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Preface

This book presents an introduction to programming using the language C++.  No prior knowledge of 

years of schooling in the Science stream. Our target readers are likely pursuing a degree in Science or 

Engineering, and only some will major in Computer Science.

We believe that our target reader will be able to learn programming by reading the book and 

solving suggested problems entirely through self-study. But the book can also be used as a text, and is 

detailed enough to serve as a reference.

Any programming textbook must accomplish three goals. 

 1. It must describe the syntax and semantics of the programming language.  

 2. It must explain the challenges in using the language to design programs. 

The last goal requires explaining the position of programming in the world of science and 

engineering, and in the general world of ideas, and of course designing examples and exercises which 

excite the student. In the rest of this preface, we explain how we work towards these three goals.

Our approach, developed over several years of teaching programming to our target audience, has 

two unusual features. 

 1. First, the book is accompanied by a graphics package, Simplecpp. This package is useful for 

drawing and animating simple two-dimensional shapes. We believe this assists us in giving more 

vivid explanations of concepts as well as in assigning more interesting (and yet challenging) 

exercises to students. 

 2. Second, we have made a conscious effort to draw programming examples from a variety of areas, 

from math and science and even art. This has many advantages as will be seen shortly.

In Section 0.1, we begin by considering questions of motivation and philosophy. In Section 0.2, 

we outline our approach to teaching the C++ language. In Section 0.3, we discuss program design. In 

Section 0.4, we discuss the motivation behind our graphics package, Simplecpp.

We have also included some non-graphics features which we have found practically useful for 

getting students off to a quick start in writing interesting programs. This is considered in Section 0.5. 

semesters.



xxii Preface

0.1 The Philosophical Appeal of Computing

Science is what we understand well enough to explain to a computer. 

 

Why should anyone learn to write programs? A very persuasive answer is economic; programming 

is a skill which essentially guarantees you a job. Even if you do not plan to enter the software industry, 

programming is a useful auxiliary skill for many professions.

These considerations help in persuading students to study programming. But they will not 

necessarily make for excitement which is essential for learning. For this, it is necessary to explain why 

Computer Science and programming is intrinsically interesting.

It might be said that the goal of Science, or indeed of all human endeavour, is to understand the 

universe better. This understanding manifests itself as mental models of the various phenomena, and 

most such models are computational! Using a computer, you can make these mental models more 

explicit, and can more easily experiment with them. So computing is intimately connected to what it 

means to understand something. But this cannot be left as just another “nice” philosophical observation. 

It must be put into action.

The models you have of the world around you can be made to come alive on a computer. You have 

been told in Physics courses that the planets must move around the sun; but if you know programming, 

you can write a program to explore this claim. You can write programs to explore almost anything 

around you, transportation systems, chemical reactions, biological processes, social interactions. You 

can analyze pictures, or even literary texts, besides performing tax and salary calculations. Many of 

these exciting possibilities are within the grasp of our target audience. It is our experience that twelve 

years of school education is enough to enable students to raise questions about the world and also be 

able to answer some of those questions using programming skills learned in even a single course!

Thus, in this book we expect to not only teach programming, but also show how programming 

intend to major in computer science, not at the beginning of the course anyway. We develop substantial 

programs for applications drawn from math, science, engineering, operations research, and even topics 

which are more like Art. Interestingly, many of these programs aptly illustrate important computer 

science concepts, e.g. recursion.

We thus believe that our treatment better integrates programming with the math and science skills 

(not to mention general worldly skills!) that the students already have. We feel this synergistically 

Note, that by and large, we do not teach anything besides programming in this book. For building 

the applications we draw on what the student already knows. However, to make the book self-contained, 

we have included detailed descriptions of the concerned applications, highlighting the computational 

aspects.

The last few chapters contain somewhat advanced material, e.g. representations of graphs and their 

uses in representing circuits, the web graph, city maps. Also discussed are discrete event simulation, 

issues such as deadlocks in simulation, Dijkstra’s shortest path algorithm as a simulation, a somewhat 

with an application from mechanics. These are meant as help to students in doing projects and for 

exciting students to further study.
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0.2 C++ Syntax and Semantics

This book presents the various constructs of C++ in a fairly comprehensive manner. We also present 

some of the more recent additions to the C++ language, such as lambda expressions. These are more 

convenient in many situations where previously function pointers or function objects were used. We 

dwell on different constructs in proportion to their importance; for example, arrays can be used in a 

variety of different ways: we provide examples of many such uses. In general, we attempt to provide a 

large number of examples for each programming construct. We also discuss some topics which might 

be considered “advanced”, e.g. reference counting. This is discussed in Appendix G.

We have tried to present ideas in order of intellectual simplicity as well as simplicity of 

programming syntax. The general presentation style is: “Here is a problem which we would like to 

solve but we cannot using the programming primitives we have learned so far; so let us learn this new 

primitive”. Object oriented programming is clearly important, but an attempt is made to let it evolve as 

a programming need. We discuss this below.

We also present a somewhat detailed overview of computer hardware. We feel that this is essential 

to satisfy the curiosity of our target audience, and also to make it easier for them to understand concepts 

such as program state, addresses and pointers, and also compilation.

C, C++ and Object Oriented Programming

The dominant paradigm in modern programming practice is clearly the object oriented paradigm. 

Likewise, C++ is clearly more convenient for the (experienced) programmer than C. So it could be 

asked: should we teach object oriented programming from “day 1”? Should we teach C++ directly or 

as an evolution of C?

Several educators have attempted to introduce classes and objects very early. But this is not 

considered easy, even by the proponents of the approach. The reasons are several. For example, for 

a student to actually develop classes very early requires understanding function abstraction (for 

developing member functions/methods) even before control structures are understood. This can appear 

unmotivated and overwhelming.

Our discussion of object oriented programming can be considered to begin in Chapter 5: creating 

a graphical shape on the screen requires creating an object of a graphics class. In the initial chapters, 

it is only necessary to use classes, not build new classes. Thus, shapes can be created, and member 

functions invoked on them to move them around, etc.

The major discussion of classes including the modern motivations happens in Chapter 18. However, 

member functions are introduced in Section 17.5. Inheritance is presented in Chapter 25. Chapter 26 

presents inheritance based design. It contains a detailed example in which a program developed earlier, 

without inheritance, is redeveloped, but this time using inheritance. This vividly shows how inheritance 

can help in writing reusable, extensible code.

A brief description of the use of inheritance in the design of Simplecpp graphics system is also 

given, along with an extension to handle composite objects.

earlier, most chapters begin with a ‘‘crisis statement” which is followed by the resolution of the crisis 

in the rest of the chapter. We have attempted to order the crises in increasing order of intellectual 

>> and 
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<< for input output rather than scanf and printf.1

we then evolve to the C++ features. Thus, we present struct

them to classes (Chapter 18). This enables us to gradually motivate each important idea. Likewise we 

discuss arrays before C++ vectors. This is because arrays are concrete and hence easier to understand. 

The abstraction of vectors must be studied, but it can be unconvincing at the beginning.2

We have a substantial discussion of the C++ standard library and template functions and template 

classes.

0.3 The Design of Programs

There is of course a distinction between learning the syntax and semantics of a programming language, 

and acquiring the ability to design programs. The former could be considered to be akin to program 

comprehension: someone who understands the syntax and semantics of a language should be able to 

work out how a program executes and predict what answers it will produce. 

Design is very different. The phrase program design could mean one of two things: (a) writing 

a program when you reasonably well know what calculations are required to be performed, (b) 

Interpretation (b) could perhaps be referred to as algorithm design. In this book, we consider algorithm 

Some of the harder problems we consider here are backtrack search and structural recursion as applied 

to an expression drawing problem. We also discuss some analysis of algorithms, but we recognize that 

these are topics for later courses.

The major focus is on designing programs to solve problems, where the learner is generally 

conversant with how the problem is to be solved, i.e. how the problem could be solved manually using 

pencil and paper. There are many challenges in turning such informal knowledge into a program.

 • Devising computer representations for real life/mathematical entities in the problem. Asserting 

invariant properties of the representations.

 • Identifying the patterns in the computations that are required to be performed and expressing 

computation may not directly match the primitives available in the language.

 • Writing structured, extensible code. We discuss alternative ways of expressing the same logic, as 

well as issues relating to naming of variables, ideas such as avoiding use of global variables.

and use them in proving program correctness as appropriate.

Many of the challenges mentioned above arise naturally as we try to develop programs for problems 

drawn from science, math and other areas. Simple two-dimensional geometric graphics also provides 

fascinating programming problems, as we will discuss shortly.

 1 We do not discuss C language features such as printf and scanf which do not have any pedagogical 

merit. Likewise, we have omitted discussion of C language features such as unions because these are no longer 

relevant and are subsumed in inheritance.
 2 The later chapters of the book do use vectors and other standard classes as needed, rather than using arrays.
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An important aspect of problems from science and other areas known to the student is that the 

student is generally familiar with the calculations that need to be performed. What is needed is deciding 

how to organize these calculations in general. Such problems are perfect for teaching programming 

without involving algorithm design.

0.4 Graphics and Simplecpp

I hear and I forget. I see and I remember. I do and I understand.

A large part of the human experience deals with pictures and motion. Humans have evolved to 

have a good sense of geometry and geography, and are experts at seeing patterns in pictures and also 

planning motion. If this expertise can be brought into action while learning programming, it can make 

for a more mature interaction with the computer. It is for this reason that Simplecpp was primarily 

developed.

Our package Simplecpp contains a collection of graphics classes which allow simple geometrical 

shapes to be drawn and manipulated on the screen. Each shape on the screen can be commanded to 

move or rotate or scale as desired. Taking inspiration from the children’s programming language Logo, 

each shape also has a pen, which may be used to trace a curve as the shape moves. The graphics classes 

enable several computational activities such as drawing interesting curves and patterns and performing 

animations together with computations such as collision detection. These activities are challenging and 

intuitive at the same time.

a program to draw polygons. The program statements command a turtle3 holding a pen to trace the 

this very elementary session is the need to recognize patterns. A pattern in the picture often translates to 

an appropriate programming pattern, say iteration or recursion. Identifying and expressing patterns is a 

fundamental activity in programming in general. This principle is easily brought to the fore in picture 

drawing.

As you read along, you will see that graphics is useful for explaining many concepts, from variable 

scoping and parameter passing to inheritance based design. Graphical facilities make several traditional 

not to be overlooked. After all, educators worldwide are concerned about dwindling student attention 

and how to attract students to academics.

0.5 First Day/First Month Blues

C++, like many professional programming languages, is not easy to introduce to novices. Many 

introductory programming books begin with a simple program that prints the message “hello world”. 

On the face of it, this is a very natural beginning. However, even a simple program such as this appears 

 3 Represented by a triangle on the screen, as in the language Logo.
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complicated in C++ because it must be encased in a function, main, having a return type int. The 

namespaces are even more daunting. The only available course of action is to tell the students, “don’t 

worry about these, you must write these mantras whose meaning you will understand later”. This 

doesn’t seem pedagogically satisfactory.

After the student has somehow negotiated through int, main and namespaces, there is typically a 

long preparatory period in which substantial basic material such as data types and control structures has 

to be learnt, until any interesting program can be written. Psychologically and logistically, this “slow” 

period is a problem. Psychologically, a preparatory period without too much intellectual challenge can 

be viewed by the student as boring, which is a bad initial impression for the subject. Second, in most 

course offerings, students tend to have weekly lecture hours and weekly programming practice hours. 

In the initial weeks, students are fresh and raring to go. It is disappointing to them if there is nothing 

exciting to be done, not to mention the waste of time.

To counter these problems, the following features have been included in Simplecpp. Instead 

 

main_program int main()”. Thus, the main program can be written as

main_program{

body

}

Further, once the student loads in the Simplecpp package using #include <simplecpp>, 

nothing additional needs to be loaded, nor using directives given. The Simplecpp package itself loads 

iostream and issues the using directives. These “training wheels” are taken 

off when functions, etc., are explained (Section 11.1).

A second “language extension” is the inclusion of a “repeat” statement. This statement has the form

repeat(count){

body

}

and it causes the body to execute as many times as the value of the expression count. This is also 

implemented using preprocessor macros and it expands into a for statement.

We believe that the repeat statement is very easy to learn, given a good context. Indeed, it is 

introduced in Chapter 1, where instead of using a separate statement to draw each edge of a polygon, 

nested repeat statements either.

In the second and third chapters, there is a discussion of computer hardware, data representation 

and data types. These topics are important, but are not amenable to good programming exercises. For 

very fruitfully to generate relevant and interesting programming exercises.
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0.6 Fitting the Book into a Curriculum

The book can be used for either a one-semester course or a two-semester sequence. For a one-semester 

course, the recommended syllabus is Chapter 1 through Chapter 7, Chapter 9 through Chapter 11, 

Chapter 13 through Chapter 15, Chapter 17, Chapter 18, Section 21.1, Chapter 22, and Chapter 25. 

Many of these chapters contain multiple examples of the same concept, all of these need not be 

“covered” in class. Some sections of these chapters could be considered “advanced”, e.g. Section 10.4 

which talks about game tree search for the game of Nim.

over them carefully and considering at length aspects such as proving correctness of programs. The 

second semester could cover the remaining chapters. In the second semester, it would be appropriate 

to introduce (and use) some of the modern ideas such as reference counting pointers (Appendix G). A 

substantial programming project would also be appropriate. The book discusses many ideas for this.

Mumbai, May 2014  Abhiram G Ranade
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CHAPTER1
Introduction

A computer is one of the most remarkable machines invented by man. Most other machines have a very

narrow purpose. A watch shows time, a camera takes pictures, a truck carries goods from one point to

another, an electron microscope shows magnified views of very small objects. Some of these machines

are much larger than a computer, and many much more expensive, but a computer is much, much more

complex and interesting in the kind of uses it can be put to. Indeed, many of these machines, from

a watch to an electron microscope typically might contain a computer inside them, performing some

of the most vital functions of each machine. The goal of this book is to explain how a computer can

possibly be used for so many purposes, and many more.

Viewed one way, a computer is simply an electrical circuit; a giant, complex electrical circuit, but

a circuit nevertheless. Computers have been made using mechanical gears, or fluidics devices,1 but all

that is mostly of historical importance. For practical purposes, today, it is fine to regard a computer

as an electrical circuit. Parts of this circuit are capable of receiving data from the external world,

remembering it so that it can be reproduced later, processing it, and sending the results back to the

external world. By data we could mean different things. For example, it could mean some numbers you

type from the keyboard of a computer. Or it could mean electrical signals a computer can receive from

a sensor which senses temperature, pressure, light intensity and so on. The word process might mean

something as simple as calculating the average of the sequence of numbers you type from the keyboard.

It could also mean something much more complex, e.g. determining whether the signals received from

a light sensor indicate that there is some movement in the vicinity of the sensor. Finally, by “send data

to the external world” we might mean something as simple as printing the calculated average on the

screen of your computer so that you can read it. Or we could mean activating a beeper connected to

your computer if the movement detected is deemed suspicious. Exactly which of these actions happen

is decided by a program fed to the computer.

It is the program which distinguishes a computer from most other machines; by installing different

programs the same computer can be made to behave in dramatically different ways. How to develop

these programs is the subject of this book. In this chapter, we will begin by seeing an example of a

program. It turns out that we can understand, or even develop (typically called write) programs without

knowing a lot about the specific circuits that the computer contains. Learning to write programs is

1Also it is appropriate to think of our own brain as a computer made out of biological material, i.e. neurons or neural cells.
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somewhat similar to how one might learn to drive a car; clearly one can learn to drive without knowing

how exactly an automobile engine works. Indeed, not only will you be able understand the program

that we show you, but you will immediately be able to write some simple programs.

There are many languages using which programs can be written. The language we will use in this

book is the C++ programming language, invented in the early 1980s by Bjarne Stroustrup. For the

initial part of the book, we will not use the bare C++ language, but instead augment it with a package

called Simplecpp. How to install this package is explained in Appendix A. This package was developed

to make C++ appear more friendly and more fun to people who are starting to learn C++. To use the

driving metaphor again, it could be said that C++ is like a complex racing car. When you are learning

to drive, it is better to start with a simpler vehicle, in which there aren’t too many confusing controls.

Also, standard C++ does not by default contain the ability to draw pictures. The package Simplecpp

does contain this feature. We thus expect that by using the Simplecpp package it will be easier and

more fun to learn the language. But in a few chapters (by Section 11.6), you will outgrow Simplecpp

and be able to use standard C++ (like “the pros”), unless of course you are using the graphics features.

1.1 A SIMPLE PROGRAM

Our first example program is given below.

#include <simplecpp>

main_program{

turtleSim();

forward(100);

left(90);

forward(100);

left(90);

forward(100);

left(90);

forward(100);

wait(5);

}

If you execute this program on your computer, it will first open a window. Then a small triangle

which we call a turtle2 will appear in the window. Then the turtle will move and draw a square as it

moves. After that, the window will vanish, and the program will end. First we will tell you why the

program does all that it does. Then we will tell you how to execute the program.

The first line #include <simplecpp> declares that the program makes use of the Simplecpp

package, in addition to what is provided by the C++ programming language.

The next line, main_program{, says that what follows is the main program.3 The main program

itself is contained in the braces { } following the text main_program.

2 Our turtle is meant to mimic the turtle in the Logo programming language.
3 Yes, there can be non-main programs too, as you will see later. Also note that the phrase main_program is provided by
Simplecpp. Specifying the main program is a bit more complex if you use bare C++; we will see this in Section 11.1.
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The line following that, turtleSim(); causes a windowwith a triangle at its center to be opened

on the screen. The triangle represents our turtle, and the screen the ground on which it can move.

Initially, the turtle points in the East direction. The turtle is equipped with a pen, which can either be

raised or lowered to touch the ground. If the pen is lowered, then it draws on the ground as the turtle

moves. Initially, the pen of the turtle is in the lowered state, and it is ready to draw.

The next line forward(100) causes the turtle to move forward by the amount given in the

parentheses, (). The amount is to be given in pixels. As you might perhaps know, your screen is

really an array of small dots, each of which can take on any colour. Typical screens have an array of

about 1000 × 1000 dots. Each dot is called a pixel. So the command forward(100) causes the

turtle to go forward in the current direction it is pointing by about a tenth of the screen size. Since the

pen was down, this causes a line to be drawn.

The command left(90) causes the turtle to turn left by 90 degrees. Other numbers could also

be specified instead of 90. After this, the next command is forward(100), which causes the turtle

to move forward by 100 pixels. Since the turtle is facing north this time, the line is drawn northward.

This completes the second side of the square. The next left(90) command causes the turtle to turn

again. The following forward(100) draws the third side. Then the turtle turns once more because

of the third left(90) command, and the fourth forward(100) finally draws the fourth side and

completes the square.

After this the line wait(5) causes the program to do nothing for 5 seconds. This is the time you

have to admire the work of the turtle! After executing this line, the program halts.

Perhaps you are puzzled by the() following the command turtleSim. The explanation is simple.

A command in C++ will typically require additional information to do its work, e.g. for the forward

command, you need to specify a number denoting how far to move. It just so happens that turtleSim

can do its work without additional information. Hence we need to simply write (). Later you will see

that there can be commands which will need more than one pieces of information, in this case we

simply put the pieces inside () separated by commas.

1.1.1 Executing the Program

To execute this program, we must first have it in a file on your computer. It is customary to use the

suffix .cpp for files containing C++ programs. So let us suppose you have typed the program into a

file called square.cpp – you can also get the file from the Simplecpp package.

Next, we must compile the file, i.e. translate it into a form which the computer understands more

directly and can execute. The translation is done by the command s++ which got installed when you

installed the package Simplecpp. The command s++ merely invokes an appropriate complier e.g. the

GNU C++ compiler (See Appendix A). In a UNIX shell you can compile a file by typings++ followed

by the name of the file. In this case you would type s++ square.cpp. As a result of this another

file is produced, which contains the program in a form that is ready to execute. On UNIX, this file is

typically called a.out. This file can be executed by typing its name to the shell

% a.out

You may be required to type ./a.out because of some quirks of UNIX. Or you may be able to

execute by double clicking its icon. When the program is thus executed, you should see a window

come up, with the turtle which then draws the square.

Appendix A discusses how the compiler is to be invoked and how to execute the compiled program

on systems besides UNIX.
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1.2 REMARKS

A C++ program is similar in many ways to a paragraph written in English. A paragraph consists of

sentences separated by full stops; a C++ program contains commands which must be separated by

semicolons. Note that while most human beings will tolerate writing in which a full stop is missed,

a computer is very fastidious, each command must be followed by a semicolon. Note however, that

the computer is more forgiving about spaces and line breaks. It will accept spaces and linebreaks

almost anywhere so long as words or numbers are not split. Thus, it is perfectly legal (though not

recommended!) to write

turtleSim();forward(100) ;

left (90

);

if you wish. This flexibility is meant to enable you to write such that the program is easy to understand.

Indeed, we have put empty lines in the program so as to help ourselves while reading it. Thus, the

commands which actually draw the square are separated from other commands. Another important

idea is to indent, i.e. put leading spaces before lines that are part of main_program. This is again

done to make it visually apparent what is a part of the main program and what is not. As you might

observe, indentation is also used in ordinary writing in English.

1.2.1 Execution Order

There is another important similarity between programs and text written in a natural language such

as English. A paragraph is expected to be read from left to right, top to bottom. So is a program. By

default a computer executes the commands left to right, top to bottom. But just as you have directives

in magazines or newspaper such as “Please continue from page 13, column 4”, the order in which the

commands of a program are executed can be changed. We see an example next.

1.3 REPEATING A BLOCK OF COMMANDS

At this point you should be able to write a program to draw any regular polygon, say a decagon. You

need to know how much to turn at each step. The amount by which you turn equals the exterior angle

of the polygon. But we know from Euclidean Geometry that the exterior angles of a polygon add up

to 360 degrees. A decagon has 10 exterior angles, and hence after drawing each side you must turn by

360/10 = 36 degree. So to draw a decagon of side length 100, we repeat the forward(100) and

left(36) commands 10 times. This works, but you may get bored writing down the same command

several times. Indeed, you don’t need to do that. Here is what you would write instead.

#include <simplecpp>

main_program{

turtleSim();

repeat(10){

forward(100);

left(36);

}

wait(5);

}
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This program, when executed, will draw a decagon. The new statement in this is the repeat

statement.4 Its general form is

repeat(count){

statements

}

In this,count could be any number. Thestatements could be any sequence of statements which

would be executed as many times as the expression count, in the given order. The statements are

said to constitute the body of the repeat statement. Each execution of the body is said to be an

iteration. Only after the body of the loop is executed as many times as the value of count, do we

execute the statement following the repeat statement.

So in this case, the sequence forward(100); left(36); is executed 10 times, drawing all

10 edges of the decagon. Only after that do we get to the statement wait(5);

1.3.1 Drawing Any Regular Polygon

Our next program when executed, asks the user to type in how many sides the polygon should have,

and then draws the required polygon.

#include <simplecpp>

main_program{

int nsides;

cout << "Type in the number of sides: ";

cin >> nsides;

turtleSim();

repeat(nsides){

forward(50);

left(360.0/nsides);

}

wait(5);

}

This program has a number of new ideas. The first statement in the main program is int nsides;

which does several things. The first word int is short for “integer”, and it asks that a region be

reserved in memory in which integer values will be stored during execution. Second, it gives the name

nsides to the region and stipulates that from now on, whenever the programmer uses the name

nsides it should be considered to refer to this region. It is customary to say thatnsides is a variable,

whose value is stored in the associated region of memory. This statement is said to define the variable

nsides. As many variables as youwant can be defined, either by giving separate definition statements,

or by writing out the names with commas in between. For example, int nsides, length;would

4 The repeat statement is not a part of C++ but is provided by Simplecpp. C++ does have statements using which we can
achieve repetition, but these are more involved and will be introduced in Chapter 7. The repeat statement is inspired by the
Logo programming language.
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define two variables, the first called nsides, the second length. We will learn more about names

and variables in Chapter 3.

The next new statement is relatively simple. cout is a name that refers to the computer screen. It

is customary to pronounce the c in cout (and cin in the next statement) as “see”. The sequence of

characters << denotes the operation of writing something on the screen. What gets written is to be

specified after the <<. So the statement in our program will display the message

Type in the number of sides:

on the screen. Of course, you may put in a different message in your program, and that will get

displayed.

In the statement after that, cin >> nsides;, the name cin refers to the keyboard. It asks the

computer to wait until the user types in something from the keyboard, and whatever is typed is placed

into the (region associated with the) variable nsides. The user must type in an integer value and then

press the return (sometimes called “Enter”) key. The value typed in gets placed in nsides.

You may wish to note that the >> and << operators are suggestive of the direction in which

information flows.

After the cin >> nsides; statement is executed, the computer executes the repeat statement.

Executing a repeat statement is nothing but executing its body as many times as specified. In this case,

the computer is asked to execute the body nsides times. So if the user had typed in 15 in response

to the message asking for the number of sides to be typed, then the variable nsides would have

got the value 15, and the loop body would be executed 15 times. The loop body consists of the two

statements forward(100) and left(360.0/nsides). Notice that instead of directly giving the

number of degrees to turn, we have given an expression. This is allowed! The computer will evaluate

the expression, and use that value. Thus, in this case the computer will divide 360.0 by the value of

the variable nsides, and the result is the turning angle. Thus, if nsides is 15, the turning angle will

be 24. So it should be clear that in this case, a 15-sided polygon would be drawn.

1.3.2 Repeat Within a Repeat

What do you think the program below does?

#include <simplecpp>

main_program{

int nsides;

turtleSim();

repeat(10){

cout << "Type in the number of sides: ";

cin >> nsides;

repeat(nsides){

forward(50);

left(360.0/nsides);

}

}

wait(5);

}
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The key new idea in this program is the appearance of a repeat statement inside another repeat

statement. How does a computer execute this? Its rule is simple: to execute a repeat statement, it just

executes the body as many times as specified. In each iteration of the outer repeat statement there will

be one execution of the inner repeat statement. But one execution of the inner repeat could have several

iterations. Thus, in this case a single iteration of the outer repeat will cause the user to be asked for the

number of sides, after the user types in the number, the required number of edges will be drawn by the

inner repeat statement. After that, the next iteration of the outer repeat would begin, for a total of 10

iterations. Thus, a total of 10 polygons would be drawn, one on top of another.

1.4 SOME USEFUL TURTLE COMMANDS

The following commands can also be used.

right(angle): This causes the turtle to turn right by the specified angle, which must be in

degrees.

penUp(): This causes the pen to be raised. So after executing this command, the turtle will move

but no line will be drawn until the pen is lowered. There is nothing inside the () because no number is

needed to be specified, as was the case with forward, e.g. forward(10).

penDown(): This causes the pen to be lowered. So after executing this command, a line will be

drawn whenever the turtle moves, until the pen is raised again.

Thus, if youwriterepeat(10){forward(10);penUp();forward(5);penDown();}

a dashed line will be drawn.

1.5 NUMERICAL FUNCTIONS

The commands you have seen so far for controlling the turtlewill enable you to draw several interesting

figures. However, you will notice that it is cumbersome to draw some simple figures. For example, if

you wish to draw an isoceles right-angled triangle, then you will need to take square roots—and we

haven’t said how to do that. Say you want to draw a simple right-angled triangle with side lengths in

the proportion 3:4:5. To specify the angles would require a trigonometric calculation. We now provide

commands for these and some common operations that you might need. You may wonder, how does a

computer calculate the value of the sine of an angle, or the square root of a number? The answers to

these questions will come later. For now, you can just use the following commands without worrying

about how the calculation actually happens.

Let us start with square roots. If you want to find the square root of a number x, then the command

for that is sqrt. You simply write sqrt(x) in your program and during execution, the square root

of x will be calculated, and will be used in place of the command. So for example, here is how you can

draw an isoceles right-angled triangle.

forward(100);

left(90);

forward(100);

left(135);

forward(100*sqrt(2));
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The commands for computing trigonometric ratios are sine, cosine and tangent. Each of these

take a single argument: the angle in degrees. So for example, writing tangent(45) will be as good

as writing 1.

The commands for inverse trigonometric ratios are arcsine, arccosine and arctangent.

These will take a single number as an argument and will return an angle (in degrees). For

example, arccosine(0.5) will be 60 as expected. These commands return the angle in the range

−90 to +90. An important additional command is arctangent2. This needs two arguments, y and
x, respectively. Writingarctangent2(y,x)will return the inverse tangent of y/x in the full range,

−180 to +180.
To draw a triangle with side lengths 75, 100, 125, you may simply execute the following.

forward(75);

left(90);

forward(100);

left(arctangent2(75,-100));

forward(125);

As you might guess, we can put expressions into arguments of commands, and put the commands

themselves into other expressions, and so on.

Some other useful commands that are also provided are the following:

1. exp, log, log10: These return respectively for argument x the value of ex (where e is

Euler’s number, the base of the natural logarithm), the natural logarithm and the logarithm to

base 10.

2. pow: This takes 2 arguments, pow(x,y) returns xy .

3. sin, cos, tan respectively return the sine, cosine, and tangent of an angle, but it must be

specified in radians.

4. asin, acos, atan2 respectively return the arcsine, arccosine and arctangent, in radians. The

command atan2 takes 2 arguments x, y like the command arctangent2 discussed above,

and returns the inverse tangent of y/x in the range −π to π.
The name PI can be used in your programs to denote π, the ratio of the circumference of a circle to its

diameter.5

1.6 COMMENTS

The primary function of a program is to get executed. So it must be written following the rules described

above.

However, a program should also be written so that it is easy to understand, when programmers

read it. The reason is simple. One programmer may write a program, which another programmer may

need to modify. In such cases, the second programmer must be able to understand why the program

was written in the manner it was written. This process can be aided if the original programmer writes

additional notes to explain the tricky ideas in the program. For this purpose, C++ allows you to insert

5 The name PI as also the commandssine, cosine, tangent, arcsine, arccosine and arctangent are part
of Simplecpp. All others e.g. sqrt, pow and the trigonometric commands using radians are a part of C++.
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comments in your program. A comment is text that is not meant to be executed, but is meant solely for

humans who might read the program.

A comment can be written in two ways. At any point on a line, you may place two slash characters,

//, and then the text following the // to the end of the line becomes a comment. Alternatively,

anything following the /* characters becomes a comment, and this comment can span over several

lines, ending only with the appearance of the characters */.

It is customary to put comments at the beginning mentioning the author of the program and stating

what the program does. Subsequently, wherever something non-obvious is being done in the program,

it is considered polite to explain using a comment.

Here is our polygon-drawing program written the way it should be written.

#include <simplecpp>

/* Program to draw a regular polygon with as many sides as the

user wants.

Author: Abhiram Ranade

Date: 18 Feb 2013.

*/

main_program{

int nsides;

cout << "Type in the number of sides: ";

cin >> nsides;

turtleSim();

repeat(nsides){

forward(50); // Each side will have length 50 pixels.

left(360.0/nsides); // Because sum(exterior angles of a

// polygon) = 360.

}

wait(5);

}

1.7 COMPUTATION WITHOUT GRAPHICS

Although we began this introduction with a picture-drawing program, every program you write need

not contain any drawing. Here is a program that does not draw anything, but merely reads a number

from the keyboard, and prints out its cube.

main_program{

int n;

cout <<"Type the number you want cubed: ";

cin >> n;

cout << n*n*n << endl;

}
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After cout <<,we are expected to place what we want printed. Here, we have written n*n*n, which

causes the cube of n to be calculated and then printed. Instead of n*n*n, we could have written

whatever mathematical expression we want. We discuss the exact rules later, in Section 3.2.

1.8 CONCLUDING REMARKS

Although it may not seem like it, in this chapter you have already learned a lot.

First, you have some idea of what a computer program is and how it executes: starting at the top and

moving down one statement at a time going towards the bottom. If there are repeat statements, the

program executes the body of the loop several times; the program is said to loop through the body for

the required number of iterations.

You have learned the notion of a variable, i.e. a region of memory into which you can store a value,

which can later be used while performing computations.

You have also learned several commands usingwhich you can draw, do calculations (e.g. take square

root).

You have also seen the notion of generalization: the polygon drawing program we wrote in

Section 1.3.1 is a generalization of the square drawing program of Section 1.1. Generalization is very

important; usually you will write programs which will not do just one fixed task, but behave differently

depending upon the input given by the user. For this you need to be able to understand the principle

behind whatever it is that you are doing, and express it in a general form as we did in the polygon

drawing program.

A very important point concerns observing the patterns in whatever you are doing.When we draw a

polygon,we repeat the same action several times. This is a pattern that we can mirror in our program by

using the repeat statement. By using a repeat statement we can keep our program compact; indeed

we may be drawing a polygon with 100 sides, but our program only has a few statements. You will see

other ways of capturing patterns in your programs later. In general this is a very important idea.

Last but not the least, it is worth noting that we have tried to make our programs look good and

be easy to understand. The main reason for this is that when we write programs, they will not only be

executed on a computer, but will also be read by other programmers who must understand what we

mean. We used indentation and comments for making our program more understandable. Later on in

the book we will see other ways.

At this point, you should also see why the notation used to write programs is called a language. A

natural language (e.g. English) is very flexible and general. It has a grammatical structure, e.g. there is a

subject, verb, and object; or there can be clauses, which can themselves contain subjects, verbs, objects

and other clauses. This organization is also present in programming languages; for example, you have

already seen that a repeat statement can contain another repeat statement inside. There are also rules

of punctuation, e.g. each statement of C++ must end with a semicolon, just as each sentence in the

English language ends with a full stops. These grammatical and punctuation rules are often denoted by

the term syntax. This term is also used in programming.

Our treatment of the C++ programming language will be somewhat similar to how you might be

taught a new natural language, say Marathi or French. We will teach you the grammar, or the syntax,

but that will be just one aspect. In order to be able to speak or write a language well, you must

not only know the grammar and the vocabulary, but also know how to organize your thoughts and

express yourself. Likewise, when learning C++, you must not only know the various statements and

their syntax, you must understand how to design programs. Further, when you learn a new natural
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Fig. 1.1 Can you draw this?

language, you will typically read interesting literature in that language. The analogue while learning a

programming language is: you must learn how interesting computational problems get solved! We will

follow this strategy. Hope you will find it enjoyable.

1.8.1 Graphics

The main activity that computers engage in is of course calculating with numbers. However, there are

many reasons we began this introduction with picture drawing, and why picture drawing will be an

important parallel theme that will run through the book.

A program is not merely a list of calculations you want done; as you will see it is important to

understand the patterns in the calculation and represent them in your program. Both these activities:

understanding patterns and representing them in your program, are needed also when you draw

pictures. In general, both the activities are quite difficult. But in case of pictures, the patterns are often

very obvious. Thus, you can focus your attention on the task of representing them in the program. We

will see many examples of this later.

Also note that drawing interesting pictures requires much careful calculation, using geometry and

trigonometry that you have learned earlier.6 Thus, picture drawing will provide another domain in

which you can practice your computational skills.

Also remember the adage “A picture is worth a thousand words.”. Indeed, it is very useful if you can

show the result of your computation through a picture. Also, in a lot of applications it is useful if you

can provide input to the program by drawing a picture or clicking on the screen, rather than by typing

in numbers. In general, and especially for computation on mobile phones and tablet computers, the

areas of data visualization and graphical user interfaces are becoming very important, and our picture

drawing exercises will give you a taste of these areas.

And finally, drawing pictures is fun.

6Do not worry if you have forgotten some of this; we will refresh your memory when needed.



12 An Introduction to Programming through C++

1.8.2 A Note Regarding the Exercises

Programming is not a spectator sport. To really understand programming, you must write many, many

programs yourself. That is when you will discover whether you have truly understood what is said in

the book. To this end, we have provided many exercises at the end of each chapter, which you should

assiduously solve.

Another important suggestion: while reading many times you may find yourself asking, “What if we

write this program differently”. While the author will not be present to answer your questions, there is

an easy way to find out—write it differently and run it on your computer! This is the best way to learn.

EXERCISES

In all the problems related to drawing, you are expected to identify the patterns/repetitions in what

is asked, and use repeat statements to write a concise program as possible. You should also avoid

excessive movement of the turtle and tracing over what has already been drawn.

1. Modify the program given in the text so that it asks for the side length of the polygon to be drawn

in addition to asking for the number of sides.

2. Draw a sequence of 10 squares, one to the left of another.

3. Draw a chessboard, i.e. a square of side length, say 80, divided into 64 squares each of side

length 10.

4. If you draw a polygon with a large number of sides, say 100, then it will look essentially like a

circle. In fact this is how circles are drawn: as a many sided polygon. Use this idea to draw the

numeral 8 – two circles placed tangentially one above the other.

5. A pentagram is a five pointed star, drawn without lifting the pen. Specifically, let A,B,C,D,E be 5

equidistant points on a circle, then this is the figure A–C–E–B–D–A. Draw this.

6. Draw a seven-pointed star in the same spirit as above. Note however that there are more than one

possible stars. An easy way to figure out the turning angle: how many times does the turtle turn

around itself as it draws?

7. We wrote “360.0” in our program rather than just “360”. There is a reason for this which we will

discuss later. But you could have some fun figuring it out. Rewrite the program using just “360”

and see what happens. A more direct way is to put in statements cout << 360/11; cout

<< 360.0/11; and see what is printed on the screen. This is an important idea: if you are

curious about “what would happen if I wrote ... instead of ...?” – you should simply try it out!

8. Read in the lengths of the sides of a triangle and draw the triangle. You will need to know and use

trigonometry for solving this.

9. When you hold a set of cards in your hand, you usually arrange them fanned out. Say you start

with cards stacked one on top of the other. Then you rotate the ith card from the top by an amount

proportional to i (say 10i degrees to the left) around the bottom left corner. Now, we can see the

top card completely, but the other cards are seen only partially. This is the figure that you are to

draw. (a) Draw it assuming the cards are transparent. (b) Draw it assuming the cards are opaque.

For (b), some trigonometric calculation will be necessary. In both cases, use repeat statements

to keep your program small as possible.
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10. Draw a pattern consisting of 7 circles of equal radius: one in the center and 6 around it, each outer

circle touching the central circle and two others. Try to write a program which minimizes turtle

movement. Your program statements should be chosen to exploit the symmetry in the pattern.

11. Draw the picture shown in Figure 1.1. As you can see, the picture has 36 repetitions of a basic

pattern. Your program should be able to take a number n as input, and draw a pictures having n

repetitions. Make sure that the lines and the arcs in the pattern connect smoothly.

12. Write a program which reads in a number and prints its fourth power.

13. Write a program which does the following 10 times: read in a number and then print its square

root.



CHAPTER2
A Bird’s Eye View

When you begin a long journey, it is useful and reassuring to have an idea of where you are going,

how difficult the journey is going to be, and of course how enjoyable. You may have similar questions

and apprehensions when you start studying a new subject. In this chapter, our goal is to anticipate and

answer some such questions.

1. How can a single machine like a computer solve problems from so many different areas like

searching through documents, predicting the weather, making timetables for trains, or playing

chess, not to mention calculating taxes?

2. Should you think of programming as a new activity, different from everything you have done so

far? Or is it similar to things you have learned in school?

3. How does a computer work? What does it mean to say that it solves problems? Do we need to

know about circuits in order to be able to write computer programs?

In this chapter, we give a very high level answer to the first two questions. They are discussed in great

detail in the rest of the book. The third question we discuss at some length. How to design computers

is not the subject of this book; our goal is to provide you with a mental model of a computer to the

extent it is needed for learning to program.

In Section 2.1, we take up the first question. Basically, to solve any problem on a computer, you

must first formulate it as a problem on numbers. We discuss this with examples. Once a problem is

expressed numerically, you try to figure out what operations must be performed on the numbers in

order to solve the problem. In this step, you can pretend, if you wish, that you are solving the problem

manually using pencil and paper. Next you write a program, which instructs the computer to perform

the required calculations, instead of you doing it on paper.

In Section 2.2, we discuss what programming is. In simple terms, a program is nothing but a very

precise description the calculations needed to solve a problem. Two important points should be noted

about this: while a computer may perform millions of calculations, your program does not have to

mention each calculation separately: you can put the calculations in repeat like statements. Second,

there is a tendency to consider computers and computing to be a modern activity, but in fact human

beings have been doing calculations, and some sophisticated calculations at that, for thousands of

years. You have yourself been doing several calculations very systematically in high school. In writing



A Bird’s Eye View
15

a program, you need to describe those calculations systematically and precisely. It is fair to say that

writing programs is a refinement of a skill that you already possess.

In the last part of the chapter, we consider questions such as how computers store numbers and

perform calculations on them. This discussion is very elementary, and at a very high level. This

discussion has three goals: (a) to satisfy your curiosity about what is inside a computer, (b) assure

you that a computer has been designed in some sense to mimic the way humans organize computation,

and so you should expect to find its working intuitive, (c) familiarize you with some simple ideas which

you will directly use later in the book. In Section 2.3, we discuss the basic features of the circuits used

in computers. In Section 2.4, we discuss in detail different formats used for representing numbers

inside computers. In Section 2.5, we discuss the overall organization of a computer. Then we consider

how individual parts work. We discuss the concept of a program stored in memory, and other concepts

relevant to programming such as the concept of an address. We conclude by discussing what it means

to compile a C++ program. The chapter contains a lot of detail which is given only for the purpose of

illustrating the ideas. The details should not be interpreted literally, or too carefully remembered.

2.1 PROBLEM SOLVING USING COMPUTERS

As discussed above, the first step in solving a problem using a computer is to express it as a problem

on numbers. This is easy for several real-life problems which are represented numerically to begin

with. Commerce requires us to keep track of prices and profits and capital and salaries, and clearly this

requires numbers and substantial computation on those numbers. Numbers are also obviously needed

to represent quantities such as temperature, length, mass, force, voltage, concentration of chemicals.

So it would seem that problems involving such quantities will be naturally formulated using numbers.

However, it is not clear that this holds for all real-life entities. For example, can we express pictures or

language using numbers? We discuss these questions next.

Here is how a picture might be represented using numbers. Consider a black and white picture to

begin with. We first divide the picture into small squares by putting down a fine grid over it, as in

Figure 2.1(a). Then for each small square, we determine whether it is more white or more black. If

the square is more white we assign it the number 0, if it is more black, we assign it the number 1. So

if we have divided the picture into m× n small squares (pixels), m along the height and n along the

width, we have a sequence of mn numbers, each either 1 or 0 that represents the picture. Figure 2.1

shows the numbers we have assigned to each square. Given the mn number representation, we can

reconstruct the picture as follows: wherever a 0 appears, we leave the corresponding square white,

wherever a 1 appears, we make the corresponding square black. The reconstruction, using the numbers

in Figure 2.1(b) is shown in Figure 2.1(c). As you can see, the reconstructed picture is not identical

to the original picture, but reasonably similar. By choosing a finer grid, we would have been able to

get a better approximation of the original picture. It turns out that pixels of size about 0.1 mm are

good enough, i.e. the reconstructed picture is hard to distinguish from the original because our eye

cannot individually see such fine squares. Processing a picture means doing computations involving

these numbers. For example, changing every zero to a one and vice versa, will change the picture

from “positive” to “negative”! Similar ideas are used when we wish to display pictures on a computer

monitor, as will be discussed in Section 2.8.2.

It should be noted that the idea of putting down a grid over the object of interest is very powerful.

Suppose we wish to represent the worldwide weather. So we divide the surface of the globe into small

regions. For each region we consider the current state, i.e. parameters relevant to the weather such as
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Fig. 2.1 A picture, its representation, and reconstruction

the ambient temperature, pressure, humidity. Of course, all points in a region will not have identical

temperature but we nevertheless can choose an approximate representative temperature, if the region

is reasonably small. And similarly, pressure or humidity. This collection of state information for all

regions is a representation of the current worldwideweather. Given the current state of a region and the

laws of physics we can calculate what the next state will be only by looking at the state of the nearby

regions. This is a very gross simplification of how the weather is predicted, but, it is correct in essence.1

Text is represented using numbers as follows. Essentially, we device a suitable code. The most

common code is the so called ASCII (American Standard Code for Information Interchange) code.

For example, in the ASCII code, the letter “a” is represented as the number 97, “b” as 98, and

so on. Punctuation marks and standard symbols as also the space character have a numerical

code assigned to them. So the word “computer” is represented by the sequence of numbers

99,111,109,112,117,116,101,114.Sentences and paragraphs are also represented as number sequences,

each letter, spaces, and punctuation mark represented by its numerical code from the ASCII code.

Finding whether a given word occurs in a given paragraph is simply checking whether one sequence

of numbers is a subsequence of another sequence of numbers! Note that the ASCII code is used to

represent all text written using the Roman alphabet, including the C++ programs you will write. The

Unicode Consortium provides codes to represent text in other alphabets, such as Devanagari.

We will see more real-life objects (and mathematical objects too, such as sets, functions) and how

to represent them in the rest of the book.

2.2 ALGORITHMS AND PROGRAMS

After a problem has been represented numerically, the next step is to solve it. For this, we need to decide

what operations to perform and in what order. Such a sequence of operations, described precisely,

is said to constitute an algorithm. In deciding what operations to perform, you don’t really need to

consider a computer. To a good extent, you might as well be thinking about doing the calculations by

hand, on paper.

An algorithm can have steps of the form “Multiply these two numbers, then add the result to the ratio

of these other two numbers,” and so on. You can also have steps such as, “If this number is zero then

do this”. Or also something like “Keep on doing this until ...”. The key requirement is that there should

be no ambiguity about what is to be done at any point in the algorithm. Once you have determined the

algorithm, i.e. the precise sequence of actions, you can think about expressing it in C++. That will give

1 This is not to say that all physical phenomenon related to the weather are well understood. In fact, many simple things are
not understood, e.g. how precisely do raindrops form. However, we understand enough (through the hard work of several

scientists) to make predictions with some confidence. The specific calculations are of course well outside the scope of this
book.
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Fig. 2.2 Primary-school division algorithm

us the program. Of course, for doing the last step you need to know C++. This you will learn in the rest

of the book.

We should point out that while the term algorithm may be new to you, you have actually learned

many algorithms starting from primary school. For example, you know how to determine whether a

given positive integer n is prime. Probably, you will do this as follows: starting from the integer 2,

try out all integers till n− 1 and check if they divide n (without leaving a remainder). If you find an

integer that divides n, then declare n to be composite. If you don’t find any such integer, then declare n

to be a prime. This is indeed an algorithm to determine whether a number n is prime! We will soon see
(Section 6.7.3) how it can be turned into a C++ program. You have learned algorithms even earlier. For

example, you learned how to add up numbers, or subtract or multiply or divide them. These procedures

are also algorithms! You probably learned these procedures by example, or through pictures, such as

the one in Figure 2.2, in which you are first asked to make a multiplication table for the given divisor

(in this case 23), and then on the right you actually perform the division. Even these basic algorithms

will be of value. Indeed, they will come in handy when you want to perform arithmetic with very large

numbers, as in Exercise 19 of Chapter 14.

It may interest you to know that many important computer programs of today are based on

algorithms that were invented long ago. In Section 8.4, you will study an algorithm for finding the

square root of a number which was used by the Babylonians, some 3500 years ago. Another example

is Euclid’s algorithm for finding the greatest common divisor of two numbers (Section 7.7). The

notion of putting a grid over the surface of the earth for the purpose of predicting the weather also

predates modern electronic computers. You might also perhaps know that many ancient civilizations

did sophisticated calculations in order to determine the trajectories of the stars and the planets. Such

ideas have lead to the very sophisticated programs of today, and we will see some of this in Chapter 19.

For the most part in the book, we will consider program design rather than algorithm design. By

this we mean that we will assume that it is clear to you what calculations need to be performed; the

question of interest would be how to express those calculations as C++ programs. For this, we will

draw problems from domains that are familiar to you, e.g. high school/junior college mathematics and

science, and of course every day life. How to write programs that are easy to understand, easy to use,

easy to modify if need be, will be important concerns which you will appreciate only later in the book.

We will discuss creative algorithm design only to a small extent: we will consider several examples of

recursion (Chapter 10) which is a basic algorithm design technique.
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2.3 BASIC PRINCIPLES OF DIGITAL CIRCUITS

We begin our discussion of how computers work by looking at the circuits used in computers. Here is

a key fact: the circuits in a computer are designed such that for practical purposes, we can pretend that

numbers flow through the wires in the circuit, or get stored in the devices in the circuit. Such circuits

are called digital circuits. We only discuss digital circuits in this chapter. In digital circuits, at any time

instant, we can think of each individual wire as carrying a single number, or to be more precise, either

the number 0 or the number 1. Likewise, there are devices, that are capable of performing a storage

function (most commonly capacitors), and each such individual device can also store the number 0 or

the number 1 at any time.

We briefly explain how this illusion is created. But you can ignore this paragraph if you wish, it

is not needed for understanding the rest of the book. As you may know, current flows through the

wires in an electrical circuit (just as water flows through pipes), and wires are associated with voltages

(electrical equivalent of water pressure). The idea for representing numbers in circuits is simple: if a

wire is at a certain designated high voltage (say higher than 1 volt) then we will say that the number

1 is being carried on it. If the wire is at a certain designated low voltage (say smaller than 0.2 volts),

then we will say that the wire is carrying the number 0. Note further that the circuits are designed so

that the wires never carry voltages in the range 0.2 volts to 1 volt, and so there is never any ambiguity.

Thus we can pretend that wires in the circuit are carrying around numbers. Further note that if you

store electrical charge on a capacitor, the charge does not dissipate quickly; in this sense the capacitor

remembers that charge. To make the capacitor remember a 0, we simply drain off charge from it. This

will happens if we connect the capacitor to our designated low voltage. If on the other hand, we connect

our capacitor to a high voltage, a large amount of charge gets stored on it; this represents the number 1.

For the rest of the book, we will not worry about charges and voltages. Instead we will only talk about

capacitors and wires holding and carrying the numbers 0 or 1.

Of course, we will want to store or communicate numbers besides 0 and 1. We will see how to

do this in Section 2.4. Once we have numbers represented, it is possible to design circuits which can

perform arithmetic on them. This is considered in Section 2.7.

2.4 NUMBER-REPRESENTATION FORMATS

The term bit is used to denote a number which is either 0 or 1, so we will say that each wire in a

computer can carry a single bit, or each capacitor can store a single bit. If we want to represent other

numbers, we can do so by associating with them a sequence of bits. As an example, say we decide

to associate the sequence of bits 11001 with the number 25. Then whenever we want to store 25, we

will need to use 5 capacitors, and in them store the respective bits of the sequence, i.e. 1, 1, 0, 0, 1.

Likewise, if we want to send the number 25 from one device to another, we must have 5 wires, and

on those we must respectively send 1, 1, 0, 0, 1. The question then is, what bit sequence should we

associate with each number?

The simplest idea, discussed in detail in Section 2.4.1, is as follows: we represent a number using

the sequence of bits given by its binary representation. So as an example, suppose we wish to represent

the number 25. It has binary representation 11001. Thus it would be represented by the sequence of

bits 11001, as discussed above. This idea is fine if we only wish to represent non-negative integers.

But our program may deal with integers which can be either positive or negative e.g. temperature

rounded to the nearest degree. Thus we need a more complex scheme to represent such numbers. This

is discussed in Section 2.4.2.
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More generally, we may have to represent quantities such as mass, force, and velocities, which in

general will be real numbers, and may be either positive or negative. Schemes for representing real

numbers are discussed in Section 2.4.3.

There is one more issue to consider. In the example above, we said that the number 25 could be

represented by a sequence of 5 bits. On most computers, the standard representation schemes require

you to choose the length of the sequence to be one of 8, 16, 32, or 64 bits. This is because restricting

the size of the bit sequence to these values makes it easy to design the circuitry in the computer. Note

that it is customary to use the terms byte, half-word, word, and double-word to respectively mean 8,

16, 32 and 64 bits.

2.4.1 Unsigned Integer Representation

Suppose we know that a certain quantity we deal with in our program will always be a non-negative

integer, e.g. a telephone number. In that case, as discussed above, we can represent it using the sequence

of bits given by its binary representation. As mentioned above, the length of the representation must

be chosen to be one of 8, 16, 32, 64. Thus if the number we wish to represent has a shorter binary

representation than the length we chose, then we simply make the more significant bits 0, e.g. if we

wish to represent 25 using 32 bits, the representation will be the bit string

00000000000000000000000000011001

Note that if we decide to use an n-bit long binary representation, the maximum value that can be

represented is 2n − 1 (sequence of n 1s). Thus, we must be sure that the number we wish to represent
is not larger. As an example, since we know that telephone numbers (in India) are at most 8 digits long,

and since the largest possible 8-digit number 99999999< 232 − 1, we can use n = 32 to represent

telephone numbers.

2.4.2 Signed Integers

An integer can be negative or positive. So this throws a challenge: how do we represent negative

numbers?

The simplest representation is the so called sign-magnitude representation. In this, if we have n bits

to be used for representing the number, one of these is designated as a sign bit. We will set this bit to 0

if the number is positive, and to 1 if the number is negative. The remaining n− 1 bits will be used for

representing the absolute value of the number. We might use the bit in the most significant position as

the sign bit, so the representation for -25 using 32 bits would be

10000000000000000000000000011001

Notice that since we have decided to use n − 1 bits to represent the magnitude, the magnitude can be
at most 2n−1 − 1 (all n− 1 bits must be 1s). Since the numbers can be positive or negative, using n

bits total we can represent numbers between −2n−1 + 1 and 2n−1 − 1, both inclusive.

A more commonly used representation is the so-called 2’s complement representation. The n bit

2s complement representation is defined as follows. In this the integer x is represented by the n-bit

binary representation of the number x if 0 ≤ x ≤ 2n−1 − 1, and by the n-bit binary representation of

the number 2n − x if−2n−1 ≤ x < 0. Numbers outside this range cannot be represented.2

2 This only means that there is no standard, built-in mechanism for representing numbers outside the range. However, you will
be able to design your own mechanisms if you wish, as you are asked to in Exercise 19 of Chapter 14.
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Here is how −25 would be represented in 32-bit 2’s complement representation. Since −25 is
negative, we have to represent it by the binary number 232 − 25 = 4294967296− 25 = 4294967271.

Then we take its binary representation, which is3

11111111111111111111111111100111

Thus, if you want to store−25 or send it on some wires, the above bit pattern will have to be stored or
sent.

2.4.3 Floating Point Representations

Much computing needs to be done with real numbers. For example, velocities of particles, voltages,

temperatures and so on in general need not take only integral values. Real numbers are represented

using the so-called floating point representations. Usually, floating point representations use bit strings

of length 32 or 64.

In the scientific world, real numbers are typically written using the so-called scientific notation,

in the form: f × 10q, where the significand f typically has a magnitude between 1 and 10, and the

exponent q is a positive or negative integer. For example the mass of an electron is 9.109382× 10−31

kilograms, or Avogadro’s number is 6.022× 1023.

On a computer, real numbers are represented using a binary analogue of the scientific notation.4 So

to represent Avogadro’s number, we first express it in binary. This is not hard to do: it is

1.11111110001010101111111× 21001110

Note that this is approximate, and correct only to 3 decimal digits. But then, 6.022× 1023 was only

correct to 3 digits anyway. The exponent 1001110 in decimal is 78. Thus the number when written out

fully will have 78 bits. We could use 78 bits to represent the number, however, it seems unnecessary.

Usually, we will not need that much precision in our calculations. A better alternative, is to represent

each number in two parts: one part being the significand, and the other being the exponent.

For example, we could use 8 bits to represent the exponent, and 24 bits to represent the significand,

so that the number is neatly fitted into a single 32-bit word! This turns out to be essentially the method

of choice on modern computers. You might ask why use an 8-24 split of the 32 bits and why not

10-22? The answer to this is: experience. For many calculations it appears that an exponent of 8 bits

is adequate, while 24 bits of precision in the significand is needed. There are schemes that use a 64 bit

double word as well and the split here is 11-53, again based on experience.

Note that the significand as well as the exponent can be both positive or negative. One simple way to

deal with this is to use a sign-magnitude representation, i.e. dedicate one bit from each field for the sign.

Note that we don’t need to explicitly store the decimal point (or we should say, binary point!)—it is

always after the first bit of the significand. Assuming that the exponent is stored in the more significant

part or the word, Avogadro’s number would then be represented as

0, 1001110, 0, 11111111000101010111111

3 You may find it convenient to first convert 232 and 25 to binary, and then subtract.
4 In the scientific notation, the position of the decimal point within the significand depends upon the value of the exponent.
Hence, the name floating point.
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Two points are to be noted: (a) we have put commas after the sign bit of the exponent, the exponent

itself, and the sign bit of the significand, only so it is easy to read. There are no commas in memory.

(b) Only the most significant 23 bits of the significand are taken. This requires throwing out less

significant bits (what happened in this example), but you might even have to pad the significand with

0s if it happens to be smaller than 23 bits.

As another example, consider representing −12.3125. This is −1100.0101 in binary, i.e.

1.1000101× 23. Noting that our number is negative and our exponent is positive, the representation

would be
0, 0000011, 1, 110001010000000000000000

Again, the commas are added only for ease of reading.

The exact format in which real numbers are represented on modern computer hardware and in C++

is the IEEE Floating Point Standard. It is much more complicated, but has more features, some of

which we will discuss later.

2.5 ORGANIZATION OF A COMPUTER

We can think of a computer as consisting of the followingmain parts. An actual computer will contain

more parts, but all are not important in this high-level sketch.

1. Main memory. In this, we store the numbers on which we are performing our calculations. As

we will see later, the memory will also hold the program.

2. Arithmetic unit. This is capable of performing arithmetic. We supply to it the operands, tell it

what operation we want performed, and it does so. We can then extract the result and store it back

in memory.

3. Input-output devices. There can be many, but we consider the keyboard, the display, which is

often referred to as the monitor or the screen, and the disk.

4. Control unit. This controls the other units, as the name implies.

5. Network. This is useful for moving data between the parts.

It is customary to use the term Central Processing Unit to denote the control unit together with the

arithmetic unit.

You may think of each part as consisting of a box with circuitry inside. Each part has ports (sets of

wires) on which data can come out from the part or go into the part. It is possible to take the data out of

one part and send it to another part through the network. How exactly the data flows is determined by

the control unit. This organization is sketched in Figure 2.3. The control unit has connections to every

other unit, we have not shown them in the picture to avoid clutter.

2.6 MAIN MEMORY

The memory of a modern computer may contain a huge number of basic memory elements, typically

a power of two, say 235. These are usually capacitors as discussed earlier. Each basic memory element

is capable of storing 1 bit. The number of bits that can be stored is defined to be the capacity, or

the size, of the memory. More commonly, the memory size is measured in bytes, where a byte is

simply 8 bits. The terms kilo, mega, giga are used to respectively denote 210 = 1024, 220 = 1048576,

230 = 1073741824. As you can see these numbers are reasonably close to the metric equivalents, i.e.

1000, 1000000, 1000000000. Analogously, the terms tera, peta and so on are also defined.
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Fig. 2.3 Computer organization (sketch)

Thus, a memory with 235 capacitors has size 235 bits or 232 bytes, or 4 Gigabytes.

2.6.1 Addresses

Each byte (group of 8 elementary memory devices, say capacitors) in the memory is associated with a

unique label, or address. If a memory has N bytes, then the addresses can start at 0 and end at N − 1

(Figure 2.3). Note that while in day to day life we would have used labels from 1 toN , on computers it

is more customary to start with 0. The address of a byte is useful for identifying it from among all the

bytes in the memory. Note that addresses are unsigned integers. Thus, they can be represented using

their binary representation.

The phrase “byte x” is commonly used to mean the byte whose address is x. The phrase “word x”
is also used, this simply means the word starting at byte x, i.e. the set of bytes x, x+ 1, x+ 2, x+ 3.

Similarly, for half-words and double words.

The phrase “location x” is also used; usually, it means the word starting at address x. However, it

may mean byte, halfword, or double word starting at x based on the context.

2.6.2 Ports and Operations

A memory communicates with the rest of the world using 2 sets of wires or ports. The first is the

address, and the second the data port. There are also two additional wires connecting to the memory:

we will call the first the read control port and the second the write control port. Using these, we can

access the contents of the memory as follows. In what follows we use the phrase “place a quantity” to

mean “place the representation of that quantity”.
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Storing Data into Byte x

For this, it is necessary to place the address x on the address port, and the data that you want stored,

say the number y, on the data port. Then you place the number 1 on the write control port. This signals

the memory to store the data on the data port into the byte whose address is present on the address port.

Thus, the number y will be stored in byte x. Byte x will continue to hold the number y until another

write operation is performed on byte x.

Reading Data from Byte x

For this, you place the address x, on the address port. Then you place a 1 on the read control port. The
1 on the read control port signals the memory to sense the data stored in byte x of the memory and

place it on the data port. Once data appears on the data port, it can be moved from there to where it is

needed.

What we described above is a byte-oriented memory. More common are word-oriented memories.

In these, when we supply an address, the word starting at the given address is sent back or written to. In

byte-oriented memories, the data port will consist of 8 wires, because 8 bits need to be communicated.

In word-oriented memories, the data port will likewise have to have 32 wires. Similarly, for half-words

and double-word oriented memories.

How many wires do we need in the address port? Let us take our 232 byte memory as an example. In
this memory, the addresses range from 0 to 232 − 1. Thus the largest address consists of 32 consecutive

1s. Hence, the address port will have to have 32 wires, in order that we may specify any possible

address. In general, if the memory hasN bytes, then we will need to have log2N wires in the address

port.

2.7 THE ARITHMETIC UNIT

The arithmetic unit has circuits using which it is possible to perform basic arithmetic operations, i.e.

addition, subtraction, multiplication, division, for numbers in all formats described earlier, unsigned

and signed integers, and floating. It receives the operands through two ports named Input1 and Input2

and the result of the operation is placed on the port named Output, see Figure 2.3. What operation is to

be performed depends upon the value supplied on the Control port. The arithmetic unit can also convert

numbers from one representation to another, e.g. given a number represented as an integer on one of

the inputs, its representation in the floating format (exponent and significand) can be produced on the

output port.

You may think that the arithmetic unit must consist of many very complicated circuits. That is

indeed true. However, for the purpose of programming, we don’t need to know how the circuits are to

be designed, it is sufficient to know what they can do.

2.8 INPUT-OUTPUT DEVICES

The input-output devices are considered to be peripherals, and the rest of the computer the “main

computer”.
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2.8.1 Keyboard

The simplest input device is a keyboard. A code number is assigned to each key on the keyboard. When

a key is pressed, the corresponding code number is sent to the main computer. The control unit decides

what is to be done with the received code number; for example it might just get stored in the memory.

2.8.2 Display

A computer terminal screen or display is a fairly complex device. You probably know that a display

is made up of pixels which are arranged in a grid, say 1024 rows and 1024 columns. Each pixel can

be made to show the colour you desire. By showing appropriate colours, you can display pictures, or

letters, or the turtle from Chapter 1. The display hardware decides what colour to show in a pixel by

consulting a small amount of memory associated with each pixel. The amount of memory depends on

the sophistication of the display. For a simple black and white display, it is enough to specify whether

the pixel is to appear white or black. So a single bit of memory is enough. You may also have displays

which can show different levels of brightness: k bits of memory will be able to store numbers between

0 and 2k − 1 and hence that many levels of brightness, or gray levels. In colour displays we need to

simultaneously store the red, green, blue components at each pixel, and so presumably even more bits

are needed. Indeed, high quality colour displays might use as many as 24 bits of memory for each

pixel. To display an image, all we need to do is to store appropriate values in the memory associated

with each pixel in the screen. If we have 24 bits of memory per pixel, then because there are

1024× 1024 = 220 pixels, we will need a memory with addresses between 0 and 220 − 1, each cell

of the memory consisting of 24 bits. A reasonable correspondence is used to relate the pixels and

addresses in memory: the colour information for the pixel (i, j) i.e. the pixel in row i and column j

(with 0 ≤ i, j < 1024) is stored in address 1024i+ j of the memory. When the circuitry of the screen

needs to display the colour at pixel (i, j) it picks up the colour information from address 1024i+ j

of the memory. If you wish to change the image, it suffices to changes the data in the memory. So in

some ways, the display can be treated very much like another memory. The main computer can access

this memory, often called the display memory or video memory. should not be confused with the main

memory of the computer.

2.8.3 Disks

Devices such as disks can also be thought of as storing data at certain addresses; however, the

addresses no longer refer to specific capacitors in the circuitry, but specific regions on the surface of

the disk. The surface can be magnetized in different directions: the direction indicates whether a 0 or

a 1 is stored there.

Optical compact disks also function in a similar manner. The surface of an optical compact disk has

elevations and dips which can be detected by shining a laser on them. Whether a certain region of the

disk stores a 0 or it stores a 1 is determined by the pattern of elevations and dips in that region.

2.8.4 Remarks

There is a lot of innovation and ingenuity in designing peripheral devices. This is of course outside the

scope of this book.

However, the fundamental ideas should be noted: (a) communication between the main computer

and the peripheral device happens by sending numbers, (b) information is stored as bits, by designating
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some physical property to determine whether a 0 or a 1 is stored, and (c) if several bits are stored, there

will be a notion of address using which we can refer to some selected bit or group of bits.

2.9 THE CONTROL UNIT

As the name implies, the Control Unit controls the other parts of a computer. It behaves like a factory

manager who tells the workerswhat to do and when. The control unit may at one step ask the arithmetic

unit to perform addition,while at another step it might ask thememory to supply the data from a certain

address inside it. At another step it might ask the network to send the data from the memory to the

arithmetic unit and so on.

Clearly, the control unit must command the rest of the computer to perform the computation needed

by the program being executed on the computer. For this, the control unit must effectively be given a

suitable version of your program. This version is somehow placed in the memory of the computer, and

then the control unit can then fetch it from memory, a little bit at a time, and get the computer parts to

take the required steps. We describe the process of converting your program into a version that the con-

trol unit can understand in Section 2.11. But don’t panic; most of this happens smoothly without much

effort from you. The description in this section is only to tell you what happens “behind the scenes”.

The control unit can only “understand” programs written in the so called machine language of

the computer. This is simply a numerical code language devised by the designer of the computer.

Just as in the ASCII code each character is represented by a number, in the machine language each

operation that the computer is capable of is represented by a number. For example, the designer may

choose to represent the operation of reading two 32 bit unsigned integers from memory, taking their

product and storing it back into memory by some number, say 57. More specifically, the computer

designer might state that the sequence 57, x, y, z represents the operation of taking 32 bit unsigned

integers stored (in the words starting) at addresses x, y taking their product and storing the product

back (in the word starting at) at address z. Such sequences will have to be designated for every

operation that can conceivably happen on the computer. It is customary to call each such a sequence an

instruction. A machine-language program is simply a sequence of such instructions which cause the

desired computation to happen.

We will explain this with an example. Suppose we wish to compute the cube of a number, let us

call it x. Suppose x is already in memory, in the word at address 100. Suppose now the control unit is

asked to execute the instruction

57, 100, 100, 104

As described above, this would cause the computer to fetch the number stored at location 100, twice,

and feed the two copies of the number to the arithmetic unit. Then the control unit would command

the arithmetic unit to perform multiplication. After this, the control unit would cause the product to be

stored back into memory at location 104. Thus the square of x will be computed and stored in location

104. Note that location 100 continues to hold x. To get the cube we must get the control unit to perform

another multiplication using the instruction:

57, 100, 104, 104

This instruction would cause the number in locations 100 and 104 (i.e. x and x2) to be sent to the

arithmetic unit and multiplied, and the product would be stored back into location 104. Thus, at the

end of the two instructions, location 104 would hold x3.
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The sequence of numbers 57, 100, 100, 104, 57, 100, 104, 104 would thus be themachine language

program to cube a number. Of course, in a useful program the number to be cubed would have to

be first read from the keyboard, and at the end the cube would have to be displayed on the screen. To

perform each of these operations, several additional instructionswill be needed. The machine language

program would then be the concatenation of all such numeric sequences. This large sequence would

then have to be loaded into the memory of the computer, and the control unit asked to execute the

instructions in the sequence.

You may wonder whether the machine language contains an analogue of the repeat command dis-

cussed in Section 1.3. Indeed, there will have to be. Some sequence of numbers would have to be des-

ignated by the computer designer to mean “go back and execute this sequence of instructions one more

time”. Designing the machine language is a very tricky blend of science and art. We will not discuss it

further; but we hope that the above discussion has given you a rough idea of how a program executes.

2.10 THE TIMING MODEL

So far we have not discussed the time required to perform each operation described above. For example,

how long does it take to multiply two numbers? Exact answers to these questions are very tricky,

and very involved. Part of the reason is that on a real computer, there are many other complications.

However, a very simplistic, but reasonably useful answer can be given.

The answer is as follows.With every computer, we can associate a clock rate or a clock speed which

indicates how fast the circuits in the computer can perform operations. The clock speed is measured

as a frequency, number of operations per second. At the time of writing this, a typical clock speed for

computers is 3 GHz, which means that the computer is capable of performing 3 billion operations per

second. By operation, we typically mean arithmetic operations, i.e. add, subtract, multiply, and divide.

It is also acceptable to assume, to keep things simple, that data can be fetched from memory in about

the same time.

What does this imply as far as programming is concerned? Simply that whatever problem we may

be solving, we should try to finish it using as few operations as possible. If we can do this, our program

will run fast. You will see that the same problem can be solved in many ways, some of them requiring

fewer operations than others. Exercise 6 at the end of this chapter gives you a taste of this. So one

challenge in programming is to figure out how to minimize the number of operations performed. Of

course, the primary challenge is to find some way of solving the problem correctly in the first place.

Note by the way that peripheral devices typically do not operate as fast as the arithmetic unit and the

memory. For most problems considered in this book, we will not have much choice in how to access

peripheral devices, be they disk or the display or the keyboard. So we will not consider this issue.

2.11 HIGH-LEVEL PROGRAMMING LANGUAGES

When the earliest computers were built, they could be used only by writing machine language

programs. Indeed, you had to decide where in memory you would store your data, look up the computer

manual and determine what instruction would perform the actions you wanted, and then write out the

sequence of numbers that would constitute the machine language program. Then themachine-language

program would have to be loaded into the computer memory, and then you could execute the program.

As you might guess, this whole process is very tiring and error prone.
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Fortunately, today, programs can be written in the style seen in Chapter 1, and to be discussed in

the rest of the book. We do not think about what instructions to use, nor the address in memory where

to store the number to be cubed or the number of sides of the polygon we wish to draw. Instead, we

use familiar mathematical expressions to denote operations we want performed. We give names to

regions of memory and store data in them by referring to those names. The computer, of course, really

only “understands” instruction codes and memory addresses, and does not understand mathematical

notation or the names we give to parts of memory. So how does our nice looking program actually

execute on a computer?

Clearly, the nice-looking programs we write must first be translated into machine language instruc-

tions which the computer does understand. This is done by a program called a compiler, which fortu-

nately has been written by someone already! The program s++ that you used in the last chapter is a C++

compiler, which takes a C++ program (e.g. the one from Section 1.7) and generates the file (e.g. a.out)

which contains a machine language program like what we discussed in Section 2.9. When you type

a.out

from the command line or click on the program icon, the content of the file a.out gets loaded into

the memory, and then what is loaded starts getting executed.

2.12 CONCLUDING REMARKS

For the purpose of learning to program, it is useful to summarize what we have learned.

In the first part of the chapter, we noted that the information/data which we wish to process should

be represented as a collection of numbers. You should formulate a representation scheme using which

the problem to be solved is represented as a set of numbers, and the desired answer is also represented

as a set of numbers. The program must then be given the first set of numbers and it must perform

computation on that set and generate the second set. Some problems are naturally represented as

numerical problems, whereas for others, we must use some kind of a numerical coding scheme, like

the ASCII coding scheme. We also defined the notion of algorithms, and gave examples of algorithms

that are learned in primary school.

In the second half of the chapter, we noted that numbers are themselves represented by electrical

signals on a computer, i.e. as voltages. There are (memory) circuits which can store these voltages, and

other circuits (arithmetic unit) which process one set of voltages and generate another set of voltages.

For example, every computer will have a circuit to which you can supply voltages representing the

numbers to be added together, and such that the circuit will produce voltages representing the sum of

the numbers. We also saw some specific number representation schemes. An important point in this

was that the amount of circuitry you need to store numbers depends upon how much precision you

want. You need fewer bits of memory to store a number which is guaranteed to be in a small range.

The amount of memory that your program uses thus depends upon the number of numbers you need to

remember during the computation, and also how precisely you need the number to be represented.

We also saw the notion of amachine-languageprogram. A machine language program is a sequence

of machine language instructions. A machine-language instruction is a sequence of numbers, which

tell the control unit what operation to perform. We noted that the computer designer must design

instructions such that every operation that the computer is capable of performing can be expressed

as an instruction or as a sequence of instructions. The instructions typically correspond to primitive

operations, e.g. arithmetic. We also noted that machine language programs typically exist “behind the

scenes”, i.e. we usually write our programs using a language such as C++, from which an equivalent

machine language program is generated automatically by the compiler.
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It should be noted that real computers are much more complex than our description in this chapter.

However, our description should give you a good enough model of a computer for the purpose of

learning to program.

EXERCISES

All the exercises below are meant to be only paper and pencil exercise. No C++ programming is

expected.

1. How would you represent a position in a chess game? If you are not familiar with chess, answer

this question for any board game you are familiar with.

2. Make sure you are able to convert numbers from decimal to binary and vice versa. You may not

be familiar with converting fractions. For this, simply note that a 1 in the ith position after the

(binary) point, has place value 2−i. Thus 0.1 in binary is just half, 0.01 is just one fourth. So
now you should be able to decide whether the first bit after the point should be one or not, by

comparing the fractional part to half. The remaining bits can be decided by extending the idea.

You will not need to convert fractions in this book, however, it will be useful to be able to convert

intgers routinely. So practice with different examples.

3. How many different numbers are represented in the sign magnitude representation on n = 3 bits?

Make a table showing what bit pattern represents which number.

4. How many different numbers are represented in then-bit 2’s complement representation on n = 3

bits? Make a table showing what bit pattern represents which number.

5. Suppose you want to draw a “+” symbol at the center of a 1024× 1024 display. Suppose the

display will show a pixel white if you store a 1 at the corresponding memory location. Suppose

the “+” is 100 pixels tall and wide, and 2 pixels thick. In which screen memory locations would

you store 1s?

6. Consider the problem of computing the fourth power of a number x. One way is to multiply x by
itself 3 times. Another way is to first square x, i.e. multiply x by itself, and then square the square,

i.e. multiply the computed x2 by itself. Clearly, the second way is better.
Adapt the machine-language program of Section 2.9 for cubing a number to compute the fourth

power. Write the machine language program for both the methods described above.

Write a machine language program to compute x18 given x. You should be able to do this using

just 5 multiplications.

For now, you will be able to write all this only in machine language, using the single instruction

described in Section 2.9. In Chapter 3, you will see how the program can be written using C++.

7. To get a foretaste of how to write programs, imagine that you are to describe to your friend how to

perform division over the phone. Yes, you are not allowed to draw any pictures, and the description

must be entirely verbal. You may of course talk about using papers with squares and say things

like “now read the digit you wrote in the square in the third row and fourth column and multiply

it with the digit in the fourth row and fifth column and write the result in ...” Suppose further that

your friend is not too imaginative, but very meticulous. In other words, your friend is unwilling

to generalize from examples that you might describe. However, your friend will understand if you

give a precise descriptionwhich goes something like “find smallest i such that the number formed

by the most significant i digits is larger than the divisor” and so on.



CHAPTER3
Variables and Data Types

Speaking at a very high level, it could be said that most programs have the following phases:

(a) read in some data, (b) perform calculations on the data, (c) print out the results of the calculations

or somehow show the results. After reading the data (say as the user types it from the keyboard) it is

stored in the memory of the computer. It is then used in the calculations. The results of the calculations,

are also stored in memory and then used later in the program for additional calculations or for printing

on the screen.

How do we access the memory of a computer from inside a C++ program? This is the main question

to be discussed in this chapter. Towards this end, C++ provides the notions of variables and data types.

As we will see, by defining a so-called variable, it is possible to reserve space in memory. You can

then place data into that space by reading it from the keyboard, as seen in Chapter 1. But you can also

perform calculations and place the results of the calculations into the space you have reserved, using a

so called assignment statement. We will also study assignment statements.

Using the repeat statement and what we learn in this chapter, we will be able to write some

interesting programs. Some of these programs are very idiomatic, i.e. similar patterns appear commonly

in many programs. We will then see some variations of the assignment statement inspired by these

idioms. We will conclude with a discussion of some intricacies related to variables.

3.1 INTRODUCTION

A region of memory allocated for holding a single piece of data (for now a single number), is called a

variable. C++ allows you to create a variable, i.e. allocate the memory, and give it a name. The name

is to be used to refer to the variable in the rest of the program. A variable can be created by writing the

following in your program.

data-type variable-name;

In this, data-type must be a data-type selected from the first column of Table 3.1, and

variable-name a name chosen as per Section 3.1.1. This statement creates a variable of the name

variable-name, having the specified data-type. The data-type of a variable determines

how much space the variable uses (given in column 3 of Table 3.1), and the type of values expected to

be stored in the variable (column 4 of Table 3.1).

You have already seen some examples, e.g. in Section 1.3.1, we wrote

int nsides;
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Table 3.1 Fundamental data types of C++

Data type Possible values # Bytes Use
(Indicative) Allocated for

(Indicative) storing

signed char -128 to 127
1

Characters or

unsigned char 0 to 255 small

integers.

short int -32768 to 32767
2

Medium size

unsigned short int 0 to 65535 integers.

int -2147483648 to 2147483647
4

Standard size

unsigned int 0 to 4294967295 integers.

long int -2147483648 to 2147483647
4

Storing longer

unsigned long int 0 to 4294967295 integers.

long long int −9223372036854775808 to

9223372036854775807
8 Even longer

unsigned long long int 0 to 18446744073709551615 integers.

bool false (0) or true (1) 1 Logical

values.

float Positive or negative. About 7

digits of precision. Magnitude

in the range 1.17549× 10−38

to 3.4028× 1038

4 Real

numbers.

double Positive or negative. About

15 digits of precision. Magni-

tude in the range 2.22507×
10−308 to 1.7977× 10308

8 High

precision

and high

range real

numbers.

long double Positive or negative. About

18 digits of precision. Mag-

nitude in the range 3.3621×
10−4932 to 1.18973× 104932

12 High

precision

and very high

range real

numbers.

We said then that this would create a variable capable of storing integers. From Table 3.1, you now also

know that typically the variable will use 4 bytes of memory, and will store positive and negative num-

bers. As discussed in Section 2.4.2, such numbers are typically represented in the two’s complement

representation, and if so the numbers in the range −2147483648 to 2147483647 can be stored.
C++ provides the types signed char, short int, long int, and long long

int for storing (positive or negative) integers. Variables of these respective types will use amount

of memory as given in Table 3.1 and will be able to store values in correspondingly larger or smaller

range. In all such cases, very likely the two’s complement representation of Section 2.4.2 is used.
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If you know that you will only store non-negative integers in a certain variable, you may choose one

of the unsigned types. For example, you may write:

unsigned int telephoneNumber;

This will create a variable called telephoneNumber, using 4 bytes, and the values will be

stored using the binary representation, as discussed in Section 2.4.1. The types unsigned

char, unsigned short, unsigned long and unsigned long long are also used for

storing non-negative integers. These will respectively use different amount of memory and allow

correspondingly smaller or larger ranges.

The following will create a variable called temperature for storing real numbers.

double temperature;

The created variable will be 8 bytes long. It will typically use the IEEE Floating Point Standard as

discussed in Section 2.4.3. The type name double is short for “double precision”, in comparison to

the type float which uses 4 bytes and is considered “single precision”.

The first 9 types in Table 3.1 are said to be integral types, and the last 3, floating types.

It should be noted that the size shown for each data type is only indicative. The C++ language

standard only requires that the sizes of char, short, int, long, long long to be in non-

decreasing order. Likewise, the sizes of float, double, long double are also expected to be

non-decreasing. The exact sizes are may vary from one compiler to another but can be determined as

discussed in Section 3.1.6.

The char types are most commonly used for storing text, as we will see later. In such uses it is

customary to omit the qualifiers signed or unsigned and write:

char firstLetterOfName;

This will create a 1 byte variable, of type either unsigned char or signed char. One of these

types will be chosen by the compiler. Note that if you are using char to store text, the exact choice

does not matter because the ASCII code is uses only the range 0 to 127 which is present in either the

signed or the unsigned version. If you use the char type to store integers (that happen to lie in a small

range) then it is best to specify whether you want the signed or the unsigned type.

The type bool is primarily used to store logical values, as will be seen in Section 6.7.

The phrase value of a variable is used to refer to the value stored in the variable. So the stored

telephone number (after it is stored, and we will say how to do this) will be the value of the variable

telephone_number.

We finally note that you can define several variables in a single statement if they have the same type,

by writing:

data-type variable-name1, variable-name2, ... variable-namek;

3.1.1 Identifiers

The technical term for a name in C++ is identifier. Identifiers can be used for naming variables, but

also other entities as we will see later.

An identifier can consist of letters, digits and the underscore character “_”. Identifiers cannot start

with a digit, hence you cannot have an identifier such as 3rdcousin. It is also not considered good

practice to use identifiers starting with an underscore for naming ordinary variables. Finally, some
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words are reserved by C++ for its own use, and these cannot be used as variable names. For example,

int is a reserved word; it is not allowed to be used as a variable name because it will be confusing.

The complete list of reserved words is given in Appendix B.

It is customary to name a variable to indicate the intended purpose of the variable. For example, if

we want to store a velocity in a variable, then we should give the name velocity to the variable.

An important point is that case is important in names; so mathmarks is considered to be a different

name from MathMarks. Notice that the latter is easier to read. This way of forming names, in which

several words are strung together, and in which the first letter of each word is capitalized, is said to be

utilizing camel case, or CamelCase. As you might guess, the capital letters resemble the humps on the

back of a camel. There are two kinds of CamelCase: UpperCamelCase in which the first letters of all

the words are capitalized, and lowerCamelCase, in which the first letters of all but the first word are

capitalized. For ordinary variables, it is more customary to use lowerCamelCase; thus it is suggested

that you use mathMarks rather than MathMarks.

If a variable is important in your program, you should give it a descriptive name, which expresses

its use. It is usually best to use complete words, unabbreviated. Thus if you have a variable which

contains the temperature, it is better to give it the name temperature rather than t, or temp or

tmprtre. Sometimes the description that you want to associate with a variable name is very long. Or

there is a clarification that the reader should be be aware of. In such cases, it is good to add a comment

explaining what you want immediately following the definition, e.g.

double temperature; // in degrees centigrade.

3.1.2 Literals and Variable Initialization

It is possible to optionally include an initial value along with the definition. So we may write

int p=10239, q;

This statement defines 2 variables, of which the first one, p, is initialized to 10239. No initial value is

specified for q, which means that some unknown value will be present in it. The number 10239 as it

appears in the code above is said to constitute an integer literal, i.e. it is to be interpreted literally as

given. Any integer number with or without a sign constitutes an integer literal. The words false and

true are literals which stand for the values 0 and 1. So for bool variables, it is recommended that

you write initializations using these, e.g.

bool penIsDown = true;

rather than writing bool penIsDown = 1; which would mean the same thing but would be less

suggestive. For convenience in dealing with char data, any character enclosed in a pair of single

quotes is an integer literal that represents the ASCII value of the enclosed character. Thus youmay write

char letter_a = ’a’;

This would store the code, 97, for the letter ’a’ in the variable letter_a. You could also have

written char letter_a = 97; but writing ’a’ is preferred, because it is easier to understand.

In general, we may write a character between a pair of single quotes, and that would denote the ASCII

value of the character. Characters such as the newline (produced when you press the “enter” key), or

the tab, can be denoted by special notation, respectively as ’\n’ and ’\t’. Note that literals such as ’\n’
and ’a’ really represent an integer value. So we can in fact write

int q = ’a’;

This would cause 97 to be stored in the int variable q.
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To initialize floating variables, we need a way to specify real number literals. We can specify real

number literals either by writing them out as decimal fractions, or using an analogue of “scientific

notation”. We simply write an E or e between the significand and the exponent, without leaving any

spaces. Thus, we would write Avogadro’s number1, 6.022× 1023, as 6.022E23. The significand as

well as the exponent could be specified with a minus sign, if needed, of course. For example the mass

of an electron, 9.10938188× 10−31 kg, would be written as 9.10938188E-31. Thus we may write:

float w, y=1.5, avogadro = 6.022E23, eMass = 9.10938188E-31;

This statement defines 4 variables, the second, third and fourth are respectively initialized to 1.5,

6.022× 1023 and 9.10938188× 10−31. The variable w is not initialized.
Literals also have a type associated with them. An integer literal like 35 is considered to be of

type int, and a floating literal like 100.0 is by default considered to be of type double. You can

specify literals of specific types by attaching the suffixes L,F,U which respectively stand for long, float,

unsigned. Thus, if you write 100LU, it will be interpreted as a literal of type long unsigned,

having the value 100.

3.1.3 The const Keyword

Sometimes we wish to define identifiers whose value we do not wish to change. For example, we might

be needing Avogadro’s number in our program, and it will likely be convenient to refer to it using the

name Avogadro rather than typing the value everytime. In C++ you can use the keyword const

before the type to indicate such named constants. Thus, you might write

const float Avogardro = 6.022E23;

Once a name is declared const, you cannot change it later. The compiler will complain if do attempt

to change it.

3.1.4 Reading Data into a Variable

To read a value into a variable pqr we write

cin >> pqr;

Simply put: when this statement is executed, the computer will wait for us to type a value consistent

with the type of pqr. That value will then be placed in pqr.

The exact execution process for the statement is a bit complicated. First, the statement ignores any

whitespace characters that you may type before you type in the value consistent with the type of pqr.

The term whitespace is used to collectively refer to several characters including the space character

(’ ’), the tab character (’\t’), and the newline character (’\n’). In addition, the vertical tab (’\v’), the
formfeed character (’\f’) and the carriage return (’\r’) are also considered whitespace. These three
characters are now only of historical interest.

The first non-whitespace character you type is considered to be the start of the value you wish to

give for pqr. You may type several non whitespace characters as value if appropriate. After typing the

desired value you must type a whitespace character (often newline) to signify that you have finished

1 The number of molecules in a mole of any substance, e.g. number of carbon atoms in 12 gm of carbon.
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typing the value that you wanted. Let us consider an example. Suppose pqr has type int, then if you

execute the above statement, and type

123 56

the spaces that you type at the beginning will be ignored, the value 123 will be stored into pqr. This

is because the space following 123 will serve as a delimiter. The 56 will be used for a subsequent read

statement, if any. Note further that the value you type will not be received by your program unless you

type a newline after typing the value. Thus to place 123 into pqr in response to the statement above,

you must type a newline either immediately following 123 or following 56.

If pqr was of any of the floating types, then a literal of that type would be expected. Thus we could

have typed in 6.022e23 or 1.5. If pqr was of type bool you may only type 0 or 1.

Reading into a char Variable

You may not perhaps expect what happens when you execute

char xyz;

cin >> xyz;

In this case the initial whitespaces that you type if any will be ignored, as discussed above. Any non-

whitespace value is considered appropriate for the type char, so the first such value will be accepted.

The ASCII value of the first non-whitespace character that you type will be placed into xyz. Note that

if you type 1, then xyz will become 49. This is because the ASCII value of the character ’1’ is 49. If

you type the letter a, then xyz would get the value 97.

Reading Several Values

If you wish to read values into several variables, you can express it in a single statement.

cin >> pqr >> xyz;

This is equivalent to writing cin >> pqr; cin >> xyz;.

3.1.5 Printing

If you print a variable rst of type bool, short, int or long, writing

cout << rst << endl;

its value will be printed. A minus sign will be printed if the value is negative. The final endl will

cause a newline to follow.

If you print a floating type variable, then C++ will print it in what it considers to be the best looking

form: as a decimal fraction or in the scientific format.

Printing a char Variable

Consider the following code.

char xyz=97;

cout << xyz << endl;
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This will cause that character whose ASCII value is in xyz to be printed. Thus, in this case, the letter

a will be printed. Following that a newline will be printed, because of the endl at the end of the

statement.

Printing Several Values

The two previous statements above can be combined into a single statement if you wish.

cout << rst << endl << xyz << endl;

Occasionally, you may wish to control exactly how the printing happens, e.g. how many bits are

shown after the decimal point. This is discussed in Appendix D.

3.1.6 Exact Representational Parameters

Table 3.1 mentions the indicative sizes of the different data types. You can find the exact number of

bytes used by your compiler by using the sizeof command in your program:

cout << sizeof(int) << endl;

Or sizeof(double) and so on as you wish. You can also write sizeof(variable-name) to

get the number of bytes used for the variable variable-name.

You can also determine the largest or smallest (magnitude) representable numbers in the different

types. Say for float, the expression numeric_limits<float>::max() gives the value of the

largest floating point number that can be represented. Please do not worry about the complicated syntax

of this expression. By using other types instead of float or by using min instead of max, you can get

the minimum/maximum values for all types. In order to use this facility, you need to put the following

line at the top of your file (before or after other #include statements):

#include <limits>

We will see the exact action of this line later.

3.2 ARITHMETIC AND ASSIGNMENT

We can perform arithmetic on the values stored in variables in a very intuitive manner, almost like

we write algebraic expressions. The values resulting from evaluating an arithmetic expression can be

stored into a variable by using an assignment statement.

The notion of expressions is similar to that in Algebra. If you have an algebraic expression

x · y + p · q, its value is obtained by considering the values of the variables x, y, p, q, and performing
the operations as per the usual precedence rules. In a similar manner you can write expressions

involving C++ variables, and the value of the expression is obtained by similarly considering the values

of the variables and performing operations on them, with similar rules of operator precedence. One

difference is that often in Algebra the multiplication operator is implicit, i.e. xy means x multiplied
by y. In a C++ expression, we need to explicitly write the multiplication operator, which is *. All

the arithmetic operators +,-,*,/ are allowed. Multiplication and division have equal precedence,

which is higher than that of addition and subtraction which have the same precedence. Some additional

operators are also allowed, as will be discussed later. Among operations of the same precedence, most

commonly, the one on the left is performed first, e.g. 5 − 3 + 9 will mean 11. However, for some
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operators, i.e. the so called right-associative operators, the operation on the right will get done first

(Section 3.2.6). Of course, we can use brackets to enforce the order we want, e.g. write 5 − (3 + 9)

if we want this expression to evaluate to −7. If we had C++ variables x,y,p,q, then the expression
corresponding to the algebraic expression above would have to be written as x*y+p*q. Note that

when you use a variable in an expression, it is your responsibility to ensure that the variable has been

assigned a value earlier.

An expression causes a sequence of arithmetic operations to be performed, and a value to be

computed. However, the computed value is lost unless we do something with it. One possibility is

to store the computed value in some variable. This can be done using an assignment statement. The

general form of an assignment is

variable = expression;

where variable is the name of a variable, and expression is an expression as described above.

Here is an example.

int x=2,y=3,p=4,q=5,r;

r = x*y + p*q;

This will cause r to get the value of the specified expression. Using the values given for the other

variables, the expression is simply 2 * 3 + 4 * 5, i.e. 26. Thus r will get the value 26.

We could also print out the value of the expression by writing

cout << x*y+p*q << endl;

Note that when you use a variable in an expression, you must have assigned it a value already, say

by initializing it at the time of defining it, or by reading a value into it from the keyboard, or in a

previous assignment statement. If this is not done, the variable will still contain some value, only you

don’t know what value. If an unknown value is used in a computation, the result will of course be

unpredictable in general.

Note that the operator = is used somewhat differently in C++ than in mathematics. In mathematics

a statement r = x*y + p*q; asserts that the left-hand side and right-hand side are equal. In C++

however, it is a command to evaluate the expression on the right and put the resulting value into the

variable named on the left.

Note also that we cannot write x*y + p*q = r; because we require the left hand side to be a

variable, into which the value of the expression on the right hand side must be stored.

The rule described above makes it perfectly natural to write a statement such as

p = p + 1;

This is meaningless in mathematics; in C++, however, it just says: evaluate the expression on the right

hand side and put the resulting value into the variable named on the left. Assuming p has the value 4

as in the code fragment given earlier, its value is 4, the statement would cause the addition 4 + 1 = 5 to

be performed. The result, 5, would be put in p.

3.2.1 Integer Division and the Modulo Operator %

In C++, when one integer value is divided by another, the result is defined to also be the largest integer

no larger than the quotient. Thus, if you write
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int m=100, n=7, p, q;

p = m/n;

q = 35/200;

the variables p and q would respectively get the values 14 and 0. In other words, we only get the integer

part of the quotient.

If you wish to get the remainder resulting when one integer divides another you use the % operator.

Thus the expression m % n evaluates to the remainder of m when divided by n, where m,n must have

an integral type. The operator % has the same precedence as * and /.

Here is a code fragment that reads in a duration given in seconds and prints out the equivalent

duration in hours, minutes, and seconds.

cout <<"Give the duration in seconds: ";

int duration; cin >> duration;

int hours, minutes, seconds;

hours = duration/3600;

minutes = (duration - hours*3600)/60;

seconds = duration % 60;

cout <<"Hours: "<< hours <<", Minutes: "

<< minutes <<", Seconds: "<< seconds << endl;

If you run this code, and type 5000 when asked, you would get the following output as expected:

Hours: 1, Minutes: 23, Seconds: 20

3.2.2 Subtleties

The assignment statement is somewhat tricky. The first point concerns the floating point

representations. Both float and double are imprecise representations, where the significand is

correct only to a fixed number of bits. So if an arithmetic operation affects less significant bits, then the

operation will have no effect. As an example, consider the following code.

float w, y=1.5, avogadro=6.022E23 ;

w = avogadro + y;

What is the value of w? Suppose for a moment that we precisely calculate the sum avogadro + y.

The sum will be

602200000000000000000001.5

We will have a problemwhen we try to store this into a float type variable. This is because a float

type variable can only stores significands of 24 bits, or about 7 digits. So in order to store, we would

treat everything beyond the most significant 7 digits as 0. If so we would get

602200000000000000000000

This loss of digits is called round-off error. After the round off, this can now fit in a float, because

it can be written exactly as 6.022E23. Net effect of the addition: nothing! The variable w gets the

value avogadro even though you assigned it the value avogadro + 1.5. This example shows the

inherent problem in adding a very small float value to a very large float value.
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Some subtleties arise when we perform an arithmetic operation in which the operands have different

types, or even simply if you store one type of number into a variable of another type. C++ allows such

operations, and could be said to perform such actions reasonably well. However, it is worth knowing

what exactly happens.

Suppose we assign an int expression to a float variable, C++ will first convert the expression

into the floating point format. An int variable will have 31 bits of precision excluding the sign,

whereas a float variable only has 24 bits or so. So essentially some precision could be lost. There

could be loss of precision also if we assign a float expression to an int variable. Consider

float y = 6.6;

int x = y;

The value 6.6 is not integral, so C++ tries to do the best it can: it keeps the integer part. At the end, x

will equal 6. Basically, when a floating value is to be stored into an integer, C++ uses truncation, i.e.

the fractional part is dropped. You might want the assigned value to be the closest integer. This you

can obtain for yourself by adding 0.5 before the assignment. Thus, if you write x=y+0.5;, then x

would become 7, the integer closest to y. Note that some precision could be lost when you store a value

from a double (53 bits of precision) into a float (24 bits of precision). Overflow is also possible, as

discussed later.

When we perform an arithmetic operation on operands of the same type the result is also computed

to be of the same type. If your program asks to perform arithmetic operations on operands of different

types, then the operands are first converted by C++ so that they have the same type. The rules for this

are fairly natural. C++ always converts less expressive types to more expressive ones, where unsigned

integral types are deemed less expressive than signed integral types, which in turn are deemed less

expressive than the floating types. If the two types differ in size, then the smaller is converted to have a

larger size. As an example, suppose we have an arithmetic expression var1 op var2, where var1 is

int and var2 is float. Then var1 will be converted to float, and the result will also be float.

If var1, var2 are long, int, then var2 will be converted to long. If the operands are of type

float, long long then both will be converted to double, and so on. After the expression is

evaluated, it may either itself form an operand in a bigger expression, or it might have to be stored into

a variable. In both cases, there may have to be a further type conversion.

It is important to be careful with division.

int x=100, w;

float y,z;

y = 360/x;

z = 360.0/x;

w = 360.0/x;

As per the rules stated, 360/x will be evaluated to have an integer value since both operands are

integer. Thus the exact quotient 3.6 will be truncated to give 3. This value will be stored (after

conversion to the floating point format) into y. In the next statement, 360.0, the first operand is

double, hence the result will be evaluated as a double, i.e. 3.6. This value will be stored in z. In

the final statement, the value of the expression will indeed be 3.6, however because w is of type int,

there will have to be a type conversion, and as a result the value stored in w will be just 3.
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Note finally that if the dividend and the divisor are of integral types, and the divisor is 0, then an

error will be reported when such an operation happens during execution, and the program will stop

with a message. Something different happens for floating types, as discussed in Section 3.2.4.

3.2.3 Overflow

For each numerical data type, we have mentioned a certain largest possible and smallest possible value

that can be represented. While performing calculations, the results can go outside this allowed range.

In this case, what exactly happens is handled differently for different types.

For the unsigned data types, the rule is that arithmetic is performed modulo 2n, where n is the
number of bits used. So for example if you add up two short numbers, both 65535, then the result

will be (65535 + 65535) mod 65536 = 65534, where you may note that 216 = 65536.

For signed integer types, the language does not specify what must happen. In other words, you as a

programmer must be careful to ensure that the numbers stay within range.

3.2.4 Infinity and Not a Number

Most C++ compilers support the IEEE floating point standard. With such compilers, something quite

interesting happens if the result of a floating type computation becomes too large to represent, e.g.

if you try to compute the square of Avogadro’s number and try to store it into a float variable. In

such cases, a special bit pattern gets stored in the variable. This bit pattern behaves like infinity for

all subsequent computation. By this, we mean that anything added to infinity remains infinity, and

so on. If you try to print out this pattern, quite likely inf would get printed. Thus, you at least get

some indication that some overflow occurred during computation. You also get the result inf when

you divide a positive floating value by 0. Likewise, you get -inf when you divide a negative floating

number by 0.

If the dividend and the divisor are both zeros, represented as floating point numbers, then you get

another special bit pattern which will likely be printed as nan. This pattern is meant to represent the

result of an undefined operation, nan is an abbreviation for “not a number”. If you happen to use a

variable or an expression of value nan in any operation, the result will also be nan. Note that taking

the square root of a negative number also produces nan.

We will see later that it is actually useful to use infinities in our computations. In your C++ programs

you can refer to∞ using the name HUGE_VAL. Thus, you may write

double x = HUGE_VAL;

3.2.5 Explicit Type Conversion

It is possible to convert an expression exp of numerical type T1 to an expression of type T2 by writing

either

T2(exp)

or

(T2) exp

This latter form is a legacy from the C language. The type-conversion rules as described earlier apply,

e.g. int(6.4) would evaluate to the integer value 6.
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3.2.6 Assignment Expression

It turns out that C++ allows you to write the following code.

int x,y,z;

x = y = z = 1;

This will end up assigning 1 to all the variables. This has a systematic explanation as follows.

Any assignment, say z = 1, is also an expression in C++. Not only is the assignment made, but

the expression stands for the value that got assigned. Further, the associativity of = is right-to-left, i.e.

given an expression x = y = z = 1, the rightmost assignment operator is evaluated first. This is

different from the other operators you have seen so far, such as the arithmetic operators, in which the

evaluation order is left to right. Thus, the our statement x = y = z = 1; is really to be read as

x = (y = (z = 1));

Now the expression inside the innermost parentheses, z = 1 is required to be evaluated first. This not

only puts the value 1 into z, but itself evaluates to 1. Now the statement effectively becomes

x = (y = 1);

The execution continues by setting y to 1, and then x to 1.

3.3 EXAMPLES

We consider some simple examples of using the data-types and assignment statements. These do not

include the bool type which is considered in Section 6.7.

Here is a program that reads in the temperature in Centigrade and prints out the equivalent

temperature in Fahrenheit.

main_program{

double centigrade, fahrenheit;

cout << "Give temperature in Centigrade: ";

cin >> centigrade;

fahrenheit = 32.0 + centigrade * 9.0/5.0;

cout << "Temperature in Fahrenheit: " << fahrenheit << endl;

}

Note that the operator + is executed last because it has lower precedence than * and /. The operator

* executes before / because it appears to the left. Note we could have written 9 instead of 9.0. This

is because that while multiplying centigrade, it would get converted to a double value anyway,

since centigrade is double. Similarly we could have written 5 and 32 instead of 5.0 and 32.0.

But what we have written is preferable because it makes it very clear that we are engaging in floating

point arithmetic.

In the next program, you are expected to type in any lowercase letter, and it prints out the same letter

in the uppercase.
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main_program{

char small, capital;

cout << "Type in any lowercase letter: ";

cin >> small;

capital = small + ’A’ - ’a’;

cout << capital << endl;

}

When the statement cin >> small; executes, the ASCII value of the letter typed in by the user is

placed in small. Suppose as an example that the user typed in the letter q. Then its ASCII value, ’q’

is placed in small. This value happens to be 113. To understand the next statement, we need to note

an important property of the ASCII codes.

The lowercase letters a-z have consecutive ASCII codes. The upper case letters A-Z also have

consecutive ASCII codes. From this, it follows that for all letters, the difference between the ASCII

code of the uppercase version and the lowercase version is the same. Further, because ’A’ and ’a’

denote the integers representing the ASCII codes of the respective letters, ’A’ − ’a’ merely gives the

numerical difference between the ASCII codes of upper case and lower case of the letter a. But this

difference is the same for all letters. Hence, given the ASCII code value for any lowercase letter, we

can add to it ’A’ − ’a’, and this will give us the ASCII code of the corresponding uppercase letter. So

this value gets placed in capital, which when printed out displays the actual uppercase letter.

To complete the example, note that the ASCII code of ’A’ is 65. Thus ’A’− ’a’ is−32. Since small
contains 113, capital would get 113− 32, i.e. 81. This is indeed the ASCII code of Q as required.

Note that the digits ’0’, ’1’, ’2’, . . ., ’9’ also have consecutive ASCII codes.

3.4 ASSIGNMENT WITH repeat

What do you think happens on executing the following piece of code?

main_program{

turtleSim();

int i = 1;

repeat(10){

forward(i*10); right(90);

forward(i*10); right(90);

i = i + 1;

}

wait(5);

}

Imagine that you are the computer and execute the code one statement at a time. Write down the values

of different variables as you go along, and draw the lines traced by the turtle as it moves. You will

probably be able to figure out by executing 2-3 iterations. It is strongly recommended that you do this

before reading the explanation given next.
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In the first iteration of the repeat, i will have the value 1, and this value will increase by 1 at the

end of each iteration. The turtle goes forward 10*i, i.e. a larger distance in each iteration. As you will

see, the turtle will trace a “spiral” made of straight line segments.

We next see another common but important interaction of the assignment statement and therepeat

statement. Consider the following problem. We want to read some numbers, from the keyboard, and

print their average. For this, we need to first find their sum. This can be done as follows.

main_program{

int count;

cout << "How many numbers: ";

cin >> count;

float num,sum=0;

repeat(count){

cout << "Give the next number: ";

cin >> num;

sum = sum + num;

}

cout << "Average is: ";

cout << sum/count;

cout << endl;

}

The statement sum = sum + num; is executed in each iteration, and before it is executed, the next

number has been read into num. Thus, in each iteration the number read is added into sum. Thus, in

the end sum will indeed contain the sum of all the numbers given by the user.

3.4.1 Programming Idioms

There are two important programming idioms used in the programs of the previous section.

The first idiom is what we might call the sequence-generation idiom. Note the value of the variable

i in the first program. It started off as 1, and then became 2, then 3, and so on. As you can see, by

changing the starting value for i and adding a different number to i inside the loop instead of 1, we

could make i take the values of any arithmetic sequence (Exercise 7). By changing the operator to *
instead of +, we could make the values form a geometric sequence if we wished.

The second idiom is what we might call the accumulation idiom. This was seen in the second

program. The variable sum was initialized to zero, and then the number read in each iteration was

added to the variable sum. The variable sum was thus used to accumulate the values read in each

iteration. Stating this differently, suppose the number of numbers read is n, and suppose the values

read were v1, . . . , vn. Then after the execution of the loop in the second program the variable sum has

the value:

0 + v1 + v2 + · · ·+ vn
Here, we have written 0+ explicitly to emphasize that the value calculated actually also depends on

the value to which sum was initialized, and that happened to be zero, but it is a choice we made.
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You might wonder whether this idea only works for addition or might work for other operators as

well. For example, C++ has the command max, where max(a,b) gives the maximum of the values

of the expressions a,b. Will using max help us compute the value of the maximum of the values read?

In other words, what would happen if we defined a variable maximum and wrote

maximum = max(maximum, num);

instead of sum = sum + num;? For simplicity, assuming n = 4 and also assuming that maximum

is initialized to 0 just as sum was, the value taken by maximum at the end of the repeat will be:

max(max(max(max(0, v1), v2), v3), v4)

Will this return the maximum of v1, v2, v3, v4? As you can see, this will happen only if at least

one of the numbers is positive. If all numbers are negative, then this will return 0, which is not

the maximum. Before we abandon this approach as useless, note that we actually have a choice in

deciding how to initialize maximum. Clearly, we should initialize it to as small a number as possible,

so that the values vi cannot be even smaller. We know from Section 3.1.6 that it suffices to choose

-numeric_limits<float>::max(). Thus our initialization becomes:

maximum = - numeric_limits<float>::max();

which we put in place of the statement sum=0; in the program.

There is another way to do this also, which you might find simpler. We could merely read the first

value of num, and assign maximum to that. Thus the program just to calculate the maximum of a

sequence of numbers will be as follows. Note that we now repeat only count-1 times, because we

read one number earlier.

main_program{

int count;

cout << "How many numbers: ";

cin >> count;

float num,maximum;

cout << "Give the next number: ";

cin >> maximum;

repeat(count-1){

cout << "Give the next number: ";

cin >> num;

maximum = max(maximum,num);

}

cout << "Maximum is: " << maximum << endl;

}

This program does not behave identically to the program sketched earlier, i.e. obtained by initializing

maximum to - numeric_limits<float>::max(). The exercises ask you to say when the

programs might differ, and which one you prefer under what circumstances.
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3.4.2 Combining Sequence Generation and Accumulation

Often we need to combine the sequence generation and accumulation idioms.

Suppose we want to compute n factorial, written as n!, which is just short hand for the product

n× (n− 1) × (n− 2)× · · · × 2× 1. How can we do this?

The key point to note is that we merely need to take the product of the sequence of numbers

1, 2, . . . , n− 1, n, and this is a sequence that we can generate. But if we can generate a sequence,

then we can easily take its product, i.e. accumulate it using the multiplication operator.

main_program{

int n, fac=1, i=1;

cin >> n;

repeat(n){

fac = fac * i; // sequence accumulation

i = i + 1; // sequence generation

}

cout << fac << endl;

}

In the above program, if you ignore the statement fac = fac * i;, then we merely have our

sequence generation program, with the sequence 1 to n being generated in the values taken by the

variable i. However, the value generated in each iteration is being multiplied into the variable fac

which was initialized to 1. Hence in the end the variable fac contains the product of the numbers from

1 to n, i.e. n! as we wanted. Note that the program also works for n=0, since 0! is defined to be 1.

The idioms of accumulation and sequence generation are very useful, and very, very commonly

used. They are used so commonly that they will become second nature soon. We see a more involved

example in Chapter 4.

3.5 SOME OPERATORS INSPIRED BY THE IDIOMS

Because sequence generation and accumulation occur commonly in code, C++ includes operators that

can be used to express these idioms more succinctly.

3.5.1 Increment and Decrement Operators

A key statement in the sequence generation idiom is i=i+1;. This tends to occur quite frequently in

C++ programs. So a short form has been provided. In general you may write

C++;

which merely means C = C + 1;, where C is any variable. This usage is very useful.

For completeness, we describe some additional, possibly confusing, feature of the ++ operator.

Turns out that for a variable C, C++ is also an expression. It stands for the value that C had before 1

was added to it. Thus, if you wrote

int x = 2, y;

y = x++;

after execution, y would be 2 and x would be 3. We recommend that you avoid a statement such as

y = x++; and instead write it as the less confusing y = x; x++;. It is worth noting that in the
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modern era programming is often done by teams, and so your code will be read by others. So it is good

to write in a manner that is easy to understand quickly.

The operator ++ written after a variable is said to be the (unary) post-increment operator. You may

also write ++C, which is the unary pre-increment operator operating on the variable C. This also causes

C to increase by 1. ++C also has a value as an expression: except the value is the new value of C. Thus,

if you wrote

int x = 2, y;

y = ++x;

both x,y would get the value 3. Again, this will usually be better written as ++x; y = x; (or for

that matter as x++; y = x;) because it is less confusing.

Likewise, C--; means C = C - 1;. This is also a very useful operator, and is called the post

decrement operator. As an expression, C-- has the value that C had before the decrementation.

Analogously, you have the pre-decrement operator with all similar properties. Again, it is

recommended that you use the expression forms sparingly.

3.5.2 Compound Assignment Operators

The accumulation idiom commonly needs the statement vname = vname + expr;, where

vname is a variable name, and expr an expression. This can be written in short as

vname += expr;

The phrase vname += expr is also an expression and has as its value the value that got assigned.

Analogously, C++ has operators *=, and -=, /=. These operators are collectively called the compound

assignment operators.

The expression forms of the operator += and others are also defined in the natural manner: the value

of the expression is the value that got assigned. It is recommended that you use these expression forms

sparingly.

3.6 BLOCKS AND VARIABLE DEFINITIONS

It turns out that most C++ programmers wouldwrite the average computation program fromSection 3.4

slightly differently, as follows.

main_program{

int count;

cout << "How many numbers: ";

cin >> count;

float sum=0;

repeat(count){

cout << "Give the next number: ";

float num; // defined inside the loop

cin >> num;

sum = sum + num;

}
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cout << "Average is: ";

cout << sum/count;

cout << endl;

}

As you can see, the only difference is that the variable num is defined inside the loop rather than

outside. We first explain how the variable definition is executed in the new program. As you might

guess, the variable indeed gets created when control reaches the definition statement. From the time of

creation, the variable is available to the program, until the time the control reaches the end of the loop

body in the current iteration. In other words, the variable is destroyed when the control reaches the

end of the body! Thus, in each iteration of the loop, the variable is created and destroyed. Of course,

destroying a variable is only notional, the computer merely assumes that the memory that was given is

now available for other use. It should also be noted that the variable cannot be used outside the repeat

loop, or before its definition inside the loop.

Experienced programmers prefer to write the average computation code in the new style, because in

this the definition of num is placed close to its use. Placing definitions close to the use makes it easier

to read the program, especially if it has many variables and the loop bodies are large.

Next we will state the general rules for all this. First, we need the notion of a block.

3.6.1 Block

The region of the program from an opening brace, {, to the corresponding closing brace, }, is called

a block. Thus, the entire program forms a block, and the body of a repeat also forms a block, which

is contained inside the block consisting of the entire program. If there is a repeat inside a repeat,

then the block corresponding to the body of the former is contained inside the block associated with

the latter. As you can see, two blocks must either be completely disjoint, or one of them must be

completely contained in the other. It is also useful to define the parent block of a variable definition: it

is the innnermost block in which the variable is defined.

3.6.2 General Principle 1: Scope

Now, we can restate more formally what we stated earlier. When control reaches a variable definition,

the corresponding variable is created. The variable is destroyedwhen the control leaves the parent block

of the definition. The variable is potentially available for use in the region of the program starting at

the point of its definition, and going to the end of its parent block. This region of the program is called

the scope of the definition.

We have already discussed how this principle applies to the variable num of the program given

above.

The principle also applies to the variable sum in the program. Its parent block is the main program

itself, and indeed, the entire portion of the program from the point of its definition to the end of the

program can refer to the variable sum.

3.6.3 General Principle 2: Shadowing

The principles in giving names to variables and using the names, are somewhat similar to the way in

which we give names to human beings.

Let us first discuss how we name human beings. Ideally, you might think that we should insist that

all human beings be given different names. But of course, this does not happen. It is perfectly possible
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that there exist two families in Mumbai both of which name their son Raju. In that case whenever a

reference is made to “Raju” in either family, it is deemed to refer to the son in that family. There is no

confusion. Notice, however, that usually the same name is not given to two children in the same family.

As another example, consider the name Manmohan. In most families in India, the name would be

considered referring to the Prime Minister of India.2 Suppose now that a certain family decides to

name their son “Manmohan”. In this family, after the birth of the son, if anyone speaks of Manmohan,

it would probably be considered as referring to the son. You could say that the son “overshadows” the

Prime Minister in this family.

Variable naming in C++ is almost as flexible as naming of human beings, including the idea of

shadowing. The analogue of the family is a block of the program.

In a C++ program, it is possible to use the same name in several variable definitions. However, it is

necessary that the definitions have different parent blocks. Even if there are many variable definitions

for the same name, the rules for creating and destroying variables remain the same. A variable is created

when the definition is encountered during execution, and is destroyed when its parent block is exited.

Or alternately, a variable is created when control enters the scope of the definition and is destroyed

when control leaves the scope of the definition. Suppose now that the control has entered the scope

of a certain definition that creates a variable Q. As the execution proceeds, but before the variable is

destroyed, suppose we have another definition, also of variable Q. Now a second variable named Q

will be created and while control is inside the scope of the second definition, the second variable will

shadow the first variable. In other words, inside the scope of the second definition the name Q will not

refer to the first variable. It will instead refer to the second variable – unless that of course is shadowed

by a third definition of Q.

Here are some examples.

main_program{

int sum=0;

repeat(5){

int num; // statement 1

cin >> num;

sum += num;

}

cout << sum << endl;

int prod=1;

repeat(5){

int num; // statement 2

cin >> num;

prod *= num;

}

cout << prod << endl;

}

In this case, the references to num in the first loop are in the scope of the definition in statement 1 (and

of no other definition), and hence refer to the variable created in statement 1. Similarly, the references

to num in the second loop are in the scope of the definition in statement 2 (and of no other definition),

2 At the time of writing this book.
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and hence refer to the variable created in statement 2. This is what you would intuitively expect, and

indeed the program will compute the sum of the first 5 numbers that it reads, and the product of the

next 5.

Here is an example of a program in which there is shadowing.

main_program{

int p=10; // statement 3

repeat(3){

cout << p << endl; // statement 4

int p=5; // statement 5

cout << p << endl; // statement 6

}

cout << p << endl; // statement 7

}

In this program, the occurence of p in statement 6 is in the scope of the definitions in statements 3 and

5, with the latter shadowing the former. Thus, the name p in statement 6 refers to the variable created

in statement 5. However, note that the statements 4 and 7 are only in the scope of the definition in

statement 3. Thus, the name p in this statements refers to the definition in statement 3.

