–3 M)

 4. The following emfs refer to the cell at 298 K.

    Pt | H2(1 bar) | LiOH(0.01 M), LiCl(m) | AgCl(s) | Ag 

   m/mol dm–3 0.01 0.02 0.05 0.10 0.20 

   E/V 1.049 5 1.031 5 1.007 3 0.988 5 0.969 4

   m /mol dm–3 0.02 0.03 0.06 0.11 0.21 

  Let y = 
Ê ˆ

+ Á ˜Ë ¯
cell

–3

– 0.225V
log

0.05913V 0.01mol dm

E m
  

  and x = m

  Carry out the least square fi tting of the given data points for the equation y = a0 + a1x.

  If a0 = –log Kw, what is the value of pKw? 

 5. Given are the following data for the cell Pt | H2(g, 1 bar) | HCl (m) | AgCl(s) |Ag

  m/mol kg–1 0.009 0.014 0.025 0.055

  E/V 0.469 5 0.447 8 0.419 6 0.381 2
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  Let y = E + (0.011 83 V) log(m /mol kg–1) – (0.06V) –1/mol kgm

  and x = m/mol kg–1

  Carry out the least square fi tting of the given data for the equation y = a0 + a1x.

  If a0 = E°
Cl– |AgCl|Ag, what is its value? (Ans. 0.225 V)

 6. For the cell Pt | H2(g, 1 bar) | NaOH(1 M), NaCl(1 mol dm–3) |AgCl(s) | Ag, the potential at different 

temperatures are 

  t/°C 20 25 30 

  E°/V 1.047 68 1.051 88 1.056 08 

  Carry out the least square fitting of E° versus T for the equation E° = a0 + a1T. Obviously,

a1 = (∂E°/∂T)p. Using this value, calculate 

   DH° (= –nF [E° – T(∂E°/∂T)p] ), DS° (= nF(∂E°/∂T)p), and DG° (= DH° – TDS°). 

  Also determine K°eq by using the expression DG° = –RT ln K°eq.

 7. The data below are for the adsorption of CO on charcoal at 273 K. 

  p / mmHg 100 200 300 400 500 600 700 

  u / cm3 10.2 18.6 25.5 31.4 36.9 41.6 46.1 

  Carry out the least square fi lting of p/u  with p as per the equation y = a0 + a1x, where

  y = p/u and x = p. If a1 = 1/umono and a0 = 1/Ku mono, calculate the value of umono and K.

    (Ans. u mono = 111 cm3, K = 0.76 atm–1)

 8. The data below are for the adsorption of N2.  

   p/p0 0.05 0.10 0.15 0.20 0.25

   u/cm3 51.3 58.8 64.0 68.9 74.2

  Carry out the least square fi tting for the equation y = a0 + a1x 

  where y = 
0

1

{( / ) – 1}p pu
   and x = 

0

p

p
 

  If a0 = 1/umonoC and a1 = (C – 1)/C umono, calculate the values of C and umono. 

    (Ans. C = 116.3, umono = 57.32 cm3)

 9. The data below are for the adsorption of N2.  

   p/p0 0.05 0.10 0.15 0.20 0.25 

   u /cm3 51.3 58.8 640 68.9 74.2 

  Carry out the least square fi tting for the equation y = a0 + a1 x where y = log (p/p0) and x = 1/u2. 

If s (area per gram of adsorbent) is related to the constant a1 by the expression

  s = (4.06 ¥ 106 m–1) (– a1)
1/2, calculate the value of s . (Ans. s = 241.8 m2 / g)

 10. The data below show the pressure of CO required for the volume of adsorption to be 10.0 cm3 at each 

temperature.
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   T/K 200 210 220 230 240 250 

   p/p° 30.0 37.1 45.2 54.0 63.5 73.9

  Carry out the least square fi tting as per the equation y = a0 + a1x where y = log (p/p°) and

  x = 1/T. If a1 = Dads H/2303 R, determine the value of DadsH. (Ans. –7 563 J mol–1)

 11. The following data were obtained for the decomposition of N2O5(g).

   t/s 0 200 400 600 800 1000 1200 

   
2 5

–3

[N O ]

mol dm
 0.250 0.223 0.198 0.174 0.152 0.134 0.120 

  Carry out the least square fi tting for the equation y = a0 + a1x, where y = log {[N2O5] /mol dm–3} 

and x = t/s.

  If a1 = –k/2.303, determine the value of rate constant k. (Ans. 6.51 ¥ 104 s–1)

 12. The following data were obtained on the optical activity of a solution.

   t /min 0.0 7.2 36.8 46.8 68.0 • 

   q /degree 24.1 21.4 12.4 10.0 5.5 – 10.7

  Carry out the least square fi tting for the equation y = a0 + a1 x, 

  where y = log {(q • – qt)/ (q• – q0)} and x = t/min.

  If a1 = – k/2.303, determine the value of rate constant. (Ans. 0.012 min–1)

 13. The following data were obtained for the decomposition of di-tertiarybutyl peroxide in the gas phase 

at constant volume.

   t/min 0 3 6 9 12 15 18 21 

   p/ Torr 169.3 189.2 207.1 224.4 240.2 256.0 265.7 282.6 

  Carry out the least square fi tting as per the equation y = a0 + a1x. 

  where y = log (pt /Torr) with pt = 03 –

2

p p
 and x = t/min 

  If a1 = –k/2.303, determine the value of rate constant. (Ans. 0.019 3 min–1)

 14. The following data were obtained for the dimerization of butadiene. 

  t/min 0 6.12 12.18 17.30 29.18 

  pt /Torr 632 606.6 584.2 567.3 535.4 

   42.5 60.87 90.05 119.0 176.67

   509.3 482.8 453.3 432.8 405.3

  Carry out the least square fi tting for the equation y = a0 + a1 x,

  where y = 1/(2 pt – p0) and x = t /min.

  If a1 = k, fi nd the value of rate constant k. (Ans. 1.78 ¥ 10–5 Torr–1 min–1)

 15. The following data were obtained in an enzyme catalysed reaction. 

  [S] × 104/mol dm–3 2.5 5.0 10.0 15.0 

  r0 × 106/mol dm–3 min–1 2.2 3.8 5.9 7.1 
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  Carry out the least square fi tting for the equation y = a0 + a1x,

  where y = (1/r0) × 10–6/mol–1 dm3 min and x = (1/ [S]0) × 10–4/mol–1 dm3 

  If a0 = KM/rmax and a1 = 1/rmax. Determine the value of KM and rmax.

    (Ans. 1.19 × 10–3 mol dm–3, 1.25 × 10–5 mol dm–3 min–1)

 16. The following data were obtained in an enzyme catalysed reaction.

  [S] × 104 / mol dm–3 2.5 5.0 10.0 15.0 

  r0 × 106 / mol dm–3
 min–1

 2.2 3.8 5.9 7.1 

  Carry out the least square fi tting for the equation y = a0 + a1 x,

  where y = (r0 / [S]0) × 102/min–1 and x = r0 × 106/mol dm–3 min–1 

  Find x when y = 0 and y when x = 0.

 17. For the decomposition of N2O5

  T/K 298 308 318 328 338 

  105 k1/s
–1 1.72 6.65 24.95 75 240 

  Carry out the least square fi tting for the equation y = a0 + a1x,

  where y = ln k1 and x = 1/T. If k1 = A exp(–E/RT), fi nd the value of A and E.

  Hint The equation k1 = A exp(– E/RT) is equivalent to ln k1 = ln A – E/RT. Hence

    a0 = ln A and a1 = – E/R.

 18. The following data have been reported for NH3(g). 

   T/K 250 275 300 350

   Relative Permittivity, er 1.008 5 1.007 1 1.006 1 1.004 5 

   Specifi c volume/cm3 g–1 1 180 1 305 1 420 1 670 

  Calculate the dipole moment of the NH3 molecule. Carry out the least square fi tting for the equation 

   y = a0 + a1x

  where y = 
r

r

– 1

2+
e

e
  Vm

 ;
 with Vm = Vspecifi c × MNH3

 and x = 1/T

  From the slope, calculate dipole moment by using the expression 

   p = 

1/2

0

A

9 (slope)k

N

È ˘
Í ˙
Î ˚

e
 

  where e0 = 8.854 ¥ 10–12 C2 N–1 m2 ; k = 1.38 ¥ 10–23 J K–1 and NA = 6.022 ¥ 1023 mol–1

 19. The following data were obtained for the osmotic pressure of nitrocellulose in acetone at 20 °C. 

  103 c/g L–1 1.16 3.60 8.38 19.0

  P / (cmH2O) 0.69 2.56 7.52 25.4 

  Carry out the least square fi tting for the equation y = a0 + a1 x,
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  where y = (10–3) (P ¢/c)/ erg g–1 with P ¢ = P rH2O g and x = 103 c/g cm–3 

  Given: rH2O  = 1 g /cm3 ; g = 980 cm s–2.

  If a0 = RT/Mn, calculate the value of Mn. Given: R = 8.314 ¥ 107 erg K –1 mol–1.

    (Ans. 47 000 g mol–1)

 20. The relative viscosities of solutions of a sample of polystyrene in toluene were as follows. 

  c/10–2 g cm–3 0.249 0.499 0.999 1.998 

  h /h0 1.355 1.782 2.879 6.090 

  Carry out the least square fi tting for the equation y = a0 + a1x,

  where y = 10–2 h sp/ (c/g cm–3 ) with hsp = (h/h 0) –1 and  x = c

  If  
__

 M v = (a0 /k)1/n, calculate  
__

 M v if k = 3.7 ¥ 10–2 and n = 0.62. (Ans. 4.8 ¥ 105 g mol–1)

 21. The following data were obtained for bovine serum albumin in 0.1 M KI solution in a light scattering 

experiment using a wavelength of 546 nm (= 546 × 10– 7 cm = l0).  

  103 c2/g cm–3 0.936 1.902 2.801 3.701 5.590 

  104 t /cm–1 2.88 5.75 8.18 10.59 15.37

  Carry out the least square fi tting for the equation y = a0 + a1x.

  where y = (105 H c2/t) /g–1 mol and x = 103 c2/g cm–3 

  Given H = 32 p3(n dn/dc2)
2 /3 l4

0 NA where n = 1.3342 and dn/dc2 = 0.168 g–1 cm3 

  If a0 = 1/ (M ¥ 10–5), calculate the value of M. (Ans. 1.02 ¥ 105 g mol–1)

2.29 POLYNOMIAL FITTING 

In a polynomial y = a0 + a1x + a2x
2 + . . . fi tting, the sum of squares of errors is

  q = Si ( yi – a0 – a1x – a2x2 – . . .)2 

 On minimizing through the expressions 

  
0

q

a

∂
∂

 = 0, 
1

q

a

∂
∂

 = 0,  
2

q

a

∂
∂

 = 0, . . . 

we get

  a0 N + a1 Si  xi + a2 Si  x
2
i + . . . = Si  yi 

  a0 Si xi + a1 Si  xi
2 + a2Si x

3
i + . . . = Si xi yi 

  a0  Si  xi
2 + a1 Si  xi

3 + a2  Si  xi
4 + . . . = Si  xi

2 yi 

 In the matrix form, we have
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2

0

2 3
1

22 3 4
2

. . .

. . .

. . .

i i i i i i

i i ii i i i i i

i i ii i i i i i

N x x ya

x yax x x

a x yx x x

È ˘S S SÈ ˘È ˘
Í ˙ Í ˙Í ˙ SS S SÍ ˙ Í ˙Í ˙ =Í ˙ Í ˙Í ˙ SS S SÍ ˙ Í ˙Í ˙
Í ˙ Í ˙Î ˚ Î ˚Î ˚

 Hence, we have

  

–1
2

0

2 3
1

22 3 4
2

. . .

. . .

. . .

i i i i i i

i i ii i i i i i

i i ii i i i i i

N x x ya

x ya x x x

a x yx x x

È ˘S S SÈ ˘È ˘
Í ˙ Í ˙Í ˙ SS S SÍ ˙ Í ˙Í ˙ = Í ˙ Í ˙Í ˙ SS S SÍ ˙ Í ˙Í ˙
Í ˙ Í ˙Î ˚ Î ˚Î ˚

  

 Thus, fi nding X–1 and then left multiplying it to the XY column vector gives the required vector of the 

coeffi cients.

Illustration Least square fi tting for the equation y = a0 + a1 x + a2 x
2 by the data of Exercise 1 given 

after the fi gure in the output.

 REM PROG28

  5 REM LEAST SQUARE FITTING VIA INVERSE MATRIX

  REM N IS ORDER OF EQUATION:ND IS NUMBER OF DATA POINTS

  CLS : DEF FNX (X) = X: DEF FNY (Y, Z) = Y / Z

  10 DIM A(6, 6), B(6), XX(10), A$(6), X(10), Y(10), YCAL(10), YER(10)

  DIM X1(10), Y1(10)

  15 A$(1) = "X1": A$(2) = "X2": A$(3) = "X3": A$(4) = "X4": A$(5) = "X5"

  20 READ N, ND

  25 FOR I = 1 TO ND: READ X1(I), Y1(I)

  30 X(I) = FNX(X1(I)): Y(I) = FNY(Y1(I), X(I))

  35 NEXT I

  38 FOR I = 1 TO N: FOR J = I TO N: FOR K = 1 TO ND

  42 A(I, J) = A(I, J) + X(K) ^ (I + J - 2)

  46 NEXT K: A(J, I) = A(I, J): NEXT J

  50 FOR K = 1 TO ND: B(I) = B(I) + X(K) ^ (I - 1) * Y(K): NEXT K

  52 NEXT I

  55 CLS : PRINT "PRINTING OF EQUATION PARAMETERS": PRINT

  65 FOR I = 1 TO N: FOR J = 1 TO N

  70 PRINT USING "  ##.####^^^^"; A(I, J);

  85 NEXT J: PRINT USING "        ##.####^^^^"; B(I)': PRINT

  95 NEXT I

  100 REM TO MAKE THE LOWER HALF MATRIX EQUAL TO ZERO

  105 FOR I = 1 TO N - 1

  110 REM CHECK IF A(I,I)=0 IF SO INTERCHANGE WITH THE ROW HAVING A(K,I)

  REM NOT EQUAL TO ZERO
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  120 K = I

  125 IF A(K, K) <> 0 THEN 140

  128 K = K + 1

  130 GOTO 125

  140 IF K = I THEN 185

  145 FOR J = 1 TO N

  150 TEMP = A(K, J): A(K, J) = A(I, J): A(I, J) = TEMP

  165 NEXT J

  168 TEMP = B(I): B(I) = B(K): B(K) = TEMP

  185 FOR J = I + 1 TO N

  190 DUM = A(J, I) / A(I, I)

  195 FOR K = 1 TO N: A(J, K) = A(J, K) - A(I, K) * DUM: NEXT K

  210 B(J) = B(J) - B(I) * DUM

  212 NEXT J

  214 PRINT "step number "; I

  215 FOR J = 1 TO N: FOR K = 1 TO N

  216 PRINT USING "  ##.####^^^^"; A(J, K);

  217 NEXT K: PRINT USING "      ##.####^^^^"; B(J)': PRINT

  218 A$ = INPUT$(1): NEXT J: NEXT I

  225 REM CALCULATION OF UNKNOWN VARIABLES

  232 IF A(N, N) = 0 THEN 290

  235 XX(N) = B(N) / A(N, N)

  240 FOR I = N - 1 TO 1 STEP -1: XX(I) = B(I)

  246 FOR J = I + 1 TO N: XX(I) = XX(I) - A(I, J) * XX(J)

  250 NEXT J: XX(I) = XX(I) / A(I, I): NEXT I

  265 REM PRINTING OF THE VARIABLES

  266 PRINT : PRINT "SOLUTION VARIABLES": PRINT

  270 FOR I = 1 TO N

  275 PRINT "XX("; I; ")="; : PRINT USING "##.##^^^^"; XX(I)

  280 NEXT I

  281 A0 = XX(1): A1 = XX(2): A$ = INPUT$(1): CLS

  285 GOTO 320

  290 FOR I = N - 1 TO 1 STEP -1

  295 FOR J = I TO N

  300 PRINT "+("; A(I, J); ")*"; A$(J);

  305 NEXT J: PRINT "="; B(I): NEXT I

  320 PRINT SPC(3); STRING$(50, "-")

  322 PRINT "         X           Y          YCAL         YER"

  324 PRINT SPC(3); STRING$(50, "-")

  326 FOR I = 1 TO ND: YCAL(I) = 0

  330 FOR J = 1 TO N: YCAL(I) = YCAL(I) + XX(J) * X(I) ^ (J - 1)

  332 NEXT J: YER(I) = YCAL(I) - Y(I): SD = SD + YER(I) ^ 2

  336 PRINT USING "   ###.##^^^^"; X(I); Y(I); YCAL(I); YER(I)

  338 A$ = INPUT$(1): NEXT I

  342 PRINT SPC(3); STRING$(50, "-")
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  344 SD = (SD / N) ^ .5: PRINT "STANDARD DEVIATION="; SD

  346 A$ = INPUT$(1)

  348 XMIN = X(1): XMAX = X(ND): YMIN = Y(1): YMAX = Y(ND)

  350 FOR I = 1 TO ND

  352 IF XMIN > X(I) THEN XMIN = X(I)

  354 IF YMIN > Y(I) THEN YMIN = Y(I)

  356 IF XMAX < X(I) THEN XMAX = X(I)

  358 IF YMAX < Y(I) THEN YMAX = Y(I)

  360 NEXT I

  362 XD = (XMAX - XMIN) / 10: YD = (YMAX - YMIN) / 10

  364 XI = XMIN - XD: XF = XMAX + XD: YI = YMIN - YD: YF = YMAX + YD

  366 SCREEN 1: COLOR 15, 0

  368 VIEW (50, 20)-(310, 170)

  370 WINDOW (XI, YI)-(XF, YF): LINE (XI, YI)-(XF, YF), , B

  372 FOR I = 1 TO ND

  374 PSET (X(I), Y(I)), 2: CIRCLE (X(I), Y(I)), XMAX / 100, 2

  376 NEXT I

  378 FOR XP = XMIN TO XMAX STEP XD / 20

  380 YP = 0

  382 FOR J = 1 TO N: YP = YP + XX(J) * XP ^ (J - 1): NEXT J

  384 PSET (XP, YP), 2

  386 NEXT XP

  388 XD = (XF - XI) / 10: YD = (YF - YI) / 10

  390 FOR I = 1 TO 9

  392 LINE (XI + XD * I, YI)-(XI + XD * I, YI + YD / 4)

  394 LINE (XI, YI + YD * I)-(XI + XD / 8, YI + YD * I)

  396 NEXT I

  398 LOCATE 2, 13: PRINT "LEAST SQUARE FITTING"

  400 LOCATE 3, 1: PRINT USING "####.#"; YF

  401 FOR I = 1 TO N: LOCATE 12 + I, 26

  403 PRINT "A"; : PRINT USING "#"; I - 1;

       PRINT "="; : PRINT USING "##.##^^^^"; XX(I)

  404 NEXT I

  405 LOCATE 8, 4: PRINT CHR$(94)

  406 FOR I = 1 TO 3: LOCATE 8 + I, 4: PRINT CHR$(124): NEXT I

  407 LOCATE 12, 4: PRINT "Y"

  408 LOCATE 22, 1: PRINT USING "###.#"; YI

  410 LOCATE 23, 4: PRINT USING ".#####"; XI;

  411 PRINT "         X---->          ";

  412 PRINT USING ".#####"; XF

  'DATA 4,5,1.4,740,1.8,750,2.3,760,3,750,4,720

  DATA 3,6,.02,.0117,.015,.0066,.01,.003,.0075,.00173,.005,.0009,.0025,.00035

  'DATA 3,5,298,37.13,398,41.1,498,44.56,598,47.52,698,49.97

  414 END
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Exercises 
 1. The osmotic pressure values of various concentrations of polyisobutylene in cyclohexane at 298 K are 

as follows. 

 r/g cm–3 0.0200 0.0150 0.0100 0.0075 0.0050 0.0025

 P/atm 0.0117 0.0066 0.0030 0.00173 0.0009 0.00035 

  Carry out the least square fi tting as per equation y = a0 + a1x + a2x2, where y = P /r and x = r.

  If a0 = RT/M, Calculate the value of M.

  Given: FNX (X) = X and FNY (Y) = Y/X(I)

   (Ans. a0 = 9.06 ¥ 10–2 ; a1 = 1.66 ¥ 10; a2 = 4.17 ¥ 102)

 2. Carry out the least square fi tting of the following data on molar heat capacity as per the equation

  y = a + b(T /K) + c(T / K)2. 

 T/K 298 398 498 598 698

 Cp / (J K–1 mol–1)

 Oxygen 29.38 30.24 31.07 31.88 32.67

 Carbon dioxide 37.13 41.10 44.56 47.52 49.97 

2.30 DISPLAY OF VAN DER WAALS ISOTHERMS OF A GAS

To draw the variation of pressure with volume of a real gas at temperatures lower than its critical temperature.

 The van der waals equation for one mole of gas is  
2

a
p

V

Ê ˆ+Á ˜Ë ¯
  (V – b)  = RT

 This gives p =  
2

–
–

RT a

V b V
 

 For the given temperature, V is varied from a value lesser than Vc to a value larger than Vc and the 

corresponding pressure is determined by using the above expression.

Illustration Display van der Waals isotherm of O2.

REM PROGRAM VANDER;VAN DER WAALS ISOTHERMS

  REM PLOT FOR H2O:A in kPA dm3: B in dm3

  REM TI ABOUT 10 DEGREE < TC;  BOTH PI,PF < PC:  VI a little < VC

  CLS : READ N$, A, B, TI, TF, TS, VI, VF, VS, PI, PF

  'DATA H2O,553.639,.03049,560,590,30,.039,.25,.001,2600,20000

  'DATA CO2,363.96,.04267,290,292,2,.075,.25,.001,5600,6500

  DATA O2,137.802,.03183,145,148,1,.05,.2,.001,3300,4500

  'DATA C2H6,556.173,.0638,292,296,4,.11,.50,.001,3400,4500

  R = 8.314

  SCREEN 1: COLOR 15, 0

  VIEW (50, 20)-(310, 170)
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  WINDOW (VI, PI)-(VF, PF): LINE (VI, PI)-(VF, PF), 1, B

  FOR T = TI TO TF STEP TS: FOR V = VI TO VF STEP VS

  P = R * T / (V - B) - A / V ^ 2

  PSET (V, P), 2

  'PRINT V, P: A$ = INPUT$(1)

  FOR KK = 1 TO 100 STEP .001: NEXT KK: NEXT V: NEXT T

  VD = (VF - VI) / 10: PD = (PF - PI) / 10

  FOR I = 1 TO 9

  LINE (VI + VD * I, PI)-(VI + VD * I, PI + PD / 3.5)

  LINE (VI, PI + PD * I)-(VI + VD / 10, PI + PD * I)

  NEXT I

  LOCATE 1, 6: PRINT " PLOT OF P v. V FOR A VAN DER WAALS GAS"

  LOCATE 3, 1: PRINT USING "######"; PF

  LOCATE 5, 30: PRINT N$

  A$ = "PRESSURE IN kPa"

  FOR I = 1 TO 15

  B$ = MID$(A$, I, 1): LOCATE 4 + I, 3: PRINT B$

  NEXT I

  LOCATE 8, 33: PRINT USING "###"; TF; : PRINT "K"

  LOCATE 15, 34: PRINT USING "###"; TI; : PRINT "K"

  LOCATE 22, 1: PRINT USING "#####"; PI

  LOCATE 23, 3: PRINT USING "##.###"; VI;

  LOCATE 23, 15: PRINT "  V in dm3---->   "; : PRINT USING "##.###"; VF

  END

Output
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 Run the program to display the isotherms for H2O, CO2 and C2H6. The data for these gases are 

included within the program.

2.31 DISPLAY OF DISTRIBUTION OF MOLECULAR SPEEDS

To draw distribution of molecular speeds amongst gaseous molecules (say, oxygen) at different temperatures 

by using the Maxwell distribution of molecular speeds. Also fi nd out the speed corresponding to the 

maximum fraction of molecules and the area under each distribution curve. 

 The expression to be used is 

 
3/2

d 1
4

d 2

N M

N u RT

Ê ˆ Ê ˆ= pÁ ˜ Á ˜Ë ¯ Ë ¯p
 exp (–Mu2/2RT ) 

 Recommended speeds are from 0 to 1000 m s–1. Recommended temperatures are 200 K, 300 K and

400 K. 

REM PROGRAM MAXWELL;FRACTION v. SPEED

  CLS : DIM T(5), FRMAX(5), UMAX(5), AREA(5)

  READ M, TI, TF, TS: DATA .032, 200, 300, 50

  I = 0: PI = 3.14159: R = 8.314

  SCREEN 1: COLOR 15, 0

  VIEW (35, 10)-(318, 170)

  WINDOW (0, 0)-(1000, .003): LINE (0, 0)-(1000, .003), , B

  FOR TP = TI TO TF STEP TS

  I = I + 1: FRMAX(I) = 0: UMAX(I) = 0: T(I) = TP: AREA(I) = 0

  US = 2

  FOR U = 0 TO 1000 STEP US

  TERM1 = M / (2 * PI * R * TP): TERM2 = M * U * U / (2 * R * TP)

  FR = 4 * PI * TERM1 ^ 1.5 * EXP(-TERM2) * U * U

  AREA(I) = AREA(I) + FR * US

  IF FRMAX(I) < FR THEN FRMAX(I) = FR: UMAX(I) = U

  PSET (U, FR)

  FOR J = 1 TO 100 STEP .1: NEXT J

  NEXT U

  A$ = "FRACTION"

  FOR J = 1 TO 8: B$ = MID$(A$, J, 1)

  LOCATE 8 + J, 3: PRINT B$: NEXT J

  LOCATE 1, 8: PRINT "Maxwell distribution of speeds"

  LOCATE 2, 1: PRINT ".003"

  LOCATE 3, 19: PRINT "  T/K Ump  FRAC  AREA"

  LOCATE 3 + I, 20: PRINT USING "####"; T(I); UMAX(I);

  PRINT USING " .####"; FRMAX(I); : PRINT USING " #.###"; AREA(I)
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  LINE (UMAX(I), 0)-(UMAX(I), FRMAX(I)), 1

  NEXT TP

  LOCATE 22, 4: PRINT "0"

  LOCATE 23, 3: PRINT "  0          U/(m/s)---->         1000"

  FOR J = 1 TO 9

  LINE (J * 100, 0)-(J * 100, .00005)

  LINE (0, .0003 * J)-(10, .0003 * J)

  NEXT J

  END

2.32 DISPLAY OF DISTRIBUTION OF MOLECULAR ENERGIES

To draw distribution of molecular energies amongst gaseous molecules (say, oxygen) at different 

temperatures by using the Maxwell distribution function. Also fi nd out the energy corresponding to the 

maximum fraction of molecules and the area under each distribution curve. 

 The expression to be used is 

 
d 1

d

N

N

Ê ˆ
Á ˜Ë ¯ e

 = 2p 
3/2

1

kT

Ê ˆ
Á ˜Ë p ¯

  e 1/2 exp (– e /kT) 

 Recommended energies are corresponding to speeds from 0 to 1000 m/s. Recommended temperatures 

are 200 K, 300 K and 400 K.

REM PROGRAM MAXWLEN;FRACTION v. ENERGY

  CLS : DIM T(5), FRMAX(5), EMAX(5), AREA(5)

  DEF FNE (M, U) = .5 * M * U * U

  READ M, TI, TF, TS: DATA .032,200,400,50



146 A Textbook of Physical Chemistry

  I = 0: PI = 3.14159: R = 8.314: L = 6.022E+23

  KB = R / L: MP = M / L: EF = FNE(MP, 800): FRM = .016

  SCREEN 1: COLOR 15, 0: VIEW (35, 10)-(315, 170)

  WINDOW (0, 0)-(EF, FRM): LINE (0, 0)-(EF, FRM), , B

  FOR TP = TI TO TF STEP TS

  I = I + 1: FRMAX(I) = 0: EMAX(I) = 0

  T(I) = TP: AREA(I) = 0: DE = EF / 300

  FOR E = 0 TO EF STEP DE

  TERM1 = 1 / (PI * KB * TP): TERM2 = E / (KB * TP)

  FR = 2 * PI * TERM1 ^ 1.5 * EXP(-TERM2) * E ^ .5 * DE

  AREA(I) = AREA(I) + FR

  IF FRMAX(I) < FR THEN FRMAX(I) = FR: EMAX(I) = E

  PSET (E, FR)

  FOR J = 1 TO 100 STEP .1: NEXT J

  NEXT E

  A$ = "FRACTION": LOCATE 5, 3: PRINT CHR$(94)

  FOR J = 1 TO 3: LOCATE 5 + J, 3: PRINT CHR$(124): NEXT J

  FOR J = 1 TO 8: B$ = MID$(A$, J, 1)

  LOCATE 9 + J, 3: PRINT B$: NEXT J

  LOCATE 1, 6: PRINT "Maxwell Distribution of Energies"

  LOCATE 2, 1: PRINT USING ".###"; FRM

  LOCATE 3, 13: PRINT " T/K   MPE/J   FRAC  AREA"

  LOCATE 3 + I, 13: PRINT USING "####"; T(I);

  PRINT USING "  #.##^^^^"; EMAX(I);

  PRINT USING " .###"; FRMAX(I);

  PRINT USING "  #.###"; AREA(I)

  LINE (EMAX(I), 0)-(EMAX(I), FRMAX(I)), 1

  LOCATE 23, 4: PRINT " 0           E----->         ";

  PRINT USING "#.##^^^^"; EF

  NEXT TP

  LOCATE 22, 3: PRINT "0"

  FOR J = 1 TO 9

  LINE (J * EF / 10, 0)-(J * EF / 10, FRM / 40)

  LINE (0, FRM * .1 * J)-(EF / 100, FRM * .1 * J)

  NEXT J

  END
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2.33 DISPLAY OF POTENTIAL ENERGY OF INTERACTION OF IONS

To display variation of potential energy of interaction between ions having symmetrical-salt structure such 

as rock salt. 

 The expression to be used are 

  Attraction term E1 = –  
2

A

0(4 )

N Az

rpe

  Repulsion term E2 = 
n

b

r
  where b =   

2 –1
A 0

0(4 )

nN Az r

rpe
 

where r0 is the distance between cation and anion corresponding to the most stable structure of the crystal. 

 Use the Born exponent n = 9 and Madelung constant A = 1.746 

  z = 1.6 ¥ 10–19 C; e 0 = 8.854 ¥ 10–12 C2 N–1 m–2; r0 = 314 pm.

 Over-all potential energy, E = E1 + E2. 

REM PROG32

  REM PROGRAM POTENER;POTENTIAL ENERGY OF INTERACTIONS OF IONS

  NA = 6.023: A = 1.746: N = 9: Z = 1.602

  R0 = 3.14: MIN = 5: RI = 2: RF = 10

  CLS : SCREEN 1: COLOR 15, 0

  VIEW (25, 20)-(310, 170): WINDOW (RI, -.1)-(RF, .1)

  LINE (RI, -.1)-(RF, .1), , B: LINE (RI, 0)-(RF, 0)

  CONS = NA * A * Z ^ 2 / (4 * 3.14159 * 8.854)
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  FOR R = RI TO RF STEP .01

  TERM1 = -CONS / R: TERM2 = CONS * R0 ^ (N - 1) / (N * R ^ N)

  TERM = TERM1 + TERM2

  IF MIN > TERM THEN MIN = TERM: RMIN = R

  PSET (R, TERM1), 1: PSET (R, TERM2), 2: PSET (R, TERM), 3

  FOR J = 1 TO 100 STEP .001: NEXT J

  NEXT R

  LINE (RMIN, MIN)-(RMIN, 0)

  LOCATE 2, 8: PRINT "VARIATION OF POTENTIAL ENERGY"

  LOCATE 3, 2: PRINT "10": LOCATE 5, 16: PRINT "RMIN=";

  PRINT USING "###.#"; RMIN * 100; : PRINT " pm"

  LOCATE 7, 16: PRINT "E="; : PRINT USING "##.###"; MIN * 100;

  PRINT " nJ/mol": A$ = "ENERGY-"

  FOR I = 1 TO 7: LOCATE 9 + I, 2: PRINT MID$(A$, I, 1): NEXT I

  LOCATE 17, 1: PRINT "nJ/": LOCATE 18, 1: PRINT "mol"

  LOCATE 12, 3: PRINT "0": LOCATE 22, 1: PRINT "-10"

  LOCATE 23, 2: PRINT USING "####"; RI * 100;

  PRINT "         R/pm----->          ";

  PRINT USING "#####"; RF * 100

  FOR I = 1 TO 9

  II = -.1 + .02 * I: LINE (2, II)-(2.1, II)

  II = 2 + I * (RF - RI) / 10: LINE (II, -1)-(II, -.095)

  NEXT I

  END

Output
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2.34 pH TITRATION CURVE OF A STRONG ACID WITH A STRONG BASE

To display the pH of a solution during the titration of a strong acid (volume Va and molarity Ma) with a 

strong base (molarity Mb). Also display its fi rst derivative (i.e. the plot of ∂ pH/∂ Vb versus Vb). 

 The concentration of H+ in the solution before and after the equivalence point may be computed by the 

expression 

  [H+] = ABS(Va Ma – VbMb) / (Va + Vb)

 Hence pH = – log {[H+]/mol dm–3}. 

 At the equivalence point pH = 7. 

Illustration Titration of 50 mL of 0.1M of strong acid with 0.1M of strong base.

REM PROGRAM SASBDIR;TITRATION OF STRONG ACID v.STRONG BASE

  CLS : READ VA, MA, MB: DATA 50,.1,.1: PHP = 0: VBP = 0

  VBEQ = VA * MA / MB: VMAX = VBEQ + 10

  SCREEN 1: COLOR 15, 0: VIEW (20, 20)-(310, 170)

  WINDOW (0, 0)-(VMAX, 14): LINE (0, 0)-(VMAX, 14), , B

  FOR VB = .5 TO VMAX STEP .05

  IF VB < VBEQ THEN H = (VA * MA - VB * MB) / (VA + VB)

  IF VB = VBEQ THEN H = .0000001

  IF VB > VBEQ THEN H = 1E-14 / ABS((VA * MA - VB * MB) / (VA + VB))

  PH = -LOG(H) / LOG(10): BC = (PH - PHP) / (VB - VBP) + .5

  PSET (VB, PH): PSET (VB, BC), 2

  PHP = PH: VBP = VB

  FOR KK = 1 TO 100 STEP .1: NEXT KK: NEXT VB

  FOR I = 1 TO 9: II = VMAX * .1 * I: LINE (II, 0)-(II, .4): NEXT I

  FOR I = 1 TO 13: LINE (0, I)-(1, I): NEXT I

  LOCATE 2, 2: PRINT "TITRATION OF STRONG ACID V. STRONG BASE"

  LOCATE 3, 1: PRINT "14": LOCATE 12, 1: PRINT "pH"

  LOCATE 22, 2: PRINT "0"

  LOCATE 23, 3: PRINT "0        VB/mL----->       "; : PRINT VMAX

  PSET (VBEQ, 7), 1: CIRCLE (VBEQ, 7), .5, 1: VI = VBEQ - 8: VF = VBEQ - 1

  LOCATE 5, 10: PRINT "VBEQ="; : PRINT USING "###.#"; VBEQ; : PRINT " mL"

  LINE (VI, 8.3)-(VF, 10), 2, BF: LOCATE 9, 13: PRINT "Phenolphthalene"

  LOCATE 10, 17: PRINT "(8.3-10)"

  LINE (VI, 4.2)-(VF, 6.3), 3, BF: LOCATE 14, 18: PRINT "Methyl red"

  LOCATE 15, 18: PRINT "(4.2-6.4)"

  LINE (VI - 3, 3.1)-(VF, 4.4), 1, BF: LOCATE 17, 13: PRINT "Methyl ornage"

  LOCATE 18, 15: PRINT "(3.1-4.4)"

  LINE (VBEQ, 0)-(VBEQ, 1), 1

  END
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Output

2.35 pH TITRATION CURVE OF A WEAK ACID WITH A STRONG BASE

To display the pH of a solution during the titration of a weak acid (volume Va and molarity Ma) with a 

strong base (molarity Mb). Also display its fi rst derivative (i.e. the plot of ∂ pH/∂ Vb versus Vb).

Given: Ka(acid) = 1.8 × 10–5 M. 

 Start of titration [H3O+]2 + Ka[H3O+] – Ka[HA]0 = 0

  For a fairly concentrated solution with small dissociation constant of acid, use the expression

  [H3O
+] =  

a 0[HA]K .

 Before the equivalence point pH = pK°
a + log 

1 –

f

f

Ê ˆ
Á ˜Ë ¯

  

  where f is the fraction of acid neutralized by base. 

 At the equivalence point pH = 
1

2
 (pK°

w + pK°
a + log [HA]0/c°) 

 Beyond the equivalence point 

  [OH–] = Base added after the equivalence point 

  [H+] = Kw / [OH–]

Illustration Tiration of 0.1 M weak acid (K°a = 1.8 × 10– 5) with 0.1 M strong base
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REM PROGRAM WASBDIR;WEAK ACID v.BASE TITRATIN DIRECT

  CLS : READ VA, MA, MB, KA: DATA 50,.1,.1,1.8E-5

  DEF FNA (H) = -LOG(H) / LOG(10): KW = 1E-14

  VBEQ = VA * MA / MB: VMAX = VBEQ + 10

  SCREEN 1: COLOR 15, 0: VIEW (20, 20)-(310, 170)

  WINDOW (0, 0)-(VMAX, 14): LINE (0, 0)-(VMAX, 14), , B

  FOR VB = .05 TO VMAX STEP .1

  IF VB = 0 THEN

  H = (KA * MA) ^ .5: PH = FNA(H)

  ELSEIF VB < VBEQ THEN

  F = VB * MB / (VA * MA): FRAC = F / (1 - F)

  PH = FNA(KA) - FNA(FRAC): PHEQ = PH

  ELSEIF VB > VBEQ THEN

  OH = (VB - VBEQ) * MB / (VA + VB): H = KW / OH: PH = FNA(H)

  END IF

  PSET (VB, PH), 1: DERI = (PH - PHP) / (VB - VBP)

  PSET ((VB + VBP) / 2, DERI + 1), 2

  VBP = VB: PHP = PH

  FOR KK = 1 TO 100 STEP .001: NEXT KK: NEXT VB

  PH = .5 * (FNA(KW) + FNA(KA) + FNA(MA / 2))

  PSET (VBEQ, PH), 2: CIRCLE (VBEQ, PH), .5, 1

  LINE (VBEQ, 0)-(VBEQ, 4), 1

  LOCATE 2, 2: PRINT "TITRATION OF WEAK ACID v. STRONG BASE"

  LOCATE 3, 1: PRINT "14": LOCATE 5, 10: PRINT "VBEQ=";

  PRINT USING "###.#"; VBEQ; : PRINT " mL"

  LOCATE 6, 10: PRINT "pHEQ="; : PRINT USING "###.##"; PH

  LOCATE 12, 1: PRINT "pH": LOCATE 22, 2: PRINT "0"

  LOCATE 23, 3: PRINT "0             VB---->             ";

  PRINT USING "###"; VMAX

  FOR I = 1 TO 9: II = VMAX * .1 * I: LINE (II, 0)-(II, .5): NEXT I

  FOR I = 1 TO 13: LINE (0, I)-(1, I): NEXT I

  LINE (VBEQ - 10, 8.3)-(VBEQ - 1, 10), 2, BF

  LOCATE 9, 12: PRINT "Phenolphthalene": LOCATE 10, 15: PRINT "(8.3-10)"

  END
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Output

2.36 DISPLAY OF DISTRIBUTION FUNCTIONS OF A DIPROTIC ACID

To display the distribution functions [H2A] /[H2A]0, [HA–]/ [H2A]0 and [A2–]/[H2A]0 with the variation of 

pH during the titration of a dibasic acid, H2A, with a strong base. 

 The expressions of distribution functions are:

 

– 2–
2

2
2 2 0 2 0a1 a1 a2

[H A] 1 [HA ] 1 [A ] 1
; ;

[H A] [H A] [H A][(H ] / ) ([H ] / )K K K+ +
= = =

a a a
 

where a = a1 a1 a2

2
1

[H ] [H ]

K K K
+ ++ +   

Display of distribution curves for an acid with K°
a1 = 1.0 ¥ 10–2 and K°

a2 varies from 1.0 

¥ 10–3 to 1.0 ¥ 10–5 in the step of 0.1.

  Vary pH from 0 to 8. 

REM PROGRAM DISTRIB;DISTRIBUTION FUNCTIONS OF A DIPROTIC ACID VERSE pH

  CLS : READ K1: K2 = K1

  DATA .01: PHF = 8

  SCREEN 1: COLOR 15, 0

  LOCATE 1, 6: PRINT " DISTRIBUTION CURVES OF A DIPROTIC ACID"

  LOCATE 8, 1: PRINT "1"

  A$ = "FRACTION"

  FOR I = 1 TO 8: LOCATE 11 + I, 1: PRINT MID$(A$, I, 1): NEXT I

  LOCATE 22, 1: PRINT "0"

  FOR J = 1 TO 3

  VIEW (15 + 100 * (J - 1), 60)-(115 + 100 * (J - 1), 170)

  WINDOW (0, 0)-(PHF, 1): LINE (0, 0)-(PHF, 1), 1, B
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  FOR I = 1 TO 9: LINE (0, I / 10)-(.15, I / 10): NEXT I

  FOR I = 1 TO 7: II = I * PHF / 8: LINE (II, 0)-(II, .03): NEXT I

  'FOR I = 1 TO 9: LINE (0, I / 10)-(PHF, I / 10): NEXT I

  'FOR I = 1 TO 7: LINE (I * PHF / 8, 0)-(I * PHF / 8, 1): NEXT I

  LOCATE 23, 2 + 13 * (J - 1): PRINT " 0  pH-->  ";

  PRINT USING "##"; PHF

  K2 = K2 * .1: HAMAX = 0

  FOR PH = .01 TO PHF STEP .05

  H = 10 ^ (-PH)

  H2A = 1 / (1 + K1 / H + K1 * K2 / H ^ 2)

  HA = 1 / (H / K1 + 1 + K2 / H)

  A = 1 / (H ^ 2 / (K1 * K2) + H / K2 + 1)

  PSET (PH, H2A), 2: PSET (PH, HA), 1: PSET (PH, A), 3

  IF HAMAX < HA THEN HAMAX = HA: PHMAX = PH

  LOCATE 4, 5 + 12 * (J - 1): PRINT "K1="; : PRINT USING "#.#^^^^"; K1

  LOCATE 5, 5 + 12 * (J - 1): PRINT "K2="; : PRINT USING "#.#^^^^"; K2

  LOCATE 6, 5 + 12 * (J - 1): PRINT "pHMAX="; : PRINT USING "##.#"; PHMAX

  LOCATE 7, 5 + 12 * (J - 1): PRINT "HAMAX="; : PRINT USING "#.##"; HAMAX

  FOR I = 1 TO 100 STEP .001: NEXT I

  NEXT PH

  LOCATE 9, 10 + 14 * (J - 1): PRINT "A"'

  LOCATE 9, 5 + 12 * (J - 1): PRINT "H2A"

  LOCATE 19, 9 + 14 * (J - 1): PRINT "HA"

  A$ = INPUT$(1)

  NEXT J

  END
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    fraction of acid converted to HA– 

 At the fi rst equivalence point pH = 
1

2
 (pK°

a1 + pK°
a2)

 After the fi rst equivalence point pH = pK°
a2 + log ;

1 –

f

f

Ê ˆ
Á ˜Ë ¯

 where f is the

    fraction of acid HA– converted to A2–. 

 At the second equivalence point pH = 
1

2
  [pK°

w + pK°
a2 + log ([H2A]0/c°)]

 Beyond the second equivalence point [OH–] = Base added after the equivalence point.  

    [H+] = Kw /[OH–]

Titration curve of 25 mL of 1 M diprotic acid (K°a1 = 5 × 10– 2 and K°a2
 = 5 × 10– 5 with 1 

M of a strong base. 

REM PROGRAM DASBDIR:TITRATION OF DIBASIC ACID v. BASE

  READ VA, MA, MB, KA1, KA2: DATA 25,1,1,5E-2,5E-5: CLS

  DEF FNH (H) = -LOG(H) / LOG(10): KW = 1E-14

  DEF FNA (C1, C2, K) = (-(C2 + K) + SQR((C2 + K) ^ 2 + 4 * K * C1))/(2 * C1)

  VBEQ = 2 * VA * MA / MB: VMAX = VBEQ + 10

  SCREEN 1: COLOR 15, 0: VIEW (20, 20)-(310, 170)

  WINDOW (0, 0)-(VMAX, 14): LINE (0, 0)-(VMAX, 14), , B

  FOR VB = 0 TO VMAX STEP .1

  IF VB = 0 THEN

  ALPHA = FNA(MA, 0, KA1): H = MA * ALPHA

  ELSEIF VB < VBEQ / 2 - 1 THEN

  F = VB * MB / (VA * MA)

  C1 = MA * (1 - F) * VA / (VA + VB): C2 = MA * F * VA / (VA + VB)

  ALPHA = FNA(C1, C2, KA1): H = C1 * ALPHA

  ELSEIF VB > VBEQ / 2 - 1 AND VB < VBEQ / 2 + 1 THEN

  GOTO 5
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  ELSEIF VB > VBEQ / 2 + 1 AND VB < VBEQ THEN

  F = (VB - VBEQ / 2) * MB / (VA * MA)

  'C1 = MA * (1 - F) * VA / (VA + VB): C2 = MA * F * VA / (VA + VB)

  'ALPHA = FNA(C1, C2, KA2): H = C1 * ALPHA

  PH = FNH(KA2) - FNH(F / (1 - F)): H = 10 ^ -PH

  ELSEIF VB > VBEQ THEN

  OH = (VB - VBEQ) / (VA + VB): H = KW / OH

  END IF

  PH = FNH(H): PSET (VB, PH)

  IF VB = 0 THEN 5

  DERI = (PH - PHP) / (VB - VBP)

  PSET ((VB + VBP) / 2, DERI * 2), 2

  VBP = VB: PHP = PH

  FOR I = 1 TO 100 STEP .1: NEXT I

  5 NEXT VB

  PHEQ1 = .5 * (FNH(KA1) + FNH(KA2)): PSET (VBEQ / 2, PHEQ1)

  CIRCLE (VBEQ / 2, PHEQ1), VA / 80

  PHEQ2 = .5 * (FNH(KW) + FNH(KA2) - FNH(MA * VA / (VA + VBEQ)))

  PSET (VBEQ, PHEQ2): CIRCLE (VBEQ, PHEQ2), VA / 80

  LINE (VBEQ / 2, 0)-(VBEQ / 2, 2), 1: LINE (VBEQ, 0)-(VBEQ, 6), 1

  LOCATE 2, 1: PRINT "TITRATION OF DIBASIC ACID V. STRONG BASE"

  LOCATE 3, 1: PRINT "14": LOCATE 5, 10: PRINT "VBEQ=";

  PRINT USING "###.#"; VBEQ; : PRINT " mL"

  LOCATE 6, 10: PRINT "pHEQ1="; : PRINT USING "##.##"; PHEQ1

  LOCATE 7, 10: PRINT "pHEQ2="; : PRINT USING "##.##"; PHEQ2

  LOCATE 12, 1: PRINT "pH": LOCATE 22, 2: PRINT "0"

  LOCATE 23, 3: PRINT "0             VB---->             ";

  PRINT USING "###"; VMAX

  FOR I = 1 TO 9: II = VMAX * .1 * I: LINE (II, 0)-(II, .5)

  'LINE (II, 0)-(II, 14)

  NEXT I

  FOR I = 1 TO 13: LINE (0, I)-(.03 * VA, I)

  'LINE (0, I * 14 / 10)-(VMAX, I * 14 / 10)

  NEXT I

  LINE (VBEQ - .5 * VA, 8.3)-(VBEQ - 1, 10), 2, BF

  LOCATE 9, 6: PRINT "Phenolphthalene"

  LOCATE 10, 10: PRINT "(8.3-10)"

  LOCATE 12, 10: PRINT "Ka1="; : PRINT USING "#.##^^^^"; KA1

  LOCATE 13, 10: PRINT "Ka2="; : PRINT USING "#.##^^^^"; KA2

  END
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To draw a pH titration curve for the titration between acid (strong or weak) and strong base. Also draw 

the fi rst derivative and the curve for its buffer effect, ∂Vb/∂pH versus Vb. Locate the pH at the equivalence 

point. 