Thus, when control arrives at statement 3, a variable p is created. When control arrives at statement

4, the value of this p, 10, is printed. When control arrives at statement 5, a new variable, also named

p, will be created, and will start shadowing the definition of statement 3. At the end of the loop, the

variable created in statement 5 will be destroyed. Thus when control reached statement 7, the variable

created in statement 5 will have been destroyed, and the statement is in the scope only of the definition

in statement 3. Thus, the reference to p in statement 7 will be considered to be to the variable p defined

in statement 3. Thus statement 7 will cause 10 to be printed. Thus, the entire code when executed will

cause the sequence of numbers 10, 5, 10, 5, 10, 5, 10 to be printed.

3.7 CONCLUDING REMARKS

The initial part of most programs consist of statements which reserve memory in which to store data.

Such statements are called variable definition statements. A definition reserves the space and also gives

it a name. The reserved space, together with its name, is said to constitute a variable, and the data stored

in the variable is said to be the value of the variable. Of course, what is stored in memory is always a

sequence of bits. The value represented by the bit sequence depends upon how we interpret the bits,

which is specified by the type of the variable. As discussed in Chapter 2, it is possible that the same

pattern of 32 bits might mean one value for a variable of type unsigned int, another for a variable

of type (signed) int, and yet another for a variable of type float.

When we define a variable, it is always for some specific purpose. So it is strongly recommended

that the name chosen for the variable reflect that purpose. Also, along with the definition, it is useful to

write additional comments which explain its purpose in more detail if necessary.

When we mention the name of a variable in a program, it almost always means the value stored in

the variable, except when the name appears on the left side of an assignment statement, when it means

the memory associated with the variable. Perhaps this observation is useful to prevent being confused

by statements such as p = p + 1; which are incorrect in mathematics but which are meaningful in

computer programs. We also noted that the assignment statement is somewhat subtle, because of issues

such as rounding, and converting between different types of numbers.
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The assignment statement also plays a central role in two important programming idioms: sequence

generation, and accumulation. We saw a number of operators which can be considered to have been

inspired by these idioms.

We noted that it is convenient if a variable is defined close to the point in the program where it is

used. This led us to notion of the scope of a variable, i.e. the region of the program where the variable

can be referred to, and also the notion of shadowing.

EXERCISES

1. What is the value of x after the following statements are executed? (a) x=22/7; (b)

x=22.0/7; (c) x=6.022E23 + 1 - 6.022E23 (d) x=6.022E23 - 6.022E23 + 1

(e) x=6.022E23 * 6.022E23. Answer for three cases, when x is defined to be of type int,

float, double. Put these statements in a program, execute and check your conclusions.

2. For what values of a,b,c will the expressions a+(b+c) and (a+b)+c evaluate to different

values?

3. I want to compute the value of
�
100
6

�
= 100×99×98×97×96×95

1×2×3×4×5×6 . I have many choices in performing

this computation. I can choose the order in which to perform the multiplications and divisions,

and I can choose the data type I use for representing the final and intermediate results. Here is a

program which does it in several ways. Guess which of these are likely to give the correct answer,

nearly the correct answer, or the wrong answer. Then run the program and check which of your

guesses are correct.

main_program{

int x = 100 * 99 * 98 * 97 * 96 * 95/ (1 * 2 * 3 * 4 * 5 * 6);

int y = 100/1 * 99/2 * 98/3 * 97/4 * 96/5 * 95/6;

int z = 100/6 * 99/5 * 98/4 * 97/3 * 96/2 * 95/1;

int u = 100.0 * 99 * 98 * 97 * 96 * 95/ (1 * 2 * 3 * 4 * 5 * 6);

int v = 100.0/1 * 99/2 * 98/3 * 97/4 * 96/5 * 95/6;

int w = 100.0/6 * 99/5 * 98/4 * 97/3 * 96/2 * 95/1;

cout << x << " " << y << " " << z << endl;

cout << u << " " << v << " " << w << endl;

}

4. What will be the effect of executing the following code fragment?

float f1, f2,centigrade=100;

f1 = centigrade*9/5 + 32;

f2 = 32 + 9/5*centigrade;

cout << f1 << ’ ’ << f2 << endl;

char x = ’a’, y;

y = x + 1;

cout << y << ’ ’ << x + 1 << endl;
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5. Write a program that reads in distance d in inches and prints it out as v miles, w furlongs, x yards,

y feet, z inches. Remember that a mile equals 8 furlongs, a furlong equals 220 yards, a yard is

3 feet, and a foot is 12 inches. So your answer should satisfy d = (((8v + w) · 220 + x) · 3 + y) ·
12 + z, and further w < 8, x < 220, y < 3, z < 12.

6. What is the state of the computer, i.e. what are the values of the different variables and what is on

the screen, after 4 iterations of the loop of the spiral drawing program of Section 3.4? Write down

your answer without running the program. Then modify the program so that it prints the values

after each iteration and also waits a few seconds so you can see what it has drawn at that point.

Run the modified program and check whether what you wrote down earlier is correct.

7. Write a program that prints the arithmetic sequence a, a+ d, a+ 2d, . . . , a+ nd. Take a, d, n as

input.

8. Write a program that prints out the geometric sequence a, ar, ar2, . . . , arn, taking a, r, n as input.

9. Write a program which reads in side, nsquares, q. It should draw nsquares as many

squares, all with the same center. The sidelength should increase by q starting at side. Repeat

with the modification that the sidelength should increase by a factor q.

10. Write a program which prints out the squares of numbers from 11 to 99.

11. What does the following program draw?

main_program{

turtlesim();

int i=0;

repeat(30){

left(90);

forward(200*sine(i*10));

forward(-200*sine(i*10));

right(90);

forward(10);

i++;

}

wait(5);

}

12. The ASCII codes for the digits 0 through 9 are 48 through 57. Suppose in response to the third

statement below, the user types in two digits. The ASCII codes for the digits will then be placed

in p,q. You are to fill in the blanks in the code such that dig1 gets the value of the digit in p (not

the value of its ASCII code), and similarly dig2 should get the value of the digit in q. Finally,

the integer n should contain the value of the number in which p is in the tens place and q in the

units place.

char p,q;

int dig1,dig2,n;

cin >> p >> q; // equivalent to cin >> p; cin >> q;

dig1 = ...

dig2 = ...

n = ...
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For example, if the user typed ’1’, ’2’, then p,q will contain the values 49, 50. At the end we

would like dig1, dig2, n to be respectively 1, 2, 12.

13. Write a program that takes as input the coordinates of two points in the plane and prints out the

distance between them.

14. Write the program for computing the maximum of numbers as suggested initially in

Section 3.4.1, i.e. the one in which maximum was to be initialized to the value

(- numeric_limits<float>::max()). Does this program behave identically (i.e. give

the same result for the same inputs) to the program given at the end of the Section 3.4.1? If

you think the programs behave differently, state the inputs for which the programs will behave

differently.

15. What does the following program compute?

double x;

int n;

cin >> x >> n;

repeat(n){

x = x * x;

}

16. Draw a smooth spiral. The spiral should wind around itself in a parallel manner, i.e. there should

be a certain point called “center” such that if you draw a line going out from it, the spiral should

intersect it at equal distances as it winds around.



CHAPTER4
A Program-design Example

In this chapter, we will use what we have learned so far to write a slightly complex program. The

process of writing it will illustrate some important ideas in designing programs.

The problem we consider is of finding the value of e, the base of the natural logarithm. The number

e can be written as the following infinite series.

e = lim
n→∞

1

0!
+

1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!

It turns out that the terms of the series decrease very fast, so that you get a good approximate value by

evaluating the series to a few terms.

The first step in writing a program is to write down a specification, by which we mean a precise

description of what is the input to the problem, and are the outputs, and what it means for the output

generated by the program to be correct. Next comes the step of designing the program itself. After

that, you typically test the program, i.e. compile and run it on some inputs to see if it works correctly.

It might so happen, that the program makes a mistake, in which case you need to go back and try to

find what went wrong. This step is often called debugging, where a bug is a common euphemism for a

programming error. In addition to testing the program, you may formally reason to yourself that your

program is correct.

We consider these steps next.

4.1 SPECIFICATION

As mentioned above, the specification for a program states clearly what the input and the output of the

program will be. For our program to compute e, what should the input be? A natural possibility is to

ask the user to state how much of the series should be summed.

Input to e computation program: Integer n, where n ≥ 0.

Output from e computation program: 1/0! + 1/1! + . . .+ 1/n!.

You may have thought that the specification for our program is “obvious”. However, note that the

input n could have been interpreted as the number of terms to which the series should be summed,

in which case the output would have to be 1/0! + 1/1! + . . .+ 1/(n− 1)!. So there appear to be two

“obvious” ways of specifying the input. This may often happen. In such cases, it doesn’t really matter
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what we choose, so long as we clearly state what we have chosen. A second point to be noted is that we

have made a remark about the input being required to be non-negative. In professional programs, you

are expected to check first whether the valid inputs are specified by the user. In this small example, we

will ignore this issue, but it is a point you should note. It is a good idea to tell the user of the program

what is a valid input and what isnt.

4.1.1 Examples
“Wait a minute”, I would say. “Is there a particular example of this general problem?”

RICHARD FEYNMAN, SURELY YOU’R JOKING MR. FEYNMAN

It is good to write down some examples of the specification, i.e. for some specific input values what

the output values ought to be. For our program, you may write: For input 0, the output should be 1.

For input 1, the output should be 2, for input 2, the output should be 2.5. Writing down examples

forces you to check that you are being alert while writing the specification. Indeed, you may write the

specification as above, but in your mind might still be thinking that n denotes the number of terms to

be added. When you make up an example, your confusion will vanish.

Also, when your program is written, these examples can be used to test it.

4.2 PROGRAM DESIGN

The first, extremely important, idea in designing programs is to think about how you would solve the

problem using a paper and pencil, without computers. Once you are clear in your mind how to solve a

problem using paper and pencil, it often suffices to mimic the solution on a computer.

Quite likely, you have already tried to solve the problem using paper and pencil, if you tried to

construct examples as suggested in Section 4.1.1. You probably computed the terms of the series,

and added them together as you went along. It is probably a good idea to imagine yourself doing the

calculation for a large value of n, say n = 10. In this process, you will perhaps see that there is a

general pattern, and you might also see how to do the calculation efficiently. In particular, suppose you

have just calculated the value of the term 1/3!, and then you go to the next term, 1/4!. Calculating 1/4!

involves dividing 1 by the numbers from 1 to 4, but of these divisions, you just did the divisions from

1 to 3 when you calculated 1/3!. So you can get the value of the term 1/4! simply by dividing 1/3! by

4. So to calculate any term 1/t!, you do just one additional division: you take the term 1/(t− 1)! that

you previously computed, and divide that further by t.

Next, you need to figure out if there a repetitive pattern in your calculations. If you find that you are

performing similar steps repeatedly, you could perhaps put those steps in a repeat statement. Indeed,

there is a pattern. The process of calculating the term 1/t! is very similar to the process of computing

1/(t− 1)!. So it would seem that you should indeed have a repeat loop. We want to calculate the

sum 1/0! + 1/1! + . . .+ 1/n!, which has n + 1 terms, so it needs n additions. So presumably, we will

use n iterations of a repeat loop. And our goal will be that we should have 1/0! + 1/1! + . . .+ 1/t!

calculated after t iterations of the loop. Thus, in the tth iteration we will calculate 1/t!, which we will

then add to the sum.

The next step is to decide what variables we need in the program. This step is a bit tricky. When

you imagine yourself solving a problem using a paper and pencil, you just keep on doing the additions

or multiplications (or divisions in this case) using more paper as necessary. You may have written a lot

of numbers on the paper as you worked, but that doesnt mean you need a separate variable for holding

each number that you might have written. The key question to ask is: what data do we need at the
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beginning of the tth iteration in order to perform the work that we planned for the iteration? We need

a variable to hold each such piece of data.

Clearly, we need to remember the sum of the series calculated so far. Thus, we should have a variable

result in which the sum computed so far will be held. This variable should be of a floating type.

It is customary to use high precision, and so we will use the type double. Further, we said that to

calculate 1/t! we need the value 1/(t− 1)! which we calculated in the previous iteration. So we will
have a variable term in which we will expect to hold the value 1/(t− 1)! at the beginning of the tth

iteration. Finally in the tth iteration we need to divide by t to get the new term value that needs to

be added to result. In other words, we need to know which iteration just finished. So we will use a

variable i which will hold the value t during the tth iteration.What we have decided about the program

can be summarized as the following sketch.

main_program{

int n; cin >> n;

int i = ...; // we fill in the blanks later.

double result = ..., term = ...;

repeat(n){

// Need code to calculate 1/0!+1/1!+...+1/t! in the tth iteration.

// At the beginning of the tth iteration

// i = t, term = 1/(t-1)!, result = 1/0!+1/1!+...+1/(t-1)!

}

cout << result << endl;

}

Our plan, as stated in the comment, is actually enough for us to complete the program. Imagine

executing the program and entering the loop for the first time. In our plan, this corresponds to t = 1.

So we want the variable i to be 1. Thus, we must initialize i to 1 when we create it. Second, we want

term to have the value 1/(t− 1)! = 1/0!, since t− 1 = 0. Thus, we need to initialize term also to

1 = 1/0!. The variable resultmust have the value equal to the everything in the sequence sum until

the term 1/1!. Thus we should initialize result also to 1/0! = 1.

Next, we decide precisely what we need to do inside the loop. Imagine we are executing the

tth iteration of the loop. Our idea was to have result get the value 1/0! + . . .+ 1/t! in the

tth iteration. Assuming everything has gone according to our plan so far, we will have the values

1/0! + . . .+ 1/(t− 1)! in result and 1/(t− 1)! in term. So we need to add 1/t! to result. But

1/t! = (1/(t− 1)!)/t. Thus term/i will have the value 1/t!. Thus we should have the following

statement inside the loop:

result = result + term/i;

This will leave in result the value that we planned. Is this enough? No, in order to stick to our plan,

in the t + 1th iteration, we will need to have the value t+ 1 in the variable i, and the value 1/t! in the
variable term. This can be acheived by writing inside the loop:

term = term/i;

i = i + 1;
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/***************************************************
Program to calculate e.

Calculates 1/0! + 1/1! + ... + 1/n!, for input n. n >= 0.

Abhiram Ranade, 24/2/13

***************************************************/

main_program{

int n; cin >> n; // the last term to be added is 1/n!

int i=1; // counts iterations of the loop

double term = 1.0; // for holding terms of the series

double result = 1.0; // Will contain the final answer

repeat(n){ // Plan: When entering for the tth time, t = 1,2,..,n

// i = t, term = 1/(t-1)!, result = 1/0!+...+1/(t-1)!

result = result + term/i;

term = term/i;

i = i + 1;

}

cout << result << endl;

}

Fig. 4.1 A program to compute e

The complete program is given in Figure 4.1. Note that we could have written the three statements

inside the loop as result += term/i; term /= i; i++;. Indeed this is oftern preferred.

Note that the loop body could also have been:

term = term/i;

result = result + term;

i = i+1;

In this the new value of result is calculated using the old value of result and the new value of

term. In the version in Figure 4.1, the new values of all variables are calculated from the old values

of all variables. Some may therefore find the code in Figure 4.1 to be simpler.

4.2.1 Testing

The next step is to run the program and test if it really works. I compiled and ran this program supplying

the values 1,2,3,4 forn, and it did print out the answers 2, 2.5, 2.667, 2.70833. If you did the calculation

by hand as suggested earlier, you will realize that these values are indeed correct. You could also try

some large value for n, say 10. When I did this, I got the result 2.71828. Since e is a famous number,

you should be able to get its value from textbooks, and you will see that 2.71828 is the often quoted

value.
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4.2.2 Correctness Proof

Testing is one way to check if your program is correct. However, testing does not really give you a

complete guarantee of correctness. You know what the program does for the input values that you

checked; but how can you be sure that the program will not give a wrong answer on other values?

One way to be sure is to prove that the program is correct. This is often not practical for large

programs. However, a proof can be written for our small program for computing e. We do this next. It

will have some important lessons in general too.

You may be saying at this point, “But our program is obviously correct, after all didn’t we design it

so that the variable result has the desired value?” Unfortunately, it isnt so simple: mistakes can creep

in at any stage. Let me confess that when I first wrote the program of Figure 4.1, I forgot to initialize

the variable i. As a result, I was getting very strange answers. Forgetting to initialize a variable is

a “silly” mistake, but it is very easy to make silly mistakes! This is an important humbling lesson

that programming teaches you. Note that if our program is doing something serious, say controlling an

aircraft in flight, a mistake of any kind can cause a crash. So we must learn to avoid even sillymistakes.

So as a cross check, we will try to anyway prove the correctness of the program after we have

finished writing it. In this proof, we will basically check whether our program is adhering to our plan,

i.e. we confirm whether the variables indeed take the values we expect them to take. The proof is based

on mathematical induction. The induction hypothesis is what we stated as our plan.

Induction Hypothesis

The values of i, term, result on the tth entry to the loop are respectively

t, 1/(t− 1)!,
1

0!
+ . . .+

1

(t− 1)!

For the base case, we consider t = 1, i.e. the values on the first entry. Substituting t = 1 in the values

in the InductionHypothesis, we see that we want i, term, result to be all 1. But the code before

the loop indeed initializes all these variables to 1. Thus, we have established the base case. Note that

when you do this part of the proof, you will discover if you indeed forgot to initialize any variable.

Next we will assume that the Induction Hypothesis is true on the tth entry, and show that it must

also hold on the t + 1th entry. Thus, we need to prove:

Induction Step

The values of i, term, result on the t+ 1th entry to the loop are respectively

t + 1, 1/t!,
1

0!
+ . . .+

1

t!

To prove this, let us examine what happens during the tth iteration. First, we execute result

= result + term/i;. At the beginning of the tth iteration, we know by assumption that result

has the value 1/0! + . . .+ 1/(t− 1)!, and term the value 1/(t− 1)!, and i the value t. Thus, the

statement will cause 1/(t− 1)! to be first divided by t, and then added. Thus, result will get the

value 1/0! + . . .+ 1/(t− 1)! + 1/t!. This value will not change during the rest of the iteration, and
hence it will stay at the time of entering the loop for iteration t+ 1. Thus, we have proved the last part

of the induction step. In the tth iteration we next execute term = term/i;. The value of term

and i on the tth entry are 1/(t− 1)! and t respectively. Thus, this statement would cause term to



A Program-design Example
57

become 1/t!. This value will not change during the rest of the iteration, and hence we have proved the

second part of the induction step. The last statement executed in the loop is i=i+1;. This will cause

i to increase to t + 1. This is also the value we needed for the t + 1th iteration. Thus, we have proved

the induction step. The induction is complete.

Once we have proved the induction hypothesis, we know what the program will print. The program

will execute n iterations, where n was the value we typed in response to the statement cin » n;.

Thus, the program will print the value the variable result at the end of n iterations. We have argued

above that this value will be 1/0! + . . .+ 1/n!. Thus, we have in fact proved that the program will

work correctly for all n.

4.2.3 Invariants

We could have characterized the values taken by the variables i, term, result in the following

manner:

At the beginning or at the end of any iteration of the repeat loop, let i, term, result be

the values of the variables i, term, result. Then these values satisfy the following

relationships.

term = 1/(i− 1)!, result = 1/0 + 1/1! + . . .+ 1/(i− 1)!

Notice that this statement is independent of which iteration is being considered. Such statements are

called loop invariants, and these are more natural in other contexts (Section 7.8.1).

4.3 DEBUGGING

Unless you are one of the lucky/clever few, it is inevitable that the programs you write will not work on

the first try. You will quite likely forget a semicolon or make some other mistake because of which the

compiler will complain. The compiler will usually state the line number in which the error is present,

so generally it will be easy to correct your mistake. But even after your program compiles correctly, it

is possible that it will produce the wrong answers. What do you do in that case?

Clearly, you must go over your entire process of design. Did you get the specifications right? Have

you forgotten to initialize a variable? After these basic checks, you should turn to the plan you wrote. In

the plan, you have essentially written down how you expect the variable values to change in the different

iterations. So consider putting down print statements which print out the values of the variables in each

iteration. Then you will have to calculate by hand if they are as you expect them to be. We will see

some shortcuts for this later, but basically this is what you need to do.

You may be tempted to say that your program is correct but the computer is making a mistake—but

computers make mistakes so rarely that this possibility can be safely ignored.

4.4 COMMENTS IN THE CODE

We have remarked earlier that programs should be written not only so that they can be compiled and

executed to solve problems, but also so that they can be easily understood by other programmers.

There are several ways to make a program easier to understand. Most of these ways involve putting

in appropriate comments in code. For example, the specifications should be written down in the
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comments. Another way is to choose good names for the variables so that the names convey the

purpose. In addition, you could write a comment along with the definition of the variable.

A very important aid to understandability is explaining the plan for a loop. The plan should be

described in enough detail, so that it should be possible to understand the progress made in each

iteration towards the final goal. Later on we will suggest other (related) ways of explaining loops, e.g.

invariants and potential (Section 7.8).

4.5 CONCLUDING REMARKS

It is useful to summarize the main steps in designing a program.

Typically we start with an English language, semi-precise statement of the problem. From this we

first generate a precise specification, with clear characterization of the input and output. The general

relationship between the input and the output must be stated, and also some examples must be given.

As to designing the program, one strategy is to first try to solve the problem using a paper and

pencil, without a computer. Then we can mimic the paper-pencil solution on a computer. Note that

there is a difference between being able to solve a problem and consciously knowing how you solve it.

By “consciously knowing” we mean things such as being able to break up the solution into a sequence

of actions, and also identifying patterns in the sequence. This is not difficult, but requires some practice

and introspection. A related issue is to be able to see “what do you need to do in general”. In the

computation of e, we needed to say that “in general, for any n, we need to have n iterations of the
loop”. This is pretty much what you do in high school algebra when you say things such as “if a pen

costs Rs. 5, then n pens cost Rs 5n”. The ability to state things in general is crucial to writing programs!

Next you need to identify repetitive patterns in the computation, decide what variables to use, write

down an overall plan and then write the actual code.

Testing your program is extremely important. We will say more on the subject later. However, for

now, try testing on many values. As you can see, it is useful to work out what results you expect using

pencil and paper, at least for a few cases.

We also gave an introduction to the process of proving the correctness of programs. Proving

programs to be correct turns out to be too tedious for large programs. However, for small programs,

proving correctness is very useful, and you will see several examples of it in the book. When you prove

a program, you are basically reasoning about how values are assigned to the variables in the program so

that the program slowly but steadily makes progress towards computing what it needs to. This progress

is made precise in the plan (or invariant as we will discuss later on) that we wrote down. Even if you

don’t bother to prove your programs correct, we strongly recommend that you write the plan for each

non-trivial loop in your program. Just the act of writing the plan in detail will help you to get a correct

program. The plan must be placed in the program as comments. This will also make your program

more understandable to others who might read it. Often, you can first write the plan and then the code,

as we just did.

Do everything you can that will increases your confidence that your program is correct. Remember,

a wrong program is not just useless, it is potentially dangerous.

A Note on Programming Exercises

Programming exercises form a big part of learning to program. Programming cannot be learnt just by

reading: practice is extremely important. So please write as many programs as possible. Follow the

guidelines suggested in this chapter while writing programs.
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EXERCISES

1. Write a program to compute the value of

D(r) =

r�
k=0

(−1)k
r!

k!

Incidentally,D(r) is the number of ways in which the numbers 1 through r can be arranged in a

sequence such that i is never in the ith position, for all i.

2. Here is an infinite product which can be shown to approach 2/π as the number of terms increases.

2

π
=

√
2

2
·
�

2 +
√

2

2
·

�
2 +
�

2 +
√

2

2
· · ·

Write a program that computes the product of the first n terms, where n is specified as input.

You will need to specify what values your variables take after some t iterations. For this feel free

to write something like “numerator has value

�
2 +
�
. . .+

√
2 with

√
appearing t times”.

Write a proof of correctness.

3. Write a program to approximately compute ex by adding first 15 terms of the series

ex =
x0

0!
+
x1

1!
+
x2

2!
+
x3

3!
+ . . .

4. Write a program that computes the value of an nth degree polynomial A(x) = a0 + a1x+

a2x
2 + . . .+ anx

n. Assume that you are given n then the value x, and then the coefficients

a0, a1, . . . , an.

5. Evaluate the polynomial, but this time assume that you are given the coefficients in the order

an, an−1, . . . , a0.
6. Figure 4.2 gives two programs to compute e. One of them is incorrect. Find which one. For the

correct program, give appropriate invariants and prove its correctness.

main_program{

int n, fac=1, i=2;

double e=1.0;

cin >> n;

repeat(n){

e = e + 1.0/fac;

fac = fac * i;

i = i + 1;

}

cout << e << endl;

}

(a)

main_program{

int n, fac=1, i=1;

double e=1.0;

cin >> n;

repeat(n){

e = e + 1.0/fac;

fac = fac * i;

i = i + 1;

}

cout << e << endl;

}

(b)

Fig. 4.2 One of these programs is incorrect.



60 An Introduction to Programming through C++

7. Write a program which multiplies an n digit number M by a 1-digit number d, where n could

be large, e.g. 1000. The input will be given as follows. First the user gives d, then n and then the

digits ofM , starting from the least significant to the most significant. The program must print out

the digits of the product one at a time, from the least significant to the most significant.

The program you write will likely perform about n multiplication operations and a similar

number of other operations. There is a more efficient way of writing this program, i.e. using fewer

operations for multiplying the same numbersM, d. Hint: Ask the user to give several digits ofM

at a time.



CHAPTER5
Simplecpp Graphics

The graphics commands we introduced in Chapter 1 are fun, but quite limited. The more general

graphics system that we discuss in this chapter has many other features:

• Ability to have several turtles on screen simultaneously, moving and drawing as desired.

• Ability to create other shapes, e.g. lines, rectangles, circles, polygons and text on the screen and

move these shapes as desired. The shapes also have pens, so they can also draw on the screen if

needed.

• Ability to change attributes such as colour, size of the various shapes.

• Ability to draw lines on the screen by specifying coordinates rather than have a turtle trace lines

while moving. Likewise shapes can be made to move by giving the coordinates on the screen,

rather than always having to be specified relative to the position and the orientation of the object

in question.

• Elementary graphical input. The user can click on the graphics window and the program can wait

for such clicks and get the click coordinates.

We will discuss these features in this chapter. Following that, we will build two example programs.

The first is somewhat simple: plotting the trajectory of a projectile as it moves under the influence of

gravity. The second is more involved. In this the user can click a set of points on the screen, and the

program will draw the best fit straight line through the points, under a certain measure of goodness.

In a later chapter, we will present some additional graphics related features.

5.1 OVERVIEW

To access the more general graphics facilities, it is more convenient to use the command:

initCanvas();

rather than turtleSim(). This opens a window, but does not create a turtle at its center. Commands

canvas_width(), canvas_height() return the width and height of the canvas in pixels. You

may also invoke the command as

initCanvas(name,w,h)
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where name is a quoted string meant to be the name given for the canvas, and w,h should indicate the

width and height you desire for the canvas window. This form is also available for turtleSim.

5.1.1 y-axis Goes Downward!

A coordinate system is associated with the canvas window. You may find it slightly unusual: the

origin is at the top left corner, and x-coordinates increase rightward, and y coordinates downward. The

coordinates are measured in pixels. Note however that internally, Simplecpp considers the coordinates

of objects to be real numbers of type double. These real coordinates are converted to integers only

when needed for the purpose of displaying the objects.

5.2 MULTIPLE TURTLES

We can create multiple turtles very easily, by writing:

Turtle t1,t2,t3;

This will create three turtles, respectively named t1, t2, t3 at the center of the window created

using initCanvas(). Yes, the turtles will all be at the center, stacked one on top of the other. We

next see how we get them untangled.

The basic idea is: any command you used in Chapter 1 to affect the turtle will also work with these

turtles, but youmust say which turtle you are affecting. For this, you must write the command following

the name of the turtle, the two joined together by a dot: “.”. Thus, to move turtle t1 forward by 100

steps, we merely write

t1.forward(100);

Likewise, to turn t2, we would write

t2.left(90);

The same thing applies to other commands such as right, penUp, penDown.

Here is a program which will use 3 turtles to draw 3 octagons, aligned at 120 degrees to each other.

main_program{

initCanvas();

Turtle t1, t2, t3;

t2.left(120);

t3.left(240);

repeat(8){

t1.forward(100);

t2.forward(100);

t3.forward(100);

t1.left(360.0/8);

t2.left(360.0/8);

t3.left(360.0/8);

}

wait(5);

}
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5.3 OTHER SHAPES BESIDES TURTLES

Three other shapes are allowed besides turtles: circles, axis-parallel rectangles, and straight-line

segments. Text is also considered to be a kind of shape. Later in Section 15.2.3 we will define a

polygon shape.

5.3.1 Circles

Circles can be created by writing

Circle c1(cx,cy,r);

Here, cx,cy,r must be numerical expressions which indicate the radius of the circle, and the x and

y coordinates of its center. The created circle is named c1.

5.3.2 Rectangles

An axis-parallel rectangle is defined as follows

Rectangle r1(cx,cy,Lx,Ly);

where cx,cy should give the coordinates of the center, and Lx,Ly the width and height respectively.

The created rectangle has the name r1.

5.3.3 Lines

A line segment can be defined as

Line line1(x1,y1,x2,y2);

This creates a line named line1 where x1,y1 are the coordinates of one endpoint, and x2,y2 the

coordinates of the other.

5.3.4 Text

If we want to write text on the screen, it is also considered a kind of shape. The command

Text t1(x,y,message);

in which x,y are numbers and message is a text string can be used to write the message on the

screen. So you might use the command Text txt(100,200,"C++"); to write the text C++ on

the screen centered at the position (100,200). Another form is

Text t2(x,y,number);

Here, number can be a numerical expression. The value of the expression at the time of execution of

this statement will comprise the text. It will be centered at the coordinates (x,y).

The command textWidth can be used to find the width of the given text in pixels. For example

textWidth("C++") returns the width of the text “C++” when drawn on the canvas. The command

textHeight() returns the height in pixels. Thus, the following piece of code can be used to write

text and put a snugly fitting box around it.

Text t(100,100,"C++ g++");

Rectangle R(100,100,textWidth("C++ g++"),textHeight());
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If for some reason you wanted to know by how much the lower part of “g” descends below the line on

which the text gets written, you can know this using the command textDescent().

5.4 COMMANDS ALLOWED ON SHAPES

Each shape mentioned above can be made to move forward and rotate, except for Text shapes, which

cannot be rotated. Each shape also has a pen at its center which can be either up or down.

In addition, for any shape s, we have the commands

s.moveTo(x,y);

s.move(dx,dy);

where the former moves the shape to coordinates (x,y) on the screen, and the latter displaces the

shapes by (dx,dy) from its current position.

You can change the size of a shape (except for text) also. Every object maintains a scale factor,

which is initially set to 1, based on which its size is displayed.

s.scale(relfactor);

s.setScale(factor);

Here, relfactor, factor are expected to be expressions of type double. The first version

multiplies the current scale factor by the specified relfactor, the second version sets the scale

factor to factor.

Scaling is not supported on Text.

You can also decide whether a shape s is to appear in outline, or it is to be filled with some color.

For this, the following command can be used.

s.setFill(v);

Here, v must be specified as true or false. If v is specified as false, the shape will be drawn in

outline, other it will be filled with its current colour.

The colour of a shape can be changed by writing:

s.setColor(color);

where color is specified for example, as COLOR("red"). Note that merely specifying "red" will

not work. Instead of red, other standard color names, e.g. blue, green, yellow, white, black can be used.

Use all lowercase letters. Alternatively, you may specify the color by giving intensities of three primary

colors, red, green, blue respectively, by writing COLOR(redVal, greenVal, blueVal). The

three values should be numbers between 0 and 255. As you may guess, red and blue together give

purple, while red and green give yellow.

You may hide or unhide a shape s using the commands

s.hide();

s.show();

respectively.
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5.4.1 Rotation in Radians

The left, right commands of Chapter 1 required angles to be supplied in degrees. However, most

programming languages including C++ prefer angles to be represented in radians. For this a rotate

command is provided. Thus if s is a shape you may write s.rotate(angle) where angle must

be the angle in radians, measured clockwise.

Rotation is not supported on Text.

5.4.2 Tracking a Shape

As the program executes, you may move shapes or rotate them or scale them. You can of course keep

track of the position, orientation, scale factor yourself, but you do not need to; simplecpp does it for

you. The following commands will return the x coordinate, the y coordinate, the orientation, and the

scale factor respectively.

s.getX()

s.getY()

s.getOrientation()

s.getScale()

You may print the values by writing cout << s.getOrientation(); and so on, or you may use

them in computation. The getOrientation command will return the angle made by the shape with

the positive x-axis, measured clockwise.

5.4.3 Imprinting on the Canvas

Suppose s is a shape. Then the following command causes an image of the shape to be printed on the

canvas, at the current position of s.

s.imprint();

After this, the shape might move away, but the image stays permanently. You can print as many images

of a single shape as you desire. The new image overwrites older images, if any. The command works

with all shapes s.

If you merely want to draw lines on the screen for some reason (e.g. Section 20.3) an additional

command is also provided.

imprintLine(x1,y1,x2,y2,color)

or

imprintLine(x1,y1,x2,y2)

This will draw a line between the points (x1,y1) and (x2,y2), of colour color. If color is

not given, then the line will be black. You could have got the same effect by creating a line and

then calling imprint on it; however, the command imprintLine is much faster. The speed is

sometimes important, as in the application of Section 20.3.

5.4.4 Resetting a Shape

For each shape, except Turtle, a reset command is provided. This command takes the same

arguments as required for creation, and recreates the shape using the new values. For example, you

could have
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Circle c(100,100,15);

wait(1);

c.reset(100,100,20);

This would have the effect of expanding the circle.

5.5 CLICKING ON THE CANVAS

The command getClick() can be used to wait for the user to click on the canvas. It causes the

program to wait until the user clicks. Suppose the user clicks at a point (x, y) on the screen. Then

the value v = 65536× x+ y is returned by the command. Note that the click is considered to be

happening on some pixel, i.e. the coordinates x, y of the click position are integers. The value returned
by getClick() is also of type int.

Note that standard computer screens will have at most a few thousand pixels along the height and

along the width. Thus, the click coordinates x, y will at most be a few thousand. Thus x, y < 65536.

So if you are given v = 65536× x+ y, then you can recover x, y by noting that

x = �v/65536� , y = v mod 65536

As an example, the following program waits for the user to click, and then prints out the coordinates

of the point at which the user clicked.

main_program{

int clickPos;

initCanvas();

clickPos = getClick();

cout << "Click position: ("

<< clickPos/65536 <<", " // integer division: truncates.

<< clickPos % 65536 <<")\n";

}

By the way, 65536 = 216; so the x coordinate comprises of the more significant 16 bits of the value

returned by getClick, and the y coordinate the least significant 16.

5.6 PROJECTILE MOTION

We will now write a program that simulates the motion of a projectile. Suppose that the projectile has

initial velocity 1 pixel per step in the x-direction, and −5 pixels per step in the y-direction (note that
the y coordinate grows downward, so this is upward velocity). Let us arbitrarily fix the gravitational

acceleration to be 0.1 pixels/step2. For simplicity, assume that the velocity only changes at the end of

each step: at the end of each step 0.1 gets added to the y-component velocity.
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#include <simplecpp>

main_program{

initCanvas("Projectile motion", 500,500);

int start = getClick();

Circle projectile(start /65536, start % 65536, 5);

projectile.penDown();

double vx=1,vy=-5, gravity=0.1;

repeat(100){

projectile.move(vx,vy);

vy += gravity;

wait(0.1);

}

wait(10);

}

The program waits for the user to click. It then places a projectile, a Circle at the click position.

Then it moves the projectile as per its velocity. The pen of the projectile is put down so that the path

traced by it is also seen. The projectile is moved for 100 steps.

5.7 BEST-FIT STRAIGHT LINE

Suppose you are given a set of points (x1, y1), (x2, y2), . . . , (xn, yn). Your goal is to find a line y =

mx + c which is the closest to these points. We will see a way to do this assuming a specific definition

of “closest”.

A natural definition of the distance from a point to a line is the perpendicular distance. Instead,

we will consider the “vertical” distance yi −mxi − c. We will try to minimize the total distance of
all points from our line; actually, since the quantity yi −mxi − c can be positive or negative, we will
instead minimize the sum E of the squares of these quantities, i.e.

minE =
n�
i=1

(yi −mxi − c)2

Consider E to be a function ofm. At the chosen value ofm, E must be smallest, i.e. the derivative of

E with respect tom must be 0.

0 =
d

dm

n�
i=1

(yi −mxi − c)2 = −2

n�
i=1

xi(yi −mxi − c)

The terms of this can be rearranged as an equation inm and c:

m
�
i

x2i + c
�
i

xi =
�
i

xiyi (5.1)



68 An Introduction to Programming through C++

Likewise, considering E to be a function of c, we must have the derivative of E with respect to be c to

be 0.

0 =
d

dc

n�
i=1

(yi −mxi − c)2 = −2

n�
i=1

(yi −mxi − c)

This can also be rewritten as an equation.

m
�
i

xi + nc =
�
i

yi (5.2)

Define p =
�
i x
2
i , q =

�
i xi, r =

�
i xiyi, and s =

�
i yi. Then Equation (5.1) becomes pm+ qc

= r and Equation (5.2) becomes qm+ nc = s. These equations are easily solved symbolically, giving

m =
nr − qs
np− q2 c =

ps− qr
np− q2

The program is given below. The variable names in it are as per the discussion above.

main_program{ // Fit line to set of points clicked by the user.

cout << "Number of points: ";

int n; cin >> n; // number of points to which the

// line is to be fit.

initCanvas("Fitting a line to data",500,500);

double p=0, q=0, r=0, s=0;

Circle pt(0,0,0); // Will be used to show point clicked by user

repeat(n){

int cPos = getClick();

double x = cPos/65536;

double y = cPos % 65536;

pt.reset(x,y,5); // Centered at the click position

pt.imprint(); // Because we will move pt for

// subsequent points.

p += x*x;

q += x;

r += x*y;

s += y;

}

double m = (n*r - q*s)/(n*p - q*q);

double c = (p*s - q*r)/(n*p - q*q);

Line l(0,c, 500, 500*m+c);

wait(10);

}
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5.8 CONCLUDING REMARKS

In this chapter, we studied the basics of Simplecpp graphics. As you saw, it is possible to define shapes

such as rectangles, lines and circles and move, scale, and rotate them. You can also write text on the

screen, and that too can be moved around but not scaled or rotated. It is also possible to change the

colours of all such objects. Finally, we noted that a coordinate system is associated with the graphics

window, with the x-axis going to the right, and the y axis going downward.

Using the graphics commands, you should be able to create some interesting animations, like the

projectile motion example we discussed.

An important command to be noted is imprint. This command is very useful when you want

several similar shapes to be drawn on the screen permanently. For this, you can simply create one

shape, then move it to different places and imprint it.

If it appears to you that defining shapes is like defining variables, you would be right! Indeed,

statement such as

Circle c1(100,100,10), c2(300,200,15);

not only create circles, but also indeed define two variables, c1 and c2. The commands discussed

above are invoked on these variables, and as a result they cause the images on the screen to be changed.

Just as ordinary variables can be defined inside repeat loops, so can these shapes. But just as ordinary

variables will get destroyed once we get to the end of the parent block, so will these shapes.

Further, the names of the shapes, Circle, Rectangle, Line, Turtle in fact are the data

types of the corresponding variables. These are special data types created for Simplecpp. C++ allows

creation of data types such as these. We will study this in Chapter 17. For now, you can just use them.

EXERCISES

1. Draw an 8× 8 chessboard having red and blue squares. Hint: Use the imprint command. Use

the repeat statement properly so that your program is compact.

2. Plot the graph of y = sin(x) for x ranging in the interval 0 to 4π. Draw the axes and mark the axes

at appropriate points, e.g. multiples of π/2 for the x axis, and multiples of 0.25 for the y axis.

3. Modify the projectilemotion program so that the velocity is given by a second click. The projectile

should start from the first click, and its initial velocity should be in the direction of the second click

(relative to the first). Also the velocity should be taken to be proportional to the distance between

the two clicks.

4. Another idea is to treat the second click to be the highest point reached by the projectile as it

moves. For this, you may note that if ux, uy are the initial velocities of the projectile in the

x, y directions, and g the gravitational acceleration, then maximum height reached is
u
2
y

2g
. The

horizontal distance covered by the time the maximum height is reached is
uxuy

g
.

5. Modify the projectile motion program to trace the trajectories of the projectile for the same initial

velocity and different angles. As you may know, for a fixed velocity, the projectile goes farthest

if it is launched at 45 degrees to the horizontal. You should be able to verify this statement using

your program.
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6. Write a program to produce the following effect. First, a square appears on the screen. Then a tiny

circle appears at the center. Slowly, the circle grows until it touches the sides of the square. Then

both the circle and the square start shrinking until they vanish.

7. Suppose you are given some observed positions of a projectile. Each position is an (x, y) pair.

You are further told that the projectile is surely known to pass through the origin (0,0). Derive the

best fit trajectory for the given points, such that it passes through (0,0). For this you will have to

adapt the process we followed to fit a straight line.

8. Write a program that accepts 3 points on the canvas (given by clicking) and then draws a circle

through those 3 points.

9. Write a program that accepts 3 points, say p, q, r. Then the program draws the line joining p, q.

Then the line is rotated around the point r, slowly, through one full rotation. The key question

here is how to rotate a line through a point which is not its center. This can be done in two

ways. You could calculate the next position of the line, and then reset the line to that position.

Alternatively, you can observe that a rotation about an external point such as r can be expressed
as a rotation about the center and a translation, i.e. a move. This will require you to calculate the

amount of translation.

10. In this problem, you are to determine how light reflects off a perfectly reflecting spherical surface.

Suppose the sphere has radius r and is centered at some point (x, y). Suppose there is a light

source at a point (x�, y). Rays will emerge from the source and bounce off the sphere. As you

may know, the reflected ray will make an angle to the radius at the point of contact equal to that

made by the incident ray. Write a program which traces many such rays. It should take r, x, y, x�

as input. Of course, in the plane the sphere will appear as a circle. Do not use a turtle to trace the

lines, but calculate the coordinates and specify them directly.

11. This is an extension to the previous problem. Extend the reflected rays backward till they meet the

line joining the circle center and light source. The points where the rays meet this line can be said

to be the image of the light source in the mirror; as you will see this will not be a single point, but

the image will be diffused. This is the so-called spherical aberration in a circular mirror.



CHAPTER6
Conditional Execution

Suppose we want to calculate the income tax for an individual. The actual rules of income tax

calculation are quite complex. Let us consider very simplified rules as follows:

There is no tax if your income is at most 1,80,000. If your income is between 180,000 and

500,000 then you pay 10% of the amount by which your income exceeds 180,000. If your

income is between 500,000 and 800,000, then you pay 32,000 plus 20% of the amount

by which your income exceeds 500,000. If your income exceeds 800,000, then you pay

92,000 plus 30% of the amount by which your income exceeds 800,000.

In the programs we have written so far, each statement was executed once, or each statement was

executed a certain number of times, as a part of a repeat block. The statements that we have learned

do not allow us to express something like “If some condition holds, then execute a certain statement,

otherwise execute some other statement.”. This conditional execution is required for the tax calculation

above.

The main statement which expresses conditional execution is the if statement. We will also discuss

the switch statement, which is sometimes more convenient. We also discuss logical data, and how it

can be stored in the bool type.

6.1 THE IF STATEMENT

We first give the program which calculates the tax, and then explain each statement.

main_program{

float income; // in rupees.

float tax; // in rupees.

cout << "What is your income in rupees? ";

cin >> income;

if(income <= 180000) tax = 0; // first if statement

if((income > 180000)&&(income <= 500000)) // second if statement

tax = (income - 180000)* 0.1;



72 An Introduction to Programming through C++

if((income > 500000)&&(income <= 800000)) // third if statement

tax = 32000+(income - 500000)* 0.2;

if(income > 800000) // fourth if statement

tax = 92000+(income - 800000)* 0.3;

cout << "Tax is: " << tax << endl;

}

This program uses the simple form of the if statement, which is as follows.

if (condition) consequent

In this, the condition must be an expression which evaluates to true or false. We will soon

describe how such expressions can be written. In any case, the execution of the if statement begins

with the evaluation of the condition expression. If it evaluates to true, then the consequent,

which can be any C++ statement, is executed. If the condition evaluates to false, then the

consequent is ignored. At this point, the execution of the if statement ends, and control passes

to the next statement in the program. Pictorially, this is often shown in the form of a flowchart,

Figure 6.1. In this figure, boxes are used to hold statements to be executed, or actions to be performed.

It is customary to write conditions inside diamonds. Lines join the boxes and diamonds showing how

control can flow. As you can see, after evaluating the condition, either the true branch is taken,

in which case the consequent is executed, or the false branch is taken in which case the control

directly goes to the next statement.

The simplest form of condition is as follows.

exp1 relop exp2

where exp1 and exp2 are numerical expressions, and relop is a relational operator, e.g.

<,>,<=,>=,==,!= which respectively stand for less than, greater than, less than or equal, greater

than or equal, equal, and not equal. Thus in the first if statement in the program, income <=

180000 is a condition. If during execution, the value of the variable income is at most 180000,

then the condition evaluates to true, and the condition is said to succeed. If so the consequent

is executed. Thus, tax is set to 0. If income is greater than 180000, the condition evaluates to

false, and is said to fail. In this case the consequent is not executed, i.e. tax remains unchanged.

Similarly, in the last if statement, the condition is income > 800000. The consequent here,

Fig. 6.1 Flowchart for simple if statement
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tax = 92000 + (income - 800000) * 0.3 is executed if and only if the value of income

is greater than 800000.

It is possible to specify a more complex condition in the if statement. For example, you may

wish to perform a certain operation only if several conditions condition_1, condition_2 ...

condition_r are all true. Thus, our condition can be a conjunction (and) of all these conditions.

This is written as follows.

condition_1 && condition_2 && ... && condition_r

The characters && should be read as “and”.1 Such a condition is evaluated left to right. If some

condition_i is found false, then subsequent conditions are not evaluated, and the entire condition

is deemed false. The entire condition is deemed true only if all condition_i evaluate to true.

In our second if statement, we have an example of this. Here, the compound condition will be

deemed true only if both the subconditions, income > 180000 and income <= 500000 are

true. In other words, the compound condition is true only if the income is between 180000 (exclusive)

and 500000 (inclusive). Only in this case is the tax set to (income - 180000)* 0.1, i.e. 10%

of the amount by which the income exceeds 180000.

Note that we can have a compound condition which holds if at least one of some set of conditions

holds. Such a condition is said to be a disjunction of (sub) conditions and is expressed as:

condition_1 || condition_2 || ... || condition_r

The characters ||, constitute the logical or operator. To find whether the entire condition is true, we

evaluate conditions left to right. If some condition_i is found true, then subsequent conditions are

not evaluated and the value of the entire condition is deemed true. The value of the entire condition is

deemed false if all condition_i evaluate false.

Finally, one condition can be the negation of another condition, written as follows:

!condition

where the condition !condition is said to be the negation of condition. The condition

!condition is true if condition is itself false, and !condition is false if condition is

true.

We note that conjunctions, disjunctionsand negations can be nested inside one another. For example,

the second if statement of our program can also be written as

if(!((income <= 180000) || (income > 500000)))

tax = (income - 180000)* 0.1;

Notice that (income <= 180000) || (income > 500000) is true if income is either less

than or equal to 180000 or greater than 500000, i.e. if the income is not in the range 180000 (exclusive)

and 500000 (inclusive). But the ! at the beginning negates this condition, so the entire condition is true

only if the income is indeed in the range 180000 (inclusive and 500000 (exclusive). But this is the same

condition as tested in the second if statement in the program!

It is important to clearly understand how the above program is executed. The execution is as usual,

top to bottom. After printing out a message and reading the value of income, the program executes

the first if statement. For this, the condition in it is checked, and then the consequent is executed if

1 The single character & is also an operator, but it means something different, see Appendix C.
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Fig. 6.2 Flowchart for the first income-tax program
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the condition is true. After this, the second if statement is executed. So every if statement will be

executed; the conditions have been so designed so that the condition in only one if statements will

evaluate to true, and hence only one consequent statement will be executed. Perhaps the way in which

control flows is more obvious in the flowchart of the entire program, shown in Figure 6.2. Note that

once we discover a certain condition to be true, e.g. that the income is at most 180000, we know that

the other conditions cannot be true. So the natural question arises: why should we even check them?

The more general if statement, discussed shortly, allows you to prevent such unnecessary checks.

But before discussing that, we discuss the notion of blocks.

6.2 BLOCKS

In the if statement discussed above, the consequent was expected to be a single statement. In

general, we might want to execute several statements if a certain condition held, not just one. The

block construct helps us in this case.

As discussed earlier, a block is simply a collection of statements that are grouped together in braces,

{ and }. By putting statements into a block, we are making a single compound statement out of them.

A block can be placed wherever a single C++ statement is required, e.g. as the consequent part of

the if statement. Suppose for example, we want to print a message “This person is in the highest tax

bracket.” if the income is more than 8 lakhs, as well as calculate the tax, we would replace the fourth

if statement in the program with the following.

if (income > 800000){

tax = 92000+(income - 800000)* 0.3;

cout << "This person is in the highest tax bracket." << endl;

}

You have already used a block as a part of the repeat statement. Let us now note that the general

form of the repeat statement is

repeat (count) action

where action is any statement including a block. Thus, we may write

repeat (10) cout << "Test." << endl;

which will cause the message "Test." to be printed 10 times.

6.3 OTHER FORMS OF THE IF STATEMENT

The if-else statement has the following form:

if (condition) consequent

else alternate

This statement also begins with the evaluation of condition. If it is true, then as before

consequent is executed. If the condition is false, however, then the alternate statement is

executed. So exactly one out of the statements consequent and alternate is executed, depending

upon whether the condition is true or false. This is shown pictorially in the flowchart of Figure 6.3.

The most complex form of the if statement is as follows.
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Fig. 6.3 If statement with else clause

if (condition_1) consequent_1

else if (condition_2) consequent_2

else if (condition_3) consequent_3

...

else if (condition_r) consequent_r

else alternate

This statement is executed as follows. First, condition_1 is checked. If it is true, then

consequent_1 is executed, and that completes the execution of the statement. If condition_1

is false, then condition_2 is checked. If it is true, then consequent_2 is executed, and that

completes the execution of the statement. In general, condition_1, condition_2, ... are

executed in order, until some condition_i is found to be true. If so, then consequent_i is

executed, and the execution of the statement ends. If no condition is found true, then the alternate

is executed. It is acceptable to omit the last line, i.e. else alternate. If the last line is omitted,

then nothing is executed if none of the conditions are found true. Figure 6.4 shows a flowchart, for 3

conditions.

Fig. 6.4 Most general if, with 3 conditions
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Now we can rewrite our tax calculation program as follows.

main_program{

float income, tax;

cout << "What is your income? ";

cin >> income;

if(income <= 180000) tax = 0; // new first if

else if(income <= 500000) // new second if

tax = (income - 180000)* 0.1;

else if(income <= 800000) // new third if

tax = 32000+(income - 500000)* 0.2;

else

tax = 92000+(income - 800000)* 0.3;

cout << "Tax is: " << tax << endl;

}

Notice that this program contains only three conditions, rather than four as in the previous program.

This is because if all the three conditions are false, we know that the income must be bigger than

800000. Thus even without checking this condition we can directly set the tax to 92000+(income

- 800000)* 0.3.

Also note that the second and third conditions are much simpler! In the first program, we checked

if the income was larger than 180000 and at most 500000. In the new program, we know that the “new

second if” is executed only if the condition of “new first if” failed, i.e. if the income was greater than

Fig. 6.5 Flowchart for second income-tax program
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180000. But then, we don’t need to check this again in the “new second if”. So it suffices to just check

if income is at most 50000. The third if statement also simplifies similarly.

Further, note that the original program would check each of its four conditions no matter which

one is true, whereas in this program as soon as the first true condition is found, the corresponding

consequent action is performed, and the subsequent conditions are not checked. Thus, the new program

is more efficient than the previous program. Figure 6.5 shows the flowchart for the new program. By

comparing to Figure 6.2, perhaps it is easier to appreciate how much different the new program is.

6.4 A DIFFERENT TURTLE CONTROLLER

The turtle-driving programs we saw in Chapter 1 required us to put information about the figure we

wanted to draw right into the program, i.e., the exact sequence of forward and turn commands that we

want to execute had to be written out in the program. We will now write a program which will allow

the user to control the turtle during during execution.

Let us decide that the user must type the character ’f’ to make the turtle go forward by 100 pixels,

the character ’r’ to make the turtle turn right by 90 degrees, and the character ’l’ to make the turtle turn

left by 90 degrees. Our program must receive these characters that the user types, and then move the

turtle accordingly. Here it is.

main_program{

char command;

turtleSim();

repeat(100){

cin >> command;

if (command == ’f’) forward(100);

else if (command == ’r’) right(90);

else if (command == ’l’) left(90);

else cout << "Not a proper command, " << command << endl;

}

}

Remember that char data is really numerical, so it is perfectly acceptable to compare it using the

operator ==. This program will execute 100 user commands to move the turtle before stopping. Try it!

6.4.1 “Buttons” on the Canvas

We can build “buttons” on the canvas using the Rectangle shapes of Section 5.3. We can control the

turtle by clicking on the buttons. This gives yet another turtle controller.

main_program{

initCanvas();

const double bFx=150,bFy=100, bLx=400,bLy=100, bWidth=150,

bHeight=50;

Rectangle buttonF(bFx,bFy,bWidth,bHeight), buttonL(bLx,bLy,

bWidth,bHeight);



Conditional Execution
79

Text tF(bFx,bFy,"Forward"), tL(bLx,bLy,"Left Turn");

Turtle t;

repeat(100){

int clickPos = getClick();

int cx = clickPos/65536;

int cy = clickPos % 65536;

if(bFx-bWidth/2<= cx && cx<= bFx+bWidth/2 &&

bFy-bHeight/2 <= cy && cy <= bFy+bHeight/2) t.forward(100);

if(bLx-bWidth/2<= cx && cx<= bLx+bWidth/2 &&

bLy-bHeight/2 <= cy && cy <= bLy+bHeight/2) t.left(10);

}

}

The program begins by drawing the rectangles on the screen. Notice that we have not given the coor-

dinate information of the buttons by writing numbers directly, but first created the names bFx,bFy

and so on having specific values and then used these names in the button creation. Using such names is

convenient: if you want to adjust the layout of buttons later, you just need to change the value of some

name. Without names, you would have needed to make changes in every place the number appeared.

In the present case, if you want to change the width of the rectangles, you just need to assign a different

value to bWidth, instead of worrying in which all places the width value needs to be changed.

Next, text is put in the rectangles. Then we go into a loop. Inside, we wait for the user to click. We

check whether the click is inside either of the two rectangles. This is done in the two if statements in

the loop. Each check has two parts: we must check if the x coordinate of the click is between the left

edge of the rectangle and the right edge, i.e. the left edge coordinate must be smaller or equal, and the

right edge coordinate must be larger or equal. And correspondingly we must check for the y coordinate

as well.

This program will only allow 100 clicks; we see later how to make the loop indefinitely or stop if

some condition is met.

6.5 THE switch STATEMENT

In the turtle-control program, there was a single variable, command, depending upon which we took

different actions. A similar situation arises in many programs. So C++ provides the switch statement

so that we can express our code succinctly. The general form of the switch statement is

switch (expression){

case constant_1:

group(1) of statements usually ending with ‘‘break;’’

case constant_2:

group(2) of statements usually ending with ‘‘break;’’

...

default:

default-group of statements

}



80 An Introduction to Programming through C++

The portion consisting of default: and the group of statements following that is optional. The

expression expression must be of type int. Further, each constat_i in above is required to be

an integer constant.

The statement executes in the following manner. First, the expression is evaluated. If the value

is identical to constant_i for some i, then we start executing group(i) statements. We execute

group(i) statements, then group(i+1) statements and so on, including default-group

statements, unless we encounter a break; statement. If we encounter a break then the execution

of the switch is complete, i.e. we do not execute the statements following the break but directly

go to the statement in the program following the switch statement. If the value of expression is

different from any of the constant values mentioned, then the default-group of statements is

executed.

If a certain group(i) does not end in a break, then the execution is said to “fall-through” to the

next group. Fall-throughs are considered to be rare.

Using a switch, our turtle-control program can be written as follows.

main_program{

char command;

turtleSim();

repeat(100){

cin >> command;

switch(command){

case ’f’: forward(100);

break;

case ’r’: right(90);

break;

case ’l’: left(90);

break;

default: cout << "Not a proper command, " << command << endl;

}

}

}

As you can see, the new program is nicer to read.

Here is an example which has fall-throughs.Suppose we want to print the number of days in the nth

month of the year, taking n as the input. Here is the program.

main_program{

int month;

cin >> month;

switch(month){

case 1: // January

case 3: // March

case 5: // May

case 7: // July

case 8: // August

case 10: // October
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case 12: // December

cout << "This month has 31 days.\n";

break;

case 2: // February

cout << "This month has 28 or 29 days.\n";

break;

case 4: // April

case 6: // June

case 9: // September

case 11: // November

cout << "This month has 30 days.\n";

break;

default: cout << "Invalid input.\n";

}

}

Suppose the input is 5. Then the execution will start after the point labelled case 5:. It will fall

through the cases 5,7,8,10 to case 12. In this, the number of days will be printed to be 31, and then a

break is encountered. This will complete the execution of the switch.

The switch statement is considered somewhat error-prone because you may forget to write

break;. So be careful.

6.6 CONDITIONAL EXPRESSIONS

C++ has a notion of a conditional expression, having the following form.

condition ? consequent-expression : alternate-expression

The evaluation of this proceeds as follows. First, the condition is evaluated. If it is true, then the

consequent-expression expression is evaluated, and that is the value of the overall expression.

The alternate-expression is ignored. If on the other hand the condition evaluates to false,

then the consequent-expression is ignored, the alternate-expression is evaluated and

the resulting value is the value of the overall expression.

Here are some simple examples.

int marks; cin >> marks;

int actualmarks = (marks > 100) ? 100 : marks;

char grade = (marks >= 35) ? ’p’ : ’f’;

In this, if marks read in were more than 100, then actualmarks would be capped to 100, else

actualmarks would be set equal to marks. Further, if the marks are at least 35, then grade is set

to ’p’ (pass), otherwise to ’f’ (fail).

Conditional expressions can be nested, i.e. the consequent or alternate expressions can themselves

conditional expressions. This allows us to write a very compact but unreadable tax-calculation program.

main_program{

float income; cin >> income;
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cout << ( // **

income <= 180000 ? 0 :

income <= 500000 ? (income - 180000) * 0.1 :

income <= 800000 ? 32000 + (income - 500000) * 0.2 :

92000 + (income - 800000) * 0.3

) // **
<< endl;

}

We merely read in the income, and then calculate the tax as an expression and directly print it out

without storing it into a variable. In the above, the parentheses marked ** are necessary. This is because

the operator << has higher precedence than the operator <=, i.e. by default C++ attempts to execute

<< before <=.

The above program is very compact, but not recommended. Most programmers would consider it

unreadable. However, the conditional expression without nesting is considered to be a useful construct.

6.7 LOGICAL DATA

An important part of the if statement are the conditions. We have already seen that a condition is

either true or false, i.e. we can associate the value true or the value false with each condition.

We have also seen that conditions can be combined in different ways. The resulting combination will

also be true or false. We have also seen that there may be several equivalent ways of writing the

same condition (as we saw for the second if statement of our first program). In this sense, conditions

are similar to numerical expressions, numerical expressions have a value, numerical expressions can

be combined to build bigger numerical expressions, we can have numerical expressions that are

equivalent. In that case, why not treat conditions, as just another kind of data? This turns out to be a

very good idea, and an algebra for manipulating conditions, or what we will hereafter refer to as logical

expressions was developed by George Boole in 1940. C++ supports the manipulation and storage of

logical data, and in honour of Boole, the data type for storing logical data is named bool. You have

already seen this data type in Chapter 3, now we will do more interesting things with it.

First, we note that we can assign values of logical expressions to bool variables. Consider the

following code.

float income; cin >> income;

bool lowIncome, midIncome, highIncome;

lowIncome = (income <= 180000);

midIncome = (income > 180000) && (income <= 800000);

highIncome = (income > 800000);

Suppose during execution, the value 200000 is given for income. Then after the execution

of the subsequent statements, the variables lowIncome, midIncome, highIncome would

respectively have the values false, true, false.

As you can see, the right-hand sides of the above assignment statements are conditions, and

whatever the values these conditions have will been put in the corresponding left hand side variables.

As another example, let us define a bool variable that will be true if a character read from cin

happens to be a lower case character. Note that this will happen if the ASCII value of the character is

at least ’a’ and at most ’z’. Thus, the code for this could be
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char in_ch;

bool lowerCase;

cin >> in_ch;

lowerCase = (in_ch >= ’a’) && (in_ch <= ’z’);

We will next consider a more complex program which determines whether a given number num is

prime or composite. The ability to store logical values will be useful in this program. To understand

that program we will need to reason about expressions containing logical data. So we first discuss this.

6.7.1 Reasoning About Logical Data

As we discussed earlier, the same condition can be expressed in many ways. It is important to

understand which expressions are equivalent.

First, let us make a few simple observations. For any logical value v, we have that v || false

has the same value as v. The easiest way to check this is to try out all possibilities: if v is true, then

true || false is clearly true. If v is false, then false || false is clearly false. Thus

false plays the same role with respect to || that 0 plays with respect to numerical addition. More

formally, false is said to be the identity for ||. Likewise, true && v has the value v for any v.

Or in other words, true is the identity for &&.

Another rule is the so called distributivity of && over ||. Thus, if x,y,z are boolean variables (or

equivalently, conditions), then (x && y) || z is the same as (x && z) || (y && z). In a

similar manner, it turns out that || also distributes over &&.

Another important rule is that x || !x is always true, and hence we can replace such expressions

with true. Similarly, x && !x can be replaced with false.

Finally, an important rule is De Morgan’s Law. This says that !x && !y is the same as !(x ||

y). Similarly !x || !y is the same as !(x && y).

Consider first a condition such as income <= 180000. Income being at most 180000 is the

same as it not being bigger than 180000. Hence we can write this condition also as !(income >

180000).

While it is fine to be able to intuitively understand that the conditions

(income > 180000) && (income <= 500000)

and

!((income <= 180000) || (income > 500000))

are the same, you should also be able to deduce this given the rules given in this section.

6.7.2 Printing Bool Data

By default, bool data is printed numerically, with 0 being printed instead of false and 1 instead of

true. However, see Appendix D.3.

You should also parenthesize conditional expressions while printing them. Thus, you should write

cout << (income <= 180000); instead ofcout << income <= 180000;. This is because

<< which is also an operator, has a higher precedence than <= or other relational operators.
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6.7.3 Determining Whether a Number is Prime

Determining whether a number is prime is an important problem, for which very sophisticated, very

fast algorithms are known. We will only consider the simplest (and hence substantially slower than the

fastest known) algorithms in this book.

Here is the most obvious idea. We go by the definition. A number n is prime if it has no divisors
other than itself and 1. So it should suffice to check whether any number i between 1 and itself (both

exclusive) divides it. If we find such an i then we declare x to be composite; otherwise it is prime.

This requires us to generate all numbers between 2 and x− 1 (both inclusive this time) so that we

can check whether they divide x. This is really the sequence generation pattern (Section 3.4.1) which

we saw, say in the spiral drawing program of Section 3.4. There we made i take 10 values starting at

1. Now we want i to take the x− 2 values from 2 to x− 1. So here is the code fragment we should

use:

i=2;

repeat(x-2){

/*

Here i takes values from 2 to x-1.

*/

i = i + 1;

}

In each iteration of the loop, we can check whether i divides x. This is really the condition (x %

i) == 0. We want to know whether any such condition succeeds. But this is nothing but a logical

or, of the conditions that arise in each iteration. In other words, this itself is the accumulator pattern

mentioned in Section 3.4.1. But we know how to implement that! We saw how to do it to calculate

the sum in the average computing program of Section 3.4. We must maintain an accumulator variable

which we set to the identity for the operator in question, and we update it in each step. Say we name

our accumulator variable factorFound (since it will indicate whether a factor is found). Then we

initialize it to false, the identity for the OR operation. Then in each step of the loop, we merely

update factorFound, exactly as we updated sum in the average computation program. So our code

fragment becomes

i=2;

factorFound = false;

repeat(x-2){

factorFound = factorFound || (x % i) == 0;

i = i+1;

}

At the end of this, factorFound will indeed be true if any of the expressions (x % i) == 0

was true, for any value of i. Thus, following this code we simply print prime/composite depending

upon whether factorFound is false/true. And at the beginning, we need to read in x, etc. The

complete program is as follows.

main_program{ //Decide if x is prime.

int x; cin >> x;
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int i=2;

bool factorFound = false;

repeat(x-2){

factorFound = factorFound || (x % i) == 0;

i = i+1;

}

if (factorFound) cout << x << " is composite." << endl;

else cout << x << " is prime." << endl;

}

This program will be improved in several ways later. Once we find a factor of x, i.e. if in some iteration

x % i == 0 becomes true, we will set factorFound to true, and no matter what we do later, it

cannot become false. So why even do the remaining iterations? This is indeed correct: if we are testing

if 102 is prime, we will discover in the first iteration itself that 102 is divisible by 2, i.e. 2 is a factor

and that 102 is composite. So we should prematurely stop the loop and not do the remaining iterations.

In the next chapter we will see how this can be done.

Note by the way that effect of factorFound = factorFound || (x % i) == 0; can

also be had by writing if(x % i == 0) factorFound = true; This doesn’t look like

accumulation, but has the same effect.

6.8 PITFALLS

There is a potential pitfall associated with the use of the operators = and ==. In mathematics, the

operator = is used to denote comparison, and since most of us learn mathematics before programming,

we are likely predisposed to use = to mean comparison even in C++, rather than ==. This will lead

to errors. The situation is more serious than what you might think at first glance. If you write code

such as

if(p = 25) q = 37;

when you mean if(p == 25) q = 37; the compiler will not regard it as an error. This is because

assignment is also an expression, and it evaluates to the value that got assigned. Thus in this case,

p = 25, the value is 25. Further, the compiler will, on its own, try to convert this value to a boolean

value. For this the rule of conversion is a bit non-intuitive: any non-zero value becomes true and only

0 becomes false. Thus in the execution of the above statement, the assignment q = 37 will always

happen.

Many compilers can be asked to warn if they encounter such statements which most likely are silly

mistakes made by the programmer. Indeed, the GNU C++ compiler will give a warning if it sees such

statements in your program, provided you invoke it using the option -Wparentheses. And in fact,

s++ which you use with simplecpp indeed calls the GNU C++ compiler with this option, so you

will get these warnings already if you compile with s++. If you really intended the statement to mean

the assignment expression (and did not mistakenly write = instead of ==), then you can merely put

the expression inside a pair of parentheses and write if((p = 25)) q = 37;. This effectively

declares your firm intent that you mean p = 25 to be an assignment expression. Thus, in this case,

no warning will be issued even if you use the option -Wparentheses.
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Another pitfall concerns nesting of if statements, say if the consequent of an if is itself another

if statement.

if(a > 0) if(b > 0) c = 5; else c = 6;

This is treated by the compiler to mean

if(a > 0) {if(b > 0) c = 5; else c = 6;}

In other words, the else joins with the innermost if, and the outer if is left without an else

clause. Keeping track of such rules is rather cumbersome, so it is best if you insert the braces yourself.

Of course, if you meant to associate the else with the outer if you could have written

if(a > 0) {if(b > 0) c = 5;} else c = 6;

If you omit the braces, then the compiler again will warn you if you have used the -Wparentheses

option. Note that the compiler will have compiled your program as per the rules of C++, even when

it issues a warning. However, you should treat compiler warnings as suggestions to improve the

readability of your code. Indeed, if you use parentheses or braces as suggested above, you make your

code more readable to other programmers as well.

We have already noted that the switch statement is somewhat error-prone, because of the

possibility of forgetting to use the break statement.

A slightly uncommon pitfall should also be mentioned. If you attempt to compare signed and

unsigned ints, the results can be unexpected. This is because C++ simply treats the bit patterns

representing both (Section 2.4) as unsigned integers and compares them. This may cause a negative

number stored in a signed int to be declared larger than a positive number stored in an unsigned int.

Try the following:

int i = -1;

unsigned int j=100;

cout << (i < j) << endl;

You will see that the comparison comes out false, i.e. i is considered bigger. Some C++ compilers

may alert you by issuing a warning when they encounter code that compares a signed int an unsigned

int. You may choose to ignore the warning, say if you know that the signed int value will also be

positive. But it is better if you write your code as

int i = -1;

unsigned int j=100;

cout << (i < int(j)) << endl;

This way there will not be a warning message from the compiler.

6.9 CONCLUDING REMARKS

In this chapter, we saw how we can ask the computer to conditionally execute some statement or group

of statements, using the if and switch statements, with the if itself coming in three forms. As you

might realize, we don’t really need the additional two forms of the if statement, nor the switch

statement. But by using the other forms of the if we can avoid making too many comparisons. Also,

using the switch, we can highlight that different actions need to be performed depending upon the
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values of a single expression. Thus all the statements are useful, and it is important to understand them

well.

We also studied conditional expressions.

We studied the notion of logical variables, which can be used to store the results of comparisons so

that they can be used later if needed, without having to perform comparisons again. More than that a

logical variable can be used to accumulate the results of comparisons performed inside a loop. We saw

this come in handy in the program to determine if a number is prime.

We also noted some pitfalls related to if and switch.

EXERCISES

1. Modify the turtle program so that the user can specify how many pixels the turtle should move,

and also by what angle to turn. Thus, if the user types “f100 r90 f100 r90 f100 r90 f100” it should

draw a square.

2. Write a program that reads 3 numbers and prints them in non-decreasing order.

3. Write a program that reads in 4 numbers and prints them in non-decreasing order. Argue that your

answer is correct.

4. Write a program which takes as input a number denoting the year, and says whether the year is

a leap year or not a leap year.

5. Write a program that takes as input a number y denoting the year and a number d, and prints

the date which is the dth day of the year y. Suppose y is given as 2011 and d as 62, then your

program should print “3/3/2011”.

6. Write a program that takes as input 3 numbers a, b, c and prints out the roots of the quadratic

equation ax2 + bx+ c = 0. Make sure that you handle all possible values of a, b, c without

running into a division by zero or having to take the square root of a negative number. Even

if the roots are complex, you should print them out suitably.

7. Suppose we wish to write a program that plays cards. The first step in such a program would be

to represent cards using numbers. In a standard deck, there are 52 cards, 13 of each suite. There

are 4 suites: spades, hearts, diamonds, and clubs. The 13 cards of each suit have the denomination

2,3,4,5,6,7,8,9,10,J,Q,K,A, where the last 4 respectively are short for jack, queen, king and ace.

It is natural to assign the numbers 3,2,1,0 to the suites respectively. The denominations 2–10

are assigned numbers same as the denomination, whereas the jack, queen, king, and ace are

respectively assigned the numbers 11, 12, 13, and 1 respectively. The number assigned to a card

of suite s and denomination d is then 13s+ d. Thus, the club ace has the smallest denomination,

1, and the spade king the highest, 52. Write a program which takes a number and prints out what

card it is. So given 20, your program should print “7 of diamonds”, or given 51, it should print

“queen of spades”.

8. Write a program that takes a character as input and prints 1 if it is a vowel and 0 otherwise.

9. Can you write the program to determine if a number is prime without using a bool variable?

Hint: Count how many factors the number has.
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10. A number is said to be perfect if it is equal to the sum of all numbers which are its factors

(excluding itself). So, for example, 6 is perfect, because it is the sum of its factors 1, 2, 3. Write a

program which determines if a number is perfect. It should also print its factors.

11. Write a program which prints all the prime numbers smaller than n, where n is to be read from

the keyboard.

12. Write a program that reads in three characters. If the three characters consist of two digits with a

’.’ between them, then your program should print the square of the decimal number represented

by the characters. Otherwise your program should print a message saying that the input given is

invalid.

13. Make an animation of a ball bouncing inside a rectangular box. Assume that the box is attached to

the ground, and the ball moves horizontally inside, without friction. Further assume for simplicity

that the ball has an elastic collision with the walls of the box, i.e. the velocity of the ball parallel

to the wall does not change, but the velocity perpendicular to the wall gets negated. Put the pen

of the ball down so that it traces its path as it moves. You can either read the ball position and

velocity from the keyboard, or you can take it from clicks on the canvas. Move the ball slowly

along its path so that the animation looks nice. The animation should run till the ball collides with

some wall n times, where n is read from the keyboard.

14. Modify the animation assuming that the box has mass equal to the ball, and is free to move in

the x direction, say it is mounted on frictionless rails parallel to the x direction. Note that now in

each collision the velocity of the box will also change. If the box has velocity v and the ball has

velocity u parallel to the x axis at the time of the collision, then these velocities will be exchanged

during collision, i.e. will become u and v respectively. Show the animation of this system. You

may want to start off the system with the x component of the ball velocity equalling the negative

of the velocity of box. This will ensure that the box will not move out of the screen.

15. * In the hardest version of the ball-in-a-box problem, the box is sitting on a frictionless surface,

and is free to turn.Now after a collision, the box will in general start rotating as well as translating.

Assume for simplicity that the mass of the box is uniformly distributed along its 4 edges, i.e. the

base is massless.

16. At the top of Figure 6.6 are shown pictorial representations of a NOT gate, an AND gate and an

OR gate. The lines emanating to the left from each gate are its inputs. The line emanating to the

right is the output. Gates can be used to build digital circuits, one such circuit is shown in the

lower portion of the figure. The devices inside an AND gate are such that the output takes the

value 1 if both inputs have the value 1. If any input is a 0, then the output is a 0. The output of an

OR gate is 0 if both inputs are 0, and it is 1 if even one of the inputs is 1. The output of a NOT

gate is 1 if the input is 0, and 0 if the input is 1.

The value appearing at the output of a gate can be fed to an input of some gate by connecting

a wire between the two, shown by a line in the figure. The wires marked a, b bring values from

outside the circuit. Some wires in the figure are seen to cross—these are not to be considered

electrically connected unless a solid dot is present at the intersection. By knowing the values on

a, b you can determine the values on the outputs of the NOT gates, and the output of the lowest
AND gate. By knowing the value of a and the values of the outputs of the NOT gate you should

be able to determine the value at the output of the upper AND gates. Finally, using the values of

the outputs of the upper AND gates, you should be able to determine value at the output of the
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NOT AND OR

Fig. 6.6 Circuit components and a circuit

OR gates. Thus, you should be able to determine the values on wires c, d knowing the values on

wires a, b.

Write a program that reads the value on a, b and prints the values on c, d.

17. Develop a mini drawing program as follows. The screen should have buttons called “Line” and

“Circle” which a user can click to draw a line or a circle. After a user clicks on “Line”, you should

take the next two clicks to mean the endpoints of the line, and so after that a line should be drawn

connecting those points. For now, you will have to imprint that line on the canvas. Similarly,

after clicking “Circle”, the next point should be taken as the center, and the next point as a point on

the circumference. You can also have buttons for colours, which can be used to select the colour

before clicking on “Line” or “Circle”.



CHAPTER7
Loops

Consider the followingmark-averaging problem:

From the keyboard, read in a sequence of numbers, each denoting the marks obtained

by students in a class. The marks are known to be integers in the range 0 to 100. The

number of students is not told explicitly. If any negative number is entered, it is not to

be considered the marks of any student, but merely a signal that all the marks have been

entered. Upon reading a negative number, the program should print the average mark

obtained by the students and stop.

Using the statements you have learned so far, there is no nice way in which the above program can

be written. It might seem that the program requires us to do something repeatedly, but the number of

repetitions equals the number of students, and we don’t know that before starting on the repetitions. So

we cannot use the repeat statement, in which the number of times to repeat must be specified before

the execution of the statement starts.

In this chapter, we will learn the while loop statement which will allow us to write the program

described above. We will also learn the for loop statement, which is a generalized version of the

while statement. All the programs you have written earlier using the repeat statement can be

written using while and for instead, and often more clearly. The repeat statement is not really

a part of C++, but something we added through the package Simplecpp because we didn’t want to

confuse you with while and for in the very first chapter. But having understood these more complex

statements you will find no real need for the repeat statement. So we will discontinue its use from

the next chapter.

7.1 THE while STATEMENT

The most common form of the while statement is as follows.

while (condition) body

where condition is a boolean expression, and body is a statement, including a block statement.

The while statement executes as follows.

1. The condition is evaluated.
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2. If the condition is false, sometimes described as “if the condition fails”, then the execution of

the statement is complete without doing anythingmore. Then we move on to execute the statement

following the while statement in the program.

3. If the condition is true, then the body is executed.

4. Then we start again from step 1 above.

This is shown as a flowchart in Figure 7.1.

Each execution of the body is called an iteration, just as it was for the repeat. Each iteration

might change the values of some of the variables so that eventually condition will become false.

When this happens, it will be detected in the subsequent execution of step 1, and then step 2 will cause

the execution of the statement to terminate.

As you can perhaps already see, this statement is useful for our mark-averaging problem. But before

we look at that let us take some simpler examples.

First, we note that using a while, it is possible to do anything that is possible using a repeat. To

illustrate this, here is a program to print out a table of the cubes of numbers from 1 to 100. Clearly, you

can also write this using repeat.

main_program{

int i=1;

while(i <= 100){

cout << "The cube of " << i << " is " << i*i*i << endl;

i = i + 1;

}

cout << "Done!" << endl;

}

The execution will start by setting i to 1. Then we check whether i is smaller than or equal to 100.

Since it is, we enter the body. The first statement in the body causes us to print “The cube of 1 is 1”,

Fig. 7.1 While statement execution
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because i has value 1. Then we increment i. After that we go back to the top of the statement, and

check the condition again. Again, we discover that the current value of i, 2, is smaller than or equal

to 100. So we print again, this time with i=2, so what gets printed is “The cube of 2 is 8”. We again

execute the statement i = i + 1;, causing i to become 3. We then go back and repeat everything

from the condition check. In this way it continues, until i is no longer smaller than or equal to 100. In

other words, we execute iterations of the loop until (and including) i becomes 100. When i becomes

101, the condition i >= 100 fails, and so we go to the statement following the loop. Thus we print

“Done!” and stop. But before this, we have executed the loop body for all values of i from 1 to 100.

Thus, we will have printed the cube of all the numbers from 1 to 100.

7.1.1 Counting the Number of Digits

We consider a more interesting problem: read in a non-negative integer from the keyboard and print

the number of digits in it. The number of digits in a number n is simply the smallest positive integer d

such that 10d > n. So our program could merely start at d = 1, and try out successive values of d until

we get to a d such that 10d > n.

Thus, we have to generate the sequence 10, 102, 103, . . .; but this is just the sequence-generation

idiom. We should stop generating the sequence as soon as we generate a sequence element, say 10d

which is larger than n. In other words, we should not stop while 10d ≤ n. This is what the following
code does.

main_program{

int n; cout << "Type a number: "; cin >> n;

int d = 1, ten_power_d=10;

// ten_power_d will always be set to 10 raised to d

while(n >= ten_power_d){ // if loop entered,

// number of digits in n must be > d

d++; // so we try next choice for d

ten_power_d *= 10;

}

cout << "The number has " << d << " digits." << endl;

}

Let us see what happens when we run the program. Say in response to the request to type in a number,

we entered 27. Then we would set d to 1 and ten_power_d to 10. Then we would come to the

while loop.We wouldfind that n, which equals 27 is indeed bigger than or equal to ten_power_d)

which equals 10. So we enter the loop. Inside the loop, we add 1 to d so that it becomes 2, and we

multiply ten_power_d by 10, so it becomes 100. We then go back to the beginning of the loop and

check the condition. This time we would find that n whose value is 27 is smaller than ten_power_d

whose values is 100. So we do not enter the loop but instead go to the statement following the loop.

Thus we would print the current value of d, which is 2, as the number of digits. This is the correct

answer: the number of digits in 27 is indeed 2.
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7.1.2 Mark Averaging

This problem, like many problems you will see later, is what we might call a data streaming problem.

By that we mean that the computer receives a stream (sequence) of values, and we are expected to

produce something when the stream terminates. Occasionally, we may be expected to print out a stream

of values as well, but in the current problem, we have to only print out their average. A general strategy

for tackling such problems is to ask yourself: what information do I need to remember at a point in

execution when some n values of the stream have been read? The answer to this often suggests what

variables are needed, and how they should be updated.

For the mark-averaging problem, we knowwhat wewant at the end: wewant to print out the average.

To calculate the average we need to know the sum of all the values that we read, and a count of how

many values we read. So at an intermediate point in the program, when some n values have been read,

we should keep track of n as well as their sum. We don’t need to remember the individual values that

we have read so far! So it would seem that we should keep a variable sum in which we maintain the

sum of the values that we have read till any point in time. We should also maintain a variable count

which should contain the number of values we read. Both variables should start off 0. We will have

a repeated portion in which we read a value, and for this we will have a variable called nextmark.

Using these it would seem that we need to do the following steps repeatedly.

1. Read a value into nextmark.

2. If nextmark is negative, then we have finished reading, and so we go on to calculating and

printing the average.

3. If nextmark is non-negative, then we add nextmark to sum, and also increment count.

4. We repeat the whole process from step 1.

In this, we have not written down the process of calculating the average, etc. But that is simply dividing

sum by count. Figure 7.2(a) shows this as a flowchart.

Can we express this flowchart using the while statement? For this, you would need to match the

pattern of the flowcharts of Figure 7.1 and Figure 7.2(a). It seems natural to match the condition

in the former with the test nextmark >= 0 in the latter. But there is an important difference in the

structure of the two flowcharts. In Figure 7.1, the condition test is the first statement of each iteration,

while in Figure 7.2(a), the first statement is reading the data, and only the second statement is the

condition check.

The crucial question then is: can we somehow modify the flowchart of Figure 7.2(a) so that the

execution remains the same, but the new flowchart matches the pattern of Figure 7.1? Suppose we

decide to move the box labelled A upwards above the point P where two branches merge. We do not

want to change what happens on each branch that enters P, so then it simply means that we must place

a copy of A on both branches coming into P. This gives us the flowchart of Figure 7.2(b). As you can

see, the two flowcharts are equivalent in that they will cause the same statements to be executed no

matter what input is supplied from the keyboard.

Note now that box B and the left copy of A in Figure 7.2(b) are executed successively, so we can

even merge them into a single box containing 3 statements. This new box can become the body of a

while statement, and box C the condition. Thus, we can write our code as follows.

main_program{

float nextmark, sum=0;

int count=0;
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cin >> nextmark; // right copy of box A

while(nextmark >= 0){ // box C

sum = sum + nextmark; // Box B

count = count + 1; // Box B

cin >> nextmark; // left copy of box A

}

cout << "The average is: " << sum/count << endl;

}

The above program assumes that there will be at least one true mark, so that count will not be zero at

the end.

Note the general idea carefully: the natural way of expressing our program could involve a test in

the middle of the code we wish to repeat. In such cases, we can get the test to be at the top by moving

around some code and also making a copy of it. Soon you will start doing this automatically.

Fig. 7.2 Flowcharts for averaging
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7.2 THE break STATEMENT

C++ allows a break; statement to be used inside the body of a while (both forms). The break

statement causes the execution of the containing while statement to terminate immediately. If this

happens, execution is said to have broken out of the loop. Here is a different way of writing our mark-

averaging program using the break statement:

float nextmark, sum=0;

int count=0;

while(true){

cin >> nextmark;

if(nextmark < 0) break;

sum = sum + nextmark;

count = count + 1;

}

cout << sum/count << endl;

The first point to note here is that condition is given as true. This means that the statement will

potentially never terminate! However, the statement does terminate because of the break statement

in the body. After the nextmark is read, we check if it is negative – if so the statement terminates

immediately, and we exit the loop. If the nextmark is non-negative, we add nextmark to sum and

so on. The result of this execution will be the same as before. Note that this is similar to the flowchart

of Figure 7.2(a).

Is the new program better than the old one? It is better in one sense: the statement cin »

nextmark; is written only once. In general, it is a good idea to not duplicate code. First, this keeps

the program small, but more importantly it prevents possible errors that might arise later. For example,

suppose you later decide that just as you read mark you also want to print what was read. If the reading

code is in several places, then you might forget to make the change in all the places. Another question

is: which program feels more natural? You may probably consider the program with the break more

natural—as we remarked, its structure matches the first flowchart we drew. Naturalness is indeed an

important criterion in deciding what is better.

The old code was better in that the condition for terminating the loop was given up front, at

the top. In the new code, the reader needs to search a little to see why the loop will not execute ad

infinitum. This could be cumbersome if the loop body was large. So we cannot unequivocally say that

the new code is better.

Note finally that in case of nested loops, the break statement allows us to break out of only the

innermost loop statement in which it is contained.

7.3 THE continue STATEMENT

What if someone typed in a number larger than 100 for nextmark? Since we are assuming that

marks are at most 100, we could perhaps ignore the numbers above 100 as being erroneous. This is

conveniently expressed using the continue statement.

When a continue statement is encountered during execution, the remaining part of the loop body

is ignored. The control goes to the top of the loop, and checks the condition and begins the next

iteration if check comes out true, and so on.
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The main loop in the program can be written as follows using the continue statement.

while(true){

cin >> nextmark;

if(nextmark > 100){

cout << "Larger than 100, ignoring." << endl;

continue;

}

if(nextmark < 0) break;

sum = sum + nextmark;

count = count + 1;

}

If nextmark is bigger than 100, then the message is first printed, and then the rest of the loop body

is skipped. The next iteration is begun, starting with the condition check, which in this case is always

true.

Note finally that in case of nested loops, the continue statement causes execution to skip the rest

of the body of the innermost loop statement containing it.

7.4 THE do while STATEMENT

The while statement has a variation in which the condition is tested at the end of the iteration rather

than at the beginning. It is written slightly differently. The form is

do body while (condition);

This is executed as follows.

1. The body is executed.

2. The condition is evaluated. If it evaluates to true, then we begin again from step 1. If the

body evaluates to false then the execution of the statement ends.

In other words, in the do-while form, the body is executed at least once. You will observe that the

do-while form above is equivalent to the following code using only the while:

body

while (condition) body

So you may wonder: why do we have this extra form as well? As you can see, the new form is more

compact if you don’t want the condition checked for the first iteration. Here is a typical example.

main_program{

float x;

char response;

do{

cout << "Type the number whose square root you want: ";

cin >> x;

cout << "The square root is: " << sqrt(x) << endl;
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cout << "Type y to repeat: ";

cin >> response;

}

while(response == ’y’);

}

This will keep printing square roots as long as you want.

7.5 THE for STATEMENT

Suppose you want to print a table of cubes of the integers from 1 to 100. You would solve this problem

using the following piece of code.

int i = 1;

repeat(100){

cout << i << ‘‘ ‘‘ << i*i*i << endl;

i = i + 1;

}

The variable i plays a central role in this code. All iterations of the repeat are identical, except for

the value of i. Further, i changes from one iteration of the loop to another in a very uniform manner,

in the above case it is incremented by 1 at the end of each iteration. This general code pattern: that there

is a certain variable which takes a different value in each iteration and the value determines how the

iteration will execute, is very common. Because of this, the designers of C++ (and other programming

languages) have provided a mechanism for expressing this pattern very compactly. This mechanism is

the for statement. Using the for statement, we can print a table of cubes as follows.

for(int i=1; i <= 100; i = i + 1)

cout << i << ‘ ‘ << i*i*i << endl;

To see how this works, let us consider the for statement in its general form:

for(initialization ; condition ; update) body

In this, initialization and update are required to be expressions, typically assignment

expressions. As you might remember, an assignment expression is simply assignments to a variable

without including the semicolon, e.g. i = i + 1. Further, we may include the definition along with

the assignment e.g. int i = 0. As you might expect condition must be a boolean expression.

The last part, body may be any C++ statement, including a block statement. In our example above,

the body consisted of the statement cout << i << “ “ << i*i*i << endl;.

The execution of a for statement starts with the execution of initialization. Then

condition is evaluated. If condition is false, then the statement terminates. If the condition

is true, the statements in the body are executed followed by the update. We repeat this process again

starting from evaluation of condition. This is shown as a flowchart in Figure 7.3.

Note that any of the fields initialization, condition, update or body can be empty. If

the condition is empty, then it is taken as true.

The variable named in initialization and update is customarily called the control variable

of the loop. Typically, initialization assigns an initial value to the control variable, and the
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Fig. 7.3 For statement execution

update says how the variable must change from one iteration to the next. As you can see, in our cube

table example, the update indeed adds 1 to the control variable.

You probably also see why the statement is called a for statement. It is because we execute the

body many times, for different values of the control variable.

7.5.1 Variables Defined in initialization

As mentioned above, the initialization can contain a variable definition, as in our cube-table

program. This variable is created during initialization, and is available throughout the

execution of the for statement, i.e. during all the iterations. It is destroyed only when the execution

of the for statement ends. Thus such a variable cannot referred to outside the for. If the value of the

variable is useful after the for execution is over, then the variable should be defined before the for

statement, and only initialized in initialization.

What if I define a variable i in initialization, but an i has already been defined earlier? So

consider the following code.

int i=10;

for(int i=1; i<=100; i = i + 1) cout << i*i*i << endl;

cout << i << endl;

In this case, we will have shadowing, as discussed in Section 3.6.3. In particular, the i defined in the

first statement will be different from the one defined in the for statement, but it will be the same as
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the one in the last statement! Thus, the for statement will print a table of cubes as before. The last

statement will print 10, because the variable i referred to in it is the variable defined before the for.

7.5.2 Break and continue

If a break statement is encountered during the execution of body, then the execution of the for

statement finishes. This is exactly as in the while statement.

If the continue statement is encountered, then the execution of the current iteration is terminated,

as in the while statement. However, before proceeding to the next iteration, the update is executed.

After that control continues with the next iteration, starting with checking condition, and so on.

7.5.3 Style Issue

You may well ask: why should we learn a new statement if it is really not needed? Indeed, any

program that uses a for statement can be rewritten using a while, with a few additional variables

and assignments.

The reason concerns style. It is much the same as why we speak loudly on certain occasions and

softly on others: our softness/loudness help the listener understand our intent in addition to our words.

Likewise, when I write a for statement, it is very clear to the reader that I am using a certain common

programming idiom in which there is a control variable which is initialized at the beginning and

incremented at the end of each iteration. If I use either a while statement or a repeat statement,

then the reader does not immediately see all this.

7.5.4 Determining if a Number is Prime

In Section 6.7.3, we developed a program to determine if a number is prime. We remarked there that

the program can be made more efficient by noting that once we find a factor for the given number, we

can stop checking for additional factors and immediately report that the number is composite. We can

implement this idea using the for statement as follows.

To determine whether x is prime, our program of Section 6.7.3 checked if x is divisible by i, where

i goes from 2 to x-1. Clearly, i can serve nicely as a control variable. Furthermore, once we detect

that x is divisible by i, we can break out of the loop.

main_program{

int x; cin >> x;

bool found = false;

for(int i=2; i < x; i++){// if the loop is entered we know that

// x is not divisible by 2...i-1

if(x % i == 0){ found = true; break;}

}

if(found) cout << "Composite.\n";

else cout << "Prime.\n";

}

Note the comment we have added to the code. It expresses how our knowledge about whether x is

prime evolves as the program goes through the loop. No matter which iteration it is, whatever value i

has, we know that x is not divisible by the numbers in the range 2 through i-1. Here, if i is 2, the
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range is empty, so our claim is to be considered true. Comments such as this one are useful to people

reading the code, they help in understanding what is going on.

7.6 UNCOMMON WAYS OF USING for

Most often, the initialization and update in the for statement each consists of an assignment

to a single variable. However, there are other possibilities too, as we will see in this section.

7.6.1 Comma-separated Assignments

Here is how we might solve the digit-counting problem of Section 7.1.1 using the for statement.

main_program{

int n; cin >> n;

int d, ten_power_d;

for(d=1, ten_power_d = 10; ten_power_d <= n; d++,

ten_power_d *= 10){};

cout << "The number has " << d << " digits." << endl;

}

There are two noteworthy features of the for statement in the above code. First, the

initialization and update both consist of two assignments separated by a comma. This is

allowed. The comma is considered to be an operator in such a context (Appendix C.2), and it merely

joins together two assignments!

The second noteworthy aspect is that the above for statement has an empty body. This is

acceptable. In fact, it is acceptable to even omit {}, but this is not recommended. By writing out {},

you make it clear to the reader that you have deliberately written an empty body rather than possibly

have forgotten to supply one.

The above code is very compact, but might be considered tricky by some. The point of to note, of

course, is that comma separated assignments can be used as initialization and update in a

for statement in general.

7.6.2 Input in initialization and update

Here is how we could write the mark-averaging code using a for statement.

main_program{

float nextmark,sum=0;

float count=0;

for(cin >> nextmark; nextmark >= 0; cin >> nextmark){

count++;

sum += nextmark;

}

cout << sum/count;

}
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We said that initialization and update in a for statement must be expressions; but it turns

out that cin » nextmark is an expression! We will discuss what value it returns in Section 13.6.3.

But right now the value does not concern us; so you can go ahead and use such input expressions in

initialization and update.

Some programmers may like this way of writing the program. It is a bit unconventional. However,

it does make sense to consider nextmark to be a control variable for this program.

7.7 THE GREATEST COMMON DIVISOR

We will now discuss what is one of the most elegant, oldest, and useful algorithms ever: the algorithm

for finding the Greatest Common Divisor (GCD) due to Euclid, from around 300 BC. As you know,

the inputs for this problem are positive integersm, n. We are required to compute their GCD, which is

defined to be the largest integer that dividesm, n both. It can be written using a single while loop.

The algorithm for this, as taught in primary schools, is to factorize both the numbers, and then the

greatest common divisor (GCD) is the product of the common factors. Another possibility is to go with

the specification: examine the numbers between 2 and min(m, n), and find the largest one that divides

both. This will work, but is slower than the primary school method.

Euclid’s algorithm is much faster than both these methods. The starting point for it is a relatively

simple observation:

If d is a common divisor of positive integers m, n, then it is a common divisor also of m−
n, n, assumingm > n.

The proof is simple: Since d dividesm, n we havem = pd, n = qd, for integers p, q. Thusm− n =

(p− q)d, and hence d dividesm− n also. By a similar argument you can also prove the converse, i.e.
if d is a common divisor ofm− n, n, then d is a common divisor ofm, n also.
Thus, we have shown that every common divisor of m, n is also a common divisor of m− n, n,

and vice versa. But then it means that the set of common divisors of m, n is identical to the set of

common divisors ofm− n, n. Thus, the greatest in the first set must be the greatest in the second set,
i.e. GCD(m, n) = GCD(m− n, n).
The last statement has profound consequences. It should be read as saying: if you want the GCD of

m, n, you may instead find the GCD ofm− n, n assumingm > n. This could be considered progress,

because intuitively, you would think that finding the GCD of smaller numbers should be easier than

finding the GCD of larger numbers.

Let us take an example. Suppose we want to find the GCD of 3977, 943. Thus, we have

GCD(3977, 943) = GCD(3977− 943, 943) = GCD(3034, 943). But there is no reason why we

should use this idea just once: we can use it many times. Thus we get GCD(3034, 943) =

GCD(2091, 943) = GCD(1148, 943) = GCD(205, 943). At this point you might realize that we

can subtract all multiples in one shot, and the result is simply the remainder when dividing the

original number 3977 by 943. Thus, we could more directly have written GCD(3977, 943) =

GCD(3977%943, 943) = GCD(205, 943).

Because GCD is a symmetric function we can subtract multiples of m just as well

as n. Thus GCD(205, 943) = GCD(205, 943%205) = GCD(205, 123). This further

simplifies: GCD(205, 123) = GCD(205%123, 123) = GCD(82, 123) = GCD(82, 123%82) =

GCD(82, 41). At this point, if we try to apply our rule we get 82%41 = 0, i.e. the smaller of
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the numbers divides the larger, and so it must be the GCD. Thus we have obtained, overall, that

GCD(3977,943)=41.

We can summarize the ideas above into a simple theorem.

Theorem 1 (Euclid) Suppose m, n are positive integers. If m%n = 0, then GCD(m, n) = n.

OtherwiseGCD(m, n) = GCD(m%n, n).

This is enough to write a program. The program starts by reading the numbers into variables m,n.

Then in each iteration, we will use Euclid’s theorem to obtain new values for m,n such that the GCD

of the new values is the same as the GCD of the old values. The new values will keep on getting

smaller, but we know that this cannot happen indefinitely. Hence there must come a time when we

cannot reduce the values of m,n using Euclid’s theorem. But this can happen only when n divides m,

whereupon we can print out n as the GCD.

main_program{ // Compute GCD of m,n, where m > n >0.

int m,n;

cout << "Enter the larger number (must be > 0): "; cin >> m;

cout << "Enter the smaller number (must be > 0): "; cin >> n;

while(m % n != 0){

int Remainder = m % n;

m = n;

n = Remainder;

}

cout << "The GCD is: " << n << endl;

}

7.8 CORRECTNESS OF LOOPING PROGRAMS

It should be intuitively clear that the programs discussed in this chapter are correct. However, intuition

can be deceptive, and as we have discussed earlier, it is better to cross-check. In this section we discuss

how to argue the correctness of programs more formally.

In arguing the correctness of repeat loop-based programs we can typically state what progress

we expect will happen in each iteration, and this can be expressed in the plan that we write and prove

(Section 4.2.2). The argument for proving the correctness of programs that use while/for loops is

more complex than the argument for repeat based programs (Section 4.2.2). This is because we do

not know in general how many times a while/for loop will execute. Thus the argument must also

show that the loop eventually terminates.

The proof argument for while/for loops tends to typically have a two parts: a loop invariant,

and a potential. We will explain these notions next, and along with the explanation we will prove the

correctness of the GCD program given above.

7.8.1 Loop Invariant

A loop invariant is an assertion about the values taken by variables in a program that must be true

before and after every iteration of the loop. The term invariant is to be understood like the conservation
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principles of physics, e.g. the total energy of the system is the same after the experiment as it was

before. A loop invariant is similar in spirit to the plan we discussed in Section 4.2.2.

We next describe the invariants needed to prove the correctness of our GCD program. Suppose

m0, n0 are the values given as input for variables m,n. We will prove the following invariants.

Invariant 1: (Before and after each iteration of the loop) The GCD of m,n remains

unchanged, i.e. equals the GCD ofm0, n0.

Invariant 2 (Before and after each iteration of the loop) We have m > n > 0.

Invariant 2 will also be useful to show that the program terminates and has no errors along the way.

Invariant 1 will show that the correct answer is produced.

Invariants are proved using mathematical induction, as you might expect. We prove the second

invariant first. When control reaches the loop, for the first iteration, the variables m,n will have values

m0, n0. We will have m0 > n0 > 0 assuming the user followed our instructions. Thus, the base case

for the induction is established. So now suppose that at the beginning of some tth iteration, m > n >

0. We will prove that at the end of the tth iteration and hence at the beginning of the t+ 1th iteration (if

any), we will continue to have m > n > 0. So let us consider the execution of the loop. The loop test

computes m % n. This operation is valid only if n > 0. But we assumed that n > 0 at the beginning

of the iteration. Hence, the remainder m % n will be well defined and computed properly without the

possiblity of division by 0. If m % n is 0, then the loop body will not be entered; there will not be any

t+ 1th iteration, and so there is nothing to prove. So assume that the remainder is positive. In this case

the loop body is entered. The first statement in the body sets Remainder to the remainder. Note now

that Remainder must have a smaller value than the divisor, n. The last two statements of the loop

respectively assign the values of n and Remainder to m and n. Thus at the end of the loop m will

have a larger value than n, as required.

The first invariant, i.e. the GCD of the new values being the same as the GCD of the old values, is a

direct consequence of Euclid’s theorem. However, we will state the proof more formally. As before, the

proof uses mathematical induction. When control reaches the loop for the first iteration, the variables

m,n have valuesm0, n0. Thus, the GCD of m,n is obviously the same as the GCD ofm0 , n0. So the

base case holds. So consider what happens after t iterations. We execute the loop test. The loop test

requires us to divide m by n. If the loop test fails, then there is no t+ 1th iteration and hence nothing to

prove. However if the loop test succeeds, then we enter the loop. In the loop, we assign values to m,n

exactly as per Euclid’s theorem. Hence, the GCD of m,n is unchanged after the assignment, though

the values of m,n have themselves changed.

7.8.2 Potential

Intuitively, it should be clear that the values of m,n will keep reducing and hence eventually the loop

test must succeed. We now observe it formally. The value of n in the next iteration is the current value

of m%n, which is clearly smaller than the current value of n. Hence in each iteration, the value of

n decreases by at least 1. But n is guaranteed to be always positive, i.e. never drop to 0 or become

negative. Hence, the number of iterations cannot be more than the value n0 typed in by the user at the

beginning of the program. Thus, the loop must terminate sometime!

The key idea in this argument is the observation that some quantity must decrease by at least some

fixed amount, but the nature of the loop body is such that the quantity cannot decrease below a certain
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threshold. This establishes that the number of iterations must be finite, otherwise the quantity will have

decreased below the threshold. In the case of GCD, it is convenient to choose as potential the value of

n. But in other programs, there will be other choices, sometimes creativity will be needed to define a

suitable potential.

This quantity is metaphorically called the Potential, inspired by the notion of potential energy in

physics.

7.8.3 Correctness

Given appropriate invariants and a suitable potential, the correctness proof is almost done. Usually it is

only a matter of tying up some loose ends.

When the GCD program terminates, we know from the invariant that GCD of the current values

of m,n must be the same as the GCD of m0, n0. Since the loop test must have failed just before

termination, we know that Remainder == 0, i.e. m % n == 0. But then the GCD must be n,

which is indeed what we print. Thus, we have established correctness.

We also note that our program runs correctly even if the user disregards our instructions and types

in the smaller number first and larger second. The invariants and the analysis remains correct!

7.8.4 Additional Observations Regarding the GCD Program

We note that the above argument can be sharpened to get a stronger bound on the number of iterations

needed by the GCD program. Let mi, ni denote the value of m and n respectively at the beginning of

the ith iteration. Let Ri denote the value of Remainder calculated in the ith iteration. Then we know:

1. At the end of the ith iteration, the variable n gets the value m % n, i.e. ni+1 = Ri = mi mod ni.

Further, m gets the value of the variable n. Thus, mi+1 = ni. Note that the remainder modulo ni
must be smaller than ni. Thus, we know that ni+1 < mi+1.

2. In iteration i+ 1, the computation is similar. Thus, we get ni+2 = Ri+1 = mi+1 mod ni+1.

Suppose q is the quotient when mi+1 is divided by ni+1. Thus, mi+1 = qni+1 +Ri+1. But

mi+1 > ni+1, and so q ≥ 1. Thus,mi+1 ≥ ni+1 + Ri+1.

Thus, we have ni = mi+1 ≥ ni+1 + Ri+1 = ni+1 + ni+2. But we know that n decreases in each

iteration, and so ni+1 > ni+2. Thus, ni+1 + ni+2 > 2ni+2. Thus we have proved that ni > 2ni+2.

Thus, we have established that the value of n drops by a factor at least 2 in 2 iterations. But n never

drops below 1. Thus, the number of iterations is at most 2 log2 n0, where n0 is the value of n as typed
in by the user.

7.8.5 Correctness of Other Programs

Other programs, e.g. primality, could also be proved correct in a similar manner.

7.9 CONCLUDING REMARKS

Looping is a very important operation in programming. It is tricky because we need to match the

pattern of repetition in our problem with the pattern of repetition provided in the looping statement.

Looping using the statements while, and for is tricky also because of the need to ensure that the

loop eventually terminates, something that was not needed for loops based on repeat.
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In this chapter, we have seen how various problems can be solved using the while loop as well as

the for loop. There were were many variations depending uponwhether we used break, or replicated

code. Later on in the book, we will see even more ways of expressing some of the programs we

have seen in this chapter. As we have indicated, each way of writing loops has some advantages and

disadvantages. One may be more readable or less readable, another may avoid duplication of code,

and yet another may be less efficient because it does unnecessary work. Another consideration is

naturalness: is a certain way of writing code more consistent with how you might think about the

problem? So the choice of how to express a program is in the end a subjective choice. So you should

develop your own taste in this regard.

The while and for loops are trickier than repeat loops. This is because it is possible to make

a programming error and write while/for loops that do not terminate. Hence, we must be more

careful in using these loops as compared to repeat loops. This complexity is reflected in the manner

in which we argue the correctness. You may observe that the correctness argument for repeat did

not need to have anything like a potential because the repeat loops are guaranteed to terminate no

matter what.

We have remarked earlier that proving programs can be tedious for large programs. However, we

will emphasize that even if you don’t do full proofs, you should write down invariants and potentials

for each non-trivial program that you write.

EXERCISES

1. Write a program that prints a conversion table from Centigrade to Fahrenheit, say between 0◦C to
100◦C. Write using while and also using for.

2. Suppose we are given n points in the plane: (x1, y1), . . . , (xn, yn). Suppose the points are the

vertices of a polygon, and are given in the counterclockwise direction around the polygon. Write

a program using a while loop to calculate the perimeter of the polygon. Also do this using a

for loop.

3. Write a program that returns the approximate square root of a non-negative integer. For this

exercise define the approximate square root to be the largest integer smaller than or equal to the

exact square root. Your are expected to not use the built-in sqrt or pow commands, of course.

Your program is expected to do something simple, e.g. check integers in order 1, 2, 3, . . . to see if

it qualifies to be an approximate square root.

4. Suppose some code contains some while statements. Show how you can replace the while

statements by for statements without changing the output produced by the code.

5. Add a “Stop” button to the turtle controller of Section 6.4.1. Modify the program so that it runs

until the user clicks on the stop button. Also there should be no limit on the number of commands

executed by the user.

6. Write a program that prints out the digits of a number startingwith the least significant digit, going

on to the most significant. Note that the least significant digit of a number n is simply n % 10.

7. Write a program that takes a number n and prints out a number m which has the same digits as m,

but in reverse order.

8. A natural number is said to be a palindrome if the sequence of its digits is the same whether read

left to right or right to left. Write a program to determine if a given number is a palindrome.
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9. Write a program that takes as input a natural number x and returns the smallest palindrome larger

than x.

10. Add checks to the GCD code to ensure that the numbers typed in by the user are positive. For

each input value you should prompt the user until she gives a positive value.

11. Write a program that takes a natural number and prints out its prime factors.

12. Write a program that reads in a sequence of characters, one at a time, and stops as soon as it has

read the contiguous sequence of characters ’a’, ’b’, ’r’, ’a’, ’c’, ’a’, ’d’, ’a’, ’b’, ’r’, ’a’, i.e. the

string “abracadabra”. Hint: After you have read a certain number of characters, what exactly do

you need to remember? Do you need to remember the entire preceding sequence of characters,

even the last few characters explicitly? Figure out what is needed, and just remember that in your

program. This is a difficult problem.

13. Let x1, . . . , xn be a sequence of integers (possibly negative). For each possible subsequence

xi, . . . , xj consider its sum Sij . Write a program that reads in the sequence in order, with n

given at the beginning, and prints out the maximum sum Sij over all possible subsequences.

Hint: This is a difficult problem. However, it will yield to the general strategy: figure out what set

of values V (k) we need to remember having seen the first k numbers. When you read the k + 1th

number, you must compute V (k + 1) using the number read and V (k) which you computed
earlier.



CHAPTER8
Computing Common
Mathematical Functions

In this chapter, we will see ways to compute some common mathematical functions, such

as trigonometric functions, square roots, exponentials and logarithms. We will discuss the

Newton–Raphson method for finding roots, and use it for computing square roots. Incidentally, this

method of finding square roots (but not the generalization due to Newton and Raphson) was known to

the Babylonians, as long ago as 1500 BC!

The main statement in all the programs of the chapter will be a looping statement. You could

consider this chapter to be an extension of the previous, giving more ways in which loop statements

can be used.

Some of the material in this chapter requires somewhat deep mathematics. We will state the relevant

theorems, and try to explain intuitivelywhy they might be true. The precise proofs are outside the scope

of this book.

8.1 TAYLOR SERIES

Suppose we wish to compute f(x) for some function f , such as say f(x) = sin(x). Suppose we know

how to compute f(x0) for some fixed x0. Suppose that the derivative f
� of f and the derivative f ��

of f � and so on exist at x0, and we can evaluate these. Then if x is reasonably close to x0 then f(x)

equals the sum of the Taylor series of f at x0. The ith term of the Taylor series is f i�(x0)(x− x0)i/i!,
in which f i� is the function obtained from f by taking derivative i times. Thus, we have

f(x) = f(x0) + f �(x0)(x− x0) + f ��(x0)
(x− x0)2

2!
+ f ���(x0)

(x− x0)3
3!

+ · · · (8.1)

In the typical scenario, we only compute and sum the first few terms of the series, and that gives us a

good enough estimate of f(x). The general theory of this is discussed in standard mathematics texts

and is outside our scope. However, you may recognize the first two terms as coming from a tangent

approximation of the curve, as shown in Figure 8.1. The value of f(x) equals (the length of) FD. We

approximate this by FC, which in turn is FB + BC = EA + (BC/AB)AB = f(x0) + f
�(x0) · (x− x0).

In other words,

f(x) ≈ f(x0) + f �(x0) · (x− x0) (8.2)
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Fig. 8.1 Tangent approximation of f at A, (x0, f(x0))

The Taylor series is a very sophisticated version of this approximation.1 Note that the Taylor series is

often written as

f(x0 + h) = f(x0) + f �(x0)h+ f ��(x0)
h2

2!
+ f ���(x0)

h3

3!
+ · · · (8.3)

which is obtained by writing x = x0 + h. The tangent approximation, Equation (8.2) becomes

f(x0 + h) ≈ f(x0) + h · f �(x0) (8.4)

If we choose x0 = 0, we get the McLaurin series, which is

f(x) = f(0) + f �(0)x+ f ��(0)
x2

2!
+ f ���(0)

x3

3!
+ · · · (8.5)

This form is very commonly used, and perhaps easier to remember.

8.1.1 Sine of an Angle

As an example, consider f(x) = sin(x), where x is in radians. We use the Mclaurin form. We know

that f �(x) = cos(x), f ��(x) = − sin(x), f ���(x) = − cos(x) and so on. Noting cos(0) = 1, sin(0) = 0,

we know the exact value of every derivative, it is either 0, 1 or −1. Thus, we get

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− · · ·

Here, the angle x is in radians. When a series has alternating positive and negative terms, and the terms

get closer and closer to 0 for any fixed x, then it turns out that the error in taking just the first k terms is
at most the absolute value of the k + 1th term. The kth term of our series is (−1)k+1x2k−1/(2k− 1)!.

Thus, if we want the error to be � then we should ensure x2k+1/(2k + 1)! ≤ �.

1 You might be familiar with the formula s(t) = ut + 1
2
at2, in which s(t) is the distance covered in time t by a particle moving

at a constant acceleration a, with initial velocity u. Note that u = s�(0), a = s��(0) and with this substitution the formula can
be written as s(t) = s(0) + s�(0)t+ s��(0) t

2

2
, which resembles the Taylor series in the first three terms.
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We have already seen how to sum series (Section 4). Clearly, we will need a loop, in the kth iteration

of which we will calculate the series to k terms. We must terminate the loop if the last added term is

smaller than our target �. We can calculate the kth term tk from scratch in the kth iteration, but it is

useful to note the following relationship:

tk = (−1)k+1
x2k−1

(2k − 1)!
= tk−1

�
(−1)

x2

(2k − 2)(2k − 1)

�

provided k > 1. If k = 1 then tk = 1, of course, and we don’t use the above relationship. Thus, within

the loop we only compute the terms for k = 2, 3, . . . as needed. Thus, our code becomes

main_program{

double x; cin >> x;

double epsilon = 1.0E-20, sum = x, term = x;

for(int k=2; abs(term) > epsilon; k++){

// Plan: term = t_{k-1}, sum = sum of k-1 terms

term *= -x * x /((2*k-2)*(2*k-1));

sum += term;

}

cout << sum << endl;

}

The command abs stands for absolute value, and returns the absolute value of its argument.

8.1.2 Natural Log

Consider f(x) = lnx, the natural logarithm of x. One way of defining it is

lnx =

� x

1

1

u
du

So from this, we can find its Taylor series. Clearly f �(x) = 1/x. f ��(x) = −1/x2 and so on. It is

convenient to use x0 = 1. Thus, we get

ln 1 + h = h− h2

2
+
h3

3
− h4

4
· · ·

A very important point to note for this series is that the series is valid only for −1 < h ≤ 1. Even so,

note that you can indeed use the series to calculate lnx for arbitrary values of x. Simply observe that

lnx = 1 + ln x
e . Thus, by factoring out powers of e we will need to use the series only on a number

smaller than 1.

8.1.3 Remarks

In general, the terms of the Taylor/McLaurin series increase with x. Thus, it is best to keep x small if

possible. For example, suppose we wish to compute sin(100.0). One possibility is to use the previous
program specifying 100.0 as input. A better way is to subtract as many multiples of 2π as possible,

since we know that sin(x+ 2nπ) = sin(x) for any integer n. In fact identities such as sin(x) = − sin
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(π − x) can be used to further reduce the value used in the main loop of the program. In fact, noting

that the Taylor series for cos(x) is

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

we can in fact compute the sine using sin(x) = cos(π/2− x) if π/2− x happens to be smaller in
absolute value than x.

8.2 NUMERICAL INTEGRATION

We consider another way of computing lnx given x. Recall the definition:

lnx =

� x

1

1

u
du

In other words, lnx is the area under the curve y = 1/u between u = 1 and u = x. So we can compute

lnx if we can compute the area!

Well, we are not going to compute the area exactly, but we will approximate it. In general suppose

we wish to compute the area under a curve f(u) from some u = p to some u = q. We proceed as
follows.

1. Divide the area into n vertical strips of equal widthw = q−p
n , where n is a parameter to be chosen.

Thus the ith strip where i = 0, . . . , n− 1 lies between u = p+ iw and u = p+ (i+ 1)w.

2. Estimate the area of the ith strip to be w · f(p + iw). Notice that this is a reasonable estimate if f

does not vary much within the strip. This will happen if w is small, which in turn will happen if n

is large.

3. Add up the estimates and return that as the area. Thus, the area returned is

n−1�
i=0

wf(p+ iw) = w
n−1�
i=0

f(p + iw)

It should be intuitively clear that if we increase n, the strip width w will reduce, and along with it the

error in the estimate of the area. You may recall from calculus courses that the integral is in fact defined

as the limit of the above sum as n approaches∞.

We next give the program to evaluate the above sum for f(u) = 1
u , between p = 1 and q = x, which

will give us an approximate value for lnx. As you can see, i in the above sum will naturally serve as

a control variable for our for loop. We will take each successive term of the series and add it into a

variable area which we first set to 0. The following is the complete program.

main_program{

double x; cin >> x; // will calculate ln(x)

int n; cin >> n; // number of rectangles to use

double w = (x-1)/n; // width of each rectangle

double area = 0; // will contain ln(x) at the end.

for(int i=0; i < n; i++)

area = area + w /(1+i*w);

cout << "Natural log, from integral: "<< area << endl;

cout << "Natural log, built-in command: "<< log(x) << endl;

}
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In the last line, we have used the built-in C++ command log which can be invoked as log(x)

and which then returns the value of the natural logarithm. This command uses some code probably

more sophisticated than what we have written above, and it guarantees that the answer it returns will

be correct to as many bits as your representation. Thus, in the last line we can check how well our

approximation works. You are encouraged to run the program for different values of n and see how

close we can get to the exact answer (as computed using log).

8.2.1 An Improvement: The Midpoint Rule

Turns out that there is a better way to approximate the area of each strip. Specifically, instead of the

“left height” f(p + iw) of the ith strip, we use the height in the middle, i.e. f(p + iw + w
2

). Thus, we

get the following estimate for the area.

w

n−1�
i=0

f(p + iw +
w

2
)

This estimate is only marginally different from the previous one, but it indeed gives much better

approximation. The proof of this is outside the scope of this book, but you can of course experimentally

check whether what we say is true.

You may also think of other ways to get better estimates of the areas of the strips. For example, one

way is to consider each strip to be a trapezium, bounded by the corners (p + iw, 0), (p+ iw, f(p +

iw)), (p+ (i+ 1)w, 0) (p+ (i+ 1)w, f(p+ (i+ 1)w)). More sophisticated rules have also been

invented, e.g. Simpson’s rule. The exercises invite you to experiment with these rules.

8.2.2 Increasing the Number of Strips

You may think that the sophistication of the mathematical approximation does not matter, because

“we can always increase n, the number of strips”. This expectation is naive. The problem is that on

a computer numbers are represented only to a fixed precision. For example, if we use the float

representation then every number is correct only to a precision of about 7 digits. If you add n numbers

each containing an (additive) error of �, then the error in the sum could become n�, assuming all errors

were in the same direction. Even assuming that the errors are random, it is possible to show that the

error will be proportional to
√
n�. In other words, if you add n = 10000 numbers, each with an error of

about � = 10−7, your total error is likely to have risen to about 10−5 (if not to 10−3). Thus, we should
choose n large, but not too large. The exercises ask you to experiment to find a good choice. Of course,

if you use double, then you should be able to go to larger values of n. Even higher if you use long

double.

The alternative to increasing n is to use better mathematical approximations, i.e. the midpoint rule

instead of the basic rule, or even better approximations such as Simpson’s rule.

8.3 BISECTION METHOD FOR FINDING ROOTS

A root, or a zero of a function f is a value x0 such that f(x0) = 0. In other words, a point where the

plot of the function touches the x-axis. Many problems can be expressed as finding the roots of an

equation. For example, suppose we want to find the square root of 2. Then instead we could ask for the

roots of the polynomial f(x) = x2 − 2. Clearly, if f(x) = 0 then we have x2 − 2 = 0, i.e. x = ±√2

and this would give us the square root of 2. So finding roots is a very important mathematical problem.
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Fig. 8.2 Bisection method. Next we will have xL = xM .

In this section, we will see a very simple method for finding roots approximately. The method

will require that (a) we are given values xL ≤ xR such that f(xL) and f(xR) have opposite signs,

and (b) f is continuous between xL and xR. These are fairly minimal conditions, for example for

f(x2) = x2 − 2 we can choose xL = 0 giving f(xL) = −2, and xR = 2, giving f(xR) = 2. Clearly

xL, xR satisfy the conditions listed above.

Because f is continuous, and has opposite signs at xL, xR, it must pass through zero somewhere

in the (closed) interval [xL, xR]. We can think of xR − xL as the degree of uncertainty (or maximum
error), in our knowledge of the root. Getting a better approximation merely means getting a smaller

interval, i.e. getting xL, xR such that xR − xL is smaller. If the size of the interval is very small, we
can return either endpoint as an approximate root. So themain question is: can we somehow pick better

xL, xR given their current values?

A simple idea works. Consider the interval midpoint: xM = (xL + xR)/2. We compute xM and

find the sign of f(xM ). Suppose the sign of f(xM ) is different from the sign of f(xL). Then we set

xR = xM . Clearly the new values xL, xR satisfy our original requirements. If the sign of xM is the

same as the sign of xL, then it must be different from the sign of xR. In that case (see Figure 8.2) we

set xL = xM . Again the new values of xL, xR satisfy our requirements. Hence in each case, we have

reduced the size of the interval, and thus reduced our uncertainty. Indeed if we want to reduce our error

to less than some �, then we must repeat this process until xR − xL becomes smaller than �. Then we
would know that they are both at a distance at most � from the root, since the root is inside the interval

[xL, xR].

The code is then immediate. We write it below for finding the square root of 2, i.e. for f(x)

= x2 − 2.

main_program{ // find root of f(x) = x*x - 2.

double xL=0,xR=2; // invariant: f(xL),f(xR) have different signs.

double xM,epsilon;

cin >> epsilon;

bool xL_is_positive, xM_is_positive;
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xL_is_positive = (xL*xL - 2) > 0;

// Invariant: xL_is_positive gives the sign of f(x_L).

while(xR-xL >= epsilon){

xM = (xL+xR)/2;

xM_is_positive = (xM*xM -2) > 0;

if(xL_is_positive == xM_is_positive)

xL = xM; // does not upset any invariant!

else

xR = xM; // does not upset any invariant!

}

cout << xL << endl;

}

8.4 NEWTON–RAPHSON METHOD

We can get a faster method for finding a root of a function f if we have a way of evaluating f(x) as

well as its derivative f �(x) for any x. To start off this method, we also need an initial guess for the root,

which we will call x0. Often, it is not hard to find an initial guess; indeed in the example we will take,

almost any x works as the initial guess.
In general, the Newton–Raphsonmethod takes as input a current guess for the root, say xi. It returns

as output a (hopefully) better guess, say xi+1. We then compute f(xi+1), if it is close enough to 0,

then we report xi+1 as the root. Otherwise, we repeat the method with xi+1 to get, hopefully, an even

better guess xi+2.

The process of computing xi given xi+1 is very intuitive. We use the tangent approximation to f

as given in equation (8.2). Thus, we get f(x) ≈ f(xi) + f �(xi) · (x− xi), assuming x− xi is small.
In this equation we could choose x to be any point, including the root. So let us choose x to be the

root. Then f(x) = 0. Thus, we have 0 ≈ f(xi) + f �(xi) · (x− xi). Or in other words, x ≈ xi − f(xi)
f �(xi)

.

Notice that the right-hand side of this equation can be evaluated. Thus, we can get an approximation to

the root! This approximation is what we take as our next candidate.

xi+1 = xi − f(xi)

f �(xi)
(8.6)

That is all there is! Figure 8.3 shows what happens graphically. The point A with coordinates (xi, 0)

represents our current estimate of the root. We draw a vertical line from A up to the function taking

us to the point B, having coordinates (xi, f(xi)). At B, we draw a tangent to the function f , and the

tangent intersects the x axis in point C . If we consider the tangent to be a good approximation to f ,

then the root must be point C. Indeed, we take the x coordinate of C to be our next estimate xi+1. Thus,

we have

xi+1 = xi −AC = xi − AB

AB/AC
= xi − f(xi)

f �(xi)

which is what we obtained earlier arguing algebraically. At least in the figure, you can see that our

new estimate is better, indeed the point C has moved closer to the root as compared to the point A. It

is possible to argue formally that if xi is reasonably close to root to start with, then xi+1 will be even
closer. Indeed, in many cases, it can be shown that the number of bits of xi that are correct essentially
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Fig. 8.3 One step of Newton–Raphson

double in going to xi+1. Thus, a very good approximation to the root is reached very quickly. The

proof of all this is not too hard, at least for special cases, but beyond the scope of this book.

We now show how the Newton–Raphson method can be used to find the square root of any number

y. As with the bisection method, we must express the problem as that of finding the root of an equation:

f(x) = x2 − y. We also need the derivative, and this is f �(x) = 2x. The update rule, xi+1 = xi
− f(xi)
f �(xi)

in this case becomes

xi+1 = xi − x2i − y
2xi

=
1

2
(xi +

y

xi
)

Next we need an initial guess. The standard idea is to make an approximate plot of the function, and

choose a point which appears close to the root. In this case, it turns out that almost any initial guess is

fine, except for 0, because at 0 the term y/xi would be undefined. So for simplicity, we choose x0 = 1.

So we are ready to write the program. The basic idea is to maintain a variable xi representing the

current guess. We will update xi in each iteration using the above rule, and initialize xi to 1.

main_program{

double xi=1, y; cin >> y;

repeat(10){

xi = (xi + y/xi)/2;

}

cout << xi << endl;

}

This program will run a fixed 10 iterations, and calculate the estimates x1, x2, . . . , x10, starting with
x0 = 1. But we can also run a number of iterations depending upon howmuch error we wish to tolerate.

This is slightly tricky. If the actual root is x∗, then the error in the current estimate xi is |xi − x∗|.
Indeed, if we exactly knew the error, i.e. the value v = |xi − x∗|, we could directly compute the root
by noting that x∗ = xi ± v. So we need to make an estimate for the error. A common estimate is f(xi).

Indeed, f(xi) is the vertical distance of the point (xi, 0) to the curve f whereas the exact error, xi − x∗
is the horizontal distance of the point (xi, 0) to the curve. Indeed, when the vertical distance becomes
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0, so would the horizontal. So our program can terminate when the error estimate f(xi) = x2i − y
becomes small, i.e. when xi*xi-y becomes smaller than some threshold.

main_program{

double y; cin >> y;

double xi=1;

while(abs(xi*xi - y) >0.001){

xi = (xi + y/xi)/2;

}

cout << xi << endl;

}

In the above code, we have used the built-in function abs which returns the absolute value of its

argument.

8.5 CONCLUDING REMARKS

This chapter has introduced several new ideas, though no new programming langauge features.

We saw some general techniques for computing mathematical functions.We saw that if the function

and its derivatives are easy to evaluate for some values of the argument, then the Taylor series of the

function can often be used to give an algorithm that evaluates the function. Another idea was: if a

function is defined by an integral, then we can evaluate it by numerically evaluating the integral.

We also discussed methods to find the roots of an equation. This is important intrinsically, as youwill

see in the Exercises. It is also important because the problem of computingmathematical functions can

be formulated as a problem of finding roots. We discussed the bisection method. This is a very general

method, useful even if we only know how to evaluate the function f whose roots we seek. If we can

evaluate the first derivative of f in addition, we saw that we can use the Newton–Raphson method.

The Newton-Raphson method is one of the most powerful tools for finding roots and evaluating

mathematical functions. The bisection method and the Newton-Raphson method work by starting with

a guess, and improving it in successive iterations. Such methods are called Iterative methods.

We will come back to the ideas presented here in chapters 19 and 29.

EXERCISES

1. Write a program to find lnx for arbitrary x using the Taylor series. Check your answer by using
the built-in log command.

2. Write down the Taylor series for f(x) = ex , noting that f i�(x) = ex. It is convenient to expand

around x0 = 0, i.e. consider the McLaurin series. This series is valid for all values of x, however,
it is a good idea to use it on as small values of x as possible. Write a program to compute ex, and

check against the built-in command exp.

3. Run the program for computing lnx from Section 8.2 for various choices of n and see how the

result varies. For what value of n do you get an answer closest to the log function of C++?

4. Another way to estimate the area under a curve is to use trapeziums rather than rectangles. Thus

the area under a curve f(u) in the interval [p, q]will be approximated by the area of the trapezium
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with corners (p, 0), (p, f(p)), (q, f(q)), (q, 0). This area is simply (f(p) + f(q))(q − p)/2. Apply
this to each strip while computing the natural logarithm.

5. Simpson’s rule gives the following approximation of the area under the curve of a function f :
� b

a

f(x)dx ≈ b− a
6

�
f(a) + 4f

�
a+ b

2

�
+ f(b)

�

Use this rule for each strip to get another way to find the natural logarithm.

6. Suppose we are given n points in the plane: (x1, y1), . . . , (xn, yn). Suppose the points are the

vertices of a polygon, and are given in the counterclockwise direction around the polygon. Write

a program to calculate the area of the polygon. Hint 1: Break the area into small triangles with

known coordinates. Then compute the lengths of the sides of the triangles, and then use Heron’s

formula to find the area of the triangles. Then add up. Hint 2: Break the boundary of the polygon

into two parts, an up facing boundary and a down facing boundary. Express the area of the polygon

in terms of the area under these boundaries. Then perform numerical integration.

7. Children often play a guessing game as follows. One child, Kashinath, picks a number between

1 and 1000 which he does not disclose to another child, Ashalata. Ashalata asks questions of the

form “Is you number between x and y?” where she can choose x, y as she wants. Ashalata’s goal

is to ask as few questions as possible and determine the number that Kashinath picked. Show that

Ashalata can guess the number correctly using at most 10 questions. Hint: Use ideas from the

bisection method.

8. Write a program to find arcsin(x) given x.

9. Consider a circuit in which a voltage source of VCC = 1.5 volts is applied to a diode and a

resistance of R = 1 ohm connected in series, Figure 8.4. The current I through a diode across

which there is a potential drop of V is

I = IS(eV/(nVT) − 1)

where IS is the reverse saturation current of the diode, VT is the thermal voltage which is about

25 mV at room temperature (300 Kelvin), and n is the ideality factor. Suppose the diode we are

using has n = 1 and IS = 30 nA. Write a program that finds the current. Use your program to

also find the current when the voltage source is reversed.

Fig. 8.4 Diode circuit

10. Consider the problem of finding the roots of f(x) = x3 − x/2 + 1/4. See what happens using the
Newton-Raphson method for guesses for the initial value. In particular, try x0 = 1 and x0 = 0.5.

Can you solve this using the bisection method?



CHAPTER9
Functions

In the preceding chapters, we have seen programs to do many things, from drawing polygons and

miscellaneous pictures to calculating income tax and finding the greatest common divisor (GCD).

It is conceivable that we will want to write more and more complex programs in which some such

calculations, e.g. finding the GCD, are needed at many places. One possibility is to copy the code for

a calculation in as many places as is required. This doesnt seem too elegant, and is also error-prone.

Wouldnt it be nice, if for each frequently used operation you could somehow construct a “command”

that could then be used wherever you want in your program? Just as we have a command sqrt for

computing the square root, or commands for computing the trigonometric ratios (Section 1.5) can we

build a gcd command that will compute the GCD of two numbers when demanded? This can be done,

and how to build such commands is the subject of this chapter.

The term function is used in C++ to denote what we have so far informally called a command. In

some languages the terms procedure or subprogram are also used. In what follows, we will use the

term function.

We will also discuss references and pointers. These notions will be important in connection with

functions, and in other contexts.

9.1 DEFINING A FUNCTION

Suppose that we indeed need to frequently compute the GCD, and so would like to have a function

which does this. It is natural to choose the name gcd for this function. It could take two numbers as

arguments, and return their GCD, which could then be used. As an example, suppose you wanted to

find the GCD of 24 and 36, and also the GCD of 99 and 47. If we had a gcd function as described,

then we could write a very simple main program as follows.

main_program{

int a=36,b=24,c=99,d=47;

cout << gcd(a,b) << endl;

cout << gcd(c,d) << endl;

}
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int gcd // return-type function-name

(int m, int n) // parameter list: (parameter-type

parameter-name ...)

{ // beginning of function body

while(m % n != 0){

int Remainder = m % n;

m = n;

n = Remainder;

}

return n;

} // end of function body

Fig. 9.1 Definition of a function to compute the GCD

The text gcd(a,b) and the text gcd(c,d) are said to be calls or invocations of the function gcd

with a, b the arguments to the first call, and c,d the arguments to the second call.

Next we discuss how to define the function gcd. Basically, in the definition, we must specify what

needs to happen when the function is called during execution, e.g. for the call gcd(a,b) in the main

program above. In essence, the idea is to have a small program run, sort of in the background, for

computing the GCD. This program, which we will refer to as a subprogram must be given the inputs,

(in the present case, the values of the numbers whose GCD is to be computed), and some mechanism

must be established for getting back the result of the computation (in the present case, the computed

GCD) to the main program. While the sub-program runs, the main program must simply wait. The

main program can resume after the sub-program finishes its work.

Figure 9.1 shows the code for defining gcd. The simplest way to use the definition is to place it in

the same file as the main program given earlier, before the main program. If you compile and run that

file, then it will indeed print 12 and 1, the GCD respectively of 24, 36 and 99, 47, as you expect. The

requirement that the function definition be placed before the main program is similar to the requirement

that a variable must be defined before it is used. We can relax this requirement slightly, as will be seen

in Section 11.2.7.

In general, a function definition has the form:

type-of-return-value function-name (parameter1-type parameter1-name,

parameter2-type parameter2-name, ...){

body

}

The definition begins withtype-of-return-value, which indicates the type of the value returned

by the function. In the GCD example, the function computes and evaluates the GCD, which has type

int, so our definition (Figure 9.1) mentions this.

Next is function-name, the name of the function being defined. In our example, we chose to

call our functiongcd, so that is what the code states. Any valid identifier (Section 3.1.1) can be chosen

as a function name.

Next is a parenthesised list of the parameters to the function, together with their types. In our case,

there are two parameters, m,n both of type int.

Finally, comes the code, body, that is used to compute the return value. The body is expected to be

a sequence of statements, just as you would expect in any main program. It can contain declarations of
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Activation frame of main_program Activation frame of gcd(a,b)

a : 36 m : 36

b : 24 n : 24

c : 99

d : 47

(a) After copying arguments

Activation frame of main_program Activation frame of gcd(a,b)

a : 36 m : 24

b : 24 n : 12

c : 99 Remainder : 12

d : 47

(b) At the end of the first iteration of the loop in gcd

Fig. 9.2 Some snapshots from the execution of gcd(a,b)

variables, conditional statements, looping statements, everything that can be present in a main program.

However, there are two additional features. The code in the body can refer to the parameters, as if they

are variables. Further, the the body must contain a return statement, which we explain shortly. We

note that the body of the definition in Figure 9.1 is taken substantially from the program developed in

Section 7.7.

9.1.1 Execution: Call by Value

Consider our gcd function and main program. While executing themain program, suppose that control

arrives at the call gcd(a,b). We describe the general rule that determines what happens, and also

mention what happens in our specific case.

1. The arguments to the call are evaluated. In our case, it simply means fetching the values of the

variables a,b, viz. 36,24. But in general, the arguments could be arbitrary expressions which

would have to be evaluated.

2. The execution of the calling subprogram, i.e. the subprogram which contains the call,

main_program, in this case, is suspended. The calling subprogramwill be resumed later. When

resumed, the execution will continue from where it was suspended.

3. Preparations are made to start running a subprogram. The subprogram will execute the code given

in the body of the function. The subprogram must be given a separate area of memory so that

it can have its own variables. It is customary to refer to this area as the activation frame of the

function call. Immediately, space is allocated in the activation frame for storing the variables

corresponding to the parameters of the function.

Thus, in our case, an activation frame is created corresponding to the call gcd(a,b). The gcd

function has two parameters, m, n. So variables, m and n will be created in the activation frame.

4. The value of the first argument is copied to the memory associated with the first parameter. The

value of the second argument to the second parameter, and so on.
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Thus, in our case, 36 will be copied into the variable m, and 24 into the variable n in the activation

frame created for the call gcd(a,b). Figure 9.2(a) shows the state of the memory at this time.

We have referred to the memory area used by main_program as its activation frame. This is

customary.

5. Now the body of the called function is executed. The bodymust refer to variables or parameters

stored only in the activation frame of the call.1 If space needs to be reserved for variables etc., it

is done only inside the activation frame of the call.

Thus, in case of our program, the code may refer to the parameters m, n. The code cannot refer

to variables a,b,c,d because they are not in the activation frame of gcd(a,b). When the first

statement of the body is executed, it causes the creation of the variable Remainder. The space

for this is allocated in the activation frame of the call. Such variables are said to be local to the

call.

6. The body of the function is executed until a return statement is encountered. The expression

following return is called the return-expression and its value is sent back to the calling

program. The value sent back is considered to be the value of the call in the calling program.

In our case, the execution of the function happens as follows. In the first iteration of the loop,

m, n have values 36,24. At the end of this iteration, the values become 24,12. The state of the

memory at this point is shown in Figure 9.2(b). In the next iteration, Remainder becomes 0,

and so the break statement is executed. Thus the control exits from the loop, and return is

reached. The return-expression is n which has value 12. This value is sent back to the

calling program.

7. The activation frame created for the call is not needed any longer, and is destroyed, i.e. that area

is marked available for general use.

8. The calling program resumes execution from where it had suspended. The returned value is used

as the value of the call itself.

In our case, the call was gcd(a,b), and its value is required to be printed. Thus the value

returned, 12, will be printed. After this, the next cout statement will be executed in which we

will encounter the second call to gcd. This will cause an activation frame to be created again etc.

In this model of executing function calls, only the values of the arguments are sent from the calling

program to the called function. For this reason, this model is often termed as call by value. We will see

another model later on.

It is worth considering what happens on the second call to gcd, i.e. the call gcd(c,d) in the code.

The same set of actions would repeat. A new activation frame would be created for this call, and very

likely it would use the same memory as was used for the activation frame of the previous call. The

point to be noted is that each call requires some additional memory, but only for the duration of the

execution of the call.

9.1.2 Names of Parameters and Local Variables

We have already said that when a function call executes, it can only access the variables (including

the parameters) in its activation frame. In particular, the variables in the calling program (in this case

main_program) cannot be accessed. So it is perfectly fine if variables in the calling program and

1We will modify this a bit later.



Functions
121

the called function have the same name! Note further that when the calling program is executing, the

activation frame of the called function does not even exist, so there is no question of any confusion.

9.2 NESTED FUNCTION CALLS: LCM

Suppose now that you wish to develop a program to compute the Least Common Multiple (LCM) of

two numbers. This is easily done using the following relationship between the LCM, L, and the GCD,

G of two numbersm, n:

L =
m× n
G

It would, of course, be nice to write a function for the LCM, so that we could invoke it whenever

needed, rather than having to copy the code. We could use the above relationship, but that would

require us to compute the GCD itself. Does it mean that we need to rewrite the code for computing the

GCD inside the function to compute LCM? Not at all. We can simply call the gcd function, since we

have already written it! So here is how we can define a function to compute the LCM.

int lcm(int m, int n){

return m*n/gcd(m,n);

}

The execution of lcm follows the same idea as in our discussion earlier for gcd. Suppose lcm is called

in by a main program as follows.

main_program{

cout << lcm(36, 24) << endl;

}

When we execute the main program, we will need to run a subprogram for lcm, which involves

creating the activation frame for this call. As this subprogram executes, we will encounter the

expression gcd(m,n) with m, n taking the values 36, 24. To process this call, we will need to

start a subprogram for gcd. So at this point, we will have 3 activation frames in memory, one for

main_program, one for lcm(36,24) and another for gcd(36,24). This is perfectly fine! When

the subprogram for gcd(36,24) finishes, then the result, 12, will be sent back to the subprogram for

lcm(36,24). The result 12, will be used as the value of the call gcd(m,n). Thus, the expression

m*n/gcd(m,n) can now be evaluated to be 36*24/12=72. This will in fact be the value that

the subprogram lcm(36,24) returns back to main_program. At this point, the computation of

main_program will resume with the received value.

9.3 THE CONTRACT VIEW OF FUNCTION EXECUTION

While it is important to know how a function call executes, while designing functions, a different,

metaphorical view is useful.

The idea is to think of a function call as giving out a contract to get a job done. We think of the

main program as an agent doing its work as described in its program. Suddenly, the agent encounters a

statement such as lcm(36,24). Rather than doing the work required to compute lcm(36,24)

itself, the main program agent engages another agent. This agent is the subprogram for the call

lcm(36,24). Themain program agent sends the input data to the subprogram agent, and waits for the
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result to be sent back. This is not unlike engaging a tailor, giving the tailor the cloth and measurements,

and waiting for the tailor to send back a shirt.

The similarity extends further. There is nothing to prevent the tailor from further (sub) contracting

out the work to others. It so happens, that stitching the collar of a shirt is a specialized job, which most

tailors would in fact contract out to collar-specialists. Thus, it is possible that we may be waiting for

the tailor to send us back the shirt, and the tailor might be waiting for the collar specialist to send back

a collar. Notice that this is very similar to main_program waiting for lcm(36,24) which in turn

is waiting for gcd(36,24).

9.3.1 Function Specification

A key point to be noted from the tailor example above is that when we ask for a shirt to be stitched, we

generally do not worry about how the tailor will do it. The tailor may do all the work, or subcontract

it out further to one or more craftsmen—that is not our concern. We merely focus on the promise that

the tailor has made to us—that a shirt will be delivered to us. We don’t worry about how the tailor does

it, but we merely hold the tailor to deliver us a good shirt (and at the right time and price, as per what

has been agreed). If we tried to worry about what our tailor should be doing, and what our accountant

should be doing, and what our doctor should be doing, we would probably go mad!

Likewise, when we call a function in our program, we do not think of how exactly it will get

executed. We merely ask: what exactly is being promised in the execution of this function? The

promise, is actually both ways, like a contract and is customarily called the specification of the function.

The specification of gcd could be as follows:

A call gcd(m,n) returns the greatest common divisor of m,n, where m,n must be positive

integers.

You will notice that the specification lays down the responsibilities of both the calling program, and

the called program.

1. Responsibilities of the calling program: To supply only positive integers as arguments. Notice

that C++ already prevents you from supplying fractional values when you declare the type of

the parameters to be int. However, nothing prevents a calling program from supplying negative

values or 0. The specification says that the programmer who wrote the function gcd makes no

guarantees if you supply 0 or negative values. The conditions that the input values are required to

satisfy are often called the pre-conditions of the function. In addition, the calling program might

also have to deal with post-conditions, as will be discussed in Section 9.4.

2. Responsibilities of the called program: If the calling program fullfills its responsibilities (i.e. the

arguments satisfy the preconditions), and only if the calling program fullfills its responsibilities,

is the called program obliged to do whatever was promised. There is no telling what will happen

if the preconditions are not satisfied. Thus, in case of gcd, if a negative value or zero is supplied:

nonsense values may be returned, or the program may never terminate, or terminate with an error.

It is extremely important to clearly write down the specification of a function. You may sometimes

avoid doing so, thinking that the specification is obvious. But it may not be so! For example, a more

general definition of GCDmight allow one of the numbers to be zero, in which case the other number is

defined to be the GCD. If this is the definition a user is familiar with, he/she might supply 0 as the value

of the second parameter n. This will certainly cause the program to terminate because of a division by
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zero in the very first step of our code. To prevent such misunderstandings, it is best to write down the

specifications in full detail.

The natural place to write down the specification is immediately before the function body. So your

function for gcd should really look like the following.

int gcd(int L, int S)

// Function for computing the greatest common divisor of integers L,S.

// PRE-CONDITION: L, S > 0

{

...

}

Please get into the habit of writing specifications for all the functions that you write. Note that in the

specification it is important to not write how the function does what it does, but only what the function

does, and for what preconditions.

A description of how the function does what it does, often referred to as the description of

the implementation of the function is also important. But this should be kept separate from the

specification. The description of how can be in a separate document, or could be written as comments

in the body of the code of the function. For example, the following comment might be useful to explain

how the gcd function works.

// Note the theorem: If n divides m, then GCD(m,n) = n.

// If n does not divide m, then GCD(m,n) = GCD(n, m mod n)

This comment could be placed at the beginning of the loop.

9.4 FUNCTIONS THAT DO NOT RETURN VALUES

Every function/command need not return a value. You have already seen such functions, e.g.

forward, which does not return any value, but only causes the turtle to move forward. The function

forward is said to cause a side-effect, i.e. it causes the graphics canvas to change “on-the-side”,

instead of returning a value up front.

You can also write functions which cause side effects rather than return values. For example, you

might wish to write a function which draws a polygon with a given number of sides, and having a

certain given side length. Clearly, it must take two arguments, an integer giving the number sides, and

a double giving the side length. Suppose we name it drawPolygon. The function does not return

any value, so we are required to specify the return type in the definition to be void. Also, since nothing

is being returned, we merely write return with no value following it.

void drawPolygon(int nsides, double sidelength)

// draws polygon with specified sides and specified sidelength.

// PRE-CONDITION: The pen must be down, and the turtle must be

// positioned at a vertex of the polygon, pointing in the clockwise

// direction along an edge.

// POST-CONDITION: At the end the turtle is in the same position and

// orientation as at the start. The pen is down.

{
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for(int i=0; i<nsides; i++){

forward(sidelength);

right(360.0/nsides);

}

return;

}

Note the precondition: it states where the polygon is drawn in comparison to where the turtle is

pointing. Similarly, we should mention where the turtle is at the end, this will be needed in order

to know how to draw subsequently. A condition such as this one, which will be true after the execution

of the function, is said to be a post-condition of the function. A post-condition is also a part of the

specification.

9.4.1 Side Effects and Values

It is possible to have a function which not only returns a value, but has side effects too. Further, side

effects need not only be to the graphics canvas, you could also print messages and read from the

keyboard as a side effect. Here is a function that does all these things: it reads a value in a given range

from the keyboard and returns it.

int readFromRange(int small, int large)

// Returns number between small and large, both inclusive.

// PRE-CONDITION: small must be no larger than large.

{

int num;

do{

cout << "Give a number between " << small << " and "

<< large << ": ";

cin >> num;

} while( small > num || num > large );

return num;

}

Our main program could then contain a call to this such as

int val = readFromRange(1,10);

This would ask the user for a number between 1 and 10, and repeat if the user gave a number outside

the range. Eventually, if the user does give a number in the range that number would be returned and

placed in val.

9.5 A TEXT-DRAWING PROGRAM

We would like to develop a program using which it is possible to write on the screen using our turtle.

For example, we might want to write “IIT MUMBAI”. How should we organize such a program?

A natural (but not necessarily the best, see the exercises) way of organizing this program is to have

a separate function for writing each letter. For example, we will have a function drawI for drawing
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the letter ’I’. Suppose we decide that we will write in a simple manner, so that the letter ’I’ is just a

line, without the serifs (horizontal lines at the top and bottom), i.e. as I.

What is the specification of drawI? Clearly, it must draw the line as needed. But where should the

line get drawn? This must be mentioned in the specifications. It is tempting to say that the line will get

drawn at the current position of the turtle, in the direction the turtle is pointing. Is this really what we

want? Keep in mind that usually you will not want to draw just one letter, but a sequence of letters. So

it is important to bring the turtle to a convenient position for drawing subsequent letters. And what is

that convenient position?

Suppose we think of each letter as being contained inside a rectangle. It is customary to call this

rectangle the bounding-box of the letter. Then we will make it a convention that the turtle must be

brought to the bottom left corner of the bounding box, and point towards the direction in which the

writing is to be done. Where would we like the turtle to be at the end of writing one character so that

the next character can be written easily? Clearly, the most convenient final position is pointing away

from the right bottom corner, pointing in the direction of writing. We must also clearly state in the

precondition whether we expect the pen to be up or down. Is the inter-character space to be a part of

the bounding box? If so, a further question arises: is it on both sides of the character or only on one

side?We should not only answer these questions, but must also include the answers in the specification.

Based on the above considerations, drawI could be defined as follows.

void drawI(double ht, double sp){

/*Draws the letter I of height ht, leaving sp/2 units of space on

both sides. Bounding box includes space.

PRECONDITION: The turtle must be at the left bottom of the

bounding-box in which the character is to be drawn, facing

in the direction of writing. Pen may be up or down.

POSTCONDITION: The turtle is at the bottom right corner of the

bounding-box, facing the writing direction, with pen up. */

forward(sp/2);

penDown();

left(90);

forward(ht);

penUp();

left(180);

forward(ht);

left(90);

forward(sp/2);

return;

}

Functions for other letters are left as exercise for you. So assume that you have written them. Then to

write our message, our main program could be as follows.

main_program{

int ht=100, sp=10;

turtleSim();

left(90); // turtle is pointing East at the beginning.
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drawI(ht,sp);

drawI(ht,sp);

drawT(ht,sp);

forward(sp);

drawM(ht,sp);

drawU(ht,sp);

drawM(ht,sp);

drawB(ht,sp);

drawA(ht,sp);

drawI(ht,sp);

}

Note that there are local variables named ht and sp in the main program, as well as the functions have

parameters called ht and sp. As we have mentioned earlier, this is acceptable. When the function is

being executed, the execution refers only to its activation frame, and hence the variables in the main

program are not visible. When the main program is executing, the activation frame of the functions is

not even present, so there is no confusion possible.

9.6 SOME DIFFICULTIES

There are a few seemingly simple things we cannot do using our current notion of a function. For

example, we might want to write a function which takes as arguments the Cartesian coordinates of a

point and returns the Polar coordinates. This is not immediately possible because a function can only

return one value, not two. Another example is: suppose we want to write a function called swap which

exchanges the values of two integer variables. Suppose we define something like the following.

void swap(int a, int b){ // will it work?

int temp;

temp = a;

a = b;

b = temp;

}

If we call this by writing swap(p,q) from the main program, we will see it does not change the

values of p,q in the main program. The reason for this is that when swap executes, it does exchange

the values a,b, but a,b are in the activation frame of swap, and their exchange does not have any

effect on the values of p,q which are in the activation frame of the main program.

As a third example, consider the mark-averaging program from Chapter 7. An important step in this

program is to read the marks from the keyboard and check if the marks equal 200. If the marks equal

200, then the loop needs to terminate. Here is an attractive way to write the program.

main_program{

double nextmark, sum=0;

int count=0;

while(read_marks_into(nextmark)){ // will this work?

sum = sum + nextmark;
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count = count + 1;

}

cout << "The average is: " << sum/count << endl;

}

Our hope is that we can write a function read_marks_into that will behave in the following

manner. It will read the next mark into the variable given as the argument, and also return a true or

false depending upon whether the reading was successful, i.e. true if the value read was not 200, and

false if it was. But what we have learned so far does not allow us to write this function: The value of

the argument nextmark will be copied to the parameter of the function, but will not be copied back.

It turns out that all the three problems listed above have a nice solution in C++. This solution is

based on another way of passing arguments to function, called call by reference. We will see this next.

Following that we will see how the problem is solved in the C language. As you might know, C++ is

considered to be an enhanced version of C. Nevertheless, there are a number of reasons for discussing

the C solution. First of all, it is good to know the C solution because C is still in use, substantially.

Also, you may see our so-called C solution in C++ programs written by someone, because essentially

all C programs are also C++ programs. Second, the C solution uses the notion of pointers, which are

needed in C++ also. Finally, the C solution is in fact a less magical version of the call by reference

solution of C++. So in case you care, the C solution might help you understand “what goes on behind

the scenes” in call by reference.

9.7 CALL BY REFERENCE

The idea of call by reference is simple: when you make a change to a function parameter during

execution, you want the change to be reflected in the corresponding argument? Just say so and it is

done! The way to “say so” is to declare the parameter whose value you want to be reflected as a

reference parameter, by adding an & in front of the name of the parameter. So here is how we might

write the function to convert from Cartesian to polar.

void Cartesian_To_Polar(double x, double y, double &r, double &theta){

r = sqrt(x*x + y*y);

theta = atan2(y,x);

}

In this function, r and theta have been declared to be reference parameters. No storage is allocated

for a reference parameter in the activation frame of the function, nor is the value of the corresponding

argument copied. Instead, during the execution of the function, a reference parameter directly refers

to the corresponding argument. Hence, whatever changes the function seems to make to a reference

parameter are really made to the corresponding argument directly.

This can be called in the normal way, possibly as follows.

main_program{

double x1=1.0, y1=1.0, r1, theta1;

Cartesian_To_Polar(x1,y1,r1,theta1);

cout << r1 << ’ ’ << theta1 << endl;

}
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Here is how the call CartesianToPolar(x1,y1,r1,theta1) executes. The values of x1,y1

are copied to the corresponding parameters x,y. However, as mentioned, the values of r1, theta1

are not copied. Instead, all references to r, theta in the function are deemed to be references to

the variables r1,theta1 instead! Thus, as CartesianToPolar executes, the assignments in

the statements r=... and theta=... get made to r1 and theta1 directly. So indeed, when the

function returns, the variable r1 would contain
√

1 + 1 =
√

2 ≈ 1.4142, and theta1 would contain
tan−1 1 = π/4 ≈ 0.785, and these would be printed out.

The function to swap variable values can also be written in a similar manner.

void swap2(int &a, int &b){

int temp;

temp = a;

a = b;

b = temp;

}

This can be called as follows.

main_program{

int x=5, y=6;

swap2(x,y);

cout << x << " " << y << endl;

}

Both the arguments of swap2 are references, and so nothing is copied into the activation area of

swap2. The parameters a,b refer directly to x,y, i.e. effectively we execute

temp = x;

x = y;

b = temp;

This will clearly exchange the values of x,y, so at the end “6 5” will be printed.

Our last example is the read_marks_into function discussed in Section 9.6.

bool read_marks_into(int &var){

cin >> var;

return var != 200;

}

This definition will work as desired with the main program given in Section 9.6. When the function

executes, the first line will read a value intovar. But var is a reference to the corresponding argument

nextmark, and hence the value will in fact be read into nextmark. The expression var != 200

is true if var is not 200, and false if it is 200. So the while loop in the main program will indeed

terminate as soon as 200 is read. Continuing the discussion at the end of Section 7.2, we note that

perhaps this is the nicest way of writing the mark averaging program: we do not duplicate any code,

and yet the loop termination is by checking a condition at the top, rather than using a break statement

in the body.
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9.7.1 Remarks

Call by reference is very convenient. However, two points should be noted.

The manner by which we specify arguments of a function in a call is the same, no matter whether we

use call by value or by reference for a parameter. This makes it hard to read and understand code. When

we see a function call, we need to either find the function definition or declaration (Section 11.2.1) to

know which of the arguments, if any, correspond to reference parameters, and hence might change

when the function returns. The C language solutionwhich uses pointers, discussed next, does not have

this drawback. On the other had it has other drawbacks, as you will see.

If a certain parameter in a function is a reference parameter, then the corresponding argument must

be a variable. For example, we cannot write swap2(1,z). This would make a,b refer to 1,z

respectively and then the statement a = b; in the function would be equivalent to 1 = z;, which is

meaningless. So supplying anything other than a variable is an error if the corresponding parameter

is a reference parameter. However, also see the discussion about const reference parameters in

Section 17.2.1.

9.7.2 Reference Variables

In the discussion above, we noted that a reference parameter should be thought of as just a name, what

it is a name of is fixed only when we make the call. In a similar manner, we can have reference variables

also.

int x;

int &r = x;

x = 10;

cout << r << endl;

r = 20;

cout << x << endl;

The first statement defines the variable x. The second statement declares a reference r, hence the &

before the name. In the declaration itself we are obliged to say what the name r is a reference to. This

is specified after =. Thus, the second statement declares the integer reference r which is a reference to

x, or just another name for the variable x. In the fourth statement, we print r. Since r is another name

for the variable x, the value of that, 10, gets printed. In the fifth statement, we assign 20 to r, but since

r is just a name for x, it really changes the value of x. Finally, this changed value, 20, gets printed in

the last statement.

The utility of reference variables will become clear later, in Section 28.5.

9.8 POINTERS

We first discuss pointers in general, and then say how they are helpful in solving the problems of

Section 9.6.

We know from Section 2.6.1 that memory is organized as a sequence of bytes, and the ith byte is

supposed to have address i, or be at address i. When memory is allocated to a variable, it gets a set of

consecutive bytes. The address of the first byte allocated to the variable is considered to be the address

of the variable.
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9.8.1 “Address of” Operator &

C++ provides the unary operator & (read it as “address of”) which can be used to find the address of a

variable. It is called unary because it is to be applied only to a single expression, as you will see. Yes,

this is the same character that we used to mark a parameter as a reference parameter, and there is also a

binary operator & (Appendix C). But you will be able to tell all these apart based on the context. Here

is a possible use of the unary &.

int p;

cout << &p; // In this operator & is applied to p.

This will print out the address of p. Note that the convention in C++ is to print out addresses in

hexadecimal, so you will see something that begins witn 0x, which indicates that following it is

a hexadecimal number. Note that in hexadecimal each digit takes value between 0 and 15. Thus,

some way is needed to denote values 10, 11, 12, 13, 14, 15, and for these the letters a,b,c,d,e,f

respectively are used.

9.8.2 Pointer Variables

We can store addresses into variables if we wish. But for this we need to define variables of an

appropriate type. For example, we may write

int p=15;

int *r; // not ‘‘int multiplied by r’’! See below.

r = &p;

cout << &p << " " << r << endl;

The first statement declares a variable p as usual, of type int. The next statement could be read as

(int*) r;, i.e. int* is the type and r is the name of the declared variable. The type int* is used

for variables which are expected to contain addresses of int variables. This is what the third statement

does, it stores the address of the int type variable p into r. If you execute this code, you will see that

the last statement will indeed print identical hexadecimal numbers.

Figure 9.3 schematically shows a snapshot of memory showing the effect of storing the address of

p into r. In this, we have assumed that p is allocated bytes 104 through 107, and r is allocated bytes

108 through 111. The address of p, 104, appears in bytes 108 through 111, as a result of the execution

of r = &p;.

Address Content Remarks

104

15 Allocated to p
105

106

107

108

104 Allocated to r
109

110

111

Fig. 9.3 Picture after executing r = &p;
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Likewise we may write

double q;

double* s = &q;

Here we have declared and initialized s in the same statement. Note that double* and int* are

different types, and you may not write s = &p; or r = &q;.

Variables r,s are said to be pointers to p,q. In general, variables of type T* where T is a type

are said to be pointer variables.

Finally, even though we use integers to number memory locations, it is never necessary in C++

programs to explicitly store a specific constant, say 104, into a pointer variable. If you somehow come

to know that 104 is the address of a certain variable v, and so you want 104 stored in some pointer

variable w, then you can do so by writing w = &v;, without using the number 104 itself. In fact, it is

a compiler error in C++ to write something such as w=104, where w is a pointer, e.g. of type int*.

Because you don’t need to write this, if you actually do, it is more likely to be a typing mistake. So the

compiler flags it as an error.

Finally, it should be noted that C++ declarations are a bit confusing. The following

int* p, q; // both pointers?

declares p to be a pointer to int, while q is simply an int. Even if you put no space between int and

* in the above statement, the * somehow “associates” with p than with int. With this understanding,

perhaps we should read a declaration int *p; to mean: “the type of the content of p is int” which

is another way of saying that p is a pointer to int.

If you want both p, q to be pointers, you must write

int *p, *q; // both pointers!

9.8.3 Dereferencing Operator *
If we know the address of a variable, we can get back that variable by using the dereferencing operator,

*. Very simply put, the unary * can be considered to be the inverse of &. The character * also denotes

the multiplication operator, and is also used in declaration of pointer variables, but it will be clear from

the context which operator is meant.

Formally, suppose xyz is of type T* and has value v. Then we consider the memory at address v

to be the starting address of a variable of type T, and *xyz denotes this variable. The unary * is to be

read as “content of”, e.g. an expression such as *xyz above is to be read as “content of xyz”.

Thus, consider the following code.

int p=15, *r;

r = &p;

*r = 22;

int m;

m = *r;

The second statement placess the address of p into r. Now *r denotes a variable of type int stored at

address &p. But p is exactly such a variable. Hence, *r denotes the variable p itself. Thus, if *r were

to appear on the left-hand side of an assignment statement, we would really be storing a value into p.

If *r appeared on the right hand side of an assignment, or in an expression, we would be using the
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value of p in place of the expression *r. Thus in the third statement, we would store 22 into p. In the

last statement, we would store the value of p, 22 in this case, into m.

9.8.4 Use in Functions

We first note that functions can take data of any type as arguments, including types such as int* or

double*. Thus, we can write a function to compute the polar coordinates given Cartesian as follows.

void CartesianToPolar(double x, double y, double* pr, double* ptheta){

*pr = sqrt(x*x + y*y);

*ptheta = atan2(y,x);

}

This could be called as follows.

main_program{

double r,theta;

CartesianToPolar(1.0, 1.0, &r, &theta);

cout << r << " " << theta << endl;

}

Let us first make sure that the types of the arguments in the call and the parameters in the function

definition match. The first and second parameters, x, y are required to be a double, and indeed the

first and second arguments are both 1.0, of typedouble. The third parameter pr is of type double*.

The third argument is the expression &r, which means the address of r. Since r is of type double,

the type of &r is indeed double*, and hence the type of the third argument and the third parameter

match. Similarly the type of the fourth argument &theta is also seen to match the type double* of

the fourth parameter. So clearly our program should compile without errors.

Let us see how this will execute. When the function CartesianToPolar is called, none of the

parameters are reference parameters, and so all arguments have to be copied first. So 1.0 is copied to

the parameter x in the activation frame of CartesianToPolar. The second argument 1.0 is copied

to y. The third argument &r is copied to pr, and finally the fourth argument &theta is copied to

ptheta.

Then the body of the function is executed. The first statement is *pr = sqrt(x*x + y*y);.

The right hand side evaluates to
√

2, because x and y are both 1. This value is to be placed in the

variable denoted by the left hand side. Now *pr is interpreted exactly as described in Section 9.8.3.

Given that pr is of type double*, the expression *pr denotes that double variable whose address

appears in pr. But we placed the address of r of the main program in pr. Hence, *pr denotes

the variable r of the main program. Hence the statement *pr = sqrt(x*x + y*y);, even if

it appears in the code of CartesianToPolar will store
√

2 into the variable r of main.

Next let us consider the statement *ptheta = atan2(y,x);. Since y,x are both 1, the

arctangent will be found to be π/4 ≈ 0.785. Reasoning as before, the expression *pthetawill denote

the variable theta of the main program. Thus 0.785 will be stored in theta of main. After this the

call will terminate. When the execution of main resumes,
√

2 and 0.785 would get printed by the last

statement in main.

We next consider the swap function. It should be clear to you now what we should do: instead of

using the variables as arguments, we should use their addresses. Here is the function.
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void swap(int* pa, int* pb){

int temp;

temp = *pa;

*pa = *pb;

*pb = temp;

}

It may be called by a main program as follows.

main_program{

int x=5, y=6;

swap(&x,&y);

cout << x << " "<< y << endl;

}

The arguments to the call are &x, &y, having type int*, because x,y are of type int. Thus they

match the types of the parameters of the function. Thus, our program will be compiled correctly.

So let us consider the execution. The address of x will be copied into pa, and the address of y into

pb. Thus we may note that *pa in swap will really refer to the variable x of the main program, and

*pb in swap will refer to the variable y of the main program. The statement temp = *pa; will

cause the value of x to be copied to temp. Next, the statement *pa = *pb will cause the value of y

to be copied to x. Finally, the statement *pb = temp; will cause the value in temp, i.e. the value

that was in x at the beginning to be copied to y (which is what *pb denotes). After this the function

call completes. The main program then resumes and will print the exchanged values, 6 and 5.

The changes required to the main program and the function read_marks_into for mark

averaging are left as exercises.

9.8.5 Reference vs Pointers

You have seen that there are two ways of writing the functions Cartesian_To_Polar, swap and

read_marks_into. Which one is better?

Clearly, the functions are easier to write with call by reference. So that is clearly to be recommended

in C++ programs.2

9.9 RETURNING REFERENCES AND POINTERS

It is possible to return references and pointers from functions. But this has to be done with care. We will

explain the idea, but for interesting use of it you will have to wait till Section 18.5 and Section 21.3.7.

First of all, in order to return a reference to a type T the return type of the function must be given as

T&, as you might expect. Here is an example.

2You are probably wondering: when a function executes, and some parameter is a reference parameter, how does the computer
know what variable the parameter refers to? A simple answer is: at the time of the call, C++ automatically sends the address
of the variables referred to by the reference parameters to the function activation frame. Also, during the function execution,

C++ itself dereferences the address of the reference variables, and gets to the variables as needed. So in other words, the
operations of sending addresses and dereferencing them that had to be manually written out in C are performed “behind the
scenes” by C++.
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int &f(int &x, int &y){

if(x > y) return x;

else return y;

}

main_program{

int p=5, q=4;

f(p,q) = 2; // function call appears on the left!

cout << p <<’ ’<< q << endl;

cout << f(p,q) << endl;

}

This main program contains a function call on the left-hand side of an expression! Normally, a function

returns a value, and there is no notion of assigning one value to another value! However, we can

certainly assign a value to a reference, and hence a function that returns a reference can indeed be on

the left-hand side of an assignment statement. Thus, the statement will execute by evaluating the value

of the right-hand side, which will then be placed in the variable that the left-hand side refers to.

So consider the execution of f(p,q)=2; in the above code. Noting that p,q are being passed

by reference, the references x,y will refer respectively to the variables p,q of the main program.

Thus, the expression x>y is identical to p>q, where p,q are variables in the main program. Thus,

x>y will evaluate to true. Thus, the statement return x; will be executed. Because the function has

return type reference to int (int&), the value of x (which is the value of the variable it refers to) is not

returned, but the reference itself is returned. Since x is a reference to p, the call returns a reference to p.

But then the main program statement f(p,q) = 2; is equivalent to p = 2;. Hence, the statement

will cause p to become 2. Thus the print statement will print “2 4”.

Note that a call to a function that returns a reference does not have to be on the left hand side of the

assignment. Indeed, in the last line, we print f(p,q). When this call executes, x,y refer to p,q as

you might expect. The comparison x>y is now false, because p now has value 2. Thus, y is returned

by reference, i.e. a reference to q is returned. Thus, the last statement, cout « f(p,q) « endl;

is equivalent to the statement cout « q « endl;, and hence the value 4 will get printed.

9.9.1 Dangling References and Dangling Pointers

It should be noted that returning a reference can be dangerous.

double &h(){

double x = 5;

return x;

}

main_program{

h() = 7;

}

The function call h()will return a reference to the local variable x of the function.Unfortunately, after

the function returns, the local variable will no longer exist! Such a reference is often called a dangling

reference. Thus, in the main program it will be incorrect to either modify h() or get its value. Note

that most C++ compilers will not give any errors for the code above. However, this code is definitely

incorrect.
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Similar ideas apply to returning pointers. The analogue of the first example above is as follows.

int *f(int *x, int *y){

if(*x > *y) return x;

else return y;

}

main_program{

int p=5, q=4;

*f(&p,&q) = 2;

cout << p <<’ ’<< q << endl;

cout << *f(&p,&q) << endl;

}

In this, the call f(&p,&q) returns the address of a variable, so it can be dereferenced and then we can

either modify the variable or get its value. Thus, the first print statement will print “2 4” and the second

will print 4 as before.

Analogously, it is incorrect to return the address of a variable that will be deallocated by the time

the address can be used.

double *h(){

double x = 5;

return &x;

}

main_program{

*h() = 7;

}

The function call h() returns the address of the variable x local to the function call. The variable is

destroyed when the function call returns. Hence, it is incorrect to use h() in any way in main.

9.10 CONCLUDING REMARKS

When you write complex programs, you may often find that the same sequence of operations is needed

at different places in the program. Instead of writing the same code at different places, C++ allows you

to put that code into a function, which can then be called wherever it is needed. This is the main reason

for defining functions. There will be other reasons, as we will see later. Functions can return values,

and also cause side effects.

A function should be viewed as a packaged software component. When desigining a function, you

should very clearly write down its specification, i.e. what it does. In the specification, it is acceptable to

specify preconditions, i.e. say something like “Functionfwill return ... only if parameter x satisfies ...”.

If the function has a side effect, then it is important to specify the post conditions also. The motivation

for writing down all this is to divide responsibility:

• The specification provides clear guidelines to the developer as to what to develop.

• The user of the function can use it withoutworrying about how exactly the function does its work.

Even if the function is written and used by the same programmer, by writing specifications, the

programmer’s mental stress is reduced. While writing the function the programmer only concentrates
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on the specification and does not worry about the different situations in which the function will be

used, because that is implicitly captured in the specification. While writing the rest of the program, the

programmer does not worry about what goes on inside the function—the specification spells out what

the end result of the computation will be. Note finally that it is important that the name chosen for the

function reflect its purpose.

The calling program can specify the data which the function can use in its execution in different

ways. The simplest mechanism for this parameter passing is call by value, i.e. the values to be used

in the execution are copied into variables in the activation frame of the called function. Another

mechanism is call by reference. In this, the calling function specifies the variables which the called

function can use. The key point here is that the called function can make modifications to the specified

variables. The calling function will see the changes after the called function returns. Note that if a

function modifies the values of the reference parameters, this is a side effect, and this must be very

well documented.

We also saw the notion of pointers. It is possible to designate parameters of a function as being

pointers.When a call is made to such a function, the called functions specifies an address, which is then

copied into the corresponding parameter in the called function. The called function can dereference the

pointer if it wishes and get access to the data stored in the variable to which the pointer points. The

called function can then even modify the value of the variable if it so chooses. To this extent, passing

the pointer to a variable is similar to passing by reference. You may wonder what happens if a pointer

is passed by reference, see Exercise 8.

EXERCISES

1. Write a function that prints the GCD of two numbers.

2. Modify the function drawPolygon so that it returns the perimeter of the polygon drawn, in

addition to drawing the polygon.

3. Write a function to find the cube root of a number using Newton’s method. Accept the number of

iterations as an argument.

4. Write a function to determine if a number is prime. It should return true or false, i.e. be of

type bool.

5. Write the function read_marks_into and the main program for mark averaging using

pointers.

6. A key rule in assignment statements is that the type of the value being assigned must match the

type of the variable to which the assignment is made. Consider the following code:

int *x,*y, z=3;

y = &x;

z = y;

y = *x;

Each of the assignments is incorrect. Can you guess why? If not, write the code in a program,

compile it, and the compiler will tell you!
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7. What does the following code print?

void f(int x, int &y, int *z){

cout << x++ <<’ ’<< y++ <<’ ’<< ++*z << endl;

}

main_program{

int a=10, b=20, c=30;

f(a,b,&c);

f(c,a,&b);

}

8. You may wonder whether it is possible to pass a pointer by reference. It is indeed possible, as

shown in the following code.

void f(int* &a, int* &b){

cout << *a << endl;

a = b;

}

main_program{

int x=5, y=10;

int *p = &x, *q = &y;

f(p,q);

cout << *p <<’ ’<< *q << endl;

}

What do you think will be printed? Check your answer by executing the code.

9. When drawing letters on the canvas, it may be more convenient if the drawing function can be

given a char as argument and it then draws out the supplied character. Of course, it may not

be possible to draw a character for all values between 0 and 255. So your function should return

true iff it indeed drew the supplied character.



CHAPTER10
Recursive Functions

We are now in a position to discuss what is perhaps the most powerful, most versatile problem solving

technique ever: recursion.What we are going to present will not really contain any new C++ statements.

Rather, what you have learned so far will be used, possibly in a manner which might surprise you, to

solve some difficult computational problems in a very succinct manner.

A fundamental idea in designing algorithms is problem reduction. The notion is very common

in mathematics, where we might say “Using the substitution y = x2 + x the quartic (fourth degree)

equation (x2 + x+ 5)(x2 + x+ 9) + 7 = 0 reduces to the quadratic (y + 5)(y + 9) + 7 = 0.”. Of

course, reducing one problem into another is useful only if the new problem is in some sense easier

than the original. This is true in our example: quadratic equations are easier to solve than quartic. The

strategy of reducing a problem to another is easily expressed in programs: the function we write for

solving the first problem will call the function for solving the second problem. We saw examples of

this in the previous chapter.

An interesting case of problem reduction is when the new problem is of the same type as the original

problem. In this case, the reduction is said to be recursive. This ideamight perhaps appear to be strange,

but it is in fact very common. Consider the following rules for differentiation:

d

dx
(u+ v) =

d

dx
u+

d

dx
v

d

dx
(uv) = v

d

dx
u+ u

d

dx
v

The first rule, for example, states that the problem of differentiating the sum u+ v is the same as that

of first differentiating u and v separately, and taking their sum. You have probably used these rules
without realizing that they are recursive. There are two reasons why these rules work:

1. The reduced problems are actually simpler in some precise sense. In our example, the problem

of differentiating u or of differentiating v are indeed simpler than the problem of differentiating

u+ v, because u and v are both (textually) smaller expressions than u+ v. Notice that when we

reduce one problem to a problem of another type (non-recursive reduction), the new problem is

required to be of a simpler type. For recursive reduction, it is enough if the new problem is of a

smaller size.
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2. We have a way to directly solve problems of some suitably designated small size. Thus we will

not just keep reducing problems indefinitely. The problems which we expect to solve directly are

called the base cases. Considering differentiation again, suppose we wish to compute:

d

dx
(x sinx+ x)

Then using the first rule, we would ask to compute

d

dx
x sinx+

d

dx
x

Now, the computation of d
dxx is not done by further reduction, i.e. this is a base case for the

procedure. So in this case, we directly write that d
dxx = 1. To compute d

dxx sinx we could use

the product rule given above, and we would need to know the base case d
dx sinx = cosx.

Even on a computer, recursion turns out to be extremely useful. In this chapter we will see several

examples of the idea.

10.1 EUCLID’S ALGORITHM FOR GCD

Euclid’s algorithm for GCD is naturally expressed recursively, as it turns out. Here is Euclid’s theorem,

restated for convenience.

Theorem 2 (Euclid) Letm, n be positive integers. Ifm%n = 0, thenGCD(m, n) = n. Ifm%n �= 0

then GCD(m, n) = GCD(n,m%n).

The theorem essentially says that either the GCD of m, n is n, or it is the GCD of n,m%n. But

this is exactly like saying that the derivative of an expression can be written down directly or it is the

derivative of some simpler expression. Following the analogy, it would seem tempting, to call gcd

from inside of itself.

int gcd(int m, int n)

// finds GCD(m,n) for positive integers m,n

{

if(m % n == 0) return n;

else return gcd(n,m % n);

}

A function that calls itself, like the function gcd above, is said to be recursive.

Interestingly, gcd as defined above actually works! In the last chapter, we sketched out the

mechanism used to execute functions, and it turns out that the same mechanism will correctly compute

the GCD using the above code. We will see an example and a general proof shortly.

10.1.1 Execution of Recursive gcd

Suppose for the moment that our main program that uses the gcd definition above is

main_program { cout << gcd(36,24) << endl;}
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Function call main_program gcd(36,24) gcd(24,12)

Activation frame m : 36 m : 24

contents n : 24 n : 12

State of call Suspended Suspended Executing

Code with cout « if(m % n == 0)  if(m % n == 0)

showing next  gcd(36,24) return n; return n;

statement to « endl; else return else return

be executed  gcd(n, m % n); gcd(n, m % n);

Fig. 10.1 A snapshot of the execution of recursive gcd

Suppose the main program begins execution. Immediately, it comes upon the call gcd(36,24). As

we know, this causes an activation frame to be constructed for the call, and in this activation frame the

parameters m,n are assigned the value 36,24 respectively.

Now the execution begins in the new activation frame. The first check, m % n == 0 fails, because

36 % 24 is 12 and not 0. Thus we execute the else part. But this contains the call gcd(n, m %

n), i.e. gcd(24,12). Our function call execution mechanism must be used again. Thus, another

activation frame is created, this time for gcd(24,12), and m,n in this frame are set to 24,12

respectively. Also, the execution of the current call, gcd(36,24), suspends. Figure 10.1 shows the

state of the world at this time in the execution.

The execution begins in the new activation frame. We execute the first statement which requires us

to check if m % n == 0, i.e. 24 % 12 == 0. This is indeed true. So we execute the statement

return n. This causes 12 to be returned. Where does this value go? It goes back to the place

from where the current recursive call was made. Since the current call was made while processing

the second activation frame, the value 12 is returned there. The second activation then continues its

execution. However, there isnt much more left to in this activation. This code was to return the value

of gcd(24,12)—now that this value is known, 12, it is returned back. So the value 12 is returned

also from the second activation. This goes back to the first activation. The first activation resumes from

where it was suspended. As per its code, it prints out the received value, 12, and then main terminates.

So as you can see, the correct value was computed and printed.

The number of times a function is called is called the depth of the recursion. In the present example,

the depth is 2. For the example considered in Section 7.7, GCD(3977, 943) you can check that the
depth will be 5, equalling the number of iterations required by the program in Section 7.7. Please work

this out by hand. You will also observe that the values assigned to m,n in successive activation frames

in the recursive program are in fact the same values that m,n receive in successive iterations of the

non-recursive program in Section 7.7.

10.1.2 Interpretation of Recursive Programs

In some ways there is nothing more to be said about recursive programs—the last section said it all.

We mentioned in the previous chapter that a function call should be thought of as contracting an agent

to do the work you want, while you wait (are suspended). If the work taken up by the agent is too

complicated, then it is possible that the agent might further subcontract it out to another (sub-)agent.

When this happens, you are waiting for the agent to finish, the agent is herself waiting for the sub-agent

to finish, and possibly the chain might be very long. But so what?
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Of course, the natural intuition is that you contract out work that you cannot do yourself. So it

makes sense for the function lcm to contract out the work of gcd as was done in the last chapter.

But whoever heard of contracting out work that you yourself can do? That is in fact what seems to be

happening: the recursive function gcd clearly should know how to compute the GCD, and yet it seems

to be subcontracting out work!

Suppose you have the task of building a Russian doll, which is a children’s toy which looks like a

doll, but you can open up the doll to see that there is a doll inside, which contains another doll, and so

on, till some fairly small doll is reached, which cannot be further opened up. Suppose further that we

define a k-level doll to be a doll which contains k − 1 dolls inside. So let us say that your task is of

building a k-level doll. How would you do it recursively?

You would contract it to some craftsman. Imagine that the craftsman builds the outer doll, but does

not work on the inner dolls. Instead the task of building the inner k − 1 dolls, which is really a k − 1

level doll is subcontracted to another craftsman. And so it goes. This continues until a craftsman is

asked to build a 0 level doll, which is just an ordinary doll. This is not subcontracted but built directly.

So this doll is sent back to the previous craftsman who adds a doll and makes it a level 1 doll and sends

it back, and so on, until you eventually receive the k level doll that you ordered!

This is clearly a strange way of buildingdolls—butwhat you should understand for now is that it can

work in principle. To prove that the process works correctly, you would use induction. First establish

that some craftsman can build a level 0 doll without further subcontracting, the so called base case.

Next, you must prove that a craftsman can put together a level i+ 1 doll given a level i doll. This is

the inductive step.

We see how this works for GCD next.

10.1.3 Correctness of Recursive Programs

The key to proving the correctness of recursive programs is to use mathematical induction. We first

need to have a notion of the size of the problem being solved. The induction hypothesis typically states

that the program correctly solves problems of a certain size.

As an example we will see how to argue that our gcd function will correctly compute the GCD. We

need to decide what should constiute the size. Based on the experience from Section 7.7, we choose the

value of the second argument as the size of the problem. Our induction hypothesis IH(j) is: gcd(i, j)

correctly computes the GCD of i, j for all i > 0.

It is worth taking an example to clarify this. For example, IH(10) is: gcd(i, 10) correctly

computes the GCD of i, 10 for all i > 0. Clearly, if we prove IH(j) for all j > 0 then we will have

proved that gcd(i, j) works correctly for all i, j > 0.

The base case is j = 1. Thus, we must prove that any call gcd(i, 1) will return the correct result.

But note that in the first step of gcd(i, 1) we will discover that i%1 is zero, and will report 1 as the
answer. This is clearly correct.

So let us assume IH(1), IH(2), . . . , IH(j). Using these, we will prove IH(j + 1). In other words,

we must prove that the call gcd(i, j + 1) produces the correct answer. In the first step of the call, we

check whether i%(j + 1) equals 0. This is true if j + 1 divides i, and in that case j + 1 is the GCD,

which is correctly returned. Suppose then that the condition is false. In that case the algorithm tries to

compute and return gcd(j, i%(j + 1)), where we know that (i%(j + 1)) > 0. But the remainder on

dividing by j + 1 must be at most j. Thus, the second argument to this call lies between 1 and j. Thus,

by one of our assumptions IH(1), . . . , IH(j), we know that this call will return correctly, i.e. return
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GCD(j, i%(j + 1)). But by Euclid’s theorem, we know that this is also GCD(i, j + 1), i.e. it is the

correct answer. Thus, correctness follows by the principle of (strong) induction.

You will observe that this proof is very similar to the proof in Section 7.8. Indeed, the non-recursive

program in that section is really doing the same calculations as the recursive one: the values of m,n in

the tth iteration will be the same as the values taken by the arguments m,n in the tth recursion. Indeed,

other assertion made there, e.g. that the number of iterationsmust beO(logm), ifGCD(m, n) is being
calculated, will correspond to the assertion in the present case that the recursive program will recurse

only to a depthO(logm). Thus the total time taken will beO(logm) as for the non-recursive algorithm.

10.2 RECURSIVE PICTURES

Figure 10.2 shows a picture which we might consider, using some imagination, to be of a tree, say from

the African Savannas. Our goal in this section is to write a program to draw such trees. Note that our

interest in trees goes beyond botany; tree diagrams are used in many places. Thus, a tree might depict

the hierarchical structure of many organizations, e.g. the root might represent the president, and that

may be connected to the vice presidents who report to the president, those in turn to the managers who

report to the vice presidents. As you will see later, the manner in which functions are called also have a

tree structure. So understanding tree structures and being able to draw them is useful. By the way, such

tree structures are studied at great length in graph theory, where it is customary to use the term edge

for a branch of a tree, and the term vertex for each endpoint (possibly shared) of each branch.

Figure 10.2 has some interesting symmetries. First, of course, there is a symmetry of reflection

about a vertical line through the middle. But also to be noted is the another kind of symmetry: parts of

the tree are similar to the whole. The portion of the tree on top of the left branch from the bottom, or

the portion on top of the right branch, can each be considered to be a tree! In fact we might describe a

tree as two small trees on top of a “V” shape formed by the branches at the bottom.

It is customary to define the height of the tree to be the maximum number of branches you travel

over as you move up from the root towards the top along any path. Our tree of Figure 10.2 has height

5. Clearly, we can say that a tree of height h is made up of a root with two branches going out, on

top of each of which sits a height h− 1 tree, as shown in Figure 10.3. Of course, to draw the picture,

we need more information, for example, what is the length of the branches, and what are the angles at

which the branches emerge. For the tree shown, the branch lengths shrink as we go upwards, and so do

the angles. Suppose we declare that we want both the branch lengths and the angles between emerging

Fig. 10.2 An exotic tree



Recursive Functions
143

Height h−1 tree Height h−1 tree

Height h tree

Fig. 10.3 Recursive structure of our exotic tree

branches to both shrink by a fixed shrinkage factor as we go up. Now, if we are given the length of the

bottom most branches, and the height of the tree, we should be able to draw the picture.

The code follows the basic observation: to draw a tree of height h > 0, we must draw the root and

immediate branches, and two trees of height h− 1 on top. A tree of height h = 0 is just a point, and

so nothing need be drawn.

10.2.1 Drawing the Tree Using a Turtle

As in any turtle-based drawing program, we must carefully write the pre and post conditions for the

turtle. So we will require that at the beginning the turtle be at the root, pointing upwards (pre condition).

After the drawing is finished, we will ensure that the turtle is again at the root and pointing upwards

(post condition). Once we fix these pre and post conditions, the program writes itself: we merely have

to ensure that we maintain the conditions.

The process of drawing is as follows. Clearly, if h = 0, we draw nothing and return. Otherwise, the

figure is drawn in a series of 7 steps.

1. Draw the left branch. At the start, because of the precondition, we know that the turtle is pointing

upwards, so it must turn by half the angle that is meant to be between the branches. Then we move

forward by the length of the branch.

2. Draw the left subtree. We first turn so that the turtle is facing the top direction, because that is

a precondition for drawing trees. Then we recurse. We need to call with height h− 1, and the

branch length and angle shrunk by the given shrinkage value.

3. Go back to the root. After drawing the left subtree, its post-condition guarantees that the turtle

will face directly upwards. To get back to the root we must turn and go backwards, which is

accomplished by giving a negative argument to the forward command.

4. Draw the right branch. Since the turtle is pointing in the direction of the left branch, we must turn

it to the right, and then go forward.

5. Draw the right subtree. This is exactly as we did the left.

6. Go back to the root, as we did after drawing the left subtree.
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7. Ensure the post condition. Finally, we want to honour the post-condition, so we turn the turtle so

that it faces directly upward.

This is expressed as the following program, where we have put comments to indicate the

correspondence with the steps described above.

void tree(int height, float length, float angle, float shrinkage)

// precondition: turtle is at root, pointing up.

// post condition: same

{

if(height == 0) return;

// 1. draw the left branch

left(angle/2);

forward(length);

// 2. draw the left (sub)tree.

right(angle/2);

tree(height-1, length*shrinkage, angle*shrinkage, shrinkage);

// 3. go back to the root

left(angle/2);

forward(-length);

// 4. draw the right branch

right(angle);

forward(length);

// 5. draw right (sub)tree.

left(angle/2);

tree(height-1,length*shrinkage, angle*shrinkage, shrinkage);

// 6. go back to root

right(angle/2);

forward(-length);

// 7. ensure post condition

left(angle/2);

}

To call the function, we must supply the arguments, but also ensure the precondition. Since we know

that at the start the turtle is facing right, we must turn it left by 90 degrees so that it points upwards. So

our main program could be the following.

main_program{

turtlesim();

left(90);

tree(5,120,120,0.68);

wait(5);

}
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10.2.2 Trees Without Using a Turtle

It is easier to draw a tree without using a turtle, as we will show next. However, using a turtle has some

advantages, which we remark upon at the end.

The basic idea is to use the Line shape from Chapter 5. We draw the branches using this, and then

recurse to draw the subtrees. Note that we must now pass the coordinates of the root as well to each

call. For variety, we will also draw a tree with a somewhat different layout. Specifically, we will draw

a tree such that it occupies a given rectangular box, with the root appearing at the center of its base.

If the coordinates of the root are given, then the box is specified by giving its height Hb and width

Wb. We will also assume for simplicity that the for a tree of height h the points at which the branches

divide are at heights Hb/h, 2Hb/h, 3Hb/h, . . .. Likewise, when a tree has two subtrees, each subtree

is accommodated in a box of half the width of the original box. The code can now be written easily.

void tree(int h, float H_b, float W_b,

float rx, float ry) // coordinates of the root.

{

if(h > 0){

float LSRx = rx-W_b/4; // x coordinate of root of Left subtree.

float RSRx = rx+W_b/4; // x coordinate of root of Right subtree.

float SRy = ry-H_b/h; // y coordinate of roots of subtrees.

Line Lbranch(rx, ry, LSRx, SRy); Lbranch.imprint();

Line Rbranch(rx, ry, RSRx, SRy); Rbranch.imprint();

tree(h-1, H_b-H_b/h, W_b/2, LSRx, SRy); //Left Subtree.

tree(h-1, H_b-H_b/h, W_b/2, RSRx, SRy); //Right Subtree.

}

}

This code is more compact, because we don’t have to worry about managing the postconditions of the

turtle.

However, it should be noted that this code is only useful to grow trees vertically. Suppose you want

to orient the tree at an angle of 60 degrees to the vertical, then this code is useless. However, the

turtle-based code can be used, we merely call it after the turtle is oriented at the required angle. This

feature appears useful for drawing many botanical trees, i.e. the subtrees of many botanical trees appear

grow at an angle to the vertical. As a result, to draw realistic looking (botanical) trees, it might be more

convenient to use the turtle based code. See Exercise 11.

10.3 VIRAHANKA NUMBERS

Virahanka, an Indian prosodist who lived in the 7th century AD considered the following problem.

Suppose you want to construct poetic metres, built using syllables of length 1 and length 2. The length

of a poetic metre is simply the sum of the lengths of the syllables in the metre. Virahanka asked and

answered the following question: howmany different poetic metres can you compose of a given length?
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You may find the problem easier to understand if expressed in a slightly different form. Suppose

you have an unlimited supply of bricks of heights 1 and 2. You want to construct a tower of height n.

In how many ways can you do this? For example, suppose n = 4. One possibility is to stack 4 height 1

bricks, i.e. the order of heights considered bottom to top is 1,1,1,1. Other orders are 1,1,2, or 1,2,1 or

2,1,1 or 2,2. You can check by trial and error that no other orders are possible. Thus if you define Vn
to be the number of ways in which a tower of height n can be constructed, we have demonstrated that
V4 = 5. We would like to write a program that computes Vn given n. Clearly, Vn is also the number of

different poetic metres of total length n composed using syllables of lengths 1 and 2.

Virahanka, or quite possibly preceding prosodists, about whom definite information is not known,

used the following method to solve the problem, which apparently originates from Pingala, who lived

around the 3rd century BCE. Virahanka begins with the observation that the first syllable must have a

length of 1 or 2, or that the bottom-most brick is either of height 1 or height 2. You may think this is

rather obvious, but from this it follows:

Vn =

Number of ways

of building a

tower of height n
=

Number of ways

of building a

tower of height n

with bottom-most

brick of height 1

+

Number of ways

of building a

tower of height n

with bottom-most

brick of height 2.

Virahanka’s next observation, in the language of bricks, is that if you select the bottom-most brick to

be of height 1, then the problem of building the rest of the tower is simply the problem of building a

height n− 1 tower. Thus, we have

Number of ways of building a

tower of height n with bottom-

most brick of size 1

=

Number of ways of

building a tower of

height n − 1
= Vn−1

Likewise, it also follows that

Number of ways of building a

tower of height n with bottom-

most brick of height 2

=

Number of ways of

building a tower of

height n − 2
= Vn−2

So we have

Vn = Vn−1 + Vn−2

What we have written above is an example of a recurrence, an equation which recursively defines a

sequence of numbers, V1, V2, . . . in our case.

Now we are ready to write a recursive program. Clearly, in order to solve the problem of size n, we

need a solution to problems of size n− 1 and n− 2 respectively. So we have a procedure for reducing

the size of the problem, what we need is the base case. Is there a problem that we can solve easily?

Clearly, V1 = 1, because a height 1 tower can be built in only 1 way – by using a single height 1 brick.

So we may propose the following program:

// First attempt

int Virahanka(int n){

if(n == 1) return 1; // V_1

else return Virahanka(n-1) + Virahanka(n-2);

}
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If we run this, say calling it Virahanka(10) from a suitable main program, we will see that it does

not terminate. How do we figure out what is wrong? We could try to prove the correctness of our

function: this will clearly not succeed, but it may reveal our error.

Clearly, the value of the argument to Virahanka should be considered the “problem size”. So our

induction hypothesis IH(i) is: Virahanka(i) returns Vi for i ≥ 1.

The base case is i = 1. When we make the call Virahanka(1), in the very first line we will check

if n is 1. This will turn out to be true, because n has the value i = 1. So 1 will be returned. Thus, the

base case is proved.

So let us now assume IH(1), IH(2), . . . , IH(i). We would like to prove IH(i+ 1), i.e. show that

Vi+1 is returned for the call Virahanka(i+ 1), where i ≥ 2. On such a call, clearly the test in

the first statement will not succeed, so we will return Virahanka(n-1) + Virahanka(n-2).

Since n is i+ 1, these calls are to Virahanka(i) and Virahanka(i− 1). We know from the

assumption that Virahanka called with an argument between 1 and i will return Vi. Further, since

i ≥ 2, we know that i− 1 ≥ 1. Thus, Virahanka(i− 1) will indeed return Vi−1. As to the call,
Virahanka(i− 2), we cannot be sure, because we only know that i− 2 ≥ 0. Thus i− 2 may not
always lie in the range 1 through i. Specifically, if i = 2, then Virahanka is called with 0. Our

assumptions do not cover this case IH(0), and the proof cannot be completed.

But our failed proof tells us something: our function calls Virahanka(0) recursively when we

make the call Virahanka(2). We do not expect Virahanka to be called with argument 0. So we

should really try to rework what happens in this case.

The simple fix is: we must handle Virahanka(2) also in a base case. We know that Virahanka(2)

should return V2 which is 2.

int Virahanka(int n){

if(n == 1) return 1; // V_1

if(n == 2) return 2; // V_2

return Virahanka(n-1) + Virahanka(n-2); // V_{n-1} + V_{n-2}

}

Indeed you will see that this program will run correctly, and that our proof will also go through. This

is left as an exercise.

In hindsight, we could have expected this: just knowing V1 = 1 and Vn = Vn−1 + Vn−2, we cannot
figure out V2. So we need to specify that.

10.3.1 Some Difficulties

If you run this, you will see that it is very slow, even for modestly large n. The reason for it can be seen
in Figure 10.4. This figure shows the so called execution tree for the call Virahanka(6). Note that

we have drawn this tree growing downward, as is more customary for execution trees. The node at the

top, which we will still call the root, corresponds to the original call. So we have marked the root in the

picture with 6, the argument to the original call. Out of each vertex we have one downward going edge

for every call made. Since Virahanka(6) requires Virahanka to be called first with argument 5,

and then with 4, we have 2 outgoing branches. At the ends of the corresponding branches we have put

down 5 and 4 respectively, the arguments for the corresponding calls. This goes on till we get to calls

Virahanka(2) or Virahanka(1). Since these calls do not make further recursive calls, there are

no outgoing branches from the vertices corresponding to these calls.
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Fig. 10.4 Execution tree for Virahanka(6)

As you can see in the figure, Virahanka(4) is called twice, once as a part of Virahanka(5),

and once directly from Virahanka(6). But once we know V4 through one of the calls, we could just

remember this value and use it instead of making the second call to Virahanka(4). In fact, you will

see that the call Virahanka(3) happens 3 times, the call Virahanka(2) happens 5 times, and

the call Virahanka(1) happens 8 times. So the program is quite wasteful. You can in fact prove that

while computing Vn, our function will make Vn−i calls to Virahanka(i). The number of calls to
Virahanka(1) is thus Vn−1, which you can show to be at least 2�n/2�. Thus, if you want to compute
Vn by using our function above you are expecting to spend time proportional to at least 2n/2. This is
a huge number, and indeed computing something like say V45 using the call Virahanka(45) takes

an enormous amount of time on most computers.

10.3.2 Using a Loop

Here is a different way to compute Vn. We know that V1 = 1, V2 = 2 and V3 = V1 + V2. Thus, we can

compute V3 = V2 + V1 = 2 + 1 = 3. After that we can compute V4 = V3 + V2 = 3 + 2 = 5. After

that we can compute V5, and this process can go on. Clearly, there is something repetitive going on

here. So presumably a loop will be useful to program it. Presumably, we can compute one Virahanka

number in each iteration, and there need to be n− 2 iterations, because V1, V2 were computed before

entering the loop.

Our plan then is to calculate Vi+2 at the end of the ith iteration, so that at the end of the n− 2th

iteration we will have Vn. At the beginning of the ith iteration we should have available Vi and Vi+1.

For storing these, we will use variables vi and viplus1. During the ith iteration we will calculate

Vi+2 in variable viplus2. Note that to prepare for the next iteration, we must set vi to viplus1

and viplus1 to viplus2. And we must initialize vi, viplus1 respectively to V1, V2.

int VirahankaByLooping(int n){ // Program to compute Virahanka

// number V_n

int v1=1,v2=2; // v1 = V_1, v2 = V_2

if(n == 1) return v1;

else if(n == 2) return v2;

else {

int vi=v1, viplus1=v2, viplus2;

repeat(n-2){// Plan:

// Before ith iteration, vi, viplus1 = V_{i}, V_{i+1}

viplus2 = vi + viplus1;
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vi = viplus1; // prepare for next iteration

viplus1 = viplus2;

}

return viplus2;

}

}

To compute Vn, this function will require n− 2 iterations. Each iteration takes a fixed amount of time

independent of n. Thus, we can say that the total time is approximately proportional to n.

Indeed, you will see that V45 gets computed essentially instantaneously using this loop based

function.

10.3.3 Historical Remarks

This sequence may look familiar to many readers. Indeed, these numbers are more commonly known

as the Fibonacci numbers. But Virahanka is known to have studied them before Fibonacci. In fact, it

appears that they may have been known in India even before Virahanka. In any case, it seems more

appropriate to call these numbers Virahanka numbers rather than Fibonacci numbers.

10.4 THE GAME OF NIM

In this section, we will write a program to play the game of Nim. This game is quite simple, but

nevertheless interesting, and our program will contain a key idea which will be useful in all game

playing programs.

The game has two players, say White and Black. There are some n piles of stones, the ith pile

containing xi stones at the beginning.We will have different games for different choices of xi. A move

for a player involves the player picking a pile in which there is at least one stone, and removing one or

more stones from that pile. The players move alternately, say with White moving first. The player that

makes the last valid move, i.e. after which no stones are left, is considered the winner. Or you may say

that the player who is unable to make a move on his turn because there are no stones left is the loser.

Here is a simple example. Suppose we have only 2 piles initially with 5 and 3 stones respectively.

SupposeWhite picks 4 stones from pile 1. Then the first pile has 1 stone left and the second has 3. Now

Black can win by picking 2 from the second pile: this will leave 1 stone in each pile, and then White

can pick only 1 of them, leaving the last one for Black. Of course, White need not have picked 4 stones

in the very first move. Is there a different choice for which he can ensure a win? We will leave it to

you to observe that White can in fact win this game by picking only 2 stones from the first pile in his

first move.

So here is the central question of this section: Given a game position, i.e. number of stones in each

pile, determine whether the player whose turn it is to play can win, no matter what the other player

plays. In case the position is winning, we would also like to determine a winning move. Note by the

way, that when we say winning/losing position, we mean winning/losing for the player whose turn it

is to move.

In trying to solve any problem, it is a good idea to try out some examples first. Consider the simplest

possible position: the position in which no pile contains any stone because all were taken earlier. As

defined above, in this position, the player whose turn it is is clearly the loser. The next harder example
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is: suppose there is only one pile with just one stone. Clearly, this is a winning position (for the player

on move) because he can take that stone. In fact, if there is just one pile with any number of stones, it

is a winning position because the player on move will take the entire pile.

Let us next consider the next more complex situation, say there are 2 piles, each with one stone.

There are only two (similar) moves possible, either take the stone in the first pile, or the stone in the

second pile. In either case, we leave behind a single pile with 1 stone, which is a winning position for

our opponent. Thus, an important principle emerges from this example:

Observation 1

If from a certain position P , suppose on every move we go to a winning position. Then P is a losing

position.

This is indeed an important observation. Let us keep going and consider more complex situations,

say there are two piles, in the first one there are 2 stones, and the second has only 1. Now we have a

choice of three moves:

1. Pick one stone from the first pile. In that case, one stone remains in each pile. As we have

discussed, this is a lost position for our opponent. So good for us!

2. Pick two stones from the first pile. In this case, we leave just one stone. This is a winning position,

for our opponent. Hence, not good for us.

3. Pick the only stone from the second pile. This leaves behind one pile with two stones. As discussed

above, this is also a winning position, for our opponent. Hence, this is not good either.

So in this position, the first move will make us win while the remaining two will make us lose. So what

do we make of this position? Remember that we have the choice of what move to make, and hence

we will certainly choose the first move! So this position is a winning position for us. This seems to

generalize into another observation.

Observation 2

If in some position P there exists a move after which we reach a losing position. Then P is a winning

position.

Note that this observation nicely complements the first one. If we find that some move leads to a

losing position, then the second observation applies. If we find that there is no such move, i.e. all moves

lead to a winning position, then the first observation applies.

The above observations gives us a recursive algorithm for determining if a given position P is

winning or losing. We determine all moves mi possible in P , and the positions Pi they lead to. Then

we determine (recursively!) whether Pi are winning or losing. If we find some Pi that is losing, we

declare P to be winning. Otherwise if all Pi are winning, we declare P to be losing. We know that in

order for a recursive algorithm to work, we must ensure two things:

1. Each subproblem we are required to solve is simpler than the original. In our case, this is true in

the sense that each Pi must have at least one stone less than P , and is hence simpler.

2. We can argue that eventually we will reach some (“simplest”) problems which we can solve

directly. Clearly, as the game progresses we will reach the situation in which no stone remains.

As discussed, this is a losing position.
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Thus, we can write a program to determine whether a Nim position is winning or losing. We give this

program for the case of 3 piles, but you can see that it can be easily extended for a larger number of

piles. The function winning given below takes a game position and returns true if the position is

winning, and false if the position is losing.

bool winning(int x, int y, int z)

// x,y,z = number of stones in the 3 piles.

// returns true if this is a winning position.

{

if(x==0 && y==0 && z==0) return false; // base case

for(int i=1; i<=x; ++i) // Pick i stones from pile 1

if (!winning(x-i,y,z)) return true;

// if a losing next state is found

for(int i=1; i<=y; ++i) // Pick i stones from pile 2

if (!winning(x,y-i,z)) return true;

// if a losing next state is found

for(int i=1; i<=z; ++i) // Pick i stones from pile 3

if (!winning(x,y,z-i)) return true;

// if a losing next state is found

return false; // if all next states are winning

}

The function can be called using a main program such as the one below.

main_program{

int x,y,z;

cout << "Give the number of stones in the 3 piles: ";

cin >> x >> y >> z;

if (winning(x,y,z)) cout << "Wins." << endl;

else cout << "Loses." <<endl;

}

Our function only says whether the given position is winning or losing, it does not say what move to

play if it is a winning position. You can easily modify the program to do this, as you are asked in the

exercises.

The logic of our function should be clear. In the given position, we can choose to take stones from

either the first pile, the second pile, or the third pile. The first loop in the function considers in turn the

case in which we remove i stones from the first pile. This leaves the new position in which the number

of stones is x-i,y,z. We recursively check if this is a losing position. If so, the original position,

i.e. in which there are x,y,z stones respectively, must be a winning position by observation 2. The

subsequent loops consider the cases in which we remove stones from the second and third piles. If we

find no losing position after checking all moves, then indeed the original position must be losing, by

observation 1. So we return false in the last statement of the function.
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10.4.1 Remarks

It turns out that there is a more direct way to say whether a given position is winning or losing. This is

very clever, involving writing the number of stones in the piles in binary, and performing additions of

the bits modulo 2, and so on. We will not cover this, but you should be able to find it discussed on the

Internet.

Our program is nevertheless interesting, because the general structure of the program applies for

many 2 player games. Indeed, recursion is an important tool in writing game playing programs.

10.5 CONCLUDING REMARKS

Recursion is an extremely important idea for designing algorithms. Suppose you want to solve an

instance of a certain problem, i.e. a certain problem for a given set of input values. Then it helps to

assume that you can solve smaller instances (same problem for a smaller set of input values) somehow,

and ask: will the solution of smaller instances help me in solving the larger instance. If you can relate

the solution of your instance to solution of smaller instances, and also find a way to solve small

instances (“base cases”), you have a recursive algorithm! It is possible that Euclid discovered his GCD

algorithm thinking in this manner. Virahanka probably also discovered the solution to his problem

thinking in this manner.

In addition to having recursive algorithms, we also have recursive structures. Trees are a good

example of objects with a recursive structures. We can exploit the recursive structure to design a

recursive algorithm for drawing trees. But as you will see later, trees will be used for representing

many familiar objects, and in fact designing algorithms for those objects will require exploiting the

recursive structure.

The notion of recurrences is also important.

The example of Virahanka numbers also demonstrates an interesting point. It is quite likely that

Virahanka also solved his problem by thinking recursively, and indeed it is a good idea to think

recursively for the purpose of solving problems. But we must remember that sometimes it may not

be best to write the program recursively.

A technical point should be noted regarding the calculation of Virahanka numbers. As you will show

in the exercises, Vn is at least 2n/2, and hence even for modest value of n it will not fit in an int. If

you use long long you can work with somewhat larger values. If you use double you can work

with much larger values of n, but they will be correct only to 15 digits or so.

Finally, we also saw how to prove the correctness of recursive functions. We also saw how trying to

prove the correctness of an incorrect program can help us locate the error in the program.

EXERCISES

1. The factorial of a number n is denoted as n!, and can be defined using the recurrence n! = n×
(n− 1)! for n > 0 and 0! = 1. Write a recursive function to compute n!.

2. The binomial coefficient
�
n
r

�
can be defined recursively as

�
n
r

�
=
�
n−1
r

�
+
�
n−1
r−1
�
, for n > r > 0

and
�
n
0

�
=
�
n
n

�
= 1 for all n ≥ 0. Write a function to compute

�
n
r

�
.

3. Consider an equation ax+ by = c, where a, b, c are integers, and the unknowns x, y are required

to be integers. Such equations are called Diaphontine equations. If GCD(a, b) does not divide
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c, then the equation does not have any solution. However, the equation will have infinitely many

solutions if GCD(a, b) does divide c. Write a program which takes a, b, c as input and prints a

solution if GCD(a, b) divides c.

Hint 1: Suppose a = 1. Show that in this case an integer solution is easily obtained.

Hint 2: Suppose the equation is 17x+ 10y = 4. Suppose you substitute y = z − x. Then you get
the new equation 7x+ 10z = 4. Observe that the new equation has smaller coefficients, and given

a solution to the new equation you can get a solution to the old one.

4. Consider the recurrence Wn = Wn−1 +Wn−2 +Wn−3, with W0 = W1 = W2 = 1. Write a

recursive program for printingWn. Also write a loop based program.

5. Let Bn denote the number of branches in the recursion tree for Vn. Thus B6 = 14, considering

Figure 10.4. Note that each branch ends in a call to Virahanka, hence Bn gives a good estimate
of the number of operations needed to compute Vn. Write a recurrence for Bn and use it to write

a program that computes Bn. What are the base cases for this? Make sure your answer matches

the branches in the trees of Figure 10.4.

6. Suppose you call the function gcd on consecutive Virahanka numbers Vn, Vn+1, i.e. you execute

gcd(Vn+1, Vn). There is something interesting about the arguments to the successive recursive

calls. What is it? You may wish to modifygcd so that it prints the arguments, and see what results.

The depth of the recursion is defined to be the number of consecutive recursive calls made, each

nested inside the preceding one. What is the depth of the recursion for the call gcd(Vn+1, Vn)?

7. The tree drawn in Figure 10.2 is called a complete binary tree. Binary, because at each branching

point there are exactly 2 branches, or at the top, where they are no branches. Complete, because

all branches go to the same height. You could have an incomplete binary tree also, say you only

have one branch on one side and the entire tree on the other.

Write a program which takes inputs from the user and draws any binary tree. Suppose to any

request the user will only answer 0 (false) or (true). Device a system of questions using which you

can determine how to move the turtle. Make sure you ask as few questions as possible.

8. Consider a complete binary tree with height h. As you can see, such a tree has 2h+1 − 1 vertices.

Our goal now is to write a program that not only draws such a tree, but also assigns a unique

number for each vertex, in the range 1 through 2h+1 − 1. Further, the number should be printed

in the picture, slightly to the right of the vertex itself. The simplest numbering is the In-order

numbering. In this, the vertices are numbered 1 through 2h+1 − 1 in left to right order. Thus the

leftmost leaf would get the number 1, the root of the entire tree would get the number 2h, and the

rightmost leaf would get the number 2h+1 − 1. Modify our program drawing trees without using

the turtle so that this numbering is also printed. Hint: Have extra arguments to the call which tell

the range of numbers to be printed in that call. Another possibility is to have a reference argument

which states what number to print. It should start at 0 and must be incremented everytime a

number is printed.

9. Another interesting numbering of tree nodes is the pre-order numbering. The pre-order time of a

node is simply the time at which the subtree rooted at that node starts getting drawn. Based on

this, the pre-order number of a node is defined to be i if its preorder time is the ith smallest.
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Modify our tree drawing program (not using turtle) so that it prints the pre-order numbers along

with the tree. As examples, note that the root has pre-order number 1, the leftmost leaf the number

h+ 1, and the rightmost leaf the number 2h+1 − 1.

10. Another interesting numbering of tree nodes is the post-order numbering. The post-order time of

a node is simply the time at which drawing of the subtree rooted at that node is finished. Based on

this, the post-order number of a node is defined to be i if its post-order time is the ith smallest.

Modify our tree-drawing program (not using turtle) so that it prints the post-order numbers along

with the tree. As examples, note that the leftmost leaf has post-order number 1, the root the number
2h+1 − 1, and the rightmost leaf the number 2h+1 − h − 1.

11. More commonly, (botanical) trees have a single trunk that rises vertically, and then splits into

branches. So you could consider a tree to be “one vertical branch, with two trees growing out of

it at an angle”. Draw trees expressing this idea as a recursive program. It will be convenient to

use the turtle for this. Try out variations, find which trees look realistic. Figure 10.5 shows an

example, taken from the literature on the Logo programming language. The triangles at the end

are obtained by imprinting the turtle.

Fig. 10.5 A realistic tree

12. Write a function draw_Hem that draws the recursion tree for calls to Virahanka, i.e.

draw_Hem(6) should be able to construct the tree shown in Figure 10.4.

Fig. 10.6 Hilbert space filling curves H1,H2,H3,H4
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13. Figure 10.6 shows curves H1, H2, H3 and H4, left to right. These curves were invented by the

mathematician David Hilbert, and are examples of so-called space-filling curves.

Draw a sketch (on paper) showing howHn is composed of one or moreHn−1 curves. This should
be in the style of Figure 10.3. Write a turtle-based program to draw a Hilbert space filling curve

Hn given n.

Follow the general scheme we used in Section 10.2, i.e. begin by stating the pre and post

conditions for the turtle for drawing Hn. Try to draw the curve without lifting the pen or

overdrawing.

You may find the following fact useful. Suppose a certain function f draws some figure F. Then if

we replace every turning angle θ in f by−θ, then we will get a figure that is a mirror image of F.
14. Write a recursive function for finding xn where n is an integer. Try to get an algorithm which

requires far fewer than the n − 1 multiplications needed in the natural algorithm of multiplying

x with itself. Hint: Suppose n is even. Then observe that you can calculate xn by (recursively)

calculating xn/2 and then squaring it, i.e. computing xn/2 × xn/2. This will enable you to

compute, say, x16 using just 4 multiplications. The question you must answer is: what do you do

if n is odd. Try something relatively simple.

15. There are many variations possible on the game of Nim as described above. One variation is: the

player who moves last loses. How will you determine whether a position is winning or losing for

this new game?

16. In another variation, you are allowed to pick either any non-zero number of stones from a single

pile, or an equal number of stones from two piles. Write a function that says whether a position

is winning for this game.

17. Write a function which returns a 0 if the given position is losing, but if the position is winning,

returns a value that somehow indicates what move to make. Decide on a suitable encoding to

do this. For example, to indicate that s stones should be picked from pile p, return the number

p× 10m + s, where 10m is a power of 10 larger than x, y, z the number of stones in the piles
for the given position. With this encoding, the last m digits will give the number of stones to

pick, and the more significant digits will indicate the pile number. Another possibility is to use

reference arguments to return how many stones to move and from which pile.

18. Suppose you want to send a message using the followingvery simple code. Say yourmessage only

consists of the letters ’a’ through ’z’, and in the code your merely replace the ith letter by i− 1.

Thus, ’a’ will be coded by 0, ’b’ by 1, and so on till ’z’ by 25. Further, there are no separators

between the numbers corresponding to each letter. Thus, the word “bat” will be coded as the string

1019. Clearly, some strings will have more than one interpretation, i.e. the string 1019 could also

have come from “kt”. You are to write a program that takes such a sequence of numbers, reads it

one character at a time and prints out the number of ways in which it can be interpreted.

Hint: This is somewhat tricky. Let Ni denote the number of ways in which the first i characters
can be interpreted. Show that you can determine Ni knowing Ni−1 and Ni−2, and the ith and
i− 1th characters. Now you should be able to write an iterative program to determineNi.



CHAPTER11
Program Organization and
Functions

We discussed functions as a way of encapsulating frequently used code so that it can be written just

once and then called whenever needed. However, functions also play another role in C++ programs.

Just as a cell is a basic structural unit of life, a function can be considered to be an organizational unit of

a C++ programs. A C++ program essentially is a collection of functions1. As we will see shortly, even

the main_program you have been writing is turned into a function by Simplecpp, structurally similar

to the other functionswe have been writing.Managing the functions constituting a program, especially

large programs, requires a systematic approach. The problem is further complicated because large

programs are often developed by teams of programmers, with each programmer possibly responsible

for developing some of the functions. Clearly, it is convenient if the different functions needed for a

program are in different files. In this chapter, we will see some of the issues in breaking up a program

into functions, possibly spread over multiple files, but yet able to call each other and work together as

a single program.

One important challenge is the management of names. A name is not useful if there is any ambiguity

as to what exactly it refers to. On the other hand, if a program is written cooperatively, there is a chance

that different programmers might use the same name to define a function that they wrote. Or it might

be that you are borrowing a package (such as Simplecpp) written by someone else and using it in your

program. Effectively, this also sets up the possibility of a name clash: how do you ensure that you don’t

use the same name that is used in the package that you borrowed? Or if you do use it, will it cause any

ambiguity? These are some of the issues discussed in this chapter.

We begin by showing how Simplecpp turns the main_program that you write into a function

as required by C++. After that we will see the rules for breaking up a program into multiple files, or

alternatively, for assembling a program given a set of functions spread over several files. As mentioned

above, an important issue will be management of names. The notion of declarations will be useful in

this. Another useful notion will be that of a namespace, which we will also study.

We mentioned in the introduction that Simplecpp hides some of the technically advanced features

of C++ so as to make it easier for a beginner to get to the heart of our subject: how to write programs.

1We will amend this statement a bit later
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But this chapter will have introduced you to all the technical features hidden by Simplecpp. Thus by

the end of the chapter, you will be able to use C++ directly, if you so choose, without having to include

Simplecpp in your programs. We will discuss this in Section 11.6.

We will end by making some philosophical remarks on how to break a program into functions.

11.1 THE MAIN PROGRAM IS A FUNCTION!

C++, in fact, requires that the main program be written as the body of a function called main, which

takes no arguments and returns an integer value. We did not tell you all this at the beginning of the

book because at that time you did not know about functions, and it might have been too overwhelming

to find out. So instead, we asked you to write the main program in a block following the name

main_program. Our package Simplecpp uses the preprocessor facility (Appendix H) of C++ to

change the name main_program that you write into the phrase int main(). Thus what you

specify as the main program becomes the body of a function named main as required.

When a C++ program is compiled and run, the operating system expects that there be a function

in it called main. Running a program really means calling the function main. The main function

has return type int because of some historical reasons not worth understanding. You may also be

wondering why we haven’t been writing a return statement inside main if in fact it is supposed

to return an int. The C++ compiler we have been using, the GNU C++ compiler, ignores this

transgression, that’s why!

Now that you know that the main program is just another function, from now on we will drop the

name main_program and start writing the main program as a function named main. So should you.

11.2 ORGANIZING FUNCTIONS INTO FILES

It is possible to place themain program and the other functions in different files if we wish. If a program

is very large, breaking it up into multiple files makes it easier to manage. A program can be partitioned

into a collection of files provided the following rules are obeyed.

Rule 1 If a certain function f is being called by the code in file F, then the function f must be

declared inside F, textually before the call to f. Note that a function definition is a declaration, but not

vice versa. We will see what a declaration is shortly.

Rule 2 Every function that is called must be defined exactly once in some file in the collection.

Once you have a collection of files satisfying the above rules, they can be compiled into a program

provided they contain a function main. We will see this with an example shortly.

11.2.1 Function Declaration or Prototype

The declaration of a function states the name of the function, its return type, and the types of its

arguments. Indeed, a function declaration can be specified by giving its definition without the body.

Here, for example, are the declarations of lcm and gcd.

int lcm(int m, int n);

int gcd(int m, int n);

The names of the parameters can be omitted from declarations, e.g. you may write just int

lcm(int,int); in the declaration. The declaration is also called a prototype, or even a signature.
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Suppose a compiler is processing a file containing the statement cout << lcm(24,36);. To

process this correctly, the compiler needs to know that lcm is indeed a function, and not some typing

mistake. It also needs to know the type of the value returned by lcm – depending upon the type

the printing will happen differently. Both these needs are met by the declaration. A declaration of a

function f provides (a) an assurance that f as used later in the program is indeed a function, and that

in case it has not been defined so far, it will be defined later in this file itself or in some other file, (b)

a description of the types of the parameters to the function and the type of the value returned by the

function. Given the declaration, the file can be compiled except for the code for executing the function

itself, which can be supplied later (Section 11.2.3). Notice that a function definition also provides the

information in (a), (b) mentioned above, and hence is a also considered to be a declaration.

11.2.2 Splitting a Program into Multiple Files

Using the notion of a declaration,we can break up programs intomultiplefiles. As an example, consider

the main program of Section 9.2 that calls our function lcm to find the LCM of 36 and 24. Thus, there

are 3 functions in our program overall: the function main, the function lcm and the function gcd.

Figure 11.1 shows how we could form three files for the program.

First, consider the file gcd.cpp, which contains the function gcd. It does not call any other

function, and so does not need to have any additional declaration. Next, consider the file lcm.cpp.

This contains the function lcmwhich contains a call to gcd. So this file has a declaration of gcd at the

very beginning. Finally, the file main.cpp contains the main program. This calls the functionlcm, so

it contains a declaration of lcm at the beginning. Note that the main program uses the identifier cout

to write to the console. For this it needs to includesimplecpp. The other files do not contain anything

which needs services from Simplecpp, so those do not have the line #include <simplecpp> at

the top.

There are various ways in which we can compile this program. The simplest possibility is to issue

the command

s++ main.cpp lcm.cpp gcd.cpp

This will produce an executable file which will indeed find the LCM of 36,24 when run.

11.2.3 Separate Compilation and Object Modules

But there are other ways of compiling as well. We can separately compile each file. Since each file does

not contain the complete program by itself, an executable file cannot be produced. What the compiler

will produce is called an object module, and this can be produced by issuing the command

s++ -c filename

The option-c tells the compiler to produce an object module and not an executable. Here, filename

should be the name of a file, say main.cpp. In this case, an object module of name main.o is

produced. If different programmers are working on different files, they can compile their files separately

giving the -c option, and they will at least know if there are compilation errors.

We can form the executable file from the object modules by issuing the command s++ followed by

the names of the object modules. Thus, for our example, we could write:

s++ main.o gcd.o lcm.o
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//-----------------------------------------------------------------

int gcd(int m, int n){

int mdash,ndash;

while(m % n != 0){

mdash = n;

ndash = m % n;

m = mdash;

n = ndash;

}

return n;

}

//-----------------------------------------------------------------

(a) The file gcd.cpp

//-----------------------------------------------------------------

int gcd(int, int); // declaration of function gcd.

int lcm(int m, int n){

return m*n/gcd(m,n);

}

//-----------------------------------------------------------------

(b) The file lcm.cpp

//-----------------------------------------------------------------

#include <simplecpp>

int lcm(int m, int n); // declaration of function lcm.

int main(){

cout << lcm(36,24) << endl;

}

//-----------------------------------------------------------------

(c) The file main.cpp

Fig. 11.1 The files in the program to find LCM

This use of s++ is said to link the object modules together. The linking process will check that every

function that was declared in a module being linked is defined either in the same module or in one of

the other modules being linked. After this check, the code in the different modules is stitched up to

form the executable file.

It is acceptable to mix .cpp files and .o files as arguments to s++, e.g. we could have issued the

command

s++ main.cpp gcd.o lcm.o
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This would compile main.cpp and then link it with the other files. The result main.o of compiling

will generally not be seen, because the compiler will delete it after it is used for producing the

executable.

11.2.4 Header Files

Suppose programmers M,G, L respectively develop the functions main, gcd, lcm. Then G has

to tellL how to declare the function gcd in the file lcm.cpp. The most natural way of conveying this

information is to write it down in a so called header file. A header file has a suffix .h, or a suffix .hpp

or no suffix at all, like our file simplecpp, which is also a header file. A simple strategy is to have

a header file F.h for every program file F.cpp which contains functions used in other files. The file

F.h merely contains the declarations of all the functions in F.cpp that are useful to other files. Thus,

we might have files gcd.h containing just the line int gcd(int,int), and lcm.h containing

the line int lcm(int,int). Now the programmer L writing the function lcm can read the file

gcd.h and put that line into lcm.cpp. However, it is less error-prone and hence more customary

that L will merely place the inclusion directive

#include "gcd.h"

in his file instead of the declaration. This directive causes the contents of the mentioned file, (gcd.h

in this case) to be placed at the positionwhere the inclusion directive appears. The mentioned file must

be present in the current directory (or a path could be given). Thus all that is needed in addition is

to place the file gcd.h also in the directory containing main.cpp. Likewise,M will place the line

#include "lcm.h" in main.cpp, as a result of which the declaration for lcm would get inserted

into the file main.cpp as needed.

Note that we could have used a single header file, say gcdlcm.h, containing both declarations.

int gcd(int,int);

int lcm(int,int);

We could include this single file in main.cpp and lcm.cpp. This will cause both declarations to be

inserted into each file, while only one is needed. Having extra declarations is acceptable.

Note that the name of the file must typically be given in quotation marks if the file is present in

the current directory or at a place given using an explicit path. If the file is present in some directory

that the compiler is asked to look into using some other mechanisms, then angled braces are used, e.g.

#include <simplecpp>. To get the exact details, you will need to consult the documentation of

your compiler/linker.

11.2.5 Header Guards

Header files can become quite involved. If there are several header files, then you can place the

inclusion directives themselves in another header file. Including the latter file will cause the former files

to be included. If we have header files included inside one another, it raises the following possibility:

we include some file a.h which in turn includes files b.h and c.h, both of which include the file

d.h. This can cause a problem because as per our current definition of header files, whatever is in d.h

will get included twice, and hence defined twice. Declaring the same name again is of course an error.

So what we need is a way to say, “include what follows only if it has not been included earlier”.

This is what header guards provide. Indeed, it is more customary to write the header file gcdlcm.h

in the following form.
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#ifndef GCDLCM_H

#define GCDLCM_H

int gcd(int,int);

int lcm(int,int);

#endif

The first line checks if a so-called preprocessor (Appendix H) variable GCDLCM_H has already been

defined. Only if it is not defined, then the rest file, till the line #endif is processed. Notice that the

second line, should it be processed, will define GCDLCM_H. This will ensure that subsequent inclusions

of the file gcdlcm.h will have no effect.

Note that preprocessor variables, unlike C++ variables, can be defined without being assigned a

value, as in the code above. Also note that the name of the variable can be anything of your choosing;

using the capitalized name of the file with a suffix _H is just a convention.

11.2.6 Packaging Software

The above discussion shows how you could develop functions and supply them to others. You place

the functions in an F.cpp file and their declarations in an F.h file. Then you compile the F.cpp

file giving the -c option. Then you supply the resulting F.o file and the F.h file to whoever wants

to use your functions. They must place the file F.h in the directory containing their source files (i.e.

files containing their C++ programs), and place the line#include "F.h" in the files which need the

functions declared in F.h. Next, they must mention the file F.o while compiling, giving the pathname

in case it is not in the current directory. Thus other programmers do not need to see your source file

F.cpp if you don’t wish to show it to them.

11.2.7 Forward Declaration

Let us go back to the case in which all functions are in a single file. We suggested in Section 9.1 that

a function must be defined before its use (i.e. the call to it) in the file. However, as we discussed in

the beginning of Section 11.2, it suffices to have a declaration before the use. So if we wish to put the

function definition later, we must additionally place a declaration earlier.

When writing a program with several functions in a single file, many people like to place the main

program first, perhaps because it gives a good overview of what the entire program is all about. We can

do this; it is fine to organize the contents of your file in the following order.

declarations of functions in any order.

definition of main

definitions of other functions in any order.

Of course, other orders are also possible.

11.3 NAMESPACES

We next consider an important question which typically arises when a program makes use of functions

developed by different people, developed possibly at different times. The question is: what happens if

you borrow code from two programmers, both of whom have defined a function with the same name

and the same signature? Note that you may not get the source code for the functions, and hence there

may be no way of changing the name of any of the functions.
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Such conflicts are typically resolved using the notion of a namespace. A namespace is like a catalog.

When you place a name name in a namespace catalog, the actual name you define is not name, but

catalog::name. Even after a name is placed in a namespace, it is usually possible to use just the

short version name rather than always needing to use the full version catalog::name; we will see

how this can be done in Section 11.3.2. However, the full name catalog::name is always available

to use if the need arises. The operator :: is called the scope resolution operator.

It is expected that if you create functions for public use, you will place them in a suitably named

namespace. Thus, if you borrow code from two programmers, then quite likely they will use either

different function names or different namespaces. Thus, even if the function names happen to be the

same, by using the full name you can unambiguously refer to each function.

Next we see how to create and use namespaces. We consider only the main ideas and omit many

details. How namespaces relate to header files is considered in Section 11.3.5.

11.3.1 Definition

You can define a namespace named name-of-namespace and the names inside it by writing

namespace name-of-namespace{

declarations or definitions of names

}

Inside the block following the name name-of-namespace you can declare or define as many names

as you like. For example, you might write

namespace mySpace{

int gcd(int,int);

int lcm(int m,int n){return m*n/gcd(m,n);}

}

After you write this, the namespace myspace will contain the names gcd and lcm. It is acceptable

to give just a declaration (as we have done for gcd) or the complete definition (as we have done for

lcm). Inside the namespace block, you can refer to the names in it directly. Thus, the definition of lcm

refers to gcd directly. However, outside the namespace block, by default you must use the full name.

For example, after the definition of mySpace above, you may define gcd by writing the following:

int mySpace::gcd(int m, int n){

if(n == 0) return m;

else return gcd(n, m % n);

}

You will note that the last line of the above definition uses the name gcd without prefixing it with the

name of the namespace. This is fine; the definition of a function belonging to a namespace is considered

to be an extension of that namespace, as a result other functions from that namespace can be referred

to directly by their short names.

You can also give the definition by writing the following:

namespace mySpace{

int gcd(int m, int n){

if(n == 0) return m;
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else return gcd(n, m % n);

}

}

Indeed you can add to a namespace as many times you wish by writing more namespace blocks with

the same name.

Finally, we can use the functions in the namespace by writing out their full names.

int main(){

cout << mySpace::lcm(36,24) << endl;

}

This must follow the namespace definition and the declaration of mySpace::lcm.

11.3.2 The using Declaration and Directive

It becomes tedious to keep writing the full name of a function. However, we can use the shorter form

by including a so-called using declaration:

using ns::n;

Here, ns is the name of a namespace, and n a name defined inside it. In the code following the using

declaration, all references to the name n would be considered to be referring to ns::n. Thus, we

might write

using mySpace::lcm;

If we put this line before the main program, then in the main program, we can use lcm rather than

having to write mySpace::lcm.

Another variant is to merely state

using namespace ns;

This is called a namespace directive. With this, all names in the namespace ns can be used using the

short form in the code that follows.

11.3.3 The Global Namespace

When you define functions without putting them in a namespace, they implicitly enter an omnipresent,

nameless global namespace. When you use a name without a namespace qualifier, it is expected to be

present in either the global namespace or in a namespace for which an appropriate using declaration or

directive has been given.

Suppose we have the namespace mySpace as defined above, and further we have put a using

namespace mySpace; directive alongwith our main program, as follows.

using namespace mySpace;

int lcm(int m,int n){return m*n;} // not really computing the lcm!

int main(){

cout << lcm(36,24) << endl;

}
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In this case, the compiler will flag an error, saying that the reference lcm in the main program is

ambiguous, it could refer to thelcm function in the global namespace, or the lcm function inmySpace

which has been made available through the using directive. In such a case, you must give the full name

of the function and in doing so, pick one.

To specifically refer to a function lcm in the global namespace, you can write ::lcm.

Thus in the main program above, you must change lcm to either ::lcm or mySpace::lcm.

Note that if the two lcm definitions had a different signature, then this problem would not have arisen

(Section 12.4).

11.3.4 Unnamed Namespaces

We discuss a somewhat technical point which could be ignored.

If you define a function f in the global namespace in one file F1.cpp, it is potentially available for

use in other files, say F2.cpp, provided you compile the files together, i.e. by issuing the command

s++ F1.cpp F2.cpp

while compiling.

Sometimes you might intend the function f to be used only within file F1.cpp and not be exposed

outside. For this, you can define it inside an unnamed namespace by writing

namespace{ // notice that no name is given

declaration of f

}

With this, you can use f inside the file in which the declaration appears, direclty by its name, but not

outside of the file. You can think of an explicitly created nameless namespace as a global namespace

available only to functions in the file in which the declaration appears.

11.3.5 Namespaces and Header Files

Generally, namespace definitions are made inside header files, and in such definitions only declarations

are put. The function definitions are put in implementation files, in which the header file containing the

namespace definition must be included.

The files that use the functions in the namespace must also include the file containing the namespace

definition, and may use the functions in the namespace either by giving the full name or by giving a

using directive and the short name.

Figure 11.2 shows an example.

11.4 GLOBAL VARIABLES

So far in this book we have had variables defined inside functions. However, it is possible, though not

recommended, to define a variable outside all functions. In such cases, the variable becomes a global

variable, i.e. it can be accessed by any function. Note that the compiler will typically have a separate

region of memory where global variables will be allocated; global variables are not allocated in the

activation frame of any function.
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namespace mySpace{

int gcd(int,int);

int lcm(int,int);

}

(a) The file mySpace.h

#include "mySpace.h"

int mySpace::lcm(int m,int n){

return m*n/gcd(m,n);

}

int mySpace::gcd(int m, int n){

if(n == 0) return m;

else return gcd(n, m % n);

}

(b) The file impl.cpp

#include <simplecpp>

#include "mySpace.h"

using namespace mySpace;

int main(){

cout << lcm(36,24) << endl;

}

(c) The file main.cpp

Fig. 11.2 Program in multiple files using namespaces

Here is an example.

int i=5; // global variable definition

void f(){ i = i * i; } // refers to global variable

int main(){

cout << i << endl; // refers to global variable

f();

cout << i << endl; // refers to global variable

}

If you execute this code, the first statement will print 5, the current value of the global variable i. Then

the call f() inside the main programwith change i to 25, which will be printed by the third statement.

Use of global variables is not encouraged, because global variables make code hard to understand.

Potentially, any function call could modify the variable, and hence, it is difficult to make claims about

the value taken by the variable at any point of the execution. However, global variables are used in

several (especially older) programs, and hence, this discussion.
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We note that a global variable defined in one file can be used in another file as well. However, it

must be declared as extern in that file. Thus, to use the global variable i defined above in another

file, that file would need to have the declaration

extern int i; // declaration, not definition

Note that this does not define space for i, it merely declares i to be of type int which will be defined

in some other file.