 The expression to be used is 

  Vb = 
3 2

a a a w w a
a 3 2

b a a b w w a

[H ] [H ] – ( )[ ] –H
–

[H ] ( )[H ] ( – )[H ] –

K K M K K K
V

M K K M K K K

+ + +

+ + +

È ˘+ +
Í ˙

+ + +Í ˙Î ˚
 

 For strong acid, use Ka = 1.0E + 07 or higher value 

 The expression of buffer effect is 

  b –2.303 [H ]
pH

V a

b
+ Ê ˆ∂

= Á ˜∂ Ë ¯
  

where    a = 3[H+]2 (Vb + Va) + 2[H+] (VbKa + Vb Mb + VaKa) + VbMbKa – VaMaKa – VbKw – VaKw 

  b = [H+]3 + [H+]2 (Ka + Mb) + [H+](KaMb – Kw) – KwKa 

 Compute the volume Vb of base to be added in the volume Va of acid to obtain the known value of 

H+(or pH) which lies within the range accessible in the titration. Out side this range, Vb will come out to 

be negative which should be ignored. 

 Titration of 40 mL of 0.1 M of an acid (K°a = 1 × 10– 5) with 0.1 M of a strong base
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REM PROGRAM TITAB;GENERAL TREATMENT OF TITRATION

  CLS : READ VA, MA, KA, MB: DATA 40,.1, 1E-5, .1

  DERIMIN = -100: KW = 1E-14

  VBEQ = VA * MA / MB: VBMAX = 2 * VBEQ

  PHMIN = 0: PHMAX = 12.5

  SCREEN 1: COLOR 15, 0: VIEW (20, 20)-(310, 170)

  WINDOW (0, 0)-(VBMAX, 14): LINE (0, 0)-(VBMAX, 14), 1, B

  FOR PH = PHMIN TO PHMAX STEP .01

  H = 10 ^ (-PH)

  NUM = H ^ 3 + KA * H ^ 2 - (KA * MA + KW) * H - KW * KA

  DEN = H ^ 3 + (MB + KA) * H ^ 2 + (KA * MB - KW) * H - KW * KA

  VB = -VA * NUM / DEN

  IF VB < 0 THEN 100

  PSET (VB, PH), 2

  PHDVB = (PH - PH1) / (VB - VB1): PSET (VB, 1 + PHDVB), 1

  ALPHA = 3 * H ^ 2 * (VB + VA) + 2 * H * (VB * KA + VB * MB + VA * KA)

  ALPHA = ALPHA + VB * MB * KA - VA * MA * KA - VB * KW - VA * KW

  BETA = H ^ 3 + H ^ 2 * (KA + MB) + H * (KA * MB - KW) - KA * KW

  DERI = -2.303 * H * ALPHA / BETA

  IF DERIMIN < DERI THEN DERIMIN = DERI: VBEQ = VB: PHEQ = PH

  PSET (VB, -DERI / 2), 3: PH1 = PH: VB1 = VB

  100 FOR KK = 1 TO 100 STEP .05: NEXT KK: NEXT PH

  CIRCLE (VBEQ, PHEQ), .5, 1

  LOCATE 2, 5: PRINT "TITRATION OF ACID WITH STRONG BASE"

  LOCATE 3, 1: PRINT "14": LOCATE 17, 25: PRINT "Ka=";

  PRINT USING "#.#^^^^"; KA: LOCATE 18, 25: PRINT "VBEQ =";

  PRINT USING "###.#"; VBEQ; : PRINT " mL"

  LOCATE 19, 25: PRINT "pHEQ ="; : PRINT USING "##.##"; PHEQ

  LOCATE 13, 1: PRINT "pH": LOCATE 22, 2: PRINT "0"

  LOCATE 23, 3: PRINT "0             VB---->             ";

  PRINT USING "###"; VBMAX: VBS = VBMAX / 10: PHS = 1.4

  FOR I = 1 TO 9: LINE (I * VBS, 0)-(I * VBS, .3)

  LINE (0, I * PHS)-(VBS / 10, I * PHS): NEXT I

  LINE (VBEQ, 0)-(VBEQ, 5), 2

  END
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To display pH variation when a diprotic acid is titrated against a strong base. 

 The expression to be used is 

  Vb = a–V
Ê ˆ
Á ˜Ë ¯

a

b   

where

 a = [H+]4 + [H+]3 Ka1
 + [H+]2 (Ka1Ka2 – Ka1Ma – Kw) + [H+] (–2Ka1Ka2Ma – KwKa1) – Ka1Ka2Kw 

 b = [H+]4 + [H+]3 (Ka1 + Mb) + [H+]2 (Ka1Ka2 + Ka1Mb – Kw) + [H+] (Ka1Ka2Mb – Ka1Kw) – Ka1Ka2Kw. 

 Also, draw the fi rst derivative dpH/dVb.

REM PROGRAM TITDIA;GENERAL TREATMENT OF TITRATION OF DIBASIC ACID

  CLS : READ VA, MA, MB, KA1, KA2: DATA 50,.1,.05,5.9E-1,6.4E-6

  KW = 1E-14

  VBEQ = 2 * VA * MA / MB: VMAX = VBEQ + VBEQ / 5

  SCREEN 1: COLOR 15, 0: VIEW (25, 20)-(310, 170)

  WINDOW (0, 0)-(VMAX, 14): LINE (0, 0)-(VMAX, 14), 2, B

  FOR PH = 0 TO 12 STEP .02

  H = 10 ^ (-PH)

  NUM = H ^ 4 + H ^ 3 * KA1 + H ^ 2 * (KA1 * KA2 - KA1 * MA - KW)

  NUM = NUM + H * (-2 * KA1 * KA2 * MA - KW * KA1) - KA1 * KA2 * KW

  DEN = H ^ 4 + H ^ 3 * (KA1 + MB) + H ^ 2 * (KA1 * KA2 + KA1 * MB - KW)

  DEN = DEN + H * (KA1 * KA2 * MB - KA1 * KW) - KA1 * KA2 * KW

  VB = -VA * NUM / DEN

  IF VB < 0 THEN 100
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  PSET (VB, PH), 1

  IF VBEQ - VB > .0001 THEN PHEQ = PH

  PHDVB = (PH - PH1) / (VB - VB1)

  PSET (VB, 1 + PHDVB / .2), 2: VB1 = VB: PH1 = PH

  100 FOR KK = 1 TO 100 STEP .001: NEXT KK: NEXT PH

  CIRCLE (VBEQ, PHEQ), VMAX / 100

  FOR I = 1 TO 9: LINE (VMAX * .1 * I, 0)-(VMAX * .1 * I, .5): NEXT I

  FOR I = 1 TO 13: LINE (0, I)-(VMAX / 60, I): NEXT I

  LOCATE 2, 5: PRINT "TITRATION OF DIPROTIC ACID V. BASE"

  LOCATE 3, 2: PRINT "14"

  LOCATE 4, 8: PRINT "VBEQ="; : PRINT USING "###.#"; VBEQ; : PRINT "mL"

  LOCATE 5, 8: PRINT "pHEQ="; : PRINT USING "##.#"; PHEQ

  LOCATE 6, 8: PRINT "Ka1="; : PRINT USING "#.##^^^^"; KA1

  LOCATE 7, 8: PRINT "Ka2="; : PRINT USING "#.##^^^^"; KA2

  LOCATE 13, 2: PRINT "pH": LOCATE 22, 3: PRINT "0"

  LOCATE 23, 3: PRINT " 0         VB----->       "; : PRINT VMAX

  LINE (VBEQ / 2, 0)-(VBEQ / 2, 2.5): LINE (VBEQ, 0)-(VBEQ, 5)

  LINE (VBEQ - VMAX / 5, 8.3)-(VBEQ - VMAX / 40, 10), 2, BF

  LOCATE 9, 11: PRINT "Phenolphthalene": LOCATE 10, 15: PRINT "(8.3-10)"

  END

Draw the conductivity titration curve of a strong acid solution of concentration ca(volume of solution is Va) 

with a strong base solution of concentration cb (its concentration must be ten times or more than ten times 

the concentration ca). The volume of base added each time is Vb. 
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 Expression to be used before the equivalence point. k = + +
a

a NaH
a a

– ( – )b

V V
c

V V V
k

È ˘Ê ˆ Ê ˆ
l lÍ ˙Á ˜ Á ˜+Ë ¯ Ë ¯Í ˙Î ˚

 

 After the equivalence point, the expression to be used is k = a e e
e b

a a

–V V V V

V V V V
k k

Ê ˆ Ê ˆ+
+Á ˜ Á ˜+ +Ë ¯ Ë ¯

 

 ka is the conductivity of acid solution (= L• (HCl) ca)

 kb is the conductivity of base solution (= L•(NaOH) cb)

 ke is the conductivity of the solution at the equivalence point (= L•(NaCl) * c (NaCl))

 Ve is the volume of base added at the equivalence point. 

  l•
H+ = 349.8 S cm2 mol–1 

  l•
Na+ = 50.11 S cm2 mol–1

 Conductirity titration curve of 100 mL of 0.1 M strong acid with 1 M of a strong base. 

REM PROGRAM TITCOND;CONDUCTOMETRIC TITRATION

   CLS : READ VA, CA, CB: DATA 80,.1,1.0

   VEQ = VA * CA / CB

   LH = 349.8: LCl = 76.34: LNa = 50.11: LOH = 197.6

   KA = (LH + LCl) * CA: KB = (LNa + LOH) * CB

   KS = (LNa + LCl) * (CA * VA / (VA + VEQ))

   VF = INT(2 * VEQ): VS = VA / 1000

   KM = INT(KA)

   SCREEN 1: COLOR 15, 0: VIEW (25, 20)-(310, 170)

   WINDOW (0, 0)-(VF, KM): LINE (0, 0)-(VF, KM), , B

   FOR V = 0 TO VF STEP VS

   IF V = 0 THEN

   K = KA

   ELSEIF V < VEQ THEN

   K = (VA / (VA + V)) * (KA - CB * (V / VA) * (LH - LNa))

   ELSEIF V = VEQ THEN

   K = KS

   ELSEIF V > VEQ THEN

   K = ((VA + VEQ) / (VA + V)) * KS + ((V - VEQ) / (VA + V)) * KB

   END IF

   PSET (V, K), 1

   FOR KK = 1 TO 100 STEP .001: NEXT KK: NEXT V

   FOR I = 1 TO 9

   LINE (I * VF / 10, 0)-(I * VF / 10, KM / 50)

   LINE (0, I * KM / 10)-(VF / 100, I * KM / 10)
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   NEXT I

   LOCATE 2, 1: PRINT "CONDUCTIVITY TITRATION OF ACID WITH BASE"

   LOCATE 3, 1: PRINT USING "###"; KM

   LOCATE 5, 18: PRINT "VEQ="; : PRINT USING "##.#"; VEQ; : PRINT " mL"

   A$ = "CONDUCTIVITY"

   FOR I = 1 TO 12

   B$ = MID$(A$, I, 1): LOCATE 6 + I, 2: PRINT B$

   NEXT I

   LOCATE 22, 2: PRINT "0"

   LOCATE 23, 3: PRINT " 0           VB/mL----->          ";

   PRINT USING "###"; VF: LINE (VEQ, 0)-(VEQ, KS), 2

   END

For an ideal system, the variation of solubility of a component with temperature as given by van’t Hoff 

relation is 

  ln x = fus m 1 1
– –

*

H

R T T

D Ê ˆ
Á ˜Ë ¯

 

where x is the saturation solubility in amount fraction of the component and T * is the freezing point of the 

pure component. For a binary system, the two solubility curves can be drawn by using the above expression 

with the appropriate value of DfusH°m. Either one can vary temperature to compute amount fraction or vice 

versa. The two curves are drawn till they meet each other which is the eutectic point of the system.

 Table 1 Includes the data on melting points and enthalpy of fusion for a few compounds.
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 Compound   
m.pt

 ____ 
°C

   DfusH/J mol–1 

 Naphthalene 79.9 19 066 

 Benzoic acid 121.8 17 304 

 Cinnamic acid 133 22 602 

 Resorcinol 110 21 263 

 Sodium Chloride 801 28 870 

 Sodium sulphate 881 24 060 

 Phase diagram of resorcianol and cinnamic acid.

   REM PROGRAM EUTECT;EUTECTIC PHASE DIAGRAM VIA MOLE FRACTION

   READ TA, HA, TB, HB

   R = 8.314

   IF TA > TB THEN TMAX = TA + 20 ELSE TMAX = TB + 20

   IF TA < TB THEN TMIN = TA - 50 ELSE TMIN = TB - 50 'FOR NACL TB-250

   SCREEN 1: COLOR 15, 0: VIEW (35, 20)-(315, 170)

   WINDOW (0, TMIN)-(1, TMAX): LINE (0, TMIN)-(1, TMAX), , B

   FOR X = .01 TO .99 STEP .01

   T1 = -(R / HA) * LOG(1 - X) + 1 / TA: T1 = 1 / T1

   T2 = -(R / HB) * LOG(X) + 1 / TB: T2 = 1 / T2

   IF T1 > T2 THEN PSET (X, T1), 2: TE = T2: XE = X ELSE PSET (X, T2), 2

   FOR I = 1 TO 100 STEP .001: NEXT I

   NEXT X

   LOCATE 5, 8: PRINT "TEU="; : PRINT USING "####.#"; TE;

   PRINT " K"; : PRINT "     XEU="; : PRINT USING "#.##"; XE

   TS1 = (TMAX - TMIN) / 10: TS = TS1 / 4

   FOR I = 1 TO 9

   LINE (I * .1, TMIN)-(I * .1, TMIN + TS)

   LINE (0, TMIN + TS1 * I)-(.015, TMIN + TS1 * I)

   NEXT I

   LOCATE 1, 10: PRINT "Eutectic Phase Diagram"

   LOCATE 2, 10: PRINT "MOLE Fraction Variation"

   LINE (0, TE)-(1, TE), 1: LOCATE 3, 1: PRINT USING "####"; TMAX

   LOCATE 10, 18: PRINT "Liquid"

   FOR I = 1 TO 3: LOCATE 15 - I, 2: PRINT STRING$(1, 124): NEXT I

   LOCATE 11, 2: PRINT CHR$(94): LOCATE 15, 1: PRINT "T/K"

   LOCATE 15, 6: PRINT " Liquid": LOCATE 15, 30: PRINT "Liquid"

   LOCATE 16, 7: PRINT "+Solid A": LOCATE 16, 30: PRINT "+Solid B"

   LOCATE 20, 16: PRINT "Solids A+B"

   LOCATE 22, 1: PRINT USING "####"; TMIN
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   LOCATE 22, 6: PRINT "    0             XB---->              1"

   REM Benzoic acid-Naphthalene:TE=330.6 K;XE=.64

   'DATA 395,17304,353,19066

   REM Benzoic acd-Cinnamic acid;TE=358.8 K;XE=.41 

   'DATA 395,17304,406,22602

   REM Benzoic acid-Resorniol;TE=348 K;XE=.51

   DATA 395,17304,383,21263

   REM Resorcinol-Cinnamic acid;TE=356.3 K;XE=.39

   'DATA 383,21263,406,22602

   REM NaCl-Na2SO4;TE=892.5 K;XE=.48

   'DATA 1074,28870,1152,24060

   END

 Determine eutectic temperature and composition for each of the following pairs

1. Naphthalene-Benzoic acid, 2. Benzoic acid-Cinnamic acid, 3. Benzoic acid-Resorcinol., 

and 4. NaCl-Na2SO4.

   REM PROGRAM EUTECX;EUTECTIC DIAGRAM VIA TEMPERATURE DETERMINATION

   READ TA, HA, TB, HB

   'DATA 1074,28870,1152,24060:REM NaCl-NaSO4

   DATA 395,17304,406,22602: REM Benzoic acid-Cinnamic acid

   'DATA 353,19066,395,17304: REM Naphthalene-Benzoic acid

   'DATA 383,21263,395,17304: REM Resorcinol-Benzoic acid
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   'DATA 383,21263,406,22602: REM Resorcinol-Cinnamic acid

   CLS : R = 8.314

   IF TA > TB THEN TMAX = TA + 5 ELSE TMAX = TB + 5

   IF TA < TB THEN TMIN = TA - 50 ELSE TMIN = TB - 50

   SCREEN 1: COLOR 15, 0: VIEW (35, 20)-(310, 170)

   WINDOW (0, TMIN)-(1, TMAX): LINE (0, TMIN)-(1, TMAX), 1, B

   FOR T = TMAX TO TMIN STEP -.2

   IF T > TA THEN 5

   XA = 1 - EXP((-HA / R) * (1 / T - 1 / TA)): PSET (XA, T), 2

   5 IF T > TB THEN 15

   XB = EXP((-HB / R) * (1 / T - 1 / TB)): PSET (XB, T), 2

   15 IF XA < XB THEN TE = T: XE = XA

   IF XB < XE THEN 20

   FOR I = 1 TO 100 STEP .01: NEXT I

   NEXT T

   20 LOCATE 1, 10: PRINT "Eutectic phase diagram"

   LOCATE 2, 10: PRINT "Temperature variation"

   LOCATE 5, 10: PRINT "TEU="; : PRINT USING "####.#"; TE;

   PRINT "K   XEU="; : PRINT USING "#.##"; XE

   TS = (TMAX - TMIN) / 50: TS1 = (TMAX - TMIN) / 10

   FOR I = 1 TO 9

   LINE (I * .1, TMIN)-(I * .1, TMIN + TS)

   LINE (0, TMIN + TS1 * I)-(.015, TMIN + TS1 * I)

   NEXT I

   LOCATE 3, 1: PRINT USING "####"; TMAX

   LINE (0, TE)-(1, TE): B$ = "TEMPERATURE"

   FOR I = 1 TO 11: X$ = MID$(B$, I, 1): LOCATE 7 + I, 3

   PRINT X$: NEXT I

   LOCATE 10, 18: PRINT "Liquid"

   LOCATE 14, 7: PRINT "Liquid": LOCATE 14, 31: PRINT "Liquid"

   LOCATE 15, 7: PRINT "+Solid A": LOCATE 15, 31: PRINT "+Solid B"

   LOCATE 20, 15: PRINT "Solids A+B"

   LOCATE 22, 1: PRINT USING "####"; TMIN

   LOCATE 22, 5: PRINT "    0            XB----->             1"

   END
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In a complete series of solid solution, the amount fractions of solid and liquid solutions in equilibrium are 

given by the expressions

  xs = 
exp (– ) – 1

exp (– ) – exp (– )

a

a b
 and xl = xs exp(–b) 

where a = (DfusH°
A,m / R)  *

A

1 1
–

T T

Ê ˆ
Á ˜Ë ¯

  and b = (Dfus H°
B,m / R) 

*
B

1 1
–

T T

Ê ˆ
Á ˜Ë ¯

 

Note The above expressions are also applicable to ideal liquid solution  ideal vapours, where DHA 

and DHB, respectively, represent enthalpy of vaporization of the components A and B. For liquids following 

Trouton’s rule, DHA/R T *A = DHB/R T *B = 10.6.

 Phase diagram for the solid A(DHA = 31 800 J mol– 1, T *A = 1 210 K) and solid

B(DHB = 50 800 J mol– 1, T *B = 1 690 K)

REM PROGRAM SOLDIR;DIRECT PLOTS OF SOLID-LIQUID SOLUTIONS

  H1 = 31800: T1 = 1210: H2 = 50800: T2 = 1690: R = 8.314

  SCREEN 1: COLOR 15, 0: VIEW (35, 20)-(310, 170)

  IF T1 < T2 THEN

  HA = H1: TA = T1: HB = H2: TB = T2

  ELSE HA = H2: TA = T2: HB = H1: TB = T1

  END IF
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  TMIN = TA - 20: TMAX = TB + 20

  WINDOW (0, TMIN)-(1, TMAX): LINE (0, TMIN)-(1, TMAX), , B

  FOR T = TA TO TB STEP 3

  A = HA / R * (1 / T - 1 / TA)

  B = HB / R * (1 / T - 1 / TB)

  XS = (EXP(-A) - 1) / (EXP(-A) - EXP(-B))

  XL = EXP(-B) * XS

  PSET (XS, T), 1: PSET (XL, T), 2

  FOR KK = 1 TO 100 STEP .001: NEXT KK: NEXT T

  LOCATE 2, 6: PRINT "COMPLETE SERIES OF SOLID SOLUTION"

  LOCATE 3, 1: PRINT USING "####"; TMAX

  LOCATE 6, 18: PRINT "LIQUID "

  LOCATE 12, 20: PRINT "S + L": A$ = "TEMPERATURE"

  FOR I = 1 TO 11: LOCATE 6 + I, 3: PRINT MID$(A$, I, 1): NEXT I

  LOCATE 18, 18: PRINT "SOLID"

  LOCATE 22, 1: PRINT USING "####"; TMIN

  LOCATE 23, 4: PRINT " 0             XB---->             1"

  FOR I = 1 TO 9

  LINE (I * .1, TMIN)-(I * .1, TMIN + 15)

  TS = TMIN + (TMAX - TMIN) * I / 10: LINE (0, TS)-(.02, TS)

  NEXT I

  END
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To display the concentrations of A, B and C in the consecutive reactions

  A 
k1  B ; B 

k2  C

in which (i) k1 > k2 and (ii) k1 < k2. 

 The concentrations A, B and C are given by the expressions

  [A] = [A]0 e
–k1t

  [B] = [A]0 
1

2 1–

k

k k

Ê ˆ
Á ˜Ë ¯

  (e–k
1
t – e–k

2
t)

  [C] = [A]0  ( )1 2– –
2 1

2 1

1
1 – e – e

–

k t k t
k k

k k

È ˘
Í ˙
Î ˚

 

 Display the variations of [A], [B] and [C] with time for (i) k1 = (45/3 600) s–1 and 

k ¢1 = (15/3 600) s–1, and (ii) k1 = (5/3 600) s–1 and k ¢1 = (50/3 600) s–1.

REM PROGRAM KINABC;COSECUTIVE REACTIONS

  CLS : CA0 = 1: TF = 800

  SCREEN 1: COLOR 15, 0

  FOR J = 1 TO 2

  ON J GOTO 5, 10

  5 K1 = 45 / 3600: K1P = 15 / 3600

  GOTO 15

  10 K1 = 5 / 3600: K1P = 50 / 3600

  15 CBMAX = 0

  VIEW (30 + 140 * (J - 1), 50)-(170 + 140 * (J - 1), 170)

  WINDOW (0, 0)-(800, 1): LINE (0, 0)-(800, 1), , B

  FOR T = 0 TO TF STEP 5

  CA = CA0 * EXP(-K1 * T)

  TERM = EXP(-K1 * T) - EXP(-K1P * T)

  CB = CA0 * (K1 / (K1P - K1)) * TERM

  TERM = K1P * EXP(-K1 * T) - K1 * EXP(-K1P * T)

  CC = CA0 * (1 - (1 / (K1P - K1)) * TERM)

  PSET (T, CA), 1: PSET (T, CB), 2: PSET (T, CC), 3

  FOR I = 1 TO 1000 STEP .01: NEXT I

  IF CBMAX < CB THEN CBMAX = CB: TMAX = T

  NEXT T

  FOR I = 1 TO 9

  LINE (TF * I / 10, 0)-(TF * I / 10, .03)

  LINE (0, CA0 * I / 10)-(15, CA0 * I / 10)
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  NEXT I

  LOCATE 2, 7: PRINT "Consecutive reactions A->B->C"

  LOCATE 7, 1: PRINT USING "#.#"; CA0

  LOCATE 3, 6 + 19 * (J - 1): PRINT "K1="; : PRINT USING "##.##^^^^"; K1

  LOCATE 4, 6 + 19 * (J - 1): PRINT "K1P="; : PRINT USING "##.##^^^^"; K1P

  LOCATE 5, 6 + 19 * (J - 1): PRINT "tmax="; : PRINT USING "###.#"; TMAX;

  PRINT " s": LOCATE 6, 6 + 19 * (J - 1): PRINT "CBMAX=";

  PRINT USING "##.###"; CBMAX; : PRINT " M"

  B$ = "CONCENTRATION"

  FOR I = 1 TO 13: C$ = MID$(B$, I, 1)

  LOCATE I + 7, 3: PRINT C$: NEXT I

  LOCATE 22, 3: PRINT "0"

  LOCATE 23, 2 + 19 * (J - 1): PRINT "  0    t/s-->   ";

  PRINT USING "###"; TF

  ON J GOTO 20, 25

  20 LOCATE 20, 10: PRINT "A": LOCATE 20, 20

  PRINT "B": LOCATE 9, 20: PRINT "C"

  GOTO 30

  25 LOCATE 20, 38: PRINT "B": LOCATE 16, 38

  PRINT "A": LOCATE 12, 38: PRINT "C"

  30 A$ = INPUT$(1)

  NEXT J

  END
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To display the fi rst few wave functions and their square for a particle in a one-dimensional box.

 The wave functions are given by

  

 Take l

REM PROGRAM WFBOX;WAVE FUNCTIONS OF PARTICLE IN A BOX

  CLS : L = 1: M = 4: YM = M ^ 2 + 5: A$ = "ENERGY"

  SCREEN 1: COLOR 15, 0

  FOR N = 1 TO M: FOR X = 0 TO L STEP .005

  REM -------Plot of wave functions-------

  VIEW (20, 10)-(150, 170)

  WINDOW (0, 0)-(L, YM): LINE (0, 0)-(L, YM), , B

  Y = SQR(2 / L) * SIN(N * 3.14159 * X / L)

  LINE (0, N ^ 2)-(L, N ^ 2), 1:  PSET (X, Y + N ^ 2), 2

  FOR I = 1 TO 9: II = I * L * .1: LINE (II, 0)-(II, .5)

  JJ = YM * .1 * I: LINE (0, JJ)-(.02, JJ)

  'LINE (II, 0)-(II, YM): LINE (0, JJ)-(L, JJ)

  NEXT I

  REM ------Plot of square of wave functions------

  VIEW (180, 10)-(310, 170)

  WINDOW (0, 0)-(L, YM): LINE (0, 0)-(L, YM), , B

  FOR I = 1 TO 9: II = I * L * .1: LINE (II, 0)-(II, .5)

  YY = YM * .1 * I: LINE (0, YY)-(.02, YY)

  'LINE (II, 0)-(II, YM)

  ' LINE (0, YY)-(L, YY)

  NEXT I

  Y2 = (SQR(2 / L) * SIN(N * 3.14159 * X / L)) ^ 2

  LINE (0, N ^ 2)-(L, N ^ 2), 1: PSET (X, Y2 + N ^ 2), 2

  FOR KK = 1 TO 100 STEP .1: NEXT KK: NEXT X: NEXT N

  LOCATE 1, 3: PRINT "Wave Functions of Particle in a Box"

  LOCATE 3, 28: PRINT "SQUARE"

  FOR I = 1 TO 6: LOCATE 8 + I, 2: PRINT MID$(A$, I, 1): NEXT I

  LOCATE 22, 2: PRINT "0": LOCATE 2, 1: PRINT USING "##"; YM
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  LOCATE 23, 1: PRINT "  0     X-->      L   0     X-->      L"

  'LOCATE 5, 20: PRINT "n=5": LOCATE 11, 20: PRINT "n=4"

  'LOCATE 16, 20: PRINT "n=3": LOCATE 19, 20: PRINT "n=2"

  'LOCATE 21, 20: PRINT "n=1"

  FOR I = 1 TO M: LOCATE (1 + 16 / M) * I, 20

  PRINT "n="; : PRINT USING "#"; M + 1 - I: NEXT I

  END

To display the fi rst few wave functions of a harmonic oscillator.

 The wave functions of harmonic oscillator are given by

  Yu = 
2 !

Ê ˆ
Á ˜pu

a

u
  Hu exp(–y2/2)

where 

  a =   
2

04 mv

h

p  
where v0 =  f1

2

k

mp

 H is Hermite polynomials. The fi rst few Hermite polynomials are
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 H0 = 1 H4 = 16y4 – 48y2 + 12

 H1 = 2y H5 = 32y5 – 160 y3 + 120y

 H2 = 4y2 – 2 H6 = 64y6 – 480y4 +  720y2 – 120

 H3 = 8y 3 – 12y

 Alternatively, Hermite polynomials may be generated by using the recurrsion expression.

  Hu+1 = 2yHu + 2u Hu –1 with H0 = 1 and H1 = 2y

 Plot the wave functions for CO for which MC = 0.012 kg mol–1 and MO = 0.016 kg mol–1, The 

expression of the reduced mass is

  m = 
1 2

1 2 A

1

( )

M M

M M N+

 Vary x from –xmax to xmax where xmax is given by the expression

  xmax = 

1/2

max 0

f

(2 1)hv

k

uÈ ˘+
Í ˙
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2
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Í ˙

pÍ ˙Î ˚n m

with umax = 5. Plot the wave functions for u = 0, 1, 2, 3 and 4.

REM PROGRAM WFOSCIL1;WAVE FUNCTIONS OF HARMONIC OSCILLATOR

   CLS : DIM HP(20)

   READ VMAX: DATA 4: A$ = "ENERGY"

   NA = 6.022E+23: PI = 3.14159: M1 = .012: M2 = .016

   M = M1 * M2 / ((M1 + M2) * NA): NU0 = 6.5E+13: VM1 = VMAX + 1

   AL = M * NU0 * 4 * PI ^ 2 / 6.626E-34: XM1 = VMAX + 3

   XM = (2 * XM1 * 6.626E-34 / ((2 * PI) ^ 2 * NU0 * M)) ^ .5

   XS = XM / 50: HP(0) = 1

   SCREEN 1: COLOR 15, 0

   FOR V = 0 TO VMAX

   FACT = 1

   IF V = 0 OR V = 1 THEN 4

   FOR I = 2 TO V: FACT = FACT * I: NEXT I

   4 FOR X = -XM TO XM STEP XS

   Y = AL ^ .5 * X: HP(1) = 2 * Y

   IF V = 0 OR V = 1 THEN 6

   FOR I = 1 TO V - 1

   HP(I + 1) = 2 * Y * HP(I) - 2 * I * HP(I - 1)

   NEXT I
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   6 H = HP(V)

   REM -----PLOTS OF WAVE FUNCTIONS--------

   VIEW (24, 10)-(144, 170)

   WINDOW (-XM, 0)-(XM, VM1): LINE (-XM, 0)-(XM, VM1), , B

   SAI = (AL ^ .5 / (2 ^ V * FACT * PI ^ .5)) ^ .5

   SAI = SAI * H * EXP(-Y ^ 2 / 2) * (-1) ^ V

   LINE (-XM, V + .5)-(XM, V + .5), 1

   PSET (X, (V + .5) + SAI * .000001), 2

   FOR I = 1 TO 9: XX = -XM + 2 * XM * .1 * I: YY = VM1 * .1 * I

   LINE (XX, 0)-(XX, .1), 2

   LINE (-XM, YY)-(-XM + 1E-12, YY), 2

   'LINE (XX, 0)-(XX, VM1): LINE (-XM, YY)-(XM, YY)

   NEXT I

   REM------PLOTS OF SQUARE OF WAVE FUNCTIONS------

   VIEW (180, 10)-(300, 170)

   WINDOW (-XM, 0)-(XM, VM1): LINE (-XM, 0)-(XM, VM1), , B

   PSET (X, (V + .5) + SAI ^ 2 * 5E-12), 2

   NEXT X

   LINE (-XM, V + .5)-(XM, V + .5), 1

   FOR I = 1 TO 1000 STEP .001: NEXT I

   NEXT V

   LOCATE 1, 3: PRINT "Wave Functions of Harmonic Oscillator"

   LOCATE 2, 1: PRINT VM1

   FOR I = 1 TO 6: LOCATE 8 + I, 2: PRINT MID$(A$, I, 1): NEXT I

   LOCATE 22, 2: PRINT "0"

   LOCATE 23, 2: PRINT USING "##.##"; -XM * 1E+11;

   PRINT "  x/1E-11 "; : PRINT USING "#.##"; XM * 1E+11

   LOCATE 23, 27: PRINT "SQUARE"

   FOR I = 1 TO 9

   XX = -XM + 2 * XM * .1 * I: YY = VM1 * .1 * I

   LINE (XX, 0)-(XX, .1), 2

   LINE (-XM, YY)-(-XM + 1E-12, YY), 2

   'LINE (XX, 0)-(XX, VM1): LINE (-XM, YY)-(XM, YY)

   NEXT I

   FOR I = 0 TO VMAX

   LOCATE 4 + (20 / VM1) * I, 20: PRINT "v=";

   PRINT USING "#"; VMAX - I: NEXT I

   END
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To display the variations of Rn,l v . r/a0, R
2
n,l v. r/a0 and r2R2

n,l v . r/a0 for the following wave functions of 

hydrogen atom. Also determine the value(s) of r/a0 at which the plots of R2 and r 2R2 exhibit maximum 

and the value of rav (= < R |r|R >).

Wave function R1,0 R1,0 = 

3/2

0

2
Z

a

Ê ˆ
Á ˜Ë ¯

  exp (–Zr/a0)

Wave function R2,0 R2,0 = 

3/2

0 0

2 –
2

Z Zr

a a

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

  exp (– Zr/2a0)

Wave function R2,1 R2,1 =  

3/2

0 0

1

23

Z Zr

a a

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

  exp (–Zr/2a0)

Wave function R3,0 R3,0 = 

3/2 2 2

2
0 0 0

2 2 2
3 –

3 3 9

Z Zr Z r

a a a

Ê ˆÊ ˆ
+Á ˜Á ˜Ë ¯ Ë ¯

  exp (– Zr/3a0)
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Wave function R3,1 R3,1 = 

3/2 2 2

2
0 0 0

2 2 2
–

9 3 3

Z Zr Z r

a a a

Ê ˆÊ ˆ
Á ˜Á ˜Ë ¯ Ë ¯

 exp (–Zr/3 a0)

Wave function R3,2 R3,2 = 

2 2

2
0

4

27 10

Z r

a

Ê ˆ
Á ˜
Ë ¯

 exp (–Zr/3 a0)

Wave function R4, 0  R4, 0 =  

3/2 2 3

0 0 0 0 0

1
192 – 144 24 – exp –

768 4

Z Zr Zr Zr Zr

a a a a a

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆÍ ˙+Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Í ˙Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯Î ˚
 

Wave function R4, 1 R4, 1 = 

3/2 2

0 0 0 0 0

3
80 – 20 exp –

4768 15

Z Zr Zr Zr Zr

a a a a a

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆÍ ˙+Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Í ˙Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯Î ˚
 

Wave function R4, 2 R4, 2 = 

3/2 2

0 0 0 0

1
12 – exp –

4768 5

Z Zr Zr Zr

a a a a

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ
Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

 

Wave function R4, 3 R4, 3 = 

3/2 3

0 0 0

1
exp –

4768 35

Z Zr Zr

a a a

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 

Summary of Maxima The values of r at which the plots (of the output) exhibit maxima and the values 

of < r > for the above mentioned orbitals are shown in Table 2.46.1.

 Orbital R2 r2R2 r*av

 1s  1 1.5

 2s 4.0 0.75 5.25 6.0

 2p 2.0 4.0 5.0

 3s 3.6 11.6 0.80 4.30 13.20 13.5

 3p 1.8 10.3 3.0 12.1 12.5

 3d 6.0 9.0 10.5

 4s 3.5 10.0 22.8 0.8 4.1 10.7 24.7 24.0

 4p 1.7 8.8 21.6 2.9 9.7 23.6 23.0

 4d 6.8 21.2 5.1 19.0 21.0 

 4f 12.0 16.0 18.0

* Theoretically, < r > = [3n2 – l (l + 1)] (a0/2).

  REM PROGRAM PLOT1S;PLOTS OF R,R2,r2R2 FOR 1s ORBITAL

  CLS : SCREEN 1: COLOR 15, 0: VIEW (20, 20)-(310, 170)

  WINDOW (0, 0)-(4, 1): LINE (0, 0)-(4, 1), , B
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  AVR = 0: AVD = 0

  FOR R = 0 TO 6 STEP .01

  SAI = EXP(-R): SAI2 = SAI ^ 2: RAD = R ^ 2 * SAI2

  IF RADMAX < RAD THEN RADMAX = RAD: RMAX = R

  PSET (R, SAI), 1: PSET (R, SAI2), 2: PSET (R, 5 * RAD), 3

  AVR = AVR + RAD * R: AVD = AVD + RAD

  'FOR KK = 1 TO 100 STEP .0005: NEXT KK

  NEXT R

  FOR I = 1 TO 9: LINE (I * .4, 0)-(I * .4, .03)

  LINE (0, I * .1)-(.05, I * .1): NEXT I

  A$ = "R  R2  r2R2": LINE (RMAX, 0)-(RMAX, 5 * RADMAX)

  LOCATE 2, 3: PRINT "PLOTS OF R,R2 AND r2R2 FOR 1s ORBITAL"

  LOCATE 3, 2: PRINT "1": LOCATE 4, 2: PRINT "1"

  LOCATE 5, 1: PRINT ".2": LOCATE 5, 8

  PRINT "   r2R2MAX"; : PRINT USING " #.##"; RMAX

  LOCATE 6, 11: PRINT "RAV"; : PRINT USING "     #.#"; AVR / AVD

  FOR I = 1 TO 11: B$ = MID$(A$, I, 1)

  LOCATE 7 + I, 2: PRINT B$: NEXT I

  LOCATE 19, 14: PRINT "R2": LOCATE 19, 23

  PRINT "R": LOCATE 19, 31: PRINT "r2R2"

  LOCATE 22, 2: PRINT "0"

  LOCATE 23, 3: PRINT "0             r/a0---->             4"

  END
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  REM PROGRAM PLOT2S;PLOTS OF R,R2,r2R2 FOR 2s ORBITAL

  CLS : R1 = 0: R2 = 14: S1 = -1: S2 = 3: RADMAX1 = 0

  RI = 0: R2MAX = 100

  SCREEN 1: COLOR 15, 0: VIEW (32, 20)-(315, 170)

  WINDOW (R1, S1)-(R2, S2): LINE (R1, S1)-(R2, S2), , B

  LINE (R1, 0)-(R2, 0): J = 1: K = 1

  AVR = 0: AVD = 0

  FOR R = 0 TO R2 + 4 STEP .02

  SAI = (2 - R) * EXP(-R / 2): SAI2 = SAI ^ 2

  RAD = R ^ 2 * SAI2

  ON K GOTO 3, 4

  3 IF R2MAX > SAI2 THEN R2MAX = SAI2: GOTO 5

  R2MAX = SAI2: K = 2: GOTO 5

  4 IF R2MAX > SAI2 THEN 5

  R2MAX = SAI2: MR2 = R

  5 ON J GOTO 10, 30

10 IF RADMAX > RAD THEN 20

RADMAX = RAD: RADMAX1 = RAD: RI1 = R

GOTO 30

20 J = 2

30 IF RADMAX1 > RAD THEN 40

RADMAX1 = RAD: RI2 = R

40 PSET (R, 2 * SAI), 1: PSET (R, 2 * SAI2), 2

PSET (R, RAD), 3

AVR = AVR + R * RAD: AVD = AVD + RAD

'FOR I = 1 TO 100 STEP .1: NEXT I

NEXT R

LINE (RI1, 0)-(RI1, RADMAX): LINE (RI2, 0)-(RI2, RADMAX1)

LINE (MR2, 0)-(MR2, 2 * R2MAX), 2

SS = (S2 - S1) * .1

FOR I = 1 TO 9: SS1 = S1 + I * SS

LINE (R1, SS1)-(R1 + .2, SS1): NEXT I

FOR I = 1 TO R2: LINE (I, S1)-(I, S1 + .1): NEXT I

A$ = " R  R2  r2R2"

LOCATE 2, 4: PRINT "PLOTS OF R,R2 AND r2R2 FOR 2s ORBITAL"

LOCATE 3, 2: PRINT USING "#.#"; S2 / 2

LOCATE 4, 2: PRINT USING "#.#"; S2 / 2

LOCATE 4, 15: PRINT " r2R2MAX"; : PRINT USING " #.##"; RI1; RI2

LOCATE 5, 2: PRINT USING "#.#"; S2

LOCATE 5, 15: PRINT " R2MAX"; : PRINT USING "   #.##"; MR2

LOCATE 6, 16: PRINT "RAV"; : PRINT USING "     #.##"; AVR / AVD
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FOR I = 1 TO 13: B$ = MID$(A$, I, 1)

LOCATE 6 + I, 3: PRINT B$: NEXT I

LOCATE 10, 27: PRINT "r2R2": LOCATE 16, 25

PRINT "R2": LOCATE 20, 25: PRINT "R"

LOCATE 20, 1: PRINT USING "##.#"; S1 / 2

LOCATE 21, 1: PRINT USING "##.#"; S1 / 2

LOCATE 22, 1: PRINT USING "##.#"; S1

LOCATE 23, 3: PRINT "  0            r/a0---->            ";

PRINT USING "##"; R2

  END

WINDOW (R1, S1)-(R2, S2): LINE (R1, S1)-(R2, S2), , B

LINE (R1, 0)-(R2, 0)

AVR = 0: AVD = 0

FOR R = 0 TO R2 + 6 STEP .02

SAI = R * EXP(-R / 2): SAI2 = SAI ^ 2: RAD = R ^ 2 * SAI2

IF R2MAX > SAI2 THEN 10

R2MAX = SAI2: RMAX = R

10 IF RADMAX > RAD THEN 40

RADMAX = RAD: RI1 = R

40 PSET (R, 5 * SAI), 1: PSET (R, 5 * SAI2), 2: PSET (R, RAD), 3
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'FOR I = 1 TO 100 STEP .1: NEXT I

AVR = AVR + R * RAD: AVD = AVD + RAD

NEXT R

LINE (RMAX, 0)-(RMAX, R2MAX * 5), 2: LINE (RI1, 0)-(RI1, RADMAX)

RS = (R2 - R1) * .1: SS = (S2 - S1) * .1

FOR I = 1 TO 9: LINE (I * RS, S1)-(I * RS, S1 + .1)

LINE (R1, S1 + I * SS)-(R1 + .1, S1 + I * SS)

NEXT I: A$ = " R  R2  r2R2"

LOCATE 2, 3: PRINT "PLOTS OF R,R2 AND r2R2 FOR 2p ORBITAL"

LOCATE 3, 1: PRINT USING "##"; S2 / 5

LOCATE 4, 1: PRINT USING "##"; S2 / 5

LOCATE 5, 1: PRINT USING "##"; S2

LOCATE 5, 26: PRINT "R2MAX"; : PRINT USING "   #.#"; RMAX

LOCATE 6, 26: PRINT "r2R2MAX"; : PRINT USING " #.#"; RI1

LOCATE 7, 26: PRINT "RAV"; : PRINT USING "     #.#"; AVR / AVD

FOR I = 1 TO 13: B$ = MID$(A$, I, 1)

LOCATE 6 + I, 2: PRINT B$: NEXT I

LOCATE 22, 1: PRINT USING "##"; S1

LOCATE 23, 3: PRINT "0            r/a0---->             ";

PRINT USING "##"; R2

LOCATE 13, 30: PRINT "r2R2": LOCATE 17, 29

PRINT "R": LOCATE 19, 24: PRINT "R2"

END
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CLS : DIM r2R2MX(3), RMAX(3), R2MAX(2), RMX(2)

R1 = 0: R2 = 20: S1 = -2: S2 = 8: RI = 0: R2MX = 1000: r2R2MAX = 0

SCREEN 1: COLOR 15, 0: VIEW (32, 20)-(318, 170)

WINDOW (R1, S1)-(R2, S2): LINE (R1, S1)-(R2, S2), , B

LINE (R1, 0)-(R2, 0)

KK = 1: J = 0: K = 1: JJ = 0

AVR = 0: AVD = 0

FOR R = 0 TO R2 + 9 STEP .02

SAI = (3 - 2 * R + 2 * R ^ 2 / 9) * EXP(-R / 3): SAI2 = SAI ^ 2

RAD = R ^ 2 * SAI2

ON KK GOTO 3, 4

3 IF R2MX > SAI2 THEN R2MX = SAI2: GOTO 9

R2MX = SAI2: KK = 2: GOTO 9

4 IF R2MX < SAI2 THEN R2MX = SAI2: GOTO 9

JJ = JJ + 1: R2MAX(JJ) = SAI2: RMX(JJ) = R: KK = 1

9 ON K GOTO 10, 15

10 IF r2R2MAX > RAD THEN 20

r2R2MAX = RAD: GOTO 25

15 IF r2R2MAX > RAD THEN 25

r2R2MAX = RAD: K = 1

GOTO 10

20 J = J + 1: r2R2MX(J) = r2R2MAX: RMAX(J) = R: K = 2

25 PSET (R, 5 * SAI), 1: PSET (R, 5 * SAI2), 2: PSET (R, RAD), 3

AVR = AVR + R * RAD: AVD = AVD + RAD

'FOR I = 1 TO 100 STEP .1: NEXT I

NEXT R

FOR I = 1 TO J: LINE (RMAX(I), 0)-(RMAX(I), r2R2MX(I)): NEXT I

FOR I = 1 TO JJ: LINE (RMX(I), 0)-(RMX(I), R2MAX(I) * 5), 2: 

NEXT I

RS = (R2 - R1) * .1: SS = (S2 - S1) * .1

FOR I = 1 TO 9

LINE (I * RS, S1)-(I * RS, S1 + .2)

LINE (R1, S1 + I * SS)-(R1 + .2, S1 + I * SS)

NEXT I

A$ = "R  R2  r2R2"

LOCATE 2, 4: PRINT "PLOTS OF R,R2 AND r2R2 FOR 3s ORBITAL"

LOCATE 3, 2: PRINT USING "#.#"; S2 / 5



180 A Textbook of Physical Chemistry

LOCATE 4, 2: PRINT USING "#.#"; S2 / 5

LOCATE 4, 10: PRINT "R2MAX ";

FOR I = 1 TO JJ: PRINT USING "  ##.##"; RMX(I); : NEXT I

LOCATE 5, 2: PRINT USING "#.#"; S2

LOCATE 5, 10: PRINT "r2R2MAX";

FOR I = 1 TO J: PRINT USING " ##.##"; RMAX(I); : NEXT I

LOCATE 6, 10: PRINT "RAV"; : PRINT USING "      ##.#"; AVR / AVD

FOR I = 1 TO 11: B$ = MID$(A$, I, 1)

LOCATE 6 + I, 3: PRINT B$: NEXT I

LOCATE 10, 35: PRINT "r2R2": LOCATE 16, 35

PRINT "R": LOCATE 19, 35: PRINT "R2"

LOCATE 20, 1: PRINT USING "##.#"; S1 / 5

LOCATE 21, 1: PRINT USING "##.#"; S1 / 5

LOCATE 22, 2: PRINT USING "##"; S1

LOCATE 23, 3: PRINT "  0            r/a0---->            ";

PRINT USING "##"; R2

END
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LINE (R1, 0)-(R2, 0)

R2MX = 0: r2R2MX = 0: J = 0: K = 1: J1 = 0: K1 = 1

AVR = 0: AVD = 0

FOR R = 0 TO R2 + 8 STEP .02

SAI = (2 * R - R ^ 2 / 3) * EXP(-R / 3)

SAI2 = SAI ^ 2: RAD = R ^ 2 * SAI2

ON K1 GOTO 5, 6

5 IF R2MX > SAI2 THEN 8

R2MX = SAI2: GOTO 9

6 IF R2MX < SAI2 THEN 7

R2MX = SAI2: GOTO 5

7 R2MX = SAI2: K1 = 1: GOTO 9

8 J1 = J1 + 1

R2MAX(J1) = R2MX: RMX(J1) = R: K1 = 2

9 ON K GOTO 10, 15

10 IF r2R2MX > RAD THEN 20

r2R2MX = RAD: GOTO 25

15 IF r2R2MX > RAD THEN 25

r2R2MX = RAD: K = 1

GOTO 10

20 J = J + 1

r2R2MAX(J) = r2R2MX: R1MX(J) = R: K = 2

25 PSET (R, RF * SAI), 1: PSET (R, RF * SAI2), 2

PSET (R, RAD), 3

AVR = AVR + R * RAD: AVD = AVD + RAD

'FOR I = 1 TO 100 STEP .1: NEXT I

NEXT R

LINE (RI1, 0)-(RI1, r2R2MX)

RS = (R2 - R1) * .1: SS = (S2 - S1) * .1

FOR I = 1 TO 9

LINE (I * RS, S1)-(I * RS, S1 + 1)

LINE (R1, S1 + I * SS)-(R1 + .2, S1 + I * SS)

NEXT I

A$ = "R  R2  r2R2"

LOCATE 2, 4: PRINT "PLOTS OF R,R2 AND r2R2 FOR 3p ORBITAL"

LOCATE 3, 2: PRINT USING "##"; S2 / RF

LOCATE 4, 2: PRINT USING "##"; S2 / RF

LOCATE 5, 2: PRINT USING "##"; S2

LOCATE 4, 5: PRINT "R2MAX";

FOR I = 1 TO J: PRINT USING "  ##.#"; RMX(I);
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LINE (RMX(I), 0)-(RMX(I), R2MAX(I) * RF), 2: NEXT I

LOCATE 5, 5: PRINT "r2R2MAX";

FOR I = 1 TO J: PRINT USING " ##.#"; R1MX(I);

LINE (R1MX(I), 0)-(R1MX(I), r2R2MAX(I)): NEXT I

LOCATE 6, 5: PRINT "RAV"; : PRINT USING "     ##.#"; AVR / AVD

FOR I = 1 TO 11: B$ = MID$(A$, I, 1)

LOCATE 6 + I, 2: PRINT B$: NEXT I

LOCATE 11, 35: PRINT "r2R2": LOCATE 18, 35

PRINT "R2": LOCATE 20, 36: PRINT "R"

LOCATE 20, 1: PRINT USING "#.#"; S1 / RF

LOCATE 21, 1: PRINT USING "#.#"; S1 / RF

LOCATE 22, 2: PRINT USING "##"; S1

LOCATE 23, 4: PRINT "0            r/a0---->             ";

PRINT USING "##"; R2

END

REM PROG45F

REM PROGRAM PLOT3D;PLOTS OF R,R2,r2R2 FOR 3d ORBITAL

CLS : R1 = 0: R2 = 20: S1 = 0: S2 = 1500: RF = 30

RADMAX = 0: R2MAX = 0: RI = 0

SCREEN 1: COLOR 15, 0: VIEW (32, 20)-(315, 170)
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WINDOW (R1, S1)-(R2, S2): LINE (R1, S1)-(R2, S2), , B

LINE (R1, 0)-(R2, 0): AVR = 0: AVD = 0

FOR R = 0 TO R2 + 5 STEP .02

SAI = R ^ 2 * EXP(-R / 3): SAI2 = SAI ^ 2: RAD = R ^ 2 * SAI2

IF RADMAX > RAD THEN 40

RADMAX = RAD: MRAD = R

IF R2MAX > SAI2 THEN 40

R2MAX = SAI2: MR2 = R

40 PSET (R, RF * SAI), 1: PSET (R, RF * SAI2), 2: PSET (R, RAD), 3

AVR = AVR + R * RAD: AVD = AVD + RAD

'FOR I = 1 TO 100 STEP .1: NEXT I

NEXT R

LINE (MRAD, 0)-(MRAD, RADMAX)

LINE (MR2, 0)-(MR2, RF * R2MAX), 2

RS = (R2 - R1) * .1: SS = (S2 - S1) * .1

FOR I = 1 TO 9: LINE (I * RS, S1)-(I * RS, S1 + 20)

LINE (R1, S1 + I * SS)-(R1 + .2, S1 + I * SS)

NEXT I

A$ = "R   R2   r2R2"

LOCATE 2, 3: PRINT "PLOTS OF R,R2 AND r2R2 FOR 3d ORBITAL"

LOCATE 3, 2: PRINT USING "##"; S2 / RF

LOCATE 4, 2: PRINT USING "##"; S2 / RF

LOCATE 5, 1: PRINT USING "####"; S2

LOCATE 4, 28: PRINT "r2R2MAX"; : PRINT USING " #.#"; MRAD

LOCATE 5, 28: PRINT "R2MAX"; : PRINT USING "   #.#"; MR2

LOCATE 6, 28: PRINT "RAV"; : PRINT USING "     ##.#"; AVR / AVD

FOR I = 1 TO 13: B$ = MID$(A$, I, 1)

LOCATE 6 + I, 3: PRINT B$: NEXT I

LOCATE 12, 29: PRINT "r2R2": LOCATE 16, 22

PRINT "R2": LOCATE 19, 18: PRINT "R"

LOCATE 22, 2: PRINT USING "##"; S1

LOCATE 23, 3: PRINT "  0           r/a0---->             ";

PRINT USING "##"; R2

END
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REM PLOTS OF R,R2,r2R2 FOR 4s ORBITAL

CLS : DIM r2R2MX(4), RMAX(4), R2MAX(3), RMX(3)

R1 = 0: R2 = 40: S1 = -2: S2 = 8: R2MX = 1000: r2R2MAX = 0

SCREEN 1: COLOR 15, 0: VIEW (25, 20)-(318, 170)

WINDOW (R1, S1)-(R2, S2): LINE (R1, S1)-(R2, S2), , B

LINE (R1, 0)-(R2, 0)

KK = 1: J = 0: K = 1: JJ = 0: AVR = 0: AVD = 0

FOR R = 0 TO R2 + 13 STEP .05

SAI = (192 - 144 * R + 24 * R ^ 2 - R ^ 3)

SAI = SAI * (1 / 768) * EXP(-R / 4)

SAI2 = SAI ^ 2: RAD = R ^ 2 * SAI2

ON KK GOTO 3, 4, 5

3 IF R2MX > SAI2 THEN R2MX = SAI2: GOTO 9

R2MX = SAI2: KK = 2: GOTO 9

4 IF R2MX > SAI2 THEN R2MX = SAI2: GOTO 9

R2MX = SAI2: KK = 3: GOTO 9

5 IF R2MX < SAI2 THEN R2MX = SAI2: GOTO 9

JJ = JJ + 1: R2MAX(JJ) = SAI2: RMX(JJ) = R: KK = 1

9 ON K GOTO 10, 15

10 IF r2R2MAX > RAD THEN 20

r2R2MAX = RAD: GOTO 25

15 IF r2R2MAX > RAD THEN 25

r2R2MAX = RAD: K = 1

GOTO 10

20 J = J + 1: r2R2MX(J) = r2R2MAX: RMAX(J) = R: K = 2
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25 PSET (R, 55 * SAI), 1: PSET (R, 7000 * SAI2), 2

PSET (R, 100 * RAD), 3

AVR = AVR + R * RAD: AVD = AVD + RAD

'FOR I = 1 TO 100 STEP .5: NEXT I

NEXT R

FOR I = 1 TO J: LINE (RMAX(I), 0)-(RMAX(I), 100 * r2R2MX(I)): 

NEXT I

FOR I = 1 TO JJ: LINE (RMX(I), 0)-(RMX(I), 7000 * R2MAX(I)), 2: 

NEXT I

RS = (R2 - R1) * .1: SS = (S2 - S1) * .1

FOR I = 1 TO 9

LINE (I * RS, S1)-(I * RS, S1 + .2)

LINE (R1, S1 + I * SS)-(R1 + .4, S1 + I * SS)

NEXT I

LOCATE 2, 4: PRINT "PLOTS OF R,R2 AND r2R2 FOR 4s ORBITAL"

LOCATE 4, 9: PRINT "R2MAX ";

FOR I = 1 TO JJ: PRINT USING "  ##.#"; RMX(I); : NEXT I

LOCATE 3, 3: PRINT USING "#"; S2

LOCATE 5, 9: PRINT "r2R2MAX";

FOR I = 1 TO J: PRINT USING " ##.#"; RMAX(I); : NEXT I

LOCATE 6, 9: PRINT "RAV"; : PRINT USING "      ##.#"; AVR / AVD

LOCATE 9, 32: PRINT "r2R2"

LOCATE 17, 36: PRINT "R2": LOCATE 19, 38: PRINT "R"

LOCATE 22, 2: PRINT USING "##"; S1

LOCATE 23, 3: PRINT " 0            r/a0---->             ";

PRINT USING "##"; R2

END 
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  REM PLOTS OF R,R2,r2R2 FOR 4p ORBITAL

CLS : DIM R2MAX(5), RMX(5), r2R2MAX(5), R1MAX(5)

R1 = 0: R2 = 30: S1 = -1: S2 = 3: SF = 10

SCREEN 1: COLOR 15, 0: VIEW (20, 20)-(315, 170)

WINDOW (R1, S1)-(R2, S2): LINE (R1, S1)-(R2, S2), , B

LINE (R1, 0)-(R2, 0)

R2MX = 0: r2R2MX = 0: J = 0: K = 1: J1 = 0: K1 = 1

AVR = 0: AVD = 0

FOR R = 0 TO R2 + 17 STEP .02

SAI = 3 / (768 * SQR(15)) * (80 - 20 * R + R ^ 2) * R * EXP(-R 

/ 4)

SAI2 = SAI ^ 2: RAD = R ^ 2 * SAI2

ON K1 GOTO 5, 6

5 IF R2MX > SAI2 THEN 8

R2MX = SAI2: GOTO 9

6 IF R2MX < SAI2 THEN 7

R2MX = SAI2: GOTO 5

7 R2MX = SAI2: K1 = 1: GOTO 9

8 J1 = J1 + 1

R2MAX(J1) = R2MX: RMX(J1) = R: K1 = 2

9 ON K GOTO 10, 15

10 IF r2R2MX > RAD THEN 20

r2R2MX = RAD: GOTO 25

15 IF r2R2MX > RAD THEN 25

r2R2MX = RAD: K = 1: GOTO 10

20 J = J + 1

r2R2MAX(J) = r2R2MX: R1MX(J) = R: K = 2

25 PSET (R, 30 * SAI), 1: PSET (R, 950 * SAI2), 2

PSET (R, 38 * RAD), 3

AVR = AVR + R * RAD: AVD = AVD + RAD

'FOR I = 1 TO 100 STEP .5: NEXT I

NEXT R

RS = (R2 - R1) * .1: SS = (S2 - S1) * .1

FOR I = 1 TO 9

LINE (I * RS, S1)-(I * RS, S1 + .1)

LINE (R1, S1 + I * SS)-(R1 + .3, S1 + I * SS)

NEXT I

LOCATE 2, 4: PRINT "PLOTS OF R,R2 AND r2R2 FOR 4p ORBITAL"

LOCATE 3, 2: PRINT USING "#"; S2
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LOCATE 4, 8: PRINT "R2MAX  ";

FOR I = 1 TO J: PRINT USING "  ##.#"; RMX(I);

LINE (RMX(I), 0)-(RMX(I), 950 * R2MAX(I)), 2: NEXT I

LOCATE 5, 8: PRINT "r2R2MAX";

FOR I = 1 TO J: PRINT USING "  ##.#"; R1MX(I);

LINE (R1MX(I), 0)-(R1MX(I), 38 * r2R2MAX(I)): NEXT I

LOCATE 6, 8: PRINT "RAV "; : PRINT USING "     ##.#"; AVR / AVD

LOCATE 9, 34: PRINT "r2R2": LOCATE 15, 36

PRINT "R": LOCATE 18, 38: PRINT "R2"

LOCATE 22, 1: PRINT USING "##"; S1

LOCATE 23, 3: PRINT "0            r/a0---->              ";

PRINT USING "##"; R2

END 

REM PLOTS OF R,R2,r2R2 FOR 4d ORBITAL

DIM RMX(5), R2MAX(5), RDMX(5), RDMAX(5)

CLS : R1 = 0: R2 = 30: S1 = -.6: S2 = 1.4

RADMAX = 0: R2MX = 0: K1 = 1: K2 = 1

SCREEN 1: COLOR 15, 0: VIEW (32, 20)-(315, 170)

WINDOW (R1, S1)-(R2, S2): LINE (R1, S1)-(R2, S2), , B

LINE (R1, 0)-(R2, 0): AVR = 0: AVD = 0
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FOR R = 0 TO R2 + 15 STEP .02

SAI = 1 / (768 * SQR(5)) * (12 - R) * R ^ 2 * EXP(-R / 4)

SAI2 = SAI ^ 2: RAD = R ^ 2 * SAI2

ON K1 GOTO 5, 6

5 IF R2MX > SAI2 THEN 8

R2MX = SAI2: GOTO 9

6 IF R2MX < SAI2 THEN 7

R2MX = SAI2: GOTO 5

7 R2MX = SAI2: K1 = 1: GOTO 9

8 J1 = J1 + 1

R2MAX(J1) = R2MX: RMX(J1) = R: K1 = 2

9 ON K2 GOTO 15, 16

15 IF RADMAX > RAD THEN 18

RADMAX = RAD: GOTO 19

16 IF RADMAX < RAD THEN 17

RADMAX = RAD: GOTO 15

17 RADMAX = RAD: K2 = 1: GOTO 19

18 J2 = J2 + 1

RDMAX(J2) = RADMAX: RDMX(J2) = R: K2 = 2

19 PSET (R, 43 * SAI), 1

PSET (R, 1000 * SAI2), 2: PSET (R, 17 * RAD), 3

AVR = AVR + R * RAD: AVD = AVD + RAD

'FOR I = 1 TO 100 STEP .5: NEXT I

NEXT R

FOR I = 1 TO J1

LINE (RMX(I), 0)-(RMX(I), 1000 * R2MAX(I)), 2

NEXT I

FOR I = 1 TO J2

LINE (RDMX(I), 0)-(RDMX(I), 17 * RDMAX(I))

NEXT I

RS = (R2 - R1) * .1: SS = (S2 - S1) * .1

FOR I = 1 TO 9: LINE (I * RS, S1)-(I * RS, S1 + SS / 4)

LINE (R1, S1 + I * SS)-(R1 + RS / 8, S1 + I * SS)

NEXT I

LOCATE 2, 3: PRINT "PLOTS OF R,R2 AND r2R2 FOR 4d ORBITAL"

LOCATE 3, 1: PRINT USING "##.#"; S2

LOCATE 4, 14: PRINT "R2MAX  ";

FOR I = 1 TO J1: PRINT USING "  ##.#"; RMX(I); : NEXT I

LOCATE 5, 14: PRINT "r2R2MAX";

FOR I = 1 TO J2: PRINT USING "  ##.#"; RDMX(I); : NEXT I
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LOCATE 6, 14: PRINT "RAV"; : PRINT USING "      ##.#"; AVR / AVD

LOCATE 11, 33: PRINT "r2R2": LOCATE 15, 38: PRINT "R2"

LOCATE 18, 38: PRINT "R"

LOCATE 22, 1: PRINT USING "##.#"; S1

LOCATE 23, 3: PRINT "  0           r/a0---->             ";

PRINT USING "##"; R2

END

REM PLOTS OF R,R2,r2R2 FOR 4f ORBITAL

R1 = 0: R2 = 40: S1 = 0: S2 = .5: RADMAX = 0: R2MAX = 0

CLS : SCREEN 1: COLOR 15, 0: VIEW (25, 20)-(315, 170)

WINDOW (R1, S1)-(R2, S2): LINE (R1, S1)-(R2, S2), , B

LINE (R1, 0)-(R2, 0): AVR = 0: AVD = 0

FOR R = 0 TO R2 + 1 STEP .02

SAI = 1 / (768 * SQR(35)) * R ^ 3 * EXP(-R / 4)

SAI2 = SAI ^ 2: RAD = R ^ 2 * SAI2

IF R2MAX > SAI2 THEN 10

R2MAX = SAI2: RMAX = R

10 IF RADMAX > RAD THEN 40

RADMAX = RAD: RI1 = R

40 PSET (R, 25 * SAI), 1: PSET (R, 450 * SAI2), 2

PSET (R, 4 * RAD), 3
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'FOR I = 1 TO 100 STEP .5: NEXT I

AVR = AVR + R * RAD: AVD = AVD + RAD

NEXT R

LINE (RMAX, 0)-(RMAX, R2MAX * 450), 2

LINE (RI1, 0)-(RI1, 4 * RADMAX)

RS = (R2 - R1) * .1: SS = (S2 - S1) * .1

FOR I = 1 TO 9: LINE (I * RS, S1)-(I * RS, S1 + SS / 4)

LINE (R1, S1 + I * SS)-(R1 + RS / 8, S1 + I * SS)

NEXT I

LOCATE 2, 3: PRINT "PLOTS OF R,R2 AND r2R2 FOR 4f ORBITAL"

LOCATE 3, 1: PRINT USING "#.#"; S2

LOCATE 5, 27: PRINT "R2MAX"; : PRINT USING "   ##.#"; RMAX

LOCATE 6, 27: PRINT "r2R2MAX"; : PRINT USING " ##.#"; RI1

LOCATE 7, 27: PRINT "RAV"; : PRINT USING "     ##.#"; AVR / AVD

LOCATE 22, 1: PRINT USING "#.#"; S1

LOCATE 23, 3: PRINT "0            r/a0---->             ";

PRINT USING "##"; R2

LOCATE 15, 27: PRINT "R"

LOCATE 17, 21: PRINT "r2R2": LOCATE 20, 25: PRINT "R2"

END

To display two dimensional angular dependence of p and d orbitals.
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 The angular dependence of p and d orbitals are as follows.

 px sin q cos f ; keep f constant at 0 and p, vary q from 0 to p

 py sin q sin f ; keep f constant at p /2 and 3p /2 vary q from 0 to p

Note Both px and py plottings involve sin q versus q. Only orientation will be different. px will be

along x-axis (f = 0 and p) and py will be along y-axis (f = p /2) and 3p /2)

   pz cos q  ; vary q from 0 to p ; maximum along z-axis.

dxy  (sin q cos f) (sin q sin f) ∫ sin 2q sin 2f; vary f from 0 to p and keep q constant. Maximum along 

the line with q = 90° and f = 45° and thus lie in between x and y axis.

dxz  (sin q cos f) (cos q ) ∫ sin 2q cos f ; vary q from 0 to p and keep f constant. Maximum along 

f = 0 and q = p/4 and thus lie in between x and z axis.

dyz  (sin q sin q ) (cos q) ∫ sin 2q sin f ; vary q from 0 to p and keep f constant at p/2. Maximum along 

f = p/2 and q = p/4 and thus lie in between y and z axis.

Note dxy, dxz and dyz involve the plotting of sin 2q versus q. Only orientation will be different.

dx2–y2 sin2 q cos2 f – sin2 q sin2 f ∫ sin2 q cos 2f vary f from 0 to p and keep q constant at p/2.

 Maximum lies along q = p /2 and f = 0 and p/2 and thus lie along x and y axis.

dz2 3 cos2 q – 1 ; vary q from 0 to p. Maximum lies along z-axis where q = 0.

REM PROGRAM ANG2PX

REM ANGLE THETA IS TAKEN TO BE 0 and 180 degrees

CLS : SCREEN 1: COLOR 15, 0

SC = 1.2: SX = SC - .1: SY = SC - .5

FOR AN = 0 TO 360 STEP 1

TH = (22 / 7) * AN / 180

XX = SIN(TH): X = ABS(XX) * COS(TH): Y = ABS(XX) * SIN(TH)

VIEW (20, 20)-(160, 160)

WINDOW (-SC, -SC)-(SC, SC): LINE (-SC, -SC)-(SC, SC), , B

LINE (-SX, 0)-(SX, 0): LINE (0, -SX)-(0, SX)

LINE (-SY, -SY)-(SY, SY)

PSET (Y, X), 1

X1 = SIN(TH) ^ 2 * COS(TH): Y1 = SIN(TH) ^ 3

VIEW (170, 20)-(310, 160)

LINE (-SC, -SC)-(SC, SC), , B: LINE (-SX, 0)-(SX, 0)

LINE (0, -SX)-(0, SX): LINE (-SY, -SY)-(SY, SY)
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PSET (Y1, X1), 2

'FOR I = 1 TO 1000 STEP .1: NEXT I

NEXT AN

LOCATE 1, 4: PRINT "ANGULAR DEPENDENCE OF 2px AND ITS SQUARE"

LOCATE 5, 11: PRINT "Z": LOCATE 5, 30: PRINT "Z"

LOCATE 6, 17: PRINT "Y": LOCATE 6, 36: PRINT "Y"

LOCATE 11, 18: PRINT "X": LOCATE 11, 37: PRINT "X"

LOCATE 13, 9: PRINT "-": LOCATE 13, 14: PRINT "+"

LOCATE 11, 28: PRINT "+": LOCATE 11, 33: PRINT "+"

END

REM PROGRAM ANG2PY

REM ANGLE PHI IS TAKEN TO BE 90 and 270 degrees

CLS : SCREEN 1: COLOR 15, 0

SC = 1.2: SX = SC - .1: SY = SC - .5

FOR AN = 0 TO 360 STEP 1

TH = (22 / 7) * AN / 180

XX = SIN(TH): X = ABS(XX) * COS(TH): Y = ABS(XX) * SIN(TH)

VIEW (20, 20)-(160, 160)

WINDOW (-SC, -SC)-(SC, SC): LINE (-SC, -SC)-(SC, SC), , B

LINE (-SX, 0)-(SX, 0): LINE (0, -SX)-(0, SX)
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LINE (-SY, -SY)-(SY, SY)

PSET (Y, X), 1': PSET (-Y, -X), 1

X1 = SIN(TH) ^ 2 * COS(TH): Y1 = SIN(TH) ^ 3

VIEW (170, 20)-(310, 160): LINE (-SC, -SC)-(SC, SC), , B

LINE (-SX, 0)-(SX, 0): LINE (0, -SX)-(0, SX)

LINE (-SY, -SY)-(SY, SY)

PSET (Y1, X1), 2': PSET (-Y1, -X1), 2

FOR I = 1 TO 1000 STEP .001: NEXT I

NEXT AN

LOCATE 1, 4: PRINT "ANGULAR DEPENDENCE OF 2py AND ITS SQUARE"

LOCATE 5, 11: PRINT "Z": LOCATE 5, 30: PRINT "Z"

LOCATE 17, 8: PRINT "X": LOCATE 17, 27: PRINT "X"

LOCATE 11, 18: PRINT "Y": LOCATE 11, 37: PRINT "Y"

LOCATE 13, 9: PRINT "-": LOCATE 13, 14: PRINT "+"

LOCATE 11, 28: PRINT "+": LOCATE 11, 33: PRINT "+"

END

TH = (22 / 7) * AN / 180

Z = ABS(COS(TH)) * COS(TH): Y = ABS(COS(TH)) * SIN(TH)

VIEW (20, 20)-(160, 160): WINDOW (-SC, -SC)-(SC, SC)

LINE (-SC, -SC)-(SC, SC), , B: LINE (-SX, 0)-(SX, 0)

LINE (0, -SX)-(0, SX): LINE (-SY, -SY)-(SY, SY)
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PSET (Y, Z), 1

X1 = COS(TH) ^ 3: Y1 = COS(TH) ^ 2 * SIN(TH)

VIEW (170, 20)-(310, 160)

LINE (-SC, -SC)-(SC, SC), , B: LINE (-SX, 0)-(SX, 0)

LINE (0, -SX)-(0, SX): LINE (-SY, -SY)-(SY, SY)

PSET (Y1, X1), 2

FOR I = 1 TO 1000 STEP .01: NEXT I

NEXT AN

LOCATE 1, 4: PRINT "ANGULAR DEPENDENCE OF 2pz AND ITS SQUARE"

LOCATE 4, 11: PRINT "Z": LOCATE 4, 30: PRINT "Z"

LOCATE 9, 11: PRINT "+": LOCATE 9, 30: PRINT "+"

LOCATE 14, 11: PRINT "-": LOCATE 14, 30: PRINT "+"

LOCATE 15, 7: PRINT "X": LOCATE 16, 27: PRINT "X"

LOCATE 11, 18: PRINT "Y": LOCATE 11, 37: PRINT "Y"

END

WINDOW (-Z, -Z)-(Z, Z): LINE (-Z, -Z)-(Z, Z), , B

LINE (-Z2, 0)-(Z2, 0): LINE (0, -Z2)-(0, Z2)

LINE (-.5, -.5)-(.5, .5): LINE (-Z1, -Z1)-(Z1, Z1), 2, B
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TH = (22 / 7) * AN / 180: XX = SIN(2 * TH)

Y = ABS(XX) * COS(TH): X = ABS(XX) * SIN(TH)

PSET (X, Y), 1

VIEW (170, 30)-(310, 170)

LINE (-Z, -Z)-(Z, Z), , B

LINE (-Z2, 0)-(Z2, 0): LINE (0, -Z2)-(0, Z2)

LINE (-.5, -.5)-(.5, .5): LINE (-Z1, -Z1)-(Z1, Z1), 2, B

Y1 = XX ^ 2 * COS(TH): X1 = XX ^ 2 * SIN(TH)

PSET (X1, Y1), 2

'FOR I = 1 TO 100 STEP .001: NEXT I

NEXT AN

LOCATE 1, 4: PRINT "ANGULAR DEPENDENCE OF 3dxy & ITS SQUARE"

LOCATE 7, 11: PRINT "Y": LOCATE 7, 30: PRINT "Y"

LOCATE 8, 8: PRINT "-": LOCATE 8, 15: PRINT "+"

LOCATE 8, 26: PRINT "+":  LOCATE 8, 35: PRINT "+"

LOCATE 18, 8: PRINT "Z": LOCATE 18, 27: PRINT "Z"

LOCATE 12, 18: PRINT "X": LOCATE 12, 37: PRINT "X"

LOCATE 16, 8: PRINT "+": LOCATE 16, 15: PRINT "-"

LOCATE 16, 26: PRINT "+": LOCATE 16, 34: PRINT "+"

END
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VIEW (20, 30)-(160, 170)

WINDOW (-Z, -Z)-(Z, Z): LINE (-Z, -Z)-(Z, Z), , B

LINE (-Z2, 0)-(Z2, 0): LINE (0, -Z2)-(0, Z2)

LINE (-.5, -.5)-(.5, .5): LINE (-Z, 0)-(0, Z), 2

LINE -(Z, 0), 2: LINE -(0, -Z), 2: LINE -(-Z, 0), 2

TH = (22 / 7) * AN / 180

XX = COS(2 * TH): Y = ABS(XX) * COS(TH): X = ABS(XX) * SIN(TH)

PSET (X, Y), 1

VIEW (170, 30)-(310, 170): LINE (-Z, -Z)-(Z, Z), , B

LINE (-Z2, 0)-(Z2, 0): LINE (0, -Z2)-(0, Z2)

LINE (-.5, -.5)-(.5, .5): LINE (-Z, 0)-(0, Z), 1

LINE -(Z, 0), 1: LINE -(0, -Z), 1: LINE -(-Z, 0), 1

Y1 = XX ^ 2 * COS(TH): X1 = XX ^ 2 * SIN(TH)

'FOR I = 1 TO 100 STEP .5: NEXT I

PSET (X1, Y1), 2

NEXT AN

LOCATE 2, 3: PRINT " ANGULAR DEPENDENCE OF 3dx2-y2 & SQUARE"

LOCATE 7, 11: PRINT "Y": LOCATE 7, 30: PRINT "Y"

LOCATE 16, 7: PRINT "Z": LOCATE 16, 26: PRINT "Z"

LOCATE 13, 19: PRINT "X": LOCATE 13, 37: PRINT "X"

LOCATE 14, 6: PRINT "+": LOCATE 14, 18: PRINT "+"

LOCATE 14, 25: PRINT "+": LOCATE 14, 35: PRINT "+"

LOCATE 8, 11: PRINT "-": LOCATE 18, 11: PRINT "-"

LOCATE 8, 30: PRINT "+": LOCATE 18, 30: PRINT "+"

END
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 REM PROGRAM ANG3DZ2

Z = 2.1: Z1 = Z - .5: Z2 = Z - .05

CLS : SCREEN 1: COLOR 15, 0

FOR AN = 0 TO 360 STEP 1

VIEW (20, 30)-(160, 170): WINDOW (-Z, -Z)-(Z, Z)

LINE (-Z, -Z)-(Z, Z), , B: LINE (-Z1, 0)-(Z1, 0)

LINE (0, -Z2)-(0, Z2): LINE (-1, -1)-(1, 1)

TH = (22 / 7) * AN / 180

XX = 3 * COS(TH) ^ 2 - 1

Y = ABS(XX) * COS(TH): X = ABS(XX) * SIN(TH)

PSET (X, Y), 1

VIEW (170, 30)-(310, 170): WINDOW (-Z, -4.5)-(Z, 4.5)

LINE (-Z, -4.5)-(Z, 4.5), , B: LINE (-Z1, 0)-(Z1, 0)

LINE (0, -4.2)-(0, 4.2): LINE (-1.2, -2.7)-(1.2, 2.7)

Y1 = XX ^ 2 * COS(TH): X1 = XX ^ 2 * SIN(TH)

PSET (X1, Y1), 2

'FOR I = 1 TO 1000 STEP .01: NEXT I

NEXT AN

LOCATE 1, 4: PRINT "Angular Dependence of 3dz2 & its Square"

LOCATE 6, 11: PRINT "Z": LOCATE 6, 30: PRINT "Z"

LOCATE 8, 11: PRINT "+": LOCATE 8, 30: PRINT "+"

LOCATE 18, 7: PRINT "X": LOCATE 19, 26: PRINT "X"

LOCATE 12, 7: PRINT "-": LOCATE 12, 16: PRINT "-"

LOCATE 12, 26: PRINT "+": LOCATE 12, 35: PRINT "+"

LOCATE 12, 18: PRINT "Y": LOCATE 12, 37: PRINT "Y"

LOCATE 18, 11: PRINT "+": LOCATE 18, 30: PRINT "+"

END



198 A Textbook of Physical Chemistry

  Ysp
1
 =  

1
(1 3 cos )

2
q+

  Ysp
2
 = 

1
(1 – 3 cos )

2
q

 It is suffi ce to calculate the values of 1 + 3  cos q and 1 – 3  cos q for q varying from 0 to 360°. 

The data points are shown by the statement PSET (X, Y) and X and Y are the x-and y-components of the 

data point. These are obtained by multiplying the data point by cos q and sin q, respectively.

 The wave function of sp2 hybrid orbitals are

  Y sp 
1
  2  = 

1 2
( 3 sin cos )

33
q f+    

  Y sp 
2
  2  = 

1 1 1
– 3 sin cos + 3 sin sin

3 6 2
q f q f
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VIEW (80, 30)-(240, 190)

WINDOW (-SC, -SC)-(SC, SC): LINE (-SC, -SC)-(SC, SC), , B

LINE (-SC, 0)-(SC, 0): LINE (0, -SC)-(0, SC)

FOR AN = 0 TO 360 STEP 1

TH = 3.1416 * AN / 180

XX = ABS(1 + 3 ^ .5 * COS(TH)): XX1 = ABS(1 - 3 ^ .5 * COS(TH))

Y = XX * COS(TH): X = XX * SIN(TH)

Y1 = XX1 * COS(TH): X1 = XX1 * SIN(TH)

PSET (Y, X), 2: PSET (Y1, X1), 1

FOR KK = 1 TO 100 STEP .1: NEXT KK

NEXT AN

LOCATE 3, 13: PRINT "sp HYRID ORBITALS"

LOCATE 12, 15: PRINT "+": LOCATE 12, 25: PRINT "+"

LOCATE 14, 22: PRINT "-": LOCATE 14, 19: PRINT "-"

LOCATE 6, 15: PRINT "s-p": LOCATE 6, 25: PRINT "s+p"

END

REM PROGRAM HYBRDSP2

CLS : SC = 2.1

SCREEN 1: COLOR 15, 0

VIEW (80, 30)-(240, 190): WINDOW (-SC, -SC)-(SC, SC)

LINE (-SC, -SC)-(SC, SC), , B: LINE (0, 0)-(SC, 0)

LINE (0, 0)-(-SC, SC): LINE (0, 0)-(-SC, -SC)
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FOR AN = 0 TO 360 STEP 1

PHI = 3.1416 * AN / 180

XX1 = ABS(1 / 3 ^ .5 + 2 ^ .5 * COS(PHI))

XX2 = ABS(1 / 3 ^ .5 - 1 / 2 ^ .5 * COS(PHI) + 1.5 ^ .5 * SIN(PHI))

XX3 = ABS(1 / 3 ^ .5 - 1 / 2 ^ .5 * COS(PHI) - 1.5 ^ .5 * SIN(PHI))

Y1 = XX1 * COS(PHI): X1 = XX1 * SIN(PHI)

PSET (Y1, X1), 1: 'a$ = INPUT$(1)

Y2 = XX2 * COS(PHI): X2 = XX2 * SIN(PHI)

PSET (Y2, X2), 2:

'IF XX3 < 0 THEN XX3 = -XX3

Y3 = XX3 * COS(PHI): X3 = XX3 * SIN(PHI)

PSET (Y3, X3), 3:

'FOR KK = 1 TO 100 STEP .1: NEXT KK

NEXT AN

LOCATE 3, 13: PRINT "sp2 Hybrid Orbitals"

LOCATE 14, 18: PRINT "-": LOCATE 13, 27: PRINT "+"

LOCATE 12, 22: PRINT "-": LOCATE 19, 18: PRINT "+"

LOCATE 10, 18: PRINT "+": LOCATE 17, 22: PRINT "-"

LOCATE 8, 16: PRINT "s-px+py"

LOCATE 16, 25: PRINT "s+px"

LOCATE 21, 16: PRINT "s-px-py"

END
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To display the variation of electronic energies of bonding and antibonding molecular orbitals of H2
+ with 

the variation of internuclear distance and to determine the minimum in the energy of bonding molecular 

orbital and the corresponding internuclear distance.

 The expressions to be used are

  E+ = 
1

1

J K

R S

+
+

+
 and E– = 

1 –

1 –

J K

R S
+   

 where J = – 
1

R
 [1 – (1 + R) e–2R] ; K = – (1 + R ) e–R ; S = 

2
–1 e

3

RR
R

Ê ˆ
+ +Á ˜Ë ¯

  R = r/a0.

REM PROGRAM POTENGH2;POTENTIAL ENERGY VARIATION OF H2

CLS : E1MIN = 0

SCREEN 1: COLOR 15, 0

VIEW (25, 20)-(210, 170): WINDOW (0, -.1)-(10, .1)

LINE (0, -.1)-(10, .1), , B: LINE (0, 0)-(10, 0)

FOR R = 10 TO 1 STEP -.04

REP = 1 / R

J = -(1 / R) * (1 - (1 + R) * EXP(-2 * R))

K = -(1 + R) * EXP(-R)

S = (1 + R + R ^ 2 / 3) * EXP(-R)

E1 = REP + (J + K) / (1 + S)

E2 = REP + (J - K) / (1 - S)

IF E1MIN > E1 THEN E1MIN = E1: RMIN = R

'FOR J = 1 TO 100 STEP .001: NEXT J

PSET (R, E1), 1: PSET (R, E2), 2

NEXT R

FOR I = 1 TO 9: II = -.1 + I * .02

LINE (I, -.1)-(I, -.095): LINE (0, II)-(.1, II)

NEXT I

LINE (RMIN, -.1)-(RMIN, E1MIN)

LOCATE 2, 3: PRINT "Energy v. Internuclear Distance"

LOCATE 3, 1: PRINT ".1"

LOCATE 10, 28: PRINT "RMIN="; : PRINT USING "##.##"; RMIN

LOCATE 15, 28: PRINT "EMIN=";

PRINT USING "##.###"; E1MIN; : LOCATE 16, 28: PRINT " hartree"

LOCATE 12, 3: PRINT "0": LOCATE 22, 1: PRINT "-.1"

A$ = "ENERGY IN HARTREE"

FOR I = 1 TO 17: LOCATE 4 + I, 1: PRINT MID$(A$, I, 1): NEXT I

LOCATE 23, 1: PRINT "   0      R/a0---->      10"

END
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To display the r-dependent of bonding and antibonding molecular orbitals of H+
2.

 The expressions of bonding and antibonding molecular orbitals of H2
+ under zero overlap approximation 

are

  R+ = 
1

2
 [R1s(Ha) + R1s(Hb)] and R– = 

1

2
 [R1s(Ha) – R1s(Hb)]

where  R1,0 = 

3/2

0

1
2
a

Ê ˆ
Á ˜Ë ¯

 exp (–r/a0)

 In atomic units R1,0 = 2 exp (– r)

REM PROGRAM ORBITH2;BONDING & ANTIBONDING WAVE FUNCTIONS OF H2

CLS : SCREEN 1: COLOR 15, 0

RI1 = 5: RI2 = 7.5: DR = .03: IMAX = 12.5

FOR I = 0 TO IMAX STEP DR

XMAX = 2.2: R1 = ABS(RI1 - I): R2 = ABS(RI2 - I)

X1 = 2 * EXP(-R1): X2 = 2 * EXP(-R2)

X1PX2 = (X1 + X2) / 2 ^ .5: X1PX22 = X1PX2 ^ 2

REM-------PLOTS OF WAVE FUNCTIONS--------

VIEW (20, 9)-(150, 93)
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WINDOW (0, 0)-(IMAX, XMAX): LINE (0, 0)-(IMAX, XMAX), , B

PSET (I, X1), 1: PSET (I, X2), 1: PSET (I, X1PX2), 2

XF = -XMAX + 2.6: LINE (5, -XMAX)-(5, XF), 1

LINE (7.5, -XMAX)-(7.5, XF), 1

REM-------PLOTS OF SQUARE OF WAVE FUNCTIONS------

VIEW (160, 9)-(290, 93)

WINDOW (0, 0)-(IMAX, XMAX + 2)

LINE (0, 0)-(IMAX, XMAX + 2), , B

PSET (I, X1 ^ 2), 1: PSET (I, X2 ^ 2), 1: PSET (I, X1PX22), 2

XF = -XMAX + 3: LINE (5, -XMAX)-(5, XF), 1

LINE (7.5, -XMAX)-(7.5, XF), 1

REM--------PLOTS OF WAVE FUNCTIONS--------

X1MX2 = (X1 - X2) / 2 ^ .5: X1MX22 = X1MX2 ^ 2

VIEW (20, 104)-(150, 191)

WINDOW (0, -XMAX)-(IMAX, XMAX)

LINE (0, -XMAX)-(IMAX, XMAX), , B

PSET (I, X1), 1: PSET (I, -X2), 1: PSET (I, X1MX2), 2

LINE (0, 0)-(IMAX, 0)

XF = -XMAX + 3: LINE (5, 0)-(5, XF), 1

LINE (7.5, 0)-(7.5, -XF), 1

REM-------PLOTS OF SQUARE OF WAVE FUNCTIONS-------

VIEW (160, 104)-(290, 191)

WINDOW (0, 0)-(IMAX, XMAX + 2)

LINE (0, 0)-(IMAX, XMAX + 2), , B

PSET (I, X1 ^ 2), 1: PSET (I, X2 ^ 2), 1: PSET (I, X1MX22), 2

LINE (5, 0)-(5, XF), 1: LINE (7.5, 0)-(7.5, XF), 1

'FOR J = 1 TO 100 STEP .001: NEXT J

NEXT I

LOCATE 1, 17: PRINT "BONDING": LOCATE 13, 10

PRINT "A  B": LOCATE 13, 15: PRINT "ANTIBONDING"

LOCATE 1, 28: PRINT "square"

END
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To display the radiant energy emitted by a black body at temperatures 1000 K and 1200 K as given by the 

following expressions.

 (i) Variation in terms of frequency.

   
3

3

d 8
d
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v vN h V
v
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p
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e

  Frequency n to be varied from 0 to 15 ¥ 1013 Hz. 

 (ii) Variation in terms of wavelength
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  Wavelength l to be varied from 0 to 2 ¥ 10–6 m.

  Also verify that Tlmax = constant.

REM PROGRAM BBRAD;BLACK BODY RADITION

CLS : C = 3E+08: K = 8.314 / 6.022E+23: H = 6.626E-34

EMAX = 0: J = 0: PI = 22 / 7
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SCREEN 1: COLOR 15, 0: VIEW (40, 10)-(210, 170)

WINDOW (0, 0)-(15, 15): LINE (0, 0)-(15, 15), , B

FOR T = 1000 TO 1200 STEP 100

FOR NUP = .1 TO 15 STEP .05

NU = NUP * 1E+13

ENU = (8 * PI * H) * (NU / C) ^ 3 / (EXP(H * NU / (K * T)) - 1)

ENU = ENU * 1E+18

IF EMAX < ENU THEN EMAX = ENU: NUMAX = NUP

PSET (NUP, ENU)

FOR I = 1 TO 1000 STEP 10: NEXT I

NEXT NUP

LOCATE 8, 29: PRINT "NUmax  T/K"

LOCATE 10 + J, 29: PRINT USING "##.#"; NUMAX

LOCATE 10 + J, 34: PRINT USING "  ####"; T

J = J + 1: LINE (NUMAX, 0)-(NUMAX, EMAX), 1

NEXT T

LOCATE 1, 7: PRINT "Black Body Radiations"

LOCATE 2, 4: PRINT "15"

LOCATE 10, 2: PRINT "E*": LOCATE 11, 1: PRINT "10^18"

LOCATE 12, 1: PRINT "-----": LOCATE 13, 2: PRINT "J s"

LOCATE 14, 2: PRINT "m-3": LOCATE 22, 5: PRINT "0"

LOCATE 23, 2: PRINT "    0   NU*10^-13/Hz--> 15"

FOR I = 1 TO 9: SC = 15 * I * .1: LINE (0, SC)-(.3, SC): NEXT I

FOR I = 1 TO 14: LINE (I, 0)-(I, .4): NEXT I

END
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REM BLACK BODY RADIATION-LAMBDA

C = 3E+08: K = 1.38E-23: H = 6.626E-34: EMAX = 0: J = 0

CLS : SCREEN 1: COLOR 15, 0: VIEW (40, 10)-(310, 170)

WINDOW (0, 0)-(10, 500): LINE (0, 0)-(10, 500), , B

FOR T = 1000 TO 1200 STEP 100

FOR LAMP = .01 TO 10 STEP .02

LAM = LAMP * .000001

TERM1 = 8 * (22 / 7) * H * C / LAM ^ 5

TERM2 = 1 / (EXP(H * C / (LAM * K * T)) - 1)

ELAM = TERM1 * TERM2

IF EMAX < ELAM THEN EMAX = ELAM: LAMMAX = LAMP

PSET (LAMP, ELAM), 2

FOR I = 1 TO 1000 STEP 10: NEXT I

NEXT LAMP

LINE (LAMMAX, 0)-(LAMMAX, EMAX), 1

LOCATE 4, 19: PRINT "(T/K)*lamda     E"

LOCATE 5 + J, 19: PRINT USING "####"; T; : PRINT "*";

'LOCATE 10 + J, 27:

PRINT USING "#.##"; LAMMAX;

PRINT "="; : PRINT USING "####"; T * LAMMAX

LOCATE 5 + J, 33: PRINT USING " ###.#"; EMAX

a$ = INPUT$(1): J = J + 1

NEXT T

LOCATE 1, 10: PRINT "Black Body Radiations"

LOCATE 2, 3: PRINT "500"

LOCATE 10, 1: PRINT "  E"

LOCATE 11, 1: PRINT "-----": LOCATE 12, 1: PRINT "J m-4"

LOCATE 22, 5: PRINT "0"

LOCATE 23, 2: PRINT "    0      LAMDA*10^6/m-->         10"

FOR I = 1 TO 9

SC = 10 * I * .1: SC1 = 500 * I * .1

LINE (SC, 0)-(SC, 10): LINE (0, SC1)-(.1, SC1)

NEXT I

END
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To display the mass fraction of kmer against k for different values of p as per the expression

  wk = kpk–1(1 – p)2

 Take p = 0.95, 0.97 and 0.99. Also show that the area under each curve is equal to 1.

REM MASS FRACTION OF kmer IN A POLYMER

CLS : SCREEN 1: COLOR 15, 0: VIEW (25, 20)-(310, 170)

WINDOW (0, 0)-(200, .02): LINE (0, 0)-(200, .02), , B

J = 0

FOR P = .95 TO .99 STEP .02

FOR K = 0 TO 200 STEP .5

W = K * P ^ (K - 1) * (1 - P) ^ 2

PSET (K, W), J + 1

FOR I = 1 TO 100 STEP .1: NEXT I

NEXT K

LOCATE 6 * (J + 1), 10 * (J + 1): PRINT "p=";

PRINT USING "#.##"; P: J = J + 1

NEXT P

LOCATE 2, 5: PRINT "Mass Fraction of kmer in a Polymer"

LOCATE 3, 1: PRINT ".02": A$ = "MASS FRACTION"

FOR I = 1 TO 13

B$ = MID$(A$, I, 1): LOCATE 5 + I, 2: PRINT B$

NEXT I
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LOCATE 22, 2: PRINT "0"

LOCATE 23, 3: PRINT " 0             k---->             200"

FOR I = 1 TO 9

SC = 200 * I * .1: SC1 = .02 * I * .1

LINE (SC, 0)-(SC, .0005): LINE (0, SC1)-(2, SC1)

NEXT I

END

To display the variation of molar heat capacity at constant volume of a monatomic solid with the variation 

in temperature

 The expression for Einstein solids is
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 Vary T/qE from 0.01 to 2

 The expression for Debye solids is

  
D

,m D3
3 4 –

e – 1

V

x

C x
D

R

È ˘
= Í ˙

Î ˚

where xD = qD /T and D = 

D 3

3
D 0

3
d

e – 1

x

x

x
x

x Ú
 Take qE = 1, qD = 1 and vary T/q from 0.01 to 2.
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REM PROGRAM Cv PLOTS OF SOLIDS

CLS : SCREEN 1: COLOR 15, 0: VIEW (20, 20)-(310, 170)

WINDOW (0, 0)-(2, 3): LINE (0, 0)-(2, 3), , B

THETAE = 1: THETAD = 1

FOR T = .01 TO 2 STEP .005

IT = THETAE / T

CV = 3 * IT ^ 2 * EXP(IT) / ((EXP(IT) - 1) ^ 2)

PSET (1 / IT, CV), 1

XD = THETAD / T: SUM = 0: DX = XD / 1000

FOR X = .01 TO XD STEP DX

SUM = SUM + X ^ 3 / (EXP(X) - 1) * DX

NEXT X

D = (3 / XD ^ 3) * SUM

CV = 3 * (4 * D - 3 * XD / (EXP(XD) - 1))

PSET (1 / XD, CV), 2

NEXT T

LOCATE 2, 5: PRINT "Variation of Cv with temperature"

LOCATE 3, 2: PRINT "3"

LOCATE 6, 7: PRINT "DEBYE": LOCATE 11, 11: PRINT "EINSTEIN"

LOCATE 12, 1: PRINT "Cv": LOCATE 13, 1

PRINT "--": LOCATE 14, 1: PRINT "R": LOCATE 22, 2: PRINT "0"

LOCATE 23, 2: PRINT " 0           T/THETA ---->           2"

FOR I = 1 TO 9

LINE (I * .2, 0)-(I * .2, .05): LINE (0, I * .3)-(.03, I * .3)

NEXT I

END
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A cubic system has three Bravais unit cells–Primitive, Body-Centred and Face-Centred cubic unit cells.