You may also put global variables in namespaces. The simplest way is to place the declaration

(which is merely the definition prefixed by extern) inside the namespace block, which can be in a

header file. Then one of the implementation files should contain the definition of the variable.

We finally note that individual functions may contain definitions of a local variable having the

same name as a global variable. In such cases, the local variable will shadow the global variable

(Section 3.6.3).

11.5 TWO IMPORTANT NAMESPACES

The most important namespace that C++ programmers need to know about is the namespace std. As

you might guess std stands for “standard”.

The namespace std defines many names that you might have so far been considering to be reserved

words. Indeed, the words cin, cout, endl, as well as the words string and others that you will

see soon are in this namespace. But if cin is in std, you may wonder why you have not been

forced to write std::cin instead of just cin so far. The answer, as you might guess, is that the

file simplecpp that you include when you write

#include <simplecpp>

contains the directive using namespace std;.

Another namespace important for this book (but not for C++ in general) is the namespace

simplecpp. All names such as initCanvas, Circle, Line, forward, left are in this

namespace. As youmay guess, you can use these names directly because the file simplecpp contains

the directive using namespace simplecpp; also.

11.6 C++ WITHOUT Simplecpp

We now consider the question of how C++ programs can be written and compiled without using

simplecpp. We show an example file in Figure 11.3.

This file, area.cpp can be compiled using any C++ compiler, say the GCC compiler. Most

commonly the GCC compiler for C++ is invoked by the command g++ as follows.

g++ area.cpp

Everything in the file should look familiar except for the first two lines. The file iostream is a

header file that contains declarations of names needed for performing input output. The file cmath is a

header file that contains declarations of mathematical functions such as sqrt and also other functions

including trigonometric functions. You may wonder why did we not need to include these files

so far – and the answer of course is that we included the file simplecpp which was in turn including

these two files.
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#include <iostream>

#include <cmath>

using namespace std;

int main(){

cout << "Give area of square: ";

double area;

cin >> area;

cout << "Sidelength is: " << sqrt(area) << endl;

}

Fig. 11.3 Contents of the file area.cpp

If you program does not contain graphics, then you can dispense with simplecpp if you wish, as

seen above for the file area.cpp. All you need to do is that instead of including simplecpp, you

include the files iostream and cmath, and also put in theusing directive. Also you also cannot use

the command repeat; but we have already suggested that you start using the other looping commands

(Chapter 7) instead. Finally, you should not define the main program as main_program but defines

it as a function named main. There are a few other minor features in simplecpp that you cannot

use – and we will discuss these as we encounter them.

11.7 THE exit FUNCTION

Normally, the program terminates when the control reaches the end of the main function. However,

you may wish to end execution prematurely, say because you have discovered some serious problem.

You can do so by calling the exit function. For example, you may write

if(numberOfvariables < 0) exit(1);

The functionexit takes an integer argument for historical reasons, whichwe have supplied above as 1.

To use this function you must include the header file <cstdlib>. If you are including simplecpp,

you need not worry, <cstdlib> will be included as a part of simplecpp.

The function exit can be called from anywhere in your program, not just from the main function.

11.8 CONCLUDING REMARKS

This chapter dwelled on many technical aspects of using functions. These are important especially

while writing large programs. It is inevitable that large programs will be written in multiple files. We

saw how header files can be used to make functions in one file visible to code in other files. For ease

of writing header files, it is convenient to use header guards, which you must understand and master.

Another idea that helps in building large programs is that of namespaces. We saw how to construct

namespaces, and how they can be used to prevent conflicts even if several people cooperating on a

program happen to use the same name.

We also saw how C++ can be used without Simplecpp.

We have been discussing functions as a mechanism for avoiding code duplication and for splitting

work amongst multiple programmers. However, there is another important motivation for writing

functions; by splitting your code into several small functions, it may be possible to make it easier

to understand. This is an extremely important motivation, and we remark on it below.
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11.8.1 Function Size and Readability

One way to improve understandability of anything is to present it in small chunks. When you write

a book it is useful to break it up into chapters. A chapter forms an organizational unit of a book.

In a similar manner, a function forms an organizational unit of a program. A function can become

more understandable if its code can be broken up into smaller functions, each with a name describing

what that piece does. There are a few thumb rules for breaking long text into chapters or sections. An

example of a thumb rule: every idea that is important should have its own chapter, or its own section.

There are similar thumb rules for splitting large programs into functions.

Many programmers believe that no function, including main should be longer than one screenful.

Even with large displays, this gives us a limit of perhaps 40–50 lines on the length of a function.

Basically, you should be able to see the entire logic of the function at a glance: that way it is easier to

understandwhat depends uponwhat, or spot mistakes. How do we break a program into smaller pieces?

So far you have not had the occasion to write programs longer than 40–50 lines, so this discussion is

perhaps a bit difficult to appreciate. You will see later, however, that most programs can be thought of

as working in phases. Then you should consider writing each phase as a separate function, and give

it a properly chosen name that describes what it does. These functions could be placed in the same

file as the main program. You will find that this will make the program easier to understand. Another

idea is to make a function out of any modestly complicated operation you may need to perform. As an

example of this, consider the apparently simple action of reading in a value from the keyboard. A user

might type in an invalid value, or the value may not stand for itself but in fact might indicate that the

stream of values has finished. These are details that are unimportant for understanding the rest of the

program. So you could hide away the logic for dealing with all this in a function that is called by the

main program. This idea is partly explored in the read_marks_into function of Section 9.7 and

readFromRange function of Section 9.4.1.

EXERCISES

1. Suppose the LCM computation program of Figure 11.1 has been written using a single file, and it

is noticed that only the function lcm has been declared and also defined, all other functions are

defined but not declared. Show how the program could appear in the file.

2. Suppose you have a computer on which you cannot divide for some reason. You wish to determine

if a number is even. You could base your program on the following observations.

• The number 0 is even.

• A number x is even if x− 1 is odd.

• A number x is odd if x− 1 is even.

Write mutually recursive functions even and odd as suggested above. You will need to declare

the functions appropriately.

3. Organize the code of the previous exercise in multiple files as follows. There should be one header

file called functions.h, and files main.cpp, even.cpp and odd.cpp which contain the

main program, the functioneven and the funcionodd respectively. Each of the.cpp files should

include functions.h. Use header guards as appropriate inside functions.h.

4. Define a namespace mySpace and put the even, odd functions in it. Write a main program

which calls even to determine if a given number that the user has typed is even. Do this using

the using directive, the using declarations, and without using using at all.
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Functions: Advanced Topics

In this chapter, we will consider some advanced topics related to functions. You can write programs

without knowing what we discuss in this chapter. However, as you will see, the constructs we discuss

in this chapter may often help you directly express what you want, and this will make for more

succinct and understandable programs. Succinctness and understandability are both important and

worth striving for.

It often turns out to be useful to write a function which takes another function as an argument. Why

this is needed, and how it can be done, is discussed in Section 12.1. We also discuss the notion of

lambda expressions, which allow you to define and manipulate functions without giving them names.

Section 12.1 gives a motivating example for this also. Lambda expressions will make for succint

expression in many programs, and you will see examples of this in Section 22.3.1, Section 22.3.2,

Chapter 27 and Chapter 28.

We next consider some conveniences provided in defining functions. For example, with certain

restrictions, it is possible to give the same name to two functions. Also, it is possible to define functions

in which some arguments are given some default values if they are not specified in the call. We discuss

these features and the circumstances in which they are useful in Section 12.3 and Section 12.4.

The last topic in the chapter is that of function templates. Sometimes you realize that at an abstract

level, the same algorithm can be used for arguments of different types. In such cases, you can define a

function template, from which functions for different types can be generated as and when needed. This

is discussed in Section 12.5.

12.1 FUNCTIONS AS ARGUMENTS

In Section 8.3, we discussed the bisection method for finding the roots of an equation, or equivalently,

a zero of a mathematical function, i.e. a value of x such that f(x) = 0. The program we wrote was

for finding the root of the equation x2 − 2 = 0, or alternatively, the zero of f(x) = x2 − 2. But the

method could be used for finding zeroes of other functions too, e.g. of g(x) = sinx− 0.3. The code

for finding a zero of f and of g would be the same, except in the place where we evaluate the function

itself. This raises the question: could we write the bisection method as a C++ function bisection,

to which the mathematical function whose zero is to be found will be supplied as an argument?
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Of course, to pass f , we must have a suitable representation for it. The simplest way is as a C++

function, say f which takes x as an argument and returns the value of f(x). But then, we need a way

of passing a C++ function, say f, as an argument to another C++ function, say bisection.

#include <functional>

double f(double x){

return x*x -2;

}

double g(double x){

return sin(x) - 0.3;

}

double bisection(double xL, double xR, double epsilon,

std::function<double(double)> pf)

// precondition: f(xL),f(xR) have different signs. ( >0 and <=0).

{

bool xL_is_positive = pf(xL) > 0;

// Invariant: x_L_is_positive gives the sign of f(x_L).

// Invariant: f(xL),f(xR) have different signs.

while(xR-xL >= epsilon){

double xM = (xL+xR)/2;

bool xM_is_positive = pf(xM) > 0;

if(xL_is_positive == xM_is_positive)

xL = xM; // maintains both invariants

else

xR = xM; // maintains both invariants

}

return xL;

}

int main(){

double y = bisection(1, 2, 0.0001, f); // Alternate syntax: &f

cout << "Sqrt(2): " << y << " check square: " << y*y << endl;

double z = bisection(0, PI/2, 0.0001, g);

cout << "Sin inverse of 0.3: " << z << " check sin: "

<< sin(z) << endl;

}

Fig. 12.1 Bisection method as a function

Figure 12.1 shows how this can be done. This code contains C++ equivalents of two mathematical

functions, f(x) = x2 − 2, and g(x) = sinx− 0.3. The single function bisection is used to find

the zeroes of both these functions. We will explain how bisection works shortly, but first consider
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the main program. As you can see, main calls bisection for finding each root. Consider the first

call. The first two arguments to the call are the left and right endpoints of the interval in which we

know the function changes sign. As in Section 8.3, we have used the values 0,2 for the left and right

endpoints. The next argument gives the acceptable error in the function value. For this we have chosen

the value 0.0001, instead of reading it from the keyboard as in Section 8.3. The last argument is the

function f whose root is to be computed. The second call is similar. We are asking to find a root in

the interval 0 to π/2, where we know that g(0) < 0 while g(π/2) > 0, as required for the bisection

method. The error tolerance is 0.0001. The last two lines merely print out the answers and check if the

square of the first answer is close to 2, and the sine of the second answer is close to 0.3

We now discuss the function bisection. Its first three parameters xL, xR, epsilon are

self explanatory. The fourth parameter is meant to be a function. Its type declaration is a bit tricky.

This can be done in two ways. We describe the modern, easier method first. But for this you need

to include the header <functional> as is done at the top of Figure 12.1. Using the features from

<functional>, you can specify a function type by writing

std::function<returntype(param1type, param2type, ...)>

Here, returntype must be the type of the value returned by the function, and param1type,

... must be the types of the parameters of the function. In the present case, we expect bisection

to be passed a function which takes a double as an argument and returns a double. Hence, we

have specified this as std::function<double(double)>. This is followed by the name of the

parameter, pf in this case. Now within the body of bisection we can make calls to pf assuming it

takes a double argument and returns a double.

12.1.1 Function Pointers

You might wonder what it means to pass a function as an argument. As you know from Section 2.9,

code and data are both placed in memory. Just as we can identify a variable by its starting address, we

can identify a function also by the address from where its code starts. Indeed, C++ has the notion of

a function pointer, which you could think of as the starting address of the code corresponding to the

function. The original syntax for passing functions in fact requires you to write a function argument

as &f, meaning the address of a function f rather than as f. But modern compilers are permissive and

allow you to drop the & while calling, as we have done in the main program of Figure 12.1. Further,

the original syntax requires that you first dereference the function parameter before using it; thus you

would write *pf when using the function parameter in a call in bisection. But this is also not

necessary, you are allowed to drop the derererencing operator. Note by the way that the original syntax

is still acceptable, and you may see code explicitly using the & and * operators.

The original syntax is also different as far as declaring a function parameter. To understand this, let

us first review function declarations. Here is a declaration of a function pf that takes a double as

argument and returns a double result (Section 11.2.1).

double pf(double); // pf is a function taking double

// and returning double

Next we simply note the general strategy for declaring pointers: if a declaration declares name v to be

of type T, then replace v by *v and the new declaration will declare v to be pointer to T . Doing this,

we get what we wanted.
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double (*pf)(double); // *pf is function taking double and

// returning double

// pf is pointer to function taking double and returning double

where the parentheses have been put because we want * to associate first with pf.1 Thus we would

write bisection as

double bisection(double xL, double xR, double epsilon,

double (*pf)(double x))

{

...

}

This syntax is still acceptable, and you may use it. Of course, you may find the syntax

std::function<...> easier to understand. If so, go ahead and use just that. But be sure to include

<functional>.

12.2 NAMELESS FUNCTIONS: LAMBDA EXPRESSIONS

The program of Figure 12.1 can be written more naturally and compactly by using so called lambda

expressions, which we discuss next.

A lambda expression is a nameless function which can be constructed pretty much anywhere in

your code and subsequently used. The following expression, for example, represents a function which

works like the function f of Figure 12.1, it can be used to compute x2 − 2:

[](double x){return x*x - 2;}

We will explain the syntax shortly. But we first note that lambda expressions can be used wherever a

function name can be used, e.g. we can call it by passing arguments to it:

[](double x){return x*x - 2;}(3.5)

This will evaluate to 3.52 − 2 = 10.25. Alternatively, we can even place it in a call to bisection of

Figure 12.1:

double y = bisection(1,2,0.0001, [](double x){return x*x -2;});

Thus, we would not need to define the function f at the beginning of Figure 12.1, but place its code

directly where it is needed inside main. Likewise the function g.

The C++ standard adopted in 2011 supports lambda expressions. These have many uses, e.g.

see Section 22.3.1, Section 22.3.2, Chapter 27 and Chapter 28. Lambda expressions were originally

proposed in languages such as LISP, where they got the name.

12.2.1 General Form

Lambda expressions can be specified in many ways. We first discuss the form used above.

[](parameter-list){body}

1 If we omit the parentheses, we would be declaring pf to be a function which takes a double argument and returns a pointer

to a double.
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In this, parameter-list gives the list of parameters that the function needs, and the body gives

the code that is to be executed. You have already seen an example. Something can be specified inside

the leading [], we will see this shortly.

Note that we have not explicitly stated the return type of the function. C++ will infer this on the

basis of the return statements in body. Sometimes, C++ may not be able to infer correctly, in which

case you can specify the return type using the following syntax.

[](parameter-list) -> return-type {body}

Thus, you could write

[]() -> int {return 1;}

Since 1 can have many types, the above clarifies that we mean a function which returns an int.

12.2.2 The Type of a Lambda Expression

A lambda expression can be considered to have the type

std::function<return-type(parameter-types)>

where return-type is the return type of the lambda expression and parameter-types are

the types of the parameters (comma separated). To use this, you must include the header file

<functional>.

12.2.3 Variable Capture

The body of a lambda expression may access names which are defined outside the lambda expression,

but are visible in the scope in which the lambda expression is defined. Such names are sometimes

called free names of the lambda expression (as opposed to those variable names that are defined or

bound inside the lambda expression). The free names can either denote the values of the corresponding

variables at the time the lambda expression was defined, or denote references to the corresponding

variables. The former is called “capture of free names by value” and the latter “capture of free names

by reference”. To denote capture by value, we simply give the names in the initial[], to denote capture

by reference, we give the names prefixed by &. Here is an example.

int main(){

int m=10;

std::function<void()> f = [m](){cout << m << endl;};

std::function<void()> g = [&m](){cout << m << endl;};

m++;

f();

g();

}

In this, f,g capture m by value and by reference respectively. Thus the call f() will print 10, which

is the value of m at the time f got defined. The call g() on the other hand will print 11, which is the

current value of m since g has captured m by reference.
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If you wish to capture a by reference and b by value, you may specify the capture as [&a,b]. If

you want all to be captured by value or all by reference you may specify the capture as [=] or [&]

respectively. If you want all to be captured by value except for a,b, you may write [=,&a,&b], and

analogously. Note that writing the capture as [] specifies no capture.

We will see intersting examples of variable capture in Chapter 27.

12.2.4 Dangling References

If you capture a variable by reference, and the variable is deallocated between the capture and the use,

then we have the problem of a dangling reference like Section 9.9.1. Thus capture by reference must

be done carefully.

12.3 DEFAULT VALUES OF PARAMETERS

It is possible to assign default values to the parameters of a function. If a particular parameter has a

default value, then the corresponding argument may be omitted while calling it. The default value is

specified by writing it as an assignment to the parameter in the parameter list of the function definition.

Here is a drawPolygon function in which both parameters have default values.

void drawPolygon(int nsides=4, double sidelength=100)

{

for(int i=0; i<nsides; i++){

forward(sidelength);

right(360.0/nsides);

}

return;

}

Given this definition, we are allowed to call the function either by omitting the last argument, in which

case the sidelength parameter will have value 100, or by omitting both parameters, in which case

the nsides parameter will have value 4 and sidelength will have value 100. In other words, we

can make a call drawPolygon(5) which will cause a pentagon to be drawn with side length 100.

We can also make a call drawPolygon() for which a square of sidelength 100 will be drawn. We are

free to supply both arguments as before, so we may call drawPolygon(8,120) which will cause

an octagon of sidelength 120 to be drawn.

In general, we can assign default values to any suffix of the parameter list, i.e. if we wish to assign

a default to the ith parameter, then a default must also be assigned to the i+ 1th, i+ 2th and so on.

Further, while calling we must supply values for all the parameters which do not have a default

value, and to a prefix of the parameters which do have default values. In other words, if the first k

parameters of a function do not have default values and the rest do, then any call must supply values

for the first j parameters, where j ≥ k.
Note also that the default values must also be specified in the function prototype.

12.4 FUNCTION OVERLOADING

C++ allows you to define multiple functions with the same name, provided the functions have different

parameter type lists. This comes in handy when you wish to have similar functionality for data of
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multiple types. For example, you might want a functionwhich calculates the gcd of not just 2 numbers,

but several, say 3 as well as 4. Here is how you could define functions for doing both, in addition to the

gcd function we defined earlier.

int gcd(int p, int q, int r){

return gcd(gcd(p,q),r);

}

int gcd(int p, int q, int r, int s){

return gcd(gcd(p,q),gcd(r,s));

}

The above functions in fact assume that the previous gcd function exists. Here is another use. You

migth want to have an absolute value functions for double data as well as int. C++ allows you to

give the name Abs to both functions.

int Abs(int x){

if (x>0) return x;

else return -x;

}

double Abs(double x){

if (x>0) return x;

else return -x;

}

While it is convenient to have the same name in both cases, you may wonder how does the compiler

know which function is to be used for your call. The answer is simple: if your call is abs(y) where y

is int then the first function is used, if the type is double then the second function is used. Likewise,

the right gcd function will be picked depending upon how many arguments you supplied.

12.5 FUNCTION TEMPLATES

You might look at the two abs functions we defined in the preceding section and wonder: sure the

functions work on different types, but the bodies are really identical, could we not just give the body

once and then have the compiler make copies for the different types? It turns out that this can be done

using the notion of function templates as follows.

A function template does not define a single function, but it defines a template, or a scheme, for

defining functions. The template can have parameters: by specifying suitable values for the parameters,

a function will get constructed! Here is an example.

template<typename T>

T Abs(T x){

if (x>0) return x;

else return -x;

}
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The first line of this states that what follows is a template in which the name T is the template parameter.

The parameter name is prefixed with typename, which says that T must be given a value which must

be the name of a type, say int. As you can see, you will indeed get a function if you substitute int

for T in the rest of the template. The keyword class can also be used instead of typename.

C++ will automatically construct a functions from this template, depending upon how you call

Abs in your code. If you call Abs with an int value, then C++ will construct an Abs function for

you by substituting int for T in the template. If you have another call which calls Abs with a float

argument, then C++ will generate another Abs function, this time by substituting float for T.

Here is an example.

int main(){

int x=3;

float y=-4.6;

cout << Abs(x) << endl;

cout << Abs(y) << endl;

}

This main program will work along with the template given above. C++ will construct the required

functions without you having to do anything.

You can have templates with several parameters. Values will be substituted for them depending upon

the call. All template parameters need not have type typename. You may have other types too, e.g.

int. An example of this is given in Section 18.11.5.

12.5.1 Function Templates and Header Files

A function template must be present in every source file in which a function needs to be created from

the template. So a template is best written in a header file. Note that the template itself cannot be

compiled; only the function generated from the template is compiled. So for a template function f we

will typically have a header file f.h, but no file f.cpp.

12.6 CONCLUDING REMARKS

When we introduced functions in Chapter 9, you may have thought of functions as being very different

from variables. Functions are different, however, over the last few chapters, you can perhaps see a

unifying trend. First, we associated types with functions. In this chapter we allowed functions to be

passed around just as we pass around variables. Finally, we also defined the notion of a nameless

function, this can be considered similar to the notion of a literal, a value without a name. This trend

of unifying functions and variables is not a merely technical exercise. As we saw, functions which can

take other functions as arguments and lambda expressions allow us to say what we want very simply

and directly. So you must master these ideas. Incidentally, a matter of terminology: functions which

take other functions as arguments are sometimes called higher order functions.

We also saw other conveniences such as the ability to give the same name to two functions. Of

course, it is important to use this judiciously. The same name should be given only if the functions

abstractly serve the same purpose, but with different types. We also saw how to specify default values

to arguments. This is also often very convenient.
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Function templates have evolved out of the realization that often we write code the text of which

can work for values of many types. Using templates, we can actually write the text once, and specify

that it can work for any type. When the need arises, a function of that type will get created.

We remarked in Section 1.8 that an important activity in programming is observing and exploiting

patterns. As you can see, higher order functions and templates take this idea one step further. In both

cases there is the observation that the same code pattern is useful in many situations. Thus a facility is

provided by which the code pattern can we expressed once and used as needed.

EXERCISES

1. Write a function to find roots of a function f using Newton’s method. It should take as arguments

pointers to f and also to the derivative of f. Test it by supplying it appropriate lambda expressions,

and also names of functions that you have defined.

2. Write a function that plots the graph of a mathematical function on the graphics canvas. The

mathematical function whose graph is to be plotted should be accepted as a function pointer or

a lambda expression. Also the domain and range for the plot should be specified. You could also

accept information about whether to put ticks on the axes etc. as arguments to the call. Test it by

plotting various functions. Define default values for some of these parameters.

3. The k-norm of a vector (x, y, z) is defined as k
�
xk + yk + zk . Note that the 2-norm is in fact

the Euclidean length. Indeed, the most commonly used norm happens to be the 2 norm. Write

a function to calculate the norm such that it can take k as well as the vector components as

arguments. You should also allow the call to omit k, in which case the 2 norm should be returned.

4. Modify the letter-drawing function of Section 9.5 to take optional arguments giving the

coordinates of the point from which the drawing should start. By default, the drawing should

start from the current position of the turtle. You may wish to have the default value be −1 or any
invalid value, in order to check whether the user has supplied a value.

5. The function passed to the bisection function took a float and returned a float. However,

we might well need to find the root of a function which takes a double and returns a double.

Also, it would be nice if the types of the other arguments could likewise be chosen to be double.

Turn bisection into a template function so that it works for both double and float types.

You can of course also do this by overloading the name bisection.



CHAPTER13
Practice of Programming:
Some Tips and Tools

In theory, theory and practice are the same. In practice, they are not.

ALBERT EINSTEIN

If you have been reading this book without solving any of the exercises, you may perhaps come to

believe that the process of developing a program is neat and tidy, and generally smooth sailing. If on

the other hand, you have also been solving the exercises, your experience might be different. After you

write a program, you compile and run the program and you test it by providing different inputs. You

possibly discover that for some input, let us call it x, the program does not produce the correct output.

After some amount of detective work, you figure out the reason. So you modify your program (often

called “debugging”) and rerun. You then discover that now the program works correctly for x, but it

does not run correctly for an input y, for which the old program was correct! So you have to do more

detective work. And this cycle can go on for some time. If you are writing large programs, this cycle

can be extremely frustrating.

In this chapter, we will discuss the entire programming process and offer suggestions with a view

to (a) increase the confidence that the program is doing what it is supposed to do, and (b) make the

process less tiresome.

The program development process starts with clearly understanding what is to be done, i.e. the

specification for the program. Along with understanding the specification abstractly, it is useful to

construct examples of inputs and required outputs. These help in ensuring that the specification is

correct, and can also be used to test the program when it is written. After this comes program design,

and then inevitably, debugging. We will discuss all these phases. Along the way, we will also remark

on some general facilities like input-output redirection and assertions that are available to simplify the

above phases. In some ways, this chapter is an extended version of Chapter 4.

Some of the suggestions made in this chapter may strike you as being too cautious. You may think,

“I can go much faster than this”. In case you are one of the lucky few who can write large programs

correctly, in an intuitive manner, without apparent careful planning, more power to you! But if you

find you are spending more time debugging the program than designing it in the first place, you are

encouraged to try out the suggestions given in this chapter.
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13.1 CLARITY OF SPECIFICATION

The first step in writing a correct program is to clearly know what you want the program to do. This

might sound obvious, but often, programs don’t work because the programmer did not clearly consider

what needs to happen for some tricky input instance. How can you be sure that you completely know

what the program is expected to do, that you have considered all the possibilities? The best way of

doing this is to write down the specifications very clearly, in precise mathematical terms if possible.

Typically, in a specification you will state that the inputs consist of numbers x, y, z, . . ., and the
output consist of the numbers p, q, r, . . .. Then you will give conditions that these numbers must

satisfy. The specification is not expected to indicate how the output is to be actually generated, that is

to be decided by your program, sometimes referred to as the implementation. If the output produced

by your implementation happens to satisfy the conditions described in the specification for every

input, then and only then can your implementation be certified as correct. It is a good idea to write

the specification as a comment in your program, and also to use the same variable names in the

specification as in your program.

Let us take an example. What are the specifications for the program to count digits of a number?

We think that we understand decimal numbers, which we indeed do. But such intuitive understanding

does not constitute a specification. The intuitive understanding must be stated in more precise terms.

Here is the specification we used earlier.

Input: A non-negative integer n.

Output: Smallest positive integer d such that 10d > n.

This is a good specification because it gives the precise conditions that we want the output to satisfy,

nothing more, nothing less.

It is customary in writing specifications to state conditions in the form “smallest/largest...

satisfying... ”. Formulating specifications in this manner requires some practice. Also a lot of care is

needed. Should the condition be 10d > n or 10d ≥ n? You may consider these questions to be tedious,
but if you cannot answer them correctly while writing the specification, you are unlikely to write the

program correctly. You may be making the same mistake in your program!

Let us consider another problem. Suppose you are given n points in the plane, p1, . . . , pn. Find the

smallest circle that contains all the points. It might be tempting to rewrite just what is stated in the

problem statement:

Input: n points p1, . . . , pn in the plane.

Output: Smallest circle that contains all points.

In this we have not specified how a circle is to be represented using numbers. That is acceptable, if

our audience knows how to represent circles using numbers and translate the phrases such as “smallest

circle”, and “contains all points”, into conditions on numbers. For the present, however, we will prefer

the following description of the output.

Output: Real numbers x, y, R such that the distance between each point pi and the point (x, y) is at

most R, and R is smallest possible.

In this, we have not defined what “distance” means. If that is not expected to be commonly

understood, then we should spell it out too.

Consider another example.
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Input: n points p1, . . . , pn in the plane specifying the vertices of a polygon in clockwise or

counterclockwise order.

Output: Area of the polygon.

This seems like a good specification. Althoughwe have not given a formula to compute the area, the

notion of area is common knowledge. Or is it? A good step after writing a specification is to consider

whether it admits any “unexpected inputs”. If you think about this, you may realize that the user may

give a polygon whose edges intersect with each other, i.e. the polygon is not simple. If we allow

non-simple polygons as input, the problem statement needs to define what area means for non-simple

polygons. If the user expects to supply only simple polygons as input, the specification must state this.

Input: n points p1, . . . , pn in the plane specifying the vertices of a simple polygon in clockwise or

counterclockwise order.

Even with this specification, it is possible that the user actually supplies a non-simple polygon as

input. What should the implementation do then? One answer is nothing: this case is not a part of the

specification, and so nothing is promised. So it could be argued that the implementer cannot be blamed

if the program produces some strange value, or even if it goes into an infinite loop! The other possibility

is that the implementer checks the given input and prints an error message stating that the input does

not confirm to the specification, and then stops. Of course such checking might require more effort and

time. But it may often be worthwhile.

The points to note are as follows. First, write down specifications as precisely as possible, using

mathematical notation if it is reasonably obvious. Second, you may receive a specification that looks

fine, but actually admits some unexpected inputs. In this case, you should modify the specification.

Finally, the implementer must mindfully decide what to do if inputs that do not adhere to the

specification are supplied during execution: whether to point this out or not take responsibility.

13.2 INPUT-OUTPUT EXAMPLES AND TESTING

Along with writing the specifications, you should construct sample input instances, and work out what

output you want for those. As discussed in Section 4.1.1, it is good to have examples in your mind for

any abstract statements you make. Another reason is that the input-output examples you work out will

serve later as test cases for your program.

For the digit-counting program, it is easy to work out examples. For example, you might arbitrarily

decide to have your first input instance be the number 34, for which the outputmust be 2 since that is the

number of digits in 34. This might appear too easy, but even so it should be written down. You should

also check whether the input (34) and the output (2) agree with the what you have written down in the

specification: Is 2 indeed the smallest number such that 102 > 34? These may sound like trivial checks,

but your program can go wrong because of trivialmistakes, and so such checks are useful. For the circle

covering problem, working out examples is harder, since it might take considerable calculation to find

the smallest covering circle by hand. In such cases, the least you can do is to construct a few simple

cases, e.g. just two points, say (0,0) and (1,0), for which the best covering circle must have radius 0.5

and must be centered at (0.5,1). You should even try “degenerate” cases like a single point input: the

output should then be a circle of radius 0.

A more systematic approach is to try to figure out input instances which might occur “commonly”.

For example, for the covering circle problem, the instance in which all points are randomly placed in
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the plane is perhaps more common than the instance in which they are all collinear. It is possible that

for some other problem (say counting digits) there is no notion of “common in practice”. Even in this

case you can think of using random input values. You may wonder how you can feed random numbers

to a computer. We will discuss this in Section 13.7.

Another possiblity is to consider if some input instances are “harder” than others, and hence might

test the program better? The notion of hard is of course informal. But here is how you might consider

certain inputs more interesting, say for the digit counting problem. If you look at the number of digits

d as a function of the input n, you will see that d changes at powers of 10. At 9 the output value

is 1, but it goes up to 2 at 10. The value is 3 at 999 but goes up to 4 at 1000. So you might want

to pay more attention to these input values: perhaps the program has to be “keenly attentive” and

distinguish between 999 and 1000 (even though they are consecutive), but not between 578 and 579

(which are also consecutive). So checking the inputs 999, 1000 might be more likely to show up the

errors, than say checking 578 or 579. Another case of course is to check for the smallest and largest

input values allowed. In case of digit counting 0 is the smallest value allowed, and whatever the largest

value allowed is for representing n on your computer. The smallest, largest, and the values at which the
output changes are informally called “corner cases”, and you should certainly test around these values.

For the polygon-area problem, the simplest input instances could be rectangles, for which it should

be easy to calculate the area by hand. You could again ask, what input instances are easy and which are

hard? The polygons need to be simple, but of course they need not be convex. So if you plan to allow

non-convex polygons as input, then certainly they should be a part of your test instances. If you decide

that you don’t want to allow non-convex instances, then you should amend the specification to declare

this. Note that it is better that your program correctly implements a weaker specification than wrongly

implementing a stronger one.

The length of the input is not fixed for the polygon-area problem. Very likely the program will first

read in n, the number of vertices, and then the coordinates of the points. An important question to

answer is how your program will handle corner cases, e.g. n = 2 or n = 1 or even n = 0. Either you

should return 0, or you state clearly in the specification that these cases will not be handled by your

program.

13.3 INPUT/OUTPUT REDIRECTION

When you write programs professionally, you are required to keep a record of the testing you have

done. This can be done nicely by using a feature called input redirection. Most operating systems

support input redirection.

In Chapter 1, we told you that cin represents the keyboard and whenever your program executes

a statement of the form cin >> ... you are expected to type in an appropriate value. This is an

oversimplification. If fact, cin represents an abstract, standard input device, which is the keyboard by

default, but this default can be changed. If you wish, you can make the standard input device be a file,

say named file1. Thus, instead of waiting for you to type in input, the program would take input

from file file1 whenever it executes a cin >> ... statement. This is called input redirection. To

redirect input, you specify the name of the file on the command line, preceded by the character <, after

the name of the executable. Thus to redirect input to come from file1, you will type the following

on the command line.

% a.out <file1
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As you can see, input redirection is very convenient. Even before you write the program, each test

instances you create as discussed above can be placed in a file. When the program is ready, you run it,

merely redirecting input so that the data comes from the file of your choosing.

Thus, we can suggest the following process for creating and using test cases. Even before you

write the program create test cases, placing the input in files, one file per instance. Thus, you will

create several files, say input1.txt, input2.txt, ... . Also create files output1.txt,

output2.txt, ... which contain the outputs as you expect for the corresponding input instances.

After the program is ready, simply redirect input, say from input3.txt in order to test it on the

third instance you created. Check that the output you get is indeed what you had written down in

output3.txt.

Note by the way that input redirection is also useful if your program does not run correctly on the

very first run. If you have placed the data in a file then you can redirect input from it, and thus do not

have to type the data again and again. This saves typing effort, and is especially useful for programs

for which the input is large.

Note finally that the standard output stream, cout can also be redirected. For this you can execute

your program by typing

% a.out >file2

If you do this, whatever you print by executing cout << ... in your program will be placed in the

file file2, rather than being shown on the screen.

This is useful for programs which produce long output. If the output is put into a file, you can

examine it at leisure. Also, the file thus created can serve as a record of your testing activities.

13.4 DESIGN OF ALGORITHMS AND PROGRAMS

The next step after the development of the specifications and test cases is algorithm design. By

algorithm we mean the abstract ideas we need to solve a problem. For example, how do we find the

smallest circle covering a set of points? This problem has a puzzle like flavour, and seems to require

some creative thinking. You might even wonder whether creativity can be taught. But there do exist

strategies for designing algorithms. As we have been mentioning frequently, recursion is one strategy.

However, creative algorithm design in general is really outside the scope of this book.

For the most part, whatever algorithms you need to know in order to write programs described in the

text and the exercises, we will either tell you directly, or they will be minor modifications of algorithms

you somehow know already. And do realize that you know a lot of algorithms already. Indeed from

childhood you have been learning a lot of algorithms, how to multiply two numbers, how to cook, how

to ride a bicycle, and so on. You will need to express some of these algorithms using C++. This will

not necessarily be easy. You may be executing the algorithms subconsciously, out of habit, but you will

have to introspect on your actions and identify the patterns in them and express them in C++. This may

be possible for some problems, e.g. multiplying one number with many digits by another number, but

very difficult for others, e.g. deciding the next move in a game of chess. In any case, for the most part

you should not need serious algorithm design, but you should certainly be able to introspect over skills

you have learnt since childhood, verbalize them and express them in C++.
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The next question is how to organize your program assuming you understand the specifications,

have created the test cases, and know all the relevant mathematical/algorithmic ideas. This we call

program design.

We remarked in Section 11.8.1 that any large program is best written by dividing it into small

functions. Later we will see other ways of dividing programs into pieces, but the key point is that

some such division will need to be there. Once you decide to divide a large program into pieces, we

really need to apply the program design-process (recursively!!) to each piece. We must write out the

specification for each piece (function), and design test cases for each function too. It is tempting to not

test the individual functions, but to put together the entire program, and see if the whole thing behaves

correctly. But if the whole thing does not behave correctly, it is tricky to figure out which function is

not working right. So it is useful to first test each function separately. This means simply that if your

program needs to calculate GCD very often, do write a GCD function, and then test it before you put it

together with the rest of the program. Quite likely, this strategy, called unit testing, will save you time

in debugging later.

The idea of writing specifications applies even in implementing a function itself. Say when you

design a loop, you should be clear in your mind as to what the loop is intended to accomplish

(specification), and be able to reason about it by writing invariants and a potential function. It is also a

good idea to put these down as comments. Basically, these are all “defensive programming strategies”

intended to minimize the chance of making mistakes.

Another important program strategy is as follows. Suppose you are writing a program which solves

a somewhat complex problem. The natural plan might be to write a program to solve the entire problem

in the very first attempt. Another idea is: consider a weaker specification first. Write the program to

solve the weaker specification, testing it completely. Then try your hand at the original specification.

The idea behind this weaker specification first strategy is as follows.You may think that you understand

the grand specification. But often you may not, especially if you are inexperienced. As you try to

implement the simpler specification you may realize the problem needs more thought. Thus it may be

better to get on with writing code reasonably quickly—that experience will help you understand the

difficulties.1 The other alternative is to develop the full specification first and only then start writing the

program, and start testing only after the entire program is ready. In this, you deny yourself the feedback

(not to mention the satisfaction!) that you get from doing some testing. Because of the early feedback,

the weak specification first approach might end up saving time and effort.

As an example consider the polygon-area problem. You may know Heron’s formula for the area of

a triangle given the lengths of the sides:

Area =
�
s(s− a)(s− b)(s− c)

where a, b, c are the lengths of the sides of the triangle, and s = a+b+c
2

. Using this, you may consider

it easier to calculate the area of a convex polygon, than that of non-convex one. So in this case, the

weak specification first strategy would encourage you to first write the program for the convex case.

However, the key point is that whatever you do, you should work to a specification, weak or strong. In

other words, there must be truth in advertising!

1 But do not begin coding unless you have at least the weak specification written down fully.
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13.4.1 Mentally Execute the Program

Much of the advice being doled out in this chapter may be considered “obvious”, and indeed it is.

However, experience shows that human beings do not always take obvious precautions (e.g. wearing

seatbelts in cars). So it is worth reiterating even obvious precautions and putting up a checklist.

Here is one such simple habit worth developing. After you finish writing a program and before

you actually execute it, take a simple input instance and mentally execute your program if possible.

This may be difficult for large programs, but it will help a lot while you are learning. For example,

considering the digit counting program, you should mentally execute your program on some small

input and satisfy yourself that it is correct. The mental execution will often alert you to some errors.

13.4.2 Test Cases for Code Coverage

We have already talked about designing test cases before the program is written. However, some

additional test cases may be usefully designed after the program development finishes. The basic idea

is: the test cases on which you run your code must exercise every piece of code that you wrote. This is

important if your code has many if statements, say nested inside one another.

We will consider this issue in some exercises later, e.g. Exercise 2 of Chapter 16.

13.5 ASSERTIONS

The import of the previous discussion is: you should know your program well.

Your knowledge of the program is often of the form: “at this point in the program, I expect the value

of this variable to be at least 0”. Why not actually test and verify such expectations during execution? If

your program is not running correctly, it might well be because something that you confidently expect

is not actually happening.

C++ contains a facility which makes it easy to verify your expectations and produce error messages

if the expectations are incorrect. Suppose you expect a certain condition condition to hold at a

certain point in your program, you simply place the statement

assert(condition);

Here, conditionmust be a boolean expression. When control reaches this statement, condition

is evaluated, and if it is false, the program halts with a message, typically stating “Assertion failed”,

and the line number and the name of the program file containing the assertion is also given. If the

expression condition is true (as you expected), then nothing happens and the control just moves to

the next statement.

To use assert you must include the line

#include <cassert>

at the top of your file.

For example, in the gcd function of Figure 9.1, you expect the parameter n to be positive. Thus,

you could place the line

assert(n>0);

as the first line of the function body. If during execution, gcd is called with the second argument 0,

you would get an error message saying that this assertion failed.
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The preconditions of a function are natural candidates for being asserted. It may sometimes also be

possible to assert that the function is indeed returning the correct value. For example, suppose we want

to write a program to determine the integer part y of the square root of an integer x. The specification

for this could be

Find positive integer y such that y2 ≤ x and (y + 1)2 > x.

In this case, the function could have the following form

int intsqrt(int x){

assert(x >= 0);

int y;

... code to compute y without changing x...

assert(y >= 0 && y*y <= x && (y+1)*(y+1) > x);

return y;

}

Just in case you made a mistake in the code, the assertion at the bottom would catch that and report it.

That is better than returning a wrong value! However, this idea does not work very well in general. For

example, howwould you test whether the gcd function is indeed returning the GCD? The specification

is that the value being returned should be the largest integer that divides both the arguments. However

there is no easy way of checking this and converting to an assertion.

Here is another example. Suppose you know that a certain variable v will only take values 1 or 2.

The you might originally have written:

...

if(v == 1) ...

else ...

...

Instead of relying confidently on your expectation, you have an opportunity to test it. For this you can

write something as follows.

...

if(v == 1) ...

else if(v == 2) ...

else assert(false); // executed only if v is not 1 or 2.

...

In this case, if v actually takes values besides 1 or 2, the assertion will fail and you will get a message.

We will see more examples of assertions later, e.g. for array bounds checking (Section 14.8).

13.5.1 Disabling Assertions

Assertions are meant to be used in the debugging phase, when you are not completely sure about the

correctness of your program. Once you become sure of the correctness, you may want to remove the
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assertions. This is because checking the assertions will take some time and will slow down the program.

But it might be cumbersome to go through all the code and physically remove the assertions.

It turns out that is possible to disable assertions placed in your program without physically removing

them. For this, you put in the line

#define NDEBUG

at the top of each file containing assertions you want to disable. The above line is to be placed before

the inclusion of <cassert>. The above line will define the preprocessor (Appendix H) variable

NDEBUG. This will have the effect of turning the assert statement into a comment.

13.6 DEBUGGING

Suppose you follow the above directions and are generally very careful, and yet things go wrong: your

program produces an answer different from what you expect. What do you do?

Clearly, it would help if you knew the earliest point in the execution at which the program starts

behaving differently from what you expect. For this, you can print out the values of the important

variables at some convenient halfway point, and check if the values are as you might expect. If the

values printed by these statements are as you expect (or not), then the error must be happening later

(earlier), so you put print statements at later (earlier) points in your program. By examining proceeding

in thismanner, you can zoom in on the source of the problem. Presumably youwill conclude something

like “Everything is fine until statement xxx in the program is executed for the third time, but not after

that”. At this point, you are usually in a position to determine what is going wrong. The process of

examining the values taken by variables during execution can be made much easier if you use programs

called debuggers or IDEs. We discuss them below.

We do note one important source of errors: it might be the case that your program is not working

correctly not because it has a logical flaw, but because it is not being fed the correct data. This can

happen especially if the input is coming from a badly designed input file which you have redirected.

We discuss how to deal with this.

13.6.1 Debuggers and IDEs

There exist specialized programs, called debuggers or IDEs, Interactive Development Environments,

which are modern versions of debuggers, which can substantially help in the process of debugging.

Debuggers or IDEs offer many ways of executing your program. For example, you can ask that

the program be stepped, i.e. run one statement at a time. You can see where the control is after the

execution of the statement in question ends, and you can also examine the values of the different

variables. You can also ask that the program execute until a certain statement is reached, executing

freely till that statement. Once that statement is reached, you can again examine variable values if you

wish. Essentially, this enables you to investigate how your program executes without having to put

print statements in it.

Unfortunately,most IDEs are fairly complex, and it is significant work to just understand how to use

them. That is the reason we have not discussed IDEs in this book. But if you plan to write programs

with thousands of lines of code, you should learn to use IDEs.



Practice of Programming: Some Tips and Tools
187

13.6.2 End of File and Data-input Errors

C++ behaves in a somewhat unintuitive manner in data input. Suppose you execute cin >> x; where

x is of type int. Suppose the value typed in response to this (or read from the file from which cin

is redirected) happens to be the character ’a’. If this happens you might expect that the program will

halt with an error message. However, the program does not halt! Instead, some junk value is supplied

to you and the program continues merrily.

The simplest indication that an error has happened is that the value of cin becomes 0, or NULL.

So ideally, after reading every value you should check if cin is not NULL. For this, you can write

something such as

if(cin == NULL){cout << "Input error.\n"; exit(1);}

Or the shorter version:

if(!cin){cout << "Input error.\n"; exit(1);}

This is because NULL or 0 also stands for the logical value false.

The main point to note is as follows. Suppose your program is not working correctly. It could be

because of a data input error. You may be feeding it an illegal value. This is not likely to happen if you

are actually typing in values from the keyboard in response to messages from the program. However,

if the program is reading data from a file (because of redirection or otherwise) it may well happen. So

it is good to check for input errors. Also see Section F.2.

13.6.3 Aside: Input-Output Expressions

Finally, we note that in C++ the phrase cin >> value causes a value to be read into the variable

value, and in addition itself is an expression that has a value: the value of the expression is the value

of the variable cin. This should not come as a surprise to you, this is in fact the reason you can write

statements such as cin >> a >> b; which you should really read as (cin >> a) >> b; where the

first expression causes a value to be read into a, and then the expression evaluates to cin, from which

another value is read into b.

This fact allows us to write some rather compact loops. Suppose you want to find the sum of a

sequence of numbers stored in a file. You can do this by executing the following program with cin

redirected from that file.

int main(){

int val, sum=0;

while(cin >> val){ // file read in the loop test

sum += val;

}

cout << sum << endl;

}

The reading happens in the loop test, and if there is an error or end of file, the reading expression

returns false, and the loop ends. Thus, the above loop will end when the file ends, and after that the

sum will be printed.

Note that you can also use the above program to sum values that you type in from the keyboard.

Just type in the values, and follow them with a ctrl-d (type ’d’ while the control key is pressed), which

signals an end of file.
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13.7 RANDOM NUMBERS

C++ provides you with the function rand which takes no arguments and returns a random number.

This statement should puzzle you—a computer is an orderly deterministic machine, indeed we did not

say anything about randomness in our discussion of computer hardware (Chapter 2). How can then a

computer generate random numbers?

Indeed, a computer does not generate truly random numbers. Instead, a computer merely generates

successive numbers of a perfectly deterministically computed sequence whose elements seem to be

resemble a sequence which could have been generated randomly. Such sequences and their elements

are said to be pseudo-random. Indeed a simple example is the so called linear congruential sequence,

given by xi = a · xi−1 + b mod M , where a, b,M are suitably chosen integers. Say we choose, just

for the purpose of discussion, a = 37, b = 43, M = 101. Then starting with x0 = 10, the next few

terms are 9, 73, 17, 66, 61, 78, 0, 43, 18, 2, 16. Perhaps you will agree informally that this sequence

looks random, or at least more random than the sequence 0, 1, 2, 3, 4 and so on. It is possible to

formalize what pseudo-random means, but that is outside the scope of this book. So we will just

assume that pseudo-random merely gets the best of both worlds: it is a sequence that can be generated

by a computer, but can be considered to be random for practical purposes.

Functions such as rand which return (pseudo) random numbers do use the general idea described

above: the next number to be returned is computed as a carefully chosen function of the previous. So

the exact sequence of numbers that we get on successive calls to rand depends upon how we started

off the sequence, what x0 we chose in the example above. This first number of the sequence is often

called the seed. C++ allows you to set x0 to any value v you wish by calling another function srand

which takes a single integer argument which you must specify as v. To use rand and srand, you

would normally need to include the header file <cstdlib>. But this is included automatically if you

include <simplecpp>.

A call rand() returns an int in the range 0 to RAND_MAX. This name is defined for you when

<cstdlib> is included. You can consider the returned value to be uniformly distributed, i.e. the value

is equally likely to be any integer between the specified limits.

Finally, an important point about pseudorandom sequences. The sequence you get when you fix the

seed is always the same. This is a desirable property if you will use it to generate input data. This is for

the following reason. Suppose your program is not working correctly for certain (randomly generated)

data. Say you modify the program and you wish to check if it is now correct. Had the data been

truly random, it would be unlikely that the same sequence would get generated during the execution.

However, since you use a pseudo random sequence, you are guaranteed to get the same sequence if

you set the same seed!

Of course, you might also want to the program to run differently on each occasion. In such cases,

you can use the command time to set the seed, i.e. write

srand(time());

The time command returns the current time in seconds since some midnight of January 1, 1970,

or some such moment. Clearly, time() will have a different value on each run. To use the time

command, you must include the header file <ctime>.
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13.7.1 The randuv Function in Simplecpp

In Simplecpp, we have provided the function randuv which takes two double arguments u,v and

returns a random double in the range u through v. Our command calls the C++ supplied function

rand, and returns the following value:

u + (v-u)*rand()/(1.0 + RAND_MAX)

As you can see this value will be between u and v and uniformly distributed to the extent rand is

uniformly distributed.

If you want random numbers integers between given integers i,j, you must call

randuv(i,j+1) and convert it to an integer. This will give you uniformly distributed integers

between i and j.

You can use srand to set the seed as before.

13.8 CONCLUDING REMARKS

We began the chapter by stressing the need to clearly understand the specification; indeed many errors

happen because the specifications are not properly understood by the programmer. We also discussed

some strategies for developing test cases.

We discussed a few tools for helping the process of program development: input/output redirection,

and assertions.

As to debugging, the main idea suggested was to put in print statements to see whether the program

was executing as per your expectation. We also pointed out the possibility of errors in data input, and

how to deal with them. As an aside we discussed the notion of input expressions, using which you can

easily check if a file has ended.

We also discussed (pseudo) random number generation, which will be useful for generating random

input instances. But (pseudo) random numbers are also useful in general, e.g. Chapter 27.

You may find many suggestions in this chapter to be very cautious, if not paranoid. But when it

comes to serious programming, it is better in the long run to be humble and paranoid.

EXERCISES

1. For the digit-counting problem could the condition 10d > n be 10d ≥ n instead? What if we did

not require d to be a positive integer? Give a crisp answer, i.e. give inputs for which the new

specifications would require an answer different (wrong!) from that required by the old one.

2. Here is a “clever” observation about the digit-counting problem. Suppose a number n has d digits.

Then �n/10� has d− 1 digits. Thus, we simply count the number of times we can divide by 10

till we get zero and that will be the number of digits of the number. So the program is

main_program{

int n, d=0;

cin >> n;

while(n>0){

n = n/10;
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++d;

}

cout << "There are "<<d<<" digits.\n";

}

Is this program correct? Would you have written this program if you had followed the process

suggested in this chapter? For what values of the input would you test the program?

3. Design input instances to test the income-tax-calculation problem of Chapter 6.

4. You are to find and correct the flaw in the following function. How will you go about it? State at

least two strategies and see whether they work.

int gcd(int m, int n)

// finds GCD(m,n) for positive integers m,n

{

if(m % n == 0) return n;

else return gcd(m % n,n);

}



CHAPTER14
Arrays

Here are some real-life problems that we may want to solve using computers.

• Given the marks obtained by students in a class, print out the marks in non-decreasing order, i.e.

the smallest marks first.

• Given a roadmap of India, find the shortest path from Buldhana to Jhumri Telaiya.

• Given the positions, velocities and masses of stars, determine their state 1 million years from

today.

In principle, we could write programs to solve these problems using what we have learned so far;

however there will be some difficulties because of sheer size: our programs might have to deal with

thousands of stars or hundreds of students or roads. Even writing out distinct names for variables to

store data for each of these entities will be tiring.

Most programming languages provide convenient mechanisms usingwhich we can tersely deal with

large collections of objects. In C++ there are two such mechanisms.

Arrays: This is an older mechanism which was also present in the C language, and as a result can also

be used in C++. In this chapter we will consider arrays at length.

Vectors: This is a newer mechanism, which is only present in C++. Vectors have essentially all the

features of arrays, and some more.

We discuss arrays first because arrays are easier to understand, and because this discussion will be

useful for understanding vectors later in Chapter 22.

14.1 ARRAY: COLLECTION OF VARIABLES

C++ allows us to write statements such as

int abc[1000];

This single statement defines 1000 variables! The first of these is referred to as abc[0], the next as

abc[1], and so on till abc[999]. The collection of these 1000 variables is said to constitute the

array named abc, and abc[0], abc[1], ..., abc[999] are said to constitue the elements of the

array. Any identifier (Section 3.1.1) can be used to name an to array. What is inside [ ] is said to be

the index of the corresponding element. The term subscript is also used instead of index. It is important
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to note that indices start at 0, and not at 1 as you might be inclined to assume. The largest index is

likewise one less than the total number of elements. The total number of elements (1000 in the above

example) is referred to as the length or the size of the array. Assuming an int variable needs 4 bytes

of space, the statement above reserves 4000 bytes of space in one stroke.

The space for an array is allocated contiguously in the memory of the computer, in the order of the

index, i.e. abc[1] is stored in memory followingabc[0], abc[2] following abc[1], and so on.

You may define arrays of other kinds also, e.g.

float b[500]; // array of 500 float elements.

You can mix up the definitions of ordinary variables and arrays, and also define several arrays in the

same statement.

double c, x[10], y[20], z;

This statement defines variables c, z of type double, and two arrays x, y also of type double,

respectively having lengths 10, 20. Assuming one variable of type double requires 8 bytes of space,

this statement is reserving 8 bytes each for c, z, and respectively 8× 10, 8× 20 bytes for x,y.

You may define arrays in the main program or inside functions as you wish. Note however, that

variables defined inside functions are destroyed once the function returns. This applies to arrays defined

in functions as well.

As per the C++ standard, the length of the array should be specified in the definition using a constant.

However, also see Section 14.7.

14.1.1 Array-element Operations

Everything that can be done with a variable can be done with the elements of an array of the same type.

int a[1000];

cin >> a[0]; // reads from keyboard into a[0]

a[7] = 2; // stores 2 in a[7].

int b = 5*a[7]; // b gets the value 10.

int d = gcd(a[0],a[7]); // gcd is a function as defined earlier.

a[b*2] = 234; // index: arithmetic expression OK

In the first statement after the definition of a, we are reading into the zeroth element a[0] of a, just as

we might read into any ordinary variable. You can also set the value of an array element by assigning to

it, as in the statement a[7]=2;. The statement following that, b=5*a[7];, uses the element a[7]

in an expression, just as you might use an ordinary variable. This is also perfectly fine. Note that just

like ordinary variables, an element must have a value before it is used in an expression. In other words,

it would be improper in the above code to write int b = 5*a[8]; because a[8] has not been

assigned a value.

Elements of an array behave like ordinary or scalar variables of the same type; so they can be passed

to functions just like scalar variables. Hence, we can writegcd(a[0],a[7]); if we wish, assuming

gcd is a function taking two int arguments.
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In the last line in the code the index is not given directly as a number, but instead an expression is

provided. This is acceptable. When the code is executed, the value of the expression will be computed

and will be used as the index. In the present case, by looking at the preceding code we know that b will

have the value 10, and hence a[b*2] is simply a[20]. So 234 will be stored in a[20].

14.1.2 Acceptable Range for the Index

When using arrays in your programs, it is very important to keep in mind that the array index must

always be between 0 (inclusive) and the array size (exclusive). For example, for the array a are defined

above, a reference a[1000] would be incorrect, because it is not in the range 0 to 999. Likewise, a

reference a[b*200] would also be incorrect, because it is really the reference a[2000] given that

b has value 10 in the code above.

If such references are present in your program, its behaviour cannot be predicted. The program

may generate wrong values, fail to terminate, or terminate with an error message. Any one of these

outcomes is possible, and C++ does not say which will happen.

Simply put, it is vital that you, the programmer, make sure that array indices are in the required

range. This is an extremely important requirement.

14.1.3 Initializing Arrays

It is possible to combine definition and initialization. Suppose we wish to create a 5 element float

array called pqr containing respectively the numbers 15, 30, 12, 40, 17. We could do this as follows.

float pqr[5] = {15.0, 30.0, 12.0, 40.0, 17.0};

In fact, an alternate form is also allowed and you may write:

float pqr[] = {15.0, 30.0, 12.0, 40.0, 17.0};

in which the size of the array is not explicitly specified, and it is set by the compiler to the number

of values given in the initializer list. You can of course mix definitions of arrays with or without

initialization, and also the definition of variables.

int x, squares[5] = {0, 1, 4, 9, 16}, cubes[]={0, 1, 8, 27};

This will create a single int variable x, and two initialized arrays, squares of length 5, and cubes

of length 4.

Of course, it might be more convenient to initialize arrays separately from their definitions,

especially if they are large. So if we wanted a large table of squares, it might be more convenient

to write

int squares[100];

for (int i=0; i<100; i++)

squares[i] = i * i;

14.2 EXAMPLES OF USE

The common use of arrays is to store values of the same type, e.g. velocities of particles, marks obtained

by students, lengths of roads, times at which trains leave, and so on. You could also say that an array is

perfect to store any sequence x1, x2, . . . , xn. Of course, since array indices start at 0 in C++, it is more
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convenient to call the sequence x0, x1, . . . , xn−1, and then store xi in ith element of a length n array.
As will be discussed in Section 15.1, an array can be used to store text. An array can also be used to

store a machine language program: the ith element of the array storing the ith word of the program

(Section 2.9). We will see many such uses in the rest of this chapter and the following chapters.

In this section we give some typical examples of programs that use arrays. You will see some

standard programming idioms for dealing with arrays.

14.2.1 Notation for Sub-arrays

It will be convenient to have some notation to indicate sub-arrays of an array. Thus, we will use the

notation A[i..j] to mean elements A[k] of the array A where i ≤ k and k ≤ j. Note that if i > j,
then the sub-array is empty.

This notation is only for convenience in discussions, it is not supported by C++ and cannot be used

in programs.

14.2.2 A Marks-display Program

Suppose a teacher wants to announce the marks the students in a class have got. One way would be

to put up a list on the school noticeboard. Another possibility is as follows. The teacher loads the

marks onto a computer. Then any student that wants to know his marks types his roll number, and the

computer displays the marks.1 Can we write a program to do this?

For simplicity, let us assume that there are 60 students in the class, and their roll numbers are

between 1 and 60. Let us also stipulate that the program must print out the marks of each student

whose roll number is entered, until the value −1 is supplied as the roll number. At this point, the
program must halt.

Clearly we should use an array to store the marks. It is natural to store the marks of the student with

roll number 1 in the 0th element of the array, the marks of the student with roll number 2 in the element

with index 1, and in general, the marks of the student with roll number i in the element at index i− 1.

So we can define the array as follows.

float marks[60]; // marks[i] stores the marks of roll number i+1.

You are probably wondering whether we need to change the program if the number of students is

different. Hold that thought for a while, we will discuss this issue in Section 14.7.

Next we read the marks into the appropriate array elements.

for(int i=0; i<60; i++){

cout << "Marks for roll number " << i+1 << ": ";

cin >> marks[i];

}

Remember that when the statement cin >> marks[i]; is executed, the then current value of i is

used to decide which element gets the value read. Thus, in the first iteration of the loop, i will have

the value 0, and so what is read will be stored in marks[0]. In the second iteration, i will have the

value 1 and so the newly read value will be stored in marks[1], and so on. Thus indeed we will have

the marks of a student with roll number i+1 be stored in marks[i] as we want.

1Many might not like the idea of displaying marks in public. Later you can add a password so that each student can only see

her marks.
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In the last part of the program, students enter their roll numbers and we are to print out the marks

for the entered roll number. Since this is to happen till -1 is given as the roll number, we clearly need a

while loop. There are various ways to do this, we choose one with a break, similar to Section 7.2.

while(true){

cout << "Roll number: ";

int rollNo;

cin >> rollNo;

if(rollNo == -1) break;

cout << "Marks: " << marks[rollNo-1] << endl;

}

Clearly, if you typed 35 in response to the query “Roll number: “, then you would want the marks for

roll number 35, and these would be stored in marks[34]. But this is exactly the same element as

what is printed, marks[rollNo-1].

The program given above will work fine, so long as the roll number given is either −1 or in the
range 1 through 60. If a number other than these is given, say 1000, the program will attempt to read

marks[999]. As we said, this may result in some irrelevant data to be read, or worse, the program

may actually halt with an error message. Halting is not acceptable in this situation, because students

coming later will then not be able to know their marks. Fortunately, we can easily prevent this. If the

roll number is not in the given range, then we can say so and not print any marks. So the code should

really be as follows.

while(true){

cout << "Roll number: ";

int rollNo;

cin >> rollNo;

if(rollNo == -1) break;

if(rollNo < 1 || rollNo > 60)

cout << "Invalid roll number." << endl;

else

cout << "Marks: " << marks[rollNo-1] << endl;

}

14.2.3 Who Got the Highest?

Having read in the marks as above, suppose we wish to print out the roll numbers of the student(s) who

got the highest marks, instead of answering student-marks queries.

What wewant can be done in two steps. In the first step, we determine themaximummarks obtained.

In the second, we print out the roll numbers of all who got the maximum marks.

In Section 3.4.1, we have already discussed how to find the maximum of the numbers read from

the keyboard. Now instead of getting the marks from the keyboard, we are required to read them from

the array. Basically, instead of reading from the keyboard, the first element will be obtained from
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marks[0], and subsequent elements by looking at marks[i], where i has to go from 0 to 59. The

code for this is as follows.

float maxSoFar = marks[0];

for(int i=1; i<60; i++){ // i starts at 1 because we already

// took marks[0]

maxSoFar = max(maxSoFar, marks[i]);

}

The next step is to print the roll numbers of those students who got marks equal to maxSoFar. This

is easily done, we examine each marks[i], for all i as i goes from 0 to 99, and whenever we find

marks[i] equalling maxSoFar, we print out i+1, because we stored the marks of roll number i+1

at index i.

for(int i=0; i<60; i++)

if(marks[i] == maxSoFar)

cout << "Roll number " << i+1 << " got maximum marks." << endl;

14.2.4 General Roll Numbers

In the code above, we exploited the fact that the roll numbers are consecutive. In general this may not

happen. Often, the roll number assigned to each student may encode different kinds of information, e.g.

first two digits are year of joining, another digit indicates the department to which the student belongs,

and so on. Sometimes the roll number may also contain letters, though for simplicity we will ignore

this possibility.

We consider the marks display problem in this new setting.We will use an additional array rollno

in which to store the roll number, in addition to the array marks used above. The teacher first types in

60 pairs of number, each pair consisting of a roll number and the marks obtained by the student having

that roll number. Our program must read in the roll number and marks and store them in the arrays

rollno and marks. In the second phase, when a student types in a roll number, we must first look

for it in the array rollno. If it is found, then we print the corresponding marks.

int rollno[60];

double marks[60];

for(int i=0; i<60; i++) cin >> rollno[i] >> marks[i];

while(true){

int r; cin >> r; // roll number whose marks are requested

if(r == -1) break;

for(int i=0; i<60; i++)

if(rollno[i] == r) cout << marks[i] << endl;

}

This idea, scanning an array from the beginning to the end in order to determine if a certain element is

stored in the array, is sometimes called linear search.

The code above is unsatisfactory in two ways. First, if the given value r is not present in the array,

it would be polite to print a message to that effect. Second, once we find r at some index, there is
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no need to scan the remaining elements. Both these goals can be acheived by replacing the for loop

above with the following.

int i;

for(i = 0; i<60; i++){

if(rollno[i] == r){ cout << marks[i] << endl; break;}

}

if(i >= 60) cout << "Invalid roll number.\n";

Note first that we break out of the loop upon finding a match. Thus, if a match is found the variable

i (which has now been defined outside the loop) will have a value less than 60. The check at the end

succeeds only if all 60 iterations were executed without finding a match, i.e. if the roll number r is

invalid.

14.2.5 Histogram

Our next example is trickier, and it illustrates an important powerful feature of arrays.

Again, we have as input the marks of students in a class. Assume for simplicity that the marks are

in the range 0 through 99. We are required to report how many students got marks between 0 and 9,

how many between 10 and 19, how many between 20 and 29, and so on. As you might know, what we

are asked to report is often called a histogram in statistics2.

We are required to report 10 numbers. So it could seem natural to use an array of 10 elements. The

0th element of the array can be used to count the number of marks in the range 0–9, the first element

for the range 10–19, and so on. So in general we could say ith element of the array should correspond

to the range i*10 to (i+1)*10-1 (both inclusive). So we call the array count and define it as:

int count[10]; // count[i] will store the number of marks in the

// range i*10 through (i+1)*10 - 1.

Clearly, we should set the counts to 0 at the beginning, and change them as we read in the marks.

for(int i=0; i<10; i++)

count[i]=0;

When we read the next mark, how do we decide which count to increment? It is natural to write

something like the following.

for(int i=0; i< 60; i++){ // can do better than this!

float marks;

cin >> marks;

if(marks <= 9) count[0]++;

else if(marks <= 19) count[1]++;

else if(marks <= 29) count[2]++;

else if(marks <= 39) count[3]++;

else if(marks <= 49) count[4]++;

else if(marks <= 59) count[5]++;

2 In general, a histogram is a count of number of observations (marks, in our case) falling in various ranges of values (in our
case the intervals 0–9, 10–19, and so on). The counts are often depicted as a bar chart, in which the height of the bars is

proportional to the count and width to the size of the range.
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else if(marks <= 69) count[6]++;

else if(marks <= 79) count[7]++;

else if(marks <= 89) count[8]++;

else if(marks <= 99) count[9]++;

else cout << "Marks are out of range." << endl;

}

This works, but there is a better way! Suppose we read a markm, which count should we increase? For

this, we simply need to know the tens place digit ofm. As you might observe, this is simply �m/10�,
i.e. the integer part ofm/10. But we can get the integer part by storing into an integer variable! This is

what the following code does.

for(int i=0; i< 60; i++){

float marks;

cin >> marks;

int index = marks/10;

if(index >= 0 && index <= 9) count[index]++;

else cout << "Marks are out of range." << endl;

}

Note that this works only because all the ranges are of the same size. But this is very often the case

when computing histograms.

14.2.6 A Taxi-dispatch Program

Suppose you are the Mumbai dispatcher for the Mumbai–Pune taxi service. Your job is as follows.

Drivers of taxis that are willing to take passengers to Pune report to you and give you their driver ID

number and wait. Passengers who want taxis also report to you. When a passenger reports, you check if

there are any waiting taxis. If there are, you assign the taxi of the driver that reported to you the earliest.

Clearly, once a taxi has been given to a passenger, you need not keep the corresponding ID number on

your list. If no taxis are available, you let the passenger know. You are not expected to keep track of

waiting passengers, though an exercise asks you to do precisely this. You may assume that at any given

point there will not be more than 100 taxis waiting for passengers. You are to write a program which

will help you dispatch taxis as required.

Let us make this more specific. Suppose that the dispatcher will type ’d’ when a driver arrives,

followed by the driverID. Likewise when a customer arrives, the dispatcher will type ’c’, and expect

the program to print the ID of the assigned driver. Finally, to terminate the program, we will have the

dispatcher type ’x’ (commonly used as abbreviation of eXit).

Next we decide what variables we might need and how we should be using them.

Clearly, we will need to store the IDs of the waiting drivers. It seems natural to use an array, say

driverID, to store these. Assume for simplicity that the IDs are integers with 9 or fewer digits, i.e.

that they will fit in int. The size of the array should equal the maximum number of drivers we expect

will be waiting with us at any time. Most of the time there will be fewer drivers waiting with us than

the size of the array, so we presumably need a variable nWaiting which will denote the number of

waiting drivers.
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We also need to somehow record the order in which the drivers arrived, because we want to assign

the next customer to the driver who has registered with us the earliest. A natural way to do this is to

store the earliest waiting driver at index 0, the next earliest at index 1, and so on. The ID of the driver

that arrived last would be at index nWaiting - 1.

If a new driver arrives, we can store his ID at the index nWaiting, and increment nWaiting. If

a customer arrives, we can assign the driver at driverID[0]. However, once we assign the driver,

we must shift up all the other entries in the array, since we have decided that the waiting drivers must

be stored starting at index 0. This is expressed in the following code.

const int n = 100; // estimate of max waiting drivers.

int driverID[n], nWaiting = 0;

while(true){ /* Invariants: nWaiting denotes the number of

waiting drivers. 0 <= nWaiting <= n. IDs

of waiting drivers are in driverID, from

driverID[0] to driverID[nWaiting - 1] */

char command; cin >> command;

if(command == ’d’){ // driver arrives

if(nWaiting >= n) cout << "Queue full, try later.\n";

else{

cin >> driverID[nWaiting];

nWaiting++;

}

}

else if(command == ’c’){ // customer arrives

if(nWaiting == 0) cout << "Nothing available. Try later.\n";

else{

cout << "Assigning " << driverID[0] << endl;

for(int i=1; i < nWaiting; i++) // shift up waiting drivers

driverID[i-1] = driverID[i];

nWaiting--;

}

}

else if(command == ’x’) break;

else cout << "Illegal command.\n";

}

Note that we have added checks to see if the array driverID is already full when a driver is to be

entered, and to see if there is at least one element in it when a customer arrives.

You might think that perhaps there should be a way to write the program without having to shift up

the entries in driverID when we assign the driver at index 0. Instead of moving up the drivers in

the array, could we not adjust our notion about where the front of the queue is? Indeed this will work.

But it will need a bit more care. To do this right, perhaps it is worth considering how we might have

dispatched taxis without computers.
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Dispatching Without Computers

It is always worth thinking about how any problem, including taxi dispatching,might be solved without

computers. Say the dispatcher writes the driverID numbers on a blackboard, top to bottom, as the

drivers report. When a driver arrives, we put down the number at the bottom of the list. When a

passenger comes in, the number at the top of the list is given to the passenger, and then the number is

erased.

For simplicity, let us assume that our blackboard can only hold 100 driver ID numbers. Managing

this space on the blackboard turns out to be slightly tricky. Suppose 60 drivers report, and you write

down their numbers, starting at the top. Suppose you next have 50 passengers, so you match them to

the top 50 numbers, which you erase. At this point, you have only 10 numbers on the board, however,

they are not at the top of the board, but they start halfway down the board. Suppose now 60 more

drivers report. You would place 40 of these numbers below the 10 you have on the board, and that

would take you to the bottom of the board. Where should you place the remaining 20? It is natural to

start writing numbers from the top again, as if the bottom of the board were joined to the top. Think of

the blackboard as forming the curved surface of a cylinder! Thus, at this point, you have 70 numbers

on the board. They begin at position 50 (the topmost position being 0), go to the last position, 99. Then

they “wrap around” so that the last 20 numbers occupy positions 0 through 19 on the board. Positions

20-49 are then unused. This should not confuse us; say we make a mark next to the first waiting driver.

When we assign a driver, we erase the number from the board, and also shift the mark down one. This

works fine so long as the number of taxi drivers waiting at any time does not exceed 100.

Emulating a Blackboard on a Computer

Our program will mirror the actions given above. We do not shift drivers up when a driver is assigned,

instead we have a variable front, which will always contain the index of the element of driverID

containing the earliest waiting unassigned driver. This performs the function of the mark that the

dispatcher places on the board.

If there are nWaiting drivers waiting for customers, their IDs will appear at positions starting at

front. We need to be slightly careful as we say this: how do we describe what happens when the

board fills to the bottom and the dispatcher is forced to write the numbers starting at the top again?

We would like to somehow say that index that comes “next” after the last index n-1 (i.e. the “bottom”

of the board) is index 0 (i.e. the “top” of the board). So instead of saying that the next index after

front is front+1, we will say that it is (front+1) % n. If front has some value i<n-1, then

(front+1) % n is just front+1. However, if front equals n-1, then (front+1) % n will

indeed become 0 as we wish. Thus we will simply require that if there are nWaiting drivers that

are waiting, their IDs will be at indices front, (front + 1) % n, . . ., (front + nWaiting

- 1) % n.

Next we consider what actions to execute when a driver arrives. As before, we accept the ID only

if driverID is not full. The ID of the arriving driver must be added consistent with the property

mentioned above, i.e. at position (front + Waiting) % n. After that we must increment

nWaiting.

When a customer arrives, as before we first check if there are any waiting drivers. If there are, we

assign the driver at the front of the queue, i.e. driverID[front]. We add one to front to get to

the next element of driverID. however, since we want to consider the queue to start again from the

top, the addition is done modulo n. Finally, we must decrement nWaiting.



Arrays
201

Occupied
by numbers

Occupied

by numbers

Occupied

by numbers

0
1

0
1

0
1

Unused

Unused

Unused

Unused

front

front

front +

nWaiting

% n

n −1

front +

nWaiting

% n

n −1 n −1

front +

nWaiting

% n

(a) At the beginning (b) After some time (c) After more time

Fig. 14.1 Snapshots of the board

const int n = 100; // estimate of max waiting drivers.

int driverID[n], nWaiting = 0, front = 0;

while(true){ /* Invariants: nWaiting denotes the number of

waiting drivers.

0 <= nWaiting <= n. IDs of waiting drivers are in

driverID, from driverID[front] to driverID[(front +

nWaiting - 1) %n ].

0 <= front < n

*/

char command; cin >> command;

if(command == ’d’){ // driver arrives

if(nWaiting >= n) cout << "Queue full. Try later.\n";

else{

cin >> driverID[(front + nWaiting) % n];

nWaiting++;

}

}

else if(command == ’c’){ // customer arrives

if(nWaiting == 0) cout << "Nothing available. Try later.\n";

else{

cout << "Assigning " << driverID[front] << endl;

front = (front + 1) % n;

nWaiting--;

}

}
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else if(command == ’x’) break;

else cout << "Illegal command.\n";

}

You might have noted that it was easy to write this program once we decided clearly how our variables

would be used. This is often a good strategy in writing programs.

14.2.7 A Geometric Problem

Suppose we are given the positions of the centers of several circles in the plane as well as their radii.

Our goal is to determine whether any of the circles intersect. Let us say that the ith circle has center

(xi, yi) and radius ri, for i = 0, . . . , n− 1.

Whether a pair of circles intersect is easy to check: the circles intersect if and only if the distance

between their centers is smaller than or equal to the sum of their radii. In other words, circle i and

circle j intersect if and only if �
(xi − xj)2 + (yi − yj)2 ≤ ri + rj

Or equivalently, (xi − xj)2 + (yi − yj)2 ≤ (ri + rj)
2. Thus, in our program we must effectively

check whether this condition holds for any possible i, j, where of course i �= j.

Here is how we can do this. We will use arrays x,y,r in which we will store the x, y coordinates

of the center and the radius of the circles. Specifically, the x-coordinate of the center of the ith circle

will be stored in x[i], the y-coordinate in y[i], and the radius in r[i]. We will then check whether

each circle i intersects with a circle j where j>i.

int n=5; // number of circles. 5 chosen arbitrarily.

float x[n], y[n]; // coordinates of center of each circle.

float r[n]; // radius of each circle.

for(int i=0;i<n;i++) // read in all data.

cin >> x[i] >> y[i] >> r[i];

// Find intersections if any.

for(int i=0; i<n; i++){

for(int j=i+1; j<n; j++){

if(pow(x[i]-x[j],2)+pow(y[i]-y[j],2) <= pow(r[i]+r[j],2))

// built in function pow(x,y) = x raised to power y.

cout << "Circles " << i << " and " << j << " intersect."

<<endl;

}

}

Thus, in the first iteration of the outer for loop, we check for intersections between circle 0 and

1, 2, 3, . . . , n− 1. In the second iteration, we check for intersections between circle 1 and circles

2, 3, . . . , n− 1, and so on. Is it clear that we check all pairs of circles in this process? Consider the

kth circle and the lth circle, k �= l. Can we be sure that the intersection between them is checked?

Clearly, if k < l, then in the iteration of the outer for loop in which i takes the value k, we will

check intersections with circles k + 1, k+ 2, . . . , n− 1. This sequence will contain l because k < l.
Alternatively, suppose l < k. Then consider the iteration of the outer for loop in which i= l. In this



Arrays
203

iteration, we will check the intersection of circle l with circles l+ 1, . . . , n− 1. Clearly, k will be in

this sequence because l < k. Thus in either case we will check the intersection between circle k and

circle l, for every k, l.

14.3 THE INSIDE STORY

We now discuss some details regarding arrays and array accesses. This will specially be useful for

understanding how we define functions for operating on arrays. To make the discussion more concrete,

suppose we have the following definitions.

int p=5, q[5]={11,12,13,14,15}, r=9;

float s[10];

Say each variable of type int is given 4 bytes of memory, and so is a float. Thus, we know the

above definitions will cause 4 bytes of memory to be reserved for p, 4× 5 = 20 bytes for q, 4 for

r, and 4× 10 = 40 bytes for s. We have also said that the memory given for an array is contiguous.

Thus, the memory for q will start at a certain address, say Q, and go on to address Q+ 19. The notion

of addresses is as per our discussion in Chapter 2 and Section 9.8. Consistent with this description,

Figure 14.3 shows how space might have been allocated for these variables.

14.3.1 Time Required to Access an Array Element

Next we consider what happens when during execution we encounter a reference to an array element,

e.g. q[expression]. How does the computer know where this element is stored? Of course, first

the expression must be evaluated. Suppose its value is some v. Then we know that we want the

element of q of index v. But because the elements are stored in order, we also know that the element

with index v is stored at Q+ 4v, where Q is the starting address for q. Thus, if v = 3 then we would

want q[3], which is stored from Q+ 12. In general, the vth element of an array which is stored

starting at address A would be at A+ kv, where k is the number of bytes needed to store a single

element. Indeed, to access an array element, the computer must evaluate the index expression, and

then perform the multiplication and addition to get the address A+ kv. In contrast, the address of an

ordinary variable such as p is directly known, and no calculation needs to be performed.

So two points are to be noted. First, accessing an array element takes somewhat longer than

accessing a simple variable. Second, and this is perhaps more important: the time required to access an

element does not depend upon the size of the array.

14.3.2 Out-of-range Array Indices

Suppose now that our program has a statement q[5]=17;. Using the formulaA+ kv given above, the

computer would try to store 17 in the int beginning at the address Q+ 4× 5 = Q+ 20. Notice that

this is outside the range of memory allocated for q. In fact, it is quite possible, as shown in our layout

of Figure 14.3, that r is given the memory Q+ 20 through Q+ 23. Then the statement q[5]=17

might end up changing r! Likewise it is conceivable that a statement like q[-1]=30; might end up

changing p.

Suppose on the other hand, we wrote q[10000]=18;. This would require us to access address

Q+ 40000. It is conceivable that there isn’t any memory at this address. Many computers have some

circuits to sense if an access is made to a non-existent address or even some forbidden addresses. The

details of this are outside the scope of this book, but if this happens, then the program might halt with
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an error message. In any case, it is most important to ensure that array indices are within the required

range.

14.3.3 The Array Name by Itself

So far we have not said whether the name of an array can be used in the program by itself, i.e. without

specifying the index. It turns out that C++ allows this.

In C++, the name of an array by itself is defined to have the value equal to the starting address from

where the array is stored. This is an important place where arrays work differently from vectors, as we

will see in Chapter 22.

Continuing our example of Figure 14.3, since the array q is stored starting at address Q, the value

of the name q itself would thus be Q, and the value of s, Q+ 24. Since the variable at address Q is

q[0], of type int, it is natural to define the type of q to be pointer to int, or address of int, or

int*. In general, if an array contains elements of type T, then its name will have type T* or address

of T or pointer to T.

Thus, s would be of type address of float or pointer to float or float*, and would have the

valueQ+ 24.

It seems strange that the name of an array is only associated with the starting address, and that the

length of the array is not associated with the name. This is merely a matter of convenience, and its

utility will become clear in Section 14.4.

An important point to note is that the value associated with the name of an array, say q, cannot be

changed; it always means the address of q[0]. In other words, you cannot write an expression such as

q = ...; // incorrect if q is the name of an array

Such expressions will be flagged as errors by the compiler.

14.3.4 The Operator “[]”

A further tricky point is that when you refer to an array by writing something likeX[Y], C++ considers

it to be an expression, with X,Y the operands, and [] the operator!3 The operation is defined only if

X has the type “address of some type T”, and Y is an expression that evaluates to a value of type int.

Suppose that X is of type address of type T, and Y does evaluate to int. Then the expression X[Y]

denotes the variable of type T stored at the address A+ kv, where A is the value of X, v the value of

Y, and k is the number of bytes needed to store a single element of type T.

You will realize that we are merely restating how we find the element given the name of the array

and the index. But the restatement is more general: X does not need to be the name of an array, it

could be any name whose type is “address of some type T”. This generalization will come in useful in

Section 14.4.

Note by the way that [] will be written even when we define an array; in such contexts of course

the [] is not to be considered an operator.

Just to drive home the point, consider the following code.

double speed[]={1.25, 3.75, 4.3, 9.2}; // [] is not an operator

double *s;

3 Yes, this is an unusual way of writing a binary expression. But do note that there are other operations which are not written in

the order operand1 operator operand2. For example, we often write a

b
rather than a÷ b.
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s = speed;

cout << s[0] << endl; // [] is an operator

s[1] = 3.9;

cout << speed[1] << endl; // [] is an operator

The first point to note is that the assignment s = speed is very much legal, since speed is of type

double*, just like s. Thus, after the assignment, s will have the same value as speed. But then, the

expressions s[j] will mean the same as speed[j].

Put differently, the expression s[0] denotes the double value stored at the address s + k*i,

where k is the size of double, and i the value of index, which are respectively 8 and 0. In other

words, s[0] means the double stored at address s which is the same as speed, and hence is the same

as the value stored at address speed, and so is speed[0]. Thus, the first print statement will print

1.25. The statement s[1] is likewise equivalent to speed[1], i.e. to 3.9, which is what the second

print statement will print.

14.4 FUNCTION CALLS INVOLVING ARRAYS

Functions are convenient with ordinary, or scalar variables, and indeed we can imagine that they will

be convenient with arrays as well. Suppose we have an array of floats defined as float a[5]; and

somewhere in the program we need to calculate the sum of its elements. It is not difficult to write the

code to compute the sum of the elements of an array, however, if the sum is needed for several such

arrays in our code, then will have to replicate the code that many times. So it would be very convenient

to write a function which takes the array as the argument and returns the sum.

As it happens, we have told you everything you need to write the function! Here is what you could

write.

float sum(float* v, int n){ // function to sum the elements

// of an array

float s = 0;

for(int i=0; i<n; i++)

s += v[i];

return s;

}

We will explain this shortly. First, we show how this function might be called from a main program.

int main(){

float a[5] = {1.0, 2.0, 3.0, 4.0, 5.0}, asum;

asum = sum(a, 5);

}

Let us first check whether the function call is legal, i.e. whether the types of the arguments match those

of the parameters in the definition in the function sum. The first argument to the function call is the

array name a. We said that the type associated with the array name is T*, if the elements in the array

are of type T. Thus, the type of a is float*. This indeed matches the type of the first parameter, v,

in the function definition. The second argument, 5, clearly has type int which matches the type of the

second parameter n. Thus, the call is legal and we now think about how it executes.
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When the call length(a, 5) is encountered, as usual an area is created for execution of the

function sum. The values of the non-reference arguments are copied. In the present case, none of the

parameters are reference parameters, and so the values of both arguments are copied. The value of the

first argument, a, is the starting address, say A, of the array a in memory. Thus, v gets the value A.

The value of the second argument is 5. Thus, n gets the value 5. It is very important to note here that

the content of all the locations in which the array is stored are not copied, but only the starting address

is copied.

The code of the function is then executed. The only new part is the expression v[i]. This is

processed essentially according to the rule given earlier. We know that v has type address of float,

and its value is A. So now the expression v[i] is evaluated as discussed in the previous section, by

considering [] to be an operator and so on. Instead of doing the precise calculation again, we merely

note that the value of v[i] evaluated in sum must be the same as the value of a[i] evaluated in the

main program, because v has the same value and type as a. Hence, v[i] will in fact denote the ith

element of a. Because n has value 5, in the loop i will take values from 0 to 4. Thus, a[0] through

a[4] will be added as we desired.

Some remarks are in order.

1. Another syntax can also be used to declare parameters that are arrays, in this case arrays of float

variables: float v[]—this directly suggests that v is like an array except that we do not know

its length.

2. Function sum does not really know that it is operating on the entire array. For example the call

sum(a,3) is also allowed. This would return the sum of the first 3 elements of a, since the loop

in the function will execute from 0 to 2.

3. Modifying the passed array is also possible. If your function had a line at the end such as

v[0]=5.0;, that would indeed change a[0]. This is consistent with the mechanism we have

discussed for evaluating expressions involving [].

14.4.1 Examples

Shown below are two simple examples of functions on arrays. The next sections gives more involved

examples.

Our first function merely prints the values of the elements of a float array.

void print(float *a, int n){ // or: "void print(float a[], int n){"

for(int i=0; i < n; i++)

cout << a[i] << endl;

}

This will print out the first n elements of the array. Note that it is the responsibility of the calling

program to ensure that an array is passed, and that the array has length at least as much as the second

argument.

Next, we present a function which returns the index of an element whose value is the maximum of

all the elements in the array. Note the careful phrasing of the last sentence: when we say “an element”,

we acknowledge the possibility that there could be many such elements, and we are returning the index

of only one of them.

The idea of the function is very similar to what we did for finding the maximum marks from the

marks array in Section 14.2.3. We will scan the array from left to right (by which we will mean from
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index 0 to the largest address). We have a variable maxIndex in which will store the index of the

largest element seen so far in the scan. We start by initializing it to 0, which is equivalent to aserting

that the maximum appears in position 0 as we start the scan. Next, we check if the subsequent elements

of the array are larger, if we find an element which is larger, then we assign its index to maxIndex.

int argmax(float marks[], int L)

// marks = array containing the values

// L = length of marks array. required > 0.

// returns maxIndex such that marks[maxIndex] is largest in

// marks[0..L-1]

{

int maxIndex = 0;

for(int j = 1; j < L; j++)

if( marks[maxIndex] < marks[j]) // bigger element found?

maxIndex = j; // update maxIndex.

return maxIndex;

}

We have given the name marks so that it is easy for you to see the similarity between this code and

the code in Section 14.2.3. But by itself this function does not have anything to do with marks. So if

you write it independently some more appropriate name such as datavalues should be used instead

of the name marks.

14.4.2 Summary

The most important points to note are as follows.

To pass an array to a function, we must typically pass 2 arguments, the name of the array, and the

length of the array. This is to be expected, the name only gives the starting address of the array, it does

not say how long the array is. So the array length is needed.

The called function can read or write into the array whose name is sent to it. This is like sending the

address of one friend A to another friend B, Surely then B will be able to write to A or visit A just as

you can!

Finally, it is worth noting an important point. When we write a function on arrays, it may be

convenient to allow it to be called with length specified as 0. What should a function such as sum

to when presented with an array of zero length? It would seem natural to return the sum of elements

as 0. This is what our sum function does. On the other hand, our argmax function requires that the

length be at least 1. Such (pre)conditions on acceptable values of parameters should be clearly stated

in the comments.

14.5 SELECTION SORT

We will consider a problem discussed at the beginning of the chapter: given the list of marks, print

them out in the order lowest to highest. We could ask that along with the marks, we also print out the

roll numbers, however, this is left for the exercises.

We can accomplish our task in two phases. In the first phase, we rearrange the element values in

a non-decreasing order, i.e. so that the values appearing in element with smaller indices are no larger
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than those appearing in element with larger indices. This operation is often called sorting. This is one

of the most important operations associated with an array. We will present a simple algorithm called

Selection sort for this. Better ways will be given in Section 16.2 and Section 22.3.2. Once the elements

are arranged in a non-decreasing order, we can simply print out the array elements by index, i.e. element

0, then element 1, and so on. This will ensure that the marks are printed in non-decreasing order. For

this, we can simply use the function print defined earlier.

We use a fairly natural idea for sorting. We begin by looking for the largest value in the array,

and we move it to the last position, i.e. index n− 1, where n is the length of the array. Of course,

position n− 1 itself contains a value, and we cannot destroy that. So we instead exchange the two: the

maximum value moves to the n− 1th position and the value in the n − 1th positionmoves to wherever

the maximum was present earlier. Next, we find the maximum value amongst elements in positions

0 through n− 2. This maximum is exchanged with the element in position n− 2. Thus, we have the

maximum and second maximum at positions n− 1 and n− 2. In general, we proceed in this manner,

in a typical iteration, we will find the maximum from the first i values, and then exchange that with

the value at the i-1th index. We will have i begin with the value n, and count it down in successive

iterations till we reach 2.

For finding the maximum, it is convenient to use the argmax function defined in Section 14.4.1. If

we want the maximum from the first i elements, we simply invoke it using i as the second argument.

As we noted there, argmax need not be passed the actual length of the array; if it is passed a smaller

value i it will merely find a maximum in the first elements and return its index. So the code is quite

obvious.

void SelSort(float data[], int n)

// will sort in NON-DECREASING order.

{

for(int i=n; i>1; i--){

int maxIndex = argmax(data,i); // Find index of max in

// data[0..i-1]

float maxVal = data[maxIndex]; // Exchange elements at

data[maxIndex] = data[i-1]; // index = maxindex

data[i-1] = maxVal; // and index = i-1.

}

}

It should be clear that the code above is doing what we described. It is instructive to write a loop

invariant also: At the beginning of each iteration, the subarray data[i..n-1] contains largest

values, for the then value of i. Note that in the very first iteration i = n and hence the invariant

is vacuously true.

Suppose the invariant is true at the beginning of some iteration, we will prove that it will also hold

for the next. The first statement of the loop finds the maximum in the first i elements, i.e. elements

0 through i− 1. The last 3 statements exchange this with the element at index i− 1. Thus, at the end

of the iteration, the subarray data[i-1..n-1] will contain the largest values. This establishes the

invariant for the beginning of the next iteration.
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14.5.1 Estimate of Time Taken

We will try to get a rough estimate of the time needed by Selection sort. By rough estimate we merely

mean whether the time is proportional to n, the number of elements being sorted, or their square and

so on. Such estimates cannot be used to decide how many seconds will be needed to execute the

program. However, if we know that one program sorts in time proportional to n, and another in time

proportional to n2, then for large enough n, the first algorithm will be better. Usually, we care about

the time taken only when the problem size, n in this case, is large. So our rough analysis: whether the
time is proportional to n or n2, is quite useful.

To analyze the time for SelSort, we must first analyze the time for argmax. The function

argmax simply goes over the subarray on which it is called and finds the maximum. It examines

every element and thus its time can be considered to be proportional to L, the second argument. In

selection sort, we merely call argmax several times, with the value of the second argument being

n, n− 1, n− 2 and so on till 2. Thus, we can see that the time is proportional to

n+ (n− 1) + (n− 2) + . . .+ 2 =
(n+ 2)(n− 1)

2
≈ n2/2

Thus we estimate the time taken by Selection sort as being proportional to n2, where n is the length of

the array being sorted.

14.6 REPRESENTING POLYNOMIALS

A program will deal with real life objects such as stars, or roads, or a collection of circles. It might also

deal with mathematical objects such as polynomials. How to represent polynomials on a computer and

perform operations on them are therefore important questions.

A polynomial A(x) =
�i=n−1
i=0 aix

i is completely determined if we specify the coefficients

a0, . . . , an−1. Thus, to represent the above polynomial we will need to store these coefficients. This
most conveniently done in an array.4 We use an array a of length n and store ai in a[i].

Next comes the question of how we operate on polynomials. It is natural to ask; suppose we

have two arrays representing two polynomials A(x), B(x). Can we construct the representation of

the polynomial C(x) that is the sum of polynomials A(x), B(x), and likewise the polynomial D(x),

the product?

First, we know that the sum will have degree n− 1 because the addends A(x), B(x) have degree

n− 1. Thus, the array c that we can use to represent the polynomialC(x)must also have length n. We
also know that ci = ai + bi. Thus, we know how to set the elements of the array c as well.

for(int i=0; i<n; i++) c[i] = a[i] + b[i];

Can we write this as a function addp which adds two polynomials? The polynomials to be added will

be passed as arguments. What about the result polynomial? We could allocate a new array inside the

function addp, but this array cannot be returned back—it gets destroyed as soon as addp finishes

execution. The correct way to write this procedure is to pass the result array as well. Here is our code

written as a function addp.

4 There is a simple rule here—if a collection of objects is described using one subscript, use a one dimensional array, which
is what we have studied so far. If a collection of mathematical object is described using two subscripts, say the entries of a
matrix, then we will need two dimensional arrays, which we will see later.
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void addp(float a[], float b[], float c[], int n){

// a, b: addends, c: result, n: length of the arrays.

for(int i=0; i<n; i++) c[i] = a[i] + b[i];

}

We have assumed in the above program that the addend polynomials have the same degree. This need

not be the case in general. But you should be able to modify the code to handle the general case.

We next consider the problem of computing the product polynomial D(x) of our polynomials

A(x), B(x). As before, we will assume that both A(x), B(x) have degree n− 1, and are stored in

arrays a, b of length n. The product will have degree 2n− 2, and must therefore be stored in an

array d of length at least 2n− 1.

To determine D(x), consider how its coefficients relate to those of A(x), B(x). When A(x) and

B(x) are multiplied, each term ajx
j in the former will be multiplied with bkx

k in the latter, producing

terms ajbkx
j+k. Thus, this will contribute ajbk to dj+k. Thus we start by setting every coefficient of

D to 0, and then for all j, k compute ajbk and add it the coefficient dj+k. This gives us the function.

void prodp(float a[], float b[], float d[], int n){

// a,b must have n elements, product d must have 2n-1.

for(int i=0; i<2*n-1; i++) d[i] = 0;

for(int j=0; j<n; j++)

for(int k=0; k<n; k++)

d[j+k] += a[j]*b[k];

}

To complete the example, here is a main program which calls these functions.

int main(){

float a[5], b[5], c[5], d[9];

for(int i=0; i<5; i++) cin >> a[i];

for(int i=0; i<5; i++) cin >> b[i];

addp(a,b,c,5);

prodp(a,b,d,5);

for(int i=0; i<5; i++) cout << c[i] <<’ ’;

cout << endl;

for(int i=0; i<9; i++) cout << d[i] <<’ ’;

cout << endl;

}

14.7 ARRAY LENGTH AND const VALUES

In the examples given above, we have explicitly written out numbers such as 500,1000 to specify the

array length. Arrays will often be used in programs for storing a collection of values, and the total

number of values in the collection will not be known to the programmer. So you might consider it

more convenient if we are allowed to write
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int n;

cin >> n;

int a[n]; // Not allowed by the C++ standard. But read on!

This code is not allowed by the C++ standard. The C++ standard requires that the length be specified

by an expression whose value is a compile time constant. A compile time constant is either an explicitly

stated number; or it is an expression only involving variables which are defined to be const, e.g.

const int n = 1000;

The prefix const is used to say that n looks like a variable, and it can be used in all places that a

variable can be used, but really its value cannot be changed. So using a const name, arrays might be

defined as follows.

const int NMAX = 1000; // convention to capitalize constant names.

int a[NMAX], b[NMAX];

So how do we use this in practice? Suppose we want to define an array which will store the marks of

students. In this case, the C++ standard will require us to guess the maximum number of students we

are likely to ever have, define an array of that size, and only use a part of it. So we might write

const int NMAX = 1000;

int a[NMAX], b[NMAX], nactual;

cin >> nactual;

assert(nactual <= NMAX);

In the rest of the code, we remember that only the first nactual locations of a and b are used, and so

write loops keeping this in mind. Note that it is possible that the user will type in a value for nactual

that is larger than NMAX. In this case we cannot run the program. If this happens, theassert statement

will cause the program to stop, and you will need to change NMAX, recompile and rerun.

14.7.1 Why const Declarations?

The above code could also directly define int a[1000],b[1000]; instead of using the const

definition. However, the code as given is preferable if we ever have to change the required size, say we

want arrays of size 2000 rather than 1000. If we had not used NMAX we would have to change several

occurrences of 1000 to 2000; with the code as given, we just need to change the first line to const

int NMAX = 2000;

14.7.2 What We Use in This Book

The GNU C++ compiler that you invoke when you use the command s++ allows arbitrary expressions

to be specified as length in an array definition.

As you can see, this makes the code much more compact and easier to understand at a glance.

So in the interest of avoiding clutter, in the rest of the book, we will use arbitrary expressions while

specifying lengths of arrays. The code we give will work with s++. If it does not work for some other

compiler, the discussion above tells you how to change it.
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14.8 CONCLUDING REMARKS

Arrays provide an easy way to store sets of objects of the same type.

It is worth thinking about how the index of an element gets used. Sometimes the index at which an

element is stored has no significance, as in the circle intersection problem. Or sometimes we can make

a part of the data be the index, as we did for the roll number in the marks display problem. Similar was

the case for the histogram problem. In the taxi dispatch problem, we used the index to implicitly record

the arrival order of the taxis.

Suppose we want to look for elements satisfying a certain property. One way to do so is to scan

through the array, one element at a time, and check if the element has the required property.We did this

in the problemof printing roll numbers of studentswho had the highest marks. This is a common idiom.

The idea of scanning through the array starting at index 0 and going on to the largest index is also

useful when wewant to perform the same operation on every element, e.g. print it. We used a somewhat

complicated version of this in the circle intersection problem, where we wanted to perform a certain

action not for each circle, but for each pair of circles.

In the taxi dispatch problem we built a so called queue so that the elements left the array in the same

order that they arrived in. For this, we maintained two indices: where the next element will be stored

and which element will leave next. This is a very common idiom.

Remember that the index used for an array should be in range, i.e. between 0 (inclusive) and the

array length (exclusive). Having the index out of range is a common cause of errors in programs

involving arrays. So you should make sure that the index is in the range. You could also consider

checking this using assertions. For example, if you have an array x of length 200, which you are about

to index using an index i, you could consider placing an assertion:

assert((i >= 0) && (i < 200));

before writing x[i].

Finally, we considered how to write functions involving arrays. The important point to note here is

that the array name can be used in programs, and by itself it denotes the starting address of the region of

memory that holds the array. The length of the array must also be passed as an argument to the function.

EXERCISES

1. A sequence x0, . . . , xn−1 is said to be a palindrome if xi = xn−1−i for all i. Write a program

which takes as input an integer n and then a sequence of length n and determines whether the

sequence is a palindrome.

2. Write the program to display who got the maximum marks for the case when the roll numbers are

arbitrary integers, as in Section 14.2.4.

3. Suppose we want to find a histogram for which the widths of the intervals for which we want the

counts are not uniform. Say each value is a real number between 0 (inclusive) and 1 (exclusive).

Between 0 and 0.25, our intervals are of width 0.05, i.e. we want a count of how many values

are between 0 and 0.05, then 0.05 and 0.1, and so on. Between 0.25 and 0.75 our intervals are of

width 0.025, i.e. we want to know how many values are between 0.25 and 0.275, then 0.275 and

0.3, and so on. Finally, between 0.75 and 1, our intervals are of width 0.05. Write a program that

provides the histogram for these ranges.

4. List out the likely errors in the following program.
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int main(){

int x[10], y[100], i = 50, j;

for(int k=1; k<= 10; k++){

x[k] = k*k;

y[k] = k*k*k;

}

cout << y[i] <<’ ’<< y[j] << endl;

}

You do not know what the program is expected to do, and clearly it is not doing much.

Nevertheless, report whatever you think is likely to be erroneous. For example, a print statement

likely to print different things in different runs is clearly erroneous.

5. Write a program which takes as input a sequence of positive integers, and prints the 10 largest

numbers in the sequence. You are not given the length of the sequence before hand, but after

all the elements of the sequence are given as input, the number -1 is given, to indicate that the

sequence has terminated. Hint: Use an array of length 10 to keep track of the numbers that are

candidates for being the top 10.

6. Suppose in the previous problem, you are asked to report which are the 10 highest values in

the sequence, and how frequently they appear. Write a program which does this. Assume the

sequence has length 1000.

7. Suppose we are given the x, y coordinates of n points in the plane. We wish to know if any

3 of them are collinear. Write a program which determines this. Make sure that you consider

every possible 3 points to test this, and that you test every such triple only once. The coordinates

should be represented as floats. When you calculate slopes of line segments, because of the

floating point format, there will be round-off errors. So instead of asking whether two slopes are

equal, using the operator ==, you should check if they are approximately equal, i.e. whether their

absolute difference is small, say 10−5. This is a precaution you need to take when comparing
floating point numbers. In fact, you should also ask yourself whether the slope is a good measure

to check collinearity, or whether you should instead consider the angle, i.e. the arctangent of the

slope. Also write the program for the case that the coordinates are given as int.

8. Write a program that finds the smallest circle covering a given set of points. Allow the user to

supply the points by clicking on the screen, and show the smallest circle also on the screen.

Hint: Argue that the smallest covering circle must either have as diameter some two input points,

or must be a circumcircle of some three input points. Now just consider all possible candidate

circles, and pick the one that actually covers all points.

9. Write a program which takes as input two vectors (as defined in mathematics/physics), represents

them using arrays, and prints their dot product. Make this into a function.

10. Suppose you are given the number n of students in a class, and their marks in two subjects. Your

goal is to calculate the correlation. Let xi, yi denote the marks in the two subjects. Then the

correlation is defined as

n
�
xiyi −

�
xi
�
yi�

n
�
x2i − (

�
xi)2
�
n
�
y2i − (

�
yi)2

Write a program that calculates this. Note that a positive correlation indicates that x increases

with y (roughly), whereas negative correlation indicates that x increases roughly as y decreases.
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A correlation around 0 will indicate in this case (and often in general) that the two variables are

independent. You may use the dot product function you wrote for the previous exercise.

11. Suppose you are given the maximum temperature registered in Mumbai on 21March of each year

for the last 100 years. You would like to know whether Mumbai has been getting warmer over

the years, as is generally believed. You would like to know from your data whether this might be

a reasonable conclusion. If you merely plot the data, you will see that the temperatures fluctuate

apparently erratically from year to year. The weather is expected to behave somewhat randomly;

what you want to know is whether there is any upward trend if you can somehow throw out the

randomness.

One way to reduce the local randomness is to smooth the data by taking so called moving

averages. Given a sequence of numbers x1, . . . , xn, a 2k + 1-window size moving average is a

sequence of numbers yk+1, . . . , yn−k, where yi is the average of xi−k, . . . , xi+k. Write a program

which takes a sequence and the integer k as input, and prints out the 2k + 1 window-size moving

average. Also plot the original sequence and the moving average on the graphics canvas.

12. The Eratosthenes’ Sieve for determining whether a number n is prime is as follows. We first

write down the numbers 2, . . . , n on paper.5 We then start with the first uncrossed number, and

cross out all its proper multiples. Then we look for the next uncrossed number and cross out all

its proper multiples, and so on. If n is not crossed out in this process, then it must be a prime.

Write a program based on this idea.

13. Suppose we are given an array marks where marks[i] gives the marks of student with roll

number i. We are required to print out the marks in non-increasing order, along with the roll

number of the student who obtained the marks. Modify the sorting algorithm developed in the

chapter to do this. Hint: Use an additional array rollNo such that rollNo[i] equals i

initially. As you exchange marks during the course of the selection sort algorithm, move the roll

number along with the marks.

14. Suppose you are given a sequence of numbers, preceded by the length of the sequence. You

are required to sort them. In this exercise, you will do this using the so-called Insertion sort

algorithm. The idea of the algorithm is to read the numbers into an array, but keep the array

sorted as you read. In other words, after you read the first i numbers, you must make sure that

they appear in the first i elements of the array in sorted (say non-increasing) order. So when you

read the i+ 1th number, you must find where it should be inserted. Suppose you discover that

it needs to be placed between the numbers that are currently at the jth and j + 1th position, then

you should move the numbers in positions j + 1 through i− 1 (note that the indices or positions

start at 0) forward in the array by 1 step. Then the newly read number can be placed in the j + 1th

position. Write the program that does this.

15. A friend (“the magician”) shows you a deck of cards. He has arranged it before hand in an

interesting order because of which he can perform the following “trick”. He picks up the top card,

turns it face up, and it is seen to be the ace, which he puts away. He then takes the next card and

puts it at the bottom of the deck without showing it to you. Then he shows you the card now at

the top of the deck, which turns out to be the 2, which he also puts away. He repeats the following

process until the deck has no cards. It turns out (magically!) that you see the cards in increasing

face value, i.e. the first card to be exposed is the ace, then the 2, then the 3, then the 4, and so on,

5Well, Eratosthenes used a clay or wax tablet!
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until the King. Of course, the “magic” is all in the order in which the cards were placed in the

deck at the beginning. Write a program that explains the magic, i.e. figures out the initial order of

the cards and prints it. Hint: Reverse the process.

16. Suppose we have received m applications for filling n jobs. For simplicity, assume that each

applicant is interested in some 2 of them jobs, and specifies these, in order of preference in his/her

application. Suppose the application also contains the marks obtained by the applicant in an appro-

priate examination. The jobs are to be given to the applicants in decreasing order of their marks,

i.e. first the applicant with the highest marks is to be given the job of his/her choice if still available,

then the one with the next highest marks and so on.Write a programwhich makes this assignment.

17. Write a function which given polynomials P (x), Q(x) returns their composition

R(x) = P (Q(x)). Say P (x) = x2 + 3x+ 5 and Q(x) = 3x2 + 5x+ 9. Then R(x) =
(3x2 + 5x+ 9)2 + 3(3x2 + 5x+ 9) + 5.

18. Consider a long railway track divided into some n parts of possibly unequal lengths. For each

ith part, you are given its length Li and a maximum speed si with which trains can run on it.
You are also given the data for a certain locomotive: its maximum speed s and the maximum

accereration a it is capable of (assume this is independent of the speed, for simplicity), the

maximum deceleration d (again independent of the speed) it is capable of. Suppose the train

starts at rest at one end of the track and must come to rest at the other end. How quickly can the

train complete this journey? Make sure your code works for all possible values of the parameters.

19. Write a program that takes in two numbers with 100 digits each, and prints out their product.

Adapt the polynomial multiplication algorithm discussed in the text, or the way you did

multiplication in primary school.

20. A permutation of a set S is simply a listing of the of the objects in a set. For example, if our set

is {0, 1, 2}, then it has 6 permutations as follows.
012

021

102

120

201

210

Just as we have the notion of lexicographic order on character strings, we can have the notion

of lexicographic order on permutations of a set. For this, we must first number the elements

of the set from 0 to n− 1 (unless the elements are already such numbers). Suppose x, y are

permutations of a set S. We scan the elements of x, y from the left until we find the first position

at which the elements differ. If the element at that position in x has smaller number than the

element at that position in y then we declare x < y. Otherwise we declare y < x.

Write a function that takes a permutation of the set S = {0, 1, . . . , n− 1 and returns the

lexicographically next permutation if such a permutation exists. Thus, given the permutation 120

for the case n = 3, the program must return 201. Hint: Try out a few permutations to deduce the

relationship between a permutation and the lexicographically next permutation.

21. Using the function developed above, write a program that prints out all permutations of a set

{0, 1, . . . , n− 1}, for arbitrary n.



CHAPTER15
More on Arrays

We begin by considering the problem of representing textual data. In chapter 3 we discussed the

char datatype for storing characters. However, we rarely work with single characters. More often,

we will need to manipulate full words/sentences, or strings/sequences of characters. A character string

is customarily represented in C as an array of characters. A better representation is available in C++,

as we will see in Section 22.1. But it is worth knowing the array based representation because you

will encounter it because of legacy reasons (e.g. Section 15.3.1) and because the C++ recommended

representation builds upon this.

Next, we discuss multidimensional arrays. An ordinary (one-dimensional) array can be thought of

as a sequence of values. A two-dimensional array can be thought of as a matrix or a table (rows and

columns) of values. Two-dimensional arrays are very useful, especially in scientific computation. We

will discuss an important use of two dimensional arrays: representing and solving linear systems of

equations. C++ allows us to build our own representations for two dimensional arrays which have all

features we discuss in this chapter, and some additional ones. This is discussed in Section 22.2.7.

So far we have been executing C++ programs by writing a.out or ./a.out. However, it

is possible to supply input to the program on the command line itself, e.g. by writing a.out

input-text. This requires the use of character arrays, and is discussed in Section 15.3.1.

15.1 CHARACTER STRINGS

An array of characters can be defined just as you define arrays of doubles or ints.

char name[20], residence[50];

The above defines two arrays, name and residence of lengths 20 and 50, ostensibly for storing

the name and the residence. Since we will usually not know the exact number of characters in a name

or in an address, it is customary to define arrays of what we guess might be the largest possible length.

This might seem wasteful, and it is, and we will see better alternatives in later chapters.

So if we want to store a character string “Shivaji” in the array, we will be storing ’S’ in name[0],

’h’ in name[1], and so on. The string is 7 characters long, and you would think that we should store

this length somewhere. While printing the string for example, we clearly do not want the name[7]

through name[19] printed. The convention used in the C language, and inherited into C++ from

there, is that instead of storing the length explicitly, we store a special character at the end of the actual
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string. The special character used is the one with ASCII value 0, and this can be written as ’\0’. Note
that ’\0’ is not printable, and is not expected to be a part of any real text string. So it unambiguously
marks the end of the string.

Special constructs are provided for initializing character arrays. So indeed we may write

char name[20] = "Shivaji";

char residence[50] = "Main Palace, Raigad";

The character string “Shivaji” has 7 characters. So these will be placed in the first 7 elements of

name. The eighth element, name[7], will be set to ’\0’. The character string “Main Palace, Raigad”
has 19 characters. These and an additional ’\0’ will likewise be stored in the first 20 elements of the
array residence. Thus, only the first 20 elements of residence will be initialized.

Here is an alternative form.

char name[] = "Shivaji";

char residence[] = "Main Palace, Raigad";

In this, C++ will calculate the lengths of name and residence. Following the previous

discussion, these will be set to 8 and 20 respectively.

15.1.1 Output

Printing out the contents of a character array is simple. Assuming name is a character array as before,

cout << name;

would cause the contents of name from the beginning to the ’\0’ character to be printed on the screen.
The general form of the above statement is:

cout << charptr;

where charptr is an expression which evaluates to a pointer to a char type. If name is a character

array, then name indeed is of type pointer to char. This statement causes characters starting from the

address charptr to be printed, until a ’\0’ character is encountered. Thus character arrays passed to
functions can be printed in the expected manner.

15.1.2 Input

To read in a string into a char array you may use the analogous form:

cin >> charptr;

Here, charptr could be the name of a char array, or more generally, an expression of type pointer

to char. The statement will cause a whitespace delimited string typed by the user to be read into the

memory starting at the address denoted by charptr. After storing the string, the ’\0’ character will
be stored. Here is an example.

char name[20];

cout << "Please type your name: ";

cin >> name;

The second statement asks you to type your name and the third, cin >> name; reads in what you

type into the array name. The following points are worth noting:
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1. From what you type, the initial whitespace characters will be ignored. The character string starting

with the first non-whitespace character and ending just before the following whitespace character

will be taken and placed in name. Thus, if I type

Abhiram Ranade

with some leading whitespace, the leading whitespace will be dropped and only "Abhiram"

would go into name. Next, following "Abhiram" a null character, i.e. ’\0’ would be stored.
Thus the letters ’A’ through ’m’ would go into name[0] through name[6], and name[7]

would be set to ’\0’.
2. This way of reading in text is not useful if the text contains spaces. Thus, in the above example,

“Ranade” would not be read into name, even if I type it. For that it is necessary to use the

getline command discussed below.

3. This statement is potentially unsafe. In the above example, if the user had typed in more than 20

characters without a whitespace in between, all those would be stored starting at name[0]. Thus,

the characters read in would be stored past the end of the designated array name, possibly writing

into memory that might have been allocated for some other variable.

The safe alternative to this is to use the following command.

cin.getline(x,n);

where x must be a name of a char array, or more generally a pointer to char, and n an integer.

This will cause whatever the user types, includingwhitespace characters, to be placed starting from the

address x, until one of the following occurs

• A newline character is typed1 by the user. In this case, all characters up to the newline are copied

into memory starting from the address x. The newline character is not copied. Instead, a ’\0’ is
stored.

• n-1 characters are typed without a newline. In this case, all the characters are placed intomemory

starting from address x, followed by a ’\0’ character.
As you may guess, it is customary to use the length of x as the argument n. So for example we can

write

char name[20];

cin.getline(name,20);

In this case, at most 19 characters that the user types will be copied, and we will have no danger of

overflowing past the array limit.

15.1.3 Character String Constant

Quoted text, such as "Please type your name:" constitutes a string constant in C++. The

compiler stores the string somewhere in memory (followed by ’\0’), and you may refer to it.

Interestingly enough, the value of a string constant is not the text, but a pointer to the first character of

the text. Thus, when you write

1On most modern keyboards this happens when you press the key labelled ENTER.
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cout << "Please type your name:";

you are merely using the general form mentioned in Section 15.1.1. You may also write

char *name;

name = "Einstein";

Even in this statement, the right-hand side of the assignment, "Einstein" denotes the address in

memory of where the text "Einstein" is stored (terminated by a ’\0’ as always). Thus it is fine to
store this in a variable of type char*. Of course, if you subsequently write cout << name;, you will

see "Einstein" printed.

The type of a character string constant is const char*.

15.1.4 Character-array Processing

Character arrays behave like ordinary integer arrays, except when it comes to reading and printing,

and in that they contain a ’\0’ character which marks the end of the useful portion of the array. So
processing them is reasonably straightforward. Note that characters are a subtype of integers, and as

such we can perform arithmetic on characters, and compare them, just as we do for integers.

Our first example is a function for determining the length of the text stored in a char array.

int length(const char *txt){

// precondition: txt points to sequence of ’\0’ terminated

// characters.

int L=0;

while(txt[L] != ’\0’) L++;

return L;

}

The function takes a single argument, say the array name (or the pointer to the zeroth element of the

array). Notice that the actual length of the array is not needed. This is because we access elements only

till the null character. Indeed, the function simply steps through the elements of the array, and returns

the index at which it finds the null character, ’\0’. Since the starting index is 0, the null character will
be at index equal to the length of the text string. Note that we have marked txt with the keyword

const because we don’t expect to change it within the function.

Our second example is a function for copying a string stored in an array source to another array

destination. This is like copying other arrays, except that we must only worry about the useful

portion of the source array, i.e. till the occurrence of the ’\0’ character. The function does not worry at
all about the lengths of the 2 arrays as defined, it is assumed that the call has been made ensuring that

indices will not exceed the array bounds.

void scopy(char destination[], const char source[])

// precondition: ’\0’ must occur in source. destination must be

// long

// enough to hold the entire source string + ’\0’.

{

int i;

for(i=0; source[i] != ’\0’; i++)

destination[i]=source[i];
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destination[i]=source[i]; // copy the ’\0’ itself

}

As before, we have marked source constant because it does not change inside the function.

Here is a more interesting function: it takes two strings and returns which one is lexicographically

smaller, i.e. would appear first in the dictionary. The function simply compares corresponding

characters of the two strings, starting at the 0th. If the end of the strings is reached without finding

unequal characters, then it means that the two strings are identical, in which case we must return ’=’.