REM PROGRAM CUBIC;BRAVIS LATTICE OF CUBIC SYSTEM

REM No. of units(i)horizontally NH,(ii)vertically NV,(iii) back NB

READ NH, NV, NB: DATA 2,2,2

CLS : OPT = 1: NT = NH + NV + NB - 1

A = .6: B = .4: X = .5: Y = NT

NHM1 = NH - 1: NHP1 = NH + 1: NVM1 = NV - 1

NVP1 = NV + 1: NBM1 = NB - 1: NBP1 = NB + 1

SCREEN 1: COLOR 15, 0: VIEW (10, 10)-(190, 190)

WINDOW (X, X)-(Y, Y): LINE (X, X)-(Y, Y), , B

4 IF INT(OPT) = 4 THEN 25

CLS : LINE (X, X)-(Y, Y), , B

REM------LOCATING LATTICE POINTS------

    REM I: Number of unit cells plus 1 along x-axis

REM J: Number of unit cells plus 1 along y-axis

REM K: Number of unit cells plus 1 along z-axis

FOR K = 1 TO NBP1: K1 = (K - 1) * A: K2 = (K - 1) * B

FOR J = 1 TO NVP1: JJ = J + K2

FOR I = 1 TO NHP1: II = I + K1

PSET (II, JJ): CIRCLE (II, JJ), .01 * NT

NEXT I: NEXT J: NEXT K

LOCATE 4, 4

ON OPT GOTO 5, 10, 15, 25

5 PRINT "PRIMITIVE CUBE": GOTO 20

REM ------SPOTTING BODY CENTERED POINTS------

10 PRINT "BODY CENTERED CUBE"

FOR K = 1 TO NB: K1 = (K - 1) * A: K2 = (K - 1) * B

FOR J = 1 TO NV: JJ = J + K2 + .5 + B / 2

FOR I = 1 TO NH: II = I + K1 + .5 + A / 2

PSET (II, JJ), 1: CIRCLE (II, JJ), .01 * NT, 1

NEXT I: NEXT J: NEXT K

GOTO 20

REM ------SPOTTING FACE CENTERED POINTS------

REM Points on front faceing faces

15 PRINT "FACE CENTERED CUBE "

FOR K = 1 TO NBP1: K1 = (K - 1) * A: K2 = (K - 1) * B

FOR J = 1 TO NV: JJ = J + .5 + K2
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FOR I = 1 TO NH: II = I + .5 + K1

PSET (II, JJ), 3: CIRCLE (II, JJ), .01 * NT, 3

NEXT I: NEXT J: NEXT K

REM Points on top faceing faces

FOR K = 1 TO NB: K1 = (2 * K - 1) * A: K2 = (2 * K - 1) * B

FOR J = 1 TO NVP1: JJ = J + K2 / 2

FOR I = 1 TO NH: II = I + .5 + K1 / 2

PSET (II, JJ), 2: CIRCLE (II, JJ), .01 * NT, 2

NEXT I: NEXT J: NEXT K

REM Points on the side faces

FOR K = 1 TO NB: K1 = (2 * K - 1) * A: K2 = (2 * K - 1) * B

FOR J = 1 TO NV: JJ = J + .5 + K2 / 2

FOR I = 1 TO NHP1: II = I + K1 / 2

PSET (II, JJ), 1: CIRCLE (II, JJ), .01 * NT, 1

NEXT I: NEXT J: NEXT K

REM ------DRAWING LINES HORIZONTALLY------

REM I : Number of unit cells along x-axis

REM J : Number of unit cells along y-axis plus 1

REM K : Number of unit cells along z-axis:initial K=0

20 FOR I = 1 TO NH: FOR J = 1 TO NVP1: FOR K = 0 TO NB

LINE (I + K * A, J + K * B)-(I + K * A + 1, J + K * B)

NEXT K: NEXT J: NEXT I

REM ------DRAWING LINES VERTICALLY------

REM I :Number of unit cells along x-axis plus 1

REM J :Number of unit cells along y-axis

REM K :Number of unit cells along z-axis:Initial K=O

FOR I = 1 TO NHP1: FOR J = 1 TO NV: FOR K = 0 TO NB

LINE (I + K * A, J + K * B)-(I + K * A, J + K * B + 1), 1

NEXT K: NEXT J: NEXT I

REM ------DRAWING LINES SLANTING------

REM I: Number of unit cells along x-axis plus 1

REM J: Number of unit cells along y-axis plus 1

REM K: Number of unit cells along z-axis

FOR I = 1 TO NHP1: FOR J = 1 TO NVP1: FOR K = 1 TO NB

LINE (I, J)-(I + K * A, J + K * B), 2

NEXT K: NEXT J: NEXT I

OPT = OPT + 1: A$ = INPUT$(1): GOTO 4

25 END
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To display of 100, 110, 111 and 010  planes of a cubic lattice.

REM 100 PLANES OF CUBIC SYSTEM

READ NH, NV: DATA 3,3: NB = 1: NT = NH + 2
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CLS : A = .6: B = .4: X = .5: Y = NT

NHM1 = NH - 1: NHP1 = NH + 1

NVM1 = NV - 1: NVP1 = NV + 1

NBM1 = NB - 1: NBP1 = NB + 1

SCREEN 1: COLOR 15, 0: VIEW (10, 10)-(190, 190)

WINDOW (X, X)-(Y, Y): LINE (X, X)-(Y, Y), , B

NBF = NB: L = 1: GOSUB 100

L = 3: GOSUB 200

L = 3: GOSUB 300

FOR I = 1.3 TO NH + 1.4: FOR J = 1.7 TO NV + .8

PAINT (I, J), 3: NEXT J: NEXT I

NBF = NBM1: L = 1: GOSUB 100

L = 1: GOSUB 200

L = 1: GOSUB 300

LOCATE 3, 8: PRINT "100 Planes"

REM SPOTTING LATTICE POINTS

REM I : Number of unit cells plus 1 along x-axis

REM J : Number of unit cells plus 1 along y-axis

REM K : Number of unit cells plus 1 along z-axis

FOR K = 1 TO NBP1: K1 = (K - 1) * A: K2 = (K - 1) * B

FOR J = 1 TO NVP1: JJ = J + K2

FOR I = 1 TO NHP1: II = I + K1

PSET (II, JJ), 2: CIRCLE (II, JJ), .01 * NT, 2

NEXT I: NEXT J: NEXT K

GOTO 400

REM DRAWING HORIZONTAL LINES

REM I : Number of unit cells along x-axis

REM J : Number of unit cells along y-axis PLUS 1

REM K : Number of unit cells along z-axis : Initial K=0

100 FOR I = 1 TO NH: FOR J = 1 TO NVP1: FOR K = 0 TO NBF

LINE (I + K * A, J + K * B)-(I + K * A + 1, J + K * B), L

NEXT K: NEXT J: NEXT I

RETURN

REM DRAWING VERTICAL LINES

'REM I :number of unit cells along x-axis PLUS 1

'REM J :number of unit cells along y-axis

'REM K :number of unit cells along z-axis : Initial K=0

200 FOR I = 1 TO NHP1: FOR J = 1 TO NV: FOR K = 0 TO NB

LINE (I + K * A, J + K * B)-(I + K * A, J + K * B + 1), L

NEXT K: NEXT J: NEXT I
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RETURN

REM DRAWING SLANTING LINES

REM I: number of unit cells along x-axis plus 1

REM J: number of unit cells along y-axis plus 1

REM K: number of unit cells along z-axis

300 FOR I = 1 TO NHP1: FOR J = 1 TO NVP1: FOR K = 1 TO NB

LINE (I, J)-(I + K * A, J + K * B), L

NEXT K: NEXT J: NEXT I

REM 110 PLANES OF CUBIC SYSTEM

READ NH, NV: NB = 1: DATA 4,3: NT = NH + 2

CLS : a = .6: B = .4: X = .5: Y = NT

NHM1 = NH - 1: NHP1 = NH + 1

NVM1 = NV - 1: NVP1 = NV + 1

NBM1 = NB - 1: NBP1 = NB + 1

SCREEN 1: COLOR 15, 0: VIEW (10, 10)-(190, 190)

WINDOW (X, X)-(Y, Y): LINE (X, X)-(Y, Y), , B

FK = NB: GOSUB 100

L = 3: GOSUB 200

GOSUB 300

FOR K = 1 TO NB: FOR I = 1 TO NH: FOR J = 1 TO NVP1

LINE (I + K * a, J + K * B)-(I + 1 + (K - 1) * a, J + (K - 1) 

* B), 3
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NEXT J: NEXT I: NEXT K

FOR K = 1 TO NB: FOR I = 1 TO NH: FOR J = 1 TO NV

PAINT (I + K * a + .5 - a / 2, J + K * B + .5 - B / 2), 3

NEXT J: NEXT I: NEXT K

FK = NBM1: GOSUB 100

L = 1: GOSUB 200

REM ------SPOTTING LATTICE POINTS------

REM I : Number of unit cells plus 1 along x-axis

REM J : Number of unit cells plus 1 along y-axis

REM K : Number of unit cells plus 1 along z-axis

FOR K = 1 TO NBP1: K1 = (K - 1) * a: K2 = (K - 1) * B

FOR J = 1 TO NVP1: FOR I = 1 TO NHP1

PSET (I + K1, J + K2), 2: CIRCLE (I + K1, J + K2), .01 * NT, 2

NEXT I: NEXT J: NEXT K

GOTO 400

REM ------DRAWING HORIZONTAL LINES------

REM I : number of unit cells along x-axis

REM J : number of unit cells along y-axis plus 1

REM K : number uf unit cells along z-axis :inital K=0

100 FOR I = 1 TO NH: FOR J = 1 TO NVP1: FOR K = 0 TO FK

LINE (I + K * a, J + K * B)-(I + K * a + 1, J + K * B), 1

NEXT K: NEXT J: NEXT I

RETURN

REM ------DRAWING VERTICAL LINES------

REM I :number of unit cells along x-axis plus 1

REM J :number of unit cells along y-axis

REM K :number of unit cells along z-axis :initial K=0

200 FOR I = 1 TO NHP1: FOR J = 1 TO NV: FOR K = 0 TO NB

LINE (I + K * a, J + K * B)-(I + K * a, J + K * B + 1), L

NEXT K: NEXT J: NEXT I

RETURN

REM ------DRAWING SLANTING LINES------

REM I: number of unit cells along x-axis plus 1

REM J: number of unit cells along y-axis plus 1

REM K: number of unit cells along z-axis

300 FOR I = 1 TO NHP1: FOR J = 1 TO NVP1: FOR K = 1 TO NB

LINE (I, J)-(I + K * a, J + K * B), 1

NEXT K: NEXT J: NEXT I

RETURN

400 LOCATE 3, 8: PRINT "110 Planes"

END
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REM 111 PLANES OF CUBIC SYSTEM

READ NH, NV, NB: DATA 2,2,2: NT = NH + 3

CLS : NHP1 = NH + 1: NHM1 = NH - 1

NVP1 = NV + 1: NVM1 = NV - 1

NBP1 = NB + 1: NBM1 = NB - 1

A = .6: B = .4: X = .5: Y = NT

SCREEN 1: COLOR 15, 0: VIEW (10, 10)-(190, 190)

WINDOW (X, X)-(Y, Y): LINE (X, X)-(Y, Y), , B

REM -------SPOTTING LATTICE POINTS---------

REM I represents number of unit cells plus 1 along x-axis

REM J represents number of unit cells plus 1 along y-axis

REM K represents number of unit cells plus 1 along z-axis

FOR K = 1 TO NBP1: K1 = (K - 1) * A: K2 = (K - 1) * B

FOR J = 1 TO NVP1: FOR I = 1 TO NHP1

PSET (I + K1, J + K2), 2: CIRCLE (I + K1, J + K2), .01 * Y, 2

NEXT I: NEXT J: NEXT K

REM --------DRAWING HORIZONTAL LINES--------

REM I : number of unit cells along x-axis

REM J : number of unit cells plus 1 along y-axis

REM K:nnmber of unit cells along z-axis:initial K=0

FOR I = 1 TO NH: FOR J = 1 TO NVP1: FOR K = 0 TO NB

LINE (I + K * A, J + K * B)-(I + K * A + 1, J + K * B), 1

NEXT K: NEXT J: NEXT I
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REM --------DRAWING VERTICAL LINES--------

REM I :number of unit cells plus 1 along x-axis

REM J :number of unit cells along y-axis

REM K :number of unit cells along z-axis :initial K=0

FOR I = 1 TO NHP1: FOR J = 1 TO NV: FOR K = 0 TO NB

LINE (I + K * A, J + K * B)-(I + K * A, J + K * B + 1), 1

NEXT K: NEXT J: NEXT I

REM ---------DRAWING SLANTING LINES--------

REM I: number of unit cells plus 1 along x-axis

REM J: number of unit cells plus 1 along y-axis

REM K: number of unit cells along z-axis

FOR I = 1 TO NHP1: FOR J = 1 TO NVP1: FOR K = 1 TO NB

LINE (I, J)-(I + K * A, J + K * B), 1

NEXT K: NEXT J: NEXT I

REM --------DRAWING 111 LINES--------

FOR K = 2 TO NH + NV + NB

IF K <= NHP1 THEN X1 = K: Y1 = 1: GOTO 5

IF K - NHP1 <= NB THEN

X1 = NHP1 + (K - NHP1) * A

Y1 = 1 + (K - NHP1) * B

GOTO 5

END IF

IF K - NHP1 - NB <= NV THEN

X1 = NHP1 + NB * A

Y1 = 1 + NB * B + (K - NHP1 - NB)

END IF

5 IF K <= NVP1 THEN X2 = 1: Y2 = K: GOTO 10

IF K - NVP1 <= NB THEN

X2 = 1 + (K - NVP1) * A

Y2 = NVP1 + (K - NVP1) * B

GOTO 10

END IF

IF K - NVP1 - NB <= NH THEN

X2 = 1 + NB * A + (K - NVP1 - NB)

Y2 = NVP1 + NB * B

END IF

10  LINE (X1, Y1)-(X2, Y2), 2

A$ = INPUT$(1)

NEXT K

LOCATE 3, 10: PRINT "111 Planes"

END
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REM 010 PLANES OF CUBIC SYSTEM

READ NH, NV: DATA 4,4: NB = 2

CLS : a = .6: B = .4: X = .5: Y = NH + 3

NHM1 = NH - 1: NHP1 = NH + 1

NVM1 = NV - 1: NVP1 = NV + 1

NBM1 = NB - 1: NBP1 = NB + 1

SCREEN 1: COLOR 15, 0: VIEW (10, 10)-(190, 190)

WINDOW (X, X)-(Y, Y): LINE (X, X)-(Y, Y), , B

REM -------DRAWING HORIZONTAL LINES-------

L = 3: GOSUB 100

REM -------DRAWING SLANTING LINES---------

L = 3: GOSUB 300

REM -------DRAWING 010 PLANES-------------

FOR I = 1 TO NH: II = I + .8: FOR J = 1 TO NVP1: JJ = J + .2

FOR K = 1 TO NB: K1 = (K - 1) * a: K2 = (K - 1) * B

PAINT (II + K1, JJ + K2), 3

NEXT K: NEXT J: NEXT I

REM ----DRAWING HORIZONTAL,VERTICAL & SLANTING LINES----

L = 1: GOSUB 100: L = 1: GOSUB 200: L = 1: GOSUB 300

GOTO 400

REM -----SUBROUTINE FOR DRAWING HORIZONTAL LINES-----

100 FOR I = 1 TO NH: FOR J = 1 TO NVP1: FOR K = 0 TO NB

LINE (I + K * a, J + K * B)-(I + K * a + 1, J + K * B), L

NEXT K: NEXT J: NEXT I



List of Programs 219

RETURN

REM -----SUBROUTINE FOR DRAWING VERTICAL LINES-------

200 FOR I = 1 TO NHP1: FOR J = 1 TO NV: FOR K = 0 TO NB

LINE (I + K * a, J + K * B)-(I + K * a, J + K * B + 1), L

NEXT K: NEXT J: NEXT I

RETURN

REM -----SUBROUTINE FOR DRAWING SLANTING LINES------

300 FOR I = 1 TO NHP1: FOR J = 1 TO NVP1: FOR K = 1 TO NB

LINE (I, J)-(I + K * a, J + K * B), L

NEXT K: NEXT J: NEXT I

RETURN

400 LOCATE 4, 10: PRINT "010 Planes"

REM -------SPOTTING LATTICE POINTS--------

FOR K = 1 TO NBP1: K1 = (K - 1) * a: K2 = (K - 1) * B

FOR J = 1 TO NVP1: FOR I = 1 TO NHP1

PSET (I + K1, J + K2), 2: CIRCLE (I + K1, J + K2), .01 * Y, 2

NEXT I: NEXT J: NEXT K

END

 (a) To display the variation of b/Cp, m, 2a/Cp, m RT and mJT with temperature for N2 gas.

  The values of b = 0.0392 dm3 mol–1, a = 141 kPa dm6 mol–2 and Cp, m = 34.35 J K–1 mol–1. The 

expression of mJT is

  mJT = 
, m

1 2
–

p

a
b

C RT

Ê ˆ
Á ˜Ë ¯  
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  To display the variation of inversion temperature of N2 with pressure of the gas.

  The expression to be used is

  Ti = 
2 2– 3a a ab p

bR

±

 (b) To display the variation of second virial coeffi cient B with temperature for N2 gas and to locate its 

inversion temperature by drawing a slope line to B versus T passing from the origin.

  The expression of the second virial coeffi cient is B = b – 
a

RT
 

  The slope of B versus T at the inversion temperature is

  2
ip

B a

T RT

∂Ê ˆ =Á ˜Ë ¯∂
  

REM PROG58

REM JOULE THOMSON COEFFICIENT

CLS : READ A, B: DATA 140.842,.03913: R = 8.314

SCREEN 1: COLOR 15, 0: VIEW (40, 35)-(150, 170)

WINDOW (400, -.002)-(1400, .004)

LINE (400, -.002)-(1400, .004), , B

FOR T = 400 TO 1400 STEP 10

TERM1 = 2 * A / (29.099 * R * T): TERM2 = B / 29.099

MUJT = TERM1 - TERM2

PSET (T, TERM1), 1: PSET (T, TERM2), 2: PSET (T, MUJT)

NEXT T

MU = 2 * A / (R * B): LINE (MU, -.002)-(MU, .0013), 2

LOCATE 5, 2: PRINT ".004": LOCATE 9, 8: PRINT "2a/RT"

LOCATE 11, 15: PRINT "b": LOCATE 16, 14: PRINT "MUJT"

LOCATE 21, 8: PRINT USING "###"; MU; : PRINT "K"

LOCATE 22, 1: PRINT "-.002"

LOCATE 23, 5: PRINT "400 T/K--> 1400"

FOR I = 1 TO 9

II = 400 + 100 * I: LINE (II, -.002)-(II, -.0019)

JJ = -.002 + .0006 * I: LINE (400, JJ)-(430, JJ)

NEXT I

VIEW (186, 35)-(315, 170)

WINDOW (0, -250)-(350, 600): LINE (0, -250)-(350, 600), , B

FOR P1 = 0 TO 400 STEP 2

P = P1 * 101.325

DISC = A ^ 2 - 3 * A * B ^ 2 * P
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IF DISC < 0 THEN 5

DISC = SQR(DISC): BR = B * R

R1 = (A + DISC) / BR - 273: R2 = (A - DISC) / BR - 273

PSET (P1, R1), 1: PSET (P1, R2), 2

5 NEXT P1

LOCATE 3, 10: PRINT "JOULE-THOMSON EFFECT"

LOCATE 5, 21: PRINT "600"

LOCATE 6, 33: PRINT "Heating": LOCATE 7, 33: PRINT "MUJT<0"

LOCATE 13, 27: PRINT "Cooling": LOCATE 14, 27: PRINT "MUJT>0"

FOR I = 1 TO 9

II = 40 * I: LINE (II, -250)-(II, -235)

JJ = -250 + 85 * I: LINE (0, JJ)-(8, JJ)

NEXT I

A$ = "DEGREE CELSIUS"

FOR I = 1 TO LEN(A$): LOCATE 6 + I, 22: PRINT MID$(A$, I, 1): 

NEXT I

LOCATE 22, 20: PRINT "-250"

LOCATE 23, 23: PRINT " 0  p/atm-->   400"

 REM INVERSION TEMPERATURE VIA SLOPE LINE

B = .0392: A = 141: R = 8.314: TMAX = 1500: YMAX = .04

CLS : SCREEN 1: COLOR 15, 0: VIEW (35, 20)-(310, 170)

WINDOW (0, -YMAX)-(TMAX, YMAX): LINE (0, -YMAX)-(TMAX, YMAX), , B
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FOR T = 50 TO TMAX STEP 5

X = A / (R * T): B1 = B - X: PSET (T, B1)

IF X > B1 THEN TI = T: XX = X

'FOR I = 1 TO 100 STEP .01: NEXT I

NEXT T

FOR T = 5 TO TMAX STEP 10

Z = A * T / (R * TI ^ 2): PSET (T, Z), 1

FOR I = 1 TO 100 STEP .001: NEXT I

NEXT T

CIRCLE (TI, XX), 10, 2: LINE (TI, -YMAX)-(TI, XX), 2

FOR I = 1 TO 9

X1 = TMAX * .1 * I: Y1 = -YMAX + 2 * YMAX * .1 * I

LINE (X1, -YMAX)-(X1, -YMAX + YMAX * .05)

LINE (0, Y1)-(20, Y1)

NEXT I

LOCATE 2, 10: PRINT "PLOT OF (b-a/RT) v. T"

LOCATE 3, 2: PRINT USING ".##"; YMAX

LOCATE 12, 1: PRINT " b-": LOCATE 13, 1: PRINT "a/RT"

LOCATE 13, 6: PRINT "0": LOCATE 21, 19: PRINT TI; "K"

LOCATE 22, 1: PRINT USING "#.##"; -YMAX

LOCATE 23, 4: PRINT " 0           T/K--->           ";

PRINT USING "#####"; TMAX

The rotational constant B is given by

  B = 
28

h

Icp
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where h is Planck’s constant (= 6.626 × 10–34 J s), c is speed of light (= 3 × 108 m s–1)

and I is moment of inertia of diatomic molecule (= m r2)

 The expression of reduced mass is 

  m = 
1 2 1 2

1 2 1 2 A( )

m m M M

m m M M N
=

+ +  

Plot gJ exp (– EJ /kT) versus J at 298 K where gJ = 2J + 1 and EJ = BhcJ (J + 1). Determine 

 and internuclear distance for CO for which B = 193.2 m–1.

CLS : READ B: DATA 193.2

T = 298: NA = 6.023E+23: M1 = .012: M2 = .016

H = 6.626E-34: C = 1E+08: K = 1.38E-23: N1 = 30: N2 = 20: NM = 0

DEF FNE = B * H * C * J * (J + 1)

SCREEN 1: COLOR 15, 0: VIEW (32, 15)-(315, 170)

WINDOW (0, 0)-(N1, N2): LINE (0, 0)-(N1, N2), , B

FOR J = 0 TO N1 STEP 1

N = (2 * J + 1) * EXP(-FNE / (K * T)): PSET (J, N)

CIRCLE (J, N), N1 / 150

IF NM < N THEN NM = N: JM = J

NEXT J

FOR J = 0 TO 30 STEP 1

N = (2 * J + 1) * EXP(-FNE / (K * T)): PSET (J, N)

NEXT J

MI = 6.626 / (8 * 3.14159 ^ 2 * 3 * B)

MU = M1 * M2 / ((M1 + M2) * NA): R = SQR(MI / MU) * 1E-21

LOCATE 1, 2: PRINT "Value of Jmax & Calculation of R from B"

LOCATE 3, 1: PRINT N2: LOCATE 5, 30: PRINT "B=";

PRINT USING "###.##"; B; : PRINT "/m": LOCATE 7, 30

PRINT "Jmax="; : PRINT USING "##"; JM: LOCATE 9, 30

PRINT "R="; : PRINT USING "###"; R * 1E+12; : PRINT " pm"

FOR I = 1 TO N1:  LINE (I, 0)-(I, .4): NEXT I

FOR I = 1 TO N2: LINE (0, I)-(.3, I): NEXT I

LOCATE 22, 3: PRINT "0": LOCATE 23, 2

PRINT "   0"; SPC(13); "J--->"; SPC(13); : PRINT N1

LINE (JM, 0)-(JM, NM - 1), 2

END
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To display graphically the populations (nJ) of hydrogen bromide in the various rotational levels 

relative to that in the lowest rotational level. From these populations, determine the rotational level having 

maximum population. Also determine its interatomic distance. Given:

  nJ = [2J + 1] exp[–BhcJ(J + 1) / kT ]

  B = h / 8 p 2Ic where I = m r2

  h is Planck’s constant and c is the speed of light. Take B = 845 m–1

The Morse potential is given by 

  V = D [1 – exp{a(req – r)}]2

req is the equilibrium bond distance

f( /2 ),k D=  with kf as the force constant.

To draw Morse potential for CO. Given: req = 113 pm, D = 1094 kJ mol–1 kf = 1896 N m–1.

REM Kf=Force constantin N/m: DE=Dissociation energy in kJ/mol

REM Req=equilibrium bond distance in picometer

CLS : NA = 6.022E+23

READ N$, Kf, DE, Req: DATA CO,1896,1094,113

RMIN = 50: RMAX = 300: VMIN = 0: VMAX = 30

SCREEN 1: COLOR 15, 0: VIEW (32, 20)-(315, 170)

WINDOW (RMIN, VMIN)-(RMAX, VMAX)

LINE (RMIN, VMIN)-(RMAX, VMAX), , B

D = 1000 * DE / NA: A = SQR(Kf / (2 * D))

FOR R = 50 TO 300 STEP 1
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V = D * (1 - EXP(A * (Req - R) * 1E-12)) ^ 2

V = V * 1E+19: PSET (R, V)

NEXT R

LOCATE 2, 10: PRINT "Morse Potential for "; N$

LOCATE 3, 1: PRINT VMAX

LOCATE 5, 25: PRINT "Req="; Req; "pm"

LOCATE 6, 25: PRINT "Kf="; Kf; "N/m"

LOCATE 7, 25: PRINT "DE="; DE; "kJ/mol"

LOCATE 12, 1: PRINT "V*": LOCATE 10, 3: PRINT "DE"

LOCATE 13, 1: PRINT "1E19": LOCATE 22, 2: PRINT VMIN

LOCATE 23, 3: PRINT RMIN; "         R*1E+12--->         "; RMAX

LINE (RMIN, D * 1E+19)-(RMAX, D * 1E+19)

VS = (VMAX - VMIN) * .1: RS = (RMAX - RMIN) * .1

FOR I = 1 TO 9

LINE (RMIN + RS * I, VMIN)-(RMIN + RS * I, VMIN + VS * .2)

LINE (RMIN, VMIN + VS * I)-(RMIN + RS * .1, VMIN + VS * I)

'LINE (RMIN + RS * I, VMIN)-(RMIN + RS * I, VMAX)

'LINE (RMIN, VMIN + VS * I)-(RMAX, VMIN + VS * I)

NEXT I

END

Plot Morse potential for hydrogen bromide. Given: kf = 411.9 N m–1, req = 142 pm and 

D = 6.280 × 10–19 J.
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The fraction f of mass unextracted of a solute in a solution after it is treated with extracting solvent is 

given by

  f =   2

d 1

/
1

n
V n

K V

Ê ˆ
+Á ˜Ë ¯

  

where V1 is the volume of solution, V2 is the volume of solvent used for extraction and

  n is the number of times the extraction is carried out.

 The expression of Kd is 

Kd = 
mass of solute in solution

mass of solute in the extracting solvent  
  

To display the percent extraction from the volume V1 (= 50 mL) of a solution when it is treated 

n) volume of extracting solvent where n is the number of times the extraction is carried 

d = 0.15

REM VI = Volume of solution: V2P = Volume of extracting solvent:

  REM N = Number of extractions: KD = Distribution constant

READ V1, V2P, KD, N

DATA 50,20,.15,10

IP = 60: FP = 100

SCREEN 1: COLOR 15, 0: VIEW (160, 20)-(310, 170)

WINDOW (0, IP)-(N, FP): LINE (0, IP)-(N, FP), , B

PRINT STRING$(15, "-"): PRINT "No.  Extraction"

PRINT STRING$(15, "-")

FOR I = 1 TO N

V2 = V2P / I: UNEXT = (KD * V1 / (KD * V1 + V2)) ^ I

PERCENT = (1 - UNEXT) * 100

PRINT USING "##"; I;

PRINT USING "   ###.##"; PERCENT; : PRINT " %": 'PRINT

PSET (I, PERCENT), 2: CIRCLE (I, PERCENT), .1

NEXT I

PRINT STRING$(15, "-")

FOR I = 1 TO N: LINE (I, IP)-(I, IP + 1): NEXT I

FOR I = IP TO FP STEP 4: LINE (0, I)-(.3, I): NEXT I

LOCATE 2, 21: PRINT "Percent Extraction"

LOCATE 3, 16: PRINT FP: LOCATE 22, 17: PRINT IP

LOCATE 23, 21: PRINT "0      I-->     "; N

END
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Display that the multistage solvent extraction is more profi table as compared to a single stage 

extraction. Also display graphically the percent of solute extracted in each stage of extraction.

  Use the expression:

  f =   2

d 1

/
1

n
V n

k V

Ê ˆ
+Á ˜Ë ¯

 

  where f is the fraction of mass unextracted,

  V1 is the volume of solution,

  V2 is the volume of solvent used for extraction

  n is the number of extractions

  Kd = 
mass of solute in solution

mass of solute in the extracting solvent
   

  Use the following data:

  V1 = 100 mL ; V2 = 20 mL ; Kd = 0.20 ; n = 1 to 10 

The ratio para : ortho of H2 is given by

  

( ) ( )( )

( ) ( ) ( )( )

r

para even

ortho r

odd

2 1 exp – 1 /

3 2 1 exp – 1 /

J

J

J J J T
N

N J J J T

+ +

=
+ +

Â
Â

q

q     

 For H2, qr = 86 K.
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Plot the variation of para/ortho ratio of H2 from 10 K to 300 K in the step of 10 K.

CLS

THETA = 86

SCREEN 1: COLOR 15, 0: VIEW (30, 10)-(310, 170)

WINDOW (0, 0)-(300, 100): LINE (0, 0)-(300, 100), , B

FOR T = 10 TO 300 STEP 5

THETAT = THETA / T: SUM1 = 0

FOR J = 0 TO 6 STEP 2

TERM = (2 * J + 1) * EXP(-THETAT * J * (J + 1))

SUM1 = SUM1 + TERM

NEXT J

SUM2 = 0

FOR J = 1 TO 7 STEP 2

TERM = (2 * J + 1) * EXP(-THETAT * J * (J + 1))

SUM2 = SUM2 + 3 * TERM

NEXT J

RATIO = SUM1 / SUM2

PERCENT = RATIO / (RATIO + 1) * 100

PSET (T, PERCENT): CIRCLE (T, PERCENT), 2

NEXT T

FOR I = 1 TO 9: LINE (I * 30, 0)-(I * 30, 3)

LINE (0, I * 10)-(4, I * 10): NEXT I

LOCATE 1, 10: PRINT "PARA/ORTHO Variation of H2 "

LOCATE 2, 1: PRINT "100": A$ = "PERCENT"

FOR I = 1 TO 7: LOCATE 8 + I, 3: PRINT MID$(A$, I, 1): NEXT I

LOCATE 22, 3: PRINT "0": LOCATE 16, 35: PRINT "25 %"

LOCATE 23, 2: PRINT "  0             T--->              300"

END
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The principle underlying the potentiometric titrations is the Nernst equation according to which the potential 

of an electrode depends upon the concentrations of species involved in the half-cell reaction. During the 

titration, the concentrations of these species vary, which in turn, varies the potential of the electrode. 

 The computation of half-cell potential is illustrated with the following example.

Compute the variation in potential of the electrode during the titration of 50 mL of 0.1 M Fe2+ ions with 

0.1 M Ce4+ ions. Given: E°(Fe3+, Fe2+| Pt) = 0.7 V and E°(Ce4+, Ce3+ | Pt) = 1.459 V.

Before the equivalence point

  E = 3 2

2

3Fe ,Fe |Pt

[Fe ]
– ln

[Fe ]

RT
E

F
+ +

+
∞

+

Ê ˆÊ ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

   

   =  3 2Fe ,Fe |Pt

1 –
– ln

RT f
E

F f
+ +

∞ Ê ˆÊ ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

 

where f is the fraction of Fe2+ ions converted to Fe3+ ions.

At the equivalence point

  E = ( )3 2 4 3Fe ,Fe |Pt Ce ,Ce |Pt

1

2
E E+ + + +

∞ ∞+  

After the equivalance point

  E =  4 3

3

4Ce ,Ce |Pt

[Ce ]
– ln

[Ce ]

RT
E

F
+ +

+

+
∞ Ê ˆÊ ˆ

Á ˜ Á ˜Ë ¯ Ë ¯
 

   =  
2 2

4 3

4

Fe Fe

Ce ,Ce |Pt
eq Ce

– ln
( – )

M VRT
E

F V V M

+ +

+ +

+

∞
Ê ˆÊ ˆ
Á ˜Á ˜Ë ¯ Ë ¯

; ([Ce3+]eq = [Fe2+]0)

where V is the total volume of Ce4+ ions added.

CLS

REM MF=Molarity OF Fe2+: MC=Molarity of Ce4+

REM VF=Volume of Fe2+: PF=Final Potential

REM EF=E(Fe2+/Fe): ECE=E(Ce4+/Ce)

READ MF, MC, VF: DATA .1,.1,50

VBEQ = MF * VF / MC: V2 = VBEQ + 10: PF = 1.8

CONS = 8.314 * 298 / 96500: EF = .7: ECE = 1.459

SCREEN 1: COLOR 15, 0: VIEW (35, 20)-(310, 170)

LOCATE 1, 5: PRINT "Potentiometric Titration of Fe2+ v. Ce4+"

LOCATE 3, 1: PRINT PF

FOR V = .1 TO V2 STEP .1

WINDOW (0, 0)-(V2, PF): LINE (0, 0)-(V2, PF), , B

PSET (VBEQ, .5 * (EF + ECE)), 2
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CIRCLE (VBEQ, .5 * (EF + ECE)), V2 / 150, 2

FOR I = 1 TO 9: II = V2 * .1 * I: JJ = I * PF * .1: IP = V2 / 50

LINE (II, 0)-(II, .05): LINE (0, JJ)-(IP, JJ)

'LINE (II, 0)-(II, PF): LINE (0, JJ)-(V2, JJ)

NEXT I

IF V < VBEQ THEN

F = V / VBEQ: E = EF - CONS * LOG((1 - F) / F)

GOTO 50

ELSEIF V > VBEQ THEN

E = ECE - CONS * LOG(MF * VF / ((V - VBEQ) * MC))

END IF

50 PSET (V, E)

FD = (E - EP) / (V - VP): PSET ((V + VP) / 2, FD + .1), 2

SD = (FD - FDP) / (V - VP)

WINDOW (0, -1)-(V2, 1): PSET ((V + VP) / 2, SD * 20), 1

EP = E: VP = V: FDP = FD

NEXT V

FOR I = -1 TO 1 STEP .05: PSET (VBEQ, I), 1: NEXT I

LOCATE 5, 10: PRINT "VBEQ="; : PRINT USING "###.#"; VBEQ;

PRINT " mL": LOCATE 11, 8: PRINT "2nd Derivative"

LOCATE 13, 4: PRINT "E": LOCATE 20, 8

PRINT "1st Derivative": LOCATE 22, 4: PRINT "0"

LOCATE 23, 3: PRINT "  0            V--->            "; V2

END
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The Fe2+ versus Ce4+ titration can be carried out in the presence of N-phenylanthranilic acid (E° = 1.08 V) 

indicator and not in the presence of diphenylamine (E° = 0.76 V) unless phosphoric acid is present in the 

titrating solution (this has an effect of reducing E°(Fe3+, Fe2+ | Pt)) so that the steep rise in the potential at 

the equivalance point encompasses E° of diphenylamine indicator.

Draw potentiometric titration plot of 50 mL (= V) of 0.1 M Cl– ions against 0.1 M Ag+ ions. Also 

draw the fi rst and second derivatives of E versus V(Ag+) plot.

  Use the following expressions.

  Before the equivalence point

  ECl
–

|AgCl |Ag = E°
Cl

–
|AgCl | Ag – 

(0.1)
ln (1 – )

RT V
f

F V

Ï ¸
Ì ˝+Ó ˛u

  

  where f is the fraction of Cl– ions precipitated and u is the volume of Ag+ ions added.

  E°
Cl

–
| AgCl|Ag = 0.22 V.

  At the equivalence point

  ECl
–

| AgCl | Ag = E°
Cl

–
| AgCl| Ag – 

RT

F
 ln ([Cl–] /M)

  where [Cl–] = sp (AgCl)K  with Ksp = 1.24 ¥ 10–5 M

  After the equivalence point

  EAg+ |Ag  = E°
Ag+|Ag – ln 

+

1
ln

[Ag ] /M

RT

F

Ê ˆ
Á ˜Ë ¯

 

  where E°
Ag+ |Ag = 0.799 V.

For the reaction

  H2O(l) Æ H2O(g)

we have Dr H°
298.15K = Df H°(H2O, g) – Df H°(H2O, l)

  Dr S°
298.15K = S°(H2O, g) – S°(H2O, l)

  DrCp = Cp(H2O, g) – Cp(H2O, l)

 Assuming DrCp to be independent of temperature, we will have

  DrH°
T = Dr H°

298.15K + DrCp (T – 298.15 K)

  DrS°
T = Dr S°

298.15K + DrCp ln  
298.15 K

TÊ ˆ
Á ˜Ë ¯
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  DrG°
T = Dr H°

T – T Dr S°
T

 For the reaction to be at equilibrium at 1 atm external pressure, we will have

  DrG°
T = 0 fi (Dr S°

T)eq = r TH

T

∞D
 

 For the reaction to be at equilibrium, we must change DrS°
T to (DrS°

T)eq. If this change is carried out only 

by changing the vapour pressure of water, we will have

  (Dr S°
T)eq – Dr S°

T = – R ln 
eq

1 bar

pÊ ˆ
Á ˜Ë ¯

 (1)

where (DrS°
T )eq and Dr S°

T are the entropy changes at pressure peq (vapour pressure of water) and 1 bar, 

respectively. This equation may be used to calculate the equilibrium vapour pressure of water.

 From the free energy consideration, we must have

  DrG° = – RT ln K°
p (2)

where K°
p =  p 

H2O(g)
 /p°.

 Equations (1) and (2) are identical as shown in the following.

  (Dr S°
T)eq – Dr S°

T = – R ln 
eq

1 bar

pÊ ˆ
Á ˜Ë ¯

  

or    
DrH°

T
 _____ 

T
   – DrS°

T = – R ln 
eq

1 bar

pÊ ˆ
Á ˜Ë ¯

 

or  DrH°
T – T Dr S°

T = – RT ln 
eq

1 bar

pÊ ˆ
Á ˜Ë ¯

 

or  DrG°
T = – RT ln K °

p

Calculate DrH°
T, Dr S°

T, DrG°
T, (DrS°

T)eq, peq and K°
p for the reaction H2O(l) Æ H2O(g)  at 

different temperatures. Also plot peq versus T.

Given: Df H° (H2O, l) = – 285.83 kJ mol–1

Df H° (H2O, g) = – 241.82 kJ mol–1

S° (H2O, l, 298.15 K) = 69.91 J K–1 mol–1

S° (H2O, g, 298.15 K) = 188.83 J K–1 mol–1

Cp(H2O, l) = 75.29 J K–1 mol–1

Cp(H2O, g) = 33.58 J K–1 mol–1

CLS : DIM T(20), PEQ(20)

N = 15: R = 8.314: HL = -285830: HG = -241820

TI = 293.15: TS = 10: SL = 69.91

SG = 188.83: CPL = 75.29: CPG = 33.58
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DH = HG - HL: DS = SG - SL: DCP = CPG - CPL

'PRINT "Vapour Pressures of H2O at Different Temperatures"

'PRINT STRING$(80, "_")

'PRINT "  T        DHT         DST       ";

'PRINT "TDS        DGT        DSTEQ      PEQ      Kp"

'PRINT " ---      -----     ---------   ";

'PRINT "-----      -----     ---------   ----     ----"

'PRINT "  K       J/mol      J/(K mol)   ";

'PRINT "J/mol      J/mol     J/(K mol)   bar      bar"

'PRINT STRING$(80, "_")

FOR I = 1 TO N

TI = TI + TS: T(I) = TI

DHT = DH + DCP * (T(I) - 298.15)

DST = DS + DCP * LOG(T(I) / 298.15)

DGT = DHT - T(I) * DST: DSTEQ = DHT / T(I)

PEQ(I) = EXP((DST - DSTEQ) / R)

KP = EXP(-DGT / (R * T(I))): PRINT USING "###.##"; T(I);

'PRINT USING "    #####.#"; DHT; DST; T(I) * DST; DGT; DSTEQ;

'PRINT USING "    ##.##"; PEQ(I); KP

NEXT I

'PRINT STRING$(80, "_")

'A$ = INPUT$(1)

SCREEN 1: COLOR 15, 0: VIEW (190, 20)-(310, 170)

WINDOW (300, 0)-(450, 8): LINE (300, 0)-(450, 8), , B

LOCATE 1, 25: PRINT "Vapour Pressures"

LOCATE 2, 30: PRINT "of H2O"

LOCATE 3, 5: PRINT STRING$(15, "-")

LOCATE 4, 6: PRINT "T/K     p/bar"

LOCATE 5, 5: PRINT STRING$(15, "-")

FOR I = 1 TO N

PSET (T(I), PEQ(I)): CIRCLE (T(I), PEQ(I)), 2

PRINT USING "   ####.##"; T(I);

PRINT USING " ###.###"; PEQ(I): A$ = INPUT$(1)

NEXT I

FOR I = 1 TO 9

LINE (300 + I * 15, 0)-(300 + I * 15, .2)

LINE (300, I)-(304, I)

NEXT I

LOCATE 3, 23: PRINT "8": LOCATE 13, 22: PRINT "p/"

LOCATE 14, 21: PRINT "bar"
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LOCATE 21, 5: PRINT STRING$(15, "-")

LOCATE 22, 23: PRINT "0"

LOCATE 23, 1: PRINT STRING$(22, " "); " 300  T/K---> 450"

END

Only p/bar at different temperatures along with its plot are displayed.

The differential equation of the fi rst-order is of the form

  y¢ = f(x, y)

with the intial condition y0 = y(x0) to be satisfi ed by the solution of the differential equation. We consider 

here a few methods which are available for the solution of fi rst-order differential equation.

 In actual computations, the solutions are compared with the exact value of the function y(xi).

Consider the following differential equation

  y¢ = f(x, y) (1)

with the intial condition y(x0) = y0

 If x1 = x0 + h, then by the Taylor series we write

  y(x + h) = y(x) + h y¢(x) + 
2

2

h  y≤(x) + . . .
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 For small value of h, the higher powers h2, h3, . . ., may be ignored to give

  y(x + h) = y(x) + h y¢

   = y(x) + h f (2)

 The following iteration process may be adopted to determine the value of y at x = x0 + (n + 1) h.

  x1 = x0 + h; y1 = y0 + h f (x0, y0)

  x2 = x1 + h = x0 + 2h; y2 = y1 + h f(x1, y1)

  

  xn + 1 = x0 + (n + 1) h; yn + 1 = yn + h f (xn, yn)

 The above method is know as Euler method or Euler-Cauchy method.

 In the improved Euler method (also know as Heun’s method), each step involves fi rstly the evaluation 

of the auxiliary value

  y*n + 1 = yn + h f (xn, yn)

and then the new improved value by the expression

  yn + 1 = yn + 
1

2
 h [f(xn, yn) + f(xn + 1, y*n + 1)]

 The above method is a predictor – collector method, because in each step we predict the value y*
n + 1 

by the fi rst equation and then correct it by the second equation.

y¢ = –k y for the fi rst-order kinetics with y(t = 0) 
–3 at t/s = 200, 400, 600, 800, 1000 and 1200. Given: k = 0.000 622 s–1.

REM Improved Euler Method(Heun's Method)

REM Function FNA is dy/dx & FNB is y

CLS : NMAX = 6

'X = 0: Y = 0: H = .2

'DEF FNA (X, Y) = X + Y: DEF FNB (X, Y) = EXP(X) - X - 1

REM DATA FOR FIRST ORDER KINETICS

X = 0: Y = .25: Y0 = Y: H = 200: K = .000622

'K = .01119: X = 0: Y = -34.8: Y0 = Y: H = 2

'K = .019368: X = 0: Y = 169.3: Y0 = Y: H = 1

DEF FNA (X, Y) = -K * Y: DEF FNB (X, Y) = Y0 * EXP(-K * X)

REM DATA FOR SECOND ORDER KINETICS

'K = .0000178: X = 0: Y = 632: Y0 = Y: H = 6

'DEF FNA (X, Y) = -K * Y ^ 2

'DEF FNB (X, Y) = Y0 / (1 + Y0 * X * K)

PRINT STRING$(50, "-")
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PRINT " N      X           Y         YEXACT       ERROR"

PRINT STRING$(50, "-")

FOR N = 0 TO NMAX

Z = Y

TERM = FNA(X, Z): YST = Z + H * TERM

Y1 = Y + (H / 2) * (TERM + FNA(X + H, YST))

YE = FNB(X, Z): ER = YE - Y

PRINT USING "##"; N; : PRINT USING "   ####.##"; X;

PRINT USING "   ####.####"; Y; YE; ER

Y = Y1: X = X + H

NEXT N

PRINT STRING$(50, "-")

END

Determine the solutions of differential equation

  y ¢ = – ky2

for the second-order kinetics with y (t = 0) = 632 mol dm–3 at t/min = 3, 6, 9, 12, 15 and 18. Given: 

k = 0.000 017 8 mol–1 dm3 min–1

Consider the differential equation

  y¢ = f (x, y) (1)

with the initial condition y(x0) = y0. Integrating Eq.(1), we get

  y1 = y0 + 
1

0

( , ) d
x

x
f x y xÚ  

 If the above integral is approximated by the trapezoidal rule, then

  y1 = y0 + 
2

h
 [f (x0, y0) + f (x1, y1)]
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where x1 = x0 + h. If y1 = y0 + h f (x0, y0), then

  y1 = y0 + 
2

h
 [f0 + f (x0 + h, y0 + h f0)]

where f0 = f (x0, y0). If the substitution

  k1 = h f0 and k2 = h f (x0 + h, y0 + k1)

are made in the above expression, we get

  y1 = y0 + 
1

2
 (k1 + k2)  (2)

 Equation (2) is known as the second-order Runge-Kutta formula.

 The most commonly used is the following fourth-order Runge-Kutta formula, for which we have

  y1 = y0 + 
1

6
 (k1 + 2k2 + 2k3 + k4)

where

  k1 = h f (x0, y0)

  k2 = h f 0 0 1

1 1
,

2 2
x h y k

Ê ˆ+ +Á ˜Ë ¯

  k3 = h f 0 0 2

1 1
,

2 2
x h y k

Ê ˆ+ +Á ˜Ë ¯
  

k4 = h f (x0 + h, y0 + k3)

Determine the solution of differential equation y¢ = – k y for the fi rst-order kinetics with y(t = 0) 
–3 at t/s = 200, 400, 600, 800, 1000 and 1200. Given: k = 0.000 622 s–1.

REM Function FNA is dy/dx & FNB is y

NMAX = 6: PRINT STRING$(50, "-")

PRINT " N       X           Y          YE          ER"

PRINT STRING$(50, "-")

REM Consecutive reaction with [A]=1; Determination of [B]

'L1 = .0125: L2 = .00417: X = 0: Y = 0: H = 40

'DEF FNA (X, Y) = L1 * EXP(-L1 * X) - L2 * Y

'DEF FNB (X, Y) = L1 * (EXP(-L1 * X) / (L2 - L1) + EXP(-L2 * X) 

/ (L1 - L2))

REM FIRST-ORDER KINETICS

X = 0: Y = .25: Y0 = Y: H = 200: K = .000622

'X = 0: Y = 169.3: Y0 = Y: H = 3: K = .019368

DEF FNA (X, Y) = -K * Y

DEF FNB (X, Y) = Y0 * EXP(-K * X)
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REM SECOND-ORDER KINETICS

'X = 0: Y = 632: H = 6: K = .0000178: Y0 = Y

'DEF FNA (X, Y) = -K * Y ^ 2

'DEF FNB (X, Y) = Y0 / (1 + K * X * Y0)

FOR N = 0 TO NMAX

Z = Y

K1 = H * FNA(X, Z)

K2 = H * FNA(X + .5 * H, Z + .5 * K1)

K3 = H * FNA(X + .5 * H, Z + .5 * K2)

K4 = H * FNA(X + H, Z + K3)

Y1 = Y + (1 / 6) * (K1 + 2 * K2 + 2 * K3 + K4)

YE = FNB(X, Z): ER = (YE - Y)

PRINT USING "##"; N; : PRINT USING "   ####.##"; X;

PRINT USING "   ####.####"; Y; YE; ER

X = X + H: Y = Y1

NEXT N

PRINT STRING$(50, "-")

END

To display the concentrations of A, B and C in a consecutive reactions A 
1kææÆ  B 

2kææÆ  C      

by solving the corresponding differential equation as given in the following. 

 (i)  – 
d[A]

dt
 = k1 [A]

  Differential equation: y¢ = – k1 y
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 (ii)  
d[B]

dt
 = k1 [A] – k2 [B]

    = k1 [A]0 exp(– k1 t) – k2 [B]

  Differential equation: y¢ = k1 [A]0 exp(– k1 x) – k2 y

 (iii)  
d[C]

dt
 = k2 [B] = k2 {[A]0 – [A] – [C]}

    = k2 [A]0 {1 – exp(– k1 t)} – k2 [C]

  Differential equation: y¢ = k2 [A]0 {1 – exp(– k1 x)} – k2 y

  where x ∫ t and y ∫ concentration of either A or B or C. 

 It is suffi cient to solve two of the above three equations as [A]0 = [A] + [B] + [C].

A 
1

1 0.0125sk -=æææææÆ   B 
1

2 .00417sk -=æææææÆ  C

 and the corresponding time by fi nding the maximum in [B] versus t plot.