If at some comparison we find the character in one string to be smaller than the other, that string is

declared smaller. If one string ends earlier, while the preceding characters are the same, then the string

that ends is smaller.

This logic is implemented in the code below. We maintain the loop invariant: characters 0 through

i− 1 of both arrays must be non null and identical. So if we find both a[i] and b[i] to be null,

clearly the strings are identical and hence we return 0. If a[i] is null but not b[i], then a is a

prefix of b. Because prefixes appear before longer strings in the dictionary, we return ’<’. We proceed

similarly if b[i] is null but not a[i]. If a[i]>b[i]we return’>’, if a[i]<b[i]we return ’<’.

If none of these conditions apply, then the ith character in both strings must be non-null and identical.

So the invariant for the next iteration is satisfied. So we increment i and go to the next iteration.

char compare(char a[], char b[])

// returns ’<’ if a is smaller, ’=’ if equal, ’>’ if b is smaller.

{

int i = 0;

while(true){ // Invariant: a[0..i-1] == b[0..i-1]

if(a[i] == ’\0’ && b[i] == ’\0’) return ’=’;

if(a[i] == ’\0’) return ’<’;

if(b[i] == ’\0’) return ’>’;

if(a[i]<b[i]) return ’<’;

if(a[i]>b[i]) return ’>’;

i++;

}

}

This may be called using the followingmain program.

main(){

char a[40], b[40];

cin.getline(a,40);

cin.getline(b,40);

cout << a << " " << compare(a,b) << " " << b << endl;

}

If you execute this program, it would expect you to type two lines. Say you typed:

Mathematics

Biology

then it would print out > and stop, because “Mathematics” appears after “Biology” in the dictionary

order.
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15.1.5 Address Arithmetic

C++ programs processing char arrays often use arithmetic on addresses.

Suppose x is the name of an array of some type T. We have already said that x has value equal to

the address of the zeroth element of the array. Suppose further that i is an integer expression. Then the

expression

x+i

is valid in C++ programs, and has the value equal to the address of x[i]. Note that in general, a single

element of type T may require some s bytes. Thus, while x+i seems to be adding i to the address x,

the actual value added is i*s because the address of x[0] and of x[i] differ by i*s and not just i.

Indeed, in general, if x is of type T*, then x+i is the address obtained by adding i*s to the address

denoted by x. Since this can be somewhat confusing, we have not discussed such address arithmetic

so far.

However, if x is of type char*, then s equals 1. In that case, when we write x+i, we indeed mean

the address obtained by adding i. So perhaps for this reason, address arithmetic is quite common in

character processing. Thus, the scopy function would more commonly be written as

void scopy(char *destination, const char *source){

while(true){

*destination = *source;

if(*source == ’\0’) break;

destination++;

source++;

}

}

15.2 TWO-DIMENSIONAL ARRAYS

Often we need to represent mathematical objects like matrices. For this, C++ provides two dimensional

arrays. Here is an example of how a two dimensional array might be defined:

double a[m][n];

This causes space for m*n variables of type double to be allocated. These variables are accessed as

a[i][j] where we require 0 ≤ i < m, and 0 ≤ j < n. The variables are stored in the so called row

major order in memory, i.e. in the order a[0][0], a[0][1], ... a[0][n-1], a[1][0],

... a[1][n-1], ... a[m-1][n-1]. The numbers m,n are said to be the first and second

dimension of the array. We will also refer to them as the number of rows and the number of columns

respectively.

Manipulating two-dimensional arrays is similar to one-dimensional—we commonly use a loop to

go over each dimension. As an example, consider the problem of multiplying two matrices. Remember

that ifA is an m× n matrix, and B an n× p matrix, then their product is anm× p matrix C where

cij =

n�
k=1

aik · bkj
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where we have let the array indices start at 1, as is customary in mathematics. The code below, of

course, starts indices at 0. The code also shows how a two-dimensional array can be initialized in the

definition itself if you wish. The values for each row must appear in braces, and these in turn in an

outer pair of braces.

double a[3][2]={{1,2},{3,4},{5,6}}, b[2][4]={{1,2,3,4},{5,6,7,8}},

c[3][4];

for(int i=0; i<3; i++) // compute c = a * b.

for(int j=0; j<4; j++){

c[i][j] = 0;

for(int k=0; k<2; k++)

c[i][j] += a[i][k]*b[k][j];

}

for(int i=0; i<3; i++){ // print out c.

for(int j=0; j<4; j++) cout << c[i][j] << " ";

cout << endl;

}

We may define two-dimensional arrays of chars, with initialization, which is of course optional.

For example, we could write

char countries[6][20] = {"India","China","Sri Lanka","Nepal",

"Bangladesh","Pakistan"};

Here, the first string, "India" is deemed to initialize the zeroth row, and so on for the six strings.

Applying only one index to the name of a two-dimensional array returns the address of the zeroth

element of the corresponding row. For character arrays, this is the way to refer to one of the strings

stored. Thus, countries[i] will return the address of the zeroth character of the ith string stored

in the array, in other words, the address of the ith string. So if we write compare(countries[0],

countries[1]), where compare is as defined in Section 15.1.4, it would return ’<’ as the result

because India will precede Sri Lanka in the dictionary order.

Here is a program which has two arrays, countries which lists countries, and capitalswhich

lists corresponding capitals. It takes as input a string from the keyboard. It prints out the name of the

corresponding capital if the string is in the list of countries stored in countries. This check is made

using our compare function.

int main(){

const int wordLength = 20;

char countries[6][wordLength] = {"India","China","Sri Lanka",

"Nepal","Bangladesh","Pakistan"};

char capitals[6][wordLength] = {"New Delhi","Beijing","Colombo",

"Kathmandu","Dhaka","Islamabad"};

char country[wordLength];

cout << "Country: ";

cin.getline(country,wordLength);
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int i;

for(i=0; i<6; i++){

if(compare(country,countries[i]) == ’=’){

// only one index applied to array countries

cout << capitals[i] << endl;

break;

}

}

if(i == 6) cout << "Don’t know the capital.\n";

}

When the loop terminates, we know that i must be strictly less than 6 if the country was found in

countries, and equal to 6 if not found. Hence, we print the message that we don’t know the capital

only if i is 6 at the end.

15.2.1 Linear Simultaneous Equations

One of the most important uses of matrices and two dimensional arrays is to represent linear

simultaneous equations. Say we are given simultaneous equations:

3x2 + 5x3 = 10

2x1 + 6x2 + 8x3 = 38

7x1 + 4x2 + 9x3 = 22

Then they can be conveniently represented by the matrix equation


0 3 5

2 6 8

7 4 9





x1

x2

x3


 =




10

38

22




Denoting the matrix by A, the vector of unknowns by x and the right hand side vector by b, we have

the matrix equationAx = b in which we are to solve for x given A, b.

The direct way to solve a system of equations is by a process called Gaussian elimination2, in fact

a form of it called Gauss–Jordan elimination.

Observe first that if the matrixAwas the identitymatrix, i.e. aii = 1 and aij = 0 for all i, j �= i, then

the problem is very easy. Multiplying out we would get x = b. Thus for this b is itself the solution. This

suggests a strategy. We will make modifications to A, b such that the modifications do not change the

solution of Ax = b. If at the end of the sequence of modifications, our matrix A becomes the identity

matrix then the value of b at that time would itself be the solution.

It turns out that certain operations performed on the system of equations (and hence A, b) indeed do

not change the solutions to the system. One such operation is to multiply any equation by a constant.

This is akin to multiplying a row of the matrix A and the corresponding element of the vector b by a
(the same) constant. Another operation is to add one equation to another, and replace the latter equation

by the result. In our example, say we add the first equation to the second. Thus, we get the equation

2x1 + 9x2 + 13x3 = 48. We replace the second equation with this equation. This is succinctly done

in the matrix representation: we merely add the first row of A to the second row, and the first element

2 The method is actually much older than Gauss.
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of b to the second element of b. Thus the second row of A would then become [2 9 13] and the second

element of b would become 48, while the other elements remained the same.

We now show how we can change A, b, without changing the solution, so that the first column of A

becomes 1,0,0 (read top to bottom), i.e. identical to the first column of the identity matrix. The same

process can then be adapted for the other columns.

1. If the coefficient of x1 is zero in the first equation, pick any equation which has a non zero

coefficient for x1. Suppose the ith equation has a non-zero coefficient for x1. Then exchange

equation 1 and equation i. This corresponds to exchanging row 1 and row i ofA and also element

1 and element i of b. Doing this for our example, we get


2 6 8

0 3 5

7 4 9





x1

x2

x3


 =




38

10

22




2. Divide the first equation by the coefficient of a11. We thus get


1 3 4

0 3 5

7 4 9





x1

x2

x3


 =




19

10

22




3. For each i, add −ai1 times the first equation to equation i. Say we do this for row 2. Thus, we

must add−a21 = 0 times the first row. So nothing need be done. So we then consider row 3. Since

a31 = 7, we add −7 times the first equation to equation 3. Thus we now have:


1 3 4

0 3 5

0 −17 −19





x1

x2

x3


 =




19

10

−111




It should be clear that the above process would indeed make the first column identical to the first

column of the identity matrix. In a similar manner, you should be able to get the other columns to

match the identity matrix.

The first step in the above description deserves more explanation. Suppose you have managed to

make the first j − 1 columns ofA resemble the first j − 1 columns of the identitymatrix. Now the first

step above instructs you to find an equation in which the coefficient of xj is non-zero. For this, you

should only look at equations j through n, and not consider the first j − 1 equations. This step may

or may not succeed. It will not succeed if akj = 0 for all k = j . . . n. In this case, it turns out that the
system of equations does not have a unique solution; it may have many solutions or no solutions at all.

In this case, you should report failure.

The code for doing all this is left as an exercise.

15.2.2 Passing Two-dimensional Arrays to Functions

It is possible to pass a two dimensional array to a function. However, in the called function, the second

dimension of the array parameter must be given as a compile time constant. Thus, we might write

void print(char countries[][20], int noOfCountries){

for(int i=0; i<noOfCountries; i++) cout << countries[i] << endl;

}
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This may be called print(countries,6), where the second argument is the first dimension of

the countries array. It will print out the countries on separate lines.

This is not too useful, because any such function can only be used for arrays in which the second

dimension is 20. For example, this makes it impossible to write a general matrix multiplication function

for matrices of arbitrary sizes. This is a fundamental drawback of two dimensional arrays in the

language C, which has been inherited into the language C++. In Section 22.2.7 we will see how it

can be overcome quite elegantly using the flexible nature of C++.

But if we do know the second dimension, then the standard two dimensional arrays are useful. Here

is how they can be used in drawing polygons in Simplecpp graphics.

15.2.3 Drawing Polygons in Simplecpp

Simplecpp contains the following command for drawing polygons:

Polygon pName(cx,cy,Vertices,n);

This will create a polygon named pName. The parameters cx,cy give the rotation center of the

polygon. The parameter n is an integer giving the number of vertices, and Vertices is a two

dimensional double array with n rows and 2 columns, where each row gives the x,y coordinates

of the vertices, relative to the center (cx,cy). A polygon is a shape in the sense of Chapter 5, so we

may use all the commands for shapes on polygons.

The boundary of the polygon is traced starting at vertex 0, then going to vertex 1 and so on till vertex

n-1 and then back to vertex 0. Note that the boundary may intersect itself.

Here is an example. We create a regular pentagon and a pentagonal star. Then we rotate them.

int main(){

initCanvas("Pentagon and Star");

double pentaV[5][2], starV[5][2];

for(int i=0; i<5; i++){

pentaV[i][0] = 100 * cos(2*PI/5*i);

pentaV[i][1] = 100 * sin(2*PI/5*i);

starV[i][0] = 100 * cos(4*PI/5*i);

starV[i][1] = 100 * sin(4*PI/5*i);

}

Polygon penta(200,200,pentaV,5);

Polygon star(200,400,starV,5);

for(int i=0; i<100; i++){

penta.left(5);

star.right(5);

wait(0.1);

}

getClick();

}
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Note that there is a more natural ways of specifying the star shape: consider it to be a (concave)

polygon of 10 vertices. Thus, we could have given the coordinates of the 10 vertices in order.

Calculating the coordinates of the “inner” vertices is a bit messy, though.

15.3 ARRAYS OF POINTERS

An array is really a sequence in memory of variables of the same type. We have seen arrays of int,

double, char, but we can have arrays of any type of variable. So you might ask, can we have arrays

of pointers? It is certainly possible, and it turns out to be useful too.

We can create an array of 10 variables, each of type pointer to int by writing the following.

int *y[10];

This statement is undoubtedly confusing. The way to understand it is to compare it with a usual array

definition.

int x[10];

You can read this statement as saying “x[i] is an int for i=0 to i=9.” In a similar manner, you

should read the statement int *y[10]; as saying “*(y[i]) is an int for i=0 to i=9.” But if

content of y[i] is an int, then y[i] must be an int pointer.

Once you have defined an array of pointers, you can store addresses of appropriate variables in each

element of the array. For example, you might write something like

int *y[10];

int z = 100;

y[0] = &z;

cout << *y[0] << endl;

This will print 100, because y[0] contains the address of z, and hence *y[0] just means z, and

hence the value of z, 100, will be printed.

We next discuss an important use of arrays of pointers.

15.3.1 Command-line Arguments to main

So far, we have executed C++ programs by specifying the name of the executable file, usually a.out,

on the command line. Specifically, the program is executed by typing a.out or ./a.out on the

shell command line. This causes the main function in your program to be called. But you may execute

your program differently. C++ allows you to provide additional text after a.out, and this text can be

processed by your program. For example, you may write

./a.out Mathematics Biology

In this case, your program can be told that you have typed the words Mathematics and Biology

after a.out. This can be done using an alternative (overloaded) declaration provided for main.

int main(int argc, char *argv[]);

Thus, main may take two arguments. The first is an integer argument argc. The second argument is

an array (since it ends in []) has name argv, and each element is of type char*. In other words,

argv is an array of pointers to char.



228 An Introduction to Programming through C++

Suppose you use this form of main. Then when you execute your program, the Operating System

calls the function main, but also passes some parameters. Specifically, the following are the values

passed in the parameters:

1. The parameter argc gives the number of words typed on the command line, including the name

of the executable program (a.out or other). Note that by “word” we simply mean white space

delimited sequence of characters.

2. The parameter argv is an array of argc elements, with the ith element argv[i] being the

address of the ith command line word (typically called ith command line argument).

Thus, if you had invoked the main program by writing ./a.out Mathematics Biology the

value of argc would be 3. The parameter argv would have 3 elements of type char*, and these

would respectively be addresses of the text strings (null terminated) "./a.out", "Mathematics",

and "Biology" respectively.

Here is a simple program that just prints out the values of all its command-line arguments.

int main(int argc, char *argv[]){

for(int i=0; i<argc; i++) cout << argv[i] << endl;

}

This program when invoked as a.out Mathematics Biology would print out

a.out

Mathematics

Biology

Of course, you can do more interesting processing of the command line arguments. See Appendix E

for an example.

15.4 MORE DIMENSIONS

Larger number of dimensions are also allowed. The statement below defines one 3 dimensional array

and one 4 dimensional one.

int u[10][20][30], v[5][5][6][6];

These can be used in the natural manner.

15.5 CONCLUDING REMARKS

The two main topics of this chapter: using arrays to store strings and two dimensional arrays are

legacies from the C language. We noted that in C++ you will more likely use the advanced constructs

to be discussed in Sections 22.1 and 22.2.6. However, the basic notions such as how elements are

accessed remain the same in the more advanced constructs.
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Two dimensional arrays are very common in scientific computing. So it is useful to become familiar

with using two indices to access the elements. It should be noted that accessing an element of a two-

dimensional array also involves address calculation as was the case for one dimensional arrays. Of

course, the calculation will involve both the indices. But even so, the time required to access an element

will not depend upon how many rows or columns there are in the array.

The notation to represent pointer arrays is a bit cryptic, however you will want to become familiar

with it because it is useful for accessing command-line arguments.

EXERCISES

1. Write a program that reads in an integer from the keyboard and prints it out in words. For example,

on reading in 368, the program should print “three hundred and sixty-eight”.

2. For this exercise it is important to know that the codes for the digits are consecutive, starting at 0.

Further ’8’ − ’0’ is valid expression and evaluates to the difference in the code used to represent

the characters, and is thus 8. To clarify, if we execute

char text[10] = "1729";

int d = text[1] - ’0’;

Then d will have the value 7. Use this to write a function that takes a char array containing a

number and return an integer of the corresponding magnitude.

3. Suppose destination and source are of type char*. What do you think the following

statement does?

while(*destination++ = *source++);

Note: it uses several programming idioms you have been warned not to use. The point of this

exercise is not to encourage the use of these idioms but to warn you how dense C++ code can be.

4. Extend the marks-display program of Section 14.2.2 to use names rather than roll numbers. At the

beginning, the teacher enters the number of students. Then the program must prompt the teacher

to enter the name of the student, followed by the marks. After all names and marks have been

entered, the program then gets ready to answer student queries. Students enter their name and the

program prints out the marks they have obtained.

5. Write a function which takes a sequence of parentheses, opening and closing, of all types, and

says whether it is a valid parenthesization. In this exercise we use the term parenthesis to mean

not just ’(’ and ’)’, but also ’{’, ’[’ and their matching counterparts, ’}’, ’]’. Specifically, each

opening parentheses should be matched to a closing parenthesis of the same type, occurring to the

right of the opening parenthesis. Further, one matching pair must either be fully inside another

matching pair or fully outside it.

6. Write a “calculator” program that takes three command-line arguments in addition to the name of

the executable: the first and third being double values and the second being a single char. The

second argument must be specified as an arithmetic operator, i.e. +, -, * or /. The program

must perform the required operation on the two numbers and print the result. Appendix E will

provide some useful ideas.
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7. Write a program that solves a system of n linear equations in n unknowns, based on the discussion

of Section 15.2.1. The number of unknowns, n, should be declared as a const int, e.g. as

follows.

const int n = 4;

Then subsequently in your program you can define the arrays using n as defined above. This way

it should be possible to use your program to solve systems of different size simply by changing

the value of n.

8. Write a program that reads in a square matrix and prints its determinant. As above, make

the dimension of the matrix a const int. You should NOT use the recursive definition of

determinant, but instead use the following properties:

• Adding a multiple of one row to another leaves the determinant unchanged.

• Exchanging a pair of rows causes the determinant to be multiplied by −1.
• The deteminant of an upper triangular matrix (all zeros below the diagonal) is simply the

product of the elements on the diagonal.

9. Cramer’s rule states that the solution to a system of linear equations Ax = b is given as xi =
Determinant(Ai)
Determinant(A) where Ai denotes the matrix obtained by replacing the ith column of A by b. Use

the code developed in the previous exercise to find the solution to Ax = b. Note by the way that

this method is slower than the Gaussian elimination algorithm given in the text.

10. Suppose an n× n array A is used to hold a black-and-white image. Specifically, assume that A

only contains 0s and 1s. Two array elements are considered adjacent if one of their indices is

the same and the other differs exactly by 1. Thus, A[i][j], A[i+1][j] are adjacent, and

also A[i][j], A[i][j+1]. Further, A[i][j] = 1 denotes the presence of an “object”,

and A[i][j] = 0 the absence of an object. If a pair of adjacent array elements are both 1, then

they are said to be a part of the same object. This rule can be applied repeatedly, e.g. if an entire

row is 1, then it is a part of a single object. Indeed, two elements are considered to be a part of the

same object only if this is implied by repeated application of the rule.

Write a program that counts the number of different objects in the image. You may find it

convenient to modify the array. Make sure that your program will count correctly no matter what

shape each object has. This is a tricky problem.
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Arrays and Recursion

Many problems on sets/sequences have elegant solutions using recursion. Suppose a problem is given

to you involving a sequence of length n. You can solve it using recursion if the following hold.

1. If n is small, say n = 1, then you have a way of solving the problem.

2. If n is not small, say n > 1, you have a way to construct smaller problem(s) of the same kind,
on smaller sequence(s) such that from the solution to the smaller problem(s) you will be able to

construct a solution to the original problem.

If you can do these steps, then you have a recursive algorithm, with the set/sequence typically stored

in an array. Often, such recursive algorithms are very simple to state and code, and also fast. In what

follows, we will see examples of this approach.

16.1 BINARY SEARCH

We often sort data because it looks nice to print it that way. However, there is another important

motivation. Certain operations can be performed very fast if the data is sorted.

Suppose we have an array in which we have stored numbers. Suppose we are subsequently given a

number x and we are to determine if x is is present in the array. The natural strategy is to go over each

element in the array and check if it equals x. In the worst case we might have to examine every array

element.

We can adopt a cleverer strategy if the array is sorted. Say our array is A and it contains size

elements. Say A is sorted in non-decreasing order. The basic idea is: instead of examining elements

from the beginning of the array, in the first step we examine the element that is roughly in the middle

of the array. Thus, in the first step we check if x < A[size/2]. Note that size/2means the value

of size divided by 2 and rounded down. There are 2 cases to consider.

The check succeeds, i.e. x is smaller than A[size/2]. Now because the array is sorted, we know

that all elements in the subarray A[size/2..size-1] will all be larger than x. Hence x, if

present in the array, will be in the portion A[0..size/2-1]. Thus, using just 1 comparison, we

have narrowed our search to the first half of the array.
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The check fails, i.e. x is greater or equal to A[size/2]. Then we know that if x is present in A

it must certainly be present in A[size/2..size-1]. Thus, it suffices to search subsequently

only in A[size/2..size-1].

Thus, in both cases, after one comparison, we have ensured that subsequently we only need to search

in one of the halves of the array. But we can recurse on the halves!

The key question is: when does the recursion end. Clearly, if our array has only one element, then

we should not try to halve it! In this case we merely check if the element equals x and return the result

of the comparison.

This gives us the following recursive function.

bool Bsearch(int x, int A[], int start, int size){

// x : target value to search

// range to search: A[start..start+size-1]

// precondition: size > 0;

//

if(size == 1) return (A[start] == x);

int half = size/2; // 0 < half < size, because size>1.

if(x < A[start+half])

return Bsearch(x, A, start, half); // recurse on first half

else

return Bsearch(x, A, start+half, size-half);

// recurse on second half.

}

There is an extra parameter, start which says where the subarray starts. So we are searching in the

region A[start...start+size-1]. The “middle” element now is A[start+size/2] which

is the same as A[start+half] in the code. The “first half” starts at A[start] and has size equal

to half. The “second half” starts at A[start+half] and has size size - half. Thus we have

the recursive calls in the function.

Our code might look “obviously correct”, but this is deceptive. Folklore has it that even experienced

programmers make mistakes while writing binary search. So it is a good idea to check that our function

indeed works correctly.

There are two aspects to working correctly: the function must terminate, and on termination return

the correct answer. We first check that the functionwill indeed terminate. Clearly, when size becomes

1, the function will return. But note that if size > 1, the value half = size/2 (integer division)

is strictly between 0 and size. Thus we can conclude that half as well as size - half are

both smaller than size. Hence, we have established that the second parameter to Bsearch always

reduces, and hence must eventually become 1, where upon the function will return. That the correct

value is returned follows in the manner we have argued above.

Here is a main program which tests our function.

int main(){

const int size=10;

int A[size]={-1, 2, 2, 3, 10, 15, 15, 25, 28, 30};

for(int i=0; i<size; i++) cout << A[i] << " ";

cout << endl;
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for(int x=-10; x<=40; x++)

cout << x << ": " << Bsearch(x, A, 0, size) <<endl;

}

We search the array for the presence of every integer between −10 and 40. You will see that 1 is
returned only for those integers that are present.

Notice that the array is sorted, but contains repeated values.

16.1.1 Estimate of Time Taken

Let us analyze a bigger example. Suppose we are checking for the presence of a number in an array of

size 1024. How many array elements do we compare in the process?

The function binsearch will first be called with the size parameter equal to 1024. When we

recurse, no matter how the comparison comes out, we will next call binsearch with size 512.

Subsequently we call binsearch with size 256 and so on. Thus a total of 10 calls will be made:

in the last call size will become 1 and we will return the answer. In each call we make only one

comparison x < A[start+half], and hence only 10 comparisons will be made!

Compare this with the case in which the array is not sorted: then we might have to make as many as

1024 comparisons! Even if we agree that it takes a bit longer to call a function, calling binsearch

10 times (including the recursion) will be much faster than having to possibly compare x with each

of the 1024 elements.1 Actually, our binary search can be written out as a loop, without recursion, the

exercises ask you to do this.

In general, you can see that for the recursive algorithm the number of comparisons made is simply

the number of times you have to divide the size of the array so as to get the number 1. This number is

log2 n, if n denotes the size of the array. In other words, the time is proportional to log2 n when we do

Binary search.

In contrast, if the array is not sorted, we are forced to do linear search, in which case the we may

need to compare x to all the elements in the array, i.e. there could be as many as n comparisons.

Binary search is a simple but important idea. You will see that it will appear in many places, perhaps

slightly disguised, as it did in the Bisection algorithm (Section 8.3) for finding roots.

16.2 MERGE SORT

In Section 14.5, we saw the selection sort algorithm for sorting an array. In the worst case, selection

sort will take time proportional to n2, where n denotes the number of elements, often called keys, that

are to be sorted. In this section, we will see theMerge sort algorithmwhich will take time proportional

to n log2 n. As you can see, log2 n is much smaller than n, and hence n log2 n is much smaller than

n2. Indeed if you code up the two algorithms you will see that Merge sort runs much faster.

Merge sort is a recursive algorithm. If we want to sort the sequence S, we divide it into two

sequences U and V of roughly equal size. We sort U,V, and then combine the results to get a single

sorted sequence. This is our final result, the result of sorting S. Such an algorithm is also often called

1 If x is not present in the array, we will know that only after comparing it with all the 1024 elements. If x is present, we will

stop after we find it. So in this case, you could say that “on the average” we will compare x with half the elements, i.e. we
will do 512 comparisons.
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a divide-and-conquer algorithm, because we divideS into smaller sequences which we sort (conquer!)

separately.

The division of S into U,V is simple: we just put the first half of S into U and the second half into

V. The key question, of course, is how to combine, or merge, the results of sorting U and V. We will

discuss this first, and then discuss the entire algorithm.

We should note that C++ already provides you with a function for sorting. This is discussed in

Section 22.3.2. This function will also run in time proportional to n log2 n.

16.2.1 A Merging Algorithm

Suppose we are given two rows of students, in each of which the students are arranged in

non-decreasing order of their height. Can we put them into a single row such in which the students

will still be arranged in non-decreasing order? This problem is perhaps easier to visualize, but as you

can see it is the same problem as that of merging two sorted sequences.

Here is a procedure to merge the two rows u, v of students into a single row s. The first student in s

should be the shortest of all students. The shortest in u is the student at the front of u, and the shortest

in v the student at the front of v. Thus, the shortest overall must be the shorter of the students at the

front of u and front of v. So we can ask the shorter of the two to leave his/her row, and join row s.

Next, we have to find the second shortest student. Since the shortest student has moved to s already,
the second shortest must be the shortest from those that remain. So we again pick the shorter of the

students at the front of the rows u, v, and send that student to the back of row s. For the third shortest,

we merely repeat the procedure! Eventually, it might so happen that all the students in one of the rows

u, v have left for s. Once this happens, we ask the students from the remaining row to join s, in the

order they are standing in their row.

The analogy to the sorted sequences U,V should be clear. In fact, we will think of each of

the sequences S,U,V as a queue, like the queue of drivers we had for the taxi dispatch problem

(Section 14.2.6). Drivers were joining that queue at the end, just as students/keys will join S at the end.

Drivers left from the front of the queue, and similarly in this case students/keys will leave U,V from

the front. Thus the algorithm can be coded up as shown in Figure 16.1. The comments in the code

explain the algorithm fully. As you can see, it matches the student row merging procedure discussed

above. Also, you should be able to prove the correctness of the invariant given.

The function Merge executes uLength + vLength iterations, i.e. as many as the total number

of keys. In each iteration a fixed number of instructions is executed. Hence we can say that the total

time is at most some constant times the number of keys, i.e. proportional to the total number of keys.

16.2.2 Mergesort Algorithm

Given a merge algorithm, the mergesort algorithm is easy. For sorting a sequence S of length n, we

proceed as follows.

1. Create two smaller arrays of roughly half the size. Say array U of size n/2, and array V of size

n - n/2.

2. Copy n/2 elements of S to U and the remaining n-n/2 elements to V.

3. Get the arrays U and V sorted. This requires a recursive call for each.
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void merge(int U[], int uLength, int V[], int vLength, int S[]){

// arrays U,V of length uLength and vLength respectively contain the

// sequences that are sorted in non-decreasing order. The result of

// merging is to be placed in the array S. The length of S is not

// specified explicitly, but it is assumed (precondition) to be

// uLength + vLength.

for(int uFront=0, vFront=0, sBack=0; sBack<uLength+vLength;

sBack++){

// INVARIANT: sBack = uFront + vFront. Keys U[0..uFront-1] will

// have been moved to S, and and also keys V[0..vFront-1]. S will

// contain these keys in S[0..sBack-1], in non-decreasing order.

if(uFront<uLength && vFront<vLength){// if both queues non-empty

if(U[uFront] < V[vFront]){ // if U has smaller

S[sBack] = U[uFront]; // move to S

uFront++; // advance U

}

else{ // if V has smaller

S[sBack] = V[vFront]; // move to S

vFront++; // advance V

}

}

else if(uFront < uLength) { // else if only U is not empty

S[sBack] = U[uFront]; // move to S

uFront++; // advance U

}

else { // else if only V is not empty

S[sBack] = V[vFront]; // move to S

vFront++; // advance V

}

}

}

Fig. 16.1 Merging algorithm

4. Merge the arrays U and V back and put the result into the array S.

The code for mergesort follows this outline exactly.

void mergesort(int S[], int n){

if(n>1){

int U[n/2], V[n-n/2];

for(int i=0; i<n/2; i++) U[i] = S[i];

for(int i=n/2; i<n; i++) V[i-n/2] = S[i];

mergesort(U, n/2);



236 An Introduction to Programming through C++

mergesort(V, n - n/2);

merge(U, n/2, V, n-n/2, S);

}

}

Note that we wrote the number of elements to be copied to U as n - n/2 and not n/2 in order to

account for the possibility that n might be odd.

16.2.3 Time Analysis

We will now estimate the time T (n) taken by mergesort to sort a sequence of length n. Initially,

we copy the elements of S to U,V. As discussed above, this takes total time proportional to at most n.

After that we call mergesort recursively. This takes time T (n/2) and T (n− n/2). Finally, we call

merge. The time taken by merge, we said is at most proportional to n the total number of keys. Thus,

we have

T (n) ≤ (Time proportional to n)+ T (n/2) + T (n− n/2)

where we have clubbed together the time to copy and time to merge as a single entry, proportional to

n. Let c denote the constant of proportionality. Further, to simplify the algebra, let us assume that n is

even. Then we have

T (n) ≤ cn+ 2T (n/2) (16.1)

Note that if m = n/2 is also even, then our inequality above will also apply to m, i.e. we will have

T (m) ≤ cm+ 2T (m/2), or in other words

T (n/2) ≤ cn/2 + 2T (n/4) (16.2)

Here, we need n/2 to be even, or n to be a multiple of 4. But now we can substitute Eq. (16.2) into

Eq. (16.1) and get

T (n) ≤ cn + 2T (n/2) ≤ cn+ 2(c(n/2) + 2T (n/4)) = 2cn+ 4T (n/4)

Suppose now that n = 2k. Then we can continue the above process for k steps. Thus we will get

T (n) ≤ kcn+ 2kT (n/2k)

Since n/2k = 1 and k = log2 n, we have

T (n) ≤ cn log2 n+ nT (1)

Noting that and T (1) ≤ c� for some c�, we get T (n) ≤ cn log2 n+ c�n ≤ c��n log2 n for some constant

c��. Thus we have shown that T (n) is at most proportional to n log2 n.

Mergesort is a classical algorithm, and the idea of dividing the input into equal sized parts and

recursing on the parts works in many other problems too.

16.3 THE 8 QUEENS PROBLEM

In this section, we will write a program to solve a well known puzzle: how do you place 8 queens

on a chess board so that they do not capture each other? As you may know, a chessboard consists of

64 squares arranged in 8 rows and 8 columns. Each chess piece such as a queen must be placed on a

unique square on the board. Two queens can capture each other if they are in the same row or the same
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column, or if they are in the same major or minor diagonal, i.e. if the queens are in a line oriented at

45◦ to the rows.
Our program is somewhat clever. It will effectively try out all possible ways of placing queens on

the chessboard and check if in any one of them no queen captures another. The key ingredient in it is

the process by which we will explore all ways of placing queens. Many problems can be solved using

the idea of “trying all possibilities”. Thus, the idea behind the 8 queens program will work for many

other problems, and indeed that is the reason we are studying this puzzle.

First, we need a way of representing the placement of queens on a chessboard. The most natural

representation is to have a 8× 8 two dimensional array of bools. Element [i][j] of the array will

be set true if and only if a queen is placed in the square in the ith row and jth column. This is an

acceptable representation, but there is a better one available. Since we don’t want the queens to capture

each other, we know that we must have exactly one queen in each column: we need not even consider

configurations in which two queens are in the same column. Thus, we can have an array Q of 8 integers,

of which the ith element Q[i] would denote the row position of the queen in column i. Thus, our

goal would be to fill this array with suitable numbers such that the queen positions that the numbers

represent are non-capturing.

So the next question is: given a set of queen positions, how do we determine whether any pair of

queens capture each other? More specifically, we know that the queen in column j is in row Q[j],

and that the queen in column k is in row Q[k]. Can we say whether or not they capture each other?

For this, we need to convert the English-language description of what it means for queens to capture

each other into numerical conditions. As discussed above, two queens capture each other if one of the

following conditions hold.

1. The two queens are in the same row. Being in the same row simply means whether Q[j]==Q[k].

So we must check this.

2. The two queens are in the same column. The way we are representing queens, it is impossible to

have two queens in the same column. Thus this check does not need to be made.

3. The two queens are in the same major or minor diagonal, or are in a line at 45◦ to the rows. This
condition is satisfied if horizontal distance between the queens, abs(j-k), is the same as the

vertical distance abs(Q[j]-Q[k]). Thus, we must test this in our code.

Thus, we already have one ingredient of our algorithm. Suppose we somehow have our array Q filled

with queen positions.Then the following functionwould determine whether any pair of queens captures

each other.

bool capture(int Q[], int n)

// Returns true if queens stored in Q[0..n-1] capture each other.

{

for(int j=1; j<n; j++){ // check for all pairs j != k

for(int k=0; k<j; k++){

if((Q[j] == Q[k]) || // in same row

(abs(j-k) == abs(Q[j] - Q[k]))) // in same diagonal

return true;

}

}



238 An Introduction to Programming through C++

return false;

}

The code considers an n by n board for the sake of generality. It checks for all distinct pairs j, k

whether the queen in column j captures the queen in column k. If any capturing pair is found, true

is returned immediately. If no capturing pair is found, even after considering all possible pairs, the

algorithm returns false.

Now we turn to the harder problem of generating all possible queen configurations. As mentioned

above, we will some how generate all possible queen configurations (one queen in each column), and

call capture on each configuration. If capture returns false for any configuration, we can print

out that configuration.

The key idea is to observe that the set S of all possible queen configurations has the following

structure. This set must contain configurations in which the zeroth queen (i.e. the queen in column 0) is

in row 0. It must also contain configurations in which the zeroth queen is in row 1, and so on. In other

words, if we denote by Si the set of configurations in which the zeroth queen is in row i, then we have

S = S0 ∪ S1 ∪ . . .∪ Sn−1
Clearly, if we know how to generate each Si, and if we do so for i = 0, . . . , n− 1, then we will have

generated all of S.

But do we know how to generate Si? Interestingly enough, Si can also be thought of as a union of

sets of configurations just like S. We will consider this in general. Suppose Si0,...,ik−1 denotes the set

of configurations in which the queen in column 0 is in row i0, the queen in column 1 in row i1, and so

on till the queen in column k − 1 is in row ik−1. Then if k < n, this set is also a union:

Si0,...,ik−1 = Si0,...,ik−10 ∪ Si0,...,ik−11 ∪ . . .∪ Si0,...,ik−1n (16.3)

Thus, if we want to explore Si0,...,ik−1 , we should just explore Si0,...,ik−1j for j = 0, . . . , n− 1.

Thus we should consider a recursive algorithm. Equation (16.3) tells us how to recurse, we just

need the base case. But that is easy. If k = n, then the set Si0,...,ik−1 = Si0,...,in−1 is simply the set

of configurations in which all queens have been assigned a row position. Thus, it contains just one

configuration: the one in which the queen in column j is in row ij for j = 0, . . . , n− 1. Thus when

k = n, we have placed all the queens, and so we should check if any pair captures each other. So we

can call capture, and if it returns false, then we can print the configuration.

void search(int Q[], int k, int n){

// Search the set of queen configurations in which first k

// queens are in

// rows Q[0],...,Q[k-1].

// Of these print those configurations in which queens do not

// capture each other.

// n = total number of queens.

if(k == n){

if (!capture(Q, k)){

for(int j=0; j<k; j++) cout << Q[j];

cout << endl;

}

}
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else{

for(int j=0; j<n; j++){

Q[k] = j;

search(Q, k+1, n);

}

}

}

There is a subtle point to be noted.When we call search(Q, k+1, n), we must make sure that the

the subarray Q[0..k-1] contains the same values as were there at the time of the original call. This

is indeed true, because as you can see, a call search(Q, k+1, n) does not modify Q[0..k].

The main program for calling this is very simple.

int main(){

const int n=8;

int Q[n];

search(Q,0,n);

}

16.3.1 Enforcing Constraints Early

It is possible to speed up the program given above. In the jth iteration, we search through the set

Si0,...,ik−1j . This is simply the set of positions in which we have placed the queens in columns 0

through k − 1 in rows i0 through ik−1, and the queen in column k in row j.
Suppose now that the queen in column k when placed in row j for some j captures some queen in

the previous columns. In that case, we already know that there can be no non capturing positions in set

Si0,...,ik−1j . So why even bother to recursively call the search function for this set?

Not having to make a recursive call is a significant amount of saving. So indeed, after placing a

queen in column k, we will check if it is captured by any of the previously placed queens. We will

make the recursive call only if the new queen is not captured. But in this case, when search finally

gets called with i = n, we know that all the queens that we have placed must not be capturing each

other. So we can immediately print the position out.

Thus, we get the improved code of Figure 16.2. Notice that the function lastCaptures in this

code is the analogue of the function capture. The new function merely checks whether the last

placed (kth) queen captures the previous queens.

16.4 CONCLUDING REMARKS

Recursion is one of the most powerful strategies for designing algorithms. There are various ways in

which recursion can work with sets/sequences: we can divide the sequence into two and may need to

solve our problem recursively on both halves (merge sort) or only one half (binary search). It is also

possible that we may view a sequence of length n as a single element followed by a sequence of length

n− 1. This view will require us to recurse on the length n− 1 subsequence. So long as we can handle
the base cases (sequences of some fixed length) directly, any such sequence splitting strategy will give

us a recursive algorithm, provided we can build a solution for the larger sequence from the solution for

the smaller sequence(s). Recursion is used for many, many problems. Here is a classic problem which

is solved using recursion: given the coordinates of a set of points in the plane, find the closest pair, i.e.
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bool lastCaptures(int Q[], int k)

// checks whether the queen in column k captures those in

// columns 0..k-1

{

for(int j=0; j<k; j++){

if((Q[j] == Q[k]) || // in same row

(abs(j-k) == abs(Q[j] - Q[k]))) // in same diagonal

return true;

}

return false;

}

void search(int Q[], int k, int n){

if(k == n){

for(int j=0; j<k; j++)

cout << Q[j];

cout << endl;

}

else{

for(int j=0; j<n; j++){

Q[k] = j;

if(!lastCaptures(Q, k)) search(Q, k+1, n);

}

}

}

int main(){

const int n=8;

int Q[n];

search(Q,0,n);

}

Fig. 16.2 Final n queens program

a pair of points which are the smallest distance apart. The algorithm for this is somewhat involved, and

will not be covered in this book.

An important point to remember while designing recursive algorithms: if the size of the sequence

is n, and we wish to divide it into two parts, it is tempting to write the sizes of the parts as both n/2.

However, note that n can be odd, and hence the sizes are better written as n/2, n− n/2.
The n queens problem is an example of the general constraint satisfaction paradigm. Problems in

this paradigm have the following general form: find values for a set of variables such that the values

satisfy some specified constraints. In the n queens problem, the variables were the positions Q[0]

through Q[n-1] of the queens, and these variables had to satisfy the constraint that the queens when

placed at positions given by the variables would not capture each other.We showed how the constraints

can be expressed arithmetically, i.e. Q[j] != Q[k], and abs(j-k) != abs(Q[j]-Q[k]).

The solution idea was: systematically go through all possible choices of values for the variables, and
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for each choice check if the constraints are satisfied. This strategy of solving is called backtracking,

because we try out one value for a variable, and if that does not work, we return (backtrack) and try

another. The idea of enforcing constraints early can speed up backtracking.

The constraint satisfaction paradigm appears often, as you will see in the exercises. Backtracking is

a simple general strategy for solving constraint satisfaction problems.

EXERCISES

1. The binary-search algorithm can also be written using a loop, rather than using recursion. Do so.

State the appropriate loop invariant and the potential function and argue correctness.

2. Design an input instance for the mergesort algorithm such that every line of code in themerge

algorithm of Section 16.2.1 will execute in one of the calls to merge.

3. Suppose you are given two sorted sequences S, T of lengthsm, n. Write a program that finds the

median of their union. You may find it easier to write a program that finds the ith smallest in the

union, for general i.Hint: Compare the medians of the sequences S, T . What does the comparison

tell you about the position of the ith smallest?

4. A very popular and elegant algorithm for sorting is the so called Quicksort. If A is the sequence

to be sorted, this works as follows.

1. Pick a random element r of A. This element is often called a splitter.

2. Construct a sequence S consisting of all elements smaller than r.

3. Construct a sequence L consisting of the remaining elements.

4. Sort the sequnces S, L (recursively!) to produce sequences S�, L�.
5. Return the concatenation of sequences S�, L�.
Write the program for Quicksort. By and large, Quicksort works very fast. More precisely, it

is possible to show that the expected time taken by Quicksort (expectation calculated over all

random choices of r in all calls) is proportionaln log2 n. The proof of this is outside the scope of

this book.

5. An interesting trick is employed to make Quicksort run fast. If the original sequence A is stored

in the array A, then it is possible to ensure that steps 2,3 above will construct S, L in A itself,

with S preceding L. This will ensure that the sorting step will also produce the result in-place,

i.e. S�, L� will be produced in the same (sub)arrays as were occupied by S, L. Thus, the last
step, concatenation, does not have to be done explicitly. Here is how we can create S, L inside

A itself. Start scanning from A[0] towards higher indices. Stop when you find a number A[i]

larger than or equal to the splitter r. Now start scanning backwards from the end, A[n-1]. Stop

when you find A[j] smaller than r. Exchange the elements A[i],A[j]. Clearly, A[0..i]

and A[j..n-1] can be considered parts of S,L. We can extend these by repeating the process

on the sub-array A[i+1..j-1].

Code up this idea. Write clear invariants to guide your code. There is great potential here for

making silly mistakes!

6. How do you represent a curve on a computer, e.g. the curves used for drawing the letter S? One
possibility is to approximate it by a sequence of straight-line segments and circular arcs. A more

general representation uses the so called Bezier curves, named after Pierre Bezier who invented

them for representing automobile body designs. A Bezier curve of order n is defined by n control
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points p1, . . . , pn. The curve begins at p1 and ends at pn and is smooth. The other control points

“attract” the curve towards them, but the curve need not pass through them. The curve consists of

the path traced by Bp1,...,pn(t) as t goes from 0 to 1. Here, Bp1,...,pn is a function which maps

real numbers to points on the plane, and is defined recursively as follows.

Bp1,...,pn(t) = Bq1,...,qn−1 (t)

where

qi = tpi + (1− t)pi+1
i.e. qi is the point dividing the line segment pipi+1 in the ratio t : 1− t. The base case is

Bp(t) = p

Write a program which receives points p1, . . . , pn on the graphics canvas and plots the Bezier

curve defined by them. Vary t in the interval [0,1] in small steps, say ∆ = 0.01, and join

Bp1,...,pn(t) to Bp1,...,pn(t+ ∆) to get the curve. Experiment for different values of n and

positions of pi.

7. Modify the n queens code so that it returns as soon as one non-capturing configuration is found.

The array argument should hold this configuration on return. If no non-capturing configuration is

found the function should return false.

8. Modify the n queens codes so that it counts how many times capture and lastCaptures are

called. These numbers will tell you whether enforcement constraints early helps. Hint: initialize a

counter variable to 0 in the main program, and pass it by reference as needed.

9. If you substitute a unique digit for each of the letters in the following “sum”, it becomes a

valid arithmetic addition, as you might have written in primary school. Write a program which

determines what to substitute for each letter. As you can see, this is a constraint satisfaction

problem which can be solved by backtracking.

S E N D

+ M O R E

M O N E Y

10. Consider Exercise 16 of Chapter 14. Suppose that you now decide to ignore the marks obtained

by the candidates. Further your goal now is to fill each job with a candidate who has indicated a

preference for it (first or second, does not matter). Write a program which reads in an additional

input, t, and determine whether at least t applicants can be assigned jobs. Solve this using

backtracking. There exist faster algorithms than backtracking, but they are technically more

involved and hence outside the scope of this book.

11. In the knapsack Problem, the input consists of numbers vi, wi for i = 0 to n− 1, and a number

C . The numbers vi, wi denote the monetary value and weight respectively of the ith object in a

collection, and C the weight-carrying capacity of a knapsack. The goal is to pack the knapsack

with objects of maximum total value possible, while not exceeding the weight capacity.

Solve this using backtracking.

12. Try to make your backtrack program for knapsack as efficient as possible. A simple idea is: don’t

wait to check the capacity condition until the entire candidate solution is constructed. If the first

few items selected already exceed the knapsack capacity, then there is no need to consider all

possible ways of selecting the subsequent items.



CHAPTER17
Object-oriented Programming:
Structures

How does one write a large program, or in general execute any large project? How do you begin, in

what order do you do the things that need to be done? Sometimes, it might seem that there is a natural

order: if you are constructing a building, perhaps you should build the foundation first, and then work

your way up.1 But this is too simplistic; clearly when you build the foundation you must already have

designed the entire building. So that raises the question: in what order do you do the design? Such

questions are not easy to answer also in the context of programming. But good answers can certainly

be useful.

In this chapter and the next, we give an introduction to the leading methodology for program design,

the so called Object-Oriented Programming (OOP) methodology. Here is a very rough overview of

OOP. The first step is of course to clearly understand the specifications. What are the program inputs

and what is expected as output? Once this is done, the next step, distinctive of OOP, is to focus on the

entities involved in the program. As an example, consider a program that keeps track of the books in a

library. In this, the entities presumably are the books and the patrons. If, for example, your program is

concerned with predicting the movement of stars in a galaxy, the entities are clearly the stars and other

heavenly bodies. Each entity is associated with some information, fixed and variable. For example, a

book has a title and an author which do not change. But for each book you also need to keep track

of whether it has been borrowed, and if so by whom. This information which can change constitutes

its state. Likewise stars will have a mass, which likely does not change. But a star also has state, for

example its position and velocity. The entities may change state spontaneously over time, or because

of interaction with other entities. As per OOP methodology, it is crucial to understand the entities, their

state and their interaction.

Once the entities, the state, and the interactions are understood, OOP requires that organization of

the code mirror the entities and their relationships. More specifically, the data and the code required

by the entire program should be partitioned amongst the different entities. Thus, our code will have as

many parts as there are entities. Once we identify the parts, we work on each methodically: we define

1 It is believed that the Kailashnath temple in the famed Ellora caves was carved out of a monolithic rock downwards, i.e. the

temple spire first, and then the chambers!
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the variables and write the code required for each type of entity. The code dealing with the interaction

between two entities must be placed with the entity that is “more involved” in the interaction; but this is

of course a subjective judgement. There are various reasons for breaking up the work of programming

in thismanner. It would seem, intuitively, that if the code organizationmirrors the relationships between

the entities, then the code might be easier to understand. By breaking up the code into parts, we also

make it possible for many programmers to develop the code simultaneously. What we have described

above is a very brief and rough overview of the OOP methodology. We will provide more ideas and

rationale in the next chapter and chapters 25 and 26.

In this chapter, we will introduce the notion of a structure, which is a very basic facility needed

for organizing code as mentioned above. Consider the library example. Suppose we wish to write the

code associated with books. For this, variables will be needed to store data such as the title, name of

the author, price as well as state information such as whether the book has been borrowed, and if so

by whom. Presumably, we would like to organize variables related to a single book into a group and

give the group a name. By using the group name we would be conveniently able to refer to all the

information related to a book, say for the purpose of passing the information to a function. Notice that

the variables we wish to group together have different types, so an array will not do. A structure, as we

will discuss in this chapter, provides us what we want: it allows us to group together data of different

kinds into a single collection which we can collectively refer to by a single name. Simply put, for each

entity in our program we will have a structure which will hold the data associated with the entity.

We begin by discussing the basic ideas of structures. We will show several examples. We will also

revisit the taxi-dispatch problem of Section 14.2.6 and show how its program can be improved using a

structure for representing queues. We will also discuss a structure for representing three-dimensional

vectors. The notion of a structure to group together variables is inherited into C++ from the C language.

However, the notion has evolved substantially in C++. In particular, we can also associate code with

a structure, by using so called member functions. As you might guess, member functions fit perfectly

what we said earlier: they can be used to code the interactions that the entity represented by the structure

is involved in. We discuss member functions in Section 17.5.

Member functions are only one new feature introduced into structures in the C++ language. There

are several others; these we will discuss in Chapter 18.

17.1 BASICS OF STRUCTURES

As mentioned above, a structure is a collection of variables. The variables in the collection are said

to be members of the structure. You can define different types of structures, as per your need. For

example, to store information about books, you might define a structure of type Book; you can specify

that every structure of type Book should contain members to store its name, title, price and so on.

A structure type can be defined using a struct statement as follows:

struct structure-type {

member1-type member1-name;

member2-type member2-name;

...

};

This statement says that the name structure-type will denote a type of collection of variables

or members whose types and names are as given. The names for structure types or members must be
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identifiers (Section 3.1.1), but it is often customary to capitalize the first letters of the names of structure

types, which is a convention we will follow.

As an example, here is how we might define a structure type Book to store information about a

book.

struct Book{

char title[50];

char author[50];

double price;

int accessionNo;

bool borrowed;

int borrowerNo;

};

Note that a structure type definition does not by itself create variables or reserve space. But we can use

it to create variables. Variables thus created are also called instances, or objects. Here is an example.

Book pqr, xyz;

This statement is very similar to a statement such as int m,n;. The statement int m,n; creates

variables m,n of type int. Likewise, the statement Book pqr, xyz; also creates variables

pqr,xyz, of type Book. As you might expect, each of these variables is used to hold the associated

collection of members. Thus, each variable is allocated as much space as is needed to store the

collection. Assuming 4 bytes are used to store an int and 8 for a double, we will need 16 bytes

to store the members accessionNo, borrowerNo, and price, and 50 + 50 bytes to store the

members title and author. A bool data type will typically be given 1 byte. So a total of 117

bytes has to be reserved each for pqr and xyz. The number of bytes that effectively get used might

be larger, because there may be restrictions, e.g. on many computers it is necessary that the starting

address of a variable must be a multiple of 4.

The word structure, or its short form struct, is often used to denote (a) a specific variable of

a specific structure type, e.g. the variable xyz above, or (b) a specific structure type, e.g. Book as

defined above, or (c) the entire category of variables of any structure type. This may sound confusing,

but it is really similar to how we use language in everyday life. For example, in everyday conversation

the word flowermight mean the specific lotus which you have just plucked, or a specific type of flower,

as in “a lotus is a flower”, or the entire category of flowers, as in “every flower is pretty in its own

way”. The precise meaning will be clear from the context.

A member of a structure variable can be referred to by joining the variable and the member name

with a period (dot operator), e.g. xyz.accessionNo. Such references behave like variables of the

same type as the member. Thus, given the definitions of xyz and pqr above, we may write:

xyz.accessionNo = 1234;

cout << xyz.accessionNo + 10 << endl;

cin.getline(pqr.title,50);

The first statement will store the number 1234 in the member accessionNo of the variable xyz.

The second statement calculate the sum of xyz.accessionNo, in which we just stored 1234, and

the number 10, and print the result. Thus, this statement will cause 1244 to be printed. In the third
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statement, the reference pqr.title refers to the first of the two char arrays in pqr. Just as we can

read a character string into a directly defined char array, so can we into this member of pqr.

We can initialize structures in a manner similar to arrays. Assuming Book defined as above we

might write

Book b = {"On Education", "Bertrand Russell", 350.00, 1235, true,

5798};

This will copy elements of the initializer list to the corresponding members in the structure. In

Section 18.1 you will see how to define other ways of initializing structures.

Here is a structure for representing a point in two dimensions.

struct Point{

double x, y;

};

Wemay create instances of this structure in the manner described before, i.e. by writing something like

Point p1;. We are allowed to have one structure be contained in another. Here, for example, is a

structure for storing information about a circle

struct Disk{

Point center;

double radius;

};

We did not call this Circle so as to distinguish it from the Circle shape in Simplecpp. Now the

following natural program fragment is legal.

Disk d1;

d1.center.x = 0.5;

d1.center.y = 0.9;

d1.radius = 3.2;

We could also have accomplished this by initialization:

Disk d1 = {{0.5,0.9},3.2};

One structure can be copied to another using an assignment. For example, assuming d1 is as defined

above, we can further write

Disk d2;

d2 = d1;

This causes every member of d1 to be copied to the corresponding member of d2. In a similar manner,

we could also write

Point p = d1.center;

d2.center = p;

The first statement copies every member of d1.center to the corresponding members of p. The

second copies every member of p to the corresponding member of d2.center.
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We finally note that variables can be defined in the same statement as the definition of the structure.

For example, we could have written

struct Disk{

Point center;

double radius;

} d1;

which would define the struct Disk as well as an instance d1.

You can have const structures if you wish. For example, you may write

const Disk d3 = {{1,2},3};

As you might expect, you will not be able to subsequently modify the values of the members of d3.

17.1.1 Visibility of Structure Types and Structure Variables

If a structure type is going to be used in more than one function, it must be defined outside both the

functions. The definition must textually appear before the functions in the file.

The rules for accessing structure variables are the same as the rules for variables of the fundamental

data types (Section 3.6). Thus, in the block in which a variable is defined, it can be used anywhere

following its definition. Also, a name name defined in blockB might shadow names defined in blocks

that containB, or the name name might in turn be shadowed by names defined in blocks contained in

block B.

17.1.2 Arrays of Structures

Note that we can make arrays of any data type. For example, we could make an array of circles or

books if we wished.

Disk d[10];

Book library[100];

We can refer to members of the elements of the arrays in the natural manner. For example,

d[5].center.x refers to the x-coordinate of the center of the fifth circle in d. Similarly,

library[96].title[0] would refer to the starting letter in the title of the 96th book in

library.

17.1.3 Pointers to Structures and ->

The “address of” operator & defined in Section 9.8.1 and the dereferencing operator * defined in

Section 9.8.3 work as you might expect with structures. Here is an example. Assuming the definition

of Disk as above, we might write

Disk d1={{1,2},3}, *dptr;

dptr = &d1;

(*dptr).radius = 5;

The first statement declares dptr to be of type Disk*, i.e. pointer to Disk. The second statement

stores the address of d1 in dptr. This operation is often described as “the second statements sets
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dptr to point to d1”. In the third statement, dptr is first dereferenced. Thus *dptr evaluates to d1,

and then the radius member of this, i.e. of d1 is set to 5.

C++ provides the arrow operator -> where x->y means (*x).y. Hence (*dptr).radius

could instead be written as dptr->radius, which you will agree is easier to read.

17.1.4 Pointers as Structure Members

It is possible to have pointers as members of a struct. For example, we might have an alternate way

to represent disks as follows.

struct Disk2{

double radius;

Point *cptr;

}

where Point is as before. Thus, we could write

Point p1 = {10.0,20.0};

Disk2 d4, d5;

d4.radius = 5;

d5.radius = 6;

d4.cptr = &p1;

d5.cptr = &p1;

Thus, we have created d4 and d5 to be disks of radii 5, 6 respectively, both centered at the point p1.

Say we wanted to get the x coordinate of the center of d4. For this, we would write d4.cptr->x,

which would evaluate to 10.0 as you would expect. Note further that if you write

d5.cptr->y = 25;

it would change the y coordinate of p1, and hence of the center of both the disks.

17.1.5 Linked Structures

Here is a trickier example.

struct Student{

int rollno;

Student* bestFriend;

};

The intention of the definition should be clear; in each student structure, we wish to store a pointer

to the best friend of that student. But for this we have had to use the name Student inside its own

definition! However, it does not cause a problem. A pointer to a struct needs the same amount of

memory no matter what is inside the struct. Thus, using the new definition we can allocate memory

for a Student object easily: we just need to allocate whatever is needed for an int and for a pointer.2

2 The following definition is not allowed, of course:
struct Student{ int rollno; Student friend; };

This will require a Student object to contain an internal Student object, and the internal Student object to contain a
Student object, and so on. In other words we are defining an infinite object! This is not allowed.



Object-oriented Programming: Structures
249

We can use this to link students to their best friends as in the program below.

int main(){

Student s1, s2, s3;

s1.rollno = 1;

s2.rollno = 2;

s3.rollno = 3;

s1.bestFriend = &s2;

s2.bestFriend = &s3;

s3.bestFriend = &s2;

cout << s1.bestFriend->rollno << endl;

cout << s1.bestFriend->bestFriend->rollno << endl;

}

Thus, after creating instances s1, s2, s3, we set them respectively to have roll numbers 1, 2, 3.

Then we set s1’s best friend to be s2, s2’s best friend to be s3, and s3’s best friend to also be s2.

Thus the first print statement will print 2, while the second will print 3.

We will see detailed examples of such linked structures later.

17.2 STRUCTURES AND FUNCTIONS

It is possible to pass structure variables to functions by value (Section 9.1.1) and by reference

(Section 9.7). A function may also return a structure.

It should be noted that the name of a structure variable denotes the content of the associated memory,

like ordinary numerical variable names, and unlike the name of an array, which denotes the address

of the associated memory. Thus, structures behave like ordinary variables when passed by value and

when returned from functions.

We first consider an example for our Point structure as defined above. The function below returns

a Point that is the midpoint of the line joining two given points. It is followed by a main program

that uses it.

// Point as defined earlier

Point midpoint(Point a, Point b){

Point mp;

mp.x = (a.x+b.x)/2;

mp.y = (a.y+b.y)/2;

return mp;

}

int main(){

Point p1 = {0.0, 0.0}, p2 = {100.0, 200.0}, p3;

p3 = midpoint(p1, p2);

cout << midpoint(midpoint(p1,p2), p2).x << endl;

}
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The function calls above execute essentially as per the description in Section 9.1. Consider the call

midpoint(p1,p2). First, an activation frame is created. Then the values of the arguments p1,p2

are copied to the corresponding parameters a,b in the activation frame. Then the local variable mp is

created. Then its members x,y respectively are set to the averages of the corresponding members of

a,b. Thus mp.x, mp.y will get the values 50, 100. Then, mp will be returned. Note that returning

a structure means copying its value to the main program. To receive this value, in the main program

a temporary variable of type Point will be created. The main program (or in general the calling

program) can do anything with this variable except modifying it. In the second statement of the main

program, we are merely copying the value of the temporary variable to the variable p3. In the last

statement, the call midpoint(p1,p2)will return the point (50,100). The temporary variable which

holds this is then passed as an argument to another call to midpoint. This call will return themidpoint

of the points (50,100) and (100,200). Thus, it will return the point (75,150). This point will be stored in

a temporary variable, and finally we take its x member, which gets printed. Thus, 75 will get printed.3

We can also use call by reference (Section 9.7). Suppose we want to shift a given point by some

amount dx,dy in the x, y directions respectively. Then the following function is natural to write.

void move(Point &p, double dx, double dy){

p.x += dx;

p.y += dy;

}

Notice that we are passing the first argument, the point, by reference. Thus, the point p in the body will

be deemed to refer to same variable that is passed as the first argument in the calling program. Thus,

the x,y members of that variable will get modified.

It is often desirable to pass structures to functions by reference even if we don’t want them modified.

This is because when passed by value, the entire structure must be copied. Copying takes time. This can

be a significant overhead for a large structure such as Book defined above. In addition, the activation

frame of the called structure will also have to have memory allocated to store the structure. This

increases the total memory requirement of the program. Thus we may choose to write the midPoint

function using references.

Point midpoint2(Point &a, Point &b){ // also see midPoint3 below

Point mp;

mp.x = (a.x+b.x)/2; mp.y = (a.y+b.y)/2;

return mp;

}

This will indeed cause the points to be passed by reference, thus avoiding the need for copying.

There is, however, a subtle point to be noted about reference parameters. As we noted in

Section 9.7.1, A compiler expects that a reference parameter will be modified, so passing a constant

argument is an error. So it would indeed be an error if we were to call midpoint2with points declared

const. We noted above that the result of a call such as midPoint2(p1,p2) is a temporary variable

created by the compiler. This temporary variable is not expected to be modified, i.e. it is considered to

3Note that temporary variables are created also with ordinary numerical variables. For example, when you write a = z +

sin(x)*y, temporary variables will be created to hold the value of sin(x).
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have the attribute const. So such a temporary variable also cannot be passed to another call in which

a reference argument is expected. Thus, a call such as

midpoint2(midpoint2(p1,p2),p2)

will be flagged by the compiler as an error. This seems inconvenient; we would like to make such calls.

To facilitate this, we can declare reference parameters to be const, as follows.

17.2.1 const Reference Parameters

If we are passing a parameter by reference only to avoid copying it and we do not intend to modify it,

we can signal our intention in the code by marking the parameter as const. Thus the midPoint2

function is better written as follows.

Point midpoint3(Point const &a, Point const &b){

Point mp;

mp.x = (a.x+b.x)/2; mp.y = (a.y+b.y)/2;

return mp;

}

This has two benefits. First, because the parameters to midpoint are marked const, any reader will

immediately realize, without having to see the entire code, that the arguments to the function will not

change. Thus, the readability of our code is improved.

The const keyword serves another important purpose too. The corresponding arguments can be

const structures if we so wish. Thus, the call

midpoint3(midpoint3(p1,p2),p2)

will now compile fine. The first argument to the outer midpoint3 call is a temporary constant created

by the compiler. But this is fine since the corresponding parameter is marked const.

17.2.2 Passing Pointers to Structures

Note finally that you can pass structures to functions using a pointer and then dereference the pointer

in the body to access the members of the structure. But it is considered better to use references (const

if appropriate).

17.3 TAXI DISPATCH REVISITED

Let us revisit the taxi-dispatch problem of Section 14.2.6 from the point of OOP. In that problem, we

mimicked a blackboard on which IDs of waiting drivers would be written in real life. The blackboard

was not present in the statement of the problem. But it was an important entity in the solution of the

problem and hence, it is a good idea to use a struct to represent it. We do this next.

The blackboard was really doing the work of a queue in which we put in IDs of waiting drivers.

The term queue has a real life meaning: people wait in it and people leave from it in the order in which

they arrive. Likewise, IDs enter our blackboard and then leave in the same order. So we will call our

struct a Queue, which suggests its function, rather than calling it a blackboard. Inside the struct we

will have as members all related variables, driverID, front, nWaiting. Note, however, that

queues can be used to represent other entities besides waiting drivers, so for the array which held the
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IDs of the drivers we will use the name elements rather than driverID. Likewise, we will use the

name QUEUESIZE to denote the size of the array rather than the name MAXWAITING.

struct Queue{

int elements[QUEUESIZE], nWaiting, front;

};

QUEUESIZE should be defined earlier, say as

const int QUEUESIZE = 100;

A queue is involved in two kinds of interactions: insertion and removal of elements. So we will have

functions which do this.

bool insert(Queue &q, int value){

if(q.nWaiting >= QUEUESIZE) return false; // queue is full

q.elements[(q.front + q.nWaiting) % QUEUESIZE] = value;

q.nWaiting++;

return true;

}

bool remove(Queue &q, int &item){

if(q.nWaiting == 0) return false; // queue is empty

item = q.elements[q.front];

q.front = (q.front + 1) % QUEUESIZE;

q.nWaiting--;

return true;

}

Note that we have passed the queue q by reference, so that modifications made to it are visible back in

the main program. Given these functions, the main program can be written in a nicer manner than in

Section 14.2.6.

int main(){

Queue q;

q.front = 0;

q.nWaiting = 0;

while(true){

char command; cin >> command;

if(command == ’d’){

int driver;

cin >> driver;

if(!insert(q, driver)) cout << "Queue full.

Cannot register.\n";

}

else if(command == ’c’){

int driver;

if (!remove(q, driver)) cout << "No taxi available.\n";

else cout << "Assigning: " << driver << endl;

}
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else if(command == ’x’) break;

}

}

This main program is easier to understand as compared to the main program of Section 14.2.6. This

is because it does not contain much detail about how exactly the waiting IDs are stored in the queue.

That detail is moved to the functions insert and remove. These functions on the other hand are

not concerned with how the queue is being used. The two functions together guarantee that so long as

the queue is accessed only using these functions, we will get the expected behaviour: (a) whatever we

insert into the queue will be given back to us in a first-in-first-out order, (b) we will not insert something

when the queue is already full, (c) our accesses to the array q.elements will not be out of range. So

although our code has become a bit longer, we can see that each piece is easier to understand than the

compact main program of Section 14.2.6.

17.4 REPRESENTING VECTORS FROM PHYSICS

In Chapter 19, we will see a program which deals with motion in 3 dimensional space. This

program will deal considerably with 3 dimensional vector quantities such as positions, velocities, and

accelerations. So we will design a structure which makes it convenient to represent such quantities.

A vector in three dimensions can be represented in many ways. For example, we could consider it in

Cartesian coordinates, or spherical coordinates, or cylindrical coordinates. For simplicity, we consider

the first alternative: Cartesian coordinates. Thus, we will have a component for each spatial dimension.

Clearly, our structure must hold these 3 coordinates. We will call our structure V3 and it can be defined

as

struct V3{

double x,y,z;

};

If our program uses three dimensional vectors, very likely it will need to add such vectors, or

multiply such a vector by a number. Here is a function to add two vectors. The resulting vector is

returned.

V3 sum(V3 const &a, V3 const &b){

V3 v;

v.x = a.x + b.x;

v.y = a.y + b.y;

v.z = a.z + b.z;

return v;

}

Notice that we have made the parameters be reference parameters to avoid copying, but also made them

const since the parameters are not altered by the function.

Next we have a function to scale up a vector by a numerical factor.

V3 scale(V3 const &a, double factor){

V3 v;

v.x = a.x*factor;
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v.y = a.y*factor;

v.z = a.z*factor;

return v;

}

It is also useful to have a function that computes the length of a vector.

double length(V3 const &a){

return sqrt(a.x*a.x + a.y*a.y + a.z*a.z);

}

We can now use these functions to compute the distance s covered by particle having initial velocity u,

moving under constant acceleration a after time t, as per the formula s = ut+ 1
2at

2, where it should

be noted that s, u, a are vector quantities.

int main(){

V3 u,a,s;

double t;

cin >> u.x >> u.y >> u.z >> a.x >> a.y >> a.z >> t;

s = sum(scale(u,t), scale(a,t*t/2));

cout << length(s) << endl;

}

This will indeed print the distance covered as desired.

17.5 MEMBER FUNCTIONS

We could think of a structure as merely a mechanism for managing data; we organize data into a

collection rather than have lots of variables lying around. However, once you define a structure, it

becomes natural to write functions which manipulate the data contained in the structures. You might

say that once we defined V3, it is almost inevitable that we write functions to perform vector arithmetic

and compute the Euclidean length. Once we defined Queue, it seemed quite natural to define functions

insert and remove as well. Had we defined a structure to represent some other entity, say a book

(in a library), we might have found it useful to write a function that performs the record-keeping needed

when a book is borrowed.

Indeed, you might consider such functions to be as important to the structure as are members of the

structure. So perhaps, should we make the functions a part of the structure itself?

The definition of structures you have seen so far really comes from the C language. In the more

modern definition of structures, as it is in the C++ language, the definition of structures has been

extended so that it can also include functions. At a high level, the more general definition of a structure

is the same as before.

struct structure-type {

member-description1

member-description2

...

}
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But, now, a member-description may define a member-function, in addition to being able to

define a data member as before.

We begin with an example. Here is an alternate way to write our struct V3. Following that is a silly

main program given to show how the new definition can be used.

struct V3{

double x,y,z;

double length(){ // member function length

return sqrt(x*x + y*y + z*z);

}

V3 sum(V3 b){ // member function sum

V3 v;

v.x = x + b.x; v.y = y + b.y; v.z = z + b.z;

return v;

}

V3 scale(double t){ // member function scale

V3 v;

v.x = x*t; v.y = y*t; v.z = z*t;

return v;

}

void joker(double q){ // member function, included for fun.

x = q;

cout << length() << endl;

}

};

int main(){

V3 p = {1.0, 2.0, 3.0};

cout << p.length() << endl;

p.joker(5);

cout << p.x << endl;

}

We explain next how this code works, i.e. how member functions are defined and used. In general, the

member-description of a member function has the following form.

return-type function-name (parameter1-type parameter1,

parameter2-type parameter2, ...) {body}

As you can see, the definitions of length, sum, scale and joker all fit in this form.

A member function is expected to be called on an object of the given structure type, using the same

“.” operator used for accessing data members. We will use the term receiver to denote the object on

which the member function is called. A simple example of a member function call is the expressions

p.length() in the main program above, with p the receiver. The general form of the call is

receiver.function-name(argument1, argument2, ...)

The execution of a call happens as follows.
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1. The expressions receiver, argument1, argument2, ... are evaluated.

2. An activation frame is created for the execution.

3. The values of the arguments corresponding to the non reference parameters among

argument1,... are copied over to the corresponding parameters.

4. The body of the function is executed. Inside the body, the names of the data members by

themselves are considered to refer to the corresponding members of the receiver. Inside the

body, we can thus read the values of the members of the receiver, or also modify the values if

we wish. Note further that inside the body we may also invoke member functions on the receiver,

simply by calling them like ordinary functions.

We next discuss how the main program given above will execute. When the call p.length()

executes an activation frame is first created. Since there are no arguments, there is nothing to be

copied. So the body of the function will start executing. In the body, the names x,y,z will refer to

the corresponding members of the receiver, p. Thus, the statement return sqrt(x*x + y*y +

z*z); will return sqrt(1.0*1.0 + 2.0*2.0 + 3.0*3.0), i.e.
√

14. This will get printed.

When the call p.joker(5) executes, an activation frame will again be created. Then the value

of the argument, 5, will be copied to the corresponding parameter, q in the body of the member

function joker. Then the assignment x=q will cause the member x of the receiver, in this case,

p, to be set to 5. Then there is a call to length. Since the function name appears by itself, i.e. not as

r.length() for any r, it is deemed to refer to the receiver itself. Thus, the length of p is calculated.

Note that the value of p.x has changed to 5, and hence the length calculated and printed will be√
5× 5 + 2× 2 + 3× 3 =

√
38. After this the execution of p.joker will finish.

Finally, in the last statement, we will print the value of p.x. Note that 5 will get printed, because

this is what we set it to in the call p.joker(5).

We next give the code for computing s = ut+ 1
2
at2 using our new V3 definition.

V3 u, a, s;

double t;

cin >> u.x >> u.y >> u.z >> a.x >> a.y >> a.z >> t;

V3 ut = u.scale(t);

V3 at2by2 = a.scale(t*t/2);

s = ut.sum(at2by2);

cout << s.length() << endl;

Note that we do not really need to have the additional vectors ut, at2by2. Indeed, we could have

written out a single long assignment

s = u.scale(t).sum(a.scale(t*t/2));

The call u.scale(t) returns a vector (temporary V3 object) on which we perform thesum operation

using as argument the result of the call a.scale(t*t/2).

17.5.1 Reference Parameters and const

It is possible to make the parameters to member functions be reference parameters. As noted earlier,

by passing a structure by reference, we avoid the overhead of copying it.

It is also good to add const qualifiers wherever possible. First, if any of the arguments is not

modified by the function, then the corresponding parameter should also be declared const. Second,
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if the receiver is not modified by the function, we can indicate as much by adding the keyword const

after the parameter list but before the body. The function sum above modifies neither its argument, nor

its receiver. Hence it is better written as

V3 sum (V3 const &b) const{ // notice the two const keywords

V3 v;

v.x = x + b.x; v.y = y + b.y; v.z = z + b.z;

return v;

}

We should similarly modify the member functions scale and length.

17.5.2 Default Values to Parameters

Default values can be given, as for ordinary functions by specifying them as = value after the

corresponding parameter.

17.5.3 The this Pointer

Inside the definition of any ordinary member function, the keyword this denotes a pointer to the

receiver. Normally, we do not need to use this pointer, because we can get to the members of the

receiver by using the names of the members directly. However, it should be noted that we could use

this too. Thus, we could have written the lengthmember function in V3 as

double length(){

return sqrt(this->x*this->x + this->y*this->y

+ this->z*this->z);

}

But of course this is not really a good use for this!

A more interesting use is given in Section 18.5.

17.5.4 Capturing this in Lambda Expressions

Bodies of member functions can contain lambda expressions (Section 12.2). You may want to capture

the this pointer into a lambda expression. You may do so, and the this pointer must be captured by

value.

Once you capture this, you can refer to members of the object by giving the names directly,

without prefixing them with this->.

You will see an example of this in Figure 27.4.

17.6 CONCLUDING REMARKS

How to organize variables is an important problem in writing large programs. Structures help in this

regard by allowing variables to be grouped together heirarchically.

A structure is a collection of variables (or other structures), called members of the structure. The

name of a structure refers to the collection as a whole. We can assign one structure to another, or pass

a structure to a function by value, or return a structure from a function. All these operations happen by
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copying the entire collection. Pointers and references to structures can be used in the natural manner.

These are useful because they enable passing structures to functions without copying.

Member functions can also be included in structure definitions. Member functions are expected to

contain code that models the interaction of the entities represented by the structure with other entities.

Member functions execute in a manner similar to ordinary functions, except that they execute in the

context of a receiver object.

It should be noted that the term structure as we have used in this chapter is different from the phrase

data structurewhich is often used in the programming/algorithmdesign literature. A “data structure for

storing entity X” could include a struct, or an array, or several structs and arrays. Also, it might

refer to additional aspects, e.g. an array in which you store data in some specific order is a different data

structure from an array in which you store data without sorting, or in which you store data according

to some different order. The term structure, on the other hand, refers essentially to just the construct

struct of C++ and similar constructs in other languages.

EXERCISES

1. Define a struct for storing dates. Define a function which checks whether a given date is valid,

i.e. the month is in the range 1 to 12, and the day is a valid number depending upon the month and

the year. Do the same using a member function.

2. Write a function which returns a disk having two given points as the endpoints of a diameter.

Assume the definition of the Disk structure given in Section 17.1.

3. What is the output when the following code is executed?

struct foo{double x,y;};

double f(foo &f1, foo *f2, foo f3){

double res = (f1.x - f2->x) * (f3.y - f2->y);

f1.x = 20;

f2->x = 30;

f3.x = 40;

return res;

}

int main(){

foo p = {0,0}, q = {3,4}, r = {4,3};

double s = f(p, &q, r);

cout << s <<’ ’<<p.x<<’ ’<<q.x<<’ ’<<r.x<<endl;

}

4. Define a struct for storing complex numbers. Define member functions for arithmetic on

complex numbers.

5. Define a structure for representing axis parallel rectangles, i.e. rectangles whose sides are parallel

to the axes. An axis parallel rectangle can be represented by the coordinates of the diagonally

opposite points.Write a member function that takes a rectangle (axis parallel) as the first argument

and a point as the second argument, and determines whether the point lies inside the rectangle.
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Write a member function which takes a rectangle and double values dx,dy and returns a

rectangle shifted by dx,dy in the x and y directions respectively.

6. Assuming the definition of the structure Point as given in Section 17.1, define a function

Point sectionPoint(Point p1, Point p1, double ratio);

sectionPoint should return a Point on the line segment joining points p1 and p2 and

dividing the line segment in the ratio ratio to 1.

7. Define a function

Point centroid(Point p1, Point p2, Point p3);

This is expected to return the centroid of the triangle whose vertices are the points p1, p2 and

p3. For this, you should note that the x, y coordinates of the centroid are simply the averages of

the x, y coordinates of the vertices. Alternatively, you can also use the sectionPoint function

defined above: the centroid divides any median in the ratio 2:1, with the larger distance on the

side of the vertex.

8. Write a program to answer queries about ancestry. Your program should read in a file that contains

lines giving the name of a person (single word) followed by the name of the father (single word).

Assume that there are at most 100 lines, i.e. 200 names. After that, your program should receive

a name from the keyboard, and print all ancestors of the person, in the order father, grandfather,

great grandfather, and so on as known. Assume for simplicity, that all individuals have unique

names.

Adapt the ideas from Section 17.1.5.



CHAPTER18
Object-oriented Programming:
Classes

In the last chapter, we advocated defining a structure type for each kind of entity that our program

deals with. We gave examples of structure types, Book to hold information about books, Queue to

hold information about queues, V3 to hold information about three-dimensional vectors. Each structure

was designed with a fairly clear idea about how it will be used. For example, consider the Queue. We

expect that a Queue object will be created, and we will set the data members nWaiting, front to

0. Subsequently, the functions insert and remove will be called to insert and remove elements

as needed. We also expect that the data members will not be independently modified, i.e. if q is

an object of type Queue, you will not write something like q.nWaiting = 50;. The member

q.nWaiting will change, but this will happen only as a part of the execution of the functions

insert or remove. As designers of a structure, it is perhaps desirable if we clearly state how we

expect the structure to be used, and perhaps also prohibit inappropriate uses. This is the next idea in

Object oriented programming: not only do we represent entities using structures, but we try, as much

as possible to ensure that the structure will be used only in the manner we expect. In this chapter, we

will see how C++ supports this goal.

The situation is actually quite similar to how electrical devices are designed. For example, a

television comes with a control panel on the front (or a remote control) which helps you to control it. If

you wish to change the channel or increase the volume, you press the appropriate buttons provided for

that purpose. You do not need to open the backside and manipulate any electrical component directly!

In a similar manner, the users of the Queue structure should be given an interface (like the control

panel) which tells them the functions usingwhich they can use the structure. Anything else, they should

not be allowed to do. Users of Queue should be concerned only with the interface just as the users

of television sets need only know how to use the control panel. The users of television sets need not

know what is inside the box; similarly, the users of Queue need not know precisely how the functions

provided do their job, so long as they do what they promise. We discussed similar ideas in the contract

model for designing functions (Section 9.3).

C++ indeed allows designers to build structures which users must access only through a carefully

chosen set of functions (the interface), and whose internal details such as data members are hidden.

In fact, C++ allows structure designers glorious control over the entire life cycle of structure
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variables. Designers can precisely control how their structure variables will be (a) created, (b) used

in assignments, (c) used with different operators, (d) passed to functions, (e) returned from functions,

(f) and finally destroyed when not needed. As we have seen in the previous chapter, some default

mechanisms are already provided for all of (a), (b), (d), (e), (f). However, in C++, it is possible to

customize, i.e. override the default mechanisms by mechanisms of your choice. We will see all this

shortly.

We said earlier that the notion of structures was inherited into C++ from the language C. However

this feature: the ability to customize is a new feature provided in C++. In fact, the notion of member

functions was also not present in the C language. To emphasize the new features, the term class was

coined by the C++ designers. However, the terms structure and class are both valid in C++ and are

nearly synonymous, except for a minor but suggestive difference which we will discuss in Section 18.7.

18.1 CONSTRUCTORS

A constructor is a special member function that you can write in order to make it easier to initialize,

or even automate the initialization of a structure. We will show two examples before discussing how

constructors work in general.

struct Queue{

int nWaiting, front, elements[QUEUESIZE];

Queue(){ // constructor begins

front = nWaiting = 0;

} // constructor ends

}

The above code defines the structure Queue and a constructor member function for it. Given this

definition, suppose we write

Queue q1, q2;

in the main program. It turns out that this statement will not only allocate memory for q1, q2, but

also initializeq1.front, q1.nWaiting, q2.front and q2.nWaiting all to 0! As you can see,

this is very convenient because we will never use a Queue without first setting the members front

and nWaiting to 0. Given the above constructor, we don’t have to worry about forgetting to initialize

the members.

Before we explain how constructors work, another basic motivation behind constructors should

be noted: as much as possible, outside of a structure definition, we should access only the member

functions, and not refer to the data members directly. This is because functions are defined carefully

by the designer having considered the proper ways of manipulating the structure. So it is best to not

directly access the data members. If data members are not to be accessed outside the definition, then

the only way they can be initialized is using a function. A constructor is meant to be such a function.

In our next example, we show two constructors for our class V3 and their use.

struct V3{

double x,y,z;

V3(double p, double q, double r){ // constructor 1

x = p;

y = q;

z = r;
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}

V3(){ // constructor 2

x = y = z = 0;

}

// description of other member functions omitted.

};

int main(){

V3 vec1(1.0,2.0,3.0);

V3 vec2;

}

The first statement in the main program will create a variable vec1 of type V3, with its x,y,z

members set to 1.0, 2.0, 3.0 respectively. The second statement will create a variable vec2 of type V3

with its members set to 0, 0, 0. As you might guess, the initialization of the two variables has somehow

happened using our two constructors respectively. We discuss the precise mechanism of all this next.

In general, a constructor is specified as a member function of the same name as the structure type.

Further, there is no return type. Here is the general form.

structure-type (parameter1-type parameter1,

parameter2-type parameter2, ...){ body }

You can specify as many constructors as you want, so long as the list of parameter types are different

for each constructor.

Whenever a variable of type structure-type is defined in the program, memory is allocated

for the variable, and then an appropriate constructor gets called on the created variable to initialize

it. Which constructor gets called depends upon whether the name of the variable in the definition is

followed by a list of arguments. If there is an argument list, then a constructor with a matching list

of parameters is selected. Thus, in case of our definition of vec1 above, there is a list with 3 double

arguments. Hence, constructor 1 is selected. If no argument list is given following the variable name,

then a constructor call will be made with no arguments, and so a constructor which can be called

without arguments is selected. In the definition of q1,q2 and vec2 above, there is no argument

list, and hence the constructor taking no arguments (constructor 2 in case of vec2) is selected for

initializing.

Next the selected constructor is called on the variable to be initialized, using arguments as

appropriate. In other words, the variable to be initialized serves as the receiver for the call. This call

executes like any member function call, as described in Section 17.5. Specifically, an activation frame

is created and the argument values are copied to the parameters. Then the body of the constructor is

executed, with the receiver being the variable to be initialized.

Let us now see what happens for the statement V3 vec1(1.0,2.0,3.0); in our program

above. As we said, this would cause constructor 1 to be called on vec1 using the arguments 1.0,

2.0, 3.0. Thus, in the execution an activation frame is created and the argument values, 1.0, 2.0, 3.0 are

copied to the corresponding formal parameters p,q,r. Then the body of constructor 1 starts execution.

The first statement of the body, x = p; sets the x member of the receiver, vec1, to the value of the

parameter p. Similarly, the members y and z are set to the values q and r respectively. After this

the constructor call ends. Thus, at the end, vec1 will have its members x,y,z set to 1.0, 2.0, 3.0

respectively. The statement V3 vec2; is executed similarly. It causes the second constructor to be
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invoked on vec2. As you can see, it will set all 3 members to 0. Similarly, for the initialization of

q1,q2 earlier.

Note that if you want the constructor without arguments to be called, you must not supply any list of

arguments; it is not correct to supply an empty argument list. This is because V3 vec2(); is not the

same as V3 vec2;. The former means something quite different: it declares vec2 to be a function

that takes no arguments and returns a result of type V3, as we discussed in Section 11.2.1.

If one structure is nested inside another, then the constructor executes slightly differently. This and

other nuances are discussed in Section 18.1.4.

18.1.1 Calling the Constructor Explicitly

It is often useful to create temporary objects of a given class without bothering to give them names.

This is done by writing an expression of the following general form:

structure-type (argument1, argument2, ...)

We will say this is an explicit constructor call. An explicit constructor call looks like a function call,

however, a structure-type appears instead of a function name. The expression is evaluated

as follows. First, a temporary object of type structure-type is created. Then a constructor of

structure-type of selected, whose parameter list matches the (argument1, argument2,

...). Then the constructor is called on the temporary object using the given arguments. The resulting

object is the value of the expression.

As an example, if we have the expression V3(5,6,7) in our code, it would evaluate to a temporary

V3 object, in which the members have the values 5, 6, 7.

Using an explicit constructor call, we can write the sum member function of Section 17.5 more

compactly as follows.

struct V3{

...members and constructors 1 and 2...

V3 sum (V3 b){

return V3(x+b.x, y+b.y, z+b.z); // explicit constructor call

}

}

18.1.2 Default Values to Parameters

Parameters to constructors can also be given default values. For example, we could have bundled our

two constructors for V3 into a single constructor by writing

V3(double p=0, double q=0, double r=0){

x = p;

y = q;

z = r;

}

Now you could call the constructor with either no argument, or up to three arguments—parameters

corresponding to arguments that have not been given will get the default values, in this case 0. Note

that if you include our new constructor in the definition, you cannot include any of the constructors we

gave earlier. Say you specified the new bundled constructor and also constructor 2. Then a call V3()
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would be ambiguous, it would not be clear whether to execute the body of constructor 2, or the body

of the new constructor in which all 3 parameters are initialized to their specified defaults.

18.1.3 “Default” Constructor

We have said that C++ supplies a constructor, if no constructor is given in the definition of a struct.

This constructor takes no arguments, and its body is empty. Such a constructor is called a default

constructor. Actually, the term is used more generally: it has come to mean a constructor that can be

called with no arguments, even if such a constructor has been explicitly defined by the programmer.

Thus, for V3 our constructor 2 is a default constructor. Likewise, the bundled constructor defined above

would also be a default constructor.

A default constructor is needed if you wish to define arrays of a structure, because each element of

the array will be constructed only using the default constructor.

Note that C++ does not supply a default constructor if you give any constructor whatsoever. So if

you define a non-default constructor (i.e. a constructor which must take at least one argument), then

the structure would not have a default constructor. Thus, you would not be able to create arrays of that

structure.

The default constructor is useful also when we nest a structure inside another. We discuss this next.

18.1.4 Constructors of Nested Structures

Suppose a structure X has other structures Y,Z,... as members. Then during the call to a constructor

for X, the constructors of Y,Z,... are called before the body of the constructor of X is executed. This

happens recursively, i.e. if Y in turn has members which are structures.

This rule sounds reasonable, but applying it can sometimes be tricky. Consider the Point and

Disk classes as follows.

struct Point{

double x,y;

Point(double p, double q){x=p; y=q;}

};

struct Disk{

Point center;

double radius;

};

Consider what happens when we execute

Disk c;

As discussed above, the default constructor for Disk will be called. Since we did not supply a

constructor, C++ will create one for us. Note, however, that this constructor must first construct all the

members of Disk. To accomplish this, the constructor created by C++ will call default constructors of

all the members as well. So in our case, the C++ constructed constructor for Disk will call the default

constructor for Point. But the constructor of our class Point takes two arguments, and hence is

not a default constructor. Further, because a constructor is given for Point C++ will not create any

constructors for Point. Thus, writing Disk c; as above would be a compiler error!

This problem can be solved using initialization lists.
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18.1.5 Initialization Lists

When a Point member is created while constructing a Disk object, we must somehow indicate that

a two argument constructor must be used. We can do this if we write a constructor for Disk. Here is

one possible way.

struct Disk{

Point center;

double radius;

Disk(double x, double y, double r) : center(Point(x,y)), radius(r)

{

// empty body

}

};

The text following the : to the opening brace of the body in the above code is an initilization list.

The initialization list of a constructor says how the data members in the receiver should be constructed

before the execution of the constructor itself can begin.

Thus, in this case, the code says that center should be constructed using the constructor call

Point(x,y), where x,y are from the parameter list of the Disk constructor. Similarly the member

radius of the Disk being constructed is assigned the value r. In general, the initialization list

consists of comma separated items of the form

member-name(initializing-value)

This will cause themember member-name to be initialized directly usinginitializing-value.

The initializingvalue can be an expression involving the parameters of the constructor. If the initializing

value calls a constructor, then instead of writing out the call, just the comma separated arguments could

be given. In our Disk constructor, the initialization of center happens by calling the constructor

Point. Thus, the initialization list can be shortened as:

center(x,y), radius(r)

Note that in our example, all the work got done in using the initialization lists, so the body is empty.

Note that we could choose to initialize only some of the members using the initialization list and

initialize the others in the body, if we wish.1

18.1.6 Constant Members

Sometimes we wish to create structures in which the members are set at the time of the initialization,

but not changed subsequently. This write-once strategy of programming is very comfortable: it is easier

to reason about a program if you know that the values once given do not change.

If we want our Point structure to have this property, then we would write it as follows.

struct Point{

const double x,y;

Point(double x1, double y1) : x(x1), y(y1)

1Whenever possible you should perform initialization through initialization lists, because it is likely faster.
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{} // empty body

}

Notice that we have given values to members x,y using initialization lists. Thus, the members will

be assigned values when the structure is created. Later on, the values cannot be changed; indeed, the

compiler will flag an error if you write a statement such as p.x = 5.0; where p is of type Point.

18.2 THE COPY CONSTRUCTOR

C++ allows you to specify how structures are copied when passed to functions by value (Section 9.1.1,

and how they can be returned from functions. The model for this is as follows. For every structure, C++

defines by default a so-called copy constructor. The copy constructor is used for copying the value of a

structure that is being passed by value to a function, and also to copy back the value if a function returns

a structure. The default copy constructor merely copies each data member of the source structure to the

corresponding member of the destination.

As you have probably guessed, you can yourself redefine the copy constructor to do what you

wish. A constructor which takes a single parameter of type reference to the structure type, or constant

reference to the structure type is considered to be a copy constructor. If you define such a constructor,

that will be used for passing arguments by value and returning values, instead of the automatically

generated copy constructor.2

Below, we show a copy constructor for our Queue structure.

struct Queue{

int front, nWaiting, elements[QUEUESIZE];

Queue(){ // ordinary constructor;

front = nWaiting = 0;

}

Queue(const Queue &source): // copy constructor

front(source.front), nWaiting(source.nWaiting){

for(int i=front, j = 0; j<nWaiting; j++){

elements[i] = source.elements[i];

i = (i + 1) % QUEUESIZE;

}

}

... members insert and remove...

};

As you can see, the above implementation of the constructor does not copy the entire member

elements, but only the relevant portion of it. Clearly, this is more efficient than copying the entire

structure.

The main use of the copy constructor will arise in connection with dynamic memory allocation. We

will see this in Section 21.3.6. Also see Section 18.8.1.

2Note that the source structure whose copy is to be mademust be passed by reference! If it is passed by value, it would have to
be copied, which would require a call to the copy constructor, and so on..
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18.3 DESTRUCTORS

We know that a variable is destroyed when control leaves the block in which the variable is defined. By

default, destruction of a variable simply means freeing the memory used for the variable. However, we

might wish to take other actions besides freeing up the memory. For this we may specify a destructor

member function. If a variable of type T is being destroyed, then the destructor for T is called on the

variable, and only then the memory of the variable is freed. The destructor for struct T is denoted as ˜T,

and is a special member function that takes no arguments and has no return type. Here is an example.

struct Queue{

... other member definitions as before ..

~Queue(){

if(nWaiting > 0)

cout <<"Warning: Non-empty Queue being destroyed.\n";

}

};

int main(){

Queue q;

{

Queue q2;

q2.insert(5);

}

}

Anytime a Queue type variable is destroyed, the function ˜Queue will be automatically called. This

will print a warning if a queue containing elements is being destroyed—presumably you might expect

that a queue should be destroyed only after all elements in it have been processed.

In the above main program, when control exits the inner block, the variable q2 will be destroyed.

This will cause the destructor to be automatically called on q2. Since q2 will not be then empty, the

message will be printed. Just before the program terminates, the variable q will get destroyed. This will

also cause the destructor to be called, on q. Since q will then be empty, this will not cause a message

to be printed.

Note that usually, it is an error to call the destructor explicitly. It will be called automatically

whenever a variable is to be destroyed. For now we know only one way a variable can be destroyed:

when control leaves a block. In Section 21.1, we will see another way in which variables can be

destroyed.

In Section 21.3.5, the more common use of destructors is described. Also see Section 18.8.1.

18.4 OVERLOADING OPERATORS

Consider the struct V3 that we defined in Section 17.4 for representing three-dimensional vectors. In

mathematics, it is natural to add two vectors, the result of which is a third vector, whose components

are the sums of the respective components of the first two vectors. To get the sum of two vectors, we

defined the member function sum in Section 17.4. However, it might be more natural to get the sum of

vectors by just using the addition operator. In other words, suppose v,w are vectors, i.e. variables of

type V3. Wouldn’t it be nice if we could write v+w which would have the same effect as v.sum(w)?
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This is indeed possible. In this section, we see how it can be done. For this we first need to

understand how C++ interprets expressions involving operators such as +.

If @ is an infix operator, i.e. an operator that is customarily written between the operands as in

x @ y

then C++ considers the above expression to be equivalent to

x . operator@ ( y )

This is merely a call to the member function named operator@, invoked on the object x, with y as

the argument. If such a member function is present, then the expression will be accordingly evaluated!

Note that operator is a reserved word.

Here is how you could define the operators + and * to work with our struct V3.

struct V3{

// members and constructors as defined earlier

V3 operator+ (const V3 &b) const{

return V3(x + b.x, y+b.y, z+b.z);

}

V3 operator* (double t) const{

return V3(x*t, y*t, z*t);

}

};

Because of the first definition, we can add two V3 objects to produce a new V3 object, identical to

what our member sum would have produced. The second definition allows us to multiply a V3 object

by a double, exactly mimicking the behaviour of the member function scale. Thus, using these

definitions, we can write a much nicer looking main program:

int main(){

V3 u,a,s;

double t;

cin >> u.x >> u.y >> u.z >> a.x >> a.y >> a.z >> t;

s = u*t + a*t*t*0.5;

cout << s.length() << endl;

}

In this, we have assumed that the member function length is also defined as in Section 17.5.

We note that this ability to define operator action on structures should be used with care. Because of

our familiarity of mathematics, the interpretation of several operators is very firmly fixed in our minds.

If we define operators recklessly, inconsistent with our intuition, it is likely to produce code which will

be confusing. Indeed it is recommended that arithmetic operators be redefined only for mathematical

quantities, where the operators are used in a similar manner in mathematics. Our definition of + and

* are consistent with this recommendation in that the notion of adding mathematical vectors and

multiplying a mathematical vector by a number are very standard.

When we define an operator action for a structure, we are said to be overloading the operator. The

following binary operators can be overloaded.
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+ - * / % ^ & | < > == != <= >= << >> && ||

= += -= *= /= %= ^= &= |= <<= >>= []

We will see an example for the operator = in Section 18.5, and for the operator [] in Section 21.3.7.

In C++, function calls can also be considered operators! Indeed, C++ treats a function call

f(a1,a2,...an)

as equivalent to

f . operator() (a1, a2, ..., an)

Thus, if f happens to be a struct, for which the member function operator() is defined, then it

will get called! In other words, you treat struct instances just like functions and “call” them if you

wish. The struct instances which can be called are often termed function objects. We will see an

example of this in Section 22.3.1.

For overloading unary operators, see Appendix C.3.

18.5 OVERLOADING ASSIGNMENT

The assignment operator is already defined for structures: each member of the right-hand-side structure

is copied to the corresponding member of the left-hand-side structure. But you can change that if you

wish.

Here is how you might override the default definition of = for our structure Queue.

struct Queue{

.. other members as before ..

Queue & operator=(const Queue& rhs){

front = rhs.front;

nWaiting = rhs.nWaiting;

for(int i = front, j=0; j<nWaiting; j++){

elements[i] = rhs.elements[i];

i = (i + 1) % QUEUESIZE;

}

return *this;

}

};

We do a member-by-member copy, except that we don’t copy the entire elements array but just that

part of it which is in use. Just as we did for the copy constructor of Queue. At the end the function

returns a reference to the current object on which the assignment is invoked, i.e. the left-hand side of

the assignment as the value of the assignment expression (Section 3.2.6). Thus, we can write multiple

assignments in the same statement if we wish, i.e. of the form q1 = q2 = q3;. Notice by the way

that our code works correctly even for self-assignment, i.e. even if someone writes q = q;.

Like the copy constructor, the main motivation for overloading assignment will become clear when

we consider dynamic memory allocation, in Section 21.3.4.
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18.6 ACCESS CONTROL

Finally, we consider the last step in designing a product: packaging it so that only the control panel

shows on the outside and the internal circuitry is hidden.

C++ provides a simple way to hide members. The designer of a structure may designate each

member of the structure as either private, public, or protected. Private members can be

accessed only inside the member functions of the class, and are not accessible outside the class

definition (but also see Section 18.11.2). Public members, on the other hand, are accessible from

everywhere. In other words, they can be referred to inside the class definition as needed, but also

outside of it. We will explain protectedmembers later.

To specify access, we divide the members in the class into groups, and before each group place the

labels public:, private: or protected: as wewant themembers in the group to be considered.

You may use as many groups as you wish. For example, we may define the structure queue as

struct Queue{

private:

int front, nWaiting, elements[QUEUESIZE];

public:

Queue(){...}

bool insert(int value){...}

bool remove(int &value){...}

};

In this, we have made the data members private, and the function members public. Thus, if we wrote

q.nWaiting = 7 outside the definition, say in the main program, the compiler would flag it as an

error. Because the constructor and the functionsinsert and remove are public, outside the definition

of Queue we can only use those.

Making the data members private is a very common idea. Typically, a carefully chosen set of

function members is made public.

18.6.1 Accessor and Mutator Functions

Sometimes some data members are directly useful outside of an object. In such cases, it is considered

appropriate to make them private, and allow access to them by defining accessor and mutator

functions.

struct Point{

private:

double x, y;

public:

double getx(){return x;} // accessor function

void setx(double v){x = v;} // mutator function

double gety(){return y;} // accessor function

void sety(double v){y = v;} // mutator function

}

With this definition, we could access and modify the coordinates of a point, even though the

corresponding data members are private.
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Note, however, that the above strategy has an advantage as compared to making the members x,y

public. Suppose that tomorrow we decide to represent a point using its polar coordinates, say using

members r and theta. Then we can still retain the member functions defined above, but only change

the bodies appropriately. For example, the functiongetx would now have to return r*cos(theta).

We would have to make changes to the Point definition, however, we may not need to change the

code that uses Point, since the user code does not directly access the data members.

18.6.2 Prohibiting Certain Operations

Note that if we define a copy constructor or an assignment operator with either public, private or

protected access control, C++ will not generate the default versions for these. If we make any of

these operators private, then it will be equivalent to saying that they cannot be used at all outside

the structure definition. Thus, if we make the assignment operator private, then effectively we are

forbidding assignment for the structure. If we make the copy constructor private, thenwe are effectively

saying that the structure cannot be passed to a function by value, and also cannot be returned from a

function.

In the case of the class Queue, there might be some reason to forbid the assignment as well as

passing by value. This is because intuitively we might think: an element can only be in one queue, if

we make a copy we are perhaps inviting errors. Note that even if we make the copy constructor private,

the object can still be passed to functions, but only by reference.

18.7 CLASSES

A structure as we have defined it, except for a minor difference, is more commonly known in C++ as

a class.

The small difference between the two is as follows. In a structure, all members are considered public

by default, i.e. a member that is in a group that is not preceded by an access specifier is considered

public. In a class, all members are considered private by default. Thus, you might write

class Queue{

int front, nWaiting, elements[QUEUESIZE];

public:

Queue(){...}

bool insert(int value){...}

bool remove(int &value){...}

...

};

This would make members front, nWaiting, elements private even though they are not

preceded by a private: label.

It is more common to use the term object to denote instances of a class.

In addition to the features considered in this chapter, there are a number of other features in

classes/structures, the most notable of them being inheritance, which we will consider in the following

chapters.
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18.8 SOME CLASSES YOU HAVE ALREADY USED, ALMOST

We should point out that you have already used classes without knowing it.

18.8.1 Simplecpp Graphics

By now you have probably realized that our graphics commands (Chapter 5 and elsewhere) are built

using classes. Indeed, the names Turtle, Rectangle, Polygon, Line are all names of classes.

The commands to create create corresponding objects on the canvas were merely corresponding

constructor calls. The various operationswe have described on the graphics objects are calls on member

functions.

You can perhaps guess how the ability to write our own constructors etc. helps in developing a

graphics library. When we execute a statement such as

Turtle t;

not only must we create a variable, but we must also draw the turtle on the screen. This drawing

operation can be done inside the Turtle constructor! Similarly, when a graphics object is destroyed,

the screen must be redrawn to remove that object from view. This is done as a part of the destructor!

In general, there are a number of book-keeping operations needed when dealing with graphics objects,

the code for these can be conveniently placed in the constructors, copy constructors, destructors, and

other appropriate member functions.

Simplecpp contains an additional class, Position, that can be useful. A position merely contains

a pair of numbers, typically coordinates, which can be accessed using the getX and getY member

functions. The member functions getStart and getEnd on a line object will return its starting

point and ending point as Position objects. Thus if L is a line, then L.getStart().getX()

will return the x coordinate of the starting position of L.

18.8.2 Standard Input and Output

Yes, cin and cout are objects, respectively of class istream and ostream. But you can have

other objects of these classes too, as we see next.

18.9 CLASSES FOR FILE I/O

Your program can read and write files in a manner very similar to how it uses cin, cout. Special

classes have been provided for this purpose. To access these classes you need to include the header file

<fstream>.

To read from a file input.txt, you must first create an object of class ifstream, by writing

something like

ifstream myinfile("input.txt");

As you can see, this is a constructor call with the argument "input.txt". The argument associates

the object myinfile with the file input.txt which must be present in the current working

directory. As you might guess, the constructor argument need not be a constant character string. For

example, you could read the name (including the full path if appropriate) into a character array and

then give that as the argument. The file name could also be given in a string object, which will be

discussed in Section 22.1.
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The class ifstream is a subclass of the class istream. What this really means will be discussed

in Chapter 25. For now, this just means that ifstream objects behave like istream objects such as

cin. Thus, after myinfile is created, you can write statements such as myinfile >> n; which

will cause a whitespace delimited value to be read from the file associated with myinfile into the

variable n. Note that just like cin, myinfile will also become NULL if there was an error in reading

or if the stream has ended. Thus, you can check for these conditions as in Section 13.6.2.

In a similar manner, you can write

ofstream myoutstream("output.txt");

which will create an object myoutstream, of class ofstream. The object will be associated with a

file output.txt which will get created in the current directory. The class ofstream is a subclass

of ostream, and hence you can treat myoutstream just like cout. Thus you can write values into

the associated file using statements such as myoutstream << n;.

Here is a program which takes the first 10 values from a file squares.txt which is expected

to be present in your current directory, and copies them to a file squarecopy.txt, which will get

created.

#include <simplecpp>

#include <fstream>

int main(){

ifstream infile("squares.txt");

ofstream outfile("squarecopy.txt");

repeat(10){

int val;

infile >> val;

outfile << val << endl;

cout << val << endl;

}

}

The values are also printed out on cout which means they will also appear on the screen (unless you

redirect standard out during execution). Notice that we have chosen to enter an end of line after each

value, while printing to outfile as well as cout.

When opening a file for output, you can choose to append to an existing file. For this you just need

to give an additional argument ios::app to the constructor.

18.10 HEADER AND IMPLEMENTATION FILES

Quite often, a class (or struct) will be developed independently of the program that uses it, possibly

by a different programmer. Thus, we need a protocol by which the code that defines the class can be

accessed by code in other files. Following our discussion of functions, it is customary to organize each

class C into two files: C.h and C.cpp.

First, some important terms. It is customary to say that the body of each member-function provides

an implementation of the member function. In fact, the bodies of all member functions together are
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said to constitute an implementation of the class itself. When the implementation is given as a part

of the class definition, it is said to be given in-line. However, when classes are large and developed

independently, it is more customary to put the definition of a class C without the implementation, into

the file C.h, the so called header file. The implementation is put into the file C.cpp, using some

special syntax. If there are any non-member functions closely related to a class, their declarations can

also be put in C.h, and definitions in C.cpp.

Consider the struct V3 that we have been discussing all along. We will show example files V3.h

and V3.cpp for it. We will make V3 be a class, and declare the data members x,y,z as private, as is

customary. The file V3.h could be as follows.

class V3{

private:

double x, y, z;

public:

V3(double p=0, double q=0, double r=0);

V3 operator+(V3 const &w) const;

V3 operator*(double t) const;

double length() const;

};

Note that the default values of the parameters must be specified in the member function declarations,

as shown above.

We next show the implementation file V3.cpp, which defines the member functions. A definition

of a member function f appearing outside the declaration of a class C is identical to the definition had

it appeared in-line, except that the name of the function is specified as C::f. The constructor for class

C will appear as C::C, without a return type.

#include <simplecpp>

#include "V3.h"

V3::V3(double p, double q, double r){ // constructor

x = p; y = q; z = r;

}

// member functions

V3 V3::operator+(V3 const &w) const {

return V3(x+w.x, y+w.y, z+w.z); }

V3 V3::operator*(double t) const { return V3(x*t, y*t, z*t); }

double V3::length() const { return sqrt(x*x+y*y+z*z); }

It is acceptable if some of the implementations are placed in line in the header file. Typically, small

member functions are left in-line in the header file, while the large member functions are moved to the

implementation file.

Header guards (Section 11.2.5) can also be used as needed.
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18.10.1 Separate Compilation

We can now separately compile the implementation file, and produce, for the class V3, the object

module V3.o, just as in Section 11.2.3. This module, and the header file, must be given to any

programmer who uses the class V3. Suppose a program using V3 is contained in the file user.cpp,

then it must include the file V3.h. The program can now be compiled by specifying

s++ user.cpp V3.o

Other source/object files needed for the program must also be mentioned on the command line, of

course.

18.10.2 Remarks

The general ideas and motivations behind splitting a class into a header file and an implementation

file are as for functions. In whichever file the class is used, the header file must be included, because

the class must be defined. The implementation file or its object module is needed for generating an

executable.

18.11 MISCELLANEOUS FEATURES

18.11.1 Another Overloading Mechanism

We can overload an operator @ also by defining operator@ as an ordinary (non member) function

on appropriate operand types. This is sometimes useful.

We will give two examples of this. We discussed above how you can define the multiplication

between a V3 object and a double. Suppose, for convenience we also wish to allow the double

to be specified as the left-hand operand, and the V3 object as the right hand operand. In other words,

we would like to be able to write 3*v as well as v*3. This can be done by defining the following

(non-member) function.

V3 operator* (double factor, const V3 & v){

return v*factor;

}

Here, we are assuming that member function operator* is already defined earlier, so v*factor

will be evaluated as per that.

For another example, suppose next that we wish to be able to print V3 objects on cout or to files

using <<. For this, we just need to overload the operator << to handle V3 objects as a right hand side

operand.

ostream & operator<< (ostream & ost, V3 &v){

ost << v.x <<’ ’<< v.y <<’ ’<< v.z <<’ ’;

return ost;

}

This will enable you to write expressions such as ost << v, where ost is of type ostream, and v of

type V3. Note that cout as well as any output stream you create as in Section 18.9 has type ostream.

So the above definition will enable you to print on all such streams. You may wonder how a file stream

can have type ofstream as well as ostream, this will get explained in Chapter 25.
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On executing ost << v, the members v.x, v.y, v.zwill get printed on the output stream ost

separated by single space characters. The function returns ost so that you can chain output operations,

i.e. so that you can write ost << v1 << v2; (Section 13.6.3). Note that throughout we are passing

ostream objects by reference, because ostream objects do not allow copying (Section 18.6.2).

In this, we are assuming that the members x,y,z are public. Shortly we consider what to do if the

members are not public.

Not all operators can be overloaded as ordinary functions. In particular, the assignment operator and

various compound assignment operators, the indexing operator [], the function call operator () and

the arrow operator -> can only be overloaded as member functions.

18.11.2 Friends

If you make some members of a struct (or a class) private, then they can only be accessed inside the

struct definition.

Sometimes this is too restrictive. For example, if you make data members private in struct V3,

then using what you have seen so far, you will not be able to define the << operator as we did in

Section 18.11.1. This is because the function operator << in Section 18.11.1 refers to the members

x,y,z which we made private.

C++ allows you to overcome this difficulty. You go ahead and define the operator << function

as you wish, accessing the private members also. To enable the function operator << to access the

private members, you put a line declaring the function as a friend in the structure definition.

struct V3{

...

friend ostream & operator<< (ostream &ost, const V3 &v);

...

}

This will declare operator<< to be a friend, which means that it is allowed to access the private

members of V3. In general, the line will read

friend function-declaration

Note that this is not a function declaration; it is merely a declaration of friendship. The function must

be declared/defined separately. One possibility is to declare the function in the header file and define it

in the implementation file of the class.

The same function can be a friend of several structures, and several functions be a friend of the same

structure. In fact, you can have one structure A be a friend of another structure B. This way, the private

members of structure B can be accessed inside the definition of structure A. To do this you merely insert

the line

friend A;

inside the definition of structure B.

18.11.3 Static Data Members

Suppose you wish to keep a count of how many Point objects you created in your program.

Algorithmically, this is not difficult at all; we merely keep an integer somewhere that is initialized to

0, and then increment it when we create an object. The question is: how should this code be organized.
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First, we need to decide where to place the counter. It would seem natural that the counter be

somehow associated with the Point type. This can be accomplished using static data members, as

follows.

struct Point{

double x,y;

static int counter; // only declares

Point(){

counter++;

}

Point(double x1, double y1) : x(x1), y(y1){

counter++;

}

};

int Point::counter = 0; // actually defines

int main(){

Point a,b, c(1,2);

cout << Point::counter << endl;

}

A static data member is a variable associated with a struct type. It is declared by prefixing the

keyword static to the declaration. A static member does not appear in every object created from

the structure type, as ordinary non-static members do. Instead, there is a single copy of each static data

member, and you may consider these copies to be shared amongst all objects of the structure type.

Static members can be made private, public or protected just like non-static members.

Thus, in the example above, each object of type Point will have its own x and y members.

However, there will only be one copy of counter. Inside the definition of Point, the variable

counter can be referred to by using the name counter. If the static variable is public, then outside

the definition it can be referred to by prefixing its name by the struct name and ::. So in this

example we have used Point::counter.

There is a subtlety associated with static data members. The definition of the structure does not

actually create the static data members; a struct definition is merely expected to create a type,

without allocating any storage. Hence, we need the statement marked “actually defines” in the

code above.

If the class declaration is in a header file, then declaration of the static member must be placed in

the declaration in the header file. However the definition must go into the implementation file.

18.11.4 Static Member Functions

You can also have static member functions. For example, in the definition of Point above, we may

add the definition of the static member function resetCounter.

static void resetCounter(){ counter = 0; }

// note keyword ‘‘static’’

Static member functions can be referred to by their name inside the structure definition, and

by prefixing the structure name and :: outside the definition. Further, static member functions
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are not invoked on any instance, but they are invoked by themselves. So we can write

Point::resetCounter() in the main program if we wish to set Point::counter to 0.

Note that in non-staticmember functionswe use the names of the non-staticmembers by themselves

to refer to non-static members of the receiver, i.e. the object on which the non-static member function

is invoked. However, for a static member function, there is no receiver. Thus it is an error to refer to

non-static members by themselves in the body of a static member function.

18.11.5 Template Classes

Like functions, we can templatize classes as well. The process of defining a class template is very

similar. Here is a template version of our Queue class.

template<class T, int QUEUESIZE>

class Queue{

int front;

int nWaiting;

T elements[QUEUESIZE];

public:

Queue(){...}

bool insert(T value){...}

bool remove(T &value){...}

...

};

With this, we can create a queue into which we can store elements of any type! For example, if we wish

to have a queue q of size 100 in which to store objects of class V3, we simply define it by writing:

Queue<V3, 100> q;

This would effectively cause a Queue object to be created, withV3 appearing in its definitionwherever

the template argument T had appeared, and 100 wherever QUEUESIZE.

Note that the template for a class must be present in every source file that needs to use it. So it is

customary to place a template in an appropriate header file. A class is generated from a template only

when the template is invoked as in the line Queue<V3, 100> q; above. Thus there is no notion of

separately compiling a template.

18.12 CONCLUDING REMARKS: THE PHILOSOPHY OF OOP

This chapter concludes the introduction to Object Oriented Programming. A number of philosophically

important ideas as well as language constructs to implement those ideas were introduced. We present

a quick summary.

The first idea was that the organization of a program should reflect the relationships between the

entities that are being considered in the program. In this regard, it helps to aggregate the data related

to an entity into a single object. We considered this in Chapter 17.

As we design representations for entities, we realize that there is the possibility of using these

representations in an unsafe manner. To avoid this, OOP recommends that the user be allowed to

access the representation only through a set of carefully chosen member functions. The user should

be prohibited from directly accessing the data members in the representation. This is an extremely
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important OOP idea: encapsulating the data members so that they cannot be directly accessed. It is

implemented by enabling the designer to specify what is private and public in an object. It must be

emphasized, of course, that component design, i.e. class design, is an art. The designer must carefully

study all aspects of the entity being represented and then decide what users must be allowed to do and

what must be prohibited.

Of course, making things private and prohibiting improper use requires programming effort. You

may be tempted to avoid this and leave everything public. If your code is meant for your own, one time

use, perhaps it suffices to have no packaging: use a struct rather than a class and keep everything

public. However, good programs tend to evolve. If your program works well, you will inevitably want

to make it do more things or give it to others. So in general, it is a good idea to package your data

structures well from the very beginning. It will save effort in the long run.

Once the principle of encapsulation is accepted, the need for facilities such as constructors,

destructors, and operator overloading naturally emerges. As we saw, once we define a class, then we

will want to pass objects of the class to functions, or use them in assignments. But the designer will

want to specify the exact manner in which such operations must happen – to ensure safety as well as

convenience. Thus, C++ provides features such as constructors. The full power of such features will

become more apparent in Chapter 21.

What we have been referring to as “well packaged objects” are more formally called Abstract Data

Types. A struct or a class is a data type, but you may wonder why we use the adjective abstract.