CLS

REM CONSECUTIVE REACTIONS  A--->B--->C

READ PLOT$, A0, TF: DATA Y,1,1000

READ L1, L2:  DATA .0125, .00417

LL = L2 - L1: YM = 0

REM Functions FNB, FND and FNF give analytical solutions of [A], [B] and [C] 

DEF FNA (X, Y) = -L1 * Y: DEF FNB (X, Y) = A0 * EXP(-L1 * X)

DEF FNC (X, Y) = L1 * FNB(X, Y) - L2 * Y

DEF FND (X, Y) = A0 * (L1 / LL) * (EXP(-L1 * X) - EXP(-L2 * X))

DEF FNE (X, Y) = L2 * A0 * (1 - EXP(-L1 * X)) - L2 * Y

DEF FNF (X, Y) = A0 * (1 - (L2 * EXP(-L1 * X) - L1 * EXP(-L2 * X)) / LL)

IF PLOT$ = "Y" THEN

NMAX = TF: H = 1

SCREEN 1: COLOR 15, 0: VIEW (35, 20)-(310, 170)

WINDOW (0, 0)-(TF, A0): LINE (0, 0)-(TF, A0), , B

LOCATE 2, 1: PRINT "Concentrations in a Consecutive Reaction"

LOCATE 3, 1: PRINT USING "##.#"; A0: LOCATE 4, 8: PRINT "A-->B-->C"

LOCATE 6, 6: PRINT "[A]": LOCATE 12, 28: PRINT "K1="; L1

LOCATE 13, 28: PRINT "K2="; L2: LOCATE 20, 36: PRINT "[B]"

LOCATE 21, 7: PRINT "[C]": LOCATE 22, 4: PRINT "0"

LOCATE 23, 5: PRINT "0           t/s--->           "; TF

FOR I = 1 TO 9

LINE (I * TF / 10, 0)-(I * TF / 10, A0 * .03)

LINE (0, A0 * I / 10)-(TF / 100, A0 * I / 10)

NEXT I

ELSE
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NMAX = 18: H = TF / 20

PRINT STRING$(78, "-")

PRINT " N      t/s        [A]        [B]       [C]";

PRINT "         AE         BE         CE"

PRINT STRING$(78, "-")

END IF

X = 0: YA = A0: YB = 0: YC = 0

FOR N = 0 TO NMAX

Z = YA

K1 = H * FNA(X, Z)

K2 = H * FNA(X + .5 * H, Z + .5 * K1)

K3 = H * FNA(X + .5 * H, Z + .5 * K2)

K4 = H * FNA(X + H, Z + K3)

Y1 = YA + (1 / 6) * (K1 + 2 * K2 + 2 * K3 + K4)

Z = YB

K1 = H * FNC(X, Z)

K2 = H * FNC(X + .5 * H, Z + .5 * K1)

K3 = H * FNC(X + .5 * H, Z + .5 * K2)

K4 = H * FNC(X + H, Z + K3)

Y2 = YB + (1 / 6) * (K1 + 2 * K2 + 2 * K3 + K4)

Z = YC

K1 = H * FNE(X, Z)

K2 = H * FNE(X + .5 * H, Z + .5 * K1)

K3 = H * FNE(X + .5 * H, Z + .5 * K2)

K4 = H * FNE(X + H, Z + K3)

Y3 = YC + (1 / 6) * (K1 + 2 * K2 + 2 * K3 + K4)

IF PLOT$ = "Y" THEN

FOR I = 1 TO 100 STEP .005: NEXT I

PSET (X, YA), 1: PSET (X, YB), 2: PSET (X, YC), 3

ELSE

PRINT USING "##"; N; : PRINT USING "   ####.##"; X;

PRINT USING "  ####.####"; YA; YB; YC; FNB(X, Y); FND(X, Y); FNF(X, Y)

END IF

X = X + H: YA = Y1: YB = Y2: YC = Y3

IF YB >= YM THEN YM = YB: BMAX = YM: TMAX = N

NEXT N

IF PLOT$ = "Y" THEN

LOCATE 18, 28: PRINT "Bmax=";

PRINT USING "##.##"; BMAX; : PRINT "M"

LOCATE 19, 28: PRINT "tmax=";

PRINT USING "###"; H * (TMAX + 1); : PRINT "s"

END IF

IF PLOT$ <> "Y" THEN PRINT STRING$(78, "-")

END 
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 1. For the following parallel fi rst- and second-order reactions

    A 
1kææÆ  D + E 

    A + B 
2kææÆ  C + D

the differential rate law is 

   
d

d

x

t
 = k1 ([A]0 – x) + k2 ([A]0 – x) ([B]0 – x) 

  Solve the above differential equation for 

   [A]0 = 1.0 M, [B]0 = 1.0 M, k1 = 0.005 s–1, k2 = 0.005 mol–1 dm3 s–1

  Vary t from 0 to 1000 s in the step of 50 s. Compare the results with the exact expression

   x = 
0 0 1 2

0 1 2 0

[A] ([B] / )( – 1)

([B] / ) – [A]

k k Y

k k Y

+
+

 

  where Y = exp(k2t ([B]0 – [A]0 + k1/k2)). Note that x = 0 at t = 0.

Hint Set up the functions as follows.

 DEF FNA (X, Y) = L1 * (A0 – Y) + L2 * (A0 – Y) * (B0 – Y)

 DEF FNB (X, Y)

  LP = L1 / L2

  YY = EXP(L2 * X * (B0 – A0 + LP))

  FNB = (A0 * (B0 + LP) * (YY – 1)) / ((B0 + LP) * YY – A0)

  END DEF
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 2. For the following parallel fi rst- and second-order reactions

    A 1kææÆ  product

    A + A 2kææÆ  product

  the differential rate law is 

   
d

dt

x
 = k1 ([A]0 – x) + 2k2 ([A]0 – x)2

  Solve the above differential equation for 

   [A]0 = 0.5 M, [B]0 = 0.5 M, k1 = 0.002 s–1, k2 = 0.004 mol–1 dm3 s–1

  Vary t from 0 to 1000 s in the step of 50 s. Compare the results with the exact expression

   x = 
1

1

2
0 1 2 0 1 0 2 0

1 2 0 2 0

[A] ( 2 [A] ) e – [A] – 2 [A]

( 2 [A] ) e – 2 [A]

k t

k t

k k k k

k k k

+
+

  Note that x = 0 at t = 0.

Hint Set up the functions as follows

 DEF FNA (X, Y) = L1 * (A0 – Y) + 2 * L2 * (A0 – Y) ^ 2

 DEF FNB (X, Y)

  LP = (L1 + 2 * L2 * A0) * EXP(L1 * X)

  FNB = (A0 * LP – A0 * L1 – 2 * L2 * A0 ^ 2) / (LP – 2 * A0 * L2)

  END DEF

 3. Determine the solutions of differential equation

    y¢ = – ky2

  for the second-order kinetics with y(t = 0) = 632 mol dm– 3 at t/min = 2, 4, 6, 8, 10 and 12. Given: 

k = 0.000 017 8 mol–1 dm3 min–1

Consider the differential equation

  y¢ = f (x, y) (1)

with the intial condition y(x0) = y0. Integrating Eq. (1) from xn to xn + 1 (= xn + h), we have 

  yn + 1 = 
1

( , ) d
n

n

x

x
f x y x

+

Ú  (2)

 In Adams-Moulton method, the function is replaced by a cubic interpolation polynomial, normally by 

the Newton backward difference formula:

  p3(x) = fn + r —fn + 
1

2
 r (r + 1) —2fn + 

1

6
 r (r + 1) (r + 2) —3fn (3)

where r = (x – xn)/h. Thus, we have
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1 1

2 3

0

1 1
( , ) d ( 1) ( 1)( 2) d

2 6

n

n

x

n n n n
x

f x y x h f r f r r f r r r f r
+ È ˘= + — + + — + + + —Í ˙Î ˚Ú Ú

 In the above expression, x is substitued in terms of r by the expression r = (x – xn)/h. Thus dx = h 

dr and the limit of integration is changed; xn to 0 and xn + 1 to 1. On carrying out the integration and its 

substitution in Eq. (2) gives

  y*
n + 1 = yn + h   2 31 5 3

2 12 8
n n n nf f f f

È ˘+ — + — + —Í ˙Î ˚
  (4)

 Equation (4) is known as Adams-Bashforth formula and is used as a predictor formula to get more 

corrected value (known as collector value). The predicted value obtained from Eq. (1) is superscripted by 

asterisk, y*
n + 1. Equation (4) is normally expressed in terms of function f. Since

  —fn = fn – fn – 1

  —2fn = (fn – fn – 1) – (fn – 1 – fn – 2) = fn – 2 fn – 1 + fn – 2

  —3fn = fn – 3 fn – 1 + 3 fn – 2 – fn – 3

we get y*
n + 1 = yn + 

24

h
 (55 fn – 59 fn – 1 + 37 fn – 2 – 9 fn – 3) (5)

 To calculate y*
n + 1, one needs the values of fn, fn – 1, fn – 2 and fn – 3. These may be computed by some 

other method, say, the Runge-Kutta method.

 The collector formula to get more correct value is also the Newton’s backward formula at fn + 1, i.e.

   p~ 3(x) = fn + 1 + r —fn + 1 + 
1

2
 r(r + 1) —2fn + 1 + 

1

6
 r(r + 1) (r + 2) —3fn + 1 (6)

where r = (x – xn + 1)/h. Integrating this expression from xn to xn + 1, we get

 
1 0

2 3
3 1 1 1 1

–1

1 1
( ) d ( 1) ( 1)( 2) d

2 6

n

n

x

n n n n
x

p x x h f r f r r f r r r f r
+

+ + + +
È ˘Ê ˆ= + — + + — + + + —Á ˜Í ˙Ë ¯Î ˚Ú Ú

  = 2 3
1 1 1 1

1 1 1
– – –

2 12 24
n n n nh f f f f+ + + +

Ê ˆ— — —Á ˜Ë ¯
 (7)

 Expressing differences in terms of function f, and the substituting in Eq. (2), we get

  yn + 1 = yn + 
24

h
 (9 f *

n + 1 + 19 fn – 5 fn – 1 + fn – 2) (8)

where f *
n + 1 = f (xn + 1, yn + 1) and others are obtained by the usual y’s, i.e.

  fn = f (xn, yn); fn – 1 = f (xn – 1, yn – 1) and fn – 2 = f (xn – 2, yn – 2).

 The predictor – collector method involving Eqs (5) and (8) is known as Adams – Moulton method. The 

collector formula (Eq. 8) may be used repeatedly until the relative difference between successive values of 

yn + 1 is reduced to a small pre-assigned value.

Determine the solution of differential equation y¢ = – k y for the fi rst-order kinetics with y(t = 0) 

= [A]0 = 0.25 mol dm–3 at t/s = 200, 400, 600, 800, 1000 and 1200. Given: k = 0.000 622 s–1.
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CLS

DIM X1(20), Y1(20)

XMAX = 6: ITER = 1

REM FIRST-ORDER KINETICS

K = .000622: X = 0: Y = .25: Y0 = Y: H = 200

DEF FNA (X, Y) = -K * Y

DEF FNB (X, Y) = Y0 * EXP(-K * X)

REM SECOND-ORDER KINETICS

'X = 0: Y = 632: H = 6: K = .0000178: Y0 = Y

'DEF FNA (X, Y) = -K * Y ^ 2

'DEF FNB (X, Y) = Y0 / (1 + K * X * Y0)

PRINT STRING$(35, "-")

PRINT " N      X         Y        Yexact"

PRINT STRING$(35, "-")

FOR N = 0 TO 3

X1(N) = X: Y1(N) = Y

Z = Y

K1 = H * FNA(X, Z)

K2 = H * FNA(X + .5 * H, Z + .5 * K1)

K3 = H * FNA(X + .5 * H, Z + .5 * K2)

K4 = H * FNA(X + H, Z + K3)

5 PRINT USING "##"; N; : PRINT USING "  ###.##"; X1(N);

PRINT USING "    ###.####"; Y1(N); FNB(X, Z)

Y = Y + (1 / 6) * (K1 + 2 * K2 + 2 * K3 + K4)

X = X + H

NEXT N

PRINT STRING$(35, "-"): PRINT STRING$(43, "-")

PRINT " N     X         YP        YC       Yexact"

PRINT STRING$(43, "-")

FOR M = 3 TO XMAX

TERM = 55 * FNA(X1(M), Y1(M))

TERM = TERM - 59 * FNA(X1(M - 1), Y1(M - 1))

TERM = TERM + 37 * FNA(X1(M - 2), Y1(M - 2))

TERM = TERM - 9 * FNA(X1(M - 3), Y1(M - 3))

Y1P = Y1(M) + (H / 24) * TERM

FOR I = 1 TO ITER

TERM = 9 * FNA(X, Y1P)
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TERM = TERM + 19 * FNA(X1(M), Y1(M))

TERM = TERM - 5 * FNA(X1(M - 1), Y1(M - 1))

TERM = TERM + FNA(X1(M - 2), Y1(M - 2))

Y1C = Y1(M) + (H / 24) * TERM

PRINT USING "##"; M + 1; : PRINT USING " ####.##"; X;

PRINT USING "   ###.####"; Y1P; Y1C; FNB(X, Z)

IF ABS(Y1P - Y1C) < .0001 THEN 10

Y1P = Y1C

NEXT I

10 PRINT : A$ = INPUT$(1)

Y1(M + 1) = Y1C: X1(M + 1) = X: Z = Y1(M)

X = X + H

NEXT M

PRINT STRING$(43, "-")

END

Execute the program for the other data provided in the program
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The Milne’s method makes use of Newton’s forward difference formula

  f (x, y) = f0 + r Df0 + 2
0

( – 1) ( – 1)( – 2)

2! 3!

r r r r r
fD +  D3f0 + ... (1)

where r = (x – x0)/h.

 The predictor formula is based on the expression 

  y4 = y0 + 
4

0

( , ) d
x

x
f x y xÚ  

 Substituting f (x, y) from Eq. (1) retaining terms upto D3f0, we get

  y4 = y0 + 
4

0

2 3
0 0 0 0

( – 1) ( – 1)( – 2)
d

2! 3!

x

x

r r r r r
f r f f f x

Ê ˆ+ D + D + DÁ ˜Ë ¯Ú  

 since r = (x – x0)/h, we get h dr = dx

 Limits of integration are changed from 0 to 4. Hence

  y4 = y0 + h  
4

2 3
0 0 0 0

0

( – 1) ( – 1)( – 2)
d

2! 3!

r r r r r
f r f f f r

Ê ˆ+ D + D + DÁ ˜Ë ¯Ú   (2)

  = y0 + 
2 3

0 0 0 0

20 8
4 8

3 3
h f f f f

Ê ˆ+ D + D + DÁ ˜Ë ¯  

 Now  D f0 = f1 – f0

  D2 f0 = D(D f0) = D(f1 – f0) = (f2 – f1) – (f1 – f0) = f2 – 2 f1 + f0

  D3 f0 = f3 – 3 f2 + 3 f1 + f0

 With these, Eq. (2) becomes

  y4 = y0 + 
4

3

h
 (2 f1 – f2 + 2 f3) (3)

 The general form of predictor formula is

  y*
n +1 = yn – 3 + 

4

3

h
 (2 fn – 2 – fn – 1 + 2 fn) (4)

 The collector formula is based on the expression

  y2 = y0 + 
2

0

( , )
x

x
f x y dxÚ  

 Substituting Eq. (1) retaining terms upto D2f0, we get
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  y4 = y0 + 
2

0

2
0 0 0

( – 1)
d

2!

x

x

r r
f r f f x

È ˘+ D + DÍ ˙Î ˚Ú

  = y0 + 
2

2
0 0 0

0

( – 1)
d

2!

r r
h f r f f r

È ˘+ D + DÍ ˙Î ˚Ú

  = y0 + 2
0 0 0

1
2 2

3
h f f f

Ê ˆ+ D + DÁ ˜Ë ¯

  = y0 + 0 1 0 2 1 0

1
2 2( – ) ( – 2 )

3
h f f f f f f

È ˘+ + +Í ˙Î ˚

  = y0 + 
3

h
 ( f0 + 4 f1 + f2)

 The general form of collector formula is 

  yn + 1 = yn – 1 + 
3

h
 ( fn – 1 + 4 fn + f *

n + 1) (5)

where f *
n + 1 = y*

n + 1 (from Eq. 4)

Determine the solution of y ¢ = exp(x) (with y = 1 at x = 0) at x = 0.8, 1.0, 1.2 and 1.4 and 

compare the results y = exp(x).

CLS

DIM X1(20), Y1(20)

XMAX = 6: ITER = 1

X = 0: Y = 1: H = .2

DEF FNA (X, Y) = EXP(X): DEF FNB (X, Y) = EXP(X)

'X = 0: Y = 0: H = .2

'DEF FNA (X, Y) = X + Y: DEF FNB (X,Y) = EXP(X) - X - 1

'DEF FNA (X, Y) = 1 + Y ^ 2: DEF FNB (X,Y) = TAN(X)

''X = 1: Y = 0: H = .2

''DEF FNA (X, Y) = 1 / X: DEF FNB (X,Y) = LOG(X)

REM FIRST-ORDER KINETICS

'X = 0: Y = .25: Y0 = Y: K = .000622: H = 200

'DEF FNA (X, Y) = -K * Y: DEF FNB (X, Y) = Y0 * EXP(-K * X)

REM SECOND-ORDER KINETICS

'X = 0: Y = 632: H = 6: K = .0000178: Y0 = Y

'DEF FNA (X, Y) = -K * Y ^ 2: DEF FNB (X, Y) = Y0 / (1 + K * 

X * Y0)

PRINT STRING$(33, "-")
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PRINT " N     X          Y        Yexact"

PRINT STRING$(33, "-")

FOR N = 0 TO 3

X1(N) = X: Y1(N) = Y

K1 = H * FNA(X, Y)

K2 = H * FNA(X + .5 * H, Y + .5 * K1)

K3 = H * FNA(X + .5 * H, Y + .5 * K2)

K4 = H * FNA(X + H, Y + K3)

5 PRINT USING "##"; N; : PRINT USING "####.##"; X1(N);

PRINT USING "     ###.###"; Y1(N); FNB(X, Y)

Y = Y + (1 / 6) * (K1 + 2 * K2 + 2 * K3 + K4)

X = X + H

NEXT N

PRINT STRING$(33, "-"): PRINT STRING$(45, "-")

PRINT " N      X         YP         YC       Yexact"

PRINT STRING$(45, "-")

FOR M = 3 TO XMAX

TERM = 2 * FNA(X1(M - 2), Y1(M - 2))

TERM = TERM - FNA(X1(M - 1), Y1(M - 1))

TERM = TERM + 2 * FNA(X1(M), Y1(M))

Y1P = Y1(M - 3) + (4 * H / 3) * TERM

FOR I = 1 TO ITER

TERM = FNA(X1(M - 1), Y1(M - 1))

TERM = TERM + 4 * FNA(X1(M), Y1(M))

TERM = TERM + FNA(X, Y1P)

Y1C = Y1(M - 1) + (H / 3) * TERM

PRINT USING "##"; M + 1; : PRINT USING "  ####.##"; X;

PRINT USING "    ###.###"; Y1P; Y1C; FNB(X, Y)

IF ABS(Y1P - Y1C) < .00001 THEN 10

Y1P = Y1C

NEXT I

10 PRINT : A$ = INPUT$(1)

Y1(M + 1) = Y1C: X1(M + 1) = X

X = X + H

NEXT M

PRINT STRING$(45, "-")

END
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Run the program for the other data provided in the program

The solution of the second-order differential equation

y ≤ = f(x, y, y ¢), with two initial conditions y(x0) = y0 and y ¢(x0) = y¢0
may be carried out by using Runge-Kutta-Nyström method. The computational procedure for the fourth-

order method (which include the term up to h4 (where h is increment in the value of x) in the Taylor 

formulas for y and y¢) is as follows.

 Compute fi rst the following four terms. 

  k1 = 
1

2
 h  f  (xn, yn, y ¢  n) 

  k2 = 
Ê ˆ+ + +¢Á ˜Ë ¯1

1 1
, , ;

2 2
n n nh f x h y K y k  where k = 1

1 1

2 2
nh y k

Ê ˆ+¢Á ˜Ë ¯

  k3 = 
Ê ˆ+ + +¢Á ˜Ë ¯2

1 1
, ,

2 2
n n nh f x h y K y k   
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  k4 = 
1

2
 h f  (xn + h, yn + L, y ¢n + 2 k3); where L = h(y ¢n + k3) 

 The values of xn + 1, yn + 1 and y ¢n + 1 are then computed by using the expressions 

  xn + 1 = xn + h 

  yn + 1 = yn +  1 2 3

1
( )

3
nh y k k k

Ê ˆ+ + +¢Á ˜Ë ¯
 

  y ¢n + 1 = y ¢n + 
1

3
 (k1 + 2 k2 + 2 k3 + k4) 

 The above computations are carried out for n = 0, 1, …, N – 1 

To display the wave functions of a particle in a one-dimensional box of length unity by solving 

y≤ = – a2 y where a = np. Given y(0) = 0 and y ¢(0) = np. 

y = sin(np x).

REM Solution of Second Order Differential Equation

REM Runge-Kutta-Nystrom (Fourth-Order) Method

REM BOX$="BOX" if One-Dimensional Box

REM PLOT$="Y" if plot is required

REM NMAX=Number of wave functions to be displayed

CLS

READ BOX$, PLOT$, NMAX: DATA BOX,Y,5

'DEF FNA (X, Y, YP) = .5 * (X + Y + YP + 2)

'DEF FNB (X, Y, YP) = EXP(X) - X - 1

'DEF FNC (X, Y, YP) = EXP(X) - 1

REM Application to Particle in a One-Dimensional Box

REM Function FNA is the given differential equation.

REM Function FNB gives the exact value of y

REM Function FNC gives the exact value of y'.

DEF FNA (X, Y, YP) = -NP ^ 2 * Y

DEF FNB (X, Y, YP) = SIN(NP * X)

DEF FNC (X, Y, YP) = -COS(NP * X) * NP

FOR NN = 1 TO NMAX

X = 0: Y = 0: YP = 0: NP = NN * 3.14159

IF BOX$ = "BOX" THEN : YP = NP

IF PLOT$ = "Y" THEN

CLS : N = 200: H = 1 / N

SCREEN 1: COLOR 14, 0: VIEW (10, 10)-(315, 170)

WINDOW (0, -1.1)-(1, 1.1)

LINE (0, -1.1)-(1, 1.1), , B

LOCATE 1, 2: PRINT "Wave Functions of a Particle in 1-D Box"

LINE (0, 0)-(1, 0): LOCATE 23, 2

PRINT "0               X---->               1"

LOCATE 12, 1: PRINT "0"

FOR I = .1 TO 1.1 STEP .1: LINE (I, 0)-(I, .05)

LINE (0, I)-(.01, I): LINE (0, -I)-(.01, -I)

NEXT I

ELSE N = 10: H = 1 / N: PRINT STRING$(50, "-")

PRINT "  N    X       Y       Yexact      YP     YPexact"

PRINT STRING$(50, "-")
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PRINT "  0"; : PRINT USING "  #.##"; X;

PRINT USING "  ##.#####"; Y; FNB(X, Y, YP); YP; FNC(X, Y, YP)

END IF

FOR I = 0 TO N - 1

K1 = .5 * H * FNA(X, Y, YP)

KK = .5 * H * (YP + .5 * K1)

K2 = .5 * H * FNA(X + .5 * H, Y + KK, YP + K1)

K3 = .5 * H * FNA(X + .5 * H, Y + KK, YP + K2)

LL = H * (YP + K3)

K4 = .5 * H * FNA(X + H, Y + LL, YP + 2 * K3)

X = X + H

Y = Y + H * (YP + (1 / 3) * (K1 + K2 + K3))

YP = YP + (1 / 3) * (K1 + 2 * K2 + 2 * K3 + K4)

IF PLOT$ = "Y" THEN

LOCATE 3, 28: PRINT "N="; : PRINT USING "##"; NN

PSET (X, Y), 2

ELSE PRINT USING "###"; I + 1; : PRINT USING "  #.##"; X;

PRINT USING " ###.#####"; Y; FNB(X, Y, YP); YP; FNC(X, Y, YP)

A$ = INPUT$(1)

END IF

NEXT I

A$ = INPUT$(1)

IF PLOT$ <> "Y" THEN PRINT STRING$(50, "-")

NEXT NN

END 
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Note: Only wave function for n = 5 is shown here.

Determine the values of function y(x) at x = 0.2, 0.4, 0.6, 0.8 and 1.0 which satisfi es the differential 

equation y ≤ – xy ¢ + 2y = 0. Given: y(0) = 1 and y ¢(0) = 0  (Ans: 0.96, 0.84, 0.64, 0.36, 0)
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For an autocatalytic reaction

  A + C  2C

the proposed mechanism is

  A + C   D (fast) 

  D  2C   (slow)

 The rate expression is

  
–1

0[C] 1 e

t

t

x e

B
=

+

b

b

where x is the extent of reaction, B = [C]0/[A]0 and b = ([A]0 + [C]0)/(2k2k1/k–1).

Plot x/[C]0 versus t for b = 0.02, 0.04, 0.06, 0.08 and 0.1. Take B = 0.1. Also determine the 

REM Autocatalysis

CLS : READ TF, XF: DATA 200,10

BETAF = .1: B = .1: TS = 1: Y = 0: RMAX = 0: TMAX = 0

SCREEN 1: COLOR 15, 0: RF = XF / 30

LOCATE 2, 10: PRINT "Autocatalysis A+C --> 2C"

LOCATE 4, 4: PRINT "X/C0": LOCATE 4, 29: PRINT "RATE*30"

LOCATE 3, 1: PRINT "10": LOCATE 11, 16: PRINT ".02"

LOCATE 18, 34: PRINT ".02": LOCATE 22, 2: PRINT "0"

LOCATE 23, 3: PRINT "0    t/s-->   "; TF; "0    t/s-->   "; TF

FOR BETA = .02 TO BETAF STEP .02

FOR T = 0 TO 200 STEP TS

BT = BETA * T

X = (EXP(BT) - 1) / (1 + B * EXP(BT))

VIEW (20, 20)-(160, 170): WINDOW (0, 0)-(TF, XF)

LINE (0, 0)-(TF, XF), , B: PSET (T, X)

FOR I = 1 TO 9

LINE (TF * .1 * I, 0)-(TF * .1 * I, .2)

LINE (0, XF * .1 * I)-(TF / 50, XF * .1 * I)

NEXT I

RATE = (X - Y) / TS

VIEW (170, 20)-(310, 170): WINDOW (0, 0)-(TF, RF)

LINE (0, 0)-(TF, RF), , B: PSET (T, RATE)
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FOR I = 1 TO 9

LINE (TF * .1 * I, 0)-(TF * .1 * I, .01)

LINE (0, RF * .1 * I)-(TF / 50, RF * .1 * I)

NEXT I

Y = X

IF RATE > RMAX THEN RMAX = RATE: TMAX = T

NEXT T

LOCATE 8, 28: PRINT "BETA="; : PRINT USING " #.##"; BETA

LOCATE 9, 28: PRINT "RMAX="; : PRINT USING " #.##"; RMAX

LOCATE 10, 28: PRINT "TMAX="; : PRINT USING " ###"; TMAX;

PRINT " s": A$ = INPUT$(1)

NEXT BETA

LOCATE 5, 23: PRINT ".1": LOCATE 10, 4: PRINT ".1"

END
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To draw the variation of pressure with volume of a real gas at temperatures lower than its critical temperature. 

Also draw its surface of discontinuity. 

 The van der Waals equation for one mole of gas is 

  2

a
p

V

Ê ˆ+Á ˜Ë ¯  (V – b) = RT 

which on opening gives 

  V 3 – V 2  – 0
pb RT a ab

V
p p p

Ê ˆ+
+ =Á ˜Ë ¯  (1) 

 This equation gives three real roots Va, Vb and Vc for a given value of p at a temperature lower than the 

critical temperature of the gas. Of these, the smallest value (say, Va) and the largest value (say, Vc) lie on 

the surface of discontinuity provided the area between the line Va Vb and the isotherm (labelled as Area-1) 

is equal and of opposite sign of the area between the line Vb Vc and the isotherm (labelled as Area-2). 

 There roots of Eq. (1) can be obtained by Lin-Bairstow’s method in which Eq. (1) is resolved into a 

linear and a quadratic factor as described in the following. 

 Let Eq. (1). be written as 

  f (x) = A3x3 + A2 x2 + A1x + A0 = 0 (2) 

 Let x2 + Rx + S be its quadratic factor and let x2 + rx + s be its approximate factor. 

 The fi rst approximation of r and s is obtained by writing 

  r = 
1

2

A

A
 and s = 

0

2

A

A
 (3)

 Equation (2) may be written as 

  f (x) = (x2 + r x + s) (B2 x + B1) + C x + D (4)

   = B2 x
3 + (B2 r + B1) x

2 + (C + B1 r + s B2) x + (B1 s + D) (5) 

 Equating the corresponding coeffi cients in Eqs (2) and (5), we get 

  B2 = A3 

  B2 r + B1 = A2 

  C + B1 r + s B2 = A1

  B1s + D = A0  (6) 
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 These give 

  B2 = A3 

  B1 = A2 – rB2 

  C = A1 – B1r – B2s 

  D = A0 – B1s (7) 

 We fi nd that the coeffi cients B1, C and D are functions of r and s.

 Since x2 + Rx + S is a factor of Eq. (2), we may write 

  f (x) = (x2 + Rx + S) (B2 x + B1) (8)

 Comparing Eqs (4) and (7), we conclude that r Æ R, s Æ S provided C(R, S) = 0 and D(R, S) = 0

where we wirte 

  R = r + Dr and S = s + Ds. (9) 

 Expanding C(R, S ) and D(R, S ) = 0 as Taylor’s series, we get 

  C(R, S ) = C(r, s) + Dr 
C C

s
r s

∂ ∂
+ D

∂ ∂  = 0 (10) 

  D(R, S) = D(r, s) + Dr 
D D

s
r s

∂ ∂
+ D

∂ ∂
 = 0 (11)

where the derivatives are evaluated at r and s. Solving Eqs (10) and (11) for Dr and Ds, we get

  Dr = 
– ( / ) ( / )

( / ) ( / ) – ( / ) ( / )

C D s D C s

C r D s D r C s

∂ ∂ + ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

    (12) 

  D s = 
– ( / ) ( / )

( / ) ( / ) – ( / ) ( / )

C D r D C r

C s D r D s C r

∂ ∂ + ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (13)

 For the values of r and s provided by Eq. (3), the above two expressions are used to provide the values 

of Dr and Ds. With these, Eq. (9) provides the next approximation to R and S, respectively. 

 The process is repeated with the new values of R and S to provide new refi ned values of Dr and Ds. 

This iterative process is continued until the values of Dr and D s tend toward some minimum value near to 

zero. 

 Once the factored equations x2 + Rx + S = 0 and B2 x + B1 = 0 are obtained, these provide the three 

roots of the given cubic expression.

 For the van der waals equation of state (Eq. 1), the various expressions to be used are 

  A3 = 1 ; A2 = – ( pb + RT)/p 

  A1 = a/p ; A0 = – ab/p 

  r = 
1

2

–
A a

A pb RT
=

+
 ; s = 

0

2

A a

A pb RT
=

+
     

  B2 = 1 

  B1 = A2 – rB2 = –
pb RT

p

+
 – r

  C = A1 – rB1 – sB2 = –
a pb RT

r r s
p p

Ê ˆ+
+ +Á ˜Ë ¯
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  D = A0 – sB1 = –
ab pb RT

s r
p p

Ê ˆ+
+ +Á ˜Ë ¯

 

  2
C pb RT

R
r p

∂ +
= +

∂
 ;  

C

s

∂
∂

 = – 1 

  
D

r

∂
∂

 = s ;  
s

D pb RT
r

p

∂ +
= +

∂
 

 Once the three roots are obtained, the areas ‘Area-1’ and ‘Area-2’ as mentioned in the beginning 

are evaluated. The process is repeated for different values of p and the value of p is selected for which

Area-1 = – Area-2. For this value of p, the roots Va and Vc lie on the surface of discontinuity. 

Van der Waals isotherms of O2, vary pressure form 3800 kPa to 5100 kPa and temperature 

from 144 K to 154 K.

REM PROGRAM ROOTVAN1;VAN DER WAALS ISOTHERMS

REM OPT=1 FOR DISPLAY OF VOLUMES

REM OPT=2 FOR DISPLAY OF PLOTS

CLS : READ OPT: DATA 2

READ NAME$, a, b, PI, PF, PS, TI, TF, TS, VI, VF, WP1, WP2

DATA O2,137.802,.03183,3800,5100,.5,144,154,2,.05,.18,700,300

'DATA CO2,363.96,.04267,5700,7500,1,286,304,1,.075,.25,700,300

'DATA C3H8,877.88,.08445,3900,4800,1,359,369,1,.15,.4,100,0

R1 = 8.314: A3 = 1: B2 = A3: PIP = PI

FOR T = TI TO TF STEP TS

FOR P = PIP TO PF STEP PS

R = -a / (P * b + R1 * T): S = a * b / (P * b + R1 * T)

TERM = b + R1 * T / P

FOR I = 1 TO 30

C = a / P + R * (TERM + R) - S

D = -a * b / P + S * (TERM + R): B1 = -TERM - R

DCDR = b + R1 * T / P + 2 * R: DCDS = -1

DDDR = S: DDDS = b + R1 * T / P + R

DR = (-C * DDDS + D * DCDS) / (DCDR * DDDS - DDDR * DCDS)

DS = (-C * DDDR + D * DCDR) / (DCDS * DDDR - DDDS * DCDR)

6 R = R + DR: S = S + DS

NEXT I

V1 = -B1 / B2: DIS = R * R - 4 * S

IF DIS < 0 THEN 20

V2 = (-R + DIS ^ .5) / 2: V3 = (-R - DIS ^ .5) / 2

IF V1 > V2 THEN SWAP V1, V2

IF V1 > V3 THEN SWAP V1, V3

IF V2 > V3 THEN SWAP V2, V3
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VMIN = V1: VINT = V2: VMAX = V3

ON OPT GOTO 8, 11

8 PRINT "V1="; V1; "    V2="; V2; "       V3="; V3

11 AREA1 = 0: AREA2 = 0

FOR V = VMIN TO VINT STEP .00001

PP = R1 * T / (V - b) - a / V ^ 2

AREA1 = AREA1 + V * (PP - P)

NEXT V

FOR V = VINT TO VMAX STEP .00001

PP = R1 * T / (V - b) - a / V ^ 2

AREA2 = AREA2 + V * (PP - P)

NEXT V

ON OPT GOTO 14, 16

14 PRINT "T="; T; "   P="; P; "    AREA1="; AREA1; "    AREA2"; AREA2

a$ = INPUT$(1)

16 IF ABS(AREA1) > AREA2 THEN 35

GOTO 30

20 ON OPT GOTO 22, 30

22 PRINT "T="; T; "  P="; P;

PRINT "  The other two roots are imaginary": a$ = INPUT$(1)

30 NEXT P

35 ON OPT GOTO 36, 38

36 PRINT : PRINT : PRINT "V1="; V1, "V2="; V2, , "V3="; V3

PRINT "T="; T, "P="; P, "AREA1="; AREA1, "AREA2="; AREA2: PRINT

38 PIP = P

ON OPT GOTO 45, 40

40 SCREEN 1: COLOR 15, 0

VIEW (35, 20)-(310, 170)

WPS1 = PI - WP1: WPS2 = PF + WP2

WINDOW (VI, WPS1)-(VF, WPS2): LINE (VI, WPS1)-(VF, WPS2), , B

PSET (V1, P), 1: CIRCLE (V1, P), .001, 1

PSET (V2, P), 2: CIRCLE (V2, P), .001, 2

PSET (V3, P): CIRCLE (V3, P), .001

LINE (V1, P)-(V3, P), 1

FOR VV = VI TO VF STEP .001

PP = R1 * T / (VV - b) - a / VV ^ 2: PSET (VV, PP)

FOR KK = 1 TO 100 STEP .1: NEXT KK: NEXT VV

45 NEXT T

ON OPT GOTO 48, 46

'46 FOR T = TI TO TF STEP TS

'FOR V = VI TO VF STEP .001

'p = R1 * T / (V - B) - A / V ^ 2: PSET (V, p)
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'NEXT V: NEXT T

46 LOCATE 2, 8: PRINT "VAN DER WAALS ISOTHERMS OF "; NAME$

LOCATE 3, 1: PRINT USING "####"; PF + WP2

LOCATE 12, 3: PRINT "P"

LOCATE 22, 1: PRINT USING "####"; PI - WP1

LOCATE 23, 1: PRINT USING "#.###"; VI;

PRINT "           V----->           "; : PRINT USING "#.###"; VF

FOR I = 1 TO 9

VS = (VF - VI) * .1: PS = (WPS2 - WPS1) * .1

LINE (VI + VS * I, WPS1)-(VI + VS * I, WPS1 + PS * .3)

LINE (VI, WPS1 + PS * I)-(VI + VS * .2, WPS1 + PS * I)

NEXT I

LOCATE 8, 32: PRINT TF; "K"

LOCATE 17, 32: PRINT TI; "K"

48 END

 Draw van der waals of CO2 and C3H8 (data given in the program.)

To draw Gibbs valley of the reaction N2O4(g)  2NO2(g) and to determine its standard equilibrium 

constant from the extent of reaction at equilibrium.

 The plot of Gtotal versus x (extent of reaction) of a reaction is known as the Gibbs valley. To determine 
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Gtotal in terms of x, the following expressions are used.

  Gtotal = Gpure + DmixG

where Gpure =  B 0 B B total

B

{( ) } ln
p

n v RT n
p

∞ Ê ˆ
+ + Á ˜∞Ë ¯Â x m  

  DmixG = RT 
B

B
totalB(g)

ln
n

n
n

Â
 Here, nB = (nB)0 + nBx

  ntotal = B 0 B

B(g)

( )n v+Â x

 To determine extent of reaction at equilibrium, the expression of DrG
~ 

= (∂G/∂x)T, p may be used. It has 

a zero value at equilibrium.

 The expression of DrG
~ 

is
 
 

  DrG
~

 =  
B

B B B B
totalB B B(g)

ln ln
p n

v v RT RT v
p n

∞
Ê ˆ Ê ˆ Ê ˆ

+ +Á ˜ Á ˜Á ˜ Ë ¯∞Ë ¯Ë ¯
Â Â Âm   

 The above expressions required the following input of data at 298 K.

 Temperature (298 K), pressure (= 1 atm), number of constituents (other than elements in their standard 

states) in the reaction along with their phases (gas or liquid or solid), initial amounts and stoichiometric 

numbers (negative for reactants and positive for products).

 If the temperature is other than 298 K, the following expression may be used to determine the value 

of Df G °
T   
. 

  Df G°
T
 = – (Dra)T 

r r2 3
1 2ln – –

K 2 6

T b c
T T K K T

D DÊ ˆ Ê ˆ Ê ˆ + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

where K1 = Dr H° 
T0

  – 
2 3
0 0

r 0 r r( ) ( ) ( )
2 3

T T
a T b c

È ˘
D + D + DÍ ˙

Í ˙Î ˚
 

  K2 =  0r 0 r r 12
r 0 0

0 0

( ) ln –
K 2 6

TG T b c K
a T T

T T

∞D D DÊ ˆ Ê ˆ Ê ˆ+ D + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
 

  T0 = 298 K.

 Make a program to study the reaction N2O4(g)  2NO2(g)

  Given:  m° 
NO2(g)

  = 51.31 kJ mol–1 and  m° 
N2O4(g)

  = 97.89 kJ mol–1
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 Constituent 
–1 –1 2

3 6

/J K mol ( /K) ( /K)

10 10

pC a b T c T

a b c

= + +

¥ ¥
   
    

f 298K

–1kJ mol

H∞D
         f 298K

–1kJ mol

G∞D  

 

 N2(g) 29.295 – 2.2634 5.6649 0 0

 O2(g) 26.648 9.55 –1.328 0 0

 NO2(g) 25.036 45.550 –18.420 33.18 51.31

 N2O4(g) 36.208 169.98 –77.984 9.16 97.89

2 CLS

3 DEF FNA$ (J)

4 IF J = 1 THEN FNA$ = "FIRST"

5 IF J = 2 THEN FNA$ = "SECOND"

6 IF J = 3 THEN FNA$ = "THIRD"

7 IF J = 4 THEN FNA$ = "FOURTH"

8 IF J = 5 THEN FNA$ = "FIFTH"

9 IF J = 6 THEN FNA$ = "SIXTH"

10 END DEF

11 DIM NUB(6), MUB(6), PHASE$(6), NAME$(6), NAM$(6), BG(6)

12 DIM GPURE(9, 910), GTOTAL(9, 910), DGDXI(9, 910), XIEQ(9)

   DIM KP(9), GEQ(9), NUCF(9), DMIXG(9, 910), A(6), B(6)

   DIM C(6), K1(6), K2(6), H0(6), G0(6), IN(6, 6), NUCR(6, 6)

14 DIM NCR(6), TT(9), PP(9), NB(6)

16 READ TI: PRINT "Initial temperature in kelvin="; TI

            DATA 298

18 READ TF: PRINT "Final temperature in kelvin="; TF

            DATA 358

            'DATA 298

            'DATA 328

20 READ TD: PRINT "Temperature inerval in kelvin="; TD

            DATA 30

25 READ PI: PRINT "Initial pressure in atm="; PI

            DATA 1

30 READ PF: PRINT "Final pressure in atm="; PF

            DATA 1

32 READ PD: PRINT "Pressure interval in atm="; PD

            DATA .15 

34 IF TF = 298 THEN GT = 0 ELSE GT = 1

35 READ NC

 PRINT "Number of constituents in the main chemical reaction,NC="; NC

            DATA 2

37 READ PLOT: PRINT "PLOT=1 if plot required else 0;PLOT="; PLOT
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            DATA 1

   PRINT : A$ = INPUT$(1)

38 R = .008314: XIMAX = 10

39 FOR I = 1 TO NC

40 READ NAME$(I)

 PRINT "Name of the "; FNA$(I); " spieces="; NAME$(I)

41 READ PHASE$(I): PRINT "Phase of "; NAME$(I); "="; PHASE$(I)

43 READ NUB(I): PRINT "Stoichometric number of "; NAME$(I); "="; NUB(I)

45 READ NB(I): PRINT "Amount of "; NAME$(I); " in mole="; NB(I)

 PRINT : A$ = INPUT$(1)

47 IF NUB(I) >= 0 THEN 50

48 NBDNUB = NB(I) / ABS(NUB(I))

49 IF XIMAX > NBDNUB THEN XIMAX = NBDNUB

50 NEXT I

           DATA N2O4,G,-1,1,NO2,G,2,0

51 FOR I = 1 TO NC

52 READ MUB(I)

   PRINT "Chemical potential of "; NAME$(I); " in kJ/mol="; MUB(I)

 PRINT : A$ = INPUT$(1)

53 NEXT I

             DATA 97.89,51.31

54 JJ = 0

55 IF GT = 0 THEN 112

56 READ TNC

   PRINT "Total index number of the constituents including elements whose ";

 PRINT " FREE ENERGY is to be computed at different temperatures,TNC="; TNC

 PRINT : A$ = INPUT$(1)

              DATA 4

   T0 = 298

70 FOR J = 1 TO TNC

   READ NAM$(J): PRINT "Index number "; J; " for the constituent "; NAM$(J)

   PRINT : A$ = INPUT$(1)

   PRINT "Molar heat capacity data in J/(K mol) of ";

   PRINT NAM$(J); " without exponent part"

75 READ A(J): PRINT "a="; A(J), : A(J) = A(J) * 10 ^ (-3)

80 READ B(J): PRINT "b="; B(J), : B(J) = B(J) * 10 ^ (-6)

85 READ C(J): PRINT "c="; C(J):  C(J) = C(J) * 10 ^ (-9)

 PRINT "Molar values of H0 and G0 in kJ/mol for "; NAM$(J)

90 READ H0(J): PRINT "H0="; H0(J),

91 READ G0(J): PRINT "G0="; G0(J)

 PRINT : A$ = INPUT$(1)

92 K1(J) = H0(J) - (A(J) * T0 + (B(J) / 2) * T0 ^ 2 + (C(J) / 3) * T0 ^ 3)

94 K2(J) = G0(J) / T0 + A(J) * LOG(T0) + (B(J) / 2) * T0
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 K2(J) = K2(J) + (C(J) / 6) * T0 ^ 2 - K1(J) / T0

96 NEXT J

             DATA N2,29.295,-2.2634,5.6649,0,0

             DATA O2,26.648,9.55,-1.328,0,0

             DATA N2O4,36.208,160.98,-77.984,9.16,97.89

             DATA NO2,25.036,45.55,-18.42,33.18,51.31

100 FOR I = 1 TO NC

102 READ NCR(I): PRINT "Number of speices in the formation reaction of ";

PRINT NAME$(I); " ="; NCR(I)

104 FOR J = 1 TO NCR(I)

106 READ IN(I, J)

PRINT "Index number of the "; FNA$(J); " species in this";

PRINT " formation reaction "; IN(I, J)

108 READ NUCR(I, J)

PRINT "NU of this species="; NUCR(I, J)

PRINT : A$ = INPUT$(1)

110 NEXT J: NEXT I

             DATA 3,1,-1,2,-2,3,1

             DATA 3,1,-.5,2,-1,4,1

112 CLS

113 FOR T = TI TO TF STEP TD

114 NUBMUB = 0: NBMUB = 0: SUMNB = 0: SUMNUB = 0

115 IF GT = 0 THEN 130

116 FOR J = 1 TO TNC

117 BG(J) = -A(J) * T * LOG(T) - (B(J) / 2) * T ^ 2

 BG(J) = BG(J) - (C(J) / 6) * T ^ 3 + K1(J) + K2(J) * T

118 A$ = INPUT$(1)

119 PRINT T; "K", NAM$(J), "G="; BG(J); "kJ/mol"

120 NEXT J

130 FOR I = 1 TO NC

132 IF GT = 0 THEN 210

134 TEMP = 0

136 FOR J = 1 TO NCR(I): I1 = IN(I, J)

142 TEMP = TEMP + NUCR(I, J) * BG(I1)

144 NEXT J

146 PRINT "   O=";

170 FOR J = 1 TO NCR(I): I1 = IN(I, J)

172 IF NUCR(I, J) < 0 THEN PRINT "-";  ELSE PRINT "+";

174 PRINT ABS(NUCR(I, J)); "("; NAM$(I1); ")";

175 NEXT J

180 MUB(I) = TEMP

    PRINT "     "; "MUB("; I; ")="; TEMP; "kJ/mol"

182 A$ = INPUT$(1)
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210 NBMUB = NBMUB + NB(I) * MUB(I)

 NUBMUB = NUBMUB + NUB(I) * MUB(I)

218 IF PHASE$(I) = "S" OR PHASE$(I) = "L" THEN 224

220 SUMNB = SUMNB + NB(I)

 SUMNUB = SUMNUB + NUB(I)

224 NEXT I

225 FOR P = PI TO PF STEP PD

226 KK = 0: JJ = JJ + 1: JJJ = 0

229 PRINT "   "; STRING$(50, "-")

230 PRINT "     XI     GPURE      DMIXG    GTOTAL     DGDXI"

232 PRINT "   "; STRING$(50, "-")

240 FOR J = 0 TO 100: XI = (J / 100) * XIMAX

245 TERM1 = 0: TERM2 = 0

250 FOR I = 1 TO NC

255 IF PHASE$(I) = "S" OR PHASE$(I) = "L" THEN 275

260 TERM = (NB(I) + NUB(I) * XI) / (SUMNB + SUMNUB * XI)

261 IF TERM <= 0 THEN 275

262 TERM = LOG(TERM)

265 TERM1 = TERM1 + (NB(I) + NUB(I) * XI) * TERM

270 TERM2 = TERM2 + NUB(I) * TERM

275 NEXT I

276 DMIXG(JJ, J) = R * T * TERM1

277 IF XI = 0 OR XI = XIMAX THEN DGDXI(JJ, J) = 0: GOTO 280

278 DGDXI(JJ, J) = NUBMUB + R * T * (SUMNUB * LOG(P) + TERM2)

280 GPURE(JJ, J) = NBMUB + XI * NUBMUB

282 GPURE(JJ, J) = GPURE(JJ, J) + R * T * (SUMNB + SUMNUB * XI) * LOG(P)

290 GTOTAL(JJ, J) = GPURE(JJ, J) + DMIXG(JJ, J)

291 IF JJJ = 1 THEN 300

292 IF DGDXI(JJ, J) > 0 THEN XIEQ(JJ) = XI: GEQ(JJ) = GTOTAL(JJ, 

J): JJJ = 1

300 IF J <> 10 * KK THEN 315

301 KK = KK + 1

306 PRINT USING "   ##.##"; XI;

 PRINT USING "   ####.##"; GPURE(JJ, J); DMIXG(JJ, J);

 PRINT USING "   ####.##"; GTOTAL(JJ, J); DGDXI(JJ, J)

315 NEXT J

316 PRINT "   "; STRING$(50, "-")

351 PRINT "T="; T; "K,"; "P="; P; "atm"; "  XI at equilibrium =";

352 PRINT USING "##.##"; XIEQ(JJ);

353 KP(JJ) = EXP(-NUBMUB / (R * T))

354 PRINT "  Equilibrium constant=";

 PRINT USING "##.###^^^^"; KP(JJ)

355 PRINT "At equilibrium";

356 FOR I = 1 TO NC
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357 AMOUNT = NB(I) + NUB(I) * XIEQ(JJ)

358 PRINT "     AMOUNT OF "; NAME$(I); "=";

359 PRINT USING "##.####"; AMOUNT; : PRINT " mol";

361 NEXT I: PRINT

363 A$ = INPUT$(1) ': CLS

 PP(JJ) = P: TT(JJ) = T

364 NEXT P: NEXT T: A$ = INPUT$(1)

371 IF PLOT = 0 THEN 690

372 XMIN = 0: XMAX = XIMAX

373 YMIN = GTOTAL(1, 1): YMAX = GTOTAL(1, 1)

374 FOR M1 = 1 TO JJ: FOR M2 = 1 TO 100

376 IF YMIN > GTOTAL(M1, M2) THEN YMIN = GTOTAL(M1, M2)

377 IF YMAX < GTOTAL(M1, M2) THEN YMAX = GTOTAL(M1, M2)

378 NEXT M2: NEXT M1

382 FOR M1 = 1 TO JJ: FOR M2 = 1 TO 100

384 IF YMIN > GPURE(M1, M2) THEN YMIN = GPURE(M1, M2)

386 IF YMAX < GPURE(M1, M2) THEN YMAX = GPURE(M1, M2)

388 NEXT M2: NEXT M1

392 YMIN = YMIN - 1: YMAX = YMAX + 1

435 SCREEN 1: COLOR 15, 0: LOCATE 2, 10: PRINT "0=";

441 FOR M1 = 1 TO NC

442 IF NUB(M1) < 0 THEN PRINT "-";  ELSE PRINT "+";

443 PRINT ABS(NUB(M1)); : PRINT "("; NAME$(M1); ")";

445 NEXT M1

447 LOCATE 3, 1: PRINT USING "###"; YMAX: LOCATE 13, 2: PRINT "G"

449 LOCATE 22, 1: PRINT USING "###"; YMIN

450 LOCATE 23, 5: PRINT USING "#"; XMIN;

451 PRINT "    XI--->    "; : PRINT USING "#"; XMAX

460 VIEW (30, 17)-(155, 170)

462 WINDOW (XMIN, YMIN)-(XMAX, YMAX)

 LINE (XMIN, YMIN)-(XMAX, YMAX), 3, B

469 XS = (XMAX - XMIN) / 10: YS = (YMAX - YMIN) / 30

472 XS1 = XS / 4: YS1 = YS * 3

 FOR IX = 1 TO 9

 X1 = XMIN + IX * XS: Y1 = YMIN + IX * YS * 3

 LINE (X1, YMIN)-(X1, YMIN + YS)

 LINE (XMIN, Y1)-(XMIN + XS1, Y1)

475 NEXT IX: JP = 0

483 FOR J = 1 TO JJ: FOR I = 1 TO 100

486 XI = (I / 100) * XIMAX: YI = GPURE(J, I): ZI = GTOTAL(J, I)

488 PSET (XI, YI), 1: PSET (XI, ZI), 2

492 NEXT I

493 XX = XIEQ(J): YY = GEQ(J): PSET (XX, YY): CIRCLE (XX, YY), .02

498 LINE (XIEQ(J), YMIN)-(XIEQ(J), YMIN + 4 * YS)
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499 JP = JP + 1: LOCATE 16 - 4 * (JP - 1), 22

 PRINT TT(J); "K ;"; : PRINT USING "#.##"; PP(J); : PRINT " atm"

    LOCATE 17 - 4 * (JP - 1), 23

    PRINT "XIEQ="; : PRINT USING "#.##"; XIEQ(J)

    LOCATE 18 - 4 * (JP - 1), 23

    PRINT "Kp="; : PRINT USING "##.###^^^^"; KP(J)

    IF JP = 6 THEN JP = 1

    A$ = INPUT$(1)

500 NEXT J

501 A$ = INPUT$(1): CLS : YMIN = DGDXI(1, 2): YMAX = DGDXI(1, 2)

505 FOR M1 = 1 TO JJ: FOR M2 = 2 TO 99

508 IF YMIN > DGDXI(M1, M2) THEN YMIN = DGDXI(M1, M2)

510 IF YMAX < DGDXI(M1, M2) THEN YMAX = DGDXI(M1, M2)

512 NEXT M2: NEXT M1

516 CLS : YMIN = INT(YMIN): YMAX = INT(YMAX)

530 LOCATE 3, 1: PRINT USING "###."; YMAX

 LOCATE 13, 2: PRINT " 0"

534 LOCATE 10, 1: PRINT " dG": LOCATE 11, 1: PRINT "---"

538 LOCATE 12, 1: PRINT "dXI": LOCATE 22, 1: PRINT USING "###."; YMIN

545 VIEW (30, 17)-(155, 170)

547 WINDOW (XMIN, YMIN)-(XMAX, YMAX)

 LINE (XMIN, YMIN)-(XMAX, YMAX), , B

550 YS = (YMAX - YMIN) / 40

554 FOR IX = 1 TO 9

 X1 = XMIN + IX * XS: Y1 = YMIN + IX * 4 * YS

556 LINE (X1, YMIN)-(X1, YMIN + YS): LINE (XMIN, Y1)-(XMIN + XS1, Y1)

558 NEXT IX

572 FOR J = 1 TO JJ: FOR I = 1 TO 100

576 XI = (I / 100) * XIMAX: YI = DGDXI(J, I)

577 PSET (XI, YI), 2

578 NEXT I

580 LINE (0, 0)-(XIEQ(J), 0), 2

 LINE (XIEQ(J), YMIN)-(XIEQ(J), 0), 2

586 PSET (XIEQ(J), 0): CIRCLE (XIEQ(J), 0), .02

593 NEXT J

595 A$ = INPUT$(1)

602 CLS : XMIN = 0: XMAX = 1

604 YMIN = DMIXG(1, 2): YMAX = DMIXG(1, 2)

606 FOR M1 = 1 TO JJ: FOR M2 = 2 TO 100

610 IF YMIN > DMIXG(M1, M2) THEN YMIN = DMIXG(M1, M2)

612 IF YMAX < DMIXG(M1, M2) THEN YMAX = DMIXG(M1, M2)
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614 NEXT M2: NEXT M1

618 CLS : YMIN = INT(YMIN - 1): YMAX = INT(YMAX + 1)

624 LOCATE 3, 1: PRINT USING "#.#"; YMAX

 LOCATE 5, 10: PRINT "DmixG"

FOR II = 0 TO 3: LOCATE 11 + II, 1: PRINT "    ": NEXT II

652 LOCATE 15, 1: PRINT "   "

 LOCATE 22, 1: PRINT USING "##."; YMIN

654 VIEW (30, 17)-(155, 170)

656 WINDOW (XMIN, YMIN)-(XMAX, YMAX)

 LINE (XMIN, YMIN)-(XMAX, YMAX), , B

660 YS = (YMAX - YMIN) / 40

662 FOR IX = 1 TO 9

 X1 = XMIN + IX * XS: Y1 = YMIN + IX * YS * 4

 LINE (X1, YMIN)-(X1, YMIN + YS)

 LINE (XMIN, Y1)-(XMIN + XS1, Y1)

666 NEXT IX

676 FOR J = 1 TO JJ: FOR I = 1 TO 100

678 XI = (I / 100) * XIMAX: YI = DMIXG(J, I)

682 PSET (XI, YI), J

684 NEXT I: NEXT J

690 END
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To construct p-electron molecular orbitals for a conjugated molecule by using Hückel approximations. Also 

calculate its atomic charges and bond orders.

 For a conjugated hydrocarbon, the secular determinant as per Hückel approximations includes

 (i) a–E as the diagonal element for each carbon atom, where a is the Coulomb integral.

 (ii) b as the off-diagonal element for each pair of connected atoms, where b is the exchange integral

 (iii) zero as the off-diagonal element for each pair of non-connected atoms.

 
For example, for butadiene,

 

CH2 = CH — CH = CH2

(1) (2) (3) (4)
the secular determinant is

  

(1) (2) (3) (4)

(1) – 0 0

(2) – 0

(3) 0 –

(4) 0 0 –

E

E

E

E

a b

b a b

b a b

b a

 = 0

 If each element is divided by b , we get

  

1 0 0

1 1 0

0 1 1

0 0 1

x

x

x

x

 = 0 where x =   
– Ea

b
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 Since 

  

1 0 0 0 0 0 0 1 0 0

1 1 0 0 0 0 1 0 1 0

0 1 1 0 0 0 0 1 0 1

0 0 1 0 0 0 0 0 1 0

x x

x x

x x

x x

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙= +
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Î ˚ Î ˚ Î ˚

M B A

   (1)

 The matrix A is subjected to orthogonal transformations

  D = n n–1. . . 2 1 A S1S2 . . . Sn–1 Sn

so as to give the matrix D which includes only diagonal elements with all off diagonal elements equal to 

zero. The  matrix is the transpose of S and is equal to S –1, since S is an orthogonal matrix.

 Each orthogonal transformation makes the largest off-diagonal element in the matrix A and in the 

subsequent matrices equal to zero by selecting proper angle q in the matrix S given by

  S = 
cos –sin

sin cos

q q

q q
 

 The above procedure of carrying out the diagonalization is known as Jacobi’s method. You are 

provided with a program which carry out the diagonalization along with the matrix

  C = S1S2 … Sn–1S

which represents the eigen vectors (columnwise) corresponding to each diagonal element. These 

vectors represent the respective coeffi cients of atomic orbitals in the various molecular orbitals.

 With the diagnonalized matrix, Eq. (1) is written as

  M = 

1 1

2 2

3 3

4 4

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

x y x y

x y x y

x y x y

x y x y

+È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙+Í ˙ Í ˙ Í ˙+ =
Í ˙ Í ˙ Í ˙+
Í ˙ Í ˙ Í ˙

+Î ˚ Î ˚ Î ˚

   

 The corresponding secular determinant is 

  

1

2

3

4

0 0 0

0 0 0

0 0 0

0 0 0

x y

x y

x y

x y

+
+

+
+

  = 0

 This gives

  x + y1 = 0 ; x + y2 = 0

  x + y3 = 0 and x + y4 = 0
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 Since x = (a – E)/b, the various energies of molecular orbitals are

  E1 = x + y1b ; E2 = x + y2b

  E3 = x3 + y3b and E4 = x + y4b.

 Once the eigenvectors (which are columns of the matrix C (= S1S2 … Sn–1Sn) matrix is known, the 

atomic charges (qr) and bond orders (prs) are evaluated by the expressions

  qr =  
2

,occ

i ir

i

n CÂ  and prs = 
,occ

i ir is

i

n C CÂ

where the summation i is over occupied molecular orbitals, ni is the occupancy number (of electrons) in 

the ith molecular orbitals.

 For heteroatom, the inteqral a and b are written as

  a B = a C + hBbCC and bBC = kBC bCC

where the recommended values of hB and kBC are as follows.

 Atom B hB Bond, B–C kBC

 N
.
 0.5 C — N

.
 0.8

 N 1.5 C — N 1.0

 N
+

 2.0 N — O 0.7

 O
.
 1.0 C — O 0.8

 O 2.0 C == O 1.0

 For example, for pyridine the secular determinant is

  

( 0.5 ) 0.8 0 0 0 0.8

0.8 – 0 0 0

0 – 0 0
0

0 0 – 0

0 0 0 –

0.8 0 0 0 –

E

E

E

E

E

E

+ +

=

a b b b

b a b

b a b

b a b

b a b

b b a

 On dividing by b and letting x = (a – E)/b, we get



276 A Textbook of Physical Chemistry

   

0.5 0.8 0 0 0 0.8

0.8 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

0.8 0 0 0 1

x

x

x

x

x

x

+   = 0

 The matrix to be diagonalized is 

0.5 0.8 0 0 0 0.8

0.8 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

0.8 0 0 0 1 0

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

 For the hyperconjugation effect of methyl group, the effective nuclear charge of carbon to which methyl 

group is attached is decreased by a value 0.2. Thus, the diagonal element of this carbon is given a value of – 0.2.

 Eigenvalues, eigenvectors, bond order and charge densities of butadiene. 

REM PROGRAM HUCKEL

CLS : DIM A(10, 10), B(10, 10), V(10, 10)

READ NAME$, N, NE: PRINT NAME$: PRINT

FOR I = 1 TO N: FOR J = I TO N

READ A(I, J): A(J, I) = A(I, J): B(I, J) = A(I, J)

NEXT J: NEXT I

PRINT "SECULAR DETERMINANT": PRINT

FOR I = 1 TO N: FOR J = 1 TO N: PRINT USING "   ##.#"; A(I, J);

NEXT J: PRINT : NEXT I

A$ = INPUT$(1)

REM

REM INITIALIZE EIGENVECTOR MATRIX TO UNIT MATRIX

REM

FOR I = 1 TO N: FOR J = 1 TO N

IF I = J THEN V(I, J) = 1 ELSE V(I, J) = 0

NEXT J: NEXT I

REM

REM SCAN FOR LARGEST OFF-DIAGONAL ELEMENT

REM

15 XMAX = 0

FOR I = 1 TO N - 1: FOR J = I + 1 TO N

IF XMAX < ABS(A(I, J)) THEN XMAX = ABS(A(I, J)): IP = I: JP = J

NEXT J: NEXT

REM
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REM TEST FOR TOLERANCE

REM

EPS = 1E-08

IF XMAX <= EPS THEN 75

REM

REM COMPUTE TAN,COS,SIN,A(I,I) and A(J,J)

REM

DENOM = ABS(A(IP, IP) - A(JP, JP))

TERM = SQR((A(IP, IP) - A(JP, JP)) ^ 2 + 4 * A(IP, JP) ^ 2)

DENOM = DENOM + TERM

IF A(IP, IP) >= A(JP, JP) THEN 27

TANG = -2 * A(IP, JP) / DENOM

GOTO 30

27 TANG = 2 * A(IP, JP) / DENOM

30 COSN = 1 / SQR(1 + TANG ^ 2)

SINE = TANG * COSN: AII = A(IP, IP)

TERM = AII + TANG * (2 * A(IP, JP) + TANG * A(JP, JP))

A(IP, IP) = COSN ^ 2 * TERM

TERM = A(JP, JP) - TANG * (2 * A(IP, JP) - TANG * AII)

A(JP, JP) = COSN ^ 2 * TERM

A(IP, JP) = 0

IF A(IP, IP) >= A(JP, JP) THEN 36

SWAP A(IP, IP), A(JP, JP)

REM

REM ADJUST SIN,COS FOR COMPUTATION OF A(I,K) AND V(I,K)

REM

IF SINE >= 0 THEN 34

TEMP = COSN

GOTO 35

34 TEMP = -COSN

35 COSN = ABS(SINE)

SINE = TEMP

36 FOR I = 1 TO N

IF I = IP THEN 50

IF I > IP THEN 42

TEMP = A(I, IP)

A(I, IP) = COSN * TEMP + SINE * A(I, JP)

A(I, JP) = -SINE * TEMP + COSN * A(I, JP)

GOTO 50

42 IF I = JP THEN 50

IF I > JP THEN 48

TEMP = A(IP, I)

A(IP, I) = COSN * TEMP + SINE * A(I, JP)
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A(I, JP) = -SINE * TEMP + COSN * A(I, JP)

GOTO 50

48 TEMP = A(IP, I)

A(IP, I) = COSN * TEMP + SINE * A(JP, I)

A(JP, I) = -SINE * TEMP + COSN * A(JP, I)

50 NEXT I

REM

REM COMPUTE EIGENVECTORS

REM

FOR I = 1 TO N

TEMP = V(I, IP)

V(I, IP) = COSN * TEMP + SINE * V(I, JP)

V(I, JP) = -SINE * TEMP + COSN * V(I, JP)

NEXT I

GOTO 15

REM

REM ARRANGE EIGENVALUES IN ASCENDING ORDER

REM

75 FOR I = 1 TO N: X = A(I, I): K = I

FOR M = I TO N

IF A(M, M) <= X THEN 85

X = A(M, M): K = M

85 NEXT M

A(K, K) = A(I, I): A(I, I) = X

FOR L = 1 TO N

SWAP V(L, K), V(L, I)

NEXT L: NEXT I

REM

REM CHAGE SIGN IF FIRST EIGENVECTOR IS NEGATIVE

REM

FOR I = 1 TO N

K = 1

IF V(K, I) >= O THEN 92

FOR J = 1 TO N

V(J, I) = -V(J, I)

92 NEXT J

NEXT I

PRINT : PRINT "EIGEN VALUES": PRINT

FOR I = 1 TO N: FOR J = 1 TO N: A(J, I) = A(I, J)

PRINT USING "  ###.###"; A(I, J);

NEXT J: PRINT : NEXT I: A$ = INPUT$(1)

PRINT : PRINT "EIGEN VECTORS": PRINT

FOR I = 1 TO N: FOR J = 1 TO N
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PRINT USING "   ##.####"; V(I, J);

NEXT J: PRINT : NEXT I: PRINT : A$ = INPUT$(1)

PRINT "ELECTRON DENSITIES": PRINT

NOC = INT(NE / 2)

IF INT(NE / 2) * 2 = NE THEN KK = 1

FOR I = 1 TO N

ED = 0

FOR J = 1 TO NOC

ED = ED + 2 * V(I, J) ^ 2

NEXT J

IF KK = 1 THEN 100

ED = ED + V(I, J) ^ 2

100 PRINT "   ATOM("; I; ")="; : PRINT USING "##.###"; ED

A$ = INPUT$(1)

NEXT I: PRINT

PRINT "BOND ORDERS": PRINT

FOR I = 1 TO N - 1

FOR J = I + 1 TO N

BO = 0

IF B(I, J) = 0 THEN 160

FOR K = 1 TO NOC

BO = BO + 2 * V(I, K) * V(J, K)

NEXT K

IF KK = 1 THEN 150

BO = BO + V(I, K) * V(J, K)

150 PRINT "   ATOMS("; I; ","; J; ")=";

PRINT USING "##.###"; BO

A$ = INPUT$(1)

160 NEXT J

NEXT I

'DATA BUTADIENE,4,4                             

'DATA 0,1,0,0,0,1,0,0,1,0

DATA BENZENE,6,6

DATA 0,1,0,0,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0

'DATA ALLYL RADICAL,3,3

'DATA 0,1,0,0,1,0

'DATA PYRIDINE,6,6

'DATA .5,.8,0,0,0,.8,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0

'DATA ANILINE,7,8

'DATA 0,1,0,0,0,1,1,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1.5

'DATA ANILINIUM ION,7,7

'DATA 0,1,0,0,0,1,.8,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,2

END
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In this project, the basic principle in the formation of eutectic phase diagram is highlighted.

 For a binary system involving separation of pure components from ideal liquid solution, the criterion 

of equilibrium gives

 m*
A(s) = mA(l) and m*

B(s) = mB(l)   (1)

 These equations may be solved separately for the equilibrium compositions xA(l) and xB(l) at which 

solid components A and B exist in equilibrium with the corresponding components in the liquid phase. 

The compositions xA(l) and xB(l) may be evaluated either analytically or graphically as described in the 

following.

 The free energy difference between pure solid phase and pure liquid phase of component i(where 

i = A or B) is given by

 DfusGi = Dfus Hi – T DfusSi = Dfus Hi – T(Dfus Hi /Ti
*)

  = Dfus Hi(1 – T /Ti
*) (2)

 While replacing DfusSi by DfusHi / Ti
*, it is assumed that Cp,i(s) = Cp,i(l) so that DfusHi may be treated as 

independent of temperature.

 For 1 mol of each of the two components, we can write

  DfusGi ∫ Dfus mi = mi (l) – mi(s) (3)

 On a graph between Gm versus xB, the values of mi(s) and mi(l ) may be depicted relative to each other 

by setting

  mi(l) = 0 (4a)

and  mi(s) = –DfusH(1 – T/Ti
*) (4b)

 In view of Eq. (4a), the free energy of liquid phase will be equal to the free energy of mixing of the 

two components. Hence

  Gl = DmixG = RT [xA(l) ln xA(l) + xB(l) ln xB(l)] (5)

 The free energy of solid mixture will be given by

  Gs = xA(s)GA(s) + xB(s)GB(s) (6)

 In Eqs (5) and (6), the symbol x represents amount fraction satisfying the expressions

  xA(l) + xB(l) = 1 and xA(s) + xB(s) = 1 (7)

 The plots of Gl versus xB(l) and Gs with xB(s) will be like those in shown Fig. 1.

 Increase in temperature causes mi(s) to become less negative (i.e. its value increases, Eq. 4b) and Gl to 

become more negative (i.e. its value decreases, Eq. 5). Consequently, the graps of Gl versus xB(l) and Gs 

versus xB(s) move in the opposite directions.

 If a tangent line is drawn from a point on the Gl versus xB(l) curve, its intercepts on the ordinate axes 

give the partial molar free energies of the two components in the liquid phase at that point. Conversely, 

if a tangent line is drawn from the GA(s) on the ordinate axis of A to the Gl versus xB(l) curve, the point P 

(see, Fig. 2) on the liquid curve is obtained where the condition

  GA(s) = mA(l) (8)

holds good and thus at this point, solid A will exist in equilibrium with the liquid phase.
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Fig. 1 The plots of Gl versus xB(l) and Gs versus xB(s)

 The composition of the point P in Fig. 2 may also be worked out by substituting the expressions of 

GA(s) and mA(l) in Eq. (8), which gives

  – DfusHA  
*
A

1 –
T

T

Ê ˆ
Á ˜Ë ¯

  = RT ln xA(l) or  xA(l) = exp fus A

*
A

– 1 –
H T

RT T

È ˘Ê ˆD
Í ˙Á ˜Ë ¯Î ˚

  (9)

Fig. 2 Tangent lines from GA(s) and GB(s) on the ordinate axes to Gl versus xB(l) curve
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 Similarly, if a tangent line is drawn from the GB(s) on the ordinate axis of B to the Gl versus xB(l) 

curve, the point Q on the liquid curve is obtained where the condition.

  GB(s) = mB(l) (10)

holds good and thus at this point, solid B will exist in equilibrium with the liquid phase. The composition 

of the point Q may also be worked out by substituting the expressions of GB(s) and mB(l) in Eq. (8), which 

gives

  – DfusHB 
*
B

1 –
T

T

Ê ˆ
Á ˜Ë ¯

 = RT ln xB(l) or xB(l) = exp
fus B

*
B

– 1 –
H T

RT T

È ˘Ê ˆD
Í ˙Á ˜Ë ¯Î ˚

   (11)

 The tangent line drawn from GA(s) (or GB(s)) on the ordinate axis A (or B) to the Gl versus xB(l) curve 

may meet the ordinate axis B(or A) at a point higher than or equal to or lower than the value of GB(s) 

(or GA(s)).

 A brief discussion of these three alternatives for a tangent line drawn from GA(s) is in order.

Case 1 When the point lies above GB(s)

 In this case, the chemical potential of B in liquid phase at P (see, Fig. 3) is greater than its molar Gibbs 

free energy in the solid phase.

 Since mB(l) > GB(s), the component B in liquid phase at the point P does not represent a stable system. 

In order to attain stability, solid B starts separating from the liquid phase. This results into the shifting 

of the liquid composition towards the ordinate axis A along the liquid curve. At the new composition 

point of the liquid phase, if a tangent line is drawn it results into mB(l) more near to GB(s) but at the same 

time mA(l) becomes greater than GA(s). This, in turn, results into the separation of solid phase A until the 

composition of liquid phase returns back to the point P. Thus, the separation of solid B is accompanied with 

the separation of solid A and the separated solid mixture has a composition identical to that of the liquid 

phase. This separation of solid mixture is continued with the free energy of the system moving along PR 

(i.e. a vertical line corresponding to the constant composition of the liquid phase at P (see, Fig. 4).

Fig. 3 A case where m*B(l) > GB(s)
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Fig. 4 Separation of solid mixture from the liquid solution at P

 The fraction of solid mixture separated at any instant may be determined as follows.

 Let y be the fraction of solid mixture separate at any instant. And let GQ be the free erergy of the 

system at this instant. It follows that

 GQ = yGR + (1 – y)Gp

 This gives y = 
Q P

R P

–

–

G G

G G
   and 1 – y = 

R Q

R P

–

–

G G

G G
   

 Thus  
Q P

R Q

–Fraction of solid separated PQ

Fraction of liquid remaining 1 – – QR

G Gy

y G G
= = =  (12)

 Equation (12) is the lever rule,

 The above analysis of separation of both the solid components from the liquid mixture at the point 

P until the point R is reached also follows from the fact that Gmix(solid) at the point R is lesser than 

Gmix(liquid) at the point P. The temperature of the system corresponds to a temperature lower than the 

eutectic temperature of the system.

Case 2 When the point lies at GB(s)

 In this case, the chemical potential of B in the liquid phase is equal to its molar Gibbs free energy in 

the solid phase (see, Fig. 5)

 Since at the point P

 mA(l) = GA(s) and mB(l) = GB(s) (13)

both the components in the solid phase are in equilibrium with the corresponding components in the liquid 

phase. The temperature of the system corresponds to the eutectic temperature of the system.
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Fig. 5 A case where mB(l) = GB(s)

 Case 3 When the point lies below GB(s)

 In this case, the chemical potential of B in the liquid phase at the point P is lower than its Gibbs free 

energy in the solid phase (see, Fig. 6)

Fig. 6 A case where mB(l) < GB(s)
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 The component B remains in the liquid phase. In fact, at the point P, the system exists as the 

liquid phase with solid A just in equilibrium with the liquid phase. This also follows from the fact that

Gmix(liquid) at the point P is lesser than Gmix(solid) which lies on the line joining GA(s) and GB(s) in Fig. 6. 

The temperature of the system corresponds to a temperature higher than the eutectic temperature of the 

system.

Consider a system shown by the point Q in Fig. 7 This system contains larger amount of A as compared 

that present in the equilibrium composition of A (represented by the point P).

 The tangent line at Q gives mA(l) > GA(s) (= (mA(l))eq). Thus, the component A will exhibit solidifi cation 

from the solution Q. The solidifi cation of A causes the shift in composition of liquid towards P along the 

liquid curve. This also causes the shift of mA(l) towards GA(s). The solidifi cation of A is continued until the 

composition of liquid reaches to the point P.

 Let nA and nB be the amounts of A and B, respectively, at the point Q. If a is the amount of solid A 

separated on reaching the point P, we will have

  xp = 
A

A B

–

( – )

n a

n a n+
    (14)

Fig. 7 Separation of solid A from liquid solution of composition Q

Knowing nA, nB and xP, the value of a may be computed from the above expression. Alternatively, one may 

use the lever rule along the line SP. We have

 The amount fractions of B at the points Q and P are

  xQ = 
B

A B

n

n n+
  (15)
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and  xp = 
B

A B( – )

n

n a n+
   (16)

where nA and nB are the amounts of A and B at Q and a is the amount of A separated on reaching from 

Q to P. From Eq. (16), we get

  a = (nA + nB) – 
B

P

n

x
 

or  
B

A B A B P

1
1 –

a n

n n n n x
=

+ +

 Hence  
Q P Q

A B P P

– PR
1 –

PS

x x xa

n n x x
= = =

+
  (17)

 Thus, the amount of A precipitated is 

  a = 
PR

PS

Ê ˆ
Á ˜Ë ¯

 (nA + nB ) (18) 

From the plots of the type shown in Fig. 2, the compositions P and Q of the liquid phase at which the solid 

A and B, respectively, are in equilibrium with the liquid phase at different temperatures are determined. If 

a plot is made between T and xA(l), and between T and xB(l), one gets the eutectic phase diagram as shown 

in Fig. 8. The three cases discussed above are also marked in Fig. 8.

Fig. 8 Eutectic phase diagram
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Table 1 shows the computed values of various parameters for a system having the following data.

  HA = DfusHA = 17 304 J mol–1  T*
A = 395 K

  HB = DfusHB = 22 602 J mol–1  T*
B = 406 K

 The various expressions to be used are as follows.

  GA(s) = –HA(1 – T/TA
*) ; GB(s) = –HB(1 – T/TB

*)

 xB (= 1 – xA) at which GA(s) = mA(l) ; xA = exp(GA/RT)

 xB at which GB(s) = mB(l) ; xB = exp(GB/RT)

  mA(l) = RT ln xA ; mB(l) = RT ln xB

  Gmix(l) = RT (xA ln xA + xB ln xB) ; Gmix(s) = xAGA(s) + xBGB(s)

T = 341 K 
A(s)

–1J mol

G
 xB (= 1 – xA) at 

B(1)

–1J mol

m
 

mix(1)

–1J mol

G
  

mix(s)

–1J mol

G
  comments

  which GA(s) = mA(l)

 –2 366 0.57 –1 614 –1 937 –3 080 GA(s) < mA(l)

      GB(s) < mB(l)

Case 1
      

Gmix(s) < Gmix(l)

 
B(s)

–1J mol

G
 xB at which 

A(1)

–1J mol

m
  

mix(1)

–1J mol

G
    

mix(s)

–1J mol

G

 System exists as

  GB(s) = mB(l)
    solid mixture

 –3 619 0.28 –931 –1 681 –2 717 

T = 349 K –2 015 0.50 –2 007 –2 011 –2 594 Same as above

Case 1 –3 173 0.34 –1 184 –1 860 –2 409

T=358.69 K –1 590.7 0.413 –2 633.7 –2 021.7 –2 021.3 GA(s) = mA(l)

      GB(s) = mB(l)

Case 2 –2 633.7 0.413 –1 590.7 –2 021.7 –2 021.3 Gmix(s) = Gmix(l)

      Both solids are   

      in equilibrium

      with liquid   

      mixture

T = 365 K –1 314 0.35 –3 173 –1 965 –1 653 mA(l) < GA(s)

      mB(l) < GB(s)

Case 3 –2 282 0.47 –1 934 –2 098 –1 769 Gmix(l) < Gmix(s)

      System exists as

      liquid mixture.

T = 373 K –964 0.27 –4 094 –1 809 –1 200

Case 3 –1 837 0.55 –2 497 –2 134 –1 444 Same as above
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At the eutectic point, both the solids are in equilibrium with the liquid phase. We will have

 GA = RT ln xA fi xA = exp(GA/RT) (19)

 GB = RT ln xB fi xB = exp(GB/RT) (20)

 More over, xA + xB = 1. Hence

  exp(GA/RT) = 1 – exp(GB/RT)   (21)

where GA = –HA(1 – T /TA
*)  and  GB = –HB(1 – T/TB

*) 

 We evaluate the left-hand and right-hand sides of Eq. (21) for the decreasing value of T starting from 

the minimum value of TA
* and TB 

*. The value of T giving identical values of left-hand and right-hand sides 

is the eutectic temperature (see, Table 2). Knowing the value of eutectic temperature, the value of xB(or xA) 

may be computed by using Eqs (19) or (Eq. 20).

 T/K GB/J mol–1 GA/J mol–1 RHS LHS

 385 –1 169 –438 0.694 0.128

 375 –1 726 –876 0.575 0.245

 365 –2 282 –1 314 0.471 0.351

 355 –2 839 –1 752 0.382 0.448

 363 –2 393 –1 402 0.453 0.389

 361 –2 505 –1 489 0.434 0.391

 359 –2 616 –1 577 0.416 0.410

 357 –2 728 –1 665 0.399 0.429

 358 –2 672 –1 621 0.407 0.420

 358.8 –2 628 –1 586 0.414 0.412

 358.6 –2 639 –1 595 0.413 0.414

 358.7 –2 633 –1 590 0.414 0.413

Taking Te = 358.6 K, we get

  xB = exp(GB/RTe) = exp{– 2639/(8.314 ¥ 358.6)} = 0.413.

Alternatively, we may determine fi rstly the eutectic composition followed by eutectic temperature as shown 

in the following.

 We have

  GA(s) = mA(l)

i.e.  A *
A

– 1 –
T

T

Ê ˆ
Á ˜Ë ¯

m  = RT ln xA or   
*

AA

1 1
– –

R

T HT
=  ln xA (22)
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 Similarly, from GB(s) = mB(l), we get

  
*

AB

1 1
– –

R

T HT
=  ln xB (23)

 Subtracting Eq. (22) from Eq. (23), we get 

   * *
AA B

1 1
–

R

HT T
=  ln xA – 

B

R

H
 ln xB

or,  
* *

B B A B

* *
AA B

( – )H T T H

HR T T
=  ln xA – ln xB or  x 

A
  (HB/HA)  = xB exp 

* *
B B A

* *
A B

( – )H T T

R T T

È ˘
Í ˙
Í ˙Î ˚

 

or  (1 – xB ) (HB/HA)  = xB exp  
* *

B B A

* *
A B

( – )H T T

RT T

È ˘
Í ˙
Í ˙Î ˚

    (24)

 The left-hand side and right-hand sides of the above expression are evaluated for increasing value 

of xB. The value of xB giving the identical values gives the eutectic composition. Substitution of this value 

in Eq. (22) gives the value of eutectic temperature.

Table 3

 xB LHS RHS

 0.1 0.871 4 0.120 5

 0.2 0.747 2 0.241 0

 0.3 0.627 6 0.361 5

 0.4 0.513 0.482 0

 0.5 0.404 0.602 5

 0.41 0.502 0.494

 0.42 0.491 0.506 1

 0.411 0.500 9 0.495 2

 0.412 0.499 8 0.496 5

 0.413 0.498 6 0.497 7

 0.414 0.497 5 0.498 9

 Let xe = 0.413. Substituting this value in Eq. (23), we get

  Te = 358.6 K

 Eutectic phase diagram for a system of A (Dfus H*
A = 17 304 J mol– 1, T *A = 395 K) and 

B(Dfus H*
B = 22 602 J mol–1 and T *B = 406 K).

CLS

REM PROGRAM EUTECTCC;EUTECTIC DIAGRAM VIA FREE ENERGY

CLS : DEF FNA (X) = (1 - X) * LOG(1 - X) + X * LOG(X)

R = 8.314: HA = 17304: HB = 22602: TA = 395: TB = 406: TS = 1
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IF TA > TB THEN TF = TA + 20 ELSE TF = TB + 20

JJ = 0

FOR T = 200 TO TF STEP TS

LS = EXP((-HA / R) * (1 / T - 1 / TA))

RS = 1 - EXP((-HB / R) * (1 / T - 1 / TB))

IF JJ = 0 THEN MIN = LS: MAX = RS

IF MIN > MAX THEN 1

IF LS > RS THEN 4

GOTO 2

1 IF LS < RS THEN 4

2 JJ = 1

NEXT T

4 TI = T - 20

GGI = 1.5 * R * TF * LOG(.5)

SCREEN 1:  COLOR 15, 0

LOCATE 2, 5: PRINT "PLOT OF G v. x"

LOCATE 2, 24: PRINT "Eutectic Diagram"

LOCATE 3, 21: PRINT USING "###"; TF

LOCATE 3, 2: PRINT "0": A$ = "FREE ENERGY": NN = LEN(A$)

LOCATE 22, 21: PRINT USING "###"; TI

FOR I = 1 TO NN: LOCATE 6 + I, 2: PRINT MID$(A$, I, 1): NEXT I

A$ = "TEMPERATURE": NN = LEN(A$)

FOR I = 1 TO NN: LOCATE 6 + I, 22: PRINT MID$(A$, I, 1): NEXT I

LOCATE 23, 2: PRINT " 0     XB--->     1"

FOR T = TI TO TF STEP TS

VIEW (20, 17)-(155, 170)

IF T > TA AND T > TB THEN 19

CLS : KKK = 0: KKKK = 0

WINDOW (0, GGI)-(1, 0): LINE (0, GGI)-(1, 0), , B

FOR I = 1 TO 9

LINE (I * .1, GGI)-(I * .1, GGI + 100)

LINE (0, GGI * I * .1)-(.02, GGI * I * .1)

NEXT I

IF T > TA AND T > TB THEN 19

GA = -HA * (1 - T / TA): GB = -HB * (1 - T / TB)

FOR X2 = .01 TO .99 STEP .01

PMG = R * T * LOG(X2): MIXGL = FNA(X2) * R * T

PSET (X2, MIXGL)

IF KKK = 1 THEN 6

IF PMG <= GA THEN 6
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XAP = 1 - X2: MIXGA = MIXGL: KKK = 1

6 IF KKKK = 1 THEN 7

IF PMG <= GB THEN 7

XBP = X2: MIXGB = MIXGL: KKKK = 1

7 NEXT X2

SLOPA = (MIXGA - GA) / XAP: SLOPB = (MIXGB - GB) / (XBP - 1)

YYY = R * T * LOG(XAP): XXX = R * T * LOG(1 - XBP)

LINE (0, GA)-(.1, GA), 2:  LINE (.9, GB)-(1, GB), 1

LINE (0, GA)-(1, GB)

FOR X2 = .01 TO .99 STEP .01

GAP = GA + SLOPA * X2: GBP = GB - SLOPB * X2

IF T > TA THEN 8

PSET (X2, GAP), 2

8 IF T > TB THEN 9

PSET (1 - X2, GBP), 1

FOR LL = 1 TO 1000 STEP .1: NEXT LL

9 NEXT X2

LOCATE 19, 4

IF XXX >= GA THEN

PRINT "A eq B solid"

ELSEIF T < TA THEN

PRINT "A eq B liquid"

ELSEIF T > TA AND T < TB THEN

PRINT "             "

END IF

LOCATE 20, 4

IF YYY >= GB THEN

PRINT "B eq A solid"

ELSEIF T < TB THEN

PRINT "B eq A liquid"

ELSEIF T > TB AND T < TA THEN

PRINT "             "

END IF

LOCATE 21, 4

IF XXX >= GA AND YYY >= GB THEN PRINT "A & B solids"

IF T >= TA THEN 17

LINE (XAP, GGI)-(XAP, GGI - GGI * .4), 2

17 IF T >= TB THEN 18

LINE (XBP, GGI)-(XBP, GGI - GGI * .4), 1
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18 LOCATE 4, 5: PRINT USING "###"; T; : PRINT "K"

LOCATE 4, 10:  PRINT "GMIN="; : PRINT USING "#####"; GGI

LOCATE 5, 5: PRINT "GA"; : PRINT USING "#####"; GA

LOCATE 5, 14: PRINT USING "#.##"; XAP

LOCATE 6, 5: PRINT "GB"; : PRINT USING "#####"; GB

LOCATE 6, 14: PRINT USING "#.##"; XBP

LOCATE 7, 7: PRINT "PMGA"; : PRINT USING "######"; XXX

LOCATE 8, 7: PRINT "PMGB"; : PRINT USING "######"; YYY

'A$ = INPUT$(1)

11 VIEW (184, 17)-(317, 170)

WINDOW (0, TI)-(1, TF): LINE (0, TI)-(1, TF), , B

IF XAP > XBP THEN 14

IF T >= TA THEN 12

PSET (XAP, T), 2

12 IF T >= TB THEN 15

PSET (XBP, T), 1

GOTO 15

14 TEU = T: XEU = XAP

15 FOR I = 1 TO 9

LINE (I * .1, TI)-(I * .1, TI + (TF - TI) / 40)

TX = TI + (TF - TI) * I * .1: LINE (0, TX)-(.02, TX)

NEXT I

LOCATE 23, 22: PRINT "  0    XB--->     1"

A$ = INPUT$(1)

19 NEXT T

VIEW (184, 17)-(317, 170)

WINDOW (0, TI)-(1, TF): LINE (0, TI)-(1, TF), , B

LINE (0, TEU)-(1, TEU), 3

LOCATE 15, 25: PRINT "A+": LOCATE 16, 25: PRINT "LIQ"

LOCATE 15, 36: PRINT "B+": LOCATE 16, 36: PRINT "LIQ"

LOCATE 4, 27: PRINT "TEU=";

PRINT USING "###.#"; TEU; : PRINT "K"

LOCATE 5, 27: PRINT "XEU="; : PRINT USING "#.##"; XEU

LOCATE 10, 27: PRINT "LIQUID"

LOCATE 20, 27: PRINT "SOLIDS A+B"

29 END 
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For a binary system involving two solutions a and b in equilibrium with each other, the criterion of 

equilibrium gives

 mA(a) = mA(b) and mB(a) = mB(b) (1)

 These two equations may be solved for equilibrium compositions xB(a) and xB(b) of the two solutions, 

respectively. The solutions may be carried out graphically or analytically.

 Graphic solution involves drawing a common tangent to the graphs of Gm(a) versus xB(a) and Gm(b) 

versus xB(b) as shown in Fig. 1.

Fig. 1 Graphs of Gm(b) versus xB(a) and Gm(b) versus xB(b) with a common tangent line

 From Fig. 1, it may be concluded that

 ∑ The system exists as a single phase a in the composition range xB = 0 to xB = xB(a), since

Gm(a) < Gm(b).

 ∑ The system exists as a single phase b in the composition range xB = xB(b) to xB = 1, since

Gm(b) < Gm(a).

 ∑ Within the range xB = xB(a) to xB = xB(b), the system exists as two phases a and b in equilibrium with 

each other.

 At any point in between xB(a) and xB(b), the two phases have compositions xB(a) and xB(b), respectively, 

with their relative amounts given by the expression

 Proportion of a-phase = 
B( ) B

B( ) B( )

–

–

x X

x X

b

b a
   (2a)
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  Proportion of b-phase =  
B B( )

B( ) B( )

–

–

X x

x x

a

b a
  (2b)

where XB is the composition of the given point. Equations (2a) and (2b) are known as the lever rule.

 The characteristics of phase diagram is determined by the relative placement of free energy versus 

composition curves of the two phases in Fig. 1. A simple translational of the two curves parallel to the 

free energy axis has no effect on the characteristics of the phase diagram. Even if the chemical potential 

of component A or B in both phases a and b are arbitrarily changed by the same value, it has no effect on 

the characteristics of the phase diagram, since the difference mA(a) – mA(b) remains unchanged as shown in 

the following.

 [mA(a) + dmA] – [mA(a) + dmA] ∫ mA(a) – mA(b) (3)

 The appearance of the free energy versus composition curves is affected by the above changes, but 

the points with a common tangent line is not affected and thus the phase diagram of the system remains 

unchanged.

 For a binary system exhibiting ideal solid and liquid solutions, the free energy versus composition 

curves may be drawn with the following procedure.

 ∑ The relative placement of mi(l) and mi(s) on the axes may be depicted by setting.

   mi(l) = 0   (4)

 With this assumption, mi(s) is given by

   mi(s) = –D fus Gi = –[D fus Hi – T D fus Si] = –[D fus Hi – T(D fus Hi/Ti
*)]

    = –D fus Hi(1 – T/Ti
*)   (5)

  Note While replacing DfusSi by DfusHi/Ti
*, it is assumed that Cp,i(s) = Cp,i(l) so that DfusHi becomes 

independent of temperature.

   For T > Ti
*, mi(s) is positive. Hence, the point representing free energy of the solid phase will lie 

above that of the liquid phase for which mi = 0 has been assumed. For Ti < Ti
*, the reverse is observed.

 ∑ The free energy of liquid solution will be equal to the free energy of mixing of the two components, 

since mi(l) = 0 has been assumed. Hence,

   Gl = DmixG = RT [xA(l) ln xA(l) + xB(l) ln xB(l)] (6)

 ∑ The free energy of solid solution will be equal to the total free energy before mixing plus the free 

energy of mixing of the two components. Hence

   Gs = [xA(s) GA(s) + xB(s) GB(s)] + RT [xA(s) ln xA(s) + xB(s) ln xB(s)] (7)

 ∑ For T < T *A and T < T *B, the free energy curve for liquid solution lies above that of solid solution in 

the entire range of composition (i.e. from xB = 0 to xB = 1) as shown in Fig. 2.

 ∑ On increasing temperature, the free energy curves of both solid and liquid solutions move upwardly 

(i.e. the values of Gl and Gs increase). The movement of liquid phase is comparatively larger due to 

the higher entropies of pure liquid components as compared to pure solid components.
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Fig. 2 Free energy curves for T < TA
* and T < T B  

*

  For T = TA
*, we will have

  DfusGA = 0

  indicating that GA(s) = GA(l). Hence, the free energy versus composition curves of solid and liquid 

solutions meet each other at xA = 1. The curve of liquid solution still lies above that of the solid 

solution in the entire range of composition as shown in Fig. 3. Hence, the system is present as solid 

solution in the entire range of composition except at xA = 1 where solid A exists in equilibrium with 

liquid A.

  
Fig. 3 Free energy curves for T = TA

* and T < TB
*
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 ∑ For TA
* < T < TB     

*, the free energy curves of solid and liquid solutions intersect each other at some 

composition x¢B depending upon the temperature (Fig. 4).

  The composition x ¢B of point of intersection of solid and liquid solutions may be determined by 

setting Gs = Gl. This gives

 xA(s)GA(s) + xB(s)GB(s) + RT [xA(s) ln xA(s) + xB(s) ln xB(s)] = RT ln [xA(l) ln xA(l) + xB(l) ln xB(l)] (8)

Fig. 4 Free energy curves for TA
* < T < TB

*

  At the intersection point, 

   xA(s) = xA(l) and xB(s) = xB(l).

  with the expressions

   xA(s) + xB(s) = 1 and xA(l) + xB(l) = 1 (10)

  Let x¢A = xA(s) and x ¢B = xB(s), such that x¢A + x¢B = 1. Hence, Eq. (8) is reduced to

   (1 – x¢B) GA(s) + x ¢B GB(s) = 0 (11)

  which gives

   x¢B = 
A(s)

A(s) B(s)–

G

G G
  (12)

   For xB < x ¢ B, the free energy of liquid phase is lesser than that of solid phase while the reverse is 

true for xB > x ¢B. The compositions of solid and liquid phases in equilibrium with each other may be 

determined by drawing a common tangent line to the free energy versus composition curves (Fig. 4). 

As mentioned earlier, the compositions xB(l) and xB(s) at which the common tangent line touches the 

liquid and solid curves, respectively, are the compositions of liquid and solid phases in equilibrium 

in the composition range xB(l) to xB(s).
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 ∑ Analytically, the composition xB(l) and xB(s) may be determined by comparing the slopes of tangent 

lines drawn for decreasing value of xB from x¢B for the liquid phase and for increasing value of 

xB from x¢B for the solid phase. The compositions at which the two slopes become identical give the 

compositions xB(l) and xB(s), respectively.† The expressions of slopes of tangent lines are as follows.

   
1

B(1)

d

d

G

x
 = RT 

B(1)

d

dx
 [{1 – xB(l)} ln(1 – xB(l)) + xB(l) ln xB(l)]

    = RT [– ln (1 – xB(l)) + ln xB(l)]

    = RT [– ln xA(l) + ln xB(l)] (13)

       
s

B(s)

d

d

G

x
 = 

B(s)

d

dx
 [(1 – xB(s)) GA(s) + xB(s) GB(s) + RT [(1 – xB(s) ln (1 – xB(s)) + xB(s) ln xB(s)]

    = –GA(s) + GB(s) + RT [– ln (1 – xB(s)) + ln xB(s)]

    = –GA(s) + GB(s) + RT [–  ln xA(s) + ln xB(s)] (14)

   At xB(l) and xB(s), not only slopes to free energy versus composition curves have identical values 

but also the partial molar free energies of components A and B in liquid and solid phases separately 

have identical values. This fact may be used to determine the compositions xB(l) and xB(s). The 

expressions of partial molar free energies are derived in the following.