This is because the class implementation is private and hidden from the user. The user is not supposed

to care how the implementation actually works, and is expected to work with the specification, which

is just an abstract promise given by the developer. The phrase Data Abstraction is also used to denote

this strategy of revealing only the specification and not revealing the private data members.

EXERCISES

1. We can describe a time duration by specifying three numbers: days, hours and minutes. Define a

class to represent time in this manner.

Define a member function normalize which modifies a given time duration so that the number

of minutes is less than 60, and the number hours less than 24, i.e. a duration specified as 25 hours

should be modified to become 1 day, 1 hour and 0 minutes.

Define a member function which prints out the duration on cout. Overload the + operator so that

durations can be added. The result should be a normalized duration, i.e. number of hours should

be less than 24 and number of minutes less than 60.

2. Define a class for storing polynomials. Assume that all your polynomials will have degree at most

100. Write a member function value which takes a polynomial and a real number as arguments

and evaluates the polynomial at the given real number. Overload the +,*,- operators so that

they return the sum, product and difference of polynomials. Also define a member function read

which reads in a polynomial from the keyboard. It should ask for the degree d of the polynomial,

check that d ≤ 100, and then proceed to read in the first d+ 1 coefficients from the keyboard.

Define a printmember function which causes the polynomial to be printed. Make sure that you

only print d+ 1 coefficients if the actual degree is d. Carefully decide which members will be

private and which will be public. Overload the >>, << operators so that the polynomial can be

read or printed using them.
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3. Develop a simple library-management program. At the beginning, your program should read

information about books in the library from a file into an array of suitably defined Book structures,

like the one in Section 17.1. After reading information about books, the program should allow

users to issue and return books. For this, you should provide suitable commands. When a user

issues/returns a book, the borrowerno member in Book should store the number of the user

who has borrowed the book. Define a suitable structure for holding information about users.

This information should also be read from a file at the beginning. Write functions and member

functions for doing all this as appropriate. The functions should check that the operations are valid,

e.g. a book that is already recorded as borrowed is not being borrowed without first being returned.

A command should also be provided to shut down the program. When this command is given, the

program should write the current information about books and users into respective files. It should

be possible to take these files later as inputs to the program for more library transactions.

4. Define a class for storing complex numbers. Provide 0, 1, 2 argument constructors which

respectively construct the complex number 0, a complex number with imaginary part 0 and real

part as specified by the argument, and a complex number with real and imaginary parts as specified

by the arguments. Overload the arithmetic operators to implement complex arithmetic.

5. Sometimes we don’t know the exact values of certain quantities, but only know that the value lies

in an interval, say between some numbers L and H . In such cases, we might choose to represent

the quantity by the pair of numbers L,H . In other words, we are representing each quantity by

the interval [L,H ]. If you have two quantities represented by intervals [L1, H1] and [L2, H2],
then clearly their sum must lie in the interval [L1 + L2, H1 +H2]. Thus, the last interval could

be considered to be the sum of the first two intervals. Such a representation is quite useful when

there is uncertainty in our knowledge of a quantity.

Define a class Interval which enables us to represent quantitieswhich we know lie in a certain

interval. Overload the arithmetic operators so that you can perform arithmetic on these quantities

while keeping track of the uncertainty. Be careful: although, in general, the uncertainty increases

when you perform arithmetic, if you subtract a quantity (however uncertain) from itself, you get

0 with certainty. Your implementation should deal with such possibilities properly. For this, you

will have to decide whether two references R1,R2 are in fact identical. You can do this by writing

&R1 == &R2.

6. Modify the Queue class so that it is not possible to make a copy of a Queue object, or assign to

it. Then write a main program that attempts to make a copy or an assignment. Observe that the

compiler will tell you that you are trying to perform an operation that is disallowed.

7. Define a Car class for showing a car on the screen. A car should have a polygonal body, and two

circular wheels. Add spokes to the wheels. It should be possible to construct cars and move them.

When a car moves, the wheels should rotate. Add member functions to scale the car as well.

8. Construct a class Buttonwhich can be used to create an on-screen button, say a rectangle, which

can be clicked. Clearly, you should be able to construct buttons at whatever positions on the screen,

with whatever text on them. Also, buttons should have amember functionclickedPwhich takes

an int denoting the position of a click, as obtained from getClick(), and determines whether

the click position is inside the button. What other member functions might be useful for buttons?



CHAPTER19
A Project: Cosmological
Simulation

It could perhaps be said that the ultimate goal of science is to predict the future. Scientists seek to

discover scientific laws so that given complete knowledge of the world at this instant, the laws will

enable you to say what each object will do in the next instant. And the next instant after that. And so

on. Predicting what will happen to the entire world is still very difficult, partly because we do not yet

know all laws governing all objects in the world. Even if we knew all the laws, predictingwhat happens

to a large system is difficult because of the enormous number of computations involved. However, for

many systems of interest, we can very well predict how they will behave in different circumstances.

For example, we understand the physics of collisions and of the materials used in a car well enough to

predict how badly a car will be damaged if it collides against a barrier of certain strength at a certain

velocity. The term simulation is often used to denote this kind of predictive activity. Indeed, many

products are built today only after their designs are simulated on a computer to see how they hold up

under different conditions.

In this chapter and chapters 27 and 28, we will build a number of simulations. The simulation in

this chapter is cosmological. Suppose we know the state of the stars in a galaxy at this instant. Can

we say where they will be after a million years? Astronomers routinely do simulations to answer such

questions. We will examine one natural idea for doing such simulations, and then examine the flaws in

that idea. We will then see an improved idea, which will still be quite naive as compared to the ideas

used in professional programs. We will code up this idea. We will use our graphics machinery to show

the simulation on the screen.

19.1 MATHEMATICS OF COSMOLOGICAL SIMULATION

In some sense, simulating a galaxy is rather simple. For the most part, heavenly bodies interact with

each other using just Newton’s laws of motion and gravitation.1 As you might recall, the law of

gravitation states that, two masses ma, mb separated by a distance d attract each other with a force

1We will stick to the non-relativistic laws for simplicity.
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of magnitude

Gmamb
d2

whereG is the gravitational constant. The vector form of this is also important. If ra, rb are the vectors

denoting the positions of the masses (with respect to some origin), then the distance between themasses

is d = |rb − ra|. The force on mass ma is in the direction rb − ra, and hence we may write the force
on massma in vector form as

Gmamb(rb − ra)
|rb − ra|3 (19.1)

If planets collide, then presumably more complex laws have to be brought in, which might have to

deal with how their chemical constituents react. But a substantial part of the simulation only concerns

how the heavenly bodies move under the effect of the gravitational force. It is worth noting that such

simulations have contributed a great deal to our understanding of how the universe might have been

created and, in general, about cosmological phenomenon. Also, the ideas used in the simulations are

very general, and will apply in simulating other (more earthly!) physical phenomenon involving fluid

flow, stresses and strains, circuits and so on.

Our system, then, consists of a set of heavenly bodies, which we will refer to as stars for simplicity.

The state of the system will simply consist of the positions and the velocities of the stars. Suppose we

know the initial state, i.e. for each star i we know its initial position ri and velocity vi (both vectors).

Suppose we want to know the values after some time ∆. Letting r�i, v
�
i be the values after time ∆, we

may write

r�i = ri + vi ·∆ (19.2)

v�i = vi + ai ·∆ (19.3)

where vi is the average velocity (vector) of the ith particle during the interval [t0, t0 + ∆] and ai
is the average acceleration (vector) during the interval. We do not know the average velocities and

accelerations, and indeed, it is not easy to compute these quantities. However, the key observation,

attributed to Euler, is that if the interval size ∆ is small, then we may assume with little error that the

average velocity remains unchanged during the interval for the purpose of calculating the position at

the end of the interval. Euler’s observation is similar to the idea we used in Section 8.2 to integrate

f(x) = 1/x. Assuming that the average velocity is simply the velocity at the beginning we may write

r�i = ri + vi∆ (19.4)

Now, we can easily calculate the new position r�i for each particle, because we know ri, vi. Euler’s
observation also applies to the acceleration: if the interval is small, then the acceleration does not

change much during it. Thus, the average acceleration can be assumed to be the acceleration at the

beginning, and we may write

v�i = vi + ai∆ (19.5)

We are not given ai explicitly, but we have all the data to calculate it. The acceleration of the i th

star is simply the net force on it divided by its mass mi. The net force is obtained by adding up the

gravitational force on star i due to all other stars j �= i. But we know how to calculate the force exerted
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1. Read in the state at time 0: For all stars i read in the position, velocity, mass into

ri, vi, mi.

2. Read in ∆, T .

3. For step s = 1 to T/∆:

// ri, vi respectively contain the position, velocity of ith star at time (s− 1)∆.

a. Calculate acceleration at time (s− 1)∆:

For all stars i: Set ai using Eq. (19.6).

b. Calculate position at time s∆:

For all stars i: Set r�i using Eq. (19.4).
c. Calculate velocity at time s∆:

For all stars i: Set v�i using Eq. (19.5).
d. Prepare for next step: Set ri = r�i, vi = v�i for all i
//ri, vi now contain position, velocity of ith star at time s∆.

4. end for

5. For all stars i: Print ri.

Fig. 19.1 First-order Euler algorithm

by one star on another. Thus, we may calculate the acceleration (vector) of the ith star as

ai =
Fi
mi

=
�
j �=i

Gmj(rj − ri)
|rj − ri|3 (19.6)

Thus, we have above a procedure by which we can get the state of all stars at time t + ∆ given their

state at time t. Our answers are approximate, but the approximation is likely to be good if ∆ is small.

Picking a good ∆ is tricky; we will assume that we are somehow given a value for it. Suppose now

that we know the state of our system at time t = 0, and we want the state at time t = T . To do this, we

merely run T/∆ steps of our basic procedure! In particular, we use our basic procedure to calculate

the state at time ∆ given the state at time 0. Then we use the state computed for time ∆ as the input

to our basic procedure to get the state for time 2∆, and so on. This overall idea is shown in detail in

Figure 19.1. In this ri, vi, r
�
i should be thought of as array elements, i.e. ri is the ith element of an

array r.

It turns out that this method can be extremely slow, because the stepsize ∆ must be taken very small

to ensure that the errors are small. However, there are many variations on the method which have better

running time and high accuracy.

19.2 THE LEAPFROG ALGORITHM

The main source of error in the above algorithm is that we used the velocity and the acceleration at the

beginning of each interval instead of the average velocity and average acceleration, as was required in

equations (19.2) and (19.3). If the intervals are very small, then we can say that the velocity is nearly

constant in the interval, and then the velocity at the beginning is a good estimate of the average value.

This is the so called first order estimate. However, if we can get better estimates of the average, then

we will be able to use larger intervals. So instead of considering the first order estimate, we consider
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the so called second-order estimate: we consider the velocity to be varying linearly with time in the

interval. For linear variation, the average value of the velocity is precisely the value at the midpoint of

the interval! So we could use that value in equation (19.2), rather than the value at the beginning of the

interval. This argument applies to acceleration too: if the acceleration increases linearly as a function

of time during a certain interval, then the average acceleration is the acceleration at the midpoint of the

interval.

The algorithm presented in Figure 19.2 uses second-order estimates for velocity and acceleration as

described above to get better accuracy. As in the basic algorithm (Figure 19.1), at the beginning of the

execution we read in the initial state, and then ∆ and T . As in the basic algorithm, we calculate the

positions of the stars at times ∆, 2∆, . . . , T . As in the basic algorithm, in the sth iteration of the loop

we move the stars from their positions at time (s− 1)∆ to time their positions at time s∆. To calculate

how much a star moves during this interval, we need to know its average velocity during the interval.

As discussed above, we approximate this using the velocity at the middle of the interval, i.e. at time

s∆− ∆
2 . Thus in the sth iteration, we must have available the velocities at time s∆ − ∆

2 .

For the very first iteration, i.e. s = 1, we thus need the velocity at time ∆2 . For this in step 3, we first
calculate ai the acceleration for star i at time 0. Next, in step 4, we use a first order estimate (just this

once!) to calculate the velocity at time ∆
2
. Step 4 stores this value, vi + ai

∆
2
, in variable ṽi. Thus, at

the beginning of the first iteration s = 1, we indeed satisfy the invariant: ri holds the position at time

(s− 1)∆ = 0 and ṽi holds the velocity at time s∆ − ∆
2 = ∆

2 .

Assuming the invariant, in step 5(a) we have all that is needed to calculate the position of the stars at

step s∆. To prepare for the next iteration, we must calculate the velocity at time s∆ + ∆
2 , knowing the

1. Read in the state at time 0:

For all stars i read in the position, velocity and mass into ri, vi, mi.

2. Read in∆, T .

3. Calculate acceleration at time 0:

For all stars i: set ai using Eq. (19.6).

4. Calculate the velocity at time ∆2 :

For all stars i: set ṽi = vi + ai
∆
2

5. For step s = 1 to T/∆:

// ri, ṽi contain the position, velocity of star i at time (s− 1)∆, s∆− ∆
2
.

a. Calculate position at time s∆:

For all stars i: set ri = ri + ṽi∆ // ri updated to position at time s−∆.

b. Calculate acceleration at time s∆:

For all stars i: set ai using Eq. (19.6).

c. Calculate velocity at time s∆ + ∆
2
:

For all stars i: set ṽi = ṽi + ai∆ // ṽi updated to velocity at time s∆ + ∆
2 .

// ri, ṽi now contains position, velocity of ith star at time s∆, s∆ + ∆
2
.

6. end for

7. For all stars i: Print ri.

Fig. 19.2 The leapfrog algorithm
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velocity at time s∆− ∆
2 . The interval considered for the velocity calculation thus starts at s∆ − ∆

2 ,

and ends at s∆ + ∆
2 . Thus, we need the average acceleration during this interval. We approximate this

by the acceleration at the midpoint s∆ of this interval. But note that in step 5(a) we have calculated the

positions of the stars at time s∆. Thus, we can calculate the accelerations at time s∆ using Eq. (19.6).

This is done in step 5(b). Step 5(c) can thus complete the velocity calculation.

This new algorithm uses the second order estimate (value at midpoint) in all calculations execpt in

step 3. So overall the accuracy goes up considerably. You can verify this experimentally, as asked in

the exercises. The proof of this is, however, outside the scope of the book.

You should now be able to see why this algorithm is called the leapfrog algorithm. The calculation

of positions and velocities is at interleaved time instants, i.e. position calculations leapfrog over the

velocity calculations in time.

19.3 OVERVIEW OF THE PROGRAM

Let us first clearly write down the specifications. Our input will be positions and velocities of a certain

set of stars at time 0. We will also be given a number T . Our goal will be to find the positions and

velocities of the stars at time T . We must also show the trajectories traced by the stars between time 0

and time T .

The first question in writing the program is of course how to represent the different entities in

the program. The main entity in the program is a star, of course. A star has several attributes, its

velocity and position, and its mass. The mass is simply a floating point number. However, the velocity

and position both have three components, corresponding to each spatial dimension. As suggested in

chapters 17 and 18, we will define a class Star to represent stars. Further, we can use our class V3

from Section 18.10 to represent positions, velocities, and accelerations. The trajectory of a star is also

to be shown on the screen. So we will include a graphics object, say a Circle, in each star object.

When we compute the new position of a star, we shouldmove theCircle associated with the star. The

star class will need a constructor and some member functions to implement the position and velocity

updates.

19.3.1 Main Program

The program follows the outline of Figure 19.2. It reads in T,∆ and then star-related data and creates

the star objects. Then the force at time 0 is calculated (step 3 of Figure 19.2), using a function

calculate_net_force. Then the velocity at time ∆2 is calculated. For this, the Star class has a

member function vStep, as will be seen later. Then the main loop is entered. Step 5(a) of Figure 19.2

is implemented by another call to calculate_net_force, step 5(b) by calls to member function

rStep in Star, and step 5(c) by calls to member function vStep. The member function rStep

performs the animation task, i.e. moving the image of the star on the screen.

int main(){

initCanvas("N body problem",800,800);

double T, delta; cin >> T >> delta;

int n; cin >> n;

Star stars[n]; read_star_data(stars, n);
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V3 forces[n];

calculate_net_force(n,stars,forces);

for(int i=0; i<n; i++) stars[i].vStep(delta/2, forces[i]);

for(float t=0; t<T; t+=delta){

for(int i=0; i<n; i++) stars[i].rStep(delta);

calculate_net_force(n,stars,forces);

for(int i=0; i<n; i++) stars[i].vStep(delta, forces[i]);

}

getClick();

}

Reading in data about the stars is fairly straightforward.

void read_star_data(Star stars[], int n){

float mass, vx, vy, vz, x,y,z;

for(int i=0; i<n; i++){

cin >> mass >> x >> y >> z >> vx >> vy >> vz;

stars[i].init(mass, V3(x,y,z), V3(vx,vy,vz));

}

}

Forces that stars exert on each other are calculated as follows.

void calculate_net_force(int n, Star stars[], V3 forces[]){

for(int i=0; i<n; i++) forces[i]=V3(0,0,0);

for(int i=0; i<n-1; i++){

for(int j=i+1; j<n; j++){

V3 f = stars[i].forceOf(stars[j]); // force on i due to j

forces[i] = forces[i] + f;

forces[j] = forces[j] - f;

}

}

}

Note that the force due to star i on star j has the same magnitude as the force due to star j on star i,

but opposite direction. So we calculate the force just once, and add it to the total force on star i, and

subtract it from the total force on star j. Notice how the V3 class makes it easy to write this function.

These functions can be placed in a file, main.cpp. This file should also include the header files

V3.h of the preceding chapter2 and star.h which we will see next.

2 As used here, the class V3 of the preceding chapter must be augmented to handle subtraction, i.e. must also have a member
function operator-. Accessor functions getx(), gety()which return the x, y components are also needed.We leave
these as easy exercises.
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19.4 THE CLASS Star

The header file star.h is as follows.

class Star {

Circle image;

double mass;

V3 r,v; // position, velocity

public:

Star(){};

void init(double m, V3 position, V3 velocity);

void vStep(double dT, V3 f);

void rStep(double dT);

V3 forceOf(Star &s);

};

The data member image, of class Circle, will be used for producing the graphical animation. The

x,y coordinates of the position (stored in member r) will be used as the position of each body on the

screen; you may consider that we are viewing the cosmological system in the z-direction, so that only

the x, y coordinates are important. The member image will be made to put down its pen, so that the

orbit will be traced on the screen, as you will see in the member function init, in the implementation

file star.cpp below.

void Star::init(double m, V3 r1, V3 v1){

mass = m;

r = r1;

v=v1;

image.reset(r.getx(),r.gety(),15);

image.setColor(COLOR("red"));

image.setFill(true);

image.penDown();

}

void Star::vStep(double dT, V3 f){

v = v + f*(dT/mass);

}

void Star::rStep(double dT){

V3 d = v*dT;

image.move(d.getx(),d.gety());

r = r + d;

}

V3 Star::forceOf(Star &s){

V3 R = s.r - r;

return R * (mass * s.mass / pow(R.length(),3));

}

This should be self-explanatory.
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Fig. 19.3 Three stars in a figure-of-8 orbit

19.5 COMPILING AND EXECUTION

The files can be compiled by executing

s++ main.cpp star.cpp V3.o

where we assume thatV3.h and V3.o from Section 18.10, suitablymodified, are in the same directory

as main.cpp, star.cpp and star.h.

To execute the program, we need a file containing the data for stars. A sample file 3stars.txt is

as follows.

3000

10

3

100 497.00436 375.691247 0 0.466203685 0.43236573 0

100 400 400 0 -0.932407370 -0.86473146 0

100 302.99564 424.308753 0 0.466203685 0.43236573 0

This is meant to simulate a three star system for 1000 steps, with ∆ = 10. The initial positions and

velocities of the stars are given as above. Note that they have been carefully calculated. You can

simulate this system by typing:

./a.out <3stars.txt

The stars will trace an interesting figure-of-8 orbit on which they will chase each other. Figure 19.3

gives a snapshot. The stars have their pen down, and hence the orbits traced are also visible.

19.6 CONCLUDING REMARKS

There are a number of noteworthy ideas presented in this chapter.

The general notion of simulating systems of interest is very important. Given the initial state of a

system, and the governing laws, we can in principle determine the next states. However, as we saw, the

governing laws can be applied in more or less sophisticated ways, leading to more or less error in the

result. Texts on numerical analysis will indicate how the error can be estimated, and will also give even

more sophisticated ideas than what we presented.

It is worth pointing out an important similarity between cosmological simulation and numerical

integration (Section 8.2). The key point is to note that the displacement of any body is really the

integral of the velocity of the body! Thus cosmological simulation is really integration, except that

the function to be integrated (the velocity at each step) is discovered as you go along. Thus, you may

consider the leapfrog algorithm to be analogous to the midpoint rule considered in Section 8.2.

Our program also illustrates two important program design ideas. First is the idea of building classes

to represent the entities important in the program. Clearly, the important entities in our program were
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the stars: so we built a class to represent them. But as we noted, there were many vector like entities in

the problem: so it was useful to build the class V3 as well. Finally, note that we did not write one long

main program: we identified important steps in the main program and used functions to implement

those steps. The functions, even if used just once, more clearly indicated the computational structure

of our algorithm.

Finally, a small technical point should also be noted. We needed to create an array of Star objects.

As we indicated in Section 18.1.3, when an array of objects is created, each object can be initialised

only using the constructor which takes no arguments. Hence, we had a Star() constructor. But this

leaves open the question of how to place data in each object. For this, a common idiom is to provide

an init member function, as we did. We call the init function on each object in the array and set

its contents. This idiom will come in useful whenever you need arrays of objects in your programs.

EXERCISES

1. Code up the simple algorithm (Figure 19.1) and compare it to the leapfrog algorithm. Use it to

simulate a system consisting of a planet orbiting a star. For small enough velocities, the planet will

travel around the star for both methods. You will observe, however, that for the simple algorithm,

the orbit will keep diverging for any stepsize, which is clearly erroneous. For the same stepsize,

you should be able to observe that the leapfrog orbit does not diverge, or diverges much less.

2. Consider an elastic weightless string of length L tied at both ends to fixed pegs. The string has n

marks on it which divide it into n + 1 pieces, each of length L
n+1 . A mass m is attached at each

mark. Each part of the string has Hooke’s constant k, i.e. if the part is stretched by distance ∆, a

tension−k∆ is produced. Suppose one of the masses is gradually moved to some position (x, y),

and held there. As a result of this motion, other masses also move to new positions. Now the mass

which was held fixed is released. Simulate the motion assuming there is no gravity.

3. Consider a sequence of cars travelling down a single lane road. In a simplistic model, suppose that

the cars have the same maximum speed V , and acceleration a and deceleration d. Suppose each car

attempts to ensure that it can come to a halt even if the car ahead of it were to stop instantaneously

(e.g. because of an accident). Further, assume that the driver is aware of this distance, and slows

down if the distance ahead reduces, and speeds up if the distance increases, but only till the speed

reaches V . Build a simulation of a convoy of cars which travels along the road on which there

are signals present. When a signal turns red, the leading car in the convoy brakes so that it comes

to a halt at the signal. Of course, the drivers do not react immediately, but have some response

time. Note though that usually it is very easy to see if the car ahead is slowing down, because the

tail red light comes on. Incorporate such details into your simulation. Show an animation of the

simulation using our graphics commands.



CHAPTER20
Graphics Events and Frames

You already know that the function getClick causes the program to wait for the user to click on the

graphics canvas, and then returns a representation of the coordinates of the click position. However,

it is possible to interact in a richer manner with the graphics canvas. It is possible for your program

to wait for the mouse to be dragged, or a key to be pressed, or similar such events. After the event

happens, you can decide what action to take. Using the features that we will discuss in this chapter,

you should be able to write very interactive and easy to use programs, and even games.

We begin by describing how you can wait for events, and find out exactly what event has

happened. We also discuss the notion of frames. This will be useful for giving the appearance of

simultaneous movement when there are many moving objects on the canvas. After that we will sketch

two applications.

20.1 EVENTS

By event, we will mean one of the following:

1. A button on the mouse being pressed.

2. A button on the mouse being released.

3. The mouse being dragged. By this is meant the movement of the mouse with some button pressed.

4. A key being pressed on the keyboard.

If the user performs any of these actions with the graphics canvas active (often called “having focus”),

then it is considered an event. Note that the graphics canvas becomes active if you move the mouse

over it and press any of the mouse keys, and remains active so long as you keep the mouse within the

canvas.

20.1.1 Event Objects

Objects of class XEvent are used to hold information about events. They are passed by reference to

functions that place information in them about events that have happened; and also to functions that

extract information placed in them earlier.

We will not describe the class XEvent fully, but will discuss only the relevant details below as

needed.
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20.1.2 Waiting for Events

The function nextEvent has the signature

void nextEvent(XEvent &event);

A nextEvent call causes the program to wait for an event to happen. In this, it is like the statement

cin >> ..., whereupon the program waits for input to be given. When the function returns, the

argument event will contain information about the event that has taken place. The program can

extract this information and accordingly take actions.

20.1.3 Checking for Events

The function checkEvent has the signature

bool checkEvent(XEvent &event);

A call to checkEvent returns true if an event has happened since the last call to nextEvent. The

details of that event appear in event. If no event has taken place since the last call to nextEvent, or

if all events that occurred have already been reported through checkEevent, then the function just

returns false.

It is worth emphasizing that the checkEvent function does not wait, unlike nextEvent.

20.1.4 Mouse Button-press Events

The function mouseButtonPressEvent when called on an event event returns true iff the

event is of mouse-button-press type. Once you know that the event is of mouse-button-press type , you

can get additional information about it using themembers event.xbutton.button, which returns

an integer denoting which button was pressed, and event.xbutton.x and event.xbutton.y

which give the coordinates of the mouse at the time the button was pressed. Here is an example.

XEvent event;

nextEvent(event);

if(mouseButtonPressEvent(event)){

cout <<"Mouse button "<< event.xbutton.button

<<" pressed, at position ("<< event.xbutton.x <<

<<", "<< event.xbutton.y << endl;

}

This code will cause the program to wait until some event happens, and then if the event was the

pressing of some mouse button, it will print which button was pressed (i.e. 1, 2 or 3 to denote left,

middle, right) and at what canvas coordinates.

20.1.5 Mouse Button Release Events

The function mouseButtonReleaseEvent when called on an event event returns true iff the

event is of type mouse-button-release. The member event.xbutton.button tells which button

was released, and event.xbutton.x and event.xbutton.y give the coordinates of the mouse

at the time the button was released.
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20.1.6 Mouse-drag Events

The function mouseDragEvent when called on an event event returns true iff the event

was a mouse drag, i.e. the user dragged the mouse after pressing a mouse button. The members

event.xmotion.x and event.xmotion.y give the coordinates of the drag position.

20.1.7 Key-press Events

The function keyPressEvent when called on an event event returns true iff the event was

the pressing of a key of the keyboard. The function charFromEvent applied to the event returns

the char denoting the key that was pressed. The members event.xkey.x and event.xkey.y

respectively give the coordinates of the position at which the key was pressed.

Key-press events from some keyboards may not be detected if the “caps lock” or “Num lock”modes

are on. Be sure to release these modes first.

20.2 FRAMES

As per what we have described so far, when you execute commands to move graphics objects or

somehow change their state, the operations actually happen consecutively, in the order you execute

them. But you may wish to create the illusion of simultaneous change. For this the notion of frames is

provided. You can issue the command

beginFrame();

which will cause all changes to the screen to be temporarily witheld. If you move an object or change

its colour and so on, this will not be shown on the screen. However, when you subsequently issue the

command

endFrame();

the current state of all the graphics objects will be shown. Thus, all changes made to the objects between

a beginFrame() and the following endFrame() will appear to happen at once.

If you only have a few objects on screen, then it may not be necessary to use beginFrame and

endFrame; the updates will appear rapidly and may seem simultaneous. However, if many objects on

the screen are changing, framing will ensure that the changes appear simultaneously. A good example

of the use of frames appears in Section 26.4.

20.3 A DRAWING PROGRAM

Given below is a simple programwhich enables you to draw on the canvas. Amouse-button-press event

signals the beginning of a line being drawn. Subsequent mouse-drag events show to what position the

the user intends to draw. So we simply draw a line from the last point where the mouse was pressed

or dragged. For this, we have used the imprintLine function rather than create a line and calling

imprint on it. In our experience, the latter is too slow—the line drawing lags behind the cursor

movement. If the user presses the escape key at any time, the program ends.

int main(){

initCanvas("Draw using the mouse", 800,500);

const char escapekey = ’\33’;
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XEvent event;

short lastx=0, lasty=0;

while(1){

nextEvent(event);

if(mouseButtonPressEvent(event)){

lastx = event.xmotion.x; lasty = event.xmotion.y;

}

if(mouseDragEvent(event)){

imprintLine(lastx, lasty, event.xbutton.x, event.xbutton.y);

lastx = event.xbutton.x; lasty = event.xbutton.y;

}

if(keyPressEvent(event)){

if(charFromEvent(event) == escapekey) break;

}

}

}

20.4 A RUDIMENTARY Snake GAME

Perhaps you are familiar with a game called Snake, variations of which are available on many

computers and even mobile phones.

The essence of the game is to control a snake that keeps on moving on the screen. Typically, the goal

is to steer the snake towards food/prizes, and prevent it from hitting obstacles. There may be variations

in which the tail of the snake grows as it eats food. Typically, the snake is represented as a sequence

of segments (vertebrae!). The head, or segment 0 has a movement direction, North, East, South or

West, and it keeps moving one step in that direction per time step. The subsequent segments follow,

i.e. segment imoves to the position of segment i− 1, for i ≥ 1. The player can change the direction of

the head movement to a new direction, say by typing ’n’, ’e’, ’s’, or ’w’.

Here we will develop the core logic of the game, i.e. show the snake on the screen and enable the

player to change its direction. The addition of prizes, etc., are left for the exercises.

20.4.1 Specification

We have more or less described the specifications above. Perhaps it is important to stress that the snake

must keep on moving if the user does nothing, and change direction only when the user types the

appropriate keys.

20.4.2 Classes

The snake is obviously an important entity in this game, and so we should represent it using a Snake

class.

The snake will have a body which consists of several segments. For simplicity, we will have

each segment appear as a circle, So it is natural to have a member array named body consisting

of Circles. We will use a constant length to denote the number of segments in the body. We also

need to remember the current direction of motion; for this, we use data members dx, dy which give

the current stepsize by which the snake’s head moves in x and y directions.
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#include <simplecpp>

const int gridsep = 20, xinit = 30, yinit = 20, length = 10,

npts = 40;

struct Snake{

Circle body[length];

int headindex; // which body element is the head of the snake

int dx,dy; // current direction of motion.

Snake(){ // head at (xinit,yinit) in the coarse grid.

headindex = 0;

for(int i=0; i<length; i++)

body[i].reset((xinit+0.5+i)*gridsep,

(yinit+0.5)*gridsep, gridsep*0.5);

dx = -gridsep; dy = 0;

}

void move(char command){

// find direction of motion.

if(command == ’w’) { dx = -gridsep; dy = 0;}

else if (command == ’n’){ dx = 0; dy = -gridsep;}

else if (command == ’e’){ dx = gridsep; dy = 0;}

else if (command == ’s’){ dx = 0; dy = gridsep;}

// else old direction, do not change dx, dy.

int tailindex = (headindex +length - 1) % length;

// current tail

body[tailindex] = body[headindex];

// current tail now on top of head

body[tailindex].move(dx, dy);

headindex = tailindex; // current tail element becomes head

}

};

int main(){

initCanvas("Snake", gridsep*npts, gridsep*npts);

Snake s;

while(true){

XEvent event;

if(checkEvent(event) && keyPressEvent(event)){

char c = charFromEvent(event);

s.move(c);

}

else s.move(’\0’);

// NULL = continue to move in previous direction.

wait(0.1);

}

}

Fig. 20.1 The Snake class and the main program
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We explain the movement of the snake with an example. Suppose the snake body has 10 segments,

numbered 0 through 9, head to tail. Suppose further that currently, body[i] represents the ith

segment of the snake’s body. In one step, the head of the snake, segment 0, moves by dx, dy. The

snake segments 1 through 9 must move into positions earlier occupied by segments 0 through 8. Thus,

we must move body[1] through body[9] into positions earlier occupied by body[0] through

body[8]. But since the segments are visually identical, we don’t really need actual movement.

We can simply stipulate that from now on body[0] through body[8] will represent snake body

segments 1 through 9. The element body[9] which used to represent the tail, will start representing

the head of the snake, and it will be moved to the position where we were about to move body[0].

Thus we just need to maintain an extra member headindex which holds the index of the body

element currently representing the snake head. In particular, body[(headindex+i) % length]

will currently represent snake body segment i.

Given this, implementing the snake movement is straightforward.

1. Determine the values for dx, dy as per the direction typed by the user. For example, if the user

types ’w’, then the snake must move in the negative x-direction alone. Further, movement must

happen a distance gridsep at a time. Thus, we must set dx = -gridsep and dy = 0. If the

user does not type one of ’n’, ’e’, ’s’, ’w’, then we should not modify dx, dy.

2. The tail segment should move to where the head should have moved. The tail is at index

tailindex = (headindex + length - 1) % length

of body. So we first move body[tailindex] to the same position as body[headindex].

This is achieved simply by copying body[tailindex] = body[headindex]. Then we

move body[tailindex] by the calculated valuex dx, dy.

3. Finally, we set headindex = tailindex, because the element which was representing the

tail earlier now represents the head.

This is implemented in the move member function of the code for the class snake is given in

Figure 20.1.

20.4.3 The Main Program

The main program sets up the canvas and the snake. It then goes into an endless loop in which it

checks if the user has typed anything in order to change the direction of the snake. This is done using

the function checkEvent. If the user has indeed typed a key, then its value is extracted using the

charFromEvent function. This key is then used as an argument to the member function move of

the snake, so that the movement happens in the required direction. If the user did not type any key, then

we call move with ’\0’, i.e. the NULL character. In this case, and also in the case the user typed in
an invalid character, the snake merely continues to move in the direction it was moving earlier.

20.5 CONCLUDING REMARKS

We have discussed the simplest model using which events can be handled. There are more elaborate

“event-driven” models for handling events which we will not discuss.

But even our simple model can be used to build interesting applications, having features that you

might have seen in professional programs and games. Here is an example. In the drawing program, we

used “dragging” to draw a line. Another use of “dragging” is to drag objects around on the screen. In
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particular, the user can move the cursor to an object, then press a mouse button, drag the mouse, and

finally release the button (drop). This should cause the object to get selected and moved and dropped

at the new position.

EXERCISES

1. Modify the drawing program discussed in the chapter so that it “beautifies” what the user draws.

Specifically, if the user draws something that nearly looks like a straight line, you should draw it

as a straight line. Or a circular arc. Try to come up with some protocols so that the user can draw

beautiful pictures without too much effort.

2. Modify the drawing program of the previous exercise so that it does not imprint the lines on the

canvas, but merely shows them by creating suitable line and circle objects. Keep track of these

objects in suitable arrays. Further, implement the convention that dragging after pressing the left

mouse button causes drawing. On the other hand, if the mouse is dragged after the middle button

is pressed, it should cause the object on which the mouse currently is to be moved. The movement

should stop when the dragging stops.

3. Add prizes/food/walls to the snake game. Also make the snake’s length increase by one every time

it eats food. Also assign a score to the player depending upon how much food/prizes the snake

has eaten, and even just how long the snake has stayed around. Display the score suitably.
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Representing Variable-length
Entities

Suppose we wish to design a class to represent students. Quite likely, we will need to have a member

in it to store the name of the student. How large a character array should we allocate for it? Names can

be very small, say “Om Puri”, or very long, say “Chakravarti Rajgopalachari”. As per what you have

learned so far, we will have to allocate an array to store the longest possible name. But this means most

of the time much of the array will be unused. We may also need to have a member which stores the

grades obtained by the student. We will again be forced to allocate an array long enough to store the

grades of the maximum possible number of courses any student could take. A similar situation arises in

many other applications. For example, suppose we wish to keep track of polygons drawn on the screen.

We will need to allocate a two-dimensional array for this. How large should the dimensions be? We

will need to make a guess as to how many polygons there might be, and also the number of sides in the

largest of them. This will inevitably lead to wastage of memory.

How to avoid such wastage of memory is the topic of this chapter. We cannot directly use

structures/classes/arrays the way we have described them so far. This is because the size of a

class/structure/array must be fixed once for all, typically without the knowledge of the size of the

entities to be stored in it. The most convenient way of representing entities whose size is not known

when we write the program is to use the so called heap memory allocation. This is also referred to as

dynamicmemory allocation.Using this heap memory, we will construct classes which can store entities

of different, and even variable sizes, without wasting memory. As an example, we will build a String

class using which you will be able to store and manipulate variable length text strings efficiently and

conveniently. We will discuss the implementation in great detail, so that you can build other similar

classes if necessary.

The Standard Library of C++ contains several classes which use heap memory. In fact one of the

classes in the library is a string class, which can be considered to be an advanced version of the

String class we discuss in this chapter. We will study the Standard Library including the string

class in Chapter 22. Chapter 22 will not discuss how these classes are implemented; however, the

implementation of the String class in this chapter will provide some clues.
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21.1 THE HEAP MEMORY

So far we have considered two ways of creating variables. Most commonly, variables are created

in the activation frame of some function. In addition, we also have global variables (whose use is

discouraged), which are created outside of activation frames, before the program even begins execution.

C++ provides a third mechanism for creating variables. A certain region of memory is reserved for

this purpose. This region is called the heap memory, or just the heap. You can request memory from

the heap by using the operator new. Suppose T is a data type such that each variable of type T requires

s bytes of storage. Then the expression

new call-to-a-constructor-for-T

causes a variable of type T, or in other words s bytes of memory, to be allocated in the heap. The

specified constructor is called on the variable to initialize it. Further, the expression itself evaluates to

the address of the allocated variable. To use this allocated variable, you must save the address—this

you can do typically by storing it in a variable of type pointer to T.

Thus, for the Book type as defined in Section 17.1, we could write:

Book *p;

p = new Book;

The first statement declares p to be of type pointer to Book. The second statement requests allocation

of memory from the heap for storing a Book variable. Here, the default constructor will be used, since

no arguments are specified. The address of the allocated memory is then placed in p. We could of

course have done this in a single statement if we wish, by writing Book *p = new Book;. The

memory allocated can be used by dereferencing the pointer p, i.e. we may write

p->price = 335.00;

p->accessionno = 12345;

to set the price and accession number respectively. You can continue to use the allocated variable as

long as you wish, using all the usual operations possible on variables of that type. If at some point you

decide you no longer need the variable, you can return the memory back to the heap. For this, you use

the delete operator as follows.

delete p;

Here, pmust be a pointer to the variable whose memory you are returning back to the heap. The delete

operation causes the destructor (Section 18.3) to be called on the variable pointed to by p, and after

that the memory of the variable is returned back to the heap. The benefit of returning the memory back

to the heap is that it might get reallocated to you on a subsequent request.

A second form of the new operator allows us to allocate an array in the heap. Again, if T is a type

then we may write

T *q = new T[n];

which will allocate memory in the heap for an array of n elements of type T, and the address of the

allocated array would be placed in q. We can access elements of the array starting at q by using the

[] operator as discussed in Section 14.3.4. Thus, we could write q[i] where i must be between 0

and n - 1 (both inclusive). Note that T could be a fundamental data type, or a class. If it is a class,
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each object T[i] would be constructed by calling the default constructor. You must ensure that such

a constructor is available.

The delete[] operator is used to return the memory of an array allocated earlier on the heap. So

for q as defined earlier, we may write

delete[] q;

This will cause the destructor to be called on each element of the array, and then the memory will be

returned to the heap.

Note that once we execute delete (or delete[]) it is incorrect to access the corresponding

address; it is almost akin to entering a house we have sold just because we know its address and

perhaps have a key to it. It does not belong to us! Someone else might have moved in there, i.e. the

allocator might have allocated that memory for another request. Accessing such a pointer is said to

cause a dangling pointer error.

We used the term allocator above. By this, we mean the set of (internal) functions and associated

data that C++ maintains to manage heap memory. These are the functions that get called (behind the

scenes, so to say) when you ask for memory using the new operator and release memory using the

delete operator.

21.1.1 Accessibility and Lifetime

A variable allocated in the activation frame, as also a global variable, has a name, and we can access

the variable using the name. A variable allocated on the heap does not have a name, but is accessible

only through its address! So it is vital that we do not lose the address. Thus, we must not overwrite

the pointer containing the address of a variable allocated in the heap, unless we stored the address in

some other pointer as well. If we do overwrite a pointer containing the address of a heap variable, and

there is no other copy, then we can no longer access the memory area which has been given to us. The

memory area has now become completely useless. This is technically called a memory leak. We must

not let memory leak, we must instead return it back to the heap when not needed, using the delete

operator so that it can be reused!

Heap-allocated variables are also different in the way they get destroyed. Variables allocated in

activation frames are destroyed automatically when control exits the block in which they are created.

Hence, such variables are often called automatic variables. Heap-allocated variables on the other hand,

can only be destroyed by executing an explicit delete operation. There is no requirement that the

delete operation be in the same block of code or even the same function body as the new operation

used for creating the variable in the first place.

21.1.2 A Worked Out Example

We work out in detail the execution of a program that allocates memory from the heap. This program is

given in Figure 21.1 (a). We will assume for sake of definiteness that the heap starts at address 24000.

When the execution starts, all the memory in the heap is available.

When the first statement, int* intptr = new int; is executed, memory to store a single

int is given from the beginning of the heap. Since an int requires 4 bytes, the 4 bytes with address

24000 to 24003 are reserved, and the address of the first of these bytes, 24000, is returned and stored in

intptr. Next, memory for an array of 3 characters is requested. For this the next 3 bytes are reserved,

starting at 24004. Thus, cptr gets the value 24004.
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int main(){

int* intptr = new int;

char* cptr = new char[3];

*intptr = 279;

cptr[0] = ’a’;

cptr[1] = ’b’;

cptr[2] = ’\0’; // ***

delete intptr;

delete[] cptr;

}

(a)

AF of main()

intptr : 24000

cptr : 24004

(b)

Heap memory

Address Content

24000

279
24001

24002

24003

24004 ’a’

24005 ’b’

24006 0

24007

24008

24009

24010

24011

24012 . . .

(c)

Fig. 21.1 (a) Program (b) Activation Frame after execution of statement *** (c) Heap area after

execution of statement ***

The following statement *intptr = 279; stores the number 279 into the allocated memory

pointed to by intptr, i.e. at address 24000. The next three statements store the character string

constant "ab" into the array pointed to by cptr. At this stage of the execution, the memory associated

with the program is in two parts: the activation frame which contains the variables intptr and cptr,

and the memory which has been allocated in the heap. Figure 21.1(b) shows the activation frame. The

heap is shown in Figure 21.1(c).

The last two statements return the allocated variables back to the heap.

21.1.3 Remarks

It should be clear how we could use the heap to solve the problem discussed at the beginning of the

chapter: defining a class to represent students. We sketch a preliminary solution here, but also see

Section 21.3.10. Our definition will be something like

class Student{

char* name;

...

}

The class itself will hold only a pointer to the name. When the length of the name to be stored is known,

we allocate an array of that size on the heap, and store its address in the member name! Thus, we will

use memory efficiently.
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In general, we can allocate just as much memory we need from the heap, when we need it, and only

when we need it. Thus, no memory need be wasted because of overallocation. Further, as soon as we

realize that a certain piece of allocated memory is not needed any longer, we can return it to the heap.

In the following chapters, we will see several problems in which heap memory comes in very handy.

21.2 ISSUES IN MANAGING HEAP MEMORY

It turns out that the heap memory is tricky to use.We have already listed the pitfalls: dangling references

and memory leaks. Experience shows that dangling references and memory leaks are responsible for

many, many programming errors. To prevent these, it seems that we need (a) a sound strategy for

managing memory, (b) a way to implement the strategy without too much effort. We discuss these

next.

Let us examine in detail how a dangling reference arises. Suppose p is a pointer in which at some

time t1 during execution we stored the address A of a variable allocated on the heap. At some later

time t2, we dereference p and attempt to access the heap-allocated variable. This access would be a

dangling reference if between t1 and t2, a delete q operation happened, where q also contained A.

Furthermore if we executed delete q we must have erroneously decided that the variable at address

A was no longer needed.

Let us also examine how memory leaks can occur. Simply put, suppose at some time t a pointer

p is the only pointer in our program that holds the address of a heap-allocated variable. We will have

a memory leak if at time t we store some other value into p. We will also have a memory leak if for

some reason p gets destroyed. This could happen if control leaves the block in which p is defined, for

example.

Based on the above observations, two different memory-management strategies suggest themselves.

No-sharing Strategy The key idea in this is to ensure that at each instant during execution all

the pointers in our program point to distinct heap variables. Assume that this holds. Let p be a pointer

to a heap variable at address A. Now we know that no other q can contain A, and hence no operation

delete q can possibly delete A. Thus, p cannot be a dangling reference and we can confidently

dereference p and access address A. We can prevent memory leaks by ensuring that we ourselves

execute delete p just before we store another value into p, or before p somehow gets destroyed.

Reference-counting Strategy We allow many pointers to point to the same heap variable, but

somehow maintain a count of how many pointers point to each heap variable. As soon as the count

drops to 0, we execute delete on that variable.

It should be clear, at least at a high level, that both the above strategies are sound, i.e. will prevent

memory leaks and dangling references.

The next question is how to implement the chosen strategy automatically. The answer is simple: we

will design classes whose member functions adhere to the chosen strategy. Thus if we only use such

member functions in our program, we will have no leaks nor dangling references.

In the rest of this chapter, we show how the no sharing strategy can be implemented while building

a class for representing text. A similar strategy has already been implemented in the standard library

classes. This is discussed in Chapter 22. As you will see, you can use the standard library classes

without knowing how they avoid dangling pointers and memory leaks. But if you are curious, the rest

of this chapter will give you clues about how the standard library classes work. It will also provide you

with a model, should you need to design similar classes.
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In Appendix G, we show how the reference-counting strategy can be implemented.

21.3 REPRESENTING TEXT

We show how to use heap allocation for representing text strings. The key idea is that the text itself

will be stored in an array which we will allocate on the heap. However, we will strive to automate the

allocation and freeing of heap memory.

The representation of text strings will be in the form of a class String. As recommended in

Chapter 18, we will design the class so that users will access String objects through a set of public

member functions, whereas the data members will be private. Our hope is that the users do not need

to even know that heap memory is being used; yet they should be able to work with text strings

conveniently and without getting dangling references or memory leaks.

To make the discussion more concrete, suppose we want an implementation using which we can

write a main program like the following.

int main(){

String a,b;

a = "pqr";

b = a; // b should also become "pqr"

String c = a + b; // should concatenate a, b.

c.print(); // should print on screen

String d[2]; // array of 2 strings

d[0] = "xyz";

d[1] = d[0] + c;

d[1].print();

}

As you can see, we want users to deal with strings as if they were fundamental data types. Thus we

want to be able to copy string literals into a variable, or the contents of one variable into another.

We would like to print strings and also use the operator +, perhaps fancifully, to concatenate strings.

Clearly, we will need memory to be allocated in many of these operations. But we will hide all this in

the implementation which the user, i.e. the programmer who writes the main program, does not need

to know.

Other operations might also be desirable, for example, we might want to pass strings to functions,

or have them be returned by functions. We will implement these as well.

21.3.1 Basic Principles

In each String object we will only have one data member, ptr, which points to the position in the

heap where the actual string is stored. We will store the string along with a terminating null character

i.e. ’\0’. This way, we will not need to store the length of the allocated region explicitly. Further, if a

String variable contains the empty string, we will set its member ptr to NULL.

No-sharing Strategy As discussed earlier, all pointers to heap variables will be made to contain

distinct addresses. In principle, if two String variables have the same value, i.e. contain the same

text, then potentially we can store a single copy of that text in the heap, and have the ptr members
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of both the variables point to that copy. This will likely save memory, but is not permitted in the

No-sharing strategy.1 Sharing is allowed in the reference counting strategy discussed in Appendix G.

Our class definition is as below. We will add the member functions as we go along. By defining

these properly we will try to create a well packaged String class which can be used safely by the

user without knowing what is inside.

class String{

char* ptr;

// will point to address in heap where actual text is stored.

public:

... member functions to be added later ...

};

21.3.2 Constructor

Initially, when we create a string variable, we want it to hold the empty string. Hence, the constructor

is as follows.

String::String(){

ptr = NULL;

}

We will maintain the invariant that ptr is either NULL or points to a variable on the heap storing the

string value.

21.3.3 The print Member Function

We next discuss the member function print. This is very simple.

void String::print(){

if(ptr != NULL) cout << ptr << endl;

else cout << "NULL" << endl;

}

Since ptr gives the address from where the string is stored, it suffices to write cout <<ptr

<<endl;. However, if ptr is NULL, then we cannot print it, instead we explicitly print out "NULL".

21.3.4 Assignments

We wish to allow two kinds of assignments: (a) storing a character string into a String variable, as

in the statement a = "pqr";, and (b) storing one String variable into another, as in the statement

b = a; in the example program given above.

We consider case (a) first. As discussed in Section 18.5, we can define a member function

operator= to specify how assignment should work. Since the right-hand side of the assignment is

to be of type char*, this member function must have a char* parameter. In the body of the function

we describe what we want to happen to execute the assignment.

1 This could be considered to be wastage of memory, but we tolerate it to simplify the implementation.



304 An Introduction to Programming through C++

String& String::operator=(const char *rhs){

delete [] ptr;

ptr = new char[length(rhs) + 1];

scopy(ptr,rhs);

return *this;

}

We give an example to see how this will work. Suppose z is of type String and say we have a

statement

z = "mno";

This statement will cause the member function operator= to execute, with the variable z being the

receiver, and the parameter rhs being the address of the text string "mno".

Clearly, the assignment should cause the text "mno" to be copied into a suitable heap address A,

and z.ptr should be set to A.

However, in general, some text, say "pqr" would already have been stored in z when the control

arrives at the assignment statement z = "mno";. Thus, z.ptr will be pointing to a heap address,

say B, storing"pqr". Because of the no-sharing principle,z.ptr can be the only pointer that contains

B. So if we overwrite z.ptr, the memory at B will leak away. To prevent this, we must first delete this

memory. This is precisely what the first statement of the code above does. After that we request memory

from the heap to store the new value, i.e. as many bytes as the number of characters in rhs plus an extra

byte to store the null character. In this, we have used the length function from Section 15.1.4. After

that we copy the text pointed to by rhs into the new region. For this we have used the function scopy

from Section 15.1.4. Finally, we return *this. This is done so as to allow multiple assignments in the

same statement (Section 18.5).

Next we consider assigning one string to another as in the statement b = a;. For this as well we

need to do something much like the above. One difference is that the right-hand side of the assignment

is a String rather than a char*. The text that is needed to be copied now comes from taking the

ptr member of the right hand side, rather than taking the right hand side itself directly. Second, we

have to be careful about self-assignments, i.e. our code should work even if someone writes b = b;.

The easiest way to handle this is to do nothing if the left-hand-side operand and the right-hand-side

operand are the same.

String& String::operator=(const String &rhs){

if(&rhs == this) return *this; // self-assignment

delete [] ptr;

ptr = new char[length(rhs.ptr) + 1];

scopy(ptr,rhs.ptr);

return *this;

}

Note that we have made a new copy of rhs.ptr, rather than just assign ptr = rhs.ptr. This is

because of our no sharing principle.
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21.3.5 Destructor

We said earlier that if a pointer holding an address of a heap allocated variable gets destroyed, we

potentially have a memory leak. Here is an example.

{

String s;

s = "pqr";

}

When control enters the block, the variables is created. This means that memory needed for a String

struct gets allocated in the current activation frame. The String struct contains just a single pointer,

and hence memory only for a single pointer is allocated. During the execution of s = "pqr";, we

will allocate memory on the heap and set s.ptr to point to it. When control leaves the block, the rule

is that every variable created inside the block is destroyed. For variables of type struct, destruction

merely means freeing up thememory allocated for the variable in the current activation frame, unless a

destructor has been defined (Section 18.3). For now, we do not have a destructor defined for String.

Thus, the memory given to object s in the current activation frame will be freed up. Nothing will be

done regarding the memory that got allocated on the heap, which s.ptr points to. Note, however, that

after control leaves the block, s.ptr will not be defined. Thus, we will no longer be able to use the

memory pointed to by s.ptr. Thus, there is a leak!

The cleanest way to solve this problem is define a destructor for String and put a delete[]

ptr operation in it. This suffices.

String::~String(){

delete[] ptr;

}

Thus, when control leaves the block discussed above, this destructor is automaticallycalled on the vari-

able s. Inside the call to the destructor, we will execute delete[] on s.ptr, thereby returning back

to the heap the memory pointed to by s.ptr. Only after the destructor finishes its execution will the

memory of the struct s in the current activation frame be released. Thus, there will be no memory leak.

Remember that the destructor call happens implicitly. So you should never explicitly call the

destructor because then it will end up being called twice, with ptr being deleted twice, which is

erroneous.

21.3.6 Copy Constructor

If we pass a String object to a function by value, the object will be copied using the copy constructor

of the String class. Likewise, the copy constuctor will be used also while returning a String

object from a function. Of course, C++ provides a default copy constructor for all classes, this makes

a member by member copy. The default copy constructor will not work properly for us. Consider the

trivial code below.

void fun(String t){

}

int main(){

String s;

s = "abc";
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fun(s);

fun(s);

}

This code will produce a runtime error! This has to do with how s gets passed to fun. Since s is being

passed by value to fun, the default copy constructor will be invoked. It will copy s.ptr to t.ptr.

Note that this immediately violates the no-sharing principle: s.ptr and t.ptr point to the same

heap allocated variable. In any case, let us see what happens as the execution continues. Variable t

will go out of scope when fun returns. Thus, the destructor will get called on it just before returning.

Notice that our destructor will execute delete[] t.ptr;. This will cause thememory used to store

"abc" to be returned back to the heap! This is clearly unacceptable, because we really expect fun

to do absolutely nothing. Note that after the first call to fun, s.ptr becomes a dangling reference

because the memory it points to is not allocated to it. Things get worse when you call fun again.

Again, s.ptr is copied to t.ptr, and again t.ptr is deleted on return. But now t.ptr points to

memory that was already returned. In other words, the delete operation is returning memory that is not

currently allocated. This signals an error and the program will halt.

The fix should be obvious. We must decide what precise behaviour we want when we pass a

String to a function or return one from a function. We intuitively think of parameter passing or

returning from a function as being similar to an assignment. So our copy constructor must mimic the

assignment behaviour we had in operator=. The code then is

String::String(const String &rhs){

ptr = new char[length(rhs.ptr)+1];

scopy(ptr,rhs.ptr);

}

The copy constructor is essentially like the assignment operator; however since the left hand side is

just being constructed, it can be simpler than an assignment operator. When assigning a String x to

String y, i.e. for y = x, we need to perform delete[] on y because what it points to will no

longer be needed. However, if y is just being constructed, then we know that its ptr member does not

point to anything yet. So a delete operation is not needed. Hence, the above code does not contain a

delete[] ptr operationwhile the assignment operator of Section 21.3.4 does. Also the assignment

operator must check for self-assignment, which is not needed here.

With the above copy constructor included, you should be able to see why the two calls to fun in

the code discussed earlier will not cause problems: at the beginning of each call some memory will

be allocated which will then be deleted at the end. Thus, there will never be the question of deleting

unallocated memory.

21.3.7 The [] Operator

We would also like to access individual characters in a string by specifying the index. You already

know from Section 14.3.4 that [] is an operator. We just have to overload it for the String class!

char& String::operator[](int i){ // returning a reference.

return ptr[i];

}
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Note that we are returning a reference to ptr[i], not the value of ptr[i]. Thus, we can use it on

the left-hand side of the assignment statement as well.

21.3.8 The Operator +

For strings a, b, we would like the result of the operation a + b to be the concatenation of a, b.

Further, the operation should not change a, b themselves.

We could write this as an ordinary function operator+ taking two String arguments; or we

could write it as a member function to be invoked on the left-hand side String, with the right hand

side being supplied as an argument. Below we choose the latter option. Clearly, the function must have

return type String.

String String::operator+(const String &rhs){

String res;

res.ptr = new char[length(ptr) + length(rhs.ptr) + 1];

scopy(res.ptr, ptr);

scopy(res.ptr, rhs.ptr, length(ptr));

return res;

}

First, we create the String variable res in which we will return the result. Its member res.ptr

must point to the concatenation which we must construct. The concatenated string will have length

equal to the sum of the lengths of the strings pointed to by the receiver and the argument rhs. We

will also need an additional byte of memory to append the NULL character to the concatenation. Thus,

the second statement allocates memory of size length(ptr) + length(rhs.ptr) + 1. Then

the text in the receiver is copied into res.ptr using the function scopy. The second scopy causes

the string at rhs.ptr to be appended to whatever is present in res. This call assumes the following

implementation of a scopy function taking three arguments.

void scopy(char destination[], const char source[], int dstart=0){

int i;

for(i=0; source[i] != ’\0’; i++)

destination[dstart+i]=source[i];

destination[dstart+i]=source[i]; // copy the ’\0’ itself

}

As you can see, this will copy the source string to the destination starting at index dstart.

The last statement returns res. To see exactly how this executes, let us consider the statement

c = a + b; of the main program. The variable res in the activation of operator+ will hold the

pointer to the concatenation just before operator+ returns. During the return, the variable res is

copied into a temporary variable in the activation frame of the caller using the copy constructor. It is

then assigned to c using the assignment operator.2

2You may think there is a lot of unnecessary copying going on. C++ compilers will typically analyze what is going on and
avoid much of it.



308 An Introduction to Programming through C++

21.3.9 Use

Figure 21.2 shows the definition of String with all the implementations in-line. We have also

included member function size which gives the number of characters in the string.

class String{

char* ptr; // will point to address in heap where actual

// text is stored.

public:

String(){ ptr = NULL; }

String(const String &rhs){

ptr = new char[length(rhs.ptr)+1];

scopy(ptr,rhs.ptr);

}

String& operator=(const char* rhs){

delete [] ptr;

ptr = new char[length(rhs) + 1];

scopy(ptr,rhs);

return *this;

}

String& operator=(const String &rhs){

delete [] ptr;

ptr = new char[length(rhs.ptr) + 1];

scopy(ptr,rhs.ptr);

return *this;

}

String operator+(const String &rhs) const {

String res;

res.ptr = new char[length(ptr) + length(rhs.ptr) + 1];

scopy(res.ptr, ptr);

scopy(res.ptr, rhs.ptr, length(ptr));

return res;

}

void print() const {

if(ptr != NULL) cout << ptr << endl;

else cout << "NULL" << endl;

}

int size() const {return length(ptr);}

char& operator[](int i) const {return ptr[i];}

};

Fig. 21.2 The complete String class
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Using this, the following function and main program calling it can now be written.

String lcase(const String &arg){

String res = arg;

for(int i=0; i<res.size(); i++)

if(res[i] >= ’A’ && res[i] <= ’Z’) res[i] += ’a’ - ’A’;

return res;

}

int main(){

String a,b;

a = "PQR";

b = a;

String c = a + b; // should concatenate a, b.

c.print(); // should print on screen

String d[2]; // array of 2 strings

d[0] = "Xyz";

d[1] = lcase(d[0] + c);

d[1].print();

d[1][2] = d[0][1];

d[1].print();

}

This will first print c, which will have the value "PQRPQR". Before the second print statement,

the program concatenates "Xyz" and "PQRPQR" and then converts it all to lower case. Thus,

"xyzpqrpqr" will get printed. After that the program sets the character at index 2 of d[1] to the

character at index 1 of d[0]. Thus, the last print statement will print "xyypqrpqr".

21.3.10 A Class to Represent Students

We return to the problem with which we began this chapter: building a class to represent students. Here

is how it can be defined.

class Student{

String name;

Student(const char* n){ name = n;}

...

}

As you can see, we just define name to be of type String. We then freely use member functions

of String inside the definition of Student. The key point is that we never need to worry

about allocating/deleting memory—all that is handled behind the scenes by the member functions

of String.
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21.4 CONCLUDING REMARKS

The heap memory is very useful in representing variable-length entities. We will see the heap and the

operators new and delete used substantially in the following chapters.

Using new and delete is tricky. So wherever possible, it is good to encapsulate the operators

inside member functions, so as to ensure that their use is automatically correct. We showed how this

can be done in a String class built to store character strings. We showed that the definition was

good enough to allow string creation, indexing into strings, concatenating strings, assigning to strings,

passing strings to functions, and returning them from functions. Effectively, using our definition, we

have an illusion that String is a fundamental data type. If you stick to the operations mentioned

above, our implementation guarantees that the objects we create will use memory efficiently, without

creating dangling pointers or memory leaks. Note that the above operations do not include creating

pointers to String objects. You could potentially get into trouble if you create String pointers. For

example, suppose you write the following.

String *ptr = new String; // Avoid this

If this is inside a block, then on exit from the block, the variable ptr will get deallocated. As a result,

the memory area it points to will leak away. So if you allocate explicitly, it is your responsibility to

delete explicitly too. Best to do neither, if possible. Indeed, in many applications, you will be able to

use our String class without even knowing that there exist heaps or pointers. Heap management will

happen behind the scenes. You are expected to sit back and enjoy the convenience, without interfering

in the memory management.

Our implementation has a shortcoming though: if two variables of type String have the same

value, we will keep two copies of the value. This can be improved upon, as discussed in Appendix G.

Many of the ideas we discussed in the implementation of the String class are applicable in

general, for other classes you may want to write. Many ideas discussed work together. For example,

experience shows that when designing classes, constructors, destructors, and copy constructors go

together: if you implement one, you very likely have to implement all three! This is often referred to

as the “rule of three” in the OOP literature.

21.4.1 Class Invariants

While designingString, we made some important decisions early on. In particular, we said that there

will be a separate copy in the heap memory of the value stored in each String object (No sharing

strategy). Such a property that the members of a class possess throughout their lifetime, is sometimes

called a class invariant. It is useful to clearly write down such invariants, as you have seen, they guide

the implementation of the class.

EXERCISES

1. Consider the following code. Identify all errors in it.

int *ptr1, *ptr2, *ptr3, *ptr4;

ptr1 = new int;

ptr3 = new int;

ptr4 = new int;

ptr2 = ptr1;
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ptr3 = ptr1;

*ptr2 = 5;

cout << *ptr2 << *ptr1 << endl;

delete ptr1;

cout << *ptr3 << *ptr4 << endl;

The possible errors are: memory leaks, dangling pointers, and referring to uninitialized variables.

2. Overload the << and >> operators so that String objects can be printed and read from streams.

3. Suppose you forgot to check for self-assignment in the definition of the assignment operator in

Section 21.3.4. What would happen if you wrote b = b; where b is of type String?

4. Suppose you have a file that contains some unknown number of numbers. You want to read it into

memory and print it out in the sorted order. Develop an extensible array data type into which you

can read in values. Basically, the real array should be on the heap, pointed to by a member of your

structure. If the array becomes full, you should allocate a bigger array. Be sure to return the old

unused portion back to the heap. Write copy constructors etc. so that the array will not have leaks,

etc. Use a doubling strategy, i.e. if the currently allocated array is full and you want to extend it,

allocate a new array of twice the size. This will ensure that you do not make too many allocation

requests.

5. In this assignment, you are to write a class using which you can represent and manipulate sets of

non-negative integers. Specifically, you should have member functions which will (a) enable a set

to be read from the keyboard, (b) construct the union of of two sets, (c) construct the intersection

of two sets, (d) determine if a given integer belongs to a given set, (e) print a given set. Use an

array to store the elements in the set. With your functions it should be possible to run the following

main program.

int main(){

Set a,b;

a.read();

b.read();

set c = union(a,b);

set d = intersection(a,b);

int x;

cin >> x;

bool both = belongs(x,d);

bool none = !belongs(x,c);

if( both ) {

cout << x << " is in the intersection ";

c.print();

}

else if (none) cout << x << " is in neither set." << endl;

else cout << x << " is in one of the sets." << endl;

}
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Ensure that you allocate arrays of just the right size for the union/intersection by first determining

the size of the union/intersection.

6. Define a class Poly for representing polynomials. Include member functions for addition,

subtraction, and multiplication of polynomials. Use a no-sharing strategy.

7. Define themodulo operator % forPoly. SupposeS(x), T (x) are polynomials, then in the simplest

definition, the remainder S(x) mod T (x) is that polynomial R(x) of degree smaller than T (x)

such that S(x) = T (x)Q(x) + R(x) where Q(x) is some polynomial.

The main motivation for writing the modulo operator is to use it for GCD computation later. So

it is important to make sure that there are no round-off errors as would happen if you divide.

One way around this is to define the remainder S(x) mod T (x) to be any kR(x) where k is

any number, where R(x) is as defined above. Assuming that the coefficients of the polynomials
are integers to begin with, you should now be able to compute a remainder polynomial without

fractional coefficients. Hence, there will be no round off either. Of course this has the drawback

that the coefficients will keep getting larger. For simplicity ignore this drawback.

Write Euclid’s algorithm for a polynomial GCD.

8. Templetize the gcd function so that it can work with ordinary numbers as well as polynomials.

You will have to define a few more member functions as well as a constructor. Note that int is a

constructor for the int type, i.e. int(1234) returns the integer 1234.

9. Consider the following new member function for the class Poly:

void move(Poly &dest);

When invoked as source.move(dest), it should move the polynomial contained in source

to dest, and also set source to be undefined. Effectively, this is meant to be an assignment

in which the value is not copied but it moves. Is it necessary to allocate new memory while

implementing move in order to adhere to the no sharing strategy?

See if the Poly class with the new move function will make the GCD programs considered

earlier more efficient.



CHAPTER22
The Standard Library

An important principle in programming is to not repeat code: if a single idea is used repeatedly, write

it as a function or a class, and invoke the function or instantiate a class object instead of repeating

the code. But we can do even better: if some ideas are used outstandingly often, perhaps the language

should give us the functions/classes already! This is the motivation behind the development of the

Standard Library, which you get as a part of any C++ distribution. It is worth understanding the

library, because familiarity with it will obviate the need for a lot of code which you might otherwise

have written. Also, the functions and classes in the library use the best algorithms, do good memory

management wherever needed, and have been extensively tested. Thus, it is strongly recommended that

you use the library whenever possible instead of developing the code yourself.

The library is fairly large, and so we will only take a small peek into it to get the flavour. We will

begin with the string class, which is very convenient for storing text data. This class is an advanced

version of the String class of Chapter 21. It is extremely convenient, and you should use it by default

instead of using character arrays.

Next we will study the template classes vector and map which are among the so-called container

classes supported in the library. They can be used to hold collections of objects, just as arrays can

be. Indeed, you may think of these classes as more flexible and more powerful extensions of arrays.

We will not discuss how any of these classes are implemented, although you can get some clues from

the discussions in Chapter 21 and Section 24.1. But of course, as users you only need to know the

specification of the classes, and need not worry about how they are implemented.

As examples of the use of the Standard Library, we programvariations on themarks display program

of Section 14.2.2. You know enough C++ to solve all these variations, and you have already solved

some of them. However, you will see that using the Standard Library, you will be able to solve them

with much less programming effort.

At the end of the chapter, we will give a quick overview of the other classes in the standard library.

Of these, we will use the priority_queue class in Chapter 27.

22.1 THE string CLASS

The string class is a very convenient class for dealing with char data. It is so convenient, that you

are encouraged to use the string class wherever possible, instead of char arrays. To use the string
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class you need to include the header file <string>, but note that it will be included automatically as

a part of <simplecpp>.

We can create string objects p,q,r very simply.

#include <string> // not necessary if simplecpp is included.

string p = "abc", q ="defg", r;

r = p;

The first statement will define variables p, q, r and initialize them respectively to "abc",

"defg" and the empty string respectively. The second statement copies string p to string r. When

you make an assignment, the old value is overwritten. Notice that you do not have to worry about the

length of strings, or allocate memory explicitly.

You can print strings as you might expect.

cout << p << "," << q << "," << r <<endl; //prints ‘‘abc,defg,abc’’

This will print out the strings separated by commas. Reading in is also simple, cin » p; will cause a

whitespace terminated sequence of the typed characters to be read into p. To read in a line into a string

variable p, you can use

getline(cin, p);

Note that you cannot write cin.getline(p) as you might expect from your experience with

char* variables. Also see the variation described and used in Section 22.4.1.

The addition operator is defined to mean concatenation for strings. Thus, given the previous

definitions of p,q,r, you may write

r = p + q;

string s = p + "123";

The first statement will set r to "abcdefg". The second will create s and set it to "abc123". The

operator += can be used to append.

You can write s[i] to refer to the ith character of string s. Member functions size and length

both return the number of characters in the string. There is no notion of a string object being

terminated by a null character, unlike the class String we developed in Chapter 21.

Many other useful member functions are also defined. Here are some examples.

string v="abcabcd";

v[2] = v[3]; // indexing allowed. v will become "abaabcd".

cout << v.substr(2) // substring starting at 2 going to end

<< v.substr(1,3) // starting at 1 and of length 3

<< endl; // will print out "aabcdbaa".

int i = v.find("ab"); // find from the beginning

int j = v.find("ab",1); // find from position 1.

cout << i << ", " << j << endl; // will print out 0, 3
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Note that if the given string is not found, then the find operation returns the constant

string::npos, which is a value that can never be a valid index, e.g. some negative value. We

can use this as follows:

string t; getline(cin, t);

int i = p.find(t); // assume p is as defined above.

if(i == string::npos)

cout << "String: "<< p << " does not contain "<< t << endl;

else

cout << "String: "<< p << " contains "<< t <<

" from position "<< i << endl;

Finally, we should note that strings have an order defined on them: the lexicographic order, i.e. the

order in which the strings would appear in a dictionary. One string is considered < than another if it

appears earlier in the lexicographical order. Thus we may write the comparison expressions p == q

or p < q or p >= q and so on for strings p,q with the natural interpretation.

22.1.1 Passing strings to Functions

Since string is a class, we can pass it to functions using value, in which case a new copy is passed,

or by reference, in which case the called function operates on the argument itself.

22.2 THE TEMPLATE CLASS vector

The template class vector is meant to be a friendlier, more general variation of one dimensional

arrays. To use the template class vector, you need to include the header file <vector>.

A vector can be created by supplying a single template argument, the type of the elements. For

example, we may create a vector of int and a vector of float by writing the following.

vector<int> v1;

vector<float> v2;

These vectors are empty as created, i.e. they contain no elements. But other constructors are available

for creating vectors with a given length, and in addition, a given value. For example, you might write

vector<short> v3(10); // vector of 10 elements, each of type short.

vector<char> v4(5,’a’); // vector of 5 chars, each set to ’a’.

vector<short> v5(v3); // copy of v3.

A vector keeps track of its own size, to know the size you simply use the member functionsize. Thus,

v3.size()

would evaluate to 10, assuming the definition earlier. You can access the ith element of a vector using

the subscript notation as for arrays. For example, you could write

v3[6] = 34;

v4[0] = v4[0] + 1;

The usual rules apply, the index must be between 0 (inclusive) and the vector size (exclusive). You can

append additional elements to a vector using the member function push_back.
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v3.push_back(22);

v1.push_back(37);

The argument to the function is appended to the receiver. Thus, the first line above would append the

number 22 to v3, causing its length to increase to 11 from the earlier 10 as defined above. The second

statement would append 37 to v1. As defined above, v1 was empty; thus at the end of this statement

it would have length 1.

A whole bunch of operations can be performed on vectors. For example, unlike arrays, you can

assign one vector to another. So if v,w are vectors of the same type, then we may write

v = w;

which would make v be a copy of the vector w. The old values that were contained in v are forgotten.

This happens even if v,w had different lengths originally. You should realize that although the

statement looks very small and simple, all the elements are copied, and hence the time taken will

be roughly proportional to the length of w.

You can shrink a vector by one element by writing v.pop_back(). But you can also set the size

arbitrarily by writing

v.resize(newSize);

w.resize(newSize,newValue);

The first statement would merely change the size. The second statement would change the size, and if

the new size is greater, then the new elements would be assigned the given value.

22.2.1 Inserting and Deleting Elements

It is possible to insert and delete elements from the middle of a vector. This is discussed in

Section 22.5.2.

22.2.2 The Type size_t

We mentioned above that the member function size returns the size of the vector. This is true but

it should be noted that the return type of size is size_t, which is an alias for unsigned int.

The type name size_t is created in C++ to specially denote quantities that relate to sizes of objects

in memory. Thus, the size member function on vectors as well as strings returns a value of type

size_t. Note that the member function find in the string class discussed earlier also returns the

index as a value of type size_t.

There are pitfalls in performing comparisons between signed and unsigned ints as noted in

Section 6.8. To avoid these, often variables used to index into a vector, especially if they are compared

to the vector size, are declared to be of type size_t.

22.2.3 Index Bounds Checking

Instead of using subscripts [] to access elements, you can use the member function at. This will first

check if the index is in the range 0 (inclusive) to array size (exclusive). If the index is outside the range,

the program will halt with an error message. Note that the at function can be used on the left as well

as the right-hand side of assignments.
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vector<int> v;

for(int i=0; i<10; i++) v.push_back(i*10);

v.at(0) = v.at(1);

This will cause the first element to be copied to the zeroth, i.e. at the end v will contain 10, 10, 20, 30,

40, 50, 60, 70, 80, 90.

22.2.4 Functions on Vectors

A vector can be passed to functions by value or by reference. Because a vector is a class, if passed by

value the entire vector is copied, element by element. Thus the called function gets a new copy, and

the the called function can make modifications only to the copy and not the original. However, when

passed by reference, the called function gets access to the original and the values in the original may

be read or modified.

Here are functions to read values into a vector and print values in the vector. We have considered

vectors of int in this example.

void print(vector<int> v){

for(size_t i=0; i<v.size(); i++) cout << v[i] <<’ ’;

cout << endl;

}

void read(vector<int> &v){

for(size_t i=0; i<v.size(); i++) cin >> v[i];

}

int main(){vector<int> v(5); read(v); print(v);}

We may of course templatize the functions, e.g.

template<class T>

void print(vector<T> v){

for(size_t i=0; i<v.size(); i++) cout << v[i] <<’ ’;

cout << endl;

}

It is usually good to pass vectors by reference, so that there is no unnecessary copying.

22.2.5 Vectors of User-defined Data Types

We can make vectors of objects of class T, so long as the class T has an assignment operator, a copy

constructor and a destructor. This is because the vector class will call these member functions internally.

So for example, you may write

vector<V3> v3vec;

vector<Circle> circles;

where V3 is the class from Chapter 17, and Circle from Chapter 5. You can also make vectors of

pointers.

vector<Circle*> circlevec; // allowed.
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22.2.6 Multidimensional Vectors

Since the template parameter in a vector names a type, by specifying that as a vector we can get a

vector of vectors, i.e. equivalent of a two-dimensional array.

vector<vector<int> > v;

This simply defines v to be a zero-length vector of zero-length vectors. Notice the space between the

two > characters. Without this space, the two > characters would be interpreted as the input extraction

operator >>.

Here is how we might define a length 10 vector of length 20 vectors, i.e. a 10× 20 matrix.

vector<vector<int> > w(10, vector<int>(20));

In this, we have used the two-argument constructor for constructing w. Its first argument, 10, specifies

the length, and the second element, vector<int>(20), gives the value of each element. But this

value is itself a vector of length 20. Thus, we get a 10 by 20 matrix represented.

We can access the elements of the matrix in the usual manner, i.e. by writing w[i][j]. However,

we may also modify whole rows if we wish. Thus, for w as defined above, we write:

w[0] = vector<int>(5);

we will change w to become a peculiar structure: it will have 10 rows; the first will have 5 elements,

and the remaining will continue to have 20 elements.

This flexibility is very useful. Often in scientific computing,we encounter matrices of certain shapes,

e.g. lower triangular matrices. In a lower triangular matrix, all elements above the main diagonal are

0. Thus, we need not even store them. So we can create a vector of vectors in which the ith vector (i

starting at 0) has length i+1. This is an easy exercise.

On the one hand, the flexibility described above is useful, but on the other, creating a matrix as

discussed above is also a bit verbose. Also, if someone uses a vector of vectors in a program, there is

always the suspicion that they may be changing the sizes of the rows as described above. It is easier to

understand a program if we are assured that a particular name always refers to a matrix 10× 20 matrix,

and that some functionwill not suddenly change it to become a 5× 5 triangular matrix. In other words,

we want to signal to the reader that we are really using only the usual kind of matrix operations, not

using all the vector functions. For this, we can create a matrix class.

22.2.7 A Matrix Class

A safe matrix class is defined below. It does not allow the size of the individual rows to be changed

once created, and only allows access to elements for reading and writing.

class matrix{

vector<vector<double> > elements;

public:

matrix(size_t m, size_t n) : elements(m, vector<double>(n)){}

double &operator()(size_t i, size_t j){return elements[i][j];}

size_t nrows(){return elements.size();}

size_t ncols(){return elements[0].size();}

};
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It can be used in a main program such as the following.

int main(){

matrix D(10,10); // 10 x 10 matrix

for(size_t i=0; i<D.nrows(); i++){

for(size_t j=0; j<D.ncols(); j++)

D(i,j) = (i==j); // access i,j th element

}

for(size_t i=0; i<D.nrows(); i++){

for(size_t j=0; j<D.ncols(); j++)

cout << D(i,j) <<’ ’;

cout << endl;

}

}

As you can see, we have overloaded the function call operator to access the elements. This is because

we need to supply two indices, and the indexing operator [] can only take one index. Thus, the function

call operator is more convenient. Also note that as defined, the default assignment operator is available

to the class. You can disable that if you wish by making it private.

The class can be templatized so as to form a matrix of arbitrary type T rather than a matrix of type

double.

22.3 SORTING A VECTOR

The standard template library contains many useful functions which you can access by including the

header file <algorithm>.

If you include this file, sorting a vector v is easy. If the binary operator < is defined over the vector

elements, you simply write

sort(v.begin(), v.end());

That’s it! This function will sort the vector v in-place, i.e. the elements in v will be rearranged so

that they appear in non-decreasing order as per the operator <. The arguments to the sort function

indicate what portion of the vector to sort. By writing v.begin() you have indicated that the portion

to sort starts at the beginning of v, and v.end() indicates that the portion to sort ends at the end

of the vector. In other words, the entire vector is to be sorted. The expression v.begin() evaluates

to an iterator. An iterator, which we will discuss in Section 22.5, is a generalization of pointers. The

expression v.end() is also an iterator.

The sorting order can also be specified by supplying an extra argument which abstractly implements

the < operation. The sort function then sorts in ascending order with respect to the specified extra

argument. The extra argument can be given as

1. A lambda expression (Section 12.2)

2. A function pointer (Section 12.1)

3. A function object (Section 18.4)
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Each of the above must take two arguments and return true if and only if the first argument should

be considered smaller. We give examples of all these in Section 22.3.1.

Finally, Section 22.3.2 shows how the sort function from <algorithm> can also be used to sort

arrays.

22.3.1 Example

We consider a variation of the marks display program of Section 14.2.2. Suppose we are given a file

on each line of which appears the following information.

roll-number physics-marks math-marks chemistry-marks

Our goal is to read the file and then print out the information in 4 ways: sorted by roll number, sorted

by physics marks, sorted by math marks, sorted by chemistry marks.

The natural way to write this program is to use a structure in which the information from a single line

would be stored. Each such structure would be pushed back onto a vector which would then contain all

the information read. Here is the structure we use.

struct student{

int rollno;

float physics, math, chemistry;

bool operator<(const student& rhs) const{

// used by the sort function

return rollno < rhs.rollno; // note the two const keywords

}

};

To help in sorting by roll number, we have defined a comparison operator < which will compare roll

numbers in order to decide which structure is smaller. Note an important point: the sort function

requires that the function operator< be defined with both the receiver and the argument declared

const.

In our main program, we will define a vector of student structures.

vector<student> svec;

We can read data into this by writing

student s;

while(cin >> s.rollno){

cin >> s.physics >> s.math >> s.chemistry;

svec.push_back(s);

}

Now to sort by roll number, we can simply write

sort(svec.begin(), svec.end()); // will use operator<

If we wanted to sort by another criterion, we could have redefined operator< appropriately.

However, if we want to sort the same structure in more than one ways, then we must supply a <

operator as an additional argument to the sort. This can be done in three ways, and below we show

each.
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To sort by physics marks, we will use a lambda expression.

sort(svec.begin(), svec.end(),

[](const student& a, const student& b)

{ return a.physics < b.physics;});

As you can see, the lambda expression takes two arguments a, b, and says whether the marks in a

are smaller than those in b. Using this, the sort function can decide how to reorder the vector.

To sort by math marks, we will use an external function

bool compareMarksFunction(const student& a, const student& b){

return a.math < b.math;

}

which must be defined before the main program. In the main program, we call sort supplying this

function (Section 12.1).

sort(svec.begin(), svec.end(), compareMarksFunction);

Finally, to sort by chemistry, we will use the fourth option at our disposal. We will supply the

comparison function as a function object. Here is its definition, which you must put before the main

program.

struct compareRollnoStruct{

bool operator() (const student& a, const student& b){

return a.chemistry < b.chemistry;

}

};

We can use this to get sorting to happen as per the chemistry marks by writing

sort(svec.begin(), svec.end(), compareRollnoStruct());

In this, the third argument is a call to the constructor of the class compareRollnoStruct, i.e. an

object of that class is constructed and supplied. The sort function can invoke it as a function to decide

which of two objects is < the other.

As you can see, we have made four calls to sort in the above discussion, all use different ways of

determining the final order. If we simply specify the start and end iterators, then we get sorting as per

the < operator which must be defined for the objects that we are sorting. If we are sorting fundamental

data types, the operator will be predefined; for user defined types, it is fine if we define it ourselves as

above.

We also have a choice of specifying the operator as an extra argument to sort. The simplest way

to do this is to use a lambda expression, which is what we did above for sorting in order of the physics

marks. But we can use other ways too: specifying a non-member function, or specifying a function

object. We used these also in the above code, to illustrate their use.

22.3.2 Sorting an Array

The algorithms in <algorithm> can also be used for sorting arrays. Here is an example.



322 An Introduction to Programming through C++

#include <simplecpp>

#include <algorithm>

int main(){

int a[5]={10,8,11,3,4};

sort(a, a+5);

for(int i=0; i<5; i++) cout << a[i] << endl;

sort(a, a+5, [](int i, int j){return i>j;});

for(int i=0; i<5; i++) cout << a[i] << endl;

}

The simplest way is to call sort with an iterator that points to the zeroth element of the array, and an

iterator that points to an imaginary element that might lie past the last element in the array. We have

remarked that iterators are generalized pointers; in case of arrays they are actual pointers! Thus, if a is

the name of a 5-element array, then a points to the zeroth element and a+5 points to an element which

will lie past the last element (Section 15.1.5). Thus sort(a, a+5) in the above program will sort

the array. The default is to sort in non-decreasing order. But you can change that using all the ideas

discussed so far. The second sort command in the program above shows how you can get the array to

be sorted in non-increasing order by supplying a comparison operator.

22.4 THE map TEMPLATE CLASS

The simplest way to think of the map class is as a generalization of an array or a vector. In an array

or a vector, the index is required to be an integer between 0 and the n− 1 if the length of the array is

n. In a map, this condition is severely relaxed: you are allowed to use any value as the index, it need

not even be numerical! As in an array, the value of the index determines which element of the map is

being referred to.

To use the map template class, you need to include the header <map>. Next, you declare the map

you want.

map<indexType,valueType> mapname;

This causes a map named mapname to be created. It stores elements of type valueType, which can

be accessed by supplying indices of type indexType. It is required that the operator operator< be

defined for the type indexType. Of course, if the operator is not originally defined, you can define

it. However, the definition should have the usual properties expected of a comparison operator, i.e. it

should be transitive and asymmetric.

Let us take a simple example. Suppose we want to store the population of different countries. Then

we can create a map named population, which will store the population value (numeric). Say we

store the population in billions as a unit, so our valueType is double. We would like to use the

name of the country to access the element corresponding to each country, so our indexType could

be string. So we can define our map as follows:

map<string,double> population;

The string class already has a < operator, so we do not need to do anything more. Next we insert

the information we want into the map, i.e. we specify the population of different countries.
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population["India"] = 1.21; // population of India is 1.21 billion

population["China"] = 1.35;

population["Unites States"] = 0.31;

population["Indonesia"] = 0.24;

population["Brazil"] = 0.19;

The first line, for example, creates an element whose value is 1.21, and whose index is "India". You

use an array access like syntax also to refer to the created elements. For example, the following

cout << population["Indonesia"] << endl;

will print 0.24, which is the value stored in the element whose index is "Indonesia".

You have to realize that while the statements look like array accesses superficially, their

implementation will of course be very different. Effectively, what gets stored when you write

population["India"] = 1.21; is the pair ("India",1.21). The name population

really refers to a collection of such pairs. Subsequently, when we write population["India"]

we are effectively saying: refer to the second element of the pair whose first element is "India". So

some code will have to execute to find this element (Section 22.4.2). So a lot is happening behind the

scenes when you use maps.

What if you write two assignments for the same index, e.g.

population["India"] = 1.21;

population["India"] = 1.22;

This will have the effect you expect: the element created the first time around will be modified so that

the value stored in it will change from 1.21 to 1.22.

An important operation you might want to perform on a map is to check if the map contains an

element with a given index. Suppose you have read in the name of a country into a string variable

country. Say you want to print out the population of that country if it is present in the map; else you

want to print out a message saying that the population of that country is not known to the program. You

can write this as follows:

cout << "Give the name of the country: ";

string country;

cin >> country;

if (population.count(country)>0)

cout << population[country] << endl;

else cout << country << " not found.\n";

This code should follow the code given above for defining the map population and specifying the

population of the various countries.

In this code, the member function count takes as argument an index value, and returns 1 if an

element with that index is present in the given map. Thus, suppose the user typed in "India", in

response to our request to give the name of a country. Then population.count(country)

would return 1 because we did enter the population of "India" into the map earlier. So in this

case, the final value entered, 1.22, will get printed. On the other hand, if the country typed in

was "Britain", then population.count(country) would return 0, and hence the message

“Britain not found.” would be printed. Another way of determining whether a map contains a certain

entry is discussed in Section 22.5.1.
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You may wonder what would happen if we anyway execute

cout << population["Britain"] << endl;

without assigning a value to population["Britain"] earlier in the code. The execution of this

statement is somewhat unintuitive. In general, suppose we have defined a map

map<X,Y> m;

and suppose x is a value of type X. Then if we access m[x] without first assigning it

a value, then implicitly this first causes the statement m[x]=Y(); to be executed, i.e. an

element is created for the index x, and the element stores the value Y() obtained by

calling the default constructor of class Y. After that the value of m[x] is returned. Thus

in the case of the statement cout <<population["Britain"] <<endl;, the statement

population["Britain"]=double(); is first executed. The constructor for the type double

unfortunately does not initialize the value. So the map will now contain an element of unknown value

but having the index "Britain". Hence, this unknown value would get printed.

22.4.1 Marks Display Again!

In this, we will have the teacher enter the names of the students instead of the roll numbers. We will

consider the original problem, i.e. students walk up to the computer and want to know their marks.

But this time, they type in their name rather than the roll number. Clearly, we can use strings to

represent student names, and a map to store marks of students.

To make the problem more interesting, we will assume that for each student we have the marks in

Mathematics, Physics, and Sanskrit. Further assume that the names are given in a file with lines such

as the following.

A. A. Fair, 85, 95, 80

Vibhavari Shirurkar, 80, 90, 90

Nicolas Bourbaki, 99, 98, 75

i.e. the file will contain a line for each student with the name appearing first, succeeded by a comma,

following which three numbers would respectively give the marks in the different subjects. The

numbers are also separated by commas. This format, in which each line of the file contains values

separated by commas, is often called the CSV format, or the “comma-separated values” format.

We will use a string to store the student name. To store the marks, we will use a structure.

struct Marks{

double science, math, sanskrit;

};

The marks will be stored in a map, whose index will be the name of the student given as a string.

map<string,Marks> mark_map;

Say our file containing the marks is named marks.txt. Then we can declare it in our program as

ifstream infile("marks.txt"); // needs #include <fstream>

Next we discuss how to read values from a file in the CSV format. For this, we can use a form of

getline function which allows a delimiter character to be given. The signature for this is:
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istream& getline(istream& instream, string stringname, char delim)

In this, instream is the name of the input stream from which data is being read. The parameter

stringname is the name of a string, and delim is the character that delimits the read. Thus, data

is read from the stream instream until the character delim is found. The character delim is

discarded, and the data read till then is stored into string stringname. Thus, we can read the name

of a student by executing something like

string name;

getline(infile,name,’,’);

Used with the file above, this statement will cause name to get the value “A. A. Fair”, including the

spaces inside it. Subsequently, if we execute

getline(infile,name,’,’);

again, the string name would then hold the string "85". Of course, we would like to convert this to a

double, so we can use a stringstream (Appendix E).

double mmath;

stringstream(name) >> mmath; // need #include <sstream>

This would cause the string name to be converted into a stringstream, from which we read into the

variable mmath. Similarly, the other data can be read.

Figure 22.1 contains the entire program based on these ideas. In the first part, the file is read into

the map mark_map. The first three values on each line, the name, the marks in math and the marks

in science are comma separated. So they are used as discussed above. The last field is not comma

separated, so it can be read directly. Note that when reading using the operator », the end-of-line

character is not read. So before the next line is to be read, it must be discarded.

In the second part, the program repeatedly reads the names of students. If a name is present in the

map, then the corresponding marks are printed.

22.4.2 Time to Access a Map

The (index,value) pairs constituting a map are stored using binary search trees (Section 24.1.1). As will

be discussed in Section 24.1.6, making an access such as population[country] happens fairly

fast, i.e. in time proportional to log2 n, where n is the number of countries for which data is stored in

the map.

22.5 CONTAINERS AND ITERATORS

The classes vector and map are considered to be container classes, i.e. they are used to hold one

or more elements. Even a string is thought of as a container because it contains sets of characters.

There are other containers as well in the Standard Library, and we will glance at some of them shortly.

The Standard Library allows some generic processing of containers, be they vectors, or maps, or

even strings. For this, it is necessary to be able to refer to the elements of the container in a uniform

manner. This is accomplished using an iterator.
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#include <simplecpp>

#include <fstream>

#include <sstream>

#include <map>

struct Marks{

double science, math, sanskrit;

};

int main(){

ifstream infile("students.txt");

map<string,Marks> mark_map;

Marks m;

string name;

while(getline(infile,name,’,’)){

string s;

getline(infile,s,’,’);

stringstream (s) >> m.math;

getline(infile,s,’,’);

stringstream (s) >> m.science;

infile >> m.sanskrit; // read directly, not comma terminated

getline(infile,s); // discard the end of the line character

mark_map[name] = m; // store the structure into the map

}

while(getline(cin,name)){

if(mark_map.count(name)>0)

cout << mark_map[name].math << " " << mark_map[name].science

<< " " << mark_map[name].sanskrit << endl;

else

cout << "Invalid name.\n";

}

}

Fig. 22.1 Program for another marks-display variation

An iterator can be thought of as a generalized pointer to an element in a container. It is intended

to be used in a manner analogous to the use of an (actual) pointer in the following code which applies

a function f to all the elements of an array.

int A[10]

int* Aptr

for(Aptr = A; Aptr<A+10; Aptr++) f(*Aptr);
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In this code, we initialize the (actual) pointer Aptr to point to the zeroth element of A, and then

increment it so that it points to successive elements. In each iteration, we dereference it and then apply

the function f to it. Implicit in this code is the idea that the elements are ordered in a unique manner:

specifically the elements are considered in the order in which they are stored in memory.

Nowwe see howwe can write analogous code for containers. Analogous to the actual pointerAptr,

we will have an iterator which will abstractly point to elements of the container, and which we can step

through as the execution proceeds. In general, an iterator for a map can be defined as follows.

map<X,Y> m;

map<X,Y>::iterator mi;

Here, mi is the iterator, and its type is map<X,Y>::iterator. Next we need to say how to set it to

“point” to the first element in the map, and then how to step it through the elements. For this, we first

need to fix an ordering of the elements stored in the container. For vectors and maps, the elements

are considered ordered according to the index, i.e. the first element is the element with the smallest

index. The member function begin on the container returns an iterator value that abstractly point to

this first element. Thus, we can initialize our iterator by writing:

mi = m.begin();

An iterator supports two operations: by dereferencing you get to the element abstractly pointed to by

the iterator, and by using the operator ++, the iterator can be made to point to the next element in the

container (as per the < order). Finally, to determine when the iterations should stop we need to know

when the iterator has been incremented beyond the last element in the container. For this, the member

function end on the container is defined to abstractly point beyond the last element, just as the address

A+10 in the example above points beyond the last element of the array.

Suppose we wish to merely print all the elements in a container. Then here is how this can be done

using iterators.

vector<float> mvec;

// code to insert elements into mvec

for(vector<float>::iterator mi = mvec.begin(); mi != mvec.end();

++mi)

cout << *mi << endl;

The code for map containers is similar. When we dereference a map iterator, we get an element of the

map, which is an (index,value) pair. The pair that we get is a (template) struct, with data members

first and second which hold the index and the value respectively. Since we consider an iterator to

be a pointer, the struct elements can be accessed using the operator ->. Here is how we can print out

the map population of Section 22.4.

for(map<string,double>::iterator Pi = population.begin();

Pi != population.end();

++Pi)

cout << Pi->first <<": " << Pi->second << endl;

Similar code can be written for the string class. Note that the dereferencing operator * or the

incrementation ++ should not be understood literally, these operators are given to you appropriately
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overloaded. But you don’t need to worry about all this; you can consider iterators to be abstractions of

pointers for the purpose of using them.

22.5.1 Finding and Deleting map Elements

Iterators are specially important for the map class. We can use the find operation on iterators to get to

an (abstract) pointer to an element which has a given index value. Thus, to see if the value "Britain"

is stored in the map population, we can write

map<string,double>::iterator Pi = population.find("Britain");

If "Britain" is not present, then Pi would take the value population.end(). So to see if

"Britain" is present and print its population we can write

map<string,double>::iterator Pi = population.find("Britain");

if(Pi != population.end())

cout << Pi->first << " has population "<<Pi->second << endl;

You can delete the element pointed to by an iterator by using the erase function as follows.

map<string,double>::iterator Pi = population.find("Indonesia");

population.erase(Pi);

This would remove the entry for Indonesia.

22.5.2 Inserting and Deleting vector Elements

Iterators can be used with vectors for inserting and deleting elements. For example, we could write

vector<int> v;

for(int i=0; i<10; i++) v.push_back(i*10);

vector<int>::iterator vi = v.begin()+7;

v.insert(vi,100); // inserting into a vector

vi = v.begin() + 5;

v.erase(vi); // deleting an element

The first two statements respectively declare a vector v and set it to contain the elements 0, 10, 20,

30, 40, 50, 60, 70, 80, 90. The third statement causes vi to point to the seventh element of v, i.e.

the element containing 70. Then 100 is inserted at that position, the elements in the positions seventh

onwards being moved down one position. The size of the vector of course increases by one. After

that we set vi to point to the fifth element. Then that element is deleted. This causes the subsequent

elements to be moved up one position. Thus, at the end the vector v would contain the elements 0, 10,

20, 30, 40, 60, 100, 70, 80, 90.

22.6 OTHER CONTAINERS IN THE STANDARD LIBRARY

The Standard Library has several other containers which are very useful.

For example, the container deque is a double-ended queue, which supports element insertion and

removal, from the front as well as the back. The container queue allows insertions at the back and
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removal from the front, while the container stack requires that insertions and removals both be done

from the same end.

An important container is the priority queue. You can insert elements arbitrarily, however, when

removing elements, you always get the smallest element inserted till then. We discuss and use priority

queues in Chapter 27.

An interesting container is the set. This supports operations for inserting elements and

subsequently finding them. The elements are required to have operator< defined on them, and this

order is used for storing the elements in a binary search tree (Section 24.1.1). It turns out that finding

an element in a set or inserting an element in a set both take time proportional to logn where n is the

number of elements present in the set at the time of the operation. We will explore the reasons behind

this in Section 24.1.

These descriptions are very brief. You should consult various Standard-Library references on the

Web to get details.

22.7 THE typedef STATEMENT

The typedef statement can be used to create a new name for an existing type.

typedef existingType newName;

So for example, you can write

typedef map<string,double> popType;

typedef vector<vector<double> > matrix;

So with these definitions, you can write popType and matrix instead of the longer names, and save

yourself typing and perhaps make your programs more readable.

Of course, the typedef statement is not in any way limited to being used with container types

from the standard library. It can be used also for ordinary types.

typedef double mynum;

With this, you could use mynum as a synonym for double. This is useful in case you decide one

day that you really want to represent the numbers in your program using long double. If you had

declared them to be of type mynum, then you would only need to make the change in the definition of

mynum, rather than change the definition of every numerical variable in your program.

22.7.1 More General Form

The above type definitions could be considered to be only convenient, but not providing new capability.

This is because you could textually substitute existingType for newTypename. However, there

is a general form which actually provides new capability. The form is

typedef existingType newTypeExpression;

This defines an equivalence between existingType and newTypeExpression. Here is an

example.

typedef double (*fptrtype)(double);
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This says that double is the same as the type you get when you dereference something of type

fptrtype, and then apply that to arguments of type double. In other words, fptrtype is of type

pointer to function that takes a double as argument and returns a double. As you can see, there is

no other way to define the type fptrtype. With this definition of fptrtype, you could define pf

from the end of Section 12.1 as follows.

fptrtype pf;

22.8 REMARKS

You have probably guessed by now that the classes we discussed in this chapter would have to be

implemented in the style of the String class discussed in Chapter 21. Indeed, that is true. They will

use heap memory to store data, and allocate and deallocate heap memory when needed.

The important point to note however is that you don’t have to worry about the implementation

in order to use these classes. Indeed, the constructors, destructors, copy constructors, assignment

operators of these classes have already been written, so that there are no memory leaks, dangling

pointers, etc. You don’t need to worry about memory allocation; indeed you should be able to do

everything you want without ever having to use the new and delete operators.

EXERCISES

1. Explain what each statement of the following code fragment does.

vector<int> a(5,33);

vector<char*> countries(4);

vector<vector<double> > v(3,vector<double>(5, 3.14));

2. Write a code fragment that creates a 10× 10 matrix stored as vector of vectors of doubles and

initializes it to the identity matrix.

3. Write a program to multiply two matrices of arbitrary sizes represented as vector of vectors.

4. Write a function which returns a lower triangular matrix using a vector of vectors. Specifically,

you should only allocate space to store elements aij where j ≤ i.
5. Define a class LTM for storing lower triangular matrices, i.e. matrices in which elements with

indices (i,j) are 0 if i<j. It should have a signature as follows.

class LTM{

vector<vector<double> > data;

public:

LTM(int n);

double getElem(int i, int j);

void setElem(int i, int j, double v);

}

As you might guess, the constructor constructs an LTM matrix with the given number of rows

and columns. The member functions return the element at index i,j and assign the value v to

the element at index i,j respectively. Note that if j>i then getElem must return 0. If j>i
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the setElemmust do nothing and print a message saying that the operation is not allowed. Give

implementations of all the member functions.

6. Write a program that will receive information about the states of India and their capitals and

answer questions about these when asked. Specifically, it should process 3 kinds of commands.

The first kind is

Learn state capital

As an example, the user may type Learn Maharashtra Mumbai. In this case this

information must be remembered by the program. The second kind of command is

Tell capital-or-state-name

For example, the user may type Tell Gandhinagar, whereupon the program must respond

that it is the capital of Gujarat. Likewise, if the state is given its capital must be given in response.

The third kind of command is just

Exit

whereupon the program must exit.

7. Write a program that prints out all positions of the occurrences of one string pattern inside

another string text. Use appropriate functions from the string class.

8. Design a class to efficiently store sparse polynomials i.e. polynomials in which even if the degree

is n, there may be far fewer terms in the polynomial, i.e. many of the powers might have coefficient
0. In such a case, it may be wasteful to allocate an array or vector of size n+ 1 to store a

polynomial. Instead, it might be more efficient to store only the non-zero coefficients, i.e. store the

pair (i, ai) if the coefficient ai of x
i is non-zero. Use a map to store such pairs. Write functions

to add and multiply polynomials. Note that iterators on maps will go through stored pairs in

lexicographical order. Exploit this order to get efficient implementations.

9. Suppose for each student we know the marks in several subjects. The total number of subjects

might be very large, of which each student might have studied and got marks in some. Write a

program which reads in the marks a student has obtained in different subjects, and then prints out

the marks obtained given the name of a student and the name of the subject for which the marks

are requested.

You are expected to use a map to store the data for all students, and a map for each student in

which to store the marks for the different subjects taken by the student.

10. The algorithm collection in the standard library also contains a binary_search function for

performing binary search on sorted containers such as vectors. The signature of this function is

bool binary_search(ForwardIterator first, forwardIterator last,

const T& value_to_search);

Here, the region of the container between first (inclusive) and last (exclusive) is searched to

find an element equal to value_to_search. The type of the element stored in the container

must be T. Use this to implement variation of the marks display program of Section 22.4.1, using

just vectors rather than maps.

The function binary_search is guaranteed to execute in logarithmic time when used with

vector containers.
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11. Write a program which implements a dictionary of the English language. A natural representation

would be a map, with the words being the indices and the meanings being the values. This will be

suitable for exact look-ups. However, suppose we wish to find approximate matches too. This is

because we will typically only store the root words in the dictionary, e.g. the word “dictionary”,

but not the words obtained from the root by inflection, e.g. the word “dictionaries”. In such cases,

when you look up “dictionaries”, you would like to get the word that has the longest prefix match,

which will likely be “dictionary” in this case. After that your program could decide whether the

word you found can indeed be inflected to give the word you are looking for. For such processing,

perhaps a simple (sorted) vector might be a better representation than a map. In any case, write a

program which not only tells you whether the given word is in the dictionary, but also whether it

is likely an inflection of a word in the dictionary.



CHAPTER23
Representing Networks
of Entities

Many real-life systems can be considered to be collections of entities which are somehow linked

together into a network. For example, a circuit consists of components connected together by wires.

Roads connect cities. When you browse the internet, you can go from one page to another by clicking

on a link; a link thus connects one page to other pages. Or the entities might be people, where each

person could be considered linked (attached!) to his/her friends. This chapter will give an introduction

to computations relating to such networks.

There may be several questions we could ask about such networks. For a circuit, we might want to

know the currents and voltages in the different components. In a road map we might want to know the

shortest path to go from one city to another. We might want to determine the importance of each page

on the Internet. Search engines have to routinely answer this question when they have to show results

of a Web search—the more important pages must be listed before the less important ones. In a network

of friends, you might perhaps want to know who has the largest number of friends, or whether two

individuals have a mutual friend. Many such questions are hard to answer and require sophisticated

mathematical and computer science ideas.

The basic mathematical model used to represent networks is a graph, which we discuss in

Section 23.1. On a computer there are two common representations for graphs. In Section 23.2,

we consider the adjacency list representation. A more detailed example of the adjacency list

representation appears in Section 27.4. The representation for graphs in Chapter 24 is also a variation on

adjacency lists. In Section 23.3, we discuss the adjacency matrix representation. Adjacency matrix like

representations are used very commonly, especially in engineering. We discuss two such applications:

analysis of an electrical circuit, and analysis of the graph consisting of the pages on the internet and

the links between them.

23.1 GRAPHS

A graph, as you might know, consists of two sets, V , a set of vertices, and E, a set of edges. Each

edge is a pair (u, v), where u, v ∈ E. An edge (u, v) is said to connect the vertices u, v, or make them
adjacent. The edges may be directed or undirected, correspondingly, we may consider the pairs (u, v)
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to be ordered or unordered. It is customary to say that an edge (u, v) is incident on vertices u, v. It is

also common to use the term node instead of the term vertex.

As you might guess, vertices correspond to the entities in a network, and edges to the

connections/relationships between them. We can associate attributes with vertices and edges. For

example, each vertex may have a name attribute, corresponding to the name of the associated entity.

Each edge may be associated with a number called its weight, which indicates say, the strength of the

connection between the entities. Undirected edges are used to represent symmetric relationships, e.g.

friendship. Directed edges represent asymmetric relationships, e.g. X is a follower of Y. As another

example: in a road network, we will typically represent one way roads by a directed edge, whereas a

road allowing bidirectional travel might be represented by an undirected edge or by two directed edges,

one in each direction.

Most commonly, vertices are represented by objects in C++. Often, a network contains entities of

only a single type, in which case the corresponding vertices will be represented by objects of a single

class. But it is possible to have different types of entities. For example, you may have a network in

which the entities are authors and books, with links between books and their authors. For this, you will

have vertices of class author and also vertices of class book in your graph.

Edges may also be represented by objects, or they may be represented more simply.

23.2 ADJACENCY LISTS

In the simplest case, an edge is represented using a pointer. Thus, if there is a directed edge from a

vertex u to a vertex v, the object corresponding to u will contain a pointer to the object corresponding

to v. If an edge (u, v) is undirected, then we will have a pointer to v in object u, as well as a pointer to

u in object v. In general, each vertex will have many edges. In this case the associated pointers will be

stored in a list, hence the name adjacency list. In C++, it is most natural to use vectors to build lists.

As an example, we show how a network of friends may be represented. First, we need a struct

to represent each person.

struct Person{

string name;

vector<Person*> friends;

};

Ideally, the data members should be private, accessed using suitable member functions. We have made

data members public here for the sake of simplicity.

The following code creates five persons and fills in their names.

Person persons[5];

persons[0].name = "Harry";

persons[1].name = "Hermione";

persons[2].name = "Ron";

persons[3].name = "Draco";

persons[4].name = "Crabbe";

To make Harry and Hermione friends of each other, we merely have to add an undirected edge. As we

have said, an undirected edge corresponds to pointers between the corresponding entities. Thus, we
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must add a pointer to persons[1] in persons[0].friends, and vice versa. For this we will

write a function.

void makefriends(Person &p, Person &q){

// add an undirected edge in the graph

p.friends.push_back(&q);

q.friends.push_back(&p);

}

This can be called to add the required friendship edge, and others too.

makefriends(persons[0], persons[1]); // Harry, Hermione

makefriends(persons[2], persons[1]); // Ron, Hermione

makefriends(persons[0], persons[2]); // Harry, Ron

makefriends(persons[3], persons[4]); // Draco, Crabbe

Now if we want to print the friends of Hermione (stored in persons[1]), we merely write

for(size_t i=0; i < persons[1].friends.size(); i++)

cout << persons[1].friends[i]->name << endl;

23.2.1 Edges of Different Types

Each person need not have links only to his/her friends. Suppose we also want to have links to

enemies. In that case, we merely add another data member enemies of type vector<Person*>

to the Person class. Suppose that some of the persons have a unique favourite friend. Representing

this is even simpler. Since we know that there is at most one favourite, we just add a data member

favourite of type Person*. Thus, our definition now becomes

struct Person{

string name;

vector<Person*> friends, enemies;

Person* favourite;

}

Given our preceding definitions, we can make Ron be Harry’s favourite friend by writing

persons[0].favourite = &persons[2];

On the other hand, if we wanted to indicate that Harry has no favourite, we write

persons[0].favourite = NULL:

23.2.2 Array/Vector Indices Rather than Pointers

If we know that all the entities in our network will belong to a single array, e.g. the array persons

as above, then an alternate representation is possible. Instead of storing a pointer to an object, we can

store the index of the object in the vector. Thus, our definition of person would change as

struct Person{

string name;

vector<int> friends;

};
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Assuming persons is a 5-element array initialized with names as given earlier, we can add an edge

between Harry and Hermione as follows:

persons[0].friends.push_back(1); persons[1].friends.push_back(0);

And the names of friends of persons[1] could be printed as

for(size_t i=0; i < persons[1].friends.size(); i++)

cout << persons[persons[1].friends[i]].name << endl;

23.2.3 Edges Represented Explicitly

Suppose we wish to represent the network of roads between cities in a country. The cities will be the

vertices in this network, and the roads themselves will be the edges. Since intercity roads are typically

two way, we will use two edges for each road, one in each direction. We could make roads be pointers

from one city to another; but we might also want to store the names of roads, and their lengths. So it is

convenient to have objects to represent roads too.

A city object will store the name of the city and pointers to road objects representing the roads it is

connected to. A road object will store the pointers to the city it leads to; optionally also the city it starts

from, and say its name and length.

struct Road; // forward declaration so that we can write Road* below.

struct City{

vector<Road*> roads;

};

struct Road{

string name;

City* from, to;

double length;

};

We will see this idea developed in Section 27.4.

23.3 ADJACENCY-MATRIX REPRESENTATION

The edges of a graph can also be represented using a so called adjacency matrix. If the graph has n

vertices, an n× n matrix A is used, with entry Aij giving information about the edge from vertex i to

vertex j, if any. For example, we might set Aij = 1 to indicate that an edge is present, and Aij = 0 to

indicate that there is no edge. Other values can also be used, depending upon the context, as we will

see later.

The main drawback of the adjacency matrix representation is the large memory required. An

adjacency matrix has n2 elements, and thus that much memory is used, no matter how many edges

are actually present. If we use an adjacency list representation, then in each vertex object we will use

just the memory needed to represent the edges incident on that vertex. Thus, the total memory used

for edge representation is proportional to the number of edges, which could be far fewer than n2. If a

graph has only a few edges, then the adjacency list representation saves on memory.

However, there are advantages too for adjacency matrices. The most obvious advantage is that we

can very easily check whether an edge from vertex i to vertex j exists: we simply examine the value
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of Aij . Also, as we will see shortly, in many applications, the adjacency matrix can be directly used

in operations such as matrix multiplication, solving a system of equations, and so on. So in such

applications, the adjacency matrix representation is very convenient.

The matrix stores the information about the edges. To store information about the vertices, we will

need to use an additional vector.

As an example, we will show how to build the same friendship network as discussed in the previous

section. We will write this as a class.

const int nFriends=5;

struct Person{

string name;

};

class Fgraph{ // Friends’ graph

vector<Person> vertices(nFriends);

vector<vector<int> > edges(nFriends, vector<int>(nFriends, 0));

public:

setName(int i, string val){

vertices[i].name = val;

}

makeFriends(int i, int j){

edges[i][j] = edges[j][i] = 1;

}

printFriends(int i){

for(int j=0; j<nFriends; j++)

if(edges[i][j] == 1) cout << vertices[j].name << endl;

}

};

The member vertices in the class Fgraph will store information about the vertices in the graph.

The vertices represent friends, so we have made vertices a vector of Person objects. The

object vertices[i].name will store the name of the ith person in the set. The member edges in

Fgraph will store information about the edges. As you can see, it consists of a matrix of ints. We

will set edges[i][j] to 1 if the person stored at vertices[i] is a friend of the person stored at

vertices[j]. The member functions implement these ideas.

Now we can write a main program as follows.

int main(){

Fgraph F;

F.setNames(0,"Harry");

...

F.makeFriends(0,1); // makes Harry and Hermione friends

...

F.printFriends(2); // prints the friends of Ron.

}

Adjacency matrices or their minor variations are used in many applications. We discuss two next.
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Fig. 23.1 Circuit to be analyzed

23.4 CIRCUITS

We will consider the problem of finding the currents and voltages at different points in a circuit

consisting of resistors and current sources, such as the one shown in Figure 23.1. You may perhaps

not be familiar with current sources. A current source is a circuit element out of which a specified

amount of current flows no matter what the element is connected to. Circuits which contain voltage

sources can also be analyzed, but the algebra is slightly more complicated. We will discuss this later.

First, we view this circuit as a graph, i.e. identify the vertices and edges in it. The resistances and

the current source can be considered to be the edges, the points at which these attach to each other

can be considered to be the vertices. There are 6 vertices in Figure 23.1, numbered 0 to 5, shown as

solid circles. There are 9 edges, one consisting of the voltage source, and 8 consisting of resistors. It is

possible to have circuits in which there are devices which have more than two electrical connections to

them, such as transistors. The model for such graphs will be different.

A circuit is commonly represented by its so called conductance matrix, which is similar in spirit to

the adjacency matrix of its graph. It is customary to name the matrix G. Indeed elements Gij depend

upon what is connected between vertices i, j in the network. Specifically, we will have

1. Gij = −1/Rij: IfRij is the value of the resistance connecting vertices i and j, where i �= j. Note
that if no resistor is shown between vertices i, j then we consider the resistance between them

to be ∞, in which case Gij = 0. You may know that a resistance of value R is the same as a

conductance of value 1/R. Thus, Gij can be considered to be the negative of the conductance

connected between nodes i, j.

2. Gii =
�
j 1/Rij: The value of Gii is thus set to be the sum of the conductances connected to

vertex i.

Note that the current source values does not figure in setting the values of the conductance matrix.

You can see that the conductance matrix can roughly be considered to be an adjacency matrix for

the circuit: the entries are 0 when there is no connection, and the entries are large (though negative)

when there is a high conductance between two vertices. But the real motivation in setting the entries in

this manner is that it helps in circuit analysis.
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Let Vi denote the voltage at node i. The goal of circuit analysis is to solve for the variables Vi.

Considering Vi to be the elements of a vector V we can write down the following equation.

GV = S

Here, S is a column vector also having n elements, and Si denotes the sum of the current leaving vertex

i through the current sources attached to vertex i, if any. For our circuit, the equation with the matrix

and vectors shown in full becomes
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Note that in our example, S0 = 1 because unit current must flow out of vertex 0 into the current source.

Similarly, S1 = −1 because unit current must flow in to vertex 1 from the current source. There are no

current sources attached to the other vertices, and hence, the corresponding Si are 0.

A matrix equation really consists of as many ordinary equations as there are rows. So for example,

considering the first row of the product, we have

V0(1/5 + 1/3) + V1(−1/5) + V5(−1/3) = −1

This equation really turns out to be saying that the total current entering vertex 0, through voltage

sources and resistors, must equal 0, since charge cannot be created nor destroyed. This can be seen if

we rewrite the equation a bit.

(V0 − V1) · 1/5 + (V0 − V5) · 1/3 + 1 = 0

In this you can see the first term (V0 − V1) · 1/5 as the current flowing through the 5-ohm resistance.

This current enters vertex 0. Similarly, (V0 − V5) · 1/3 is the current entering through the 3-ohm

resistance. Finally, 1 ampere is the current entering through the current source. These must add to

zero, because of charge conservation. Indeed you will see the ith row of the matrix equation to simply

be asserting that the total current leaving and entering vertex i must be 0. Thus, the matrix equation is

valid.

Thus, analysis of this circuit is merely solving this set of equations! And we know how to do it from

Section 15.2.1! There is one slight twist. The equations we have written down are not independent, i.e.

they contain some redundant information. To see this, pick any equation. You will see that it can be

obtained by adding up the remaining equations and multiplying the resulting equation by−1. Thus, we
can throw out any equation and not lose information. You may wonder if we can do this one more time.