  Solid Solution For this solution, we have

   Gs = xA(s)GA(s) + xB(s)GB(s) + RT(xA(s) ln xA(s) + xB(s) ln xB(s))

  i.e. [nA(s) + nB(s)]Gs = nA(s)GA(s) + nB(s)GB(s)

    + RT
A(s) B(s)

A(s) B(s)
A(s) B(s) A(s) B(s)

ln ln
n n

n n
n n n n

È ˘Ï ¸ Ï ¸
+Í ˙Ì ˝ Ì ˝+ +Í ˙Ó ˛ Ó ˛Î ˚

 

  Since GA(s), pm = 
B(s)

A(s) B(s) s

A(s) , ,

{( )

T p n

n n G

n

È ˘∂ +
Í ˙∂Î ˚

 

  we fi nd that GA(s), pm = GA(s) + RT ln xA(s) (15)

  Working similarly, we fi nd that GB(s), pm = GB(s) + RT ln xB(s) (16)

  Liquid Solution For this solution, we have

   Gl = RT [xA(l) ln xA(l) + xB(l) ln xB(l)]

†It is assumed that xB(l) and xB(s) lie symmetrically with reference to the point of intersection of solid and liquid phases. 
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  i.e. [nA(l) + nB(l)]Gl = RT 
A(1) B(1)

A(1) B(1)
A(1) B(1) A(1) B(1)

ln ln
n n

n n
n n n n

È ˘Ï ¸ Ï ¸
+Í ˙Ì ˝ Ì ˝+ +Í ˙Ó ˛ Ó ˛Î ˚

  

  Since GA(l), pm = 

B(1)

A(1) B(1) 1

A(1) , ,

{( )

T p n

n n G

n

È ˘∂ +
Í ˙∂Î ˚

  

  We fi nd that GA(l), pm = RT ln xA(l) (17)

  Working similarly, we get GB(l), pm = RT ln xB(l) (18)

  Equating the corresponding partial molar free energies, we get

   GA(s), pm = GA(l), pm

 i.e.  GA(s) + RT ln xA(s) = RT ln xA(l) or 
A(1)

A(s)

x

x
 = exp

A(s)G

RT

Ê ˆ
Á ˜Ë ¯

  ∫ a (19)

  Similarly

   GB(s), pm = GB(l), pm

  i.e. GB(s) + RT ln xB(s) = RT ln xB(l) or 
B(1)

B(s)

x

x
 = exp

B(s)G

RT

Ê ˆ
Á ˜Ë ¯

  ∫ b (20)

  Since xA(l) = 1 – xB(l) and xA(s) = 1 – xB(s), we can write Eq. (19) as

   
B(1)

B(s)

1 –

1 –

x

x
  = a (21)

  which on using Eq. (20) becomes

   
B(s)

B(s)

1 –

1 –

bx

x
  = a  (22)

  which gives xB(s) = 
– 1

–

a

a b
    (23)

  Using Eq. (23) in Eq. (20), we get

   xB(l) = 
– 1

–

a
b

a b

Ê ˆ
Á ˜Ë ¯

  (24)

 ∑ For T = TB  
*, the two free energy versus composition curves meet at xB = 1 and the curve of liquid 

phase lies lower than that of solid phase in the entire range of composition. The system exists as the 

liquid phase in the entire range of composition with solid B at equilibrium at xB = 1 (Fig. 5).
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Fig. 5 Free energy curves for T > T A  
* and T = T B

*

 ∑ For T > TB
*, the curve of liquid phase lies lower than that of solid phase in the entire range of 

composition (Fig. 6). The system exists as liquid phase throughout the entire composition.

Fig. 6 Free energy curves for T > T A 
* and T > T B

*
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Phase Diagram From the free energy versus compositions plots at different temperatures, the values of 

xB(s) and xB(l) at which solid and liquid solutions exist at equilibrium may be determined. Alternatively, these 

may be obtained by using Eqs (23) and (24), resepectively. The phase diagram of the system is obtained 

by plotting xB(s) versus T and xB(l) versus T. The general feature of the phase diagram is shown in Fig. 7.

Fig. 7 Phase diagram of a binary system exhibiting a complete series of solid solution

 In the above analysis, it is assumed that the heat capacities of components A and B in solid 

and liquid phases have the same value. If this is not correct, the following expressions may be used to 

compute Dfus mi values.

 Dfus mi = [Hi(l) – Hi(s)] – T [Si(l) – Si(s)]

  =  
* *

,
fus , fusd – d

i i

T T

p i
i p i i

T T

C
H C T T S T

T

È ˘ È ˘DÍ ˙ Í ˙D + D D +Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

Ú Ú  (25)

where DCp, 1i = Cp, i(l) – Cp, i(s). If the heat capacity variations is represented as

  Cp = a + bT + cT –2 (26)

then  ( )
* *

2
*fus fus

*

1 1
– 1 – ln – –

2

i i ii i i
i

i

a T TH b
T T

RT R T R T T RTT

Ê ˆ Ê ˆDD D D
= + +Á ˜ Á ˜

Ë ¯ Ë ¯

m
   

   

2

*

1 1
– –

2

i

i

c

R T T

Ê ˆD
Á ˜
Ë ¯

  (27)



Projects 303

Phase diagram of system of A(T *
A = 1 210 K, Dfus HA = (26.28 TA) kJ mol– 1) and B(T*

B = 1 690 K, 

Dfus H
*
B = (30.04 TB) kJ mol–1).

CLS

REM PROGRAM SOLSOL1;SOLID-LIQUID SOLUTIONS VIA FREE ENERGY

DEF FNA (X) = R * T * ((1 - X) * LOG(1 - X) + X * LOG(X))

CLS : R = 8.314: TA = 1210: TB = 1690

HA = 26.28 * TA: HB = 30.04 * TB

SCREEN 1: COLOR 15, 0

LOCATE 2, 5: PRINT "PLOT OF G v. x"

LOCATE 2, 25: PRINT "PHASE DIAGRAM"

LOCATE 3, 20: PRINT USING "####"; TB

LOCATE 12, 2: PRINT "G"

A$ = "TEMPERATURE"

FOR I = 1 TO 11: LOCATE 6 + I, 22: PRINT MID$(A$, I, 1): NEXT I

LOCATE 22, 20: PRINT USING "####"; TA

LOCATE 23, 2: PRINT " 0    XB---->    1"

LOCATE 23, 23: PRINT " 0    XB---->    1"

FOR T = TA TO TB STEP 10

GA = -HA * (1 - T / TA): GB = -HB * (1 - T / TB)

VIEW (20, 20)-(150, 170): CLS

WINDOW (0, -18000)-(1, 5000): LINE (0, -18000)-(1, 5000), , B

LOCATE 4, 9: PRINT T; "K"

FOR I = 1 TO 9

LINE (I * .1, -18000)-(I * .1, -17500)

YS = -18000 + 2300 * I: LINE (0, YS)-(.02, YS)

NEXT I

FOR XB = .01 TO .99 STEP .01

DG = (1 - XB) * GA + XB * GB

GMIX = FNA(XB): GBS = DG + GMIX: GBL = GMIX

PSET (XB, GBS), 1: PSET (XB, GBL), 2

NEXT XB

IF T = TA OR T = TB THEN 20

XBP = GA / (GA - GB): XXL = XBP: XXS = XBP

FOR II = 1 TO 500

XXL = XXL - .001: XXS = XXS + .001

SLOPL = R * T * (-LOG(1 - XXL) + LOG(XXL))
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SLOPS = -GA + GB + R * T * (-LOG(1 - XXS) + LOG(XXS))

IF SLOPS > SLOPL THEN 6

NEXT II

6 LOCATE 5, 10: PRINT "XL="; : PRINT USING "#.##"; XXL

  LOCATE 6, 10: PRINT "XS="; : PRINT USING "#.##"; XXS

  GL1 = FNA(XXL): GS1 = (1 - XXS) * GA + XXS * GB + FNA(XXS)

IF XXS < 0 OR XXS >= 1 THEN 20

IF XXL < XXS THEN

XMN = XXL - .2: XMX = XXS + .2

ELSE XMN = XXS - .2: XMX = XXL + .2

END IF

IF XMN < 0 THEN XMN = 0

IF XMX > 1 THEN XMX = 1

FOR XX = XMN TO XMX STEP .01

YY = GS1 + ((GS1 - GL1) / (XXS - XXL)) * (XX - XXS)

PSET (XX, YY), 3

FOR LL = 1 TO 10 STEP .01: NEXT LL

NEXT XX

LINE (XXL, -18000)-(XXL, -16000), 2

LINE (XXS, -18000)-(XXS, -16000), 1

VIEW (185, 20)-(315, 170): WINDOW (0, TA - 10)-(1, TB + 10)

LINE (0, TA - 10)-(1, TB + 10), , B

PSET (XXL, T), 2: PSET (XXS, T), 1

FOR I = 1 TO 9

LINE (I * .1, TA - 10)-(I * .1, TA)

TX = TA - 10 + (TB - TA + 20) * I * .1

LINE (0, TX)-(.02, TX)

NEXT I

A$ = INPUT$(1)

20 NEXT T

LOCATE 20, 7: PRINT "GMIN=-18000"

LOCATE 21, 7: PRINT "GMAX=5000"

LOCATE 5, 25: PRINT "LIQUID SOLN"

LOCATE 13, 30: PRINT "S+L"

LOCATE 20, 30: PRINT "SOLID SOLN"

END
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Phase diagram involving (i) regular solid solution-ideal liquid solution, (ii) regular liquid solution-ideal solid 

solution, and (iii) regular solid solution-regular liquid solution may be drawn by following the procedure 

described for the system involving ideal solid solution-ideal liquid solution.

We have 

 Gs = xA(s) GA(s) + xB(s)GB(s) + RT [xA(s) ln xA(s) + xB(s) ln xB(s)] + xA(s) xB(s) Ws (1)

 Gl = RT [xA(l) ln xA(l) + xB(l) ln xB(l)] + xA(l) xB(l) Wl (2)

We have

  Gs = Gl 

along with xA(s) = xA(l) and xB(s) = xB(l). With these facts, we have

 xA(s) GA(s) + xB(s) GB(s) + xA(s) xB(s) Ws – xA(l) xB(l) Wl = 0 

or xA(s) GA(s) + xB(s) GB(s) + xA(s) xB(s) (Ws – Wl) = 0

or [1 – xB(s)] GA(s) + xB(s) GB(s) + [1 – xB(s)] xB(s) W ¢ = 0 (3)

 †A system exhibits nonideality if the interaction energy between unlike components is different from those existing 

in the like components. Additional parameters are needed in the Gibbs energy expression for the solid or liquid solution 

in a nonideal binary system. The solid or liquid solution may be commonly classifi ed in different categories based on 

the interaction energies amongst the constituents of the system.

Regular Solution In this solution, excess Gibbs free energy is given by GE = G(real) – G(ideal) = xAxB W

where the parameter W has a simple atomistic interpretation. It compares the energy uAB of the bond between unlike 

atoms A and B with the arithmetic average of the bonds between like atoms.

  W = AB AA BB
1

Z – ( )
2

u u u
È ˘+Í ˙Î ˚

 

where Z is the number of nearest neighbours to an atom.

Subregular Solution If a regular solution does not represent the properties of a real solution, additional parameter are 

needed in the expression of GE. For a subregular solution, GE is given by

  GE = xAxB(ABAxA + AABxB + ABBxAxB)

where A's are constants.

Quasi-Regular Solution For a quasi-regular solution the expression of excess Gibbs free energy is given by

  GE = xA xB W [1 – T/t ]

with  HE = xAxBW  = xAxBBAA and SE = xAxBCAA

where t = BAA/CAA = HE/SE

 For most solution, t is the order of (2500 ± 1000) K.
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where W ¢ = Ws – Wl . Rearranging the above expression, we get

 x2
B(s) W ¢ + (GA(s) – GB(s) – W ¢)xB(s) – GA(s) = 0 (4)

Note Equation (3) is reduced to Eq. (11) of project 5 for W ¢ = 0 

 The roots of Eq. (4) are

  xB(s) = 
–

2

B DÈ ˘±
Í ˙

¢Í ˙Î ˚W
  (5)

where B = GA(s) – GB(s) – W ¢ (6)

  D = (GA(s) – GB(s) – W ¢)2 + 4GA(s)W ¢ (7)

 Of the two roots, the realistic value(s) lying in the range 0 < xB(s) < 1 is/are accepted and the unrealistic 

value(s) is/are ignored.

 Figure 1 illustrates the two points of intersection of free energy verses composition curves.

Fig. 1 Intersection at two points of Gm versus xB plots

The expression of slopes are as follows.

  
s

B(s)

d

d

G

x
 = – GA(s) + GB(s) + RT [–ln xA(s) + ln xB(s)] + [1 – 2xB(s)]Ws (8)

 
1

B(1)

d

d

G

x
 = RT[– ln xA(l) + ln xB(l)] + [1 – 2 xB(l)]W l (9)

Note Equations (8) and (9) reduce to Eq. (14) and (13) of Project 5, respectively for W ¢s = 0
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We have

 GA(s), pm = GA(s) + RT ln xA(s) + x2
B(s) Ws (10)

 GB(s), pm = GB(s) + RT ln xB(s) + x2
A(s) Ws (11)

 GA(l), pm = RT ln xA(l) + x2
B(l) Wl (12)

 GB(l), pm = RT ln xB(l) + x2
A(l)Wl (13)

Note Equations (10)-(13) reduce to (15)-(18) of Project 5, respectively, if W 's = 0.

Figure 2 displays the free energy versus composition plots at the azeotropic temperature where the two 

points of interseciton have identical values. At this temperature, not only slopes but also the partial molar 

free energies of both A and B in the solid as well as in the liquid phase separately have identical values.

Fig. 2 Plots of Gm versus xB for solid and liquid solution at the azeotropic temperature

Around each of the two intersection points, the compositions xB(s) and xB(l) of solid and liquid solutions, 

respectively, in equilibrium may be determined by drawing a common tangent line to the free energy versus 

composition curves of solid and liquid solutions (see, Fig. 1). Assuming that xB(s) and xB(l) lie symmetrically 

on either sides of the intersection point, these may be determined by comparing slopes (Eqs 8 and 9) for 

decreasing and increasing value of xB from the intersection composition. A direct solution of xB(s) and xB(l) 

from the expressions GA(s),pm = GA(l),pm and GB(s),pm = GB(l),pm is not straight forward as the expressions are 

diffi cult to solve for xB. These may be seen from the following resultant expressions.
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 GA(s) + RT ln (xA(s)/xA(l)) + x2
B(s) Ws – x2

B(l) Wl = 0 (14)

and GB(s) + RT ln (xB(s)/xB(l)) + x2
A(s)Ws – x2

A(l) Wl = 0 (15)

 Figure 3 displays the expected phase diagram for a binary system exhibiting regular solid and ideal 

solution in equilibrium with each others. For this type of system Wl = 0 in Eqs (14) and (15).

Fig. 3 Phase diagram of a system exhibiting regular solid and ideal liquid solutions

 Figure 4 displays the expected phase diagram for a binary system exhibiting ideal solid and regular 

liquid solutions in equilibrium with each other. For this system, Ws = 0 in Eqs (41) and (42). 

Fig. 4 Phase diagram of a system exhibiting regular liquid and ideal solid solutions
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The solid and liquid solutions at the azeotropic point (i.e. minimum/maximum temperature in the phase 

diagram) have identical compositions. The azeotropic temperature and the corresponding composition may 

be determined by setting D = 0 in Eq. (5). This gives 

  xB(s) = 
A(s) B(s)– –

– –
2 2

G GB ¢
=

¢ ¢
W

W W
  (16)

 The experssion of D gives

  D = [GA(s) – GB(s) – W ¢]2 + 4GA(s)W ¢ = 0 (17)

 The expression of GA(s) and GB(s) are

  GA(s) = –DfusHA(1 – T/T A
*) (18)

  GB(s) = –Dfus HB(1 – T/T B
*) (19)

 Writing Dfus HA and Dfus HB simply as HA and HB, respectively, we can write Eq. (17) as

  

2

az az az
A B A* * *

A B A

– 1 – 1 – – – 4 1 –
T T T

H H H
T T T

È ˘Ê ˆ Ê ˆ Ê ˆ
+ ¢ ¢Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

W W  = 0 (20)

 Opening this expression, we may write

  a T 2az + b Taz + c = 0 (21)

where a =   

2

A B

* *
A B

–
H H

T T

Ê ˆ
Á ˜Ë ¯

    (22)

  b = 2(– HA + HB – W ¢) A B A

* * *
A B A

4
–

H H H

T T T

Ê ˆ ¢
+Á ˜Ë ¯

W
 (23)

  c = (– HA + HB – W ¢)2 – 4HAW ¢ (24)

 The acceptable value of Taz is

  Taz =   
2– – 4

2

b b ac

a

±  (25)

Note Of the two values of Taz, a realistic value represents azeotropic temperature.

 The expression of xB in terms of HA and HB is

  (xB)az = 
A(s) B(s) B(s) A(s)– – – 1

–
2 2 2

G G G G¢
= +

¢ ¢
W

W W

   =  
az az

B A* *
A

1 1
– 1 – 1 –

2 2
B

T T
H H

T T

È ˘Ê ˆ Ê ˆ
+ +Í ˙Á ˜ Á ˜¢ Ë ¯ Ë ¯Î ˚W
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    = 
B A

A B az* *
B A

1 1
( – ) –

2 2

H H
H H T

T T

È ˘Ê ˆ
+ +Í ˙Á ˜¢ Ë ¯Î ˚W

  

Note The expression of xB may also be derived by equating the slops of free energy versus composition 

plots (Eqs. 8 and 9).

The computation of azeotropic temperature and the corresponding composition may be illustrated for 

systems having the following data.

  HA = 5 200 J mol–1 TA
* = 500 K

  HB = 4 000 J mol–1 TB
* = 600 K

 (i) W ¢ = –5 400 J mol–1 and (ii) W ¢ = 5 400 J mol–1

 (i) We have

  
A B

* *
A B

5200 4000
– –

500 600

H H

T T

Ê ˆ= Á ˜Ë ¯   J K–1 mol–1 = 3.733 3 J K–1 mol–1 

  –HA + HB – W ¢ = (–5200 + 4 000 + 5 400) J mol–1 = 4 200 J mol–1

  4 HAW ¢ = 4(5 200 J mol–1) (–5 400 J mol–1) = –1.123 2 ¥ 108 J2 mol–2

 Now a = 

2

A B

* *
A B

–
H H

T T

Ê ˆ
Á ˜Ë ¯

 = (3.733 3 J K–1 mol–1)2 = 13.94 J2 K–2 mol–2

  b = 2(–HA + HB – W ¢) A B A

* * *
A B A

4
–

H H H

T T T

Ê ˆ ¢
+Á ˜Ë ¯

W
 

   = 2 (4 200 J mol–1) (3.733 3 J K–1 mol–1) –   
8 2 –2(1.1232 10 J mol

(500 K)

¥
 

   = (31 360 – 224  640) J2 K–1 mol –2

   = –1.932 8 ¥ 105 J2 K–1 mol–2

  c = (– HA + HB – W ¢)2 – 4 HAW ¢

   = (4  200 J mol–1)2 + (1.123 2 ¥ 108 J2 mol–2) 

   = 1.299 6 ¥ 108 J2 mol–2

 Since Taz =   
2– – 4

2

b b ac

a

± , we have
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  Taz = 
5 5 2 81.9328 10 (1.9328 10 ) – 4(13.94)(1.2996 10 )

2(13.94)

¥ ± ¥ ¥
  

   =   
5 51.9328 10 1.7352 10

27.88

¥ ± ¥
 K

   = 1.32 ¥ 104 K and 708.8 K

 The acceptable value of azeotropic temperature is 708.8 K.

 The azeotropic composition is given by

 (xB)az =  B A
A B az* *

B A

1 1
( – ) –

2 2

H H
H H T

T T

È ˘Ê ˆ
+ +Í ˙Á ˜¢ Ë ¯Î ˚W

  = 
1

2(–5400)
 [(5 200 – 4 000) + (–3.733 3) (708.8)] +   

1

2
 

  = 
1

2(–5400)
 [1 200 – 2 646] + 

1

2

  = 0.134 + 0.5 = 0.634

 (ii) We have

  
A B

* *
A B

–
H H

T T
 = 3.7333 J K–1 mol–1

  – HA + HB – W ¢ = (–5 200 + 4 000 – 5 400) J mol–1 = – 6 600 J mol–1

  4HA W ¢ = 4(5 200 J mol–1) (5 400 J mol–1) = 1.123  2 ¥ 108 J2 mol–2

 Hence a = 

2

A B

* *
A B

–
H H

T T

Ê ˆ
Á ˜Ë ¯

  = (3.733 3 J K–1 mol–1)2 = 13.94 J2 K–2 mol–2

  b = 2(– HA + HB – W ¢) A B A

* * *
A B A

4
–

H H H

T T T

Ê ˆ ¢
+Á ˜Ë ¯

W

   = 2(–6  600 J mol–1) (3.733 3 J K–1 mol–1) + 
¥ 8 2 –21.1232 10 J mol

500 K
 

   = (–49279.56 + 224  640)J2 K–1 mol–2 = 1.753 6 ¥ 105 J2 K–1 mol–2

  c = (–HA + HB – W ¢)2 – (1.1232 ¥ 108 J2 mol–1)

   = (–6  600 J mol–1)2 – (1.1232 ¥ 108 J2 mol–1)

   = –6.876 ¥ 107 J2 mol–1
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  Taz =   
2– – 4

2

b b ac

a

±  

   = 
¥ ± ¥ + ¥5 5 2 7–1.7536 10 (1.7536 10 ) 4(13.94) (6.876 10 )

2(13.94)
 K

   = 
¥ ± ¥5 5–1.7536 10 1.860 10

27.88
 K = –12 961 K and 380.6 K 

 The acceptable value is 380.6 K.

 The azeotropic composition is

  (xB)az = 
B A

A B az* *
B A

1 1
( – ) –

2 2

H H
H H T

T T

È ˘Ê ˆ
+ +Í ˙Á ˜¢ Ë ¯Î ˚W

   

   = 
1

2(5400)
 [(5 200 – 4  000) + (– 3.733 3) (380.6) + 

1

2
 

   = 
1

2(5400)
 [1 200 – 1 420.90] + 0.5 = (– 0.02 + 0.50) = 0.48

 Phase diagram of a non-ideal system of A (Dfus HA = 5 200 J mol–1, T*
A 500 K) and 

B(Dfus HB = 4 000 J mol–1, T*
B = 600 K). Given: Ws = 5 400 J mol–1 and Wl = 2 200 J mol–1.

CLS

HA = 5200: HB = 4000: TA = 500: TB = 600: TSS = 20

RHOS = 5400: RHOL = 2200: RP = RHOS - RHOL: R = 8.314

Z = HA / TA - HB / TB: Y = -HA + HB - RP: A = Z * Z

B = 2 * Y * Z + 4 * HA * RP / TA: C = Y * Y - 4 * HA * RP

D = (B * B - 4 * A * C) ^ .5: TERM = 1 / (2 * RP)

TAZ1 = (-B + D) / (2 * A): TAZ2 = (-B - D) / (2 * A)

XAZ1 = TERM * (HA - HB - Z * TAZ1) + .5

XAZ2 = TERM * (HA - HB - Z * TAZ2) + .5

IF RP > 0 AND TA < TB THEN

TWIN1 = TB + TSS

ELSE TWIN1 = TA - TSS

END IF

IF RP > 0 AND ABS(TAZ1) < ABS(TAZ2) THEN

TWIN2 = INT(TAZ1 - TSS)

ELSE TWIN2 = INT(TAZ2 + TSS)

END IF

IF RP > 0 THEN

TWIN2 = TWIN2 - TWIN2 MOD 100

ELSE TWIN2 = TWIN2 + 2 * TSS - TWIN2 MOD 100
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END IF

DEF FNM (X, T) = R * T * ((1 - X) * LOG(1 - X) + X * LOG(X))

DEF FNA (X, GA, GB) = (1 - X) * GA + X * GB

DEF FND (X, RHOW) = (1 - X) * X * RHOW

DEF FNS (X, T, RHOS) = FNA(X, GA, GB) + FNM(X, T) + FND(X, RHOS)

DEF FNL (X, T, RHOL) = FNM(X, T) + FND(X, RHOL)

DEF FNP (X) = R * T * (-LOG(1 - X) + LOG(X))

SCREEN 1: COLOR 15, 0

IF RP > 0 THEN TSTEP = -5 ELSE TSTEP = 5

GMIN = -4000: GMAX = -200

FOR T = TWIN1 TO TWIN2 STEP TSTEP

GA = -HA * (1 - T / TA): GB = -HB * (1 - T / TB)

VIEW (15, 10)-(145, 170): CLS

WINDOW (0, GMIN)-(1, GMAX): LINE (0, GMIN)-(1, GMAX), , B

LOCATE 1, 4: PRINT "PLOT OF G v. X"

LOCATE 1, 25: PRINT "PHASE DIAGRAM"

LOCATE 5, 8: PRINT USING "####"; T; : PRINT " K"

FOR XB = .01 TO .99 STEP .01

GS = FNS(XB, T, RHOS): GL = FNL(XB, T, RHOL)

PSET (XB, GS), 1: PSET (XB, GL), 2

NEXT XB

LOCATE 12, 1: PRINT "G"

LOCATE 23, 2: PRINT " 0    XB---->    1"

FOR I = 1 TO 9: LINE (I * .1, GMIN)-(I * .1, GMIN + 100)

GMSC = GMIN + 380 * I: LINE (0, GMSC)-(.04, GMSC)

'LINE (0, GMSC)-(1, GMSC): LINE (I * .1, GMIN)-(I * .1, GMAX)

NEXT I

B = GA - GB - RP: D = B ^ 2 + 4 * GA * RP

IF D < 0 THEN 104

XP1 = (-B + D ^ .5) / (2 * RP): XP2 = (-B - D ^ .5) / (2 * RP)

LL = 1

IF XP1 >= 1 OR XP1 < 0 THEN 5

XL = XP1: XS = XP1

GOTO 6

5 LL = 2

IF XP2 >= 1 OR XP2 < 0 THEN 100

XL = XP2: XS = XP2

6 XT = XL + .01

IF XT >= 1 OR XT < 0 THEN 104

GS = FNS(XT, T, RHOS): GL = FNL(XT, T, RHOL)

INC = .01

IF GS > GL THEN INC = -.01

FOR I = 1 TO 50

XL = XL - INC: XS = XS + INC

IF XL >= 1 OR XL < 0 THEN 104
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IF XS >= 1 OR XS < 0 THEN 104

SLOPS = -GA + GB + FNP(XS) + (1 - 2 * XS) * RHOS

SLOPL = FNP(XL) + (1 - 2 * XL) * RHOL

IF LL = 2 THEN 15

IF SLOPL < SLOPS THEN 20

GOTO 17

15 IF SLOPL > SLOPS THEN 25

17 NEXT I

20 XLL = XL: XSS = XS

LOCATE 3, 4: PRINT "XL="; : PRINT USING "#.##"; XL

LOCATE 3, 12: PRINT "XS="; : PRINT USING "#.##"; XS

GOTO 30

25 XLL1 = XL: XSS1 = XS

LOCATE 4, 4: PRINT "XL="; : PRINT USING "#.##"; XL

LOCATE 4, 12: PRINT "XS="; : PRINT USING "#.##"; XS

30 GS1 = FNS(XS, T, RHOS): GL1 = FNL(XL, T, RHOL)

IF XL < XS THEN

XMN = XL - .2: XMX = XS + .2

ELSE XMN = XS - .2: XMX = XL + .2

END IF

IF XMX < 0 THEN XMN = 0: IF XMX > 1 THEN XMX = 1

FOR XX = XMN TO XMX STEP .01

YY = GS1 + ((GS1 - GL1) / (XS - XL)) * (XX - XS)

PSET (XX, YY)

FOR D = 1 TO 10 STEP .01: NEXT D

NEXT XX

LINE (XS, GMIN)-(XS, GMIN + 500), 1

LINE (XL, GMIN)-(XL, GMIN + 400), 2

LL = LL + 1': A$ = INPUT$(1)

IF LL = 2 THEN 5

100 VIEW (180, 10)-(310, 170)

WINDOW (0, TWIN1)-(1, TWIN2): LINE (0, TWIN1)-(1, TWIN2), , B

PSET (XLL, T), 2: PSET (XSS, T), 1

PSET (XLL1, T), 2: PSET (XSS1, T), 1

FOR K = 1 TO 9

LINE (K * .1, TW2)-(K * .1, TW2 + (TW1 - TW2) / 30)

TTT = TW2 + ((TW1 - TW2) / 10) * K

LINE (0, TTT)-(.02, TTT)

'LINE (K * .1, TW2)-(K * .1, TW1): LINE (0, TTT)-(1, TTT)

NEXT K

104 LOCATE 23, 21: PRINT "  0     XB--->    1"

LOCATE 2, 20

IF RP > 0 THEN

PRINT USING "###"; TWIN1

ELSE PRINT USING "###"; TWIN2
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END IF

A$ = "TEMPERATURE"

FOR I = 1 TO 11: LOCATE 6 + I, 22: PRINT MID$(A$, I, 1): NEXT I

LOCATE 22, 20

IF RP > 0 THEN

PRINT USING "###"; TWIN2

ELSE PRINT USING "###"; TWIN1

END IF

IF RP > 0 THEN TW1 = TWIN1: TW2 = TWIN2 ELSE TW1 = TWIN2: TW2 = TWIN1

A$ = INPUT$(1)

NEXT T

LOCATE 4, 26: PRINT "TAZ=";

IF RP > 0 AND ABS(TAZ1) < ABS(TAZ2) THEN

PRINT USING "###.#"; TAZ1;

ELSE PRINT USING "###.#"; TAZ2;

END IF

PRINT "K": LOCATE 5, 26: PRINT "XAZ=";

IF ABS(TAZ1) < ABS(TAZ2) THEN

PRINT USING "#.##"; XAZ1

ELSE PRINT USING "#.##"; XAZ2

END IF

LOCATE 3, 26: PRINT "LIQUID SOLN"

LOCATE 20, 26: PRINT "SOLID SOLN"

LOCATE 19, 5: PRINT "GMIN="; GMIN

LOCATE 20, 5: PRINT "GMAX="; GMAX

END
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To draw equi-probability contour diagrams enclosing increasing probability of fi nding an electron in the 

given orbital of hydrogen atom.

 The wave function of an orbital of hydrogen atom (Z = 1) is Yn, l, m = Rn, l Q l, |m| Fm

 The probability distribution is given by Y 2
n,  l, m = R2

n,  l Q
2
l,  |m| F

2
m
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 For enclosing increasing probability, we integrate the above expression to give

  P = 
2

2 2 2 2 2
, , ,

0 0 0
d d sin d d

r

n l m n lR r r

p p
=Ú Ú Ú ÚY t Q q q F f

 For the normalized Q  and F functions, we get

  P = 2 2
,

0
d

r

n lR r rÚ
 For example, for 1s orbital we get

  P = 0

2
3/2

– /

0 0

1
2 e

r
r a

a

È ˘Ê ˆÍ ˙Á ˜Ë ¯Í ˙Î ˚
Ú   r2 dr = 

0
0

/
– /

0
4 e

r a
r aÚ  (r/a0)

2 d(r/a0)

 The integral on the right-hand side may be evaluated numerically (which is area under the curve) 

with increasing value of r/a0 until the integral value becomes equal to the given value of the probability. 

A sphere of radius r/a0 with nucleus at the centre gives the region where there exist the given probability 

of fi nding the electron in the atomic orbital. In a two-dimensional plots, the probability distribution will be 

represented by concentric circles.

 Probability distributions of 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p and 4d orbitals 

REM PROGRAM DOT POPULATION OR SHAPE OF ORBITALS

REM OPT=1 For 1s: 2 For 2s: 3 For 2p: 4 For 3s: 5 For 3p: 6 For 3d

REM OPT=7 for 4s:8 for 4p:9 for 4d

REM OPT1=1 For px: 2 For py: 3 For pz

REM OPT1=1 For dxy: 2 For dxz: 3 For dyz: 4 For dx2-y2: 5 For dz2

REM PINT; CHANGE IT FOR GETTING BETTER NODES

REM PS1 & PS2;PROBABILITY VARIATIONS: ANS;RANDOM No. OF ANGLES

REM FD is rate of variation of probability

REM FDS is multiplication factor for plotting FD

 ' RANDOMIZE

  READ OPT: DATA 9

  PS1 = .002: PS2 = .01: PINT = .3

  ON OPT GOTO 2, 2, 1, 2, 1, 1, 2, 1, 1

1 READ OPT1: DATA 1

2 CLS : SCREEN 1: COLOR 15, 0

  ON OPT GOTO 3, 4, 5, 6, 7, 8, 9, 60, 61

3 N$ = "1s": SC = 4: PS1 = .001: PINT = .05: FDS = 1.5: ANS = 300: GOTO 10

4 N$ = "2s": SC = 12: PS1 = .004: FDS = 4.5: ANS = 300: GOTO 10

5 N$ = "2p": SC = 10: PINT = .1: FDS = 4.5: ANS = 300: GOTO 10

6 N$ = "3s": SC = 22: FDS = 8: ANS = 500: GOTO 10

7 N$ = "3p": SC = 24: FDS = 8: ANS = 500: GOTO 10

8 N$ = "3d": SC = 24: FDS = 8: ANS = 500: GOTO 10

9 N$ = "4s": SC = 36: FDS = 8: ANS = 1000: GOTO 10

60 N$ = "4p": SC = 36: FDS = 8: ANS = 1000: GOTO 10

61 N$ = "4d": SC = 36: FDS = 8: ANS = 1000

10 LOCATE 1, 1: PRINT "Dot Population, Shape of "; N$;
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  ON OPT GOTO 22, 22, 11, 22, 11, 12, 22, 11, 12

11 ON OPT1 GOTO 13, 14, 15

13 PRINT "x"; : GOTO 22

14 PRINT "y"; : GOTO 22

15 PRINT "z"; : GOTO 22

12 ON OPT1 GOTO 17, 18, 19, 20, 21

17 PRINT "xy"; : GOTO 22

18 PRINT "xz"; : GOTO 22

19 PRINT "yz"; : GOTO 22

20 PRINT "x2-y2"; : GOTO 22

21 PRINT "z2"; : GOTO 22

22 PRINT " Orbital": LOCATE 2, 1: PRINT USING "###"; SC:

   LOCATE 9, 3: PRINT "0"': LOCATE 15, 1: PRINT USING "##"; -SC

   LOCATE 15, 5: PRINT USING "###"; -SC: LOCATE 15, 11: PRINT "r"

   LOCATE 15, 16: PRINT USING "##"; SC

   LOCATE 18, 30: PRINT "PROB(RED)"

   LOCATE 20, 30: PRINT "d(PROB)/dR"

   RI = 0: AREA = 0: KK% = 0: JJ% = 1: K1 = 1: FDMAX = 0

   PROBI = 0: PROBF = PINT: PROBS = PS1: GOSUB 23

   PROBI = PINT: PROBF = .96: PROBS = PS2: GOSUB 23

   LOCATE 16, 3: PRINT "1"

   LOCATE 22, 34: PRINT "R="; SC: LOCATE 23, 3: PRINT "0"

   GOTO 90

23 FOR PROB = PROBI TO PROBF STEP PROBS

   DR = .0001

   FOR R = RI TO 100 STEP DR

   ON OPT GOTO 25, 26, 27, 28, 29, 30, 31, 72, 73

25 RR = 2 * EXP(-R): GOTO 32

26 RR = (1 / 2) ^ 1.5 * (2 - R) * EXP(-R / 2): GOTO 32

27 RR = (1 / 3 ^ .5) * (1 / 2) ^ 1.5 * R * EXP(-R / 2): GOTO 32

28 RR = (2 / 3) * (1 / 3) ^ 1.5 * (3 - 2 * R + 2 * R ^ 2 / 9)

   RR = RR * EXP(-R / 3): GOTO 32

29 RR = ((2 * 2 ^ .5) / 9) * (1 / 3) ^ 1.5 * (2 * R - R ^ 2 / 3)

   RR = RR * EXP(-R / 3): GOTO 32

30 RR = (4 / (27 * 10 ^ .5)) * (1 / 3) ^ 1.5 * R ^ 2 * EXP(-R / 3): GOTO 32

31 RR = (1 / 768) * (192 - 144 * R + 24 * R ^ 2 - R ^ 3) * EXP(-R / 4): GOTO 32

72 RR = (3 / (768 * 15 ^ .5)) * (80 - 20 * R + R ^ 2) * R * EXP(-R / 4): GOTO 32

73 RR = (1 / (768 * 5 ^ .5)) * (12 - R) * R ^ 2 * EXP(-R / 4)

32 AREA = AREA + RR ^ 2 * R ^ 2 * DR

   IF AREA > PROB THEN 35

   NEXT R

35 RI = R: PSET (0, 0), 2: KK = INT(FD * ANS)

   FOR K = 0 TO KK

   AN = INT(RND * 360): TH = 3.1415 * AN / 180

   RC = R * COS(TH): RS = R * SIN(TH)

   VIEW (25, 10)-(135, 120): WINDOW (-SC, -SC)-(SC, SC)

   LINE (-SC, -SC)-(SC, SC), , B: GOSUB 80

   PSET (RS, RC), 1: PSET (0, 0), 2
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   ON OPT GOTO 55, 55, 39, 55, 39, 44, 55, 39, 44

39 ON OPT1 GOTO 40, 40, 42

40 ORTH = SIN(TH): GOTO 52

42 ORTH = COS(TH): GOTO 52

44 ON OPT1 GOTO 46, 46, 46, 48, 50

46 ORTH = SIN(2 * TH): GOTO 52

48 ORTH = COS(2 * TH): GOTO 52

50 ORTH = (3 * COS(TH) ^ 2 - 1) / 1.7

52 RC1 = RC * ORTH: RS1 = RS * ORTH

   LOCATE 3, 23: PRINT "r*ang"

   VIEW (135, 10)-(245, 120): WINDOW (-SC, -SC)-(SC, SC)

   LINE (-SC, -SC)-(SC, SC), , B: GOSUB 80

   PSET (RS1, RC1), 1: PSET (-RS1, -RC1), 1: PSET (0, 0), 2

55 LOCATE 3, 13: PRINT "r2R2"

   NEXT K

   PSET (0, 0), 2: GOSUB 80

   LOCATE 5, 32: PRINT "PROB="; : PRINT USING ".###"; PROB

   LOCATE 7, 32: PRINT " R="; : PRINT USING "##.##"; R

   LOCATE 9, 32: PRINT "RAD PROB=": LOCATE 10, 37

 PRINT USING ".###"; FD

  ' B$ = INPUT$(1)

  VIEW (25, 122)-(315, 179): WINDOW (0, 0)-(SC, 1)

   LINE (0, 0)-(SC, 1), , B: PSET (R, PROB), 2

   FOR I = 1 TO SC - 1: LINE (I, 0)-(I, .05): NEXT I

   FOR I = 1 TO 9: II = .1 * I: LINE (0, II)-(SC / 80, II): NEXT I

   IF R - R1 = 0 THEN 75

   FD = (PROB - PROB1) / (R - R1): PSET (R, FD * FDS), 1

   ON K1 GOTO 53, 54

53 IF FDMAX > FD THEN 56

   FDMAX = FD: GOTO 75

54 IF FDMAX > FD THEN 75

   FDMAX = FD: K1 = 1

   GOTO 53

56 LOCATE 13, 32: PRINT "MAX RAD"

   LOCATE 14, 32: PRINT "PROB": LOCATE 15, 32

   PRINT "R="; : PRINT USING "##"; R;

   PRINT USING " #.##"; FDMAX * FDS

   K1 = 2: 'A$ = INPUT$(1)

75 PROB1 = PROB: R1 = R

   KK% = KK% + 1

   NEXT PROB

   RETURN

80 FOR I = 1 TO 9: S1 = -SC + I * .2 * SC: S2 = -SC + SC / 20

   LINE (S1, -SC)-(S1, S2): LINE (-SC, S1)-(S2, S1): NEXT I

   RETURN

90 END
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The eigenvalue of a matrix A are the solutions of the characteristic equations

  det (A – lI) = 

11 12 1

21 22 2

1 2

–

–

–

n

n

n n nn

a a a

a a a

a a a

l º
l º

º l

 = 0

 This determinant provides a characteristic polynomial of A, which is of degree n in l. For 

a Hermitian matrix*, all the n values of l are real. This matrix has a basis of eigenvectors in C n. A 

matrix X formed from these vectors as column vector can diagonlize the Hermitian matrix A through the 

transformation

  D = X–1 A X

 In the diagonalized matrix, the eigenvalues of A occupy the main diagonal positions. We describe a 

method which is widely used in fi nding the eigenvalues of a symmetric matrix. This method involves two 

stages as described in the following.

In the Householder’s method, the given symmetric matrix is transformed into a tridiagonal matrix which 

include nonzero entries on the main diagonal and in positions immediately adjacent to the main diagonal. 

This transformation of a real symmetric n × n matrix A =[ajk] into tridiagonal matrix is achieved by n – 2 

successive similarity transformations.† The transformations go as follows. 

  A(1) = P (1) A(0) P (1)

  A(2) = P (2) A(1) P (2)

  B = A  (n – 2) = P (n – 2) A(n – 3) P (n – 2)

where the matrices P (1), P (2), . . ., P (n – 1) are orthogonal symmetric matrices‡. The fi rst transformattion 

creates the necessary zeros in row 1 and column 1, the second transformation creates zeros in row 

2 and column 2, and so on.

 The matrices P (r)’s are of the form

  P (r) = I – 2 v(r) [v(r)]T    r = 1, 2, . . ., n – 2

where v(r)’s are vectors whose elements are computed as follows.

  v j
(r) = 0    j = 1 to r

*A matrix is Hermitian if  
–
AT = A, that is 

–
akj 

 
 = ajk. If the matrix is real then AT = A. Thus, it is a symmetric matrix.

†The superscripts within the brackets (i.e. (1), (2),....) to the matrices represent first, second, . . ., (n – 2)th similiarity 

transformations

‡Similarity transformation involves the operation B = T –1 A T 

 The matrix B is called similar to A, i.e. the matrix B has the same eigenvalues as those of the matrix A. 
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    v 
r+1

  (r)
   = 

( –1)
1,1

1
2

r
r r

r

a

S

+
Ê ˆ
Á ˜+
Á ˜Ë ¯

   

    v 
 j
  (r)  =   

 ( )( –1) ( –1)
, 1,

( )
1

sgn

2

r r
j r r r

r
rr

a a

v S

+

+

; j = r + 2, . . ., n

  Sr =  
2

( –1)
,

1

n
r
j r

j r

a

= +

È ˘
Î ˚Â   

where sgn ( –1)
1,( )r

r ra +   = 1 if  ( –1)
1,

r
r ra +  ≥ 0 and is –1 if  ( –1)

1,
r
r ra +  < 0.

In the QR-fractorization, the off diagonal of the tridiagonal matrix are made progressively smaller and 

smaller until these are nearly equal to zero. The procedure involves the following steps.

 Let B(0) be the tridiagonal matrix. This matrix has n – 1 generally nonzero elements below the main 

diagonal. These are b21, b32, ..., bn, n – 1. In the fi rst step, these elements are made equal to zero one by 

one.

Making  b 
21

  (0)  equal to zero A matrix C2 is constructed in which the submatrix

  
2 2

2 2

cos sin

–sin cos

È ˘
Í ˙
Î ˚

q q

q q
  

is inserted in the fi rst and second rows and the fi rst and second columns. The remaining main diagonal 

elements are set equal to unity. All the rest of elements are set equal to zero. Thus, the matrix C2 is

  C2 = 

2 2

2 2

cos sin 0 0

–sin cos 0 0

0 0 1 0

0 0 0 1

ºÈ ˘
Í ˙ºÍ ˙
Í ˙º
Í ˙
Í ˙
Í ˙ºÎ ˚

q q

q q

 The matrix B(0) is left multiplied by C2 so as to give B(1) = C2 B
(0). In C2, q2 is chosen so as to give  

b 
21

  (1)  equal to zero. This element is obtained by multiplying the second row of C2 with the fi rst column of 

B(0). Thus, we have

  (– sin q2)  b 
11

  (0)  + (cos q2)  b 
21

  (0)  = 0
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 This gives tan q2 =  b 
21

  (0) / b 
11

  (0) .

 From this, cos q2 and sin q2 are evaluated by the expressions 

  cos q2 = 2
2

1

1 tan+ q   
   and sin q2 = 

2

2
2

tan

1 tan+

q

q
 

 After evaluating cos q2 and sin q2, the matrix C2 is formed and then right multiplied by B(0).

Making  b 
32

  
(1)  equal to zero A matrix C3 is constructed in which the submatrix

  
3 3

3 3

cos sin

–sin cos

È ˘
Í ˙
Î ˚

q q

q q
  

is inserted in the second and third rows and the second and third columns. The remaining main diagonal 

are set equal to unity and all other elements are set equal to zero. Thus, the matrix is

  C3 =  

3 3

3 3

0 0 0 0 0

0 cos sin 0 0

0 –sin cos 0 0

0 0 0 1 0

0 0 0 0 1

ºÈ ˘
Í ˙ºÍ ˙
Í ˙º
Í ˙

ºÍ ˙
Í ˙
Í ˙

ºÍ ˙Î ˚

q q

q q

 The matrix B(1) is left multiplied by C3 so as to give B(2) = C3 B
(1). In C3, q2 is chosen so as to give  

b 
32

  (1)  equals to zero. This element is obtained by multiplying the third row C3 with the second column of 

B(1). Thus, we have 

  (– sin q3)  b 
22

  (1)  + (cos q3)  b 
23

  (1)  = 0

 This gives tan q3 =  b 
23

  (1) / b 
22

  (1) 

 From this, cos q3 and sin q3 are evaluated by using the expressions given above.

 After evaluating cos q3 and sin q3, the matrix C3 is formed is then right multiplied by B(1).

 The above procedure is continued to make each of the element  b 
43

  (2) ,  b 
54

  (3) , ..., of the resultant matrices 

B(2), B(3), ..., respectively, equal to zero.

 Finally, we get the matrix

  R0 = Cn Cn – 1 ... C3 C2 B
(0)

 From this, it follows that

  B(0) = (Cn Cn – 1 ... C3 C2)
–1 R0

   = Q0 R0
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 All C’s matrices are orthogonal. Hence, their products is also orthogonal and so is the inverse of the 

product. Thus, we will have

  Q0 = (Cn Cn – 1 ... C3 C2)
– 1 = C2

T C3
T ... CT

n – 1 Cn
T

where the superscript T stand for the transpose of the indicated matrix.

 In the second step, the matrix  B 
1
  (0)  is computed from the expression

    B 
1
  (0)  = R0 Q0 = R0 C2

T C3
T ... CT

n – 1 Cn
T

 It is not necessary to form Q0 and then left multiply it by R0 but the operations (R0C2
T), (R0C2

T) C3
T, ..., 

may be carried out one after the other.

 The entire above procedure is now repeated with the matrix  B 
1
  (0)  to give fi nally  B 

2
  (0) . The off-diagonal 

element of  B 
2
  (0)  will be smaller than those of  B 

1
  (0) . This procedure of forming  B 

3
  (0) ,  B 

4
  (0) , ..., is continued until 

all the off-diagonal elements become smaller than the pre-selected value near to zero. Eventually, the main 

diagonal elements represent eigenvalues of the given matrix.

 If the tridiagonal matrix contains zeros in the main diagonal, then the determination of tan q2 would 

involve division by zero. In order to avoid such a diffi culity, the eigenvalues can still be obtained based on 

the following theorem.

 If the matrix A has the eigenvalues l1, ..., ln, then the matrix A + kI has the eigenvalues l1 + k, ..., ln + k, 

from these l1, ..., ln may be evaluated.

 This procedure fi nds applications in the Hückel molecular orbital calculations. The main diagonal 

elements are made nonzero by adding a constant (say, k = 1) in the main diagonal. The eigenvalues of 

Hückel matrix will be obtained by subtracting k from the resultant eigenvalues.

Determine the eigenvalues of 

6 4 1 1

4 6 1 1

1 1 5 2

1 1 2 5

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

  

CLS

REM Only data for lower triangular matrix is to be given

REM N=order of the matrix:  MI=number of iterations in QR

READ N, MI: DATA 4,20

FOR I = 1 TO N: FOR J = 1 TO I

READ A(I, J): A(J, I) = A(I, J)

NEXT J: NEXT I

PRINT "Given Matrix"

FOR I = 1 TO N: FOR J = 1 TO N

PRINT A(I, J); : AD(I, J) = A(I, J)

NEXT J: PRINT : NEXT I

A$ = INPUT$(1)

DATA 6,4,6,1,1,5,1,1,2,5

'DATA 11.4,2,14.4,.6,1.2,14.6
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'DATA 1,1,1,0,1,1,0,0,1,1

'DATA 1,1,1

'DATA 1,1,1,0,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0,1,1

FOR L = 1 TO N - 2

S1 = 0

FOR I = L + 1 TO N: S1 = S1 + A(I, L) ^ 2: NEXT I

S1 = SQR(S1)

PRINT : PRINT "V"; L; " vector"

FOR I = 1 TO L: V(I, I) = 0: PRINT V(I, I): NEXT I

V(L + 1, L) = SQR(.5 * (1 + ABS(A(L + 1, L)) / S1))

PRINT V(L + 1, L)

FOR J = L + 2 TO N

V(J, L) = A(J, L) * SGN(A(L + 1, L)) / (2 * V(L + 1, L) * S1)

PRINT V(J, L)

NEXT J

FOR I = 1 TO N: FOR J = 1 TO N

VVT(I, J) = V(I, L) * V(J, L)

NEXT J: NEXT I

FOR I = 1 TO N: FOR J = 1 TO N

IF I = J THEN K = 1 ELSE K = 0

P1(I, J) = K - 2 * VVT(I, J)

NEXT J

NEXT I

A$ = INPUT$(1): PRINT

FOR I = 1 TO N: FOR J = 1 TO N

SUM = 0

FOR K = 1 TO N: SUM = SUM + AD(I, K) * P1(K, J): NEXT K

AI(I, J) = SUM

NEXT J: NEXT I

PRINT "A"; L; " Matrix"

FOR I = 1 TO N: FOR J = 1 TO N

SUM = 0

FOR K = 1 TO N: SUM = SUM + P1(I, K) * AI(K, J): NEXT K

A1(I, J) = SUM: AD(I, J) = A1(I, J)

NEXT J

FOR J = 1 TO N: PRINT USING "   ###.####"; A1(I, J); : NEXT J

PRINT : NEXT I: A$ = INPUT$(1)

IF L = 1 THEN 5

FOR I = 1 TO N: FOR J = 1 TO N: SUM = 0

FOR K = 1 TO N

SUM = SUM + VEC(I, K) * P1(K, J)

NEXT K

VECT(I, J) = SUM

NEXT J: NEXT I
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FOR I = 1 TO N: FOR J = 1 TO N

VEC(I, J) = VECT(I, J)

NEXT J: NEXT I

GOTO 10

5  FOR I = 1 TO N: FOR J = 1 TO N

   VEC(I, J) = P1(I, J)

   NEXT J: NEXT I

10 NEXT L

REM QR Factorization begins

FOR I = 1 TO N: FOR J = 1 TO N: B(I, J) = A1(I, J): NEXT J: NEXT I

PRINT : PRINT "B Matrix"

FOR I = 1 TO N: FOR J = 1 TO N: PRINT USING " ###.####"; B(I, J);

NEXT J: PRINT : NEXT I: A$ = INPUT$(1)

FOR M = 1 TO MI

FOR L = 1 TO N - 1

IF B(L, L) = 0 THEN COSTH = 0: SINTH = 1: GOTO 9

TERM = B(L + 1, L) / B(L, L): TERM1 = SQR(1 + TERM ^ 2)

COSTH = 1 / TERM1: SINTH = TERM / TERM1

9 FOR I = 1 TO N: FOR J = 1 TO N

IF I = J THEN C(I, J) = 1 ELSE C(I, J) = 0

NEXT J: NEXT I

C(L, L) = COSTH: C(L, L + 1) = SINTH

C(L + 1, L) = -SINTH: C(L + 1, L + 1) = COSTH

FOR I = 1 TO N: FOR J = 1 TO N

SUM = 0

FOR K = 1 TO N: SUM = SUM + C(I, K) * B(K, J): NEXT K

R(I, J) = SUM

NEXT J: NEXT I

FOR I = 1 TO N: FOR J = 1 TO N

B(I, J) = R(I, J)

NEXT J: NEXT I

   FOR I = 1 TO N: FOR J = 1 TO N

   SUM = 0

   FOR K = 1 TO N: SUM = SUM + VEC(I, K) * C(K, J): NEXT K

   VECT(I, J) = SUM

   NEXT J: NEXT I

   FOR I = 1 TO N: FOR J = 1 TO N

   VEC(I, J) = VECT(I, J)

   NEXT J: NEXT I

FOR I = 1 TO N: FOR J = 1 TO N

ON L GOTO 21, 26, 31, 36, 41

21 C2(I, J) = C(I, J): GOTO 50

26 C3(I, J) = C(I, J): GOTO 50
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31 C4(I, J) = C(I, J): GOTO 50

36 C5(I, J) = C(I, J): GOTO 50

41 C6(I, J) = C(I, J)

50 NEXT J: NEXT I

NEXT L

FOR L = 1 TO N - 1

FOR I = 1 TO N: FOR J = 1 TO N

ON L GOTO 61, 66, 71, 76, 81

61 C(I, J) = C2(I, J): GOTO 90

66 C(I, J) = C3(I, J): GOTO 90

71 C(I, J) = C4(I, J): GOTO 90

76 C(I, J) = C5(I, J): GOTO 90

81 C(I, J) = C6(I, J)

90 NEXT J: NEXT I

FOR I = 1 TO N: FOR J = 1 TO N

SUM = 0

FOR K = 1 TO N: SUM = SUM + R(I, K) * C(J, K): NEXT K

D(I, J) = SUM

NEXT J: NEXT I

FOR I = 1 TO N: FOR J = 1 TO N

R(I, J) = D(I, J)

NEXT J: NEXT I

NEXT L

PRINT : PRINT "B"; M; "Matrix"

FOR I = 1 TO N: FOR J = 1 TO N

B(I, J) = D(I, J): PRINT USING " ###.####"; D(I, J);

NEXT J: PRINT : NEXT I: A$ = INPUT$(1)

NEXT M

REM Arrange eigenvalues in incresing order

FOR I = 1 TO N: FOR J = 1 TO N

IF B(I, I) < B(J, J) THEN

SWAP B(I, I), B(J, J)

FOR K = 1 TO N: SWAP VEC(K, I), VEC(K, J): NEXT K

END IF

NEXT J: NEXT I

REM Printing eigenvalues and eigenvectors

PRINT : PRINT "Eigenvalues"

FOR J = 1 TO N: PRINT USING "  ###.####"; B(J, J); : NEXT J: PRINT

PRINT "Eigenvectors"

FOR I = 1 TO N: FOR J = 1 TO N

PRINT USING "  ###.####"; VEC(I, J);

NEXT J: PRINT : NEXT I

END
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Diagonalize the secular determinant of butadiene and obtain its eigenvalues and eigenvectors.

The thermodynamic properties of a binary nonideal liquid solutions are expressed in terms of those of an 

ideal solution by the expression

  YE = Y (real) – Y (ideal) (1)
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where Y E is known as excess thermodynamic function, and Y (real) and Y (ideal) are the corresponding functions 

of the real and ideal solutions, respectively. The function Y may be V, U, H, Cp, S, A or G of the solution. 

For one mole of the solution, Eq. (1) is written as 

   Y Em  =  Y m
(real)  –  Y  m

(ideal)   (2) 

 The change in the thermodynamic function on forming a molar solution from its constituents is

  DmixYm = Ym – S i xi Y*
i, m (3)

where Y*
i, m is the molar thermodynamic function of the ith pure component and xi is its amount fraction in 

the solution. For a real and ideal solutions, we have

  Dmix Y  m
(real) = Y m

(real) – S i xi Y*
i, m (4)

  DmixY m
(ideal) = Y m

(ideal) – S i xi Y*
i, m (5)

 Hence, Dmix Y m   
(real) – Dmix Y m

(ideal) = Ym 
(real) – Ym 

(ideal) = YE 
m (6)

that is, the molar excess function is also equal to the difference of molar function of mixing of an ideal 

solution from the corresponding molar function of mixing of the real solution, both are at the same T and p.

 For the properties V, U, H and Cp, DmixYm 
(ideal) = 0 and hence

  Dmix Y m
(real) = Y Em (7)

 For the properties S and G, we have

  Dmix S  m
(ideal) = – R S i xi ln xi (8)

  Dmix Gm 
(ideal) = RT S i xi ln xi (9)

 Hence, SE
m = Dmix S m

(real) + R S i xi ln xi (10)

  G Em = Dmix Gm
(real) – RT S i xi ln xi (11)

 The chemical potential of the ith constituent in a solution is expressed as

 Ideal solution mi = m°
i + RT ln xi (12)

 Real solution  mi = m°
i + RT ln ai (13)

where xi and ai are the amount fraction and activity of the ith constituent in the solution.

 With these, the expression of GE
m becomes 

  GE
m = Dmix Gm

(real) – Dmix G m
(ideal)

   = RT S i xi ln ai – RT Si xi ln xi

   = RT Si xi ln (ai /xi) = RT Si xi ln g i

   = S i xi (RT ln g i) (14)

 Thus, RT ln g i may be considered as the partial molar excess free energy of the ith constituent in the 

solution. Since the molar excess free energy is related to the activity coeffi cients of the constituents in a 

real solution, it is a useful quantity in describing the nature of real solution.
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 The molar excess functions are related to each other by the equations similar to those applicable for 

the ordinary thermodynamic functions. For example,

  GE
m = HE

m – TSE
m] (15)

  V E 
m = 

E
m

,T x

G

p

Ê ˆ∂
Á ˜∂Ë ¯

   (16)

  SE
m = 

E
m

,

–

p x

G

T

Ê ˆ∂
Á ˜∂Ë ¯

  (17)

  HE
m = – RT 2   

( )E
m

,

/

p x

G RT

T

Ê ˆ∂
Á ˜

∂Á ˜Ë ¯
   (18)

 The excess function contains information regarding the nature and the extent of deviations of a real 

solution from the corresponding ideal solution. One of the expressions of excess free energy of a regular 

binary liquid solution as described in Project 6 is

  GE
m = bx1x2 (19)

where b is a constant, independent of T and p of the solution. Since x1 + x2 = 1, Eq. (19) may be written as

  GE
m = bx1x2(x1 + x2)

   = bx1x
2
2 + bx2

1x2 (20)

 Equating Eqs. (14) and (20), we get

  x1 RT ln g1 + x2 RT ln g2 = bx1x
2
2 + bx2

1x2

 From this equation, we conclude that

  x1 RT ln g1 = b x1 x
2
2  i.e.  RT ln g1 = bx2

2 (21)

  x2 RT ln g2 = b x2
1 x2  i.e.  RT ln g2 = bx1

2 (22)

(Note: The second alternative equality leads to the same expression of g1 and g2, and thus may be ignored.)

 Equations (21) and (22) are in agreement with the fact that g1 = 1 as x2 Æ 0 

 The other excess functions may be derived by using Eqs (16) – (18). Thus

  V E
m =   

E
m 1 2

,,

( )

T xT x

G bx x

p p

Ê ˆ Ê ˆ∂ ∂
=Á ˜ Á ˜∂ ∂Ë ¯Ë ¯

 = 0 (23)

  SE
m = 

E
m 1 2

,,

( )
–

p xp x

G bx x

T T

Ê ˆ∂ ∂Ê ˆ= Á ˜Á ˜ Ë ¯∂ ∂Ë ¯
 = 0  (24)

  HE
m = – RT2   

( )E
m 1 22

,
,

/ ( / )
–

p x
p x

G RT bx x RT
RT

T T

Ê ˆ∂ ∂Ê ˆÁ ˜ = Á ˜Ë ¯∂ ∂Á ˜Ë ¯
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   = bx1x2 (25)

 The expression of Dmix Gm
(real) is

  Dmix Gm 
(real) = Dmix Gm

(ideal) + GE
m

   = RT (x1 ln x1 + x2 ln x2) + bx1x2

or  
(real)

mix mG

RT

D  = (1 – x2) ln (1 – x2) + x2 ln x2 +  
b

RT
 (1 – x2)x2 (26)

 The plots of Dmix Gm
(real)/RT versus x2 for various values of b/RT are shown below. This is obtainded 

from a computer program not listed here. These plots may be interpreted for increasing value of b at 

constant T or for decreasing value of T at constant b. The lowest curve corresponds to DmixG(ideal)/RT as 

the value of b/RT = 0. On increasing the value of b(or decreasing the value of T), the curve moves up with 

lesser and lesser dip at x2 = 0.5. At larger value of b/RT, the curve shows two minima with a hump in 

between. This shows the formation of two conjugate solutions whose compositions lie at the two minima. 

With increasing value of b/RT, these compositions move towards x2 = 0 and x2 = 1 axes, respectively. At 

still larger value b/RT, the curve shows DmixG
(real)/RT positive throughout indicating immiscibility.
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Plots shown in the above fi gure are symmetrical with respect to x2 = 0.5. This may be attributed to the 

symmetric nature of the function given by Eq. (26). The real system may not be symmetrical. This indicates 

that the function as given by Eq. (26) requires modifi cation so as to include assymmetric terms in it.

 The critical point of the phase separation is obtained when the second derivative

  d2 (Dmix G(real)/RT)/dx2
2 = 0 at x2 = 0.5.

 Thus, we have 

2

2
2 2 2 2 2 2

2
2 0.5

d {(1 – ) ln (1 – ) ln ( / )(1 – ) }

d
x

x x x x b RT x x

x
=

È ˘+ +
Í ˙
Í ˙Î ˚

 = 0

 This gives 

2
2 2 c 0.5

1 1
(–2)

1 –
x

b

x x RT =

È ˘
+ +Í ˙

Î ˚
  = 0 fi Tc = b/2R

CLS

DEF FNA (B, X) = X * LOG(X) + (1 - X) * LOG(1 - X) + B * X * (1 - X)

READ BI, BF, BS

DATA 0,5,.02

Y1 = .2: Y2 = .6: YI = -.8: YF = .7

SCREEN 1: COLOR 14, 0

FOR B = BI TO BF STEP BS

IF B = 0 THEN YI = -.8: YF = 0

IF B > 0 AND B < .5 THEN YI = -.75: YF = .15

IF B >= .5 AND B <= 1 THEN YI = -.65: YF = .15

IF B > 1 AND B <= 1.5 THEN YI = -.45: YF = .05

IF B > 1.5 AND B < 2 THEN YI = -.35: YF = .05

IF B >= 2 AND B <= 2.5 THEN YI = -.2: YF = .02

IF B > 2.5 AND B < 3 THEN YI = -.15: YF = .07

IF B >= 3 AND B <= 3.5 THEN YI = -.1: YF = .25

IF B > 3.5 AND B <= 4.1 THEN YI = -.05: YF = .35

IF B > 4.1 AND B <= 5 THEN YI = -.1: YF = .6

IF B > 5 AND B <= 6 THEN YI = -.1: YF = .9

VIEW (35, 20)-(160, 170): WINDOW (0, YI)-(1, YF)

LINE (0, YI)-(1, YF), , B: LINE (0, 0)-(1, 0)

FOR I = 1 TO 9

YD = YF - YI: YY = YI + YD * I * .1

LINE (I * .1, YI)-(I * .1, YI + YD * .03)

LINE (0, YY)-(.04, YY)

NEXT I
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LOCATE 1, 30: PRINT "Partial"

LOCATE 2, 5: PRINT "  DGmix/RT V. X2      Misicibility"

LOCATE 3, 1: PRINT USING "#.##"; YF

LOCATE 3, 22: PRINT USING ".#"; Y2

LOCATE 4, 6: PRINT "B="; : PRINT USING "#.##"; B

LOCATE 12, 23: PRINT "1": LOCATE 13, 23: PRINT "-"

LOCATE 14, 23: PRINT "B"

LOCATE 22, 1: PRINT USING "#.##"; YI

LOCATE 22, 22: PRINT USING ".#"; Y1

LOCATE 23, 5: PRINT "0     X2-->    1   0     X2-->     1"

K = 1: GM(1) = 0: GM(2) = FNA(B, .5)

FOR X = .0001 TO 1 STEP .01

G = FNA(B, X)

IF G < GM(K) THEN GM(K) = G: XM(K) = X: GOTO 50

K = 2

50 PSET (X, G)

NEXT X

FOR K = 1 TO 2

IF XM(1) > .45 THEN 52

LINE (XM(K), YI)-(XM(K), GM(K)), 2

52 NEXT K

IF B > BF - BS THEN 60

A$ = INPUT$(1): CLS

FOR K = 1 TO 2

IF XM(1) > .45 THEN 55

LOCATE 4, 23 + 10 * (K - 1): PRINT USING " ##.##"; XM(K)

VIEW (185, 20)-(315, 170)

WINDOW (0, Y1)-(1, Y2): LINE (0, Y1)-(1, Y2), , B

FOR I = 1 TO 9: YY = Y1 + (Y2 - Y1) * I * .1

LINE (I * .1, Y1)-(I * .1, Y1 + .01): LINE (0, YY)-(.03, YY)

NEXT I

PSET (XM(K), 1 / B)

55 NEXT K

NEXT B

60 END
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Note: The plot of DGmix/RT versus x2 in the output is shown only for B = 2.8.

 The following output shows the formation of two conjugate solutions (only for B = 2.20 is shown) 

which also includes the plot of 1/B versus x2 (minima) observed in the plot of Dmix Gm versus x2.

 Since B = b/RT, this plot is a representation of the composition of two conjugate solutions at various 

temperatures.
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The simultaneous differential equations involved in oscillatory reactions may be solved by the fourth-order 

Runge – Kutta method. The computational process of the method is described in the following.

 Let the differential equations may be represented as

   
d

d

x

t
 = f1(x, y, z, º)

   
d

d

y

t
 = f 2(x, y, z, º)

   
d

d

z

t
 = f 3(x, y, z, º)

    ºººººººº

 For the given initial concentrations of x, y, and z, the values of Dx (= k), Dy (=l) and Dz (= m) for the 

chosen value of Dt (= h) are determined by the following expressions.

   k1 = h f1 (x0, y0, z0, º)

   l1 = h f 2 (x0, y0, z0, º)

   m1 = h f3 (x0, y0, z0, º)

      ºººººººººº

   k2 = h  f1(x0 + 1
2

 k1, y0 + 1
2

 l1, z0 + 1
2

 m1, º)  

   l2 = h  f2(x0 + 1
2

 k1, y0 + 1
2

 l1, z0 + 1
2

 m1, º)  

   m2 = h  f3(x0 + 1
2

 k1, y 0 + 1
2

 l1, z0 + 1
2

 m1, º) 

       ººººººººººººººººººº

   k3 = h  f1(x0 + 1
2

 k2, y0 + 1
2

 l2, z0 + 1
2

 m2, º)  

   l3 = h  f2 (x0 + 1
2

 k2, y0 + 1
2

 l2, z0 + 1
2

 m2, º) 

   m3 = h f3(x0 + 1
2

 k2, y0 + 1
2

 l2, z0 + 1
2

 m2, º)  

       ººººººººººººººººººº

   k4 = h f1(x0 + k3, y0 + l3, z0 + m3, º)

   l4 = h f2(x0 + k3, y0 + l3, z0 + m3, º)

   m4 = h f3(x0 + k3, y0 + l3, z0 + m3, º)

       ººººººººººººººº

 Finally, the values of x, y, and z for t + Dt are determined from the following expression 

   x1 = x0 + (1/6) (k1 + 2k2 + 2k3 + k4)
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   y1 = y0 + (1/6) (l1 + 2l2 + 2l3 + l4)

   z1 = x0 + (1/6) (m1 + 2m2 + 2m3 + m4)

 The above scheme is executed in an iterative manner until the time t becomes equal to the chosen 

fi nal value.

 The scheme is

  A + X 
k1

 2X

  X + Y 
k2

 2Y

  Y 
k3

 B

 The rate expressions for X and Y are

  
d[X]

dt
 = k1[A][X] – k2 [X] [Y]

  
d[Y]

dt
 = k2[X][Y] – k3 [Y]

 Use the following data for the computation of [X], [Y], d[X]/dt and d[Y]/dt.

  k1 = 10 mol–1 L min–1, k2 = 5 mol–1 L min–1, k3 = 2 min–1,

  [A]0 = 0.1 mol L–1, [X]0 = 0.1 mol L–1, and [Y]0 = 0.1 mol L–1

 Make a program to display (i) [X] and [Y] with time, (ii) [Y] versus [X] and (iii) the rates of variations 

of X and Y. Also determine the times at which [X] and [Y] have maximum and minimum values.

CLS : REM Oscillatory Raction(Lotka-Volterra)

REM TYP=1:[X] & [Y] verses time;TYP=2:[Y] verse [X]

REM TYP=3:Rates of change of concentrations      

READ PLOT$, TYP, A0, TF: DATA Y,1,1.5,20

R1 = 10: R2 = 5: R3 = 2: CA = .1: X0 = .1: Y0 = .1

H = .01: NMAX = TF / H: NN = 0: XMAX = 0: XMIN = A0

YMAX = 0: YMIN = A0: M = 1: M1 = 1: C$ = "t/min--->"

REM Identifi ng maxima and minima in the plots of [X] &[Y] verses 

time

DEF FNM (Q, P1, PMAX, PMIN, S)

ON Q GOTO 15, 20

15 IF P1 > PMAX THEN
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PMAX = P1: TPMAX = T: LOCATE S, 15

PRINT USING " ##.#"; TPMAX; : PRINT USING " ##.##"; PMAX

ELSEIF P1 < PMAX THEN

LOCATE S, 13: PRINT "Max": A$ = INPUT$(1)

LOCATE S, 13: PRINT "   ": PMIN = A0: Q = 2

END IF

GOTO 25

20 IF P1 < PMIN THEN

PMIN = P1: TPMIN = T: LOCATE S, 28

PRINT USING "  ##.#"; TPMIN; : PRINT USING " #.##"; PMIN

ELSEIF P1 > PMIN THEN

LOCATE S, 27: PRINT "Min": A$ = INPUT$(1)

LOCATE S, 27: PRINT "   ": PMAX = 0: Q = 1

END IF

25 IF S = 4 THEN M = Q: XMAX = PMAX: XMIN = PMIN: GOTO 26

M1 = Q: YMAX = PMAX: YMIN = PMIN

26 END DEF

DEF FNA (X, Y) = R1 * CA * X - R2 * X * Y

DEF FNB (X, Y) = R2 * X * Y - R3 * Y

IF PLOT$ = "Y" THEN

SCREEN 1: COLOR 15, 0: VIEW (25, 20)-(315, 170)

ON TYP GOTO 1, 2, 3

1 XI = 0: XF = TF: YI = 0: YF = A0: GOTO 4

2 XI = 0: XF = A0: YI = 0: YF = A0: C$ = "[X]--->"

LOCATE 13, 1: PRINT "[Y]": GOTO 4

3 XI = 0: XF = TF: YI = -2: YF = 2

4 WINDOW (XI, YI)-(XF, YF): LINE (XI, YI)-(XF, YF), , B

LOCATE 2, 1

ON TYP GOTO 31, 32, 33

31 PRINT "[X] & [Y] in an Oscillatory Reaction": GOTO 34

32 PRINT "             [Y] Verses [X]": GOTO 34

33 PRINT "             Variation of Rates"

34 IF TYP = 3 THEN LINE (XI, 0)-(XF, 0)

LOCATE 3, 1: PRINT USING "#.#"; YF

LOCATE 4, 5: PRINT "X:Green": LOCATE 5, 5: PRINT "Y:Red"

LOCATE 22, 2: PRINT USING "##"; YI

LOCATE 23, 4: PRINT "0          "; C$; "           "; XF

FOR I = 1 TO 9

XS = XF / 10: YS = YI + (YF - YI) * I / 10

IF TYP = 3 THEN

LINE (I * XS, YI)-(I * XS, YI + .1)

LINE (0, YS)-(.3, YS)
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ELSE

LINE (I * XS, YI)-(I * XS, .03)

LINE (0, YF * I / 10)-(XF / 80, YF * I / 10)

END IF

NEXT I

ELSE

PRINT STRING$(30, "-")

PRINT "   t/min      [X]    [Y]"

PRINT STRING$(30, "-")

END IF

T = 0: XA = X0: YB = Y0

FOR N = 0 TO NMAX

K1 = H * FNA(XA, YB)

L1 = H * FNB(XA, YB)

K2 = H * FNA(XA + .5 * K1, YB + .5 * L1)

L2 = H * FNB(XA + .5 * K1, YB + .5 * L1)

K3 = H * FNA(XA + .5 * K2, YB + .5 * L2)

L3 = H * FNB(XA + .5 * K2, YB + .5 * L2)

K4 = H * FNA(XA + K3, YB + L3)

L4 = H * FNB(XA + K3, YB + L3)

X1 = XA + (1 / 6) * (K1 + 2 * K2 + 2 * K3 + K4)

Y1 = YB + (1 / 6) * (L1 + 2 * L2 + 2 * L3 + L4)

IF PLOT$ = "Y" THEN

'FOR I = 1 TO 100 STEP .001: NEXT I

ON TYP GOTO 6, 7, 8

6 PSET (T, XA), 1: PSET (T, YB), 2: GOTO 9

7 PSET (X1, Y1): GOTO 9

8 PSET (T, K1 / H), 1: PSET (T, L1 / H), 2

9 ELSE

IF N = NN * 20 THEN A$ = INPUT$(1): NN = NN + 1

ON TYP GOTO 11, 11, 12

11 PRINT USING "  ##.##"; T; : PRINT USING "   #.####"; XA; YB

GOTO 13

12 PRINT USING "  ##.#"; T; : PRINT USING "  ##.######"; K1; L1

13 END IF

T = T + H: XA = X1: YB = Y1

IF PLOT$ = "Y" THEN

DUM = FNM(M, X1, XMAX, XMIN, 4)

DUM = FNM(M1, Y1, YMAX, YMIN, 5)

END IF

40 NEXT N

IF PLOT$ <> "Y" THEN PRINT STRING$(30, "-")

END
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Comment The maxima and minima in the plots of [X] and [Y] with time are as follows:

 Max. [X] t/min Æ 3.1 8.4 13.7 19.0

 Min. [X] t/min Æ 4.8 10.1 15.4 20.7

 Max. [X] t/min Æ 3.7 9.0 14.3 19.6

 Min. [X] t/min Æ 1.7 7.0 12.3 17.7

The scheme is

  A 
k1

 X

  B + X 
k2

 Y + C

  2X + Y 
k3

 3X

  X 
k4

 D. 

 The rate expressions for X and Y are

  
d[X]

dt
 = k1[A] – k2[B] [X] + k3[X]2 [Y] – k4[X]

  
d[Y]

dt
 = k2[B] [X] – k3[X]2 [Y]

  Use the following data for the computation of [X], [Y], d[X]/dt and d[Y]/dt.
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   k1 = 1 min–1;  k2 = 1 mol–1 L min–1;  k3 = 1 mol–2 L2 min–1;  k4 = 1 min–1;

   [A]0 = 1.0 mol L–1, [B]0 = 3.0 mol L–1,  [X]0 = 1.0 mol L–1 and [Y]0 = 1.0 mol L–1

 Make a program to display (i) [X] and [Y] with time, (ii) [Y] versus [X], and (iii) the rates of variations of

[X] and [Y] with time. Also determine the times at which [X] and [Y] have maximum and minimum values.

REM Oscillatory Reaction(Brusselator)

REM TYP=1:[X] & [Y] verses time;TYP=2;[Y] verses [X]

REM typ=3:Rates verses time

CLS : READ PLOT$, TYP, A0, TF: DATA Y,3,6,30

READ R1, R2, R3, R4, CA, CB: DATA 1,1,1,1,1,3

X0 = 1: Y0 = 1: NN = 0: XMAX = 0: XMIN = A0

YMAX = 0: YMIN = A0: M = 1: M1 = 1: C$ = "t/min"

IF TYP = 3 THEN H = .02 ELSE H = .03

REM Identifi ng maxima and minima in the plots of [x] & [y]

DEF FNM (Q, P1, PMAX, PMIN, S)

ON Q GOTO 5, 10

5 IF P1 > PMAX THEN

PMAX = P1: TPMAX = T: LOCATE S, 16: PRINT USING " ##.#"; TPMAX; PMAX

ELSEIF P1 < PMAX THEN

LOCATE S, 14: PRINT "Max": A$ = INPUT$(1)

LOCATE S, 13: PRINT "    ": PMIN = A0: Q = 2

END IF

GOTO 15

10 IF P1 < PMIN THEN

PMIN = P1: TPMIN = T: LOCATE S, 30: PRINT USING " ##.#"; TPMIN; PMIN

ELSEIF P1 > PMIN THEN

LOCATE S, 28: PRINT "Min": A$ = INPUT$(1): LOCATE S, 28

PRINT "   "

PMAX = 0: Q = 1

END IF

15 IF S = 4 THEN M = Q: XMAX = PMAX: XMIN = PMIN: GOTO 16

M1 = Q: YMAX = PMAX: YMIN = PMIN

16 END DEF

DEF FNA (X, Y) = R1 * CA - R2 * CB * X + R3 * X ^ 2 * Y - R4 * X

DEF FNB (X, Y) = R2 * CB * X - R3 * X ^ 2 * Y

IF PLOT$ = "Y" THEN

SCREEN 1: COLOR 15, 0: VIEW (35, 20)-(315, 170)

ON TYP GOTO 1, 2, 3

1 XI = O: XF = TF: YI = 0: YF = A0: GOTO 4

2 XI = 0: XF = A0: YI = 0: YF = A0: C$ = "[X]"

LOCATE 13, 2: PRINT "[Y]": GOTO 4
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3 XI = 0: XF = TF: YI = -1.5: YF = 1.5

4 WINDOW (XI, YI)-(XF, YF): LINE (XI, YI)-(XF, YF), , B

IF TYP = 3 THEN LINE (0, 0)-(TF, 0)

LOCATE 2, 1

ON TYP GOTO 31, 32, 33

31 PRINT " [X] and [Y] in an Oscillatory Reaction": GOTO 34

32 PRINT "              [Y] Verses [X]": GOTO 34

33 PRINT "              Variations of Rates"

34 LOCATE 3, 1: PRINT USING "##.#"; YF

LOCATE 4, 6: PRINT "X:Green": LOCATE 5, 6: PRINT "Y:Red"

LOCATE 22, 1: PRINT USING "##.#"; YI

LOCATE 23, 5: PRINT "0          "; C$; "--->           "; XF

FOR I = 1 TO 9

IF TYP = 3 THEN

XS = XF / 10: YS = YI + (YF - YI) * I / 10

LINE (I * XS, YI)-(I * XS, YI + .1)

LINE (XI, YS)-(XI + .4, YS)

ELSE

LINE (I * XF / 10, YI)-(I * XF / 10, YF * .03)

LINE (0, YF * I / 10)-(XF * .01, YF * I / 10)

END IF

NEXT I

ELSE

PRINT STRING$(30, "-"): PRINT "   t/s       [X]      [Y]"

PRINT STRING$(30, "-")

END IF

T = 0: XA = X0: YB = Y0: NMAX = TF / H

FOR N = 0 TO NMAX

K1 = H * FNA(XA, YB)

L1 = H * FNB(XA, YB)

K2 = H * FNA(XA + .5 * K1, YB + .5 * L1)

L2 = H * FNB(XA + .5 * K1, YB + .5 * L1)

K3 = H * FNA(XA + .5 * K2, YB + .5 * L2)

L3 = H * FNB(XA + .5 * K2, YB + .5 * L2)

K4 = H * FNA(XA + K3, YB + L3)

L4 = H * FNB(XA + K3, YB + L3)

X1 = XA + (1 / 6) * (K1 + 2 * K2 + 2 * K3 + K4)

Y1 = YB + (1 / 6) * (L1 + 2 * L2 + 2 * L3 + L4)

IF PLOT$ = "Y" THEN

'FOR I = 1 TO 100 STEP .001: NEXT I

ON TYP GOTO 6, 7, 8
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6 PSET (T, XA), 1: PSET (T, YB), 2: GOTO 9

7 PSET (X1, Y1): GOTO 9

8 PSET (T, K1 / H), 1: PSET (T, L1 / H), 2

9 ELSE

IF N = 20 * NN THEN A$ = INPUT$(1): NN = NN + 1

ON TYP GOTO 11, 11, 12

11 PRINT USING "  ##.#"; T; : PRINT USING "  ###.####"; XA; YB

GOTO 13

12 PRINT USING "  ##.#"; T;

PRINT USING "  ###.####"; (K1 / H) * 10 / 1.5; (L1 / H) * 10 / 1.5

13 END IF

T = T + H: XA = X1: YB = Y1

IF PLOT$ = "Y" THEN

DUM = FNM(M, X1, XMAX, XMIN, 4)

DUM = FNM(M1, Y1, YMAX, YMIN, 5)

END IF

30 NEXT N

IF PLOT$ <> "Y" THEN PRINT STRING$(30, "-")

END
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Comments The maxima and minima in the plots of [X] and [Y] with time are as follows.

 Max. [X] t/min Æ 6.8 14.0 21.2 28.3

 Min. [Y] t/min Æ 1.6 10.2 17.4 24.6

 Max. [X] t/min Æ 5.7 12.9 20.0 27.2

 Min. [Y] t/min Æ 7.0 14.1 21.8 28.5

Belousov – Zhabotinsky Mechanism

  The scheme is

     A + Y 
k1

 X + P

     A + X 
k2

 2X + 2Z

     X + Y 
k3

 2P

     2X 
k4

 A + P

     B + Z  (f /2) Y

 The rates of change of [X], [Y] and [Z] as given by the FKN (Field - Körös - Noyes) model are 

as follows.

     
d[X]

dt
 = k1 [A] [Y] + k2[A] [X] – k3 [X] [Y] – 2k4 [X]2

    
d[Y]

dt
 = – k1 [A] [Y] – k3 [X] [Y] + 

2

f
 k5 [B] [Z]

    
d[Z]

dt
 = 2k2 [A] [X] – k5 [B] [Z]

 Use the following data for the computation of [X], [Y], [Z], d[X]/dt, d[Y]/dt and d[Z]/dt

  k1  = 1.28 mol–1 L s–1; k2  = 8.0 mol–1 L s–1, k3 = 8.0 ¥ 104 mol–1 L s–1;   

  k4  = 2.0 ¥ 103 mol–1 L s–1, k5  = 1.0 mol–1 L s–1, [A] = 0.6 M

  [B]  = 0.02 M, [X]0 = 0, [Y]0 = 0, [Z]0 = 0.0002, and f = 1.5

 Make a program to display (i) [X], [Y] and [Z] with time, (ii) [Y] versus [Z], and (iii) the rates of 

variations of [Y] and [Z] with time. Also determine the times at which [Y] and [Z] have maximum and 

minimum values.

CLS : REM Oscillatory Raction(Belousov-Zhabotinsky)

REM TYP=1:[X] & [Y] verses time;TYP=2:[Y] verse [X]

REM TYP=3:Rates of change of concentrations       

REM PLOT$ is "Y" if plotting required.For any other symbol

REM numerical values are displayed

CLS : READ PLOT$, TYP, A0, TF: DATA Y,1,.0018,600
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R1 = 1.28: R2 = 8: R3 = 80000: R4 = 2000: R5 = 1

CA = .06: CB = .02: F = 1.5: ZMAX = 0: ZMIN = A0: N1 = 1

H = .4: NMAX = TF / H: X0 = 0: Y0 = 0: Z0 = .0002: C$ = "t/s"

REM Identifi ng maxima and minima in the plots of [X] &[Y]

DEF FNM (Q, P1, PMAX, PMIN, S)

ON Q GOTO 35, 40

35 IF P1 > PMAX THEN

PMAX = P1: TPMAX = T: LOCATE S, 12: PRINT USING "####"; TPMAX;

PRINT USING " .######"; PMAX

ELSEIF P1 < PMAX THEN

LOCATE S, 9: PRINT "Max": A$ = INPUT$(1)

LOCATE S, 9: PRINT "   ": PMIN = A0: Q = 2

END IF

GOTO 45

40 IF P1 < PMIN THEN

PMIN = P1: TPMIN = T: LOCATE S, 28: PRINT USING "####"; TPMIN;

PRINT USING " .######"; PMIN

ELSEIF P1 > PMIN THEN

LOCATE S, 25: PRINT "MIN": A$ = INPUT$(1)

LOCATE S, 25: PRINT "   ": PMAX = 0: Q = 1

END IF

45 IF S = 5 THEN N1 = Q: YMAX = PMAX: YMIN = PMIN: GOTO 46

N2 = Q: ZMAX = PMAX: ZMIN = PMIN

46 END DEF

DEF FNA (X, Y, Z) = R1 * CA * Y + R2 * CA * X - R3 * X * Y - 2 * R4 * X ^ 2

DEF FNB (X, Y, Z) = -R1 * CA * Y - R3 * X * Y + (F / 2) * R5 * CB * Z

DEF FNC (X, Y, Z) = 2 * R2 * CA * X - R5 * CB * Z

IF PLOT$ = "Y" THEN

SCREEN 1: COLOR 15, 0: VIEW (40, 20)-(315, 170)

ON TYP GOTO 1, 2, 3

1 XI = 0: XF = TF: YI = 0: YF = A0: GOTO 4

2 XI = 0: XF = A0 / 15: YI = 0: YF = A0: C$ = "[Y]"

LOCATE 13, 3: PRINT "[Z]": GOTO 4

3 XI = 0: XF = TF: YI = -A0: YF = A0

LOCATE 8, 8: PRINT "Y": LOCATE 8, 11: PRINT "Z"

4 WINDOW (XI, YI)-(XF, YF): LINE (XI, YI)-(XF, YF), , B

LOCATE 2, 1

ON TYP GOTO 31, 32, 33

31 PRINT "[X],[Y] & [Z] in an Oscillatory Reaction": GOTO 34

32 PRINT "              [Z] Verses [Y]": GOTO 34

33 PRINT "              Variations of Rates"

34 LOCATE 3, 1: PRINT USING ".####"; A0

LOCATE 4, 7: PRINT "X*10:Brown": LOCATE 4, 21: PRINT "Y*5:Green"
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LOCATE 4, 34: PRINT "Z:Red"

LOCATE 5, 7: PRINT "Y": LOCATE 6, 7: PRINT "Z"

39 LOCATE 22, 4: PRINT " 0"

LOCATE 23, 3: PRINT "   0         "; C$; "--->          "; XF

FOR I = 1 TO 9

IF TYP = 3 THEN

LINE (I * XF / 10, YI)-(I * XF / 10, YI + .0001)

LINE (XI, YI + (YF - YI) * I / 10)-(XI + 10, YI + (YF - YI) * I / 10)

ELSE

LINE (I * XF / 10, 0)-(I * XF / 10, YF * .03)

LINE (XI, YF * I / 10)-(XF / 70, YF * I / 10)

END IF

NEXT I

IF TYP = 3 THEN LINE (XI, 0)-(XF, 0)

ELSE

PRINT STRING$(50, "-")

PRINT "   t/s      [X]*1E7    [Y]*1E7    [Z]*1E7"

PRINT STRING$(50, "-")

END IF

T = 0: XA = X0: YB = Y0: ZC = Z0: NN = 0

FOR N = 0 TO NMAX

K1 = H * FNA(XA, YB, ZC)

L1 = H * FNB(XA, YB, ZC)

M1 = H * FNC(XA, YB, ZC)

K2 = H * FNA(XA + .5 * K1, YB + .5 * L1, ZC + .5 * M1)

L2 = H * FNB(XA + .5 * K1, YB + .5 * L1, ZC + .5 * M1)

M2 = H * FNC(XA + .5 * K1, YB + .5 * L1, ZC + .5 * M1)

K3 = H * FNA(XA + .5 * K2, YB + .5 * L2, ZC + .5 * M2)

L3 = H * FNB(XA + .5 * K2, YB + .5 * L2, ZC + .5 * M2)

M3 = H * FNC(XA + .5 * K2, YB + .5 * L2, ZC + .5 * M2)

K4 = H * FNA(XA + K3, YB + L3, ZC + M3)

L4 = H * FNB(XA + K3, YB + L3, ZC + M3)

M4 = H * FNC(XA + K3, YB + L3, ZC + M3)

X1 = XA + (1 / 6) * (K1 + 2 * K2 + 2 * K3 + K4)

Y1 = YB + (1 / 6) * (L1 + 2 * L2 + 2 * L3 + L4)

Z1 = ZC + (1 / 6) * (M1 + 2 * M2 + 2 * M3 + M4)

IF PLOT$ = "Y" THEN

'FOR I = 1 TO 100 STEP .01: NEXT I

ON TYP GOTO 6, 7, 8

6 PSET (T, XA * 10): PSET (T, YB * 5), 1: PSET (T, ZC), 2

GOTO 9

7 PSET (Y1, Z1): GOTO 9
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8 PSET (T, 100 * K1 / H), 1: PSET (T, 100 * L1 / H), 2

'PSET (T, 50 * M1 / H), 3

9 ELSE

IF N = NN * 20 THEN A$ = INPUT$(1): NN = NN + 1

PRINT USING " ####.#"; T;

ON TYP GOTO 11, 11, 12

11 PRINT USING "     ###.##"; XA * 1000000; YB * 500000; ZC * 100000

GOTO 13

12 PRINT USING "     ####.##"; K1 * 1E+07; L1 * 1E+07; M1 * 1E+07

13 END IF

T = T + H: XA = X1: YB = Y1: ZC = Z1

IF PLOT$ = "Y" THEN

DUM = FNM(N1, Y1, YMAX, YMIN, 5)

DUM = FNM(N2, Z1, ZMAX, ZMIN, 6)

END IF

60 NEXT N

IF PLOT$ <> "Y" THEN PRINT STRING$(50, "-")

END
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Comments The maxima and minima in the plots of [Y] and [Z] with time are as follows.

 Max. [Y] t/s Æ 94 288 482

 Min. [Y] t/s Æ 56 249 442

 Max. [Z] t/s Æ 77 270 464

 Min. [Z] t/s Æ 34 228 422

The scheme is 
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  The involved equations are 

  
d[X]

dt
 = k1 [A] – k2 [X] – k3 [X] [Y]2

  
d[Y]

dt
 = k2 [X] + k3 [X] [Y]2 – k4 [Y]

 Use the following data for the computation of [X], [Y], d[X]/dt and d[Y]/dt

 k1 = 0.001 min–1,  k2 = 0.01 min–1,  k3 = 2.5 × 109 dm6 mol–2 min–1,  k4 = 1 min–1,

 [A]0 = 0.01 mol dm–3, [X]0 = 2 × 10–5 mol dm–3,  [Y]0 = 1.0 × 10–5 mol dm–3, and [B]0 = 0

 Make a program to display (i) [IO–
3] and [I–] with time, (ii) [IO–

3] versus [I–], and (iii) the variations of 

rates of [IO–
3] and [I–] with time. Also determine the periodic time varations for the maximum and minimum 

in [IO–
3] and [I–].

  REM Oscillatory Reaction(Iodate-iodide)

REM TYP=1 for CONC verses TIME;TYP=2 for X verses Y

REM TYP=3 Rates verses time

REM PLOT& is "Y" if plotting is required. If not,

REM numerical values are displayed

CLS : READ PLOT$, TYP, A0, TF: DATA Y,3,.0002,60

READ R1, R2, R3, R4, CA: DATA .001,.01,2.5E9,1,.01

X0 = 0: Y0 = 0: H = .0005: NMAX = TF / H: NN = 0: A$ = "t/min-->"

XMAX = 0: XMIN = A0: YMAX = 0: YMIN = A0: M = 1: M1 = 1
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REM Indentifi ng maxima and minima in the plots of [X] &[Y]

DEF FNM (Q, P1, PMAX, PMIN, S)

IF S = 4 THEN C$ = "R" ELSE C$ = "G"

ON Q GOTO 15, 20

15 IF P1 > PMAX THEN

PMAX = P1: TPMAX = T: LOCATE S, 11

PRINT USING " ##.#"; TPMAX; : PRINT USING " .#######"; PMAX

ELSEIF P1 < PMAX THEN

LOCATE 5, 16: PRINT "Max("; C$; ")": A$ = INPUT$(1)

LOCATE 5, 16: PRINT "      ": PMIN = A0: Q = 2

END IF

GOTO 25

20 IF P1 < PMIN THEN

PMIN = P1: TPMIN = T: LOCATE S, 26

PRINT USING " ##.#"; TPMIN; : PRINT USING " .#######"; PMIN

ELSEIF P1 > PMIN THEN

LOCATE 5, 31: PRINT "Min("; C$; ")": A$ = INPUT$(1)

LOCATE 5, 31: PRINT "      ": PMAX = 0: Q = 1

END IF

25 IF S = 4 THEN M = Q: XMAX = PMAX: XMIN = PMIN: GOTO 26

M1 = Q: YMAX = PMAX: YMIN = PMIN

26 END DEF

DEF FNA (X, Y) = R1 * CA - R2 * X - R3 * X * Y ^ 2

DEF FNB (X, Y) = R2 * X + R3 * X * Y ^ 2 - R4 * Y

IF PLOT$ = "Y" THEN

SCREEN 1: COLOR 15, 0: VIEW (38, 20)-(318, 170)

ON TYP GOTO 1, 2, 3

1 XI = 0: XF = TF: YI = 0: YF = A0: GOTO 4

2 XI = 0: XF = A0: YI = 0: YF = A0: A$ = "[X]-->"

LOCATE 13, 2: PRINT "[Y]": GOTO 4

3 XI = 0: XF = TF: YI = -A0: YF = A0

4 WINDOW (XI, YI)-(XF, YF): LINE (XI, YI)-(XF, YF), , B

LOCATE 2, 1

ON TYP GOTO 31, 32, 33

31 PRINT " [X] and [Y] in an Oscillatory Reaction": GOTO 34

32 PRINT "               [Y] Verses [X]": GOTO 34

33 PRINT "               Variations of Rates"

34 LOCATE 3, 1: PRINT USING ".####"; YF

LOCATE 4, 6: PRINT "X:Red": LOCATE 6, 6: PRINT "Y(G)"

LOCATE 22, 4: PRINT "0"

LOCATE 23, 6: PRINT "0           "; A$; "          "; XF

IF TYP = 3 THEN LINE (XI, 0)-(XF, 0)

FOR I = 1 TO 9
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IF TYP = 3 THEN

XS = I * XF / 10: YS = YI + (YF - YI) * I / 10

LINE (XS, YI)-(XS, YI + .00001)

LINE (XI, YS)-(XI + 1, YS)

ELSE

LINE (I * XF / 10, 0)-(I * XF / 10, YF * .03)

LINE (XI, YF * I / 10)-(XF / 70, YF * I / 10)

END IF

NEXT I

ELSE

PRINT STRING$(30, "-"): PRINT " t/min   [X]*10000   [Y]*10000"

PRINT STRING$(30, "-")

END IF

T = 0: XA = X0: YB = Y0

FOR N = 0 TO NMAX

K1 = H * FNA(XA, YB)

L1 = H * FNB(XA, YB)

K2 = H * FNA(XA + .5 * K1, YB + .5 * L1)

L2 = H * FNB(XA + .5 * K1, YB + .5 * L1)

K3 = H * FNA(XA + .5 * K2, YB + .5 * L2)

L3 = H * FNB(XA + .5 * K2, YB + .5 * L2)

K4 = H * FNA(XA + K3, YB + L3)

L4 = H * FNB(XA + K3, YB + L3)

X1 = XA + (1 / 6) * (K1 + 2 * K2 + 2 * K3 + K4)

Y1 = YB + (1 / 6) * (L1 + 2 * L2 + 2 * L3 + L4)

IF PLOT$ = "Y" THEN

'FOR I = 1 TO 100 STEP .1: NEXT I

ON TYP GOTO 6, 7, 8

6 PSET (T, XA), 2: PSET (T, YB), 1: GOTO 9

7 PSET (X1, Y1): GOTO 9

8 PSET (T, K1 * 4 / H), 2: PSET (T, L1 * 4 / H), 1

9 ELSE

IF N = 20 * NN THEN A$ = INPUT$(1): NN = NN + 1

PRINT USING "  ##.#"; T;

ON TYP GOTO 11, 11, 12

11 PRINT USING "   ##.######"; XA; YB: GOTO 13

12 PRINT USING "   ##.####"; K1 * 1000 / H; L1 * 1000 / H

13 END IF

T = T + H: XA = X1: YB = Y1

IF PLOT$ = "Y" THEN

DUM = FNM(M, X1, XMAX, XMIN, 4)

DUM = FNM(M1, Y1, YMAX, YMIN, 6)

END IF
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40 NEXT N

IF PLOT$ <> "Y" THEN PRINT STRING$(30, "-")

END
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Comments The maxima and minima in the plots of [X] and [Y] with time are as follows

 Max. [X] t/min Æ 15.7 34.6 53.6

 Min. [X] t/min Æ 16.8 35.7 54.7

 Max. [Y] t/min Æ 16.6 35.5 54.5

 Min. [Y] t/min Æ 25.0 44.0 –
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