Turns out that the answer is no—the remaining equations are independent, i.e. no equation in them can

be obtained by combining other equations in any manner.1 So now we seem to have run into a problem:

we have n unknowns (V0, . . . , Vn−1) but only n− 1 equations. However, this is not a problem. As you

may know, voltages in a circuit are relative, i.e. we can arbitrarily designate one of the voltages to be

1 This assumes that our circuit does not have disconnected subcircuits.



340 An Introduction to Programming through C++

0. For example, we can substitute V0 = 0 into the matrix. Simultaneously, we throw out equation 0.

Thus, we are left with n− 1 equations in n − 1 unknowns, which we can solve as per Section 15.2.1.

We can compute the currents in the different resistors by multiplying by the voltage drop across

the resistance. Thus, the current through the 4-ohm resistance in the direction vertex 1 to vertex 2 is

(V2 − V1) · 1/4, which can be calculated given values of V1, V2.
We finally consider how to deal with voltage sources. Suppose we have a voltage source connecting

vertices i, j. Then we will need to have an additional variable Iij to represent the current through that

voltage source. But we will also have an equation, viz. Vi − Vj must equal the specified voltage source
value. Thus, again we will have as many equations as there are unknowns, and we can solve the system.

23.5 SURFING ON THE INTERNET

When you give a query to a search engine, it must go through the all pages on the web and present

to you pages that are relevant to your query. But in addition, you would also like the pages to be

authoritative. How to identify authoritative pages is the question we consider here.

Here is a possible definition: the authoritativeness of a page equals the number of pages linking

to it. The motivation behind this definition is that page A links to page B only because the creators

of page A consider page B to be useful/trustworthy. In some sense, page A is recommending

page B. Some additional observations could also be made. A recommendation can be considered

to be more significant if we somehow decide that recommending page is itself authoritative. Thus,

when page A links to page B, then it contributes to the authoritativeness of B, and to a first

approximation we could say that this contribution is in proportion to its own authoritativeness.

Next, suppose a page C links to 100 pages, whereas page page D links to only 4. It would seem

that we should take the recommendations of D more seriously because it is perhaps being more

selective in its recommendations. This suggests that we should consider that if a page links to another,

then it contributes authoritativensss in direct proportion to its own authoritativeness and (to a first

approximation) in inverse proportion to the number of links going out of itself.

0

1

2

3

4

Fig. 23.2 Pages with links
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So suppose xi denotes the authoritativeness of a page i. Then the above discussion suggests that

perhaps we could demand that

For each page i: xi =
�

j|j links to i

xj
dj

(23.1)

In this, dj is the number of outgoing links out of page j. Consider as an example, the network shown

in Figure 23.2. In this, page 3 for example has links coming in from page 1 and page 2. Page 1 links to

two pages; thus it contributes half its authoritativeness to page 3. Likewise page 2 links to 3 pages and

so contributes a third of its authoritativeness. Thus, we would write for page 3:

x3 =
x1
2

+
x2
3

In general, for n pages, we will get n equations in the n unknowns x0, . . . , xn−1. Letting x denote the
vector consisting of elements x0, . . . , xn−1, the above equations can be written in the form

Ax = 0

where A is a matrix having elements Aii = −1 for all i, and Aij = 1
dj
. Thus, for the pages in

Figure 23.2, we will get 
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(23.2)

These equations, as it turns out, has the same problem as the circuit equations: any single equation can

be obtained by adding up the remaining equations and multiplying by−1. Thus we must throw out one

of the equations. Now we seem to be left with just n− 1 equations in n unknowns. Thus, we will not

get a unique solution.

Notice however, that Eq. (23.1) defines authoritativeness only relatively. Put another way, if a certain

set x0, . . . , xn−1 of authoritativeness values satisfy Eq. (23.1), the equation would also be satisfied by
2x0, . . . , 2xn−1. So we could fix one of the values, say x0 to be 1. A more common strategy is to fix

the sum to be 1. Thus, we will have an additional equation x0 + x1 + . . .+ xn−1 = 1. Now we have

n equations in n unknowns which can be solved.

Thus, for the system of Figure 23.2, say we drop the first equation from equation (23.2), and include

the equation x0 + x1 + x2 + x3 + x4 = 1. If we solve this, we will get

x = (0.3, 0.3, 0.15, 0.2, 0.05)

This gives highest authority to pages 0 and 1, and very little authority to page 4. The high score for

page 0 can be explained say because it has the largest number, 3, of links coming in. Page 1 has only

one link coming, in, but that comes from a highly ranked page, page 0.

This is a simplified description of the PageRank algorithmproposed 15-20 years ago by the founders

of the search engine Google. Today’s search engines use additional, more sophisticated algorithms.
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23.6 CONCLUDING REMARKS

We have described some ways of representing networks. However, there can be others. Especially if

the network has some special structure, then we may be able to assign numbers to different vertices

such that from the number of a node it is clear what other nodes are connected to it. We will see an

example of this in Chapter 28, where we will suitably number the runways and taxiways so that it is

clear from the numbers what other runways/taxiways a given runway connects to.

EXERCISES

1. Write a program that constructs representations about friendship and enemity as discussed in

Section 23.2. It should take as input a file containing information about how many persons are

there, who are the friends of each person, who are their enemies, and who are the favourite friends

of each person if any.

Write functions to (a) find whether two given persons have common friends, and (b) find the most

popular person, i.e. the person who is named as the favourite by the largest number of persons.

2. We have noted that in many natural matrices, e.g. a conductance matrix, many elements are 0. To

save memory, it is desirable to have a representation in which we only store the non-zero elements.

Of course, the representation should be capable of listing out all elements of the matrix if needed

(whether they are zero or non-zero), but it should not explicitly store the elements with value

0. Instead, if an element is not explicitly stored, it should be considered to be 0. Device such a

representation. Hint: It will effectively be the adjacency list representation of the matrix.

Write a member function for the class so that you can perform matrix vector multiplication using

that representation.

3. Suppose in Figure 23.1 we have a voltage source of value 1 volt, between vertices 3 and 4 (with

vertex 3 connected to the positive end of the voltage source). Add the relevant equation into your

program and find the resulting currents.

In general, extend your program to handle voltage sources.

4. Devise graphical editors to input each of the networks discussed in this chapter. For example to

create a friendship network, your editor will have a button to create a person. Then additional

buttons to create friendship links and so on. The editors should also have buttons which when

clicked will suitably process the given network. Where relevant, device ways to show the result

also on the graphics canvas.

5. Consider electrical circuits in which you have inductors. An inductor is associated with an

inductance L. If a voltage V is applied across the terminals of an inductor for a very small time

∆, then the current through the inductor increases by V
L∆ . Thus you can think of an inductor as

a variable current source. Specifically, you must know the current I through the inductor at time
0; you can assume that at time 0 the inductor behaves like a current source of value I. At time

∆, it behaves like a current source of increased value, i.e. I + V
L∆

. Use this idea together with

ideas from Chapter 19 to determine how the voltages and currents in a circuit change if it contains

inductors in addition to resistances and current sources. You can use either the first-order Euler

method or the leapfrog method.



CHAPTER24
Structural Recursion

Wewill begin this chapter with the following abstract problem: how to represent a set. For definiteness,

suppose that our program only needs to perform two kinds of operations on a set. We may wish to insert

an element into a set, and we may wish to query whether a certain integer is already in the set. Can we

find a representation which allows both the operations: insertion and querying, to happen fast? Such

representations are very useful, and are indeed used in the standard library containers set and map.

In this chapter, we will study the main idea behind such representations.

The second problem in the chapter concerns the layout of mathematical formulae. Consider the

following mathematical formulae:

π =
4

1 +
12

3 +
22

5 +
32

7 +
42

9 +
. . .

and

n�
i=1

i2 =
n(n+ 1)(2n+ 1)

6

Both are correct, and the first one is rather elegant. Our concern in this chapter, however, is not the

validity or elegance of these formulae. Our concern is much more mundane: how do we layout these

formulae on paper. Where do we place the numerator and the denominator, how long do we make the

lines denoting division? What if the denominator is itself a complicated expression as is the case in

the formula (“continued fraction expansion”) for π? Can we have a computer program make all these

decisions for us? While this is somewhat tricky, many programs are indeed available for doing this. The

most important amongst them is perhaps the TEX program developed by Donald Knuth. The program

TEX has a language for specifyingmathematical formulae, and in this language, the two formulae above

can be specified as

\pi = \cfrac{4}{1+\cfrac{1^2}{3+\cfrac{2^2}{5+\cfrac{3^2}

{7+\cfrac{4^2} {9+\ddots}}}}}
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and

\sum_{i=1}^ni^2=\frac{n(n+1)(2n+1)}{6}

Given this textual description as input, TEX can generate layouts like the ones shown. While the textual

description is quite cryptic, you can probably make some sense of it. You can guess, perhaps, that

the symbol ^ is used by TEX to denote exponentiation. Or that \frac and \cfrac somehow denote

fractions. Even without precisely understanding the language of TEX you can see that the input given

to TEX does not contain any geometric information. The input does not say, for example, how long the

lines in the different fractions need to be drawn. Indeed, all this is determined by TEX, using a nice

blend of science and art.

Both problems: designing representations for sets and laying out mathematical formulae will involve

entities which are defined in a recursive manner! It is customary to say that these entities have a

recursive structure. Such entities are very useful, and this chapter will give a brief introduction to

representing and processing (recursively, of course!) such entities.

24.1 MAINTAINING AN ORDERED SET

The simplest way to store a set is to use a vector (Chapter 22). To insert an element, we simply

use the push_back function. To determine if an element is present, we can scan through the vector.

The scanning operation, however, is rather time consuming: potentiallywe will examine every element

stored in the vector. A slight improvement is to keep the elements sorted in the vector. Then we will

be able to perform membership queries using binary search (Section 16.1), which would go very fast.

However, when a new element is to be inserted, we will need to find its position, and shift down the

elements larger than it. This operation will on the average require us to shift half the elements, and thus

is quite time consuming. So again, this is unsatisfactory.

24.1.1 A Search Tree

There is a way to organize the elements of the set so that insertions as well as membership queries

can be done very fast: we store them in a so called search tree. First, we discuss the correspondence

between a set and a search tree considered abstractly. Then we discuss how the tree can be represented

on a computer.

A search tree is a rooted tree, like the execution tree of Figure 10.4. Each node of the tree holds one

element of the set being stored. As in Section 10.3, we will consider the tree to be growing downward.

Each node can have upto two branches growing downward, denoted left, and right. It is customary to

call the node reached using the left branch the left child, and likewise the node reached by the right

branch, the right child. The children themselves can be considered to be the roots of the (sub) trees

beneath them. A node which has no subtree beneath it is called a leaf. Here is the key property that we

require for a tree storing elements to be a search tree:

Values of elements in the

left subtree of node v
<

Value of element

at node v
<

Values of elements in the

right subtree of node v

An empty set will be represented by an empty tree, i.e. a tree which contains no nodes.

Figure 24.1 shows examples of search trees (parts (a),(b)) and a non-search tree (part

(c)). In each case, we have shown the value of the element stored at each node. Thus the
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Fig. 24.1 Examples (a),(b) and non-example (c) of search trees

tree in (a) would represent the set {18, 34, 40, 56, 70}, while the one in (b) would represent

{10, 12, 18, 30, 31, 35, 36, 50, 51, 60, 65, 77, 78, 86, 93}. In (c), the subtrees beneath the node with

element 34 do not satisfy the search tree property: the right subtree is required to contain elements

larger than 34 but it actually contains the element 30. So the tree in (c) will not represent any set, as

per our scheme.

Search trees are often called binary search trees because each node can have at most two children.

24.1.2 Implementation

A rooted tree is an example of a graph we discussed in Section 23.1 and we can represent rooted trees

in the style of Section 23.2. Thus, we will represent nodes by objects of class Node, and edges by

pointers.

struct Node{

Node *left, *right;

int value;

};

As we said, each node is to store an element of the set, and this will be stored in the member value

in Node. The member left will hold a pointer to the left child if a left child exists, else it will be

NULL. Similarly, for the member right. Each node is also connected to its parent i.e. the node (if

any) whose child it is. However, we will not have a pointer to the parent, because it will not be needed

in the processing we expect to perform.

A search tree (and hence the associated set) is accessed through a pointer to the root node of the tree

storing the elements of the set. The pointer will be made NULL if we wish to represent an empty tree,
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which as we have said represents an empty set. For convenience, we will say the pointer itself represents

the tree or the set; though in reality it merely points to objects which are the actual representation.

We will have functions which perform the operations of insertion and membership query. We will

give the code for these shortly, but here is how we expect them to be used in a main program.

int main(){

Node* myset=NULL;

insert(myset,40);

insert(myset,20);

cout << "Finding 30: " << find(myset,30) << endl;

insert(myset,60);

insert(myset,30);

cout << "Finding 30: " << find(myset,30) << endl;

}

To create a set called myset, we simply declare it to be a Node* as in the first line. Notice that we

have initialized myset to NULL, indicating that the set is empty.

The next two lines respectively insert the integers 40 and 20 into myset. Then the find call

checks whether the integer 30 is present in myset. Clearly, this should return false. The next two

lines respectively insert 60 and 30 into myset. Finally, we check again whether 30 is present. This

time true should get printed.

Next we discuss the insert function. At the time of the very first call, myset points to NULL, since

it is representing the empty set. We would like myset to change as a result of the insertion, and start

pointing to a node containing the value being inserted, 40. Clearly, the set (represented by a pointer of

type Node* to the root) must be passed by reference to insert. So here is the code for insert.

void insert(Node* &pRoot, int elt){

// insert elt into the tree root pointed to by proot.

if(pRoot == NULL){

pRoot = new Node;

pRoot->left = pRoot->right = NULL;

pRoot->value = elt;

}

else{

if(elt == pRoot->value) return;

if(elt < pRoot->value) insert(pRoot->left, elt);

else insert(pRoot->right, elt);

}

}

The algorithm is recursive. The base case is when the tree is empty. In this case, the we must create

a node containing the element being inserted; and the root must point to that. If the tree is not empty,

then we must modify the existing tree to hold the element being inserted. Note that while doing this, we

must maintain the search tree property. Thus, the new element must be inserted in the left subtree if the

value at the root is larger than the element being inserted. If the root value is smaller, then the element

must be inserted in the right subtree. Finally, if the root value equals the element being inserted, then

nothing needs to be done. This is what the above code does.
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Note the importance of passing the root to insert by reference even in the recursive calls. If in

some recursive call, some node v has left (or right) set to NULL, and we wish to insert into the

corresponding subtree, then after the insertion v.left must change. Hence, v.left must indeed be

passed by reference.

We next consider find.

bool find(Node* &pRoot, int elt){

// determines whether elt is present in the tree root pointed to

// by proot.

if(pRoot == NULL) return false;

if(elt == pRoot->value) return true;

if(elt < pRoot->value) return find(pRoot->left, elt);

return find(pRoot->right, elt);

}

The function find returns true if and only if the parameter elt is in the tree pointed to by root.

Its code is again recursive. The base case is if the tree is empty; if so we should clearly return false.

Otherwise, we compare elt to the element at the root. If the two are equal, then we have found elt

and we return true. Otherwise, we must search further. However, note that the search tree property

ensures that we need to search only the left subtree if elt is smaller than the element at the root, and

only the right subtree if elt is larger than the element at the root. This is what the code does.

The exercises ask you to define other operations, e.g. printing the set. As you might guess, most

operations on trees can be naturally tackled using recursion.

24.1.3 On the Efficiency of Search Trees

We explain why we expect find and insert as above to run fast on search trees.

As an example, suppose we have in memory the tree in Figure 24.1(b). Suppose we want to find if

x = 63 is in the tree. Then we would compare x to the number at the root, 50. Finding that x is bigger,

we would decide that we only need to search the right subtree. So next we compare x with the number

stored in the root of the right subtree, which is 77. This time we realize that x which we are looking for

is smaller. So we know we must search the left subtree beneath 77. So we follow the left pointer this

time and get to the node containing the key 60. This time we check and realize that x is in fact larger.

So we follow the right branch out of the node containing number 60. So we get to the node containing

the number 65. Since x is smaller than 65, we know we must go to the left subtree. But there is no

left subtree for the node containing 65! So in this case, we have determined that our number x is not

present in the set. So we return false as the answer.

Notice that we have been able to get to an answer by examining a very few nodes: those nodes

containing 50, 77, 60, and 65. We did not examine the other nodes, yet we deduced that the number

x = 63 could not have been present in the other nodes: because we know that the tree obeys the search

tree property.

Of course, the argument given above depends very much upon the shape of the tree in which the

set was stored. The tree of Figure 24.1(b) was balanced, i.e. both subtrees under each node had exactly

the same number of nodes. If the tree is unbalanced, then the efficiency can become much worse. For

example, consider another tree containing the same element as Figure 24.1(b). Suppose that this new

tree was built up by first inserting the smallest, then the next larger, and so on. As you will see, the

smallest will be at the root, the next larger will be at its right child, the next larger will be at its right
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Fig. 24.2 Another tree containing same elements as in Figure 24.1(b)

child, and so on. Our “tree”, if we could call it that would be a long rightward going path, as shown in

Figure 24.2.

In this case, if you want to search for any element, all elements in the set which are smaller will be

examined. Thus the time would be much larger.

Note that the execution of insert is very similar to that of find. As you can see, the first step

in insertion is to really go to the place in the tree where the element would have been if it was already

present. Thus, the number of tree nodes examined again depends upon the shape of the tree.

More accurately, in any find or insert operation, we examine all the nodes in some root to leaf

path. Obviously, if all such paths are short (i.e. the tree is balanced), then the time will be small. It

turns out that this is likely to be the case under some reasonable assumputions. More formally, define

the height of a tree as the length of the longest root leaf path in a tree. Then the following holds.

Theorem 3 Suppose numbers from a certain set S are inserted into a search tree using our insert

function. Then if the order to insert is chosen at random, then the expected height of the tree is smaller

than 2 ln |S|, i.e. twice the natural log of the number of elements in the set.
The proof of the theorem is outside the scope of this book, but an exercise asks you to validate it

experimentally.

Let us try to understand what the theorem says using an example. Suppose we have a set with size

1000, whose elements are inserted in random order into our tree. Then on the average we expect to see

that the height will be at most 2 ln 1000 ≤ 14. Thus, when we perform membership queries (or further

insertions) we expect to compare the given number with the numbers in at most 15 nodes in the tree.

You could also ask what are the worst and best heights possible for 1000 nodes. Clearly, if the

numbers came in increasing order, then we would get just one path of length 1000 – that would be the

height. The other extreme is a tree in which we keep on inserting nodes as close to the root as possible.

So we would start by inserting two nodes directly connected to the root, then two nodes connected

to each of these, and so on, till be inserted 1000 nodes. So we would have 1 node (the root itself) at
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distance 0, 2 nodes at distance 1, 4 nodes at distance 2 and so on till 256 nodes at distance 8, and the

remaining 1000− 256− 128− · · · − 1 = 489 nodes at level 9. So the height of this tree would be 9.

So it is nice to know that on the average we are likely to be much closer to the best height rather

than the worst. Or alternatively, on the average our find and insert functions will run fast.

24.1.4 Packaging Search Trees/Sets

The code we have developed for representing search trees (and thereby sets) is functionally correct.

However, from a stylistic point of view it leaves a lot to be desired. For example, the basic declaration

of a set: Node* myset = NULL; is somewhat ugly. It would be much nicer if we could instead

declare:

Set myset;

which clearly states that myset is a set. We show next how this can be done.

We will define a class Set which will have a data member pRoot which will hold a pointer to the

root of the tree containing the set. The class will have constructor which initializes to the empty set,

and member functions insert and find.

struct Node; // forward declaration

class Set{

Node *pRoot;

public:

Set(){pRoot=NULL;} // initialized to empty set.

void insert(int elt);

bool find(int elt);

};

struct Node{

Set left, right;

int value;

Node(int v){ value = v; }

};

You will notice that we have changed the type of the members left, right in our struct Node

to Set from the earlier Node*. Note that a Set object is essentially a Node* because it only contains

one data member of type Node*. However by defining left, right to be of type Set, we can

make recursion work in the implementation of member functions insert and find.

bool Set::find(int elt){

if(pRoot == NULL) return false;

else{

if(elt == pRoot->value) return true;

else if(elt < pRoot->value) return pRoot->left.find(elt);

else return pRoot->right.find(elt);

}

}
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void Set::insert(int elt){

if(pRoot == NULL){pRoot = new Node(elt);}

else{

if(elt < pRoot->value) pRoot->left.insert(elt);

else pRoot->right.insert(elt);

}

}

As you can see, the functions follow the same logic as before, but are simpler to read because there are

no references to pointers etc. The main program is also nicer to read.

int main(){

Set myset;

myset.insert(40);

myset.insert(20);

cout << "Finding 30: " << myset.find(30) << endl;

myset.insert(60);

myset.insert(30);

cout << "Finding 30: " << myset.find(30) << endl;

}

Note by the way that the user now does not need to know about struct Node. This becomes a part

of the implementation which is to be hidden from the user.

24.1.5 Balancing a Search Tree

You might be bothered that the above program will work fast “on the average”, but might take very

long if you are unlucky. What if the numbers in the set got inserted in ascending order, or some such

bad order?

In that case, there are advanced algorithms that try to balance the tree as it gets built. This is done by

modifying an already built tree, and say changing the root. With such rebalancing, it is indeed possible

to ensure that the height of the tree remains small. Further, rebalancing algorithms have been developed

that also run very fast. But this is outside the scope of this book.

24.1.6 Search Trees and maps

The (index,value) pairs constituting a map from the C++ Standard Library are stored using

binary search trees. The ordering rule is that all pairs in the left subtree must have index smaller than

that at the root, which in turn must be smaller than the indices of the elements in the right subtree.

Further, the tree is kept balanced as discussed above. Thus making an access such as map[index]

happens fairly fast, i.e. if n is the number of pairs stored in the map, then the longest path length is
proportional to lnn, or equivalently to log2 n.

24.2 LAYOUT OF MATHEMATICAL FORMULAE

We now consider a very tiny version of the formula-layout problem. Specifically, we will consider

formulae in which only the 2 arithmetic operators + and / are used. Our program must take any such
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formula, written in a language like the TEX language mentioned at the beginning of the chapter, and

produce a layout for it. This layout must be shown on our graphics canvas. As you will discover in

the exercises, once you master sum and division, implementing other operators and more complex

operations such as summations using the
�

symbol is not much more difficult. Of course, all this will

still be far from what TEX accomplishes.1

24.2.1 Input Format

The first question, of course, is how we should specify the formula to the program. One possibility is

to just use the TEX language. However, that seems too elaborate, after all we only have two operators.

Another possibility is to specify the formula in the style used in C++ to specify mathematical formulae,

e.g. to get a
b
we could supply a/b as input.

We will indeed use the C++ style, but with a slight variation. We will require that the formula be

specified in the style used in C++, with the operands to the + operator as well as the / operator placed

in parentheses.

So as a simple example, whereas in C++ you could write a/b, to specify this to our program you

would have to write (a/b), because the rule says that the operands to every operator must be inside

parentheses. Figure 24.3 gives some more examples. As you can see, the input required by our program

is more verbose as compared to what is required to specify the formula in C++. In the exercises, we

will explore the issues in allowing less verbose input.

We should note an interesting feature of our input format. You will note that any formula written in

the style described above will have one of the following three forms:

• p : where p is a primitive formula, i.e. an identifier or a number.

• (L+R) : where L and R are themselves formulae. For example, in

((((x+1)/(x+3))+(x/5))+6)

we have L = (((x+1)/(x+3))+(x/5)) and R = 6

• (L/R) : where L and R are themselves formulae. For example, in (a/(b+c)) we have L = a

and R = (b+c).

Desired output Input required by our program

0. a a

1. a
b+c

(a/(b+c))

2. a + b
c

(a+(b/c))

3. a + b+ c+ d (((a+b)+c)+d)

4. x+1
x+3 + x

5 + 6 ((((x+1)/(x+3))+(x/5))+6)

Fig. 24.3 Examples of output and input

1 TEX is a complete document processor. Furthermore, even for the purpose of laying out mathematical formulae, it is very
sophisticated. For example, it adjusts sizes of the text, which our programwill not.
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In other words, formulae are built up either using primitive formulae (“base case”) or other formulae.

Hence, a formula is said to have a recursive structure. The recursive structure will be very useful.

In the input, we must also specify where we want the layout to appear. Should it appear in the center

of the graphics canvas, or in the top left corner, or somewhere else? We can think of the layout as

contained in a bounding box, by which we mean the smallest (axis parallel) rectangle that contains it.

For simplicity, we will say that the program should produce a layout such that the top left corner of

the bounding box of the layout appears at a given point (x, y), i.e. x, y will be two additional inputs to

the program. In what follows, we will use the phrase “draw the formula at (x, y)” to mean “draw the

formula such that the top left corner of the bounding box of its layout is at (x, y)”.

24.2.2 Representing Mathematical Formulae

The user types in the formula in the format described above. It must then be read by our program

and converted into a convenient representation for subsequent processing. For subsequent processing,

it will be convenient if we can access the subformulae very easily. For this it is customary to view a

formula as a rooted tree, sort of like the execution tree of Figure 10.4, or a search tree discussed earlier.

Figure 24.4 shows two formulae drawn as rooted trees. Leaf nodes, i.e. nodes that have no children

correspond to primitive formulae. Internal nodes (i.e. nodes that are not leaves) are associated with

an operator. A subtree, i.e. any node and all the nodes below it, represents a subformula used to build

up the original formula. For example, in Figure 24.4(a), the subtree including and beneath the node

labelled + corresponds to the subformula b+ c. Similarly, in Figure 24.4(b), the node labelled / on the

left side and the nodes below it correspond to the subformula x+1
x+3

, whereas the node labelled / on the

right and the nodes below it together correspond to the subformula x5 .

Thus, our program will read in a formula, and represent it in memory as a rooted tree. The rooted

tree will be represented as per the discussion in Section 24.1.2, i.e. the nodes will be represented

by structures and the edges by pointers. The structure representing a node will hold the information

associated with a node, e.g. whether the node is associated with an operator, and if so which one, or

whether the node is associated with a primitive formula, and if so which one. And of course the node

will contain pointers to nodes that are connected to it. So we define a structure Node as follows.

struct Node{ // we give member functions later.

char op; // operator associated with the node if any.

string value; // primitive formula associated with the node if any.

(a) (b)

/

+a

b c

+

/

+

+

/

x x

+

1 x 3 5

6

Fig. 24.4 (a) Tree for a

b+c
(b) Tree for x+1

x+3
+ x

5
+ 6
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Node* L; // pointer to left subformula if any.

Node* R; // pointer to right subformula if any.

};

This structure can be used to represent primitive as well as non-primitive formulae. If a formula is

primitive, i.e. consists of an identifier or a number, we will store that symbol or number in the member

value as a character string. Otherwise, the formula must be a binary composition of two smaller

formulae. In this case, we store the operator in the op member, and we store pointers to the roots of

the subformulae in the members L,R. A node may also have a connection to a parent node; however

we have chosen not to have a pointer to the parent node because it will not be needed in the processing

that we will do on nodes.

It will be convenient to have two constructors for nodes. The first constructor is useful for

constructing nodes corresponding to primitive formulae.

Node::Node(string v){ // primitive formula constructor

value = v;

op = ’P’; // convention: ’P’ in op denotes primitive formula.

L = NULL;

R = NULL;

}

A primitive formula does not have subformulae, and hence we have set L, R to NULL. Here is how

we can call this constructor.

Node aexp("a");

Node bexp("b");

Node cexp("c");

This creates nodes aexp, bexp, cexp corresponding to primitive formulae a, b, c. To combine

these formulae into bigger formulae we need another constructor.

Node::Node(char op1, Node* L1, Node* R1){

// recursive constructor

value = "";

op = op1;

L = L1;

R = R1;

}

The arguments to the constructor are pointers L1, R1 to nodes representing subformulae, and the

operator op1 using which the subformulae are expected to be combined. As an example, to construct

a representation for b+ c, we will need the operator to be +, and L, R to be (pointers to) nodes

representing b, c. But we have already created bexp, cexp for this purpose. Thus, we can construct

the tree representing the expression b+ c by writing

Node bplusc(’+’, &bexp, &cexp);

Finally to represent a
b+c it suffices to write

Node f1(’/’, &aexp, &bplusc);
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Thus, f1 will be the root of the tree for the formula a
b+c . Thus, we can say that f1 represents the

formula. Or alternatively, we can also construct a representation more directly:

Node f2(’/’, new Node("a"),

new Node(’+’, new Node("b"), new Node("c"))

);

An important point to note here is that the operator new when used on a constructor call returns

a pointer to the constructed object, which is exactly what we want as an argument to our recursive

constructor. Thus, f2 will also be a root of the tree for the formula a
b+c , and can thus be said to

represent the formula.

There is a difference between the two constructions, however. In the first construction, all memory

for the formula comes from the current activation frame. In the second construction, all memory except

for the node f2 comes from the heap, the memory for f2 comes from the current activation frame.

Once we have a representation for formulae, our task splits into two parts:

1. Read the formula from the input in the format specified in Section 24.3 and build a representation

for it using the Node class.

2. Generate the layout from the constructed representation. It is natural to define member functions

on Node which will generate the layout.

We consider these steps in turn.

24.2.3 Reading in a Formula

For simplicity, we will make two assumptions: (a) Each number or identifier is exactly one character

long, and (b) there are no spaces inside the formula. In the exercises you are asked to write code which

allows longer primitive formulae and also spaces.

We read the formula character by character and build a representation as we go along. To read a

character from a stream infile, we can use the operation infile.get() which returns the next

character as an integer value.

If the very first character read is a number or a letter, then we have indeed read a primitive formula

and we can stop.

If what is read is the character ’(’, then we know that the user is supplying us a non-primitive

formula. In that case we know that we must next see in succession (a) the left-hand-side formula,

(b) an operator, and (c) the right-hand-side formula. To read in the left-hand-side formula, we merely

recurse! After the formula has been read, we read a single character, and it had better be an operator,

as per (b). After that we recurse again, in order to get the right-hand-side formula, as per (c)! And after

that we must see a ’)’ to match the initial open parenthesis. We have written this as another constructor.

Note that our code is extremely simple but it can read in very complicated formulae.

Node::Node(istream &infile){

char c=infile.get();

if((c >= ’0’ && c <= ’9’) || // is it a primitive formula?

(c >= ’a’ && c <= ’z’) ||

(c >= ’A’ && c <= ’Z’)){

L=R=NULL; op=’P’; value = c;

}
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else if(c == ’(’){ // does it start a non-primitive formula?

L = new Node(infile);// recursively get the lhs formula

op = infile.get(); // get the operator

R = new Node(infile);// recursively get the rhs formula

if(infile.get() != ’)’)

cout << "No matching parenthesis.\n";

}

else cout << "Error in input.\n";

}

Now we can write a part of the main program.

int main(){

Node f(cin);

}

This will call our latest constructor with the parameter infile being cin, i.e. the formula will be

read from the keyboard. You may type in something like

(a/(b+c))

and it will create f, just as we created f2 earlier.

24.2.4 The Drawing Algorithm

The input to the drawing step will be a formula F (specified by the root of its tree representation), and

numbers xF , yF . The requirement is that the formula F be drawn at (xF , yF ), i.e. so that the top left

corner of the bounding box of the layout of F is at (xF , yF ).

It is natural to consider recursion. If F is a primitive formula, we should draw it directly at a suitable

place. If F has the formL/R or L+ R, then we will recursively draw f, g, and also draw the horizontal

bar or the + symbol as needed. Figure 24.5 shows this general scheme. We have not used C++ code in

this figure so as to make it easier to write subscripts etc. In order to make this general scheme work,

we need to determine values of the various coordinates, i.e. xp, yp and so on.

Draw(F, xF , yF ){ // Draws F at (xF , yF )

1. If F is some primitive formula p, then write the text of F at a suitably determined point

(xp, yp).

2. Else if F has the form L/R, then determine xL, yL, xR, yR suitably and call

Draw(L, xL, yL), Draw(R, xR, yR). Also determine x
�, y�, x��, y�� and draw a line from

(x,� y�) to (x��, y��).
3. Else if F has the form L+ R, then determine xL, yL, xR, yR suitably and call

Draw(L, xL, yL), Draw(R, xR, yR). Also determine x
�, y� and draw the symbol + at

(x�, y�).

}

Fig. 24.5 General recursive strategy for drawing
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You should take a minute to reflect on the strategy given in Figure 24.5. True, we have not

yet specified how to determine all the numbers xp, yp, xL, yL, xR, yR . . .. Nevertheless, it is worth

admiring the elegance of this strategy: it only has three relatively simple-looking steps, and will yet be

able to draw arbitrarily large and complex formulae! This is the power of recursion.

Next we consider how to determine the numbers xp, yp, xL, yL, xR, yR . . . of Figure 24.5.

If the formula being drawn is primitive, i.e. F = p where p is a primitive formula, we can determine
its width wp and height hp using the functions textWidth and textHeight from Section 5.3.4.

Then we just ask the text for p to be written centered at (xF + wp/2, yF + hp/2). This is the base case

of the recursion (case 1 of Figure 24.5) and it is easily handled.

Next we consider the second case of Figure 24.5, i.e. F = L/R. It is worth taking an example. Say

L = a and R = 2
1

a
+b
. Then the layout is

We have drawn the bounding boxes of L,R and also of L/R. The boxes of L,R will really be in

contact with the box of L/R, we have drawn them separated for ease of understanding. As you can

see, the formula L must be at the top. Given that (xL, yL) denote the coordinates where L is to be

drawn, we have

yL = yF (24.1)

Below L, there must be a horizontal bar denoting the division, below which there must be the formula

R. Thus, given that given that R is to be drawn at (xR, yR), we have

yR = yF + hL + h− (24.2)

In this, hL denotes the height of the layout of L when drawn out completely, and h− denotes the

vertical space needed to accommodate the horizontal bar. See Figure 24.6(b). Thus, we must determine

the height of the layout of L before we can draw F . We will see how to do this shortly. To find xL, xR,

we first note that L,R must be aligned so that their centers are on the same vertical line. Further, we

can see (Figure 24.6(b))

wF = max(wL, wR) (24.3)

where wF , wL, wR are the widths of the layouts of F, L, R. Thus, the x coordinate of the centers of

F, L, Rmust be at xF +wF /2. Thus,

xL = xF +wF/2− wL/2 (24.4)

xR = xF + wF/2−wR/2 (24.5)

As for drawing the horizontal bar, it is easy to see that

x� = xF (24.6)
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Fig. 24.6 Composing layouts

y� = yF + hL + h−/2 (24.7)

x�� = xF +wF (24.8)

y�� = y� (24.9)

Thus, if only we know the widths and heights of L,R we will be able to implement case 2 of

Figure 24.5.
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Next consider case 3 of Figure 24.5, i.e. F = L+ R. As an example, as before, let L = a and

R = 2
1

a
+b

. Then the layout of F = L+ R is:

As before, we have shown the bounding boxes for L,R as well as F . Now we can see that the layout

of L is leftmost inside the layout of F . Thus,

xL = xF (24.10)

The layout of R begins at a distance wL + w+, where the w+ is the width needed to layout the +

symbol. See Figure 24.6(a). Thus,

xR = xF +wL + w+ (24.11)

Determining yL, yR is a little tricky. For this, we need to understand how L,R and the symbol + align

with each other. In our example, the center of L which is just the primitive symbol a aligns with the

horizontal bar of +. On the other hand, the horizontal bar of + does not align with the center of R, but

instead aligns with the horizontal bar separating the numerator and the denominator of R. So it seems

that with each layout is associated a horizontal line, which we will call the operator level, which must

align with the horizontal bar of the +. Clearly, the operator level for a primitive formula passes through

its center, whereas that for a ratio passes through the horizontal bar inside it.

So this points to a complication.We need to know the position of the operator level for each formula,

and not just the height and width. For a formula f , let its ascent denoted as af be the distance to which

the formula rises above its operator level. Let its descent denoted as df be the distance to which the

formula dips below its operator level. As can be seen from Figure 24.6(a), when we align the operator

levels, the formula F = L +R will rise above the operator line by a distance equal to the maximum

of the ascents of the L,R. In other words, we have

aF = max(aL, aR) (24.12)

Similarly,

dF = max(dL, dR) (24.13)

Noting that the operator level of L,R align, we have

yL = yF + aF − aL (24.14)

yR = yF + aF − aR (24.15)

Finally, we need to decide where the + needs to be placed. From Figure 24.6(a), we see that the

coordinates are:

x� = xF + wL +w+/2, (24.16)

y� = yF + aF (24.17)

Thus, we are now in a position to implement step 3 of Figure 24.5 if only we could determine the

width, height, ascent and descent of the various formulae. Note by the way that the ascent, descent and

height are related. For any formula f , hf = af + df .
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So the question is, can we determine the height, width, ascent, and descent of each subformula in

our target formula? We do know some additional relationships between these quantities. For example,

we know that

wL+R = wL +w+ +wR (24.18)

This is immediate from Figure 24.6(a). Notice that equations (24.3) and (24.18) express the width of a

formula in terms of the widths of its subformulae. Thus, we can compute this by recursion! Likewise

equation (24.12) expresses the ascent of L+ R in terms of aL, aR. We could write this recursively if

we could determine aL/R as well. From Figure 24.6(b), this is seen to be

aL/R = hL + h−/2 (24.19)

Likewise,

dL/R = hR + h−/2 (24.20)

Thus, we have the ascents and descents also expressed in terms of the ascents and descents of the

subformulae. So we can determine these by recursion also.

So now we are ready to write the code. Our drawing code will be in the spirit of Figure 24.5.

However, but before calling draw, we will call another recursive function which will determine widths,

heights, ascents and descents.

24.2.5 Implementation

We will write a member function called setSizes in Node that will determine height, width etc.

For drawing we will have a member function draw, along the lines of Figure 24.5. Here is the new

declaration of Node.

struct Node{

static const int h_bar = 10; // space for horizontal bar

Node *L, *R;

char op;

string value;

double width, height, ascent, descent;

Node(string v);

Node(char op1, Node* L1, Node* R1);

Node(istream& infile);

void setSizes();

void draw(double clx, double y); // to actually draw

};

Note that h_bar is h− in the discussion above. Further, we have added data members to hold the

width, height, ascent, descent for each formula denoted by the subtree under the node.

We have already given the implementations for the constructors. The member function setSizes

will calculate the values of width, height, ascent, descent using the recursive ideas described above.

Here is the code for it.

void Node::setSizes(){

switch (op){
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case ’P’: // Primitive formula

width = textWidth(value);

height = textHeight(); ascent = descent = height/2;

break;

case ’+’: // case L+R

L->setSizes();

R->setSizes();

width = L->width + textWidth(" + ") + R->width;

descent = max(L->descent, R->descent);

ascent = max(L->ascent, R->ascent);

height = ascent + descent;

break;

case ’/’: // case L/R

L->setSizes();

R->setSizes();

width = max(L->width, R->width);

ascent = h_bar/2 + L->height;

descent = h_bar/2 + R->height;

height = ascent + descent;

break;

default: cout << "Invalid input.\n";

}

}

This follows the ideas of Section 24.2.4. The first case, when the formula is primitive, is straightfor-

ward. For the case when the formula is a sum, we first call setSizes on R and L, i.e. calculate

height, etc. After this, we use Eq. (24.18) to calculate the width, Eq. (24.12) to calculate the ascent,

and Eq. (24.13) to calculate the descent. The height is set to the sum of the ascent and the descent. For

the final case, i.e. the formula is a ratio, we again first calculate the height etc. for the subformulae.

After this we use equation (24.3) to compute the width, equation (24.19) to calculate the ascent, and

equation (24.20) to calculate the descent. The height is set as the sum of the ascent and the descent.

The member function draw actually does the drawing, using the outline from Figure 24.5.

void Node::draw(double xF, double yF){

switch(op){

case ’P’:

Text(xF + width/2, yF + ascent, value).imprint();

break;

case ’+’:

L->draw(xF, yF + ascent - L->ascent);

R->draw(xF + L->width + textWidth(" + "), yF + ascent

- R->ascent);

Text(xF + L->width + textWidth(" + ")/2, yF + ascent,

string(" + ")).imprint(); // draw the ’+’ symbol

break;

case ’/’:

L->draw(xF + width/2 - L->width/2, yF);
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R->draw(xF + width/2 - R->width/2, yF + L->height + h_bar);

Line(xF, yF + ascent, xF + width, yF + ascent).imprint();

// horizontal bar

break;

default: cout << "Invalid input.\n";

}

}

The case when the formula is primitive is straightforward. For the case ’+’ above, L is drawn at

the coordinates as given by equations (24.10) and (24.14). Then R is drawn at coordinates given by

Eq. (24.11) and (24.15). The position of the + is as per equations (24.16) and (24.17). The case when

the formula is a ratio is also as per the discussion of Section 24.2.4. L is drawn at coordinates as per

equations (24.4) and (24.1). Likewise, R at coordinates as per equations (24.5) and (24.2). Finally, the

horizontal bar is drawn as per equations (24.6–24.9).

24.2.6 The Complete main Program

Here is the main program.

int main(){

initCanvas("Formula drawing");

Node e(’+’, new Node("1"),

new Node(’/’, new Node("2"),

new Node(’+’, new Node(’/’, new Node("451"),

new Node("5")), new Node("35"))));

e.setSizes();

e.draw(50,50);

Node g(cin);

g.setSizes();

g.draw(250,50);

getClick();

}

The formula e is specified as a part of the program and then drawn. The formula g on the other hand

is read from the keyboard. Suppose you typed

((((x+1)/(x+3))+(x/5))+6)

to the program. Then you would get the drawing shown in Figure 24.7.

Fig. 24.7 Layout of some formulae
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We should perhaps use the name Formula instead of Node, to indicate its function rather than

implementation. Since we are unlikely to need to represent an empty formula, it is not necessary to

package formulae in the style we packaged sets in Section 24.1.4.

24.2.7 Remarks

Recursive structures appear in many real-life situations. For example, the administrative heirarchy of

an organization is recursive, e.g. there is a director/president/prime minister, to whom report deputies,

to whom report further deputies.

It is natural to associate a tree with a recursive structure. The substructures are denoted as subtrees,

and the element joining the subtrees, e.g. the director, will correspond to the root. In the case of

mathematical expressions, the operator corresponds to the root, and the sub expressions correspond

to the subtrees.

You may be wondering why we require that the formulae to be layed out be specified in our verbose

format; why not just specify them as they might be in C++? It turns out that getting a program to read

formulae in C++ like languages is a classical computer-science problem, in its most general setting. If

you pursue further education in computer science, you will perhaps study it in a course on compiler

construction, or automata theory. For now suffice it to say that reading C++ style expressions is a

difficult problem. However, in the exercises you are encouraged to think about it.

EXERCISES

1. Add a print member function to the Set class so that elements of a set can be printed. Hint:

use recursion: first print the members in the left subtree, then the value stored at the current node,

and then the value in the right subtree.

2. Your answer to the previous problemwill likely print absolutely nothing for an empty set. Suppose

that you are to print a message “Empty set” in such cases. Hint: Use one non-recursive member

function which calls a recursive one.

3. Add a member function with signature int smaller(int elt) which returns the number

of elements in the set smaller than elt. Hint: Add a member count to each node which will

indicate the number of nodes in the subtree below that node. You will need to update count

values suitably whenever you insert elements. Now use the count value to respond to smaller.

4. Experimentally verify Theorem 3. Let n denote the number of elements in the set. Assume without

loss of generality that the elements in the set are integers 1, 2, . . . , n. Run the insertion algorithm

by generating numbers between 1 and n (without replacement) in random order. Measure the

height of the resulting tree. Repeat 100 times and take the average. Repeat for different values of

n and plot average tree height versus n.

5. Modify the code of the Set class so that the allocated memory is returned to the heap whenever

a Set object is destroyed. Do this by writing an appropriate destructor. For this, you will need

to note that when a destructor is called on an object, it will cause destructors to be called on

the members of that object as well. Also note that if you delete an object its destructor will

automatically be called.
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6. Extend the formula-drawing program so that it allows the operators ’*’, ’+’ and’-’. This is not

entirely trivial: make sure your program works correctly for input ((x+3)*(x-2)). You will

see that you may need to add parenthesization to the output. For simplicity, you could parenthesize

every expression when in doubt.

7. Add an operator ’^’ to denote exponentiation in the formula drawing program. In other words,

allow Node(’^’,Node("x"), Node("y")) which should be drawn as xy .

8. In Section 24.2, we assumed that the input will be given with no spaces in it. Modify the code

developed in that section so that the user may include spaces in the input, say between operators

and operands.

9. The expression infile.peek(); returns the next character in the file without actually reading

it. Use this to modify the code of Section 24.2 further so as to allow primitive expressions to be

longer than a single character.

10. Howwill you represent integrationwith lower and upper limits, and the integrand? In other words,

you should be able to draw formulae such as

� 1
0

x2dx

x2 + 1

Hint: The best way to do this is to use a ternary operator, say denoted by the letter I, which

takes as arguments 3 formulae: the lower limit L , the upper limit U, and the expression E to be

integrated. You could require this to be specified as (L I U E).

11. As we have defined, our formulae cannot include brackets. Extend our program to allow this. You

could think of brackets being a unary operator, say B. Since it is our convention to put the operator

second, you could ask that if a formula F is to be bracketed, it be written as (F B). Make sure

that you draw the brackets of the right size.

12. You may want to think about how the program might change if the formula to be layed out is

specified in the standard C++ style, i.e to draw a+ b
c
the input is given as a+b/c rather than

(a+(b/c)) as we have been requiring. The key problem as you might realize, is that after

reading the initial part a+b of the input, you are not sure whether the operator + operates on a,b.

This is the case if the subsequent operator, if any, has the same precedence as +. However, if the

subsequent operator has higher precedence, as in the present case, then the result of the division

must be added to a. So you need to look ahead a bit to decide structure to construct. This is a

somewhat hard problem, but you are encouraged to think about it. Note that your job is not only

to write the program, but also argue that it will correctly deal with all valid expressions that might

be given to it.
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13. Add a deriv member function, which should return the derivative of a formula with respect to

the variable x. Use the standard rules of differentiation for this, i.e.

d(uv)

dx
= v

du

dx
+ u

dv

dx

This will of course be recursive. You should be able to draw the derivatives on the canvas, of

course.

14. You will notice that the result returned by deriv often has sub-expressions that are products in

which one operand is 1 and sums in which one operand is 0. Such expressions can be simplified.

Add a simplifymember function which does this. This will also be recursive.



CHAPTER25
Inheritance

Inheritance is one of the most important notions in object-oriented programming. The key idea is: you

can create a class B by designating it to be derived from another class A. Created this way, the class

B gets or inherits all the data members and ordinary function members of A. In addition to what is

inherited, it is possible to include additional data and function members in B. It is also possible to

redefine some of the inherited function members. The class B thus created, is said to be a subclass of

the class A. As you might suspect, this is a convenient way to create new classes.

The most common and natural use of inheritance is in the following setting. Suppose, a program

deals with categories of objects, which are divided into subcategories. For example, a programmight be

concerned with bank accounts, and these may be divided into different types of accounts, e.g. savings

accounts and current accounts. Or a program might be concerned with drawing geometric shapes on

the screen, and the category of shapes, as we have seen, might be subdivided into subcategories such

as circles, lines, polygons and so on. In such cases it turns out to be useful to represent a category (e.g.

accounts or geometric shapes) by a class, and subcategories (savings accounts and current accounts, or

lines and circles) by subclasses. As you will note, the attributes associated with a category (e.g. account

balance, or screen position) are present in the subcategories. Hence, it is natural that these attributes

will be defined in the class corresponding to the category. These attributes will be inherited when we

define subclasses corresponding to the subcategories. In each subclass we need additionally define the

attributes which are specific to the corresponding subcategory. For example, in the circle subclass we

could define the attributes center and radius, while the polygon class will have vertices as the attributes.

Categories and subcategories are common in real life, and hence inheritance can play a central role in

the design of complex programs.

First some terminology. Suppose we derive a class B from a class A using inheritance. It is customary

to say that class B is a subclass of class A, is derived from A, or obtained by extending class A. And of

course, B is said to inherit from A. It is likewise customary to say that A is a superclass of B, or base

class of B or sometimes the parent class of B. We can have several classes say B,C,D inheriting from

A. In turn, we may have classes E,F inheriting from B. In such a case, the classes A, B, C, D, E,

F are said to constitute an inheritance heirarchy.

In this chapter, we will mainly consider the mechanics of inheritance. We begin by considering a

simple example and then discuss how to use inheritance in general. An important aspect of inheritance

is that we can have many views of an object; sometime we might consider it to be an instance of a
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subcategory (e.g. a circle) at other times we may consider it as belonging to a category (e.g. a shape).

In order to be able to shift views smoothly, we need the notions of polymorphism and virtual functions.

We discuss these notions.

In the last section, we will discuss an example which will help you see the utility of the machinery

we develop. More will come in the next chapter, where we consider how to design programs using

inheritance.

25.1 TURTLES WITH AN ODOMETER

Suppose we wish to design a class mTurtle (short for metered turtle) which is exactly like the class

Turtle, except that the turtle will keep a count of how much distance it has covered. So a mTurtle

will be able to move forward, turn, change colours etc. just like a Turtle, but in addition it will have

a member function distanceCovered which will return the total distance covered till then.

Here is an example of a main program that we would like to write.

int main(){

initCanvas();

mTurtle m;

m.forward(100);

m.right(90);

m.forward(50);

cout << m.distanceCovered() << endl;

}

This program should print 150.

25.1.1 Implementation using Composition

We first consider how mTurtle could be implemented without inheritance, using what you already

know. A simple idea is to compose an mTurtle object by having a Turtle object as a member. We

will call this class mTurtleC.

class mTurtleC{ // Solution using composition. (no inheritance).

Turtle t;

double distance;

public:

mTurtleC(){

distance = 0;

}

forward(double d){

distance += abs(d); // because d may be negative.

t.forward(d);

}

double distanceCovered(){

return distance;

}

void right(double angle){

t.right(angle);

}
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void left(double angle){

t.left(angle);

}

// similar forwarding code for other functions allowed on Turtle..

};

As you can see, inside mTurtleC, we have a Turtle object which you will see on the screen,

and a member distance which keeps track of how much the turtle has moved. Clearly, when an

mTurtleC is created, we should set distance to 0, which is what the constructor above does. The

constructor does not appear to do much with the turtle member t. But you know that the member t

is also created, using the default Turtle constructor. Thus, a turtle will appear on the screen. The

member function forward in mTurtleC causes distance to be updated, and causes the turtle to

move as well. Finally, the member function distanceCovered prints distance as expected.

The code for right is simple, we just call the function right on member t, with the same

argument. We will have to write such forwarding functions for other functions such as left, hide

and so on.

Clearly, this will enable us to write the main program given earlier; we merely have to use

mTurtleC in it instead of mTurtle. The solution is fairly satisfactory, the main drawback is the

need to write the forwarding functions.

25.1.2 Implementation using Inheritance

Using inheritance, we can define a metered turtle more compactly, as follows. We will call this class

mTurtleI.

class mTurtleI : public Turtle{ // solution with inheritance

float distance;

public:

mTurtleI(){

distance = 0;

}

void forward(float d){

distance += abs(d);

Turtle::forward(d);

}

float distanceCovered(){

return distance;

}

};

We will shortly explain what each line in this does. For now, we merely note that this will essentially

do what the code in Section 25.1.1 did. With this, we will be able to run the main program given at the

beginning of Section 25.1, of course we will need to use mTurtleI in the main program instead of

mTurtle.

Note that we have not defined functions such as right. We have not explicitly defined the member

t of type Turtle. As we will see next, these are inherited!
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25.2 GENERAL PRINCIPLES

In general, we can define a class B as a subclass of an existing class A, by writing

class B : type-of-inheritance A {

// body describes how B is different from A

}

In this, type-of-inheritance can either be public, private or protected. We begin our

discussion with public inheritance, which was used in our class mTurtleI in the previous section.

We will discuss other types of inheritance in Section 25.7.

Note that the name A must itself already have been defined when we define B. This is typically

accomplished by including the header file of A.

The above definition will create a class B which starts off with all data members and function

members of A, except for the constructors and the destructor. If we want B to have some additional

data or function members, we define them in the body. We can also redefine some functions that were

present in A—the new definitions will be used for objects of class B. We discuss the details next.

As we have said, the data members present in A will also appear in the objects of class B. They will

appear individually, i.e. we will be able to access them directly as per some rules that we discuss soon.

However, we can also think that the inherited members together constitute an inherited object of class

A inside each object of class B. In addition, we can have new data members, by defining them in the

body of the definition of class B.

Thus, for our class mTurtleI of Section 25.1.2, we will get the inherited object and the new

data member distance. As you may guess, a Turtle object will contain many data members, for

example a member color (of type Color) which holds information about the colour of the turtle.

These would be included in of mTurtleI. Figure 25.1(a) shows the contents of the object produced

for the class mTurtleI. For comparison, in Figure 25.1(b), we have also shown the contents of an

object of type mTurtleC as well. An object of class mTurtleC has two data members, a member

distancewhich is a double and a member t which is a Turtle. Thus, both objects of Figure 25.1

really contain the same information. The main difference is that in mTurtleC the members of the

contained turtle object t such as color are not directly accessible, whereas in mTurtleI, these

members are directly accessible.

All the member functions in class A, except for the constructors and destructor are assumed present

in B. These functions will refer to members of A, but this will not cause a problem because these

members are also inherited. The body of the definition can also contain additional member functions

(a) mTurtleI object

"Inherited object"

(b) mTurtleC object

distance  : double

t   : Turtle

distance  : double

color : Color

..other members
inherited from
Turtle..

Fig. 25.1 Contents of objects of class mTurtleI and class mTurtleC
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that are only meant for B. The body may also contain redefinitions of inherited member functions.

For example, suppose the body contains a definition of f, which is an inherited member function, i.e.

a function already defined in A. In such a case, the new definition is to be used with instances of B.

The new definition is said to override the old definition, and will be used for objects of class B. The

definition of f from A will continue to be used for objects of class A. Instances of class B can also use

the old definition from A if necessary. Only, to do that, a slightly involved syntax is needed. Instead of

just using the name f of the function, we must write A::f.

We have seen examples of all this in the definition of mTurtleI in Section 25.1.2. We defined a

new member function distanceCovered, which is not present in the superclass Turtle, but is

special to the class mTurtleI. We also redefined themember functionforward present in Turtle.

The new function changes the distancemember appropriately, and also calls the functionforward

in class Turtle, using the syntax Turtle::forward. You can consider this function as being

called on the inherited Turtle object inside mTurtleI.

Note that although objects of class B inherit all data members of A, their accessibility is limited. In

fact, the accessibility of the inherited function members is also limited. We discuss the precise rules

for this next.

25.2.1 Access Rules and protected Members

Suppose that m is a data or function member of A and b is an instance of B, a subclass of A, obtained

using public inheritance. Then the manner in which the member m of instance b can be accessed is

determined by the following rules.

Case 1: m is a public member of A

In this case, we can consider m to be a public member of B as well. In other words, m can be accessed

inside the definition of B, as well as outside the definition of B.

Case 2: m is a private member of A

Then m cannot be accessed in the code that we write inside the definition of B. And of course it cannot

be accessed outside. In other words, private members are accessible only inside the definition of the

class in which the member was defined (and its friend classes). The subclass instances cannot directly

access private members of the superclass. This is not to say that private members of the superclass are

useless. There might well be a public or protected (see below) member function f of A which refers to

m. Now, the code in B can refer to f, and hence it will indirectly refer to m.

Case 3: m is a “protected” member of A

The notion of protected is as follows. If a member of a class A is designated as protected then it

can be accessed only inside the definition of A or of its subclasses. In other words, a protected member

is less accessible than a public member (which is accessible everywhere), and more accessible than

a private member, (which is accessible only in the definition of A). Note that m is to be considered a

protected member of B as well.



370 An Introduction to Programming through C++

We illustrate the above rules using the following code snippet.

class A{

int p;

protected:

int q;

int getp(){return p;}

public:

int r;

void init(){p=1; q=2; r=3;}

};

class B: public A{

double s;

public:

void print(){

cout << p << endl; // compiler error 1. p is private.

cout << q << ", "

<< r << ", "

<< getp() << endl;

}

};

int main(){

B b;

b.init();

cout << b.p // compiler error 2. p is private

<< b.q // compiler error 3. q is protected

<< b.r

<< b.getp() // compiler error 4. getp is protected.

<< endl;

b.print();

}

If you compile this code, you will get the 4 compiler errors as marked. Compiler errors 1 and 2 are

because p is private in A, and can hence not be accessed in the definition of B, or in main. Compiler

errors 3 and 4 are because q and getp are protected in A, and hence cannot be used outside of the

definition of A or of any subclass of A. Indeed you will see that protected members q and getp() can

be used fine inside the definition of B. Further, the public members init, and r can be used if needed

in both B as well as main.

Once the offending parts are removed, the code will compile fine. On execution, the print statement

in main will print 3, and the statement b.print() will print 2,3,1.

Figure 25.2 shows the contents of the objects of classes A and B. Note that all data members from A

are present in objects of class B, even if they might not be directly accessible.
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(a) A object

p  : int

q  : int

r  : int

s  : double

q  : int

p  : int

r  : int

Inherited object

(b) B object

Fig. 25.2 Contents of objects of class A and class B

25.2.2 Constructors

Suppose class B is a subclass of class A. A constructor for B can to be defined using the following

general form.

B(constructor-arguments) : call-to-constructor-of-A,

initialization-list

{

body

}

When you call the constructor for B, the call-to-constructor-of-A is first called, and this

constructs the inherited object (of class A) contained inside the instance of B being created. The

initialization-list has the form as in Section 18.1.5, and is used to initialize the new

members of B. After that, body is executed. The part

: call-to-constructor-of-A

is optional. If it is omitted, the default constructor of A gets called. The initialization-list is

also optional, and alternatively, the new members could be initialized inside body.

In Section 25.1, you saw an example in which the default constructor of Turtle got used for

creating a mTurtleI. Suppose now that we had an alternate constructor for Turtle which took

arguments x,y giving the initial position for the turtle. Then we could write an alternate constructor

for mTurtleI as follows.

mTurtleI(double x, double y) : Turtle(x,y), distance(0) {}

With this constructor, the metered turtlewould be created at position(x,y) on the screen, and the new

member distance would be initialized to 0 using the initialization list. The body of the constructor

would then be left empty.

25.2.3 Destructors

As before, suppose we have a class B which inherits from class A. Then the destructor for class B

should be used to destroy the new data members introduced in B that were not present in A. The data

members inherited from A? These would be destroyed by an implicit call that would get made to the

destructor of A at the end of the execution of the call to the destructor of B. You should not explicitly

make a call to the destructor of A from inside the destructor of B!
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The general rule is: destruction happens automatically, in reverse order of creation. In the exercises

you will experiment with code which will illustrate these ideas.

25.2.4 Other Operations on Subclass Objects

Besides constructors and destructors, one additional function is not inherited: the assignment operator.

Unless you define an assignment operator, a default operator that does member by member copy will

get defined for you. Note that the inherited object will be copied using its assignment operator.

Other operators and member functions will be inherited. You may of course override these

definitions, as we did for forward in mTurtleI.

25.2.5 The Type of a Subclass Object

We have said that a class is a type, i.e. an object of class A has type A. Suppose B is a subclass of class

A. Then a key idea in inheritance is: objects of class B can be considered to have type B as well as type

A. This idea turns out to be quite useful.

The followinganalogy might be useful to understand this. Consider the category of flowers, in which

we have subcategories such as roses, lotuses and so on. So if someone has demanded flowers, we can

give roses. In other words, a specific rose object is useful as a rose as well as as a flower.

25.2.6 Assignments Mixing Superclass and Subclass Objects

If an object can be considered to be of the type of its superclass, we should allow an object of a subclass

to be assigned to variable of the superclass. This is indeed possible. Note, however, that the subclass

might have some additional data members. In such a case, the additional members are dropped, or

sliced off, during the assignment.

You can also assign the address of a subclass object into a pointer variable of the superclass.

Figure 25.3 shows some examples. First, we have tha assignment a = b. Since b has an extra

attribute y, during the assignment this will be sliced off, and only the attribute x will get copied. Thus,

the first print statement will print 2, the value that got copied.

Next we have aptr = &b, which stores the address of the class B object b into the pointer variable

aptr of type A*. As we said, this is allowed, since A is a superclass of B. The next statements use

aptr. In the first, we access the member x, using the standard syntax aptr->x, and this will print 2

as expected. In the next statement, aptr->f(), we have invoked the member function f. Here there

is some possible confusion: will this mean the f defined in A or the f defined in B? The default answer

is that since aptr is of type pointer to A, the members from A will be used. Thus, this will print the

message "Calling f of A.". If you are unhappy with this default, hold on till Section 25.3.

Note that in the above code, we cannot assign an object of the superclass into a variable of the

subclass, i.e. write something like b = a;. The intuition behind this, going to our flower example, is

as follows. Wherever a flower is expected, you can supply a rose; however, if a rose is expected, you

cannot supply an arbitrary flower. Likewise, it is incorrect to write bptr = &a as well.

Finally, we can create references of the type superclass to objects of the subclass. This is done at the

end of Figure 25.3. Indeed even in this case the function f in A will be invoked.
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class A{

public:

int x;

A(){ x = 1; }

void f(){cout <<"Calling f of A.\n";}

};

class B: public A{

public:

int y;

B(){ x = 2; y = 1;}

void f(){cout <<"Calling f of B.\n";}

};

int main(){

A a, *aptr;

B b, *bptr;

a = b; // member y will be sliced off

// member x will be copied.

cout << a.x << endl; // prints 2;

aptr = &b; // assigning subclass object to superclass pointer

cout << aptr->x << endl; // prints 2;

aptr->f();

A& aref = b; // reference of type A to variable of type B.

aref.f();

}

Fig. 25.3 Assignments mixing subclass and superclass

25.3 POLYMORPHISM AND VIRTUAL FUNCTIONS

Consider the code of Figure 25.3. As we discussed above, the call aptr->f() will cause the function

f in class A to be used. But you might say: aptr really points to an object of type B so isnt it more

useful if the f in B were used? You can make this happen by declaring f to be a virtual function. For

this, you simply add the keyword virtual before the definition of f in A. Thus, the definition of A

would have to be

class A{

public:

int x;

A(){ x = 1; }

virtual void f(){cout <<"Calling f of A.\n";}

};
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The keyword virtual says that the definition of f should not be treated as a unique, final definition.

It is possible that f might be over-ridden in a subclass, and if so, that definition of f which is most

appropriate (most derived!) for the object on which the call is made should be considered. When we

call aptr->f(), the most appropriate definition for f is the one in B, since aptr actually points to

an object of type B. So that definition gets used, and our code will now indeed print "Calling f

of B.".

Note further that if f is virtual, its most derived version will get used if it is invoked on a reference

as well. Thus, the last statement of Figure 25.3 will also cause f from B to be invoked.

Here is a more subtle example of the same idea.

class Flower{

public:

void whoAmI(){ cout << name() << endl; }

virtual string name(){ return "Flower"; }

};

class Rose: public Flower{

public:

string name(){ return "Rose"; }

};

int main(){

Flower a;

Rose b;

a.whoAmI();

b.whoAmI();

}

Executing a.whoAmI() will clearly cause "Flower" to be printed out. More interesting is the

execution of b.whoAmI(). What should it print? The call b.whoAmI() is to the inherited member

function whoAmI in the superclass Flower. That function whoAmI calls name, but the question is

which name. Will it be the name in Flower or in Rose? The answer turns out to be the name in

Rose, because (a) the object on which whoAmI is called is of type Rose, and (b) name is virtual.

Thus, the most derived definition of name appropriate for the object on which it is invoked will be

used. Since the object on which it is invoked is of type Rose, the name from that class will be used.

Thus, the last statement will print "Rose". Note that had we not used virtual, both statements

would have printed "Flower".

In this example, the call name() inside the member function whoAmI is said to be polymorphic,

because the same call will either cause the function in Flower to be called, or the function in Rose

to be called, depending upon the actual type of the object on which it is invoked. Note that the actual

type will only be known during execution.

Likewise the calls aptr->f() and aref.f() in Figure 25.3 would be polymorphic if f is

declared virtual.
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25.3.1 Virtual Destructor

Suppose aptr is of type A*, and points to some object. Suppose we wish to release the memory. So

we write delete aptr;. This will call the destructor, but the question again is, which destructor?

By default, the destructor of A will be called. However, if the object pointed to by aptr is of type

B, which is a subclass of A, then clearly we should be calling the destructor for B. We can force this

to happen by declaring the destructor of A to be virtual. Indeed, whenever we expect a class to be

extended, it is a good idea to declare its destructor to be virtual.

Here is an example.

class A{

public:

virtual ~A(){cout <<"~A.\n";}

};

class B: public A{

int *z;

public:

B(){z = new int;}

~B(){

cout <<"~B.\n";

delete z;

}

};

int main(){

A* aptr;

aptr = new B;

delete aptr;

}

If we do not declare the destructor of A to be virtual, then after the operation delete aptr; in

the main program, the memory allocated for z will not be freed. However, since we have declared

the destructor of A to be virtual, the destructor of B will be called when delete aptr; is executed,

instead of the destructor of A. Thus the the operationdelete z;will take place. Of course, as always

the destructor ofA will also be called, since our rule is that the destructor of the superclass will be called

automatically after the destructor of the subclass finishes its execution. Do compile and execute this

code, you will see from the message what is called. Remove the keyword virtual and execute again,

you will see that only the destructor of A is called.

25.4 PROGRAM TO PRINT PAST TENSE

Suppose you wish to write a program that takes as input a verb from the English language, and prints

out its past tense. Thus, given “play”, the program must print “played”, given “write”, the program

must print “wrote”, and so on. A simple implementation would be to store every verb and its past tense

as strings in memory. Given the verb, we can then print out the corresponding past tense.

But youwill perhaps observe that for most verbs, the past tense is obtained simply by adding a suffix

“ed”, as is the case for the verbs “play”, “walk”, “look”. We may consider these verbs to be regular.
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Verbs such as “be”, “speak”, “eat” which do not follow this rule could be considered irregular. Thus,

it makes sense to store the past tense form explicitly only for irregular verbs; for regular verbs we

could simply attach “ed” when asked. This can be programmed quite nicely using inheritance.

We define a class verb that represents all verbs; it consists of subclasses regular and

irregular respectively. The definition of verb contains information which is common to all verbs.

The definition of regular adds in the extra information needed for regular verbs, and similarly the

definition of irregular.

class verb{

protected:

string root;

public:

string getRoot(){return root;}

virtual string past_tense(){return ""};

};

The member root will store the verb itself. We have defined the member function past_tense to

be virtual. For now it returns the empty string. But this is not important, since we expect to override it

in the subclasses.

The subclasses regular and irregular are as you might expect.

class regular : public verb{

public:

regular(string rt){

root = rt;

}

string past_tense(){return root + "ed";}

};

class irregular : public verb{

string pt; // past tense of the verb

public:

irregular(string rt, string p){

root = rt;

pt = p;

}

string past_tense(){return pt;}

};

Thus, to create an instance v1 that represents the verb “play” we would just write

regular v1("play");

After this, if we wrote v1.past_tense(), we would get the string "played" as the result.

Similarly,

irregular v2("be","was");



Inheritance
377

would create an instance v2 to represent the verb “be”. And, of course, v2.past_tense() would

return “was”.

We now see how the above definitions can be used to write a main program that returns the past

tense of verbs. Clearly, we will need to somehow store the information about verbs. For this, we use a

vector. We cannot have a single vector storing both regular and irregular verbs. However, we can define

a vector of pointers to verb in which we can store pointers to irregular as well as regular

objects. Thus, the program is as follows.

int main(){

vector<verb*> V;

V.push_back(new regular("watch"));

V.push_back(new regular("play"));

V.push_back(new irregular("go","went"));

V.push_back(new irregular("be","was"));

string query;

while(cin >> query){

size_t i;

for(i=0; i<V.size(); i++)

if (V[i]->getRoot() == query){

cout << V[i]->past_tense() << endl;

break;

}

if(i == V.size()) cout << "Not found.\n";

}

}

We begin by creating the vector V. We then create instances of regular and irregular verbs on the heap,

and store pointers to them in consecutive elements of V. Finally, we enter a loop in which we read in

a query from the user, check if it is present in our vector V. If so, we print its past tense. Note that if

the for loop ends with i taking the value V.size(), it must be the case that no entry in V had its

root equal to the query. In this case, we print "Not found.". As you know, the while loop will

terminate when cin ends, e.g. if the user types control-d.

A number of points are to be noted regarding the use of inheritance in this example.

1. Our need was to represent the category of verbs which consisted of mutually disjoint subcategories

of irregular and regular verbs. This is a very standard situation in which inheritance can be used.

2. The vector V is polymorphic: it can contain pointers to objects of type irregular as well as of

type regular. We can invoke the operation past_tense on objects pointed to by elements of

V, without worrying about whether the objects are of type regular or irregular. Because

past_tense is virtual, the correct code gets executed.

25.5 ABSTRACT CLASSES

You will note that we return the empty string in the past_tense function in verb. Returning an

empty string does not make sense, but we did this because we expected that the verb class would
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never be used directly; only its subclasses would be used in which the function would get overridden.

This idea works, but it is not aesthetically pleasing that we should need to supply an implementation

of past_tense in verb expecting fully well that it will not get used.

One possibility is to only declare the member function past_tense in verb, and not supply

any implementation at all. Unfortunately, whenever an implementation is not supplied, the compiler

expects to find it somewhere, in some other file perhaps. If such an implementation is not given the

compiler or the linker will produce an error message.

What we need is a way to tell the compiler that we do not at all intend to supply an implementation

of past_tense for the verb class. This is done by suffixing the phrase “= 0” following the

declaration. Thus, we would write

class verb{

...

public:

virtual string past_tense() = 0;

...

}

Writing “= 0” following the declaration of a member function tells the compiler that we do not intend

to at all supply an implementation for the function. You may think of 0 as representing the NULL

pointer, and hence effectively indicating that there is no implementation.

There is an important consequence to assigning a function to 0. Suppose a class A contains a member

function f assigned to 0. Then we cannot create an instance of A! This is because for that instance we

would not know how to apply the function f. In C++, classes which cannot be instantiated are said to

be abstract. Indeed, the only way of making a class abstract is to assign one of its member functions to

0.

So in our case, if we assign past_tense to 0 in verb, then the class verb would become

abstract. We would not be able to create instances of it. But this is fine, we indeed would not like users

to instantiate verb, instead we expect them to instantiate either regular or irregular.

25.6 MULTIPLE INHERITANCE

Sometimes, an object can be thought of as a specialization of not one, but two other objects. For

example, we might have an Automobile class and a SolarPoweredDevice class.

class Automobile{

double mileage;

};

class SolarPoweredDevice{

double cellEfficiency;

};

Suppose we also need to represent solar-powered automobiles, they would need to have features of both

the Automobile class as well as SolarPoweredDevice class. We can get this by constructing a

class SolarPoweredAutomobilewhich inherits from both!
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class SolarPoweredAutomobile : public Automobile,

public SolarPoweredDevice {};

Now instances of the SolarPoweredAutomibile class would have members mileage as well

as cellEfficiency, as you might expect. Function members would also be inherited from all the

superclasses, as many as there might be.

There are some obvious problems: what happens if the parent classes P1, P2 of a class C both have

a member with the same name m? In this case, the child class would get two copies of the member, and

you would have to refer to the copies as P1::m and P2::m.

25.6.1 Diamond Inheritance

Suppose the parents P1, P2 of some class C themselves inherit from a common base class GP, as

shown in Figure 25.4. In this case, the class C will actually get two copies of the inherited object GP,

corresponding to P1 and P2.

This case, in which we derive a class C by inheriting from parent classes P1, P2, which in turn

inherit from a single class GP is said to constitute diamond inheritance. This is because the pictorial

representation of the inheritance has the diamond shape, Figure 25.4.

P1

C

P2

GP

Fig. 25.4 Diamond inheritance. Arrows go from child to parent.

However, sometimes when we have diamond inheritance, we might want to have only one copy of

the inherited object instead of one from each parent. It is possible to do this in C++ by specifying the

derivation of P1, P2 from GP as virtual. Thus, we would write

class GP{ double x; };

class P1: virtual public GP{};

class P2: virtual pubilc GP{};

class C: public P1, public P2{};

With this, the class C will contain only one copy of the inherited object GP. Note that this inherited

object will be initialized directly by calling its constructor. Thus, if the initialization list of P1 or P2

contains a call to the constructor of GP, then those calls will be ignored.

25.7 TYPES OF INHERITANCE

So far we have only discussed public inheritance. C++ allows other kinds of inheritance also, namely

protected inheritance and private inheritance.
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If a class B inherits from a class A using protected inheritance, then the public and protected

members of A become protected members of B.

If a class B inherits from a class A using private inheritance, then the public and protected

members of A become private members of B.

As you can see, protected and private inheritance progressively restrict the accessibility of the

members inherited into the derived class. These kinds of inheritance appear to be used much less

in practice. So we will not discuss them any further.

25.8 REMARKS

Inheritance is a powerful idea. However, like any powerful idea, it needs to be used with care.

An informal rule of thumb is as follows. Suppose A,B are entities which you wish to represent

using classes A,B. If entities of type B are specialized versions of type A, then inherit class B from

class A. Informally, you may ask, do the entities B,A have an “is-a” relationship? Clearly, a rose is a

flower, so the entities rose, flower have an “is-a” relationship. So in this case, use inheritance. If two

entities have a “has-a” relationship, then better use composition. For example, flowers have petals, so

the entities flower, petal have a “has-a” relationship. It is best tomodel this relationship by composition,

i.e. by making a petal a member inside a flower.

An important advantage of inheritance is polymorphism. As we saw in Section 25.4, we might have

several subclasses of a base class. We can conveniently store (pointers to) instances of the subclasses in

a vector (or some other collection), for this we can consider them to be members of the base class. But

we can invoke functions on the objects, and if the functions are virtual, we get the benefit of considering

them to be members of the subclasses too. This came in handy when writing the program to display

past tense of verbs. And we will see more examples of this in the next chapter.

EXERCISES

1. Suppose you have a class V defined as

class V{

protected:

double x,y,z;

public

V(double p, double q, double r){ x=p; y=q; z=r; }

}

Define a class W that inherits from V and has a member function dot which computes the dot

product of two vectors. Thus, given V type objects v,w, then the dot product is v.x * w.x +

v.y * w.y + v.z * w.z. Be careful that you only use the constructor provided in V.

2. Define a class realTurtle such that realTurtle objects move with some specifiable speed

when they move. They should also turn slowly.

3. What do you think will happen when you execute the program given below? Run it and check if

you are right.

class A{
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public:

A(){cout << "Constructor(A).\n";}

~A(){cout << "Destructor(A).\n";}

};

class B: public A{

public:

B(){cout << "Constructor(B).\n";}

~B(){cout << "Destructor(B).\n";}

};

class C: public B{

public:

C(){cout << "Constructor(C).\n";}

~C(){cout << "Destructor(C).\n";}

};

int main(){

C c;

}

4. What will the following code print?

struct A{

virtual int f(){return 1;}

int g(){return 2;}

};

struct B : public A{

int f(){return 3;}

int g(){return 4;}

}

A* aptr;

aptr = new B;

cout << aptr->f() <<’ ’<< aptr->g() << endl;

5. Write the past-tense generation program using just two classes, a verb class and an irregular

class. A regular verb should be created as an instance of verb, and an irregular as an instance of

irregular.

6. You might note that the past tense of several verbs ending in “e” is obtained by adding “d”,

e.g. recite, advise. Add an extra subclass to the verb class to store the past tense of such verbs

compactly.



CHAPTER26
Inheritance-based Design

Inheritance is often useful in designing large complex programs. Its first advantage we have already

discussed: inheritance is convenient in representing categories and subcategories. But there are some

related advantages which have to do with the management of the program development process. We

will discuss these next, and then in the rest of the chapter we will see some examples.

There are many approaches to designing a large program. A classical approach requires that we first

make a complete study of the program requirements, and only thereafter start writing the program.

More modern approaches instead acknowledge/allow for the possibility that requirements may not be

understood unless one has built a version of the program. Also, if a program works beautifully, users

will inevitably ask that it be enhanced with more features. In any case, programs will have a long

lifetime in which the requirements will evolve. So the modern approaches stress the need to design

programs such that it is easy to change them. As we have discussed, the whole point of inheritance is

to build new classes out of old, and this idea will surely come in useful when requirements change.

Even if the requirements are well understood and fixed (at least for that time in the program

development process), designing a large program is tricky. It greatly helps if the program can be

designed as a collection of mostly independent functions or classes which interact with each other in a

limited, clearly defined manner. Partitioning into nearly independent parts is helpful in understanding

the behaviour of the program and also checking that it is correct: we can consider testing the parts

separately for example. But it also has another advantage: different programmers can work on the

different parts simultaneously. As we will see, inheritance based designs have much to offer in this

regard also.

Another modern programming trend is the use of components. Most likely, to write professional

programs you will not use bare C++ (or any other programming language), but will start from a

collection of functions and classes which have been already built by others (for use in other, similar

projects). You will adapt the classes for your use, and as we have seen, this adaptation is natural with

inheritance.

In this chapter, we will mainly see two case studies. First, we revisit our formula drawing program.

We will rewrite it using inheritance. It will turn out that this way of writing makes it easier to

maintain and extend. Next we will discuss the design of the graphics in Simplecpp. Inheritance plays

a substantial role in its design. Finally, we will see the Composite class, which will enable you to

define new graphical objects by composing the simple graphics objects we know so far.
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26.1 FORMULA-DRAWING REVISITED

Consider the formula-drawing problem from Section 24.2: given a mathematical formula, draw it on

the graphics canvas in a nice manner. In this section, we will see how the program can be written using

inheritance. A benefit of this will be that it will be easy to extend the program to include new operators.

To illustrate this, we will show how to extend the program (which in the intial implementation only

allows the + and / operators as in Section 24.2) to include the exponentiation operator.

For simplicity, we ignore the problem of accepting input from the keyboard: we will assume that

the formula to be drawn is given as a part of the program, e.g. to draw 1 + 2
451

5
+35

we will construct it

in our program by writing something like

Node e(’+’, new Node("1"),

new Node(’/’, new Node("2"),

new Node(’+’, new Node(’/’, new Node("451"),new Node("5")),

new Node("35"))));

as discussed in Section 24.2.6. Then we can call e.setSizes() and so on.

26.1.1 Basic Design

The use of inheritance is natural if the entities we want to represent belong to a category and

subcategories thereof. We can think of mathematical formulae as constituting a category. But can we

divide the category of mathematical formulae into subcategories in a useful manner?

From the purpose of drawing the formula on the canvas, the important consideration is what is the

last operation in the formula. For example in the formula a
b+c , the last operation to be performed is

division, and hence we will designate this formula to be of the subcategory ratio. In the formula b+ c,

the last (and only) operation to be performed is addition, so we will designate it to be of the subcategory

sum. There could also be categories such as products or differences. Another category is literal, which

will contain primitive formulae, i.e. in which there is no last operation. Note that a formula such as
a
b+c , of category ratio, will contain inside it other formulae: a formula a which is a literal and another

formula b+ c which is a sum.

As discussed earlier, we will have classes and subclasses according to categories and subcategories.

Thus, we will have a class Formula of which Sum and Ratio will be subclasses. And we will have

a subclass Literal to represent primitive formulae. We could also have subclasses Product and

Difference, but we will omit these for brevity.

What members appear in each class is decided using the following rule: if a certain member is

needed in all subclasses of a class, then it should be defined in the class rather than the subclasses. Thus,

for example, we expect all formulae to have a width, height, ascent, and descent. So these members will

be placed in the Formula class. Likewise we expect to have member functions draw and setSize

(as in Section 24.2.5) for all formulae. These also we will place in Formula. Here is the definition of

the class Formula.

class Formula{

protected:

double width, height, ascent, descent;

public:

virtual void setSizes()=0;

virtual void draw(double x, double y)=0;
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double getWidth(){return width;}

double getHeight(){return height;}

double getDescent(){return descent;}

double getAscent(){return ascent;}

};

We do not expect Formula to be instantiated, so we have declared some of its member functions to

be pure virtual.We have added the accessor functions for width etc. since they might be needed outside

the class definition.

We can make Sum and Ratio be subclasses of Formula, but note that there is some similarity

in sums and ratios: they both take two operands. So it is a good idea to have an intermediate class of

formulae in which the last operation takes two operands.

class Formula2: public Formula{

protected:

Formula *L, *R;

};

Next we create the Sum class. It will provide implementations for draw and setSizes—the logic

of this will follow that of Section 24.2.4. Specifically, we will adapt the code for case ’+’ from

Section 24.2.5. We will make Sum a subclass of Formula2, that way it will inherit members L, R.

class Sum: public Formula2{

public:

Sum(Formula* l, Formula* r){ L =l; R=r;}

void setSizes(){

L->setSizes();

R->setSizes();

width = L->getWidth() + textWidth(" + ") + R->getWidth();

descent = max(L->getDescent(), R->getDescent());

ascent = max(L->getAscent(), R->getAscent());

height = ascent + descent;

}

void draw(double x, double y){

L->draw(x, y + ascent - L->getAscent());

R->draw(x + L->getWidth() + textWidth(" + "),

y + ascent - R->getAscent());

Text(x + L->getWidth() + textWidth(" + ")/2, y + ascent,

string(" + ")).imprint(); // draw the ’+’ symbol

}

};

We will also make Ratio be a subclass of Formula2. The code for ratios is also based on case ’/’

of Section 24.2.5.

class Ratio: public Formula2{

static const int h_bar = 10;

public:

Ratio(Formula* l, Formula* r){ L = l; R = r;}



Inheritance-based Design
385

void setSizes(){

L->setSizes();

R->setSizes();

width = max(L->getWidth(), R->getWidth());

ascent = h_bar/2 + L->getHeight();

descent = h_bar/2 + R->getHeight();

height = ascent + descent;

}

void draw(double x, double y){

L->draw(x + width/2 - L->getWidth()/2, y);

R->draw(x + width/2 - R->getWidth()/2, y

+ L->getHeight() + h_bar);

Line(x, y + ascent, x + width, y + ascent).imprint();

// horizontal bar

}

};

Finally, we need a class to represent primitive formulae, or literals. Literals only contain a value, but

no subformulae. Thus, they must inherit from Formula and not Formula2.

class Literal : public Formula{

string value;

public:

Literal(string v){value=v;}

void setSizes(){

width = textWidth(value);

height = textHeight(); ascent = descent = height/2;

}

void draw(double x, double y){

Text(x+width/2,y+height/2,value).imprint();

}

};

This code is based on case ’P’ of Section 24.2.5.

Note that our hierarchy has resulted in good use of memory. In each object, we have just the

members that we need. In Literal the members L, R are not present; while value is not present

in Sum or Ratio. Also note the benefit of having the class Formula2: we have only one declaration

of L, R which is then inherited into Ratio and Sum.

We can now give a simple main program which can use the above definitions to render the formula

1 + 2
451

5
+35

.

int main(){

initCanvas("Formula drawing");

Sum e(new Literal("1"),

new Ratio(new Literal("2"),

new Sum(new Ratio(new Literal("451"),new Literal("5")),

new Literal("35"))));
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e.setSizes();

e.draw(200,200);

getClick();

}

26.1.2 Comparison of the Two Approaches

One benefit of the new approach we have already mentioned: it saves memory. In the program of

Section 24.2, we had Node objects instead of Formula objects. A Formula object either has

members L, R, or it has the member value. On the other hand, each Node object has all members

L, R, value, op, whether or not they were needed. On the downside, it might seem that the

inheritance based approach is more verbose than the approach of Section 24.2. This is true, but the

verbosity has bought us many things.

A key improvement is that we have partitioned the program into manageable pieces. The code

of Section 24.2 had just one class. All the complexity was placed into that class. In contrast, in the

new code, different concerns are separated into different classes. For example, the class Formula2

only models the fact that formulae can have two operands, nothing more. Or the class Sum holds

all information about layout of sums, and nothing more. We can place each class into its header

and implementation files, and the main program into a separate file. This way, if we wish to change

something regarding a certain issue (e.g. adjust the spacing between the numerator and the denominator

in a ratio) we know that we will likely modify only one small file.

Another important benefit arises when we consider adding new functionality to the program.

Suppose we want to implement layouts of exponential expressions. As you will see, we can do this

without touching any of our old files. The key benefit of this strategy is: we can be sure that when

we add exponential expressions, there isnt even a remote chance of damaging the old working code.

Programmers deservedly tend to be paranoid about their code, and this kind of reassurance is useful.

Notice that if the old code was written by one programmer, and the new one by another, then it is very

convenient if one programmer’s code is not touched by another. This way there is clarity about who

was responsible for what.

26.1.3 Adding the Exponentiation Operator

We will add a class Exp that will represent formulae in which the last operator is exponentiation. This

will be a subclass of Formula2 since exponentiation has 2 operands: the base and the exponent. We

will use L to point to the base and R to point to the exponent.

class Exp : public Formula2{

public:

Exp(Formula* l, Formula* r){ L = l; R = r;}

void setSizes(){

L->setSizes();

R->setSizes();

width = L->getWidth() + R->getWidth();

descent = L->getDescent();

ascent = L->getAscent() + R->getHeight() - textHeight()/3;
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height = ascent + descent;

}

void draw(double x, double y){

L->draw(x, y + R->getHeight() - textHeight()/3);

R->draw(x + L->getWidth(), y);

}

};

The basic idea is to layout the exponent somewhat above and to the right of the base. Ideally we should

use a smaller font for drawing the exponent. However, Simplecpp only has fonts of a single size, so

we will not worry about this. The detailed expressions which decide how to position the base and the

exponent are obtained in the manner of Section 24.2.4, and are left for you to figure out. Here is a main

program that uses this to produce a layout for
x2+y
x+y23 .

int main(){

initCanvas("Formula drawing");

Ratio f(new Sum(new Exp(new Literal("x"), new Literal("2")),

new Literal("y")),

new Sum(new Literal("x"),

new Exp(new Literal("y"), new Literal("23"))));

f.setSizes();

f.draw(200,300);

getClick();

}

Figure 26.1 shows the result.

The key point to appreciate is that this new code can be developed independently, in a new file,

without needing to understand the rest of the code. The developer of Exp would only need the header

files of classes Formula2 and Formula. If we had used the coding approach of Section 24.2, we

would need to have and modify the member functions in the old code.

26.1.4 Reading in Formulae

To read a formula from the keyboard, the program must know about all acceptable types of formulae.

So if you wish to extend your program by adding new operators, the code for reading formulae will

have to be modified; you cannot simply include new code and not have to modify old code.

But as we showed above, the code for processing formulae can be written separately for each

formula type, and it should be.

Fig. 26.1 Formula with exponentiation
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26.2 THE SIMPLECPP GRAPHICS SYSTEM

We will discuss the role played by inheritance in the design of the Simplecpp graphics system. We will

not discuss the entire system here, but only some relevant portions of it.

Briefly stated, the core specification of the system is: allow the user to create and manipulate

graphical objects on the screen. This statement is very vague, of course. What does it mean to

manipulate objects? As you know, in Simplecpp, manipulate means move, rotate, scale, etc. There

are also other questions: what kind of primitives is the user to be given? Will the user need to specify

how each object appears in each frame (like the picture frames in a movie) or will the user only state

the incremental changes, e.g. move object x, which means the other objects remain unchanged? As you

know, we have opted for the latter. And then of course there is the question of what kinds of objects

we can have. As you know, Simplecpp supports the following kinds of graphical objects: circles, lines,

rectangles, polygons, turtles and text.

So in the rest of this section, we consider the problem of creating and manipulating the objects

given above, in the manner described above. We will not discuss issues such as the pens associated

with each object, or graphical input, as in the getClick command. Clearly, such a system must have

the following capabilities:

1. It must be able to keep track of the objects created by the user so far.

2. It should be able to display the objects on the screen.

3. It should be able to manipulate the objects as requested, e.g. move an object.

Clearly, we need to record the information about what graphics objects have been created. This

information will be of two types, information having to do with the shape of the object, and other

information such as its colour, position, orientation, etc. Using this information, we can display the

objects. For this, Simplecpp calls the graphics commands provided by the underlying operating system.

For example, the underlying system will provide commands that enable you to draw lines at specified

positions—this will be invoked whenever needed. If the user decides to change the position of a line,

then the information stored about the line must be suitably changed. To complete this very high level

description we need to answer one more question: when should the objects be displayed? The simplest

answer to this is: whenever the user changes the state of any object, we must clear the entire display

and display all objects again.

Inheritance is useful for dealing with many of the issues described above. Clearly, we can consider

all graphical objects to comprise a category. Objects of each shape will comprise a subcategory. Thus,

we can have a class for all objects, and subclasses for the subcategories. The heirarchy formed by our

classes is shown in Figure 26.2. The class associated with the category of all objects is called Sprite,

in honour of the Scratch programming environment (scratch.mit.edu), where the name is used

for a similar concept.

The hierarchy facilitates storing of information as follows. In the Sprite class, we keep all

attributes that all graphics objects will possess. These are attributes such as position, orientation, scale,

colour. So these attributes become data members in the Sprite class.

The classes Circle, Line, Polygon etc. will contain the shape related attributes (in addition

to all the attributes inherited from Sprite). For example, Circle contains a data member called

radius which holds the radius of the circle being drawn. The Polygon class contains an array

which holds the coordinates of the vertices of the polygon. Figure 26.3 shows possible contents of the
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Rectangle Turtle

ALL (sprite)

Circle Line Polygon Text

Fig. 26.2 Hierarchy of graphics object categories

class Sprite{

protected:

double x,y; // position on the canvas

double orientation; // angle in radians made with the x axis

double scale; // scaling factor

Color fill_color; // Color is a data type in the X windows

Xlib package.

bool fill; // whether to fill or not

...

public:

Sprite();

Sprite(double x, double y);

...

void move(double dx, double dy);

...

virtual void paint()=0;

...

}

class Circle : public Sprite{

private:

double radius;

public:

Circle();

Circle(double x, double y, double radius=10);

virtual void paint();

};

Fig. 26.3 Possible definitions of Sprite and Circle

Circle and Sprite classes. The actual implementation is different, and you can see it in the code

(Appendix A).

In addition, we must also consider function members. Suppose we wish to move an object. This

requires two actions: (a) recording that the object has indeed been moved, and updating its position

accordingly, (b) redrawing the object on the screen. Clearly, action (a) can be performed independent

of the shape of the object, whereas (b) requires the shape information. Thus, in our implementation,
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action (b) is implemented by a paint member function in each shape class. Member functions such

as move are defined in the Sprite class. The move function performs action (a) using the attributes

available in the Sprite class. It then signals that all objects need to be redrawn.

The redrawing works as follows. Essentially, Simplecpp maintains a vector that holds pointers

to all objects active at the current instant. Suppose the vector is named ActiveSprites, then its

declaration would be

vector<Sprite*> ActiveSprites;

Because the elements of ActiveSprites have type Sprite*, they can hold pointers to any

graphical object. When the objects are to be drawn, we simply iterate over the queue and execute

the paint member function of the object.

for(int i=0; i < ActiveSprites.size(); i++){

ActiveSprites[i]->paint();

}

The paint member function is virtual, and so the paint member function in the class of the object

is used. This is similar to the way we used a vector of Verb* to store regular and irregular

objects and invoked the past_tense virtual function on them in Section 25.4.

In summary, inheritance gives us three main benefits. The inheritance heirarchy helps in organizing

our data: the Sprite class stores attributes that are possessed by all graphics objects, and the

other (shape) classes store attributes related to the shape. Also because of polymorphism and virtual

functions, we can store pointers to different types of graphical objects (but only subtypes of Sprite)

in a single vector, and iterate over the vector. Finally, we can add new shapes easily: we simply define

a new shape class which is a subclass of Sprite, without having to modify any existing code.

We have somewhat simplified the description of Simplecpp graphics in order to explain the use of

inheritance. The actual system is more complex.

26.3 COMPOSITE GRAPHICS OBJECTS

We present the Composite class of Simplecpp. This will help you to group many graphics objects

into a single composite object.

Suppose you want to draw cars on the screen. It would be nice if you could design a class Carwhich

you could then instantiate tomake many cars. A car is a complex object: it cannot be drawn nicely using

just a single polygon, or a single circle. It will require several simple objects that Simplecpp provides.

These simple objects will have to be grouped together, and often be manipulated together, e.g. if we

want the car to move, we really mean to move all its constituent parts. The class Composite which

we discuss next, will allow you to group together objects. We can then define a Car class by inheriting

from the Composite class.

Our Composite class primarily serves as a “container” to hold other graphics objects. It has

a frame of reference, relative to which the contained objects are specified. The Composite class

has been defined as a subclass of the Sprite class. Thus, it inherits member functions such as

move, forward, rotate from the Sprite class. The Composite class is designed so that the member

functionswill cause the contained objects to respond appropriately, i.e. when you move aComposite,

everything inside gets moved. However, you can override these member functions if you wish. For

example, suppose your composite object consists of the body of a car and its wheels. When you
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call forward on this, by default everything will go forward. You might want the wheels to rotate

in addition to moving forward. This can be accomplished by overridding. You can also additionally

define your own new member functions which do new things. For example, the car might have a light

on the top and there could be a member function which causes the light to change colour from white to

yellow (suggesting it is switched on). This could be done using a new member function.

Using the Composite class is fairly easy. There are only two important ideas to be understood:

the notion of ownership, and the Composite class constructor.

26.3.1 Ownership

A detail we have hidden from you so far is: every graphics object has an “owner”. When we say that

object X owns object Y, we merely mean that object Y is specified relative to the coordinate frame

of object X. For the objects you have been creating so far, the owner was the canvas: the objects were

drawn in the coordinate frame of the canvas. When an object is created as a part of a composite object, it

must be drawn relative to the frame of the composite object, and hence must be owned by the composite

object. Thus, an important step in defining a composite object is to declare it to be the owner of the

contained objects.

To do this, the constructor of every graphical object is provided with an optional argument named

owner. This argument takes value NULL by default which Simplecpp interprets to mean the canvas.

Thus, so far, we did not tell you about this argument, and you did not specify a value for it. Hence

Simplecpp made the canvas the owner of all the objects you created. If you want to indicate a different

owner, you instead pass a pointer to that owner. In the present case, we want a composite object to be

the owner of the contained object. Thus we pass a pointer to the composite object while creating the

contained objects.

26.3.2 The Composite Class Constructor

The Composite class constructor has the following signature.

Composite(double x, double y, Composite* owner=NULL)

Here, the last argument owner gives the owner of the composite object being defined, and x,y give

the coordinates of the composite object in the frame of its owner. As mentioned earlier, if you do

not specify this argument, it is taken as NULL, indicating that the canvas is the owner. The owner

argument must be specified if this composite object is itself a part of another composite object. This

kind of containment is allowed and we will see an example shortly.

The Composite class is essentially abstract; you do not instantiate it directly. You inherit from it

to define composite classes that you need, and then instantiate those classes.

26.4 A Car CLASS

Our car will consist of a polygonal body, and two wheels. We will give the wheels some personality by

adding in spokes. So we will model a car as a composite object, consisting of the body and the wheels.

But note that a wheel itself contains a circle representing the rim, and lines representing the spokes. So

the wheel will itself have to be represented as a composite object. Note that we allow one composite

object (e.g. a car) to contain other ordinary objects (e.g. body) or other composite objects (e.g. wheels).

We begin by defining a class for wheels.
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const double RADIUS = 50;

class Wheel : public Composite{

Circle *rim;

Line *spoke[10];

public:

Wheel(double x, double y, Composite* owner=NULL) :

Composite(x,y,owner){

rim = new Circle(0,0,RADIUS,this);

for(int i=0; i<10; i++){

spoke[i] = new Line(0, 0, RADIUS*cos(i*PI/5),

RADIUS*sin(i*PI/5), this);

}

}

};

There are two private data members. The member rim which is defined as a pointer to the Circle

object which represents the rim of the wheel. Likewise, spoke is an array of pointers to each spoke

of the wheel. The objects themselves are created in the constructor. This is a very common idiom for

defining composite objects.

The constructor customarily takes as argument a pointer to the owner of the composite object

itself, and the position of the composite object in the frame of the owner. It is customary to

assign a default value NULL for the owner parameter, as discussed earlier. The initialization list

Composite(x,y,owner) merely forwards these arguments so that the core composite object is

created at the required coordinate and gets the specified owner. Inside the constructor, we create the

sub-objects. So we create the circle representing the rim, and as you can see we have given it an extra

argument this, so that the Wheel object becomes the owner of the rim. Likewise, we create lines at

different inclinations to represent the spokes, and even here the extra argument this causes the lines

to be owned by the Wheel object.

The Car class can be put together by using Wheel instances as parts.

class Car : public Composite{

Polygon* body;

Wheel *w1, *w2;

public:

Car(double x, double y, Color c, Composite* owner=NULL)

: Composite(x,y,owner){

double bodyV[9][2]={{-150,0}, {-150,-100}, {-100,-100},

{-75,-200}, {50,-200}, {100,-100},

{150,-100}, {150,0},

{-150,0}};

body = new Polygon(0,0, bodyV, 9, this);

body->setColor(c);

body->setFill();

w1 = new Wheel(-90,0,this);

w2 = new Wheel(90,0,this);

}
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void forward(double dx){

Composite::forward(dx); // superclass forward function

w1->rotate(dx/(RADIUS*getScale())); // angle = dx/current-RADIUS

w2->rotate(dx/(RADIUS*getScale()));

}

};

As will be seen, the private members are the pointers to the body and the two wheels. In the constructor,

the body is created as a polygon. We have provided a parameter in the constructor which can be used

to give a colour to the body. Finally, the wheels are created. For all three parts, the last argument is set

to this, because of which the parts become owned by the Car object, as we want them to be.

The definition also shows the forward function being overridden. As discussed, we want the car

to move forward, which is accomplished by calling the forward function of the superclass. But we also

want the wheels to turn; this is accomplished by rotating them. Clearly, if the car moves forward by an

amount dx, then the wheels must rotate by dx/r radians, where r is the current radius of the wheels,

i.e. the actual radius multiplied by the current scale factor.

Finally, here is a main program that might use the above definitions.

int main(){

initCanvas("Car",800,800);

Car c(200,300,COLOR("blue")), d(200,600,COLOR("red"));

d.scale(0.5);

getClick();

for(int i=0; i<400; i++){

beginFrame();

c.forward(1); d.forward(1);

endFrame();

}

getClick();

}

The main program creates two cars, one blue and another red. The red car is then scaled to half its size.

This causes all the components of the car to shrink—this is handled automatically by the code in the

Composite class.

Finally, we move the cars forward. When you execute this, the car wheels should appear to roll on

the ground. Further, the wheels of the smaller car should appear to have twice as many rotations per

unit time because the smaller wheel has half the radius but is travelling the same distance as the larger

wheel.

Finally, note that we have used beginFrame and endFrame (Section 20.2). If you remove these

commands, you will see that the different parts of the car move, but not together!



394 An Introduction to Programming through C++

Fig. 26.4 Cars created by the program

26.5 CONCLUDING REMARKS

A number of ideas were discussed in this chapter.

The first important idea was that we should consider using inheritance whenever we wish to

represent entities belonging to categories and subcategories. It is often tricky to decide what the precise

subcategories should be. In our formula drawing example, it was perhaps clear that categories like

formula, sum, ratio, were needed. It might have been less clear that a category like Formula2 was

also needed. But the operative principle here is: ensure that each member is defined in only one class.

This should lead us to having a class Formula2. Without it, we would need to duplicateL, R in Sum

and Ratio. The other possibiity is to put L, R in Formula itself, but then these members would be

present in classes like Literal as well, where they are not needed.

A case could be made for having even more subclasses. For example, one important idea in object

oriented design is the notion of an interface. The term interfacewhen formally used, typically denotes

a class without any data members. It only contains virtual functions. An interface thus describes

the functionality required from the class, without making any suggestions whatsoever about how the

functionality is to be implemented. So we might have a Formula class without any data members.

These might get introduced in a subclass. This would give more flexibility in future extension. Another

possibility is to note that different types of formulae might share the same layout strategy. For example,

products, differences and sums, are all laid out horizontally, with only the operator between the

operands being different. Thus, we might have a subclass Formula2h which would specialize to

Sum, Product, Difference but not Ratio. Formula2h would have the setSizes and

draw member functions which would be inherited by the Sum, Product and Difference. The

subclasses of Formula2h would merely have to define what operator to use in the layout.

It should be noted that the formula drawing example is a bit confusing because there are really

two hierarchies in it. The first is the class hierarchy: Formula functionally specializes to Formula2

which further specializes to Sum, Ratio, and so on. But there is also a containment hierarchy. A

formula such as a
b+c is a Ratio formula which contains a Sum formula. In many applications, both
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hierarchies are present, and it is important not to confuse between the two. An important idea regarding

containment hierarchies is that operations on the container are often implemented recursively, i.e.

drawing a sum is accomplished by drawing the formulae contained in the sum. You will see examples

of such recursion in many applications.

The use of polymorphism should also be noted. When we said that a Sum contains two operands

which are themselves formulae, we can indicate the type of the operands as Formula, without having

to further specify whether they are Sums or Ratios or whatever. Another example of this appeared in

Simplecpp: we had to put various graphics objects into a queue, and within the queue they would be

viewed just as Sprites. However, when we call the paintmember function, the correct code would

get executed because paint is virtual.

It should be noted that the implementation of Composite in Simplecpp is somewhat preliminary. It

will not properly implement movement of pens associated with objects contained inside a Composite

object. CopyingComposite objects will also not work correctly; however it should be fine if you pass

a Composite object by reference. However, even with these shortcomings you should be able to use

Composite to write interesting programs.

EXERCISES

1. To the program of Section 26.1, add the capability of drawing summation formulae, i.e. formulae

B�
A

C

where A,B, C can themselves be formulae. Ideally you should draw the expressions A,B using

a smaller font. However, Simplecpp only has fonts of one size so do not worry about that.

2. Modify the formula-drawing program developed in this chapter so as to include the additional

classes discussed in Section 26.5.

3. Write a program using which non-programmers can write simple animations as follows. The input

to the program could be something like the following sequence of commands.

Circle 100 200 5

Rectangle 200 300 40 50

Circle 100 200 15

Move 0 50 50

Left 1 30

Move 2 70 -70

Wait 0.5

...

In this, the first 3 lines defined 3 objects. As you might guess, the numbers following the shape

names are the arguments for the corresponding constructors. For the rest of the sequence, the

constructed objects respectively get numbered 0, 1, 2 (or till as many objects as we have defined).

In the rest of the command sequence, a graphical object will be referred to by its number. Thus,
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the command Move 0 50 50 causes object 0 (the first circle) to be displaced by 50, 50 along x

and y directions. Likewise Left 1 30 causes the rectangle to be rotated left by 30 degrees. You

may also define commands to wait for specified amount of time.

Write the program. Note that Sprite objects cannot be stored in a vector. However, you can

create the Sprite on the heap and store a pointer to it in a vector.

4. Add lights to the car of Section 26.4. They should turn on, i.e. change colour, when the car is

moving.

5. Write a program in which a stick figure of a human being walks across the screen.



CHAPTER27
Discrete-event Simulation

We have already discussed the general notion of simulation: given the current state and laws of

evolution of a system, predict the state of the system at some later date. In Chapter 19, we considered

the simulation of heavenly bodies, as might be required in astronomy. However, simulation is very

useful also for more mundane, down to earth systems. A very common use of simulation is to

understand whether a facility such as a restaurant or a train station or airport has enough resources

such as tables or platforms or runways to satisfactorily serve the customers or travellers that might

arrive into it.

As a concrete example, suppose we want to decide how many dining tables we should put in a

restaurant. If we put too few tables, we will not be able to accommodate all customers who might

want to eat in our restaurant. On the other hand, each table we put in has a cost. So we might want

to determine, for each T where T is the number of tables we put, what our revenue is likely to be.

Knowing the revenue and the cost of putting up tables, we will be able to choose the right value of T .

To do this analysis, we of course need to know something about howmany customers want to eat in our

restaurant, and when. This can be predicted only statistically. We will assume that we are given p, the

probability that a customer arrives in any given minute of the “busy period” for restaurants, say 7 p.m.

to 10 p.m. Ideally, we should consider not single customers but a party consisting of several customers,

and the possibility that a customer party might need more than one table. However, for simplicity we

will assume that customers arrive individually and are seated individually at separate tables. On arrival,

a customer occupies the table for some time during which he eats, and then leaves. Suppose that we are

also given a function e(t), that gives the probability that a customer eats for t minutes. For simplicity,

suppose that the revenue is proportional to the total number of customers. Can we determine the total

revenue for an arbitrary value of T , the number of tables we have? Note that an arriving customer will

leave if all tables are occupied.

Problems such as this one can sometimes be solved analytically, i.e. we can write the expected

revenue as a reasonably simple, easily evaluable function of the different parameters. But this is often

not possible if the probabilitymodel is complex. For example, in the above description, we implied that

the eating time probability distribution e(t) is a function only of t. But if there are many people in the

restaurant, the service might will be slower and each customer will occupy the table for longer periods.

Thus, perhaps the distribution should be a function of the number of customers present as well. In this

case, it will be much more difficult to write down an analytical solution. In such cases, a common
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strategy is to simulate the system. By this, we mean the following. We pick random numbers from

appropriate distributions to decide when customers arrive, how long they wait. Using this information,

we compute how many tables are occupied at each instant, which customers need to be turned away

because the restaurant is full, and so on. This can give us some understanding of “what might happen”.

If we run the simulation several times, each time with a different set of random numbers, we might be

able to get some understanding of “what happens usually”. Getting such understanding is the goal of

performing simulations.

The restaurant simulation has a very different character from the cosmological simulation of

Chapter 19. We will see that the restaurant simulation is an example of aDiscrete Event Simulation.We

will develop some machinery to perform discrete event simulations using which we will perform the

restaurant simulation. We will also consider a variation, which we will call the coffee-shop simulation.

The last topic in this chapter is the shortest path problem for graphs.We can get a fast algorithm for this

abstract problem by viewing it as a simulation of a certain natural system. In Chapter 28, we develop a

simulation of an airport, which also uses the machinery developed in this chapter.

27.1 DISCRETE-EVENT SIMULATION OVERVIEW

In a cosmological system, each star attracts, and thereby affects, every other star at every time instant.

In contrast, in many other real-life systems the entities interact with each other relatively infrequently.

For example, in a restaurant, a customer has interactions such as getting a table, ordering food, being

served, paying the bill and leaving. These interactions are typically separated by long periods during

which the customer is typically neither disturbed, nor demands any attention. Thus, it is customary to

call this latter kind of system a discrete time system, whereas the former kind is called a continuous

time system.

27.1.1 Discrete-time Systems

In general, a discrete-time system consists of a certain number of entities which might have states that

can change over time. In addition, there is a list of enabled/impending events, i.e. events that are known

will occur, each at some specified time in the future. When an event actually occurs, it may cause (a)

the state of some of the entities to change, and (b) more events to be created. The new state depends

upon the event that happened as well as the old state. Likewise, the new events that are created also

depend upon the event that happened and the old state, i.e. the state of the entities just before the event

happened. It is to be further noted that the state of a discrete system can change or new events created

only during the occurrence of some event.

Many real-life systems can be considered discrete-time systems. For example, consider our

restaurant system as described earlier. We have a very simple model in which customers approach

and they are seated if there is a table available, and then leave after a certain randomly chosen time

duration. If there is no table available, then we may consider that they do not even enter the restaurant.

In this case, it is natural to think of the tables in the restaurant as the entities, and these can either be

in the occupied or not occupied states. We may consider two kinds of events: customer approach, and

customer Exit. Here is what happens during the occurrence of these events:

Approach: If all tables are occupied, then nothing happens. If there is an unoccupied table, then the

number of occupied table increases by one, and an Exit event is created for occurrence at the current

time + E, where E denotes the duration for which the customer eats.

Exit: The number of occupied tables reduces by one. No event is created for any future time.
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S : State of the entities in the system. Initialized to the state at the current time.

L : List of events. Initialized to contain the events that are known will happen after the

current time.

1. Let e ∈ L be the event with the smallest time of occurrence.
2. Remove e from L.

3. Process e. This will cause change to S. New events may also be added to L.

4. Repeat from step 1 if L is not empty.

Fig. 27.1 Discrete-event simulation algorithm

As you can see, this description fits our notion of a discrete-time system. What happens during an

events does depend upon the state of the world at that time. Further, the state of the system changes

only because of events.

We will further note that it is customary to consider the occurrence of an event in discrete time

systems to be instantaneous. This is not to say that actions such as eating are meant to be instantaneous.

Indeed, as you saw above, eating starts with the approach event and finishes in the exit event.

We will see other examples shortly.

27.1.2 Evolution of a Discrete Time System

A key point to note is that if we know the state of a discrete time system at a given time and all the

impending events, i.e. events that were created earlier but which havent yet occurred, we can precisely

determine how the system evolves.

To see this, note that the current state of the system must persist until some event occurs. Thus,

in particular, the current state must remain unchanged till the earliest of the impending events occurs.

But we know the state at the time of this earliest event—it is simply the current state—and so we can

precisely determine the effect of the earliest impending event. In other words, we will know how it will

change the state and what new events will get created. But then we can keep going in the same manner,

i.e. consider the next earliest event and determine its effect. The algorithm for this is abstractly given

in Figure 27.1.

27.1.3 Implementing a Discrete-time System

The important question is, how shouldwe represent the system state and events on a computer? Usually,

the state of a system has a natural representation. For example, in our restaurant problem, we only need

a single variable which keeps track of the number of occupied tables. How to represent events is more

interesting.

When we say an event occurs, we typically have in mind a certain set of actions that takes place.

Thus, it is natural to associate an event with a function which performs the required actions. The

function must have access to the state of the system, and must be called only when the associated event

becomes the earliest pending event, i.e. after earlier events have been processed. Thus, it turns out to

be natural to represent each event by a lambda expression (Section 12.2), in particular a function that

takes no arguments and returns no results. When it is time for the event to occur, we simply call the

lambda expression!
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As discussed in Section 12.2, the type of a lambda expression denoting a function that takes no

arguments and returns no value is std::function<void()>. It will be convenient to assign a

name to this type.

typedef std::function<void()> Event;

The mechanism of variable capture in lambda expressions will enable the function to get access to the

system state, as we will see.

Second, for convenience, we will make the event list L of Figure 27.1 hold pairs of the form (e, t)

where e is the event and t the time at which it is to happen. The (e, t) pairs that we need will be

represented using the pair class in STL (found in the header file <util>). We use the type double

to represent time, so we need a pair of Event and double. To simplify the subsequent discussion it

is convenient to define

typedef pair<Event,double> ETpair;

Remember that the event list, consisting of pairs (e, t), is accessed in a very special manner. As seen

in Figure 27.1, we do not remove arbitrary pairs from the list but only those with smallest t, though we

may insert pairs in any order.

The priority_queue template class in the standard library (Section 22.6) supports nearly this

mode of operation. It has operations to insert elements and also return the “largest” element in the

queue, where we can define what is largest. Here is the prototype for priority_queue.

template<class T, // argument 1

class C = vector<T>, // argument 2

class cmp = less<typename C::value_type> // argument 3

> priority_queue;

A prototype of a template is similar to a function prototype: both give the arguments and their types,

and possible default values. In this case, the priority_queue template takes 3 arguments. The first

argument gives the type of the elements that will be put in the queue, in our case this is ETpair. The

second argument C specifies the container class using which the elements in a priority queue will be

stored. The default option is to use a vector, which we do not wish to change. The third argument

cmp is used to decide what to return. It defaults to less, which is simply the operator <. Thus of

all the elements stored in it a priority queue returns that element x such that there is no y such that x

< y. Thus a largest element is returned. To get a smallest instead, we must supply a function object

equivalent of the > operator. We will see how to do this shortly.

The class sim shown in Figure 27.2 is the main simulation class. The member pq in it holds the

event list implemented as a priority queue. Note that to use priority queues, it is necessary to include

the header file <queue>, as shown at the top of the figure. The class compareETpair is defined to

have a function call operator defined to implement the > operator on ETpair objects. So this class is

supplied as the third element to the template defining pq. In addition to the event list, the class sim

also has a member time which is meant to hold the time till which the system has been simulated. We

start off by initializing time to 0.

This class sim is a little unusual. It is not meant to be instantiated! The members time and pq are

defined as static elements. Thus, there will be only one copy of pq and time, but this is exactly

what we want. The functionality is provided through four static member functions. Note that static

member functions can be accessed outside the class definition as class-name::function-name.
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#include <queue> // needed for using priority_queue

class sim{

typedef std::function<void()> Event;

typedef pair<Event,double> ETpair;

struct compareETpair{

bool operator()(ETpair p, ETpair q){return p.second > q.second;}

};

static double time; // time to which the system has been simulated

static priority_queue< ETpair, vector<ETpair>, compareETpair> pq;

public:

static void post(double latency, Event e){

pq.push(make_pair(e, time + latency));

}

static double getTime(){return time;}

static void processAll(double tmax=1000){

while(!pq.empty() && time < tmax){

ETpair ETp = pq.top(); // ETp becomes (e,t)

time = ETp.second; // time becomes t

pq.pop();

ETp.first(); // call the event e

}

}

static ostream & log(){

cout << time << ") ";

return cout;

}

};

// Initialization of the static elements.

double sim::time = 0;

priority_queue< sim::ETpair, vector<sim::ETpair>,

sim::compareETpair> sim::pq;

Fig. 27.2 The main simulation class

The member function post allows an event to be posted, i.e. created and inserted into the priority

queue. The first argument latency is the time duration after which the event is to happen, from the

current time of the system. The second argument e is the event itself. The function thus inserts the pair

(e, time + latency) into the priority queue.

The member function getTime merely returns the current time, i.e. the time till which the system

has been simulated.
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The member function processAll processes posted events till nothing is left to process. For this,

it repeatedly picks the pair (e, t) in the priority queue with the smallest time t and calls the event e.

Note that when we pick the element with the smallest time t, we know that the system time can be

advanced to t. Thus the member time is updated to t. Note that the smallest element in the queue can

be removed by using the pop method, or we can just examine it using the top method.

The last method, log, is for reporting convenience. It is used to print messages to the screen, but

each message is prefaced by the current time. Note that a reference to the console output, cout is

returned, so that the rest of the message can be appended using the « operator.

27.1.4 Simple Examples of Use

In general, to use any class such as sim, you must compile it along with your program, or include a

suitable header file, etc. However, to simplify matters for you, we have included sim in simplecpp

itself. Thus, you don’t need to do anything other than include simplecpp.

We begin with some simple simulation examples. Given below is a program that just creates 2

events, say A,B and then asks the simulator to process them.

int main(){

sim::post(15, [](){sim::log() << "Event A.\n";}); // event A

sim::post(5, [](){sim::log() << "Event B.\n";}); // event B

sim::processAll(); // process all events.

}

The action associated with each event is simple: a message is printed, with the current simulation time.

When you execute, the first two statements will cause events A, B to be posted to occur 15 and 5 time

units respectively from the current time. The simulation starts with time 0, so these events will occur at

time 15 and 5 respectively. The third statement in the program will cause the system to be evolved, i.e.

all the events in the queue will be processed, in the order of the time at which they are meant to occur.

Thus event B, scheduled at time 5, will get processed, first, i.e. its lambda expression will be called.

This will cause the message “Event B.” to be printed, prefixed by the simulation time, because of the

call to sim::log. After that event A will be processed. Thus, you would get the following output.

5) Event B.

15) Event A.

The point to be noted is that in the program the creation of event A happens before the creation of event

B. However, the time of A, 15, is larger than the time of B, 5. Hence B happens before A during the

execution.

As we discussed in Section 27.1.1, events in a discrete time system will, in general, cause the state

of some of the entities to change, and also cause the creation (posting) of new events. We will now

consider an example in which events do both of these. This example will be contain the core idiom

used in all future simulations.

In the program below, we have 4 events, A, B, C, D. We also have a variable count. We will see

that the events will access this variable (“simulation state”), and in fact event D will be posted during

the occurrence of event C.
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int main(){

int count=0;

sim::post(15, [&](){sim::log() << "A. count: "<< count++ <<endl;});

//A

sim::post(5, [&](){sim::log() << "B. count: "<< count++ <<endl;});

//B

sim::post(10, [&](){ //C

sim::log() << "C. count "<< count++ <<endl;

sim::post(100, [&](){sim::log() << "D. count: " << //D

count++ << endl;});

});

sim::processAll();

}

The program begins by setting count to 0, and then posting the events A, B, C for time 15, 5, 10

respectively. Then sim::processAll causes the posted events to be processed.

The event posted for the earliest time is event B, and hence that gets processed first. This will cause

the time of occurrence of B to be printed and also the value of count. Note that count has been

captured into the event by reference, and hence the value at the time of occurrence of the event will be

printed. Thus, we will see the following output.

5) B. count: 0

Note that while printing, count is also incremented. Since count was captured by reference, the

increment will affect the variable count as defined in the first line of the program. Thus this will

become 1.

The event posted for the next earliest time, 10, is event C, which is then processed. The processing

starts off by printing the message and the value of count. Notice that even in event C the variable

count has been captured by reference. Thus the following message will be printed

10) C. count: 1

and countwill be incremented. But the processing of event C does not stop after printing themessage.

After printing, the call sim::post is executed, which causes event D to be created, as a part of the

occurrence of the event C. Event D is to occur at 100 steps after the current time, i.e. 10. Thus, event

D gets posted for time 110. Thus, when the processing for C finishes, there are two events, A, D in the

queue, and the value of count is 2.

Again, the earliest of the events is processed, i.e. event A. This will print a message

15) A. count: 2

and will increment count to 3.

After that event D will be processed. This will print a message:

110) D. count: 3

and cause count to increment to 4. Note the time in the message sim::log will indeed print 110, the

time at which we expect the event to occur.
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27.2 THE RESTAURANT SIMULATION

The restaurant operation depends upon the following parameters: the number nTables of tables,

the time duration duration in minutes for which the restaurant remains open, the probability

arrivalP that a customer arrives in the next minute, and the minimum and maximum eating times

eatMin, eatMax for the customers. The restaurant state consists of the number of tables that are

occupied, nOccupied.

At each minute that the restaurant is open, a customer can arrive with the specified probability.

We model each arrival as an event. On arrival, if there are no unoccupied tables the customer leaves.

If there are unoccupied tables, then the customer occupies one and sits down to eat. Then an eating

duration is chosen uniformly randomly between eatMin and eatMax, and the customer must exit

the restaurant after that duration. We model the exit also as an event. Thus, the arrival event for the

customer must perform the above actions, including the creation of the exit event. All this goes into

the lambda expression for the arrival event. On exit, it is only necessary to decrement the number of

occupied tables. Thus, the decrementation code must be placed in the lambda expression of the exit

event.

int main(){

const int nTables=5; // number of tables

const int duration=180; // minutes open

const double arrivalP=0.1, eatMin=21, eatMax=40;

int nOccupied = 0 ; // number of tables occupied

int id = 0;

for(int t=0; t<duration; t++){

if(randuv(0,1) <= arrivalP){// with probability arrivalP

id++;

sim::post(t, [=,&nOccupied](){// arrival event

if(nOccupied >= nTables) // if no table available

sim::log()<< " Customer " << id << " disappointed.\n";

else{ // if a table is available

++nOccupied;

int eatTime = randuv(eatMin, eatMax);

sim::log()<<" Customer " << id << " will eat for "

<<eatTime<<"\n";

sim::post(eatTime, [=,&nOccupied](){// exit event, posted

// during arrival event

sim::log()<< " Customer " << id << " finishes.\n";

--nOccupied;

}); // exit event end

}

}); // arrival event end

}

}

sim::processAll();

}
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27.3 RESOURCES

Many real-life systems contain resources that are scarce. For example, machine might be needed to

process several jobs of which it might be capable of processing only one at any instant. In such cases,

the jobs must wait to gain exclusive access to the machine.

As an example, consider a roadside coffee shop manned by a single server. Suppose the shop serves

beverages and food, all of which require some effort and time from the server. If a customer arrives

while the server is busy with a previous customer, then the new customer must wait. So a line of

waiting customers might form at popular coffee shops. Given the probability of customer arrival and

the probability distribution of the service time, can we predict how much business the shop gets and

also how long the line becomes?

We will develop a Resource class which will make it easy to write such simulations.

27.3.1 A Resource Class

So far, we have said that events can be created and posted to occur at a certain time in the future.

We will extend this notion and allow an event to be posted to occur when a certain resource becomes

available. If the resource is immediately available, then the event will occur immediately. Otherwise,

it will be put in a queue associated with the resource. When the resource becomes available, because

some other event releases it, the waiting event will be taken off the queue and posted for immediate

execution.

These ideas are implemented in a Resource class.

class Resource{

typedef std::function<void()> Event;

queue<Event> q;

bool inUse;

public:

Resource(){inUse = false;}

int size(){ return q.size(); }

bool reserve(){

if(inUse) return false;

else{ inUse = true; return true;}

}

void acquire(Event e){

if (!inUse){

inUse = true;

sim::post(0,e);

}

else

q.push(e);

}

void release(){

if(!q.empty()){

Event e = q.front();

q.pop();
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sim::post(0,e);

}

else inUse = false;

}

};

We can create instances of the Resource class to model resources which must be used exclusively.

The data member inUse in Resource when true denotes that the resource (represented by the

instance) is deemed to be in use, and when false denotes that the resource is available. In addition,

the resource class has a data member q which is a queue from the standard template library (can

be used by including header <queue>). You can add elements to (the end of) a queue by calling the

member function push, examine the element at the front of a queue by calling the member function

front, and remove the element at the front by calling the member function pop.

The member function acquire can be used to get exclusive access to the resource. It takes as

argument the event e that needs exclusive access, i.e. the lambda expression which will be executed

when the resource becomes available. If the resource is immediately available, the event is posted

for immediate execution by calling sim::post(0,e). That the resource has been acquired is

represented by setting inUse = true. If the resource is not available, then the event is put in the

queue associated with the resource.

The member function release can be used to release a resource and make it available to other

events. If an event e is waiting in the queue (front) of a resource that is being released, then e is

posted for immediate execution by calling sim::post(0,e). Note that in this case we do not need

to change inUse: it was true before and must remain true because we assigned the resource to the

waiting event. If there was no event waiting in the queue, then we must set inUse = false, so that

a future acquire request can succeed immediately.

Finally, there is a member function reserve which marks the resource as being in use and returns

true if and only if the resource was not in use earlier. We will see a use of this in Section 28.5.

27.3.2 Simple Example

The Resource class is also a part of Simplecpp, and so is immediately available for use. Here is a

simple example.

int main(){

Resource r;

sim::post(15, [&](){

r.acquire([](){sim::log() << "Got it! \n";});

});

r.acquire([&](){

sim::post(20, [&](){ r.release(); });

});

sim::processAll();

}
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The first statement posts an event for time 10, in which the resource r is sought to be acquired. Upon

acquisition a message will be printed giving the time at which the acquisiton succeeds. The second

statement seeks to acquire r immediately (at time 0), and releases it 20 steps after acquisition.

As you can see, the acquisition in the second statement will succeed, since at time 0, the resource is

available. Thus, the resource will get released 20 steps afterwards, i.e. at time 20. Thus the acquisition

in the first statement will succeed at time 20. Thus, that is when the message “Got it!” will be printed.

Thus, the output of the program will be:

20) Got it!

Note that r needs to be captured in the second statement. Since r is shared between the statements, it

is captured by reference.

27.3.3 The Coffee-shop Simulation

Using the Resource class, the simulation is easily written. The main program for simulating a 180-

minute duration is as follows.

int main(){

const int duration=180; // minutes open

double arrivalP = 0.1, eatMin=3, eatMax=9;

int id = 0;

Resource server;

for(int t=0; t<duration; t++){

if(randuv(0,1) <= arrivalP){ // with probability arrivalP

id++;

int serviceT = randuv(eatMin, eatMax);

sim::post(t, [=,&server](){

sim::log() <<" "<< id << " arrives, service time "

<< serviceT <<endl;

server.acquire([=,&server](){

sim::log() << " Customer: " << id << " being served.\n";

sim::post(serviceT, [=,&server](){

sim::log() << " Customer: " << id << " finishes.\n";

server.release();

});

});

});

}

}

sim::processAll();

}

The general outline is similar to the restaurant simulation. We need a Resource to model the server,

which is called server in the code. Then for each minute, we simulate customer arrival, with the

arrival probability arrivalP. If a customer is deemed to arrive, then we generate a random service

time for the customer. Then we must perform the following actions.
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1. Print out a message saying that a customer arrives, along with the service time.

2. Request exclusive access to the server.

3. On getting exclusive access, we hold the server for the service time.

4. After the service time elapses, we release the server.

As you can see, the code above executes exactly these steps. However, the steps appear nested. This is

because the code for an event is required to be placed in the argument list of the preceding event.

We note some important points about variable capture. First, server is shared across iterations,

and hence must be captured by reference. However, we want the value of the variable id from the time

of when the customer arrival is posted. Hence, id must be captured by value. Finally, serviceT is a

local variable inside the loop, so it must be captured by value. Hence, we have asked that all variables

be captured by value except for server which must be captured by reference.

27.4 SINGLE-SOURCE SHORTEST PATH

In this section, we consider the single-source shortest-path problem. Suppose we are given information

about which cities are directly connected by road, and the length of all such roads. We want to travel

from a given origin city to a destination city by road, passing whatever cities along the way, so that

the total distance covered is as small as possible. The problem is difficult because there can be several

paths from the origin to the destination, depending upon which cities you choose to pass through along

the way. Of all such possible paths, we want the shortest. We will focus on the problem of finding the

length of the shortest path, the path itself can be identified with a little additional book-keeping, which

is left for the exercises. We discuss a classic algorithm, attributed to Edsgar Dijkstra. The algorithm

actually finds the distance (length of the shortest path) from the origin to all other cities, because that

is convenient.

Dijkstra’s algorithm can be viewed as a computer analogue of the following physical experiment

you could undertake to find the distances. For the experiment, we need many cyclists who can ride at

some constant speed, say 1 km/minute. Specifically, we need to have as many cyclists in each city as

there are roads leading out of it. If we do have such cyclists, here is how they could cooperatively find

the length of the shortest paths.

To start with, all the cyclists assemble in their respective cities. Each cyclist is assigned one road

leading out of the city, and the job of the cyclist will be to travel on just that one road when asked to.

After the cyclist is flagged off somehow, she starts pedalling and reaches the city at the other end of

the road. Here she must check if she is the first cyclist to arrive. If she is not the first, i.e. someone

arrived earlier, then she does nothing and stops. If she is indeed the first to arrive, then she flags off all

the waiting cyclists to start pedalling. After that her job is over.

Here is how the experiment starts off. At time 0, a fictitious cyclist arrives into the origin city, and

flags off the cyclists in that city. They then flag off other cyclists as described above. The experiment

ends when all cyclists have finished their journey.

As an example, suppose our graph is the map of Figure 27.3, and we want the distances from

Nashik. So at time 0, a fictitious cyclist arrives into Nashik and flags off the cyclists there. So cyclists

start pedalling from Nashik to respectively Nagpur, Mumbai and Pune. The cyclist from Nashik arrives

at time 200 into Mumbai, where we are measuring time in minutes from the start. She is the first one to

arrive there, so she flags off the 3 Mumbai cyclists who then start travelling towards Kolhapur, Pune,

and Nashik respectively. Of these 3 the cyclist heading to Pune would reach 160 minutes later, at time
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Fig. 27.3 Schematic map

360. However, when she reaches Pune, she would have found that the cyclist from Nashik has already

arrived at time 220. So the cyclist arriving from Mumbai into Pune would need to do nothing. In this

manner the process continues.

We will show that (a) the length of the shortest path from the source to any city is simply the time

in minutes when the earliest cyclist arrives in that city! (b) We can use discrete event simulation to

simulate this system.

We explain (a) first. Let S denote the source city, and C be any city. Let t be the time at which the

first cyclist arrives into C . We argue that there must be a path from S to C of precisely this length.

To see this, consider the cyclist that arrives into C . We follow this cyclist backward in time to the

city from which she started. There, she was flagged off by some other cyclist, whom we follow back

in time, and so on. Eventually, we must reach the city S, at time 0. In this process, note that we are
not only going back in time but also continuously travelling back, at 1 km/minute. Thus, we must have

covered, backwards, exactly the same distance as the time taken. Thus, we have proved that there exists

a path from S to C of length equal to the time at which the first cyclist arrives in C . We now prove that

it is the shortest.

Consider a shortest path P from S to C , the cities on it being c0, c1, . . . , ck in order, with c0 = S,

and ck = C . Let di be the distance from c0 to ci along the path. We will prove that the first cyclist

(fictitious or real) to arrive at ci does so no later than di, for all i. Clearly, this is true for i = 0: indeed

a cyclist arrives at c0 at 0 = d0. So assume by induction that a cyclist arrives at ci at time di or before.

Thus, a cyclist must have left ci at time di or before for city ci+1. But this cyclist travels at 1 km/minute,
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and hence covers the distance di+1 − di also in time di+1 − di. Hence, she will arrive at ci+1 at time
at most di + di+1 − di = di+1. Thus, the induction is complete. Thus, we know that some cyclist must

arrive at ck = C at time at most the length of the shortest path P . But we proved earlier that the time of

arrival must equal the length of some path. Hence, it follows that the first cyclist arrives at time exactly

equal to the length of the shortest path.

struct City; // forward declaration, not definition.

struct Road{

City* toPtr; // Where the road leads to

double length;

Road(City* ptr, double d){toPtr = ptr; length = d;}

};

struct City{

vector<Road> roads;

double arrivalT; // arrival time of first cyclist

City(){arrivalT = HUGE_VAL;} // not arrived yet.

void arrive(){

if(arrivalT > sim::getTime()){

arrivalT = sim::getTime();

for(unsigned int i=0; i<roads.size(); i++){

sim::post(roads[i].length, [this,i]()

{roads[i].toPtr->arrive();});

}

}

}

};

struct RoadNetwork{

vector<City> cities;

RoadNetwork(char* infilename) {

ifstream infile(infilename);

int n;

infile >> n;

cities.resize(n);

double dist;

int end1, end2;

while(infile >> end1){

infile >> end2 >> dist;

cities[end1].roads.push_back(Road(&cities[end2],dist));

cities[end2].roads.push_back(Road(&cities[end1],dist));

}

}

};

Fig. 27.4 Graph representation



Discrete-event Simulation
411

We next show that our algorithm can be programmed as a discrete event simulation.

27.4.1 Dijkstra’s Algorithm as a Simulation

The first question, of course, is how to represent our network of roads. The network is a graph, in

which the cities are the vertices and the roads the edges. So we use the representation as given in

Section 23.2.3. This is shown in Figure 27.4.

The entire road network is held inside the class RoadNetwork. It contains a vector, cities, the

ith element of which is an object of class City containing information about the ith city. Thus, we

must assign a number to each city in our map. For our map of Figure 27.3, we assign the numbers 0 to

5 to the cities Kolhapur, Mumbai, Pune, Nashik, Nagpur, Satara respectively. The member arrivalT

in each City object is meant for storing the time at which the first cyclist arrives into that city. Each

City object also contains a vector roads which stores information about the roads leaving that city.

Suppose G is a RoadNetwork. Then G.cities[i].roads[j] is an object of type Road which

stores information about the jth road leaving city i. Specifically, the object stores the following: (a) a

pointer toPtr to the city that this road leads to, (b) a double length giving the length of this road.

The constructor for the class RoadNetwork reads in the road network from the file whose name

is given as an argument. Figure 27.5 shows a sample input file. This file represents the road network

of Figure 27.3. The first number in the file gives the number of cities. On reading this the constructor

resizes the vector cities to this number. This will cause elements of the vector cities to be

created. Thus a City object is created for each city in the network. Note the constructor for City: it

sets arrivalT to HUGE_VAL, which represents∞. We use this to denote that as of now, no cyclist

has arrived into the city. Next, the constructor of RoadNetwork reads information about the roads

in the graph. This consists of triples c1, c2, dist, where c1, c2 give the cities at the two ends

of a road, and dist gives the length of the road. We must store the information about this road in

the structure cities[c1] which stores information related to city c1, as well as in cities[c2]

which stores information related to city c2. That is done in the two statements in the loop. When the

loop finishes, the road network will have been constructed.

The main program creates the graph, and starts off the simulation of the movement of the cyclists,

as shown below.

int main(int argc, char** argv){

RoadNetwork G(argv[1]); // create road network from file

int origin; // city from which distances are needed

stringstream(argv[2]) >> origin;

// cause the fictitious cyclist to arrive.

sim::post(0, [&G,origin](){G.cities[origin].arrive();});

sim::processAll();

for(unsigned i=0; i<G.cities.size(); i++)

cout << G.cities[i].arrivalT << " ";

// arrivalD = distance from origin

cout << endl;

}



412 An Introduction to Programming through C++

File content Explanation

6 Number of cities

0 1 450 Kolhapur Mumbai distance

0 5 300 Kolhapur Satara distance

1 2 160 Mumbai Pune distance

1 3 200 Mumbai Nashik distance

2 3 220 Pune Nashik distance

3 4 500 Nashik Nagpur distance

5 2 50 Satara Pune distance

Fig. 27.5 Input file for graph of Figure 27.3

The program uses command-line arguments. The first command-line argument argv[1] gives the

name of the file which contains data to build the road network.We supply this file name to a constructor

of the class RoadNetwork which builds the object G for us. The second command line argument,

argv[2] is expected to be an integer, and it gives the index of the origin city. For this, we first

convert the string argv[2] to a stringstream (Appendix E), and then read from it. Then we start

off the simulation.

To start off the simulation, we must flag off the cyclists in the origin city. For this, we post an

arrival event at time 0 for the origin city. As you will see below, this arrival causes cyclists to move and

arrive into other cities and so on. After posting the arrival into the origing city, main merely waits for

all events to be processed, i.e. for all cyclists to finish their journey. At the end the earliest time to reach

each city i from the city origin can be found in G.cities[i].arrivalT. But that is also the

distance, and so it is printed.

There is only one kind of event in the simulation: the arrival of a cyclist into a city. The actions

to be taken during the event are placed in the member function City::arrive. To check if the

arriving cyclist is the first cyclist to arrive into the city, we examine member arrivalT in City. If

arrivalT is not HUGE_VAL, then it has changed since the city was created, i.e. the cyclist is not the

first to arrive. In this case, we do nothing. On the other hand, if arrivalT is still HUGE_VAL, then

this cyclist is the first to arrive, and the following actions must be performed.

1. Record the correct arrival time into arrivalT. Note that after this that it will no longer be

HUGE_VAL.

2. Cyclists must be flagged off to leave the city on each outgoing road i. The cyclist will

reach the corresponding city, pointed to by roads[i].toPtr, after covering the distance

roads[i].length, i.e. after that much time. Hence, we post an arrival event for that city

with that much latency.

As you can see, a single cyclist arriving into the origin city will indeed eventually cause all cyclists to

start moving. Thus, the shortest distance will get computed.
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27.5 CONCLUDING REMARKS

Discrete-event simulation is a powerful paradigm. Using the classes developed in this chapter, you

should be able to easily build some modest size simulations. We will see such an example in the next

chapter.

The basic ideas in discrete event simulation are as follows. Whatever system you wish to simulate

must first be viewed as a collection of interacting entities. The interactions constitute the events. Each

event can cause the state of an entity to change, or cause additional future events to be posted. We

express each event as a lambda expression. When the event happens, the associated lambda expression

executes, and in this execution we must change the state of the entities in the system or post additional

events. Note that the code for doing all this could be placed textually inside the lambda expression, as

was the case in the restaurant and coffee shop simulations. Or inside the lambda expressions, we can

just place a call to a (member) function which causes the state changes or posting of additional events,

as was the case in the shortest path algorithm simulation.

The coding style for posting events and acquiring resources is slightly tricky. Normally, when we

wish to perform one action after another, we write the second action following the first. However, if

event A causes event B which in turn causes event C, then we would write the lambda expression of C

inside the lambda expression of B which in turn could be in the lamdba expression of A. Thus, although

the events happen in succession, in the code they will appear nested. This needs some getting used to.

Note that lambda expressions make it convenient to express event posting and resource acquisition.

You should make sure that you understand lambda expressions well, especially variable capture.

EXERCISES

1. Modify the restaurant simulation to report how many customers left disappointed, how long after

the closing time did the customers stay around, the number of customers in the restaurant on the

average.

2. Generalize the coffee shop problem so that there are several servers. This is also like adding a

waiting room to the restaurant. You will need to modify resource. Generalize the class so that

at most some k clients can be using the resource simultaneously. You may find it easier to do this

if you do not keep track of which clients are using the resource, but just keep track of how many

clients are using the resource.

3. Suppose every minute a customer enters a store with a probability p. Suppose that on the average

each customer spends t minutes in the store. Then on the average, how many customers will you

expect to see in the store? Little’s law from queueing theory says that this number will be pt.

Modify the coffee shop simulation and verify Little’s law experimentally. The law requires that

no customers are turned away, and that the average is taken over a long (really infinite) time.

So run the simulation for relatively long durations. More code will be needed to make all the

measurements.

4. Write a simulation of a restaurant in which customers can arrive in a group, rather than

individually. Suppose a group can have up to 5 members, all sizes equally likely. Suppose further

that tables in the restaurant can accommodate 4 customers, so if a party of 5 arrives, then two

adjacent tables must be allocated. Thus, the party must wait if two adjacent free tables are not

available. Write a simulation of such a restaurant. Assume that the tables are in a single line, so
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tables i, i+ 1 are adjacent. You will have to decide on how a table will be allocated if several

tables are free: this will affect how quickly you serve parties of 5 members.

5. Have an additional command-line argument which gives the index of a destination city, for the

shortest path program. Modify the program so that it prints the shortest path from the source to the

destination city, as a sequence of the numbers of the cities on the way. Basically, in each City

you must store information about where the first cyclist arrived from. This will enable you to

figure out how the shortest path arrives into a City, recursively.

6. Modify the shortest path algorithm to use city names instead of city numbers in the input file.

7. Build a simulator for a circuit built using logic gates. Consider the gates described in Exercise 16

of Chapter 6. You should allow the user to build the circuit on the graphics window. You should

also allow a delay δ to be entered for each gate. A gate takes as input values 1 or 0, and produces

output values according to its function. However, the output value is reliably available only after

its delay. Specifically, suppose some input value changes at time t. Suppose this will cause the

output value to change. Then the new correct value will appear at the output only at time t+ δ.
During the period from t to t+ δ, the value at the output will be undefined. For this you should

use the value NAN supported as a part of the header file <cmath>. The value NAN represents

“undefined value”, actually the name is an acronym for “Not A Number”. This value behaves as

you might expect: do any arithmetic with it and the result is NAN.

8. Paul Erdos was an extraordinary Hungarian mathematician. As a humorous tribute to him, an

Erdos number is defined for every person. Erdos himself has Erdos number 0. The numbers for

other individuals are defined recursively as fellows. The Erdos number for a person X is n+ 1,

if n is the minimum Erdos number amongst the numbers of the collaborators of X. Thus, all

collaborators of Erdos get Erdos number 1. All their collaborators (who havent yet been given

a number) get the number 2, and so on. Write a program which takes information about who

has collaborated with whom, and prints the Erdos number of each. The input to your program will

consist ofN the number of persons, followed by pairs of integers between 0 andN − 1. Each pair
of integers x, y indicates that x, y are collaborators. Assume that person numbered 0 represents

Erdos.



CHAPTER28
Simulation of an Airport

Suppose there are complaints about the efficiency of an airport in your city: say flights get delayed a

lot. Is it possible to pinpoint the reason? Is it then possible to state the best cure to the problem: that

you need to build an extra runway, or some extra gates, or perhaps just build a completely new, bigger

airport? A simulation of the airport and how it handles aircraft traffic can very much help in making

such decisions.

The simulation will take as input information about the runways and other facilities on the airport,

and about the aircraft arriving into the airport from the rest of the world. It will then determine what

happens to the aircraft as they move through the airport, what delays they face at different points. The

sum of these delays is perhaps an indicator of the efficiency of the airport. To answer questions such

as: how much will an extra gate (or runway or whatever) help, you simply build another simulation in

which the extra gate is present, and calculate the average delay for the new configuration. In addition

to textually describing what happens to each aircraft as it progresses through the airport, it is also

desirable to show a graphical animation in which we can see the aircraft landing, taxiing or waiting at

gates. An animation is possibly easier to grasp – perhaps seeing the aircraft as they move might directly

reveal what the bottlenecks are.

The first step in building a simulation is to make a computer model of the relevant aspects of the

system being simulated. When you make a computer model, or a mathematical model, of any entity,

doubtless you have to throw away many details. A trivial example: the colour of the airport building is

irrelevant as far as its ability to handle traffic, so that may be ignored in our simulation. On the other

hand, the number of runways in the airport is of prime importance, and so cannot be ignored. Other

factors that perhaps cannot be ignored include the number of gates at which aircraft can park to take in

and discharge passengers, the layout of the taxiways that connect the runways and the terminals. Other

factors that are perhaps less important are the placement of auxiliary services (e.g. aircraft hangars) and

traffic associated with these services and how it might interfere with aircraft movements. In general,

the more details you incorporate into your model, the more accurate it is likely to be. However, models

with relatively few details might also be useful, if the details are chosen carefully.

In this chapter, we will build a simulation of a simple airport. The simulation is very simplistic, but

it does address several key problems that arise in such simulations.
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28.0.1 Chapter Outline

We will begin by describing the specification, i.e. what we plan to simulate. We discuss the airport

configuration and the (simplified) rules under which the airport will be required to operate. Then we

present an implementation. An important problem in simulating complex systems such as an airport is

deadlock. We discuss how deadlocks can be dealt with in real life and in programs.

The code for the simulation is given with Simplecpp. Figure 28.1 is a snapshot from its execution.

28.1 THE SIMULATION MODEL

It is possible to write a simulator which simulates airports with arbitrary number of runways, taxiways,

gates and so on. However, for simplicity, we will consider the specific airport configuration shown in

Figure 28.1.

In the figure, the two crossing lines at the top are two runways. The other lines are taxiways. The

long horizontal line near the bottom is the main taxiway, and the nearly vertical segments on the sides

we will refer to as the left and right taxiways respectively. There are branches going off the main

taxiway to the gates. We have not shown the gates, but they are supposed to be present at the end of

these short branches. So in this airport there are meant to be 10 gates, which we will number 0 through

9, right to left. The small triangles are meant to represent aircraft. As you can see, there are three

aircraft waiting, at gates 0, 1, and 3, and three others on the runway and taxiways. If you ignore the

branch taxiways, the runways and the other taxiways constitute a single long path, starting in the top

left corner, running clockwise over itself to end in the top right corner. We will call this the main path.

Indeed, for simplicity, we will require that the main path be used in the clockwise direction. Thus,

the runway starting at the top left is the landing runway and the runway ending at the top right is the

takeoff runway. The branch taxiways going to the gates are expected to be used in both directions.

Our configuration is rather simplistic, except for the intersecting runways. Intersecting runways are

not rare, by the way—in fact the Mumbai airport has intersecting runways, which is our inspiration

for including them. But, of course, both the runways in Mumbai can be used for takeoffs as well as

landings, and the taxiways and gate placements are more elaborate.

28.1.1 Overall Functioning

At a high level, the operation of an airport can be described as follows. Each aircraft lands and taxies to

a gate. The aircraft then waits at the gate for a certain service time. After that the aircraft taxies to the

Fig. 28.1 Airport layout with planes
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runway and takes off. This entire process has to be controlled by the airport authorities so as to ensure

safety and efficiency.

28.1.2 Safe Operation and Half-runway Exclusion

The gist of the safety requirements is: aircraft movement should be planned so that at all times aircraft

are well separated from each other. A certain minimum separation is required even as aircraft are

taxiing. The separation between aircraft must be larger when they are travelling at high speeds, as will

be the case when they are landing or taking off. The separation might depend upon the type/size of the

aircraft. For simplicity, we will assume that there is just one type of aircraft and ignore this issue.

More formally, we will model the safety requirement as follows: we will break runways and

taxiways into segments and require that there be at most one aircraft on each segment at any time.

Thus, by choosing sufficiently long segments we can keep the aircraft well separated. Here is the

division into segments that we will use. The two runways will be separate segments, and so will the

the left and right taxiways. The main taxiway will be broken up into segments at the points where the

branch taxiways leave from it. Since there are 10 gates, the main horizontal taxiway will be split into

11 segments. The branch taxiways will constitute separate segments by themselves.

We have an additional complication because our two runways overlap. The simplest way to ensure

safe operation would be to say that only one of the runways can be used at any time. However, to make

the problem more interesting and realistic, we will note that the intersection is in the initial portion

of the runways, and so we will require that the initial halves of the runways should not be in use

simultaneously. In other words, we will require that if the initial half of the take off runway contains

an aircraft then there should be no aircraft in the initial half of the landing runway, and vice versa. We

will call this half-runway exclusion.

28.1.3 Scheduling Strategy

The exact schedule according to which aircraft land and takeoff and even move around while on the

airport is decided by the air traffic controllers at the airport. They must obey the safe operation rules

and in addition resolve conflicting requests. For example, if two aircraft request permission to use the

runway (either for take off or for landing) at the same time, then permission can be granted to only one.

Such decision will have to be taken by the air traffic controllers, so as to acheive certain goals, e.g. to

minimize the average delay, or some weighted average delay with the weights being the priorities of

the different aircraft.

We will assume that a very simple first come first served scheduling strategy is being used by

the air-traffic controllers. Basically, each aircraft requests permission from the traffic controller for

each action it needs to perform, just as it becomes ready to perform the action. If several aircraft ask

permissions to perform actions which require a common resource (say the runway), then permission

is granted to the aircraft which asked earliest, and the other aircraft must wait. Of course many other

strategies are possible. For example, we might decide to give higher priority to landings than takeoffs

because it is easier for a plane to wait on ground than wait mid air!1 This is explored in an exercise.

1An aircraft must begin its descent much earlier than its landing time, and once the descent has begun, the landing cannot be

postponed in normal circumstances. However, our first come first serve strategy may require a flight arrival to be delayed.
This is a shortcoming of our simulation.
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28.1.4 Gate Allocation

When an aircraft arrives it must be assigned a gate at which it is to wait. In general, each aircraft may

have its preferred gates at which it would like to wait. For simplicity, we will assume that all aircraft

can wait at all gates, and say the least numbered free gate should be allocated.

Gates can be allocated any time after the plane arrives into the airport. We will assume for

definiteness that that gate allocation must be done just when the aircraft is about to turn into the main

taxiway from the right taxiway.

28.1.5 Simulator Input and Output

The input to the simulator consists of two number for each incoming aircraft: the arrival time, and the

service time, i.e. the amount of time the aircraft needs to wait at a gate. The simulation will need to

have information about how long it takes for an aircraft to traverse the runway and taxiways, but we

will consider this to be a part of the program.

The primary output from the simulator will be (a) an animation of the aircraft as they enter the

airport, move to a gate, halt for the required time, and then take off and leave, and (b) a text record

of the times at which these events happen. When designing an animation, we need to decide how

frequently will we show the state of our airport. Do we show it every second, or every minute, or only

when something interesting happens, e.g. an aircraft arrives or leaves or stops at its gate? For simplicity,

we wil assume the state is to be shown after every unit time interval, whatever the unit time we define

in the program.

In addition, we may require several derived outputs. Let us define the delay of an aircraft to be the

additional time it spent over and above when it could have departed had the airport been completely

empty. So we might be required to compute the average delay. Such analyses and extensions are left to

the exercises.

28.2 IMPLEMENTATION OVERVIEW

We will build a discrete-event simulation using the sim class developed in Chapter 27. You will see

that the Resource class developed there will also come in useful.

This simulation belongs to the following general paradigm. We have a system (airport) into which

some client entities (aircraft) enter. The entities need to perform certain activities, after which they

leave the system. The time required for the different activities may be specified (e.g. how long does it

take to traverse a taxiway, how long should the aircraft wait at a gate). However, it may be necessary

that the client entities get exclusive access to certain resources in order to perform the activities. In

the case of the airport, each plane needs exclusive access to a gate. However, because of the need to

keep safe distance, we have decided that there must be only one plane on any taxiway at any step.

Thus, before moving onto a taxiway, a plane must get exclusive access to the taxiway, i.e. each taxiway

must be treated as a resource. As you can guess, the Resource class will be useful for representing

taxiways (and also gates).

Once the resources are identified, we can describe simulation from the point of view of each client.

The initial event is the entry of the client into the system. After that the client tries to acquire the

required resources and make progress through the system. If a certain resource is not available, an

event will be queued up at the resource, and the activity of the client will get suspended. When the

resource becomes available, the event will get processed, which will resume the activity of the client.

Likewise, if a certain activity needs a certain large duration (e.g. an aircraft must wait at the gate for its
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service time), then we can stop execution for now after posting an event which will wake us up after

later. This is the general strategy followed in the implementation below.

28.2.1 Half-runway Exclusion

To implement half-runway exclusion wewill use the following trick.Whenever a plane needs to land or

take-off, we will require it to reserve a fictitious halfRW taxiway in addition to reserving the landing

or take-off runways respectively. After a plane has landed and traversed half the runway, we release

halfRW. Thus, another plane can to start taking off if needed. Same thing for a plane taking off—it

will also release halfRW when it gets to the middle of the take-off runway.

28.2.2 Gate Representation and Allocation

We represent gate G implicitly using branch taxiway G. Indeed, when a plane has to wait at gate G it

waits at the bottom end of branch taxiway G. Furthermore, when we want to allocate gate G to a plane,

we merely reserve branch taxiway G. With this we can ensure that at anytime a gate is used only by

one plane.

To allocate a gate we merely examine all the branch taxiways and determine if any is free, and if

so reserve it. The plane then taxies to the end of that branch taxiway and waits. After waiting for the

service time decided for the plane, the plane turns around and heads back to the main taxiway. Just as

the plane is about to turn onto the main taxiway it releases the reservation for the branch taxiway. After

this the other planes can use this gate.

28.3 MAIN PROGRAM AND DATA STRUCTURES

We represent aircraft using a class plane. Taxiways and runways are functionally equivalent, and are

represented using a class taxiway.

The main program causes the creation of the taxiway and plane objects and the posting of arrival

events for them. After that sim::processAll is called and the simulation unfolds starting from the

arrival events. The details appear in the plane class (Section 28.5).

const int nGates = 10, nSegments = 6+3*nGates;

int main(int argc, char** argv){

vector<taxiway*> taxiways(nSegments); // including halfRW

initCanvas("Airport Simulator",1000,1000);

configure_taxiways_and_runways(taxiways);

ifstream planeDataFile(argv[1]);

post_plane_arrivals(taxiways, planeDataFile);

sim::processAll();

getClick();

}

The function configure_taxiways_and_runways sets up the vector taxiways that holds all

required taxiways and runways. We discuss this function in the next section, which also discusses the

taxiway class in detail.
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The function post_plane_arrivals reads the arrival time and the service time for each plane

from a file supplied as the first command-line argument and creates the plane objects. Note that planes

need to move on the taxiways, and so the vector taxiway is supplied as an argument to the plane

constructor. After each plane is created, the constructor posts an arrival event for the designated arrival

time. The details of the plane class are discussed later.

void post_plane_arrivals(vector<taxiway*> &taxiways, ifstream

&planeDataFile){

int arrivalT, serviceT;

int id = 1; // identifier for each plane

while(planeDataFile >> arrivalT){

planeDataFile >> serviceT;

new plane(id++, arrivalT, serviceT, taxiways);

//this posts arrival

}

}

28.4 THE taxiway CLASS

Instances of the taxiway class must serve two purposes: they must be visible on the screen as lines,

and the planes must be able to reserve them. So it is natural to derive the taxiway class from the

Line class and the Resource class of the preceding chapter.

class taxiway : public Line, public Resource{

public:

int traversalT; // time needed to traverse the taxiway

double stepsize; // distance covered per time step

taxiway(float xa, float ya, float xb, float yb, int trT)

: Line(xa,ya,xb,yb), traversalT(trT),

stepsize(sqrt(pow(xa-xb,2)+pow(ya-yb,2))/traversalT) {}

};

The taxiway constructor first creates the Line representing the taxiway on the screen. Ideally we

should distinguish the on-screen line from the real taxiway, and provide details about the real taxiway

separately. For simplicity, we have assumed that the on-screen taxiway and the real taxiway will have

same coordinates on the screen as well as the ground (say the units have been conveniently selected).

In constructing a taxiway, we also provide the time required to traverse it in some hypothetical time

units. Since we know the length of the taxiway, we calculate how much an aircraft moves forward each

(hypothetical) step when on this taxiway—this information is needed to perform the animation.

Note that the Resource constructor is not explicitly called, so a call with no arguments will be

inserted by the compiler. This will set the member inUse of the taxiway (derived from Resource,

Section 27.3) to false, indicating that initially the taxiway is unreserved.

The two runways, the taxiways and the fictitious taxiway halfRW are represented by

taxiway objects, organized into a vector taxiways. This vector is created by the function

configure_taxiways_and_runways. Although we simulate an airport with 10 gates, it is

be convenient to express the creation using a parameter nGates = 10. You will see that we
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Fig. 28.2 Gate and segment numbering

need 3*nGates + 6 segment taxiways including halfRW. The initial nGates+5 elements of

taxiways respectively represent the landing runway, the right taxiway, the nGates+1 segments

of the main taxiway, the left taxiway, and the take-off runway (Figure 28.2). The nGates subsequent

elements will represent the branch taxiways going toward the gates, and the next nGates elements

will represent the branch taxiways coming back from the gates. Then we will have one more segment

representing the fictitious taxiway halfRW.

The code below creates the taxiway elements along with their geometrical coordinates for display

purposes. The names RW1X1, etc., are constants indicating the geometric coordinates of the appropriate

taxiways, and the names tRW, etc., are constants indicating the time to traverse the appropriate

taxiways.

void configure_taxiways_and_runways(vector<taxiway*> &taxiways){

taxiways[0] = new taxiway(RW1X1,RW1Y1,RW1X2,RW1Y2,tRW);

// landing runway

taxiways[1] = new taxiway(RW1X2,RW1Y2,TWX1,TWY1,tVT);

// right taxiway

float twXdisp = ((float)TWX2-TWX1)/(nGates+1);

float twYdisp = ((float)TWY2-TWY1)/(nGates+1);

for(int i=0; i<= nGates; ++i){

// main taxiway: nGates+1 segments

taxiways[2+i] = new taxiway(int(TWX1+i*twXdisp),

int(TWY1+i*twYdisp),

int(TWX1+(i+1)*twXdisp),

int(TWY1+(i+1)*twYdisp), tMT);

}
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taxiways[3+nGates] = new taxiway(TWX2,TWY2,RW2X1,RW2Y1,tVT);

// left taxiway

taxiways[4+nGates] = new taxiway(RW2X1,RW2Y1,RW2X2,RW2Y2,tRW);

// takeoff runway

for(int i=0; i<nGates; ++i){ // branches to gates

taxiways[5+nGates+i] = new taxiway(int(TWX1+(i+1)*twXdisp),

int(TWY1+(i+1)*twYdisp),

int(TWX1+(i+1)*twXdisp), TWYT, tBT);

}

for(int i=0; i< nGates; ++i){ // branches from gates

taxiways[5+2*nGates+i] = new taxiway(int(TWX1+(i+1)*twXdisp),

TWYT,

int(TWX1+(i+1)*twXdisp),

int(TWY1+(i+1)*twYdisp), tBT);

}

taxiways[5+3*nGates] = new taxiway(0,0,0,0,0); // halfRW

}

It will be convenient to define the following names for taxiway segment indices.

const int toGates = 5+nGates, fromGates = 5+2*nGates,

halfRW = 5 + 3*nGates;

const int preLanding = -1, landing = 0, rightTaxiway = 1,

leftTaxiway = toGates-2, takeOff = toGates-1;

The taxiway numbering vis-a-vis gate numbering is shown in Figure 28.2. We have shown the taxiway

going to a gate as being distinct from the taxiway going back from the gate. This is only to stress that

each physical taxiway connecting to the gate (Figure 28.1) is modelled as two logical taxiways, one in

each direction.

28.5 THE plane CLASS

The aircraft are implemented using a plane class. An aircraft must appear on the screen as a part

of the animation. So we inherit from the Turtle class. Indeed, our aircraft appear on the screen as

turtles. We could have defined a more aircraft like visual appearance, but that is left for the exercises.

To keep track of which taxiway segment the plane is on at any time instant we will have a data member

segment. We will have another data member timeToSegmentEnd, in which we keep track of the

number of steps we need to move forward in order to reach the end of the current segment. In addition,

we need to note the gate allocated for the aircraft. For this, we use an integer data member gate. Here

is the class.

class plane : public Turtle {

int id; // identifying number for plane

int arrivalT; // arrival time

int serviceT; // how long the aircraft waits at the gate

int segment; // index of taxiway segment the aircraft is on
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int timeToSegmentEnd; // how far from the end of the segment

int gate; // id of allocated gate

vector<taxiway*> &taxiways;

public:

plane(int i, int at, int st, vector<taxiway*> &tw)

: id(i), arrivalT(at), serviceT(st), taxiways(tw) {

segment = preLanding; // currently before the landing runway.

timeToSegmentEnd = 0;

hide();

penUp();

gate = -10*nGates; // indicates gate not allocated

sim::post(arrivalT, [=](){prepareToEnterSegment();});

}

void prepareToEnterSegment();

void land();

void enter(int newsegment);

void moveOnSegment();

void requestGate();

void turnToGate();

void atGate();

void backOnTaxiway();

void prepareToTakeOff();

void depart();

void ordinarySegment();

};

The constructor initializes the data members. The first event associated with a plane is its arrival into

the airport. This must happens at time arrivalT. Thus the constructor posts an event for this time.

When time advances to arrivalT, this event will get processed and prepareToEnterSegment

will get called. Note that in this call this has been captured (Section 17.5.4).

The other member functions implement the actions of the plane as it moves through the airport. It is

convenient to think of the entire lifetime of a plane as repeated executions of the two main steps below.

1. Preparing to enter a taxiway segment. This involves acquiring different resources depending upon

the segment being entered.

2. Movement along the segment.

The action of preparing to enter a taxiway segment is handled by the member function

prepareToEnterSegment. The specific action depends upon what segment is being entered. For

example, if segment has the value preLanding as it would have initially, the function land will

be called.
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Fig. 28.3 Plane-action block diagram

void plane::prepareToEnterSegment(){

if(segment == preLanding) land();

else if(segment == rightTaxiway) requestGate();

else if(segment == rightTaxiway + 1 + gate) turnToGate();

else if(segment == toGates + gate) atGate();

else if(segment == fromGates + gate) backOnTaxiway();

else if(segment == leftTaxiway) prepareToTakeOff();

else if(segment == takeOff) depart();

else ordinarySegment();

}

We will discuss the segment specific actions shortly. For now, note these actions may need resources

and thus cause the plane activity to get suspeneded on. After such resources are acquired, the segment

will be actually entered by calling member function enter, after which the movement on the segment

will begin. Figure 28.3 shows this schematically.

void plane::enter(int newSegment){

segment = newSegment;

Position linestart = taxiways[segment]->getStart();
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moveTo(linestart.getX(), linestart.getY());

Position lineend = taxiways[segment]->getEnd();

face(lineend.getX(), lineend.getY());

timeToSegmentEnd = taxiways[segment]->traversalT;

sim::post(0, [=](){this->moveOnSegment();});

}

As you can see, the function visually positions the plane at the beginning of the line corresponding to

the segment, and aligns to it. The other housekeeping tasks include setting segment to the index of

the new segment on which the plane is to move, and initializing the counter timeToSegmentEnd to

the time required to traverse this segment. Now the plane is ready to travel on the segment, and so this

event is posted.

void plane::moveOnSegment(){

if(timeToSegmentEnd != 0){

if((segment == landing || segment == takeOff)

&& timeToSegmentEnd == taxiways[segment]->traversalT/2){

taxiways[halfRW]->release();

}

forward(taxiways[segment]->stepsize);

--timeToSegmentEnd;

sim::post(1, [=](){moveOnSegment();});

}

else

prepareToEnterSegment();

}

This function causes the plane to move on the taxiway segment segment on which it finds itself.

Movement is possible so long as the plane has not reached the end, i.e. while timeToSegmentEnd

is not 0. Till then we move forward by the stepsize determined for the current segment. However, if we

are on the landing segment or the takeoff segment, we must also release halfRW when we pass the

middle of these segments.

If the end of the segment has been reached, then the plane must attempt to enter the next segment.

So we call prepareToEnterSegment.

We next discuss the segment specific actions needed to be performed before a segment can be

entered.

28.5.1 Action land

This action is taken when the plane is on the (fictitious) preLanding segment. In order to land,

the aircraft must acquire the landing runway, and then halfRW to satisfy half-runway exclusion as

discussed earlier. After this, it may enter the landing runway.

void plane::land(){

taxiways[landing]->acquire([=](){

taxiways[halfRW]->acquire([=](){

sim::log()<< "Plane " << id << " lands. scheduled arrival "

<< arrivalT << ", Service time " << serviceT << endl;
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show();

enter(landing);

});

});

}

Note that on creation we have hidden the plane. The show command above makes it visible just as it

is about to enter the runway.

28.5.2 Action requestAGate

This function is called when the plane is at the end of segment rightTaxiway. This is when a gate

is to be allocated to the aircraft (Section 28.1.4).

The first part of the code above scans through the taxiway segments representing gates, and reserves

the first one. Remember that the member gate was initialized negative, so that if it has become

positive, then a gate must indeed have been allocated. If a gate is not allocated, we must try execute this

function again, after one step. Thus, we will check every step till a gate can be reserved. This might

seem inefficient, and the exercises ask you to find a better way.

After that the plane has to enter the next segment and move on it. So it acquires exclusive access to

the segment. After getting exclusive access it releases the current segment and calls enter.

void plane::requestGate(){

for(int i=0;i<nGates;++i)

if (taxiways[toGates + i]->reserve()){

gate = i;

break;

}

if(gate < 0) sim::post(1,[=](){requestGate();});

// no gate? try again.

else taxiways[segment+1]->acquire([=](){

taxiways[segment]->release();

enter(segment+1);

});

}

28.5.3 Action turnToGate

This action is taken if the plane is at the end of segment rightTaxiway + 1 + gate (see Figure

28.2). This is precisely the segment from which we can turn to the gate gate, which is already

allocated for the plane and where it wants to halt. The branch taxiway leading to gategate is numbered

toGates + gate. Thus, we should enter that segment. But before that we must release the current

segment that we are on.

void plane::turnToGate(){

taxiways[segment]->release();

enter(toGates + gate);

}
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28.5.4 Action atGate

This action is taken when the plane is on segment toGates + gate. This segment represents the

gate allocated for the plane. It must wait here for its service time, and then start back towards the main

path. The taxiway taking it back to the main path has index fromGates + gate.

void plane::atGate(){

sim::log()<< " Plane " << id << " at gate " << gate

<< " will wait for " << serviceT << endl;

sim::post(serviceT, [=](){ // wait for service

enter(fromGates + gate);

});

}

28.5.5 Action backOnTaxiway

This action is taken when the plane is at the end of segment fromGates + gate. This is a branch

segment leading to main path segment rightTaxiway + 2 + gate. This is what the plane must

enter on the way to take off. After it gets access, it must release the branch segment connecting to the

gate, i.e. togates + gate. Then it should enter segment rightTaxiway + 2 + gate.

void plane::backOnTaxiway(){

taxiways[rightTaxiway + 2 + gate]->acquire([=](){

taxiways[toGates + gate]->release();

enter(rightTaxiway + 2 + gate);

});

}

28.5.6 Action prepareToTakeOff

This action is taken when the plane is at the end of the leftTaxiway. Before entering the take-off

segment, i.e. the runway, we must acquire it, as well as acquire halfRW. Then we release the current

segment and then enter the take-off segment.

void plane::prepareToTakeOff(){

taxiways[takeOff]->acquire([=](){

taxiways[halfRW]->acquire([=](){

taxiways[segment]->release();

enter(segment+1);

});

});

}

28.5.7 Action depart

The take-off is considered complete when the plane reaches the end of the take-off taxiway, i.e. the

take-off runway. So we simply release the segment and hide the plane, i.e. make it invisible.

void plane::depart(){

taxiways[segment]->release();
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hide();

sim::log() << " Plane " << id << " left." << endl;

delete this;

}

After this, we can return the plane object back to the heap. Notice that it is OK to call delete this;

from within the member function, so long as you are not going to access this subsequently.

28.5.8 Action for an Ordinary Segment

Several segments don’t require any special action. The function below deals with such segments. The

next segment must be acquired, the current one released. Then we enter the next segment.

void plane::ordinarySegment(){

taxiways[segment+1]->acquire([=](){

taxiways[segment]->release();

enter(segment+1);

});

}

28.6 DEADLOCKS

A deadlock is a technical term used to describe a system in which one entity e1 is waiting to reserve a

resource held by entity e2 which in turn is waiting to reserve a resource held by an entity e3 and so on,
till some entity en in this sequence is waiting to reserve a resource held by e1. Notice that in this case

no entity can make progress, because all are waiting for each other. As an example, Figure 28.4 shows

cars deadlocked on roads in a city. Note that the roads are one ways, as shown. The cars in the top road

are waiting for the space ahead of them to become empty. This will happen if the cars in the right road

can move down. But these can move down if the cars in the bottom road can move left. These in turn

will move left only if the cars in the left road can move. But these are blocked because of the cars in

the top row. The net result: no one can move. Deadlock.

A deadlock is possible on a circular taxiway if every segment contains a plane which wants to move

forward. In our airport, it would seem that the taxiways do not form a circular path. However we have

to be careful in implementing the half-runway-exclusion rule.

It turns out that deadlocks will not arise because we observe the following discipline in reserving

halfRW. A landing aircraft must first reserve the landing runway and only then halfRW. Similarly, a

plane taking off must first reserve the takeoff runway and only then halfRW. You can see that this is

a good strategy: halfRW being a precious resource must be reserved last. If a plane reserves halfRW

and cannot reserve the landing runway, then it prevents take offs unnecessarily until such time as it

reserves the landing runway. More formally, as the exercise asks you, you should be able to prove that

with this policy there can be no deadlock. On the other hand, if landing planes as well as planes taking

off reserve halfRW first, then it is possible to create a deadlock by carefully constructing the arrival

sequence of the planes. The exercises invite you to explore this possibility.
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Fig. 28.4 Traffic deadlock in a city

28.7 CONCLUDING REMARKS

We have provided a somewhat substantial example of a discrete event simulation. It has several

ingredients which are useful in general: for example, entities competing for resources.

The various member functions in the plane class effectively create a program that a plane is

executing. However, the program is not given as single long text. Instead, it has to be given in pieces.

This kind of style takes getting used to.

We could have designed this program differently: not use the sim and Resource classes at all,

but write the code from the point of view of the air traffic controllers who examine the planes at each

step and advance them as needed. You are asked to do this in an exercise.

EXERCISES

1. Modify the simulation program to print out the average aircraft delay.

2. Define a better plane class in which the on screen image looks like an aircraft rather than a

triangle.

3. Suppose we wish to ensure that as much as possible, an aircraft must land at its arrival time. Thus,

while granting halfRW to a departing plane, we must check whether no plane will want to land

during the interval in which the departing plane will use halfRW. Device a good mechanism to

do this. Hint: perhaps you can reserve the landing runway and halfRW a bit earlier than needed?

4. The program given in the text uses so called busy waiting to allocate gates, i.e. if a gate is not

currently available, the plane retries after 1 step. It will be more efficient if the plane can await

the release of any gate. Develop a class to represent such a resource group. A resource group

models a sequence of objects, each of which can be either reserved or unreserved. On a reserve

request, one of the unreserved objects must be allocated, i.e. the requesting entity should be set as
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its owner. If all objects are currenly reserved, then the reserve request is deemed to fail and should

thus return false. In that case, the entity may await its release. When any of the objects

becomes available, that should get reserved for the waiting entity. Use this in the simulation code.

5. Show that our strategy of reserving resources ensures that there is no deadlock. Specifically, show

that at every step some aircraft willmake progress, and that there will not exist planes p0, . . . , pn−1
where pi is waiting for a resource held by pi+1 where 0 ≤ i < n − 1, and pn−1 is waiting for a
resource held by p0.

6. Suppose we reserve halfRW first and then the take off or landing runways. Construct an input

sequence (the file arrivals.txt) such that there is a deadlock.

7. Perform the airport simulation without using the sim and Resource classes, as described in

Section 28.7. Do you think this will run faster than the simulation we have presented, or slower?

What if there is no need to produce a graphical output, i.e. only a textual record is required?

8. Suppose we do not want to divide the taxiway into segments. Instead, suppose we will allow a

plane to move a certain stepsize at each step while keeping a certain safe distance behind the plane

ahead, if any. Implement this. The other rules must still be followed, i.e. the half-runway-exclusion

rule and the rule that there can be at most one aircraft on each runway at any instant. Also, there

can be only one aircraft on any branch taxiway.

9. Simulate an airport with two runways that do not intersect. Assume the same traffic as that for an

airport with intersecting runways. Define the delay of an aircraft as the actual time it spends on

the airport less the time it would spend if no other aircraft was present in the airport. Compute the

total delay for all aircraft in both models. Increase the traffic i.e. arrivals per unit time and see how

the total delay changes for the intersecting and non-intersecting runways.

10. If an aircraft is not allowed to land when it arrives at the airport, it must fly in a circular path of

total duration some T and then try again. This is a more realistic model than what we have in the

text. Simulate this model.

11. Consider the shortest path algorithmof Section 27.4. Suppose that we are also given the geometric

coordinates for each vertex of the graph. Show a visual simulation of the algorithm, i.e. a turtle

should move along each edge as if it were a cyclist.



CHAPTER29
Systems of Non-linear
Equations

Consider the following problem:

A parallelepiped-shaped box has a base whose diagonal is 22 cm. The surface area of

the box is 690 cm2 and the volume is 1010 cm3. What are the lengths of the sides of the

box?

If x, y, z denote the side lengths in cm, clearly we have x2 + y2 = 222, 2(xy + yz + zx) = 690

and xyz = 1010. This is a system of 3 equations in 3 unknowns. If the equations were linear in the

unknowns, i.e. had the form ax+ by+ cz = d where a, b, c, d are constants, then we could have solved

them using the algorithm from Section 15.2.1. Unfortunately, these equations are non-linear. Thus,

some new ideas will be needed.

Non-linear equations arise while modelling all but the simplest physical systems. Simple physical

systems may give rise to linear equations, e.g. the electrical circuits we considered in Section 23.4.

But the equations become non-linear, say if you add diodes as circuit elements (Exercise 9 of

Chapter 8). Systems of non-linear equations arise in almost every area, from hydrodynamics and

chemical equilibria to machine learning and game theory.

It turns out that solving non-linear simultaneous equations is much more difficult than solving

linear systems. While there is no nice guaranteed method, there are some strategies which often

work. Typically, these strategies are iterative, i.e. an approximate solution is somehow guessed, and

then systematically improved. This is a very important paradigm in the numerical analysis of physical

systems.

In this chapter, we will study an important member of the paradigm: the Newton–Raphson (NRM)

method. We have already studied NRM in Section 8.4 for the one-dimensional case. Its generalization

to multiple dimensions is in one way natural; but it is also trickier and grander. We will intuitively

justify the multidimensional NRM, but a full mathematical treatment is outside the scope of this book.

After studying NRM for multiple dimensions, we will apply it to our box problem. Then we will

consider the following problem in mechanics: given a chain of links of different lengths, compute

the configuration in which it hangs if suspended from fixed pegs. We will see that NRM solves both
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problems nicely. This chapter will thus serve as an introduction to the iterative paradigm as well as to

a new set of applications.

29.1 NEWTON–RAPHSON METHOD IN MANY DIMENSIONS

In one dimension, NRM is used to find the root of a function f of one variable, i.e. find u such that

f(u) = 0. The higher dimensional case is a natural generalization. We are now given n functions

f1, . . . , fn each of n variables, and we want to find their common root, i.e. a set of values u1, . . . , un
such that fi(u1, . . . , un) = 0 for all i.
As you might see, this is really the same as solving simultaneous, possibly non-linear equations.

Any equation in n unknowns can be written so that the right hand side is 0, but then we can treat what

is on the left hand side as a function of the unknowns. Indeed, our equations for the box problem can

be stated in this form as follows:

f1(x, y, z) = x2 + y2 − 484 = 0 (29.1)

f2(x, y, z) = 2(xy + yz + zx) − 690 = 0 (29.2)

f3(x, y, z) = xyz − 1010 = 0 (29.3)

Indeed, the common roots x, y, z, of f1, f2, f3 will precisely give us the side lengths of the box we

want to construct.

We can think of each fi as an error function, i.e. a function which we would like to be 0. Our goal is

to find x, y, z such that each fi(x, y, z) becomes 0. So this suggests an idea. Suppose we have a current

guess for the values of x, y, z. If all fi evaluate to zero i.e. there is no error, we are done. Else we try to
modify the current values so as to reduce the (absolute) value of each fi. As you may remember from

Section 8.4, NRM in one dimension proceeds in exactly this manner.

We will next present NRM in many dimensions. To keep the discussion simple, we will discuss the

method in the context of the box problem, but as you will see, our discussion will be applicable to the

general case. To get the method started, we need to find an initial guess for the values of the unknowns.

This is not entirely trivial, and we will discuss this later. For now, suppose we somehow make an initial

guess (x0, y0, z0) for the side lengths of the box. In general we will have a guess (xi, yi, zi), and will

want to find the next guess (xi+1, yi+1, zi+1).

The key idea in this is to generalize the tangent approximation, equation (8.4), of the one

dimensional case. To begin with, let us just consider the first equation f1(x, y, z) = 0. Consider

what happens if we only vary x. In other words, we hold y, z fixed at yi, zi. But this is just the

one dimensional case, and thus following equation (8.4) we can write f1(xi + ∆x) ≈ f1(xi) + ∆x ·
f �1(xi). In this, we wrote f

�
1(xi) to denote the derivative of f1 with respect to x evaluated at x = xi.

However, since f1 is a function of x, y, z, it is more appropriate to instead write the partial derivative

of f1 with respect to x, evaluated at (xi, yi, zi). Thus, the approximation is

f1(xi + ∆x, yi, zi) ≈ f1(xi, yi, zi) +
∂f1(xi, yi, zi)

∂x
∆x (29.4)

Next we keep x, z fixed, but allow y to vary. Reasoning exactly as above, we get

f1(xi + ∆x, yi + ∆y, zi) ≈ f1(xi + ∆x, yi, zi) +
∂f1(xi + ∆x, yi, zi)

∂x
∆y

In this, for the first term on the right we will substitute the value from equation (29.4). For the second

termwe will use the approximation
∂f1(xi+∆x,yi,zi)

∂x ≈ ∂f1(xi,yi,zi)
∂x which is valid if∆x is small. Thus,
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we get

f1(xi + ∆x, yi + ∆, zi) ≈ f1(xi, yi, zi) +
∂f1(xi, yi, zi)

∂x
∆x+

∂f1(xi, yi, zi)

∂y
∆y

Proceeding as above, we next allow movement in the z direction, and get

f1(xi + ∆x, yi + ∆y, zi + ∆z) ≈

f1(xi, yi, zi) +
∂f1(xi, yi, zi)

∂x
∆x+

∂f1(xi, yi, zi)

∂y
∆y +

∂f1(xi, yi, zi)

∂z
∆z (29.5)

Finally, we note that we would like to make f1 zero, i.e. to set f1(xi + ∆x, yi + ∆y, zi + ∆z) = 0.

Thus, we should choose ∆x,∆y,∆z such that

0 = f1(xi, yi, zi) +
∂f1(xi, yi, zi)

∂x
∆x+

∂f1(xi, yi, zi)

∂y
∆y +

∂f1(xi, yi, zi)

∂z
∆z (29.6)

Notice that this will not necessarily make f(xi + ∆x, yi + ∆y, zi + ∆z) equal 0, because

equation (29.5) which we started with was approximate. This is similar to NRM in one dimension:

by going down the tangent we will usually not get to the root exactly. It will be convenient to write

equation (29.6) slightly differently.

∂f1(xi, yi, zi)

∂x
∆x+

∂f1(xi, yi, zi)

∂y
∆y +

∂f1(xi, yi, zi)

∂z
∆z = −f1(xi, yi, zi) (29.7)

We can write similar equations for f2, f3.

∂f2(xi, yi, zi)

∂x
∆x+

∂f2(xi, yi, zi)

∂y
∆y +

∂f2(xi, yi, zi)

∂z
∆z = −f2(xi, yi, zi) (29.8)

∂f3(xi, yi, zi)

∂x
∆x+

∂f3(xi, yi, zi)

∂y
∆y +

∂f3(xi, yi, zi)

∂z
∆z = −f3(xi, yi, zi) (29.9)

Thus, we have 3 equations (29.7,29.8,29.9) in the 3 unknowns ∆x,∆y,∆z. Note that they are

linear: the coefficients are simply the partial derivatives evaluated at (xi, yi, zi). Thus we can solve

for ∆x,∆y,∆z. From this we can get the next guesses xi+1 = xi + ∆x, yi+1 = yi + ∆y, zi+1 =

zi + ∆z.

Let us work out the details for the specific functions in our box problem. Consider Eq. (29.7). The

partial derivative of f1 = x2 + y2 − 484 [Eq. (29.1)] with respect to x is 2x, with respect to y is 2y

and with respect to z is 0. The partial derivative of f2 = 2(xy+ yz + zx)− 690 with respect to x is

2y + 2z, with respect to y is 2x+ 2z and with respect to z is 2x+ 2y. The derivatives for f3 = xyz
are yz, zx, xy. We merely need to evaluate these at (xi, yi, zi) to get the equations.

We thus need a guess for (xi, yi, zi). As you can see, our approximations work well if∆x,∆y,∆z

are small, i.e. our guess should have reasonably small error. So after some playing around, say we fix

xi = 20, yi = 10, zi = 5. So now we just need to substitute these into the expressions for the partial

derivatives and the functions. Doing this, we get

40∆x+ 20∆y = −16 (29.10)

30∆x+ 50∆y+ 60∆z = −10 (29.11)

50∆x+ 100∆y+ 200∆z = 10 (29.12)
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Solving this, we get (∆x,∆y,∆z) = (−0.12,−0.56, 0.36). Adding these to (xi, yi, zi) we get

(xi+1, yi+1, zi+1) = (19.88, 9.44, 5.36). This guess is better: the new values of (f1, f2, f3) are

(0.355215,−0.327948, 4.10383), which are much closer to zero than the old values (16, 10,−10).

29.2 THE GENERAL CASE

In general, we have n equations f1 = 0, . . . , fn = 0 in n variables u1, . . . , un. Let u
i
j denote the ith

guess for uj (i is not an exponent!). Let ∆uj = ui+1j − uij denote the change to uj . Then we can
proceed as above and get n linear equations, the kth of which is

�
j

∂fk(ui1, . . . , u
i
n)

∂uj
∆uj = −fk(ui1, . . . , u

i
n) (29.13)

We solve these to get ∆u1, . . . ,∆un.

It is customary to consider the above equations in matrix form. Define an n × n matrixAi in which
aikj =

∂fk(u
i
1
,...,uin)

∂uj
. Define an n element vector bi where bik = −fk(ui1, . . . , u

i
n). Let ∆u denote the

vector of unknowns (∆u1, . . . ,∆un). Then we can write the matrix equation

Ai∆u = bi

in whichAi, bi are known and we solve for∆u. The matrixAi is said to be the Jacobian matrix for the

problem. Further, defining ui = (ui1, . . . , u
i
n) we get the update rule

ui+1 = ui + ∆u

Next we comment on when we should terminate the procedure, and how to make the first guess.

29.2.1 Termination

We should terminate the algorithm when all fi are close to zero. A standard way of doing this is

to require that
�
f21 + · · ·+ f2n become smaller than some � that we choose, say � = 10−7 if we

use float, and even smaller if we use double to represent our numbers. In keeping with our

interpretation that fi is the error, the quantity (f1, . . . , fn) is the vector error, and
�
f21 + · · ·+ f2n

is the 2-norm or the Euclidean length of the vector error.

The resulting method is given in Figure 29.1.

29.2.2 Initial Guess

Finding a good guess to start off the algorithm turns out to be tricky. In one dimension, we roughly

plotted the function and sought a point close enough to the root. In multiple dimensions, this is more

difficult.

Newton’s method works beautifully if we are already close to the root. This is because very close to

the root, the equations such as (29.7) become very accurate. One idea is to try to satisfy the equations

approximately. It is often enough to satisfy only some of the equations. For example, we found for the

box problem that a starting guess of (x, y, z) = (20, 10, 5)worked quite well, and in two iterations got

us a solution (19.9085, 9.36214, 5.41884)which has error 2-norm about 10−4.
On the other hand, an initial guess of (1,2,3) worked quite badly: it produced the “answer” (2.2659

−21.883 −20.3692). Note that this satisfies the equations closely, but surely we cannot have negative
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Goal: Solve the system of n non-linear equations: fk(u1, . . . , un) = 0, k = 1, . . . , n.

1. Somehow guess initial values u0 = (u01, . . . , u
0
n). Set i = 0.

2. while
�
k f
2
k (ui1, . . . , u

i
n) > � do

a. Evaluate the Jacobian

A =




∂f1
∂u1

∂f1
∂u2

. . . ∂f1∂un
∂f2
∂u1

∂f2
∂u2

. . . ∂f2∂un
...
∂fn
∂u1

∂fn
∂u2

. . . ∂fn
∂un




at (ui1, . . . , u
i
n). Let Ai denote the resulting matrix of values.

b. Construct the vector bi by setting bik = −fk(ui1, . . . , u
i
n)

c. Find the vector ∆u by solvingAi∆u = bi.

d. Construct the new guess ui+1 = ui + ∆u.

e. i = i+ 1.

3. end while.

4. Print ui1, . . . , u
i
n.

Fig. 29.1 Newton–Raphson method in multiple dimensions

side lengths! This points to another feature of non-linear equations: there may be multiple roots. Your

iterative procedure may not necessarily take you to the correct one.

29.3 HOW A NECKLACE REPOSES

Suppose you are given a chain of n links, where the ith link has length Li, i = 0, . . . , n− 1. Say the

chain is hung from pegs at points (x0, y0) and (xn, yn) which are known. What is the shape attained

by the chain when it comes to rest, hung in this manner? The links in the chain need not have equal

lengths.

29.3.1 Formulation

Let xi, yi denote the coordinates of the left endpoint of link i, and xi+1, yi+1 the coordinates of the

right endpoint, where i = 0, . . . , n− 1. As discussed above, we already know the values of (x0, y0)

and (xn, yn), these are the coordinates of the pegs from which the chain is suspended. The other xi, yi
are the unknowns we must solve for. We are given the lengths Li of the links, thus the variables xi, yi
must satisfy the following equations.

(xi+1 − xi)2 + (yi+1 − yi)2 − L2i = 0 (29.14)

We must balance the forces and torques on the links. Suppose that Fi is the (vector) force exerted

by link i− 1 on link i (F0 is the force exerted on link 0 by the left peg, and Fn−1 is the force exerted
by link n− 1 on the right peg). Note of course that by Newton’s third law, if one object exerts a force

F on another, the latter exerts a force of −F on the former. So each link i has a force Fi acting on
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Fig. 29.2 Forces on the ith link

its left endpoint, and a force −Fi+1 acting on its right endpoint. Further, there is its weight,Wi, also
vector, which acts at its center (Figure 29.2).

When the chain is at rest, total force on each link must be zero. Thus, for each link, we have

Fi − Fi+1 +Wi = 0. Suppose Fi = (hi, vi), i.e. hi and vi are the horizontal and vertical components
of Fi. Because Wi is only vertical, we can write it as Wi = (0, wi). The weight acts downwards, so

perhaps we should write −wi as the y-component. However, do note that in the coordinate system of

our graphics screen y increases downwards. Hence, we do not have the negative sign. Further, we will

assume that the weight is proportional to the length, and so we will writewi = Li. Now balancing the

horizontal component we get hi − hi+1 = 0, i.e. all these variables are identical! Thus, we could write

a common variable h instead of them. Balancing the vertical component we get, for all i:

vi − vi+1 + Li = 0 (29.15)

We need to balance the torque as well. We do this around the right endpoint of the link. Remember

that the torque due to a force F equals the magnitude of the force times the perpendicular distance

from the center to the line of the force. The torque due to the horizontal component of Fi is simply

the horizontal component times the vertical distance to the horizontal component. Thus, it is hi(yi+1 −
yi) = h(yi+1 − yi). This torque is in the clockwise direction. The torque due to the vertical component
is similar, vi(xi+1 − xi), but in the counter clockwise direction. The distance to the line of the weight is
(xi+1 − xi)/2, and so the torque due to it is Li(xi+1 − xi)/2, also in the counterclockwise direction.
But the total torque, considered in say the clockwise direction, must be zero. Thus, we get

h(yi+1 − yi)− vi(xi+1 − xi) − Li(xi+1 − xi)/2 = 0 (29.16)

Equations (29.14), (29.15), and (29.16) apply to each link, and thus we have 3n equations over all.

The unknowns are x1, . . . , xn−1 (noting that x0, xn are known) and similarly y1, . . . , yn−1, and h,
and v0, . . . , vn. Thus, there are a total of (n− 1) + (n − 1) + 1 + (n + 1) = 3n unknowns. Thus, the

number of unknowns and the number of equations match; however, our equations (29.14) and (29.16)

are not linear. So we can use the Newton–Raphson method.

29.3.2 Initial Guess

Making a good initial guess is vital for this problem.
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To make a good guess, we have to make use of our “common sense” expectation about what the

solution is likely to look like. For the necklace problem, we can expect that the necklace will hang in

the shape of a “U”. So presumably, we can set (xi, yi) along a semicircle which hangs from the pegs.

Also we can arrange the force values so that the total vertical force on each link is 0. One way to do

this is to compute the total weight, and set v0, vn to bear half of it. Once we set this the other values

of vi can be set as per Eq. (29.15). The horizontal force h could be set to 0 to begin with. It is much
trickier to try to balance the torque. But it turned out that the initial values as we have outlined here are

enough to produce a good answer.

29.3.3 Experience

We coded up the algorithm and set the initial values as per the guessing strategy described above.

After each iteration, we plotted the necklace configuration on our graphics screen. We found that the

configuration quickly seems to reach a stable point. Indeed, we also printed out the error 2-norm, and

it got close to zero fairly quickly.

29.4 REMARKS

You may observe that the NRM subsumes the linear case we discussed in Section 15.2.1. If each fk
is a linear function fk = pk1u1 + . . .+ pknun − qk, then the Jacobian will be a constant matrix with
Akj = pkj . We will get an exact solution in 1 iteration of Figure 29.1 even with a starting guess of

u0 = (0, . . . , 0).

As you experiment with NRM, you might notice that the error norm (as defined in Section 29.2.1)

does not necessarily decrease in each iteration. This is understandable, the error norm is guaranteed to

decrease only if the equations such as (29.5) hold exactly.

Many methods have been suggested for solving non-linear equations. NRM is only one among them,

and we discussed it to give you a flavour of what is possible.

EXERCISES

1. Write the program to solve the box problem.

2. Write the program to solve the chain-link problem. Display the configuration of the chain on the

screen after each iteration of NRM.

3. In Exercise 9 of Chapter 8, you were asked to solve a circuit with a diode using the

one dimensional NRM. Write a program to solve a circuit containing many branches as in

Section 23.4, with several circuit elements being diodes.
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Simplecpp

Simplecpp provides two macros, one function, one class for use in simulation, and several classes and

functions for use in graphics. The functions and classes are placed in a namespace simplecpp.

We first discuss how to install Simplecpp. Then we give a very brief overview of the various features.

Details are found in relevant parts of the rest of the book.

A.1 INSTALLATION

Simplecpp for Unix systems as well as Windows can be obtained by following instructions at

www.cse.iitb.ac.in/∼ranade/simplecpp

http://www.mhhe.com/ranade/cppp

Your download will include the following directories:

1. include : C++ include files

2. lib : The library libsprite.a

3. src : Source files.

4. programs_from_the_book : Programs developed in the book. Ready to be compiled and

executed.

A.2 NON-GRAPHICS FEATURES

The first Simplecpp primitive you will encounter in the book is main_program. This is a

preprocessor macro (Section H), i.e. just a short form for int main(), which is how the main

program is really required to begin in C++. Also see the discussion in Section 11.1 about this.

In Chapter 1, you will also encounter the primitiverepeat. The looping statements in C++ such as

for and while are more complex (Section 7). So in Simplecpp we designed the repeat primitive,

which is very easy to understand, and can be used from the very first day. This is also implemented

using a preprocessor macro (Section H).

Section 13.7.1 discusses the function double randuv(double u, double v), which

provides (pseudo) random numbers to be generated in the range u to v.

Chapter 27 discusses the classes sim and Resourcewhich are useful for discrete event simulation.

APPEND IX                                  
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A.3 GRAPHICS CLASSES AND FUNCTIONS

Chapter 1 describes the turtle-based graphics provided in Simplecpp.

Chapter 5 describes the more general graphics model, and the other graphics primitives. The

primitive getClick using which a program can wait for the user to click on the canvas is also

described.

Chapter 20 describes how a program can handle events such as pressing mouse buttons, dragging

the mouse, and also pressing keys in the graphics mode.

A.4 COMPILING

When you install Simplecpp following directions, on Unix a script s++ will get defined, using which

you can compile. The simplest use is

s++ file-names-and-options

This invokes the Gnu C++ compiler using the command g++. We have included many options already

with s++. Some of our options specify where the Simplecpp library and include files can be found.

We have also specified several options to produce warnings by default. But you can give even further

options on the command line provided they are supported by g++. One option which you might wish

to give is -o executable-file-name. If this option is not specified, g++ calls the executable

a.out, which is what we have been using in the book.



B
Reserved Words in C++

The followingwords are reserved for special use by the C++ language and cannot be used as identifiers.

alignas alignof and and_eq asm auto

bitand bitor bool break case catch

char char16_t char32_t class compl const

const_cast constexpr continue decltype default delete

do double dynamic_cast else enum explicit

export extern false float for friend

goto if inline int long mutable

namespace new noexcept not not_eq nullptr

operator or or_eq private protected public

register reinterpret_cast return short signed sizeof

static static_assert static_cast struct switch template

this thread_local throw true try typedef

typeid typename union unsigned using virtual

void volatile wchar_t while xor xor_eq

Words such as main, cin, cout are not reserved. However, it is strongly recommended that

you do not use them for anything other than their commonly accepted purpose.
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Operators and Operator
Overloading

We will discuss some of the less frequently used operators, and then consider operator overloading.

C.1 BITWISE LOGICAL OPERATORS

C++ allows bitwise logical operations to be performed on variables of integer types. For simplicity, we

will only consider operations on the unsigned types.

C.1.1 OR

The operator | is the bitwise OR operator, i.e. p | q returns a number that is obtained by taking the

binary representations of p,q, and computing the OR of the corresponding bits. Note that the logical

OR of two bits is a 1 if and only if at least one of the bits is 1. Here is an example.

unsigned int p=10, q=6, r;

r = p | q;

This would cause the bit pattern

00000000000000000000000000001010

for 10 (decimal) to be OR’ed with the bit pattern

00000000000000000000000000000110

for 6, to get the result

00000000000000000000000000001110

which is the bit pattern for 14. Thus, at the end, r would be 14.

C.1.2 AND

The operator & performs bitwise logical AND. Note that the logical AND of two bits is 1 iff both bits

are 1. Thus, for p,q as defined above, if we write
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unsigned int s = p & q;

s would get the bit pattern 0000000000000000000000000000010, which is the bit pattern for 2. Thus

at the end, s would equal 2.

C.1.3 Exclusive OR

The operator ˆ is the bitwise exclusive OR operator. Note that the logical exclusive OR of two bits is

1 if and only if exactly one of the bits is 1. Thus, if we write

unsigned int t = p ^ q;

the variable t would get the bit pattern 0000000000000000000000000001100,which is the bit pattern

for 12. Thus, t would be 12 after the statement.

C.1.4 Complement

Finally, the operator ˜ is the (unary) bitwise complement operator. The complement of a bit is 1 if and

only if the bit is 0. Thus, if we write

unsigned int u = ~p;

the bit pattern for u would have 0s wherever p had 1s and vice versa. Thus, we would have 1s in all

positions except the positions of place value 2 and 8. Thus, the value of u after the statement would be

(
�31
i=0 2i) − 2− 8 = 4294967285.

C.1.5 Left Shift

The operator << is used to shift a bit pattern to the left. Thus, x << y would cause the bit pattern for x

to be shifted left by the the value of y. By this, we mean the following operation. We first throw away

the most significant y bits, and then append y zeros on the right. The resulting bit pattern is the result

of the operation. Note that if the most significant x are zero, then x << y is simply x2y, where x, y are

the values of x and y respectively.

For p, q as we defined, i.e. having values respectively 10 and 6, if we write

unsigned int v = p << q;

the variable v would get the bit pattern 0000000000000000000001010000000. This has the numerical

value 10× 26 = 640.

C.1.6 Right Shift

The operator >> is used to shift a bit pattern to the right. Thus, x >> y would cause the bit pattern for x

to be shifted right by the the value of y. By this we mean the following operation. We first throw away

the least significant y bits, and then append y zeros on the left. The resulting bit pattern is the result of

the operation. Note that x >> y is simply x/2y (integer division), where x, y are the values of x and y

respectively.

For v as we defined above, i.e. having value respectively 640, if we write

unsigned int w = v >> 2;

the variable w would get the bit pattern 0000000000000000000000010100000. This has the numerical

value 160.
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C.2 COMMA OPERATOR

A comma expression has the form

lhs, rhs

where lhs and rhs are expressions. The operator causes the evaluation of both the expressions, and

the value of rhs is used as the result of the comma expression.

The comma operator can be used to force the evaluation of multiple expressions in settings where

syntactically only one expression is expected.

A common use is to have multiple increment and decrement operations in a for statement.

for (int y = 10, x=0; y>0; y--, x++)

cout << x << endl;

This would print the numbers 0 through 9.

As another example, using the comma operator, our mark averaging program of Section 7.1.2 can

be written more compactly as follows.

main_program{

float nextmark, sum=0;

int count=0;

while(cin >> nextmark, nextmark >= 0){

sum = sum + nextmark;

count = count + 1;

}

cout << "The average is: " << sum/count << endl;

}

However, usage such as above is not common, and hence is not recommended.

Also note that the comma operator should not be confused with the use of the comma as a delimiter

in declarations e.g. float nextmark, sum=0; above, or function calls, e.g. f(a,b).

C.3 OPERATOR OVERLOADING

We have discussed the basic ideas of operator overloading in Section 18.4 and Section 18.11.1. Here

we discuss some details.

The following prefix unary operators can be overloaded

+ - * & ! ~ ++ --

For any operator @ in the list above, overloading can be done either by defining a member function

operator@ in the class of the operand taking no argument, or by defining a non-member function

operator@ taking a single argument of the type of the operand.

The unary suffix operators ++, - can also be overloaded. You again define a member or ordinary

function operator@ like the prefix versions. However, to distinguish from the prefix versions, you

also have an extra int argument which you ignore. This might seem arbitrary, and it could indeed be

considered a hack.



D
Formatted Output

While printing out data on the screen, or outputting it into a file (Section 18.9), you may wish to control

its appearance in different ways. For example, you may want exactly 2 digits to appear after the decimal

point while printing a number. Or you might want names or numbers in different lines aligned at the

same column. It is possible to do such things by usingmanipulators,which we discuss in this appendix.

A manipulator can be an identifier or an identifier with a parameter, like a function call. To use the

manipulators that take a parameter you must include the header file <iomanip>. A manipulator must

be inserted into the output stream using the << operator just as data is inserted. We will see examples

shortly.

Our examples are all for the standard output stream, cout. However, the discussion applies to all

output streams.

D.1 GENERAL-PURPOSE MANIPULATORS

The identifier endl that you have been using is actually a manipulator. It inserts the newline character

into the output stream and then flushes the stream, i.e. causes it to be printed immediately. There is also

a flush manipulator which flushes the stream without inserting a newline.

An important general-purpose manipulator is setw. This has an integer parameter which specifies

the width, or the minimum number of characters to be used for printing the next output value. If the

output value needs fewer characters than the specified width, then fill characters are added to make up

the width. The fill character is a space by default. By default, the fill characters are added to the left,

i.e. by default the value is right justified in its field. Here is an example.

cout << ’*’ << setw(10) << 56 <<’*’<< endl;

In this we have put in ’*’ merely to make it obvious where the spaces have been inserted. This will

cause the following to be printed.

* 56*

The manipulator setw is non-persistent, i.e. its effect is limited to just one value following it. Other

manipulators that we see next are persistent, i.e. they will apply to all future values to be printed.

The left and right manipulators enable you to get left/right justification. Thus, we might write

cout << ’*’ << setw(10) << left << 56 <<’*’<< endl;
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to get

*56 *

Field width and justification also applies to character strings.

cout << ’*’ << setw(10) << left << "xyz" <<’*’<< endl;

will produce

*xyz *

The setfill manipulator takes a character as argument and uses that to fill.

cout << setw(10) << right << setfill(’-’) << "xyz" << endl;

will produce

-------xyz

D.2 NUMERIC DATA

In accounting applications, it is often desired that the sign of a number be justified to the left, while the

number is justified to the right, in the specified width. This can be accomplished using the internal

manipulator.

cout << ’*’ << setw(10) << internal << -3.14 <<’*’<< endl;

will produce

*- 3.14*

Normally, positive numbers are not prefixed with +. But you can get that to happen using the

manipulator showpos. The manipulator noshowpos will inhibit showing +.

Next we consider the printing of floating point numbers. There are many choices. As you might

have observed, if the number is small, the default is to print it in the usual fixed point manner, with a

decimal point if needed. If the number is large, then the scientific notation is used. Further, the number

of digits of precision to be shown must also be decided. There are some defaults; however, they can all

be changed.

The manipulators fixed and scientific respectively print a number using the fixed point

notation and scientific notation.

cout << fixed << 6.023e23 << ’ ’ << scientific << 3.14 << endl;

will produce

602299999999999975882752.000000 3.140000e+00

You might have expected 6.023e23 to be printed as 602300000000000000000000. What you see is

slightly different because 6.023e23 is first converted to double which introduces some error.

The manipulators scientific and fixed are persistent. So if you want to return to the default

situation in which C++ decides which notation to use depending upon the magnitude of the number

being printed, you must issue the complicated looking command

cout.unsetf(ios::fixed | ios::scientific);
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The maximum number n of digits of precision can be controlled by using the manipulator

setprecision(n). The phrase “digits of precision” includes the number of digits before and after

the decimal point.

Normally, the number of digits printed after the decimal point depend upon how many are needed.

However, you may wish that a certain number be always printed, say in order to align data. You can

accomplish this using the manipulator showpoint.

cout << setprecision(5) << 3.1415926535 << endl << 87.25 << endl;

cout << showpoint << 3.1415926535 << endl << 87.25 << endl;

This will produce

3.1416

87.25

3.1416

87.250

After this, you can revert to not printing trailing zeroes by using the manipulator nowshowpoint if

you wish.

D.2.1 Base

You can change the base to which a number is printed by specifying the manipulators dec, hex and

oct, which cause subsequent numbers to be printed using the decimal, hexadecimal and octal number

systems. Note however, that floating point numbers are always printed in decimal. Further, while

printing negative integers in hexadecimal or octal, the corresponding bit patterns are considered and

printed without a sign. Simply put, it makes sense to only print unsigned integers in either hexadecimal

or octal.

It is possible to give an indication of the base used in printing, using the manipulator showbase.

This will prefix hexadecimal values with an x, and octal values with a leading 0. The leading indicators

can be suppressed using the manipulator noshowbase.

D.2.2 Capitalization

If you really care, you can have the radix indicators as well as the ’e’ in scientific notation appear

capitalized, using the manipulator uppercase. You can get back to the default, lowercase, by the

manipulator nouppercase.

D.3 BOOLEAN DATA

You can make boolean data appear as true or false by using the manipulator boolalpha, and as

1 or 0 (default) using the manipulator noboolalpha.
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The stringstream Class

The class iostream is used to define objects such as cin and cout on which we can use the

extraction operators >> and << respectively to read or write data. The objects are called streams,

because data flows in and out of them.

A stringstream is a stream object, but it is constructed out of a string. To use it, you need

to include the header <sstream>. This is especially useful in extracting numbers from strings or

converting numbers to strings.

As an example, here is a program that takes two double numbers as command line arguments and

prints their product.

#include <sstream>

int main(int argc, char *argv[]){

double x,y;

stringstream(argv[1]) >> x;

stringstream(argv[2]) >> y;

cout << x*y << endl;

}

In this, we have used the stringstream functionality provided in C++, by including<sstream>.

The function stringstream takes a single argument s which is a character string, and converts

it to an input stream (such as cin). Now we can use the » operator to extract elements. Thus,

stringstream(argv[1]) » x; would extract a double value from the second word typed on

the command line. Similarly, a double value would be extracted into y from the third word. Thus, if

you typed

a.out 4 5e3

The answer, 20000 would indeed be printed.

Here is another example.

int main(){

string s="1 2 3";

int x,y,z;

stringstream(s) >> x >> y >> z;
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stringstream t;

t << x*y <<’ ’<< y*z;

cout << t.str() << endl;

}

As you can see, in this we have made multiple extractions from the same stringstream. This

is allowed. Basically, everything that you can do with streams is allowed on stringstreams. The

stringstream t is used for output, and we have put multiple values into it. Finally, the member function

str allows us to extract the string out of a stringstream, which can be printed out if desired.



F
Exceptions

How to deal with unexpected events is a ticklish problem while writing programs. By “unexpected

event” we mean something like: you request memory using the operator new but for some reason the

request is not granted. Another unexpected event could be that the user typed a non numerical value in

response to a request to type in a number. Another possibility is that your program is trying to read from

a file, but it finds that the file cannot be read because of problems with the disk. Another possibility

is that an argument specified to a function does not satisfy the preconditions, e.g. the user specified

negative numbers as arguments to a function to find the greatest common divisor.

You may not wish to write code to respond to such “rare” events in your program; you may consider

it fine if the program just aborts. Or you may wish to handle such events and try to recover from them.

For example, if there is a problem with a file you may ask the user to supply another file. How should

such code be organized? Should you check for exceptional events after every file reading operation? If

you do, it will likely clutter up your program. It is nicer if you can organize your code into two parts:

the code which handles the normal situation, and the code that handles the exceptional events. The

key point is that in the code that handles the normal events, you don’t even want to write checks for

exceptional events, let alone describe how to handle them. The exception-handling mechanism of C++

allows you to do precisely this.

The first important provision is a way by which a function can choose to exit abnormally. Instead

of executing the usual return statement, a function can execute a throw statement. If a throw

statement is executed, the function call terminates, and instead of resuming from the point of the call,

the control executes a handlerwhich must have been defined earlier. The handler can take appropriate

actions and continue if possible. Here is an example of a throw.

int gcd(int m, int n){

if(n <= 0) throw "Non-positive argument to gcd.";

while(n > 0){

int t = m % n;

m = n;

n = t;

}

return m;

}
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The handler is defined using the try and catch statements as shown below.

int main(){

try{

cout << gcd(36,24) << endl;

cout << gcd(36,0) << endl;

cout <<"Done!\n";

}

catch(...){

cout <<"Probably gcd was supplied a 0 argument." << endl;

}

cout << gcd(153,68) << endl;

cout << gcd(3,0) << endl;

cout <<"Done!!\n";

}

In this, the code inside the try block executes like normal code, except that if some call resulting

from that execution throws an exception (which simply means executing a throw statement), then

the execution continues from the catch statement. Thus, in this case, after the call gcd(36,0), the

throw statement will be executed. Thus, "Done!" would not be printed, but the catch block will

be executed, and the message "Probably .." would be printed. After executing all the statements

in the catch block, the execution of the try-catch group would end. After that the statement

following the group will be executed.

The next statement is a call to calculate the GCD of 153, 68. This would cause 17 to be printed.

The call after that requests the GCD of 3 and 0. In response to this an exception would be thrown. This

time the call is not inside a try block, so there is no catch block to continue from. In this case, the

program would abort. Thus the final "Done!!" would not be printed.

Finally, note that if no exception is thrown inside a try block, then the execution of the

try-catch group would complete after the execution of the code in the try block.

In the catch statement above, we did not make use of the message following the throw statement

in gcd. We will discuss how to use the message next.

F.1 THE GENERAL FORM

In general, a throw statement can return any object. In the above example, we chose to return a

const char*, but we could return other objects too.

The ellipsis in the form catch(...) indicate that the block following it should be executed for

all throw statements. In this form, the code in the block does not get access to the object being returned

by the throw.

Alternately, you could use the formcatch

catch(param-type param){

code

}
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Such a catch block would be executed if the type of the object thrown matches param-type. In

such a case, param will denote the object thrown. Thus, to be able to access the object returned by

gcd the catch statement should have been

catch(const char* m){

cout << m << endl;

}

With this, we would have the message in the object thrown by gcd printed out.

Note that you can have several catch blocks, each catering to thrown objects of different types. If

the type of the object thrown does not match any of the types given in the different catch blocks, then

the program will abort.

F.2 ENABLING INPUT EXCEPTIONS

We have mentioned earlier that if the user types a non-numerical value in response to a request to type

a number, the program does not abort but just continues. Furthermore, the behaviour of the program is

unpredictable from that point onwards. However, if an error has occurred, the stream becomes NULL,

as we observed in Section 13.6.2. So we could check whether a stream has become NULL after every

input operation.

However, you may find this cumbersome. You may wish: why does the program not abort

automatically if a bad value is read? You can indeed arrange for this.

You can request that a stream should throw an exception when an input operation fails, say because

the type of the character read is not of the type required. This can be done by writing:

streamname.exceptions(std::ifstream::failbit|std::ifstream::badbit);

In this, streamname is the name of the stream from which you are reading. The arguments to the

command are constants defined in the header file <fstream>. So you should include that file.

The above line will cause an exception to be thrown on file reading errors. If you do not catch the

exception, it will cause the program to abort. This may just be what you need most of the time.

You may of course, choose to handle that exception. Perhaps you want the user to type in the input

again. For this, you can put the reading statements inside a try block and have a catch block in

which the recovery code is put.

The type of the object thrown on file-reading errors is exception, which is defined in the header

file <exception>. Thus, you can write a catch block

catch (exception& e){ cout << e.what() << endl; }

The class exception has the member function what which is used to describe the reason for the

exception. The catch block can contain other code too, e.g. if you want the user to type the value again.
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Managing Heap Memory

Dynamic allocation of heap memory is required for many purposes, e.g., representing variable-length

entities. The simplest way of doing this is to use standard library classes (Chapter 22). The standard

library classes hide the memory management behind a simple convenient interface which is often

adequate. But in some applications, e.g. formula layout (Chapter 24), it is necessary to build your own

classes in which memory management must be done. In Chapter 21, we discussed a simple strategy for

managing heap memory. Here we will discuss a more sophisticated strategy. This strategy is based on

the shared_ptr and weak_ptr classes available on including the header file <memory>.

The simple memory-management strategy presented in Section 21.3.1 was based on a “no sharing”

principle: we ensured that each allocated object is pointed to by exactly one pointer. This principle

enables us to fairly easily decide when an object allocated on the heap is no longer needed by the

program. When this is determined, the memory given for the object can be returned to the heap, as is

done in the various member functions developed in Section 21.3. This no sharing strategy is common,

and is used (behind the scenes!) in the standard library.

However, the constraint that each object be pointed to by at most one pointer is not always efficient

or convenient. As a simple example, consider the String class of Figure 21.2. Suppose we write the

following code.

String x,y;

x = "ABC";

y = x;

As per the implementation of Figure 21.2, the second statement would allocate a character array on

the heap, and x.ptr would point to it. The third statement will allocate another array into which the

previous array would be copied. Then it would set y.ptr to point to the new array. This is consistent

with the no sharing principle. But it seems we could do better. Do we really need to make a copy?

Why not just assign y.ptr = x.ptr; and have both pointers point to the same array in memory?

This would save on memory requirement and also on copying time. However, as we pointed out in

Section 21.3.1, having x, y share a character array allocated on the heap creates problems too.

Basically, it becomes harder to detect when the array is not needed and can be returned back. For

example, if the above code was followed by
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y = "DEF";

x = "12";

then clearly the array containing "ABC" is no longer needed, and that memory should be returned back

using delete []. The key question is: how do we know whether a particular array is not pointed to

by any pointer and is thus not in use? The solution we consider here uses reference counting. This is

already available to you in C++ through the header file <memory>.

G.1 REFERENCE COUNTING

The basic idea is to associate a reference count with each object allocated on the heap, say with the

character array containing"ABC" that was discussed above. The reference count of an object is simply

the number of pointers pointing to that object, indicating how useful that object is. Typically, the

reference count is stored in an auxiliary variable. If we create a an additional pointer to point to an

object, we must add 1 to its reference count. If we remove a pointer, then we must subtract 1. When

the count of an object X drops to zero, we decide that X is no longer useful, and so we must return

the memory of X to the heap. Note that X might itself contain a pointer to an object Y. In this case

we know that the pointer to Y out of X will no longer exist. So the reference count of Y must also be

decremented. If this causes the reference count of Y to drop to zero, Y must also be returned back to

the heap, and so on.

Using reference counts, we can indeed allow character arrays to be shared between String objects

as discussed above. For this, we would need to have auxiliary variables to store the reference counts,

and write the code to increment and decrement them appropriately. Such code is a bit tedious, and so

C++ provides a class shared_ptr which does all this for you internally. We will see its use shortly.

It turns out that reference counting is not adequate when objects can point to each other, directly

or indirectly. We will consider this in Section G.3. A solution will also be discussed. This is based on

another class, weak_ptr.

To use shared_ptr or weak_ptr, you need to include the header file <memory>.

G.2 THE TEMPLATE CLASS shared_ptr

A shared_ptr is really a small structure that contains the real pointer, and other data needed to

manipulate reference counts. The constructor, copy constructor and the assignment operator are defined

to perform the respective functions and in addition modify the reference count as described above.

Specifically, as these member functions execute, the reference count will increase or decrease suitably,

and if it drops to zero, the pointed object will be deleted. Also, if a shared_ptr is itself deleted, or

goes out of scope, the reference count of the object pointed to must decrease. This will happen because

the destructor of shared_ptr is defined to do so. The dereferencing operator * is also defined for a

shared_ptr, and it causes the object pointed to to be returned.

As you can see, a shared_ptr is like an ordinary pointer in many ways, and can be used almost as

conveniently. The operations needed to maintain the reference count happen behind the scenes! Note,

however, when we speak of a reference count above we mean the number of shared_ptrs pointing

to an object. If an object has ordinary pointers pointing to it, then the reference count as defined above

will not count them. Informally stated, if you want reference counting to work for a certain object, you

must only point to it through shared_ptrs.
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Some additional member functions are also provided. The member function use_count returns

the reference count of what the shared_ptr points to. The member functionget returns an ordinary

pointer to the object pointed. This is useful for performing indexing operations as you will see.

G.2.1 Shared Pointers in the String Class

We now show how to modify the implementation of the String class of Section 21.3. Our

modification will enable sharing of values between two String objects, as discussed in the

introduction. The new implementation is shown in Figure G.1. It uses the functions length and

scopy from Chapter 21.

You may find it interesting that this code is shorter than the code of Figure 21.2. This because there

are no constructors and only one assignment operator. As you will see, the default versions of others

will suffice.

We will use this with a main program shown in Figure G.2. When you execute this program, in the

very first statement, variable a is created. The default constuctor is used for this. This constructor will

in turn create a.ptr using the default constructor for shared_ptr. Thus effectively the pointers

will be set to NULL and counts to 0. The next statement stores "PQR" in a. After this we see that the

reference count of a becomes 1.

After that variable b is created, initialized to a. For this, the default copy constructor gets used,

class String{

shared_ptr<char> ptr;

public:

String& operator=(const char* rhs){

ptr = shared_ptr<char>(new char[length(rhs) + 1]);

scopy(ptr.get(),rhs);

return *this;

}

String operator+(const String &rhs) const {

String res;

res.ptr = shared_ptr<char>(new char[size() + rhs.size() + 1]);

scopy(res.ptr.get(), ptr.get());

scopy(res.ptr.get(), rhs.ptr.get(), length(ptr));

return res;

}

void print() const {

if(ptr != NULL) cout << ptr << endl;

else cout << "NULL" << endl;

}

int size() const {return length(ptr.get());}

char& operator[](int i) const {return ptr.get()[i];}

int use_count() const {return ptr.use_count();}

};

Fig. G.1 String with value sharing
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int main(){

String a;

cout <<"a use counts: "<<a.use_count()<<endl; a.print();

a = "PQR";

cout <<"a use counts: "<<a.use_count()<<endl; a.print();

String b(a);

cout <<"ab use counts: "<<a.use_count()<<b.use_count()<<endl;

a.print(); b.print();

a = "ABC";

cout <<"Overwrote a. ab use counts: "<<a.use_count()

<<b.use_count()<<endl;

a.print(); b.print();

b = a;

cout <<"b=a. ab use counts: "<<a.use_count()<<b.use_count()<<endl;

a.print(); b.print();

}

Fig. G.2 Main program for testing

which is adequate. This, in turn, causes the copy constructor to be invoked on b.ptr using a.ptr.

Thus, we will get b also to point to "PQR". Thus the reference count for a.ptr and b.ptr will both

become 2.

Next we store "ABC" in a. The print statements show that b continues to have value "PQR", but

the reference counts have both dropped to 1. This is as expected.

Finally, when we copy a to b, the default assignment operator gets used. This does a member by

member copy. Thus a.ptr is assigned to b.ptr. This assignment causes the real pointers inside the

shared_ptr to be copied, and also the reference counts to be updated. This is seen in what is printed.

G.2.2 General Strategy

Suppose you wish to manage allocation of a certain class X. The preceding discussion suggests the

following strategy: hold all pointers to heap allocated objects of class X only in shared_ptrs.

Allocate memory as always using new, but store the resulting pointer in a shared_ptr. If you

do this, you will not have to worry about deallocating memory. This will happen automatically when

the reference counts go to 0.

This strategy works well sometimes. It worked well for the String class above. We will see that

it will work well also for manipulating expression trees.

However, any implementation of reference counting (including that provided by shared_ptr)

has one fundamental limitation: if your pointers form cycles, then you will have memory leaks even

with shared_ptrs. We will see this in Section G.3.

G.2.3 Shared Pointers in Expression Tees

We develop the code for implementing expression trees (Section 24.2.2) that returns memory to the

heap when not needed. The code is shown in Figure G.3.



456 An Introduction to Programming through C++

class Exp;

typedef shared_ptr<Exp> spE;

class Exp{

spE lhs, rhs;

string value;

char op;

public:

Exp(string s): value(s), op(’P’) {cout << "Created "<< s<< endl;}

Exp(char o, spE l, spE r): lhs(l), rhs(r), op(o) {

cout << "Created exp with op "<< o << endl;

}

~Exp(){

if(op == ’P’) cout <<"Deleting "<<value<<endl;

else cout <<"Deleting exp with op "<< op << endl;

}

};

spE literal(string s){return spE(new Exp(s));}

spE formula(char o, spE l, spE r){return spE(new Exp(o,l,r));}

int main(){

spE e1 = literal("100"); cout <<"e1 created.\n";

spE e2 = formula(’+’, e1, literal("200"));cout <<"e2 created.\n";

spE e3 = formula(’*’, e2, e1); cout <<"e3 created.\n";

e2 = literal("300"); cout <<"e2 modified.\n";

e3 = e1; cout <<"e3 modified.\n";

}

Fig. G.3 Expression trees with memory management

We use the class Exp to represent expressions. In the code, it is necessary to form shared_ptrs

to Exp quite frequently. So we have a type definition, spE, shared pointer to expressions. In the main

program, it is convenient to think of formulae as being of type spE.

The main program uses functions literal to create literals, i.e. primitive expressions. The

function formula is used to create non-primitive expressions. As you can see, the functions allocates

memory using new, as needed. However, there is no explicit code to return memory back to the heap.

This happens automatically through the shared_ptr code.

We consider what happens when the main program is executed. After the first line, the following

gets printed.

Created 100

e1 created.

When the second line is executed, the following is printed.

Created 200

Created exp with op +

e2 created.
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The key point to note here is that the literal 100 is not created again, i.e. it is shared with e1. The

execution of the third line gives

Created exp with op *

e3 created.

The notable point here is that only the top node is created, the rest is shared. The fourth line prints the

following:

Created 300

e2 modified.

Nothing is yet destroyed, because all the nodes allocated thus far are in use. The fifth line prints the

following.

Deleting exp with op *
Deleting exp with op +

Deleting 200

e3 modified.

When e3 is assigned, the top node of e3, i.e. the one with operator * is no longer needed. Its reference

count goes to zero, and hence it is deleted. But its destructor will cause the destructor to be called on

its members lhs and rhs. The left-hand side, lhs, is no longer needed, and it would be reflected in

its reference count. Thus that is also deleted. This also causes the literal 200 to be deleted.

After that the program ends. This causes the variables e1, e2, e3 to be deleted, because control

leaves the main scope. At this point e3, e1 have the value 100, and e2 has the value 300. so these

nodes are also deleted, giving the messages:

Deleting 300

Deleting 100

The various messages printed should pursuade you that memory is indeed being shared and returned

when not needed.

You may want to modify the program by inserting calls to member function use_count to find

out for yourself what happens to the use count as the program executes.

G.3 WEAK POINTERS

Consider the following program.

struct A{

shared_ptr<A> ptr;

A(){cout << "Creating "<< this << endl;}

~A(){cout << "Deleting "<< this << endl;}

};

int main(){

shared_ptr<A> s1(new A), s2(new A);

s1->ptr = s2;

s2->ptr = s1;

s1 = NULL;
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s2 = NULL;

}

When you execute the program, it will print

Creating 0x804c008

Creating 0x804c030

There will be no deallocations and hence n "Deleting ...".

Let us understand why this happens. The program begins by creating the shared pointers s1,

s2 to freshly allocated structures. From the messages printed, we know that these structures are at

0x804c008 and 0x804c030. After step 1 of the program, these structures have use counts 2. When

we execute s1->ptr = s2 and s2->ptr = s1, the structures 0x804c008 and 0x804c030

get an additional pointer, and their use counts become 2. Now when we set s1 = NULL and s2 =

NULL, the reference counts drop down to 1 again. The interesting thing is that the reference counts are

indeed correct because 0x804c008 points to 0x804c030, and vice versa. However, 0x804c008

and 0x804c030 have become inaccessible from the program. Thus, this is a memory leak.

As you can see, the problem has arisen because of cyclic references which make the reference counts

1 and thus falsely indicate that the structures are in use.

G.3.1 Solution Idea

This problem can only be solved using so called the class weak_ptr in conjunction with

shared_ptr.

The basic idea is to break every pointer cycle by putting one weak_ptr in it. A weak_ptr is

a pointer which does not increment the reference count. Further, if the object pointed to by the weak

pointer is deleted, then the weak pointer becomes NULL. So whenever you wish to traverse a weak

pointerW, youmust first check if *W is notNULL and only then traverse. This is unlike ashared_ptr,

which is guaranteed to point to a valid object, unless you yourself set it to point to NULL.

It should be acknowledged, of course, that it may be tricky to determine when a cycle is about to be

formed. Thus, it is tricky to determine when a weak_ptr is to be used rather than a shared_ptr.

G.4 CONCLUDING REMARKS

Managing heap memory in C++ is an evolving field. As a novice programmer, your needs will probably

be met by the classes in the standard library. If for some reason you need to go beyond that, ideas such

as shared_ptr (and also weak_ptr if necessary) will likely be adequate. There is work on so

called garbage collection strategies, but that is beyond the scope of this book.



H
The C++ Preprocessor

When you write a C++ program, you can designate certain words to be short forms, or macros, which

are first expanded before the compiler processes your program. Also, you can designate certain parts

of your program to be compiled conditionally, i.e. only if certain conditions you specify are satisfied.

All this is accomplished by the C++ preprocessor, to which this appendix gives a brief introduction.

Lines of the program beginning with a # are said to constitute preprocessor directives. There

are several of these: source file inclusion, macro definitions and un-definitions, directives controlling

conditional inclusion.

A preprocessor directive ends on the line it starts, unless the last character of a line is a backslash \,

in which case the directive is deemed to continue on to the next line.

H.1 SOURCE-FILE INCLUSION

The form of this is

#include filename

You have seen this throughout the book, the directive gets replaced by the contents of the file

filename. The filename must be in quotes or in angled braces.

H.2 MACROS

A macro definition has the following syntax.

#define macro-name replacement-text

Wherever macro-name appears in the rest of the file, the preprocessor will replace it with the

replacement-text. The replacement-text can be anything, it need not be C++ statements

or blocks.

We mentioned in Section 11.1 that the identifier main_program expands to int main(). This

happens using the following macro in simplecpp.

#define main_program int main()

Note that it is possible to omit replacement-text. In such cases, macro-name is considered

“defined”, but it does not have a value. You have seen this form in Section 11.2.5.

APPENDIX
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A macro definition can also have parameters. The form is

#define macro-name(parameter1, parameter2, ...) replacement-text

A simple example is

#define mymax(a,b) ((a)>(b)?(a):(b))

This would cause any occurrence of mymax in the rest of the file to be replaced by the supplied

replacement-text, with the parameter values suitably substituted. For example, if your file

contains the text mymax(p,5), it would get replaced by ((p)>(5)?(p):(5)). As you can see,

this would be a way to define the max operation.

Note that the above macro definition contains much parenthesization. This is recommended.

Suppose you did not have the parenthesization it might end up meaning something quite

unexpected, depending upon the context. For example, without the parentheses, a line such as

cout«mymax(p,q); will not even compile. A line like z = 100+mymax(3,5); will compile,

but it will likely mean something different from what you intended.

If the replacement text contains quoted text, parameter substitution does not happen inside it. But

what if you want this to happen? For this, the operator # can be used. An expression #q where q is a

parameter will get replaced by a quoted expression containing the value of q. For example if you have

the macro

#define Quote(q) #q

and if your program contains Quote(3) it will be replaced by "3".

An interesting operator is ##. It enables two symbols to be spliced together. If you have the

definition

#define splice(p,q) p##q

and if your program contains splice(a,b) it will be replaced by ab.

You can “undefine” a name that you have previously defined, if you wish. Thus, following the

definition of mymax above, you may write

#undef mymax

This would make mymax be considered not defined from that point onwards, and you could choose to

define it differently later if you wish.

H.2.1 Predefined Macros

The macro __LINE__ expands to the current line number in the current file. The macro __FILE__

expands to the name of the current file. The macro __TIME__ expands to the current time. The

macro __DATE__ expands to the current date. Note that all these names include 2 underscores at

the beginning as well as at the end.

H.3 CONDITIONAL INCLUSION

The first form is

#ifdef macro-name

if-text
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#else

else-text

#endif

If macro-name is defined, then the form expands to if-text. Otherwise it expands to

else-text. You may omit else else-text, in which case the form expands to nothing if

macro-name is not defined.

The form ifndef is exactly the reverse:

#ifndef macro-name

if-text

#else

else-text

#endif

If macro-name is not defined, then the form expands to if-text. Otherwise it expands to

else-text. You may omit else else-text, in which case the form expands to nothing if

macro-name is defined.

You have already seen this used in Section 11.2.5.

Finally, we also have a standard if-then-else like form:

#if condition

if-text

#else

else-text

#endif

In this, condition can be an expression that can be evaluated at compile time, including expressions

involving values of preprocessor macros. Further, you can have clauses of the form

#elif condition

elseif-text

with the natural interpretation.
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mutator function, 270
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natural log, by numerical integration, 110

natural log using Taylor series, 109

NDEBUG, 186

negation, 73

nested function calls, 121

nesting of if statements, 85

networks, 333

new, 298

newline, 32

Newton–Raphson (NRM) method, 113, 431

nextEvent, 291

Nim, 149

no-sharing strategy, 301

noboolalpha, 446

noshowbase, 446

noshowpos, 445

not a number, 39

NOT gate, 88

nouppercase, 446

nowshowpoint, 446

number-representation formats, 18

numeric_limits, 35, 43

numerical integration, 110, 288
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object module, 158

object-oriented programming (OOP), 243

objects, 245

oct, 446

ofstream, 273

operator overloading, 267, 443

operator precedence, 35

operator@, 268

optical compact disk, 24

OR gate, 88

ostream, 272

output redirection, 181

overloading assignment, 269

override, 369

P

packaging software, 161

Page rank, 341

pair, 400

parameter, of a function, 118

parent block, 46

parent class, 365

penDown, 7

penUp, 7

peripherals, 23

permutations, 216

peta, 21

pixel, 24

pointer, 129

Polygon, 226

polymorphic, 377

polymorphism, 373

pop_back, 316

port, 22

Position, 272

post-condition, 122

post-increment operator, 45

post-order numbering, 154

post decrement operator, 45

potential, 103

pow, 8

pre-condition, 122

pre-decrement operator, 45

pre-increment operator, 45

pre-order numbering, 153

preprocessor, 161, 459

primary-school division algorithm, 17

prime number, 84, 99, 215

priority_queue, 400

priority queue, 329

private inheritance, 380

procedure, 117

program, 16

program design, 183

program design plan, 54

projectile motion, 66

protected inheritance, 379

prototype, 157

pseudo-random numbers, 188

public inheritance, 369

push_back, 315

Q

quadratic equation, 87

<queue>, 406

queue, 213, 251, 328, 406

quicksort, 241
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‘\r’, 33

rand, 188

RAND_MAX, 188

random numbers, 188

randuv, 189

receiver, 255

Rectangle, 63

recurrence, 146

recursive pictures, 142

reference counting, 453

reference parameter, 127

reference parameters and const, 256

reference variables, 129

reference-counting strategy, 301

relational operator, 72

release, 406

repeat, 5

reserve, 406

reset, 65

resistor, 338

resize, 316

Resource, 405

resumption of the calling program, 120

return, 119

returning pointers from functions, 133

returning references from functions, 133

right, 7, 444

right-associative operator, 36

rooted tree, 344

rotate, 65

round-off error, 37, 214

S

s++, 3

Scale, 64

, 445

scope, 46

scope resolution operator, 162

Scratch programming environment, 388

screen, 24

search tree, 344

selection sort, 208

separate compilation, 158, 275

sequence-generation, 42

set, 329

setColor, 64

setFill, 64, 445

setprecision, 446

setScale, 64

setw, 444

shadowing, 46, 166

shared_ptr, 453

short int, 30

shortest path, 408

show, 64

showbase, 446

showpoint, 446

showpos, 445

side-effect, 123

signature, 157

signed char, 30

signed integers, 19

<simplecpp>, 2

Simplecpp, 2

simplecpp, namespace, 166

Simplecpp graphics implementation, 388

Simpson’s rule, 116

simulation, 281, 397

sin, 8

sine, 8

Sine, using Taylor series, 108

size, 315

size_t, 316

sizeof, 35

slicing, 372

Snake, 293

software component, 135

sort, 319

sorting, 209

sorting a vector, 319

sorting an array, 321

spherical aberration, 70

spiral, 42

Sprite, 388

srand, 188

<sstream>, 447

static data members, 276

static member function, 277

std, 166

<string>, 314

string, 313
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string::npos, 315

stringstream, 447

structural recursion, 343

structure, 244

structures, initialization, 246

structures, prohibiting certain operations, 271

subclass, 365

subprogram, 117

superclass, 365

suspension of the calling subprogram, 119

switch, 79

systems of non-linear equations, 431

T

‘\t’, 32
tab, 32
tan, 8
tangent, 8
tangent approximation, 107
Taylor series, 107
template classes, 278
tera, 21
testing, 55, 180
testing, unit, 183
testing, code coverage, 184
Text, 63
textHeight, 63
textWidth, 63
this, 257
throw, 449, 450

__TIME__, 460
time, 188
timing model, 26
trees, drawing using recursion, 142
try, 450
turtle, 2
Turtle, 62
turtle controller, 78
turtleSim, 3, 61
two-dimensional arrays, 222
two-dimensional arrays, passing to  
 functions, 225
type conversion, 38, 39
typedef, 329
typename, 176

types of inheritance, 379

U

uniformly distributed random number, 188

unit testing, 183

unnamed namespaces, 164

unsetf, 445

unsigned char, 30

unsigned int, 30

unsigned integer representation, 19

unsigned long int, 30

unsigned long long int, 30

unsigned short int, 30

uppercase, 446

using declaration, 163

using directive, 163

V

‘\v’, 33

value of a variable, 31

variable, 29

variable capture, 173

variable-length entities, 297

variables local to a call, 120

<vector>, 315

vector, 315

vertex, 333

video memory, 24

Virahanka numbers, 145

virtual destructor, 375

virtual functions, 373

virtual inheritance, 379

voltage, 18
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wait, 3

waiting for events, 291

weak_ptr, 458

weather, 15

while, 90

whitespace, 33

word, 19

word-oriented memory, 23
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